Search is not available for this dataset
text
string
meta
dict
open import Common.Reflection open import Common.Prelude open import Common.Equality open import Agda.Builtin.Sigma pattern `Nat = def (quote Nat) [] pattern _`→_ a b = pi (vArg a) (abs "_" b) pattern `Set = sort (lit 0) pattern `⊥ = def (quote ⊥) [] pattern `zero = con (quote zero) [] pattern `suc n = con (quote suc) (vArg n ∷ []) prDef : FunDef prDef = funDef (`Nat `→ `Nat) ( clause [] [] (extLam ( clause [] (vArg `zero ∷ []) `zero ∷ clause (("x" , vArg `Nat) ∷ []) (vArg (`suc (var 0)) ∷ []) (var 0 []) ∷ []) []) ∷ [] ) magicDef : FunDef magicDef = funDef (pi (hArg `Set) (abs "A" (`⊥ `→ var 1 []))) ( clause [] [] (extLam ( absurdClause (("()" , vArg `⊥) ∷ []) (vArg absurd ∷ []) ∷ []) []) ∷ [] ) unquoteDecl magic = define (vArg magic) magicDef checkMagic : {A : Set} → ⊥ → A checkMagic = magic unquoteDecl pr = define (vArg pr) prDef magic′ : {A : Set} → ⊥ → A magic′ = unquote (give (extLam (absurdClause (("()" , vArg `⊥) ∷ []) (vArg absurd ∷ []) ∷ []) [])) module Pred (A : Set) where unquoteDecl pr′ = define (vArg pr′) prDef check : pr 10 ≡ 9 check = refl check′ : Pred.pr′ ⊥ 10 ≡ 9 check′ = refl
{ "alphanum_fraction": 0.511517077, "avg_line_length": 26.2291666667, "ext": "agda", "hexsha": "15170e75a845fccf29acde8443d184475635d913", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/UnquoteExtLam.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/UnquoteExtLam.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/UnquoteExtLam.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 436, "size": 1259 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.System.Parameters open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import Util.PKCS open import Util.Prelude open import Yasm.Base -- This module collects in one place the obligations an -- implementation must meet in order to enjoy the properties -- proved in Abstract.Properties. module LibraBFT.Concrete.Obligations (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (𝓔 : EpochConfig) where import LibraBFT.Concrete.Properties.PreferredRound iiah as PR import LibraBFT.Concrete.Properties.VotesOnce iiah as VO import LibraBFT.Concrete.Properties.Common iiah as Common open SystemTypeParameters ConcSysParms open SystemInitAndHandlers iiah open ParamsWithInitAndHandlers iiah open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms iiah PeerCanSignForPK PeerCanSignForPK-stable record ImplObligations : Set (ℓ+1 ℓ-RoundManager) where field -- Structural obligations: sps-cor : StepPeerState-AllValidParts -- Semantic obligations: -- -- VotesOnce: bsvc : Common.ImplObl-bootstrapVotesConsistent 𝓔 bsvr : Common.ImplObl-bootstrapVotesRound≡0 𝓔 v≢0 : Common.ImplObl-NewVoteRound≢0 𝓔 ∈BI? : (sig : Signature) → Dec (∈BootstrapInfo bootstrapInfo sig) v4rc : PR.ImplObligation-RC 𝓔 iro : Common.IncreasingRoundObligation 𝓔 vo₂ : VO.ImplObligation₂ 𝓔 -- PreferredRound: pr₁ : PR.ImplObligation₁ 𝓔 pr₂ : PR.ImplObligation₂ 𝓔
{ "alphanum_fraction": 0.7361464159, "avg_line_length": 37.1132075472, "ext": "agda", "hexsha": "e23c3ff48cf82582086fb852928bee209ea4676f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/Obligations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/Obligations.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/Obligations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 562, "size": 1967 }
module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Common.Equality infix 0 case_of_ case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x blockOnFresh : TC ⊤ blockOnFresh = checkType unknown unknown >>= λ { (meta m _) → blockOnMeta m ; _ → typeError (strErr "impossible" ∷ []) } macro shouldNotCrash : Tactic shouldNotCrash hole = blockOnFresh -- Should leave some yellow and a constraint 'unquote shouldNotCrash : Nat' n : Nat n = shouldNotCrash
{ "alphanum_fraction": 0.6865671642, "avg_line_length": 21.44, "ext": "agda", "hexsha": "32fe6f6609c93ea2a836e23e8f59acb921f432f4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/BlockOnFreshMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/BlockOnFreshMeta.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/BlockOnFreshMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 536 }
-- There was a bug with the open M es syntax. module Issue31 where record M : Set1 where field A : Set module MOps (m : M) where open M m public postulate m : M open MOps m hiding (A) open MOps m using (A) postulate foo : A -> Set module AnotherBug where postulate Z : Set module A (X : Set) where postulate H : Set module B (Y : Set) where module C where open A Z open B Z public postulate H : Set open C X = H
{ "alphanum_fraction": 0.6339869281, "avg_line_length": 12.75, "ext": "agda", "hexsha": "1fd3ab9fe73e0df6b231ca6462da7e03ee700f7f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue31.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue31.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue31.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 150, "size": 459 }
module Control.Monad.Reader where open import Prelude open import Control.Monad.Zero open import Control.Monad.Identity open import Control.Monad.Transformer record ReaderT {a} (R : Set a) (M : Set a → Set a) (A : Set a) : Set a where no-eta-equality constructor readerT field runReaderT : R → M A open ReaderT public module _ {a} {R : Set a} {M : Set a → Set a} where instance FunctorReaderT : {{_ : Functor M}} → Functor {a = a} (ReaderT R M) runReaderT (fmap {{ FunctorReaderT }} f m) r = f <$> runReaderT m r FunctorZeroReaderT : {{_ : FunctorZero M}} → FunctorZero {a = a} (ReaderT R M) runReaderT (empty {{FunctorZeroReaderT}}) r = empty AlternativeReaderT : {{_ : Alternative M}} → Alternative {a = a} (ReaderT R M) runReaderT (_<|>_ {{AlternativeReaderT}} x y) r = runReaderT x r <|> runReaderT y r module _ {{_ : Monad M}} where private bindReaderT : ∀ {A B} → ReaderT R M A → (A → ReaderT R M B) → ReaderT R M B runReaderT (bindReaderT m f) r = runReaderT m r >>= λ x → runReaderT (f x) r instance ApplicativeReaderT : Applicative {a = a} (ReaderT R M) runReaderT (pure {{ApplicativeReaderT}} x) r = pure x _<*>_ {{ApplicativeReaderT}} = monadAp bindReaderT MonadReaderT : Monad {a = a} (ReaderT R M) _>>=_ {{MonadReaderT}} = bindReaderT liftReaderT : {A : Set a} → M A → ReaderT R M A runReaderT (liftReaderT m) r = m asks : {A : Set a} → (R → A) → ReaderT R M A runReaderT (asks f) r = return (f r) ask : ReaderT R M R ask = asks id local : {A : Set a} → (R → R) → ReaderT R M A → ReaderT R M A runReaderT (local f m) r = runReaderT m (f r) instance TransformerReaderT : ∀ {a} {R : Set a} → Transformer (ReaderT R) lift {{TransformerReaderT}} = liftReaderT Reader : ∀ {a} (R : Set a) (A : Set a) → Set a Reader R = ReaderT R Identity runReader : ∀ {a} {R : Set a} {A : Set a} → Reader R A → R → A runReader m r = runIdentity (runReaderT m r)
{ "alphanum_fraction": 0.6208625878, "avg_line_length": 31.6507936508, "ext": "agda", "hexsha": "ed9d8c08c13764fa0a4a4013c8bd292500bd22fa", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Control/Monad/Reader.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Control/Monad/Reader.agda", "max_line_length": 87, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Control/Monad/Reader.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 676, "size": 1994 }
module BasicT.Metatheory.GentzenNormalForm-Unknown where open import BasicT.Syntax.GentzenNormalForm public -- Forcing. (In a particular model?) infix 3 _⊩_ _⊩_ : Cx Ty → Ty → Set Γ ⊩ α P = Γ ⊢ⁿᶠ α P Γ ⊩ A ▻ B = Γ ⊢ⁿᵉ A ▻ B ⊎ ∀ {Γ′} → Γ ⊆ Γ′ → Γ′ ⊩ A → Γ′ ⊩ B Γ ⊩ A ∧ B = Γ ⊢ⁿᵉ A ∧ B ⊎ Γ ⊩ A × Γ ⊩ B Γ ⊩ ⊤ = Γ ⊢ⁿᶠ ⊤ Γ ⊩ BOOL = Γ ⊢ⁿᶠ BOOL Γ ⊩ NAT = Γ ⊢ⁿᶠ NAT infix 3 _⊩⋆_ _⊩⋆_ : Cx Ty → Cx Ty → Set Γ ⊩⋆ ∅ = 𝟙 Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A -- Monotonicity with respect to context inclusion. mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A mono⊩ {α P} η t = mono⊢ⁿᶠ η t mono⊩ {A ▻ B} η (ι₁ t) = ι₁ (mono⊢ⁿᵉ η t) mono⊩ {A ▻ B} η (ι₂ s) = ι₂ (λ η′ a → s (trans⊆ η η′) a) mono⊩ {A ∧ B} η (ι₁ t) = ι₁ (mono⊢ⁿᵉ η t) mono⊩ {A ∧ B} η (ι₂ s) = ι₂ (mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)) mono⊩ {⊤} η t = mono⊢ⁿᶠ η t mono⊩ {BOOL} η t = mono⊢ⁿᶠ η t mono⊩ {NAT} η t = mono⊢ⁿᶠ η t mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ mono⊩⋆ {∅} η ∙ = ∙ mono⊩⋆ {Ξ , A} η (γ , a) = mono⊩⋆ {Ξ} η γ , mono⊩ {A} η a -- Soundness and completeness. (With respect to a particular model?) reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A reflect {α P} t = neⁿᶠ t reflect {A ▻ B} t = ι₁ t reflect {A ∧ B} t = ι₁ t reflect {⊤} t = neⁿᶠ t reflect {BOOL} t = neⁿᶠ t reflect {NAT} t = neⁿᶠ t reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A reify {α P} t = t reify {A ▻ B} (ι₁ t) = neⁿᶠ t reify {A ▻ B} (ι₂ s) = lamⁿᶠ (reify (s weak⊆ (reflect {A} (varⁿᵉ top)))) reify {A ∧ B} (ι₁ t) = neⁿᶠ t reify {A ∧ B} (ι₂ s) = pairⁿᶠ (reify (π₁ s)) (reify (π₂ s)) reify {⊤} t = t reify {BOOL} t = t reify {NAT} t = t reflect⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᵉ Ξ → Γ ⊩⋆ Ξ reflect⋆ {∅} ∙ = ∙ reflect⋆ {Ξ , A} (ts , t) = reflect⋆ ts , reflect t reify⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ⁿᶠ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Additional useful equipment. _⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B ι₁ t ⟪$⟫ a = reflect (appⁿᵉ t (reify a)) ι₂ s ⟪$⟫ a = s refl⊆ a ⟪π₁⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ A ⟪π₁⟫ (ι₁ t) = reflect (fstⁿᵉ t) ⟪π₁⟫ (ι₂ s) = π₁ s ⟪π₂⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ B ⟪π₂⟫ (ι₁ t) = reflect (sndⁿᵉ t) ⟪π₂⟫ (ι₂ s) = π₂ s ⟪if⟫ : ∀ {C w} → w ⊩ BOOL → w ⊩ C → w ⊩ C → w ⊩ C ⟪if⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (ifⁿᵉ t (reify s₂) (reify s₃)) ⟪if⟫ {C} trueⁿᶠ s₂ s₃ = s₂ ⟪if⟫ {C} falseⁿᶠ s₂ s₃ = s₃ ⟪it⟫ : ∀ {C w} → w ⊩ NAT → w ⊩ C ▻ C → w ⊩ C → w ⊩ C ⟪it⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (itⁿᵉ t (reify s₂) (reify s₃)) ⟪it⟫ {C} zeroⁿᶠ s₂ s₃ = s₃ ⟪it⟫ {C} (sucⁿᶠ t) s₂ s₃ = s₂ ⟪$⟫ ⟪it⟫ t s₂ s₃ ⟪rec⟫ : ∀ {C w} → w ⊩ NAT → w ⊩ NAT ▻ C ▻ C → w ⊩ C → w ⊩ C ⟪rec⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (recⁿᵉ t (reify s₂) (reify s₃)) ⟪rec⟫ {C} zeroⁿᶠ s₂ s₃ = s₃ ⟪rec⟫ {C} (sucⁿᶠ t) s₂ s₃ = (s₂ ⟪$⟫ t) ⟪$⟫ ⟪rec⟫ t s₂ s₃ -- Forcing for sequents. (In a particular world of a particular model?) infix 3 _⊩_⇒_ _⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment. (Forcing in all worlds of all models, for sequents?) infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set Γ ⊨ A = ∀ {w : Cx Ty} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set Γ ⊨⋆ Ξ = ∀ {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ -- Evaluation. (Soundness with respect to all models?) eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = ι₂ (λ η a → eval t (mono⊩⋆ η γ , a)) eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval (pair t u) γ = ι₂ (eval t γ , eval u γ) eval (fst t) γ = ⟪π₁⟫ (eval t γ) eval (snd t) γ = ⟪π₂⟫ (eval t γ) eval unit γ = unitⁿᶠ eval true γ = trueⁿᶠ eval false γ = trueⁿᶠ eval (if {C} t u v) γ = ⟪if⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval zero γ = zeroⁿᶠ eval (suc t) γ = sucⁿᶠ (eval t γ) eval (it {C} t u v) γ = ⟪it⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval (rec {C} t u v) γ = ⟪rec⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflect⋆ refl⊢⋆ⁿᵉ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = eval⋆ (trans⊢⋆ (nf→tm⋆ (reify⋆ ts)) (nf→tm⋆ (reify⋆ us))) refl⊩⋆ -- Quotation. (Completeness with respect to all models?) quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = nf→tm (reify (s refl⊩⋆)) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.4814814815, "avg_line_length": 27.4682080925, "ext": "agda", "hexsha": "4dd08a6a469b53f09b204d9e2045cefa41681e20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicT/Metatheory/GentzenNormalForm-Unknown.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicT/Metatheory/GentzenNormalForm-Unknown.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicT/Metatheory/GentzenNormalForm-Unknown.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2824, "size": 4752 }
module Logics.And where open import Function ------------------------------------------------------------------------ -- definitions infixl 5 _∧_ infixl 4 _⇔_ data _∧_ (P Q : Set) : Set where ∧-intro : P → Q → P ∧ Q _⇔_ : (P Q : Set) → Set p ⇔ q = (p → q) ∧ (q → p) ------------------------------------------------------------------------ -- internal stuffs private ∧-comm′ : ∀ {P Q} → (P ∧ Q) → (Q ∧ P) ∧-comm′ (∧-intro p q) = ∧-intro q p ∧-assoc₀ : ∀ {P Q R} → ((P ∧ Q) ∧ R) → (P ∧ (Q ∧ R)) ∧-assoc₀ (∧-intro (∧-intro p q) r) = ∧-intro p $ ∧-intro q r ∧-assoc₁ : ∀ {P Q R} → (P ∧ (Q ∧ R)) → ((P ∧ Q) ∧ R) ∧-assoc₁ (∧-intro p (∧-intro q r)) = ∧-intro (∧-intro p q) r ∧-comm : ∀ {P Q} → (P ∧ Q) ⇔ (Q ∧ P) ∧-comm = ∧-intro ∧-comm′ ∧-comm′ ∧-assoc : ∀ {P Q R} → (P ∧ (Q ∧ R)) ⇔ ((P ∧ Q) ∧ R) ∧-assoc = ∧-intro ∧-assoc₁ ∧-assoc₀ ------------------------------------------------------------------------ -- public aliases and-comm : ∀ {P Q} → (P ∧ Q) ⇔ (Q ∧ P) and-comm = ∧-comm and-assoc : ∀ {P Q R} → (P ∧ (Q ∧ R)) ⇔ ((P ∧ Q) ∧ R) and-assoc = ∧-assoc
{ "alphanum_fraction": 0.3535911602, "avg_line_length": 23.6086956522, "ext": "agda", "hexsha": "6c97c3591f3e96fc0336ece9cc7ab262f74172ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Logics/And.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Logics/And.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Logics/And.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 422, "size": 1086 }
module NoQualifiedInstances.ParameterizedImport.A (T : Set) where record I : Set where postulate instance i : I
{ "alphanum_fraction": 0.7807017544, "avg_line_length": 19, "ext": "agda", "hexsha": "dcc04e1544f126e424519c78ab8a07108ce45307", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/NoQualifiedInstances/ParameterizedImport/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/NoQualifiedInstances/ParameterizedImport/A.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/NoQualifiedInstances/ParameterizedImport/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 114 }
module Data.Tuple.List{ℓ} where import Lvl open import Data using (Unit ; <>) open import Data.Tuple using (_⨯_ ; _,_) import Data.List open Data.List using (List) open import Type{ℓ} -- Constructs a tuple from a list Tuple : List(Type) → Type Tuple(List.∅) = Unit Tuple(T List.⊰ List.∅) = T Tuple(T List.⊰ L) = (T ⨯ Tuple(L)) pattern ∅ = <> pattern _⊰∅ a = a pattern _⊰+_ a l = (a , l) import Data.List.Functions as List _⊰_ : ∀{T}{L} → T → Tuple(L) → Tuple(T List.⊰ L) _⊰_ {_}{List.∅} a _ = a _⊰_ {_}{_ List.⊰ _} a l = (a , l) head : ∀{T}{L} → Tuple(T List.⊰ L) → T head{_}{List.∅} (a ⊰∅) = a head{_}{_ List.⊰ _}(a ⊰+ _) = a tail : ∀{T}{L} → Tuple(T List.⊰ L) → Tuple(L) tail{_}{List.∅} (_ ⊰∅) = ∅ tail{_}{_ List.⊰ _}(_ ⊰+ l) = l module _ where open import Data.List.Equiv.Id open import Data.List.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator open import Structure.Operator.Properties _++_ : ∀{L₁ L₂} → Tuple(L₁) → Tuple(L₂) → Tuple(L₁ List.++ L₂) _++_{L} {List.∅} (l)(_) = substitute₁ₗ(Tuple) {y = L} (identityᵣ(List._++_)(List.∅)) l _++_{List.∅} {_} (_)(l) = l _++_{A List.⊰ List.∅} {L₂} (a ⊰∅) (l₂) = _⊰_ {A}{L₂} (a) (l₂) _++_{A List.⊰ B List.⊰ L₁}{L₂} (a ⊰+ l₁)(l₂) = _⊰_ {A}{(B Data.List.⊰ L₁) List.++ L₂} (a) (_++_ {B Data.List.⊰ L₁}{L₂} l₁ l₂) module _ where open import Numeral.Natural length : ∀{L} → Tuple(L) → ℕ length{L} (_) = List.length(L) -- TODO: TupleRaise : Tuple(repeat(n)(T)) ≡ T ^ n
{ "alphanum_fraction": 0.5351851852, "avg_line_length": 29.4545454545, "ext": "agda", "hexsha": "2cafc335918adbfd02ba4661f1b7d7e6b00fd942", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple/List.agda", "max_line_length": 131, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 695, "size": 1620 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Empty.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty.Base isProp⊥ : isProp ⊥ isProp⊥ () isContr⊥→A : ∀ {ℓ} {A : Type ℓ} → isContr (⊥ → A) fst isContr⊥→A () snd isContr⊥→A f i ()
{ "alphanum_fraction": 0.6918429003, "avg_line_length": 20.6875, "ext": "agda", "hexsha": "fdc609563a0452c919bd941b47b1f88673b67f5b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Data/Empty/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Data/Empty/Properties.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Data/Empty/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 116, "size": 331 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.Consensus.ConsensusProvider as ConsensusProvider import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile import LibraBFT.Impl.IO.OBM.ObmNeedFetch as ObmNeedFetch import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.IO.OBM.Start where {- This only does the initialization steps from the Haskell version. If initialization succeeds, it returns - the EpochManager (for all epochs) - note: this contains the initialized RoundManager for the current epoch (i.e., Epoch 0) - any output from the RoundManager produced during initialization The only output is (with info logging removed): -- only the leader of round 1 will broadcast a proposal BroadcastProposal; [ ... peer addresses ... ]; (ProposalMsg (B 7194dca (BD 1 1 (Prop ("TX/1/1")) ...)) -- proposed block (SI (hqc c66a132) (hcc N) (htc (TC N)))) -- SyncInfo The Haskell code, after initialization, hooks up the communication channels and sockets and starts threads that handle them. One of the threads is given to EpochManager.obmStartLoop to get input and pass it through the EpochManager and then (usually) on to the RoundMnager. TODO-3: Replace 'Handle.initRM' with the initialized RoundManager obtained through the following 'startViaConsensusProvider'. TODO-3: Figure out how to handle the initial BroadcastProposal. -} startViaConsensusProvider : Instant → GenKeyFile.NfLiwsVsVvPe → TxTypeDependentStuffForNetwork → Either ErrLog (EpochManager × List Output) startViaConsensusProvider now (nf , liws , vs , vv , pe) txTDS = do (nc , occp , _liws , sk , _pe) ← ConsensusProvider.obmInitialData (nf , liws , vs , vv , pe) ConsensusProvider.startConsensus nc now occp liws sk (ObmNeedFetch∙new {- newNetwork -stps'-}) (txTDS ^∙ ttdsnProposalGenerator) (txTDS ^∙ ttdsnStateComputer)
{ "alphanum_fraction": 0.7425200169, "avg_line_length": 43.1454545455, "ext": "agda", "hexsha": "7e96b8c7fc538c4290f4508423425c9913578658", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/IO/OBM/Start.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/IO/OBM/Start.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/IO/OBM/Start.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 638, "size": 2373 }
{-# OPTIONS --without-K --safe #-} module Dodo.Unary.Intersection where -- Stdlib imports import Relation.Binary.PropositionalEquality as Eq open Eq using (refl; _≡_) open import Level using (Level; _⊔_) open import Function using (_∘₂_) open import Data.Product using (_×_; _,_; swap; proj₁; proj₂) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel; REL) -- Local imports open import Dodo.Unary.Equality open import Dodo.Unary.Unique -- # Definitions infixr 30 _∩₁_ _∩₁_ : {a ℓ₁ ℓ₂ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A (ℓ₁ ⊔ ℓ₂) _∩₁_ p q x = p x × q x -- # Properties module _ {a ℓ : Level} {A : Set a} {P : Pred A ℓ} where ∩₁-idem : (P ∩₁ P) ⇔₁ P ∩₁-idem = ⇔: (λ _ → proj₁) ⊇-proof where ⊇-proof : P ⊆₁' (P ∩₁ P) ⊇-proof _ Px = (Px , Px) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where ∩₁-comm : (P ∩₁ Q) ⇔₁ (Q ∩₁ P) ∩₁-comm = ⇔: (λ _ → swap) (λ _ → swap) module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∩₁-assoc : P ∩₁ (Q ∩₁ R) ⇔₁ (P ∩₁ Q) ∩₁ R ∩₁-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : P ∩₁ (Q ∩₁ R) ⊆₁' (P ∩₁ Q) ∩₁ R ⊆-proof _ (Px , Qx , Rx) = ((Px , Qx) , Rx) ⊇-proof : (P ∩₁ Q) ∩₁ R ⊆₁' P ∩₁ (Q ∩₁ R) ⊇-proof _ ((Px , Qx) , Rx) = (Px , Qx , Rx) -- # Operations -- ## Operations: General module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where ∩₁-unique-pred : UniquePred P → UniquePred Q → UniquePred (P ∩₁ Q) ∩₁-unique-pred uniqueP uniqueQ x (Px₁ , Qx₁) (Px₂ , Qx₂) with uniqueP x Px₁ Px₂ | uniqueQ x Qx₁ Qx₂ ... | refl | refl = refl -- ## Operations: ⊆₁ module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∩₁-combine-⊆₁ : P ⊆₁ Q → P ⊆₁ R → P ⊆₁ (Q ∩₁ R) ∩₁-combine-⊆₁ (⊆: P⊆Q) (⊆: P⊆R) = ⊆: (λ x Px → (P⊆Q x Px , P⊆R x Px)) module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∩₁-introˡ-⊆₁ : (P ∩₁ Q) ⊆₁ P ∩₁-introˡ-⊆₁ = ⊆: (λ _ → proj₁) ∩₁-introʳ-⊆₁ : (P ∩₁ Q) ⊆₁ Q ∩₁-introʳ-⊆₁ = ⊆: (λ _ → proj₂) ∩₁-elimˡ-⊆₁ : P ⊆₁ (Q ∩₁ R) → P ⊆₁ R ∩₁-elimˡ-⊆₁ (⊆: P⊆[Q∩R]) = ⊆: (λ x Px → proj₂ (P⊆[Q∩R] x Px)) ∩₁-elimʳ-⊆₁ : P ⊆₁ (Q ∩₁ R) → P ⊆₁ Q ∩₁-elimʳ-⊆₁ (⊆: P⊆[Q∩R]) = ⊆: (λ x Px → proj₁ (P⊆[Q∩R] x Px)) module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∩₁-substˡ-⊆₁ : P ⊆₁ Q → (P ∩₁ R) ⊆₁ (Q ∩₁ R) ∩₁-substˡ-⊆₁ (⊆: P⊆Q) = ⊆: lemma where lemma : (P ∩₁ R) ⊆₁' (Q ∩₁ R) lemma x (Px , Rx) = (P⊆Q x Px , Rx) ∩₁-substʳ-⊆₁ : P ⊆₁ Q → (R ∩₁ P) ⊆₁ (R ∩₁ Q) ∩₁-substʳ-⊆₁ (⊆: P⊆Q) = ⊆: lemma where lemma : (R ∩₁ P) ⊆₁' (R ∩₁ Q) lemma x (Rx , Px) = (Rx , P⊆Q x Px) -- ## Operations: ⇔₂ module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∩₁-substˡ : P ⇔₁ Q → (P ∩₁ R) ⇔₁ (Q ∩₁ R) ∩₁-substˡ = ⇔₁-compose ∩₁-substˡ-⊆₁ ∩₁-substˡ-⊆₁ ∩₁-substʳ : P ⇔₁ Q → (R ∩₁ P) ⇔₁ (R ∩₁ Q) ∩₁-substʳ = ⇔₁-compose ∩₁-substʳ-⊆₁ ∩₁-substʳ-⊆₁
{ "alphanum_fraction": 0.5079465989, "avg_line_length": 25.3709677419, "ext": "agda", "hexsha": "254f41123241614b94da94e6c7d6c439f6a7bb81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Unary/Intersection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Unary/Intersection.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Unary/Intersection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1711, "size": 3146 }
{-# OPTIONS --cubical #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Unit data S : Set where base : S foo : ∀ i j k → Partial _ S foo i j k (i = i0)(k = i1) = base foo i j k (j = i1) = base -- Testing that fallthrough patterns get expanded when compiling the -- clauses of foo. -- Just because (i = i0) matches the first clause doesn't mean we commit to it. -- `foo i0 i1 k o` should still compute to base by the second clause. testf : ∀ k (o : IsOne i1) → foo i0 i1 k o ≡ base testf k o i = base
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 27, "ext": "agda", "hexsha": "f65357e3f10a375b43ed20ff2f2c3d30563cb1d9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3628.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3628.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3628.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 181, "size": 567 }
module Relation.Unary.Membership {a} (A : Set a) where open import Level open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Unary open import Relation.Binary infixl 4 _≋_ _≋_ : Rel (Pred A a) _ P ≋ Q = P ⊆′ Q × Q ⊆′ P ⊆-refl : Reflexive (_⊆′_ {a} {A} {a}) ⊆-refl {pred} x P = P ≋-refl : Reflexive _≋_ ≋-refl {pred} = (⊆-refl {pred}) , (⊆-refl {pred}) ≋-sym : Symmetric _≋_ ≋-sym x = (proj₂ x) , (proj₁ x) ≋-trans : Transitive _≋_ ≋-trans f≋g g≋h = (λ x z → proj₁ g≋h x (proj₁ f≋g x z)) , (λ x z → proj₂ f≋g x (proj₂ g≋h x z)) ≋-isEquivalence : IsEquivalence _≋_ ≋-isEquivalence = record { refl = ≋-refl ; sym = ≋-sym ; trans = ≋-trans } ⊆-trans : Transitive (_⊆′_ {a} {A} {a}) ⊆-trans A⊆B B⊆C x x∈A = B⊆C x (A⊆B x x∈A) ⊆-preorder : IsPreorder _≋_ _⊆′_ ⊆-preorder = record { isEquivalence = ≋-isEquivalence ; reflexive = proj₁ ; trans = ⊆-trans } ⊆-partialOrder : IsPartialOrder _≋_ _⊆′_ ⊆-partialOrder = record { isPreorder = ⊆-preorder ; antisym = λ A⊆B B⊆A → A⊆B , B⊆A } ⊆-poset : Poset (suc a) a a ⊆-poset = record { Carrier = Pred A a ; _≈_ = _≋_ ; _≤_ = _⊆′_ ; isPartialOrder = ⊆-partialOrder } module ⊆-Reasoning where import Relation.Binary.PartialOrderReasoning as PosetR open PosetR ⊆-poset public renaming (_≤⟨_⟩_ to _⊆⟨_⟩_) infix 1 _∈⟨_⟩_ infixr 2 _→⟨_⟩_ _∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys x ∈⟨ x∈xs ⟩ xs⊆ys = begin_ xs⊆ys x x∈xs _→⟨_⟩_ : ∀ A {B C} → (A ⊆ B) → B IsRelatedTo C → A IsRelatedTo C A →⟨ f ⟩ B∼C = A ⊆⟨ (λ x x∈A → f x∈A) ⟩ B∼C -- A ⊆[ f ] relTo B∼C = A ⊆⟨ f ⟩ relTo B∼C -- --(begin xs⊆ys) x∈xs
{ "alphanum_fraction": 0.5506736965, "avg_line_length": 23.3835616438, "ext": "agda", "hexsha": "46f863ac7f1129cb961fd30cf7fce6d11b3de91e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/formal-language", "max_forks_repo_path": "src/Relation/Unary/Membership.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/formal-language", "max_issues_repo_path": "src/Relation/Unary/Membership.agda", "max_line_length": 81, "max_stars_count": 9, "max_stars_repo_head_hexsha": "063ae0ce03955b332c3edebae6b55a42209813d0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/formal-language", "max_stars_repo_path": "src/Relation/Unary/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-22T12:48:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-01T11:24:15.000Z", "num_tokens": 845, "size": 1707 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sums of binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Relation.Binary.LeftOrder where open import Data.Sum as Sum open import Data.Sum.Relation.Binary.Pointwise as PW using (Pointwise; inj₁; inj₂) open import Data.Product open import Data.Empty open import Function open import Level open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ---------------------------------------------------------------------- -- Definition infixr 1 _⊎-<_ data _⊎-<_ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} (_∼₁_ : Rel A₁ ℓ₁) (_∼₂_ : Rel A₂ ℓ₂) : Rel (A₁ ⊎ A₂) (a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where ₁∼₂ : ∀ {x y} → (_∼₁_ ⊎-< _∼₂_) (inj₁ x) (inj₂ y) ₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → (_∼₁_ ⊎-< _∼₂_) (inj₁ x) (inj₁ y) ₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → (_∼₁_ ⊎-< _∼₂_) (inj₂ x) (inj₂ y) ---------------------------------------------------------------------- -- Some properties which are preserved by _⊎-<_ module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} where drop-inj₁ : ∀ {x y} → (∼₁ ⊎-< ∼₂) (inj₁ x) (inj₁ y) → ∼₁ x y drop-inj₁ (₁∼₁ x∼₁y) = x∼₁y drop-inj₂ : ∀ {x y} → (∼₁ ⊎-< ∼₂) (inj₂ x) (inj₂ y) → ∼₂ x y drop-inj₂ (₂∼₂ x∼₂y) = x∼₂y ⊎-<-refl : Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ⊎-< ∼₂) ⊎-<-refl refl₁ refl₂ {inj₁ x} = ₁∼₁ refl₁ ⊎-<-refl refl₁ refl₂ {inj₂ y} = ₂∼₂ refl₂ ⊎-<-transitive : Transitive ∼₁ → Transitive ∼₂ → Transitive (∼₁ ⊎-< ∼₂) ⊎-<-transitive trans₁ trans₂ ₁∼₂ (₂∼₂ x∼₂y) = ₁∼₂ ⊎-<-transitive trans₁ trans₂ (₁∼₁ x∼₁y) ₁∼₂ = ₁∼₂ ⊎-<-transitive trans₁ trans₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = ₁∼₁ (trans₁ x∼₁y x∼₁y₁) ⊎-<-transitive trans₁ trans₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = ₂∼₂ (trans₂ x∼₂y x∼₂y₁) ⊎-<-asymmetric : Asymmetric ∼₁ → Asymmetric ∼₂ → Asymmetric (∼₁ ⊎-< ∼₂) ⊎-<-asymmetric asym₁ asym₂ ₁∼₂ () ⊎-<-asymmetric asym₁ asym₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = asym₁ x∼₁y x∼₁y₁ ⊎-<-asymmetric asym₁ asym₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = asym₂ x∼₂y x∼₂y₁ ⊎-<-total : Total ∼₁ → Total ∼₂ → Total (∼₁ ⊎-< ∼₂) ⊎-<-total total₁ total₂ = total where total : Total (_ ⊎-< _) total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y total (inj₁ x) (inj₂ y) = inj₁ ₁∼₂ total (inj₂ x) (inj₁ y) = inj₂ ₁∼₂ total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y ⊎-<-decidable : Decidable ∼₁ → Decidable ∼₂ → Decidable (∼₁ ⊎-< ∼₂) ⊎-<-decidable dec₁ dec₂ (inj₁ x) (inj₁ y) = Dec.map′ ₁∼₁ drop-inj₁ (dec₁ x y) ⊎-<-decidable dec₁ dec₂ (inj₁ x) (inj₂ y) = yes ₁∼₂ ⊎-<-decidable dec₁ dec₂ (inj₂ x) (inj₁ y) = no λ() ⊎-<-decidable dec₁ dec₂ (inj₂ x) (inj₂ y) = Dec.map′ ₂∼₂ drop-inj₂ (dec₂ x y) module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {≈₁ : Rel A₁ ℓ₂} {ℓ₃ ℓ₄} {∼₂ : Rel A₂ ℓ₃} {≈₂ : Rel A₂ ℓ₄} where ⊎-<-reflexive : ≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ → (Pointwise ≈₁ ≈₂) ⇒ (∼₁ ⊎-< ∼₂) ⊎-<-reflexive refl₁ refl₂ (inj₁ x) = ₁∼₁ (refl₁ x) ⊎-<-reflexive refl₁ refl₂ (inj₂ x) = ₂∼₂ (refl₂ x) ⊎-<-irreflexive : Irreflexive ≈₁ ∼₁ → Irreflexive ≈₂ ∼₂ → Irreflexive (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-irreflexive irrefl₁ irrefl₂ (inj₁ x) (₁∼₁ x∼₁y) = irrefl₁ x x∼₁y ⊎-<-irreflexive irrefl₁ irrefl₂ (inj₂ x) (₂∼₂ x∼₂y) = irrefl₂ x x∼₂y ⊎-<-antisymmetric : Antisymmetric ≈₁ ∼₁ → Antisymmetric ≈₂ ∼₂ → Antisymmetric (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-antisymmetric antisym₁ antisym₂ (₁∼₁ x∼₁y) (₁∼₁ x∼₁y₁) = inj₁ (antisym₁ x∼₁y x∼₁y₁) ⊎-<-antisymmetric antisym₁ antisym₂ (₂∼₂ x∼₂y) (₂∼₂ x∼₂y₁) = inj₂ (antisym₂ x∼₂y x∼₂y₁) -- Remove in Agda 2.6.0? ⊎-<-antisymmetric antisym₁ antisym₂ ₁∼₂ () ⊎-<-respectsʳ : ∼₁ Respectsʳ ≈₁ → ∼₂ Respectsʳ ≈₂ → (∼₁ ⊎-< ∼₂) Respectsʳ (Pointwise ≈₁ ≈₂) ⊎-<-respectsʳ resp₁ resp₂ (inj₁ x₁) (₁∼₁ x∼₁y) = ₁∼₁ (resp₁ x₁ x∼₁y) ⊎-<-respectsʳ resp₁ resp₂ (inj₂ x₁) ₁∼₂ = ₁∼₂ ⊎-<-respectsʳ resp₁ resp₂ (inj₂ x₁) (₂∼₂ x∼₂y) = ₂∼₂ (resp₂ x₁ x∼₂y) ⊎-<-respectsˡ : ∼₁ Respectsˡ ≈₁ → ∼₂ Respectsˡ ≈₂ → (∼₁ ⊎-< ∼₂) Respectsˡ (Pointwise ≈₁ ≈₂) ⊎-<-respectsˡ resp₁ resp₂ (inj₁ x) ₁∼₂ = ₁∼₂ ⊎-<-respectsˡ resp₁ resp₂ (inj₁ x) (₁∼₁ x∼₁y) = ₁∼₁ (resp₁ x x∼₁y) ⊎-<-respectsˡ resp₁ resp₂ (inj₂ x) (₂∼₂ x∼₂y) = ₂∼₂ (resp₂ x x∼₂y) ⊎-<-respects₂ : ∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ → (∼₁ ⊎-< ∼₂) Respects₂ (Pointwise ≈₁ ≈₂) ⊎-<-respects₂ (r₁ , l₁) (r₂ , l₂) = ⊎-<-respectsʳ r₁ r₂ , ⊎-<-respectsˡ l₁ l₂ ⊎-<-trichotomous : Trichotomous ≈₁ ∼₁ → Trichotomous ≈₂ ∼₂ → Trichotomous (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-trichotomous tri₁ tri₂ (inj₁ x) (inj₂ y) = tri< ₁∼₂ (λ()) (λ()) ⊎-<-trichotomous tri₁ tri₂ (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) ₁∼₂ ⊎-<-trichotomous tri₁ tri₂ (inj₁ x) (inj₁ y) with tri₁ x y ... | tri< x<y x≉y x≯y = tri< (₁∼₁ x<y) (x≉y ∘ PW.drop-inj₁) (x≯y ∘ drop-inj₁) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₁) (inj₁ x≈y) (x≯y ∘ drop-inj₁) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₁) (x≉y ∘ PW.drop-inj₁) (₁∼₁ x>y) ⊎-<-trichotomous tri₁ tri₂ (inj₂ x) (inj₂ y) with tri₂ x y ... | tri< x<y x≉y x≯y = tri< (₂∼₂ x<y) (x≉y ∘ PW.drop-inj₂) (x≯y ∘ drop-inj₂) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₂) (inj₂ x≈y) (x≯y ∘ drop-inj₂) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₂) (x≉y ∘ PW.drop-inj₂) (₂∼₂ x>y) ---------------------------------------------------------------------- -- Some collections of properties which are preserved module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₂} {ℓ₃ ℓ₄} {≈₂ : Rel A₂ ℓ₃} {∼₂ : Rel A₂ ℓ₄} where ⊎-<-isPreorder : IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ → IsPreorder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isPreorder pre₁ pre₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂) ; reflexive = ⊎-<-reflexive (reflexive pre₁) (reflexive pre₂) ; trans = ⊎-<-transitive (trans pre₁) (trans pre₂) } where open IsPreorder ⊎-<-isPartialOrder : IsPartialOrder ≈₁ ∼₁ → IsPartialOrder ≈₂ ∼₂ → IsPartialOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isPartialOrder po₁ po₂ = record { isPreorder = ⊎-<-isPreorder (isPreorder po₁) (isPreorder po₂) ; antisym = ⊎-<-antisymmetric (antisym po₁) (antisym po₂) } where open IsPartialOrder ⊎-<-isStrictPartialOrder : IsStrictPartialOrder ≈₁ ∼₁ → IsStrictPartialOrder ≈₂ ∼₂ → IsStrictPartialOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isStrictPartialOrder spo₁ spo₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂) ; irrefl = ⊎-<-irreflexive (irrefl spo₁) (irrefl spo₂) ; trans = ⊎-<-transitive (trans spo₁) (trans spo₂) ; <-resp-≈ = ⊎-<-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictPartialOrder ⊎-<-isTotalOrder : IsTotalOrder ≈₁ ∼₁ → IsTotalOrder ≈₂ ∼₂ → IsTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isTotalOrder to₁ to₂ = record { isPartialOrder = ⊎-<-isPartialOrder (isPartialOrder to₁) (isPartialOrder to₂) ; total = ⊎-<-total (total to₁) (total to₂) } where open IsTotalOrder ⊎-<-isDecTotalOrder : IsDecTotalOrder ≈₁ ∼₁ → IsDecTotalOrder ≈₂ ∼₂ → IsDecTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isDecTotalOrder to₁ to₂ = record { isTotalOrder = ⊎-<-isTotalOrder (isTotalOrder to₁) (isTotalOrder to₂) ; _≟_ = PW.⊎-decidable (_≟_ to₁) (_≟_ to₂) ; _≤?_ = ⊎-<-decidable (_≤?_ to₁) (_≤?_ to₂) } where open IsDecTotalOrder ⊎-<-isStrictTotalOrder : IsStrictTotalOrder ≈₁ ∼₁ → IsStrictTotalOrder ≈₂ ∼₂ → IsStrictTotalOrder (Pointwise ≈₁ ≈₂) (∼₁ ⊎-< ∼₂) ⊎-<-isStrictTotalOrder sto₁ sto₂ = record { isEquivalence = PW.⊎-isEquivalence (isEquivalence sto₁) (isEquivalence sto₂) ; trans = ⊎-<-transitive (trans sto₁) (trans sto₂) ; compare = ⊎-<-trichotomous (compare sto₁) (compare sto₂) } where open IsStrictTotalOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {a b c d e f} where ⊎-<-preorder : Preorder a b c → Preorder d e f → Preorder _ _ _ ⊎-<-preorder p₁ p₂ = record { isPreorder = ⊎-<-isPreorder (isPreorder p₁) (isPreorder p₂) } where open Preorder ⊎-<-poset : Poset a b c → Poset a b c → Poset _ _ _ ⊎-<-poset po₁ po₂ = record { isPartialOrder = ⊎-<-isPartialOrder (isPartialOrder po₁) (isPartialOrder po₂) } where open Poset ⊎-<-strictPartialOrder : StrictPartialOrder a b c → StrictPartialOrder d e f → StrictPartialOrder _ _ _ ⊎-<-strictPartialOrder spo₁ spo₂ = record { isStrictPartialOrder = ⊎-<-isStrictPartialOrder (isStrictPartialOrder spo₁) (isStrictPartialOrder spo₂) } where open StrictPartialOrder ⊎-<-totalOrder : TotalOrder a b c → TotalOrder d e f → TotalOrder _ _ _ ⊎-<-totalOrder to₁ to₂ = record { isTotalOrder = ⊎-<-isTotalOrder (isTotalOrder to₁) (isTotalOrder to₂) } where open TotalOrder ⊎-<-decTotalOrder : DecTotalOrder a b c → DecTotalOrder d e f → DecTotalOrder _ _ _ ⊎-<-decTotalOrder to₁ to₂ = record { isDecTotalOrder = ⊎-<-isDecTotalOrder (isDecTotalOrder to₁) (isDecTotalOrder to₂) } where open DecTotalOrder ⊎-<-strictTotalOrder : StrictTotalOrder a b c → StrictTotalOrder a b c → StrictTotalOrder _ _ _ ⊎-<-strictTotalOrder sto₁ sto₂ = record { isStrictTotalOrder = ⊎-<-isStrictTotalOrder (isStrictTotalOrder sto₁) (isStrictTotalOrder sto₂) } where open StrictTotalOrder
{ "alphanum_fraction": 0.5344431688, "avg_line_length": 42.3157894737, "ext": "agda", "hexsha": "06edca09ccb86e4c1781107c3498239b51163964", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/LeftOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4516, "size": 10452 }
module Golden where open import Basics open import Vec open import Ix open import Cutting open import Interior open import Tensor open RECTANGLE open INTERIOR RectCut ind : (n : Nat)(P : Nat -> Set) -> P zero -> ((k : Nat) -> P k -> P (suc k)) -> P n ind zero P pz ps = pz ind (suc n) P pz ps = ps n (ind n P pz ps) +N-zero : (x : Nat) -> (x +N zero) == x +N-zero x = ind x (\ x -> (x +N zero) == x) (refl _) (\ _ h -> refl suc =$= h) +N-suc : (x y : Nat) -> (x +N suc y) == suc (x +N y) +N-suc x y = ind x (\ x -> (x +N suc y) == suc (x +N y)) (refl _) (\ _ h -> refl suc =$= h) comm-+N : (x y : Nat) -> (x +N y) == (y +N x) comm-+N x zero = +N-zero x comm-+N x (suc y) rewrite +N-suc x y = refl suc =$= comm-+N x y clockwise90 : {P : Nat * Nat -> Set}{w h : Nat} -> ({w h : Nat} -> P (w , h) -> P (h , w)) -> Interior P (w , h) -> Interior P (h , w) clockwise90 pc90 (tile p) = tile (pc90 p) clockwise90 pc90 < inl (l , r , refl _) 8>< (il , ir , <>) > = < inr (l , r , refl _) 8>< clockwise90 pc90 il , clockwise90 pc90 ir , <> > clockwise90 pc90 < inr (t , b , refl _) 8>< it , ib , <> > = < (inl (b , t , comm-+N b t)) 8>< clockwise90 pc90 ib , clockwise90 pc90 it , <> > Square : Nat * Nat -> Set Square (w , h) = w == h c90Sq : {w h : Nat} -> Square (w , h) -> Square (h , w) c90Sq (refl _) = refl _ golden : (n : Nat) -> Sg Nat \ w -> Sg Nat \ h -> Interior Square (w , h) golden zero = 1 , 1 , tile (refl 1) golden (suc n) with golden n ... | w , h , i = (w +N h) , w , < (inl (w , h , refl _)) 8>< tile (refl w) , clockwise90 c90Sq i , <> > fill : {n : Nat}{X : Set} -> X -> X -> X -> Vec X (suc (suc n)) fill {n} first midst last rewrite comm-+N 1 (suc n) = first ,- (pure midst +V (last ,- [])) where open Applicative (VecAppl n) border : {w h : Nat} -> Matrix Char (w , h) border {w} {zero} = [] border {zero} {h} = pure [] where open Applicative (VecAppl _) border {suc zero} {suc zero} = ('O' ,- []) ,- [] border {suc (suc w)} {suc zero} = fill '<' '-' '>' ,- [] border {suc zero} {suc (suc h)} = fill ('^' ,- []) ('|' ,- []) ('v' ,- []) border {suc (suc w)} {suc (suc h)} = fill (fill '/' '-' '\\') (fill '|' ' ' '|') (fill '\\' '-' '/') goldenInterior : (n : Nat) -> Sg Nat \ w -> Sg Nat \ h -> Interior (Matrix Char) (w , h) goldenInterior n with golden n ... | w , h , sqi = w , h , ifold (\ _ _ -> tile border) (\ _ -> <_>) (w , h) sqi picture : [ Interior (Matrix Char) -:> Matrix Char ] picture = ifold (\ _ -> id) NatCut2DMatAlg goldenPicture : (n : Nat) -> Sg Nat \ w -> Sg Nat \ h -> Matrix Char (w , h) goldenPicture n with goldenInterior n ... | w , h , mi = w , h , picture _ mi
{ "alphanum_fraction": 0.5066518847, "avg_line_length": 33, "ext": "agda", "hexsha": "cfedca298ef3b6928c6b7f9756fb65e315421a92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Golden.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Golden.agda", "max_line_length": 91, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Golden.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 1019, "size": 2706 }
{-# OPTIONS --without-K --safe #-} module Experiment.Categories.Category.Monoidal.Strict where
{ "alphanum_fraction": 0.75, "avg_line_length": 24, "ext": "agda", "hexsha": "1e5c9ea6b680509b76dbbc5f1ff37d06ff4f76c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Category/Monoidal/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Category/Monoidal/Strict.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Category/Monoidal/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 17, "size": 96 }
{-# OPTIONS --rewriting --prop #-} open import common open import syntx as N open import derivability as N2 open import typingrules open import structuralrules open import typetheories open import examples open import traditional as T Σ : Signature Σ = TTSig ΠUEl-TT {- Maps between expressions -} T→N : {n : ℕ} {k : SyntaxSort} → T.Expr k n → N.Expr Σ n k T→N uu = sym 1 [] T→N (el v) = sym 0 ([] , T→N v) T→N (pi A B) = sym 4 ([] , T→N A , T→N B) T→N (var x) = var x T→N (lam A B u) = sym 3 ([] , T→N A , T→N B , T→N u) T→N (app A B f a) = sym 2 ([] , T→N A , T→N B , T→N f , T→N a) N→T : {n : ℕ} {k : SyntaxSort} → N.Expr Σ n k → T.Expr k n N→T (var x) = var x N→T (sym (prev (prev (prev (prev new)))) ([] , A , B)) = pi (N→T A) (N→T B) N→T (sym (prev (prev (prev new))) ([] , A , B , u)) = lam (N→T A) (N→T B) (N→T u) N→T (sym (prev (prev new)) ([] , A , B , f , a)) = app (N→T A) (N→T B) (N→T f) (N→T a) N→T (sym (prev new) []) = uu N→T (sym new ([] , v)) = el (N→T v) {- Equalities -} TNT : {n : ℕ} {k : SyntaxSort} (e : N.Expr Σ n k) → T→N (N→T e) ≡ e TNT (var x) = refl TNT (sym (prev (prev (prev (prev new)))) ([] , A , B)) = ap2 (λ x y → sym 4 ([] , x , y)) (TNT A) (TNT B) TNT (sym (prev (prev (prev new))) ([] , A , B , u)) = ap3 (λ x y z → sym 3 ([] , x , y , z)) (TNT A) (TNT B) (TNT u) TNT (sym (prev (prev new)) ([] , A , B , f , a)) = ap4 (λ x y z t → sym 2 ([] , x , y , z , t)) (TNT A) (TNT B) (TNT f) (TNT a) TNT (sym (prev new) []) = refl TNT (sym new ([] , v)) = ap (λ v → sym 0 ([] , v)) (TNT v) NTN : {n : ℕ} {k : SyntaxSort} (e : T.Expr k n) → N→T (T→N e) ≡ e NTN uu = refl NTN (el v) = ap el (NTN v) NTN (pi A B) = ap2 pi (NTN A) (NTN B) NTN (var x) = refl NTN (lam A B u) = ap3 lam (NTN A) (NTN B) (NTN u) NTN (app A B f a) = ap4 app (NTN A) (NTN B) (NTN f) (NTN a) {- Derivability -} data NJudgment : Set where njudgment : {n : ℕ} (Γ : N.Ctx Σ n) {k : JudgmentSort} → N2.Judgment Σ Γ 0 k → NJudgment NDerivable : NJudgment → Prop NDerivable (njudgment Γ j) = N2.Derivable (TTDer ΠUEl-TT) j -- record NJudgment : Set where -- constructor njudgment -- field -- {NJn} : ℕ -- NJΓ : N.Ctx (TTSig ΠUEl-TT4) NJn -- {NJk} : JudgmentSort -- NJj : N2.Judgment (TTSig ΠUEl-TT4) NJΓ 0 NJk -- open NJudgment -- record NDerivable (j : NJudgment) : Prop where -- constructor ´_ -- field -- `_ : N2.Derivable (TTDer ΠUEl-TT4) (NJj j) -- open NDerivable -- -- `_ : NDerivable (njudgment Γ j) → N2.Derivable (TTDer ΠUEl-TT) j -- -- `_ d = d -- -- ´_ : {n : ℕ} {Γ : N.Ctx Σ n} {k : JudgmentSort} {j : N2.Judgment Σ Γ 0 k} → N2.Derivable (TTDer ΠUEl-TT) j → NDerivable (njudgment Γ j) -- -- ´_ d = d NDerivable= : {j j' : NJudgment} (j= : j ≡ j') → NDerivable j' → NDerivable j NDerivable= refl x = x NDerivable=! : {j j' : NJudgment} (j= : j ≡ j') → NDerivable j → NDerivable j' NDerivable=! refl x = x T→NCtx : {n : ℕ} → T.Ctx n → N.Ctx Σ n T→NCtx ◇ = ◇ T→NCtx (Γ , A) = (T→NCtx Γ , T→N A) T→NJ : T.Judgment → NJudgment T→NJ (Γ ⊢ A) = njudgment (T→NCtx Γ) (◇ ⊢ T→N A) T→NJ (Γ ⊢ u :> A) = njudgment (T→NCtx Γ) (◇ ⊢ T→N u :> T→N A) T→NJ (Γ ⊢ A == B) = njudgment (T→NCtx Γ) (◇ ⊢ T→N A == T→N B) T→NJ (Γ ⊢ u == v :> A) = njudgment (T→NCtx Γ) (◇ ⊢ T→N u == T→N v :> T→N A) weaken-comm : {k : SyntaxSort} {n : ℕ} {A : T.Expr k n} (p : WeakPos n) → N.weaken p (T→N A) ≡ T→N (T.weaken p A) weaken-comm {A = uu} p = refl weaken-comm {A = el v} p = ap (λ z → sym new ([] , z)) (weaken-comm p) weaken-comm {A = pi A B} p = ap2 (λ z z' → sym (prev (prev (prev (prev new)))) ([] , z , z')) (weaken-comm p) (weaken-comm (prev p)) weaken-comm {A = var x} p = refl --ap var (weakenV-comm p x) weaken-comm {A = lam A B u} p = ap3 (λ z z' z'' → sym (prev (prev (prev new))) ([] , z , z' , z'')) (weaken-comm p) (weaken-comm (prev p)) (weaken-comm (prev p)) weaken-comm {A = app A B f a} p = ap4 (λ z z' z'' z''' → sym (prev (prev new)) ([] , z , z' , z'' , z''')) (weaken-comm p) (weaken-comm (prev p)) (weaken-comm p) (weaken-comm p) VarPos→ℕ : {n : ℕ} → VarPos n → ℕ VarPos→ℕ last = 0 VarPos→ℕ (prev k) = suc (VarPos→ℕ k) fst-VarPos→ℕ : {Σ : Signature} {n : ℕ} (k : VarPos n) (Γ : N.Ctx Σ n) {def : _} → fst (N.get (VarPos→ℕ k) Γ $ def) ≡ k fst-VarPos→ℕ last (Γ , A) = refl fst-VarPos→ℕ (prev k) (Γ , A) = ap prev (fst-VarPos→ℕ k Γ) snd-VarPos→ℕ : {n : ℕ} (k : VarPos n) (Γ : T.Ctx n) {def : _} → snd (N.get (VarPos→ℕ k) (T→NCtx Γ) $ def) ≡ T→N (T.get k Γ) snd-VarPos→ℕ last (Γ , A) = weaken-comm last snd-VarPos→ℕ (prev k) (Γ , A) = ap (N.weaken last) (snd-VarPos→ℕ k Γ) ∙ weaken-comm last get-def : {n : ℕ} (k : VarPos n) (Γ : T.Ctx n) → isDefined (N.get (VarPos→ℕ k) (T→NCtx Γ)) get-def last (Γ , A) = tt get-def (prev k) (Γ , A) = (get-def k Γ , tt) MorInsert : {Σ : Signature} (x : WeakPos m) (δ : N.Mor Σ n m) (u : N.TmExpr Σ n) → N.Mor Σ n (suc m) MorInsert last δ u = (δ , u) MorInsert (prev x) (δ , v) u = (MorInsert x δ u , v) {-# REWRITE +O-rewrite #-} {-# REWRITE +S-rewrite #-} {-# REWRITE assoc #-} weaken-MorInsert : {Σ : Signature} {n k : ℕ} {x : WeakPos n} {δ : N.Mor Σ k n} {u : N.TmExpr Σ k} → N.weakenMor (MorInsert x δ u) ≡ MorInsert x (N.weakenMor δ) (N.weaken last u) weaken-MorInsert {x = last} = refl weaken-MorInsert {x = prev x} {δ , u} = ap2 _,_ weaken-MorInsert refl Impossible : {n k : ℕ} {A : Prop} → suc (n + k) ≤ n → A Impossible {suc n} {k = zero} (≤S p) = Impossible p Impossible {suc n} {k = suc k} p = Impossible (≤P p) weakenV-η : (x : WeakPos n) (y : VarPos n) {p : n ≤ n} → y ≡ weakenV {{p}} x y weakenV-η x y {≤r} = ! weakenV≤r weakenV-η x y {≤S p} = Impossible p weaken-η : {Σ : Signature} {k : _} {x : _} {p : n ≤ n} {u : N.Expr Σ n k} → u ≡ N.weaken {{p}} x u weakenA-η : {Σ : Signature} {k : _} {x : _} {p : n ≤ n} {u : N.Args Σ n k} → u ≡ N.weakenA {{p}} x u weaken-η {x = x} {u = var y} = ap var (weakenV-η x y) weaken-η {u = sym s us} = ap (sym s) weakenA-η weakenA-η {u = []} = refl weakenA-η {u = u , x} = ap2 _,_ weakenA-η weaken-η WeakPosIncl : {n m : ℕ} {{_ : n ≤ m}} → WeakPos n → WeakPos m WeakPosIncl last = last WeakPosIncl {m = suc m} {{p}} (prev x) = prev (WeakPosIncl {{≤P p}} x) ≤P-≤SS : {n m : ℕ} (p : n ≤ m) → p ≡ ≤P (≤SS {{p}}) ≤P-≤SS ≤r = refl ≤P-≤SS (≤S p) = ap ≤S (≤P-≤SS _) WeakPosIncl-comm : {n m k : ℕ} {{p : n ≤ m}} {x : WeakPos n} → weakenPos (≤-+ {m = k}) (WeakPosIncl {{p}} x) ≡ WeakPosIncl {{≤+ k {{p}}}} (weakenPos ≤-+ x) WeakPosIncl-comm {k = zero} {x = last} = refl WeakPosIncl-comm {k = suc k} {x = last} = ap prev (WeakPosIncl-comm {k = k} {x = last} ∙ ap (λ z → WeakPosIncl {{z}} (weakenPos ≤-+ last)) (≤P-≤SS _)) WeakPosIncl-comm {m = suc m} {zero} {x = prev x} = refl WeakPosIncl-comm {m = suc m} {suc k} {x = prev x} = ap prev (WeakPosIncl-comm {m = suc m} {k = k} {x = prev x} ∙ ap (λ z → WeakPosIncl {{z}} (weakenPos ≤-+ (prev x))) (≤P-≤SS _)) ≤-ishProp : {n m : ℕ} (p q : n ≤ m) → p ≡ q ≤-ishProp ≤r ≤r = refl ≤-ishProp ≤r (≤S q) = Impossible q ≤-ishProp (≤S p) ≤r = Impossible p ≤-ishProp (≤S p) (≤S q) = ap ≤S (≤-ishProp p q) weakenV-μ : {n m k : ℕ} {{p : n ≤ m}} {{q : m ≤ k}} {{r : n ≤ k}} {x : VarPos n} {y : WeakPos n} → weakenV {{q}} (WeakPosIncl y) (weakenV {{p}} y x) ≡ weakenV {{r}} y x weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤r ⦄ ⦃ ≤r ⦄ = weakenV≤r weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤r ⦄ ⦃ ≤S r ⦄ = Impossible r weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤S q ⦄ ⦃ ≤r ⦄ = Impossible q weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤S q ⦄ ⦃ ≤S r ⦄ {x} {y = last} = ap2 (λ z z' → prev (weakenV ⦃ z ⦄ last z')) (≤-ishProp _ _) weakenV≤r weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤S q ⦄ ⦃ ≤S r ⦄ {last} {y = prev y} = refl weakenV-μ ⦃ p = ≤r ⦄ ⦃ ≤S q ⦄ ⦃ ≤S r ⦄ {prev x} {y = prev y} = ap prev (ap (weakenV {{≤P (≤S q)}} (WeakPosIncl y)) (! weakenV≤r) ∙ weakenV-μ {{≤r}} {{≤P (≤S q)}} {{≤P (≤S r)}} {x = x} {y}) weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤r ⦄ ⦃ ≤r ⦄ = Impossible p weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤r ⦄ ⦃ ≤S r ⦄ {x} {y} = weakenV≤r {p = WeakPosIncl {{≤S p}} y} {v = weakenV {{≤S p}} y x} ∙ ap (λ z → weakenV ⦃ z ⦄ y x) (≤-ishProp _ _) -- weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤S q ⦄ ⦃ ≤r ⦄ = Impossible (≤tr {{≤S p}} {{q}}) weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤S q ⦄ ⦃ ≤S ≤r ⦄ = Impossible (≤tr {{q}} {{p}}) weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤S q ⦄ ⦃ ≤S (≤S r) ⦄ {x} {y = last} = ap prev (weakenV-μ {{≤S p}} {{q}} {{≤S r}} {x} {last}) weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤S q ⦄ ⦃ ≤S (≤S r) ⦄ {last} {y = prev y} = refl weakenV-μ ⦃ p = ≤S p ⦄ ⦃ ≤S q ⦄ ⦃ ≤S (≤S r) ⦄ {prev x} {y = prev y} = ap prev (weakenV-μ {{≤P (≤S p)}} {{≤P (≤S q)}} {{≤P (≤S (≤S r))}} {x} {y}) weaken-μ : {Σ : Signature} {k : _} {x : WeakPos n} {q : n ≤ m} {r : _} {u : N.Expr Σ n k} → N.weaken {{≤S ≤r}} (WeakPosIncl {{q}} x) (N.weaken {{q}} x u) ≡ N.weaken {{r}} x u weakenA-μ : {Σ : Signature} {k : _} {x : WeakPos n} {q : n ≤ m} {r : _} {u : N.Args Σ n k} → N.weakenA {{≤S ≤r}} (WeakPosIncl {{q}} x) (N.weakenA {{q}} x u) ≡ N.weakenA {{r}} x u weaken-μ {x = y} {q = p} {u = var x} = ap var ((weakenV-μ {{p}} {{≤S ≤r}} {{_}} {x = x} {y = y})) weaken-μ {u = sym s x} = ap (sym s) weakenA-μ weakenA-μ {u = []} = refl weakenA-μ {q = q} {u = u , x} = ap2 _,_ weakenA-μ (ap2 (λ z z' → N.weaken {{z}} z' (N.weaken {{≤+ _ {{q}}}} _ x)) (≤-ishProp _ _) (WeakPosIncl-comm {{q}}) ∙ weaken-μ {q = ≤+ _ {{q}}}) weaken+-MorInsert : {Σ : Signature} (m : ℕ) {n k : ℕ} {x : WeakPos n} {δ : N.Mor Σ k n} {u : N.TmExpr Σ k} → N.weakenMor+ m (MorInsert x δ u) ≡ MorInsert (weakenPos ≤-+ x) (N.weakenMor+ m δ) (N.weaken last u) weaken+-MorInsert zero = ap (MorInsert _ _) weaken-η weaken+-MorInsert (suc m) = ap2 _,_ (ap N.weakenMor (weaken+-MorInsert m) ∙ weaken-MorInsert ∙ ap (MorInsert _ _) weaken-μ) refl SubstV-insert : {n m : ℕ} {y : VarPos n} {x : WeakPos n} {u : N.TmExpr Σ m} {δ : N.Mor Σ m n} {p : n ≤ suc n} → SubstMor (var (weakenV {{p}} x y)) (MorInsert x δ u) ≡ SubstMor (var y) δ SubstV-insert {x = last} {δ = δ} {p = ≤S ≤r} = ap (λ z → SubstMor (var z) δ) weakenV≤r SubstV-insert {y = last} {x = prev x} {δ = δ , v} {p = ≤S ≤r} = refl SubstV-insert {y = prev y} {x = prev x} {u} {δ = δ , v} {p = ≤S ≤r} = SubstV-insert {y = y} {x = x} {u = u} {δ = δ} {p = ≤S ≤r} SubstV-insert {p = ≤S (≤S p)} = Impossible p Subst-insert : {k : SyntaxSort} {n m : ℕ} {e : N.Expr Σ n k} {x : WeakPos n} {u : N.TmExpr Σ m} {δ : N.Mor Σ m n} {p : _} → SubstMor (N.weaken {{p}} x e) (MorInsert x δ u) ≡ SubstMor e δ SubstA-insert : {args : SyntaxArityArgs} {n m : ℕ} {es : N.Args Σ n args} {x : WeakPos n} {u : N.TmExpr Σ m} {δ : N.Mor Σ m n} {p : _} → SubstAMor (N.weakenA {{p}} x es) (MorInsert x δ u) ≡ SubstAMor es δ Subst-insert {e = var x} {x = x'} {u} {p = p} = SubstV-insert {x = x'} {u} {p = p} Subst-insert {e = sym s x} = ap (sym s) SubstA-insert SubstA-insert {es = []} = refl SubstA-insert {args} {n} {es = _,_ {m = m} es e} {x = x} {u = u} {p = p} = ap2 _,_ SubstA-insert (ap (SubstMor (N.weaken {{≤+ m {n} {suc n} {{p}}}} (weakenPos ≤-+ x) e)) (weaken+-MorInsert m) ∙ Subst-insert {e = e} {x = weakenPos ≤-+ x}) weakenMor+-idMor : {n : ℕ} (m : ℕ) → N.weakenMor+ m (N.idMor {Σ = Σ} {n = n}) ≡ N.idMor weakenMor+-idMor zero = refl weakenMor+-idMor (suc m) = ap2 _,_ (ap N.weakenMor (weakenMor+-idMor m)) refl SubstMor-weakenMor : {x : VarPos n} {δ : N.Mor Σ m n} → SubstMor (var x) (N.weakenMor δ) ≡ N.weaken last (SubstMor (var x) δ) SubstMor-weakenMor {x = last} {δ , u} = refl SubstMor-weakenMor {x = prev x} {δ , u} = SubstMor-weakenMor {x = x} {δ} SubstMor-idMor : {n : ℕ} {k : _} (e : N.Expr Σ n k) → SubstMor e N.idMor ≡ e SubstAMor-idMor : {n : ℕ} {k : _} (es : N.Args Σ n k) → SubstAMor es N.idMor ≡ es SubstMor-idMor (var last) = refl SubstMor-idMor (var (prev x)) = SubstMor-weakenMor {x = x} {δ = N.idMor} ∙ ap (N.weaken last) (SubstMor-idMor (var x)) ∙ ap var (ap prev weakenV≤r) SubstMor-idMor (sym s es) = ap (sym s) (SubstAMor-idMor es) SubstAMor-idMor [] = refl SubstAMor-idMor (_,_ {m = m} es x) = ap2 _,_ (SubstAMor-idMor es) (ap (SubstMor x) (weakenMor+-idMor m) ∙ SubstMor-idMor x) Subst-insert-idMor : {k : SyntaxSort} {e : N.Expr Σ n k} {x : WeakPos n} {u : N.TmExpr Σ n} {p : _} → SubstMor (N.weaken {{p}} x e) (MorInsert x N.idMor u) ≡ e Subst-insert-idMor {e = e} {x} {u} {p} = Subst-insert {e = e} {x} {u} {N.idMor} {p} ∙ SubstMor-idMor e inj : WeakPos n → WeakPos (suc n) inj last = last inj (prev x) = prev (inj x) weakenPos-inj : {m : ℕ} (x : WeakPos n) → weakenPos (≤-+ {m = m}) (inj x) ≡ inj (weakenPos ≤-+ x) weakenPos-inj {m = zero} x = refl weakenPos-inj {m = suc m} last = ap prev (weakenPos-inj last) weakenPos-inj {m = suc m} (prev x) = ap prev (weakenPos-inj (prev x)) SubstV-insert2 : {n m : ℕ} {y : VarPos n} {x : WeakPos n} {u : N.TmExpr Σ (suc m)} {δ : N.Mor Σ (suc m) (suc n)} {p : _} → SubstMor (var (weakenV {{≤S p}} x y)) (MorInsert (inj x) δ u) ≡ SubstMor (var (weakenV {{p}} x y)) δ SubstV-insert2 {y = last} {last} = refl SubstV-insert2 {y = prev y} {last} = refl SubstV-insert2 {y = last} {prev x} {δ = δ , u} = refl SubstV-insert2 {y = prev y} {prev x} {δ = δ , u} {≤S ≤r} = SubstV-insert2 {y = y} {x = x} {δ = δ} SubstV-insert2 {y = prev y} {prev x} {δ = δ , u} {≤S (≤S p)} = Impossible p Subst-insert2 : {k : SyntaxSort} {n m : ℕ} {e : N.Expr Σ n k} {x : WeakPos n} {u : N.TmExpr Σ (suc m)} {δ : N.Mor Σ (suc m) (suc n)} {p : _} → SubstMor (N.weaken {{≤S p}} x e) (MorInsert (inj x) δ u) ≡ SubstMor (N.weaken {{p}} x e) δ SubstA-insert2 : {args : SyntaxArityArgs} {n m : ℕ} {es : N.Args Σ n args} {x : WeakPos n} {u : N.TmExpr Σ (suc m)} {δ : N.Mor Σ (suc m) (suc n)} {p : _} → SubstAMor (N.weakenA {{≤S p}} x es) (MorInsert (inj x) δ u) ≡ SubstAMor (N.weakenA {{p}} x es) δ Subst-insert2 {e = var y} {x = x} = SubstV-insert2 {y = y} {x = x} Subst-insert2 {e = sym s es} = ap (sym s) SubstA-insert2 SubstA-insert2 {es = []} = refl SubstA-insert2 {n = n} {m = m'} {es = _,_ {m = m} es e} {x = x} {u = u} = ap2 _,_ SubstA-insert2 ((ap (SubstMor (N.weaken {{_}} (weakenPos ≤-+ x) e)) (weaken+-MorInsert m ∙ ap3 MorInsert (weakenPos-inj x) refl refl) ∙ ap (λ z → SubstMor (N.weaken ⦃ z ⦄ (weakenPos ≤-+ x) e) (MorInsert (inj (weakenPos ≤-+ x)) (N.weakenMor+ m {n = suc n} {m = suc m'} _) (N.weaken last u))) (≤-ishProp _ _) ∙ Subst-insert2 {e = e} {x = weakenPos ≤-+ x} {u = N.weaken last u})) Subst-insert-idMor2 : {k : SyntaxSort} {e : N.Expr Σ n k} {x : WeakPos n} {u : N.TmExpr Σ (suc n)} → SubstMor (N.weaken x e) (MorInsert (inj x) (N.idMor {n = suc n}) u) ≡ N.weaken {{≤S ≤r}} x e Subst-insert-idMor2 {e = e} {x} {u} = Subst-insert2 {e = e} {x} {u} {N.idMor} ∙ SubstMor-idMor _ T→NMor : T.Mor n m → N.Mor Σ n m T→NMor ◇ = ◇ T→NMor (δ , u) = (T→NMor δ , T→N u) weakenMor-comm : {δ : T.Mor n m} → N.weakenMor (T→NMor δ) ≡ T→NMor (T.weakenMor δ) weakenMor-comm {δ = ◇} = refl weakenMor-comm {δ = δ , u} = ap2 _,_ weakenMor-comm (weaken-comm last) substV-lemma : (x : VarPos n) {δ : T.Mor m n} → SubstMor (var x) (T→NMor δ) ≡ T→N (var x [ δ ]) substV-lemma last {δ , u} = refl substV-lemma (prev x) {δ , u} = substV-lemma x subst-lemma : {k : _} (B : T.Expr k n) {δ : T.Mor m n} → SubstMor (T→N B) (T→NMor δ) ≡ T→N (B [ δ ]) subst-lemma uu = refl subst-lemma (el v) = ap (λ z → sym new ([] , z)) (subst-lemma v) subst-lemma (pi A B) = ap2 (λ z z' → sym (prev (prev (prev (prev new)))) ([] , z , z')) (subst-lemma A) (ap (SubstMor (T→N B)) (ap2 _,_ weakenMor-comm refl) ∙ subst-lemma B) subst-lemma (var x) = substV-lemma x subst-lemma (lam A B u) = ap3 (λ z z' z'' → sym (prev (prev (prev new))) ([] , z , z' , z'')) (subst-lemma A) (ap (SubstMor (T→N B)) (ap2 _,_ weakenMor-comm refl) ∙ subst-lemma B) (ap (SubstMor (T→N u)) (ap2 _,_ weakenMor-comm refl) ∙ subst-lemma u) subst-lemma (app A B f a) = ap4 (λ z z' z'' z''' → sym (prev (prev new)) ([] , z , z' , z'' , z''')) (subst-lemma A) (ap (SubstMor (T→N B)) (ap2 _,_ weakenMor-comm refl) ∙ subst-lemma B) (subst-lemma f) (subst-lemma a) idMor-lemma : {n : ℕ} → N.idMor {n = n} ≡ T→NMor T.idMor idMor-lemma {zero} = refl idMor-lemma {suc n} = ap2 _,_ (ap N.weakenMor idMor-lemma ∙ weakenMor-comm) refl Subst-T→N : {k : _} (B : T.Expr k (suc n)) (a : T.TmExpr n) → N.SubstMor (T→N B) (N.idMor , T→N a) ≡ T→N (T.subst B a) Subst-T→N B a = ap (λ z → SubstMor (T→N B) (z , T→N a)) idMor-lemma ∙ subst-lemma B -- T→NDer : {j : T.Judgment} → T.Derivable j → NDerivable (T→NJ j) -- T→NDer (Var {Γ = Γ} k dA) = NDerivable=! (ap (λ x → njudgment (T→NCtx Γ) (◇ ⊢ var x :> T→N (T.get k Γ))) (fst-VarPos→ℕ k (T→NCtx Γ))) (´ apr S (var (VarPos→ℕ k)) ([] ,0Ty ` T→NDer dA) {{get-def k Γ , (snd-VarPos→ℕ k Γ , tt)}}) -- T→NDer (TyRefl dA) = ´ apr S tyRefl ([] , ` T→NDer dA) -- T→NDer (TySymm dA=) = ´ apr S tySymm ([] , ` T→NDer dA=) -- T→NDer (TyTran dA= dB=) = ´ apr S tyTran ([] , ` T→NDer dA= , ` T→NDer dB=) -- T→NDer (TmRefl du) = ´ apr S tmRefl ([] , ` T→NDer du) -- T→NDer (TmSymm du=) = ´ apr S tmSymm ([] , ` T→NDer du=) -- -- T→NDer (TmTran du= dv=) = apr S tmTran ([] , T→NDer du= , T→NDer dv=) -- -- T→NDer (Conv du dA=) = apr S conv ([] , T→NDer du , T→NDer dA=) -- -- T→NDer (ConvEq du= dA=) = apr S convEq ([] , T→NDer du= , T→NDer dA=) -- -- T→NDer UU = apr T 1 [] -- -- T→NDer UUCong = apr C 1 [] -- -- T→NDer (El dv) = apr T 0 ([] ,0Tm T→NDer dv) -- -- T→NDer (ElCong dv=) = apr C 0 ([] ,0Tm= T→NDer dv=) -- -- T→NDer (Pi dA dB) = apr T 4 ([] ,0Ty T→NDer dA ,1Ty T→NDer dB) -- -- T→NDer (PiCong dA= dB=) = apr C 4 ([] ,0Ty= T→NDer dA= ,1Ty= T→NDer dB=) -- -- T→NDer (Lam {A = A} {B = B} {u = u} dA dB du) = -- -- NDerivable=! (ap (λ z → njudgment _ (◇ ⊢ sym (prev (prev (prev new))) ([] , T→N _ , T→N _ , T→N _) :> sym (prev (prev (prev (prev new)))) ([] , T→N _ , z))) Subst-insert-idMor) -- -- (apr T 3 ([] ,0Ty T→NDer dA ,1Ty T→NDer dB ,1Tm NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N _ :> z)) Subst-insert-idMor) (T→NDer du))) -- -- T→NDer (LamCong dA= dB= du=) = -- -- NDerivable=! (ap (λ z → njudgment _ (◇ ⊢ sym (prev (prev (prev new))) ([] , T→N _ , T→N _ , T→N _) == sym (prev (prev (prev new))) ([] , T→N _ , T→N _ , T→N _) :> sym (prev (prev (prev (prev new)))) ([] , T→N _ , z))) -- -- Subst-insert-idMor) -- -- (apr C 3 ([] ,0Ty= T→NDer dA= ,1Ty= T→NDer dB= ,1Tm= NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N _ == T→N _ :> z)) Subst-insert-idMor) (T→NDer du=))) -- -- T→NDer (App {A = A} {B} {f} {a} dA dB df da) = -- -- NDerivable=! (ap (λ z → njudgment _ (◇ ⊢ sym (prev (prev new)) ([] , T→N A , T→N B , T→N f , T→N a) :> z)) (Subst-T→N B a)) -- -- (apr T 2 ([] ,0Ty T→NDer dA -- -- ,1Ty T→NDer dB -- -- ,0Tm NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N f :> sym (prev (prev (prev (prev new)))) ([] , T→N A , z))) Subst-insert-idMor) (T→NDer df) -- -- ,0Tm T→NDer da)) -- -- T→NDer (AppCong {A = A} {A' = A'} {B = B} {B' = B'} {f = f} {f' = f'} {a = a} {a' = a'} dA= dB= df= da=) = -- -- NDerivable=! (ap (λ z → njudgment _ (◇ ⊢ sym (prev (prev new)) ([] , T→N A , T→N B , T→N f , T→N a) == sym (prev (prev new)) ([] , T→N A' , T→N B' , T→N f' , T→N a') :> z)) (Subst-T→N B a)) -- -- (apr C 2 ([] ,0Ty= T→NDer dA= -- -- ,1Ty= T→NDer dB= -- -- ,0Tm= NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N f == T→N f' :> sym (prev (prev (prev (prev new)))) ([] , T→N A , z))) Subst-insert-idMor) -- -- (T→NDer df=) -- -- ,0Tm= T→NDer da=)) -- -- T→NDer (BetaPi {A = A} {B = B} {u = u} {a = a} dA dB du da) = -- -- NDerivable=! (ap4 -- -- (λ z z' z'' z''' → -- -- njudgment _ -- -- (◇ ⊢ -- -- sym (prev (prev new)) -- -- ([] , T→N A , z , -- -- sym (prev (prev (prev new))) ([] , T→N A , z , z') -- -- , T→N a) -- -- == z'' :> z''')) -- -- Subst-insert-idMor Subst-insert-idMor (Subst-T→N u a) (Subst-T→N B a)) -- -- (apr Eq 1 ([] ,0Ty T→NDer dA ,1Ty T→NDer dB ,1Tm NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N u :> z)) Subst-insert-idMor) (T→NDer du) ,0Tm T→NDer da)) -- -- T→NDer (EtaPi {n = n} {A = A} {B = B} {f = f} dA dB df) = -- -- NDerivable=! (ap4 -- -- (λ z z' z'' z''' → -- -- njudgment _ -- -- (◇ ⊢ T→N f == -- -- sym (prev (prev (prev new))) -- -- ([] , T→N A , z , -- -- sym (prev (prev new)) ([] , z' , z'' , z''' , var last)) -- -- :> sym (prev (prev (prev (prev new)))) ([] , T→N A , z))) -- -- Subst-insert-idMor (weaken-comm last) (Subst-insert-idMor2 ∙ weaken-comm (prev last)) (weaken-comm last)) -- -- (apr Eq 0 ([] ,0Ty T→NDer dA -- -- ,1Ty T→NDer dB -- -- ,0Tm NDerivable= (ap (λ z → njudgment _ (◇ ⊢ T→N f :> sym (prev (prev (prev (prev new)))) ([] , T→N A , z))) Subst-insert-idMor) (T→NDer df))) N→TCtx : {n : ℕ} → N.Ctx Σ n → T.Ctx n N→TCtx ◇ = ◇ N→TCtx (Γ , A) = (N→TCtx Γ , N→T A) N→TMor : {n m : ℕ} → N.Mor Σ n m → T.Mor n m N→TMor ◇ = ◇ N→TMor (δ , u) = (N→TMor δ , N→T u) weaken-comm' : {k : SyntaxSort} {n : ℕ} {A : N.Expr Σ n k} (p : WeakPos n) → N→T (N.weaken p A) ≡ T.weaken p (N→T A) weaken-comm' p = ap N→T (ap (N.weaken p) (! (TNT _))) ∙ ap N→T (weaken-comm p) ∙ NTN _ get-eq : {n : ℕ} (k : ℕ) (Γ : N.Ctx Σ n) {def : _} → N→T (snd (N.get k Γ $ def)) ≡ T.get (fst (N.get k Γ $ def)) (N→TCtx Γ) get-eq zero (Γ , A) = weaken-comm' last get-eq (suc k) (Γ , A) = weaken-comm' last ∙ ap (T.weaken last) (get-eq k Γ) N→TJ : NJudgment → T.Judgment N→TJ (njudgment Γ (◇ ⊢ A)) = N→TCtx Γ ⊢ N→T A N→TJ (njudgment Γ (◇ ⊢ u :> A)) = N→TCtx Γ ⊢ N→T u :> N→T A N→TJ (njudgment Γ (◇ ⊢ A == B)) = N→TCtx Γ ⊢ N→T A == N→T B N→TJ (njudgment Γ (◇ ⊢ u == v :> A)) = N→TCtx Γ ⊢ N→T u == N→T v :> N→T A congTy : {Γ : T.Ctx n} {A A' : T.TyExpr n} → A ≡ A' → T.Derivable (Γ ⊢ A) → T.Derivable (Γ ⊢ A') congTy refl d = d congTmTy : {Γ : T.Ctx n} {u : T.TmExpr n} {A A' : T.TyExpr n} → A ≡ A' → T.Derivable (Γ ⊢ u :> A) → T.Derivable (Γ ⊢ u :> A') congTmTy refl d = d congTmTy! : {Γ : T.Ctx n} {u : T.TmExpr n} {A A' : T.TyExpr n} → A' ≡ A → T.Derivable (Γ ⊢ u :> A) → T.Derivable (Γ ⊢ u :> A') congTmTy! refl d = d congTmEqTy : {Γ : T.Ctx n} {u u' : T.TmExpr n} {A A' : T.TyExpr n} → A ≡ A' → T.Derivable (Γ ⊢ u == u' :> A) → T.Derivable (Γ ⊢ u == u' :> A') congTmEqTy refl d = d congTmEqTy! : {Γ : T.Ctx n} {u u' : T.TmExpr n} {A A' : T.TyExpr n} → A' ≡ A → T.Derivable (Γ ⊢ u == u' :> A) → T.Derivable (Γ ⊢ u == u' :> A') congTmEqTy! refl d = d congTmEq : {Γ : T.Ctx n} {u u' v v' : T.TmExpr n} {A A' : T.TyExpr n} → A ≡ A' → u ≡ u' → v ≡ v' → T.Derivable (Γ ⊢ u == v :> A) → T.Derivable (Γ ⊢ u' == v' :> A') congTmEq refl refl refl d = d congTmEq! : {Γ : T.Ctx n} {u u' v v' : T.TmExpr n} {A A' : T.TyExpr n} → A' ≡ A → u' ≡ u → v' ≡ v → T.Derivable (Γ ⊢ u == v :> A) → T.Derivable (Γ ⊢ u' == v' :> A') congTmEq! refl refl refl d = d N→T-Subst : {k : _} (B : N.Expr Σ (suc n) k) (a : N.TmExpr Σ n) → N→T (SubstMor B (N.idMor , a)) ≡ T.subst (N→T B) (N→T a) N→T-Subst B a = ap N→T (! (ap2 SubstMor (TNT B) (ap2 _,_ refl (TNT a))) ∙ Subst-T→N (N→T B) (N→T a)) ∙ NTN _ N→TDer : {j : NJudgment} → NDerivable j → T.Derivable (N→TJ j) -- N→TDer {njudgment Γ _} (apr S (var k) {js = [] , ◇ ⊢ A} ([] , dA) {{xᵈ , (refl , tt)}}) = congTmTy! (get-eq k Γ) (Var (fst (N.get k Γ $ xᵈ)) (congTy (get-eq k Γ) (N→TDer dA))) -- N→TDer {njudgment Γ _} (apr S conv {js = [] , ◇ ⊢ u :> A , ◇ ⊢ A == B} ([] , du , dA=) {{refl , tt}}) = Conv (N→TDer du) (N→TDer dA=) -- N→TDer {njudgment Γ _} (apr S convEq {js = [] , ◇ ⊢ u == v :> A , ◇ ⊢ A == B} ([] , du= , dA=) {{refl , tt}}) = ConvEq (N→TDer du=) (N→TDer dA=) -- N→TDer {njudgment Γ _} (apr S tyRefl {js = [] , ◇ ⊢ A} ([] , dA)) = TyRefl (N→TDer dA) -- N→TDer {njudgment Γ _} (apr S tySymm {js = [] , ◇ ⊢ A == B} ([] , dA=)) = TySymm (N→TDer dA=) -- N→TDer {njudgment Γ _} (apr S tyTran {js = [] , ◇ ⊢ A == B , ◇ ⊢ B == D} ([] , dA= , dB=) {{refl , tt}}) = TyTran (N→TDer dA=) (N→TDer dB=) -- N→TDer {njudgment Γ _} (apr S tmRefl {js = [] , ◇ ⊢ u :> A} ([] , du)) = TmRefl (N→TDer du) -- N→TDer {njudgment Γ _} (apr S tmSymm {js = [] , ◇ ⊢ u == v :> A} ([] , du=)) = TmSymm (N→TDer du=) -- N→TDer {njudgment Γ _} (apr S tmTran {js = [] , ◇ ⊢ u == v :> A , ◇ ⊢ v == w :> A} ([] , du= , dv=) {{refl , (refl , tt)}}) = TmTran (N→TDer du=) (N→TDer dv=) -- N→TDer {njudgment Γ _} (apr T typingrule {js = [] , (◇ ⊢ v :> _)} ([] , dv) {{(tt , (tt , (refl , tt))) , tt}}) = El (N→TDer dv) -- N→TDer {njudgment Γ _} (apr T (prev typingrule) []) = UU -- N→TDer {njudgment Γ _} (apr T (prev (prev typingrule)) {js = [] , ◇ ⊢ A , (◇ , _) ⊢ B , (◇ ⊢ f :> _) , (◇ ⊢ a :> _)} ([] , dA , dB , df , da) -- {{(((((tt , (tt , tt)) , ((tt , refl) , tt)) , (tt , (refl , tt))) , (tt , (refl , tt))) , tt)}}) = congTmTy! (N→T-Subst B a) (App (N→TDer dA) (N→TDer dB) (congTmTy (ap (pi (N→T A)) (ap N→T Subst-insert-idMor)) (N→TDer df)) (N→TDer da)) -- N→TDer {njudgment Γ _} (apr T (prev (prev (prev typingrule))) {js = [] , ◇ ⊢ A , ((◇ , A) ⊢ B) , ((◇ , A) ⊢ u :> B')} ([] , dA , dB , du) {{(((tt , (tt , tt)) , ((tt , refl) , tt)) , ((tt , refl) , (refl , tt)) ) , tt}}) -- = congTmTy! (ap (pi (N→T A)) (ap N→T Subst-insert-idMor)) (Lam (N→TDer dA) (N→TDer dB) (congTmTy (ap N→T Subst-insert-idMor) (N→TDer du))) -- N→TDer {njudgment Γ _} (apr T (prev (prev (prev (prev typingrule)))) {js = [] , ◇ ⊢ A , (◇ , ._) ⊢ B} ([] , dA , dB) {{((tt , (tt , tt)) , ((tt , refl) , tt)) , tt}}) = Pi (N→TDer dA) (N→TDer dB) -- N→TDer {njudgment Γ _} (apr C congruencerule {js = [] , ◇ ⊢ v == v' :> _} ([] , dv=) {{((tt , (tt , (refl , tt))) , tt)}}) = ElCong (N→TDer dv=) -- N→TDer {njudgment Γ _} (apr C (prev congruencerule) []) = UUCong -- N→TDer {njudgment Γ _} (apr C (prev (prev congruencerule)) {js = [] , ◇ ⊢ A == A' , (◇ , _) ⊢ B == B' , (◇ ⊢ f == f' :> _) , (◇ ⊢ a == a' :> _)} ([] , dA= , dB= , df= , da=) -- {{(((((tt , (tt , tt)) , ((tt , refl) , tt)) , (tt , (refl , tt))) , (tt , (refl , tt))) , tt)}}) -- = congTmEqTy! (N→T-Subst B a) (AppCong (N→TDer dA=) (N→TDer dB=) (congTmEqTy (ap (pi (N→T A)) (ap N→T Subst-insert-idMor)) (N→TDer df=)) (N→TDer da=)) -- N→TDer {njudgment Γ _} (apr C (prev (prev (prev congruencerule))) {js = [] , ◇ ⊢ A == A' , ((◇ , A) ⊢ B == B') , ((◇ , A) ⊢ u == u' :> B'')} ([] , dA= , dB= , du=) {{(((tt , (tt , tt)) , ((tt , refl) , tt)) , ((tt , refl) , (refl , tt)) ) , tt}}) = congTmEqTy! (ap (pi (N→T A)) (ap N→T Subst-insert-idMor)) (LamCong (N→TDer dA=) (N→TDer dB=) (congTmEqTy (ap N→T Subst-insert-idMor) (N→TDer du=))) -- N→TDer {njudgment Γ _} (apr C (prev (prev (prev (prev congruencerule)))) {js = [] , ◇ ⊢ A == A' , (◇ , ._) ⊢ B == B'} ([] , dA= , dB=) {{(((tt , (tt , tt)) , ((tt , refl) , tt)) , tt)}}) = PiCong (N→TDer dA=) (N→TDer dB=) -- N→TDer {njudgment Γ _} (apr Eq equalityrule js-der) = {!Eta!} N→TDer {njudgment Γ _} (apr Eq (prev equalityrule) {js = [] , (◇ ⊢ A) , ((◇ , _) ⊢ B) , ((◇ , _) ⊢ u :> _) , (◇ ⊢ a :> _)} ([] , dA , dB , du , da) {{(((((tt , (tt , tt)) , ((tt , refl) , tt)) , ((tt , refl) , (refl , tt))) , (tt , (refl , tt))) , tt)}}) = {!da --jdef --congTmEq! ? ? ? (BetaPi (N→TDer dA) (N→TDer dB) (congTmTy (ap N→T Subst-insert-idMor) (N→TDer du)) (N→TDer da))!}
