Search is not available for this dataset
text
string
meta
dict
module #12 where {- Using the propositions as types interpretation, derive the following tautologies. (i) If A, then (if B then A). (ii) If A, then not (not A). (iii) If (not A or not B), then not (A and B). -} open import Data.Product open import Data.Sum open import Relation.Nullary const : {A B : Set} → A → (B → A) const = λ z _ → z double-negation : {A : Set} → A → ¬ (¬ A) double-negation = λ z z₁ → z₁ z demorgans-law₁ : {A B C : Set} → ((¬ A) ⊎ (¬ B)) → (¬ (A × B)) demorgans-law₁ (inj₁ ¬x) (a , _) = ¬x a demorgans-law₁ (inj₂ ¬y) (_ , b) = ¬y b
{ "alphanum_fraction": 0.5877192982, "avg_line_length": 24.7826086957, "ext": "agda", "hexsha": "d99a9794dd73ee73b466763a7a19f9ba124f429a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#12.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#12.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#12.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 218, "size": 570 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Induction over Fin ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Induction where open import Data.Nat.Base using (ℕ) open import Data.Nat.Induction using (<′-wellFounded) open import Data.Fin.Base using (_≺_) open import Data.Fin.Properties open import Induction open import Induction.WellFounded as WF ------------------------------------------------------------------------ -- Re-export accessability open WF public using (Acc; acc) ------------------------------------------------------------------------ -- Complete induction based on _≺_ ≺-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ ≺-Rec = WfRec _≺_ ≺-wellFounded : WellFounded _≺_ ≺-wellFounded = Subrelation.wellFounded ≺⇒<′ <′-wellFounded module _ {ℓ} where open WF.All ≺-wellFounded ℓ public renaming ( wfRecBuilder to ≺-recBuilder ; wfRec to ≺-rec ) hiding (wfRec-builder) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 ≺-rec-builder = ≺-recBuilder {-# WARNING_ON_USAGE ≺-rec-builder "Warning: ≺-rec-builder was deprecated in v0.15. Please use ≺-recBuilder instead." #-} ≺-well-founded = ≺-wellFounded {-# WARNING_ON_USAGE ≺-well-founded "Warning: ≺-well-founded was deprecated in v0.15. Please use ≺-wellFounded instead." #-}
{ "alphanum_fraction": 0.5140931373, "avg_line_length": 28.1379310345, "ext": "agda", "hexsha": "9a00091f0a70a57d3e3c27d78e57d08473a6d707", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Fin/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Fin/Induction.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Fin/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 382, "size": 1632 }
{-# OPTIONS --type-in-type #-} module TooFewArgs where open import AgdaPrelude myFun : (a : Set) -> a -> a -> a myFun a x y = x myApp : Nat myApp = myFun _ Zero
{ "alphanum_fraction": 0.6242424242, "avg_line_length": 15, "ext": "agda", "hexsha": "c0b2cb7037a379b2c985b8bcac319b3e652fdd68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "thesisExamples/TooFewArgs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "thesisExamples/TooFewArgs.agda", "max_line_length": 32, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "thesisExamples/TooFewArgs.