Search is not available for this dataset
text
string | meta
dict |
---|---|
module foldr-++ where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; cong)
open Eq.≡-Reasoning
open import lists using (List; _∷_; []; _++_; foldr)
-- 結合したリストの重畳は、重畳した結果を初期値とした重畳と等しいことの証明
foldr-++ : ∀ {A B : Set} → (_⊗_ : A → B → B) → (e : B) → (xs ys : List A)
→ foldr _⊗_ e (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ e ys) xs
foldr-++ _⊗_ e [] ys =
begin
foldr _⊗_ e ([] ++ ys)
≡⟨⟩
foldr _⊗_ e ys
≡⟨⟩
foldr _⊗_ (foldr _⊗_ e ys) []
∎
foldr-++ _⊗_ e (x ∷ xs) ys =
begin
foldr _⊗_ e ((x ∷ xs) ++ ys)
≡⟨⟩
x ⊗ (foldr _⊗_ e (xs ++ ys))
≡⟨ cong (x ⊗_) (foldr-++ _⊗_ e xs ys) ⟩
x ⊗ (foldr _⊗_ (foldr _⊗_ e ys) xs)
≡⟨⟩
foldr _⊗_ (foldr _⊗_ e ys) (x ∷ xs)
∎
|
{
"alphanum_fraction": 0.5195530726,
"avg_line_length": 24.6896551724,
"ext": "agda",
"hexsha": "28335f0d8944a3f0abdcbc4a25260a8ffdb033d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/lists/foldr-++.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/lists/foldr-++.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/lists/foldr-++.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 403,
"size": 716
}
|
module LC.Subst.Term where
open import LC.Base
open import LC.Subst.Var
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Nullary
--------------------------------------------------------------------------------
-- lifting terms
lift : (n i : ℕ) → Term → Term
lift n i (var x) = var (lift-var n i x)
lift n i (ƛ M) = ƛ lift (suc n) i M
lift n i (M ∙ N) = lift n i M ∙ lift n i N
--------------------------------------------------------------------------------
-- properties of lift
open import Relation.Binary.PropositionalEquality hiding ([_])
-- lift l (n + i)
-- ∙ --------------------------> ∙
-- | |
-- | |
-- lift l (n + m + i) lift (l + n) m
-- | |
-- ∨ ∨
-- ∙ --------------------------> ∙
--
lift-lemma : ∀ l m n i N → lift l (n + m + i) N ≡ lift (l + n) m (lift l (n + i) N)
lift-lemma l m n i (var x) = cong var_ (LC.Subst.Var.lift-var-lemma l m n i x)
lift-lemma l m n i (ƛ M) = cong ƛ_ (lift-lemma (suc l) m n i M)
lift-lemma l m n i (M ∙ N) = cong₂ _∙_ (lift-lemma l m n i M) (lift-lemma l m n i N)
-- lift (l + n) i
-- ∙ --------------------------> ∙
-- | |
-- | |
-- lift l m lift l m
-- | |
-- ∨ ∨
-- ∙ --------------------------> ∙
-- lift (l + m + n) i
lift-lift : ∀ l m n i N → lift l m (lift (l + n) i N) ≡ lift (l + m + n) i (lift l m N)
lift-lift l m n i (var x) = cong var_ (lift-var-lift-var l m n i x)
lift-lift l m n i (ƛ N) = cong ƛ_ (lift-lift (suc l) m n i N)
lift-lift l m n i (M ∙ N) = cong₂ _∙_ (lift-lift l m n i M) (lift-lift l m n i N)
--------------------------------------------------------------------------------
-- substituting variables
data Match : ℕ → ℕ → Set where
Under : ∀ {i x} → x < i → Match x i
Exact : ∀ {i x} → x ≡ i → Match x i
Above : ∀ {i} v → suc v > i → Match (suc v) i
open import Relation.Binary.Definitions
match : (x i : ℕ) → Match x i
match x i with <-cmp x i
match x i | tri< a ¬b ¬c = Under a
match x i | tri≈ ¬a b ¬c = Exact b
match (suc x) i | tri> ¬a ¬b c = Above x c
subst-var : ∀ {x i} → Match x i → Term → Term
subst-var {x} (Under _) N = var x
subst-var {_} {i} (Exact _) N = lift 0 i N
subst-var (Above x _) N = var x
--------------------------------------------------------------------------------
-- properties of subst-var
open import Relation.Nullary.Negation using (contradiction)
open ≡-Reasoning
subst-var-match-< : ∀ {m n} N → (m<n : m < n) → subst-var (match m n) N ≡ var m
subst-var-match-< {m} {n} N m<n with match m n
... | Under m<n' = refl
... | Exact m≡n = contradiction m≡n (<⇒≢ m<n)
... | Above _ m>n = contradiction m>n (<⇒≱ (≤-step m<n))
subst-var-match-≡ : ∀ {m n} N → (m≡n : m ≡ n) → subst-var {_} {n} (match m n) N ≡ lift 0 n N
subst-var-match-≡ {m} {.m} N refl with match m m
... | Under m<m = contradiction refl (<⇒≢ m<m)
... | Exact m≡m = refl
... | Above _ m>m = contradiction refl (<⇒≢ m>m)
subst-var-match-> : ∀ {m n} N → (1+m>n : suc m > n) → subst-var (match (suc m) n) N ≡ var m
subst-var-match-> {m} {n} N 1+m<n with match (suc m) n
... | Under m<n = contradiction m<n (<⇒≱ (≤-step 1+m<n))
... | Exact m≡n = contradiction (sym m≡n) (<⇒≢ 1+m<n)
... | Above _ m>n = refl
-- subst-var (match x m)
-- ∙ -------------------------------------------------------> ∙
-- | |
-- | |
-- lift n lift (m + n)
-- | |
-- ∨ ∨
-- ∙ --------------------------------------------------------> ∙
-- subst-var (match (lift-var (suc (m + n)) i x) m)
open import Relation.Binary.PropositionalEquality hiding (preorder; [_])
open ≡-Reasoning
subst-var-lift : ∀ m n i x N
→ subst-var (match (lift-var (suc (m + n)) i x) m) (lift n i N)
≡ lift (m + n) i (subst-var (match x m) N)
subst-var-lift m n i x N with match x m
... | Under x<m =
begin
subst-var (match (lift-var (suc (m + n)) i x) m) (lift n i N)
≡⟨ cong (λ w → subst-var (match w m) (lift n i N)) (LC.Subst.Var.lift-var-> prop1) ⟩
subst-var (match x m) (lift n i N)
≡⟨ subst-var-match-< (lift n i N) x<m ⟩
var x
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-> prop2)) ⟩
lift (m + n) i (var x)
∎
where
prop1 : suc (m + n) > x
prop1 = ≤-trans x<m (≤-step (m≤m+n m n))
prop2 : m + n > x
prop2 = ≤-trans x<m (m≤m+n m n)
... | Exact refl =
begin
subst-var (match (lift-var (suc (m + n)) i m) m) (lift n i N)
≡⟨ cong (λ w → subst-var (match w m) (lift n i N)) (LC.Subst.Var.lift-var-> prop) ⟩
subst-var (match m m) (lift n i N)
≡⟨ subst-var-match-≡ (lift n i N) refl ⟩
lift 0 m (lift n i N)
≡⟨ lift-lift 0 m n i N ⟩
lift (m + n) i (lift 0 m N)
∎
where
prop : suc (m + n) > m
prop = s≤s (m≤m+n m n)
... | Above v m≤v with inspectBinding (suc m + n) (suc v)
... | Free n≤x =
begin
subst-var (match (i + suc v) m) (lift n i N)
≡⟨ cong (λ w → subst-var (match w m) (lift n i N)) (+-suc i v) ⟩
subst-var (match (suc i + v) m) (lift n i N)
≡⟨ subst-var-match-> (lift n i N) prop ⟩
var (i + v)
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-≤ prop2)) ⟩
var (lift-var (m + n) i v)
∎
where
prop : suc (i + v) > m
prop = s≤s (≤-trans (≤-pred m≤v) (m≤n+m v i))
prop2 : m + n ≤ v
prop2 = ≤-pred n≤x
... | Bound n>x =
begin
subst-var (match (suc v) m) (lift n i N)
≡⟨ subst-var-match-> {v} {m} (lift n i N) m≤v ⟩
var v
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-> {m + n} {i} {v} (≤-pred n>x))) ⟩
var (lift-var (m + n) i v)
∎
|
{
"alphanum_fraction": 0.4054950261,
"avg_line_length": 35.9829545455,
"ext": "agda",
"hexsha": "a3ab38b89a0473615773daa6c22acc237e55cea0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Subst/Term.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Subst/Term.agda",
"max_line_length": 92,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Subst/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 2119,
"size": 6333
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Concrete.Records
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Impl.Consensus.ConsensusProvider as ConsensusProvider
open import LibraBFT.Impl.Consensus.Properties.ConsensusProvider as ConsensusProviderProps
import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile
open import LibraBFT.Impl.IO.OBM.InputOutputHandlers
open import LibraBFT.Impl.IO.OBM.Start
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.Properties.Util
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.NetworkMsg
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.PKCS
open import Util.Prelude
open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms
open Invariants
open RoundManagerTransProps
open InitProofDefs
module LibraBFT.Impl.IO.OBM.Properties.Start where
module startViaConsensusProviderSpec
(now : Instant)
(nfl : GenKeyFile.NfLiwsVsVvPe)
(txTDS : TxTypeDependentStuffForNetwork)
where
-- It is somewhat of an overkill to write a separate contract for the last step,
-- but keeping it explicit for pedagogical reasons
contract-step₁ : ∀ (tup : (NodeConfig × OnChainConfigPayload × LedgerInfoWithSignatures × SK × ProposerElection))
→ EitherD-weakestPre (startViaConsensusProvider-ed.step₁ now nfl txTDS tup) (InitContract nothing)
contract-step₁ (nodeConfig , payload , liws , sk , pe) =
startConsensusSpec.contract' nodeConfig now payload liws sk ObmNeedFetch∙new
(txTDS ^∙ ttdsnProposalGenerator) (txTDS ^∙ ttdsnStateComputer)
contract' : EitherD-weakestPre (startViaConsensusProvider-ed-abs now nfl txTDS) (InitContract nothing)
contract' rewrite startViaConsensusProvider-ed-abs-≡ =
-- TODO-2: this is silly; perhaps we should have an EitherD-⇒-bind-const or something for when
-- we don't need to know anything about the values returned by part before the bind?
EitherD-⇒-bind (ConsensusProvider.obmInitialData-ed-abs nfl)
(EitherD-vacuous (ConsensusProvider.obmInitialData-ed-abs nfl))
P⇒Q
where
P⇒Q : EitherD-Post-⇒ (const Unit) (EitherD-weakestPre-bindPost _ (InitContract nothing))
P⇒Q (Left _) _ = tt
P⇒Q (Right tup') _ c refl = contract-step₁ tup'
|
{
"alphanum_fraction": 0.7537688442,
"avg_line_length": 48.0344827586,
"ext": "agda",
"hexsha": "20ae99d8b2d4486f41f17bad0d8cfebff614daf6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/Start.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/Start.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/Start.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 761,
"size": 2786
}
|
open import Level
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
module AlgProg where
-- 1.1 Datatypes
private
variable
l : Level
data Bool : Set where
false : Bool
true : Bool
data Char : Set where
ca : Char
cb : Char
cc : Char
data Either : Set where
bool : Bool → Either
char : Char → Either
data Both : Set where
tuple : Bool × Char → Both
not : Bool → Bool
not false = true
not true = false
switch : Both → Both
switch (tuple (b , c)) = tuple (not b , c)
and : (Bool × Bool) → Bool
and (false , _) = false
and (true , b) = b
cand : Bool → Bool → Bool
cand false _ = false
cand true b = b
curry' : {A B C : Set} → (B → (C → A)) → ((B × C) → A)
curry' f (b , c) = f b c
data maybe (A : Set l) : Set l where
nothing : maybe A
just : (x : A) → maybe A
-- 1.2 Natural Numbers
data Nat : Set where
zero' : Nat
1+ : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
{-
plus : Nat × Nat → Nat
plus (n , zero') = n
plus (n , succ m) = succ (plus (n , m))
mult : Nat × Nat → Nat
mult (n , zero') = zero'
mult (n , succ m) = plus (n , mult (n , m))
-}
_+_ : Nat → Nat → Nat
n + 0 = n
n + (1+ m) = 1+ (n + m)
_*_ : Nat → Nat → Nat
n * 0 = 0
n * (1+ m) = n + (n * m)
fact : Nat → Nat
fact 0 = 1
fact (1+ n) = (1+ n) * (fact n)
fib : Nat → Nat
fib 0 = 0
fib (1+ 0) = 1
fib (1+ (1+ n)) = (fib n) + (fib (1+ n))
foldn : {A : Set} → A → (A → A) → (Nat → A)
foldn c h 0 = c
foldn c h (1+ n) = h (foldn c h n)
foldn1+is+ : (m n : Nat) → (m + n) ≡ ((foldn m 1+) n)
foldn1+is+ m 0 = refl
foldn1+is+ m (1+ n) = cong 1+ (foldn1+is+ m n)
foldn+is* : (m n : Nat) → m * n ≡ (foldn 0 (λ x → m + x)) n
foldn+is* m 0 = refl
foldn+is* m (1+ n) = cong (λ x → m + x) (foldn+is* m n)
expn : Nat → Nat → Nat
expn m = foldn 1 (λ n → m * n)
outl : {A B : Set} → (A × B) → A
outl (fst , snd) = fst
outr : {A B : Set} → (A × B) → B
outr (fst , snd) = snd
f1 : (Nat × Nat) → Nat × Nat
f1 (m , n) = (1+ m , (1+ m) * n)
rec-× : {A B C D : Set} → (f : A → B) → (g : C → D) → ((A × C) -> (B × D))
rec-× f g (a , c) = (f a , g c)
outrFoldnIsFact : (n : Nat) → (foldn (0 , 1) f1 n) ≡ (n , fact n)
outrFoldnIsFact zero' = refl
outrFoldnIsFact (1+ n) rewrite (outrFoldnIsFact n) = refl
-- 1.3 Lists
data listr (A : Set l) : Set l where
nil : listr A
cons : A → listr A → listr A
data listl (A : Set l) : Set l where
nil : listl A
snoc : listl A → A → listl A
snocr : {A : Set} → listr A → A → listr A
snocr nil a = cons a nil
snocr (cons a0 as) a1 = cons a0 (snocr as a1)
convert : {A : Set} → listl A → listr A
convert nil = nil
convert (snoc xs x) = snocr (convert xs) x
_++_ : {A : Set} → listl A → listl A → listl A
xs ++ nil = xs
xs ++ snoc ys x = snoc (xs ++ ys) x
++-assoc : {A : Set} → (xs ys zs : listl A) → (xs ++ (ys ++ zs)) ≡ ((xs ++ ys) ++ zs)
++-assoc xs ys nil = refl
++-assoc xs ys (snoc zs x) = cong (λ y → snoc y x) (++-assoc xs ys zs)
listrF : {A B : Set} → (A → B) → listr A → listr B
listrF f nil = nil
listrF f (cons x as) = cons (f x) (listrF f as)
foldr : {A B : Set} → B → (A → B → B) → (listr A → B)
foldr c h nil = c
foldr c h (cons a as) = h a (foldr c h as)
|
{
"alphanum_fraction": 0.5363321799,
"avg_line_length": 20.3782051282,
"ext": "agda",
"hexsha": "d691dadfa72daf790e942a03a2dbefb29f7686b4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a95902da2286ff588f4a97f6b23700fd325a564f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "polymonyrks/algprog",
"max_forks_repo_path": "AlgProg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a95902da2286ff588f4a97f6b23700fd325a564f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "polymonyrks/algprog",
"max_issues_repo_path": "AlgProg.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a95902da2286ff588f4a97f6b23700fd325a564f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "polymonyrks/algprog",
"max_stars_repo_path": "AlgProg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1346,
"size": 3179
}
|
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Unit.NonEta
open import Data.Empty
open import Data.Sum
open import Data.Product
open import Data.Product.Properties
open import Data.Fin
open import Data.Fin.Properties renaming (_≟_ to _≟Fin_)
open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
open import Data.Nat.Divisibility
open import Data.List renaming (map to List-map)
open import Data.List.Properties using (∷-injective)
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All renaming (map to All-map)
open import Data.List.Relation.Unary.All.Properties hiding (All-map)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Relation.Binary.Pointwise using (decidable-≡)
open import Data.Bool
open import Data.Maybe renaming (map to Maybe-map)
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Relation.Nullary
-- This module provides an injective way to encode natural numbers
module Data.Nat.Encode where
-- Represents a list of binary digits with
-- a leading one in reverse order.
--
-- 9, in binary: 1001
--
-- remove leading 1: 001,
-- reverse: 100
--
-- as 𝔹+1: I O O ε
--
data 𝔹+1 : Set where
ε : 𝔹+1
O_ : 𝔹+1 → 𝔹+1
I_ : 𝔹+1 → 𝔹+1
from𝔹+1 : 𝔹+1 → ℕ
from𝔹+1 ε = 1
from𝔹+1 (O b) = 2 * from𝔹+1 b
from𝔹+1 (I b) = suc (2 * from𝔹+1 b)
-- Adds zero to our representation
data 𝔹 : Set where
z : 𝔹
s : 𝔹+1 → 𝔹
from𝔹 : 𝔹 → ℕ
from𝔹 z = 0
from𝔹 (s b) = from𝔹+1 b
inc : 𝔹+1 → 𝔹+1
inc ε = O ε
inc (O x) = I x
inc (I x) = O (inc x)
inc-ε-⊥ : ∀{b} → inc b ≡ ε → ⊥
inc-ε-⊥ {ε} ()
inc-ε-⊥ {O b} ()
inc-ε-⊥ {I b} ()
to𝔹+1 : ℕ → 𝔹+1
to𝔹+1 zero = ε
to𝔹+1 (suc n) = inc (to𝔹+1 n)
to𝔹 : ℕ → 𝔹
to𝔹 zero = z
to𝔹 (suc n) = s (to𝔹+1 n)
toBitString+1 : 𝔹+1 → List Bool
toBitString+1 ε = []
toBitString+1 (I x) = true ∷ toBitString+1 x
toBitString+1 (O x) = false ∷ toBitString+1 x
toBitString : 𝔹 → List Bool
toBitString z = []
-- For an actual binary number as we know, we need
-- to reverse the result of toBitString+1; for the sake of encoding
-- a number as a list of booleans, this works just fine
toBitString (s x) = true ∷ toBitString+1 x
encodeℕ : ℕ → List Bool
encodeℕ = toBitString ∘ to𝔹
---------------------
-- Injectivity proofs
O-inj : ∀{b1 b2} → O b1 ≡ O b2 → b1 ≡ b2
O-inj refl = refl
I-inj : ∀{b1 b2} → I b1 ≡ I b2 → b1 ≡ b2
I-inj refl = refl
s-inj : ∀{b1 b2} → s b1 ≡ s b2 → b1 ≡ b2
s-inj refl = refl
inc-inj : ∀ b1 b2 → inc b1 ≡ inc b2 → b1 ≡ b2
inc-inj ε ε hip = refl
inc-inj ε (I b2) hip = ⊥-elim (inc-ε-⊥ (sym (O-inj hip)))
inc-inj (I b1) ε hip = ⊥-elim (inc-ε-⊥ (O-inj hip))
inc-inj (O b1) (O b2) hip = cong O_ (I-inj hip)
inc-inj (I b1) (I b2) hip = cong I_ (inc-inj b1 b2 (O-inj hip))
to𝔹+1-inj : ∀ n m → to𝔹+1 n ≡ to𝔹+1 m → n ≡ m
to𝔹+1-inj zero zero hip = refl
to𝔹+1-inj zero (suc m) hip = ⊥-elim (inc-ε-⊥ (sym hip))
to𝔹+1-inj (suc n) zero hip = ⊥-elim (inc-ε-⊥ hip)
to𝔹+1-inj (suc n) (suc m) hip = cong suc (to𝔹+1-inj n m (inc-inj _ _ hip))
to𝔹-inj : ∀ n m → to𝔹 n ≡ to𝔹 m → n ≡ m
to𝔹-inj zero zero hip = refl
to𝔹-inj (suc n) (suc m) hip = cong suc (to𝔹+1-inj n m (s-inj hip))
toBitString+1-inj : ∀ b1 b2 → toBitString+1 b1 ≡ toBitString+1 b2
→ b1 ≡ b2
toBitString+1-inj ε ε hip = refl
toBitString+1-inj (O b1) (O b2) hip
= cong O_ (toBitString+1-inj b1 b2 (proj₂ (∷-injective hip)))
toBitString+1-inj (I b1) (I b2) hip
= cong I_ (toBitString+1-inj b1 b2 (proj₂ (∷-injective hip)))
toBitString-inj : ∀ b1 b2 → toBitString b1 ≡ toBitString b2
→ b1 ≡ b2
toBitString-inj z z hip = refl
toBitString-inj (s x) (s x₁) hip
= cong s (toBitString+1-inj x x₁ (proj₂ (∷-injective hip)))
encodeℕ-inj : ∀ n m → encodeℕ n ≡ encodeℕ m → n ≡ m
encodeℕ-inj n m hip = to𝔹-inj n m (toBitString-inj (to𝔹 n) (to𝔹 m) hip)
|
{
"alphanum_fraction": 0.6353310778,
"avg_line_length": 28.9370629371,
"ext": "agda",
"hexsha": "2cfab2026a47f2d569d7b66e2e123c5ecefb6be2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T04:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-22T00:01:03.000Z",
"max_forks_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/aaosl-agda",
"max_forks_repo_path": "Data/Nat/Encode.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0",
"max_issues_repo_issues_event_max_datetime": "2021-02-12T04:16:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-01-04T03:45:34.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/aaosl-agda",
"max_issues_repo_path": "Data/Nat/Encode.agda",
"max_line_length": 111,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/aaosl-agda",
"max_stars_repo_path": "Data/Nat/Encode.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-31T10:16:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-22T00:01:00.000Z",
"num_tokens": 1703,
"size": 4138
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Pointed
module groups.Int where
abstract
ℤ→ᴳ-η : ∀ {i} {G : Group i} (φ : ℤ-group →ᴳ G)
→ GroupHom.f φ ∼ Group.exp G (GroupHom.f φ 1)
ℤ→ᴳ-η φ (pos 0) = GroupHom.pres-ident φ
ℤ→ᴳ-η φ (pos 1) = idp
ℤ→ᴳ-η {G = G} φ (pos (S (S n))) =
GroupHom.pres-comp φ 1 (pos (S n))
∙ ap (Group.comp G (GroupHom.f φ 1)) (ℤ→ᴳ-η φ (pos (S n)))
∙ ! (Group.exp-+ G (GroupHom.f φ 1) 1 (pos (S n)))
ℤ→ᴳ-η φ (negsucc 0) = GroupHom.pres-inv φ 1
ℤ→ᴳ-η {G = G} φ (negsucc (S n)) =
GroupHom.pres-comp φ -1 (negsucc n)
∙ ap2 (Group.comp G) (GroupHom.pres-inv φ 1) (ℤ→ᴳ-η φ (negsucc n))
∙ ! (Group.exp-+ G (GroupHom.f φ 1) -1 (negsucc n))
ℤ-idf-η : ∀ i → i == Group.exp ℤ-group 1 i
ℤ-idf-η = ℤ→ᴳ-η (idhom _)
ℤ→ᴳ-unicity : ∀ {i} {G : Group i}
→ (φ ψ : ℤ-group →ᴳ G)
→ GroupHom.f φ 1 == GroupHom.f ψ 1
→ GroupHom.f φ ∼ GroupHom.f ψ
ℤ→ᴳ-unicity {G = G} φ ψ p i =
ℤ→ᴳ-η φ i ∙ ap (λ g₁ → Group.exp G g₁ i) p ∙ ! (ℤ→ᴳ-η ψ i)
ℤ→ᴳ-equiv-idf : ∀ {i} (G : Group i) → (ℤ-group →ᴳ G) ≃ Group.El G
ℤ→ᴳ-equiv-idf G = equiv (λ φ → GroupHom.f φ 1) (exp-hom G)
(λ _ → idp) (λ φ → group-hom= $ λ= $ ! ∘ ℤ→ᴳ-η φ)
where open Group G
ℤ→ᴳ-iso-idf : ∀ {i} (G : AbGroup i) → hom-group ℤ-group G ≃ᴳ AbGroup.grp G
ℤ→ᴳ-iso-idf G = ≃-to-≃ᴳ (ℤ→ᴳ-equiv-idf (AbGroup.grp G)) (λ _ _ → idp)
ℤ-⊙group : ⊙Group₀
ℤ-⊙group = ⊙[ ℤ-group , 1 ]ᴳ
ℤ-is-infinite-cyclic : is-infinite-cyclic ℤ-⊙group
ℤ-is-infinite-cyclic = is-eq
(Group.exp ℤ-group 1)
(idf ℤ)
(! ∘ ℤ-idf-η)
(! ∘ ℤ-idf-η)
|
{
"alphanum_fraction": 0.552496799,
"avg_line_length": 31.24,
"ext": "agda",
"hexsha": "b27e58ed69458b4b0c931a4cdc334e26dce35d3b",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/Int.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/Int.agda",
"max_line_length": 74,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 803,
"size": 1562
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Setoids.Setoids
module Setoids.Equality {a b : _} {A : Set a} (S : Setoid {a} {b} A) where
open import Setoids.Subset S
_=S_ : {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} (s1 : subset pred1) (s2 : subset pred2) → Set _
_=S_ {pred1 = pred1} {pred2} s1 s2 = (x : A) → (pred1 x → pred2 x) && (pred2 x → pred1 x)
setoidEqualitySymmetric : {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} → (s1 : subset pred1) (s2 : subset pred2) → s1 =S s2 → s2 =S s1
setoidEqualitySymmetric s1 s2 s1=s2 x = _&&_.snd (s1=s2 x) ,, _&&_.fst (s1=s2 x)
setoidEqualityTransitive : {c d e : _} {pred1 : A → Set c} {pred2 : A → Set d} {pred3 : A → Set e} (s1 : subset pred1) (s2 : subset pred2) (s3 : subset pred3) → s1 =S s2 → s2 =S s3 → s1 =S s3
setoidEqualityTransitive s1 s2 s3 s1=s2 s2=s3 x with s1=s2 x
setoidEqualityTransitive s1 s2 s3 s1=s2 s2=s3 x | p1top2 ,, p1top2' with s2=s3 x
setoidEqualityTransitive s1 s2 s3 s1=s2 s2=s3 x | p1top2 ,, p1top2' | fst ,, snd = (λ i → fst (p1top2 i)) ,, λ i → p1top2' (snd i)
setoidEqualityReflexive : {c : _} {pred : A → Set c} (s : subset pred) → s =S s
setoidEqualityReflexive s x = (λ x → x) ,, λ x → x
|
{
"alphanum_fraction": 0.6360211002,
"avg_line_length": 53.08,
"ext": "agda",
"hexsha": "f75ace318895ae46f20b7f0cb6a8225c07771f7c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Equality.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Equality.agda",
"max_line_length": 191,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 550,
"size": 1327
}
|
-- Andreas, 2015-10-28 adapted from test case by
-- Ulf, 2014-02-06, shrunk from Wolfram Kahl's report
open import Common.Equality
open import Common.Unit
open import Common.Nat
postulate
prop : ∀ x → x ≡ unit
record StrictTotalOrder : Set where
field compare : Unit
open StrictTotalOrder
module M (Key : StrictTotalOrder) where
postulate
intersection′-₁ : ∀ x → x ≡ compare Key
to-∈-intersection′ : Nat → Unit → Unit → Set
to-∈-intersection′ zero x h = Unit
to-∈-intersection′ (suc n) x h with intersection′-₁ x
to-∈-intersection′ (suc n) ._ h | refl with prop h
to-∈-intersection′ (suc n) ._ ._ | refl | refl = to-∈-intersection′ n unit unit
|
{
"alphanum_fraction": 0.6705370102,
"avg_line_length": 27.56,
"ext": "agda",
"hexsha": "49803acff2c37ffdee59ed68ee9a3a2c6fa52461",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1035.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1035.agda",
"max_line_length": 86,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1035.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 226,
"size": 689
}
|
------------------------------------------------------------------------
-- A non-recursive variant of H-level.Truncation.Propositional.Erased
------------------------------------------------------------------------
-- The definition does use natural numbers. The code is based on van
-- Doorn's "Constructing the Propositional Truncation using
-- Non-recursive HITs".
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module H-level.Truncation.Propositional.Non-recursive.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
private
open module PD = P.Derived-definitions-and-properties eq
hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude hiding ([_,_])
open import Colimit.Sequential.Very-erased eq as C using (Colimitᴱ)
open import Equality.Decidable-UIP equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹-out-^)
private
variable
a p : Level
A : Type a
P : A → Type p
e x z : A
------------------------------------------------------------------------
-- The type
-- The propositional truncation operator.
∥_∥ᴱ : Type a → Type a
∥ A ∥ᴱ = Colimitᴱ A (∥ A ∥¹-out-^ ∘ suc) O.∣_∣ O.∣_∣
-- The point constructor.
∣_∣ : A → ∥ A ∥ᴱ
∣_∣ = C.∣_∣₀
-- The eliminator.
record Elim {A : Type a} (P : ∥ A ∥ᴱ → Type p) : Type (a ⊔ p) where
no-eta-equality
field
∣∣ʳ : ∀ x → P ∣ x ∣
@0 is-propositionʳ : ∀ x → Is-proposition (P x)
open Elim public
elim : Elim P → (x : ∥ A ∥ᴱ) → P x
elim {A = A} {P = P} e = C.elim λ where
.C.Elim.∣∣₀ʳ → E.∣∣ʳ
.C.Elim.∣∣₊ʳ {n = n} → helper n
.C.Elim.∣∣₊≡∣∣₀ʳ x →
subst P (C.∣∣₊≡∣∣₀ x) (subst P (sym (C.∣∣₊≡∣∣₀ x)) (E.∣∣ʳ x)) ≡⟨ subst-subst-sym _ _ _ ⟩∎
E.∣∣ʳ x ∎
.C.Elim.∣∣₊≡∣∣₊ʳ {n = n} x →
subst P (C.∣∣₊≡∣∣₊ x) (subst P (sym (C.∣∣₊≡∣∣₊ x)) (helper n x)) ≡⟨ subst-subst-sym _ _ _ ⟩∎
helper n x ∎
where
module E = Elim e
@0 helper : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → P C.∣ x ∣₊
helper zero = O.elim e₀
where
e₀ : O.Elim _
e₀ .O.Elim.∣∣ʳ x = subst P (sym (C.∣∣₊≡∣∣₀ x)) (E.∣∣ʳ x)
e₀ .O.Elim.∣∣-constantʳ _ _ = E.is-propositionʳ _ _ _
helper (suc n) = O.elim e₊
where
e₊ : O.Elim _
e₊ .O.Elim.∣∣ʳ x = subst P (sym (C.∣∣₊≡∣∣₊ x))
(helper n x)
e₊ .O.Elim.∣∣-constantʳ _ _ = E.is-propositionʳ _ _ _
_ : elim e ∣ x ∣ ≡ e .∣∣ʳ x
_ = refl _
-- The propositional truncation operator returns propositions (in
-- erased contexts).
@0 ∥∥ᴱ-proposition : Is-proposition ∥ A ∥ᴱ
∥∥ᴱ-proposition {A = A} = elim lemma₅
where
lemma₀ : ∀ n (x : A) → C.∣ O.∣ x ∣-out-^ (1 + n) ∣₊ ≡ ∣ x ∣
lemma₀ zero x =
C.∣ O.∣ x ∣ ∣₊ ≡⟨ C.∣∣₊≡∣∣₀ x ⟩∎
C.∣ x ∣₀ ∎
lemma₀ (suc n) x =
C.∣ O.∣ O.∣ x ∣-out-^ (1 + n) ∣ ∣₊ ≡⟨ C.∣∣₊≡∣∣₊ (O.∣ x ∣-out-^ (1 + n)) ⟩
C.∣ O.∣ x ∣-out-^ (1 + n) ∣₊ ≡⟨ lemma₀ n x ⟩∎
∣ x ∣ ∎
lemma₁₀ : ∀ (x y : A) → ∣ x ∣ ≡ C.∣ y ∣₀
lemma₁₀ x y =
∣ x ∣ ≡⟨ sym (lemma₀ 0 x) ⟩
C.∣ O.∣ x ∣-out-^ 1 ∣₊ ≡⟨⟩
C.∣ O.∣ O.∣ x ∣-out-^ 0 ∣ ∣₊ ≡⟨ cong C.∣_∣₊ (O.∣∣-constant _ _) ⟩
C.∣ O.∣ y ∣ ∣₊ ≡⟨ C.∣∣₊≡∣∣₀ y ⟩∎
C.∣ y ∣₀ ∎
lemma₁₊ : ∀ n (x : A) (y : ∥ A ∥¹-out-^ (1 + n)) → ∣ x ∣ ≡ C.∣ y ∣₊
lemma₁₊ n x y =
∣ x ∣ ≡⟨ sym (lemma₀ (1 + n) x) ⟩
C.∣ O.∣ x ∣-out-^ (2 + n) ∣₊ ≡⟨⟩
C.∣ O.∣ O.∣ x ∣-out-^ (1 + n) ∣ ∣₊ ≡⟨ cong C.∣_∣₊ (O.∣∣-constant _ _) ⟩
C.∣ O.∣ y ∣ ∣₊ ≡⟨ C.∣∣₊≡∣∣₊ y ⟩∎
C.∣ y ∣₊ ∎
lemma₂ :
∀ n (x y : ∥ A ∥¹-out-^ (1 + n))
(p : x ≡ y) (q : O.∣ x ∣ ≡ O.∣ y ∣) →
trans (C.∣∣₊≡∣∣₊ {P₊ = ∥ A ∥¹-out-^ ∘ suc} {step₀ = O.∣_∣} x)
(cong C.∣_∣₊ p) ≡
trans (cong C.∣_∣₊ q) (C.∣∣₊≡∣∣₊ y)
lemma₂ n x y p q =
trans (C.∣∣₊≡∣∣₊ x) (cong C.∣_∣₊ p) ≡⟨ PD.elim
(λ {x y} p → trans (C.∣∣₊≡∣∣₊ x) (cong C.∣_∣₊ p) ≡
trans (cong C.∣_∣₊ (cong O.∣_∣ p)) (C.∣∣₊≡∣∣₊ y))
(λ x →
trans (C.∣∣₊≡∣∣₊ x) (cong C.∣_∣₊ (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩
trans (C.∣∣₊≡∣∣₊ x) (refl _) ≡⟨ trans-reflʳ _ ⟩
C.∣∣₊≡∣∣₊ x ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (C.∣∣₊≡∣∣₊ x) ≡⟨ cong (flip trans _) $ sym $
trans (cong (cong C.∣_∣₊) $ cong-refl _) $
cong-refl _ ⟩∎
trans (cong C.∣_∣₊ (cong O.∣_∣ (refl _))) (C.∣∣₊≡∣∣₊ x) ∎)
p ⟩
trans (cong C.∣_∣₊ (cong O.∣_∣ p)) (C.∣∣₊≡∣∣₊ y) ≡⟨ cong (flip trans _) $
cong-preserves-Constant
(λ u v →
C.∣ u ∣₊ ≡⟨ sym (C.∣∣₊≡∣∣₊ u) ⟩
C.∣ O.∣ u ∣ ∣₊ ≡⟨ cong C.∣_∣₊ (O.∣∣-constant _ _) ⟩
C.∣ O.∣ v ∣ ∣₊ ≡⟨ C.∣∣₊≡∣∣₊ v ⟩∎
C.∣ v ∣₊ ∎)
_ _ ⟩∎
trans (cong C.∣_∣₊ q) (C.∣∣₊≡∣∣₊ y) ∎
lemma₃ :
∀ n x y (p : C.∣ O.∣ y ∣ ∣₊ ≡ z) →
subst (∣ x ∣ ≡_) p (lemma₁₊ n x O.∣ y ∣) ≡
trans (sym (lemma₀ n x))
(trans (cong C.∣_∣₊ (O.∣∣-constant _ _)) p)
lemma₃ n x y p =
subst (∣ x ∣ ≡_) p (lemma₁₊ n x O.∣ y ∣) ≡⟨ sym trans-subst ⟩
trans (lemma₁₊ n x O.∣ y ∣) p ≡⟨⟩
trans (trans (sym (trans (C.∣∣₊≡∣∣₊ (O.∣ x ∣-out-^ (1 + n)))
(lemma₀ n x)))
(trans (cong C.∣_∣₊
(O.∣∣-constant
(O.∣ x ∣-out-^ (1 + n)) O.∣ y ∣))
(C.∣∣₊≡∣∣₊ O.∣ y ∣)))
p ≡⟨ trans (cong (λ eq →
trans (trans eq
(trans (cong C.∣_∣₊ (O.∣∣-constant _ _))
(C.∣∣₊≡∣∣₊ _)))
p) $
sym-trans _ _) $
trans (trans-assoc _ _ _) $
trans (trans-assoc _ _ _) $
cong (trans (sym (lemma₀ n _))) $
sym $ trans-assoc _ _ _ ⟩
trans (sym (lemma₀ n x))
(trans (trans (sym (C.∣∣₊≡∣∣₊ (O.∣ x ∣-out-^ (1 + n))))
(trans (cong C.∣_∣₊
(O.∣∣-constant
(O.∣ x ∣-out-^ (1 + n)) O.∣ y ∣))
(C.∣∣₊≡∣∣₊ O.∣ y ∣)))
p) ≡⟨ cong (λ eq → trans (sym (lemma₀ n _))
(trans (trans (sym (C.∣∣₊≡∣∣₊ _)) eq) p)) $ sym $
lemma₂ _ _ _ _ _ ⟩
trans (sym (lemma₀ n x))
(trans (trans (sym (C.∣∣₊≡∣∣₊ (O.∣ x ∣-out-^ (1 + n))))
(trans (C.∣∣₊≡∣∣₊ (O.∣ x ∣-out-^ (1 + n)))
(cong C.∣_∣₊ (O.∣∣-constant _ _))))
p) ≡⟨ cong (λ eq → trans (sym (lemma₀ n _)) (trans eq p)) $
trans-sym-[trans] _ _ ⟩∎
trans (sym (lemma₀ n x))
(trans (cong C.∣_∣₊ (O.∣∣-constant _ _)) p) ∎
lemma₄ : ∀ _ → C.Elim _
lemma₄ x .C.Elim.∣∣₀ʳ = lemma₁₀ x
lemma₄ x .C.Elim.∣∣₊ʳ = lemma₁₊ _ x
lemma₄ x .C.Elim.∣∣₊≡∣∣₀ʳ y =
subst (∣ x ∣ ≡_) (C.∣∣₊≡∣∣₀ y) (lemma₁₊ 0 x O.∣ y ∣) ≡⟨ lemma₃ _ _ _ _ ⟩
trans (sym (lemma₀ 0 x))
(trans (cong C.∣_∣₊ (O.∣∣-constant _ _)) (C.∣∣₊≡∣∣₀ y)) ≡⟨⟩
lemma₁₀ x y ∎
lemma₄ x .C.Elim.∣∣₊≡∣∣₊ʳ {n = n} y =
subst (∣ x ∣ ≡_) (C.∣∣₊≡∣∣₊ y) (lemma₁₊ (1 + n) x O.∣ y ∣) ≡⟨ lemma₃ _ _ _ _ ⟩
trans (sym (lemma₀ (1 + n) x))
(trans (cong C.∣_∣₊ (O.∣∣-constant _ _)) (C.∣∣₊≡∣∣₊ y)) ≡⟨⟩
lemma₁₊ n x y ∎
lemma₅ : Elim _
lemma₅ .is-propositionʳ = Π≡-proposition ext
lemma₅ .∣∣ʳ x = C.elim (lemma₄ x)
------------------------------------------------------------------------
-- A lemma
-- A function of type (x : ∥ A ∥ᴱ) → P x, along with an erased proof
-- showing that the function is equal to some erased function, is
-- equivalent to a function of type (x : A) → P ∣ x ∣, along with an
-- erased equality proof.
Σ-Π-∥∥ᴱ-Erased-≡-≃ :
{@0 g : (x : ∥ A ∥ᴱ) → P x} →
(∃ λ (f : (x : ∥ A ∥ᴱ) → P x) → Erased (f ≡ g)) ≃
(∃ λ (f : (x : A) → P ∣ x ∣) → Erased (f ≡ g ∘ ∣_∣))
Σ-Π-∥∥ᴱ-Erased-≡-≃ {A = A} {P = P} {g = g} =
(∃ λ (f : (x : ∥ A ∥ᴱ) → P x) → Erased (f ≡ g)) ↝⟨ (inverse $
Σ-cong (inverse C.universal-property-Π) λ _ → F.id) ⟩
(∃ λ (f :
∃ λ (f₀ : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f₊ : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → P C.∣ x ∣₊) →
(∀ x → subst P (C.∣∣₊≡∣∣₀ x) (f₊ zero O.∣ x ∣) ≡ f₀ x) ×
(∀ n x → subst P (C.∣∣₊≡∣∣₊ x) (f₊ (suc n) O.∣ x ∣) ≡
f₊ n x))) →
Erased (u⁻¹ f ≡ g)) ↔⟨ inverse $
Σ-assoc F.∘
(∃-cong λ _ →
Erased-Σ↔Σ F.∘
(from-equivalence $ Erased-cong (∃-cong λ _ →
Eq.extensionality-isomorphism bad-ext))) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (e :
∃ λ (f₊ : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → P C.∣ x ∣₊) →
(∀ x → subst P (C.∣∣₊≡∣∣₀ x) (f₊ zero O.∣ x ∣) ≡ f x) ×
(∀ n x → subst P (C.∣∣₊≡∣∣₊ x) (f₊ (suc n) O.∣ x ∣) ≡ f₊ n x)) →
∀ x → u⁻¹ (f , [ e ]) x ≡ g x)) ↝⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ →
(∃-cong λ _ → from-bijection $ erased Erased↔) F.∘
C.universal-property-Π)) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ ((f₊ , eq₀ , eq₊) :
∃ λ (f₊ : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → P C.∣ x ∣₊) →
(∀ x → subst P (C.∣∣₊≡∣∣₀ x) (f₊ zero O.∣ x ∣) ≡ f x) ×
(∀ n x → subst P (C.∣∣₊≡∣∣₊ x) (f₊ (suc n) O.∣ x ∣) ≡ f₊ n x)) →
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ (f≡g₊ : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → f₊ n x ≡ g C.∣ x ∣₊) →
(∀ x → subst (λ x → u⁻¹ (f , [ f₊ , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₀ x) (f≡g₊ zero O.∣ x ∣) ≡
f≡g₀ x) ×
(∀ n (x : ∥ A ∥¹-out-^ (suc n)) →
subst (λ x → u⁻¹ (f , [ f₊ , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₊ x) (f≡g₊ (suc n) O.∣ x ∣) ≡
f≡g₊ n x))) ↔⟨ (∃-cong λ _ → Erased-cong (
(∃-cong λ _ →
(∃-cong λ _ →
inverse Σ-assoc) F.∘
Σ-assoc F.∘
(∃-cong λ _ →
(inverse $
Σ-cong (inverse $
Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ →
Eq.extensionality-isomorphism bad-ext)) λ _ →
F.id) F.∘
∃-comm) F.∘
inverse Σ-assoc) F.∘
∃-comm)) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ ((f₊ , f≡g₊) :
∃ λ (f₊ : ∀ n (x : ∥ A ∥¹-out-^ (suc n)) → P C.∣ x ∣₊) →
f₊ ≡ λ _ x → g C.∣ x ∣₊) →
∃ λ (eq₀ : ∀ x → subst P (C.∣∣₊≡∣∣₀ x) (f₊ zero O.∣ x ∣) ≡ f x) →
∃ λ (eq₊ : ∀ n x →
subst P (C.∣∣₊≡∣∣₊ x) (f₊ (suc n) O.∣ x ∣) ≡ f₊ n x) →
(∀ x → subst (λ x → u⁻¹ (f , [ f₊ , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₀ x) (cong (_$ O.∣ x ∣) (cong (_$ zero) f≡g₊)) ≡
f≡g₀ x) ×
(∀ n (x : ∥ A ∥¹-out-^ (suc n)) →
subst (λ x → u⁻¹ (f , [ f₊ , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₊ x) (cong (_$ O.∣ x ∣) (cong (_$ suc n) f≡g₊)) ≡
cong (_$ x) (cong (_$ n) f≡g₊)))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ →
(∃-cong λ _ → ∃-cong λ _ →
(∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $
cong (subst (λ x → u⁻¹ _ x ≡ g x) _) $
trans (cong (cong (_$ _)) $ cong-refl _) $
cong-refl _)
×-cong
(∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong₂ _≡_
(cong (subst (λ x → u⁻¹ _ x ≡ g x) _) $
trans (cong (cong (_$ _)) $ cong-refl _) $
cong-refl _)
(trans (cong (cong (_$ _)) $ cong-refl _) $
cong-refl _))) F.∘
(drop-⊤-left-Σ $
_⇔_.to contractible⇔↔⊤ $
singleton-contractible _))) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ (eq₀ : ∀ x → subst P (C.∣∣₊≡∣∣₀ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ f x) →
∃ λ (eq₊ : ∀ n x →
subst P (C.∣∣₊≡∣∣₊ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ g C.∣ x ∣₊) →
(∀ x → subst
(λ x → u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₀ x) (refl _) ≡
f≡g₀ x) ×
(∀ n (x : ∥ A ∥¹-out-^ (suc n)) →
subst (λ x → u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₊ x) (refl _) ≡
refl _))) ↝⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
(∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $
lemma₀ _ _ _ _)
×-cong
(∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ refl _) $
lemma₊ _ _ _ _ _))) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ (eq₀ : ∀ x → subst P (C.∣∣₊≡∣∣₀ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ f x) →
∃ λ (eq₊ : ∀ n x →
subst P (C.∣∣₊≡∣∣₊ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ g C.∣ x ∣₊) →
(∀ x → trans (sym (eq₀ x)) (dcong g (C.∣∣₊≡∣∣₀ x)) ≡ f≡g₀ x) ×
(∀ n (x : ∥ A ∥¹-out-^ (suc n)) →
trans (sym (eq₊ n x)) (dcong g (C.∣∣₊≡∣∣₊ x)) ≡ refl _))) ↝⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ eq₀ → ∃-cong λ eq₊ →
(Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ →
Eq.≃-≡ (Eq.↔⇒≃ ≡-comm) F.∘
(≡⇒↝ _ $
trans ([trans≡]≡[≡trans-symʳ] _ _ _) $
cong (sym (eq₀ _) ≡_) $ sym $ sym-sym _)))
×-cong
(Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ →
Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ →
Eq.≃-≡ (Eq.↔⇒≃ ≡-comm) F.∘
(≡⇒↝ _ $
trans ([trans≡]≡[≡trans-symʳ] _ _ _) $
cong (sym (eq₊ _ _) ≡_) $ sym $ sym-sym _)))))) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ (eq₀ : ∀ x → subst P (C.∣∣₊≡∣∣₀ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ f x) →
∃ λ (eq₊ : ∀ n x →
subst P (C.∣∣₊≡∣∣₊ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ g C.∣ x ∣₊) →
eq₀ ≡ (λ x → sym (trans (f≡g₀ x) (sym (dcong g (C.∣∣₊≡∣∣₀ x))))) ×
eq₊ ≡ (λ _ x → sym (trans (refl _) (sym (dcong g (C.∣∣₊≡∣∣₊ x))))))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ →
(drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
singleton-contractible _) F.∘
∃-comm)) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) →
Erased (
∃ λ (f≡g₀ : (x : A) → f x ≡ g ∣ x ∣) →
∃ λ (eq₀ : ∀ x → subst P (C.∣∣₊≡∣∣₀ x) (g C.∣ O.∣ x ∣ ∣₊) ≡ f x) →
eq₀ ≡ (λ x → sym (trans (f≡g₀ x) (sym (dcong g (C.∣∣₊≡∣∣₀ x))))))) ↔⟨ (∃-cong λ _ → Erased-cong (
drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
singleton-contractible _)) ⟩
(∃ λ (f : (x : A) → P ∣ x ∣) → Erased ((x : A) → f x ≡ g ∣ x ∣)) ↝⟨ (∃-cong λ _ → Erased-cong (
Eq.extensionality-isomorphism bad-ext)) ⟩□
(∃ λ (f : (x : A) → P ∣ x ∣) → Erased (f ≡ g ∘ ∣_∣)) □
where
u⁻¹ = _≃_.from C.universal-property-Π
@0 lemma₀ : ∀ _ _ _ _ → _
lemma₀ f eq₀ eq₊ x =
subst (λ x → u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₀ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong (u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]))
(C.∣∣₊≡∣∣₀ x)))
(trans (cong (subst P (C.∣∣₊≡∣∣₀ x)) (refl _))
(dcong g (C.∣∣₊≡∣∣₀ x))) ≡⟨ cong₂ (trans ∘ sym)
C.elim-∣∣₊≡∣∣₀
(trans (cong (flip trans _) $
cong-refl _) $
trans-reflˡ _) ⟩∎
trans (sym (eq₀ x)) (dcong g (C.∣∣₊≡∣∣₀ x)) ∎
@0 lemma₊ : ∀ _ _ _ _ _ → _
lemma₊ f eq₀ eq₊ n x =
subst (λ x → u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]) x ≡ g x)
(C.∣∣₊≡∣∣₊ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong (u⁻¹ (f , [ (λ _ → g ∘ C.∣_∣₊) , eq₀ , eq₊ ]))
(C.∣∣₊≡∣∣₊ x)))
(trans (cong (subst P (C.∣∣₊≡∣∣₊ x)) (refl _))
(dcong g (C.∣∣₊≡∣∣₊ x))) ≡⟨ cong₂ (trans ∘ sym)
C.elim-∣∣₊≡∣∣₊
(trans (cong (flip trans _) $
cong-refl _) $
trans-reflˡ _) ⟩∎
trans (sym (eq₊ n x)) (dcong g (C.∣∣₊≡∣∣₊ x)) ∎
|
{
"alphanum_fraction": 0.2602912703,
"avg_line_length": 56.7016706444,
"ext": "agda",
"hexsha": "0dc20ae47ce9c74f48365abedd0bbedd26d25625",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/H-level/Truncation/Propositional/Non-recursive/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/H-level/Truncation/Propositional/Non-recursive/Erased.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/H-level/Truncation/Propositional/Non-recursive/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 8593,
"size": 23758
}
|
module Pi-.Properties where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Nat.Induction
open import Data.Nat.Properties
open import Function using (_∘_)
open import Base
open import Pi-.Syntax
open import Pi-.Opsem
open import Pi-.NoRepeat
open import Pi-.Invariants
open import Pi-.Eval
open import Pi-.Interp
-- Change the direction of the given state
flip : State → State
flip ⟨ c ∣ v ∣ κ ⟩▷ = ⟨ c ∣ v ∣ κ ⟩◁
flip [ c ∣ v ∣ κ ]▷ = [ c ∣ v ∣ κ ]◁
flip ⟨ c ∣ v ∣ κ ⟩◁ = ⟨ c ∣ v ∣ κ ⟩▷
flip [ c ∣ v ∣ κ ]◁ = [ c ∣ v ∣ κ ]▷
Rev : ∀ {st st'} → st ↦ st' → flip st' ↦ flip st
Rev ↦⃗₁ = ↦⃖₁
Rev ↦⃗₂ = ↦⃖₂
Rev ↦⃗₃ = ↦⃖₃
Rev ↦⃗₄ = ↦⃖₄
Rev ↦⃗₅ = ↦⃖₅
Rev ↦⃗₆ = ↦⃖₆
Rev ↦⃗₇ = ↦⃖₇
Rev ↦⃗₈ = ↦⃖₈
Rev ↦⃗₉ = ↦⃖₉
Rev ↦⃗₁₀ = ↦⃖₁₀
Rev ↦⃗₁₁ = ↦⃖₁₁
Rev ↦⃗₁₂ = ↦⃖₁₂
Rev ↦⃖₁ = ↦⃗₁
Rev ↦⃖₂ = ↦⃗₂
Rev ↦⃖₃ = ↦⃗₃
Rev ↦⃖₄ = ↦⃗₄
Rev ↦⃖₅ = ↦⃗₅
Rev ↦⃖₆ = ↦⃗₆
Rev ↦⃖₇ = ↦⃗₇
Rev ↦⃖₈ = ↦⃗₈
Rev ↦⃖₉ = ↦⃗₉
Rev ↦⃖₁₀ = ↦⃗₁₀
Rev ↦⃖₁₁ = ↦⃗₁₁
Rev ↦⃖₁₂ = ↦⃗₁₂
Rev ↦η₁ = ↦η₂
Rev ↦η₂ = ↦η₁
Rev ↦ε₁ = ↦ε₂
Rev ↦ε₂ = ↦ε₁
Rev* : ∀ {st st'} → st ↦* st' → flip st' ↦* flip st
Rev* ◾ = ◾
Rev* (r ∷ rs) = Rev* rs ++↦ (Rev r ∷ ◾)
-- Helper functions
inspect⊎ : ∀ {ℓ ℓ' ℓ''} {P : Set ℓ} {Q : Set ℓ'} {R : Set ℓ''}
→ (f : P → Q ⊎ R) → (p : P) → (∃[ q ] (inj₁ q ≡ f p)) ⊎ (∃[ r ] (inj₂ r ≡ f p))
inspect⊎ f p with f p
... | inj₁ q = inj₁ (q , refl)
... | inj₂ r = inj₂ (r , refl)
toState : ∀ {A B} → (c : A ↔ B) → Val B A → State
toState c (b ⃗) = [ c ∣ b ∣ ☐ ]▷
toState c (a ⃖) = ⟨ c ∣ a ∣ ☐ ⟩◁
is-stuck-toState : ∀ {A B} → (c : A ↔ B) → (v : Val B A) → is-stuck (toState c v)
is-stuck-toState c (b ⃗) = λ ()
is-stuck-toState c (a ⃖) = λ ()
toState≡₁ : ∀ {A B b} {c : A ↔ B} {x : Val B A} → toState c x ≡ [ c ∣ b ∣ ☐ ]▷ → x ≡ b ⃗
toState≡₁ {x = x ⃗} refl = refl
toState≡₂ : ∀ {A B a} {c : A ↔ B} {x : Val B A} → toState c x ≡ ⟨ c ∣ a ∣ ☐ ⟩◁ → x ≡ a ⃖
toState≡₂ {x = x ⃖} refl = refl
eval-toState₁ : ∀ {A B a x} {c : A ↔ B} → ⟨ c ∣ a ∣ ☐ ⟩▷ ↦* (toState c x) → eval c (a ⃗) ≡ x
eval-toState₁ {a = a} {b ⃗} {c} rs with inspect⊎ (run ⟨ c ∣ a ∣ ☐ ⟩▷) (λ ())
eval-toState₁ {a = a} {b ⃗} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {b ⃗} {c} rs | inj₂ ((b' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ b ⃗) eq refl
eval-toState₁ {a = a} {a' ⃖} {c} rs with inspect⊎ (run ⟨ c ∣ a ∣ ☐ ⟩▷) (λ ())
eval-toState₁ {a = a} {a' ⃖} {c} rs | inj₁ ((a'' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ a'' ⃖) eq refl
eval-toState₁ {a = a} {a' ⃖} {c} rs | inj₂ ((b' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ : ∀ {A B b x} {c : A ↔ B} → [ c ∣ b ∣ ☐ ]◁ ↦* (toState c x) → eval c (b ⃖) ≡ x
eval-toState₂ {b = b} {b' ⃗} {c} rs with inspect⊎ (run [ c ∣ b ∣ ☐ ]◁) (λ ())
eval-toState₂ {b = b} {b' ⃗} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {b' ⃗} {c} rs | inj₂ ((b'' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ b'' ⃗) eq refl
eval-toState₂ {b = b} {a ⃖} {c} rs with inspect⊎ (run [ c ∣ b ∣ ☐ ]◁) (λ ())
eval-toState₂ {b = b} {a ⃖} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ a' ⃖) eq refl
eval-toState₂ {b = b} {a ⃖} {c} rs | inj₂ ((b'' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
getₜᵣ⃗ : ∀ {A B} → (c : A ↔ B) → {v : ⟦ A ⟧} {v' : Val B A} → eval c (v ⃗) ≡ v'
→ ⟨ c ∣ v ∣ ☐ ⟩▷ ↦* toState c v'
getₜᵣ⃗ c {v} {v'} eq with inspect⊎ (run ⟨ c ∣ v ∣ ☐ ⟩▷) (λ ())
getₜᵣ⃗ c {v} {v' ⃗} eq | inj₁ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃖) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | ()
getₜᵣ⃗ c {v} {v' ⃖} eq | inj₁ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃖) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | refl = rs
getₜᵣ⃗ c {v} {v' ⃗} eq | inj₂ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃗) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | refl = rs
getₜᵣ⃗ c {v} {v' ⃖} eq | inj₂ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃗) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | ()
getₜᵣ⃖ : ∀ {A B} → (c : A ↔ B) → {v : ⟦ B ⟧} {v' : Val B A} → eval c (v ⃖) ≡ v'
→ [ c ∣ v ∣ ☐ ]◁ ↦* toState c v'
getₜᵣ⃖ c {v} {v'} eq with inspect⊎ (run [ c ∣ v ∣ ☐ ]◁) (λ ())
getₜᵣ⃖ c {v} {v' ⃗} eq | inj₁ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃖) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | ()
getₜᵣ⃖ c {v} {v' ⃖} eq | inj₁ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃖) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | refl = rs
getₜᵣ⃖ c {v} {v' ⃗} eq | inj₂ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃗) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | refl = rs
getₜᵣ⃖ c {v} {v' ⃖} eq | inj₂ ((v'' , rs) , eq') with trans (subst (λ x → (v'' ⃗) ≡ [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) eq' refl) eq
... | ()
-- Forward evaluator is reversible
evalisRev : ∀ {A B} → (c : A ↔ B) → (v : Val A B) → evalᵣₑᵥ c (eval c v) ≡ v
evalisRev c (v ⃖) with inspect⊎ (run [ c ∣ v ∣ ☐ ]◁) (λ ())
evalisRev c (v ⃖) | inj₁ ((v' , rs) , eq) with inspect⊎ (run ⟨ c ∣ v' ∣ ☐ ⟩▷) (λ ())
evalisRev c (v ⃖) | inj₁ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalisRev c (v ⃖) | inj₁ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → evalᵣₑᵥ c ([ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) ≡ (v ⃖)) eq
(subst (λ x → [ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x ≡ (v ⃖)) eq' refl)
evalisRev c (v ⃖) | inj₂ ((v' , rs) , eq) with inspect⊎ (run [ c ∣ v' ∣ ☐ ]◁) (λ ())
evalisRev c (v ⃖) | inj₂ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalisRev c (v ⃖) | inj₂ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → evalᵣₑᵥ c ([ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) ≡ (v ⃖)) eq
(subst (λ x → [ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x ≡ (v ⃖)) eq' refl)
evalisRev c (v ⃗) with inspect⊎ (run ⟨ c ∣ v ∣ ☐ ⟩▷) (λ ())
evalisRev c (v ⃗) | inj₁ ((v' , rs) , eq) with inspect⊎ (run ⟨ c ∣ v' ∣ ☐ ⟩▷) (λ ())
evalisRev c (v ⃗) | inj₁ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → evalᵣₑᵥ c ([ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) ≡ (v ⃗)) eq
(subst (λ x → [ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x ≡ (v ⃗)) eq' refl)
evalisRev c (v ⃗) | inj₁ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalisRev c (v ⃗) | inj₂ ((v' , rs) , eq) with inspect⊎ (run [ c ∣ v' ∣ ☐ ]◁) (λ ())
evalisRev c (v ⃗) | inj₂ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → evalᵣₑᵥ c ([ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x) ≡ (v ⃗)) eq
(subst (λ x → [ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x ≡ (v ⃗)) eq' refl)
evalisRev c (v ⃗) | inj₂ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
-- Backward evaluator is reversible
evalᵣₑᵥisRev : ∀ {A B} → (c : A ↔ B) → (v : Val B A) → eval c (evalᵣₑᵥ c v) ≡ v
evalᵣₑᵥisRev c (v ⃖) with inspect⊎ (run ⟨ c ∣ v ∣ ☐ ⟩▷) (λ ())
evalᵣₑᵥisRev c (v ⃖) | inj₁ ((v' , rs) , eq) with inspect⊎ (run ⟨ c ∣ v' ∣ ☐ ⟩▷) (λ ())
evalᵣₑᵥisRev c (v ⃖) | inj₁ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → eval c ([ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x) ≡ (v ⃖)) eq
(subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ (v ⃖)) eq' refl)
evalᵣₑᵥisRev c (v ⃖) | inj₁ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalᵣₑᵥisRev c (v ⃖) | inj₂ ((v' , rs) , eq) with inspect⊎ (run [ c ∣ v' ∣ ☐ ]◁) (λ ())
evalᵣₑᵥisRev c (v ⃖) | inj₂ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → eval c ([ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x) ≡ (v ⃖)) eq
(subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ (v ⃖)) eq' refl)
evalᵣₑᵥisRev c (v ⃖) | inj₂ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalᵣₑᵥisRev c (v ⃗) with inspect⊎ (run [ c ∣ v ∣ ☐ ]◁) (λ ())
evalᵣₑᵥisRev c (v ⃗) | inj₁ ((v' , rs) , eq) with inspect⊎ (run ⟨ c ∣ v' ∣ ☐ ⟩▷) (λ ())
evalᵣₑᵥisRev c (v ⃗) | inj₁ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalᵣₑᵥisRev c (v ⃗) | inj₁ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → eval c ([ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x) ≡ (v ⃗)) eq
(subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ (v ⃗)) eq' refl)
evalᵣₑᵥisRev c (v ⃗) | inj₂ ((v' , rs) , eq) with inspect⊎ (run [ c ∣ v' ∣ ☐ ]◁) (λ ())
evalᵣₑᵥisRev c (v ⃗) | inj₂ ((v' , rs) , eq) | inj₁ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | ()
evalᵣₑᵥisRev c (v ⃗) | inj₂ ((v' , rs) , eq) | inj₂ ((_ , rs') , eq') with deterministic* (Rev* rs) rs' (λ ()) (λ ())
... | refl = subst (λ x → eval c ([ _⃗ ∘ proj₁ , _⃖ ∘ proj₁ ]′ x) ≡ (v ⃗)) eq
(subst (λ x → [ _⃖ ∘ proj₁ , _⃗ ∘ proj₁ ]′ x ≡ (v ⃗)) eq' refl)
-- The abstract machine semantics is equivalent to the big-step semantics
module eval≡interp where
mutual
eval≡interp : ∀ {A B} → (c : A ↔ B) → (v : Val A B) → eval c v ≡ interp c v
eval≡interp unite₊l (inj₂ v ⃗) = refl
eval≡interp unite₊l (v ⃖) = refl
eval≡interp uniti₊l (v ⃗) = refl
eval≡interp uniti₊l (inj₂ v ⃖) = refl
eval≡interp swap₊ (inj₁ x ⃗) = refl
eval≡interp swap₊ (inj₂ y ⃗) = refl
eval≡interp swap₊ (inj₁ x ⃖) = refl
eval≡interp swap₊ (inj₂ y ⃖) = refl
eval≡interp assocl₊ (inj₁ x ⃗) = refl
eval≡interp assocl₊ (inj₂ (inj₁ y) ⃗) = refl
eval≡interp assocl₊ (inj₂ (inj₂ z) ⃗) = refl
eval≡interp assocl₊ (inj₁ (inj₁ x) ⃖) = refl
eval≡interp assocl₊ (inj₁ (inj₂ y) ⃖) = refl
eval≡interp assocl₊ (inj₂ z ⃖) = refl
eval≡interp assocr₊ (inj₁ (inj₁ x) ⃗) = refl
eval≡interp assocr₊ (inj₁ (inj₂ y) ⃗) = refl
eval≡interp assocr₊ (inj₂ z ⃗) = refl
eval≡interp assocr₊ (inj₁ x ⃖) = refl
eval≡interp assocr₊ (inj₂ (inj₁ y) ⃖) = refl
eval≡interp assocr₊ (inj₂ (inj₂ z) ⃖) = refl
eval≡interp unite⋆l ((tt , v) ⃗) = refl
eval≡interp unite⋆l (v ⃖) = refl
eval≡interp uniti⋆l (v ⃗) = refl
eval≡interp uniti⋆l ((tt , v) ⃖) = refl
eval≡interp swap⋆ ((x , y) ⃗) = refl
eval≡interp swap⋆ ((y , x) ⃖) = refl
eval≡interp assocl⋆ ((x , (y , z)) ⃗) = refl
eval≡interp assocl⋆ (((x , y) , z) ⃖) = refl
eval≡interp assocr⋆ (((x , y) , z) ⃗) = refl
eval≡interp assocr⋆ ((x , (y , z)) ⃖) = refl
eval≡interp absorbr (() ⃗)
eval≡interp absorbr (() ⃖)
eval≡interp factorzl (() ⃗)
eval≡interp factorzl (() ⃖)
eval≡interp dist ((inj₁ x , z) ⃗) = refl
eval≡interp dist ((inj₂ y , z) ⃗) = refl
eval≡interp dist (inj₁ (x , z) ⃖) = refl
eval≡interp dist (inj₂ (y , z) ⃖) = refl
eval≡interp factor (inj₁ (x , z) ⃗) = refl
eval≡interp factor (inj₂ (y , z) ⃗) = refl
eval≡interp factor ((inj₁ x , z) ⃖) = refl
eval≡interp factor ((inj₂ y , z) ⃖) = refl
eval≡interp id↔ (v ⃗) = refl
eval≡interp id↔ (v ⃖) = refl
eval≡interp (c₁ ⨾ c₂) (a ⃗) with interp c₁ (a ⃗) | inspect (interp c₁) (a ⃗)
eval≡interp (c₁ ⨾ c₂) (a ⃗) | b ⃗ | [ eq ] = (proj₁ (loop (len↦ rs') b) rs' refl)
where
rs : ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩▷ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (a ⃗))
rs = getₜᵣ⃗ (c₁ ⨾ c₂) refl
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (a ⃗))
rs' = proj₁ (deterministic*' (↦⃗₃ ∷ appendκ↦* ((getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (a ⃗)) eq))) refl (☐⨾ c₂ • ☐)) rs (is-stuck-toState _ _))
eval≡interp (c₁ ⨾ c₂) (a ⃗) | a' ⃖ | [ eq ] = eval-toState₁ rs
where
rs : ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⨾ c₂ ∣ a' ∣ ☐ ⟩◁
rs = ↦⃗₃ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (a ⃗)) eq)) refl (☐⨾ c₂ • ☐) ++↦ ↦⃖₃ ∷ ◾
eval≡interp (c₁ ⨾ c₂) (c ⃖) with interp c₂ (c ⃖) | inspect (interp c₂) (c ⃖)
eval≡interp (c₁ ⨾ c₂) (c ⃖) | b ⃖ | [ eq' ] = proj₂ (loop (len↦ rs') b) rs' refl
where
rs : [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]◁ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (c ⃖))
rs = getₜᵣ⃖ (c₁ ⨾ c₂) refl
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (c ⃖))
rs' = proj₁ (deterministic*' (↦⃖₁₀ ∷ appendκ↦* ((getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (c ⃖)) eq'))) refl (c₁ ⨾☐• ☐)) rs (is-stuck-toState _ _))
eval≡interp (c₁ ⨾ c₂) (c ⃖) | (c' ⃗) | [ eq ] = eval-toState₂ rs
where
rs : [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]◁ ↦* [ c₁ ⨾ c₂ ∣ c' ∣ ☐ ]▷
rs = ↦⃖₁₀ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (c ⃖)) eq)) refl (c₁ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) with interp c₁ (x ⃗) | inspect (interp c₁) (x ⃗)
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) | x' ⃗ | [ eq ] = eval-toState₁ rs
where
rs : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ]▷
rs = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq)) refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) | x' ⃖ | [ eq ] = eval-toState₁ rs
where
rs : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ⟩◁
rs = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq)) refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) with interp c₂ (y ⃗) | inspect (interp c₂) (y ⃗)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) | y' ⃗ | [ eq ] = eval-toState₁ rs
where
rs : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ]▷
rs = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq)) refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) | y' ⃖ | [ eq ] = eval-toState₁ rs
where
rs : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ⟩◁
rs = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq)) refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) with interp c₁ (x ⃖) | inspect (interp c₁) (x ⃖)
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) | x' ⃗ | [ eq ] = eval-toState₂ rs
where
rs : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ]▷
rs = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq)) refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) | x' ⃖ | [ eq ] = eval-toState₂ rs
where
rs : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ⟩◁
rs = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq)) refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) with interp c₂ (y ⃖) | inspect (interp c₂) (y ⃖)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) | y' ⃖ | [ eq ] = eval-toState₂ rs
where
rs : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ⟩◁
rs = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq)) refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) | y' ⃗ | [ eq ] = eval-toState₂ rs
where
rs : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ]▷
rs = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq)) refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) with interp c₁ (x ⃗) | inspect (interp c₁) (x ⃗)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | x₁ ⃗ | [ eq₁ ] with interp c₂ (y ⃗) | inspect (interp c₂) (y ⃗)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | x₁ ⃗ | [ eq₁ ] | y₁ ⃗ | [ eq₂ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* [ c₁ ⊗ c₂ ∣ (x₁ , y₁) ∣ ☐ ]▷
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₂)) refl ([ c₁ , x₁ ]⊗☐• ☐) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | x₁ ⃗ | [ eq₁ ] | y₁ ⃖ | [ eq₂ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x , y₁) ∣ ☐ ⟩◁
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₂)) refl ([ c₁ , x₁ ]⊗☐• ☐) ++↦
↦⃖₈ ∷ Rev* (appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) refl (☐⊗[ c₂ , y₁ ]• ☐)) ++↦ ↦⃖₆ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | x₁ ⃖ | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x₁ , y) ∣ ☐ ⟩◁
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) refl (☐⊗[ c₂ , y ]• ☐) ++↦ ↦⃖₆ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) with interp c₂ (y ⃖) | inspect (interp c₂) (y ⃖)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | y₁ ⃗ | [ eq₂ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x , y₁) ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) refl ([ c₁ , x ]⊗☐• ☐) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | y₁ ⃖ | [ eq₂ ] with interp c₁ (x ⃖) | inspect (interp c₁) (x ⃖)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | y₁ ⃖ | [ eq₂ ] | x₁ ⃗ | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x₁ , y) ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) refl (☐⊗[ c₂ , y₁ ]• ☐) ++↦
↦⃗₈ ∷ Rev* (appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) refl ([ c₁ , x₁ ]⊗☐• ☐)) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | y₁ ⃖ | [ eq₂ ] | x₁ ⃖ | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* ⟨ c₁ ⊗ c₂ ∣ (x₁ , y₁) ∣ ☐ ⟩◁
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) refl (☐⊗[ c₂ , y₁ ]• ☐) ++↦ ↦⃖₆ ∷ ◾
eval≡interp η₊ (inj₁ x ⃖) = refl
eval≡interp η₊ (inj₂ (- x) ⃖) = refl
eval≡interp ε₊ (inj₁ x ⃗) = refl
eval≡interp ε₊ (inj₂ (- x) ⃗) = refl
private
loop : ∀ {A B C x} {c₁ : A ↔ B} {c₂ : B ↔ C} (n : ℕ)
→ ∀ b → ((rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃗]⨾ c₂)
× ((rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃖]⨾ c₂)
loop {A} {B} {C} {x} {c₁} {c₂} = <′-rec (λ n → _) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → _) → _
loop-rec n R b = loop₁ , loop₂
where
loop₁ : (rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃗]⨾ c₂
loop₁ rs refl with interp c₂ (b ⃗) | inspect (interp c₂) (b ⃗)
loop₁ rs refl | c ⃗ | [ eq ] = toState≡₁ (deterministic* rs rsb→c (is-stuck-toState _ _) (λ ()))
where
rsb→c : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]▷
rsb→c = ↦⃗₇ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (b ⃗)) eq)) refl (c₁ ⨾☐• ☐) ++↦ (↦⃗₁₀ ∷ ◾)
loop₁ rs refl | b' ⃖ | [ eq ] = proj₂ (R (len↦ rsb') le b') rsb' refl
where
rsb→b' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁
rsb→b' = ↦⃗₇ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (b ⃗)) eq)) refl (c₁ ⨾☐• ☐)
rsb' : ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x
rsb' = proj₁ (deterministic*' rsb→b' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rsb→b' + len↦ rsb'
req = proj₂ (deterministic*' rsb→b' rs (is-stuck-toState _ _))
le : len↦ rsb' <′ len↦ rs
le rewrite req = s≤′s (n≤′m+n _ _)
loop₂ : (rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃖]⨾ c₂
loop₂ rs refl with interp c₁ (b ⃖) | inspect (interp c₁) (b ⃖)
loop₂ rs refl | a' ⃖ | [ eq ] = toState≡₂ (deterministic* rs rsb→a (is-stuck-toState _ _) (λ ()))
where
rsb→a : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* ⟨ c₁ ⨾ c₂ ∣ a' ∣ ☐ ⟩◁
rsb→a = ↦⃖₇ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (b ⃖)) eq)) refl (☐⨾ c₂ • ☐) ++↦ (↦⃖₃ ∷ ◾)
loop₂ rs refl | b' ⃗ | [ eq ] = proj₁ (R (len↦ rsb') le b') rsb' refl
where
rsb→b' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷
rsb→b' = ↦⃖₇ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (b ⃖)) eq)) refl (☐⨾ c₂ • ☐)
rsb' : [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x
rsb' = proj₁ (deterministic*' rsb→b' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rsb→b' + len↦ rsb'
req = proj₂ (deterministic*' rsb→b' rs (is-stuck-toState _ _))
le : len↦ rsb' <′ len↦ rs
le rewrite req = s≤′s (n≤′m+n _ _)
open eval≡interp public
module ∘-resp-≈ {A B C : 𝕌} {g i : B ↔ C} {f h : A ↔ B} (g~i : eval g ∼ eval i) (f~h : eval f ∼ eval h) where
private
loop : ∀ {x} (n : ℕ) → ∀ b
→ ((rs : [ f ∣ b ∣ ☐⨾ g • ☐ ]▷ ↦* toState (f ⨾ g) x) → len↦ rs ≡ n → [ h ∣ b ∣ ☐⨾ i • ☐ ]▷ ↦* toState (h ⨾ i) x)
× ((rs : ⟨ g ∣ b ∣ f ⨾☐• ☐ ⟩◁ ↦* toState (f ⨾ g) x) → len↦ rs ≡ n → ⟨ i ∣ b ∣ h ⨾☐• ☐ ⟩◁ ↦* toState (h ⨾ i) x)
loop {x} = <′-rec (λ n → _) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → _) → _
loop-rec n R b = loop₁ , loop₂
where
loop₁ : (rs : [ f ∣ b ∣ ☐⨾ g • ☐ ]▷ ↦* toState (f ⨾ g) x) → len↦ rs ≡ n → [ h ∣ b ∣ ☐⨾ i • ☐ ]▷ ↦* toState (h ⨾ i) x
loop₁ rs refl with inspect⊎ (run ⟨ g ∣ b ∣ ☐ ⟩▷) (λ ())
loop₁ rs refl | inj₁ ((b₁ , rs₁) , eq₁) = ↦⃗₇ ∷ appendκ↦* rs₂ refl (h ⨾☐• ☐) ++↦ proj₂ (R (len↦ rs₁'') le b₁) rs₁'' refl
where
rs₁' : [ f ∣ b ∣ ☐⨾ g • ☐ ]▷ ↦* ⟨ g ∣ b₁ ∣ f ⨾☐• ☐ ⟩◁
rs₁' = ↦⃗₇ ∷ appendκ↦* rs₁ refl (f ⨾☐• ☐)
rs₂ : ⟨ i ∣ b ∣ ☐ ⟩▷ ↦* ⟨ i ∣ b₁ ∣ ☐ ⟩◁
rs₂ = getₜᵣ⃗ i (trans (sym (g~i (b ⃗))) (eval-toState₁ rs₁))
rs₁'' : ⟨ g ∣ b₁ ∣ f ⨾☐• ☐ ⟩◁ ↦* toState (f ⨾ g) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop₁ rs refl | inj₂ ((c₁ , rs₁) , eq₁) = rs₂'
where
rs₁' : [ f ∣ b ∣ ☐⨾ g • ☐ ]▷ ↦* [ f ⨾ g ∣ c₁ ∣ ☐ ]▷
rs₁' = ↦⃗₇ ∷ appendκ↦* rs₁ refl (f ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
rs₂ : ⟨ i ∣ b ∣ ☐ ⟩▷ ↦* [ i ∣ c₁ ∣ ☐ ]▷
rs₂ = getₜᵣ⃗ i (trans (sym (g~i (b ⃗))) (eval-toState₁ rs₁))
xeq : x ≡ c₁ ⃗
xeq = toState≡₁ (sym (deterministic* rs₁' rs (λ ()) (is-stuck-toState _ _)))
rs₂' : [ h ∣ b ∣ ☐⨾ i • ☐ ]▷ ↦* toState (h ⨾ i) x
rs₂' rewrite xeq = ↦⃗₇ ∷ appendκ↦* rs₂ refl (h ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
loop₂ : (rs : ⟨ g ∣ b ∣ f ⨾☐• ☐ ⟩◁ ↦* toState (f ⨾ g) x) → len↦ rs ≡ n → ⟨ i ∣ b ∣ h ⨾☐• ☐ ⟩◁ ↦* toState (h ⨾ i) x
loop₂ rs refl with inspect⊎ (run [ f ∣ b ∣ ☐ ]◁) (λ ())
loop₂ rs refl | inj₁ ((a₁ , rs₁) , eq₁) = rs₂'
where
rs₁' : ⟨ g ∣ b ∣ f ⨾☐• ☐ ⟩◁ ↦* ⟨ f ⨾ g ∣ a₁ ∣ ☐ ⟩◁
rs₁' = ↦⃖₇ ∷ appendκ↦* rs₁ refl (☐⨾ g • ☐) ++↦ ↦⃖₃ ∷ ◾
rs₂ : [ h ∣ b ∣ ☐ ]◁ ↦* ⟨ h ∣ a₁ ∣ ☐ ⟩◁
rs₂ = getₜᵣ⃖ h (trans (sym (f~h (b ⃖))) (eval-toState₂ rs₁))
xeq : x ≡ a₁ ⃖
xeq = toState≡₂ (sym (deterministic* rs₁' rs (λ ()) (is-stuck-toState _ _)))
rs₂' : ⟨ i ∣ b ∣ h ⨾☐• ☐ ⟩◁ ↦* toState (h ⨾ i) x
rs₂' rewrite xeq = ↦⃖₇ ∷ appendκ↦* rs₂ refl (☐⨾ i • ☐) ++↦ ↦⃖₃ ∷ ◾
loop₂ rs refl | inj₂ ((b₁ , rs₁) , eq₁) = (↦⃖₇ ∷ appendκ↦* rs₂ refl (☐⨾ i • ☐)) ++↦ proj₁ (R (len↦ rs₁'') le b₁) rs₁'' refl
where
rs₁' : ⟨ g ∣ b ∣ f ⨾☐• ☐ ⟩◁ ↦* [ f ∣ b₁ ∣ ☐⨾ g • ☐ ]▷
rs₁' = ↦⃖₇ ∷ appendκ↦* rs₁ refl (☐⨾ g • ☐)
rs₂ : [ h ∣ b ∣ ☐ ]◁ ↦* [ h ∣ b₁ ∣ ☐ ]▷
rs₂ = getₜᵣ⃖ h (trans (sym (f~h (b ⃖))) (eval-toState₂ rs₁))
rs₁'' : [ f ∣ b₁ ∣ ☐⨾ g • ☐ ]▷ ↦* toState (f ⨾ g) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
∘-resp-≈ : eval (f ⨾ g) ∼ eval (h ⨾ i)
∘-resp-≈ (a ⃗) with inspect⊎ (run ⟨ f ∣ a ∣ ☐ ⟩▷) (λ ())
∘-resp-≈ (a ⃗) | inj₁ ((a₁ , rs₁) , eq₁) = lem
where
rs₁' : ⟨ f ⨾ g ∣ a ∣ ☐ ⟩▷ ↦* ⟨ f ⨾ g ∣ a₁ ∣ ☐ ⟩◁
rs₁' = ↦⃗₃ ∷ appendκ↦* rs₁ refl (☐⨾ g • ☐) ++↦ ↦⃖₃ ∷ ◾
eq~ : eval h (a ⃗) ≡ (a₁ ⃖)
eq~ = trans (sym (f~h (a ⃗))) (eval-toState₁ rs₁)
rs₂' : ⟨ h ⨾ i ∣ a ∣ ☐ ⟩▷ ↦* ⟨ h ⨾ i ∣ a₁ ∣ ☐ ⟩◁
rs₂' = ↦⃗₃ ∷ appendκ↦* (getₜᵣ⃗ h eq~) refl (☐⨾ i • ☐) ++↦ ↦⃖₃ ∷ ◾
lem : eval (f ⨾ g) (a ⃗) ≡ eval (h ⨾ i) (a ⃗)
lem rewrite eval-toState₁ rs₁' | eval-toState₁ rs₂' = refl
∘-resp-≈ (a ⃗) | inj₂ ((b₁ , rs₁) , eq₁) = sym (eval-toState₁ rs₂'')
where
rs : ⟨ f ⨾ g ∣ a ∣ ☐ ⟩▷ ↦* toState (f ⨾ g) (eval (f ⨾ g) (a ⃗))
rs = getₜᵣ⃗ (f ⨾ g) refl
rs₁' : ⟨ f ⨾ g ∣ a ∣ ☐ ⟩▷ ↦* [ f ∣ b₁ ∣ ☐⨾ g • ☐ ]▷
rs₁' = ↦⃗₃ ∷ appendκ↦* rs₁ refl (☐⨾ g • ☐)
rs₁'' : [ f ∣ b₁ ∣ ☐⨾ g • ☐ ]▷ ↦* toState (f ⨾ g) (eval (f ⨾ g) (a ⃗))
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
eq~ : eval h (a ⃗) ≡ (b₁ ⃗)
eq~ = trans (sym (f~h (a ⃗))) (eval-toState₁ rs₁)
rs₂' : ⟨ h ⨾ i ∣ a ∣ ☐ ⟩▷ ↦* [ h ∣ b₁ ∣ ☐⨾ i • ☐ ]▷
rs₂' = ↦⃗₃ ∷ appendκ↦* (getₜᵣ⃗ h eq~) refl (☐⨾ i • ☐)
rs₂'' : ⟨ h ⨾ i ∣ a ∣ ☐ ⟩▷ ↦* toState (h ⨾ i) (eval (f ⨾ g) (a ⃗))
rs₂'' = rs₂' ++↦ proj₁ (loop (len↦ rs₁'') b₁) rs₁'' refl
∘-resp-≈ (c ⃖) with inspect⊎ (run [ g ∣ c ∣ ☐ ]◁) (λ ())
∘-resp-≈ (c ⃖) | inj₁ ((b₁ , rs₁) , eq₁) = sym (eval-toState₂ rs₂'')
where
rs : [ f ⨾ g ∣ c ∣ ☐ ]◁ ↦* toState (f ⨾ g) (eval (f ⨾ g) (c ⃖))
rs = getₜᵣ⃖ (f ⨾ g) refl
rs₁' : [ f ⨾ g ∣ c ∣ ☐ ]◁ ↦* ⟨ g ∣ b₁ ∣ f ⨾☐• ☐ ⟩◁
rs₁' = ↦⃖₁₀ ∷ appendκ↦* rs₁ refl (f ⨾☐• ☐)
rs₁'' : ⟨ g ∣ b₁ ∣ f ⨾☐• ☐ ⟩◁ ↦* toState (f ⨾ g) (eval (f ⨾ g) (c ⃖))
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
eq~ : eval i (c ⃖) ≡ (b₁ ⃖)
eq~ = trans (sym (g~i (c ⃖))) (eval-toState₂ rs₁)
rs₂' : [ h ⨾ i ∣ c ∣ ☐ ]◁ ↦* ⟨ i ∣ b₁ ∣ h ⨾☐• ☐ ⟩◁
rs₂' = ↦⃖₁₀ ∷ appendκ↦* (getₜᵣ⃖ i eq~) refl (h ⨾☐• ☐)
rs₂'' : [ h ⨾ i ∣ c ∣ ☐ ]◁ ↦* toState (h ⨾ i) (eval (f ⨾ g) (c ⃖))
rs₂'' = rs₂' ++↦ proj₂ (loop (len↦ rs₁'') b₁) rs₁'' refl
∘-resp-≈ (c ⃖) | inj₂ ((c₁ , rs₁) , eq₁) = lem
where
rs₁' : [ f ⨾ g ∣ c ∣ ☐ ]◁ ↦* [ f ⨾ g ∣ c₁ ∣ ☐ ]▷
rs₁' = ↦⃖₁₀ ∷ appendκ↦* rs₁ refl (f ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
eq~ : eval i (c ⃖) ≡ (c₁ ⃗)
eq~ = trans (sym (g~i (c ⃖))) (eval-toState₂ rs₁)
rs₂' : [ h ⨾ i ∣ c ∣ ☐ ]◁ ↦* [ h ⨾ i ∣ c₁ ∣ ☐ ]▷
rs₂' = ↦⃖₁₀ ∷ appendκ↦* (getₜᵣ⃖ i eq~) refl (h ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
lem : eval (f ⨾ g) (c ⃖) ≡ eval (h ⨾ i) (c ⃖)
lem rewrite eval-toState₂ rs₁' | eval-toState₂ rs₂' = refl
open ∘-resp-≈ public
module ∘-resp-≈ᵢ {A B C : 𝕌} {g i : B ↔ C} {f h : A ↔ B} (g~i : interp g ∼ interp i) (f~h : interp f ∼ interp h) where
∘-resp-≈ᵢ : interp (f ⨾ g) ∼ interp (h ⨾ i)
∘-resp-≈ᵢ x = trans (sym (eval≡interp (f ⨾ g) x))
(trans (∘-resp-≈ (λ z → trans (eval≡interp g z) (trans (g~i z) (sym (eval≡interp i z))))
(λ z → trans (eval≡interp f z) (trans (f~h z) (sym (eval≡interp h z)))) x)
(eval≡interp (h ⨾ i) x))
open ∘-resp-≈ᵢ public
module assoc {A B C D : 𝕌} {f : A ↔ B} {g : B ↔ C} {h : C ↔ D} where
private
loop : ∀ {x} (n : ℕ)
→ (∀ b → ((rs : [ f ∣ b ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷ ↦* toState ((f ⨾ g) ⨾ h) x)
× ((rs : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ g ∣ b ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x))
× (∀ c → ((rs : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷ ↦* toState ((f ⨾ g) ⨾ h) x)
× ((rs : ⟨ h ∣ c ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ h ∣ c ∣ f ⨾ g ⨾☐• ☐ ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x))
loop {x} = <′-rec (λ n → _) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → _) → _
loop-rec n R = loop₁ , loop₂
where
loop₁ : ∀ b → ((rs : [ f ∣ b ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷ ↦* toState ((f ⨾ g) ⨾ h) x)
× ((rs : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ g ∣ b ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x)
loop₁ b = loop⃗ , loop⃖
where
loop⃗ : (rs : [ f ∣ b ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷ ↦* toState ((f ⨾ g) ⨾ h) x
loop⃗ rs refl with inspect⊎ (run ⟨ g ∣ b ∣ ☐ ⟩▷) (λ ())
loop⃗ rs refl | inj₁ ((b' , rsb) , _) = rs₂' ++↦ proj₂ (proj₁ (R (len↦ rs₁'') le) b') rs₁'' refl
where
rs₁' : [ f ∣ b ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* ⟨ g ∣ b' ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁
rs₁' = (↦⃗₇ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rsb refl (☐⨾ h • (f ⨾☐• ☐))
rs₁'' : ⟨ g ∣ b' ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷ ↦* ⟨ g ∣ b' ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁
rs₂' = ↦⃗₇ ∷ appendκ↦* rsb refl (f ⨾☐• (☐⨾ h • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃗ rs refl | inj₂ ((c , rsb) , _) = rs₂' ++↦ proj₁ (proj₂ (R (len↦ rs₁'') le) c) rs₁'' refl
where
rs₁' : [ f ∣ b ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷
rs₁' = (↦⃗₇ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rsb refl (☐⨾ h • (f ⨾☐• ☐))
rs₁'' : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* toState (f ⨾ (g ⨾ h)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷ ↦* [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷
rs₂' = ↦⃗₇ ∷ appendκ↦* rsb refl (f ⨾☐• (☐⨾ h • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃖ : (rs : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ g ∣ b ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x
loop⃖ rs refl with inspect⊎ (run [ f ∣ b ∣ ☐ ]◁) (λ ())
loop⃖ rs refl | inj₁ ((a , rsb) , eq) = lem
where
rs₁' : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* ⟨ f ⨾ (g ⨾ h) ∣ a ∣ ☐ ⟩◁
rs₁' = (↦⃖₃ ∷ ↦⃖₇ ∷ ◾) ++↦ appendκ↦* rsb refl (☐⨾ g ⨾ h • ☐) ++↦ ↦⃖₃ ∷ ◾
xeq : x ≡ a ⃖
xeq = toState≡₂ (sym (deterministic* rs₁' rs (λ ()) (is-stuck-toState _ _)))
lem : ⟨ g ∣ b ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x
lem rewrite xeq = (↦⃖₇ ∷ ◾) ++↦ appendκ↦* rsb refl (☐⨾ g • ☐⨾ h • ☐) ++↦ ↦⃖₃ ∷ ↦⃖₃ ∷ ◾
loop⃖ rs refl | inj₂ ((b' , rsb) , eq) = ↦⃖₇ ∷ rs₂' ++↦ proj₁ (proj₁ (R (len↦ rs₁'') le) b') rs₁'' refl
where
rs₁' : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* [ f ∣ b' ∣ ☐⨾ g ⨾ h • ☐ ]▷
rs₁' = (↦⃖₃ ∷ ↦⃖₇ ∷ ◾) ++↦ appendκ↦* rsb refl (☐⨾ g ⨾ h • ☐)
rs₁'' : [ f ∣ b' ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* (toState (f ⨾ g ⨾ h) x)
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ f ∣ b ∣ ☐⨾ g • ☐⨾ h • ☐ ]◁ ↦* [ f ∣ b' ∣ ☐⨾ g • (☐⨾ h • ☐) ]▷
rs₂' = appendκ↦* rsb refl (☐⨾ g • ☐⨾ h • ☐)
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop₂ : ∀ c → ((rs : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷ ↦* toState ((f ⨾ g) ⨾ h) x)
× ((rs : ⟨ h ∣ c ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ h ∣ c ∣ f ⨾ g ⨾☐• ☐ ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x)
loop₂ c = loop⃗ , loop⃖
where
loop⃗ : (rs : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷ ↦* toState ((f ⨾ g) ⨾ h) x
loop⃗ rs refl with inspect⊎ (run ⟨ h ∣ c ∣ ☐ ⟩▷) (λ ())
loop⃗ rs refl | inj₁ ((c' , rsc) , eq) = rs₂' ++↦ proj₂ (proj₂ (R (len↦ rs₁'') le) c') rs₁'' refl
where
rs₁' : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* ⟨ h ∣ c' ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁
rs₁' = ↦⃗₇ ∷ appendκ↦* rsc refl (g ⨾☐• (f ⨾☐• ☐))
rs₁'' : ⟨ h ∣ c' ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* (toState (f ⨾ g ⨾ h) x)
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷ ↦* ⟨ h ∣ c' ∣ f ⨾ g ⨾☐• ☐ ⟩◁
rs₂' = (↦⃗₁₀ ∷ ↦⃗₇ ∷ ◾) ++↦ appendκ↦* rsc refl (f ⨾ g ⨾☐• ☐)
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃗ rs refl | inj₂ ((d , rsc) , eq) = lem
where
rs₁' : [ g ∣ c ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* [ f ⨾ g ⨾ h ∣ d ∣ ☐ ]▷
rs₁' = ↦⃗₇ ∷ appendκ↦* rsc refl (g ⨾☐• (f ⨾☐• ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₀ ∷ ◾
xeq : x ≡ d ⃗
xeq = toState≡₁ (sym (deterministic* rs₁' rs (λ ()) (is-stuck-toState _ _)))
lem : [ g ∣ c ∣ f ⨾☐• (☐⨾ h • ☐) ]▷ ↦* toState ((f ⨾ g) ⨾ h) x
lem rewrite xeq = (↦⃗₁₀ ∷ ↦⃗₇ ∷ ◾) ++↦ appendκ↦* rsc refl (f ⨾ g ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
loop⃖ : (rs : ⟨ h ∣ c ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ (g ⨾ h)) x) → len↦ rs ≡ n → ⟨ h ∣ c ∣ f ⨾ g ⨾☐• ☐ ⟩◁ ↦* toState ((f ⨾ g) ⨾ h) x
loop⃖ rs refl with inspect⊎ (run [ g ∣ c ∣ ☐ ]◁) (λ ())
loop⃖ rs refl | inj₁ ((b , rsc) , eq) = rs₂' ++↦ proj₂ (proj₁ (R (len↦ rs₁'') le) b) rs₁'' refl
where
rs₁' : ⟨ h ∣ c ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁
rs₁' = ↦⃖₇ ∷ appendκ↦* rsc refl (☐⨾ h • (f ⨾☐• ☐))
rs₁'' : ⟨ g ∣ b ∣ ☐⨾ h • (f ⨾☐• ☐) ⟩◁ ↦* (toState (f ⨾ g ⨾ h) x)
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : ⟨ h ∣ c ∣ f ⨾ g ⨾☐• ☐ ⟩◁ ↦* ⟨ g ∣ b ∣ f ⨾☐• (☐⨾ h • ☐) ⟩◁
rs₂' = (↦⃖₇ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rsc refl (f ⨾☐• (☐⨾ h • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃖ rs refl | inj₂ ((c' , rsc) , eq) = rs₂' ++↦ proj₁ (proj₂ (R (len↦ rs₁'') le) c') rs₁'' refl
where
rs₁' : ⟨ h ∣ c ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* [ g ∣ c' ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷
rs₁' = ↦⃖₇ ∷ appendκ↦* rsc refl (☐⨾ h • (f ⨾☐• ☐))
rs₁'' : [ g ∣ c' ∣ ☐⨾ h • (f ⨾☐• ☐) ]▷ ↦* (toState (f ⨾ g ⨾ h) x)
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : ⟨ h ∣ c ∣ f ⨾ g ⨾☐• ☐ ⟩◁ ↦* [ g ∣ c' ∣ f ⨾☐• (☐⨾ h • ☐) ]▷
rs₂' = (↦⃖₇ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rsc refl (f ⨾☐• (☐⨾ h • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
assoc : eval (f ⨾ g ⨾ h) ∼ eval ((f ⨾ g) ⨾ h)
assoc (a ⃗) with inspect⊎ (run ⟨ f ∣ a ∣ ☐ ⟩▷) (λ ())
assoc (a ⃗) | inj₁ ((a₁ , rs₁) , eq₁) = lem
where
rs₁' : ⟨ f ⨾ (g ⨾ h) ∣ a ∣ ☐ ⟩▷ ↦* ⟨ f ⨾ (g ⨾ h) ∣ a₁ ∣ ☐ ⟩◁
rs₁' = ↦⃗₃ ∷ appendκ↦* rs₁ refl (☐⨾ g ⨾ h • ☐) ++↦ ↦⃖₃ ∷ ◾
rs₂' : ⟨ (f ⨾ g) ⨾ h ∣ a ∣ ☐ ⟩▷ ↦* ⟨ (f ⨾ g) ⨾ h ∣ a₁ ∣ ☐ ⟩◁
rs₂' = (↦⃗₃ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs₁ refl (☐⨾ g • ☐⨾ h • ☐) ++↦ ↦⃖₃ ∷ ↦⃖₃ ∷ ◾
lem : eval (f ⨾ g ⨾ h) (a ⃗) ≡ eval ((f ⨾ g) ⨾ h) (a ⃗)
lem rewrite eval-toState₁ rs₁' | eval-toState₁ rs₂' = refl
assoc (a ⃗) | inj₂ ((b₁ , rs₁) , eq₁) = sym (eval-toState₁ rs₂'')
where
rs : ⟨ f ⨾ (g ⨾ h) ∣ a ∣ ☐ ⟩▷ ↦* toState (f ⨾ g ⨾ h) (eval (f ⨾ g ⨾ h) (a ⃗))
rs = getₜᵣ⃗ (f ⨾ g ⨾ h) refl
rs₁' : ⟨ f ⨾ (g ⨾ h) ∣ a ∣ ☐ ⟩▷ ↦* [ f ∣ b₁ ∣ ☐⨾ g ⨾ h • ☐ ]▷
rs₁' = ↦⃗₃ ∷ appendκ↦* rs₁ refl (☐⨾ g ⨾ h • ☐)
rs₁'' : [ f ∣ b₁ ∣ ☐⨾ g ⨾ h • ☐ ]▷ ↦* toState (f ⨾ g ⨾ h) (eval (f ⨾ g ⨾ h) (a ⃗))
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : ⟨ (f ⨾ g) ⨾ h ∣ a ∣ ☐ ⟩▷ ↦* [ f ∣ b₁ ∣ ☐⨾ g • ☐⨾ h • ☐ ]▷
rs₂' = (↦⃗₃ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs₁ refl (☐⨾ g • ☐⨾ h • ☐)
rs₂'' : ⟨ (f ⨾ g) ⨾ h ∣ a ∣ ☐ ⟩▷ ↦* toState ((f ⨾ g) ⨾ h) (eval (f ⨾ g ⨾ h) (a ⃗))
rs₂'' = rs₂' ++↦ proj₁ ((proj₁ (loop (len↦ rs₁''))) b₁) rs₁'' refl
assoc (d ⃖) with inspect⊎ (run [ h ∣ d ∣ ☐ ]◁) (λ ())
assoc (d ⃖) | inj₁ ((c₁ , rs₁) , eq₁) = sym (eval-toState₂ rs₂'')
where
rs : [ f ⨾ (g ⨾ h) ∣ d ∣ ☐ ]◁ ↦* toState (f ⨾ g ⨾ h) (eval (f ⨾ g ⨾ h) (d ⃖))
rs = getₜᵣ⃖ (f ⨾ g ⨾ h) refl
rs₁' : [ f ⨾ (g ⨾ h) ∣ d ∣ ☐ ]◁ ↦* ⟨ h ∣ c₁ ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁
rs₁' = (↦⃖₁₀ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs₁ refl (g ⨾☐• (f ⨾☐• ☐))
rs₁'' : ⟨ h ∣ c₁ ∣ g ⨾☐• (f ⨾☐• ☐) ⟩◁ ↦* toState (f ⨾ g ⨾ h) (eval (f ⨾ g ⨾ h) (d ⃖))
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ (f ⨾ g) ⨾ h ∣ d ∣ ☐ ]◁ ↦* ⟨ h ∣ c₁ ∣ f ⨾ g ⨾☐• ☐ ⟩◁
rs₂' = (↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs₁ refl ((f ⨾ g) ⨾☐• ☐)
rs₂'' : [ (f ⨾ g) ⨾ h ∣ d ∣ ☐ ]◁ ↦* toState ((f ⨾ g) ⨾ h) (eval (f ⨾ g ⨾ h) (d ⃖))
rs₂'' = rs₂' ++↦ proj₂ ((proj₂ (loop (len↦ rs₁''))) c₁) rs₁'' refl
assoc (d ⃖) | inj₂ ((d₁ , rs₁) , eq₁) = lem
where
rs₁' : [ f ⨾ (g ⨾ h) ∣ d ∣ ☐ ]◁ ↦* [ f ⨾ (g ⨾ h) ∣ d₁ ∣ ☐ ]▷
rs₁' = (↦⃖₁₀ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs₁ refl (g ⨾☐• (f ⨾☐• ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₀ ∷ ◾
rs₂' : [ (f ⨾ g) ⨾ h ∣ d ∣ ☐ ]◁ ↦* [ (f ⨾ g) ⨾ h ∣ d₁ ∣ ☐ ]▷
rs₂' = (↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs₁ refl ((f ⨾ g) ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
lem : eval (f ⨾ g ⨾ h) (d ⃖) ≡ eval ((f ⨾ g) ⨾ h) (d ⃖)
lem rewrite eval-toState₂ rs₁' | eval-toState₂ rs₂' = refl
open assoc public
module homomorphism {A₁ B₁ A₂ B₂ A₃ B₃} {f : A₁ ↔ A₂} {g : B₁ ↔ B₂} {h : A₂ ↔ A₃} {i : B₂ ↔ B₃} where
private
P₁ : ∀ {x} ℕ → Set _
P₁ {x} n = ∀ a₂ → ((rs : [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → [ f ∣ a₂ ∣ ☐⊕ g • ☐⨾ h ⊕ i • ☐ ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x)
× ((rs : ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → ⟨ h ∣ a₂ ∣ ☐⊕ i • (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x)
P₂ : ∀ {x} ℕ → Set _
P₂ {x} n = ∀ b₂ → ((rs : [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x)
× ((rs : ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → ⟨ i ∣ b₂ ∣ h ⊕☐• (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x)
P : ∀ {x} ℕ → Set _
P {x} n = P₁ {x} n × P₂ {x} n
loop : ∀ {x} (n : ℕ) → P {x} n
loop {x} = <′-rec (λ n → P n) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → P m) → P n
loop-rec n R = loop₁ , loop₂
where
loop₁ : P₁ n
loop₁ a₂ = loop⃗ , loop⃖
where
loop⃗ : (rs : [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → [ f ∣ a₂ ∣ ☐⊕ g • ☐⨾ h ⊕ i • ☐ ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
loop⃗ rs refl with inspect⊎ (run ⟨ h ∣ a₂ ∣ ☐ ⟩▷) (λ ())
loop⃗ rs refl | inj₁ ((a₂' , rsa) , _) = rs₂' ++↦ proj₂ (proj₁ (R (len↦ rs₁'') le) a₂') rs₁'' refl
where
rs₁' : [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* ⟨ h ∣ a₂' ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁
rs₁' = ↦⃗₇ ∷ appendκ↦* rsa refl (f ⨾☐• (☐⊕ g ⨾ i • ☐))
rs₁'' : ⟨ h ∣ a₂' ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ f ∣ a₂ ∣ ☐⊕ g • ☐⨾ h ⊕ i • ☐ ]▷ ↦* ⟨ h ∣ a₂' ∣ ☐⊕ i • (f ⊕ g ⨾☐• ☐) ⟩◁
rs₂' = (↦⃗₁₁ ∷ ↦⃗₇ ∷ ↦⃗₄ ∷ ◾) ++↦ appendκ↦* rsa refl (☐⊕ i • (f ⊕ g ⨾☐• ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃗ rs refl | inj₂ ((a₃ , rsa) , _) = lem
where
rs₁' : [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a₃ ∣ ☐ ]▷
rs₁' = ↦⃗₇ ∷ appendκ↦* rsa refl (f ⨾☐• (☐⊕ g ⨾ i • ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₁ ∷ ◾
xeq : x ≡ inj₁ a₃ ⃗
xeq = toState≡₁ (deterministic* rs rs₁' (is-stuck-toState _ _) (λ ()))
lem : [ f ∣ a₂ ∣ ☐⊕ g • (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
lem rewrite xeq = (↦⃗₁₁ ∷ ↦⃗₇ ∷ ↦⃗₄ ∷ ◾) ++↦ appendκ↦* rsa refl (☐⊕ i • (f ⊕ g ⨾☐• ☐)) ++↦ ↦⃗₁₁ ∷ ↦⃗₁₀ ∷ ◾
loop⃖ : (rs : ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → ⟨ h ∣ a₂ ∣ ☐⊕ i • (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
loop⃖ rs refl with inspect⊎ (run [ f ∣ a₂ ∣ ☐ ]◁) (λ ())
loop⃖ rs refl | inj₁ ((a₁ , rsa) , _) = lem
where
rs₁' : ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a₁ ∣ ☐ ⟩◁
rs₁' = ↦⃖₇ ∷ appendκ↦* rsa refl (☐⨾ h • (☐⊕ g ⨾ i • ☐)) ++↦ ↦⃖₃ ∷ ↦⃖₄ ∷ ◾
xeq : x ≡ inj₁ a₁ ⃖
xeq = toState≡₂ (deterministic* rs rs₁' (is-stuck-toState _ _) (λ ()))
lem : ⟨ h ∣ a₂ ∣ ☐⊕ i • ((f ⊕ g) ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
lem rewrite xeq = (↦⃖₄ ∷ ↦⃖₇ ∷ ↦⃖₁₁ ∷ ◾) ++↦ appendκ↦* rsa refl (☐⊕ g • (☐⨾ h ⊕ i • ☐)) ++↦ ↦⃖₄ ∷ ↦⃖₃ ∷ ◾
loop⃖ rs refl | inj₂ ((a₂' , rsa) , _) = rs₂' ++↦ proj₁ (proj₁ (R (len↦ rs₁'') le) a₂') rs₁'' refl
where
rs₁' : ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* [ f ∣ a₂' ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷
rs₁' = ↦⃖₇ ∷ appendκ↦* rsa refl (☐⨾ h • (☐⊕ g ⨾ i • ☐))
rs₁'' : [ f ∣ a₂' ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : ⟨ h ∣ a₂ ∣ ☐⊕ i • ((f ⊕ g) ⨾☐• ☐) ⟩◁ ↦* [ f ∣ a₂' ∣ ☐⊕ g • ☐⨾ h ⊕ i • ☐ ]▷
rs₂' = (↦⃖₄ ∷ ↦⃖₇ ∷ ↦⃖₁₁ ∷ ◾) ++↦ appendκ↦* rsa refl (☐⊕ g • (☐⨾ h ⊕ i • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop₂ : P₂ n
loop₂ b₂ = loop⃗ , loop⃖
where
loop⃗ : (rs : [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
loop⃗ rs refl with inspect⊎ (run ⟨ i ∣ b₂ ∣ ☐ ⟩▷) (λ ())
loop⃗ rs refl | inj₁ ((b₂' , rsb) , _) = rs₂' ++↦ proj₂ (proj₂ (R (len↦ rs₁'') le) b₂') rs₁'' refl
where
rs₁' : [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷ ↦* ⟨ i ∣ b₂' ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁
rs₁' = ↦⃗₇ ∷ appendκ↦* rsb refl (g ⨾☐• (f ⨾ h ⊕☐• ☐))
rs₁'' : ⟨ i ∣ b₂' ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷ ↦* ⟨ i ∣ b₂' ∣ h ⊕☐• (f ⊕ g ⨾☐• ☐) ⟩◁
rs₂' = (↦⃗₁₂ ∷ ↦⃗₇ ∷ ↦⃗₅ ∷ ◾) ++↦ appendκ↦* rsb refl (h ⊕☐• (f ⊕ g ⨾☐• ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
loop⃗ rs refl | inj₂ ((b₃ , rsb) , _) = lem
where
rs₁' : [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷ ↦* [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b₃ ∣ ☐ ]▷
rs₁' = ↦⃗₇ ∷ appendκ↦* rsb refl (g ⨾☐• (f ⨾ h ⊕☐• ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₂ ∷ ◾
xeq : x ≡ inj₂ b₃ ⃗
xeq = toState≡₁ (deterministic* rs rs₁' (is-stuck-toState _ _) (λ ()))
lem : [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
lem rewrite xeq = (↦⃗₁₂ ∷ ↦⃗₇ ∷ ↦⃗₅ ∷ ◾) ++↦ appendκ↦* rsb refl (h ⊕☐• (f ⊕ g ⨾☐• ☐)) ++↦ ↦⃗₁₂ ∷ ↦⃗₁₀ ∷ ◾
loop⃖ : (rs : ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x) → len↦ rs ≡ n → ⟨ i ∣ b₂ ∣ h ⊕☐• (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
loop⃖ rs refl with inspect⊎ (run [ g ∣ b₂ ∣ ☐ ]◁) (λ ())
loop⃖ rs refl | inj₁ ((b₁ , rsb) , _) = lem
where
rs₁' : ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b₁ ∣ ☐ ⟩◁
rs₁' = ↦⃖₇ ∷ appendκ↦* rsb refl (☐⨾ i • (f ⨾ h ⊕☐• ☐)) ++↦ ↦⃖₃ ∷ ↦⃖₅ ∷ ◾
xeq : x ≡ inj₂ b₁ ⃖
xeq = toState≡₂ (deterministic* rs rs₁' (is-stuck-toState _ _) (λ ()))
lem : ⟨ i ∣ b₂ ∣ h ⊕☐• ((f ⊕ g) ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) x
lem rewrite xeq = (↦⃖₅ ∷ ↦⃖₇ ∷ ↦⃖₁₂ ∷ ◾) ++↦ appendκ↦* rsb refl (f ⊕☐• (☐⨾ h ⊕ i • ☐)) ++↦ ↦⃖₅ ∷ ↦⃖₃ ∷ ◾
loop⃖ rs refl | inj₂ ((b₂' , rsb) , _) = rs₂' ++↦ proj₁ (proj₂ (R (len↦ rs₁'') le) b₂') rs₁'' refl
where
rs₁' : ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* [ g ∣ b₂' ∣ ☐⨾ i • ((f ⨾ h) ⊕☐• ☐) ]▷
rs₁' = ↦⃖₇ ∷ appendκ↦* rsb refl (☐⨾ i • (f ⨾ h ⊕☐• ☐))
rs₁'' : [ g ∣ b₂' ∣ ☐⨾ i • ((f ⨾ h) ⊕☐• ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) x
rs₁'' = proj₁ (deterministic*' rs₁' rs (is-stuck-toState _ _))
rs₂' : ⟨ i ∣ b₂ ∣ h ⊕☐• ((f ⊕ g) ⨾☐• ☐) ⟩◁ ↦* [ g ∣ b₂' ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷
rs₂' = (↦⃖₅ ∷ ↦⃖₇ ∷ ↦⃖₁₂ ∷ ◾) ++↦ appendκ↦* rsb refl (f ⊕☐• (☐⨾ h ⊕ i • ☐))
req : len↦ rs ≡ len↦ rs₁' + len↦ rs₁''
req = proj₂ (deterministic*' rs₁' rs (is-stuck-toState _ _))
le : len↦ rs₁'' <′ len↦ rs
le = subst (λ x → len↦ rs₁'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
homomorphism : eval ((f ⨾ h) ⊕ (g ⨾ i)) ∼ eval (f ⊕ g ⨾ h ⊕ i)
homomorphism (inj₁ a ⃗) with inspect⊎ (run ⟨ f ∣ a ∣ ☐ ⟩▷) (λ ())
homomorphism (inj₁ a ⃗) | inj₁ ((a₁ , rs) , eq) = lem
where
rs₁' : ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a ∣ ☐ ⟩▷ ↦* ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a₁ ∣ ☐ ⟩◁
rs₁' = (↦⃗₄ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾ h • (☐⊕ g ⨾ i • ☐)) ++↦ ↦⃖₃ ∷ ↦⃖₄ ∷ ◾
rs₂' : ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a ∣ ☐ ⟩▷ ↦* ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a₁ ∣ ☐ ⟩◁
rs₂' = (↦⃗₃ ∷ ↦⃗₄ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊕ g • (☐⨾ h ⊕ i • ☐)) ++↦ ↦⃖₄ ∷ ↦⃖₃ ∷ ◾
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃗) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₁ a ⃗)
lem rewrite eval-toState₁ rs₁' | eval-toState₁ rs₂' = refl
homomorphism (inj₁ a ⃗) | inj₂ ((a₂ , rs) , eq) = lem
where
rs₁' : ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a ∣ ☐ ⟩▷ ↦* [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷
rs₁' = (↦⃗₄ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾ h • (☐⊕ g ⨾ i • ☐))
rs₁'' : [ f ∣ a₂ ∣ ☐⨾ h • (☐⊕ g ⨾ i • ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃗))
rs₁'' = proj₁ (deterministic*' rs₁' (getₜᵣ⃗ ((f ⨾ h) ⊕ (g ⨾ i)) refl) (is-stuck-toState _ _))
rs₂' : ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a ∣ ☐ ⟩▷ ↦* [ f ∣ a₂ ∣ ☐⊕ g • (☐⨾ h ⊕ i • ☐) ]▷
rs₂' = (↦⃗₃ ∷ ↦⃗₄ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊕ g • (☐⨾ h ⊕ i • ☐))
rs₂'' : [ f ∣ a₂ ∣ ☐⊕ g • (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃗))
rs₂'' = proj₁ (proj₁ (loop (len↦ rs₁'')) a₂) rs₁'' refl
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃗) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₁ a ⃗)
lem rewrite eval-toState₁ (rs₂' ++↦ rs₂'') = refl
homomorphism (inj₂ b ⃗) with inspect⊎ (run ⟨ g ∣ b ∣ ☐ ⟩▷) (λ ())
homomorphism (inj₂ b ⃗) | inj₁ ((b₁ , rs) , eq) = lem
where
rs₁' : ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b ∣ ☐ ⟩▷ ↦* ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b₁ ∣ ☐ ⟩◁
rs₁' = (↦⃗₅ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾ i • (f ⨾ h ⊕☐• ☐)) ++↦ ↦⃖₃ ∷ ↦⃖₅ ∷ ◾
rs₂' : ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b ∣ ☐ ⟩▷ ↦* ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b₁ ∣ ☐ ⟩◁
rs₂' = (↦⃗₃ ∷ ↦⃗₅ ∷ ◾) ++↦ appendκ↦* rs refl (f ⊕☐• (☐⨾ h ⊕ i • ☐)) ++↦ ↦⃖₅ ∷ ↦⃖₃ ∷ ◾
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃗) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₂ b ⃗)
lem rewrite eval-toState₁ rs₁' | eval-toState₁ rs₂' = refl
homomorphism (inj₂ b ⃗) | inj₂ ((b₂ , rs) , eq) = lem
where
rs₁' : ⟨ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b ∣ ☐ ⟩▷ ↦* [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷
rs₁' = (↦⃗₅ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾ i • (f ⨾ h ⊕☐• ☐))
rs₁'' : [ g ∣ b₂ ∣ ☐⨾ i • (f ⨾ h ⊕☐• ☐) ]▷ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃗))
rs₁'' = proj₁ (deterministic*' rs₁' (getₜᵣ⃗ ((f ⨾ h) ⊕ (g ⨾ i)) refl) (is-stuck-toState _ _))
rs₂' : ⟨ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b ∣ ☐ ⟩▷ ↦* [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷
rs₂' = (↦⃗₃ ∷ ↦⃗₅ ∷ ◾) ++↦ appendκ↦* rs refl (f ⊕☐• (☐⨾ h ⊕ i • ☐))
rs₂'' : [ g ∣ b₂ ∣ f ⊕☐• (☐⨾ h ⊕ i • ☐) ]▷ ↦* toState (f ⊕ g ⨾ h ⊕ i) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃗))
rs₂'' = proj₁ (proj₂ (loop (len↦ rs₁'')) b₂) rs₁'' refl
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃗) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₂ b ⃗)
lem rewrite eval-toState₁ (rs₂' ++↦ rs₂'') = refl
homomorphism (inj₁ a ⃖) with inspect⊎ (run [ h ∣ a ∣ ☐ ]◁) (λ ())
homomorphism (inj₁ a ⃖) | inj₁ ((a₂ , rs) , eq) = lem
where
rs₁' : [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a ∣ ☐ ]◁ ↦* ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁
rs₁' = (↦⃖₁₁ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs refl (f ⨾☐• (☐⊕ g ⨾ i • ☐))
rs₁'' : ⟨ h ∣ a₂ ∣ f ⨾☐• (☐⊕ (g ⨾ i) • ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃖))
rs₁'' = proj₁ (deterministic*' rs₁' (getₜᵣ⃖ ((f ⨾ h) ⊕ (g ⨾ i)) refl) (is-stuck-toState _ _))
rs₂' : [ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a ∣ ☐ ]◁ ↦* ⟨ h ∣ a₂ ∣ ☐⊕ i • (f ⊕ g ⨾☐• ☐) ⟩◁
rs₂' = (↦⃖₁₀ ∷ ↦⃖₁₁ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊕ i • (f ⊕ g ⨾☐• ☐))
rs₂'' : ⟨ h ∣ a₂ ∣ ☐⊕ i • (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃖))
rs₂'' = proj₂ (proj₁ (loop (len↦ rs₁'')) a₂) rs₁'' refl
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃖) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₁ a ⃖)
lem rewrite eval-toState₂ (rs₂' ++↦ rs₂'') = refl
homomorphism (inj₁ a ⃖) | inj₂ ((a₃ , rs) , eq) = lem
where
rs₁' : [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a ∣ ☐ ]◁ ↦* [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₁ a₃ ∣ ☐ ]▷
rs₁' = (↦⃖₁₁ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs refl (f ⨾☐• (☐⊕ g ⨾ i • ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₁ ∷ ◾
rs₂' : [ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a ∣ ☐ ]◁ ↦* [ f ⊕ g ⨾ h ⊕ i ∣ inj₁ a₃ ∣ ☐ ]▷
rs₂' = (↦⃖₁₀ ∷ ↦⃖₁₁ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊕ i • (f ⊕ g ⨾☐• ☐)) ++↦ ↦⃗₁₁ ∷ ↦⃗₁₀ ∷ ◾
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₁ a ⃖) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₁ a ⃖)
lem rewrite eval-toState₂ rs₁' | eval-toState₂ rs₂' = refl
homomorphism (inj₂ b ⃖) with inspect⊎ (run [ i ∣ b ∣ ☐ ]◁) (λ ())
homomorphism (inj₂ b ⃖) | inj₁ ((b₂ , rs) , eq) = lem
where
rs₁' : [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b ∣ ☐ ]◁ ↦* ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁
rs₁' = (↦⃖₁₂ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs refl (g ⨾☐• (f ⨾ h ⊕☐• ☐))
rs₁'' : ⟨ i ∣ b₂ ∣ g ⨾☐• (f ⨾ h ⊕☐• ☐) ⟩◁ ↦* toState ((f ⨾ h) ⊕ (g ⨾ i)) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃖))
rs₁'' = proj₁ (deterministic*' rs₁' (getₜᵣ⃖ ((f ⨾ h) ⊕ (g ⨾ i)) refl) (is-stuck-toState _ _))
rs₂' : [ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b ∣ ☐ ]◁ ↦* ⟨ i ∣ b₂ ∣ h ⊕☐• (f ⊕ g ⨾☐• ☐) ⟩◁
rs₂' = (↦⃖₁₀ ∷ ↦⃖₁₂ ∷ ◾) ++↦ appendκ↦* rs refl (h ⊕☐• (f ⊕ g ⨾☐• ☐))
rs₂'' : ⟨ i ∣ b₂ ∣ h ⊕☐• (f ⊕ g ⨾☐• ☐) ⟩◁ ↦* toState (f ⊕ g ⨾ h ⊕ i) (eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃖))
rs₂'' = proj₂ (proj₂ (loop (len↦ rs₁'')) b₂) rs₁'' refl
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃖) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₂ b ⃖)
lem rewrite eval-toState₂ (rs₂' ++↦ rs₂'') = refl
homomorphism (inj₂ b ⃖) | inj₂ ((b₃ , rs) , eq) = lem
where
rs₁' : [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b ∣ ☐ ]◁ ↦* [ (f ⨾ h) ⊕ (g ⨾ i) ∣ inj₂ b₃ ∣ ☐ ]▷
rs₁' = (↦⃖₁₂ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs refl (g ⨾☐• (f ⨾ h ⊕☐• ☐)) ++↦ ↦⃗₁₀ ∷ ↦⃗₁₂ ∷ ◾
rs₂' : [ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b ∣ ☐ ]◁ ↦* [ f ⊕ g ⨾ h ⊕ i ∣ inj₂ b₃ ∣ ☐ ]▷
rs₂' = (↦⃖₁₀ ∷ ↦⃖₁₂ ∷ ◾) ++↦ appendκ↦* rs refl (h ⊕☐• (f ⊕ g ⨾☐• ☐)) ++↦ ↦⃗₁₂ ∷ ↦⃗₁₀ ∷ ◾
lem : eval ((f ⨾ h) ⊕ (g ⨾ i)) (inj₂ b ⃖) ≡ eval (f ⊕ g ⨾ h ⊕ i) (inj₂ b ⃖)
lem rewrite eval-toState₂ rs₁' | eval-toState₂ rs₂' = refl
open homomorphism public
module Inverse where
!invᵢ : ∀ {A B} → (c : A ↔ B) → interp c ∼ interp (! (! c))
!invᵢ unite₊l x = refl
!invᵢ uniti₊l x = refl
!invᵢ swap₊ x = refl
!invᵢ assocl₊ x = refl
!invᵢ assocr₊ x = refl
!invᵢ unite⋆l x = refl
!invᵢ uniti⋆l x = refl
!invᵢ swap⋆ x = refl
!invᵢ assocl⋆ x = refl
!invᵢ assocr⋆ x = refl
!invᵢ absorbr x = refl
!invᵢ factorzl x = refl
!invᵢ dist x = refl
!invᵢ factor x = refl
!invᵢ id↔ x = refl
!invᵢ (c₁ ⨾ c₂) x = ∘-resp-≈ᵢ (!invᵢ c₂) (!invᵢ c₁) x
!invᵢ (c₁ ⊕ c₂) (inj₁ x ⃗) rewrite sym (!invᵢ c₁ (x ⃗)) with interp c₁ (x ⃗)
... | x' ⃗ = refl
... | x' ⃖ = refl
!invᵢ (c₁ ⊕ c₂) (inj₂ y ⃗) rewrite sym (!invᵢ c₂ (y ⃗)) with interp c₂ (y ⃗)
... | y' ⃗ = refl
... | y' ⃖ = refl
!invᵢ (c₁ ⊕ c₂) (inj₁ x ⃖) rewrite sym (!invᵢ c₁ (x ⃖)) with interp c₁ (x ⃖)
... | x' ⃗ = refl
... | x' ⃖ = refl
!invᵢ (c₁ ⊕ c₂) (inj₂ y ⃖) rewrite sym (!invᵢ c₂ (y ⃖)) with interp c₂ (y ⃖)
... | y' ⃗ = refl
... | y' ⃖ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃗) rewrite sym (!invᵢ c₁ (x ⃗)) with interp c₁ (x ⃗)
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃗) | x' ⃗ rewrite sym (!invᵢ c₂ (y ⃗)) with interp c₂ (y ⃗)
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃗) | x' ⃗ | y' ⃗ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃗) | x' ⃗ | y' ⃖ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃗) | x' ⃖ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃖) rewrite sym (!invᵢ c₂ (y ⃖)) with interp c₂ (y ⃖)
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃖) | y' ⃗ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃖) | y' ⃖ rewrite sym (!invᵢ c₁ (x ⃖)) with interp c₁ (x ⃖)
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃖) | y' ⃖ | x' ⃗ = refl
!invᵢ (c₁ ⊗ c₂) ((x , y) ⃖) | y' ⃖ | x' ⃖ = refl
!invᵢ η₊ x = refl
!invᵢ ε₊ x = refl
!inv : ∀ {A B} → (c : A ↔ B) → eval c ∼ eval (! (! c))
!inv c x = trans (eval≡interp c x)
(trans (!invᵢ c x)
(sym (eval≡interp (! (! c)) x)))
private
toState! : ∀ {A B} → (c : A ↔ B) → Val B A → State
toState! c (b ⃗) = ⟨ ! c ∣ b ∣ ☐ ⟩◁
toState! c (a ⃖) = [ ! c ∣ a ∣ ☐ ]▷
mutual
!rev : ∀ {A B} → (c : A ↔ B) → ∀ x {y} → eval c x ≡ y → eval (! c) y ≡ x
!rev unite₊l (inj₂ y ⃗) refl = refl
!rev unite₊l (x ⃖) refl = refl
!rev uniti₊l (x ⃗) refl = refl
!rev uniti₊l (inj₂ y ⃖) refl = refl
!rev swap₊ (inj₁ x ⃗) refl = refl
!rev swap₊ (inj₂ y ⃗) refl = refl
!rev swap₊ (inj₁ x ⃖) refl = refl
!rev swap₊ (inj₂ y ⃖) refl = refl
!rev assocl₊ (inj₁ x ⃗) refl = refl
!rev assocl₊ (inj₂ (inj₁ y) ⃗) refl = refl
!rev assocl₊ (inj₂ (inj₂ z) ⃗) refl = refl
!rev assocl₊ (inj₁ (inj₁ x) ⃖) refl = refl
!rev assocl₊ (inj₁ (inj₂ y) ⃖) refl = refl
!rev assocl₊ (inj₂ z ⃖) refl = refl
!rev assocr₊ (inj₁ (inj₁ x) ⃗) refl = refl
!rev assocr₊ (inj₁ (inj₂ y) ⃗) refl = refl
!rev assocr₊ (inj₂ z ⃗) refl = refl
!rev assocr₊ (inj₁ x ⃖) refl = refl
!rev assocr₊ (inj₂ (inj₁ y) ⃖) refl = refl
!rev assocr₊ (inj₂ (inj₂ z) ⃖) refl = refl
!rev unite⋆l ((tt , x) ⃗) refl = refl
!rev unite⋆l (x ⃖) refl = refl
!rev uniti⋆l (x ⃗) refl = refl
!rev uniti⋆l ((tt , x) ⃖) refl = refl
!rev swap⋆ ((x , y) ⃗) refl = refl
!rev swap⋆ ((y , x) ⃖) refl = refl
!rev assocl⋆ ((x , (y , z)) ⃗) refl = refl
!rev assocl⋆ (((x , y) , z) ⃖) refl = refl
!rev assocr⋆ (((x , y) , z) ⃗) refl = refl
!rev assocr⋆ ((x , (y , z)) ⃖) refl = refl
!rev absorbr (() ⃗)
!rev absorbr (() ⃖)
!rev factorzl (() ⃗)
!rev factorzl (() ⃖)
!rev dist ((inj₁ x , z) ⃗) refl = refl
!rev dist ((inj₂ y , z) ⃗) refl = refl
!rev dist (inj₁ (x , z) ⃖) refl = refl
!rev dist (inj₂ (y , z) ⃖) refl = refl
!rev factor (inj₁ (x , z) ⃗) refl = refl
!rev factor (inj₂ (y , z) ⃗) refl = refl
!rev factor ((inj₁ x , z) ⃖) refl = refl
!rev factor ((inj₂ y , z) ⃖) refl = refl
!rev id↔ (x ⃗) refl = refl
!rev id↔ (x ⃖) refl = refl
!rev (c₁ ⨾ c₂) (x ⃗) refl with inspect⊎ (run ⟨ c₁ ∣ x ∣ ☐ ⟩▷) (λ ())
!rev (c₁ ⨾ c₂) (x ⃗) refl | inj₁ ((x' , rs) , eq) = lem
where
rs' : ⟨ c₁ ⨾ c₂ ∣ x ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⨾ c₂ ∣ x' ∣ ☐ ⟩◁
rs' = ↦⃗₃ ∷ appendκ↦* rs refl (☐⨾ c₂ • ☐) ++↦ ↦⃖₃ ∷ ◾
rs! : [ ! c₂ ⨾ ! c₁ ∣ x' ∣ ☐ ]◁ ↦* [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]▷
rs! = ↦⃖₁₀ ∷ appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rs))) refl (! c₂ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
lem : eval (! (c₁ ⨾ c₂)) (eval (c₁ ⨾ c₂) (x ⃗)) ≡ x ⃗
lem rewrite eval-toState₁ rs' = eval-toState₂ rs!