{ "alphanum_fraction": 0.4903649478, "avg_line_length": 59.4179104478, "ext": "agda", "hexsha": "c62a5543c82bdf364aa287006d9a1a5cce135df0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "comparison.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "comparison.agda", "max_line_length": 399, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "comparison.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12910, "size": 27867 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite variable A B : Set x y z : A xs ys zs : List A f : A → B m n : Nat cong : (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl trans : x ≡ y → y ≡ z → x ≡ z trans refl refl = refl +zero : m + zero ≡ m +zero {zero} = refl +zero {suc m} = cong suc +zero suc+zero : suc m + zero ≡ suc m suc+zero = +zero +suc : m + (suc n) ≡ suc (m + n) +suc {zero} = refl +suc {suc m} = cong suc +suc zero+suc : zero + (suc n) ≡ suc n zero+suc = refl suc+suc : (suc m) + (suc n) ≡ suc (suc (m + n)) suc+suc = cong suc +suc {-# REWRITE +zero +suc suc+zero zero+suc suc+suc #-} map : (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = (f x) ∷ (map f xs) _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) ++-[] : xs ++ [] ≡ xs ++-[] {xs = []} = refl ++-[] {xs = x ∷ xs} = cong (_∷_ x) ++-[] ∷-++-[] : (x ∷ xs) ++ [] ≡ x ∷ xs ∷-++-[] = ++-[] map-id : map (λ x → x) xs ≡ xs map-id {xs = []} = refl map-id {xs = x ∷ xs} = cong (_∷_ x) map-id map-id-∷ : map (λ x → x) (x ∷ xs) ≡ x ∷ xs map-id-∷ = map-id {-# REWRITE ++-[] ∷-++-[] #-} {-# REWRITE map-id map-id-∷ #-}
{ "alphanum_fraction": 0.5003903201, "avg_line_length": 20.015625, "ext": "agda", "hexsha": "ad35f5c9419f1752354034e0ba2f2f86d29d14d2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/RewritingGlobalConfluenceWithClauses.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/RewritingGlobalConfluenceWithClauses.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/RewritingGlobalConfluenceWithClauses.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 565, "size": 1281 }
module Luau.Var.ToString where open import Agda.Builtin.String using (String) open import Luau.Var using (Var) varToString : Var → String varToString x = x
{ "alphanum_fraction": 0.7672955975, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "10cd915b64022e094dcfc20eb593685faae7d609", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/Var/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/Var/ToString.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/Var/ToString.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 40, "size": 159 }
module Issue739 where record ⊤ : Set where constructor tt record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst uncurry : {A : Set} {B : A → Set} → ((x : A) → B x → Set) → Σ A B → Set uncurry f (x , y) = f x y data U : Set₁ El : U → Set infixl 5 _▻_ data U where ε : U _▻_ : (u : U) → (El u → Set) → U El ε = ⊤ El (u ▻ P) = Σ (El u) P Id : ∀ u → (El u → Set) → El u → Set Id u P = P -- Type-checks: works : U works = ε ▻ (λ _ → ⊤) ▻ (λ { (_ , _) → ⊤ }) -- Type-checks: works′ : U works′ = ε ▻ (λ _ → ⊤) ▻ Id (_ ▻ _) (λ { (_ , _) → ⊤ }) -- Type-checks: works″ : U works″ = ε ▻ (λ _ → ⊤) ▻ Id _ (uncurry λ _ _ → ⊤) -- Type-checks: works‴ : U works‴ = ε ▻ (λ _ → ⊤) ▻ Id _ const-⊤ where const-⊤ : _ → _ const-⊤ (_ , _) = ⊤ -- Type-checks: works⁗ : U works⁗ = ε ▻ (λ _ → ⊤) ▻ Id _ const-⊤ where const-⊤ : _ → _ const-⊤ = λ { (_ , _) → ⊤ } -- Type-checks: works′́ : U works′́ = ε ▻ (λ _ → ⊤) ▻ Id _ (λ { _ → ⊤ }) -- Doesn't type-check (but I want to write something like this): fails : U fails = ε ▻ (λ _ → ⊤) ▻ Id _ (λ { (_ , _) → ⊤ }) -- Given all the working examples I'm led to believe that there is -- something wrong with pattern-matching lambdas. Please correct me if -- I'm wrong. -- Andreas, 2012-10-29 should work now.
{ "alphanum_fraction": 0.4750542299, "avg_line_length": 13.6930693069, "ext": "agda", "hexsha": "797e7796ebb4b5dad3a466c477b7126e9ca6cfe9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue739.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue739.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue739.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 598, "size": 1383 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Groups.Definition open import Sets.EquivalenceRelations open import Groups.Abelian.Definition open import Groups.Homomorphisms.Definition open import Groups.DirectSum.Definition open import Groups.Isomorphisms.Definition module Groups.Abelian.Lemmas where directSumAbelianGroup : {m n o p : _} → {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} {underG : Group S _·A_} {underH : Group T _·B_} (G : AbelianGroup underG) (h : AbelianGroup underH) → (AbelianGroup (directSumGroup underG underH)) AbelianGroup.commutative (directSumAbelianGroup {A = A} {B} G H) = AbelianGroup.commutative G ,, AbelianGroup.commutative H subgroupOfAbelianIsAbelian : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A → A → A} {_+B_ : B → B → B} {G : Group S _+A_} {H : Group T _+B_} {f : B → A} {fHom : GroupHom H G f} → SetoidInjection T S f → AbelianGroup G → AbelianGroup H AbelianGroup.commutative (subgroupOfAbelianIsAbelian {S = S} {_+B_ = _+B_} {fHom = fHom} fInj record { commutative = commutative }) {x} {y} = SetoidInjection.injective fInj (transitive (GroupHom.groupHom fHom) (transitive commutative (symmetric (GroupHom.groupHom fHom)))) where open Setoid S open Equivalence eq abelianIsGroupProperty : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A → A → A} {_+B_ : B → B → B} {G : Group S _+A_} {H : Group T _+B_} → GroupsIsomorphic G H → AbelianGroup H → AbelianGroup G abelianIsGroupProperty iso abH = subgroupOfAbelianIsAbelian {fHom = GroupIso.groupHom (GroupsIsomorphic.proof iso)} (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof iso))) abH
{ "alphanum_fraction": 0.6913849509, "avg_line_length": 73.36, "ext": "agda", "hexsha": "ce0f764ccaff81fc03a4466bc8412f4c2b22033f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Abelian/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Abelian/Lemmas.agda", "max_line_length": 295, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Abelian/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 663, "size": 1834 }
open import Agda.Primitive variable a : Level postulate works : Set a → {a : Set} → a fails : Set a → {a : Set} → {!a!} module _ (A : Set a) (a : A) where x : A x = a
{ "alphanum_fraction": 0.5359116022, "avg_line_length": 12.9285714286, "ext": "agda", "hexsha": "1e50dba5e509ca01d213aa27fc9724b63be8fbe5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3735.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3735.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3735.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 181 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.KcompPrelims where open import Cubical.ZCohomology.Base open import Cubical.Homotopy.Connected open import Cubical.HITs.Hopf open import Cubical.Homotopy.Freudenthal hiding (encode) open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; map to trMap) open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Int renaming (_+_ to +Int) open import Cubical.Data.Nat open import Cubical.HITs.Susp open import Cubical.HITs.Nullification open import Cubical.Data.Prod.Base open import Cubical.Homotopy.Loopspace open import Cubical.Data.Bool open import Cubical.Data.Sum.Base open import Cubical.Data.Sigma hiding (_×_) open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.HITs.S3 private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' {- We want to prove that Kn≃ΩKn+1. For this we use the map ϕ-} ϕ : (pt a : A) → typ (Ω (Susp A , north)) ϕ pt a = (merid a) ∙ sym (merid pt) {- To define the map for n=0 we use the λ k → loopᵏ map for S₊ 1. The loop is given by ϕ north south -} loop* : Path (S₊ 1) north north loop* = ϕ north south looper : Int → Path (S₊ 1) north north looper (pos zero) = refl looper (pos (suc n)) = looper (pos n) ∙ loop* looper (negsuc zero) = sym loop* looper (negsuc (suc n)) = looper (negsuc n) ∙ sym loop* private {- The map of Kn≃ΩKn+1 is given as follows. -} Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 zero x = cong ∣_∣ (looper x) Kn→ΩKn+1 (suc n) = trRec (isOfHLevelTrunc (2 + (suc (suc n))) ∣ north ∣ ∣ north ∣) λ a → cong ∣_∣ ((merid a) ∙ (sym (merid north))) {- We show that looper is a composition of intLoop with two other maps, all three being isos -} sndcomp : ΩS¹ → Path (Susp Bool) north north sndcomp = cong S¹→SuspBool thrdcomp : Path (Susp Bool) north north → Path (S₊ 1) north north thrdcomp = cong SuspBool→S1 looper2 : Int → Path (S₊ 1) north north looper2 a = thrdcomp (sndcomp (intLoop a)) looper≡looper2 : (x : Int) → looper x ≡ looper2 x looper≡looper2 (pos zero) = refl looper≡looper2 (pos (suc n)) = looper (pos n) ∙ loop* ≡⟨ (λ i → looper≡looper2 (pos n) i ∙ congFunct SuspBool→S1 (merid false) (sym (merid true)) (~ i)) ⟩ looper2 (pos n) ∙ cong SuspBool→S1 (ϕ true false) ≡⟨ sym (congFunct SuspBool→S1 (sndcomp (intLoop (pos n))) (ϕ true false)) ⟩ cong SuspBool→S1 (sndcomp (intLoop (pos n)) ∙ ϕ true false) ≡⟨ cong thrdcomp (sym (congFunct S¹→SuspBool (intLoop (pos n)) loop)) ⟩ looper2 (pos (suc n)) ∎ looper≡looper2 (negsuc zero) = sym loop* ≡⟨ symDistr (merid south) (sym (merid north)) ⟩ merid north ∙ sym (merid south) ≡⟨ sym (congFunct SuspBool→S1 (merid true) (sym (merid false))) ⟩ cong SuspBool→S1 (merid true ∙ sym (merid false)) ≡⟨ cong thrdcomp (sym (symDistr (merid false) (sym (merid true)))) ⟩ looper2 (negsuc zero) ∎ looper≡looper2 (negsuc (suc n)) = looper (negsuc n) ∙ sym loop* ≡⟨ ((λ i → looper≡looper2 (negsuc n) i ∙ symDistr (merid south) (sym (merid north)) i)) ⟩ looper2 (negsuc n) ∙ merid north ∙ sym (merid south) ≡⟨ cong (λ x → looper2 (negsuc n) ∙ x) (sym (congFunct SuspBool→S1 (merid true) (sym (merid false)))) ⟩ looper2 (negsuc n) ∙ cong SuspBool→S1 (ϕ false true) ≡⟨ cong (λ x → looper2 (negsuc n) ∙ x) (cong thrdcomp (sym (symDistr (merid false) (sym (merid true))))) ⟩ looper2 (negsuc n) ∙ cong SuspBool→S1 (sym (ϕ true false)) ≡⟨ sym (congFunct SuspBool→S1 (sndcomp (intLoop (negsuc n))) (sym (ϕ true false))) ⟩ thrdcomp (cong S¹→SuspBool (intLoop (negsuc n)) ∙ cong S¹→SuspBool (sym loop)) ≡⟨ cong thrdcomp (sym (congFunct S¹→SuspBool (intLoop (negsuc n)) (sym loop))) ⟩ looper2 (negsuc (suc n)) ∎ private isolooper2 : Iso Int (Path (S₊ 1) north north) isolooper2 = compIso (invIso ΩS¹IsoInt) (compIso iso2 iso1) where iso1 : Iso (Path (Susp Bool) north north) (Path (S₊ 1) north north) iso1 = congIso SuspBoolIsoS1 iso2 : Iso ΩS¹ (Path (Susp Bool) north north) iso2 = congIso S¹IsoSuspBool isolooper : Iso Int (Path (S₊ 1) north north) Iso.fun isolooper = looper Iso.inv isolooper = Iso.inv isolooper2 Iso.rightInv isolooper a = (looper≡looper2 (Iso.inv isolooper2 a)) ∙ Iso.rightInv isolooper2 a Iso.leftInv isolooper a = cong (Iso.inv isolooper2) (looper≡looper2 a) ∙ Iso.leftInv isolooper2 a {- We want to show that this map is an equivalence. n ≥ 2 follows from Freudenthal, and -} {- We want to show that the function (looper : Int → S₊ 1) defined by λ k → loopᵏ is an equivalece. We already know that the corresponding function (intLoop : Int → S¹ is) an equivalence, so the idea is to show that when intLoop is transported along a suitable path S₊ 1 ≡ S¹ we get looper. Instead of using S₊ 1 straight away, we begin by showing this for the equivalent Susp Bool. -} ----------------------------------- n = 1 ----------------------------------------------------- {- We begin by stating some useful lemmas -} S³≡SuspSuspS¹ : S³ ≡ Susp (Susp S¹) S³≡SuspSuspS¹ = S³≡SuspS² ∙ λ i → Susp (S²≡SuspS¹ i) S3≡SuspSuspS¹ : S₊ 3 ≡ Susp (Susp S¹) S3≡SuspSuspS¹ = (λ i → Susp (Susp (Susp (ua Bool≃Susp⊥ (~ i))))) ∙ λ i → Susp (Susp (S¹≡SuspBool (~ i))) sphereConnectedSpecCase : isConnected 4 (Susp (Susp S¹)) sphereConnectedSpecCase = transport (λ i → isConnected 4 (S3≡SuspSuspS¹ i)) (sphereConnected 3) {- We give the following map and show that its truncation is an equivalence -} d-map : typ (Ω ((Susp S¹) , north)) → S¹ d-map p = subst HopfSuspS¹ p base d-mapId : (r : S¹) → d-map (ϕ base r) ≡ r d-mapId r = substComposite HopfSuspS¹ (merid r) (sym (merid base)) base ∙ rotLemma r where rotLemma : (r : S¹) → rot r base ≡ r rotLemma base = refl rotLemma (loop i) = refl d-mapComp : fiber d-map base ≡ Path (Susp (Susp S¹)) north north d-mapComp = ΣPathTransport≡PathΣ {B = HopfSuspS¹} _ _ ∙ helper where helper : Path (Σ (Susp S¹) λ x → HopfSuspS¹ x) (north , base) (north , base) ≡ Path (Susp (Susp S¹)) north north helper = (λ i → (Path (S³≡TotalHopf (~ i)) (transp (λ j → S³≡TotalHopf (~ i ∨ ~ j)) (~ i) (north , base)) ((transp (λ j → S³≡TotalHopf (~ i ∨ ~ j)) (~ i) (north , base))))) ∙ (λ i → Path (S³≡SuspSuspS¹ i) (transp (λ j → S³≡SuspSuspS¹ (i ∧ j)) (~ i) base) ((transp (λ j → S³≡SuspSuspS¹ (i ∧ j)) (~ i) base))) is1Connected-dmap : isConnectedFun 3 d-map is1Connected-dmap = toPropElim (λ s → isPropIsOfHLevel 0) (transport (λ j → isContr (∥ d-mapComp (~ j) ∥ 3)) (transport (λ i → isContr (PathΩ {A = Susp (Susp S¹)} {a = north} 3 i)) (refl , isOfHLevelSuc 1 (isOfHLevelSuc 0 sphereConnectedSpecCase) ∣ north ∣ ∣ north ∣ (λ _ → ∣ north ∣)))) d-iso2 : Iso (hLevelTrunc 3 (typ (Ω (Susp S¹ , north)))) (hLevelTrunc 3 S¹) d-iso2 = connectedTruncIso _ d-map is1Connected-dmap {- We show that composing (λ a → ∣ ϕ base a ∣) and (λ x → ∣ d-map x ∣) gives us the identity function. -} d-mapId2 : Iso.fun d-iso2 ∘ trMap (ϕ base) ≡ idfun (hLevelTrunc 3 S¹) d-mapId2 = funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ a → cong ∣_∣ (d-mapId a))) {- This means that (λ a → ∣ ϕ base a ∣) is an equivalence -} Iso∣ϕ-base∣ : Iso (hLevelTrunc 3 S¹) (hLevelTrunc 3 (typ (Ω (Susp S¹ , north)))) Iso∣ϕ-base∣ = composesToId→Iso d-iso2 (trMap (ϕ base)) d-mapId2 --------------------------------- -- We cheat when n = 1 and use J to prove the following lemmma. There is an obvious dependent path between ϕ base and ϕ north. Since the first one is an iso, so is the other. -- So far this hasn't been an issue. pointFunIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ} {C : (A : Type ℓ) (a1 : A) → Type ℓ'} (p : A ≡ B) (a : A) (b : B) → (transport p a ≡ b) → (f : (A : Type ℓ) → (a1 : A) (a2 : hLevelTrunc 3 A) → C A a1) → isIso (f A a) → isIso (f B b) pointFunIso {ℓ = ℓ}{A = A} {B = B} {C = C} = J (λ B p → (a : A) (b : B) → (transport p a ≡ b) → (f : (A : Type ℓ) → (a1 : A) (a2 : hLevelTrunc 3 A) → C A a1) → isIso (f A a) → isIso (f B b)) λ a b trefl f is → transport (λ i → isIso (f A ((sym (transportRefl a) ∙ trefl) i))) is {- By pointFunIso, this gives that λ a → ∣ ϕ north a ∣ is an iso -} isIso∣ϕ∣ : isIso {A = hLevelTrunc 3 (S₊ 1)} {B = hLevelTrunc 3 (typ (Ω (S₊ 2 , north)))} (trMap (ϕ north)) isIso∣ϕ∣ = pointFunIso {A = S¹} (λ i → S¹≡S1 (~ i)) base north refl (λ A a1 → trMap (ϕ a1)) ((Iso.inv Iso∣ϕ-base∣) , ((Iso.rightInv Iso∣ϕ-base∣) , (Iso.leftInv Iso∣ϕ-base∣))) Iso∣ϕ∣ : Iso (hLevelTrunc 3 (S₊ 1)) (hLevelTrunc 3 (typ (Ω (S₊ 2 , north)))) Iso.fun Iso∣ϕ∣ = trMap (ϕ north) Iso.inv Iso∣ϕ∣ = isIso∣ϕ∣ .fst Iso.rightInv Iso∣ϕ∣ = isIso∣ϕ∣ .snd .fst Iso.leftInv Iso∣ϕ∣ = isIso∣ϕ∣ .snd .snd ---------------------------------------------------- Finishing up --------------------------------- -- We need ΩTrunc. It appears to compute better when restated for this particular case -- decode-fun2 : (n : HLevel) → (x : A) → hLevelTrunc n (x ≡ x) → Path (hLevelTrunc (suc n) A) ∣ x ∣ ∣ x ∣ decode-fun2 zero x = trElim (λ _ → isOfHLevelPath 0 (∣ x ∣ , isOfHLevelTrunc 1 ∣ x ∣) ∣ x ∣ ∣ x ∣) (λ p i → ∣ p i ∣) decode-fun2 (suc n) x = trElim (λ _ → isOfHLevelPath' (suc n) (isOfHLevelTrunc (suc (suc n))) ∣ x ∣ ∣ x ∣) (cong ∣_∣) funsAreSame : (n : HLevel) (x : A) (b : hLevelTrunc n (x ≡ x)) → (decode-fun2 n x b) ≡ (ΩTrunc.decode-fun ∣ x ∣ ∣ x ∣ b) funsAreSame zero x = trElim (λ a → isOfHLevelPath 0 (refl , (isOfHLevelSuc 1 (isOfHLevelTrunc 1) ∣ x ∣ ∣ x ∣ refl)) _ _) λ a → refl funsAreSame (suc n) x = trElim (λ a → isOfHLevelPath _ (isOfHLevelPath' (suc n) (isOfHLevelTrunc (suc (suc n))) ∣ x ∣ ∣ x ∣) _ _) λ a → refl decodeIso : (n : HLevel) (x : A) → Iso (hLevelTrunc n (x ≡ x)) (Path (hLevelTrunc (suc n) A) ∣ x ∣ ∣ x ∣) Iso.fun (decodeIso n x) = decode-fun2 n x Iso.inv (decodeIso n x) = ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣ Iso.rightInv (decodeIso n x) b = funsAreSame n x (ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣ b) ∙ ΩTrunc.P-rinv ∣ x ∣ ∣ x ∣ b Iso.leftInv (decodeIso n x) b = cong (ΩTrunc.encode-fun ∣ x ∣ ∣ x ∣) (funsAreSame n x b) ∙ ΩTrunc.P-linv ∣ x ∣ ∣ x ∣ b Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = compIso isolooper (congIso (truncIdempotentIso _ isOfHLevelS1)) Iso-Kn-ΩKn+1 (suc zero) = compIso Iso∣ϕ∣ (decodeIso _ north) Iso-Kn-ΩKn+1 (suc (suc n)) = compIso (connectedTruncIso2 (4 + n) _ (ϕ north) (n , helper) (isConnectedσ (suc n) (sphereConnected _))) (decodeIso _ north) where helper : n + (4 + n) ≡ 2 + (n + (2 + n)) helper = +-suc n (3 + n) ∙ (λ i → suc (+-suc n (2 + n) i)) mapId2 : (n : ℕ) → Kn→ΩKn+1 n ≡ Iso.fun (Iso-Kn-ΩKn+1 n) mapId2 zero = refl mapId2 (suc zero) = funExt (trElim (λ x → isOfHLevelPath 3 (isOfHLevelTrunc 4 ∣ north ∣ ∣ north ∣) _ _) λ a → refl) mapId2 (suc (suc n)) = funExt (trElim (λ x → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) ∣ north ∣ ∣ north ∣) _ _) λ a → refl) -- Experiments with abstract definitions Iso2-Kn-ΩKn+1 : (n : ℕ) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso.fun (Iso2-Kn-ΩKn+1 n) = Kn→ΩKn+1 n Iso.inv (Iso2-Kn-ΩKn+1 n) = Iso.inv (Iso-Kn-ΩKn+1 n) Iso.rightInv (Iso2-Kn-ΩKn+1 n) a = rinv where abstract rinv : Kn→ΩKn+1 n (Iso.inv (Iso-Kn-ΩKn+1 n) a) ≡ a rinv = funExt⁻ (mapId2 n) _ ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) a Iso.leftInv (Iso2-Kn-ΩKn+1 n) a = linv where abstract linv : Iso.inv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a) ≡ a linv = cong (Iso.inv (Iso-Kn-ΩKn+1 n)) (funExt⁻ (mapId2 n) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) a --- even more abstract abstract absInv' : (n : ℕ) → typ (Ω (coHomK-ptd (2 + n))) → coHomK (1 + n) absInv' n = Iso.inv (Iso-Kn-ΩKn+1 (1 + n)) absSect' : (n : ℕ) (a : typ (Ω (coHomK-ptd (2 + n)))) → Kn→ΩKn+1 (1 + n) (absInv' n a) ≡ a absSect' n a = funExt⁻ (mapId2 (1 + n)) _ ∙ Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) a absRetr' : (n : ℕ) (a : coHomK (1 + n)) → absInv' n (Kn→ΩKn+1 (1 + n) a) ≡ a absRetr' n a = cong (Iso.inv (Iso-Kn-ΩKn+1 (1 + n))) (funExt⁻ (mapId2 (1 + n)) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (1 + n)) a absInv : (n : ℕ) → typ (Ω (coHomK-ptd (1 + n))) → coHomK n absInv zero = Iso.inv (Iso-Kn-ΩKn+1 zero) absInv (suc n) = absInv' n absSect : (n : ℕ) → section (Kn→ΩKn+1 n) (absInv n) absSect zero a = funExt⁻ (mapId2 zero) (Iso.inv isolooper2 (Iso.inv (congIso (truncIdempotentIso _ isOfHLevelS1)) a)) ∙ Iso.rightInv (Iso-Kn-ΩKn+1 zero) a absSect (suc n) = absSect' n absRetr : (n : ℕ) → retract (Kn→ΩKn+1 n) (absInv n) absRetr zero a = cong (Iso.inv (Iso-Kn-ΩKn+1 zero)) (funExt⁻ (mapId2 zero) a) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 zero) a absRetr (suc n) = absRetr' n Iso3-Kn-ΩKn+1 : (n : ℕ) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso.fun (Iso3-Kn-ΩKn+1 n) = Kn→ΩKn+1 n Iso.inv (Iso3-Kn-ΩKn+1 n) = absInv n Iso.rightInv (Iso3-Kn-ΩKn+1 n) = absSect n Iso.leftInv (Iso3-Kn-ΩKn+1 n) = absRetr n
{ "alphanum_fraction": 0.5911798071, "avg_line_length": 47.6486486486, "ext": "agda", "hexsha": "30c94aecd33299100ccbcd687356b2bcd5cc3d54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/ZCohomology/KcompPrelims.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/ZCohomology/KcompPrelims.agda", "max_line_length": 196, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/ZCohomology/KcompPrelims.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5617, "size": 14104 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Bool open import lib.types.Int module lib.types.List where infixr 60 _::_ data List {i} (A : Type i) : Type i where nil : List A _::_ : A → List A → List A module _ {i} {A : Type i} where infixr 80 _++_ _++_ : List A → List A → List A nil ++ l = l (x :: l₁) ++ l₂ = x :: (l₁ ++ l₂) snoc : List A → A → List A snoc l a = l ++ (a :: nil) ++-unit-r : ∀ l → l ++ nil == l ++-unit-r nil = idp ++-unit-r (a :: l) = ap (a ::_) $ ++-unit-r l ++-assoc : ∀ l₁ l₂ l₃ → (l₁ ++ l₂) ++ l₃ == l₁ ++ (l₂ ++ l₃) ++-assoc nil l₂ l₃ = idp ++-assoc (x :: l₁) l₂ l₃ = ap (x ::_) (++-assoc l₁ l₂ l₃) -- properties module _ {j} (P : A → Type j) where data Any : List A → Type (lmax i j) where here : ∀ {a} {l} → P a → Any (a :: l) there : ∀ {a} {l} → Any l → Any (a :: l) data All : List A → Type (lmax i j) where nil : All nil _::_ : ∀ {a} {l} → P a → All l → All (a :: l) Any-dec : (∀ a → Dec (P a)) → (∀ l → Dec (Any l)) Any-dec _ nil = inr λ{()} Any-dec dec (a :: l) with dec a ... | inl p = inl $ here p ... | inr ¬p with Any-dec dec l ... | inl ∃p = inl $ there ∃p ... | inr ¬∃p = inr λ{(here p) → ¬p p; (there ∃p) → ¬∃p ∃p} Any-++-l : ∀ l₁ l₂ → Any l₁ → Any (l₁ ++ l₂) Any-++-l _ _ (here p) = here p Any-++-l _ _ (there ∃p) = there (Any-++-l _ _ ∃p) Any-++-r : ∀ l₁ l₂ → Any l₂ → Any (l₁ ++ l₂) Any-++-r nil _ ∃p = ∃p Any-++-r (a :: l) _ ∃p = there (Any-++-r l _ ∃p) Any-++ : ∀ l₁ l₂ → Any (l₁ ++ l₂) → Any l₁ ⊔ Any l₂ Any-++ nil l₂ ∃p = inr ∃p Any-++ (a :: l₁) l₂ (here p) = inl (here p) Any-++ (a :: l₁) l₂ (there ∃p) with Any-++ l₁ l₂ ∃p ... | inl ∃p₁ = inl (there ∃p₁) ... | inr ∃p₂ = inr ∃p₂ infix 80 _∈_ _∈_ : A → List A → Type i a ∈ l = Any (_== a) l ∈-dec : has-dec-eq A → ∀ a l → Dec (a ∈ l) ∈-dec dec a l = Any-dec (_== a) (λ a' → dec a' a) l ∈-++-l : ∀ a l₁ l₂ → a ∈ l₁ → a ∈ (l₁ ++ l₂) ∈-++-l a = Any-++-l (_== a) ∈-++-r : ∀ a l₁ l₂ → a ∈ l₂ → a ∈ (l₁ ++ l₂) ∈-++-r a = Any-++-r (_== a) ∈-++ : ∀ a l₁ l₂ → a ∈ (l₁ ++ l₂) → (a ∈ l₁) ⊔ (a ∈ l₂) ∈-++ a = Any-++ (_== a) -- [foldr] in Haskell foldr : ∀ {j} {B : Type j} → (A → B → B) → B → List A → B foldr f b nil = b foldr f b (a :: l) = f a (foldr f b l) -- [length] in Haskell length : List A → ℕ length = foldr (λ _ n → S n) 0 -- [filter] in Haskell -- Note that [Bool] is currently defined as a coproduct. filter : ∀ {j k} {Keep : A → Type j} {Drop : A → Type k} → ((a : A) → Keep a ⊔ Drop a) → List A → List A filter p nil = nil filter p (a :: l) with p a ... | inl _ = a :: filter p l ... | inr _ = filter p l -- [reverse] in Haskell reverse : List A → List A reverse nil = nil reverse (x :: l) = snoc (reverse l) x reverse-snoc : ∀ a l → reverse (snoc l a) == a :: reverse l reverse-snoc a nil = idp reverse-snoc a (b :: l) = ap (λ l → snoc l b) (reverse-snoc a l) reverse-reverse : ∀ l → reverse (reverse l) == l reverse-reverse nil = idp reverse-reverse (a :: l) = reverse-snoc a (reverse l) ∙ ap (a ::_) (reverse-reverse l) -- Reasoning about identifications List= : ∀ (l₁ l₂ : List A) → Type i List= nil nil = Lift ⊤ List= nil (y :: l₂) = Lift ⊥ List= (x :: l₁) nil = Lift ⊥ List= (x :: l₁) (y :: l₂) = (x == y) × (l₁ == l₂) List=-in : ∀ {l₁ l₂ : List A} → l₁ == l₂ → List= l₁ l₂ List=-in {l₁ = nil} idp = lift unit List=-in {l₁ = x :: l} idp = idp , idp List=-out : ∀ {l₁ l₂ : List A} → List= l₁ l₂ → l₁ == l₂ List=-out {l₁ = nil} {l₂ = nil} _ = idp List=-out {l₁ = nil} {l₂ = y :: l₂} (lift ()) List=-out {l₁ = x :: l₁} {l₂ = nil} (lift ()) List=-out {l₁ = x :: l₁} {l₂ = y :: l₂} (x=y , l₁=l₂) = ap2 _::_ x=y l₁=l₂ module _ {i j} {A : Type i} {B : Type j} (f : A → B) where -- [map] in Haskell map : List A → List B map nil = nil map (a :: l) = f a :: map l map-++ : ∀ l₁ l₂ → map (l₁ ++ l₂) == map l₁ ++ map l₂ map-++ nil l₂ = idp map-++ (x :: l₁) l₂ = ap (f x ::_) (map-++ l₁ l₂) {- reverse-map : ∀ l → reverse (map l) == map (reverse l) reverse-map nil = idp reverse-map (x :: l) = {! ! (map-++ (reverse l) (x :: nil)) !} -} -- These functions use different [A], [B] or [f]. module _ {i} {A : Type i} where -- [concat] in Haskell concat : List (List A) → List A concat l = foldr _++_ nil l
{ "alphanum_fraction": 0.4710689046, "avg_line_length": 30.1866666667, "ext": "agda", "hexsha": "073ff81fc654dc42e92daaa8b68852d6c045f8f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/List.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1977, "size": 4528 }
-- Andreas, 2016-01-18, Issue1778, reported by mechvel -- record pattern elimination must preserve hiding information -- {-# OPTIONS --show-implicit #-} open import Common.Prelude using (⊤) open import Common.Equality open import Common.Product -- assuming _×_ is a record type (not data type) module _ (A : Set) (let T = ⊤ → {p : A × A} → A) (f : T) where swap : T → T swap f _ {x , y} = f _ {y , x} -- becomes by record pattern elimination -- WAS: swap f _ xy = f _ {proj₂ xy , proj₁ xy} -- NOW: swap f _ {xy} = f _ {proj₂ xy , proj₁ xy} test : f ≡ swap (swap f) test with Set -- trigers internal checking of type test | _ = refl -- WAS: -- Expected a hidden argument, but found a visible argument -- when checking that the type -- (w : Set₁) → f ≡ (λ _ xy → f (record {})) -- of the generated with function is well-formed -- NOW: -- should succeed
{ "alphanum_fraction": 0.6511627907, "avg_line_length": 27.7419354839, "ext": "agda", "hexsha": "c3e5beed387a45bf46b36f497c38f72693ef1001", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1778.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1778.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1778.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 262, "size": 860 }
{-# OPTIONS --without-K --safe #-} -- Given a predicate on the objects of a Category C, build another category -- with just those that satisfy a pr module Categories.Category.Construction.ObjectRestriction where open import Level open import Data.Product using (Σ; proj₁) open import Relation.Unary using (Pred) open import Function using (_on_) renaming (id to id→) open import Categories.Category.Core private variable o ℓ e ℓ′ : Level ObjectRestriction : (C : Category o ℓ e) → Pred (Category.Obj C) ℓ′ → Category (o ⊔ ℓ′) ℓ e ObjectRestriction C R = record { Obj = Σ Obj R ; _⇒_ = _⇒_ on proj₁ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = ∘-resp-≈ } where open Category C
{ "alphanum_fraction": 0.6725768322, "avg_line_length": 24.1714285714, "ext": "agda", "hexsha": "607556fd7a030f53147f8c6e636f47a84bd3c84c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/ObjectRestriction.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/ObjectRestriction.agda", "max_line_length": 91, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/ObjectRestriction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 279, "size": 846 }
module Cats.Category.Setoids.Facts.Terminal where open import Data.Unit using (⊤) open import Level open import Cats.Category open import Cats.Category.Setoids using (Setoids) module Build {l} {l≈} where open Category (Setoids l l≈) One : Obj One = record { Carrier = Lift l ⊤ ; _≈_ = λ _ _ → Lift l≈ ⊤ } isTerminal : IsTerminal One isTerminal X = ∃!-intro _ _ _ open Build instance hasTerminal : ∀ l l≈ → HasTerminal (Setoids l l≈) hasTerminal l l≈ = record { One = One ; isTerminal = isTerminal }
{ "alphanum_fraction": 0.6352313167, "avg_line_length": 16.0571428571, "ext": "agda", "hexsha": "a586cdc46896716cd602e17b8c0d93d5b681afbf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Setoids/Facts/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Setoids/Facts/Terminal.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Setoids/Facts/Terminal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 176, "size": 562 }
module BTA6 where ---------------------------------------------- -- Preliminaries: Imports and List-utilities ---------------------------------------------- open import Data.Nat hiding (_<_) open import Data.Bool open import Function using (_∘_) open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Category.Functor -- Pointer into a list. It is similar to list membership as defined in -- Data.List.AnyMembership, rather than going through propositional -- equality, it asserts the existence of the referenced element -- directly. module ListReference where infix 4 _∈_ data _∈_ {A : Set} : A → List A → Set where hd : ∀ {x xs} → x ∈ (x ∷ xs) tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) open ListReference mapIdx : {A B : Set} → (f : A → B) → {x : A} {xs : List A} → x ∈ xs → f x ∈ map f xs mapIdx f hd = hd mapIdx f (tl x₁) = tl (mapIdx f x₁) -- Extension of lists at the front and, as a generalization, extension -- of lists somewhere in the middle. module ListExtension where open import Relation.Binary.PropositionalEquality -- Extension of a list by consing elements at the front. data _↝_ {A : Set} : List A → List A → Set where ↝-refl : ∀ {Γ} → Γ ↝ Γ ↝-extend : ∀ {Γ Γ' τ} → Γ ↝ Γ' → Γ ↝ (τ ∷ Γ') -- Combining two transitive extensions. ↝-trans : ∀ {A : Set}{Γ Γ' Γ'' : List A} → Γ ↝ Γ' → Γ' ↝ Γ'' → Γ ↝ Γ'' ↝-trans Γ↝Γ' ↝-refl = Γ↝Γ' ↝-trans Γ↝Γ' (↝-extend Γ'↝Γ'') = ↝-extend (↝-trans Γ↝Γ' Γ'↝Γ'') -- Of course, ↝-refl is the identity for combining two extensions. lem-↝-refl-id : ∀ {A : Set} {Γ Γ' : List A} → (Γ↝Γ' : Γ ↝ Γ') → Γ↝Γ' ≡ (↝-trans ↝-refl Γ↝Γ') lem-↝-refl-id ↝-refl = refl lem-↝-refl-id (↝-extend Γ↝Γ') = cong ↝-extend (lem-↝-refl-id Γ↝Γ') -- TODO: why does this work? -- lem-↝-refl-id (↝-extend Γ↝Γ') = lem-↝-refl-id (↝-extend Γ↝Γ') -- Extending a list in the middle: data _↝_↝_ {A : Set} : List A → List A → List A → Set where -- First prepend the extension list to the common suffix ↝↝-base : ∀ {Γ Γ''} → Γ ↝ Γ'' → Γ ↝ [] ↝ Γ'' -- ... and then add the common prefix ↝↝-extend : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → (τ ∷ Γ) ↝ (τ ∷ Γ') ↝ (τ ∷ Γ'') open ListExtension --------------------------------------- -- Start of the development: --------------------------------------- -- Intro/Objective: ------------------- -- The following development defines a (verified) specializer/partial -- evaluator for a simply typed lambda calculus embedded in Agda using -- deBruijn indices. -- The residual language. ------------------------- -- The residual language is a standard simply typed λ-calculus. The -- types are integers and functions. data Type : Set where Int : Type Fun : Type → Type → Type Ctx = List Type -- The type Exp describes the typed residual expressions. Variables -- are represented by deBruijn indices that form references into the -- typing context. The constructors and typing constraints are -- standard. -- TODO: citations for ``as usual'' and ``standard'' data Exp (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ Int EAdd : Exp Γ Int → Exp Γ Int -> Exp Γ Int ELam : ∀ {τ τ'} → Exp (τ ∷ Γ) τ' → Exp Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp Γ (Fun τ τ') → Exp Γ τ → Exp Γ τ' -- The standard functional semantics of the residual expressions. -- TODO: citations for ``as usual'' and ``standard'' module Exp-Eval where -- interpretation of Exp types EImp : Type → Set EImp Int = ℕ EImp (Fun τ₁ τ₂) = EImp τ₁ → EImp τ₂ -- Environments containing values for free variables. An environment -- is indexed by a typing context that provides the types for the -- contained values. data Env : Ctx → Set where [] : Env [] _∷_ : ∀ {τ Γ} → EImp τ → Env Γ → Env (τ ∷ Γ) -- Lookup a value in the environment, given a reference into the -- associated typing context. lookupE : ∀ { τ Γ } → τ ∈ Γ → Env Γ → EImp τ lookupE hd (x ∷ env) = x lookupE (tl v) (x ∷ env) = lookupE v env -- Evaluation of residual terms, given a suitably typed environment. ev : ∀ {τ Γ} → Exp Γ τ → Env Γ → EImp τ ev (EVar x) env = lookupE x env ev (EInt x) env = x ev (EAdd e f) env = ev e env + ev f env ev (ELam e) env = λ x → ev e (x ∷ env) ev (EApp e f) env = ev e env (ev f env) -- The binding-time-annotated language. --------------------------------------- -- The type of a term determines the term's binding time. The type -- constructors with an A-prefix denote statically bound integers and -- functions. Terms with dynamic binding time have a `D' type. The `D' -- type constructor simply wraps up a residual type. data AType : Set where AInt : AType AFun : AType → AType → AType D : Type → AType ACtx = List AType -- The mapping from annotated types to residual types is straightforward. typeof : AType → Type typeof AInt = Int typeof (AFun α₁ α₂) = Fun (typeof α₁) (typeof α₂) typeof (D x) = x -- ATypes are stratified such that that dynamically bound -- functions can only have dynamically bound parameters. -- TODO: why exactly is that necessary? -- The following well-formedness relation as an alternative representation -- for this constraint: module AType-WF where open import Relation.Binary.PropositionalEquality -- Static and dynamic binding times data BT : Set where stat : BT dyn : BT -- Ordering on binding times: dynamic binding time subsumes static -- binding time. data _≤-bt_ : BT → BT → Set where bt≤bt : ∀ bt → bt ≤-bt bt stat≤bt : ∀ bt → stat ≤-bt bt module WF (ATy : Set) (typeof : ATy → Type) (btof : ATy → BT) where data wf : ATy → Set where wf-int : ∀ α → typeof α ≡ Int → wf α wf-fun : ∀ α α₁ α₂ → typeof α ≡ Fun (typeof α₁) (typeof α₂) → btof α ≤-bt btof α₁ → btof α ≤-bt btof α₂ → wf α₁ → wf α₂ → wf α -- It is easy to check that the stratification respects the -- well-formedness, given the intended mapping from ATypes to -- binding times expained above: btof : AType → BT btof AInt = stat btof (AFun _ _) = stat btof (D x) = dyn open WF AType typeof btof using (wf-fun; wf-int) renaming (wf to wf-AType) lem-wf-AType : ∀ α → wf-AType α lem-wf-AType AInt = WF.wf-int AInt refl lem-wf-AType (AFun α α₁) = WF.wf-fun (AFun α α₁) α α₁ refl (stat≤bt (btof α)) (stat≤bt (btof α₁)) (lem-wf-AType α) (lem-wf-AType α₁) lem-wf-AType (D Int) = WF.wf-int (D Int) refl lem-wf-AType (D (Fun x x₁)) = WF.wf-fun (D (Fun x x₁)) (D x) (D x₁) refl (bt≤bt dyn) (bt≤bt dyn) (lem-wf-AType (D x)) (lem-wf-AType (D x₁)) -- The typed annotated terms: The binding times of variables is -- determined by the corresponding type-binding in the context. In the -- other cases, the A- and D-prefixes on term constructors inidicate -- the corresponding binding times for the resulting terms. data AExp (Δ : ACtx) : AType → Set where Var : ∀ {α} → α ∈ Δ → AExp Δ α AInt : ℕ → AExp Δ AInt AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt ALam : ∀ {α₁ α₂} → AExp (α₁ ∷ Δ) α₂ → AExp Δ (AFun α₁ α₂) AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ DInt : ℕ → AExp Δ (D Int) DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int) DLam : ∀ {σ₁ σ₂} → AExp ((D σ₁) ∷ Δ) (D σ₂) → AExp Δ (D (Fun σ₁ σ₂)) DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁) Lift : AExp Δ AInt → AExp Δ (D Int) -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. -- Before diving into the precise definition, it is instructive to -- investigate the expected result of partial evaluation on some -- examples. module ApplicativeMaybe where open import Data.Maybe public open import Category.Functor public import Level open RawFunctor {Level.zero} functor public infixl 4 _⊛_ _⊛_ : {A B : Set} → Maybe (A → B) → Maybe A → Maybe B just f ⊛ just x = just (f x) _ ⊛ _ = nothing liftA2 : {A B C : Set} → (A → B → C) → Maybe A → Maybe B → Maybe C liftA2 f mx my = just f ⊛ mx ⊛ my module AExp-Examples where open import Data.Product hiding (map) open ApplicativeMaybe open import Data.Empty open Relation.Binary.PropositionalEquality -- (We pre-define some De Bruijn indices to improve -- readability of the examples:) x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd x' : ∀ {α Δ} → Exp (α ∷ Δ) α x' = EVar hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- A rather trivial case is the specialization of base-type -- calulations. Here, we simply want to emit the result of a static -- addition as a constant: -- Lift (5S +S 5S) --specializes to --> 5E ex0 : AExp [] (D Int) ex0 = (Lift (AAdd (AInt 5) (AInt 5))) ex0' : AExp [] (D Int) ex0' = DAdd (DInt 6) (Lift (AAdd (AInt 5) (AInt 5))) ex0-spec : Exp [] Int ex0-spec = (EInt 10) ex0'-spec : Exp [] Int ex0'-spec = (EAdd (EInt 6) (EInt 10)) -- The partial evaluation for this case is of course -- straightforward. We use Agda's ℕ as an implementation type for -- static integers and residual expressions Exp for dynamic ones. Imp0 : AType → Set Imp0 AInt = ℕ Imp0 (D σ) = Exp [] σ Imp0 _ = ⊥ pe-ex0 : ∀ { α } → AExp [] α → Maybe (Imp0 α) pe-ex0 (AInt x) = just (x) pe-ex0 (DInt x) = just (EInt x) pe-ex0 (AAdd e f) = liftA2 _+_ (pe-ex0 e) (pe-ex0 f) pe-ex0 (DAdd e f) = liftA2 EAdd (pe-ex0 e) (pe-ex0 f) pe-ex0 (Lift e) = EInt <$> (pe-ex0 e) pe-ex0 _ = nothing ex0-test : pe-ex0 ex0 ≡ just ex0-spec ex0-test = refl ex0'-test : pe-ex0 ex0' ≡ just ex0'-spec ex0'-test = refl -- Specializing open terms is also straightforward. This situation -- typically arises when specializing the body of a lambda -- abstraction. -- (Dλ x → x +D Lift (5S + 5S)) ---specializes to--> Eλ x → EInt 10 ex1 : AExp [] (D (Fun Int Int)) ex1 = (DLam (DAdd x (Lift (AAdd (AInt 5) (AInt 5))))) ex1-spec : Exp [] (Fun Int Int) ex1-spec = ELam (EAdd x' (EInt 10)) ex1' : AExp (D Int ∷ []) (D Int) ex1' = (Lift (AAdd (AInt 5) (AInt 5))) ex1'-spec : Exp (Int ∷ []) Int ex1'-spec = (EAdd x' (EInt 10)) -- The implementation type now also has to hold open residual terms, -- which arise as the result of partially evaluating an open term -- with with dynamic binding time. The calculation of the -- implementation type thus requires a typing context as a -- parameter. Imp1 : Ctx → AType → Set Imp1 _ AInt = ℕ Imp1 Γ (D τ) = Exp Γ τ Imp1 _ _ = ⊥ erase = typeof -- Unsurprisingly, Partial evaluation of open terms emits -- implementations that are typed under the erased context. pe-ex1 : ∀ {α Δ} → AExp Δ α → Maybe (Imp1 (map erase Δ) α) pe-ex1 (AInt x) = just (x) pe-ex1 (DInt x) = just (EInt x) pe-ex1 (AAdd e f) = liftA2 _+_ (pe-ex1 e) (pe-ex1 f) pe-ex1 (DAdd e f) = liftA2 EAdd (pe-ex1 e) (pe-ex1 f) pe-ex1 (Lift e) = EInt <$> (pe-ex1 e) pe-ex1 (DLam {τ} e) = ELam <$> pe-ex1 e -- Technical note: In the case for variables we can simply exploit -- the fact that variables are functorial in the actual type of -- their contexts' elements pe-ex1 (Var {D _} x) = just (EVar (mapIdx typeof x)) pe-ex1 _ = nothing ex1-test : pe-ex1 ex1 ≡ just ex1-spec ex1-test = refl data Static : AType → Set where SInt : Static AInt SFun : ∀ { α₁ α₂ } → Static α₂ → Static (AFun α₁ α₂) is-static : (α : AType) → Dec (Static α) is-static α = {!!} Imp2 : Ctx → AType → Set Imp2 _ AInt = ℕ Imp2 Γ (D τ) = Exp Γ τ Imp2 Γ (AFun α₁ α₂) = Imp2 Γ α₁ → Imp2 Γ α₂ -- The interpretation of annotated types. Imp : Ctx → AType → Set Imp Γ (AInt) = ℕ Imp Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp Γ' α₁ → Imp Γ' α₂) Imp Γ (D σ) = Exp Γ σ elevate-var : ∀ {Γ Γ'} {τ : Type} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp Γ τ → Exp Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) lift : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp Γ α → Imp Γ' α lift AInt p v = v lift (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'') lift (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v module SimpleAEnv where -- A little weaker, but much simpler data AEnv (Γ : Ctx) : ACtx → Set where [] : AEnv Γ [] cons : ∀ {Δ} (α : AType) → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α lookup (cons α v env) hd = v lookup (cons α₁ v env) (tl x) = lookup env x liftEnv : ∀ {Γ Γ' Δ} → Γ ↝ Γ' → AEnv Γ Δ → AEnv Γ' Δ liftEnv Γ↝Γ' [] = [] liftEnv Γ↝Γ' (cons α x env) = cons α (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) consD σ env = (cons (D σ) (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α pe (Var x) env = lookup env x pe (AInt x) env = x pe (AAdd e₁ e₂) env = pe e₁ env + pe e₂ env pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons α y (liftEnv Γ↝Γ' env)) pe (AApp e₁ e₂) env = ((pe e₁ env) ↝-refl) (pe e₂ env) pe (DInt x) env = EInt x pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) pe (DLam {σ} e) env = ELam (pe e (consD σ env)) pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) pe (Lift e) env = EInt (pe e env) module CheckExamples where open import Relation.Binary.PropositionalEquality hiding ([_]) open SimpleAEnv open AExp-Examples check-ex1 : pe ex1 [] ≡ ex1-spec check-ex1 = refl check-ex0 : pe ex0 [] ≡ ex0-spec check-ex0 = refl check-ex0' : pe ex0' [] ≡ ex0'-spec check-ex0' = refl module Examples where open SimpleAEnv open import Relation.Binary.PropositionalEquality x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- Dλ y → let f = λ x → x D+ y in Dλ z → f z term1 : AExp [] (D (Fun Int (Fun Int Int))) term1 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DAdd x y)))) -- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z -- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y)) term2 : AExp [] (D (Fun Int (Fun Int Int))) term2 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DLam {σ₁ = Int} (DAdd y z))))) -- closed pe. In contrast to BTA5, it is now not clear what Γ is -- given an expression. So perhaps AEnv has it's merrits after all? pe[] : ∀ {α} → AExp [] α → Imp [] α pe[] e = pe e [] ex-pe-term1 : pe[] term1 ≡ ELam (ELam (EVar hd)) ex-pe-term1 = refl ex-pe-term2 : pe[] term2 ≡ ELam (ELam (EVar hd)) ex-pe-term2 = refl module Correctness where open SimpleAEnv open Exp-Eval -- TODO: rename occurences of stripα to typeof stripα = typeof stripΔ : ACtx → Ctx stripΔ = map stripα strip-lookup : ∀ { α Δ} → α ∈ Δ → stripα α ∈ stripΔ Δ strip-lookup hd = hd strip-lookup (tl x) = tl (strip-lookup x) strip : ∀ {α Δ} → AExp Δ α → Exp (stripΔ Δ) (stripα α) strip (Var x) = EVar (strip-lookup x) strip (AInt x) = EInt x strip (AAdd e f) = EAdd (strip e) (strip f) strip (ALam e) = ELam (strip e) strip (AApp e f) = EApp (strip e) (strip f) strip (DInt x) = EInt x strip (DAdd e f) = EAdd (strip e) (strip f) strip (DLam e) = ELam (strip e) strip (DApp e f) = EApp (strip e) (strip f) strip (Lift e) = strip e liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e stripLift : ∀ {α Δ Γ} → stripΔ Δ ↝ Γ → AExp Δ α → Exp Γ (stripα α) stripLift Δ↝Γ = liftE Δ↝Γ ∘ strip -- We want to show that pe preserves the semantics of the -- program. Roughly, Exp-Eval.ev-ing a stripped program is -- equivalent to first pe-ing a program and then Exp-Eval.ev-ing the -- result. But as the pe-result of a static function ``can do more'' -- than the (ev ∘ strip)ped function we need somthing more refined. module Equiv where open import Relation.Binary.PropositionalEquality -- Extending a value environment according to an extension of a -- type environment data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where refl : ∀ env → ↝-refl ⊢ env ↝ env extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → ↝-extend Γ↝Γ' ⊢ env ↝ (v ∷ env') env↝trans : ∀ {Γ Γ' Γ''} {Γ↝Γ' : Γ ↝ Γ'} {Γ'↝Γ'' : Γ' ↝ Γ''} {env env' env''} → Γ↝Γ' ⊢ env ↝ env' → Γ'↝Γ'' ⊢ env' ↝ env'' → let Γ↝Γ'' = ↝-trans Γ↝Γ' Γ'↝Γ'' in Γ↝Γ'' ⊢ env ↝ env'' -- env↝trans {Γ} {.Γ''} {Γ''} {Γ↝Γ'} {.↝-refl} {env} {.env''} {env''} env↝env' (refl .env'') = env↝env' -- env↝trans env↝env' (extend v env'↝env'') = extend v (env↝trans env↝env' env'↝env'') -- TODO: why does this work??? env↝trans {.Γ'} {Γ'} {Γ''} {.↝-refl} {Γ'↝Γ''} {.env'} {env'} (refl .env') env'↝env'' rewrite sym (lem-↝-refl-id Γ'↝Γ'') = env'↝env'' env↝trans (extend v env↝env') env'↝env'' = env↝trans (extend v env↝env') env'↝env'' -- Equivalent Imp Γ α and EImp τ values (where τ = stripα α). As -- (v : Imp Γ α) is not necessarily closed, equivalence is defined for -- the closure (Env Γ, ImpΓ α) Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set Equiv {AInt} env av v = av ≡ v Equiv {AFun α₁ α₂} {Γ} env af f = -- extensional equality, given -- an extended context ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → {ax : Imp Γ' α₁} → {x : EImp (stripα α₁)} → Equiv env' ax x → Equiv env' (af Γ↝Γ' ax) (f x) Equiv {D x} {Γ} env av v = ev av env ≡ v -- actually we mean extensional equality -- Equivalence of AEnv and Env environments. They need to provide -- Equivalent bindings for a context Δ/stripΔ Δ. Again, the -- equivalence is defined for a closure (Env Γ', AEnv Γ' Δ). data Equiv-Env {Γ' : _} (env' : Env Γ') : ∀ {Δ} → let Γ = stripΔ Δ in AEnv Γ' Δ → Env Γ → Set where [] : Equiv-Env env' [] [] cons : ∀ {α Δ} → let τ = stripα α Γ = stripΔ Δ in {env : Env Γ} → {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (va : Imp (Γ') α) → (v : EImp τ) → Equiv env' va v → Equiv-Env env' (cons α va (aenv)) (v ∷ env) -- Now for the proof... module Proof where open Equiv open import Relation.Binary.PropositionalEquality -- Extensional equality as an axiom to prove the Equivalence of -- function values. We could (should?) define it locally for -- Equiv. postulate ext : ∀ {τ₁ τ₂} {f g : EImp τ₁ → EImp τ₂} → (∀ x → f x ≡ g x) → f ≡ g -- Ternary helper relation for environment extensions, analogous to _↝_↝_ for contexts data _⊢_↝_↝_⊣ : ∀ { Γ Γ' Γ''} → Γ ↝ Γ' ↝ Γ'' → Env Γ → Env Γ' → Env Γ'' → Set where refl : ∀ {Γ Γ''} {Γ↝Γ'' : Γ ↝ Γ''} { env env'' } → Γ↝Γ'' ⊢ env ↝ env'' → ↝↝-base Γ↝Γ'' ⊢ env ↝ [] ↝ env'' ⊣ extend : ∀ {Γ Γ' Γ'' τ} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} { env env' env'' } → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (v : EImp τ) → ↝↝-extend Γ↝Γ'↝Γ'' ⊢ (v ∷ env) ↝ (v ∷ env') ↝ (v ∷ env'') ⊣ -- the following lemmas are strong versions of the shifting -- functions, proving that consistent variable renaming preserves -- equivalence (and not just typing). lookup-elevate-≡ : ∀ {τ Γ Γ'} {Γ↝Γ' : Γ ↝ Γ'} {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var Γ↝Γ' x) env' lookup-elevate-≡ {τ} {.Γ'} {Γ'} {.↝-refl} {.env'} {env'} (refl .env') x = refl lookup-elevate-≡ (extend v env↝env') x = lookup-elevate-≡ env↝env' x lookup-elevate2-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var2 Γ↝Γ'↝Γ'' x) env'' lookup-elevate2-≡ (refl Γ↝Γ') x = lookup-elevate-≡ Γ↝Γ' x lookup-elevate2-≡ (extend env↝env'↝env'' v) hd = refl lookup-elevate2-≡ (extend env↝env'↝env'' _) (tl x) rewrite lookup-elevate2-≡ env↝env'↝env'' x = refl lem-elevate-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (e : Exp Γ τ) → ev e env ≡ ev (elevate Γ↝Γ'↝Γ'' e) env'' lem-elevate-≡ env↝env' (EVar x) = lookup-elevate2-≡ env↝env' x lem-elevate-≡ env↝env' (EInt x) = refl lem-elevate-≡ env↝env' (EAdd e f) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' f ... | IA1 | IA2 = cong₂ _+_ IA1 IA2 lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ELam e) = ext lem-elevate-≡-body where lem-elevate-≡-body : ∀ x → ev e (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e lem-elevate-≡ env↝env' (EApp e f) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' f ... | IA1 | IA2 = cong₂ (λ f₁ x → f₁ x) IA1 IA2 lem-lift-refl-id : ∀ {α Γ} → let τ = stripα α in (env : Env Γ) → (v : EImp τ) (va : Imp Γ α) → Equiv env va v → Equiv env (lift α ↝-refl va) v lem-lift-refl-id {AInt} env v va eq = eq lem-lift-refl-id {AFun α α₁} {Γ} env v va eq = body where body : ∀ {Γ'} {env' : Env Γ'} {Γ↝Γ' : Γ ↝ Γ'} → Γ↝Γ' ⊢ env ↝ env' → {av' : Imp Γ' α} {v' : EImp (stripα α)} → Equiv env' av' v' → Equiv env' (va (↝-trans ↝-refl Γ↝Γ') av') (v v') body {Γ↝Γ' = Γ↝Γ'} env↝env' eq' rewrite sym (lem-↝-refl-id Γ↝Γ') = eq env↝env' eq' lem-lift-refl-id {D x} env v e eq rewrite sym eq = sym (lem-elevate-≡ (refl (refl env)) e) -- lifting an Imp does not affect equivalence lem-lift-equiv : ∀ {α Γ Γ'} → let τ = stripα α in {Γ↝Γ' : Γ ↝ Γ'} → (va : Imp Γ α) (v : EImp τ) → {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → Equiv env va v → Equiv env' (lift α Γ↝Γ' va) v lem-lift-equiv va v {.env'} {env'} (refl .env') eq = lem-lift-refl-id env' v va eq lem-lift-equiv {AInt} va v (extend v₁ env↝env') eq = eq lem-lift-equiv {AFun α α₁} va v (extend v₁ env↝env') eq = λ v₁env₁↝env' eq₁ → eq (env↝trans (extend v₁ env↝env') v₁env₁↝env') eq₁ lem-lift-equiv {D x} va v (extend v₁ env↝env') eq rewrite sym eq = sym (lem-elevate-≡ (refl (extend v₁ env↝env')) va) lem-equiv-lookup : ∀ {α Δ Γ'} → let Γ = stripΔ Δ in { aenv : AEnv Γ' Δ } {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → ∀ x → Equiv {α} env' (lookup aenv x) (lookupE (strip-lookup x) env) lem-equiv-lookup env' [] () lem-equiv-lookup env' (cons enveq va v eq) hd = eq lem-equiv-lookup env' (cons enveq va v eq) (tl x) = lem-equiv-lookup env' enveq x lem-equiv-env-lift-extend : ∀ {σ Γ' Δ} (env' : Env Γ') → let Γ = stripΔ Δ in {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (x : EImp σ) → Equiv-Env (x ∷ env') (liftEnv (↝-extend ↝-refl) aenv) env lem-equiv-env-lift-extend _ [] x = [] lem-equiv-env-lift-extend env' (cons {α} eqenv va v x) x₁ = cons (lem-equiv-env-lift-extend env' eqenv x₁) (lift α (↝-extend ↝-refl) va) v (lem-lift-equiv va v (extend x₁ (refl env')) x) lem-equiv-env-lift-lift : ∀ {Γ' Γ'' Δ} → let Γ = stripΔ Δ in {Γ↝Γ' : Γ' ↝ Γ''} {env' : Env Γ'} {env'' : Env Γ''} (env'↝env'' : Γ↝Γ' ⊢ env' ↝ env'') → {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → Equiv-Env env'' (liftEnv Γ↝Γ' aenv) env lem-equiv-env-lift-lift env'↝env'' [] = [] lem-equiv-env-lift-lift {Γ↝Γ' = Γ↝Γ'} env'↝env'' (cons {α} eqenv va v x) with lem-equiv-env-lift-lift env'↝env'' eqenv ... | IA = cons IA (lift α Γ↝Γ' va) v (lem-lift-equiv va v env'↝env'' x) -- When we partially evaluate somthing under an environment , it -- will give equivalent results to a ``complete'' evaluation under -- an equivalent environment pe-correct : ∀ { α Δ Γ' } → (e : AExp Δ α) → let Γ = stripΔ Δ in {aenv : AEnv Γ' Δ} → {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → Equiv env' (pe e aenv) (ev (strip e) env) pe-correct (Var x) env' eqenv = lem-equiv-lookup env' eqenv x pe-correct (AInt x) env' eqenv = refl pe-correct (AAdd e f) env' eqenv rewrite pe-correct e env' eqenv | pe-correct f env' eqenv = refl pe-correct (ALam e) env' eqenv = λ {_} {env''} env'↝env'' {av'} {v'} eq → let eqenv' = (lem-equiv-env-lift-lift env'↝env'' eqenv) eqenv'' = (cons eqenv' av' v' eq) in pe-correct e env'' eqenv'' pe-correct (AApp e f) env' eqenv with pe-correct e env' eqenv | pe-correct f env' eqenv ... | IAe | IAf = IAe (refl env') IAf pe-correct (DInt x) env' eqenv = refl pe-correct (DAdd e f) env' eqenv rewrite pe-correct e env' eqenv | pe-correct f env' eqenv = refl pe-correct (DLam e) env' eqenv = ext (λ x → let eqenv' = (lem-equiv-env-lift-extend env' eqenv x) eqenv'' = (cons eqenv' (EVar hd) x refl) in pe-correct e (x ∷ env') eqenv'') pe-correct (DApp e f) {env = env} env' eqenv with pe-correct f env' eqenv | pe-correct e env' eqenv ... | IA' | IA = cong₂ (λ f x → f x) IA IA' pe-correct (Lift e) env' eqenv with pe-correct e env' eqenv ... | IA = IA -- module PreciseAEnv where -- open Exp-Eval -- open import Relation.Binary.PropositionalEquality -- data AEnv : Ctx → ACtx → Set where -- [] : AEnv [] [] -- cons : ∀ { Γ Γ' Δ } (α : AType) → Γ ↝ Γ' → Imp Γ' α → AEnv Γ Δ → AEnv Γ' (α ∷ Δ) -- consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) -- consD σ env = (cons (D σ) (↝-extend {τ = σ} ↝-refl) (EVar hd) (env)) -- lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α -- lookup (cons α _ v env) hd = v -- lookup (cons α₁ Γ↝Γ' v env) (tl x) = lookup (cons α₁ Γ↝Γ' v env) (tl x) -- pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α -- pe (Var x) env = lookup env x -- pe (AInt x) env = x -- pe (AAdd e₁ e₂) env = pe e₁ env + pe e₂ env -- pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons α Γ↝Γ' y env) -- pe (AApp e₁ e₂) env = ((pe e₁ env) ↝-refl) (pe e₂ env) -- pe (DInt x) env = EInt x -- pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) -- pe (DLam {σ} e) env = ELam (pe e (consD σ env)) -- pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) -- -- What is a suitable environment to interpret an AExp without pe? -- -- 1-1 mapping from AExp into Exp -- stripα : AType → Type -- stripα AInt = Int -- stripα (AFun α₁ α₂) = Fun (stripα α₁) (stripα α₂) -- stripα (D x) = x -- stripΔ : ACtx → Ctx -- stripΔ = map stripα -- stripEnv : ∀ {Δ} → -- let Γ = stripΔ Δ -- in AEnv Γ Δ → Env Γ -- stripEnv [] = [] -- stripEnv (cons AInt Γ↝Γ' v env) = v ∷ (stripEnv {!!}) -- stripEnv (cons (AFun α α₁) Γ↝Γ' v env) = {!!} -- stripEnv (cons (D x) Γ↝Γ' v env) = {!!} -- -- Extending a value environment according to an extension of a type environment -- data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where -- refl : ∀ env → ↝-refl ⊢ env ↝ env -- extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → -- (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → -- ↝-extend Γ↝Γ' ⊢ env ↝ (v ∷ env') -- -- It turns out that we have to shift Exp also -- liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ -- liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e -- Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set -- Equiv {AInt} env av v = av ≡ v -- Equiv {AFun α₁ α₂} {Γ} env av v = -- an pe-d static function is -- -- equivalent to an EImp value -- -- if given an suitably extended -- -- environment, evaluating the -- -- body yields something -- -- equivalent to the EImp-value -- ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → -- {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → -- Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') -- Equiv {D x} {Γ} env av v = ev av env ≡ v -- data Equiv-Env : ∀ {Δ} → let Γ = stripΔ Δ in -- AEnv Γ Δ → Env Γ → Set where -- [] : Equiv-Env [] [] -- -- cons : ∀ {α Δ} → let Γ = stripΔ Δ in -- -- (va : Imp Γ α) → (v : EImp (stripα α)) → -- -- (env : Env Γ) → Equiv env v va → -- -- (aenv : AEnv Γ Δ) → -- -- Equiv-Env aenv env → -- -- Equiv-Env {α ∷ Δ} (cons α (lift α (↝-extend ↝-refl) va) -- -- (liftEnv (↝-extend ↝-refl) aenv)) -- -- (v ∷ env)
{ "alphanum_fraction": 0.5365696626, "avg_line_length": 39.371356147, "ext": "agda", "hexsha": "12ec94499394b4a24e2b520bad5c3e2c0b00c284", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "luminousfennell/polybta", "max_forks_repo_path": "BTA6.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "luminousfennell/polybta", "max_issues_repo_path": "BTA6.agda", "max_line_length": 107, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "luminousfennell/polybta", "max_stars_repo_path": "BTA6.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z", "num_tokens": 11842, "size": 31064 }
module Prelude where id : {A : Set} -> A -> A id x = x _·_ : {A B C : Set} -> (B -> C) -> (A -> B) -> (A -> C) f · g = \ x -> f (g x) flip : {A B C : Set} -> (A -> B -> C) -> B -> A -> C flip f x y = f y x Rel : Set -> Set1 Rel X = X -> X -> Set data False : Set where record True : Set where tt : True tt = _ ! : {A : Set} -> A -> True ! = _ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : {A : Set}(P : A -> Set){x y : A} -> x == y -> P y -> P x subst P refl p = p cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl sym : {A : Set}{x y : A} -> x == y -> y == x sym refl = refl trans : {A : Set}{x y z : A} -> x == y -> y == z -> x == z trans refl yz = yz data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B infixr 10 _,_ record Σ (A : Set)(B : A -> Set) : Set where field fst : A snd : B fst _,,_ : {A : Set}{B : A -> Set}(x : A) -> B x -> Σ A B x ,, y = record { fst = x; snd = y } private module Σp {A : Set}{B : A -> Set} = Σ {A}{B} open Σp public data _∨_ (A B : Set) : Set where inl : A -> A ∨ B inr : B -> A ∨ B data Bool : Set where false : Bool true : Bool IsTrue : Bool -> Set IsTrue false = False IsTrue true = True IsFalse : Bool -> Set IsFalse true = False IsFalse false = True data Inspect (b : Bool) : Set where itsTrue : IsTrue b -> Inspect b itsFalse : IsFalse b -> Inspect b inspect : (b : Bool) -> Inspect b inspect true = itsTrue _ inspect false = itsFalse _ data LeqBool : Rel Bool where ref : {b : Bool} -> LeqBool b b up : LeqBool false true One : Rel True One _ _ = True _[×]_ : {A B : Set} -> Rel A -> Rel B -> Rel (A × B) (R [×] S) (a₁ , b₁) (a₂ , b₂) = R a₁ a₂ × S b₁ b₂
{ "alphanum_fraction": 0.495049505, "avg_line_length": 19.2921348315, "ext": "agda", "hexsha": "95c9defc30a18b5b09df754ae9fc41378aa7b079", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM6/Path/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM6/Path/Prelude.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM6/Path/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 701, "size": 1717 }
postulate @0 A : Set _ : (@0 B : Set) .(C : Set) → Set _ = λ B C → ?