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 57, "size": 165 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Closed {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C variable A B X X′ Y Y′ Z Z′ U V : Obj f g : A ⇒ B open Commutation open import Level open import Data.Product using (Σ; _,_) open import Function.Equality using (_⟶_) open import Function.Inverse using (_InverseOf_; Inverse) open import Categories.Category.Product open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.NaturalTransformation.Dinatural record Closed : Set (levelOfTerm C) where field -- internal hom [-,-] : Bifunctor C.op C C unit : Obj [_,-] : Obj → Functor C C [_,-] = appˡ [-,-] [-,_] : Obj → Functor C.op C [-,_] = appʳ [-,-] module [-,-] = Functor [-,-] [_,_]₀ : Obj → Obj → Obj [ X , Y ]₀ = [-,-].F₀ (X , Y) [_,_]₁ : A ⇒ B → X ⇒ Y → [ B , X ]₀ ⇒ [ A , Y ]₀ [ f , g ]₁ = [-,-].F₁ (f , g) field -- i identity : NaturalIsomorphism idF [ unit ,-] -- j diagonal : Extranaturalʳ unit [-,-] module identity = NaturalIsomorphism identity module diagonal = DinaturalTransformation diagonal [[X,-],[X,-]] : Obj → Bifunctor C.op C C [[X,-],[X,-]] X = [-,-] ∘F (Functor.op [ X ,-] ⁂ [ X ,-]) [[-,Y],[-,Z]] : Obj → Obj → Bifunctor C C.op C [[-,Y],[-,Z]] Y Z = [-,-] ∘F ((Functor.op [-, Y ]) ⁂ [-, Z ]) -- L needs to be natural in Y and Z while extranatural in Z. -- it is better to spell out the conditions and then prove that indeed -- the naturality conditions hold. field L : ∀ X Y Z → [ Y , Z ]₀ ⇒ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ L-natural-comm : [ [ Y , Z ]₀ ⇒ [ [ X , Y′ ]₀ , [ X , Z′ ]₀ ]₀ ]⟨ [ f , g ]₁ ⇒⟨ [ Y′ , Z′ ]₀ ⟩ L X Y′ Z′ ≈ L X Y Z ⇒⟨ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ ⟩ [ [ C.id , f ]₁ , [ C.id , g ]₁ ]₁ ⟩ L-dinatural-comm : [ [ Y , Z ]₀ ⇒ [ [ X , Y ]₀ , [ X′ , Z ]₀ ]₀ ]⟨ L X′ Y Z ⇒⟨ [ [ X′ , Y ]₀ , [ X′ , Z ]₀ ]₀ ⟩ [ [ f , C.id ]₁ , [ C.id , C.id ]₁ ]₁ ≈ L X Y Z ⇒⟨ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ ⟩ [ [ C.id , C.id ]₁ , [ f , C.id ]₁ ]₁ ⟩ L-natural : NaturalTransformation [-,-] ([[X,-],[X,-]] X) L-natural {X} = ntHelper record { η = λ where (Y , Z) → L X Y Z ; commute = λ _ → L-natural-comm } L-dinatural : Extranaturalʳ [ Y , Z ]₀ (flip-bifunctor ([[-,Y],[-,Z]] Y Z)) L-dinatural {Y} {Z} = extranaturalʳ (λ X → L X Y Z) L-dinatural-comm module L-natural {X} = NaturalTransformation (L-natural {X}) module L-dinatural {Y Z} = DinaturalTransformation (L-dinatural {Y} {Z}) -- other required diagrams field Lj≈j : [ unit ⇒ [ [ X , Y ]₀ , [ X , Y ]₀ ]₀ ]⟨ diagonal.α Y ⇒⟨ [ Y , Y ]₀ ⟩ L X Y Y ≈ diagonal.α [ X , Y ]₀ ⟩ jL≈i : [ [ X , Y ]₀ ⇒ [ unit , [ X , Y ]₀ ]₀ ]⟨ L X X Y ⇒⟨ [ [ X , X ]₀ , [ X , Y ]₀ ]₀ ⟩ [ diagonal.α X , C.id ]₁ ≈ identity.⇒.η [ X , Y ]₀ ⟩ iL≈i : [ [ Y , Z ]₀ ⇒ [ Y , [ unit , Z ]₀ ]₀ ]⟨ L unit Y Z ⇒⟨ [ [ unit , Y ]₀ , [ unit , Z ]₀ ]₀ ⟩ [ identity.⇒.η Y , C.id ]₁ ≈ [ C.id , identity.⇒.η Z ]₁ ⟩ pentagon : [ [ U , V ]₀ ⇒ [ [ Y , U ]₀ , [ [ X , Y ]₀ , [ X , V ]₀ ]₀ ]₀ ]⟨ L X U V ⇒⟨ [ [ X , U ]₀ , [ X , V ]₀ ]₀ ⟩ L [ X , Y ]₀ [ X , U ]₀ [ X , V ]₀ ⇒⟨ [ [ [ X , Y ]₀ , [ X , U ]₀ ]₀ , [ [ X , Y ]₀ , [ X , V ]₀ ]₀ ]₀ ⟩ [ L X Y U , C.id ]₁ ≈ L Y U V ⇒⟨ [ [ Y , U ]₀ , [ Y , V ]₀ ]₀ ⟩ [ C.id , L X Y V ]₁ ⟩ open Functor γ : hom-setoid {X} {Y} ⟶ hom-setoid {unit} {[ X , Y ]₀} γ {X} = record { _⟨$⟩_ = λ f → [ C.id , f ]₁ ∘ diagonal.α _ ; cong = λ eq → ∘-resp-≈ˡ (F-resp-≈ [ X ,-] eq) } field γ⁻¹ : hom-setoid {unit} {[ X , Y ]₀} ⟶ hom-setoid {X} {Y} γ-inverseOf-γ⁻¹ : γ {X} {Y} InverseOf γ⁻¹ γ-inverse : Inverse (hom-setoid {unit} {[ X , Y ]₀}) (hom-setoid {X} {Y}) γ-inverse = record { to = γ⁻¹ ; from = γ ; inverse-of = γ-inverseOf-γ⁻¹ }
