Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.WedgeOfCircles {i} where
WedgeOfCircles : (I : Type i) → Type i
WedgeOfCircles I = BigWedge {A = I} (λ _ → ⊙S¹)
|
{
"alphanum_fraction": 0.6666666667,
"avg_line_length": 18.9,
"ext": "agda",
"hexsha": "2e705f2ce5f803a42f0900bb37b34d0ca3642ed6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/WedgeOfCircles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/WedgeOfCircles.agda",
"max_line_length": 47,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/WedgeOfCircles.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 68,
"size": 189
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Lists.Lists
open import Rings.Homomorphisms.Definition
module Rings.Polynomial.Evaluation {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Ring R
open Setoid S
open Equivalence eq
open Group additiveGroup
open import Groups.Polynomials.Definition additiveGroup
open import Groups.Polynomials.Addition additiveGroup
open import Rings.Polynomial.Ring R
open import Rings.Polynomial.Multiplication R
inducedFunction : NaivePoly → A → A
inducedFunction [] a = 0R
inducedFunction (x :: p) a = x + (a * inducedFunction p a)
inducedFunctionMult : (as : NaivePoly) (b c : A) → inducedFunction (map (_*_ b) as) c ∼ (inducedFunction as c) * b
inducedFunctionMult [] b c = symmetric (transitive *Commutative timesZero)
inducedFunctionMult (x :: as) b c = transitive (transitive (+WellDefined reflexive (transitive (transitive (*WellDefined reflexive (inducedFunctionMult as b c)) *Associative) *Commutative)) (symmetric *DistributesOver+)) *Commutative
inducedFunctionWellDefined : {a b : NaivePoly} → polysEqual a b → (c : A) → inducedFunction a c ∼ inducedFunction b c
inducedFunctionWellDefined {[]} {[]} a=b c = reflexive
inducedFunctionWellDefined {[]} {x :: b} (fst ,, snd) c = symmetric (transitive (+WellDefined fst (transitive (*WellDefined reflexive (symmetric (inducedFunctionWellDefined {[]} {b} snd c))) (timesZero {c}))) identRight)
inducedFunctionWellDefined {a :: as} {[]} (fst ,, snd) c = transitive (+WellDefined fst reflexive) (transitive identLeft (transitive (*WellDefined reflexive (inducedFunctionWellDefined {as} {[]} snd c)) (timesZero {c})))
inducedFunctionWellDefined {a :: as} {b :: bs} (fst ,, snd) c = +WellDefined fst (*WellDefined reflexive (inducedFunctionWellDefined {as} {bs} snd c))
inducedFunctionGroupHom : {x y : NaivePoly} → (a : A) → inducedFunction (x +P y) a ∼ (inducedFunction x a + inducedFunction y a)
inducedFunctionGroupHom {[]} {[]} a = symmetric identLeft
inducedFunctionGroupHom {[]} {x :: y} a rewrite mapId y = symmetric identLeft
inducedFunctionGroupHom {x :: xs} {[]} a rewrite mapId xs = symmetric identRight
inducedFunctionGroupHom {x :: xs} {y :: ys} a = transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (transitive (+WellDefined reflexive (transitive (*WellDefined reflexive (transitive (inducedFunctionGroupHom {xs} {ys} a) groupIsAbelian)) *DistributesOver+)) +Associative) groupIsAbelian)) +Associative)
inducedFunctionRingHom : (r s : NaivePoly) (a : A) → inducedFunction (r *P s) a ∼ (inducedFunction r a * inducedFunction s a)
inducedFunctionRingHom [] s a = symmetric (transitive *Commutative timesZero)
inducedFunctionRingHom (x :: xs) [] a = symmetric timesZero
inducedFunctionRingHom (b :: bs) (c :: cs) a = transitive (+WellDefined reflexive (*WellDefined reflexive (inducedFunctionGroupHom {map (_*_ b) cs +P map (_*_ c) bs} {0G :: (bs *P cs)} a))) (transitive (+WellDefined reflexive (*WellDefined reflexive (+WellDefined (inducedFunctionGroupHom {map (_*_ b) cs} {map (_*_ c) bs} a) identLeft))) (transitive (transitive (transitive (+WellDefined reflexive (transitive (transitive (transitive (*WellDefined reflexive (transitive (+WellDefined (transitive groupIsAbelian (+WellDefined (inducedFunctionMult bs c a) (inducedFunctionMult cs b a))) (transitive (transitive (*WellDefined reflexive (transitive (inducedFunctionRingHom bs cs a) *Commutative)) *Associative) *Commutative)) (symmetric +Associative))) *DistributesOver+) (+WellDefined reflexive *DistributesOver+)) (+WellDefined *Associative (+WellDefined (transitive *Associative *Commutative) *Associative)))) +Associative) (+WellDefined (symmetric *DistributesOver+') (symmetric *DistributesOver+'))) (symmetric *DistributesOver+)))
inducedFunctionIsHom : (a : A) → RingHom polyRing R (λ p → inducedFunction p a)
RingHom.preserves1 (inducedFunctionIsHom a) = transitive (+WellDefined reflexive (timesZero {a})) identRight
RingHom.ringHom (inducedFunctionIsHom a) {r} {s} = inducedFunctionRingHom r s a
GroupHom.groupHom (RingHom.groupHom (inducedFunctionIsHom a)) {x} {y} = inducedFunctionGroupHom {x} {y} a
GroupHom.wellDefined (RingHom.groupHom (inducedFunctionIsHom a)) x=y = inducedFunctionWellDefined x=y a
|
{
"alphanum_fraction": 0.7527864467,
"avg_line_length": 84.641509434,
"ext": "agda",
"hexsha": "3353c4836432f95f9e9997b76152b1a3aa1ac4fe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Polynomial/Evaluation.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Polynomial/Evaluation.agda",
"max_line_length": 1033,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Polynomial/Evaluation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1297,
"size": 4486
}
|
module MLib.Fin.Parts.Core where
open import MLib.Prelude
open Nat using (_*_; _+_; _<_)
open Table
record Parts {a} (A : Set a) (size : A → ℕ) : Set a where
field
numParts : ℕ
parts : Table A numParts
partAt = lookup parts
sizeAt = size ∘ partAt
totalSize = sum (map size parts)
partsizes = tabulate sizeAt
constParts : ℕ → ℕ → Parts ℕ id
constParts numParts partsize = record
{ numParts = numParts
; parts = replicate partsize
}
|
{
"alphanum_fraction": 0.6739130435,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "3b0b4ffaa7eb38f61d6ed3e6b038cb69814a1258",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Fin/Parts/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Fin/Parts/Core.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Fin/Parts/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 146,
"size": 460
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Ternary where
open import Prelude
open import Relation.Nullary.Discrete.FromBoolean
infixl 5 _,0 _,1 _,2
data Tri : Type where
0t : Tri
_,0 _,1 _,2 : Tri → Tri
infix 4 _≡ᴮ_
_≡ᴮ_ : Tri → Tri → Bool
0t ≡ᴮ 0t = true
x ,0 ≡ᴮ y ,0 = x ≡ᴮ y
x ,1 ≡ᴮ y ,1 = x ≡ᴮ y
x ,2 ≡ᴮ y ,2 = x ≡ᴮ y
_ ≡ᴮ _ = false
sound : ∀ x y → T (x ≡ᴮ y) → x ≡ y
sound 0t 0t p = refl
sound (x ,0) (y ,0) p = cong _,0 (sound x y p)
sound (x ,1) (y ,1) p = cong _,1 (sound x y p)
sound (x ,2) (y ,2) p = cong _,2 (sound x y p)
complete : ∀ x → T (x ≡ᴮ x)
complete 0t = tt
complete (x ,0) = complete x
complete (x ,1) = complete x
complete (x ,2) = complete x
_≟_ : (x y : Tri) → Dec (x ≡ y)
_≟_ = from-bool-eq _≡ᴮ_ sound complete
|
{
"alphanum_fraction": 0.5611979167,
"avg_line_length": 21.9428571429,
"ext": "agda",
"hexsha": "2d9ae6beb4b9b2b5aa2ce2a5adb8a4c016d00b6b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Ternary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Ternary.agda",
"max_line_length": 49,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Ternary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 371,
"size": 768
}
|
module Sublist where
open import Data.List
open import Data.List.All
open import Data.List.Any
open import Level
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function
open import Category.Monad
open import Data.Product
open import Membership-equality hiding (_⊆_; set)
infix 3 _⊆_
-- Sublist without re-ordering, to be improved later...
data _⊆_ {a}{A : Set a} : List A → List A → Set a where
[] : ∀ {ys} → [] ⊆ ys
keep : ∀ {x xs ys} → xs ⊆ ys → x ∷ xs ⊆ x ∷ ys
skip : ∀ {x xs ys} → xs ⊆ ys → xs ⊆ x ∷ ys
singleton-⊆ : ∀ {a} {A : Set a} {x : A} {xs : List A} → x ∈ xs → [ x ] ⊆ xs
singleton-⊆ (here refl) = keep []
singleton-⊆ (there mem) = skip (singleton-⊆ mem)
reflexive-⊆ : ∀ {a} {A : Set a} {xs : List A} → xs ⊆ xs
reflexive-⊆ {xs = []} = []
reflexive-⊆ {xs = x ∷ xs} = keep reflexive-⊆
All-⊆ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} → xs ⊆ ys → All P ys → All P xs
All-⊆ [] al = []
All-⊆ (keep inc) (px ∷ al) = px ∷ All-⊆ inc al
All-⊆ (skip inc) (px ∷ al) = All-⊆ inc al
|
{
"alphanum_fraction": 0.5856031128,
"avg_line_length": 30.2352941176,
"ext": "agda",
"hexsha": "f2acb32dd86d9ffa6feee4c94d72a32330eb22c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "unused/Sublist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "unused/Sublist.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "unused/Sublist.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 417,
"size": 1028
}
|
{-
This file contains:
- The reduced version gives the same type as James.
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.HITs.James.Inductive.ColimitEquivalence where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Pointed
open import Cubical.HITs.James.Base
renaming (James to JamesConstruction)
open import Cubical.HITs.James.Inductive.Reduced
renaming (𝕁Red to 𝕁RedConstruction ; 𝕁Red∞ to 𝕁amesConstruction)
open import Cubical.HITs.James.Inductive.Coherence
private
variable
ℓ : Level
module _
((X , x₀) : Pointed ℓ) where
private
James = JamesConstruction (X , x₀)
𝕁ames = 𝕁amesConstruction (X , x₀)
𝕁Red = 𝕁RedConstruction (X , x₀)
-- Mimicking the constructors in each other
unit' : (x : X)(xs : James) → Path James (x₀ ∷ x ∷ xs) (x ∷ x₀ ∷ xs)
unit' x xs = sym (unit (x ∷ xs)) ∙∙ refl ∙∙ (λ i → x ∷ unit xs i)
coh' : (xs : James) → refl ≡ unit' x₀ xs
coh' xs i j =
coh-helper {A = James} (unit xs) (unit (x₀ ∷ xs))
(λ i → x₀ ∷ unit xs i) (λ i j → unit (unit xs j) i) i j
_∷∞_ : X → 𝕁ames → 𝕁ames
_∷∞_ x (inl xs) = inl (x ∷ xs)
_∷∞_ x (push xs i) = (push (x ∷ xs) ∙ (λ i → inl (unit x xs i))) i
push∞ : (xs : 𝕁ames) → xs ≡ x₀ ∷∞ xs
push∞ (inl xs) = push xs
push∞ (push xs i) j =
push-helper {A = 𝕁ames} (push xs) (push (x₀ ∷ xs))
(λ i → inl (unit x₀ xs i)) (λ i j → inl (coh xs i j)) j i
infixr 5 _∷∞_
-- One side map
𝕁→James-inl : 𝕁Red → James
𝕁→James-inl [] = []
𝕁→James-inl (x ∷ xs) = x ∷ 𝕁→James-inl xs
𝕁→James-inl (unit x xs i) = unit' x (𝕁→James-inl xs) i
𝕁→James-inl (coh xs i j) = coh' (𝕁→James-inl xs) i j
𝕁→James : 𝕁ames → James
𝕁→James (inl xs) = 𝕁→James-inl xs
𝕁→James (push xs i) = unit (𝕁→James-inl xs) i
-- Commutativity with pseudo-constructors
𝕁→James-∷ : (x : X)(xs : 𝕁ames) → 𝕁→James (x ∷∞ xs) ≡ x ∷ 𝕁→James xs
𝕁→James-∷ x (inl xs) = refl
𝕁→James-∷ x (push xs i) j = comp-cong-helper 𝕁→James (push (x ∷ xs)) _ (λ i → inl (unit x xs i)) refl j i
𝕁→James-push : (xs : 𝕁ames)
→ PathP (λ i → 𝕁→James xs ≡ 𝕁→James-∷ x₀ xs i) (cong 𝕁→James (push∞ xs)) (unit (𝕁→James xs))
𝕁→James-push (inl xs) = refl
𝕁→James-push (push xs i) j k =
hcomp (λ l → λ
{ (i = i0) → unit (𝕁→James-inl xs) k
; (i = i1) → unit (x₀ ∷ 𝕁→James-inl xs) k
; (j = i0) →
push-helper-cong 𝕁→James (push xs) (push (x₀ ∷ xs))
(λ i → inl (unit x₀ xs i)) (λ i j → inl (coh xs i j)) k i (~ l)
; (j = i1) → unit (unit (𝕁→James-inl xs) i) k
; (k = i0) → unit (𝕁→James-inl xs) i
; (k = i1) →
comp-cong-helper-filler 𝕁→James (push (x₀ ∷ xs)) _
(λ i → inl (unit x₀ xs i)) refl j i l })
(push-coh-helper _ _ _ (λ i j → unit (unit (𝕁→James-inl xs) j) i) k i j)
-- The other-side map
private
push-square : (x : X)(xs : 𝕁Red)
→ sym (push (x ∷ xs)) ∙∙ refl ∙∙ (λ i → x ∷∞ push xs i) ≡ (λ i → inl (unit x xs i))
push-square x xs i j = push-square-helper (push (x ∷ xs)) (λ i → inl (unit x xs i)) i j
coh-cube : (xs : 𝕁Red)
→ SquareP
(λ i j → coh-helper _ _ _ (λ i j → push∞ (push xs j) i) i j ≡ inl (coh xs i j))
(λ i j → inl (x₀ ∷ x₀ ∷ xs))
(λ i j → push-square-helper (push (x₀ ∷ xs))
(λ i → inl (unit x₀ xs i)) j i)
(λ i j → inl (x₀ ∷ x₀ ∷ xs))
(λ i j → inl (x₀ ∷ x₀ ∷ xs))
coh-cube xs =
coh-cube-helper {A = 𝕁ames} (push xs) (push (x₀ ∷ xs))
(λ i → inl (unit x₀ xs i)) (λ i j → inl (coh xs i j))
J→𝕁ames : James → 𝕁ames
J→𝕁ames [] = inl []
J→𝕁ames (x ∷ xs) = x ∷∞ (J→𝕁ames xs)
J→𝕁ames (unit xs i) = push∞ (J→𝕁ames xs) i
-- The following is the most complicated part.
-- It seems horrible but mainly it's due to correction of boudaries.
𝕁→J→𝕁ames-inl : (xs : 𝕁Red) → J→𝕁ames (𝕁→James (inl xs)) ≡ inl xs
𝕁→J→𝕁ames-inl [] = refl
𝕁→J→𝕁ames-inl (x ∷ xs) t = x ∷∞ 𝕁→J→𝕁ames-inl xs t
𝕁→J→𝕁ames-inl (unit x xs i) j =
hcomp (λ k → λ
{ (i = i0) → square-helper (j ∨ ~ k) i0
; (i = i1) → square-helper (j ∨ ~ k) i1
; (j = i0) → square-helper (~ k) i
; (j = i1) → inl (unit x xs i) })
(push-square x xs j i)
where
square-helper : (i j : I) → 𝕁ames
square-helper i j =
doubleCompPath-cong-filler J→𝕁ames
(sym (unit (x ∷ 𝕁→James-inl xs))) refl (λ i → x ∷ unit (𝕁→James-inl xs) i)
(λ i j → push∞ (x ∷∞ 𝕁→J→𝕁ames-inl xs i) (~ j))
(λ i j → x ∷∞ 𝕁→J→𝕁ames-inl xs i)
(λ i j → x ∷∞ push∞ (𝕁→J→𝕁ames-inl xs i) j) i j i1
𝕁→J→𝕁ames-inl (coh xs i j) k =
hcomp (λ l → λ
{ (i = i0) → cube-helper i0 j (k ∨ ~ l)
; (i = i1) → inl-filler j k l
; (j = i0) → cube-helper i i0 (k ∨ ~ l)
; (j = i1) → cube-helper i i1 (k ∨ ~ l)
; (k = i0) → cube-helper i j (~ l)
; (k = i1) → inl (coh xs i j) })
(coh-cube xs i j k)
where
cube-helper : (i j k : I) → 𝕁ames
cube-helper i j k =
coh-helper-cong J→𝕁ames _ _ _
(λ i j → unit (unit (𝕁→James-inl xs) j) i)
(λ i j k → push∞ (push∞ (𝕁→J→𝕁ames-inl xs k) j) i) i j k
inl-filler : (i j k : I) → 𝕁ames
inl-filler i j k =
hfill (λ k → λ
{ (i = i0) → square-helper (j ∨ ~ k) i0
; (i = i1) → square-helper (j ∨ ~ k) i1
; (j = i0) → square-helper (~ k) i
; (j = i1) → inl (unit x₀ xs i) })
(inS (push-square x₀ xs j i)) k
where
square-helper : (i j : I) → 𝕁ames
square-helper i j =
doubleCompPath-cong-filler J→𝕁ames
(sym (unit (x₀ ∷ 𝕁→James-inl xs))) refl (λ i → x₀ ∷ unit (𝕁→James-inl xs) i)
(λ i j → push∞ (x₀ ∷∞ 𝕁→J→𝕁ames-inl xs i) (~ j))
(λ i j → x₀ ∷∞ 𝕁→J→𝕁ames-inl xs i)
(λ i j → x₀ ∷∞ push∞ (𝕁→J→𝕁ames-inl xs i) j) i j i1
-- The main equivalence
𝕁→J→𝕁ames : (xs : 𝕁ames) → J→𝕁ames (𝕁→James xs) ≡ xs
𝕁→J→𝕁ames (inl xs) = 𝕁→J→𝕁ames-inl xs
𝕁→J→𝕁ames (push xs i) j = push∞ (𝕁→J→𝕁ames-inl xs j) i
J→𝕁→James : (xs : James) → 𝕁→James (J→𝕁ames xs) ≡ xs
J→𝕁→James [] = refl
J→𝕁→James (x ∷ xs) = 𝕁→James-∷ x (J→𝕁ames xs) ∙ (λ i → x ∷ J→𝕁→James xs i)
J→𝕁→James (unit xs i) j =
hcomp (λ k → λ
{ (i = i0) → J→𝕁→James xs (j ∧ k)
; (i = i1) → compPath-filler (𝕁→James-∷ x₀ (J→𝕁ames xs)) (λ i → x₀ ∷ J→𝕁→James xs i) k j
; (j = i0) → 𝕁→James (J→𝕁ames (unit xs i))
; (j = i1) → unit (J→𝕁→James xs k) i })
(𝕁→James-push (J→𝕁ames xs) j i)
James≃𝕁Red∞ : James ≃ 𝕁ames
James≃𝕁Red∞ = isoToEquiv (iso J→𝕁ames 𝕁→James 𝕁→J→𝕁ames J→𝕁→James)
|
{
"alphanum_fraction": 0.5225507766,
"avg_line_length": 35.807486631,
"ext": "agda",
"hexsha": "68f359c1db417e4b398fbd5369c7c908463ba962",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James/Inductive/ColimitEquivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James/Inductive/ColimitEquivalence.agda",
"max_line_length": 107,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James/Inductive/ColimitEquivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 3085,
"size": 6696
}
|
-- 2017-06-16, reported by Ambrus Kaposi on the Agda mailing list
-- WAS:
-- β is not a legal rewrite rule, since the left-hand side
-- f a reduces to f a
-- when checking the pragma REWRITE β
-- SHOULD: succeed
{-# OPTIONS --rewriting #-}
module _ where
module a where
postulate
_~_ : {A : Set} → A → A → Set
{-# BUILTIN REWRITE _~_ #-}
module m1 (X : Set) where
postulate
A B : Set
a : A
b : B
f : A → B
module m2 (X : Set) where
open m1 X
postulate
β : f a ~ b
{-# REWRITE β #-}
postulate
refl : {A : Set}{a : A} → a ~ a
p : f a ~ b
p = refl
|
{
"alphanum_fraction": 0.5638474295,
"avg_line_length": 14.023255814,
"ext": "agda",
"hexsha": "8b59ae6ca94d694c5fbc27a55ad1ad3b0d2bbac4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2606.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2606.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2606.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 216,
"size": 603
}
|
{-# OPTIONS --show-implicit #-}
module Substitution where
|
{
"alphanum_fraction": 0.7118644068,
"avg_line_length": 14.75,
"ext": "agda",
"hexsha": "e3588d5a2541c645464c226655e238108678b4f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Substitution.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Substitution.agda",
"max_line_length": 31,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12,
"size": 59
}
|
import Lvl
open import Data.Boolean
open import Type
module Data.List.Sorting {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
open import Functional using (_∘₂_)
open import Data.Boolean.Stmt
open import Data.List
import Data.List.Relation.Pairwise
open import Data.List.Relation.Permutation
open import Logic
open Data.List.Relation.Pairwise using (empty ; single ; step) public
Sorted = Data.List.Relation.Pairwise.AdjacentlyPairwise(IsTrue ∘₂ (_≤?_))
-- A sorting algorithm is a function that given a list, always return a sorted list which is a permutation of the original one.
record SortingAlgorithm (f : List(T) → List(T)) : Stmt{Lvl.𝐒(ℓ)} where
constructor intro
field
⦃ sorts ⦄ : ∀{l} → Sorted(f(l))
⦃ permutes ⦄ : ∀{l} → (f(l) permutes l)
|
{
"alphanum_fraction": 0.7100515464,
"avg_line_length": 33.7391304348,
"ext": "agda",
"hexsha": "1b42f2ffc35b424d03f6fa9dcba1385aec228af6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Sorting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Sorting.agda",
"max_line_length": 127,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Sorting.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 236,
"size": 776
}
|
{-# OPTIONS --without-K #-}
module NTypes.Sigma where
open import NTypes
open import PathOperations
open import PathStructure.Sigma
open import Transport
open import Types
Σ-isSet : ∀ {a b} {A : Set a} {B : A → Set b} →
isSet A → (∀ x → isSet (B x)) → isSet (Σ A B)
Σ-isSet {A = A} {B = B} A-set B-set x y p q
= split-eq p ⁻¹
· ap₂-dep-eq {B = B} _,_
(ap π₁ p)
(ap π₁ q)
π₁-eq
(tr-∘ π₁ p (π₂ x) ⁻¹ · apd π₂ p)
(tr-∘ π₁ q (π₂ x) ⁻¹ · apd π₂ q)
π₂-eq
· split-eq q
where
split-eq : (p : x ≡ y) →
ap₂-dep {B = B} _,_ (ap π₁ p)
(tr-∘ π₁ p (π₂ x) ⁻¹ · apd π₂ p) ≡ p
split-eq = π₂ (π₂ (π₂ split-merge-eq))
π₁-eq : ap π₁ p ≡ ap π₁ q
π₁-eq = A-set _ _ (ap π₁ p) (ap π₁ q)
π₂-eq : tr (λ z → tr B z (π₂ x) ≡ π₂ y) π₁-eq
(tr-∘ π₁ p (π₂ x) ⁻¹ · apd π₂ p)
≡ tr-∘ π₁ q (π₂ x) ⁻¹ · apd π₂ q
π₂-eq = B-set _ (tr B (ap π₁ q) (π₂ x)) (π₂ y)
(tr
(λ z → tr B z (π₂ x) ≡ π₂ y)
π₁-eq
(tr-∘ π₁ p (π₂ x) ⁻¹ · apd π₂ p))
(tr-∘ π₁ q (π₂ x) ⁻¹ · apd π₂ q)
|
{
"alphanum_fraction": 0.4842406877,
"avg_line_length": 26.175,
"ext": "agda",
"hexsha": "fa674a9cb2c1aaf2c42976f8b321da3a9d0cd677",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/NTypes/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/NTypes/Sigma.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/NTypes/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 524,
"size": 1047
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Setoid.Morphism.Setoid where
open import Fragment.Setoid.Morphism.Base
open import Level using (Level; _⊔_)
open import Relation.Binary using (Setoid; IsEquivalence; Rel)
private
variable
a b ℓ₁ ℓ₂ : Level
module _ {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} where
open Setoid T
infix 4 _≗_
_≗_ : Rel (S ↝ T) (a ⊔ ℓ₂)
f ≗ g = ∀ {x} → ∣ f ∣ x ≈ ∣ g ∣ x
≗-refl : ∀ {f} → f ≗ f
≗-refl = refl
≗-sym : ∀ {f g} → f ≗ g → g ≗ f
≗-sym f≗g {x} = sym (f≗g {x})
≗-trans : ∀ {f g h} → f ≗ g → g ≗ h → f ≗ h
≗-trans f≗g g≗h {x} = trans (f≗g {x}) (g≗h {x})
≗-isEquivalence : IsEquivalence _≗_
≗-isEquivalence = record { refl = λ {f} → ≗-refl {f}
; sym = λ {f g} → ≗-sym {f} {g}
; trans = λ {f g h} → ≗-trans {f} {g} {h}
}
_↝_/≗ : Setoid a ℓ₁ → Setoid b ℓ₂ → Setoid _ _
S ↝ T /≗ = record { Carrier = S ↝ T
; _≈_ = _≗_
; isEquivalence = ≗-isEquivalence
}
|
{
"alphanum_fraction": 0.4647758463,
"avg_line_length": 25.4186046512,
"ext": "agda",
"hexsha": "4f3bc60c86fecec88c15fed66f3fe5d35ec3250a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Setoid/Morphism/Setoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Setoid/Morphism/Setoid.agda",
"max_line_length": 68,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Setoid/Morphism/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 449,
"size": 1093
}
|
open import Common.Prelude
open import Common.Reflect
module TermSplicingOutOfScope where
f : Set → Set → Set → Set
f x y z = unquote (var 3 [])
|
{
"alphanum_fraction": 0.7278911565,
"avg_line_length": 18.375,
"ext": "agda",
"hexsha": "0dd95a310a091a875ebd311cee7b1420b20464a5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/TermSplicingOutOfScope.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/TermSplicingOutOfScope.agda",
"max_line_length": 35,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/TermSplicingOutOfScope.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 42,
"size": 147
}
|
module Data.List.First.Membership {ℓ}{A : Set ℓ} where
open import Data.Product
open import Data.List
open import Data.List.Relation.Unary.Any
open import Data.List.First hiding (find)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Level
open import Function
open import Data.Empty
_∈_ : A → List A → Set _
x ∈ l = first x ∈ l ⇒ (_≡_ x)
¬x∈[] : ∀ {x} → ¬ x ∈ []
¬x∈[] ()
find : Decidable (_≡_ {A = A}) → ∀ x l → Dec (x ∈ l)
find _≟_ x [] = no (λ ())
find _≟_ x (y ∷ l) with x ≟ y
... | yes refl = yes (here refl)
... | no neq with find _≟_ x l
... | yes p = yes (there y neq p)
... | no ¬p = no (λ{ (here eq) → neq eq ; (there _ _ p) → ¬p p})
|
{
"alphanum_fraction": 0.6162310867,
"avg_line_length": 26.9259259259,
"ext": "agda",
"hexsha": "0d747b5131c75c3eca915e7a2af279f01e110c72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Data/List/First/Membership.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Data/List/First/Membership.agda",
"max_line_length": 67,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Data/List/First/Membership.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 254,
"size": 727
}
|
------------------------------------------------------------------------
-- Nullary relations (some core definitions)
------------------------------------------------------------------------
-- The definitions in this file are reexported by Relation.Nullary.
module Relation.Nullary.Core where
open import Data.Empty
-- Negation.
infix 3 ¬_
¬_ : Set → Set
¬ P = P → ⊥
-- Decidable relations.
data Dec (P : Set) : Set where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
|
{
"alphanum_fraction": 0.4453608247,
"avg_line_length": 21.0869565217,
"ext": "agda",
"hexsha": "68a96e29a9a97509dab637d6435094bd93295949",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Nullary/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Nullary/Core.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Nullary/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 109,
"size": 485
}
|
open import Agda.Primitive
f : ∀ {a b c} → Set a → Set b → Set c → Set {!!} -- WAS solution: (a ⊔ (b ⊔ c))
f A B C = A → B → C -- NOW: (a ⊔ b ⊔ c)
|
{
"alphanum_fraction": 0.3709677419,
"avg_line_length": 37.2,
"ext": "agda",
"hexsha": "22b7d4360a8e93b7eb8b78d9f7ba633d0aaa7001",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3441.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3441.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3441.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 186
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.Functors where
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.NaturalTransformation.Properties
open import Cubical.Categories.Morphism renaming (isIso to isIsoC)
open import Cubical.Foundations.Prelude
private
variable
ℓC ℓC' ℓD ℓD' : Level
module _ (C : Category ℓC ℓC') (D : Category ℓD ℓD') where
open Category
open NatTrans
open Functor
FUNCTOR : Category (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) (ℓ-max (ℓ-max ℓC ℓC') ℓD')
ob FUNCTOR = Functor C D
Hom[_,_] FUNCTOR = NatTrans
id FUNCTOR {F} = idTrans F
_⋆_ FUNCTOR = seqTrans
⋆IdL FUNCTOR α = makeNatTransPath λ i x → D .⋆IdL (α .N-ob x) i
⋆IdR FUNCTOR α = makeNatTransPath λ i x → D .⋆IdR (α .N-ob x) i
⋆Assoc FUNCTOR α β γ = makeNatTransPath λ i x → D .⋆Assoc (α .N-ob x) (β .N-ob x) (γ .N-ob x) i
isSetHom FUNCTOR = isSetNat
open isIsoC renaming (inv to invC)
-- componentwise iso is an iso in Functor
FUNCTORIso : ∀ {F G : Functor C D} (α : F ⇒ G)
→ (∀ (c : C .ob) → isIsoC D (α ⟦ c ⟧))
→ isIsoC FUNCTOR α
FUNCTORIso α is .invC .N-ob c = (is c) .invC
FUNCTORIso {F} {G} α is .invC .N-hom {c} {d} f
= invMoveL areInv-αc
( α ⟦ c ⟧ ⋆⟨ D ⟩ (G ⟪ f ⟫ ⋆⟨ D ⟩ is d .invC)
≡⟨ sym (D .⋆Assoc _ _ _) ⟩
(α ⟦ c ⟧ ⋆⟨ D ⟩ G ⟪ f ⟫) ⋆⟨ D ⟩ is d .invC
≡⟨ sym (invMoveR areInv-αd (α .N-hom f)) ⟩
F ⟪ f ⟫
∎ )
where
areInv-αc : areInv _ (α ⟦ c ⟧) ((is c) .invC)
areInv-αc = isIso→areInv (is c)
areInv-αd : areInv _ (α ⟦ d ⟧) ((is d) .invC)
areInv-αd = isIso→areInv (is d)
FUNCTORIso α is .sec = makeNatTransPath (funExt (λ c → (is c) .sec))
FUNCTORIso α is .ret = makeNatTransPath (funExt (λ c → (is c) .ret))
|
{
"alphanum_fraction": 0.5793731041,
"avg_line_length": 37.320754717,
"ext": "agda",
"hexsha": "8cc1e5e481bb9824067297909cddff2a386a6096",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mzeuner/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mzeuner/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mzeuner/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 778,
"size": 1978
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lemmas relating algebraic definitions (such as associativity and
-- commutativity) that don't the equality relation to be a setoid.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Algebra.Consequences.Base
{a} {A : Set a} where
open import Algebra.Core
open import Algebra.Definitions
open import Data.Sum.Base
open import Relation.Binary.Core
sel⇒idem : ∀ {ℓ} {_•_ : Op₂ A} (_≈_ : Rel A ℓ) →
Selective _≈_ _•_ → Idempotent _≈_ _•_
sel⇒idem _ sel x with sel x x
... | inj₁ x•x≈x = x•x≈x
... | inj₂ x•x≈x = x•x≈x
|
{
"alphanum_fraction": 0.5326704545,
"avg_line_length": 30.6086956522,
"ext": "agda",
"hexsha": "914aaf2cecfc66970e3ec3ea19b76c79c4987e9a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Consequences/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Consequences/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Consequences/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 196,
"size": 704
}
|
------------------------------------------------------------------------
-- Undecidability of subtyping in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Undecidable where
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import FOmegaInt.Syntax
open import FOmegaInt.Typing as Declarative
open import FOmegaInt.Kinding.Canonical as Canonical
open import FOmegaInt.Kinding.Canonical.Equivalence
open import FOmegaInt.Undecidable.SK
open import FOmegaInt.Undecidable.Encoding
open import FOmegaInt.Undecidable.Decoding
open Syntax
open ContextConversions using (⌞_⌟Ctx)
open Canonical.Kinding using (_⊢_<:_⇇_)
open Declarative.Typing using (_⊢_<:_∈_)
open Encoding
module T = TermCtx
module E = ElimCtx
------------------------------------------------------------------------
-- SK combinator term equality checking reduces to subtype checking in
-- Fω with interval kinds.
--
-- We do not proof undecidability of subtyping directly, but give a
-- reduction from undecidability of checking the equivalence of two SK
-- combinator terms, which is well-known to be undecidable. In other
-- words, if we could check subtyping, we could also check the
-- equality of two SK combinator terms, which we cannot.
--
-- The following types characterize the decision procedures involved.
SKEqualityCheck : Set
SKEqualityCheck = (s t : SKTerm) → Dec (s ≡SK t)
CanoncialSubtypeCheck : Set
CanoncialSubtypeCheck = ∀ {n} (Γ : E.Ctx n) a b k → Dec (Γ ⊢ a <: b ⇇ k)
DeclarativeSubtypeCheck : Set
DeclarativeSubtypeCheck = ∀ {n} (Γ : T.Ctx n) a b k → Dec (Γ ⊢ a <: b ∈ k)
-- The reduction from SK equality checking to canoncial subtype checking.
module CanoncialReduction (check-<:⇇ : CanoncialSubtypeCheck) where
canonicalEquivalence : ∀ s t → Γ-SK? ⊢ encode s <: encode t ⇇ ⌜*⌝ ⇔ s ≡SK t
canonicalEquivalence s t = equivalence decode-<:⇇-encode <:⇇-encode
check-≡SK : SKEqualityCheck
check-≡SK s t =
map (canonicalEquivalence s t) (check-<:⇇ Γ-SK? (encode s) (encode t) ⌜*⌝)
canonicalReduction : CanoncialSubtypeCheck → SKEqualityCheck
canonicalReduction = CanoncialReduction.check-≡SK
-- The reduction from SK equality checking to declarative subtype checking.
module DeclarativeReduction (check-<:∈ : DeclarativeSubtypeCheck) where
declarativeEquivalence :
∀ s t → ⌞Γ-SK?⌟ ⊢ ⌞ encode s ⌟ <: ⌞ encode t ⌟ ∈ * ⇔ s ≡SK t
declarativeEquivalence s t = equivalence
(λ es<:et∈* → decode-<:⇇-encode
(subst₂ (_ ⊢_<:_⇇ _) (nf-encode s) (nf-encode t) (complete-<: es<:et∈*)))
(λ s≡t → sound-<:⇇ (<:⇇-encode s≡t))
check-≡SK : SKEqualityCheck
check-≡SK s t =
map (declarativeEquivalence s t)
(check-<:∈ ⌞Γ-SK?⌟ ⌞ encode s ⌟ ⌞ encode t ⌟ *)
declarativeReduction : DeclarativeSubtypeCheck → SKEqualityCheck
declarativeReduction = DeclarativeReduction.check-≡SK
|
{
"alphanum_fraction": 0.6774193548,
"avg_line_length": 36.1666666667,
"ext": "agda",
"hexsha": "6535fd942a11f0aa24850f5f3fa230c4e8e753aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Undecidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Undecidable.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Undecidable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 911,
"size": 3038
}
|
{-# OPTIONS --cubical --safe #-}
module Data.List.Smart where
open import Prelude
open import Data.Nat.Properties using (_≡ᴮ_; complete-==)
infixr 5 _∷′_ _++′_
data List {a} (A : Type a) : Type a where
[]′ : List A
_∷′_ : A → List A → List A
_++′_ : List A → List A → List A
sz′ : List A → ℕ → ℕ
sz′ []′ k = k
sz′ (x ∷′ xs) k = k
sz′ (xs ++′ ys) k = suc (sz′ xs (sz′ ys k))
sz : List A → ℕ
sz []′ = zero
sz (x ∷′ xs) = zero
sz (xs ++′ ys) = sz′ xs (sz ys)
_HasSize_ : List A → ℕ → Type
xs HasSize n = T (sz xs ≡ᴮ n)
data ListView {a} (A : Type a) : Type a where
Nil : ListView A
Cons : A → List A → ListView A
viewˡ : List A → ListView A
viewˡ xs = go xs (sz xs) (complete-== (sz xs))
where
go : (xs : List A) → (n : ℕ) → xs HasSize n → ListView A
go []′ n p = Nil
go (x ∷′ xs) n p = Cons x xs
go ((x ∷′ xs) ++′ ys) n p = Cons x (xs ++′ ys)
go ([]′ ++′ ys) n p = go ys n p
go ((xs ++′ ys) ++′ zs) (suc n) p = go (xs ++′ (ys ++′ zs)) n p
|
{
"alphanum_fraction": 0.4807692308,
"avg_line_length": 23.6363636364,
"ext": "agda",
"hexsha": "3611700f25a0f853ea94628273d4f1542ad14d57",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Smart.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Smart.agda",
"max_line_length": 66,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Smart.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 424,
"size": 1040
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists made up entirely of unique elements (propositional equality)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Unique.Propositional {a} {A : Set a} where
open import Relation.Binary.PropositionalEquality using (setoid)
open import Data.List.Relation.Unary.Unique.Setoid as SetoidUnique
------------------------------------------------------------------------
-- Re-export the contents of setoid uniqueness
open SetoidUnique (setoid A) public
|
{
"alphanum_fraction": 0.5107361963,
"avg_line_length": 34.3157894737,
"ext": "agda",
"hexsha": "4bb5f79aaf064e3746f58d0cf6dadb9cd7a15611",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Propositional.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 108,
"size": 652
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pushout
open import Homotopy.VanKampen.Guide
module Homotopy.VanKampen.Code.LemmaPackB {i} (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) where
open pushout-diag d
open legend l
open import Homotopy.Truncation
open import Homotopy.PathTruncation
open import Homotopy.VanKampen.SplitCode d l
abstract
trans-q-code-a : ∀ {a₁ a₂} (q : a₁ ≡ a₂) {a₃} (p : _ ≡₀ a₃)
→ transport (λ x → code-a x a₃) q (a a₁ p)
≡ a a₂ (proj (! q) ∘₀ p)
trans-q-code-a refl p = ap (λ x → a _ x) $ ! $ refl₀-left-unit p
trans-!q-code-a : ∀ {a₁ a₂} (q : a₂ ≡ a₁) {a₃} (p : _ ≡₀ a₃)
→ transport (λ x → code-a x a₃) (! q) (a a₁ p)
≡ a a₂ (proj q ∘₀ p)
trans-!q-code-a refl p = ap (λ x → a _ x) $ ! $ refl₀-left-unit p
trans-q-code-ba : ∀ {a₁ a₂} (q : a₁ ≡ a₂) {a₃} n co (p : _ ≡₀ a₃)
→ transport (λ x → code-a x a₃) q (ba a₁ n co p)
≡ ba a₂ n (transport (λ x → code-b x (g $ loc n)) q co) p
trans-q-code-ba refl n co p = refl
trans-q-code-ab : ∀ {a₁ a₂} (q : a₁ ≡ a₂) {b₃} n co (p : _ ≡₀ b₃)
→ transport (λ x → code-b x b₃) q (ab a₁ n co p)
≡ ab a₂ n (transport (λ x → code-a x (f $ loc n)) q co) p
trans-q-code-ab refl n co p = refl
|
{
"alphanum_fraction": 0.5625,
"avg_line_length": 34.5945945946,
"ext": "agda",
"hexsha": "716f41a704c4f5a2717f39b6c7c24efd8a9f0109",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackB.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackB.agda",
"max_line_length": 69,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackB.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 542,
"size": 1280
}
|
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
data Bool : Set where true false : Bool
op : Bool → Set → Set
op false _ = Bool
op true A = A
postulate
id : Bool → Bool
id-comp : ∀ y → id y ≡ y
{-# REWRITE id-comp #-}
postulate
A : Set
law : (i : Bool) → op (id i) A ≡ Bool
{-# REWRITE law #-}
ok : (i : Bool) → op i A ≡ Bool
ok i = refl
|
{
"alphanum_fraction": 0.5714285714,
"avg_line_length": 16.625,
"ext": "agda",
"hexsha": "cd9cf22bf3d0ed2e2a9a8c93942da56d65c006d1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2573.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2573.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2573.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 141,
"size": 399
}
|
-- 2010-09-24
-- example originally stolen from Andrea Vezzosi's post on the Agda list
{-# OPTIONS --no-irrelevant-projections #-}
module IrrelevantRecordFields where
open import Common.Equality
record SemiG : Set1 where
constructor _,_,_,_,_,_
field
M : Set
unit : M
_+_ : M -> M -> M
.assoc : ∀ {x y z} -> x + (y + z) ≡ (x + y) + z
.leftUnit : ∀ {x} -> unit + x ≡ x
.rightUnit : ∀ {x} -> x + unit ≡ x
dual : SemiG -> SemiG
dual (M , e , _+_ , assoc , leftUnit , rightUnit) =
M , e , (λ x y -> y + x) , sym assoc , rightUnit , leftUnit
open SemiG
-- trivId : ∀ (M : SemiG) -> M ≡ M
-- trivId M = refl
dual∘dual≡id : ∀ M -> dual (dual M) ≡ M
dual∘dual≡id M = refl {x = M}
|
{
"alphanum_fraction": 0.5646067416,
"avg_line_length": 22.9677419355,
"ext": "agda",
"hexsha": "c87a8ea7f9c986b9bf4dc6e0e3188342663e2cec",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/IrrelevantRecordFields.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/IrrelevantRecordFields.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/IrrelevantRecordFields.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 276,
"size": 712
}
|
-- An ATP type must be used with data-types or postulates.
-- This error is detected by Syntax.Translation.ConcreteToAbstract.
module ATPBadType1 where
data Bool : Set where
false true : Bool
{-# ATP type false #-}
|
{
"alphanum_fraction": 0.7375565611,
"avg_line_length": 20.0909090909,
"ext": "agda",
"hexsha": "8285076316ddb3a89fc1f7406c924da7dd14a423",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadType1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadType1.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadType1.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 52,
"size": 221
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Machine words: basic type and conversion functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Word.Base where
open import Level using (zero)
import Data.Nat.Base as ℕ
open import Function
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-export built-ins publicly
open import Agda.Builtin.Word public
using (Word64)
renaming
( primWord64ToNat to toℕ
; primWord64FromNat to fromℕ
)
infix 4 _≈_
_≈_ : Rel Word64 zero
_≈_ = _≡_ on toℕ
infix 4 _<_
_<_ : Rel Word64 zero
_<_ = ℕ._<_ on toℕ
|
{
"alphanum_fraction": 0.5309405941,
"avg_line_length": 23.7647058824,
"ext": "agda",
"hexsha": "ef287d6edff694f0353b7e54d5386bb686d575d4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Word/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Word/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Word/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 184,
"size": 808
}
|
{-# OPTIONS --without-K --safe #-}
-- The Category of Algebraic Kan Complexes
module Categories.Category.Instance.KanComplexes where
open import Level
open import Function using (_$_)
open import Data.Product using (Σ; _,_; proj₁)
open import Categories.Category
open import Categories.Category.SubCategory
open import Categories.Category.Construction.KanComplex
open import Categories.Category.Instance.SimplicialSet
import Categories.Category.Instance.SimplicialSet.Properties as ΔSetₚ
import Categories.Morphism.Reasoning as MR
module _ (o ℓ : Level) where
open Category (SimplicialSet o ℓ)
open ΔSetₚ o ℓ
open IsKanComplex
open Equiv
open MR (SimplicialSet o ℓ)
-- As we are working with Algebraic Kan Complexes, maps between two Kan Complexes ought
-- to take the chosen filler in 'X' to the chosen filler in 'Y'.
PreservesFiller : ∀ {X Y : ΔSet} → IsKanComplex o ℓ X → IsKanComplex o ℓ Y → (X ⇒ Y) → Set (o ⊔ ℓ)
PreservesFiller {X} {Y} X-Kan Y-Kan f = ∀ {n} {k} → (i : Λ[ n , k ] ⇒ X) → (f ∘ filler X-Kan {n} i) ≈ filler Y-Kan (f ∘ i)
KanComplexes : Category (suc o ⊔ suc ℓ) (o ⊔ ℓ ⊔ (o ⊔ ℓ)) (o ⊔ ℓ)
KanComplexes = SubCategory (SimplicialSet o ℓ) {I = Σ ΔSet (IsKanComplex o ℓ)} $ record
{ U = proj₁
; R = λ { {_ , X-Kan} {_ , Y-Kan} f → PreservesFiller X-Kan Y-Kan f }
; Rid = λ { {_ , X-Kan} i → begin
id ∘ filler X-Kan i ≈⟨ identityˡ {f = filler X-Kan i} ⟩
filler X-Kan i ≈˘⟨ filler-cong X-Kan (identityˡ {f = i}) ⟩
filler X-Kan (id ∘ i) ∎
}
; _∘R_ = λ { {_ , X-Kan} {_ , Y-Kan} {_ , Z-Kan} {f} {g} f-preserves g-preserves i → begin
(f ∘ g) ∘ filler X-Kan i ≈⟨ assoc {f = filler X-Kan i} {g = g} {h = f} ⟩
f ∘ (g ∘ filler X-Kan i) ≈⟨ ∘-resp-≈ʳ {f = (g ∘ filler X-Kan i)} {h = filler Y-Kan (g ∘ i)} {g = f} (g-preserves i) ⟩
f ∘ filler Y-Kan (g ∘ i) ≈⟨ f-preserves (g ∘ i) ⟩
filler Z-Kan (f ∘ g ∘ i) ≈˘⟨ filler-cong Z-Kan (assoc {f = i} {g = g} {h = f}) ⟩
filler Z-Kan ((f ∘ g) ∘ i) ∎
}
}
where
open HomReasoning
|
{
"alphanum_fraction": 0.6020260492,
"avg_line_length": 39.8653846154,
"ext": "agda",
"hexsha": "e95214d937af3af660afd69d487f005efed963fe",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/KanComplexes.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/KanComplexes.agda",
"max_line_length": 126,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/KanComplexes.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 790,
"size": 2073
}
|
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.PathSetIsInital {i} (A : Type i)
-- (A-conn : is-connected 0 A)
where
open Cover
module _
(a₁ : A)
-- And an arbitrary covering.
{k} (cov : Cover A k)
-- (cov-conn : is-connected 0 (Cover.TotalSpace cov))
(a↑₁ : Fiber cov a₁)
where
private
univ-cover = path-set-cover ⊙[ A , a₁ ]
-- Weak initiality by transport.
quotient-cover : CoverHom univ-cover cov
quotient-cover _ p = cover-trace cov a↑₁ p
-- Strong initiality by path induction.
module Uniqueness
(cover-hom : CoverHom univ-cover cov)
(pres-a↑₁ : cover-hom a₁ idp₀ == a↑₁)
where
private
lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ]
lemma₁ ._ idp = pres-a↑₁
lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p
lemma₂ a = Trunc-elim
(λ p → =-preserves-level 0 (Cover.Fiber-level cov a))
(lemma₁ a)
theorem : cover-hom == quotient-cover
theorem = λ= λ a → λ= $ lemma₂ a
|
{
"alphanum_fraction": 0.5738476011,
"avg_line_length": 24.7209302326,
"ext": "agda",
"hexsha": "92f3d4fd81ada2fb934079d55f9e635573dcb68d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/PathSetIsInital.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/PathSetIsInital.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/PathSetIsInital.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 329,
"size": 1063
}
|
{-# OPTIONS --copatterns #-}
module EmptyInductiveRecord where
mutual
data E : Set where
e : F -> E
record F : Set where
inductive
constructor c
field f : E
open F
data ⊥ : Set where
elim : E → ⊥
elim (e (c x)) = elim x
mutual
empty : E
empty = e empty?
empty? : F
f empty? = empty
absurd : ⊥
absurd = elim empty
|
{
"alphanum_fraction": 0.5942857143,
"avg_line_length": 11.6666666667,
"ext": "agda",
"hexsha": "7c544ce8cc55748f8ce5ea76abc596a66aa472c3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/EmptyInductiveRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/EmptyInductiveRecord.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/EmptyInductiveRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 119,
"size": 350
}
|
module Generic.Test.Data.List where
module _ where
open import Generic.Main as Main hiding ([]; _∷_) renaming (List to StdList)
infixr 5 _∷_ _∷′_
List : ∀ {α} -> Set α -> Set α
List = readData StdList
pattern [] = #₀ lrefl
pattern _∷_ x xs = !#₁ (relv x , xs , lrefl)
_∷′_ : ∀ {α} {A : Set α} -> A -> List A -> List A
_∷′_ = _∷_
elimList : ∀ {α π} {A : Set α}
-> (P : List A -> Set π)
-> (∀ {xs} x -> P xs -> P (x ∷ xs))
-> P []
-> ∀ xs
-> P xs
elimList P f z [] = z
elimList P f z (x ∷ xs) = f x (elimList P f z xs)
toStdList : ∀ {α} {A : Set α} -> List A -> StdList A
toStdList xs = guncoerce xs
-- The entire content of `Data.List.Base` (modulo `Generic.Test.Data.Maybe` instead of
-- `Data.Maybe.Base` and _∷_ was renamed to _∷′_ in some places)
open import Data.Nat.Base using (ℕ; zero; suc; _+_; _*_)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Bool.Base using (Bool; false; true; not; _∧_; _∨_; if_then_else_)
open import Generic.Test.Data.Maybe
open import Data.Product as Prod using (_×_; _,_)
open import Function
infixr 5 _++_
[_] : ∀ {a} {A : Set a} → A → List A
[ x ] = x ∷ []
_++_ : ∀ {a} {A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
-- Snoc.
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A
xs ∷ʳ x = xs ++ [ x ]
null : ∀ {a} {A : Set a} → List A → Bool
null [] = true
null (x ∷ xs) = false
-- * List transformations
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
replicate : ∀ {a} {A : Set a} → (n : ℕ) → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
zipWith : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ (A → B → C) → List A → List B → List C
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
zipWith f _ _ = []
zip : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B)
zip = zipWith (_,_)
intersperse : ∀ {a} {A : Set a} → A → List A → List A
intersperse x [] = []
intersperse x (y ∷ []) = [ y ]
intersperse x (y ∷ z ∷ zs) = y ∷ x ∷ intersperse x (z ∷ zs)
-- * Reducing lists (folds)
foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
foldl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → A
foldl c n [] = n
foldl c n (x ∷ xs) = foldl c (c n x) xs
-- ** Special folds
concat : ∀ {a} {A : Set a} → List (List A) → List A
concat = foldr _++_ []
concatMap : ∀ {a b} {A : Set a} {B : Set b} →
(A → List B) → List A → List B
concatMap f = concat ∘ map f
and : List Bool → Bool
and = foldr _∧_ true
or : List Bool → Bool
or = foldr _∨_ false
any : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
any p = or ∘ map p
all : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool
all p = and ∘ map p
sum : List ℕ → ℕ
sum = foldr _+_ 0
product : List ℕ → ℕ
product = foldr _*_ 1
length : ∀ {a} {A : Set a} → List A → ℕ
length = foldr (λ _ → suc) 0
import Data.List.Base
reverse : ∀ {a} {A : Set a} → List A → List A
reverse = foldl (λ rev x → x ∷′ rev) []
-- * Building lists
-- ** Scans
scanr : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → B) → B → List A → List B
scanr f e [] = e ∷ []
scanr f e (x ∷ xs) with scanr f e xs
... | [] = [] -- dead branch
... | y ∷ ys = f x y ∷ y ∷ ys
scanl : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → A) → A → List B → List A
scanl f e [] = e ∷ []
scanl f e (x ∷ xs) = e ∷ scanl f (f e x) xs
-- ** Unfolding
-- Unfold. Uses a measure (a natural number) to ensure termination.
unfold : ∀ {a b} {A : Set a} (B : ℕ → Set b)
(f : ∀ {n} → B (suc n) → Maybe (A × B n)) →
∀ {n} → B n → List A
unfold B f {n = zero} s = []
unfold B f {n = suc n} s with f s
... | nothing = []
... | just (x , s') = x ∷ unfold B f s'
-- downFrom 3 = 2 ∷ 1 ∷ 0 ∷ [].
downFrom : ℕ → List ℕ
downFrom n = unfold Singleton f (wrap n)
where
data Singleton : ℕ → Set where
wrap : (n : ℕ) → Singleton n
f : ∀ {n} → Singleton (suc n) → Maybe (ℕ × Singleton n)
f {n} (wrap .(suc n)) = just (n , wrap n)
-- ** Conversions
fromMaybe : ∀ {a} {A : Set a} → Maybe A → List A
fromMaybe (just x) = [ x ]
fromMaybe nothing = []
-- * Sublists
-- ** Extracting sublists
take : ∀ {a} {A : Set a} → ℕ → List A → List A
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs
drop : ∀ {a} {A : Set a} → ℕ → List A → List A
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n xs
splitAt : ∀ {a} {A : Set a} → ℕ → List A → (List A × List A)
splitAt zero xs = ([] , xs)
splitAt (suc n) [] = ([] , [])
splitAt (suc n) (x ∷ xs) with splitAt n xs
... | (ys , zs) = (x ∷ ys , zs)
takeWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
takeWhile p [] = []
takeWhile p (x ∷ xs) with p x
... | true = x ∷ takeWhile p xs
... | false = []
dropWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
dropWhile p [] = []
dropWhile p (x ∷ xs) with p x
... | true = dropWhile p xs
... | false = x ∷ xs
span : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
span p [] = ([] , [])
span p (x ∷ xs) with p x
... | true = Prod.map (_∷′_ x) id (span p xs)
... | false = ([] , x ∷ xs)
break : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
break p = span (not ∘ p)
inits : ∀ {a} {A : Set a} → List A → List (List A)
inits [] = [] ∷ []
inits (x ∷ xs) = [] ∷ map (_∷′_ x) (inits xs)
tails : ∀ {a} {A : Set a} → List A → List (List A)
tails [] = [] ∷ []
tails (x ∷ xs) = (x ∷ xs) ∷ tails xs
infixl 5 _∷ʳ'_
data InitLast {a} {A : Set a} : List A → Set a where
[]ʳ : InitLast []
_∷ʳ'_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x)
initLast : ∀ {a} {A : Set a} (xs : List A) → InitLast xs
initLast [] = []ʳ
initLast (x ∷ xs) with initLast xs
initLast (x ∷ .[]) | []ʳ = [] ∷ʳ' x
initLast (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y
-- * Searching lists
-- ** Searching with a predicate
-- A generalised variant of filter.
gfilter : ∀ {a b} {A : Set a} {B : Set b} →
(A → Maybe B) → List A → List B
gfilter p [] = []
gfilter p (x ∷ xs) with p x
... | just y = y ∷ gfilter p xs
... | nothing = gfilter p xs
filter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A
filter p = gfilter (λ x → if p x then just′ x else nothing)
partition : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A)
partition p [] = ([] , [])
partition p (x ∷ xs) with p x | partition p xs
... | true | (ys , zs) = (x ∷ ys , zs)
... | false | (ys , zs) = (ys , x ∷ zs)
|
{
"alphanum_fraction": 0.4850615114,
"avg_line_length": 26.8818897638,
"ext": "agda",
"hexsha": "fdd9d93e923ab90712f828caba3cc42b93d31e08",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/Data/List.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/Data/List.agda",
"max_line_length": 86,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/Data/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 2723,
"size": 6828
}
|
------------------------------------------------------------------------
-- Code related to the paper "Total Definitional Interpreters for Time
-- and Space Complexity"
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
-- Note that the code has evolved after the paper was written. For
-- code that is closer to the paper, see the version of the code that
-- is distributed with the paper.
module README where
------------------------------------------------------------------------
-- Pointers to results from the paper
-- In order to more easily find code corresponding to results from the
-- paper, see the following module. Note that some of the code
-- referenced below is not discussed at all in the paper.
import README.Pointers-to-results-from-the-paper
------------------------------------------------------------------------
-- Responses to some challenges from Ancona, Dagnino and Zucca
-- The syntax of a toy programming language that only supports
-- allocation and deallocation of memory.
import Only-allocation
-- Definitional interpreters can model systems with bounded space.
import Bounded-space
-- Upper bounds of colists containing natural numbers.
import Upper-bounds
-- Definitional interpreters can model systems with unbounded space.
import Unbounded-space
------------------------------------------------------------------------
-- An example involving a simple λ-calculus
-- Some developments based on "Operational Semantics Using the
-- Partiality Monad" by Danielsson.