{ "alphanum_fraction": 0.4305555556, "avg_line_length": 12, "ext": "agda", "hexsha": "853a95ce76a537792f82712059a8c8538f07caa4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue5341.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue5341.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue5341.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 72 }
import Common.Level open import Common.Equality record Sigma (A : Set)(B : A -> Set) : Set where constructor _,_ field fst : A snd : B fst open Sigma -- projected bound var fail : (A : Set) (B : A -> Set) -> let X : A -> Sigma A B X = _ in (z : Sigma A B) -> X (fst z) ≡ z fail A B z = refl
{ "alphanum_fraction": 0.5597484277, "avg_line_length": 16.7368421053, "ext": "agda", "hexsha": "a9525b76e54ed104829ca1aa7c14452633011824", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue376Fail.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue376Fail.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue376Fail.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 318 }
------------------------------------------------------------------------ -- Another definition of indexed containers ------------------------------------------------------------------------ -- Partly based on "Indexed containers" by Altenkirch, Ghani, Hancock, -- McBride and Morris, and partly based on "Non-wellfounded trees in -- Homotopy Type Theory" by Ahrens, Capriotti and Spadotti. {-# OPTIONS --without-K --safe #-} open import Equality module Container.Indexed.Variant {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude import Bijection eq as B open import Container.Indexed eq as C using (_⇾_; id⇾; _∘⇾_; Shape; Position; index) open import Equivalence eq as Eq using (_≃_) open import Function-universe eq as F hiding (id; _∘_) open import H-level.Closure eq open import Tactic.Sigma-cong eq open import Univalence-axiom eq private variable a ℓ p p₁ p₂ p′ q : Level A I O : Type a P Q R : A → Type p ext f i k o s : A ------------------------------------------------------------------------ -- Containers -- Doubly indexed containers. record Container₂ (I : Type i) (O : Type o) s p : Type (i ⊔ o ⊔ lsuc (s ⊔ p)) where constructor _◁_ field Shape : O → Type s Position : ∀ {o} → Shape o → I → Type p open Container₂ public -- Singly indexed containers. Container : Type i → ∀ s p → Type (i ⊔ lsuc (s ⊔ p)) Container I = Container₂ I I private variable C : Container₂ I O s p -- Container₂ can be expressed as a Σ-type. Container≃Σ : Container₂ I O s p ≃ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type p) Container≃Σ = Eq.↔→≃ (λ (S ◁ P) → S , P) (uncurry _◁_) refl refl ------------------------------------------------------------------------ -- Polynomial functors -- The polynomial functor associated to a container. ⟦_⟧ : {I : Type i} {O : Type o} → Container₂ I O s p → (I → Type ℓ) → O → Type (ℓ ⊔ i ⊔ s ⊔ p) ⟦ S ◁ P ⟧ Q o = ∃ λ (s : S o) → P s ⇾ Q -- A map function. map : (C : Container₂ I O s p) → P ⇾ Q → ⟦ C ⟧ P ⇾ ⟦ C ⟧ Q map C f _ (s , g) = s , f ∘⇾ g -- Functor laws. map-id : map C (id⇾ {P = P}) ≡ id⇾ map-id = refl _ map-∘ : (f : Q ⇾ R) (g : P ⇾ Q) → map C (f ∘⇾ g) ≡ map C f ∘⇾ map C g map-∘ _ _ = refl _ -- A preservation lemma. ⟦⟧-cong : {I : Type i} {P₁ : I → Type p₁} {P₂ : I → Type p₂} → Extensionality? k (i ⊔ p) (p ⊔ p₁ ⊔ p₂) → (C : Container₂ I O s p) → (∀ i → P₁ i ↝[ k ] P₂ i) → (∀ o → ⟦ C ⟧ P₁ o ↝[ k ] ⟦ C ⟧ P₂ o) ⟦⟧-cong {i = i} {k = k} {p = p} {P₁ = Q₁} {P₂ = Q₂} ext (S ◁ P) Q₁↝Q₂ o = (∃ λ (s : S o) → P s ⇾ Q₁) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality? k p lzero ext) λ _ → ∀-cong (lower-extensionality? k i p ext) λ _ → Q₁↝Q₂ _) ⟩□ (∃ λ (s : S o) → P s ⇾ Q₂) □ -- The forward direction of ⟦⟧-cong is an instance of map (at least -- when k is equivalence). _ : _≃_.to (⟦⟧-cong ext C f o) ≡ map C (_≃_.to ∘ f) o _ = refl _ -- The shapes of a container are pointwise equivalent to the -- polynomial functor of the container applied to the constant -- function yielding the unit type. -- -- (This lemma was suggested to me by an anonymous reviewer of a -- paper.) Shape≃⟦⟧⊤ : (C : Container₂ I O s p) → Shape C o ≃ ⟦ C ⟧ (λ _ → ⊤) o Shape≃⟦⟧⊤ {o = o} (S ◁ P) = S o ↔⟨ inverse $ drop-⊤-right (λ _ → →-right-zero F.∘ inverse currying) ⟩□ (∃ λ (s : S o) → ∀ i → P s i → ⊤) □ ------------------------------------------------------------------------ -- Coalgebras -- The type of coalgebras for a (singly indexed) container. Coalgebra : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Coalgebra {i = i} {s = s} {p = p} {I = I} C = ∃ λ (P : I → Type (i ⊔ s ⊔ p)) → P ⇾ ⟦ C ⟧ P -- Coalgebra morphisms. infix 4 _⇨_ _⇨_ : {I : Type i} {C : Container I s p} → Coalgebra C → Coalgebra C → Type (i ⊔ s ⊔ p) (P , f) ⇨ (Q , g) = ∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f private variable X Y Z : Coalgebra C -- An identity morphism. id⇨ : X ⇨ X id⇨ = id⇾ , refl _ -- Composition for _⇨_. infix 9 [_]_∘⇨_ [_]_∘⇨_ : ∀ Z → Y ⇨ Z → X ⇨ Y → X ⇨ Z [_]_∘⇨_ {Y = _ , g} {X = _ , f} (_ , h) (f₁ , eq₁) (f₂ , eq₂) = f₁ ∘⇾ f₂ , (h ∘⇾ (f₁ ∘⇾ f₂) ≡⟨⟩ (h ∘⇾ f₁) ∘⇾ f₂ ≡⟨ cong (_∘⇾ f₂) eq₁ ⟩ (map _ f₁ ∘⇾ g) ∘⇾ f₂ ≡⟨⟩ map _ f₁ ∘⇾ (g ∘⇾ f₂) ≡⟨ cong (map _ f₁ ∘⇾_) eq₂ ⟩ map _ f₁ ∘⇾ (map _ f₂ ∘⇾ f) ≡⟨⟩ map _ (f₁ ∘⇾ f₂) ∘⇾ f ∎) -- The property of being a final coalgebra. Final : {I : Type i} {C : Container I s p} → Coalgebra C → Type (lsuc (i ⊔ s ⊔ p)) Final X = ∀ Y → Contractible (Y ⇨ X) -- A perhaps more traditional definition of what it means to be final. Final′ : {I : Type i} {C : Container I s p} → Coalgebra C → Type (lsuc (i ⊔ s ⊔ p)) Final′ X = ∀ Y → ∃ λ (m : Y ⇨ X) → (m′ : Y ⇨ X) → proj₁ m ≡ proj₁ m′ -- Final X implies Final′ X. Final→Final′ : (X : Coalgebra C) → Final X → Final′ X Final→Final′ _ = ∀-cong _ λ _ → ∃-cong λ _ → ∀-cong _ λ _ → cong proj₁ -- Final is pointwise propositional (assumption extensionality). Final-propositional : {I : Type i} {C : Container I s p} → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (X : Coalgebra C) → Is-proposition (Final X) Final-propositional ext _ = Π-closure ext 1 λ _ → Contractible-propositional (lower-extensionality _ lzero ext) -- Final coalgebras. Final-coalgebra : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Final-coalgebra C = ∃ λ (X : Coalgebra C) → Final X -- Final coalgebras, defined using Final′. Final-coalgebra′ : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Final-coalgebra′ C = ∃ λ (X : Coalgebra C) → Final′ X -- Final-coalgebra C implies Final-coalgebra′ C. Final-coalgebra→Final-coalgebra′ : Final-coalgebra C → Final-coalgebra′ C Final-coalgebra→Final-coalgebra′ = ∃-cong Final→Final′ -- Carriers of final coalgebras (defined using Final′) for a given -- container are pointwise equivalent. carriers-of-final-coalgebras-equivalent′ : (((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra′ C) → ∀ i → P₁ i ≃ P₂ i carriers-of-final-coalgebras-equivalent′ (X₁ , final₁) (X₂ , final₂) i = Eq.↔→≃ (proj₁ to i) (proj₁ from i) to∘from from∘to where to : X₁ ⇨ X₂ to = proj₁ (final₂ X₁) from : X₂ ⇨ X₁ from = proj₁ (final₁ X₂) to∘from : ∀ x → proj₁ ([ X₂ ] to ∘⇨ from) i x ≡ x to∘from x = proj₁ ([ X₂ ] to ∘⇨ from) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₂ X₂) $ [ X₂ ] to ∘⇨ from ⟩ proj₁ (proj₁ (final₂ X₂)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₂ X₂) id⇨ ⟩ proj₁ (id⇨ {X = X₂}) i x ≡⟨⟩ x ∎ from∘to : ∀ x → proj₁ ([ X₁ ] from ∘⇨ to) i x ≡ x from∘to x = proj₁ ([ X₁ ] from ∘⇨ to) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₁ X₁) $ [ X₁ ] from ∘⇨ to ⟩ proj₁ (proj₁ (final₁ X₁)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₁ X₁) id⇨ ⟩ proj₁ (id⇨ {X = X₁}) i x ≡⟨⟩ x ∎ -- The previous lemma relates the "out" functions of the two final -- coalgebras in a certain way. out-related′ : {C : Container I s p} (F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra′ C) → map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂) ∘⇾ out₁ ≡ out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂) out-related′ (X₁ , _) (_ , final₂) = sym $ proj₂ (proj₁ (final₂ X₁)) -- Carriers of final coalgebras for a given container are pointwise -- equivalent. carriers-of-final-coalgebras-equivalent : (((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra C) → ∀ i → P₁ i ≃ P₂ i carriers-of-final-coalgebras-equivalent = carriers-of-final-coalgebras-equivalent′ on Final-coalgebra→Final-coalgebra′ -- The previous lemma relates the "out" functions of the two final -- coalgebras in a certain way. out-related : {C : Container I s p} (F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra C) → map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂) ∘⇾ out₁ ≡ out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂) out-related = out-related′ on Final-coalgebra→Final-coalgebra′ -- If X and Y are final coalgebras (with finality defined using -- Final′), then—assuming extensionality—finality of X (defined using -- Final) is equivalent to finality of Y. Final′→Final≃Final : {I : Type i} {C : Container I s p} ((X , _) (Y , _) : Final-coalgebra′ C) → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → Final X ↝[ lsuc (i ⊔ s ⊔ p) ∣ i ⊔ s ⊔ p ] Final Y Final′→Final≃Final {i = i} {s = s} {p = p} {C = C} ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ext {k = k} ext′ = ∀-cong ext′ λ Y@(_ , f) → H-level-cong (lower-extensionality? k _ lzero ext′) 0 (Σ-cong (lemma₂ Y) λ g → out₁ ∘⇾ g ≡ map C g ∘⇾ f ↝⟨ inverse $ Eq.≃-≡ (lemma₃ Y) ⟩ _≃_.to (lemma₃ Y) (out₁ ∘⇾ g) ≡ _≃_.to (lemma₃ Y) (map C g ∘⇾ f) ↔⟨⟩ map C (_≃_.to ∘ lemma₁) ∘⇾ out₁ ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↝⟨ ≡⇒↝ _ $ cong (λ h → h ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f) $ out-related′ ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ⟩ out₂ ∘⇾ (_≃_.to ∘ lemma₁) ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↔⟨⟩ out₂ ∘⇾ _≃_.to (lemma₂ Y) g ≡ map C (_≃_.to (lemma₂ Y) g) ∘⇾ f □) where ext₁ = lower-extensionality (s ⊔ p) lzero ext ext₂ = lower-extensionality (i ⊔ s) lzero ext lemma₁ : ∀ i → X₁ i ≃ X₂ i lemma₁ = carriers-of-final-coalgebras-equivalent′ ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) lemma₂ : ((Y , _) : Coalgebra C) → (Y ⇾ X₁) ≃ (Y ⇾ X₂) lemma₂ _ = ∀-cong ext₁ λ _ → ∀-cong ext λ _ → lemma₁ _ lemma₃ : ((Y , _) : Coalgebra C) → (Y ⇾ ⟦ C ⟧ X₁) ≃ (Y ⇾ ⟦ C ⟧ X₂) lemma₃ _ = ∀-cong ext₁ λ _ → ∀-cong ext λ _ → ⟦⟧-cong ext₂ C lemma₁ _ -- If there is a final C-coalgebra, and we have Final′ X for some -- C-coalgebra X, then we also have Final X (assuming extensionality). Final′→Final : {I : Type i} {C : Container I s p} → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → Final-coalgebra C → ((X , _) : Final-coalgebra′ C) → Final X Final′→Final ext F₁@(_ , final₁) F₂ = Final′→Final≃Final (Final-coalgebra→Final-coalgebra′ F₁) F₂ ext _ final₁ -- Final-coalgebra is pointwise propositional, assuming extensionality -- and univalence. -- -- This is a variant of Lemma 5 from "Non-wellfounded trees in -- Homotopy Type Theory". Final-coalgebra-propositional : {I : Type i} {C : Container I s p} → Extensionality (lsuc (i ⊔ s ⊔ p)) (lsuc (i ⊔ s ⊔ p)) → Univalence (i ⊔ s ⊔ p) → Is-proposition (Final-coalgebra C) Final-coalgebra-propositional {I = I} {C = C@(S ◁ P)} ext univ F₁@((P₁ , out₁) , _) F₂@(X₂@(P₂ , out₂) , _) = block λ b → Σ-≡,≡→≡ (Σ-≡,≡→≡ (lemma₁ b) (lemma₂ b)) (Final-propositional (lower-extensionality lzero _ ext) X₂ _ _) where ext₁′ = lower-extensionality _ lzero ext ext₁ = Eq.good-ext ext₁′ lemma₀ : Block "lemma₀" → ∀ i → P₁ i ≃ P₂ i lemma₀ ⊠ = carriers-of-final-coalgebras-equivalent F₁ F₂ lemma₀-lemma : ∀ b x → map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡ out₂ i x lemma₀-lemma {i = i} ⊠ x = map C (_≃_.to ∘ lemma₀ ⊠) i (out₁ i (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (λ f → f _ (_≃_.from (lemma₀ ⊠ i) x)) $ out-related F₁ F₂ ⟩ out₂ i (_≃_.to (lemma₀ ⊠ i) (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (out₂ _) $ _≃_.right-inverse-of (lemma₀ ⊠ i) _ ⟩∎ out₂ i x ∎ lemma₁ : Block "lemma₀" → P₁ ≡ P₂ lemma₁ b = apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i) lemma₁-lemma₁ = λ b i → sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _) ≡⟨ cong sym Σ-≡,≡→≡-subst-const-refl ⟩ sym $ cong₂ _,_ (sym (lemma₁ b)) (refl _) ≡⟨ sym cong₂-sym ⟩ cong₂ _,_ (sym (sym (lemma₁ b))) (sym (refl _)) ≡⟨ cong₂ (cong₂ _) (sym-sym _) sym-refl ⟩ cong₂ _,_ (lemma₁ b) (refl i) ≡⟨ cong₂-reflʳ _ ⟩∎ cong (_, i) (lemma₁ b) ∎ lemma₁-lemma₂ = λ b i x → subst (_$ i) (sym (lemma₁ b)) x ≡⟨⟩ subst (_$ i) (sym (apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (flip (subst (_$ i)) _) $ sym $ Eq.good-ext-sym ext₁′ _ ⟩ subst (_$ i) (apply-ext ext₁ λ i → sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩ subst id (sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ subst-id-in-terms-of-inverse∘≡⇒↝ equivalence ⟩ _≃_.from (≡⇒≃ (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (λ eq → _≃_.from eq _) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎ _≃_.from (lemma₀ b i) x ∎ lemma₁-lemma₃ : ∀ b (f : P s ⇾ P₁) i p → _ ≡ _ lemma₁-lemma₃ b f i p = subst (_$ i) (lemma₁ b) (f i p) ≡⟨⟩ subst (_$ i) (apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩ subst id (≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩ ≡⇒→ (≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ cong (λ eq → _≃_.to eq _) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎ _≃_.to (lemma₀ b i) (f i p) ∎ lemma₂ = λ b → apply-ext (lower-extensionality _ _ ext) λ i → apply-ext (lower-extensionality _ _ ext) λ x → subst (λ P → P ⇾ ⟦ C ⟧ P) (lemma₁ b) out₁ i x ≡⟨⟩ subst (λ P → ∀ i → P i → ⟦ C ⟧ P i) (lemma₁ b) out₁ i x ≡⟨ cong (_$ x) subst-∀ ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _)) (out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡⟨ elim¹ (λ {i′} eq → subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _)) (out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) eq) (out₁ i′) x) (refl _) _ ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _)) (out₁ i) x ≡⟨ cong (λ eq → subst (uncurry λ P i → P i → ⟦ C ⟧ P i) eq _ _) $ lemma₁-lemma₁ b i ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (cong (_, _) (lemma₁ b)) (out₁ i) x ≡⟨ cong (_$ x) $ sym $ subst-∘ _ _ _ ⟩ subst (λ P → P i → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i) x ≡⟨ subst-→ ⟩ subst (λ P → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i (subst (_$ i) (sym (lemma₁ b)) x)) ≡⟨ cong (subst (λ P → ⟦ C ⟧ P i) _) $ cong (out₁ _) $ lemma₁-lemma₂ b i x ⟩ subst (λ P → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨⟩ subst (λ Q → ∃ λ (s : S i) → P s ⇾ Q) (lemma₁ b) (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ push-subst-pair-× _ _ ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , subst (λ Q → P s ⇾ Q) (lemma₁ b) f) ≡⟨ (let s , _ = out₁ i (_≃_.from (lemma₀ b i) x) in cong (s ,_) $ apply-ext (lower-extensionality _ _ ext) λ _ → sym $ push-subst-application _ _) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i → subst (λ Q → P s i → Q i) (lemma₁ b) (f i)) ≡⟨ (let s , _ = out₁ i (_≃_.from (lemma₀ b i) x) in cong (s ,_) $ apply-ext (lower-extensionality _ _ ext) λ _ → apply-ext (lower-extensionality _ _ ext) λ _ → sym $ push-subst-application _ _) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i p → subst (_$ i) (lemma₁ b) (f i p)) ≡⟨ (let _ , f = out₁ i (_≃_.from (lemma₀ b i) x) in cong (_ ,_) $ apply-ext (lower-extensionality _ _ ext) λ i → apply-ext (lower-extensionality _ _ ext) $ lemma₁-lemma₃ b f i) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i p → _≃_.to (lemma₀ b i) (f i p)) ≡⟨⟩ map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ lemma₀-lemma b x ⟩∎ out₂ i x ∎ ------------------------------------------------------------------------ -- Conversion lemmas -- A conversion lemma for Container. Note that the last index is not -- unrestricted. Container⇔Container : ∀ {I : Type i} {O : Type o} p → Container₂ I O s (i ⊔ p) ⇔ C.Container₂ I O s (i ⊔ p) Container⇔Container {i = iℓ} {s = s} {I = I} {O = O} p = Container₂ I O s (iℓ ⊔ p) ↔⟨ Container≃Σ ⟩ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type (iℓ ⊔ p)) ↔⟨ (∃-cong λ _ → B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → I → Type (iℓ ⊔ p)) ↝⟨ (∃-cong λ _ → ∀-cong _ λ _ → ∀-cong _ λ _ → Pow⇔Fam p) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → ∃ λ (P : Type (iℓ ⊔ p)) → P → I) ↝⟨ (∃-cong λ _ → from-bijection ΠΣ-comm F.∘ ∀-cong _ λ _ → from-bijection ΠΣ-comm) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ o → S o → Type (iℓ ⊔ p)) → ∀ o (s : S o) → P o s → I) ↝⟨ (∃-cong λ _ → inverse $ Σ-cong-refl {k₂ = logical-equivalence} B.implicit-Π↔Π λ _ → (∀-cong _ λ _ → from-bijection B.implicit-Π↔Π) F.∘ from-bijection B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ {o} → S o → Type (iℓ ⊔ p)) → ∀ {o} {s : S o} → P s → I) ↔⟨ inverse C.Container≃Σ ⟩□ C.Container₂ I O s (iℓ ⊔ p) □ -- Another conversion lemma for Container. Container≃Container : ∀ {I : Type i} {O : Type o} p → Extensionality (i ⊔ o ⊔ s) (lsuc i ⊔ s ⊔ lsuc p) → Univalence (i ⊔ p) → Container₂ I O s (i ⊔ p) ≃ C.Container₂ I O s (i ⊔ p) Container≃Container {i = i} {o = o} {s = s} {I = I} {O = O} p ext univ = Container₂ I O s (i ⊔ p) ↝⟨ Container≃Σ ⟩ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type (i ⊔ p)) ↔⟨ (∃-cong λ _ → B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → I → Type (i ⊔ p)) ↔⟨ (∃-cong λ _ → ∀-cong (lower-extensionality l r ext) λ _ → ∀-cong (lower-extensionality l r ext) λ _ → Pow↔Fam p (lower-extensionality l r ext) univ) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → ∃ λ (P : Type (i ⊔ p)) → P → I) ↔⟨ (∃-cong λ _ → ΠΣ-comm F.∘ ∀-cong (lower-extensionality l r ext) λ _ → ΠΣ-comm) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ o → S o → Type (i ⊔ p)) → ∀ o (s : S o) → P o s → I) ↝⟨ (∃-cong λ _ → inverse $ Σ-cong-refl {k₂ = logical-equivalence} B.implicit-Π↔Π λ _ → (∀-cong _ λ _ → from-bijection B.implicit-Π↔Π) F.∘ from-bijection B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ {o} → S o → Type (i ⊔ p)) → ∀ {o} {s : S o} → P s → I) ↝⟨ inverse C.Container≃Σ ⟩□ C.Container₂ I O s (i ⊔ p) □ where l = i ⊔ o ⊔ s r = lsuc i ⊔ s ⊔ lsuc p -- The two conversion lemmas for Container are related. _ : {I : Type i} {univ : Univalence (i ⊔ p)} → _≃_.logical-equivalence (Container≃Container {I = I} {O = O} p ext univ) ≡ Container⇔Container p _ = refl _ -- A conversion lemma for ⟦_⟧. ⟦⟧≃⟦⟧ : ∀ p → {I : Type i} (C : Container₂ I O s (i ⊔ p)) {P : I → Type ℓ} → ∀ o → C.⟦ _⇔_.to (Container⇔Container p) C ⟧ P o ≃ ⟦ C ⟧ P o ⟦⟧≃⟦⟧ _ {I = I} C {P = P} o = (∃ λ (s : Shape C o) → ((i , _) : Σ I (Position C s)) → P i) ↔⟨ (∃-cong λ _ → currying) ⟩□ (∃ λ (s : Shape C o) → (i : I) → Position C s i → P i) □ -- Another conversion lemma for ⟦_⟧. ⟦⟧≃⟦⟧′ : ∀ p → {I : Type i} (C : C.Container₂ I O s (i ⊔ p)) {P : I → Type ℓ} → ∀ o → ⟦ _⇔_.from (Container⇔Container p) C ⟧ P o ↝[ i ⊔ p ∣ i ⊔ p ⊔ ℓ ] C.⟦ C ⟧ P o ⟦⟧≃⟦⟧′ {i = i} {ℓ = ℓ} p {I = I} C {P = P} _ {k = k} ext = ∃-cong λ s → ((i : I) → (∃ λ (p : C .Position s) → C .index p ≡ i) → P i) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → from-bijection currying) ⟩ ((i : I) (p : C .Position s) → C .index p ≡ i → P i) ↔⟨ Π-comm ⟩ ((p : C .Position s) (i : I) → C .index p ≡ i → P i) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → ∀-cong (lower-extensionality? k l r ext) λ _ → ∀-cong (lower-extensionality? k l r ext) λ eq → ≡⇒↝ _ $ cong P (sym eq)) ⟩ ((p : C .Position s) (i : I) → C .index p ≡ i → P (C .index p)) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → from-bijection $ inverse currying) ⟩ ((p : C .Position s) → (∃ λ (i : I) → C .index p ≡ i) → P (C .index p)) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → drop-⊤-left-Π (lower-extensionality? k l r ext) $ _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩□ ((p : C .Position s) → P (C .index p)) □ where l = i ⊔ p r = i ⊔ p ⊔ ℓ -- The map functions commute with ⟦⟧≃⟦⟧ (in a certain sense). _ : map C f ∘⇾ (_≃_.to ∘ ⟦⟧≃⟦⟧ p C) ≡ (_≃_.to ∘ ⟦⟧≃⟦⟧ p C) ∘⇾ C.map (_⇔_.to (Container⇔Container p) C) f _ = refl _ -- The map functions commute with ⟦⟧≃⟦⟧′ (in a certain sense, assuming -- extensionality). map≡map′ : {I : Type i} {O : Type o} {P : I → Type p} {Q : I → Type q} → ∀ p′ → Extensionality (i ⊔ o ⊔ p ⊔ s ⊔ p′) (i ⊔ p ⊔ q ⊔ s ⊔ p′) → (C : C.Container₂ I O s (i ⊔ p′)) {f : P ⇾ Q} → C.map C f ∘⇾ (λ o → ⟦⟧≃⟦⟧′ p′ C o _) ≡ (λ o → ⟦⟧≃⟦⟧′ p′ C o _) ∘⇾ map (_⇔_.from (Container⇔Container p′) C) f map≡map′ {i = i} {o = o} {p = p} {q = q} {s = s} {P = P} {Q = Q} p′ ext C {f = f} = apply-ext (lower-extensionality l r ext) λ _ → apply-ext (lower-extensionality l r ext) λ (_ , g) → cong (_ ,_) $ apply-ext (lower-extensionality l r ext) λ p → let i = C .index p in f i (≡⇒↝ _ (cong P (sym (refl _))) (g i (p , refl _))) ≡⟨ cong (λ eq → f i (≡⇒↝ _ eq (g i (p , refl _)))) $ trans (cong (cong P) sym-refl) $ cong-refl _ ⟩ f i (≡⇒↝ _ (refl _) (g i (p , refl _))) ≡⟨ cong (f i) $ cong (_$ g i (p , refl _)) ≡⇒↝-refl ⟩ f i (g i (p , refl _)) ≡⟨ cong (_$ f i (g i (p , refl _))) $ sym ≡⇒↝-refl ⟩ ≡⇒↝ _ (refl _) (f i (g i (p , refl _))) ≡⟨ cong (λ eq → ≡⇒↝ _ eq (f i (g i (p , refl _)))) $ sym $ trans (cong (cong Q) sym-refl) $ cong-refl _ ⟩∎ ≡⇒↝ _ (cong Q (sym (refl _))) (f i (g i (p , refl _))) ∎ where l = i ⊔ o ⊔ p ⊔ s ⊔ p′ r = i ⊔ p ⊔ q ⊔ s ⊔ p′ -- A conversion lemma for Coalgebra. Coalgebra≃Coalgebra : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Coalgebra C ↝[ i ⊔ s ⊔ p ∣ i ⊔ s ⊔ p ] C.Coalgebra (_⇔_.to (Container⇔Container p) C) Coalgebra≃Coalgebra {s = s} p C {k = k} ext = (∃ λ P → P ⇾ ⟦ C ⟧ P) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality? k (s ⊔ p) lzero ext) λ _ → ∀-cong ext λ _ → from-equivalence $ inverse $ ⟦⟧≃⟦⟧ p C _) ⟩□ (∃ λ P → P ⇾ C.⟦ _⇔_.to (Container⇔Container p) C ⟧ P) □ -- A conversion lemma for _⇨_. ⇨≃⇨ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → (X Y : Coalgebra C) → (X ⇨ Y) ≃ (Coalgebra≃Coalgebra p C _ X C.⇨ Coalgebra≃Coalgebra p C _ Y) ⇨≃⇨ {s = s} p C ext (P , f) (Q , g) = (∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f) ↝⟨ (∃-cong λ h → inverse $ Eq.≃-≡ $ ∀-cong (lower-extensionality (s ⊔ p) lzero ext) λ _ → ∀-cong ext λ _ → inverse $ ⟦⟧≃⟦⟧ p C _) ⟩□ (∃ λ (h : P ⇾ Q) → ((Σ-map id uncurry ∘_) ∘ g) ∘⇾ h ≡ C.map _ h ∘⇾ ((Σ-map id uncurry ∘_) ∘ f)) □ -- A conversion lemma for Final. Final≃Final : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (ext : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) (X : Coalgebra C) → Final X ≃ C.Final (_≃_.to (Coalgebra≃Coalgebra p C ext) X) Final≃Final p C ext′ ext X = (∀ Y → Contractible (Y ⇨ X)) ↝⟨ (Π-cong ext′ (Coalgebra≃Coalgebra p C {k = equivalence} ext) λ Y → H-level-cong ext 0 $ ⇨≃⇨ p C ext Y X) ⟩□ (∀ Y → Contractible (Y C.⇨ Coalgebra≃Coalgebra p C _ X)) □ -- A conversion lemma for Final′. Final′≃Final′ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (ext : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) (X : Coalgebra C) → Final′ X ≃ C.Final′ (_≃_.to (Coalgebra≃Coalgebra p C ext) X) Final′≃Final′ p C ext′ ext X = (∀ Y → ∃ λ (m : Y ⇨ X ) → (m′ : Y ⇨ X ) → proj₁ m ≡ proj₁ m′) ↝⟨ (Π-cong ext′ (Coalgebra≃Coalgebra p C {k = equivalence} ext) λ Y → Σ-cong (⇨≃⇨ p C ext Y X) λ _ → Π-cong ext (⇨≃⇨ p C ext Y X) λ _ → F.id) ⟩□ (∀ Y → ∃ λ (m : Y C.⇨ X′) → (m′ : Y C.⇨ X′) → proj₁ m ≡ proj₁ m′) □ where X′ = _≃_.to (Coalgebra≃Coalgebra p C ext) X -- A conversion lemma for Final-coalgebra. Final-coalgebra≃Final-coalgebra : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → Final-coalgebra C ≃ C.Final-coalgebra (_⇔_.to (Container⇔Container p) C) Final-coalgebra≃Final-coalgebra p C ext = (∃ λ (X : Coalgebra C ) → Final X) ↝⟨ Σ-cong {k₁ = equivalence} (Coalgebra≃Coalgebra p C ext′) (Final≃Final p C ext ext′) ⟩□ (∃ λ (X : C.Coalgebra C′) → C.Final X) □ where C′ = _⇔_.to (Container⇔Container p) C ext′ = lower-extensionality _ lzero ext -- A conversion lemma for Final-coalgebra′. Final-coalgebra′≃Final-coalgebra′ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → Final-coalgebra′ C ≃ C.Final-coalgebra′ (_⇔_.to (Container⇔Container p) C) Final-coalgebra′≃Final-coalgebra′ p C ext = (∃ λ (X : Coalgebra C ) → Final′ X) ↝⟨ Σ-cong {k₁ = equivalence} (Coalgebra≃Coalgebra p C ext′) (Final′≃Final′ p C ext ext′) ⟩□ (∃ λ (X : C.Coalgebra C′) → C.Final′ X) □ where C′ = _⇔_.to (Container⇔Container p) C ext′ = lower-extensionality _ lzero ext
{ "alphanum_fraction": 0.4224859422, "avg_line_length": 41.3351351351, "ext": "agda", "hexsha": "22e8a27442c92ee48072d4de492520c077fe99e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/Indexed/Variant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/Indexed/Variant.agda", "max_line_length": 138, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/Indexed/Variant.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 11308, "size": 30588 }
import Lvl -- TODO: Just testing how it goes with creating an axiomatic system module Geometry.Test (Point : Set(Lvl.𝟎)) where open import Functional open import Logic.Propositional{Lvl.𝟎} open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎} -- open import Structure.Setoid.Uniqueness{Lvl.𝟎}{Lvl.𝟎}{Lvl.𝟎} hiding (Theorems) open import Structure.Relator.Equivalence{Lvl.𝟎}{Lvl.𝟎} open import Structure.Relator.Ordering{Lvl.𝟎}{Lvl.𝟎} -- open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎} hiding (Theorems) -- A line of infinite length record Line : Set(Lvl.𝟎) where constructor line field a : Point b : Point -- A line segment of finite length record LineSegment : Set(Lvl.𝟎) where constructor lineSegment field a : Point b : Point -- A circle record Circle : Set(Lvl.𝟎) where constructor circle field middle : Point outer : Point record Theory : Set(Lvl.𝐒(Lvl.𝟎)) where -- Symbols field PointOnLine : Point → Line → Set(Lvl.𝟎) -- The point lies on the line PointOnLineSegment : Point → LineSegment → Set(Lvl.𝟎) -- The point lies on the line segment PointOnCircle : Point → Circle → Set(Lvl.𝟎) -- The point lies on the circle _≾_ : LineSegment → LineSegment → Set(Lvl.𝟎) -- Comparison of line length _≿_ : LineSegment → LineSegment → Set(Lvl.𝟎) -- Comparison of line length _≿_ l₁ l₂ = l₂ ≾ l₁ _≋_ : LineSegment → LineSegment → Set(Lvl.𝟎) -- Equality of line length _≋_ l₁ l₂ = (l₁ ≾ l₂) ∧ (l₁ ≿ l₂) -- Axioms field [≾]-weak-total-order : Weak.TotalOrder(_≾_)(_≋_) -- (_≾_) is a weak total order point-on-line-existence : ∀{l : Line} → ∃(p ↦ PointOnLine(p)(l)) -- There is a point on a line point1-on-line : ∀{l : Line} → PointOnLine(Line.a(l))(l) point2-on-line : ∀{l : Line} → PointOnLine(Line.b(l))(l) point-on-lineSegment-existence : ∀{l : LineSegment} → ∃(p ↦ PointOnLineSegment(p)(l)) -- There is a point on a line endpoint1-on-lineSegment : ∀{l : LineSegment} → PointOnLineSegment(Line.a(l))(l) endpoint2-on-lineSegment : ∀{l : LineSegment} → PointOnLineSegment(Line.b(l))(l) point-on-circle-existence : ∀{c : Circle} → ∃(p ↦ PointOnCircle(p)(c)) -- There is a point on a circle outer-on-circle : ∀{c : Circle} → PointOnCircle(Circle.outer(c))(c) single-point-circle : ∀{p : Point}{x : Point} → PointOnCircle(x) (circle(p)(p)) → (x ≡ p) -- There is only a simgle point on a circle of zero radius line-equality : ∀{l : Line}{a : Point}{b : Point} → PointOnLine(a)(l) → PointOnLine(b)(l) → (l ≡ line(a)(b)) -- A line is non-directional circle-equality : ∀{c : Circle}{o : Point} → PointOnCircle(o)(c) → (c ≡ circle(Circle.middle(c))(o)) lineSegment-equality : ∀{a : Point}{b : Point} → (lineSegment(a)(b) ≡ lineSegment(b)(a)) -- A line segment is non-directional -- line-intersection : ∀{l₁ : Line}{l₂ : Line} → ∃!(p ↦ PointOnLine(p)(l₁) ∧ PointOnLine(p)(l₂)) circle-intersection : ∀{a : Point}{b : Point} → ∃(i ↦ PointOnCircle(i)(circle(a)(b)) ∧ PointOnCircle(i)(circle(b)(a))) ∧ ∃(i ↦ PointOnCircle(i)(circle(a)(b)) ∧ PointOnCircle(i)(circle(b)(a))) module Theorems ⦃ _ : Theory ⦄ where open Theory ⦃ ... ⦄ -- middlepoint : Line → Point -- middlepoint(line(a)(b)) =
{ "alphanum_fraction": 0.6548971446, "avg_line_length": 41.7564102564, "ext": "agda", "hexsha": "e9a148383668fee882e6d2277fa04ef5ceb321e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Geometry/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Geometry/Test.agda", "max_line_length": 195, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Geometry/Test.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1145, "size": 3257 }
module Oscar.Data.Permutation where --open import Data.Permutation public import Data.Permutation as P open import Data.Permutation renaming (delete to deleteP; _∘_ to _∘P_; enum to allInj) open import Oscar.Data.Vec renaming (delete to deleteV; map to mapV) open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Fin renaming (inject to injectF) open ≡-Reasoning open import Data.Permutation.Properties open import Oscar.Data.Vec.Properties open import Function open import Data.Sum open import Agda.Builtin.Nat <>-inv : ∀ {n} (ps : Permutation n) i → i ≡ < ps > (< ps ⁻¹ > i) <>-inv ps i = trans (sym (id-is-id i)) (subst (< P.id > _ ≡_) (inj-correct (ps ⁻¹) ps i) (cong (flip <_> _) (sym (inv-left ps)))) _⋟_÷_ : ∀ {a m n} {A : Set a} → Vec A n → Vec A m → Inj m n → Set a x ⋟ px ÷ p = ∀ i → lookup i px ≡ lookup (< p > i) x lookup-ext : ∀ {a n} {A : Set a} {pv₁ pv₂ : Vec A n} → (∀ i → lookup i pv₁ ≡ lookup i pv₂) → pv₁ ≡ pv₂ lookup-ext {pv₁ = []} {[]} x = refl lookup-ext {pv₁ = x₁ ∷ pv₁} {x₂ ∷ pv₂} x with lookup-ext {pv₁ = pv₁} {pv₂} (x ∘ suc) | x zero … | refl | refl = refl injected-inj : ∀ {a n m} {A : Set a} {v : Vec A m} {pv₁ pv₂ : Vec A n} {p : Inj n m} → v ⋟ pv₁ ÷ p → v ⋟ pv₂ ÷ p → pv₁ ≡ pv₂ injected-inj {pv₁ = pv₁} {pv₂} v⋟pv₁÷p v⋟pv₂÷p = lookup-ext foo where foo : (i : Fin _) → lookup i pv₁ ≡ lookup i pv₂ foo i = trans (v⋟pv₁÷p i) (sym (v⋟pv₂÷p i)) permuted-inj : ∀ {a n} {A : Set a} {v : Vec A n} {pv₁ pv₂ : Vec A n} {p : Permutation n} → v ⋟ pv₁ ÷ p → v ⋟ pv₂ ÷ p → pv₁ ≡ pv₂ permuted-inj {pv₁ = pv₁} {pv₂} v⋟pv₁÷p v⋟pv₂÷p = lookup-ext foo where foo : (i : Fin _) → lookup i pv₁ ≡ lookup i pv₂ foo i = trans (v⋟pv₁÷p i) (sym (v⋟pv₂÷p i)) permutedLookup : ∀ {a n} {A : Set a} → Permutation n → Vec A n → Fin n → A permutedLookup p v = flip lookup v ∘ < p > inject : ∀ {a n m} {A : Set a} → (p : Inj n m) → (v : Vec A m) → Vec A n inject p v = tabulate (flip lookup v ∘ < p >) permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → Vec A n permute p v = tabulate (flip lookup v ∘ < p >) inject-correct : ∀ {a n m} {A : Set a} → (p : Inj n m) → (v : Vec A m) → v ⋟ inject p v ÷ p inject-correct p v = lookup∘tabulate (flip lookup v ∘ < p >) permute-correct : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → v ⋟ permute p v ÷ p permute-correct p v = lookup∘tabulate (flip lookup v ∘ < p >) Permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → ∃ (v ⋟_÷ p) Permute p v = permute p v , permute-correct p v _⋟_÷? : ∀ {a m n} {A : Set a} → Vec A n → Vec A m → Set a _⋟_÷? x px = ∃ (x ⋟ px ÷_) ∈-allInj : ∀ {n m} (i : Inj n m) → i ∈ allInj n m ∈-allInj {zero} [] = here ∈-allInj {suc n} (i ∷ is) = ∈-map₂ _∷_ (∈-allFin i) (∈-allInj is) tabulate₂ : ∀ {n m a} {A : Set a} → (Inj n m → A) → Vec A (size n m) tabulate₂ f = mapV f (allInj _ _) ∈-tabulate₂ : ∀ {n m a} {A : Set a} (f : Inj n m → A) i → f i ∈ tabulate₂ f ∈-tabulate₂ f i = ∈-map f (∈-allInj i) ENUM₂ : ∀ {a n} {A : Set a} → (v : Vec A n) → Vec (∃ (v ⋟_÷?)) (size n n) ENUM₂ v = tabulate₂ (λ p → permute p v , p , permute-correct p v) enumᵢ : ∀ {a n m} {A : Set a} → Vec A m → Vec (Vec A n) (size n m) enumᵢ v = tabulate₂ (flip inject v) enum₂ : ∀ {a n} {A : Set a} → Vec A n → Vec (Vec A n) (size n n) enum₂ v = tabulate₂ (flip permute v) enumᵢ-sound : ∀ {a} {A : Set a} {n m} (x : Vec A m) (px : Vec A n) → px ∈ enumᵢ x → x ⋟ px ÷? enumᵢ-sound x _ px∈enum₂x with map-∈ px∈enum₂x enumᵢ-sound x _ _ | p , refl = p , inject-correct p x enum₂-sound : ∀ {a} {A : Set a} {n} (x px : Vec A n) → px ∈ enum₂ x → x ⋟ px ÷? enum₂-sound x _ px∈enum₂x with map-∈ px∈enum₂x enum₂-sound x _ _ | p , refl = p , permute-correct p x remove-÷-zero : ∀ {n a} {A : Set a} {x : A} {xs : Vec A n} {px : A} {pxs : Vec A n} {ps : Inj n n} → (x ∷ xs) ⋟ px ∷ pxs ÷ (zero ∷ ps) → xs ⋟ pxs ÷ ps remove-÷-zero f i = f (suc i) enumᵢ-complete : ∀ {a} {A : Set a} {n m} (x : Vec A m) (px : Vec A n) → x ⋟ px ÷? → px ∈ enumᵢ x enumᵢ-complete x px (p , x⋟px÷p) = proof where p∈allInj : p ∈ allInj _ _ p∈allInj = ∈-allInj p permutepx∈enum₂x : inject p x ∈ enumᵢ x permutepx∈enum₂x = ∈-map (flip inject x) p∈allInj x⋟permutepx÷p : x ⋟ inject p x ÷ p x⋟permutepx÷p = inject-correct p x proof : px ∈ enumᵢ x proof = subst (_∈ _) (injected-inj {p = p} x⋟permutepx÷p x⋟px÷p) permutepx∈enum₂x enum₂-complete : ∀ {a} {A : Set a} {n} (x px : Vec A n) → x ⋟ px ÷? → px ∈ enum₂ x enum₂-complete x px (p , x⋟px÷p) = proof where p∈allInj : p ∈ allInj _ _ p∈allInj = ∈-allInj p permutepx∈enum₂x : permute p x ∈ enum₂ x permutepx∈enum₂x = ∈-map (flip permute x) p∈allInj x⋟permutepx÷p : x ⋟ permute p x ÷ p x⋟permutepx÷p = permute-correct p x proof : px ∈ enum₂ x proof = subst (_∈ _) (permuted-inj {p = p} x⋟permutepx÷p x⋟px÷p) permutepx∈enum₂x Enum₂ : ∀ {a n} {A : Set a} → (x : Vec A n) → Σ[ pxs ∈ Vec (Vec A n) (size n n) ] (∀ px → (px ∈ pxs → x ⋟ px ÷?) × (x ⋟ px ÷? → px ∈ pxs)) Enum₂ x = enum₂ x , (λ px → enum₂-sound x px , enum₂-complete x px) _∃⊎∀_ : ∀ {a} {A : Set a} {l r} (L : A → Set l) (R : A → Set r) {p} (P : A → Set p) → Set _ (L ∃⊎∀ R) P = (∃ λ x → P x × L x) ⊎ (∀ x → P x → R x) open import Agda.Primitive stepDecide∃⊎∀ : ∀ {a} {A : Set a} {l r} {L : A → Set l} {R : A → Set r} → (∀ y → L y ⊎ R y) → ∀ {p} (P : A → Set p) → ∀ {d} (done : Vec A d) {nd} (not-done : Vec A nd) → (∀ y → y ∈ done ⊎ y ∈ not-done → P y) → (∀ y → P y → y ∈ done ⊎ y ∈ not-done) → (∀ y → y ∈ done → R y) → (L ∃⊎∀ R) P stepDecide∃⊎∀ dec P done {zero} not-done dnd-sound dnd-complete done-R = inj₂ (λ y Py → done-R y (dnd-done y Py)) where dnd-done : ∀ y → P y → y ∈ done dnd-done y Py with dnd-complete y Py dnd-done y Py | inj₁ y∈done = y∈done dnd-done y Py | inj₂ () stepDecide∃⊎∀ dec P done {suc nd} (step ∷ not-dones) dnd-sound dnd-complete done-R with dec step … | inj₁ l = inj₁ (step , (dnd-sound step (inj₂ here)) , l) … | inj₂ r = stepDecide∃⊎∀ dec P (step ∷ done) not-dones stepdnd-sound stepdnd-complete (stepdone-R r) where stepdnd-sound : ∀ y → y ∈ step ∷ done ⊎ y ∈ not-dones → P y stepdnd-sound _ (inj₁ here) = dnd-sound step (inj₂ here) stepdnd-sound y (inj₁ (there y∈done)) = dnd-sound y (inj₁ y∈done) stepdnd-sound y (inj₂ y∈not-dones) = dnd-sound y (inj₂ (there y∈not-dones)) stepdnd-complete : ∀ y → P y → y ∈ step ∷ done ⊎ y ∈ not-dones stepdnd-complete y Py with dnd-complete y Py stepdnd-complete y Py | inj₁ y∈done = inj₁ (there y∈done) stepdnd-complete y Py | inj₂ here = inj₁ here stepdnd-complete y Py | inj₂ (there y∈not-dones) = inj₂ y∈not-dones stepdone-R : _ → ∀ y → y ∈ step ∷ done → _ stepdone-R Rstep _ here = Rstep stepdone-R Rstep y (there y∈done) = done-R y y∈done decide∃⊎∀ : ∀ {a} {A : Set a} {l r} {L : A → Set l} {R : A → Set r} → (∀ y → L y ⊎ R y) → ∀ {p} (P : A → Set p) → ∀ {nd} (not-done : Vec A nd) → (∀ y → y ∈ not-done → P y) → (∀ y → P y → y ∈ not-done) → (L ∃⊎∀ R) P decide∃⊎∀ dec P not-done nd-sound nd-complete = stepDecide∃⊎∀ dec P [] not-done []nd-sound []nd-complete (λ {_ ()}) where []nd-sound : ∀ y → y ∈ [] ⊎ y ∈ not-done → P y []nd-sound y (inj₁ ()) []nd-sound y (inj₂ y∈not-done) = nd-sound y y∈not-done []nd-complete : ∀ y → P y → y ∈ [] ⊎ y ∈ not-done []nd-complete y Py = inj₂ (nd-complete y Py) decidePermutations : ∀ {a n} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ x → (∀ y → L y ⊎ R y) → (L ∃⊎∀ R) (x ⋟_÷?) decidePermutations x f = decide∃⊎∀ f _ (enum₂ x) (enum₂-sound x) (enum₂-complete x) decideInjections : ∀ {a n m} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ (x : Vec A m) → (∀ y → L y ⊎ R y) → (L ∃⊎∀ R) (x ⋟_÷?) decideInjections x f = decide∃⊎∀ f _ (enumᵢ x) (enumᵢ-sound x) (enumᵢ-complete x) -- -- sym-⋟∣ : ∀ {a n} {A : Set a} → (y x : Vec A n) → (p : Permutation n) → -- -- y ⋟ x ∣ p → x ⋟ y ∣ (p ⁻¹) -- -- sym-⋟∣ y x ps y⋟x∣p i = -- -- trans (cong (flip lookup x) {x = i} {y = < ps > (< ps ⁻¹ > i)} (<>-inv ps i)) (sym (y⋟x∣p (< ps ⁻¹ > i))) -- -- open import Oscar.Data.Vec.Properties -- -- Permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → -- -- ∃ λ w → w ⋟ v ∥ p -- -- Permute [] v = v , λ () -- -- Permute p@(p' ∷ ps) v@(v' ∷ vs) = -- -- let ws , [vs≡ws]ps = Permute ps (deleteV p' v) -- -- w = lookup p' v ∷ ws -- -- [v≡w]p : w ⋟ v ∥ p -- -- [v≡w]p = {!!} -- -- {- -- -- [v≡w]p = λ -- -- { zero → here -- -- ; (suc f) → there (subst (ws [ f ]=_) -- -- (lookup-delete-thin p' (< ps > f) v) -- -- ([vs≡ws]ps f)) } -- -- -} -- -- in -- -- w , [v≡w]p -- -- -- permute : ∀ {a n} {A : Set a} → Permutation n → Vec A n → Vec A n -- -- -- permute p v = proj₁ (Permute p v) -- -- -- permute-correct : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → v ⋟ permute p v ∥ p -- -- -- permute-correct p v = proj₂ (Permute p v) -- -- -- open import Function -- -- -- --∈-map-proj₁ : mapV proj₁ (mapV (λ p → F p , G p) xs) ≡ mapV F xs -- -- -- open import Data.Nat -- -- -- ∈-enum : ∀ {n m} (i : Inj n m) → i ∈ enum n m -- -- -- ∈-enum {zero} [] = here -- -- -- ∈-enum {suc n} (i ∷ is) = ∈-map₂ _∷_ (∈-allFin i) (∈-enum is) -- -- -- open import Data.Permutation.Properties -- -- -- [thin]=→delete[]= : ∀ {a n} {A : Set a} {i j} {v : Vec A (suc n)} {x} → v [ thin i j ]= x → deleteV i v [ j ]= x -- -- -- [thin]=→delete[]= {i = zero} {v = x ∷ v} (there x₂) = x₂ -- -- -- [thin]=→delete[]= {n = zero} {i = suc ()} x₁ -- -- -- [thin]=→delete[]= {n = suc n} {i = suc i} {zero} {x ∷ v} here = here -- -- -- [thin]=→delete[]= {n = suc n} {i = suc i} {suc j} {x ∷ v} (there v[thinij]=?) = there ([thin]=→delete[]= {i = i} v[thinij]=?) -- -- -- delete≡Permutation : ∀ {a n} {A : Set a} {v₀ : A} {v₊ : Vec A n} {w : Vec A (suc n)} {p : Permutation (suc n)} → -- -- -- (v₀ ∷ v₊) ⋟ w ∥ p → -- -- -- v₊ ⋟ deleteV (annihilator p) w ∥ delete (annihilator p) p -- -- -- delete≡Permutation {v₀ = v₀} {v₊} {w} {p} [v₀∷v₊≡w]p f = [thin]=→delete[]= {i = annihilator p} {j = f} qux where -- -- -- foo : thin (< p > (annihilator p)) (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f) -- -- -- foo = inj-thin p (annihilator p) f -- -- -- foo2 : suc (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f) -- -- -- foo2 = subst (λ y → thin y (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f)) (ann-correct p) foo -- -- -- bar : w [ thin (annihilator p) f ]= lookup (< p > (thin (annihilator p) f)) (v₀ ∷ v₊) -- -- -- bar = [v₀∷v₊≡w]p (thin (annihilator p) f) -- -- -- qux : w [ thin (annihilator p) f ]= lookup (< delete (annihilator p) p > f) v₊ -- -- -- qux = subst (λ y → w [ thin (annihilator p) f ]= lookup y (v₀ ∷ v₊)) (sym foo2) bar -- -- -- permute-complete-step : ∀ {a n} {A : Set a} {v₀ : A} {w : Vec A (suc n)} {v₊ : Vec A n} (x : Fin (suc n)) → -- -- -- w [ x ]= v₀ → -- -- -- deleteV x w ∈ mapV (flip permute v₊) (enum n n) → -- -- -- w ∈ mapV (flip permute (v₀ ∷ v₊)) (enum (suc n) (suc n)) -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} zero here here = here -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} zero x₁ (there ()) -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} (suc ()) x₁ x₂ -- -- -- permute-complete-step {n = suc n} {w = w ∷ ws} x w∷ws[x]=v₀ x₂ = {!!} -- -- -- permute-lemma : ∀ {a n} {A : Set a} (v w : Vec A n) (p : Permutation n) → -- -- -- v ⋟ w ∥ p → -- -- -- w ≡ permute (p ⁻¹) v -- -- -- permute-lemma v w p x = {!permute-correct p w!} -- -- -- {- -- -- -- permute-complete' : ∀ {a n} {A : Set a} (v w : Vec A n) (p : Permutation n) → -- -- -- v ⋟ w ∥ p → -- -- -- ∀ {m} {ps : Vec (Permutation n) m} → p ∈ ps → -- -- -- w ≡ permute p v -- -- -- w ∈ mapV (flip -- -- -- -} -- -- -- permute-complete : ∀ {a n} {A : Set a} (v w : Vec A n) → -- -- -- v ∃≡Permutation w → -- -- -- w ∈ mapV (flip permute v) (enum n n) -- -- -- permute-complete [] [] (p , [v≡w]p) = here -- -- -- permute-complete {n = suc n} v@(v₀ ∷ v₊) w (p , [v≡w]p) = permute-complete-step (annihilator p) w[ap]=v₀ pc' where -- -- -- w[ap]=v₀ : w [ annihilator p ]= v₀ -- -- -- w[ap]=v₀ = {![v≡w]p (annihilator p)!} -- -- -- pc' : deleteV (annihilator p) w ∈ mapV (flip permute v₊) (enum n n) -- -- -- pc' = permute-complete v₊ (deleteV (annihilator p) w) (delete (annihilator p) p , delete≡Permutation {p = p} [v≡w]p) -- -- -- EnumPermutations : ∀ {a n} {A : Set a} → (v : Vec A n) → -- -- -- Σ (Vec (∃ (v ∃≡Permutation_)) (size n n)) λ ws -- -- -- → ∀ w → (v ∃≡Permutation w → w ∈ mapV proj₁ ws) -- -- -- EnumPermutations {n = n} v = mapV (λ p → permute p v , p , permute-correct p v) (enum n n) , (λ w v∃≡Pw → subst (w ∈_) (map-∘ proj₁ (λ p → permute p v , p , permute-correct p v) (enum n n)) (permute-complete v w v∃≡Pw)) -- -- -- enumPermutations : ∀ {a n} {A : Set a} → Vec A n → Vec (Vec A n) (size n n) -- -- -- enumPermutations {n = n} xs = mapV (λ p → permute p xs) (enum n n) -- -- -- tryPermutations : ∀ {a n} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ x → (f : ∀ y → L y ⊎ R y) → Vec (∃ λ y → x ∃≡Permutation y × L y ⊎ R y) (size n n) -- -- -- tryPermutations x f = mapV (λ x₁ → x₁ , {!!}) (enumPermutations x)
{ "alphanum_fraction": 0.5015330705, "avg_line_length": 46.4338983051, "ext": "agda", "hexsha": "0e9b90e1cff47752e8d5e3241056316a6623cde0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Permutation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Permutation.agda", "max_line_length": 228, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Permutation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6038, "size": 13698 }
module Type.Quotient where open import Logic open import Relator.Equals open import Type open import Lvl private variable ℓ₁ : Lvl.Level private variable ℓ₂ : Lvl.Level data _/_ (T : Type{ℓ₁}) (_≅_ : T → T → Stmt{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where [_] : T → (T / (_≅_)) [/]-equiv-to-eq : ∀{x y : T} → (x ≅ y) → ([ x ] ≡ [ y ]) [/]-uip : ∀{X Y : (T / (_≅_))} → (proof₁ proof₂ : (X ≡ Y)) → (proof₁ ≡ proof₂) -- TODO: [/]-eq-to-equiv : (x y : A) → (x ≅ y) ← ([ x ] ≡ [ y ])
{ "alphanum_fraction": 0.525, "avg_line_length": 28.2352941176, "ext": "agda", "hexsha": "fdc8e6d10f86b9a195ec450754a3821f7a4f3565", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Mathematical/Type/Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Mathematical/Type/Quotient.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Mathematical/Type/Quotient.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 211, "size": 480 }
module Issue292-27 where postulate A : Set data D : Set → Set where d₁ : D A d₂ : D (A → A) data P : (B : Set) → B → D B → Set₁ where p₁ : (x : A) → P A x d₁ p₂ : (f : A → A) → P (A → A) f d₂ Foo : (x : A) → P A x d₁ → Set₁ Foo x (p₁ .x) = Set -- Cannot decide whether there should be a case for the constructor -- p₂, since the unification gets stuck on unifying the inferred -- indices -- [A → A, f, d₂] -- with the expected indices -- [A, x, d₁] -- when checking the definition of Foo
{ "alphanum_fraction": 0.5755813953, "avg_line_length": 21.5, "ext": "agda", "hexsha": "877df5443c75707d475db564ec36b2b4168c58cd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue292-27.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue292-27.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue292-27.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 193, "size": 516 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.FromList where open import Prelude open import Algebra.Construct.Free.Semilattice.Definition open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Relation.Unary open import Data.List import Data.List.Membership as ℰ open import Data.Fin using (Fin; fs; f0) open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties fromList : List A → 𝒦 A fromList = foldr _∷_ [] ∈List⇒∈𝒦 : ∀ xs {x : A} → ∥ x ℰ.∈ xs ∥ → x ∈ fromList xs ∈List⇒∈𝒦 [] ∣x∈xs∣ = ⊥-elim (refute-trunc (λ ()) ∣x∈xs∣) ∈List⇒∈𝒦 (x ∷ xs) ∣x∈xs∣ = do (fs n , x∈xs) ← ∣x∈xs∣ where (f0 , x∈xs) → ∣ inl x∈xs ∣ ∣ inr (∈List⇒∈𝒦 xs ∣ n , x∈xs ∣) ∣
{ "alphanum_fraction": 0.6906290116, "avg_line_length": 32.4583333333, "ext": "agda", "hexsha": "2ebbccc32e64debc1c9e60087cdec51fcf3d12fc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/FromList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/FromList.agda", "max_line_length": 61, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/FromList.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 325, "size": 779 }
------------------------------------------------------------------------ -- Integers ------------------------------------------------------------------------ -- This module contains some basic definitions with few dependencies -- (in particular, not Groupoid). See Integer for more definitions. -- The definitions below are reexported from Integer. {-# OPTIONS --without-K --safe #-} open import Equality module Integer.Basics {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq import Agda.Builtin.Int open import Prelude renaming (_+_ to _⊕_) open import Equality.Decidable-UIP eq import Nat eq as Nat -- Integers. open Agda.Builtin.Int public using () hiding (module Int) renaming (Int to ℤ; pos to +_; negsuc to -[1+_]) module ℤ where open Agda.Builtin.Int.Int public using () renaming (pos to +_; negsuc to -[1+_]) private variable m n : ℕ -- Turns natural numbers into the corresponding negative integers. -[_] : ℕ → ℤ -[ zero ] = + 0 -[ suc n ] = -[1+ n ] -- Negation. infix 8 -_ -_ : ℤ → ℤ - + n = -[ n ] - -[1+ n ] = + suc n -- A helper function used to implement addition. +_+-[1+_] : ℕ → ℕ → ℤ + m +-[1+ n ] = if m Nat.<= n then -[1+ n ∸ m ] else + (m ∸ suc n) private -- An alternative implementation of +_+-[1+_]. +_+-[1+_]′ : ℕ → ℕ → ℤ + zero +-[1+ n ]′ = -[1+ n ] + suc m +-[1+ zero ]′ = + m + suc m +-[1+ suc n ]′ = + m +-[1+ n ]′ -- The alternative implementation of +_+-[1+_] is not optimised (it -- does not use builtin functions), but it computes in the same way -- as +_+-[1+_]. ++-[1+]≡++-[1+]′ : ∀ m n → + m +-[1+ n ] ≡ + m +-[1+ n ]′ ++-[1+]≡++-[1+]′ zero n = refl _ ++-[1+]≡++-[1+]′ (suc m) zero = refl _ ++-[1+]≡++-[1+]′ (suc m) (suc n) = ++-[1+]≡++-[1+]′ m n -- Addition. infixl 6 _+_ _+_ : ℤ → ℤ → ℤ + m + + n = + (m ⊕ n) + m + -[1+ n ] = + m +-[1+ n ] -[1+ m ] + + n = + n +-[1+ m ] -[1+ m ] + -[1+ n ] = -[1+ suc m ⊕ n ] -- Subtraction. infixl 6 _-_ _-_ : ℤ → ℤ → ℤ i - j = i + - j -- The +_ constructor is cancellative. +-cancellative : + m ≡ + n → m ≡ n +-cancellative = cong f where f : ℤ → ℕ f (+ n) = n f -[1+ n ] = n -- The -[1+_] constructor is cancellative. -[1+]-cancellative : -[1+ m ] ≡ -[1+ n ] → m ≡ n -[1+]-cancellative = cong f where f : ℤ → ℕ f (+ n) = n f -[1+ n ] = n -- Non-negative integers are not equal to negative integers. +≢-[1+] : + m ≢ -[1+ n ] +≢-[1+] +≡- = subst P +≡- tt where P : ℤ → Type P (+ n) = ⊤ P -[1+ n ] = ⊥ -- Non-positive integers are not equal to positive integers. +[1+]≢- : + suc m ≢ -[ n ] +[1+]≢- {n = zero} = Nat.0≢+ ∘ sym ∘ +-cancellative +[1+]≢- {n = suc _} = +≢-[1+] -- Equality of integers is decidable. infix 4 _≟_ _≟_ : Decidable-equality ℤ + m ≟ + n = ⊎-map (cong (+_)) (_∘ +-cancellative) (m Nat.≟ n) + m ≟ -[1+ n ] = no +≢-[1+] -[1+ m ] ≟ + n = no (+≢-[1+] ∘ sym) -[1+ m ] ≟ -[1+ n ] = ⊎-map (cong -[1+_]) (_∘ -[1+]-cancellative) (m Nat.≟ n) -- The integers form a set. ℤ-set : Is-set ℤ ℤ-set = decidable⇒set _≟_ -- Addition is commutative. +-comm : ∀ i {j} → i + j ≡ j + i +-comm (+ m) {j = + _} = cong (+_) $ Nat.+-comm m +-comm (+ m) {j = -[1+ _ ]} = refl _ +-comm -[1+ m ] {j = + _} = refl _ +-comm -[1+ m ] {j = -[1+ _ ]} = cong (-[1+_] ∘ suc) $ Nat.+-comm m
{ "alphanum_fraction": 0.4735766423, "avg_line_length": 22.5328947368, "ext": "agda", "hexsha": "afd8e5521271f7d43996283561b959048ff4c502", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Integer/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Integer/Basics.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Integer/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1343, "size": 3425 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Categories.Limits.RightKan where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Morphism renaming (isIso to isIsoC) open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Limits.Limits module _ {ℓC ℓC' ℓM ℓM' ℓA ℓA' : Level} {C : Category ℓC ℓC'} {M : Category ℓM ℓM'} {A : Category ℓA ℓA'} (limitA : Limits {ℓ-max ℓC' ℓM} {ℓ-max ℓC' ℓM'} A) (K : Functor M C) (T : Functor M A) where open Category open Functor open Cone open LimCone _↓Diag : ob C → Category (ℓ-max ℓC' ℓM) (ℓ-max ℓC' ℓM') ob (x ↓Diag) = Σ[ u ∈ ob M ] C [ x , K .F-ob u ] Hom[_,_] (x ↓Diag) (u , f) (v , g) = Σ[ h ∈ M [ u , v ] ] f ⋆⟨ C ⟩ K .F-hom h ≡ g id (x ↓Diag) {x = (u , f)} = id M , cong (seq' C f) (F-id K) ∙ ⋆IdR C f _⋆_ (x ↓Diag) {x = (u , f)} (h , hComm) (k , kComm) = (h ⋆⟨ M ⟩ k) , cong (seq' C f) (F-seq K h k) ∙ sym (⋆Assoc C _ _ _) ∙ cong (λ l → seq' C l (F-hom K k)) hComm ∙ kComm ⋆IdL (x ↓Diag) _ = Σ≡Prop (λ _ → isSetHom C _ _) (⋆IdL M _) ⋆IdR (x ↓Diag) _ = Σ≡Prop (λ _ → isSetHom C _ _) (⋆IdR M _) ⋆Assoc (x ↓Diag) _ _ _ = Σ≡Prop (λ _ → isSetHom C _ _) (⋆Assoc M _ _ _) isSetHom (x ↓Diag) = isSetΣSndProp (isSetHom M) λ _ → isSetHom C _ _ private i : (x : ob C) → Functor (x ↓Diag) M F-ob (i x) = fst F-hom (i x) = fst F-id (i x) = refl F-seq (i x) _ _ = refl j : {x y : ob C} (f : C [ x , y ]) → Functor (y ↓Diag) (x ↓Diag) F-ob (j f) (u , g) = u , f ⋆⟨ C ⟩ g F-hom (j f) (h , hComm) = h , ⋆Assoc C _ _ _ ∙ cong (seq' C f) hComm F-id (j f) = Σ≡Prop (λ _ → isSetHom C _ _) refl F-seq (j f) _ _ = Σ≡Prop (λ _ → isSetHom C _ _) refl T* : (x : ob C) → Functor (x ↓Diag) A T* x = funcComp T (i x) RanOb : ob C → ob A RanOb x = limitA (x ↓Diag) (T* x) .lim RanCone : {x y : ob C} → C [ x , y ] → Cone (T* y) (RanOb x) coneOut (RanCone {x = x} f) v = limOut (limitA (x ↓Diag) (T* x)) (j f .F-ob v) coneOutCommutes (RanCone {x = x} f) h = limOutCommutes (limitA (x ↓Diag) (T* x)) (j f .F-hom h) -- technical lemmas for proving functoriality RanConeRefl : ∀ {x} v → limOut (limitA (x ↓Diag) (T* x)) v ≡ limOut (limitA (x ↓Diag) (T* x)) (j (id C) .F-ob v) RanConeRefl {x = x} (v , f) = cong (λ p → limOut (limitA (x ↓Diag) (T* x)) (v , p)) (sym (⋆IdL C f)) RanConeTrans : ∀ {x y z} (f : C [ x , y ]) (g : C [ y , z ]) v → limOut (limitA (x ↓Diag) (T* x)) (j f .F-ob (j g .F-ob v)) ≡ limOut (limitA (x ↓Diag) (T* x)) (j (f ⋆⟨ C ⟩ g) .F-ob v) RanConeTrans {x = x} {y = y} {z = z} f g (v , h) = cong (λ p → limOut (limitA (x ↓Diag) (T* x)) (v , p)) (sym (⋆Assoc C f g h)) -- the right Kan-extension Ran : Functor C A F-ob Ran = RanOb F-hom Ran {y = y} f = limArrow (limitA (y ↓Diag) (T* y)) _ (RanCone f) F-id Ran {x = x} = limArrowUnique (limitA (x ↓Diag) (T* x)) _ _ _ (λ v → (⋆IdL A _) ∙ RanConeRefl v) F-seq Ran {x = x} {y = y} {z = z} f g = limArrowUnique (limitA (z ↓Diag) (T* z)) _ _ _ path where path : ∀ v → (F-hom Ran f) ⋆⟨ A ⟩ (F-hom Ran g) ⋆⟨ A ⟩ (limOut (limitA (z ↓Diag) (T* z)) v) ≡ coneOut (RanCone (f ⋆⟨ C ⟩ g)) v path v = (F-hom Ran f) ⋆⟨ A ⟩ (F-hom Ran g) ⋆⟨ A ⟩ (limOut (limitA (z ↓Diag) (T* z)) v) ≡⟨ ⋆Assoc A _ _ _ ⟩ (F-hom Ran f) ⋆⟨ A ⟩ ((F-hom Ran g) ⋆⟨ A ⟩ (limOut (limitA (z ↓Diag) (T* z)) v)) ≡⟨ cong (seq' A (F-hom Ran f)) (limArrowCommutes _ _ _ _) ⟩ (F-hom Ran f) ⋆⟨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (j g .F-ob v) ≡⟨ limArrowCommutes _ _ _ _ ⟩ limOut (limitA (x ↓Diag) (T* x)) (j f .F-ob (j g .F-ob v)) ≡⟨ RanConeTrans f g v ⟩ coneOut (RanCone (f ⋆⟨ C ⟩ g)) v ∎ open NatTrans RanNatTrans : NatTrans (funcComp Ran K) T N-ob RanNatTrans u = coneOut (RanCone (id C)) (u , id C) N-hom RanNatTrans {x = u} {y = v} f = Ran .F-hom (K .F-hom f) ⋆⟨ A ⟩ coneOut (RanCone (id C)) (v , id C) ≡⟨ cong (λ g → Ran .F-hom (K .F-hom f) ⋆⟨ A ⟩ g) (sym (RanConeRefl (v , id C))) ⟩ Ran .F-hom (K .F-hom f) ⋆⟨ A ⟩ limOut (limitA ((K .F-ob v) ↓Diag) (T* (K .F-ob v))) (v , id C) ≡⟨ limArrowCommutes _ _ _ _ ⟩ coneOut (RanCone (K .F-hom f)) (v , id C) ≡⟨ cong (λ g → limOut (limitA ((K .F-ob u) ↓Diag) (T* (K .F-ob u))) (v , g)) (⋆IdR C (K .F-hom f) ∙ sym (⋆IdL C (K .F-hom f))) ⟩ coneOut (RanCone (id C)) (v , K .F-hom f) ≡⟨ sym (coneOutCommutes (RanCone (id C)) (f , ⋆IdL C _)) ⟩ coneOut (RanCone (id C)) (u , id C) ⋆⟨ A ⟩ T .F-hom f ∎ -- TODO: show that this nat. trans. is a "universal arrow" and that is a nat. iso. -- if K is full and faithful...