{ "alphanum_fraction": 0.4219075385, "avg_line_length": 34.5467625899, "ext": "agda", "hexsha": "ae2a44107ad946c7f955cd84b9ecb867b52852be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Closed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Closed.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Closed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1716, "size": 4802 }
{-# OPTIONS --prop --rewriting #-} module Examples.Gcd.Spec where open import Calf.CostMonoid import Calf.CostMonoids as CM open import Calf CM.ℕ-CostMonoid open import Calf.Types.Nat open import Examples.Gcd.Euclid open import Examples.Gcd.Clocked open import Data.Nat.DivMod open import Data.Nat open import Relation.Binary.PropositionalEquality as P open import Data.Nat.Properties open import Data.Product gcd/clocked≡spec/zero : ∀ k x h → k ≥ gcd/depth (x , ℕ.zero , h) → ◯ (gcd/clocked k (x , ℕ.zero , h) ≡ ret {nat} x) gcd/clocked≡spec/zero ℕ.zero x h h1 u = refl gcd/clocked≡spec/zero (suc k) x h h1 u = refl suc-cancel-≤ : ∀ {m n} → suc m ≤ suc n → m ≤ n suc-cancel-≤ (s≤s h) = h gcd/clocked/mono : ∀ k x y h → k ≥ gcd/depth (x , y , h) → gcd/clocked k (x , y , h) ≡ gcd/clocked (suc k) (x , y , h) gcd/clocked/mono ℕ.zero x ℕ.zero h h1 = refl gcd/clocked/mono (suc k) x ℕ.zero h h1 = refl gcd/clocked/mono (suc k) x (suc y) h h1 = begin gcd/clocked (suc k) (x , suc y , h) ≡⟨ refl ⟩ step (F nat) 1 (gcd/clocked k (suc y , x % suc y , m%n<n x y)) ≡⟨ P.cong (step (F nat) 1) (gcd/clocked/mono k (suc y) (x % suc y) (m%n<n x y) (suc-cancel-≤ (P.subst (λ r → suc k ≥ r) (gcd/depth-unfold-suc {x} {y} {h}) h1))) ⟩ step (F nat) 1 (gcd/clocked (suc k) (suc y , x % suc y , m%n<n x y)) ∎ where open ≡-Reasoning gcd/clocked≡spec/suc : ∀ k x y h → k ≥ gcd/depth (x , suc y , h) → ◯ (gcd/clocked k (x , suc y , h) ≡ gcd/clocked k (suc y , x % suc y , m%n<n x y)) gcd/clocked≡spec/suc (suc k) x y h h1 u = begin gcd/clocked (suc k) (x , suc y , h) ≡⟨ refl ⟩ step (F nat) 1 (gcd/clocked k (suc y , x % suc y , m%n<n x y)) ≡⟨ step/ext (F nat) ((gcd/clocked k (suc y , x % suc y , m%n<n x y))) 1 u ⟩ gcd/clocked k (suc y , x % suc y , m%n<n x y) ≡⟨ gcd/clocked/mono k (suc y) (x % suc y) (m%n<n x y) (suc-cancel-≤ (P.subst (λ r → suc k ≥ r) (gcd/depth-unfold-suc {x} {y} {h}) h1)) ⟩ gcd/clocked (suc k) (suc y , x % suc y , m%n<n x y) ∎ where open ≡-Reasoning gcd≡spec/zero : ∀ x h → ◯ (gcd (x , 0 , h) ≡ ret {nat} x) gcd≡spec/zero x h = gcd/clocked≡spec/zero (gcd/depth (x , 0 , h)) x h ≤-refl gcd≡spec/suc : ∀ x y h → ◯ (gcd (x , suc y , h) ≡ gcd (suc y , x % suc y , m%n<n x y)) gcd≡spec/suc x y h u = begin gcd (x , suc y , h) ≡⟨ gcd/clocked≡spec/suc (gcd/depth (x , suc y , h)) x y h ≤-refl u ⟩ gcd/clocked (gcd/depth (x , suc y , h)) (suc y , x % suc y , m%n<n x y) ≡⟨ cong (λ k → gcd/clocked k (suc y , x % suc y , m%n<n x y)) (gcd/depth-unfold-suc {x} {y} {h}) ⟩ gcd/clocked (suc (gcd/depth (suc y , x % suc y , m%n<n x y))) (suc y , x % suc y , m%n<n x y) ≡⟨ sym (gcd/clocked/mono (gcd/depth (suc y , x % suc y , m%n<n x y)) (suc y) (x % suc y) (m%n<n x y) ≤-refl) ⟩ gcd/clocked (gcd/depth (suc y , x % suc y , m%n<n x y)) (suc y , x % suc y , m%n<n x y) ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5630800963, "avg_line_length": 40.9718309859, "ext": "agda", "hexsha": "47548b54b78ed1f2c614973bc8a4d21029ced7b3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Gcd/Spec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Gcd/Spec.agda", "max_line_length": 140, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Gcd/Spec.