--
-- These developments to a large extent mirror developments in
-- "Coinductive big-step operational semantics" by Leroy and Grall.
--
-- The main differences compared to those two pieces of work are
-- perhaps the following ones:
--
-- * Sized types are used.
--
-- * The infinite set of uninterpreted constants has been replaced by
-- booleans, and definitions (named, unary, recursive functions)
-- are included.
--
-- * The virtual machine and the compiler include support for tail
-- calls.
--
-- * Stack space usage is analysed.
-- The syntax of, and a type system for, an untyped λ-calculus with
-- booleans and recursive unary function calls.
import Lambda.Syntax
-- A delay monad with the possibility of crashing.
import Lambda.Delay-crash
-- A definitional interpreter.
import Lambda.Interpreter
-- A type soundness result.
import Lambda.Type-soundness
-- A combination of the delay monad (with the possibility of crashing)
-- and a kind of writer monad yielding colists.
import Lambda.Delay-crash-trace
-- Virtual machine instructions, state etc.
import Lambda.Virtual-machine.Instructions
-- A virtual machine.
import Lambda.Virtual-machine
-- A compiler.
import Lambda.Compiler
-- Compiler correctness.
import Lambda.Compiler-correctness
-- A definitional interpreter that is instrumented with information
-- about the stack size of the compiled program.
import Lambda.Interpreter.Stack-sizes
-- The actual maximum stack size of the compiled program matches the
-- maximum stack size of the instrumented source-level semantics.
import Lambda.Compiler-correctness.Sizes-match
-- An example: A non-terminating program that runs in bounded stack
-- space.
import Lambda.Interpreter.Stack-sizes.Example
-- A counterexample: The trace of stack sizes produced by the virtual
-- machine is not necessarily bisimilar to that produced by the
-- instrumented interpreter.
import Lambda.Interpreter.Stack-sizes.Counterexample
-- A counterexample: The number of steps taken by the uninstrumented
-- interpreter is not, in general, linear in the number of steps taken
-- by the virtual machine for the corresponding compiled program.
import Lambda.Interpreter.Steps.Counterexample
-- A definitional interpreter that is instrumented with information
-- about the number of steps required to run the compiled program.
import Lambda.Interpreter.Steps
-- The "time complexity" of the compiled program matches the one
-- obtained from the instrumented interpreter.
import Lambda.Compiler-correctness.Steps-match
|
{
"alphanum_fraction": 0.7089007782,
"avg_line_length": 29.3714285714,
"ext": "agda",
"hexsha": "d5bb49334989f11136d5c1405f3f61a1dd080ddb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "README.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 794,
"size": 4112
}
|
{-# OPTIONS --type-in-type #-}
module Prob where
open import DescTT
mutual
data Sch : Set where
ty : (S : Set) -> Sch
exPi : (s : Sch)(T : toType s -> Sch) -> Sch
imPi : (S : Set)(T : S -> Sch) -> Sch
toType : Sch -> Set
toType (ty S) = S
toType (exPi s T) = (x : toType s) -> toType (T x)
toType (imPi S T) = (x : S) -> toType (T x)
Args : Sch -> Set
Args (ty _) = Unit
Args (exPi s T) = Sigma (toType s) \ x -> Args (T x)
Args (imPi S T) = Sigma S \ x -> Args (T x)
postulate
UId : Set
Prp : Set
Prf : Prp -> Set
data Prob : Set where
label : (u : UId)(s : Sch)(a : Args s) -> Prob
patPi : (u : UId)(S : Set)(p : Prob) -> Prob
hypPi : (p : Prp)(T : Prf p -> Prob) -> Prob
recPi : (rec : Prob)(p : Prob) -> Prob
|
{
"alphanum_fraction": 0.5143229167,
"avg_line_length": 22.5882352941,
"ext": "agda",
"hexsha": "5e9462060e2001bb14bc3e54774675319c92efb4",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/Prob.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/Prob.agda",
"max_line_length": 52,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/Prob.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 304,
"size": 768
}
|
{-# OPTIONS --without-K #-}
module HoTT.Equivalence.Proposition where
open import HoTT.Base
open import HoTT.HLevel
open import HoTT.Equivalence
open variables
-- Proven by Theorem 4.3.2
postulate
isequiv-prop : {f : A → B} → isProp (isequiv f)
{-
fib : B → 𝒰 _
fib y = Σ[ x ∶ A ] (f x == y)
-- Left inverse with coherence
lcoh : linv → 𝒰 _
lcoh (g , η) = Σ[ ε ∶ f ∘ g ~ id ] ap g ∘ ε ~ η ∘ g
-- Right inverse with coherence
rcoh : rinv → 𝒰 _
rcoh (g , ε) = Σ[ η ∶ g ∘ f ~ id ] ap f ∘ η ~ ε ∘ f
-}
{-
hae-fib-contr : {f : A → B} → ishae f → (y : B) → isContr (fib f y)
hae-fib-contr {A = A} {f = f} (g , η , ε , τ) y = (g y , ε y) , contr
where
contr : (z : fib f y) → (g y , ε y) == z
contr (x , p) = pair⁼ (qₓ , qₚ)
where
qₓ : g y == x
qₓ = ap g p ⁻¹ ∙ η x
qₚ : transport (λ x → f x == y) qₓ (ε y) == p
qₚ = begin
transport (λ x → f x == y) qₓ (ε y) =⟨ transport=-constᵣ f y qₓ (ε y) ⟩
ap f qₓ ⁻¹ ∙ ε y =⟨ ap (λ p → p ⁻¹ ∙ ε y) (ap-∙ f (ap g p ⁻¹) (η x)) ⟩
(ap f (ap g p ⁻¹) ∙ ap f (η x)) ⁻¹ ∙ ε y =⟨ ap (λ p → p ⁻¹ ∙ ε y) (ap (ap f) (ap-⁻¹ g p ⁻¹) ⋆ τ x) ⟩
(ap f (ap g (p ⁻¹)) ∙ ε (f x)) ⁻¹ ∙ ε y =⟨ ap (λ p → (p ∙ ε (f x)) ⁻¹ ∙ ε y) (ap-∘ f g (p ⁻¹)) ⟩
(ap (f ∘ g) (p ⁻¹) ∙ ε (f x)) ⁻¹ ∙ ε y =⟨ ap (λ p → p ⁻¹ ∙ ε y) (~-naturality ε (p ⁻¹) ⁻¹) ⟩
(ε y ∙ ap id (p ⁻¹)) ⁻¹ ∙ ε y =⟨ ap (λ p → (ε y ∙ p) ⁻¹ ∙ ε y) (ap-id (p ⁻¹)) ⟩
(ε y ∙ p ⁻¹) ⁻¹ ∙ ε y =⟨ ∙-⁻¹ (ε y) (p ⁻¹) ∙ᵣ ε y ⟩
p ⁻¹ ⁻¹ ∙ ε y ⁻¹ ∙ ε y =⟨ ∙-assoc _ _ _ ⁻¹ ⟩
p ⁻¹ ⁻¹ ∙ (ε y ⁻¹ ∙ ε y) =⟨ invinv p ⋆ ∙-invₗ (ε y) ⟩
p ∙ refl =⟨ ∙-unitᵣ p ⁻¹ ⟩
p ∎
where
open =-Reasoning
∙-⁻¹ : {A : 𝒰 i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ⁻¹ == q ⁻¹ ∙ p ⁻¹
∙-⁻¹ refl refl = refl
invinv : {A : 𝒰 i} {x y : A} (p : x == y) → p ⁻¹ ⁻¹ == p
invinv refl = refl
linv-contr : {f : A → B} → qinv f → isContr (linv f)
linv-contr {f = f} (g , η , ε) = {!hae-fib-contr (qinv→ishae e)!}
where
q' : qinv (_∘ f)
q' = _∘ g , (λ x → ap (x ∘_) {!funext ?!}) , {!!}
rinv-contr : {f : A → B} → qinv f → isContr (rinv f)
rinv-contr = {!!}
-}
|
{
"alphanum_fraction": 0.4001732352,
"avg_line_length": 36.078125,
"ext": "agda",
"hexsha": "719cae575a6d1c6451e6b2986dff684a10268778",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Equivalence/Proposition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Equivalence/Proposition.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Equivalence/Proposition.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1161,
"size": 2309
}
|
{-# OPTIONS --safe #-}
module STLC.Operational.Eager where
open import STLC.Syntax
open import STLC.Operational.Base
open import Data.Empty using (⊥-elim)
open import Data.Product using (∃-syntax; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Fin using (Fin; _≟_) renaming (zero to fzero; suc to fsuc)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong)
open import Relation.Nullary using (yes; no; ¬_)
private
variable
m n : ℕ
L M M' N N' : Term n
A B C : Type
Γ Δ : Ctx n
v : Fin n
data Value {n} : Term n → Set where
abs-value
-----------------
: Value (abs A M)
⋆-value
-----------------
: Value ⋆
pair-value
: Value M → Value N
-----------------
→ Value (pair M N)
infix 6 _↦_
data _↦_ : Term n → Term n → Set where
red-head
: M ↦ M'
------------------
→ app M N ↦ app M' N
red-arg
: Value M → N ↦ N'
------------------
→ app M N ↦ app M N'
red-β
: Value N
---------------------------------
→ app (abs A M) N ↦ M [ fzero ≔ N ]
red-left
: M ↦ M'
--------------------
→ pair M N ↦ pair M' N
red-right
: Value M → N ↦ N'
--------------------
→ pair M N ↦ pair M N'
red-projₗ-inner
: M ↦ M'
------------------
→ projₗ M ↦ projₗ M'
red-projₗ
: Value M → Value N
--------------------
→ projₗ (pair M N) ↦ M
red-projᵣ-inner
: M ↦ M'
------------------
→ projᵣ M ↦ projᵣ M'
red-projᵣ
: Value M → Value N
--------------------
→ projᵣ (pair M N) ↦ N
data _↦*_ : Term n → Term n → Set where
pure : M ↦ N → M ↦* N
id : M ↦* M
comp : L ↦* M → M ↦* N → L ↦* N
open import STLC.Typing
progress : ● ⊢ M ⦂ A → Value M ⊎ (∃[ N ] (M ↦ N))
progress (ty-abs _) = inj₁ abs-value
progress (ty-app {f = f} {x = x} t u) with progress u | progress t
... | inj₁ u-value | inj₁ (abs-value {M = M}) = inj₂ (M [ fzero ≔ x ] , red-β u-value)
... | inj₂ (u' , u-step) | inj₁ t-value = inj₂ (app f u' , red-arg t-value u-step)
... | inj₁ _ | inj₂ (t' , t-step) = inj₂ (app t' x , red-head t-step)
... | inj₂ _ | inj₂ (t' , t-step) = inj₂ (app t' x , red-head t-step)
progress ty-⋆ = inj₁ ⋆-value
progress (ty-pair {a = a} {b = b} t u) with progress t | progress u
... | inj₁ t-value | inj₁ u-value = inj₁ (pair-value t-value u-value)
... | inj₁ t-value | inj₂ (u' , u-step) = inj₂ (pair a u' , red-right t-value u-step)
... | inj₂ (t' , t-step) | _ = inj₂ (pair t' b , red-left t-step)
progress (ty-projₗ t) with progress t
... | inj₁ (pair-value {M = M} M-value N-value) = inj₂ (M , red-projₗ M-value N-value)
... | inj₂ (t' , t-step) = inj₂ (projₗ t' , red-projₗ-inner t-step)
progress (ty-projᵣ t) with progress t
... | inj₁ (pair-value {N = N} M-value N-value) = inj₂ (N , red-projᵣ M-value N-value)
... | inj₂ (t' , t-step) = inj₂ (projᵣ t' , red-projᵣ-inner t-step)
weakening-var
: ∀ {Γ : Ctx n} {v' : Fin (suc n)} → Γ ∋ v ⦂ A → liftΓ Γ v' B ∋ Data.Fin.punchIn v' v ⦂ A
weakening-var {v' = fzero} vzero = vsuc vzero
weakening-var {v' = fsuc n} vzero = vzero
weakening-var {v' = fzero} (vsuc v) = vsuc (vsuc v)
weakening-var {v' = fsuc n} (vsuc v) = vsuc (weakening-var v)
-- | The weakening lemma: A term typeable in a context is typeable in an extended context.
--
-- https://www.seas.upenn.edu/~sweirich/dsss17/html/Stlc.Lec2.html
weakening
: ∀ {Γ : Ctx n} {v : Fin (suc n)} {t : Type} → Γ ⊢ M ⦂ A → liftΓ Γ v t ⊢ lift M v ⦂ A
weakening (ty-abs body) = ty-abs (weakening body)
weakening (ty-app f x) = ty-app (weakening f) (weakening x)
weakening (ty-var v) = ty-var (weakening-var v)
weakening ty-⋆ = ty-⋆
weakening (ty-pair l r) = ty-pair (weakening l) (weakening r)
weakening (ty-projₗ p) = ty-projₗ (weakening p)
weakening (ty-projᵣ p) = ty-projᵣ (weakening p)
lemma : ∀ {Γ : Ctx n} → (v : Fin (suc n)) → liftΓ Γ v B ∋ v ⦂ A → A ≡ B
lemma fzero vzero = refl
lemma {Γ = _ ,- _} (fsuc fin) (vsuc v) = lemma fin v
subst-eq
: (v : Fin (suc n))
→ liftΓ Γ v B ∋ v ⦂ A
→ Γ ⊢ M ⦂ B
→ Γ ⊢ var v [ v ≔ M ] ⦂ A
subst-eq fzero vzero typing = typing
subst-eq {Γ = Γ ,- C} (fsuc fin) (vsuc v) typing with fin ≟ fin
... | yes refl rewrite lemma fin v = typing
... | no neq = ⊥-elim (neq refl)
subst-neq
: (v v' : Fin (suc n))
→ liftΓ Γ v B ∋ v' ⦂ A
→ (prf : ¬ v ≡ v')
→ Γ ∋ (Data.Fin.punchOut prf) ⦂ A
subst-neq v v' v-typing neq with v ≟ v'
... | yes refl = ⊥-elim (neq refl)
subst-neq fzero fzero _ _ | no neq = ⊥-elim (neq refl)
subst-neq {Γ = Γ ,- C} fzero (fsuc fin) (vsuc v-typing) _ | no neq = v-typing
subst-neq {Γ = Γ ,- C} (fsuc fin) fzero vzero _ | no neq = vzero
subst-neq {Γ = Γ ,- C} (fsuc fin) (fsuc fin') (vsuc v-typing) neq | no _ =
vsuc (subst-neq fin fin' v-typing λ { assump → neq (cong fsuc assump) })
-- | The substitution lemma: Substitution preserves typing.
subst
: ∀ {Γ : Ctx n}
→ liftΓ Γ v B ⊢ M ⦂ A → Γ ⊢ N ⦂ B
→ Γ ⊢ M [ v ≔ N ] ⦂ A
subst (ty-abs body) typing = ty-abs (subst body (weakening typing))
subst (ty-app f x) typing = ty-app (subst f typing) (subst x typing)
subst {v = v} {Γ = _} (ty-var {v = v'} v-typing) typing with v' ≟ v
... | yes refl = subst-eq v v-typing typing
subst {v = fzero} (ty-var {v = fzero} v-typing) typing | no neq = ⊥-elim (neq refl)
subst {v = fzero} (ty-var {v = fsuc v'} (vsuc v-typing)) typing | no neq = ty-var v-typing
subst {v = fsuc v} {Γ = Γ ,- C} (ty-var {v = fzero} vzero) typing | no neq = ty-var vzero
subst {v = fsuc v} {Γ = Γ ,- C} (ty-var {v = fsuc v'} (vsuc v-typing)) typing | no neq
with v ≟ v'
... | yes eq = ⊥-elim (neq (cong fsuc (sym eq)))
... | no neq' = ty-var (vsuc (subst-neq v v' v-typing _))
subst ty-⋆ _ = ty-⋆
subst (ty-pair l r) typing = ty-pair (subst l typing) (subst r typing)
subst (ty-projₗ p) typing = ty-projₗ (subst p typing)
subst (ty-projᵣ p) typing = ty-projᵣ (subst p typing)
preservation : ● ⊢ M ⦂ A → M ↦ N → ● ⊢ N ⦂ A
preservation (ty-app M-ty N-ty) (red-head M-step) = ty-app (preservation M-ty M-step) N-ty
preservation (ty-app M-ty N-ty) (red-arg M-val N-step) =
ty-app M-ty (preservation N-ty N-step)
preservation (ty-app (ty-abs body-ty) N-ty) (red-β N-value) = subst body-ty N-ty
preservation (ty-pair M-ty N-ty) (red-left M-step) = ty-pair (preservation M-ty M-step) N-ty
preservation (ty-pair M-ty N-ty) (red-right _ N-step) =
ty-pair M-ty (preservation N-ty N-step)
preservation (ty-projₗ M-ty) (red-projₗ-inner M-step) = ty-projₗ (preservation M-ty M-step)
preservation (ty-projₗ (ty-pair M-ty _)) (red-projₗ _ _) = M-ty
preservation (ty-projᵣ M-ty) (red-projᵣ-inner M-step) = ty-projᵣ (preservation M-ty M-step)
preservation (ty-projᵣ (ty-pair _ N-ty)) (red-projᵣ _ _) = N-ty
|
{
"alphanum_fraction": 0.5675193337,
"avg_line_length": 37.3555555556,
"ext": "agda",
"hexsha": "1b4f8857a629f4124000af51b09e7948bcbf0020",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TrulyNonstrict/STLC",
"max_forks_repo_path": "STLC/Operational/Eager.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TrulyNonstrict/STLC",
"max_issues_repo_path": "STLC/Operational/Eager.agda",
"max_line_length": 92,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TypesLogicsCats/STLC",
"max_stars_repo_path": "STLC/Operational/Eager.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-16T23:53:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-16T23:53:48.000Z",
"num_tokens": 2675,
"size": 6724
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed container combinators
------------------------------------------------------------------------
module Data.Container.Indexed.Combinator where
open import Level
open import Data.Container.Indexed
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤)
open import Data.Product as Prod hiding (Σ) renaming (_×_ to _⟨×⟩_)
open import Data.Sum renaming (_⊎_ to _⟨⊎⟩_)
open import Function as F hiding (id; const) renaming (_∘_ to _⟨∘⟩_)
open import Function.Inverse using (_↔̇_)
open import Relation.Unary using (Pred; _⊆_; _∪_; _∩_; ⋃; ⋂)
renaming (_⟨×⟩_ to _⟪×⟫_; _⟨⊙⟩_ to _⟪⊙⟫_; _⟨⊎⟩_ to _⟪⊎⟫_)
open import Relation.Binary.PropositionalEquality as P
using (_≗_; refl)
------------------------------------------------------------------------
-- Combinators
-- Identity.
id : ∀ {o c r} {O : Set o} → Container O O c r
id = F.const (Lift ⊤) ◃ (λ _ → Lift ⊤) / (λ {o} _ _ → o)
-- Constant.
const : ∀ {i o c r} {I : Set i} {O : Set o} →
Pred O c → Container I O c r
const X = X ◃ (λ _ → Lift ⊥) / λ _ → ⊥-elim ⟨∘⟩ lower
-- Duality.
_^⊥ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O (c ⊔ r) c
(C ◃ R / n) ^⊥ = record
{ Command = λ o → (c : C o) → R c
; Response = λ {o} _ → C o
; next = λ f c → n c (f c)
}
-- Strength.
infixl 3 _⋊_
_⋊_ : ∀ {i o c r z} {I : Set i} {O : Set o} (C : Container I O c r)
(Z : Set z) → Container (I ⟨×⟩ Z) (O ⟨×⟩ Z) c r
C ◃ R / n ⋊ Z = C ⟨∘⟩ proj₁ ◃ R / λ {oz} c r → n c r , proj₂ oz
infixr 3 _⋉_
_⋉_ : ∀ {i o z c r} {I : Set i} {O : Set o} (Z : Set z)
(C : Container I O c r) → Container (Z ⟨×⟩ I) (Z ⟨×⟩ O) c r
Z ⋉ C ◃ R / n = C ⟨∘⟩ proj₂ ◃ R / λ {zo} c r → proj₁ zo , n c r
-- Composition.
infixr 9 _∘_
_∘_ : ∀ {i j k c r} {I : Set i} {J : Set j} {K : Set k} →
Container J K c r → Container I J c r → Container I K _ _
C₁ ∘ C₂ = C ◃ R / n
where
C : ∀ k → Set _
C = ⟦ C₁ ⟧ (Command C₂)
R : ∀ {k} → ⟦ C₁ ⟧ (Command C₂) k → Set _
R (c , k) = ◇ C₁ {X = Command C₂} (Response C₂ ⟨∘⟩ proj₂) (_ , c , k)
n : ∀ {k} (c : ⟦ C₁ ⟧ (Command C₂) k) → R c → _
n (_ , f) (r₁ , r₂) = next C₂ (f r₁) r₂
-- Product. (Note that, up to isomorphism, this is a special case of
-- indexed product.)
infixr 2 _×_
_×_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O c r → Container I O c r
(C₁ ◃ R₁ / n₁) × (C₂ ◃ R₂ / n₂) = record
{ Command = C₁ ∩ C₂
; Response = R₁ ⟪⊙⟫ R₂
; next = λ { (c₁ , c₂) → [ n₁ c₁ , n₂ c₂ ] }
}
-- Indexed product.
Π : ∀ {x i o c r} {X : Set x} {I : Set i} {O : Set o} →
(X → Container I O c r) → Container I O _ _
Π {X = X} C = record
{ Command = ⋂ X (Command ⟨∘⟩ C)
; Response = ⋃[ x ∶ X ] λ c → Response (C x) (c x)
; next = λ { c (x , r) → next (C x) (c x) r }
}
-- Sum. (Note that, up to isomorphism, this is a special case of
-- indexed sum.)
infixr 1 _⊎_
_⊎_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O c r → Container I O _ _
(C₁ ◃ R₁ / n₁) ⊎ (C₂ ◃ R₂ / n₂) = record
{ Command = C₁ ∪ C₂
; Response = R₁ ⟪⊎⟫ R₂
; next = [ n₁ , n₂ ]
}
-- Indexed sum.
Σ : ∀ {x i o c r} {X : Set x} {I : Set i} {O : Set o} →
(X → Container I O c r) → Container I O _ r
Σ {X = X} C = record
{ Command = ⋃ X (Command ⟨∘⟩ C)
; Response = λ { (x , c) → Response (C x) c }
; next = λ { (x , c) r → next (C x) c r }
}
-- Constant exponentiation. (Note that this is a special case of
-- indexed product.)
infix 0 const[_]⟶_
const[_]⟶_ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} →
Set ℓ → Container I O c r → Container I O _ _
const[ X ]⟶ C = Π {X = X} (F.const C)
------------------------------------------------------------------------
-- Correctness proofs
module Identity where
correct : ∀ {o ℓ c r} {O : Set o} {X : Pred O ℓ} →
⟦ id {c = c}{r} ⟧ X ↔̇ F.id X
correct = record
{ to = P.→-to-⟶ λ xs → proj₂ xs _
; from = P.→-to-⟶ λ x → (_ , λ _ → x)
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
module Constant (ext : ∀ {ℓ} → P.Extensionality ℓ ℓ) where
correct : ∀ {i o ℓ₁ ℓ₂} {I : Set i} {O : Set o} (X : Pred O ℓ₁)
{Y : Pred O ℓ₂} → ⟦ const X ⟧ Y ↔̇ F.const X Y
correct X {Y} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ right-inverse-of = λ _ → refl
; left-inverse-of =
λ xs → P.cong (_,_ (proj₁ xs)) (ext (⊥-elim ⟨∘⟩ lower))
}
}
where
to : ⟦ const X ⟧ Y ⊆ X
to = proj₁
from : X ⊆ ⟦ const X ⟧ Y
from = < F.id , F.const (⊥-elim ⟨∘⟩ lower) >
module Duality where
correct : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
(C : Container I O c r) (X : Pred I ℓ) →
⟦ C ^⊥ ⟧ X ↔̇ (λ o → (c : Command C o) → ∃ λ r → X (next C c r))
correct C X = record
{ to = P.→-to-⟶ λ { (f , g) → < f , g > }
; from = P.→-to-⟶ λ f → proj₁ ⟨∘⟩ f , proj₂ ⟨∘⟩ f
; inverse-of = record
{ left-inverse-of = λ { (_ , _) → refl }
; right-inverse-of = λ _ → refl
}
}
module Composition where
correct : ∀ {i j k ℓ c r} {I : Set i} {J : Set j} {K : Set k}
(C₁ : Container J K c r) (C₂ : Container I J c r) →
{X : Pred I ℓ} → ⟦ C₁ ∘ C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ ⟨∘⟩ ⟦ C₂ ⟧) X
correct C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ C₁ ∘ C₂ ⟧ X ⊆ ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)
to ((c , f) , g) = (c , < f , curry g >)
from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) ⊆ ⟦ C₁ ∘ C₂ ⟧ X
from (c , f) = ((c , proj₁ ⟨∘⟩ f) , uncurry (proj₂ ⟨∘⟩ f))
module Product (ext : ∀ {ℓ} → P.Extensionality ℓ ℓ) where
correct : ∀ {i o c r} {I : Set i} {O : Set o}
(C₁ C₂ : Container I O c r) {X} →
⟦ C₁ × C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X)
correct C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ C₁ × C₂ ⟧ X ⊆ ⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X
to ((c₁ , c₂) , k) = ((c₁ , k ⟨∘⟩ inj₁) , (c₂ , k ⟨∘⟩ inj₂))
from : ⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X ⊆ ⟦ C₁ × C₂ ⟧ X
from ((c₁ , k₁) , (c₂ , k₂)) = ((c₁ , c₂) , [ k₁ , k₂ ])
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (c , _) =
P.cong (_,_ c) (ext [ (λ _ → refl) , (λ _ → refl) ])
module IndexedProduct where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : X → Container I O c r) {Y : Pred I ℓ} →
⟦ Π C ⟧ Y ↔̇ ⋂[ x ∶ X ] ⟦ C x ⟧ Y
correct {X = X} C {Y} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ Π C ⟧ Y ⊆ ⋂[ x ∶ X ] ⟦ C x ⟧ Y
to (c , k) = λ x → (c x , λ r → k (x , r))
from : ⋂[ x ∶ X ] ⟦ C x ⟧ Y ⊆ ⟦ Π C ⟧ Y
from f = (proj₁ ⟨∘⟩ f , uncurry (proj₂ ⟨∘⟩ f))
module Sum where
correct : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
(C₁ C₂ : Container I O c r) {X : Pred I ℓ} →
⟦ C₁ ⊎ C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X)
correct C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ]
}
}
where
to : ⟦ C₁ ⊎ C₂ ⟧ X ⊆ ⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X
to (inj₁ c₁ , k) = inj₁ (c₁ , k)
to (inj₂ c₂ , k) = inj₂ (c₂ , k)
from : ⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X ⊆ ⟦ C₁ ⊎ C₂ ⟧ X
from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (inj₁ _ , _) = refl
from∘to (inj₂ _ , _) = refl
module IndexedSum where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : X → Container I O c r) {Y : Pred I ℓ} →
⟦ Σ C ⟧ Y ↔̇ ⋃[ x ∶ X ] ⟦ C x ⟧ Y
correct {X = X} C {Y} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ Σ C ⟧ Y ⊆ ⋃[ x ∶ X ] ⟦ C x ⟧ Y
to ((x , c) , k) = (x , (c , k))
from : ⋃[ x ∶ X ] ⟦ C x ⟧ Y ⊆ ⟦ Σ C ⟧ Y
from (x , (c , k)) = ((x , c) , k)
module ConstantExponentiation where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : Container I O c r) {Y : Pred I ℓ} →
⟦ const[ X ]⟶ C ⟧ Y ↔̇ (⋂ X (F.const (⟦ C ⟧ Y)))
correct C {Y} = IndexedProduct.correct (F.const C) {Y}
|
{
"alphanum_fraction": 0.4398373065,
"avg_line_length": 29.7013422819,
"ext": "agda",
"hexsha": "426276e81a60fac816498d62e561d0dd1b0052e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Combinator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Combinator.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Combinator.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 3785,
"size": 8851
}
|
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Definition where
open import Level
open import Data.Bits public renaming (Bits to 𝔹; [] to 0ᵇ; 0∷_ to 1ᵇ_; 1∷_ to 2ᵇ_)
-- The following causes a performance hit:
-- open import Agda.Builtin.List using ([]; _∷_; List)
-- open import Agda.Builtin.Bool using (Bool; true; false)
-- 𝔹 : Type
-- 𝔹 = List Bool
-- infixr 8 1ᵇ_ 2ᵇ_
-- pattern 0ᵇ = []
-- pattern 1ᵇ_ xs = false ∷ xs
-- pattern 2ᵇ_ xs = true ∷ xs
|
{
"alphanum_fraction": 0.6587982833,
"avg_line_length": 23.3,
"ext": "agda",
"hexsha": "c372ae72ca270e4e45d8517c4d94e186a32e28b6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/Definition.agda",
"max_line_length": 83,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 179,
"size": 466
}
|
------------------------------------------------------------------------------
-- Conat properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Conat.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- Conat predicate is also a pre-fixed point of the functional NatF,
-- i.e.
--
-- NatF Conat ≤ Conat (see FOTC.Data.Conat.Type).
-- See Issue https://github.com/asr/apia/issues/81 .
Conat-inA : D → Set
Conat-inA n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')
{-# ATP definition Conat-inA #-}
Conat-in : ∀ {n} →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') →
Conat n
Conat-in h = Conat-coind Conat-inA h' h
where
postulate h' : ∀ {n} → Conat-inA n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat-inA n')
{-# ATP prove h' #-}
-- See Issue https://github.com/asr/apia/issues/81 .
0-ConatA : D → Set
0-ConatA n = n ≡ zero
{-# ATP definition 0-ConatA #-}
0-Conat : Conat zero
0-Conat = Conat-coind 0-ConatA h refl
where
postulate h : ∀ {n} → 0-ConatA n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ 0-ConatA n')
{-# ATP prove h #-}
∞-Conat : Conat ∞
∞-Conat = Conat-coind A h refl
where
A : D → Set
A n = n ≡ ∞
{-# ATP definition A #-}
postulate h : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')
{-# ATP prove h #-}
N→Conat : ∀ {n} → N n → Conat n
N→Conat Nn = Conat-coind N h Nn
where
h : ∀ {m} → N m → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ N m')
h nzero = prf
where postulate prf : zero ≡ zero ∨ (∃[ m' ] zero ≡ succ₁ m' ∧ N m')
{-# ATP prove prf #-}
h (nsucc {m} Nm) = prf
where postulate prf : succ₁ m ≡ zero ∨ (∃[ m' ] succ₁ m ≡ succ₁ m' ∧ N m')
{-# ATP prove prf #-}
|
{
"alphanum_fraction": 0.4778887304,
"avg_line_length": 30.4782608696,
"ext": "agda",
"hexsha": "06d20e778b12c5183fb1f16bfee4260217dfd950",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Conat/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Conat/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Conat/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 703,
"size": 2103
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
module Cubical.Algebra.Structures {a} (A : Type a) where
-- The file is divided into sections depending on the arities of the
-- components of the algebraic structure.
open import Cubical.Foundations.Prelude using (isSet; cong; _∙_)
open import Cubical.Foundations.HLevels using (hSet)
open import Cubical.Algebra.Base
open import Cubical.Algebra.Definitions
open import Cubical.Algebra.Properties
open import Cubical.Data.Sigma using (_,_; fst; snd)
open import Cubical.Data.Nat.Base renaming (zero to ℕ-zero; suc to ℕ-suc)
open import Cubical.Data.Int.Base
open import Cubical.Data.NatPlusOne.Base
open import Cubical.Relation.Nullary using (¬_)
open import Cubical.Relation.Binary.Reasoning.Equality
_NotEqualTo_ : A → Type a
_NotEqualTo_ z = Σ[ x ∈ A ] ¬ (x ≡ z)
------------------------------------------------------------------------
-- Algebra with 1 binary operation
------------------------------------------------------------------------
record IsMagma (_•_ : Op₂ A) : Type a where
constructor ismagma
field
is-set : isSet A
set : hSet a
set = A , is-set
record IsSemigroup (_•_ : Op₂ A) : Type a where
constructor issemigroup
field
isMagma : IsMagma _•_
assoc : Associative _•_
open IsMagma isMagma public
infixl 10 _^_
_^_ : A → ℕ₊₁ → A
x ^ one = x
x ^ (2+ n) = x • (x ^ 1+ n)
record IsBand (_•_ : Op₂ A) : Type a where
constructor isband
field
isSemigroup : IsSemigroup _•_
idem : Idempotent _•_
open IsSemigroup isSemigroup public
record IsCommutativeSemigroup (_•_ : Op₂ A) : Type a where
constructor iscommsemigroup
field
isSemigroup : IsSemigroup _•_
comm : Commutative _•_
open IsSemigroup isSemigroup public
record IsSemilattice (_•_ : Op₂ A) : Type a where
constructor issemilattice
field
isBand : IsBand _•_
comm : Commutative _•_
open IsBand isBand public
record IsSelectiveMagma (_•_ : Op₂ A) : Type a where
constructor isselmagma
field
isMagma : IsMagma _•_
sel : Selective _•_
open IsMagma isMagma public
------------------------------------------------------------------------
-- Algebra with 1 binary operation & 1 element
------------------------------------------------------------------------
record IsMonoid (_•_ : Op₂ A) (ε : A) : Type a where
constructor ismonoid
field
isSemigroup : IsSemigroup _•_
identity : Identity ε _•_
open IsSemigroup isSemigroup public hiding (_^_)
identityˡ : LeftIdentity ε _•_
identityˡ = fst identity
identityʳ : RightIdentity ε _•_
identityʳ = snd identity
ε-uniqueʳ : ∀ {e} → RightIdentity e _•_ → ε ≡ e
ε-uniqueʳ idʳ = id-unique′ identityˡ idʳ
ε-uniqueˡ : ∀ {e} → LeftIdentity e _•_ → e ≡ ε
ε-uniqueˡ idˡ = id-unique′ idˡ identityʳ
infixl 10 _^_
_^_ : A → ℕ → A
_ ^ ℕ-zero = ε
x ^ (ℕ-suc n) = x • (x ^ n)
record IsCommutativeMonoid (_•_ : Op₂ A) (ε : A) : Type a where
constructor iscommmonoid
field
isMonoid : IsMonoid _•_ ε
comm : Commutative _•_
open IsMonoid isMonoid public
isCommutativeSemigroup : IsCommutativeSemigroup _•_
isCommutativeSemigroup = record
{ isSemigroup = isSemigroup
; comm = comm
}
record IsIdempotentCommutativeMonoid (_•_ : Op₂ A) (ε : A) : Type a where
constructor isidemcommmonoid
field
isCommutativeMonoid : IsCommutativeMonoid _•_ ε
idem : Idempotent _•_
open IsCommutativeMonoid isCommutativeMonoid public
-- Idempotent commutative monoids are also known as bounded lattices.
-- Note that the BoundedLattice necessarily uses the notation inherited
-- from monoids rather than lattices.
IsBoundedLattice = IsIdempotentCommutativeMonoid
pattern isboundedlattice = isidemcommmonoid
module IsBoundedLattice {_•_ : Op₂ A}
{ε : A}
(isIdemCommMonoid : IsIdempotentCommutativeMonoid _•_ ε) =
IsIdempotentCommutativeMonoid isIdemCommMonoid
------------------------------------------------------------------------
-- Algebra with 1 binary operation, 1 unary operation & 1 element
------------------------------------------------------------------------
record IsGroup (_•_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Type a where
constructor isgroup
field
isMonoid : IsMonoid _•_ ε
inverse : Inverse ε _⁻¹ _•_
open IsMonoid isMonoid public hiding (_^_)
infixl 10 _^_
_^_ : A → ℤ → A
x ^ pos ℕ-zero = ε
x ^ pos (ℕ-suc n) = x • (x ^ pos n)
x ^ negsuc ℕ-zero = x ⁻¹
x ^ negsuc (ℕ-suc n) = (x ⁻¹) • (x ^ negsuc n)
-- Right division
infixl 6 _/_
_/_ : Op₂ A
x / y = x • (y ⁻¹)
-- Left division
infixr 6 _/ˡ_
_/ˡ_ : Op₂ A
x /ˡ y = (x ⁻¹) • y
inverseˡ : LeftInverse ε _⁻¹ _•_
inverseˡ = fst inverse
inverseʳ : RightInverse ε _⁻¹ _•_
inverseʳ = snd inverse
inv-uniqueʳ : ∀ x y → (x • y) ≡ ε → x ≡ (y ⁻¹)
inv-uniqueʳ = assoc+id+invʳ⇒invʳ-unique assoc identity inverseʳ
inv-uniqueˡ : ∀ x y → (x • y) ≡ ε → y ≡ (x ⁻¹)
inv-uniqueˡ = assoc+id+invˡ⇒invˡ-unique assoc identity inverseˡ
cancelˡ : LeftCancellative _•_
cancelˡ = assoc+idˡ+invˡ⇒cancelˡ assoc identityˡ inverseˡ
cancelʳ : RightCancellative _•_
cancelʳ = assoc+idʳ+invʳ⇒cancelʳ assoc identityʳ inverseʳ
record IsAbelianGroup (_+_ : Op₂ A) (ε : A) (-_ : Op₁ A) : Type a where
constructor isabgroup
field
isGroup : IsGroup _+_ ε -_
comm : Commutative _+_
open IsGroup isGroup public hiding (_/ˡ_) renaming (_/_ to _-_; _^_ to _*_)
isCommutativeMonoid : IsCommutativeMonoid _+_ ε
isCommutativeMonoid = record
{ isMonoid = isMonoid
; comm = comm
}
open IsCommutativeMonoid isCommutativeMonoid public
using (isCommutativeSemigroup)
------------------------------------------------------------------------
-- Algebra with 2 binary operations
------------------------------------------------------------------------
-- Note that `IsLattice` is not defined in terms of `IsSemilattice`
-- because the idempotence laws of ⋀ and ⋁ can be derived from the
-- absorption laws, which makes the corresponding "idem" fields
-- redundant. The derived idempotence laws are stated and proved in
-- `Algebra.Properties.Lattice` along with the fact that every lattice
-- consists of two semilattices.
record IsLattice (_⋀_ _⋁_ : Op₂ A) : Type a where
constructor islattice
field
⋀-comm : Commutative _⋀_
⋀-assoc : Associative _⋀_
⋁-comm : Commutative _⋁_
⋁-assoc : Associative _⋁_
absorptive : Absorptive _⋀_ _⋁_
⋀-absorbs-⋁ : _⋀_ Absorbs _⋁_
⋀-absorbs-⋁ = fst absorptive
⋁-absorbs-⋀ : _⋁_ Absorbs _⋀_
⋁-absorbs-⋀ = snd absorptive
record IsDistributiveLattice (_⋀_ _⋁_ : Op₂ A) : Type a where
constructor isdistrlattice
field
isLattice : IsLattice _⋀_ _⋁_
⋀-distribʳ-⋁ : _⋀_ DistributesOverʳ _⋁_
open IsLattice isLattice public
------------------------------------------------------------------------
-- Algebra with 2 binary operations & 1 element
------------------------------------------------------------------------
record IsNearSemiring (_+_ _*_ : Op₂ A) (0# : A) : Type a where
constructor isnearsemiring
field
+-isMonoid : IsMonoid _+_ 0#
*-isSemigroup : IsSemigroup _*_
distribˡ : _*_ DistributesOverˡ _+_
zeroˡ : LeftZero 0# _*_
open IsMonoid +-isMonoid public
renaming
( assoc to +-assoc
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; ε-uniqueˡ to 0#-uniqueˡ
; ε-uniqueʳ to 0#-uniqueʳ
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; _^_ to _**_
)
open IsSemigroup *-isSemigroup public
using (_^_)
renaming
( assoc to *-assoc
; isMagma to *-isMagma
)
record IsSemiringWithoutOne (_+_ _*_ : Op₂ A) (0# : A) : Type a where
constructor issemiringwo1
field
+-isCommutativeMonoid : IsCommutativeMonoid _+_ 0#
*-isSemigroup : IsSemigroup _*_
distrib : _*_ DistributesOver _+_
zero : Zero 0# _*_
open IsCommutativeMonoid +-isCommutativeMonoid public
using ()
renaming
( comm to +-comm
; isMonoid to +-isMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
)
zeroˡ : LeftZero 0# _*_
zeroˡ = fst zero
zeroʳ : RightZero 0# _*_
zeroʳ = snd zero
distribˡ : _*_ DistributesOverˡ _+_
distribˡ = fst distrib
distribʳ : _*_ DistributesOverʳ _+_
distribʳ = snd distrib
isNearSemiring : IsNearSemiring _+_ _*_ 0#
isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-isSemigroup = *-isSemigroup
; distribˡ = distribˡ
; zeroˡ = zeroˡ
}
open IsNearSemiring isNearSemiring public
hiding (+-isMonoid; zeroˡ; *-isSemigroup; distribˡ)
record IsCommutativeSemiringWithoutOne (_+_ _*_ : Op₂ A) (0# : A) : Type a where
constructor iscommsemiringwo1
field
isSemiringWithoutOne : IsSemiringWithoutOne _+_ _*_ 0#
*-comm : Commutative _*_
open IsSemiringWithoutOne isSemiringWithoutOne public
------------------------------------------------------------------------
-- Algebra with 2 binary operations & 2 elements
------------------------------------------------------------------------
record IsSemiringWithoutAnnihilatingZero (_+_ _*_ : Op₂ A)
(0# 1# : A) : Type a where
constructor issemiringwoa0
field
-- Note that these Algebra do have an additive unit, but this
-- unit does not necessarily annihilate multiplication.
+-isCommutativeMonoid : IsCommutativeMonoid _+_ 0#
*-isMonoid : IsMonoid _*_ 1#
distrib : _*_ DistributesOver _+_
distribˡ : _*_ DistributesOverˡ _+_
distribˡ = fst distrib
distribʳ : _*_ DistributesOverʳ _+_
distribʳ = snd distrib
open IsCommutativeMonoid +-isCommutativeMonoid public
renaming
( assoc to +-assoc
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; ε-uniqueˡ to 0#-uniqueˡ
; ε-uniqueʳ to 0#-uniqueʳ
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; _^_ to _**_
)
open IsMonoid *-isMonoid public
using ()
renaming
( assoc to *-assoc
; identity to *-identity
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
; ε-uniqueˡ to 1#-uniqueˡ
; ε-uniqueʳ to 1#-uniqueʳ
; isMagma to *-isMagma
; isSemigroup to *-isSemigroup
)
record IsSemiring (_+_ _*_ : Op₂ A) (0# 1# : A) : Type a where
constructor issemiring
field
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero _+_ _*_ 0# 1#
zero : Zero 0# _*_
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
isSemiringWithoutOne : IsSemiringWithoutOne _+_ _*_ 0#
isSemiringWithoutOne = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isSemigroup = *-isSemigroup
; distrib = distrib
; zero = zero
}
open IsSemiringWithoutOne isSemiringWithoutOne public
using
( isNearSemiring
; zeroˡ
; zeroʳ
)
record IsCommutativeSemiring (_+_ _*_ : Op₂ A) (0# 1# : A) : Type a where
constructor iscommsemiring
field
isSemiring : IsSemiring _+_ _*_ 0# 1#
*-comm : Commutative _*_
open IsSemiring isSemiring public
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne _+_ _*_ 0#
isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = isSemiringWithoutOne
; *-comm = *-comm
}
*-isCommutativeSemigroup : IsCommutativeSemigroup _*_
*-isCommutativeSemigroup = record
{ isSemigroup = *-isSemigroup
; comm = *-comm
}
*-isCommutativeMonoid : IsCommutativeMonoid _*_ 1#
*-isCommutativeMonoid = record
{ isMonoid = *-isMonoid
; comm = *-comm
}
------------------------------------------------------------------------
-- Algebra with 2 binary operations, 1 unary operation & 2 elements
------------------------------------------------------------------------
record IsRing (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type a where
constructor isring
field
+-isAbelianGroup : IsAbelianGroup _+_ 0# -_
*-isMonoid : IsMonoid _*_ 1#
distrib : _*_ DistributesOver _+_
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; ε-uniqueˡ to 0#-uniqueˡ
; ε-uniqueʳ to 0#-uniqueʳ
; inverse to +-inverse
; inverseˡ to +-inverseˡ
; inverseʳ to +-inverseʳ
; inv-uniqueˡ to neg-uniqueˡ
; inv-uniqueʳ to neg-uniqueʳ
; cancelˡ to +-cancelˡ
; cancelʳ to +-cancelʳ
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isGroup to +-isGroup
; _*_ to _**_
)
open IsMonoid *-isMonoid public
using ()
renaming
( assoc to *-assoc
; identity to *-identity
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
; ε-uniqueˡ to 1#-uniqueˡ
; ε-uniqueʳ to 1#-uniqueʳ
; isMagma to *-isMagma
; isSemigroup to *-isSemigroup
)
distribˡ : _*_ DistributesOverˡ _+_
distribˡ = fst distrib
distribʳ : _*_ DistributesOverʳ _+_
distribʳ = snd distrib
zeroˡ : LeftZero 0# _*_
zeroˡ = assoc+distribʳ+idʳ+invʳ⇒zeˡ {_+_ = _+_} {_*_ = _*_} { -_} +-assoc distribʳ +-identityʳ +-inverseʳ
zeroʳ : RightZero 0# _*_
zeroʳ = assoc+distribˡ+idʳ+invʳ⇒zeʳ {_+_ = _+_} {_*_ = _*_} { -_} +-assoc distribˡ +-identityʳ +-inverseʳ
zero : Zero 0# _*_
zero = zeroˡ , zeroʳ
isSemiringWithoutAnnihilatingZero
: IsSemiringWithoutAnnihilatingZero _+_ _*_ 0# 1#
isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-isMonoid
; distrib = distrib
}
isSemiring : IsSemiring _+_ _*_ 0# 1#
isSemiring = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
; zero = zero
}
open IsSemiring isSemiring public
using (isNearSemiring; isSemiringWithoutOne)
record IsCommutativeRing (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type a where
constructor iscommring
field
isRing : IsRing _+_ _*_ -_ 0# 1#
*-comm : Commutative _*_
open IsRing isRing public
*-isCommutativeMonoid : IsCommutativeMonoid _*_ 1#
*-isCommutativeMonoid = record
{ isMonoid = *-isMonoid
; comm = *-comm
}
isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0# 1#
isCommutativeSemiring = record
{ isSemiring = isSemiring
; *-comm = *-comm
}
open IsCommutativeSemiring isCommutativeSemiring public
using ( isCommutativeSemiringWithoutOne )
record IsIntegralDomain {ℓ} (Cancellable : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type (ℓ-max a ℓ) where
constructor isintegraldomain
Cancellables : Type (ℓ-max a ℓ)
Cancellables = Σ A Cancellable
field
isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1#
*-cancelˡ : ∀ (x : Cancellables) {y z} → (x .fst) * y ≡ (x .fst) * z → y ≡ z
open IsCommutativeRing isCommutativeRing public
*-cancelʳ : ∀ {x y} (z : Cancellables) → x * (z .fst) ≡ y * (z .fst) → x ≡ y
*-cancelʳ {x} {y} zᵖ@(z , _) eq = *-cancelˡ zᵖ (
z * x ≡⟨ *-comm z x ⟩
x * z ≡⟨ eq ⟩
y * z ≡⟨ *-comm y z ⟩
z * y ∎)
record IsBooleanAlgebra (_⋀_ _⋁_ : Op₂ A) (¬_ : Op₁ A) (⊤ ⊥ : A) : Type a where
constructor isbooleanalgebra
field
isDistributiveLattice : IsDistributiveLattice _⋀_ _⋁_
⋀-identityʳ : RightIdentity ⊤ _⋀_
⋁-identityʳ : RightIdentity ⊥ _⋁_
⋀-complementʳ : RightInverse ⊥ ¬_ _⋀_
⋁-complementʳ : RightInverse ⊤ ¬_ _⋁_
open IsDistributiveLattice isDistributiveLattice public
⋀-identityˡ : LeftIdentity ⊤ _⋀_
⋀-identityˡ x = ⋀-comm _ _ ∙ ⋀-identityʳ x
⋀-identity : Identity ⊤ _⋀_
⋀-identity = ⋀-identityˡ , ⋀-identityʳ
⋁-identityˡ : LeftIdentity ⊥ _⋁_
⋁-identityˡ x = ⋁-comm _ _ ∙ ⋁-identityʳ x
⋁-identity : Identity ⊥ _⋁_
⋁-identity = ⋁-identityˡ , ⋁-identityʳ
⋀-complementˡ : LeftInverse ⊥ ¬_ _⋀_
⋀-complementˡ = comm+invʳ⇒invˡ ⋀-comm ⋀-complementʳ
⋀-complement : Inverse ⊥ ¬_ _⋀_
⋀-complement = ⋀-complementˡ , ⋀-complementʳ
⋁-complementˡ : LeftInverse ⊤ ¬_ _⋁_
⋁-complementˡ = comm+invʳ⇒invˡ ⋁-comm ⋁-complementʳ
⋁-complement : Inverse ⊤ ¬_ _⋁_
⋁-complement = ⋁-complementˡ , ⋁-complementʳ
------------------------------------------------------------------------
-- Algebra with 2 binary operations, 2 unary operations & 2 elements
------------------------------------------------------------------------
-- The standard definition of division rings excludes the zero ring, but such a restriction is rarely important
record IsDivisionRing {ℓ} (Invertible : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (_⁻¹ : Σ A Invertible → A) (0# 1# : A) : Type (ℓ-max a ℓ) where
constructor isdivring
Invertibles : Type (ℓ-max a ℓ)
Invertibles = Σ A Invertible
field
isRing : IsRing _+_ _*_ -_ 0# 1#
*-inverseˡ : (x : Invertibles) → (x ⁻¹) * (x .fst) ≡ 1#
*-inverseʳ : (x : Invertibles) → (x .fst) * (x ⁻¹) ≡ 1#
open IsRing isRing public
infixl 6 _/_
_/_ : A → Invertibles → A
x / y = x * (y ⁻¹)
infixr 6 _/ˡ_
_/ˡ_ : Invertibles → A → A
x /ˡ y = (x ⁻¹) * y
*-cancelˡ : ∀ (x : Invertibles) {y z} → (x .fst) * y ≡ (x .fst) * z → y ≡ z
*-cancelˡ xᵖ@(x , _) {y} {z} eq =
y ≡˘⟨ *-identityˡ y ⟩
1# * y ≡˘⟨ cong (_* y) (*-inverseˡ xᵖ) ⟩
((xᵖ ⁻¹) * x) * y ≡⟨ *-assoc (xᵖ ⁻¹) x y ⟩
(xᵖ ⁻¹) * (x * y) ≡⟨ cong ((xᵖ ⁻¹) *_) eq ⟩
(xᵖ ⁻¹) * (x * z) ≡˘⟨ *-assoc (xᵖ ⁻¹) x z ⟩
((xᵖ ⁻¹) * x) * z ≡⟨ cong (_* z) (*-inverseˡ xᵖ) ⟩
1# * z ≡⟨ *-identityˡ z ⟩
z ∎
*-cancelʳ : ∀ {x y} (z : Invertibles) → x * (z .fst) ≡ y * (z .fst) → x ≡ y
*-cancelʳ {x} {y} zᵖ@(z , _) eq =
x ≡˘⟨ *-identityʳ x ⟩
x * 1# ≡˘⟨ cong (x *_) (*-inverseʳ zᵖ) ⟩
x * (z * (zᵖ ⁻¹)) ≡˘⟨ *-assoc x z (zᵖ ⁻¹) ⟩
(x * z) * (zᵖ ⁻¹) ≡⟨ cong (_* (zᵖ ⁻¹)) eq ⟩
(y * z) * (zᵖ ⁻¹) ≡⟨ *-assoc y z (zᵖ ⁻¹) ⟩
y * (z * (zᵖ ⁻¹)) ≡⟨ cong (y *_) (*-inverseʳ zᵖ) ⟩
y * 1# ≡⟨ *-identityʳ y ⟩
y ∎
record IsField {ℓ} (Invertible : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (_⁻¹ : Σ A Invertible → A) (0# 1# : A) : Type (ℓ-max a ℓ) where
constructor isfield
field
isDivisionRing : IsDivisionRing Invertible _+_ _*_ -_ _⁻¹ 0# 1#
*-comm : Commutative _*_
open IsDivisionRing isDivisionRing public hiding (_/ˡ_)
isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1#
isCommutativeRing = record
{ isRing = isRing
; *-comm = *-comm
}
isIntegralDomain : IsIntegralDomain Invertible _+_ _*_ -_ 0# 1#
isIntegralDomain = record
{ isCommutativeRing = isCommutativeRing
; *-cancelˡ = *-cancelˡ
}
open IsIntegralDomain isIntegralDomain public
using (*-isCommutativeMonoid; isCommutativeSemiring; isCommutativeSemiringWithoutOne)
|
{
"alphanum_fraction": 0.5817266976,
"avg_line_length": 29.6937869822,
"ext": "agda",
"hexsha": "434efc7c2ca1a94e3fe7e6bf899c4debcbd66d92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Structures.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7040,
"size": 20073
}
|
module BBHeap.Order.Properties {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import BBHeap.Order _≤_ renaming (Acc to Accₕ ; acc to accₕ)
open import Data.Nat
open import Induction.Nat
open import Induction.WellFounded
ii-acc : ∀ {b} {h} → Acc _<′_ (# {b} h) → Accₕ h
ii-acc (acc rs) = accₕ (λ h' #h'<′#h → ii-acc (rs (# h') #h'<′#h))
≺-wf : ∀ {b} h → Accₕ {b} h
≺-wf = λ h → ii-acc (<-well-founded (# h))
|
{
"alphanum_fraction": 0.5976744186,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "71fc67d1359dbab91fee7361510569a75ca117e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Order/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Order/Properties.agda",
"max_line_length": 66,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Order/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 179,
"size": 430
}
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Emptyrec {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
import Definition.Typed.Weakening as T
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Weakening
open import Definition.LogicalRelation.Substitution.Introductions.Empty
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Tools.Product
open import Tools.Unit
open import Tools.Empty
open import Tools.Nat
import Tools.PropositionalEquality as PE
-- Empty elimination closure reduction (requires reducible terms and equality).
Emptyrec-subst* : ∀ {Γ C n n′ l}
→ Γ ⊢ C
→ Γ ⊢ n ⇒* n′ ∷ Empty
→ ([Empty] : Γ ⊩⟨ l ⟩ Empty)
→ Γ ⊩⟨ l ⟩ n′ ∷ Empty / [Empty]
→ Γ ⊢ Emptyrec C n ⇒* Emptyrec C n′ ∷ C
Emptyrec-subst* C (id x) [Empty] [n′] = id (Emptyrecⱼ C x)
Emptyrec-subst* C (x ⇨ n⇒n′) [Empty] [n′] =
let q , w = redSubst*Term n⇒n′ [Empty] [n′]
a , s = redSubstTerm x [Empty] q
in Emptyrec-subst C x ⇨ conv* (Emptyrec-subst* C n⇒n′ [Empty] [n′]) (refl C)
-- Reducibility of empty elimination under a valid substitution.