{ "alphanum_fraction": 0.5020095694, "avg_line_length": 41.1417322835, "ext": "agda", "hexsha": "7dd85972e3e866fe6252b5b46e3110ee7aac3248", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/RightKan.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/RightKan.agda", "max_line_length": 99, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/RightKan.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2296, "size": 5225 }
-- Andreas, 2012-09-13 module RelevanceSubtyping where -- this naturally type-checks: one : {A B : Set} → (.A → B) → A → B one f x = f x -- this type-checks because of subtyping one' : {A B : Set} → (.A → B) → A → B one' f = f
{ "alphanum_fraction": 0.5895196507, "avg_line_length": 20.8181818182, "ext": "agda", "hexsha": "1c3260ba57cb4256532dcd6fbd8b2d5d24d55e2b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/RelevanceSubtyping.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/RelevanceSubtyping.agda", "max_line_length": 40, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/RelevanceSubtyping.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 87, "size": 229 }
-- also importing warnings from A import A
{ "alphanum_fraction": 0.75, "avg_line_length": 11, "ext": "agda", "hexsha": "21bf38678c83efeff1e9340db8e84f4239ab967b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2592/C.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2592/C.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2592/C.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 10, "size": 44 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S1.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.HITs.S1.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥ isConnectedS¹ base = ∣ refl ∣ isConnectedS¹ (loop i) = squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i isGroupoidS¹ : isGroupoid S¹ isGroupoidS¹ s t = PropTrunc.rec isPropIsSet (λ p → subst (λ s → isSet (s ≡ t)) p (PropTrunc.rec isPropIsSet (λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹) (isConnectedS¹ t))) (isConnectedS¹ s) toPropElim : ∀ {ℓ} {B : S¹ → Type ℓ} → ((s : S¹) → isProp (B s)) → B base → (s : S¹) → B s toPropElim {B = B} isprop b base = b toPropElim {B = B} isprop b (loop i) = hcomp (λ k → λ {(i = i0) → b ; (i = i1) → isprop base (subst B (loop) b) b k}) (transp (λ j → B (loop (i ∧ j))) (~ i) b)
{ "alphanum_fraction": 0.6004803843, "avg_line_length": 35.6857142857, "ext": "agda", "hexsha": "c5c56ceae337d70b405a575d3a6bf46538fab515", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/HITs/S1/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/HITs/S1/Properties.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/HITs/S1/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 436, "size": 1249 }
{-# OPTIONS --safe #-} open import Data.List as List hiding ([_]) module JVM.Compiler.Monad (T : Set) (⟨_⇒_⟩ : T → T → List T → Set) (nop : ∀ {τ} → ⟨ τ ⇒ τ ⟩ []) where open import Level open import Function using (_∘_) open import Data.Product hiding (_<*>_) open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Monad open import Relation.Ternary.Data.ReflexiveTransitive as Star open import Relation.Ternary.Data.Bigplus as Bigplus private variable τ₁ τ₂ τ : T open import JVM.Model T; open Syntax open import JVM.Syntax.Bytecode T ⟨_⇒_⟩ open import Relation.Ternary.Monad.Writer intf-rel open WriterMonad (starMonoid {R = Code}) renaming ( Writer to Compiler ; execWriter to execCompiler) public -- Output a single, unlabeled instruction code : ∀[ ⟨ τ₁ ⇒ τ₂ ⟩ ⇒ Down⁻ (Compiler τ₁ τ₂ Emp) ] code i = tell Star.[ instr (↓ i) ] -- We can label the start of a compiler computation attachTo : ∀ {P} → ∀[ Up (One τ₁) ⇒ Compiler τ₁ τ₂ P ─✴ Compiler τ₁ τ₂ P ] attachTo l = censor (label-start nop ⦇ Bigplus.[ l ] ⦈) attach : ∀[ Up (One τ₁) ⇒ Compiler τ₁ τ₁ Emp ] attach l = attachTo l ⟨ ∙-idʳ ⟩ return refl -- Creating binders is pure in the model by means of hiding freshLabel : ∀ {ψ} → ε[ Compiler τ τ (Up (Own List.[ ψ ]) ✴ Down (Own List.[ ψ ])) ] freshLabel = return balance
{ "alphanum_fraction": 0.7045454545, "avg_line_length": 33.2444444444, "ext": "agda", "hexsha": "625a2d6e8ef5f90ea6e201d9e88a781ec79c8d9c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Compiler/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Compiler/Monad.agda", "max_line_length": 101, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Compiler/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 448, "size": 1496 }
open import MLib.Prelude.FromStdlib module MLib.Prelude.TransitiveProver {a p} {A : Set a} (_⇒_ : A → A → Set p) (trans : Transitive _⇒_) where import MLib.Prelude.DFS as DFS open import MLib.Prelude.Path open List using ([]; _∷_) open import Relation.Nullary using (yes; no) open import Relation.Binary using (Decidable; IsStrictTotalOrder) import Data.AVL as AVL Database : Set (a ⊔ˡ p) Database = List (∃₂ λ x y → x ⇒ y) module Search {r} {_<_ : Rel A r} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where private module DFS′ = DFS _⇒_ isStrictTotalOrder open DFS′ open DFS′ public using (Graph) open IsStrictTotalOrder isStrictTotalOrder using (_≟_) private module Tree = AVL isStrictTotalOrder open Tree using (Tree) mkGraph : Database → Graph mkGraph [] = Tree.empty mkGraph ((x , y , p) ∷ ps) = Tree.insertWith x ((y , p) ∷ []) List._++_ (mkGraph ps) private findPath : Graph → ∀ x y → Maybe (Path _⇒_ x y) findPath gr x y = findDest gr {y} (λ v → v ≟ y) x tryProve′ : Graph → ∀ x y → Maybe (x ⇒ y) tryProve′ gr x y = findPath gr x y >>=ₘ just ∘ transPath trans findTransTargets′ : Graph → ∀ x → List (∃ λ y → x ⇒ y) findTransTargets′ gr x = allTargetsFrom gr x >>=ₗ λ {(y , c) → return (y , transPath trans c)} tryProve : Database → ∀ x y → Maybe (x ⇒ y) tryProve = tryProve′ ∘ mkGraph findTransTargets : Database → ∀ x → List (∃ λ y → x ⇒ y) findTransTargets = findTransTargets′ ∘ mkGraph
{ "alphanum_fraction": 0.6542119565, "avg_line_length": 30.0408163265, "ext": "agda", "hexsha": "b51be75a7a44fcd1a15db0e55bbead3d18422e9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Prelude/TransitiveProver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Prelude/TransitiveProver.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Prelude/TransitiveProver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 500, "size": 1472 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The unit type and the total relation on unit ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Unit.Base where ------------------------------------------------------------------------ -- A unit type defined as a record type -- Note that the name of this type is "\top", not T. open import Agda.Builtin.Unit public using (⊤; tt) record _≤_ (x y : ⊤) : Set where
{ "alphanum_fraction": 0.4018348624, "avg_line_length": 28.6842105263, "ext": "agda", "hexsha": "1e7d2986664a627f370e5122c773cf31b5a2b717", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Unit/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 96, "size": 545 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Properties. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Properties ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.Bool.Base using ( Bool; false; true; not; T ) open import Data.Fin using ( Fin ; suc; zero ) open import Data.PropFormula.Syntax n open import Data.PropFormula.Dec n open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; cong ) ------------------------------------------------------------------------------ suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ Fin.suc n → m ≡ n suc-injective refl = refl var-injective : ∀ {x x₁} → Var x ≡ Var x₁ → x ≡ x₁ var-injective refl = refl ∧-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ∧ φ₁) ≡ (ψ ∧ ψ₁) → φ ≡ ψ ∧-injective₁ refl = refl ∧-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ∧ φ₁) ≡ (ψ ∧ ψ₁) → φ₁ ≡ ψ₁ ∧-injective₂ refl = refl ∨-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ∨ φ₁) ≡ (ψ ∨ ψ₁) → φ ≡ ψ ∨-injective₁ refl = refl ∨-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ∨ φ₁) ≡ (ψ ∨ ψ₁) → φ₁ ≡ ψ₁ ∨-injective₂ refl = refl ⊃-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ⊃ φ₁) ≡ (ψ ⊃ ψ₁) → φ ≡ ψ ⊃-injective₁ refl = refl ⊃-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ⊃ φ₁) ≡ (ψ ⊃ ψ₁) → φ₁ ≡ ψ₁ ⊃-injective₂ refl = refl ⇔-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ⇔ φ₁) ≡ (ψ ⇔ ψ₁) → φ ≡ ψ ⇔-injective₁ refl = refl ⇔-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ⇔ φ₁) ≡ (ψ ⇔ ψ₁) → φ₁ ≡ ψ₁ ⇔-injective₂ refl = refl ¬-injective : ∀ {φ ψ} → ¬ φ ≡ ¬ ψ → φ ≡ ψ ¬-injective refl = refl -- Def. _≟_ : {n : ℕ} → Decidable {A = Fin n} _≡_ zero ≟ zero = yes refl zero ≟ suc y = no λ() suc x ≟ zero = no λ() suc x ≟ suc y with x ≟ y ... | yes x≡y = yes (cong Fin.suc x≡y) ... | no x≢y = no (λ r → x≢y (suc-injective r)) -- Def. eq : (φ ψ : PropFormula) → Dec (φ ≡ ψ) -- Equality with Var. eq (Var x) ⊤ = no λ() eq (Var x) ⊥ = no λ() eq (Var x) (ψ ∧ ψ₁) = no λ() eq (Var x) (ψ ∨ ψ₁) = no λ() eq (Var x) (ψ ⊃ ψ₁) = no λ() eq (Var x) (ψ ⇔ ψ₁) = no λ() eq (Var x) (¬ ψ) = no λ() eq (Var x) (Var x₁) with x ≟ x₁ ... | yes refl = yes refl ... | no x≢x₁ = no (λ r → x≢x₁ (var-injective r)) -- Equality with ⊤. eq ⊤ (Var x) = no λ() eq ⊤ ⊥ = no λ() eq ⊤ (ψ ∧ ψ₁) = no λ() eq ⊤ (ψ ∨ ψ₁) = no λ() eq ⊤ (ψ ⊃ ψ₁) = no λ() eq ⊤ (ψ ⇔ ψ₁) = no λ() eq ⊤ (¬ ψ) = no λ() eq ⊤ ⊤ = yes refl -- Equality with ⊥. eq ⊥ (Var x) = no λ() eq ⊥ ⊤ = no λ() eq ⊥ (ψ ∧ ψ₁) = no λ() eq ⊥ (ψ ∨ ψ₁) = no λ() eq ⊥ (ψ ⊃ ψ₁) = no λ() eq ⊥ (ψ ⇔ ψ₁) = no λ() eq ⊥ (¬ ψ) = no λ() eq ⊥ ⊥ = yes refl -- Equality with ∧. eq (φ ∧ φ₁) (Var x) = no λ() eq (φ ∧ φ₁) ⊤ = no λ() eq (φ ∧ φ₁) ⊥ = no λ() eq (φ ∧ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ∧ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ∧ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ∧ φ₁) (¬ ψ) = no λ() eq (φ ∧ φ₁) (ψ ∧ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (∧-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (∧-injective₁ r)) -- Equality with ∨. eq (φ ∨ φ₁) (Var x) = no λ() eq (φ ∨ φ₁) ⊤ = no λ() eq (φ ∨ φ₁) ⊥ = no λ() eq (φ ∨ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ∨ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ∨ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ∨ φ₁) (¬ ψ) = no λ() eq (φ ∨ φ₁) (ψ ∨ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (∨-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (∨-injective₁ r)) -- Equality with ⊃. eq (φ ⊃ φ₁) (Var x) = no λ() eq (φ ⊃ φ₁) ⊤ = no λ() eq (φ ⊃ φ₁) ⊥ = no λ() eq (φ ⊃ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ⊃ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ⊃ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ⊃ φ₁) (¬ ψ) = no λ() eq (φ ⊃ φ₁) (ψ ⊃ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (⊃-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (⊃-injective₁ r)) -- Equality with ⇔. eq (φ ⇔ φ₁) (Var x) = no λ() eq (φ ⇔ φ₁) ⊤ = no λ() eq (φ ⇔ φ₁) ⊥ = no λ() eq (φ ⇔ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ⇔ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ⇔ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ⇔ φ₁) (¬ ψ) = no λ() eq (φ ⇔ φ₁) (ψ ⇔ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (⇔-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (⇔-injective₁ r)) -- Equality with ¬. eq (¬ φ) (Var x) = no λ() eq (¬ φ) ⊤ = no λ() eq (¬ φ) ⊥ = no λ() eq (¬ φ) (ψ ∧ ψ₁) = no λ() eq (¬ φ) (ψ ∨ ψ₁) = no λ() eq (¬ φ) (ψ ⊃ ψ₁) = no λ() eq (¬ φ) (ψ ⇔ ψ₁) = no λ() eq (¬ φ) (¬ ψ) with eq φ ψ ... | yes refl = yes refl ... | no φ≢ψ = no (λ r → φ≢ψ (¬-injective r)) -- Theorem. subst : ∀ {Γ} {φ ψ} → φ ≡ ψ → Γ ⊢ φ → Γ ⊢ ψ subst refl o = o -- Theorem. substΓ : ∀ {Γ₁ Γ₂} {φ} → Γ₁ ≡ Γ₂ → Γ₁ ⊢ φ → Γ₂ ⊢ φ substΓ refl o = o
{ "alphanum_fraction": 0.4171497102, "avg_line_length": 27.9497206704, "ext": "agda", "hexsha": "41b34ddffd9f4acb7c6215f0d2752e44803d2d0d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Properties.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Properties.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 2430, "size": 5003 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Algebra` or -- `Algebra.Definitions` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core using (Rel) module Algebra.FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties was deprecated in v1.2. Use Algebra.Definitions instead." #-} open import Algebra.Core public open import Algebra.Definitions _≈_ public
{ "alphanum_fraction": 0.5604575163, "avg_line_length": 29.1428571429, "ext": "agda", "hexsha": "0e0b30442d3498a0d2177ebb8aa17e203e178a2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/FunctionProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/FunctionProperties.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/FunctionProperties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 127, "size": 612 }
{-# OPTIONS --type-in-type #-} module Lec6 where open import Lec1Done ListF : Set -> Set -> Set ListF X T = One + (X * T) data List (X : Set) : Set where <_> : (ListF X) (List X) -> (List X) infixr 4 _,-_ listF : {X T U : Set} -> (T -> U) -> (ListF X) T -> (ListF X) U listF g (inl <>) = inl <> listF g (inr (x , t)) = inr (x , g t) pattern [] = < inl <> > pattern _,-_ x xs = < inr (x , xs) > {-(-} mkList : {X : Set} -> (ListF X) (List X) -> List X mkList = <_> {- mkList (inl <>) = [] mkList (inr (x , xs)) = x ,- xs -} {-)-} {-(-} foldr : {X T : Set} -> ((ListF X) T -> T) -> List X -> T foldr alg [] = alg (inl <>) foldr alg (x ,- xs) = alg (inr (x , foldr alg xs)) ex1 = foldr mkList (1 ,- 2 ,- 3 ,- []) {-)-} {-(-} length : {X : Set} -> List X -> Nat length = foldr \ { (inl <>) -> zero ; (inr (x , n)) -> suc n } {-)-} record CoList (X : Set) : Set where coinductive field force : (ListF X) (CoList X) open CoList {-(-} []~ : {X : Set} -> CoList X force []~ = inl <> _,~_ : {X : Set} -> X -> CoList X -> CoList X force (x ,~ xs) = inr (x , xs) infixr 4 _,~_ {-)-} {-(-} unfoldr : {X S : Set} -> (S -> (ListF X) S) -> S -> CoList X force (unfoldr coalg s) with coalg s force (unfoldr coalg s) | inl <> = inl <> force (unfoldr coalg s) | inr (x , s') = inr (x , unfoldr coalg s') ex2 = unfoldr force (1 ,~ 2 ,~ 3 ,~ []~) {-)-} {-(-} repeat : {X : Set} -> X -> CoList X repeat = unfoldr \ x -> inr (x , x) {-)-} {-(-} prefix : {X : Set} -> Nat -> CoList X -> List X prefix zero xs = [] prefix (suc n) xs with force xs prefix (suc n) xs | inl <> = [] prefix (suc n) xs | inr (x , xs') = x ,- prefix n xs' ex2' = prefix 3 ex2 {-)-} StreamF : Set -> Set -> Set StreamF X S = X * S data Funny (X : Set) : Set where <_> : (StreamF X) (Funny X) -> Funny X funny : {X : Set} -> Funny X -> Zero funny < x , xf > = funny xf record Stream (X : Set) : Set where coinductive field hdTl : (StreamF X) (Stream X) open Stream {-(-} forever : {X : Set} -> X -> Stream X fst (hdTl (forever x)) = x snd (hdTl (forever x)) = forever x {-)-} natsFrom : Nat -> Stream Nat fst (hdTl (natsFrom n)) = n snd (hdTl (natsFrom n)) = natsFrom (suc n) sprefix : {X : Set} -> Nat -> Stream X -> List X -- could be Vec X n sprefix zero xs = [] sprefix (suc n) xs with hdTl xs sprefix (suc n) xs | x , xs' = x ,- sprefix n xs' {-(-} unfold : {X S : Set} -> (S -> X * S) -> S -> Stream X hdTl (unfold coalg s) with coalg s hdTl (unfold coalg s) | x , s' = x , unfold coalg s' {-)-} natsFrom' : Nat -> Stream Nat natsFrom' = unfold \ n -> n , suc n data Two : Set where tt ff : Two So : Two -> Set So tt = One So ff = Zero isSuc : Nat -> Two isSuc zero = ff isSuc (suc n) = tt {- div : (x y : Nat) -> So (isSuc y) -> Nat div x zero () div x (suc y) p = {!!} -} data Poly (X : Set) : Set where var' : X -> Poly X konst' : Two -> Poly X _+'_ _*'_ : Poly X -> Poly X -> Poly X Eval : {X : Set} -> (X -> Set) -> Poly X -> Set Eval var (var' x) = var x Eval var (konst' b) = So b Eval var (p +' q) = Eval var p + Eval var q Eval var (p *' q) = Eval var p * Eval var q eval : {X : Set}(u v : X -> Set)(p : Poly X) -> ((x : X) -> u x -> v x) -> Eval u p -> Eval v p eval u v (var' i) f x = f i x eval u v (konst' b) f x = x eval u v (p +' q) f (inl x) = inl (eval u v p f x) eval u v (p +' q) f (inr x) = inr (eval u v q f x) eval u v (p *' q) f (x , y) = eval u v p f x , eval u v q f y data Mu (p : Poly One) : Set where <_> : Eval (\ _ -> Mu p) p -> Mu p NatP : Poly One NatP = konst' tt +' var' <> NAT = Mu NatP ze : NAT ze = < (inl <>) > su : NAT -> NAT su n = < (inr n) > TreeP : Poly One TreeP = konst' tt +' (var' <> *' var' <>) -- What's a one-hole context in a Mu P? Diff : Poly One -> Poly One Diff (var' x) = konst' tt Diff (konst' x) = konst' ff Diff (p +' q) = Diff p +' Diff q Diff (p *' q) = (Diff p *' q) +' (p *' Diff q) plug : {X : Set}(p : Poly One) -> X -> Eval (\ _ -> X) (Diff p) -> Eval (\ _ -> X) p plug (var' <>) x <> = x plug (konst' b) x () plug (p +' q) x (inl xp') = inl (plug p x xp') plug (p +' q) x (inr xq') = inr (plug q x xq') plug (p *' q) x (inl (xp' , xq)) = plug p x xp' , xq plug (p *' q) x (inr (xp , xq')) = xp , plug q x xq' Context : Poly One -> Set Context p = List (Eval (\ _ -> Mu p) (Diff p)) plugs : (p : Poly One) -> Mu p -> Context p -> Mu p plugs p t [] = t plugs p t (t' ,- t's) = plugs p < plug p t t' > t's TernaryP : Poly One TernaryP = konst' tt +' (var' <> *' (var' <> *' var' <>)) fold : (p : Poly One){T : Set} -> (Eval (\ _ -> T) p -> T) -> Mu p -> T fold p {T} alg < x > = alg (evalFold p x) where evalFold : (q : Poly One) -> Eval (\ _ -> Mu p) q -> Eval (\ _ -> T) q evalFold (var' <>) x = fold p alg x evalFold (konst' b) x = x evalFold (q +' r) (inl y) = inl (evalFold q y) evalFold (q +' r) (inr y) = inr (evalFold r y) evalFold (q *' r) (y , z) = evalFold q y , evalFold r z record Nu (p : Poly One) : Set where coinductive field out : Eval (\ _ -> Nu p) p -- What's the connection between polynomials and containers? _-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set) (S -:> T) i = S i -> T i [_] : {I : Set} -> (I -> Set) -> Set [ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i All : {X : Set} -> (X -> Set) -> (List X -> Set) All P [] = One All P (x ,- xs) = P x * All P xs record _|>_ (I O : Set) : Set where field Cuts : O -> Set -- given o : O, how may we cut it? inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are -- the shapes of its pieces? record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where constructor _8><_ -- "scissors" open _|>_ C field cut : Cuts o -- we decide how to cut o pieces : All P (inners cut) -- then we give all the pieces. infixr 3 _8><_ data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where -- either... tile : T i -> Interior C T i -- we have a tile that fits, or... <_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces. Interior C T i _+L_ : {X : Set} -> List X -> List X -> List X [] +L ys = ys (x ,- xs) +L ys = x ,- (xs +L ys) polyCon : {I : Set} -> Poly I -> I |> One _|>_.Cuts (polyCon p) <> = Eval (\ _ -> One) p _|>_.inners (polyCon (var' i)) <> = i ,- [] _|>_.inners (polyCon (konst' x)) s = [] _|>_.inners (polyCon (p +' q)) (inl xp) = _|>_.inners (polyCon p) xp _|>_.inners (polyCon (p +' q)) (inr xq) = _|>_.inners (polyCon q) xq _|>_.inners (polyCon (p *' q)) (sp , sq) = _|>_.inners (polyCon p) sp +L _|>_.inners (polyCon q) sq Choose : {I J : Set} -> (I -> Set) -> (J -> Set) -> (I + J) -> Set Choose X Y (inl i) = X i Choose X Y (inr j) = Y j data MU {I -- what sorts of "elements" do we store? J -- what sorts of "nodes" do we have? : Set} (F : J -> Poly (I + J)) -- what is the structure of each sort of node? (X : I -> Set) -- what are the elements? (j : J) -- what sort is the outermost node? : Set where <_> : Eval (Choose X (MU F X)) -- subnodes in recursive positions (F j) -> MU F X j VecF : Nat -> Poly (One + Nat) VecF zero = konst' tt VecF (suc n) = (var' (inl <>)) *' (var' (inr n)) VEC : Nat -> Set -> Set VEC n X = MU VecF (\ _ -> X) n vnil : {X : Set} -> VEC zero X vnil = < <> > vcons : {X : Set}{n : Nat} -> X -> VEC n X -> VEC (suc n) X vcons x xs = < (x , xs) > gmap : {I -- what sorts of "elements" do we store? J -- what sorts of "nodes" do we have? : Set} {F : J -> Poly (I + J)} -- what is the structure of each sort of node? {X Y : I -> Set} -> -- what are the elements? ((i : I) -> X i -> Y i) -> (j : J) -> MU F X j -> MU F Y j gmapHelp : ∀ {I J} (F : J → Poly (I + J)) {X Y : I → Set} (w : Poly (I + J)) → ((i : I) → X i → Y i) → Eval (Choose X (MU F X)) w → Eval (Choose Y (MU F Y)) w gmap {F = F} f j < xt > = < gmapHelp F (F j) f xt > gmapHelp F (var' (inl i)) f x = f i x gmapHelp F (var' (inr j)) f t = gmap f j t gmapHelp F (konst' x) f v = v gmapHelp F (p +' q) f (inl xp) = inl (gmapHelp F p f xp) gmapHelp F (p +' q) f (inr xq) = inr (gmapHelp F q f xq) gmapHelp F (p *' q) f (xp , xq) = (gmapHelp F p f xp) , (gmapHelp F q f xq)
{ "alphanum_fraction": 0.4815202232, "avg_line_length": 26.8037383178, "ext": "agda", "hexsha": "19534027526ee6c0d06cace1adfb2dc71022b2e9", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec6.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec6.agda", "max_line_length": 81, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec6.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 3341, "size": 8604 }
{-# OPTIONS --safe #-} module Cubical.Functions.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Functions.Embedding open import Cubical.HITs.PropositionalTruncation as PropTrunc private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ _↠_ : Type ℓ → Type ℓ' → Type (ℓ-max ℓ ℓ') A ↠ B = Σ[ f ∈ (A → B) ] isSurjection f section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isPropIsSurjection : isProp (isSurjection f) isPropIsSurjection = isPropΠ λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (PropTrunc.rec fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → isOfHLevelΣ 1 isPropIsEmbedding (\ _ → isPropIsSurjection) _ _) (λ _ → isPropIsEquiv _ _ _)) -- obs: for epi⇒surjective to go through we require a stronger -- hypothesis that one would expect: -- f must cancel functions from a higher universe. rightCancellable : (f : A → B) → Type _ rightCancellable {ℓ} {A} {ℓ'} {B} f = ∀ {C : Type (ℓ-suc (ℓ-max ℓ ℓ'))} → ∀ (g g' : B → C) → (∀ x → g (f x) ≡ g' (f x)) → ∀ y → g y ≡ g' y -- This statement is in Mac Lane & Moerdijk (page 143, corollary 5). epi⇒surjective : (f : A → B) → rightCancellable f → isSurjection f epi⇒surjective f rc y = transport (fact₂ y) tt* where hasPreimage : (A → B) → B → _ hasPreimage f y = ∥ fiber f y ∥ fact₁ : ∀ x → Unit* ≡ hasPreimage f (f x) fact₁ x = hPropExt isPropUnit* propTruncIsProp (λ _ → ∣ (x , refl) ∣) (λ _ → tt*) fact₂ : ∀ y → Unit* ≡ hasPreimage f y fact₂ = rc _ _ fact₁
{ "alphanum_fraction": 0.660247093, "avg_line_length": 33.975308642, "ext": "agda", "hexsha": "d03594b963e8cbc6124c80d32fe51e13c9f105a5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z", "max_forks_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "LuuBluum/cubical", "max_forks_repo_path": "Cubical/Functions/Surjection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "LuuBluum/cubical", "max_issues_repo_path": "Cubical/Functions/Surjection.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "LuuBluum/cubical", "max_stars_repo_path": "Cubical/Functions/Surjection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 973, "size": 2752 }
module Prelude where -- Simple data open import Data.Bool public using (Bool ; false ; true ; not) open import Data.Empty public using (⊥ ; ⊥-elim) open import Data.Nat public using ( ℕ ; zero ; suc ; _+_ ; _*_ ; _≤_ ; z≤n ; s≤s ; _<_ ; _≟_ ; pred ) open import Data.Maybe public using (Maybe ; just ; nothing) open import Data.Unit public using (⊤ ; tt) open import Data.String public using (String) renaming (_++_ to _||_) -- List-like modules open import Data.List public using ( List ; [] ; _∷_ ; _++_ ; map ; drop ; reverse ; _∷ʳ_ ; length ) open import Data.List.All public using (All ; [] ; _∷_ ; lookup) renaming (map to ∀map) open import Membership public using ( _∈_ ; S ; Z ; _⊆_ ; _∷_ ; [] ; ⊆-refl ; ⊆-suc ; find-∈ ; lookup-parallel ; lookup-parallel-≡ ; translate-∈ ; translate-⊆ ; ⊆-trans ; All-⊆ ; ⊆++-l-refl ; lookup-all ; ∈-inc ; ⊆++-refl ; ⊆++comm' ; ⊆++comm ; ⊆-move ; ⊆-inc ; ⊆-skip ) open import Data.List.Any public using (Any ; here ; there) open import Singleton public using ([_]ˡ ; [_]ᵃ ; [_]ᵐ) -- Propositions and properties open import Relation.Binary.PropositionalEquality public using ( _≡_ ; refl ; sym ; cong ; cong₂ ; trans ; inspect ; [_] ) open import Relation.Nullary public using (Dec ; yes ; no ; ¬_) open import Relation.Nullary.Decidable public using (⌊_⌋) -- Other open import Level public using (Level; _⊔_ ; Lift ; lift) renaming (zero to lzero; suc to lsuc) open import Size public using (Size ; Size<_ ; ↑_ ; ∞)
{ "alphanum_fraction": 0.6119974474, "avg_line_length": 22.3857142857, "ext": "agda", "hexsha": "dae94ab2595f98b00c47dffb2844cccbe08b71b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 56, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 552, "size": 1567 }
{-# OPTIONS --without-K #-} module Model.Size where open import Relation.Binary using (Rel ; Preorder ; IsPreorder) import Data.Nat as ℕ import Data.Nat.Induction as ℕ import Data.Nat.Properties as ℕ import Relation.Binary.Construct.On as On open import Model.RGraph as RG using (RGraph) open import Source.Size as S using (Δ ; Ω) open import Source.Size.Substitution.Universe using (⟨_⟩ ; Sub⊢ᵤ) open import Util.HoTT.HLevel open import Util.Induction.WellFounded as WFInd using (Acc ; acc ; WellFounded) open import Util.Prelude import Source.Size.Substitution.Canonical as SC import Source.Size.Substitution.Universe as S open S.Ctx open S.Size open S.Sub open S.Sub⊢ᵤ open S.Var open S._<_ hiding (<-trans) infix 4 _<_ _≤_ private variable i j k : ℕ {- This is an encoding of the set of ordinals ℕ ∪ { ω + i | i ∈ ℕ } i.e. of the ordinals below ω*2. -} data Size : Set where zero+ : (i : ℕ) → Size ∞+ : (i : ℕ) → Size variable n m o : Size nat : ℕ → Size nat = zero+ abstract zero+-inj : zero+ i ≡ zero+ j → i ≡ j zero+-inj refl = refl zero+-≡-canon : (p : zero+ i ≡ zero+ j) → p ≡ cong zero+ (zero+-inj p) zero+-≡-canon refl = refl ∞+-inj : ∞+ i ≡ ∞+ j → i ≡ j ∞+-inj refl = refl ∞+-≡-canon : (p : ∞+ i ≡ ∞+ j) → p ≡ cong ∞+ (∞+-inj p) ∞+-≡-canon refl = refl Size-IsSet : IsSet Size Size-IsSet {zero+ i} {zero+ j} p refl = trans (zero+-≡-canon p) (cong (cong zero+) (ℕ.≡-irrelevant _ _)) Size-IsSet {∞+ i} {∞+ j} p refl = trans (∞+-≡-canon p) (cong (cong ∞+) (ℕ.≡-irrelevant _ _)) data _<_ : (n m : Size) → Set where zero+ : (i<j : i ℕ.< j) → zero+ i < zero+ j ∞+ : (i<j : i ℕ.< j) → ∞+ i < ∞+ j zero<∞ : zero+ i < ∞+ j data _≤_ (n m : Size) : Set where reflexive : n ≡ m → n ≤ m <→≤ : n < m → n ≤ m pattern ≤-refl = reflexive refl abstract <-trans : n < m → m < o → n < o <-trans (zero+ i<j) (zero+ j<k) = zero+ (ℕ.<-trans i<j j<k) <-trans (zero+ i<j) zero<∞ = zero<∞ <-trans (∞+ i<j) (∞+ j<k) = ∞+ (ℕ.<-trans i<j j<k) <-trans zero<∞ (∞+ i<j) = zero<∞ ≤→<→< : n ≤ m → m < o → n < o ≤→<→< ≤-refl m<o = m<o ≤→<→< (<→≤ n<m) m<o = <-trans n<m m<o <→≤→< : n < m → m ≤ o → n < o <→≤→< n<m ≤-refl = n<m <→≤→< n<m (<→≤ m<o) = <-trans n<m m<o ≤-trans : n ≤ m → m ≤ o → n ≤ o ≤-trans n≤m ≤-refl = n≤m ≤-trans n≤m (<→≤ m<o) = <→≤ (≤→<→< n≤m m<o) ⟦zero⟧ ⟦∞⟧ : Size ⟦zero⟧ = zero+ 0 ⟦∞⟧ = ∞+ 0 ⟦suc⟧ : Size → Size ⟦suc⟧ (zero+ i) = zero+ (suc i) ⟦suc⟧ (∞+ i) = ∞+ (suc i) abstract ⟦zero⟧<⟦suc⟧ : ⟦zero⟧ < ⟦suc⟧ n ⟦zero⟧<⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.z≤n) ⟦zero⟧<⟦suc⟧ {∞+ i} = zero<∞ ⟦zero⟧<⟦∞⟧ : ⟦zero⟧ < ⟦∞⟧ ⟦zero⟧<⟦∞⟧ = zero<∞ ⟦suc⟧<⟦suc⟧ : n < m → ⟦suc⟧ n < ⟦suc⟧ m ⟦suc⟧<⟦suc⟧ (zero+ i<j) = zero+ (ℕ.s≤s i<j) ⟦suc⟧<⟦suc⟧ (∞+ i<j) = ∞+ (ℕ.s≤s i<j) ⟦suc⟧<⟦suc⟧ zero<∞ = zero<∞ ⟦suc⟧<⟦∞⟧ : n < ⟦∞⟧ → ⟦suc⟧ n < ⟦∞⟧ ⟦suc⟧<⟦∞⟧ zero<∞ = zero<∞ <⟦suc⟧ : n < ⟦suc⟧ n <⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.≤-refl) <⟦suc⟧ {∞+ i} = ∞+ (ℕ.s≤s ℕ.≤-refl) Size< : Size → Set Size< n = ∃[ m ] (m < n) mutual ⟦_⟧Δ′ : S.Ctx → Set ⟦ [] ⟧Δ′ = ⊤ ⟦ Δ ∙ n ⟧Δ′ = Σ[ δ ∈ ⟦ Δ ⟧Δ′ ] (Size< (⟦ n ⟧n′ δ)) ⟦_⟧x′ : S.Var Δ → ⟦ Δ ⟧Δ′ → Size ⟦ zero ⟧x′ (δ , n , _) = n ⟦ suc x ⟧x′ (δ , _ , _) = ⟦ x ⟧x′ δ ⟦_⟧n′ : S.Size Δ → ⟦ Δ ⟧Δ′ → Size ⟦ var x ⟧n′ = ⟦ x ⟧x′ ⟦ ∞ ⟧n′ _ = ⟦∞⟧ ⟦ zero ⟧n′ _ = ⟦zero⟧ ⟦ suc n ⟧n′ = ⟦suc⟧ ∘ ⟦ n ⟧n′ abstract ⟦wk⟧ : ∀ (n m : S.Size Δ) {δ} → ⟦ S.wk {n = n} m ⟧n′ δ ≡ ⟦ m ⟧n′ (proj₁ δ) ⟦wk⟧ n (var x) = refl ⟦wk⟧ n ∞ = refl ⟦wk⟧ n zero = refl ⟦wk⟧ n (suc m) = cong ⟦suc⟧ (⟦wk⟧ n m) ⟦<⟧ₓ : ∀ (x : S.Var Δ) {δ} → ⟦ x ⟧x′ δ < ⟦ S.bound x ⟧n′ δ ⟦<⟧ₓ {Δ ∙ n} zero {δ , m , m<n} = subst (m <_) (sym (⟦wk⟧ n n)) m<n ⟦<⟧ₓ {Δ ∙ n} (suc x) {δ , m , m<n} = subst (⟦ x ⟧x′ δ <_) (sym (⟦wk⟧ n (S.bound x))) (⟦<⟧ₓ x) ⟦<⟧ : ∀ {n m : S.Size Δ} {δ} → n S.< m → ⟦ n ⟧n′ δ < ⟦ m ⟧n′ δ ⟦<⟧ (var {x = x} refl) = ⟦<⟧ₓ x ⟦<⟧ zero<suc = ⟦zero⟧<⟦suc⟧ ⟦<⟧ zero<∞ = ⟦zero⟧<⟦∞⟧ ⟦<⟧ (suc<suc n<m) = ⟦suc⟧<⟦suc⟧ (⟦<⟧ n<m) ⟦<⟧ (suc<∞ n<m) = ⟦suc⟧<⟦∞⟧ (⟦<⟧ n<m) ⟦<⟧ (S.<-trans n<m m<o) = <-trans (⟦<⟧ n<m) (⟦<⟧ m<o) ⟦<⟧ <suc = <⟦suc⟧ <-irrefl : ¬ n < n <-irrefl {zero+ i} (zero+ i<i) = ℕ.<⇒≢ i<i refl <-irrefl {∞+ i} (∞+ i<i) = ℕ.<⇒≢ i<i refl ≤-antisym : n ≤ m → m ≤ n → n ≡ m ≤-antisym ≤-refl m≤n = refl ≤-antisym (<→≤ n<m) m≤n = ⊥-elim (<-irrefl (<→≤→< n<m m≤n)) <-IsProp : IsProp (n < m) <-IsProp (zero+ i<j) (zero+ i<j₁) = cong zero+ (ℕ.<-irrelevant _ _) <-IsProp (∞+ i<j) (∞+ i<j₁) = cong ∞+ (ℕ.<-irrelevant _ _) <-IsProp zero<∞ zero<∞ = refl ≤-IsProp : IsProp (n ≤ m) ≤-IsProp (reflexive p) (reflexive q) = cong reflexive (Size-IsSet _ _) ≤-IsProp ≤-refl (<→≤ q) = ⊥-elim (<-irrefl q) ≤-IsProp (<→≤ p) ≤-refl = ⊥-elim (<-irrefl p) ≤-IsProp (<→≤ p) (<→≤ q) = cong <→≤ (<-IsProp p q) Size<-≡⁺ : (m k : Size< n) → proj₁ m ≡ proj₁ k → m ≡ k Size<-≡⁺ (m , _) (k , _) refl = cong (m ,_) (<-IsProp _ _) Size<-IsSet : ∀ {n} → IsSet (Size< n) Size<-IsSet = Σ-IsSet Size-IsSet λ _ → IsOfHLevel-suc 1 <-IsProp ⟦Δ⟧-IsSet : ∀ Δ → IsSet ⟦ Δ ⟧Δ′ ⟦Δ⟧-IsSet [] = ⊤-IsSet ⟦Δ⟧-IsSet (Δ ∙ n) = Σ-IsSet (⟦Δ⟧-IsSet Δ) λ _ → Size<-IsSet ⟦Δ⟧-HSet : S.Ctx → HSet 0ℓ ⟦Δ⟧-HSet Δ = HLevel⁺ _ (⟦Δ⟧-IsSet Δ) abstract ⟦Δ∙n⟧-≡⁺ : ∀ Δ (n : S.Size Δ) {δ δ′ : ⟦ Δ ⟧Δ′} {m m′ : Size} → (m<n : m < ⟦ n ⟧n′ δ) → (m′<n : m′ < ⟦ n ⟧n′ δ′) → δ ≡ δ′ → m ≡ m′ → (δ , m , m<n) ≡ (δ′ , m′ , m′<n) ⟦Δ∙n⟧-≡⁺ Δ n {δ} _ _ refl eq₂ = cong (δ ,_) (Size<-≡⁺ _ _ eq₂) zero+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (zero+ i) zero+-<ℕ-acc→<-acc (acc rs) = acc λ where (zero+ i) (zero+ i<j) → zero+-<ℕ-acc→<-acc (rs i i<j) zero+-acc : Acc _<_ (zero+ i) zero+-acc = zero+-<ℕ-acc→<-acc (ℕ.<-wellFounded _) ∞+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (∞+ i) ∞+-<ℕ-acc→<-acc (acc rs) = acc λ where (∞+ i) (∞+ i<j) → ∞+-<ℕ-acc→<-acc (rs i i<j) (zero+ i) zero<∞ → zero+-acc ∞+-acc : Acc _<_ (∞+ i) ∞+-acc = ∞+-<ℕ-acc→<-acc (ℕ.<-wellFounded _) <-wf : WellFounded _<_ <-wf m = acc λ where _ (zero+ i<j) → zero+-acc _ (∞+ i<j) → ∞+-acc _ zero<∞ → zero+-acc open WFInd.Build <-wf public using () renaming ( wfInd to <-ind ; wfRec to <-rec ; wfInd-unfold to <-ind-unfold ; wfRec-unfold to <-rec-unfold ; wfInd-ind to <-ind-ind ; wfIndΣ to <-indΣ ; wfIndΣ-unfold to <-indΣ-unfold ; wfIndΣ′ to <-indΣ′ ) <-ind-ind₂ = WFInd.wfInd-ind₂ <-wf mutual ⟦_⟧σ′ : ∀ {σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ′ → ⟦ Ω ⟧Δ′ ⟦ Id ⟧σ′ δ = δ ⟦ comp σ τ ⟧σ′ δ = ⟦ τ ⟧σ′ (⟦ σ ⟧σ′ δ) ⟦ Wk ⟧σ′ (δ , m) = δ ⟦ Lift {n = n} σ refl ⟧σ′ (δ , m , m<n) = ⟦ σ ⟧σ′ δ , m , subst (m <_) (⟦sub⟧ σ n) m<n ⟦ Sing {n = n} n<m ⟧σ′ δ = δ , ⟦ n ⟧n′ δ , ⟦<⟧ n<m ⟦ Skip ⟧σ′ ((δ , m , m<n) , k , k<m) = δ , k , <-trans k<m m<n abstract ⟦subV′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ} → ⟦ S.subV′ σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ) ⟦subV′⟧ Id x = refl ⟦subV′⟧ (comp {σ = σ} {τ = τ} ⊢σ ⊢τ) x = trans (⟦sub′⟧ ⊢σ (S.subV′ τ x)) (⟦subV′⟧ ⊢τ x) ⟦subV′⟧ Wk x = refl ⟦subV′⟧ (Lift ⊢σ refl) zero {δ , m} = refl ⟦subV′⟧ (Lift {σ = σ} {n = n} ⊢σ refl) (suc x) {δ , m} rewrite ⟦wk⟧ (S.sub σ n) (S.subV′ σ x) {δ , m} = ⟦subV′⟧ ⊢σ x ⟦subV′⟧ (Sing n<m) zero = refl ⟦subV′⟧ (Sing n<m) (suc x) = refl ⟦subV′⟧ Skip zero = refl ⟦subV′⟧ Skip (suc x) = refl ⟦sub′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ} → ⟦ S.sub′ σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ) ⟦sub′⟧ σ (var x) = ⟦subV′⟧ σ x ⟦sub′⟧ σ ∞ = refl ⟦sub′⟧ σ zero = refl ⟦sub′⟧ σ (suc n) = cong ⟦suc⟧ (⟦sub′⟧ σ n) ⟦sub⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ} → ⟦ S.sub σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ) ⟦sub⟧ {σ = σ} ⊢σ n {δ} = trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.sub′≡sub σ n))) (⟦sub′⟧ ⊢σ n) abstract ⟦subV⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ} → ⟦ S.subV σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ) ⟦subV⟧ {σ = σ} ⊢σ x {δ} = trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.subV′≡subV σ x))) (⟦subV′⟧ ⊢σ x) ⟦⟧σ-param : ∀ {σ} (p q : σ ∶ Δ ⇒ᵤ Ω) {δ} → ⟦ p ⟧σ′ δ ≡ ⟦ q ⟧σ′ δ ⟦⟧σ-param Id Id = refl ⟦⟧σ-param (comp p p′) (comp q q′) = trans (⟦⟧σ-param p′ q′) (cong (⟦ q′ ⟧σ′) (⟦⟧σ-param p q)) ⟦⟧σ-param Wk Wk = refl ⟦⟧σ-param {Ω = Ω ∙ m} (Lift p refl) (Lift q m≡n[σ]₁) rewrite S.Size-IsSet m≡n[σ]₁ refl = ⟦Δ∙n⟧-≡⁺ Ω m _ _ (⟦⟧σ-param p q) refl ⟦⟧σ-param {Δ = Δ} {σ = Sing {m = m} n} (Sing n<m) (Sing n<m₁) = ⟦Δ∙n⟧-≡⁺ Δ m (⟦<⟧ n<m) (⟦<⟧ n<m₁) refl refl ⟦⟧σ-param Skip Skip = refl ⟦_⟧Δ : S.Ctx → RGraph ⟦ Δ ⟧Δ = record { ObjHSet = ⟦Δ⟧-HSet Δ ; eqHProp = λ _ _ → ⊤-HProp } Sizes : RGraph Sizes = record { ObjHSet = HLevel⁺ Size Size-IsSet ; eqHProp = λ _ _ → ⊤-HProp } ⟦_⟧n : ∀ {Δ} (n : S.Size Δ) → ⟦ Δ ⟧Δ RG.⇒ Sizes ⟦ n ⟧n = record { fobj = ⟦ n ⟧n′ } ⟦_⟧σ : ∀ {Δ Ω σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ RG.⇒ ⟦ Ω ⟧Δ ⟦ σ ⟧σ = record { fobj = ⟦ σ ⟧σ′ } data _≤′_ : (n m : Size) → Set where zero+ : (i≤j : i ℕ.≤ j) → zero+ i ≤′ zero+ j ∞+ : (i≤j : i ℕ.≤ j) → ∞+ i ≤′ ∞+ j zero<∞ : zero+ i ≤′ ∞+ j abstract ≤→≤′ : n ≤ m → n ≤′ m ≤→≤′ {zero+ i} ≤-refl = zero+ ℕ.≤-refl ≤→≤′ {∞+ i} ≤-refl = ∞+ ℕ.≤-refl ≤→≤′ (<→≤ (zero+ i<j)) = zero+ (ℕ.<⇒≤ i<j) ≤→≤′ (<→≤ (∞+ i<j)) = ∞+ (ℕ.<⇒≤ i<j) ≤→≤′ (<→≤ zero<∞) = zero<∞ ≤′→≤ : n ≤′ m → n ≤ m ≤′→≤ (zero+ i≤j) with ℕ.≤⇒≤′ i≤j ... | ℕ.≤′-refl = ≤-refl ... | ℕ.≤′-step i≤′j = <→≤ (zero+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j))) ≤′→≤ (∞+ i≤j) with ℕ.≤⇒≤′ i≤j ... | ℕ.≤′-refl = ≤-refl ... | ℕ.≤′-step i≤′j = <→≤ (∞+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j))) ≤′→≤ zero<∞ = <→≤ zero<∞ 0≤n : ⟦zero⟧ ≤ n 0≤n {zero+ zero} = ≤-refl 0≤n {zero+ (suc i)} = <→≤ (zero+ (ℕ.s≤s ℕ.z≤n)) 0≤n {∞+ i} = <→≤ zero<∞ n<m→Sn≤m : n < m → ⟦suc⟧ n ≤ m n<m→Sn≤m (zero+ (ℕ.s≤s i≤j)) = ≤′→≤ (zero+ (ℕ.s≤s i≤j)) n<m→Sn≤m (∞+ (ℕ.s≤s i≤j)) = ≤′→≤ (∞+ (ℕ.s≤s i≤j)) n<m→Sn≤m zero<∞ = <→≤ zero<∞ Sn≤m→n<m : ⟦suc⟧ n ≤ m → n < m Sn≤m→n<m ≤-refl = <⟦suc⟧ Sn≤m→n<m (<→≤ Sn<m) = <-trans <⟦suc⟧ Sn<m
{ "alphanum_fraction": 0.4378064645, "avg_line_length": 23.6241134752, "ext": "agda", "hexsha": "1cafa22d9efc9d5fceec345738804c4d675e3df8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Size.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Size.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 5810, "size": 9993 }
open import Nat open import Prelude open import contexts open import core open import type-assignment-unicity module canonical-indeterminate-forms where -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at base type data cif-base : (Δ : hctx) (d : ihexp) → Set where CIFBEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBAp : ∀ {Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2 ==> b) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-base Δ d CIFBCast : ∀ {Δ d} → Σ[ d' ∈ ihexp ] ((d == d' ⟨ ⦇-⦈ ⇒ b ⟩) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-base Δ d CIFBFailedCast : ∀ {Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒⦇-⦈⇏ b ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ b) ) → cif-base Δ d canonical-indeterminate-forms-base : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d indet → cif-base Δ d canonical-indeterminate-forms-base TAConst () canonical-indeterminate-forms-base (TAVar x₁) () canonical-indeterminate-forms-base (TAAp wt wt₁) (IAp x ind x₁) = CIFBAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-base (TAEHole x x₁) IEHole = CIFBEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-base (TANEHole x wt x₁) (INEHole x₂) = CIFBNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-base (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFBCast (_ , refl , wt , ind , x₁) canonical-indeterminate-forms-base (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFBFailedCast (_ , _ , refl , x , x₅ , x₇) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at arrow type data cif-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CIFAEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFANEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFAAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-arr Δ d τ1 τ2 CIFACast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2') × (d' indet) × ((τ1' ==> τ2') ≠ (τ1 ==> τ2)) ) → cif-arr Δ d τ1 τ2 CIFACastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ==> ⦇-⦈ ⟩)) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ==> ⦇-⦈ ⟩) ) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇-⦈ ==> ⦇-⦈)) ) → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d indet → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr (TAVar x₁) () canonical-indeterminate-forms-arr (TALam _ wt) () canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TAFailedCast x x₁ GHole x₃) (IFailedCast x₄ x₅ GHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at hole type data cif-hole : (Δ : hctx) (d : ihexp) → Set where CIFHEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: ⦇-⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: ⦇-⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHAp : ∀ {Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇-⦈)) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-hole Δ d CIFHCast : ∀ {Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (d' indet) ) → cif-hole Δ d canonical-indeterminate-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d indet → cif-hole Δ d canonical-indeterminate-forms-hole (TAVar x₁) () canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind) canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ()) canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇) canonical-indeterminate-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d indet → τ ≠ b → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇-⦈ → ⊥ canonical-indeterminate-forms-coverage TAConst () nb na nh canonical-indeterminate-forms-coverage (TAVar x₁) () nb na nh canonical-indeterminate-forms-coverage (TALam _ wt) () nb na nh canonical-indeterminate-forms-coverage {τ = b} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = nb refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAEHole x x₁) IEHole nb na nh = nb refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAEHole x x₁) IEHole nb na nh = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAEHole x x₁) IEHole nb na nh = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TANEHole x wt x₁) (INEHole x₂) nb na nh = nb refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TANEHole x wt x₁) (INEHole x₂) nb na nh = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh = na τ τ₁ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastArr x₁ ind) nb na nh = na _ _ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastGroundHole x₁ ind) nb na nh = nh refl canonical-indeterminate-forms-coverage {τ = b} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = nb refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ z _ _₁ → z refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ _ _₁ z → z refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ _ z _₁ → z τ τ₁ refl
{ "alphanum_fraction": 0.4695514407, "avg_line_length": 46.7546296296, "ext": "agda", "hexsha": "88455b1b624fd998c168215cf3717ed355a3d69d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "canonical-indeterminate-forms.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "canonical-indeterminate-forms.agda", "max_line_length": 153, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "canonical-indeterminate-forms.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 4141, "size": 10099 }
module Cats.Util.SetoidReasoning where open import Relation.Binary.SetoidReasoning public open import Relation.Binary using (Setoid) open import Relation.Binary.EqReasoning as EqR using (_IsRelatedTo_) infixr 2 _≡⟨⟩_ _≡⟨⟩_ : ∀ {c l} {S : Setoid c l} → ∀ x {y} → _IsRelatedTo_ S x y → _IsRelatedTo_ S x y _≡⟨⟩_ {S = S} = EqR._≡⟨⟩_ S triangle : ∀ {l l′} (S : Setoid l l′) → let open Setoid S in ∀ m {x y} → x ≈ m → y ≈ m → x ≈ y triangle S m x≈m y≈m = trans x≈m (sym y≈m) where open Setoid S
{ "alphanum_fraction": 0.6291262136, "avg_line_length": 20.6, "ext": "agda", "hexsha": "1f3ba15e102866697103dc70ac2f31e0a5fb00f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Util/SetoidReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Util/SetoidReasoning.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Util/SetoidReasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 218, "size": 515 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Extensions.CSemigroup.Base where open import Fragment.Equational.Theory.Bundles open import Fragment.Algebra.Signature open import Fragment.Algebra.Free Σ-magma hiding (_~_) open import Fragment.Algebra.Homomorphism Σ-magma open import Fragment.Algebra.Algebra Σ-magma using (Algebra; IsAlgebra; Interpretation; Congruence) open import Fragment.Equational.FreeExtension Θ-csemigroup using (FreeExtension; IsFreeExtension) open import Fragment.Equational.Model Θ-csemigroup open import Fragment.Extensions.CSemigroup.Monomial open import Fragment.Setoid.Morphism using (_↝_) open import Level using (Level; _⊔_) open import Data.Nat using (ℕ) open import Data.Fin using (#_) open import Data.Vec using (Vec; []; _∷_; map) open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_) import Relation.Binary.Reasoning.Setoid as Reasoning open import Relation.Binary using (Setoid; IsEquivalence) open import Relation.Binary.PropositionalEquality as PE using (_≡_) private variable a ℓ : Level module _ (A : Model {a} {ℓ}) (n : ℕ) where private open module A = Setoid ∥ A ∥/≈ _·_ : ∥ A ∥ → ∥ A ∥ → ∥ A ∥ x · y = A ⟦ • ⟧ (x ∷ y ∷ []) ·-cong : ∀ {x y z w} → x ≈ y → z ≈ w → x · z ≈ y · w ·-cong x≈y z≈w = (A ⟦ • ⟧-cong) (x≈y ∷ z≈w ∷ []) ·-comm : ∀ (x y : ∥ A ∥) → x · y ≈ y · x ·-comm x y = ∥ A ∥ₐ-models comm (env {A = ∥ A ∥ₐ} (x ∷ y ∷ [])) ·-assoc : ∀ (x y z : ∥ A ∥) → (x · y) · z ≈ x · (y · z) ·-assoc x y z = ∥ A ∥ₐ-models assoc (env {A = ∥ A ∥ₐ} (x ∷ y ∷ z ∷ [])) data Blob : Set a where sta : ∥ A ∥ → Blob dyn : ∥ J' n ∥ → Blob blob : ∥ J' n ∥ → ∥ A ∥ → Blob infix 6 _≋_ data _≋_ : Blob → Blob → Set (a ⊔ ℓ) where sta : ∀ {x y} → x ≈ y → sta x ≋ sta y dyn : ∀ {xs ys} → xs ≡ ys → dyn xs ≋ dyn ys blob : ∀ {x y xs ys} → xs ≡ ys → x ≈ y → blob xs x ≋ blob ys y ≋-refl : ∀ {x} → x ≋ x ≋-refl {x = sta x} = sta A.refl ≋-refl {x = dyn xs} = dyn PE.refl ≋-refl {x = blob xs x} = blob PE.refl A.refl ≋-sym : ∀ {x y} → x ≋ y → y ≋ x ≋-sym (sta p) = sta (A.sym p) ≋-sym (dyn ps) = dyn (PE.sym ps) ≋-sym (blob ps p) = blob (PE.sym ps) (A.sym p) ≋-trans : ∀ {x y z} → x ≋ y → y ≋ z → x ≋ z ≋-trans (sta p) (sta q) = sta (A.trans p q) ≋-trans (dyn ps) (dyn qs) = dyn (PE.trans ps qs) ≋-trans (blob ps p) (blob qs q) = blob (PE.trans ps qs) (A.trans p q) ≋-isEquivalence : IsEquivalence _≋_ ≋-isEquivalence = record { refl = ≋-refl ; sym = ≋-sym ; trans = ≋-trans } Blob/≋ : Setoid _ _ Blob/≋ = record { Carrier = Blob ; _≈_ = _≋_ ; isEquivalence = ≋-isEquivalence } _++_ : Blob → Blob → Blob sta x ++ sta y = sta (x · y) dyn xs ++ dyn ys = dyn (xs ⊗ ys) sta x ++ dyn ys = blob ys x sta x ++ blob ys y = blob ys (x · y) dyn xs ++ sta y = blob xs y dyn xs ++ blob ys y = blob (xs ⊗ ys) y blob xs x ++ sta y = blob xs (x · y) blob xs x ++ dyn ys = blob (xs ⊗ ys) x blob xs x ++ blob ys y = blob (xs ⊗ ys) (x · y) ++-cong : ∀ {x y z w} → x ≋ y → z ≋ w → x ++ z ≋ y ++ w ++-cong (sta p) (sta q) = sta (·-cong p q) ++-cong (dyn ps) (dyn qs) = dyn (⊗-cong ps qs) ++-cong (sta p) (dyn qs) = blob qs p ++-cong (sta p) (blob qs q) = blob qs (·-cong p q) ++-cong (dyn ps) (sta q) = blob ps q ++-cong (dyn ps) (blob qs q) = blob (⊗-cong ps qs) q ++-cong (blob ps p) (sta q) = blob ps (·-cong p q) ++-cong (blob ps p) (dyn qs) = blob (⊗-cong ps qs) p ++-cong (blob ps p) (blob qs q) = blob (⊗-cong ps qs) (·-cong p q) ++-comm : ∀ x y → x ++ y ≋ y ++ x ++-comm (sta x) (sta y) = sta (·-comm x y) ++-comm (dyn xs) (dyn ys) = dyn (⊗-comm xs ys) ++-comm (sta x) (dyn ys) = ≋-refl ++-comm (sta x) (blob ys y) = blob PE.refl (·-comm x y) ++-comm (dyn xs) (sta y) = ≋-refl ++-comm (dyn xs) (blob ys y) = blob (⊗-comm xs ys) A.refl ++-comm (blob xs x) (sta y) = blob PE.refl (·-comm x y) ++-comm (blob xs x) (dyn ys) = blob (⊗-comm xs ys) A.refl ++-comm (blob xs x) (blob ys y) = blob (⊗-comm xs ys) (·-comm x y) ++-assoc : ∀ x y z → (x ++ y) ++ z ≋ x ++ (y ++ z) ++-assoc (sta x) (sta y) (sta z) = sta (·-assoc x y z) ++-assoc (dyn xs) (dyn ys) (dyn zs) = dyn (⊗-assoc xs ys zs) ++-assoc (sta x) (sta y) (dyn zs) = ≋-refl ++-assoc (sta x) (sta y) (blob zs z) = blob PE.refl (·-assoc x y z) ++-assoc (sta x) (dyn ys) (sta z) = ≋-refl ++-assoc (sta x) (dyn ys) (dyn zs) = ≋-refl ++-assoc (sta x) (dyn ys) (blob zs z) = ≋-refl ++-assoc (sta x) (blob ys y) (sta z) = blob PE.refl (·-assoc x y z) ++-assoc (sta x) (blob ys y) (dyn zs) = ≋-refl ++-assoc (sta x) (blob ys y) (blob zs z) = blob PE.refl (·-assoc x y z) ++-assoc (dyn xs) (sta y) (sta z) = ≋-refl ++-assoc (dyn xs) (sta y) (dyn zs) = ≋-refl ++-assoc (dyn xs) (sta y) (blob zs z) = ≋-refl ++-assoc (dyn xs) (dyn ys) (sta z) = ≋-refl ++-assoc (dyn xs) (dyn ys) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (dyn xs) (blob ys y) (sta z) = ≋-refl ++-assoc (dyn xs) (blob ys y) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (dyn xs) (blob ys y) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (blob xs x) (sta y) (sta z) = blob PE.refl (·-assoc x y z) ++-assoc (blob xs x) (sta y) (dyn zs) = ≋-refl ++-assoc (blob xs x) (sta y) (blob zs z) = blob PE.refl (·-assoc x y z) ++-assoc (blob xs x) (dyn ys) (sta z) = ≋-refl ++-assoc (blob xs x) (dyn ys) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (blob xs x) (dyn ys) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (blob xs x) (blob ys y) (sta z) = blob PE.refl (·-assoc x y z) ++-assoc (blob xs x) (blob ys y) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl ++-assoc (blob xs x) (blob ys y) (blob zs z) = blob (⊗-assoc xs ys zs) (·-assoc x y z) Blob⟦_⟧ : Interpretation Blob/≋ Blob⟦ • ⟧ (x ∷ y ∷ []) = x ++ y Blob⟦_⟧-cong : Congruence Blob/≋ Blob⟦_⟧ Blob⟦ • ⟧-cong (p ∷ q ∷ []) = ++-cong p q Blob/≋-isAlgebra : IsAlgebra Blob/≋ Blob/≋-isAlgebra = record { ⟦_⟧ = Blob⟦_⟧ ; ⟦⟧-cong = Blob⟦_⟧-cong } Blob/≋-algebra : Algebra Blob/≋-algebra = record { ∥_∥/≈ = Blob/≋ ; ∥_∥/≈-isAlgebra = Blob/≋-isAlgebra } Blob/≋-models : Models Blob/≋-algebra Blob/≋-models comm θ = ++-comm (θ (# 0)) (θ (# 1)) Blob/≋-models assoc θ = ++-assoc (θ (# 0)) (θ (# 1)) (θ (# 2)) Blob/≋-isModel : IsModel Blob/≋ Blob/≋-isModel = record { isAlgebra = Blob/≋-isAlgebra ; models = Blob/≋-models } Frex : Model Frex = record { ∥_∥/≈ = Blob/≋ ; isModel = Blob/≋-isModel } ∣inl∣ : ∥ A ∥ → ∥ Frex ∥ ∣inl∣ = sta ∣inl∣-cong : Congruent _≈_ _≋_ ∣inl∣ ∣inl∣-cong = sta ∣inl∣⃗ : ∥ A ∥/≈ ↝ ∥ Frex ∥/≈ ∣inl∣⃗ = record { ∣_∣ = ∣inl∣ ; ∣_∣-cong = ∣inl∣-cong } ∣inl∣-hom : Homomorphic ∥ A ∥ₐ ∥ Frex ∥ₐ ∣inl∣ ∣inl∣-hom • (x ∷ y ∷ []) = ≋-refl inl : ∥ A ∥ₐ ⟿ ∥ Frex ∥ₐ inl = record { ∣_∣⃗ = ∣inl∣⃗ ; ∣_∣-hom = ∣inl∣-hom } ∣inr∣ : ∥ J n ∥ → ∥ Frex ∥ ∣inr∣ x = dyn (∣ norm ∣ x) ∣inr∣-cong : Congruent ≈[ J n ] _≋_ ∣inr∣ ∣inr∣-cong p = dyn (∣ norm ∣-cong p) ∣inr∣⃗ : ∥ J n ∥/≈ ↝ ∥ Frex ∥/≈ ∣inr∣⃗ = record { ∣_∣ = ∣inr∣ ; ∣_∣-cong = ∣inr∣-cong } ∣inr∣-hom : Homomorphic ∥ J n ∥ₐ ∥ Frex ∥ₐ ∣inr∣ ∣inr∣-hom • (x ∷ y ∷ []) = dyn (∣ norm ∣-hom • (x ∷ y ∷ [])) inr : ∥ J n ∥ₐ ⟿ ∥ Frex ∥ₐ inr = record { ∣_∣⃗ = ∣inr∣⃗ ; ∣_∣-hom = ∣inr∣-hom } module _ {b ℓ} (X : Model {b} {ℓ}) where private open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_) _⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥ x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ []) ⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w ⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ []) ⊕-comm : ∀ (x y : ∥ X ∥) → x ⊕ y ~ y ⊕ x ⊕-comm x y = ∥ X ∥ₐ-models comm (env {A = ∥ X ∥ₐ} (x ∷ y ∷ [])) ⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z) ⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ [])) module _ (f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ) (g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ) where ∣resid∣ : ∥ Frex ∥ → ∥ X ∥ ∣resid∣ (sta x) = ∣ f ∣ x ∣resid∣ (dyn xs) = ∣ g ∣ (∣ syn ∣ xs) ∣resid∣ (blob xs x) = ∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x ∣resid∣-cong : Congruent _≋_ _~_ ∣resid∣ ∣resid∣-cong (sta p) = ∣ f ∣-cong p ∣resid∣-cong (dyn ps) = ∣ g ∣-cong (∣ syn ∣-cong ps) ∣resid∣-cong (blob ps p) = ⊕-cong (∣ g ∣-cong (∣ syn ∣-cong ps)) (∣ f ∣-cong p) open Reasoning ∥ X ∥/≈ ∣resid∣-hom : Homomorphic ∥ Frex ∥ₐ ∥ X ∥ₐ ∣resid∣ ∣resid∣-hom • (sta x ∷ sta y ∷ []) = ∣ f ∣-hom • (x ∷ y ∷ []) ∣resid∣-hom • (sta x ∷ dyn ys ∷ []) = ⊕-comm (∣ f ∣ x) _ ∣resid∣-hom • (sta x ∷ blob ys y ∷ []) = begin ∣ f ∣ x ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y) ≈⟨ ⊕-cong X.refl (⊕-comm _ (∣ f ∣ y)) ⟩ ∣ f ∣ x ⊕ (∣ f ∣ y ⊕ ∣ g ∣ (∣ syn ∣ ys)) ≈⟨ X.sym (⊕-assoc (∣ f ∣ x) (∣ f ∣ y) _) ⟩ (∣ f ∣ x ⊕ ∣ f ∣ y) ⊕ ∣ g ∣ (∣ syn ∣ ys) ≈⟨ ⊕-cong (∣ f ∣-hom • (x ∷ y ∷ [])) X.refl ⟩ ∣ f ∣ (x · y) ⊕ ∣ g ∣ (∣ syn ∣ ys) ≈⟨ ⊕-comm _ _ ⟩ ∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ (x · y) ∎ ∣resid∣-hom • (dyn xs ∷ sta y ∷ []) = X.refl ∣resid∣-hom • (dyn xs ∷ dyn ys ∷ []) = ∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ []) ∣resid∣-hom • (dyn xs ∷ blob ys y ∷ []) = begin ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y) ≈⟨ X.sym (⊕-assoc _ _ (∣ f ∣ y)) ⟩ (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ y ≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) X.refl ⟩ ∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ y ∎ ∣resid∣-hom • (blob xs x ∷ sta y ∷ []) = begin (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ ∣ f ∣ y ≈⟨ ⊕-assoc _ (∣ f ∣ x) (∣ f ∣ y) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y) ≈⟨ ⊕-cong X.refl (∣ f ∣-hom • (x ∷ y ∷ [])) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ (x · y) ∎ ∣resid∣-hom • (blob xs x ∷ dyn ys ∷ []) = begin (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ ∣ g ∣ (∣ syn ∣ ys) ≈⟨ ⊕-assoc _ (∣ f ∣ x) _ ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ ∣ g ∣ (∣ syn ∣ ys)) ≈⟨ ⊕-cong X.refl (⊕-comm (∣ f ∣ x) _) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ x) ≈⟨ X.sym (⊕-assoc _ _ (∣ f ∣ x)) ⟩ (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ x ≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) X.refl ⟩ ∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ x ∎ ∣resid∣-hom • (blob xs x ∷ blob ys y ∷ []) = begin (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y) ≈⟨ ⊕-assoc _ (∣ f ∣ x) _ ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y)) ≈⟨ ⊕-cong X.refl (X.sym (⊕-assoc (∣ f ∣ x) _ _)) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ ((∣ f ∣ x ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ y) ≈⟨ ⊕-cong X.refl (⊕-cong (⊕-comm (∣ f ∣ x) _) X.refl) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ ((∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ x) ⊕ ∣ f ∣ y) ≈⟨ ⊕-cong X.refl (⊕-assoc _ (∣ f ∣ x) _) ⟩ ∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y)) ≈⟨ X.sym (⊕-assoc _ _ _) ⟩ (∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y) ≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) (∣ f ∣-hom • (x ∷ y ∷ [])) ⟩ ∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ (x · y) ∎ ∣resid∣⃗ : ∥ Frex ∥/≈ ↝ ∥ X ∥/≈ ∣resid∣⃗ = record { ∣_∣ = ∣resid∣ ; ∣_∣-cong = ∣resid∣-cong } _[_,_] : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ _[_,_] = record { ∣_∣⃗ = ∣resid∣⃗ ; ∣_∣-hom = ∣resid∣-hom } module _ {b ℓ} {X : Model {b} {ℓ}} where private open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_) _⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥ x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ []) ⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w ⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ []) ⊕-comm : ∀ (x y : ∥ X ∥) → x ⊕ y ~ y ⊕ x ⊕-comm x y = ∥ X ∥ₐ-models comm (env {A = ∥ X ∥ₐ} (x ∷ y ∷ [])) ⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z) ⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ [])) module _ {f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ} {g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ} where commute₁ : X [ f , g ] ⊙ inl ≗ f commute₁ = X.refl commute₂ : X [ f , g ] ⊙ inr ≗ g commute₂ {x} = ∣ g ∣-cong (syn⊙norm≗id {x = x}) module _ {h : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ} (c₁ : h ⊙ inl ≗ f) (c₂ : h ⊙ inr ≗ g) where open Reasoning ∥ X ∥/≈ universal : X [ f , g ] ≗ h universal {sta x} = X.sym c₁ universal {dyn xs} = begin ∣ g ∣ (∣ syn ∣ xs) ≈⟨ X.sym c₂ ⟩ ∣ h ∣ (dyn (∣ norm ∣ (∣ syn ∣ xs))) ≈⟨ ∣ h ∣-cong (dyn norm⊙syn≗id) ⟩ ∣ h ∣ (dyn xs) ∎ universal {blob xs x} = begin ∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x ≈⟨ ⊕-cong universal universal ⟩ ∣ h ∣ (dyn xs) ⊕ ∣ h ∣ (sta x) ≈⟨ ∣ h ∣-hom • (dyn xs ∷ sta x ∷ []) ⟩ ∣ h ∣ (blob xs x) ∎ CSemigroupFrex : FreeExtension CSemigroupFrex = record { _[_] = Frex ; _[_]-isFrex = isFrex } where isFrex : IsFreeExtension Frex isFrex A n = record { inl = inl A n ; inr = inr A n ; _[_,_] = _[_,_] A n ; commute₁ = λ {_ _ X f g} → commute₁ A n {X = X} {f} {g} ; commute₂ = λ {_ _ X f g} → commute₂ A n {X = X} {f} {g} ; universal = λ {_ _ X f g h} → universal A n {X = X} {f} {g} {h} }