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1264, "size": 2909 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The free monad construction on indexed containers ------------------------------------------------------------------------ module Data.Container.Indexed.FreeMonad where open import Level open import Function hiding (const) open import Category.Monad.Predicate open import Data.Container.Indexed hiding (_∈_) open import Data.Container.Indexed.Combinator hiding (id; _∘_) open import Data.Empty open import Data.Sum using (inj₁; inj₂) open import Data.Product open import Data.W.Indexed open import Relation.Unary open import Relation.Unary.PredicateTransformer ------------------------------------------------------------------------ infixl 9 _⋆C_ infix 9 _⋆_ _⋆C_ : ∀ {i o c r} {I : Set i} {O : Set o} → Container I O c r → Pred O c → Container I O _ _ C ⋆C X = const X ⊎ C _⋆_ : ∀ {ℓ} {O : Set ℓ} → Container O O ℓ ℓ → Pt O ℓ C ⋆ X = μ (C ⋆C X) pattern returnP x = (inj₁ x , _) pattern doP c k = (inj₂ c , k) do : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X} → ⟦ C ⟧ (C ⋆ X) ⊆ C ⋆ X do (c , k) = sup (doP c k) rawPMonad : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} → RawPMonad {ℓ = ℓ} (_⋆_ C) rawPMonad {C = C} = record { return? = return ; _=<?_ = _=<<_ } where return : ∀ {X} → X ⊆ C ⋆ X return x = sup (inj₁ x , ⊥-elim ∘ lower) _=<<_ : ∀ {X Y} → X ⊆ C ⋆ Y → C ⋆ X ⊆ C ⋆ Y f =<< sup (returnP x) = f x f =<< sup (doP c k) = do (c , λ r → f =<< k r) leaf : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X : Pred O ℓ} → ⟦ C ⟧ X ⊆ C ⋆ X leaf (c , k) = do (c , return? ∘ k) where open RawPMonad rawPMonad
{ "alphanum_fraction": 0.5056581298, "avg_line_length": 28.4576271186, "ext": "agda", "hexsha": "74051bef594aaba7393c6a404fd78e32ef34e702", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/FreeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/FreeMonad.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/FreeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 615, "size": 1679 }
{-# OPTIONS --type-in-type --no-termination-check --no-positivity-check #-} module Data1 where _-_ : {A : Set}{B : A -> Set}{C : (a : A) -> B a -> Set} -> ({a : A}(b : B a) -> C a b) -> (f : (a : A) -> B a) -> (a : A) -> C a (f a) f - g = \ x -> f (g x) id : {X : Set} -> X -> X id x = x konst : {S : Set}{T : S -> Set} -> ({x : S} -> T x) -> (x : S) -> T x konst c x = c data Zero : Set where record One : Set where record Sig (S : Set)(T : S -> Set) : Set where field fst : S snd : T fst open module Sig' {S : Set}{T : S -> Set} = Sig {S}{T} _,_ : forall {S T}(s : S) -> T s -> Sig S T s , t = record {fst = s; snd = t} infixr 40 _,_ _*_ : Set -> Set -> Set S * T = Sig S \ _ -> T sig : forall {S T}{P : Sig S T -> Set} -> ((s : S)(t : T s) -> P (s , t)) -> (st : Sig S T) -> P st sig f st = f (fst st) (snd st) data Cx : Set where E : Cx _/_ : Cx -> Set -> Cx data _:>_ : Cx -> Set -> Set where ze : {G : Cx}{S : Set} -> (G / S) :> S su : {G : Cx}{S T : Set} -> G :> T -> (G / S) :> T data PROP : Set where Absu : PROP Triv : PROP _/\_ : PROP -> PROP -> PROP All : (S : Set) -> (S -> PROP) -> PROP Prf : PROP -> Set Prf Absu = Zero Prf Triv = One Prf (P /\ Q) = Prf P * Prf Q Prf (All S P) = (x : S) -> Prf (P x) data CON (G : Cx) : Set where ?? : {S : Set} -> G :> S -> S -> CON G PrfC : PROP -> CON G _*C_ : CON G -> CON G -> CON G PiC : (S : Set) -> (S -> CON G) -> CON G SiC : (S : Set) -> (S -> CON