EmptyrecTerm : ∀ {F n Γ Δ σ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
(⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty / Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)))
→ Δ ⊩⟨ l ⟩ Emptyrec (subst σ F) n
∷ subst σ F
/ proj₁ ([F] ⊢Δ [σ])
EmptyrecTerm {F} {n} {Γ} {Δ} {σ} {l} [Γ] [F] ⊢Δ [σ]
(Emptyₜ m d n≡n (ne (neNfₜ neM ⊢m m≡m))) =
let [Empty] = Emptyᵛ {l = l} [Γ]
[σEmpty] = proj₁ ([Empty] ⊢Δ [σ])
[σm] = neuTerm [σEmpty] neM ⊢m m≡m
[σF] = proj₁ ([F] ⊢Δ [σ])
⊢F = escape [σF]
⊢F≡F = escapeEq [σF] (reflEq [σF])
EmptyrecM = neuTerm [σF] (Emptyrecₙ neM) (Emptyrecⱼ ⊢F ⊢m)
(~-Emptyrec ⊢F≡F m≡m)
reduction = Emptyrec-subst* ⊢F (redₜ d) [σEmpty] [σm]
in proj₁ (redSubst*Term reduction [σF] EmptyrecM)
-- Reducibility of empty elimination congruence under a valid substitution equality.
Emptyrec-congTerm : ∀ {F F′ n m Γ Δ σ σ′ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ])
([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F])
(⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty / Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)))
([σm] : Δ ⊩⟨ l ⟩ m ∷ Empty / Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)))
([σn≡σm] : Δ ⊩⟨ l ⟩ n ≡ m ∷ Empty / Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)))
→ Δ ⊩⟨ l ⟩ Emptyrec (subst σ F) n
≡ Emptyrec (subst σ′ F′) m
∷ subst σ F
/ proj₁ ([F] ⊢Δ [σ])
Emptyrec-congTerm {F} {F′} {n} {m} {Γ} {Δ} {σ} {σ′} {l}
[Γ] [F] [F′] [F≡F′]
⊢Δ [σ] [σ′] [σ≡σ′]
(Emptyₜ n′ d n≡n (ne (neNfₜ neN′ ⊢n′ n≡n₁)))
(Emptyₜ m′ d′ m≡m (ne (neNfₜ neM′ ⊢m′ m≡m₁)))
(Emptyₜ₌ n″ m″ d₁ d₁′ t≡u (ne (neNfₜ₌ x₂ x₃ prop₂))) =
let n″≡n′ = whrDet*Term (redₜ d₁ , ne x₂) (redₜ d , ne neN′)
m″≡m′ = whrDet*Term (redₜ d₁′ , ne x₃) (redₜ d′ , ne neM′)
[Empty] = Emptyᵛ {l = l} [Γ]
[σEmpty] = proj₁ ([Empty] ⊢Δ [σ])
[σ′Empty] = proj₁ ([Empty] ⊢Δ [σ′])
[σF] = proj₁ ([F] ⊢Δ [σ])
[σ′F] = proj₁ ([F] ⊢Δ [σ′])
[σ′F′] = proj₁ ([F′] ⊢Δ [σ′])
[σn′] = neuTerm [σEmpty] neN′ ⊢n′ n≡n₁
[σ′m′] = neuTerm [σ′Empty] neM′ ⊢m′ m≡m₁
⊢F = escape [σF]
⊢F≡F = escapeEq [σF] (reflEq [σF])
⊢F′ = escape [σ′F′]
⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′])
⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢σ′F≡σ′F′ = escapeEq [σ′F] ([F≡F′] ⊢Δ [σ′])
⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡σ′F′
[σF≡σ′F] = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]
[σ′F≡σ′F′] = [F≡F′] ⊢Δ [σ′]
[σF≡σ′F′] = transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′]
EmptyrecN = neuTerm [σF] (Emptyrecₙ neN′) (Emptyrecⱼ ⊢F ⊢n′)
(~-Emptyrec ⊢F≡F n≡n₁)
EmptyrecM = neuTerm [σ′F′] (Emptyrecₙ neM′) (Emptyrecⱼ ⊢F′ ⊢m′)
(~-Emptyrec ⊢F′≡F′ m≡m₁)
EmptyrecN≡M =
(neuEqTerm [σF] (Emptyrecₙ neN′) (Emptyrecₙ neM′)
(Emptyrecⱼ ⊢F ⊢n′)
(conv (Emptyrecⱼ ⊢F′ ⊢m′)
(sym (≅-eq (escapeEq [σF]
(transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′])))))
(~-Emptyrec ⊢F≡F′
(PE.subst₂ (λ x y → _ ⊢ x ~ y ∷ _)
n″≡n′ m″≡m′ prop₂)))
reduction₁ = Emptyrec-subst* ⊢F (redₜ d) [σEmpty] [σn′]
reduction₂ = Emptyrec-subst* ⊢F′ (redₜ d′) [σ′Empty] [σ′m′]
eq₁ = proj₂ (redSubst*Term reduction₁ [σF] EmptyrecN)
eq₂ = proj₂ (redSubst*Term reduction₂ [σ′F′] EmptyrecM)
in transEqTerm [σF] eq₁
(transEqTerm [σF] EmptyrecN≡M
(convEqTerm₂ [σF] [σ′F′] [σF≡σ′F′]
(symEqTerm [σ′F′] eq₂)))
-- Validity of empty elimination.
Emptyrecᵛ : ∀ {F n Γ l} ([Γ] : ⊩ᵛ Γ)
([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty / [Γ])
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
→ ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty / [Γ] / [Empty])
→ Γ ⊩ᵛ⟨ l ⟩ Emptyrec F n ∷ F / [Γ] / [F]
Emptyrecᵛ {F} {n} {l = l} [Γ] [Empty] [F] [n]
{Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ]))
in EmptyrecTerm {F = F} [Γ] [F] ⊢Δ [σ] [σn]
, λ {σ'} [σ′] [σ≡σ′] →
let [σ′n] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ′]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ′]))
[σn≡σ′n] = irrelevanceEqTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)))
(proj₂ ([n] ⊢Δ [σ]) [σ′] [σ≡σ′])
congTerm = Emptyrec-congTerm {F = F} {F′ = F} [Γ] [F] [F] (reflᵛ {F} {l = l} [Γ] [F])
⊢Δ [σ] [σ′] [σ≡σ′] [σn] [σ′n] [σn≡σ′n]
in congTerm
-- Validity of empty elimination congruence.
Emptyrec-congᵛ : ∀ {F F′ n n′ Γ l} ([Γ] : ⊩ᵛ Γ)
([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty / [Γ])
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ])
([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F])
([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty / [Γ] / [Empty])
([n′] : Γ ⊩ᵛ⟨ l ⟩ n′ ∷ Empty / [Γ] / [Empty])
([n≡n′] : Γ ⊩ᵛ⟨ l ⟩ n ≡ n′ ∷ Empty / [Γ] / [Empty])
→ Γ ⊩ᵛ⟨ l ⟩ Emptyrec F n ≡ Emptyrec F′ n′ ∷ F / [Γ] / [F]
Emptyrec-congᵛ {F} {F′} {n} {n′} {l = l}
[Γ] [Empty] [F] [F′] [F≡F′]
[n] [n′] [n≡n′] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ]))
[σn′] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ))) (proj₁ ([n′] ⊢Δ [σ]))
[σn≡σn′] = irrelevanceEqTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ]))
(Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ))) ([n≡n′] ⊢Δ [σ])
congTerm = Emptyrec-congTerm {F} {F′} [Γ] [F] [F′] [F≡F′]
⊢Δ [σ] [σ] (reflSubst [Γ] ⊢Δ [σ]) [σn] [σn′] [σn≡σn′]
in congTerm
|
{
"alphanum_fraction": 0.4603971963,
"avg_line_length": 47.2928176796,
"ext": "agda",
"hexsha": "60dedc274f9500f25595e8191a3c05c8713ccdaa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3710,
"size": 8560
}
|
module Numeral.Finite.Bound where
open import Lang.Instance
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
-- For an arbitrary number `n`, `bound-[≤] n` is the same number as `n` semantically but with a different boundary on the type.
-- Example: bound-[≤] p (3: 𝕟(10)) = 3: 𝕟(20) where p: (10 ≤ 20)
bound-[≤] : ∀{a b} → (a ≤ b) → (𝕟(a) → 𝕟(b))
bound-[≤] {𝐒 a} {𝐒 b} _ 𝟎 = 𝟎
bound-[≤] {𝐒 a} {𝐒 b} (succ p) (𝐒 n) = 𝐒(bound-[≤] p n)
bound-𝐒 : ∀{n} → 𝕟(n) → 𝕟(ℕ.𝐒(n))
bound-𝐒 = bound-[≤] [≤]-of-[𝐒]
bound-exact : ∀{a b} → (i : 𝕟(a)) → (𝕟-to-ℕ i < b) → 𝕟(b)
bound-exact {𝐒 a} {𝐒 b} 𝟎 (succ _) = 𝟎
bound-exact {𝐒 a} {𝐒 b} (𝐒 i) (succ p) = 𝐒(bound-exact i p)
|
{
"alphanum_fraction": 0.5873221216,
"avg_line_length": 36.8095238095,
"ext": "agda",
"hexsha": "d3bcf16953e0f6bcb36ed8100fdaff38527a3568",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Bound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Bound.agda",
"max_line_length": 127,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Bound.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 374,
"size": 773
}
|
module Avionics.Real where
open import Algebra.Definitions using (LeftIdentity; RightIdentity; Commutative)
open import Data.Bool using (Bool; _∧_)
open import Data.Float using (Float)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat using (ℕ)
open import Level using (0ℓ; _⊔_) renaming (suc to lsuc)
open import Relation.Binary using (Decidable; _Preserves_⟶_)
open import Relation.Binary.Definitions using (Transitive; Trans)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (False; ⌊_⌋)
open import Relation.Unary using (Pred; _∈_)
infix 4 _<_ _≤_ _<ᵇ_ _≤ᵇ_
infixl 6 _+_ _-_
infixl 7 _*_
infix 4 _≟_
postulate
ℝ : Set
-- TODO: `fromFloat` should return `Maybe ℝ`
fromFloat : Float → ℝ
toFloat : ℝ → Float
fromℕ : ℕ → ℝ
_+_ _*_ _^_ : ℝ → ℝ → ℝ
-_ abs _^2 : ℝ → ℝ
e π 0ℝ 1ℝ -1/2 1/2 2ℝ : ℝ
-- This was inspired on how the standard library handles things.
-- See: https://plfa.github.io/Decidable/
_<_ _≤_ : ℝ → ℝ → Set
_≟_ : Decidable {A = ℝ} _≡_
_≤?_ : (m n : ℝ) → Dec (m ≤ n)
_<?_ : (m n : ℝ) → Dec (m < n)
_<ᵇ_ _≤ᵇ_ _≡ᵇ_ : ℝ → ℝ → Bool
p <ᵇ q = ⌊ p <? q ⌋
p ≤ᵇ q = ⌊ p ≤? q ⌋
p ≡ᵇ q = ⌊ p ≟ q ⌋
_≢0 : ℝ → Set
p ≢0 = False (p ≟ 0ℝ)
Subset : Set → Set _
Subset A = Pred A 0ℓ
-- Dangerous definitions, but necessary!
postulate
⟨0,∞⟩ [0,∞⟩ [0,1] : Subset ℝ
1/_ : (p : ℝ) → ℝ
√_ : (x : ℝ) → ℝ
_÷_ : (p q : ℝ) → ℝ
(p ÷ q) = p * (1/ q)
-- Dangerous definitions, but necessary!
postulate
m÷n<o≡m<o*n : ∀ m n o → (m ÷ n <ᵇ o) ≡ (m <ᵇ o * n)
m<o÷n≡m*n<o : ∀ m n o → (m <ᵇ o ÷ n) ≡ (m * n <ᵇ o)
_-_ : ℝ → ℝ → ℝ
p - q = p + (- q)
postulate
double-neg : ∀ (x y : ℝ) → y - (y - x) ≡ x
neg-involutive : ∀ x → -(- x) ≡ x
neg-distrib-+ : ∀ m n → - (m + n) ≡ (- m) + (- n)
neg-def : ∀ m → 0ℝ - m ≡ - m
m-m≡0 : ∀ m → m - m ≡ 0ℝ
neg-distribˡ-* : ∀ x y → - (x * y) ≡ (- x) * y
√x^2≡absx : ∀ x → √ (x ^2) ≡ abs x
>0→≢0 : ∀ {x : ℝ} → x ∈ ⟨0,∞⟩ → x ≢0
>0→≥0 : ∀ {x : ℝ} → x ∈ ⟨0,∞⟩ → x ∈ [0,∞⟩
>0*>0→>0 : ∀ {p q : ℝ} → p ∈ ⟨0,∞⟩ → q ∈ ⟨0,∞⟩ → (p * q) ∈ ⟨0,∞⟩
≢0*≢0→≢0 : ∀ {p q : ℝ} → p ≢0 → q ≢0 → (p * q) ≢0
2>0 : 2ℝ ∈ ⟨0,∞⟩
π>0 : π ∈ ⟨0,∞⟩
e^x>0 : (x : ℝ) → (e ^ x) ∈ ⟨0,∞⟩
x*x≡x^2 : ∀ x → x * x ≡ x ^2
x^2*y^2≡⟨xy⟩^2 : ∀ x y → (x ^2) * (y ^2) ≡ (x * y)^2
1/x^2≡⟨1/x⟩^2 : ∀ x → 1/ (x ^2) ≡ (1/ x)^2
--√q≥0 : (q : ℝ) → (0≤q : q ∈ [0,∞⟩) → (√ q) {0≤q} ∈ [0,∞⟩
--q>0→√q>0 : {q : ℝ} → (0<q : q ∈ ⟨0,∞⟩) → (√ q) {>0→≥0 0<q} ∈ ⟨0,∞⟩
0≤→[0,∞⟩ : {n : ℝ} → 0ℝ ≤ n → n ∈ [0,∞⟩
0<→⟨0,∞⟩ : {n : ℝ} → 0ℝ < n → n ∈ ⟨0,∞⟩
[0,∞⟩→0≤ : {n : ℝ} → n ∈ [0,∞⟩ → 0ℝ ≤ n
⟨0,∞⟩→0< : {n : ℝ} → n ∈ ⟨0,∞⟩ → 0ℝ < n
m≤n→m-p≤n-p : {m n p : ℝ} → m ≤ n → m - p ≤ n - p
m<n→m-p<n-p : {m n p : ℝ} → m < n → m - p < n - p
-- trans-≤ reduces to: {i j k : ℝ} → i ≤ j → j ≤ k → i ≤ k
trans-≤ : Transitive _≤_
<-transˡ : Trans _<_ _≤_ _<_
--+-identityˡ : LeftIdentity 0ℝ _+_
--+-identityʳ : RightIdentity 0ℝ _+_
+-identityˡ : ∀ x → 0ℝ + x ≡ x
+-identityʳ : ∀ x → x + 0ℝ ≡ x
--+-comm : Commutative _+_
+-comm : ∀ m n → m + n ≡ n + m
--+-assoc : Associative _+_
+-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o
*-comm : ∀ m n → m * n ≡ n * m
*-assoc : ∀ m n o → m * (n * o) ≡ (m * n) * o
--0ℝ ≟_
0≟0≡yes0≡0 : (0ℝ ≟ 0ℝ) ≡ yes refl
-- TODO: These properties should be written for _<_ instead of _<ᵇ_
abs<x→<x∧-x< : ∀ {u x} → (abs u <ᵇ x) ≡ ((u <ᵇ x) ∧ (- x <ᵇ u))
--neg-mono-<-> : -_ Preserves _<_ ⟶ (λ a b -> b < a)
neg-mono-<-> : ∀ m n → (m <ᵇ n) ≡ (- n <ᵇ - m)
--+-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_
+-monoˡ-< : ∀ n o p → (o <ᵇ p) ≡ (n + o <ᵇ n + p)
-- One of the weakest points in the whole library architecture!!!
-- This is wrong, really wrong, but useful
{-# COMPILE GHC ℝ = type Double #-}
{-# COMPILE GHC fromFloat = \x -> x #-}
{-# COMPILE GHC toFloat = \x -> x #-}
{-# COMPILE GHC fromℕ = fromIntegral #-}
{-# COMPILE GHC _<ᵇ_ = (<) #-}
{-# COMPILE GHC _≤ᵇ_ = (<=) #-}
{-# COMPILE GHC _≡ᵇ_ = (==) #-}
{-# COMPILE GHC _+_ = (+) #-}
{-# COMPILE GHC _-_ = (-) #-}
{-# COMPILE GHC _*_ = (*) #-}
{-# COMPILE GHC _^_ = (**) #-}
{-# COMPILE GHC _^2 = (**2) #-}
{-# COMPILE GHC e = 2.71828182845904523536 #-}
{-# COMPILE GHC π = 3.14159265358979323846 #-}
{-# COMPILE GHC 0ℝ = 0 #-}
{-# COMPILE GHC 1ℝ = 1 #-}
{-# COMPILE GHC 2ℝ = 2 #-}
{-# COMPILE GHC -1/2 = -1/2 #-}
-- REAAALY CAREFUL WITH THIS!
-- TODO: Add some runtime checking to this. Fail hard if divisor is zero
{-# COMPILE GHC 1/_ = \x -> (1/x) #-}
{-# COMPILE GHC _÷_ = \x y -> (x/y) #-}
{-# COMPILE GHC √_ = \x -> sqrt x #-}
|
{
"alphanum_fraction": 0.4822083243,
"avg_line_length": 29.3481012658,
"ext": "agda",
"hexsha": "d2ab4fa978c18638a8ba785cd60edc79dc30fed8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "helq/safety-envelopes-sentinels",
"max_forks_repo_path": "agda/Avionics/Real.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "helq/safety-envelopes-sentinels",
"max_issues_repo_path": "agda/Avionics/Real.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "helq/safety-envelopes-sentinels",
"max_stars_repo_path": "agda/Avionics/Real.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2294,
"size": 4637
}
|
open import Prelude
open import Nat
open import List
open import Bij
-- The contents of this file were originally written in a different codebase,
-- which was itself a descendant of a prior codebase that had been using non-standard
-- definitions of naturals and other basic definitions. As such this code has
-- inherited these non-standard idioms, as seen in Prelude, Nat, and List. Ideally,
-- this file would be refactored to use the Agda standard library instead, but beyond
-- the significant effort of refactoring, the Agda standard library appears not to be
-- packaged with Agda, and must be installed separately. The difficulties inherent in
-- attempting to use a "standard library" that is not sufficiently standard as to be
-- included with Agda itself, added to the difficulties of refactoring, have led us
-- to continue with the the non-standard forms and definitions. We hope that they are
-- fairly self-explanatory and intuitive. Below we note some of our idioms that may
-- not be obvious:
-- * We use "Some" and "None" instead of "Just" and "Nothing"
-- * abort is used to prove any goal given ⊥
-- * == is used for reflexive equality
-- * Z is zero, 1+ is suc
-- * ≤ is defined as data, < is defined as n < m = n ≤ m ∧ n ≠ m
-- * l⟦ i ⟧ is used to (maybe) get the ith element of list l
-- * ∥ l ∥ is the length of a list
--
-- Many of the definitions and theorems are documented to indicate their equivalents
-- in the Coq standard libraries Coq.FSets.FMapInterface and Coq.FSets.FMapFacts
module Delta (K : Set) {{bij : bij K Nat}} where
abstract -- almost everything in the module is abstract
open import delta-lemmas K {{bij}}
---- core definitions ----
data dd (V : Set) : Set where
DD : dl V → dd V
-- nil/empty
∅ : {V : Set} → dd V
∅ = DD []
-- singleton
■_ : {V : Set} → (K ∧ V) → dd V
■_ (k , v) = DD <| (nat k , v) :: []
-- extension/insertion
-- Corresponds to FMapInterface.add
_,,_ : ∀{V} → dd V → (K ∧ V) → dd V
(DD d) ,, (k , v) = DD <| d ,,' (nat k , v)
infixl 10 _,,_
-- lookup function
-- Corresponds to FMapInterface.find
_⟨_⟩ : {V : Set} → dd V → K → Maybe V
(DD d) ⟨ k ⟩ = d lkup (nat k)
-- There doesn't appear to be a corresponding function in FMapInterface
destruct : ∀{V} → dd V → Maybe ((K ∧ V) ∧ dd V)
destruct (DD [])
= None
destruct (DD ((n , v) :: []))
= Some ((key n , v) , DD [])
destruct (DD ((n , v) :: ((m , v') :: dd)))
= Some ((key n , v) , DD ((m + 1+ n , v') :: dd))
-- size
-- Corresponds to FMapInterface.cardinal
||_|| : {V : Set} → dd V → Nat
|| DD d || = ∥ d ∥
-- membership
-- Corresponds to FMapInterface.MapsTo
_∈_ : {V : Set} (p : K ∧ V) → (d : dd V) → Set
_∈_ {V} (k , v) (DD d) = _∈'_ {V} (nat k , v) d
-- domain (not abstract)
-- Corresponds to FMapInterface.In
dom : {V : Set} → dd V → K → Set
dom {V} d k = Σ[ v ∈ V ] ((k , v) ∈ d)
-- apartness, i.e. the opposite of dom (not abstract)
_#_ : {V : Set} → K → dd V → Set
k # d = dom d k → ⊥
abstract
-- maps f across the values of the delta dict
-- Corresponds to FMapInterface.map
dltmap : {A B : Set} → (A → B) → dd A → dd B
dltmap f (DD d) = DD <| map (λ {(hn , hv) → (hn , f hv)}) d
-- FMapInterface doesn't appear to have a corresponding function
list⇒dlt : {V : Set} → List (K ∧ V) → dd V
list⇒dlt d = d |> map (λ where (k , v) → (nat k , v)) |> list⇒dlt' |> DD
-- converts a delta dict into a list of key-value pairs; the inverse of list⇒dlt
-- Corresponds to FMapInterface.elements
dlt⇒list : {V : Set} → dd V → List (K ∧ V)
dlt⇒list (DD d) = dlt⇒list' d |> map (λ where (n , v) → (key n , v))
-- union merge A B is the union of A and B,
-- with (merge a b) being invoked to handle the mappings they have in common
union : {V : Set} → (V → V → V) → dd V → dd V → dd V
union merge (DD d1) (DD d2) = DD <| union' merge d1 d2 0
---- core theorems ----
-- The next two theorems show that lookup (_⟨_⟩) is consistent with membership (_∈_)
-- As such, future theorems which relate to membership can be taken to appropriately
-- comment on lookup as well.
-- Corresponds to FMapInterface.find_1
lookup-cons-1 : {V : Set} {d : dd V} {k : K} {v : V} →
(k , v) ∈ d →
d ⟨ k ⟩ == Some v
lookup-cons-1 {V} {DD d} {k} {v} = lookup-cons-1' {V} {d} {nat k} {v}
-- Corresponds to FMapInterface.find_2
lookup-cons-2 : {V : Set} {d : dd V} {k : K} {v : V} →
d ⟨ k ⟩ == Some v →
(k , v) ∈ d
lookup-cons-2 {V} {DD d} {k} {v} h = lookup-cons-2' {d = d} {nat k} h
-- membership (_∈_) respects insertion (_,,_)
-- Corresponds to FMapInterface.add_1
k,v∈d,,k,v : {V : Set} {d : dd V} {k : K} {v : V} →
(k , v) ∈ (d ,, (k , v))
k,v∈d,,k,v {V} {d = DD d} {k} = n,v∈'d,,n,v {d = d} {nat k}
-- insertion respects membership
-- Corresponds to FMapInterface.add_2
k∈d→k∈d+ : {V : Set} {d : dd V} {k k' : K} {v v' : V} →
k ≠ k' →
(k , v) ∈ d →
(k , v) ∈ (d ,, (k' , v'))
k∈d→k∈d+ {V} {DD d} {k} {k'} {v} {v'} ne h
= n∈d→'n∈d+ {V} {d} {nat k} {nat k'} {v} {v'} (inj-cp ne) h
-- insertion can't generate spurious membership
-- Corresponds to FMapInterface.add_3
k∈d+→k∈d : {V : Set} {d : dd V} {k k' : K} {v v' : V} →
k ≠ k' →
(k , v) ∈ (d ,, (k' , v')) →
(k , v) ∈ d
k∈d+→k∈d {V} {d = DD d} {k} {k'} {v} {v'} ne h
= n∈d+→'n∈d {V} {d} {nat k} {nat k'} {v} {v'} (inj-cp ne) h
-- Decidability of membership
-- This also packages up an appeal to delta dict membership into a form that
-- lets us retain more information
-- Corresponds to FMapFacts.In_dec
mem-dec : {V : Set} (d : dd V) (k : K) → dom d k ∨ k # d
mem-dec {V} (DD d) k = mem-dec' {V} d (nat k)
-- delta dicts contain at most one binding for each variable
-- Corresponds to FMapFacts.MapsTo_fun
mem-unicity : {V : Set} {d : dd V} {k : K} {v v' : V} →
(k , v) ∈ d →
(k , v') ∈ d →
v == v'
mem-unicity vh v'h
with lookup-cons-1 vh | lookup-cons-1 v'h
... | vh' | v'h' = someinj (! vh' · v'h')
-- meaning of nil, i.e. nothing is in nil
-- Corresponds to FMapFacts.empty_in_iff
k#∅ : {V : Set} {k : K} → _#_ {V} k ∅
k#∅ (_ , ())
-- meaning of the singleton
■-def : {V : Set} {k : K} {v : V} → (■ (k , v)) == ∅ ,, (k , v)
■-def = refl
-- Theorem 2: Extensionality
-- (i.e. if two dicts represent the same mapping from ids to values,
-- then they are reflexively equal as judged by _==_)
-- Corresponds to FMapFacts.Equal_Equiv
extensional : {V : Set} {d1 d2 : dd V} →
((k : K) → d1 ⟨ k ⟩ == d2 ⟨ k ⟩) →
d1 == d2
extensional {V} {DD d1} {DD d2} all-bindings-==
= ap1 DD <| extensional' {V} {d1} {d2} eqv-nat
where
eqv-nat : (n : Nat) → (d1 lkup n) == (d2 lkup n)
eqv-nat n
with bij.surj bij n
... | k , surj
with all-bindings-== k
... | eq rewrite surj = eq
-- Theorem 3: Decidable Equality
-- This doesn't seem to directly correspond to any of the Coq theorems
==-dec : {V : Set}
(d1 d2 : dd V) →
((v1 v2 : V) → v1 == v2 ∨ v1 ≠ v2) →
d1 == d2 ∨ d1 ≠ d2
==-dec {V} (DD d1) (DD d2) h
with ==-dec' {V} d1 d2 h
... | Inl refl = Inl refl
... | Inr ne = Inr (λ where refl → ne refl)
-- The next two theorems specify the behavior of destruct and prove that
-- it behaves as intended. The third one combines them to match the paper.
destruct-thm-1 : ∀{V} {d : dd V} →
destruct d == None →
d == ∅
destruct-thm-1 {d = DD []} eq = refl
destruct-thm-1 {d = DD (_ :: [])} ()
destruct-thm-1 {d = DD (_ :: (_ :: _))} ()
destruct-thm-2 : ∀{V} {d d' : dd V} {k : K} {v : V} →
destruct d == Some ((k , v) , d') →
k # d' ∧ d == d' ,, (k , v)
destruct-thm-2 {d = DD ((n , v) :: [])} refl
rewrite convert-bij2 {{bij}} {t = n}
= n#'[] , refl
destruct-thm-2 {d = DD ((n , v) :: ((m , v') :: t))} refl
rewrite convert-bij2 {{bij}} {t = n}
with too-small (n<m→n<s+m n<1+n)
... | not-in
with <dec n (m + 1+ n)
... | Inl lt rewrite ! (undelta n m lt) = not-in , refl
... | Inr (Inl eq) = abort (n≠n+1+m (eq · (n+1+m==1+n+m · +comm {1+ m})))
... | Inr (Inr gt) = abort (<antisym gt (n<m→n<s+m n<1+n))
-- Theorem 4: Not-So-Easy Destructibility
destruct-thm : ∀{V} {d d' : dd V} {k : K} {v : V} →
(destruct d == None → d == ∅)
∧
(destruct d == Some ((k , v) , d') →
k # d' ∧ d == d' ,, (k , v))
destruct-thm = destruct-thm-1 , destruct-thm-2
-- When using destruct or delete, this theorem is useful for establishing termination
-- Roughly corresponds to FMapFacts.cardinal_2
extend-size : {V : Set} {d : dd V} {k : K} {v : V} →
k # d →
|| d ,, (k , v) || == 1+ || d ||
extend-size {V} {DD d} {k} {v} n#d = extend-size' {V} {d} {nat k} {v} n#d
-- remove a specific mapping from a delta dict
-- Roughly corresponds to FMapInterface.remove, and associated theorems
delete : {V : Set} {d : dd V} {k : K} {v : V} →
(k , v) ∈ d →
Σ[ d⁻ ∈ dd V ] (
d == d⁻ ,, (k , v) ∧
k # d⁻)
delete {V} {DD d} {k} {v} h
with delete' {V} {d} {nat k} {v} h
... | _ , refl , # = _ , refl , #
---- contraction and exchange ----
-- Theorem 5
contraction : {V : Set} {d : dd V} {k : K} {v v' : V} →
d ,, (k , v') ,, (k , v) == d ,, (k , v)
contraction {V} {DD d} {k} {v} {v'}
= ap1 DD <| contraction' {d = d} {nat k} {v} {v'}
-- Theorem 6
exchange : {V : Set} {d : dd V} {k1 k2 : K} {v1 v2 : V} →
k1 ≠ k2 →
d ,, (k1 , v1) ,, (k2 , v2) == d ,, (k2 , v2) ,, (k1 , v1)
exchange {V} {DD d} {k1} {k2} {v1} {v2} k1≠k2
= ap1 DD <| exchange' {d = d} <| inj-cp k1≠k2
---- union theorems ----
k,v∈d1→k∉d2→k,v∈d1∪d2 : {V : Set} {m : V → V → V} {d1 d2 : dd V} {k : K} {v : V} →
(k , v) ∈ d1 →
k # d2 →
(k , v) ∈ union m d1 d2
k,v∈d1→k∉d2→k,v∈d1∪d2 {d1 = DD d1} {DD d2} k∈d1 k#d2
= lemma-union'-1 k∈d1 0≤n (tr (λ y → y #' d2) (! (n+m-n==m 0≤n)) k#d2)
k∉d1→k,v∈d2→k,v∈d1∪d2 : {V : Set} {m : V → V → V} {d1 d2 : dd V} {k : K} {v : V} →
k # d1 →
(k , v) ∈ d2 →
(k , v) ∈ union m d1 d2
k∉d1→k,v∈d2→k,v∈d1∪d2 {d1 = DD d1} {DD d2} {k} k#d1 k∈d2
with lemma-union'-2 {n = Z} (tr (λ y → y #' d1) (! n+Z==n) k#d1) k∈d2
... | rslt
rewrite n+Z==n {nat k}
= rslt
k∈d1→k∈d2→k∈d1∪d2 : {V : Set} {m : V → V → V} {d1 d2 : dd V} {k : K} {v1 v2 : V} →
(k , v1) ∈ d1 →
(k , v2) ∈ d2 →
(k , m v1 v2) ∈ union m d1 d2
k∈d1→k∈d2→k∈d1∪d2 {d1 = DD d1} {DD d2} {k} {v1} k∈d1 k∈d2
with lemma-union'-3 (tr (λ y → (y , v1) ∈' d1) (! n+Z==n) k∈d1) k∈d2
... | rslt
rewrite n+Z==n {nat k}
= rslt
k∈d1∪d2→k∈d1∨k∈d2 : {V : Set} {m : V → V → V} {d1 d2 : dd V} {k : K} →
dom (union m d1 d2) k →
dom d1 k ∨ dom d2 k
k∈d1∪d2→k∈d1∨k∈d2 {d1 = DD d1} {DD d2} k∈d1∪d2
with lemma-union'-4 {n = Z} k∈d1∪d2
k∈d1∪d2→k∈d1∨k∈d2 k∈d1∪d2 | Inl k'∈d1 = Inl k'∈d1
k∈d1∪d2→k∈d1∨k∈d2 k∈d1∪d2 | Inr (_ , refl , k'∈d2) = Inr k'∈d2
---- dltmap theorem ----
-- The Coq.FSets library uses different theorems to establish to specify map
dltmap-func : {V1 V2 : Set} {d : dd V1} {f : V1 → V2} {k : K} {v : V1} →
dltmap f (d ,, (k , v)) == dltmap f d ,, (k , f v)
dltmap-func {d = DD d} {f} {k} {v} = ap1 DD (dltmap-func' {d = d})
---- dlt <=> list theorems ----
-- Corresponds to FMapInterface.cardinal_1
dlt⇒list-size : {V : Set} {d : dd V} → ∥ dlt⇒list d ∥ == || d ||
dlt⇒list-size {d = DD d} = map-len · dlt⇒list-size'
-- Corresponds to FMapInterface.elements_1
dlt⇒list-In-1 : {V : Set} {d : dd V} {k : K} {v : V} →
(k , v) ∈ d →
(k , v) In dlt⇒list d
dlt⇒list-In-1 {d = DD d} {k} in'
rewrite ! <| convert-bij1 {f = k}
with dlt⇒list-In-1' in'
... | in'' rewrite convert-bij2 {{bij}} {t = bij.convert bij k}
= map-In in''
-- Corresponds to FMapInterface.elements_2
dlt⇒list-In-2 : {V : Set} {d : dd V} {k : K} {v : V} →
(k , v) In dlt⇒list d →
(k , v) ∈ d
dlt⇒list-In-2 {V} {d = DD d} {k} {v} in'
with map-In {f = λ where (k' , v') → (nat k' , v')} in'
... | in'' rewrite map^2 {f = λ where (k' , v') → (nat k' , v')} {g = λ where (n' , v') → (key n' , v')} {l = dlt⇒list' d}
= dlt⇒list-In-2' (tr
(λ y → (nat k , v) In y)
(map^2 · (map-ext bij-pair-1 · map-id))
(map-In {f = λ where (k , v) → (nat k , v)} in'))
list⇒dlt-In : {V : Set} {l : List (K ∧ V)} {k : K} {v : V} →
(k , v) ∈ list⇒dlt l →
(k , v) In l
list⇒dlt-In {l = l} {k} {v} in'
with list⇒dlt-In' {l = map (λ { (k , v) → nat k , v }) l} in' |> map-In {f = λ where (n , v) → key n , v}
... | in'' rewrite convert-bij1 {f = k}
= tr
(λ y → (k , v) In y)
(map^2 · (map-ext bij-pair-2 · map-id))
in''
list⇒dlt-key-In : {V : Set} {l : List (K ∧ V)} {k : K} {v : V} →
(k , v) In l →
dom (list⇒dlt l) k
list⇒dlt-key-In {_} {(k , v) :: l} {k} {v} LInH
rewrite foldl-++ {l1 = reverse <| map (λ where (k , v) → nat k , v) l} {(nat k , v) :: []} {_,,'_} {[]}
= _ , tr
(λ y → (nat k , v) ∈' y)
(! <| foldl-++ {l1 = reverse <| map (λ where (k , v) → nat k , v) l})
(n,v∈'d,,n,v {d = list⇒dlt' <| map (λ where (k , v) → nat k , v) l})
list⇒dlt-key-In {V} {(k' , v') :: l} {k} {v} (LInT in')
with list⇒dlt-key-In in'
... | (_ , in'')
= _ , tr
(λ y → (nat k , vv) ∈' y)
(! <| foldl-++ {l1 = reverse <| map (λ where (k , v) → nat k , v) l})
lem'
where
nat-inj : ∀{k1 k2} → nat k1 == nat k2 → k1 == k2
nat-inj eq = ! (convert-bij1 {{bij}}) · (ap1 key eq · convert-bij1 {{bij}})
lem : Σ[ vv ∈ V ] ((nat k , vv) ∈' (list⇒dlt' (map (λ { (k , v) → nat k , v }) l) ,,' (nat k' , v')))
lem
with natEQ (nat k) (nat k')
... | Inl eq rewrite ! <| nat-inj eq
= _ , n,v∈'d,,n,v {d = list⇒dlt' (map (λ { (k , v) → nat k , v }) l)}
... | Inr ne = _ , n∈d→'n∈d+ ne in''
vv = π1 lem
lem' = π2 lem
-- contrapositives of some previous theorems
dlt⇒list-In-1-cp : {V : Set} {d : dd V} {k : K} → (Σ[ v ∈ V ] ((k , v) In dlt⇒list d) → ⊥) → k # d
dlt⇒list-In-1-cp {d = DD d} not-in = λ where (_ , in') → not-in (_ , (dlt⇒list-In-1 in'))
list⇒dlt-key-In-cp : {V : Set} {l : List (K ∧ V)} {k : K} → k # list⇒dlt l → Σ[ v ∈ V ] ((k , v) In l) → ⊥
list⇒dlt-key-In-cp k#d' (_ , k∈l) = k#d' (list⇒dlt-key-In k∈l)
list⇒dlt-order : {V : Set} {l1 l2 : List (K ∧ V)} {k : K} {v1 v2 : V} →
(k , v1) ∈ (list⇒dlt ((k , v1) :: l1 ++ ((k , v2) :: l2)))
list⇒dlt-order {_} {l1} {l2} {k} {v1} {v2}
= tr
(λ y → (nat k , v1) ∈' foldl _,,'_ [] (reverse y ++ ((nat k , v1) :: [])))
(map-++-comm {a = l1})
(list⇒dlt-order' {l1 = map (λ where (k , v) → nat k , v) l1})
dlt⇒list-inversion : {V : Set} {d : dd V} → list⇒dlt (dlt⇒list d) == d
dlt⇒list-inversion {d = DD d} = extensional lem
where
lem : (k : K) → (list⇒dlt (dlt⇒list <| DD d) ⟨ k ⟩ == DD d ⟨ k ⟩)
lem k
with mem-dec (list⇒dlt (dlt⇒list <| DD d)) k
... | Inl (_ , k∈d')
= lookup-cons-1 k∈d' · (k∈d' |> list⇒dlt-In |> dlt⇒list-In-2 |> lookup-cons-1 {d = DD d} |> !)
... | Inr k#d'
= lookup-cp-2' k#d' · (k#d' |> list⇒dlt-key-In-cp |> dlt⇒list-In-1-cp |> lookup-cp-2' {d = d} |> !)
|
{
"alphanum_fraction": 0.4626579625,
"avg_line_length": 41.5348258706,
"ext": "agda",
"hexsha": "a9f340ca5b0242fcf29795570bd59e476ebe120a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nickcollins/dependent-dicts-agda",
"max_forks_repo_path": "Delta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nickcollins/dependent-dicts-agda",
"max_issues_repo_path": "Delta.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nickcollins/dependent-dicts-agda",
"max_stars_repo_path": "Delta.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6622,
"size": 16697
}
|
module FixityOutOfScopeInRecord where
postulate _+_ : Set
record R : Set where
infixl 30 _+_
-- Should complain that _+_ is not in (the same) scope
-- in (as) its fixity declaration.
|
{
"alphanum_fraction": 0.7287234043,
"avg_line_length": 18.8,
"ext": "agda",
"hexsha": "af0f39a883fb90adbc77f9d70a57dfb82cf6daf1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/FixityOutOfScopeInRecord1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/FixityOutOfScopeInRecord1.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/FixityOutOfScopeInRecord1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 55,
"size": 188
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.Consensus.Liveness.ProposerElection
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.LBFT
open import Optics.All
open import Util.Lemmas
open import Util.Prelude
module LibraBFT.Impl.Consensus.Liveness.Properties.ProposerElection where
-- TUTORIAL
module isValidProposalMSpec (b : Block) where
pe = _^∙ lProposerElection
mAuthor = b ^∙ bAuthor
round = b ^∙ bRound
contract
: ∀ pre Post
→ (mAuthor ≡ nothing → Post (Left ProposalDoesNotHaveAnAuthor) pre [])
→ (Maybe-Any (getValidProposer (pe pre) round ≢_) mAuthor
→ Post (Left ProposerForBlockIsNotValidForThisRound) pre [])
→ (Maybe-Any (getValidProposer (pe pre) round ≡_) mAuthor
→ Post (Right unit) pre [])
→ LBFT-weakestPre (isValidProposalM b) Post pre
-- 1. `isValidProposalM` begins with `RWS-maybe`, so we must provide two cases:
-- one where `b ^∙ bAuthor` is `nothing` and one where it is `just`
-- something
-- 2. When it is nothing, we appeal to the assumed proof
proj₁ (contract pre Post pfNone pf≢ pfOk) mAuthor≡nothing = pfNone mAuthor≡nothing
-- 3. When it is something, we step into `isValidProposerM`. This means:
-- - we use the proposer election of the round manager (`pe` and `pe≡`)
-- - we apply `isValidProposer` to `pe` (`isvp-pe` and `isvp-pe≡`)
-- - we push the pure value `a` into the LBFT monad and apply `isvp-pe` to
-- it (`.a`, `isvp-pe-a`, and `isvp-pe-a≡`)
-- - we push the pure value `b ^∙ bRound` (`r` and `r≡`) into the LBFT
-- monad, and the returned value is the result of applying `isvp-pe-a` to
-- this
-- - now out of `isValidProposalM`, we are given an alias `r'` for `r`
-- > proj₂ (contract Post pre pfNone pf≢ pfOk) a ma≡just-a isvp isvp≡ pe pe≡ isvp-pe isvp-pe≡ .a refl isvp-pe-a isvp-pe-a≡ r r≡ r' r'≡ = {!!}
-- 4. Since the returned value we want to reason about is directly related to
-- the behavior of these bound functions which are partial applications of
-- `isValidProposer`, we perform case-analysis on each of the equality
-- proofs (we can't pattern match on `ma≡just-a` directly)
-- > proj₂ (contract pre Post pfNone pf≢ pfOk) a ma≡just-a ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl = {!!}
-- 5. Now we encounter an `ifD`, which means we must provide two cases, one corresponding to each branch.
proj₁ (proj₂ (contract pre Post pfNone pf≢ pfOk) a ma≡just-a ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl) vp≡true
-- 6. The types of `pfOk` and `pf≢` are still "stuck" on the expression
-- > b ^∙ bAuthor
-- So, in both the `false` and `true` cases we rewrite by `ma≡just-a`, which
-- tells us that the result is `just a`
rewrite ma≡just-a =
-- 7. To finish, we use `toWitnessF` to convert between the two forms of evidence.
pfOk (just (toWitnessT vp≡true))
proj₂ (proj₂ (contract pre Post pfNone pf≢ pfOk) a ma≡just-a ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl) vp≡false
rewrite ma≡just-a =
pf≢ (just (toWitnessF vp≡false))
|
{
"alphanum_fraction": 0.678030303,
"avg_line_length": 52.8,
"ext": "agda",
"hexsha": "2151f7a71bb65efc2c437eb02faace274949dbae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/Properties/ProposerElection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/Properties/ProposerElection.agda",
"max_line_length": 143,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/Properties/ProposerElection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1084,
"size": 3432
}
|
module Logic.Identity where
open import Logic.Equivalence
open import Logic.Base
infix 20 _≡_ _≢_
data _≡_ {A : Set}(x : A) : A -> Set where
refl : x ≡ x
subst : {A : Set}(P : A -> Set){x y : A} -> x ≡ y -> P y -> P x
subst P {x} .{x} refl px = px
sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x
sym {A} refl = refl
trans : {A : Set}{x y z : A} -> x ≡ y -> y ≡ z -> x ≡ z
trans {A} refl xz = xz
cong : {A B : Set}(f : A -> B){x y : A} -> x ≡ y -> f x ≡ f y
cong {A} f refl = refl
cong2 : {A B C : Set}(f : A -> B -> C){x z : A}{y w : B} -> x ≡ z -> y ≡ w -> f x y ≡ f z w
cong2 {A}{B} f refl refl = refl
Equiv : {A : Set} -> Equivalence A
Equiv = record
{ _==_ = _≡_
; refl = \x -> refl
; sym = \x y -> sym
; trans = \x y z -> trans
}
_≢_ : {A : Set} -> A -> A -> Set
x ≢ y = ¬ (x ≡ y)
sym≢ : {A : Set}{x y : A} -> x ≢ y -> y ≢ x
sym≢ np p = np (sym p)
|
{
"alphanum_fraction": 0.4564220183,
"avg_line_length": 21.2682926829,
"ext": "agda",
"hexsha": "e45cfbbb1083623944c0ce9814651ddd029c2ca4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Identity.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 407,
"size": 872
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Lex.NonStrict directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Lex.NonStrict where
open import Data.List.Relation.Binary.Lex.NonStrict public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Lex.NonStrict was deprecated in v1.0.
Use Data.List.Relation.Binary.Lex.NonStrict instead."
#-}
|
{
"alphanum_fraction": 0.559566787,
"avg_line_length": 30.7777777778,
"ext": "agda",
"hexsha": "4e75b5209cd6b120e13fa147b8417e4919475c7c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/NonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/NonStrict.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/NonStrict.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 103,
"size": 554
}
|
------------------------------------------------------------------------
-- Binomial theorem
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --exact-split #-}
module Math.BinomialTheorem.Nat where
-- agda-stdlib
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Solver
open import Relation.Binary.PropositionalEquality
open import Function
-- agda-combinatorics
open import Math.Combinatorics.Function
open import Math.Combinatorics.Function.Properties
-- agda-misc
open import Math.NumberTheory.Summation.Nat
open import Math.NumberTheory.Summation.Nat.Properties
open ≤-Reasoning
private
lemma₁ : ∀ x y n k → x * (C n k * (x ^ k * y ^ (n ∸ k))) ≡
C n k * (x ^ suc k * y ^ (n ∸ k))
lemma₁ x y n k =
solve 4 (λ m n o p → m :* (n :* (o :* p)) := n :* (m :* o :* p))
refl x (C n k) (x ^ k) (y ^ (n ∸ k))
where open +-*-Solver
lemma₂ : ∀ x y n k → y * (C n k * (x ^ k * y ^ (n ∸ k))) ≡
C n k * (x ^ k * y ^ suc (n ∸ k))
lemma₂ x y n k =
solve 4 (λ m n o p → m :* (n :* (o :* p)) := n :* (o :* (m :* p)) )
refl y (C n k) (x ^ k) (y ^ (n ∸ k))
where open +-*-Solver
glemma₃ : ∀ x y m n → C m m * (x ^ suc n * y ^ (n ∸ n)) ≡ x ^ suc n
glemma₃ x y m n = begin-equality
C m m * (x ^ suc n * y ^ (n ∸ n))
≡⟨ cong₂ (λ u v → u * (x ^ suc n * y ^ v)) (C[n,n]≡1 m) (n∸n≡0 n) ⟩
1 * (x ^ suc n * 1)
≡⟨ *-identityˡ (x ^ suc n * 1) ⟩
x ^ suc n * 1
≡⟨ *-identityʳ (x ^ suc n) ⟩
x ^ suc n
∎
lemma₃ : ∀ x y n → C n n * (x ^ suc n * y ^ (n ∸ n)) ≡ x ^ suc n
lemma₃ x y n = glemma₃ x y n n
lemma₄ : ∀ {k n} → k < n → suc (n ∸ suc k) ≡ suc n ∸ suc k
lemma₄ k<n = sym $ +-∸-assoc 1 k<n
lemma₅ : ∀ n → 1 * (1 * n) ≡ n
lemma₅ n = trans (*-identityˡ (1 * n)) (*-identityˡ n)
lemma₆ : ∀ x y n → C (suc n) (suc n) * (x ^ suc n * y ^ (n ∸ n)) ≡ x ^ suc n
lemma₆ x y n = glemma₃ x y (suc n) n
lemma₇ : ∀ m n o p → m + n + (o + p) ≡ n + o + (m + p)
lemma₇ = solve 4 (λ m n o p → m :+ n :+ (o :+ p) := n :+ o :+ (m :+ p) ) refl
where open +-*-Solver
lemma₈ : ∀ m n o → m + n + o ≡ n + (o + m)
lemma₈ = solve 3 (λ m n o → m :+ n :+ o := n :+ (o :+ m)) refl
where open +-*-Solver
{-
(x+y)*(x+y)^n
(x+y)*Σ[k≤n][Cnk*x^k*y^(n∸k)]
-}
theorem : ∀ x y n →
(x + y) ^ n ≡ Σ[ k ≤ n ] (C n k * (x ^ k * y ^ (n ∸ k)))
theorem x y 0 = begin-equality
C 0 0 * ((x ^ 0) * y ^ (0 ∸ 0))
≡⟨ sym $ Σ≤[0,f]≈f[0] (λ k → C 0 k * (x ^ k * y ^ (0 ∸ k))) ⟩
Σ≤ 0 (λ k → C 0 k * (x ^ k * y ^ (0 ∸ k)))
∎
theorem x y (suc n) = begin-equality
(x + y) * (x + y) ^ n
≡⟨ cong ((x + y) *_) $ theorem x y n ⟩
(x + y) * Σ[ k ≤ n ] (C n k * (x ^ k * y ^ (n ∸ k)))
≡⟨ *-distribʳ-+ (Σ[ k ≤ n ] (C n k * (x ^ k * y ^ (n ∸ k)))) x y ⟩
x * Σ[ k ≤ n ] (C n k * (x ^ k * y ^ (n ∸ k))) + y * Σ[ k ≤ n ] (C n k * (x ^ k * y ^ (n ∸ k)))
≡⟨ sym $ cong₂ _+_ (Σ≤-*-commute n x (λ k → C n k * (x ^ k * y ^ (n ∸ k)))) (Σ≤-*-commute n y (λ k → C n k * (x ^ k * y ^ (n ∸ k)))) ⟩
Σ[ k ≤ n ] (x * (C n k * (x ^ k * y ^ (n ∸ k)))) + Σ[ k ≤ n ] (y * (C n k * (x ^ k * y ^ (n ∸ k))))
≡⟨ cong₂ _+_ (Σ≤-congˡ n (λ k → lemma₁ x y n k)) (Σ≤-congˡ n (λ k → lemma₂ x y n k)) ⟩
Σ[ k ≤ n ] (C n k * ((x ^ suc k) * y ^ (n ∸ k))) + Σ[ k ≤ n ] (C n k * (x ^ k * y ^ suc (n ∸ k)))
≡⟨ cong (Σ[ k ≤ n ] (C n k * (x ^ suc k * y ^ (n ∸ k))) +_) $ Σ<-push-suc n (λ k → C n k * (x ^ k * y ^ suc (n ∸ k))) ⟩
Σ[ k < n ] (C n k * ((x ^ suc k) * y ^ (n ∸ k))) + C n n * ((x ^ suc n) * y ^ (n ∸ n))
+ (C n 0 * (x ^ 0 * y ^ (suc (n ∸ 0))) + Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ suc (n ∸ suc k))))
≡⟨⟩
Σ[ k < n ] (C n k * ((x ^ suc k) * y ^ (n ∸ k))) + C n n * ((x ^ suc n) * y ^ (n ∸ n))
+ (1 * (1 * y ^ suc n) + Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ suc (n ∸ suc k))))
≡⟨ cong₂ _+_ (cong (Σ[ k < n ] (C n k * (x ^ suc k * y ^ (n ∸ k))) +_) $ lemma₃ x y n)
(cong₂ _+_ (lemma₅ (y ^ suc n))
(Σ<-congˡ-with-< n $ λ k k<n → cong (λ v → C n (suc k) * (x ^ suc k * y ^ v)) $ lemma₄ k<n)) ⟩
Σ[ k < n ] (C n k * (x ^ suc k * y ^ (n ∸ k))) + x ^ suc n
+ (y ^ suc n + Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ (n ∸ k))))
≡⟨ lemma₇ (Σ[ k < n ] (C n k * (x ^ suc k * y ^ (n ∸ k)))) (x ^ suc n) (y ^ suc n) (Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ (n ∸ k)))) ⟩
x ^ suc n + y ^ suc n + (Σ[ k < n ] (C n k * (x ^ suc k * y ^ (n ∸ k))) +
Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ (n ∸ k))))
≡⟨ cong (λ v → (x ^ suc n + y ^ suc n) + v) $ lemma ⟩
x ^ suc n + y ^ suc n + Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))
≡⟨ lemma₈ (x ^ suc n) (y ^ suc n) (Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))) ⟩
y ^ suc n + (Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k))) + x ^ suc n)
≡⟨ cong (λ v → y ^ suc n + (Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k))) + v)) $ sym $ lemma₆ x y n ⟩
y ^ suc n + (Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k))) + C (suc n) (suc n) * (x ^ suc n * y ^ (n ∸ n)))
≡⟨⟩
y ^ suc n + Σ[ k ≤ n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))
≡⟨ cong (_+ Σ[ k ≤ n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))) $ sym $ lemma₅ (y ^ suc n) ⟩
1 * (1 * y ^ suc n) + Σ[ k ≤ n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))
≡⟨ sym $ Σ≤-push-suc n (λ k → C (suc n) k * (x ^ k * y ^ (suc n ∸ k))) ⟩
Σ≤ (suc n) (λ k → C (suc n) k * (x ^ k * y ^ (suc n ∸ k)))
∎
where
lemma : Σ[ k < n ] (C n k * (x ^ suc k * y ^ (n ∸ k))) +
Σ[ k < n ] (C n (suc k) * (x ^ suc k * y ^ (n ∸ k))) ≡
Σ[ k < n ] (C (suc n) (suc k) * (x ^ suc k * y ^ (n ∸ k)))
lemma = begin-equality
Σ[ k < n ] (C n k * z k) + Σ[ k < n ] (C n (suc k) * z k)
≡⟨ sym $ Σ<-distrib-+ n (λ k → C n k * z k) (λ k → C n (suc k) * z k) ⟩
Σ[ k < n ] (C n k * z k + C n (suc k) * z k)
≡⟨ Σ<-congˡ n (λ k → sym $ *-distribʳ-+ (z k) (C n k) (C n (suc k))) ⟩
Σ[ k < n ] ((C n k + C n (suc k)) * z k)
≡⟨ Σ<-congˡ n (λ k → cong (_* z k) $ sym $ C[1+n,1+k]≡C[n,k]+C[n,1+k] n k) ⟩
Σ[ k < n ] (C (suc n) (suc k) * z k)
∎
where
z = λ k → x ^ suc k * y ^ (n ∸ k)
Σ[k≤n]C[n,k]≡2^n : ∀ n → Σ[ k ≤ n ] C n k ≡ 2 ^ n
Σ[k≤n]C[n,k]≡2^n n = begin-equality
Σ[ k ≤ n ] (C n k)
≡⟨ sym $ Σ≤-congˡ n (λ k → begin-equality
C n k * (1 ^ k * 1 ^ (n ∸ k))
≡⟨ cong (C n k *_) $ cong₂ _*_ (^-zeroˡ k) (^-zeroˡ (n ∸ k)) ⟩
C n k * (1 * 1)
≡⟨ *-identityʳ (C n k) ⟩
C n k
∎ ) ⟩
Σ[ k ≤ n ] (C n k * (1 ^ k * 1 ^ (n ∸ k)))
≡⟨ sym $ theorem 1 1 n ⟩
(1 + 1) ^ n
∎
|
{
"alphanum_fraction": 0.3745179472,
"avg_line_length": 44.9466666667,
"ext": "agda",
"hexsha": "5125e3480c49b85594731021ea9206113ccc0cab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-combinatorics",
"max_forks_repo_path": "Math/BinomialTheorem/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-combinatorics",
"max_issues_repo_path": "Math/BinomialTheorem/Nat.agda",
"max_line_length": 143,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-combinatorics",
"max_stars_repo_path": "Math/BinomialTheorem/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z",
"num_tokens": 3356,
"size": 6742
}
|
{-
This second-order signature was created from the following second-order syntax description:
syntax Combinatory | CL
type
* : 0-ary
term
app : * * -> * | _$_ l20
i : *
k : *
s : *
theory
(IA) x |> app (i, x) = x
(KA) x y |> app (app(k, x), y) = x
(SA) x y z |> app (app (app (s, x), y), z) = app (app(x, z), app(y, z))
-}
module Combinatory.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data CLₒ : Set where
appₒ iₒ kₒ sₒ : CLₒ
-- Term signature
CL:Sig : Signature CLₒ
CL:Sig = sig λ
{ appₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; iₒ → ⟼₀ *
; kₒ → ⟼₀ *
; sₒ → ⟼₀ *
}
open Signature CL:Sig public
|
{
"alphanum_fraction": 0.5703225806,
"avg_line_length": 17.2222222222,
"ext": "agda",
"hexsha": "96b3792dd5acae6a81118ee27a079b8a4372cae7",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Combinatory/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Combinatory/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Combinatory/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 302,
"size": 775
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples of decision procedures and how to use them
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module README.Decidability where
-- Reflects and Dec are defined in Relation.Nullary, and operations on them can
-- be found in Relation.Nullary.Reflects and Relation.Nullary.Decidable.
open import Relation.Nullary as Nullary
open import Relation.Nullary.Reflects
open import Relation.Nullary.Decidable
open import Data.Bool
open import Data.List
open import Data.List.Properties using (∷-injective)
open import Data.Nat
open import Data.Nat.Properties using (suc-injective)
open import Data.Product
open import Data.Unit
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nary
open import Relation.Nullary.Product
infix 4 _≟₀_ _≟₁_ _≟₂_
-- A proof of `Reflects P b` shows that a proposition `P` has the truth value of
-- the boolean `b`. A proof of `Reflects P true` amounts to a proof of `P`, and
-- a proof of `Reflects P false` amounts to a refutation of `P`.
ex₀ : (n : ℕ) → Reflects (n ≡ n) true
ex₀ n = ofʸ refl
ex₁ : (n : ℕ) → Reflects (zero ≡ suc n) false
ex₁ n = ofⁿ λ ()
ex₂ : (b : Bool) → Reflects (T b) b
ex₂ false = ofⁿ id
ex₂ true = ofʸ tt
-- A proof of `Dec P` is a proof of `Reflects P b` for some `b`.