{ "alphanum_fraction": 0.4032755431, "avg_line_length": 36.851010101, "ext": "agda", "hexsha": "6068c298befdbeb551e89782a061eb181585f3bd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Extensions/CSemigroup/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Extensions/CSemigroup/Base.agda", "max_line_length": 88, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Extensions/CSemigroup/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 6924, "size": 14593 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} open import Light.Library.Data.Natural as ℕ using (ℕ ; predecessor ; zero) open import Light.Package using (Package) module Light.Literals.Level ⦃ natural‐package : Package record { ℕ } ⦄ where open import Light.Literals.Definition.Natural using (FromNatural) open FromNatural using (convert) open import Light.Level using (Level ; 0ℓ ; ++_) open import Light.Library.Relation.Decidable using (if_then_else_) open import Light.Library.Relation.Binary.Equality using (_≈_) open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality) instance from‐natural : FromNatural Level convert from‐natural n = if n ≈ zero then 0ℓ else ++ convert from‐natural (predecessor n)
{ "alphanum_fraction": 0.762925599, "avg_line_length": 39.65, "ext": "agda", "hexsha": "51a1fe974b67ec2f2130253588de5b24ff7b3fa3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Literals/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Literals/Level.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Literals/Level.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 189, "size": 793 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pi open import lib.types.Unit module lib.types.Circle where {- Idea : data S¹ : Type₀ where base : S¹ loop : base == base I’m using Dan Licata’s trick to have a higher inductive type with definitional reduction rule for [base] -} module _ where private data #S¹-aux : Type₀ where #base : #S¹-aux data #S¹ : Type₀ where #s¹ : #S¹-aux → (Unit → Unit) → #S¹ S¹ : Type₀ S¹ = #S¹ base : S¹ base = #s¹ #base _ postulate -- HIT loop : base == base module S¹Elim {i} {P : S¹ → Type i} (base* : P base) (loop* : base* == base* [ P ↓ loop ]) where f : Π S¹ P f = f-aux phantom where f-aux : Phantom loop* → Π S¹ P f-aux phantom (#s¹ #base _) = base* postulate -- HIT loop-β : apd f loop == loop* open S¹Elim public using () renaming (f to S¹-elim) module S¹Rec {i} {A : Type i} (base* : A) (loop* : base* == base*) where private module M = S¹Elim base* (↓-cst-in loop*) f : S¹ → A f = M.f loop-β : ap f loop == loop* loop-β = apd=cst-in {f = f} M.loop-β module S¹RecType {i} (A : Type i) (e : A ≃ A) where open S¹Rec A (ua e) public coe-loop-β : (a : A) → coe (ap f loop) a == –> e a coe-loop-β a = coe (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe u a) ⟩ coe (ua e) a =⟨ coe-β e a ⟩ –> e a ∎ coe!-loop-β : (a : A) → coe! (ap f loop) a == <– e a coe!-loop-β a = coe! (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe! u a) ⟩ coe! (ua e) a =⟨ coe!-β e a ⟩ <– e a ∎ ↓-loop-out : {a a' : A} → a == a' [ f ↓ loop ] → –> e a == a' ↓-loop-out {a} {a'} p = –> e a =⟨ ! (coe-loop-β a) ⟩ coe (ap f loop) a =⟨ to-transp p ⟩ a' ∎ import lib.types.Generic1HIT as Generic1HIT module S¹G = Generic1HIT Unit Unit (idf _) (idf _) module P = S¹G.RecType (cst A) (cst e) private generic-S¹ : Σ S¹ f == Σ S¹G.T P.f generic-S¹ = eqv-tot where module To = S¹Rec (S¹G.cc tt) (S¹G.pp tt) to = To.f module From = S¹G.Rec (cst base) (cst loop) from : S¹G.T → S¹ from = From.f abstract to-from : (x : S¹G.T) → to (from x) == x to-from = S¹G.elim (λ _ → idp) (λ _ → ↓-∘=idf-in to from (ap to (ap from (S¹G.pp tt)) =⟨ From.pp-β tt |in-ctx ap to ⟩ ap to loop =⟨ To.loop-β ⟩ S¹G.pp tt ∎)) from-to : (x : S¹) → from (to x) == x from-to = S¹-elim idp (↓-∘=idf-in from to (ap from (ap to loop) =⟨ To.loop-β |in-ctx ap from ⟩ ap from (S¹G.pp tt) =⟨ From.pp-β tt ⟩ loop ∎)) eqv : S¹ ≃ S¹G.T eqv = equiv to from to-from from-to eqv-fib : f == P.f [ (λ X → (X → Type _)) ↓ ua eqv ] eqv-fib = ↓-app→cst-in (λ {t} p → S¹-elim {P = λ t → f t == P.f (–> eqv t)} idp (↓-='-in (ap (P.f ∘ (–> eqv)) loop =⟨ ap-∘ P.f to loop ⟩ ap P.f (ap to loop) =⟨ To.loop-β |in-ctx ap P.f ⟩ ap P.f (S¹G.pp tt) =⟨ P.pp-β tt ⟩ ua e =⟨ ! loop-β ⟩ ap f loop ∎)) t ∙ ap P.f (↓-idf-ua-out eqv p)) eqv-tot : Σ S¹ f == Σ S¹G.T P.f eqv-tot = ap (uncurry Σ) (pair= (ua eqv) eqv-fib) import lib.types.Flattening as Flattening module FlatteningS¹ = Flattening Unit Unit (idf _) (idf _) (cst A) (cst e) open FlatteningS¹ public hiding (flattening-equiv; module P) flattening-S¹ : Σ S¹ f == Wt flattening-S¹ = generic-S¹ ∙ ua FlatteningS¹.flattening-equiv
{ "alphanum_fraction": 0.5051090859, "avg_line_length": 26.4306569343, "ext": "agda", "hexsha": "4078e56ab4ecfa88a34e6a489a19cecbaea80711", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Circle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Circle.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Circle.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1458, "size": 3621 }
-- Andreas, 2015-06-24 {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.with.strip:20 #-} module _ where open import Common.Equality open import Common.Product module SynchronousIO (I O : Set) where F : Set → Set F S = I → O × S record SyncIO : Set₁ where field St : Set tr : St → F St module Eq (A₁ A₂ : SyncIO) where open SyncIO A₁ renaming (St to S₁; tr to tr₁) open SyncIO A₂ renaming (St to S₂; tr to tr₂) record BiSim (s₁ : S₁) (s₂ : S₂) : Set where coinductive field force : ∀ (i : I) → let (o₁ , t₁) = tr₁ s₁ i (o₂ , t₂) = tr₂ s₂ i in o₁ ≡ o₂ × BiSim t₁ t₂ module Trans (A₁ A₂ A₃ : SyncIO) where open SyncIO A₁ renaming (St to S₁; tr to tr₁) open SyncIO A₂ renaming (St to S₂; tr to tr₂) open SyncIO A₃ renaming (St to S₃; tr to tr₃) open Eq A₁ A₂ renaming (BiSim to _₁≅₂_; module BiSim to B₁₂) open Eq A₂ A₃ renaming (BiSim to _₂≅₃_; module BiSim to B₂₃) open Eq A₁ A₃ renaming (BiSim to _₁≅₃_; module BiSim to B₁₃) open B₁₂ renaming (force to force₁₂) open B₂₃ renaming (force to force₂₃) open B₁₃ renaming (force to force₁₃) transitivity : ∀{s₁ s₂ s₃} (p : s₁ ₁≅₂ s₂) (p' : s₂ ₂≅₃ s₃) → s₁ ₁≅₃ s₃ force₁₃ (transitivity p p') i with force₁₂ p i | force₂₃ p' i force₁₃ (transitivity p p') i | (q , r) | (q' , r') = trans q q' , transitivity r r' -- with-clause stripping failed for projections from module applications -- should work now
{ "alphanum_fraction": 0.6112956811, "avg_line_length": 27.3636363636, "ext": "agda", "hexsha": "7468c07907eeb1ebb504c27d641ecf2ed5526c8d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1551a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1551a.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1551a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 575, "size": 1505 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _∷_; _∷ʳ_; _++_) open import Data.List.Properties using (∷-injective) open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _∉_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst; subst₂; cong) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_) open import Function.Base using (case_of_) open import Common module Discriminator {ℙ : Set} (message : Message ℙ) where open import Trace message open import SessionType message open import HasTrace message open import TraceSet message open import Transitions message open import Subtyping message open import Divergence message open import Session message open import Semantics message make-diverge-backward : ∀{T S α} (tα : T HasTrace (α ∷ [])) (sα : S HasTrace (α ∷ [])) -> T ↑ S -> after tα ↑ after sα -> DivergeBackward tα sα make-diverge-backward tα sα divε divα none = divε make-diverge-backward tα sα divε divα (some none) = subst₂ (λ u v -> after u ↑ after v) (sym (⊑-has-trace-after tα)) (sym (⊑-has-trace-after sα)) divα has-trace-after-split : ∀{T φ ψ} -> (tφ : T HasTrace φ) (tφψ : T HasTrace (φ ++ ψ)) -> has-trace-after tφ (split-trace tφ tφψ) ≡ tφψ has-trace-after-split (_ , tdef , refl) tφψ = refl has-trace-after-split (_ , tdef , step inp tr) (_ , sdef , step inp sr) rewrite has-trace-after-split (_ , tdef , tr) (_ , sdef , sr) = refl has-trace-after-split (T , tdef , step (out fx) tr) (S , sdef , step (out gx) sr) rewrite has-trace-after-split (_ , tdef , tr) (_ , sdef , sr) = cong (S ,_) (cong (sdef ,_) (cong (λ z -> step z sr) (cong out (Defined-eq (transitions+defined->defined sr sdef) gx)))) disc-set-has-outputs : ∀{T S φ x} -> T <: S -> φ ∈ DiscSet T S -> T HasTrace (φ ∷ʳ O x) -> S HasTrace φ -> φ ∷ʳ O x ∈ DiscSet T S disc-set-has-outputs {_} {S} {φ} {x} sub (inc tφ sφ div←φ) tφx _ with S HasTrace? (φ ∷ʳ O x) ... | yes sφx = let tφ/x = split-trace tφ tφx in let sφ/x = split-trace sφ sφx in let divφ = subst₂ (λ u v -> after u ↑ after v) (⊑-has-trace-after tφ) (⊑-has-trace-after sφ) (div←φ (⊑-refl φ)) in let divx = _↑_.divergence divφ {[]} {x} none tφ/x sφ/x in let divφ←x = make-diverge-backward tφ/x sφ/x divφ divx in let div←φx = subst₂ DivergeBackward (has-trace-after-split tφ tφx) (has-trace-after-split sφ sφx) (append-diverge-backward tφ sφ tφ/x sφ/x div←φ divφ←x) in inc tφx sφx div←φx ... | no nsφx = exc refl tφ sφ tφx nsφx div←φ disc-set-has-outputs sub (exc eq tψ sψ tφ nsφ div←ψ) tφx sφ = ⊥-elim (nsφ sφ) defined-becomes-nil : ∀{T φ S} -> Defined T -> ¬ Defined S -> Transitions T φ S -> ∃[ ψ ] ∃[ x ] (φ ≡ ψ ∷ʳ I x × T HasTrace ψ × ¬ T HasTrace φ) defined-becomes-nil def ndef refl = ⊥-elim (ndef def) defined-becomes-nil def ndef (step (inp {_} {x}) refl) = [] , x , refl , (_ , inp , refl) , inp-has-no-trace λ { (_ , def , refl) → ⊥-elim (ndef def) } defined-becomes-nil def ndef (step inp tr@(step t _)) with defined-becomes-nil (transition->defined t) ndef tr ... | ψ , x , eq , tψ , ntφ = I _ ∷ ψ , x , cong (I _ ∷_) eq , inp-has-trace tψ , inp-has-no-trace ntφ defined-becomes-nil def ndef (step (out fx) tr) with defined-becomes-nil fx ndef tr ... | ψ , x , refl , tψ , ntφ = O _ ∷ ψ , x , refl , out-has-trace tψ , out-has-no-trace ntφ sub+diverge->defined : ∀{T S} -> T <: S -> T ↑ S -> Defined T × Defined S sub+diverge->defined nil<:any div with _↑_.with-trace div ... | _ , def , tr = ⊥-elim (contraposition (transitions+defined->defined tr) (λ ()) def) sub+diverge->defined (end<:def (inp _) def) _ = inp , def sub+diverge->defined (end<:def (out _) def) _ = out , def sub+diverge->defined (inp<:inp _ _) _ = inp , inp sub+diverge->defined (out<:out _ _ _) _ = out , out sub+diverge->has-empty-trace : ∀{T S} -> T <: S -> T ↑ S -> DiscSet T S [] sub+diverge->has-empty-trace nil<:any div with _↑_.with-trace div ... | tφ = ⊥-elim (nil-has-no-trace tφ) sub+diverge->has-empty-trace (end<:def e def) div with _↑_.with-trace div | _↑_.without-trace div ... | tφ | nsφ rewrite end-has-empty-trace e tφ = ⊥-elim (nsφ (defined->has-empty-trace def)) sub+diverge->has-empty-trace (inp<:inp _ _) div = inc (_ , inp , refl) (_ , inp , refl) λ { none → div } sub+diverge->has-empty-trace (out<:out _ _ _) div = inc (_ , out , refl) (_ , out , refl) λ { none → div } discriminator : SessionType -> SessionType -> SessionType discriminator T S = decode (co-semantics (disc-set->semantics T S)) .force discriminator-disc-set-sub : (T S : SessionType) -> CoSet ⟦ discriminator T S ⟧ ⊆ DiscSet T S discriminator-disc-set-sub T S rφ = co-inversion {DiscSet T S} (decode-sub (co-semantics (disc-set->semantics T S)) rφ) discriminator-disc-set-sup : (T S : SessionType) -> DiscSet T S ⊆ CoSet ⟦ discriminator T S ⟧ discriminator-disc-set-sup T S dφ = decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dφ) sub+diverge->discriminator-defined : ∀{T S} -> T <: S -> T ↑ S -> Defined (discriminator T S) sub+diverge->discriminator-defined {T} {S} sub div = has-trace->defined (co-set-right->left {DiscSet T S} {⟦ discriminator T S ⟧} (discriminator-disc-set-sup T S) (co-definition {DiscSet T S} {[]} (sub+diverge->has-empty-trace sub div))) input-does-not-win : ∀{T S φ x} (tφ : T HasTrace φ) -> Transitions T (φ ∷ʳ I x) S -> ¬ Win (after tφ) input-does-not-win (_ , _ , refl) (step inp _) () input-does-not-win (_ , def , step inp tr) (step inp sr) w = input-does-not-win (_ , def , tr) sr w input-does-not-win (_ , def , step (out _) tr) (step (out _) sr) w = input-does-not-win (_ , def , tr) sr w ends-with-output->has-trace : ∀{T S φ x} -> Transitions T (φ ∷ʳ O x) S -> T HasTrace (φ ∷ʳ O x) ends-with-output->has-trace tr = _ , output-transitions->defined tr , tr co-trace-swap : ∀{φ ψ} -> co-trace φ ≡ ψ -> φ ≡ co-trace ψ co-trace-swap {φ} eq rewrite sym eq rewrite co-trace-involution φ = refl co-trace-swap-⊑ : ∀{φ ψ} -> co-trace φ ⊑ ψ -> φ ⊑ co-trace ψ co-trace-swap-⊑ {[]} none = none co-trace-swap-⊑ {α ∷ _} (some le) rewrite co-action-involution α = some (co-trace-swap-⊑ le) co-maximal : ∀{X φ} -> φ ∈ Maximal X -> co-trace φ ∈ Maximal (CoSet X) co-maximal {X} (maximal xφ F) = maximal (co-definition {X} xφ) λ le xψ -> let le' = co-trace-swap-⊑ le in let eq = F le' xψ in co-trace-swap eq co-maximal-2 : ∀{X φ} -> co-trace φ ∈ Maximal (CoSet X) -> φ ∈ Maximal X co-maximal-2 {X} (maximal wit F) = maximal (co-inversion {X} wit) λ le xψ -> let le' = ⊑-co-trace le in let eq = F le' (co-definition {X} xψ) in co-trace-injective eq co-trace->co-set : ∀{X φ} -> co-trace φ ∈ Maximal X -> φ ∈ Maximal (CoSet X) co-trace->co-set {_} {φ} cxφ with co-maximal cxφ ... | res rewrite co-trace-involution φ = res discriminator-after-sync->defined : ∀{R T S T' φ} -> T <: S -> (rdef : Defined (discriminator T S)) (rr : Transitions (discriminator T S) (co-trace φ) R) (tr : Transitions T φ T') -> Defined R discriminator-after-sync->defined {R} {T} {S} sub rdef rr tr with Defined? R ... | yes rdef' = rdef' ... | no nrdef' with defined-becomes-nil rdef nrdef' rr ... | ψ , x , eq , rψ , nrφ rewrite eq with input-does-not-win rψ rr ... | nwin with contraposition (decode+maximal->win (co-semantics (disc-set->semantics T S)) rψ) nwin ... | ncψ with decode-sub (co-semantics (disc-set->semantics T S)) rψ ... | dsψ with contraposition (disc-set-maximal-1 dsψ) (contraposition co-trace->co-set ncψ) ... | nnsψ with has-trace-double-negation nnsψ ... | sψ with (let tr' = subst (λ z -> Transitions _ z _) (co-trace-swap eq) tr in let tr'' = subst (λ z -> Transitions _ z _) (co-trace-++ ψ (I x ∷ [])) tr' in ends-with-output->has-trace tr'') ... | tψ with disc-set-has-outputs sub dsψ tψ sψ ... | dsφ with decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dsφ) ... | rφ = let rφ' = subst (_ HasTrace_) (co-trace-++ (co-trace ψ) (O x ∷ [])) rφ in let rφ'' = subst (λ z -> _ HasTrace (z ++ _)) (co-trace-involution ψ) rφ' in ⊥-elim (nrφ rφ'') after-trace-defined : ∀{T T' φ} -> T HasTrace φ -> Transitions T φ T' -> Defined T' after-trace-defined (_ , def , refl) refl = def after-trace-defined (_ , def , step inp tr) (step inp sr) = after-trace-defined (_ , def , tr) sr after-trace-defined (_ , def , step (out _) tr) (step (out _) sr) = after-trace-defined (_ , def , tr) sr after-trace-defined-2 : ∀{T φ} (tφ : T HasTrace φ) -> Defined (after tφ) after-trace-defined-2 (_ , def , _) = def ⊑-after : ∀{φ ψ} -> φ ⊑ ψ -> Trace ⊑-after {_} {ψ} none = ψ ⊑-after (some le) = ⊑-after le ⊑-after-co-trace : ∀{φ ψ} (le : φ ⊑ ψ) -> ⊑-after (⊑-co-trace le) ≡ co-trace (⊑-after le) ⊑-after-co-trace none = refl ⊑-after-co-trace (some le) = ⊑-after-co-trace le extend-transitions : ∀{T S φ ψ} (le : φ ⊑ ψ) (tr : Transitions T φ S) (tψ : T HasTrace ψ) -> Transitions S (⊑-after le) (after tψ) extend-transitions none refl (_ , _ , sr) = sr extend-transitions (some le) (step inp tr) (_ , sdef , step inp sr) = extend-transitions le tr (_ , sdef , sr) extend-transitions (some le) (step (out _) tr) (_ , sdef , step (out _) sr) = extend-transitions le tr (_ , sdef , sr) discriminator-compliant : ∀{T S} -> T <: S -> T ↑ S -> FairComplianceS (discriminator T S # T) discriminator-compliant {T} {S} sub div {R' # T'} reds with unzip-red* reds ... | φ , rr , tr with sub+diverge->discriminator-defined sub div | sub+diverge->defined sub div ... | rdef | tdef , sdef with discriminator-after-sync->defined sub rdef rr tr ... | rdef' with decode-sub (co-semantics (disc-set->semantics T S)) (_ , rdef' , rr) ... | dsφ rewrite co-trace-involution φ = case completion sub dsφ of λ { (inj₁ (ψ , lt , cψ@(maximal dsψ _))) -> let rψ = decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dsψ) in let tψ = disc-set-subset dsψ in let rr' = subst (λ z -> Transitions _ z _) (⊑-after-co-trace (⊏->⊑ lt)) (extend-transitions (⊑-co-trace (⊏->⊑ lt)) rr rψ) in let tr' = extend-transitions (⊏->⊑ lt) tr tψ in let winr = decode+maximal->win (co-semantics (disc-set->semantics T S)) rψ (co-maximal cψ) in let reds' = zip-red* rr' tr' in _ , reds' , win#def winr (after-trace-defined-2 tψ) ; (inj₂ (cφ , nsφ)) -> let winr = decode+maximal->win (co-semantics (disc-set->semantics T S)) (_ , rdef' , rr) (co-maximal cφ) in _ , ε , win#def winr (after-trace-defined (disc-set-subset dsφ) tr) } discriminator-not-compliant : ∀{T S} -> T <: S -> T ↑ S -> ¬ FairComplianceS (discriminator T S # S) discriminator-not-compliant {T} {S} sub div comp with comp ε ... | _ , reds , win#def w def with unzip-red* reds ... | φ , rr , sr with decode+win->maximal (co-semantics (disc-set->semantics T S)) (_ , win->defined w , rr) w ... | cφ with co-maximal-2 {DiscSet T S} cφ ... | csφ with disc-set-maximal-2 sub csφ ... | nsφ = nsφ (_ , def , sr)
{ "alphanum_fraction": 0.6372328459, "avg_line_length": 49.1936758893, "ext": "agda", "hexsha": "619435d86b8eb31995758505e6aa6a507e99efa6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Discriminator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Discriminator.agda", "max_line_length": 186, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Discriminator.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 4340, "size": 12446 }
------------------------------------------------------------------------ -- A type for values that should be erased at run-time ------------------------------------------------------------------------ -- Most of the definitions in this module are reexported, in one way -- or another, from Erased. -- This module imports Function-universe, but not Equivalence.Erased. {-# OPTIONS --without-K --safe #-} open import Equality module Erased.Level-1 {e⁺} (eq-J : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq-J hiding (module Extensionality) open import Logical-equivalence using (_⇔_) open import Prelude hiding ([_,_]) open import Bijection eq-J as Bijection using (_↔_; Has-quasi-inverse) open import Embedding eq-J as Emb using (Embedding; Is-embedding) open import Equality.Decidable-UIP eq-J open import Equivalence eq-J as Eq using (_≃_; Is-equivalence) import Equivalence.Contractible-preimages eq-J as CP open import Equivalence.Erased.Basics eq-J as EEq using (_≃ᴱ_; Is-equivalenceᴱ) open import Equivalence-relation eq-J open import Function-universe eq-J as F hiding (id; _∘_) open import H-level eq-J as H-level open import H-level.Closure eq-J open import Injection eq-J using (_↣_; Injective) open import Monad eq-J hiding (map; map-id; map-∘) open import Preimage eq-J using (_⁻¹_) open import Surjection eq-J as Surjection using (_↠_; Split-surjective) open import Univalence-axiom eq-J as U using (≡⇒→; _²/≡) private variable a b c d ℓ ℓ₁ ℓ₂ q r : Level A B : Type a eq k k′ p x y : A P : A → Type p f g : A → B n : ℕ ------------------------------------------------------------------------ -- Some basic definitions open import Erased.Basics public ------------------------------------------------------------------------ -- Stability mutual -- A type A is stable if Erased A implies A. Stable : Type a → Type a Stable = Stable-[ implication ] -- A generalisation of Stable. Stable-[_] : Kind → Type a → Type a Stable-[ k ] A = Erased A ↝[ k ] A -- A variant of Stable-[ equivalence ]. Very-stable : Type a → Type a Very-stable A = Is-equivalence [ A ∣_]→ -- A variant of Stable-[ equivalenceᴱ ]. Very-stableᴱ : Type a → Type a Very-stableᴱ A = Is-equivalenceᴱ [ A ∣_]→ -- Variants of the definitions above for equality. Stable-≡ : Type a → Type a Stable-≡ = For-iterated-equality 1 Stable Stable-≡-[_] : Kind → Type a → Type a Stable-≡-[ k ] = For-iterated-equality 1 Stable-[ k ] Very-stable-≡ : Type a → Type a Very-stable-≡ = For-iterated-equality 1 Very-stable Very-stableᴱ-≡ : Type a → Type a Very-stableᴱ-≡ = For-iterated-equality 1 Very-stableᴱ ------------------------------------------------------------------------ -- Erased is a monad -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : {@0 A : Type a} {@0 B : Type b} → Erased A → (A → Erased B) → Erased B x >>=′ f = [ erased (f (erased x)) ] instance -- Erased is a monad. raw-monad : Raw-monad (λ (A : Type a) → Erased A) Raw-monad.return raw-monad = [_]→ Raw-monad._>>=_ raw-monad = _>>=′_ monad : Monad (λ (A : Type a) → Erased A) Monad.raw-monad monad = raw-monad Monad.left-identity monad = λ _ _ → refl _ Monad.right-identity monad = λ _ → refl _ Monad.associativity monad = λ _ _ _ → refl _ ------------------------------------------------------------------------ -- Erased preserves some kinds of functions -- Erased is functorial for dependent functions. map-id : {@0 A : Type a} → map id ≡ id {A = Erased A} map-id = refl _ map-∘ : {@0 A : Type a} {@0 P : A → Type b} {@0 Q : {x : A} → P x → Type c} (@0 f : ∀ {x} (y : P x) → Q y) (@0 g : (x : A) → P x) → map (f ∘ g) ≡ map f ∘ map g map-∘ _ _ = refl _ -- Erased preserves logical equivalences. Erased-cong-⇔ : {@0 A : Type a} {@0 B : Type b} → @0 A ⇔ B → Erased A ⇔ Erased B Erased-cong-⇔ A⇔B = record { to = map (_⇔_.to A⇔B) ; from = map (_⇔_.from A⇔B) } -- Erased is functorial for logical equivalences. Erased-cong-⇔-id : {@0 A : Type a} → Erased-cong-⇔ F.id ≡ F.id {A = Erased A} Erased-cong-⇔-id = refl _ Erased-cong-⇔-∘ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} (@0 f : B ⇔ C) (@0 g : A ⇔ B) → Erased-cong-⇔ (f F.∘ g) ≡ Erased-cong-⇔ f F.∘ Erased-cong-⇔ g Erased-cong-⇔-∘ _ _ = refl _ -- Erased preserves equivalences with erased proofs. Erased-cong-≃ᴱ : {@0 A : Type a} {@0 B : Type b} → @0 A ≃ᴱ B → Erased A ≃ᴱ Erased B Erased-cong-≃ᴱ A≃ᴱB = EEq.↔→≃ᴱ (map (_≃ᴱ_.to A≃ᴱB)) (map (_≃ᴱ_.from A≃ᴱB)) (cong [_]→ ∘ _≃ᴱ_.right-inverse-of A≃ᴱB ∘ erased) (cong [_]→ ∘ _≃ᴱ_.left-inverse-of A≃ᴱB ∘ erased) ------------------------------------------------------------------------ -- Some isomorphisms -- In an erased context Erased A is always isomorphic to A. Erased↔ : {@0 A : Type a} → Erased (Erased A ↔ A) Erased↔ = [ record { surjection = record { logical-equivalence = record { to = erased ; from = [_]→ } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } ] -- The following result is based on a result in Mishra-Linger's PhD -- thesis (see Section 5.4.4). -- Erased (Erased A) is isomorphic to Erased A. Erased-Erased↔Erased : {@0 A : Type a} → Erased (Erased A) ↔ Erased A Erased-Erased↔Erased = record { surjection = record { logical-equivalence = record { to = λ x → [ erased (erased x) ] ; from = [_]→ } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Erased ⊤ is isomorphic to ⊤. Erased-⊤↔⊤ : Erased ⊤ ↔ ⊤ Erased-⊤↔⊤ = record { surjection = record { logical-equivalence = record { to = λ _ → tt ; from = [_]→ } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Erased ⊥ is isomorphic to ⊥. Erased-⊥↔⊥ : Erased (⊥ {ℓ = ℓ}) ↔ ⊥ {ℓ = ℓ} Erased-⊥↔⊥ = record { surjection = record { logical-equivalence = record { to = λ { [ () ] } ; from = [_]→ } ; right-inverse-of = λ () } ; left-inverse-of = λ { [ () ] } } -- Erased commutes with Π A. Erased-Π↔Π : {@0 P : A → Type p} → Erased ((x : A) → P x) ↔ ((x : A) → Erased (P x)) Erased-Π↔Π = record { surjection = record { logical-equivalence = record { to = λ { [ f ] x → [ f x ] } ; from = λ f → [ (λ x → erased (f x)) ] } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- A variant of Erased-Π↔Π. Erased-Π≃ᴱΠ : {@0 A : Type a} {@0 P : A → Type p} → Erased ((x : A) → P x) ≃ᴱ ((x : A) → Erased (P x)) Erased-Π≃ᴱΠ = EEq.[≃]→≃ᴱ (EEq.[proofs] $ from-isomorphism Erased-Π↔Π) -- Erased commutes with Π. Erased-Π↔Π-Erased : {@0 A : Type a} {@0 P : A → Type p} → Erased ((x : A) → P x) ↔ ((x : Erased A) → Erased (P (erased x))) Erased-Π↔Π-Erased = record { surjection = record { logical-equivalence = record { to = λ ([ f ]) → map f ; from = λ f → [ (λ x → erased (f [ x ])) ] } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Erased commutes with Σ. Erased-Σ↔Σ : {@0 A : Type a} {@0 P : A → Type p} → Erased (Σ A P) ↔ Σ (Erased A) (λ x → Erased (P (erased x))) Erased-Σ↔Σ = record { surjection = record { logical-equivalence = record { to = λ { [ p ] → [ proj₁ p ] , [ proj₂ p ] } ; from = λ { ([ x ] , [ y ]) → [ x , y ] } } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Erased commutes with ↑ ℓ. Erased-↑↔↑ : {@0 A : Type a} → Erased (↑ ℓ A) ↔ ↑ ℓ (Erased A) Erased-↑↔↑ = record { surjection = record { logical-equivalence = record { to = λ { [ x ] → lift [ lower x ] } ; from = λ { (lift [ x ]) → [ lift x ] } } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } -- Erased commutes with ¬_ (assuming extensionality). Erased-¬↔¬ : {@0 A : Type a} → Erased (¬ A) ↝[ a ∣ lzero ] ¬ Erased A Erased-¬↔¬ {A = A} ext = Erased (A → ⊥) ↔⟨ Erased-Π↔Π-Erased ⟩ (Erased A → Erased ⊥) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-⊥↔⊥) ⟩□ (Erased A → ⊥) □ -- Erased can be dropped under ¬_ (assuming extensionality). ¬-Erased↔¬ : {A : Type a} → ¬ Erased A ↝[ a ∣ lzero ] ¬ A ¬-Erased↔¬ {a = a} {A = A} = generalise-ext?-prop (record { to = λ ¬[a] a → ¬[a] [ a ] ; from = λ ¬a ([ a ]) → _↔_.to Erased-⊥↔⊥ [ ¬a a ] }) ¬-propositional ¬-propositional -- The following three results are inspired by a result in -- Mishra-Linger's PhD thesis (see Section 5.4.1). -- -- See also Π-Erased↔Π0[], Π-Erased≃Π0[], Π-Erased↔Π0 and Π-Erased≃Π0 -- in Erased.Cubical and Erased.With-K. -- There is a logical equivalence between -- (x : Erased A) → P (erased x) and (@0 x : A) → P x. Π-Erased⇔Π0 : {@0 A : Type a} {@0 P : A → Type p} → ((x : Erased A) → P (erased x)) ⇔ ((@0 x : A) → P x) Π-Erased⇔Π0 = record { to = λ f x → f [ x ] ; from = λ f ([ x ]) → f x } -- There is an equivalence with erased proofs between -- (x : Erased A) → P (erased x) and (@0 x : A) → P x. Π-Erased≃ᴱΠ0 : {@0 A : Type a} {@0 P : A → Type p} → ((x : Erased A) → P (erased x)) ≃ᴱ ((@0 x : A) → P x) Π-Erased≃ᴱΠ0 = EEq.↔→≃ᴱ (_⇔_.to Π-Erased⇔Π0) (_⇔_.from Π-Erased⇔Π0) refl refl -- There is an equivalence between (x : Erased A) → P (erased x) and -- (@0 x : A) → P x. Π-Erased≃Π0 : {@0 A : Type a} {P : @0 A → Type p} → ((x : Erased A) → P (erased x)) ≃ ((@0 x : A) → P x) Π-Erased≃Π0 {A = A} {P = P} = Eq.↔→≃ {B = (@0 x : A) → P x} (_⇔_.to Π-Erased⇔Π0) (_⇔_.from Π-Erased⇔Π0) (λ _ → refl {A = (@0 x : A) → P x} _) (λ _ → refl _) -- A variant of Π-Erased≃Π0. Π-Erased≃Π0[] : {@0 A : Type a} {P : Erased A → Type p} → ((x : Erased A) → P x) ≃ ((@0 x : A) → P [ x ]) Π-Erased≃Π0[] = Π-Erased≃Π0 -- Erased commutes with W up to logical equivalence. Erased-W⇔W : {@0 A : Type a} {@0 P : A → Type p} → Erased (W A P) ⇔ W (Erased A) (λ x → Erased (P (erased x))) Erased-W⇔W {A = A} {P = P} = record { to = to; from = from } where to : Erased (W A P) → W (Erased A) (λ x → Erased (P (erased x))) to [ sup x f ] = sup [ x ] (λ ([ y ]) → to [ f y ]) from : W (Erased A) (λ x → Erased (P (erased x))) → Erased (W A P) from (sup [ x ] f) = [ sup x (λ y → erased (from (f [ y ]))) ] ---------------------------------------------------------------------- -- Erased is a modality -- Erased is the modal operator of a uniquely eliminating modality -- with [_]→ as the modal unit. -- -- The terminology here roughly follows that of "Modalities in -- Homotopy Type Theory" by Rijke, Shulman and Spitters. uniquely-eliminating-modality : {@0 P : Erased A → Type p} → Is-equivalence (λ (f : (x : Erased A) → Erased (P x)) → f ∘ [ A ∣_]→) uniquely-eliminating-modality {A = A} {P = P} = _≃_.is-equivalence (((x : Erased A) → Erased (P x)) ↔⟨ inverse Erased-Π↔Π-Erased ⟩ Erased ((x : A) → (P [ x ])) ↔⟨ Erased-Π↔Π ⟩ ((x : A) → Erased (P [ x ])) □) -- Two results that are closely related to -- uniquely-eliminating-modality. -- -- These results are based on the Coq source code accompanying -- "Modalities in Homotopy Type Theory" by Rijke, Shulman and -- Spitters. -- Precomposition with [_]→ is injective for functions from Erased A -- to Erased B. ∘-[]-injective : {@0 B : Type b} → Injective (λ (f : Erased A → Erased B) → f ∘ [_]→) ∘-[]-injective = _≃_.injective Eq.⟨ _ , uniquely-eliminating-modality ⟩ -- A rearrangement lemma for ext⁻¹ and ∘-[]-injective. ext⁻¹-∘-[]-injective : {@0 B : Type b} {f g : Erased A → Erased B} {p : f ∘ [_]→ ≡ g ∘ [_]→} → ext⁻¹ (∘-[]-injective {x = f} {y = g} p) [ x ] ≡ ext⁻¹ p x ext⁻¹-∘-[]-injective {x = x} {f = f} {g = g} {p = p} = ext⁻¹ (∘-[]-injective p) [ x ] ≡⟨ elim₁ (λ p → ext⁻¹ p [ x ] ≡ ext⁻¹ (_≃_.from equiv p) x) ( ext⁻¹ (refl g) [ x ] ≡⟨ cong-refl (_$ [ x ]) ⟩ refl (g [ x ]) ≡⟨ sym $ cong-refl _ ⟩ ext⁻¹ (refl (g ∘ [_]→)) x ≡⟨ cong (λ p → ext⁻¹ p x) $ sym $ cong-refl _ ⟩∎ ext⁻¹ (_≃_.from equiv (refl g)) x ∎) (∘-[]-injective p) ⟩ ext⁻¹ (_≃_.from equiv (∘-[]-injective p)) x ≡⟨ cong (flip ext⁻¹ x) $ _≃_.left-inverse-of equiv _ ⟩∎ ext⁻¹ p x ∎ where equiv = Eq.≃-≡ Eq.⟨ _ , uniquely-eliminating-modality ⟩ ---------------------------------------------------------------------- -- Some lemmas related to functions with erased domains -- A variant of H-level.Π-closure for function spaces with erased -- explicit domains. Note the type of P. Πᴱ-closure : {@0 A : Type a} {P : @0 A → Type p} → Extensionality a p → ∀ n → ((@0 x : A) → H-level n (P x)) → H-level n ((@0 x : A) → P x) Πᴱ-closure {P = P} ext n = (∀ (@0 x) → H-level n (P x)) →⟨ Eq._≃₀_.from Π-Erased≃Π0 ⟩ (∀ x → H-level n (P (x .erased))) →⟨ Π-closure ext n ⟩ H-level n (∀ x → P (x .erased)) →⟨ H-level-cong {B = ∀ (@0 x) → P x} _ n Π-Erased≃Π0 ⟩□ H-level n (∀ (@0 x) → P x) □ -- A variant of H-level.Π-closure for function spaces with erased -- implicit domains. Note the type of P. implicit-Πᴱ-closure : {@0 A : Type a} {P : @0 A → Type p} → Extensionality a p → ∀ n → ((@0 x : A) → H-level n (P x)) → H-level n ({@0 x : A} → P x) implicit-Πᴱ-closure {A = A} {P = P} ext n = (∀ (@0 x) → H-level n (P x)) →⟨ Πᴱ-closure ext n ⟩ H-level n (∀ (@0 x) → P x) →⟨ H-level-cong {A = ∀ (@0 x) → P x} {B = ∀ {@0 x} → P x} _ n $ inverse {A = ∀ {@0 x} → P x} {B = ∀ (@0 x) → P x} Bijection.implicit-Πᴱ↔Πᴱ′ ⟩□ H-level n (∀ {@0 x} → P x) □ -- Extensionality implies extensionality for some functions with -- erased arguments (note the type of P). apply-extᴱ : {@0 A : Type a} {P : @0 A → Type p} {f g : (@0 x : A) → P x} → Extensionality a p → ((@0 x : A) → f x ≡ g x) → f ≡ g apply-extᴱ {A = A} {P = P} {f = f} {g = g} ext = ((@0 x : A) → f x ≡ g x) →⟨ Eq._≃₀_.from Π-Erased≃Π0 ⟩ ((x : Erased A) → f (x .erased) ≡ g (x .erased)) →⟨ apply-ext ext ⟩ (λ x → f (x .erased)) ≡ (λ x → g (x .erased)) →⟨ cong {B = (@0 x : A) → P x} (Eq._≃₀_.to Π-Erased≃Π0) ⟩□ f ≡ g □ -- Extensionality implies extensionality for some functions with -- implicit erased arguments (note the type of P). implicit-apply-extᴱ : {@0 A : Type a} {P : @0 A → Type p} {f g : {@0 x : A} → P x} → Extensionality a p → ((@0 x : A) → f {x = x} ≡ g {x = x}) → _≡_ {A = {@0 x : A} → P x} f g implicit-apply-extᴱ {A = A} {P = P} {f = f} {g = g} ext = ((@0 x : A) → f {x = x} ≡ g {x = x}) →⟨ apply-extᴱ ext ⟩ _≡_ {A = (@0 x : A) → P x} (λ x → f {x = x}) (λ x → g {x = x}) →⟨ cong {A = (@0 x : A) → P x} {B = {@0 x : A} → P x} (λ f {x = x} → f x) ⟩□ _≡_ {A = {@0 x : A} → P x} f g □ ------------------------------------------------------------------------ -- A variant of Dec ∘ Erased -- Dec-Erased A means that either we have A (erased), or we have ¬ A -- (also erased). Dec-Erased : @0 Type ℓ → Type ℓ Dec-Erased A = Erased A ⊎ Erased (¬ A) -- Dec A implies Dec-Erased A. Dec→Dec-Erased : {@0 A : Type a} → Dec A → Dec-Erased A Dec→Dec-Erased (yes a) = yes [ a ] Dec→Dec-Erased (no ¬a) = no [ ¬a ] -- In erased contexts Dec-Erased A is equivalent to Dec A. @0 Dec-Erased≃Dec : {@0 A : Type a} → Dec-Erased A ≃ Dec A Dec-Erased≃Dec {A = A} = Eq.with-other-inverse (Erased A ⊎ Erased (¬ A) ↔⟨ erased Erased↔ ⊎-cong erased Erased↔ ⟩□ A ⊎ ¬ A □) Dec→Dec-Erased Prelude.[ (λ _ → refl _) , (λ _ → refl _) ] -- Dec-Erased A is isomorphic to Dec (Erased A) (assuming -- extensionality). Dec-Erased↔Dec-Erased : {@0 A : Type a} → Dec-Erased A ↝[ a ∣ lzero ] Dec (Erased A) Dec-Erased↔Dec-Erased {A = A} ext = Erased A ⊎ Erased (¬ A) ↝⟨ F.id ⊎-cong Erased-¬↔¬ ext ⟩□ Erased A ⊎ ¬ Erased A □ -- A map function for Dec-Erased. Dec-Erased-map : {@0 A : Type a} {@0 B : Type b} → @0 A ⇔ B → Dec-Erased A → Dec-Erased B Dec-Erased-map A⇔B = ⊎-map (map (_⇔_.to A⇔B)) (map (_∘ _⇔_.from A⇔B)) -- Dec-Erased preserves logical equivalences. Dec-Erased-cong-⇔ : {@0 A : Type a} {@0 B : Type b} → @0 A ⇔ B → Dec-Erased A ⇔ Dec-Erased B Dec-Erased-cong-⇔ A⇔B = record { to = Dec-Erased-map A⇔B ; from = Dec-Erased-map (inverse A⇔B) } -- If A and B are decided (with erased proofs), then A × B is. Dec-Erased-× : {@0 A : Type a} {@0 B : Type b} → Dec-Erased A → Dec-Erased B → Dec-Erased (A × B) Dec-Erased-× (no [ ¬a ]) _ = no [ ¬a ∘ proj₁ ] Dec-Erased-× _ (no [ ¬b ]) = no [ ¬b ∘ proj₂ ] Dec-Erased-× (yes [ a ]) (yes [ b ]) = yes [ a , b ] -- If A and B are decided (with erased proofs), then A ⊎ B is. Dec-Erased-⊎ : {@0 A : Type a} {@0 B : Type b} → Dec-Erased A → Dec-Erased B → Dec-Erased (A ⊎ B) Dec-Erased-⊎ (yes [ a ]) _ = yes [ inj₁ a ] Dec-Erased-⊎ (no [ ¬a ]) (yes [ b ]) = yes [ inj₂ b ] Dec-Erased-⊎ (no [ ¬a ]) (no [ ¬b ]) = no [ Prelude.[ ¬a , ¬b ] ] -- A variant of Equality.Decision-procedures.×.dec⇒dec⇒dec. dec-erased⇒dec-erased⇒×-dec-erased : {@0 A : Type a} {@0 B : Type b} {@0 x₁ x₂ : A} {@0 y₁ y₂ : B} → Dec-Erased (x₁ ≡ x₂) → Dec-Erased (y₁ ≡ y₂) → Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂)) dec-erased⇒dec-erased⇒×-dec-erased = λ where (no [ x₁≢x₂ ]) _ → no [ x₁≢x₂ ∘ cong proj₁ ] _ (no [ y₁≢y₂ ]) → no [ y₁≢y₂ ∘ cong proj₂ ] (yes [ x₁≡x₂ ]) (yes [ y₁≡y₂ ]) → yes [ cong₂ _,_ x₁≡x₂ y₁≡y₂ ] -- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec. -- -- See also set⇒dec-erased⇒dec-erased⇒Σ-dec-erased below. set⇒dec⇒dec-erased⇒Σ-dec-erased : {@0 A : Type a} {@0 P : A → Type p} {@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} → @0 Is-set A → Dec (x₁ ≡ x₂) → (∀ eq → Dec-Erased (subst P eq y₁ ≡ y₂)) → Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂)) set⇒dec⇒dec-erased⇒Σ-dec-erased _ (no x₁≢x₂) _ = no [ x₁≢x₂ ∘ cong proj₁ ] set⇒dec⇒dec-erased⇒Σ-dec-erased {P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes x₁≡x₂) dec₂ = ⊎-map (map (Σ-≡,≡→≡ x₁≡x₂)) (map λ cast-y₁≢y₂ eq → $⟨ proj₂ (Σ-≡,≡←≡ eq) ⟩ subst P (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ subst (λ p → subst _ p _ ≡ _) (set₁ _ _) ⟩ subst P x₁≡x₂ y₁ ≡ y₂ ↝⟨ cast-y₁≢y₂ ⟩□ ⊥ □) (dec₂ x₁≡x₂) -- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec. -- -- See also decidable-erased⇒dec-erased⇒Σ-dec-erased below. decidable⇒dec-erased⇒Σ-dec-erased : {@0 A : Type a} {@0 P : A → Type p} {x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} → Decidable-equality A → (∀ eq → Dec-Erased (subst P eq y₁ ≡ y₂)) → Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂)) decidable⇒dec-erased⇒Σ-dec-erased dec = set⇒dec⇒dec-erased⇒Σ-dec-erased (decidable⇒set dec) (dec _ _) ------------------------------------------------------------------------ -- Decidable erased equality -- A variant of Decidable-equality that is defined using Dec-Erased. Decidable-erased-equality : Type ℓ → Type ℓ Decidable-erased-equality A = (x y : A) → Dec-Erased (x ≡ y) -- Decidable equality implies decidable erased equality. Decidable-equality→Decidable-erased-equality : {@0 A : Type a} → Decidable-equality A → Decidable-erased-equality A Decidable-equality→Decidable-erased-equality dec x y = Dec→Dec-Erased (dec x y) -- In erased contexts Decidable-erased-equality A is equivalent to -- Decidable-equality A (assuming extensionality). @0 Decidable-erased-equality≃Decidable-equality : {A : Type a} → Decidable-erased-equality A ↝[ a ∣ a ] Decidable-equality A Decidable-erased-equality≃Decidable-equality {A = A} ext = ((x y : A) → Dec-Erased (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → from-equivalence Dec-Erased≃Dec) ⟩□ ((x y : A) → Dec (x ≡ y)) □ -- A map function for Decidable-erased-equality. Decidable-erased-equality-map : A ↠ B → Decidable-erased-equality A → Decidable-erased-equality B Decidable-erased-equality-map A↠B _≟_ x y = $⟨ _↠_.from A↠B x ≟ _↠_.from A↠B y ⟩ Dec-Erased (_↠_.from A↠B x ≡ _↠_.from A↠B y) ↝⟨ Dec-Erased-map (_↠_.logical-equivalence $ Surjection.↠-≡ A↠B) ⟩□ Dec-Erased (x ≡ y) □ -- A variant of Equality.Decision-procedures.×.Dec._≟_. decidable-erased⇒decidable-erased⇒×-decidable-erased : {@0 A : Type a} {@0 B : Type b} → Decidable-erased-equality A → Decidable-erased-equality B → Decidable-erased-equality (A × B) decidable-erased⇒decidable-erased⇒×-decidable-erased decA decB _ _ = dec-erased⇒dec-erased⇒×-dec-erased (decA _ _) (decB _ _) -- A variant of Equality.Decision-procedures.Σ.Dec._≟_. -- -- See also decidable-erased⇒decidable-erased⇒Σ-decidable-erased -- below. decidable⇒decidable-erased⇒Σ-decidable-erased : Decidable-equality A → ({x : A} → Decidable-erased-equality (P x)) → Decidable-erased-equality (Σ A P) decidable⇒decidable-erased⇒Σ-decidable-erased {P = P} decA decP (_ , x₂) (_ , y₂) = decidable⇒dec-erased⇒Σ-dec-erased decA (λ eq → decP (subst P eq x₂) y₂) ------------------------------------------------------------------------ -- Erased binary relations -- Lifts binary relations from A to Erased A. Erasedᴾ : {@0 A : Type a} {@0 B : Type b} → @0 (A → B → Type r) → (Erased A → Erased B → Type r) Erasedᴾ R [ x ] [ y ] = Erased (R x y) -- Erasedᴾ preserves Is-equivalence-relation. Erasedᴾ-preserves-Is-equivalence-relation : {@0 A : Type a} {@0 R : A → A → Type r} → @0 Is-equivalence-relation R → Is-equivalence-relation (Erasedᴾ R) Erasedᴾ-preserves-Is-equivalence-relation equiv = λ where .Is-equivalence-relation.reflexive → [ equiv .Is-equivalence-relation.reflexive ] .Is-equivalence-relation.symmetric → map (equiv .Is-equivalence-relation.symmetric) .Is-equivalence-relation.transitive → zip (equiv .Is-equivalence-relation.transitive) ------------------------------------------------------------------------ -- Some results that hold in erased contexts -- In an erased context there is an equivalence between equality of -- "boxed" values and equality of values. @0 []≡[]≃≡ : ([ x ] ≡ [ y ]) ≃ (x ≡ y) []≡[]≃≡ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = cong erased ; from = cong [_]→ } ; right-inverse-of = λ eq → cong erased (cong [_]→ eq) ≡⟨ cong-∘ _ _ _ ⟩ cong id eq ≡⟨ sym $ cong-id _ ⟩∎ eq ∎ } ; left-inverse-of = λ eq → cong [_]→ (cong erased eq) ≡⟨ cong-∘ _ _ _ ⟩ cong id eq ≡⟨ sym $ cong-id _ ⟩∎ eq ∎ }) -- In an erased context [_]→ is always an embedding. Erased-Is-embedding-[] : {@0 A : Type a} → Erased (Is-embedding [ A ∣_]→) Erased-Is-embedding-[] = [ (λ x y → _≃_.is-equivalence ( x ≡ y ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse $ erased Erased↔ ⟩□ [ x ] ≡ [ y ] □)) ] -- In an erased context [_]→ is always split surjective. Erased-Split-surjective-[] : {@0 A : Type a} → Erased (Split-surjective [ A ∣_]→) Erased-Split-surjective-[] = [ (λ ([ x ]) → x , refl _) ] ------------------------------------------------------------------------ -- []-cong-axiomatisation -- An axiomatisation for []-cong. -- -- In addition to the results in this section, see -- []-cong-axiomatisation-propositional below. record []-cong-axiomatisation a : Type (lsuc a) where field []-cong : {@0 A : Type a} {@0 x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong-equivalence : {@0 A : Type a} {@0 x y : A} → Is-equivalence ([]-cong {x = x} {y = y}) []-cong-[refl] : {@0 A : Type a} {@0 x : A} → []-cong [ refl x ] ≡ refl [ x ] -- The []-cong axioms can be instantiated in erased contexts. @0 erased-instance-of-[]-cong-axiomatisation : []-cong-axiomatisation a erased-instance-of-[]-cong-axiomatisation .[]-cong-axiomatisation.[]-cong = cong [_]→ ∘ erased erased-instance-of-[]-cong-axiomatisation .[]-cong-axiomatisation.[]-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (Erased (x ≡ y) ↔⟨ erased Erased↔ ⟩ x ≡ y ↝⟨ inverse []≡[]≃≡ ⟩□ [ x ] ≡ [ y ] □) erased-instance-of-[]-cong-axiomatisation .[]-cong-axiomatisation.[]-cong-[refl] {x = x} = cong [_]→ (erased [ refl x ]) ≡⟨⟩ cong [_]→ (refl x) ≡⟨ cong-refl _ ⟩∎ refl [ x ] ∎ -- If the []-cong axioms can be implemented for a certain universe -- level, then they can also be implemented for all smaller universe -- levels. lower-[]-cong-axiomatisation : ∀ a′ → []-cong-axiomatisation (a ⊔ a′) → []-cong-axiomatisation a lower-[]-cong-axiomatisation {a = a} a′ ax = λ where .[]-cong-axiomatisation.[]-cong → []-cong′ .[]-cong-axiomatisation.[]-cong-equivalence → []-cong′-equivalence .[]-cong-axiomatisation.[]-cong-[refl] → []-cong′-[refl] where open []-cong-axiomatisation ax lemma : {@0 A : Type a} {@0 x y : A} → Erased (lift {ℓ = a′} x ≡ lift y) ≃ ([ x ] ≡ [ y ]) lemma {x = x} {y = y} = Erased (lift {ℓ = a′} x ≡ lift y) ↝⟨ Eq.⟨ _ , []-cong-equivalence ⟩ ⟩ [ lift x ] ≡ [ lift y ] ↝⟨ inverse $ Eq.≃-≡ (Eq.↔→≃ (map lower) (map lift) refl refl) ⟩□ [ x ] ≡ [ y ] □ []-cong′ : {@0 A : Type a} {@0 x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong′ {x = x} {y = y} = Erased (x ≡ y) ↝⟨ map (cong lift) ⟩ Erased (lift {ℓ = a′} x ≡ lift y) ↔⟨ lemma ⟩□ [ x ] ≡ [ y ] □ []-cong′-equivalence : {@0 A : Type a} {@0 x y : A} → Is-equivalence ([]-cong′ {x = x} {y = y}) []-cong′-equivalence {x = x} {y = y} = _≃_.is-equivalence (Erased (x ≡ y) ↝⟨ Eq.↔→≃ (map (cong lift)) (map (cong lower)) (λ ([ eq ]) → [ cong lift (cong lower eq) ] ≡⟨ []-cong [ cong-∘ _ _ _ ] ⟩ [ cong id eq ] ≡⟨ []-cong [ sym $ cong-id _ ] ⟩∎ [ eq ] ∎) (λ ([ eq ]) → [ cong lower (cong lift eq) ] ≡⟨ []-cong′ [ cong-∘ _ _ _ ] ⟩ [ cong id eq ] ≡⟨ []-cong′ [ sym $ cong-id _ ] ⟩∎ [ eq ] ∎) ⟩ Erased (lift {ℓ = a′} x ≡ lift y) ↝⟨ lemma ⟩□ [ x ] ≡ [ y ] □) []-cong′-[refl] : {@0 A : Type a} {@0 x : A} → []-cong′ [ refl x ] ≡ refl [ x ] []-cong′-[refl] {x = x} = cong (map lower) ([]-cong [ cong lift (refl x) ]) ≡⟨ cong (cong (map lower) ∘ []-cong) $ []-cong [ cong-refl _ ] ⟩ cong (map lower) ([]-cong [ refl (lift x) ]) ≡⟨ cong (cong (map lower)) []-cong-[refl] ⟩ cong (map lower) (refl [ lift x ]) ≡⟨ cong-refl _ ⟩∎ refl [ x ] ∎ ------------------------------------------------------------------------ -- An alternative to []-cong-axiomatisation -- Stable-≡-Erased-axiomatisation a is the property that equality is -- stable for Erased A, for every erased type A : Type a, along with a -- "computation" rule. Stable-≡-Erased-axiomatisation : (a : Level) → Type (lsuc a) Stable-≡-Erased-axiomatisation a = ∃ λ (Stable-≡-Erased : {@0 A : Type a} → Stable-≡ (Erased A)) → {@0 A : Type a} {x : Erased A} → Stable-≡-Erased x x [ refl x ] ≡ refl x -- Some lemmas used to implement Extensionality→[]-cong as well as -- Erased.Stability.[]-cong-axiomatisation≃Stable-≡-Erased-axiomatisation. module Stable-≡-Erased-axiomatisation→[]-cong-axiomatisation ((Stable-≡-Erased , Stable-≡-Erased-[refl]) : Stable-≡-Erased-axiomatisation a) where -- An implementation of []-cong. []-cong : {@0 A : Type a} {@0 x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong {x = x} {y = y} = Erased (x ≡ y) ↝⟨ map (cong [_]→) ⟩ Erased ([ x ] ≡ [ y ]) ↝⟨ Stable-≡-Erased _ _ ⟩□ [ x ] ≡ [ y ] □ -- A "computation rule" for []-cong. []-cong-[refl] : {@0 A : Type a} {@0 x : A} → []-cong [ refl x ] ≡ refl [ x ] []-cong-[refl] {x = x} = []-cong [ refl x ] ≡⟨⟩ Stable-≡-Erased _ _ [ cong [_]→ (refl x) ] ≡⟨ cong (Stable-≡-Erased _ _) ([]-cong [ cong-refl _ ]) ⟩ Stable-≡-Erased _ _ [ refl [ x ] ] ≡⟨ Stable-≡-Erased-[refl] ⟩∎ refl [ x ] ∎ -- Equality is very stable for Erased A. Very-stable-≡-Erased : {@0 A : Type a} → Very-stable-≡ (Erased A) Very-stable-≡-Erased x y = _≃_.is-equivalence (Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { from = Stable-≡-Erased x y } ; right-inverse-of = λ ([ eq ]) → []-cong [ lemma eq ] } ; left-inverse-of = lemma })) where lemma = elim¹ (λ eq → Stable-≡-Erased _ _ [ eq ] ≡ eq) Stable-≡-Erased-[refl] -- The following implementations of functions from Erased-cong -- (below) are restricted to types in Type a (where a is the -- universe level for which extensionality is assumed to hold). module _ {@0 A B : Type a} where Erased-cong-↠ : @0 A ↠ B → Erased A ↠ Erased B Erased-cong-↠ A↠B = record { logical-equivalence = Erased-cong-⇔ (_↠_.logical-equivalence A↠B) ; right-inverse-of = λ { [ x ] → []-cong [ _↠_.right-inverse-of A↠B x ] } } Erased-cong-↔ : @0 A ↔ B → Erased A ↔ Erased B Erased-cong-↔ A↔B = record { surjection = Erased-cong-↠ (_↔_.surjection A↔B) ; left-inverse-of = λ { [ x ] → []-cong [ _↔_.left-inverse-of A↔B x ] } } Erased-cong-≃ : @0 A ≃ B → Erased A ≃ Erased B Erased-cong-≃ A≃B = from-isomorphism (Erased-cong-↔ (from-isomorphism A≃B)) -- []-cong is an equivalence. []-cong-equivalence : {@0 A : Type a} {@0 x y : A} → Is-equivalence ([]-cong {x = x} {y = y}) []-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence ( Erased (x ≡ y) ↝⟨ inverse $ Erased-cong-≃ []≡[]≃≡ ⟩ Erased ([ x ] ≡ [ y ]) ↝⟨ inverse Eq.⟨ _ , Very-stable-≡-Erased _ _ ⟩ ⟩□ [ x ] ≡ [ y ] □) -- The []-cong axioms can be instantiated. instance-of-[]-cong-axiomatisation : []-cong-axiomatisation a instance-of-[]-cong-axiomatisation = record { []-cong = []-cong ; []-cong-equivalence = []-cong-equivalence ; []-cong-[refl] = []-cong-[refl] } ------------------------------------------------------------------------ -- In the presence of function extensionality the []-cong axioms can -- be instantiated -- Some lemmas used to implement -- Extensionality→[]-cong-axiomatisation. module Extensionality→[]-cong-axiomatisation (ext′ : Extensionality a a) where private ext = Eq.good-ext ext′ -- Equality is stable for Erased A. -- -- The proof is based on the proof of Lemma 1.25 in "Modalities in -- Homotopy Type Theory" by Rijke, Shulman and Spitters, and the -- corresponding Coq source code. Stable-≡-Erased : {@0 A : Type a} → Stable-≡ (Erased A) Stable-≡-Erased x y eq = x ≡⟨ flip ext⁻¹ eq ( (λ (_ : Erased (x ≡ y)) → x) ≡⟨ ∘-[]-injective ( (λ (_ : x ≡ y) → x) ≡⟨ apply-ext ext (λ (eq : x ≡ y) → x ≡⟨ eq ⟩∎ y ∎) ⟩∎ (λ (_ : x ≡ y) → y) ∎) ⟩∎ (λ (_ : Erased (x ≡ y)) → y) ∎) ⟩∎ y ∎ -- A "computation rule" for Stable-≡-Erased. Stable-≡-Erased-[refl] : {@0 A : Type a} {x : Erased A} → Stable-≡-Erased x x [ refl x ] ≡ refl x Stable-≡-Erased-[refl] {x = [ x ]} = Stable-≡-Erased [ x ] [ x ] [ refl [ x ] ] ≡⟨⟩ ext⁻¹ (∘-[]-injective (apply-ext ext id)) [ refl [ x ] ] ≡⟨ ext⁻¹-∘-[]-injective ⟩ ext⁻¹ (apply-ext ext id) (refl [ x ]) ≡⟨ cong (_$ refl _) $ _≃_.left-inverse-of (Eq.extensionality-isomorphism ext′) _ ⟩∎ refl [ x ] ∎ open Stable-≡-Erased-axiomatisation→[]-cong-axiomatisation (Stable-≡-Erased , Stable-≡-Erased-[refl]) public -- If we have extensionality, then []-cong can be implemented. -- -- The idea for this result comes from "Modalities in Homotopy Type -- Theory" in which Rijke, Shulman and Spitters state that []-cong can -- be implemented for every modality, and that it is an equivalence -- for lex modalities (Theorem 3.1 (ix)). Extensionality→[]-cong-axiomatisation : Extensionality a a → []-cong-axiomatisation a Extensionality→[]-cong-axiomatisation ext = instance-of-[]-cong-axiomatisation where open Extensionality→[]-cong-axiomatisation ext ------------------------------------------------------------------------ -- A variant of []-cong-axiomatisation -- A variant of []-cong-axiomatisation where some erased arguments -- have been replaced with non-erased ones. record []-cong-axiomatisation′ a : Type (lsuc a) where field []-cong : {A : Type a} {x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong-equivalence : Is-equivalence ([]-cong {x = x} {y = y}) []-cong-[refl] : []-cong [ refl x ] ≡ refl [ x ] -- When implementing the []-cong axioms it suffices to prove "weaker" -- variants with fewer erased arguments. -- -- See also -- Erased.Stability.[]-cong-axiomatisation≃[]-cong-axiomatisation′. []-cong-axiomatisation′→[]-cong-axiomatisation : []-cong-axiomatisation′ a → []-cong-axiomatisation a []-cong-axiomatisation′→[]-cong-axiomatisation {a = a} ax = record { []-cong = []-cong₀ ; []-cong-equivalence = []-cong₀-equivalence ; []-cong-[refl] = []-cong₀-[refl] } where open []-cong-axiomatisation′ ax []-cong₀ : {@0 A : Type a} {@0 x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong₀ {A = A} {x = x} {y = y} = Erased (x ≡ y) →⟨ map (cong [_]→) ⟩ Erased ([ x ] ≡ [ y ]) →⟨ []-cong ⟩ [ [ x ] ] ≡ [ [ y ] ] →⟨ cong (map erased) ⟩□ [ x ] ≡ [ y ] □ []-cong₀-[refl] : {@0 A : Type a} {@0 x : A} → []-cong₀ [ refl x ] ≡ refl [ x ] []-cong₀-[refl] {x = x} = cong (map erased) ([]-cong (map (cong [_]→) [ refl x ])) ≡⟨⟩ cong (map erased) ([]-cong [ cong [_]→ (refl x) ]) ≡⟨ cong (cong (map erased) ∘ []-cong) $ []-cong₀ [ cong-refl _ ] ⟩ cong (map erased) ([]-cong [ refl [ x ] ]) ≡⟨ cong (cong (map erased)) []-cong-[refl] ⟩ cong (map erased) (refl [ [ x ] ]) ≡⟨ cong-refl _ ⟩∎ refl [ x ] ∎ []-cong₀-equivalence : {@0 A : Type a} {@0 x y : A} → Is-equivalence ([]-cong₀ {x = x} {y = y}) []-cong₀-equivalence = _≃_.is-equivalence $ Eq.↔→≃ _ (λ [x]≡[y] → [ cong erased [x]≡[y] ]) (λ [x]≡[y] → cong (map erased) ([]-cong (map (cong [_]→) [ cong erased [x]≡[y] ])) ≡⟨⟩ cong (map erased) ([]-cong [ cong [_]→ (cong erased [x]≡[y]) ]) ≡⟨ cong (cong (map erased) ∘ []-cong) $ []-cong₀ [ trans (cong-∘ _ _ _) $ sym $ cong-id _ ] ⟩ cong (map erased) ([]-cong [ [x]≡[y] ]) ≡⟨ elim (λ x≡y → cong (map erased) ([]-cong [ x≡y ]) ≡ x≡y) (λ x → cong (map erased) ([]-cong [ refl x ]) ≡⟨ cong (cong (map erased)) []-cong-[refl] ⟩ cong (map erased) (refl [ x ]) ≡⟨ cong-refl _ ⟩∎ refl x ∎) _ ⟩ [x]≡[y] ∎) (λ ([ x≡y ]) → [ cong erased (cong (map erased) ([]-cong (map (cong [_]→) [ x≡y ]))) ] ≡⟨⟩ [ cong erased (cong (map erased) ([]-cong [ cong [_]→ x≡y ])) ] ≡⟨ []-cong₀ [ elim (λ x≡y → cong erased (cong (map erased) ([]-cong [ cong [_]→ x≡y ])) ≡ x≡y) (λ x → cong erased (cong (map erased) ([]-cong [ cong [_]→ (refl x) ])) ≡⟨ cong (cong erased ∘ cong (map erased) ∘ []-cong) $ []-cong₀ [ cong-refl _ ] ⟩ cong erased (cong (map erased) ([]-cong [ refl [ x ] ])) ≡⟨ cong (cong erased ∘ cong (map erased)) []-cong-[refl] ⟩ cong erased (cong (map erased) (refl [ [ x ] ])) ≡⟨ trans (cong (cong erased) $ cong-refl _) $ cong-refl _ ⟩∎ refl x ∎) _ ] ⟩∎ [ x≡y ] ∎) ------------------------------------------------------------------------ -- Erased preserves some kinds of functions -- The following definitions are parametrised by two implementations -- of the []-cong axioms. module Erased-cong (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} where private module BC₁ = []-cong-axiomatisation ax₁ module BC₂ = []-cong-axiomatisation ax₂ -- Erased preserves split surjections. Erased-cong-↠ : @0 A ↠ B → Erased A ↠ Erased B Erased-cong-↠ A↠B = record { logical-equivalence = Erased-cong-⇔ (_↠_.logical-equivalence A↠B) ; right-inverse-of = λ { [ x ] → BC₂.[]-cong [ _↠_.right-inverse-of A↠B x ] } } -- Erased preserves bijections. Erased-cong-↔ : @0 A ↔ B → Erased A ↔ Erased B Erased-cong-↔ A↔B = record { surjection = Erased-cong-↠ (_↔_.surjection A↔B) ; left-inverse-of = λ { [ x ] → BC₁.[]-cong [ _↔_.left-inverse-of A↔B x ] } } -- Erased preserves equivalences. Erased-cong-≃ : @0 A ≃ B → Erased A ≃ Erased B Erased-cong-≃ A≃B = from-isomorphism (Erased-cong-↔ (from-isomorphism A≃B)) -- A variant of Erased-cong (which is defined in Erased.Level-2). Erased-cong? : @0 A ↝[ c ∣ d ] B → Erased A ↝[ c ∣ d ]ᴱ Erased B Erased-cong? hyp = generalise-erased-ext? (Erased-cong-⇔ (hyp _)) (λ ext → Erased-cong-↔ (hyp ext)) ------------------------------------------------------------------------ -- Some results that follow if the []-cong axioms hold for a single -- universe level module []-cong₁ (ax : []-cong-axiomatisation ℓ) where open []-cong-axiomatisation ax public open Erased-cong ax ax ---------------------------------------------------------------------- -- Some definitions directly related to []-cong -- There is an equivalence between erased equality proofs and -- equalities between erased values. Erased-≡≃[]≡[] : {@0 A : Type ℓ} {@0 x y : A} → Erased (x ≡ y) ≃ ([ x ] ≡ [ y ]) Erased-≡≃[]≡[] = Eq.