G) -> CON G MuC : (O : Set) -> (O -> CON (G / O)) -> O -> CON G NuC : (O : Set) -> (O -> CON (G / O)) -> O -> CON G Box : (G : Cx) -> ((S : Set) -> (G :> S) -> Set) -> Set Box E F = One Box (G / S) F = Box G (\ S n -> F S (su n)) * F S ze pr : {G : Cx}{S : Set}{F : (S : Set) -> (G :> S) -> Set} -> Box G F -> (n : G :> S) -> F S n pr fsf ze = snd fsf pr fsf (su n) = pr (fst fsf) n Pay : Cx -> Set Pay G = Box G (\ I _ -> I -> Set) Arr : (G : Cx) -> Pay G -> Pay G -> Set Arr G X Y = Box G (\ S n -> (s : S) -> pr X n s -> pr Y n s) mutual [|_|] : {G : Cx} -> CON G -> Pay G -> Set [| ?? n i |] X = pr X n i [| PrfC P |] X = Prf P [| C *C D |] X = [| C |] X * [| D |] X [| PiC S C |] X = (s : S) -> [| C s |] X [| SiC S C |] X = Sig S \ s -> [| C s |] X [| MuC O C o |] X = Mu C X o [| NuC O C o |] X = Nu C X o data Mu {G : Cx}{O : Set}(C : O -> CON (G / O))(X : Pay G)(o : O) : Set where con : [| C o |] ( X , Mu C X ) -> Mu C X o codata Nu {G : Cx}{O : Set}(C : O -> CON (G / O))(X : Pay G)(o : O) : Set where con : [| C o |] ( X , Nu C X ) -> Nu C X o noc : {G : Cx}{O : Set}{C : O -> CON (G / O)}{X : Pay G}{o : O} -> Nu C X o -> [| C o |] ( X , Nu C X ) noc (con xs) = xs mutual map : {G : Cx}{X Y : Pay G} -> (C : CON G) -> Arr G X Y -> [| C |] X -> [| C |] Y map (?? n i) f = pr f n i map (PrfC P) f = id map (C *C D) f = sig \ c d -> map C f c , map D f d map (PiC S C) f = \ c s -> map (C s) f (c s) map (SiC S C) f = sig \ s c -> s , map (C s) f c map (MuC O C o) f = foldMap C (Mu C _) f (\ o -> con) o map (NuC O C o) f = unfoldMap C (Nu C _) f (\ o -> noc) o foldMap : {G : Cx}{O : Set}(C : O -> CON (G / O)){X Y : Pay G}(Z : O -> Set) -> Arr G X Y -> ((o : O) -> [| C o |] ( Y , Z ) -> Z o) -> (o : O) -> Mu C X o -> Z o foldMap C Z f alg o (con xs) = alg o (map (C o) (f , foldMap C Z f alg) xs) unfoldMap : {G : Cx}{O : Set}(C : O -> CON (G / O)){X Y : Pay G}(Z : O -> Set) -> Arr G X Y -> ((o : O) -> Z o -> [| C o |] ( X , Z )) -> (o : O) -> Z o -> Nu C Y o unfoldMap C Z f coalg o y = con (map (C o) (f , unfoldMap C Z f coalg) (coalg o y)) ida : (G : Cx) -> (X : Pay G) -> Arr G X X ida E = id ida (G / S) = sig \ Xs X -> ida G Xs , \ s x -> x compa : (G : Cx) -> (X Y Z : Pay G) -> Arr G Y Z -> Arr G X Y -> Arr G X Z compa E = \ _ _ _ _ _ -> _ compa (G / S) = sig \ Xs X -> sig \ Ys Y -> sig \ Zs Z -> sig \ fs f -> sig \ gs g -> compa G Xs Ys Zs fs gs , \ s x -> f s (g s x) data _==_ {X : Set}(x : X) : {Y : Set} -> Y -> Set where refl : x == x subst : {X : Set}{P : X -> Set}{x y : X} -> x == y -> P x -> P y subst refl p = p _=,=_ : {S : Set}{T : S -> Set} {s0 : S}{s1 : S} -> s0 == s1 -> {t0 : T s0}{t1 : T s1} -> t0 == t1 -> _==_ {Sig S T} (s0 , t0) {Sig S T} (s1 , t1) refl =,= refl = refl mylem : (G : Cx) -> (X : Pay G) -> compa G X X X (ida G X) (ida G X) == ida G X mylem E X = refl mylem (G / S) X = mylem G (fst X) =,= refl claim : (G : Cx){O : Set}(C : O -> CON (G / O))(X : Pay G) (P : (o : O) -> Mu C X o -> Set) -> (p : (o : O)(y : Mu C X o) -> P o y) (o : O) -> compa (G / O) (X , Mu C X) (X , (\ o -> Sig (Mu C X o) (P o))) (X , Mu C X) (ida G X , konst fst) (ida G X , (\ o y -> (y , p o y))) == ida (G / O) (X , Mu C X) claim G C X P p o = mylem G X =,= refl idLem : {G : Cx}{S : Set}{X : Pay G}(n : G :> S) -> pr (ida G X) n == (\ (s : S)(x : pr X n s) -> x) idLem ze = refl idLem (su y) = idLem y _=$_ : {S : Set}{T : S -> Set}{f g : (s : S) -> T s} -> f == g -> (s : S) -> f s == g s refl =$ s = refl mutual -- and too intensional mapId : {G : Cx}{X : Pay G} -> (C : CON G) -> (xs : [| C |] X) -> map C (ida G X) xs == xs mapId (?? y y') xs = (idLem y =$ y') =$ xs mapId (PrfC y) xs = refl mapId (y *C y') xs = mapId y (fst xs) =,= mapId y' (snd xs) mapId (PiC S y) xs = {!!