!rev (c₁ ⨾ c₂) (x ⃗) refl | inj₂ ((x' , rs) , eq) = lem
where
rs' : [ c₁ ∣ x' ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃗))
rs' = proj₁ (deterministic*' (↦⃗₃ ∷ appendκ↦* rs refl (☐⨾ c₂ • ☐)) (getₜᵣ⃗ (c₁ ⨾ c₂) refl) (is-stuck-toState _ _))
rs! : [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]◁ ↦* ⟨ ! c₁ ∣ x' ∣ ! c₂ ⨾☐• ☐ ⟩◁
rs! = ↦⃖₁₀ ∷ Rev* (appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rs))) refl (! c₂ ⨾☐• ☐))
rs!' : ⟨ ! c₁ ∣ x' ∣ ! c₂ ⨾☐• ☐ ⟩◁ ↦* toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃗))
rs!' = proj₁ (loop (len↦ rs') x') rs' refl
lem : eval (! (c₁ ⨾ c₂)) (eval (c₁ ⨾ c₂) (x ⃗)) ≡ x ⃗
lem with eval (c₁ ⨾ c₂) (x ⃗) | inspect (eval (c₁ ⨾ c₂)) (x ⃗)
... | (x'' ⃗) | [ eq ] = eval-toState₁ (Rev* rs!'')
where
seq : toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃗)) ≡ ⟨ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ⟩◁
seq rewrite eq = refl
rs!'' : [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]◁ ↦* ⟨ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ⟩◁
rs!'' = subst (λ st → [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]◁ ↦* st) seq (rs! ++↦ rs!')
... | (x'' ⃖) | [ eq ] = eval-toState₂ (Rev* rs!'')
where
seq : toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃗)) ≡ [ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ]▷
seq rewrite eq = refl
rs!'' : [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]◁ ↦* [ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ]▷
rs!'' = subst (λ st → [ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ]◁ ↦* st) seq (rs! ++↦ rs!')
!rev (c₁ ⨾ c₂) (x ⃖) refl with inspect⊎ (run [ c₂ ∣ x ∣ ☐ ]◁) (λ ())
!rev (c₁ ⨾ c₂) (x ⃖) refl | inj₁ ((x' , rs) , eq) = lem
where
rs' : ⟨ c₂ ∣ x' ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃖))
rs' = proj₁ (deterministic*' (↦⃖₁₀ ∷ appendκ↦* rs refl (c₁ ⨾☐• ☐)) (getₜᵣ⃖ (c₁ ⨾ c₂) refl) (is-stuck-toState _ _))
rs! : ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩▷ ↦* ⟨ ! c₁ ∣ x' ∣ ! c₂ ⨾☐• ☐ ⟩▷
rs! = (↦⃗₃ ∷ ◾) ++↦ Rev* (appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (x ⃖) (eval-toState₂ rs))) refl (☐⨾ ! c₁ • ☐)) ++↦ ↦⃗₇ ∷ ◾
rs!' : ⟨ ! c₁ ∣ x' ∣ ! c₂ ⨾☐• ☐ ⟩▷ ↦* toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃖))
rs!' = proj₂ (loop (len↦ rs') x') rs' refl
lem : eval (! (c₁ ⨾ c₂)) (eval (c₁ ⨾ c₂) (x ⃖)) ≡ x ⃖
lem with eval (c₁ ⨾ c₂) (x ⃖) | inspect (eval (c₁ ⨾ c₂)) (x ⃖)
... | (x'' ⃗) | [ eq ] = eval-toState₁ (Rev* rs!'')
where
seq : toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃖)) ≡ ⟨ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ⟩◁
seq rewrite eq = refl
rs!'' : ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩▷ ↦* ⟨ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ⟩◁
rs!'' = subst (λ st → ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩▷ ↦* st) seq (rs! ++↦ rs!')
... | (x'' ⃖) | [ eq ] = eval-toState₂ (Rev* rs!'')
where
seq : toState! (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (x ⃖)) ≡ [ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ]▷
seq rewrite eq = refl
rs!'' : ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩▷ ↦* [ ! c₂ ⨾ ! c₁ ∣ x'' ∣ ☐ ]▷
rs!'' = subst (λ st → ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩▷ ↦* st) seq (rs! ++↦ rs!')
!rev (c₁ ⨾ c₂) (x ⃖) refl | inj₂ ((x' , rs) , eq) = lem
where
rs' : [ c₁ ⨾ c₂ ∣ x ∣ ☐ ]◁ ↦* [ c₁ ⨾ c₂ ∣ x' ∣ ☐ ]▷
rs' = ↦⃖₁₀ ∷ appendκ↦* rs refl (c₁ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
rs! : ⟨ ! c₂ ⨾ ! c₁ ∣ x' ∣ ☐ ⟩▷ ↦* ⟨ ! c₂ ⨾ ! c₁ ∣ x ∣ ☐ ⟩◁
rs! = ↦⃗₃ ∷ appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (x ⃖) (eval-toState₂ rs))) refl (☐⨾ ! c₁ • ☐) ++↦ ↦⃖₃ ∷ ◾
lem : eval (! (c₁ ⨾ c₂)) (eval (c₁ ⨾ c₂) (x ⃖)) ≡ x ⃖
lem rewrite eval-toState₂ rs' = eval-toState₁ rs!
!rev (c₁ ⊕ c₂) (inj₁ x ⃗) refl with inspect⊎ (run ⟨ c₁ ∣ x ∣ ☐ ⟩▷) (λ ())
!rev (c₁ ⊕ c₂) (inj₁ x ⃗) refl | inj₁ ((x' , rs) , eq) = lem
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ⟩◁
rs' = ↦⃗₄ ∷ appendκ↦* rs refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
rs! : [ ! (c₁ ⊕ c₂) ∣ inj₁ x' ∣ ☐ ]◁ ↦* [ ! (c₁ ⊕ c₂) ∣ inj₁ x ∣ ☐ ]▷
rs! = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rs))) refl (☐⊕ ! c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₁ x ⃗)) ≡ inj₁ x ⃗
lem rewrite eval-toState₁ rs' = eval-toState₂ rs!
!rev (c₁ ⊕ c₂) (inj₁ x ⃗) refl | inj₂ ((x' , rs) , eq) = lem
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ]▷
rs' = ↦⃗₄ ∷ appendκ↦* rs refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
rs! : ⟨ ! (c₁ ⊕ c₂) ∣ inj₁ x' ∣ ☐ ⟩▷ ↦* [ ! (c₁ ⊕ c₂) ∣ inj₁ x ∣ ☐ ]▷
rs! = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rs))) refl (☐⊕ ! c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₁ x ⃗)) ≡ inj₁ x ⃗
lem rewrite eval-toState₁ rs' = eval-toState₁ rs!
!rev (c₁ ⊕ c₂) (inj₂ y ⃗) refl with inspect⊎ (run ⟨ c₂ ∣ y ∣ ☐ ⟩▷) (λ ())
!rev (c₁ ⊕ c₂) (inj₂ y ⃗) refl | inj₁ ((y' , rs) , eq) = lem
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ⟩◁
rs' = ↦⃗₅ ∷ appendκ↦* rs refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
rs! : [ ! (c₁ ⊕ c₂) ∣ inj₂ y' ∣ ☐ ]◁ ↦* [ ! (c₁ ⊕ c₂) ∣ inj₂ y ∣ ☐ ]▷
rs! = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃗) (eval-toState₁ rs))) refl (! c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₂ y ⃗)) ≡ inj₂ y ⃗
lem rewrite eval-toState₁ rs' = eval-toState₂ rs!
!rev (c₁ ⊕ c₂) (inj₂ y ⃗) refl | inj₂ ((y' , rs) , eq) = lem
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ]▷
rs' = ↦⃗₅ ∷ appendκ↦* rs refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
rs! : ⟨ ! (c₁ ⊕ c₂) ∣ inj₂ y' ∣ ☐ ⟩▷ ↦* [ ! (c₁ ⊕ c₂) ∣ inj₂ y ∣ ☐ ]▷
rs! = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (y ⃗) (eval-toState₁ rs))) refl (! c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₂ y ⃗)) ≡ inj₂ y ⃗
lem rewrite eval-toState₁ rs' = eval-toState₁ rs!
!rev (c₁ ⊕ c₂) (inj₁ x ⃖) refl with inspect⊎ (run [ c₁ ∣ x ∣ ☐ ]◁) (λ ())
!rev (c₁ ⊕ c₂) (inj₁ x ⃖) refl | inj₁ ((x' , rs) , eq) = lem
where
rs' : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ⟩◁
rs' = ↦⃖₁₁ ∷ appendκ↦* rs refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
rs! : [ ! (c₁ ⊕ c₂) ∣ inj₁ x' ∣ ☐ ]◁ ↦* ⟨ ! (c₁ ⊕ c₂) ∣ inj₁ x ∣ ☐ ⟩◁
rs! = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (x ⃖) (eval-toState₂ rs))) refl (☐⊕ ! c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₁ x ⃖)) ≡ inj₁ x ⃖
lem rewrite eval-toState₂ rs' = eval-toState₂ rs!
!rev (c₁ ⊕ c₂) (inj₁ x ⃖) refl | inj₂ ((x' , rs) , eq) = lem
where
rs' : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x' ∣ ☐ ]▷
rs' = ↦⃖₁₁ ∷ appendκ↦* rs refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
rs! : ⟨ ! (c₁ ⊕ c₂) ∣ inj₁ x' ∣ ☐ ⟩▷ ↦* ⟨ ! (c₁ ⊕ c₂) ∣ inj₁ x ∣ ☐ ⟩◁
rs! = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃖) (eval-toState₂ rs))) refl (☐⊕ ! c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₁ x ⃖)) ≡ inj₁ x ⃖
lem rewrite eval-toState₂ rs' = eval-toState₁ rs!
!rev (c₁ ⊕ c₂) (inj₂ y ⃖) refl with inspect⊎ (run [ c₂ ∣ y ∣ ☐ ]◁) (λ ())
!rev (c₁ ⊕ c₂) (inj₂ y ⃖) refl | inj₁ ((y' , rs) , eq) = lem
where
rs' : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ⟩◁
rs' = ↦⃖₁₂ ∷ appendκ↦* rs refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
rs! : [ ! (c₁ ⊕ c₂) ∣ inj₂ y' ∣ ☐ ]◁ ↦* ⟨ ! (c₁ ⊕ c₂) ∣ inj₂ y ∣ ☐ ⟩◁
rs! = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rs))) refl (! c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₂ y ⃖)) ≡ inj₂ y ⃖
lem rewrite eval-toState₂ rs' = eval-toState₂ rs!
!rev (c₁ ⊕ c₂) (inj₂ y ⃖) refl | inj₂ ((y' , rs) , eq) = lem
where
rs' : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y' ∣ ☐ ]▷
rs' = ↦⃖₁₂ ∷ appendκ↦* rs refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
rs! : ⟨ ! (c₁ ⊕ c₂) ∣ inj₂ y' ∣ ☐ ⟩▷ ↦* ⟨ ! (c₁ ⊕ c₂) ∣ inj₂ y ∣ ☐ ⟩◁
rs! = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rs))) refl (! c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
lem : eval (! (c₁ ⊕ c₂)) (eval (c₁ ⊕ c₂) (inj₂ y ⃖)) ≡ inj₂ y ⃖
lem rewrite eval-toState₂ rs' = eval-toState₁ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃗) refl with inspect⊎ (run ⟨ c₁ ∣ x ∣ ☐ ⟩▷) (λ ())
!rev (c₁ ⊗ c₂) ((x , y) ⃗) refl | inj₁ ((x' , rsx) , _) = lem
where
rsx' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x' , y) ∣ ☐ ⟩◁
rsx' = ↦⃗₆ ∷ appendκ↦* rsx refl (☐⊗[ c₂ , y ]• ☐) ++↦ ↦⃖₆ ∷ ◾
rs! : [ ! (c₁ ⊗ c₂) ∣ (x' , y) ∣ ☐ ]◁ ↦* [ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ]▷
rs! = (↦⃖₁₀ ∷ ↦⃖₁₀ ∷ ↦⃖₁ ∷ ↦⃖₇ ∷ ↦⃖₉ ∷ ◾) ++↦
appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rsx))) refl ([ ! c₂ , y ]⊗☐• ☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐)) ++↦
↦⃗₉ ∷ ↦⃗₇ ∷ ↦⃗₁ ∷ ↦⃗₁₀ ∷ ↦⃗₁₀ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃗)) ≡ (x , y) ⃗
lem rewrite eval-toState₁ rsx' = eval-toState₂ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃗) refl | inj₂ ((x' , rsx) , _) with inspect⊎ (run ⟨ c₂ ∣ y ∣ ☐ ⟩▷) (λ ())
!rev (c₁ ⊗ c₂) ((x , y) ⃗) refl | inj₂ ((x' , rsx) , _) | inj₁ ((y' , rsy) , _) = lem
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x , y') ∣ ☐ ⟩◁
rs' = ↦⃗₆ ∷ appendκ↦* rsx refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* rsy refl ([ c₁ , x' ]⊗☐• ☐) ++↦
↦⃖₈ ∷ Rev* (appendκ↦* rsx refl (☐⊗[ c₂ , y' ]• ☐)) ++↦
↦⃖₆ ∷ ◾
rs! : [ ! (c₁ ⊗ c₂) ∣ (x , y') ∣ ☐ ]◁ ↦* [ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ]▷
rs! = (↦⃖₁₀ ∷ ↦⃖₁₀ ∷ ↦⃖₁ ∷ ↦⃖₇ ∷ ↦⃖₉ ∷ ◾) ++↦
appendκ↦* (Rev* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rsx)))) refl ([ ! c₂ , y' ]⊗☐• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃗) (eval-toState₁ rsy))) refl (☐⊗[ ! c₁ , x' ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rsx))) refl ([ ! c₂ , y ]⊗☐• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃗₉ ∷ ↦⃗₇ ∷ ↦⃗₁ ∷ ↦⃗₁₀ ∷ ↦⃗₁₀ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃗)) ≡ (x , y) ⃗
lem rewrite eval-toState₁ rs' = eval-toState₂ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃗) refl | inj₂ ((x' , rsx) , _) | inj₂ ((y' , rsy) , _) = lem
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* [ c₁ ⊗ c₂ ∣ (x' , y') ∣ ☐ ]▷
rs' = ↦⃗₆ ∷ appendκ↦* rsx refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* rsy refl ([ c₁ , x' ]⊗☐• ☐) ++↦
↦⃗₉ ∷ ◾
rs! : ⟨ ! (c₁ ⊗ c₂) ∣ (x' , y') ∣ ☐ ⟩▷ ↦* [ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ]▷
rs! = (↦⃗₃ ∷ ↦⃗₁ ∷ ↦⃗₇ ∷ ↦⃗₃ ∷ ↦⃗₆ ∷ ◾) ++↦
appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (y ⃗) (eval-toState₁ rsy))) refl (☐⊗[ ! c₁ , x' ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃗) (eval-toState₁ rsx))) refl ([ ! c₂ , y ]⊗☐• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃗₉ ∷ ↦⃗₇ ∷ ↦⃗₁ ∷ ↦⃗₁₀ ∷ ↦⃗₁₀ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃗)) ≡ (x , y) ⃗
lem rewrite eval-toState₁ rs' = eval-toState₁ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃖) refl with inspect⊎ (run [ c₂ ∣ y ∣ ☐ ]◁) (λ ())
!rev (c₁ ⊗ c₂) ((x , y) ⃖) refl | inj₁ ((y' , rsy) , _) with inspect⊎ (run [ c₁ ∣ x ∣ ☐ ]◁) (λ ())
!rev (c₁ ⊗ c₂) ((x , y) ⃖) refl | inj₁ ((y' , rsy) , _) | inj₁ ((x' , rsx) , _) = lem
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* ⟨ c₁ ⊗ c₂ ∣ (x' , y') ∣ ☐ ⟩◁
rs' = ↦⃖₉ ∷ appendκ↦* rsy refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* rsx refl (☐⊗[ c₂ , y' ]• ☐) ++↦ ↦⃖₆ ∷ ◾
rs! : [ ! (c₁ ⊗ c₂) ∣ (x' , y') ∣ ☐ ]◁ ↦* ⟨ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ⟩◁
rs! = ↦⃖₁₀ ∷ ↦⃖₁₀ ∷ ↦⃖₁ ∷ ↦⃖₇ ∷ ↦⃖₉ ∷ ◾ ++↦
appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (x ⃖) (eval-toState₂ rsx))) refl ([ ! c₂ , y' ]⊗☐• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rsy))) refl (☐⊗[ ! c₁ , x ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₆ ∷ ↦⃖₃ ∷ ↦⃖₇ ∷ ↦⃖₁ ∷ ↦⃖₃ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃖)) ≡ (x , y) ⃖
lem rewrite eval-toState₂ rs' = eval-toState₂ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃖) refl | inj₁ ((y' , rsy) , _) | inj₂ ((x' , rsx) , _) = lem
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x' , y) ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* rsy refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* rsx refl (☐⊗[ c₂ , y' ]• ☐) ++↦
↦⃗₈ ∷ Rev* (appendκ↦* rsy refl ([ c₁ , x' ]⊗☐• ☐)) ++↦ ↦⃗₉ ∷ ◾
rs! : ⟨ ! (c₁ ⊗ c₂) ∣ (x' , y) ∣ ☐ ⟩▷ ↦* ⟨ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ⟩◁
rs! = (↦⃗₃ ∷ ↦⃗₁ ∷ ↦⃗₇ ∷ ↦⃗₃ ∷ ↦⃗₆ ∷ ◾) ++↦
Rev* (appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rsy))) refl (☐⊗[ ! c₁ , x' ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐)))) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (x ⃖) (eval-toState₂ rsx))) refl ([ ! c₂ , y' ]⊗☐• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rsy))) refl (☐⊗[ ! c₁ , x ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₆ ∷ ↦⃖₃ ∷ ↦⃖₇ ∷ ↦⃖₁ ∷ ↦⃖₃ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃖)) ≡ (x , y) ⃖
lem rewrite eval-toState₂ rs' = eval-toState₁ rs!
!rev (c₁ ⊗ c₂) ((x , y) ⃖) refl | inj₂ ((y' , rsy) , _) = lem
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x , y') ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* rsy refl ([ c₁ , x ]⊗☐• ☐) ++↦ ↦⃗₉ ∷ ◾
rs! : ⟨ ! (c₁ ⊗ c₂) ∣ (x , y') ∣ ☐ ⟩▷ ↦* ⟨ ! (c₁ ⊗ c₂) ∣ (x , y) ∣ ☐ ⟩◁
rs! = (↦⃗₃ ∷ ↦⃗₁ ∷ ↦⃗₇ ∷ ↦⃗₃ ∷ ↦⃗₆ ∷ ◾) ++↦
appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (y ⃖) (eval-toState₂ rsy))) refl (☐⊗[ ! c₁ , x ]• (☐⨾ swap⋆ • (swap⋆ ⨾☐• ☐))) ++↦
↦⃖₆ ∷ ↦⃖₃ ∷ ↦⃖₇ ∷ ↦⃖₁ ∷ ↦⃖₃ ∷ ◾
lem : eval (! (c₁ ⊗ c₂)) (eval (c₁ ⊗ c₂) ((x , y) ⃖)) ≡ (x , y) ⃖
lem rewrite eval-toState₂ rs' = eval-toState₁ rs!
!rev η₊ (inj₁ x ⃖) refl = refl
!rev η₊ (inj₂ (- x) ⃖) refl = refl
!rev ε₊ (inj₁ x ⃗) refl = refl
!rev ε₊ (inj₂ (- x) ⃗) refl = refl
private
loop : ∀ {A B C x} {c₁ : A ↔ B} {c₂ : B ↔ C} (n : ℕ) →
∀ b → ((rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x) →
len↦ rs ≡ n →
⟨ ! c₁ ∣ b ∣ ! c₂ ⨾☐• ☐ ⟩◁ ↦* (toState! (c₁ ⨾ c₂) x))
× ((rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x) →
len↦ rs ≡ n →
⟨ ! c₁ ∣ b ∣ ! c₂ ⨾☐• ☐ ⟩▷ ↦* (toState! (c₁ ⨾ c₂) x))
loop {x = x} {c₁} {c₂} = <′-rec (λ n → _) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → _) → _
loop-rec n R b = loop₁ , loop₂
where
loop₁ : (rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x)
→ len↦ rs ≡ n
→ ⟨ ! c₁ ∣ b ∣ ! c₂ ⨾☐• ☐ ⟩◁ ↦* (toState! (c₁ ⨾ c₂) x)
loop₁ rs refl with inspect⊎ (run ⟨ c₂ ∣ b ∣ ☐ ⟩▷) (λ ())
loop₁ rs refl | inj₁ ((b' , rsb) , eq) = rs!' ++↦ proj₂ (R (len↦ rs'') le b') rs'' refl
where
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁
rs' = ↦⃗₇ ∷ appendκ↦* rsb refl (c₁ ⨾☐• ☐)
rs'' : ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x
rs'' = proj₁ (deterministic*' rs' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs' + len↦ rs''
req = proj₂ (deterministic*' rs' rs (is-stuck-toState _ _))
le : len↦ rs'' <′ len↦ rs
le = subst (λ x → len↦ rs'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
rs!' : ⟨ ! c₁ ∣ b ∣ ! c₂ ⨾☐• ☐ ⟩◁ ↦* ⟨ ! c₁ ∣ b' ∣ ! c₂ ⨾☐• ☐ ⟩▷
rs!' = ↦⃖₇ ∷ Rev* (appendκ↦* (getₜᵣ⃖ (! c₂) (!rev c₂ (b ⃗) (eval-toState₁ rsb))) refl (☐⨾ ! c₁ • ☐)) ++↦ ↦⃗₇ ∷ ◾
loop₁ rs refl | inj₂ ((c , rsb) , eq) = lem
where
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]▷
rs' = ↦⃗₇ ∷ appendκ↦* rsb refl (c₁ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
rs!' : ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩◁ ↦* ⟨ ! c₂ ⨾ ! c₁ ∣ c ∣ ☐ ⟩◁
rs!' = ↦⃖₇ ∷ Rev* (appendκ↦* (getₜᵣ⃗ (! c₂) (!rev c₂ (b ⃗) (eval-toState₁ rsb))) refl (☐⨾ ! c₁ • ☐)) ++↦ ↦⃖₃ ∷ ◾
xeq : x ≡ c ⃗
xeq = toState≡₁ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
lem : ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩◁ ↦* (toState! (c₁ ⨾ c₂) x)
lem rewrite xeq = rs!'
loop₂ : (rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x)
→ len↦ rs ≡ n
→ ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩▷ ↦* toState! (c₁ ⨾ c₂) x
loop₂ rs refl with inspect⊎ (run [ c₁ ∣ b ∣ ☐ ]◁) (λ ())
loop₂ rs refl | inj₁ ((a , rsb) , eq) = lem
where
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩◁
rs' = ↦⃖₇ ∷ appendκ↦* rsb refl (☐⨾ c₂ • ☐) ++↦ ↦⃖₃ ∷ ◾
rs!' : ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩▷ ↦* [ ! c₂ ⨾ ! c₁ ∣ a ∣ ☐ ]▷
rs!' = Rev* (appendκ↦* (getₜᵣ⃖ (! c₁) (!rev c₁ (b ⃖) (eval-toState₂ rsb))) refl (! c₂ ⨾☐• ☐)) ++↦ ↦⃗₁₀ ∷ ◾
xeq : x ≡ a ⃖
xeq = toState≡₂ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
lem : ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩▷ ↦* (toState! (c₁ ⨾ c₂) x)
lem rewrite xeq = rs!'
loop₂ rs refl | inj₂ ((b' , rsb) , eq) = rs!' ++↦ proj₁ (R (len↦ rs'') le b') rs'' refl
where
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷
rs' = ↦⃖₇ ∷ appendκ↦* rsb refl (☐⨾ c₂ • ☐)
rs'' : [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x
rs'' = proj₁ (deterministic*' rs' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs' + len↦ rs''
req = proj₂ (deterministic*' rs' rs (is-stuck-toState _ _))
le : len↦ rs'' <′ len↦ rs
le = subst (λ x → len↦ rs'' <′ x) (sym req) (s≤′s (n≤′m+n _ _))
rs!' : ⟨ ! c₁ ∣ b ∣ (! c₂) ⨾☐• ☐ ⟩▷ ↦* ⟨ ! c₁ ∣ b' ∣ ! c₂ ⨾☐• ☐ ⟩◁
rs!' = Rev* (appendκ↦* (getₜᵣ⃗ (! c₁) (!rev c₁ (b ⃖) (eval-toState₂ rsb))) refl (! c₂ ⨾☐• ☐))
pinv₁ : ∀ {A B} → (c : A ↔ B) → eval ((c ⨾ ! c) ⨾ c) ∼ eval c
pinv₁ c (x ⃗) with inspect⊎ (run ⟨ c ∣ x ∣ ☐ ⟩▷) (λ ())
pinv₁ c (x ⃗) | inj₁ ((x' , rs) , eq) = trans (eval-toState₁ rs') (sym (eval-toState₁ rs))
where
rs' : ⟨ (c ⨾ ! c) ⨾ c ∣ x ∣ ☐ ⟩▷ ↦* ⟨ (c ⨾ ! c) ⨾ c ∣ x' ∣ ☐ ⟩◁
rs' = (↦⃗₃ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾(! c) • ☐⨾ c • ☐) ++↦ ↦⃖₃ ∷ ↦⃖₃ ∷ ◾
pinv₁ c (x ⃗) | inj₂ ((x' , rs) , eq) = trans (eval-toState₁ rs') (sym (eval-toState₁ rs))
where
rs! : ⟨ ! c ∣ x' ∣ ☐ ⟩▷ ↦* [ ! c ∣ x ∣ ☐ ]▷
rs! = getₜᵣ⃗ _ (!rev c (x ⃗) (eval-toState₁ rs))
rs' : ⟨ (c ⨾ ! c) ⨾ c ∣ x ∣ ☐ ⟩▷ ↦* [ (c ⨾ ! c) ⨾ c ∣ x' ∣ ☐ ]▷
rs' = (↦⃗₃ ∷ ↦⃗₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾(! c) • ☐⨾ c • ☐) ++↦
(↦⃗₇ ∷ ◾) ++↦ appendκ↦* rs! refl (c ⨾☐• (☐⨾ c • ☐)) ++↦
(↦⃗₁₀ ∷ ↦⃗₇ ∷ ◾) ++↦ appendκ↦* rs refl ((c ⨾ ! c) ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
pinv₁ c (x ⃖) with inspect⊎ (run [ c ∣ x ∣ ☐ ]◁) (λ ())
pinv₁ c (x ⃖) | inj₁ ((x' , rs) , eq) = trans (eval-toState₂ rs') (sym (eval-toState₂ rs))
where
rs! : [ ! c ∣ x' ∣ ☐ ]◁ ↦* ⟨ ! c ∣ x ∣ ☐ ⟩◁
rs! = getₜᵣ⃖ _ (!rev c (x ⃖) (eval-toState₂ rs))
rs' : [ (c ⨾ ! c) ⨾ c ∣ x ∣ ☐ ]◁ ↦* ⟨ (c ⨾ ! c) ⨾ c ∣ x' ∣ ☐ ⟩◁
rs' = ↦⃖₁₀ ∷ appendκ↦* rs refl ((c ⨾ ! c) ⨾☐• ☐) ++↦
(↦⃖₇ ∷ ↦⃖₁₀ ∷ ◾) ++↦ appendκ↦* rs! refl (c ⨾☐• (☐⨾ c • ☐)) ++↦
(↦⃖₇ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾(! c) • ☐⨾ c • ☐) ++↦ ↦⃖₃ ∷ ↦⃖₃ ∷ ◾
pinv₁ c (x ⃖) | inj₂ ((x' , rs) , eq) = trans (eval-toState₂ rs') (sym (eval-toState₂ rs))
where
rs' : [ (c ⨾ ! c) ⨾ c ∣ x ∣ ☐ ]◁ ↦* [ (c ⨾ ! c) ⨾ c ∣ x' ∣ ☐ ]▷
rs' = ↦⃖₁₀ ∷ appendκ↦* rs refl ((c ⨾ ! c) ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
pinv₂ : ∀ {A B} → (c : A ↔ B) → eval ((! c ⨾ c) ⨾ ! c) ∼ eval (! c)
pinv₂ c x = trans (∘-resp-≈ (λ z → refl)
(∘-resp-≈ (!inv c) (λ z → refl)) x)
(pinv₁ (! c) x)
open Inverse public
|
{
"alphanum_fraction": 0.3830433546,
"avg_line_length": 52.9876712329,
"ext": "agda",
"hexsha": "c381648ed330134a5f5eaa63f423b4477074b5b3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi-/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi-/Properties.agda",
"max_line_length": 180,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi-/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 46270,
"size": 77362
}
|
-- Andreas, 2020-11-16, issue #5055, reported by nad
-- Internal error caused by record pattern on pattern synonym lhs
-- (unreleased regression in 2.6.2).
open import Agda.Builtin.Sigma
data Shape : Set where
c : Shape → Shape
pattern p (s , v) = c s , v
-- Should give some parse error or other controlled error.
-- Illegal pattern synonym argument _ @ (s , v)
-- (Arguments to pattern synonyms cannot be patterns themselves.)
-- =<ERROR>
-- c s , v
|
{
"alphanum_fraction": 0.694143167,
"avg_line_length": 25.6111111111,
"ext": "agda",
"hexsha": "e2bab0fd5e54455ff1cd498a58e6fd1845586b3a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5055.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5055.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5055.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 461
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Relation.Nullary.DecidableEq where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
-- Proof of Hedberg's theorem: a type with decidable equality is an h-set
Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A
Dec→Stable A (yes x) = λ _ → x
Dec→Stable A (no x) = λ f → ⊥-elim (f x)
Stable≡→isSet : ∀ {ℓ} {A : Type ℓ} → (st : ∀ (a b : A) → Stable (a ≡ b)) → isSet A
Stable≡→isSet {A = A} st a b p q j i =
let f : (x : A) → a ≡ x → a ≡ x
f x p = st a x (λ h → h p)
fIsConst : (x : A) → (p q : a ≡ x) → f x p ≡ f x q
fIsConst = λ x p q i → st a x (isProp¬ _ (λ h → h p) (λ h → h q) i)
rem : (p : a ≡ b) → PathP (λ i → a ≡ p i) (f a refl) (f b p)
rem p j = f (p j) (λ i → p (i ∧ j))
in hcomp (λ k → λ { (i = i0) → f a refl k
; (i = i1) → fIsConst b p q j k
; (j = i0) → rem p i k
; (j = i1) → rem q i k }) a
-- Hedberg's theorem
Discrete→isSet : ∀ {ℓ} {A : Type ℓ} → Discrete A → isSet A
Discrete→isSet d = Stable≡→isSet (λ x y → Dec→Stable (x ≡ y) (d x y))
|
{
"alphanum_fraction": 0.5208681135,
"avg_line_length": 35.2352941176,
"ext": "agda",
"hexsha": "3e3778e7b18c0c607e9156e755df9180fac556b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Relation/Nullary/DecidableEq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Relation/Nullary/DecidableEq.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Relation/Nullary/DecidableEq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 489,
"size": 1198
}
|
------------------------------------------------------------------------
-- A large(r) class of algebraic structures satisfies the property
-- that isomorphic instances of a structure are equal (assuming
-- univalence)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Note that this module uses ordinary propositional equality, with a
-- computing J rule.
-- This module has been developed in collaboration with Thierry
-- Coquand.
module Univalence-axiom.Isomorphism-is-equality.More where
open import Equality.Propositional
hiding (refl) renaming (equality-with-J to eq)
open import Equality
open Derived-definitions-and-properties eq using (refl)
open import Bijection eq hiding (id; _∘_; inverse; step-↔; finally-↔)
open import Equivalence eq as Eq hiding (id; _∘_; inverse)
open import Function-universe eq hiding (id; _∘_)
open import H-level eq as H-level hiding (Proposition)
open import H-level.Closure eq
open import Logical-equivalence using (_⇔_)
open import Preimage eq
open import Prelude as P hiding (Type)
open import Univalence-axiom eq
------------------------------------------------------------------------
-- A record packing up certain assumptions
-- Use of these or similar assumptions is usually not documented in
-- comments below (with remarks like "assuming univalence").
record Assumptions : P.Type₂ where
field
ext₁ : Extensionality (# 1) (# 1)
univ : Univalence (# 0)
univ₁ : Univalence (# 1)
abstract
ext : Extensionality (# 0) (# 0)
ext = lower-extensionality (# 1) (# 1) ext₁
------------------------------------------------------------------------
-- A class of algebraic structures
-- An algebraic structure universe.
mutual
-- Codes for structures.
infixl 5 _▻_
data Code : P.Type₂ where
ε : Code
_▻_ : (c : Code) → Extension c → Code
-- Structures can contain arbitrary "extensions".
record Extension (c : Code) : P.Type₂ where
field
-- An instance-indexed type.
Ext : ⟦ c ⟧ → P.Type₁
-- A predicate specifying when two elements are isomorphic with
-- respect to an isomorphism.
Iso : (ass : Assumptions) →
{I J : ⟦ c ⟧} → Isomorphic ass c I J →
Ext I → Ext J → P.Type₁
-- An alternative definition of Iso.
Iso′ : (ass : Assumptions) →
∀ {I J} → Isomorphic ass c I J →
Ext I → Ext J → P.Type₁
Iso′ ass I≅J x y =
subst Ext (_≃_.to (isomorphism≃equality ass c) I≅J) x ≡ y
field
-- Iso and Iso′ are equivalent.
Iso≃Iso′ :
(ass : Assumptions) →
∀ {I J} (I≅J : Isomorphic ass c I J) {x y} →
Iso ass I≅J x y ≃ Iso′ ass I≅J x y
-- Interpretation of the codes. The elements of ⟦ c ⟧ are instances
-- of the structure encoded by c.
⟦_⟧ : Code → P.Type₁
⟦ ε ⟧ = ↑ _ ⊤
⟦ c ▻ e ⟧ = Σ ⟦ c ⟧ (Extension.Ext e)
-- Isomorphisms.
Isomorphic : Assumptions → (c : Code) → ⟦ c ⟧ → ⟦ c ⟧ → P.Type₁
Isomorphic _ ε _ _ = ↑ _ ⊤
Isomorphic ass (c ▻ e) (I , x) (J , y) =
Σ (Isomorphic ass c I J) λ I≅J → Extension.Iso e ass I≅J x y
-- Isomorphism is equivalent to equality.
isomorphism≃equality : (ass : Assumptions) →
(c : Code) {I J : ⟦ c ⟧} →
Isomorphic ass c I J ≃ (I ≡ J)
isomorphism≃equality _ ε =
↑ _ ⊤ ↔⟨ contractible-isomorphic (↑-closure 0 ⊤-contractible)
(⇒≡ 0 $ ↑-closure 0 ⊤-contractible) ⟩□
lift tt ≡ lift tt □
isomorphism≃equality ass (c ▻ e) {I , x} {J , y} =
(Σ (Isomorphic ass c I J) λ I≅J → Iso e ass I≅J x y) ↝⟨ Σ-cong (isomorphism≃equality ass c)
(λ I≅J → Iso≃Iso′ e ass I≅J) ⟩
(Σ (I ≡ J) λ I≡J → subst (Ext e) I≡J x ≡ y) ↔⟨ Σ-≡,≡↔≡ ⟩□
((I , x) ≡ (J , y)) □
where open Extension
-- Isomorphism is equal to equality (assuming /only/ univalence).
isomorphism≡equality :
(univ : Univalence (# 0))
(univ₁ : Univalence (# 1))
(univ₂ : Univalence (# 2)) →
let ass = record
{ ext₁ = dependent-extensionality univ₂ univ₁
; univ = univ
; univ₁ = univ₁
} in
(c : Code) {I J : ⟦ c ⟧} →
Isomorphic ass c I J ≡ (I ≡ J)
isomorphism≡equality univ univ₁ univ₂ c =
≃⇒≡ univ₁ $ isomorphism≃equality _ c
------------------------------------------------------------------------
-- Reflexivity
-- The isomorphism relation is reflexive.
reflexivity : (ass : Assumptions) → ∀ c I → Isomorphic ass c I I
reflexivity ass c I =
_≃_.from (isomorphism≃equality ass c) (refl I)
-- Reflexivity relates an element to itself.
reflexivityE :
(ass : Assumptions) →
∀ c e I x →
Extension.Iso e ass (reflexivity ass c I) x x
reflexivityE ass c e I x =
_≃_.from (Iso≃Iso′ ass (reflexivity ass c I)) (
subst Ext (to (from (refl I))) x ≡⟨ subst (λ eq → subst Ext eq x ≡ x)
(sym $ right-inverse-of (refl I))
(refl x) ⟩∎
x ∎)
where
open Extension e
open _≃_ (isomorphism≃equality ass c)
-- Unfolding lemma (definitional) for reflexivity.
reflexivity-▻ :
∀ {ass c e I x} →
reflexivity ass (c ▻ e) (I , x) ≡
(reflexivity ass c I , reflexivityE ass c e I x)
reflexivity-▻ = refl _
------------------------------------------------------------------------
-- Recipe for defining extensions
-- Another kind of extension.
record Extension-with-resp (c : Code) : P.Type₂ where
field
-- An instance-indexed type.
Ext : ⟦ c ⟧ → P.Type₁
-- A predicate specifying when two elements are isomorphic with
-- respect to an isomorphism.
Iso : (ass : Assumptions) →
{I J : ⟦ c ⟧} → Isomorphic ass c I J →
Ext I → Ext J → P.Type₁
-- Ext, seen as a predicate, respects isomorphisms.
resp : (ass : Assumptions) →
∀ {I J} → Isomorphic ass c I J →
Ext I → Ext J
-- The resp function respects reflexivity.
resp-refl : (ass : Assumptions) →
∀ {I} (x : Ext I) →
resp ass (reflexivity ass c I) x ≡ x
-- An alternative definition of Iso.
Iso″ : (ass : Assumptions) →
{I J : ⟦ c ⟧} → Isomorphic ass c I J →
Ext I → Ext J → P.Type₁
Iso″ ass I≅J x y = resp ass I≅J x ≡ y
field
-- Iso and Iso″ are equivalent.
Iso≃Iso″ :
(ass : Assumptions) →
∀ {I J} (I≅J : Isomorphic ass c I J) {x y} →
Iso ass I≅J x y ≃ Iso″ ass I≅J x y
-- Another alternative definition of Iso.
Iso′ : (ass : Assumptions) →
∀ {I J} → Isomorphic ass c I J →
Ext I → Ext J → P.Type₁
Iso′ ass I≅J x y =
subst Ext (_≃_.to (isomorphism≃equality ass c) I≅J) x ≡ y
abstract
-- Every element is isomorphic to itself, transported along the
-- "outer" isomorphism.
isomorphic-to-itself″ :
(ass : Assumptions) →
∀ {I J} (I≅J : Isomorphic ass c I J) {x} →
Iso″ ass I≅J x
(subst Ext (_≃_.to (isomorphism≃equality ass c) I≅J) x)
isomorphic-to-itself″ ass I≅J {x} = transport-theorem′
Ext
(Isomorphic ass c)
(_≃_.surjection $ inverse $ isomorphism≃equality ass c)
(resp ass)
(λ _ → resp-refl ass)
I≅J
x
-- Iso and Iso′ are equivalent.
Iso≃Iso′ :
(ass : Assumptions) →
∀ {I J} (I≅J : Isomorphic ass c I J) {x y} →
Iso ass I≅J x y ≃ Iso′ ass I≅J x y
Iso≃Iso′ ass I≅J {x} {y} = record
{ to = to
; is-equivalence =
_⇔_.from (Is-equivalence≃Is-equivalence-CP _) λ y →
(from y , right-inverse-of y) , irrelevance y
}
where
-- This is the core of the definition. I could have defined
-- Iso≃Iso′ ... = I≃I′. The rest is only included in order to
-- control how much Agda unfolds the code.
I≃I′ =
Iso ass I≅J x y ↝⟨ Iso≃Iso″ ass I≅J ⟩
Iso″ ass I≅J x y ↝⟨ ≡⇒≃ $ cong (λ z → z ≡ y) $ isomorphic-to-itself″ ass I≅J ⟩□
Iso′ ass I≅J x y □
to = _≃_.to I≃I′
from = _≃_.from I≃I′
abstract
right-inverse-of : ∀ x → to (from x) ≡ x
right-inverse-of = _≃_.right-inverse-of I≃I′
irrelevance : ∀ y (p : to ⁻¹ y) → (from y , right-inverse-of y) ≡ p
irrelevance = _≃_.irrelevance I≃I′
-- An extension constructed from the fields above.
extension : Extension c
extension = record { Ext = Ext; Iso = Iso; Iso≃Iso′ = Iso≃Iso′ }
-- Every element is isomorphic to itself, transported (in another
-- way) along the "outer" isomorphism.
isomorphic-to-itself :
(ass : Assumptions) →
∀ {I J} (I≅J : Isomorphic ass c I J) x →
Iso ass I≅J x (resp ass I≅J x)
isomorphic-to-itself ass I≅J x =
_≃_.from (Iso≃Iso″ ass I≅J) (refl (resp ass I≅J x))
abstract
-- Simplification lemmas.
resp-refl-lemma :
(ass : Assumptions) →
∀ I x →
resp-refl ass x ≡
_≃_.from (≡⇒≃ $ cong (λ z → z ≡ x) $
isomorphic-to-itself″ ass (reflexivity ass c I))
(subst (λ eq → subst Ext eq x ≡ x)
(sym $ _≃_.right-inverse-of
(isomorphism≃equality ass c)
(refl I))
(refl x))
resp-refl-lemma ass I x =
let rfl = reflexivity ass c I
iso≃eq = λ {I J} → isomorphism≃equality ass c {I = I} {J = J}
rio = right-inverse-of iso≃eq (refl I)
lio = left-inverse-of (inverse iso≃eq) (refl I)
sx≡x = subst (λ eq → subst Ext eq x ≡ x) (sym rio) (refl x)
sx≡x-lemma =
cong (λ eq → subst Ext eq x) rio ≡⟨ sym $ trans-reflʳ _ ⟩
trans (cong (λ eq → subst Ext eq x) rio)
(refl x) ≡⟨ sym $ subst-trans (cong (λ eq → subst Ext eq x) rio) ⟩
subst (λ z → z ≡ x)
(sym $ cong (λ eq → subst Ext eq x) rio)
(refl x) ≡⟨ cong (λ eq → subst (λ z → z ≡ x) eq (refl x)) $ sym $
cong-sym (λ eq → subst Ext eq x) rio ⟩
subst (λ z → z ≡ x)
(cong (λ eq → subst Ext eq x) $ sym rio)
(refl x) ≡⟨ sym $ subst-∘ (λ z → z ≡ x) (λ eq → subst Ext eq x) (sym rio) ⟩∎
subst (λ eq → subst Ext eq x ≡ x) (sym rio) (refl x) ∎
lemma₁ =
trans (sym lio) rio ≡⟨ cong (λ eq → trans (sym eq) rio) $ left-inverse-of∘inverse iso≃eq ⟩
trans (sym rio) rio ≡⟨ trans-symˡ rio ⟩∎
refl (refl I) ∎
lemma₂ =
elim-refl (λ {I J} _ → Ext I → Ext J) (λ _ e → e) ≡⟨⟩
cong (subst Ext) (refl (refl I)) ≡⟨ cong (cong (subst Ext)) $ sym lemma₁ ⟩∎
cong (subst Ext) (trans (sym lio) rio) ∎
lemma₃ =
cong (λ r → r x)
(elim-refl (λ {I J} _ → Ext I → Ext J) (λ _ e → e)) ≡⟨ cong (cong (λ r → r x)) lemma₂ ⟩
cong (λ r → r x) (cong (subst Ext) (trans (sym lio) rio)) ≡⟨ cong-∘ (λ r → r x) (subst Ext) (trans (sym lio) rio) ⟩
cong (λ eq → subst Ext eq x) (trans (sym lio) rio) ≡⟨ cong-trans (λ eq → subst Ext eq x) (sym lio) rio ⟩
trans (cong (λ eq → subst Ext eq x) (sym lio))
(cong (λ eq → subst Ext eq x) rio) ≡⟨ cong (λ eq → trans eq (cong (λ eq → subst Ext eq x) rio)) $
cong-sym (λ eq → subst Ext eq x) lio ⟩∎
trans (sym (cong (λ eq → subst Ext eq x) lio))
(cong (λ eq → subst Ext eq x) rio) ∎
in
resp-refl ass x ≡⟨ sym $ trans-reflʳ _ ⟩
trans (resp-refl ass x) (refl x) ≡⟨ cong (trans (resp-refl ass x)) $ trans-symˡ (subst-refl Ext x) ⟩
trans (resp-refl ass x)
(trans (sym $ subst-refl Ext x) (subst-refl Ext x)) ≡⟨ sym $ trans-assoc _ (sym $ subst-refl Ext x) (subst-refl Ext x) ⟩
trans (trans (resp-refl ass x) (sym $ subst-refl Ext x))
(subst-refl Ext x) ≡⟨ cong (trans (trans (resp-refl ass x) (sym $ subst-refl Ext x)))
lemma₃ ⟩
trans (trans (resp-refl ass x) (sym $ subst-refl Ext x))
(trans (sym (cong (λ eq → subst Ext eq x) lio))
(cong (λ eq → subst Ext eq x) rio)) ≡⟨ sym $ trans-assoc _ _ (cong (λ eq → subst Ext eq x) rio) ⟩
trans (trans (trans (resp-refl ass x) (sym $ subst-refl Ext x))
(sym (cong (λ eq → subst Ext eq x) lio)))
(cong (λ eq → subst Ext eq x) rio) ≡⟨ cong₂ trans
(sym $ transport-theorem′-refl Ext (Isomorphic ass c) (inverse iso≃eq)
(resp ass) (λ _ → resp-refl ass) x)
sx≡x-lemma ⟩
trans (isomorphic-to-itself″ ass rfl) sx≡x ≡⟨ sym $ subst-trans (isomorphic-to-itself″ ass rfl) ⟩
subst (λ z → z ≡ x) (sym $ isomorphic-to-itself″ ass rfl) sx≡x ≡⟨ subst-in-terms-of-inverse∘≡⇒↝ equivalence
(isomorphic-to-itself″ ass rfl) (λ z → z ≡ x) _ ⟩∎
from (≡⇒≃ $ cong (λ z → z ≡ x) $ isomorphic-to-itself″ ass rfl)
sx≡x ∎
where open _≃_
isomorphic-to-itself-reflexivity :
(ass : Assumptions) →
∀ I x →
isomorphic-to-itself ass (reflexivity ass c I) x ≡
subst (Iso ass (reflexivity ass c I) x)
(sym $ resp-refl ass x)
(reflexivityE ass c extension I x)
isomorphic-to-itself-reflexivity ass I x =
let rfl = reflexivity ass c I
r-r = resp-refl ass x in
from (Iso≃Iso″ ass rfl) (refl (resp ass rfl x)) ≡⟨ elim¹ (λ {y} resp-x≡y → from (Iso≃Iso″ ass rfl) (refl (resp ass rfl x)) ≡
subst (Iso ass rfl x) (sym resp-x≡y)
(from (Iso≃Iso″ ass rfl) resp-x≡y))
(refl _) r-r ⟩
subst (Iso ass rfl x) (sym r-r) (from (Iso≃Iso″ ass rfl) r-r) ≡⟨ cong (subst (Iso ass rfl x) (sym r-r) ∘ from (Iso≃Iso″ ass rfl))
(resp-refl-lemma ass I x) ⟩∎
subst (Iso ass rfl x) (sym r-r)
(from (Iso≃Iso″ ass rfl)
(from
(≡⇒≃ $ cong (λ z → z ≡ x)
(isomorphic-to-itself″ ass rfl))
(subst (λ eq → subst Ext eq x ≡ x)
(sym $ right-inverse-of (isomorphism≃equality ass c)
(refl I)) (refl x)))) ∎
where open _≃_
------------------------------------------------------------------------
-- Type extractors
record Extractor (c : Code) : P.Type₂ where
field
-- Extracts a type from an instance.
Type : ⟦ c ⟧ → P.Type₁
-- Extracts an equivalence relating types extracted from
-- isomorphic instances.
--
-- Perhaps one could have a variant of Type-cong that is not based
-- on any "Assumptions", and produces logical equivalences (_⇔_)
-- instead of equivalences (_≃_). Then one could (hopefully)
-- define isomorphism without using any assumptions.
Type-cong : (ass : Assumptions) →
∀ {I J} → Isomorphic ass c I J → Type I ≃ Type J
-- Reflexivity is mapped to the identity equivalence.
Type-cong-reflexivity :
(ass : Assumptions) →
∀ I → Type-cong ass (reflexivity ass c I) ≡ Eq.id
-- Constant type extractor.
[_] : ∀ {c} → P.Type₁ → Extractor c
[_] {c} A = record
{ Type = λ _ → A
; Type-cong = λ _ _ → Eq.id
; Type-cong-reflexivity = λ _ _ → refl _
}
-- Successor type extractor.
infix 6 1+_
1+_ : ∀ {c e} → Extractor c → Extractor (c ▻ e)
1+_ {c} {e} extractor = record
{ Type = Type ∘ proj₁
; Type-cong = λ ass → Type-cong ass ∘ proj₁
; Type-cong-reflexivity = λ { ass (I , x) →
Type-cong ass (reflexivity ass c I) ≡⟨ Type-cong-reflexivity ass I ⟩∎
Eq.id ∎ }
}
where
open Extractor extractor
------------------------------------------------------------------------
-- An extension: types
-- Extends a structure with a type.
A-type : ∀ {c} → Extension c
A-type {c} = record
{ Ext = λ _ → P.Type
; Iso = λ _ _ A B → ↑ _ (A ≃ B)
; Iso≃Iso′ = λ ass I≅J {A B} →
let I≡J = _≃_.to (isomorphism≃equality ass c) I≅J in
↑ _ (A ≃ B) ↔⟨ ↑↔ ⟩
(A ≃ B) ↝⟨ inverse $ ≡≃≃ (Assumptions.univ ass) ⟩
(A ≡ B) ↝⟨ ≡⇒≃ $ cong (λ C → C ≡ B) $ sym (subst-const I≡J) ⟩
(subst (λ _ → P.Type) I≡J A ≡ B) □
}
-- A corresponding type extractor.
[0] : ∀ {c} → Extractor (c ▻ A-type)
[0] {c} = record
{ Type = λ { (_ , A) → ↑ _ A }
; Type-cong = λ { _ (_ , lift A≃B) → ↑-cong A≃B }
; Type-cong-reflexivity = λ { ass (I , A) → elim₁
(λ {p} q →
↑-cong (≡⇒≃
(from (≡⇒≃ (cong (λ C → C ≡ A) (sym (subst-const p))))
(subst (λ eq → subst Ext eq A ≡ A)
(sym q) (refl A)))) ≡
Eq.id)
(lift-equality (Assumptions.ext₁ ass) (refl _))
(right-inverse-of (isomorphism≃equality ass c) (refl I)) }
}
where
open Extension A-type
open _≃_
------------------------------------------------------------------------
-- An extension: propositions
-- Extends a structure with a proposition.
Proposition : ∀ {c} →
-- The proposition.
(P : ⟦ c ⟧ → P.Type₁) →
-- The proposition must be propositional (given some
-- assumptions).
(Assumptions → ∀ I → Is-proposition (P I)) →
Extension c
Proposition {c} P prop = record
{ Ext = P
; Iso = λ _ _ _ _ → ↑ _ ⊤
; Iso≃Iso′ = λ ass I≅J {_ p} →
↑ _ ⊤ ↔⟨ contractible-isomorphic
(↑-closure 0 ⊤-contractible)
(⇒≡ 0 $ propositional⇒inhabited⇒contractible (prop ass _) p) ⟩□
(_ ≡ _) □
}
-- The proposition stating that a given type is a set.
Is-a-set : ∀ {c} → Extractor c → Extension c
Is-a-set extractor =
Proposition (Is-set ∘ Type)
(λ ass _ → H-level-propositional (Assumptions.ext₁ ass) 2)
where open Extractor extractor
------------------------------------------------------------------------
-- An extension: n-ary functions
-- N-ary functions.
_^_⟶_ : P.Type₁ → ℕ → P.Type₁ → P.Type₁
A ^ zero ⟶ B = B
A ^ suc n ⟶ B = A → A ^ n ⟶ B
-- N-ary function morphisms.
Is-_-ary-morphism :
∀ (n : ℕ) {A B} → (A ^ n ⟶ A) → (B ^ n ⟶ B) → (A → B) → P.Type₁
Is- zero -ary-morphism x y m = m x ≡ y
Is- suc n -ary-morphism f g m =
∀ x → Is- n -ary-morphism (f x) (g (m x)) m
-- An n-ary function extension.
N-ary : ∀ {c} →
-- Extracts the underlying type.
Extractor c →
-- The function's arity.
ℕ →
Extension c
N-ary {c} extractor n = Extension-with-resp.extension record
{ Ext = λ I → Type I ^ n ⟶ Type I
; Iso = λ ass I≅J f g →
Is- n -ary-morphism f g (_≃_.to (Type-cong ass I≅J))
; resp = λ ass I≅J → cast n (Type-cong ass I≅J)
; resp-refl = λ ass f →
cast n (Type-cong ass (reflexivity ass c _)) f ≡⟨ cong (λ eq → cast n eq f) $ Type-cong-reflexivity ass _ ⟩
cast n Eq.id f ≡⟨ cast-id (Assumptions.ext₁ ass) n f ⟩∎
f ∎
; Iso≃Iso″ = λ ass I≅J {f g} →
Iso≃Iso″ (Assumptions.ext₁ ass) (Type-cong ass I≅J) n f g
}
where
open Extractor extractor
-- Changes the type of an n-ary function.
cast : ∀ n {A B} → A ≃ B → A ^ n ⟶ A → B ^ n ⟶ B
cast zero A≃B = _≃_.to A≃B
cast (suc n) A≃B = λ f x → cast n A≃B (f (_≃_.from A≃B x))
-- Cast simplification lemma.
cast-id : Extensionality (# 1) (# 1) →
∀ {A} n (f : A ^ n ⟶ A) → cast n Eq.id f ≡ f
cast-id ext zero x = refl x
cast-id ext (suc n) f = apply-ext ext λ x → cast-id ext n (f x)
-- Two definitions of isomorphism are equivalent.
Iso≃Iso″ :
Extensionality (# 1) (# 1) →
∀ {A B} (A≃B : A ≃ B)
(n : ℕ) (f : A ^ n ⟶ A) (g : B ^ n ⟶ B) →
Is- n -ary-morphism f g (_≃_.to A≃B) ≃ (cast n A≃B f ≡ g)
Iso≃Iso″ ext A≃B zero x y =
(_≃_.to A≃B x ≡ y) □
Iso≃Iso″ ext A≃B (suc n) f g =
(∀ x → Is- n -ary-morphism (f x) (g (_≃_.to A≃B x)) (_≃_.to A≃B)) ↝⟨ ∀-cong ext (λ x →
Iso≃Iso″ ext A≃B n (f x) (g (_≃_.to A≃B x))) ⟩
(∀ x → cast n A≃B (f x) ≡ g (_≃_.to A≃B x)) ↝⟨ Eq.extensionality-isomorphism ext ⟩
(cast n A≃B ∘ f ≡ g ∘ _≃_.to A≃B) ↔⟨ inverse $ ∘from≡↔≡∘to ext A≃B ⟩□
(cast n A≃B ∘ f ∘ _≃_.from A≃B ≡ g) □
------------------------------------------------------------------------
-- An extension: simply typed functions
-- This section contains a generalisation of the development for n-ary
-- functions above.
-- Simple types.
data Simple-type (c : Code) : P.Type₂ where
base : Extractor c → Simple-type c
_⟶_ : Simple-type c → Simple-type c → Simple-type c
-- Interpretation of a simple type.
⟦_⟧⟶ : ∀ {c} → Simple-type c → ⟦ c ⟧ → P.Type₁
⟦ base A ⟧⟶ I = Extractor.Type A I
⟦ σ ⟶ τ ⟧⟶ I = ⟦ σ ⟧⟶ I → ⟦ τ ⟧⟶ I
-- A simply typed function extension.
Simple : ∀ {c} → Simple-type c → Extension c
Simple {c} σ = Extension-with-resp.extension record
{ Ext = ⟦ σ ⟧⟶
; Iso = λ ass → Iso ass σ
; resp = λ ass I≅J → _≃_.to (cast ass σ I≅J)
; resp-refl = λ ass f → cong (λ eq → _≃_.to eq f) $ cast-refl ass σ
; Iso≃Iso″ = λ ass → Iso≃Iso″ ass σ
}
where
open Extractor
-- Isomorphisms between simply typed values.
Iso : (ass : Assumptions) →
(σ : Simple-type c) →
∀ {I J} → Isomorphic ass c I J → ⟦ σ ⟧⟶ I → ⟦ σ ⟧⟶ J → P.Type₁
Iso ass (base A) I≅J x y = _≃_.to (Type-cong A ass I≅J) x ≡ y
Iso ass (σ ⟶ τ) I≅J f g =
∀ x y → Iso ass σ I≅J x y → Iso ass τ I≅J (f x) (g y)
-- Cast.
cast : (ass : Assumptions) →
(σ : Simple-type c) →
∀ {I J} → Isomorphic ass c I J → ⟦ σ ⟧⟶ I ≃ ⟦ σ ⟧⟶ J
cast ass (base A) I≅J = Type-cong A ass I≅J
cast ass (σ ⟶ τ) I≅J = →-cong ext₁ (cast ass σ I≅J) (cast ass τ I≅J)
where open Assumptions ass
-- Cast simplification lemma.
cast-refl : (ass : Assumptions) →
∀ σ {I} → cast ass σ (reflexivity ass c I) ≡ Eq.id
cast-refl ass (base A) {I} =
Type-cong A ass (reflexivity ass c I) ≡⟨ Type-cong-reflexivity A ass I ⟩∎
Eq.id ∎
cast-refl ass (σ ⟶ τ) {I} =
cast ass (σ ⟶ τ) (reflexivity ass c I) ≡⟨ lift-equality ext₁ $ cong _≃_.to $
cong₂ (→-cong ext₁) (cast-refl ass σ) (cast-refl ass τ) ⟩∎
Eq.id ∎
where open Assumptions ass
-- Two definitions of isomorphism are equivalent.
Iso≃Iso″ :
(ass : Assumptions) →
(σ : Simple-type c) →
∀ {I J} (I≅J : Isomorphic ass c I J) {f g} →
Iso ass σ I≅J f g ≃ (_≃_.to (cast ass σ I≅J) f ≡ g)
Iso≃Iso″ ass (base A) I≅J {x} {y} =
(_≃_.to (Type-cong A ass I≅J) x ≡ y) □
Iso≃Iso″ ass (σ ⟶ τ) I≅J {f} {g} =
(∀ x y → Iso ass σ I≅J x y → Iso ass τ I≅J (f x) (g y)) ↝⟨ ∀-cong ext₁ (λ _ → ∀-cong ext₁ λ _ →
→-cong ext₁ (Iso≃Iso″ ass σ I≅J) (Iso≃Iso″ ass τ I≅J)) ⟩
(∀ x y → to (cast ass σ I≅J) x ≡ y →
to (cast ass τ I≅J) (f x) ≡ g y) ↝⟨ inverse $ ∀-cong ext₁ (λ x →
∀-intro (λ y _ → to (cast ass τ I≅J) (f x) ≡ g y) ext₁) ⟩
(∀ x → to (cast ass τ I≅J) (f x) ≡ g (to (cast ass σ I≅J) x)) ↝⟨ extensionality-isomorphism ext₁ ⟩
(to (cast ass τ I≅J) ∘ f ≡ g ∘ to (cast ass σ I≅J)) ↔⟨ inverse $ ∘from≡↔≡∘to ext₁ (cast ass σ I≅J) ⟩□
(to (cast ass τ I≅J) ∘ f ∘ from (cast ass σ I≅J) ≡ g) □
where
open _≃_
open Assumptions ass
------------------------------------------------------------------------
-- An unfinished extension: dependent types
-- The extension currently supports polymorphic types.
module Dependent where
open Extractor
----------------------------------------------------------------------
-- The extension
-- Dependent types.
data Ty (c : Code) : P.Type₂
-- Extension: Dependently-typed functions.
ext-with-resp : ∀ {c} → Ty c → Extension-with-resp c
private
open module E {c} (σ : Ty c) =
Extension-with-resp (ext-with-resp σ)
hiding (Iso; Iso≃Iso″; extension)
open E public using () renaming (extension to Dep)
data Ty c where
set : Ty c
base : Extractor c → Ty c
Π : (σ : Ty c) → Ty (c ▻ Dep σ) → Ty c
-- Interpretation of a dependent type.
⟦_⟧Π : ∀ {c} → Ty c → ⟦ c ⟧ → P.Type₁
-- Isomorphisms between dependently typed functions.
Iso :
(ass : Assumptions) →
∀ {c} (σ : Ty c) →
∀ {I J} → Isomorphic ass c I J → ⟦ σ ⟧Π I → ⟦ σ ⟧Π J → P.Type₁
-- A cast function.
cast : (ass : Assumptions) →
∀ {c} (σ : Ty c) {I J} →
Isomorphic ass c I J → ⟦ σ ⟧Π I ≃ ⟦ σ ⟧Π J
-- Reflexivity is mapped to identity.
cast-refl : (ass : Assumptions) →
∀ {c} (σ : Ty c) {I} →
cast ass σ (reflexivity ass c I) ≡ Eq.id
-- Two definitions of isomorphism are equivalent.
Iso≃Iso″ : (ass : Assumptions) →
∀ {c} (σ : Ty c) {I J} (I≅J : Isomorphic ass c I J) {f g} →
Iso ass σ I≅J f g ≃ (_≃_.to (cast ass σ I≅J) f ≡ g)
-- Extension: Dependently-typed functions.
ext-with-resp {c} σ = record
{ Ext = ⟦ σ ⟧Π
; Iso = λ ass → Iso ass σ
; resp = λ ass I≅J → _≃_.to (cast ass σ I≅J)
; resp-refl = λ ass f → cong (λ eq → _≃_.to eq f) $ cast-refl ass σ
; Iso≃Iso″ = λ ass → Iso≃Iso″ ass σ
}
-- Interpretation of a dependent type.
⟦ set ⟧Π _ = P.Type
⟦ base A ⟧Π I = Type A I
⟦ Π σ τ ⟧Π I = (x : ⟦ σ ⟧Π I) → ⟦ τ ⟧Π (I , x)
-- Isomorphisms between dependently typed functions.
Iso _ set _ A B = ↑ _ (A ≃ B)
Iso ass (base A) I≅J x y = x ≡ _≃_.from (Type-cong A ass I≅J) y
Iso ass (Π σ τ) I≅J f g = ∀ x y →
(x≅y : Iso ass σ I≅J x y) → Iso ass τ (I≅J , x≅y) (f x) (g y)
-- A cast function.
cast ass set I≅J = Eq.id
cast ass (base A) I≅J = Type-cong A ass I≅J
cast ass (Π σ τ) I≅J = Π-cong ext₁
(cast ass σ I≅J)
(λ x → cast ass τ (I≅J , isomorphic-to-itself σ ass I≅J x))
where open Assumptions ass
abstract
-- Reflexivity is mapped to identity.
cast-refl ass set = refl Eq.id
cast-refl ass {c} (base A) {I} =
Type-cong A ass (reflexivity ass c I) ≡⟨ Type-cong-reflexivity A ass I ⟩∎
Eq.id ∎
cast-refl ass {c} (Π σ τ) {I} =
let rfl = reflexivity ass c I
rflE = reflexivityE ass c (Dep σ) I in
lift-equality-inverse ext₁ $
apply-ext ext₁ λ f →
apply-ext ext₁ λ x →
from (cast ass τ (rfl , isomorphic-to-itself σ ass rfl x))
(f (resp σ ass rfl x)) ≡⟨ cong (λ iso → from (cast ass τ (rfl , iso)) (f (resp σ ass rfl x))) $
isomorphic-to-itself-reflexivity σ ass I x ⟩
from (cast ass τ (rfl , subst (Iso ass σ rfl x)
(sym $ resp-refl σ ass x)
(rflE x)))
(f (resp σ ass rfl x)) ≡⟨ elim¹ (λ {y} x≡y →
from (cast ass τ (rfl , subst (Iso ass σ rfl x)
x≡y (rflE x)))
(f y) ≡
f x)
(cong (λ h → _≃_.from h (f x)) $ cast-refl ass τ)
(sym $ resp-refl σ ass x) ⟩∎
f x ∎
where
open _≃_
open Assumptions ass
-- Two definitions of isomorphism are equivalent.
Iso≃Iso‴ :
(ass : Assumptions) →
∀ {c} (σ : Ty c) {I J} (I≅J : Isomorphic ass c I J) {f g} →
Iso ass σ I≅J f g ≃ (f ≡ _≃_.from (cast ass σ I≅J) g)
Iso≃Iso‴ ass set I≅J {A} {B} =
↑ _ (A ≃ B) ↔⟨ ↑↔ ⟩
(A ≃ B) ↝⟨ inverse $ ≡≃≃ (Assumptions.univ ass) ⟩□
(A ≡ B) □
Iso≃Iso‴ ass (base A) I≅J {x} {y} =
(x ≡ _≃_.from (Type-cong A ass I≅J) y) □
Iso≃Iso‴ ass (Π σ τ) I≅J {f} {g} =
let iso-to-itself = isomorphic-to-itself σ ass I≅J in
(∀ x y (x≅y : Iso ass σ I≅J x y) →
Iso ass τ (I≅J , x≅y) (f x) (g y)) ↝⟨ ∀-cong ext₁ (λ x → ∀-cong ext₁ λ y →
Π-cong ext₁ (Iso≃Iso″ ass σ I≅J) (λ x≅y →
Iso ass τ (I≅J , x≅y) (f x) (g y) ↝⟨ Iso≃Iso″ ass τ (I≅J , x≅y) ⟩
(resp τ ass (I≅J , x≅y) (f x) ≡ g y) ↝⟨ ≡⇒≃ $ cong (λ x≅y → resp τ ass (I≅J , x≅y) (f x) ≡ g y) $
sym $ left-inverse-of (Iso≃Iso″ ass σ I≅J) _ ⟩□
(resp τ ass (I≅J , from (Iso≃Iso″ ass σ I≅J)
(to (Iso≃Iso″ ass σ I≅J) x≅y))
(f x) ≡ g y) □)) ⟩
(∀ x y (x≡y : to (cast ass σ I≅J) x ≡ y) →
resp τ ass (I≅J , from (Iso≃Iso″ ass σ I≅J) x≡y) (f x) ≡
g y) ↝⟨ ∀-cong ext₁ (λ x → inverse $
∀-intro (λ y x≡y → _ ≡ _) ext₁) ⟩
(∀ x → resp τ ass (I≅J , iso-to-itself x) (f x) ≡
g (resp σ ass I≅J x)) ↔⟨ extensionality-isomorphism ext₁ ⟩
(resp τ ass (I≅J , iso-to-itself _) ∘ f ≡ g ∘ resp σ ass I≅J) ↔⟨ to∘≡↔≡from∘ ext₁ (cast ass τ (I≅J , iso-to-itself _)) ⟩
(f ≡ from (cast ass τ (I≅J , iso-to-itself _)) ∘
g ∘ resp σ ass I≅J) □
where
open _≃_
open Assumptions ass
abstract
-- Two definitions of isomorphism are equivalent.
Iso≃Iso″ ass σ I≅J {f} {g} =
Iso ass σ I≅J f g ↝⟨ Iso≃Iso‴ ass σ I≅J ⟩
(f ≡ _≃_.from (cast ass σ I≅J) g) ↔⟨ inverse $ from≡↔≡to (inverse $ cast ass σ I≅J) ⟩□
(_≃_.to (cast ass σ I≅J) f ≡ g) □
----------------------------------------------------------------------
-- An instantiation of the type extractor mechanism that gives us
-- support for polymorphic types
abstract
reflexivityE-set :
(ass : Assumptions) →
∀ {c} {I : ⟦ c ⟧} {A} →
reflexivityE ass c (Dep set) I A ≡ lift Eq.id
reflexivityE-set ass {c} {I} {A} =
let ≡⇒→′ = _↔_.to ∘ ≡⇒↝ _ in
reflexivityE ass c (Dep set) I A ≡⟨⟩
lift (≡⇒≃ (to (from≡↔≡to (inverse Eq.id))
(from (≡⇒≃ $ cong (λ B → B ≡ A) $
isomorphic-to-itself″ set ass
(reflexivity ass c I))
(subst (λ eq → subst (λ _ → P.Type) eq A ≡ A)
(sym $ right-inverse-of
(isomorphism≃equality ass c)
(refl I))
(refl A))))) ≡⟨ cong (λ eq → lift (≡⇒≃ (to (from≡↔≡to (inverse Eq.id)) eq))) $ sym $
resp-refl-lemma set ass I A ⟩
lift (≡⇒≃ (to (from≡↔≡to (inverse Eq.id))
(resp-refl set ass {I = I} A))) ≡⟨⟩
lift (≡⇒≃ (to (from≡↔≡to (inverse Eq.id)) (refl A))) ≡⟨⟩
lift (≡⇒≃ (≡⇒→′ (cong (λ B → B ≡ A)
(right-inverse-of (inverse Eq.id) A))
(cong id (refl A)))) ≡⟨⟩
lift (≡⇒≃ (≡⇒→′ (cong (λ B → B ≡ A) (left-inverse-of Eq.id A))
(cong id (refl A)))) ≡⟨ cong (λ eq → lift (≡⇒≃ (≡⇒→′ (cong (λ B → B ≡ A) eq) (refl A))))
left-inverse-of-id ⟩
lift (≡⇒≃ (≡⇒→′ (cong (λ B → B ≡ A) (refl A)) (refl A))) ≡⟨⟩
lift (≡⇒≃ (≡⇒→′ (refl (A ≡ A)) (refl A))) ≡⟨⟩
lift (≡⇒≃ (refl A)) ≡⟨ refl _ ⟩∎
lift Eq.id ∎
where
open _↔_ using (to)
open _≃_ hiding (to)
⟨0⟩ : ∀ {c} → Extractor (c ▻ Dep set)
⟨0⟩ {c} = record
{ Type = λ { (_ , A) → ↑ _ A }
; Type-cong = λ { _ (_ , lift A≃B) → ↑-cong A≃B }
; Type-cong-reflexivity = λ { ass (I , A) →
let open Assumptions ass; open _≃_ in
lift-equality ext₁ (apply-ext ext₁ λ { (lift x) → cong lift (
to (lower (reflexivityE ass c (Dep set) I A)) x ≡⟨ cong (λ eq → to (lower eq) x) $ reflexivityE-set ass ⟩∎
x ∎ )})}
}
------------------------------------------------------------------------
-- Examples
-- For examples, see
-- Univalence-axiom.Isomorphism-is-equality.More.Examples.
|
{
"alphanum_fraction": 0.44720232,
"avg_line_length": 36.0368852459,
"ext": "agda",
"hexsha": "793ac4dfd4475c38a46ccc329a1f47c968b3238b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More.agda",
"max_line_length": 147,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 11544,
"size": 35172
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.CoHSpace
open import homotopy.Cogroup
module groups.FromSusp where
module _ {i} (X : Ptd i) where
private
A = de⊙ X
e = pt X
module Pinch = SuspRec (winl north) (winr south)
(λ a → ap winl (σloop X a) ∙ wglue ∙ ap winr (merid a))
pinch : Susp A → ⊙Susp X ∨ ⊙Susp X
pinch = Pinch.f
⊙pinch : ⊙Susp X ⊙→ ⊙Susp X ⊙∨ ⊙Susp X
⊙pinch = pinch , idp
private
abstract
unit-r : ∀ x → projl (pinch x) == x
unit-r = Susp-elim idp (merid e) λ x → ↓-∘=idf-in' projl pinch $
ap projl (ap pinch (merid x)) ∙' merid e
=⟨ ∙'=∙ (ap projl (ap pinch (merid x))) (merid e) ⟩
ap projl (ap pinch (merid x)) ∙ merid e
=⟨ ap (_∙ merid e) $
ap projl (ap pinch (merid x))
=⟨ ap (ap projl) $ Pinch.merid-β x ⟩
ap projl (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ projl (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap projl (ap winl (σloop X x)) ∙ ap projl wglue ∙ ap projl (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
(∘-ap projl winl (σloop X x) ∙ ap-idf (σloop X x))
Projl.glue-β
(∘-ap projl winr (merid x) ∙ ap-cst north (merid x)) ⟩
σloop X x ∙ idp
=⟨ ∙-unit-r (σloop X x) ⟩
σloop X x
=∎ ⟩
σloop X x ∙ merid e
=⟨ ∙-assoc (merid x) (! (merid e)) (merid e) ⟩
merid x ∙ ! (merid e) ∙ merid e
=⟨ ap (merid x ∙_) (!-inv-l (merid e)) ∙ ∙-unit-r (merid x) ⟩
merid x
=∎
⊙unit-r : ⊙projl ⊙∘ ⊙pinch ⊙∼ ⊙idf (⊙Susp X)
⊙unit-r = unit-r , idp
unit-l : ∀ x → projr (pinch x) == x
unit-l = Susp-elim idp idp λ x → ↓-∘=idf-in' projr pinch $
ap projr (ap pinch (merid x))
=⟨ ap (ap projr) $ Pinch.merid-β x ⟩
ap projr (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ projr (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap projr (ap winl (σloop X x)) ∙ ap projr wglue ∙ ap projr (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
(∘-ap projr winl (σloop X x) ∙ ap-cst north (σloop X x))
Projr.glue-β
(∘-ap projr winr (merid x) ∙ ap-idf (merid x)) ⟩
merid x
=∎
⊙unit-l : ⊙projr ⊙∘ ⊙pinch ⊙∼ ⊙idf (⊙Susp X)
⊙unit-l = unit-l , idp
Susp-co-h-space-structure : CoHSpaceStructure (⊙Susp X)
Susp-co-h-space-structure = record {
⊙coμ = ⊙pinch;
⊙unit-l = ⊙unit-l;
⊙unit-r = ⊙unit-r}
private
⊙inv = ⊙Susp-flip X
abstract
inv-l : ∀ σ → ⊙WedgeRec.f (⊙Susp-flip X) (⊙idf (⊙Susp X)) (pinch σ) == north
inv-l = Susp-elim (! (merid (pt X))) (! (merid (pt X))) λ x →
↓-app=cst-in $ ! $ ap (_∙ ! (merid (pt X))) $
ap (W.f ∘ pinch) (merid x)
=⟨ ap-∘ W.f pinch (merid x) ⟩
ap W.f (ap pinch (merid x))
=⟨ ap (ap W.f) (Pinch.merid-β x) ⟩
ap W.f (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ W.f (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap W.f (ap winl (σloop X x)) ∙ ap W.f wglue ∙ ap W.f (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
( ∘-ap W.f winl (σloop X x)
∙ ap-∙ Susp-flip (merid x) (! (merid (pt X)))
∙ (SuspFlip.merid-β x ∙2 (ap-! Susp-flip (merid (pt X)) ∙ ap ! (SuspFlip.merid-β (pt X)))))
(W.glue-β ∙ ∙-unit-r (! (merid (pt X))))
(∘-ap W.f winr (merid x) ∙ ap-idf (merid x)) ⟩
(! (merid x) ∙ ! (! (merid (pt X)))) ∙ (! (merid (pt X)) ∙ merid x)
=⟨ ap (_∙ (! (merid (pt X)) ∙ merid x)) (∙-! (merid x) (! (merid (pt X)))) ⟩
! (! (merid (pt X)) ∙ merid x) ∙ (! (merid (pt X)) ∙ merid x)
=⟨ !-inv-l (! (merid (pt X)) ∙ merid x) ⟩
idp
=∎
where module W = ⊙WedgeRec (⊙Susp-flip X) (⊙idf (⊙Susp X))
⊙inv-l : ⊙Wedge-rec (⊙Susp-flip X) (⊙idf (⊙Susp X)) ⊙∘ ⊙pinch ⊙∼ ⊙cst
⊙inv-l = inv-l , ↓-idf=cst-in' idp
assoc : ∀ σ
→ fst (⊙–> (⊙∨-assoc (⊙Susp X) (⊙Susp X) (⊙Susp X)))
(∨-fmap ⊙pinch (⊙idf (⊙Susp X)) (pinch σ))
== ∨-fmap (⊙idf (⊙Susp X)) ⊙pinch (pinch σ)
assoc = Susp-elim idp idp λ x → ↓-='-in' $ ! $
ap (Assoc.f ∘ FmapL.f ∘ pinch) (merid x)
=⟨ ap-∘ (Assoc.f ∘ FmapL.f) pinch (merid x) ⟩
ap (Assoc.f ∘ FmapL.f) (ap pinch (merid x))
=⟨ ap (ap (Assoc.f ∘ FmapL.f)) (Pinch.merid-β x) ⟩
ap (Assoc.f ∘ FmapL.f) (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∘ Assoc.f FmapL.f (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x)) ⟩
ap Assoc.f (ap FmapL.f (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x)))
=⟨ ap (ap Assoc.f) $
ap FmapL.f (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ FmapL.f (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap FmapL.f (ap winl (σloop X x)) ∙ ap FmapL.f wglue ∙ ap FmapL.f (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
( ∘-ap FmapL.f winl (σloop X x)
∙ ap-∘ winl pinch (σloop X x)
∙ ap (ap winl) (lemma₀ x)
∙ ap-∙∙∙ winl (ap winl (σloop X x)) wglue (ap winr (σloop X x)) (! wglue)
∙ ap3 (λ p q r → p ∙ ap winl wglue ∙ q ∙ r)
(∘-ap winl winl (σloop X x))
(∘-ap winl winr (σloop X x))
(ap-! winl wglue))
FmapL.glue-β
(∘-ap FmapL.f winr (merid x)) ⟩
( ap (winl ∘ winl) (σloop X x) ∙ ap winl wglue ∙ ap (winl ∘ winr) (σloop X x) ∙ ! (ap winl wglue))
∙ wglue ∙ ap winr (merid x)
=∎ ⟩
ap Assoc.f
((ap (winl ∘ winl) (σloop X x) ∙ ap winl wglue ∙ ap (winl ∘ winr) (σloop X x) ∙ ! (ap winl wglue))
∙ wglue ∙ ap winr (merid x))
=⟨ ap-∙∙ Assoc.f
(ap (winl ∘ winl) (σloop X x) ∙ ap winl wglue ∙ ap (winl ∘ winr) (σloop X x) ∙ ! (ap winl wglue))
wglue (ap winr (merid x))
∙ ap (λ p → p ∙ ap Assoc.f wglue ∙ ap Assoc.f (ap winr (merid x)))
(ap-∙∙∙ Assoc.f
(ap (winl ∘ winl) (σloop X x))
(ap winl wglue)
(ap (winl ∘ winr) (σloop X x))
(! (ap winl wglue))) ⟩
( ap Assoc.f (ap (winl ∘ winl) (σloop X x))
∙ ap Assoc.f (ap winl wglue)
∙ ap Assoc.f (ap (winl ∘ winr) (σloop X x))
∙ ap Assoc.f (! (ap winl wglue)))
∙ ap Assoc.f wglue ∙ ap Assoc.f (ap winr (merid x))
=⟨ ap6 (λ p₀ p₁ p₂ p₃ p₄ p₅ → (p₀ ∙ p₁ ∙ p₂ ∙ p₃) ∙ p₄ ∙ p₅)
(∘-ap Assoc.f (winl ∘ winl) (σloop X x))
(∘-ap Assoc.f winl wglue ∙ AssocInl.glue-β)
(∘-ap Assoc.f (winl ∘ winr) (σloop X x) ∙ ap-∘ winr winl (σloop X x))
(ap-! Assoc.f (ap winl wglue) ∙ ap ! (∘-ap Assoc.f winl wglue ∙ AssocInl.glue-β))
Assoc.glue-β
(∘-ap Assoc.f winr (merid x) ∙ ap-∘ winr winr (merid x)) ⟩
(ap winl (σloop X x) ∙ wglue ∙ ap winr (ap winl (σloop X x)) ∙ ! wglue)
∙ (wglue ∙ ap winr wglue) ∙ ap winr (ap winr (merid x))
=⟨ lemma₁ (ap winl (σloop X x)) wglue (ap winr (ap winl (σloop X x))) (ap winr wglue) (ap winr (ap winr (merid x))) ⟩
ap winl (σloop X x) ∙ wglue ∙ ap winr (ap winl (σloop X x)) ∙ ap winr wglue ∙ ap winr (ap winr (merid x))
=⟨ ap3 (λ p q r → p ∙ q ∙ r)
(ap-∘ FmapR.f winl (σloop X x))
(! FmapR.glue-β)
( ∙∙-ap winr (ap winl (σloop X x)) wglue (ap winr (merid x))
∙ ap (ap winr) (! (Pinch.merid-β x))
∙ ∘-ap winr pinch (merid x)
∙ ap-∘ FmapR.f winr (merid x)) ⟩
ap FmapR.f (ap winl (σloop X x)) ∙ ap FmapR.f wglue ∙ ap FmapR.f (ap winr (merid x))
=⟨ ∙∙-ap FmapR.f (ap winl (σloop X x)) wglue (ap winr (merid x)) ⟩
ap FmapR.f (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
=⟨ ! $ ap (ap FmapR.f) (Pinch.merid-β x) ⟩
ap FmapR.f (ap pinch (merid x))
=⟨ ∘-ap FmapR.f pinch (merid x) ⟩
ap (FmapR.f ∘ pinch) (merid x)
=∎
where
module Assoc = WedgeAssoc (⊙Susp X) (⊙Susp X) (⊙Susp X)
module AssocInl = WedgeAssocInl (⊙Susp X) (⊙Susp X) (⊙Susp X)
module FmapL = WedgeFmap ⊙pinch (⊙idf (⊙Susp X))
module FmapR = WedgeFmap (⊙idf (⊙Susp X)) ⊙pinch
lemma₀ : ∀ x → ap pinch (σloop X x)
== ap winl (σloop X x) ∙ wglue ∙ ap winr (σloop X x) ∙ ! wglue
lemma₀ x =
ap pinch (σloop X x)
=⟨ ap-∙ pinch (merid x) (! (merid (pt X))) ⟩
ap pinch (merid x) ∙ ap pinch (! (merid (pt X)))
=⟨ Pinch.merid-β x ∙2 (ap-! pinch (merid (pt X)) ∙ ap ! (Pinch.merid-β (pt X))) ⟩
(ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x)) ∙ ! (ap winl (σloop X (pt X)) ∙ wglue ∙ ap winr (merid (pt X)))
=⟨ ap (λ p → (ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x))
∙ ! (ap winl p ∙ wglue ∙ ap winr (merid (pt X))))
σloop-pt ⟩
(ap winl (σloop X x) ∙ wglue ∙ ap winr (merid x)) ∙ ! (wglue ∙ ap winr (merid (pt X)))
=⟨ lemma₀₁ winr (ap winl (σloop X x)) wglue (merid x) (merid (pt X)) ⟩
ap winl (σloop X x) ∙ wglue ∙ ap winr (σloop X x) ∙ ! wglue
=∎
where
lemma₀₁ : ∀ {i j} {A : Type i} {B : Type j} {b₀ b₁ : B} {a₂ a₃ : A}
→ (f : A → B)
→ (p₀ : b₀ == b₁) (p₁ : b₁ == f a₂) (p₂ : a₂ == a₃) (p₃ : a₂ == a₃)
→ (p₀ ∙ p₁ ∙ ap f p₂) ∙ ! (p₁ ∙ ap f p₃)
== p₀ ∙ p₁ ∙ ap f (p₂ ∙ ! p₃) ∙ ! p₁
lemma₀₁ f idp idp idp p₃ = !-ap f p₃ ∙ ! (∙-unit-r (ap f (! p₃)))
lemma₁ : ∀ {i} {A : Type i} {a₀ a₁ a₂ a₃ a₄ : A}
→ (p₀ : a₀ == a₁) (p₁ : a₁ == a₂) (p₂ : a₂ == a₂) (p₃ : a₂ == a₃) (p₄ : a₃ == a₄)
→ (p₀ ∙ p₁ ∙ p₂ ∙ ! p₁) ∙ (p₁ ∙ p₃) ∙ p₄
== p₀ ∙ p₁ ∙ (p₂ ∙ p₃ ∙ p₄)
lemma₁ idp idp p₂ idp idp = ∙-unit-r (p₂ ∙ idp)
⊙assoc :
⊙–> (⊙∨-assoc (⊙Susp X) (⊙Susp X) (⊙Susp X)) ⊙∘
⊙∨-fmap ⊙pinch (⊙idf (⊙Susp X)) ⊙∘ ⊙pinch
⊙∼ ⊙∨-fmap (⊙idf (⊙Susp X)) ⊙pinch ⊙∘ ⊙pinch
⊙assoc = assoc , idp
Susp-cogroup-structure : CogroupStructure (⊙Susp X)
Susp-cogroup-structure = record {
co-h-struct = Susp-co-h-space-structure;
⊙inv = ⊙Susp-flip X;
⊙inv-l = ⊙inv-l;
⊙assoc = ⊙assoc}
Susp⊙→-group-structure : ∀ {j} (Y : Ptd j) → GroupStructure (⊙Susp X ⊙→ Y)
Susp⊙→-group-structure Y = cogroup⊙→-group-structure Susp-cogroup-structure Y
Trunc-Susp⊙→-group : ∀ {j} (Y : Ptd j) → Group (lmax i j)
Trunc-Susp⊙→-group Y = Trunc-group (Susp⊙→-group-structure Y)
{-
module _ {i j} (X : Ptd i) where
Lift-Susp-co-h-space-structure : CoHSpaceStructure (⊙Lift {j = j} (⊙Susp X))
Lift-Susp-co-h-space-structure =
Lift-co-h-space-structure {j = j} (Susp-co-h-space-structure X)
Lift-Susp-cogroup-structure : CogroupStructure (⊙Lift {j = j} (⊙Susp X))
Lift-Susp-cogroup-structure =
Lift-cogroup-structure {j = j} (Susp-cogroup-structure X)
LiftSusp⊙→-group-structure : ∀ {k} (Y : Ptd k) → GroupStructure (⊙Lift {j = j} (⊙Susp X) ⊙→ Y)
LiftSusp⊙→-group-structure Y = cogroup⊙→-group-structure Lift-Susp-cogroup-structure Y
Trunc-LiftSusp⊙→-group : ∀ {k} (Y : Ptd k) → Group (lmax (lmax i j) k)
Trunc-LiftSusp⊙→-group Y = Trunc-group (LiftSusp⊙→-group-structure Y)
-}
|
{
"alphanum_fraction": 0.4666553682,
"avg_line_length": 46.8293650794,
"ext": "agda",
"hexsha": "f17f17b0273c441fac978b29dc17b5e5adbaafd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/FromSusp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/FromSusp.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/FromSusp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5079,
"size": 11801
}
|
module Issue1105 where
module So.Bad where
|
{
"alphanum_fraction": 0.8181818182,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "f886544a37257c2a2181c9ee780c00408638a9b6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1105.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1105.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1105.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 11,
"size": 44
}
|
open import FRP.JS.Nat using ( ℕ ; suc ; _+_ ; _≟_ )
open import FRP.JS.Maybe using ( Maybe ; just ; nothing ; _≟[_]_ )
open import FRP.JS.Bool using ( Bool ; not )
open import FRP.JS.QUnit using ( TestSuite ; ok ; ok! ; test ; _,_ )
module FRP.JS.Test.Maybe where
_≟¹_ : Maybe ℕ → Maybe ℕ → Bool
xs ≟¹ ys = xs ≟[ _≟_ ] ys
Maybe² : Set → Set
Maybe² A = Maybe (Maybe A)
_≟²_ : Maybe² ℕ → Maybe² ℕ → Bool
xs ≟² ys = xs ≟[ _≟¹_ ] ys
just² : ∀ {A : Set} → A → Maybe² A
just² a = just (just a)
Maybe³ : Set → Set
Maybe³ A = Maybe (Maybe² A)
_≟³_ : Maybe³ ℕ → Maybe³ ℕ → Bool
xs ≟³ ys = xs ≟[ _≟²_ ] ys
just³ : ∀ {A} → A → Maybe³ A
just³ a = just (just² a)
tests : TestSuite
tests =
( test "≟"
( ok "nothing ≟ nothing" (nothing ≟¹ nothing)
, ok "just 0 ≟ just 0" (just 0 ≟¹ just 0)
, ok "nothing ≟ just 1" (not (nothing ≟¹ just 1))
, ok "just 0 ≟ nothing" (not (just 0 ≟¹ nothing))
, ok "just 0 ≟ just 1" (not (just 0 ≟¹ just 1)) )
, test "≟²"
( ok "nothing ≟² nothing" (nothing ≟² nothing)
, ok "just nothing ≟² just nothing" (just nothing ≟² just nothing)
, ok "just² 0 ≟² just² 0" (just² 0 ≟² just² 0)
, ok "nothing ≟² just nothing" (not (nothing ≟² just nothing))
, ok "nothing ≟² just² 1" (not (nothing ≟² just² 1))
, ok "just nothing ≟² just² 1" (not (just nothing ≟² just² 1))
, ok "just² 0 ≟² just² 1" (not (just² 0 ≟² just² 1)) )
, test "≟³"
( ok "nothing ≟³ nothing" (nothing ≟³ nothing)
, ok "just nothing ≟³ just nothing" (just nothing ≟³ just nothing)
, ok "just² nothing ≟³ just² nothing" (just² nothing ≟³ just² nothing)
, ok "just³ 0 ≟³ just³ 0" (just³ 0 ≟³ just³ 0)
, ok "nothing ≟³ just nothing" (not (nothing ≟³ just nothing))
, ok "nothing ≟³ just² nothing" (not (nothing ≟³ just² nothing))
, ok "nothing ≟³ just³ 1" (not (nothing ≟³ just³ 1))
, ok "just nothing ≟³ just² nothing" (not (just nothing ≟³ just² nothing))
, ok "just nothing ≟³ just³ 1" (not (just nothing ≟³ just³ 1))
, ok "just³ 0 ≟³ just³ 1" (not (just³ 0 ≟³ just³ 1)) ) )
|
{
"alphanum_fraction": 0.5611872146,
"avg_line_length": 39.1071428571,
"ext": "agda",
"hexsha": "1ff63807de57ce005440db06283b7dcbe69e40d3",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "test/agda/FRP/JS/Test/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "test/agda/FRP/JS/Test/Maybe.agda",
"max_line_length": 79,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "test/agda/FRP/JS/Test/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 855,
"size": 2190
}
|
module Homogenous.Nat where
import PolyDepPrelude
open PolyDepPrelude using (zero; one; _::_; nil; right; left; pair; unit)
import Homogenous.Base
open Homogenous.Base using (Sig; T; Intro)
-- The code for natural numbers is [0 1]
codeNat : Sig
codeNat = zero :: (one :: nil)
iNat : Set
iNat = T codeNat
-- Short-hand notation for the normal Nat constructors
izero : iNat
izero = Intro (left unit)
isucc : iNat -> iNat
isucc = \(h : iNat) -> Intro (right (left (pair h unit)))
-- the pair with the dummy unit component comes from the 1-tuple
-- representation as A*()
ione : iNat
ione = isucc izero
{-
main : Set
main = {!!}
-}
|
{
"alphanum_fraction": 0.6848673947,
"avg_line_length": 18.3142857143,
"ext": "agda",
"hexsha": "01f93932118b5cf934deb380c054d54fb00a366f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM5/PolyDep/Homogenous/Nat.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM5/PolyDep/Homogenous/Nat.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM5/PolyDep/Homogenous/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 193,
"size": 641
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Magma where
open import Cubical.Algebra.Base public
open import Cubical.Algebra.Definitions public
open import Cubical.Algebra.Structures public using (IsMagma; ismagma)
open import Cubical.Algebra.Bundles public using (Magma; mkmagma; MagmaCarrier)
open import Cubical.Structures.Carrier public
open import Cubical.Algebra.Magma.Properties public
open import Cubical.Algebra.Magma.Morphism public
open import Cubical.Algebra.Magma.MorphismProperties public
|
{
"alphanum_fraction": 0.8261682243,
"avg_line_length": 38.2142857143,
"ext": "agda",
"hexsha": "07136baa31e0cc500d5abee6a02dc4f8643d4ec6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 130,
"size": 535
}
|
module CaseSplit1 where
data ℕ : Set where
Z : ℕ
S : ℕ → ℕ
f0 : ℕ → ℕ
f0 = λ { x → {! !} ; y → {! !} }
f1 : ℕ → ℕ
f1 = λ
{ x → {! !}
; y → {! !}
}
g0 : ℕ → ℕ
g0 = λ where x → {! !}
y → {! !}
g1 : ℕ → ℕ
g1 = λ where
x → {! !}
y → {! !}
issue16 : ℕ → ℕ
issue16 = λ {x → {! !} }
|
{
"alphanum_fraction": 0.3093093093,
"avg_line_length": 12.8076923077,
"ext": "agda",
"hexsha": "4f0d2c2aa317f437f7aa00630fab1a3231138873",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "SNU-2D/agda-mode-vscode",
"max_forks_repo_path": "test/tests/assets/CaseSplit1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "SNU-2D/agda-mode-vscode",
"max_issues_repo_path": "test/tests/assets/CaseSplit1.agda",
"max_line_length": 36,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "EdNutting/agda-mode-vscode",
"max_stars_repo_path": "test/tests/assets/CaseSplit1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T23:37:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-04T23:37:02.000Z",
"num_tokens": 152,
"size": 333
}
|
------------------------------------------------------------------------------
-- ABP auxiliary lemma
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.ABP.StrongerInductionPrinciple.LemmaI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Base.List
open import FOTC.Base.Loop
open import FOTC.Base.List.PropertiesI
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Program.ABP.ABP
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Fair.PropertiesI
open import FOTC.Program.ABP.PropertiesI
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- Helper function for the auxiliary lemma
module Helper where
helper : ∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∀ ft₁ os₁' → F*T ft₁ → Fair os₁' → os₁ ≡ ft₁ ++ os₁' →
∃[ js' ] js ≡ i' ∷ js'
helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js} Bb Fos₂
(asS , bsS , csS , dsS , jsS)
.(T ∷ []) os₁' f*tnil Fos₁' os₁-eq = js' , js-eq
where
os₁-eq-helper : os₁ ≡ T ∷ os₁'
os₁-eq-helper = os₁ ≡⟨ os₁-eq ⟩
(T ∷ []) ++ os₁' ≡⟨ ++-∷ T [] os₁' ⟩
T ∷ ([] ++ os₁') ≡⟨ ∷-rightCong (++-leftIdentity os₁') ⟩
T ∷ os₁' ∎
as' : D
as' = await b i' is' ds
as-eq : as ≡ < i' , b > ∷ as'
as-eq = trans asS (send-eq b i' is' ds)
bs' : D
bs' = corrupt os₁' · as'
bs-eq : bs ≡ ok < i' , b > ∷ bs'
bs-eq =
bs ≡⟨ bsS ⟩
corrupt os₁ · as
≡⟨ ·-rightCong as-eq ⟩
corrupt os₁ · (< i' , b > ∷ as')
≡⟨ ·-leftCong (corruptCong os₁-eq-helper) ⟩
corrupt (T ∷ os₁') · (< i' , b > ∷ as')
≡⟨ corrupt-T os₁' < i' , b > as' ⟩
ok < i' , b > ∷ corrupt os₁' · as'
≡⟨ refl ⟩
ok < i' , b > ∷ bs' ∎
cs' : D
cs' = ack (not b) · bs'
js' : D
js' = out (not b) · bs'
js-eq : js ≡ i' ∷ js'
js-eq = js ≡⟨ jsS ⟩
out b · bs ≡⟨ ·-rightCong bs-eq ⟩
out b · (ok < i' , b > ∷ bs') ≡⟨ out-ok≡ b b i' bs' refl ⟩
i' ∷ out (not b) · bs' ≡⟨ refl ⟩
i' ∷ js' ∎
ds' : D
ds' = ds
helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js}
Bb Fos₂ (asS , bsS , csS , dsS , jsS)
.(F ∷ ft₁^) os₁' (f*tcons {ft₁^} FTft₁^) Fos₁' os₁-eq =
helper Bb (tail-Fair Fos₂) ihS ft₁^ os₁' FTft₁^ Fos₁' refl
where
os₁^ : D
os₁^ = ft₁^ ++ os₁'
os₂^ : D
os₂^ = tail₁ os₂
os₁-eq-helper : os₁ ≡ F ∷ os₁^
os₁-eq-helper = os₁ ≡⟨ os₁-eq ⟩
(F ∷ ft₁^) ++ os₁' ≡⟨ ++-∷ F ft₁^ os₁' ⟩
F ∷ ft₁^ ++ os₁' ≡⟨ refl ⟩
F ∷ os₁^ ∎
as^ : D
as^ = await b i' is' ds
as-eq : as ≡ < i' , b > ∷ as^
as-eq = trans asS (send-eq b i' is' ds)
bs^ : D
bs^ = corrupt os₁^ · as^
bs-eq : bs ≡ error ∷ bs^
bs-eq =
bs
≡⟨ bsS ⟩
corrupt os₁ · as
≡⟨ ·-rightCong as-eq ⟩
corrupt os₁ · (< i' , b > ∷ as^)
≡⟨ ·-leftCong (corruptCong os₁-eq-helper) ⟩
corrupt (F ∷ os₁^) · (< i' , b > ∷ as^)
≡⟨ corrupt-F os₁^ < i' , b > as^ ⟩
error ∷ corrupt os₁^ · as^
≡⟨ refl ⟩
error ∷ bs^ ∎
cs^ : D
cs^ = ack b · bs^
cs-eq : cs ≡ not b ∷ cs^
cs-eq = cs ≡⟨ csS ⟩
ack b · bs ≡⟨ ·-rightCong bs-eq ⟩
ack b · (error ∷ bs^) ≡⟨ ack-error b bs^ ⟩
not b ∷ ack b · bs^ ≡⟨ refl ⟩
not b ∷ cs^ ∎
ds^ : D
ds^ = corrupt os₂^ · cs^
ds-eq-helper₁ : os₂ ≡ T ∷ tail₁ os₂ → ds ≡ ok (not b) ∷ ds^
ds-eq-helper₁ h =
ds ≡⟨ dsS ⟩
corrupt os₂ · cs ≡⟨ ·-rightCong cs-eq ⟩
corrupt os₂ · (not b ∷ cs^) ≡⟨ ·-leftCong (corruptCong h) ⟩
corrupt (T ∷ os₂^) · (not b ∷ cs^) ≡⟨ corrupt-T os₂^ (not b) cs^ ⟩
ok (not b) ∷ corrupt os₂^ · cs^ ≡⟨ refl ⟩
ok (not b) ∷ ds^ ∎
ds-eq-helper₂ : os₂ ≡ F ∷ tail₁ os₂ → ds ≡ error ∷ ds^
ds-eq-helper₂ h =
ds ≡⟨ dsS ⟩
corrupt os₂ · cs ≡⟨ ·-rightCong cs-eq ⟩
corrupt os₂ · (not b ∷ cs^) ≡⟨ ·-leftCong (corruptCong h) ⟩
corrupt (F ∷ os₂^) · (not b ∷ cs^) ≡⟨ corrupt-F os₂^ (not b) cs^ ⟩
error ∷ corrupt os₂^ · cs^ ≡⟨ refl ⟩
error ∷ ds^ ∎
ds-eq : ds ≡ ok (not b) ∷ ds^ ∨ ds ≡ error ∷ ds^
ds-eq = case (λ h → inj₁ (ds-eq-helper₁ h))
(λ h → inj₂ (ds-eq-helper₂ h))
(head-tail-Fair Fos₂)
as^-eq-helper₁ : ds ≡ ok (not b) ∷ ds^ → as^ ≡ send b · (i' ∷ is') · ds^
as^-eq-helper₁ h =
await b i' is' ds
≡⟨ awaitCong₄ h ⟩
await b i' is' (ok (not b) ∷ ds^)
≡⟨ await-ok≢ b (not b) i' is' ds^ (x≢not-x Bb) ⟩
< i' , b > ∷ await b i' is' ds^
≡⟨ sym (send-eq b i' is' ds^) ⟩
send b · (i' ∷ is') · ds^ ∎
as^-eq-helper₂ : ds ≡ error ∷ ds^ → as^ ≡ send b · (i' ∷ is') · ds^
as^-eq-helper₂ h =
await b i' is' ds ≡⟨ awaitCong₄ h ⟩
await b i' is' (error ∷ ds^) ≡⟨ await-error b i' is' ds^ ⟩
< i' , b > ∷ await b i' is' ds^ ≡⟨ sym (send-eq b i' is' ds^) ⟩
send b · (i' ∷ is') · ds^ ∎
as^-eq : as^ ≡ send b · (i' ∷ is') · ds^
as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq
js-eq : js ≡ out b · bs^
js-eq = js ≡⟨ jsS ⟩
out b · bs ≡⟨ ·-rightCong bs-eq ⟩
out b · (error ∷ bs^) ≡⟨ out-error b bs^ ⟩
out b · bs^ ∎
ihS : S b (i' ∷ is') os₁^ os₂^ as^ bs^ cs^ ds^ js
ihS = as^-eq , refl , refl , refl , js-eq
------------------------------------------------------------------------------
-- From Dybjer and Sander's paper: From the assumption that os₁ ∈ Fair
-- and hence by unfolding Fair, we conclude that there are ft₁ : F*T
-- and os₁' : Fair, such that os₁ = ft₁ ++ os₁'.