-- `Dec P` is declared as a record, with fields:
-- does : Bool
-- proof : Reflects P does
ex₃ : (b : Bool) → Dec (T b)
does (ex₃ b) = b
proof (ex₃ b) = ex₂ b
-- We also have pattern synonyms `yes` and `no`, allowing both fields to be
-- given at once.
ex₄ : (n : ℕ) → Dec (zero ≡ suc n)
ex₄ n = no λ ()
-- It is possible, but not ideal, to define recursive decision procedures using
-- only the `yes` and `no` patterns. The following procedure decides whether two
-- given natural numbers are equal.
_≟₀_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₀ zero = yes refl
zero ≟₀ suc n = no λ ()
suc m ≟₀ zero = no λ ()
suc m ≟₀ suc n with m ≟₀ n
... | yes p = yes (cong suc p)
... | no ¬p = no (¬p ∘ suc-injective)
-- In this case, we can see that `does (suc m ≟ suc n)` should be equal to
-- `does (m ≟ n)`, because a `yes` from `m ≟ n` gives rise to a `yes` from the
-- result, and similarly for `no`. However, in the above definition, this
-- equality does not hold definitionally, because we always do a case split
-- before returning a result. To avoid this, we can return the `does` part
-- separately, before any pattern matching.
_≟₁_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₁ zero = yes refl
zero ≟₁ suc n = no λ ()
suc m ≟₁ zero = no λ ()
does (suc m ≟₁ suc n) = does (m ≟₁ n)
proof (suc m ≟₁ suc n) with m ≟₁ n
... | yes p = ofʸ (cong suc p)
... | no ¬p = ofⁿ (¬p ∘ suc-injective)
-- We now get definitional equalities such as the following.
_ : (m n : ℕ) → does (5 + m ≟₁ 3 + n) ≡ does (2 + m ≟₁ n)
_ = λ m n → refl
-- Even better, from a maintainability point of view, is to use `map` or `map′`,
-- both of which capture the pattern of the `does` field remaining the same, but
-- the `proof` field being updated.
_≟₂_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₂ zero = yes refl
zero ≟₂ suc n = no λ ()
suc m ≟₂ zero = no λ ()
suc m ≟₂ suc n = map′ (cong suc) suc-injective (m ≟₂ n)
_ : (m n : ℕ) → does (5 + m ≟₂ 3 + n) ≡ does (2 + m ≟₂ n)
_ = λ m n → refl
-- `map′` can be used in conjunction with combinators such as `_⊎-dec_` and
-- `_×-dec_` to build complex (simply typed) decision procedures.
module ListDecEq₀ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) =
map′ (uncurry (cong₂ _∷_)) ∷-injective (x ≟ᴬ y ×-dec xs ≟ᴸᴬ ys)
-- The final case says that `x ∷ xs ≡ y ∷ ys` exactly when `x ≡ y` *and*
-- `xs ≡ ys`. The proofs are updated by the first two arguments to `map′`.
-- In the case of ≡-equality tests, the pattern
-- `map′ (congₙ c) c-injective (x₀ ≟ y₀ ×-dec ... ×-dec xₙ₋₁ ≟ yₙ₋₁)`
-- is captured by `≟-mapₙ n c c-injective (x₀ ≟ y₀) ... (xₙ₋₁ ≟ yₙ₋₁)`.
module ListDecEq₁ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) = ≟-mapₙ 2 _∷_ ∷-injective (x ≟ᴬ y) (xs ≟ᴸᴬ ys)
|
{
"alphanum_fraction": 0.5970215603,
"avg_line_length": 33.8270676692,
"ext": "agda",
"hexsha": "2e6faa9d069f6ab3b31a003950a49d022d62d767",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Decidability.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Decidability.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Decidability.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1669,
"size": 4499
}
|
{-# OPTIONS --cubical-compatible #-}
module WithoutK2 where
-- Equality defined with two indices.
data _≡_ {A : Set} : A → A → Set where
refl : ∀ x → x ≡ x
K : {A : Set} (P : {x : A} → x ≡ x → Set) →
(∀ x → P (refl x)) →
∀ {x} (x≡x : x ≡ x) → P x≡x
K P p (refl x) = p x
|
{
"alphanum_fraction": 0.485915493,
"avg_line_length": 20.2857142857,
"ext": "agda",
"hexsha": "4b5f6690a2af7589675fc8dde407913c58bd4011",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK2.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK2.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 284
}
|
open import SOAS.Common
open import SOAS.Families.Core
open import Categories.Object.Initial
open import SOAS.Coalgebraic.Strength
import SOAS.Metatheory.MetaAlgebra
-- Substitution structure by initiality
module SOAS.Metatheory.Substitution {T : Set}
(⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F)
(𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛)
(𝕋:Init : Initial 𝕄etaAlgebras)
where
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Abstract.Hom
import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Abstract.Monoid
open import SOAS.Coalgebraic.Map
open import SOAS.Coalgebraic.Monoid
open import SOAS.Coalgebraic.Lift
open import SOAS.Metatheory.Algebra ⅀F
open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Traversal ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Renaming ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Coalgebraic ⅀F ⅀:Str 𝔛 𝕋:Init
open Strength ⅀:Str
private
variable
Γ Δ : Ctx
α β : T
-- Substitution is a 𝕋-parametrised traversal into 𝕋
module Substitution = Traversal 𝕋ᴮ 𝕒𝕝𝕘 id 𝕞𝕧𝕒𝕣
𝕤𝕦𝕓 : 𝕋 ⇾̣ 〖 𝕋 , 𝕋 〗
𝕤𝕦𝕓 = Substitution.𝕥𝕣𝕒𝕧
-- The renaming and algebra structures on 𝕋 are compatible, so 𝕤𝕦𝕓 is coalgebraic
𝕤𝕦𝕓ᶜ : Coalgebraic 𝕋ᴮ 𝕋ᴮ 𝕋ᴮ 𝕤𝕦𝕓
𝕤𝕦𝕓ᶜ = Travᶜ.𝕥𝕣𝕒𝕧ᶜ 𝕋ᴮ 𝕒𝕝𝕘 id 𝕞𝕧𝕒𝕣 𝕋ᴮ idᴮ⇒ Renaming.𝕤𝕖𝕞ᵃ⇒
module 𝕤𝕦𝕓ᶜ = Coalgebraic 𝕤𝕦𝕓ᶜ
-- Compatibility of renaming and substitution
compat : {ρ : Γ ↝ Δ} (t : 𝕋 α Γ) → 𝕣𝕖𝕟 t ρ ≡ 𝕤𝕦𝕓 t (𝕧𝕒𝕣 ∘ ρ)
compat {ρ = ρ} t = begin 𝕣𝕖𝕟 t ρ ≡˘⟨ 𝕥𝕣𝕒𝕧-η≈id 𝕋ᴮ id refl ⟩
𝕤𝕦𝕓 (𝕣𝕖𝕟 t ρ) 𝕧𝕒𝕣 ≡⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
𝕤𝕦𝕓 t (𝕧𝕒𝕣 ∘ ρ) ∎ where open ≡-Reasoning
-- Substitution associativity law
𝕤𝕦𝕓-comp : MapEq₂ 𝕋ᴮ 𝕋ᴮ 𝕒𝕝𝕘 (λ t σ ς → 𝕤𝕦𝕓 (𝕤𝕦𝕓 t σ) ς)
(λ t σ ς → 𝕤𝕦𝕓 t (λ v → 𝕤𝕦𝕓 (σ v) ς))
𝕤𝕦𝕓-comp = record
{ φ = id
; ϕ = 𝕤𝕦𝕓
; χ = 𝕞𝕧𝕒𝕣
; f⟨𝑣⟩ = 𝕥≈₁ 𝕥⟨𝕧⟩
; f⟨𝑚⟩ = trans (𝕥≈₁ 𝕥⟨𝕞⟩) 𝕥⟨𝕞⟩
; f⟨𝑎⟩ = λ{ {σ = σ}{ς}{t} → begin
𝕤𝕦𝕓 (𝕤𝕦𝕓 (𝕒𝕝𝕘 t) σ) ς
≡⟨ 𝕥≈₁ 𝕥⟨𝕒⟩ ⟩
𝕤𝕦𝕓 (𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ς
≡⟨ 𝕥⟨𝕒⟩ ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ς)
≡˘⟨ congr (str-nat₂ 𝕤𝕦𝕓 (⅀₁ 𝕤𝕦𝕓 t) σ) (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 - ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀.F₁ (λ { h ς → 𝕤𝕦𝕓 (h ς) }) (⅀₁ 𝕤𝕦𝕓 t)) σ) ς)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 - σ) ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀₁ (λ{ t σ → 𝕤𝕦𝕓 (𝕤𝕦𝕓 t σ)}) t) σ) ς)
∎ }
; g⟨𝑣⟩ = 𝕥⟨𝕧⟩
; g⟨𝑚⟩ = 𝕥⟨𝕞⟩
; g⟨𝑎⟩ = λ{ {σ = σ}{ς}{t} → begin
𝕤𝕦𝕓 (𝕒𝕝𝕘 t) (λ v → 𝕤𝕦𝕓 (σ v) ς)
≡⟨ 𝕥⟨𝕒⟩ ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) (λ v → 𝕤𝕦𝕓 (σ v) ς))
≡⟨ cong 𝕒𝕝𝕘 (str-dist 𝕋 𝕤𝕦𝕓ᶜ (⅀₁ 𝕤𝕦𝕓 t) (λ {τ} z → σ z) ς) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀.F₁ (precomp 𝕋 𝕤𝕦𝕓) (⅀₁ 𝕤𝕦𝕓 t)) σ) ς)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 - σ) ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀₁ (λ{ t σ ς → 𝕤𝕦𝕓 t (λ v → 𝕤𝕦𝕓 (σ v) ς)}) t) σ) ς)
∎ }
} where open ≡-Reasoning ; open Substitution
-- Coalgebraic monoid structure on 𝕋
𝕋ᵐ : Mon 𝕋
𝕋ᵐ = record
{ η = 𝕧𝕒𝕣
; μ = 𝕤𝕦𝕓
; lunit = Substitution.𝕥⟨𝕧⟩
; runit = λ{ {t = t} → trans (𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 𝕋ᴮ 𝕋ᵃ id refl) 𝕤𝕖𝕞-id }
; assoc = λ{ {t = t} → MapEq₂.≈ 𝕤𝕦𝕓-comp t }
}
open Mon 𝕋ᵐ using ([_/] ; [_,_/]₂ ; lunit ; runit ; assoc) public
𝕋ᴹ : CoalgMon 𝕋
𝕋ᴹ = record { ᴮ = 𝕋ᴮ ; ᵐ = 𝕋ᵐ ; η-compat = refl ; μ-compat = λ{ {t = t} → compat t } }
-- Corollaries: renaming and simultaneous substitution commutes with
-- single-variable substitution
open import SOAS.ContextMaps.Combinators
𝕣𝕖𝕟[/] : (ρ : Γ ↝ Δ)(b : 𝕋 α (β ∙ Γ))(a : 𝕋 β Γ)
→ 𝕣𝕖𝕟 ([ a /] b) ρ ≡ [ (𝕣𝕖𝕟 a ρ) /] (𝕣𝕖𝕟 b (rlift _ ρ))
𝕣𝕖𝕟[/] ρ b a = begin
𝕣𝕖𝕟 ([ a /] b) ρ
≡⟨ 𝕤𝕦𝕓ᶜ.r∘f ⟩
𝕤𝕦𝕓 b (λ v → 𝕣𝕖𝕟 (add 𝕋 a 𝕧𝕒𝕣 v) ρ)
≡⟨ cong (𝕤𝕦𝕓 b) (dext (λ{ new → refl ; (old y) → Renaming.𝕥⟨𝕧⟩})) ⟩
𝕤𝕦𝕓 b (λ v → add 𝕋 (𝕣𝕖𝕟 a ρ) 𝕧𝕒𝕣 (rlift _ ρ v))
≡˘⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
[ 𝕣𝕖𝕟 a ρ /] (𝕣𝕖𝕟 b (rlift _ ρ))
∎ where open ≡-Reasoning
𝕤𝕦𝕓[/] : (σ : Γ ~[ 𝕋 ]↝ Δ)(b : 𝕋 α (β ∙ Γ))(a : 𝕋 β Γ)
→ 𝕤𝕦𝕓 ([ a /] b) σ ≡ [ 𝕤𝕦𝕓 a σ /] (𝕤𝕦𝕓 b (lift 𝕋ᴮ ⌈ β ⌋ σ))
𝕤𝕦𝕓[/] {β = β} σ b a = begin
𝕤𝕦𝕓 ([ a /] b) σ
≡⟨ assoc ⟩
𝕤𝕦𝕓 b (λ v → 𝕤𝕦𝕓 (add 𝕋 a 𝕧𝕒𝕣 v) σ)
≡⟨ cong (𝕤𝕦𝕓 b) (dext (λ{ new → sym lunit ; (old v) → sym (begin
𝕤𝕦𝕓 (𝕣𝕖𝕟 (σ v) old) (add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣)
≡⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
𝕤𝕦𝕓 (σ v) (λ v → add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣 (old v))
≡⟨ cong (𝕤𝕦𝕓 (σ v)) (dext (λ{ new → refl ; (old v) → refl})) ⟩
𝕤𝕦𝕓 (σ v) 𝕧𝕒𝕣
≡⟨ runit ⟩
σ v
≡˘⟨ lunit ⟩
𝕤𝕦𝕓 (𝕧𝕒𝕣 v) σ
∎)})) ⟩
𝕤𝕦𝕓 b (λ v → 𝕤𝕦𝕓 (lift 𝕋ᴮ ⌈ β ⌋ σ v) (add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣))
≡˘⟨ assoc ⟩
[ 𝕤𝕦𝕓 a σ /] (𝕤𝕦𝕓 b (lift 𝕋ᴮ ⌈ β ⌋ σ))
∎ where open ≡-Reasoning
|
{
"alphanum_fraction": 0.5447291054,
"avg_line_length": 33.3006993007,
"ext": "agda",
"hexsha": "4c84caa613dfbb3e5387d6ea3ff1ac484b3377e6",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/Substitution.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/Substitution.agda",
"max_line_length": 92,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 3481,
"size": 4762
}
|
module BuiltinConstructorsNeededForLiterals where
data Nat : Set where
zero : Nat → Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data ⊥ : Set where
empty : Nat → ⊥
empty (zero n) = empty n
empty (suc n) = empty n
bad : ⊥
bad = empty 0
|
{
"alphanum_fraction": 0.644,
"avg_line_length": 13.8888888889,
"ext": "agda",
"hexsha": "9dd3bd993c7352f26b1aff0c91f95175d44ab9df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/BuiltinConstructorsNeededForLiterals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/BuiltinConstructorsNeededForLiterals.agda",
"max_line_length": 49,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/BuiltinConstructorsNeededForLiterals.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 84,
"size": 250
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.WedgeExtension
module homotopy.Pi2HSusp where
module Pi2HSusp {i} (A : Type i) (gA : has-level ⟨ 1 ⟩ A)
(cA : is-connected ⟨0⟩ A) (A-H : HSS A)
(μcoh : HSS.μe- A-H (HSS.e A-H) == HSS.μ-e A-H (HSS.e A-H))
where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ ((x : A) → coe p x == coe q x) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (pair= (λ= α) (prop-has-all-paths-↓ (is-equiv-is-prop (coe q))))
∙ ua-η q
open HSpaceStructure A-H
open ConnectedHSpace A cA A-H
P : Suspension A → Type i
P x = Trunc ⟨ 1 ⟩ (north A == x)
module Codes = SuspensionRec A A A (λ a → ua (μ-equiv a))
Codes : Suspension A → Type i
Codes = Codes.f
Codes-level : (x : Suspension A) → has-level ⟨ 1 ⟩ (Codes x)
Codes-level = Suspension-elim A gA gA
(λ _ → prop-has-all-paths-↓ has-level-is-prop)
encode₀ : {x : Suspension A} → (north A == x) → Codes x
encode₀ α = transport Codes α e
encode : {x : Suspension A} → P x → Codes x
encode {x} = Trunc-rec (Codes-level x) encode₀
decode' : A → P (north A)
decode' a = [ (merid A a ∙ ! (merid A e)) ]
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid A a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid A a)) a'
=⟨ Codes.glue-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ-equiv a)) a'
=⟨ coe-β (μ-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes (! (merid A e)) a == a
transport-Codes-mer-e-! a =
coe (ap Codes (! (merid A e))) a
=⟨ ap-! Codes (merid A e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid A e))) a
=⟨ Codes.glue-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ-equiv e))) a
=⟨ Type=-ext (ua (μ-equiv e)) idp (λ x → coe-β _ x ∙ μe- x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode-decode' : (a : A) → encode (decode' a) == a
encode-decode' a =
transport Codes (merid A a ∙ ! (merid A e)) e
=⟨ trans-∙ {B = Codes} (merid A a) (! (merid A e)) e ⟩
transport Codes (! (merid A e)) (transport Codes (merid A a) e)
=⟨ transport-Codes-mer a e ∙ μ-e a
|in-ctx (λ w → transport Codes (! (merid A e)) w) ⟩
transport Codes (! (merid A e)) a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
abstract
homomorphism : (a a' : A)
→ Path {A = Trunc ⟨ 1 ⟩ (north A == south A)}
[ merid A (μ a a' ) ] [ merid A a' ∙ ! (merid A e) ∙ merid A a ]
homomorphism = WedgeExt.ext args
where
args : WedgeExt.args {a₀ = e} {b₀ = e}
args = record {m = ⟨-2⟩; n = ⟨-2⟩; cA = cA; cB = cA;
P = λ a a' → (_ , Trunc-level {n = ⟨ 1 ⟩} _ _);
f = λ a → ap [_] $
merid A (μ a e)
=⟨ ap (merid A) (μ-e a) ⟩
merid A a
=⟨ ap (λ w → w ∙ merid A a) (! (!-inv-r (merid A e)))
∙ ∙-assoc (merid A e) (! (merid A e)) (merid A a) ⟩
merid A e ∙ ! (merid A e) ∙ merid A a ∎;
g = λ a' → ap [_] $
merid A (μ e a')
=⟨ ap (merid A) (μe- a') ⟩
merid A a'
=⟨ ! (∙-unit-r (merid A a'))
∙ ap (λ w → merid A a' ∙ w) (! (!-inv-l (merid A e))) ⟩
merid A a' ∙ ! (merid A e) ∙ merid A e ∎ ;
p = ap (λ {(p₁ , p₂) → ap [_] $
merid A (μ e e) =⟨ p₁ ⟩
merid A e =⟨ p₂ ⟩
merid A e ∙ ! (merid A e) ∙ merid A e ∎})
(pair×= (ap (λ x → ap (merid A) x) (! μcoh)) (coh (merid A e)))}
where coh : {B : Type i} {b b' : B} (p : b == b')
→ ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p
== ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p))
coh idp = idp
decode : {x : Suspension A} → Codes x → P x
decode {x} = Suspension-elim A {P = λ x → Codes x → P x}
decode'
(λ a → [ merid A a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid A a) (decode' a')
== [ merid A (transport Codes (merid A a) a') ]
STS a a' =
transport P (merid A a) [ merid A a' ∙ ! (merid A e) ]
=⟨ transport-Trunc (λ x → north A == x) (merid A a) _ ⟩
[ transport (λ x → north A == x) (merid A a) (merid A a' ∙ ! (merid A e)) ]
=⟨ ap [_] (trans-pathfrom {A = Suspension A} (merid A a) _) ⟩
[ (merid A a' ∙ ! (merid A e)) ∙ merid A a ]
=⟨ ap [_] (∙-assoc (merid A a') (! (merid A e)) (merid A a)) ⟩
[ merid A a' ∙ ! (merid A e) ∙ merid A a ]
=⟨ ! (homomorphism a a') ⟩
[ merid A (μ a a') ]
=⟨ ap ([_] ∘ merid A) (! (transport-Codes-mer a a')) ⟩
[ merid A (transport Codes (merid A a) a') ] ∎
abstract
decode-encode : {x : Suspension A} (tα : P x)
→ decode {x} (encode {x} tα) == tα
decode-encode {x} = Trunc-elim
{P = λ tα → decode {x} (encode {x} tα) == tα}
(λ _ → =-preserves-level ⟨ 1 ⟩ Trunc-level)
(J (λ y p → decode {y} (encode {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid A e))))
main-lemma-eqv : Trunc ⟨ 1 ⟩ (north A == north A) ≃ A
main-lemma-eqv = equiv encode decode' encode-decode' decode-encode
⊙main-lemma : ⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e))) == (A , e)
⊙main-lemma = ⊙ua main-lemma-eqv idp
abstract
main-lemma-iso : (t1 : 1 ≠ 0) →
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
≃ᴳ Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
main-lemma-iso _ = (record {f = f; pres-comp = pres-comp} , ie)
where
h : fst (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))
⊙→ ⊙Trunc ⟨ 1 ⟩ (A , e))
h = (λ x → [ encode x ]) , idp
f : Ω (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) → Ω (⊙Trunc ⟨ 1 ⟩ (A , e))
f = fst (ap^ 1 h)
pres-comp : (p q : Ω^ 1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))))
→ f (conc^ 1 (ℕ-S≠O _) p q) == conc^ 1 (ℕ-S≠O _) (f p) (f q)
pres-comp = ap^-conc^ 1 (ℕ-S≠O _) h
ie : is-equiv f
ie = is-equiv-ap^ 1 h (snd $ ((unTrunc-equiv A gA)⁻¹ ∘e main-lemma-eqv))
abstract
π₂-Suspension : (t1 : 1 ≠ 0) (t2 : 2 ≠ 0)
→ π 2 t2 (⊙Susp (A , e)) == π 1 t1 (A , e)
π₂-Suspension t1 t2 =
π 2 t2 (⊙Susp (A , e))
=⟨ π-inner-iso 1 t1 t2 (⊙Susp (A , e)) ⟩
π 1 t1 (⊙Ω (⊙Susp (A , e)))
=⟨ ! (π-Trunc-shift-iso 1 t1 (⊙Ω (⊙Susp (A , e)))) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
=⟨ group-ua (main-lemma-iso t1) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
=⟨ π-Trunc-shift-iso 1 t1 (A , e) ⟩
π 1 t1 (A , e) ∎
|
{
"alphanum_fraction": 0.454689298,
"avg_line_length": 37.5783783784,
"ext": "agda",
"hexsha": "29a95114a01d9bc91e2e77d2da4357d80dfa6a24",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/Pi2HSusp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/Pi2HSusp.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/Pi2HSusp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2886,
"size": 6952
}
|
open import Categories
open import Monads
open import Level
import Monads.CatofAdj
module Monads.CatofAdj.TermAdjHom
{c d}
{C : Cat {c}{d}}
(M : Monad C)
(A : Cat.Obj (Monads.CatofAdj.CatofAdj M {c ⊔ d}{c ⊔ d})) where
open import Library
open import Functors
open import Adjunctions
open import Monads.EM M
open Monads.CatofAdj M
open import Monads.CatofAdj.TermAdjObj M
open Cat
open Fun
open Adj
open Monad
open ObjAdj
K' : Fun (D A) (D EMObj)
K' = record {
OMap = λ X → record {
acar = OMap (R (adj A)) X;
astr = λ Z f → subst (λ Z → Hom C Z (OMap (R (adj A)) X))
(fcong Z (cong OMap (law A)))
(HMap (R (adj A)) (right (adj A) f));
alaw1 = λ {Z} {f} → alaw1lem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(η M)
(right (adj A))
(left (adj A))
(ηlaw A)
(natleft (adj A) (iden C) (right (adj A) f) (iden (D A)))
(lawb (adj A) f);
alaw2 = λ {Z} {W} {k} {f} → alaw2lem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(natright (adj A))
(bindlaw A {_}{_}{k})};
HMap = λ {X} {Y} f → record {
amor = HMap (R (adj A)) f;
ahom = λ {Z} {g} → ahomlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(natright (adj A))};
fid = AlgMorphEq (fid (R (adj A)));
fcomp = AlgMorphEq (fcomp (R (adj A)))}
Llaw' : K' ○ L (adj A) ≅ L (adj EMObj)
Llaw' = FunctorEq
_
_
(ext (λ X → AlgEq
(fcong X (cong OMap (law A)))
((ext λ Z → dext (λ {f} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p)))))
(iext λ X → iext λ Y → ext λ f → AlgMorphEq'
(AlgEq
(fcong X (cong OMap (law A)))
((ext λ Z → dext (λ {f₁} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p))))
(AlgEq
(fcong Y (cong OMap (law A)))
((ext λ Z → dext (λ {f₁} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p))))
(dcong
(refl {x = f})
(ext (λ _ → cong₂
(Hom C)
(fcong X (cong OMap (law A)))
(fcong Y (cong OMap (law A)))))
(dicong
(refl {x = Y})
(ext (λ z → cong
(λ F → Hom C X z → Hom C (F X) (F z))
(cong OMap (law A))))
(dicong
(refl {x = X})
(ext (λ z → cong
(λ F → ∀ {y} → Hom C z y → Hom C (F z) (F y))
(cong OMap (law A))))
(cong HMap (law A))))))
Rlaw' : R (adj A) ≅ R (adj EMObj) ○ K'
Rlaw' = FunctorEq _ _ refl refl
rightlaw' : {X : Obj C} {Y : Obj (D A)} {f : Hom C X (OMap (R (adj A)) Y)} →
HMap K' (right (adj A) f)
≅
right (adj EMObj)
{X}
{OMap K' Y}
(subst (Hom C X) (fcong Y (cong OMap Rlaw')) f)
rightlaw' {X = X}{Y = Y}{f = f} = AlgMorphEq'
(AlgEq (fcong X (cong OMap (law A)))
(ext λ Z → dext (λ p → Llawlem (TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A) p )))
refl
(trans (cong (λ (f₁ : Hom C X (OMap (R (adj A)) Y)) →
HMap (R (adj A)) (right (adj A) f₁)) (sym (stripsubst (Hom C X) f (fcong Y (cong OMap Rlaw')))) ) (sym (stripsubst (λ Z → Hom C Z (OMap (R (adj A)) Y)) ( ((HMap (R (adj A))
(right (adj A)
(subst (Hom C X) (fcong Y (cong (λ r → OMap r) Rlaw')) f))))) (fcong X (cong OMap (law A))))))
EMHom : Hom CatofAdj A EMObj
EMHom = record {
K = K';
Llaw = Llaw';
Rlaw = Rlaw';
rightlaw = rightlaw'}
|
{
"alphanum_fraction": 0.4269524513,
"avg_line_length": 26.1870967742,
"ext": "agda",
"hexsha": "9ad5c24947113936e65368d6cbacb092ba2bd72c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Monads/CatofAdj/TermAdjHom.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Monads/CatofAdj/TermAdjHom.agda",
"max_line_length": 183,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Monads/CatofAdj/TermAdjHom.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 1551,
"size": 4059
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.Equivalence
{- Structural lemmas about paths over paths
The lemmas here have the form
[↓-something-in] : introduction rule for the something
[↓-something-out] : elimination rule for the something
[↓-something-β] : β-reduction rule for the something
[↓-something-η] : η-reduction rule for the something
The possible somethings are:
[cst] : constant fibration
[cst2] : fibration constant in the second argument
[cst2×] : fibration constant and nondependent in the second argument
[ap] : the path below is of the form [ap f p]
[fst×] : the fibration is [fst] (nondependent product)
[snd×] : the fibration is [snd] (nondependent product)
The rule of prime: The above lemmas should choose
between [_∙_] and [_∙'_] in a way that, if the underlying path is [idp],
then the entire lemma reduces to an identity function.
Otherwise, the lemma would have the suffix [in'] or [out'], meaning that
all the choices of [_∙_] or [_∙'_] are exactly the opposite ones.
You can also go back and forth between dependent paths and homogeneous paths
with a transport on one side with the functions
[to-transp], [from-transp], [to-transp-β]
[to-transp!], [from-transp!], [to-transp!-β]
More lemmas about paths over paths are present in the lib.types.* modules
(depending on the type constructor of the fibration)
-}
module lib.PathOver where
{- Dependent paths in a constant fibration -}
module _ {i j} {A : Type i} {B : Type j} where
↓-cst-in : {x y : A} {p : x == y} {u v : B}
→ u == v
→ u == v [ (λ _ → B) ↓ p ]
↓-cst-in {p = idp} q = q
↓-cst-out : {x y : A} {p : x == y} {u v : B}
→ u == v [ (λ _ → B) ↓ p ]
→ u == v
↓-cst-out {p = idp} q = q
↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v)
→ (↓-cst-out (↓-cst-in {p = p} q) == q)
↓-cst-β idp q = idp
{- Interaction of [↓-cst-in] with [_∙_] -}
↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
(p' : u == v) (q' : v == w)
→ ↓-cst-in {p = p ∙ q} (p' ∙ q')
== ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q'
↓-cst-in-∙ idp idp idp idp = idp
{- Interaction of [↓-cst-in] with [_∙'_] -}
↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
(p' : u == v) (q' : v == w)
→ ↓-cst-in {p = p ∙' q} (p' ∙' q')
== ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q'
↓-cst-in-∙' idp idp idp idp = idp
{- Introduction of an equality between [↓-cst-in]s (used to deduce the
recursor from the eliminator in HIT with 2-paths) -}
↓-cst-in2 : {a a' : A} {u v : B}
{p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁}
→ q₀ == q₁
→ (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → u == v [ (λ _ → B) ↓ p ]) ↓ q ])
↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k
-- Dependent paths in a fibration constant in the second argument
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
↓-cst2-in idp idp r = r
↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
→ u == v [ B ↓ p ]
↓-cst2-out idp idp r = r
-- Dependent paths in a fibration constant and non dependent in the
-- second argument
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where
↓-cst2×-in : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
↓-cst2×-in idp idp r = r
↓-cst2×-out : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
→ u == v [ B ↓ p ]
↓-cst2×-out idp idp r = r
-- Dependent paths in the universal fibration over the universe
↓-idf-out : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ u == v [ (λ x → x) ↓ p ]
→ coe p u == v
↓-idf-out idp = idf _
↓-idf-in : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ coe p u == v
→ u == v [ (λ x → x) ↓ p ]
↓-idf-in idp = idf _
-- Dependent paths over [ap f p]
module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where
↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
→ u == v [ C ∘ f ↓ p ]
→ u == v [ C ↓ ap f p ]
↓-ap-in {p = idp} idp = idp
↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)}
→ u == v [ C ↓ ap f p ]
→ u == v [ C ∘ f ↓ p ]
↓-ap-out idp idp = idp
-- Dependent paths over [ap2 f p q]
module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C → Type l)
(f : A → B → C) where
↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z}
{u : D (f x w)} {v : D (f y z)}
→ u == v [ D ∘ uncurry f ↓ pair×= p q ]
→ u == v [ D ↓ ap2 f p q ]
↓-ap2-in {p = idp} {q = idp} α = α
↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z}
{u : D (f x w)} {v : D (f y z)}
→ u == v [ D ↓ ap2 f p q ]
→ u == v [ D ∘ uncurry f ↓ pair×= p q ]
↓-ap2-out {p = idp} {q = idp} α = α
apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y}
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ]
apd↓ f {p = idp} idp = idp
apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A}
(p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p))
apd↓=apd f idp = idp
-- Paths in the fibrations [fst] and [snd]
module _ {i j} where
↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : A} {v : A'}
→ u == v [ fst ↓ pair×= p q ]
→ u == v [ (λ X → X) ↓ p ]
↓-fst×-out idp idp h = h
↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : B} {v : B'}
→ u == v [ (λ X → X) ↓ q ]
→ u == v [ snd ↓ pair×= p q ]
↓-snd×-in idp idp h = h
-- Mediating dependent paths with the transport version
module _ {i j} {A : Type i} where
from-transp : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (transport B p u == v)
→ (u == v [ B ↓ p ])
from-transp B idp idp = idp
to-transp : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (transport B p u == v)
to-transp {p = idp} idp = idp
to-transp-β : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : transport B p u == v)
→ to-transp (from-transp B p q) == q
to-transp-β B idp idp = idp
to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp B p (to-transp q) == q
to-transp-η {p = idp} idp = idp
to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v)
to-transp-equiv B p =
equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η)
from-transp! : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (u == transport! B p v)
→ (u == v [ B ↓ p ])
from-transp! B idp idp = idp
to-transp! : {B : A → Type j}
{a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (u == transport! B p v)
to-transp! {p = idp} idp = idp
to-transp!-β : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : u == transport! B p v)
→ to-transp! (from-transp! B p q) == q
to-transp!-β B idp idp = idp
to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp! B p (to-transp! q) == q
to-transp!-η {p = idp} idp = idp
to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v)
to-transp!-equiv B p =
equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η)
{- Various other lemmas -}
{- Used for defining the recursor from the eliminator for 1-HIT -}
apd=cst-in : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
{a a' : A} {p : a == a'} {q : f a == f a'}
→ apd f p == ↓-cst-in q → ap f p == q
apd=cst-in {p = idp} x = x
↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k)
{f : Π A B} {x y : A} {p : x == y}
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
{u : C x (f x)} {v : C y (f y)}
→ u == v [ uncurry C ↓ pair= p q ]
→ u == v [ (λ z → C z (f z)) ↓ p ]
↓-apd-out C {p = idp} idp idp = idp
↓-ap-out= : ∀ {i j k} {A : Type i} {B : Type j} (C : (b : B) → Type k)
(f : A → B) {x y : A} (p : x == y)
{q : f x == f y} (r : ap f p == q)
{u : C (f x)} {v : C (f y)}
→ u == v [ C ↓ q ]
→ u == v [ (λ z → C (f z)) ↓ p ]
↓-ap-out= C f idp idp idp = idp
-- No idea what that is
to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j}
{u v : A} {d : B u} {d' d'' : B v} {p : u == v}
(q : d == d' [ B ↓ p ]) (r : transport B p d == d'')
→ (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q
to-transp-weird {p = idp} idp idp = idp
-- Something not really clear yet
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C)
where
↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s)
↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t)
↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
(t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ ↓-swap! r s (↓-swap r s t) == t
↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where
coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t)
→ p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r
coh idp idp idp = idp
transp-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A}
(p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ]
transp-↓ _ idp _ = idp
transp-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B)
{a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂))
→ transport P (! (ap h p)) y == y [ P ∘ h ↓ p ]
transp-ap-↓ _ _ idp _ = idp
|
{
"alphanum_fraction": 0.4413413039,
"avg_line_length": 34.6472491909,
"ext": "agda",
"hexsha": "1a276be7495fc14b1af17d24bcd328f9920e6f95",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/PathOver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/PathOver.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/PathOver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4855,
"size": 10706
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The lifting of a strict order to incorporate a new supremum
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Supremum
open import Relation.Binary
module Relation.Binary.Construct.Add.Supremum.Strict
{a r} {A : Set a} (_<_ : Rel A r) where
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl)
open import Relation.Nullary.Construct.Add.Supremum
import Relation.Binary.Construct.Add.Supremum.Equality as Equality
import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict
------------------------------------------------------------------------
-- Definition
infix 4 _<⁺_
data _<⁺_ : Rel (A ⁺) (a ⊔ r) where
[_] : {k l : A} → k < l → [ k ] <⁺ [ l ]
[_]<⊤⁺ : (k : A) → [ k ] <⁺ ⊤⁺
------------------------------------------------------------------------
-- Relational properties
[<]-injective : ∀ {k l} → [ k ] <⁺ [ l ] → k < l
[<]-injective [ p ] = p
<⁺-asym : Asymmetric _<_ → Asymmetric _<⁺_
<⁺-asym <-asym [ p ] [ q ] = <-asym p q
<⁺-trans : Transitive _<_ → Transitive _<⁺_
<⁺-trans <-trans [ p ] [ q ] = [ <-trans p q ]
<⁺-trans <-trans [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺
<⁺-dec : Decidable _<_ → Decidable _<⁺_
<⁺-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l)
<⁺-dec _<?_ [ k ] ⊤⁺ = yes [ k ]<⊤⁺
<⁺-dec _<?_ ⊤⁺ [ l ] = no (λ ())
<⁺-dec _<?_ ⊤⁺ ⊤⁺ = no (λ ())
<⁺-irrelevant : Irrelevant _<_ → Irrelevant _<⁺_
<⁺-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q)
<⁺-irrelevant <-irr [ k ]<⊤⁺ [ k ]<⊤⁺ = P.refl
module _ {r} {_≤_ : Rel A r} where
open NonStrict _≤_
<⁺-transʳ : Trans _≤_ _<_ _<_ → Trans _≤⁺_ _<⁺_ _<⁺_
<⁺-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ]
<⁺-transʳ <-transʳ [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺
<⁺-transˡ : Trans _<_ _≤_ _<_ → Trans _<⁺_ _≤⁺_ _<⁺_
<⁺-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ]
<⁺-transˡ <-transˡ [ p ] ([ _ ] ≤⊤⁺) = [ _ ]<⊤⁺
<⁺-transˡ <-transˡ [ k ]<⊤⁺ (⊤⁺ ≤⊤⁺) = [ k ]<⊤⁺
------------------------------------------------------------------------
-- Relational properties + propositional equality
<⁺-cmp-≡ : Trichotomous _≡_ _<_ → Trichotomous _≡_ _<⁺_
<⁺-cmp-≡ <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) refl (λ ())
<⁺-cmp-≡ <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺
<⁺-cmp-≡ <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ())
<⁺-cmp-≡ <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ []-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a refl ¬c = tri≈ (¬a ∘ [<]-injective) refl (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ []-injective) [ c ]
<⁺-irrefl-≡ : Irreflexive _≡_ _<_ → Irreflexive _≡_ _<⁺_
<⁺-irrefl-≡ <-irrefl refl [ x ] = <-irrefl refl x
<⁺-respˡ-≡ : _<⁺_ Respectsˡ _≡_
<⁺-respˡ-≡ = P.subst (_<⁺ _)
<⁺-respʳ-≡ : _<⁺_ Respectsʳ _≡_
<⁺-respʳ-≡ = P.subst (_ <⁺_)
<⁺-resp-≡ : _<⁺_ Respects₂ _≡_
<⁺-resp-≡ = <⁺-respʳ-≡ , <⁺-respˡ-≡
------------------------------------------------------------------------
-- Relational properties + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<⁺-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈⁺_ _<⁺_
<⁺-cmp <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) ⊤⁺≈⊤⁺ (λ ())
<⁺-cmp <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺
<⁺-cmp <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ())
<⁺-cmp <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ]
<⁺-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈⁺_ _<⁺_
<⁺-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q
<⁺-respˡ-≈⁺ : _<_ Respectsˡ _≈_ → _<⁺_ Respectsˡ _≈⁺_
<⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ]
<⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] ([ l ]<⊤⁺) = [ _ ]<⊤⁺
<⁺-respˡ-≈⁺ <-respˡ-≈ ⊤⁺≈⊤⁺ q = q
<⁺-respʳ-≈⁺ : _<_ Respectsʳ _≈_ → _<⁺_ Respectsʳ _≈⁺_
<⁺-respʳ-≈⁺ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ]
<⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q
<⁺-resp-≈⁺ : _<_ Respects₂ _≈_ → _<⁺_ Respects₂ _≈⁺_
<⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺
------------------------------------------------------------------------
-- Structures + propositional equality
<⁺-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_ →
IsStrictPartialOrder _≡_ _<⁺_
<⁺-isStrictPartialOrder-≡ strict = record
{ isEquivalence = P.isEquivalence
; irrefl = <⁺-irrefl-≡ irrefl
; trans = <⁺-trans trans
; <-resp-≈ = <⁺-resp-≡
} where open IsStrictPartialOrder strict
<⁺-isDecStrictPartialOrder-≡ : IsDecStrictPartialOrder _≡_ _<_ →
IsDecStrictPartialOrder _≡_ _<⁺_
<⁺-isDecStrictPartialOrder-≡ dectot = record
{ isStrictPartialOrder = <⁺-isStrictPartialOrder-≡ isStrictPartialOrder
; _≟_ = ≡-dec _≟_
; _<?_ = <⁺-dec _<?_
} where open IsDecStrictPartialOrder dectot
<⁺-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ →
IsStrictTotalOrder _≡_ _<⁺_
<⁺-isStrictTotalOrder-≡ strictot = record
{ isEquivalence = P.isEquivalence
; trans = <⁺-trans trans
; compare = <⁺-cmp-≡ compare
} where open IsStrictTotalOrder strictot
------------------------------------------------------------------------
-- Structures + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<⁺-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ →
IsStrictPartialOrder _≈⁺_ _<⁺_
<⁺-isStrictPartialOrder strict = record
{ isEquivalence = ≈⁺-isEquivalence isEquivalence
; irrefl = <⁺-irrefl irrefl
; trans = <⁺-trans trans
; <-resp-≈ = <⁺-resp-≈⁺ <-resp-≈
} where open IsStrictPartialOrder strict
<⁺-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ →
IsDecStrictPartialOrder _≈⁺_ _<⁺_
<⁺-isDecStrictPartialOrder dectot = record
{ isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder
; _≟_ = ≈⁺-dec _≟_
; _<?_ = <⁺-dec _<?_
} where open IsDecStrictPartialOrder dectot
<⁺-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ →
IsStrictTotalOrder _≈⁺_ _<⁺_
<⁺-isStrictTotalOrder strictot = record
{ isEquivalence = ≈⁺-isEquivalence isEquivalence
; trans = <⁺-trans trans
; compare = <⁺-cmp compare
} where open IsStrictTotalOrder strictot
|
{
"alphanum_fraction": 0.4877411867,
"avg_line_length": 36.664893617,
"ext": "agda",
"hexsha": "2fdaf2d2bd74e412cd5dbfaa668ea8607101438f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2857,
"size": 6893
}
|
module _ where
module A where
infix 2 _↑
infix 1 c
data D : Set where
● : D
_↑ : D → D
c : {x y : D} → D
syntax c {x = x} {y = y} = x ↓ y
module B where
infix 1 c
data D : Set where
c : {y x : D} → D
syntax c {y = y} {x = x} = y ↓ x
open A
open B
rejected : A.D
rejected = ● ↑ ↓ ●
|
{
"alphanum_fraction": 0.4674922601,
"avg_line_length": 11.1379310345,
"ext": "agda",
"hexsha": "a88c6f5faf2ae715b953afaa04c5148af3b2759e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1436-12.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1436-12.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1436-12.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 138,
"size": 323
}
|
{-# OPTIONS --cubical --safe #-}
module Issue4949 where
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive.Cubical renaming (primIMax to _∨_)
open import Agda.Builtin.Unit
open import Agda.Builtin.Sigma
open import Agda.Builtin.Cubical.Glue renaming (prim^glue to glue)
idIsEquiv : ∀ {ℓ} (A : Set ℓ) → isEquiv (\ (x : A) → x)
equiv-proof (idIsEquiv A) y =
((y , \ _ → y) , λ z i → z .snd (primINeg i) , λ j → z .snd (primINeg i ∨ j))
idEquiv : ∀ {ℓ} (A : Set ℓ) → Σ _ (isEquiv {A = A} {B = A})
idEquiv A .fst = \ x → x
idEquiv A .snd = idIsEquiv A
Glue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
→ (Te : Partial φ (Σ (Set ℓ') \ T → Σ _ (isEquiv {A = T} {B = A})))
→ Set ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
ua : ∀ {ℓ} {A B : Set ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)
; (i = i1) → (B , idEquiv B) })
⊤₀ = ⊤
⊤₁ = Σ ⊤ \ _ → ⊤
prf : isEquiv {A = ⊤₀} {B = ⊤₁} _
equiv-proof prf y = (_ , \ i → _) , (\ y → \ i → _ , (\ j → _))
u : ⊤₀ ≡ ⊤₁
u = ua ((λ _ → _) , prf)
uniq : ∀ i j → u (i ∨ j)
uniq i j = glue (λ { (i = i0) (j = i0) → tt ; (i = i1) → tt , tt ; (j = i1) → tt , tt }) _
-- comparing the partial element argument of `glue` should happen at the right type.
-- if it does not we get problems with eta.
test : ∀ j → uniq i0 j ≡ glue (λ { (i0 = i0) (j = i0) → tt ; (j = i1) → tt , tt }) (tt , tt)
test j = \ k → uniq i0 j
|
{
"alphanum_fraction": 0.5048342541,
"avg_line_length": 32.1777777778,
"ext": "agda",
"hexsha": "56b9e544e55dfd0e2881eda3e1d8c1085a5d3936",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4949.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4949.agda",
"max_line_length": 92,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4949.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 628,
"size": 1448
}
|
-- Problem 4: ``50 shades of continuity''
{-
C(f) = ∀ c : X. Cat(f,c)
Cat(f,c) = ∀ ε > 0. ∃ δ > 0. Q(f,c,ε,δ)
Q(f,c,ε,δ) = ∀ x : X. abs(x - c) < δ ⇒ abs(f x - f c) < ε
C'(f) = ∃ getδ : X -> RPos -> RPos. ∀ c : X. ∀ ε > 0. Q(f,c,ε,getδ c ε)
4a: Define UC(f):
UC(f) = ∀ ε > 0. ∃ δ > 0. ∀ y : X. Q(f,y,ε,δ)
4b: Define UC'(f):
UC'(f) = ∃ newδ : RPos -> RPos. ∀ ε > 0. ∀ y : X. Q(f,y,ε,newδ ε)
The function |newδ| computes a suitable "global" |δ| from any |ε|,
which shows |Q| for any |y|.
4c: Prove |∀ f : X -> ℝ. UC'(f) => C'(f)|.
The proof is a function from a pair (newδ, puc) to a pair (getδ, pc).
proof f (newδ, puc) = (getδ, pc)
where getδ c ε = newδ ε
pc c ε = puc ε c -- (1)
The type of (1) is
Q(f,c,ε,newδ ε)
=
Q(f,c,ε,getδ c ε)
which is the type of |pc c ε|.
----------------
Below is a self-contained proof in Agda just to check the above. It is
not part of the exam question.