} -- no chance mapId (SiC S y) xs = refl =,= mapId (y (fst xs)) (snd xs) mapId (MuC O y y') xs = foldMapId y y' xs mapId (NuC O y y') xs = {!!} foldMapId : {G : Cx}{O : Set}(C : O -> CON (G / O)){X : Pay G} (o : O)(z : Mu C X o) -> foldMap C (Mu C X) (ida G X) (\ o -> con) o z == z foldMapId C o (con xzs) = {!!} -- close but no banana mapComp : {G : Cx}{X Y Z : Pay G} (f : Arr G Y Z)(g : Arr G X Y) (C : CON G) -> (xs : [| C |] X) -> map C f (map C g xs) == map C (compa G X Y Z f g) xs mapComp = {!!} _-=-_ : {X : Set}{x y z : X} -> x == y -> y == z -> x == z refl -=- refl = refl induction : {G : Cx}{O : Set}(C : O -> CON (G / O)){X : Pay G} (P : (o : O) -> Mu C X o -> Set) -> ((o : O)(xyps : [| C o |] (X , (\ o -> Sig (Mu C X o) (P o)))) -> P o (con (map (C o) (ida G X , konst fst) xyps))) -> (o : O)(y : Mu C X o) -> P o y induction {G} C {X} P p o (con xys) = subst {P = \ xys -> P o (con xys)}{y = xys} ((mapComp (ida G X , konst fst) (ida G X , (\ o y -> (y , induction C P p o y))) (C o) xys -=- {!!}) -=- mapId (C o) xys) (p o (map (C o) (ida G X , (\ o y -> (y , induction C P p o y))) xys))
{ "alphanum_fraction": 0.4001180289, "avg_line_length": 32.7439613527, "ext": "agda", "hexsha": "8385e7b94654c6c347b7eeeaf5b10549bcd69a75", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/Data1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/Data1.agda", "max_line_length": 92, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/Data1.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 2980, "size": 6778 }
{-# OPTIONS --no-positivity-check #-} module Generics where data Zero : Set where data One : Set where ∙ : One data _+_ (A B : Set) : Set where inl : A -> A + B inr : B -> A + B data _×_ (A : Set)(B : A -> Set) : Set where <_,_> : (x : A) -> B x -> A × B data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data Shape (I : Set) : Set where ι : Shape I σ : Shape I -> Shape I δ : Shape I -> Shape I data Tel {I : Set} : Shape I -> Set1 where empty : Tel ι non-rec : {s : Shape I}(A : Set) -> (A -> Tel s) -> Tel (σ s) rec : {s : Shape I}(H : Set) -> (H -> I) -> Tel s -> Tel (δ s) Index : {I : Set}(E : Set){s : Shape I} -> Tel s -> Set Index E empty = E Index E (non-rec A f) = (x : A) -> Index E (f x) Index E (rec H i s) = Index E s data Con (I E : Set) : Set1 where con : {s : Shape I}(tel : Tel s) -> Index E tel -> Con I E infixr 40 _|_ data OP (I E : Set) : Set1 where ∅ : OP I E _|_ : Con I E -> OP I E -> OP I E Args-tel : {I : Set}(U : I -> Set){s : Shape I} -> Tel s -> Set Args-tel U empty = One Args-tel U (non-rec A s) = A × \a -> Args-tel U (s a) Args-tel U (rec H i s) = ((x : H) -> U (i x)) × \_ -> Args-tel U s Args : {I E : Set}(U : I -> Set) -> OP I E -> Set Args U ∅ = Zero Args U (con tel _ | γ) = Args-tel U tel + Args U γ index-tel : {I E : Set}{s : Shape I}(U : I -> Set)(tel : Tel s) -> Index E tel -> Args-tel U tel -> E index-tel U empty i ∙ = i index-tel U (non-rec A s) i < a , arg > = index-tel U (s a) (i a) arg index-tel U (rec H di s) i < d , arg > = index-tel U s i arg index : {I E : Set}(U : I -> Set)(γ : OP I E) -> Args U γ -> E index U ∅ () index U (con tel i | _) (inl x) = index-tel U tel i x index U (con _ _ | γ) (inr y) = index