--
-- We proceed by induction on ft₁ : F*T using helper.
open Helper
lemma : ∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₁ →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∃[ js' ] js ≡ i' ∷ js'
lemma Bb Fos₁ Fos₂ s with Fair-out Fos₁
... | ft , os₁' , FTft , prf , Fos₁' = helper Bb Fos₂ s ft os₁' FTft Fos₁' prf
|
{
"alphanum_fraction": 0.4242987979,
"avg_line_length": 33.2761904762,
"ext": "agda",
"hexsha": "8018c0d654a9b038b3a93183ad2a3f0fc42a9cf7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaI.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2709,
"size": 6988
}
|
-- simply-typed labelled λ-calculus w/ DeBruijn indices
-- {-# OPTIONS --show-implicit #-}
module LLC where
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Data.Bool.Properties hiding (≤-trans ; <-trans ; ≤-refl ; <-irrefl)
open import Data.Empty
open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_ ; _≟_ to _≟ᴺ_)
open import Data.Nat.Properties renaming (_<?_ to _<ᴺ?_)
open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_)
open import Data.Integer.Properties using (⊖-≥ ; 0≤n⇒+∣n∣≡n ; +-monoˡ-≤)
open import Data.List
open import Data.List.Relation.Unary.All
open import Relation.Unary using (Decidable)
open import Data.Vec.Relation.Unary.Any
open import Data.Vec.Base hiding (length ; _++_ ; foldr)
open import Relation.Binary.PropositionalEquality renaming (trans to ≡-trans)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Nullary.Negation
open import Data.Fin
open import Data.Fin.Subset renaming (∣_∣ to ∣_∣ˢ)
open import Data.Fin.Subset.Properties using (anySubset?)
open import Data.Fin.Properties using (any?)
open import Data.Product
open import Data.Sum
open import Function
open import Extensionality
open import Auxiliary
module defs where
data Exp {n : ℕ} : Set where
Var : ℕ → Exp {n}
Abs : Exp {n} → Exp {n}
App : Exp {n} → Exp {n} → Exp {n}
LabI : Fin n → Exp {n}
LabE : {s : Subset n} → (f : ∀ l → l ∈ s → Exp {n}) → Exp {n} → Exp {n}
data Ty {n : ℕ} : Set where
Fun : Ty {n} → Ty {n} → Ty
Label : Subset n → Ty
-- shifting and substitution
-- shifting, required to avoid variable-capturing in substitution
-- see Pierce 2002, pg. 78/79
↑ᴺ_,_[_] : ℤ → ℕ → ℕ → ℕ
↑ᴺ d , c [ x ]
with (x <ᴺ? c)
... | yes p = x
... | no ¬p = ∣ ℤ.pos x +ᶻ d ∣
↑_,_[_] : ∀ {n} → ℤ → ℕ → Exp {n} → Exp
↑ d , c [ Var x ] = Var (↑ᴺ d , c [ x ])
↑ d , c [ Abs t ] = Abs (↑ d , (ℕ.suc c) [ t ])
↑ d , c [ App t t₁ ] = App (↑ d , c [ t ]) (↑ d , c [ t₁ ])
↑ d , c [ LabI x ] = LabI x
↑ d , c [ LabE f e ] = LabE (λ l x → ↑ d , c [ (f l x) ]) (↑ d , c [ e ])
-- shorthands
↑¹[_] : ∀ {n} → Exp {n} → Exp
↑¹[ e ] = ↑ (ℤ.pos 1) , 0 [ e ]
↑⁻¹[_] : ∀ {n} → Exp {n} → Exp
↑⁻¹[ e ] = ↑ (ℤ.negsuc 0) , 0 [ e ]
-- substitution
-- see Pierce 2002, pg. 80
[_↦_]_ : ∀ {n} → ℕ → Exp {n} → Exp → Exp
[ k ↦ s ] Var x
with (_≟ᴺ_ x k)
... | yes p = s
... | no ¬p = Var x
[ k ↦ s ] Abs t = Abs ([ ℕ.suc k ↦ ↑¹[ s ] ] t)
[ k ↦ s ] App t t₁ = App ([ k ↦ s ] t) ([ k ↦ s ] t₁)
[ k ↦ s ] LabI ins = LabI ins
[ k ↦ s ] LabE f e = LabE (λ l x → [ k ↦ s ] (f l x)) ([ k ↦ s ] e)
-- variable in expression
data _∈`_ {N : ℕ} : ℕ → Exp {N} → Set where
in-Var : {n : ℕ} → n ∈` Var n
in-Abs : {n : ℕ} {e : Exp} → (ℕ.suc n) ∈` e → n ∈` Abs e
in-App : {n : ℕ} {e e' : Exp} → n ∈` e ⊎ n ∈` e' → n ∈` App e e'
in-LabE : {n : ℕ} {s : Subset N} {f : (∀ l → l ∈ s → Exp {N})} {e : Exp {N}} → (∃₂ λ l i → n ∈` (f l i)) ⊎ n ∈` e → n ∈` LabE {N} {s} f e
-- typing
Env : {ℕ} → Set
Env {n} = List (Ty {n})
data _∶_∈_ {n : ℕ} : ℕ → Ty {n} → Env {n} → Set where
here : {T : Ty} {Γ : Env} → 0 ∶ T ∈ (T ∷ Γ)
there : {n : ℕ} {T₁ T₂ : Ty} {Γ : Env} → n ∶ T₁ ∈ Γ → (ℕ.suc n) ∶ T₁ ∈ (T₂ ∷ Γ)
data _⊢_∶_ {n : ℕ} : Env {n} → Exp {n} → Ty {n} → Set where
TVar : {m : ℕ} {Γ : Env} {T : Ty} → m ∶ T ∈ Γ → Γ ⊢ (Var m) ∶ T
TAbs : {Γ : Env} {T₁ T₂ : Ty} {e : Exp} → (T₁ ∷ Γ) ⊢ e ∶ T₂ → Γ ⊢ (Abs e) ∶ (Fun T₁ T₂)
TApp : {Γ : Env} {T₁ T₂ : Ty} {e₁ e₂ : Exp} → Γ ⊢ e₁ ∶ (Fun T₁ T₂) → Γ ⊢ e₂ ∶ T₁ → Γ ⊢ (App e₁ e₂) ∶ T₂
TLabI : {Γ : Env} {x : Fin n} {s : Subset n} → (ins : x ∈ s) → Γ ⊢ LabI x ∶ Label {n} s
TLabEl : {Γ : Env} {T : Ty} {s : Subset n} {x : Fin n} {ins : x ∈ s} {f : ∀ l → l ∈ s → Exp} {scopecheck : ∀ l i n → n ∈` (f l i) → n <ᴺ length Γ}
→ Γ ⊢ f x ins ∶ T
→ Γ ⊢ LabI {n} x ∶ Label {n} s
→ Γ ⊢ LabE {n} {s} f (LabI {n} x) ∶ T
TLabEx : {Γ : Env} {T : Ty} {m : ℕ} {s : Subset n} {f : ∀ l → l ∈ s → Exp} → (f' : ∀ l i → (Γ ⊢ [ m ↦ (LabI l) ] (f l i) ∶ T))
→ Γ ⊢ Var m ∶ Label {n} s
→ Γ ⊢ LabE {n} {s} f (Var m) ∶ T
-- denotational semantics
module denotational where
open defs
Val : {n : ℕ} → Ty {n} → Set
Val (Fun Ty₁ Ty₂) = (Val Ty₁) → (Val Ty₂)
Val {n} (Label s) = Σ (Fin n) (λ x → x ∈ s)
access : {n m : ℕ} {Γ : Env {n}} {T : Ty {n}} → m ∶ T ∈ Γ → All Val Γ → Val T
access here (V ∷ Γ) = V
access (there J) (V ∷ Γ) = access J Γ
eval : {n : ℕ} {Γ : Env {n}} {T : Ty {n}} {e : Exp {n}} → Γ ⊢ e ∶ T → All Val Γ → Val T
eval (TVar c) Val-Γ = access c Val-Γ
eval (TAbs TJ) Val-Γ = λ V → eval TJ (V ∷ Val-Γ)
eval (TApp TJ TJ₁) Val-Γ = (eval TJ Val-Γ) (eval TJ₁ Val-Γ)
eval (TLabI {x = x} ins) Val-Γ = x , ins
eval (TLabEl {x = x}{ins = ins}{f = f} j j') Val-Γ = eval j Val-Γ
eval (TLabEx {m = m}{s}{f} f' j) Val-Γ
with eval j Val-Γ -- evaluate variable
... | x , ins = eval (f' x ins) Val-Γ
-- operational semantics (call-by-value)
module operational where
open defs
data Val {n : ℕ} : Exp {n} → Set where
VFun : {e : Exp} → Val (Abs e)
VLab : {x : Fin n} → Val (LabI x)
-- reduction relation
data _⇒_ {n : ℕ} : Exp {n} → Exp {n} → Set where
ξ-App1 : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → App e₁ e₂ ⇒ App e₁' e₂
ξ-App2 : {e e' v : Exp} → Val v → e ⇒ e' → App v e ⇒ App v e'
β-App : {e v : Exp} → Val v → (App (Abs e) v) ⇒ (↑⁻¹[ ([ 0 ↦ ↑¹[ v ] ] e) ])
β-LabE : {s : Subset n} {f : ∀ l → l ∈ s → Exp} {x : Fin n} → (ins : x ∈ s) → LabE f (LabI x) ⇒ f x ins
---- properties & lemmas
--- properties of shifting
-- ∣ + x +ᶻ k ∣ +ᴺ m ≡ ∣ + (x +ᴺ m) +ᶻ k ∣
aux-calc-1 : {x m : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + x +ᶻ k ∣ +ᴺ m ≡ ∣ + (x +ᴺ m) +ᶻ k ∣
aux-calc-1 {x} {m} {+_ n} ge
rewrite (+-assoc x n m)
| (+-comm n m)
| (sym (+-assoc x m n))
= refl
↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] : {k : ℤ} {l x m : ℕ} → k >ᶻ + 0 → ↑ᴺ k , l [ x ] +ᴺ m ≡ ↑ᴺ k , l +ᴺ m [ x +ᴺ m ]
↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {m} ge
with x <ᴺ? l
... | yes p
with x +ᴺ m <ᴺ? l +ᴺ m
... | yes q = refl
... | no ¬q = contradiction (+-monoˡ-< m p) ¬q
↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {m} ge
| no ¬p
with x +ᴺ m <ᴺ? l +ᴺ m
... | yes q = contradiction q (<⇒≱ (+-monoˡ-< m (≰⇒> ¬p)))
... | no ¬q = aux-calc-1 ge
-- corollary for suc
suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] : {k : ℤ} {l x : ℕ} → k >ᶻ + 0 → ℕ.suc (↑ᴺ k , l [ x ]) ≡ ↑ᴺ k , ℕ.suc l [ ℕ.suc x ]
suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {l} {x} ge
with (↑ᴺk,l[x]+m≡↑ᴺk,l+m[x+m] {k} {l} {x} {1} ge)
... | w
rewrite (n+1≡sucn{↑ᴺ k , l [ x ]})
| (n+1≡sucn{x})
| (n+1≡sucn{l})
= w
↑-var-refl : {n : ℕ} {d : ℤ} {c : ℕ} {x : ℕ} {le : ℕ.suc x ≤ᴺ c} → ↑ d , c [ Var {n} x ] ≡ Var x
↑-var-refl {n} {d} {c} {x} {le}
with (x <ᴺ? c)
... | no ¬p = contradiction le ¬p
... | yes p = refl
↑¹-var : {n x : ℕ} → ↑¹[ Var {n} x ] ≡ Var (ℕ.suc x)
↑¹-var {n} {zero} = refl
↑¹-var {n} {ℕ.suc x}
rewrite (sym (n+1≡sucn{x +ᴺ 1}))
| (sym (n+1≡sucn{x}))
= cong ↑¹[_] (↑¹-var{n}{x})
↑⁻¹ₖ[↑¹ₖ[s]]≡s : {n : ℕ} {e : Exp {n} } {k : ℕ} → ↑ -[1+ 0 ] , k [ ↑ + 1 , k [ e ] ] ≡ e
↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Var x} {k}
with (x <ᴺ? k)
-- x < k
-- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var n) = Var n
... | yes p = ↑-var-refl{n}{ -[1+ 0 ]}{k}{x}{p}
-- x ≥ k
-- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var |n + 1|) = Var (||n + 1| - 1|) = Var n
... | no ¬p
with (¬[x≤k]⇒¬[sucx≤k] ¬p)
... | ¬p'
with (x +ᴺ 1) <ᴺ? k
... | yes pp = contradiction pp ¬p'
... | no ¬pp
rewrite (∣nℕ+1⊖1∣≡n{x})
= refl
↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {Abs e} {k} = cong Abs ↑⁻¹ₖ[↑¹ₖ[s]]≡s
↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {App e e₁} = cong₂ App ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s
↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {LabI ins} = refl
↑⁻¹ₖ[↑¹ₖ[s]]≡s {n} {LabE f e} = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑⁻¹ₖ[↑¹ₖ[s]]≡s))) ↑⁻¹ₖ[↑¹ₖ[s]]≡s
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] : {n : ℕ} {k l : ℤ} {c : ℕ} {s : Exp {n}} → l ≥ᶻ +0 → ↑ k , c [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ]
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge
with x <ᴺ? c
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge | no ¬p
with ∣ + x +ᶻ l ∣ <ᴺ? c
... | yes q = contradiction q (<⇒≱ (n≤m⇒n<sucm (≤-trans (≮⇒≥ ¬p) (m≥0⇒∣n+m∣≥n ge))))
... | no ¬q
rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (m≥0⇒n+m≥0 ge))
| (Data.Integer.Properties.+-assoc (+_ x) l k)
= refl
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Var x} ge | yes p
with x <ᴺ? c
... | yes p' = refl
... | no ¬p' = contradiction p ¬p'
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {Abs s} le = cong Abs (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{ℕ.suc c}{s} le)
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {App s s₁} le = cong₂ App (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{c}{s} le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{n}{k}{l}{c}{s₁} le)
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {LabI ins} le = refl
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {LabE f e} le = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {f x ins} le))) ( ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {n} {k} {l} {c} {e} le)
↑k,q[↑l,c[s]]≡↑l+k,c[s] : {n : ℕ} {k l : ℤ} {q c : ℕ} {s : Exp {n}} → + q ≤ᶻ + c +ᶻ l → c ≤ᴺ q → ↑ k , q [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ]
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Var x} ge₁ ge₂
with x <ᴺ? c
... | yes p
with x <ᴺ? q
... | yes p' = refl
... | no ¬p' = contradiction (≤-trans p ge₂) ¬p'
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Var x} ge₁ ge₂
| no ¬p
with ∣ + x +ᶻ l ∣ <ᴺ? q
... | yes p' = contradiction p' (≤⇒≯ (+a≤b⇒a≤∣b∣{q}{+ x +ᶻ l} (Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p)))))))
... | no ¬p'
rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (Data.Integer.Properties.≤-trans (+≤+ z≤n) ((Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p))))))))
| (Data.Integer.Properties.+-assoc (+_ x) l k)
= refl
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {Abs s} ge₁ ge₂ = cong Abs (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {ℕ.suc q} {ℕ.suc c} {s} (+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁) (s≤s ge₂))
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {App s s₁} ge₁ ge₂ = cong₂ App (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {s} ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s]{n} {k} {l} {q} {c} {s₁} ge₁ ge₂)
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {LabI e} ge₁ ge₂ = refl
↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {LabE f e} ge₁ ge₂ = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {f x ins} ge₁ ge₂))) (↑k,q[↑l,c[s]]≡↑l+k,c[s] {n} {k} {l} {q} {c} {e} ge₁ ge₂)
aux-calc-2 : {x l : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + (x +ᴺ l) +ᶻ k ∣ ≡ ∣ + x +ᶻ k ∣ +ᴺ l
aux-calc-2 {x} {l} {+_ n} ge
rewrite (+-assoc x l n)
| (+-comm l n)
| (+-assoc x n l)
= refl
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] : {n : ℕ} {k : ℤ} {q c l : ℕ} {s : Exp {n}} → c ≤ᴺ q → + 0 <ᶻ k → ↑ k , q +ᴺ l [ ↑ + l , c [ s ] ] ≡ ↑ + l , c [ ↑ k , q [ s ] ]
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le'
with x <ᴺ? q
... | yes p
with x <ᴺ? c
... | yes p'
with x <ᴺ? q +ᴺ l
... | yes p'' = refl
... | no ¬p'' = contradiction (≤-stepsʳ l p) ¬p''
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le'
| yes p
| no ¬p'
with x +ᴺ l <ᴺ? q +ᴺ l
... | yes p'' = refl
... | no ¬p'' = contradiction (Data.Nat.Properties.+-monoˡ-≤ l p) ¬p''
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Var x} le le'
| no ¬p
with x <ᴺ? c
... | yes p' = contradiction p' (<⇒≱ (a≤b<c⇒a<c le (≰⇒> ¬p)))
... | no ¬p'
with x +ᴺ l <ᴺ? q +ᴺ l
| ∣ + x +ᶻ k ∣ <ᴺ? c
... | _ | yes p''' = contradiction p''' (<⇒≱ (a≤b<c⇒a<c (≰⇒≥ ¬p') (s≤s (m>0⇒∣n+m∣>n {x} {k} le'))))
... | yes p'' | _ = contradiction p'' (<⇒≱ (+-monoˡ-< l (≰⇒> ¬p)))
... | no ¬p'' | no ¬p''' = cong Var (aux-calc-2 {x} {l} {k} le')
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {Abs s} le le' = cong Abs (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {ℕ.suc q} {ℕ.suc c} {l} {s} (s≤s le) le')
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {App s s₁} le le' = cong₂ App (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s} le le') (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s₁} le le')
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {LabI x} le le' = refl
↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {LabE f s} le le' = cong₂ LabE (f-ext (λ x → f-ext (λ ins → ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {f x ins} le le'))) (↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]] {n} {k} {q} {c} {l} {s} le le')
-- corollary
↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] : {n : ℕ} {k : ℤ} {q c : ℕ} {s : Exp {n}} → c ≤ᴺ q → + 0 <ᶻ k → ↑ k , ℕ.suc q [ ↑ + 1 , c [ s ] ] ≡ ↑ + 1 , c [ ↑ k , q [ s ] ]
↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] {n} {k} {q} {c} {s} le le'
rewrite (sym (n+1≡sucn{q}))
= ↑k,q+l[↑l,c[s]]≡↑l,c[↑k,q[s]]{n}{k}{q}{c}{1}{s} le le'
↑Lab-triv : {n : ℕ} {l : Fin n} (k : ℤ) (q : ℕ) → LabI l ≡ ↑ k , q [ LabI l ]
↑Lab-triv {n} {l} k q = refl
↑ᴺ-triv : {m : ℤ} {n x : ℕ} → x ≥ᴺ n → ↑ᴺ m , n [ x ] ≡ ∣ + x +ᶻ m ∣
↑ᴺ-triv {m} {n} {x} ge
with x <ᴺ? n
... | yes p = contradiction p (≤⇒≯ ge)
... | no ¬p = refl
↑ᴺ⁰-refl : {n : ℕ} {c : ℕ} {x : ℕ} → ↑ᴺ + 0 , c [ x ] ≡ x
↑ᴺ⁰-refl {n} {c} {x}
with x <ᴺ? c
... | yes p = refl
... | no ¬p = +-identityʳ x
↑⁰-refl : {n : ℕ} {c : ℕ} {e : Exp {n}} → ↑ + 0 , c [ e ] ≡ e
↑⁰-refl {n} {c} {Var x} = cong Var (↑ᴺ⁰-refl{n}{c}{x})
↑⁰-refl {n} {c} {Abs e} = cong Abs (↑⁰-refl{n}{ℕ.suc c}{e})
↑⁰-refl {n} {c} {App e e₁} = cong₂ App (↑⁰-refl{n}{c}{e}) (↑⁰-refl{n}{c}{e₁})
↑⁰-refl {n} {c} {LabI x} = refl
↑⁰-refl {n} {c} {LabE x e} = cong₂ LabE (f-ext (λ l → f-ext λ i → ↑⁰-refl{n}{c}{x l i})) (↑⁰-refl{n}{c}{e})
--- properties of substitution
subst-trivial : {n : ℕ} {x : ℕ} {s : Exp {n}} → [ x ↦ s ] Var x ≡ s
subst-trivial {n} {x} {s}
with x Data.Nat.≟ x
... | no ¬p = contradiction refl ¬p
... | yes p = refl
var-subst-refl : {N n m : ℕ} {neq : n ≢ m} {e : Exp {N}} → [ n ↦ e ] (Var m) ≡ (Var m)
var-subst-refl {N} {n} {m} {neq} {e}
with _≟ᴺ_ n m
| map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (Data.Bool.Properties.T? (m ≡ᵇ n))
... | yes p | _ = contradiction p neq
... | no ¬p | yes q = contradiction q (≢-sym ¬p)
... | no ¬p | no ¬q = refl
-- inversive lemma for variable in expression relation
inv-in-var : {N n m : ℕ} → _∈`_ {N} n (Var m) → n ≡ m
inv-in-var {N} {n} {.n} in-Var = refl
inv-in-abs : {N n : ℕ} {e : Exp {N}} → _∈`_ {N} n (Abs e) → (ℕ.suc n) ∈` e
inv-in-abs {N} {n} {e} (in-Abs i) = i
inv-in-app : {N n : ℕ} {e e' : Exp {N}} → _∈`_ {N} n (App e e') → (_∈`_ n e ⊎ _∈`_ n e')
inv-in-app {N} {n} {e} {e'} (in-App d) = d
inv-in-labe : {N n : ℕ} {s : Subset N} {f : (∀ l → l ∈ s → Exp {N})} {e : Exp {N}} → _∈`_ {N} n (LabE {N} {s} f e) → (∃₂ λ l i → n ∈` (f l i)) ⊎ n ∈` e
inv-in-labe {N} {n} {s} {f} {e} (in-LabE d) = d
notin-shift : {N n k q : ℕ} {e : Exp {N}} → n ≥ᴺ q → ¬ n ∈` e → ¬ ((n +ᴺ k) ∈` ↑ + k , q [ e ])
notin-shift {N} {n} {k} {q} {Var x} geq j z
with x <ᴺ? q
... | no ¬p
with x ≟ᴺ n
... | yes p' rewrite p' = contradiction in-Var j
... | no ¬p'
with cong (_∸ k) (inv-in-var z)
... | w
rewrite (m+n∸n≡m n k)
| (m+n∸n≡m x k)
= contradiction (sym w) ¬p'
notin-shift {N} {n} {k} {q} {Var .(n +ᴺ k)} geq j in-Var
| yes p = contradiction geq (<⇒≱ (≤-trans (s≤s (m≤m+n n k)) p)) -- q ≤ n VS ℕ.suc (n + k) ≤ n
notin-shift {N} {n} {k} {q} {Abs e} geq j (in-Abs x) = notin-shift (s≤s geq) (λ x₁ → contradiction (in-Abs x₁) j) x
notin-shift {N} {n} {k} {q} {App e e₁} geq j z
with dm2 (contraposition in-App j) | (inv-in-app z)
... | fst , snd | inj₁ x = notin-shift geq fst x
... | fst , snd | inj₂ y = notin-shift geq snd y
notin-shift {N} {n} {k} {q} {LabI x} geq j ()
notin-shift {N} {n} {k} {q} {LabE f e} geq j z
with dm2 (contraposition in-LabE j) | (inv-in-labe z)
... | fst , snd | inj₂ y = notin-shift geq snd y
... | fst , snd | inj₁ (fst₁ , fst₂ , snd₁) = notin-shift geq (¬∃⟶∀¬ (¬∃⟶∀¬ fst fst₁) fst₂) snd₁
-- corollary
notin-shift-one : {N n : ℕ} {e : Exp{N}} → ¬ n ∈` e → ¬ (ℕ.suc n ∈` ↑¹[ e ])
notin-shift-one {N} {n} {e} nin rewrite (sym (n+1≡sucn{n})) = notin-shift{N}{n}{1} z≤n nin
-- if n ∉ fv(e), then substitution of n does not do anything
subst-refl-notin : {N n : ℕ} {e e' : Exp {N}} → ¬ n ∈` e → [ n ↦ e' ] e ≡ e
subst-refl-notin {N} {n} {Var x} {e'} nin
with x ≟ᴺ n
... | yes p rewrite p = contradiction in-Var nin
... | no ¬p = refl
subst-refl-notin {N} {n} {Abs e} {e'} nin = cong Abs (subst-refl-notin (contraposition in-Abs nin))
subst-refl-notin {N} {n} {App e e₁} {e'} nin
with dm2 (contraposition in-App nin)
... | fst , snd = cong₂ App (subst-refl-notin fst) (subst-refl-notin snd)
subst-refl-notin {N} {n} {LabI x} {e'} nin = refl
subst-refl-notin {N} {n} {LabE x e} {e'} nin
with dm2 (contraposition in-LabE nin)
... | fst , snd = cong₂ LabE (f-ext (λ l → f-ext (λ x₁ → subst-refl-notin{e' = e'} (¬∃⟶∀¬ (¬∃⟶∀¬ (fst) l) x₁)))) (subst-refl-notin (snd))
notin-subst : {N n : ℕ} {e e' : Exp {N}} → ¬ n ∈` e' → ¬ (n ∈` ([ n ↦ e' ] e))
notin-subst {N} {n} {Var x} {e'} nin
with x ≟ᴺ n
... | yes p = nin
... | no ¬p = λ x₁ → contradiction (inv-in-var x₁) (≢-sym ¬p)
notin-subst {N} {n} {Abs e} {e'} nin
with notin-shift{k = 1} z≤n nin
... | w rewrite (n+1≡sucn{n}) = λ x → notin-subst {n = ℕ.suc n} {e = e} {e' = ↑¹[ e' ]} w (inv-in-abs x)
notin-subst {N} {n} {App e e₁} {e'} nin (in-App z)
with z
... | inj₁ x = notin-subst{e = e} nin x
... | inj₂ y = notin-subst{e = e₁} nin y
notin-subst {N} {n} {LabI x} {e'} nin = λ ()
notin-subst {N} {n} {LabE f e} {e'} nin (in-LabE z)
with z
... | inj₁ (fst , fst₁ , snd) = notin-subst{e = f fst fst₁} nin snd
... | inj₂ y = notin-subst{e = e} nin y
subst2-refl-notin : {N n : ℕ} {e e' s : Exp {N}} → ¬ n ∈` e' → [ n ↦ e ] ([ n ↦ e' ] s) ≡ [ n ↦ e' ] s
subst2-refl-notin {N} {n} {e} {e'} {s} nin = subst-refl-notin (notin-subst{e = s} nin)
-- if n ∈ [ m ↦ s ] e, n ∉ s, then n ≢ m
subst-in-neq : {N n m : ℕ} {e s : Exp{N}} → ¬ n ∈` s → n ∈` ([ m ↦ s ] e) → n ≢ m
subst-in-neq {N} {n} {m} {Var x} {s} nin ins
with x ≟ᴺ m
... | yes p = contradiction ins nin
subst-in-neq {N} {.x} {m} {Var x} {s} nin in-Var | no ¬p = ¬p
subst-in-neq {N} {n} {m} {Abs e} {s} nin (in-Abs ins) = sucn≢sucm⇒n≢m (subst-in-neq{e = e} (notin-shift-one nin) ins)
subst-in-neq {N} {n} {m} {App e e₁} {s} nin (in-App (inj₁ x)) = subst-in-neq{e = e} nin x
subst-in-neq {N} {n} {m} {App e e₁} {s} nin (in-App (inj₂ y)) = subst-in-neq{e = e₁} nin y
subst-in-neq {N} {n} {m} {LabE f e} {s} nin (in-LabE (inj₁ (fst , fst₁ , snd))) = subst-in-neq{e = f fst fst₁} nin snd
subst-in-neq {N} {n} {m} {LabE f e} {s} nin (in-LabE (inj₂ y)) = subst-in-neq{e = e} nin y
-- if n ≢ m, n ∈` e, then n ∈` [ m ↦ e' ] e
subst-in : {N n m : ℕ} {e e' : Exp {N}} → n ≢ m → n ∈` e → n ∈` ([ m ↦ e' ] e)
subst-in {N} {n} {m} {Var x} {e'} neq (in-Var)
with n ≟ᴺ m
... | yes p = contradiction p neq
... | no ¬p = in-Var
subst-in {N} {n} {m} {Abs e} {e'} neq (in-Abs j) = in-Abs (subst-in (n≢m⇒sucn≢sucm neq) j)
subst-in {N} {n} {m} {App e e₁} {e'} neq (in-App z)
with z
... | inj₁ x = in-App (inj₁ (subst-in neq x))
... | inj₂ y = in-App (inj₂ (subst-in neq y))
subst-in {N} {n} {m} {LabE f e} {e'} neq (in-LabE z)
with z
... | inj₁ (fst , fst₁ , snd) = in-LabE (inj₁ (fst , (fst₁ , (subst-in neq snd))))
... | inj₂ y = in-LabE (inj₂ (subst-in neq y))
-- if n ≢ m, n ∉ e', n ∈ [ m ↦ e' ] e, then n ∈ e
subst-in-reverse : {N n m : ℕ} {e e' : Exp {N}} → n ≢ m → ¬ (n ∈` e') → n ∈` ([ m ↦ e' ] e) → n ∈` e
subst-in-reverse {N} {n} {m} {Var x} {e'} neq nin ins
with x ≟ᴺ m
... | yes p = contradiction ins nin
... | no ¬p = ins
subst-in-reverse {N} {n} {m} {Abs e} {e'} neq nin (in-Abs ins) = in-Abs (subst-in-reverse (n≢m⇒sucn≢sucm neq) (notin-shift-one{N}{n}{e'} nin) ins)
subst-in-reverse {N} {n} {m} {App e e₁} {e'} neq nin (in-App (inj₁ x)) = in-App (inj₁ (subst-in-reverse neq nin x))
subst-in-reverse {N} {n} {m} {App e e₁} {e'} neq nin (in-App (inj₂ y)) = in-App (inj₂ (subst-in-reverse neq nin y))
subst-in-reverse {N} {n} {m} {LabE f e} {e'} neq nin (in-LabE (inj₁ (fst , fst₁ , snd))) = in-LabE (inj₁ (fst , (fst₁ , subst-in-reverse{e = f fst fst₁} neq nin snd)))
subst-in-reverse {N} {n} {m} {LabE f e} {e'} neq nin (in-LabE (inj₂ y)) = in-LabE (inj₂ (subst-in-reverse neq nin y))
var-env-< : {N : ℕ} {Γ : Env {N}} {T : Ty} {n : ℕ} (j : n ∶ T ∈ Γ) → n <ᴺ (length Γ)
var-env-< {N} {.(T ∷ _)} {T} {.0} here = s≤s z≤n
var-env-< {N} {.(_ ∷ _)} {T} {.(ℕ.suc _)} (there j) = s≤s (var-env-< j)
-- variables contained in a term are < length of env.
free-vars-env-< : {N : ℕ} {e : Exp {N}} {Γ : Env} {T : Ty {N}} → Γ ⊢ e ∶ T → (∀ n → n ∈` e → n <ᴺ length Γ)
free-vars-env-< {N} {.(Var n)} {Γ} {T} (TVar x) n in-Var = var-env-< x
free-vars-env-< {N} {.(Abs _)} {Γ} {(Fun T₁ T₂)} (TAbs j) n (in-Abs ins)
rewrite (length[A∷B]≡suc[length[B]] {lzero} {Ty} {T₁} {Γ})
= ≤-pred (free-vars-env-< j (ℕ.suc n) ins)
free-vars-env-< {N} {App e e'} {Γ} {T} (TApp j j') n (in-App z)
with z
... | inj₁ x = free-vars-env-< j n x
... | inj₂ y = free-vars-env-< j' n y
-- free-vars-env-< {N} {LabE f (LabI l)} {Γ} {T} (TLabEl{scopecheck = s} j j')
free-vars-env-< {N} {LabE f (LabI l)} {Γ} {T} (TLabEl{scopecheck = s} j j') n (in-LabE z)
with z
... | inj₁ (fst , fst₁ , snd) = s fst fst₁ n snd
... | inj₂ ()
free-vars-env-< {N} {LabE f (Var m)} {Γ} {T} (TLabEx f' (TVar j)) n (in-LabE z)
with n ≟ᴺ m
... | yes p rewrite p = var-env-< j
... | no ¬p
with z
... | inj₁ (fst , fst₁ , snd) = free-vars-env-< (f' fst fst₁) n (subst-in ¬p snd)
... | inj₂ (in-Var) = var-env-< j
-- closed expressions have no free variables
closed-free-vars : {N : ℕ} {e : Exp {N}} {T : Ty {N}} → [] ⊢ e ∶ T → (∀ n → ¬ (n ∈` e))
closed-free-vars {N} {Var x} {T} (TVar ())
closed-free-vars {N} {LabI x} {T} j n ()
closed-free-vars {N} {Abs e} {.(Fun _ _)} (TAbs j) n (in-Abs x) = contradiction (free-vars-env-< j (ℕ.suc n) x) (≤⇒≯ (s≤s z≤n))
closed-free-vars {N} {e} {T} j n x = contradiction (free-vars-env-< j n x) (≤⇒≯ z≤n) -- App & LabE have the same proof
-- shifting with a threshold above number of free variables has no effect
shift-env-size : {n : ℕ} {k : ℤ} {q : ℕ} {e : Exp {n}} → (∀ n → n ∈` e → n <ᴺ q) → ↑ k , q [ e ] ≡ e
shift-env-size {n} {k} {q} {Var x} lmap
with x <ᴺ? q
... | yes p = refl
... | no ¬p = contradiction (lmap x in-Var) ¬p
shift-env-size {n} {k} {q} {Abs e} lmap = cong Abs (shift-env-size (extr lmap))
where extr : (∀ n → n ∈` Abs e → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ ℕ.suc q)
extr lmap zero ins = s≤s z≤n
extr lmap (ℕ.suc n) ins = s≤s (lmap n (in-Abs ins))
shift-env-size {n} {k} {q} {App e e'} lmap = cong₂ App (shift-env-size (extr lmap)) (shift-env-size(extr' lmap))
where extr : (∀ n → n ∈` App e e' → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q)
extr lmap n ins = lmap n (in-App (inj₁ ins))
extr' : (∀ n → n ∈` App e e' → n <ᴺ q) → (∀ n → n ∈` e' → n <ᴺ q)
extr' lmap n ins = lmap n (in-App (inj₂ ins))
shift-env-size {n} {k} {q} {LabI x} lmap = refl
shift-env-size {n} {k} {q} {LabE{s = s} f e} lmap = cong₂ LabE (f-ext λ l' → (f-ext λ x → shift-env-size (extr lmap l' x))) (shift-env-size (extr' lmap))
where extr : (∀ n → n ∈` LabE f e → n <ᴺ q) → (l : Fin n) → (x : l ∈ s) → (∀ n → n ∈` f l x → n <ᴺ q)
extr lmap l x n ins = lmap n (in-LabE (inj₁ (l , (x , ins))))
extr' : (∀ n → n ∈` LabE f e → n <ᴺ q) → (∀ n → n ∈` e → n <ᴺ q)
extr' lmap n ins = lmap n (in-LabE (inj₂ ins))
-- shifting has no effect on closed terms (corollary of shift-env-size)
closed-no-shift : {n : ℕ} {k : ℤ} {q : ℕ} {e : Exp {n}} {T : Ty {n}} → [] ⊢ e ∶ T → ↑ k , q [ e ] ≡ e
closed-no-shift {n} {k} {zero} {e} {T} j = shift-env-size (free-vars-env-< j)
closed-no-shift {n} {k} {ℕ.suc q} {e} {T} j = shift-env-size λ n i → <-trans (free-vars-env-< j n i) (s≤s z≤n)
--
subst-change-in : {N n m : ℕ} {e s s' : Exp{N}} → ¬ (n ∈` s) × ¬ (n ∈` s') → n ∈` ([ m ↦ s ] e) → n ∈` ([ m ↦ s' ] e)
subst-change-in {N} {n} {m} {Var x} {s} {s'} (fst , snd) ins
with x ≟ᴺ m
... | yes eq = contradiction ins fst
... | no ¬eq = ins
subst-change-in {N} {n} {m} {Abs e} {s} {s'} (fst , snd) (in-Abs ins) = in-Abs (subst-change-in{N}{ℕ.suc n}{ℕ.suc m}{e} (notin-shift-one{N}{n}{s} fst , notin-shift-one{N}{n}{s'} snd) ins)
subst-change-in {N} {n} {m} {App e e₁} {s} {s'} p (in-App (inj₁ x)) = in-App (inj₁ (subst-change-in{N}{n}{m}{e} p x))
subst-change-in {N} {n} {m} {App e e₁} {s} {s'} p (in-App (inj₂ y)) = in-App (inj₂ (subst-change-in{N}{n}{m}{e₁} p y))
subst-change-in {N} {n} {m} {LabE f e} {s} {s'} p (in-LabE (inj₁ (fst , fst₁ , snd))) = in-LabE (inj₁ (fst , (fst₁ , (subst-change-in{N}{n}{m}{f fst fst₁}{s}{s'} p snd))))
subst-change-in {N} {n} {m} {LabE f e} {s} {s'} p (in-LabE (inj₂ y)) = in-LabE (inj₂ (subst-change-in {N} {n} {m} {e} p y))
-- swapping of substitutions A & B if variables of A are not free in substitution term of B and vice versa
subst-subst-swap : {N n m : ℕ} {e e' s : Exp {N}} → n ≢ m → ¬ n ∈` e' → ¬ m ∈` e → [ n ↦ e ] ([ m ↦ e' ] s) ≡ [ m ↦ e' ] ([ n ↦ e ] s)
subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin'
with x ≟ᴺ m | x ≟ᴺ n
... | yes p | yes p' = contradiction (≡-trans (sym p') p) neq
... | yes p | no ¬p'
with x ≟ᴺ m
... | yes p'' = subst-refl-notin nin
... | no ¬p'' = contradiction p ¬p''
subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin'
| no ¬p | yes p'
with x ≟ᴺ n
... | yes p'' = sym (subst-refl-notin nin')
... | no ¬p'' = contradiction p' ¬p''
subst-subst-swap {N} {n} {m} {e} {e'} {Var x} neq nin nin'
| no ¬p | no ¬p'
with x ≟ᴺ n | x ≟ᴺ m
... | yes p'' | _ = contradiction p'' ¬p'
... | _ | yes p''' = contradiction p''' ¬p
... | no p'' | no ¬p''' = refl
subst-subst-swap {N} {n} {m} {e} {e'} {Abs s} neq nin nin'
with (notin-shift{n = n}{1}{0} z≤n nin) | (notin-shift{n = m}{1}{0} z≤n nin')
... | w | w' rewrite (n+1≡sucn{n}) | (n+1≡sucn{m}) = cong Abs (subst-subst-swap{s = s} (n≢m⇒sucn≢sucm neq) w w')
subst-subst-swap {N} {n} {m} {e} {e'} {App s s₁} neq nin nin' = cong₂ App (subst-subst-swap{s = s} neq nin nin') (subst-subst-swap{s = s₁} neq nin nin')
subst-subst-swap {N} {n} {m} {e} {e'} {LabI x} neq nin nin' = refl
subst-subst-swap {N} {n} {m} {e} {e'} {LabE f s} neq nin nin' = cong₂ LabE (f-ext (λ l → f-ext (λ x → subst-subst-swap{s = f l x} neq nin nin' ))) (subst-subst-swap{s = s} neq nin nin')
-- this should be true for all k, but limiting to positive k makes the proof simpler
aux-calc-3 : {m x : ℕ} {k : ℤ} → k >ᶻ + 0 → ∣ + m +ᶻ k ∣ ≡ ∣ + x +ᶻ k ∣ → m ≡ x
aux-calc-3 {m} {x} {+_ n} gt eqv = +-cancelʳ-≡ m x eqv
aux-calc-4 : {m x : ℕ} {k : ℤ} → k >ᶻ + 0 → m ≤ᴺ x → m <ᴺ ∣ + x +ᶻ k ∣
aux-calc-4 {m} {x} {+_ zero} (+<+ ())
aux-calc-4 {m} {x} {+[1+ n ]} (+<+ (s≤s z≤n)) leq = a≤b<c⇒a<c leq (m<m+n x {ℕ.suc n} (s≤s z≤n))
subst-shift-swap : {n : ℕ} {k : ℤ} {x q : ℕ} {s e : Exp {n}} → k >ᶻ + 0 → ↑ k , q [ [ x ↦ e ] s ] ≡ [ ↑ᴺ k , q [ x ] ↦ ↑ k , q [ e ] ] ↑ k , q [ s ]
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
with m ≟ᴺ x
... | yes p
with m <ᴺ? q | x <ᴺ? q
... | yes p' | yes p''
with m ≟ᴺ x
... | yes p''' = refl
... | no ¬p''' = contradiction p ¬p'''
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| yes p | yes p' | no ¬p'' rewrite (cong ℕ.suc p) = contradiction p' ¬p''
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| yes p | no ¬p' | yes p'' rewrite (cong ℕ.suc p) = contradiction p'' ¬p'
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| yes p | no ¬p' | no ¬p''
with ∣ + m +ᶻ k ∣ ≟ᴺ ∣ + x +ᶻ k ∣
... | yes p''' = refl
... | no ¬p''' rewrite p = contradiction refl ¬p'''
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| no ¬p
with m <ᴺ? q | x <ᴺ? q
... | yes p' | yes p''
with m ≟ᴺ x
... | yes p''' = contradiction p''' ¬p
... | no ¬p''' = refl
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| no ¬p | yes p' | no ¬p''
with m ≟ᴺ ∣ + x +ᶻ k ∣
... | yes p''' = contradiction p''' (<⇒≢ (aux-calc-4 gt (≤-pred (≤-trans p' (≰⇒≥ ¬p'')))))
... | no ¬p''' = refl
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| no ¬p | no ¬p' | yes p''
with ∣ + m +ᶻ k ∣ ≟ᴺ x
... | yes p''' = contradiction p''' (≢-sym (<⇒≢ (aux-calc-4{x}{m}{k} gt (≤-pred (≤-trans p'' (≰⇒≥ ¬p'))))))
... | no ¬p''' = refl
subst-shift-swap {n} {k} {x} {q} {Var m} {e} gt
| no ¬p | no ¬p' | no ¬p''
with ∣ + m +ᶻ k ∣ ≟ᴺ ∣ + x +ᶻ k ∣
... | yes p''' = contradiction p''' (contraposition (aux-calc-3 gt) ¬p)
... | no ¬p''' = refl
subst-shift-swap {n} {k} {x} {q} {Abs s} {e} gt
with (subst-shift-swap{n}{k}{ℕ.suc x}{ℕ.suc q}{s}{↑¹[ e ]} gt)
... | w
rewrite (↑k,sucq[↑1,c[s]]≡↑1,c[↑k,q[s]] {n} {k} {q} {0} {e} z≤n gt)
| (suc[↑ᴺk,l[x]]≡↑ᴺk,sucl[sucx] {k} {q} {x} gt)
= cong Abs w
subst-shift-swap {n} {k} {x} {q} {App s₁ s₂} {e} gt = cong₂ App (subst-shift-swap {n} {k} {x} {q} {s₁} {e} gt) (subst-shift-swap {n} {k} {x} {q} {s₂} {e} gt)
subst-shift-swap {n} {k} {x} {q} {LabI ins} {e} gt = refl
subst-shift-swap {n} {k} {x} {q} {LabE f s} {e} gt = cong₂ LabE (f-ext (λ l → f-ext (λ ins → subst-shift-swap {n} {k} {x} {q} {f l ins} {e} gt))) (subst-shift-swap {n} {k} {x} {q} {s} {e} gt)
--- properties and manipulation of environments
-- type to determine whether var type judgement in env. (Δ ++ Γ) is in Δ or Γ
data extract-env-or {n : ℕ} {Δ Γ : Env {n}} {T : Ty} {x : ℕ} : Set where
in-Δ : x ∶ T ∈ Δ → extract-env-or
-- x ≥ length Δ makes sure that x really is in Γ; e.g.
-- x = 1, Δ = (S ∷ T), Γ = (T ∷ Γ'); here 1 ∶ T ∈ Δ as well as (1 ∸ 2) ≡ 0 ∶ T ∈ Γ
in-Γ : (x ≥ᴺ length Δ) → (x ∸ length Δ) ∶ T ∈ Γ → extract-env-or
extract : {n : ℕ} {Δ Γ : Env {n}} {T : Ty} {x : ℕ} (j : x ∶ T ∈ (Δ ++ Γ)) → extract-env-or{n}{Δ}{Γ}{T}{x}
extract {n} {[]} {Γ} {T} {x} j = in-Γ z≤n j
extract {n} {x₁ ∷ Δ} {Γ} {.x₁} {.0} here = in-Δ here
extract {n} {x₁ ∷ Δ} {Γ} {T} {ℕ.suc x} (there j)
with extract {n} {Δ} {Γ} {T} {x} j
... | in-Δ j' = in-Δ (there j')
... | in-Γ ge j'' = in-Γ (s≤s ge) j''
ext-behind : {n : ℕ} {Δ Γ : Env {n}} {T : Ty} {x : ℕ} → x ∶ T ∈ Δ → x ∶ T ∈ (Δ ++ Γ)
ext-behind here = here
ext-behind (there j) = there (ext-behind j)
ext-front : {N n : ℕ} {Γ Δ : Env{N}} {S : Ty} → n ∶ S ∈ Γ → (n +ᴺ (length Δ)) ∶ S ∈ (Δ ++ Γ)
ext-front {N} {n} {Γ} {[]} {S} j
rewrite (n+length[]≡n{A = Ty {N}}{n = n})
= j
ext-front {N} {n} {Γ} {T ∷ Δ} {S} j
rewrite (+-suc n (foldr (λ _ → ℕ.suc) 0 Δ))
= there (ext-front j)
swap-env-behind : {n : ℕ} {Γ Δ : Env {n}} {T : Ty} → 0 ∶ T ∈ (T ∷ Γ) → 0 ∶ T ∈ (T ∷ Δ)
swap-env-behind {n}{Γ} {Δ} {T} j = here
swap-type : {n : ℕ} {Δ ∇ Γ : Env {n}} {T : Ty} → (length Δ) ∶ T ∈ (Δ ++ T ∷ ∇ ++ Γ) → (length Δ +ᴺ length ∇) ∶ T ∈ (Δ ++ ∇ ++ T ∷ Γ)
swap-type {n} {Δ} {∇} {Γ} {T} j
with extract{n}{Δ}{T ∷ ∇ ++ Γ} j
... | in-Δ x = contradiction (var-env-< {n}{Δ} {T} x) (<-irrefl refl)
... | in-Γ le j'
with extract{n}{T ∷ ∇}{Γ} j'
... | in-Δ j''
rewrite (n∸n≡0 (length Δ))
| (sym (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{∇}))
| (sym (++-assoc{lzero}{Ty}{Δ}{∇}{T ∷ Γ}))
= ext-front{n}{0}{T ∷ Γ}{Δ ++ ∇}{T} (swap-env-behind{n}{∇}{Γ}{T} j'')
... | in-Γ le' j''
rewrite (length[A∷B]≡suc[length[B]]{lzero}{Ty}{T}{∇})
| (n∸n≡0 (length Δ))
= contradiction le' (<⇒≱ (s≤s z≤n))
env-pred : {n : ℕ} {Γ : Env {n}} {S T : Ty} {y : ℕ} {gt : y ≢ 0} → y ∶ T ∈ (S ∷ Γ) → ∣ y ⊖ 1 ∣ ∶ T ∈ Γ
env-pred {n} {Γ} {S} {.S} {.0} {gt} here = contradiction refl gt
env-pred {n} {Γ} {S} {T} {.(ℕ.suc _)} {gt} (there j) = j
env-type-equiv-here : {n : ℕ} {Γ : Env {n}} {S T : Ty} → 0 ∶ T ∈ (S ∷ Γ) → T ≡ S
env-type-equiv-here {n} {Γ} {S} {.S} here = refl
env-type-uniq : {N n : ℕ} {Γ : Env {N}} {S T : Ty} → n ∶ T ∈ Γ → n ∶ S ∈ Γ → T ≡ S
env-type-uniq {N} {.0} {.(S ∷ _)} {S} {.S} here here = refl
env-type-uniq {N} {(ℕ.suc n)} {(A ∷ Γ)} {S} {T} (there j) (there j') = env-type-uniq {N} {n} {Γ} {S} {T} j j'
env-type-equiv : {n : ℕ} {Δ ∇ : Env {n}} {S T : Ty} → length Δ ∶ T ∈ (Δ ++ S ∷ ∇) → T ≡ S
env-type-equiv {n} {Δ} {∇} {S} {T} j
with extract{n}{Δ}{S ∷ ∇} j
... | in-Δ x = contradiction (var-env-< x) (≤⇒≯ ≤-refl)
... | in-Γ x j'
rewrite (n∸n≡0 (length Δ))
= env-type-equiv-here {n} {∇} {S} {T} j'
env-type-equiv-j : {N : ℕ} {Γ : Env {N}} {S T : Ty} {n : ℕ} → T ≡ S → n ∶ T ∈ Γ → n ∶ S ∈ Γ
env-type-equiv-j {N} {Γ} {S} {T} {n} eq j
rewrite eq
= j
-- extension of environment
-- lemma required for ∈`
ext-∈` : {N m k q : ℕ} {e : Exp {N}} → (∀ n → n ∈` e → n <ᴺ m) → (∀ n → n ∈` ↑ + k , q [ e ] → n <ᴺ m +ᴺ k)
ext-∈` {N} {m} {k} {q} {Var x} f n ins
with x <ᴺ? q
... | yes p = ≤-trans (f n ins) (≤-stepsʳ{m}{m} k ≤-refl)
ext-∈` {N} {m} {k} {q} {Var x} f .(x +ᴺ k) in-Var | no ¬p = Data.Nat.Properties.+-monoˡ-≤ k (f x in-Var)
ext-∈` {N} {m} {k} {q} {Abs e} f n (in-Abs ins) = ≤-pred (ext-∈` {N} {ℕ.suc m} {k} {ℕ.suc q} {e = e} (extr f) (ℕ.suc n) ins)
where extr : (∀ n → n ∈` Abs e → n <ᴺ m) → (∀ n → n ∈` e → n <ᴺ ℕ.suc m)
extr f zero ins = s≤s z≤n
extr f (ℕ.suc n) ins = s≤s (f n (in-Abs ins))
ext-∈` {N} {m} {k} {q} {App e e₁} f n (in-App (inj₁ x)) = ext-∈`{N}{m}{k}{q}{e} (extr f) n x
where extr : (∀ n → n ∈` App e e₁ → n <ᴺ m) → (∀ n → n ∈` e → n <ᴺ m)
extr f n ins = f n (in-App (inj₁ ins))
ext-∈` {N} {m} {k} {q} {App e e₁} f n (in-App (inj₂ y)) = ext-∈`{N}{m}{k}{q}{e₁} (extr f) n y
where extr : (∀ n → n ∈` App e e₁ → n <ᴺ m) → (∀ n → n ∈` e₁ → n <ᴺ m)
extr f n ins = f n (in-App (inj₂ ins))
ext-∈` {N} {m} {k} {q} {LabE f₁ e} f n (in-LabE (inj₁ (fst , fst₁ , snd))) = ext-∈`{N}{m}{k}{q}{f₁ fst fst₁} (extr f) n snd
where extr : (∀ n → n ∈` LabE f₁ e → n <ᴺ m) → (∀ n → n ∈` f₁ fst fst₁ → n <ᴺ m)
extr f n ins = f n (in-LabE (inj₁ (fst , (fst₁ , ins))))
ext-∈` {N} {m} {k} {q} {LabE f₁ e} f n (in-LabE (inj₂ y)) = ext-∈`{N}{m}{k}{q}{e} (extr f) n y
where extr : (∀ n → n ∈` LabE f₁ e → n <ᴺ m) → (∀ n → n ∈` e → n <ᴺ m)
extr f n ins = f n (in-LabE (inj₂ ins))
ext : {N : ℕ} {Γ Δ ∇ : Env {N}} {S : Ty} {s : Exp} → (∇ ++ Γ) ⊢ s ∶ S → (∇ ++ Δ ++ Γ) ⊢ ↑ (ℤ.pos (length Δ)) , length ∇ [ s ] ∶ S
ext {N} {Γ} {Δ} {∇} (TVar {m = n} x)
with extract{N}{∇}{Γ} x
... | in-Δ x₁
with n <ᴺ? length ∇
... | yes p = TVar (ext-behind x₁)
... | no ¬p = contradiction (var-env-< x₁) ¬p
ext {N} {Γ} {Δ} {∇} (TVar {m = n} x)
| in-Γ x₁ x₂
with n <ᴺ? length ∇
... | yes p = contradiction x₁ (<⇒≱ p)
... | no ¬p
with (ext-front{N}{n ∸ length ∇}{Γ}{∇ ++ Δ} x₂)
... | w
rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Δ})
| (sym (+-assoc (n ∸ length ∇) (length ∇) (length Δ)))
| (m∸n+n≡m{n}{length ∇} (≮⇒≥ ¬p))
| (++-assoc{lzero}{Ty}{∇}{Δ}{Γ})
= TVar w
ext {N} {Γ} {Δ} {∇} {Fun T₁ T₂} {Abs e} (TAbs j) = TAbs (ext{N}{Γ}{Δ}{T₁ ∷ ∇} j)
ext {N} {Γ} {Δ} {∇} {S} {App s₁ s₂} (TApp{T₁ = T₁} j₁ j₂) = TApp (ext{N}{Γ}{Δ}{∇}{Fun T₁ S} j₁) (ext{N}{Γ}{Δ}{∇}{T₁} j₂)
ext {N} {Γ} {Δ} {∇} {S} {LabI l} (TLabI{x = x}{s} ins) = TLabI{x = x}{s} ins
ext {N} {Γ} {Δ} {∇} {S} {LabE f e} (TLabEl{ins = ins}{f = .f}{scopecheck = s} j j') = TLabEl{ins = ins}
{scopecheck = λ l i n x₁ → rw n (ext-∈`{N}{length (∇ ++ Γ)}{length Δ}{length ∇}{f l i} (s l i) n x₁)}
(ext{N}{Γ}{Δ}{∇} j) (ext{N}{Γ}{Δ}{∇} j')
where rw : ∀ n → n <ᴺ length (∇ ++ Γ) +ᴺ length Δ → n <ᴺ length (∇ ++ Δ ++ Γ)
rw n a rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Γ})
| (+-assoc (length ∇) (length Γ) (length Δ))
| (+-comm (length Γ) (length Δ))
| sym (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{Γ})
| sym (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Δ ++ Γ}) = a
ext {N} {Γ} {[]} {∇} {S} {LabE f .(Var m)} (TLabEx {s = s} {f = .f} f' (TVar {m = m} x))
rewrite (↑ᴺ⁰-refl{N}{length ∇}{m})
| (f-ext (λ l → f-ext (λ i → ↑⁰-refl{N}{length ∇}{f l i})))
= TLabEx f' (TVar x)
-- required lemma needs length Δ > 0, hence the case split
ext {N} {Γ} {t ∷ Δ} {∇} {S} {LabE f .(Var m)} (TLabEx {s = s} {f = .f} f' (TVar {m = m} x))
with extract{N}{∇}{Γ} x
... | in-Δ x₁
with m <ᴺ? length ∇
... | no ¬p = contradiction (var-env-< x₁) ¬p
... | yes p
with (λ l i → ext{N}{Γ}{t ∷ Δ}{∇} (f' l i))
... | w = TLabEx (rw w) (TVar (ext-behind x₁)) -- if m < k, [ m → ↑ₖ x ] (↑ₖ s) ≡ ↑ₖ ([ m ↦ x ] s)
where rw : ((l : Fin N) → (i : l ∈ s) → (∇ ++ (t ∷ Δ) ++ Γ) ⊢ ↑ + length (t ∷ Δ) , length ∇ [ [ m ↦ LabI l ] (f l i) ] ∶ S)
→ ((l : Fin N) → (i : l ∈ s) → (∇ ++ (t ∷ Δ) ++ Γ) ⊢ [ m ↦ LabI l ] ↑ + length (t ∷ Δ) , length ∇ [ f l i ] ∶ S)
rw q l i
with q l i
... | w
rewrite (subst-shift-swap{N}{+ length (t ∷ Δ)}{m}{length ∇}{f l i}{LabI l} (+<+ (s≤s z≤n)))
with m <ᴺ? length ∇
... | yes p = w
... | no ¬p = contradiction p ¬p
ext {N} {Γ} {t ∷ Δ} {∇} {S} {LabE f .(Var _)} (TLabEx {s = s}{f = .f} f' (TVar{m = m} x))
| in-Γ x₁ x₂
with m <ᴺ? length ∇
... | yes p = contradiction x₁ (<⇒≱ p)
... | no ¬p
with (λ l i → (ext{N}{Γ}{t ∷ Δ}{∇} (f' l i))) | (ext-front{N}{m ∸ length ∇}{Γ}{∇ ++ (t ∷ Δ)} x₂)
... | w | w'
rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{t ∷ Δ})
| (sym (+-assoc (m ∸ length ∇) (length ∇) (length (t ∷ Δ))))
| (m∸n+n≡m{m}{length ∇} (≮⇒≥ ¬p))
| (++-assoc{lzero}{Ty}{∇}{t ∷ Δ}{Γ})
= TLabEx (rw w) (TVar w')
where rw : ((l : Fin N) → (i : l ∈ s) → ((∇ ++ (t ∷ Δ) ++ Γ) ⊢ ↑ + length (t ∷ Δ) , length ∇ [ [ m ↦ LabI l ] f l i ] ∶ S))
→ ((l : Fin N) → (i : l ∈ s) → ((∇ ++ (t ∷ Δ) ++ Γ) ⊢ [ m +ᴺ length (t ∷ Δ) ↦ LabI l ] ↑ + length (t ∷ Δ) , length ∇ [ f l i ] ∶ S))
rw q l i
with q l i
... | w
rewrite (subst-shift-swap {N} {+ length (t ∷ Δ)} {m} {length ∇} {f l i} {LabI l} (+<+ (s≤s z≤n)))
with m <ᴺ? length ∇
... | yes p = contradiction x₁ (<⇒≱ p)
... | no ¬p = w
ext-empty : {N : ℕ} {Γ : Env {N}} {T : Ty} {e : Exp} → [] ⊢ e ∶ T → Γ ⊢ e ∶ T
ext-empty {N} {Γ} {T} {e} j
with ext{N}{[]}{Γ}{[]} j
... | w rewrite (closed-no-shift{N}{+ length Γ}{0}{e}{T} j)
| (A++[]≡A{lzero}{Ty}{Γ})
= w
-- uniqueness of ∈
∈-eq : {N : ℕ} {s : Subset N} {l : Fin N} → (ins : l ∈ s) → (ins' : l ∈ s) → ins ≡ ins'
∈-eq {ℕ.suc n} {.(true ∷ _)} {zero} here here = refl
∈-eq {ℕ.suc n} {(x ∷ s)} {Fin.suc l} (there j) (there j') = cong there (∈-eq j j')
--- general typing properties
subset-eq : {n : ℕ} {s s' : Subset n} → Label s ≡ Label s' → s ≡ s'
subset-eq {n} {s} {.s} refl = refl
---- progress and preservation
-- progress theorem, i.e. a well-typed closed expression is either a value
-- or can be reduced further
data Progress {n : ℕ} (e : Exp {n}) {T : Ty} {j : [] ⊢ e ∶ T} : Set where
step : {e' : Exp{n}} → e ⇒ e' → Progress e
value : Val e → Progress e
progress : {n : ℕ} (e : Exp {n}) {T : Ty} {j : [] ⊢ e ∶ T} → Progress e {T} {j}
progress (Var x) {T} {TVar ()}
progress (Abs e) = value VFun
progress (App e e₁) {T} {TApp{T₁ = T₁}{T₂ = .T} j j₁}
with progress e {Fun T₁ T} {j}
... | step x = step (ξ-App1 x)
... | value VFun
with progress e₁ {T₁} {j₁}
... | step x₁ = step (ξ-App2 VFun x₁)
... | value x₁ = step (β-App x₁)
progress (LabI ins) {Label s} {TLabI l} = value VLab
progress (LabE f (LabI l)) {T} {j = TLabEl{ins = ins} f' j} = step (β-LabE ins)
progress {n} (LabE f (Var m)) {T} {TLabEx f' (TVar ())}
---
preserve-subst' : {n : ℕ} {T S : Ty {n} } {Δ : Env {n}} {e s : Exp {n}} {v : Val s} (j : (Δ ++ S ∷ []) ⊢ e ∶ T) (j' : [] ⊢ s ∶ S)
→ Δ ⊢ [ length Δ ↦ s ] e ∶ T
preserve-subst' {n} {T} {S} {Δ} {(Var m)} {s} {v} (TVar{m} x) j'
with extract{n}{Δ}{S ∷ []}{T}{m} x
... | in-Δ x₁
with m ≟ᴺ length Δ
... | yes p = contradiction p (<⇒≢ (var-env-< x₁))
... | no ¬p
with m <ᴺ? length Δ
... | yes p' = TVar x₁
... | no ¬p' = contradiction (var-env-< x₁) ¬p'
preserve-subst' {n} {T} {S} {Δ} {(Var m)} {s} {v} (TVar{m} x) j'
| in-Γ x₁ x₂
with m ≟ᴺ length Δ
... | yes p
with ext{n}{[]}{Δ} j'
... | w
rewrite p
| (env-type-equiv x)
| (closed-no-shift {n} {+ length Δ} {0} {s} j')
| (A++[]≡A{lzero}{Ty}{Δ})
= w
preserve-subst' {n} {T} {S} {Δ} {(Var m)} {s} {v} (TVar{m} x) j'
| in-Γ x₁ x₂ | no ¬p
with m <ᴺ? length Δ
... | yes p' = contradiction x₁ (<⇒≱ p')
... | no ¬p'
with (<⇒≱ (≤∧≢⇒< (≤-step (≤∧≢⇒< (≮⇒≥ ¬p') (≢-sym ¬p))) (≢-sym (n≢m⇒sucn≢sucm ¬p))))
... | w = contradiction (var-env-< x) (aux w)
where aux : ¬ (ℕ.suc m ≤ᴺ ℕ.suc (length Δ)) → ¬ (ℕ.suc m ≤ᴺ length (Δ ++ S ∷ []))
aux t rewrite (length[A++B]≡length[A]+length[B]{A = Δ}{B = S ∷ []}) | (n+1≡sucn{length Δ}) = t
preserve-subst' {n} {.(Fun _ _)} {S} {Δ} {(Abs e')} {s} {v} (TAbs{T₁ = T₁}{T₂} j) j'
with preserve-subst'{n}{T₂}{S}{T₁ ∷ Δ}{e'}{s}{v} j j'
... | w
rewrite (closed-no-shift {n} {+ 1} {0} {s} j')
= TAbs w
preserve-subst' {n} {T} {S} {Δ} {(App e e')} {s} {v} (TApp j j₁) j' = TApp (preserve-subst'{v = v} j j') (preserve-subst'{v = v} j₁ j')
preserve-subst' {n} {T} {S} {Δ} {LabI x} {s} {v} (TLabI ins) j' = TLabI ins
preserve-subst' {n} {T} {S} {Δ} {LabE{s = s'} f (LabI x)} {s} {v} (TLabEl{ins = ins}{scopecheck = sc} j j') j'' = TLabEl{ins = ins}{scopecheck = scopecheck} (preserve-subst'{v = v} j j'') (TLabI ins)
where scopecheck : (l : Fin n) (i : l ∈ s') (n' : ℕ) → n' ∈` ([ length Δ ↦ s ] f l i) → n' <ᴺ length Δ
scopecheck l i n' ins
with subst-in-neq{n}{n'}{length Δ}{f l i}{s} (closed-free-vars j'' n') ins
... | w
with (sc l i n' (subst-in-reverse{n}{n'}{length Δ}{e' = s} w (closed-free-vars j'' n') ins))
... | w'
rewrite (length[A++B∷[]]≡suc[length[A]]{lzero}{Ty}{Δ}{S}) = ≤∧≢⇒< (≤-pred w') w
preserve-subst' {n} {T} {.(Fun _ _)} {Δ} {LabE f (Var m)} {Abs e} {VFun} (TLabEx f' (TVar{T = Label s} z)) (TAbs j')
with m ≟ᴺ length Δ | preserve-subst'{v = VFun} (TVar z) (TAbs j')
... | yes p | _ rewrite p = contradiction (env-type-equiv z) λ ()
... | no ¬p | w = TLabEx (rw (λ l i → preserve-subst'{v = VFun} (f' l i) (TAbs j'))) w
where rw : ((l : Fin n) (i : l ∈ s) → Δ ⊢ [ length Δ ↦ Abs e ] ([ m ↦ LabI l ] f l i) ∶ T)
→ ((l : Fin n) (i : l ∈ s) → Δ ⊢ [ m ↦ LabI l ] ([ length Δ ↦ Abs e ] f l i) ∶ T)
rw ρ l i
with ρ l i
... | w
rewrite sym (subst-subst-swap{n}{length Δ}{m}{Abs e}{LabI l}{f l i} (≢-sym ¬p) (λ ()) (closed-free-vars (TAbs j') m)) = w
preserve-subst' {n} {T} {(Label s')} {Δ} {LabE f (Var m)} {LabI x} {VLab} (TLabEx f' (TVar{T = Label s} z)) (TLabI{s = s'} ins)
with m ≟ᴺ length Δ | preserve-subst'{v = VLab} (TVar z) (TLabI ins)
... | yes p | w
rewrite p
| subset-eq (env-type-equiv z)
= TLabEl{f = λ l i → [ length Δ ↦ LabI x ] (f l i)}{scopecheck } (rw{e = f x ins} (preserve-subst'{v = VLab} (f' x ins) (TLabI{s = s'} ins))) w
where
-- agda didn't let me rewrite this directly
rw : {e : Exp} → (Δ ⊢ [ length Δ ↦ LabI x ] ([ length Δ ↦ LabI x ] e) ∶ T)
→ ( Δ ⊢ [ length Δ ↦ LabI x ] e ∶ T)
rw {e} j
rewrite sym (subst2-refl-notin{n}{length Δ}{LabI x}{LabI x}{e} (λ ())) = j
-- if n ∈` [length Δ ↦ LabI x] (f l i), then also n ∈` [length Δ ↦ LabI l] (f l i), since both LabI l and LabI x are closed
-- if n ∈` [length Δ ↦ LabI l] (f l i), then n < length (Δ ++ (S ∷ [])), we get this from f' ((Δ ++ S ∷ []) ⊢ [length Δ ↦ LabI l] (f l i) ∶ T) and free-vars-env-<
-- if n ∈` [length Δ ↦ LabI l] (f l i), then also n ≢ (length Δ), since LabI closed
-- hence n < length (Δ ++ (S ∷ [])) = length Δ + 1 ⇒ n ≤ length Δ, n ≤ length Δ and n ≢ length Δ implies n < length Δ
scopecheck : (l : Fin n) (i : l ∈ s') (n' : ℕ) → n' ∈` ([ length Δ ↦ LabI x ] f l i) → n' <ᴺ length Δ
scopecheck l i n' ins
with (free-vars-env-< (f' l i) n' (subst-change-in{n}{n'}{length Δ}{f l i}{LabI x}{LabI l} ((λ ()) , (λ ())) ins))
... | w
rewrite (length[A++B∷[]]≡suc[length[A]]{lzero}{Ty}{Δ}{Label s'})= ≤∧≢⇒< (≤-pred w) (subst-in-neq{n}{n'}{length Δ}{f l i}{LabI x} (λ ()) ins)
... | no ¬p | w = TLabEx (rw λ l i → preserve-subst'{v = VLab} (f' l i) (TLabI ins)) w
where rw : ((l : Fin n) (i : l ∈ s) → Δ ⊢ [ length Δ ↦ LabI x ] ([ m ↦ LabI l ] f l i) ∶ T)
→ ((l : Fin n) (i : l ∈ s) → Δ ⊢ [ m ↦ LabI l ] ([ length Δ ↦ LabI x ] f l i) ∶ T)
rw ρ l i
with ρ l i
... | w
rewrite sym (subst-subst-swap{n}{length Δ}{m}{LabI x}{LabI l}{f l i} (≢-sym ¬p) (λ ()) (closed-free-vars (TLabI ins) m)) = w
preserve' : {n : ℕ} {T : Ty {n}} (e e' : Exp) (j : [] ⊢ e ∶ T) (r : e ⇒ e') → [] ⊢ e' ∶ T
preserve' {n} {T} .(App e₁ _) .(App e₁' _) (TApp j j') (ξ-App1 {e₁ = e₁} {e₁' = e₁'} r) = TApp (preserve' e₁ e₁' j r) j'
preserve' {n} {T} .(App _ _) .(App _ _) (TApp j j') (ξ-App2{e = e}{e' = e'} x r) = TApp j (preserve' e e' j' r)
preserve' {n} {T} (App (Abs e) s') .(↑ -[1+ 0 ] , 0 [ [ 0 ↦ ↑ + 1 , 0 [ s' ] ] e ]) (TApp (TAbs j) j₁) (β-App x)
rewrite (closed-no-shift {n} {+ 1} {0} {s'} j₁)
| (closed-no-shift {n} { -[1+ 0 ]} {0} {[ 0 ↦ s' ] e} (preserve-subst'{Δ = []}{v = x} j j₁))
= preserve-subst'{Δ = []}{v = x} j j₁
preserve' {n} {T} (LabE f (LabI l)) .(f x ins) (TLabEl{ins = ins'} j j') (β-LabE {x = x} ins) rewrite (∈-eq ins ins') = j
|
{
"alphanum_fraction": 0.4333222894,
"avg_line_length": 52.2640692641,
"ext": "agda",
"hexsha": "f1a37747406e175c52d49e122887cf5559d351ea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kcaliban/ldlc",
"max_forks_repo_path": "src/llc/LLC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kcaliban/ldlc",
"max_issues_repo_path": "src/llc/LLC.agda",
"max_line_length": 244,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kcaliban/ldlc",
"max_stars_repo_path": "src/llc/LLC.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 23146,
"size": 48292
}
|
{-
This file contains:
- Path lemmas used in the colimit-equivalence proof.
Verbose, indeed. But should be simple. The length mainly thanks to:
- Degenerate cubes that seem "obvious", but have to be constructed manually;
- J rule is cubersome to use, especially when iteratively applied,
also it is overcomplicated to construct JRefl in nested cases.
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.HITs.James.Inductive.Coherence where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
private
variable
ℓ ℓ' : Level
-- Lots of degenerate cubes used as intial input to J rule
private
module _
{A : Type ℓ}(a : A) where
degenerate1 : (i j k : I) → A
degenerate1 i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl k j
; (j = i0) → a
; (j = i1) → a})
(inS a) k
degenerate1' : (i j k : I) → A
degenerate1' i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler (refl {x = a}) refl k j
; (j = i0) → a
; (j = i1) → a})
(inS a) k
degenerate1'' : (i j k : I) → A
degenerate1'' i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler (refl {x = a}) (refl ∙ refl) k j
; (j = i0) → a
; (j = i1) → degenerate1 i k i1})
(inS a) k
module _
{B : Type ℓ'}(f : A → B) where
degenerate2 : (i j k : I) → B
degenerate2 i j k =
hfill (λ k → λ
{ (i = i0) → f a
; (i = i1) → doubleCompPath-filler (refl {x = f a}) refl refl k j
; (j = i0) → f a
; (j = i1) → f a })
(inS (f a)) k
degenerate3 : (i j k : I) → B
degenerate3 i j k =
hfill (λ k → λ
{ (i = i0) → f (doubleCompPath-filler (refl {x = a}) refl refl k j)
; (i = i1) → doubleCompPath-filler (refl {x = f a}) refl refl k j
; (j = i0) → f a
; (j = i1) → f a })
(inS (f a)) k
someCommonDegenerateCube : (i j k : I) → B
someCommonDegenerateCube i j k =
hcomp (λ l → λ
{ (i = i0) → f a
; (i = i1) → degenerate3 k j l
; (j = i0) → f a
; (j = i1) → f a
; (k = i0) → f (degenerate1 i j l)
; (k = i1) → degenerate2 i j l })
(f a)
degenerate4 : (i j k : I) → A
degenerate4 i j k =
hfill (λ k → λ
{ (i = i0) → compPath-filler (refl {x = a}) (refl ∙∙ refl ∙∙ refl) k j
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl j k
; (j = i0) → a
; (j = i1) → (refl {x = a} ∙∙ refl ∙∙ refl) k })
(inS a) k
degenerate5 : (i j k : I) → A
degenerate5 i j k =
hcomp (λ l → λ
{ (i = i0) → compPath-filler (refl {x = a}) (refl ∙∙ refl ∙∙ refl) k j
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl (j ∧ ~ l) k
; (j = i0) → a
; (j = i1) → doubleCompPath-filler (refl {x = a}) refl refl (~ i ∨ ~ l) k
; (k = i0) → a
; (k = i1) → degenerate4 i j i1 })
(degenerate4 i j k)
degenerate5' : (i j k : I) → A
degenerate5' i j k =
hfill (λ k → λ
{ (i = i0) → doubleCompPath-filler (refl {x = a}) refl (refl ∙ refl) k j
; (i = i1) → a
; (j = i0) → a
; (j = i1) → compPath-filler (refl {x = a}) refl (~ i) k })
(inS a) k
-- Cubes of which mostly are constructed by J rule
module _
{A : Type ℓ}{a : A} where
coh-helper-refl :
(q' : a ≡ a)(h : refl ≡ q')
→ refl ≡ refl ∙∙ refl ∙∙ q'
coh-helper-refl q' h i j =
hcomp (λ k → λ
{ (i = i0) → a
; (i = i1) → doubleCompPath-filler refl refl q' k j
; (j = i0) → a
; (j = i1) → h i k })
a
coh-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : b ≡ c)(r : PathP (λ i → p i ≡ q i) p q')
→ refl ≡ (sym q) ∙∙ refl ∙∙ q'
coh-helper' = J> J> coh-helper-refl
coh-helper'-Refl1 : coh-helper' _ refl ≡ J> coh-helper-refl
coh-helper'-Refl1 = transportRefl _
coh-helper'-Refl2 : coh-helper' _ refl _ refl ≡ coh-helper-refl
coh-helper'-Refl2 = (λ i → coh-helper'-Refl1 i _ refl) ∙ transportRefl _
coh-helper :
{b c : A}(p : a ≡ b)(q q' : b ≡ c)
(h : PathP (λ i → p i ≡ q i) p q')
→ refl ≡ (sym q) ∙∙ refl ∙∙ q'
coh-helper p = coh-helper' _ p _
coh-helper-Refl : coh-helper-refl ≡ coh-helper refl refl
coh-helper-Refl = sym coh-helper'-Refl2
module _
{A : Type ℓ}{B : Type ℓ'}{a b c d : A} where
doubleCompPath-cong-filler :
{a' b' c' d' : B} (f : A → B)
{pa : f a ≡ a'}{pb : f b ≡ b'}{pc : f c ≡ c'}{pd : f d ≡ d'}
(p : a ≡ b)(q : b ≡ c)(r : c ≡ d)
{p' : a' ≡ b'}{q' : b' ≡ c'}{r' : c' ≡ d'}
(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(h'' : PathP (λ i → pc i ≡ pd i) (cong f r) r')
→ (i j k : I) → B
doubleCompPath-cong-filler f p q r {p' = p'} {q' = q'} {r' = r'} h h' h'' i j k =
hfill (λ k → λ
{ (i = i0) → f (doubleCompPath-filler p q r k j)
; (i = i1) → doubleCompPath-filler p' q' r' k j
; (j = i0) → h i (~ k)
; (j = i1) → h'' i k })
(inS (h' i j)) k
doubleCompPath-cong : (f : A → B)
(p : a ≡ b)(q : b ≡ c)(r : c ≡ d)
→ cong f (p ∙∙ q ∙∙ r) ≡ cong f p ∙∙ cong f q ∙∙ cong f r
doubleCompPath-cong f p q r i j =
doubleCompPath-cong-filler f
{pa = refl} {pb = refl} {pc = refl} {pd = refl}
p q r refl refl refl i j i1
module _
{A : Type ℓ}{a b c : A} where
comp-cong-square' :
(p : a ≡ b)(q : a ≡ c)
(r : b ≡ c)(h : r ≡ sym p ∙∙ refl ∙∙ q)
→ p ∙ r ≡ q
comp-cong-square' p q r h i j =
hcomp (λ k → λ
{ (i = i0) → compPath-filler p r k j
; (i = i1) → doubleCompPath-filler (sym p) refl q j k
; (j = i0) → a
; (j = i1) → h i k })
(p j)
module _
{B : Type ℓ'} where
comp-cong-square : (f : A → B)
(p : a ≡ b)(q : b ≡ c)
→ cong f (p ∙ q) ≡ cong f p ∙ cong f q
comp-cong-square f p q i j =
hcomp (λ k → λ
{ (i = i0) → f (compPath-filler p q k j)
; (i = i1) → compPath-filler (cong f p) (cong f q) k j
; (j = i0) → f a
; (j = i1) → f (q k) })
(f (p j))
module _
{A : Type ℓ}{B : Type ℓ'}{a b c : A}
(f : A → B)(p : a ≡ b)
(q : f a ≡ f c)(r : b ≡ c)
(h : cong f r ≡ sym (cong f p) ∙∙ refl ∙∙ q) where
comp-cong-helper-filler : (i j k : I) → B
comp-cong-helper-filler i j k =
hfill (λ k → λ
{ (i = i0) → comp-cong-square f p r (~ k) j
; (i = i1) → q j
; (j = i0) → f a
; (j = i1) → f c })
(inS (comp-cong-square' _ _ _ h i j)) k
comp-cong-helper : cong f (p ∙ r) ≡ q
comp-cong-helper i j =
comp-cong-helper-filler i j i1
module _
{A : Type ℓ}{a : A} where
push-helper-refl :
(q' : a ≡ a)(h : refl ≡ q')
→ refl ≡ refl ∙ q'
push-helper-refl q' h i j =
hcomp (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler refl q' k j
; (j = i0) → a
; (j = i1) → h i k })
a
push-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(h : refl ≡ q')
→ PathP (λ i → p i ≡ q i) p (q ∙ q')
push-helper' = J> J> push-helper-refl
push-helper'-Refl1 : push-helper' _ refl ≡ J> push-helper-refl
push-helper'-Refl1 = transportRefl _
push-helper'-Refl2 : push-helper' _ refl _ refl ≡ push-helper-refl
push-helper'-Refl2 = (λ i → push-helper'-Refl1 i _ refl) ∙ transportRefl _
push-helper : {b c : A}
(p : a ≡ b)(q : b ≡ c)(q' : c ≡ c)(h : refl ≡ q')
→ PathP (λ i → p i ≡ q i) p (q ∙ q')
push-helper p = push-helper' _ p _
push-helper-Refl : push-helper-refl ≡ push-helper refl refl
push-helper-Refl = sym push-helper'-Refl2
module _
{A : Type ℓ}{B : Type ℓ'}{a : A}(f : A → B) where
push-helper-cong-Type : {b c : A}
(p : a ≡ b)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ Type _
push-helper-cong-Type p q q' sqr =
SquareP
(λ i j → f (push-helper p q _ sqr i j)
≡ push-helper (cong f p) (cong f q) _ (λ i j → f (sqr i j)) i j)
(λ i j → f (p i))
(λ i j → comp-cong-square f q q' j i)
(λ i j → f (p i)) (λ i j → f (q i))
push-helper-cong-refl : push-helper-cong-Type refl refl refl refl
push-helper-cong-refl =
transport (λ t →
SquareP
(λ i j → f (push-helper-Refl t _ (λ i j → a) i j)
≡ push-helper-Refl t _ (λ i j → f a) i j)
(λ i j → f a)
(λ i j → comp-cong-square f (refl {x = a}) refl j i)
(λ i j → f a) (λ i j → f a))
(λ i j k → someCommonDegenerateCube a f i j k)
push-helper-cong' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ push-helper-cong-Type p q q' sqr
push-helper-cong' = J> J> J> push-helper-cong-refl
push-helper-cong : ∀ {b c} p q q' sqr → push-helper-cong-Type {b = b} {c = c} p q q' sqr
push-helper-cong p = push-helper-cong' _ p _
module _
{A : Type ℓ}{a : A} where
push-coh-helper-Type : {b c : A}
(p : a ≡ b)(q q' : b ≡ c)
(sqr : PathP (λ i → p i ≡ q i) p q')
→ Type _
push-coh-helper-Type p q q' sqr =
SquareP
(λ i j → push-helper p q _ (coh-helper _ _ _ sqr) i j ≡ sqr i j)
(λ i j → p i)
(λ i j → comp-cong-square' q q' _ refl j i)
(λ i j → p i) (λ i j → q i)
push-coh-helper-refl' :
SquareP
(λ i j → push-helper-refl _ (coh-helper-refl _ (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → comp-cong-square' (refl {x = a}) refl _ refl j i)
(λ i j → a)
(λ i j → a)
push-coh-helper-refl' i j k =
hcomp (λ l → λ
{ (i = i0) → a
; (i = i1) → degenerate5 a k j l
; (j = i0) → a
; (j = i1) → degenerate1 a i l (~ k)
; (k = i0) → degenerate1'' a i j l
; (k = i1) → a })
a
push-coh-helper-refl : push-coh-helper-Type refl refl refl refl
push-coh-helper-refl =
transport (λ t →
SquareP
(λ i j → push-helper-Refl t _ (coh-helper-Refl t _ (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → comp-cong-square' (refl {x = a}) refl _ refl j i)
(λ i j → a) (λ i j → a)) push-coh-helper-refl'
push-coh-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : b ≡ c)(sqr : PathP (λ i → p i ≡ q i) p q')
→ push-coh-helper-Type p q q' sqr
push-coh-helper' = J> J> J> push-coh-helper-refl
push-coh-helper : ∀ {b c} p q q' sqr → push-coh-helper-Type {b = b} {c = c} p q q' sqr
push-coh-helper p q q' sqr = push-coh-helper' _ p _ q q' sqr
module _
{A : Type ℓ}{a : A} where
push-square-helper-refl :
refl ∙∙ refl ∙∙ (refl ∙ refl) ≡ refl {x = a}
push-square-helper-refl i j = degenerate5' a i j i1
push-square-helper' :
(b : A)(q : a ≡ b)
(c : A)(q' : b ≡ c)
→ sym q ∙∙ refl ∙∙ (q ∙ q') ≡ q'
push-square-helper' = J> J> push-square-helper-refl
push-square-helper'-Refl1 : push-square-helper' _ refl ≡ J> push-square-helper-refl
push-square-helper'-Refl1 = transportRefl _
push-square-helper'-Refl2 : push-square-helper' _ refl _ refl ≡ push-square-helper-refl
push-square-helper'-Refl2 = (λ i → push-square-helper'-Refl1 i _ refl) ∙ transportRefl _
push-square-helper : {b c : A}
(q : a ≡ b)(q' : b ≡ c)
→ sym q ∙∙ refl ∙∙ (q ∙ q') ≡ q'
push-square-helper p = push-square-helper' _ p _
push-square-helper-Refl : push-square-helper-refl ≡ push-square-helper refl refl
push-square-helper-Refl = sym push-square-helper'-Refl2
module _
{A : Type ℓ}{a : A} where
coh-cube-helper-Type :
{b c : A}(p : a ≡ b)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ Type _
coh-cube-helper-Type {c = c} p q q' sqr =
SquareP
(λ i j → coh-helper _ _ _ (push-helper p q q' sqr) i j ≡ sqr i j)
(λ i j → c)
(λ i j → push-square-helper q q' j i)
(λ i j → c) (λ i j → c)
coh-cube-helper-refl' :
SquareP
(λ i j → coh-helper-refl _ (push-helper-refl refl (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → push-square-helper-refl {a = a} j i)
(λ i j → a) (λ i j → a)
coh-cube-helper-refl' i j k =
hcomp (λ l → λ
{ (i = i0) → a
; (i = i1) → degenerate5' a k j l
; (j = i0) → a
; (j = i1) → degenerate1' a i l (~ k)
; (k = i0) → degenerate1'' a i j l
; (k = i1) → a })
a
coh-cube-helper-refl : coh-cube-helper-Type refl refl refl refl
coh-cube-helper-refl =
transport (λ t →
SquareP
(λ i j → coh-helper-Refl t _ (push-helper-Refl t refl (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → push-square-helper-Refl {a = a} t j i)
(λ i j → a) (λ i j → a)) coh-cube-helper-refl'
coh-cube-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ coh-cube-helper-Type p q q' sqr
coh-cube-helper' = J> J> J> coh-cube-helper-refl
coh-cube-helper : ∀ {b c} p q q' sqr → coh-cube-helper-Type {b = b} {c = c} p q q' sqr
coh-cube-helper p q q' sqr = coh-cube-helper' _ p _ q q' sqr
module _
{A : Type ℓ}{B : Type ℓ'}{a : A}(f : A → B) where
coh-helper-cong-Type : {b c : A}{a' b' c' : B}
(pa : f a ≡ a')(pb : f b ≡ b')(pc : f c ≡ c')
{p : a ≡ b }(q r : b ≡ c )
{p' : a' ≡ b'}{q' r' : b' ≡ c'}
(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(h'' : PathP (λ i → pb i ≡ pc i) (cong f r) r')
(sqr : PathP (λ i → p i ≡ q i) p r)
(sqr' : PathP (λ i → p' i ≡ q' i) p' r')
→ Type _
coh-helper-cong-Type pa pb pc q r h h' h'' sqr sqr' =
SquareP
(λ i j → f (coh-helper _ _ _ sqr i j) ≡ coh-helper _ _ _ (λ i j → sqr' i j) i j)
(λ i j → pc j)
(λ i j → doubleCompPath-cong-filler f (sym q) refl r (λ i j → h' i (~ j)) (λ i j → pb i) h'' j i i1)
(λ i j → pc j) (λ i j → pc j)
coh-helper-cong-refl : coh-helper-cong-Type refl refl refl refl refl refl refl refl refl refl
coh-helper-cong-refl =
transport (λ t →
SquareP
(λ i j → f (coh-helper-Refl t _ (λ i j → a) i j) ≡ coh-helper-Refl t _ (λ i j → f a) i j)
(λ i j → f a)
(λ i j → doubleCompPath-cong-filler f refl refl refl (λ i j → f a) (λ i j → f a) (λ i j → f a) j i i1)
(λ i j → f a) (λ i j → f a))
(λ i j k → someCommonDegenerateCube a f i j k)
coh-helper-cong' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(a' : B)(pa : f a ≡ a')
(b' : B)(pb : f b ≡ b')
(c' : B)(pc : f c ≡ c')
(r : b ≡ c)(sqr : PathP (λ i → p i ≡ q i) p r)
(p' : a' ≡ b')(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(q' : b' ≡ c')(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(r' : b' ≡ c')(h'' : PathP (λ i → pb i ≡ pc i) (cong f r) r')
(sqr' : PathP (λ i → p' i ≡ q' i) p' r')
(hsqr : SquareP (λ i j → h i j ≡ h' i j) (λ i j → f (sqr i j)) sqr' h h'')
→ coh-helper-cong-Type pa pb pc q r h h' h'' sqr sqr'
coh-helper-cong' = J> J> J> J> J> J> J> J> J> J> coh-helper-cong-refl
coh-helper-cong :
∀ {b c a' b' c' pa pb pc} p q r {p' q' r' h h' h''} sqr {sqr'}
(hsqr : SquareP (λ i j → f (sqr i j) ≡ sqr' i j)
(λ i j → h j i) (λ i j → h'' j i) (λ i j → h j i) (λ i j → h' j i))
→ coh-helper-cong-Type {b = b} {c = c} {a' = a'} {b' = b'} {c' = c'}
pa pb pc q r {p' = p'} {q' = q'} {r' = r'} h h' h'' sqr sqr'
coh-helper-cong p q r sqr hsqr =
coh-helper-cong' _ p _ q _ _ _ _ _ _ r sqr _ _ _ _ _ _ _ (λ i j k → hsqr j k i)
|
{
"alphanum_fraction": 0.4813524326,
"avg_line_length": 31.5641547862,
"ext": "agda",
"hexsha": "31c1b91cffc6a98984b20f296bfc080858618a9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James/Inductive/Coherence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James/Inductive/Coherence.agda",
"max_line_length": 108,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James/Inductive/Coherence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 6435,
"size": 15498
}
|
module Data.Option.Setoid where
import Lvl
open import Data
open import Data.Option
open import Functional
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ ℓₑₐ : Lvl.Level
private variable A : Type{ℓ}
instance
Option-equiv : ⦃ equiv : Equiv{ℓₑ}(A) ⦄ → Equiv{ℓₑ}(Option A)
Equiv._≡_ Option-equiv None None = Unit
Equiv._≡_ Option-equiv None (Some _) = Empty
Equiv._≡_ Option-equiv (Some _) None = Empty
Equiv._≡_ Option-equiv (Some x) (Some y) = x ≡ y
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence Option-equiv)) {None} = <>
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence Option-equiv)) {Some _} = reflexivity(_≡_)
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence Option-equiv)) {None} {None} = const(<>)
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence Option-equiv)) {Some _} {Some _} = symmetry(_≡_)
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence Option-equiv)) {None} {None} {None} = const(const(<>))
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence Option-equiv)) {Some _} {Some _} {Some _} = transitivity(_≡_)
|
{
"alphanum_fraction": 0.715408805,
"avg_line_length": 47.1111111111,
"ext": "agda",
"hexsha": "b294b14d51ae4f1425ff92c14dcf8dec1f7d559f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Option/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Option/Setoid.agda",
"max_line_length": 127,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Option/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 386,
"size": 1272
}
|
open import Nat
open import Prelude
open import core
open import contexts
open import htype-decidable
open import lemmas-matching
open import disjointness
module elaborability where
mutual
elaborability-synth : {Γ : tctx} {e : hexp} {τ : htyp} →
Γ ⊢ e => τ →
Σ[ d ∈ ihexp ] Σ[ Δ ∈ hctx ]
(Γ ⊢ e ⇒ τ ~> d ⊣ Δ)
elaborability-synth SConst = _ , _ , ESConst
elaborability-synth (SAsc {τ = τ} wt)
with elaborability-ana wt
... | _ , _ , τ' , D = _ , _ , ESAsc D
elaborability-synth (SVar x) = _ , _ , ESVar x
elaborability-synth (SAp dis wt1 m wt2)
with elaborability-ana (ASubsume wt1 (match-consist m)) | elaborability-ana wt2
... | _ , _ , _ , D1 | _ , _ , _ , D2 = _ , _ , ESAp dis (elab-ana-disjoint dis D1 D2) wt1 m D1 D2
elaborability-synth SEHole = _ , _ , ESEHole
elaborability-synth (SNEHole new wt)
with elaborability-synth wt
... | d' , Δ' , wt' = _ , _ , ESNEHole (elab-new-disjoint-synth new wt') wt'
elaborability-synth (SLam x₁ wt)
with elaborability-synth wt
... | d' , Δ' , wt' = _ , _ , ESLam x₁ wt'
elaborability-ana : {Γ : tctx} {e : hexp} {τ : htyp} →
Γ ⊢ e <= τ →
Σ[ d ∈ ihexp ] Σ[ Δ ∈ hctx ] Σ[ τ' ∈ htyp ]
(Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ)
elaborability-ana {e = e} (ASubsume D x₁)
with elaborability-synth D
-- these cases just pass through, but we need to pattern match so we can prove things aren't holes
elaborability-ana {e = c} (ASubsume D x₁) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₁
elaborability-ana {e = e ·: x} (ASubsume D x₁) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₁
elaborability-ana {e = X x} (ASubsume D x₁) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₁
elaborability-ana {e = ·λ x e} (ASubsume D x₁) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₁
elaborability-ana {e = ·λ x [ x₁ ] e} (ASubsume D x₂) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₂
elaborability-ana {e = e1 ∘ e2} (ASubsume D x₁) | _ , _ , D' = _ , _ , _ , EASubsume (λ _ ()) (λ _ _ ()) D' x₁
-- the two holes are special-cased
elaborability-ana {e = ⦇-⦈[ x ]} (ASubsume _ _ ) | _ , _ , _ = _ , _ , _ , EAEHole
elaborability-ana {Γ} {⦇⌜ e ⌟⦈[ x ]} (ASubsume (SNEHole new wt) x₂) | _ , _ , ESNEHole x₁ D' with elaborability-synth wt
... | w , y , z = _ , _ , _ , EANEHole (elab-new-disjoint-synth new z) z
-- the lambda cases
elaborability-ana (ALam x₁ m wt)
with elaborability-ana wt
... | _ , _ , _ , D' = _ , _ , _ , EALam x₁ m D'
|
{
"alphanum_fraction": 0.5100458231,
"avg_line_length": 54.5576923077,
"ext": "agda",
"hexsha": "f9ed5e061991b63312ea0456e17db7328f9e272e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "elaborability.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "elaborability.agda",
"max_line_length": 127,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "elaborability.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1053,
"size": 2837
}
|
open import Agda.Builtin.Char
open import Agda.Builtin.Coinduction
open import Agda.Builtin.IO
open import Agda.Builtin.List
open import Agda.Builtin.Unit
open import Agda.Builtin.String
data Colist {a} (A : Set a) : Set a where
[] : Colist A
_∷_ : A → ∞ (Colist A) → Colist A
{-# FOREIGN GHC
data Colist a = Nil | Cons a (MAlonzo.RTE.Inf (Colist a))
type Colist' l a = Colist a
fromColist :: Colist a -> [a]
fromColist Nil = []
fromColist (Cons x xs) = x : fromColist (MAlonzo.RTE.flat xs)
#-}
{-# COMPILE GHC Colist = data Colist' (Nil | Cons) #-}
to-colist : ∀ {a} {A : Set a} → List A → Colist A
to-colist [] = []
to-colist (x ∷ xs) = x ∷ ♯ to-colist xs
a-definition-that-uses-♭ :
∀ {a} {A : Set a} → Colist A → Colist A
a-definition-that-uses-♭ [] = []
a-definition-that-uses-♭ (x ∷ xs) =
x ∷ ♯ a-definition-that-uses-♭ (♭ xs)
postulate
putStr : Colist Char → IO ⊤
{-# COMPILE GHC putStr = putStr . fromColist #-}
main : IO ⊤
main = putStr (a-definition-that-uses-♭
(to-colist (primStringToList "apa\n")))
|
{
"alphanum_fraction": 0.6158139535,
"avg_line_length": 26.2195121951,
"ext": "agda",
"hexsha": "6c99c74c432347d7ae0ede7fc7cb4fb6dfb0b035",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2909-4.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2909-4.agda",
"max_line_length": 63,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2909-4.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 385,
"size": 1075
}
|
module Categories.Comonad.Cofree where
|
{
"alphanum_fraction": 0.8717948718,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "60ecd16f69afe30f199c28fbc99d1e115a6591a7",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Comonad/Cofree.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Comonad/Cofree.agda",
"max_line_length": 38,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Comonad/Cofree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 10,
"size": 39
}
|
-- Andreas, 2011-10-06
module Issue483c where
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
record _×_ (A B : Set) : Set where
constructor _,_
field fst : A
snd : B
postulate
A : Set
f : .A → A
-- this succeeds
test : let X : .A → A
X = _
in .(x : A) → (X ≡ f) × (X (f x) ≡ f x)
test x = refl , refl
-- so this should also succeed
test2 : let X : .A → A
X = _
in .(x : A) → (X (f x) ≡ f x) × (X ≡ f)
test2 x = refl , refl
|
{
"alphanum_fraction": 0.4746450304,
"avg_line_length": 18.2592592593,
"ext": "agda",
"hexsha": "4011cc7020825dc80eb5e5b2f02d142a9e0d6d97",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue483c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue483c.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue483c.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 199,
"size": 493
}
|
------------------------------------------------------------------------
-- Alpha-equivalence
------------------------------------------------------------------------
open import Atom
module Alpha-equivalence (atoms : χ-atoms) where
open import Equality.Propositional
open import Prelude hiding (const)
open import Bag-equivalence equality-with-J using (_∈_)
import Nat equality-with-J as Nat
open import Chi atoms
open import Free-variables atoms
open χ-atoms atoms
private
variable
A : Type
b₁ b₂ : Br
bs₁ bs₂ : List Br
c c₁ c₂ : Const
e e₁ e₂ e₃ e₁₁ e₁₂ e₂₁ e₂₂ : Exp
es₁ es₂ : List Exp
R R₁ R₂ : A → A → Type
x x₁ x₁′ x₂ x₂′ y : A
xs xs₁ xs₂ : List A
------------------------------------------------------------------------
-- The definition of α-equivalence
-- R [ x ∼ y ] relates x to y, and for pairs of variables x′, y′ such
-- that x is distinct from x′ and y is distinct from y′ it behaves
-- like R.
infix 5 _[_∼_]
_[_∼_] : (Var → Var → Type) → Var → Var → (Var → Var → Type)
(R [ x ∼ y ]) x′ y′ =
x ≡ x′ × y ≡ y′
⊎
x ≢ x′ × y ≢ y′ × R x′ y′
-- Alpha-⋆ lifts a binary relation to lists.
infixr 5 _∷_
data Alpha-⋆ (R : A → A → Type) : List A → List A → Type where
[] : Alpha-⋆ R [] []
_∷_ : R x₁ x₂ →
Alpha-⋆ R xs₁ xs₂ →
Alpha-⋆ R (x₁ ∷ xs₁) (x₂ ∷ xs₂)
-- Alpha R is α-equivalence up to R: free variables are related if
-- they are related by R.
mutual
data Alpha (R : Var → Var → Type) : Exp → Exp → Type where
apply :
Alpha R e₁₁ e₁₂ → Alpha R e₂₁ e₂₂ →
Alpha R (apply e₁₁ e₂₁) (apply e₁₂ e₂₂)
lambda :
Alpha (R [ x₁ ∼ x₂ ]) e₁ e₂ →
Alpha R (lambda x₁ e₁) (lambda x₂ e₂)
case :
Alpha R e₁ e₂ →
Alpha-⋆ (Alpha-Br R) bs₁ bs₂ →
Alpha R (case e₁ bs₁) (case e₂ bs₂)
rec :
Alpha (R [ x₁ ∼ x₂ ]) e₁ e₂ →
Alpha R (rec x₁ e₁) (rec x₂ e₂)
var : R x₁ x₂ → Alpha R (var x₁) (var x₂)
const :
Alpha-⋆ (Alpha R) es₁ es₂ →
Alpha R (const c es₁) (const c es₂)
data Alpha-Br (R : Var → Var → Type) : Br → Br → Type where
nil :
Alpha R e₁ e₂ →
Alpha-Br R (branch c [] e₁) (branch c [] e₂)
cons :
Alpha-Br (R [ x₁ ∼ x₂ ]) (branch c xs₁ e₁) (branch c xs₂ e₂) →
Alpha-Br R (branch c (x₁ ∷ xs₁) e₁) (branch c (x₂ ∷ xs₂) e₂)
-- The α-equivalence relation.
infix 4 _≈α_
_≈α_ : Exp → Exp → Type
_≈α_ = Alpha _≡_
------------------------------------------------------------------------
-- Some properties related to reflexivity
-- If R y y holds assuming that y is distinct from x, then
-- (R [ x ∼ x ]) y y holds.