-}
postulate
R RPos : Set
abs : R -> RPos
_-_ : R -> R -> R
_<_ : RPos -> RPos -> Set
X = R -- to avoid trouble with lack of subtyping
record Sigma (A : Set) (B : A -> Set) : Set where
constructor _,_
field
fst : A
snd : B fst
Q : (X -> R) -> X -> RPos -> RPos -> Set
Q f c ε δ = (x : X) -> (abs( x - c) < δ) ->
(abs(f x - f c) < ε)
Cat : (X -> R) -> X -> Set
Cat f c = (ε : RPos) -> Sigma RPos (\δ ->
Q f c ε δ)
C : (X -> R) -> Set
C f = (c : X) -> Cat f c
C' : (X -> R) -> Set
C' f = Sigma (X -> RPos -> RPos) (\getδ ->
(c : X) -> (ε : RPos) -> Q f c ε (getδ c ε))
UC : (X -> R) -> Set
UC f = (ε : RPos) -> Sigma RPos (\δ ->
(y : X) -> Q f y ε δ)
UC' : (X -> R) -> Set
UC' f = Sigma (RPos -> RPos) (\newδ ->
(ε : RPos) -> (y : X) -> Q f y ε (newδ ε))
proof : (f : X -> R) -> UC' f -> C' f
proof f (newδ , puc) = (getδ , pc)
where getδ = \c -> newδ
pc = \c ε -> puc ε c
|
{
"alphanum_fraction": 0.4320120421,
"avg_line_length": 23.4470588235,
"ext": "agda",
"hexsha": "eb9e02811a509eff1f63211a6324a194a8087110",
"lang": "Agda",
"max_forks_count": 47,
"max_forks_repo_forks_event_max_datetime": "2022-03-03T23:57:42.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-11-16T08:41:04.000Z",
"max_forks_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "nicolabotta/DSLsofMath",
"max_forks_repo_path": "Exam/2017-08/P4.agda",
"max_issues_count": 51,
"max_issues_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_issues_repo_issues_event_max_datetime": "2022-03-03T20:06:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-01-30T15:59:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "nicolabotta/DSLsofMath",
"max_issues_repo_path": "Exam/2017-08/P4.agda",
"max_line_length": 78,
"max_stars_count": 248,
"max_stars_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "nicolabotta/DSLsofMath",
"max_stars_repo_path": "Exam/2017-08/P4.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-29T11:12:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-27T21:04:02.000Z",
"num_tokens": 821,
"size": 1993
}
|
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.LensProofs.Valid-LensA where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.DataLenses
--- Lens laws for lensA
ValidLens-LensA-ViewSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> ViewSet (lensA {t} {dep})
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Leaf v) {p2}) =
begin
view lensA (set lensA (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Leaf v) {p2}))
=⟨⟩
getConst
(lensA CConst
(ifc (x == v && v == v && v == v)
then CVQuadrant (Leaf x)
else CVQuadrant (Node (Leaf x) (Leaf v) (Leaf v) (Leaf v))))
=⟨ sym (propFnIfc (x == v && v == v && v == v) (λ x -> getConst (lensA CConst x))) ⟩
(ifc (x == v && v == v && v == v)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Leaf x)))
=⟨ propIfcBranchesSame {c = (x == v && v == v && v == v)} (CVQuadrant (Leaf x)) ⟩
(CVQuadrant (Leaf x))
end
ValidLens-LensA-ViewSet (CVQuadrant (Node a b c d)) (CVQuadrant (Leaf v)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Node a b@(Leaf vb) c@(Leaf vc) d@(Leaf vd)) {p2}) =
begin
view lensA (set lensA (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Node a b c d) {p2}))
=⟨⟩
getConst (lensA CConst (
ifc (x == vb && vb == vc && vc == vd)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Node (Leaf x) (Leaf vb) (Leaf vc) (Leaf vd)))
))
=⟨ sym (propFnIfc (x == vb && vb == vc && vc == vd) (λ x -> getConst (lensA CConst x))) ⟩
(ifc (x == vb && vb == vc && vc == vd)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Leaf x)))
=⟨ propIfcBranchesSame {c = (x == vb && vb == vc && vc == vd)} (CVQuadrant (Leaf x)) ⟩
(CVQuadrant (Leaf x))
end
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Leaf x₁) (Leaf x₂) (Node d d₁ d₂ d₃))) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Leaf x₁) (Node c c₁ c₂ c₃) d)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Node b b₁ b₂ b₃) c d)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Node toa tob toc tod)) (CVQuadrant (Node a b c d)) = refl
ValidLens-LensA-SetView :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetView (lensA {t} {dep})
ValidLens-LensA-SetView {t} {dep} qd@(CVQuadrant (Leaf x) {p}) =
begin
set lensA (view lensA qd) qd
=⟨⟩
((ifc (x == x && x == x && x == x)
then (CVQuadrant (Leaf x))
else λ {{z}} -> (CVQuadrant (Node (Leaf x) (Leaf x) (Leaf x) (Leaf x)))))
=⟨ ifcTrue (x == x && x == x && x == x) (andCombine (eqReflexivity x) (andCombine (eqReflexivity x) (eqReflexivity x))) ⟩
CVQuadrant (Leaf x)
end
ValidLens-LensA-SetView {t} {dep} cv@(CVQuadrant qd@(Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)) {p}) =
begin
set lensA (view lensA cv) cv
=⟨⟩
(ifc (a == b && b == c && c == d) then (CVQuadrant (Leaf a)) else (CVQuadrant (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d))))
=⟨ ifcFalse (a == b && b == c && c == d) (notTrueToFalse (andSnd {depth qd <= S dep} {isCompressed qd} p)) ⟩
(CVQuadrant (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)))
end
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Leaf x₁) (Leaf x₂) (Node qd₃ qd₄ qd₅ qd₆))) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Leaf x₁) (Node qd₂ qd₄ qd₅ qd₆) qd₃)) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Node qd₁ qd₄ qd₅ qd₆) qd₂ qd₃)) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Node qd qd₄ qd₅ qd₆) qd₁ qd₂ qd₃)) = refl
ValidLens-LensA-SetSet-Lemma : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> (x a b c d : VQuadrant t {dep})
-> set lensA x (combine a b c d) ≡ (combine x b c d)
ValidLens-LensA-SetSet-Lemma {t} {dep} (CVQuadrant x@(Leaf xv)) (CVQuadrant a@(Leaf va)) (CVQuadrant b@(Leaf vb)) (CVQuadrant c@(Leaf vc)) (CVQuadrant d@(Leaf vd)) =
begin
(runIdentity (lensA (λ _ → CIdentity (CVQuadrant (Leaf xv)))
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Leaf va)
else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)))))
=⟨ sym $ propFnIfc (va == vb && vb == vc && vc == vd) (λ g -> (runIdentity (lensA (λ _ → CIdentity (CVQuadrant (Leaf xv) {andCombine (zeroLteAny dep) IsTrue.itsTrue})) g ) ) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == va && va == va && va == va
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf va) (Leaf va) (Leaf va))
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == q && q == q && q == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf q) (Leaf q) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv va vb (andFst {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vb && vb == vb
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vb) (Leaf vb)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == vb && vb == q && q == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf q) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv vb vc (andFst $ andSnd {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vc && vc == vc
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vc)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == vb && vb == vc && vc == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv vc vd (andSnd $ andSnd {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ propIfcBranchesSame {c = va == vb && vb == vc && vc == vd}
(ifc xv == vb && vb == vc && vc == vd then CVQuadrant (Leaf xv) else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd))) ⟩
(ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
end
ValidLens-LensA-SetSet-Lemma {t} {dep} cvx@(CVQuadrant x@(Node x1 x2 x3 x4) {p}) cva@(CVQuadrant a@(Leaf va)) cvb@(CVQuadrant b@(Leaf vb)) cvc@(CVQuadrant c@(Leaf vc)) cvd@(CVQuadrant d@(Leaf vd)) =
begin
runIdentity (lensA (λ _ → CIdentity cvx)
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Leaf va)
else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd))))
=⟨ sym $ propFnIfc (va == vb && vb == vc && vc == vd) (λ g -> (runIdentity (lensA (λ _ → CIdentity cvx) g ) ) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf va) (Leaf va) (Leaf va))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx (cvq q) (cvq q) (cvq q)) (eqToEquiv va vb (andFst {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vb) (Leaf vb))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx cvb (cvq q) (cvq q)) (eqToEquiv vb vc (andFst $ andSnd {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vc))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx cvb cvc (cvq q)) (eqToEquiv vc vd (andSnd $ andSnd {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ propIfcBranchesSame {c = va == vb && vb == vc && vc == vd} (CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))) ⟩
CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))
end where
-- Construct a valid leaf from a value
cvq : t -> VQuadrant t {dep}
cvq q = CVQuadrant (Leaf q) {andCombine (zeroLteAny dep) IsTrue.itsTrue}
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) (CVQuadrant _) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) (CVQuadrant _) (CVQuadrant _) = refl
ValidLens-LensA-SetSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetSet (lensA {t} {dep})
ValidLens-LensA-SetSet a@(CVQuadrant qda) b@(CVQuadrant qdb) x@(CVQuadrant qdx@(Leaf xv)) =
begin
set lensA (CVQuadrant qdb) (combine (CVQuadrant qda) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)))
=⟨ ValidLens-LensA-SetSet-Lemma (CVQuadrant qdb) (CVQuadrant qda) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) ⟩
combine (CVQuadrant qdb) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv))
end
ValidLens-LensA-SetSet (CVQuadrant qda) (CVQuadrant qdb) (CVQuadrant qdx@(Node xa xb xc xd)) =
begin
set lensA (CVQuadrant qdb) (combine (CVQuadrant qda) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd))
=⟨ ValidLens-LensA-SetSet-Lemma (CVQuadrant qdb) (CVQuadrant qda) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd) ⟩
combine (CVQuadrant qdb) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd)
end
ValidLens-LensA : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> ValidLens (VQuadrant t {S dep}) (VQuadrant t {dep})
ValidLens-LensA = CValidLens lensA (ValidLens-LensA-ViewSet) (ValidLens-LensA-SetView) (ValidLens-LensA-SetSet)
|
{
"alphanum_fraction": 0.5647152529,
"avg_line_length": 61.243902439,
"ext": "agda",
"hexsha": "0f1c34abd8b6470df86d83731294b6eff5d96172",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensA.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensA.agda",
"max_line_length": 198,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensA.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 4547,
"size": 12555
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore
import LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockStore as BSprops
open import LibraBFT.Impl.Consensus.EpochManager as EpochManager
open import LibraBFT.Impl.Consensus.EpochManagerTypes
import LibraBFT.Impl.Consensus.MetricsSafetyRules as MetricsSafetyRules
open import LibraBFT.Impl.Consensus.Properties.MetricsSafetyRules
import LibraBFT.Impl.Consensus.RoundManager as RoundManager
open import LibraBFT.Impl.Consensus.RoundManager.Properties
import LibraBFT.Impl.Consensus.SafetyRules.SafetyRulesManager as SafetyRulesManager
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.Properties.Util
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Hash
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms
open InitProofDefs
open Invariants
open EpochManagerInv
open SafetyRulesInv
open SafetyDataInv
module LibraBFT.Impl.Consensus.EpochManager.Properties where
module newSpec
(nodeConfig : NodeConfig)
(stateComp : StateComputer)
(persistentLivenessStorage : PersistentLivenessStorage)
(obmAuthor : Author)
(obmSK : SK)
where
-- TODO-2: May require refinement (additional requirements and/or properties)
Contract : EitherD-Post ErrLog EpochManager
Contract (Left _) = ⊤
Contract (Right em) = ∀ {sr} → em ^∙ emSafetyRulesManager ∙ srmInternalSafetyRules ≡ SRWLocal sr
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
postulate
contract : Contract (EpochManager.new nodeConfig stateComp persistentLivenessStorage obmAuthor obmSK)
module startRoundManager'Spec
(self0 : EpochManager)
(now : Instant)
(recoveryData : RecoveryData)
(epochState0 : EpochState)
(obmNeedFetch : ObmNeedFetch)
(obmProposalGenerator : ProposalGenerator)
(obmVersion : Version)
where
open startRoundManager'-ed self0 now recoveryData epochState0
obmNeedFetch obmProposalGenerator obmVersion
lastVote = recoveryData ^∙ rdLastVote
proposalGenerator = obmProposalGenerator
roundState = createRoundState-abs self0 now
proposerElection = createProposerElection epochState0
srUpdate : SafetyRules → SafetyRules
srUpdate = _& srPersistentStorage ∙ pssSafetyData ∙ sdEpoch ∙~ epochState0 ^∙ esEpoch
initProcessor : SafetyRules → BlockStore → RoundManager
initProcessor sr bs =
RoundManager∙new
obmNeedFetch
epochState0
bs
roundState
proposerElection
proposalGenerator
(srUpdate sr)
(self0 ^∙ emConfig ∙ ccSyncOnly)
ecInfo = mkECinfo (epochState0 ^∙ esVerifier) (epochState0 ^∙ esEpoch)
SRVoteEpoch≡ : SafetyRules → Epoch → Set
SRVoteEpoch≡ sr epoch = ∀ {v} → sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ just v
→ v ^∙ vEpoch ≡ epoch
SRVoteRound≤ : SafetyRules → Set
SRVoteRound≤ sr = let sd = sr ^∙ srPersistentStorage ∙ pssSafetyData
in Meta.getLastVoteRound sd ≤ sd ^∙ sdLastVotedRound
initRMInv : ∀ {sr bs}
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ SafetyDataInv (sr ^∙ srPersistentStorage ∙ pssSafetyData)
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
→ BlockStoreInv (bs , ecInfo)
→ RoundManagerInv (initProcessor sr bs)
initRMInv {sr} vvCorr sdInv refl bsInv = mkRoundManagerInv vvCorr refl bsInv (mkSafetyRulesInv (mkSafetyDataInv refl z≤n))
contract-continue2 :
∀ {sr bs}
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ SafetyRulesInv sr
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
→ BlockStoreInv (bs , ecInfo)
→ EitherD-weakestPre (continue2-abs lastVote bs sr) (InitContract lastVote)
contract-continue2 {sr} {bs} vvCorr srInv lvNothing bsInv rewrite continue2-abs-≡
with LBFT-contract (RoundManager.start-abs now lastVote)
(Contract initRM initRMCorr)
(initProcessor sr bs)
(contract' initRM initRMCorr)
where
open startSpec now lastVote
initRM = initProcessor sr bs
initRMCorr = initRMInv {sr} {bs} vvCorr (sdInv srInv) lvNothing bsInv
...| inj₁ (_ , er≡j ) rewrite er≡j = tt
...| inj₂ (er≡n , ico) rewrite er≡n =
LBFT-post (RoundManager.start-abs now lastVote)
(initProcessor sr bs)
, refl , ico
contract-continue1
: ∀ {bs}
→ BlockStoreInv (bs , ecInfo)
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ EpochManagerInv self0
→ EitherD-weakestPre (continue1-abs lastVote bs) (InitContract lastVote)
contract-continue1 {bs} bsInv vvCorr emi rewrite continue1-abs-≡
with self0 ^∙ emSafetyRulesManager ∙ srmInternalSafetyRules | inspect
(self0 ^∙_) (emSafetyRulesManager ∙ srmInternalSafetyRules)
...| SRWLocal safetyRules | [ R ]
with emiSRI emi R
...| (sri , lvNothing)
with performInitializeSpec.contract safetyRules (self0 ^∙ emStorage) sri lvNothing
...| piProp
with MetricsSafetyRules.performInitialize-abs safetyRules (self0 ^∙ emStorage)
...| Left _ = tt
...| Right sr = contract-continue2 vvCorr (performInitializeSpec.ContractOk.srPres piProp sri)
(performInitializeSpec.ContractOk.lvNothing piProp) bsInv
contract' :
ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ EpochManagerInv self0
→ EitherD-weakestPre
(EpochManager.startRoundManager'-ed-abs
self0 now recoveryData epochState0
obmNeedFetch obmProposalGenerator obmVersion)
(InitContract lastVote)
contract' vvCorr emi rewrite startRoundManager'-ed-abs-≡
with BSprops.new.contract (self0 ^∙ emStorage) recoveryData stateComputer
(self0 ^∙ emConfig ∙ ccMaxPrunedBlocksInMem)
...| bsprop
with BlockStore.new-e-abs (self0 ^∙ emStorage) recoveryData stateComputer
(self0 ^∙ emConfig ∙ ccMaxPrunedBlocksInMem)
...| Left _ = tt
...| Right bs = contract-continue1 bsprop vvCorr emi
|
{
"alphanum_fraction": 0.6901250176,
"avg_line_length": 43.1454545455,
"ext": "agda",
"hexsha": "86f2c04b17ed98a1d4817b53894342c3ad228765",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager/Properties.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1922,
"size": 7119
}
|
{- https://lists.chalmers.se/pipermail/agda/2013/006033.html http://code.haskell.org/~Saizan/unification/ 18-Nov-2013 Andrea Vezzosi -}
module UnifyProof2 where
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
open import Relation.Binary.PropositionalEquality
open import Function
open import Relation.Nullary
open import Data.Product renaming (map to _***_)
open import Data.Empty
open import Data.Maybe using (maybe; nothing; just; monad; Maybe)
open import Data.Sum
open import Unify
open import UnifyProof
open Σ₁
open import Data.List renaming (_++_ to _++L_)
open ≡-Reasoning
open import Category.Functor
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
-- We use a view so that we need to handle fewer cases in the main proof
data Amgu : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where
Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc ->
Amgu {m} t s acc (amgu t s acc) -> Amgu s t acc (amgu s t acc)
leaf-leaf : ∀ {m acc} -> Amgu {m} leaf leaf acc (just acc)
leaf-fork : ∀ {m s t acc} -> Amgu {m} leaf (s fork t) acc nothing
fork-fork : ∀ {m s1 s2 t1 t2 acc} -> Amgu {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc)
var-var : ∀ {m x y} -> Amgu (i x) (i y) (m , anil) (just (flexFlex x y))
var-t : ∀ {m x t} -> i x ≢ t -> Amgu (i x) t (m , anil) (flexRigid x t)
s-t : ∀{m s t n σ r z} -> Amgu {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ))
view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> Amgu s t acc (amgu s t acc)
view leaf leaf acc = leaf-leaf
view leaf (s fork t) acc = leaf-fork
view (s fork t) leaf acc = Flip refl leaf-fork
view (s1 fork s2) (t1 fork t2) acc = fork-fork
view (i x) (i y) (m , anil) = var-var
view (i x) leaf (m , anil) = var-t (λ ())
view (i x) (s fork t) (m , anil) = var-t (λ ())
view leaf (i x) (m , anil) = Flip refl (var-t (λ ()))
view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ()))
view (i x) (i x') (n , σ asnoc r / z) = s-t
view (i x) leaf (n , σ asnoc r / z) = s-t
view (i x) (s fork t) (n , σ asnoc r / z) = s-t
view leaf (i x) (n , σ asnoc r / z) = s-t
view (s fork t) (i x) (n , σ asnoc r / z) = s-t
amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
amgu-Correctness s t (l , ρ) =
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
amgu-Ccomm : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc
amgu-Ccomm s t (l , ρ) st≡ts = lemma
where
Unst = (Unifies s t) [-◇ sub ρ ]
Unts = (Unifies t s) [-◇ sub ρ ]
Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
lemma (inj₂ (NoUnst , amgu≡nothing)) =
inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
amgu-c : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) ->
(∃ λ n → ∃ λ σ → π₁ (Max ((Unifies s t) [-◇ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing)
amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ)
amgu-c {l = l} {ρ} leaf-leaf | ._
= inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) )
amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl)
amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._
with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ)
... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.first (sub ρ) (Unifies s1 t1) (Unifies s2 t2) nounify
... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl)
with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ)))
... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a
(λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))
... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl)
= inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
where
P = Unifies s1 t1
Q = Unifies s2 t2
P∧Q = P ∧ Q
C = Unifies (s1 fork s2) (t1 fork t2)
Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
(Properties.fact1' {_} {s1} {s2} {t1} {t2}))
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
(proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
(optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y))
with thick x y | Thick.fact1 x y (thick x y) refl
... | .(just y') | inj₂ (y' , thinxy'≡y , refl )
= inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl )
... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y
= inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl)
amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t)
with check x t | check-prop x t
... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl)
where
No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥
No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[])))
where
ps≡[] : ps ≡ []
ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps)
(begin f x ≡⟨ fx≡f◃t ⟩
f ◃ t ≡⟨ cong (f ◃) r ⟩
f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩
(f ◃S) ps ⊹ f x ∎))
... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl )
amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t
| .((λ x' → x' ∃asnoc r / z) <$>
(amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)))
with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))
... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra )
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
NoQ→NoP : Nothing Q → Nothing P
NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z))
... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra)
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
MaxP⇔MaxQ : Max P ⇔ Max Q
MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z)
amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm t s (l , ρ) amguts≡amgust (amgu-c amguts)
amgu-c {zero} {i ()} _ | _
mgu-c : ∀ {m} (s t : Term m) ->
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t)) (sub σ) × mgu s t ≡ just (n , σ))
⊎ (Nothing (Unifies s t) × mgu s t ≡ nothing)
mgu-c {m} s t = amgu-c (view s t (m , anil))
|
{
"alphanum_fraction": 0.4795907492,
"avg_line_length": 55.1941176471,
"ext": "agda",
"hexsha": "7da811aff365c38bc83dc80288bb780203278b63",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/UnifyProof2.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/UnifyProof2.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/UnifyProof2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4048,
"size": 9383
}
|
{-# OPTIONS --without-K #-}
module sets.fin.ordering where
open import equality.core
open import function.isomorphism
open import sets.core
open import sets.fin.core
open import sets.fin.properties
import sets.nat.ordering as N
_<_ : ∀ {n} → Fin n → Fin n → Set
i < j = toℕ i N.< toℕ j
infixr 4 _<_
ord-from-ℕ : ∀ {n} {i j : Fin n}
→ Ordering N._<_ (toℕ i) (toℕ j)
→ Ordering _<_ i j
ord-from-ℕ (lt p) = lt p
ord-from-ℕ (eq p) = eq (toℕ-inj p)
ord-from-ℕ (gt p) = gt p
compare : ∀ {n} → (i j : Fin n) → Ordering _<_ i j
compare i j = ord-from-ℕ (N.compare (toℕ i) (toℕ j))
|
{
"alphanum_fraction": 0.6160267112,
"avg_line_length": 24.9583333333,
"ext": "agda",
"hexsha": "ef23abb101720050c395af64ea8bd4cda2e668f6",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/fin/ordering.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/fin/ordering.agda",
"max_line_length": 52,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/fin/ordering.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 223,
"size": 599
}
|
module ComplexIMPORT where
{-# IMPORT Prelude as P #-}
|
{
"alphanum_fraction": 0.7142857143,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "7b61f636d809f391c730f228e25e18a1d5231bb0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/ComplexIMPORT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/ComplexIMPORT.agda",
"max_line_length": 27,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/ComplexIMPORT.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 11,
"size": 56
}
|
module AmbiguousModule where
module A where
module B where
module A where
open B
open A
|
{
"alphanum_fraction": 0.7741935484,
"avg_line_length": 9.3,
"ext": "agda",
"hexsha": "145993a70aaf357d8ef92333493fa50a5a247178",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/AmbiguousModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/AmbiguousModule.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/AmbiguousModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 93
}
|
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-}
module Cubical.Codata.Stream.Base where
open import Cubical.Core.Everything
record Stream (A : Type₀) : Type₀ where
coinductive
constructor _,_
field
head : A
tail : Stream A
|
{
"alphanum_fraction": 0.703125,
"avg_line_length": 21.3333333333,
"ext": "agda",
"hexsha": "ade3ad434d519e000814290ccd08b29df607e7b4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/Stream/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/Stream/Base.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/Stream/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 71,
"size": 256
}
|
module Pragmas where
-- Check that Haskell code is parsed with the correct language pragmas
{-# FOREIGN AGDA2HS
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE LambdaCase #-}
#-}
{-# FOREIGN AGDA2HS
foo :: Bool -> a -> (a, Int)
foo = \ case
False -> (, 0)
True -> (, 1)
#-}
|
{
"alphanum_fraction": 0.618705036,
"avg_line_length": 17.375,
"ext": "agda",
"hexsha": "5e6bd7cecc022cd241762354fa152b1dc17fa54c",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Pragmas.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Pragmas.agda",
"max_line_length": 70,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Pragmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 84,
"size": 278
}
|
postulate
F : Set → Set
G : Set
G = {!F ?!}
-- KEEP COMMENTS AT THE END to not mess with the ranges in Issue2174.sh
-- Andreas, 2016-09-10, issue #2174 reported by Nisse
-- First infer, then give should goalify the questionmark
|
{
"alphanum_fraction": 0.6923076923,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "07830cd08dd434ef4e4d77399100bb0fb5312202",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2174.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2174.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2174.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 234
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function using (id; flip)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Embedding
open import Cubical.Data.Nat hiding (_+_; _*_)
open import Cubical.Data.NatPlusOne using (ℕ₊₁→ℕ)
open import Cubical.Data.Int
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Data.Prod
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Group.Morphism
open import Cubical.Algebra.Monoid.Properties using (isPropIsMonoid; module MonoidLemmas)
open import Cubical.Relation.Unary as Unary hiding (isPropValued)
open import Cubical.Relation.Binary as Binary hiding (isPropValued)
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Binary.Reasoning.Equality
open import Cubical.Algebra.Group.MorphismProperties public
using (GroupPath; uaGroup; carac-uaGroup; Group≡; caracGroup≡)
private
variable
ℓ ℓ′ : Level
isPropIsGroup : ∀ {G : Type ℓ} {_•_ ε _⁻¹} → isProp (IsGroup G _•_ ε _⁻¹)
isPropIsGroup {G = G} {_•_} {ε} {_⁻¹} (isgroup aMon aInv) (isgroup bMon bInv) =
cong₂ isgroup (isPropIsMonoid aMon bMon) (isPropInverse (IsMonoid.is-set aMon) _•_ _⁻¹ ε aInv bInv)
module GroupLemmas (G : Group ℓ) where
open Group G
open MonoidLemmas monoid public using (ε-comm) renaming (_^′_ to _^′′_; ^semi≡^ to ^semi≡^mon)
invInvo : Involutive _⁻¹
invInvo a = cancelʳ (a ⁻¹) (inverseˡ (a ⁻¹) ∙ sym (inverseʳ a))
invId : ε ⁻¹ ≡ ε
invId = cancelʳ ε (inverseˡ ε ∙ sym (identityʳ ε))
invDistr : Homomorphic₂ _⁻¹ _•_ (flip _•_)
invDistr x y = sym (inv-uniqueˡ _ _ (
(x • y) • (y ⁻¹ • x ⁻¹)
≡˘⟨ assoc (x • y) (y ⁻¹) (x ⁻¹) ⟩
x • y / y / x
≡⟨ cong (_/ x) (assoc _ _ _ ∙ cong (x •_) (inverseʳ y)) ⟩
x • ε / x
≡⟨ cong (_/ x) (identityʳ x) ∙ inverseʳ x ⟩
ε ∎))
inv-comm : ∀ x → x • x ⁻¹ ≡ x ⁻¹ • x
inv-comm x = inverseʳ x ∙ sym (inverseˡ x)
isEquiv-•ˡ : ∀ x → isEquiv (x •_)
isEquiv-•ˡ x = isoToIsEquiv (iso _ (x ⁻¹ •_) section-• retract-•)
where
section-• : section (x •_) (x ⁻¹ •_)
section-• y =
x • (x ⁻¹ • y) ≡˘⟨ assoc x (x ⁻¹) y ⟩
x • x ⁻¹ • y ≡⟨ cong (_• y) (inverseʳ x) ⟩
ε • y ≡⟨ identityˡ y ⟩
y ∎
retract-• : retract (x •_) (x ⁻¹ •_)
retract-• y =
x ⁻¹ • (x • y) ≡˘⟨ assoc (x ⁻¹) x y ⟩
x ⁻¹ • x • y ≡⟨ cong (_• y) (inverseˡ x) ⟩
ε • y ≡⟨ identityˡ y ⟩
y ∎
isEquiv-•ʳ : ∀ x → isEquiv (_• x)
isEquiv-•ʳ x = isoToIsEquiv (iso _ (_• x ⁻¹) section-• retract-•)
where
section-• : section (_• x) (_• x ⁻¹)
section-• y =
y • x ⁻¹ • x ≡⟨ assoc y (x ⁻¹) x ⟩
y • (x ⁻¹ • x) ≡⟨ cong (y •_) (inverseˡ x) ⟩
y • ε ≡⟨ identityʳ y ⟩
y ∎
retract-• : retract (_• x) (_• x ⁻¹)
retract-• y =
y • x • x ⁻¹ ≡⟨ assoc y x (x ⁻¹) ⟩
y • (x • x ⁻¹) ≡⟨ cong (y •_) (inverseʳ x) ⟩
y • ε ≡⟨ identityʳ y ⟩
y ∎
inv-≡ʳ : ∀ {x y} → x • y ⁻¹ ≡ ε → x ≡ y
inv-≡ʳ p = inv-uniqueʳ _ _ p ∙ invInvo _
inv-≡ˡ : ∀ {x y} → x ⁻¹ • y ≡ ε → x ≡ y
inv-≡ˡ p = sym (invInvo _) ∙ sym (inv-uniqueˡ _ _ p)
≡-invʳ : ∀ {x y} → x ≡ y → x • y ⁻¹ ≡ ε
≡-invʳ p = subst (λ y → _ • y ⁻¹ ≡ ε) p (inverseʳ _)
≡-invˡ : ∀ {x y} → x ≡ y → x ⁻¹ • y ≡ ε
≡-invˡ p = subst (λ y → _ • y ≡ ε) p (inverseˡ _)
^-sucˡ : ∀ x n → x ^ sucInt n ≡ x • x ^ n
^-sucˡ x (pos n) = refl
^-sucˡ x (negsuc zero) = sym (inverseʳ x)
^-sucˡ x (negsuc (suc zero)) =
x ^ -1 ≡⟨⟩
x ⁻¹ ≡˘⟨ identityˡ _ ⟩
ε • x ⁻¹ ≡˘⟨ cong (_• x ⁻¹) (inverseʳ x) ⟩
x • x ⁻¹ • x ⁻¹ ≡⟨ assoc _ _ _ ⟩
x • (x ^ -2) ∎
^-sucˡ x (negsuc (suc (suc n))) =
x ^ sucInt (negsuc (suc (suc n))) ≡⟨⟩
x ^ negsuc (suc n) ≡⟨⟩
x ⁻¹ • x ^ negsuc n ≡⟨⟩
x ⁻¹ • x ^ sucInt (negsuc (suc n)) ≡⟨ cong (x ⁻¹ •_) (^-sucˡ x (negsuc (suc n))) ⟩
x ⁻¹ • (x • x ^ negsuc (suc n)) ≡˘⟨ assoc _ _ _ ⟩
x ⁻¹ • x • x ^ negsuc (suc n) ≡˘⟨ cong (_• x ^ negsuc (suc n)) (inv-comm x) ⟩
x • x ⁻¹ • x ^ negsuc (suc n) ≡⟨ assoc _ _ _ ⟩
x • (x ⁻¹ • x ^ negsuc (suc n)) ≡⟨⟩
x • x ^ negsuc (suc (suc n)) ∎
^-sucʳ : ∀ x n → x ^ sucInt n ≡ x ^ n • x
^-sucʳ x (pos zero) = ε-comm x
^-sucʳ x (pos (suc n)) =
x ^ pos (suc (suc n)) ≡⟨⟩
x • x ^ pos (suc n) ≡⟨ cong (x •_) (^-sucʳ x (pos n)) ⟩
x • (x ^ pos n • x) ≡˘⟨ assoc _ _ _ ⟩
x • x ^ pos n • x ≡⟨⟩
x ^ pos (suc n) • x ∎
^-sucʳ x (negsuc zero) = sym (inverseˡ x)
^-sucʳ x (negsuc (suc zero)) =
x ⁻¹ ≡˘⟨ identityʳ _ ⟩
x ⁻¹ • ε ≡˘⟨ cong (x ⁻¹ •_) (inverseˡ x) ⟩
x ⁻¹ • (x ⁻¹ • x) ≡˘⟨ assoc _ _ _ ⟩
x ^ -2 • x ∎
^-sucʳ x (negsuc (suc (suc n))) =
x ^ sucInt (negsuc (suc (suc n))) ≡⟨⟩
x ^ negsuc (suc n) ≡⟨⟩
x ⁻¹ • x ^ negsuc n ≡⟨⟩
x ⁻¹ • x ^ sucInt (negsuc (suc n)) ≡⟨ cong (x ⁻¹ •_) (^-sucʳ x (negsuc (suc n))) ⟩
x ⁻¹ • (x ^ negsuc (suc n) • x) ≡˘⟨ assoc _ _ _ ⟩
x ⁻¹ • x ^ negsuc (suc n) • x ≡⟨⟩
x ^ negsuc (suc (suc n)) • x ∎
^-predˡ : ∀ x n → x ^ predInt n ≡ x ⁻¹ • x ^ n
^-predˡ x (pos zero) = sym (identityʳ _)
^-predˡ x (pos (suc zero)) =
ε ≡˘⟨ inverseˡ x ⟩
x ⁻¹ • x ≡˘⟨ cong (x ⁻¹ •_) (identityʳ x) ⟩
x ⁻¹ • (x • ε) ∎
^-predˡ x (pos (suc (suc n))) =
x ^ predInt (pos (suc (suc n))) ≡⟨⟩
x ^ pos (suc n) ≡⟨⟩
x • x ^ pos n ≡⟨⟩
x • x ^ predInt (pos (suc n)) ≡⟨ cong (x •_) (^-predˡ x (pos (suc n))) ⟩
x • (x ⁻¹ • x ^ pos (suc n)) ≡˘⟨ assoc _ _ _ ⟩
x • x ⁻¹ • x ^ pos (suc n) ≡⟨ cong (_• x ^ pos (suc n)) (inv-comm x) ⟩
x ⁻¹ • x • x ^ pos (suc n) ≡⟨ assoc _ _ _ ⟩
x ⁻¹ • (x • x ^ pos (suc n)) ≡⟨⟩
x ⁻¹ • x ^ pos (suc (suc n)) ∎
^-predˡ x (negsuc n) = refl
^-predʳ : ∀ x n → x ^ predInt n ≡ x ^ n • x ⁻¹
^-predʳ x (pos zero) = sym (identityˡ _)
^-predʳ x (pos (suc zero)) =
ε ≡˘⟨ identityʳ _ ⟩
ε • ε ≡˘⟨ cong (ε •_) (inverseʳ _) ⟩
ε • (x • x ⁻¹) ≡˘⟨ assoc _ _ _ ⟩
ε • x • x ⁻¹ ≡˘⟨ cong (_• x ⁻¹) (ε-comm _) ⟩
x • ε • x ⁻¹ ∎
^-predʳ x (pos (suc (suc n))) =
x ^ predInt (pos (suc (suc n))) ≡⟨⟩
x ^ pos (suc n) ≡⟨⟩
x • x ^ pos n ≡⟨⟩
x • x ^ predInt (pos (suc n)) ≡⟨ cong (x •_) (^-predʳ x (pos (suc n))) ⟩
x • (x ^ pos (suc n) • x ⁻¹) ≡˘⟨ assoc _ _ _ ⟩
x • x ^ pos (suc n) • x ⁻¹ ≡⟨⟩
x ^ pos (suc (suc n)) • x ⁻¹ ∎
^-predʳ x (negsuc zero) = refl
^-predʳ x (negsuc (suc n)) =
x ^ predInt (negsuc (suc n)) ≡⟨⟩
x ^ negsuc (suc (suc n)) ≡⟨⟩
x ⁻¹ • x ^ negsuc (suc n) ≡⟨⟩
x ⁻¹ • x ^ predInt (negsuc n) ≡⟨ cong (x ⁻¹ •_) (^-predʳ x (negsuc n)) ⟩
x ⁻¹ • (x ^ negsuc n • x ⁻¹) ≡˘⟨ assoc _ _ _ ⟩
x ⁻¹ • x ^ negsuc n • x ⁻¹ ≡⟨⟩
x ^ negsuc (suc n) • x ⁻¹ ∎
^-plus : ∀ x → Homomorphic₂ (x ^_) _+_ _•_
^-plus x m (pos zero) = sym (identityʳ (x ^ m))
^-plus x m (pos (suc n)) =
x ^ sucInt (m +pos n) ≡⟨ ^-sucʳ x (m +pos n) ⟩
x ^ (m +pos n) • x ≡⟨ cong (_• x) (^-plus x m (pos n)) ⟩
x ^ m • x ^ pos n • x ≡⟨ assoc _ _ _ ⟩
x ^ m • (x ^ pos n • x) ≡˘⟨ cong (x ^ m •_) (^-sucʳ x (pos n)) ⟩
x ^ m • x ^ pos (suc n) ∎
^-plus x m (negsuc zero) = ^-predʳ x m
^-plus x m (negsuc (suc n)) =
x ^ predInt (m +negsuc n) ≡⟨ ^-predʳ x (m +negsuc n) ⟩
x ^ (m +negsuc n) • x ⁻¹ ≡⟨ cong (_• x ⁻¹) (^-plus x m (negsuc n)) ⟩
x ^ m • x ^ negsuc n • x ⁻¹ ≡⟨ assoc _ _ _ ⟩
x ^ m • (x ^ negsuc n • x ⁻¹) ≡˘⟨ cong (x ^ m •_) (^-predʳ x (negsuc n)) ⟩
x ^ m • x ^ negsuc (suc n) ∎
_^′_ : ⟨ G ⟩ → ℕ → ⟨ G ⟩
_^′_ = IsMonoid._^_ isMonoid
^mon≡^ : ∀ x n → x ^′ n ≡ x ^ pos n
^mon≡^ x zero = refl
^mon≡^ x (suc n) = cong (x •_) (^mon≡^ x n)
^semi≡^ : ∀ x n → x ^′′ n ≡ x ^ pos (ℕ₊₁→ℕ n)
^semi≡^ x n = ^semi≡^mon x n ∙ ^mon≡^ x (ℕ₊₁→ℕ n)
module Conjugation (G : Group ℓ) where
open Group G
open GroupLemmas G using (isEquiv-•ˡ; isEquiv-•ʳ)
module _ (g : ⟨ G ⟩) where
conjugate : ⟨ G ⟩ → ⟨ G ⟩
conjugate x = g • x • g ⁻¹
conjugate-isEquiv : isEquiv conjugate
conjugate-isEquiv = compIsEquiv (isEquiv-•ˡ g) (isEquiv-•ʳ (g ⁻¹))
conjugate-hom : Homomorphic₂ conjugate _•_ _•_
conjugate-hom x y =
g • (x • y) • g ⁻¹ ≡˘⟨ cong (λ v → g • (v • y) • g ⁻¹) (identityʳ x) ⟩
g • (x • ε • y) • g ⁻¹ ≡˘⟨ cong (λ v → g • (x • v • y) • g ⁻¹) (inverseˡ g) ⟩
g • (x • (g ⁻¹ • g) • y) • g ⁻¹ ≡˘⟨ cong (λ v → g • (v • y) • g ⁻¹) (assoc _ _ _) ⟩
g • (x • g ⁻¹ • g • y) • g ⁻¹ ≡˘⟨ cong (_• g ⁻¹) (assoc _ _ _) ⟩
g • (x • g ⁻¹ • g) • y • g ⁻¹ ≡˘⟨ cong (λ v → v • y • g ⁻¹) (assoc _ _ _) ⟩
g • (x • g ⁻¹) • g • y • g ⁻¹ ≡˘⟨ cong (λ v → v • g • y • g ⁻¹) (assoc _ _ _) ⟩
g • x • g ⁻¹ • g • y • g ⁻¹ ≡⟨ cong (_• g ⁻¹) (assoc _ _ _) ⟩
g • x • g ⁻¹ • (g • y) • g ⁻¹ ≡⟨ assoc _ _ _ ⟩
g • x • g ⁻¹ • (g • y • g ⁻¹) ∎
conjugate-isHom : IsGroupHom G G conjugate
conjugate-isHom = isgrouphom conjugate-hom
conjugate-Hom : GroupHom G G
conjugate-Hom = record { isHom = conjugate-isHom }
conjugate-Equiv : GroupEquiv G G
conjugate-Equiv = record { eq = conjugate , conjugate-isEquiv; isHom = conjugate-isHom }
conjugate-Path : G ≡ G
conjugate-Path = uaGroup conjugate-Equiv
Conjugate : Rel ⟨ G ⟩ ℓ
Conjugate a b = (∃[ g ∈ ⟨ G ⟩ ] conjugate g a ≡ b) , squash
module Kernel {G : Group ℓ} {H : Group ℓ′} (hom : GroupHom G H) where
private
module G = Group G
module H = Group H
open GroupHom hom renaming (fun to f)
open GroupLemmas
Kernel′ : RawPred ⟨ G ⟩ ℓ′
Kernel′ x = f x ≡ H.ε
isPropKernel : Unary.isPropValued Kernel′
isPropKernel x = H.is-set (f x) H.ε
Kernel : Pred ⟨ G ⟩ ℓ′
Kernel = Unary.fromRaw Kernel′ isPropKernel
ker-preservesId : G.ε ∈ Kernel
ker-preservesId = preservesId
ker-preservesOp : G._•_ Unary.Preserves₂ Kernel
ker-preservesOp {x} {y} fx≡ε fy≡ε =
f (x G.• y) ≡⟨ preservesOp x y ⟩
f x H.• f y ≡⟨ cong₂ H._•_ fx≡ε fy≡ε ⟩
H.ε H.• H.ε ≡⟨ H.identityʳ H.ε ⟩
H.ε ∎
ker-preservesInv : G._⁻¹ Unary.Preserves Kernel
ker-preservesInv {x} fx≡ε =
f (x G.⁻¹) ≡⟨ preservesInv _ ⟩
f x H.⁻¹ ≡⟨ cong H._⁻¹ fx≡ε ⟩
H.ε H.⁻¹ ≡⟨ invId H ⟩
H.ε ∎
ker⊆ε→inj : Kernel ⊆ { G.ε } → ∀ {x y} → f x ≡ f y → x ≡ y
ker⊆ε→inj sub fx≡fy = inv-≡ʳ G (rec (G.is-set _ _) id (sub (preservesOp+Inv _ _ ∙ ≡-invʳ H fx≡fy)))
where
preservesOp+Inv : ∀ a b → f (a G.• b G.⁻¹) ≡ f a H.• f b H.⁻¹
preservesOp+Inv a b = preservesOp a (b G.⁻¹) ∙ cong (f a H.•_) (preservesInv b)
ker⊆ε→emb : Kernel ⊆ { G.ε } → isEmbedding f
ker⊆ε→emb sub = injEmbedding G.is-set H.is-set (ker⊆ε→inj sub)
inj→ker⊆ε : (∀ {x y} → f x ≡ f y → x ≡ y) → Kernel ⊆ { G.ε }
inj→ker⊆ε inj fx≡ε = ∣ inj (fx≡ε ∙ sym preservesId) ∣
emb→ker⊆ε : isEmbedding f → Kernel ⊆ { G.ε }
emb→ker⊆ε emb = inj→ker⊆ε (invIsEq (emb _ _))
|
{
"alphanum_fraction": 0.484154623,
"avg_line_length": 36.1194968553,
"ext": "agda",
"hexsha": "6bf5ffb2987adbc860f01b462ca52136fe79dc95",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5464,
"size": 11486
}
|
------------------------------------------------------------------------
-- The syntax of the untyped λ-calculus
------------------------------------------------------------------------
{-# OPTIONS --safe #-}
module Lambda.Simplified.Syntax where
open import Equality.Propositional
open import Prelude
open import Vec.Function equality-with-J
------------------------------------------------------------------------
-- Terms
-- Variables are represented using de Bruijn indices.
infixl 9 _·_
data Tm (n : ℕ) : Type where
var : (x : Fin n) → Tm n
ƛ : Tm (suc n) → Tm n
_·_ : Tm n → Tm n → Tm n
------------------------------------------------------------------------
-- Closure-based definition of values
-- Environments and values. Defined in a module parametrised by the
-- type of terms.
module Closure (Tm : ℕ → Type) where
mutual
-- Environments.
Env : ℕ → Type
Env n = Vec Value n
-- Values. Lambdas are represented using closures, so values do
-- not contain any free variables.
data Value : Type where
ƛ : ∀ {n} (t : Tm (suc n)) (ρ : Env n) → Value
------------------------------------------------------------------------
-- Examples
-- A non-terminating term.
ω : Tm 0
ω = ƛ (var fzero · var fzero)
Ω : Tm 0
Ω = ω · ω
-- A call-by-value fixpoint combinator.
Z : Tm 0
Z = ƛ (t · t)
where
t = ƛ (var (fsuc fzero) ·
ƛ (var (fsuc fzero) · var (fsuc fzero) · var fzero))
|
{
"alphanum_fraction": 0.4692891649,
"avg_line_length": 22.2923076923,
"ext": "agda",
"hexsha": "cd4123aa955e7d3e5a7f81f68c7b3e4dc1c8ecae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Simplified/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Simplified/Syntax.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Simplified/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 377,
"size": 1449
}
|
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Classical.Semantics.Homomorphism (𝔏 : Signature) where
open Signature(𝔏)
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.ListSized
open import Data.ListSized.Functions
open import Formalization.PredicateLogic.Classical.Semantics(𝔏)
open import Formalization.PredicateLogic.Syntax(𝔏)
open import Functional using (_∘_ ; _∘₂_ ; _←_)
open import Logic.Propositional as Logic using (_↔_)
import Logic.Predicate as Logic
open import Numeral.Finite
open import Numeral.Finite.Bound
open import Numeral.Natural
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet)
open Sets.PredicateSet.BoundedQuantifiers
open import Structure.Function.Domain
open import Syntax.Function
open import Type.Dependent renaming (intro to _,_)
open import Type.Properties.Decidable
open import Type
private variable ℓ ℓₘ ℓₘ₁ ℓₘ₂ ℓₑ : Lvl.Level
private variable P : Type{ℓₚ}
private variable args n vars : ℕ
private variable 𝔐 : Model
private variable A B C S : Model{ℓₘ}
private variable fi : Obj n
private variable ri : Prop n
private variable xs : List(dom(S))(n)
record Homomorphism (A : Model{ℓₘ₁}) (B : Model{ℓₘ₂}) (f : dom(A) → dom(B)) : Type{ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ Lvl.of(Type.of A) Lvl.⊔ Lvl.of(Type.of B)} where
field
preserve-functions : ∀{xs} → (f(fn(A) fi xs) ≡ fn(B) fi (map f xs))
preserve-relations : ∀{xs} → IsTrue(rel(A) ri xs) → IsTrue(rel(B) ri (map f xs))
_→ₛₜᵣᵤ_ : Model{ℓₘ₁} → Model{ℓₘ₂} → Type
A →ₛₜᵣᵤ B = Logic.∃(Homomorphism A B)
record Embedding (A : Model{ℓₘ₁}) (B : Model{ℓₘ₂}) (f : dom(A) → dom(B)) : Type{ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ Lvl.of(Type.of A) Lvl.⊔ Lvl.of(Type.of B)} where
constructor intro
field
⦃ homomorphism ⦄ : Homomorphism(A)(B)(f)
⦃ injection ⦄ : Injective(f)
preserve-relations-converse : ∀{xs} → IsTrue(rel(A) ri xs) ← IsTrue(rel(B) ri (map f xs))
open import Data
open import Data.Boolean.Stmt
open import Data.ListSized.Proofs
open import Functional
open import Function.Equals
open import Function.Proofs
open import Lang.Instance
open import Logic.Predicate
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Structure.Relator
open import Syntax.Transitivity
idₛₜᵣᵤ : A →ₛₜᵣᵤ A
∃.witness idₛₜᵣᵤ = id
Homomorphism.preserve-functions (∃.proof (idₛₜᵣᵤ {A = A})) {n} {fi} {xs} = congruence₁(fn A fi) (symmetry(_≡_) (_⊜_.proof map-id))
Homomorphism.preserve-relations (∃.proof (idₛₜᵣᵤ {A = A})) {n} {ri} {xs} = substitute₁ₗ(IsTrue ∘ rel A ri) (_⊜_.proof map-id)
_∘ₛₜᵣᵤ_ : let _ = A ; _ = B ; _ = C in (B →ₛₜᵣᵤ C) → (A →ₛₜᵣᵤ B) → (A →ₛₜᵣᵤ C)
∃.witness (([∃]-intro f) ∘ₛₜᵣᵤ ([∃]-intro g)) = f ∘ g
Homomorphism.preserve-functions (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {fi = fi} {xs} =
congruence₁(f) (Homomorphism.preserve-functions hom-g)
🝖 Homomorphism.preserve-functions hom-f
🝖 congruence₁(fn C fi) (symmetry(_≡_) (_⊜_.proof (map-[∘] {f = f}{g = g}) {xs}))
Homomorphism.preserve-relations (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {ri = ri} {xs} =
substitute₁ₗ(IsTrue ∘ rel C ri) (_⊜_.proof map-[∘] {xs})
∘ Homomorphism.preserve-relations hom-f
∘ Homomorphism.preserve-relations hom-g
import Data.Tuple as Tuple
open import Function.Equals
open import Function.Equals.Proofs
open import Function.Inverse
open import Lang.Inspect
open import Logic.Predicate.Equiv
open import Structure.Category
open import Structure.Categorical.Properties
open import Structure.Function.Domain.Proofs
instance
map-function : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → Function ⦃ [⊜]-equiv ⦄ ⦃ [⊜]-equiv ⦄ (map{A = A}{B = B}{n = n})
map-function {A = A}{B = B} = intro proof where
proof : ∀{f g : A → B} → (f ⊜ g) → (map{n = n} f ⊜ map g)
_⊜_.proof (proof p) {∅} = reflexivity(_≡_)
_⊜_.proof (proof p) {x ⊰ l} = congruence₂(_⊰_) (_⊜_.proof p) (_⊜_.proof (proof p) {l})
instance
Structure-Homomorphism-category : Category(_→ₛₜᵣᵤ_ {ℓₘ})
Category._∘_ Structure-Homomorphism-category = _∘ₛₜᵣᵤ_
Category.id Structure-Homomorphism-category = idₛₜᵣᵤ
BinaryOperator.congruence (Category.binaryOperator Structure-Homomorphism-category) = [⊜][∘]-binaryOperator-raw
_⊜_.proof (Morphism.Associativity.proof (Category.associativity Structure-Homomorphism-category) {_} {_} {_} {_} {[∃]-intro f} {[∃]-intro g} {[∃]-intro h}) {x} = reflexivity(_≡_) {f(g(h(x)))}
_⊜_.proof (Morphism.Identityₗ.proof (Tuple.left (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) {f(x)}
_⊜_.proof (Morphism.Identityᵣ.proof (Tuple.right (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) {f(x)}
module _ {F@([∃]-intro f) : _→ₛₜᵣᵤ_ {ℓₘ}{ℓₘ} A B} where
isomorphism-surjective-embedding : Morphism.Isomorphism ⦃ [≡∃]-equiv ⦃ [⊜]-equiv ⦄ ⦄ (\{A} → _∘ₛₜᵣᵤ_ {A = A})(idₛₜᵣᵤ)(F) ↔ (Surjective(f) Logic.∧ Embedding(A)(B)(f))
Tuple.left isomorphism-surjective-embedding (Logic.[∧]-intro surj embed) = [∃]-intro ([∃]-intro _ ⦃ hom ⦄) ⦃ Logic.[∧]-intro inverₗ inverᵣ ⦄ where
f⁻¹ = invᵣ-surjective f ⦃ surj ⦄
instance
inver : Inverse(f)(f⁻¹)
inver = Logic.[∧]-elimᵣ ([∃]-proof (bijective-to-invertible ⦃ bij = injective-surjective-to-bijective(f) ⦃ Embedding.injection embed ⦄ ⦃ surj ⦄ ⦄))
instance
hom : Homomorphism(B)(A)(f⁻¹)
Homomorphism.preserve-functions hom {fi = fi} {xs = xs} =
f⁻¹(fn B fi xs) 🝖[ _≡_ ]-[ congruence₁(f⁻¹) (congruence₁(fn B fi) (_⊜_.proof map-id)) ]-sym
f⁻¹(fn B fi (map id xs)) 🝖[ _≡_ ]-[ congruence₁(f⁻¹) (congruence₁(fn B fi) (_⊜_.proof (congruence₁(map) (intro (Inverseᵣ.proof(Logic.[∧]-elimᵣ inver)))) {xs})) ]-sym
f⁻¹(fn B fi (map (f ∘ f⁻¹) xs)) 🝖[ _≡_ ]-[ congruence₁(f⁻¹) (congruence₁(fn B fi) (_⊜_.proof map-[∘] {xs})) ]
f⁻¹(fn B fi (map f (map f⁻¹ xs))) 🝖[ _≡_ ]-[ congruence₁(f⁻¹) (Homomorphism.preserve-functions (Embedding.homomorphism embed)) ]-sym
f⁻¹(f(fn A fi (map f⁻¹ xs))) 🝖[ _≡_ ]-[ Inverseₗ.proof(Logic.[∧]-elimₗ inver) ]
fn A fi (map f⁻¹ xs) 🝖-end
Homomorphism.preserve-relations hom {ri = ri} {xs = xs} p = Embedding.preserve-relations-converse embed {xs = map f⁻¹ xs} (substitute₁(IsTrue ∘ rel B ri) (_⊜_.proof proof {xs}) p) where
proof =
id 🝖[ _⊜_ ]-[ map-id ]-sym
map id 🝖[ _⊜_ ]-[ congruence₁(map) (intro (Inverseᵣ.proof(Logic.[∧]-elimᵣ inver))) ]-sym
map(f ∘ f⁻¹) 🝖[ _⊜_ ]-[ map-[∘] ]
(map f ∘ map f⁻¹) 🝖-end
inverₗ : Morphism.Inverseₗ _ _ F ([∃]-intro f⁻¹)
Morphism.Inverseₗ.proof inverₗ = intro(Inverseₗ.proof(Logic.[∧]-elimₗ inver))
inverᵣ : Morphism.Inverseᵣ _ _ F ([∃]-intro f⁻¹)
Morphism.Inverseᵣ.proof inverᵣ = intro(Inverseᵣ.proof(Logic.[∧]-elimᵣ inver))
Tuple.right isomorphism-surjective-embedding iso = Logic.[∧]-intro infer (intro (\{n}{ri}{xs} → {!proof!})) where
instance
bij : Bijective(f)
instance
inj : Injective(f)
inj = bijective-to-injective(f)
instance
surj : Surjective(f)
surj = bijective-to-surjective(f)
proof : IsTrue(rel A ri xs) ← IsTrue(rel B ri (map f(xs)))
proof p relation x = {!!}
proof2 : let _ = (rel A ri xs) in Surjective(f)
proof2 = {!!}
-- (intro (proof {!!} {!!}))
|
{
"alphanum_fraction": 0.6537597463,
"avg_line_length": 48.8193548387,
"ext": "agda",
"hexsha": "eebe4b823c736662765ac666d152c33aef4620d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Homomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Homomorphism.agda",
"max_line_length": 193,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Classical/Semantics/Homomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2977,
"size": 7567
}
|
-- A module which re-exports Type.Category.ExtensionalFunctionsCategory as the default category for types, and defines some shorthand names for categorical stuff.
module Type.Category where
open import Functional
open import Function.Equals
open import Logic.Predicate
open import Relator.Equals.Proofs.Equiv
import Structure.Category.Functor as Category
import Structure.Category.Monad.ExtensionSystem as Category
import Structure.Category.NaturalTransformation as Category
open import Syntax.Transitivity
open import Type
module _ {ℓ} where
open import Type.Category.ExtensionalFunctionsCategory{ℓ} public
-- Shorthand for the category-related types in the category of types.
Functor = Category.Endofunctor(typeExtensionalFnCategory) -- TODO: Should not be an endofunctor. Let it be parameterized by different levels
module Functor {F} ⦃ functor : Functor(F) ⦄ where
open Category.Endofunctor(typeExtensionalFnCategory) functor public
module HaskellNames where
_<$_ : ∀{x y} → y → (F(x) → F(y))
_<$_ = map ∘ const
_$>_ : ∀{x y} → F(x) → y → F(y)
_$>_ = swap(_<$_)
_<$>_ : ∀{x y} → (x → y) → (F(x) → F(y))
_<$>_ = map
_<&>_ : ∀{x y} → F(x) → (x → y) → F(y)
_<&>_ = swap(_<$>_)
-- Applies an unlifted argument to a lifted function, returning a lifted value.
-- TODO: When `f` is an instance of `Applicative`, it should be functionally equivalent
-- to `f <*> pure x` because:
-- f <*$> x
-- = fmap ($ x) f //Definition: <*$>
-- = pure ($ x) <*> f //Applicative: "As a consequence of these laws, the Functor instance for f will satisfy..."
-- = f <*> pure x //Applicative: interchange
_<*$>_ : ∀{x y : Type{ℓ}} → F(x → y) → (x → F(y))
f <*$> x = (_$ x) <$> f
module _ {F₁} ⦃ functor₁ : Functor(F₁) ⦄ {F₂} ⦃ functor₂ : Functor(F₂) ⦄ where
NaturalTransformation : (∀{T} → F₁(T) → F₂(T)) → Type
NaturalTransformation η = Category.NaturalTransformation {Cₗ = typeExtensionalFnCategoryObject} {Cᵣ = typeExtensionalFnCategoryObject} ([∃]-intro F₁) ([∃]-intro F₂) (T ↦ η{T})
module NaturalTransformation {η : ∀{T} → F₁(T) → F₂(T)} ⦃ nt : NaturalTransformation(η) ⦄ where
open Category.NaturalTransformation {Cₗ = typeExtensionalFnCategoryObject} {Cᵣ = typeExtensionalFnCategoryObject} {[∃]-intro F₁} {[∃]-intro F₂} nt public
{-
-- All mappings between functors are natural.
-- Also called: Theorems for free.
-- TODO: Is this correct? Is this provable? Maybe one needs to prove stuff about how types are formed?
natural-functor-mapping : ∀{η : ∀{T} → F₁(T) → F₂(T)} → NaturalTransformation(η)
Dependent._⊜_.proof (Category.NaturalTransformation.natural (natural-functor-mapping {η}) {X}{Y} {f}) {F₁X} =
(η ∘ (Functor.map f)) F₁X 🝖[ _≡_ ]-[]
η(Functor.map f(F₁X)) 🝖[ _≡_ ]-[ {!!} ]
Functor.map f (η(F₁X)) 🝖[ _≡_ ]-[]
((Functor.map f) ∘ η) F₁X 🝖-end
-}
Monad = Category.ExtensionSystem{cat = typeExtensionalFnCategoryObject}
module Monad {T} ⦃ monad : Monad(T) ⦄ where
open Category.ExtensionSystem{cat = typeExtensionalFnCategoryObject} (monad) public
-- Do notation for monads.
open import Syntax.Do
instance
doNotation : DoNotation(T)
return ⦃ doNotation ⦄ = HaskellNames.return
_>>=_ ⦃ doNotation ⦄ = swap(HaskellNames.bind)
open Monad using () renaming (doNotation to Monad-doNotation) public
|
{
"alphanum_fraction": 0.6478711162,
"avg_line_length": 46.3466666667,
"ext": "agda",
"hexsha": "948352aa9b1293410fdc416eddc17b7d065b5caf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Category.agda",
"max_line_length": 179,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1064,
"size": 3476
}
|
module Lib.List where
open import Lib.Prelude
open import Lib.Id
infix 30 _∈_
infixr 40 _::_ _++_
infix 45 _!_
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
{-# COMPILED_DATA List [] [] (:) #-}
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _::_ #-}
_++_ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f z [] = z
foldr f z (x :: xs) = f x (foldr f z xs)
map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
map-id : forall {A}(xs : List A) -> map id xs ≡ xs
map-id [] = refl
map-id (x :: xs) with map id xs | map-id xs
... | .xs | refl = refl
data _∈_ {A : Set} : A -> List A -> Set where
hd : forall {x xs} -> x ∈ x :: xs
tl : forall {x y xs} -> x ∈ xs -> x ∈ y :: xs
data All {A : Set}(P : A -> Set) : List A -> Set where
[] : All P []
_::_ : forall {x xs} -> P x -> All P xs -> All P (x :: xs)
head : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> P x
head (x :: xs) = x
tail : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> All P xs
tail (x :: xs) = xs
_!_ : forall {A}{P : A -> Set}{x xs} -> All P xs -> x ∈ xs -> P x
xs ! hd = head xs
xs ! tl n = tail xs ! n
tabulate : forall {A}{P : A -> Set}{xs} -> ({x : A} -> x ∈ xs -> P x) -> All P xs
tabulate {xs = []} f = []
tabulate {xs = x :: xs} f = f hd :: tabulate (f ∘ tl)
mapAll : forall {A B}{P : A -> Set}{Q : B -> Set}{xs}(f : A -> B) ->
({x : A} -> P x -> Q (f x)) -> All P xs -> All Q (map f xs)
mapAll f h [] = []
mapAll f h (x :: xs) = h x :: mapAll f h xs
mapAll- : forall {A}{P Q : A -> Set}{xs} ->
({x : A} -> P x -> Q x) -> All P xs -> All Q xs
mapAll- {xs = xs} f zs with map id xs | map-id xs | mapAll id f zs
... | .xs | refl | r = r
infix 20 _⊆_
data _⊆_ {A : Set} : List A -> List A -> Set where
stop : [] ⊆ []
drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys
keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys
⊆-refl : forall {A}{xs : List A} -> xs ⊆ xs
⊆-refl {xs = []} = stop
⊆-refl {xs = x :: xs} = keep ⊆-refl
_∣_ : forall {A}{P : A -> Set}{xs ys} -> All P ys -> xs ⊆ ys -> All P xs
[] ∣ stop = []
(x :: xs) ∣ drop p = xs ∣ p
(x :: xs) ∣ keep p = x :: (xs ∣ p)
|
{
"alphanum_fraction": 0.450572762,
"avg_line_length": 28.0595238095,
"ext": "agda",
"hexsha": "fd2f1a3719d7f4fb59eb0ea129f740a7b26224b3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "examples/simple-lib/Lib/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "examples/simple-lib/Lib/List.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "examples/simple-lib/Lib/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 952,
"size": 2357
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.NaturalTransformation where
open import Cubical.Categories.NaturalTransformation.Base public
open import Cubical.Categories.NaturalTransformation.Properties public
|
{
"alphanum_fraction": 0.8312757202,
"avg_line_length": 34.7142857143,
"ext": "agda",
"hexsha": "90a75284afea75c42f86fc7d2cce95d464cf1d96",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 45,
"size": 243
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- AVL trees
------------------------------------------------------------------------
-- AVL trees are balanced binary search trees.
-- The search tree invariant is specified using the technique
-- described by Conor McBride in his talk "Pivotal pragmatism".
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Bool.Base using (Bool)
import Data.DifferenceList as DiffList
open import Data.List.Base as List using (List)
open import Data.Maybe using (Maybe; nothing; just; is-just)
open import Data.Nat.Base using (suc)
open import Data.Product hiding (map)
open import Function as F
open import Level using (_⊔_)
open import Relation.Unary
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
import Data.AVL.Indexed strictTotalOrder as Indexed
open Indexed using (K&_ ; ⊥⁺ ; ⊤⁺; ⊥⁺<⊤⁺; ⊥⁺<[_]<⊤⁺; ⊥⁺<[_]; [_]<⊤⁺)
------------------------------------------------------------------------
-- Re-export some core definitions publically
open Indexed using (Value; MkValue; const) public
------------------------------------------------------------------------
-- Types and functions with hidden indices
data Tree {v} (V : Value v) : Set (a ⊔ v ⊔ ℓ₂) where
tree : ∀ {h} → Indexed.Tree V ⊥⁺ ⊤⁺ h → Tree V
module _ {v} {V : Value v} where
private
Val = Value.family V
empty : Tree V
empty = tree $′ Indexed.empty ⊥⁺<⊤⁺
singleton : (k : Key) → Val k → Tree V
singleton k v = tree (Indexed.singleton k v ⊥⁺<[ k ]<⊤⁺)
insert : (k : Key) → Val k → Tree V → Tree V
insert k v (tree t) = tree $′ proj₂ $ Indexed.insert k v t ⊥⁺<[ k ]<⊤⁺
insertWith : (k : Key) → (Maybe (Val k) → Val k) →
Tree V → Tree V
insertWith k f (tree t) = tree $′ proj₂ $ Indexed.insertWith k f t ⊥⁺<[ k ]<⊤⁺
delete : Key → Tree V → Tree V
delete k (tree t) = tree $′ proj₂ $ Indexed.delete k t ⊥⁺<[ k ]<⊤⁺
lookup : (k : Key) → Tree V → Maybe (Val k)
lookup k (tree t) = Indexed.lookup k t ⊥⁺<[ k ]<⊤⁺
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
map : ∀[ Val ⇒ Wal ] → Tree V → Tree W
map f (tree t) = tree $ Indexed.map f t
module _ {v} {V : Value v} where
private
Val = Value.family V
infix 4 _∈?_
_∈?_ : Key → Tree V → Bool
k ∈? t = is-just (lookup k t)
headTail : Tree V → Maybe ((K& V) × Tree V)
headTail (tree (Indexed.leaf _)) = nothing
headTail (tree {h = suc _} t) with Indexed.headTail t
... | (k , _ , _ , t′) = just (k , tree (Indexed.castˡ ⊥⁺<[ _ ] t′))
initLast : Tree V → Maybe (Tree V × (K& V))
initLast (tree (Indexed.leaf _)) = nothing
initLast (tree {h = suc _} t) with Indexed.initLast t
... | (k , _ , _ , t′) = just (tree (Indexed.castʳ t′ [ _ ]<⊤⁺) , k)
-- The input does not need to be ordered.
fromList : List (K& V) → Tree V
fromList = List.foldr (uncurry insert) empty
-- Returns an ordered list.
toList : Tree V → List (K& V)
toList (tree t) = DiffList.toList (Indexed.toDiffList t)
-- Naive implementations of union.
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
unionWith : (∀ {k} → Val k → Maybe (Wal k) → Wal k) →
-- Left → right → result.