U γ y OPr : Set -> Set1 OPr I = I -> OP I One data Ur {I : Set}(γ : OPr I)(i : I) : Set where intror : Args (Ur γ) (γ i) -> Ur γ i OPg : Set -> Set1 OPg I = OP I I const-index : {I E : Set}{s : Shape I} -> E -> (tel : Tel s) -> Index E tel const-index i empty = i const-index i (non-rec _ s) = \a -> const-index i (s a) const-index i (rec _ _ s) = const-index i s ε-shape : {I : Set} -> Shape I -> Shape I ε-shape ι = σ ι ε-shape (σ s) = σ (ε-shape s) ε-shape (δ s) = δ (ε-shape s) ε-tel : {I : Set}{s : Shape I} -> I -> (tel : Tel s) -> Index I tel -> Tel (ε-shape s) ε-tel i empty j = non-rec (j == i) \_ -> empty ε-tel i (non-rec A arg) j = non-rec A \a -> ε-tel i (arg a) (j a) ε-tel i (rec H di arg) j = rec H di (ε-tel i arg j) ε-con : {I : Set} -> I -> Con I I -> Con I One ε-con j (con tel i) = con args' (const-index ∙ args') where args' = ε-tel j tel i ε : {I : Set} -> OPg I -> OPr I ε ∅ _ = ∅ ε (c | γ) j = ε-con j c | ε γ j Ug : {I : Set} -> OPg I -> I -> Set Ug γ = Ur (ε γ) g→rArgs-tel : {I : Set}(U : I -> Set){s : Shape I} (tel : Tel s)(i : Index I tel)(arg : Args-tel U tel) -> Args-tel U (ε-tel (index-tel U tel i arg) tel i) g→rArgs-tel U empty i ∙ = < refl , ∙ > g→rArgs-tel U (non-rec A tel) i < a , arg > = < a , g→rArgs-tel U (tel a) (i a) arg > g→rArgs-tel U (rec H di tel) i < d , arg > = < d , g→rArgs-tel U tel i arg > g→rArgs : {I : Set}(U : I -> Set)(γ : OPg I)(a : Args U γ) -> Args U (ε γ (index U γ a)) g→rArgs U ∅ () g→rArgs U (con tel i | _) (inl arg) = inl (g→rArgs-tel U tel i arg) g→rArgs U (con _ _ | γ) (inr arg) = inr (g→rArgs U γ arg) introg : {I : Set}(γ : OPg I)(a : Args (Ug γ) γ) -> Ug γ (index (Ug γ) γ a) introg γ a = intror (g→rArgs (Ug γ) γ a) r→gArgs-tel : {I : Set}(U : I -> Set){s : Shape I}(tel : Tel s)(ind : Index I tel) (i : I) -> Args-tel U (ε-tel i tel ind) -> Args-tel U tel r→gArgs-tel U empty ind i < p , ∙ > = ∙ r→gArgs-tel U (non-rec A tel) ind i < a , arg > = < a , r→gArgs-tel U (tel a) (ind a) i arg > r→gArgs-tel U (rec H di tel) ind i < d , arg > = < d , r→gArgs-tel U tel ind i arg > r→gArgs : {I : Set}(U : I -> Set)(γ : OPg I)(i : I)(a : Args U (ε γ i)) -> Args U γ r→gArgs U ∅ _ () r→gArgs U (con tel ind | _) i (inl arg) = inl (r→gArgs-tel U tel ind i arg) r→gArgs U (con _ _ | γ) i (inr arg) = inr (r→gArgs U γ i arg) -- Elimination rules IndArg-tel : {I : Set}(U : I -> Set){s : Shape I}(tel : Tel s) -> Args-tel U tel -> Set IndArg-tel U empty ∙ = Zero IndArg-tel U (non-rec A tel) < a , arg > = IndArg-tel U (tel a) arg IndArg-tel U (rec H di tel) < d , arg > = H + IndArg-tel U tel arg IndArg : {I E : Set}(U : I -> Set)(γ : OP I E) -> Args U γ -> Set IndArg U ∅ () IndArg U (con tel _ | _) (inl arg) = IndArg-tel U tel arg IndArg U (con _ _ | γ) (inr arg) = IndArg U γ arg -- Examples nat : OPr One nat = \i -> con empty ∙ | con (rec One (\_ -> ∙) empty) ∙ | ∅ N : Set N = Ur nat ∙ z : N z = intror (inl ∙) s : N -> N s n = intror (inr (inl < (\_ -> n) , ∙ >))
{ "alphanum_fraction": 0.5100810642, "avg_line_length": 32.0733333333, "ext": "agda", "hexsha": "9eff75d7a9d0d9c06aafc2b8a45d0dc81a7c60eb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/new/IID.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/new/IID.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/new/IID.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2044, "size": 4811 }
{-# OPTIONS --cubical-compatible --guardedness #-} module Common.Coinduction where open import Agda.Builtin.Coinduction public private my-♯ : ∀ {a} {A : Set a} → A → ∞ A my-♯ x = ♯ x