[≢→[∼]]→[∼] :
∀ R →
(y ≢ x → R y y) →
(R [ x ∼ x ]) y y
[≢→[∼]]→[∼] {y = y} {x = x} _ r = case x V.≟ y of λ where
(yes x≡y) → inj₁ (x≡y , x≡y)
(no x≢y) → inj₂ ( x≢y , x≢y
, r (x≢y ∘ sym)
)
-- Alpha R is reflexive for expressions for which R x x holds for
-- every free variable x.
mutual
refl-Alpha :
∀ e → (∀ x → x ∈FV e → R x x) → Alpha R e e
refl-Alpha (apply e₁ e₂) r =
apply (refl-Alpha e₁ λ x x∈e₁ → r x (apply-left x∈e₁))
(refl-Alpha e₂ λ x x∈e₂ → r x (apply-right x∈e₂))
refl-Alpha {R = R} (lambda x e) r =
lambda (refl-Alpha e λ y y∈e → [≢→[∼]]→[∼] R λ y≢x →
r y (lambda y≢x y∈e))
refl-Alpha (case e bs) r =
case
(refl-Alpha e λ x x∈e →
r x (case-head x∈e))
(refl-Alpha-B⋆ bs λ x ∈bs x∉xs x∈ →
r x (case-body x∈ ∈bs x∉xs))
refl-Alpha {R = R} (rec x e) r =
rec (refl-Alpha e λ y y∈e → [≢→[∼]]→[∼] R λ y≢x →
r y (rec y≢x y∈e))
refl-Alpha (var x) r =
var (r x (var refl))
refl-Alpha (const c es) r =
const (refl-Alpha-⋆ es λ x e e∈es x∈e →
r x (const x∈e e∈es))
refl-Alpha-B :
∀ c xs e →
(∀ x → ¬ x ∈ xs → x ∈FV e → R x x) →
Alpha-Br R (branch c xs e) (branch c xs e)
refl-Alpha-B c [] e r =
nil (refl-Alpha e λ x x∈e →
r x (λ ()) x∈e)
refl-Alpha-B {R = R} c (x ∷ xs) e r =
cons (refl-Alpha-B c xs e λ y y∉xs y∈e → [≢→[∼]]→[∼] R λ y≢x →
r y [ y≢x , y∉xs ] y∈e)
refl-Alpha-⋆ :
∀ es → (∀ x e → e ∈ es → x ∈FV e → R x x) →
Alpha-⋆ (Alpha R) es es
refl-Alpha-⋆ [] _ = []
refl-Alpha-⋆ (e ∷ es) r =
refl-Alpha e (λ x x∈e → r x e (inj₁ refl) x∈e) ∷
refl-Alpha-⋆ es (λ x e e∈es x∈e → r x e (inj₂ e∈es) x∈e)
refl-Alpha-B⋆ :
∀ bs →
(∀ x {c xs e} → branch c xs e ∈ bs → ¬ x ∈ xs → x ∈FV e → R x x) →
Alpha-⋆ (Alpha-Br R) bs bs
refl-Alpha-B⋆ [] r = []
refl-Alpha-B⋆ (branch c xs e ∷ bs) r =
refl-Alpha-B c xs e (λ x x∉xs x∈e → r x (inj₁ refl) x∉xs x∈e) ∷
refl-Alpha-B⋆ bs (λ x ∈bs x∉xs x∈ → r x (inj₂ ∈bs) x∉xs x∈)
-- The α-equivalence relation is reflexive.
refl-α : e ≈α e
refl-α = refl-Alpha _ (λ _ _ → refl)
-- Equational reasoning combinators.
infix -1 finally-α _∎α
infixr -2 step-≡-≈α step-≈α-≡ _≡⟨⟩α_
_∎α : ∀ e → e ≈α e
_ ∎α = refl-α
step-≡-≈α : ∀ e₁ → e₂ ≈α e₃ → e₁ ≡ e₂ → e₁ ≈α e₃
step-≡-≈α _ e₂≈e₃ e₁≡e₂ = subst (_≈α _) (sym e₁≡e₂) e₂≈e₃
syntax step-≡-≈α e₁ e₂≈e₃ e₁≡e₂ = e₁ ≡⟨ e₁≡e₂ ⟩α e₂≈e₃
step-≈α-≡ : ∀ e₁ → e₂ ≡ e₃ → e₁ ≈α e₂ → e₁ ≈α e₃
step-≈α-≡ _ e₂≡e₃ e₁≈e₂ = subst (_ ≈α_) e₂≡e₃ e₁≈e₂
syntax step-≈α-≡ e₁ e₂≡e₃ e₁≈e₂ = e₁ ≈⟨ e₁≈e₂ ⟩α e₂≡e₃
_≡⟨⟩α_ : ∀ e₁ → e₁ ≈α e₂ → e₁ ≈α e₂
_ ≡⟨⟩α e₁≈e₂ = e₁≈e₂
finally-α : ∀ e₁ e₂ → e₁ ≈α e₂ → e₁ ≈α e₂
finally-α _ _ e₁≈e₂ = e₁≈e₂
syntax finally-α e₁ e₂ e₁≈e₂ = e₁ ≈⟨ e₁≈e₂ ⟩α∎ e₂ ∎
------------------------------------------------------------------------
-- A map function
-- A kind of map function for _[_∼_].
map-[∼] :
∀ R₁ → (∀ {x₁ x₂} → R₁ x₁ x₂ → R₂ x₁ x₂) →
(R₁ [ x₁ ∼ x₂ ]) x₁′ x₂′ →
(R₂ [ x₁ ∼ x₂ ]) x₁′ x₂′
map-[∼] _ r = ⊎-map id (Σ-map id (Σ-map id r))
-- A kind of map function for Alpha.
mutual
map-Alpha :
(∀ {x₁ x₂} → R₁ x₁ x₂ → R₂ x₁ x₂) →
Alpha R₁ e₁ e₂ → Alpha R₂ e₁ e₂
map-Alpha r (var Rx₁x₂) = var (r Rx₁x₂)
map-Alpha {R₁ = R₁} r (lambda e₁≈e₂) =
lambda (map-Alpha (map-[∼] R₁ r) e₁≈e₂)
map-Alpha {R₁ = R₁} r (rec e₁≈e₂) =
rec (map-Alpha (map-[∼] R₁ r) e₁≈e₂)
map-Alpha r (apply e₁₁≈e₁₂ e₂₁≈e₂₂) =
apply (map-Alpha r e₁₁≈e₁₂) (map-Alpha r e₂₁≈e₂₂)
map-Alpha r (const es₁≈es₂) =
const (map-Alpha-⋆ r es₁≈es₂)
map-Alpha r (case e₁≈e₂ bs₁≈bs₂) =
case (map-Alpha r e₁≈e₂)
(map-Alpha-Br-⋆ r bs₁≈bs₂)
map-Alpha-Br :
(∀ {x₁ x₂} → R₁ x₁ x₂ → R₂ x₁ x₂) →
Alpha-Br R₁ b₁ b₂ → Alpha-Br R₂ b₁ b₂
map-Alpha-Br r (nil e₁≈e₂) =
nil (map-Alpha r e₁≈e₂)
map-Alpha-Br {R₁ = R₁} r (cons b₁≈b₂) =
cons (map-Alpha-Br (map-[∼] R₁ r) b₁≈b₂)
map-Alpha-⋆ :
(∀ {x₁ x₂} → R₁ x₁ x₂ → R₂ x₁ x₂) →
Alpha-⋆ (Alpha R₁) es₁ es₂ → Alpha-⋆ (Alpha R₂) es₁ es₂
map-Alpha-⋆ _ [] = []
map-Alpha-⋆ r (e₁≈e₂ ∷ es₁≈es₂) =
map-Alpha r e₁≈e₂ ∷ map-Alpha-⋆ r es₁≈es₂
map-Alpha-Br-⋆ :
(∀ {x₁ x₂} → R₁ x₁ x₂ → R₂ x₁ x₂) →
Alpha-⋆ (Alpha-Br R₁) bs₁ bs₂ → Alpha-⋆ (Alpha-Br R₂) bs₁ bs₂
map-Alpha-Br-⋆ _ [] = []
map-Alpha-Br-⋆ r (b₁≈b₂ ∷ bs₁≈bs₂) =
map-Alpha-Br r b₁≈b₂ ∷ map-Alpha-Br-⋆ r bs₁≈bs₂
------------------------------------------------------------------------
-- Symmetry
-- A kind of symmetry holds for _[_∼_].
sym-[∼] :
∀ R →
(R [ x₁ ∼ x₂ ]) x₁′ x₂′ →
(flip R [ x₂ ∼ x₁ ]) x₂′ x₁′
sym-[∼] _ =
⊎-map Prelude.swap
(λ (x₁≢x₁′ , x₂≢x₂′ , R₁x₁′x₂′) →
x₂≢x₂′ , x₁≢x₁′ , R₁x₁′x₂′)
-- A kind of symmetry holds for Alpha.
mutual
sym-Alpha : Alpha R e₁ e₂ → Alpha (flip R) e₂ e₁
sym-Alpha (var Rx₁x₂) = var Rx₁x₂
sym-Alpha {R = R} (lambda e₁≈e₂) =
lambda (map-Alpha (sym-[∼] R) (sym-Alpha e₁≈e₂))
sym-Alpha {R = R} (rec e₁≈e₂) =
rec (map-Alpha (sym-[∼] R) (sym-Alpha e₁≈e₂))
sym-Alpha (apply e₁₁≈e₁₂ e₂₁≈e₂₂) =
apply (sym-Alpha e₁₁≈e₁₂) (sym-Alpha e₂₁≈e₂₂)
sym-Alpha (const es₁≈es₂) =
const (sym-Alpha-⋆ es₁≈es₂)
sym-Alpha (case e₁≈e₂ bs₁≈bs₂) =
case (sym-Alpha e₁≈e₂)
(sym-Alpha-Br-⋆ bs₁≈bs₂)
sym-Alpha-Br :
Alpha-Br R b₁ b₂ → Alpha-Br (flip R) b₂ b₁
sym-Alpha-Br (nil e₁≈e₂) =
nil (sym-Alpha e₁≈e₂)
sym-Alpha-Br {R = R} (cons b₁≈b₂) =
cons (map-Alpha-Br (sym-[∼] R) (sym-Alpha-Br b₁≈b₂))
sym-Alpha-⋆ :
Alpha-⋆ (Alpha R) es₁ es₂ → Alpha-⋆ (Alpha (flip R)) es₂ es₁
sym-Alpha-⋆ [] = []
sym-Alpha-⋆ (e₁≈e₂ ∷ es₁≈es₂) =
sym-Alpha e₁≈e₂ ∷ sym-Alpha-⋆ es₁≈es₂
sym-Alpha-Br-⋆ :
Alpha-⋆ (Alpha-Br R) bs₁ bs₂ → Alpha-⋆ (Alpha-Br (flip R)) bs₂ bs₁
sym-Alpha-Br-⋆ [] = []
sym-Alpha-Br-⋆ (b₁≈b₂ ∷ bs₁≈bs₂) =
sym-Alpha-Br b₁≈b₂ ∷ sym-Alpha-Br-⋆ bs₁≈bs₂
-- The α-equivalence relation is symmetric.
sym-α : e₁ ≈α e₂ → e₂ ≈α e₁
sym-α = map-Alpha sym ∘ sym-Alpha
------------------------------------------------------------------------
-- Several things respect α-equivalence
-- The free variable relation respects α-equivalence.
mutual
Alpha-∈ :
Alpha R e₁ e₂ → x₁ ∈FV e₁ → ∃ λ x₂ → R x₁ x₂ × x₂ ∈FV e₂
Alpha-∈ {R = R} (var Ry₁y₂) (var x₁≡y₁) =
_ , subst (flip R _) (sym x₁≡y₁) Ry₁y₂ , var refl
Alpha-∈ (lambda e₁≈e₂) (lambda x₁≢y₁ x₁∈)
with Alpha-∈ e₁≈e₂ x₁∈
… | x₂ , inj₂ (_ , y₂≢x₂ , Rx₁x₂) , x₂∈ =
x₂ , Rx₁x₂ , lambda (y₂≢x₂ ∘ sym) x₂∈
… | _ , inj₁ (y₁≡x₁ , _) , _ =
⊥-elim $ x₁≢y₁ (sym y₁≡x₁)
Alpha-∈ (rec e₁≈e₂) (rec x₁≢y₁ x₁∈)
with Alpha-∈ e₁≈e₂ x₁∈
… | x₂ , inj₂ (_ , y₂≢x₂ , Rx₁x₂) , x₂∈ =
x₂ , Rx₁x₂ , rec (y₂≢x₂ ∘ sym) x₂∈
… | _ , inj₁ (y₁≡x₁ , _) , _ =
⊥-elim $ x₁≢y₁ (sym y₁≡x₁)
Alpha-∈ (apply e₁₁≈e₁₂ e₂₁≈e₂₂) (apply-left x₁∈) =
Σ-map id (Σ-map id apply-left) $ Alpha-∈ e₁₁≈e₁₂ x₁∈
Alpha-∈ (apply e₁₁≈e₁₂ e₂₁≈e₂₂) (apply-right x₁∈) =
Σ-map id (Σ-map id apply-right) $ Alpha-∈ e₂₁≈e₂₂ x₁∈
Alpha-∈ (const es₁≈es₂) (const x₁∈ ∈es₁) =
Σ-map id (Σ-map id $ uncurry λ _ → uncurry const) $
Alpha-⋆-∈ es₁≈es₂ x₁∈ ∈es₁
Alpha-∈ (case e₁≈e₂ bs₁≈bs₂) (case-head x₁∈) =
Σ-map id (Σ-map id case-head) $
Alpha-∈ e₁≈e₂ x₁∈
Alpha-∈ (case e₁≈e₂ bs₁≈bs₂) (case-body x₁∈ ∈bs₁ ∉xs₁) =
Σ-map id (Σ-map id λ (_ , _ , _ , x₂∈ , ∈bs₂ , ∉xs₂) →
case-body x₂∈ ∈bs₂ ∉xs₂) $
Alpha-Br-⋆-∈ bs₁≈bs₂ x₁∈ ∈bs₁ ∉xs₁
Alpha-Br-∈ :
Alpha-Br R (branch c₁ xs₁ e₁) (branch c₂ xs₂ e₂) →
x₁ ∈FV e₁ → ¬ x₁ ∈ xs₁ →
∃ λ x₂ → R x₁ x₂ × x₂ ∈FV e₂ × ¬ x₂ ∈ xs₂
Alpha-Br-∈ (nil e₁≈e₂) x₁∈ _ =
Σ-map id (Σ-map id (_, λ ())) $
Alpha-∈ e₁≈e₂ x₁∈
Alpha-Br-∈ (cons {x₁ = y₁} {x₂ = y₂} bs₁≈bs₂) x₁∈ x₁∉
with Alpha-Br-∈ bs₁≈bs₂ x₁∈ (x₁∉ ∘ inj₂)
… | x₂ , inj₂ (_ , y₂≢x₂ , Rx₁x₂) , x₂∈ , x₂∉ =
x₂ , Rx₁x₂ , x₂∈ , [ y₂≢x₂ ∘ sym , x₂∉ ]
… | _ , inj₁ (y₁≡x₁ , _) , _ =
⊥-elim $ x₁∉ (inj₁ (sym y₁≡x₁))
Alpha-⋆-∈ :
Alpha-⋆ (Alpha R) es₁ es₂ →
x₁ ∈FV e₁ → e₁ ∈ es₁ →
∃ λ x₂ → R x₁ x₂ × ∃ λ e₂ → x₂ ∈FV e₂ × e₂ ∈ es₂
Alpha-⋆-∈ (e₁≈e₂ ∷ es₁≈es₂) x₁∈ (inj₁ ≡e₁) =
Σ-map id (Σ-map id λ x₂∈ → _ , x₂∈ , inj₁ refl) $
Alpha-∈ e₁≈e₂ (subst (_ ∈FV_) ≡e₁ x₁∈)
Alpha-⋆-∈ (e₁≈e₂ ∷ es₁≈es₂) x₁∈ (inj₂ ∈es₁) =
Σ-map id (Σ-map id (Σ-map id (Σ-map id inj₂))) $
Alpha-⋆-∈ es₁≈es₂ x₁∈ ∈es₁
Alpha-Br-⋆-∈ :
Alpha-⋆ (Alpha-Br R) bs₁ bs₂ →
x₁ ∈FV e₁ → branch c₁ xs₁ e₁ ∈ bs₁ → ¬ x₁ ∈ xs₁ →
∃ λ x₂ → R x₁ x₂ × ∃ λ c₂ → ∃ λ xs₂ → ∃ λ e₂ →
x₂ ∈FV e₂ × branch c₂ xs₂ e₂ ∈ bs₂ × ¬ x₂ ∈ xs₂
Alpha-Br-⋆-∈
(_∷_ {x₁ = branch _ _ _} {x₂ = branch _ _ _} b₁≈b₂ bs₁≈bs₂)
x₁∈ (inj₁ ≡b₁) x₁∉
with
Alpha-Br-∈
b₁≈b₂
(subst (_ ∈FV_) (cong (λ { (branch _ _ e) → e }) ≡b₁) x₁∈)
(x₁∉ ∘
subst (_ ∈_) (cong (λ { (branch _ xs _) → xs }) (sym ≡b₁)))
… | x₂ , Rx₁x₂ , x₂∈ , x₂∉ =
x₂ , Rx₁x₂ , _ , _ , _ , x₂∈ , inj₁ refl , x₂∉
Alpha-Br-⋆-∈ (b₁≈b₂ ∷ bs₁≈bs₂) x₁∈ (inj₂ ∈bs₁) x₁∉ =
(Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $
Σ-map inj₂ id) $
Alpha-Br-⋆-∈ bs₁≈bs₂ x₁∈ ∈bs₁ x₁∉
α-∈ : e₁ ≈α e₂ → x ∈FV e₁ → x ∈FV e₂
α-∈ e₁≈e₂ x∈ with Alpha-∈ e₁≈e₂ x∈
… | x′ , x≡x′ , x′∈ = subst (_∈FV _) (sym x≡x′) x′∈
-- The predicate Closed′ respects α-equivalence.
α-closed′ : e₁ ≈α e₂ → Closed′ xs e₁ → Closed′ xs e₂
α-closed′ e₁≈e₂ cl x x∉ x∈ =
cl x x∉ (α-∈ (sym-α e₁≈e₂) x∈)
-- The predicate Closed respects α-equivalence.
α-closed : e₁ ≈α e₂ → Closed e₁ → Closed e₂
α-closed = α-closed′
-- Substitution does not necessarily respect α-equivalence.
¬-subst-α :
¬ (∀ {x₁ x₂ e₁ e₂ e₁′ e₂′} →
Alpha (_≡_ [ x₁ ∼ x₂ ]) e₁ e₂ →
e₁′ ≈α e₂′ →
e₁ [ x₁ ← e₁′ ] ≈α e₂ [ x₂ ← e₂′ ])
¬-subst-α subst-α =
not-equal (subst-α e¹≈e² e′≈e′)
where
x¹ = V.name 0
x² = V.name 1
z = V.name 2
e¹ = lambda x¹ (var z)
e² = lambda x² (var z)
e′ = var x¹
e¹≈e² : Alpha (_≡_ [ z ∼ z ]) e¹ e²
e¹≈e² =
lambda (var (inj₂ ( V.distinct-codes→distinct-names (λ ())
, V.distinct-codes→distinct-names (λ ())
, inj₁ (refl , refl)
)))
e′≈e′ : e′ ≈α e′
e′≈e′ = refl-α
not-equal : ¬ e¹ [ z ← e′ ] ≈α e² [ z ← e′ ]
not-equal _ with z V.≟ x¹ | z V.≟ x² | z V.≟ z
not-equal (lambda (var (inj₁ (_ , x²≡x¹)))) | no _ | no _ | yes _ =
from-⊎ (1 Nat.≟ 0) (V.name-injective x²≡x¹)
not-equal (lambda (var (inj₂ (x¹≢x¹ , _)))) | no _ | no _ | yes _ =
x¹≢x¹ refl
not-equal _ | yes z≡x¹ | _ | _ =
from-⊎ (2 Nat.≟ 0) (V.name-injective z≡x¹)
not-equal _ | _ | yes z≡x² | _ =
from-⊎ (2 Nat.≟ 1) (V.name-injective z≡x²)
not-equal _ | _ | _ | no z≢z = z≢z refl
-- TODO: Does substitution of closed terms respect α-equivalence? Does
-- the semantics respect α-equivalence for closed terms?
|
{
"alphanum_fraction": 0.493729036,
"avg_line_length": 28.630480167,
"ext": "agda",
"hexsha": "5d8a5fe57008897de99395978f9ace86336681ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Alpha-equivalence.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Alpha-equivalence.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Alpha-equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 6643,
"size": 13714
}
|
-- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 -v tc.with:100 -v tc.mod.apply:100 #-}
module Issue778b (Param : Set) where
open import Issue778M Param
data D : (Nat → Nat) → Set where
d : D pred → D pred
test : (f : Nat → Nat) → D f → Nat
test .pred (d x) = bla
where bla : Nat
bla with x
... | (d y) = test pred y
|
{
"alphanum_fraction": 0.6016042781,
"avg_line_length": 26.7142857143,
"ext": "agda",
"hexsha": "e7696f5e56b00e928eecc1c784a5a3963ec3f35a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue778b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue778b.agda",
"max_line_length": 121,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue778b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 129,
"size": 374
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Groups.Subgroups.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Subgroups.Normal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where
normalSubgroup : {c : _} {pred : A → Set c} (sub : Subgroup G pred) → Set (a ⊔ c)
normalSubgroup {pred = pred} sub = {g k : A} → pred k → pred (g + (k + Group.inverse G g))
|
{
"alphanum_fraction": 0.6478599222,
"avg_line_length": 39.5384615385,
"ext": "agda",
"hexsha": "36c1d9b06a6a7d2253e14b457079a820e9ace836",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Subgroups/Normal/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Subgroups/Normal/Definition.agda",
"max_line_length": 128,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Subgroups/Normal/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 171,
"size": 514
}
|
------------------------------------------------------------------------------
-- Distributive laws on a binary operation: Lemma 3
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.Lemma3-ATP where
open import DistributiveLaws.Base
------------------------------------------------------------------------------
postulate lemma₃ : ∀ x y z → (x · y) · (z · z) ≡ (x · y) · z
{-# ATP prove lemma₃ #-}
|
{
"alphanum_fraction": 0.3588516746,
"avg_line_length": 34.8333333333,
"ext": "agda",
"hexsha": "d82dfcf18e0d084a37aa5f2073ab2f3cb3c55f4a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/Lemma3-ATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/Lemma3-ATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/Lemma3-ATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 111,
"size": 627
}
|
module nat-tests where
open import eq
open import nat
open import nat-division
open import nat-to-string
open import product
{- you can prove x + 0 ≡ x and 0 + x ≡ x without induction, if you
use this more verbose definition of addition: -}
_+a_ : ℕ → ℕ → ℕ
0 +a 0 = 0
(suc x) +a 0 = (suc x)
0 +a (suc y) = (suc y)
(suc x) +a (suc y) = suc (suc (x +a y))
0+a : ∀ (x : ℕ) → x +a 0 ≡ x
0+a 0 = refl
0+a (suc y) = refl
+a0 : ∀ (x : ℕ) → 0 +a x ≡ x
+a0 0 = refl
+a0 (suc y) = refl
8-div-3-lem : (8 ÷ 3 !! refl) ≡ (2 , 2)
8-div-3-lem = refl
23-div-5-lem : (23 ÷ 5 !! refl) ≡ (4 , 3)
23-div-5-lem = refl
ℕ-to-string-lem : ℕ-to-string 237 ≡ "237"
ℕ-to-string-lem = refl
|
{
"alphanum_fraction": 0.5667655786,
"avg_line_length": 19.8235294118,
"ext": "agda",
"hexsha": "8a9441ee4a98ed32557891ae5cfba7eb2bbd2605",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "nat-tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "nat-tests.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "nat-tests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 299,
"size": 674
}
|
{-# OPTIONS --cubical --safe --exact-split --without-K #-}
-- this depends mainly on agda/cubical, but also uses the standard library for `Function`
module scratch where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Relation.Nullary
open import Cubical.HITs.HitInt renaming (abs to absℤ ; Sign to Sign'; sign to sign')
open import Cubical.HITs.Rational
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming (_+_ to _+ℕ_; _*_ to _*ℕ_)
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Agda.Primitive
open import Function
private
variable
ℓ ℓ' : Level
const₂ : {A B : Set ℓ} {C : Set ℓ'} → C → A → B → C
const₂ c _ _ = c
record FromNat (A : Set ℓ) : Set (lsuc ℓ) where
field
Constraint : ℕ → Set ℓ
fromNat : (n : ℕ) ⦃ _ : Constraint n ⦄ → A
open FromNat ⦃ ... ⦄ public using (fromNat)
{-# BUILTIN FROMNAT fromNat #-}
record FromNeg (A : Set ℓ) : Set (lsuc ℓ) where
field
Constraint : ℕ → Set ℓ
fromNeg : (n : ℕ) ⦃ _ : Constraint n ⦄ → A
open FromNeg ⦃ ... ⦄ public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}
instance
NatFromNat : FromNat ℕ
NatFromNat .FromNat.Constraint _ = Unit
fromNat ⦃ NatFromNat ⦄ n = n
instance
ℤFromNat : FromNat ℤ
ℤFromNat .FromNat.Constraint _ = Unit
fromNat ⦃ ℤFromNat ⦄ n = pos n
instance
ℤFromNeg : FromNeg ℤ
ℤFromNeg .FromNeg.Constraint _ = Unit
fromNeg ⦃ ℤFromNeg ⦄ n = neg n
instance
ℚFromNat : FromNat ℚ
ℚFromNat .FromNat.Constraint _ = Unit
fromNat ⦃ ℚFromNat ⦄ n = int (pos n)
instance
ℚFromNeg : FromNeg ℚ
ℚFromNeg .FromNeg.Constraint _ = Unit
fromNeg ⦃ ℚFromNeg ⦄ n = int (neg n)
record Op< (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infix 5 _<_
field
_<_ : (a : A) → (b : B) → C a b
open Op< ⦃ ... ⦄ public
record Op> (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infix 5 _>_
field
_>_ : (a : A) → (b : B) → C a b
open Op> ⦃ ... ⦄ public
record Op≥ (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infix 5 _≥_
field
_≥_ : (a : A) → (b : B) → C a b
open Op≥ ⦃ ... ⦄ public
record Op≤ (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infix 5 _≤_
field
_≤_ : (a : A) → (b : B) → C a b
open Op≤ ⦃ ... ⦄ public
record Op== (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infix 5 _==_
field
_==_ : (a : A) → (b : B) → C a b
open Op== ⦃ ... ⦄ public
record Op+ (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infixl 7 _+_
field
_+_ : (a : A) → (b : B) → C a b
open Op+ ⦃ ... ⦄ public
record Op- (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infixl 7 _-_
field
_-_ : (a : A) → (b : B) → C a b
open Op- ⦃ ... ⦄ public
record Op* (A B : Set ℓ) (C : A → B → Set ℓ') : Set (ℓ-max ℓ ℓ') where
infixl 8 _*_
field
_*_ : (a : A) → (b : B) → C a b
open Op* ⦃ ... ⦄ public
record OpUnary- (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ-max ℓ ℓ') where
field
-_ : (a : A) → B a
open OpUnary- ⦃ ... ⦄ public
instance
ℕ< : Op< ℕ ℕ (const₂ Bool)
_<_ ⦃ ℕ< ⦄ n m = n less-than m where
_less-than_ : ℕ → ℕ → Bool
zero less-than zero = false
zero less-than suc _ = true
suc _ less-than zero = false
suc a less-than suc b = a less-than b
instance
ℕ> : Op> ℕ ℕ (const₂ Bool)
_>_ ⦃ ℕ> ⦄ n m = n greater-than m where
_greater-than_ : ℕ → ℕ → Bool
zero greater-than zero = false
zero greater-than suc b = false
suc a greater-than zero = true
suc a greater-than suc b = a greater-than b
instance
ℕ≥ : Op≥ ℕ ℕ (const₂ Bool)
_≥_ ⦃ ℕ≥ ⦄ a b = not (a < b)
instance
ℕ≤ : Op≤ ℕ ℕ (const₂ Bool)
_≤_ ⦃ ℕ≤ ⦄ a b = not (a > b)
instance
ℕ== : Op== ℕ ℕ (const₂ Bool)
_==_ ⦃ ℕ== ⦄ a b = a eq b where
_eq_ : ℕ → ℕ → Bool
zero eq zero = true
zero eq suc _ = false
suc _ eq zero = false
suc a eq suc b = a eq b
a<b≡¬a≥b : {a b : ℕ} → a < b ≡ not (a ≥ b)
a<b≡¬a≥b {a} {b} = sym (notnot (a < b))
a>b≡¬a≤b : {a b : ℕ} → a > b ≡ not (a ≤ b)
a>b≡¬a≤b {a} {b} = sym (notnot (a > b))
instance
ℕ+ : Op+ ℕ ℕ (const₂ ℕ)
_+_ ⦃ ℕ+ ⦄ a b = a +ℕ b
instance
ℕ- : Op- ℕ ℕ (λ a b → ⦃ _ : a ≥ b ≡ true ⦄ → ℕ)
_-_ ⦃ ℕ- ⦄ a b = a minus b where
_minus_ : (a : ℕ) → (b : ℕ) → ⦃ _ : a ≥ b ≡ true ⦄ → ℕ
n minus zero = n
_minus_ zero (suc b) ⦃ a≥b ⦄ = ⊥-elim (false≢true a≥b)
(suc a) minus (suc b) = a minus b
instance
ℕ* : Op* ℕ ℕ (const₂ ℕ)
_*_ ⦃ ℕ* ⦄ a b = a *ℕ b
--ℤ---------------
instance
ℤ< : Op< ℤ ℤ (const₂ Bool)
_<_ ⦃ ℤ< ⦄ n m = n less-than m where
_less-than_ : ℤ → ℤ → Bool
pos n less-than pos m = n < m
neg n less-than neg m = n > m
pos _ less-than neg _ = false
neg zero less-than pos zero = false
neg zero less-than pos (suc _) = true
neg (suc _) less-than pos _ = true
pos zero less-than posneg _ = false
pos (suc _) less-than posneg _ = false
neg zero less-than posneg _ = false
neg (suc _) less-than posneg _ = true
posneg _ less-than pos zero = false
posneg _ less-than pos (suc _) = true
posneg _ less-than neg zero = false
posneg _ less-than neg (suc _) = false
posneg _ less-than posneg _ = false
instance
ℤ> : Op> ℤ ℤ (const₂ Bool)
_>_ ⦃ ℤ> ⦄ n m = m < n
instance
ℤ≥ : Op≥ ℤ ℤ (const₂ Bool)
_≥_ ⦃ ℤ≥ ⦄ a b = not (a < b)
instance
ℤ≤ : Op≤ ℤ ℤ (const₂ Bool)
_≤_ ⦃ ℤ≤ ⦄ a b = not (a > b)
instance
ℤ== : Op== ℤ ℤ (const₂ Bool)
_==_ ⦃ ℤ== ⦄ a b = a eq b where
_eq_ : ℤ → ℤ → Bool
pos n eq pos m = n == m
neg n eq neg m = n == m
pos zero eq neg zero = true
pos zero eq neg (suc _) = false
pos (suc _) eq neg _ = false
neg zero eq pos zero = true
neg zero eq pos (suc _) = false
neg (suc _) eq pos _ = false
pos zero eq posneg _ = true
pos (suc _) eq posneg _ = false
neg zero eq posneg _ = true
neg (suc _) eq posneg _ = false
posneg _ eq pos zero = true
posneg _ eq pos (suc _) = false
posneg _ eq neg zero = true
posneg _ eq neg (suc _) = false
posneg _ eq posneg _ = true
instance
ℤ+ : Op+ ℤ ℤ (const₂ ℤ)
_+_ ⦃ ℤ+ ⦄ a b = a +ℤ b
instance
ℤ- : Op- ℤ ℤ (const₂ ℤ)
_-_ ⦃ ℤ- ⦄ a (pos n) = a + (neg n)
_-_ ⦃ ℤ- ⦄ a (neg n) = a + (pos n)
_-_ ⦃ ℤ- ⦄ a (posneg _) = a
instance
ℤ* : Op* ℤ ℤ (const₂ ℤ)
_*_ ⦃ ℤ* ⦄ a b = a *ℤ b
instance
ℤunary- : OpUnary- ℤ (const ℤ)
-_ ⦃ ℤunary- ⦄ (pos n) = neg n
-_ ⦃ ℤunary- ⦄ (neg n) = pos n
-_ ⦃ ℤunary- ⦄ (posneg i) = (sym posneg) i
-- use of this lemma could be made automatic by changing `path` in ℚ to take instance arguments instead of implicit arguments.
-- `nonzero-prod` would then be an instance of `¬ (q * r ≡ pos 0)`
-- however currently, since `¬ (q * r ≡ pos 0)` is a function type, it is not allowed as an instance argument type
nonzero-prod : (q r : ℤ) → ¬ (q ≡ 0) → ¬ (r ≡ 0) → ¬ (q * r ≡ 0)
nonzero-prod (pos (suc n)) (pos (suc m)) _ _ q*r≡0 = snotz (cong absℤ q*r≡0)
nonzero-prod (pos (suc n)) (neg (suc m)) _ _ q*r≡0 = snotz (cong absℤ q*r≡0)
nonzero-prod (neg (suc n)) (pos (suc m)) _ _ q*r≡0 = snotz (cong absℤ q*r≡0)
nonzero-prod (neg (suc n)) (neg (suc m)) _ _ q*r≡0 = snotz (cong absℤ q*r≡0)
nonzero-prod (pos zero) _ q≢0 _ _ = q≢0 refl
nonzero-prod (neg zero) _ q≢0 _ _ = q≢0 (sym posneg)
nonzero-prod (pos (suc _)) (pos zero) _ r≢0 _ = r≢0 refl
nonzero-prod (pos (suc _)) (neg zero) _ r≢0 _ = r≢0 (sym posneg)
nonzero-prod (neg (suc _)) (pos zero) _ r≢0 _ = r≢0 refl
nonzero-prod (neg (suc _)) (neg zero) _ r≢0 _ = r≢0 (sym posneg)
nonzero-prod q@(pos (suc _)) (posneg i) _ r≢0 _ = r≢0 λ j → posneg (i ∧ ~ j)
nonzero-prod q@(neg (suc _)) (posneg i) _ r≢0 _ = r≢0 λ j → posneg (i ∧ ~ j)
nonzero-prod (posneg i) _ q≢0 _ _ = q≢0 λ j → posneg (i ∧ ~ j)
0≡m*ℤ0 : (m : ℤ) → 0 ≡ m * 0
0≡m*ℤ0 (pos n) = cong pos $ 0≡m*0 n
0≡m*ℤ0 (neg zero) = refl
0≡m*ℤ0 (neg (suc n)) = posneg ∙ (cong ℤ.neg $ 0≡m*0 n)
0≡m*ℤ0 (posneg i) = refl
0≡0*ℤm : (m : ℤ) → 0 ≡ 0 * m
0≡0*ℤm (pos n) = refl
0≡0*ℤm (neg zero) = refl
0≡0*ℤm (neg (suc n)) = posneg
0≡0*ℤm (posneg i) = refl
m≡0+ℤm : (m : ℤ) → m ≡ 0 + m
m≡0+ℤm (pos zero) = refl
m≡0+ℤm (neg zero) = sym posneg
m≡0+ℤm (posneg i) = λ j → posneg (i ∧ ~ j)
m≡0+ℤm (pos (suc n)) = cong sucℤ $ m≡0+ℤm (pos n)
m≡0+ℤm (neg (suc n)) = cong predℤ $ m≡0+ℤm (neg n)
m≡m*1 : (m : ℕ) → m ≡ m * 1
m≡m*1 zero = refl
m≡m*1 (suc m) = cong suc $ m≡m*1 m
m≡m*ℤ1 : (m : ℤ) → m ≡ m * 1
m≡m*ℤ1 (pos zero) = refl
m≡m*ℤ1 (pos (suc n)) = cong (ℤ.pos ∘ suc) $ m≡m*1 n
m≡m*ℤ1 (neg zero) = sym posneg
m≡m*ℤ1 (neg (suc n)) = cong (ℤ.neg ∘ suc) $ m≡m*1 n
m≡m*ℤ1 (posneg i) = λ j → posneg (i ∧ ~ j)
ℤ+-pred : (m n : ℤ) → m + predℤ n ≡ predℤ (m + n)
ℤ+-pred m (pos zero) = refl
ℤ+-pred m (pos (suc n)) = sym $ predSucℤ (m + pos n)
ℤ+-pred m (neg n) = refl
ℤ+-pred m (posneg i) = refl
ℤ+-suc : (m n : ℤ) → m + sucℤ n ≡ sucℤ (m + n)
ℤ+-suc m (pos zero) = refl
ℤ+-suc m (pos (suc n)) = refl
ℤ+-suc m (neg zero) = refl
ℤ+-suc m (neg (suc n)) = sym $ sucPredℤ (m + neg n)
ℤ+-suc m (posneg i) = refl
ℤ+-comm-0 : (z : ℤ) → (i : I) → posneg i + z ≡ z
ℤ+-comm-0 z i = cong (_+ z) (λ j → posneg (i ∧ ~ j)) ∙ sym (m≡0+ℤm z)
ℤ+-comm-0-0 : (i j : I) → posneg i ≡ posneg j
ℤ+-comm-0-0 i j = λ k → posneg ((~ k ∧ i) ∨ (k ∧ j))
ℤ+-comm : (m n : ℤ) → m + n ≡ n + m
ℤ+-comm (pos zero) (pos zero) = ℤ+-comm-0-0 i0 i0
ℤ+-comm (neg zero) (neg zero) = ℤ+-comm-0-0 i1 i1
ℤ+-comm (pos zero) (neg zero) = ℤ+-comm-0-0 i0 i1
ℤ+-comm (neg zero) (pos zero) = ℤ+-comm-0-0 i1 i0
ℤ+-comm (posneg i) (pos zero) = ℤ+-comm-0-0 i i0
ℤ+-comm (posneg i) (neg zero) = ℤ+-comm-0-0 i i1
ℤ+-comm (pos zero) (posneg j) = ℤ+-comm-0-0 i0 j
ℤ+-comm (neg zero) (posneg j) = ℤ+-comm-0-0 i1 j
ℤ+-comm (posneg i) (posneg j) = ℤ+-comm-0-0 i j
ℤ+-comm (pos zero) (pos (suc n)) = cong sucℤ $ ℤ+-comm-0 (pos n) i0
ℤ+-comm (neg zero) (pos (suc n)) = cong sucℤ $ ℤ+-comm-0 (pos n) i1
ℤ+-comm (posneg i) (pos (suc n)) = cong sucℤ $ ℤ+-comm-0 (pos n) i
ℤ+-comm (pos zero) (neg (suc n)) = cong predℤ $ ℤ+-comm-0 (neg n) i0
ℤ+-comm (neg zero) (neg (suc n)) = cong predℤ $ ℤ+-comm-0 (neg n) i1
ℤ+-comm (posneg i) (neg (suc n)) = cong predℤ $ ℤ+-comm-0 (neg n) i
ℤ+-comm (pos (suc m)) (pos zero) = cong sucℤ $ sym $ ℤ+-comm-0 (pos m) i0
ℤ+-comm (pos (suc m)) (neg zero) = cong sucℤ $ sym $ ℤ+-comm-0 (pos m) i1
ℤ+-comm (pos (suc m)) (posneg i) = cong sucℤ $ sym $ ℤ+-comm-0 (pos m) i
ℤ+-comm (neg (suc m)) (pos zero) = cong predℤ $ sym $ ℤ+-comm-0 (neg m) i0
ℤ+-comm (neg (suc m)) (neg zero) = cong predℤ $ sym $ ℤ+-comm-0 (neg m) i1
ℤ+-comm (neg (suc m)) (posneg i) = cong predℤ $ sym $ ℤ+-comm-0 (neg m) i
ℤ+-comm (pos (suc m)) (pos (suc n)) = cong sucℤ
( pos (suc m) + pos n ≡⟨ ℤ+-comm (pos (suc m)) (pos n) ⟩
pos n + pos (suc m) ≡⟨ refl ⟩
sucℤ (pos n + pos m) ≡⟨ cong sucℤ $ ℤ+-comm (pos n) (pos m) ⟩
sucℤ (pos m + pos n) ≡⟨ refl ⟩
pos m + pos (suc n) ≡⟨ ℤ+-comm (pos m) (pos (suc n)) ⟩
pos (suc n) + pos m ∎
)
ℤ+-comm (neg (suc m)) (pos (suc n)) =
( sucℤ (neg (suc m) + pos n) ≡⟨ cong sucℤ $ ℤ+-comm (neg (suc m)) (pos n) ⟩
sucℤ (pos n + neg (suc m)) ≡⟨ refl ⟩
sucℤ (predℤ (pos n + neg m)) ≡⟨ sucPredℤ _ ⟩
pos n + neg m ≡⟨ ℤ+-comm (pos n) (neg m) ⟩
neg m + pos n ≡⟨ sym $ predSucℤ _ ⟩
predℤ (sucℤ (neg m + pos n)) ≡⟨ refl ⟩
predℤ (neg m + pos (suc n)) ≡⟨ cong predℤ $ ℤ+-comm (neg m) (pos (suc n)) ⟩
predℤ (pos (suc n) + neg m) ∎
)
ℤ+-comm (pos (suc m)) (neg (suc n)) =
( predℤ (pos (suc m) + neg n) ≡⟨ cong predℤ $ ℤ+-comm (pos (suc m)) (neg n) ⟩
predℤ (neg n + pos (suc m)) ≡⟨ refl ⟩
predℤ (sucℤ (neg n + pos m)) ≡⟨ predSucℤ _ ⟩
neg n + pos m ≡⟨ ℤ+-comm (neg n) (pos m) ⟩
pos m + neg n ≡⟨ sym $ sucPredℤ _ ⟩
sucℤ (predℤ (pos m + neg n)) ≡⟨ refl ⟩
sucℤ (pos m + neg (suc n)) ≡⟨ cong sucℤ $ ℤ+-comm (pos m) (neg (suc n)) ⟩
sucℤ (neg (suc n) + pos m) ∎
)
ℤ+-comm (neg (suc m)) (neg (suc n)) = cong predℤ
( neg (suc m) + neg n ≡⟨ ℤ+-comm (neg (suc m)) (neg n) ⟩
neg n + neg (suc m) ≡⟨ refl ⟩
predℤ (neg n + neg m) ≡⟨ cong predℤ $ ℤ+-comm (neg n) (neg m) ⟩
predℤ (neg m + neg n) ≡⟨ refl ⟩
neg m + neg (suc n) ≡⟨ ℤ+-comm (neg m) (neg (suc n)) ⟩
neg (suc n) + neg m ∎
)
ℤ+-assoc : (m n o : ℤ) → m + (n + o) ≡ m + n + o
ℤ+-assoc m n (pos zero) = refl
ℤ+-assoc m n (pos (suc o)) =
( m + sucℤ (n + pos o) ≡⟨ ℤ+-suc m (n + pos o) ⟩
sucℤ (m + (n + pos o)) ≡⟨ cong sucℤ $ ℤ+-assoc m n (pos o) ⟩
sucℤ (m + n + pos o) ∎
)
ℤ+-assoc m n (neg zero) = refl
ℤ+-assoc m n (neg (suc o)) =
( m + predℤ (n + neg o) ≡⟨ ℤ+-pred m (n + neg o) ⟩
predℤ (m + (n + neg o)) ≡⟨ cong predℤ $ ℤ+-assoc m n (neg o) ⟩
predℤ (m + n + neg o) ∎
)
ℤ+-assoc m n (posneg i) = refl
lemma : (m n : ℕ) → n + m * suc n ≡ m + n * suc m
lemma m n =
( n + m * suc n ≡⟨ cong (n +_) $ *-suc m n ⟩
n + (m + m * n) ≡⟨ +-assoc n m (m * n) ⟩
n + m + m * n ≡⟨ cong (_+ m * n) $ +-comm n m ⟩
m + n + m * n ≡⟨ cong (m + n +_) $ *-comm m n ⟩
m + n + n * m ≡⟨ sym $ +-assoc m n (n * m) ⟩
m + (n + n * m) ≡⟨ cong (m +_) $ sym $ *-suc n m ⟩
m + n * suc m ∎
)
ℤ*-comm : (m n : ℤ) → m * n ≡ n * m
ℤ*-comm (pos zero) (pos zero) = refl
ℤ*-comm (neg zero) (pos zero) = refl
ℤ*-comm (posneg i) (pos zero) = refl
ℤ*-comm (pos zero) (neg zero) = refl
ℤ*-comm (neg zero) (neg zero) = refl
ℤ*-comm (posneg i) (neg zero) = refl
ℤ*-comm (pos zero) (posneg i) = refl
ℤ*-comm (neg zero) (posneg i) = refl
ℤ*-comm (posneg i) (posneg j) = refl
ℤ*-comm (pos zero) (pos (suc n)) = cong pos $ 0≡m*0 n
ℤ*-comm (neg zero) (pos (suc n)) = cong pos $ 0≡m*0 n
ℤ*-comm (posneg i) (pos (suc n)) = cong pos $ 0≡m*0 n
ℤ*-comm (pos zero) (neg (suc n)) = cong neg $ 0≡m*0 n
ℤ*-comm (neg zero) (neg (suc n)) = cong neg $ 0≡m*0 n
ℤ*-comm (posneg i) (neg (suc n)) = cong neg $ 0≡m*0 n
ℤ*-comm (pos (suc m)) (pos zero) = cong pos $ sym $ 0≡m*0 m
ℤ*-comm (neg (suc m)) (pos zero) = cong neg $ sym $ 0≡m*0 m
ℤ*-comm (pos (suc m)) (neg zero) = cong pos $ sym $ 0≡m*0 m
ℤ*-comm (neg (suc m)) (neg zero) = cong neg $ sym $ 0≡m*0 m
ℤ*-comm (pos (suc m)) (posneg i) = cong pos $ sym $ 0≡m*0 m
ℤ*-comm (neg (suc m)) (posneg i) = cong neg $ sym $ 0≡m*0 m
ℤ*-comm (pos (suc m)) (neg (suc n)) = cong (ℤ.neg ∘ suc) $ lemma m n
ℤ*-comm (neg (suc m)) (neg (suc n)) = cong (ℤ.pos ∘ suc) $ lemma m n
ℤ*-comm (pos (suc m)) (pos (suc n)) = cong (ℤ.pos ∘ suc) $ lemma m n
ℤ*-comm (neg (suc m)) (pos (suc n)) = cong (ℤ.neg ∘ suc) $ lemma m n
neg-distrib-+ : (m n : ℕ) → neg (m + n) ≡ neg m + neg n
neg-distrib-+ m zero = cong neg $ +-zero m
neg-distrib-+ m (suc n) =
( neg (m + suc n) ≡⟨ cong neg $ +-suc m n ⟩
predℤ (neg (m + n)) ≡⟨ cong predℤ $ neg-distrib-+ m n ⟩
predℤ (neg m + neg n) ∎
)
pos-distrib-+ : (m n : ℕ) → pos (m + n) ≡ pos m + pos n
pos-distrib-+ m zero = cong pos $ +-zero m
pos-distrib-+ m (suc n) =
( pos (m + suc n) ≡⟨ cong pos $ +-suc m n ⟩
sucℤ (pos (m + n)) ≡⟨ cong sucℤ $ pos-distrib-+ m n ⟩
sucℤ (pos m + pos n) ∎
)
lemma2 : (m n : ℕ) → suc (n + m * suc (suc n)) ≡ suc m + (n + m * suc n)
lemma2 m n =
( suc (n + m * suc (suc n)) ≡⟨ cong (suc ∘ (n +_)) $ *-suc m (suc n) ⟩
suc (n + (m + m * suc n)) ≡⟨ cong (suc ∘ (n +_)) $ +-comm m (m * suc n) ⟩
suc (n + (m * suc n + m)) ≡⟨ cong (suc) $ +-assoc n (m * suc n) m ⟩
suc (n + m * suc n + m) ≡⟨ sym $ +-suc (n + m * suc n) m ⟩
n + m * suc n + suc m ≡⟨ +-comm (n + m * suc n) (suc m) ⟩
suc m + (n + m * suc n) ∎
)
lemma3 : (m : ℤ) → (i : I) → m * 1 ≡ (m + m * posneg i)
lemma3 m i =
( m * 1 ≡⟨ sym $ m≡m*ℤ1 m ⟩
m ≡⟨ refl ⟩
m + 0 ≡⟨ cong (m +_) $ 0≡m*ℤ0 m ⟩
m + m * 0 ≡⟨ cong (λ x → m + m * x) (λ j → posneg (i ∧ j)) ⟩
m + m * posneg i ∎
)
ℤ-m+-m≡0 : (m : ℕ) → pos m + neg m ≡ 0
ℤ-m+-m≡0 zero = refl
ℤ-m+-m≡0 (suc m) =
( predℤ (pos (suc m) + neg m) ≡⟨ cong predℤ $ ℤ+-comm (pos (suc m)) (neg m) ⟩
predℤ (neg m + pos (suc m)) ≡⟨ refl ⟩
predℤ (sucℤ (neg m + pos m)) ≡⟨ predSucℤ _ ⟩
neg m + pos m ≡⟨ ℤ+-comm (neg m) (pos m) ⟩
pos m + neg m ≡⟨ ℤ-m+-m≡0 m ⟩
0 ∎
)
ℤ--m+m≡0 : (m : ℕ) → neg m + pos m ≡ 0
ℤ--m+m≡0 m = ℤ+-comm (neg m) (pos m) ∙ ℤ-m+-m≡0 m
ℤ*-suc : (m n : ℤ) → m * sucℤ n ≡ m + m * n
ℤ*-suc m (pos zero) = lemma3 m i0
ℤ*-suc m (neg zero) = lemma3 m i1
ℤ*-suc m (posneg i) = lemma3 m i
ℤ*-suc (pos zero) (pos (suc n)) = refl
ℤ*-suc (neg zero) (pos (suc n)) = posneg
ℤ*-suc (posneg i) (pos (suc n)) = λ j → posneg (i ∧ j)
ℤ*-suc (pos zero) (neg (suc zero)) = refl
ℤ*-suc (pos zero) (neg (suc (suc n))) = sym posneg
ℤ*-suc (neg zero) (neg (suc zero)) = posneg
ℤ*-suc (neg zero) (neg (suc (suc n))) = refl
ℤ*-suc (posneg i) (neg (suc zero)) = λ j → posneg (i ∧ j)
ℤ*-suc (posneg i) (neg (suc (suc n))) = λ j → posneg (i ∨ ~ j)
ℤ*-suc (pos (suc m)) (neg (suc zero)) =
( pos (suc m) * -0 ≡⟨ cong (pos (suc m) *_) $ sym $ posneg ⟩
pos (suc m) * 0 ≡⟨ sym $ 0≡m*ℤ0 (pos (suc m)) ⟩
0 ≡⟨ sym $ ℤ--m+m≡0 m ⟩
neg m + pos m ≡⟨ sym $ predSucℤ _ ⟩
predℤ (sucℤ (neg m + pos m)) ≡⟨ refl ⟩
predℤ (neg m + pos (suc m)) ≡⟨ cong predℤ $ ℤ+-comm (neg m) (pos (suc m)) ⟩
predℤ (pos (suc m) + neg m) ≡⟨ cong (predℤ ∘ (pos (suc m) +_) ∘ ℤ.neg) $ m≡m*1 m ⟩
predℤ (pos (suc m) + neg (m * 1)) ∎
)
ℤ*-suc (pos (suc m)) (neg (suc (suc n))) = cong predℤ $ sym
( predℤ (pos (suc m) + neg (n + m * suc (suc n))) ≡⟨ cong predℤ $ ℤ+-comm (pos (suc m)) (neg (n + m * suc (suc n))) ⟩
predℤ (neg (n + m * suc (suc n)) + pos (suc m)) ≡⟨ refl ⟩
predℤ (sucℤ (neg (n + m * suc (suc n)) + pos m)) ≡⟨ predSucℤ (neg (n + m * suc (suc n)) + pos m) ⟩
neg (n + m * suc (suc n)) + pos m ≡⟨ cong ((_+ pos m) ∘ ℤ.neg ∘ (n +_)) $ *-suc m (suc n) ⟩
neg (n + (m + m * suc n)) + pos m ≡⟨ cong ((_+ pos m) ∘ ℤ.neg ∘ (n +_)) $ +-comm m (m * suc n) ⟩
neg (n + (m * suc n + m)) + pos m ≡⟨ cong ((_+ pos m) ∘ ℤ.neg) $ +-assoc n (m * suc n) m ⟩
neg (n + m * suc n + m) + pos m ≡⟨ cong (_+ pos m) $ neg-distrib-+ (n + m * suc n) m ⟩
neg (n + m * suc n) + neg m + pos m ≡⟨ sym $ ℤ+-assoc (neg (n + m * suc n)) (neg m) (pos m) ⟩
neg (n + m * suc n) + (neg m + pos m) ≡⟨ cong (neg (n + m * suc n) +_) $ ℤ--m+m≡0 m ⟩
neg (n + m * suc n) + 0 ≡⟨ refl ⟩
neg (n + m * suc n) ∎
)
ℤ*-suc (neg (suc m)) (neg (suc zero)) =
( neg (suc m) * -0 ≡⟨ cong (neg (suc m) *_) $ sym $ posneg ⟩
neg (suc m) * 0 ≡⟨ sym $ 0≡m*ℤ0 (neg (suc m)) ⟩
0 ≡⟨ sym $ ℤ-m+-m≡0 m ⟩
pos m + neg m ≡⟨ sym $ sucPredℤ (pos m + neg m) ⟩
sucℤ (predℤ (pos m + neg m)) ≡⟨ refl ⟩
sucℤ (pos m + neg (suc m)) ≡⟨ cong sucℤ $ ℤ+-comm (pos m) (neg (suc m)) ⟩
sucℤ (neg (suc m) + pos m) ≡⟨ cong (sucℤ ∘ (neg (suc m) +_) ∘ ℤ.pos) $ m≡m*1 m ⟩
sucℤ (neg (suc m) + pos (m * 1)) ∎
)
ℤ*-suc (neg (suc m)) (neg (suc (suc n))) = cong sucℤ $ sym
( sucℤ (predℤ (neg m) + pos (n + m * suc (suc n))) ≡⟨ cong sucℤ $ ℤ+-comm (predℤ (neg m)) (pos (n + m * suc (suc n))) ⟩
sucℤ (pos (n + m * suc (suc n)) + predℤ (neg m)) ≡⟨ cong sucℤ $ ℤ+-pred (pos (n + m * suc (suc n))) (neg m) ⟩
sucℤ (predℤ (pos (n + m * suc (suc n)) + neg m)) ≡⟨ sucPredℤ _ ⟩
pos (n + m * suc (suc n)) + neg m ≡⟨ cong ((_+ neg m) ∘ ℤ.pos ∘ (n +_)) $ *-suc m (suc n) ⟩
pos (n + (m + m * suc n)) + neg m ≡⟨ cong ((_+ neg m) ∘ ℤ.pos) $ +-assoc n m (m * suc n) ⟩
pos (n + m + m * suc n) + neg m ≡⟨ cong ((_+ neg m) ∘ ℤ.pos ∘ (_+ m * suc n)) $ +-comm n m ⟩
pos (m + n + m * suc n) + neg m ≡⟨ cong ((_+ neg m) ∘ ℤ.pos) $ sym $ +-assoc m n (m * suc n) ⟩
pos (m + (n + m * suc n)) + neg m ≡⟨ cong (_+ neg m) $ pos-distrib-+ m (n + m * suc n) ⟩
pos m + pos (n + m * suc n) + neg m ≡⟨ cong (_+ neg m) $ ℤ+-comm (pos m) (pos (n + m * suc n)) ⟩
pos (n + m * suc n) + pos m + neg m ≡⟨ sym $ ℤ+-assoc (pos (n + m * suc n)) (pos m) (neg m) ⟩
pos (n + m * suc n) + (pos m + neg m) ≡⟨ cong (pos (n + m * suc n) +_) $ ℤ-m+-m≡0 m ⟩
pos (n + m * suc n) + 0 ≡⟨ refl ⟩
pos (n + m * suc n) ∎
)
ℤ*-suc (pos (suc m)) (pos (suc n)) = cong sucℤ
( pos (suc (n + m * suc (suc n))) ≡⟨ cong ℤ.pos $ lemma2 m n ⟩
pos (suc m + (n + m * suc n)) ≡⟨ pos-distrib-+ (suc m) (n + m * suc n) ⟩
pos (suc m) + pos (n + m * suc n) ∎
)
ℤ*-suc (neg (suc m)) (pos (suc n)) = cong predℤ
( neg (suc (n + m * suc (suc n))) ≡⟨ cong ℤ.neg $ lemma2 m n ⟩
neg (suc m + (n + m * suc n)) ≡⟨ neg-distrib-+ (suc m) (n + m * suc n) ⟩
neg (suc m) + neg (n + m * suc n) ∎
)
lemma4 : (m : ℕ) → neg (suc (m * 1)) ≡ predℤ (pos (m * 0) + neg m)
lemma4 m = cong predℤ
( neg (m * 1) ≡⟨ cong ℤ.neg $ sym $ m≡m*1 m ⟩
neg m ≡⟨ m≡0+ℤm _ ⟩
pos 0 + neg m ≡⟨ cong ((_+ neg m) ∘ ℤ.pos) $ 0≡m*0 m ⟩
pos (m * 0) + neg m ∎
)
lemma5 : (m : ℕ) → pos (suc (m * 1)) ≡ sucℤ (neg (m * 0) + pos m)
lemma5 m = cong sucℤ
( pos (m * 1) ≡⟨ cong ℤ.pos $ sym $ m≡m*1 m ⟩
pos m ≡⟨ m≡0+ℤm _ ⟩
0 + pos m ≡⟨ cong (_+ pos m) posneg ⟩
neg 0 + pos m ≡⟨ cong ((_+ pos m) ∘ ℤ.neg) $ 0≡m*0 m ⟩
neg (m * 0) + pos m ∎
)
lemma6 : (m n : ℕ) → n + m * suc (suc n) ≡ m + (n + m * suc n)
lemma6 m n =
( n + m * suc (suc n) ≡⟨ cong (n +_) $ *-suc m (suc n) ⟩
n + (m + m * suc n) ≡⟨ +-assoc n m (m * suc n) ⟩
n + m + m * suc n ≡⟨ cong (_+ m * suc n) $ +-comm n m ⟩
m + n + m * suc n ≡⟨ sym $ +-assoc m n (m * suc n) ⟩
m + (n + m * suc n) ∎
)
lemma7 : (m n : ℕ) → m + (n + m * n) ≡ n + m * suc n
lemma7 m n =
( m + (n + m * n) ≡⟨ +-assoc m n (m * n) ⟩
m + n + m * n ≡⟨ cong (_+ m * n) $ +-comm m n ⟩
n + m + m * n ≡⟨ sym $ +-assoc n m (m * n) ⟩
n + (m + m * n) ≡⟨ cong (n +_) $ sym $ *-suc m n ⟩
n + m * suc n ∎
)
ℤ*-pred : (m n : ℤ) → m * predℤ n ≡ m * n - m
ℤ*-pred (pos zero) (pos zero) = sym posneg
ℤ*-pred (neg zero) (pos zero) = sym posneg
ℤ*-pred (posneg i) (pos zero) = sym posneg
ℤ*-pred (pos zero) (neg zero) = sym posneg
ℤ*-pred (neg zero) (neg zero) = sym posneg
ℤ*-pred (posneg i) (neg zero) = sym posneg
ℤ*-pred (pos zero) (posneg i) = sym posneg
ℤ*-pred (neg zero) (posneg i) = sym posneg
ℤ*-pred (posneg i) (posneg j) = sym posneg
ℤ*-pred (pos (suc m)) (pos zero) = lemma4 m
ℤ*-pred (pos (suc m)) (neg zero) = lemma4 m
ℤ*-pred (pos (suc m)) (posneg i) = lemma4 m
ℤ*-pred (neg (suc m)) (pos zero) = lemma5 m
ℤ*-pred (neg (suc m)) (neg zero) = lemma5 m
ℤ*-pred (neg (suc m)) (posneg i) = lemma5 m
ℤ*-pred (pos zero) (pos (suc n)) = refl
ℤ*-pred (neg zero) (pos (suc n)) = refl
ℤ*-pred (posneg i) (pos (suc n)) = refl
ℤ*-pred (pos zero) (neg (suc n)) = refl
ℤ*-pred (neg zero) (neg (suc n)) = refl
ℤ*-pred (posneg i) (neg (suc n)) = refl
ℤ*-pred (pos (suc m)) (pos (suc n)) =
( pos (n + m * n) ≡⟨ m≡0+ℤm _ ⟩
0 + pos (n + m * n) ≡⟨ cong (_+ pos (n + m * n)) $ sym $ ℤ--m+m≡0 m ⟩
neg m + pos m + pos (n + m * n) ≡⟨ sym $ ℤ+-assoc (neg m) (pos m) (pos (n + m * n)) ⟩
neg m + (pos m + pos (n + m * n)) ≡⟨ cong (neg m +_) $ sym $ pos-distrib-+ m (n + m * n) ⟩
neg m + pos (m + (n + m * n)) ≡⟨ cong ((neg m +_) ∘ ℤ.pos) $ lemma7 m n ⟩
neg m + pos (n + m * suc n) ≡⟨ cong (neg m +_) $ sym $ predSucℤ (pos (n + m * suc n)) ⟩
neg m + predℤ (sucℤ (pos (n + m * suc n))) ≡⟨ ℤ+-pred (neg m) (sucℤ (pos (n + m * suc n))) ⟩
predℤ (neg m + sucℤ (pos (n + m * suc n))) ≡⟨ cong predℤ $ ℤ+-comm (neg m) (sucℤ (pos (n + m * suc n))) ⟩
predℤ (sucℤ (pos (n + m * suc n)) + neg m) ∎
)
ℤ*-pred (neg (suc m)) (pos (suc n)) =
( neg (n + m * n) ≡⟨ m≡0+ℤm _ ⟩
0 + neg (n + m * n) ≡⟨ cong (_+ neg (n + m * n)) $ sym $ ℤ-m+-m≡0 m ⟩
pos m + neg m + neg (n + m * n) ≡⟨ sym $ ℤ+-assoc (pos m) (neg m) (neg (n + m * n)) ⟩
pos m + (neg m + neg (n + m * n)) ≡⟨ cong (pos m +_) $ sym $ neg-distrib-+ m (n + m * n) ⟩
pos m + neg (m + (n + m * n)) ≡⟨ cong ((pos m +_) ∘ ℤ.neg) $ lemma7 m n ⟩
pos m + neg (n + m * suc n) ≡⟨ cong (pos m +_) $ sym $ sucPredℤ (neg (n + m * suc n)) ⟩
pos m + sucℤ (predℤ (neg (n + m * suc n))) ≡⟨ ℤ+-suc (pos m) (predℤ (neg (n + m * suc n))) ⟩
sucℤ (pos m + predℤ (neg (n + m * suc n))) ≡⟨ cong sucℤ $ ℤ+-comm (pos m) (predℤ (neg (n + m * suc n))) ⟩
sucℤ (predℤ (neg (n + m * suc n)) + pos m) ∎
)
ℤ*-pred (pos (suc m)) (neg (suc n)) = cong predℤ
( predℤ (neg (n + m * suc (suc n))) ≡⟨ cong (predℤ ∘ ℤ.neg) $ lemma6 m n ⟩
predℤ (neg (m + (n + m * suc n))) ≡⟨ cong predℤ $ neg-distrib-+ m (n + m * suc n) ⟩
predℤ (neg m + neg (n + m * suc n)) ≡⟨ ℤ+-pred (neg m) (neg (n + m * suc n)) ⟩
neg m + predℤ (neg (n + m * suc n)) ≡⟨ ℤ+-comm (neg m) (predℤ (neg (n + m * suc n))) ⟩
predℤ (neg (n + m * suc n)) + neg m ∎
)
ℤ*-pred (neg (suc m)) (neg (suc n)) = cong sucℤ
( sucℤ (pos (n + m * suc (suc n))) ≡⟨ cong (sucℤ ∘ ℤ.pos) $ lemma6 m n ⟩
sucℤ (pos (m + (n + m * suc n))) ≡⟨ cong sucℤ $ pos-distrib-+ m (n + m * suc n) ⟩
sucℤ (pos m + pos (n + m * suc n)) ≡⟨ sym $ ℤ+-suc (pos m) (pos (n + m * suc n)) ⟩
pos m + sucℤ (pos (n + m * suc n)) ≡⟨ ℤ+-comm (pos m) (sucℤ (pos (n + m * suc n))) ⟩
sucℤ (pos (n + m * suc n)) + pos m ∎
)
lemma-ℤ*+-right-distrib : ∀ i → (q r : ℤ) → (q + r) * posneg i ≡ q * posneg i + r * posneg i
lemma-ℤ*+-right-distrib i q r =
( (q + r) * 0 ≡⟨ sym $ 0≡m*ℤ0 (q + r) ⟩
0 ≡⟨ refl ⟩
0 + 0 ≡⟨ cong (0 +_) $ 0≡m*ℤ0 r ⟩
0 + (r * 0) ≡⟨ cong (_+ (r * 0)) $ 0≡m*ℤ0 q ⟩
(q * 0) + (r * 0) ∎
)
ℤ*+-right-distrib : (q r s : ℤ) → (q + r) * s ≡ q * s + r * s
ℤ*+-right-distrib q r (pos zero) = lemma-ℤ*+-right-distrib i0 q r
ℤ*+-right-distrib q r (neg zero) = lemma-ℤ*+-right-distrib i1 q r
ℤ*+-right-distrib q r (posneg i) = lemma-ℤ*+-right-distrib i q r
ℤ*+-right-distrib q r (pos (suc n)) =
( (q + r) * sucℤ (pos n) ≡⟨ ℤ*-suc (q + r) (pos n) ⟩
q + r + (q + r) * pos n ≡⟨ cong (q + r +_) $ ℤ*+-right-distrib q r (pos n) ⟩
q + r + (q * pos n + r * pos n) ≡⟨ ℤ+-assoc (q + r) (q * pos n) (r * pos n) ⟩
q + r + q * pos n + r * pos n ≡⟨ cong (_+ r * pos n) $ sym $ ℤ+-assoc q r (q * pos n) ⟩
q + (r + q * pos n) + r * pos n ≡⟨ cong ((_+ r * pos n) ∘ (q +_)) $ ℤ+-comm r (q * pos n) ⟩
q + (q * pos n + r) + r * pos n ≡⟨ cong (_+ r * pos n) $ ℤ+-assoc q (q * pos n) r ⟩
q + q * pos n + r + r * pos n ≡⟨ sym $ ℤ+-assoc (q + q * pos n) r (r * pos n) ⟩
q + q * pos n + (r + r * pos n) ≡⟨ cong (q + q * pos n +_) $ sym $ ℤ*-suc r (pos n) ⟩
q + q * pos n + r * sucℤ (pos n) ≡⟨ cong (_+ r * sucℤ (pos n)) $ sym $ ℤ*-suc q (pos n) ⟩
q * sucℤ (pos n) + r * sucℤ (pos n) ∎
)
ℤ*+-right-distrib q r (neg (suc n)) =
( (q + r) * predℤ (neg n) ≡⟨ ℤ*-pred (q + r) (neg n) ⟩
(q + r) * (neg n) - (q + r) ≡⟨ cong (_- (q + r)) $ ℤ*+-right-distrib q r (neg n) ⟩
q * neg n + r * neg n - (q + r) ≡⟨ {!!} ⟩ -- TODO: needs things like a + (- b) = a - b
q * neg n - q + (r * neg n - r) ≡⟨ cong (q * neg n - q +_) $ sym $ ℤ*-pred r (neg n) ⟩
q * neg n - q + r * predℤ (neg n) ≡⟨ cong (_+ r * predℤ (neg n)) $ sym $ ℤ*-pred q (neg n) ⟩
q * predℤ (neg n) + r * predℤ (neg n) ∎
)
ℤ*+-left-distrib : (q r s : ℤ) → q * (r + s) ≡ q * r + q * s
ℤ*+-left-distrib q r s =
( q * (r + s) ≡⟨ ℤ*-comm q (r + s) ⟩
(r + s) * q ≡⟨ ℤ*+-right-distrib r s q ⟩
r * q + s * q ≡⟨ cong (_+ s * q) $ ℤ*-comm r q ⟩
q * r + s * q ≡⟨ cong (q * r +_) $ ℤ*-comm s q ⟩
q * r + q * s ∎
)
lemma-ℤ*-assoc : ∀ i → (m n : ℤ) → m * (n * posneg i) ≡ m * n * posneg i
lemma-ℤ*-assoc i m n =
( m * (n * 0) ≡⟨ cong (m *_) $ sym $ 0≡m*ℤ0 n ⟩
m * 0 ≡⟨ sym $ 0≡m*ℤ0 m ⟩
0 ≡⟨ 0≡m*ℤ0 (m * n) ⟩
m * n * 0 ∎
)
ℤ*-assoc : (m n o : ℤ) → m * (n * o) ≡ m * n * o
ℤ*-assoc m n (pos zero) = lemma-ℤ*-assoc i0 m n
ℤ*-assoc m n (neg zero) = lemma-ℤ*-assoc i1 m n
ℤ*-assoc m n (posneg i) = lemma-ℤ*-assoc i m n
ℤ*-assoc m n (pos (suc o)) =
( m * (n * sucℤ (pos o)) ≡⟨ cong (m *_) $ ℤ*-suc n (pos o) ⟩
m * (n + n * pos o) ≡⟨ ℤ*+-left-distrib m n (n * pos o) ⟩
m * n + m * (n * pos o) ≡⟨ cong (m * n +_) $ ℤ*-assoc m n (pos o) ⟩
m * n + m * n * pos o ≡⟨ sym $ ℤ*-suc (m * n) (pos o) ⟩
m * n * sucℤ (pos o) ∎
)
ℤ*-assoc m n (neg (suc o)) =
( m * (n * predℤ (neg o)) ≡⟨ cong (m *_) $ ℤ*-pred n (neg o) ⟩
m * (n * neg o - n) ≡⟨ {!!} ⟩ -- TODO: needs things like a + (- b) = a - b
m * (n * neg o) - m * n ≡⟨ cong (_- m * n) $ ℤ*-assoc m n (neg o) ⟩
m * n * neg o - m * n ≡⟨ sym $ ℤ*-pred (m * n) (neg o) ⟩
m * n * predℤ (neg o) ∎
)
instance
ℚ+ : Op+ ℚ ℚ (const₂ ℚ)
_+_ ⦃ ℚ+ ⦄ q r = q plus r where
plus-lemma1 : (u a v b w c : ℤ)
(x : ¬ a ≡ 0) (p₁ : ¬ b ≡ 0) (p₂ : ¬ c ≡ 0)
(y : v * c ≡ w * b)
→ con (u * b + v * a) (a * b) (nonzero-prod a b x p₁) ≡ con (u * c + w * a) (a * c) (nonzero-prod a c x p₂)
plus-lemma1 u a v b w c x p₁ p₂ y = path _ _ _ _ $
(u * b + v * a) * (a * c) ≡⟨ ℤ*+-right-distrib (u * b) (v * a) (a * c) ⟩
u * b * (a * c) + v * a * (a * c) ≡⟨ cong (_+ (v * a * (a * c))) $
u * b * (a * c) ≡⟨ sym $ ℤ*-assoc u b (a * c) ⟩
u * (b * (a * c)) ≡⟨ cong (u *_) $ ℤ*-comm b (a * c) ⟩
u * (a * c * b) ≡⟨ cong ((u *_) ∘ (_* b)) $ ℤ*-comm a c ⟩
u * (c * a * b) ≡⟨ cong (u *_) $ sym $ ℤ*-assoc c a b ⟩
u * (c * (a * b)) ≡⟨ ℤ*-assoc u c (a * b) ⟩
u * c * (a * b) ∎
⟩
u * c * (a * b) + v * a * (a * c) ≡⟨ cong (u * c * (a * b) +_) $
v * a * (a * c) ≡⟨ sym $ ℤ*-assoc v a (a * c) ⟩
v * (a * (a * c)) ≡⟨ cong (v *_) $ ℤ*-comm a (a * c) ⟩
v * (a * c * a) ≡⟨ cong ((v *_) ∘ (_* a)) $ ℤ*-comm a c ⟩
v * (c * a * a) ≡⟨ cong (v *_) $ sym $ ℤ*-assoc c a a ⟩
v * (c * (a * a)) ≡⟨ ℤ*-assoc v c (a * a) ⟩
v * c * (a * a) ≡⟨ cong (_* (a * a)) y ⟩
w * b * (a * a) ≡⟨ sym $ ℤ*-assoc w b (a * a) ⟩
w * (b * (a * a)) ≡⟨ cong (w *_) $ ℤ*-assoc b a a ⟩
w * (b * a * a) ≡⟨ cong ((w *_) ∘ (_* a)) $ ℤ*-comm b a ⟩
w * (a * b * a) ≡⟨ cong (w *_) $ ℤ*-comm (a * b) a ⟩
w * (a * (a * b)) ≡⟨ ℤ*-assoc w a (a * b) ⟩
w * a * (a * b) ∎
⟩
u * c * (a * b) + w * a * (a * b) ≡⟨ sym $ ℤ*+-right-distrib (u * c) (w * a) (a * b) ⟩
(u * c + w * a) * (a * b) ∎
plus-lemma2 : (u a v b w c : ℤ)
(x : ¬ a ≡ 0) (p₁ : ¬ b ≡ 0) (p₂ : ¬ c ≡ 0)
(y : v * c ≡ w * b)
→ con (v * a + u * b) (b * a) (nonzero-prod b a p₁ x) ≡ con (w * a + u * c) (c * a) (nonzero-prod c a p₂ x)
plus-lemma2 u a v b w c x p₁ p₂ y = -- trying to reuse plus_lemma1 with this proof
con (v * a + u * b) (b * a) _ ≡⟨ cong (λ nom → con nom (b * a) _) $ ℤ+-comm (v * a) (u * b) ⟩
con (u * b + v * a) (b * a) _ ≡⟨ cong₂ (λ denom prf → con (u * b + v * a) denom prf) (ℤ*-comm b a) $ {!!} ⟩ -- TODO: not sure if this is the right approach
con (u * b + v * a) (a * b) (nonzero-prod a b x p₁) ≡⟨ plus-lemma1 u a v b w c x p₁ p₂ y ⟩
con (u * c + w * a) (a * c) (nonzero-prod a c x p₂) ≡⟨ cong₂ (λ denom prf → con (u * c + w * a) denom prf) (ℤ*-comm a c) $ {!!} ⟩ -- TODO: ditto
con (u * c + w * a) (c * a) (nonzero-prod c a p₂ x) ≡⟨ cong (λ nom → con nom (c * a) (nonzero-prod c a p₂ x)) $ ℤ+-comm (u * c) (w * a) ⟩
con (w * a + u * c) (c * a) _ ∎
_plus_ : ℚ → ℚ → ℚ
con u a x plus con v b y = con (u * b + v * a) (a * b) (nonzero-prod a b x y)
con u a x plus path v b w c {p₁} {p₂} y i = plus-lemma1 u a v b w c x p₁ p₂ y i
path v b w c {p₁} {p₂} y i plus con u a x = plus-lemma2 u a v b w c x p₁ p₂ y i
path u a v b {p} {q} x i plus path u₁ a₁ v₁ b₁ {p₁} {q₁} x₁ j =
isSet→isSet' trunc
(plus-lemma1 u a u₁ a₁ v₁ b₁ p p₁ q₁ x₁)
(plus-lemma1 v b u₁ a₁ v₁ b₁ q p₁ q₁ x₁)
(plus-lemma2 u₁ a₁ u a v b p₁ p q x)
(plus-lemma2 v₁ b₁ u a v b q₁ p q x)
i j
q@(path _ _ _ _ _ _) plus trunc r r₁ x y i i₁ = trunc (q plus r) (q plus r₁) (cong (q plus_) x) (cong (q plus_) y) i i₁
q@(con _ _ _) plus trunc r r₁ x y i i₁ = trunc (q plus r) (q plus r₁) (cong (q plus_) x) (cong (q plus_) y) i i₁
trunc q q₁ x y i i₁ plus r = trunc (q plus r) (q₁ plus r) (cong (_plus r) x) (cong (_plus r) y) i i₁
neg-assoc* : {a b : ℤ} → - (a * b) ≡ (- a) * b
neg-assoc* {pos zero} {pos n₁} = sym posneg
neg-assoc* {pos (suc n)} {pos n₁} = refl
neg-assoc* {pos zero} {neg zero} = sym posneg
neg-assoc* {pos zero} {neg (suc n₁)} = posneg
neg-assoc* {pos (suc n)} {neg zero} = refl
neg-assoc* {pos (suc n)} {neg (suc n₁)} = refl
neg-assoc* {pos zero} {posneg i} = sym posneg
neg-assoc* {pos (suc n)} {posneg i} = refl
neg-assoc* {neg zero} {pos n₁} = sym posneg
neg-assoc* {neg (suc n)} {pos n₁} = refl
neg-assoc* {neg zero} {neg zero} = sym posneg
neg-assoc* {neg (suc n)} {neg zero} = refl
neg-assoc* {neg zero} {neg (suc n₁)} = posneg
neg-assoc* {neg (suc n)} {neg (suc n₁)} = refl
neg-assoc* {neg zero} {posneg i} = sym posneg
neg-assoc* {neg (suc n)} {posneg i} = refl
neg-assoc* {posneg i} {pos n} = sym posneg
neg-assoc* {posneg i} {neg zero} = sym posneg
neg-assoc* {posneg i} {neg (suc n)} = posneg
neg-assoc* {posneg i} {posneg i₁} = sym posneg
instance
ℚunary- : OpUnary- ℚ (const ℚ)
-_ ⦃ ℚunary- ⦄ q = negative q where
negative : ℚ → ℚ
negative (con u a x) = con (- u) a x
negative (path u a v b {p} {q} x i) = path (- u) a (- v) b {p = p} {q = q}
( - u * b ≡⟨ sym $ neg-assoc* {a = u} {b = b} ⟩
- (u * b) ≡⟨ cong -_ x ⟩
- (v * a) ≡⟨ neg-assoc* {a = v} {b = a} ⟩
- v * a ∎
) i
negative (trunc q q₁ x y i i₁) = trunc (negative q) (negative q₁) (cong negative x) (cong negative y) i i₁
instance
ℚ- : Op- ℚ ℚ (const₂ ℚ)
_-_ ⦃ ℚ- ⦄ q r = q + (- r)
instance
ℚ< : Op< ℚ ℚ (const₂ Bool)
_<_ ⦃ ℚ< ⦄ n m = n less-than m where
_less-than_ : ℚ → ℚ → Bool
con u a _ less-than con v b _ = u * b < v * a
q@(con u a x) less-than path v b w c y i = {!!} -- not sure
path u a v b x i less-than r = {!!}
q@(con _ _ _) less-than trunc r r₁ x y i i₁ = isSetBool (q less-than r) (q less-than r₁) (cong (q less-than_) x) (cong (q less-than_) y) i i₁
trunc q q₁ x y i i₁ less-than r = isSetBool (q less-than r) (q₁ less-than r) (cong (_less-than r) x) (cong (_less-than r) y) i i₁
instance
ℚ> : Op> ℚ ℚ (const₂ Bool)
_>_ ⦃ ℚ> ⦄ n m = m < n
pabsℤ : ℤ → ℤ
pabsℤ = pos ∘ absℤ
abs-distrib* : {a b : ℤ} → pabsℤ (a * b) ≡ pabsℤ a * pabsℤ b
abs-distrib* {pos n} {pos n₁} = refl
abs-distrib* {pos n} {neg zero} = refl
abs-distrib* {pos n} {neg (suc n₁)} = refl
abs-distrib* {pos n} {posneg i} = refl
abs-distrib* {neg zero} {pos n₁} = refl
abs-distrib* {neg (suc n)} {pos n₁} = refl
abs-distrib* {neg zero} {neg zero} = refl
abs-distrib* {neg zero} {neg (suc n₁)} = refl
abs-distrib* {neg (suc n)} {neg zero} = refl
abs-distrib* {neg (suc n)} {neg (suc n₁)} = refl
abs-distrib* {neg zero} {posneg i} = refl
abs-distrib* {neg (suc n)} {posneg i} = refl
abs-distrib* {posneg i} {pos n} = refl
abs-distrib* {posneg i} {neg zero} = refl
abs-distrib* {posneg i} {neg (suc n)} = refl
abs-distrib* {posneg i} {posneg i₁} = refl
abs-zero : {a : ℤ} → pabsℤ a ≡ 0 → a ≡ 0
abs-zero {pos zero} _ = refl
abs-zero {pos (suc _)} p = p
abs-zero {neg zero} _ = sym posneg
abs-zero {neg (suc _)} p = cong (neg ∘ absℤ) p ∙ (sym posneg)
abs-zero {posneg i} _ = λ j → posneg (i ∧ ~ j)
abs : ℚ → ℚ
abs (con u a x) = con (pabsℤ u) (pabsℤ a) λ y → x (abs-zero y)
abs (path u a v b {p} {q} x i) = path (pabsℤ u) (pabsℤ a) (pabsℤ v) (pabsℤ b)
{p = λ x → p (abs-zero x)}
{q = λ x → q (abs-zero x)}
((sym $ abs-distrib* {a = u} {b = b}) ∙ cong pabsℤ x ∙ abs-distrib* {a = v} {b = a})
i
abs (trunc q q₁ x y i i₁) = trunc (abs q) (abs q₁) (cong abs x) (cong abs y) i i₁
infix 10 _~⟨_⟩_
-- The reason for all of the above machinery:
data ℝ : Set
data _~⟨_⟩_ : ℝ → (tol : ℚ) → ⦃ _ : tol > 0 ≡ true ⦄ → ℝ → Set
data ℝ where
rat : (q : ℚ) → ℝ
lim : (x : ℚ → ℝ) → ((δ ε : ℚ) ⦃ _ : δ + ε > 0 ≡ true ⦄ → x δ ~⟨ δ + ε ⟩ x ε) → ℝ
eq : (u v : ℝ) → ((ε : ℚ) ⦃ _ : ε > 0 ≡ true ⦄ → u ~⟨ ε ⟩ v) → u ≡ v
data _~⟨_⟩_ where
~-rat-rat : ∀ {q r ε} ⦃ _ : ε > 0 ≡ true ⦄ → abs (q - r) < ε ≡ true → rat q ~⟨ ε ⟩ rat r
~-rat-lim : ∀ {q y l δ ε} ⦃ _ : ε - δ > 0 ≡ true ⦄ ⦃ _ : ε > 0 ≡ true ⦄ → rat q ~⟨ ε - δ ⟩ y δ → rat q ~⟨ ε ⟩ lim y l
~-lim-rat : ∀ {x l r δ ε} ⦃ _ : ε - δ > 0 ≡ true ⦄ ⦃ _ : ε > 0 ≡ true ⦄ → x δ ~⟨ ε - δ ⟩ rat r → lim x l ~⟨ ε ⟩ rat r
~-lim-lim : ∀ {x lₓ y ly ε δ η} ⦃ _ : ε > 0 ≡ true ⦄ ⦃ _ : ε - δ - η > 0 ≡ true ⦄ → x δ ~⟨ ε - δ - η ⟩ y η → lim x lₓ ~⟨ ε ⟩ lim y ly
~-isProp : ∀ {u v ε} ⦃ _ : ε > 0 ≡ true ⦄ → isProp (u ~⟨ ε ⟩ v)
|
{
"alphanum_fraction": 0.47503486,
"avg_line_length": 41.8540965208,
"ext": "agda",
"hexsha": "96c61d901f3ee7b320be55b61f7c274f64508f65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34b42b3de1de3dba2e11a3ac5ea4e48982b06b2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dylanede/cubical-experiments",
"max_forks_repo_path": "scratch.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34b42b3de1de3dba2e11a3ac5ea4e48982b06b2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dylanede/cubical-experiments",
"max_issues_repo_path": "scratch.agda",
"max_line_length": 161,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34b42b3de1de3dba2e11a3ac5ea4e48982b06b2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dylanede/cubical-experiments",
"max_stars_repo_path": "scratch.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 18062,
"size": 37292
}
|
data Bool : Set where
true false : Bool
data Nat : Set where
zero : Nat
suc : Nat → Nat
one : Nat
one = suc zero
two : Nat
two = suc one
data Fin : Nat → Set where
zero : ∀{n} → Fin (suc n)
suc : ∀{n} (i : Fin n) → Fin (suc n)
--This part works as expected:
s : ∀ n → (f : (k : Fin n) → Bool) → Fin (suc n)
s n f = zero
t1 : Fin two
t1 = s one (λ { zero → true ; (suc ()) })
-- But Agda is not able to infer the 1 in this case:
ttwo : Fin two
ttwo = s _ (λ { zero → true ; (suc ()) })
-- Warning:
-- _142 : Nat
-- The problem gets worse when i add arguments to the ttwo function. This gives an error:
t3 : Set → Fin two
t3 A = s _ (λ { zero → true ; (suc ()) })
|
{
"alphanum_fraction": 0.5655976676,
"avg_line_length": 17.5897435897,
"ext": "agda",
"hexsha": "4a082d2dbccc4bea95793310b4383b7513713c74",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1922.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1922.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1922.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 246,
"size": 686
}
|
{-# OPTIONS --rewriting #-}
open import Reflection hiding (return; _>>=_) renaming (_≟_ to _≟r_)
open import Data.List hiding (_++_)
open import Data.Vec as V using (Vec; updateAt)
open import Data.Unit
open import Data.Nat as N
open import Data.Nat.Properties
open import Data.Fin using (Fin; #_; suc; zero)
open import Data.Maybe hiding (_>>=_; map)
open import Function
open import Data.Bool
open import Data.Product hiding (map)
open import Data.String renaming (_++_ to _++s_; concat to sconc; length to slen)
open import Data.Char renaming (_≈?_ to _c≈?_; show to showChar)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Decidable hiding (map)
open import Data.Nat.Show renaming (show to showNat)
open import Level renaming (zero to lzero; suc to lsuc)
open import Category.Monad using (RawMonad)
open RawMonad {{...}} public
instance
monadMB : ∀ {f} → RawMonad {f} Maybe
monadMB = record { return = just ; _>>=_ = Data.Maybe._>>=_ }
monadTC : ∀ {f} → RawMonad {f} TC
monadTC = record { return = Reflection.return ; _>>=_ = Reflection._>>=_ }
data Err {a} (A : Set a) : Set a where
error : String → Err A
ok : A → Err A
instance
monadErr : ∀ {f} → RawMonad {f} Err
monadErr = record {
return = ok ;
_>>=_ = λ { (error s) f → error s ; (ok a) f → f a }
}
record RawMonoid {a}(A : Set a) : Set a where
field
_++_ : A → A → A
ε : A
++/_ : List A → A
++/ [] = ε
++/ (x ∷ a) = x ++ ++/ a
infixr 5 _++_
open RawMonoid {{...}} public
instance
monoidLst : ∀ {a}{A : Set a} → RawMonoid (List A)
monoidLst {A = A} = record {
_++_ = Data.List._++_;
ε = []
}
monoidErrLst : ∀{a}{A : Set a} → RawMonoid (Err $ List A)
monoidErrLst = record {
_++_ = λ where
(error s) _ → error s
_ (error s) → error s
(ok s₁) (ok s₂) → ok (s₁ ++ s₂)
;
ε = ok []
}
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (constructor′ d) as = con d as
defToTerm _ _ _ = unknown
derefImmediate : Term → TC Term
derefImmediate (def f args) = getDefinition f >>= λ f' → return (defToTerm f f' args)
derefImmediate x = return x
derefT : Term → TC Term
derefT (def f args) = getType f
derefT (con f args) = getType f
derefT x = return x
Ctx = List $ Arg Type
drop-ctx' : Ctx → ℕ → Ctx
drop-ctx' l zero = l
drop-ctx' [] (suc n) = []
drop-ctx' (x ∷ l) (suc n) = drop-ctx' l n
take-ctx' : Ctx → ℕ → Ctx
take-ctx' [] zero = []
take-ctx' [] (suc p) = [] --error "take-ctx: ctx too short for the prefix"
take-ctx' (x ∷ l) zero = []
take-ctx' (x ∷ l) (suc p) = x ∷ take-ctx' l p
-- FIXME we probably want to error out on these two functions.
pi-to-ctx : Term → Ctx
pi-to-ctx (Π[ s ∶ a ] x) = (a ∷ pi-to-ctx x)
pi-to-ctx _ = []
ctx-to-pi : List (Arg Type) → Type
ctx-to-pi [] = def (quote ⊤) []
ctx-to-pi (a ∷ t) = Π[ "_" ∶ a ] ctx-to-pi t
ty-con-args : Arg Type → List $ Arg Type
ty-con-args (arg _ (con c args)) = args
ty-con-args (arg _ (def c args)) = args
ty-con-args _ = []
con-to-ctx : Term → Term × Ctx
con-to-ctx (Π[ s ∶ a ] x) = let t , args = con-to-ctx x in t , a ∷ args
con-to-ctx x = x , []
record Eq : Set where
constructor _↦_
field
left : Term
right : Term
Eqs = List Eq
eqs-shift-vars : Eqs → ℕ → Eqs
mbeqs-eqs : Maybe Eqs → Eqs
mbeqs-eqs (just x) = x
mbeqs-eqs nothing = []
-- stupid name, this generates equalities for two terms being somewhat similar.
unify-eq : Term → Term → Eqs
unify-eq-map : List $ Arg Term → List $ Arg Term → Maybe Eqs
unify-eq (var x []) y = [ var x [] ↦ y ]
unify-eq (var x args@(_ ∷ _)) t₂ = {!!}
unify-eq (con c args) (con c′ args′) with c ≟-Name c′
... | yes p = mbeqs-eqs $ unify-eq-map args args′
... | no ¬p = []
unify-eq (def f args) (def f′ args′) with f ≟-Name f′
-- Generally speaking this is a lie of course, as
-- not all the definitons are injective. However,
-- we mainly use these for types such as Vec, Nat, etc
-- and for these cases it is fine. How do I check whether
-- the definition is a data type or not?
... | yes p = mbeqs-eqs $ unify-eq-map args args′
... | no ¬p = []
unify-eq (lam v t) t₂ = {!!}
unify-eq (pat-lam cs args) t₂ = {!!}
unify-eq (pi a b) t₂ = {!!}
unify-eq (sort s) t₂ = {!!}
unify-eq (lit l) y = [ lit l ↦ y ]
unify-eq (meta x x₁) t₂ = {!!}
unify-eq unknown t₂ = {!!}
unify-eq x (var y []) = [ x ↦ var y [] ]
unify-eq x (var y args@(_ ∷ _)) = {!!} --[ x ↦ var y [] ]
unify-eq a b = []
test-unify₁ = unify-eq (var 0 []) (con (quote ℕ.suc) [ vArg $ con (quote ℕ.zero) [] ] )
test-unify₂ = unify-eq (con (quote ℕ.suc) [ vArg $ con (quote ℕ.zero) [] ] ) (var 0 [])
unify-eq-map [] [] = just []
unify-eq-map [] (y ∷ _) = nothing
unify-eq-map (x ∷ _) [] = nothing
unify-eq-map (arg _ x ∷ xs) (arg _ y ∷ ys) = do
eqs ← unify-eq-map xs ys
return $ unify-eq x y ++ eqs
eq-find-l : Eqs → Term → Term
eq-find-l [] t = t
eq-find-l (l ↦ r ∷ eqs) t with l ≟r t
... | yes l≡t = r
... | no l≢t = eq-find-l eqs t
decvar : Term → (min off : ℕ) → Err Term
decvar-map : List $ Arg Term → (min off : ℕ) → Err $ List $ Arg Term
decvar (var x args) m o with x ≥? m
decvar (var x args) m o | yes x≥m with x ≥? o
decvar (var x args) m o | yes x≥m | yes x≥o = do
args ← decvar-map args m o
return $ var (x ∸ o) args
decvar (var x args) m o | yes x≥m | no x≱o = error "decvar: variable index is less than decrement"
decvar (var x args) m o | no x≱m = do
args ← decvar-map args m o
return $ var x args
decvar (con c args) m o = do
args ← decvar-map args m o
return $ con c args
decvar (def f args) m o = do
args ← decvar-map args m o
return $ def f args
decvar (lam v t) m o = {!!}
decvar (pat-lam cs args) m o = {!!}
decvar (Π[ s ∶ arg i a ] x) m o = do
a ← decvar a m o
x ← decvar x (1 + m) o
return $ Π[ s ∶ arg i a ] x
decvar (sort (set t)) m o = do
t ← decvar t m o
return $ sort $ set t
decvar (sort (lit n)) m o =
return $ sort $ lit n
decvar (sort unknown) m o =
return $ sort $ unknown
decvar (lit l) m o = return $ lit l
decvar (meta x args) m o = do
args ← decvar-map args m o
return $ meta x args
decvar unknown m o = return unknown
decvar-map [] m o = ok []
decvar-map (arg i x ∷ l) m o = do
x ← decvar x m o
l ← decvar-map l m o
return $ (arg i x) ∷ l
-- Note that we throw away the equality in case it didn't decvar'd correctly.
decvar-eqs : Eqs → (min off : ℕ) → Eqs
decvar-eqs [] m o = []
decvar-eqs (x ↦ y ∷ eqs) m o with (decvar x m o) | (decvar y m o)
decvar-eqs (x ↦ y ∷ eqs) m o | ok x′ | ok y′ = x′ ↦ y′ ∷ decvar-eqs eqs m o
decvar-eqs (x ↦ y ∷ eqs) m o | _ | _ = decvar-eqs eqs m o
check-var-pred : Term → (p : ℕ → Bool) → (min : ℕ) → Bool
check-var-pred-map : List $ Arg Term → (p : ℕ → Bool) (min : ℕ) → Bool
check-var-pred (var x args) p m with x ≥? m
check-var-pred (var x args) p m | yes x≥m with p x
check-var-pred (var x args) p m | yes x≥m | true = true
check-var-pred (var x args) p m | yes x≥m | false = check-var-pred-map args p m
check-var-pred (var x args) p m | no x≱m = check-var-pred-map args p m
check-var-pred (con c args) p m = check-var-pred-map args p m
check-var-pred (def f args) p m = check-var-pred-map args p m
check-var-pred (lam v t) p m = {!!}
check-var-pred (pat-lam cs args) p m = {!!}
check-var-pred (Π[ s ∶ (arg i a) ] x) p m with check-var-pred a p m
... | true = true
... | false = check-var-pred x p (1 + m)
check-var-pred (sort (set t)) p m = check-var-pred t p m
check-var-pred (sort (lit n)) p m = false
check-var-pred (sort unknown) p m = false
check-var-pred (lit l) p m = false
check-var-pred (meta x args) p m = check-var-pred-map args p m
check-var-pred unknown p m = false
check-var-pred-map [] p m = false
check-var-pred-map (arg _ x ∷ l) p m with check-var-pred x p m
... | true = true
... | false = check-var-pred-map l p m
-- eliminate equalities where we reverence variables that are greaterh than n
eqs-elim-vars-ge-l : Eqs → (n : ℕ) → Eqs
eqs-elim-vars-ge-l [] n = []
eqs-elim-vars-ge-l (l ↦ r ∷ eqs) n with check-var-pred l (isYes ∘ (_≥? n)) 0
... | true = eqs-elim-vars-ge-l eqs n
... | false = (l ↦ r) ∷ eqs-elim-vars-ge-l eqs n
subst-eq-var : Eqs → Type → (min : ℕ) → Type
subst-eq-var-map : Eqs → List $ Arg Type → (min : ℕ) → List $ Arg Type
-- Iterate over a reversed telescopic context and try to subsitute variables
-- from eqs, if we have some.
subst-eq-vars : Eqs → List $ Arg Type → List $ Arg Type
subst-eq-vars eqs [] = []
subst-eq-vars eqs ((arg i ty) ∷ tys) = let
eqs = decvar-eqs eqs 0 1
in (arg i $ subst-eq-var eqs ty 0) ∷ subst-eq-vars eqs tys
subst-eq-var eqs t@(var x []) m with x ≥? m
... | yes p = eq-find-l eqs t
... | no ¬p = t
subst-eq-var eqs (var x (x₁ ∷ args)) m = {!!}
subst-eq-var eqs (con c args) m =
con c $ subst-eq-var-map eqs args m
subst-eq-var eqs (def f args) m =
def f $ subst-eq-var-map eqs args m
subst-eq-var eqs (lam v t) m = {!!}
subst-eq-var eqs (pat-lam cs args) m = {!!}
subst-eq-var eqs (Π[ s ∶ (arg i a) ] x) m =
Π[ s ∶ (arg i $ subst-eq-var eqs a m) ]
-- We need to increase all the variables in
-- eqs berfore entering x.
subst-eq-var (eqs-shift-vars eqs 1) x (1 + m)
subst-eq-var eqs (sort s) m = {!!}
subst-eq-var eqs (lit l) m = lit l
subst-eq-var eqs (meta x x₁) m = {!!}
subst-eq-var eqs unknown m = unknown
subst-eq-var-map eqs [] m = []
subst-eq-var-map eqs (arg i x ∷ l) m =
arg i (subst-eq-var eqs x m) ∷ subst-eq-var-map eqs l m
-- shift all the variables by n
shift-vars : Type → (min off : ℕ) → Type
shift-vars-map : List $ Arg Type → ℕ → ℕ → List $ Arg Type
shift-vars (var x args) m o with x ≥? m
... | yes p = var (o + x) (shift-vars-map args m o)
... | no ¬p = var x (shift-vars-map args m o)
shift-vars (con c args) m o = con c $ shift-vars-map args m o
shift-vars (def f args) m o = def f $ shift-vars-map args m o
shift-vars (lam v (abs s x)) m o = lam v $ abs s $ shift-vars x (1 + m) o
shift-vars (pat-lam cs args) m o = {!!}
shift-vars (Π[ s ∶ arg i a ] x) m o = Π[ s ∶ arg i (shift-vars a m o) ] shift-vars x (1 + m) o
shift-vars (sort (set t)) m o = sort $ set $ shift-vars t m o
shift-vars (sort (lit n)) m o = sort $ lit n
shift-vars (sort unknown) m o = sort unknown
shift-vars (lit l) m o = lit l
shift-vars (meta x args) m o = meta x $ shift-vars-map args m o
shift-vars unknown m o = unknown
shift-vars-map [] m o = []
shift-vars-map (arg i x ∷ l) m o = arg i (shift-vars x m o) ∷ shift-vars-map l m o
eqs-shift-vars [] n = []
eqs-shift-vars (l ↦ r ∷ eqs) n = let
l′ = shift-vars l 0 n
r′ = shift-vars r 0 n
in l′ ↦ r′ ∷ eqs-shift-vars eqs n
trans-eqs : Eqs → Eq → Eqs
trans-eqs [] (l ↦ r) = []
trans-eqs ((l′ ↦ r′) ∷ eqs) eq@(l ↦ r) with l′ ≟r l
... | yes l′≡l = unify-eq r′ r ++ trans-eqs eqs eq
... | no _ with l′ ≟r r
... | yes l′≡r = unify-eq r′ l ++ trans-eqs eqs eq
... | no _ with r′ ≟r l
... | yes r′≡l = unify-eq l′ r ++ trans-eqs eqs eq
... | no _ with r′ ≟r r
... | yes r′≡r = unify-eq l′ l ++ trans-eqs eqs eq
... | no _ = trans-eqs eqs eq
merge-eqs : (l r : Eqs) → (acc : Eqs) → Eqs
merge-eqs l [] acc = l ++ acc
merge-eqs l (x ∷ r) acc = merge-eqs l r (x ∷ acc ++ trans-eqs l x)
TyPat = Arg Type × Arg Pattern
merge-tys-pats : List $ Arg Type → List $ Arg Pattern → Err $ List TyPat
merge-tys-pats [] [] = ok []
merge-tys-pats [] (x ∷ ps) = error "merge-tys-pats: more patterns than types"
merge-tys-pats (x ∷ tys) [] = error "merge-tys-pats: more types than patterns"
merge-tys-pats (ty ∷ tys) (p ∷ ps) = ok [ ty , p ] ++ merge-tys-pats tys ps
shift-ty-vars-map : List TyPat → (min off : ℕ) → List TyPat
shift-ty-vars-map [] m o = []
shift-ty-vars-map ((arg i ty , p) ∷ l) m o = (arg i (shift-vars ty m o) , p) ∷ shift-ty-vars-map l m o
subst-typats : List TyPat → (min var : ℕ) → Type → List TyPat
subst-typats [] m v x = []
subst-typats ((arg tv ty , p) ∷ l) m v x = let
ty′ = subst-eq-var [ (var v []) ↦ x ] ty m
in (arg tv ty′ , p) ∷ subst-typats l (1 + m) (1 + v) (shift-vars x 0 1)
gen-n-vars : (count v : ℕ) → List $ Arg Term
gen-n-vars 0 _ = []
gen-n-vars (suc n) v = vArg (var v []) ∷ gen-n-vars n (1 + v)
{-# TERMINATING #-}
pats-ctx-open-cons : List TyPat → Eqs → TC $ Eqs × (Err $ List TyPat)
pats-ctx-open-cons [] eqs = return $ eqs , ok []
pats-ctx-open-cons ((arg tv ty , arg pv (con c ps)) ∷ l) eqs = do
con-type ← getType c
let con-ret , con-ctx = con-to-ctx con-type
-- bump indices in x by the length of ps
let #ps = length ps
let ty = shift-vars ty 0 #ps
let con-eqs = unify-eq con-ret ty
--let con-eqs = mbeqs-eqs $ unify-eq-map con-type-args ty-args
let ctx = subst-eq-vars con-eqs (take-ctx' (reverse con-ctx) #ps)
case #ps N.≟ 0 of λ where
(no #ps≢0) → do
-- Throw away substitutions that point further than the number
-- of arguments to the constructor
let con-eqs′ = eqs-elim-vars-ge-l con-eqs #ps
let eqs′ = eqs-shift-vars eqs #ps
let ctxl = merge-tys-pats (reverse ctx) ps
-- substitute constructor into the rest of the context
let l′ = subst-typats l 0 0 (con c $ gen-n-vars #ps 0)
-- We eliminated 0 variable, so bump all the variables greater than 0
let l′ = shift-ty-vars-map l′ 1 (#ps ∸ 1)
eqs″ , ctxr ← pats-ctx-open-cons l′ (merge-eqs eqs′ con-eqs′ [])
return $ eqs″ , ctxl ++ ctxr
(yes ps≡0) → do
let con-eqs′ = eqs-elim-vars-ge-l con-eqs 0
-- shift con-eqs′ by 1 to account for the newly inserted Dot.
let con-eqs′ = eqs-shift-vars con-eqs′ 1
-- Add equality of the newly inserted Dot and shift eqs by 1
--let eqs′ = (var 0 [] ≜ con c []) ∷ eqs-shift-vars eqs 1
let eqs′ = eqs-shift-vars eqs 1
-- substitute constructor into the rest of the context
let l′ = subst-typats l 0 0 (con c [])
eqs″ , ctxr ← pats-ctx-open-cons l′ (merge-eqs eqs′ con-eqs′ [])
return $ eqs″ , ok [ arg tv ty , arg pv dot ] ++ ctxr
pats-ctx-open-cons ((ty , arg i dot) ∷ l) eqs = do
-- leave the dot and psas the equations further
let eqs′ = eqs-shift-vars eqs 1
eqs″ , ctx ← pats-ctx-open-cons l eqs′
return $ eqs″ , ok [ ty , arg i dot ] ++ ctx
pats-ctx-open-cons ((ty , arg i (var s)) ∷ l) eqs = do
-- pass the equations further and leave the variable as is
let eqs′ = eqs-shift-vars eqs 1
eqs″ , ctx ← pats-ctx-open-cons l eqs′
return $ eqs″ , ok [ ty , arg i (var s) ] ++ ctx
pats-ctx-open-cons ((ty , arg i (lit x)) ∷ l) eqs = do
-- we don't get any new equations from the literal so
-- pass the equations further and insert the dot
let eqs′ = eqs-shift-vars eqs 1
let l′ = subst-typats l 0 0 (lit x)
eqs″ , ctx ← pats-ctx-open-cons l′ eqs′
return $ eqs″ , ok [ ty , arg i dot ] ++ ctx
pats-ctx-open-cons ((ty , arg i (proj f)) ∷ l) eqs =
return $ eqs , error "pats-ctx-open-cons: projection found, fixme"
pats-ctx-open-cons ((ty , arg i absurd) ∷ l) eqs =
return $ eqs , error "pats-ctx-open-cons: absurd pattern found, fixme"
-- Check whether the varibale (var 0) can be found in the tyspats
-- telescopic context.
check-ref : List TyPat → (v : ℕ) → Bool
check-ref [] v = false
check-ref ((arg _ ty , _) ∷ l) v with check-var-pred ty (isYes ∘ (N._≟ v)) 0
... | true = true
... | false = check-ref l (1 + v)
-- XXX we are going to ignore the errors from the decvar, as we assume that
-- (var 0) is not referenced in the telescopic pattern.
dec-typats : List TyPat → (min : ℕ) → List TyPat
dec-typats [] m = []
dec-typats ((arg ti ty , p) ∷ l) m with decvar ty m 1
... | ok ty′ = (arg ti ty′ , p) ∷ dec-typats l (1 + m)
... | error _ = (arg ti ty , p) ∷ dec-typats l (1 + m)
-- Try to eliminate dots if there is no references in the rhs to this variable
{-# TERMINATING #-} -- XXX this can be resolved, this function IS terminating
try-elim-dots : List TyPat → List TyPat
try-elim-dots [] = []
try-elim-dots ((ty , arg i dot) ∷ tyspats) with check-ref tyspats 0
... | true = (ty , arg i dot) ∷ try-elim-dots tyspats
... | false = try-elim-dots (dec-typats tyspats 1)
try-elim-dots ((ty , p) ∷ tyspats) = (ty , p) ∷ try-elim-dots tyspats
-- Look at the ctx list in *reverse* and get the list of variables that
-- correspond to dot patterns
get-dots : List TyPat → ℕ → List ℕ
get-dots [] o = []
get-dots ((_ , arg _ dot) ∷ l) o = o ∷ get-dots l (1 + o)
get-dots (_ ∷ l) o = get-dots l (1 + o)
-- Check if a given term contains any variable from the list
check-refs : Term → List ℕ → Bool
check-refs t [] = false
check-refs t (v ∷ vs) with check-var-pred t (isYes ∘ (N._≟ v)) 0
... | true = true
... | false = check-refs t vs
-- Eliminate the rhs of each eq in case it references dot patterns.
eqs-elim-nondots : Eqs → List ℕ → Eqs
eqs-elim-nondots [] _ = []
eqs-elim-nondots (eq@(_ ↦ r) ∷ eqs) vs with check-refs r vs
... | true = eqs-elim-nondots eqs vs
... | false = eq ∷ eqs-elim-nondots eqs vs
-- Substitute the variables from eqs into the *reversed* telescopic
-- context.
subst-eq-typats : Eqs → List TyPat → List TyPat
subst-eq-typats eqs [] = []
subst-eq-typats [] l = l
subst-eq-typats eqs ((arg ti ty , p) ∷ typats) = let
eqs = decvar-eqs eqs 0 1
in (arg ti (subst-eq-var eqs ty 0) , p) ∷ subst-eq-typats eqs typats
check-no-dots : List TyPat → Bool
check-no-dots [] = true
check-no-dots ((_ , arg _ dot) ∷ l) = false
check-no-dots (_ ∷ l) = check-no-dots l
check-all-vars : List TyPat → Bool
check-all-vars [] = true
check-all-vars ((_ , arg _ (var _)) ∷ l) = check-all-vars l
check-all-vars (_ ∷ l) = false
check-conlit : List TyPat → Bool
check-conlit [] = false
check-conlit ((_ , arg _ (con _ _)) ∷ l) = true
check-conlit ((_ , arg _ (lit _)) ∷ l) = true
check-conlit (_ ∷ l) = check-conlit l
{-# TERMINATING #-}
compute-ctx : List TyPat → TC $ Err $ List TyPat
compute-ctx typats with check-no-dots typats ∧ check-all-vars typats
... | true = return $ ok typats
... | false with check-conlit typats
... | true = do
eqs , typats ← pats-ctx-open-cons typats []
case typats of λ where
(error s) → return $ error s
(ok t) → let
sub = eqs-elim-nondots (eqs ++ map (λ { (l ↦ r) → r ↦ l}) eqs) (get-dots (reverse t) 0)
t = subst-eq-typats sub (reverse t)
t = try-elim-dots (reverse t)
in compute-ctx t
... | false = return $ error "compute-ctx: can't eliminate dots in the context"
-- try normalising every clause of the pat-lam, given
-- the context passed as an argument. Propagate error that
-- can be produced by pats-ctx.
pat-lam-norm : Term → Ctx → TC $ Err Term
pat-lam-norm (pat-lam cs args) ctx = do
cs ← hlpr ctx cs
case cs of λ where
(ok cs) → return $ ok (pat-lam cs args)
(error s) → return $ error s
--return $ ok (pat-lam cs args)
where
hlpr : Ctx → List Clause → TC $ Err (List Clause)
hlpr ctx [] = return $ ok []
hlpr ctx (clause ps t ∷ l) = do
case merge-tys-pats ctx ps of λ where
(error s) → return $ error s
(ok typats) → do
typats ← compute-ctx typats
case typats of λ where
(ok typats) → do
let ctx′ = map proj₁ typats
t ← inContext (reverse ctx′) (normalise t)
l ← hlpr ctx l
return $ ok [ clause ps t ] ++ l
(error s) →
--return $ clause ps t ∷ l
-- Make sure that we properly error out
-- Uncomment above line, in case you want to skip the error.
return $ error s
hlpr ctx (a ∷ l) = do
l' ← hlpr ctx l
return (ok [ a ] ++ l')
--return (a ∷ l')
pat-lam-norm x ctx = return $ error "pat-lam-norm: Shouldn't happen" --return $ ok x
macro
reflect : Term → Term → TC ⊤
reflect f a = -- not sure I need this
--withNormalisation true
normalise f >>=
(derefImmediate)
>>= quoteTC >>= unify a
reflect-ty : Name → Type → TC ⊤
reflect-ty f a = getType f >>= quoteTC >>= normalise >>= unify a
tstctx : Name → Type → TC ⊤
tstctx f a = do
t ← getType f
q ← quoteTC (con-to-ctx t)
unify a q
rtest : Term → Term → TC ⊤
rtest f a = do
t ← derefT f
v ← derefImmediate f
v ← pat-lam-norm v (pi-to-ctx t)
q ← quoteTC v
--q ← quoteTC (con-to-ctx t)
unify a q
norm-test : Term → Term → TC ⊤
norm-test tm a = do
t ← derefT tm
v ← derefImmediate tm
--let vec-and'-pat-[] = (hArg dot ∷ vArg (con (quote nil) []) ∷ vArg (var "_") ∷ [])
{-
let add-2v-pat = (hArg (var "_") ∷
vArg (con (quote imap) (hArg dot ∷ vArg (var "a") ∷ [])) ∷
vArg (con (quote imap) (hArg dot ∷ vArg (var "b") ∷ [])) ∷ [])
-}
{-
let vec-sum-pat = (hArg dot ∷
vArg
(con (quote V._∷_)
(hArg (var "_") ∷ vArg (var "x") ∷ vArg (var "a") ∷ []))
∷
vArg
(con (quote V._∷_)
(hArg dot ∷ vArg (var "y") ∷ vArg (var "b") ∷ []))
∷ [])
-}
let vec-sum-pat-[] = (hArg dot ∷ vArg (con (quote V.[]) []) ∷ vArg (var "_") ∷ [])
{-
let ty-args = args-to-ctx vec-args 0
t ← getType (quote V._∷_)
let t = subst-args 2 (reverse $ take-ctx' ty-args 2) 0 t
-}
let ctx = pi-to-ctx t
case merge-tys-pats ctx vec-sum-pat-[] of λ where
(error s) → unify a (lit (string s))
(ok typats) → do
eqs , t ← pats-ctx-open-cons typats []
--let t = ok typats
case t of λ where
(error s) → unify a (lit (string s))
(ok t) → do
-- let sub = eqs-elim-nondots (eqs ++ map (λ { (l ≜ r) → r ≜ l}) eqs) (get-dots (reverse t) 0)
-- let t = subst-eq-typats sub (reverse t)
-- let t = try-elim-dots (reverse t)
q ← quoteTC t
unify a q
--t ← inferType v -- (vArg n ∷ [ vArg lz ]))
--let v = plug-new-args v (vArg n ∷ [ vArg lz ])
--t ← inContext (reverse $ hArg lz ∷ [ hArg n ]) (normalise v)
--t ← reduce t
--t ← getType t
--t ← inContext [] (normalise t)
--q ← quoteTC (pi-to-ctx t)
infert : Type → Term → TC ⊤
infert t a = inferType t >>= quoteTC >>= unify a
-- {-
open import Data.Vec
vec-and : ∀ {n} → Vec Bool n → Vec Bool n → Vec Bool n
vec-and (x ∷ a) (y ∷ b) = x ∧ y ∷ vec-and a b
vec-and [] _ = []
-- explicit length
vec-and-nd : ∀ {n} → Vec Bool n → Vec Bool n → Vec Bool n
vec-and-nd {0} [] _ = []
vec-and-nd {suc n} (_∷_ {n = n} x a) (_∷_ {n = n} y b) = x ∧ y ∷ vec-and-nd a b
data Vec' {l : Level} (A : Set l) : ℕ → Set l where
nil : Vec' A 0
cons : A → {n : ℕ} → Vec' A n → Vec' A (1 + n)
vec-and' : ∀ {n} → Vec' Bool n → Vec' Bool n → Vec' Bool n
vec-and' nil _ = nil
vec-and' (cons x a) (cons y b) = cons (x ∧ y) (vec-and' a b)
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE +-identityʳ #-}
a = 1 + 0
xx : ℕ → Bool → ℕ → ℕ
xx x true y = let a = x * x in a + y
xx x false y = x + 2 + 0
postulate
rev-rev : ∀ {a}{X : Set a}{n}{xs : Vec X n} →
let rev = V.foldl (Vec X) (λ rev x → x ∷ rev) [] in
rev (rev xs) ≡ xs
{-# REWRITE rev-rev #-}
test-reverse : ∀ {a}{X : Set a}{n} → X → Vec X n → Vec X (suc n)
test-reverse x xs = x ∷ V.reverse (V.reverse xs)
test-rev-pat : ∀ {a}{X : Set a}{n} → X → Vec X n → Vec X (suc n)
test-rev-pat x [] = x ∷ []
test-rev-pat x xs = x ∷ V.reverse (V.reverse xs)
open import Array
add-2v : ∀ {n} → let X = Ar ℕ 1 (n ∷ []) in X → X → X
add-2v (imap a) (imap b) = imap λ iv → a iv + b iv
postulate
asum : ∀ {n} → Ar ℕ 1 (n ∷ []) → ℕ
mm : ∀ {m n k} → let Mat a b = Ar ℕ 2 (a ∷ b ∷ []) in
Mat m n → Mat n k → Mat m k
mm (imap a) (imap b) = imap λ iv → let i = ix-lookup iv (# 0)
j = ix-lookup iv (# 1)
in asum (imap λ kv → let k = ix-lookup kv (# 0)
in a (i ∷ k ∷ []) * b (k ∷ j ∷ []))
data P (x : ℕ) : Set where
c : P x
data TT : ℕ → Set where
tc : ∀ {n} → P (suc n) → TT (suc n)
foo : ∀ {n} → TT (suc n) → ℕ
foo (tc x) = 5
xxx = 3 N.< 5
|
{
"alphanum_fraction": 0.5664654429,
"avg_line_length": 33.5875862069,
"ext": "agda",
"hexsha": "9f14c960f38323acbb8617b46afe71ee44d3c3cd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "Renormalise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "Renormalise.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "Renormalise.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 8826,
"size": 24351
}
|
open import Structure.Operator.Monoid
open import Structure.Setoid
open import Type
module Numeral.Natural.Oper.Summation {ℓᵢ ℓ ℓₑ} {I : Type{ℓᵢ}} {T : Type{ℓ}} {_▫_ : T → T → T} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ monoid : Monoid{T = T}(_▫_) ⦄ where
open Monoid(monoid)
import Lvl
open import Data.List
open import Data.List.Functions
open import Structure.Function
open import Structure.Operator
∑ : List(I) → (I → T) → T
∑(r) f = foldᵣ(_▫_) id (map f(r))
|
{
"alphanum_fraction": 0.6783369803,
"avg_line_length": 28.5625,
"ext": "agda",
"hexsha": "826f07c688f7ab8cd76d58b389ed01d5ecdd906f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Summation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Summation.agda",
"max_line_length": 157,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Summation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 178,
"size": 457
}
|
------------------------------------------------------------------------
-- Vectors, defined using a recursive function
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Vec
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Prelude
open import Bijection eq using (_↔_)
open Derived-definitions-and-properties eq
open import Function-universe eq hiding (id; _∘_)
open import List eq using (length)
open import Surjection eq using (_↠_; ↠-≡)
private
variable
a b c : Level
A B : Type a
f g : A → B
n : ℕ
------------------------------------------------------------------------
-- The type
-- Vectors.