Tree V → Tree W → Tree W
unionWith f t₁ t₂ =
List.foldr (uncurry $ λ k v → insertWith k (f v)) t₂ (toList t₁)
-- Left-biased.
module _ {v} {V : Value v} where
private Val = Value.family V
union : Tree V → Tree V → Tree V
union = unionWith F.const
unionsWith : (∀ {k} → Val k → Maybe (Val k) → Val k) → List (Tree V) → Tree V
unionsWith f ts = List.foldr (unionWith f) empty ts
-- Left-biased.
unions : List (Tree V) → Tree V
unions = unionsWith F.const
|
{
"alphanum_fraction": 0.5687610396,
"avg_line_length": 28.7173913043,
"ext": "agda",
"hexsha": "ae80b5488e56c74d1f6ccf2be2653663578ab2ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1270,
"size": 3963
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Dijkstra.EitherLike where
open import Haskell.Prelude
open import Level
renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_)
public
module _ {ℓ₀ ℓ₁ ℓ₂ : Level} where
EL-type = Set ℓ₁ → Set ℓ₂ → Set ℓ₀
EL-level = ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₀
-- Utility to make passing between `Either` and `EitherD` more convenient
record EitherLike (E : EL-type) : Set (ℓ+1 EL-level) where
field
fromEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → Either A B → E A B
toEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → E A B → Either A B
open EitherLike ⦃ ... ⦄ public
EL-func : EL-type → Set (ℓ+1 EL-level)
EL-func EL = ⦃ mel : EitherLike EL ⦄ → Set EL-level
instance
EitherLike-Either : ∀ {ℓ₁ ℓ₂} → EitherLike{ℓ₁ ℓ⊔ ℓ₂}{ℓ₁}{ℓ₂} Either
EitherLike.fromEither EitherLike-Either = id
EitherLike.toEither EitherLike-Either = id
|
{
"alphanum_fraction": 0.6710037175,
"avg_line_length": 31.6470588235,
"ext": "agda",
"hexsha": "103095dfae9f042528124d206e87cccb3ee21f2a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Dijkstra/EitherLike.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Dijkstra/EitherLike.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Dijkstra/EitherLike.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 401,
"size": 1076
}
|
open import Prelude
open import StateMachineModel
open StateMachine
open System
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.Core using (Tri)
module Behaviors
(State : Set)
(Event : Set)
(sys : System State Event)
(_∈Set?_ : (ev : Event) (evSet : EventSet) → Dec (evSet ev))
where
open LeadsTo State Event sys
StMachine = stateMachine sys
-- A Behavior is a coinductive data type, such that it has a head with a given
-- state S and a tail that can be next state for an existent transition or can
-- be finite, which means that there is no enabled transition
-- Question : Would it make more sense the behavior over
-- ReachableState instead of State???
record Behavior (S : State) : Set where
coinductive
field
tail : ∃[ ev ] ( Σ[ enEv ∈ enabled StMachine ev S ]
Behavior (action StMachine enEv) )
⊎
¬ ( ∃[ ev ] enabled StMachine ev S )
open Behavior
-- Auxiliary function that allows to do pattern matching on the RHS of an
-- expression.
-- (ref: https://agda.readthedocs.io/en/v2.5.2/language/with-abstraction.html)
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
-- Inductive data type to express that Any State ∈ Behavior (AnyS∈B) satisfies
-- a given Predicate P at a given index n
-- It's similar to the Any for Lists, with the difference that in the 'there'
-- contructor we also need to give a proof that the behavior has a tail t.
data AnySt {st} (P : Pred State 0ℓ) : ℕ → Pred (Behavior st) 0ℓ where
here : ∀ {σ : Behavior st} → P st → AnySt P zero σ
there : ∀ {e enEv t} {σ : Behavior st} (n : ℕ) → tail σ ≡ inj₁ (e , enEv , t)
→ AnySt P n t → AnySt P (suc n) σ
-- Syntactic sugar for better reading of lemmas:
-- σ satisfies P at i if there is a state ∈ σ that satisfies P at i
_satisfies_at_ : ∀ {st} (σ : Behavior st) (P : Pred State 0ℓ) → ℕ → Set
σ satisfies P at i = AnySt P i σ
-- Gives the tail of the behavior after n transitions.
-- If the behavior is finite returns the behavior itself
drop : ∀ {st} → ℕ → (σ : Behavior st) → ∃[ s ] Behavior s
drop {st} zero σ = st , σ
drop {st} (suc n) σ with tail σ
... | inj₁ (e , enEv , t) = drop n t
... | inj₂ ¬enEv = st , σ
-- Inductive data type to express that all states in a behavior n satisfy a
-- Predicate P up to a given index n
-- It's similar to the All for Lists, with the difference that in the '_∷_'
-- contructor we also need to give a proof that the behavior has a tail t.
data AllSt {st} (P : Pred State 0ℓ) : ℕ → Pred (Behavior st) 0ℓ where
last : ∀ {σ : Behavior st} → P st → AllSt P zero σ
_∷_∣_ : ∀ {e enEv t n} {σ : Behavior st} → tail σ ≡ inj₁ (e , enEv , t)
→ P st → AllSt P n t → AllSt P (suc n) σ
-- Syntactic sugar for better reading of lemmas
AllSt_upTo_satisfy_ : ∀ {st} (σ : Behavior st) → ℕ → (P : Pred State 0ℓ) → Set
AllSt σ upTo n satisfy P = AllSt P n σ
------------------------------------------------------------------------------
-- PROOF of SOUNDNESS for LEADS-TO PROOF RULES
------------------------------------------------------------------------------
-- If a behavior σ satisfies P at i then it exists a state s at index i such
-- that s is reachable and P s
witness : ∀ {st : State} {i} {σ : Behavior st} {P : Pred State 0ℓ}
→ Reachable {sm = StMachine} st
→ σ satisfies P at i
→ ∃[ state ]
(Σ[ rSt ∈ Reachable {sm = StMachine} state ] P state)
witness {st} rS (here ps) = st , rS , ps
witness {st} rS (there {σ = σ} n eq satP)
with tail σ | eq
... | inj₁ (e , enEv , t) | refl = witness (step rS enEv) satP
-- If a behavior σ satisfies Q ∪ R at a given index i then
-- or σ satisfies Q at i or σ satisfies R at i
trans2 : ∀ {st} {Q R : Pred State 0ℓ} {i : ℕ} {σ : Behavior st}
→ σ satisfies (Q ∪ R) at i
→ σ satisfies Q at i
⊎ σ satisfies R at i
trans2 (here (inj₁ qS)) = inj₁ (here qS)
trans2 (here (inj₂ rS)) = inj₂ (here rS)
trans2 {σ = σ} (there n eq tailQ∨R)
with tail σ | eq
... | inj₁ (e , enEv , t) | refl
with trans2 tailQ∨R
... | inj₁ anyQ = inj₁ (there n eq anyQ)
... | inj₂ anyR = inj₂ (there n eq anyR)
-- If σ satisfies (R ⇒ Q) at a given index i and if R is an invariant then
-- σ satisfies Q at i
useInv : ∀ {st} {Q R : Pred State 0ℓ} {i : ℕ} {σ : Behavior st}
→ Invariant StMachine R
→ Reachable {sm = StMachine} st
→ σ satisfies (R ⇒ Q) at i
→ σ satisfies Q at i
useInv inv rS (here r→q) = here (r→q (inv rS))
useInv inv rS (there {e} {enEv} n eq sat)
= there n eq (useInv inv (step rS enEv) sat)
-- If σ satisfies (P ∩ S) at i then σ satisfies P at i and σ satisfies S at i
split-Conjunction : ∀ {st} {P S : Pred State 0ℓ}
{i : ℕ} {σ : Behavior st}
→ σ satisfies (P ∩ S) at i
→ σ satisfies P at i × σ satisfies S at i
split-Conjunction (here (p' , s))
= here p' , here s
split-Conjunction (there {e} {enEv} n eq satP'∧S)
with split-Conjunction satP'∧S
... | tailP' , tailS = (there n eq tailP') , (there n eq tailS)
-- If a behavior σ satisfies a stable predicate S at a given index i, and
-- satisfies Q at a given k ≥ i then σ satisfies (Q ∩ S) at k
stableAux : ∀ {st} {Q S : Pred State 0ℓ}
{i k : ℕ} {σ : Behavior st}
→ Stable StMachine S
→ σ satisfies S at i
→ i ≤ k
→ σ satisfies Q at k
→ σ satisfies (Q ∩ S) at k
stableAux stable (here sS) i<k (here qS)
= here (qS , sS)
stableAux {σ = σ} stable (here sS) i<k (there {e} {enEv} n eq satQ')
= there n eq (stableAux stable (here (stable enEv sS)) z≤n satQ')
stableAux stable (there n eq satS) i<k (there n₁ eq₁ satQ')
with trans (sym eq₁) eq
... | refl
with stableAux stable satS (≤-pred i<k) satQ'
... | satT = there n₁ eq₁ satT
-- Let A be a concurrent system. EventSet is a subset of events of A.
-- The EventSet evSet is enabled in a state st if:
-- ∃[ e ∈ evSet ] enabled e st (see definition of enabledSet)
-- A behavior σ satisfies weak fairness for evSet if given that
-- evSet is continuously enabled then it will eventually occurs
postulate
weak-fairness : ∀ {st}
→ (evSet : EventSet)
→ weakFairness sys evSet
→ (σ : Behavior st)
→ ∃[ n ] (AllSt σ upTo n satisfy (enabledSet StMachine evSet)
→ case tail (proj₂ (drop n σ)) of
λ { (inj₁ (e , enEv , t)) → e ∈ evSet
; (inj₂ ¬enEv) → ⊥ })
-- For all n, given the constraints of the viaEvSet rule of LeadsTo, we know
-- that either we reach Q at some point or in all states up to that n the evSet
-- will be enabled
soundness-WF : ∀ {st} {P Q : Pred State 0ℓ}
→ Reachable {sm = StMachine} st
→ (evSet : EventSet)
→ (σ : Behavior st)
→ (n : ℕ)
→ P st
→ (∀ (e : Event) → evSet e → [ P ] e [ Q ])
→ (∀ (e : Event) → ¬ (evSet e) → [ P ] e [ P ∪ Q ])
→ Invariant (stateMachine sys) (P ⇒ enabledSet StMachine evSet)
→ Σ[ j ∈ ℕ ] 0 ≤ j × σ satisfies Q at j
⊎ AllSt σ upTo n satisfy (enabledSet StMachine evSet ∩ P)
soundness-WF rS evSet σ zero ps c₁ c₂ c₃ = inj₂ (last ((c₃ rS ps) , ps))
soundness-WF rS evSet σ (suc n) ps c₁ c₂ c₃
with tail σ | inspect tail σ
... | inj₂ ¬enEv | _ = case c₃ rS ps of
λ { (ev , _ , enEv) → ⊥-elim (¬enEv (ev , enEv)) }
... | inj₁ (ev , enEv , t) | Reveal[ t≡i₁ ]
with ev ∈Set? evSet
... | yes ∈evSet
= case c₁ ev ∈evSet of
λ { (hoare p→q) → inj₁ (1 , z≤n , (there 0 t≡i₁ (here (p→q ps enEv)))) }
... | no ¬∈evSet
with c₂ ev ¬∈evSet
... | hoare p∨q
with p∨q ps enEv
... | inj₂ qActionSt = inj₁ (1 , z≤n , (there 0 t≡i₁ (here qActionSt)))
... | inj₁ pActionSt
with soundness-WF (step rS enEv) evSet t n pActionSt c₁ c₂ c₃
... | inj₁ (j , 0<j , anyQT) = inj₁ (suc j , z≤n , there j t≡i₁ anyQT)
... | inj₂ allT = inj₂ ( t≡i₁ ∷ ( c₃ rS ps , ps)∣ allT)
-- If all states in a behavior σ up to an index n satisfy (P ∩ Q), then
-- all states in σ up to n satisfy P and all states in σ up to n satisfy Q
allP∧Q⇒allP∧allQ : ∀ {st} {P Q : Pred State 0ℓ}
→ (n : ℕ)
→ (σ : Behavior st)
→ AllSt σ upTo n satisfy (P ∩ Q)
→ AllSt σ upTo n satisfy P × AllSt σ upTo n satisfy Q
allP∧Q⇒allP∧allQ zero σ (last (p , q)) = (last p) , (last q)
allP∧Q⇒allP∧allQ (suc n) σ (eq ∷ (ps , qs) ∣ allPQ)
with tail σ | eq
... | inj₁ (ev , enEv , t) | refl
with allP∧Q⇒allP∧allQ n t allPQ
... | allP , allQ = (eq ∷ ps ∣ allP) , (eq ∷ qs ∣ allQ)
-- If all states up to an index n in a behavior σ satisfy P, the state at the
-- nᵗʰ state of σ satisfy P
dropNsatP : ∀ {st} {P : Pred State 0ℓ} (n : ℕ)
→ (σ : Behavior st)
→ AllSt σ upTo n satisfy P
→ P (proj₁ (drop n σ))
dropNsatP zero σ (last ps) = ps
dropNsatP (suc n) σ (t≡i₁ ∷ ps ∣ allP)
with tail σ | t≡i₁
... | inj₁ (_ , _ , t) | refl = dropNsatP n t allP
-- If the nᵗʰ state of σ satisfy P at 1 then σ satisfy Q at (suc n)
dropN⇒σsat : ∀ {st} {Q : Pred State 0ℓ}
→ (n : ℕ)
→ (σ : Behavior st)
→ proj₂ (drop n σ) satisfies Q at 1
→ σ satisfies Q at (suc n)
dropN⇒σsat zero σ satQ = satQ
dropN⇒σsat (suc n) σ satQ
with tail σ | inspect tail σ
... | inj₂ ¬ev | _ = case satQ of
λ { (there {e} {enEv} 0 t≡inj₁ x)
→ ⊥-elim (¬ev (e , enEv)) }
... | inj₁ (e , enEv , t) | Reveal[ eq ]
with dropN⇒σsat n t satQ
... | anyQ = there (suc n) eq anyQ
-- If a behavior σ satisfy that it exists a w such that F w at index i then
-- it exists a w such that σ satisfy Fw at index i
σ⊢Fw : ∀ {st} {F : Z → Pred State 0ℓ} {i : ℕ} {σ : Behavior st}
→ σ satisfies [∃ w ∶ F w ] at i
→ Σ[ w ∈ ℕ ] σ satisfies F w at i
σ⊢Fw (here (w , fw)) = w , (here fw)
σ⊢Fw (there n eq satF)
with σ⊢Fw satF
... | w , fw = w , (there n eq fw)
-- If a behavior σ satisfy that it exists a w₁ such that w₁ < w and F w₁
-- at an index i then it exists a w₁ such that w₁ < w and
-- σ satisfy F w₁ at index i
σ⊢Fw< : ∀ {st} {F : Z → Pred State 0ℓ} {j w : ℕ} {σ : Behavior st}
→ σ satisfies [∃ w₁ ⇒ _< w ∶ F w₁ ] at j
→ Σ[ w₁ ∈ ℕ ] w₁ < w × σ satisfies F w₁ at j
σ⊢Fw< (here (w₁ , w₁<w , fw₁)) = w₁ , w₁<w , (here fw₁)
σ⊢Fw< (there n x satF)
with σ⊢Fw< satF
... | w , x<w , fw = w , x<w , (there n x fw)
-- The following definitions are mutual because the soundness proof use the
-- lemma wfr→Q in the viaWFR rule to prove that given the viaWFR rule we reach
-- a state that satisfies Q, and the wfr→Q lemma uses the soundness proof to
-- prove that progress is made in the well founded ranking, which means that
-- either we get to a state that satisfies Q or we reach a state where exists
-- a w₁ such that w₁ < w and F w₁. This implies that or we reach Q or w₁ will
-- become 0 and Q must hold.
mutual
wfr→Q : ∀ {w₁ w i : ℕ} {st} {F : Z → Pred State 0ℓ} {Q : Pred State 0ℓ}
→ w₁ < w
→ Reachable {sm = StMachine} st
→ (σ : Behavior st)
→ σ satisfies F w₁ at i
→ (∀ (w : Z) → F w l-t (Q ∪ [∃ x ⇒ _< w ∶ F x ]))
→ Σ[ j ∈ ℕ ] i ≤ j × σ satisfies Q at j
wfr→Q {zero} {suc w} w₁<w rS σ satF fw→q∪f
with soundness-aux rS σ satF (fw→q∪f 0)
... | n , i≤n , anyQ∨⊥
with trans2 anyQ∨⊥
... | inj₁ anyQ = n , i≤n , anyQ
... | inj₂ imp
with witness rS imp
... | ()
wfr→Q {suc w₁} {suc w} (s≤s w₁<w) rS σ satF fw→q∪f
with soundness-aux rS σ satF (fw→q∪f (suc w₁))
... | n , i≤n , anyQ∨F
with trans2 anyQ∨F
... | inj₁ satQ = n , i≤n , satQ
... | inj₂ satw
with σ⊢Fw< satw
... | w₂ , w₂<sw₁ , satw<
with wfr→Q {w = w} (≤-trans w₂<sw₁ w₁<w) rS σ satw< fw→q∪f
... | j , n≤j , anyQ = j , ≤-trans i≤n n≤j , anyQ
soundness-aux : ∀ {st} {P Q} {i : ℕ}
→ Reachable {sm = StMachine} st
→ (σ : Behavior st)
→ σ satisfies P at i
→ P l-t Q
→ Σ[ j ∈ ℕ ] i ≤ j × σ satisfies Q at j
soundness-aux rS σ (here ps) (viaEvSet evSet wf c₁ c₂ c₃)
with weak-fairness evSet wf σ
... | n , wfa
with soundness-WF rS evSet σ n ps c₁ c₂ c₃
... | inj₁ satQ = satQ
... | inj₂ allE∧P
with allP∧Q⇒allP∧allQ n σ allE∧P
... | allE , allP
with wfa allE
... | v
with tail (proj₂ (drop n σ)) | inspect tail (proj₂ (drop n σ))
... | inj₂ ¬enEv | _ = ⊥-elim v
... | inj₁ (e , enEv , t) | Reveal[ t≡i₁ ]
= case c₁ e v of
λ { (hoare p→q) → let pSt = dropNsatP n σ allP
q⊢1 = there 0 t≡i₁ (here (p→q pSt enEv))
in (suc n) , z≤n , dropN⇒σsat n σ q⊢1 }
soundness-aux rS σ (here ps) (viaInv inv) = 0 , z≤n , here (inv rS ps)
soundness-aux rS σ (here ps) (viaTrans p→r r→q)
with soundness-aux rS σ (here ps) p→r
... | n , 0<n , anyR
with soundness-aux rS σ anyR r→q
... | j , n<j , anyQ = j , ≤-trans 0<n n<j , anyQ
soundness-aux rS σ (here ps) (viaTrans2 p→q∨r r→q)
with soundness-aux rS σ (here ps) p→q∨r
... | n , 0<n , anyQ∨R
with trans2 anyQ∨R
... | inj₁ anyQ = n , z≤n , anyQ
... | inj₂ anyR
with soundness-aux rS σ anyR r→q
... | j , n≤j , anyQ = j , ≤-trans 0<n n≤j , anyQ
soundness-aux rS σ (here ps) (viaDisj p₁∨p₂ p₁→q p₂→q)
with p₁∨p₂ ps
... | inj₁ p₁S = soundness-aux rS σ (here p₁S) p₁→q
... | inj₂ p₂S = soundness-aux rS σ (here p₂S) p₂→q
soundness-aux rS σ (here ps) (viaUseInv invR p∧r→r⇒q)
with soundness-aux rS σ (here (ps , invR rS)) p∧r→r⇒q
... | n , 0≤n , anyR⇒Q
with useInv invR rS anyR⇒Q
... | anyQ = n , 0≤n , anyQ
soundness-aux rS σ (here ps) (viaWFR F c₁ c₂)
with soundness-aux rS σ (here ps) c₁
... | n , 0<n , q∪f
with trans2 q∪f
... | inj₁ anyQ = n , 0<n , anyQ
... | inj₂ anyF
with σ⊢Fw anyF
... | w , satFw
with soundness-aux rS σ satFw (c₂ w)
... | j , n<j , anyQ∪F
with trans2 anyQ∪F
... | inj₁ anyQw = j , z≤n , anyQw
... | inj₂ anyFw
with σ⊢Fw< anyFw
... | w₁ , w₁<w , satFw₁
with wfr→Q w₁<w rS σ satFw₁ c₂
... | k , j<k , anyQ = k , z≤n , anyQ
soundness-aux rS σ (here ps) (viaAllVal invR p∧r→q)
with invR rS
... | a , rA = soundness-aux rS σ (here (ps , rA)) (p∧r→q a)
soundness-aux rS σ (here ps) (viaStable stableS p→p'∧s p'→q' q'∧s→q)
with soundness-aux rS σ (here ps) p→p'∧s
... | n , 0≤n , anyP'∧S
with split-Conjunction anyP'∧S
... | anyP' , anyS
with soundness-aux rS σ anyP' p'→q'
... | k , n≤k , anyQ'
with soundness-aux rS σ (stableAux stableS anyS n≤k anyQ') q'∧s→q
... | j , k≤j , anyQ = j , ≤-trans 0≤n (≤-trans n≤k k≤j) , anyQ
soundness-aux rS σ (there {e} {enEv} {t} i t≡i₁ σ⊢P) p→q
with soundness-aux (step rS enEv) t σ⊢P p→q
... | j , i≤j , tail⊢Q = suc j , s≤s i≤j , (there j t≡i₁ tail⊢Q)
-- Soundness proof for all Behaviors that start in one initial state
soundnessLt : ∀ {s₀} {P Q} {i} → initial StMachine s₀
→ (σ : Behavior s₀)
→ σ satisfies P at i
→ P l-t Q
→ ∃[ j ] (i ≤ j × σ satisfies Q at j)
soundnessLt s₀ σ σ⊢P p→q = soundness-aux (init s₀) σ σ⊢P p→q
------------------------------------------------------------------------------
-- PROOF of SOUNDNESS for INVARIANCE PROOF RULE
------------------------------------------------------------------------------
record AllStates {st} (σ : Behavior st) (P : Pred State 0ℓ) : Set where
coinductive
field
head-Sat : P st
tail-Sat : ∀ {e enEv t} → tail σ ≡ inj₁ (e , enEv , t) → AllStates t P
open Behavior
soundnessInv-rS : ∀ {st} {P} → Reachable {sm = StMachine} st
→ (σ : Behavior st)
→ Invariant StMachine P
→ AllStates σ P
AllStates.head-Sat (soundnessInv-rS rS σ invP) = invP rS
AllStates.tail-Sat (soundnessInv-rS rS σ invP) {e} {enEv} {t} t≡i₁
= soundnessInv-rS (step rS enEv) t invP
soundnessInv : ∀ {st} {P} → initial StMachine st
→ (σ : Behavior st)
→ Invariant StMachine P
→ AllStates σ P
soundnessInv s₀ σ invP = soundnessInv-rS (init s₀) σ invP
|
{
"alphanum_fraction": 0.5149721052,
"avg_line_length": 37.4541577825,
"ext": "agda",
"hexsha": "8279c52f12e4ea388c71fdab2c01e723c98102d3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "lisandrasilva/agda-liveness",
"max_forks_repo_path": "src/Behaviors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "lisandrasilva/agda-liveness",
"max_issues_repo_path": "src/Behaviors.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "lisandrasilva/agda-liveness",
"max_stars_repo_path": "src/Behaviors.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6311,
"size": 17566
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Decidable.Sets
open import Lists.Lists
open import Numbers.Naturals.Semiring
module UnorderedSet.Definition {a : _} {V : Set a} (dec : DecidableSet V) where
data UnorderedSetOf : List V → Set a where
empty' : UnorderedSetOf []
addCons : (v : V) → (vs : List V) → .(contains vs v → False) → UnorderedSetOf vs → UnorderedSetOf (v :: vs)
record UnorderedSet : Set a where
field
elts : List V
set : UnorderedSetOf elts
empty : UnorderedSet
empty = record { elts = [] ; set = empty' }
add : V → UnorderedSet → UnorderedSet
add v record { elts = elts ; set = set } with containsDecidable dec elts v
... | inl x = record { elts = elts ; set = set }
... | inr x = record { elts = v :: elts ; set = addCons v elts x set }
singleton : V → UnorderedSet
singleton v = record { elts = v :: [] ; set = addCons v [] (λ ()) empty' }
ofList : (l : List V) → UnorderedSet
ofList [] = record { elts = [] ; set = empty' }
ofList (x :: l) = add x (ofList l)
union : UnorderedSet → UnorderedSet → UnorderedSet
union record { elts = eltsA ; set = setA } record { elts = eltsB ; set = setB } = ofList (eltsA ++ eltsB)
count : UnorderedSet → ℕ
count record { elts = e ; set = _ } = length e
setContains : (v : V) → UnorderedSet → Set a
setContains v record { elts = elts ; set = set } = contains elts v
|
{
"alphanum_fraction": 0.6503785272,
"avg_line_length": 33.7906976744,
"ext": "agda",
"hexsha": "64e1b7b21eec5a2424a1a231a0148a4d8313ac26",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "UnorderedSet/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "UnorderedSet/Definition.agda",
"max_line_length": 109,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "UnorderedSet/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 472,
"size": 1453
}
|
{-# OPTIONS --without-K --safe #-}
-- The Everything module of undecidability analysis
-- In Agda, we use first order de Bruijn indices to represent variables, that is, the
-- natural numbers.
module Everything where
-- Subtyping problems of all following calculi are undecidable. In this technical
-- work, our reduction proofs stop at F<: deterministic (F<:ᵈ), the undecidability of
-- which is justified by Pierce92.
-- F<: F<:⁻ F<:ᵈ
import FsubMinus
-- D<:
--
-- The examination of D<: is composed of the following files:
import DsubDef -- defines the syntax of D<:.
import Dsub -- defines the simplified subtyping judgment per Lemma 2 in the paper.
import DsubFull -- defines the original definition of D<:.
import DsubEquivSimpler -- defines D<: normal form and shows that D<: subtyping is undecidable.
import DsubNoTrans -- shows that D<: subtyping without transitivity remains undecidable.
import DsubTermUndec -- shows that D<: term typing is also undecidable.
-- other things
-- properties of F<:⁻
import FsubMinus2
|
{
"alphanum_fraction": 0.7456479691,
"avg_line_length": 35.6551724138,
"ext": "agda",
"hexsha": "57f603839e09c625c46cc1c92eeeacb30ccb20a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "HuStmpHrrr/popl20-artifact",
"max_forks_repo_path": "agda/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "HuStmpHrrr/popl20-artifact",
"max_issues_repo_path": "agda/Everything.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "HuStmpHrrr/popl20-artifact",
"max_stars_repo_path": "agda/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z",
"num_tokens": 278,
"size": 1034
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Signs
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sign where
------------------------------------------------------------------------
-- Definition
open import Data.Sign.Base public
open import Data.Sign.Properties public
using (_≟_)
|
{
"alphanum_fraction": 0.3396226415,
"avg_line_length": 24.9411764706,
"ext": "agda",
"hexsha": "81dbe4b2951ac572a966b35abb084c5ac8fb68af",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Sign.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Sign.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Sign.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 53,
"size": 424
}
|
-- We need to look at irrelevant variables in meta instantiation occurs check.
-- Here's why.
module Issue483 where
data _==_ {A : Set}(x : A) : A → Set where
refl : x == x
data ⊥ : Set where
resurrect : .⊥ → ⊥
resurrect ()
data D : Set where
c : (x : ⊥) → (.(y : ⊥) → x == resurrect y) → D
d : D
d = c _ (λ y → refl)
-- this should leave an unsolved meta! An error is too harsh.
{-
-- Cannot instantiate the metavariable _21 to resurrect _ since it
-- contains the variable y which is not in scope of the metavariable
-- when checking that the expression refl has type _21 == resurrect _
-}
¬d : D → ⊥
¬d (c x _) = x
oops : ⊥
oops = ¬d d
|
{
"alphanum_fraction": 0.6298003072,
"avg_line_length": 21.7,
"ext": "agda",
"hexsha": "992af7cd2f57e9da85d54651edd68841028addae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue483.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue483.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue483.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 208,
"size": 651
}
|
data Greeting : Set where
hello : Greeting
greet : Greeting
greet = hello
|
{
"alphanum_fraction": 0.7272727273,
"avg_line_length": 12.8333333333,
"ext": "agda",
"hexsha": "772f6351c93ed388f9b5a4f1686197c3ce05e0f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "supeterlau/bedev",
"max_forks_repo_path": "agda/hello.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "supeterlau/bedev",
"max_issues_repo_path": "agda/hello.agda",
"max_line_length": 25,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c134875eae37d265936199fda278416e2a3c1224",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "supeterlau/bedev",
"max_stars_repo_path": "agda/hello.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 24,
"size": 77
}
|
-- Jesper, Andreas, 2018-10-29, issue #3332
--
-- WAS: With-inlining failed in termination checker
-- due to a DontCare protecting the clause bodies
-- (introduced by Prop).
{-# OPTIONS --prop #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.List
postulate
A : Set
_++_ : List A → List A → List A
[] ++ l = l
(a ∷ l) ++ l' = a ∷ (l ++ l')
module PropEquality where
data _≐_ {A : Set} (a : A) : A → Prop where
refl : a ≐ a
test : (l : List A) → (l ++ []) ≐ l
test [] = refl
test (x ∷ xs) with xs ++ [] | test xs
test (x ∷ xs) | .xs | refl = refl
module SquashedEquality where
data Squash (A : Set) : Prop where
sq : A → Squash A
test : (l : List A) → Squash (l ++ [] ≡ l)
test [] = sq refl
test (x ∷ l) with test l
test (x ∷ l) | sq eq with l ++ [] | eq
test (x ∷ l) | .(test l) | .l | refl = sq refl
-- Both should succeed.
|
{
"alphanum_fraction": 0.5593220339,
"avg_line_length": 21.5853658537,
"ext": "agda",
"hexsha": "2f6c0f855e4a5b7662847f3f09f29a18166f6ac4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3332.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3332.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3332.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 320,
"size": 885
}
|
import Relation.Binary.PropositionalEquality as PE
module x01 where
import Data.Empty.Polymorphic as DEP
open import Data.Unit.Polymorphic
import Data.Maybe as Maybe
{-
Dependent Types at Work
Ana Bove and Peter Dybjer
Chalmers University of Technology, Göteborg, Sweden
intro to functional programming with dependent types
- simply typed functional programming in style of Haskell and ML
- discuss differences between Agda’s type system and Hindley-Milner type system of Haskell/ML
- how to use dependent types for programming
- explain ideas behind type-checking dependent types
- explain Curry-Howard identification of propositions and types
- show a method to encode partial/general recursive functions
as total functions using dependent types
Dependent types are types that depend on elements of other types (e.g., Vec of length n)
Invariants can be expressed with dependent type (e.g., sorted list)
Agda's dependent type system is an extension of Martin-Löf type theory [20,21,22,25].
Parametrised types
- e.g., [A]
- usually not called dependent types
- they are are families of types indexed by other types
- NOT families of types indexed by ELEMENTS of another type
- however, in dependent type theories, there is a type of small types (a universe),
so that we have a type [A] of lists of elements of a given small type A.
- FORTRAN could define arrays of a given dimension, so a form a dependent type on small type
- simply typed lambda calculus and the Hindley-Milner type system,
(e.g., Haskell/ML) do not include dependent types, only parametrised types
- polymorphic lambda calculus System F [15] has types like
∀X.A where X ranges over all types,
but no quantification over ELEMENTS of other types
development of dependently typed programming languages has
origins in Curry-Howard isomorphism between propositions and types
1930’s : Curry noticed similarity between axioms of implicational logic
P ⊃ Q ⊃ P (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R
and types of combinators
K and S
A → B → A (A → B → C) → (A → B) → A → C
K can be viewed as a witness (i.e., proof object) of the truth of P ⊃ Q ⊃ P
S can be viewed as a withness of the truth of (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R
typing rule for application
corresponds to the inference rule modus ponens: from P ⊃ Q and P conclude Q
- f : A → B
- a : A
- f a → B
product types correspond to conjunctions
sum types (disjoint unions) to disjunctions
to extend this correspondence to predicate logic
Howard and de Bruijn introduced dependent types A(x) corresponding to predicates P(x).
They formed
indexed products Π x : D.A(x) : corresponding to universal quantifications ∀x : D.P (x)
indexed sums Σ x : D.A(x) : existential quantifications ∃x : D.P (x)
this gives a Curry-Howard interpretation of intuitionistic predicate logic
one-to-one correspondence between propositions and types
in a type system with dependent types
one-to-one correspondence between
- proofs of a certain proposition in constructive predicate logic, and
- terms of the corresponding type
To accommodate equality in predicate logic
introduce the type a == b of proofs that a and b are equal.
Gives a Curry-Howard interpretation of predicate logic with equality.
Can go further and add natural numbers with addition and multiplication
to obtain a Curry-Howard version of Heyting (intuitionistic) arithmetic.
Curry-Howard interpretation was basis for Martin-Löf’s intuitionistic type theory [20,21,22].
- propositions and types are identified
- intended to be a foundational system for constructive mathematics
- can also be used as a programming language [21]
- from 1980’s and onwards, systems implementing variants of Martin-Löf type theory
- NuPRL [6] : implementing an extensional version of the theory
- Coq [33] : implementing an intensional impredicative version
- Agda : implements an intensional predicative extension
About these Notes
Agda's type-checking algorithm
- Section 5
- ideas first presented by Coquand [7]
- more information
- Norell’s thesis [26]
- Abel, Coquand, and Dybjer [1,2]
- Coquand, Kinoshita, Nordström, and Takeyama [8].
more complete understanding of dependent type theory
- read a book about Martin-Löf type theory and related systems
- Martin-Löf’s “Intuitionistic Type Theory” [22] is a classic
- be aware that it describes an extensional version of the theory
- Nordström, Petersson, and Smith [25]
description of the later intensional theory on which Agda is based
- variants of dependent type theory are
- Thompson [34]
- Constable et al [6] : NuPRL
- Bertot and Casteran [4] : Coq
- lecture notes (Agda wiki [3]) by Norell
- collection of advanced examples of how to use Agda for dependently typed programming
- Geuvers’ lecture notes : introduction to type theory
- including Barendregt’s pure type systems and important meta-theoretic properties
- Bertot’s notes : how dependent types (in Coq) can be used for
implementing a number of concepts of programming language theory
- focus on abstract interpretation
- Barthe, Grégoire, and Riba’s notes
- method for making termination-checkers
Section 2 : ordinary functional programming
Section 3 : basic dependent types and shows how to use them
Section 4 : Curry-Howard isomorphism
Section 5 : aspects of type-checking and pattern matching with dependent types
Section 6 : use Agda as a programming logic
Section 7 : how to represent general recursion and partial functions as total functions in Agda
------------------------------------------------------------------------------
2 Simply Typed Functional Programming in Agda
2.1 Truth Values
-}
data Bool : Set where
true : Bool
false : Bool
{-
states
- Bool is a data type with the two (no-arg) constructors
- “:” denotes type membership
- Bool is a member of the type Set
- Set
- the type of sets (using a terminology introduced by Martin-Löf [22])
or small types (mentioned in the introduction).
- Bool is a small type, but Set itself is not, it is a large type.
- allowing Set : Set, would make the system inconsistent
-}
not : Bool -> Bool
not true = false
not false = true
{-
Agda cannot generally infer types.
Because Agda type-checking done via normalisation (simplification)
- without the normality restriction it may not terminate
-}
equiv : Bool -> Bool -> Bool
equiv false false = true
equiv true false = false
equiv false true = false
equiv true true = true
_||_ : Bool -> Bool -> Bool
true || _ = true
false || true = true
false || false = false
infixl 60 _||_
-- EXERCISE: Define some more truth functions, such as conjunction and implication/TODO.
_&&_ : Bool -> Bool -> Bool
false && _ = false
true && false = false
true && true = true
-- infixl ?? _&&_
-- 2.2 Natural Numbers
-- such data types known as recursive in Haskell
-- in constructive type theory, referred to as inductive types or inductively defined types
data Nat : Set where
zero : Nat
succ : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
pred : Nat -> Nat
pred zero = zero
pred (succ n) = n
_+_ : Nat -> Nat -> Nat
zero + m = m
succ n + m = succ (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_*_ : Nat -> Nat -> Nat
zero * n = zero
succ n * m = (n * m) + m
{-# BUILTIN NATTIMES _*_ #-}
infixl 6 _+_ _∸_
infixl 7 _*_
_ : (2 * 3) + 10 PE.≡ 16
_ = PE.refl
{-
+ and * are defined by PRIMITIVE RECURSION in FIRST ARG.
- PRIMITIVE RECURSIION :
- upper bound of number of iterations of every loop can be determined before entering loop
- time complexity of PR functions bounded by the input size
- base case for zero
- step case for non zero defined recursively
Given a first order data type
- distinguish between
- canonical form
- built by constructors only
- e.g., true, false, zero, succ zero, succ (succ zero), ...
- non-canonical forms
- whereas non-canonical elements might contain defined functions
- e.g., not true, zero + zero, zero * zero, succ (zero + zero)
Martin-Löf [21] instead considers lazy canonical forms
- a term begins with a constructor to be considered a canonical form
- e.g., succ (zero + zero) is a lazy canonical form, but not a “full” canonical form
- Lazy canonical forms are appropriate for lazy functional programming languages (e.g., Haskell)
-- EXERCISE: Write the cut-off subtraction function
-- the function on natural numbers, which returns 0
-- if the second argument is greater than or equal to the first.
-}
_∸_ : Nat -> Nat -> Nat
zero ∸ _ = zero
succ n ∸ zero = succ n
succ n ∸ succ m = n ∸ m
_ : 0 ∸ 0 PE.≡ 0
_ = PE.refl
_ : 0 ∸ 10 PE.≡ 0
_ = PE.refl
_ : 10 ∸ 0 PE.≡ 10
_ = PE.refl
_ : 10 ∸ 10 PE.≡ 0
_ = PE.refl
_ : 10 ∸ 9 PE.≡ 1
_ = PE.refl
-- EXERCISE: Also write some more numerical functions like < or <=
_<_ : Nat -> Nat -> Bool
zero < zero = false
zero < succ _ = true
succ _ < zero = false
succ n < succ m = n < m
_ : 9 < 10 PE.≡ true
_ = PE.refl
_ : 10 < 10 PE.≡ false
_ = PE.refl
_<=_ : Nat -> Nat -> Bool
zero <= zero = true
zero <= succ _ = true
succ _ <= zero = false
succ n <= succ m = n <= m
_ : 9 <= 10 PE.≡ true
_ = PE.refl
_ : 10 <= 10 PE.≡ true
_ = PE.refl
_>_ : Nat -> Nat -> Bool
zero > zero = false
zero > succ _ = false
succ _ > zero = true
succ n > succ m = n > m
{-
2.3 Lambda Notation and Polymorphism
Agda is based on the typed lambda calculus.
APPLICATION is juxtaposition
lambda ABSTRACTION written either
- Curry-style (without a type label)
\x -> e
- Church-style (with a type label)
\(x : A) -> e
a family of identity functions, one for each small type:
-}
-- idE(xplicit)
idE : (A : Set) -> A -> A
idE = \(A : Set) -> \(x : A) -> x
{-
apply this “generic” identity function id to a type argument A
to obtain the identity function from A to A
1st use of dependent types: type A -> A depends on variable A : Set
- ranging over the small types
Agda’s notation for dependent function types
- if A is a type and B[x] is a type which depends on (is indexed by) (x : A)
then (x : A) -> B[x] is the type of functions f mapping arguments (x : A) to values f x : B[x].
If the type-checker can figure out value of an arg, can use a wild card character:
id _ x : A
K and S combinators in Agda (uses telescopic notation (A B : Set)
-}
K : (A B : Set) -> A -> B -> A
K _ _ x _ = x
S : (A B C : Set) -> (A -> B -> C) -> (A -> B) -> A -> C
S _ _ _ f g x = f x (g x)
{-
2.4 Implicit Arguments : declared by enclosing typings in curly brackets
-}
id : {A : Set} -> A -> A
id x = x
-- implicit arguments are omitted in applications
_ : id zero PE.≡ zero
_ = PE.refl
-- can explicitly write an implicit argument by using curly brackets if needed
_ : id {Nat} zero PE.≡ zero
_ = PE.refl
_ : id {_} zero PE.≡ zero
_ = PE.refl
{-
2.5 Gödel System T is a subsystem of Agda.
System of primitive recursive functionals [16]
- important in logic and a precursor to Martin-Löf type theory
recursion restricted to primitive recursion : to make sure programs terminate
Gödel System T
- based on simply typed lambda calculus
- with two base types : truth values and natural numbers
- (some formulations code truth values as 0 and 1)
- constants for constructors true, false, zero
- conditional and primitive recursion combinators
-}
-- conditional
if_then_else_ : {C : Set} -> Bool -> C -> C -> C
if true then x else _ = x
if false then _ else y = y
-- primitive recursion combinator for natural numbers
-- natrec is a higher-order function defined by primitive recursion with args
-- - (implicit) return type
-- - c : element returned in base case
-- - 𝕟→c→c : step function
-- - the Nat on which to perform the recursion
natrec : {C : Set} -> C -> (Nat -> C -> C) -> Nat -> C
natrec c 𝕟→c→c zero = c
natrec c 𝕟→c→c (succ n) = 𝕟→c→c n (natrec c 𝕟→c→c n)
-- natrec definitions of addition and multiplication
_plus_ : Nat -> Nat -> Nat
_plus_ n m = natrec m (\x y -> succ y) n
_mult_ : Nat -> Nat -> Nat
_mult_ n m = natrec zero (\x y -> y plus m) n
-- compare plus/mult to _+_/_*_
_ : succ (succ zero) + 2 PE.≡
succ (succ zero + 2)
_ = PE.refl
_ : succ (succ zero + 2) PE.≡
succ (succ (zero + 2))
_ = PE.refl
_ : succ (succ (zero + 2)) PE.≡
succ (succ 2 )
_ = PE.refl
_ : succ (succ zero) plus 2 PE.≡
natrec 2 (\x y -> succ y) (succ (succ zero))
_ = PE.refl
_ : natrec 2 (\x y -> succ y) (succ (succ zero)) PE.≡
(\x y -> succ y) (succ zero) (natrec 2 (\x y -> succ y) (succ zero))
_ = PE.refl
_ : (\x y -> succ y) (succ zero) (natrec 2 (\x y -> succ y) (succ zero)) PE.≡
(\ y -> succ y) (natrec 2 (\x y -> succ y) (succ zero))
_ = PE.refl
_ : (\ y -> succ y) (natrec 2 (\x y -> succ y) (succ zero)) PE.≡
succ (natrec 2 (\x y -> succ y) (succ zero))
_ = PE.refl
_ : succ (natrec 2 (\x y -> succ y) (succ zero)) PE.≡
succ ((\x y -> succ y) zero (natrec 2 (\x y -> succ y) zero))
_ = PE.refl
_ : succ ((\x y -> succ y) zero (natrec 2 (\x y -> succ y) zero)) PE.≡
succ ((\ y -> succ y) (natrec 2 (\x y -> succ y) zero))
_ = PE.refl
_ : succ ((\ y -> succ y) (natrec 2 (\x y -> succ y) zero)) PE.≡
succ ( succ (natrec 2 (\x y -> succ y) zero))
_ = PE.refl
_ : succ ( succ (natrec 2 (\x y -> succ y) zero)) PE.≡
succ ( succ 2 )
_ = PE.refl
{-
to stay entirely in Gödel system T
- use terms built up by variables, application, lambda abstraction,
- and constants true, false, zero, succ, if_then_else_, natrec
Gödel system T has unusual property (for a programming language)
- all typable programs terminate
not only do terms in base types Bool and Nat terminate whatever reduction is chosen,
but also terms of function type terminate
reduction rules
- β-reduction
- defining equations for if_then_else and natrec
reductions can be performed anywhere in a term,
so there may be several ways to reduce a term
therefore, Gödel system T is strongly normalising
- any typable term reaches a normal form whatever reduction strategy is chosen
Even in this restrictive Gödel system T, possible to define many numerical functions.
Can define all primitive recursive functions
(in the usual sense without higher-order functions).
Can also define functions which are not primitive recursive, such as the Ackermann function.
Gödel system T is important in the history of ideas that led to
the Curry-Howard isomorphism and Martin-Löf type theory.
Gödel system T
- is the simply typed kernel of Martin-Löf’s constructive type theory,
Martin-Löf type theory
- is the foundational system from which Agda grew
relationship between Agda and Martin-Löf type theory is much like the
relationship between Haskell and the simply typed lambda calculus.
Or compare it with the relationship between Haskell and Plotkin’s PCF [30].
Like Gödel system T,
PCF is based on the simply typed lambda calculus with truth values and natural numbers.
But PCF includes a fixed point combinator
- used for encoding arbitrary general recursive definitions
- therefore can define non-terminating functions in PCF.
-}
-- Exercise/TODO: Define all functions previously given in the text in Gödel System T.
-- induction principle for booleans (from Mimram)
Bool-rec : (P : Bool → Set) → P false → P true → (b : Bool) → P b
Bool-rec P Pf Pt false = Pf
Bool-rec P Pf Pt true = Pt
not' : Bool -> Bool
not' b = Bool-rec (λ bool → Bool) true false b
_ : not' false PE.≡ not false
_ = PE.refl
_ : not' true PE.≡ not true
_ = PE.refl
equiv' : Bool -> Bool -> Bool
equiv' b false = Bool-rec (λ bool → Bool) true false b
equiv' b true = Bool-rec (λ bool → Bool) false true b
_ : equiv' false false PE.≡ equiv false false
_ = PE.refl
_ : equiv' true false PE.≡ equiv true false
_ = PE.refl
_ : equiv' false true PE.≡ equiv false true
_ = PE.refl
_ : equiv' true true PE.≡ equiv true true
_ = PE.refl
_||'_ : Bool -> Bool -> Bool
b ||' false = Bool-rec (λ bool → Bool) b b b
b ||' true = Bool-rec (λ bool → Bool) (not b) b b
_ : false ||' false PE.≡ false || false
_ = PE.refl
_ : false ||' true PE.≡ false || true
_ = PE.refl
_ : true ||' false PE.≡ true || false
_ = PE.refl
_ : true ||' true PE.≡ true || true
_ = PE.refl
_&&'_ : Bool -> Bool -> Bool
b &&' false = Bool-rec (λ bool → Bool) false false b
b &&' true = Bool-rec (λ bool → Bool) b b b
_ : false &&' false PE.≡ false && false
_ = PE.refl
_ : false &&' true PE.≡ false && true
_ = PE.refl
_ : true &&' false PE.≡ true && false
_ = PE.refl
_ : true &&' true PE.≡ true && true
_ = PE.refl
pred' : Nat -> Nat
pred' zero = natrec zero (\x y -> zero) zero
pred' (succ n) = natrec zero (\_ _ -> n) n
-- test after List def
{-
2.6 Parametrised Types
Haskell parametrised types : [a]
-}
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
infixr 5 _::_
{-# BUILTIN LIST List #-}
{-
(A : Set) to the left of the colon
- tells Agda that A is a parameter
- and it becomes an implicit argument to the constructors:
[] : {A : Set} -> List A
_::_ : {A : Set} -> A -> List A -> List A
def only allows defining lists with elements in arbitrary SMALL types
- cannot define lists of sets using this definition, since sets form a large type
-}
-- test for pred'
_ : (pred' 0 :: pred' 1 :: pred' 2 :: pred' 101 :: []) PE.≡ (pred 0 :: pred 1 :: pred 2 :: pred 101 :: [])
_ = PE.refl
mapL : {A B : Set} -> (A -> B) -> List A -> List B
mapL f [] = []
mapL f (x :: xs) = f x :: mapL f xs
_ : mapL succ (1 :: 2 :: []) PE.≡ (2 :: 3 :: [])
_ = PE.refl
-- Exercise: Define some more list combinators like for example foldl or filter.
filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter f [] = []
filter f (x :: xs) = let tail = filter f xs in if f x then x :: tail else tail
_ : filter (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: []) PE.≡ (3 :: 2 :: 1 :: [])
_ = PE.refl
foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B
foldl _ b [] = b
foldl f b (a :: as) = foldl f (f b a) as
foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f b [] = b
foldr f b (a :: as) = f a (foldr f b as)
_ : foldl _+_ 0 (3 :: 2 :: 1 :: []) PE.≡ 6
_ = PE.refl
_ : foldl _∸_ 0 (3 :: 1 :: []) PE.≡ 0
_ = PE.refl
_ : foldr _∸_ 0 (3 :: 1 :: []) PE.≡ 2
_ = PE.refl
-- Exercise: define list recursion combinator listrec (like natrec, but for lists)
-- from Mimram
List-rec
: {A : Set}
→ (P : List A → Set)
→ P []
→ ((x : A) → (xs : List A) → P xs → P (x :: xs))
→ (xs : List A)
→ P xs
List-rec P Pe Pc [] = Pe
List-rec P Pe Pc (x :: xs) = Pc x xs (List-rec P Pe Pc xs)
mapL' : {A B : Set} -> (A -> B) -> List A -> List B
mapL' {_} {B} f xs = List-rec (λ _ → List B) [] (λ a _ bs → f a :: bs) xs
_ : mapL' succ (1 :: 2 :: []) PE.≡ mapL succ (1 :: 2 :: [])
_ = PE.refl
filter' : {A : Set} -> (A -> Bool) -> List A -> List A
filter' {A} f xs = List-rec (λ _ → List A) [] (λ a _ as' → if f a then a :: as' else as') xs
_ : filter' (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: []) PE.≡ filter (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: [])
_ = PE.refl
foldl' : {A B : Set} -> (B -> A -> B) -> B -> List A -> B
foldl' {_} {B} f b as = List-rec (λ _ → B) b (λ a _ b → f b a) as
_ : foldl' _+_ 0 (3 :: 2 :: 1 :: []) PE.≡ foldl _+_ 0 (3 :: 2 :: 1 :: [])
_ = PE.refl
foldr' : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr' {A} {B} f b as = List-rec (λ _ → B) b (λ a as b → f a b) as
_ : foldr' _∸_ 0 (3 :: 1 :: []) PE.≡ foldr _∸_ 0 (3 :: 1 :: [])
_ = PE.refl
-- binary Cartesian product AKA pair
data _X_ (A B : Set) : Set where
<_,_> : A -> B -> A X B
-- prime because these are never used but are redeinfed later
fst' : {A B : Set} -> A X B -> A
fst' < a , b > = a
snd' : {A B : Set} -> A X B -> B
snd' < a , b > = b
-- Usually want to zip lists of equal length.
-- Can fix that with runtime Maybe or compiletime dependent types (later).
zipL : {A B : Set} -> List A -> List B -> List (A X B)
zipL [] _ = []
zipL (_ :: _) [] = []
zipL (x :: xs) (y :: ys) = < x , y > :: zipL xs ys
-- Exercise: Define the sum A + B of two small types with constructors: inl, inr.
data Either (A B : Set) : Set where
inl : A -> Either A B
inr : B -> Either A B
-- Exercise: Define a function from A + B to a small type C by cases.
toC : {A B C : Set} → (A -> C) -> (B -> C) -> (Either A B) -> C
toC ac _ (inl a) = ac a
toC _ bc (inr b) = bc b
{-
2.7 Termination-checking
General recursion allowed in most languages.
Therefore possible to define "partial" functions (e.g., divide by 0)
How to ensure functions terminate?
- one solution : restrict recursion to primitive recursion (like in Gödel system T)
- the approach taken in Martin-Löf type theory
where primitive recursion as a kind of structural recursion on well-founded data types
(see Martin-Löf’s book [22] and Dybjer’s schema for inductive definitions [10])
- but structural recursion (in one argument at a time) is often inconvenient
Agda’s termination-checker
- generalisation of primitive recursion which is practically useful
- enables doing pattern matching on several arguments simultaneously
- and having recursive calls to structurally smaller arguments
But repeated subtraction is rejected by Agda termination-checker although it is terminating.
Because Agda does not recognise the recursive call to (m - n) as structurally smaller.
Because subtraction is not a constructor for natural numbers.
Further reasoning required to deduce the recursive call is on a smaller argument.
Section 7 : describes how partial and general recursive functions can be represented in Agda.
Idea is to replace a partial function by a total function with an extra argument:
a proof that the function terminates on its arguments.
------------------------------------------------------------------------------
3 Dependent Types
3.1 Vectors of a Given Length
2 ways to define
- Recursive family
- by primitive recursion/induction on n
- Inductive family
- as a family of data types by declaring its constructors and the types of constructors
- like def of List, except length info included in types
paper mostly uses inductive families
--------------------------------------------------
Vectors as a Recursive Family
In math : define vectors by induction on n:
A 0 = 1
A n+1 = A × An
In Agda (and Martin-Löf type theory):
-}
-- type with only one element
data Unit : Set where
<> : Unit
VecR : Set -> Nat -> Set
VecR A zero = Unit
VecR A (succ n) = A X VecR A n
{-
Up till now, only used primitive recursion for defining functions
where the range is in a given set (in a given small type).
Here, primitive recursion used for defining a family of sets
- a family of elements in a given large type.
-}
zipR : {A B : Set} {n : Nat} -> VecR A n -> VecR B n -> VecR (A X B) n
zipR {n = zero} _ _ = <>
zipR {n = succ n'} < a , as > < b , bs > = < < a , b > , zipR {n = n'} as bs >
{-
base case : type-correct since the right hand side has type
VecR (A X B) zero = <>
step case : type-correct since the right hand side has type
VecR (A X B) (succ n) = (A X B) X (VecR (A X B) n)
-}
-- Exercise. Write the functions head, tail, and map for the recursive vectors.
headR : {A : Set} {n : Nat} -> VecR A (succ n) -> A
headR < x , _ > = x
tailR : {A : Set} {n : Nat} -> VecR A (succ n) -> VecR A n
tailR < _ , t > = t
mapR : {A B : Set} {n : Nat} -> (A -> B) -> VecR A n -> VecR B n
mapR {n = zero} _ _ = <>
mapR {n = succ n'} f < a , as > = < f a , mapR {n = n'} f as >
_ : mapR succ < 1 , < 2 , < 0 , <> > > > PE.≡ < 2 , < 3 , < 1 , <> > > >
_ = PE.refl
--------------------------------------------------
-- Vectors as an Inductive Family
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n)
{-
this time no induction on length
instead : constructors generate vectors of different lengths
[] : length 0
:: : length (n + 1)
Definition style called an inductive family, or an inductively defined family of sets.
Terminology comes from constructive type theory,
where data types such as Nat and (List A) are called inductive types.
Remark: Beware of terminological confusion:
- In programming languages one talks about recursive types for such data
types defined by declaring the constructors with their types.
- May be confusing since the word recursive family was used for a different notion.
- Reason for terminological distinction between data types in ordinary functional languages,
and data types in languages where all programs terminate.
- In terminating languages, there will not be any non-terminating numbers or non-terminating lists.
- The set-theoretic meaning of such types is therefore simple:
- build the set inductively generated by the constructors, see [9] for details.
- In non-terminating language, the semantic domains are more complex.
- One typically considers various kinds of Scott domains which are complete partially orders.
(Vec A n) has two args:
- small type A of the elements
- A is a parameter in the sense that it remains the same throughout the definition:
for a given A, define the family Vec A : Nat -> Set
- length n of type Nat.
- n is not a parameter since it varies in the types of the constructors
Non-parameters are often called INDICES
- say that Vec A is an inductive family indexed by natural numbers
In Agda data type definitions
- parameters are placed to the left of the colon
and become implicit arguments to the constructors
- indices are placed to the right
-}
zip : {A B : Set} {n : Nat} -> Vec A n -> Vec B n -> Vec (A X B) n
zip {n = zero} [] [] = []
zip {n = succ n'} (x :: xs) (y :: ys) = < x , y > :: zip {n = n'} xs ys
head : {A : Set} {n : Nat} -> Vec A (succ n) -> A
head (x :: _) = x
tail : {A : Set} {n : Nat} -> Vec A (succ n) -> Vec A n
tail (_ :: xs) = xs
map : {A B : Set} {n : Nat} -> (A -> B) -> Vec A n -> Vec B n
map f [] = []
map f (x :: xs) = f x :: map f xs
--------------------------------------------------
-- 3.2 Finite Sets
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (succ n)
fsucc : {n : Nat} -> Fin n -> Fin (succ n)
{-
for each n, Fin n contains n elements
e.g., Fin 3 contains fzero, fsucc fzero and fsucc (fsucc fzero)
useful to access element in a vector
- for Vec A n
- position given by (Fin n)
- ensures accessing an element inside the vector
For empty vector n is zero.
So would use (Fin 0) --- which has no elements.
There is no such case.