⟨ _ , []-cong-equivalence ⟩ -- There is a bijection between erased equality proofs and -- equalities between erased values. Erased-≡↔[]≡[] : {@0 A : Type ℓ} {@0 x y : A} → Erased (x ≡ y) ↔ [ x ] ≡ [ y ] Erased-≡↔[]≡[] = _≃_.bijection Erased-≡≃[]≡[] -- The inverse of []-cong. []-cong⁻¹ : {@0 A : Type ℓ} {@0 x y : A} → [ x ] ≡ [ y ] → Erased (x ≡ y) []-cong⁻¹ = _≃_.from Erased-≡≃[]≡[] -- Rearrangement lemmas for []-cong and []-cong⁻¹. []-cong-[]≡cong-[] : {A : Type ℓ} {x y : A} {x≡y : x ≡ y} → []-cong [ x≡y ] ≡ cong [_]→ x≡y []-cong-[]≡cong-[] {x = x} {x≡y = x≡y} = elim¹ (λ x≡y → []-cong [ x≡y ] ≡ cong [_]→ x≡y) ([]-cong [ refl x ] ≡⟨ []-cong-[refl] ⟩ refl [ x ] ≡⟨ sym $ cong-refl _ ⟩∎ cong [_]→ (refl x) ∎) x≡y []-cong⁻¹≡[cong-erased] : {@0 A : Type ℓ} {@0 x y : A} {@0 x≡y : [ x ] ≡ [ y ]} → []-cong⁻¹ x≡y ≡ [ cong erased x≡y ] []-cong⁻¹≡[cong-erased] {x≡y = x≡y} = []-cong [ erased ([]-cong⁻¹ x≡y) ≡⟨ cong erased (_↔_.from (from≡↔≡to Erased-≡≃[]≡[]) lemma) ⟩ erased [ cong erased x≡y ] ≡⟨⟩ cong erased x≡y ∎ ] where @0 lemma : _ lemma = x≡y ≡⟨ cong-id _ ⟩ cong id x≡y ≡⟨⟩ cong ([_]→ ∘ erased) x≡y ≡⟨ sym $ cong-∘ _ _ _ ⟩ cong [_]→ (cong erased x≡y) ≡⟨ sym []-cong-[]≡cong-[] ⟩∎ []-cong [ cong erased x≡y ] ∎ -- A "computation rule" for []-cong⁻¹. []-cong⁻¹-refl : {@0 A : Type ℓ} {@0 x : A} → []-cong⁻¹ (refl [ x ]) ≡ [ refl x ] []-cong⁻¹-refl {x = x} = []-cong⁻¹ (refl [ x ]) ≡⟨ []-cong⁻¹≡[cong-erased] ⟩ [ cong erased (refl [ x ]) ] ≡⟨ []-cong [ cong-refl _ ] ⟩∎ [ refl x ] ∎ -- []-cong and []-cong⁻¹ commute (kind of) with sym. []-cong⁻¹-sym : {@0 A : Type ℓ} {@0 x y : A} {x≡y : [ x ] ≡ [ y ]} → []-cong⁻¹ (sym x≡y) ≡ map sym ([]-cong⁻¹ x≡y) []-cong⁻¹-sym = elim¹ (λ x≡y → []-cong⁻¹ (sym x≡y) ≡ map sym ([]-cong⁻¹ x≡y)) ([]-cong⁻¹ (sym (refl _)) ≡⟨ cong []-cong⁻¹ sym-refl ⟩ []-cong⁻¹ (refl _) ≡⟨ []-cong⁻¹-refl ⟩ [ refl _ ] ≡⟨ []-cong [ sym sym-refl ] ⟩ [ sym (refl _) ] ≡⟨⟩ map sym [ refl _ ] ≡⟨ cong (map sym) $ sym []-cong⁻¹-refl ⟩∎ map sym ([]-cong⁻¹ (refl _)) ∎) _ []-cong-[sym] : {@0 A : Type ℓ} {@0 x y : A} {@0 x≡y : x ≡ y} → []-cong [ sym x≡y ] ≡ sym ([]-cong [ x≡y ]) []-cong-[sym] {x≡y = x≡y} = sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) ( []-cong⁻¹ (sym ([]-cong [ x≡y ])) ≡⟨ []-cong⁻¹-sym ⟩ map sym ([]-cong⁻¹ ([]-cong [ x≡y ])) ≡⟨ cong (map sym) $ _↔_.left-inverse-of Erased-≡↔[]≡[] _ ⟩∎ map sym [ x≡y ] ∎) -- []-cong and []-cong⁻¹ commute (kind of) with trans. []-cong⁻¹-trans : {@0 A : Type ℓ} {@0 x y z : A} {x≡y : [ x ] ≡ [ y ]} {y≡z : [ y ] ≡ [ z ]} → []-cong⁻¹ (trans x≡y y≡z) ≡ [ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ] []-cong⁻¹-trans {y≡z = y≡z} = elim₁ (λ x≡y → []-cong⁻¹ (trans x≡y y≡z) ≡ [ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ]) ([]-cong⁻¹ (trans (refl _) y≡z) ≡⟨ cong []-cong⁻¹ $ trans-reflˡ _ ⟩ []-cong⁻¹ y≡z ≡⟨⟩ [ erased ([]-cong⁻¹ y≡z) ] ≡⟨ []-cong [ sym $ trans-reflˡ _ ] ⟩ [ trans (refl _) (erased ([]-cong⁻¹ y≡z)) ] ≡⟨⟩ [ trans (erased [ refl _ ]) (erased ([]-cong⁻¹ y≡z)) ] ≡⟨ []-cong [ cong (flip trans _) $ cong erased $ sym []-cong⁻¹-refl ] ⟩∎ [ trans (erased ([]-cong⁻¹ (refl _))) (erased ([]-cong⁻¹ y≡z)) ] ∎) _ []-cong-[trans] : {@0 A : Type ℓ} {@0 x y z : A} {@0 x≡y : x ≡ y} {@0 y≡z : y ≡ z} → []-cong [ trans x≡y y≡z ] ≡ trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ]) []-cong-[trans] {x≡y = x≡y} {y≡z = y≡z} = sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) ( []-cong⁻¹ (trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ])) ≡⟨ []-cong⁻¹-trans ⟩ [ trans (erased ([]-cong⁻¹ ([]-cong [ x≡y ]))) (erased ([]-cong⁻¹ ([]-cong [ y≡z ]))) ] ≡⟨ []-cong [ cong₂ (λ p q → trans (erased p) (erased q)) (_↔_.left-inverse-of Erased-≡↔[]≡[] _) (_↔_.left-inverse-of Erased-≡↔[]≡[] _) ] ⟩∎ [ trans x≡y y≡z ] ∎) -- In an erased context there is an equivalence between equality of -- values and equality of "boxed" values. @0 ≡≃[]≡[] : {A : Type ℓ} {x y : A} → (x ≡ y) ≃ ([ x ] ≡ [ y ]) ≡≃[]≡[] = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = []-cong ∘ [_]→ ; from = cong erased } ; right-inverse-of = λ eq → []-cong [ cong erased eq ] ≡⟨ []-cong-[]≡cong-[] ⟩ cong [_]→ (cong erased eq) ≡⟨ cong-∘ _ _ _ ⟩ cong id eq ≡⟨ sym $ cong-id _ ⟩∎ eq ∎ } ; left-inverse-of = λ eq → cong erased ([]-cong [ eq ]) ≡⟨ cong (cong erased) []-cong-[]≡cong-[] ⟩ cong erased (cong [_]→ eq) ≡⟨ cong-∘ _ _ _ ⟩ cong id eq ≡⟨ sym $ cong-id _ ⟩∎ eq ∎ }) -- The left-to-right and right-to-left directions of the equivalence -- are definitionally equal to certain functions. _ : _≃_.to (≡≃[]≡[] {x = x} {y = y}) ≡ []-cong ∘ [_]→ _ = refl _ @0 _ : _≃_.from (≡≃[]≡[] {x = x} {y = y}) ≡ cong erased _ = refl _ ---------------------------------------------------------------------- -- Variants of subst, cong and the J rule that take erased equality -- proofs -- A variant of subst that takes an erased equality proof. substᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : @0 A → Type p) → @0 x ≡ y → P x → P y substᴱ P eq = subst (λ ([ x ]) → P x) ([]-cong [ eq ]) -- A variant of elim₁ that takes an erased equality proof. elim₁ᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : {@0 x : A} → @0 x ≡ y → Type p) → P (refl y) → (@0 x≡y : x ≡ y) → P x≡y elim₁ᴱ {x = x} {y = y} P p x≡y = substᴱ (λ p → P (proj₂ p)) (proj₂ (singleton-contractible y) (x , x≡y)) p -- A variant of elim¹ that takes an erased equality proof. elim¹ᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : {@0 y : A} → @0 x ≡ y → Type p) → P (refl x) → (@0 x≡y : x ≡ y) → P x≡y elim¹ᴱ {x = x} {y = y} P p x≡y = substᴱ (λ p → P (proj₂ p)) (proj₂ (other-singleton-contractible x) (y , x≡y)) p -- A variant of elim that takes an erased equality proof. elimᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : {@0 x y : A} → @0 x ≡ y → Type p) → ((@0 x : A) → P (refl x)) → (@0 x≡y : x ≡ y) → P x≡y elimᴱ {y = y} P p = elim₁ᴱ P (p y) -- A variant of cong that takes an erased equality proof. congᴱ : {@0 A : Type ℓ} {@0 x y : A} (f : @0 A → B) → @0 x ≡ y → f x ≡ f y congᴱ f = elimᴱ (λ {x y} _ → f x ≡ f y) (λ x → refl (f x)) -- A "computation rule" for substᴱ. substᴱ-refl : {@0 A : Type ℓ} {@0 x : A} {P : @0 A → Type p} {p : P x} → substᴱ P (refl x) p ≡ p substᴱ-refl {P = P} {p = p} = subst (λ ([ x ]) → P x) ([]-cong [ refl _ ]) p ≡⟨ cong (flip (subst _) _) []-cong-[refl] ⟩ subst (λ ([ x ]) → P x) (refl [ _ ]) p ≡⟨ subst-refl _ _ ⟩∎ p ∎ -- If all arguments are non-erased, then one can replace substᴱ with -- subst (if the first explicit argument is η-expanded). substᴱ≡subst : {P : @0 A → Type p} {p : P x} → substᴱ P eq p ≡ subst (λ x → P x) eq p substᴱ≡subst {eq = eq} {P = P} {p = p} = elim¹ (λ eq → substᴱ P eq p ≡ subst (λ x → P x) eq p) (substᴱ P (refl _) p ≡⟨ substᴱ-refl ⟩ p ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → P x) (refl _) p ∎) eq -- A computation rule for elim₁ᴱ. elim₁ᴱ-refl : ∀ {@0 A : Type ℓ} {@0 y} {P : {@0 x : A} → @0 x ≡ y → Type p} {p : P (refl y)} → elim₁ᴱ P p (refl y) ≡ p elim₁ᴱ-refl {y = y} {P = P} {p = p} = substᴱ (λ p → P (proj₂ p)) (proj₂ (singleton-contractible y) (y , refl y)) p ≡⟨ congᴱ (λ q → substᴱ (λ p → P (proj₂ p)) q _) (singleton-contractible-refl _) ⟩ substᴱ (λ p → P (proj₂ p)) (refl (y , refl y)) p ≡⟨ substᴱ-refl ⟩∎ p ∎ -- If all arguments are non-erased, then one can replace elim₁ᴱ with -- elim₁ (if the first explicit argument is η-expanded). elim₁ᴱ≡elim₁ : {P : {@0 x : A} → @0 x ≡ y → Type p} {r : P (refl y)} → elim₁ᴱ P r eq ≡ elim₁ (λ x → P x) r eq elim₁ᴱ≡elim₁ {eq = eq} {P = P} {r = r} = elim₁ (λ eq → elim₁ᴱ P r eq ≡ elim₁ (λ x → P x) r eq) (elim₁ᴱ P r (refl _) ≡⟨ elim₁ᴱ-refl ⟩ r ≡⟨ sym $ elim₁-refl _ _ ⟩∎ elim₁ (λ x → P x) r (refl _) ∎) eq -- A computation rule for elim¹ᴱ. elim¹ᴱ-refl : ∀ {@0 A : Type ℓ} {@0 x} {P : {@0 y : A} → @0 x ≡ y → Type p} {p : P (refl x)} → elim¹ᴱ P p (refl x) ≡ p elim¹ᴱ-refl {x = x} {P = P} {p = p} = substᴱ (λ p → P (proj₂ p)) (proj₂ (other-singleton-contractible x) (x , refl x)) p ≡⟨ congᴱ (λ q → substᴱ (λ p → P (proj₂ p)) q _) (other-singleton-contractible-refl _) ⟩ substᴱ (λ p → P (proj₂ p)) (refl (x , refl x)) p ≡⟨ substᴱ-refl ⟩∎ p ∎ -- If all arguments are non-erased, then one can replace elim¹ᴱ with -- elim¹ (if the first explicit argument is η-expanded). elim¹ᴱ≡elim¹ : {P : {@0 y : A} → @0 x ≡ y → Type p} {r : P (refl x)} → elim¹ᴱ P r eq ≡ elim¹ (λ x → P x) r eq elim¹ᴱ≡elim¹ {eq = eq} {P = P} {r = r} = elim¹ (λ eq → elim¹ᴱ P r eq ≡ elim¹ (λ x → P x) r eq) (elim¹ᴱ P r (refl _) ≡⟨ elim¹ᴱ-refl ⟩ r ≡⟨ sym $ elim¹-refl _ _ ⟩∎ elim¹ (λ x → P x) r (refl _) ∎) eq -- A computation rule for elimᴱ. elimᴱ-refl : {@0 A : Type ℓ} {@0 x : A} {P : {@0 x y : A} → @0 x ≡ y → Type p} (r : (@0 x : A) → P (refl x)) → elimᴱ P r (refl x) ≡ r x elimᴱ-refl _ = elim₁ᴱ-refl -- If all arguments are non-erased, then one can replace elimᴱ with -- elim (if the first two explicit arguments are η-expanded). elimᴱ≡elim : {P : {@0 x y : A} → @0 x ≡ y → Type p} {r : ∀ (@0 x) → P (refl x)} → elimᴱ P r eq ≡ elim (λ x → P x) (λ x → r x) eq elimᴱ≡elim {eq = eq} {P = P} {r = r} = elim (λ eq → elimᴱ P r eq ≡ elim (λ x → P x) (λ x → r x) eq) (λ x → elimᴱ P r (refl _) ≡⟨ elimᴱ-refl r ⟩ r x ≡⟨ sym $ elim-refl _ _ ⟩∎ elim (λ x → P x) (λ x → r x) (refl _) ∎) eq -- A "computation rule" for congᴱ. congᴱ-refl : {@0 A : Type ℓ} {@0 x : A} {f : @0 A → B} → congᴱ f (refl x) ≡ refl (f x) congᴱ-refl {x = x} {f = f} = elimᴱ (λ {x y} _ → f x ≡ f y) (λ x → refl (f x)) (refl x) ≡⟨ elimᴱ-refl (λ x → refl (f x)) ⟩∎ refl (f x) ∎ -- If all arguments are non-erased, then one can replace congᴱ with -- cong (if the first explicit argument is η-expanded). congᴱ≡cong : {f : @0 A → B} → congᴱ f eq ≡ cong (λ x → f x) eq congᴱ≡cong {eq = eq} {f = f} = elim¹ (λ eq → congᴱ f eq ≡ cong (λ x → f x) eq) (congᴱ f (refl _) ≡⟨ congᴱ-refl ⟩ refl _ ≡⟨ sym $ cong-refl _ ⟩∎ cong (λ x → f x) (refl _) ∎) eq ---------------------------------------------------------------------- -- Some equalities -- [_] can be "pushed" through subst. push-subst-[] : {@0 P : A → Type ℓ} {@0 p : P x} {x≡y : x ≡ y} → subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ subst P x≡y p ] push-subst-[] {P = P} {p = p} = elim¹ (λ x≡y → subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ subst P x≡y p ]) (subst (λ x → Erased (P x)) (refl _) [ p ] ≡⟨ subst-refl _ _ ⟩ [ p ] ≡⟨ []-cong [ sym $ subst-refl _ _ ] ⟩∎ [ subst P (refl _) p ] ∎) _ -- []-cong kind of commutes with trans. []-cong-trans : {@0 A : Type ℓ} {@0 x y z : A} {@0 p : x ≡ y} {@0 q : y ≡ z} → []-cong [ trans p q ] ≡ trans ([]-cong [ p ]) ([]-cong [ q ]) []-cong-trans = elim¹ᴱ (λ p → ∀ (@0 q) → []-cong [ trans p q ] ≡ trans ([]-cong [ p ]) ([]-cong [ q ])) (λ q → []-cong [ trans (refl _) q ] ≡⟨ cong []-cong $ []-cong [ trans-reflˡ _ ] ⟩ []-cong [ q ] ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl [ _ ]) ([]-cong [ q ]) ≡⟨ cong (flip trans _) $ sym []-cong-[refl] ⟩∎ trans ([]-cong [ refl _ ]) ([]-cong [ q ]) ∎) _ _ ---------------------------------------------------------------------- -- All h-levels are closed under Erased -- Erased commutes with H-level′ n (assuming extensionality). Erased-H-level′↔H-level′ : {@0 A : Type ℓ} → ∀ n → Erased (H-level′ n A) ↝[ ℓ ∣ ℓ ] H-level′ n (Erased A) Erased-H-level′↔H-level′ {A = A} zero ext = Erased (H-level′ zero A) ↔⟨⟩ Erased (∃ λ (x : A) → (y : A) → x ≡ y) ↔⟨ Erased-Σ↔Σ ⟩ (∃ λ (x : Erased A) → Erased ((y : A) → erased x ≡ y)) ↔⟨ (∃-cong λ _ → Erased-Π↔Π-Erased) ⟩ (∃ λ (x : Erased A) → (y : Erased A) → Erased (erased x ≡ erased y)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism Erased-≡↔[]≡[]) ⟩ (∃ λ (x : Erased A) → (y : Erased A) → x ≡ y) ↔⟨⟩ H-level′ zero (Erased A) □ Erased-H-level′↔H-level′ {A = A} (suc n) ext = Erased (H-level′ (suc n) A) ↔⟨⟩ Erased ((x y : A) → H-level′ n (x ≡ y)) ↔⟨ Erased-Π↔Π-Erased ⟩ ((x : Erased A) → Erased ((y : A) → H-level′ n (erased x ≡ y))) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩ ((x y : Erased A) → Erased (H-level′ n (erased x ≡ erased y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → Erased-H-level′↔H-level′ n ext) ⟩ ((x y : Erased A) → H-level′ n (Erased (erased x ≡ erased y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → H-level′-cong ext n Erased-≡↔[]≡[]) ⟩ ((x y : Erased A) → H-level′ n (x ≡ y)) ↔⟨⟩ H-level′ (suc n) (Erased A) □ -- Erased commutes with H-level n (assuming extensionality). Erased-H-level↔H-level : {@0 A : Type ℓ} → ∀ n → Erased (H-level n A) ↝[ ℓ ∣ ℓ ] H-level n (Erased A) Erased-H-level↔H-level {A = A} n ext = Erased (H-level n A) ↝⟨ Erased-cong? H-level↔H-level′ ext ⟩ Erased (H-level′ n A) ↝⟨ Erased-H-level′↔H-level′ n ext ⟩ H-level′ n (Erased A) ↝⟨ inverse-ext? H-level↔H-level′ ext ⟩□ H-level n (Erased A) □ -- H-level n is closed under Erased. H-level-Erased : {@0 A : Type ℓ} → ∀ n → @0 H-level n A → H-level n (Erased A) H-level-Erased n h = Erased-H-level↔H-level n _ [ h ] ---------------------------------------------------------------------- -- Some closure properties related to Is-proposition -- If A is a proposition, then Dec-Erased A is a proposition -- (assuming extensionality). Is-proposition-Dec-Erased : {@0 A : Type ℓ} → Extensionality ℓ lzero → @0 Is-proposition A → Is-proposition (Dec-Erased A) Is-proposition-Dec-Erased {A = A} ext p = $⟨ Dec-closure-propositional ext (H-level-Erased 1 p) ⟩ Is-proposition (Dec (Erased A)) ↝⟨ H-level-cong _ 1 (inverse $ Dec-Erased↔Dec-Erased {k = equivalence} ext) ⦂ (_ → _) ⟩□ Is-proposition (Dec-Erased A) □ -- If A is a set, then Decidable-erased-equality A is a proposition -- (assuming extensionality). Is-proposition-Decidable-erased-equality : {A : Type ℓ} → Extensionality ℓ ℓ → @0 Is-set A → Is-proposition (Decidable-erased-equality A) Is-proposition-Decidable-erased-equality ext s = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Is-proposition-Dec-Erased (lower-extensionality lzero _ ext) s -- Erasedᴾ preserves Is-proposition. Is-proposition-Erasedᴾ : {@0 A : Type a} {@0 B : Type b} {@0 R : A → B → Type ℓ} → @0 (∀ {x y} → Is-proposition (R x y)) → ∀ {x y} → Is-proposition (Erasedᴾ R x y) Is-proposition-Erasedᴾ prop = H-level-Erased 1 prop ---------------------------------------------------------------------- -- A property related to "Modalities in Homotopy Type Theory" by -- Rijke, Shulman and Spitters -- Erased is a lex modality (see Theorem 3.1, case (i) in -- "Modalities in Homotopy Type Theory" for the definition used -- here). lex-modality : {@0 A : Type ℓ} {@0 x y : A} → Contractible (Erased A) → Contractible (Erased (x ≡ y)) lex-modality {A = A} {x = x} {y = y} = Contractible (Erased A) ↝⟨ _⇔_.from (Erased-H-level↔H-level 0 _) ⟩ Erased (Contractible A) ↝⟨ map (⇒≡ 0) ⟩ Erased (Contractible (x ≡ y)) ↝⟨ Erased-H-level↔H-level 0 _ ⟩□ Contractible (Erased (x ≡ y)) □ ---------------------------------------------------------------------- -- Erased "commutes" with various things -- Erased "commutes" with _⁻¹_. Erased-⁻¹ : {@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} {@0 y : B} → Erased (f ⁻¹ y) ↔ map f ⁻¹ [ y ] Erased-⁻¹ {f = f} {y = y} = Erased (∃ λ x → f x ≡ y) ↝⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased (f (erased x) ≡ y)) ↝⟨ (∃-cong λ _ → Erased-≡↔[]≡[]) ⟩□ (∃ λ x → map f x ≡ [ y ]) □ -- Erased "commutes" with Split-surjective. Erased-Split-surjective↔Split-surjective : {@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} → Erased (Split-surjective f) ↝[ ℓ ∣ a ⊔ ℓ ] Split-surjective (map f) Erased-Split-surjective↔Split-surjective {f = f} ext = Erased (∀ y → ∃ λ x → f x ≡ y) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ y → Erased (∃ λ x → f x ≡ erased y)) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-Σ↔Σ) ⟩ (∀ y → ∃ λ x → Erased (f (erased x) ≡ erased y)) ↝⟨ (∀-cong ext λ _ → ∃-cong λ _ → from-isomorphism Erased-≡↔[]≡[]) ⟩ (∀ y → ∃ λ x → [ f (erased x) ] ≡ y) ↔⟨⟩ (∀ y → ∃ λ x → map f x ≡ y) □ ---------------------------------------------------------------------- -- Some lemmas related to whether [_]→ is injective or an embedding -- In erased contexts [_]→ is injective. -- -- See also Erased.With-K.Injective-[]. @0 Injective-[] : {A : Type ℓ} → Injective {A = A} [_]→ Injective-[] = erased ∘ []-cong⁻¹ -- If A is a proposition, then [_]→ {A = A} is an embedding. -- -- See also Erased-Is-embedding-[] and Erased-Split-surjective-[] -- above as well as Very-stable→Is-embedding-[] and -- Very-stable→Split-surjective-[] in Erased.Stability and -- Injective-[] and Is-embedding-[] in Erased.With-K. Is-proposition→Is-embedding-[] : {A : Type ℓ} → Is-proposition A → Is-embedding [ A ∣_]→ Is-proposition→Is-embedding-[] prop = _⇔_.to (Emb.Injective⇔Is-embedding set (H-level-Erased 2 set) [_]→) (λ _ → prop _ _) where set = mono₁ 1 prop ---------------------------------------------------------------------- -- Variants of some functions from Equality.Decision-procedures -- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec. set⇒dec-erased⇒dec-erased⇒Σ-dec-erased : {@0 A : Type ℓ} {@0 P : A → Type p} {@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} → @0 Is-set A → Dec-Erased (x₁ ≡ x₂) → (∀ (@0 eq) → Dec-Erased (substᴱ (λ x → P x) eq y₁ ≡ y₂)) → Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂)) set⇒dec-erased⇒dec-erased⇒Σ-dec-erased _ (no [ x₁≢x₂ ]) _ = no [ x₁≢x₂ ∘ cong proj₁ ] set⇒dec-erased⇒dec-erased⇒Σ-dec-erased {P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes [ x₁≡x₂ ]) dec₂ = ⊎-map (map λ cast-y₁≡y₂ → Σ-≡,≡→≡ x₁≡x₂ (subst (λ x → P x) x₁≡x₂ y₁ ≡⟨ sym substᴱ≡subst ⟩ substᴱ (λ x → P x) x₁≡x₂ y₁ ≡⟨ cast-y₁≡y₂ ⟩∎ y₂ ∎)) (map λ cast-y₁≢y₂ eq → $⟨ proj₂ (Σ-≡,≡←≡ eq) ⟩ subst (λ x → P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $ sym substᴱ≡subst ⟩ substᴱ (λ x → P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ subst (λ p → substᴱ _ p _ ≡ _) (set₁ _ _) ⟩ substᴱ (λ x → P x) x₁≡x₂ y₁ ≡ y₂ ↝⟨ cast-y₁≢y₂ ⟩□ ⊥ □) (dec₂ x₁≡x₂) -- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec. decidable-erased⇒dec-erased⇒Σ-dec-erased : {@0 A : Type ℓ} {@0 P : A → Type p} {x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} → Decidable-erased-equality A → (∀ (@0 eq) → Dec-Erased (substᴱ (λ x → P x) eq y₁ ≡ y₂)) → Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂)) decidable-erased⇒dec-erased⇒Σ-dec-erased dec = set⇒dec-erased⇒dec-erased⇒Σ-dec-erased (decidable⇒set (Decidable-erased-equality≃Decidable-equality _ dec)) (dec _ _) -- A variant of Equality.Decision-procedures.Σ.Dec._≟_. decidable-erased⇒decidable-erased⇒Σ-decidable-erased : {@0 A : Type ℓ} {P : @0 A → Type p} → Decidable-erased-equality A → ({x : A} → Decidable-erased-equality (P x)) → Decidable-erased-equality (Σ A λ x → P x) decidable-erased⇒decidable-erased⇒Σ-decidable-erased {P = P} decA decP (_ , x₂) (_ , y₂) = decidable-erased⇒dec-erased⇒Σ-dec-erased decA (λ eq → decP (substᴱ P eq x₂) y₂) ------------------------------------------------------------------------ -- Erased commutes with W -- Erased commutes with W (assuming extensionality and an -- implementation of the []-cong axioms). -- -- See also Erased-W↔W′ and Erased-W↔W below. Erased-W↔W-[]-cong : {@0 A : Type a} {@0 P : A → Type p} → []-cong-axiomatisation (a ⊔ p) → Erased (W A P) ↝[ p ∣ a ⊔ p ] W (Erased A) (λ x → Erased (P (erased x))) Erased-W↔W-[]-cong {a = a} {p = p} {A = A} {P = P} ax = generalise-ext? Erased-W⇔W (λ ext → to∘from ext , from∘to ext) where open []-cong-axiomatisation ax open _⇔_ Erased-W⇔W to∘from : Extensionality p (a ⊔ p) → (x : W (Erased A) (λ x → Erased (P (erased x)))) → to (from x) ≡ x to∘from ext (sup [ x ] f) = cong (sup [ x ]) $ apply-ext ext λ ([ y ]) → to∘from ext (f [ y ]) from∘to : Extensionality p (a ⊔ p) → (x : Erased (W A P)) → from (to x) ≡ x from∘to ext [ sup x f ] = []-cong [ (cong (sup x) $ apply-ext ext λ y → cong erased (from∘to ext [ f y ])) ] -- Erased commutes with W (assuming extensionality). -- -- See also Erased-W↔W below: That property is defined assuming that -- the []-cong axioms can be instantiated, but is stated using -- _↝[ p ∣ a ⊔ p ]_ instead of _↝[ a ⊔ p ∣ a ⊔ p ]_. Erased-W↔W′ : {@0 A : Type a} {@0 P : A → Type p} → Erased (W A P) ↝[ a ⊔ p ∣ a ⊔ p ] W (Erased A) (λ x → Erased (P (erased x))) Erased-W↔W′ {a = a} = generalise-ext? Erased-W⇔W (λ ext → let bij = Erased-W↔W-[]-cong (Extensionality→[]-cong-axiomatisation ext) (lower-extensionality a lzero ext) in _↔_.right-inverse-of bij , _↔_.left-inverse-of bij) ------------------------------------------------------------------------ -- Some results that follow if the []-cong axioms hold for two -- universe levels module []-cong₂ (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) where private module BC₁ = []-cong₁ ax₁ module BC₂ = []-cong₁ ax₂ ---------------------------------------------------------------------- -- Some equalities -- The function map (cong f) can be expressed in terms of -- cong (map f) (up to pointwise equality). map-cong≡cong-map : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 x y : A} {@0 f : A → B} {x≡y : Erased (x ≡ y)} → map (cong f) x≡y ≡ BC₂.[]-cong⁻¹ (cong (map f) (BC₁.[]-cong x≡y)) map-cong≡cong-map {f = f} {x≡y = [ x≡y ]} = [ cong f x≡y ] ≡⟨⟩ [ cong (erased ∘ map f ∘ [_]→) x≡y ] ≡⟨ BC₂.[]-cong [ sym $ cong-∘ _ _ _ ] ⟩ [ cong (erased ∘ map f) (cong [_]→ x≡y) ] ≡⟨ BC₂.[]-cong [ cong (cong _) $ sym BC₁.[]-cong-[]≡cong-[] ] ⟩ [ cong (erased ∘ map f) (BC₁.[]-cong [ x≡y ]) ] ≡⟨ BC₂.[]-cong [ sym $ cong-∘ _ _ _ ] ⟩ [ cong erased (cong (map f) (BC₁.[]-cong [ x≡y ])) ] ≡⟨ sym BC₂.[]-cong⁻¹≡[cong-erased] ⟩∎ BC₂.[]-cong⁻¹ (cong (map f) (BC₁.[]-cong [ x≡y ])) ∎ -- []-cong kind of commutes with cong. []-cong-cong : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} {@0 x y : A} {@0 p : x ≡ y} → BC₂.[]-cong [ cong f p ] ≡ cong (map f) (BC₁.[]-cong [ p ]) []-cong-cong {f = f} = BC₁.elim¹ᴱ (λ p → BC₂.[]-cong [ cong f p ] ≡ cong (map f) (BC₁.[]-cong [ p ])) (BC₂.[]-cong [ cong f (refl _) ] ≡⟨ cong BC₂.[]-cong (BC₂.[]-cong [ cong-refl _ ]) ⟩ BC₂.[]-cong [ refl _ ] ≡⟨ BC₂.[]-cong-[refl] ⟩ refl _ ≡⟨ sym $ cong-refl _ ⟩ cong (map f) (refl _) ≡⟨ sym $ cong (cong (map f)) BC₁.[]-cong-[refl] ⟩∎ cong (map f) (BC₁.[]-cong [ refl _ ]) ∎) _ ---------------------------------------------------------------------- -- Erased "commutes" with one thing -- Erased "commutes" with Has-quasi-inverse. Erased-Has-quasi-inverse↔Has-quasi-inverse : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Has-quasi-inverse f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Has-quasi-inverse (map f) Erased-Has-quasi-inverse↔Has-quasi-inverse {A = A} {B = B} {f = f} {k = k} ext = Erased (∃ λ g → (∀ x → f (g x) ≡ x) × (∀ x → g (f x) ≡ x)) ↔⟨ Erased-Σ↔Σ ⟩ (∃ λ g → Erased ((∀ x → f (erased g x) ≡ x) × (∀ x → erased g (f x) ≡ x))) ↝⟨ (∃-cong λ _ → from-isomorphism Erased-Σ↔Σ) ⟩ (∃ λ g → Erased (∀ x → f (erased g x) ≡ x) × Erased (∀ x → erased g (f x) ≡ x)) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ g → lemma₁ (erased g) ×-cong lemma₂ (erased g)) ⟩□ (∃ λ g → (∀ x → map f (g x) ≡ x) × (∀ x → g (map f x) ≡ x)) □ where lemma₁ : (@0 g : B → A) → _ ↝[ k ] _ lemma₁ g = Erased (∀ x → f (g x) ≡ x) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ x → Erased (f (g (erased x)) ≡ erased x)) ↝⟨ (∀-cong (lower-extensionality? k ℓ₁ ℓ₁ ext) λ _ → from-isomorphism BC₂.Erased-≡↔[]≡[]) ⟩ (∀ x → [ f (g (erased x)) ] ≡ x) ↔⟨⟩ (∀ x → map (f ∘ g) x ≡ x) □ lemma₂ : (@0 g : B → A) → _ ↝[ k ] _ lemma₂ g = Erased (∀ x → g (f x) ≡ x) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ x → Erased (g (f (erased x)) ≡ erased x)) ↝⟨ (∀-cong (lower-extensionality? k ℓ₂ ℓ₂ ext) λ _ → from-isomorphism BC₁.Erased-≡↔[]≡[]) ⟩ (∀ x → [ g (f (erased x)) ] ≡ x) ↔⟨⟩ (∀ x → map (g ∘ f) x ≡ x) □ ------------------------------------------------------------------------ -- Some results that follow if the []-cong axioms hold for the maximum -- of two universe levels (as well as for the two universe levels) -- It is possible to instantiate the first two arguments using the -- third and lower-[]-cong-axiomatisation, but this is not what is -- done in the module []-cong below. module []-cong₂-⊔ (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) (ax : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂)) where private module EC = Erased-cong ax ax module BC₁ = []-cong₁ ax₁ module BC₂ = []-cong₁ ax₂ module BC = []-cong₁ ax ---------------------------------------------------------------------- -- A property related to "Modalities in Homotopy Type Theory" by -- Rijke, Shulman and Spitters -- A function f is Erased-connected in the sense of Rijke et al. -- exactly when there is an erased proof showing that f is an -- equivalence (assuming extensionality). -- -- See also Erased-Is-equivalence↔Is-equivalence below. Erased-connected↔Erased-Is-equivalence : {@0 A : Type ℓ₁} {B : Type ℓ₂} {@0 f : A → B} → (∀ y → Contractible (Erased (f ⁻¹ y))) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Erased (Is-equivalence f) Erased-connected↔Erased-Is-equivalence {f = f} {k = k} ext = (∀ y → Contractible (Erased (f ⁻¹ y))) ↝⟨ (∀-cong (lower-extensionality? k ℓ₁ lzero ext) λ _ → inverse-ext? (BC.Erased-H-level↔H-level 0) ext) ⟩ (∀ y → Erased (Contractible (f ⁻¹ y))) ↔⟨ inverse Erased-Π↔Π ⟩ Erased (∀ y → Contractible (f ⁻¹ y)) ↔⟨⟩ Erased (CP.Is-equivalence f) ↝⟨ inverse-ext? (λ ext → EC.Erased-cong? Is-equivalence≃Is-equivalence-CP ext) ext ⟩□ Erased (Is-equivalence f) □ ---------------------------------------------------------------------- -- Erased "commutes" with various things -- Erased "commutes" with Is-equivalence. Erased-Is-equivalence↔Is-equivalence : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Is-equivalence f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Is-equivalence (map f) Erased-Is-equivalence↔Is-equivalence {f = f} {k = k} ext = Erased (Is-equivalence f) ↝⟨ EC.Erased-cong? Is-equivalence≃Is-equivalence-CP ext ⟩ Erased (∀ x → Contractible (f ⁻¹ x)) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ x → Erased (Contractible (f ⁻¹ erased x))) ↝⟨ (∀-cong ext′ λ _ → BC.Erased-H-level↔H-level 0 ext) ⟩ (∀ x → Contractible (Erased (f ⁻¹ erased x))) ↝⟨ (∀-cong ext′ λ _ → H-level-cong ext 0 BC₂.Erased-⁻¹) ⟩ (∀ x → Contractible (map f ⁻¹ x)) ↝⟨ inverse-ext? Is-equivalence≃Is-equivalence-CP ext ⟩□ Is-equivalence (map f) □ where ext′ = lower-extensionality? k ℓ₁ lzero ext -- Erased "commutes" with Injective. Erased-Injective↔Injective : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Injective f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Injective (map f) Erased-Injective↔Injective {f = f} {k = k} ext = Erased (∀ {x y} → f x ≡ f y → x ≡ y) ↔⟨ EC.Erased-cong-↔ Bijection.implicit-Π↔Π ⟩ Erased (∀ x {y} → f x ≡ f y → x ≡ y) ↝⟨ EC.Erased-cong? (λ {k} ext → ∀-cong (lower-extensionality? k ℓ₂ lzero ext) λ _ → from-isomorphism Bijection.implicit-Π↔Π) ext ⟩ Erased (∀ x y → f x ≡ f y → x ≡ y) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ x → Erased (∀ y → f (erased x) ≡ f y → erased x ≡ y)) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩ (∀ x y → Erased (f (erased x) ≡ f (erased y) → erased x ≡ erased y)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩ (∀ x y → Erased (f (erased x) ≡ f (erased y)) → Erased (erased x ≡ erased y)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → generalise-ext?-sym (λ {k} ext → →-cong (lower-extensionality? ⌊ k ⌋-sym ℓ₁ ℓ₂ ext) (from-isomorphism BC₂.Erased-≡↔[]≡[]) (from-isomorphism BC₁.Erased-≡↔[]≡[])) ext) ⟩ (∀ x y → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism $ inverse Bijection.implicit-Π↔Π) ⟩ (∀ x {y} → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) ↔⟨ inverse Bijection.implicit-Π↔Π ⟩□ (∀ {x y} → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) □ where ext′ = lower-extensionality? k ℓ₂ lzero ext -- Erased "commutes" with Is-embedding. Erased-Is-embedding↔Is-embedding : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Is-embedding f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Is-embedding (map f) Erased-Is-embedding↔Is-embedding {f = f} {k = k} ext = Erased (∀ x y → Is-equivalence (cong f)) ↔⟨ Erased-Π↔Π-Erased ⟩ (∀ x → Erased (∀ y → Is-equivalence (cong f))) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩ (∀ x y → Erased (Is-equivalence (cong f))) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → Erased-Is-equivalence↔Is-equivalence ext) ⟩ (∀ x y → Is-equivalence (map (cong f))) ↝⟨ (∀-cong ext′ λ x → ∀-cong ext′ λ y → Is-equivalence-cong ext λ _ → []-cong₂.map-cong≡cong-map ax₁ ax₂) ⟩ (∀ x y → Is-equivalence (BC₂.[]-cong⁻¹ ∘ cong (map f) ∘ BC₁.[]-cong)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → inverse-ext? (Is-equivalence≃Is-equivalence-∘ʳ BC₁.[]-cong-equivalence) ext) ⟩ (∀ x y → Is-equivalence (BC₂.[]-cong⁻¹ ∘ cong (map f))) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → inverse-ext? (Is-equivalence≃Is-equivalence-∘ˡ (_≃_.is-equivalence $ from-isomorphism $ inverse BC₂.Erased-≡↔[]≡[])) ext) ⟩□ (∀ x y → Is-equivalence (cong (map f))) □ where ext′ = lower-extensionality? k ℓ₂ lzero ext ---------------------------------------------------------------------- -- Erased commutes with various type formers -- Erased commutes with W (assuming extensionality). Erased-W↔W : {@0 A : Type ℓ₁} {@0 P : A → Type ℓ₂} → Erased (W A P) ↝[ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] W (Erased A) (λ x → Erased (P (erased x))) Erased-W↔W = Erased-W↔W-[]-cong ax -- Erased commutes with _⇔_. Erased-⇔↔⇔ : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} → Erased (A ⇔ B) ↔ (Erased A ⇔ Erased B) Erased-⇔↔⇔ {A = A} {B = B} = Erased (A ⇔ B) ↝⟨ EC.Erased-cong-↔ ⇔↔→×→ ⟩ Erased ((A → B) × (B → A)) ↝⟨ Erased-Σ↔Σ ⟩ Erased (A → B) × Erased (B → A) ↝⟨ Erased-Π↔Π-Erased ×-cong Erased-Π↔Π-Erased ⟩ (Erased A → Erased B) × (Erased B → Erased A) ↝⟨ inverse ⇔↔→×→ ⟩□ (Erased A ⇔ Erased B) □ -- Erased commutes with _↣_. Erased-cong-↣ : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} → @0 A ↣ B → Erased A ↣ Erased B Erased-cong-↣ A↣B = record { to = map (_↣_.to A↣B) ; injective = Erased-Injective↔Injective _ [ _↣_.injective A↣B ] } ------------------------------------------------------------------------ -- Some results that follow if the []-cong axioms hold for all -- universe levels module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where private open module EC {ℓ₁ ℓ₂} = Erased-cong (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) public open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ}) public open module BC₂ {ℓ₁ ℓ₂} = []-cong₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) public open module BC₂-⊔ {ℓ₁ ℓ₂} = []-cong₂-⊔ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) (ax {ℓ = ℓ₁ ⊔ ℓ₂}) public ------------------------------------------------------------------------ -- Some results that were proved assuming extensionality and also that -- one or more instances of the []-cong axioms can be implemented, -- reproved without the latter assumptions module Extensionality where -- Erased commutes with H-level′ n (assuming extensionality). Erased-H-level′≃H-level′ : {@0 A : Type a} → Extensionality a a → ∀ n → Erased (H-level′ n A) ≃ H-level′ n (Erased A) Erased-H-level′≃H-level′ ext n = []-cong₁.Erased-H-level′↔H-level′ (Extensionality→[]-cong-axiomatisation ext) n ext -- Erased commutes with H-level n (assuming extensionality). Erased-H-level≃H-level : {@0 A : Type a} → Extensionality a a → ∀ n → Erased (H-level n A) ≃ H-level n (Erased A) Erased-H-level≃H-level ext n = []-cong₁.Erased-H-level↔H-level (Extensionality→[]-cong-axiomatisation ext) n ext -- If A is a set, then Decidable-erased-equality A is a proposition -- (assuming extensionality). Is-proposition-Decidable-erased-equality′ : {A : Type a} → Extensionality a a → @0 Is-set A → Is-proposition (Decidable-erased-equality A) Is-proposition-Decidable-erased-equality′ ext = []-cong₁.Is-proposition-Decidable-erased-equality (Extensionality→[]-cong-axiomatisation ext) ext -- Erased "commutes" with Split-surjective. Erased-Split-surjective≃Split-surjective : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Extensionality b (a ⊔ b) → Erased (Split-surjective f) ≃ Split-surjective (map f) Erased-Split-surjective≃Split-surjective {a = a} ext = []-cong₁.Erased-Split-surjective↔Split-surjective (Extensionality→[]-cong-axiomatisation (lower-extensionality lzero a ext)) ext -- A function f is Erased-connected in the sense of Rijke et al. -- exactly when there is an erased proof showing that f is an -- equivalence (assuming extensionality). Erased-connected≃Erased-Is-equivalence : {@0 A : Type a} {B : Type b} {@0 f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → (∀ y → Contractible (Erased (f ⁻¹ y))) ≃ Erased (Is-equivalence f) Erased-connected≃Erased-Is-equivalence {a = a} {b = b} ext = []-cong₂-⊔.Erased-connected↔Erased-Is-equivalence (Extensionality→[]-cong-axiomatisation (lower-extensionality b b ext)) (Extensionality→[]-cong-axiomatisation (lower-extensionality a a ext)) (Extensionality→[]-cong-axiomatisation ext) ext -- Erased "commutes" with Is-equivalence (assuming extensionality). Erased-Is-equivalence≃Is-equivalence : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Erased (Is-equivalence f) ≃ Is-equivalence (map f) Erased-Is-equivalence≃Is-equivalence {a = a} {b = b} ext = []-cong₂-⊔.Erased-Is-equivalence↔Is-equivalence (Extensionality→[]-cong-axiomatisation (lower-extensionality b b ext)) (Extensionality→[]-cong-axiomatisation (lower-extensionality a a ext)) (Extensionality→[]-cong-axiomatisation ext) ext -- Erased "commutes" with Has-quasi-inverse (assuming -- extensionality). Erased-Has-quasi-inverse≃Has-quasi-inverse : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Erased (Has-quasi-inverse f) ≃ Has-quasi-inverse (map f) Erased-Has-quasi-inverse≃Has-quasi-inverse {a = a} {b = b} ext = []-cong₂.Erased-Has-quasi-inverse↔Has-quasi-inverse (Extensionality→[]-cong-axiomatisation (lower-extensionality b b ext)) (Extensionality→[]-cong-axiomatisation (lower-extensionality a a ext)) ext -- Erased "commutes" with Injective (assuming extensionality). Erased-Injective≃Injective : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Erased (Injective f) ≃ Injective (map f) Erased-Injective≃Injective {a = a} {b = b} ext = []-cong₂-⊔.Erased-Injective↔Injective (Extensionality→[]-cong-axiomatisation (lower-extensionality b b ext)) (Extensionality→[]-cong-axiomatisation (lower-extensionality a a ext)) (Extensionality→[]-cong-axiomatisation ext) ext -- Erased "commutes" with Is-embedding (assuming extensionality). Erased-Is-embedding≃Is-embedding : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Erased (Is-embedding f) ≃ Is-embedding (map f) Erased-Is-embedding≃Is-embedding {a = a} {b = b} ext = []-cong₂-⊔.Erased-Is-embedding↔Is-embedding (Extensionality→[]-cong-axiomatisation (lower-extensionality b b ext)) (Extensionality→[]-cong-axiomatisation (lower-extensionality a a ext)) (Extensionality→[]-cong-axiomatisation ext) ext ------------------------------------------------------------------------ -- Some lemmas related to []-cong-axiomatisation -- Any two implementations of []-cong are pointwise equal. []-cong-unique : {@0 A : Type a} {@0 x y : A} {x≡y : Erased (x ≡ y)} (ax₁ ax₂ : []-cong-axiomatisation a) → []-cong-axiomatisation.[]-cong ax₁ x≡y ≡ []-cong-axiomatisation.[]-cong ax₂ x≡y []-cong-unique {x = x} ax₁ ax₂ = BC₁.elim¹ᴱ (λ x≡y → BC₁.[]-cong [ x≡y ] ≡ BC₂.[]-cong [ x≡y ]) (BC₁.[]-cong [ refl x ] ≡⟨ BC₁.[]-cong-[refl] ⟩ refl [ x ] ≡⟨ sym BC₂.[]-cong-[refl] ⟩∎ BC₂.[]-cong [ refl x ] ∎) _ where module BC₁ = []-cong₁ ax₁ module BC₂ = []-cong₁ ax₂ -- The type []-cong-axiomatisation a is propositional (assuming -- extensionality). -- -- The proof is based on a proof due to Nicolai Kraus that shows that -- "J + its computation rule" is contractible, see -- Equality.Instances-related.Equality-with-J-contractible. []-cong-axiomatisation-propositional : Extensionality (lsuc a) a → Is-proposition ([]-cong-axiomatisation a) []-cong-axiomatisation-propositional {a = a} ext = [inhabited⇒contractible]⇒propositional λ ax → let module BC = []-cong₁ ax module EC = Erased-cong ax ax in _⇔_.from contractible⇔↔⊤ ([]-cong-axiomatisation a ↔⟨ Eq.↔→≃ (λ (record { []-cong = c ; []-cong-equivalence = e ; []-cong-[refl] = r }) _ → (λ ([ _ , _ , x≡y ]) → c [ x≡y ]) , (λ _ → r) , (λ _ _ → e)) (λ f → record { []-cong = λ ([ x≡y ]) → f _ .proj₁ [ _ , _ , x≡y ] ; []-cong-equivalence = f _ .proj₂ .proj₂ _ _ ; []-cong-[refl] = f _ .proj₂ .proj₁ _ }) refl refl ⟩ ((([ A ]) : Erased (Type a)) → ∃ λ (c : ((([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ])) → ((([ x ]) : Erased A) → c [ x , x , refl x ] ≡ refl [ x ]) × ((([ x ]) ([ y ]) : Erased A) → Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]} (λ ([ x≡y ]) → c [ x , y , x≡y ]))) ↝⟨ (∀-cong ext λ _ → Σ-cong (inverse $ Π-cong ext′ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ → Bijection.id) λ c → ∃-cong λ r → ∀-cong ext′ λ ([ x ]) → ∀-cong ext′ λ ([ y ]) → Is-equivalence-cong ext′ λ ([ x≡y ]) → c [ x , y , x≡y ] ≡⟨ BC.elim¹ᴱ (λ x≡y → c [ _ , _ , x≡y ] ≡ BC.[]-cong [ x≡y ]) ( c [ x , x , refl x ] ≡⟨ r [ x ] ⟩ refl [ x ] ≡⟨ sym BC.[]-cong-[refl] ⟩∎ BC.[]-cong [ refl x ] ∎) _ ⟩∎ BC.[]-cong [ x≡y ] ∎) ⟩ ((([ A ]) : Erased (Type a)) → ∃ λ (c : ((x : Erased A) → x ≡ x)) → ((x : Erased A) → c x ≡ refl x) × ((([ x ]) ([ y ]) : Erased A) → Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]} (λ ([ x≡y ]) → BC.[]-cong [ x≡y ]))) ↝⟨ (∀-cong ext λ _ → ∃-cong λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Π-closure ext′ 1 λ _ → Π-closure ext′ 1 λ _ → Eq.propositional ext′ _) (λ _ _ → BC.[]-cong-equivalence)) ⟩ ((([ A ]) : Erased (Type a)) → ∃ λ (c : ((x : Erased A) → x ≡ x)) → ((x : Erased A) → c x ≡ refl x)) ↝⟨ (∀-cong ext λ _ → inverse ΠΣ-comm) ⟩ ((([ A ]) : Erased (Type a)) (x : Erased A) → ∃ λ (c : x ≡ x) → c ≡ refl x) ↔⟨⟩ ((([ A ]) : Erased (Type a)) (x : Erased A) → Singleton (refl x)) ↝⟨ _⇔_.to contractible⇔↔⊤ $ (Π-closure ext 0 λ _ → Π-closure ext′ 0 λ _ → singleton-contractible _) ⟩□ ⊤ □) where ext′ : Extensionality a a ext′ = lower-extensionality _ lzero ext -- The type []-cong-axiomatisation a is contractible (assuming -- extensionality). []-cong-axiomatisation-contractible : Extensionality (lsuc a) a → Contractible ([]-cong-axiomatisation a) []-cong-axiomatisation-contractible {a = a} ext = propositional⇒inhabited⇒contractible ([]-cong-axiomatisation-propositional ext) (Extensionality→[]-cong-axiomatisation (lower-extensionality _ lzero ext)) ------------------------------------------------------------------------ -- An alternative to []-cong-axiomatisation -- An axiomatisation of substᴱ, restricted to a fixed universe, along -- with its computation rule. Substᴱ-axiomatisation : (ℓ : Level) → Type (lsuc ℓ) Substᴱ-axiomatisation ℓ = ∃ λ (substᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : @0 A → Type ℓ) → @0 x ≡ y → P x → P y) → {@0 A : Type ℓ} {@0 x : A} {P : @0 A → Type ℓ} {p : P x} → substᴱ P (refl x) p ≡ p private -- The type []-cong-axiomatisation ℓ is logically equivalent to -- Substᴱ-axiomatisation ℓ. []-cong-axiomatisation⇔Substᴱ-axiomatisation : []-cong-axiomatisation ℓ ⇔ Substᴱ-axiomatisation ℓ []-cong-axiomatisation⇔Substᴱ-axiomatisation {ℓ = ℓ} = record { to = to; from = from } where to : []-cong-axiomatisation ℓ → Substᴱ-axiomatisation ℓ to ax = []-cong₁.substᴱ ax , []-cong₁.substᴱ-refl ax from : Substᴱ-axiomatisation ℓ → []-cong-axiomatisation ℓ from (substᴱ , substᴱ-refl) = λ where .[]-cong-axiomatisation.[]-cong → []-cong .[]-cong-axiomatisation.[]-cong-[refl] → substᴱ-refl .[]-cong-axiomatisation.[]-cong-equivalence {x = x} → _≃_.is-equivalence $ Eq.↔→≃ _ (λ [x]≡[y] → [ cong erased [x]≡[y] ]) (elim¹ (λ [x]≡[y] → substᴱ (λ y → [ x ] ≡ [ y ]) (cong erased [x]≡[y]) (refl [ x ]) ≡ [x]≡[y]) (substᴱ (λ y → [ x ] ≡ [ y ]) (cong erased (refl [ x ])) (refl [ x ]) ≡⟨ substᴱ (λ eq → substᴱ (λ y → [ x ] ≡ [ y ]) eq (refl [ x ]) ≡ substᴱ (λ y → [ x ] ≡ [ y ]) (refl x) (refl [ x ])) (sym $ cong-refl _) (refl _) ⟩ substᴱ (λ y → [ x ] ≡ [ y ]) (refl x) (refl [ x ]) ≡⟨ substᴱ-refl ⟩∎ refl [ x ] ∎)) (λ ([ x≡y ]) → []-cong [ elim¹ (λ x≡y → cong erased ([]-cong [ x≡y ]) ≡ x≡y) (cong erased ([]-cong [ refl _ ]) ≡⟨ cong (cong erased) substᴱ-refl ⟩ cong erased (refl [ _ ]) ≡⟨ cong-refl _ ⟩∎ refl _ ∎) x≡y ]) where []-cong : {@0 A : Type ℓ} {@0 x y : A} → Erased (x ≡ y) → [ x ] ≡ [ y ] []-cong {x = x} ([ x≡y ]) = substᴱ (λ y → [ x ] ≡ [ y ]) x≡y (refl [ x ]) -- The type Substᴱ-axiomatisation ℓ is propositional (assuming -- extensionality). -- -- The proof is based on a proof due to Nicolai Kraus that shows that -- "J + its computation rule" is contractible, see -- Equality.Instances-related.Equality-with-J-contractible. Substᴱ-axiomatisation-propositional : Extensionality (lsuc ℓ) (lsuc ℓ) → Is-proposition (Substᴱ-axiomatisation ℓ) Substᴱ-axiomatisation-propositional {ℓ = ℓ} ext = [inhabited⇒contractible]⇒propositional λ ax → let ax′ = _⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation ax module EC = Erased-cong ax′ ax′ in _⇔_.from contractible⇔↔⊤ (Substᴱ-axiomatisation ℓ ↔⟨ Eq.↔→≃ (λ (substᴱ , substᴱ-refl) _ P → (λ ([ _ , _ , x≡y ]) → substᴱ (λ A → P [ A ]) x≡y) , (λ _ _ → substᴱ-refl)) (λ hyp → (λ P x≡y p → hyp _ (λ ([ A ]) → P A) .proj₁ [ _ , _ , x≡y ] p) , hyp _ _ .proj₂ _ _) refl refl ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) → ∃ λ (s : ((([ x , y , _ ]) : Erased (A ²/≡)) → P [ x ] → P [ y ])) → ((([ x ]) : Erased A) (p : P [ x ]) → s [ x , x , refl x ] p ≡ p)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ → Σ-cong (inverse $ Π-cong ext″ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ → Bijection.id) (λ _ → Bijection.id)) ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) → ∃ λ (s : ((([ x ]) : Erased A) → P [ x ] → P [ x ])) → ((([ x ]) : Erased A) (p : P [ x ]) → s [ x ] p ≡ p)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ → inverse $ ΠΣ-comm F.∘ (∀-cong ext″ λ _ → ΠΣ-comm)) ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) (x : Erased A) (p : P x) → ∃ λ (p′ : P x) → p′ ≡ p) ↔⟨⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) (x : Erased A) (p : P x) → Singleton p) ↝⟨ (_⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ _ → Π-closure ext′ 0 λ _ → Π-closure ext″ 0 λ _ → Π-closure ext″ 0 λ _ → singleton-contractible _) ⟩□ ⊤ □) where ext′ : Extensionality (lsuc ℓ) ℓ ext′ = lower-extensionality lzero _ ext ext″ : Extensionality ℓ ℓ ext″ = lower-extensionality _ _ ext -- The type []-cong-axiomatisation ℓ is equivalent to -- Substᴱ-axiomatisation ℓ (assuming extensionality). []-cong-axiomatisation≃Substᴱ-axiomatisation : []-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Substᴱ-axiomatisation ℓ []-cong-axiomatisation≃Substᴱ-axiomatisation {ℓ = ℓ} = generalise-ext?-prop []-cong-axiomatisation⇔Substᴱ-axiomatisation ([]-cong-axiomatisation-propositional ∘ lower-extensionality lzero _) Substᴱ-axiomatisation-propositional ------------------------------------------------------------------------ -- Another alternative to []-cong-axiomatisation -- An axiomatisation of elim¹ᴱ, restricted to a fixed universe, along -- with its computation rule. Elimᴱ-axiomatisation : (ℓ : Level) → Type (lsuc ℓ) Elimᴱ-axiomatisation ℓ = ∃ λ (elimᴱ : {@0 A : Type ℓ} {@0 x y : A} (P : {@0 x y : A} → @0 x ≡ y → Type ℓ) → ((@0 x : A) → P (refl x)) → (@0 x≡y : x ≡ y) → P x≡y) → {@0 A : Type ℓ} {@0 x : A} {P : {@0 x y : A} → @0 x ≡ y → Type ℓ} (r : (@0 x : A) → P (refl x)) → elimᴱ P r (refl x) ≡ r x private -- The type Substᴱ-axiomatisation ℓ is logically equivalent to -- Elimᴱ-axiomatisation ℓ. Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation : Substᴱ-axiomatisation ℓ ⇔ Elimᴱ-axiomatisation ℓ Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation {ℓ = ℓ} = record { to = to; from = from } where to : Substᴱ-axiomatisation ℓ → Elimᴱ-axiomatisation ℓ to ax = elimᴱ , elimᴱ-refl where open []-cong₁ (_⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation ax) from : Elimᴱ-axiomatisation ℓ → Substᴱ-axiomatisation ℓ from (elimᴱ , elimᴱ-refl) = (λ P x≡y p → elimᴱ (λ {x = x} {y = y} _ → P x → P y) (λ _ → id) x≡y p) , (λ {_ _ _ p} → cong (_$ p) $ elimᴱ-refl _) -- The type Elimᴱ-axiomatisation ℓ is propositional (assuming -- extensionality). -- -- The proof is based on a proof due to Nicolai Kraus that shows that -- "J + its computation rule" is contractible, see -- Equality.Instances-related.Equality-with-J-contractible. Elimᴱ-axiomatisation-propositional : Extensionality (lsuc ℓ) (lsuc ℓ) → Is-proposition (Elimᴱ-axiomatisation ℓ) Elimᴱ-axiomatisation-propositional {ℓ = ℓ} ext = [inhabited⇒contractible]⇒propositional λ ax → let ax′ = _⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation $ _⇔_.from Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation ax module EC = Erased-cong ax′ ax′ in _⇔_.from contractible⇔↔⊤ (Elimᴱ-axiomatisation ℓ ↔⟨ Eq.↔→≃ (λ (elimᴱ , elimᴱ-refl) _ P r → (λ ([ _ , _ , x≡y ]) → elimᴱ (λ x≡y → P [ _ , _ , x≡y ]) (λ x → r [ x ]) x≡y) , (λ _ → elimᴱ-refl _)) (λ hyp → (λ P r x≡y → hyp _ (λ ([ _ , _ , x≡y ]) → P x≡y) (λ ([ x ]) → r x) .proj₁ [ _ , _ , x≡y ]) , (λ _ → hyp _ _ _ .proj₂ _)) refl refl ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased (A ²/≡) → Type ℓ) (r : (([ x ]) : Erased A) → P [ x , x , refl x ]) → ∃ λ (e : (x : Erased (A ²/≡)) → P x) → ((([ x ]) : Erased A) → e [ x , x , refl x ] ≡ r [ x ])) ↝⟨ (∀-cong ext λ _ → Π-cong {k₁ = bijection} ext′ (→-cong₁ ext″ (EC.Erased-cong-↔ U.-²/≡↔-)) λ _ → ∀-cong ext‴ λ _ → Σ-cong (inverse $ Π-cong ext‴ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ → Bijection.id) (λ _ → Bijection.id)) ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) (r : (x : Erased A) → P x) → ∃ λ (e : (x : Erased A) → P x) → (x : Erased A) → e x ≡ r x) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ → ∀-cong ext‴ λ _ → inverse ΠΣ-comm) ⟩ ((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) (r : (x : Erased A) → P x) (x : Erased A) → ∃ λ (p : P x) → p ≡ r x) ↝⟨ (_⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ _ → Π-closure ext′ 0 λ _ → Π-closure ext‴ 0 λ _ → Π-closure ext‴ 0 λ _ → singleton-contractible _) ⟩□ ⊤ □) where ext′ : Extensionality (lsuc ℓ) ℓ ext′ = lower-extensionality lzero _ ext ext″ : Extensionality ℓ (lsuc ℓ) ext″ = lower-extensionality _ lzero ext ext‴ : Extensionality ℓ ℓ ext‴ = lower-extensionality _ _ ext -- The type Substᴱ-axiomatisation ℓ is equivalent to -- Elimᴱ-axiomatisation ℓ (assuming extensionality). Substᴱ-axiomatisation≃Elimᴱ-axiomatisation : Substᴱ-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Elimᴱ-axiomatisation ℓ Substᴱ-axiomatisation≃Elimᴱ-axiomatisation = generalise-ext?-prop Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation Substᴱ-axiomatisation-propositional Elimᴱ-axiomatisation-propositional -- The type []-cong-axiomatisation ℓ is equivalent to -- Elimᴱ-axiomatisation ℓ (assuming extensionality). []-cong-axiomatisation≃Elimᴱ-axiomatisation : []-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Elimᴱ-axiomatisation ℓ []-cong-axiomatisation≃Elimᴱ-axiomatisation {ℓ = ℓ} ext = []-cong-axiomatisation ℓ ↝⟨ []-cong-axiomatisation≃Substᴱ-axiomatisation ext ⟩ Substᴱ-axiomatisation ℓ ↝⟨ Substᴱ-axiomatisation≃Elimᴱ-axiomatisation ext ⟩□ Elimᴱ-axiomatisation ℓ □
{ "alphanum_fraction": 0.444066461, "avg_line_length": 39.8701149425, "ext": "agda", "hexsha": "2324772ccbf95efab9de11df8f332af7ed2cb540", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Erased/Level-1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Erased/Level-1.agda", "max_line_length": 147, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Erased/Level-1.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 37156, "size": 104061 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.FunctorAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) open import Cubical.Foundations.Univalence open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation.Base open _≅_ private variable ℓC ℓC' : Level module _ {C : Category ℓC ℓC'} (F : Functor C C) where open Category open Functor IsAlgebra : ob C → Type ℓC' IsAlgebra x = C [ F-ob F x , x ] record Algebra : Type (ℓ-max ℓC ℓC') where constructor algebra field carrier : ob C str : IsAlgebra carrier open Algebra IsAlgebraHom : (algA algB : Algebra) → C [ carrier algA , carrier algB ] → Type ℓC' IsAlgebraHom algA algB f = (f ∘⟨ C ⟩ str algA) ≡ (str algB ∘⟨ C ⟩ F-hom F f) record AlgebraHom (algA algB : Algebra) : Type ℓC' where constructor algebraHom field carrierHom : C [ carrier algA , carrier algB ] strHom : IsAlgebraHom algA algB carrierHom open AlgebraHom RepAlgebraHom : (algA algB : Algebra) → Type ℓC' RepAlgebraHom algA algB = Σ[ f ∈ C [ carrier algA , carrier algB ] ] IsAlgebraHom algA algB f isoRepAlgebraHom : (algA algB : Algebra) → AlgebraHom algA algB ≅ RepAlgebraHom algA algB fun (isoRepAlgebraHom algA algB) (algebraHom f isalgF) = f , isalgF inv (isoRepAlgebraHom algA algB) (f , isalgF) = algebraHom f isalgF rightInv (isoRepAlgebraHom algA algB) (f , isalgF) = refl leftInv (isoRepAlgebraHom algA algB) (algebraHom f isalgF)= refl pathRepAlgebraHom : (algA algB : Algebra) → AlgebraHom algA algB ≡ RepAlgebraHom algA algB pathRepAlgebraHom algA algB = ua (isoToEquiv (isoRepAlgebraHom algA algB)) AlgebraHom≡ : {algA algB : Algebra} {algF algG : AlgebraHom algA algB} → (carrierHom algF ≡ carrierHom algG) → algF ≡ algG carrierHom (AlgebraHom≡ {algA} {algB} {algF} {algG} p i) = p i strHom (AlgebraHom≡ {algA} {algB} {algF} {algG} p i) = idfun (PathP (λ j → (p j ∘⟨ C ⟩ str algA) ≡ (str algB ∘⟨ C ⟩ F-hom F (p j))) (strHom algF) (strHom algG) ) (fst (idfun (isContr _) (isOfHLevelPathP' 0 (isOfHLevelPath' 1 (isSetHom C) _ _) (strHom algF) (strHom algG)))) i idAlgebraHom : {algA : Algebra} → AlgebraHom algA algA carrierHom (idAlgebraHom {algA}) = id C strHom (idAlgebraHom {algA}) = ⋆IdR C (str algA) ∙∙ sym (⋆IdL C (str algA)) ∙∙ cong (λ φ → φ ⋆⟨ C ⟩ str algA) (sym (F-id F)) seqAlgebraHom : {algA algB algC : Algebra} (algF : AlgebraHom algA algB) (algG : AlgebraHom algB algC) → AlgebraHom algA algC carrierHom (seqAlgebraHom {algA} {algB} {algC} algF algG) = carrierHom algF ⋆⟨ C ⟩ carrierHom algG strHom (seqAlgebraHom {algA} {algB} {algC} algF algG) = str algA ⋆⟨ C ⟩ (carrierHom algF ⋆⟨ C ⟩ carrierHom algG) ≡⟨ sym (⋆Assoc C (str algA) (carrierHom algF) (carrierHom algG)) ⟩ (str algA ⋆⟨ C ⟩ carrierHom algF) ⋆⟨ C ⟩ carrierHom algG ≡⟨ cong (λ φ → φ ⋆⟨ C ⟩ carrierHom algG) (strHom algF) ⟩ (F-hom F (carrierHom algF) ⋆⟨ C ⟩ str algB) ⋆⟨ C ⟩ carrierHom algG ≡⟨ ⋆Assoc C (F-hom F (carrierHom algF)) (str algB) (carrierHom algG) ⟩ F-hom F (carrierHom algF) ⋆⟨ C ⟩ (str algB ⋆⟨ C ⟩ carrierHom algG) ≡⟨ cong (λ φ → F-hom F (carrierHom algF) ⋆⟨ C ⟩ φ) (strHom algG) ⟩ F-hom F (carrierHom algF) ⋆⟨ C ⟩ (F-hom F (carrierHom algG) ⋆⟨ C ⟩ str algC) ≡⟨ sym (⋆Assoc C (F-hom F (carrierHom algF)) (F-hom F (carrierHom algG)) (str algC)) ⟩ (F-hom F (carrierHom algF) ⋆⟨ C ⟩ F-hom F (carrierHom algG)) ⋆⟨ C ⟩ str algC ≡⟨ cong (λ φ → φ ⋆⟨ C ⟩ str algC) (sym (F-seq F (carrierHom algF) (carrierHom algG))) ⟩ F-hom F (carrierHom algF ⋆⟨ C ⟩ carrierHom algG) ⋆⟨ C ⟩ str algC ∎ AlgebrasCategory : Category (ℓ-max ℓC ℓC') ℓC' ob AlgebrasCategory = Algebra Hom[_,_] AlgebrasCategory = AlgebraHom id AlgebrasCategory = idAlgebraHom _⋆_ AlgebrasCategory = seqAlgebraHom ⋆IdL AlgebrasCategory algF = AlgebraHom≡ (⋆IdL C (carrierHom algF)) ⋆IdR AlgebrasCategory algF = AlgebraHom≡ (⋆IdR C (carrierHom algF)) ⋆Assoc AlgebrasCategory algF algG algH = AlgebraHom≡ (⋆Assoc C (carrierHom algF) (carrierHom algG) (carrierHom algH)) isSetHom AlgebrasCategory = subst isSet (sym (pathRepAlgebraHom _ _)) (isSetΣ (isSetHom C) (λ f → isProp→isSet (isSetHom C _ _))) ForgetAlgebra : Functor AlgebrasCategory C F-ob ForgetAlgebra = carrier F-hom ForgetAlgebra = carrierHom F-id ForgetAlgebra = refl F-seq ForgetAlgebra algF algG = refl module _ {C : Category ℓC ℓC'} {F G : Functor C C} (τ : NatTrans F G) where private module C = Category C open Functor open NatTrans open AlgebraHom AlgebrasFunctor : Functor (AlgebrasCategory G) (AlgebrasCategory F) F-ob AlgebrasFunctor (algebra a α) = algebra a (α C.∘ N-ob τ a) carrierHom (F-hom AlgebrasFunctor (algebraHom f isalgF)) = f strHom (F-hom AlgebrasFunctor {algebra a α} {algebra b β} (algebraHom f isalgF)) = (N-ob τ a C.⋆ α) C.⋆ f ≡⟨ C.⋆Assoc (N-ob τ a) α f ⟩ N-ob τ a C.⋆ (α C.⋆ f) ≡⟨ cong (N-ob τ a C.⋆_) isalgF ⟩ N-ob τ a C.⋆ (F-hom G f C.⋆ β) ≡⟨ sym (C.⋆Assoc _ _ _) ⟩ (N-ob τ a C.⋆ F-hom G f) C.⋆ β ≡⟨ cong (C._⋆ β) (sym (N-hom τ f)) ⟩ (F-hom F f C.⋆ N-ob τ b) C.⋆ β ≡⟨ C.⋆Assoc _ _ _ ⟩ F-hom F f C.⋆ (N-ob τ b C.⋆ β) ∎ F-id AlgebrasFunctor = AlgebraHom≡ F refl F-seq AlgebrasFunctor algΦ algΨ = AlgebraHom≡ F refl
{ "alphanum_fraction": 0.65606469, "avg_line_length": 40.9191176471, "ext": "agda", "hexsha": "be02f448b469fe6949dc67d52847089c3dea1ba6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/FunctorAlgebras.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/FunctorAlgebras.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/FunctorAlgebras.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2276, "size": 5565 }