Vec : Type a → ℕ → Type a
Vec A zero = ↑ _ ⊤
Vec A (suc n) = A × Vec A n
------------------------------------------------------------------------
-- Some simple functions
-- Finds the element at the given position.
index : Vec A n → Fin n → A
index {n = suc _} (x , _) fzero = x
index {n = suc _} (_ , xs) (fsuc i) = index xs i
-- Updates the element at the given position.
infix 3 _[_≔_]
_[_≔_] : Vec A n → Fin n → A → Vec A n
_[_≔_] {n = zero} _ () _
_[_≔_] {n = suc _} (x , xs) fzero y = y , xs
_[_≔_] {n = suc _} (x , xs) (fsuc i) y = x , (xs [ i ≔ y ])
-- Applies the function to every element in the vector.
map : (A → B) → Vec A n → Vec B n
map {n = zero} f _ = _
map {n = suc _} f (x , xs) = f x , map f xs
-- Constructs a vector containing a certain number of copies of the
-- given element.
replicate : A → Vec A n
replicate {n = zero} _ = _
replicate {n = suc _} x = x , replicate x
-- The head of the vector.
head : Vec A (suc n) → A
head = proj₁
-- The tail of the vector.
tail : Vec A (suc n) → Vec A n
tail = proj₂
------------------------------------------------------------------------
-- Conversions to and from lists
-- Vectors can be converted to lists.
to-list : Vec A n → List A
to-list {n = zero} _ = []
to-list {n = suc n} (x , xs) = x ∷ to-list xs
-- Lists can be converted to vectors.
from-list : (xs : List A) → Vec A (length xs)
from-list [] = _
from-list (x ∷ xs) = x , from-list xs
-- ∃ (Vec A) is isomorphic to List A.
∃Vec↔List : ∃ (Vec A) ↔ List A
∃Vec↔List {A = A} = record
{ surjection = record
{ logical-equivalence = record
{ to = to-list ∘ proj₂
; from = λ xs → length xs , from-list xs
}
; right-inverse-of = to∘from
}
; left-inverse-of = uncurry from∘to
}
where
to∘from : (xs : List A) → to-list (from-list xs) ≡ xs
to∘from [] = refl _
to∘from (x ∷ xs) = cong (x ∷_) (to∘from xs)
tail′ : A → ∃ (Vec A) ↠ ∃ (Vec A)
tail′ y = record
{ logical-equivalence = record
{ to = λ where
(suc n , _ , xs) → n , xs
xs@(zero , _) → xs
; from = Σ-map suc (y ,_)
}
; right-inverse-of = refl
}
from∘to :
∀ n (xs : Vec A n) →
(length (to-list xs) , from-list (to-list xs)) ≡ (n , xs)
from∘to zero _ = refl _
from∘to (suc n) (x , xs) = $⟨ from∘to n xs ⟩
(length (to-list xs) , from-list (to-list xs)) ≡ (n , xs) ↝⟨ _↠_.from $ ↠-≡ (tail′ x) ⟩□
(length (to-list (x , xs)) , from-list (to-list (x , xs)))
≡
(suc n , x , xs) □
------------------------------------------------------------------------
-- Some properties
-- The map function satisfies the functor laws.
map-id :
{A : Type a} {xs : Vec A n} → map id xs ≡ xs
map-id {n = zero} = refl _
map-id {n = suc n} = cong (_ ,_) map-id
map-∘ :
{A : Type a} {B : Type b} {C : Type c} {f : B → C} {g : A → B}
{xs : Vec A n} →
map (f ∘ g) xs ≡ map f (map g xs)
map-∘ {n = zero} = refl _
map-∘ {n = suc n} = cong (_ ,_) map-∘
-- If f and g are pointwise equal, then map f xs and map g xs are
-- equal.
map-cong :
∀ {n} {xs : Vec A n} →
(∀ x → f x ≡ g x) → map f xs ≡ map g xs
map-cong {n = zero} _ = refl _
map-cong {n = suc n} hyp = cong₂ _,_ (hyp _) (map-cong hyp)
|
{
"alphanum_fraction": 0.4735693501,
"avg_line_length": 26.1012658228,
"ext": "agda",
"hexsha": "269773762b5ec3208f2252e16b0ec6dc574205c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Vec.agda",
"max_line_length": 94,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1355,
"size": 4124
}
|
open import Signature
import Program
module Observations (Σ : Sig) (V : Set) (P : Program.Program Σ V) where
open import Terms Σ
open import Program Σ V
open import Rewrite Σ V P
open import Function
open import Relation.Nullary
open import Relation.Unary
open import Data.Product as Prod renaming (Σ to ⨿)
open import Streams hiding (_↓_)
-- | We will need _properly refining_ substitutions: σ properly refines t ∈ T V,
-- if ∀ v ∈ fv(t). σ(v) = f(α) for f ∈ Σ.
-- Then an observation step must go along a properly refining substitution,
-- which in turn allows us to construct a converging sequence of terms.
{- |
We can make an observation according to the following rule.
t ↓ s fv(s) ≠ ∅ ∃ k, σ. s ~[σ]~ Pₕ(k)
--------------------------------------------
t ----> t[σ]
-}
data _↦_ (t : T V) : T V → Set where
obs-step : {s : T V} → t ↓ s → -- ¬ Empty (fv s) →
(cl : dom P) {σ : Subst V V} →
ProperlyRefining t σ → mgu s (geth P cl) σ →
t ↦ app σ t
reduct : ∀{t s} → t ↦ s → T V
reduct (obs-step {s} _ _ _ _ ) = s
refining : ∀{t s} → t ↦ s → Subst V V
refining (obs-step _ _ {σ} _ _) = σ
is-refining : ∀{t s} (o : t ↦ s) → ProperlyRefining t (refining o)
is-refining (obs-step _ _ r _) = r
GroundTerm : Pred (T V) _
GroundTerm t = Empty (fv t)
--------
-- FLAW: This does not allow us to distinguish between inductive
-- and coinductive definitions on the clause level.
-- The following definitions are _global_ for a derivation!
-------
data IndDerivable (t : T V) : Set where
ground : GroundTerm t → Valid t → IndDerivable t
der-step : (s : T V) → t ↦ s → IndDerivable s → IndDerivable t
record CoindDerivable (t : T V) : Set where
coinductive
field
term-SN : SN t
der-obs : ⨿ (T V) λ s → t ↦ s × CoindDerivable s
open CoindDerivable public
obs-result : ∀{t} → CoindDerivable t → T V
obs-result = proj₁ ∘ der-obs
get-obs : ∀{t} (d : CoindDerivable t) → t ↦ (obs-result d)
get-obs = proj₁ ∘ proj₂ ∘ der-obs
-- | This should give us convergence to a term in T∞ V, see Terms.agda
coind-deriv-seq : (t : T V) → CoindDerivable t → ProperlyRefiningSeq t
hd-ref (coind-deriv-seq t d) = refining (get-obs d)
hd-is-ref (coind-deriv-seq t d) = is-refining (get-obs d)
tl-ref (coind-deriv-seq t d) with (der-obs d)
tl-ref (coind-deriv-seq t d) | ._ , obs-step red cl {σ} ref _ , d' =
coind-deriv-seq (app σ t) d'
|
{
"alphanum_fraction": 0.6227594831,
"avg_line_length": 31.9866666667,
"ext": "agda",
"hexsha": "095f29c47d32664ee592374d6de797ee3b7d2299",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP/Observations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP/Observations.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP/Observations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 810,
"size": 2399
}
|
module ImportWarnings where
open import ImportWarningsB
-- A warning in the top-level file
{-# REWRITE #-}
-- make sure that this file is long enough to detect if we inherit
-- also the warning highlighting
foooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo : Set1
foooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo = Set
|
{
"alphanum_fraction": 0.9845832245,
"avg_line_length": 318.9166666667,
"ext": "agda",
"hexsha": "c68c20a62d1cf8febe61d262adf300ec1ec30e07",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ImportWarnings.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ImportWarnings.agda",
"max_line_length": 1808,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ImportWarnings.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 506,
"size": 3827
}
|
open import Type
open import Structure.Setoid
module Structure.Operator.Lattice {ℓ ℓₑ} (L : Type{ℓ}) ⦃ equiv-L : Equiv{ℓₑ}(L) ⦄ where
import Lvl
open import Functional
import Function.Names as Names
open import Logic
open import Logic.IntroInstances
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Function.Domain using (Involution ; involution)
open import Structure.Function.Multi
open import Structure.Function
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator.Proofs
open import Structure.Operator
open import Structure.Relator.Ordering
open import Structure.Relator.Properties
open import Syntax.Transitivity
record Semilattice (_▫_ : L → L → L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ operator ⦄ : BinaryOperator(_▫_)
⦃ commutative ⦄ : Commutativity(_▫_)
⦃ associative ⦄ : Associativity(_▫_)
⦃ idempotent ⦄ : Idempotence(_▫_)
order : L → L → Stmt
order x y = (x ▫ y ≡ y)
partialOrder : Weak.PartialOrder(order)(_≡_)
Antisymmetry.proof (Weak.PartialOrder.antisymmetry partialOrder) {x}{y} xy yx =
x 🝖-[ symmetry(_≡_) yx ]
y ▫ x 🝖-[ commutativity(_▫_) ]
x ▫ y 🝖-[ xy ]
y 🝖-end
Transitivity.proof (Weak.PartialOrder.transitivity partialOrder) {x}{y}{z} xy yz =
x ▫ z 🝖-[ congruence₂ᵣ(_▫_)(_) (symmetry(_≡_) yz) ]
x ▫ (y ▫ z) 🝖-[ symmetry(_≡_) (associativity(_▫_)) ]
(x ▫ y) ▫ z 🝖-[ congruence₂ₗ(_▫_)(_) xy ]
y ▫ z 🝖-[ yz ]
z 🝖-end
Reflexivity.proof (Weak.PartialOrder.reflexivity partialOrder) = idempotence(_▫_)
record Lattice (_∨_ : L → L → L) (_∧_ : L → L → L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ [∨]-operator ⦄ : BinaryOperator(_∨_)
⦃ [∧]-operator ⦄ : BinaryOperator(_∧_)
⦃ [∨]-commutativity ⦄ : Commutativity(_∨_)
⦃ [∧]-commutativity ⦄ : Commutativity(_∧_)
⦃ [∨]-associativity ⦄ : Associativity(_∨_)
⦃ [∧]-associativity ⦄ : Associativity(_∧_)
⦃ [∨][∧]-absorptionₗ ⦄ : Absorptionₗ(_∨_)(_∧_)
⦃ [∧][∨]-absorptionₗ ⦄ : Absorptionₗ(_∧_)(_∨_)
instance
[∨][∧]-absorptionᵣ : Absorptionᵣ(_∨_)(_∧_)
[∨][∧]-absorptionᵣ = [↔]-to-[→] OneTypeTwoOp.absorption-equivalence-by-commutativity [∨][∧]-absorptionₗ
instance
[∨]-idempotence : Idempotence(_∨_)
Idempotence.proof [∨]-idempotence {x} =
x ∨ x 🝖-[ congruence₂ᵣ(_∨_)(_) (symmetry(_≡_) (absorptionₗ(_∧_)(_∨_))) ]
x ∨ (x ∧ (x ∨ x)) 🝖-[ absorptionₗ(_∨_)(_∧_) ]
x 🝖-end
instance
[∨]-semilattice : Semilattice(_∨_)
[∨]-semilattice = intro
instance
[∧][∨]-absorptionᵣ : Absorptionᵣ(_∧_)(_∨_)
[∧][∨]-absorptionᵣ = [↔]-to-[→] OneTypeTwoOp.absorption-equivalence-by-commutativity [∧][∨]-absorptionₗ
instance
[∧]-idempotence : Idempotence(_∧_)
Idempotence.proof [∧]-idempotence {x} =
x ∧ x 🝖-[ congruence₂ᵣ(_∧_)(_) (symmetry(_≡_) (absorptionₗ(_∨_)(_∧_))) ]
x ∧ (x ∨ (x ∧ x)) 🝖-[ absorptionₗ(_∧_)(_∨_) ]
x 🝖-end
instance
[∧]-semilattice : Semilattice(_∧_)
[∧]-semilattice = intro
record Bounded (𝟎 : L) (𝟏 : L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ [∨]-identityₗ ⦄ : Identityₗ(_∨_)(𝟎)
⦃ [∧]-identityₗ ⦄ : Identityₗ(_∧_)(𝟏)
instance
[∨]-identityᵣ : Identityᵣ(_∨_)(𝟎)
[∨]-identityᵣ = [↔]-to-[→] One.identity-equivalence-by-commutativity [∨]-identityₗ
instance
[∧]-identityᵣ : Identityᵣ(_∧_)(𝟏)
[∧]-identityᵣ = [↔]-to-[→] One.identity-equivalence-by-commutativity [∧]-identityₗ
instance
[∨]-identity : Identity(_∨_)(𝟎)
[∨]-identity = intro
instance
[∧]-identity : Identity(_∧_)(𝟏)
[∧]-identity = intro
instance
[∨]-absorberₗ : Absorberₗ(_∨_)(𝟏)
[∨]-absorberₗ = OneTypeTwoOp.absorberₗ-by-absorptionₗ-identityₗ
instance
[∧]-absorberₗ : Absorberₗ(_∧_)(𝟎)
[∧]-absorberₗ = OneTypeTwoOp.absorberₗ-by-absorptionₗ-identityₗ
instance
[∨]-absorberᵣ : Absorberᵣ(_∨_)(𝟏)
[∨]-absorberᵣ = [↔]-to-[→] One.absorber-equivalence-by-commutativity [∨]-absorberₗ
instance
[∧]-absorberᵣ : Absorberᵣ(_∧_)(𝟎)
[∧]-absorberᵣ = [↔]-to-[→] One.absorber-equivalence-by-commutativity [∧]-absorberₗ
instance
[∨]-absorber : Absorber(_∨_)(𝟏)
[∨]-absorber = intro
instance
[∧]-absorber : Absorber(_∧_)(𝟎)
[∧]-absorber = intro
instance
[∧]-monoid : Monoid(_∧_)
Monoid.identity-existence [∧]-monoid = [∃]-intro(𝟏)
instance
[∨]-monoid : Monoid(_∨_)
Monoid.identity-existence [∨]-monoid = [∃]-intro(𝟎)
record Complemented (¬_ : L → L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ [¬]-function ⦄ : Function(¬_)
⦃ excluded-middle ⦄ : ComplementFunction(_∨_)(¬_)
⦃ non-contradiction ⦄ : ComplementFunction(_∧_)(¬_)
record Distributive : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ [∨][∧]-distributivityₗ ⦄ : Distributivityₗ(_∨_)(_∧_)
⦃ [∧][∨]-distributivityₗ ⦄ : Distributivityₗ(_∧_)(_∨_)
instance
[∨][∧]-distributivityᵣ : Distributivityᵣ(_∨_)(_∧_)
[∨][∧]-distributivityᵣ = [↔]-to-[→] OneTypeTwoOp.distributivity-equivalence-by-commutativity [∨][∧]-distributivityₗ
instance
[∧][∨]-distributivityᵣ : Distributivityᵣ(_∧_)(_∨_)
[∧][∨]-distributivityᵣ = [↔]-to-[→] OneTypeTwoOp.distributivity-equivalence-by-commutativity [∧][∨]-distributivityₗ
-- TODO: Is a negatable lattice using one of its operators distributed by a negation a lattice? In other words, Lattice(_∧_)(¬_ ∘₂ (_∧_ on ¬_))?
record Negatable (¬_ : L → L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ [¬]-function ⦄ : Function(¬_)
⦃ [¬]-involution ⦄ : Involution(¬_)
⦃ [¬][∧][∨]-distributivity ⦄ : Preserving₂(¬_)(_∧_)(_∨_)
instance
[¬][∨][∧]-distributivity : Preserving₂(¬_)(_∨_)(_∧_)
Preserving.proof [¬][∨][∧]-distributivity {x}{y} =
¬(x ∨ y) 🝖-[ congruence₁(¬_) (congruence₂(_∨_) (symmetry(_≡_) (involution(¬_))) (symmetry(_≡_) (involution(¬_)))) ]
¬((¬(¬ x)) ∨ (¬(¬ y))) 🝖-[ congruence₁(¬_) (symmetry(_≡_) (preserving₂(¬_)(_∧_)(_∨_))) ]
¬(¬((¬ x) ∧ (¬ y))) 🝖-[ involution(¬_) ]
(¬ x) ∧ (¬ y) 🝖-end
open Lattice using (intro) public
{- TODO: ?
semilattices-to-lattice : ∀{_∨_ _∧_} → ⦃ _ : Semilattice(_∨_) ⦄ → ⦃ _ : Semilattice(_∧_) ⦄ → Lattice(_∨_)(_∧_)
Lattice.[∨]-operator (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.operator join
Lattice.[∧]-operator (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.operator meet
Lattice.[∨]-commutativity (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.commutative join
Lattice.[∧]-commutativity (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.commutative meet
Lattice.[∨]-associativity (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.associative join
Lattice.[∧]-associativity (semilattices-to-lattice ⦃ join ⦄ ⦃ meet ⦄) = Semilattice.associative meet
Absorptionₗ.proof (Lattice.[∨][∧]-absorptionₗ (semilattices-to-lattice {_∨_}{_∧_} ⦃ join ⦄ ⦃ meet ⦄)) {x} {y} =
x ∨ (x ∧ y) 🝖-[ {!!} ]
x 🝖-end
Absorptionₗ.proof (Lattice.[∧][∨]-absorptionₗ (semilattices-to-lattice {_∨_}{_∧_} ⦃ join ⦄ ⦃ meet ⦄)) {x} {y} =
x ∧ (x ∨ y) 🝖-[ {!!} ]
x 🝖-end
-}
-- Also called: De Morgan algebra
record MorganicAlgebra (_∨_ : L → L → L) (_∧_ : L → L → L) (¬_ : L → L) (⊥ : L) (⊤ : L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ lattice ⦄ : Lattice(_∨_)(_∧_)
⦃ boundedLattice ⦄ : Lattice.Bounded(lattice)(⊥)(⊤)
⦃ distributiveLattice ⦄ : Lattice.Distributive(lattice)
⦃ negatableLattice ⦄ : Lattice.Negatable(lattice)(¬_)
record BooleanAlgebra (_∨_ : L → L → L) (_∧_ : L → L → L) (¬_ : L → L) (⊥ : L) (⊤ : L) : Stmt{ℓ Lvl.⊔ ℓₑ} where
constructor intro
field
⦃ lattice ⦄ : Lattice(_∨_)(_∧_)
⦃ boundedLattice ⦄ : Lattice.Bounded(lattice)(⊥)(⊤)
⦃ complementedLattice ⦄ : Lattice.Bounded.Complemented(boundedLattice)(¬_)
⦃ distributiveLattice ⦄ : Lattice.Distributive(lattice)
-- TODO: Heyting algebra
-- TODO: Import some proofs from SetAlgebra
|
{
"alphanum_fraction": 0.5992518402,
"avg_line_length": 37.4977375566,
"ext": "agda",
"hexsha": "6a658118430dcf4020ac0928f8ed2ba7822c868b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Lattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Lattice.agda",
"max_line_length": 146,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Lattice.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3489,
"size": 8287
}
|
open import Agda.Primitive
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
-----------------------------------------------------
-- Σ types
-----------------------------------------------------
data Σ {A : Set} (P : A → Set) : Set where
Σ_intro : ∀ (a : A) → P a → Σ P
-----------------------------------------------------
-- Π type
-----------------------------------------------------
data Π {A : Set} (P : A → Set) : Set where
Π_intro : (∀ (a : A) → P a) → Π P
-----------------------------------------------------
-- constT
-----------------------------------------------------
constT : ∀ (X : Set) (Y : Set) → Y → Set
constT x _ _ = x
-----------------------------------------------------
-- Tuples using Σ types (const)
-----------------------------------------------------
Σ-pair : ∀ (A B : Set) → Set
Σ-pair a b = Σ (constT b a)
Σ-mkPair : ∀ {A : Set} {B : Set} → A → B → Σ-pair A B
Σ-mkPair a b = Σ_intro a b
Σ-fst : ∀ {A B : Set} → Σ-pair A B → A
Σ-fst (Σ_intro a _) = a
Σ-snd : ∀ {A B : Set} → Σ-pair A B → B
Σ-snd (Σ_intro _ b) = b
-----------------------------------------------------
-- Exponential using Π type (const)
-----------------------------------------------------
Π-function : ∀ (A B : Set) → Set
Π-function a b = Π (constT b a)
Π-mkFunction : ∀ {A B : Set} → (A → B) → Π-function A B
Π-mkFunction f = Π_intro f
Π-apply : ∀ {A B : Set} → Π-function A B → A → B
Π-apply (Π_intro f) a = f a
-----------------------------------------------------
-- bool
-----------------------------------------------------
bool : ∀ (A B : Set) → Bool → Set
bool a _ true = a
bool _ b false = b
-----------------------------------------------------
-- Sum type using Σ types
-----------------------------------------------------
Σ-sum : ∀ (A B : Set) → Set
Σ-sum a b = Σ (bool a b)
Σ-sum_left : ∀ {A : Set} (B : Set) → A → Σ-sum A B
Σ-sum_left _ a = Σ_intro true a
Σ-sum_right : ∀ {B : Set} (A : Set) → B → Σ-sum A B
Σ-sum_right _ b = Σ_intro false b
Σ-sum_elim : ∀ {A B R : Set} → (A → R) → (B → R) → Σ-sum A B → R
Σ-sum_elim f _ (Σ_intro true a) = f a
Σ-sum_elim _ g (Σ_intro false b) = g b
-----------------------------------------------------
-- prodPredicate
-----------------------------------------------------
prodPredicate : ∀ (A B R : Set) → Set
prodPredicate a b r = (a → r) → (b → r) → r
-----------------------------------------------------
-- Sum type using Π types
-----------------------------------------------------
data Π' {a b} {A : Set a} (P : A → Set b) : Set (a ⊔ b) where
Π'_intro : (∀ (a : A) → P a) → Π' P
Π-sum : ∀ (A B : Set) → Set₁
Π-sum a b = Π' (prodPredicate a b)
Π-sum-left : ∀ {A : Set} (B : Set) → A → Π-sum A B
Π-sum-left _ a = Π'_intro (\_ f _ → f a)
Π-sum-right : ∀ {A : Set} (B : Set) → B → Π-sum A B
Π-sum-right _ b = Π'_intro (\_ _ g → g b)
Π-sum-elim : ∀ {A B R : Set} → (A → R) → (B → R) → Π-sum A B → R
Π-sum-elim f g (Π'_intro elim) = elim _ f g
-----------------------------------------------------
-- Extra: Tuples using Π types
-----------------------------------------------------
Π-pair : ∀ (A B : Set) → Set
Π-pair a b = Π (bool a b)
Π-mkPair : ∀ {A B : Set} → A → B → Π-pair A B
Π-mkPair a b = Π_intro f
where
f : (b : Bool) → bool _ _ b
f true = a
f false = b
Π-fst : ∀ {A B : Set} → Π-pair A B → A
Π-fst (Π_intro f) = f true
Π-snd : ∀ {A B : Set} → Π-pair A B → B
Π-snd (Π_intro f) = f false
---
-- ??
--
data Σ' {a b} {A : Set a} (P : A → Set b) : Set (a ⊔ b) where
Σ'_intro : ∀ (a : A) → P a → Σ' P
id : ∀ {A : Set} → A → A
id a = a
x : ∀ (A : Set) → Set1
x a = Σ (\(b : Set1) → (a → b))
mk : ∀ (A B : Set) → A → x A B
mk _ b a' = Σ'_intro b (\f g → f (g a'))
elim : {A B : Set} → (A → B) → x A B → B
elim f (Σ'_intro _ g) = g id f
-- : ∀ {A : Set} (B : Set) → A → Π-sum A B
--Π-sum-left _ a = Π'_intro (\_ f _ → f a)
--
--Π-sum-right : ∀ {A : Set} (B : Set) → B → Π-sum A B
--Π-sum-right _ b = Π'_intro (\_ _ g → g b)
--
--Π-sum-elim : ∀ {A B R : Set} → (A → R) → (B → R) → Π-sum A B → R
--Π-sum-elim f g (Π'_intro elim) = elim _ f g
|
{
"alphanum_fraction": 0.3698798136,
"avg_line_length": 28.3125,
"ext": "agda",
"hexsha": "1538ed2801ef91effa9f149afbf5338d633025b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a15eddcc2984f32ffdbe577a1fcf1cbe0d175a8a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "eviefp/eviefp.github.io",
"max_forks_repo_path": "site/content/quantifiers/DT.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a15eddcc2984f32ffdbe577a1fcf1cbe0d175a8a",
"max_issues_repo_issues_event_max_datetime": "2019-02-07T23:19:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-02-07T15:21:30.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "eviefp/eviefp.github.io",
"max_issues_repo_path": "site/content/quantifiers/DT.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a15eddcc2984f32ffdbe577a1fcf1cbe0d175a8a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "eviefp/eviefp.github.io",
"max_stars_repo_path": "site/content/quantifiers/DT.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1441,
"size": 4077
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Leftunit
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transitivity
module Oscar.Class.Transrightidentity where
module Transrightidentity
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ)
(ε : Reflexivity.type _∼_)
(transitivity : Transitivity.type _∼_)
= ℭLASS (_∼_ ,, (λ {x y} → _∼̇_ {x} {y}) ,, (λ {x} → ε {x}) ,, (λ {x y z} → transitivity {x} {y} {z}))
(∀ {x y} {f : x ∼ y} → Leftunit.type _∼̇_ ε transitivity f)
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
{ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ}
{ε : Reflexivity.type _∼_}
{transitivity : Transitivity.type _∼_}
where
transrightidentity = Transrightidentity.method _∼_ _∼̇_ ε transitivity
instance
toLeftunitFromTransrightidentity :
⦃ _ : Transrightidentity.class _∼_ _∼̇_ ε transitivity ⦄
→ ∀ {x y} {f : x ∼ y} → Leftunit.class _∼̇_ ε transitivity f
toLeftunitFromTransrightidentity .⋆ = transrightidentity
module Transrightidentity!
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ)
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transitivity.class _∼_ ⦄
= Transrightidentity (_∼_) (_∼̇_) reflexivity transitivity
|
{
"alphanum_fraction": 0.5979860573,
"avg_line_length": 32.275,
"ext": "agda",
"hexsha": "1cebd6cc93e3c27beb7afe0a18de1e58ec7c96f2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transrightidentity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transrightidentity.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transrightidentity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 574,
"size": 1291
}
|
module Types where
import Level
open import Data.Unit as Unit renaming (tt to ∗)
open import Data.List as List
open import Data.Product
open import Categories.Category using (Category)
open import Function
open import Relation.Binary.PropositionalEquality as PE hiding ([_]; subst)
open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid)
open ≡-Reasoning
open import Common.Context as Context
-- open import Categories.Object.BinaryCoproducts ctx-cat
-- Codes
mutual
data TermCtxCode : Set where
emptyC : TermCtxCode
cCtxC : (γ : TermCtxCode) → TypeCode γ → TermCtxCode
TyCtxCode : Set
data TypeCode (δ : TyCtxCode) (γ : TermCtxCode) : Set where
closeAppTyC : TypeCode δ γ
data TyFormerCode (γ : TermCtxCode) : Set where
univ : TyFormerCode γ
abs : (A : TypeCode γ) → (TyFormerCode (cCtxC γ A)) → TyFormerCode γ
TyCtxCode = Ctx (Σ TermCtxCode TyFormerCode)
TyVarCode : TyCtxCode → {γ : TermCtxCode} → TyFormerCode γ → Set
TyVarCode δ {γ} T = Var δ (γ , T)
emptyTy : TyCtxCode
emptyTy = []
{-
ctxTyFormer : (γ : TermCtxCode) → TyFormerCode γ → TyFormerCode emptyC
ctxTyFormer = ?
-}
data AppTypeCode (δ : TyCtxCode) (γ : TermCtxCode) : Set where
varC : (T : TyFormerCode γ) → (x : TyVarCode δ T) → AppTypeCode δ γ
appTyC : (T : TyFormerCode γ) → AppTypeCode δ γ T
μC : (γ₁ : TermCtxCode) → (t : TypeCode (ctxTyFormer γ univ ∷ δ) γ₁)
→ AppTypeCode δ γ
{- (T : TyFormerCode) → (A : TypeCode δ γ univ)
→ (B : TypeCode δ γ (cCtxC γ A T)) → (t : TermCode γ A)
→ Type Δ Γ (subst B t) -}
{-
-- Just one constructor/destructor for now
μ : (Γ Γ₁ : TermCtx) → (t : Type (ctxTyFormer Γ univ ∷ Δ) Γ₁ univ)
→ Type Δ Γ (ctxTyFormer Γ univ)
ν : (Γ Γ₁ : TermCtx) → (t : Type (ctxTyFormer Γ univ ∷ Δ) Γ₁ univ)
→ Type Δ Γ (ctxTyFormer Γ univ)
-}
{-
mutual
data TermCtx : Set where
empty : TermCtx
cCtx : (Γ : TermCtx) → TypeCode Γ → TermCtx
data TypeCode (Γ : TermCtx) : Set where
appTy : TypeCode Γ
Type : (Γ : TermCtx) → TypeCode Γ → Set
data Term : (Γ : TermCtx) → TypeCode Γ → Set where
data TyFormer (Γ : TermCtx) : Set where
univ : TyFormer Γ
abs : (A : TypeCode Γ) → (TyFormer (cCtx Γ A)) → TyFormer Γ
subst : {Γ : TermCtx} → {A : TypeCode Γ}
→ TyFormer (cCtx Γ A) → Term Γ A → TyFormer Γ
subst = {!!}
Type Γ appTy = Σ (TypeCode Γ) (λ A →
Σ (AppType emptyTy Γ (abs A univ)) (λ B →
Term Γ A))
ctxTyFormer : (Γ : TermCtx) → TyFormer Γ → TyFormer
ctxTyFormer empty T = T
ctxTyFormer (cCtx Γ A) T = ctxTyFormer Γ (abs Γ A)
TyCtx : Set
TyCtx = Ctx (Σ TermCtx TyFormer)
TyVar : TyCtx → {Γ : TermCtx} → TyFormer Γ → Set
TyVar Δ {Γ} T = Var Δ (Γ , T)
emptyTy : TyCtx
emptyTy = []
-- | Type syntax
data AppType (Δ : TyCtx) : (Γ : TermCtx) → TyFormer Γ → Set where
var : (Γ : TermCtx) → (T : TyFormer Γ) → (x : TyVar Δ T) → AppType Δ Γ T
appTy : (Γ : TermCtx) → (T : TyFormer) → (A : Type Δ Γ univ)
→ (B : Type Δ Γ (cCtx Γ A T)) → (t : Term Γ)
→ Type Δ Γ (subst B t)
-- Just one constructor/destructor for now
μ : (Γ Γ₁ : TermCtx) → (t : Type (ctxTyFormer Γ univ ∷ Δ) Γ₁ univ)
→ Type Δ Γ (ctxTyFormer Γ univ)
ν : (Γ Γ₁ : TermCtx) → (t : Type (ctxTyFormer Γ univ ∷ Δ) Γ₁ univ)
→ Type Δ Γ (ctxTyFormer Γ univ)
-}
{-
succ' : ∀{Δ} (x : TyVar Δ) → TyVar (∗ ∷ Δ)
succ' = Context.succ ∗
-}
{-
-- | Congruence for types
data _≅T_ {Γ Γ' : Ctx} : Type Γ → Type Γ' → Set where
unit : unit ≅T unit
var : ∀{x : TyVar Γ} {x' : TyVar Γ'} → (x ≅V x') → var x ≅T var x'
_⊕_ : ∀{t₁ t₂ : Type Γ} {t₁' t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⊕ t₂) ≅T (t₁' ⊕ t₂')
_⊗_ : ∀{t₁ t₂ : Type Γ} {t₁' t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⊗ t₂) ≅T (t₁' ⊗ t₂')
μ : ∀{t : Type (∗ ∷ Γ)} {t' : Type (∗ ∷ Γ')} →
(t ≅T t') →
(μ t) ≅T (μ t')
_⇒_ : ∀{t₁ t₁' : Type []} {t₂ : Type Γ} {t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⇒ t₂) ≅T (t₁' ⇒ t₂')
ν : ∀{t : Type (∗ ∷ Γ)} {t' : Type (∗ ∷ Γ')} →
(t ≅T t') →
(ν t) ≅T (ν t')
Trefl : ∀ {Γ : Ctx} {t : Type Γ} → t ≅T t
Trefl {t = unit} = unit
Trefl {t = var x} = var e.refl
where
module s = Setoid
module e = IsEquivalence (s.isEquivalence ≅V-setoid)
Trefl {t = t₁ ⊕ t₂} = Trefl ⊕ Trefl
Trefl {t = μ t} = μ Trefl
Trefl {t = t ⊗ t₁} = Trefl ⊗ Trefl
Trefl {t = t ⇒ t₁} = Trefl ⇒ Trefl
Trefl {t = ν t} = ν Trefl
Tsym : ∀ {Γ Γ' : Ctx} {t : Type Γ} {t' : Type Γ'} → t ≅T t' → t' ≅T t
Tsym unit = unit
Tsym (var u) = var (Vsym u)
Tsym (u₁ ⊕ u₂) = Tsym u₁ ⊕ Tsym u₂
Tsym (u₁ ⊗ u₂) = Tsym u₁ ⊗ Tsym u₂
Tsym (μ u) = μ (Tsym u)
Tsym (u₁ ⇒ u₂) = Tsym u₁ ⇒ Tsym u₂
Tsym (ν u) = ν (Tsym u)
Ttrans : ∀ {Γ₁ Γ₂ Γ₃ : Ctx} {t₁ : Type Γ₁} {t₂ : Type Γ₂} {t₃ : Type Γ₃} →
t₁ ≅T t₂ → t₂ ≅T t₃ → t₁ ≅T t₃
Ttrans unit unit = unit
Ttrans (var u₁) (var u₂) = var (Vtrans u₁ u₂)
Ttrans (u₁ ⊕ u₂) (u₃ ⊕ u₄) = Ttrans u₁ u₃ ⊕ Ttrans u₂ u₄
Ttrans (u₁ ⊗ u₂) (u₃ ⊗ u₄) = Ttrans u₁ u₃ ⊗ Ttrans u₂ u₄
Ttrans (μ u₁) (μ u₂) = μ (Ttrans u₁ u₂)
Ttrans (u₁ ⇒ u₂) (u₃ ⇒ u₄) = Ttrans u₁ u₃ ⇒ Ttrans u₂ u₄
Ttrans (ν u₁) (ν u₂) = ν (Ttrans u₁ u₂)
≡→≅T : ∀ {Γ : Ctx} {t₁ t₂ : Type Γ} →
t₁ ≡ t₂ → t₁ ≅T t₂
≡→≅T {Γ} {t₁} {.t₁} refl = Trefl
-- Note: makes the equality homogeneous in Γ
≅T-setoid : ∀ {Γ} → Setoid _ _
≅T-setoid {Γ} = record
{ Carrier = Type Γ
; _≈_ = _≅T_
; isEquivalence = record
{ refl = Trefl ; sym = Tsym ; trans = Ttrans }
}
-- | Ground type
GType = Type []
unit′ : GType
unit′ = unit
-- | Variable renaming in types
rename : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ
rename ρ unit = unit
rename ρ (var x) = var (ρ ∗ x)
rename ρ (t₁ ⊕ t₂) = rename ρ t₁ ⊕ rename ρ t₂
rename {Γ} {Δ} ρ (μ t) = μ (rename ρ' t)
where
ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ)
ρ' = ctx-id {[ ∗ ]} ⧻ ρ
rename ρ (t₁ ⊗ t₂) = rename ρ t₁ ⊗ rename ρ t₂
rename ρ (t₁ ⇒ t₂) = t₁ ⇒ rename ρ t₂
rename {Γ} {Δ} ρ (ν t) = ν (rename ρ' t)
where
ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ)
ρ' = ctx-id {[ ∗ ]} ⧻ ρ
-------------------------
---- Generating structure on contexts (derived from renaming)
weaken : {Γ : TyCtx} (Δ : TyCtx) → Type Γ -> Type (Δ ∐ Γ)
weaken {Γ} Δ = rename {Γ} {Δ ∐ Γ} (i₂ {Δ} {Γ})
exchange : (Γ Δ : TyCtx) → Type (Γ ∐ Δ) -> Type (Δ ∐ Γ)
exchange Γ Δ = rename [ i₂ {Δ} {Γ} , i₁ {Δ} {Γ} ]
contract : {Γ : TyCtx} → Type (Γ ∐ Γ) -> Type Γ
contract = rename [ ctx-id , ctx-id ]
-- weaken-id-empty-ctx : (Δ : TyCtx) (t : GType) → weaken {[]} Δ t ≡ t
-- weaken-id-empty-ctx = ?
Subst : TyCtx → TyCtx → Set
Subst Γ Δ = TyVar Γ → Type Δ
id-subst : ∀{Γ : TyCtx} → Subst Γ Γ
id-subst x = var x
update : ∀{Γ Δ : TyCtx} → Subst Γ Δ → Type Δ → (Subst (∗ ∷ Γ) Δ)
update σ a zero = a
update σ _ (succ′ _ x) = σ x
single-subst : ∀{Γ : TyCtx} → Type Γ → (Subst (∗ ∷ Γ) Γ)
single-subst a zero = a
single-subst _ (succ′ _ x) = var x
lift : ∀{Γ Δ} → Subst Γ Δ → Subst (∗ ∷ Γ) (∗ ∷ Δ)
lift σ = update (weaken [ ∗ ] ∘ σ) (var zero)
-- | Simultaneous substitution
subst : {Γ Δ : TyCtx} → (σ : Subst Γ Δ) → Type Γ → Type Δ
subst σ unit = unit
subst σ (var x) = σ x
subst σ (t₁ ⊕ t₂) = subst σ t₁ ⊕ subst σ t₂
subst {Γ} {Δ} σ (μ t) = μ (subst (lift σ) t)
subst σ (t₁ ⊗ t₂) = subst σ t₁ ⊗ subst σ t₂
subst σ (t₁ ⇒ t₂) = t₁ ⇒ subst σ t₂
subst {Γ} {Δ} σ (ν t) = ν (subst (lift σ) t)
subst₀ : {Γ : TyCtx} → Type Γ → Type (∗ ∷ Γ) → Type Γ
subst₀ {Γ} a = subst (update id-subst a)
rename′ : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ
rename′ ρ = subst (var ∘ (ρ ∗))
-- | Unfold lfp
unfold-μ : (Type [ ∗ ]) → GType
unfold-μ a = subst₀ (μ a) a
-- | Unfold gfp
unfold-ν : (Type [ ∗ ]) → GType
unfold-ν a = subst₀ (ν a) a
--------------------------------------------------
---- Examples
Nat : Type []
Nat = μ (unit ⊕ x)
where x = var zero
Str-Fun : {Γ : TyCtx} → Type Γ → Type (∗ ∷ Γ)
Str-Fun a = (weaken [ ∗ ] a ⊗ x)
where x = var zero
Str : {Γ : TyCtx} → Type Γ → Type Γ
Str a = ν (Str-Fun a)
lemma : ∀ {Γ : Ctx} {a b : Type Γ} {σ : Subst Γ Γ} →
subst (update σ b) (weaken [ ∗ ] a) ≅T subst σ a
lemma {a = unit} = unit
lemma {a = var x} = Trefl
lemma {a = a₁ ⊕ a₂} = lemma {a = a₁} ⊕ lemma {a = a₂}
lemma {a = μ a} = μ {!!}
lemma {a = a₁ ⊗ a₂} = lemma {a = a₁} ⊗ lemma {a = a₂}
lemma {a = a₁ ⇒ a₂} = Trefl ⇒ lemma {a = a₂}
lemma {a = ν a} = ν {!!}
lift-id-is-id-ext : ∀ {Γ : Ctx} (x : TyVar (∗ ∷ Γ)) →
(lift (id-subst {Γ})) x ≡ id-subst x
lift-id-is-id-ext zero = refl
lift-id-is-id-ext (succ′ ∗ x) = refl
lift-id-is-id : ∀ {Γ : Ctx} → lift (id-subst {Γ}) ≡ id-subst
lift-id-is-id = η-≡ lift-id-is-id-ext
id-subst-id : ∀ {Γ : Ctx} {a : Type Γ} →
subst id-subst a ≅T a
id-subst-id {a = unit} = unit
id-subst-id {a = var x} = var Vrefl
id-subst-id {a = a ⊕ a₁} = id-subst-id ⊕ id-subst-id
id-subst-id {a = μ a} =
μ (Ttrans (≡→≅T (cong (λ u → subst u a) lift-id-is-id)) id-subst-id)
id-subst-id {a = a ⊗ a₁} = id-subst-id ⊗ id-subst-id
id-subst-id {a = a ⇒ a₁} = Trefl ⇒ id-subst-id
id-subst-id {a = ν a} =
ν (Ttrans (≡→≅T (cong (λ u → subst u a) lift-id-is-id)) id-subst-id)
lemma₂ : ∀ {Γ : Ctx} {a b : Type Γ} →
subst (update id-subst b) (weaken [ ∗ ] a) ≅T a
lemma₂ {Γ} {a} {b} = Ttrans (lemma {Γ} {a} {b} {σ = id-subst}) id-subst-id
unfold-str : ∀{a : Type []} → (unfold-ν (Str-Fun a)) ≅T (a ⊗ Str a)
unfold-str {a} = lemma₂ ⊗ Trefl
LFair : {Γ : TyCtx} → Type Γ → Type Γ → Type Γ
LFair a b = ν (μ ((w a ⊗ x) ⊕ (w b ⊗ y)))
where
x = var zero
y = var (succ zero)
Δ = ∗ ∷ [ ∗ ]
w = weaken Δ
-}
|
{
"alphanum_fraction": 0.5254718896,
"avg_line_length": 30.79375,
"ext": "agda",
"hexsha": "3d9d0de31464a2482b9e2b691f17ab084ad8c6d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/FibDataTypes/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/FibDataTypes/Types.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/FibDataTypes/Types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4223,
"size": 9854
}
|
module Structure.OrderedField where
import Lvl
open import Data.Boolean
open import Data.Boolean.Proofs
import Data.Either as Either
open import Data.Tuple as Tuple
open import Functional
open import Logic
open import Logic.Classical
open import Logic.IntroInstances
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Natural using (ℕ)
import Numeral.Natural.Relation.Order as ℕ
open import Relator.Ordering
import Relator.Ordering.Proofs as OrderingProofs
open import Structure.Setoid
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Ordering
open import Structure.Operator.Field
open import Structure.Operator.Monoid
open import Structure.Operator.Group
open import Structure.Operator.Proofs
open import Structure.Operator.Properties
open import Structure.Operator.Ring.Proofs
open import Structure.Operator.Ring
open import Structure.Operator
open import Structure.Relator
open import Structure.Relator.Ordering
open Structure.Relator.Ordering.Weak.Properties
open import Structure.Relator.Properties
open import Structure.Relator.Proofs
open import Syntax.Implication
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₗ ℓₑ : Lvl.Level
private variable F : Type{ℓ}
-- TODO: Generalize so that this does not neccessarily need a rng. See linearly ordered groups and partially ordered groups. See also ordered semigroups and monoids where the property is called "compatible".
record Ordered ⦃ equiv : Equiv{ℓₑ}(F) ⦄ (_+_ _⋅_ : F → F → F) ⦃ rng : Rng(_+_)(_⋅_) ⦄ (_≤_ : F → F → Stmt{ℓₗ}) : Type{Lvl.of(F) Lvl.⊔ ℓₗ Lvl.⊔ ℓₑ} where
open From-[≤] (_≤_) public
open Rng(rng)
field
⦃ [≤]-totalOrder ⦄ : Weak.TotalOrder(_≤_)(_≡_)
[≤][+]ₗ-preserve : ∀{x y z} → (x ≤ y) → ((x + z) ≤ (y + z))
[≤][⋅]-zero : ∀{x y} → (𝟎 ≤ x) → (𝟎 ≤ y) → (𝟎 ≤ (x ⋅ y)) -- TODO: Rename to preserve-sign
⦃ [≤]-binaryRelator ⦄ : BinaryRelator(_≤_)
-- TODO: Move this to Structure.Relator.Order or something
instance
[≡][≤]-sub : (_≡_) ⊆₂ (_≤_)
_⊆₂_.proof [≡][≤]-sub p = substitute₂ᵣ(_≤_) p (reflexivity(_≤_))
open Weak.TotalOrder([≤]-totalOrder) public
open OrderingProofs.From-[≤] (_≤_) public
record NonNegative (x : F) : Stmt{ℓₗ} where
constructor intro
field proof : (x ≥ 𝟎)
record Positive (x : F) : Stmt{ℓₗ} where
constructor intro
field proof : (x > 𝟎)
[≤][+]ᵣ-preserve : ∀{x y z} → (y ≤ z) → ((x + y) ≤ (x + z))
[≤][+]ᵣ-preserve {x}{y}{z} yz =
x + y 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub
y + x 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve yz ]
z + x 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub
x + z 🝖-end
[≤][+]-preserve : ∀{x₁ x₂ y₁ y₂} → (x₁ ≤ x₂) → (y₁ ≤ y₂) → ((x₁ + y₁) ≤ (x₂ + y₂))
[≤][+]-preserve {x₁}{x₂}{y₁}{y₂} px py =
x₁ + y₁ 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve px ]
x₂ + y₁ 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve py ]
x₂ + y₂ 🝖[ _≤_ ]-end
[≤]-flip-positive : ∀{x} → (𝟎 ≤ x) ↔ ((− x) ≤ 𝟎)
[≤]-flip-positive {x} = [↔]-intro l r where
l = \p →
𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) (inverseFunctionᵣ(_+_)(−_)) ]-sub
x + (− x) 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve p ]
x + 𝟎 🝖[ _≡_ ]-[ identityᵣ(_+_)(𝟎) ]-sub
x 🝖-end
r = \p →
− x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityₗ(_+_)(𝟎)) ]-sub
𝟎 + (− x) 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve p ]
x + (− x) 🝖[ _≡_ ]-[ inverseFunctionᵣ(_+_)(−_) ]-sub
𝟎 🝖-end
[≤]-non-negative-difference : ∀{x y} → (𝟎 ≤ (y − x)) → (x ≤ y)
[≤]-non-negative-difference {x}{y} 𝟎yx =
x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityₗ(_+_)(𝟎)) ]-sub
𝟎 + x 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve 𝟎yx ]
(y − x) + x 🝖[ _≤_ ]-[]
(y + (− x)) + x 🝖[ _≡_ ]-[ associativity(_+_) ]-sub
y + ((− x) + x) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (inverseFunctionₗ(_+_)(−_)) ]-sub
y + 𝟎 🝖[ _≡_ ]-[ identityᵣ(_+_)(𝟎) ]-sub
y 🝖-end
[≤]-non-positive-difference : ∀{x y} → ((x − y) ≤ 𝟎) → (x ≤ y)
[≤]-non-positive-difference {x}{y} xy𝟎 =
x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityᵣ(_+_)(𝟎)) ]-sub
x + 𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) (congruence₂ᵣ(_+_)(_) (inverseFunctionₗ(_+_)(−_))) ]-sub
x + ((− y) + y) 🝖[ _≡_ ]-[ symmetry(_≡_) (associativity(_+_)) ]-sub
(x + (− y)) + y 🝖[ _≤_ ]-[]
(x − y) + y 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve xy𝟎 ]
𝟎 + y 🝖[ _≡_ ]-[ identityₗ(_+_)(𝟎) ]-sub
y 🝖-end
[≤]-with-[−] : ∀{x y} → (x ≤ y) → ((− y) ≤ (− x))
[≤]-with-[−] {x}{y} xy = [≤]-non-positive-difference proof3 where
proof3 : (((− y) − (− x)) ≤ 𝟎)
proof3 =
(− y) − (− x) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (involution(−_)) ]-sub
(− y) + x 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub
x − y 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve xy ]
y − y 🝖[ _≡_ ]-[ inverseFunctionᵣ(_+_)(−_) ]-sub
𝟎 🝖-end
[≤]-flip-negative : ∀{x} → (x ≤ 𝟎) ↔ (𝟎 ≤ (− x))
[≤]-flip-negative {x} = [↔]-intro l r where
r = \p →
𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) [−]-of-𝟎 ]-sub
− 𝟎 🝖[ _≤_ ]-[ [≤]-with-[−] {x}{𝟎} p ]
− x 🝖-end
l = \p →
x 🝖[ _≡_ ]-[ symmetry(_≡_) (involution(−_)) ]-sub
−(− x) 🝖[ _≤_ ]-[ [≤]-with-[−] p ]
− 𝟎 🝖[ _≡_ ]-[ [−]-of-𝟎 ]-sub
𝟎 🝖-end
[≤][−]ₗ-preserve : ∀{x y z} → (x ≤ y) → ((x − z) ≤ (y − z))
[≤][−]ₗ-preserve = [≤][+]ₗ-preserve
[≤][−]ᵣ-preserve : ∀{x y z} → (z ≤ y) → ((x − y) ≤ (x − z))
[≤][−]ᵣ-preserve = [≤][+]ᵣ-preserve ∘ [≤]-with-[−]
[≤][+]-withoutᵣ : ∀{x₁ x₂ y} → ((x₁ + y) ≤ (x₂ + y)) → (x₁ ≤ x₂)
[≤][+]-withoutᵣ {x₁}{x₂}{y} p =
x₁ 🝖[ _≡_ ]-[ symmetry(_≡_) (inverseOperᵣ(_+_)(_−_)) ]-sub
(x₁ + y) − y 🝖[ _≤_ ]-[ [≤][−]ₗ-preserve p ]
(x₂ + y) − y 🝖[ _≡_ ]-[ inverseOperᵣ(_+_)(_−_) ]-sub
x₂ 🝖-end
[≤][+]-withoutₗ : ∀{x y₁ y₂} → ((x + y₁) ≤ (x + y₂)) → (y₁ ≤ y₂)
[≤][+]-withoutₗ {x}{y₁}{y₂} p =
y₁ 🝖[ _≡_ ]-[ symmetry(_≡_) (inversePropₗ(_+_)(−_)) ]-sub
(− x) + (x + y₁) 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve p ]
(− x) + (x + y₂) 🝖[ _≡_ ]-[ inversePropₗ(_+_)(−_) ]-sub
y₂ 🝖-end
[<][+]-preserveₗ : ∀{x₁ x₂ y} → (x₁ < x₂) → ((x₁ + y) < (x₂ + y))
[<][+]-preserveₗ {x₁}{x₂}{y} px p = px ([≤][+]-withoutᵣ p)
[<][+]-preserveᵣ : ∀{x y₁ y₂} → (y₁ < y₂) → ((x + y₁) < (x + y₂))
[<][+]-preserveᵣ {x₁}{x₂}{y} px p = px ([≤][+]-withoutₗ p)
[<][+]-preserve : ∀{x₁ x₂ y₁ y₂} → (x₁ < x₂) → (y₁ < y₂) → ((x₁ + y₁) < (x₂ + y₂))
[<][+]-preserve {x₁}{x₂}{y₁}{y₂} px py =
x₁ + y₁ 🝖[ _<_ ]-[ [<][+]-preserveₗ px ]
x₂ + y₁ 🝖-semiend
x₂ + y₂ 🝖[ _<_ ]-end-from-[ [<][+]-preserveᵣ py ]
postulate [<][+]-preserve-subₗ : ∀{x₁ x₂ y₁ y₂} → (x₁ ≤ x₂) → (y₁ < y₂) → ((x₁ + y₁) < (x₂ + y₂))
postulate [<][+]-preserve-subᵣ : ∀{x₁ x₂ y₁ y₂} → (x₁ < x₂) → (y₁ ≤ y₂) → ((x₁ + y₁) < (x₂ + y₂))
-- Theory defining the axioms of an ordered field (a field with a weak total order).
record OrderedField ⦃ equiv : Equiv{ℓₑ}(F) ⦄ (_+_ _⋅_ : F → F → F) (_≤_ : F → F → Stmt{ℓₗ}) : Type{Lvl.of(F) Lvl.⊔ ℓₗ Lvl.⊔ ℓₑ} where
field
⦃ [+][⋅]-field ⦄ : Field(_+_)(_⋅_)
⦃ ordered ⦄ : Ordered(_+_)(_⋅_)(_≤_)
open Field([+][⋅]-field) public
open Ordered(ordered) public
|
{
"alphanum_fraction": 0.5050519031,
"avg_line_length": 39.9171270718,
"ext": "agda",
"hexsha": "1da4b47799c2d9fdafa63a17c47f652b26840505",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/OrderedField.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/OrderedField.agda",
"max_line_length": 207,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/OrderedField.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3340,
"size": 7225
}
|
module Global where
open import Data.List
open import Data.Maybe
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Typing
-- specific
data PosNeg : Set where
POS NEG POSNEG : PosNeg
-- global session context
SEntry = Maybe (STypeF SType × PosNeg)
SCtx = List SEntry
-- SSplit G G₁ G₂
-- split G into G₁ and G₂
-- length and position preserving
data SSplit : SCtx → SCtx → SCtx → Set where
ss-[] : SSplit [] [] []
ss-both : ∀ { G G₁ G₂ }
→ SSplit G G₁ G₂
→ SSplit (nothing ∷ G) (nothing ∷ G₁) (nothing ∷ G₂)
ss-left : ∀ { spn G G₁ G₂ }
→ SSplit G G₁ G₂
→ SSplit (just spn ∷ G) (just spn ∷ G₁) (nothing ∷ G₂)
ss-right : ∀ { spn G G₁ G₂ }
→ SSplit G G₁ G₂
→ SSplit (just spn ∷ G) (nothing ∷ G₁) (just spn ∷ G₂)
ss-posneg : ∀ { s G G₁ G₂ }
→ SSplit G G₁ G₂
→ SSplit (just (s , POSNEG) ∷ G) (just (s , POS) ∷ G₁) (just (s , NEG) ∷ G₂)
ss-negpos : ∀ { s G G₁ G₂ }
→ SSplit G G₁ G₂
→ SSplit (just (s , POSNEG) ∷ G) (just (s , NEG) ∷ G₁) (just (s , POS) ∷ G₂)
ssplit-sym : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → SSplit G G₂ G₁
ssplit-sym ss-[] = ss-[]
ssplit-sym (ss-both ss12) = ss-both (ssplit-sym ss12)
ssplit-sym (ss-left ss12) = ss-right (ssplit-sym ss12)
ssplit-sym (ss-right ss12) = ss-left (ssplit-sym ss12)
ssplit-sym (ss-posneg ss12) = ss-negpos (ssplit-sym ss12)
ssplit-sym (ss-negpos ss12) = ss-posneg (ssplit-sym ss12)
-- tedious but easy to prove
ssplit-compose : {G G₁ G₂ G₃ G₄ : SCtx}
→ (ss : SSplit G G₁ G₂)
→ (ss₁ : SSplit G₁ G₃ G₄)
→ ∃ λ Gi → SSplit G G₃ Gi × SSplit Gi G₄ G₂
ssplit-compose ss-[] ss-[] = [] , (ss-[] , ss-[])
ssplit-compose (ss-both ss) (ss-both ss₁) with ssplit-compose ss ss₁
ssplit-compose (ss-both ss) (ss-both ss₁) | Gi , ss₁₃ , ss₂₄ = nothing ∷ Gi , ss-both ss₁₃ , ss-both ss₂₄
ssplit-compose (ss-left ss) (ss-left ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = nothing ∷ Gi , ss-left ss₁₃ , ss-both ss₂₄
ssplit-compose (ss-left ss) (ss-right ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just _ ∷ Gi , ss-right ss₁₃ , ss-left ss₂₄
ssplit-compose (ss-left ss) (ss-posneg ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , NEG) ∷ Gi , ss-posneg ss₁₃ , ss-left ss₂₄
ssplit-compose (ss-left ss) (ss-negpos ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , POS) ∷ Gi , ss-negpos ss₁₃ , ss-left ss₂₄
ssplit-compose (ss-right ss) (ss-both ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just _ ∷ Gi , ss-right ss₁₃ , ss-right ss₂₄
ssplit-compose (ss-posneg ss) (ss-left ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , NEG) ∷ Gi , ss-posneg ss₁₃ , ss-right ss₂₄
ssplit-compose (ss-posneg ss) (ss-right ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , POSNEG) ∷ Gi , ss-right ss₁₃ , ss-posneg ss₂₄
ssplit-compose (ss-negpos ss) (ss-left ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , POS) ∷ Gi , ss-negpos ss₁₃ , ss-right ss₂₄
ssplit-compose (ss-negpos ss) (ss-right ss₁) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ = just ( _ , POSNEG) ∷ Gi , ss-right ss₁₃ , ss-negpos ss₂₄
ssplit-compose2 : {G G₁ G₂ G₂₁ G₂₂ : SCtx}
→ SSplit G G₁ G₂
→ SSplit G₂ G₂₁ G₂₂
→ ∃ λ Gi → (SSplit G Gi G₂₁ × SSplit Gi G₁ G₂₂)
ssplit-compose2 ss-[] ss-[] = [] , ss-[] , ss-[]
ssplit-compose2 (ss-both ss) (ss-both ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = nothing ∷ Gi , ss-both ssx , ss-both ssy
ssplit-compose2 (ss-left ss) (ss-both ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just _ ∷ Gi , ss-left ssx , ss-left ssy
ssplit-compose2 (ss-right ss) (ss-left ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = nothing ∷ Gi , ss-right ssx , ss-both ssy
ssplit-compose2 (ss-right ss) (ss-right ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just _ ∷ Gi , ss-left ssx , ss-right ssy
ssplit-compose2 (ss-right ss) (ss-posneg ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , NEG) ∷ Gi , ss-negpos ssx , ss-right ssy
ssplit-compose2 (ss-right ss) (ss-negpos ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , POS) ∷ Gi , ss-posneg ssx , ss-right ssy
ssplit-compose2 (ss-posneg ss) (ss-left ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , POS) ∷ Gi , ss-posneg ssx , ss-left ssy
ssplit-compose2 (ss-posneg ss) (ss-right ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , POSNEG) ∷ Gi , ss-left ssx , ss-posneg ssy
ssplit-compose2 (ss-negpos ss) (ss-left ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , NEG) ∷ Gi , ss-negpos ssx , ss-left ssy
ssplit-compose2 (ss-negpos ss) (ss-right ss₂) with ssplit-compose2 ss ss₂
... | Gi , ssx , ssy = just (_ , POSNEG) ∷ Gi , ss-left ssx , ss-negpos ssy
ssplit-compose3 : {G G₁ G₂ G₃ G₄ : SCtx}
→ SSplit G G₁ G₂
→ SSplit G₂ G₃ G₄
→ ∃ λ Gi → (SSplit G Gi G₄ × SSplit Gi G₁ G₃)
ssplit-compose3 ss-[] ss-[] = [] , ss-[] , ss-[]
ssplit-compose3 (ss-both ss12) (ss-both ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = nothing ∷ Gi , ss-both ssi4 , ss-both ssi13
ssplit-compose3 (ss-left ss12) (ss-both ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just _ ∷ Gi , ss-left ssi4 , ss-left ssi13
ssplit-compose3 (ss-right ss12) (ss-left ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just _ ∷ Gi , ss-left ssi4 , ss-right ssi13
ssplit-compose3 (ss-right ss12) (ss-right ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = nothing ∷ Gi , ss-right ssi4 , ss-both ssi13
ssplit-compose3 (ss-right ss12) (ss-posneg ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , POS) ∷ Gi , ss-posneg ssi4 , ss-right ssi13
ssplit-compose3 (ss-right ss12) (ss-negpos ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , NEG) ∷ Gi , ss-negpos ssi4 , ss-right ssi13
ssplit-compose3 (ss-posneg ss12) (ss-left ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , POSNEG) ∷ Gi , ss-left ssi4 , ss-posneg ssi13
ssplit-compose3 (ss-posneg ss12) (ss-right ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , POS) ∷ Gi , ss-posneg ssi4 , ss-left ssi13
ssplit-compose3 (ss-negpos ss12) (ss-left ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , POSNEG) ∷ Gi , ss-left ssi4 , ss-negpos ssi13
ssplit-compose3 (ss-negpos ss12) (ss-right ss234) with ssplit-compose3 ss12 ss234
... | Gi , ssi4 , ssi13 = just ( _ , NEG) ∷ Gi , ss-negpos ssi4 , ss-left ssi13
ssplit-compose4
: {G G₁ G₂ G₂₁ G₂₂ : SCtx}
→ (ss : SSplit G G₁ G₂)
→ (ss₁ : SSplit G₂ G₂₁ G₂₂)
→ ∃ λ Gi → SSplit G G₂₁ Gi × SSplit Gi G₁ G₂₂
ssplit-compose4 ss-[] ss-[] = [] , ss-[] , ss-[]
ssplit-compose4 (ss-both ss) (ss-both ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = nothing ∷ Gi , ss-both ss-21i , ss-both ss-122
ssplit-compose4 (ss-left ss) (ss-both ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just _ ∷ Gi , ss-right ss-21i , ss-left ss-122
ssplit-compose4 (ss-right ss) (ss-left ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = nothing ∷ Gi , ss-left ss-21i , ss-both ss-122
ssplit-compose4 (ss-right ss) (ss-right ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just _ ∷ Gi , ss-right ss-21i , ss-right ss-122
ssplit-compose4 (ss-right ss) (ss-posneg ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , NEG) ∷ Gi , ss-posneg ss-21i , ss-right ss-122
ssplit-compose4 (ss-right ss) (ss-negpos ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , POS) ∷ Gi , ss-negpos ss-21i , ss-right ss-122
ssplit-compose4 (ss-posneg ss) (ss-left ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , POS) ∷ Gi , ss-negpos ss-21i , ss-left ss-122
ssplit-compose4 (ss-posneg ss) (ss-right ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , POSNEG) ∷ Gi , ss-right ss-21i , ss-posneg ss-122
ssplit-compose4 (ss-negpos ss) (ss-left ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , NEG) ∷ Gi , ss-posneg ss-21i , ss-left ss-122
ssplit-compose4 (ss-negpos ss) (ss-right ss₁) with ssplit-compose4 ss ss₁
... | Gi , ss-21i , ss-122 = just (_ , POSNEG) ∷ Gi , ss-right ss-21i , ss-negpos ss-122
ssplit-compose5
: ∀ {G G₁ G₂ G₁₁ G₁₂ : SCtx}
→ (ss : SSplit G G₁ G₂)
→ (ss₁ : SSplit G₁ G₁₁ G₁₂)
→ ∃ λ Gi → SSplit G G₁₂ Gi × SSplit Gi G₁₁ G₂
ssplit-compose5 ss-[] ss-[] = [] , ss-[] , ss-[]
ssplit-compose5 (ss-both ss) (ss-both ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = nothing ∷ Gi , ss-both ss-12i , ss-both ss-112
ssplit-compose5 (ss-left ss) (ss-left ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just _ ∷ Gi , ss-right ss-12i , ss-left ss-112
ssplit-compose5 (ss-left ss) (ss-right ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = nothing ∷ Gi , ss-left ss-12i , ss-both ss-112
ssplit-compose5 (ss-left ss) (ss-posneg ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , POS) ∷ Gi , ss-negpos ss-12i , ss-left ss-112
ssplit-compose5 (ss-left ss) (ss-negpos ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , NEG) ∷ Gi , ss-posneg ss-12i , ss-left ss-112
ssplit-compose5 (ss-right ss) (ss-both ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just _ ∷ Gi , ss-right ss-12i , ss-right ss-112
ssplit-compose5 (ss-posneg ss) (ss-left ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , POSNEG) ∷ Gi , ss-right ss-12i , ss-posneg ss-112
ssplit-compose5 (ss-posneg ss) (ss-right ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , NEG) ∷ Gi , ss-posneg ss-12i , ss-right ss-112
ssplit-compose5 (ss-negpos ss) (ss-left ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , POSNEG) ∷ Gi , ss-right ss-12i , ss-negpos ss-112
ssplit-compose5 (ss-negpos ss) (ss-right ss₁) with ssplit-compose5 ss ss₁
... | Gi , ss-12i , ss-112 = just (_ , POS) ∷ Gi , ss-negpos ss-12i , ss-right ss-112
ssplit-compose6
: ∀ {G G₁ G₂ G₁₁ G₁₂ : SCtx}
→ (ss : SSplit G G₁ G₂)
→ (ss₁ : SSplit G₁ G₁₁ G₁₂)
→ ∃ λ Gi → SSplit G G₁₁ Gi × SSplit Gi G₁₂ G₂
ssplit-compose6 ss-[] ss-[] = [] , ss-[] , ss-[]
ssplit-compose6 (ss-both ss) (ss-both ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = nothing ∷ Gi , ss-both ss-g11i , ss-both ss-g122
ssplit-compose6 (ss-left ss) (ss-left ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = nothing ∷ Gi , ss-left ss-g11i , ss-both ss-g122
ssplit-compose6 (ss-left ss) (ss-right ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just _ ∷ Gi , ss-right ss-g11i , ss-left ss-g122
ssplit-compose6 (ss-left ss) (ss-posneg ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , NEG) ∷ Gi , ss-posneg ss-g11i , ss-left ss-g122
ssplit-compose6 (ss-left ss) (ss-negpos ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , POS) ∷ Gi , ss-negpos ss-g11i , ss-left ss-g122
ssplit-compose6 (ss-right ss) (ss-both ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just _ ∷ Gi , ss-right ss-g11i , ss-right ss-g122
ssplit-compose6 (ss-posneg ss) (ss-left ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , NEG) ∷ Gi , ss-posneg ss-g11i , ss-right ss-g122
ssplit-compose6 (ss-posneg ss) (ss-right ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , POSNEG) ∷ Gi , ss-right ss-g11i , ss-posneg ss-g122
ssplit-compose6 (ss-negpos ss) (ss-left ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , POS) ∷ Gi , ss-negpos ss-g11i , ss-right ss-g122
ssplit-compose6 (ss-negpos ss) (ss-right ss₁) with ssplit-compose6 ss ss₁
... | Gi , ss-g11i , ss-g122 = just (_ , POSNEG) ∷ Gi , ss-right ss-g11i , ss-negpos ss-g122
ssplit-join
: ∀ {G G₁ G₂ G₁₁ G₁₂ G₂₁ G₂₂}
→ (ss : SSplit G G₁ G₂)
→ (ss₁ : SSplit G₁ G₁₁ G₁₂)
→ (ss₂ : SSplit G₂ G₂₁ G₂₂)
→ ∃ λ G₁' → ∃ λ G₂' → SSplit G G₁' G₂' × SSplit G₁' G₁₁ G₂₁ × SSplit G₂' G₁₂ G₂₂
ssplit-join ss-[] ss-[] ss-[] = [] , [] , ss-[] , ss-[] , ss-[]
ssplit-join (ss-both ss) (ss-both ss₁) (ss-both ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = nothing ∷ G₁' , nothing ∷ G₂' , ss-both ss-12 , ss-both ss-1121 , ss-both ss-2122
ssplit-join (ss-left ss) (ss-left ss₁) (ss-both ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , nothing ∷ G₂' , ss-left ss-12 , ss-left ss-1121 , ss-both ss-2122
ssplit-join (ss-left ss) (ss-right ss₁) (ss-both ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = nothing ∷ G₁' ,
just _ ∷ G₂' ,
ss-right ss-12 , ss-both ss-1121 , ss-left ss-2122
ssplit-join (ss-left ss) (ss-posneg ss₁) (ss-both ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-posneg ss-12 , ss-left ss-1121 , ss-left ss-2122
ssplit-join (ss-left ss) (ss-negpos ss₁) (ss-both ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-negpos ss-12 , ss-left ss-1121 , ss-left ss-2122
ssplit-join (ss-right ss) (ss-both ss₁) (ss-left ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' ,
nothing ∷ G₂' , ss-left ss-12 , ss-right ss-1121 , ss-both ss-2122
ssplit-join (ss-right ss) (ss-both ss₁) (ss-right ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = nothing ∷ G₁' ,
just _ ∷ G₂' ,
ss-right ss-12 , ss-both ss-1121 , ss-right ss-2122
ssplit-join (ss-right ss) (ss-both ss₁) (ss-posneg ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-posneg ss-12 , ss-right ss-1121 , ss-right ss-2122
ssplit-join (ss-right ss) (ss-both ss₁) (ss-negpos ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-negpos ss-12 , ss-right ss-1121 , ss-right ss-2122
ssplit-join (ss-posneg ss) (ss-left ss₁) (ss-left ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , nothing ∷ G₂' , ss-left ss-12 , ss-posneg ss-1121 , ss-both ss-2122
ssplit-join (ss-posneg ss) (ss-left ss₁) (ss-right ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-posneg ss-12 , ss-left ss-1121 , ss-right ss-2122
ssplit-join (ss-posneg ss) (ss-right ss₁) (ss-left ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-negpos ss-12 , ss-right ss-1121 , ss-left ss-2122
ssplit-join (ss-posneg ss) (ss-right ss₁) (ss-right ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = nothing ∷ G₁' ,
just (_ , POSNEG) ∷ G₂' ,
ss-right ss-12 , ss-both ss-1121 , ss-posneg ss-2122
ssplit-join (ss-negpos ss) (ss-left ss₁) (ss-left ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , nothing ∷ G₂' , ss-left ss-12 , ss-negpos ss-1121 , ss-both ss-2122
ssplit-join (ss-negpos ss) (ss-left ss₁) (ss-right ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-negpos ss-12 , ss-left ss-1121 , ss-right ss-2122
ssplit-join (ss-negpos ss) (ss-right ss₁) (ss-left ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = just _ ∷ G₁' , just _ ∷ G₂' , ss-posneg ss-12 , ss-right ss-1121 , ss-left ss-2122
ssplit-join (ss-negpos ss) (ss-right ss₁) (ss-right ss₂) with ssplit-join ss ss₁ ss₂
... | G₁' , G₂' , ss-12 , ss-1121 , ss-2122 = nothing ∷ G₁' ,
just (_ , POSNEG) ∷ G₂' ,
ss-right ss-12 , ss-both ss-1121 , ss-negpos ss-2122
-- another rotation
ssplit-rotate : ∀ {G G1 G2 G21 G22 G211 G212 : SCtx}
→ SSplit G G1 G2
→ SSplit G2 G21 G22
→ SSplit G21 G211 G212
→ ∃ λ G2'
→ ∃ λ G21'
→ SSplit G G211 G2' × SSplit G2' G21' G22 × SSplit G21' G1 G212
ssplit-rotate ss-[] ss-[] ss-[] =
[] , [] , ss-[] , ss-[] , ss-[]
ssplit-rotate (ss-both ss-g12) (ss-both ss-g2122) (ss-both ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
nothing ∷ G2' , nothing ∷ G21' , (ss-both ss-g12') , (ss-both ss-g2122') , (ss-both ss-g211212')
ssplit-rotate (ss-left ss-g12) (ss-both ss-g2122) (ss-both ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , (ss-right ss-g12') , ss-left ss-g2122' , ss-left ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-left ss-g2122) (ss-left ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-left ss-g12' , ss-both ss-g2122' , ss-both ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-left ss-g2122) (ss-right ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-left ss-g2122' , ss-right ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-left ss-g2122) (ss-posneg ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-posneg ss-g12' , ss-left ss-g2122' , ss-right ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-left ss-g2122) (ss-negpos ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-negpos ss-g12' , ss-left ss-g2122' , ss-right ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-right ss-g2122) (ss-both ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-right ss-g2122' , ss-both ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-posneg ss-g2122) (ss-left ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-posneg ss-g12' , ss-right ss-g2122' , ss-both ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-posneg ss-g2122) (ss-right ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-posneg ss-g2122' , ss-right ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-negpos ss-g2122) (ss-left ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-negpos ss-g12' , ss-right ss-g2122' , ss-both ss-g211212'
ssplit-rotate (ss-right ss-g12) (ss-negpos ss-g2122) (ss-right ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-negpos ss-g2122' , ss-right ss-g211212'
ssplit-rotate (ss-posneg ss-g12) (ss-left ss-g2122) (ss-left ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-negpos ss-g12' , ss-left ss-g2122' , ss-left ss-g211212'
ssplit-rotate (ss-posneg ss-g12) (ss-left ss-g2122) (ss-right ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-left ss-g2122' , ss-posneg ss-g211212'
ssplit-rotate (ss-posneg ss-g12) (ss-right ss-g2122) (ss-both ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-posneg ss-g2122' , ss-left ss-g211212'
ssplit-rotate (ss-negpos ss-g12) (ss-left ss-g2122) (ss-left ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-posneg ss-g12' , ss-left ss-g2122' , ss-left ss-g211212'
ssplit-rotate (ss-negpos ss-g12) (ss-left ss-g2122) (ss-right ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-left ss-g2122' , ss-negpos ss-g211212'
ssplit-rotate (ss-negpos ss-g12) (ss-right ss-g2122) (ss-both ss-g211212) with ssplit-rotate ss-g12 ss-g2122 ss-g211212
... | G2' , G21' , ss-g12' , ss-g2122' , ss-g211212' =
_ , _ , ss-right ss-g12' , ss-negpos ss-g2122' , ss-left ss-g211212'
-- a session context is inactive if all its entries are void
data Inactive : (G : SCtx) → Set where
[]-inactive : Inactive []
::-inactive : ∀ {G : SCtx} → Inactive G → Inactive (nothing ∷ G)
inactive-ssplit-trivial : ∀ {G} → Inactive G → SSplit G G G
inactive-ssplit-trivial []-inactive = ss-[]
inactive-ssplit-trivial (::-inactive ina) = ss-both (inactive-ssplit-trivial ina)
ssplit-inactive : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → Inactive G₁ → Inactive G₂ → Inactive G
ssplit-inactive ss-[] []-inactive []-inactive = []-inactive
ssplit-inactive (ss-both ssp) (::-inactive ina1) (::-inactive ina2) = ::-inactive (ssplit-inactive ssp ina1 ina2)
ssplit-inactive (ss-left ssp) () ina2
ssplit-inactive (ss-right ssp) ina1 ()
ssplit-inactive (ss-posneg ssp) () ina2
ssplit-inactive (ss-negpos ssp) ina1 ()
ssplit-inactive-left : ∀ {G G'} → SSplit G G G' → Inactive G'
ssplit-inactive-left ss-[] = []-inactive
ssplit-inactive-left (ss-both ssp) = ::-inactive (ssplit-inactive-left ssp)
ssplit-inactive-left (ss-left ssp) = ::-inactive (ssplit-inactive-left ssp)
ssplit-refl-left : (G : SCtx) → Σ SCtx λ G' → SSplit G G G'
ssplit-refl-left [] = [] , ss-[]
ssplit-refl-left (just x ∷ G) with ssplit-refl-left G
... | G' , ssp' = nothing ∷ G' , ss-left ssp'
ssplit-refl-left (nothing ∷ G) with ssplit-refl-left G
... | G' , ssp' = nothing ∷ G' , ss-both ssp'
ssplit-refl-left-inactive : (G : SCtx) → Σ SCtx λ G' → Inactive G' × SSplit G G G'
ssplit-refl-left-inactive [] = [] , []-inactive , ss-[]
ssplit-refl-left-inactive (x ∷ G) with ssplit-refl-left-inactive G
ssplit-refl-left-inactive (just x ∷ G) | G' , ina-G' , ss-GG' = nothing ∷ G' , ::-inactive ina-G' , ss-left ss-GG'
ssplit-refl-left-inactive (nothing ∷ G) | G' , ina-G' , ss-GG' = nothing ∷ G' , ::-inactive ina-G' , ss-both ss-GG'
ssplit-inactive-right : ∀ {G G'} → SSplit G G' G → Inactive G'
ssplit-inactive-right ss-[] = []-inactive
ssplit-inactive-right (ss-both ss) = ::-inactive (ssplit-inactive-right ss)
ssplit-inactive-right (ss-right ss) = ::-inactive (ssplit-inactive-right ss)
ssplit-refl-right : (G : SCtx) → Σ SCtx λ G' → SSplit G G' G
ssplit-refl-right [] = [] , ss-[]
ssplit-refl-right (just x ∷ G) with ssplit-refl-right G
... | G' , ssp' = nothing ∷ G' , ss-right ssp'
ssplit-refl-right (nothing ∷ G) with ssplit-refl-right G
... | G' , ssp' = nothing ∷ G' , ss-both ssp'
ssplit-refl-right-inactive : (G : SCtx) → Σ SCtx λ G' → Inactive G' × SSplit G G' G
ssplit-refl-right-inactive [] = [] , []-inactive , ss-[]
ssplit-refl-right-inactive (x ∷ G) with ssplit-refl-right-inactive G
ssplit-refl-right-inactive (just x ∷ G) | G' , ina-G' , ssp' = nothing ∷ G' , ::-inactive ina-G' , ss-right ssp'
ssplit-refl-right-inactive (nothing ∷ G) | G' , ina-G' , ssp' = nothing ∷ G' , ::-inactive ina-G' , ss-both ssp'
inactive-left-ssplit : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → Inactive G₁ → G ≡ G₂
inactive-left-ssplit ss-[] []-inactive = refl
inactive-left-ssplit (ss-both ss) (::-inactive inG₁) =
cong (_∷_ nothing) (inactive-left-ssplit ss inG₁)
inactive-left-ssplit (ss-right ss) (::-inactive inG₁) =
cong (_∷_ (just _)) (inactive-left-ssplit ss inG₁)
inactive-right-ssplit : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → Inactive G₂ → G ≡ G₁
inactive-right-ssplit ss-[] []-inactive = refl
inactive-right-ssplit (ss-both ssp) (::-inactive ina) =
cong (_∷_ nothing) (inactive-right-ssplit ssp ina)
inactive-right-ssplit (ss-left ssp) (::-inactive ina) =
cong (_∷_ (just _)) (inactive-right-ssplit ssp ina)
inactive-right-ssplit-sym : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → Inactive G₂ → G₁ ≡ G
inactive-right-ssplit-sym ssp ina = sym (inactive-right-ssplit ssp ina)
inactive-right-ssplit-transform : ∀ {G G₁ G₂} → SSplit G G₁ G₂ → Inactive G₂ → SSplit G G G₂
inactive-right-ssplit-transform ss-[] []-inactive = ss-[]
inactive-right-ssplit-transform (ss-both ss-GG1G2) (::-inactive ina-G2) = ss-both (inactive-right-ssplit-transform ss-GG1G2 ina-G2)
inactive-right-ssplit-transform (ss-left ss-GG1G2) (::-inactive ina-G2) = ss-left (inactive-right-ssplit-transform ss-GG1G2 ina-G2)
inactive-right-ssplit-transform (ss-right ss-GG1G2) ()
inactive-right-ssplit-transform (ss-posneg ss-GG1G2) ()
inactive-right-ssplit-transform (ss-negpos ss-GG1G2) ()
ssplit-function : ∀ {G G' G₁ G₂} → SSplit G G₁ G₂ → SSplit G' G₁ G₂ → G ≡ G'
ssplit-function ss-[] ss-[] = refl
ssplit-function (ss-both ssp-GG1G2) (ss-both ssp-G'G1G2) =
cong (_∷_ nothing) (ssplit-function ssp-GG1G2 ssp-G'G1G2)
ssplit-function (ss-left ssp-GG1G2) (ss-left ssp-G'G1G2) =
cong (_∷_ (just _)) (ssplit-function ssp-GG1G2 ssp-G'G1G2)
ssplit-function (ss-right ssp-GG1G2) (ss-right ssp-G'G1G2) =
cong (_∷_ (just _)) (ssplit-function ssp-GG1G2 ssp-G'G1G2)
ssplit-function (ss-posneg ssp-GG1G2) (ss-posneg ssp-G'G1G2) =
cong (_∷_ (just _)) (ssplit-function ssp-GG1G2 ssp-G'G1G2)
ssplit-function (ss-negpos ssp-GG1G2) (ss-negpos ssp-G'G1G2) =
cong (_∷_ (just _)) (ssplit-function ssp-GG1G2 ssp-G'G1G2)
ssplit-function1 : ∀ {G G₁ G₁' G₂} → SSplit G G₁ G₂ → SSplit G G₁' G₂ → G₁ ≡ G₁'
ssplit-function1 ss-[] ss-[] = refl
ssplit-function1 (ss-both ssp-GG1G2) (ss-both ssp-GG1'G2) =
cong (_∷_ nothing) (ssplit-function1 ssp-GG1G2 ssp-GG1'G2)
ssplit-function1 (ss-left ssp-GG1G2) (ss-left ssp-GG1'G2) =
cong (_∷_ (just _)) (ssplit-function1 ssp-GG1G2 ssp-GG1'G2)
ssplit-function1 (ss-right ssp-GG1G2) (ss-right ssp-GG1'G2) =
cong (_∷_ nothing) (ssplit-function1 ssp-GG1G2 ssp-GG1'G2)
ssplit-function1 (ss-posneg ssp-GG1G2) (ss-posneg ssp-GG1'G2) =
cong (_∷_ (just _)) (ssplit-function1 ssp-GG1G2 ssp-GG1'G2)
ssplit-function1 (ss-negpos ssp-GG1G2) (ss-negpos ssp-GG1'G2) =
cong (_∷_ (just _)) (ssplit-function1 ssp-GG1G2 ssp-GG1'G2)
ssplit-function2 : ∀ {G G₁ G₂ G₂'} → SSplit G G₁ G₂ → SSplit G G₁ G₂' → G₂ ≡ G₂'
ssplit-function2 ss-[] ss-[] = refl
ssplit-function2 (ss-both ssp-GG1G2) (ss-both ssp-GG1G2') =
cong (_∷_ nothing) (ssplit-function2 ssp-GG1G2 ssp-GG1G2')
ssplit-function2 (ss-left ssp-GG1G2) (ss-left ssp-GG1G2') =
cong (_∷_ nothing) (ssplit-function2 ssp-GG1G2 ssp-GG1G2')
ssplit-function2 (ss-right ssp-GG1G2) (ss-right ssp-GG1G2') =
cong (_∷_ (just _)) (ssplit-function2 ssp-GG1G2 ssp-GG1G2')
ssplit-function2 (ss-posneg ssp-GG1G2) (ss-posneg ssp-GG1G2') =
cong (_∷_ (just _)) (ssplit-function2 ssp-GG1G2 ssp-GG1G2')
ssplit-function2 (ss-negpos ssp-GG1G2) (ss-negpos ssp-GG1G2') =
cong (_∷_ (just _)) (ssplit-function2 ssp-GG1G2 ssp-GG1G2')
|
{
"alphanum_fraction": 0.6349885634,
"avg_line_length": 62.0274599542,
"ext": "agda",
"hexsha": "68eb5a576ca668da3cbce596e44868e3a18f48f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Global.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Global.agda",
"max_line_length": 131,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Global.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 10943,
"size": 27106
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Products of nullary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Product where
open import Data.Product
open import Function
open import Relation.Nullary
-- Some properties which are preserved by _×_.
infixr 2 _×-dec_
_×-dec_ : ∀ {p q} {P : Set p} {Q : Set q} →
Dec P → Dec Q → Dec (P × Q)
yes p ×-dec yes q = yes (p , q)
no ¬p ×-dec _ = no (¬p ∘ proj₁)
_ ×-dec no ¬q = no (¬q ∘ proj₂)
|
{
"alphanum_fraction": 0.4666666667,
"avg_line_length": 25.625,
"ext": "agda",
"hexsha": "f5e3611b4b0e679defc773371a288ca1bd3d040c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Product.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 158,
"size": 615
}
|
module Impure.STLCRef.Readme where
open import Impure.STLCRef.Syntax
open import Impure.STLCRef.Welltyped
open import Impure.STLCRef.Eval
open import Impure.STLCRef.Properties.Soundness
|
{
"alphanum_fraction": 0.8556149733,
"avg_line_length": 26.7142857143,
"ext": "agda",
"hexsha": "4d0b752d0a46f7e30b8485ca8551087eb9c447f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/STLCRef/Readme.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/STLCRef/Readme.agda",
"max_line_length": 47,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/STLCRef/Readme.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 51,
"size": 187
}
|
-- You can omit the right hand side if you pattern match on an empty type. But
-- you have to do the matching.
module NoRHSRequiresAbsurdPattern where
data Zero : Set where
good : {A : Set} -> Zero -> A
good ()
bad : {A : Set} -> Zero -> A
bad h
|
{
"alphanum_fraction": 0.668,
"avg_line_length": 19.2307692308,
"ext": "agda",
"hexsha": "5408053efaef86fb8a7fad8646e976f599719090",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NoRHSRequiresAbsurdPattern.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NoRHSRequiresAbsurdPattern.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NoRHSRequiresAbsurdPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 250
}
|
open import FRP.JS.Maybe using ( Maybe ; just ; nothing )
open import FRP.JS.Bool using ( Bool ; true ; false ; _∨_ ; _∧_ )
open import FRP.JS.True using ( True ; tt ; contradiction ; ∧-intro ; ∧-elim₁ ; ∧-elim₂ )
open import FRP.JS.Nat using ( ℕ ; _+_ ; _∸_ )
open import FRP.JS.Keys using ( Keys ; IKeys ; _<?_ ; sorted ; head ; _∈i_ ; _∈_ )
renaming ( keys to kkeys ; ikeys to ikeysk ; ikeys✓ to ikeysk✓ ; [] to []k ; _∷_ to _∷k_ )
open import FRP.JS.String using ( String ; _<_ ; _≟_ )
open import FRP.JS.String.Properties using ( <-trans )
module FRP.JS.Object where
infixr 4 _↦_∷_
data IObject {α} (A : Set α) : ∀ ks → True (sorted ks) → Set α where
[] : IObject A []k tt
_↦_∷_ : ∀ k (a : A) {ks k∷ks✓} →
(as : IObject A ks (∧-elim₂ {k <? head ks} k∷ks✓)) →
IObject A (k ∷k ks) k∷ks✓
{-# COMPILED_JS IObject function(x,v) {
if ((x.array.length) <= (x.offset)) { return v["[]"](); }
else { return v["_↦_∷_"](x.key(),x.value(),x.tail(),null,x.tail()); }
} #-}
{-# COMPILED_JS [] require("agda.object").iempty() #-}
{-# COMPILED_JS _↦_∷_ function(k) { return function(a) {
return function () { return function() { return function(as) {
return as.set(k,a);
}; }; }; }; } #-}
ikeys : ∀ {α A ks ks✓} → IObject {α} A ks ks✓ → IKeys
ikeys {ks = ks} as = ks
ikeys✓ : ∀ {α A ks ks✓} as → True (sorted (ikeys {α} {A} {ks} {ks✓} as))
ikeys✓ {ks✓ = ks✓} as = ks✓
record Object {α} (A : Set α) : Set α where
constructor object
field
{keys} : Keys
iobject : IObject A (ikeysk keys) (ikeysk✓ keys)
open Object public
{-# COMPILED_JS Object function(x,v) {
return v.object(require("agda.object").keys(x),require("agda.object").iobject(x));
} #-}
{-# COMPILED_JS object function() { return function(as) { return as.object(); }; } #-}
{-# COMPILED_JS keys function() { return function() { return require("agda.object").keys; }; } #-}
{-# COMPILED_JS iobject function() { return function() { return require("agda.object").iobject; }; } #-}
open Object public
⟪⟫ : ∀ {α A} → Object {α} A
⟪⟫ = object []
{-# COMPILED_JS ⟪⟫ function() { return function() { return {}; }; } #-}
ilookup? : ∀ {α A ks ks✓} → IObject {α} A ks ks✓ → String → Maybe A
ilookup? [] l = nothing
ilookup? (k ↦ a ∷ as) l
with k ≟ l
... | true = just a
... | false
with k < l
... | true = ilookup? as l
... | false = nothing
lookup? : ∀ {α A} → Object {α} A → String → Maybe A
lookup? (object as) l = ilookup? as l
{-# COMPILED_JS lookup? function() { return function() { return function(as) { return function(l) {
return require("agda.box").box(require("agda.object").lookup(as,l));
}; }; }; } #-}
ilookup : ∀ {α A ks ks✓} → IObject {α} A ks ks✓ → ∀ l → {l∈ks : True (l ∈i ks)} → A
ilookup [] l {l∈[]} = contradiction l∈[]
ilookup (k ↦ a ∷ as) l {l∈k∷ks}
with k ≟ l
... | true = a
... | false
with k < l
... | true = ilookup as l {l∈k∷ks}
... | false = contradiction l∈k∷ks
lookup : ∀ {α A} as l → {l∈ks : True (l ∈ keys {α} {A} as)} → A
lookup (object as) l {l∈ks} = ilookup as l {l∈ks}
{-# COMPILED_JS lookup function() { return function() { return function(as) { return function(l) { return function() {
return require("agda.object").lookup(as,l);
}; }; }; }; } #-}
imap : ∀ {α β A B} → (String → A → B) → ∀ {ks ks✓} → IObject {α} A ks ks✓ → IObject {β} B ks ks✓
imap f [] = []
imap f (k ↦ a ∷ as) = (k ↦ f k a ∷ imap f as)
mapi : ∀ {α β A B} → (String → A → B) → Object {α} A → Object {β} B
mapi f (object as) = object (imap f as)
map : ∀ {α β A B} → (A → B) → Object {α} A → Object {β} B
map f = mapi (λ s → f)
{-# COMPILED_JS mapi function() { return function() { return function() { return function() {
return function(f) { return function(as) {
return require("agda.object").map(function(a,s) { return f(s)(a); },as);
}; };
}; }; }; } #-}
{-# COMPILED_JS map function() { return function() { return function() { return function() {
return function(f) { return function(as) {
return require("agda.object").map(f,as);
}; };
}; }; }; } #-}
iall : ∀ {α A} → (String → A → Bool) → ∀ {ks ks✓} → IObject {α} A ks ks✓ → Bool
iall f [] = true
iall f (k ↦ a ∷ as) = f k a ∧ iall f as
alli : ∀ {α A} → (String → A → Bool) → Object {α} A → Bool
alli f (object as) = iall f as
all : ∀ {α A} → (A → Bool) → Object {α} A → Bool
all f = alli (λ s → f)
{-# COMPILED_JS alli function() { return function() {
return function(f) { return function(as) {
return require("agda.object").all(function(a,s) { return f(s)(a); },as);
}; };
}; } #-}
{-# COMPILED_JS all function() { return function() {
return function(f) { return function(as) {
return require("agda.object").all(f,as);
}; };
}; } #-}
must : ∀ {α A} → (A → Bool) → (Maybe {α} A → Bool)
must p nothing = false
must p (just a) = p a
_⊆[_]_ : ∀ {α β A B} → Object {α} A → (A → B → Bool) → Object {β} B → Bool
as ⊆[ p ] bs = alli (λ k a → must (p a) (lookup? bs k)) as
_≟[_]_ : ∀ {α β A B} → Object {α} A → (A → B → Bool) → Object {β} B → Bool
as ≟[ p ] bs = (as ⊆[ p ] bs) ∧ (bs ⊆[(λ a b → true)] as)
kfilter : ∀ {α A} → (String → A → Bool) → ∀ {ks ks✓} → IObject {α} A ks ks✓ → IKeys
kfilter f [] = []k
kfilter f (k ↦ a ∷ as)
with f k a
... | true = k ∷k kfilter f as
... | false = kfilter f as
<?-trans : ∀ {k l m} → True (k < l) → True (l <? m) → True (k <? m)
<?-trans {k} {l} {nothing} k<l l<m = tt
<?-trans {k} {l} {just m} k<l l<m = <-trans {k} {l} {m} k<l l<m
kfilter-<? : ∀ {α A} f {ks ks✓} as k → True (k <? head ks) →
True (k <? head (kfilter {α} {A} f {ks} {ks✓} as))
kfilter-<? f [] k tt = tt
kfilter-<? f {ks✓ = l∷ls✓} (l ↦ a ∷ as) k k<l
with f l a
... | true = k<l
... | false = kfilter-<? f as k (<?-trans {m = head (ikeys as)} k<l (∧-elim₁ l∷ls✓))
kfilter✓ : ∀ {α A} f {ks ks✓} as → True (sorted (kfilter {α} {A} f {ks} {ks✓} as))
kfilter✓ f [] = tt
kfilter✓ f {ks✓ = k∷ks✓} (k ↦ a ∷ as)
with f k a
... | true = ∧-intro (kfilter-<? f as k (∧-elim₁ k∷ks✓)) (kfilter✓ f as)
... | false = kfilter✓ f as
ifilter : ∀ {α A} f {ks ks✓} as → ∀ {ls✓} → IObject A (kfilter {α} {A} f {ks} {ks✓} as) ls✓
ifilter f [] = []
ifilter f (k ↦ a ∷ as)
with f k a
... | true = (k ↦ a ∷ ifilter f as)
... | false = ifilter f as
filteri : ∀ {α} {A} → (String → A → Bool) → Object {α} A → Object A
filteri f (object as) = object (ifilter f as {kfilter✓ f as})
filter : ∀ {α} {A} → (A → Bool) → Object {α} A → Object A
filter f = filteri (λ k → f)
{-# COMPILED_JS filteri function() { return function() {
return function(p) { return function(as) {
return require("agda.object").filter(function(a,s) { return p(s)(a); },as);
}; };
}; } #-}
{-# COMPILED_JS filter function() { return function() {
return function(p) { return function(as) {
return require("agda.object").filter(p,as);
}; };
}; } #-}
-- Syntax sugar, e.g. ⟪ "a" ↦ 1 , "b" ↦ 2 , "c" ↦ 3 ⟫ : Object ℕ
infix 3 ⟪_
infixr 4 _↦_,_ _↦_⟫
data Sugar {α} (A : Set α) : Set α where
ε : Sugar A
_↦_,_ : String → A → Sugar A → Sugar A
_↦_⟫ : ∀ {α A} → String → A → Sugar {α} A
k ↦ a ⟫ = (k ↦ a , ε)
skeys : ∀ {α A} → Sugar {α} A → IKeys
skeys ε = []k
skeys (k ↦ a , as) = k ∷k skeys as
desugar : ∀ {α A} as {ks✓} → IObject A (skeys {α} {A} as) ks✓
desugar ε = []
desugar (k ↦ a , as) = k ↦ a ∷ desugar as
⟪_ : ∀ {α A} as → {ks✓ : True (sorted (skeys {α} {A} as))} → Object A
⟪_ as {ks✓} = object {keys = kkeys (skeys as) {ks✓}} (desugar as)
|
{
"alphanum_fraction": 0.541109761,
"avg_line_length": 33.8219178082,
"ext": "agda",
"hexsha": "3cacc533d2c42bc58201c3583e140f0b2484da9c",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Object.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Object.agda",
"max_line_length": 118,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Object.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 2908,
"size": 7407
}
|
open import Web.Semantic.DL.ABox.Interp using ( _*_ )
open import Web.Semantic.DL.Category.Object using ( Object )
open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _≣_ ; _⊑_ ; _,_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-mid ; compose-right ; compose-resp-⊨b )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.Util using ( left ; right )
module Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv
{Σ : Signature} {S T : TBox Σ} where
compose-resp-⊑ : ∀ {A B C : Object S T} (F₁ F₂ : A ⇒ B) (G₁ G₂ : B ⇒ C) →
(F₁ ⊑ F₂) → (G₁ ⊑ G₂) → (F₁ ∙ G₁ ⊑ F₂ ∙ G₂)
compose-resp-⊑ F₁ F₂ G₁ G₂ F₁⊑F₂ G₁⊑G₂ I I⊨STA I⊨F₁⟫G₁ =
compose-resp-⊨b F₂ G₂ I
(F₁⊑F₂ (left * I) I⊨STA
(compose-left F₁ G₁ I I⊨F₁⟫G₁))
(G₁⊑G₂ (right * I) (compose-mid F₁ G₁ I I⊨STA I⊨F₁⟫G₁)
(compose-right F₁ G₁ I I⊨F₁⟫G₁))
compose-resp-≣ : ∀ {A B C : Object S T} {F₁ F₂ : A ⇒ B} {G₁ G₂ : B ⇒ C} →
(F₁ ≣ F₂) → (G₁ ≣ G₂) → (F₁ ∙ G₁ ≣ F₂ ∙ G₂)
compose-resp-≣ {A} {B} {C} {F₁} {F₂} {G₁} {G₂}
(F₁⊑F₂ , F₂⊑F₁) (G₁⊑G₂ , G₂⊑G₁) =
( compose-resp-⊑ F₁ F₂ G₁ G₂ F₁⊑F₂ G₁⊑G₂
, compose-resp-⊑ F₂ F₁ G₂ G₁ F₂⊑F₁ G₂⊑G₁ )
|
{
"alphanum_fraction": 0.626497006,
"avg_line_length": 46.0689655172,
"ext": "agda",
"hexsha": "aad546d1aac1e19ba00396afd48e0a6491cf56b5",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsEquiv.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsEquiv.agda",
"max_line_length": 77,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 639,
"size": 1336
}
|
module Issue328 where
mutual
postulate D : Set
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/Syntax/Concrete/Definitions.hs:398
|
{
"alphanum_fraction": 0.7591623037,
"avg_line_length": 21.2222222222,
"ext": "agda",
"hexsha": "18a83aaca243a5165f4043cd961ce5df2ec2e057",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue328.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue328.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue328.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 50,
"size": 191
}
|
module Elem where
open import Prelude
open import Star
Elem : {X : Set}(R : Rel X) -> Rel X
Elem R x y = Star (LeqBool [×] R) (false , x) (true , y)
|
{
"alphanum_fraction": 0.6118421053,
"avg_line_length": 16.8888888889,
"ext": "agda",
"hexsha": "508e38845d32c5b56d554073e7579509129b55df",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM6/Path/Elem.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM6/Path/Elem.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM6/Path/Elem.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 54,
"size": 152
}
|
module Test where
open import LF
open import IID
-- r←→gArgs-subst eliminates the identity proof stored in the rArgs. If this proof is
-- by reflexivity r←→gArgs-subst is a definitional identity. This is the case
-- when a = g→rArgs a'
r←→gArgs-subst-identity :
{I : Set}(γ : OPg I)(U : I -> Set)
(C : (i : I) -> rArgs (ε γ) U i -> Set)
(a' : Args γ U) ->
let a = g→rArgs γ U a'
i = index γ U a' in
(h : C (index γ U (r→gArgs γ U i a))
(g→rArgs γ U (r→gArgs γ U i a))
) -> r←→gArgs-subst γ U C i a h ≡ h
r←→gArgs-subst-identity (ι i) U C _ h = refl-≡
r←→gArgs-subst-identity (σ A γ) U C arg h = r←→gArgs-subst-identity (γ (π₀ arg)) U C' (π₁ arg) h
where C' = \i c -> C i (π₀ arg , c)
r←→gArgs-subst-identity (δ H i γ) U C arg h = r←→gArgs-subst-identity γ U C' (π₁ arg) h
where C' = \i c -> C i (π₀ arg , c)
|
{
"alphanum_fraction": 0.5817535545,
"avg_line_length": 33.76,
"ext": "agda",
"hexsha": "79bd755db2a5e4d0a40ba0e05e47ae6e3452eb6f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/Test.agda",
"max_line_length": 98,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 354,
"size": 844
}
|
{-# OPTIONS --safe --without-K #-}
module Erased-cubical.Without-K where
data D : Set where
c : D
|
{
"alphanum_fraction": 0.6470588235,
"avg_line_length": 14.5714285714,
"ext": "agda",
"hexsha": "6f74c7bda45957f2a6970f680e7076524981a3b3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 30,
"size": 102
}
|
open import Everything
module Test.Functor where
List = List⟨_⟩
module _
{a b} {A : Set a} {B : Set b}
where
map-list : (A → B) → List A → List B
map-list f ∅ = ∅
map-list f (x , xs) = f x , map-list f xs
instance
SurjtranscommutativityList : ∀ {ℓ} → Surjtranscommutativity.class Function⟦ ℓ ⟧ (MFunction List) _≡̇_ map-list transitivity transitivity
SurjtranscommutativityList .⋆ f g ∅ = ∅
SurjtranscommutativityList .⋆ f g (x , xs) rewrite SurjtranscommutativityList .⋆ f g xs = ∅
SurjextensionalityList : ∀ {ℓ} → Surjextensionality.class Function⟦ ℓ ⟧ _≡̇_ (MFunction List) _≡̇_ _ map-list
SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ ∅ = ∅
SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ (x , xs) rewrite SurjextensionalityList .⋆ _ _ f₁ f₂ f₁≡̇f₂ xs | f₁≡̇f₂ x = ∅
SurjidentityList : ∀ {ℓ} → Surjidentity.class Function⟦ ℓ ⟧ (MFunction List) _≡̇_ map-list ε ε
SurjidentityList .⋆ ∅ = ∅
SurjidentityList .⋆ (x , xs) rewrite SurjidentityList .⋆ xs = ∅
test-isprecategory-1 : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} Function⟦ ℓ ⟧ _≡̇_ (flip _∘′_)
test-isprecategory-1 {ℓ} = IsPrecategoryExtension {A = Ø ℓ} {B = ¡}
test-isprecategory-2 : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} Function⟦ ℓ ⟧ _≡̇_ (flip _∘′_)
test-isprecategory-2 {ℓ} = IsPrecategoryFunction {𝔬 = ℓ}
test-isprecategory-1a : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} (Extension (¡ {𝔒 = Ø ℓ})) _≡̇_ (flip _∘′_)
test-isprecategory-1a {ℓ} = IsPrecategoryExtension {A = Ø ℓ} {B = ¡}
test-isprecategory-2a : ∀ {ℓ} → IsPrecategory {𝔒 = Ø ℓ} (Extension (¡ {𝔒 = Ø ℓ})) _≡̇_ (flip _∘′_)
test-isprecategory-2a {ℓ} = IsPrecategoryFunction {𝔬 = ℓ}
test-isprecategory-1b : IsPrecategory {𝔒 = ¶} (Extension (Term.Term ¶)) _≡̇_ (flip _∘′_)
test-isprecategory-1b = IsPrecategoryExtension {A = ¶} {B = Term.Term ¶}
-- test-isprecategory-2b : IsPrecategory {𝔒 = ¶} (Extension (Term.Term ¶)) _≡̇_ (flip _∘′_)
-- test-isprecategory-2b = {!!} -- IsPrecategoryFunction {𝔬 = ?}
instance
HmapList : ∀ {a} → Hmap.class Function⟦ a ⟧ (MFunction List)
HmapList = ∁ λ _ _ → map-list
instance
isPrefunctorList : ∀ {ℓ} → IsPrefunctor (λ (x y : Ø ℓ) → x → y)
Proposextensequality
transitivity
(λ (x y : Ø ℓ) → List x → List y)
Proposextensequality
transitivity
smap
isPrefunctorList = ∁
isFunctorList : ∀ {ℓ} → IsFunctor (λ (x y : Ø ℓ) → x → y)
Proposextensequality
ε
transitivity
(λ (x y : Ø ℓ) → List x → List y)
Proposextensequality
ε
transitivity
smap
isFunctorList = ∁
instance
FmapList : ∀ {ℓ} → Fmap (List {ℓ})
FmapList = ∁ smap
module _
{a} {A : Set a} {B : Set a}
where
test-smap-list : (A → B) → List A → List B
test-smap-list = smap
module _
{a} {A : Set a} {B : Set a}
where
test-fmap-list : (A → B) → List A → List B
test-fmap-list = fmap -- the intention here is to try to say "I want to invoke a functoral mapping, so that I can be sure that, for example, that `test-map-list ε₁ ≡ ε₂`.
|
{
"alphanum_fraction": 0.5443407235,
"avg_line_length": 37.6703296703,
"ext": "agda",
"hexsha": "5448916d148731eee88721db252dfa137ee3ae38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Functor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Functor.agda",
"max_line_length": 172,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1223,
"size": 3428
}
|
module Imports.Test where
open import Common.Level
record Foo (ℓ : Level) : Set ℓ where
|
{
"alphanum_fraction": 0.7282608696,
"avg_line_length": 11.5,
"ext": "agda",
"hexsha": "66e42e4fd2a207c32883f3c93d0fe974cd33e7e1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Imports/Test.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Imports/Test.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Imports/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 92
}
|
-- {-# OPTIONS -v scope:10 -v scope.inverse:100 #-}
open import Common.Equality
open import A.Issue1635 Set
test : ∀ x → x ≡ foo
test x = refl
-- ERROR:
-- x != .#A.Issue1635-225351734.foo of type Foo
-- when checking that the expression refl has type x ≡ foo
-- SLIGHTLY BETTER:
-- x != .A.Issue1635.Foo.foo of type Foo
-- when checking that the expression refl has type x ≡ foo
-- WANT: x != foo ...
|
{
"alphanum_fraction": 0.6609336609,
"avg_line_length": 22.6111111111,
"ext": "agda",
"hexsha": "b6013421988baa5ce50cbd8517256ab0e9362bbd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1635.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1635.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1635.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 126,
"size": 407
}
|
{-# OPTIONS --safe --without-K #-}
open import Generics.Prelude hiding (lookup)
open import Generics.Telescope
open import Generics.Desc
open import Generics.HasDesc
module Generics.Constructions.Case
{P I ℓ} {A : Indexed P I ℓ}
(H : HasDesc A) (open HasDesc H)
{p c} (Pr : Pred′ I λ i → A′ (p , i) → Set c)
where
private
variable
V : ExTele P
i : ⟦ I ⟧tel p
v : ⟦ V ⟧tel p
Pr′ : A′ (p , i) → Set c
Pr′ {i} = unpred′ I _ Pr i
--------------------------
-- Types of motives
levelCase : ConDesc P V I → Level
levelCase (var x) = c
levelCase (π {ℓ′} _ _ C) = ℓ′ ⊔ levelCase C
levelCase (A ⊗ B) = levelIndArg A ℓ ⊔ levelCase B
MotiveCon : (C : ConDesc P V I)
→ (∀ {i} → ⟦ C ⟧Con A′ (p , v , i) → Set c)
→ Set (levelCase C)
MotiveCon (var γ) X = X refl
MotiveCon (π ia S C) X = Π< ia > (S _) λ s → MotiveCon C (X ∘ (s ,_))
MotiveCon (A ⊗ B) X = (x : ⟦ A ⟧IndArg A′ (p , _))
→ MotiveCon B (X ∘ (x ,_))
Motives : ∀ k → Set (levelCase (lookupCon D k))
Motives k = MotiveCon (lookupCon D k) (λ x → Pr′ (constr (k , x)))
--------------------------
-- Case-analysis principle
module _ (methods : Els Motives) where
caseData : ∀ {i} → (x : ⟦ D ⟧Data A′ (p , i)) → Pr′ (constr x)
caseData (k , x) = caseCon (lookupCon D k) (methods k) x
where
caseCon
: (C : ConDesc P V I)
{mk : ∀ {i} → ⟦ C ⟧Con A′ (p , v , i) → ⟦ D ⟧Data A′ (p , i)}
(mot : MotiveCon C λ x → Pr′ (constr (mk x)))
(x : ⟦ C ⟧Con A′ (p , v , i))
→ Pr′ (constr (mk x))
caseCon (var γ) mot refl = mot
caseCon (π ia _ C) mot (s , x) = caseCon C (app< ia > mot s) x
caseCon (A ⊗ B) mot (a , b) = caseCon B (mot a) b
case : (x : A′ (p , i)) → Pr′ x
case x = subst Pr′ (constr∘split x) (caseData (split x))
deriveCase : Arrows Motives (Pred′ I (λ i → (x : A′ (p , i)) → Pr′ x))
deriveCase = curryₙ (λ m → pred′ I _ λ i → case m)
|
{
"alphanum_fraction": 0.5141825683,
"avg_line_length": 28.9402985075,
"ext": "agda",
"hexsha": "9e3fec579fadfb24105570fa3c2dcfd89be6f957",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Constructions/Case.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Constructions/Case.agda",
"max_line_length": 72,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Constructions/Case.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 758,
"size": 1939
}
|
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
P : Bool → Set
P true = Bool
P false = Bool
f : (b : Bool) → P b
f true = true
f false = false
pattern varg x = arg (arg-info visible relevant) x
create-constraint : TC Set
create-constraint =
unquoteTC (def (quote P)
(varg (def (quote f) (varg unknown ∷ [])) ∷ []))
macro
should-fail : Term → TC ⊤
should-fail _ =
bindTC (noConstraints create-constraint) λ _ →
returnTC tt
test : ⊤
test = should-fail
|
{
"alphanum_fraction": 0.6625441696,
"avg_line_length": 18.8666666667,
"ext": "agda",
"hexsha": "1a3a9be22febf536859dc98d2bd10fe202d93ccc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoConstraints.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoConstraints.agda",
"max_line_length": 63,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoConstraints.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 177,
"size": 566
}
|
module Numeric.Nat.LCM.Properties where
open import Prelude
open import Numeric.Nat.Divide
open import Numeric.Nat.Divide.Properties
open import Numeric.Nat.LCM
is-lcm-unique : ∀ {m m₁ a b} → IsLCM m a b → IsLCM m₁ a b → m ≡ m₁
is-lcm-unique {m} {m₁} (is-lcm a|m b|m lm) (is-lcm a|m₁ b|m₁ lm₁) =
divides-antisym (lm m₁ a|m₁ b|m₁) (lm₁ m a|m b|m)
lcm-unique : ∀ {m a b} → IsLCM m a b → lcm! a b ≡ m
lcm-unique {a = a} {b} lm with lcm a b
... | lcm-res m₁ lm₁ = is-lcm-unique lm₁ lm
is-lcm-commute : ∀ {m a b} → IsLCM m a b → IsLCM m b a
is-lcm-commute (is-lcm a|m b|m g) = is-lcm b|m a|m (flip ∘ g)
lcm-commute : ∀ {a b} → lcm! a b ≡ lcm! b a
lcm-commute {a} {b} with lcm b a
... | lcm-res m lm = lcm-unique (is-lcm-commute lm)
private
_|>_ = divides-trans
lcm-assoc : ∀ a b c → lcm! a (lcm! b c) ≡ lcm! (lcm! a b) c
lcm-assoc a b c with lcm a b | lcm b c
... | lcm-res ab (is-lcm a|ab b|ab lab)
| lcm-res bc (is-lcm b|bc c|bc lbc) with lcm ab c
... | lcm-res ab-c (is-lcm ab|abc c|abc labc) =
lcm-unique {ab-c} {a} {bc}
(is-lcm (a|ab |> ab|abc)
(lbc ab-c (b|ab |> ab|abc) c|abc)
λ k a|k bc|k → labc k (lab k a|k (b|bc |> bc|k)) (c|bc |> bc|k))
|
{
"alphanum_fraction": 0.5808885163,
"avg_line_length": 33.1388888889,
"ext": "agda",
"hexsha": "da4296f5142b70dda3eeb4dc6984234d45c78541",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/LCM/Properties.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/LCM/Properties.agda",
"max_line_length": 76,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/LCM/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 513,
"size": 1193
}
|
{-# OPTIONS --without-K #-}
module function.extensionality.computation where
open import equality
open import function.isomorphism
open import function.core
open import function.extensionality.core
open import function.extensionality.proof
open import function.extensionality.strong
funext-inv-hom : ∀ {i j}{X : Set i}{Y : X → Set j}
→ {f₁ f₂ f₃ : (x : X) → Y x}
→ (p₁ : f₁ ≡ f₂)
→ (p₂ : f₂ ≡ f₃)
→ funext-inv (p₁ · p₂)
≡ (λ x → funext-inv p₁ x · funext-inv p₂ x)
funext-inv-hom refl p₂ = refl
funext-hom : ∀ {i j}{X : Set i}{Y : X → Set j}
→ {f₁ f₂ f₃ : (x : X) → Y x}
→ (h₁ : (x : X) → f₁ x ≡ f₂ x)
→ (h₂ : (x : X) → f₂ x ≡ f₃ x)
→ funext (λ x → h₁ x · h₂ x)
≡ funext h₁ · funext h₂
funext-hom h₁ h₂ = begin
funext (λ x → h₁ x · h₂ x)
≡⟨ sym (ap funext (ap₂ (λ u v x → u x · v x)
(_≅_.iso₁ strong-funext-iso h₁)
(_≅_.iso₁ strong-funext-iso h₂))) ⟩
funext (λ x → funext-inv (funext h₁) x · funext-inv (funext h₂) x)
≡⟨ sym (ap funext (funext-inv-hom (funext h₁) (funext h₂))) ⟩
funext (funext-inv (funext h₁ · funext h₂))
≡⟨ _≅_.iso₂ strong-funext-iso (funext h₁ · funext h₂) ⟩
funext h₁ · funext h₂
∎
where open ≡-Reasoning
funext-inv-ap : ∀ {i j k}{X : Set i}{Y : X → Set j}{Z : X → Set k}
→ (g : {x : X} → Y x → Z x)
→ {f₁ f₂ : (x : X) → Y x}
→ (p : f₁ ≡ f₂)
→ funext-inv (ap (_∘'_ g) p)
≡ ((λ x → ap g (funext-inv p x)))
funext-inv-ap g refl = refl
funext-ap : ∀ {i j k}{X : Set i}{Y : X → Set j}{Z : X → Set k}
→ (g : {x : X} → Y x → Z x)
→ {f₁ f₂ : (x : X) → Y x}
→ (h : (x : X) → f₁ x ≡ f₂ x)
→ funext (λ x → ap g (h x))
≡ ap (_∘'_ g) (funext h)
funext-ap g h = begin
funext (λ x → ap g (h x))
≡⟨ sym (ap funext (ap (λ h x → ap g (h x))
(_≅_.iso₁ strong-funext-iso h))) ⟩
funext (λ x → ap g (funext-inv (funext h) x))
≡⟨ ap funext (sym (funext-inv-ap g (funext h))) ⟩
funext (funext-inv (ap (_∘'_ g) (funext h)))
≡⟨ _≅_.iso₂ strong-funext-iso _ ⟩
ap (_∘'_ g) (funext h)
∎
where open ≡-Reasoning
|
{
"alphanum_fraction": 0.4828947368,
"avg_line_length": 36.1904761905,
"ext": "agda",
"hexsha": "15ea5fee86f3115c94d90d78b9f94fd6b086c1c5",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "function/extensionality/computation.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "function/extensionality/computation.agda",
"max_line_length": 70,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/extensionality/computation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 901,
"size": 2280
}
|
module trie where
open import string
open import maybe
open import trie-core public
open import empty
trie-lookup : ∀{A : Set} → trie A → string → maybe A
trie-lookup t s = trie-lookup-h t (string-to-𝕃char s)
trie-insert : ∀{A : Set} → trie A → string → A → trie A
trie-insert t s x = trie-insert-h t (string-to-𝕃char s) x
trie-remove : ∀{A : Set} → trie A → string → trie A
trie-remove t s = trie-remove-h t (string-to-𝕃char s)
open import trie-functions trie-lookup trie-insert trie-remove public
|
{
"alphanum_fraction": 0.697029703,
"avg_line_length": 28.0555555556,
"ext": "agda",
"hexsha": "5fad0fe538e79172db9b86d8369d46eae967a980",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "trie.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "trie.agda",
"max_line_length": 69,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "trie.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 155,
"size": 505
}
|
module Everything where
-- Categories
import Categories.Category
-- 2-categories
-- XXX need to finish the last 3 laws
import Categories.2-Category
-- The strict 2-category of categories
-- XXX laws not proven yet
-- import Categories.2-Category.Categories
-- Adjunctions between functors
import Categories.Adjunction
-- The Agda Set category
import Categories.Agda
-- The fact that one version of it is cocomplete
import Categories.Agda.ISetoids.Cocomplete
-- The arrow category construction on any category
import Categories.Arrow
-- Bifunctors (functors from a product category)
import Categories.Bifunctor
-- Natural transformations between bifunctors
import Categories.Bifunctor.NaturalTransformation
-- The category of (small) categories
import Categories.Categories
-- Cat has products
import Categories.Categories.Products
-- Closed categories
import Categories.Closed
-- Cocones
import Categories.Cocone
-- The category of cocones under a diagram (functor)
import Categories.Cocones
-- Coends
import Categories.Coend
-- Coequalizers
import Categories.Coequalizer
-- Colimits
import Categories.Colimit
-- Comma categories
import Categories.Comma
-- Comonads, defined directly (not as monads on the opposite category)
import Categories.Comonad
-- The cofree construction that gives a comonad for any functor
import Categories.Comonad.Cofree
-- Cones
import Categories.Cone
-- The category of cones over a diagram (functor)
import Categories.Cones
-- A coherent equivalence relation over the objects of a category
import Categories.Congruence
-- Discrete categories (they only have objects and identity morphisms)
import Categories.Discrete
-- Ends
import Categories.End
-- Enriched categories
import Categories.Enriched
-- Equalizers
import Categories.Equalizer
-- Strong equivalence
import Categories.Equivalence.Strong
-- Fibrations
import Categories.Fibration
-- Free category on a graph
import Categories.Free
-- The free category construction is a functor from Gph to Cat
import Categories.Free.Functor
-- Functors
import Categories.Functor
-- F-algebra (TODO: maybe the module should be renamed)
import Categories.Functor.Algebra
-- The category of F-algebras of a functor
import Categories.Functor.Algebras
-- An F-coalgebra
import Categories.Functor.Coalgebra
-- Constant functor
import Categories.Functor.Constant
-- The category of F-coalgebras of a functor
import Categories.Functor.Coalgebras
-- The diagonal functor (C → C × C, or same thing with an arbitrary indexed product)
import Categories.Functor.Diagonal
-- Strong functor equivalence
-- XXX doesn't seem to work because of the double negative in Full?