Expressed in Agda via "absurd" pattern '()'
-}
_!_ : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A
[] ! ()
(x :: _) ! fzero = x
(_ :: xs) ! fsucc i = xs ! i
-- Exercise: Rewrite the function !! so that it has the following type:
-- This eliminates the empty vector case, but other cases are needed.
_!!_ : {A : Set} {n : Nat} -> Vec A (succ n) -> Fin (succ n) -> A
_!!_ {_} {zero} (a :: f_) fzero = a
_!!_ {_} {succ n} (a :: _) fzero = a
_!!_ {_} {succ n} (_ :: as) (fsucc f) = _!!_ {n = n} as f
_!!'_ : {A : Set} {n : Nat} -> Vec A (succ n) -> Fin (succ n) -> A
_!!'_ (a :: _) fzero = a
_!!'_ {_} {succ n} (_ :: as) (fsucc f) = _!!'_ {n = n} as f
_ : (0 :: 1 :: 2 :: []) ! fsucc fzero PE.≡ 1
_ = PE.refl
_ : (0 :: 1 :: 2 :: []) !! fsucc fzero PE.≡ 1
_ = PE.refl
_ : (0 :: 1 :: 2 :: []) !!' fsucc fzero PE.≡ 1
_ = PE.refl
-- Exercise: Give an alternative definition of Fin as a recursive family.
-- from Conal Eliot https://raw.githubusercontent.com/conal/agda-play/main/DependentTypesAtWork/RecVec.agda
FinR : Nat -> Set
FinR zero = DEP.⊥
FinR (succ n) = Maybe.Maybe (FinR n)
f5 : FinR 5
f5 = Maybe.nothing
f5' : FinR 5 PE.≡ Maybe.Maybe (Maybe.Maybe (Maybe.Maybe (Maybe.Maybe (Maybe.Maybe DEP.⊥))))
f5' = PE.refl
f4 : FinR 4
f4 = Maybe.nothing
f3 : FinR 3
f3 = Maybe.nothing
f2 : FinR 2
f2 = Maybe.nothing
f1 : FinR 1
f1 = Maybe.nothing
f1' : FinR 1 PE.≡ Maybe.Maybe DEP.⊥
f1' = PE.refl
--f0 : FinR 0
--f0 = {!!} -- no solution found
f0' : FinR 0 PE.≡ DEP.⊥
f0' = PE.refl
_!'_ : {A : Set} {n : Nat} → VecR A n → FinR n → A
_!'_ {n = succ m} < a , _ > Maybe.nothing = a
_!'_ {n = succ m} < _ , as > (Maybe.just finm) = as !' finm
_ : < 0 , < 1 , < 2 , <> > > > !' Maybe.nothing PE.≡ 0
_ = PE.refl
_ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just Maybe.nothing PE.≡ 1
_ = PE.refl
_ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just (Maybe.just Maybe.nothing) PE.≡ 2
_ = PE.refl
-- (Maybe.Maybe _A_645) !=< DEP.⊥
-- _ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just (Maybe.just (Maybe.just Maybe.nothing)) PE.≡ 100
-- _ = PE.refl
--------------------------------------------------
-- 3.3 More Inductive Families
-- binary trees of a certain height
-- any given (t : DBTree A n) is a perfectly balanced tree
-- with 2n elements and information in the leaves
data DBTree (A : Set) : Nat -> Set where
leaf : A -> DBTree A zero
node : {n : Nat} -> DBTree A n -> DBTree A n -> DBTree A (succ n)
l1 : DBTree Nat 0
l1 = leaf 1
l2 : DBTree Nat 0
l2 = leaf 2
n1-2 : DBTree Nat 1
n1-2 = node l1 l2
l3 : DBTree Nat 0
l3 = leaf 3
l4 : DBTree Nat 0
l4 = leaf 4
n3-4 : DBTree Nat 1
n3-4 = node l3 l4
n1-2-3-4 : DBTree Nat 2
n1-2-3-4 = node n1-2 n3-4
-- Exercise/TODO: Modify DBTree def to define the height balanced binary trees
-- i.e., binary trees where difference between heights of left and right subtree is at most one.
-- Exercise/TODO: Define lambda terms as an inductive family
-- indexed by the maximal number of free variables allowed in the term.
-- Exercise/TODO: define typed lambda terms as an inductive family indexed by the type of the term.
{-
------------------------------------------------------------------------------
Curry, 1930’s : one-to-one correspondence between propositions in propositional logic and types.
1960’s de Bruijn and Howard introduced dependent types to extend Curry’s correspondence to predicate logic.
Scott [31] and Martin-Löf [20], correspondence became building block of foundation for constructive math:
- Martin-Löf’s intuitionistic type theory.
Will now show how intuitionistic predicate logic with equality is a subsystem of
Martin-Löf type theory by realising it as a theory in Agda.
4.1 Propositional Logic
isomorphism : each proposition is interpreted as the set of its proofs.
To emphazie PROOFS here are FIRST-CLASS mathematical object, say PROOF OBJECTS.
aka : CONSTRUCTIONS
proposition
- is true IFF its set of proofs is inhabited
- it is false iff its set of proofs is empty
-}
-- CONJUNCTION (aka AND)
-- A and B are two propositions represented by their sets of proofs.
-- A & B is also a set of proofs, representing the conjunction of A and B.
-- Note : conjunction is same as Cartesian product of two sets.
-- applying & constructor is &-introduction
data _&_ (A B : Set) : Set where
<_,_> : A -> B -> A & B
-- alternate def
_&'_ : Set -> Set -> Set
A &' B = A X B
-- two rules of &-elimination
-- rules state that if A & B is true then A and B are also true
fst : {A B : Set} -> A & B -> A
fst < a , _ > = a
snd : {A B : Set} -> A & B -> B
snd < _ , b > = b
sndP : {A B : Set} -> A &' B -> B
sndP < _ , b > = b
-- DISJUNCTION (aka OR)
-- disjunction corresponds to disjoint union
data _\/_ (A B : Set) : Set where
inl : A -> A \/ B
inr : B -> A \/ B
-- alternate def
_\/'_ : Set -> Set -> Set
A \/' B = Either A B
-- rule of \/-elimination is case analysis for a disjoint union
case : {A B C : Set} -> A \/ B -> (A -> C) -> (B -> C) -> C
case (inl a) d e = d a
case (inr b) d e = e b
-- proposition which is always true
-- corresponds to the unit set (see page 14) according to Curry-Howard:
data True : Set where
<> : True
-- proposition False is the proposition that is false by definition
-- corresponds to the the empty set according to Curry-Howard.
-- This is the set which is defined by stating that it has no canonical elements.
-- sometimes referred as the “absurdity” set and denoted by ⊥
data False : Set where
-- rule of ⊥-elimination states that if False has been proved, then can prove any proposition A.
-- Can only happen by starting with contradictory assumptions.
nocase : {A : Set} -> False -> A
nocase () -- tells agda no cases to consider
{-
Justification of this rule is same as justification of existence of
an empty function from the empty set into an arbitrary set.
Since the empty set has no elements there is nothing to define; it is definition by no cases.
Recall the explanation on page 16 when we used the notation ().
-}
-- In constructive logic
-- - proving negation of a proposition is the same as
-- - proving the proposition leads to absurdity:
Not : Set -> Set
Not A = A -> False
{-
BHK-interpretation says an implication is proved by providing a method for transforming
a proof of A into a proof of B.
When Brouwer pioneered this 100 years ago, there were no computers and no models of computation.
In contemporary constructive mathematics in general, and in Martin-Löf type theory in particular,
a “method” is usually understood as a computable function (or computer program) which transforms proofs.
Implication is defined as function space.
Emphasized via new notation:
-}
_==>_ : (A B : Set) -> Set
A ==> B = A -> B
_ : False ==> False -- T
_ = λ ()
_ : False ==> True -- T
_ = λ ()
_ : True ==> False -- F
_ = λ _ → {!!}
_ : True ==> True -- T
_ = λ _ → <>
{-
Above def not accepted in Martin-Löf’s version of propositions-as-sets.
Because each proposition should be defined by stating what its canonical proofs are.
A canonical proof should always begin with a constructor.
A function in A -> B does not, unless one considers the lambda-sign as a constructor.
Instead, Martin-Löf defines implication as a set with one constructor:
Using this, a canonical proof of A ==>' B always begins with the constructor fun.
-}
data _==>'_ (A B : Set) : Set where
fun : (A -> B) -> A ==>' B
-- rule of ==>-elimination (modus ponens)
apply : {A B : Set} -> A ==>' B -> A -> B
apply (fun f) a = f a
-- equivalence of propositions
_<==>_ : Set -> Set -> Set
A <==> B = (A ==> B) & (B ==> A)
_ : False <==> False
_ = < ( λ () ) , ( λ () ) >
_ : False <==> True
_ = < (λ () ) , (λ { <> → {!!}}) >
_ : True <==> False
_ = < (λ { <> → {!!}}) , (λ () ) >
_ : True <==> True
_ = < (λ _ → <>) , (λ _ → <>) >
{-
Exercise/TODO: Prove your favourite tautology from propositional logic.
Beware that you will not be able to prove the law of the excluded middle A \/ Not A.
This is a consequence of the definition of disjunction, can you explain why?.
The law of the excluded middle is not available in intuitonistic logic, only in classical logic.
-}
le : ∀ {P Q : Set} → (P ==> Q) <==> (Not P \/ Q)
le {P} {Q} = < (λ {P==>Q → {!!} }) , (λ { (inl NotP) p → {!!} ; (inr q) p → q}) >
|
{
"alphanum_fraction": 0.6260099181,
"avg_line_length": 34.055028463,
"ext": "agda",
"hexsha": "5814a9b79dd221233e777abc8b5205472d162aa3",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda",
"max_line_length": 107,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 10780,
"size": 35894
}
|
{-# OPTIONS --safe --warning=error #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
module Groups.FreeProduct.Addition {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where
open import Groups.FreeProduct.Definition decidableIndex decidableGroups G
open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
prependEqual : (i : I) (g : A i) .(nonZero : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → (j : I) → i ≡ j → (w : ReducedSequenceBeginningWith j) → ReducedSequence
prependEqual i g nonzero .i refl (ofEmpty .i h nonZero) with decidableGroups i (_+_ i g h) (Group.0G (G i))
prependEqual i g nonzero .i refl (ofEmpty .i h nonZero) | inl sumZero = empty
prependEqual i g nonzero .i refl (ofEmpty .i h nonZero) | inr sumNotZero = nonempty i (ofEmpty i (_+_ i g h) sumNotZero)
prependEqual i g nonzero .i refl (prependLetter .i h nonZero x x₁) with decidableGroups i (_+_ i g h) (Group.0G (G i))
prependEqual i g nonzero .i refl (prependLetter .i h nonZero {j} x x₁) | inl sumZero = nonempty j x
prependEqual i g nonzero .i refl (prependLetter .i h nonZero x pr) | inr sumNotZero = nonempty i (prependLetter i (_+_ i g h) sumNotZero x pr)
prepend : (i : I) → (g : A i) → .(nonZero : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → ReducedSequence → ReducedSequence
prepend i g nonzero empty = nonempty i (ofEmpty i g nonzero)
prepend i g nonzero (nonempty j x) with decidableIndex i j
prepend i g nonzero (nonempty j w) | inl i=j = prependEqual i g nonzero j i=j w
prepend i g nonzero (nonempty j x) | inr i!=j = nonempty i (prependLetter i g nonzero x i!=j)
plus' : {j : _} → (ReducedSequenceBeginningWith j) → ReducedSequence → ReducedSequence
plus' (ofEmpty i g nonZero) s = prepend i g nonZero s
plus' (prependLetter i g nonZero x pr) s = prepend i g nonZero (plus' x s)
_+RP_ : ReducedSequence → ReducedSequence → ReducedSequence
empty +RP b = b
nonempty i x +RP b = plus' x b
abstract
prependWD : {i : I} → (g1 g2 : A i) → .(nz1 : _) → .(nz2 : _) → (y : ReducedSequence) (eq : Setoid._∼_ (S i) g1 g2) → prepend i g1 nz1 y =RP prepend i g2 nz2 y
prependWD {i} g1 g2 nz1 nz2 empty g1=g2 with decidableIndex i i
prependWD {i} g1 g2 nz1 nz2 empty g1=g2 | inl refl = g1=g2
prependWD {i} g1 g2 nz1 nz2 empty g1=g2 | inr x = exFalso (x refl)
prependWD {i} g1 g2 nz1 nz2 (nonempty j x) g1=g2 with decidableIndex i j
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl with decidableGroups j ((j + g1) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inl x with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inl x | inl x₁ = record {}
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inl x | inr bad = exFalso (bad (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.symmetric (Setoid.eq (S j)) g1=g2) (Equivalence.reflexive (Setoid.eq (S j)))) x))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inr x with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inr bad | inl p = exFalso (bad (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) g1=g2 (Equivalence.reflexive (Setoid.eq (S j)))) p))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inr x | inr x₁ with decidableIndex j j
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inr x | inr x₁ | inl refl = Group.+WellDefined (G j) g1=g2 (Equivalence.reflexive (Setoid.eq (S j)))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (ofEmpty .j g nonZero)) g1=g2 | inl refl | inr x | inr x₁ | inr bad = exFalso (bad refl)
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl with decidableGroups j ((j + g1) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inl x with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inl x | inl x₂ = =RP'reflex w
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inl x | inr bad = exFalso (bad (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.symmetric (Setoid.eq (S j)) g1=g2) (Equivalence.reflexive (Setoid.eq (S j)))) x))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inr neq with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inr neq | inl x = exFalso (neq (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) g1=g2 (Equivalence.reflexive (Setoid.eq (S j)))) x))
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inr neq | inr x with decidableIndex j j
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inr neq | inr x | inl refl = Group.+WellDefined (G j) g1=g2 (Equivalence.reflexive (Setoid.eq (S j))) ,, =RP'reflex w
prependWD {.j} g1 g2 nz1 nz2 (nonempty j (prependLetter .j g nonZero w x₁)) g1=g2 | inl refl | inr neq | inr x | inr bad = exFalso (bad refl)
prependWD {i} g1 g2 nz1 nz2 (nonempty j x) g1=g2 | inr i!=j with decidableIndex i i
prependWD {i} g1 g2 nz1 nz2 (nonempty j x) g1=g2 | inr i!=j | inl refl = g1=g2 ,, =RP'reflex x
prependWD {i} g1 g2 nz1 nz2 (nonempty j x) g1=g2 | inr i!=j | inr bad = exFalso (bad refl)
abstract
prependWD' : {i : I} → (g : A i) → .(nz : _) → (y1 y2 : ReducedSequence) (eq : y1 =RP y2) → prepend i g nz y1 =RP prepend i g nz y2
prependWD' {i} g1 nz empty empty eq with decidableIndex i i
prependWD' {i} g1 nz empty empty eq | inl refl = Equivalence.reflexive (Setoid.eq (S i))
prependWD' {i} g1 nz empty empty eq | inr x = exFalso (x refl)
prependWD' {i} g1 nz (nonempty j x) (nonempty k x₁) eq with decidableIndex i j
prependWD' {.j} g1 nz (nonempty j w1) (nonempty k w2) eq | inl refl with decidableIndex j k
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl with decidableGroups j ((j + g1) g) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inl eq1 with decidableGroups j ((j + g1) h) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inl eq1 | inl x = record {}
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inl eq1 | inr x with decidableIndex j j
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inl eq1 | inr x | inl refl = exFalso (x (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (Equivalence.symmetric (Setoid.eq (S j)) eq)) eq1))
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inr neq1 with decidableGroups j ((j + g1) h) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inr neq1 | inl x with decidableIndex j j
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inr neq1 | inl x | inl refl = exFalso (neq1 (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) eq) x))
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inr neq1 | inr x with decidableIndex j j
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty .j (ofEmpty .j h nonZero₁)) eq | inl refl | inl refl | inr neq1 | inr x | inl refl = Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) eq
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl with decidableIndex j j
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl with decidableGroups j ((j + g1) g) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inl eq1 with decidableGroups j ((j + g1) h) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inl eq1 | inl eq2 = _&&_.snd eq
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inl eq1 | inr neq2 = exFalso (neq2 (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (Equivalence.symmetric (Setoid.eq (S j)) (_&&_.fst eq))) eq1))
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inr neq1 with decidableGroups j ((j + g1) h) (Group.0G (G j))
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inr neq1 | inl eq2 = exFalso (neq1 (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (_&&_.fst eq)) eq2))
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inr neq1 | inr _ with decidableIndex j j
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inr neq1 | inr _ | inl refl = Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (_&&_.fst eq) ,, _&&_.snd eq
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty .j (prependLetter .j h nonZero₁ w2 x₁)) eq | inl refl | inl refl | inl refl | inr neq1 | inr _ | inr bad = exFalso (bad refl)
prependWD' {.j} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty k (ofEmpty .k g₁ nonZero₁)) eq | inl refl | inr j!=k with decidableIndex j k
prependWD' {j} g1 nz (nonempty j (ofEmpty j g nonZero)) (nonempty k (ofEmpty .k g₁ nonZero₁)) eq | inl refl | inr j!=k | inl j=k = exFalso (j!=k j=k)
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty k (prependLetter .k g₁ nonZero₁ w2 x₁)) eq | inl refl | inr j!=k with decidableIndex j k
prependWD' {.j} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty k (prependLetter .k g₁ nonZero₁ w2 x₁)) eq | inl refl | inr j!=k | inl j=k = exFalso (j!=k j=k)
prependWD' {i} g1 nz (nonempty j w1) (nonempty k w2) eq | inr i!=j with decidableIndex i k
prependWD' {.k} g1 nz (nonempty j (ofEmpty .j g nonZero)) (nonempty k (ofEmpty .k g₁ nonZero₁)) eq | inr i!=j | inl refl with decidableIndex j k
prependWD' {.k} g1 nz (nonempty .k (ofEmpty .k g nonZero)) (nonempty k (ofEmpty .k g₁ nonZero₁)) eq | inr i!=j | inl refl | inl refl = exFalso (i!=j refl)
prependWD' {.k} g1 nz (nonempty j (prependLetter .j g nonZero w1 x)) (nonempty k (prependLetter .k g₁ nonZero₁ w2 x₁)) eq | inr i!=j | inl refl with decidableIndex j k
prependWD' {.k} g1 nz (nonempty .k (prependLetter .k g nonZero w1 x)) (nonempty k (prependLetter .k g₁ nonZero₁ w2 x₁)) eq | inr i!=j | inl refl | inl refl = exFalso (i!=j refl)
prependWD' {i} g1 nz (nonempty j w1) (nonempty k w2) eq | inr i!=j | inr i!=k with decidableIndex i i
prependWD' {i} g1 nz (nonempty j w1) (nonempty k w2) eq | inr i!=j | inr i!=k | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, eq
prependWD' {i} g1 nz (nonempty j w1) (nonempty k w2) eq | inr i!=j | inr i!=k | inr x = exFalso (x refl)
private
prependLetterWD : {i : I} {h1 h2 : A i} (h1=h2 : Setoid._∼_ (S i) h1 h2) → .(nonZero1 : _) .(nonZero2 : _) {j1 j2 : I} (w1 : ReducedSequenceBeginningWith j1) (w2 : ReducedSequenceBeginningWith j2) → (eq : =RP' w1 w2) → (x1 : i ≡ _ → False) (x2 : i ≡ _ → False) → nonempty i (prependLetter i h1 nonZero1 w1 x1) =RP nonempty i (prependLetter i h2 nonZero2 w2 x2)
prependLetterWD {i} h1=h2 nonZero1 nonZero2 {j1} {j2} w1 w2 eq x1 x2 with decidableIndex i i
prependLetterWD {i} h1=h2 nonZero1 nonZero2 {j1} {j2} w1 w2 eq x1 x2 | inl refl = h1=h2 ,, eq
prependLetterWD {i} h1=h2 nonZero1 nonZero2 {j1} {j2} w1 w2 eq x1 x2 | inr x = exFalso (x refl)
abstract
plus'WD' : {i : I} (x : ReducedSequenceBeginningWith i) (y1 y2 : ReducedSequence) → (y1 =RP y2) → plus' x y1 =RP plus' x y2
plus'WD' x empty empty eq = Equivalence.reflexive (Setoid.eq freeProductSetoid) {plus' x empty}
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 w1) (nonempty i2 w2) eq with decidableIndex j i1
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j w1) (nonempty i2 w2) eq | inl refl with decidableIndex j i2
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j g₁ nonZero₁)) (nonempty .j (ofEmpty .j g₂ nonZero₂)) eq | inl refl | inl refl with decidableIndex j j
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl with decidableGroups j ((j + g) h1) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inl x with decidableGroups j ((j + g) h2) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inl x | inl x₁ = record {}
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inl x | inr bad = exFalso (bad (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (Equivalence.symmetric (Setoid.eq (S j)) eq)) x))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inr x with decidableGroups j ((j + g) h2) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inr x | inl bad = exFalso (x (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) eq) bad))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inr x | inr x₁ with decidableIndex j j
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inr x | inr x₁ | inl refl = Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) eq
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j h1 nonZero₁)) (nonempty .j (ofEmpty .j h2 nonZero₂)) eq | inl refl | inl refl | inl refl | inr x | inr x₁ | inr bad = exFalso (bad refl)
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl with decidableGroups j ((j + g) h1) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inl eq1 with decidableGroups j ((j + g) h2) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inl eq1 | inl x₂ with decidableIndex j j
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inl eq1 | inl x₂ | inl refl = _&&_.snd eq
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inl eq1 | inr neq2 with decidableIndex j j
... | inl refl = exFalso (neq2 (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (Equivalence.symmetric (Setoid.eq (S j)) (_&&_.fst eq))) eq1))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inr neq1 with decidableGroups j ((j + g) h2) (Group.0G (G j))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inr neq1 | inl eq2 with decidableIndex j j
... | inl refl = exFalso (neq1 (Equivalence.transitive (Setoid.eq (S j)) (Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (_&&_.fst eq)) eq2))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j h1 nonZero₁ w1 x)) (nonempty .j (prependLetter .j h2 nonZero₂ w2 x₁)) eq | inl refl | inl refl | inr neq1 | inr x₂ with decidableIndex j j
... | inl refl = Group.+WellDefined (G j) (Equivalence.reflexive (Setoid.eq (S j))) (_&&_.fst eq) ,, _&&_.snd eq
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j g₁ nonZero₁)) (nonempty i2 (ofEmpty .i2 g₂ nonZero₂)) eq | inl refl | inr x with decidableIndex j i2
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (ofEmpty .j g₁ nonZero₁)) (nonempty .j (ofEmpty .j g₂ nonZero₂)) eq | inl refl | inr x | inl refl = exFalso (x refl)
plus'WD' {j} (ofEmpty j g nonZero) (nonempty .j (prependLetter .j g₁ nonZero₁ w1 x₁)) (nonempty i2 (prependLetter .i2 g₂ nonZero₂ w2 x₂)) eq | inl refl | inr x with decidableIndex j i2
plus'WD' {.i2} (ofEmpty .i2 g nonZero) (nonempty .i2 (prependLetter .i2 g₁ nonZero₁ w1 x₁)) (nonempty i2 (prependLetter .i2 g₂ nonZero₂ w2 x₂)) eq | inl refl | inr x | inl refl = exFalso (x refl)
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 w1) (nonempty i2 w2) eq | inr j!=i1 with decidableIndex j i2
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 (ofEmpty .i1 g₁ nonZero₁)) (nonempty .j (ofEmpty .j g₂ nonZero₂)) eq | inr j!=i1 | inl refl with decidableIndex i1 j
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 (ofEmpty .i1 g₁ nonZero₁)) (nonempty .j (ofEmpty .j g₂ nonZero₂)) eq | inr j!=i1 | inl refl | inl x = exFalso (j!=i1 (equalityCommutative x))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 (prependLetter .i1 g₁ nonZero₁ w1 x)) (nonempty .j (prependLetter .j g₂ nonZero₂ w2 x₁)) eq | inr j!=i1 | inl refl with decidableIndex i1 j
... | inl bad = exFalso (j!=i1 (equalityCommutative bad))
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 w1) (nonempty i2 w2) eq | inr j!=i1 | inr j!=i2 with decidableIndex j j
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 w1) (nonempty i2 w2) eq | inr j!=i1 | inr j!=i2 | inl refl = Equivalence.reflexive (Setoid.eq (S j)) ,, eq
plus'WD' {j} (ofEmpty j g nonZero) (nonempty i1 w1) (nonempty i2 w2) eq | inr j!=i1 | inr j!=i2 | inr x = exFalso (x refl)
plus'WD' {j} (prependLetter j g nonZero l x) (nonempty i (ofEmpty .i h1 nonZero1)) (nonempty i2 (ofEmpty .i2 h2 nonZero2)) eq with decidableIndex i i2
... | inl refl = prependWD' g nonZero (plus' l (nonempty i (ofEmpty i h1 nonZero1))) (plus' l (nonempty i2 (ofEmpty i2 h2 nonZero2))) (plus'WD' l (nonempty i2 (ofEmpty i2 h1 nonZero1)) (nonempty i2 (ofEmpty i2 h2 nonZero2)) t)
where
t : =RP' (ofEmpty i2 h1 nonZero1) (ofEmpty i2 h2 nonZero2)
t with decidableIndex i2 i2
t | inl refl = eq
t | inr x = exFalso (x refl)
... | inr i!=i2 = exFalso' eq
plus'WD' {j} (prependLetter j g nonZero l x) (nonempty i (prependLetter .i g₁ nonZero₁ w1 x₁)) (nonempty i2 (prependLetter .i2 g₂ nonZero₂ w2 x₂)) eq with decidableIndex i i2
plus'WD' {j} (prependLetter j g nonZero l x) (nonempty i (prependLetter .i h1 nonZero1 w1 x1)) (nonempty .i (prependLetter .i h2 nonZero2 w2 x2)) eq | inl refl = prependWD' g nonZero (plus' l (nonempty i (prependLetter i h1 nonZero1 w1 x1))) (plus' l (nonempty i (prependLetter i h2 nonZero2 w2 x2))) (plus'WD' l (nonempty i (prependLetter i h1 nonZero1 w1 x1)) (nonempty i (prependLetter i h2 nonZero2 w2 x2)) (prependLetterWD (_&&_.fst eq) nonZero1 nonZero2 w1 w2 (_&&_.snd eq) x1 x2))
abstract
plusEmptyRight : {i : I} (x : ReducedSequenceBeginningWith i) → _=RP_ (plus' x empty) (nonempty i x)
plusEmptyRight (ofEmpty i g nonZero) with decidableIndex i i
plusEmptyRight (ofEmpty i g nonZero) | inl refl = Equivalence.reflexive (Setoid.eq (S i))
plusEmptyRight (ofEmpty i g nonZero) | inr x = exFalso (x refl)
plusEmptyRight (prependLetter i g nonZero {j} x i!=j) with plusEmptyRight x
... | b with plus' x empty
plusEmptyRight (prependLetter i g nonZero {j} x i!=j) | b | nonempty k w with decidableIndex i k
plusEmptyRight (prependLetter .k g nonZero {j} x i!=j) | b | nonempty k (ofEmpty .k h nonZero₁) | inl refl with decidableGroups k ((k + g) h) (Group.0G (G k))
plusEmptyRight (prependLetter .k g nonZero {.i} (ofEmpty i g₁ nonZero₂) i!=j) | b | nonempty k (ofEmpty .k h nonZero₁) | inl refl | inl g+k=hinv with decidableIndex k i
plusEmptyRight (prependLetter .i g nonZero {.i} (ofEmpty i g₁ nonZero₂) i!=j) | b | nonempty .i (ofEmpty .i h nonZero₁) | inl refl | inl g+k=hinv | inl refl = exFalso (i!=j refl)
plusEmptyRight (prependLetter .k g nonZero {.i} (ofEmpty i g₁ nonZero₂) i!=j) | b | nonempty k (ofEmpty .k h nonZero₁) | inl refl | inr x₁ with decidableIndex k i
plusEmptyRight (prependLetter .i g nonZero {.i} (ofEmpty i g₁ nonZero₂) i!=j) | b | nonempty .i (ofEmpty .i h nonZero₁) | inl refl | inr x₁ | inl refl = exFalso (i!=j refl)
plusEmptyRight (prependLetter .k g nonZero {j} w1 i!=j) | b | nonempty k (prependLetter .k h nonZero₁ w x₁) | inl refl with decidableGroups k ((k + g) h) (Group.0G (G k))
plusEmptyRight (prependLetter .k g nonZero {.i} (prependLetter i g₁ nonZero₂ w1 x) i!=j) | b | nonempty k (prependLetter .k h nonZero₁ w x₁) | inl refl | inl p with decidableIndex k i
plusEmptyRight (prependLetter .i g nonZero {.i} (prependLetter i g₁ nonZero₂ w1 x) i!=j) | b | nonempty .i (prependLetter .i h nonZero₁ w x₁) | inl refl | inl p | inl refl = exFalso (i!=j refl)
plusEmptyRight (prependLetter .k g nonZero {j} w1 i!=j) | b | nonempty k (prependLetter .k h nonZero₁ w x₁) | inl refl | inr x₂ with decidableIndex k k
plusEmptyRight (prependLetter .k g nonZero {.i} (prependLetter i g₁ nonZero₂ w1 x) i!=j) | b | nonempty k (prependLetter .k h nonZero₁ w x₁) | inl refl | inr x₂ | inl refl with decidableIndex k i
plusEmptyRight (prependLetter .i g nonZero {.i} (prependLetter i g₁ nonZero₂ w1 x) i!=j) | b | nonempty .i (prependLetter .i h nonZero₁ w x₁) | inl refl | inr x₂ | inl refl | inl refl = exFalso (i!=j refl)
plusEmptyRight (prependLetter .k g nonZero {j} w1 i!=j) | b | nonempty k (prependLetter .k h nonZero₁ w x₁) | inl refl | inr x₂ | inr x = exFalso (x refl)
plusEmptyRight (prependLetter i g nonZero {j} w1 i!=j) | b | nonempty k w | inr i!=k with decidableIndex i i
plusEmptyRight (prependLetter i g nonZero {j} w1 i!=j) | b | nonempty k w | inr i!=k | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, b
plusEmptyRight (prependLetter i g nonZero {j} w1 i!=j) | b | nonempty k w | inr i!=k | inr x = exFalso (x refl)
abstract
prependFrom : {i : I} (g1 g2 : A i) (pr : (Setoid._∼_ (S i) (_+_ i g1 g2) (Group.0G (G i))) → False) (c : ReducedSequence) .(p2 : _) .(p3 : _) → prepend i (_+_ i g1 g2) pr c =RP prepend i g1 p2 (prepend i g2 p3 c)
prependFrom {i} g1 g2 pr empty _ _ with decidableIndex i i
prependFrom {i} g1 g2 pr empty _ _ | inl refl with decidableGroups i ((i + g1) g2) (Group.0G (G i))
prependFrom {i} g1 g2 pr empty _ _ | inl refl | inl bad = exFalso (pr bad)
prependFrom {i} g1 g2 pr empty _ _ | inl refl | inr _ with decidableIndex i i
prependFrom {i} g1 g2 pr empty _ _ | inl refl | inr _ | inl refl = Equivalence.reflexive (Setoid.eq (S i))
prependFrom {i} g1 g2 pr empty _ _ | inl refl | inr _ | inr bad = exFalso (bad refl)
prependFrom {i} g1 g2 pr empty _ _ | inr bad = exFalso (bad refl)
prependFrom {i} g1 g2 pr (nonempty j x) _ _ with decidableIndex i j
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl with decidableGroups j ((j + (j + g1) g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) g1Nonzero _ | inl refl | inl eq3 | inl eq2 = exFalso (g1Nonzero t)
where
open Setoid (S j)
open Group (G j)
open Equivalence eq
t : g1 ∼ 0G
t = transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric eq2)) (transitive +Associative eq3))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq | inr neq with decidableIndex j j
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq | inr neq | inl refl with decidableGroups j ((j + g1) ((j + g2) g)) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq | inr neq | inl refl | inl eq2 = record {}
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq | inr neq | inl refl | inr neq2 = exFalso (neq2 (Equivalence.transitive (Setoid.eq (S j)) (Group.+Associative (G j)) eq))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inl eq | inr neq | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inl eq2 with decidableIndex j j
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inl eq2 | inl refl = transitive (symmetric +Associative) (transitive (+WellDefined reflexive eq2) identRight)
where
open Setoid (S j)
open Group (G j)
open Equivalence eq
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inl eq2 | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inr neq2 with decidableIndex j j
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inr neq2 | inl refl with decidableGroups j ((j + g1) ((j + g2) g)) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inr neq2 | inl refl | inl eq2 = exFalso (neq (Equivalence.transitive (Setoid.eq (S j)) (Equivalence.symmetric (Setoid.eq (S j)) (Group.+Associative (G j))) eq2))
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inr neq2 | inl refl | inr neq3 with decidableIndex j j
... | inl refl = Equivalence.symmetric (Setoid.eq (S j)) (Group.+Associative (G j))
... | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (ofEmpty j g nonZero)) _ _ | inl refl | inr neq | inr neq2 | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl with decidableGroups j ((j + (j + g1) g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero {k} x x₁)) p2 _ | inl refl | inl eq1 | inl eq2 = exFalso (p2 (transitive (transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric eq2)) +Associative)) eq1))
where
open Setoid (S j)
open Group (G j)
open Equivalence eq
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 | inr neq with decidableIndex j j
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 | inr neq | inl refl with decidableGroups j ((j + g1) ((j + g2) g)) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 | inr neq | inl refl | inl eq2 = =RP'reflex x
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 | inr neq | inl refl | inr neq2 = exFalso (neq2 (Equivalence.transitive (Setoid.eq (S j)) (Group.+Associative (G j)) eq1))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inl eq1 | inr neq | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 with decidableGroups j ((j + g2) g) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl eq1 with decidableIndex j k
prependFrom {j} g1 g2 pr (nonempty _ (prependLetter _ g nonZero {_} (ofEmpty _ h nonZero₁) bad)) _ _ | inl refl | inr neq1 | inl eq1 | inl refl = exFalso (bad refl)
prependFrom {_} g1 g2 pr (nonempty _ (prependLetter _ g nonZero {_} (prependLetter _ g₁ nonZero₁ x x₂) bad)) _ _ | inl refl | inr neq1 | inl eq1 | inl refl = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl eq1 | inr j!=k with decidableIndex j j
... | inl refl = transitive (symmetric +Associative) (transitive (+WellDefined reflexive eq1) identRight) ,, =RP'reflex x
where
open Setoid (S j)
open Group (G j)
open Equivalence eq
... | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 | inr neq2 with decidableIndex j j
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 | inr neq2 | inl refl with decidableGroups j ((j + g1) ((j + g2) g)) (Group.0G (G j))
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 | inr neq2 | inl refl | inl eq1 = exFalso (neq1 (transitive (symmetric +Associative) eq1))
where
open Setoid (S j)
open Group (G j)
open Equivalence eq
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 | inr neq2 | inl refl | inr neq3 with decidableIndex j j
... | inl refl = Equivalence.symmetric (Setoid.eq (S j)) (Group.+Associative (G j)) ,, =RP'reflex x
... | inr bad = exFalso (bad refl)
prependFrom {.j} g1 g2 pr (nonempty _ (prependLetter j g nonZero x x₁)) _ _ | inl refl | inr neq1 | inr neq2 | inr bad = exFalso (bad refl)
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j with decidableIndex i i
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inl refl with decidableGroups i ((i + g1) g2) (Group.0G (G i))
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inl refl | inl eq1 = exFalso (pr eq1)
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inl refl | inr neq1 with decidableIndex i i
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inl refl | inr neq1 | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex x
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inl refl | inr neq1 | inr bad = exFalso (bad refl)
prependFrom {i} g1 g2 pr (nonempty j x) _ _ | inr i!=j | inr bad = exFalso (bad refl)
prependFrom' : {i : I} (g h : A i) (pr : (Setoid._∼_ (S i) (_+_ i g h) (Group.0G (G i)))) (c : ReducedSequence) .(p2 : _) .(p3 : _) → prepend i g p2 (prepend i h p3 c) =RP c
prependFrom' {i} g h pr empty _ _ with decidableIndex i i
prependFrom' {i} g h pr empty _ _ | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i))
... | inl _ = record {}
... | inr bad = exFalso (bad pr)
prependFrom' {i} g h pr empty _ _ | inr bad = exFalso (bad refl)
prependFrom' {i} g h pr (nonempty j x) _ _ with decidableIndex i j
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl with decidableGroups j ((j + h) g1) (Group.0G (G j))
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inl eq1 with decidableIndex j j
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inl eq1 | inl refl = transitive t (symmetric u)
where
open Setoid (S j)
open Equivalence eq
t : Setoid._∼_ (S j) g (Group.inverse (G j) h)
t = rightInversesAreUnique (G j) pr
u : Setoid._∼_ (S j) g1 (Group.inverse (G j) h)
u = leftInversesAreUnique (G j) eq1
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inl eq1 | inr bad = exFalso (bad refl)
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inr neq with decidableIndex j j
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) p2 _ | inl refl | inr neq | inl refl with decidableGroups j ((j + g) ((j + h) g1)) (Group.0G (G j))
... | inl eq1 = exFalso (nonZero t)
where
open Setoid (S j)
open Equivalence eq
open Group (G j)
t : g1 ∼ 0G
t = transitive (transitive (symmetric identLeft) (transitive (+WellDefined (symmetric pr) reflexive) (symmetric +Associative))) eq1
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inr neq | inl refl | inr neq2 with decidableIndex j j
... | inl refl = transitive (transitive +Associative (+WellDefined pr reflexive)) identLeft
where
open Setoid (S j)
open Equivalence eq
open Group (G j)
... | inr bad = exFalso (bad refl)
prependFrom' {.j} g h pr (nonempty j (ofEmpty .j g1 nonZero)) _ _ | inl refl | inr neq | inr bad = exFalso (bad refl)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero x x₁)) _ _ | inl refl with decidableGroups j ((j + h) g1) (Group.0G (G j))
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x bad)) _ _ | inl refl | inl eq1 with decidableIndex j k
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x bad)) _ _ | inl refl | inl eq1 | inl j=k = exFalso (bad j=k)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x bad)) _ _ | inl refl | inl eq1 | inr j!=k with decidableIndex j j
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x bad)) _ _ | inl refl | inl eq1 | inr j!=k | inl refl = transitive {g} {inverse h} (rightInversesAreUnique (G j) pr) (symmetric (leftInversesAreUnique (G j) eq1)) ,, =RP'reflex x
where
open Setoid (S j)
open Equivalence eq
open Group (G j)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x _)) _ _ | inl refl | inl eq1 | inr j!=k | inr bad = exFalso (bad refl)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 with decidableIndex j j
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl refl with decidableGroups j ((j + g) ((j + h) g1)) (Group.0G (G j))
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl refl | inl eq1 = exFalso (nonZero (transitive (transitive (symmetric identLeft) (transitive (+WellDefined (symmetric pr) reflexive) (symmetric +Associative))) eq1))
where
open Setoid (S j)
open Equivalence eq
open Group (G j)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl refl | inr neq2 with decidableIndex j j
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl refl | inr neq2 | inl refl = transitive +Associative (transitive (+WellDefined pr reflexive) identLeft) ,, =RP'reflex x
where
open Setoid (S j)
open Equivalence eq
open Group (G j)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inl refl | inr neq2 | inr bad = exFalso (bad refl)
prependFrom' {.j} g h pr (nonempty j (prependLetter .j g1 nonZero {k} x x₁)) _ _ | inl refl | inr neq1 | inr bad = exFalso (bad refl)
prependFrom' {i} g h pr (nonempty j x) _ _ | inr i!=j with decidableIndex i i
prependFrom' {i} g h pr (nonempty j x) _ _ | inr i!=j | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i))
prependFrom' {i} g h pr (nonempty j x) _ _ | inr i!=j | inl refl | inl eq1 = =RP'reflex x
prependFrom' {i} g h pr (nonempty j x) _ _ | inr i!=j | inl refl | inr neq1 = exFalso (neq1 pr)
prependFrom' {i} g h pr (nonempty j x) _ _ | inr i!=j | inr bad = exFalso (bad refl)
|
{
"alphanum_fraction": 0.6631415976,
"avg_line_length": 114.0958083832,
"ext": "agda",
"hexsha": "7b88d5f94d79db66b7cde495d5a414808ac324fa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeProduct/Addition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeProduct/Addition.agda",
"max_line_length": 489,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeProduct/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 14647,
"size": 38108
}
|
-- Interface to standard library.
module Library where
open import Function public
hiding (_∋_)
open import Level public
using (Level) renaming (zero to lzero; suc to lsuc)
open import Size public
open import Category.Monad public
using (RawMonad; module RawMonad)
open import Data.Empty public
using (⊥; ⊥-elim)
open import Data.List public
using (List; []; _∷_; map)
open import Data.Maybe public
using (Maybe; just; nothing) renaming (map to fmap)
open import Data.Nat public
using (ℕ; zero; suc; _+_; _≟_)
open import Data.Product public
using (∃; _×_; _,_) renaming (proj₁ to fst; proj₂ to snd)
--infixr 1 _,_
open import Data.Sum public
using (_⊎_; [_,_]′) renaming (inj₁ to inl; inj₂ to inr)
open import Data.Unit public
using (⊤)
open import Function public
using (_∘_; flip; case_of_)
renaming (id to idf)
open import Relation.Nullary public
using (Dec; yes; no)
open import Relation.Binary public
using (Setoid; module Setoid)
import Relation.Binary.PreorderReasoning
module Pre = Relation.Binary.PreorderReasoning
open import Relation.Binary.PropositionalEquality public
using ( _≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning
; inspect; [_])
--open ≡-Reasoning renaming (begin_ to proof_) public
open import Relation.Binary.HeterogeneousEquality public
using (_≅_; refl; ≡-to-≅; module ≅-Reasoning)
renaming (sym to hsym; trans to htrans; cong to hcong;
cong₂ to hcong₂; subst to hsubst)
{-
hcong₃ : {A : Set}
{B : A → Set}
{C : ∀ a → B a → Set}
{D : ∀ a b → C a b → Set}
(f : ∀ a b c → D a b c)
{a a' : A} → a ≅ a' →
{b : B a}{b' : B a'} → b ≅ b' →
{c : C a b}{c' : C a' b'} → c ≅ c' →
f a b c ≅ f a' b' c'
hcong₃ f refl refl refl = refl
≅-to-≡ : ∀ {a} {A : Set a} {x y : A} → x ≅ y → x ≡ y
≅-to-≡ refl = refl
record Cat : Set1 where
field Obj : Set
Hom : Obj → Obj → Set
iden : ∀{X} → Hom X X
comp : ∀{X Y Z} → Hom Y Z → Hom X Y → Hom X Z
idl : ∀{X Y}{f : Hom X Y} → comp iden f ≅ f
idr : ∀{X Y}{f : Hom X Y} → comp f iden ≅ f
ass : ∀{W X Y Z}{f : Hom Y Z}{g : Hom X Y}{h : Hom W X} →
comp (comp f g) h ≅ comp f (comp g h)
open Cat public
record Fun (C D : Cat) : Set where
open Cat
field OMap : Obj C → Obj D
HMap : ∀{X Y} → Hom C X Y → Hom D (OMap X) (OMap Y)
fid : ∀{X} → HMap (iden C {X}) ≅ iden D {OMap X}
fcomp : ∀{X Y Z}{f : Hom C Y Z}{g : Hom C X Y} →
HMap (comp C f g) ≅ comp D (HMap f) (HMap g)
open Fun public
postulate ext : {A : Set}{B B' : A → Set}{f : ∀ a → B a}{g : ∀ a → B' a} →
(∀ a → f a ≅ g a) → f ≅ g
postulate iext : {A : Set}{B B' : A → Set}
{f : ∀ {a} → B a}{g : ∀{a} → B' a} →
(∀ a → f {a} ≅ g {a}) →
_≅_ {_}{ {a : A} → B a} f { {a : A} → B' a} g
-}
|
{
"alphanum_fraction": 0.5469387755,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "91b337f18cce88d8a08f8ebc352460499c65c4d3",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z",
"max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "ryanakca/strong-normalization",
"max_forks_repo_path": "agda/Library.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "ryanakca/strong-normalization",
"max_issues_repo_path": "agda/Library.agda",
"max_line_length": 74,
"max_stars_count": 32,
"max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "ryanakca/strong-normalization",
"max_stars_repo_path": "agda/Library.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z",
"num_tokens": 1066,
"size": 2940
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Universe.Base where
|
{
"alphanum_fraction": 0.7123287671,
"avg_line_length": 24.3333333333,
"ext": "agda",
"hexsha": "c26fb0811fa4b5979f1a28f6c14f85872e01ba73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Universe/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Universe/Base.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Universe/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 18,
"size": 73
}
|
open import Data.Product renaming (_,_ to _,,_) -- just to avoid clash with other commas
open import Algebra.Structures using (IsSemigroup)
open import Algebra.FunctionProperties using (LeftIdentity; Commutative)
module Preliminaries where
Rel : Set -> Set₁
Rel A = A -> A -> Set
Entire : {A B : Set} -> (_R_ : A -> B -> Set) -> Set
Entire _R_ = ∀ a -> ∃ \ b -> a R b
fun : {A B : Set} -> {_R_ : A -> B -> Set} -> Entire _R_ -> A -> B
fun ent a = proj₁ (ent a)
correct : {A B : Set} -> {_R_ : A -> B -> Set} -> (ent : Entire _R_) ->
let f = fun ent in ∀ {a : A} -> a R (f a)
correct ent {a} = proj₂ (ent a)
Entire3 : {A B C D : Set} -> (R : A -> B -> C -> D -> Set) -> Set
Entire3 R = ∀ x y z -> ∃ (R x y z)
fun3 : {A B C D : Set} -> {R : A -> B -> C -> D -> Set} -> Entire3 R -> A -> B -> C -> D
fun3 ent a b c = proj₁ (ent a b c)
correct3 : {A B C D : Set} -> {R : A -> B -> C -> D -> Set} -> (e : Entire3 R) ->
∀ {a : A} {b : B} {c : C} -> R a b c (fun3 e a b c)
correct3 ent {a} {b} {c} = proj₂ (ent a b c)
UniqueSolution : {A : Set} -> Rel A -> (A -> Set) -> Set
UniqueSolution _≃_ P = ∀ {x y} -> P x -> P y -> x ≃ y
LowerBound : {A : Set} -> Rel A -> (A -> Set) -> (A -> Set)
LowerBound _≤_ P a = ∀ z -> (P z -> a ≤ z)
Least : {A : Set} -> Rel A -> (A -> Set) -> (A -> Set)
Least _≤_ P a = P a × LowerBound _≤_ P a
|
{
"alphanum_fraction": 0.489146165,
"avg_line_length": 36.3684210526,
"ext": "agda",
"hexsha": "859673747c960e3e10198ba67960ce69c7cb5728",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DSLsofMath/ValiantAgda",
"max_forks_repo_path": "code/Preliminaries.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DSLsofMath/ValiantAgda",
"max_issues_repo_path": "code/Preliminaries.agda",
"max_line_length": 88,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DSLsofMath/ValiantAgda",
"max_stars_repo_path": "code/Preliminaries.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-15T03:04:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-23T00:41:14.000Z",
"num_tokens": 538,
"size": 1382
}
|
------------------------------------------------------------------------------
-- The division specification
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Division.Specification where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
------------------------------------------------------------------------------
-- Specification: The division is total and the result is correct.