module Prelude where -------------------------------------------------------------------------------- open import Agda.Primitive public using (Level ; _⊔_) renaming (lzero to ℓ₀) id : ∀ {ℓ} → {X : Set ℓ} → X → X id x = x _◎_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {P : X → Set ℓ′} {Q : ∀ {x} → P x → Set ℓ″} → (g : ∀ {x} → (y : P x) → Q y) (f : (x : X) → P x) (x : X) → Q (f x) (g ◎ f) x = g (f x) const : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} → X → Y → X const x y = x flip : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : X → Y → Set ℓ″} → (f : (x : X) (y : Y) → Z x y) (y : Y) (x : X) → Z x y flip f y x = f x y _∘_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (g : Y → Z) (f : X → Y) → X → Z g ∘ f = g ◎ f _⨾_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (f : X → Y) (g : Y → Z) → X → Z _⨾_ = flip _∘_ -------------------------------------------------------------------------------- open import Agda.Builtin.Equality public using (_≡_ ; refl) _⁻¹≡ : ∀ {ℓ} → {X : Set ℓ} {x₁ x₂ : X} → x₁ ≡ x₂ → x₂ ≡ x₁ refl ⁻¹≡ = refl _⦙≡_ : ∀ {ℓ} → {X : Set ℓ} {x₁ x₂ x₃ : X} → x₁ ≡ x₂ → x₂ ≡ x₃ → x₁ ≡ x₃ refl ⦙≡ refl = refl record PER {ℓ} (X : Set ℓ) (_≈_ : X → X → Set ℓ) : Set ℓ where infix 9 _⁻¹ infixr 4 _⦙_ field _⁻¹ : ∀ {x₁ x₂} → x₁ ≈ x₂ → x₂ ≈ x₁ _⦙_ : ∀ {x₁ x₂ x₃} → x₁ ≈ x₂ → x₂ ≈ x₃ → x₁ ≈ x₃ open PER {{…}} public instance per≡ : ∀ {ℓ} {X : Set ℓ} → PER X _≡_ per≡ = record { _⁻¹ = _⁻¹≡ ; _⦙_ = _⦙≡_ } infixl 9 _&_ _&_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} {x₁ x₂ : X} → (f : X → Y) → x₁ ≡ x₂ → f x₁ ≡ f x₂ f & refl = refl infixl 8 _⊗_ _⊗_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} {f₁ f₂ : X → Y} {x₁ x₂ : X} → f₁ ≡ f₂ → x₁ ≡ x₂ → f₁ x₁ ≡ f₂ x₂ refl ⊗ refl = refl case_of_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} → X → (X → Y) → Y case x of f = f x coe : ∀ {ℓ} → {X Y : Set ℓ} → X ≡ Y → X → Y coe refl x = x postulate fext! : ∀ {ℓ ℓ′} → {X : Set ℓ} {P : X → Set ℓ′} {f₁ f₂ : (x : X) → P x} → ((x : X) → f₁ x ≡ f₂ x) → f₁ ≡ f₂ fext¡ : ∀ {ℓ ℓ′} → {X : Set ℓ} {P : X → Set ℓ′} {f₁ f₂ : {x : X} → P x} → ({x : X} → f₁ {x} ≡ f₂ {x}) → (λ {x} → f₁ {x}) ≡ (λ {x} → f₂ {x}) -------------------------------------------------------------------------------- open import Agda.Builtin.Unit public using (⊤ ; tt) data ⊥ : Set where elim⊥ : ∀ {ℓ} → {X : Set ℓ} → ⊥ → X elim⊥ () ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ X = X → ⊥ Π : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′) Π X Y = X → Y infixl 6 _,_ record Σ {ℓ ℓ′} (X : Set ℓ) (P : X → Set ℓ′) : Set (ℓ ⊔ ℓ′) where instance constructor _,_ field proj₁ : X proj₂ : P proj₁ open Σ public infixl 5 _⁏_ pattern _⁏_ x y = x , y infixl 2 _×_ _×_ : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′) X × Y = Σ X (λ x → Y) mapΣ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {P : X → Set ℓ″} {Q : Y → Set ℓ‴} → (f : X → Y) (g : ∀ {x} → P x → Q (f x)) → Σ X P → Σ Y Q mapΣ f g (x , y) = f x , g y caseΣ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {P : X → Set ℓ″} {Q : Y → Set ℓ‴} → Σ X P → (f : X → Y) (g : ∀ {x} → P x → Q (f x)) → Σ Y Q caseΣ p f g = mapΣ f g p infixl 1 _⊎_ data _⊎_ {ℓ ℓ′} (X : Set ℓ) (Y : Set ℓ′) : Set (ℓ ⊔ ℓ′) where inj₁ : (x : X) → X ⊎ Y inj₂ : (y : Y) → X ⊎ Y elim⊎ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → X ⊎ Y → (X → Z) → (Y → Z) → Z elim⊎ (inj₁ x) f g = f x elim⊎ (inj₂ y) f g = g y map⊎ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {Z₁ : Set ℓ″} {Z₂ : Set ℓ‴} → (X → Z₁) → (Y → Z₂) → X ⊎ Y → Z₁ ⊎ Z₂ map⊎ f g s = elim⊎ s (inj₁ ∘ f) (inj₂ ∘ g) case⊎ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {Z₁ : Set ℓ″} {Z₂ : Set ℓ‴} → X ⊎ Y → (X → Z₁) → (Y → Z₂) → Z₁ ⊎ Z₂ case⊎ s f g = map⊎ f g s -------------------------------------------------------------------------------- open import Agda.Builtin.Bool public using (Bool ; false ; true) if_then_else_ : ∀ {ℓ} → {X : Set ℓ} → Bool → X → X → X if_then_else_ true t f = t if_then_else_ false t f = f not : Bool → Bool not true = false not false = true and : Bool → Bool → Bool and true b = b and false b = false or : Bool → Bool → Bool or true b = true or false b = b xor : Bool → Bool → Bool xor true b = not b xor false b = b data True : Bool → Set where instance yes : True true -------------------------------------------------------------------------------- open import Agda.Builtin.Nat public using (Nat ; zero ; suc) open import Agda.Builtin.FromNat public using (Number ; fromNat) instance numNat : Number Nat numNat = record { Constraint = λ n → ⊤ ; fromNat = λ n → n } _>?_ : Nat → Nat → Bool zero >? k = false suc n >? zero = true suc n >? suc k = n >? k -------------------------------------------------------------------------------- data Fin : Nat → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) Nat→Fin : ∀ {n} → (k : Nat) {{_ : True (n >? k)}} → Fin n Nat→Fin {n = zero} k {{()}} Nat→Fin {n = suc n} zero {{is-true}} = zero Nat→Fin {n = suc n} (suc k) {{p}} = suc (Nat→Fin k {{p}}) instance numFin : ∀ {n} → Number (Fin n) numFin {n} = record { Constraint = λ k → True (n >? k) ; fromNat = Nat→Fin } --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3432147563, "avg_line_length": 22, "ext": "agda", "hexsha": "1531e68a14afbfb95f827dd7c15021ffa0e43636", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2570, "size": 6072 }
-- Andreas, 2013-11-23 -- checking that postulates are allowed in new-style mutual blocks open import Common.Prelude -- new style mutual block even : Nat → Bool postulate odd : Nat → Bool even zero = true even (suc n) = odd n -- No error
{ "alphanum_fraction": 0.6907630522, "avg_line_length": 14.6470588235, "ext": "agda", "hexsha": "f94e615890b672472f91209551f43a41559b73db", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue977a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue977a.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue977a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 72, "size": 249 }
module Data.Num.Bijective where open import Data.Nat open import Data.Fin as Fin using (Fin; #_; fromℕ≤) open import Data.Fin.Extra open import Data.Fin.Properties using (bounded) open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open import Level using () renaming (suc to lsuc) open import Function open import Relation.Nullary.Negation open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Binary.PropositionalEquality as PropEq infixr 5 _∷_ -- For a system to be bijective wrt ℕ: -- * base ≥ 1 -- * digits = {1 .. base} data Bij : ℕ → Set where -- from the terminal object, which represents 0 ∙ : ∀ {b} -- base → Bij (suc b) -- base ≥ 1 -- successors _∷_ : ∀ {b} → Fin b -- digit = {1 .. b} → Bij b → Bij b infixr 9 _/_ -- syntax sugar for chaining digits with ℕ _/_ : ∀ {b} → (n : ℕ) → {lower-bound : True (suc zero ≤? n)} -- digit ≥ 1 → {upper-bound : True (n ≤? b)} -- digit ≤ base → Bij b → Bij b _/_ {b} zero {()} {ub} ns _/_ {b} (suc n) {lb} {ub} ns = (# n) {b} {ub} ∷ ns module _/_-Examples where 零 : Bij 2 零 = ∙ 一 : Bij 2 一 = 1 / ∙ 八 : Bij 3 八 = 2 / 2 / ∙ 八 : Bij 3 八 = 2 / 2 / ∙ open import Data.Nat.DM open import Data.Nat.Properties using (≰⇒>) open import Relation.Binary -- a digit at its largest full : ∀ {b} (x : Fin (suc b)) → Dec (Fin.toℕ {suc b} x ≡ b) full {b} x = Fin.toℕ x ≟ b -- a digit at its largest (for ℕ) full-ℕ : ∀ b n → Dec (n ≡ b) full-ℕ b n = n ≟ b ------------------------------------------------------------------------ -- Digit ------------------------------------------------------------------------ digit-toℕ : ∀ {b} → Fin b → ℕ digit-toℕ x = suc (Fin.toℕ x) digit+1-lemma : ∀ a b → a < suc b → a ≢ b → a < b digit+1-lemma zero zero a<1+b a≢b = contradiction refl a≢b digit+1-lemma zero (suc b) a<1+b a≢b = s≤s z≤n digit+1-lemma (suc a) zero (s≤s ()) a≢b digit+1-lemma (suc a) (suc b) (s≤s a<1+b) a≢b = s≤s (digit+1-lemma a b a<1+b (λ z → a≢b (cong suc z))) digit+1 : ∀ {b} → (x : Fin (suc b)) → Fin.toℕ x ≢ b → Fin (suc b) digit+1 {b} x ¬p = fromℕ≤ {digit-toℕ x} (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) ¬p)) ------------------------------------------------------------------------ -- Bij ------------------------------------------------------------------------ 1+ : ∀ {b} → Bij (suc b) → Bij (suc b) 1+ ∙ = Fin.zero ∷ ∙ 1+ {b} (x ∷ xs) with full x 1+ {b} (x ∷ xs) | yes p = Fin.zero ∷ 1+ xs 1+ {b} (x ∷ xs) | no ¬p = digit+1 x ¬p ∷ xs n+ : ∀ {b} → ℕ → Bij (suc b) → Bij (suc b) n+ zero xs = xs n+ (suc n) xs = 1+ (n+ n xs) ------------------------------------------------------------------------ -- From and to ℕ ------------------------------------------------------------------------ toℕ : ∀ {b} → Bij b → ℕ toℕ ∙ = zero toℕ {b} (x ∷ xs) = digit-toℕ x + (toℕ xs * b) fromℕ : ∀ {b} → ℕ → Bij (suc b) fromℕ zero = ∙ fromℕ (suc n) = 1+ (fromℕ n) ------------------------------------------------------------------------ -- Functions on Bij ------------------------------------------------------------------------ -- infixl 6 _⊹_ -- -- _⊹_ : ∀ {b} → Bij b → Bij b → Bij b -- _⊹_ ∙ ys = ys -- _⊹_ xs ∙ = xs -- _⊹_ {zero} (() ∷ xs) (y ∷ ys) -- _⊹_ {suc b} (x ∷ xs) (y ∷ ys) with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc b) -- _⊹_ {suc b} (x ∷ xs) (y ∷ ys) | result quotient remainder property div-eq mod-eq = -- remainder ∷ n+ quotient (xs ⊹ ys) -- old base = suc b -- new base = suc (suc b) increase-base : ∀ {b} → Bij (suc b) → Bij (suc (suc b)) increase-base {b} ∙ = ∙ increase-base {b} (x ∷ xs) with fromℕ {suc b} (toℕ (increase-base xs) * suc b) | inspect (λ ws → fromℕ {suc b} (toℕ ws * suc b)) (increase-base xs) increase-base {b} (x ∷ xs) | ∙ | [ eq ] = Fin.inject₁ x ∷ ∙ increase-base {b} (x ∷ xs) | y ∷ ys | [ eq ] with suc (Fin.toℕ x + Fin.toℕ y) divMod (suc (suc b)) increase-base {b} (x ∷ xs) | y ∷ ys | [ eq ] | result quotient remainder property div-eq mod-eq = remainder ∷ n+ quotient ys -- old base = suc (suc b) -- new base = suc b decrease-base : ∀ {b} → Bij (suc (suc b)) → Bij (suc b) decrease-base {b} ∙ = ∙ decrease-base {b} (x ∷ xs) with fromℕ {b} (toℕ (decrease-base xs) * suc (suc b)) | inspect (λ ws → fromℕ {b} (toℕ ws * suc (suc b))) (decrease-base xs) decrease-base {b} (x ∷ xs) | ∙ | [ eq ] with full x decrease-base {b} (x ∷ xs) | ∙ | [ eq ] | yes p = Fin.zero ∷ Fin.zero ∷ ∙ decrease-base {b} (x ∷ xs) | ∙ | [ eq ] | no ¬p = inject-1 x ¬p ∷ ∙ decrease-base {b} (x ∷ xs) | y ∷ ys | [ eq ] with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc b) decrease-base (x ∷ xs) | y ∷ ys | [ eq ] | result quotient remainder property div-eq mod-eq = remainder ∷ n+ quotient ys
{ "alphanum_fraction": 0.4694211495, "avg_line_length": 33.0337837838, "ext": "agda", "hexsha": "bb4982935061721f6182e76ddc08e78b43140690", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Bijective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Bijective.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Bijective.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 1847, "size": 4889 }
module z-06 where open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _<?_; _<_; ≤-pred) open import Relation.Binary.PropositionalEquality using (_≡_; refl) import Relation.Binary.PropositionalEquality.Core as PE {- ------------------------------------------------------------------------------ -- 267 p 6.2.2 Shortcuts. C-c C-l typecheck and highlight the current file C-c C-, get information about the hole under the cursor C-c C-. show inferred type for proposed term for a hole C-c C-space give a solution C-c C-c case analysis on a variable C-c C-r refine the hole C-c C-a automatic fill C-c C-n which normalizes a term (useful to test computations) middle click definition of the term SYMBOLS ∧ \and ⊤ \top → \to ∀ \all Π \Pi λ \Gl ∨ \or ⊥ \bot ¬ \neg ∃ \ex Σ \Sigma ≡ \equiv ℕ \bN × \times ≤ \le ∈ \in ⊎ \uplus ∷ \:: ∎ \qed x₁ \_1 x¹ \^1 ------------------------------------------------------------------------------ -- p 268 6.2.3 The standard library. default path /usr/share/agda-stdlib Data.Empty empty type (⊥) Data.Unit unit type (⊤) Data.Bool booleans Data.Nat natural numbers (ℕ) Data.List lists Data.Vec vectors (lists of given length) Data.Fin types with finite number of elements Data.Integer integers Data.Float floating point numbers Data.Bin binary natural numbers Data.Rational rational numbers Data.String strings Data.Maybe option types Data.AVL balanced binary search trees Data.Sum sum types (⊎, ∨) Data.Product product types (×, ∧, ∃, Σ) Relation.Nullary negation (¬) Relation.Binary.PropositionalEquality equality (≡) ------------------------------------------------------------------------------ -- p 277 6.3.4 Postulates. for axioms (no proof) avoide as much as possible e.g, to work in classical logic, assume law of excluded middle with postulate lem : (A : Set) → ¬ A ⊎ A postulates do not compute: - applying 'lem' to type A, will not reduce to ¬ A or A (as expected for a coproduct) see section 6.5.6 ------------------------------------------------------------------------------ -- p 277 6.3.5 Records. -} -- implementation of pairs using records record Pair (A B : Set) : Set where constructor mkPair field fst : A snd : B make-pair : {A B : Set} → A → B → Pair A B make-pair a b = record { fst = a ; snd = b } make-pair' : {A B : Set} → A → B → Pair A B make-pair' a b = mkPair a b proj1 : {A B : Set} → Pair A B → A proj1 p = Pair.fst p ------------------------------------------------------------------------------ -- p 278 6.4 Inductive types: data -- p 278 6.4.1 Natural numbers {- data ℕ : Set where zero : ℕ -- base case suc : ℕ → ℕ -- inductive case -} pred : ℕ → ℕ pred zero = zero pred (suc n) = n _+'_ : ℕ → ℕ → ℕ zero +' n = n (suc m) +' n = suc (m +' n) infixl 6 _+'_ _∸'_ : ℕ → ℕ → ℕ zero ∸' n = zero suc m ∸' zero = suc m suc m ∸' suc n = m ∸' n _*'_ : ℕ → ℕ → ℕ zero *' n = zero suc m *' n = (m *' n) + n {- _mod'_ : ℕ → ℕ → ℕ m mod' n with m <? n m mod' n | yes _ = m m mod' n | no _ = (m ∸' n) mod' n -} -- TODO : what is going on here? -- mod' : ℕ → ℕ → ℕ -- mod' m n with m <? n -- ... | x = {!!} {- ------------------------------------------------------------------------------ -- p 280 Empty pattern matching. there is no case to pattern match on elements of this type use on types with no elements, e.g., -} data ⊥' : Set where -- given an element of type ⊥ then "produce" anything -- uses pattern : () -- means that no such pattern can happen ⊥'-elim : {A : Set} → ⊥' → A ⊥'-elim () {- since A is arbitrary, no way, in proof, to exhibit one. Do not have to. '()' states no cases to handle, so done Useful in negation and other less obvious ways of constructing empty inductive types. E.g., the type zero ≡ suc zero of equalities between 0 and 1 is also an empty inductive type. -} {- ------------------------------------------------------------------------------ -- p 281 Anonymous pattern matching. -} -- curly brackets before args, cases separated by semicolons: -- e.g., pred' : ℕ → ℕ pred' = λ { zero → zero ; (suc n) → n } {- ------------------------------------------------------------------------------ -- p 281 6.4.3 The induction principle. pattern matching corresponds to the presence of a recurrence or induction principle e.g., f : → A f zero = t f (suc n) = u' -- u' might be 'n' or result of recursive call f n recurrence principle expresses this as -} rec : {A : Set} → A → (ℕ → A → A) → ℕ → A rec t u zero = t rec t u (suc n) = u n (rec t u n) -- same with differenct var names recℕ : {A : Set} → A → (ℕ → A → A) → ℕ → A recℕ a n→a→a zero = a recℕ a n→a→a (suc n) = n→a→a n (recℕ a n→a→a n) {- Same as "recursor" for including nats to simply typed λ-calculus in section 4.3.6. Any function of type ℕ → A defined using pattern matching can be redefined using this function. This recurrence function encapsulates the expressive power of pattern matching. e.g., -} pred'' : ℕ → ℕ pred'' = rec zero (λ n _ → n) _ : pred'' 2 ≡ rec zero (λ n _ → n) 2 _ = refl _ : rec zero (λ n _ → n) 2 ≡ 1 _ = refl _ : pred'' 2 ≡ 1 _ = refl {- logical : recurrence principle corresponds to elimination rule, so aka "eliminator" Pattern matching in Agda is more powerful - can be used to define functions whose return type depends on argument means must consider functions of the form f : (n : ℕ) -> P n -- P : ℕ → Set f zero = t -- : P zero f (suc n) = u n (f n) -- : P (suc n) corresponding dependent variant of the recurrence principle is called the induction principle: -} rec' : (P : ℕ → Set) → P zero → ((n : ℕ) → P n → P (suc n)) → (n : ℕ) → P n rec' P Pz Ps zero = Pz rec' P Pz Ps (suc n) = Ps n (rec' P Pz Ps n) {- reading type as a logical formula, it says the recurrence principle over natural numbers: P (0) ⇒ (∀n ∈ ℕ.P (n) ⇒ P (n + 1)) ⇒ ∀n ∈ ℕ.P (n) -} -- proof using recursion +-zero' : (n : ℕ) → n + zero ≡ n +-zero' zero = refl +-zero' (suc n) = PE.cong suc (+-zero' n) -- proof using dependent induction principle +-zero'' : (n : ℕ) → n + zero ≡ n +-zero'' = rec' (λ n → n + zero ≡ n) refl (λ n p → PE.cong suc p) _ : +-zero'' 2 ≡ refl _ = refl _ : rec' (λ n → n + zero ≡ n) refl (λ n p → PE.cong suc p) ≡ λ n → rec' (λ z → z + zero ≡ z) refl (λ n → PE.cong (λ z → suc z)) n _ = refl ------------------------------------------------------------------------------ -- p 282 Booleans data Bool : Set where false : Bool true : Bool -- induction principle for booleans Bool-rec : (P : Bool → Set) → P false → P true → (b : Bool) → P b Bool-rec P Pf Pt false = Pf Bool-rec P Pf Pt true = Pt ------------------------------------------------------------------------------ -- p 283 Lists Data.List data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A length : {A : Set} → List A → ℕ length [] = 0 length (_ ∷ xs) = 1 + length xs _++_ : {A : Set} → List A → List A → List A [] ++ l = l (x ∷ xs) ++ l = x ∷ (xs ++ l) List-rec : {A : Set} → (P : List A → Set) → P [] → ((x : A) → (xs : List A) → P xs → P (x ∷ xs)) → (xs : List A) → P xs List-rec P Pe Pc [] = Pe List-rec P Pe Pc (x ∷ xs) = Pc x xs (List-rec P Pe Pc xs) ------------------------------------------------------------------------------ -- p 284 6.4.7 Vectors. data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n) {- ------------------------------------------------------------------------------ -- p 284 Dependent types. type Vec A n depends on term n : a defining feature of dependent types. -} -- also, functions whose result type depends on argument, e.g., replicate : {A : Set} → A → (n : ℕ) → Vec A n replicate x zero = [] replicate x (suc n) = x ∷ replicate x n ------------------------------------------------------------------------------ -- p 285 Dependent pattern matching. -- since input is type Vec A (suc n), infers never applied to empty head : {n : ℕ} {A : Set} → Vec A (suc n) → A head (x ∷ xs) = x ------------------------------------------------------------------------------ -- p 285 Convertibility. -- Agda is able to compare types up to β-reduction on terms (zero + n reduces to n): -- - never distinguishes between two β-convertible terms _++'_ : {m n : ℕ} {A : Set} → Vec A m → Vec A n → Vec A (m + n) [] ++' l = l -- Vec A (zero + n) ≡ Vec A n (x ∷ xs) ++' l = x ∷ (xs ++' l) ------------------------------------------------------------------------------ -- p 285 Induction principle for Vec-rec -- induction principle for vectors Vec-rec : {A : Set} → (P : {n : ℕ} → Vec A n → Set) → P [] → ({n : ℕ} → (x : A) → (xs : Vec A n) → P xs → P (x ∷ xs)) → {n : ℕ} → (xs : Vec A n) → P xs Vec-rec P Pe Pc [] = Pe Vec-rec P Pe Pc (x ∷ xs) = Pc x xs (Vec-rec P Pe Pc xs) ------------------------------------------------------------------------------ -- p 285 Indices instead of parameters. -- general : can always encode a parameter as an index -- recommended using parameters whenever possible (Agda handles them more efficiently) -- use an index for type A (instead of a parameter) data VecI : Set → ℕ → Set where [] : {A : Set} → VecI A zero _∷_ : {A : Set} {n : ℕ} (x : A) (xs : VecI A n) → VecI A (suc n) -- induction principle for index VecI VecI-rec : (P : {A : Set} {n : ℕ} → VecI A n → Set) → ({A : Set} → P {A} []) → ({A : Set} {n : ℕ} (x : A) (xs : VecI A n) → P xs → P (x ∷ xs)) → {A : Set} → {n : ℕ} → (xs : VecI A n) → P xs VecI-rec P Pe Pc [] = Pe VecI-rec P Pe Pc (x ∷ xs) = Pc x xs (VecI-rec P Pe Pc xs) ------------------------------------------------------------------------------ -- p 286 6.4.8 Finite sets. -- has n elements data Fin' : ℕ → Set where fzero' : {n : ℕ} → Fin' (suc n) fsuc' : {n : ℕ} → Fin' n → Fin' (suc n) {- Fin n is collection of ℕ restricted to Fin n = {0,...,n − 1} above type corresponds to inductive set-theoretic definition: Fin 0 = ∅ Fin (n + 1) = {0} ∪ {i + 1 | i ∈ Fin n} -} finToℕ : {n : ℕ} → Fin' n → ℕ finToℕ fzero' = zero finToℕ (fsuc' i) = suc (finToℕ i) ------------------------------------------------------------------------------ -- p 286 Vector lookup using Fin -- Fin n typically used to index -- type ensures index in bounds lookup : {n : ℕ} {A : Set} → Fin' n → Vec A n → A lookup fzero' (x ∷ xs) = x lookup (fsuc' i) (x ∷ xs) = lookup i xs -- where index can be out of bounds open import Data.Maybe lookup' : ℕ → {A : Set} {n : ℕ} → Vec A n → Maybe A lookup' zero [] = nothing lookup' zero (x ∷ l) = just x lookup' (suc i) [] = nothing lookup' (suc i) (x ∷ l) = lookup' i l -- another option : add proof of i < n lookupP : {i n : ℕ} {A : Set} → i < n → Vec A n → A lookupP {i} {.0} () [] lookupP {zero} {.(suc _)} i<n (x ∷ l) = x lookupP {suc i} {.(suc _)} i<n (x ∷ l) = lookupP (≤-pred i<n) l {- ------------------------------------------------------------------------------ -- p 287 6.5 Inductive types: logic Use inductive types to implement types used as logical formulas, though the Curry-Howard correspondence. What follows is a dictionary between the two. ------------------------------------------------------------------------------ -- 6.5.1 Implication : corresponds to arrow (→) in types -} -- constant function -- classical formula A ⇒ B ⇒ A proved by K : {A B : Set} → A → B → A K x y = x -- composition -- classical formula (A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C proved by S : {A B C : Set} → (A → B → C) → (A → B) → A → C S g f x = g x (f x) {- ------------------------------------------------------------------------------ -- 6.5.2 Product : corresponds to conjunction defined in Data.Product -} data _×_ (A B : Set) : Set where _,_ : A → B → A × B -- aka fst proj₁ : {A B : Set} → A × B → A proj₁ (a , b) = a -- aka snd proj₂ : {A B : Set} → A × B → B proj₂ (a , b) = b -- proof of A ∧ B ⇒ B ∧ A (commutativity of conjunction) ×-comm : {A B : Set} → A × B → B × A ×-comm (a , b) = (b , a) -- proof of curryfication ×-→ : {A B C : Set} → (A × B → C) → (A → B → C) ×-→ f x y = f (x , y) -- and →-× : {A B C : Set} → (A → B → C) → (A × B → C) →-× f (x , y) = f x y {- introduction rule for conjunction: Γ ⊢ A Γ ⊢ B -------------- (∧I) Γ ⊢ A ∧ B general : when logical connectives are defined with inductive types, - CONSTRUCTORS CORRESPOND TO INTRODUCTION RULES ------------------------------------------------------------------------------ Induction principle : ELIMINATION RULE CORRESPONDS TO THE ASSOCIATED INDUCTION PRINCIPLE -} -- for case where P does not depend on its arg ×-rec : {A B : Set} → (P : Set) → (A → B → P) → A × B → P ×-rec P Pp (x , y) = Pp x y {- corresponds to elimination rule for conjunction: Γ, A,B ⊢ P Γ ⊢ A ∧ B ------------------------- (∧E) Γ ⊢ P if the premises are true then the conclusion is also true -} -- dependent induction principle -- corresponds to the elimination rule in dependent types -- see 8.3.3 ×-ind : {A B : Set} → (P : A × B → Set) → ((x : A) → (y : B) → P (x , y)) → (p : A × B) → P p ×-ind P Pp (x , y) = Pp x y {- ------------------------------------------------------------------------------ -- p 289 6.5.3 Unit type : corresponds to truth Data.Unit -} data ⊤ : Set where tt : ⊤ -- constructor is introduction rule {- ----- (⊤I) Γ ⊢ ⊤ -} -- induction principle ⊤-rec : (P : ⊤ → Set) → P tt → (t : ⊤) → P t ⊤-rec P Ptt tt = Ptt {- know from logic there is no elimination rule associated with truth but can write rule that corresponds to induction principle: Γ ⊢ P Γ ⊢ ⊤ --------------- (⊤E) Γ ⊢ P not interesting from a logical point of view: if P holds and ⊤ holds then can deduce that P holds, which was already known ------------------------------------------------------------------------------ -- 6.5.4 Empty type : corresponds to falsity Data.Empty -} data ⊥ : Set where -- no constructor, so no introduction rule -- dependent induction principle ⊥-d-elim : (P : ⊥ → Set) → (x : ⊥) → P x ⊥-d-elim P () -- non-dependent variant of this principle ⊥-elim : (P : Set) → ⊥ → P ⊥-elim P () -- () is the empty pattern in Agda -- indicates there are no cases to handle when matching on a value of type {- corresponds to explosion principle, which is the associated elimination rule Γ ⊢ ⊥ ---- (⊥E) Γ ⊢ P ------------------------------------------------------------------------------ 6.5.5 Negation Relation.Nullary -} ¬ : Set → Set ¬ A = A → ⊥ -- e.g., A ⇒ ¬¬A proved: nni : {A : Set} → A → ¬ (¬ A) nni A ¬A = ¬A A {- ------------------------------------------------------------------------------ p 290 6.5.6 Coproduct : corresponds to disjunction Data.Sum -} data _⊎_ (A : Set) (B : Set) : Set where inj₁ : A → A ⊎ B -- called injection of A into A ⊎ B inj₂ : B → A ⊎ B -- ditto B {- The two constructors correspond to the two introduction rules Γ ⊢ A --------- (∨ᴸI) Γ ⊢ A ∨ B Γ ⊢ B --------- (∨ᴿI) Γ ⊢ A ∨ B -} -- commutativity of disjunction ⊎-comm : (A B : Set) → A ⊎ B → B ⊎ A ⊎-comm A B (inj₁ x) = inj₂ x ⊎-comm A B (inj₂ y) = inj₁ y {- -- proof of (A ∨ ¬A) ⇒ ¬¬A ⇒ A lem-raa : {A : Set} → A ⊎ ¬ A → ¬ (¬ A) → A lem-raa (inj₁ a) _ = a lem-raa (inj₂ ¬a) k = ⊥-elim (k ¬a) -- ⊥ !=< Set -} -- induction principle ⊎-rec : {A B : Set} → (P : A ⊎ B → Set) → ((x : A) → P (inj₁ x)) → ((y : B) → P (inj₂ y)) → (u : A ⊎ B) → P u ⊎-rec P P₁ P₂ (inj₁ x) = P₁ x ⊎-rec P P₁ P₂ (inj₂ y) = P₂ y {- non-dependent induction principle corresponds to the elimination rule Γ, A ⊢ P Γ, B ⊢ P Γ ⊢ A ∨ B ----------------------------- (∨E) Γ ⊢ P ------------------------------------------------------------------------------ Decidable types : A type A is decidable when it is known whether it is inhabited or not i.e. a proof of A ∨ ¬A could define predicate: Dec A is a proof that A is decidable -} Dec' : Set → Set Dec' A = A ⊎ ¬ A -- by definition of the disjunction {- Agda convention write yes/no instead of inj₁/inj₂ because it answers the question: is A provable? defined in Relation.Nullary as -- p 291 A type A is decidable when -} data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A {- logic of Agda is intuitionistic therefore A ∨ ¬A not provable for any type A, and not every type is decidable it can be proved that no type is not decidable (see 2.3.5 and 6.6.8) -} nndec : (A : Set) → ¬ (¬ (Dec A)) nndec A n = n (no (λ a → n (yes a))) {- ------------------------------------------------------------------------------ -- p 291 6.5.7 Π-types : corresponds to universal quantification dependent types : types that depend on terms some connectives support dependent generalizations e.g., generalization of function types A → B to dependent function types (x : A) → B where x might occur in B. the type B of the returned value depends on arg x e.g., replicate : {A : Set} → A → (n : ℕ) → Vec A n Dependent function types are also called Π-types often written Π(x : A).B can be define as (note: there is builtin notation in Agda) -} data Π {A : Set} (A : Set) (B : A → Set) : Set where Λ : ((a : A) → B a) → Π A B {- an element of Π A B is a dependent function (x : A) → B x bound universal quantification bounded (the type A over which the variable ranges) corresponds to ∀x ∈ A.B(x) proof of that formula corresponds to a function which - to every x in A - associates a proof of B(x) why Agda allows the notation ∀ x → B x for the above type (leaves A implicit) Exercise 6.5.7.1. Show that the type Π Bool (λ { false → A ; true → B }) is isomorphic to A × B ------------------------------------------------------------------------------ -- p 292 6.5.8 Σ-types : corresponds to bounded existential quantification Data.Product -} -- dependent variant of product types : a : A , b : B a data Σ (A : Set) (B : A → Set) : Set where _,_ : (a : A) → B a → Σ A B -- actual Agda def is done using a record dproj₁ : {A : Set} {B : A → Set} → Σ A B → A dproj₁ (a , b) = a dproj₂ : {A : Set} {B : A → Set} → (s : Σ A B) → B (dproj₁ s) dproj₂ (a , b) = b {- Logical interpretation type Σ A B is bounded existential quantification ∃x ∈ A.B(x) set theoretic interpretation corresponds to constructing sets by comprehension {x ∈ A | B(x)} the set of elements x of A such that B(x) is satisfied e.g., in set theory - given a function f : A → B - its image Im(f) is the subset of B consisting of elements in the image of f. formally defined Im(f) = {y ∈ B | ∃x ∈ A.f (x) = y} translated to with two Σ types - one for the comprehension - one for the universal quantification -} Im : {A B : Set} (f : A → B) → Set Im {A} {B} f = Σ B (λ y → Σ A (λ x → f x ≡ y)) -- e.g., can show that every function f : A → B has a right inverse (or section) -- g : Im(f) → A sec : {A B : Set} (f : A → B) → Im f → A sec f (y , (x , p)) = x {- ------------------------------------------------------------------------------ -- p 293 : the axiom of choice for every relation R ⊆ A × B satisfying ∀x ∈ A.∃y ∈ B.(x, y) ∈ R there is a function f : A → B such that ∀x ∈ A.(x, f (x)) ∈ R section 6.5.9 defined type Rel A B corresponding to relations between types A and B using Rel, can prov axiom of choice -} -- AC : {A B : Set} (R : Rel A B) -- TODO -- → ((x : A) → Σ B (λ y → R x y)) -- → Σ (A → B) (λ f → ∀ x → R x (f x)) -- AC R f = (λ x → proj₁ (f x)) , (λ x → proj₂ (f x)) {- the arg that corresponds to the proof of (6.1), is constructive a function which to every element x of type A associates a pair of an element y of B and a proof that (x, y) belongs to the relation. By projecting it on the first component, necessary function f is obtained (associates an element of B to each element of A) use the second component to prove that it satisfies the required property the "classical" variant of the axiom of choice does not have access to the proof of (6.1) -- it only knows its existence. another description is thus where the double negation has killed the contents of the proof, see section 2.5.9 postulate CAC : {A B : Set} (R : Rel A B) → ¬ ¬ ((x : A) → Σ B (λ y → R x y)) → ¬ ¬ Σ (A → B) (λ f → ∀ x → R x (f x)) see 9.3.4. ------------------------------------------------------------------------------ -- p 293 : 6.5.9 Predicates In classical logic, the set Bool of booleans is the set of truth values: - a predicate on a set A can either be false or true - modeled as a function A → Bool In Agda/intuitionistic logic - not so much interested in truth value of predicate - but rather in its proofs - so the role of truth values is now played by Set predicate P on a type A is term of type A → Set which to every element x of A associates the type of proofs of P x ------------------------------------------------------------------------------ -- p 294 Relations Relation.Binary In classical mathematics, a relation R on a set A is a subset of A × A (see A.1) x of A is in relation with an element y when (x, y) ∈ R relation on A can also be encoded as a function : A × A → 𝔹 or, curryfication, : A → A → 𝔹 in this representation, x is in relation with y when R(x, y) = 1 In Agda/intuitionistic - relations between types A and B as type Rel A - obtained by replacing the set 𝔹 of truth values with Set in the above description: -} Rel : Set → Set₁ Rel A = A → A → Set -- e.g. -- _≤_ : type Rel ℕ -- _≡_ : type Rel A {- ------------------------------------------------------------------------------ Inductive predicates (predicates defined by induction) -} data isEven : ℕ → Set where even-z : isEven zero -- 0 is even even-s : {n : ℕ} → isEven n → isEven (suc (suc n)) -- if n is even then n + 2 is even {- corresponds to def of set E ⊆ N of even numbers as the smallest set of numbers such that 0 ∈ E and n ∈ E ⇒ n+2 ∈ E -} data _≤_ : ℕ → ℕ → Set where z≤n : {n : ℕ} → zero ≤ n s≤s : {m n : ℕ} (m≤n : m ≤ n) → suc m ≤ suc n {- smallest relation on ℕ such that 0 ≤ 0 and m ≤ n implies m+1 ≤ n+1 inductive predicate definitions enable reasoning by induction over those predicates/relations -} ≤-refl : {n : ℕ} → (n ≤ n) ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl -- p 295 ≤-trans : {m n p : ℕ} → (m ≤ n) → (n ≤ p) → (m ≤ p) ≤-trans z≤n n≤p = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) {- inductive defs good because of Agda's support for reasoning by induction (and dependent pattern matching) leading to simpler proofs other defs possible -- base on classical equivalence, for m, n ∈ N, m ≤ n ⇔ ∃m' ∈ N.m + m' = n _≤'_ : ℕ → ℕ → Set m ≤' n = Σ (λ m' → m + m' ≡eq n) another: -} le : ℕ → ℕ → Bool le zero n = true le (suc m) zero = false le (suc m) (suc n) = le m n _≤'_ : ℕ → ℕ → Set m ≤' n = le m n ≡ true {- EXERCISE : show reflexivity and transitivity with the alternate formalizations involved example implicational fragment of intuitionistic natural deduction is formalized in section 7.2 the relation Γ ⊢ A between a context Γ and a type A which is true when the sequent is provable is defined inductively ------------------------------------------------------------------------------ -- p 295 6.6 Equality Relation.Binary.PropositionalEquality -- typed equality : compare elements of same type data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- only way to be equal is to be the same ------------------------------------------------------------------------------ 6.6.1 Equality and pattern matching example proof with equality : successor function on natural numbers is injective - for every natural numbers m and n - m + 1 = n + 1 ⇒ m = n -} -- p 296 suc-injective : {m n : ℕ} → suc m ≡ suc n → m ≡ n -- suc-injective {m} {n} p -- Goal: m ≡ n; p : suc m ≡ suc n -- case split on p : it can ONLY be refl -- therefore m is equal to n -- so agda provide .m - not really an arg - something equal to m suc-injective {m} {.m} refl -- m ≡ m = refl {- ------------------------------------------------------------------------------ -- p 296 6.6.2 Main properties of equality: reflexive, congruence, symmetric, transitive -} sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl -- substitutivity : enables transporting the elements of a type along an equality {- subst : {A : Set} (P : A → Set) → {x y : A} → x ≡ y → P x → P y subst P refl p = p -} -- https://stackoverflow.com/a/27789403 subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A} → x ≡ y → P x → P y subst P refl p = p -- coercion : enables converting an element of type to another equal type coe : {A B : Set} → A ≡ B → A → B coe p x = subst (λ A → A) p x -- see 9.1 {- ------------------------------------------------------------------------------ -- p 296 6.6.3 Half of even numbers : example every even number has a half using proof strategy from 2.3 traditional notation : show ∀n ∈ N. isEven(n) ⇒ ∃m ∈ ℕ.m + m = n -} +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) -- even-half : {n : ℕ} -- → isEven n -- → Σ (λ m → m + m ≡ n) -- TODO (m : ℕ) → Set !=< Set -- even-half even-z = zero , refl -- even-half (even-s e) with even-half e -- even-half (even-s e) | m , p = -- suc m , cong suc (trans (+-suc m m) (cong suc p)) {- second case : by induction have m such that m + m = n need to construct a half for n + 2: m + 1 show that it is a half via (m + 1) + (m + 1) = (m + (m + 1)) + 1 by definition of addition = ((m + m) + 1) + 1 by +-suc = (n + 1) + 1 since m + m = n implemented using transitivity of equality and fact that it is a congruence (m + 1 = n + 1 from m = n) also use auxiliary lemma m + (n + 1) = (m + n) + 1 -} {- ------------------------------------------------------------------------------ -- p 297 6.6.4 Reasoning -} --import Relation.Binary.PropositionalEquality as Eq --open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) infix 3 _∎ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 1 begin_ begin_ : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : {A : Set} (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ {ℓ} {A : Set ℓ} (x : A) → x ≡ x _∎ _ = refl +-zero : ∀ (n : ℕ) → n + zero ≡ n +-zero zero = refl +-zero (suc n) rewrite +-zero n = refl +-comm : (m n : ℕ) → m + n ≡ n + m +-comm m zero = +-zero m +-comm m (suc n) = begin (m + suc n) ≡⟨ +-suc m n ⟩ -- m + (n + 1) = (m + n) + 1 -- by +-suc suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ -- = (n + m) + 1 -- by induction hypothesis suc (n + m) ∎ -- p 297 -- another proof using properties of equality +-comm' : (m n : ℕ) → m + n ≡ n + m +-comm' m zero = +-zero m +-comm' m (suc n) = trans (+-suc m n) (cong suc (+-comm m n)) {- ------------------------------------------------------------------------------ -- p 298 6.6.5 Definitional equality two terms which are convertible (i.e. re duce to a common term) are considered to be EQUAL. not ≡, but equality internal to Agda, referred to as definitional equality - cannot distinguish between two definitionally equal terms - e.g., zero + n is definitionally equal to n (because addition defined that way) - definitional equality implies equality by refl: -} +-zero''' : (n : ℕ) → zero + n ≡ n +-zero''' n = refl -- n + zero and n are not definitionally equal (because def of addition) -- but can be proved +-0 : (n : ℕ) → n + zero ≡ n +-0 zero = refl +-0 (suc n) = cong suc (+-zero n) -- implies structure of definitions is important (and an art form) ------------------------------------------------------------------------------ -- p 298 6.6.6 More properties with equality -- zero is NOT the successor of any NAT zero-suc : {n : ℕ} → zero ≡ suc n → ⊥ zero-suc () +-assoc : (m n o : ℕ) → (m + n) + o ≡ m + (n + o) +-assoc zero n o = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) -- p 299 *-+-dist-r : (m n o : ℕ) → (m + n) * o ≡ m * o + n * o *-+-dist-r zero n o = refl *-+-dist-r (suc m) n o rewrite +-comm n o | *-+-dist-r m n o | +-assoc o (m * o) (n * o) = refl *-assoc : (m n o : ℕ) → (m * n) * o ≡ m * (n * o) *-assoc zero n o = refl *-assoc (suc m) n o rewrite *-+-dist-r n (m * n) o | *-assoc m n o = refl ------------------------------------------------------------------------------ -- p 299 Lists ++-empty' : {A : Set} → (l : List A) → [] ++ l ≡ l ++-empty' l = refl empty-++ : {A : Set} → (l : List A) → l ++ [] ≡ l empty-++ [] = refl empty-++ (x ∷ l) = cong (x ∷_) (empty-++ l) ++-assoc : {A : Set} → (l1 l2 l3 : List A) → ((l1 ++ l2) ++ l3) ≡ (l1 ++ (l2 ++ l3)) ++-assoc [] l2 l3 = refl ++-assoc (x ∷ l1) l2 l3 = cong (x ∷_) (++-assoc l1 l2 l3) -- TODO DOES NOT COMPILE: Set₁ != Set -- ++-not-comm : ¬ ({A : Set} → (l1 l2 : List A) -- → (l1 ++ l2) ≡ (l2 ++ l1)) -- ++-not-comm f with f (1 ∷ []) (2 ∷ []) -- ... | () ++-length : {A : Set} → (l1 l2 : List A) → length (l1 ++ l2) ≡ length l1 + length l2 ++-length [] l2 = refl ++-length (x ∷ l1) l2 = cong (1 +_) (++-length l1 l2) -- p 300 -- adds element to end of list snoc : {A : Set} → List A → A → List A snoc [] x = x ∷ [] snoc (y ∷ l) x = y ∷ (snoc l x) -- reverse a list rev : {A : Set} → List A → List A rev [] = [] rev (x ∷ l) = snoc (rev l) x -- reversing a list with x as the last element will prodice a list with x as the first element rev-snoc : {A : Set} → (l : List A) → (x : A) → rev (snoc l x) ≡ x ∷ (rev l) rev-snoc [] x = refl rev-snoc (y ∷ l) x = cong (λ l → snoc l y) (rev-snoc l x) -- reverse twice rev-rev : {A : Set} → (l : List A) → rev (rev l) ≡ l rev-rev [] = refl rev-rev (x ∷ l) = trans (rev-snoc (rev l) x) (cong (x ∷_) (rev-rev l)) -------------------------------------------------- -- p 300 6.6.7 The J rule. -- equality data _≡'_ {A : Set} : A → A → Set where refl' : {x : A} → x ≡' x -- has associated induction principle : J rule: -- to prove P depending on equality proof p, -- - prove it when this proof is refl J : {A : Set} {x y : A} (p : x ≡' y) (P : (x y : A) → x ≡' y → Set) (r : (x : A) → P x x refl') → P x y p J {A} {x} {.x} refl' P r = r x {- section 6.6 shows that definition usually taken in Agda is different (it uses a parameter instead of an index for the first argument of type A), so that the resulting induction principle is a variant: -} J' : {A : Set} (x : A) (P : (y : A) → x ≡' y → Set) (r : P x refl') (y : A) (p : x ≡' y) → P y p J' x P r .x refl' = r {- -------------------------------------------------- p 301 6.6.8 Decidable equality. A type A is decidable when either A or ¬A is provable. Write Dec A for the type of proofs of decidability of A - yes p, where p is a proof of A, or - no q, where q is a proof of ¬A A relation on a type A is decidable when - the type R x y is decidable - for every elements x and y of type A. -} -- in Relation.Binary -- term of type Decidable R is proof that relation R is decidable Decidable : {A : Set} (R : A → A → Set) → Set Decidable {A} R = (x y : A) → Dec (R x y) {- A type A has decidable equality when equality relation _≡_ on A is decidable. - means there is a function/algorithm able to determine, given two elements of A, whether they are equal or not - return a PROOF (not a boolean) -} _≟_ : Decidable {A = Bool} _≡_ false ≟ false = yes refl true ≟ true = yes refl false ≟ true = no (λ ()) true ≟ false = no (λ ()) _≟ℕ_ : Decidable {A = ℕ} _≡_ zero ≟ℕ zero = yes refl zero ≟ℕ suc n = no(λ()) suc m ≟ℕ zero = no(λ()) suc m ≟ℕ suc n with m ≟ℕ n ... | yes refl = yes refl ... | no ¬p = no (λ p → ¬p (suc-injective p)) {- -------------------------------------------------- p 301 6.6.9 Heterogeneous equality : enables comparing (seemingly) distinct types due to McBride [McB00] p 302 e.g., show concatenation of vectors is associative (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) , where lengths are m, n and o equality ≡ only used on terms of same type - but types above are - left Vec A ((m + n) + o) - right Vec A (m + (n + o)) the two types are propositionally equal, can prove Vec A ((m + n) + o) ≡ Vec A (m + (n + o)) by cong (Vec A) (+-assoc m n o) but the two types are not definitionally equal (required to compare terms with ≡) PROOF WITH STANDARD EQUALITY. To compare vecs, use above propositional equality and'coe' to cast one of the members to the same type as other. term coe (cong (Vec A) (+-assoc m n o)) has type Vec A ((m + n) + o) → Vec A (m + (n + o)) -} -- lemma : if l and l’ are propositional equal vectors, -- up to propositional equality of their types as above, -- then x : l and x : l’ are also propositionally equal: ∷-cong : {A : Set} → {m n : ℕ} {l1 : Vec A m} {l2 : Vec A n} → (x : A) → (p : m ≡ n) → coe (PE.cong (Vec A) p) l1 ≡ l2 → coe (PE.cong (Vec A) (PE.cong suc p)) (x ∷ l1) ≡ x ∷ l2 ∷-cong x refl refl = refl -- TODO this needs Vec ++ (only List ++ in scope) -- ++-assoc' : {A : Set} {m n o : ℕ} -- → (l1 : Vec A m) -- → (l2 : Vec A n) -- → (l3 : Vec A o) -- → coe (PE.cong (Vec A) (+-assoc m n o)) -- ((l1 ++ l2) ++ l3) ≡ l1 ++ (l2 ++ l3) -- ++-assoc' [] l2 l3 = refl -- ++-assoc' {_} {suc m} {n} {o} (x ∷ l1) l2 l3 = ∷-cong x (+-assoc m n o) (++-assoc' l1 l2 l3) {- p 303 Proof with heterogeneous equality - TODO ------------------------------------------------------------------------------ p 303 6.7 Proving programs in practice correctness means it agrees with a specification correctness properties - absence of errors : uses funs with args in correct domain (e.g., no divide by zero) - invariants : properties always satisfied during execution - functional properties : computes expected output on any given input p 304 6.7.1 Extrinsic vs intrinsic proofs extrinsic : first write program then prove properties about it (from "outside") e.g., sort : List ℕ → List ℕ intrinsic : incorporate properties in types e.g., sort : List ℕ → SortList ℕ example: length of concat of two lists is sum of their lengths -} -- extrinsic proof ++-length' : {A : Set} → (l1 l2 : List A) → length (l1 ++ l2) ≡ length l1 + length l2 ++-length' [] l2 = refl ++-length' (x ∷ l1) l2 = PE.cong suc (++-length' l1 l2) -- intrinsic _V++_ : {m n : ℕ} {A : Set} → Vec A m → Vec A n → Vec A (m + n) [] V++ l = l (x ∷ l) V++ l' = x ∷ (l V++ l') ------------------------------------------------------------------------------ -- p 305 6.7.2 Insertion sort
{ "alphanum_fraction": 0.5076216968, "avg_line_length": 26.8083519761, "ext": "agda", "hexsha": "789f702ba5816e10596c3e00db961eb8bc20c872", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/2019-Program_Proof-Samuel_Mimram/z-06.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/2019-Program_Proof-Samuel_Mimram/z-06.agda", "max_line_length": 112, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/2019-Program_Proof-Samuel_Mimram/z-06.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 11806, "size": 35950 }
module TrustMe where open import Data.String open import Data.String.Unsafe open import Data.Unit.Polymorphic using (⊤) open import IO import IO.Primitive as Prim open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- Check that trustMe works. testTrustMe : IO ⊤ testTrustMe with "apa" ≟ "apa" ... | yes refl = putStrLn "Yes!" ... | no _ = putStrLn "No." main : Prim.IO ⊤ main = run testTrustMe
{ "alphanum_fraction": 0.7372093023, "avg_line_length": 21.5, "ext": "agda", "hexsha": "862c17e1d3eafe036454fb7ca666aba9b7291ca1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/TrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/TrustMe.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/TrustMe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 118, "size": 430 }
-- Mapping of Haskell types to Agda Types module Foreign.Haskell.Types where open import Prelude open import Builtin.Float {-# FOREIGN GHC import qualified GHC.Float #-} {-# FOREIGN GHC import qualified Data.Text #-} HSUnit = ⊤ HSBool = Bool HSInteger = Int HSList = List HSChar = Char HSString = HSList HSChar HSText = String postulate HSFloat : Set HSFloat=>Float : HSFloat → Float lossyFloat=>HSFloat : Float → HSFloat HSInt : Set HSInt=>Int : HSInt → Int lossyInt=>HSInt : Int → HSInt {-# COMPILE GHC HSFloat = type Float #-} {-# COMPILE GHC HSFloat=>Float = GHC.Float.float2Double #-} {-# COMPILE GHC lossyFloat=>HSFloat = GHC.Float.double2Float #-} {-# COMPILE GHC HSInt = type Int #-} {-# COMPILE GHC HSInt=>Int = toInteger #-} {-# COMPILE GHC lossyInt=>HSInt = fromInteger #-} {-# FOREIGN GHC type AgdaTuple a b c d = (c, d) #-} data HSTuple {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where _,_ : A → B → HSTuple A B {-# COMPILE GHC HSTuple = data MAlonzo.Code.Foreign.Haskell.Types.AgdaTuple ((,)) #-}
{ "alphanum_fraction": 0.6727799228, "avg_line_length": 25.2682926829, "ext": "agda", "hexsha": "1b80b2fabb82d4d0d34e210b82c80d0650c8bed6", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Foreign/Haskell/Types.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Foreign/Haskell/Types.agda", "max_line_length": 85, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Foreign/Haskell/Types.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 312, "size": 1036 }
open import Prelude module Implicits.Resolution.Termination.Lemmas where open import Induction.WellFounded open import Induction.Nat open import Data.Fin.Substitution open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl) open import Extensions.Nat open import Implicits.Resolution.Termination.Lemmas.SizeMeasures public -- open import Implicits.Resolution.Termination.Lemmas.Stack public
{ "alphanum_fraction": 0.8435672515, "avg_line_length": 32.5714285714, "ext": "agda", "hexsha": "be2cc9ca4bffa43282636c1111f71f7106475be6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Termination/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Termination/Lemmas.agda", "max_line_length": 71, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Termination/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 166, "size": 684 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Rings.Definition open import Rings.Orders.Partial.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Orders.Total.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} where open Ring R open Group additiveGroup open Setoid S record TotallyOrderedRing {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) : Set (lsuc n ⊔ m ⊔ p) where field total : SetoidTotalOrder pOrder open SetoidPartialOrder pOrder
{ "alphanum_fraction": 0.7222914072, "avg_line_length": 34.9130434783, "ext": "agda", "hexsha": "15218ef80c28f9c1e549532768aa5d788de0d008", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/Definition.agda", "max_line_length": 160, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 244, "size": 803 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver open import cohomology.FlipPushout module cohomology.CofiberSequence {i} where {- Lemma: pushing flip-susp through susp-fmap -} flip-susp-fmap : {A B : Type i} (f : A → B) → ∀ σ → flip-susp (susp-fmap f σ) == susp-fmap f (flip-susp σ) flip-susp-fmap f = Suspension-elim idp idp $ λ y → ↓-='-in $ ap-∘ (susp-fmap f) flip-susp (merid y) ∙ ap (ap (susp-fmap f)) (FlipSusp.merid-β y) ∙ ap-! (susp-fmap f) (merid y) ∙ ap ! (SuspFmap.merid-β f y) ∙ ! (FlipSusp.merid-β (f y)) ∙ ! (ap (ap flip-susp) (SuspFmap.merid-β f y)) ∙ ∘-ap flip-susp (susp-fmap f) (merid y) {- Useful abbreviations -} module _ {X Y : Ptd i} (f : fst (X ⊙→ Y)) where ⊙Cof² = ⊙Cof (⊙cfcod' f) ⊙cfcod² = ⊙cfcod' (⊙cfcod' f) cfcod² = fst ⊙cfcod² ⊙Cof³ = ⊙Cof ⊙cfcod² ⊙cfcod³ = ⊙cfcod' ⊙cfcod² cfcod³ = fst ⊙cfcod³ {- For [f : X → Y], the cofiber space [Cof(cfcod f)] is equivalent to - [Suspension X]. This is essentially an application of the two pushouts - lemma: - - f - X ––––> Y ––––––––––––––> ∙ - | | | - | |cfcod f | - v v v - ∙ ––> Cof f ––––––––––> Cof² f - cfcod² f - - The map [cfcod² f : Cof f → Cof² f] becomes [ext-glue : Cof f → ΣX], - and the map [ext-glue : Cof² f → ΣY] becomes [susp-fmap f : ΣX → ΣY]. -} module Cof² {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Equiv {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Into = CofiberRec {f = cfcod' (fst f)} {C = fst (⊙Susp X)} south ext-glue (λ _ → idp) into = Into.f ⊙into : fst (⊙Cof² f ⊙→ ⊙Susp X) ⊙into = (into , ! (merid (snd X))) module Out = SuspensionRec {C = fst (⊙Cof² f)} (cfcod cfbase) cfbase (λ x → ap cfcod (cfglue x) ∙ ! (cfglue (fst f x))) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim idp idp (λ x → ↓-∘=idf-in into out $ ap (ap into) (Out.merid-β x) ∙ ap-∙ into (ap cfcod (cfglue x)) (! (cfglue (fst f x))) ∙ ap (λ w → ap into (ap cfcod (cfglue x)) ∙ w) (ap-! into (cfglue (fst f x)) ∙ ap ! (Into.glue-β (fst f x))) ∙ ∙-unit-r _ ∙ ∘-ap into cfcod (cfglue x) ∙ ExtGlue.glue-β x) out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim {f = cfcod' (fst f)} idp (Cofiber-elim {f = fst f} idp cfglue (λ x → ↓-='-from-square $ (ap-∘ out ext-glue (cfglue x) ∙ ap (ap out) (ExtGlue.glue-β x) ∙ Out.merid-β x) ∙v⊡ (vid-square {p = ap cfcod (cfglue x)} ⊡h rt-square (cfglue (fst f x))) ⊡v∙ ∙-unit-r _)) (λ y → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β y) ∙v⊡ connection) eq = equiv into out into-out out-into space-path : ⊙Cof² f == ⊙Susp X space-path = ⊙ua (⊙≃-in eq (! (merid (snd X)))) cfcod²-over : cfcod² f == ext-glue [ (λ U → fst (⊙Cof f) → fst U) ↓ Equiv.space-path f ] cfcod²-over = ↓-cst2-in _ _ $ codomain-over-equiv (cfcod² f) _ cfcod³-over : ext-glue == flip-susp ∘ susp-fmap (fst f) [ (λ U → fst U → fst (⊙Susp Y)) ↓ Equiv.space-path f ] cfcod³-over = ↓-cst2-in _ _ $ domain!-over-equiv ext-glue _ ▹ λ= lemma where lemma : (σ : fst (⊙Susp X)) → ext-glue (Equiv.out f σ) == flip-susp (susp-fmap (fst f) σ) lemma = Suspension-elim idp idp (λ x → ↓-='-in $ ap-∘ flip-susp (susp-fmap (fst f)) (merid x) ∙ ap (ap flip-susp) (SuspFmap.merid-β (fst f) x) ∙ FlipSusp.merid-β (fst f x) ∙ ! (ap-∘ ext-glue (Equiv.out f) (merid x) ∙ ap (ap ext-glue) (Equiv.Out.merid-β f x) ∙ ap-∙ ext-glue (ap cfcod (cfglue x)) (! (cfglue (fst f x))) ∙ (∘-ap ext-glue cfcod (cfglue x) ∙ ap-cst south (cfglue x)) ∙2 (ap-! ext-glue (cfglue (fst f x)) ∙ ap ! (ExtGlue.glue-β (fst f x))))) open Equiv f public cofiber-sequence : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → Path {A = Σ (Ptd i × Ptd i) (λ {(U , V) → (fst (⊙Cof f) → fst U) × (fst U → fst V)})} ((⊙Cof² f , ⊙Cof³ f) , cfcod² f , cfcod³ f) ((⊙Susp X , ⊙Susp Y) , ext-glue , susp-fmap (fst f)) cofiber-sequence {X} {Y} f = ap (λ {(Z , g) → ((⊙Cof² f , Z) , cfcod² f , g)}) (pair= (Cof².space-path (⊙cfcod' f)) (Cof².cfcod²-over (⊙cfcod' f))) ∙ ap (λ {(Z , g , h) → ((Z , ⊙Susp Y) , g , h)}) (pair= (Cof².space-path f) (↓-×-in (Cof².cfcod²-over f) (Cof².cfcod³-over f))) ∙ ap (λ {(Z , g) → ((⊙Susp X , Z) , ext-glue , g)}) (pair= (flip-⊙pushout-path (suspension-⊙span Y)) (↓-cst2-in _ _ $ codomain!-over-equiv _ _))
{ "alphanum_fraction": 0.5021925245, "avg_line_length": 35.7388059701, "ext": "agda", "hexsha": "8dea6683351008cf0caf894be9eef94a26a7dc98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CofiberSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CofiberSequence.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CofiberSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2020, "size": 4789 }
-- Andreas, 2016-06-20 -- Issue #436 fixed by Ulf's instantiating parameters sprint -- (Agda meeting April 2016 Strathclyde) data _==_ {A : Set} (x : A) : A -> Set where refl : x == x foo : {A : Set} (x y : A) -> x == y -> A foo x y = \ { eq → {!eq!} } -- load and do C-c C-c in the shed -- Should work now (and is justified by new semantics).