-- import Categories.Functor.Equivalence.Strong
-- The hom functor, mapping pairs of objects to the morphisms between them
import Categories.Functor.Hom
-- Monoidal functors (similar to Haskell's Applicative class)
import Categories.Functor.Monoidal
-- Products as functors
import Categories.Functor.Product
-- Properties of general functors
import Categories.Functor.Properties
-- Representable functors
import Categories.Functor.Representable
-- Functor categories (of functors between two categories and natural transformations between them)
import Categories.FunctorCategory
-- The category of graphs and graph homomorphisms (Gph)
import Categories.Graphs
-- The underlying graph of a category (forgetful functor Cat ⇒ Gph)
import Categories.Graphs.Underlying
-- The Grothendieck construction on categories (taking a Sets-valued functor and building a category containing all values)
import Categories.Grothendieck
-- The globe category, used for defining globular sets (with a presheaf on it)
import Categories.Globe
-- Globular sets
import Categories.GlobularSet
-- Left Kan extensions
import Categories.Lan
-- Small categories exist as large categories too
import Categories.Lift
-- Limits
import Categories.Limit
-- Monads, defined as simple triples of a functor and two natural transformations
import Categories.Monad
-- A monad algebra
import Categories.Monad.Algebra
-- The category of all algebras of a monad
import Categories.Monad.Algebras
-- The Eilenberg-Moore category for any monad
import Categories.Monad.EilenbergMoore
-- The Kleisli category for any monad
import Categories.Monad.Kleisli
-- Strong monads
import Categories.Monad.Strong
-- Monoidal categories, with an associative bi(endo)functor and an identity object
import Categories.Monoidal
-- A braided monoidal category (one that gives you a swap operation, but isn't quite commutative)
import Categories.Monoidal.Braided
-- A cartesian monoidal category (monoidal category whose monoid is the product with a terminal object)
import Categories.Monoidal.Cartesian
-- Closed monoidal categories, which are simply monoidal categories that are
-- also closed, such that the laws "fit"
import Categories.Monoidal.Closed
-- Both of the above. Separated into its own module because we can do many
-- interesting things with them.
import Categories.Monoidal.CartesianClosed
-- Simple definitions about morphisms, such as mono, epi, and iso
import Categories.Morphisms
-- Cartesian morphisms (used mostly for fibrations)
import Categories.Morphism.Cartesian
-- Families of morphisms indexed by a set
import Categories.Morphism.Indexed
-- Natural isomorphisms, defined as an isomorphism of natural transformations
import Categories.NaturalIsomorphism
-- Natural transformations
import Categories.NaturalTransformation
import Categories.DinaturalTransformation
-- Properties of the opposite category
import Categories.Opposite
--------------------------------------------------------------------------------
-- Objects
--------------------------------------------------------------------------------
-- The coproduct of two objects
import Categories.Object.Coproduct
-- A category has all binary coproducts
import Categories.Object.BinaryCoproducts
-- A category has all finite coproducts
import Categories.Object.Coproducts
-- An exponential object
import Categories.Object.Exponential
-- A choice of B^A for a given B and any A
import Categories.Object.Exponentiating
-- B^— is adjoint to its opposite
import Categories.Object.Exponentiating.Adjunction
-- B^— as a functor
import Categories.Object.Exponentiating.Functor
-- A family of objects indexed by a set
import Categories.Object.Indexed
-- An initial object
import Categories.Object.Initial
-- The product of two objects
import Categories.Object.Product
-- The usual nice constructions on products, conditionalized on existence
import Categories.Object.Product.Morphisms
-- All binary products
import Categories.Object.BinaryProducts
-- Products of a nonempty list of objects and the ability to reassociate them massively
import Categories.Object.BinaryProducts.N-ary
-- All finite products
import Categories.Object.Products
import Categories.Object.Products.Properties
-- Products of a list of objects and the ability to reassociate them massively
import Categories.Object.Products.N-ary
-- The product of a family of objects
import Categories.Object.IndexedProduct
-- All products of indexed families
import Categories.Object.IndexedProducts
-- Subobject classifiers (for topoi)
import Categories.Object.SubobjectClassifier
-- Terminal object
import Categories.Object.Terminal
-- A^1 and 1^A always exist
import Categories.Object.Terminal.Exponentials
-- A chosen 1^A exists
import Categories.Object.Terminal.Exponentiating
-- A×1 always exists
import Categories.Object.Terminal.Products
-- Zero object (initial and terminal)
import Categories.Object.Zero
-- A category containing n copies of objects/morphisms/equalities of another category
import Categories.Power
-- Demonstrations that Power categories are the same as functors from discrete categories
import Categories.Power.Functorial
-- Natural transformations for functors to/from power categories
import Categories.Power.NaturalTransformation
-- A preorder gives rise to a category
import Categories.Preorder
-- A presheaf (functor from C^op to V)
import Categories.Presheaf
-- The category of presheaves (a specific functor category)
import Categories.Presheaves
-- The product of two categories
import Categories.Product
import Categories.Product.Properties
-- Projection functors from a product category to its factors
import Categories.Product.Projections
-- Profunctors
import Categories.Profunctor
-- Pullbacks in a category
import Categories.Pullback
-- Pushouts in a category
import Categories.Pushout
-- All categories can have a slice category defined on them
import Categories.Slice
-- Utilities for gluing together commutative squares (and triangles)
-- (and other common patterns of equational reasoning)
import Categories.Square
-- The terminal category (a terminal object in the category of small categories)
import Categories.Terminal
-- A topos
import Categories.Topos
-- The Yoneda lemma
import Categories.Yoneda
|
{
"alphanum_fraction": 0.7939502177,
"avg_line_length": 26.1195335277,
"ext": "agda",
"hexsha": "c0120227d70a9a8a078ee6a0451c937e8cf42cf6",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 123,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1908,
"size": 8959
}
|
open import Common.Prelude
module TestHarness where
record ⊤ : Set where
data ⊥ : Set where
T : Bool → Set
T true = ⊤
T false = ⊥
infixr 4 _,_
data Asserts : Set where
ε : Asserts
_,_ : Asserts → Asserts → Asserts
assert : (b : Bool) → {b✓ : T b} → String → Asserts
Tests : Set
Tests = ⊤ → Asserts
|
{
"alphanum_fraction": 0.6282051282,
"avg_line_length": 14.1818181818,
"ext": "agda",
"hexsha": "1c784558a6fe9352bc4444ee45edc81b84b59aca",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/js/TestHarness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/js/TestHarness.agda",
"max_line_length": 53,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/js/TestHarness.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 112,
"size": 312
}
|
open import Agda.Builtin.Coinduction
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Nat
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
head : ∀ {A} → Stream A → A
head (x ∷ xs) = x
tail : ∀ {A} → Stream A → Stream A
tail (x ∷ xs) = ♭ xs
take : ∀ {A} n → Stream A → List A
take zero xs = []
take (suc n) (x ∷ xs) = x ∷ take n (♭ xs)
accepted : ∀ {A} {n} (xs : Stream A) →
take (suc n) xs ≡ take (suc n) (head xs ∷ ♯ tail xs)
accepted (x ∷ xs) = refl
private
rejected : ∀ {A} {n} (xs : Stream A) →
take (suc n) xs ≡ take (suc n) (head xs ∷ ♯ tail xs)
rejected (x ∷ xs) = refl
|
{
"alphanum_fraction": 0.5544554455,
"avg_line_length": 24.3793103448,
"ext": "agda",
"hexsha": "febfc6685ecf314ff948dc264dbaec51468e40b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Succeed/Issue2321.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Succeed/Issue2321.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Succeed/Issue2321.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 281,
"size": 707
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Pi
open import lib.types.TwoSemiCategory
open import lib.two-semi-categories.Functor
module lib.two-semi-categories.FunCategory where
module _ {i j k} (A : Type i) (G : TwoSemiCategory j k) where
private
module G = TwoSemiCategory G
fun-El : Type (lmax i j)
fun-El = A → G.El
fun-Arr : fun-El → fun-El → Type (lmax i k)
fun-Arr F G = ∀ a → G.Arr (F a) (G a)
fun-Arr-level : (F G : fun-El) → has-level 1 (fun-Arr F G)
fun-Arr-level F G = Π-level (λ a → G.Arr-level (F a) (G a))
fun-comp : {F G H : fun-El} (α : fun-Arr F G) (β : fun-Arr G H)
→ fun-Arr F H
fun-comp α β a = G.comp (α a) (β a)
fun-assoc : {F G H I : fun-El} (α : fun-Arr F G) (β : fun-Arr G H) (γ : fun-Arr H I)
→ fun-comp (fun-comp α β) γ == fun-comp α (fun-comp β γ)
fun-assoc α β γ = λ= (λ a → G.assoc (α a) (β a) (γ a))
abstract
fun-pentagon : {F G H I J : fun-El}
(α : fun-Arr F G) (β : fun-Arr G H) (γ : fun-Arr H I) (δ : fun-Arr I J)
→ fun-assoc (fun-comp α β) γ δ ◃∙
fun-assoc α β (fun-comp γ δ) ◃∎
=ₛ
ap (λ s → fun-comp s δ) (fun-assoc α β γ) ◃∙
fun-assoc α (fun-comp β γ) δ ◃∙
ap (fun-comp α) (fun-assoc β γ δ) ◃∎
fun-pentagon α β γ δ =
fun-assoc (fun-comp α β) γ δ ◃∙
fun-assoc α β (fun-comp γ δ) ◃∎
=ₛ⟨ ∙-λ= (λ a → G.assoc (G.comp (α a) (β a)) (γ a) (δ a))
(λ a → G.assoc (α a) (β a) (G.comp (γ a) (δ a))) ⟩
λ= (λ a → G.assoc (G.comp (α a) (β a)) (γ a) (δ a) ∙
G.assoc (α a) (β a) (G.comp (γ a) (δ a))) ◃∎
=ₛ₁⟨ ap λ= (λ= (λ a → =ₛ-out (G.pentagon-identity (α a) (β a) (γ a) (δ a)))) ⟩
λ= (λ a → ap (λ s → G.comp s (δ a)) (G.assoc (α a) (β a) (γ a)) ∙
G.assoc (α a) (G.comp (β a) (γ a)) (δ a) ∙
ap (G.comp (α a)) (G.assoc (β a) (γ a) (δ a))) ◃∎
=ₛ⟨ λ=-∙∙ (λ a → ap (λ s → G.comp s (δ a)) (G.assoc (α a) (β a) (γ a)))
(λ a → G.assoc (α a) (G.comp (β a) (γ a)) (δ a))
(λ a → ap (G.comp (α a)) (G.assoc (β a) (γ a) (δ a))) ⟩
λ= (λ a → ap (λ s → G.comp s (δ a)) (G.assoc (α a) (β a) (γ a))) ◃∙
fun-assoc α (fun-comp β γ) δ ◃∙
λ= (λ a → ap (G.comp (α a)) (G.assoc (β a) (γ a) (δ a))) ◃∎
=ₛ₁⟨ 0 & 1 & ! (λ=-ap (λ a s → G.comp s (δ a)) (λ a → G.assoc (α a) (β a) (γ a))) ⟩
ap (λ s → fun-comp s δ) (fun-assoc α β γ) ◃∙
fun-assoc α (fun-comp β γ) δ ◃∙
λ= (λ a → ap (G.comp (α a)) (G.assoc (β a) (γ a) (δ a))) ◃∎
=ₛ₁⟨ 2 & 1 & ! (λ=-ap (λ a → G.comp (α a)) (λ a → G.assoc (β a) (γ a) (δ a))) ⟩
ap (λ s → fun-comp s δ) (fun-assoc α β γ) ◃∙
fun-assoc α (fun-comp β γ) δ ◃∙
ap (fun-comp α) (fun-assoc β γ δ) ◃∎ ∎ₛ
fun-cat : TwoSemiCategory (lmax i j) (lmax i k)
fun-cat =
record
{ El = fun-El
; Arr = fun-Arr
; Arr-level = fun-Arr-level
; two-semi-cat-struct =
record
{ comp = fun-comp
; assoc = fun-assoc
; pentagon-identity = fun-pentagon
}
}
module _ {i j₁ k₁ j₂ k₂} (A : Type i) {G : TwoSemiCategory j₁ k₁} {H : TwoSemiCategory j₂ k₂}
(F : TwoSemiFunctor G H) where
private
module G = TwoSemiCategory G
module H = TwoSemiCategory H
module F = TwoSemiFunctor F
module fun-G = TwoSemiCategory (fun-cat A G)
module fun-H = TwoSemiCategory (fun-cat A H)
fun-F₀ : fun-G.El → fun-H.El
fun-F₀ I = λ a → F.F₀ (I a)
fun-F₁ : {I J : fun-G.El} → fun-G.Arr I J → fun-H.Arr (fun-F₀ I) (fun-F₀ J)
fun-F₁ α = λ a → F.F₁ (α a)
fun-pres-comp : {I J K : fun-G.El} (α : fun-G.Arr I J) (β : fun-G.Arr J K)
→ fun-F₁ (fun-G.comp α β) == fun-H.comp (fun-F₁ α) (fun-F₁ β)
fun-pres-comp α β = λ= (λ a → F.pres-comp (α a) (β a))
abstract
fun-pres-comp-coh : {I J K L : fun-G.El}
(α : fun-G.Arr I J) (β : fun-G.Arr J K) (γ : fun-G.Arr K L)
→ fun-pres-comp (fun-G.comp α β) γ ◃∙
ap (λ s → fun-H.comp s (fun-F₁ γ)) (fun-pres-comp α β) ◃∙
fun-H.assoc (fun-F₁ α) (fun-F₁ β) (fun-F₁ γ) ◃∎
=ₛ
ap fun-F₁ (fun-G.assoc α β γ) ◃∙
fun-pres-comp α (fun-G.comp β γ) ◃∙
ap (fun-H.comp (fun-F₁ α)) (fun-pres-comp β γ) ◃∎
fun-pres-comp-coh α β γ =
fun-pres-comp (fun-G.comp α β) γ ◃∙
ap (λ s → fun-H.comp s (fun-F₁ γ)) (fun-pres-comp α β) ◃∙
fun-H.assoc (fun-F₁ α) (fun-F₁ β) (fun-F₁ γ) ◃∎
=ₛ₁⟨ 1 & 1 & λ=-ap (λ a s → H.comp s (fun-F₁ γ a) ) (λ a → F.pres-comp (α a) (β a)) ⟩
fun-pres-comp (fun-G.comp α β) γ ◃∙
λ= (λ a → ap (λ s → H.comp s (fun-F₁ γ a)) (F.pres-comp (α a) (β a))) ◃∙
fun-H.assoc (fun-F₁ α) (fun-F₁ β) (fun-F₁ γ) ◃∎
=ₛ⟨ ∙∙-λ= (λ a → F.pres-comp (G.comp (α a) (β a)) (γ a))
(λ a → ap (λ s → H.comp s (fun-F₁ γ a)) (F.pres-comp (α a) (β a)))
(λ a → H.assoc (fun-F₁ α a) (fun-F₁ β a) (fun-F₁ γ a)) ⟩
λ= (λ a → F.pres-comp (G.comp (α a) (β a)) (γ a) ∙
ap (λ s → H.comp s (fun-F₁ γ a)) (F.pres-comp (α a) (β a)) ∙
H.assoc (fun-F₁ α a) (fun-F₁ β a) (fun-F₁ γ a)) ◃∎
=ₛ₁⟨ ap λ= (λ= (λ a → =ₛ-out (F.pres-comp-coh (α a) (β a) (γ a)))) ⟩
λ= (λ a → ap F.F₁ (G.assoc (α a) (β a) (γ a)) ∙
F.pres-comp (α a) (G.comp (β a) (γ a)) ∙
ap (H.comp (fun-F₁ α a)) (F.pres-comp (β a) (γ a))) ◃∎
=ₛ⟨ λ=-∙∙ (λ a → ap F.F₁ (G.assoc (α a) (β a) (γ a)))
(λ a → F.pres-comp (α a) (G.comp (β a) (γ a)))
(λ a → ap (H.comp (fun-F₁ α a)) (F.pres-comp (β a) (γ a))) ⟩
λ= (λ a → ap F.F₁ (G.assoc (α a) (β a) (γ a))) ◃∙
fun-pres-comp α (fun-G.comp β γ) ◃∙
λ= (λ a → ap (H.comp (fun-F₁ α a)) (F.pres-comp (β a) (γ a))) ◃∎
=ₛ₁⟨ 0 & 1 & ! $ λ=-ap (λ _ → F.F₁) (λ a → G.assoc (α a) (β a) (γ a)) ⟩
ap fun-F₁ (fun-G.assoc α β γ) ◃∙
fun-pres-comp α (fun-G.comp β γ) ◃∙
λ= (λ a → ap (H.comp (fun-F₁ α a)) (F.pres-comp (β a) (γ a))) ◃∎
=ₛ₁⟨ 2 & 1 & ! $ λ=-ap (λ a → H.comp (fun-F₁ α a)) (λ a → F.pres-comp (β a) (γ a)) ⟩
ap fun-F₁ (fun-G.assoc α β γ) ◃∙
fun-pres-comp α (fun-G.comp β γ) ◃∙
ap (fun-H.comp (fun-F₁ α)) (fun-pres-comp β γ) ◃∎ ∎ₛ
fun-functor-map : TwoSemiFunctor (fun-cat A G) (fun-cat A H)
fun-functor-map =
record
{ F₀ = fun-F₀
; F₁ = fun-F₁
; pres-comp = fun-pres-comp
; pres-comp-coh = fun-pres-comp-coh
}
|
{
"alphanum_fraction": 0.4702399501,
"avg_line_length": 42.2236842105,
"ext": "agda",
"hexsha": "c9c144804f109bca09dbdd99f00bd6274f0a666d",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/two-semi-categories/FunCategory.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/two-semi-categories/FunCategory.agda",
"max_line_length": 93,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/two-semi-categories/FunCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2851,
"size": 6418
}
|
module Prelude.Sum where
open import Agda.Primitive
open import Prelude.Empty
open import Prelude.Unit
open import Prelude.List
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Monad
open import Prelude.Equality
open import Prelude.Decidable
open import Prelude.Product
open import Prelude.Function
data Either {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
left : A → Either A B
right : B → Either A B
{-# FOREIGN GHC type AgdaEither a b = Either #-}
{-# COMPILE GHC Either = data MAlonzo.Code.Prelude.Sum.AgdaEither (Left | Right) #-}
either : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A → C) → (B → C) → Either A B → C
either f g (left x) = f x
either f g (right x) = g x
lefts : ∀ {a b} {A : Set a} {B : Set b} → List (Either A B) → List A
lefts = concatMap λ { (left x) → [ x ]; (right _) → [] }
rights : ∀ {a b} {A : Set a} {B : Set b} → List (Either A B) → List B
rights = concatMap λ { (left _) → []; (right x) → [ x ] }
mapEither : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : Set b₁} {B₂ : Set b₂} →
(A₁ → A₂) → (B₁ → B₂) → Either A₁ B₁ → Either A₂ B₂
mapEither f g = either (left ∘ f) (right ∘ g)
mapLeft : ∀ {a₁ a₂ b} {A₁ : Set a₁} {A₂ : Set a₂} {B : Set b} →
(A₁ → A₂) → Either A₁ B → Either A₂ B
mapLeft f = either (left ∘ f) right
mapRight : ∀ {a b₁ b₂} {A : Set a} {B₁ : Set b₁} {B₂ : Set b₂} →
(B₁ → B₂) → Either A B₁ → Either A B₂
mapRight f = either left (right ∘ f)
partitionMap : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A → Either B C) → List A → List B × List C
partitionMap f [] = [] , []
partitionMap f (x ∷ xs) = either (first ∘ _∷_)
(λ y → second (_∷_ y)) -- second ∘ _∷_ doesn't work for some reason
(f x) (partitionMap f xs)
--- Equality ---
left-inj : ∀ {a} {A : Set a} {x y : A} {b} {B : Set b} →
left {B = B} x ≡ left y → x ≡ y
left-inj refl = refl
right-inj : ∀ {b} {B : Set b} {x y : B} {a} {A : Set a} →
right {A = A} x ≡ right y → x ≡ y
right-inj refl = refl
private
eqEither : ∀ {a b} {A : Set a} {B : Set b} {{EqA : Eq A}} {{EqB : Eq B}}
(x y : Either A B) → Dec (x ≡ y)
eqEither (left x) (right y) = no (λ ())
eqEither (right x) (left y) = no (λ ())
eqEither (left x) (left y) with x == y
... | yes eq = yes (left $≡ eq)
... | no neq = no λ eq → neq (left-inj eq)
eqEither (right x) (right y) with x == y
... | yes eq = yes (right $≡ eq)
... | no neq = no λ eq → neq (right-inj eq)
instance
EqEither : ∀ {a b} {A : Set a} {B : Set b} {{EqA : Eq A}} {{EqB : Eq B}} →
Eq (Either A B)
_==_ {{EqEither}} = eqEither
--- Monad instance ---
module _ {a b} {A : Set a} where
instance
FunctorEither : Functor (Either {b = b} A)
fmap {{FunctorEither}} f (left x) = left x
fmap {{FunctorEither}} f (right x) = right (f x)
ApplicativeEither : Applicative (Either {b = b} A)
pure {{ApplicativeEither}} = right
_<*>_ {{ApplicativeEither}} (right f) (right x) = right (f x)
_<*>_ {{ApplicativeEither}} (right _) (left e) = left e
_<*>_ {{ApplicativeEither}} (left e) _ = left e
MonadEither : Monad (Either {b = b} A)
_>>=_ {{MonadEither}} m f = either left f m
|
{
"alphanum_fraction": 0.5367978372,
"avg_line_length": 34.6770833333,
"ext": "agda",
"hexsha": "f2cb1cefa7bd94c6d53b96ae9113c75afc889c46",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/Sum.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/Sum.agda",
"max_line_length": 101,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1221,
"size": 3329
}
|
module snoc where
open import unit
open import empty
open import bool
open import product
data Snoc (A : Set) : Set where
[] : Snoc A
_::_ : Snoc A → A → Snoc A
infixl 6 _::_ _++_
[_] : {A : Set} → A → Snoc A
[ x ] = [] :: x
_++_ : {A : Set} → Snoc A → Snoc A → Snoc A
[] ++ l₂ = l₂
(l₁ :: x) ++ l₂ = (l₁ ++ l₂) :: x
member : {A : Set} → (A → A → 𝔹) → A → Snoc A → 𝔹
member _=A_ x (l :: y) with x =A y
... | tt = tt
... | ff = ff
member _=A_ x _ = ff
inPairSnocFst : {A B : Set} → (A → A → 𝔹) → A → Snoc (A × B) → Set
inPairSnocFst _=A_ x [] = ⊥
inPairSnocFst _=A_ x (l :: (a , _)) with x =A a
... | tt = ⊤
... | ff = inPairSnocFst _=A_ x l
|
{
"alphanum_fraction": 0.504601227,
"avg_line_length": 20.375,
"ext": "agda",
"hexsha": "1a22659c24196e266f3d4e01ee2fe52740ea1beb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "snoc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "snoc.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "snoc.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 304,
"size": 652
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module nat where
open import Data.Nat
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import logic
open import Level hiding ( zero ; suc )
nat-<> : { x y : ℕ } → x < y → y < x → ⊥
nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
nat-<≡ : { x : ℕ } → x < x → ⊥
nat-<≡ (s≤s lt) = nat-<≡ lt
nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
nat-≡< refl lt = nat-<≡ lt
¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
¬a≤a (s≤s lt) = ¬a≤a lt
a<sa : {la : ℕ} → la < suc la
a<sa {zero} = s≤s z≤n
a<sa {suc la} = s≤s a<sa
=→¬< : {x : ℕ } → ¬ ( x < x )
=→¬< {zero} ()
=→¬< {suc x} (s≤s lt) = =→¬< lt
>→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x )
>→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
<-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
<-∨ {zero} {zero} (s≤s z≤n) = case1 refl
<-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
<-∨ {suc x} {zero} (s≤s ())
<-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
<-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
<-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
max : (x y : ℕ) → ℕ
max zero zero = zero
max zero (suc x) = (suc x)
max (suc x) zero = (suc x)
max (suc x) (suc y) = suc ( max x y )
-- _*_ : ℕ → ℕ → ℕ
-- _*_ zero _ = zero
-- _*_ (suc n) m = m + ( n * m )
-- x ^ y
exp : ℕ → ℕ → ℕ
exp _ zero = 1
exp n (suc m) = n * ( exp n m )
div2 : ℕ → (ℕ ∧ Bool )
div2 zero = ⟪ 0 , false ⟫
div2 (suc zero) = ⟪ 0 , true ⟫
div2 (suc (suc n)) = ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where
open _∧_
div2-rev : (ℕ ∧ Bool ) → ℕ
div2-rev ⟪ x , true ⟫ = suc (x + x)
div2-rev ⟪ x , false ⟫ = x + x
div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
div2-eq zero = refl
div2-eq (suc zero) = refl
div2-eq (suc (suc x)) with div2 x | inspect div2 x
... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫
div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩
suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1 _ ) ⟩
suc (suc (suc (x1 + x1))) ≡⟨⟩
suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
suc (suc x) ∎ where open ≡-Reasoning
... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin
div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩
suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1 _ ) ⟩
suc (suc (x1 + x1)) ≡⟨⟩
suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
suc (suc x) ∎ where open ≡-Reasoning
sucprd : {i : ℕ } → 0 < i → suc (pred i) ≡ i
sucprd {suc i} 0<i = refl
0<s : {x : ℕ } → zero < suc x
0<s {_} = s≤s z≤n
px<py : {x y : ℕ } → pred x < pred y → x < y
px<py {zero} {suc y} lt = 0<s
px<py {suc zero} {suc (suc y)} (s≤s lt) = s≤s 0<s
px<py {suc (suc x)} {suc (suc y)} (s≤s lt) = s≤s (px<py {suc x} {suc y} lt)
minus : (a b : ℕ ) → ℕ
minus a zero = a
minus zero (suc b) = zero
minus (suc a) (suc b) = minus a b
_-_ = minus
m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j
m+= {i} {j} {zero} refl = refl
m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )
+m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j
+m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )
less-1 : { n m : ℕ } → suc n < m → n < m
less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)
sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m
sa=b→a<b {0} {suc zero} refl = s≤s z≤n
sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)
minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x
minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl
minus+n {zero} {suc y} (s≤s ())
minus+n {suc x} {suc y} (s≤s lt) = begin
minus (suc x) (suc y) + suc y
≡⟨ +-comm _ (suc y) ⟩
suc y + minus x y
≡⟨ cong ( λ k → suc k ) (
begin
y + minus x y
≡⟨ +-comm y _ ⟩
minus x y + y
≡⟨ minus+n {x} {y} lt ⟩
x
∎
) ⟩
suc x
∎ where open ≡-Reasoning
<-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
<-minus-0 {x} {suc _} {zero} lt = lt
<-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt
<-minus : {x y z : ℕ } → x + z < y + z → x < y
<-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )
x≤x+y : {z y : ℕ } → z ≤ z + y
x≤x+y {zero} {y} = z≤n
x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y})
x≤y+x : {z y : ℕ } → z ≤ y + z
x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y
<-plus : {x y z : ℕ } → x < y → x + z < y + z
<-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y )
<-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)
<-plus-0 : {x y z : ℕ } → x < y → z + x < z + y
<-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )
≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
≤-plus {0} {y} {zero} z≤n = z≤n
≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y
≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )
≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y
≤-plus-0 {x} {y} {zero} lt = lt
≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )
x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z
x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )
*≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z
*≤ lt = *-mono-≤ lt ≤-refl
*< : {x y z : ℕ } → x < y → x * suc z < y * suc z
*< {zero} {suc y} lt = s≤s z≤n
*< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)
<to<s : {x y : ℕ } → x < y → x < suc y
<to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
<to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)
<tos<s : {x y : ℕ } → x < y → suc x < suc y
<tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
<tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)
<to≤ : {x y : ℕ } → x < y → x ≤ y
<to≤ {zero} {suc y} (s≤s z≤n) = z≤n
<to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y} lt)
refl-≤s : {x : ℕ } → x ≤ suc x
refl-≤s {zero} = z≤n
refl-≤s {suc x} = s≤s (refl-≤s {x})
refl-≤ : {x : ℕ } → x ≤ x
refl-≤ {zero} = z≤n
refl-≤ {suc x} = s≤s (refl-≤ {x})
x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y
x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)
≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j
≤→= {0} {0} z≤n z≤n = refl
≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i )
px≤x : {x : ℕ } → pred x ≤ x
px≤x {zero} = refl-≤
px≤x {suc x} = refl-≤s
px≤py : {x y : ℕ } → x ≤ y → pred x ≤ pred y
px≤py {zero} {zero} lt = refl-≤
px≤py {zero} {suc y} lt = z≤n
px≤py {suc x} {suc y} (s≤s lt) = lt
open import Data.Product
i-j=0→i=j : {i j : ℕ } → j ≤ i → i - j ≡ 0 → i ≡ j
i-j=0→i=j {zero} {zero} _ refl = refl
i-j=0→i=j {zero} {suc j} () refl
i-j=0→i=j {suc i} {zero} z≤n ()
i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq)
m*n=0⇒m=0∨n=0 : {i j : ℕ} → i * j ≡ 0 → (i ≡ 0) ∨ ( j ≡ 0 )
m*n=0⇒m=0∨n=0 {zero} {j} refl = case1 refl
m*n=0⇒m=0∨n=0 {suc i} {zero} eq = case2 refl
minus+1 : {x y : ℕ } → y ≤ x → suc (minus x y) ≡ minus (suc x) y
minus+1 {zero} {zero} y≤x = refl
minus+1 {suc x} {zero} y≤x = refl
minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x
minus+yz : {x y z : ℕ } → z ≤ y → x + minus y z ≡ minus (x + y) z
minus+yz {zero} {y} {z} _ = refl
minus+yz {suc x} {y} {z} z≤y = begin
suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩
suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩
minus (suc x + y) z ∎ where open ≡-Reasoning
minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
minus<=0 {0} {zero} z≤n = refl
minus<=0 {0} {suc y} z≤n = refl
minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le
minus>0 : {x y : ℕ } → x < y → 0 < minus y x
minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt
minus>0→x<y : {x y : ℕ } → 0 < minus y x → x < y
minus>0→x<y {x} {y} lt with <-cmp x y
... | tri< a ¬b ¬c = a
... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt )
... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt )
minus+y-y : {x y : ℕ } → (x + y) - y ≡ x
minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl
minus+y-y {suc x} {y} = begin
(suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩
suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩
suc x ∎ where open ≡-Reasoning
minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z) ≡ x - z
minus+yx-yz {x} {zero} {z} = refl
minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z}
minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y) ≡ x - z
minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z})
y-x<y : {x y : ℕ } → 0 < x → 0 < y → y - x < y
y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y)
... | tri< a ¬b ¬c = +-cancelʳ-< {x} (y - x) y ( begin
suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩
suc y ≡⟨ +-comm 1 _ ⟩
y + suc 0 ≤⟨ +-mono-≤ ≤-refl 0<x ⟩
y + x ∎ ) where open ≤-Reasoning
... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y
... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x
open import Relation.Binary.Definitions
distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z)
distr-minus-* {x} {zero} {z} = refl
distr-minus-* {x} {suc y} {z} with <-cmp x y
distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
minus x (suc y) * z
≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
0 * z
≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
minus (x * z) (z + y * z)
∎ where
open ≡-Reasoning
le : x * z ≤ z + y * z
le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
lemma : x * z ≤ y * z
lemma = *≤ {x} {y} {z} (<to≤ a)
distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
minus x (suc y) * z
≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
0 * z
≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
minus (x * z) (z + y * z)
∎ where
open ≡-Reasoning
lt : {x z : ℕ } → x * z ≤ z + x * z
lt {zero} {zero} = z≤n
lt {suc x} {zero} = lt {x} {zero}
lt {x} {suc z} = ≤-trans lemma refl-≤s where
lemma : x * suc z ≤ z + x * suc z
lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z})
distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
minus x (suc y) * z + suc y * z
≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩
( minus x (suc y) + suc y ) * z
≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩
x * z
≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
minus (x * z) (suc y * z) + suc y * z
∎ ) where
open ≡-Reasoning
lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
lt {x} {y} {z} le = *≤ le
distr-minus-*' : {z x y : ℕ } → z * (minus x y) ≡ minus (z * x) (z * y)
distr-minus-*' {z} {x} {y} = begin
z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩
(minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩
minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩
minus (z * x) (z * y) ∎ where open ≡-Reasoning
minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
minus (minus x y) z + z
≡⟨ minus+n {_} {z} lemma ⟩
minus x y
≡⟨ +m= {_} {_} {y} ( begin
minus x y + y
≡⟨ minus+n {_} {y} lemma1 ⟩
x
≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
minus x (z + y) + (z + y)
≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩
minus x (z + y) + z + y
∎ ) ⟩
minus x (z + y) + z
≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩
minus x (y + z) + z
∎ ) where
open ≡-Reasoning
lemma1 : suc x > y
lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
lemma : suc (minus x y) > z
lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt )
minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M
minus-* {zero} {k} {n} lt = begin
minus k (suc n) * zero
≡⟨ *-comm (minus k (suc n)) zero ⟩
zero * minus k (suc n)
≡⟨⟩
0 * minus k n
≡⟨ *-comm 0 (minus k n) ⟩
minus (minus k n * 0 ) 0
∎ where
open ≡-Reasoning
minus-* {suc m} {k} {n} lt with <-cmp k 1
minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt
minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
minus k (suc n) * M
≡⟨ distr-minus-* {k} {suc n} {M} ⟩
minus (k * M ) ((suc n) * M)
≡⟨⟩
minus (k * M ) (M + n * M )
≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
minus (k * M ) ((n * M) + M )
≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
minus (minus (k * M ) (n * M)) M
≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
minus (minus k n * M ) M
∎ where
M = suc m
lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m
lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
lemma {suc n} {suc k} {m} lt = begin
suc (suc m + suc n * suc m)
≡⟨⟩
suc ( suc (suc n) * suc m)
≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
suc (suc k * suc m)
∎ where open ≤-Reasoning
open ≡-Reasoning
x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y
x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y) → (x - z) ≡ suc y
x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y
suc x - zero ≡⟨ refl ⟩
suc x ≡⟨ eq ⟩
suc y + zero ≡⟨ +-comm _ zero ⟩
suc y ∎ where open ≡-Reasoning
x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin
x ≡⟨ cong pred eq ⟩
pred (suc y + suc z) ≡⟨ +-comm _ (suc z) ⟩
suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩
suc y + z ∎ ) where open ≡-Reasoning
m*1=m : {m : ℕ } → m * 1 ≡ m
m*1=m {zero} = refl
m*1=m {suc m} = cong suc m*1=m
record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
field
fzero : {p : P} → f p ≡ zero → Q p
pnext : (p : P ) → P
decline : {p : P} → 0 < f p → f (pnext p) < f p
ind : {p : P} → Q (pnext p) → Q p
y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x
y<sx→y≤x (s≤s lt) = lt
fi0 : (x : ℕ) → x ≤ zero → x ≡ zero
fi0 .0 z≤n = refl
f-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
→ (f : P → ℕ)
→ Finduction P Q f
→ (p : P ) → Q p
f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p)
... | tri> ¬a ¬b ()
... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b)
... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where
f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p
f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le)) where
f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x)
... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where
f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x
f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p}
(subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) ))
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
field
pnext : (p : P ) → P
fzero : {p : P} → f (pnext p) ≡ zero → Q p
decline : {p : P} → 0 < f p → f (pnext p) < f p
ind : {p : P} → Q (pnext p) → Q p
s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j
s≤s→≤ (s≤s lt) = lt
n-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
→ (f : P → ℕ)
→ Ninduction P Q f
→ (p : P ) → Q p
n-induction {n} {m} {P} {Q} f I p = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where
f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x → Q p
f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt)
f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x)
... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where
f>0 : 0 < f (Ninduction.pnext I p)
f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n )
nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x
nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 )
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
|
{
"alphanum_fraction": 0.4259694798,
"avg_line_length": 38.1691022965,
"ext": "agda",
"hexsha": "e4c7a928c285f2a9dbf69c84a9fe41c86b1cd5aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/HyperReal-in-agda",
"max_forks_repo_path": "src/nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/HyperReal-in-agda",
"max_issues_repo_path": "src/nat.agda",
"max_line_length": 136,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/HyperReal-in-agda",
"max_stars_repo_path": "src/nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8949,
"size": 18283
}
|
-- Andreas, 2021-04-21, issue #5334
-- Improve sorting of constructors to data for interleaved mutual blocks.
{-# OPTIONS --allow-unsolved-metas #-}
module Issue5334 where
module Works where
data Nat : Set where
zero : Nat
data Fin : Nat → Set where
zero : Fin {!!}
interleaved mutual
data Nat : Set
data Fin : Nat → Set
data _ where
zero : Nat
data _ where
zero : Fin {!!} -- should work
-- Error was:
-- Could not find a matching data signature for constructor zero
-- There was no candidate.
|
{
"alphanum_fraction": 0.6685499058,
"avg_line_length": 19.6666666667,
"ext": "agda",
"hexsha": "7c9e0252a98b78ae3c4e70a38aebf8acf8ecf44d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5334.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5334.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5334.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 531
}
|
module Metaprog2016 where
open import Data.List using (List) renaming ([] to ⌀)
open import Data.Maybe using (Maybe)
open import Data.Product using (_×_)
open import Data.Unit using () renaming (⊤ to 𝟙)
-- TOWARDS INTENSIONAL ANALYSIS OF SYNTAX
--
-- Miëtek Bak
-- [email protected]
--
-- http://github.com/mietek/metaprog2016
--
-- International Summer School on Metaprogramming
-- Robinson College, Cambridge, 8th to 12th August 2016
-- Consider a basic fragment of intuitionistic modal logic S4 (IS4).
data Type : Set where
_▻_ : Type → Type → Type
_∧_ : Type → Type → Type
⊤ : Type
□_ : Type → Type
postulate
_⊢_ : List Type → Type → Set
-- IS4 provides the logical foundations for MetaML.
-- Sheard (2001) reminds us that MetaML only allows syntax to be constructed
-- and executed at runtime. Observation and decomposition is not supported.
--
-- “Accomplishments and research challenges in meta-programming”
-- http://dx.doi.org/10.1007/3-540-44806-3_2
postulate
• : Type
yes : ∀ {Γ} → Γ ⊢ •
no : ∀ {Γ} → Γ ⊢ •
isApp : ∀ {Γ A} → Γ ⊢ ((□ A) ▻ •)
-- Has anyone built a typed system supporting intensional analysis of syntax?
-- I don’t know, but Gabbay and Nanevski (2012) come close. They give a
-- Tarski-style semantics for IS4, reading “□ A” as “closed syntax of type A”.
--
-- “Denotation of contextual modal type theory: Syntax and meta-programming”
-- http://dx.doi.org/10.1016/j.jal.2012.07.002
module GabbayNanevski2012 where
⊨_ : Type → Set
⊨ (A ▻ B) = ⊨ A → ⊨ B
⊨ (A ∧ B) = (⊨ A) × (⊨ B)
⊨ ⊤ = 𝟙
⊨ (□ A) = (⌀ ⊢ A) × (⊨ A)
-- Can we construct a proof of completeness with respect to this semantics
-- and obtain normalisation by evaluation (NbE) for IS4?
-- Yes, we can! As long as we also take from Coquand and Dybjer (1997).
--
-- “Intuitionistic model constructions and normalization proofs”
-- http://dx.doi.org/10.1017/S0960129596002150
module CoquandDybjer1997GabbayNanevski2012 where
⊨_ : Type → Set
⊨ (A ▻ B) = (⌀ ⊢ (A ▻ B)) × (⊨ A → ⊨ B)
⊨ (A ∧ B) = (⊨ A) × (⊨ B)
⊨ ⊤ = 𝟙
⊨ (□ A) = (⌀ ⊢ A) × (⊨ A)
-- Could we perhaps read “□ A” as “open syntax of type A”?
-- I don’t know, but I’ve had an idea about that...
postulate
_⊆_ : List Type → List Type → Set
module ??? where
_⊨_ : List Type → Type → Set
Δ ⊨ (A ▻ B) = ∀ {Δ′} → Δ ⊆ Δ′ → Δ′ ⊨ A → Δ′ ⊨ B
Δ ⊨ (A ∧ B) = (Δ ⊨ A) × (Δ ⊨ B)
Δ ⊨ ⊤ = 𝟙
Δ ⊨ (□ A) = ∀ {Δ′} → Δ ⊆ Δ′ → (Δ′ ⊢ A) × (Δ′ ⊨ A)
-- Does this look suspiciously like a Kripke-style possible worlds semantics?
-- Yes, it does! We can find one of these in Alechina et al. (2001).
--
-- “Categorical and Kripke semantics for constructive S4 modal logic”
-- http://dx.doi.org/10.1007/3-540-44802-0_21
postulate
World : Set
_≤_ : World → World → Set
_R_ : World → World → Set
module AlechinaMendlerDePaivaRitter2001 where
_⊩_ : World → Type → Set
w ⊩ (A ▻ B) = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊩ (A ∧ B) = (w ⊩ A) × (w ⊩ B)
w ⊩ ⊤ = 𝟙
w ⊩ (□ A) = ∀ {w′} → w ≤ w′ → ∀ {v′} → w′ R v′ → v′ ⊩ A
-- Has anyone constructed a proof of completeness with respect to a
-- Kripke-style semantics for IS4?
-- I haven’t found one, and I’ve tried five.
-- v′ w″ → v″ w″
-- ◌───R───● → ◌───────R───────●
-- │ → │
-- ≤ ξ′,ζ′ → │
-- v │ → │
-- ◌───R───● → ≤
-- │ w′ → │
-- ≤ ξ,ζ → │
-- │ → │
-- ● → ●
-- w → w
-- How do we go from being able to talk about open syntax to being able
-- to intensionally analyse syntax at runtime?
-- I don’t know, but I’ve noticed a funny coincidence...
--
-- Work in progress:
-- http://github.com/mietek/hilbert-gentzen
-- FIN
|
{
"alphanum_fraction": 0.5553830228,
"avg_line_length": 23.8518518519,
"ext": "agda",
"hexsha": "dbfe319067060c8fc3e57f1b7f2873b43caf80a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2c74cfd2d23d7eddea1774a1d8a5916ad4b23380",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/metaprog2016",
"max_forks_repo_path": "Metaprog2016.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2c74cfd2d23d7eddea1774a1d8a5916ad4b23380",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/metaprog2016",
"max_issues_repo_path": "Metaprog2016.agda",
"max_line_length": 78,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2c74cfd2d23d7eddea1774a1d8a5916ad4b23380",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/metaprog2016",
"max_stars_repo_path": "Metaprog2016.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:10:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-08-13T21:42:22.000Z",
"num_tokens": 1443,
"size": 3864
}
|
module _ where
record Structure : Set1 where
infixl 20 _×_
infix 8 _⟶_
infixl 20 _,_
infixr 40 _∘_
infix 5 _~_
field
Type : Set
_×_ : Type → Type → Type
_⟶_ : Type → Type → Set
_∘_ : ∀ {X Y Z} → Y ⟶ Z → X ⟶ Y → X ⟶ Z
_,_ : ∀ {X A B} → X ⟶ A → X ⟶ B → X ⟶ A × B
π₁ : ∀ {A B} → A × B ⟶ A
π₂ : ∀ {A B} → A × B ⟶ B
Op3 : ∀ {X} → X × X × X ⟶ X
_~_ : ∀ {X Y} → X ⟶ Y → X ⟶ Y → Set
record Map {{C : Structure}} {{D : Structure}} : Set1 where
open Structure {{...}}
field
Ty⟦_⟧ : Structure.Type C → Structure.Type D
Tm⟦_⟧ : ∀ {X A} → X ⟶ A → Ty⟦ X ⟧ ⟶ Ty⟦ A ⟧
×-inv : ∀ {X A} → Ty⟦ X ⟧ × Ty⟦ A ⟧ ⟶ Ty⟦ X × A ⟧
⟦Op3⟧ : ∀ {X} → Tm⟦ Op3 {X = X} ⟧ ∘ ×-inv ∘ (×-inv ∘ (π₁ ∘ π₁ , π₂ ∘ π₁) , π₂) ~ Op3
|
{
"alphanum_fraction": 0.4187256177,
"avg_line_length": 22.6176470588,
"ext": "agda",
"hexsha": "0d1dd1d921c8d0957b3eae149425ffc660d8ec8e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue1952.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue1952.agda",
"max_line_length": 88,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue1952.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 391,
"size": 769
}
|
-- Andreas, 2016-01-19, issue raised by Twey
-- {-# OPTIONS -v 10 #-}
{-# OPTIONS --allow-unsolved-metas #-}
Rel : Set → Set₁
Rel A = A → A → Set
record Category : Set₁ where
field
Obj : Set
_⇒_ : Rel Obj -- unfolding the definition of Rel removes the error
record Product (C : Category) (A B : Category.Obj C) : Set where
field
A×B : Category.Obj C
postulate
anything : ∀{a}{A : Set a} → A
trivial : ∀ {C} → Category.Obj C → Set
trivial _ = anything
map-obj : ∀ {P : _} → trivial (Product.A×B P) -- Note: hole _ cannot be filled
map-obj = anything
{- Error thrown during printing open metas:
piApply
t = Rel _24 Def Issue1783.Rel [Apply []r(MetaV (MetaId 24) [])]}
args = @0 [[]r{Var 0 []}]
An internal error has occurred. Please report this as a bug.
Location of the error: src/full/Agda/TypeChecking/Substitute.hs:382
-}
|
{
"alphanum_fraction": 0.6397228637,
"avg_line_length": 25.4705882353,
"ext": "agda",
"hexsha": "36ebcec936f5bc8501c9b996726730703d471900",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1783.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1783.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1783.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 277,
"size": 866
}
|
{-
This file introduces the "powerset" of a type in the style of
Escardó's lecture notes:
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#propositionalextensionality
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Powerset where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Foundations.Univalence using (hPropExt)
open import Cubical.Data.Sigma
private
variable
ℓ : Level
X : Type ℓ
ℙ : Type ℓ → Type (ℓ-suc ℓ)
ℙ X = X → hProp _
infix 5 _∈_
_∈_ : {X : Type ℓ} → X → ℙ X → Type ℓ
x ∈ A = ⟨ A x ⟩
_⊆_ : {X : Type ℓ} → ℙ X → ℙ X → Type ℓ
A ⊆ B = ∀ x → x ∈ A → x ∈ B
∈-isProp : (A : ℙ X) (x : X) → isProp (x ∈ A)
∈-isProp A = snd ∘ A
⊆-isProp : (A B : ℙ X) → isProp (A ⊆ B)
⊆-isProp A B = isPropΠ2 (λ x _ → ∈-isProp B x)
⊆-refl : (A : ℙ X) → A ⊆ A
⊆-refl A x = idfun (x ∈ A)
⊆-refl-consequence : (A B : ℙ X) → A ≡ B → (A ⊆ B) × (B ⊆ A)
⊆-refl-consequence A B p = subst (A ⊆_) p (⊆-refl A)
, subst (B ⊆_) (sym p) (⊆-refl B)
⊆-extensionality : (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) → A ≡ B
⊆-extensionality A B (φ , ψ) =
funExt (λ x → TypeOfHLevel≡ 1 (hPropExt (A x .snd) (B x .snd) (φ x) (ψ x)))
powersets-are-sets : isSet (ℙ X)
powersets-are-sets = isSetΠ (λ _ → isSetHProp)
⊆-extensionalityEquiv : (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) ≃ (A ≡ B)
⊆-extensionalityEquiv A B = isoToEquiv (iso (⊆-extensionality A B)
(⊆-refl-consequence A B)
(λ _ → powersets-are-sets A B _ _)
(λ _ → isPropΣ (⊆-isProp A B) (λ _ → ⊆-isProp B A) _ _))
|
{
"alphanum_fraction": 0.5699893955,
"avg_line_length": 29.9365079365,
"ext": "agda",
"hexsha": "6ce7c884b5c612cb05330f991ffd423d43b1261b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Foundations/Powerset.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Foundations/Powerset.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Foundations/Powerset.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 764,
"size": 1886
}
|
{-# OPTIONS --safe #-}
module Issue2792.Safe where
|
{
"alphanum_fraction": 0.6730769231,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "eb13d9b247790a9891eff3283178bbf6cbaea7ad",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2792/Safe.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2792/Safe.agda",
"max_line_length": 27,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2792/Safe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 12,
"size": 52
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Algebra (Σ : Signature) where
open import Level using (Level; _⊔_; suc)
open import Data.Vec using (Vec)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise)
open import Relation.Binary using (Setoid; Rel; IsEquivalence)
private
variable
a ℓ : Level
module _ (S : Setoid a ℓ) where
open import Data.Vec.Relation.Binary.Equality.Setoid S using (_≋_)
open Setoid S renaming (Carrier to A)
Interpretation : Set a
Interpretation = ∀ {arity} → (f : ops Σ arity) → Vec A arity → A
Congruence : Interpretation → Set (a ⊔ ℓ)
Congruence ⟦_⟧ = ∀ {arity}
→ (f : ops Σ arity)
→ ∀ {xs ys} → Pointwise _≈_ xs ys → ⟦ f ⟧ xs ≈ ⟦ f ⟧ ys
record IsAlgebra : Set (a ⊔ ℓ) where
field
⟦_⟧ : Interpretation
⟦⟧-cong : Congruence ⟦_⟧
record Algebra : Set (suc a ⊔ suc ℓ) where
constructor algebra
field
∥_∥/≈ : Setoid a ℓ
∥_∥/≈-isAlgebra : IsAlgebra ∥_∥/≈
∥_∥ : Set a
∥_∥ = Setoid.Carrier ∥_∥/≈
infix 10 _⟦_⟧_
_⟦_⟧_ : Interpretation (∥_∥/≈)
_⟦_⟧_ = IsAlgebra.⟦_⟧ ∥_∥/≈-isAlgebra
_⟦_⟧-cong : Congruence (∥_∥/≈) (_⟦_⟧_)
_⟦_⟧-cong = IsAlgebra.⟦⟧-cong ∥_∥/≈-isAlgebra
≈[_] : Rel ∥_∥ ℓ
≈[_] = Setoid._≈_ ∥_∥/≈
≈[_]-isEquivalence : IsEquivalence ≈[_]
≈[_]-isEquivalence = Setoid.isEquivalence ∥_∥/≈
open Algebra public
infix 5 ≈-syntax
≈-syntax : (A : Algebra {a} {ℓ}) → ∥ A ∥ → ∥ A ∥ → Set ℓ
≈-syntax A x y = Setoid._≈_ ∥ A ∥/≈ x y
syntax ≈-syntax A x y = x =[ A ] y
|
{
"alphanum_fraction": 0.5978934325,
"avg_line_length": 24.4545454545,
"ext": "agda",
"hexsha": "ca3b4764d5839912a046027ff6147b038f81c38c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Algebra.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Algebra.agda",
"max_line_length": 74,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 680,
"size": 1614
}
|
{-
This type ℕ₋₂ was originally used as the index to n-truncation in order to
be consistent with the notation in the HoTT book. However, ℕ was already
being used as an analogous index in Foundations.HLevels, and it became
clear that having two different indexing schemes for truncation levels was
very inconvenient. In the end, having slightly nicer notation was not worth
the hassle of having to use this type everywhere where truncation levels
were needed. So for this library, use the type `HLevel = ℕ` instead.
See the discussions below for more context:
- https://github.com/agda/cubical/issues/266
- https://github.com/agda/cubical/pull/238
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Experiments.NatMinusTwo where
open import Cubical.Experiments.NatMinusTwo.Base public
open import Cubical.Experiments.NatMinusTwo.Properties public
open import Cubical.Experiments.NatMinusTwo.ToNatMinusOne using (1+_; ℕ₋₁→ℕ₋₂; -1+Path) public
|
{
"alphanum_fraction": 0.7699293643,
"avg_line_length": 45.0454545455,
"ext": "agda",
"hexsha": "ab4d034b278456249d6c43968fa4bfdbe633d4d2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Experiments/NatMinusTwo.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Experiments/NatMinusTwo.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Experiments/NatMinusTwo.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 253,
"size": 991
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Mainly *properties* of isomorphisms, and a lot of other things too
-- TODO: split things up more semantically?
module Categories.Morphism.Isomorphism {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level using (_⊔_)
open import Function using (flip)
open import Data.Product using (_,_)
open import Relation.Binary using (Rel; _Preserves_⟶_; IsEquivalence)
open import Relation.Binary.Construct.Closure.Transitive
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
import Categories.Category.Construction.Core as Core
open import Categories.Category.Groupoid using (IsGroupoid)
import Categories.Category.Groupoid.Properties as GroupoidProps
import Categories.Morphism as Morphism
import Categories.Morphism.Properties as MorphismProps
import Categories.Morphism.IsoEquiv as IsoEquiv
import Categories.Category.Construction.Path as Path
open Core 𝒞 using (Core; Core-isGroupoid; CoreGroupoid)
open Morphism 𝒞
open MorphismProps 𝒞
open IsoEquiv 𝒞 using (_≃_; ⌞_⌟)
open Path 𝒞
import Categories.Morphism.Reasoning as MR
open Category 𝒞
private
module MCore where
open IsGroupoid Core-isGroupoid public
open GroupoidProps CoreGroupoid public
open MorphismProps Core public
open Morphism Core public
open Path Core public
variable
A B C D E F : Obj
open MCore using () renaming (_∘_ to _∘ᵢ_) public
CommutativeIso = IsGroupoid.CommutativeSquare Core-isGroupoid
--------------------
-- Also stuff about transitive closure
∘ᵢ-tc : A [ _≅_ ]⁺ B → A ≅ B
∘ᵢ-tc = MCore.∘-tc
infix 4 _≃⁺_
_≃⁺_ : Rel (A [ _≅_ ]⁺ B) _
_≃⁺_ = MCore._≈⁺_
TransitiveClosure : Category _ _ _
TransitiveClosure = MCore.Path
--------------------
-- some infrastructure setup in order to say something about morphisms and isomorphisms
module _ where
private
data IsoPlus : A [ _⇒_ ]⁺ B → Set (o ⊔ ℓ ⊔ e) where
[_] : {f : A ⇒ B} {g : B ⇒ A} → Iso f g → IsoPlus [ f ]
_∼⁺⟨_⟩_ : ∀ A {f⁺ : A [ _⇒_ ]⁺ B} {g⁺ : B [ _⇒_ ]⁺ C} → IsoPlus f⁺ → IsoPlus g⁺ → IsoPlus (_ ∼⁺⟨ f⁺ ⟩ g⁺)
open _≅_
≅⁺⇒⇒⁺ : A [ _≅_ ]⁺ B → A [ _⇒_ ]⁺ B
≅⁺⇒⇒⁺ [ f ] = [ from f ]
≅⁺⇒⇒⁺ (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = _ ∼⁺⟨ ≅⁺⇒⇒⁺ f⁺ ⟩ ≅⁺⇒⇒⁺ f⁺′
reverse : A [ _≅_ ]⁺ B → B [ _≅_ ]⁺ A
reverse [ f ] = [ ≅.sym f ]
reverse (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = _ ∼⁺⟨ reverse f⁺′ ⟩ reverse f⁺
reverse⇒≅-sym : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc (reverse f⁺) ≡ ≅.sym (∘ᵢ-tc f⁺)
reverse⇒≅-sym [ f ] = ≡.refl
reverse⇒≅-sym (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = ≡.cong₂ (Morphism.≅.trans 𝒞) (reverse⇒≅-sym f⁺′) (reverse⇒≅-sym f⁺)
TransitiveClosure-groupoid : IsGroupoid TransitiveClosure
TransitiveClosure-groupoid = record
{ _⁻¹ = reverse
; iso = λ {_ _ f⁺} → record { isoˡ = isoˡ′ f⁺ ; isoʳ = isoʳ′ f⁺ }
}
where
open MCore.HomReasoning
isoˡ′ : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc (reverse f⁺) ∘ᵢ ∘ᵢ-tc f⁺ ≃ ≅.refl
isoˡ′ f⁺ = begin
∘ᵢ-tc (reverse f⁺) ∘ᵢ ∘ᵢ-tc f⁺
≡⟨ ≡.cong (_∘ᵢ ∘ᵢ-tc f⁺) (reverse⇒≅-sym f⁺) ⟩
≅.sym (∘ᵢ-tc f⁺) ∘ᵢ ∘ᵢ-tc f⁺
≈⟨ MCore.iso.isoˡ ⟩
≅.refl
∎
isoʳ′ : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺) ≃ ≅.refl
isoʳ′ f⁺ = begin
∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺)
≡⟨ ≡.cong (∘ᵢ-tc f⁺ ∘ᵢ_) (reverse⇒≅-sym f⁺) ⟩
∘ᵢ-tc f⁺ ∘ᵢ ≅.sym (∘ᵢ-tc f⁺)
≈⟨ MCore.iso.isoʳ ⟩
≅.refl
∎
from-∘ᵢ-tc : (f⁺ : A [ _≅_ ]⁺ B) → from (∘ᵢ-tc f⁺) ≡ ∘-tc (≅⁺⇒⇒⁺ f⁺)
from-∘ᵢ-tc [ f ] = ≡.refl
from-∘ᵢ-tc (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = ≡.cong₂ _∘_ (from-∘ᵢ-tc f⁺′) (from-∘ᵢ-tc f⁺)
≅*⇒⇒*-cong : ≅⁺⇒⇒⁺ {A} {B} Preserves _≃⁺_ ⟶ _≈⁺_
≅*⇒⇒*-cong {_} {_} {f⁺} {g⁺} f⁺≃⁺g⁺ = begin
∘-tc (≅⁺⇒⇒⁺ f⁺) ≡˘⟨ from-∘ᵢ-tc f⁺ ⟩
from (∘ᵢ-tc f⁺) ≈⟨ _≃_.from-≈ f⁺≃⁺g⁺ ⟩
from (∘ᵢ-tc g⁺) ≡⟨ from-∘ᵢ-tc g⁺ ⟩
∘-tc (≅⁺⇒⇒⁺ g⁺) ∎
where open HomReasoning
≅-shift : ∀ {f⁺ : A [ _≅_ ]⁺ B} {g⁺ : B [ _≅_ ]⁺ C} {h⁺ : A [ _≅_ ]⁺ C} →
(_ ∼⁺⟨ f⁺ ⟩ g⁺) ≃⁺ h⁺ → g⁺ ≃⁺ (_ ∼⁺⟨ reverse f⁺ ⟩ h⁺)
≅-shift {f⁺ = f⁺} {g⁺ = g⁺} {h⁺ = h⁺} eq = begin
∘ᵢ-tc g⁺ ≈⟨ introʳ (I.isoʳ f⁺) ⟩
∘ᵢ-tc g⁺ ∘ᵢ (∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺)) ≈⟨ pullˡ eq ⟩
∘ᵢ-tc h⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺) ∎
where
open MCore.HomReasoning
open MR Core
module I {A B} (f⁺ : A [ _≅_ ]⁺ B) = Morphism.Iso (IsGroupoid.iso TransitiveClosure-groupoid {f = f⁺})
lift : ∀ {f⁺ : A [ _⇒_ ]⁺ B} → IsoPlus f⁺ → A [ _≅_ ]⁺ B
lift [ iso ] = [ record
{ from = _
; to = _
; iso = iso
} ]
lift (_ ∼⁺⟨ iso ⟩ iso′) = _ ∼⁺⟨ lift iso ⟩ lift iso′
reduce-lift : ∀ {f⁺ : A [ _⇒_ ]⁺ B} (f′ : IsoPlus f⁺) → from (∘ᵢ-tc (lift f′)) ≡ ∘-tc f⁺
reduce-lift [ f ] = ≡.refl
reduce-lift (_ ∼⁺⟨ f′ ⟩ f″) = ≡.cong₂ _∘_ (reduce-lift f″) (reduce-lift f′)
lift-cong : ∀ {f⁺ g⁺ : A [ _⇒_ ]⁺ B} (f′ : IsoPlus f⁺) (g′ : IsoPlus g⁺) →
f⁺ ≈⁺ g⁺ → lift f′ ≃⁺ lift g′
lift-cong {_} {_} {f⁺} {g⁺} f′ g′ eq = ⌞ from-≈′ ⌟
where
open HomReasoning
from-≈′ : from (∘ᵢ-tc (lift f′)) ≈ from (∘ᵢ-tc (lift g′))
from-≈′ = begin
from (∘ᵢ-tc (lift f′)) ≡⟨ reduce-lift f′ ⟩
∘-tc f⁺ ≈⟨ eq ⟩
∘-tc g⁺ ≡˘⟨ reduce-lift g′ ⟩
from (∘ᵢ-tc (lift g′)) ∎
lift-triangle : {f : A ⇒ B} {g : C ⇒ A} {h : C ⇒ B} {k : B ⇒ C} {i : B ⇒ A} {j : A ⇒ C} →
f ∘ g ≈ h → (f′ : Iso f i) → (g′ : Iso g j) → (h′ : Iso h k) →
lift (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift [ h′ ]
lift-triangle eq f′ g′ h′ = lift-cong (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) [ h′ ] eq
lift-square : {f : A ⇒ B} {g : C ⇒ A} {h : D ⇒ B} {i : C ⇒ D} {j : D ⇒ C} {a : B ⇒ A} {b : A ⇒ C} {c : B ⇒ D} →
f ∘ g ≈ h ∘ i → (f′ : Iso f a) → (g′ : Iso g b) → (h′ : Iso h c) → (i′ : Iso i j) →
lift (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift (_ ∼⁺⟨ [ i′ ] ⟩ [ h′ ])
lift-square eq f′ g′ h′ i′ = lift-cong (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) (_ ∼⁺⟨ [ i′ ] ⟩ [ h′ ]) eq
lift-pentagon : {f : A ⇒ B} {g : C ⇒ A} {h : D ⇒ C} {i : E ⇒ B} {j : D ⇒ E} {l : E ⇒ D}
{a : B ⇒ A} {b : A ⇒ C} {c : C ⇒ D} {d : B ⇒ E} →
f ∘ g ∘ h ≈ i ∘ j →
(f′ : Iso f a) → (g′ : Iso g b) → (h′ : Iso h c) → (i′ : Iso i d) → (j′ : Iso j l) →
lift (_ ∼⁺⟨ _ ∼⁺⟨ [ h′ ] ⟩ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift (_ ∼⁺⟨ [ j′ ] ⟩ [ i′ ])
lift-pentagon eq f′ g′ h′ i′ j′ = lift-cong (_ ∼⁺⟨ _ ∼⁺⟨ [ h′ ] ⟩ [ g′ ] ⟩ [ f′ ]) (_ ∼⁺⟨ [ j′ ] ⟩ [ i′ ]) eq
module _ where
open _≅_
-- projecting isomorphism commutations to morphism commutations
project-triangle : {g : A ≅ B} {f : C ≅ A} {h : C ≅ B} → g ∘ᵢ f ≃ h → from g ∘ from f ≈ from h
project-triangle = _≃_.from-≈
project-square : {g : A ≅ B} {f : C ≅ A} {i : D ≅ B} {h : C ≅ D} → g ∘ᵢ f ≃ i ∘ᵢ h → from g ∘ from f ≈ from i ∘ from h
project-square = _≃_.from-≈
-- direct lifting from morphism commutations to isomorphism commutations
lift-triangle′ : {f : A ≅ B} {g : C ≅ A} {h : C ≅ B} → from f ∘ from g ≈ from h → f ∘ᵢ g ≃ h
lift-triangle′ = ⌞_⌟
lift-square′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ B} {i : C ≅ D} → from f ∘ from g ≈ from h ∘ from i → f ∘ᵢ g ≃ h ∘ᵢ i
lift-square′ = ⌞_⌟
lift-pentagon′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : E ≅ B} {j : D ≅ E} →
from f ∘ from g ∘ from h ≈ from i ∘ from j → f ∘ᵢ g ∘ᵢ h ≃ i ∘ᵢ j
lift-pentagon′ = ⌞_⌟
open MR Core
open MCore using (_⁻¹)
open MCore.HomReasoning
open MR.GroupoidR _ Core-isGroupoid
squares×≃⇒≃ : {f f′ : A ≅ B} {g : A ≅ C} {h : B ≅ D} {i i′ : C ≅ D} →
CommutativeIso f g h i → CommutativeIso f′ g h i′ → i ≃ i′ → f ≃ f′
squares×≃⇒≃ sq₁ sq₂ eq = MCore.isos×≈⇒≈ eq helper₁ (MCore.≅.sym helper₂) sq₁ sq₂
where
helper₁ = record { iso = MCore.iso }
helper₂ = record { iso = MCore.iso }
-- imagine a triangle prism, if all the sides and the top face commute, the bottom face commute.
triangle-prism : {i′ : A ≅ B} {f′ : C ≅ A} {h′ : C ≅ B} {i : D ≅ E} {j : D ≅ A}
{k : E ≅ B} {f : F ≅ D} {g : F ≅ C} {h : F ≅ E} →
i′ ∘ᵢ f′ ≃ h′ →
CommutativeIso i j k i′ → CommutativeIso f g j f′ → CommutativeIso h g k h′ →
i ∘ᵢ f ≃ h
triangle-prism {i′ = i′} {f′} {_} {i} {_} {k} {f} {g} {_} eq sq₁ sq₂ sq₃ =
squares×≃⇒≃ glued sq₃ eq
where
glued : CommutativeIso (i ∘ᵢ f) g k (i′ ∘ᵢ f′)
glued = sym (glue (sym sq₁) (sym sq₂))
elim-triangleˡ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : D ≅ B} {j : D ≅ A} →
f ∘ᵢ g ∘ᵢ h ≃ i → f ∘ᵢ j ≃ i → g ∘ᵢ h ≃ j
elim-triangleˡ perim tri = MCore.mono _ _ (perim ○ ⟺ tri)
elim-triangleˡ′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : D ≅ B} {j : C ≅ B} →
f ∘ᵢ g ∘ᵢ h ≃ i → j ∘ᵢ h ≃ i → f ∘ᵢ g ≃ j
elim-triangleˡ′ {f = f} {g} {h} {i} {j} perim tri = MCore.epi _ _ ( begin
(f ∘ᵢ g) ∘ᵢ h ≈⟨ MCore.assoc ⟩
f ∘ᵢ g ∘ᵢ h ≈⟨ perim ⟩
i ≈˘⟨ tri ⟩
j ∘ᵢ h ∎ )
cut-squareʳ : {g : A ≅ B} {f : A ≅ C} {h : B ≅ D} {i : C ≅ D} {j : B ≅ C} →
CommutativeIso g f h i → i ∘ᵢ j ≃ h → j ∘ᵢ g ≃ f
cut-squareʳ {g = g} {f = f} {h = h} {i = i} {j = j} sq tri = begin
j ∘ᵢ g ≈⟨ switch-fromtoˡ′ {f = i} {h = j} {k = h} tri ⟩∘⟨ refl ⟩
(i ⁻¹ ∘ᵢ h) ∘ᵢ g ≈⟨ MCore.assoc ⟩
i ⁻¹ ∘ᵢ h ∘ᵢ g ≈˘⟨ switch-fromtoˡ′ {f = i} {h = f} {k = h ∘ᵢ g} (sym sq) ⟩
f ∎
|
{
"alphanum_fraction": 0.4737914032,
"avg_line_length": 38.3909465021,
"ext": "agda",
"hexsha": "30247f1c71fc41f4646ba2b2580197b6d419e987",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Isomorphism.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4802,
"size": 9329
}
|
module Generic.Test.Data.Lift where
open import Generic.Main as Main hiding (Lift; lift; lower)
Lift : ∀ {α} β -> Set α -> Set (α ⊔ β)
Lift = readData Main.Lift
pattern lift x = !#₀ (relv x , lrefl)
lower : ∀ {α} {A : Set α} β -> Lift β A -> A
lower β (lift x) = x
|
{
"alphanum_fraction": 0.6133828996,
"avg_line_length": 22.4166666667,
"ext": "agda",
"hexsha": "f7328a080f08b6349548eb1a3cf218663798a113",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/Data/Lift.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/Data/Lift.agda",
"max_line_length": 59,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/Data/Lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 96,
"size": 269
}
|
------------------------------------------------------------------------
-- Extra lemmas about substitutions
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Data.Fin.Substitution.ExtraLemmas where
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Vec using (Vec; _∷_; lookup; map)
open import Data.Vec.Properties using (map-cong; map-∘; lookup-map)
open import Data.Vec.Relation.Unary.All hiding (lookup; map)
open import Function using (_∘_; _$_; flip)
open import Level using (_⊔_) renaming (zero to lzero; suc to lsuc)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (Star; ε; _◅_; _▻_)
open import Relation.Binary.PropositionalEquality as PropEq hiding (subst)
open PropEq.≡-Reasoning
open import Relation.Unary using (Pred)
-- Simple extension of substitutions.
--
-- FIXME: this should go into Data.Fin.Substitution.
record Extension {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
infixr 5 _/∷_
field weaken : ∀ {n} → T n → T (suc n) -- Weakens Ts.
-- Iterated weakening of types.
weaken⋆ : ∀ m {n} → T n → T (m + n)
weaken⋆ zero t = t
weaken⋆ (suc m) t = weaken (weaken⋆ m t)
-- Extension.
_/∷_ : ∀ {m n} → T (suc n) → Sub T m n → Sub T (suc m) (suc n)
t /∷ ρ = t ∷ map weaken ρ
-- Helper module
module SimpleExt {ℓ} {T : Pred ℕ ℓ} (simple : Simple T) where
open Simple simple public
extension : Extension T
extension = record { weaken = weaken }
open Extension extension public hiding (weaken)
-- An generalized version of Data.Fin.Lemmas.Lemmas₀
--
-- FIXME: this should go into Data.Fin.Substitution.Lemmas.
module ExtLemmas₀ {ℓ} {T : Pred ℕ ℓ} (lemmas₀ : Lemmas₀ T) where
open Data.Fin using (lift; raise)
open Lemmas₀ lemmas₀ public hiding (lookup-map-weaken-↑⋆)
open SimpleExt simple
-- A generalized variant of Lemmas₀.lookup-map-weaken-↑⋆.
lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} {t} →
lookup (map weaken ρ ↑⋆ k) x ≡
lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x)
lookup-map-weaken-↑⋆ zero x = refl
lookup-map-weaken-↑⋆ (suc k) zero = refl
lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} {t} = begin
lookup (map weaken (map weaken ρ ↑⋆ k)) x
≡⟨ lookup-map x weaken (map weaken ρ ↑⋆ k) ⟩
weaken (lookup (map weaken ρ ↑⋆ k) x)
≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩
weaken (lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x))
≡⟨ sym (lookup-map (lift k suc x) weaken ((t /∷ ρ) ↑⋆ k)) ⟩
lookup (map weaken ((t /∷ ρ) ↑⋆ k)) (lift k suc x)
∎
-- A version of Data.Fin.Lemmas.Lemmas₁ with additional lemmas.
--
-- FIXME: this should go into Data.Fin.Substitution.Lemmas.
module ExtLemmas₁ {ℓ} {T : Pred ℕ ℓ} (lemmas₁ : Lemmas₁ T) where
open Data.Fin using (raise; fromℕ; lift)
open Lemmas₁ lemmas₁
open Simple simple
lookup-wk⋆ : ∀ {n} (x : Fin n) k → lookup (wk⋆ k) x ≡ var (raise k x)
lookup-wk⋆ x zero = lookup-id x
lookup-wk⋆ x (suc k) = lookup-map-weaken x {_} {wk⋆ k} (lookup-wk⋆ x k)
lookup-raise-↑⋆ : ∀ k {m n} x {y} {σ : Sub T m n} →
lookup σ x ≡ var y →
lookup (σ ↑⋆ k) (raise k x) ≡ var (raise k y)
lookup-raise-↑⋆ zero x hyp = hyp
lookup-raise-↑⋆ (suc k) x {y} {σ} hyp =
lookup-map-weaken (raise k x) {_} {σ ↑⋆ k} (lookup-raise-↑⋆ k x hyp)
-- A generalized version of Data.Fin.Lemmas.Lemmas₄
--
-- FIXME: this should go into Data.Fin.Substitution.Lemmas.
module ExtLemmas₄ {ℓ} {T : Pred ℕ ℓ} (lemmas₄ : Lemmas₄ T) where
open Data.Fin using (lift; raise)
open Lemmas₄ lemmas₄ public hiding (⊙-wk; wk-commutes)
open Lemmas₃ lemmas₃ using (lookup-wk-↑⋆-⊙; /✶-↑✶′)
open SimpleExt simple using (_/∷_; weaken⋆)
open ExtLemmas₀ lemmas₀ using (lookup-map-weaken-↑⋆)
⊙-wk-↑⋆ : ∀ {m n} {ρ : Sub T m n} {t} k →
ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k
⊙-wk-↑⋆ {ρ = ρ} {t} k = sym (begin
wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k ≡⟨ lemma ⟩
map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩
(ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib k ⟩
ρ ↑⋆ k ⊙ wk ↑⋆ k ∎)
where
lemma = extensionality λ x → begin
lookup (wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k) x
≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x)
≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩
lookup (map weaken ρ ↑⋆ k) x
∎
⊙-wk : ∀ {m n} {ρ : Sub T m n} {t} → ρ ⊙ wk ≡ wk ⊙ (t /∷ ρ)
⊙-wk = ⊙-wk-↑⋆ zero
wk-⊙-∷ : ∀ {n m} t {ρ : Sub T m n} → wk ⊙ (t ∷ ρ) ≡ ρ
wk-⊙-∷ t {ρ} = extensionality λ x → begin
lookup (wk ⊙ (t ∷ ρ)) x ≡⟨ lookup-wk-↑⋆-⊙ zero {x} ⟩
lookup (t ∷ ρ) (suc x) ≡⟨⟩
lookup ρ x ∎
wk-↑⋆-commutes : ∀ {m n} {ρ : Sub T m n} {t′} k t →
t / ρ ↑⋆ k / wk ↑⋆ k ≡ t / wk ↑⋆ k / (t′ /∷ ρ) ↑⋆ k
wk-↑⋆-commutes {ρ = ρ} {t} k =
/✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ (t /∷ ρ)) ⊙-wk-↑⋆ k
wk-commutes : ∀ {m n} {ρ : Sub T m n} {t′} t →
t / ρ / wk ≡ t / wk / (t′ /∷ ρ)
wk-commutes = wk-↑⋆-commutes zero
raise-/-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} →
var (raise k x) / ρ ↑⋆ k ≡ var x / ρ / wk⋆ k
raise-/-↑⋆ zero x {ρ} = sym (id-vanishes (var x / ρ))
raise-/-↑⋆ (suc k) x {ρ} = begin
var (suc (raise k x)) / ρ ↑⋆ suc k ≡⟨ suc-/-↑ (raise k x) ⟩
var (raise k x) / ρ ↑⋆ k / wk ≡⟨ cong (_/ wk) (raise-/-↑⋆ k x) ⟩
var x / ρ / wk⋆ k / wk ≡⟨ sym (/-⊙ (var x / ρ)) ⟩
var x / ρ / wk⋆ k ⊙ wk ≡⟨ cong (var x / ρ /_) (sym map-weaken) ⟩
var x / ρ / wk⋆ (suc k) ∎
/-wk⋆ : ∀ {n} k {t : T n} → t / wk⋆ k ≡ weaken⋆ k t
/-wk⋆ zero {t} = id-vanishes t
/-wk⋆ (suc k) {t} = begin
t / map weaken (wk⋆ k) ≡⟨ cong (t /_) map-weaken ⟩
t / wk⋆ k ⊙ wk ≡⟨ /-⊙ t ⟩
t / wk⋆ k / wk ≡⟨ /-wk ⟩
weaken (t / wk⋆ k) ≡⟨ cong weaken (/-wk⋆ k) ⟩
weaken (weaken⋆ k t) ∎
-- Weakening commutes with substitution.
weaken-/ : ∀ {m n} {ρ : Sub T m n} {t′} t →
weaken (t / ρ) ≡ weaken t / (t′ /∷ ρ)
weaken-/ {ρ = ρ} {t′} t = begin
weaken (t / ρ) ≡⟨ sym /-wk ⟩
t / ρ / wk ≡⟨ wk-commutes t ⟩
t / wk / (t′ /∷ ρ) ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / (t′ /∷ ρ) ∎
weaken-/-∷ : ∀ {n m} {t′} {ρ : Sub T m n} t → weaken t / (t′ ∷ ρ) ≡ t / ρ
weaken-/-∷ {_} {_} {t′} {ρ} t = begin
weaken t / (t′ ∷ ρ) ≡⟨ cong (_/ (t′ ∷ ρ)) (sym /-wk) ⟩
t / wk / (t′ ∷ ρ) ≡⟨ sym (/-⊙ t) ⟩
t / (wk ⊙ (t′ ∷ ρ)) ≡⟨ cong (t /_) (wk-⊙-∷ t′) ⟩
t / ρ ∎
-- A generalize version of Data.Fin.Lemmas.AppLemmas
--
-- FIXME: this should go into Data.Fin.Substitution.Lemmas.
module ExtAppLemmas {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂}
(appLemmas : AppLemmas T₁ T₂) where
open AppLemmas appLemmas public hiding (wk-commutes)
open SimpleExt simple using (_/∷_)
private module L₄ = ExtLemmas₄ lemmas₄
open L₄ public using (wk-⊙-∷)
wk-↑⋆-commutes : ∀ {m n} {ρ : Sub T₂ m n} {t′} k t →
t / ρ ↑⋆ k / wk ↑⋆ k ≡ t / wk ↑⋆ k / (t′ /∷ ρ) ↑⋆ k
wk-↑⋆-commutes {ρ = ρ} {t} k =
⨀→/✶ (ε ▻ ρ ↑⋆ k ▻ wk ↑⋆ k) (ε ▻ wk ↑⋆ k ▻ (t /∷ ρ) ↑⋆ k) (L₄.⊙-wk-↑⋆ k)
wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} {t′} t →
t / ρ / wk ≡ t / wk / (t′ /∷ ρ)
wk-commutes = wk-↑⋆-commutes zero
-- Lemmas relating T₃ substitutions in T₁ and T₂.
record LiftAppLemmas {ℓ₁ ℓ₂ ℓ₃}
(T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) (T₃ : Pred ℕ ℓ₃)
: Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
lift : ∀ {n} → T₃ n → T₂ n
application₁₃ : Application T₁ T₃
application₂₃ : Application T₂ T₃
lemmas₂ : Lemmas₄ T₂
lemmas₃ : Lemmas₄ T₃
private
module L₂ = ExtLemmas₄ lemmas₂
module L₃ = ExtLemmas₄ lemmas₃
module A₁ = Application application₁₃
module A₂ = Application application₂₃
field
-- Lifting commutes with application of T₃ substitutions.
lift-/ : ∀ {m n} t {σ : Sub T₃ m n} → lift (t L₃./ σ) ≡ lift t A₂./ σ
-- Lifting preserves variables.
lift-var : ∀ {n} (x : Fin n) → lift (L₃.var x) ≡ L₂.var x
-- Sequences of T₃ substitutions are equivalent when applied to
-- T₁s if they are equivalent when applied to T₂ variables.
/✶-↑✶ :
∀ {m n} (σs₁ σs₂ : Subs T₃ m n) →
(∀ k x → L₂.var x A₂./✶ σs₁ L₃.↑✶ k ≡ L₂.var x A₂./✶ σs₂ L₃.↑✶ k) →
∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k
lift-lookup-⊙ : ∀ {m n k} x {σ₁ : Sub T₃ m n} {σ₂ : Sub T₃ n k} →
lift (lookup (σ₁ L₃.⊙ σ₂) x) ≡ lift (lookup σ₁ x) A₂./ σ₂
lift-lookup-⊙ x {σ₁} {σ₂} = begin
lift (lookup (σ₁ L₃.⊙ σ₂) x) ≡⟨ cong lift (L₃.lookup-⊙ x {σ₁}) ⟩
lift (lookup σ₁ x L₃./ σ₂) ≡⟨ lift-/ (lookup σ₁ x) ⟩
lift (lookup σ₁ x) A₂./ σ₂ ∎
lift-lookup-⨀ : ∀ {m n} x (σs : Subs T₃ m n) →
lift (lookup (L₃.⨀ σs) x) ≡ L₂.var x A₂./✶ σs
lift-lookup-⨀ x ε = begin
lift (lookup L₃.id x) ≡⟨ cong lift (L₃.lookup-id x) ⟩
lift (L₃.var x) ≡⟨ lift-var x ⟩
L₂.var x ∎
lift-lookup-⨀ x (σ ◅ ε) = begin
lift (lookup σ x) ≡⟨ cong lift (sym L₃.var-/) ⟩
lift (L₃.var x L₃./ σ) ≡⟨ lift-/ _ ⟩
lift (L₃.var x) A₂./ σ ≡⟨ cong₂ A₂._/_ (lift-var x) refl ⟩
L₂.var x A₂./ σ ∎
lift-lookup-⨀ x (σ ◅ (σ′ ◅ σs′)) = begin
lift (lookup (L₃.⨀ σs L₃.⊙ σ) x)
≡⟨ lift-lookup-⊙ x {L₃.⨀ σs} ⟩
lift (lookup (L₃.⨀ σs) x) A₂./ σ
≡⟨ cong₂ A₂._/_ (lift-lookup-⨀ x (σ′ ◅ σs′)) refl ⟩
L₂.var x A₂./✶ σs A₂./ σ
∎
where σs = σ′ ◅ σs′
-- Sequences of T₃ substitutions are equivalent when applied to
-- T₁s if they are equivalent when applied as composites.
/✶-↑✶′ : ∀ {m n} (σs₁ σs₂ : Subs T₃ m n) →
(∀ k → L₃.⨀ (σs₁ L₃.↑✶ k) ≡ L₃.⨀ (σs₂ L₃.↑✶ k)) →
∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k
/✶-↑✶′ σs₁ σs₂ hyp = /✶-↑✶ σs₁ σs₂ (λ k x → begin
L₂.var x A₂./✶ σs₁ L₃.↑✶ k
≡⟨ sym (lift-lookup-⨀ x (σs₁ L₃.↑✶ k)) ⟩
lift (lookup (L₃.⨀ (σs₁ L₃.↑✶ k)) x)
≡⟨ cong (λ σ → lift (lookup σ x)) (hyp k) ⟩
lift (lookup (L₃.⨀ (σs₂ L₃.↑✶ k)) x)
≡⟨ lift-lookup-⨀ x (σs₂ L₃.↑✶ k) ⟩
L₂.var x A₂./✶ σs₂ L₃.↑✶ k
∎)
-- Derived lemmas about applications of T₃ substitutions to T₁s.
appLemmas : AppLemmas T₁ T₃
appLemmas = record
{ application = application₁₃
; lemmas₄ = lemmas₃
; id-vanishes = /✶-↑✶′ (ε ▻ L₃.id) ε L₃.id-↑⋆ 0
; /-⊙ = /✶-↑✶′ (ε ▻ _ L₃.⊙ _) (ε ▻ _ ▻ _) L₃.↑⋆-distrib 0
}
open ExtAppLemmas appLemmas public
hiding (application; lemmas₂; lemmas₃; var; weaken; subst; simple)
-- Lemmas relating T₂ and T₃ substitutions in T₁.
record LiftSubLemmas {ℓ₁ ℓ₂ ℓ₃}
(T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) (T₃ : Pred ℕ ℓ₃)
: Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
application₁₂ : Application T₁ T₂
liftAppLemmas : LiftAppLemmas T₁ T₂ T₃
open LiftAppLemmas liftAppLemmas hiding (/✶-↑✶; /-wk)
private
module L₃ = ExtLemmas₄ lemmas₃
module L₂ = ExtLemmas₄ lemmas₂
module A₁₂ = Application application₁₂
module A₁₃ = Application (AppLemmas.application appLemmas)
module A₂₃ = Application application₂₃
field
-- Weakening commutes with lifting.
weaken-lift : ∀ {n} (t : T₃ n) → L₂.weaken (lift t) ≡ lift (L₃.weaken t)
-- Applying a composition of T₂ substitutions to T₁s
-- corresponds to two consecutive applications.
/-⊙₂ : ∀ {m n k} {σ₁ : Sub T₂ m n} {σ₂ : Sub T₂ n k} t →
t A₁₂./ σ₁ L₂.⊙ σ₂ ≡ t A₁₂./ σ₁ A₁₂./ σ₂
-- Sequences of T₃ substitutions are equivalent to T₂
-- substitutions when applied to T₁s if they are equivalent when
-- applied to variables.
/✶-↑✶₁ :
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) →
∀ k t → t A₁₃./✶ σs₁ ↑✶ k ≡ t A₁₂./✶ σs₂ L₂.↑✶ k
-- Sequences of T₃ substitutions are equivalent to T₂
-- substitutions when applied to T₂s if they are equivalent when
-- applied to variables.
/✶-↑✶₂ :
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) →
∀ k t → t A₂₃./✶ σs₁ ↑✶ k ≡ t L₂./✶ σs₂ L₂.↑✶ k
-- Lifting of T₃ substitutions to T₂ substitutions.
liftSub : ∀ {m n} → Sub T₃ m n → Sub T₂ m n
liftSub σ = map lift σ
-- The two types of lifting commute.
liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k →
liftSub σ L₂.↑⋆ k ≡ liftSub (σ ↑⋆ k)
liftSub-↑⋆ σ zero = refl
liftSub-↑⋆ σ (suc k) = cong₂ _∷_ (sym (lift-var _)) (begin
map L₂.weaken (liftSub σ L₂.↑⋆ k) ≡⟨ cong (map _) (liftSub-↑⋆ σ k) ⟩
map L₂.weaken (map lift (σ ↑⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩
map (L₂.weaken ∘ lift) (σ ↑⋆ k) ≡⟨ map-cong weaken-lift _ ⟩
map (lift ∘ L₃.weaken) (σ ↑⋆ k) ≡⟨ map-∘ _ _ _ ⟩
map lift (map L₃.weaken (σ ↑⋆ k)) ∎)
-- The identity substitutions are equivalent up to lifting.
liftSub-id : ∀ {n} → liftSub (L₃.id {n}) ≡ L₂.id {n}
liftSub-id {zero} = refl
liftSub-id {suc n} = begin
liftSub (L₃.id L₃.↑) ≡⟨ sym (liftSub-↑⋆ L₃.id 1) ⟩
liftSub L₃.id L₂.↑ ≡⟨ cong L₂._↑ liftSub-id ⟩
L₂.id ∎
-- Weakening is equivalent up to lifting.
liftSub-wk⋆ : ∀ k {n} → liftSub (L₃.wk⋆ k {n}) ≡ L₂.wk⋆ k {n}
liftSub-wk⋆ zero = liftSub-id
liftSub-wk⋆ (suc k) = begin
liftSub (map L₃.weaken (L₃.wk⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩
map (lift ∘ L₃.weaken) (L₃.wk⋆ k) ≡⟨ sym (map-cong weaken-lift _) ⟩
map (L₂.weaken ∘ lift) (L₃.wk⋆ k) ≡⟨ map-∘ _ _ _ ⟩
map L₂.weaken (liftSub (L₃.wk⋆ k)) ≡⟨ cong (map _) (liftSub-wk⋆ k) ⟩
map L₂.weaken (L₂.wk⋆ k) ∎
-- Weakening is equivalent up to lifting.
liftSub-wk : ∀ {n} → liftSub (L₃.wk {n}) ≡ L₂.wk {n}
liftSub-wk = liftSub-wk⋆ 1
-- Single variable substitution is equivalent up to lifting.
liftSub-sub : ∀ {n} (t : T₃ n) → liftSub (L₃.sub t) ≡ L₂.sub (lift t)
liftSub-sub t = cong₂ _∷_ refl liftSub-id
-- Lifting commutes with application to variables.
var-/-liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k x →
L₂.var x A₂₃./ σ ↑⋆ k ≡ L₂.var x L₂./ liftSub σ L₂.↑⋆ k
var-/-liftSub-↑⋆ σ k x = begin
L₂.var x A₂₃./ σ ↑⋆ k
≡⟨ cong₂ A₂₃._/_ (sym (lift-var x)) refl ⟩
lift (L₃.var x) A₂₃./ σ ↑⋆ k
≡⟨ sym (lift-/ _) ⟩
lift (L₃.var x L₃./ σ ↑⋆ k)
≡⟨ cong lift L₃.var-/ ⟩
lift (lookup (σ ↑⋆ k) x)
≡⟨ sym (lookup-map x lift (σ ↑⋆ k)) ⟩
lookup (liftSub (σ ↑⋆ k)) x
≡⟨ sym L₂.var-/ ⟩
L₂.var x L₂./ liftSub (σ ↑⋆ k)
≡⟨ cong (L₂._/_ (L₂.var x)) (sym (liftSub-↑⋆ σ k)) ⟩
L₂.var x L₂./ liftSub σ L₂.↑⋆ k
∎
-- Lifting commutes with application.
/-liftSub-↑⋆ : ∀ {m n} k t {σ : Sub T₃ m n} →
t A₁₃./ σ ↑⋆ k ≡ t A₁₂./ liftSub σ L₂.↑⋆ k
/-liftSub-↑⋆ k t {σ} =
/✶-↑✶₁ (ε ▻ σ) (ε ▻ liftSub σ) (var-/-liftSub-↑⋆ σ) k t
/-liftSub : ∀ {m n} t {σ : Sub T₃ m n} → t A₁₃./ σ ≡ t A₁₂./ liftSub σ
/-liftSub = /-liftSub-↑⋆ zero
-- Weakening is equivalent up to choice of application.
/-wk-↑⋆ : ∀ {n} k {t : T₁ (k + n)} →
t A₁₃./ L₃.wk ↑⋆ k ≡ t A₁₂./ L₂.wk L₂.↑⋆ k
/-wk-↑⋆ k {t = t} = begin
t A₁₃./ L₃.wk ↑⋆ k
≡⟨ /-liftSub-↑⋆ k t ⟩
t A₁₂./ (liftSub L₃.wk) L₂.↑⋆ k
≡⟨ cong (λ σ → t A₁₂./ σ L₂.↑⋆ k) liftSub-wk ⟩
t A₁₂./ L₂.wk L₂.↑⋆ k
∎
/-wk : ∀ {n} {t : T₁ n} → t A₁₃./ L₃.wk ≡ t A₁₂./ L₂.wk
/-wk = /-wk-↑⋆ zero
-- Single-variable substitution is equivalent up to choice of
-- application.
/-sub-↑⋆ : ∀ {n} k t (s : T₃ n) →
t A₁₃./ L₃.sub s ↑⋆ k ≡ t A₁₂./ L₂.sub (lift s) L₂.↑⋆ k
/-sub-↑⋆ k t s = begin
t A₁₃./ L₃.sub s ↑⋆ k
≡⟨ /-liftSub-↑⋆ k t ⟩
t A₁₂./ liftSub (L₃.sub s) L₂.↑⋆ k
≡⟨ cong (λ σ → t A₁₂./ σ L₂.↑⋆ k) (liftSub-sub s) ⟩
t A₁₂./ L₂.sub (lift s) L₂.↑⋆ k
∎
/-sub : ∀ {n} t (s : T₃ n) →
t A₁₃./ L₃.sub s ≡ t A₁₂./ L₂.sub (lift s)
/-sub = /-sub-↑⋆ zero
-- Lifting commutes with application.
/-sub-↑ : ∀ {m n} t s (σ : Sub T₃ m n) →
t A₁₂./ L₂.sub s A₁₃./ σ ≡ (t A₁₃./ σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ)
/-sub-↑ t s σ = begin
t A₁₂./ L₂.sub s A₁₃./ σ
≡⟨ /-liftSub _ ⟩
t A₁₂./ L₂.sub s A₁₂./ liftSub σ
≡⟨ sym (/-⊙₂ t) ⟩
t A₁₂./ (L₂.sub s L₂.⊙ liftSub σ)
≡⟨ cong₂ A₁₂._/_ refl (L₂.sub-⊙ s) ⟩
t A₁₂./ (liftSub σ L₂.↑ L₂.⊙ L₂.sub (s L₂./ liftSub σ))
≡⟨ /-⊙₂ t ⟩
t A₁₂./ liftSub σ L₂.↑ A₁₂./ L₂.sub (s L₂./ liftSub σ)
≡⟨ cong₂ (A₁₂._/_ ∘ A₁₂._/_ t) (liftSub-↑⋆ _ 1)
(cong L₂.sub (sym (/-liftSub₂ s))) ⟩
t A₁₂./ liftSub (σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ)
≡⟨ cong₂ A₁₂._/_ (sym (/-liftSub t)) refl ⟩
t A₁₃./ σ ↑ A₁₂./ L₂.sub (s A₂₃./ σ)
∎
where
/-liftSub₂ : ∀ {m n} s {σ : Sub T₃ m n} →
s A₂₃./ σ ≡ s L₂./ liftSub σ
/-liftSub₂ s {σ} = /✶-↑✶₂ (ε ▻ σ) (ε ▻ liftSub σ)
(var-/-liftSub-↑⋆ σ) zero s
-- Lemmas relating weakening of T₁ to T₂ substitutions in T₁.
record WeakenLemmas {ℓ₁ ℓ₂} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂)
: Set (ℓ₁ ⊔ ℓ₂) where
field
weaken : ∀ {n} → T₁ n → T₁ (suc n) -- Weakening of T₁s.
-- Lemmas about application of T₂ substitutions in T₁
appLemmas : AppLemmas T₁ T₂
open ExtAppLemmas appLemmas hiding (/-wk; weaken; _⊙_)
open Lemmas₄ lemmas₄ using (_⊙_) renaming (weaken to weaken′)
-- A lemma relating weakening to the wk substitution
field /-wk : ∀ {n} {t : T₁ n} → t / wk ≡ weaken t
extension : Extension T₁
extension = record { weaken = weaken }
open Extension extension public using (weaken⋆)
-- A generalized version of wk-sub-vanishes for T₁s.
weaken-sub : ∀ {n t′} → (t : T₁ n) → weaken t / sub t′ ≡ t
weaken-sub t = begin
weaken t / sub _ ≡⟨ cong₂ _/_ (sym /-wk) refl ⟩
t / wk / sub _ ≡⟨ wk-sub-vanishes t ⟩
t ∎
-- A variants of /-wk⋆ for T₁s.
/-wk⋆ : ∀ {n} k {t : T₁ n} → t / wk⋆ k ≡ weaken⋆ k t
/-wk⋆ zero {t} = id-vanishes t
/-wk⋆ (suc k) {t} = begin
t / map weaken′ (wk⋆ k) ≡⟨ /-weaken t ⟩
t / wk⋆ k / wk ≡⟨ /-wk ⟩
weaken (t / wk⋆ k) ≡⟨ cong weaken (/-wk⋆ k) ⟩
weaken (weaken⋆ k t) ∎
open SimpleExt simple public using (_/∷_)
-- Weakening commutes with substitution.
weaken-/ : ∀ {m n} {σ : Sub T₂ m n} {t′} t →
weaken (t / σ) ≡ weaken t / (t′ /∷ σ)
weaken-/ {σ = σ} {t′} t = begin
weaken (t / σ) ≡⟨ sym /-wk ⟩
t / σ / wk ≡⟨ wk-commutes t ⟩
t / wk / (t′ /∷ σ) ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / (t′ /∷ σ) ∎
weaken-/-∷ : ∀ {n m} {t′} {σ : Sub T₂ m n} (t : T₁ m) →
weaken t / (t′ ∷ σ) ≡ t / σ
weaken-/-∷ {_} {_} {t′} {σ} t = begin
weaken t / (t′ ∷ σ) ≡⟨ cong (_/ (t′ ∷ σ)) (sym /-wk) ⟩
t / wk / (t′ ∷ σ) ≡⟨ sym (/-⊙ t) ⟩
t / wk ⊙ (t′ ∷ σ) ≡⟨ cong (t /_) (wk-⊙-∷ t′) ⟩
t / σ ∎
-- T₂-substitutions in term-like T₁
--
-- FIXME: this should go into Data.Fin.Substitution.
record TermLikeSubst {ℓ} (T₁ : Pred ℕ ℓ) (T₂ : ℕ → Set)
: Set (lsuc (ℓ ⊔ lzero)) where
field
app : ∀ {T₃} → Lift T₃ T₂ → ∀ {m n} → T₁ m → Sub T₃ m n → T₁ n
termSubst : TermSubst T₂
open TermSubst termSubst public
hiding (app; var; weaken; _/Var_; _/_; _/✶_)
termApplication : Application T₁ T₂
termApplication = record { _/_ = app termLift }
varApplication : Application T₁ Fin
varApplication = record { _/_ = app varLift }
open Application termApplication public using (_/_; _/✶_)
open Application varApplication public using () renaming (_/_ to _/Var_)
-- Weakening of T₁s.
weaken : ∀ {n} → T₁ n → T₁ (suc n)
weaken t = t /Var VarSubst.wk
-- Lemmas for a term-like T₁ derived from term lemmas for T₂
record TermLikeLemmas {ℓ} (T₁ : Pred ℕ ℓ) (T₂ : ℕ → Set)
: Set (lsuc (ℓ ⊔ lzero)) where
field
app : ∀ {T₃} → Lift T₃ T₂ → ∀ {m n} → T₁ m → Sub T₃ m n → T₁ n
termLemmas : TermLemmas T₂
termLikeSubst : TermLikeSubst T₁ T₂
termLikeSubst = record
{ app = app
; termSubst = TermLemmas.termSubst termLemmas
}
open TermLikeSubst termLikeSubst using (termSubst; termLift; varLift; weaken)
open TermSubst termSubst using (var; _⊙_; module Lifted)
field /✶-↑✶₁ : ∀ {T₃} {lift : Lift T₃ T₂} →
let open Application (record { _/_ = app lift })
using () renaming (_/✶_ to _/✶₁_)
open Lifted lift
using (_↑✶_) renaming (_/✶_ to _/✶₂_)
in
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₃ m n) →
(∀ k x → var x /✶₂ σs₁ ↑✶ k ≡ var x /✶₂ σs₂ ↑✶ k) →
∀ k t → t /✶₁ σs₁ ↑✶ k ≡ t /✶₁ σs₂ ↑✶ k
termApplication : Application T₁ T₂
termApplication = record { _/_ = app termLift }
varApplication : Application T₁ Fin
varApplication = record { _/_ = app varLift }
field /✶-↑✶₂ : let open Application varApplication
using () renaming (_/✶_ to _/✶₁₃_)
open Application termApplication
using () renaming (_/✶_ to _/✶₁₂_)
open Lifted varLift
using () renaming (_↑✶_ to _↑✶₃_; _/✶_ to _/✶₂₃_)
open TermSubst termSubst
using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂₂_)
in
∀ {m n} (σs₁ : Subs Fin m n) (σs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₂₃ σs₁ ↑✶₃ k ≡ var x /✶₂₂ σs₂ ↑✶₂ k) →
∀ k t → t /✶₁₃ σs₁ ↑✶₃ k ≡ t /✶₁₂ σs₂ ↑✶₂ k
-- An instantiation of the above lemmas for T₂ substitutions in T₁s.
termLiftAppLemmas : LiftAppLemmas T₁ T₂ T₂
termLiftAppLemmas = record
{ lift = Lift.lift termLift
; application₁₃ = termApplication
; application₂₃ = TermLemmas.application termLemmas
; lemmas₂ = TermLemmas.lemmas₄ termLemmas
; lemmas₃ = TermLemmas.lemmas₄ termLemmas
; lift-/ = λ _ → refl
; lift-var = λ _ → refl
; /✶-↑✶ = /✶-↑✶₁
}
open LiftAppLemmas termLiftAppLemmas public hiding (/-wk; _⊙_)
-- An instantiation of the above lemmas for variable substitutions
-- (renamings) in T₁s.
varLiftSubLemmas : LiftSubLemmas T₁ T₂ Fin
varLiftSubLemmas = record
{ application₁₂ = termApplication
; liftAppLemmas = record
{ lift = Lift.lift varLift
; application₁₃ = varApplication
; application₂₃ = Lifted.application varLift
; lemmas₂ = TermLemmas.lemmas₄ termLemmas
; lemmas₃ = VarLemmas.lemmas₄
; lift-/ = λ _ → sym (TermLemmas.app-var termLemmas)
; lift-var = λ _ → refl
; /✶-↑✶ = /✶-↑✶₁
}
; weaken-lift = λ _ → TermLemmas.weaken-var termLemmas
; /-⊙₂ = AppLemmas./-⊙ appLemmas
; /✶-↑✶₁ = /✶-↑✶₂
; /✶-↑✶₂ = TermLemmas./✶-↑✶ termLemmas
}
open Application varApplication public using () renaming (_/_ to _/Var_)
open LiftSubLemmas varLiftSubLemmas public hiding (/✶-↑✶₁; /✶-↑✶₂; _⊙_; /-wk)
renaming (liftAppLemmas to varLiftAppLemmas)
-- Lemmas relating weakening of T₁s to T₂-substitutions in T₁s.
weakenLemmas : WeakenLemmas T₁ T₂
weakenLemmas = record
{ weaken = weaken
; appLemmas = appLemmas
; /-wk = sym /-wk
}
where open LiftSubLemmas varLiftSubLemmas using (/-wk)
open WeakenLemmas weakenLemmas public hiding (appLemmas)
-- Another variant of /-wk⋆ relating VarSubst.wk to weakening of T₁s.