divSpec : D → D → D → Set
divSpec i j q = N q ∧ (∃[ r ] N r ∧ r < j ∧ i ≡ j * q + r)
{-# ATP definition divSpec #-}
|
{
"alphanum_fraction": 0.4265091864,
"avg_line_length": 36.2857142857,
"ext": "agda",
"hexsha": "fae57cd7ce8ae6570d1dad67b898d1a1edaa690c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Division/Specification.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Division/Specification.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Division/Specification.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 142,
"size": 762
}
|
-- Andreas, 2016-06-11
postulate Foo : Foo → Set
|
{
"alphanum_fraction": 0.66,
"avg_line_length": 12.5,
"ext": "agda",
"hexsha": "dd565bd4e0fa71e520deaf2be8076acd28097b10",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2024-fun.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2024-fun.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2024-fun.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 50
}
|
----------------------------------------------------------------------------------
-- Types for parse trees
----------------------------------------------------------------------------------
module options-types where
open import ial
open import parse-tree
posinfo = string
alpha = string
alpha-bar-4 = string
alpha-range-2 = string
alpha-range-3 = string
anychar = string
anychar-bar-10 = string
anychar-bar-11 = string
anychar-bar-12 = string
anychar-bar-13 = string
anychar-bar-14 = string
anychar-bar-15 = string
anychar-bar-16 = string
anychar-bar-17 = string
anychar-bar-18 = string
anychar-bar-19 = string
anychar-bar-20 = string
anychar-bar-21 = string
anychar-bar-22 = string
anychar-bar-23 = string
anychar-bar-24 = string
anychar-bar-25 = string
anychar-bar-26 = string
anychar-bar-27 = string
anychar-bar-28 = string
anychar-bar-29 = string
anychar-bar-9 = string
num = string
num-plus-6 = string
numone = string
numone-range-5 = string
numpunct = string
numpunct-bar-7 = string
numpunct-bar-8 = string
path = string
path-star-1 = string
{-# FOREIGN GHC import qualified CedilleOptionsParser #-}
{-# FOREIGN GHC import qualified CedilleOptionsLexer #-}
data paths : Set where
PathsCons : path → paths → paths
PathsNil : paths
{-# COMPILE GHC paths = data CedilleOptionsLexer.Paths (CedilleOptionsLexer.PathsCons | CedilleOptionsLexer.PathsNil) #-}
--data data-encoding : Set where
-- Mendler : data-encoding
-- Mendler-old : data-encoding
--{-# COMPILE GHC data-encoding = data CedilleOptionsLexer.DataEnc (CedilleOptionsLexer.Mendler | CedilleOptionsLexer.MendlerOld) #-}
data opt : Set where
GenerateLogs : 𝔹 → opt
Lib : paths → opt
MakeRktFiles : 𝔹 → opt
ShowQualifiedVars : 𝔹 → opt
UseCedeFiles : 𝔹 → opt
EraseTypes : 𝔹 → opt
PrettyPrintColumns : string → opt
DatatypeEncoding : maybe path → opt
{-# COMPILE GHC opt = data CedilleOptionsLexer.Opt (CedilleOptionsLexer.GenerateLogs | CedilleOptionsLexer.Lib | CedilleOptionsLexer.MakeRktFiles | CedilleOptionsLexer.ShowQualifiedVars | CedilleOptionsLexer.UseCedeFiles | CedilleOptionsLexer.EraseTypes | CedilleOptionsLexer.PrintColumns | CedilleOptionsLexer.DatatypeEncoding) #-}
data opts : Set where
OptsCons : opt → opts → opts
OptsNil : opts
{-# COMPILE GHC opts = data CedilleOptionsLexer.Opts (CedilleOptionsLexer.OptsCons | CedilleOptionsLexer.OptsNil) #-}
data start : Set where
File : opts → start
{-# COMPILE GHC start = data CedilleOptionsLexer.Start (CedilleOptionsLexer.File) #-}
data Either (A : Set)(B : Set) : Set where
Left : A → Either A B
Right : B → Either A B
{-# COMPILE GHC Either = data Either (Left | Right) #-}
postulate
scanOptions : string → Either string start
{-# COMPILE GHC scanOptions = CedilleOptionsParser.parseOptions #-}
-- embedded types:
data ParseTreeT : Set where
parsed-opt : opt → ParseTreeT
parsed-opts : opts → ParseTreeT
parsed-paths : paths → ParseTreeT
parsed-start : start → ParseTreeT
parsed-bool : 𝔹 → ParseTreeT
parsed-posinfo : posinfo → ParseTreeT
parsed-alpha : alpha → ParseTreeT
parsed-alpha-bar-4 : alpha-bar-4 → ParseTreeT
parsed-alpha-range-2 : alpha-range-2 → ParseTreeT
parsed-alpha-range-3 : alpha-range-3 → ParseTreeT
parsed-anychar : anychar → ParseTreeT
parsed-anychar-bar-10 : anychar-bar-10 → ParseTreeT
parsed-anychar-bar-11 : anychar-bar-11 → ParseTreeT
parsed-anychar-bar-12 : anychar-bar-12 → ParseTreeT
parsed-anychar-bar-13 : anychar-bar-13 → ParseTreeT
parsed-anychar-bar-14 : anychar-bar-14 → ParseTreeT
parsed-anychar-bar-15 : anychar-bar-15 → ParseTreeT
parsed-anychar-bar-16 : anychar-bar-16 → ParseTreeT
parsed-anychar-bar-17 : anychar-bar-17 → ParseTreeT
parsed-anychar-bar-18 : anychar-bar-18 → ParseTreeT
parsed-anychar-bar-19 : anychar-bar-19 → ParseTreeT
parsed-anychar-bar-20 : anychar-bar-20 → ParseTreeT
parsed-anychar-bar-21 : anychar-bar-21 → ParseTreeT
parsed-anychar-bar-22 : anychar-bar-22 → ParseTreeT
parsed-anychar-bar-23 : anychar-bar-23 → ParseTreeT
parsed-anychar-bar-24 : anychar-bar-24 → ParseTreeT
parsed-anychar-bar-25 : anychar-bar-25 → ParseTreeT
parsed-anychar-bar-26 : anychar-bar-26 → ParseTreeT
parsed-anychar-bar-27 : anychar-bar-27 → ParseTreeT
parsed-anychar-bar-28 : anychar-bar-28 → ParseTreeT
parsed-anychar-bar-29 : anychar-bar-29 → ParseTreeT
parsed-anychar-bar-9 : anychar-bar-9 → ParseTreeT
parsed-num : num → ParseTreeT
parsed-num-plus-6 : num-plus-6 → ParseTreeT
parsed-numone : numone → ParseTreeT
parsed-numone-range-5 : numone-range-5 → ParseTreeT
parsed-numpunct : numpunct → ParseTreeT
parsed-numpunct-bar-7 : numpunct-bar-7 → ParseTreeT
parsed-numpunct-bar-8 : numpunct-bar-8 → ParseTreeT
parsed-path : path → ParseTreeT
parsed-path-star-1 : path-star-1 → ParseTreeT
parsed-aws : ParseTreeT
parsed-aws-bar-31 : ParseTreeT
parsed-aws-bar-32 : ParseTreeT
parsed-aws-bar-33 : ParseTreeT
parsed-comment : ParseTreeT
parsed-comment-star-30 : ParseTreeT
parsed-ows : ParseTreeT
parsed-ows-star-35 : ParseTreeT
parsed-squote : ParseTreeT
parsed-ws : ParseTreeT
parsed-ws-plus-34 : ParseTreeT
------------------------------------------
-- Parse tree printing functions
------------------------------------------
posinfoToString : posinfo → string
posinfoToString x = "(posinfo " ^ x ^ ")"
alphaToString : alpha → string
alphaToString x = "(alpha " ^ x ^ ")"
alpha-bar-4ToString : alpha-bar-4 → string
alpha-bar-4ToString x = "(alpha-bar-4 " ^ x ^ ")"
alpha-range-2ToString : alpha-range-2 → string
alpha-range-2ToString x = "(alpha-range-2 " ^ x ^ ")"
alpha-range-3ToString : alpha-range-3 → string
alpha-range-3ToString x = "(alpha-range-3 " ^ x ^ ")"
anycharToString : anychar → string
anycharToString x = "(anychar " ^ x ^ ")"
anychar-bar-10ToString : anychar-bar-10 → string
anychar-bar-10ToString x = "(anychar-bar-10 " ^ x ^ ")"
anychar-bar-11ToString : anychar-bar-11 → string
anychar-bar-11ToString x = "(anychar-bar-11 " ^ x ^ ")"
anychar-bar-12ToString : anychar-bar-12 → string
anychar-bar-12ToString x = "(anychar-bar-12 " ^ x ^ ")"
anychar-bar-13ToString : anychar-bar-13 → string
anychar-bar-13ToString x = "(anychar-bar-13 " ^ x ^ ")"
anychar-bar-14ToString : anychar-bar-14 → string
anychar-bar-14ToString x = "(anychar-bar-14 " ^ x ^ ")"
anychar-bar-15ToString : anychar-bar-15 → string
anychar-bar-15ToString x = "(anychar-bar-15 " ^ x ^ ")"
anychar-bar-16ToString : anychar-bar-16 → string
anychar-bar-16ToString x = "(anychar-bar-16 " ^ x ^ ")"
anychar-bar-17ToString : anychar-bar-17 → string
anychar-bar-17ToString x = "(anychar-bar-17 " ^ x ^ ")"
anychar-bar-18ToString : anychar-bar-18 → string
anychar-bar-18ToString x = "(anychar-bar-18 " ^ x ^ ")"
anychar-bar-19ToString : anychar-bar-19 → string
anychar-bar-19ToString x = "(anychar-bar-19 " ^ x ^ ")"
anychar-bar-20ToString : anychar-bar-20 → string
anychar-bar-20ToString x = "(anychar-bar-20 " ^ x ^ ")"
anychar-bar-21ToString : anychar-bar-21 → string
anychar-bar-21ToString x = "(anychar-bar-21 " ^ x ^ ")"
anychar-bar-22ToString : anychar-bar-22 → string
anychar-bar-22ToString x = "(anychar-bar-22 " ^ x ^ ")"
anychar-bar-23ToString : anychar-bar-23 → string
anychar-bar-23ToString x = "(anychar-bar-23 " ^ x ^ ")"
anychar-bar-24ToString : anychar-bar-24 → string
anychar-bar-24ToString x = "(anychar-bar-24 " ^ x ^ ")"
anychar-bar-25ToString : anychar-bar-25 → string
anychar-bar-25ToString x = "(anychar-bar-25 " ^ x ^ ")"
anychar-bar-26ToString : anychar-bar-26 → string
anychar-bar-26ToString x = "(anychar-bar-26 " ^ x ^ ")"
anychar-bar-27ToString : anychar-bar-27 → string
anychar-bar-27ToString x = "(anychar-bar-27 " ^ x ^ ")"
anychar-bar-28ToString : anychar-bar-28 → string
anychar-bar-28ToString x = "(anychar-bar-28 " ^ x ^ ")"
anychar-bar-29ToString : anychar-bar-29 → string
anychar-bar-29ToString x = "(anychar-bar-29 " ^ x ^ ")"
anychar-bar-9ToString : anychar-bar-9 → string
anychar-bar-9ToString x = "(anychar-bar-9 " ^ x ^ ")"
numToString : num → string
numToString x = "(num " ^ x ^ ")"
num-plus-6ToString : num-plus-6 → string
num-plus-6ToString x = "(num-plus-6 " ^ x ^ ")"
numoneToString : numone → string
numoneToString x = "(numone " ^ x ^ ")"
numone-range-5ToString : numone-range-5 → string
numone-range-5ToString x = "(numone-range-5 " ^ x ^ ")"
numpunctToString : numpunct → string
numpunctToString x = "(numpunct " ^ x ^ ")"
numpunct-bar-7ToString : numpunct-bar-7 → string
numpunct-bar-7ToString x = "(numpunct-bar-7 " ^ x ^ ")"
numpunct-bar-8ToString : numpunct-bar-8 → string
numpunct-bar-8ToString x = "(numpunct-bar-8 " ^ x ^ ")"
pathToString : path → string
pathToString x = "(path " ^ x ^ ")"
path-star-1ToString : path-star-1 → string
path-star-1ToString x = "(path-star-1 " ^ x ^ ")"
mutual
boolToString : 𝔹 → string
boolToString tt = "true"
boolToString ff = "false"
optToString : opt → string
optToString (GenerateLogs x0) = "(GenerateLogs" ^ " " ^ (boolToString x0) ^ ")"
optToString (Lib x0) = "(Lib" ^ " " ^ (pathsToString x0) ^ ")"
optToString (MakeRktFiles x0) = "(MakeRktFiles" ^ " " ^ (boolToString x0) ^ ")"
optToString (ShowQualifiedVars x0) = "(ShowQualifiedVars" ^ " " ^ (boolToString x0) ^ ")"
optToString (UseCedeFiles x0) = "(UseCedeFiles" ^ " " ^ (boolToString x0) ^ ")"
optToString (EraseTypes x0) = "(EraseTypes" ^ " " ^ (boolToString x0) ^ ")"
optToString (PrettyPrintColumns x0) = "PrettyPrintColumns" ^ " " ^ x0 ^ ")"
optToString (DatatypeEncoding nothing) = "(DatatypeEncoding nothing)"
optToString (DatatypeEncoding (just x0)) = "(DatatypeEncoding (just " ^ x0 ^ "))"
optsToString : opts → string
optsToString (OptsCons x0 x1) = "(OptsCons" ^ " " ^ (optToString x0) ^ " " ^ (optsToString x1) ^ ")"
optsToString (OptsNil) = "OptsNil" ^ ""
pathsToString : paths → string
pathsToString (PathsCons x0 x1) = "(PathsCons" ^ " " ^ (pathToString x0) ^ " " ^ (pathsToString x1) ^ ")"
pathsToString (PathsNil) = "PathsNil" ^ ""
-- data-encodingToString : data-encoding → string
-- data-encodingToString Mendler = "Mendler"
-- data-encodingToString Mendler-old = "Mendler-old"
startToString : start → string
startToString (File x0) = "(File" ^ " " ^ (optsToString x0) ^ ")"
ParseTreeToString : ParseTreeT → string
ParseTreeToString (parsed-opt t) = optToString t
ParseTreeToString (parsed-opts t) = optsToString t
ParseTreeToString (parsed-paths t) = pathsToString t
ParseTreeToString (parsed-start t) = startToString t
ParseTreeToString (parsed-bool t) = boolToString t
ParseTreeToString (parsed-posinfo t) = posinfoToString t
ParseTreeToString (parsed-alpha t) = alphaToString t
ParseTreeToString (parsed-alpha-bar-4 t) = alpha-bar-4ToString t
ParseTreeToString (parsed-alpha-range-2 t) = alpha-range-2ToString t
ParseTreeToString (parsed-alpha-range-3 t) = alpha-range-3ToString t
ParseTreeToString (parsed-anychar t) = anycharToString t
ParseTreeToString (parsed-anychar-bar-10 t) = anychar-bar-10ToString t
ParseTreeToString (parsed-anychar-bar-11 t) = anychar-bar-11ToString t
ParseTreeToString (parsed-anychar-bar-12 t) = anychar-bar-12ToString t
ParseTreeToString (parsed-anychar-bar-13 t) = anychar-bar-13ToString t
ParseTreeToString (parsed-anychar-bar-14 t) = anychar-bar-14ToString t
ParseTreeToString (parsed-anychar-bar-15 t) = anychar-bar-15ToString t
ParseTreeToString (parsed-anychar-bar-16 t) = anychar-bar-16ToString t
ParseTreeToString (parsed-anychar-bar-17 t) = anychar-bar-17ToString t
ParseTreeToString (parsed-anychar-bar-18 t) = anychar-bar-18ToString t
ParseTreeToString (parsed-anychar-bar-19 t) = anychar-bar-19ToString t
ParseTreeToString (parsed-anychar-bar-20 t) = anychar-bar-20ToString t
ParseTreeToString (parsed-anychar-bar-21 t) = anychar-bar-21ToString t
ParseTreeToString (parsed-anychar-bar-22 t) = anychar-bar-22ToString t
ParseTreeToString (parsed-anychar-bar-23 t) = anychar-bar-23ToString t
ParseTreeToString (parsed-anychar-bar-24 t) = anychar-bar-24ToString t
ParseTreeToString (parsed-anychar-bar-25 t) = anychar-bar-25ToString t
ParseTreeToString (parsed-anychar-bar-26 t) = anychar-bar-26ToString t
ParseTreeToString (parsed-anychar-bar-27 t) = anychar-bar-27ToString t
ParseTreeToString (parsed-anychar-bar-28 t) = anychar-bar-28ToString t
ParseTreeToString (parsed-anychar-bar-29 t) = anychar-bar-29ToString t
ParseTreeToString (parsed-anychar-bar-9 t) = anychar-bar-9ToString t
ParseTreeToString (parsed-num t) = numToString t
ParseTreeToString (parsed-num-plus-6 t) = num-plus-6ToString t
ParseTreeToString (parsed-numone t) = numoneToString t
ParseTreeToString (parsed-numone-range-5 t) = numone-range-5ToString t
ParseTreeToString (parsed-numpunct t) = numpunctToString t
ParseTreeToString (parsed-numpunct-bar-7 t) = numpunct-bar-7ToString t
ParseTreeToString (parsed-numpunct-bar-8 t) = numpunct-bar-8ToString t
ParseTreeToString (parsed-path t) = pathToString t
ParseTreeToString (parsed-path-star-1 t) = path-star-1ToString t
ParseTreeToString parsed-aws = "[aws]"
ParseTreeToString parsed-aws-bar-31 = "[aws-bar-31]"
ParseTreeToString parsed-aws-bar-32 = "[aws-bar-32]"
ParseTreeToString parsed-aws-bar-33 = "[aws-bar-33]"
ParseTreeToString parsed-comment = "[comment]"
ParseTreeToString parsed-comment-star-30 = "[comment-star-30]"
ParseTreeToString parsed-ows = "[ows]"
ParseTreeToString parsed-ows-star-35 = "[ows-star-35]"
ParseTreeToString parsed-squote = "[squote]"
ParseTreeToString parsed-ws = "[ws]"
ParseTreeToString parsed-ws-plus-34 = "[ws-plus-34]"
------------------------------------------
-- Reorganizing rules
------------------------------------------
mutual
{-# TERMINATING #-}
norm-bool : (x : bool) → bool
norm-bool x = x
{-# TERMINATING #-}
norm-start : (x : start) → start
norm-start x = x
{-# TERMINATING #-}
norm-posinfo : (x : posinfo) → posinfo
norm-posinfo x = x
{-# TERMINATING #-}
norm-paths : (x : paths) → paths
norm-paths x = x
{-# TERMINATING #-}
norm-opts : (x : opts) → opts
norm-opts x = x
{-# TERMINATING #-}
norm-opt : (x : opt) → opt
norm-opt x = x
isParseTree : ParseTreeT → 𝕃 char → string → Set
isParseTree p l s = ⊤ {- this will be ignored since we are using simply typed runs -}
ptr : ParseTreeRec
ptr = record { ParseTreeT = ParseTreeT ; isParseTree = isParseTree ; ParseTreeToString = ParseTreeToString }
|
{
"alphanum_fraction": 0.7013612565,
"avg_line_length": 41.6424418605,
"ext": "agda",
"hexsha": "17c146eef01de99013f6fef263389fdeeee43df4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/options-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/options-types.agda",
"max_line_length": 332,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/options-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4306,
"size": 14325
}
|
module reductionSystems1 where
data ℕ : Set where
Z : ℕ
S : ℕ -> ℕ
_+_ : ℕ -> ℕ -> ℕ
n + Z = n
n + S m = S (n + m)
_*_ : ℕ -> ℕ -> ℕ
n * Z = Z
n * S m = (n * m) + n
{-
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO Z #-}
{-# BUILTIN SUC S #-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
-}
|
{
"alphanum_fraction": 0.4407294833,
"avg_line_length": 13.7083333333,
"ext": "agda",
"hexsha": "926028ea6a62dfd06c1efff264f60fed042511e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/reductionSystems1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/reductionSystems1.agda",
"max_line_length": 30,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/reductionSystems1.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 128,
"size": 329
}
|
{-# OPTIONS --rewriting #-}
-- {-# OPTIONS --confluence-check #-}
-- Formulæ and hypotheses (contexts)
open import Library
module Formulas (Base : Set) where
-- Propositional formulas
data Form : Set where
Atom : (P : Base) → Form
True False : Form
_∨_ _∧_ _⇒_ : (A B : Form) → Form
infixl 8 _∧_
infixl 7 _∨_
infixr 6 _⇒_
infixr 5 ¬_
¬_ : (A : Form) → Form
¬ A = A ⇒ False
-- Contexts
data Cxt : Set where
ε : Cxt
_∙_ : (Γ : Cxt) (A : Form) → Cxt
infixl 4 _∙_
-- Context extension (thinning)
infix 3 _≤_
data _≤_ : (Γ Δ : Cxt) → Set where
ε : ε ≤ ε
weak : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ
lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ ∙ A
id≤ : ∀{Γ} → Γ ≤ Γ
id≤ {ε} = ε
id≤ {Γ ∙ A} = lift id≤
-- Category of thinnings
_•_ : ∀{Γ Δ Φ} (τ : Γ ≤ Δ) (σ : Δ ≤ Φ) → Γ ≤ Φ
ε • σ = σ
weak τ • σ = weak (τ • σ)
lift τ • weak σ = weak (τ • σ)
lift τ • lift σ = lift (τ • σ)
•-id-l : ∀{Γ Δ} (τ : Γ ≤ Δ) → id≤ • τ ≡ τ
•-id-l ε = refl
•-id-l (weak τ) = cong weak (•-id-l τ)
•-id-l (lift τ) = cong lift (•-id-l τ)
•-id-r : ∀{Γ Δ} (τ : Γ ≤ Δ) → τ • id≤ ≡ τ
•-id-r ε = refl
•-id-r (weak τ) = cong weak (•-id-r τ)
•-id-r (lift τ) = cong lift (•-id-r τ)
•-ε-r : ∀{Γ} (τ : Γ ≤ ε) → τ • ε ≡ τ
•-ε-r ε = refl
•-ε-r (weak τ) = cong weak (•-ε-r τ)
{-# REWRITE •-id-l •-id-r •-ε-r #-}
-- Pullbacks
record RawPullback {Γ Δ₁ Δ₂} (τ₁ : Δ₁ ≤ Γ) (τ₂ : Δ₂ ≤ Γ) : Set where
constructor rawPullback; field
{Γ'} : Cxt
τ₁' : Γ' ≤ Δ₁
τ₂' : Γ' ≤ Δ₂
comm : τ₁' • τ₁ ≡ τ₂' • τ₂
-- The glb is only unique up to isomorphism:
-- for glb (weak τ₁) (weak τ₂) we have two choices how to proceed.
glb : ∀ {Γ Δ₁ Δ₂} (τ₁ : Δ₁ ≤ Γ) (τ₂ : Δ₂ ≤ Γ) → RawPullback τ₁ τ₂
glb ε τ₂ = rawPullback τ₂ id≤ refl -- REWRITE (•-id-r τ₂)
glb τ₁ ε = rawPullback id≤ τ₁ refl -- REWRITE (•-id-l τ₁)
glb (weak τ₁) τ₂ =
let rawPullback τ₁' τ₂' comm = glb τ₁ τ₂
in rawPullback (lift τ₁') (weak τ₂') (cong weak comm)
glb τ₁ (weak τ₂) =
let rawPullback τ₁' τ₂' comm = glb τ₁ τ₂
in rawPullback (weak τ₁') (lift τ₂') (cong weak comm)
glb (lift τ₁) (lift τ₂) =
let rawPullback τ₁' τ₂' comm = glb τ₁ τ₂
in rawPullback (lift τ₁') (lift τ₂') (cong lift comm)
-- glb (weak τ₁) (weak τ₂) =
-- let rawPullback τ₁' τ₂' comm = glb τ₁ τ₂
-- in rawPullback (weak (lift τ₁')) (lift (weak τ₂')) (cong (weak ∘ weak) comm)
-- -- Here is a choice: it would also work the other way round:
-- -- rawPullback (lift (weak τ₁')) (weak (lift τ₂')) (cong (weak ∘ weak) comm)
-- glb (weak τ₁) (lift τ₂) =
-- let rawPullback τ₁' τ₂' comm = glb τ₁ (lift τ₂)
-- in rawPullback (lift τ₁') (weak τ₂') (cong weak comm)
record WeakPullback {Γ Δ₁ Δ₂} (τ₁ : Δ₁ ≤ Γ) (τ₂ : Δ₂ ≤ Γ) : Set where
constructor weakPullback
field
rawpullback : RawPullback τ₁ τ₂
open RawPullback rawpullback public
-- field
-- largest : ∀ (pb : RawPullback τ₁ τ₂)
-- There are actually no pullbacks in the OPE category
-- Hypotheses
data Hyp (A : Form) : (Γ : Cxt) → Set where
top : ∀{Γ} → Hyp A (Γ ∙ A)
pop : ∀{Γ B} (x : Hyp A Γ) → Hyp A (Γ ∙ B)
Mon : (P : Cxt → Set) → Set
Mon P = ∀{Γ Δ} (τ : Γ ≤ Δ) → P Δ → P Γ
monH : ∀{A} → Mon (Hyp A)
monH ε ()
monH (weak τ) x = pop (monH τ x)
monH (lift τ) top = top
monH (lift τ) (pop x) = pop (monH τ x)
monH-id : ∀{Γ A} (x : Hyp A Γ) → monH id≤ x ≡ x
monH-id top = refl
monH-id (pop x) = cong pop (monH-id x)
monH• : ∀{Γ Δ Φ A} (τ : Γ ≤ Δ) (σ : Δ ≤ Φ) (x : Hyp A Φ) → monH (τ • σ) x ≡ monH τ (monH σ x)
monH• ε ε ()
monH• (weak τ) σ x = cong pop (monH• τ σ x)
monH• (lift τ) (weak σ) x = cong pop (monH• τ σ x)
monH• (lift τ) (lift σ) top = refl
monH• (lift τ) (lift σ) (pop x) = cong pop (monH• τ σ x)
{-# REWRITE monH-id monH• #-}
□ : (P : Cxt → Set) → Cxt → Set
□ P Γ = ∀{Δ} (τ : Δ ≤ Γ) → P Δ
mon□ : ∀{P} → Mon (□ P)
mon□ τ x τ′ = x (τ′ • τ)
infix 1 _→̇_
infixr 2 _⇒̂_
-- Presheaf morphism
_→̇_ : (P Q : Cxt → Set) → Set
P →̇ Q = ∀{Γ} → P Γ → Q Γ
⟨_⊙_⟩→̇_ : (P Q R : Cxt → Set) → Set
⟨ P ⊙ Q ⟩→̇ R = ∀{Γ} → P Γ → Q Γ → R Γ
⟨_⊙_⊙_⟩→̇_ : (P Q R S : Cxt → Set) → Set
⟨ P ⊙ Q ⊙ R ⟩→̇ S = ∀{Γ} → P Γ → Q Γ → R Γ → S Γ
-- Pointwise presheaf arrow (not a presheaf)
CFun : (P Q : Cxt → Set) → Cxt → Set
CFun P Q Γ = P Γ → Q Γ
-- Presheaf exponentional (Kripke function space)
KFun : (P Q : Cxt → Set) → Cxt → Set
KFun P Q = □ (CFun P Q)
-- Again, in expanded form.
_⇒̂_ : (P Q : Cxt → Set) → Cxt → Set
P ⇒̂ Q = λ Γ → ∀{Δ} (τ : Δ ≤ Γ) → P Δ → Q Δ
-- -}
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.5242892321,
"avg_line_length": 24.543956044,
"ext": "agda",
"hexsha": "94dd3218ff0d921dd4d402b94786f1384cf87ad3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z",
"max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "andreasabel/ipl",
"max_forks_repo_path": "src/Formulas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "andreasabel/ipl",
"max_issues_repo_path": "src/Formulas.agda",
"max_line_length": 93,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "andreasabel/ipl",
"max_stars_repo_path": "src/Formulas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z",
"num_tokens": 2066,
"size": 4467
}
|
module Categories.Monad.EilenbergMoore where
|
{
"alphanum_fraction": 0.8888888889,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "ac254eb49d3ab84151fe6fdac6acec806afa8411",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Monad/EilenbergMoore.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Monad/EilenbergMoore.agda",
"max_line_length": 44,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Monad/EilenbergMoore.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 10,
"size": 45
}
|
module Issue87 where
data I : Set where
data D : I -> Set where
d : forall {i} (x : D i) -> D i
bar : forall {i} -> D i -> D i -> D i
bar (d x) (d y) with y
bar (d x) (d {i} y) | z = d {i} y
-- Panic: unbound variable i
-- when checking that the expression i has type I
|
{
"alphanum_fraction": 0.5607142857,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "97fba1486db2c6293dbfe29e148b501eaab5d900",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue87.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue87.agda",
"max_line_length": 49,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue87.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 105,
"size": 280
}
|
{-# OPTIONS --cubical #-}
module LookVsTime where
open import Data.Fin using (#_)
open import Data.Integer using (+_; -[1+_])
open import Data.List using (List; _∷_; []; map; concat; _++_; replicate; zip; length; take)
open import Data.Nat using (_*_; ℕ; suc; _+_)
open import Data.Product using (_,_; uncurry)
open import Data.Vec using (fromList; Vec; _∷_; []) renaming (replicate to rep; zip to vzip; map to vmap; concat to vconcat; _++_ to _+v_)
open import Function using (_∘_)
open import Pitch
open import Note using (tone; rest; Note; Duration; duration; unduration)
open import Music
open import Midi
open import MidiEvent
open import Util using (repeat; repeatV)
tempo : ℕ
tempo = 84
----
8th : ℕ → Duration
8th n = duration (2 * n)
whole : ℕ → Duration
whole n = duration (16 * n)
melodyChannel : Channel-1
melodyChannel = # 0
melodyInstrument : InstrumentNumber-1
melodyInstrument = # 8 -- celesta
melodyNotes : List Note
melodyNotes =
tone (8th 3) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 3) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 1) (e 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 1) (e 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 1) (a 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 2) (e 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 1) (a 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 2) (e 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 3) (b 4) ∷
tone (8th 5) (c 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 1) (e 5) ∷
tone (8th 1) (d 5) ∷
tone (8th 5) (c 5) ∷
tone (8th 3) (g 5) ∷
tone (8th 3) (e 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 3) (g 5) ∷
tone (8th 3) (e 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 8) (c 5) ∷
tone (8th 8) (b 4) ∷
tone (8th 3) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 3) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 3) (a 5) ∷
tone (8th 5) (f 5) ∷
tone (8th 3) (e 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 8) (c 5) ∷
tone (8th 8) (d 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 5) (d 5) ∷
tone (8th 3) (a 5) ∷
tone (8th 5) (f 5) ∷
tone (8th 3) (a 5) ∷
tone (8th 5) (g 5) ∷
tone (8th 1) (a 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 2) (e 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 1) (a 5) ∷
tone (8th 1) (g 5) ∷
tone (8th 1) (f 5) ∷
tone (8th 2) (e 5) ∷
tone (8th 1) (c 5) ∷
tone (8th 2) (d 5) ∷
tone (8th 3) (b 4) ∷
tone (8th 5) (c 5) ∷
tone (8th 24) (b 4) ∷
[]
melodyTrack : MidiTrack
melodyTrack = track "Melody" melodyInstrument melodyChannel tempo (notes→events defaultVelocity melodyNotes)
----
accompChannel : Channel-1
accompChannel = # 1
accompInstrument : InstrumentNumber-1
accompInstrument = # 11 -- vibraphone
accompRhythm : Vec Duration 3
accompRhythm = vmap 8th (3 ∷ 3 ∷ 2 ∷ [])
accompF accompB2 accompC4 : Vec Pitch 3
accompF = f 4 ∷ a 4 ∷ c 5 ∷ []
accompB2 = f 4 ∷ b 4 ∷ d 4 ∷ []
accompC4 = f 4 ∷ c 5 ∷ e 5 ∷ []
accompFA : Vec Pitch 2
accompFA = f 4 ∷ a 4 ∷ []
accompChords1 : Harmony 3 128
accompChords1 =
foldIntoHarmony (repeatV 8 accompRhythm)
(repeatV 2 (vconcat (vmap (rep {n = 3}) (accompF ∷ accompB2 ∷ accompC4 ∷ accompB2 ∷ []))))
accompChords2 : Harmony 3 64
accompChords2 = addEmptyVoice (pitches→harmony (whole 4) accompFA)
accompChords3 : Harmony 3 64
accompChords3 =
foldIntoHarmony (repeatV 4 accompRhythm)
(vconcat (vmap (rep {n = 3}) (accompF ∷ accompB2 ∷ accompC4 ∷ [])) +v (accompB2 ∷ accompB2 ∷ accompF ∷ []))
accompChords4 : Harmony 3 16
accompChords4 = addEmptyVoice (foldIntoHarmony accompRhythm (rep accompFA))
accompChords5 : Harmony 3 48
accompChords5 = pitches→harmony (8th (8 + 8 + 6)) accompF +H+ pitches→harmony (8th 2) accompF
accompChords6 : Harmony 3 32
accompChords6 = pitches→harmony (8th (8 + 6)) accompB2 +H+ pitches→harmony (8th 2) accompB2
accompChords7 : Harmony 3 32
accompChords7 = pitches→harmony (whole 2) accompF
accompChords : Harmony 3 448
accompChords = accompChords1 +H+ accompChords3 +H+ accompChords2 +H+ accompChords3 +H+ accompChords4
+H+ accompChords5 +H+ accompChords6 +H+ accompChords7
accompTrack : MidiTrack
accompTrack = track "Accomp" accompInstrument accompChannel tempo (harmony→events defaultVelocity accompChords)
----
bassChannel : Channel-1
bassChannel = # 2
bassInstrument : InstrumentNumber-1
bassInstrument = # 33 -- finger bass
bassMelody : List Pitch
bassMelody = c 3 ∷ e 3 ∷ f 3 ∷ g 3 ∷ []
bassRhythm : List Duration
bassRhythm = map 8th (3 ∷ 1 ∷ 2 ∷ 2 ∷ [])
bassNotes : List Note
bassNotes = repeat 28 (map (uncurry tone) (zip bassRhythm bassMelody))
bassTrack : MidiTrack
bassTrack = track "Bass" bassInstrument bassChannel tempo (notes→events defaultVelocity bassNotes)
----
drumInstrument : InstrumentNumber-1
drumInstrument = # 0 -- SoCal?
drumChannel : Channel-1
drumChannel = # 9
drumRhythmA : List Duration
drumRhythmA = map duration (2 ∷ [])
drumRhythmB : List Duration
drumRhythmB = map duration (1 ∷ 1 ∷ 2 ∷ [])
drumRhythm : List Duration
drumRhythm = drumRhythmA ++ repeat 3 drumRhythmB ++ drumRhythmA
drumPitches : List Pitch
drumPitches = replicate (length drumRhythm) (b 4) -- Ride In
drumNotes : List Note
drumNotes = rest (whole 1) ∷ repeat 27 (map (uncurry tone) (zip drumRhythm drumPitches))
drumTrack : MidiTrack
drumTrack = track "Drums" drumInstrument drumChannel tempo (notes→events defaultVelocity drumNotes)
----
lookVsTime : List MidiTrack
lookVsTime = melodyTrack ∷ accompTrack ∷ bassTrack ∷ drumTrack ∷ []
|
{
"alphanum_fraction": 0.62489226,
"avg_line_length": 23.581300813,
"ext": "agda",
"hexsha": "83a1909a861f539e268ed69523736469eff46b62",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/LookVsTime.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/LookVsTime.agda",
"max_line_length": 142,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/LookVsTime.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 2571,
"size": 5801
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pointed
open import Homotopy.Connected
module Homotopy.Cover {i} (A⋆ : pType i)
(A⋆-is-conn : is-connected⋆ ⟨0⟩ A⋆) where
open pType A⋆ renaming (∣_∣ to A ; ⋆ to a)
open import Homotopy.Cover.Def A
module Reconstruct where
open import Homotopy.Cover.HomotopyGroupSetIsomorphism A⋆ A⋆-is-conn public
{-
-- The following is still a mess. Don't read it.
module _ (uc : universal-covering) where
open covering (π₁ uc)
{-
path⇒deck-is-equiv : ∀ {a₂} (path : a ≡ a₂) → is-equiv (path⇒deck path)
path⇒deck-is-equiv path = iso-is-eq
(transport fiber path)
(transport fiber (! path))
(trans-trans-opposite fiber path)
(trans-opposite-trans fiber path)
-}
is-nature : (fiber a → fiber a) → Set i
is-nature f = (p : a ≡ a)
→ ∀ x → transport fiber p (f x) ≡ f (transport fiber p x)
auto : Set i
auto = fiber a ≃ fiber a
-- This Lemma can be made more general as "(m+1)-connected => has-all-paths_m"
uc-has-all-path₀ : ∀ (p q : Σ A fiber) → p ≡₀ q
uc-has-all-path₀ p q = inverse τ-path-equiv-path-τ-S
$ π₂ (π₂ uc) (proj p) ∘ ! (π₂ (π₂ uc) $ proj q)
nature-auto-eq : ∀ (f₁ f₂ : auto)
→ (f₁-is-nature : is-nature (π₁ f₁))
→ (f₂-is-nature : is-nature (π₁ f₂))
→ Σ (fiber a) (λ x → f₁ ☆ x ≡ f₂ ☆ x)
→ f₁ ≡ f₂
nature-auto-eq f₁ f₂ f₁-nat f₂-nat (x , path) = equiv-eq $ funext λ y →
π₀-extend
⦃ λ _ → ≡-is-set {x = f₁ ☆ y} {y = f₂ ☆ y} $ fiber-is-set a ⦄
(λ uc-path →
f₁ ☆ y
≡⟨ ap (π₁ f₁) $ ! $ fiber-path uc-path ⟩
f₁ ☆ transport fiber (base-path uc-path) x
≡⟨ ! $ f₁-nat (base-path uc-path) x ⟩
transport fiber (base-path uc-path) (f₁ ☆ x)
≡⟨ ap (transport fiber $ base-path uc-path) path ⟩
transport fiber (base-path uc-path) (f₂ ☆ x)
≡⟨ f₂-nat (base-path uc-path) x ⟩
f₂ ☆ transport fiber (base-path uc-path) x
≡⟨ ap (π₁ f₂) $ fiber-path uc-path ⟩∎
f₂ ☆ y
∎)
(uc-has-all-path₀ (a , x) (a , y))
-}
|
{
"alphanum_fraction": 0.5731648031,
"avg_line_length": 31.6461538462,
"ext": "agda",
"hexsha": "610528ff7999725d4a36450bd6244fccdef2daaf",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Cover.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Cover.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Cover.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 780,
"size": 2057
}
|
-- ----------------------------------------------------------------------
-- The Agda Descriptor Library
--
-- Natural transformations on indexed families (predicates)
-- ----------------------------------------------------------------------
module Relation.Unary.Predicate.Transformation where
open import Data.Empty.Polymorphic using (⊥)
open import Data.Product using (_×_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit.Polymorphic using (⊤)
open import Function using (_∘_)
open import Level using (Level; _⊔_; 0ℓ)
open import Relation.Unary
private
variable
a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
A : Set a
B : Set b
C : Set c
D : Set d
-- ----------------------------------------------------------------------
-- Definition
-- A predicate transformation is a morphism between 2 predicates
-- indexed by A and B (w/ levels ℓ₁ ℓ₂ for universe polymorphism)
infixr 0 _▷_ _►_
_▷_ : Set a → Set b → (ℓ₁ ℓ₂ : Level) → Set _
(A ▷ B) ℓ₁ ℓ₂ = Pred A ℓ₁ → Pred B ℓ₂
_►_ : Set a → Set b → Set _
(A ► B) = Pred A 0ℓ → Pred B 0ℓ
-- ----------------------------------------------------------------------
-- Composition and Identity
id : (A ▷ A) ℓ₁ ℓ₁
id = Function.id
_○_ : (B ▷ C) ℓ₂ ℓ₃ → (A ▷ B) ℓ₁ ℓ₂ → (A ▷ C) ℓ₁ _
X ○ Y = X ∘ Y
-- TODO: Cateogrical view
-- ----------------------------------------------------------------------
-- Special transformations
empty : (A ▷ B) ℓ₁ ℓ₂
empty = λ _ _ → ⊥
univ : (A ▷ B) ℓ₁ ℓ₂
univ = λ _ _ → ⊤
-- ----------------------------------------------------------------------
-- Operations on transformations
infixr 8 _⇉_
infixl 7 _⋏_
infixl 6 _⋎_
-- Negation
∼ : (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂
∼ X = ∁ ∘ X
-- Implication
_⇉_ : (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂
X ⇉ Y = λ P → X P ⇒ Y P
-- Intersection
_⋏_ : (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂
X ⋏ Y = λ P → X P ∩ Y P
-- Union
_⋎_ : (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂ → (A ▷ B) ℓ₁ ℓ₂
X ⋎ Y = λ P → X P ∪ Y P
-- TODO: Infinitary union + intersection
-- ----------------------------------------------------------------------
-- Combinators on transformations
-- Disjoint sum
_∣∣_ : (A ▷ C) ℓ₁ ℓ₂ → (B ▷ D) ℓ₁ ℓ₂ → (A ⊎ B ▷ C ⊎ D) ℓ₁ ℓ₂
(X ∣∣ Y) P (inj₁ x) = X (P ∘ inj₁) x
(X ∣∣ Y) P (inj₂ y) = Y (P ∘ inj₂) y
-- TODO: Product, etc
|
{
"alphanum_fraction": 0.4535137495,
"avg_line_length": 23.618556701,
"ext": "agda",
"hexsha": "c9096fd0947ae414fc3d2a3b93eb989fbd165eb2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-desc",
"max_forks_repo_path": "src/Relation/Unary/Predicate/Transformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-desc",
"max_issues_repo_path": "src/Relation/Unary/Predicate/Transformation.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-desc",
"max_stars_repo_path": "src/Relation/Unary/Predicate/Transformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 845,
"size": 2291
}
|
{-# OPTIONS --without-K #-}
module CauchyProofs where
-- Proofs about permutations defined in module Cauchy (everything
-- except the multiplicative ones which are defined in CauchyProofsT and
-- CauchyProofsS
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid;
proof-irrelevance; module ≡-Reasoning)
open import Data.Nat.Properties
using (m≤m+n; n≤m+n; n≤1+n; cancel-*-right-≤; ≰⇒>; ¬i+1+j≤i)
open import Data.Nat.Properties.Simple
using (+-right-identity; +-suc; +-assoc; +-comm;
*-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc)
open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_;
_≥_; z≤n; s≤s; _≟_; _≤?_; ≤-pred; module ≤-Reasoning)
open import Data.Fin
using (Fin; zero; suc; toℕ; fromℕ; fromℕ≤; _ℕ-_; _≺_; reduce≥;
raise; inject+; inject₁; inject≤; _≻toℕ_)
renaming (_+_ to _F+_)
open import Data.Fin.Properties using (bounded; inject+-lemma; to-from)
open import Data.Vec.Properties
using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘;
tabulate-allFin; allFin-map; lookup-++-inject+; lookup-++-≥)
open import Data.Vec
using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt;
_[_]≔_; allFin; toList)
renaming (_++_ to _++V_; map to mapV; concat to concatV)
open import Function using (id; _∘_; _$_; _∋_; flip)
open import Proofs
open import Cauchy
------------------------------------------------------------------------------
-- Proofs about sequential composition
-- sequential composition with id on the right is identity
scomprid : ∀ {n} → (perm : Cauchy n) → scompcauchy perm (idcauchy n) ≡ perm
scomprid {n} perm =
begin (scompcauchy perm (idcauchy n)
≡⟨ refl ⟩
tabulate (λ i → lookup (lookup i perm) (allFin n))
≡⟨ finext (λ i → lookup-allFin (lookup i perm)) ⟩
tabulate (λ i → lookup i perm)
≡⟨ tabulate∘lookup perm ⟩
perm ∎)
where open ≡-Reasoning
-- sequential composition with id on the left is identity
scomplid : ∀ {n} → (perm : Cauchy n) → scompcauchy (idcauchy n) perm ≡ perm
scomplid {n} perm =
trans (finext (λ i → cong (λ x → lookup x perm) (lookup-allFin i)))
(tabulate∘lookup perm)
-- sequential composition is associative
scompassoc : ∀ {n} → (π₁ π₂ π₃ : Cauchy n) →
scompcauchy π₁ (scompcauchy π₂ π₃) ≡ scompcauchy (scompcauchy π₁ π₂) π₃
scompassoc π₁ π₂ π₃ = finext (lookupassoc π₁ π₂ π₃)
------------------------------------------------------------------------------
-- Proofs about additive permutations
lookup-subst2 : ∀ {m m'}
(i : Fin m) (xs : Vec (Fin m) m) (eq : m ≡ m') →
lookup (subst Fin eq i)
(subst Cauchy eq xs) ≡ subst Fin eq (lookup i xs)
lookup-subst2 i xs refl = refl
allFin+ : (m n : ℕ) → allFin (m + n) ≡
mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
allFin+ m n = trans (tabulate-split {m} {n})
(cong₂ _++V_ (tabulate-allFin {m} (inject+ n)) (tabulate-allFin {n} (raise m)))
-- swap+ is idempotent
--
-- outline of swap+idemp proof
--
-- allFin (m + n) ≡ mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
-- zero-m : Vec (Fin (m + n)) m ≡ mapV (inject+ n) (allFin m)
-- m-sum : Vec (Fin (m + n)) n ≡ mapV (raise m) (allFin n)
-- allFin (n + m) ≡ mapV (inject+ m) (allFin n) ++V mapV (raise n) (allFin m)
-- zero-n : Vec (Fin (n + m)) n ≡ mapV (inject+ m) (allFin n)
-- n-sum : Vec (Fin (n + m)) m ≡ mapV (raise n) (allFin m)
--
-- first swap re-arranges allFin (n + m) to n-sum ++V zero-n
-- second swap re-arranges allfin (m + n) to m-sum ++V zero-m
--
-- for i = 0, ..., m-1, we have inject+ n i : Fin (m + n)
-- lookup (lookup (inject+ n i) (n-sum ++V zero-n)) (m-sum ++V zero-m) ==>
-- lookup (lookup i n-sum) (m-sum ++V zero-m) ==>
-- lookup (raise n i) (m-sum ++V zero-m) ==>
-- lookup i zero-m ==>
-- inject+ n i
--
-- for i = m, ..., m+n-1, we have raise m i : Fin (m + n)
-- lookup (lookup (raise m i) (n-sum ++V zero-n)) (m-sum ++V zero-m) ==>
-- lookup (lookup i zero-n) (m-sum ++V zero-m) ==>
-- lookup (inject+ m i) (m-sum ++V zero-m) ==>
-- lookup i m-sum ==>
-- raise m i
swap+-left : (m n : ℕ) → ∀ (i : Fin m) →
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
lookup (lookup (inject+ n i) (swap+cauchy m n)) q ≡ inject+ n i
swap+-left m n i =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin (
lookup (lookup (inject+ n i) (swap+cauchy m n)) q
≡⟨ cong (flip lookup q) ( (lookup-++-inject+ (tabulate {m} (id+ {m} {n} ∘ raise n))
(tabulate {n} (id+ {m} {n} ∘ inject+ m)) i)) ⟩
lookup (lookup i (tabulate (λ x → subst Fin (+-comm n m) (raise n x)))) q
≡⟨ cong (flip lookup q) (lookup∘tabulate (λ x → subst Fin (+-comm n m) (raise n x)) i) ⟩
lookup (subst Fin (+-comm n m) (raise n i)) q
≡⟨ lookup-subst2 (raise n i) (swap+cauchy n m) (+-comm n m) ⟩
subst Fin (+-comm n m) (lookup (raise n i) (swap+cauchy n m))
≡⟨ cong (subst Fin (+-comm n m))
(lookup-++-raise (tabulate {n} (id+ {n} ∘ raise m)) (tabulate {m} (id+ {n} ∘ inject+ n)) i) ⟩
subst Fin (+-comm n m)
(lookup i (tabulate (λ z → subst Fin (+-comm m n) (inject+ n z))))
≡⟨ subst-lookup-tabulate-inject+ i ⟩
inject+ n i ∎)
where open ≡-Reasoning
swap+-right : (m n : ℕ) → (i : Fin n) →
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
lookup (lookup (raise m i) (swap+cauchy m n)) q ≡ raise m i
swap+-right m n i =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin (
lookup (lookup (raise m i) (swap+cauchy m n)) q
≡⟨ cong (flip lookup q) ( (lookup-++-raise (tabulate {m} (id+ {m} {n} ∘ raise n))
(tabulate {n} (id+ {m} {n} ∘ inject+ m)) i)) ⟩
lookup (lookup i (tabulate (λ x → subst Fin (+-comm n m) (inject+ m x)))) q
≡⟨ cong (flip lookup q) (lookup∘tabulate (λ x → subst Fin (+-comm n m) (inject+ m x)) i) ⟩
lookup (subst Fin (+-comm n m) (inject+ m i)) q
≡⟨ lookup-subst2 (inject+ m i) (swap+cauchy n m) (+-comm n m) ⟩
subst Fin (+-comm n m) (lookup (inject+ m i) (swap+cauchy n m))
≡⟨ cong (subst Fin (+-comm n m))
(lookup-++-inject+ (tabulate {n} (id+ {n} ∘ raise m)) (tabulate {m} (id+ {n} ∘ inject+ n)) i) ⟩
subst Fin (+-comm n m)
(lookup i (tabulate (λ z → subst Fin (+-comm m n) (raise m z))))
≡⟨ subst-lookup-tabulate-raise i ⟩
raise m i ∎)
where open ≡-Reasoning
swap+idemp : (m n : ℕ) →
scompcauchy
(swap+cauchy m n)
(subst Cauchy (+-comm n m) (swap+cauchy n m))
≡
allFin (m + n)
swap+idemp m n =
let q = subst Cauchy (+-comm n m) (swap+cauchy n m) in
begin
(tabulate (λ i → lookup (lookup i (swap+cauchy m n)) q)
≡⟨ tabulate-split {m} {n} ⟩
tabulate {m} (λ i → lookup (lookup (inject+ n i) (swap+cauchy m n)) q)
++V
tabulate {n} (λ i → lookup (lookup (raise m i) (swap+cauchy m n)) q)
≡⟨ cong₂ _++V_ (finext (swap+-left m n))
(finext (swap+-right m n)) ⟩
tabulate {m} (inject+ n) ++V tabulate {n} (raise m)
≡⟨ unSplit {m} {n} id ⟩
allFin (m + n) ∎)
where open ≡-Reasoning
-- Behaviour of parallel additive composition wrt sequential
-- a direct proof is hard, but this is really a statement about vectors
lookup-left : ∀ {m n} → (i : Fin m) → (pm : Cauchy m) → (pn : Cauchy n) →
lookup (inject+ n i) (mapV (inject+ n) pm ++V mapV (raise m) pn)
≡ inject+ n (lookup i pm)
lookup-left {m} {n} i pm pn = look-left i (inject+ n) (raise m) pm pn
-- as is this
lookup-right : ∀ {m n} → (i : Fin n) → (pm : Cauchy m) → (pn : Cauchy n) →
lookup (raise m i) (mapV (inject+ n) pm ++V mapV (raise m) pn)
≡ raise m (lookup i pn)
lookup-right {m} {n} i pm pn = look-right i (inject+ n) (raise m) pm pn
--- find a better name
look-left' : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
(i : Fin m) →
(lookup (lookup (inject+ n i) (pcompcauchy pm pn)) (pcompcauchy qm qn))
≡ inject+ n (lookup (lookup i pm) qm)
look-left' {m} {n} pm qm pn qn i =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
begin (
lookup (lookup (inject+ n i) pp) qq
≡⟨ cong (flip lookup qq) (lookup-++-inject+ (mapV (inject+ n) pm) (mapV (raise m) pn) i) ⟩
lookup (lookup i (mapV (inject+ n) pm)) qq
≡⟨ cong (flip lookup qq) (lookup-map i (inject+ n) pm) ⟩
lookup (inject+ n (lookup i pm)) qq
≡⟨ lookup-left (lookup i pm) qm qn ⟩
inject+ n (lookup (lookup i pm) qm) ∎)
where open ≡-Reasoning
look-right' : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
(i : Fin n) →
(lookup (lookup (raise m i) (pcompcauchy pm pn)) (pcompcauchy qm qn))
≡ raise m (lookup (lookup i pn) qn)
look-right' {m} {n} pm qm pn qn i =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
begin (
lookup (lookup (raise m i) pp) qq
≡⟨ cong (flip lookup qq) (lookup-++-raise (mapV (inject+ n) pm) (mapV (raise m) pn) i) ⟩
lookup (lookup i (mapV (raise m) pn)) qq
≡⟨ cong (flip lookup qq) (lookup-map i (raise m) pn) ⟩
lookup (raise m (lookup i pn)) qq
≡⟨ lookup-right (lookup i pn) qm qn ⟩
raise m (lookup (lookup i pn) qn) ∎)
where open ≡-Reasoning
pcomp-dist : ∀ {m n} → (pm qm : Cauchy m) → (pn qn : Cauchy n) →
scompcauchy (pcompcauchy pm pn) (pcompcauchy qm qn) ≡
pcompcauchy (scompcauchy pm qm) (scompcauchy pn qn)
pcomp-dist {m} {n} pm qm pn qn =
let pp = pcompcauchy pm pn in
let qq = pcompcauchy qm qn in
let look = λ i → lookup (lookup i pp) qq in
begin (scompcauchy pp qq
≡⟨ refl ⟩
tabulate look
≡⟨ tabulate-split {m} {n} ⟩
splitV+ {m} {n} {f = look}
≡⟨ cong₂ _++V_ (finext {m} (look-left' pm qm pn qn))
(finext {n} (look-right' pm qm pn qn)) ⟩
tabulate (λ i → (inject+ n) (lookup (lookup i pm) qm)) ++V
tabulate (λ i → (raise m) (lookup (lookup i pn) qn))
≡⟨ cong₂ _++V_
(tabulate-∘ (inject+ n) (λ i → lookup (lookup i pm) qm))
(tabulate-∘ (raise m) (λ i → lookup (lookup i pn) qn)) ⟩
mapV (inject+ n) (tabulate (λ i → lookup (lookup i pm) qm)) ++V
mapV (raise m) (tabulate (λ i → lookup (lookup i pn) qn))
≡⟨ refl ⟩
pcompcauchy (scompcauchy pm qm) (scompcauchy pn qn) ∎)
where open ≡-Reasoning
pcomp-id : ∀ {m n} → pcompcauchy (idcauchy m) (idcauchy n) ≡ idcauchy (m + n)
pcomp-id {m} {n} =
begin (mapV (inject+ n) (idcauchy m) ++V (mapV (raise m) (idcauchy n))
≡⟨ refl ⟩
mapV (inject+ n) (allFin m) ++V mapV (raise m) (allFin n)
≡⟨ cong₂ _++V_
(sym (tabulate-allFin {m} (inject+ n)))
(sym (tabulate-allFin (raise m))) ⟩
tabulate {m} (inject+ n) ++V tabulate {n} (raise m)
≡⟨ unSplit {m} {n} id ⟩
idcauchy (m + n) ∎)
where open ≡-Reasoning
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5517860348,
"avg_line_length": 42.3650190114,
"ext": "agda",
"hexsha": "4e5ca69ac85377ebe74c629cc27caa542b5d5ce6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/CauchyProofs.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/CauchyProofs.agda",
"max_line_length": 120,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/CauchyProofs.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4249,
"size": 11142
}
|
-- Copyright 2019, Xuanrui Qi
-- Original algorithm by: Jacques Garrigue, Xuanrui Qi & Kazunari Tanaka
open import Data.Nat hiding (compare)
open import Data.Nat.Properties
open import Relation.Binary
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; subst; sym; inspect; [_])
open Eq.≡-Reasoning
open import Data.Product
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
module RedBlack
{c r} {A : Set c} {_<_ : Rel A r}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
open IsStrictTotalOrder isStrictTotalOrder
data Color : Set where
Red : Color
Black : Color
incr-Black : ℕ → Color → ℕ
incr-Black d Black = suc d
incr-Black d Red = d
color-valid : Color → Color → Set
color-valid Red Red = ⊥
color-valid _ _ = ⊤
inv : Color → Color
inv Red = Black
inv Black = Red
valid-*-Black : ∀ c → color-valid c Black
valid-*-Black Red = tt
valid-*-Black Black = tt
data Tree : ℕ → Color → Set c where
Leaf : Tree 0 Black
Node : ∀ {d cₗ cᵣ} c → color-valid c cₗ → color-valid c cᵣ →
Tree d cₗ → A → Tree d cᵣ → Tree (incr-Black d c) c
RNode : ∀ {d} → Tree d Black → A → Tree d Black → Tree d Red
RNode = Node Red tt tt
BNode : ∀ {d cₗ cᵣ} → Tree d cₗ → A → Tree d cᵣ → Tree (suc d) Black
BNode = Node Black tt tt
-- Insertion algorithm
data InsTree : ℕ → Color → Set c where
Fix : ∀ {d} → Tree d Black → A → Tree d Black → A → Tree d Black → InsTree d Red
T : ∀ {d c} cₚ → Tree d c → InsTree d cₚ
InsTree-color : ∀ {d c} → InsTree d c → Color
InsTree-color (Fix _ _ _ _ _) = Red
InsTree-color (T _ _) = Black
fix-color : ∀ {d c} → InsTree d c → Color
fix-color (Fix _ _ _ _ _) = Black
fix-color (T {c = c} _ _) = c
fix-InsTree : ∀ {d c} → (t : InsTree d c) → Tree (incr-Black d (inv (InsTree-color t))) (fix-color t)
fix-InsTree (Fix t₁ x t₂ y t₃) = BNode (RNode t₁ x t₂) y t₃
fix-InsTree (T _ t) = t
balanceₗ : ∀ {d cₗ cᵣ} c → (l : InsTree d cₗ) → A → Tree d cᵣ → color-valid c (InsTree-color l) → color-valid c cᵣ → InsTree (incr-Black d c) c
balanceₗ Black (Fix t₁ x t₂ y t₃) z t₄ _ _ = T Black (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
balanceₗ Black (T _ l) v r _ _ = T Black (BNode l v r)
balanceₗ {cᵣ = Black} Red (T _ (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x t₂)) y t₃ _ _ = Fix t₁ x t₂ y t₃
balanceₗ {cᵣ = Black} Red (T {c = Black} _ l) v r _ _ = T Red (RNode l v r)
balanceᵣ : ∀ {d cₗ cᵣ} c → Tree d cₗ → A → (r : InsTree d cᵣ) → color-valid c cₗ → color-valid c (InsTree-color r) → InsTree (incr-Black d c) c
balanceᵣ Black t₁ x (Fix t₂ y t₃ z t₄) _ _ = T Black (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
balanceᵣ Black l v (T _ r) _ _ = T Black (BNode l v r)
balanceᵣ {cₗ = Black} Red t₁ x (T _ (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₂ y t₃)) _ _ = Fix t₁ x t₂ y t₃
balanceᵣ {cₗ = Black} Red l v (T {c = Black} _ r) _ _ = T Red (RNode l v r)
ins : ∀ {d c} → A → Tree d c → InsTree d c
ins x Leaf = T Black (RNode Leaf x Leaf)
ins x (Node c _ _ l v r) with (compare x v)
ins x (Node c _ _ l v r) | tri< x<v _ _ with ins x l | inspect (ins x) l
ins x (Node Black _ validᵣ l v r) | _ | Fix _ _ _ _ _ | [ insₗ ] = balanceₗ Black (ins x l) v r tt tt
ins x (Node c _ validᵣ l v r) | _ | T _ _ | [ insₗ ] = balanceₗ c (ins x l) v r validₗ validᵣ
where
validₗ = subst (λ t → color-valid c (InsTree-color t)) (sym insₗ) (valid-*-Black c)
ins x t@(Node c _ _ l v r) | tri≈ _ x≡v _ = T _ t
ins x (Node c _ _ l v r) | tri> _ _ x>v with ins x r | inspect (ins x) r
ins x (Node Black validₗ _ l v r) | _ | Fix _ _ _ _ _ | [ insᵣ ] = balanceᵣ Black l v (ins x r) tt tt
ins x (Node c validₗ _ l v r) | _ | T _ _ | [ insᵣ ] = balanceᵣ c l v (ins x r) validₗ validᵣ
where
validᵣ = subst (λ t → color-valid c (InsTree-color t)) (sym insᵣ) (valid-*-Black c)
blacken : ∀ {d c} → Tree d c → Tree (incr-Black d (inv c)) Black
blacken Leaf = Leaf
blacken (Node Black _ _ l v r) = BNode l v r
blacken (Node Red _ _ l v r) = BNode l v r
insert : ∀ {d} → A → Tree d Black → ∃ (λ d' → Tree d' Black)
insert {d = d} x t with ins x t
... | T {c = c} _ t' = (incr-Black d (inv c) , blacken t')
-- Deletion algorithm
data DelTree : ℕ → Color → Set c where
Stay : ∀ {d c} cₚ → color-valid c (inv cₚ) → Tree d c → DelTree d cₚ
Down : ∀ {d} → Tree d Black → DelTree (suc d) Black
bal-right : ∀ {d cₗ cᵣ} c → Tree d cₗ → A → DelTree d cᵣ → color-valid c cₗ → color-valid c cᵣ → DelTree (incr-Black d c) c
bal-right {cₗ = Black} Red l v (Stay {c = Black} _ _ r) _ _ = Stay Red tt (RNode l v r)
bal-right {cₗ = Black} Red l v (Stay {c = Red} Red _ _) _ ()
bal-right Red (Node {cᵣ = Black} Black _ _ t₁ x t₂) y (Down t₃) _ _ = Stay Red tt (BNode t₁ x (RNode t₂ y t₃))
bal-right Red (Node {cᵣ = Red} Black _ _ t₁ x (Node _ _ _ t₂ y t₃)) z (Down t₄) _ _ = Stay Red tt (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
bal-right Black l v (Stay _ _ r) _ _ = Stay Black tt (BNode l v r)
bal-right Black (Node {cᵣ = Red} Black _ _ t₁ x (Node _ _ _ t₂ y t₃)) z (Down t₄) _ _ = Stay Black tt (BNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
bal-right Black (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x (Node {cᵣ = Black} _ _ _ t₂ y t₃)) z (Down t₄) _ _ =
Stay Black tt (BNode t₁ x (BNode t₂ y (RNode t₃ z t₄)))
bal-right Black (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x (Node {cᵣ = Red} _ _ _ t₂ y (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₃ z t₄))) w (Down t₅) _ _ =
Stay Black tt (BNode t₁ x (RNode (BNode t₂ y t₃) z (BNode t₄ w t₅)))
bal-right Black (Node {cᵣ = Black} Black _ _ t₁ x t₂) y (Down t₃) _ _ = Down (BNode t₁ x (RNode t₂ y t₃))
bal-left : ∀ {d cₗ cᵣ} c → DelTree d cₗ → A → Tree d cᵣ → color-valid c cₗ → color-valid c cᵣ → DelTree (incr-Black d c) c
bal-left {cₗ = Black} {cᵣ = Black} Red (Stay {c = Black} _ _ l) v r _ _ = Stay Red tt (RNode l v r)
bal-left {cₗ = Black} {cᵣ = Black} Red (Stay {c = Red} _ () l) v r _ _
bal-left {cₗ = Black} {cᵣ = Black} Red (Down t₁) x (Node {cₗ = Red} _ _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) _ _ =
Stay Red tt (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
bal-left {cₗ = Black} {cᵣ = Black} Red (Down t₁) x (Node {cₗ = Black} _ _ _ t₂ y t₃) _ _ = Stay Red tt (BNode (RNode t₁ x t₂) y t₃)
bal-left Black (Stay _ _ l) v r _ _ = Stay Black tt (BNode l v r)
bal-left {cᵣ = Black} Black (Down t₁) x (Node {cₗ = Red} Black _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) _ _ =
Stay Black tt (BNode (BNode t₁ x t₂) y (BNode t₃ z t₄))
bal-left {cᵣ = Red} Black (Down t₁) x (Node {cₗ = Black} {cᵣ = Black} _ _ _ (Node {cₗ = Red} Black _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) w t₅) _ _ =
Stay Black tt (BNode (BNode t₁ x t₂) y (RNode (BNode t₃ z t₄) w t₅))
bal-left {cᵣ = Red} Black (Down t₁) x (Node {cₗ = Black} {cᵣ = Black} _ _ _ (Node {cₗ = Black} _ _ _ t₂ y t₃) z t₄) _ _ =
Stay Black tt (BNode (BNode (RNode t₁ x t₂) y t₃) z t₄)
bal-left {cᵣ = Black} Black (Down t₁) x (Node {cₗ = Black} _ _ _ t₂ y t₃) _ _ = Down (BNode (RNode t₁ x t₂) y t₃)
|
{
"alphanum_fraction": 0.5912897822,
"avg_line_length": 52.2919708029,
"ext": "agda",
"hexsha": "434f91df79e539328d325681ef3bb239db31da1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0c33dff4b114381561c011df4d5cf5da7a083f0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xuanruiqi/dtp",
"max_forks_repo_path": "RedBlack.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0c33dff4b114381561c011df4d5cf5da7a083f0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xuanruiqi/dtp",
"max_issues_repo_path": "RedBlack.agda",
"max_line_length": 169,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0c33dff4b114381561c011df4d5cf5da7a083f0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xuanruiqi/dtp",
"max_stars_repo_path": "RedBlack.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3091,
"size": 7164
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.