{ "alphanum_fraction": 0.5902578797, "avg_line_length": 29.0833333333, "ext": "agda", "hexsha": "47fd1f85b84e718f7ee914161be3fd5b380fbe16", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue436.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue436.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue436.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 123, "size": 349 }
{-# OPTIONS --safe --warning=error --without-K #-} -- These are explicitly with-K, because we currently encode an element of Zn as -- a natural together with a proof that it is small. open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Semirings.Definition open import Orders.Total.Definition open import Numbers.Modulo.Definition open import Numbers.Modulo.ModuloFunction open import Numbers.Naturals.Order.Lemmas module Numbers.Modulo.Addition where open TotalOrder ℕTotalOrder _+n_ : {n : ℕ} .(pr : 0 <N n) → ℤn n pr → ℤn n pr → ℤn n pr _+n_ {n} pr a b = record { x = mod n pr (ℤn.x a +N ℤn.x b) ; xLess = mod<N pr _ } plusZnIdentityRight : {n : ℕ} → .(pr : 0 <N n) → (a : ℤn n pr) → (_+n_ pr a record { x = 0 ; xLess = pr }) ≡ a plusZnIdentityRight 0<n record { x = x ; xLess = xLess } rewrite Semiring.sumZeroRight ℕSemiring x = equalityZn (modIsMod 0<n x (<NProp xLess)) plusZnIdentityLeft : {n : ℕ} → .(pr : 0 <N n) → (a : ℤn n pr) → _+n_ pr (record { x = 0 ; xLess = pr }) a ≡ a plusZnIdentityLeft 0<n record { x = x ; xLess = xLess } = equalityZn (modIsMod 0<n x (<NProp xLess)) plusZnCommutative : {n : ℕ} → .(pr : 0 <N n) → (a b : ℤn n pr) → _+n_ pr a b ≡ _+n_ pr b a plusZnCommutative {n} 0<n a b = equalityZn (applyEquality (mod n 0<n) (Semiring.commutative ℕSemiring (ℤn.x a) _)) plusZnAssociative' : {n : ℕ} → .(pr : 0 <N n) → {a b c : ℕ} → (a <N n) → (b <N n) → (c <N n) → mod n pr ((mod n pr (a +N b)) +N c) ≡ mod n pr (a +N (mod n pr (b +N c))) plusZnAssociative' 0<n {a} {b} {c} a<n b<n c<n with modAddition 0<n a<n b<n plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inl a+b=mod with modAddition 0<n b<n c<n ... | inl b+c=mod rewrite equalityCommutative (a+b=mod) | equalityCommutative (b+c=mod) = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) ... | inr b+c=n+mod rewrite equalityCommutative (a+b=mod) | equalityCommutative (modAnd+n 0<n (a +N mod _ 0<n (b +N c))) | Semiring.+Associative ℕSemiring n a (mod _ 0<n (b +N c)) | Semiring.commutative ℕSemiring n a | equalityCommutative (Semiring.+Associative ℕSemiring a n (mod _ 0<n (b +N c))) | equalityCommutative b+c=n+mod = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative' 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod with modAddition 0<n b<n c<n plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod | inl b+c=mod rewrite equalityCommutative b+c=mod | equalityCommutative (modAnd+n 0<n (mod _ 0<n (a +N b) +N c)) | Semiring.+Associative ℕSemiring n (mod _ 0<n (a +N b)) c | equalityCommutative a+b=n+mod = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod | inr b+c=n+mod rewrite equalityCommutative (modAnd+n 0<n ((mod _ 0<n (a +N b)) +N c)) | equalityCommutative (modAnd+n 0<n (a +N mod _ 0<n (b +N c))) | Semiring.+Associative ℕSemiring n (mod _ 0<n (a +N b)) c | equalityCommutative (a+b=n+mod) | Semiring.commutative ℕSemiring a (mod n 0<n (b +N c)) | Semiring.+Associative ℕSemiring n (mod n 0<n (b +N c)) a | equalityCommutative b+c=n+mod | Semiring.commutative ℕSemiring (b +N c) a = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative : {n : ℕ} → .(pr : 0 <N n) → (a b c : ℤn n pr) → _+n_ pr (_+n_ pr a b) c ≡ _+n_ pr a (_+n_ pr b c) plusZnAssociative {succ n} 0<sn record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } = equalityZn t where ma = mod (succ n) 0<sn a mb = mod (succ n) 0<sn b mc = mod (succ n) 0<sn c v : mod (succ n) 0<sn ((mod (succ n) 0<sn (ma +N mb)) +N mc) ≡ mod (succ n) 0<sn (ma +N mod (succ n) 0<sn (mb +N mc)) v = plusZnAssociative' 0<sn (mod<N 0<sn a) (mod<N 0<sn b) (mod<N 0<sn c) u : mod (succ n) 0<sn ((mod (succ n) 0<sn (mod (succ n) 0<sn a +N (mod (succ n) 0<sn b))) +N c) ≡ mod (succ n) 0<sn (a +N mod (succ n) 0<sn ((mod (succ n) 0<sn b) +N (mod (succ n) 0<sn c))) u rewrite equalityCommutative (modIsMod 0<sn c (<NProp cLess)) | equalityCommutative (modIsMod 0<sn a (<NProp aLess)) | modIdempotent 0<sn a | modIdempotent 0<sn c = v t : mod (succ n) 0<sn (mod (succ n) 0<sn (a +N b) +N c) ≡ mod (succ n) 0<sn (a +N mod (succ n) 0<sn (b +N c)) t rewrite modExtracts {succ n} 0<sn a b | modExtracts {succ n} 0<sn b c = u
{ "alphanum_fraction": 0.6431293432, "avg_line_length": 89.22, "ext": "agda", "hexsha": "2f0d3ee388ad2f7d5533ec83970bc8fc7eb05ad6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Modulo/Addition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Modulo/Addition.agda", "max_line_length": 590, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Modulo/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1819, "size": 4461 }
module Prelude where infixr 90 _∘_ infixr 0 _$_ id : {A : Set} -> A -> A id x = x _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C (f ∘ g) x = f (g x) _$_ : {A B : Set} -> (A -> B) -> A -> B f $ x = f x flip : {A B C : Set} -> (A -> B -> C) -> B -> A -> C flip f x y = f y x const : {A B : Set} -> A -> B -> A const x _ = x typeOf : {A : Set} -> A -> Set typeOf {A} _ = A typeOf1 : {A : Set1} -> A -> Set1 typeOf1 {A} _ = A
{ "alphanum_fraction": 0.4123006834, "avg_line_length": 15.6785714286, "ext": "agda", "hexsha": "51cf6c419fc56933a5a2a013e7a2fa787eb4538a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Prelude.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Prelude.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 208, "size": 439 }
{-# OPTIONS --without-K #-} module HoTT.Sigma.Transport where open import HoTT.Base open import HoTT.Identity open import HoTT.Identity.Sigma Σ-transport : ∀ {i j k} {A : 𝒰 i} {P : A → 𝒰 j} {Q : (Σ A λ x → P x) → 𝒰 k} {x y : A} → (p : x == y) (uz : Σ (P x) λ u → Q (x , u)) → transport (λ x → Σ (P x) λ u → Q (x , u)) p uz == transport _ p (pr₁ uz) , transport Q (pair⁼ (p , refl)) (pr₂ uz) Σ-transport refl (u , z) = refl
{ "alphanum_fraction": 0.5074626866, "avg_line_length": 36.0769230769, "ext": "agda", "hexsha": "91add779fe72a988b30aae2560294174285bd861", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Sigma/Transport.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Sigma/Transport.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Sigma/Transport.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 181, "size": 469 }
-- Andreas, 2015-01-19 Forced constructor arguments should not -- give rise to unification constraints. -- Andreas, 2015-02-27 Forcing analysis is too fragile to have -- such a huge impact. The problem has to be addressed by -- putting heterogeneous unification on a solid foundation. -- Jesper, 2015-12-18 The new unifier now correctly rejects this example. -- {-# OPTIONS -v tc.lhs.unify:15 #-} -- {-# OPTIONS -v tc.force:10 #-} open import Common.Equality open import Common.Prelude data HEq (A : Set) (a : A) : (B : Set) (b : B) → Set1 where refl : HEq A a A a -- Abstracting over suc disables forcing [Issue 1427] module M (s : Nat → Nat) where data Fin : (n : Nat) → Set where zero : {n : Nat} → Fin (s n) suc : {n : Nat} (i : Fin n) → Fin (s n) open M suc inj-Fin-≅ : ∀ {n m} {i : Fin n} {j : Fin m} → HEq (Fin n) i (Fin m) j → n ≡ m inj-Fin-≅ {i = zero} {zero } refl = refl -- Expected to fail, as n /= m inj-Fin-≅ {i = zero} {suc j} () inj-Fin-≅ {i = suc i} {zero } () inj-Fin-≅ {i = suc i} {suc .i} refl = refl -- Expected to fail, as n /= m -- This should not be accepted, as the direct attempt also fails: -- inj-Fin-≅' : ∀ {n m} {i : Fin n} {j : Fin m} → HEq (Fin n) i (Fin m) j → n ≡ m -- inj-Fin-≅' refl = refl
{ "alphanum_fraction": 0.5981161695, "avg_line_length": 33.5263157895, "ext": "agda", "hexsha": "ec433bc6ed57459ea890becad63f9537d45be6be", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1427b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1427b.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1427b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 462, "size": 1274 }
open import Relation.Binary.Core module BBSTree.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import BBSTree _≤_ open import Bound.Total A open import Bound.Total.Order.Properties _≤_ trans≤ open import List.Order.Simple _≤_ open import List.Order.Simple.Properties _≤_ trans≤ open import List.Sorted _≤_ lemma-bbst-*≤ : {b : Bound}(x : A) → (t : BBSTree b (val x)) → flatten t *≤ x lemma-bbst-*≤ x (bslf _) = lenx lemma-bbst-*≤ x (bsnd {x = y} b≤y y≤x l r) = lemma-++-*≤ (lemma-LeB≤ y≤x) (lemma-bbst-*≤ y l) (lemma-bbst-*≤ x r) lemma-bbst-≤* : {b : Bound}(x : A) → (t : BBSTree (val x) b) → x ≤* flatten t lemma-bbst-≤* x (bslf _) = genx lemma-bbst-≤* x (bsnd {x = y} x≤y y≤t l r) = lemma-≤*-++ (lemma-LeB≤ x≤y) (lemma-bbst-≤* x l) (lemma-bbst-≤* y r) lemma-bbst-sorted : {b t : Bound}(t : BBSTree b t) → Sorted (flatten t) lemma-bbst-sorted (bslf _) = nils lemma-bbst-sorted (bsnd {x = x} b≤x x≤t l r) = lemma-sorted++ (lemma-bbst-*≤ x l) (lemma-bbst-≤* x r) (lemma-bbst-sorted l) (lemma-bbst-sorted r)
{ "alphanum_fraction": 0.6012891344, "avg_line_length": 43.44, "ext": "agda", "hexsha": "4ad3c06cc886e1fccd72b9d044ff3379d6110948", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBSTree/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBSTree/Properties.agda", "max_line_length": 145, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBSTree/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 445, "size": 1086 }
{-# OPTIONS --without-K #-} open import hott.core open import hott.core.theorems open import hott.functions -- An important theorem in topology is to show the 2-dimensional loop -- space is abelian. To avoid notational clutter we parameterize the -- common variables as module parameters. module hott.topology.loopspace.eckmann-hilton {ℓ : Level}{A : Type ℓ}{a : A} where -- Let us give a name to the trivial loop at a reflₐ : a ≡ a reflₐ = refl {ℓ}{A}{a} open import hott.topology.loopspace -- Eckmann-Hilton : (α β : Ω² (A , a)) → α ∙ β ≡ β ∙ α -- This uses the wiskering technique. Consider the following paths -- ____ p₀ ___ ____ p₁ ____ -- / \ / \ -- a₀ α₀ a₁ α₁ a₁ -- \ / \ / -- --- q₀ ---- ---- q₁ ---- -- -- The 2-dimensional α₀ and α₀ paths cannot be composed in general -- as the end point of α₀ (i.e. q₀) is not the starting point of α₁ -- (i.e. p₁). However, because the paths are 2-dimenional paths we -- can compose them horizontally which we denote by ⋆. We -- encapsulate this composition inside a module called wiskering. -- module wiskering {x y : A}{p q : x ≡ y} where _∙ᵣ_ : {z : A} (α : p ≡ q)(r : y ≡ z) → p ∙ r ≡ q ∙ r α ∙ᵣ refl = p∙refl≡p p ∙ α ∙ p≡p∙refl q _∙ₗ_ : {w : A}(r : w ≡ x)(β : p ≡ q) → r ∙ p ≡ r ∙ q refl ∙ₗ β = refl∙p≡p p ∙ β ∙ p≡refl∙p q open wiskering -------- Lemmas on wiskering ------------------------------------ -- The next two lemma specialises the wiskering when one of the -- paths is refl. α∙ᵣrefl≡α : (α : reflₐ ≡ reflₐ) → α ∙ᵣ reflₐ ≡ α α∙ᵣrefl≡α α = begin α ∙ᵣ refl ≡ refl ∙ α ∙ refl by definition ≡ α ∙ refl by applying flip _∙_ refl on refl∙p≡p α ≡ α by p∙refl≡p α ∎ refl∙ₗβ≡β : (β : reflₐ ≡ reflₐ) → reflₐ ∙ₗ β ≡ β refl∙ₗβ≡β β = begin refl ∙ₗ β ≡ refl ∙ β ∙ refl by definition ≡ β ∙ refl by applying flip _∙_ refl on refl∙p≡p β ≡ β by p∙refl≡p β ∎ ---------- End of lemma on wiskering ----------------------------- -- With wiskering we can now define two different horizontal -- composition of higher order paths. module horizontal {a₀ a₁ a₂ : A}{p q : a₀ ≡ a₁}{r s : a₁ ≡ a₂} where _⋆_ : (α : p ≡ q) → (β : r ≡ s) → p ∙ r ≡ q ∙ s -- α₀ ⋆ α₁ α ⋆ β = (α ∙ᵣ r) ∙ (q ∙ₗ β) _⋆′_ : (α : p ≡ q) → (β : r ≡ s) → p ∙ r ≡ q ∙ s α ⋆′ β = (p ∙ₗ β) ∙ (α ∙ᵣ s) open horizontal -- The shows that either ways of horizontal composition gives the -- same higher homotopy. Here we need to induct on all α β an ⋆≡⋆′ : {p : a ≡ a}{r : a ≡ a} (α : p ≡ reflₐ) (β : reflₐ ≡ r ) → α ⋆ β ≡ α ⋆′ β ⋆≡⋆′ refl refl = refl -- The specialisation of the above lemma for elements in the second -- loop space. ⋆≡⋆′-refl : {α β : Ω² (A , a)} → α ⋆ β ≡ α ⋆′ β ⋆≡⋆′-refl {α} {β} = ⋆≡⋆′ α β -- When every path is refl horizontal compositions α ⋆ β and α ⋆′ β -- reduce to α ∙ β and β ∙ α respectively. The proofs are given at -- the end. α⋆β≡α∙β : {α β : Ω² (A , a)} → α ⋆ β ≡ α ∙ β α⋆′β≡β∙α : {α β : Ω² (A , a)} → α ⋆′ β ≡ β ∙ α -- From which we get the Eckmann-Hilton theorem. Eckmann-Hilton : (α β : Ω² (A , a)) → α ∙ β ≡ β ∙ α Eckmann-Hilton α β = begin α ∙ β ≡ α ⋆ β by α⋆β≡α∙β ⁻¹ ≡ α ⋆′ β by ⋆≡⋆′-refl ≡ β ∙ α by α⋆′β≡β∙α -- Proofs. α⋆β≡α∙β {α}{β} = begin α ⋆ β ≡ (α ∙ᵣ refl) ∙ (refl ∙ₗ β) by definition ≡ (α ∙ᵣ refl) ∙ β by applying _∙_ (α ∙ᵣ refl) on refl∙ₗβ≡β β ≡ α ∙ β by applying flip _∙_ β on α∙ᵣrefl≡α α ∎ α⋆′β≡β∙α {α}{β} = begin α ⋆′ β ≡ (refl ∙ₗ β) ∙ (α ∙ᵣ refl) by definition ≡ (refl ∙ₗ β) ∙ α by applying _∙_ (refl ∙ₗ β) on α∙ᵣrefl≡α α ≡ β ∙ α by applying flip _∙_ α on refl∙ₗβ≡β β ∎
{ "alphanum_fraction": 0.473897497, "avg_line_length": 31.7803030303, "ext": "agda", "hexsha": "0ad6aa34e6d1a3055712f61d566ab0e98540e6a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/topology/loopspace/eckmann-hilton.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/topology/loopspace/eckmann-hilton.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/topology/loopspace/eckmann-hilton.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1725, "size": 4195 }
module Issue512 where open import Common.Equality data A : Set where a b : A proof : a ≡ a proof = refl f : A → A → A f x y rewrite proof = {!!} -- gave error below (now complains about LEVELZERO instead of STRING): -- No binding for builtin thing STRING, use {-# BUILTIN STRING name #-} to bind it to 'name' -- when checking that the type of the generated with function -- (w : A) → _≡_ {"Max []"} {A} w w → (x y : A) → A is well-formed -- Andreas, 2014-05-17: After fixing 1110, there is no error any more, -- just an unsolved meta.
{ "alphanum_fraction": 0.65625, "avg_line_length": 24.7272727273, "ext": "agda", "hexsha": "25cbd6a7d97ad7f838208c9e659ce54a9945202e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue512.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue512.agda", "max_line_length": 92, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue512.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 165, "size": 544 }
{-# OPTIONS --allow-unsolved-metas #-} open import Tutorials.Monday-Complete module Tutorials.Tuesday where ----------- -- Pi and Sigma types ----------- module Product where -- The open keyword opens a given module in the current namespace -- By default all of the public names of the module are opened -- The using keyword limits the imported definitions to those explicitly listed open Fin open Vec using (Vec; []; _∷_) open Simple using (¬_) variable P Q : A → Set -- Pi types: dependent function types -- For every x of type A, the predicate P x holds Π : (A : Set) → (Pred A) → Set Π A P = (x : A) → P x infix 5 _,_ -- Sigma types: dependent product types, existential types -- For this x of type A, the predicate P x holds record Σ (A : Set) (P : Pred A) : Set where -- In the type P fst, fst refers to a previously introduced field constructor _,_ field fst : A snd : P fst open Σ public -- By depending on a boolean we can use pi types to represent product types Π-× : Set → Set → Set Π-× A B = Π Bool λ where true → A false → B -- By depending on a boolean we can use sigma types to represent sum types Σ-⊎ : Set → Set → Set Σ-⊎ A B = Σ Bool λ where true → A false → B -- Use pi types to recover function types Π-→ : Set → Set → Set Π-→ A B = Π A λ where _ → B -- Use sigma types to recover product types Σ-× : Set → Set → Set Σ-× A B = Σ A λ where _ → B infix 5 _×_ _×_ : Set → Set → Set _×_ = Σ-× -- 1) If we can transform the witness and -- 2) transform the predicate as per the transformation on the witness -- ⇒) then we can transform a sigma type map : (f : A → B) → (∀ {x} → P x → Q (f x)) → (Σ A P → Σ B Q) map f g (x , y) = (f x , g y) -- The syntax keyword introduces notation that can include binders infix 4 Σ-syntax Σ-syntax : (A : Set) → (A → Set) → Set Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B ¬∘ : Pred A → Pred A ¬∘ P = ¬_ ∘ P -- These can be proven regardless of A ¬∃⇒∀¬ : ¬ (Σ A P) → Π A (¬∘ P) ¬∃⇒∀¬ = {!!} ∃¬⇒¬∀ : Σ A (¬∘ P) → ¬ Π A P ∃¬⇒¬∀ = {!!} ∀¬⇒¬∃ : Π A (¬∘ P) → ¬ Σ A P ∀¬⇒¬∃ = {!!} -- Works in classical, not in constructive mathematics postulate ¬∀⇒∃¬ : ¬ Π A P → Σ A (¬∘ P) -- Show that ≤ is antisymmetric ≤-≡ : n ≤ m → m ≤ n → n ≡ m ≤-≡ x y = {!!} -- By using n ≤ m instead of Fin m we can mention n in the output take : Vec A m → n ≤ m → Vec A n take xs lte = {!!} Fin-to-≤ : (i : Fin m) → to-ℕ i < m Fin-to-≤ i = {!!} -- Proof combining sigma types and equality ≤-to-Fin : n < m → Fin m ≤-to-Fin lt = {!!} Fin-≤-inv : (i : Fin m) → ≤-to-Fin (Fin-to-≤ i) ≡ i Fin-≤-inv i = {!!} ≤-Fin-inv : (lt : Σ[ n ∈ ℕ ] n < m) → (to-ℕ (≤-to-Fin (snd lt)) , Fin-to-≤ (≤-to-Fin (snd lt))) ≡ lt ≤-Fin-inv lt = {!!}
{ "alphanum_fraction": 0.5468695953, "avg_line_length": 25.3596491228, "ext": "agda", "hexsha": "564f8167f1258e2ffa46bf5fbfb33ad66725075c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z", "max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "poncev/agda-bcam", "max_forks_repo_path": "Tutorials/Tuesday.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "poncev/agda-bcam", "max_issues_repo_path": "Tutorials/Tuesday.agda", "max_line_length": 81, "max_stars_count": 27, "max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "poncev/agda-bcam", "max_stars_repo_path": "Tutorials/Tuesday.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z", "num_tokens": 1099, "size": 2891 }
{-# OPTIONS --no-termination-check #-} module AC where import Nat import Bool import List import Fin import Logic import Vec import EqProof open Nat hiding (_<_) renaming (_==_ to _=Nat=_) open Bool open List hiding (module Eq) open Fin renaming (_==_ to _=Fin=_) open Logic open Vec infix 20 _○_ infix 10 _≡_ ForAll : {A : Set}(n : Nat) -> (Vec n A -> Set) -> Set ForAll zero F = F ε ForAll {A} (suc n) F = (x : A) -> ForAll _ \xs -> F (x ∷ xs) apply : {n : Nat}{A : Set}(F : Vec n A -> Set) -> ForAll n F -> (xs : Vec n A) -> F xs apply {zero} F t (vec vnil) = t apply {suc n} F f (vec (vcons x xs)) = apply _ (f x) xs lambda : {n : Nat}{A : Set}(F : Vec n A -> Set) -> ((xs : Vec n A) -> F xs) -> ForAll n F lambda {zero } F f = f ε lambda {suc n} F f = \x -> lambda _ (\xs -> f (x ∷ xs)) data Expr (n : Nat) : Set where zro : Expr n var : Fin n -> Expr n _○_ : Expr n -> Expr n -> Expr n data Theorem (n : Nat) : Set where _≡_ : Expr n -> Expr n -> Theorem n theorem : (n : Nat) -> ({m : Nat} -> ForAll {Expr m} n \_ -> Theorem m) -> Theorem n theorem n thm = apply _ thm (map var (fzeroToN-1 n)) module Provable where NF : Nat -> Set NF n = List (Fin n) infix 12 _⊕_ _⊕_ : {n : Nat} -> NF n -> NF n -> NF n [] ⊕ ys = ys x :: xs ⊕ [] = x :: xs x :: xs ⊕ y :: ys = if x < y then x :: (xs ⊕ y :: ys) else y :: (x :: xs ⊕ ys) normalise : {n : Nat} -> Expr n -> NF n normalise zro = [] normalise (var n) = n :: [] normalise (a ○ b) = normalise a ⊕ normalise b infix 30 _↓ _↓ : {n : Nat} -> NF n -> Expr n (i :: is) ↓ = var i ○ is ↓ [] ↓ = zro infix 10 _=Expr=_ _=NF=_ _=NF=_ : {n : Nat} -> NF n -> NF n -> Bool _=NF=_ = ListEq._==_ where module ListEq = List.Eq _=Fin=_ substNF : {n : Nat}{xs ys : NF n}(P : NF n -> Set) -> IsTrue (xs =NF= ys) -> P xs -> P ys substNF = List.Subst.subst _=Fin=_ (subst {_}) _=Expr=_ : {n : Nat} -> Expr n -> Expr n -> Bool a =Expr= b = normalise a =NF= normalise b provable : {n : Nat} -> Theorem n -> Bool provable (a ≡ b) = a =Expr= b module Semantics {A : Set} (_==_ : A -> A -> Set) (_*_ : A -> A -> A) (one : A) (refl : {x : A} -> x == x) (sym : {x y : A} -> x == y -> y == x) (trans : {x y z : A} -> x == y -> y == z -> x == z) (idL : {x : A} -> (one * x) == x) (idR : {x : A} -> (x * one) == x) (comm : {x y : A} -> (x * y) == (y * x)) (assoc : {x y z : A} -> (x * (y * z)) == ((x * y) * z)) (congL : {x y z : A} -> y == z -> (x * y) == (x * z)) (congR : {x y z : A} -> x == y -> (x * z) == (y * z)) where open Provable module EqP = EqProof _==_ refl trans open EqP expr[_] : {n : Nat} -> Expr n -> Vec n A -> A expr[ zro ] ρ = one expr[ var i ] ρ = ρ ! i expr[ a ○ b ] ρ = expr[ a ] ρ * expr[ b ] ρ eq[_] : {n : Nat} -> Theorem n -> Vec n A -> Set eq[ a ≡ b ] ρ = expr[ a ] ρ == expr[ b ] ρ data CantProve (A : Set) : Set where no-proof : CantProve A Prf : {n : Nat} -> Theorem n -> Bool -> Set Prf thm true = ForAll _ \ρ -> eq[ thm ] ρ Prf thm false = CantProve (Prf thm true) Proof : {n : Nat} -> Theorem n -> Set Proof thm = Prf thm (provable thm) lem0 : {n : Nat} -> (xs ys : NF n) -> (ρ : Vec n A) -> eq[ xs ↓ ○ ys ↓ ≡ (xs ⊕ ys) ↓ ] ρ lem0 [] ys ρ = idL lem0 (x :: xs) [] ρ = idR lem0 (x :: xs) (y :: ys) ρ = if' x < y then less else more where lhs = (var x ○ xs ↓) ○ (var y ○ ys ↓) lbranch = x :: (xs ⊕ y :: ys) rbranch = y :: (x :: xs ⊕ ys) P = \z -> eq[ lhs ≡ (if z then lbranch else rbranch) ↓ ] ρ less : IsTrue (x < y) -> _ less x<y = BoolEq.subst {true}{x < y} P x<y (spine (lem0 xs (y :: ys) ρ)) where spine : forall {x' xs' y' ys' zs} h -> _ spine {x'}{xs'}{y'}{ys'}{zs} h = eqProof> (x' * xs') * (y' * ys') === x' * (xs' * (y' * ys')) by sym assoc === x' * zs by congL h more : IsFalse (x < y) -> _ more x>=y = BoolEq.subst {false}{x < y} P x>=y (spine (lem0 (x :: xs) ys ρ)) where spine : forall {x' xs' y' ys' zs} h -> _ spine {x'}{xs'}{y'}{ys'}{zs} h = eqProof> (x' * xs') * (y' * ys') === (y' * ys') * (x' * xs') by comm === y' * (ys' * (x' * xs')) by sym assoc === y' * ((x' * xs') * ys') by congL comm === y' * zs by congL h lem1 : {n : Nat} -> (e : Expr n) -> (ρ : Vec n A) -> eq[ e ≡ normalise e ↓ ] ρ lem1 zro ρ = refl lem1 (var i) ρ = sym idR lem1 (a ○ b) ρ = trans step1 (trans step2 step3) where step1 : eq[ a ○ b ≡ normalise a ↓ ○ b ] ρ step1 = congR (lem1 a ρ) step2 : eq[ normalise a ↓ ○ b ≡ normalise a ↓ ○ normalise b ↓ ] ρ step2 = congL (lem1 b ρ) step3 : eq[ normalise a ↓ ○ normalise b ↓ ≡ (normalise a ⊕ normalise b) ↓ ] ρ step3 = lem0 (normalise a) (normalise b) ρ lem2 : {n : Nat} -> (xs ys : NF n) -> (ρ : Vec n A) -> IsTrue (xs =NF= ys) -> eq[ xs ↓ ≡ ys ↓ ] ρ lem2 xs ys ρ eq = substNF {_}{xs}{ys} (\z -> eq[ xs ↓ ≡ z ↓ ] ρ) eq refl prove : {n : Nat} -> (thm : Theorem n) -> Proof thm prove thm = proof (provable thm) thm (\h -> h) where proof : {n : Nat}(valid : Bool)(thm : Theorem n) -> (IsTrue valid -> IsTrue (provable thm)) -> Prf thm valid proof false _ _ = no-proof proof true (a ≡ b) isValid = lambda eq[ a ≡ b ] \ρ -> trans (step-a ρ) (trans (step-ab ρ) (step-b ρ)) where step-a : forall ρ -> eq[ a ≡ normalise a ↓ ] ρ step-a ρ = lem1 a ρ step-b : forall ρ -> eq[ normalise b ↓ ≡ b ] ρ step-b ρ = sym (lem1 b ρ) step-ab : forall ρ -> eq[ normalise a ↓ ≡ normalise b ↓ ] ρ step-ab ρ = lem2 (normalise a) (normalise b) ρ (isValid tt)
{ "alphanum_fraction": 0.4527239609, "avg_line_length": 31.1288659794, "ext": "agda", "hexsha": "7625729d648096f78cfa71988de638acf2efdd88", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "benchmark/ac/AC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "benchmark/ac/AC.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/ac/AC.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2399, "size": 6039 }
{-# OPTIONS --type-in-type #-} module _ where Set' : ∀ i → Set _ Set' i = Set i postulate A : Set a : A T : Set → Set comp : (P : A → Set) (g : (a : A) → P a) → P a foo : ∀ i (Q : A → Set' i) → T (comp _ Q) -- (no issue if Set' is replaced by Set) bar : T {!_!} -- Try to give _ bar = foo _ _ -- WAS: -- A !=< Agda.Primitive.Level of type Set -- when checking that the expression _ has type Set -- SHOULD: succeed (with unsolved meta)
{ "alphanum_fraction": 0.5530973451, "avg_line_length": 19.652173913, "ext": "agda", "hexsha": "f221d2bc0b5916c77a21c625f887d91cc34359b6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3073.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3073.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3073.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 160, "size": 452 }
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual -- blocks -- Skipping a single data definition in an abstract block. abstract {-# NO_POSITIVITY_CHECK #-} data D : Set where lam : (D → D) → D
{ "alphanum_fraction": 0.7018348624, "avg_line_length": 24.2222222222, "ext": "agda", "hexsha": "f9ac6fc7755eb5d3e9054c0127171e0d12328e15", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1614f.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1614f.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1614f.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 57, "size": 218 }
-- Andreas, 2017-03-23, issue #2510 -- Error message in case of --no-pattern-matching {-# OPTIONS --no-pattern-matching #-} test : Set test x = x -- Expected error: -- Cannot eliminate type Set with pattern x (did you supply too many arguments?)
{ "alphanum_fraction": 0.6947791165, "avg_line_length": 22.6363636364, "ext": "agda", "hexsha": "4e3a1f8dd62ca165ffe24ae4b3f05f1e1daf8cf8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2510.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2510.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2510.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 65, "size": 249 }
record ⊤ : Set where abstract a : ⊤ a = {!!}
{ "alphanum_fraction": 0.48, "avg_line_length": 8.3333333333, "ext": "agda", "hexsha": "30e23ef44b2be7036aa8b2d756b36dcb6d3807c2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2162.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2162.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2162.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 50 }
------------------------------------------------------------------------------ -- From ListP as the least fixed-point to ListP using data ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We want to represent the polymorphic total lists data type -- -- data ListP (A : D → Set) : D → Set where -- lnil : ListP A [] -- lcons : ∀ {x xs} → A x → ListP A xs → ListP A (x ∷ xs) -- -- using the representation of ListP as the least fixed-point. module LFPs.ListP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- ListP is a least fixed-point of a functor -- The functor. -- ListPF : (D → Set) → (D → Set) → D → Set -- ListPF A B xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] A x' ∧ xs ≡ x' ∷ xs' ∧ B xs') -- ListP is the least fixed-point of ListPF. postulate ListP : (D → Set) → D → Set -- ListP is a pre-fixed point of ListPF. -- -- Peter: It corresponds to the introduction rules. ListP-in : (A : D → Set) → ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] A x' ∧ xs ≡ x' ∷ xs' ∧ ListP A xs') → ListP A xs -- ListP is the least pre-fixed point of ListPF. -- -- Peter: It corresponds to the elimination rule of an inductively -- defined predicate. ListP-ind : (A B : D → Set) → (∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] A x' ∧ xs ≡ x' ∷ xs' ∧ B xs') → B xs) → ∀ {xs} → ListP A xs → B xs ------------------------------------------------------------------------------ -- The data constructors of ListP. lnil : (A : D → Set) → ListP A [] lnil A = ListP-in A (inj₁ refl) lcons : (A : D → Set) → ∀ {x xs} → A x → ListP A xs → ListP A (x ∷ xs) lcons A {n} {ns} An LPns = ListP-in A (inj₂ (n , ns , An , refl , LPns)) ------------------------------------------------------------------------------ -- The induction principle for ListP. ListP-ind' : (A B : D → Set) → B [] → (∀ x {xs} → A x → B xs → B (x ∷ xs)) → ∀ {xs} → ListP A xs → B xs ListP-ind' A B B[] is = ListP-ind A B prf where prf : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] A x' ∧ xs ≡ x' ∷ xs' ∧ B xs') → B xs prf (inj₁ xs≡[]) = subst B (sym xs≡[]) B[] prf (inj₂ (x' , xs' , Ax' , h₁ , Bxs')) = subst B (sym h₁) (is x' Ax' Bxs') ------------------------------------------------------------------------------ -- Examples -- "Heterogeneous" total lists xs : D xs = 0' ∷ true ∷ 1' ∷ false ∷ [] List : D → Set List = ListP (λ d → d ≡ d) xs-ListP : List xs xs-ListP = lcons A refl (lcons A refl (lcons A refl (lcons A refl (lnil A)))) where A : D → Set A d = d ≡ d -- Total lists of total natural numbers ys : D ys = 0' ∷ 1' ∷ 2' ∷ [] ListN : D → Set ListN = ListP N ys-ListP : ListN ys ys-ListP = lcons N nzero (lcons N (nsucc nzero) (lcons N (nsucc (nsucc nzero)) (lnil N)))
{ "alphanum_fraction": 0.449117175, "avg_line_length": 30.5392156863, "ext": "agda", "hexsha": "7d8d8f04d91a3ad233282e93288d8cee8b92d5a0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/fixed-points/LFPs/ListP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/fixed-points/LFPs/ListP.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/fixed-points/LFPs/ListP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1010, "size": 3115 }
-- 2011-08-22 Andreas (reported and fixed by Dominique Devriese) {-# OPTIONS --no-universe-polymorphism #-} module Issue427 where data ⊥ : Set where postulate f : {I : ⊥} (B : _) → ⊥ data A : Set where a : {x y : ⊥} → A test : A → Set test (a {x = x} {y = y}) with f {_} test (a {x = x} {y = y}) | _ = A {- old error message: ⊥ should be a function type, but it isn't when checking that {y} are valid arguments to a function of type ⊥ -} -- new error message should be: Unresolved metas
{ "alphanum_fraction": 0.6222222222, "avg_line_length": 27.5, "ext": "agda", "hexsha": "9f09a9836fd9c29fd22b860c964c93a747117d43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue427.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue427.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue427.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 168, "size": 495 }
module InstanceArgumentsSections where postulate A : Set module Basic where record B : Set where field bA : A open B {{...}} bA' : {{_ : B}} → A bA' = bA module Parameterised (a : A) where record C : Set where field cA : A open C {{...}} cA' : {{_ : C}} → A cA' = cA module RecordFromParameterised where postulate a : A open Parameterised a open C {{...}} cA'' : {{_ : C}} → A cA'' = cA module RecordFromParameterisedInParameterised (a : A) where open Parameterised a open C {{...}} cA'' : {{_ : C}} → A cA'' = cA module RecordFromParameterised' (a : A) where open Parameterised open C {{...}} cA'' : {{_ : C a}} → A cA'' = cA {a} module AppliedRecord (a : A) where open Parameterised D : Set D = C a module D = C open D {{...}} dA' : {{_ : D}} → A dA' = cA {a}
{ "alphanum_fraction": 0.5513577332, "avg_line_length": 14.3559322034, "ext": "agda", "hexsha": "f4b1d767200299f28e95351a8dd98cb5f6d9412c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/InstanceArgumentsSections.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/InstanceArgumentsSections.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/InstanceArgumentsSections.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 312, "size": 847 }
open import Algebra.Bundles using (Group) module GGT.Group.Facts {a b ℓ} (G : Group a ℓ) where open import Relation.Unary using (Pred) open import Relation.Binary open import GGT.Group.Structures open import Algebra.Bundles using (Group) open import Algebra.Properties.Group G open Group G open import Relation.Binary.Reasoning.Setoid setoid ⁻¹-anti-homo-- : ∀ (x y : Carrier) → (x - y)⁻¹ ≈ y - x ⁻¹-anti-homo-- x y = begin (x - y)⁻¹ ≡⟨⟩ (x ∙ y ⁻¹)⁻¹ ≈⟨ ⁻¹-anti-homo-∙ _ _ ⟩ (y ⁻¹) ⁻¹ ∙ x ⁻¹ ≈⟨ ∙-congʳ (⁻¹-involutive _) ⟩ y ∙ x ⁻¹ ≡⟨⟩ y - x ∎ subgroup⁻¹-closed : {P : Pred Carrier b } → IsSubGroup G P → ∀ x → P x → P (x ⁻¹) subgroup⁻¹-closed iss x px = -- e - x = x ⁻¹ → P e - x → P x ⁻¹ r (identityˡ (x ⁻¹)) (∙-⁻¹-closed ε∈ px) where open IsSubGroup iss -- ----- -- (Right) Coset Relation is Equivalenc cosetRelRefl : {P : Pred Carrier b } → (iss : IsSubGroup G P) → Reflexive (IsSubGroup._∼_ iss) cosetRelRefl iss {x} = r (sym (inverseʳ x)) ε∈ where open IsSubGroup iss -- (e = x - x) → P e → P x - x cosetRelSym : {P : Pred Carrier b } → (iss : IsSubGroup G P) → Symmetric (IsSubGroup._∼_ iss) cosetRelSym iss {x} {y} x∼y = r u≈y-x Pu where -- P e → P (x - y) → P (y - x) open IsSubGroup iss u≈y-x = begin ε - (x - y) ≡⟨⟩ ε ∙ (x - y)⁻¹ ≈⟨ identityˡ ((x - y)⁻¹) ⟩ (x - y)⁻¹ ≈⟨ ⁻¹-anti-homo-- _ _ ⟩ y - x ∎ Pu = ∙-⁻¹-closed ε∈ x∼y cosetRelTrans : {P : Pred Carrier b } → (iss : IsSubGroup G P) → Transitive (IsSubGroup._∼_ iss) cosetRelTrans iss {x} {y} {z} x∼y y∼z = r x-y-[z-y]≈x-z Pu where open IsSubGroup iss -- P z - y z∼y = cosetRelSym iss y∼z x-y-[z-y]≈x-z = begin (x - y) - (z - y) ≡⟨⟩ (x - y) ∙ (z - y) ⁻¹ ≈⟨ ∙-congˡ (⁻¹-anti-homo-- z y) ⟩ (x - y) ∙ (y - z) ≡⟨⟩ (x ∙ y ⁻¹) ∙ (y ∙ z ⁻¹) ≈⟨ assoc x (y ⁻¹) (y ∙ z ⁻¹) ⟩ x ∙ (y ⁻¹ ∙ (y ∙ z ⁻¹)) ≈˘⟨ ∙-congˡ (assoc (y ⁻¹) y (z ⁻¹)) ⟩ x ∙ ((y ⁻¹ ∙ y) ∙ z ⁻¹) ≈⟨ ∙-congˡ (∙-congʳ (inverseˡ _)) ⟩ x ∙ (ε ∙ z ⁻¹) ≈⟨ ∙-congˡ (identityˡ _) ⟩ x ∙ z ⁻¹ ≡⟨⟩ x - z ∎ Pu = ∙-⁻¹-closed {x - y} {z - y} x∼y z∼y
{ "alphanum_fraction": 0.4443991853, "avg_line_length": 35.5797101449, "ext": "agda", "hexsha": "081b380f3bfceca946ef2c1d473bacfe0a4905a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/group/Facts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/group/Facts.agda", "max_line_length": 84, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/group/Facts.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 1062, "size": 2455 }
open import Data.Bool as Bool using (Bool; false; true; if_then_else_; not) open import Data.String using (String) open import Data.Nat using (ℕ; _+_; _≟_; suc; _>_; _<_; _∸_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.List as l using (List; filter; map; take; foldl; length; []; _∷_) open import Data.List.Properties -- open import Data.List.Extrema using (max) open import Data.Maybe using (to-witness) open import Data.Fin using (fromℕ; _-_; zero; Fin) open import Data.Fin.Properties using (≤-totalOrder) open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; Σ) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Level using (Level) open import Data.Vec as v using (Vec; fromList; toList; last; length; []; _∷_; [_]; _∷ʳ_; _++_; lookup; head; initLast; filter; map) open import Data.Vec.Bounded as vb using ([]; _∷_; fromVec; filter; Vec≤) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; _≗_; cong₂) open import Data.Nat.Properties using (+-comm) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (does) open import Data.Vec.Bounded.Base using (padRight; ≤-cast) import Data.Nat.Properties as ℕₚ open import Relation.Nullary.Decidable.Core using (dec-false) open import Function using (_∘_) open import Data.List.Extrema ℕₚ.≤-totalOrder -- TODO add to std-lib vecLast : ∀ {a} {A : Set a} {l} {n : ℕ} (xs : Vec A n) → last (xs ∷ʳ l) ≡ l vecLast [] = refl vecLast (_ ∷ xs) = P.trans (prop (xs ∷ʳ _)) (vecLast xs) where prop : ∀ {a} {A : Set a} {n x} (xs : Vec A (suc n)) → last (x v.∷ xs) ≡ last xs prop xs with initLast xs ... | _ , _ , refl = refl -- operations -- AddTodo -- DeleteTodo -- CompleteTodo -- ClearCompleted -- CompleteAllTodos -- horizontal properties -- AddTodo -- non-commutative -- DeleteTodo -- idempotent -- CompleteTodo -- idempotent -- ClearCompleted -- idempotent -- CompleteAllTodos -- idempotent -- EditTodo -- EditTodo - EditTodo Todo list length doesn't change -- vertical properties -- AddTodo -- AddTodoSetsNewCompletedToFalse -- AddTodoSetsNewIdToNonExistingId -- AddTodoSetsNewTextToText -- doesn't change id of other Todos -- doesn't change text of other Todos -- doesn't change completed of other Todos -- DeleteTodo -- DeleteTodoRemoveTodoWithId -- DeleteTodoRemoves1Element -- only way to add todo is with AddTodo and AddTodo gives non existing id to new todo -- doesn't change id of other Todos -- doesn't change text of other Todos -- doesn't change completed of other Todos -- CompleteTodo -- CompleteTodoSetsTodoWithIdCompletedToTrue -- doesn't touch any other Todo -- doesn't change id of any Todo -- doesn't change text of any Todo -- ClearCompleted -- doesn't remove Todos where completed = false -- doesn't change id of any Todo -- doesn't change completed of any Todo -- doesn't change text of any Todo -- CompleteAllTodos -- all Todos have completed = true -- doesn't change id of any Todo -- doesn't change text of any Todo -- EditTodo -- modifies Todo with given id's text -- doesn't change the id -- doesn't change completed -- doesn't modify other Todos record Todo : Set where field text : String completed : Bool id : ℕ AddTodo : ∀ {n : ℕ} → (Vec Todo n) → String → (Vec Todo (1 + n)) AddTodo todos text = todos ∷ʳ record { id = 1 -- argmax (λ todo → λ e → e) todos) + 1 ; completed = false ; text = text } ListAddTodo : List Todo → String → List Todo ListAddTodo todos text = todos l.∷ʳ record { id = (max 0 (l.map (λ e → Todo.id e) todos)) + 1 ; completed = false ; text = text } ListAddTodoAddsNewListItem : (todos : List Todo) (text : String) → l.length (ListAddTodo todos text) ≡ l.length todos + 1 ListAddTodoAddsNewListItem todos text = length-++ todos listVec : Vec ℕ 1 listVec = v.fromList (2 l.∷ l.[]) listLast : ℕ listLast = v.last (v.fromList (2 l.∷ l.[])) listLastIs2 : v.last (v.fromList (2 l.∷ l.[])) ≡ 2 listLastIs2 = refl record Id : Set where field id : ℕ natListToVec : (xs : List ℕ) → Vec ℕ (l.length xs) natListToVec nats = v.fromList nats -- natListLast : List ℕ → ℕ -- natListLast nats = v.last {(l.length nats) ∸ 1} (v.fromList nats) -- natListLast : List ℕ → ℕ -- natListLast [] = 0 -- natListLast nats@(x ∷ xs) = v.last (v.fromList nats) natListFromList : v.fromList (1 l.∷ l.[]) ≡ (1 v.∷ v.[]) natListFromList = refl ListOf1sConcatFromList : v.fromList (1 l.∷ l.[] l.++ 1 l.∷ l.[]) ≡ (1 v.∷ v.[] v.++ 1 v.∷ v.[]) ListOf1sConcatFromList = refl open import Data.Nat.Properties {-# BUILTIN SIZE Size #-} private variable a : Level A : Set a i : Size vec-length-++ : ∀ {n : ℕ} (xs : Vec A n) {ys} → v.length (xs v.++ ys) ≡ v.length xs + v.length ys vec-length-++ xs {ys} = refl -- vec-fromList-++ : -- (as bs : List A) → -- v.fromList (as l.++ bs) ≡ v.fromList as v.++ v.fromList bs -- vec-fromList-++ [] bs = v.[] -- vec-fromList-++ (a ∷ as) bs = ? -- natListConcatFromList : (nats1 : List ℕ) → (nats2 : List ℕ) → v.fromList (nats1 l.++ nats2) ≡ (nats1 v.++ nats2) -- natListConcatFromList nats = ? -- natListConcatFromList : (nats : List ℕ) → v.fromList (nats l.++ (1 l.∷ l.[])) ≡ ((v.fromList nats) v.++ (1 v.∷ v.[])) -- natListConcatFromList = {! !} natListLast : List ℕ → ℕ natListLast [] = 0 natListLast (x ∷ []) = x natListLast (_ ∷ y ∷ l) = natListLast (y l.∷ l) natListConcatLast : ∀ l → natListLast (l l.++ l.[ 1 ]) ≡ 1 natListConcatLast [] = refl natListConcatLast (_ ∷ []) = refl natListConcatLast (_ ∷ _ ∷ l) = natListConcatLast (_ l.∷ l) TodoListConcatLast [] = refl TodoListConcatLast (_ ∷ []) = refl TodoListConcatLast (_ ∷ _ ∷ l) = TodoListConcatLast (_ l.∷ l) TodoListConcatLast : ∀ l → (TodoListLast (l l.++ l.[ record { id = 1 ; completed = false ; text = "text" } ])) ≡ record { id = 1 ; completed = false ; text = "text" } TodoListConcatLastCompleted : ∀ l → Todo.completed (TodoListLast (l l.++ l.[ record { id = 1 ; completed = false ; text = "text" } ])) ≡ false TodoListConcatLastCompleted [] = refl TodoListConcatLastCompleted (_ ∷ []) = refl TodoListConcatLastCompleted (_ ∷ _ ∷ l) = TodoListConcatLastCompleted (_ l.∷ l) -- _ : v.last (v.fromList (2 l.∷ l.[] l.++ 1 l.∷ l.[])) ≡ 1 -- _ = refl -- natListConcatLast : (nats : List ℕ) → natListLast (nats l.++ 1 l.∷ l.[]) ≡ 1 -- natListConcatLast [] = refl -- natListConcatLast nats@(x ∷ xs) = -- begin -- natListLast (nats l.++ 1 l.∷ l.[]) -- ≡⟨⟩ -- v.last (v.fromList ((x l.∷ xs) l.++ 1 l.∷ l.[])) -- ≡⟨⟩ -- ? -- ≡⟨⟩ -- 1 -- ∎ -- TodoListLast : List Todo → Todo -- TodoListLast [] = record {} -- TodoListLast todos@(x ∷ xs) = v.last (v.fromList todos) -- ListWith2ToVec : v.fromList (2 l.∷ l.[]) ≡ 2 v.∷ v.[] -- ListWith2ToVec = refl -- idListLastIdIs2 : Id.id (v.last (v.fromList (record {id = 2} l.∷ l.[]))) ≡ 2 -- idListLastIdIs2 = refl -- todoListLastIdIs2 : Todo.id (v.last (v.fromList (record {id = 2; text = ""; completed = false} l.∷ l.[]))) ≡ 2 -- todoListLastIdIs2 = refl -- ListTodoLastTextIsText : -- (todos : List Todo) (text : String) → -- Todo.text (v.last (v.fromList ( -- record -- { text = text -- ; completed = false -- ; id = max 0 (l.map Todo.id todos) + 1 -- } l.∷ l.[] -- ))) ≡ text -- ListTodoLastTextIsText todos text = refl -- -- ListAddTodoLastAddedElementIsTodo : -- -- (todos : List Todo) (text : String) → -- -- Todo.text (TodoListLast (ListAddTodo todos text)) ≡ text -- -- ListAddTodoLastAddedElementIsTodo [] text = refl -- -- ListAddTodoLastAddedElementIsTodo todos@(x ∷ xs) text = -- -- begin -- -- Todo.text (TodoListLast (ListAddTodo todos text)) -- -- ≡⟨⟩ -- -- Todo.text ( -- -- TodoListLast ( -- -- todos -- -- l.++ -- -- ( -- -- record -- -- { text = text -- -- ; completed = false -- -- ; id = max 0 (l.map Todo.id todos) + 1 -- -- } -- -- l.∷ -- -- l.[] -- -- ) -- -- ) -- -- ) -- -- ≡⟨⟩ -- -- Todo.text ( -- -- record -- -- { text = text -- -- ; completed = false -- -- ; id = max 0 (l.map Todo.id todos) + 1 -- -- } -- -- ) -- -- ≡⟨ ? ⟩ -- -- text -- -- ∎ -- -- open import Data.Nat.Base -- -- infixr 5 _vb∷ʳ_ -- -- _vb∷ʳ_ : ∀ {n} → Vec≤ A n → A → Vec≤ A (suc n) -- -- (as , p) vb∷ʳ a = as , s≤s p v.∷ʳ a -- -- Vec≤AddTodo : ∀ {n : ℕ} → (Vec≤ Todo n) → String → (Vec≤ Todo (1 + n)) -- -- Vec≤AddTodo todos text = -- -- todos vb∷ʳ -- -- record -- -- { id = 1 -- argmax (λ todo → λ e → e) todos) + 1 -- -- ; completed = false -- -- ; text = text -- -- } -- vecLength-++ : -- ∀ {n m} (xs : Vec A n) {ys : Vec A m} → -- v.length (xs ++ ys) ≡ v.length xs + v.length ys -- vecLength-++ [] = refl -- vecLength-++ (x ∷ xs) = cong suc (vecLength-++ xs) -- AddTodoAddsNewListItem : -- ∀ {n : ℕ} → (todos : Vec Todo n) (text : String) → -- v.length (AddTodo todos text) ≡ v.length todos + 1 -- AddTodoAddsNewListItem [] text = refl -- AddTodoAddsNewListItem (x v.∷ xs) text = -- begin -- v.length (AddTodo (x v.∷ xs) text) -- ≡⟨⟩ -- 1 + v.length (x v.∷ xs) -- ≡⟨ +-comm 1 (v.length (x v.∷ xs))⟩ -- v.length (x v.∷ xs) + 1 -- ∎ -- ListTodoAddTodoAddsNewListItem : -- (todos : List Todo) (text : String) → -- l.length (ListAddTodo todos text) ≡ l.length todos + 1 -- ListTodoAddTodoAddsNewListItem [] text = refl -- ListTodoAddTodoAddsNewListItem todos text = -- +-comm 1 (l.length todos) -- AddTodoLastAddedElementIsTodo : -- ∀ {n} (todos : Vec Todo n) (text : String) → -- last (AddTodo todos text) ≡ -- record -- { id = 1 -- ; completed = false -- ; text = text -- } -- AddTodoLastAddedElementIsTodo todos text = vecLast todos -- -- should set (new element).completed to false -- AddTodoSetsNewCompletedToFalse : -- ∀ {n} (todos : Vec Todo n) (text : String) → -- Todo.completed (last (AddTodo todos text)) ≡ false -- AddTodoSetsNewCompletedToFalse todos text -- rewrite -- (AddTodoLastAddedElementIsTodo todos text) = -- refl -- -- should set (new element).id to an id not existing already in the list -- AddTodoSetsNewIdTo1 : -- ∀ {n} (todos : Vec Todo n) (text : String) → -- Todo.id (last (AddTodo todos text)) ≡ 1 -- AddTodoSetsNewIdTo1 todos text -- rewrite -- (AddTodoLastAddedElementIsTodo todos text) = -- refl -- -- TODO should not touch other elements in the list -- {-# COMPILE JS AddTodo = -- function (todos) { -- return function (text) { -- return [ -- ...todos, -- { -- id: todos.reduce((maxId, todo) => Math.max(todo.id, maxId), -1) + 1, -- completed: false, -- text: text -- } -- ] -- } -- } -- #-} -- -- DeleteTodo : (List Todo) → ℕ → (List Todo) -- -- DeleteTodo todos id' = filter (λ todo → Todo.id todo ≟ id') todos -- open import Relation.Nullary -- dec-¬ : ∀ {a} {P : Set a} → Dec P → Dec (¬ P) -- dec-¬ (yes p) = no λ prf → prf p -- dec-¬ (no ¬p) = yes ¬p -- VecFilter : Vec≤.vec (v.filter (λ e → e ≟ 2) (2 v.∷ 1 v.∷ v.[])) ≡ (2 v.∷ v.[]) -- VecFilter = refl -- -- VecFilter' : Vec≤.vec (v.filter (λ e → dec-¬ (e ≟ 2)) (2 v.∷ 1 v.∷ v.[])) ≡ (1 v.∷ v.[]) -- -- VecFilter' = refl -- -- VecFilter'' : {n : ℕ} → Vec≤.vec (v.filter (λ e → e ≟ 2) (n v.∷ v.[])) ≡ 2 v.∷ v.[] -- -- VecFilter'' = ? -- -- VecFilter''' : {n : ℕ} → v.filter (λ e → e ≟ n) (n v.∷ v.[]) ≡ n vb.∷ vb.[] -- -- VecFilter''' = {! !} -- -- ListFilter : l.filter (λ e → e ≟ 2) (2 l.∷ l.[]) ≡ 2 l.∷ l.[] -- -- ListFilter = refl -- -- ListFilter' : {n : ℕ} → l.filter (λ e → e ≟ n) (n l.∷ l.[]) ≡ n l.∷ l.[] -- -- ListFilter' = {! !} -- -- DeleteNat : ∀ {n m} → (Vec ℕ n) → ℕ → (Vec ℕ m) -- -- DeleteNat nats nat = Vec≤.vec (v.filter (λ e → e ≟ nat) nats) -- DeleteNat : List ℕ → ℕ → List ℕ -- DeleteNat nats nat = l.filter (λ e → dec-¬ (e ≟ nat)) nats -- DeleteNat-idem : -- (nats : List ℕ) → -- (nat : ℕ) → -- DeleteNat (DeleteNat nats nat) nat ≡ DeleteNat nats nat -- DeleteNat-idem nats nat = filter-idem (λ e → dec-¬ (e ≟ nat)) nats -- -- begin -- -- DeleteNat (DeleteNat nats nat) nat -- -- ≡⟨⟩ -- -- DeleteNat (l.filter (λ e → dec-¬ (e ≟ nat)) nats) nat -- -- ≡⟨⟩ -- -- l.filter (λ e → dec-¬ (e ≟ nat)) (l.filter (λ e → dec-¬ (e ≟ nat)) nats) -- -- ≡⟨⟩ -- -- (l.filter (λ e → dec-¬ (e ≟ nat)) ∘ l.filter (λ e → dec-¬ (e ≟ nat))) nats -- -- ≡⟨ filter-idem (λ e → dec-¬ (e ≟ nat)) nats ⟩ -- -- l.filter (λ e → dec-¬ (e ≟ nat)) nats -- -- ≡⟨⟩ -- -- DeleteNat nats nat -- -- ∎ -- private -- variable -- p : Level -- -- VecTodoDeleteTodo : -- -- ∀ {n} → -- -- (Vec Todo n) -- -- → ℕ → -- -- (Vec Todo n) -- -- VecTodoDeleteTodo todos id' = -- -- Vec≤.vec (v.filter (λ todo → dec-¬ (Todo.id todo ≟ id')) todos) -- ListTodoDeleteTodo : -- ∀ {n} → -- (List Todo) -- → ℕ → -- (List Todo) -- ListTodoDeleteTodo todos id' = -- l.filter (λ todo → dec-¬ (Todo.id todo ≟ id')) todos -- ListTodoDeleteTodo-idem : -- (todos : List Todo) → -- (id' : ℕ) → -- ListTodoDeleteTodo (ListTodoDeleteTodo todos id') id' ≡ ListTodoDeleteTodo todos id' -- ListTodoDeleteTodo-idem todos id' = -- filter-idem (λ e → dec-¬ (Todo.id e ≟ id')) todos -- -- Vec≤DeleteTodo : ∀ {n} → (Vec≤ Todo n) → ℕ → (Vec≤ Todo n) -- -- Vec≤DeleteTodo todos id' = vb.filter (λ todo → Todo.id todo ≟ id') todos DeleteNat : (List ℕ) → ℕ → (List ℕ) DeleteNat nats id = filter' (λ n → not (n ≡ᵇ id)) nats -- https://stackoverflow.com/questions/65622605/agda-std-lib-list-check-that-a-filtered-list-is-empty/65622709#65622709 DeleteNatRemoveNatWithId : (nats : List ℕ) (id : ℕ) → filter' (λ n → n ≡ᵇ id) (DeleteNat nats id) ≡ l.[] DeleteNatRemoveNatWithId [] id = refl DeleteNatRemoveNatWithId (x ∷ xs) id with (x ≡ᵇ id) | inspect (_≡ᵇ id) x ... | true | P.[ eq ] = DeleteNatRemoveNatWithId xs id ... | false | P.[ eq ] rewrite eq = DeleteNatRemoveNatWithId xs id -- DONT WORK -- DeleteNatRemoveNatWithId (x ∷ xs) id with x ≡ᵇ id | inspect (l._∷ (filter' (λ n → not (n ≡ᵇ id)) xs)) x -- ... | true | P.[ eq ] = DeleteNatRemoveNatWithId xs id -- ... | false | P.[ eq ] rewrite eq = {! !} -- cong (x List.∷_) (DeleteNatRemoveNatWithId xs id) -- x List.∷ filter' (λ n → n ≡ᵇ id) (DeleteNat xs id) ≡ x List.∷ List.[] -- cong (List._∷_) (DeleteNatRemoveNatWithId xs id) -- List._∷_ (filter' (λ n → n ≡ᵇ id) (DeleteNat xs id)) ≡ List._∷_ List.[] -- cong₂ (List._∷_) refl (DeleteNatRemoveNatWithId xs id) -- _x_1193 List.∷ filter' (λ n → n ≡ᵇ id) (DeleteNat xs id) ≡ _x_1193 List.∷ List.[] -- cong₂ (x List.∷_) refl (DeleteNatRemoveNatWithId xs id) -- cong (filter' (λ n → n ≡ᵇ id) (x List.∷_)) (DeleteNatRemoveNatWithId xs id) -- cong (filter' (λ n → n ≡ᵇ id)) (DeleteNatRemoveNatWithId xs id) -- filter' (λ n → n ≡ᵇ id) (filter' (λ n → n ≡ᵇ id) (DeleteNat xs id)) ≡ List.[] -- DeleteTodo is well-defined -- DeleteTodoRemoveTodoWithId : -- (todos : List Todo) (id : ℕ) → -- l.filter (λ todo → Todo.id todo ≟ id) (DeleteTodo todos id) ≡ l.[] -- DeleteTodoRemoveTodoWithId [] id = refl -- DeleteTodoRemoveTodoWithId (x ∷ xs) id with (Todo.id x ≟ id) | inspect (_≡ᵇ id) (Todo.id x) -- ... | yes px | P.[ eq ] = DeleteTodoRemoveTodoWithId xs id -- ... | no npx | P.[ eq ] rewrite eq = {! !} -- -- filterProof : v.filter (λ e → e ≟ 2) (2 v.∷ v.[]) ≡ (2 vb.∷ vb.[]) -- -- filterProof = refl -- -- filterProof' : v.filter (λ e → dec-¬ (e ≟ 2)) (2 v.∷ v.[]) ≡ vb.[] -- -- filterProof' = refl -- -- dropWhileProof : v.dropWhile (λ e → e ≟ 2) (2 v.∷ 3 v.∷ v.[]) ≡ 3 vb.∷ vb.[] -- -- dropWhileProof = refl -- -- dropWhileProof' : v.dropWhile (λ e → e ≟ 3) (2 v.∷ 3 v.∷ v.[]) ≡ (2 vb.∷ 3 vb.∷ vb.[]) -- -- dropWhileProof' = refl -- -- todoFilterProof : -- -- v.filter -- -- (λ todo → dec-¬ ((Todo.id todo) ≟ 2)) -- -- ( -- -- record -- -- { id = 2 -- -- ; completed = false -- -- ; text = "" -- -- } -- -- v.∷ -- -- record -- -- { id = 1 -- -- ; completed = false -- -- ; text = "" -- -- } -- -- v.∷ -- -- v.[] -- -- ) -- -- ≡ -- -- ( -- -- record -- -- { id = 1 -- -- ; completed = false -- -- ; text = "" -- -- } -- -- vb.∷ -- -- vb.[] -- -- ) -- -- todoFilterProof = refl -- -- should remove element from the list unless there are no elements -- -- should remove element with given id -- -- DeleteTodoRemoveTodoById : -- -- ∀ {n : ℕ} (id' : ℕ) (todos : Vec Todo n) → -- -- padRight -- -- record -- -- { id = 1 -- argmax (λ todo → λ e → e) todos) + 1 -- -- ; completed = false -- -- ; text = "" -- -- } -- -- (v.filter (λ todo → dec-¬ ((Todo.id todo) ≟ id')) (DeleteTodo todos id')) -- -- ≡ DeleteTodo todos id' -- -- DeleteTodoRemoveTodoById id' v.[] = refl -- -- DeleteTodoRemoveTodoById id' (x v.∷ xs) = {! !} (DeleteTodoRemoveTodoById xs) -- -- {-# COMPILE JS DeleteTodo = -- -- function (todos) { -- -- return function (id) { -- -- return todos.filter(function (todo) { -- -- return todo.id !== id -- -- }); -- -- } -- -- } -- -- #-} -- -- EditTodo: can't use updateAt since id doesn't necessarily correspond to Vec index -- VecTodoEditTodo : ∀ {n} → (Vec Todo n) → ℕ → String → (Vec Todo n) -- VecTodoEditTodo todos id text = -- v.map (λ todo → -- if (⌊ Todo.id todo ≟ id ⌋) -- then record todo { text = text } -- else todo) -- todos -- ListTodoEditTodo : (List Todo) → ℕ → String → (List Todo) -- ListTodoEditTodo todos id text = -- l.map (λ todo → -- if (⌊ Todo.id todo ≟ id ⌋) -- then record todo { text = text } -- else todo) -- todos -- ListTodoEditTodo-idem : -- (todos : List Todo) → -- (id' : ℕ) → -- (text : String) → -- ListTodoEditTodo (ListTodoEditTodo todos id' text) id' text ≡ ListTodoEditTodo todos id' text -- ListTodoEditTodo-idem todos id' text = -- begin -- ListTodoEditTodo (ListTodoEditTodo todos id' text) id' text -- ≡⟨ {! !} ⟩ -- ListTodoEditTodo todos id' text -- ∎ -- -- {-# COMPILE JS EditTodo = -- -- function (todos) { -- -- return function (id) { -- -- return function (text) { -- -- return todos.map(function (todo) { -- -- if (todo.id === id) { -- -- todo.text = text; -- -- } -- -- return todo; -- -- }); -- -- } -- -- } -- -- } -- -- #-} -- VecTodoCompleteTodo : ∀ {n} → (Vec Todo n) → ℕ → (Vec Todo n) -- VecTodoCompleteTodo todos id = -- v.map (λ todo → -- if (⌊ Todo.id todo ≟ id ⌋) -- then record todo { completed = true } -- else todo) -- todos -- ListTodoCompleteTodo : (List Todo) → ℕ → (List Todo) -- ListTodoCompleteTodo todos id = -- l.map (λ todo → -- if (⌊ Todo.id todo ≟ id ⌋) -- then record todo { completed = true } -- else todo) -- todos -- ListTodoCompleteTodo-idem : -- (todos : List Todo) → -- (id' : ℕ) → -- ListTodoCompleteTodo (ListTodoCompleteTodo todos id') id' ≡ ListTodoCompleteTodo todos id' -- ListTodoCompleteTodo-idem todos id' = -- begin -- ListTodoCompleteTodo (ListTodoCompleteTodo todos id') id' -- ≡⟨ {! !} ⟩ -- ListTodoCompleteTodo todos id' -- ∎ -- -- {-# COMPILE JS CompleteTodo = -- -- function (todos) { -- -- return function (id) { -- -- return todos.map(function (todo) { -- -- if (todo.id === id) { -- -- todo.completed = true; -- -- } -- -- return todo; -- -- }); -- -- } -- -- } -- -- #-} -- CompleteAllTodos : ∀ {n} → (Vec Todo n) → (Vec Todo n) -- CompleteAllTodos todos = -- v.map (λ todo → -- record todo { completed = true }) -- todos -- ListTodoCompleteAllTodos : (List Todo) → (List Todo) -- ListTodoCompleteAllTodos todos = -- l.map (λ todo → -- record todo { completed = true }) -- todos -- ListTodoCompleteAllTodos-idem : -- (todos : List Todo) → -- ListTodoCompleteAllTodos (ListTodoCompleteAllTodos todos) ≡ ListTodoCompleteAllTodos todos -- ListTodoCompleteAllTodos-idem todos = {! !} -- -- {-# COMPILE JS CompleteAllTodos = -- -- function (todos) { -- -- return todos.map(function(todo) { -- -- todo.completed = true; -- -- return todo; -- -- }); -- -- } -- -- #-} -- VecTodoClearCompleted : ∀ {n} → (Vec Todo n) → (Vec Todo n) -- VecTodoClearCompleted todos = -- padRight -- record -- { id = 1 -- argmax (λ todo → λ e → e) todos) + 1 -- ; completed = false -- ; text = "" -- } -- (v.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) -- ListTodoClearCompleted : (List Todo) → (List Todo) -- ListTodoClearCompleted todos = -- (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos) -- ListTodoClearCompleted-idem : -- (todos : List Todo) → -- ListTodoClearCompleted (ListTodoClearCompleted todos) ≡ ListTodoClearCompleted todos -- ListTodoClearCompleted-idem todos = -- filter-idem (λ e → dec-¬ (Todo.completed e Bool.≟ true)) todos -- -- should remove all elements where completed = true -- -- should not change other elements -- -- should not change (all elements).text -- -- should not change (all elements).id -- -- {-# COMPILE JS ClearCompleted = -- -- function (todos) { -- -- return todos.filter(function(todo) { -- -- return !todo.completed; -- -- }); -- -- } -- -- #-} -- -- add-todos-length-increased-by-1 : ∀ (todos : List Todo) → length (AddTodo todos "test") -- -- add-todos-length-increased-by-1 = ? -- -- delete-todos-length-decreased-by-1-except-if-length-0 : () -- -- edit-todos-length-not-changed : () -- -- complete-todos-length-not-changed : () -- -- complete-all-todos-length-not-changed : () -- -- clear-completed-todos-not-have-completed : () -- -- should not generate duplicate ids after CLEAR_COMPLETE -- -- data Action : Set where -- -- ADD_TODO DELETE_TODO EDIT_TODO COMPLETE_TODO COMPLETE_ALL_TODOS CLEAR_COMPLETED : Action -- -- Reducer : Todos → Action → Todos -- -- Reducer todos ADD_TODO = AddTodo todos id -- -- Reducer todos DELETE_TODO = DeleteTodo todos id -- -- Reducer todos EDIT_TODO = EditTodo todos id -- -- Reducer todos COMPLETE_TODO = CompleteTodo todos id -- -- Reducer todos COMPLETE_ALL_TODOS = CompleteAllTodos todos id -- -- Reducer todos CLEAR_COMPLETED = ClearCompleted todos id
{ "alphanum_fraction": 0.5540616489, "avg_line_length": 31.2581081081, "ext": "agda", "hexsha": "15d67d67db7164ee357a04d20c932cc4ea33ca52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced", "max_forks_repo_licenses": [ "CC0-1.0", "MIT" ], "max_forks_repo_name": "frankymacster/redux", "max_forks_repo_path": "examples/todomvc/src/logic/todos-archive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0", "MIT" ], "max_issues_repo_name": "frankymacster/redux", "max_issues_repo_path": "examples/todomvc/src/logic/todos-archive.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced", "max_stars_repo_licenses": [ "CC0-1.0", "MIT" ], "max_stars_repo_name": "frankymacster/redux", "max_stars_repo_path": "examples/todomvc/src/logic/todos-archive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7889, "size": 23131 }
module AmbiguousConstructor where module Foo where data D : Set where c0 : D c1 : D module Bar where open Foo public data B : Set where tt : B ff : B open Foo renaming (c0 to c2) open Bar renaming (c1 to c2) foo : D -> B -- c2 is ambiguous: it could refer to c0 or c1. foo c2 = tt foo _ = ff
{ "alphanum_fraction": 0.6485623003, "avg_line_length": 14.2272727273, "ext": "agda", "hexsha": "de0b10b612ef75f7d6fd7c29c2a3d8a58d2a50c9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/AmbiguousConstructor.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AmbiguousConstructor.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AmbiguousConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 313 }
module List where import Bool open Bool infixr 15 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A module Eq {A : Set}(_=A=_ : A -> A -> Bool) where infix 10 _==_ _==_ : List A -> List A -> Bool [] == [] = true x :: xs == y :: ys = (x =A= y) && xs == ys [] == _ :: _ = false _ :: _ == [] = false module Subst {A : Set}(_=A=_ : A -> A -> Bool) (substA : {x y : A} -> (P : A -> Set) -> IsTrue (x =A= y) -> P x -> P y) where module EqA = Eq _=A=_ open EqA subst : {xs ys : List A} -> (P : List A -> Set) -> IsTrue (xs == ys) -> P xs -> P ys subst {[] } {_ :: _ } _ () _ subst {_ :: _ } {[] } _ () _ subst {[] } {[] } P eq pxs = pxs subst {x :: xs} {y :: ys} P eq pxs = substA (\z -> P (z :: ys)) x==y ( subst (\zs -> P (x :: zs)) xs==ys pxs ) where x==y : IsTrue (x =A= y) x==y = isTrue&&₁ {x =A= y}{xs == ys} eq xs==ys : IsTrue (xs == ys) xs==ys = isTrue&&₂ {x =A= y}{xs == ys} eq
{ "alphanum_fraction": 0.4070543375, "avg_line_length": 23.3111111111, "ext": "agda", "hexsha": "d2d631172ecc7f7cbbef6ba8020d7ba52661ae48", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/tactics/ac/List.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/tactics/ac/List.agda", "max_line_length": 86, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/tactics/ac/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 418, "size": 1049 }
-- Andreas, 2014-09-09 {-# TERMINATING #-} Foo : Set Foo = Foo
{ "alphanum_fraction": 0.59375, "avg_line_length": 10.6666666667, "ext": "agda", "hexsha": "ce6ed6bdaa9c8ac2dae1d50fc11f361553131f7f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue586b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue586b.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue586b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 64 }
-- Reported by Nisse on 2018-03-13 -- The `x` in the parent pattern was eta-expanded to `record{}`, -- but with-abstraction didn't like this. open import Agda.Builtin.Equality record R : Set where postulate easy : (A : Set) → A F : (x : R) → Set₁ F x with easy (x ≡ x) F x | refl with Set F x | refl | _ = Set -- OLD ERROR: -- With clause pattern x is not an instance of its parent pattern -- record {} -- Fixed by allowing parent patterns to be replaced by variables -- in the with clause (but checking that their instantiation is -- type-correct).
{ "alphanum_fraction": 0.6833631485, "avg_line_length": 22.36, "ext": "agda", "hexsha": "1813f877030cd6c9392d57e9d8f48bacd0c24969", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2998.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2998.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2998.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 158, "size": 559 }
-- {-# OPTIONS -vtc.with.strip:60 -v tc.lhs.top:50 #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate trustMe : {A : Set} (x y : A) → x ≡ y data Fin : Nat → Set where fzero : ∀ n → Fin (suc n) fsuc : ∀{n} → Fin n → Fin (suc n) test1 : ∀{n} → Fin n → Nat test1 (fzero _) = 0 test1 {.(suc n)} (fsuc {n} i) with Fin zero ... | q = {!.!} -- Current & expected expansion: -- test1 {.(suc n)} (fsuc {n} i) | q = {!!} test2 : ∀{n} → Fin n → Nat test2 (fzero _) = 0 test2 {.(suc n)} (fsuc {n} i) with trustMe n zero ... | refl = {!.!} -- Current & expected expansion: -- test2 {.1} (fsuc {.0} i) | refl = {!!} -- The test cases below do not yet work correctly, but are included -- here as documentation of the current behaviour of Agda. does not -- work correctly yet. test3 : ∀{n} → Fin n → Nat test3 (fzero _) = 0 test3 {m} (fsuc {n} i) with Fin zero ... | q = {!.!} -- Current expansion: -- test3 {.(suc _)} (fsuc {_} i) | q = {!!} -- Expected expansion: -- test3 {.(suc n)} (fsuc {n} i) | q = { } test4 : ∀{n} → Fin n → Nat test4 (fzero _) = 0 test4 {_} (fsuc {n} i) with Fin zero ... | q = {!.!} -- Current expansion: -- test4 {.(suc _)} (fsuc {_} i) | q = {!!} -- Expected expansion: -- test4 {_} (fsuc {n} i) | q = {!!} test5 : ∀{n : Nat} → Fin n → Nat → Nat test5 (fzero _) _ = 0 test5 {.(suc n)} (fsuc {n} i) m with trustMe m n ... | refl = {!.!} -- Current expansion: -- test5 {.(suc n)} (fsuc {n} i) n | refl = {!!} -- Expected expansion: one of the following: -- test5 {.(suc n)} (fsuc {n} i) .n | refl = {!!} -- test5 {.(suc m)} (fsuc {.m} i) m | refl = {!!} test6 : Nat → ∀{n : Nat} → Fin n → Nat test6 _ (fzero _) = 0 test6 m {.(suc n)} (fsuc {n} i) with trustMe m n ... | refl = {!.!} -- Current expansion: -- test6 m {.(suc m)} (fsuc {.m} i) | refl = {!!} -- This one is actually good, we should be sure fixing the above -- examples doesn't change the output here!
{ "alphanum_fraction": 0.5495824635, "avg_line_length": 28.5970149254, "ext": "agda", "hexsha": "02b1b01f73d00d883b332e6dd22492a0f2ff44c0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4778.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4778.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4778.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 737, "size": 1916 }
open import Prelude open import core module grounding where grounding : ∀{ τ1 τ2} → τ1 ▸gnd τ2 → ((τ2 ground) × (τ1 ~ τ2) × (τ1 ≠ τ2)) grounding (MGArr x) = GHole , TCArr TCHole1 TCHole1 , x grounding (MGProd x) = GProd , TCProd TCHole1 TCHole1 , x
{ "alphanum_fraction": 0.5382165605, "avg_line_length": 31.4, "ext": "agda", "hexsha": "ba23a2f32888277d8374d605342a35177af46ecd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "grounding.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "grounding.agda", "max_line_length": 66, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "grounding.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 106, "size": 314 }
------------------------------------------------------------------------ -- The unit type ------------------------------------------------------------------------ module Data.Unit where open import Data.Sum open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) ------------------------------------------------------------------------ -- Types -- Note that the name of this type is "\top", not T. record ⊤ : Set where tt : ⊤ tt = record {} record _≤_ (x y : ⊤) : Set where ------------------------------------------------------------------------ -- Operations _≟_ : Decidable {⊤} _≡_ _ ≟ _ = yes refl _≤?_ : Decidable _≤_ _ ≤? _ = yes _ total : Total _≤_ total _ _ = inj₁ _ ------------------------------------------------------------------------ -- Properties preorder : Preorder preorder = PropEq.preorder ⊤ setoid : Setoid setoid = PropEq.setoid ⊤ decTotalOrder : DecTotalOrder decTotalOrder = record { carrier = ⊤ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = record { isTotalOrder = record { isPartialOrder = record { isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = λ _ → _ ; trans = λ _ _ → _ ; ∼-resp-≈ = PropEq.resp₂ _≤_ } ; antisym = antisym } ; total = total } ; _≟_ = _≟_ ; _≤?_ = _≤?_ } } where antisym : Antisymmetric _≡_ _≤_ antisym _ _ = refl decSetoid : DecSetoid decSetoid = DecTotalOrder.Eq.decSetoid decTotalOrder poset : Poset poset = DecTotalOrder.poset decTotalOrder
{ "alphanum_fraction": 0.443877551, "avg_line_length": 22.9090909091, "ext": "agda", "hexsha": "a1683638be767ed9c73d9fc90c7fc417e81492e9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Unit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Unit.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 449, "size": 1764 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Empty type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Empty where open import Level data ⊥ : Set where ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim ()
{ "alphanum_fraction": 0.3579545455, "avg_line_length": 20.7058823529, "ext": "agda", "hexsha": "43f99b82c1fc17c31d8414dd70d812f76b0f8607", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 68, "size": 352 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.Terminal open import Level module Categories.Object.Terminal.Products {o ℓ e : Level} (C : Category o ℓ e) (T : Terminal C) where open import Categories.Object.Product open Category C open Terminal T [⊤×⊤] : Obj [⊤×⊤] = ⊤ [⊤×⊤]-product : Product C ⊤ ⊤ [⊤×⊤]-product = record { A×B = [⊤×⊤] ; π₁ = ! ; π₂ = ! ; ⟨_,_⟩ = λ _ _ → ! ; commute₁ = !-unique₂ _ _ ; commute₂ = !-unique₂ _ _ ; universal = λ _ _ → !-unique _ } [⊤×_] : Obj → Obj [⊤× X ] = X [⊤×_]-product : (X : Obj) → Product C ⊤ X [⊤×_]-product X = record { A×B = [⊤× X ] ; π₁ = ! ; π₂ = id ; ⟨_,_⟩ = λ _ f → f ; commute₁ = !-unique₂ _ _ ; commute₂ = identityˡ ; universal = λ {A}{f}{g}{i} _ id∘i≡g → begin g ↑⟨ id∘i≡g ⟩ id ∘ i ↓⟨ identityˡ ⟩ i ∎ } where open HomReasoning [_×⊤] : Obj → Obj [ X ×⊤] = X [_×⊤]-product : (X : Obj) → Product C X ⊤ [_×⊤]-product X = record { A×B = [ X ×⊤] ; π₁ = id ; π₂ = ! ; ⟨_,_⟩ = λ f _ → f ; commute₁ = identityˡ ; commute₂ = !-unique₂ _ _ ; universal = λ {A}{f}{g}{i} id∘i≡f _ → begin f ↑⟨ id∘i≡f ⟩ id ∘ i ↓⟨ identityˡ ⟩ i ∎ } where open HomReasoning
{ "alphanum_fraction": 0.4361054767, "avg_line_length": 20.5416666667, "ext": "agda", "hexsha": "99415c054f73e4e380d789290bac66abe8f477a1", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Terminal/Products.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Terminal/Products.agda", "max_line_length": 58, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Terminal/Products.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 595, "size": 1479 }
module everything where open import lib public
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 12, "ext": "agda", "hexsha": "42af961bdd4824ac695d4ef0219a8c7799ad5705", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "everything.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "everything.agda", "max_line_length": 23, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "everything.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 9, "size": 48 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetQuotients where open import Cubical.HITs.SetQuotients.Base public open import Cubical.HITs.SetQuotients.Properties public
{ "alphanum_fraction": 0.7929292929, "avg_line_length": 33, "ext": "agda", "hexsha": "5e6bf8236baee8836719fb21533e75513a26fe5d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/SetQuotients.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/SetQuotients.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/SetQuotients.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 55, "size": 198 }