/Var-wk⋆ : ∀ {n} k {t : T₁ n} →
t /Var VarSubst.wk⋆ k ≡ weaken⋆ k t
/Var-wk⋆ k {t} = begin
t /Var VarSubst.wk⋆ k ≡⟨ /-liftSub t ⟩
t / liftSub (VarSubst.wk⋆ k) ≡⟨ cong (t /_) (liftSub-wk⋆ k) ⟩
t / wk⋆ k ≡⟨ /-wk⋆ k ⟩
weaken⋆ k t ∎
|
{
"alphanum_fraction": 0.5131915244,
"avg_line_length": 37.785046729,
"ext": "agda",
"hexsha": "86b4432e654409708b4b609d027e7f2fffce55cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10804,
"size": 24258
}
|
{-# OPTIONS --cubical --safe #-}
module Relation.Binary.Equivalence.PropHIT where
open import Prelude
open import Relation.Nullary.Stable
open import HITs.PropositionalTruncation
open import HITs.PropositionalTruncation.Sugar
open import Relation.Binary
infix 4 _≐_
_≐_ : A → A → Type _
x ≐ y = ∥ x ≡ y ∥
import Relation.Binary.Equivalence.Reasoning
module _ {A : Type a} where
prop-equiv : Equivalence A _
prop-equiv .Equivalence._≋_ = _≐_
prop-equiv .Equivalence.sym = sym ∥$∥_
prop-equiv .Equivalence.refl = ∣ refl ∣
prop-equiv .Equivalence.trans x≐y y≐z = ⦇ x≐y ; y≐z ⦈
module Reasoning = Relation.Binary.Equivalence.Reasoning prop-equiv
-- data ∙⊥ : Prop where
-- private
-- variable
-- x y z : A
-- rerel : ∙⊥ → ⊥
-- rerel ()
-- ∙refute : x ≐ y → (x ≡ y → ⊥) → ∙⊥
-- ∙refute ∣ x≡y ∣ x≢y with x≢y x≡y
-- ∙refute ∣ x≡y ∣ x≢y | ()
-- refute : x ≐ y → ¬ (¬ (x ≡ y))
-- refute x≐y x≢y = rerel (∙refute x≐y x≢y)
-- unsquash : Stable (x ≡ y) → x ≐ y → x ≡ y
-- unsquash st x≐y = st (refute x≐y)
-- ∙refl : x ≐ x
-- ∙refl = ∣ refl ∣
-- ∙trans : x ≐ y → y ≐ z → x ≐ z
-- ∙trans ∣ xy ∣ (∣_∣ yz) = ∣_∣ (xy ; yz)
-- ∙sym : x ≐ y → y ≐ x
-- ∙sym (∣_∣ p) = ∣_∣ (sym p)
-- ∙cong : (f : A → B) → x ≐ y → f x ≐ f y
-- ∙cong f ∣ x≡y ∣ = ∣ cong f x≡y ∣
-- module Reasoning where
-- infixr 2 ≐˘⟨⟩-syntax ≐⟨∙⟩-syntax
-- ≐˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≐ x → x ≐ z
-- ≐˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∙sym y≡x) y≡z
-- syntax ≐˘⟨⟩-syntax x y≡z y≡x = x ≐˘⟨ y≡x ⟩ y≡z
-- ≐⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≐ y → x ≐ z
-- ≐⟨∙⟩-syntax _ y≡z x≡y = ∙trans x≡y y≡z
-- syntax ≐⟨∙⟩-syntax x y≡z x≡y = x ≐⟨ x≡y ⟩ y≡z
-- _≐⟨⟩_ : ∀ (x : A) {y} → x ≐ y → x ≐ y
-- _ ≐⟨⟩ x≡y = x≡y
-- infix 2.5 _∎
-- _∎ : ∀ {A : Type a} (x : A) → x ≐ x
-- _∎ x = ∙refl
-- infixr 2 ≡˘⟨⟩-syntax ≡⟨∙⟩-syntax
-- ≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≡ x → x ≐ z
-- ≡˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∣_∣ (sym y≡x)) y≡z
-- syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
-- ≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≡ y → x ≐ z
-- ≡⟨∙⟩-syntax _ y≡z x≡y = ∙trans ∣ x≡y ∣ y≡z
-- syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
|
{
"alphanum_fraction": 0.4882542607,
"avg_line_length": 24.393258427,
"ext": "agda",
"hexsha": "4c4641f9293c2aacdc7bfdecf6bc57cb4d1d6600",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Binary/Equivalence/PropHIT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Binary/Equivalence/PropHIT.agda",
"max_line_length": 69,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Binary/Equivalence/PropHIT.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1187,
"size": 2171
}
|
module Extensions.ListFirst where
open import Prelude hiding (_⊔_)
open import Data.Product
open import Data.List
open import Data.List.Any
open Membership-≡ hiding (find)
open import Level
-- proof that an element is the first in a vector to satisfy the predicate B
data First {a b} {A : Set a} (B : A → Set b) : (x : A) → List A → Set (a ⊔ b) where
here : ∀ {x : A} → (p : B x) → (v : List A) → First B x (x ∷ v)
there : ∀ {x} {v : List A} (x' : A) → ¬ (B x') → First B x v → First B x (x' ∷ v)
-- get the witness of B x from the element ∈ First
first⟶witness : ∀ {A : Set} {B : A → Set} {x l} → First B x l → B x
first⟶witness (here p v) = p
first⟶witness (there x ¬px f) = first⟶witness f
first⟶∈ : ∀ {A : Set} {B : A → Set} {x l} → First B x l → (x ∈ l × B x)
first⟶∈ (here {x = x} p v) = here refl , p
first⟶∈ (there x' ¬px f) with (first⟶∈ f)
first⟶∈ (there x' ¬px f) | x∈l , p = there x∈l , p
-- more likable syntax for the above structure
first_∈_⇔_ : {A : Set} → A → List A → (B : A → Set) → Set
first_∈_⇔_ x v p = First p x v
-- a decision procedure to find the first element in a vector that satisfies a predicate
find : ∀ {A : Set} (P : A → Set) → ((a : A) → Dec (P a)) → (v : List A) →
Dec (∃ λ e → first e ∈ v ⇔ P)
find P dec [] = no (λ{ (e , ()) })
find P dec (x ∷ v) with dec x
find P dec (x ∷ v) | yes px = yes (x , here px v)
find P dec (x ∷ v) | no ¬px with find P dec v
find P dec (x ∷ v) | no ¬px | yes firstv = yes (, there x ¬px (proj₂ firstv))
find P dec (x ∷ v) | no ¬px | no ¬firstv = no $ helper ¬px ¬firstv
where
helper : ¬ (P x) → ¬ (∃ λ e → First P e v) → ¬ (∃ λ e → First P e (x ∷ v))
helper ¬px ¬firstv (.x , here p .v) = ¬px p
helper ¬px ¬firstv (u , there ._ _ firstv) = ¬firstv (u , firstv)
module FirstLemmas where
first-unique : ∀ {A : Set} {P : A → Set} {x y v} → First P x v → First P y v → x ≡ y
first-unique (here x v) (here y .v) = refl
first-unique (here {x = x} px v) (there .x ¬px r) = ⊥-elim (¬px px)
first-unique (there x ¬px l) (here {x = .x} px v) = ⊥-elim (¬px px)
first-unique (there x' _ l) (there .x' _ r) = first-unique l r
|
{
"alphanum_fraction": 0.5602069614,
"avg_line_length": 40.8846153846,
"ext": "agda",
"hexsha": "68611f578be330b615c469f976d189d841b0372f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Extensions/ListFirst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Extensions/ListFirst.agda",
"max_line_length": 88,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Extensions/ListFirst.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 856,
"size": 2126
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some theory for Semigroup
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra using (Semigroup)
module Algebra.Properties.Semigroup {a ℓ} (S : Semigroup a ℓ) where
open Semigroup S
x∙yz≈xy∙z : ∀ x y z → x ∙ (y ∙ z) ≈ (x ∙ y) ∙ z
x∙yz≈xy∙z x y z = sym (assoc x y z)
|
{
"alphanum_fraction": 0.4263736264,
"avg_line_length": 26.7647058824,
"ext": "agda",
"hexsha": "0f1af152e9ded71dd34f53b71199db4add04d050",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/Semigroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/Semigroup.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 121,
"size": 455
}
|
------------------------------------------------------------------------
-- Infinite grammars
------------------------------------------------------------------------
-- The grammar language introduced below is not more expressive than
-- the one in Grammar.Infinite.Basic. There are two reasons for
-- introducing this new language:
--
-- ⑴ The function final-whitespace? below analyses the structure of a
-- grammar, and can in some cases automatically prove a certain
-- theorem. It is quite hard to analyse grammars that contain
-- unrestricted corecursion and/or the higher-order bind combinator,
-- so the new language contains extra constructors intended to make
-- the analysis easier (in some cases).
--
-- ⑵ The extra constructors can also make it easier to convince Agda's
-- termination checker that certain infinite grammars are
-- productive.
{-# OPTIONS --guardedness #-}
module Grammar.Infinite where
open import Algebra
open import Category.Monad
open import Codata.Musical.Colist
using (Colist; []; _∷_; _∈_; here; there)
open import Codata.Musical.Notation
open import Data.Bool
open import Data.Char
open import Data.Empty
open import Data.List as List using (List; []; _∷_; [_]; _++_; concat)
open import Data.List.Categorical
renaming (module MonadProperties to List-monad)
open import Data.List.NonEmpty as List⁺
using (List⁺; _∷_; _∷⁺_; head; tail)
open import Data.List.Properties
open import Data.Maybe hiding (_>>=_)
open import Data.Maybe.Categorical as MaybeC
open import Data.Nat
open import Data.Product as Prod
open import Data.String as String using (String)
open import Data.Unit
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
open import Relation.Nullary
open import Tactic.MonoidSolver
private
module LM {A : Set} = Monoid (++-monoid A)
open module MM {f} = RawMonadPlus (MaybeC.monadPlus {f = f})
using () renaming (_<$>_ to _<$>M_; _⊛_ to _⊛M_)
import Grammar.Infinite.Basic as Basic; open Basic._∈_·_
open import Utilities
------------------------------------------------------------------------
-- A grammar language that is less minimal than the one in
-- Grammar.Infinite.Basic
mutual
infix 30 _⋆
infixl 20 _<$>_ _<$_ _⊛_ _<⊛_ _⊛>_
infixl 15 _>>=_
infixl 10 _∣_
data Grammar : Set → Set₁ where
-- The empty string.
return : ∀ {A} → A → Grammar A
-- A single, arbitrary token.
token : Grammar Char
-- Monadic sequencing.
_>>=_ : ∀ {c₁ c₂ A B} →
∞Grammar c₁ A → (A → ∞Grammar c₂ B) → Grammar B
-- Symmetric choice.
_∣_ : ∀ {c₁ c₂ A} → ∞Grammar c₁ A → ∞Grammar c₂ A → Grammar A
-- Failure.
fail : ∀ {A} → Grammar A
-- A specific token.
tok : Char → Grammar Char
-- Map.
_<$>_ : ∀ {c A B} → (A → B) → ∞Grammar c A → Grammar B
_<$_ : ∀ {c A B} → A → ∞Grammar c B → Grammar A
-- Applicative sequencing.
_⊛_ : ∀ {c₁ c₂ A B} →
∞Grammar c₁ (A → B) → ∞Grammar c₂ A → Grammar B
_<⊛_ : ∀ {c₁ c₂ A B} → ∞Grammar c₁ A → ∞Grammar c₂ B → Grammar A
_⊛>_ : ∀ {c₁ c₂ A B} → ∞Grammar c₁ A → ∞Grammar c₂ B → Grammar B
-- Kleene star.
_⋆ : ∀ {c A} → ∞Grammar c A → Grammar (List A)
-- Coinductive if the argument is true.
--
-- Conditional coinduction is used to avoid having to write the
-- delay operator (♯_) all the time.
∞Grammar : Bool → Set → Set₁
∞Grammar true A = ∞ (Grammar A)
∞Grammar false A = Grammar A
-- Families of grammars for specific values.
Grammar-for : Set → Set₁
Grammar-for A = (x : A) → Grammar (∃ λ x′ → x′ ≡ x)
-- Forcing of a conditionally coinductive grammar.
♭? : ∀ {c A} → ∞Grammar c A → Grammar A
♭? {true} = ♭
♭? {false} = id
-- A grammar combinator: Kleene plus.
infix 30 _+
_+ : ∀ {c A} → ∞Grammar c A → Grammar (List⁺ A)
g + = _∷_ <$> g ⊛ g ⋆
-- The semantics of "extended" grammars is given by translation to
-- simple grammars.
⟦_⟧ : ∀ {A} → Grammar A → Basic.Grammar A
⟦ return x ⟧ = Basic.return x
⟦ token ⟧ = Basic.token
⟦ g₁ >>= g₂ ⟧ = ♯ ⟦ ♭? g₁ ⟧ Basic.>>= λ x → ♯ ⟦ ♭? (g₂ x) ⟧
⟦ g₁ ∣ g₂ ⟧ = ♯ ⟦ ♭? g₁ ⟧ Basic.∣ ♯ ⟦ ♭? g₂ ⟧
⟦ fail ⟧ = Basic.fail
⟦ tok t ⟧ = Basic.tok t
⟦ f <$> g ⟧ = ♯ ⟦ ♭? g ⟧ Basic.>>= λ x → ♯ Basic.return (f x)
⟦ x <$ g ⟧ = ♯ ⟦ ♭? g ⟧ Basic.>>= λ _ → ♯ Basic.return x
⟦ g₁ ⊛ g₂ ⟧ = ♯ ⟦ ♭? g₁ ⟧ Basic.>>= λ f → ♯ ⟦ f <$> g₂ ⟧
⟦ g₁ <⊛ g₂ ⟧ = ♯ ⟦ ♭? g₁ ⟧ Basic.>>= λ x → ♯ ⟦ x <$ g₂ ⟧
⟦ g₁ ⊛> g₂ ⟧ = ♯ ⟦ ♭? g₁ ⟧ Basic.>>= λ _ → ♯ ⟦ ♭? g₂ ⟧
⟦ g ⋆ ⟧ = ♯ Basic.return [] Basic.∣ ♯ ⟦ List⁺.toList <$> g + ⟧
------------------------------------------------------------------------
-- More grammar combinators
mutual
-- Combinators that transform families of grammars for certain
-- elements to families of grammars for certain lists.
list : ∀ {A} → Grammar-for A → Grammar-for (List A)
list elem [] = return ([] , refl)
list elem (x ∷ xs) =
Prod.map List⁺.toList
(λ eq → P.cong₂ _∷_ (P.cong head eq) (P.cong tail eq)) <$>
list⁺ elem (x ∷ xs)
list⁺ : ∀ {A} → Grammar-for A → Grammar-for (List⁺ A)
list⁺ elem (x ∷ xs) =
Prod.zip _∷_ (P.cong₂ _∷_) <$> elem x ⊛ list elem xs
-- Elements preceded by something.
infixl 18 _prec-by_
_prec-by_ : ∀ {A B} → Grammar A → Grammar B → Grammar (List A)
g prec-by prec = (prec ⊛> g) ⋆
-- Elements separated by something.
infixl 18 _sep-by_
_sep-by_ : ∀ {A B} → Grammar A → Grammar B → Grammar (List⁺ A)
g sep-by sep = _∷_ <$> g ⊛ (g prec-by sep)
-- The empty string if the argument is true, otherwise failure.
if-true : (b : Bool) → Grammar (T b)
if-true true = return tt
if-true false = fail
-- A token satisfying a given predicate.
sat : (p : Char → Bool) → Grammar (∃ λ t → T (p t))
sat p = token >>= λ t → _,_ t <$> if-true (p t)
-- A given token satisfying a given predicate.
tok-sat : (p : Char → Bool) → Grammar-for (∃ (T ∘ p))
tok-sat p (t , pt) = ((t , pt) , refl) <$ tok t
-- Whitespace.
whitespace : Grammar Char
whitespace = tok ' ' ∣ tok '\n'
-- The given string.
string : List Char → Grammar (List Char)
string [] = return []
string (t ∷ s) = _∷_ <$> tok t ⊛ string s
-- A variant of string that takes a String rather than a list of
-- characters.
string′ : String → Grammar (List Char)
string′ = string ∘ String.toList
-- The given string, possibly followed by some whitespace.
symbol : List Char → Grammar (List Char)
symbol s = string s <⊛ whitespace ⋆
symbol′ : String → Grammar (List Char)
symbol′ = symbol ∘ String.toList
------------------------------------------------------------------------
-- Alternative definition of the semantics
-- Pattern matching on values of type x Basic.∈ ⟦ g₁ ⊛ g₂ ⟧ · s (say)
-- is somewhat inconvenient: the patterns have the form
-- (>>=-sem _ (>>=-sem _ return-sem)). The following, direct
-- definition of the semantics may be easier to use.
infix 4 _∈_·_
data _∈_·_ : ∀ {A} → A → Grammar A → List Char → Set₁ where
return-sem : ∀ {A} {x : A} → x ∈ return x · []
token-sem : ∀ {t} → t ∈ token · [ t ]
>>=-sem : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A}
{g₂ : A → ∞Grammar c₂ B} {x y s₁ s₂} →
x ∈ ♭? g₁ · s₁ → y ∈ ♭? (g₂ x) · s₂ →
y ∈ g₁ >>= g₂ · s₁ ++ s₂
left-sem : ∀ {c₁ c₂ A} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A}
{x s} →
x ∈ ♭? g₁ · s → x ∈ g₁ ∣ g₂ · s
right-sem : ∀ {c₁ c₂ A} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A}
{x s} →
x ∈ ♭? g₂ · s → x ∈ g₁ ∣ g₂ · s
tok-sem : ∀ {t} → t ∈ tok t · [ t ]
<$>-sem : ∀ {c A B} {f : A → B} {g : ∞Grammar c A} {x s} →
x ∈ ♭? g · s → f x ∈ f <$> g · s
<$-sem : ∀ {c A B} {x : A} {g : ∞Grammar c B} {y s} →
y ∈ ♭? g · s → x ∈ x <$ g · s
⊛-sem : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ (A → B)}
{g₂ : ∞Grammar c₂ A} {f x s₁ s₂} →
f ∈ ♭? g₁ · s₁ → x ∈ ♭? g₂ · s₂ →
f x ∈ g₁ ⊛ g₂ · s₁ ++ s₂
<⊛-sem : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B}
{x y s₁ s₂} →
x ∈ ♭? g₁ · s₁ → y ∈ ♭? g₂ · s₂ →
x ∈ g₁ <⊛ g₂ · s₁ ++ s₂
⊛>-sem : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B}
{x y s₁ s₂} →
x ∈ ♭? g₁ · s₁ → y ∈ ♭? g₂ · s₂ →
y ∈ g₁ ⊛> g₂ · s₁ ++ s₂
⋆-[]-sem : ∀ {c A} {g : ∞Grammar c A} →
[] ∈ g ⋆ · []
⋆-+-sem : ∀ {c A} {g : ∞Grammar c A} {x xs s} →
(x ∷ xs) ∈ g + · s → x ∷ xs ∈ g ⋆ · s
-- A weak form of "local unambiguity", unambiguity for a given string.
-- (Note that the parse trees are not required to be equal.)
Locally-unambiguous : ∀ {A} → Grammar A → List Char → Set₁
Locally-unambiguous g s = ∀ {x y} → x ∈ g · s → y ∈ g · s → x ≡ y
-- A weak form of unambiguity.
Unambiguous : ∀ {A} → Grammar A → Set₁
Unambiguous g = ∀ {s} → Locally-unambiguous g s
-- Parsers.
Parser : ∀ {A} → Grammar A → Set₁
Parser g = ∀ s → Dec (∃ λ x → x ∈ g · s)
-- Cast lemma.
cast : ∀ {A} {g : Grammar A} {x s₁ s₂} →
s₁ ≡ s₂ → x ∈ g · s₁ → x ∈ g · s₂
cast refl = id
-- The alternative semantics is isomorphic to the one above.
isomorphic : ∀ {A x s} {g : Grammar A} →
x ∈ g · s ↔ x Basic.∈ ⟦ g ⟧ · s
isomorphic {g = g} = record
{ to = P.→-to-⟶ sound
; from = P.→-to-⟶ (complete g)
; inverse-of = record
{ left-inverse-of = complete∘sound
; right-inverse-of = sound∘complete g
}
}
where
-- Some short lemmas.
lemma₁ : ∀ s → s ++ [] ≡ s
lemma₁ = proj₂ LM.identity
lemma₂ : ∀ s₁ s₂ → s₁ ++ s₂ ++ [] ≡ s₁ ++ s₂
lemma₂ s₁ s₂ = P.cong (_++_ s₁) (lemma₁ s₂)
lemma₃ : ∀ s₁ s₂ → s₁ ++ s₂ ≡ ((s₁ ++ []) ++ s₂ ++ []) ++ []
lemma₃ s₁ s₂ = begin
s₁ ++ s₂ ≡⟨ P.cong₂ _++_ (P.sym $ lemma₁ s₁) (P.sym $ lemma₁ s₂) ⟩
(s₁ ++ []) ++ s₂ ++ [] ≡⟨ P.sym $ lemma₁ _ ⟩
((s₁ ++ []) ++ s₂ ++ []) ++ [] ∎
where open P.≡-Reasoning
tok-lemma : ∀ {t t′ s} → t ≡ t′ × s ≡ [ t ] → t′ ∈ tok t · s
tok-lemma (refl , refl) = tok-sem
-- Soundness.
sound : ∀ {A x s} {g : Grammar A} → x ∈ g · s → x Basic.∈ ⟦ g ⟧ · s
sound return-sem = return-sem
sound token-sem = token-sem
sound (>>=-sem x∈ y∈) = >>=-sem (sound x∈) (sound y∈)
sound (left-sem x∈) = left-sem (sound x∈)
sound (right-sem x∈) = right-sem (sound x∈)
sound tok-sem = Inverse.from Basic.tok-sem
⟨$⟩ (refl , refl)
sound (<$>-sem x∈) = Basic.cast (lemma₁ _)
(>>=-sem (sound x∈) return-sem)
sound (<$-sem x∈) = Basic.cast (lemma₁ _)
(>>=-sem (sound x∈) return-sem)
sound (⊛-sem {s₁ = s₁} f∈ x∈) = Basic.cast (lemma₂ s₁ _)
(>>=-sem (sound f∈)
(>>=-sem (sound x∈) return-sem))
sound (<⊛-sem {s₁ = s₁} x∈ y∈) = Basic.cast (lemma₂ s₁ _)
(>>=-sem (sound x∈)
(>>=-sem (sound y∈) return-sem))
sound (⊛>-sem {s₁ = s₁} x∈ y∈) = >>=-sem (sound x∈) (sound y∈)
sound ⋆-[]-sem = left-sem return-sem
sound (⋆-+-sem xs∈) = Basic.cast (lemma₁ _)
(right-sem
(>>=-sem (sound xs∈)
return-sem))
-- Completeness.
complete : ∀ {A x s} (g : Grammar A) → x Basic.∈ ⟦ g ⟧ · s → x ∈ g · s
complete (return x) return-sem = return-sem
complete token token-sem = token-sem
complete (g₁ >>= g₂) (>>=-sem x∈ y∈) = >>=-sem (complete _ x∈)
(complete _ y∈)
complete (g₁ ∣ g₂) (left-sem x∈) = left-sem (complete _ x∈)
complete (g₁ ∣ g₂) (right-sem x∈) = right-sem (complete _ x∈)
complete fail ∈fail = ⊥-elim (Basic.fail-sem⁻¹ ∈fail)
complete (tok t) t∈ = tok-lemma (Inverse.to Basic.tok-sem ⟨$⟩ t∈)
complete (f <$> g) (>>=-sem x∈ return-sem) =
cast (P.sym $ lemma₁ _)
(<$>-sem (complete _ x∈))
complete (x <$ g) (>>=-sem x∈ return-sem) =
cast (P.sym $ lemma₁ _)
(<$-sem (complete _ x∈))
complete (g₁ ⊛ g₂) (>>=-sem {s₁ = s₁} f∈ (>>=-sem x∈ return-sem)) =
cast (P.sym $ lemma₂ s₁ _)
(⊛-sem (complete _ f∈) (complete _ x∈))
complete (g₁ <⊛ g₂) (>>=-sem {s₁ = s₁} x∈ (>>=-sem y∈ return-sem)) =
cast (P.sym $ lemma₂ s₁ _)
(<⊛-sem (complete _ x∈) (complete _ y∈))
complete (g₁ ⊛> g₂) (>>=-sem x∈ y∈) =
⊛>-sem (complete _ x∈) (complete _ y∈)
complete (g ⋆) (left-sem return-sem) = ⋆-[]-sem
complete (g ⋆) (right-sem (>>=-sem
(>>=-sem (>>=-sem {s₁ = s₁} x∈ return-sem)
(>>=-sem xs∈ return-sem))
return-sem)) =
cast (lemma₃ s₁ _)
(⋆-+-sem (⊛-sem (<$>-sem (complete _ x∈)) (complete _ xs∈)))
-- More short lemmas.
sound-cast :
∀ {A x s₁ s₂}
(g : Grammar A) (eq : s₁ ≡ s₂) (x∈ : x ∈ g · s₁) →
sound (cast eq x∈) ≡ Basic.cast eq (sound x∈)
sound-cast _ refl _ = refl
complete-cast :
∀ {A x s₁ s₂}
(g : Grammar A) (eq : s₁ ≡ s₂) (x∈ : x Basic.∈ ⟦ g ⟧ · s₁) →
complete g (Basic.cast eq x∈) ≡ cast eq (complete g x∈)
complete-cast _ refl _ = refl
cast-cast :
∀ {A} {x : A} {s₁ s₂ g} (eq : s₁ ≡ s₂) {x∈ : x Basic.∈ g · s₁} →
Basic.cast (P.sym eq) (Basic.cast eq x∈) ≡ x∈
cast-cast refl = refl
cast-cast′ :
∀ {A} {x : A} {s₁ s₂ g}
(eq₁ : s₂ ≡ s₁) (eq₂ : s₁ ≡ s₂) {x∈ : x Basic.∈ g · s₁} →
Basic.cast eq₁ (Basic.cast eq₂ x∈) ≡ x∈
cast-cast′ refl refl = refl
-- The functions sound and complete are inverses.
complete∘sound : ∀ {A x s} {g : Grammar A} (x∈ : x ∈ g · s) →
complete g (sound x∈) ≡ x∈
complete∘sound return-sem = refl
complete∘sound token-sem = refl
complete∘sound (>>=-sem x∈ y∈) = P.cong₂ >>=-sem (complete∘sound x∈)
(complete∘sound y∈)
complete∘sound (left-sem x∈) = P.cong left-sem (complete∘sound x∈)
complete∘sound (right-sem x∈) = P.cong right-sem (complete∘sound x∈)
complete∘sound (tok-sem {t = t})
rewrite Inverse.right-inverse-of (Basic.tok-sem {t = t})
(refl , refl)
= refl
complete∘sound (<$>-sem {s = s} x∈) with sound x∈ | complete∘sound x∈
complete∘sound (<$>-sem {f = f} {g = g} {s = s}
.(complete _ x∈′)) | x∈′ | refl
rewrite complete-cast (f <$> g) (lemma₁ s) (>>=-sem x∈′ return-sem)
| lemma₁ s
= refl
complete∘sound (<$-sem {x = x} {g = g} {s = s} x∈) with sound x∈ | complete∘sound x∈
complete∘sound (<$-sem {x = x} {g = g} {s = s}
.(complete _ x∈′)) | x∈′ | refl
rewrite complete-cast (x <$ g) (lemma₁ s) (>>=-sem x∈′ return-sem)
| lemma₁ s
= refl
complete∘sound (⊛-sem f∈ x∈) with sound f∈ | complete∘sound f∈
| sound x∈ | complete∘sound x∈
complete∘sound (⊛-sem {g₁ = g₁} {g₂ = g₂} {s₁ = s₁} {s₂ = s₂}
.(complete _ f∈′) .(complete _ x∈′))
| f∈′ | refl | x∈′ | refl
rewrite complete-cast (g₁ ⊛ g₂) (lemma₂ s₁ s₂)
(>>=-sem f∈′ (>>=-sem x∈′ return-sem))
| lemma₁ s₂
= refl
complete∘sound (<⊛-sem x∈ y∈) with sound x∈ | complete∘sound x∈
| sound y∈ | complete∘sound y∈
complete∘sound (<⊛-sem {g₁ = g₁} {g₂ = g₂} {s₁ = s₁} {s₂ = s₂}
.(complete _ x∈′) .(complete _ y∈′))
| x∈′ | refl | y∈′ | refl
rewrite complete-cast (g₁ <⊛ g₂) (lemma₂ s₁ s₂)
(>>=-sem x∈′ (>>=-sem y∈′ return-sem))
| lemma₁ s₂
= refl
complete∘sound (⊛>-sem x∈ y∈) with sound x∈ | complete∘sound x∈
| sound y∈ | complete∘sound y∈
complete∘sound (⊛>-sem .(complete _ x∈′) .(complete _ y∈′))
| x∈′ | refl | y∈′ | refl
= refl
complete∘sound ⋆-[]-sem = refl
complete∘sound (⋆-+-sem xs∈) with sound xs∈ | complete∘sound xs∈
complete∘sound (⋆-+-sem {g = g}
.(complete _ (>>=-sem (>>=-sem x∈ return-sem)
(>>=-sem xs∈′ return-sem))))
| >>=-sem (>>=-sem {s₁ = s₁} x∈ return-sem)
(>>=-sem {s₁ = s₂} xs∈′ return-sem)
| refl
rewrite complete-cast (g ⋆) (lemma₁ ((s₁ ++ []) ++ s₂ ++ []))
(right-sem
(>>=-sem (>>=-sem (>>=-sem x∈ return-sem)
(>>=-sem xs∈′ return-sem))
return-sem))
| lemma₁ s₁ | lemma₁ s₂ | lemma₁ (s₁ ++ s₂)
= refl
sound∘complete : ∀ {A x s}
(g : Grammar A) (x∈ : x Basic.∈ ⟦ g ⟧ · s) →
sound (complete g x∈) ≡ x∈
sound∘complete (return x) return-sem = refl
sound∘complete token token-sem = refl
sound∘complete (g₁ >>= g₂) (>>=-sem x∈ y∈) = P.cong₂ >>=-sem (sound∘complete (♭? g₁) x∈)
(sound∘complete (♭? (g₂ _)) y∈)
sound∘complete (g₁ ∣ g₂) (left-sem x∈) = P.cong left-sem (sound∘complete (♭? g₁) x∈)
sound∘complete (g₁ ∣ g₂) (right-sem x∈) = P.cong right-sem (sound∘complete (♭? g₂) x∈)
sound∘complete fail ∈fail = ⊥-elim (Basic.fail-sem⁻¹ ∈fail)
sound∘complete (tok t) t∈ =
helper _ (Inverse.left-inverse-of Basic.tok-sem t∈)
where
helper : ∀ {t t′ s} {t∈ : t′ Basic.∈ Basic.tok t · s}
(eqs : t ≡ t′ × s ≡ [ t ]) →
Inverse.from Basic.tok-sem ⟨$⟩ eqs ≡ t∈ →
sound (tok-lemma eqs) ≡ t∈
helper (refl , refl) ≡t∈ = ≡t∈
sound∘complete (f <$> g) (>>=-sem x∈ return-sem)
with complete (♭? g) x∈ | sound∘complete (♭? g) x∈
sound∘complete (f <$> g) (>>=-sem {s₁ = s₁} .(sound x∈′) return-sem)
| x∈′ | refl
rewrite sound-cast (f <$> g) (P.sym $ lemma₁ s₁) (<$>-sem x∈′)
= cast-cast (lemma₁ s₁)
sound∘complete (x <$ g) (>>=-sem x∈ return-sem)
with complete (♭? g) x∈ | sound∘complete (♭? g) x∈
sound∘complete (x <$ g) (>>=-sem {s₁ = s₁} .(sound x∈′) return-sem)
| x∈′ | refl
rewrite sound-cast (x <$ g) (P.sym $ lemma₁ s₁) (<$-sem x∈′)
= cast-cast (lemma₁ s₁)
sound∘complete (g₁ ⊛ g₂) (>>=-sem f∈ (>>=-sem x∈ return-sem))
with complete (♭? g₁) f∈ | sound∘complete (♭? g₁) f∈
| complete (♭? g₂) x∈ | sound∘complete (♭? g₂) x∈
sound∘complete (g₁ ⊛ g₂)
(>>=-sem {s₁ = s₁} .(sound f∈′)
(>>=-sem {s₁ = s₂} .(sound x∈′) return-sem))
| f∈′ | refl | x∈′ | refl
rewrite sound-cast (g₁ ⊛ g₂) (P.sym $ lemma₂ s₁ s₂) (⊛-sem f∈′ x∈′)
= cast-cast (lemma₂ s₁ s₂)
sound∘complete (g₁ <⊛ g₂) (>>=-sem x∈ (>>=-sem y∈ return-sem))
with complete (♭? g₁) x∈ | sound∘complete (♭? g₁) x∈
| complete (♭? g₂) y∈ | sound∘complete (♭? g₂) y∈
sound∘complete (g₁ <⊛ g₂)
(>>=-sem {s₁ = s₁} .(sound x∈′)
(>>=-sem {s₁ = s₂} .(sound y∈′) return-sem))
| x∈′ | refl | y∈′ | refl
rewrite sound-cast (g₁ <⊛ g₂) (P.sym $ lemma₂ s₁ s₂) (<⊛-sem x∈′ y∈′)
= cast-cast (lemma₂ s₁ s₂)
sound∘complete (g₁ ⊛> g₂) (>>=-sem x∈ y∈)
with complete (♭? g₁) x∈ | sound∘complete (♭? g₁) x∈
| complete (♭? g₂) y∈ | sound∘complete (♭? g₂) y∈
sound∘complete (g₁ ⊛> g₂) (>>=-sem .(sound x∈′) .(sound y∈′))
| x∈′ | refl | y∈′ | refl
= refl
sound∘complete (g ⋆) (left-sem return-sem) = refl
sound∘complete (g ⋆)
(right-sem
(>>=-sem (>>=-sem (>>=-sem x∈ return-sem)
(>>=-sem xs∈ return-sem))
return-sem))
with complete (♭? g) x∈ | sound∘complete (♭? g) x∈
| complete (g ⋆) xs∈ | sound∘complete (g ⋆) xs∈
sound∘complete (g ⋆)
(right-sem
(>>=-sem (>>=-sem (>>=-sem {s₁ = s₁} .(sound x∈′) return-sem)
(>>=-sem {s₁ = s₂} .(sound xs∈′) return-sem))
return-sem))
| x∈′ | refl | xs∈′ | refl
rewrite sound-cast (g ⋆) (lemma₃ s₁ s₂)
(⋆-+-sem (⊛-sem (<$>-sem x∈′) xs∈′))
= lemma g (lemma₃ s₁ s₂) (lemma₁ (s₁ ++ s₂))
(lemma₂ s₁ s₂) (lemma₁ s₁)
(>>=-sem (sound x∈′) return-sem)
(>>=-sem (sound xs∈′) return-sem)
where
lemma :
∀ {c A} {f : List A → List⁺ A} {xs s₁ s₁++s₂ s₁++[] s₂++[]}
(g : ∞Grammar c A)
(eq₁ : s₁++s₂ ≡ (s₁++[] ++ s₂++[]) ++ [])
(eq₂ : (s₁++s₂) ++ [] ≡ s₁++s₂)
(eq₃ : s₁ ++ s₂++[] ≡ s₁++s₂)
(eq₄ : s₁++[] ≡ s₁)
(f∈ : f Basic.∈ ⟦ _∷_ <$> g ⟧ · s₁++[])
(xs∈ : xs Basic.∈ ⟦ f <$> g ⋆ ⟧ · s₂++[]) →
_≡_ {A = List⁺.toList xs Basic.∈ ⟦ g ⋆ ⟧ · _}
(Basic.cast eq₁
(Basic.cast eq₂
(right-sem
(>>=-sem
(Basic.cast eq₃ (>>=-sem (Basic.cast eq₄ f∈) xs∈))
return-sem))))
(right-sem (>>=-sem (>>=-sem f∈ xs∈) return-sem))
lemma _ eq₁ eq₂ refl refl _ _ = cast-cast′ eq₁ eq₂
------------------------------------------------------------------------
-- Semantics combinators
+-sem : ∀ {c A} {g : ∞Grammar c A} {x xs s₁ s₂} →
x ∈ ♭? g · s₁ → xs ∈ g ⋆ · s₂ → (x ∷ xs) ∈ g + · s₁ ++ s₂
+-sem x∈ xs∈ = ⊛-sem (<$>-sem x∈) xs∈
⋆-∷-sem : ∀ {c A} {g : ∞Grammar c A} {x xs s₁ s₂} →
x ∈ ♭? g · s₁ → xs ∈ g ⋆ · s₂ → x ∷ xs ∈ g ⋆ · s₁ ++ s₂
⋆-∷-sem x∈ xs∈ = ⋆-+-sem (+-sem x∈ xs∈)
⋆-⋆-sem : ∀ {c A} {g : ∞Grammar c A} {xs₁ xs₂ s₁ s₂} →
xs₁ ∈ g ⋆ · s₁ → xs₂ ∈ g ⋆ · s₂ → xs₁ ++ xs₂ ∈ g ⋆ · s₁ ++ s₂
⋆-⋆-sem ⋆-[]-sem xs₂∈ = xs₂∈
⋆-⋆-sem (⋆-+-sem (⊛-sem (<$>-sem {s = s₁} x∈) xs₁∈)) xs₂∈ =
cast (P.sym $ LM.assoc s₁ _ _)
(⋆-∷-sem x∈ (⋆-⋆-sem xs₁∈ xs₂∈))
+-∷-sem : ∀ {c A} {g : ∞Grammar c A} {x xs s₁ s₂} →
x ∈ ♭? g · s₁ → xs ∈ g + · s₂ → x ∷⁺ xs ∈ g + · s₁ ++ s₂
+-∷-sem x∈ xs∈ = +-sem x∈ (⋆-+-sem xs∈)
mutual
list-sem : ∀ {A} {g : Grammar-for A} {s : A → List Char} →
(∀ x → (x , refl) ∈ g x · s x) →
∀ xs → (xs , refl) ∈ list g xs · concat (List.map s xs)
list-sem elem [] = return-sem
list-sem elem (x ∷ xs) = <$>-sem (list⁺-sem elem (x ∷ xs))
list⁺-sem :
∀ {A} {g : Grammar-for A} {s : A → List Char} →
(∀ x → (x , refl) ∈ g x · s x) →
∀ xs → (xs , refl) ∈ list⁺ g xs ·
concat (List.map s (List⁺.toList xs))
list⁺-sem elem (x ∷ xs) = ⊛-sem (<$>-sem (elem x)) (list-sem elem xs)
sep-by-sem-singleton :
∀ {A B} {g : Grammar A} {sep : Grammar B} {x s} →
x ∈ g · s → x ∷ [] ∈ g sep-by sep · s
sep-by-sem-singleton x∈ =
cast (proj₂ LM.identity _)
(⊛-sem (<$>-sem x∈) ⋆-[]-sem)
sep-by-sem-∷ :
∀ {A B} {g : Grammar A} {sep : Grammar B} {x y xs s₁ s₂ s₃} →
x ∈ g · s₁ → y ∈ sep · s₂ → xs ∈ g sep-by sep · s₃ →
x ∷⁺ xs ∈ g sep-by sep · s₁ ++ s₂ ++ s₃
sep-by-sem-∷ {s₂ = s₂} x∈ y∈ (⊛-sem (<$>-sem x′∈) xs∈) =
⊛-sem (<$>-sem x∈)
(cast (LM.assoc s₂ _ _)
(⋆-∷-sem (⊛>-sem y∈ x′∈) xs∈))
if-true-sem : ∀ {b} (t : T b) → t ∈ if-true b · []
if-true-sem {b = true} _ = return-sem
if-true-sem {b = false} ()
sat-sem : ∀ {p : Char → Bool} {t} (pt : T (p t)) →
(t , pt) ∈ sat p · [ t ]
sat-sem pt = >>=-sem token-sem (<$>-sem (if-true-sem pt))
tok-sat-sem : ∀ {p : Char → Bool} {t} (pt : T (p t)) →
((t , pt) , refl) ∈ tok-sat p (t , pt) · [ t ]
tok-sat-sem _ = <$-sem tok-sem
list-sem-lemma : ∀ {A} {x : A} {g s} →
x ∈ g · concat (List.map [_] s) → x ∈ g · s
list-sem-lemma = cast (List-monad.right-identity _)
single-space-sem : (' ' ∷ []) ∈ whitespace + · String.toList " "
single-space-sem = +-sem (left-sem tok-sem) ⋆-[]-sem
string-sem′ : ∀ {s s′ s″} → s ∈ string s′ · s″ ↔ (s ≡ s′ × s′ ≡ s″)
string-sem′ = record
{ to = P.→-to-⟶ (to _)
; from = P.→-to-⟶ (from _)
; inverse-of = record
{ left-inverse-of = from∘to _
; right-inverse-of = to∘from _
}
}
where
to : ∀ {s} s′ {s″} → s ∈ string s′ · s″ → s ≡ s′ × s′ ≡ s″
to [] return-sem = (refl , refl)
to (c ∷ s′) (⊛-sem (<$>-sem tok-sem) s∈) =
Prod.map (P.cong (_∷_ c)) (P.cong (_∷_ c)) $ to s′ s∈
from : ∀ {s} s′ {s″} → s ≡ s′ × s′ ≡ s″ → s ∈ string s′ · s″
from [] (refl , refl) = return-sem
from (c ∷ s′) (refl , refl) =
⊛-sem (<$>-sem tok-sem) (from s′ (refl , refl))
from∘to : ∀ {s} s′ {s″} (s∈ : s ∈ string s′ · s″) →
from s′ (to s′ s∈) ≡ s∈
from∘to [] return-sem = refl
from∘to (c ∷ s′) (⊛-sem (<$>-sem tok-sem) s∈)
with to s′ s∈ | from∘to s′ s∈
from∘to (c ∷ s′) (⊛-sem (<$>-sem tok-sem) .(from s′ (refl , refl)))
| (refl , refl) | refl = refl
to∘from : ∀ {s} s′ {s″} (eqs : s ≡ s′ × s′ ≡ s″) →
to s′ (from s′ eqs) ≡ eqs
to∘from [] (refl , refl) = refl
to∘from (c ∷ s′) (refl , refl)
rewrite to∘from s′ (refl , refl)
= refl
string-sem : ∀ {s} → s ∈ string s · s
string-sem = Inverse.from string-sem′ ⟨$⟩ (refl , refl)
------------------------------------------------------------------------
-- Expressiveness
-- Every language that can be recursively enumerated can be
-- represented by a (unit-valued) grammar.
--
-- Note that, given a Turing machine that halts and accepts for
-- certain strings, and runs forever for other strings, one can define
-- a potentially infinite list of type Colist (Maybe (List Char)) that
-- contains exactly the strings accepted by the Turing machine
-- (assuming that there is some way to construct a stream containing
-- all strings of type List Char).
expressive : (enumeration : Colist (Maybe (List Char))) →
∃ λ (g : Grammar ⊤) →
∀ {s} → tt ∈ g · s ↔ just s ∈ enumeration
expressive ss = (g ss , g-sem ss)
where
maybe-string : Maybe (List Char) → Grammar ⊤
maybe-string nothing = fail
maybe-string (just s) = tt <$ string s
g : Colist (Maybe (List Char)) → Grammar ⊤
g [] = fail
g (s ∷ ss) = maybe-string s ∣ ♯ g (♭ ss)
maybe-string-sem : ∀ {m s} → tt ∈ maybe-string m · s ↔ just s ≡ m
maybe-string-sem {nothing} = record
{ to = P.→-to-⟶ (λ ())
; from = P.→-to-⟶ (λ ())
; inverse-of = record
{ left-inverse-of = λ ()
; right-inverse-of = λ ()
}
}
maybe-string-sem {just s} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {s′} →
tt ∈ tt <$ string s · s′ → Maybe.just s′ ≡ just s
to (<$-sem s∈) =
P.sym $ P.cong just $ proj₂ (Inverse.to string-sem′ ⟨$⟩ s∈)
from : ∀ {s′} →
Maybe.just s′ ≡ just s → tt ∈ tt <$ string s · s′
from refl = <$-sem (Inverse.from string-sem′ ⟨$⟩ (refl , refl))
from∘to : ∀ {s′} (tt∈ : tt ∈ tt <$ string s · s′) →
from (to tt∈) ≡ tt∈
from∘to (<$-sem s∈)
with Inverse.to string-sem′ ⟨$⟩ s∈
| Inverse.left-inverse-of string-sem′ s∈
from∘to (<$-sem .(Inverse.from string-sem′ ⟨$⟩ (refl , refl)))
| (refl , refl) | refl = refl
to∘from : ∀ {s′} (eq : Maybe.just s′ ≡ just s) →
to (from eq) ≡ eq
to∘from refl
rewrite Inverse.right-inverse-of
(string-sem′ {s = s}) (refl , refl)
= refl
g-sem : ∀ ss {s} → tt ∈ g ss · s ↔ just s ∈ ss
g-sem ss = record
{ to = P.→-to-⟶ (to ss)
; from = P.→-to-⟶ (from ss)
; inverse-of = record
{ left-inverse-of = from∘to ss
; right-inverse-of = to∘from ss
}
}
where
to : ∀ ss {s} → tt ∈ g ss · s → just s ∈ ss
to [] ()
to (s ∷ ss) (left-sem tt∈) = here (Inverse.to maybe-string-sem ⟨$⟩ tt∈)
to (s ∷ ss) (right-sem tt∈) = there (to (♭ ss) tt∈)
from : ∀ ss {s} → just s ∈ ss → tt ∈ g ss · s
from [] ()
from (s ∷ ss) (here eq) = left-sem (Inverse.from maybe-string-sem ⟨$⟩ eq)
from (s ∷ ss) (there p) = right-sem (from (♭ ss) p)
from∘to : ∀ ss {s} (tt∈ : tt ∈ g ss · s) → from ss (to ss tt∈) ≡ tt∈
from∘to [] ()
from∘to (s ∷ ss) (right-sem tt∈) = P.cong right-sem (from∘to (♭ ss) tt∈)
from∘to (s ∷ ss) (left-sem tt∈) =
P.cong left-sem (Inverse.left-inverse-of maybe-string-sem tt∈)
to∘from : ∀ ss {s} (eq : just s ∈ ss) → to ss (from ss eq) ≡ eq
to∘from [] ()
to∘from (s ∷ ss) (there p) = P.cong there (to∘from (♭ ss) p)
to∘from (s ∷ ss) (here eq) =
P.cong here (Inverse.right-inverse-of maybe-string-sem eq)
------------------------------------------------------------------------
-- Detecting the whitespace combinator
-- A predicate for the whitespace combinator.
data Is-whitespace : ∀ {A} → Grammar A → Set₁ where
is-whitespace : Is-whitespace whitespace
-- Detects the whitespace combinator.
is-whitespace? : ∀ {A} (g : Grammar A) → Maybe (Is-whitespace g)
is-whitespace? (_∣_ {c₁ = false} {c₂ = false} (tok ' ') g) =
helper _ refl
where
helper : ∀ {A} (g : Grammar A) (eq : A ≡ Char) →
Maybe (Is-whitespace (tok ' ' ∣ P.subst Grammar eq g))
helper (tok '\n') refl = just is-whitespace
helper _ _ = nothing
is-whitespace? _ = nothing
------------------------------------------------------------------------
-- Trailing whitespace
-- A predicate for grammars that can "swallow" extra trailing
-- whitespace.
Trailing-whitespace : ∀ {A} → Grammar A → Set₁
Trailing-whitespace g =
∀ {x s} → x ∈ g <⊛ whitespace ⋆ · s → x ∈ g · s
-- A similar but weaker property.
Trailing-whitespace′ : ∀ {A} → Grammar A → Set₁
Trailing-whitespace′ g =
∀ {x s s₁ s₂} →
x ∈ g · s₁ → s ∈ whitespace ⋆ · s₂ → ∃ λ y → y ∈ g · s₁ ++ s₂
-- A heuristic (and rather incomplete) procedure that either proves
-- that a production can swallow trailing whitespace (in the weaker
-- sense), or returns "don't know" as the answer.
--
-- The natural number n is used to ensure termination.
trailing-whitespace′ : ∀ (n : ℕ) {A} (g : Grammar A) →
Maybe (Trailing-whitespace′ g)
trailing-whitespace′ = trailing?
where
<$>-lemma : ∀ {c A B} {f : A → B} {g : ∞Grammar c A} →
Trailing-whitespace′ (♭? g) →
Trailing-whitespace′ (f <$> g)
<$>-lemma t (<$>-sem x∈) w = -, <$>-sem (proj₂ $ t x∈ w)
<$-lemma : ∀ {c A B} {x : A} {g : ∞Grammar c B} →
Trailing-whitespace′ (♭? g) →
Trailing-whitespace′ (x <$ g)
<$-lemma t (<$-sem x∈) w = -, <$-sem (proj₂ $ t x∈ w)
⊛-lemma : ∀ {c₁ c₂ A B}
{g₁ : ∞Grammar c₁ (A → B)} {g₂ : ∞Grammar c₂ A} →
Trailing-whitespace′ (♭? g₂) →
Trailing-whitespace′ (g₁ ⊛ g₂)
⊛-lemma t₂ (⊛-sem {s₁ = s₁} f∈ x∈) w =
-, cast (P.sym $ LM.assoc s₁ _ _)
(⊛-sem f∈ (proj₂ $ t₂ x∈ w))
<⊛-lemma : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Trailing-whitespace′ (♭? g₂) →
Trailing-whitespace′ (g₁ <⊛ g₂)
<⊛-lemma t₂ (<⊛-sem {s₁ = s₁} x∈ y∈) w =
-, cast (P.sym $ LM.assoc s₁ _ _)
(<⊛-sem x∈ (proj₂ $ t₂ y∈ w))
⊛>-lemma : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Trailing-whitespace′ (♭? g₂) →
Trailing-whitespace′ (g₁ ⊛> g₂)
⊛>-lemma t₂ (⊛>-sem {s₁ = s₁} x∈ y∈) w =
-, cast (P.sym $ LM.assoc s₁ _ _)
(⊛>-sem x∈ (proj₂ $ t₂ y∈ w))
∣-lemma : ∀ {c₁ c₂ A} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A} →
Trailing-whitespace′ (♭? g₁) →
Trailing-whitespace′ (♭? g₂) →
Trailing-whitespace′ (g₁ ∣ g₂)
∣-lemma t₁ t₂ (left-sem x∈) w = -, left-sem (proj₂ $ t₁ x∈ w)
∣-lemma t₁ t₂ (right-sem x∈) w = -, right-sem (proj₂ $ t₂ x∈ w)
whitespace⋆-lemma :
∀ {A} {g : Grammar A} →
Is-whitespace g →
Trailing-whitespace′ (g ⋆)
whitespace⋆-lemma is-whitespace xs∈ w = -, ⋆-⋆-sem xs∈ w
trailing? : ℕ → ∀ {A} (g : Grammar A) → Maybe (Trailing-whitespace′ g)
trailing? (suc n) fail = just (λ ())
trailing? (suc n) (f <$> g) = <$>-lemma <$>M trailing? n (♭? g)
trailing? (suc n) (x <$ g) = <$-lemma <$>M trailing? n (♭? g)
trailing? (suc n) (g₁ ⊛ g₂) = ⊛-lemma <$>M trailing? n (♭? g₂)
trailing? (suc n) (g₁ <⊛ g₂) = <⊛-lemma <$>M trailing? n (♭? g₂)
trailing? (suc n) (g₁ ⊛> g₂) = ⊛>-lemma <$>M trailing? n (♭? g₂)
trailing? (suc n) (g₁ ∣ g₂) = ∣-lemma <$>M trailing? n (♭? g₁)
⊛M trailing? n (♭? g₂)
trailing? (suc n) (_⋆ {c = false} g) = whitespace⋆-lemma <$>M
is-whitespace? g
trailing? _ _ = nothing
-- A heuristic (and rather incomplete) procedure that either proves
-- that a production can swallow trailing whitespace, or returns
-- "don't know" as the answer.
--
-- The natural number n is used to ensure termination.
trailing-whitespace : ∀ (n : ℕ) {A} (g : Grammar A) →
Maybe (Trailing-whitespace g)
trailing-whitespace n g = convert <$>M trailing? n g
where
-- An alternative formulation of Trailing-whitespace.
Trailing-whitespace″ : ∀ {A} → Grammar A → Set₁
Trailing-whitespace″ g =
∀ {x s s₁ s₂} →
x ∈ g · s₁ → s ∈ whitespace ⋆ · s₂ → x ∈ g · s₁ ++ s₂
convert : ∀ {A} {g : Grammar A} →
Trailing-whitespace″ g → Trailing-whitespace g
convert t (<⊛-sem x∈ w) = t x∈ w
++-lemma : ∀ s₁ {s₂} → (s₁ ++ s₂) ++ [] ≡ (s₁ ++ []) ++ s₂
++-lemma _ = solve (++-monoid Char)
<$>-lemma : ∀ {c A B} {f : A → B} {g : ∞Grammar c A} →
Trailing-whitespace″ (♭? g) →
Trailing-whitespace″ (f <$> g)
<$>-lemma t (<$>-sem x∈) w = <$>-sem (t x∈ w)
<$-lemma : ∀ {c A B} {x : A} {g : ∞Grammar c B} →
Trailing-whitespace′ (♭? g) →
Trailing-whitespace″ (x <$ g)
<$-lemma t (<$-sem x∈) w = <$-sem (proj₂ $ t x∈ w)
⊛-return-lemma :
∀ {c A B} {g : ∞Grammar c (A → B)} {x} →
Trailing-whitespace″ (♭? g) →
Trailing-whitespace″ (g ⊛ return x)
⊛-return-lemma t (⊛-sem {s₁ = s₁} f∈ return-sem) w =
cast (++-lemma s₁)
(⊛-sem (t f∈ w) return-sem)
+-lemma :
∀ {c A} {g : ∞Grammar c A} →
Trailing-whitespace″ (♭? g) →
Trailing-whitespace″ (g +)
+-lemma t (⊛-sem {s₁ = s₁} (<$>-sem x∈) ⋆-[]-sem) w =
cast (++-lemma s₁)
(+-sem (t x∈ w) ⋆-[]-sem)
+-lemma t (⊛-sem {s₁ = s₁} (<$>-sem x∈) (⋆-+-sem xs∈)) w =
cast (P.sym $ LM.assoc s₁ _ _)
(+-∷-sem x∈ (+-lemma t xs∈ w))
⊛-⋆-lemma :
∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ (List A → B)} {g₂ : ∞Grammar c₂ A} →
Trailing-whitespace″ (♭? g₁) →
Trailing-whitespace″ (♭? g₂) →
Trailing-whitespace″ (g₁ ⊛ g₂ ⋆)
⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ ⋆-[]-sem) w =
cast (++-lemma s₁)
(⊛-sem (t₁ f∈ w) ⋆-[]-sem)
⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ (⋆-+-sem xs∈)) w =
cast (P.sym $ LM.assoc s₁ _ _)
(⊛-sem f∈ (⋆-+-sem (+-lemma t₂ xs∈ w)))
⊛-∣-lemma : ∀ {c₁ c₂₁ c₂₂ A B} {g₁ : ∞Grammar c₁ (A → B)}
{g₂₁ : ∞Grammar c₂₁ A} {g₂₂ : ∞Grammar c₂₂ A} →
Trailing-whitespace″ (g₁ ⊛ g₂₁) →
Trailing-whitespace″ (g₁ ⊛ g₂₂) →
Trailing-whitespace″ (g₁ ⊛ (g₂₁ ∣ g₂₂))
⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃}
(⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂}
f∈ (left-sem x∈)) w
with f x | (s₁ ++ s₂) ++ s₃ | t₁₂ (⊛-sem f∈ x∈) w
... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (left-sem x∈′)
⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃}
(⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂}
f∈ (right-sem x∈)) w
with f x | (s₁ ++ s₂) ++ s₃ | t₁₃ (⊛-sem f∈ x∈) w
... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (right-sem x∈′)
⊛-lemma : ∀ {c₁ c₂ A B}
{g₁ : ∞Grammar c₁ (A → B)} {g₂ : ∞Grammar c₂ A} →
Trailing-whitespace″ (♭? g₂) →
Trailing-whitespace″ (g₁ ⊛ g₂)
⊛-lemma t₂ (⊛-sem {s₁ = s₁} f∈ x∈) w =
cast (P.sym $ LM.assoc s₁ _ _)
(⊛-sem f∈ (t₂ x∈ w))
<⊛-return-lemma :
∀ {c A B} {g : ∞Grammar c A} {x : B} →
Trailing-whitespace″ (♭? g) →
Trailing-whitespace″ (g <⊛ return x)
<⊛-return-lemma t (<⊛-sem {s₁ = s₁} f∈ return-sem) w =
cast (++-lemma s₁)
(<⊛-sem (t f∈ w) return-sem)
<⊛-lemma : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Trailing-whitespace′ (♭? g₂) →
Trailing-whitespace″ (g₁ <⊛ g₂)
<⊛-lemma t₂ (<⊛-sem {s₁ = s₁} x∈ y∈) w =
cast (P.sym $ LM.assoc s₁ _ _)
(<⊛-sem x∈ (proj₂ $ t₂ y∈ w))
⊛>-lemma : ∀ {c₁ c₂ A B} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Trailing-whitespace″ (♭? g₂) →
Trailing-whitespace″ (g₁ ⊛> g₂)
⊛>-lemma t₂ (⊛>-sem {s₁ = s₁} x∈ y∈) w =
cast (P.sym $ LM.assoc s₁ _ _)
(⊛>-sem x∈ (t₂ y∈ w))
∣-lemma : ∀ {c₁ c₂ A} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A} →
Trailing-whitespace″ (♭? g₁) →
Trailing-whitespace″ (♭? g₂) →
Trailing-whitespace″ (g₁ ∣ g₂)
∣-lemma t₁ t₂ (left-sem x∈) w = left-sem (t₁ x∈ w)
∣-lemma t₁ t₂ (right-sem x∈) w = right-sem (t₂ x∈ w)
trailing? : ℕ → ∀ {A} (g : Grammar A) → Maybe (Trailing-whitespace″ g)
trailing? (suc n) fail = just (λ ())
trailing? (suc n) (f <$> g) = <$>-lemma <$>M trailing? n (♭? g)
trailing? (suc n) (x <$ g) = <$-lemma <$>M trailing-whitespace′ (suc n) (♭? g)
trailing? (suc n) (_⊛_ {c₂ = false} g (return x)) = ⊛-return-lemma <$>M trailing? n (♭? g)
trailing? (suc n) (_⊛_ {c₂ = false} g₁ (g₂ ⋆)) = ⊛-⋆-lemma <$>M trailing? n (♭? g₁)
⊛M trailing? n (♭? g₂)
trailing? (suc n) (_⊛_ {c₂ = false} g₁ (g₂₁ ∣ g₂₂)) = ⊛-∣-lemma <$>M trailing? n (g₁ ⊛ g₂₁)
⊛M trailing? n (g₁ ⊛ g₂₂)
trailing? (suc n) (_⊛_ g₁ g₂) = ⊛-lemma <$>M trailing? n (♭? g₂)
trailing? (suc n) (_<⊛_ {c₂ = false} g (return x)) = <⊛-return-lemma <$>M trailing? n (♭? g)
trailing? (suc n) (_<⊛_ g₁ g₂) = <⊛-lemma <$>M
trailing-whitespace′ (suc n) (♭? g₂)
trailing? (suc n) (g₁ ⊛> g₂) = ⊛>-lemma <$>M trailing? n (♭? g₂)
trailing? (suc n) (g₁ ∣ g₂) = ∣-lemma <$>M trailing? n (♭? g₁)
⊛M trailing? n (♭? g₂)
trailing? _ _ = nothing
private
-- Some unit tests.
test₁ : T (is-just (trailing-whitespace′ 1 (whitespace ⋆)))
test₁ = _
test₂ : T (is-just (trailing-whitespace′ 2 (whitespace +)))
test₂ = _
test₃ : T (is-just (trailing-whitespace 1 (tt <$ whitespace ⋆)))
test₃ = _
test₄ : T (is-just (trailing-whitespace 2 (tt <$ whitespace +)))
test₄ = _
|
{
"alphanum_fraction": 0.4774945077,
"avg_line_length": 36.7568075117,
"ext": "agda",
"hexsha": "d545d13cff61c5d9b0059b1403b147bffc32bc71",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "Grammar/Infinite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "Grammar/Infinite.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "Grammar/Infinite.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 15227,
"size": 39146
}
|
{- Copyright © 2015 Benjamin Barenblat
Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -}
module B.Prelude.Eq where
import Data.Bool as Bool
open Bool using (Bool)
import Data.Char as Char
open Char using (Char)
import Data.Nat as ℕ
open ℕ using (ℕ)
open import Function using (_$_)
import Level
open Level using (_⊔_)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Binary using (DecSetoid)
record Eq {c} {ℓ} (t : Set c) : Set (Level.suc $ c ⊔ ℓ) where
field
decSetoid : DecSetoid c ℓ
_≟_ = DecSetoid._≟_ decSetoid
_==_ : DecSetoid.Carrier decSetoid
→ DecSetoid.Carrier decSetoid
→ Bool
x == y = ⌊ x ≟ y ⌋
open Eq ⦃...⦄ public
instance
Eq-Bool : Eq Bool
Eq-Bool = record { decSetoid = Bool.decSetoid }
Eq-Char : Eq Char
Eq-Char = record { decSetoid = Char.decSetoid }
-- TODO: Float
Eq-ℕ : Eq ℕ
Eq-ℕ =
let module DecTotalOrder = Relation.Binary.DecTotalOrder in
record { decSetoid = DecTotalOrder.Eq.decSetoid ℕ.decTotalOrder }
|
{
"alphanum_fraction": 0.7194630872,
"avg_line_length": 27.5925925926,
"ext": "agda",
"hexsha": "59142c1d33da5100d1ac715f5f1cae389d607978",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "bbarenblat/B",
"max_forks_repo_path": "Prelude/Eq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "bbarenblat/B",
"max_issues_repo_path": "Prelude/Eq.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "bbarenblat/B",
"max_stars_repo_path": "Prelude/Eq.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z",
"num_tokens": 443,
"size": 1490
}
|
module FRP.JS.Bool where
open import FRP.JS.Primitive public using ( Bool ; true ; false )
not : Bool → Bool
not true = false
not false = true
{-# COMPILED_JS not function(x) { return !x; } #-}
_≟_ : Bool → Bool → Bool
true ≟ b = b
false ≟ b = not b
{-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-}
if_then_else_ : ∀ {α} {A : Set α} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
{-# COMPILED_JS if_then_else_ function(a) { return function(A) { return function(x) {
if (x) { return function(t) { return function(f) { return t; }; }; }
else { return function(t) { return function(f) { return f; }; }; }
}; }; } #-}
_∧_ : Bool → Bool → Bool
true ∧ b = b
false ∧ b = false
{-# COMPILED_JS _∧_ function(x) { return function(y) { return x && y; }; } #-}
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
{-# COMPILED_JS _∨_ function(x) { return function(y) { return x || y; }; } #-}
_xor_ : Bool → Bool → Bool
true xor b = not b
false xor b = b
_≠_ = _xor_
{-# COMPILED_JS _xor_ function(x) { return function(y) { return x !== y; }; } #-}
{-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-}
|
{
"alphanum_fraction": 0.5863219349,
"avg_line_length": 26.0652173913,
"ext": "agda",
"hexsha": "10cd888130166c22318e7abe37e44f4f68601f1e",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Bool.agda",
"max_line_length": 85,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 406,
"size": 1199
}
|
module Text.Greek.SBLGNT.Phil where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΠΡΟΣ-ΦΙΛΙΠΠΗΣΙΟΥΣ : List (Word)
ΠΡΟΣ-ΦΙΛΙΠΠΗΣΙΟΥΣ =
word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Phil.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.1"
∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "Phil.1.1"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Phil.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.1"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.1"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Phil.1.1"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.1"
∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.1"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.1"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Phil.1.1"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Phil.1.1"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Phil.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.1"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ό ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Phil.1.1"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Phil.1.2"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Phil.1.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Phil.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.1.2"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Phil.1.2"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.2"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.2"
∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "Phil.1.3"
∷ word (τ ∷ ῷ ∷ []) "Phil.1.3"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Phil.1.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Phil.1.3"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Phil.1.3"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.3"
∷ word (μ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Phil.1.3"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Phil.1.4"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.4"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Phil.1.4"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.4"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.4"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.1.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Phil.1.4"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Phil.1.4"
∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Phil.1.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.1.4"
∷ word (δ ∷ έ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.4"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.1.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Phil.1.5"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.5"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ ᾳ ∷ []) "Phil.1.5"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.5"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.5"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.1.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Phil.1.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.1.5"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "Phil.1.5"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Phil.1.5"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Phil.1.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.5"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Phil.1.5"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ὼ ∷ ς ∷ []) "Phil.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Phil.1.6"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.1.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.6"
∷ word (ὁ ∷ []) "Phil.1.6"
∷ word (ἐ ∷ ν ∷ α ∷ ρ ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.1.6"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.6"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.1.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Phil.1.6"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Phil.1.6"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.6"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Phil.1.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Phil.1.6"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.6"
∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "Phil.1.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Phil.1.7"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Phil.1.7"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.1.7"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.1.7"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.1.7"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.1.7"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Phil.1.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.7"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.7"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.7"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.7"
∷ word (μ ∷ ε ∷ []) "Phil.1.7"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.7"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.7"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Phil.1.7"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.7"
∷ word (ἔ ∷ ν ∷ []) "Phil.1.7"
∷ word (τ ∷ ε ∷ []) "Phil.1.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.7"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.7"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.7"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.7"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ᾳ ∷ []) "Phil.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.7"
∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.7"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.7"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Phil.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.1.7"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Phil.1.7"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.1.7"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.7"
∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.1.7"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Phil.1.8"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Phil.1.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.8"
∷ word (ὁ ∷ []) "Phil.1.8"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Phil.1.8"
∷ word (ὡ ∷ ς ∷ []) "Phil.1.8"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ῶ ∷ []) "Phil.1.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.1.8"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.8"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.8"
∷ word (σ ∷ π ∷ ∙λ ∷ ά ∷ γ ∷ χ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Phil.1.8"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.1.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.1.9"
∷ word (ἡ ∷ []) "Phil.1.9"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Phil.1.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.9"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Phil.1.9"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.9"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.1.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Phil.1.9"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.9"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.9"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Phil.1.9"
∷ word (α ∷ ἰ ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.10"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.10"
∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.10"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.10"
∷ word (τ ∷ ὰ ∷ []) "Phil.1.10"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Phil.1.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.1.10"
∷ word (ἦ ∷ τ ∷ ε ∷ []) "Phil.1.10"
∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Phil.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.10"
∷ word (ἀ ∷ π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ []) "Phil.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Phil.1.10"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.10"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Phil.1.11"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Phil.1.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Phil.1.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.1.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.11"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Phil.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.11"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Phil.1.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.1.11"
∷ word (Γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.12"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.12"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.12"
∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.1.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.12"
∷ word (τ ∷ ὰ ∷ []) "Phil.1.12"
∷ word (κ ∷ α ∷ τ ∷ []) "Phil.1.12"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Phil.1.12"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.12"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "Phil.1.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.12"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.12"
∷ word (ἐ ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Phil.1.12"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Phil.1.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.1.13"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ύ ∷ ς ∷ []) "Phil.1.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.13"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.1.13"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.1.13"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Phil.1.13"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.13"
∷ word (ὅ ∷ ∙λ ∷ ῳ ∷ []) "Phil.1.13"
∷ word (τ ∷ ῷ ∷ []) "Phil.1.13"
∷ word (π ∷ ρ ∷ α ∷ ι ∷ τ ∷ ω ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.13"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.1.14"
∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "Phil.1.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Phil.1.14"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Phil.1.14"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.1.14"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "Phil.1.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.14"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.14"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "Phil.1.14"
∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾶ ∷ ν ∷ []) "Phil.1.14"
∷ word (ἀ ∷ φ ∷ ό ∷ β ∷ ω ∷ ς ∷ []) "Phil.1.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.1.14"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Phil.1.14"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.1.14"
∷ word (Τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "Phil.1.15"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Phil.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.15"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.15"
∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Phil.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.15"
∷ word (ἔ ∷ ρ ∷ ι ∷ ν ∷ []) "Phil.1.15"
∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "Phil.1.15"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.15"
∷ word (δ ∷ ι ∷ []) "Phil.1.15"
∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Phil.1.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.1.15"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.1.15"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.15"
∷ word (ο ∷ ἱ ∷ []) "Phil.1.16"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Phil.1.16"
∷ word (ἐ ∷ ξ ∷ []) "Phil.1.16"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Phil.1.16"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Phil.1.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.16"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Phil.1.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.16"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.16"
∷ word (κ ∷ ε ∷ ῖ ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.16"
∷ word (ο ∷ ἱ ∷ []) "Phil.1.17"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.17"
∷ word (ἐ ∷ ξ ∷ []) "Phil.1.17"
∷ word (ἐ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Phil.1.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.1.17"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.1.17"
∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.17"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Phil.1.17"
∷ word (ἁ ∷ γ ∷ ν ∷ ῶ ∷ ς ∷ []) "Phil.1.17"
∷ word (ο ∷ ἰ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Phil.1.17"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Phil.1.17"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.17"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.17"
∷ word (τ ∷ ί ∷ []) "Phil.1.18"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Phil.1.18"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Phil.1.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.18"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Phil.1.18"
∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ῳ ∷ []) "Phil.1.18"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Phil.1.18"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.18"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Phil.1.18"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Phil.1.18"
∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Phil.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.18"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Phil.1.18"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "Phil.1.18"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.18"
∷ word (χ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.18"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Phil.1.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.1.19"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.19"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Phil.1.19"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.1.19"
∷ word (ἀ ∷ π ∷ ο ∷ β ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Phil.1.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.19"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Phil.1.19"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.1.19"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.19"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.19"
∷ word (ἐ ∷ π ∷ ι ∷ χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Phil.1.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.19"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Phil.1.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.19"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.19"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.1.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.1.20"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Phil.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.20"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Phil.1.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.20"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.20"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Phil.1.20"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.20"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Phil.1.20"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.20"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Phil.1.20"
∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Phil.1.20"
∷ word (ὡ ∷ ς ∷ []) "Phil.1.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Phil.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.20"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Phil.1.20"
∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Phil.1.20"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Phil.1.20"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.20"
∷ word (τ ∷ ῷ ∷ []) "Phil.1.20"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Phil.1.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.1.20"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.20"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Phil.1.20"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.20"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Phil.1.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.1.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.1.21"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.21"
∷ word (ζ ∷ ῆ ∷ ν ∷ []) "Phil.1.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Phil.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.21"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.21"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.1.21"
∷ word (κ ∷ έ ∷ ρ ∷ δ ∷ ο ∷ ς ∷ []) "Phil.1.21"
∷ word (ε ∷ ἰ ∷ []) "Phil.1.22"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.22"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.22"
∷ word (ζ ∷ ῆ ∷ ν ∷ []) "Phil.1.22"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.22"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Phil.1.22"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Phil.1.22"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.1.22"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ς ∷ []) "Phil.1.22"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "Phil.1.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.22"
∷ word (τ ∷ ί ∷ []) "Phil.1.22"
∷ word (α ∷ ἱ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.22"
∷ word (ο ∷ ὐ ∷ []) "Phil.1.22"
∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ []) "Phil.1.22"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.1.23"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.23"
∷ word (ἐ ∷ κ ∷ []) "Phil.1.23"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Phil.1.23"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Phil.1.23"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.1.23"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Phil.1.23"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Phil.1.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.23"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.23"
∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Phil.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.23"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Phil.1.23"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.1.23"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Phil.1.23"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Phil.1.23"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.1.23"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.1.23"
∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Phil.1.23"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.24"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.24"
∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.24"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.24"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.24"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Phil.1.24"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ι ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Phil.1.24"
∷ word (δ ∷ ι ∷ []) "Phil.1.24"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.1.25"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ὼ ∷ ς ∷ []) "Phil.1.25"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Phil.1.25"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.25"
∷ word (μ ∷ ε ∷ ν ∷ ῶ ∷ []) "Phil.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.25"
∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ ῶ ∷ []) "Phil.1.25"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.1.25"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.1.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.25"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.1.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.25"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "Phil.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.25"
∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ ν ∷ []) "Phil.1.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.1.25"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.1.25"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.1.26"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.26"
∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "Phil.1.26"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.26"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Phil.1.26"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.26"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.1.26"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.1.26"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.26"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.1.26"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.1.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.1.26"
∷ word (ἐ ∷ μ ∷ ῆ ∷ ς ∷ []) "Phil.1.26"
∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Phil.1.26"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Phil.1.26"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Phil.1.26"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.26"
∷ word (Μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Phil.1.27"
∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "Phil.1.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.27"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.27"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.27"
∷ word (π ∷ ο ∷ ∙λ ∷ ι ∷ τ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.1.27"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.1.27"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.27"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Phil.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.27"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Phil.1.27"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.1.27"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Phil.1.27"
∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "Phil.1.27"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ []) "Phil.1.27"
∷ word (τ ∷ ὰ ∷ []) "Phil.1.27"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Phil.1.27"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.27"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.27"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.1.27"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.27"
∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "Phil.1.27"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.1.27"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Phil.1.27"
∷ word (ψ ∷ υ ∷ χ ∷ ῇ ∷ []) "Phil.1.27"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ θ ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.1.27"
∷ word (τ ∷ ῇ ∷ []) "Phil.1.27"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Phil.1.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.1.27"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.28"
∷ word (μ ∷ ὴ ∷ []) "Phil.1.28"
∷ word (π ∷ τ ∷ υ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Phil.1.28"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.28"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Phil.1.28"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Phil.1.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Phil.1.28"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Phil.1.28"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Phil.1.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Phil.1.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.1.28"
∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ι ∷ ς ∷ []) "Phil.1.28"
∷ word (ἀ ∷ π ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Phil.1.28"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.1.28"
∷ word (δ ∷ ὲ ∷ []) "Phil.1.28"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Phil.1.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.28"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.1.28"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Phil.1.28"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.1.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.1.29"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.1.29"
∷ word (ἐ ∷ χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Phil.1.29"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.29"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.1.29"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.29"
∷ word (ο ∷ ὐ ∷ []) "Phil.1.29"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Phil.1.29"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.1.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.1.29"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.29"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.1.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.29"
∷ word (τ ∷ ὸ ∷ []) "Phil.1.29"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.1.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.1.29"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.1.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.1.30"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.1.30"
∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ α ∷ []) "Phil.1.30"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.1.30"
∷ word (ο ∷ ἷ ∷ ο ∷ ν ∷ []) "Phil.1.30"
∷ word (ε ∷ ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.1.30"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.30"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.1.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.1.30"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Phil.1.30"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.1.30"
∷ word (ἐ ∷ ν ∷ []) "Phil.1.30"
∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Phil.1.30"
∷ word (Ε ∷ ἴ ∷ []) "Phil.2.1"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.2.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Phil.2.1"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Phil.2.1"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.2.1"
∷ word (ε ∷ ἴ ∷ []) "Phil.2.1"
∷ word (τ ∷ ι ∷ []) "Phil.2.1"
∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ ύ ∷ θ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.2.1"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Phil.2.1"
∷ word (ε ∷ ἴ ∷ []) "Phil.2.1"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.2.1"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "Phil.2.1"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Phil.2.1"
∷ word (ε ∷ ἴ ∷ []) "Phil.2.1"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.2.1"
∷ word (σ ∷ π ∷ ∙λ ∷ ά ∷ γ ∷ χ ∷ ν ∷ α ∷ []) "Phil.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.1"
∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ι ∷ ρ ∷ μ ∷ ο ∷ ί ∷ []) "Phil.2.1"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Phil.2.2"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.2.2"
∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ ν ∷ []) "Phil.2.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.2"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Phil.2.2"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ῆ ∷ τ ∷ ε ∷ []) "Phil.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Phil.2.2"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Phil.2.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.2"
∷ word (σ ∷ ύ ∷ μ ∷ ψ ∷ υ ∷ χ ∷ ο ∷ ι ∷ []) "Phil.2.2"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.2"
∷ word (ἓ ∷ ν ∷ []) "Phil.2.2"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.2"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Phil.2.3"
∷ word (κ ∷ α ∷ τ ∷ []) "Phil.2.3"
∷ word (ἐ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Phil.2.3"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Phil.2.3"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.2.3"
∷ word (κ ∷ ε ∷ ν ∷ ο ∷ δ ∷ ο ∷ ξ ∷ ί ∷ α ∷ ν ∷ []) "Phil.2.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.3"
∷ word (τ ∷ ῇ ∷ []) "Phil.2.3"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Phil.2.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Phil.2.3"
∷ word (ἡ ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Phil.2.3"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.2.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Phil.2.3"
∷ word (μ ∷ ὴ ∷ []) "Phil.2.4"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.4"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Phil.2.4"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Phil.2.4"
∷ word (σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.4"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.4"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.4"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Phil.2.4"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Phil.2.4"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.2.5"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Phil.2.5"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.5"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.2.5"
∷ word (ὃ ∷ []) "Phil.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.5"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.5"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.2.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.2.5"
∷ word (ὃ ∷ ς ∷ []) "Phil.2.6"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.6"
∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ῇ ∷ []) "Phil.2.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.2.6"
∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Phil.2.6"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Phil.2.6"
∷ word (ἁ ∷ ρ ∷ π ∷ α ∷ γ ∷ μ ∷ ὸ ∷ ν ∷ []) "Phil.2.6"
∷ word (ἡ ∷ γ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Phil.2.6"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.6"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Phil.2.6"
∷ word (ἴ ∷ σ ∷ α ∷ []) "Phil.2.6"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Phil.2.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.7"
∷ word (ἐ ∷ κ ∷ έ ∷ ν ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.7"
∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ὴ ∷ ν ∷ []) "Phil.2.7"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Phil.2.7"
∷ word (∙λ ∷ α ∷ β ∷ ώ ∷ ν ∷ []) "Phil.2.7"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.7"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.2.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Phil.2.7"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.7"
∷ word (σ ∷ χ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.2.7"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Phil.2.7"
∷ word (ὡ ∷ ς ∷ []) "Phil.2.7"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Phil.2.7"
∷ word (ἐ ∷ τ ∷ α ∷ π ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.8"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.2.8"
∷ word (ὑ ∷ π ∷ ή ∷ κ ∷ ο ∷ ο ∷ ς ∷ []) "Phil.2.8"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Phil.2.8"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Phil.2.8"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Phil.2.8"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.8"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Phil.2.8"
∷ word (δ ∷ ι ∷ ὸ ∷ []) "Phil.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.9"
∷ word (ὁ ∷ []) "Phil.2.9"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.2.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.9"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ύ ∷ ψ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.9"
∷ word (ἐ ∷ χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Phil.2.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Phil.2.9"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Phil.2.9"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.9"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.2.9"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Phil.2.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Phil.2.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.10"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.10"
∷ word (τ ∷ ῷ ∷ []) "Phil.2.10"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.2.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.2.10"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Phil.2.10"
∷ word (γ ∷ ό ∷ ν ∷ υ ∷ []) "Phil.2.10"
∷ word (κ ∷ ά ∷ μ ∷ ψ ∷ ῃ ∷ []) "Phil.2.10"
∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Phil.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.10"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Phil.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ χ ∷ θ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Phil.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.11"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Phil.2.11"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ []) "Phil.2.11"
∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Phil.2.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.11"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Phil.2.11"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Phil.2.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Phil.2.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Phil.2.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.2.11"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Phil.2.11"
∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Phil.2.12"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Phil.2.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.12"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Phil.2.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Phil.2.12"
∷ word (ὑ ∷ π ∷ η ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Phil.2.12"
∷ word (μ ∷ ὴ ∷ []) "Phil.2.12"
∷ word (ὡ ∷ ς ∷ []) "Phil.2.12"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.12"
∷ word (τ ∷ ῇ ∷ []) "Phil.2.12"
∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Phil.2.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.12"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Phil.2.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.12"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Phil.2.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Phil.2.12"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.2.12"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.12"
∷ word (τ ∷ ῇ ∷ []) "Phil.2.12"
∷ word (ἀ ∷ π ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Phil.2.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.12"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Phil.2.12"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ υ ∷ []) "Phil.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.12"
∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Phil.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.2.12"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Phil.2.12"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Phil.2.12"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.2.12"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.2.13"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Phil.2.13"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Phil.2.13"
∷ word (ὁ ∷ []) "Phil.2.13"
∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Phil.2.13"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.13"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.13"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.13"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.13"
∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.2.13"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.2.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.2.13"
∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Phil.2.13"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.2.14"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Phil.2.14"
∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Phil.2.14"
∷ word (γ ∷ ο ∷ γ ∷ γ ∷ υ ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.14"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.15"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Phil.2.15"
∷ word (ἄ ∷ μ ∷ ε ∷ μ ∷ π ∷ τ ∷ ο ∷ ι ∷ []) "Phil.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.15"
∷ word (ἀ ∷ κ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "Phil.2.15"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Phil.2.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.2.15"
∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ α ∷ []) "Phil.2.15"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Phil.2.15"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾶ ∷ ς ∷ []) "Phil.2.15"
∷ word (σ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Phil.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.15"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Phil.2.15"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.15"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Phil.2.15"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.2.15"
∷ word (ὡ ∷ ς ∷ []) "Phil.2.15"
∷ word (φ ∷ ω ∷ σ ∷ τ ∷ ῆ ∷ ρ ∷ ε ∷ ς ∷ []) "Phil.2.15"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "Phil.2.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Phil.2.16"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Phil.2.16"
∷ word (ἐ ∷ π ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.16"
∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "Phil.2.16"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.2.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.16"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Phil.2.16"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.2.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Phil.2.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.16"
∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "Phil.2.16"
∷ word (ἔ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Phil.2.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Phil.2.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.16"
∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "Phil.2.16"
∷ word (ἐ ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ σ ∷ α ∷ []) "Phil.2.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.17"
∷ word (ε ∷ ἰ ∷ []) "Phil.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.17"
∷ word (σ ∷ π ∷ έ ∷ ν ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.2.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Phil.2.17"
∷ word (τ ∷ ῇ ∷ []) "Phil.2.17"
∷ word (θ ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Phil.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.17"
∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "Phil.2.17"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.2.17"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.2.17"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.17"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "Phil.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.17"
∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "Phil.2.17"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.2.17"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.2.17"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.18"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Phil.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.18"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Phil.2.18"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.18"
∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ έ ∷ []) "Phil.2.18"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.2.18"
∷ word (Ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "Phil.2.19"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.19"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.19"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.2.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.2.19"
∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ν ∷ []) "Phil.2.19"
∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "Phil.2.19"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ι ∷ []) "Phil.2.19"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.2.19"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.19"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Phil.2.19"
∷ word (ε ∷ ὐ ∷ ψ ∷ υ ∷ χ ∷ ῶ ∷ []) "Phil.2.19"
∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.2.19"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.19"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Phil.2.19"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.19"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Phil.2.20"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.2.20"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Phil.2.20"
∷ word (ἰ ∷ σ ∷ ό ∷ ψ ∷ υ ∷ χ ∷ ο ∷ ν ∷ []) "Phil.2.20"
∷ word (ὅ ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Phil.2.20"
∷ word (γ ∷ ν ∷ η ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "Phil.2.20"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.20"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Phil.2.20"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.20"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Phil.2.20"
∷ word (ο ∷ ἱ ∷ []) "Phil.2.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.2.21"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.21"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Phil.2.21"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.2.21"
∷ word (ο ∷ ὐ ∷ []) "Phil.2.21"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.2.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.2.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.2.22"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.22"
∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Phil.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.2.22"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.2.22"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.22"
∷ word (ὡ ∷ ς ∷ []) "Phil.2.22"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Phil.2.22"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Phil.2.22"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Phil.2.22"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.2.22"
∷ word (ἐ ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.2.22"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.22"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.2.22"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Phil.2.23"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Phil.2.23"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Phil.2.23"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "Phil.2.23"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ι ∷ []) "Phil.2.23"
∷ word (ὡ ∷ ς ∷ []) "Phil.2.23"
∷ word (ἂ ∷ ν ∷ []) "Phil.2.23"
∷ word (ἀ ∷ φ ∷ ί ∷ δ ∷ ω ∷ []) "Phil.2.23"
∷ word (τ ∷ ὰ ∷ []) "Phil.2.23"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Phil.2.23"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Phil.2.23"
∷ word (ἐ ∷ ξ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "Phil.2.23"
∷ word (π ∷ έ ∷ π ∷ ο ∷ ι ∷ θ ∷ α ∷ []) "Phil.2.24"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.24"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.24"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.2.24"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Phil.2.24"
∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "Phil.2.24"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.2.24"
∷ word (Ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Phil.2.25"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.25"
∷ word (ἡ ∷ γ ∷ η ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Phil.2.25"
∷ word (Ἐ ∷ π ∷ α ∷ φ ∷ ρ ∷ ό ∷ δ ∷ ι ∷ τ ∷ ο ∷ ν ∷ []) "Phil.2.25"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.2.25"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Phil.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.25"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "Phil.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.25"
∷ word (σ ∷ υ ∷ σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Phil.2.25"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.25"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.25"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.25"
∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "Phil.2.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.2.25"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Phil.2.25"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.2.25"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ι ∷ []) "Phil.2.25"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Phil.2.25"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.2.25"
∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "Phil.2.26"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ῶ ∷ ν ∷ []) "Phil.2.26"
∷ word (ἦ ∷ ν ∷ []) "Phil.2.26"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.2.26"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.26"
∷ word (ἀ ∷ δ ∷ η ∷ μ ∷ ο ∷ ν ∷ ῶ ∷ ν ∷ []) "Phil.2.26"
∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Phil.2.26"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Phil.2.26"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.26"
∷ word (ἠ ∷ σ ∷ θ ∷ έ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.27"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.2.27"
∷ word (ἠ ∷ σ ∷ θ ∷ έ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.27"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.2.27"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Phil.2.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.27"
∷ word (ὁ ∷ []) "Phil.2.27"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.2.27"
∷ word (ἠ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Phil.2.27"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Phil.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.27"
∷ word (δ ∷ ὲ ∷ []) "Phil.2.27"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Phil.2.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.2.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.27"
∷ word (ἐ ∷ μ ∷ έ ∷ []) "Phil.2.27"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.27"
∷ word (μ ∷ ὴ ∷ []) "Phil.2.27"
∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ ν ∷ []) "Phil.2.27"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Phil.2.27"
∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ ν ∷ []) "Phil.2.27"
∷ word (σ ∷ χ ∷ ῶ ∷ []) "Phil.2.27"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ι ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "Phil.2.28"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Phil.2.28"
∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Phil.2.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.28"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.28"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.2.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.28"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Phil.2.28"
∷ word (χ ∷ α ∷ ρ ∷ ῆ ∷ τ ∷ ε ∷ []) "Phil.2.28"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Phil.2.28"
∷ word (ἀ ∷ ∙λ ∷ υ ∷ π ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Phil.2.28"
∷ word (ὦ ∷ []) "Phil.2.28"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.2.29"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Phil.2.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.2.29"
∷ word (ἐ ∷ ν ∷ []) "Phil.2.29"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.2.29"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Phil.2.29"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Phil.2.29"
∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Phil.2.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.2.29"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.2.29"
∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Phil.2.29"
∷ word (ἐ ∷ ν ∷ τ ∷ ί ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Phil.2.29"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.2.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.2.30"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.2.30"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.30"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Phil.2.30"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.2.30"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Phil.2.30"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Phil.2.30"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Phil.2.30"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.2.30"
∷ word (τ ∷ ῇ ∷ []) "Phil.2.30"
∷ word (ψ ∷ υ ∷ χ ∷ ῇ ∷ []) "Phil.2.30"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.2.30"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ ῃ ∷ []) "Phil.2.30"
∷ word (τ ∷ ὸ ∷ []) "Phil.2.30"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.2.30"
∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "Phil.2.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.2.30"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Phil.2.30"
∷ word (μ ∷ ε ∷ []) "Phil.2.30"
∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Phil.2.30"
∷ word (Τ ∷ ὸ ∷ []) "Phil.3.1"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ό ∷ ν ∷ []) "Phil.3.1"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.3.1"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.3.1"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.3.1"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.1"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.3.1"
∷ word (τ ∷ ὰ ∷ []) "Phil.3.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Phil.3.1"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.3.1"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.3.1"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.3.1"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Phil.3.1"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Phil.3.1"
∷ word (ὀ ∷ κ ∷ ν ∷ η ∷ ρ ∷ ό ∷ ν ∷ []) "Phil.3.1"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.3.1"
∷ word (δ ∷ ὲ ∷ []) "Phil.3.1"
∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ έ ∷ ς ∷ []) "Phil.3.1"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Phil.3.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.2"
∷ word (κ ∷ ύ ∷ ν ∷ α ∷ ς ∷ []) "Phil.3.2"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Phil.3.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.2"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.2"
∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Phil.3.2"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Phil.3.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ τ ∷ ο ∷ μ ∷ ή ∷ ν ∷ []) "Phil.3.2"
∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Phil.3.3"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Phil.3.3"
∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Phil.3.3"
∷ word (ἡ ∷ []) "Phil.3.3"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ή ∷ []) "Phil.3.3"
∷ word (ο ∷ ἱ ∷ []) "Phil.3.3"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.3.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.3.3"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.3"
∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Phil.3.3"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.3.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Phil.3.3"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.3"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Phil.3.3"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Phil.3.3"
∷ word (κ ∷ α ∷ ί ∷ π ∷ ε ∷ ρ ∷ []) "Phil.3.4"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Phil.3.4"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Phil.3.4"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ θ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Phil.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.4"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.4"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Phil.3.4"
∷ word (Ε ∷ ἴ ∷ []) "Phil.3.4"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.3.4"
∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "Phil.3.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Phil.3.4"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Phil.3.4"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.4"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Phil.3.4"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Phil.3.4"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Phil.3.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῇ ∷ []) "Phil.3.5"
∷ word (ὀ ∷ κ ∷ τ ∷ α ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Phil.3.5"
∷ word (ἐ ∷ κ ∷ []) "Phil.3.5"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Phil.3.5"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Phil.3.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Phil.3.5"
∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Phil.3.5"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Phil.3.5"
∷ word (ἐ ∷ ξ ∷ []) "Phil.3.5"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Phil.3.5"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.3.5"
∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Phil.3.5"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Phil.3.5"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.3.6"
∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Phil.3.6"
∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ω ∷ ν ∷ []) "Phil.3.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.6"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Phil.3.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.3.6"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Phil.3.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.6"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.6"
∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Phil.3.6"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.3.6"
∷ word (ἄ ∷ μ ∷ ε ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Phil.3.6"
∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.3.7"
∷ word (ἅ ∷ τ ∷ ι ∷ ν ∷ α ∷ []) "Phil.3.7"
∷ word (ἦ ∷ ν ∷ []) "Phil.3.7"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.3.7"
∷ word (κ ∷ έ ∷ ρ ∷ δ ∷ η ∷ []) "Phil.3.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Phil.3.7"
∷ word (ἥ ∷ γ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Phil.3.7"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.3.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.3.7"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.3.7"
∷ word (ζ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Phil.3.7"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.3.8"
∷ word (μ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ γ ∷ ε ∷ []) "Phil.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.8"
∷ word (ἡ ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "Phil.3.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.3.8"
∷ word (ζ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Phil.3.8"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Phil.3.8"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.3.8"
∷ word (τ ∷ ὸ ∷ []) "Phil.3.8"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ []) "Phil.3.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.3.8"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.3.8"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.3.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.8"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.3.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.3.8"
∷ word (δ ∷ ι ∷ []) "Phil.3.8"
∷ word (ὃ ∷ ν ∷ []) "Phil.3.8"
∷ word (τ ∷ ὰ ∷ []) "Phil.3.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.3.8"
∷ word (ἐ ∷ ζ ∷ η ∷ μ ∷ ι ∷ ώ ∷ θ ∷ η ∷ ν ∷ []) "Phil.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.8"
∷ word (ἡ ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "Phil.3.8"
∷ word (σ ∷ κ ∷ ύ ∷ β ∷ α ∷ ∙λ ∷ α ∷ []) "Phil.3.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Phil.3.8"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.3.8"
∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "Phil.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.9"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῶ ∷ []) "Phil.3.9"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Phil.3.9"
∷ word (μ ∷ ὴ ∷ []) "Phil.3.9"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Phil.3.9"
∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "Phil.3.9"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Phil.3.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.9"
∷ word (ἐ ∷ κ ∷ []) "Phil.3.9"
∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Phil.3.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.3.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Phil.3.9"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.3.9"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.9"
∷ word (ἐ ∷ κ ∷ []) "Phil.3.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.3.9"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Phil.3.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Phil.3.9"
∷ word (τ ∷ ῇ ∷ []) "Phil.3.9"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Phil.3.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.10"
∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Phil.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.10"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Phil.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.3.10"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.10"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Phil.3.10"
∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Phil.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.10"
∷ word (σ ∷ υ ∷ μ ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.3.10"
∷ word (τ ∷ ῷ ∷ []) "Phil.3.10"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Phil.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.10"
∷ word (ε ∷ ἴ ∷ []) "Phil.3.11"
∷ word (π ∷ ω ∷ ς ∷ []) "Phil.3.11"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "Phil.3.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.3.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.11"
∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Phil.3.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.11"
∷ word (ἐ ∷ κ ∷ []) "Phil.3.11"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Phil.3.11"
∷ word (Ο ∷ ὐ ∷ χ ∷ []) "Phil.3.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.3.12"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Phil.3.12"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Phil.3.12"
∷ word (ἢ ∷ []) "Phil.3.12"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Phil.3.12"
∷ word (τ ∷ ε ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Phil.3.12"
∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ω ∷ []) "Phil.3.12"
∷ word (δ ∷ ὲ ∷ []) "Phil.3.12"
∷ word (ε ∷ ἰ ∷ []) "Phil.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.12"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ω ∷ []) "Phil.3.12"
∷ word (ἐ ∷ φ ∷ []) "Phil.3.12"
∷ word (ᾧ ∷ []) "Phil.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.12"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ ν ∷ []) "Phil.3.12"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Phil.3.12"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.3.13"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Phil.3.13"
∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.3.13"
∷ word (ο ∷ ὐ ∷ []) "Phil.3.13"
∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Phil.3.13"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ η ∷ φ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Phil.3.13"
∷ word (ἓ ∷ ν ∷ []) "Phil.3.13"
∷ word (δ ∷ έ ∷ []) "Phil.3.13"
∷ word (τ ∷ ὰ ∷ []) "Phil.3.13"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Phil.3.13"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Phil.3.13"
∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.3.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.3.13"
∷ word (δ ∷ ὲ ∷ []) "Phil.3.13"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Phil.3.13"
∷ word (ἐ ∷ π ∷ ε ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.3.13"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.3.14"
∷ word (σ ∷ κ ∷ ο ∷ π ∷ ὸ ∷ ν ∷ []) "Phil.3.14"
∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ω ∷ []) "Phil.3.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.3.14"
∷ word (τ ∷ ὸ ∷ []) "Phil.3.14"
∷ word (β ∷ ρ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Phil.3.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.3.14"
∷ word (ἄ ∷ ν ∷ ω ∷ []) "Phil.3.14"
∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.3.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.3.14"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.14"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.3.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.3.14"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Phil.3.15"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Phil.3.15"
∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ι ∷ []) "Phil.3.15"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.3.15"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Phil.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.15"
∷ word (ε ∷ ἴ ∷ []) "Phil.3.15"
∷ word (τ ∷ ι ∷ []) "Phil.3.15"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "Phil.3.15"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Phil.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.15"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Phil.3.15"
∷ word (ὁ ∷ []) "Phil.3.15"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.3.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.3.15"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "Phil.3.15"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Phil.3.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.3.16"
∷ word (ὃ ∷ []) "Phil.3.16"
∷ word (ἐ ∷ φ ∷ θ ∷ ά ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Phil.3.16"
∷ word (τ ∷ ῷ ∷ []) "Phil.3.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Phil.3.16"
∷ word (σ ∷ τ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.3.16"
∷ word (Σ ∷ υ ∷ μ ∷ μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "Phil.3.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.3.17"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.3.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.17"
∷ word (σ ∷ κ ∷ ο ∷ π ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Phil.3.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.17"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Phil.3.17"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Phil.3.17"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Phil.3.17"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.3.17"
∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "Phil.3.17"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.3.17"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Phil.3.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.3.18"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.3.18"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Phil.3.18"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Phil.3.18"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Phil.3.18"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Phil.3.18"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Phil.3.18"
∷ word (δ ∷ ὲ ∷ []) "Phil.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.18"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Phil.3.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Phil.3.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.18"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.3.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.18"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Phil.3.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.18"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.18"
∷ word (ὧ ∷ ν ∷ []) "Phil.3.19"
∷ word (τ ∷ ὸ ∷ []) "Phil.3.19"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Phil.3.19"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Phil.3.19"
∷ word (ὧ ∷ ν ∷ []) "Phil.3.19"
∷ word (ὁ ∷ []) "Phil.3.19"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.3.19"
∷ word (ἡ ∷ []) "Phil.3.19"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "Phil.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.19"
∷ word (ἡ ∷ []) "Phil.3.19"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Phil.3.19"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.19"
∷ word (τ ∷ ῇ ∷ []) "Phil.3.19"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Phil.3.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Phil.3.19"
∷ word (ο ∷ ἱ ∷ []) "Phil.3.19"
∷ word (τ ∷ ὰ ∷ []) "Phil.3.19"
∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "Phil.3.19"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.3.19"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.3.20"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.3.20"
∷ word (τ ∷ ὸ ∷ []) "Phil.3.20"
∷ word (π ∷ ο ∷ ∙λ ∷ ί ∷ τ ∷ ε ∷ υ ∷ μ ∷ α ∷ []) "Phil.3.20"
∷ word (ἐ ∷ ν ∷ []) "Phil.3.20"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Phil.3.20"
∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ []) "Phil.3.20"
∷ word (ἐ ∷ ξ ∷ []) "Phil.3.20"
∷ word (ο ∷ ὗ ∷ []) "Phil.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.20"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ α ∷ []) "Phil.3.20"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Phil.3.20"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.3.20"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Phil.3.20"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Phil.3.20"
∷ word (ὃ ∷ ς ∷ []) "Phil.3.21"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Phil.3.21"
∷ word (τ ∷ ὸ ∷ []) "Phil.3.21"
∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Phil.3.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.3.21"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.3.21"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.3.21"
∷ word (σ ∷ ύ ∷ μ ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ο ∷ ν ∷ []) "Phil.3.21"
∷ word (τ ∷ ῷ ∷ []) "Phil.3.21"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Phil.3.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.3.21"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Phil.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.3.21"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.3.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.3.21"
∷ word (ἐ ∷ ν ∷ έ ∷ ρ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Phil.3.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.3.21"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Phil.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Phil.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.3.21"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Phil.3.21"
∷ word (α ∷ ὑ ∷ τ ∷ ῷ ∷ []) "Phil.3.21"
∷ word (τ ∷ ὰ ∷ []) "Phil.3.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.3.21"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Phil.4.1"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.4.1"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.4.1"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Phil.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.1"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ό ∷ θ ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "Phil.4.1"
∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ []) "Phil.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.1"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "Phil.4.1"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.4.1"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Phil.4.1"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.1"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.1"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.4.1"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Phil.4.1"
∷ word (Ε ∷ ὐ ∷ ο ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Phil.4.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Phil.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.2"
∷ word (Σ ∷ υ ∷ ν ∷ τ ∷ ύ ∷ χ ∷ η ∷ ν ∷ []) "Phil.4.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Phil.4.2"
∷ word (τ ∷ ὸ ∷ []) "Phil.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Phil.4.2"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.4.2"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.2"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.4.2"
∷ word (ν ∷ α ∷ ὶ ∷ []) "Phil.4.3"
∷ word (ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ []) "Phil.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.3"
∷ word (σ ∷ έ ∷ []) "Phil.4.3"
∷ word (γ ∷ ν ∷ ή ∷ σ ∷ ι ∷ ε ∷ []) "Phil.4.3"
∷ word (σ ∷ ύ ∷ ζ ∷ υ ∷ γ ∷ ε ∷ []) "Phil.4.3"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Phil.4.3"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Phil.4.3"
∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Phil.4.3"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.3"
∷ word (τ ∷ ῷ ∷ []) "Phil.4.3"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Phil.4.3"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ θ ∷ ∙λ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "Phil.4.3"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.4.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Phil.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.3"
∷ word (Κ ∷ ∙λ ∷ ή ∷ μ ∷ ε ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Phil.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Phil.4.3"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Phil.4.3"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Phil.4.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.4.3"
∷ word (ὧ ∷ ν ∷ []) "Phil.4.3"
∷ word (τ ∷ ὰ ∷ []) "Phil.4.3"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Phil.4.3"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.3"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Phil.4.3"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Phil.4.3"
∷ word (Χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.4"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.4"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.4.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Phil.4.4"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Phil.4.4"
∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Phil.4.4"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.4"
∷ word (τ ∷ ὸ ∷ []) "Phil.4.5"
∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ ὲ ∷ ς ∷ []) "Phil.4.5"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.5"
∷ word (γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Phil.4.5"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.4.5"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Phil.4.5"
∷ word (ὁ ∷ []) "Phil.4.5"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Phil.4.5"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Phil.4.5"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Phil.4.6"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾶ ∷ τ ∷ ε ∷ []) "Phil.4.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Phil.4.6"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.6"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Phil.4.6"
∷ word (τ ∷ ῇ ∷ []) "Phil.4.6"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Phil.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.6"
∷ word (τ ∷ ῇ ∷ []) "Phil.4.6"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Phil.4.6"
∷ word (μ ∷ ε ∷ τ ∷ []) "Phil.4.6"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Phil.4.6"
∷ word (τ ∷ ὰ ∷ []) "Phil.4.6"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Phil.4.6"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.6"
∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Phil.4.6"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Phil.4.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.4.6"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Phil.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.7"
∷ word (ἡ ∷ []) "Phil.4.7"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Phil.4.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.4.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Phil.4.7"
∷ word (ἡ ∷ []) "Phil.4.7"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Phil.4.7"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.4.7"
∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Phil.4.7"
∷ word (φ ∷ ρ ∷ ο ∷ υ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Phil.4.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Phil.4.7"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Phil.4.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.7"
∷ word (τ ∷ ὰ ∷ []) "Phil.4.7"
∷ word (ν ∷ ο ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Phil.4.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.7"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.7"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.4.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.4.7"
∷ word (Τ ∷ ὸ ∷ []) "Phil.4.8"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ό ∷ ν ∷ []) "Phil.4.8"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Phil.4.8"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ά ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (ἁ ∷ γ ∷ ν ∷ ά ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ι ∷ ∙λ ∷ ῆ ∷ []) "Phil.4.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Phil.4.8"
∷ word (ε ∷ ὔ ∷ φ ∷ η ∷ μ ∷ α ∷ []) "Phil.4.8"
∷ word (ε ∷ ἴ ∷ []) "Phil.4.8"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.4.8"
∷ word (ἀ ∷ ρ ∷ ε ∷ τ ∷ ὴ ∷ []) "Phil.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.8"
∷ word (ε ∷ ἴ ∷ []) "Phil.4.8"
∷ word (τ ∷ ι ∷ ς ∷ []) "Phil.4.8"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Phil.4.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Phil.4.8"
∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Phil.4.8"
∷ word (ἃ ∷ []) "Phil.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.9"
∷ word (ἐ ∷ μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.9"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.9"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Phil.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.9"
∷ word (ε ∷ ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.9"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.9"
∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Phil.4.9"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Phil.4.9"
∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.9"
∷ word (ὁ ∷ []) "Phil.4.9"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Phil.4.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.4.9"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Phil.4.9"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Phil.4.9"
∷ word (μ ∷ ε ∷ θ ∷ []) "Phil.4.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.9"
∷ word (Ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ ν ∷ []) "Phil.4.10"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.10"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.10"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Phil.4.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ω ∷ ς ∷ []) "Phil.4.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.4.10"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Phil.4.10"
∷ word (π ∷ ο ∷ τ ∷ ὲ ∷ []) "Phil.4.10"
∷ word (ἀ ∷ ν ∷ ε ∷ θ ∷ ά ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Phil.4.10"
∷ word (τ ∷ ὸ ∷ []) "Phil.4.10"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Phil.4.10"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Phil.4.10"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Phil.4.10"
∷ word (ἐ ∷ φ ∷ []) "Phil.4.10"
∷ word (ᾧ ∷ []) "Phil.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.10"
∷ word (ἐ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Phil.4.10"
∷ word (ἠ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Phil.4.10"
∷ word (δ ∷ έ ∷ []) "Phil.4.10"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Phil.4.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.4.11"
∷ word (κ ∷ α ∷ θ ∷ []) "Phil.4.11"
∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Phil.4.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Phil.4.11"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Phil.4.11"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Phil.4.11"
∷ word (ἔ ∷ μ ∷ α ∷ θ ∷ ο ∷ ν ∷ []) "Phil.4.11"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.11"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Phil.4.11"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Phil.4.11"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ ρ ∷ κ ∷ η ∷ ς ∷ []) "Phil.4.11"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Phil.4.11"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Phil.4.12"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.4.12"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.12"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.12"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Phil.4.12"
∷ word (μ ∷ ε ∷ μ ∷ ύ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾶ ∷ ν ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Phil.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.12"
∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Phil.4.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.4.13"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ω ∷ []) "Phil.4.13"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.13"
∷ word (τ ∷ ῷ ∷ []) "Phil.4.13"
∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ί ∷ []) "Phil.4.13"
∷ word (μ ∷ ε ∷ []) "Phil.4.13"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Phil.4.14"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Phil.4.14"
∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Phil.4.14"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ έ ∷ ς ∷ []) "Phil.4.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.4.14"
∷ word (τ ∷ ῇ ∷ []) "Phil.4.14"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Phil.4.14"
∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Phil.4.15"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.15"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Phil.4.15"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ι ∷ π ∷ π ∷ ή ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Phil.4.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.4.15"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.15"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῇ ∷ []) "Phil.4.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.4.15"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.4.15"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Phil.4.15"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Phil.4.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Phil.4.15"
∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Phil.4.15"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ []) "Phil.4.15"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.4.15"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "Phil.4.15"
∷ word (ἐ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Phil.4.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Phil.4.15"
∷ word (δ ∷ ό ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.15"
∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Phil.4.15"
∷ word (ε ∷ ἰ ∷ []) "Phil.4.15"
∷ word (μ ∷ ὴ ∷ []) "Phil.4.15"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Phil.4.15"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Phil.4.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.16"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.16"
∷ word (Θ ∷ ε ∷ σ ∷ σ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ ί ∷ κ ∷ ῃ ∷ []) "Phil.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.16"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Phil.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.16"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Phil.4.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.4.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Phil.4.16"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Phil.4.16"
∷ word (μ ∷ ο ∷ ι ∷ []) "Phil.4.16"
∷ word (ἐ ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "Phil.4.16"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Phil.4.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Phil.4.17"
∷ word (ἐ ∷ π ∷ ι ∷ ζ ∷ η ∷ τ ∷ ῶ ∷ []) "Phil.4.17"
∷ word (τ ∷ ὸ ∷ []) "Phil.4.17"
∷ word (δ ∷ ό ∷ μ ∷ α ∷ []) "Phil.4.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Phil.4.17"
∷ word (ἐ ∷ π ∷ ι ∷ ζ ∷ η ∷ τ ∷ ῶ ∷ []) "Phil.4.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.4.17"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Phil.4.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Phil.4.17"
∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Phil.4.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.4.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Phil.4.17"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.17"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ω ∷ []) "Phil.4.18"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.18"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.4.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.18"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ω ∷ []) "Phil.4.18"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Phil.4.18"
∷ word (δ ∷ ε ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Phil.4.18"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Phil.4.18"
∷ word (Ἐ ∷ π ∷ α ∷ φ ∷ ρ ∷ ο ∷ δ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Phil.4.18"
∷ word (τ ∷ ὰ ∷ []) "Phil.4.18"
∷ word (π ∷ α ∷ ρ ∷ []) "Phil.4.18"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.18"
∷ word (ὀ ∷ σ ∷ μ ∷ ὴ ∷ ν ∷ []) "Phil.4.18"
∷ word (ε ∷ ὐ ∷ ω ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Phil.4.18"
∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Phil.4.18"
∷ word (δ ∷ ε ∷ κ ∷ τ ∷ ή ∷ ν ∷ []) "Phil.4.18"
∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Phil.4.18"
∷ word (τ ∷ ῷ ∷ []) "Phil.4.18"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Phil.4.18"
∷ word (ὁ ∷ []) "Phil.4.19"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.19"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Phil.4.19"
∷ word (μ ∷ ο ∷ υ ∷ []) "Phil.4.19"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Phil.4.19"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Phil.4.19"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Phil.4.19"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.19"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Phil.4.19"
∷ word (τ ∷ ὸ ∷ []) "Phil.4.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Phil.4.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.4.19"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.19"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Phil.4.19"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.19"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.4.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.4.19"
∷ word (τ ∷ ῷ ∷ []) "Phil.4.20"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.20"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Phil.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Phil.4.20"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Phil.4.20"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.20"
∷ word (ἡ ∷ []) "Phil.4.20"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Phil.4.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Phil.4.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Phil.4.20"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Phil.4.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Phil.4.20"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Phil.4.20"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Phil.4.20"
∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Phil.4.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Phil.4.21"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Phil.4.21"
∷ word (ἐ ∷ ν ∷ []) "Phil.4.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Phil.4.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.4.21"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Phil.4.21"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.4.21"
∷ word (ο ∷ ἱ ∷ []) "Phil.4.21"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Phil.4.21"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Phil.4.21"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Phil.4.21"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Phil.4.22"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Phil.4.22"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Phil.4.22"
∷ word (ο ∷ ἱ ∷ []) "Phil.4.22"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Phil.4.22"
∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "Phil.4.22"
∷ word (δ ∷ ὲ ∷ []) "Phil.4.22"
∷ word (ο ∷ ἱ ∷ []) "Phil.4.22"
∷ word (ἐ ∷ κ ∷ []) "Phil.4.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Phil.4.22"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Phil.4.22"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Phil.4.22"
∷ word (ἡ ∷ []) "Phil.4.23"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Phil.4.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.4.23"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Phil.4.23"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Phil.4.23"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Phil.4.23"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Phil.4.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Phil.4.23"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Phil.4.23"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Phil.4.23"
∷ []
|
{
"alphanum_fraction": 0.343901484,
"avg_line_length": 45.2406841784,
"ext": "agda",
"hexsha": "b735e16ba7d937da68872976071ba9b4cf6c09d3",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/Phil.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/Phil.agda",
"max_line_length": 90,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/Phil.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 51070,
"size": 74059
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Orders.Total.Definition
module Orders.Total.Lemmas {a b : _} {A : Set a} (order : TotalOrder A {b}) where
open TotalOrder order
equivMin : {x y : A} → (x < y) → min x y ≡ x
equivMin {x} {y} x<y with totality x y
equivMin {x} {y} x<y | inl (inl x₁) = refl
equivMin {x} {y} x<y | inl (inr y<x) = exFalso (irreflexive (<Transitive x<y y<x))
equivMin {x} {y} x<y | inr x=y rewrite x=y = refl
equivMin' : {x y : A} → (min x y ≡ x) → (x < y) || (x ≡ y)
equivMin' {x} {y} minEq with totality x y
equivMin' {x} {y} minEq | inl (inl x<y) = inl x<y
equivMin' {x} {y} minEq | inl (inr y<x) = exFalso (irreflexive (identityOfIndiscernablesLeft _<_ y<x minEq))
equivMin' {x} {y} minEq | inr x=y = inr x=y
minCommutes : (x y : A) → (min x y) ≡ (min y x)
minCommutes x y with totality x y
minCommutes x y | inl (inl x<y) with totality y x
minCommutes x y | inl (inl x<y) | inl (inl y<x) = exFalso (irreflexive (<Transitive y<x x<y))
minCommutes x y | inl (inl x<y) | inl (inr x<y') = refl
minCommutes x y | inl (inl x<y) | inr y=x = equalityCommutative y=x
minCommutes x y | inl (inr y<x) with totality y x
minCommutes x y | inl (inr y<x) | inl (inl y<x') = refl
minCommutes x y | inl (inr y<x) | inl (inr x<y) = exFalso (irreflexive (<Transitive y<x x<y))
minCommutes x y | inl (inr y<x) | inr y=x = refl
minCommutes x y | inr x=y with totality y x
minCommutes x y | inr x=y | inl (inl x₁) = x=y
minCommutes x y | inr x=y | inl (inr x₁) = refl
minCommutes x y | inr x=y | inr x₁ = x=y
minIdempotent : (x : A) → min x x ≡ x
minIdempotent x with totality x x
minIdempotent x | inl (inl x₁) = refl
minIdempotent x | inl (inr x₁) = refl
minIdempotent x | inr x₁ = refl
swapMin : {x y z : A} → (min x (min y z)) ≡ min y (min x z)
swapMin {x} {y} {z} with totality y z
swapMin {x} {y} {z} | inl (inl y<z) with totality x z
swapMin {x} {y} {z} | inl (inl y<z) | inl (inl x<z) = minCommutes x y
swapMin {x} {y} {z} | inl (inl y<z) | inl (inr z<x) with totality x y
swapMin {x} {y} {z} | inl (inl y<z) | inl (inr z<x) | inl (inl x<y) = exFalso (irreflexive (<Transitive y<z (<Transitive z<x x<y)))
swapMin {x} {y} {z} | inl (inl y<z) | inl (inr z<x) | inl (inr y<x) = equalityCommutative (equivMin y<z)
swapMin {x} {y} {z} | inl (inl y<z) | inl (inr z<x) | inr x=y rewrite x=y = equalityCommutative (equivMin y<z)
swapMin {x} {y} {z} | inl (inl y<z) | inr x=z = minCommutes x y
swapMin {x} {y} {z} | inl (inr z<y) with totality x z
swapMin {x} {y} {z} | inl (inr z<y) | inl (inl x<z) rewrite minCommutes y x = equalityCommutative (equivMin (<Transitive x<z z<y))
swapMin {x} {y} {z} | inl (inr z<y) | inl (inr z<x) with totality y z
swapMin {x} {y} {z} | inl (inr z<y) | inl (inr z<x) | inl (inl y<z) = exFalso (irreflexive (<Transitive z<y y<z))
swapMin {x} {y} {z} | inl (inr z<y) | inl (inr z<x) | inl (inr z<y') = refl
swapMin {x} {y} {z} | inl (inr z<y) | inl (inr z<x) | inr y=z = equalityCommutative y=z
swapMin {x} {y} {z} | inl (inr z<y) | inr x=z rewrite x=z | minCommutes y z = equalityCommutative (equivMin z<y)
swapMin {x} {y} {z} | inr y=z with totality x z
swapMin {x} {y} {z} | inr y=z | inl (inl x<z) = minCommutes x y
swapMin {x} {y} {z} | inr y=z | inl (inr z<x) rewrite y=z | minIdempotent z | minCommutes x z = equivMin z<x
swapMin {x} {y} {z} | inr y=z | inr x=z = minCommutes x y
minMin : {x y : A} → (min x (min x y)) ≡ min x y
minMin {x} {y} with totality x y
minMin {x} {y} | inl (inl x<y) = minIdempotent x
minMin {x} {y} | inl (inr y<x) with totality x y
minMin {x} {y} | inl (inr y<x) | inl (inl x<y) = exFalso (irreflexive (<Transitive y<x x<y))
minMin {x} {y} | inl (inr y<x) | inl (inr y<x') = refl
minMin {x} {y} | inl (inr y<x) | inr x=y = x=y
minMin {x} {y} | inr x=y = minIdempotent x
minFromBoth : {l x y : A} → (l < x) → (l < y) → (l < (min x y))
minFromBoth {a} {x = x} {y} prX prY with totality x y
minFromBoth {a} prX prY | inl (inl x<y) = prX
minFromBoth {a} prX prY | inl (inr y<x) = prY
minFromBoth {a} prX prY | inr x=y = prX
|
{
"alphanum_fraction": 0.6086419753,
"avg_line_length": 51.2658227848,
"ext": "agda",
"hexsha": "f63668100e42d5b9e118a43405424fb26a45bd8a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Orders/Total/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Orders/Total/Lemmas.agda",
"max_line_length": 131,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Orders/Total/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1823,
"size": 4050
}
|
module Dave.LeibnizEquality where
open import Dave.Equality public
_≐_ : ∀ {A : Set} (x y : A) → Set₁
_≐_ {A} x y = ∀ (P : A → Set) → P x → P y
refl-≐ : ∀ {A : Set} {x : A} → x ≐ x
refl-≐ P Px = Px
trans-≐ : ∀ {A : Set} {x y z : A} → x ≐ y → y ≐ z → x ≐ z
trans-≐ x≐y y≐z P Px = y≐z P (x≐y P Px)
sym-≐ : ∀ {A : Set} {x y : A} → x ≐ y → y ≐ x
sym-≐ {A} {x} {y} x≐y P = Qy
where
Q : A → Set
Q z = P z → P x
Qx : Q x
Qx = refl-≐ P
Qy : Q y
Qy = x≐y Q Qx
≡→≐ : ∀ {A : Set} {x y : A} → x ≡ y → x ≐ y
≡→≐ x≡y P = subst P x≡y
≐→≡ : ∀ {A : Set} {x y : A} → x ≐ y → x ≡ y
≐→≡ {A} {x} {y} x≐y = Qy
where
Q : A → Set
Q z = x ≡ z
Qx : Q x
Qx = refl
Qy : Q y
Qy = x≐y Q Qx
|
{
"alphanum_fraction": 0.3212258797,
"avg_line_length": 25.9117647059,
"ext": "agda",
"hexsha": "a23f5a9198df1454935735cf7085df5257f59453",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/LeibnizEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/LeibnizEquality.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/LeibnizEquality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 423,
"size": 881
}
|
------------------------------------------------------------------------
-- Code used to construct tactics aimed at making equational reasoning
-- proofs more readable
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Tactic.By {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
import Agda.Builtin.Bool as B
open import Agda.Builtin.Nat using (_==_)
open import Agda.Builtin.String
open import Prelude
open import List eq
open import Monad eq
open import Monad.State eq hiding (set)
open import TC-monad eq as TC hiding (Type)
-- Constructs the type of a "cong" function for functions with the
-- given number of arguments. The first argument must be a function
-- that constructs the type of equalities between its two arguments.
type-of-cong : (Term → Term → TC.Type) → ℕ → TC.Type
type-of-cong equality n = levels (suc n)
where
-- The examples below are given for n = 3.
-- Generates x₁ x₂ x₃ or y₁ y₂ y₃.
arguments : ℕ → ℕ → List (Arg Term)
arguments delta (suc m) = varg (var (delta + 2 * m + 1 + n) []) ∷
arguments delta m
arguments delta zero = []
-- Generates x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → f x₁ x₂ x₃ ≡ f y₁ y₂ y₃.
equalities : ℕ → TC.Type
equalities (suc m) =
pi (varg (equality (var (1 + 2 * m + 1 + (n ∸ suc m)) [])
(var (0 + 2 * m + 1 + (n ∸ suc m)) []))) $
abs "x≡y" $
equalities m
equalities zero =
equality (var n (arguments 1 n))
(var n (arguments 0 n))
-- Generates A → B → C → D.
function-type : ℕ → TC.Type
function-type (suc m) = pi (varg (var (3 * n) []))
(abs "_" (function-type m))
function-type zero = var (3 * n) []
-- Generates ∀ {x₁ y₁ x₂ y₂ x₃ y₃} → …
variables : ℕ → TC.Type
variables (suc m) =
pi (harg unknown) $ abs "x" $
pi (harg unknown) $ abs "y" $
variables m
variables zero =
pi (varg (function-type n)) $ abs "f" $
equalities n
-- Generates
-- {A : Set a} {B : Set b} {C : Set c} {D : Set d} → ….
types : ℕ → TC.Type
types (suc m) = pi (harg (agda-sort (set (var n [])))) $ abs "A" $
types m
types zero = variables n
-- Generates {a b c d : Level} → ….
levels : ℕ → TC.Type
levels (suc n) = pi (harg (def (quote Level) [])) $ abs "a" $
levels n
levels zero = types (suc n)
-- Used to mark the subterms that should be rewritten by the ⟨by⟩
-- tactic.
--
-- The idea to mark subterms in this way is taken from Bradley
-- Hardy, who used it in the Holes library
-- (https://github.com/bch29/agda-holes).
⟨_⟩ : ∀ {a} {A : Type a} → A → A
⟨_⟩ = id
{-# NOINLINE ⟨_⟩ #-}
module _
(deconstruct-equality :
TC.Type → TC (Maybe (Term × TC.Type × Term × Term)))
-- Tries to deconstruct a type which is expected to be an equality,
-- _≡_ {a = a} {A = A} x y, but in reduced form. Upon success the
-- level a, the type A, the left-hand side x, and the right-hand
-- side y are returned. If it is hard to determine a or A, then
-- unknown can be returned instead. If the type does not have the
-- right form, then nothing is returned.
where
private
-- A variant of blockOnMeta which can print a debug message.
blockOnMeta′ : {A : Type} → String → Meta → TC A
blockOnMeta′ s m = do
debugPrint "by" 20
(strErr "by/⟨by⟩ is blocking on meta" ∷
strErr (primShowMeta m) ∷ strErr "in" ∷ strErr s ∷ [])
blockOnMeta m
-- A variant of deconstruct-equality with the following
-- differences:
-- * If the type is a meta-variable, then the computation blocks.
-- * If the type does not have the right form (and is not a
-- meta-variable), then a type error is raised, and the given
-- list is used as the error message.
deconstruct-equality′ :
List ErrorPart → TC.Type → TC (Term × TC.Type × Term × Term)
deconstruct-equality′ err (meta m _) =
blockOnMeta′ "deconstruct-equality′" m
deconstruct-equality′ err t = do
just r ← deconstruct-equality t
where nothing → typeError err
return r
-- The computation apply-to-metas A t tries to apply the term t to
-- as many fresh meta-variables as possible (based on its type,
-- A). The type of the resulting term is returned.
apply-to-metas : TC.Type → Term → TC (TC.Type × Term)
apply-to-metas A t = apply A t =<< compute-args fuel [] A
where
-- Fuel, used to ensure termination.
fuel : ℕ
fuel = 100
mutual
compute-args :
ℕ → List (Arg Term) → TC.Type → TC (List (Arg Term))
compute-args zero _ _ =
typeError (strErr "apply-to-metas failed" ∷ [])
compute-args (suc n) args τ =
compute-args′ n args =<< reduce τ
compute-args′ :
ℕ → List (Arg Term) → TC.Type → TC (List (Arg Term))
compute-args′ n args (pi a@(arg i _) (abs _ τ)) =
extendContext a $
compute-args n (arg i unknown ∷ args) τ
compute-args′ n args (meta x _) =
blockOnMeta′ "apply-to-metas" x
compute-args′ n args _ = return (reverse args)
-- The ⟨by⟩ tactic.
--
-- The tactic ⟨by⟩ t is intended for use with goals of the form
-- C [ ⟨ e₁ ⟩ ] ≡ e₂ (with some limitations). The tactic tries to
-- generate the term cong (λ x → C [ x ]) t′, where t′ is t applied
-- to as many meta-variables as possible (based on its type), and if
-- that term fails to unify with the goal type, then the term
-- cong (λ x → C [ x ]) (sym t′) is generated instead.
module ⟨By⟩
{Ctxt : Type}
(context : TC Ctxt)
-- A "context" type and a computation that computes some information
-- related to the current context. The information is only
-- guaranteed to be valid in the current context.
(sym : Ctxt → Term → Term)
-- An implementation of symmetry.
(cong : Ctxt → Term → Term → Term → Term → Term)
-- An implementation of cong. Arguments: left-hand side,
-- right-hand side, function, equality.
(cong-with-lhs-and-rhs : Bool)
-- Should the cong function be applied to the "left-hand side" and
-- the "right-hand side" (the two sides of the inferred type of
-- the constructed equality proof), or should those arguments be
-- left for Agda's unification machinery?
where
private
-- A non-macro variant of ⟨by⟩ that returns the (first)
-- constructed term.
⟨by⟩-tactic : ∀ {a} {A : Type a} → A → Term → TC Term
⟨by⟩-tactic {A = A} t goal = do
-- To avoid wasted work the first block below, which can block
-- the tactic, is run before the second one.
goal-type ← reduce =<< inferType goal
_ , _ , lhs , _ ← deconstruct-equality′ err₁ goal-type
f ← construct-context lhs
A ← quoteTC A
t ← quoteTC t
A , t ← apply-to-metas A t
if not cong-with-lhs-and-rhs
then conclude unknown unknown f t
else do
A ← reduce A
_ , _ , lhs , rhs ← deconstruct-equality′ err₂ A
conclude lhs rhs f t
where
err₁ = strErr "⟨by⟩: ill-formed goal" ∷ []
err₂ = strErr "⟨by⟩: ill-formed proof" ∷ []
try : Term → TC ⊤
try t = do
debugPrint "by" 10 $
strErr "Term tried by ⟨by⟩:" ∷ termErr t ∷ []
unify t goal
conclude : Term → Term → Term → Term → TC Term
conclude lhs rhs f t = do
ctxt ← context
let t₁ = cong ctxt lhs rhs f t
t₂ = cong ctxt rhs lhs f (sym ctxt t)
catchTC (try t₁) (try t₂)
return t₁
mutual
-- The natural number argument is the variable that should
-- be used for the hole. The natural number in the state is
-- the number of occurrences of the marker that have been
-- found.
-- The code traverses arguments from right to left: in some
-- cases it is better to block on the last meta-variable
-- than the first one (because the first one might get
-- instantiated before the last one, so when the last one is
-- instantiated all the others have hopefully already been
-- instantiated).
context-term : ℕ → Term → StateT ℕ TC Term
context-term n = λ where
(def f args) → if eq-Name f (quote ⟨_⟩)
then modify suc >> return (var n [])
else def f ⟨$⟩ context-args n args
(var x args) → var (weaken-var n 1 x) ⟨$⟩
context-args n args
(con c args) → con c ⟨$⟩ context-args n args
(lam v t) → lam v ⟨$⟩ context-abs n t
(pi a b) → flip pi ⟨$⟩ context-abs n b ⊛ context-arg n a
(meta m _) → liftʳ $ blockOnMeta′ "construct-context" m
t → return (weaken-term n 1 t)
context-abs : ℕ → Abs Term → StateT ℕ TC (Abs Term)
context-abs n (abs s t) = abs s ⟨$⟩ context-term (suc n) t
context-arg : ℕ → Arg Term → StateT ℕ TC (Arg Term)
context-arg n (arg i t) = arg i ⟨$⟩ context-term n t
context-args :
ℕ → List (Arg Term) → StateT ℕ TC (List (Arg Term))
context-args n = λ where
[] → return []
(a ∷ as) → flip _∷_ ⟨$⟩ context-args n as ⊛ context-arg n a
construct-context : Term → TC Term
construct-context lhs = do
debugPrint "by" 20
(strErr "⟨by⟩ was given the left-hand side" ∷
termErr lhs ∷ [])
body , n ← run (context-term 0 lhs) 0
case n of λ where
(suc _) → return (lam visible (abs "x" body))
zero → typeError $
strErr "⟨by⟩: no occurrence of ⟨_⟩ found" ∷ []
macro
-- The ⟨by⟩ tactic.
⟨by⟩ : ∀ {a} {A : Type a} → A → Term → TC ⊤
⟨by⟩ t goal = do
⟨by⟩-tactic t goal
return _
-- Unit tests can be found in Tactic.By.Parametrised.Tests,
-- Tactic.By.Propositional, Tactic.By.Path and Tactic.By.Id.
-- If ⟨by⟩ t would have been successful, then debug-⟨by⟩ t
-- raises an error message that includes the (first) term that
-- would have been constructed by ⟨by⟩.
debug-⟨by⟩ : ∀ {a} {A : Type a} → A → Term → TC ⊤
debug-⟨by⟩ t goal = do
t ← ⟨by⟩-tactic t goal
typeError (strErr "Term found by ⟨by⟩:" ∷ termErr t ∷ [])
-- The by tactic.
module By
(sym : Term → Term)
-- An implementation of symmetry.
(equality : Term → Term → TC.Type)
-- Constructs the type of equalities between its two arguments.
(refl : Term → Term → Term → Term)
-- An implementation of reflexivity. Should take a level a, a type
-- A : Set a, and a value x : A, and return a proof of x ≡ x.
(make-cong : ℕ → TC Name)
-- The computation make-cong n should generate a "cong" function
-- for functions with n arguments. The type of this function
-- should match that generated by type-of-cong equality n. (The
-- functions are used fully applied, and implicit arguments are
-- not given explicitly, so hopefully the ordering of implicit
-- arguments with respect to each other and the explicit arguments
-- does not matter.)
(extra-check-in-try-refl : Bool)
-- When the by tactic tries to solve a subgoal using reflexivity,
-- should it make sure that, afterwards, the goal meta-variable
-- reduces to something that is not a meta-variable?
where
private
-- The call by-tactic t goal tries to use (non-dependent) "cong"
-- functions, reflexivity and t (via refine) to solve the given
-- goal (which must be an equality).
--
-- The constructed term is returned.
by-tactic : ∀ {a} {A : Type a} → A → Term → TC Term
by-tactic {A = A} t goal = do
A ← quoteTC A
t ← quoteTC t
_ , t ← apply-to-metas A t
by-tactic′ fuel t goal
where
-- Fuel, used to ensure termination. (Termination could
-- perhaps be proved in some way, but using fuel was easier.)
fuel : ℕ
fuel = 100
-- The tactic's main loop.
by-tactic′ : ℕ → Term → Term → TC Term
by-tactic′ zero _ _ = typeError
(strErr "by: no more fuel" ∷ [])
by-tactic′ (suc n) t goal = do
goal-type ← reduce =<< inferType goal
block-if-meta goal-type
catchTC (try-refl goal-type) $
catchTC (try t) $
catchTC (try (sym t)) $
try-cong goal-type
where
-- Error messages.
ill-formed : List ErrorPart
ill-formed = strErr "by: ill-formed goal" ∷ []
failure : {A : Type} → TC A
failure = typeError (strErr "by failed" ∷ [])
-- Blocks if the goal type is not sufficiently concrete.
-- Raises a type error if the goal type is not an equality.
block-if-meta : TC.Type → TC ⊤
block-if-meta type = do
eq ← deconstruct-equality′ ill-formed type
case eq of λ where
(_ , _ , meta m _ , _) → blockOnMeta′
"block-if-meta (left)" m
(_ , _ , _ , meta m _) → blockOnMeta′
"block-if-meta (right)" m
_ → return _
-- Tries to solve the goal using reflexivity.
try-refl : TC.Type → TC Term
try-refl type = do
a , A , lhs , _ ← deconstruct-equality′ ill-formed type
let t′ = refl a A lhs
unify t′ goal
if not extra-check-in-try-refl
then return t′
else do
-- If unification succeeds, but the goal is solved by a
-- meta-variable, then this attempt is aborted. (A check
-- similar to this one was suggested by Ulf Norell.)
-- Potential future improvement: If unification results
-- in unsolved constraints, block until progress has
-- been made on those constraints.
goal ← reduce goal
case goal of λ where
(meta _ _) → failure
_ → return t′
-- Tries to solve the goal using the given term.
try : Term → TC Term
try t = do
unify t goal
return t
-- Tries to solve the goal using one of the "cong"
-- functions.
try-cong : TC.Type → TC Term
try-cong type = do
_ , _ , y , z ← deconstruct-equality′ ill-formed type
head , ys , zs ← heads y z
args ← arguments ys zs
cong ← make-cong (length args)
let t = def cong (varg head ∷ args)
unify t goal
return t
where
-- Checks if the heads are equal. If they are, then the
-- function figures out how many arguments are equal, and
-- returns the (unique) head applied to these arguments,
-- plus two lists containing the remaining arguments.
heads : Term → Term →
TC (Term × List (Arg Term) × List (Arg Term))
heads = λ
{ (def y ys) (def z zs) → helper (primQNameEquality y z)
(def y) (def z) ys zs
; (con y ys) (con z zs) → helper (primQNameEquality y z)
(con y) (con z) ys zs
; (var y ys) (var z zs) → helper (y == z)
(var y) (var z) ys zs
; _ _ → failure
}
where
find-equal-arguments :
List (Arg Term) → List (Arg Term) →
List (Arg Term) × List (Arg Term) × List (Arg Term)
find-equal-arguments [] zs = [] , [] , zs
find-equal-arguments ys [] = [] , ys , []
find-equal-arguments (y ∷ ys) (z ∷ zs) with eq-Arg y z
... | false = [] , y ∷ ys , z ∷ zs
... | true with find-equal-arguments ys zs
... | (es , ys′ , zs′) = y ∷ es , ys′ , zs′
helper : B.Bool → _ → _ → _ → _ → _
helper B.false y z _ _ =
typeError (strErr "by: distinct heads:" ∷
termErr (y []) ∷ termErr (z []) ∷ [])
helper B.true y _ ys zs =
let es , ys′ , zs′ = find-equal-arguments ys zs in
return (y es , ys′ , zs′)
-- Tries to prove that the argument lists are equal.
arguments : List (Arg Term) → List (Arg Term) →
TC (List (Arg Term))
arguments [] [] = return []
arguments (arg (arg-info visible _) y ∷ ys)
(arg (arg-info visible _) z ∷ zs) = do
-- Relevance is ignored.
goal ← checkType unknown (equality y z)
t ← by-tactic′ n t goal
args ← arguments ys zs
return (varg t ∷ args)
-- Hidden and instance arguments are ignored.
arguments (arg (arg-info hidden _) _ ∷ ys) zs = arguments ys zs
arguments (arg (arg-info instance′ _) _ ∷ ys) zs = arguments ys zs
arguments ys (arg (arg-info hidden _) _ ∷ zs) = arguments ys zs
arguments ys (arg (arg-info instance′ _) _ ∷ zs) = arguments ys zs
arguments _ _ = failure
macro
-- The call by t tries to use t (along with congruence,
-- reflexivity and symmetry) to solve the goal, which must be an
-- equality.
by : ∀ {a} {A : Type a} → A → Term → TC ⊤
by t goal = do
by-tactic t goal
return _
-- Unit tests can be found in Tactic.By.Propositional,
-- Tactic.By.Path and Tactic.By.Id.
-- If by t would have been successful, then debug-by t raises an
-- error message that includes the term that would have been
-- constructed by by.
debug-by : ∀ {a} {A : Type a} → A → Term → TC ⊤
debug-by t goal = do
t ← by-tactic t goal
typeError (strErr "Term found by by:" ∷ termErr t ∷ [])
-- A definition that provides no information. Intended to be used
-- together with the by tactic: "by definition".
definition : ⊤
definition = _
-- A module that exports both tactics. The "context" type is not
-- supported.
module Tactics
(deconstruct-equality :
TC.Type → TC (Maybe (Term × TC.Type × Term × Term)))
(equality : Term → Term → TC.Type)
(refl : Term → Term → Term → Term)
(sym : Term → Term)
(cong : Term → Term → Term → Term → Term)
(cong-with-lhs-and-rhs : Bool)
(make-cong : ℕ → TC Name)
(extra-check-in-try-refl : Bool)
where
open ⟨By⟩ deconstruct-equality (return tt) (λ _ → sym) (λ _ → cong)
cong-with-lhs-and-rhs public
open By deconstruct-equality sym equality refl make-cong
extra-check-in-try-refl public
|
{
"alphanum_fraction": 0.5365778689,
"avg_line_length": 36.9696969697,
"ext": "agda",
"hexsha": "56ab20724fd920e99f8acf4310740e7b31126b86",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Tactic/By.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Tactic/By.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Tactic/By.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 5324,
"size": 19520
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Unit.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
open import Cubical.Data.Unit.Base
open import Cubical.Data.Prod.Base
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
isContrUnit : isContr Unit
isContrUnit = tt , λ {tt → refl}
isPropUnit : isProp Unit
isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit
isSetUnit : isSet Unit
isSetUnit = isProp→isSet isPropUnit
isOfHLevelUnit : (n : HLevel) → isOfHLevel n Unit
isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit
diagonal-unit : Unit ≡ Unit × Unit
diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt})
fibId : ∀ {ℓ} (A : Type ℓ) → (fiber (λ (x : A) → tt) tt) ≡ A
fibId A = isoToPath
(iso fst
(λ a → a , refl)
(λ _ → refl)
(λ a i → fst a
, isOfHLevelSuc 1 isPropUnit _ _ (snd a) refl i))
|
{
"alphanum_fraction": 0.6598939929,
"avg_line_length": 29.7894736842,
"ext": "agda",
"hexsha": "8964cc811a205cff1c6af85dab0e221caecaa290",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 355,
"size": 1132
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients.Base
open import Cubical.HITs.PropositionalTruncation.Base
open import Cubical.Foundations.Equiv.Fiberwise
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
private
variable
ℓA ℓA' ℓ ℓ' ℓ≅A ℓ≅A' ℓB : Level
-- Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
-- Rel A B ℓ' = A → B → Type ℓ'
Rel : (A : Type ℓA) (B : Type ℓB) (ℓ : Level) → Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℓA ℓB))
Rel A B ℓ = A → B → Type ℓ
PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b)
idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ
idPropRel A .fst a a' = ∥ a ≡ a' ∥
idPropRel A .snd _ _ = squash
invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ}
→ PropRel A B ℓ' → PropRel B A ℓ'
invPropRel R .fst b a = R .fst a b
invPropRel R .snd b a = R .snd a b
compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ}
→ PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ''))
compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥
compPropRel R S .snd _ _ = squash
graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ
graphRel f a b = f a ≡ b
module _ {ℓ ℓ' : Level} {A : Type ℓ} (_R_ : Rel A A ℓ') where
-- R is reflexive
isRefl : Type (ℓ-max ℓ ℓ')
isRefl = (a : A) → a R a
-- R is symmetric
isSym : Type (ℓ-max ℓ ℓ')
isSym = (a b : A) → a R b → b R a
-- R is transitive
isTrans : Type (ℓ-max ℓ ℓ')
isTrans = (a b c : A) → a R b → b R c → a R c
record isEquivRel : Type (ℓ-max ℓ ℓ') where
constructor equivRel
field
reflexive : isRefl
symmetric : isSym
transitive : isTrans
isPropValued : Type (ℓ-max ℓ ℓ')
isPropValued = (a b : A) → isProp (a R b)
isEffective : Type (ℓ-max ℓ ℓ')
isEffective =
(a b : A) → isEquiv (eq/ {R = _R_} a b)
-- the total space corresponding to the binary relation w.r.t. a
relSinglAt : (a : A) → Type (ℓ-max ℓ ℓ')
relSinglAt a = Σ[ a' ∈ A ] (a R a')
-- the statement that the total space is contractible at any a
contrRelSingl : Type (ℓ-max ℓ ℓ')
contrRelSingl = (a : A) → isContr (relSinglAt a)
-- assume a reflexive binary relation
module _ (ρ : isRefl) where
-- identity is the least reflexive relation
≡→R : {a a' : A} → a ≡ a' → a R a'
-- ≡→R {a} {a'} p = subst (λ z → a R z) p (ρ a)
≡→R {a} {a'} p = J (λ z q → a R z) (ρ a) p
-- what it means for a reflexive binary relation to be univalent
isUnivalent : Type (ℓ-max ℓ ℓ')
isUnivalent = (a a' : A) → isEquiv (≡→R {a} {a'})
-- helpers for contrRelSingl→isUnivalent
private
module _ (a : A) where
-- wrapper for ≡→R
f = λ (a' : A) (p : a ≡ a') → ≡→R {a} {a'} p
-- the corresponding total map that univalence
-- of R will be reduced to
totf : singl a → Σ[ a' ∈ A ] (a R a')
totf (a' , p) = (a' , f a' p)
-- if the total space corresponding to R is contractible
-- then R is univalent
-- because the singleton at a is also contractible
contrRelSingl→isUnivalent : contrRelSingl → isUnivalent
contrRelSingl→isUnivalent c a = q
where
abstract
q = fiberEquiv (λ a' → a ≡ a')
(λ a' → a R a')
(f a)
(snd (propBiimpl→Equiv (isContr→isProp (isContrSingl a))
(isContr→isProp (c a))
(totf a)
(λ _ → fst (isContrSingl a))))
-- converse map. proof idea:
-- equivalences preserve contractability,
-- singletons are contractible
-- and by the univalence assumption the total map is an equivalence
isUnivalent→contrRelSingl : isUnivalent → contrRelSingl
isUnivalent→contrRelSingl u a = q
where
abstract
q = isContrRespectEquiv
(totf a , totalEquiv (a ≡_)
(a R_)
(f a)
λ a' → u a a')
(isContrSingl a)
isUnivalent' : Type (ℓ-max ℓ ℓ')
isUnivalent' = (a a' : A) → (a ≡ a') ≃ a R a'
private
module _ (e : isUnivalent') (a : A) where
-- wrapper for ≡→R
g = λ (a' : A) (p : a ≡ a') → e a a' .fst p
-- the corresponding total map that univalence
-- of R will be reduced to
totg : singl a → Σ[ a' ∈ A ] (a R a')
totg (a' , p) = (a' , g a' p)
isUnivalent'→contrRelSingl : isUnivalent' → contrRelSingl
isUnivalent'→contrRelSingl u a = q
where
abstract
q = isContrRespectEquiv
(totg u a , totalEquiv (a ≡_) (a R_) (g u a) λ a' → u a a' .snd)
(isContrSingl a)
isUnivalent'→isUnivalent : isUnivalent' → isUnivalent
isUnivalent'→isUnivalent u = contrRelSingl→isUnivalent (isUnivalent'→contrRelSingl u)
isUnivalent→isUnivalent' : isUnivalent → isUnivalent'
isUnivalent→isUnivalent' u a a' = ≡→R {a} {a'} , u a a'
record RelIso {A : Type ℓA} (_≅_ : Rel A A ℓ≅A)
{A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where
constructor reliso
field
fun : A → A'
inv : A' → A
rightInv : (a' : A') → fun (inv a') ≅' a'
leftInv : (a : A) → inv (fun a) ≅ a
RelIso→Iso : {A : Type ℓA} {A' : Type ℓA'}
(_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A')
{ρ : isRefl _≅_} {ρ' : isRefl _≅'_}
(uni : isUnivalent _≅_ ρ) (uni' : isUnivalent _≅'_ ρ')
(f : RelIso _≅_ _≅'_)
→ Iso A A'
Iso.fun (RelIso→Iso _ _ _ _ f) = RelIso.fun f
Iso.inv (RelIso→Iso _ _ _ _ f) = RelIso.inv f
Iso.rightInv (RelIso→Iso _ _≅'_ {ρ' = ρ'} _ uni' f) a'
= invEquiv (≡→R _≅'_ ρ' , uni' (RelIso.fun f (RelIso.inv f a')) a') .fst (RelIso.rightInv f a')
Iso.leftInv (RelIso→Iso _≅_ _ {ρ = ρ} uni _ f) a
= invEquiv (≡→R _≅_ ρ , uni (RelIso.inv f (RelIso.fun f a)) a) .fst (RelIso.leftInv f a)
EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] isEquivRel R
EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] isEquivRel (R .fst)
|
{
"alphanum_fraction": 0.53311308,
"avg_line_length": 35.0473684211,
"ext": "agda",
"hexsha": "c5e9d4b4bdce777d289c8df7c666a0d1072ac021",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2520,
"size": 6659
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Bundles2 where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
-- open import Cubical.Foundations.Logic
-- open import Cubical.Structures.Ring
-- open import Cubical.Structures.Group
-- open import Cubical.Structures.AbGroup
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ)
open import Function.Base using (it; _∋_)
open import Cubical.HITs.PropositionalTruncation --.Properties
open import Utils using (!_; !!_)
open import MoreLogic.Reasoning
open import MoreLogic.Definitions
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions hiding (_≤''_)
open import MorePropAlgebra.Consequences
open import Number.Structures2
{-
| name | struct | apart | abs | order | cauchy | sqrt₀⁺ | exp | final name |
|------|---------------------|-------|-----|-------|--------|---------|-----|------------------------------------------------------------------------|
| ℕ | CommSemiring | (✓) | (✓) | lin. | | (on x²) | | LinearlyOrderedCommSemiring |
| ℤ | CommRing | (✓) | (✓) | lin. | | (on x²) | | LinearlyOrderedCommRing |
| ℚ | Field | (✓) | (✓) | lin. | | (on x²) | (✓) | LinearlyOrderedField |
| ℝ | Field | (✓) | (✓) | part. | ✓ | ✓ | (✓) | CompletePartiallyOrderedFieldWithSqrt |
| ℂ | euclidean 2-Product | (✓) | (✓) | | (✓) | | ? | EuclideanTwoProductOfCompletePartiallyOrderedFieldWithSqrt |
| R | Ring | ✓ | ✓ | | | | ? | ApartnessRingWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
| G | Group | ✓ | ✓ | | | | ? | ApartnessGroupWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
| K | Field | ✓ | ✓ | | ✓ | | ? | CompleteApartnessFieldWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
-}
record LinearlyOrderedCommSemiring {ℓ ℓ'} : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor linearlyorderedcommsemiring
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
is-LinearlyOrderedCommSemiring : [ isLinearlyOrderedCommSemiring 0f 1f _+_ _·_ _<_ min max ] -- defines `_≤_` and `_#_`
infixl 7 _·_
infixl 5 _+_
infixl 4 _<_
open IsLinearlyOrderedCommSemiring is-LinearlyOrderedCommSemiring public
record LinearlyOrderedCommRing {ℓ ℓ'} : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor linearlyorderedcommring
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
is-LinearlyOrderedCommRing : [ isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max ] -- defines `_≤_` and `_#_`
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _<_
open IsLinearlyOrderedCommRing is-LinearlyOrderedCommRing public
record LinearlyOrderedField {ℓ ℓ'} : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor linearlyorderedfield
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
is-LinearlyOrderedField : [ isLinearlyOrderedField 0f 1f _+_ _·_ -_ _<_ min max ] -- defines `_≤_` and `_#_`
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _<_
open IsLinearlyOrderedField is-LinearlyOrderedField public
-- NOTE: this smells like "CPO" https://en.wikipedia.org/wiki/Complete_partial_order
record CompletePartiallyOrderedFieldWithSqrt {ℓ ℓ' : Level} : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
Carrier : Type ℓ
is-set : isSet Carrier
0f : Carrier
1f : Carrier
_<_ : hPropRel Carrier Carrier ℓ'
min : Carrier → Carrier → Carrier
max : Carrier → Carrier → Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
<-irrefl : [ isIrrefl _<_ ]
<-trans : [ isTrans _<_ ]
<-cotrans : [ isCotrans _<_ ]
-- NOTE: these intermediate definitions are restricted and behave like let-definitions
-- e.g. they show up in goal contexts and they do not allow for `where` blocks
_-_ : Carrier → Carrier → Carrier
a - b = a + (- b)
<-asym : [ isAsym _<_ ]
<-asym = irrefl+trans⇒asym _<_ <-irrefl <-trans
_#_ : hPropRel Carrier Carrier ℓ'
x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x)
field
#-tight : [ isTightˢ''' _#_ is-set ]
_≤_ : hPropRel Carrier Carrier ℓ'
x ≤ y = ¬ᵖ(y < x)
_>_ = flip _<_
_≥_ = flip _≤_
≤-refl : [ isRefl _≤_ ]
≤-refl = <-irrefl
≤-trans : [ isTrans _≤_ ]
≤-trans = <-cotrans⇒≤-trans _<_ <-cotrans
-- if x > y then x > y ≥ x, wich contradicts 4. Hence ¬(x > y). Similarly, ¬(y > x), so ¬(x ≠ y) and therefore by axiom R2(3), x = y.
-- NOTE: this makes use of #-tight to proof ≤-antisym
-- but we are alrady using ≤-antisym to proof #-tight
-- so I guess that we have to assume one of them?
-- Bridges lists tightness a property of _<_, so he seems to assume #-tight
-- Booij assumes `≤-isLattice : IsLattice _≤_ min max` which gives ≤-refl, ≤-antisym and ≤-trans and proofs #-tight from it
-- ≤-antisym : (∀ x y → [ ¬ᵖ (x # y) ] → x ≡ y) → [ isAntisymˢ is-set _≤_ ]
≤-antisym : [ isAntisymˢ _≤_ is-set ]
≤-antisym = fst (isTightˢ'''⇔isAntisymˢ _<_ is-set <-asym) #-tight
-- NOTE: we have `R3-8 = ∀[ x ] ∀[ y ] (¬(x ≤ y) ⇔ ¬ ¬(y < x))`
-- so I guess that we do not have `dne-over-< : ¬ ¬(y < x) ⇔ (y < x)`
-- and that would be my plan to prove `≤-cotrans` with `<-asym`
-- ≤-cotrans : [ isCotrans _≤_ ]
-- ≤-cotrans x y x≤y z = [ (x ≤ z) ⊔ (z ≤ y) ] ∋ {! (≤-antisym x y x≤y) !}
abs : Carrier → Carrier
abs x = max x (- x)
field
-- `R3.12` in [Bridges 1999]
-- bridges-R2-2 : ∀ x y → [ y < x ] → ∀ z → [ (z < x) ⊔ (y < z) ]
sqrt : (x : Carrier) → {{ ! [ 0f ≤ x ] }} → Carrier
0≤sqrt : ∀ x → {{ p : ! [ 0f ≤ x ] }} → [ 0f ≤ sqrt x {{p}} ]
0≤x² : ∀ x → [ 0f ≤ (x · x) ]
instance _ = λ {x} → !! 0≤x² x
field
-- NOTE: all "interface" instance arguments (i.e. those that appear in the goal) need to be passed in as arguments
-- sqrt-of-² : ∀ x → {{ p₁ : ! [ 0f ≤ x ] }} → {{ p₂ : ! [ 0f ≤ x · x ] }} → sqrt (x · x) {{p₂}} ≡ x
-- sqrt-unique-existence : ∀ x → {{ p : ! [ 0f ≤ x ] }} → Σ[ y ∈ Carrier ] y · y ≡ x
-- sqrt-uniqueness : ∀ x y z → {{ p : ! [ 0f ≤ x ] }} → y · y ≡ x → z · z ≡ x → y ≡ z
·-uniqueness : ∀ x y → {{ p₁ : ! [ 0f ≤ x ] }} → {{ p₂ : ! [ 0f ≤ y ] }} → x · x ≡ y · y → x ≡ y
sqrt-existence : ∀ x → {{ p : ! [ 0f ≤ x ] }} → sqrt x {{p}} · sqrt x {{p}} ≡ x
sqrt-preserves-· : ∀ x y → {{ p₁ : ! [ 0f ≤ x ] }} → {{ p₁ : ! [ 0f ≤ y ] }} → {{ p₁ : ! [ 0f ≤ x · y ] }} → sqrt (x · y) ≡ sqrt x · sqrt y
sqrt0≡0 : {{ p : ! [ 0f ≤ 0f ] }} → sqrt 0f {{p}} ≡ 0f
sqrt1≡1 : {{ p : ! [ 0f ≤ 1f ] }} → sqrt 1f {{p}} ≡ 1f
-- √x √x = x ⇒ √xx = x
-- √x √x √x √x = x x
-- √(√x √x √x √x) = √(x x)
-- ²-of-sqrt' : ∀ x → {{ p : ! [ 0f ≤ x ] }} → sqrt x {{p}} · sqrt x {{p}} ≡ x
-- ²-of-sqrt' x {{p}} = let y = sqrt x; instance q = !! 0≤sqrt x in transport (
-- sqrt (y · y) ≡ y ≡⟨ {! !} ⟩
-- sqrt (y · y) · sqrt (y · y) ≡ y · sqrt (y · y) ≡⟨ {! !} ⟩
-- sqrt (y · y) · sqrt (y · y) ≡ y · y ≡⟨ {! λ x → x !} ⟩
-- sqrt x · sqrt x ≡ x ∎) (sqrt-of-² y)
-- {! !} ⇒⟨ {! !} ⟩
-- {! !} ◼) {! (sqrt-of-² y ) !}
-- sqrt (x · x) ≡ x
-- sqrt (x · x) · sqrt (x · x) ≡ x · sqrt (x · x)
-- sqrt (x · x) · sqrt (x · x) ≡ x · x
-- x = sqrt y
-- sqrt y · sqrt y ≡ y
sqrt-test : (x y z : Carrier) → [ 0f ≤ x ] → [ 0f ≤ y ] → Carrier
sqrt-test x y z 0≤x 0≤y = let instance _ = !! 0≤x
instance _ = !! 0≤y
in (sqrt x) + (sqrt y) + (sqrt (z · z))
field
_⁻¹ : (x : Carrier) → {{p : [ x # 0f ]}} → Carrier
_/_ : (x y : Carrier) → {{p : [ y # 0f ]}} → Carrier
(x / y) {{p}} = x · (y ⁻¹) {{p}}
infix 9 _⁻¹
infixl 7 _·_
infixl 7 _/_
infix 6 -_
infix 5 _-_
infixl 5 _+_
infixl 4 _#_
infixl 4 _≤_
infixl 4 _<_
open import MorePropAlgebra.Bridges1999
-- mkBridges : ∀{ℓ ℓ'} → CompletePartiallyOrderedFieldWithSqrt {ℓ} {ℓ'} → BooijResults {ℓ} {ℓ'}
-- mkBridges CPOFS = record { CompletePartiallyOrderedFieldWithSqrt CPOFS }
-----------8<--------------------------------------------8<------------------------------------------8<------------------
{- currently, we have that IsAbs works on "rigs" (rings where `-_` is not necessary)
but in our applications, we do want to take the square root immediately on modules
therefore, `abs` is defined here as always mapping into `CompletePartiallyOrderedFieldWithSqrt` although more general `abs`es would be possible
-}
module _ -- mathematical structures with `abs` into the real numbers
{ℝℓ ℝℓ' : Level}
(ℝbundle : CompletePartiallyOrderedFieldWithSqrt {ℝℓ} {ℝℓ'})
where
module ℝ = CompletePartiallyOrderedFieldWithSqrt ℝbundle
open ℝ using () renaming (Carrier to ℝ; is-set to is-setʳ; _≤_ to _≤ʳ_; 0f to 0ʳ; 1f to 1ʳ; _+_ to _+ʳ_; _·_ to _·ʳ_; -_ to -ʳ_; _-_ to _-ʳ_)
-- this makes the complex numbers ℂ
module EuclideanTwoProductOfCompletePartiallyOrderedFieldWithSqrt where
Carrier : Type ℝℓ
Carrier = ℝ × ℝ
re im : Carrier → ℝ
re = fst
im = snd
0f : Carrier
0f = 0ʳ , 0ʳ
1f : Carrier
1f = 1ʳ , 0ʳ
_+_ : Carrier → Carrier → Carrier
(ar , ai) + (br , bi) = (ar +ʳ br) , (ai +ʳ bi)
_·_ : Carrier → Carrier → Carrier
(ar , ai) · (br , bi) = (ar ·ʳ br -ʳ ai ·ʳ bi) , (ar ·ʳ bi +ʳ br ·ʳ ai)
-_ : Carrier → Carrier
- (ar , ai) = (-ʳ ar , -ʳ ai)
is-set : isSet Carrier
is-set = isSetΣ ℝ.is-set (λ _ → ℝ.is-set)
-- this makes the `R` in `RModule`
record ApartnessRingWithAbsIntoCompletePartiallyOrderedFieldWithSqrt {ℓ ℓ' : Level} : Type (ℓ-suc (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℝℓ ℝℓ'))) where
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_#_ : hPropRel Carrier Carrier ℓ'
abs : Carrier → ℝ
-- this makes the `G` in `GModule`
record ApartnessGroupWithAbsIntoCompletePartiallyOrderedFieldWithSqrt {ℓ ℓ' : Level} : Type (ℓ-suc (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℝℓ ℝℓ'))) where
field
Carrier : Type ℓ
1f : Carrier
_·_ : Carrier → Carrier → Carrier
_⁻¹ : Carrier → Carrier
_#_ : hPropRel Carrier Carrier ℓ'
abs : Carrier → ℝ
-- this makes the `K` in `KModule`
record CompleteApartnessFieldWithAbsIntoCompletePartiallyOrderedFieldWithSqrt {ℓ ℓ' : Level} : Type (ℓ-suc (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℝℓ ℝℓ'))) where
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_#_ : hPropRel Carrier Carrier ℓ'
_⁻¹ : (x : Carrier) → {{p : [ x # 0f ]}} → Carrier
abs : Carrier → ℝ
is-set : isSet Carrier
is-abs : [ isAbs is-set 0f _+_ _·_ is-setʳ 0ʳ _+ʳ_ _·ʳ_ _≤ʳ_ abs ]
-- TODO: complete this
|
{
"alphanum_fraction": 0.5355151515,
"avg_line_length": 40.1785714286,
"ext": "agda",
"hexsha": "a702489c70b3ae203093550f214fd8c7a25a565c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Bundles2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Bundles2.agda",
"max_line_length": 151,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Bundles2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 4510,
"size": 12375
}
|
-- {-# OPTIONS -v tc.meta.assign:50 #-}
module Issue483c where
import Common.Level
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
data ⊥ : Set where
record ⊤ : Set where
refute : .⊥ → ⊥
refute ()
mk⊤ : ⊥ → ⊤
mk⊤ ()
X : .⊤ → ⊥
bad : .(x : ⊥) → X (mk⊤ x) ≡ refute x
X = _
bad x = refl
false : ⊥
false = X _
|
{
"alphanum_fraction": 0.5076452599,
"avg_line_length": 13.08,
"ext": "agda",
"hexsha": "9dbba5aeb06c29c0d2c157252665848f3deb091f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue483c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue483c.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue483c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 145,
"size": 327
}
|
------------------------------------------------------------------------
-- Lemmas related to bisimilarity and CCS, implemented using the
-- coinductive definition of bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Bisimilarity.CCS {ℓ} {Name : Type ℓ} where
open import Equality.Propositional
open import Prelude.Size
import Bisimilarity.Equational-reasoning-instances
import Bisimilarity.CCS.General
open import Equational-reasoning
open import Labelled-transition-system.CCS Name
open import Bisimilarity CCS
import Labelled-transition-system.Equational-reasoning-instances CCS
as Dummy
------------------------------------------------------------------------
-- Congruence lemmas
-- Some lemmas used to prove the congruence results below as well as
-- similar results in Similarity.CCS.
module Cong-lemmas
({R} R′ : Proc ∞ → Proc ∞ → Type ℓ)
⦃ _ : Convertible R R′ ⦄
⦃ _ : Convertible R′ R′ ⦄
⦃ _ : Convertible _∼_ R′ ⦄
⦃ _ : Transitive R′ R′ ⦄
(left-to-right :
∀ {P Q} → R P Q →
∀ {P′ μ} → P [ μ ]⟶ P′ → ∃ λ Q′ → Q [ μ ]⟶ Q′ × R′ P′ Q′)
where
private
infix -2 R′:_
R′:_ : ∀ {P Q} → R′ P Q → R′ P Q
R′:_ = id
infix -3 lr-result
lr-result :
∀ {P′ Q Q′} μ → R′ P′ Q′ → Q [ μ ]⟶ Q′ →
∃ λ Q′ → Q [ μ ]⟶ Q′ × R′ P′ Q′
lr-result _ P′∼′Q′ Q⟶Q′ = _ , Q⟶Q′ , P′∼′Q′
syntax lr-result μ P′∼′Q′ Q⟶Q′ = P′∼′Q′ [ μ ]⟵ Q⟶Q′
∣-cong :
(∀ {P P′ Q Q′} → R′ P P′ → R′ Q Q′ → R′ (P ∣ Q) (P′ ∣ Q′)) →
∀ {P₁ P₂ Q₁ Q₂ S₁ μ} →
R P₁ P₂ → R Q₁ Q₂ → P₁ ∣ Q₁ [ μ ]⟶ S₁ →
∃ λ S₂ → P₂ ∣ Q₂ [ μ ]⟶ S₂ × R′ S₁ S₂
∣-cong _∣-cong′_ P₁∼P₂ Q₁∼Q₂ = λ where
(par-left tr) → Σ-map (_∣ _)
(Σ-map par-left
(_∣-cong′ convert Q₁∼Q₂))
(left-to-right P₁∼P₂ tr)
(par-right tr) → Σ-map (_ ∣_)
(Σ-map par-right
(convert P₁∼P₂ ∣-cong′_))
(left-to-right Q₁∼Q₂ tr)
(par-τ tr₁ tr₂) → Σ-zip _∣_ (Σ-zip par-τ _∣-cong′_)
(left-to-right P₁∼P₂ tr₁)
(left-to-right Q₁∼Q₂ tr₂)
⊕-cong :
∀ {P₁ P₁′ P₂ P₂′ S μ} →
R P₁ P₁′ → R P₂ P₂′ → P₁ ⊕ P₂ [ μ ]⟶ S →
∃ λ S′ → P₁′ ⊕ P₂′ [ μ ]⟶ S′ × R′ S S′
⊕-cong {P₁} {P₁′} {P₂} {P₂′} {S} {μ} P₁∼P₁′ P₂∼P₂′ = λ where
(sum-left P₁⟶S) → case left-to-right P₁∼P₁′ P₁⟶S of λ where
(S′ , P₁′⟶S′ , S∼′S′) →
S ∼⟨ S∼′S′ ⟩■
S′
[ μ ]⟵ ←⟨ ⟶: sum-left P₁′⟶S′ ⟩■
P₁′ ⊕ P₂′
(sum-right P₂⟶S) → case left-to-right P₂∼P₂′ P₂⟶S of λ where
(S′ , P₂′⟶S′ , S∼′S′) →
S ∼⟨ S∼′S′ ⟩■
S′
[ μ ]⟵ ←⟨ ⟶: sum-right P₂′⟶S′ ⟩■
P₁′ ⊕ P₂′
·-cong :
∀ {P₁ P₂ Q₁ μ μ′} →
R′ (force P₁) (force P₂) → μ · P₁ [ μ′ ]⟶ Q₁ →
∃ λ Q₂ → μ · P₂ [ μ′ ]⟶ Q₂ × R′ Q₁ Q₂
·-cong {P₁} {P₂} {μ = μ} P₁∼P₂ action =
force P₁ ∼⟨ P₁∼P₂ ⟩■
force P₂
[ μ ]⟵ ←⟨ ⟶: action ⟩■
μ · P₂
⟨ν⟩-cong :
(∀ {a P P′} → R′ P P′ → R′ (⟨ν a ⟩ P) (⟨ν a ⟩ P′)) →
∀ {a μ P P′ Q} →
R P P′ → ⟨ν a ⟩ P [ μ ]⟶ Q →
∃ λ Q′ → ⟨ν a ⟩ P′ [ μ ]⟶ Q′ × R′ Q Q′
⟨ν⟩-cong ⟨ν⟩-cong′ {a} {μ} {P′ = P′} P∼P′
(restriction {P′ = Q} a∉μ P⟶Q) =
case left-to-right P∼P′ P⟶Q of λ where
(Q′ , P′⟶Q′ , Q∼′Q′) →
⟨ν a ⟩ Q ∼⟨ ⟨ν⟩-cong′ Q∼′Q′ ⟩■
⟨ν a ⟩ Q′
[ μ ]⟵ ←⟨ ⟶: restriction a∉μ P′⟶Q′ ⟩■
⟨ν a ⟩ P′
!-cong :
(∀ {μ P P₀} →
! P [ μ ]⟶ P₀ →
(∃ λ P′ → P [ μ ]⟶ P′ × P₀ ∼ ! P ∣ P′)
⊎
(μ ≡ τ × ∃ λ P′ → ∃ λ P″ → ∃ λ a →
P [ name a ]⟶ P′ × P [ name (co a) ]⟶ P″ ×
P₀ ∼ (! P ∣ P′) ∣ P″)) →
(∀ {P P′ Q Q′} → R′ P P′ → R′ Q Q′ → R′ (P ∣ Q) (P′ ∣ Q′)) →
(∀ {P P′} → R′ P P′ → R′ (! P) (! P′)) →
∀ {P P′ Q μ} →
R P P′ → ! P [ μ ]⟶ Q →
∃ λ Q′ → ! P′ [ μ ]⟶ Q′ × R′ Q Q′
!-cong 6-1-3-2 _∣-cong′_ !-cong′_ {P} {P′} {Q} {μ} P∼P′ !P⟶Q =
case 6-1-3-2 !P⟶Q of λ where
(inj₁ (P″ , P⟶P″ , Q∼!P∣P″)) →
let Q′ , P′⟶Q′ , P″∼′Q′ = left-to-right P∼P′ P⟶P″
in
Q ∼⟨ R′: convert Q∼!P∣P″ ⟩
! P ∣ P″ ∼⟨ (!-cong′ convert P∼P′) ∣-cong′ P″∼′Q′ ⟩■
! P′ ∣ Q′
[ μ ]⟵ ←⟨ ⟶: replication (par-right P′⟶Q′) ⟩■
! P′
(inj₂ (refl , P″ , P‴ , a , P⟶P″ , P⟶P‴ , Q∼!P∣P″∣P‴)) →
let Q′ , P′⟶Q′ , P″∼′Q′ = left-to-right P∼P′ P⟶P″
Q″ , P′⟶Q″ , P‴∼′Q″ = left-to-right P∼P′ P⟶P‴
in
Q ∼⟨ R′: convert Q∼!P∣P″∣P‴ ⟩
(! P ∣ P″) ∣ P‴ ∼⟨ ((!-cong′ convert P∼P′) ∣-cong′ P″∼′Q′) ∣-cong′ P‴∼′Q″ ⟩■
(! P′ ∣ Q′) ∣ Q″
[ τ ]⟵ ←⟨ ⟶: replication (par-τ (replication (par-right P′⟶Q′)) P′⟶Q″) ⟩■
! P′
private
module CL {i} = Cong-lemmas [ i ]_∼′_ left-to-right
------------------------------------------------------------------------
-- Various lemmas related to _∣_
mutual
-- _∣_ is commutative.
∣-comm : ∀ {P Q i} → [ i ] P ∣ Q ∼ Q ∣ P
∣-comm {i = i} = ⟨ lr , Σ-map id (Σ-map id symmetric) ∘ lr ⟩
where
lr : ∀ {P P′ Q μ} →
P ∣ Q [ μ ]⟶ P′ →
∃ λ Q′ → Q ∣ P [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′
lr (par-left tr) = _ , par-right tr , ∣-comm′
lr (par-right tr) = _ , par-left tr , ∣-comm′
lr (par-τ tr₁ tr₂) =
_
, par-τ tr₂ (subst (λ a → _ [ name a ]⟶ _)
(sym $ co-involutive _)
tr₁)
, ∣-comm′
∣-comm′ : ∀ {P Q i} → [ i ] P ∣ Q ∼′ Q ∣ P
force ∣-comm′ = ∣-comm
mutual
-- _∣_ is associative.
∣-assoc : ∀ {P Q R i} → [ i ] P ∣ (Q ∣ R) ∼ (P ∣ Q) ∣ R
∣-assoc {i = i} = ⟨ lr , rl ⟩
where
lr : ∀ {P Q R P′ μ} →
P ∣ (Q ∣ R) [ μ ]⟶ P′ →
∃ λ Q′ → (P ∣ Q) ∣ R [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′
lr (par-left tr) = _ , par-left (par-left tr) , ∣-assoc′
lr (par-right (par-left tr)) = _ , par-left (par-right tr) , ∣-assoc′
lr (par-right (par-right tr)) = _ , par-right tr , ∣-assoc′
lr (par-right (par-τ tr₁ tr₂)) = _ , par-τ (par-right tr₁) tr₂ , ∣-assoc′
lr (par-τ tr₁ (par-left tr₂)) = _ , par-left (par-τ tr₁ tr₂) , ∣-assoc′
lr (par-τ tr₁ (par-right tr₂)) = _ , par-τ (par-left tr₁) tr₂ , ∣-assoc′
rl : ∀ {P Q R Q′ μ} →
(P ∣ Q) ∣ R [ μ ]⟶ Q′ →
∃ λ P′ → P ∣ (Q ∣ R) [ μ ]⟶ P′ × [ i ] P′ ∼′ Q′
rl (par-left (par-left tr)) = _ , par-left tr , ∣-assoc′
rl (par-left (par-right tr)) = _ , par-right (par-left tr) , ∣-assoc′
rl (par-left (par-τ tr₁ tr₂)) = _ , par-τ tr₁ (par-left tr₂) , ∣-assoc′
rl (par-right tr) = _ , par-right (par-right tr) , ∣-assoc′
rl (par-τ (par-left tr₁) tr₂) = _ , par-τ tr₁ (par-right tr₂) , ∣-assoc′
rl (par-τ (par-right tr₁) tr₂) = _ , par-right (par-τ tr₁ tr₂) , ∣-assoc′
∣-assoc′ : ∀ {P Q R i} → [ i ] P ∣ (Q ∣ R) ∼′ (P ∣ Q) ∣ R
force ∣-assoc′ = ∣-assoc
-- ∅ is a left identity of _∣_.
∣-left-identity : ∀ {i P} → [ i ] ∅ ∣ P ∼ P
∣-left-identity =
⟨ (λ { (par-right tr) → (_ , tr , λ { .force → ∣-left-identity })
; (par-left ())
; (par-τ () _)
})
, (λ tr → (_ , par-right tr , λ { .force → ∣-left-identity }))
⟩
∣-left-identity′ : ∀ {P i} → [ i ] ∅ ∣ P ∼′ P
force ∣-left-identity′ = ∣-left-identity
-- ∅ is a right identity of _∣_.
∣-right-identity : ∀ {P} → P ∣ ∅ ∼ P
∣-right-identity {P} =
P ∣ ∅ ∼⟨ ∣-comm ⟩
∅ ∣ P ∼⟨ ∣-left-identity ⟩■
P
mutual
-- _∣_ preserves bisimilarity.
infix 6 _∣-cong_ _∣-cong′_
_∣-cong_ : ∀ {i P P′ Q Q′} →
[ i ] P ∼ Q → [ i ] P′ ∼ Q′ → [ i ] P ∣ P′ ∼ Q ∣ Q′
P∼Q ∣-cong P′∼Q′ =
⟨ lr P∼Q P′∼Q′
, Σ-map id (Σ-map id symmetric) ∘
lr (symmetric P∼Q) (symmetric P′∼Q′)
⟩
where
lr = CL.∣-cong _∣-cong′_
_∣-cong′_ : ∀ {i P P′ Q Q′} →
[ i ] P ∼′ Q → [ i ] P′ ∼′ Q′ → [ i ] P ∣ P′ ∼′ Q ∣ Q′
force (P∼P′ ∣-cong′ Q∼Q′) = force P∼P′ ∣-cong force Q∼Q′
-- An alternative proof that is closer to the one in the paper.
infix 6 _∣-congP_
_∣-congP_ : ∀ {i P P′ Q Q′} →
[ i ] P ∼ Q → [ i ] P′ ∼ Q′ → [ i ] P ∣ P′ ∼ Q ∣ Q′
_∣-congP_ {i} = λ p q →
⟨ lr p q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric p) (symmetric q)
⟩
where
lr : ∀ {P P′ P″ Q Q′ μ} →
[ i ] P ∼ Q → [ i ] P′ ∼ Q′ → P ∣ P′ [ μ ]⟶ P″ →
∃ λ Q″ → Q ∣ Q′ [ μ ]⟶ Q″ × [ i ] P″ ∼′ Q″
lr p q (par-left tr) =
let (_ , tr′ , p′) = left-to-right p tr
in (_ , par-left tr′ , λ { .force → force p′ ∣-congP q })
lr p q (par-right tr) =
let (_ , tr′ , q′) = left-to-right q tr
in (_ , par-right tr′ , λ { .force → p ∣-congP force q′ })
lr p q (par-τ tr₁ tr₂) =
let (_ , tr₁′ , p′) = left-to-right p tr₁
(_ , tr₂′ , q′) = left-to-right q tr₂
in (_ , par-τ tr₁′ tr₂′ , λ { .force → force p′ ∣-congP force q′ })
------------------------------------------------------------------------
-- Exercise 6.1.2 from "Enhancements of the bisimulation proof method"
-- by Pous and Sangiorgi
private
-- A compact proof.
6-1-2-compact : ∀ {P i} → [ i ] ! P ∣ P ∼ ! P
6-1-2-compact =
⟨ (λ tr → _ , replication tr , reflexive)
, (λ { (replication tr) → _ , tr , reflexive })
⟩
-- A less compact proof.
6-1-2 : ∀ {P i} → [ i ] ! P ∣ P ∼ ! P
6-1-2 {P} =
⟨ (λ {P′} {μ} tr →
P′ ∼⟨ ∼′: reflexive ⟩■
P′ [ μ ]⟵⟨ replication tr ⟩
! P)
, (λ { {q′ = P′} {μ = μ} (replication tr) →
! P ∣ P [ μ ]⟶⟨ tr ⟩ʳˡ
P′ ∼⟨ ∼′: reflexive ⟩■
P′ })
⟩
------------------------------------------------------------------------
-- Exercise 6.1.3 (2) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi, plus some rearrangement lemmas
private
module 6-1-3-2 = Bisimilarity.CCS.General.6-1-3-2 (record
{ _∼_ = _∼_
; step-∼ = step-∼
; finally-∼ = Equational-reasoning.finally₂
; reflexive = reflexive
; symmetric = symmetric
; ∣-comm = ∣-comm
; ∣-assoc = ∣-assoc
; _∣-cong_ = _∣-cong_
; 6-1-2 = 6-1-2
})
6-1-3-2 :
∀ {P μ R} →
! P [ μ ]⟶ R →
(∃ λ P′ → P [ μ ]⟶ P′ × R ∼ ! P ∣ P′)
⊎
(μ ≡ τ × ∃ λ P′ → ∃ λ P″ → ∃ λ a →
P [ name a ]⟶ P′ × P [ name (co a) ]⟶ P″ × R ∼ (! P ∣ P′) ∣ P″)
6-1-3-2 = 6-1-3-2.6-1-3-2
swap-rightmost : ∀ {P Q R} → (P ∣ Q) ∣ R ∼ (P ∣ R) ∣ Q
swap-rightmost = 6-1-3-2.swap-rightmost
swap-in-the-middle : ∀ {P Q R S} →
(P ∣ Q) ∣ (R ∣ S) ∼ (P ∣ R) ∣ (Q ∣ S)
swap-in-the-middle {P} {Q} {R} {S} =
(P ∣ Q) ∣ (R ∣ S) ∼⟨ swap-rightmost ⟩
(P ∣ (R ∣ S)) ∣ Q ∼⟨ ∣-assoc ∣-cong reflexive ⟩
((P ∣ R) ∣ S) ∣ Q ∼⟨ symmetric ∣-assoc ⟩
(P ∣ R) ∣ (S ∣ Q) ∼⟨ reflexive ∣-cong ∣-comm ⟩■
(P ∣ R) ∣ (Q ∣ S)
------------------------------------------------------------------------
-- More preservation lemmas
-- _⊕_ preserves bisimilarity.
infix 8 _⊕-cong_ _⊕-cong′_
_⊕-cong_ : ∀ {i P P′ Q Q′} →
[ i ] P ∼ P′ → [ i ] Q ∼ Q′ → [ i ] P ⊕ Q ∼ P′ ⊕ Q′
_⊕-cong_ {i} P∼P′ Q∼Q′ =
⟨ CL.⊕-cong P∼P′ Q∼Q′
, Σ-map id (Σ-map id symmetric) ∘
CL.⊕-cong {i = i} (symmetric P∼P′) (symmetric Q∼Q′)
⟩
_⊕-cong′_ : ∀ {i P P′ Q Q′} →
[ i ] P ∼′ P′ → [ i ] Q ∼′ Q′ → [ i ] P ⊕ Q ∼′ P′ ⊕ Q′
force (P∼P′ ⊕-cong′ Q∼Q′) = force P∼P′ ⊕-cong force Q∼Q′
-- _·_ preserves bisimilarity.
infix 12 _·-cong_ _·-cong′_
_·-cong_ :
∀ {i μ μ′ P P′} →
μ ≡ μ′ → [ i ] force P ∼′ force P′ → [ i ] μ · P ∼ μ′ · P′
refl ·-cong P∼P′ =
⟨ CL.·-cong P∼P′
, Σ-map id (Σ-map id symmetric) ∘ CL.·-cong (symmetric P∼P′)
⟩
_·-cong′_ :
∀ {i μ μ′ P P′} →
μ ≡ μ′ → [ i ] force P ∼′ force P′ → [ i ] μ · P ∼′ μ′ · P′
force (μ≡μ′ ·-cong′ P∼P′) = μ≡μ′ ·-cong P∼P′
-- An alternative proof that is closer to the one in the paper.
·-congP : ∀ {i μ P Q} → [ i ] force P ∼′ force Q → [ i ] μ · P ∼ μ · Q
·-congP p =
⟨ (λ { action → _ , action , p })
, (λ { action → _ , action , p })
⟩
-- _∙_ preserves bisimilarity.
infix 12 _∙-cong_ _∙-cong′_
_∙-cong_ :
∀ {i μ μ′ P P′} →
μ ≡ μ′ → [ i ] P ∼ P′ → [ i ] μ ∙ P ∼ μ′ ∙ P′
refl ∙-cong P∼P′ = refl ·-cong convert {a = ℓ} P∼P′
_∙-cong′_ :
∀ {i μ μ′ P P′} →
μ ≡ μ′ → [ i ] P ∼′ P′ → [ i ] μ ∙ P ∼′ μ′ ∙ P′
force (μ≡μ′ ∙-cong′ P∼P′) = μ≡μ′ ∙-cong force P∼P′
-- _∙ turns equality into bisimilarity.
infix 12 _∙-cong _∙-cong′
_∙-cong : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ∼ μ′ ∙
refl ∙-cong = reflexive
_∙-cong′ : ∀ {μ μ′} → μ ≡ μ′ → μ ∙ ∼′ μ′ ∙
refl ∙-cong′ = reflexive
mutual
-- !_ preserves bisimilarity.
infix 10 !-cong_ !-cong′_
!-cong_ : ∀ {i P P′} →
[ i ] P ∼ P′ → [ i ] ! P ∼ ! P′
!-cong P∼P′ =
⟨ lr P∼P′
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼P′)
⟩
where
lr = CL.!-cong 6-1-3-2 _∣-cong′_ !-cong′_
!-cong′_ : ∀ {i P P′} → [ i ] P ∼′ P′ → [ i ] ! P ∼′ ! P′
force (!-cong′ P∼P′) = !-cong force P∼P′
-- An alternative proof that is closer to the one in the paper.
!-congP : ∀ {i P Q} → [ i ] P ∼ Q → [ i ] ! P ∼ ! Q
!-congP {i} = λ p →
⟨ lr p
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric p)
⟩
where
lr : ∀ {P Q R μ} →
[ i ] P ∼ Q → ! P [ μ ]⟶ R →
∃ λ S → ! Q [ μ ]⟶ S × [ i ] R ∼′ S
lr {P} {Q} {R} P∼Q !P⟶R with 6-1-3-2 !P⟶R
... | inj₁ (P′ , P⟶P′ , R∼!P∣P′) =
let (Q′ , Q⟶Q′ , P′∼′Q′) = left-to-right P∼Q P⟶P′
in
( ! Q ∣ Q′
, replication (par-right Q⟶Q′)
, (R ∼⟨ R∼!P∣P′ ⟩
! P ∣ P′ ∼⟨ (λ { .force → !-congP P∼Q }) ∣-cong′ P′∼′Q′ ⟩
! Q ∣ Q′ ■
)
)
... | inj₂ (refl , P′ , P″ , a , P⟶P′ , P⟶P″ , R∼!P∣P′∣P″) =
let (Q′ , Q⟶Q′ , P′∼′Q′) = left-to-right P∼Q P⟶P′
(Q″ , Q⟶Q″ , P″∼′Q″) = left-to-right P∼Q P⟶P″
in
( (! Q ∣ Q′) ∣ Q″
, replication (par-τ (replication (par-right Q⟶Q′)) Q⟶Q″)
, (R ∼⟨ R∼!P∣P′∣P″ ⟩
(! P ∣ P′) ∣ P″ ∼⟨ ((λ { .force → !-congP P∼Q }) ∣-cong′ P′∼′Q′)
∣-cong′ P″∼′Q″ ⟩
(! Q ∣ Q′) ∣ Q″ ■
)
)
mutual
-- ⟨ν_⟩ preserves bisimilarity.
⟨ν_⟩-cong : ∀ {i a a′ P P′} →
a ≡ a′ → [ i ] P ∼ P′ → [ i ] ⟨ν a ⟩ P ∼ ⟨ν a′ ⟩ P′
⟨ν refl ⟩-cong = λ P∼P′ →
⟨ lr P∼P′
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼P′)
⟩
where
lr = CL.⟨ν⟩-cong ⟨ν refl ⟩-cong′
⟨ν_⟩-cong′ : ∀ {i a a′ P P′} →
a ≡ a′ → [ i ] P ∼′ P′ → [ i ] ⟨ν a ⟩ P ∼′ ⟨ν a′ ⟩ P′
force (⟨ν a≡a′ ⟩-cong′ P∼P′) = ⟨ν a≡a′ ⟩-cong (force P∼P′)
-- _[_] preserves bisimilarity. (This result is related to Exercise
-- 6.2.10 in "Enhancements of the bisimulation proof method"
-- by Pous and Sangiorgi.)
infix 5 _[_]-cong _[_]-cong′
_[_]-cong :
∀ {i n Ps Qs}
(C : Context ∞ n) → (∀ x → [ i ] Ps x ∼ Qs x) →
[ i ] C [ Ps ] ∼ C [ Qs ]
hole x [ Ps∼Qs ]-cong = Ps∼Qs x
∅ [ Ps∼Qs ]-cong = reflexive
C₁ ∣ C₂ [ Ps∼Qs ]-cong = (C₁ [ Ps∼Qs ]-cong) ∣-cong (C₂ [ Ps∼Qs ]-cong)
C₁ ⊕ C₂ [ Ps∼Qs ]-cong = (C₁ [ Ps∼Qs ]-cong) ⊕-cong (C₂ [ Ps∼Qs ]-cong)
μ · C [ Ps∼Qs ]-cong = refl ·-cong λ { .force → force C [ Ps∼Qs ]-cong }
⟨ν a ⟩ C [ Ps∼Qs ]-cong = ⟨ν refl ⟩-cong (C [ Ps∼Qs ]-cong)
! C [ Ps∼Qs ]-cong = !-cong (C [ Ps∼Qs ]-cong)
_[_]-cong′ :
∀ {i n Ps Qs}
(C : Context ∞ n) → (∀ x → [ i ] Ps x ∼′ Qs x) →
[ i ] C [ Ps ] ∼′ C [ Qs ]
force (C [ Ps∼Qs ]-cong′) = C [ (λ x → force (Ps∼Qs x)) ]-cong
-- The proof of _[_]-cong uses 6-1-3-2 (in !-cong_). The following
-- direct proof does not use 6-1-3-2 (but it does use
-- extensionality).
module _ (ext : Proc-extensionality) where
mutual
infix 5 _[_]-cong₂ _[_]-cong₂′
_[_]-cong₂ :
∀ {i n Ps Qs}
(C : Context ∞ n) → (∀ x → [ i ] Ps x ∼ Qs x) →
[ i ] C [ Ps ] ∼ C [ Qs ]
_[_]-cong₂ {i} C Ps∼Qs =
⟨ lr C Ps∼Qs
, Σ-map id (Σ-map id symmetric) ∘ lr C (symmetric ∘ Ps∼Qs)
⟩
where
infix 5 _[_][_]-cong₁ _[_][_]-cong₂
_[_][_]-cong₁ :
∀ {n P Q Ps Qs} →
(C : Context ∞ (suc n)) →
[ i ] P ∼′ Q →
(∀ x → [ i ] Ps x ∼ Qs x) →
[ i ] C [ [ const P , Ps ] ] ∼′ C [ [ const Q , Qs ] ]
force (C [ P∼′Q ][ Ps∼Qs ]-cong₁) =
C [ [ const (force P∼′Q) , Ps∼Qs ] ]-cong₂
_[_][_]-cong₂ :
∀ {P Q R S} →
(C : Context ∞ 2) →
[ i ] P ∼′ Q →
[ i ] R ∼′ S →
[ i ] C [ [ const P , [ const R , (λ ()) ] ] ] ∼′
C [ [ const Q , [ const S , (λ ()) ] ] ]
force (C [ P∼′Q ][ R∼′S ]-cong₂) =
C [ [ const (force P∼′Q)
, [ const (force R∼′S) , (λ ()) ]
] ]-cong₂
lr : ∀ {n Ps Qs P′ μ} (C : Context ∞ n) →
(∀ x → [ i ] Ps x ∼ Qs x) →
C [ Ps ] [ μ ]⟶ P′ →
∃ λ Q′ → C [ Qs ] [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′
lr (hole x) Ps∼Qs tr = left-to-right (Ps∼Qs x) tr
lr ∅ Ps∼Qs ()
lr (C₁ ∣ C₂) Ps∼Qs (par-left tr) = Σ-map (_∣ _) (Σ-map par-left (λ b → subst (λ P → [ i ] _ ∼′ _ ∣ P) (ext $ weaken-[] C₂) $
subst (λ P → [ i ] _ ∣ P ∼′ _) (ext $ weaken-[] C₂) $
hole fzero ∣ weaken C₂ [ b ][ Ps∼Qs ]-cong₁)) (lr C₁ Ps∼Qs tr)
lr (C₁ ∣ C₂) Ps∼Qs (par-right tr) = Σ-map (_ ∣_) (Σ-map par-right (λ b → subst (λ P → [ i ] _ ∼′ P ∣ _) (ext $ weaken-[] C₁) $
subst (λ P → [ i ] P ∣ _ ∼′ _) (ext $ weaken-[] C₁) $
weaken C₁ ∣ hole fzero [ b ][ Ps∼Qs ]-cong₁)) (lr C₂ Ps∼Qs tr)
lr (C₁ ∣ C₂) Ps∼Qs (par-τ tr₁ tr₂) = Σ-zip _∣_ (Σ-zip par-τ (λ b₁ b₂ → hole fzero ∣ hole (fsuc fzero) [ b₁ ][ b₂ ]-cong₂))
(lr C₁ Ps∼Qs tr₁) (lr C₂ Ps∼Qs tr₂)
lr (C₁ ⊕ C₂) Ps∼Qs (sum-left tr) = Σ-map id (Σ-map sum-left id) (lr C₁ Ps∼Qs tr)
lr (C₁ ⊕ C₂) Ps∼Qs (sum-right tr) = Σ-map id (Σ-map sum-right id) (lr C₂ Ps∼Qs tr)
lr (μ · C) Ps∼Qs action = _ , action , λ { .force → force C [ Ps∼Qs ]-cong₂ }
lr (⟨ν a ⟩ C) Ps∼Qs (restriction a∉ tr) = Σ-map ⟨ν a ⟩ (Σ-map (restriction a∉) (λ b → ⟨ν a ⟩ (hole fzero) [ b ][ Ps∼Qs ]-cong₁))
(lr C Ps∼Qs tr)
lr (! C) Ps∼Qs (replication tr) = Σ-map id (Σ-map replication id) (lr (! C ∣ C) Ps∼Qs tr)
_[_]-cong₂′ :
∀ {i n Ps Qs}
(C : Context ∞ n) → (∀ x → [ i ] Ps x ∼′ Qs x) →
[ i ] C [ Ps ] ∼′ C [ Qs ]
force (C [ Ps∼′Qs ]-cong₂′) = C [ (λ x → force (Ps∼′Qs x)) ]-cong₂
-- A variant of _[_]-cong for weakly guarded contexts.
--
-- Note that the input uses the primed variant of bisimilarity.
--
-- I got the idea for this lemma from Lemma 23 in Schäfer and Smolka's
-- "Tower Induction and Up-to Techniques for CCS with Fixed Points".
infix 5 _[_]-cong-w
_[_]-cong-w :
∀ {i n Ps Qs} {C : Context ∞ n} →
Weakly-guarded C → (∀ x → [ i ] Ps x ∼′ Qs x) →
[ i ] C [ Ps ] ∼ C [ Qs ]
∅ [ Ps∼Qs ]-cong-w = reflexive
W₁ ∣ W₂ [ Ps∼Qs ]-cong-w = (W₁ [ Ps∼Qs ]-cong-w) ∣-cong
(W₂ [ Ps∼Qs ]-cong-w)
action {C = C} [ Ps∼Qs ]-cong-w = refl ·-cong (force C [ Ps∼Qs ]-cong′)
⟨ν⟩ W [ Ps∼Qs ]-cong-w = ⟨ν refl ⟩-cong (W [ Ps∼Qs ]-cong-w)
! W [ Ps∼Qs ]-cong-w = !-cong (W [ Ps∼Qs ]-cong-w)
W₁ ⊕ W₂ [ Ps∼Qs ]-cong-w = (W₁ [ Ps∼Qs ]-cong-w) ⊕-cong
(W₂ [ Ps∼Qs ]-cong-w)
-- Very strong bisimilarity is contained in bisimilarity.
mutual
≡→∼ : ∀ {i P Q} → Equal i P Q → [ i ] P ∼ Q
≡→∼ ∅ = reflexive
≡→∼ (eq₁ ∣ eq₂) = ≡→∼ eq₁ ∣-cong ≡→∼ eq₂
≡→∼ (eq₁ ⊕ eq₂) = ≡→∼ eq₁ ⊕-cong ≡→∼ eq₂
≡→∼ (refl · eq) = refl ·-cong ≡→∼′ eq
≡→∼ (⟨ν refl ⟩ eq) = ⟨ν refl ⟩-cong (≡→∼ eq)
≡→∼ (! eq) = !-cong ≡→∼ eq
≡→∼′ : ∀ {i P Q} → Equal′ i P Q → [ i ] P ∼′ Q
force (≡→∼′ eq) = ≡→∼ (force eq)
------------------------------------------------------------------------
-- Unique solutions
-- If the set of equations corresponding (in a certain sense) to a
-- family of weakly guarded contexts has two families of solutions,
-- then those solutions are pairwise bisimilar.
--
-- This result is very similar to a proposition in Milner's
-- "Communication and Concurrency".
mutual
unique-solutions :
∀ {i n} {Ps Qs : Fin n → Proc ∞} {C : Fin n → Context ∞ n} →
(∀ x → Weakly-guarded (C x)) →
(∀ x → [ i ] Ps x ∼ C x [ Ps ]) →
(∀ x → [ i ] Qs x ∼ C x [ Qs ]) →
∀ x → [ i ] Ps x ∼ Qs x
unique-solutions {i} {Ps = Ps} {Qs} {C} w ∼C[Ps] ∼C[Qs] x =
Ps x ∼⟨ ∼C[Ps] x ⟩
C x [ Ps ] ∼⟨ ∼: ⟨ lr ∼C[Ps] ∼C[Qs] , Σ-map id (Σ-map id symmetric) ∘ lr ∼C[Qs] ∼C[Ps] ⟩ ⟩
C x [ Qs ] ∼⟨ symmetric (∼C[Qs] x) ⟩■
Qs x
where
lr :
∀ {Ps Qs μ P} →
(∀ x → [ i ] Ps x ∼ C x [ Ps ]) →
(∀ x → [ i ] Qs x ∼ C x [ Qs ]) →
C x [ Ps ] [ μ ]⟶ P →
∃ λ Q → C x [ Qs ] [ μ ]⟶ Q × [ i ] P ∼′ Q
lr {Ps} {Qs} {μ} ∼C[Ps] ∼C[Qs] ⟶P =
case 6-2-15 (C x) (w x) ⟶P of λ where
(C′ , refl , trs) →
C′ [ Ps ] ∼⟨ C′ [ unique-solutions′ w ∼C[Ps] ∼C[Qs] ]-cong′ ⟩■
C′ [ Qs ] [ μ ]⟵⟨ trs Qs ⟩
C x [ Qs ]
unique-solutions′ :
∀ {i n} {Ps Qs : Fin n → Proc ∞} {C : Fin n → Context ∞ n} →
(∀ x → Weakly-guarded (C x)) →
(∀ x → [ i ] Ps x ∼ C x [ Ps ]) →
(∀ x → [ i ] Qs x ∼ C x [ Qs ]) →
∀ x → [ i ] Ps x ∼′ Qs x
force (unique-solutions′ w ∼C[Ps] ∼C[Qs] x) = unique-solutions w ∼C[Ps] ∼C[Qs] x
-- For every family of weakly guarded contexts there is a family of
-- processes that satisfies the corresponding equations.
solutions-exist :
∀ {n} {C : Fin n → Context ∞ n} →
(∀ x → Weakly-guarded (C x)) →
∃ λ Ps → ∀ x → Ps x ∼ C x [ Ps ]
solutions-exist {n} {C} w = Ps , Ps∼
where
mutual
Ps : ∀ {i} → Fin n → Proc i
Ps x = P₁ (w x)
P₁ : ∀ {i} {C : Context ∞ n} → Weakly-guarded C → Proc i
P₁ ∅ = ∅
P₁ (w₁ ∣ w₂) = P₁ w₁ ∣ P₁ w₂
P₁ (w₁ ⊕ w₂) = P₁ w₁ ⊕ P₁ w₂
P₁ (action {μ = μ} {C = C}) = μ · λ { .force → P₂ (force C) }
P₁ (⟨ν⟩ {a = a} w) = ⟨ν a ⟩ (P₁ w)
P₁ (! w) = ! P₁ w
P₂ : ∀ {i} → Context ∞ n → Proc i
P₂ (hole x) = Ps x
P₂ ∅ = ∅
P₂ (C₁ ∣ C₂) = P₂ C₁ ∣ P₂ C₂
P₂ (C₁ ⊕ C₂) = P₂ C₁ ⊕ P₂ C₂
P₂ (μ · C) = μ · λ { .force → P₂ (force C) }
P₂ (⟨ν a ⟩ C) = ⟨ν a ⟩ (P₂ C)
P₂ (! C) = ! P₂ C
P₂∼ : ∀ {i} (C : Context ∞ n) → [ i ] P₂ C ∼ C [ Ps ]
P₂∼ (hole x) = reflexive
P₂∼ ∅ = reflexive
P₂∼ (C₁ ∣ C₂) = P₂∼ C₁ ∣-cong P₂∼ C₂
P₂∼ (C₁ ⊕ C₂) = P₂∼ C₁ ⊕-cong P₂∼ C₂
P₂∼ (μ · C) = refl ·-cong λ { .force → P₂∼ (force C) }
P₂∼ (⟨ν a ⟩ C) = ⟨ν refl ⟩-cong (P₂∼ C)
P₂∼ (! C) = !-cong P₂∼ C
P₁∼ : {C : Context ∞ n} (w : Weakly-guarded C) → P₁ w ∼ C [ Ps ]
P₁∼ ∅ = reflexive
P₁∼ (w₁ ∣ w₂) = P₁∼ w₁ ∣-cong P₁∼ w₂
P₁∼ (w₁ ⊕ w₂) = P₁∼ w₁ ⊕-cong P₁∼ w₂
P₁∼ (action {C = C}) = refl ·-cong λ { .force → P₂∼ (force C) }
P₁∼ (⟨ν⟩ {a = a} w) = ⟨ν refl ⟩-cong (P₁∼ w)
P₁∼ (! w) = !-cong P₁∼ w
Ps∼ : ∀ x → Ps x ∼ C x [ Ps ]
Ps∼ x = P₁∼ (w x)
------------------------------------------------------------------------
-- Some lemmas related to _⊕_
-- _⊕_ is idempotent.
⊕-idempotent : ∀ {P} → P ⊕ P ∼ P
⊕-idempotent {P} =
⟨ lr
, (λ {R} P⟶R →
P ⊕ P ⟶⟨ sum-left P⟶R ⟩ʳˡ
R ∼⟨ ∼′: reflexive ⟩■
R)
⟩
where
lr : ∀ {Q μ} → P ⊕ P [ μ ]⟶ Q → ∃ λ R → P [ μ ]⟶ R × Q ∼′ R
lr {Q} (sum-left P⟶Q) =
Q ∼⟨ ∼′: reflexive ⟩■
Q ⟵⟨ P⟶Q ⟩
P
lr {Q} (sum-right P⟶Q) =
Q ∼⟨ ∼′: reflexive ⟩■
Q ⟵⟨ P⟶Q ⟩
P
⊕-idempotent′ : ∀ {P} → P ⊕ P ∼′ P
force ⊕-idempotent′ = ⊕-idempotent
-- _⊕_ is commutative.
⊕-comm : ∀ {P Q} → P ⊕ Q ∼ Q ⊕ P
⊕-comm = ⟨ lr , Σ-map id (Σ-map id symmetric) ∘ lr ⟩
where
lr : ∀ {P Q R μ} →
P ⊕ Q [ μ ]⟶ R → ∃ λ R′ → Q ⊕ P [ μ ]⟶ R′ × R ∼′ R′
lr {P} {Q} {R} = λ where
(sum-left P⟶R) →
R ■ ⟵⟨ sum-right P⟶R ⟩
Q ⊕ P
(sum-right Q⟶R) →
R ■ ⟵⟨ sum-left Q⟶R ⟩
Q ⊕ P
|
{
"alphanum_fraction": 0.4063456606,
"avg_line_length": 32.0185430464,
"ext": "agda",
"hexsha": "b91eed7d8394ccb9668baa06bfcc590a7f733642",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/CCS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/CCS.agda",
"max_line_length": 145,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/CCS.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11616,
"size": 24174
}
|
-- A certified implementation of the extended Euclidian algorithm,
-- which in addition to the gcd also computes the coefficients of
-- Bézout's identity. That is, integers x and y, such that
-- ax + by = gcd a b.
-- See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
-- for details.
module Numeric.Nat.GCD.Extended where
open import Prelude
open import Control.WellFounded
open import Numeric.Nat.Divide
open import Numeric.Nat.DivMod
open import Numeric.Nat.GCD
open import Tactic.Nat
open import Tactic.Cong
-- Bézout coefficients always have opposite signs, so we can represent
-- a Bézout identity using only natural numbers, keeping track of which
-- coefficient is the positive one.
data BézoutIdentity (d a b : Nat) : Set where
bézoutL : (x y : Nat) → a * x ≡ d + b * y → BézoutIdentity d a b
bézoutR : (x y : Nat) → b * y ≡ d + a * x → BézoutIdentity d a b
-- The result of the extended gcd algorithm is the same as for the normal
-- one plus a BézoutIdentity.
record ExtendedGCD (a b : Nat) : Set where
no-eta-equality
constructor gcd-res
field d : Nat
isGCD : IsGCD d a b
bézout : BézoutIdentity d a b
private
-- This is what the recursive calls compute. At the top we get
-- ExtendedGCD′ a b a b, which we can turn into ExtendedGCD a b.
-- We need this because the correctness of the Bézout coefficients
-- is established going down and the correctness of the gcd going
-- up.
record ExtendedGCD′ (a b r₀ r₁ : Nat) : Set where
no-eta-equality
constructor gcd-res
field d : Nat
isGCD : IsGCD d r₀ r₁
bézout : BézoutIdentity d a b
-- Erasing the proof objects.
eraseBézout : ∀ {a b d} → BézoutIdentity d a b → BézoutIdentity d a b
eraseBézout (bézoutL x y eq) = bézoutL x y (eraseEquality eq)
eraseBézout (bézoutR x y eq) = bézoutR x y (eraseEquality eq)
-- Convert from ExtendedGCD′ as we erase, because why not.
eraseExtendedGCD : ∀ {a b} → ExtendedGCD′ a b a b → ExtendedGCD a b
eraseExtendedGCD (gcd-res d p i) = gcd-res d (eraseIsGCD p) (eraseBézout i)
private
-- The algorithm computes a sequence of coefficients xᵢ and yᵢ (sᵢ and tᵢ on
-- Wikipedia) that terminates in the Bézout coefficients for a and b. The
-- invariant is that they satisfy the Bézout identity for the current remainder.
-- Moreover, at each step they flip sign, so we can represent two consecutive
-- pairs of coefficients as follows.
data BézoutState (a b r₀ r₁ : Nat) : Set where
bézoutLR : ∀ x₀ x₁ y₀ y₁ (eq₀ : a * x₀ ≡ r₀ + b * y₀)
(eq₁ : b * y₁ ≡ r₁ + a * x₁) → BézoutState a b r₀ r₁
bézoutRL : ∀ x₀ x₁ y₀ y₁ (eq₀ : b * y₀ ≡ r₀ + a * x₀)
(eq₁ : a * x₁ ≡ r₁ + b * y₁) → BézoutState a b r₀ r₁
-- In the base case the last remainder is 0, and the second to last is the gcd,
-- so we get the Bézout coefficients from the first components in the state.
getBézoutIdentity : ∀ {d a b} → BézoutState a b d 0 → BézoutIdentity d a b
getBézoutIdentity (bézoutLR x₀ _ y₀ _ eq₀ _) = bézoutL x₀ y₀ eq₀
getBézoutIdentity (bézoutRL x₀ _ y₀ _ eq₀ _) = bézoutR x₀ y₀ eq₀
-- It's important for compile time performance to be strict in the computed
-- coefficients. Can't do a dependent force here due to the proof object. Note
-- that we only have to be strict in x₁ and y₁, since x₀ and y₀ are simply
-- the x₁ and y₁ of the previous state.
forceState : ∀ {a b r₀ r₁} {C : Set} → BézoutState a b r₀ r₁ → (BézoutState a b r₀ r₁ → C) → C
forceState (bézoutLR x₀ x₁ y₀ y₁ eq₀ eq₁) k =
force′ x₁ λ x₁′ eqx → force′ y₁ λ y₁′ eqy →
k (bézoutLR x₀ x₁′ y₀ y₁′ eq₀ (case eqx of λ where refl → case eqy of λ where refl → eq₁))
forceState (bézoutRL x₀ x₁ y₀ y₁ eq₀ eq₁) k =
force′ x₁ λ x₁′ eqx → force′ y₁ λ y₁′ eqy →
k (bézoutRL x₀ x₁′ y₀ y₁′ eq₀ (case eqx of λ where refl → case eqy of λ where refl → eq₁))
-- We're starting of the algorithm with two first remainders being a and b themselves.
-- The corresponding coefficients are x₀, x₁ = 1, 0 and y₀, y₁ = 0, 1.
initialState : ∀ {a b} → BézoutState a b a b
initialState = bézoutLR 1 0 0 1 auto auto
module _ {r₀ r₁ r₂} q where
-- The proof that new coefficients satisfy the invariant.
-- Note alternating sign: x₀ pos, x₁ neg, x₂ pos.
lemma : (a b x₀ x₁ y₀ y₁ : Nat) →
q * r₁ + r₂ ≡ r₀ →
a * x₀ ≡ r₀ + b * y₀ →
b * y₁ ≡ r₁ + a * x₁ →
a * (x₀ + q * x₁) ≡ r₂ + b * (y₀ + q * y₁)
lemma a b x₀ x₁ y₀ y₁ refl eq₀ eq₁ =
a * (x₀ + q * x₁)
≡⟨ by eq₀ ⟩
r₂ + b * y₀ + q * (r₁ + a * x₁)
≡⟨ by-cong eq₁ ⟩
r₂ + b * y₀ + q * (b * y₁)
≡⟨ auto ⟩
r₂ + b * (y₀ + q * y₁) ∎
-- The sequence of coefficients is defined by
-- xᵢ₊₁ = xᵢ₋₁ + q * xᵢ
-- yᵢ₊₁ = yᵢ₋₁ + q * yᵢ
-- where q is defined by the step in the normal Euclidian algorithm
-- rᵢ₊₁ = rᵢ₋₁ + q * rᵢ
bézoutState-step : ∀ {a b} → q * r₁ + r₂ ≡ r₀ → BézoutState a b r₀ r₁ → BézoutState a b r₁ r₂
bézoutState-step {a} {b} eq (bézoutLR x₀ x₁ y₀ y₁ eq₀ eq₁) =
bézoutRL x₁ (x₀ + q * x₁) y₁ (y₀ + q * y₁) eq₁ (lemma a b x₀ x₁ y₀ y₁ eq eq₀ eq₁)
bézoutState-step {a} {b} eq (bézoutRL x₀ x₁ y₀ y₁ eq₀ eq₁) =
bézoutLR x₁ (x₀ + q * x₁) y₁ (y₀ + q * y₁) eq₁ (lemma b a y₀ y₁ x₀ x₁ eq eq₀ eq₁)
extendedGCD-step : ∀ {a b} → q * r₁ + r₂ ≡ r₀ → ExtendedGCD′ a b r₁ r₂ → ExtendedGCD′ a b r₀ r₁
extendedGCD-step eq (gcd-res d p i) = gcd-res d (isGCD-step q eq p) i
private
extendedGCD-acc : {a b : Nat} → (r₀ r₁ : Nat) →
BézoutState a b r₀ r₁ →
Acc _<_ r₁ → ExtendedGCD′ a b r₀ r₁
extendedGCD-acc r₀ zero s _ =
gcd-res r₀ (is-gcd (factor 1 auto) (factor! 0) λ k p _ → p) (getBézoutIdentity s)
extendedGCD-acc r₀ (suc r₁) s (acc wf) =
forceState s λ s → -- make sure to be strict in xᵢ and yᵢ
case r₀ divmod suc r₁ of λ where
(qr q r₂ lt eq) →
extendedGCD-step q eq (extendedGCD-acc (suc r₁) r₂ (bézoutState-step q eq s) (wf r₂ lt))
-- The extended Euclidian algorithm. Easily handles inputs of several hundred digits.
extendedGCD : (a b : Nat) → ExtendedGCD a b
extendedGCD a b = eraseExtendedGCD (extendedGCD-acc a b initialState (wfNat b))
|
{
"alphanum_fraction": 0.6337200064,
"avg_line_length": 45.273381295,
"ext": "agda",
"hexsha": "b65173f9789956f160bb149d2b534738931a1c03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/GCD/Extended.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/GCD/Extended.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/GCD/Extended.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2328,
"size": 6293
}
|
module Naturals where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
-- type definition
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- bind builtin (aka Haskell integers) to my natural type
{-# BUILTIN NATURAL ℕ #-}
-- define addition proof
-- base case for identity rule
-- inductive case for associative rule
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
-- 2 + 3 proposition is reflexive
-- that means addition is a binary
-- relation that relates to itself
_ : 2 + 3 ≡ 5
_ = refl
-- same for 3 + 4 propositon
-- i manually proved it
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4
≡⟨⟩
suc (2 + 4)
≡⟨⟩
suc (suc (1 + 4))
≡⟨⟩
suc (suc (suc (0 + 4)))
≡⟨⟩
suc (suc (suc 0)) + suc 3
≡⟨⟩
suc (suc (suc 0)) + suc (suc 2)
≡⟨⟩
suc (suc (suc 0)) + suc (suc (suc 1))
≡⟨⟩
suc (suc (suc 0)) + suc (suc (suc (suc 0)))
≡⟨⟩
7
∎
-- after addition we can efine
-- multiplication in terms of it
-- note the base case and the inductive case
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + (m * n)
_ =
begin
2 * 3
≡⟨⟩
3 + (1 * 3)
≡⟨⟩
3 + (3 + (0 * 3))
≡⟨⟩
3 + (3 + 0)
≡⟨⟩
6
∎
_ =
begin
3 * 4
≡⟨⟩
4 + (2 * 4)
≡⟨⟩
4 + (4 + (1 * 4))
≡⟨⟩
4 + (4 + (4 + (0 * 4)))
≡⟨⟩
12
∎
-- with multiplication we then can
-- define exponentiation
-- note that `m ^ zero` /= `zero ^ m`
_^_ : ℕ → ℕ → ℕ
n ^ zero = 1
m ^ suc n = m * (m ^ n)
_ : 3 ^ 4 ≡ 81
_ =
begin
3 ^ 4
≡⟨⟩
3 * (3 ^ 3)
≡⟨⟩
3 * (3 * (3 ^ 2))
≡⟨⟩
3 * (3 * (3 * (3 ^ 1)))
≡⟨⟩
3 * (3 * (3 * (3 * (3 ^ 0))))
≡⟨⟩
81
∎
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
_ : 3 ∸ 2 ≡ 1
_ =
begin
3 ∸ 2
≡⟨⟩
2 ∸ 1
≡⟨⟩
1 ∸ 0
≡⟨⟩
1
∎
_ : 2 ∸ 3 ≡ 0
_ =
begin
2 ∸ 3
≡⟨⟩
1 ∸ 2
≡⟨⟩
0 ∸ 1
≡⟨⟩
0
∎
_ : 5 ∸ 3 ≡ 2
_ =
begin
5 ∸ 3
≡⟨⟩
4 ∸ 2
≡⟨⟩
3 ∸ 1
≡⟨⟩
2 ∸ 0
≡⟨⟩
2
∎
_ : 3 ∸ 5 ≡ 0
_ =
begin
3 ∸ 5
≡⟨⟩
2 ∸ 4
≡⟨⟩
1 ∸ 3
≡⟨⟩
0 ∸ 2
≡⟨⟩
0
∎
-- here we define the precedence
-- of operators. all they are left associative
-- and addiction and monus have precedence less
-- than multiplication
infixl 6 _+_ _∸_
infixl 7 _*_
infixl 8 _^_
-- binding aforementioned operators
-- to the relevant Haskell integer operators
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
{-# BUILTIN NATMINUS _∸_ #-}
|
{
"alphanum_fraction": 0.4664793256,
"avg_line_length": 14.0734463277,
"ext": "agda",
"hexsha": "c1e72f49fbea01fc07f658061a7ed621eb309ed2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0bedfbd7156e631a2ea563cbe812588c9fdb8b37",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "matdsoupe/paradigmas",
"max_forks_repo_path": "funcional/agda/plfa/parte1/Naturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0bedfbd7156e631a2ea563cbe812588c9fdb8b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "matdsoupe/paradigmas",
"max_issues_repo_path": "funcional/agda/plfa/parte1/Naturals.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0bedfbd7156e631a2ea563cbe812588c9fdb8b37",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "matdsoupe/paradigmas",
"max_stars_repo_path": "funcional/agda/plfa/parte1/Naturals.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1260,
"size": 2491
}
|
{-# OPTIONS --safe --warning=error #-}
open import Sets.Cardinality.Infinite.Definition
open import Sets.EquivalenceRelations
open import Setoids.Setoids
open import Groups.FreeGroup.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Decidable.Sets
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Semirings.Definition
open import Functions.Definition
open import Functions.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.FreeGroup.Word
open import Groups.FreeGroup.Group
open import Groups.FreeGroup.UniversalProperty
open import Groups.Abelian.Definition
open import Groups.QuotientGroup.Definition
open import Groups.Lemmas
open import Groups.Homomorphisms.Lemmas
module Groups.FreeGroup.Lemmas {a : _} {A : Set a} (decA : DecidableSet A) where
freeGroupNonAbelian : AbelianGroup (freeGroup decA) → (a : A) → Sg (A → True) Bijection
freeGroupNonAbelian record { commutative = commutative } a = (λ _ → record {}) , b
where
b : Bijection (λ _ → record {})
Bijection.inj b {x} {y} _ with decA x y
... | inl pr = pr
... | inr neq = exFalso (neq (ofLetterInjective (prependLetterInjective' decA t)))
where
t : prependLetter {decA = decA} (ofLetter x) (prependLetter (ofLetter y) empty (wordEmpty refl)) (wordEnding (succIsPositive 0) refl) ≡ prependLetter (ofLetter y) (prependLetter (ofLetter x) empty (wordEmpty refl)) (wordEnding (succIsPositive 0) refl)
t = commutative {prependLetter (ofLetter x) empty (wordEmpty refl)} {prependLetter (ofLetter y) empty (wordEmpty refl)}
Bijection.surj b record {} = a , refl
private
iso : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → ReducedWord decA → ReducedWord decB
iso decB {f} bij = universalPropertyFunction decA (freeGroup decB) λ a → freeEmbedding decB (f a)
isoHom : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → GroupHom (freeGroup decA) (freeGroup decB) (iso decB bij)
isoHom decB {f} bij = universalPropertyHom decA (freeGroup decB) λ a → iso decB bij (freeEmbedding decA a)
iso2 : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → ReducedWord decB → ReducedWord decA
iso2 decB {f} bij = universalPropertyFunction decB (freeGroup decA) λ b → freeEmbedding decA (Invertible.inverse (bijectionImpliesInvertible bij) b)
iso2Hom : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → GroupHom (freeGroup decB) (freeGroup decA) (iso2 decB bij)
iso2Hom decB {f} bij = universalPropertyHom decB (freeGroup decA) λ b → iso2 decB bij (freeEmbedding decB b)
fixesF : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : A) → iso2 decB bij (iso decB bij (freeEmbedding decA x)) ≡ freeEmbedding decA x
fixesF decB {f} bij x with Bijection.surj bij (f x)
... | _ , pr rewrite Bijection.inj bij pr = refl
fixesF' : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : B) → iso decB bij (iso2 decB bij (freeEmbedding decB x)) ≡ freeEmbedding decB x
fixesF' decB {f} bij x with Bijection.surj bij x
... | _ , pr rewrite pr = refl
uniq : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → x ≡ universalPropertyFunction decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) x
uniq decB {f} bij x = universalPropertyUniqueness decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) {id} (record { wellDefined = id ; groupHom = refl }) (fixesF decB bij) x
uniqLemm : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → iso2 decB bij (iso decB bij x) ≡ universalPropertyFunction decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) x
uniqLemm decB {f} bij x = universalPropertyUniqueness decA (freeGroup decA) (λ i → freeEmbedding decA (underlying (Bijection.surj bij (f i)))) {λ i → iso2 decB bij (iso decB bij i)} (groupHomsCompose (isoHom decB bij) (iso2Hom decB bij)) (λ _ → refl) x
uniq! : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → iso2 decB bij (iso decB bij x) ≡ x
uniq! decB bij x = transitivity (uniqLemm decB bij x) (equalityCommutative (uniq decB bij x))
uniq' : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → x ≡ universalPropertyFunction decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) x
uniq' decB {f} bij x = universalPropertyUniqueness decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) {id} (record { wellDefined = id ; groupHom = refl }) (fixesF' decB bij) x
uniq'Lemm : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → iso decB bij (iso2 decB bij x) ≡ universalPropertyFunction decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) x
uniq'Lemm decB {f} bij x = universalPropertyUniqueness decB (freeGroup decB) (λ i → freeEmbedding decB (f (Invertible.inverse (bijectionImpliesInvertible bij) i))) {λ i → iso decB bij (iso2 decB bij i)} (groupHomsCompose (iso2Hom decB bij) (isoHom decB bij)) (λ _ → refl) x
uniq'! : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → iso decB bij (iso2 decB bij x) ≡ x
uniq'! decB bij x = transitivity (uniq'Lemm decB bij x) (equalityCommutative (uniq' decB bij x))
inBijection : {b : _} {B : Set b} (decB : DecidableSet B) {f : A → B} (bij : Bijection f) → Bijection (iso decB bij)
inBijection decB bij = invertibleImpliesBijection (record { inverse = iso2 decB bij ; isLeft = uniq'! decB bij ; isRight = uniq! decB bij })
freeGroupFunctorWellDefined : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → GroupsIsomorphic (freeGroup decA) (freeGroup decB)
GroupsIsomorphic.isomorphism (freeGroupFunctorWellDefined decB {f} bij) = iso decB bij
GroupIso.groupHom (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)) = universalPropertyHom decA (freeGroup decB) λ a → freeEmbedding decB (f a)
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) refl = refl
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) {x} {y} pr = Bijection.inj (inBijection decB bij) pr
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) refl = refl
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) {x} = Bijection.surj (inBijection decB bij) x
{-
freeGroupFunctorInjective : {b : _} {B : Set b} (decB : DecidableSet B) → GroupsIsomorphic (freeGroup decA) (freeGroup decB) → Sg (A → B) (λ f → Bijection f)
freeGroupFunctorInjective decB iso = {!!}
everyGroupQuotientOfFreeGroup : {b : _} → (S : Setoid {a} {b} A) → {_+_ : A → A → A} → (G : Group S _+_) → GroupsIsomorphic G (quotientGroupByHom (freeGroup decA) (universalPropertyHom decA {!!} {!!}))
everyGroupQuotientOfFreeGroup = {!!}
everyFGGroupQuotientOfFGFreeGroup : {!!}
everyFGGroupQuotientOfFGFreeGroup = {!!}
freeGroupTorsionFree : {!!}
freeGroupTorsionFree = {!!}
-}
private
mapNToGrp : (a : A) → (n : ℕ) → ReducedWord decA
mapNToGrpLen : (a : A) → (n : ℕ) → wordLength decA (mapNToGrp a n) ≡ n
mapNToGrpFirstLetter : (a : A) → (n : ℕ) → .(pr : 0 <N wordLength decA (mapNToGrp a (succ n))) → firstLetter decA (mapNToGrp a (succ n)) pr ≡ (ofLetter a)
lemma : (a : A) → (n : ℕ) → .(pr : 0 <N wordLength decA (mapNToGrp a (succ n))) → ofLetter a ≡ freeInverse (firstLetter decA (mapNToGrp a (succ n)) pr) → False
lemma a zero _ ()
lemma a (succ n) _ ()
mapNToGrp a zero = empty
mapNToGrp a 1 = prependLetter (ofLetter a) empty (wordEmpty refl)
mapNToGrp a (succ (succ n)) = prependLetter (ofLetter a) (mapNToGrp a (succ n)) (wordEnding (identityOfIndiscernablesRight _<N_ (succIsPositive n) (equalityCommutative (mapNToGrpLen a (succ n)))) (freeCompletionEqualFalse decA λ p → lemma a n ((identityOfIndiscernablesRight _<N_ (succIsPositive n) (equalityCommutative (mapNToGrpLen a (succ n))))) p))
mapNToGrpFirstLetter a zero pr = refl
mapNToGrpFirstLetter a (succ n) pr = refl
mapNToGrpLen a zero = refl
mapNToGrpLen a (succ zero) = refl
mapNToGrpLen a (succ (succ n)) = applyEquality succ (mapNToGrpLen a (succ n))
mapNToGrpInj : (a : A) → (x y : ℕ) → mapNToGrp a x ≡ mapNToGrp a y → x ≡ y
mapNToGrpInj a zero zero pr = refl
mapNToGrpInj a zero (succ zero) ()
mapNToGrpInj a zero (succ (succ y)) ()
mapNToGrpInj a (succ zero) zero ()
mapNToGrpInj a (succ (succ x)) zero ()
mapNToGrpInj a (succ zero) (succ zero) pr = refl
mapNToGrpInj a (succ zero) (succ (succ y)) pr = exFalso (naughtE (transitivity (applyEquality (wordLength decA) (prependLetterInjective decA pr)) (mapNToGrpLen a (succ y))))
mapNToGrpInj a (succ (succ x)) (succ 0) pr = exFalso (naughtE (transitivity (equalityCommutative (applyEquality (wordLength decA) (prependLetterInjective decA pr))) (mapNToGrpLen a (succ x))))
mapNToGrpInj a (succ (succ x)) (succ (succ y)) pr = applyEquality succ (mapNToGrpInj a (succ x) (succ y) (prependLetterInjective decA pr))
freeGroupInfinite : (nonempty : A) → DedekindInfiniteSet (ReducedWord decA)
DedekindInfiniteSet.inj (freeGroupInfinite nonempty) = mapNToGrp nonempty
DedekindInfiniteSet.isInjection (freeGroupInfinite nonempty) {x} {y} = mapNToGrpInj nonempty x y
|
{
"alphanum_fraction": 0.7013065937,
"avg_line_length": 74.2330827068,
"ext": "agda",
"hexsha": "c5d18aae30192775739410458ff518da7619b4f0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeGroup/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeGroup/Lemmas.agda",
"max_line_length": 354,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeGroup/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3468,
"size": 9873
}
|
open import Agda.Primitive.Cubical
test : (J : IUniv) → J → J
test J j = primHComp {φ = i0} (λ k → λ ()) j
|
{
"alphanum_fraction": 0.5925925926,
"avg_line_length": 21.6,
"ext": "agda",
"hexsha": "12cc971a4528c03e002967bf350ffb1acc28098d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/IUnivNoHComp.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/IUnivNoHComp.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/IUnivNoHComp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 45,
"size": 108
}
|
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.meta:45 #-}
-- Andreas, 2014-12-07 found a bug in pruning
open import Common.Prelude
open import Common.Product
open import Common.Equality
postulate
f : Bool → Bool
test : let
X : Bool → Bool → Bool
X = _
Y : Bool
Y = _
in ∀ b → Y ≡ f (X b (f (if true then true else b))) ×
(∀ a → X a (f b) ≡ f b)
test b = refl , λ a → refl
-- ERROR WAS:
-- Cannot instantiate the metavariable _22 to solution f b since it
-- contains the variable b which is not in scope of the metavariable
-- or irrelevant in the metavariable but relevant in the solution
-- when checking that the expression refl has type (_22 ≡ f b)
-- Here, Agda complains although there is a solution
-- X a b = b
-- Y = f (f true)
-- Looking at the first constraint
-- Y = f (X b (f (if true then true else b)))
-- agda prunes *both* arguments of X since they have rigid occurrences
-- of b. However, the second occurrences goes away by normalization:
-- Y = f (X b (f true))
-- For efficiency reasons, see issue 415 , Agda first does not
-- normalize during occurs check. Thus, the free variable check for
-- the arg (if true then true else b) returns b as rigid, which means
-- we have a neutral term (f (...b...)) with a rigid occurrence of bad
-- variable b, and we prune this argument of meta X. This is unsound,
-- since the free variable check only returns a superset of the actual
-- (semantic) variable dependencies.
-- NOW: metas should be unsolved.
|
{
"alphanum_fraction": 0.6692708333,
"avg_line_length": 29.5384615385,
"ext": "agda",
"hexsha": "c064ae1cc117bedb46492aba4ab4cfe4fceda770",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1386.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1386.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1386.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 421,
"size": 1536
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.