{ "alphanum_fraction": 0.6455026455, "avg_line_length": 21, "ext": "agda", "hexsha": "e46d1fd76e1e5d31ffc0e904c7519b4c92e0d53b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Coinduction.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Coinduction.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Coinduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 65, "size": 189 }
module New.Changes where open import Data.Product public hiding (map) open import Data.Sum public hiding (map) open import Data.Unit.Base public open import Relation.Binary.PropositionalEquality public hiding ([_]) open import Postulate.Extensionality public open import Level open import Theorem.Groups-Nehemiah public record IsChAlg {ℓ : Level} (A : Set ℓ) (Ch : Set ℓ) : Set (suc ℓ) where field _⊕_ : A → Ch → A _⊝_ : A → A → Ch valid : A → Ch → Set ℓ _⊚[_]_ : Ch → A → Ch → Ch ⊝-valid : ∀ (a b : A) → valid a (b ⊝ a) ⊕-⊝ : (b a : A) → a ⊕ (b ⊝ a) ≡ b ⊚-correct : ∀ (a : A) → (da1 : Ch) → valid a da1 → (da2 : Ch) → valid (a ⊕ da1) da2 → a ⊕ da1 ⊚[ a ] da2 ≡ a ⊕ da1 ⊕ da2 ⊚-valid : (a : A) → (da1 : Ch) → valid a da1 → (da2 : Ch) → valid (a ⊕ da1) da2 → valid a (da1 ⊚[ a ] da2) infixl 6 _⊕_ _⊝_ Δ : A → Set ℓ Δ a = Σ[ da ∈ Ch ] (valid a da) update-diff = ⊕-⊝ nil : A → Ch nil a = a ⊝ a nil-valid : (a : A) → valid a (nil a) nil-valid a = ⊝-valid a a update-nil : (a : A) → a ⊕ nil a ≡ a update-nil a = update-diff a a default-⊚ : Ch → A → Ch → Ch default-⊚ da1 a da2 = a ⊕ da1 ⊕ da2 ⊝ a default-⊚-valid : (a : A) → (da1 : Ch) → valid a da1 → (da2 : Ch) → valid (a ⊕ da1) da2 → valid a (default-⊚ da1 a da2) default-⊚-valid a da1 ada1 da2 ada2 = ⊝-valid a (a ⊕ da1 ⊕ da2) default-⊚-correct : ∀ (a : A) → (da1 : Ch) → valid a da1 → (da2 : Ch) → valid (a ⊕ da1) da2 → a ⊕ default-⊚ da1 a da2 ≡ a ⊕ da1 ⊕ da2 default-⊚-correct a da1 ada1 da2 ada2 = update-diff (a ⊕ da1 ⊕ da2) a record ChAlg {ℓ : Level} (A : Set ℓ) : Set (suc ℓ) where field Ch : Set ℓ isChAlg : IsChAlg A Ch open IsChAlg isChAlg public open ChAlg {{...}} public hiding (Ch) Ch : ∀ {ℓ} (A : Set ℓ) → {{CA : ChAlg A}} → Set ℓ Ch A {{CA}} = ChAlg.Ch CA -- Huge hack, but it does gives the output you want to see in all cases I've seen. {-# DISPLAY IsChAlg.valid x = valid #-} {-# DISPLAY ChAlg.valid x = valid #-} {-# DISPLAY IsChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY ChAlg._⊕_ x = _⊕_ #-} {-# DISPLAY IsChAlg.nil x = nil #-} {-# DISPLAY ChAlg.nil x = nil #-} {-# DISPLAY IsChAlg._⊝_ x = _⊝_ #-} {-# DISPLAY ChAlg._⊝_ x = _⊝_ #-} module _ {ℓ₁} {ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where open ≡-Reasoning open import Postulate.Extensionality instance funCA : ChAlg (A → B) private fCh = A → Ch A → Ch B _f⊕_ : (A → B) → fCh → A → B _f⊕_ = λ f df a → f a ⊕ df a (nil a) _f⊝_ : (g f : A → B) → fCh _f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a IsDerivative : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂) IsDerivative f df = ∀ a da (v : valid a da) → f (a ⊕ da) ≡ f a ⊕ df a da WellDefinedFunChangePoint : ∀ (f : A → B) → (df : fCh) → ∀ a da → Set ℓ₂ WellDefinedFunChangePoint f df a da = (f f⊕ df) (a ⊕ da) ≡ f a ⊕ df a da WellDefinedFunChange : ∀ (f : A → B) → (df : fCh) → Set (ℓ₁ ⊔ ℓ₂) WellDefinedFunChange f df = ∀ a da (ada : valid a da) → WellDefinedFunChangePoint f df a da private fvalid : (A → B) → fCh → Set (ℓ₁ ⊔ ℓ₂) fvalid = λ f df → ∀ a da (ada : valid a da) → valid (f a) (df a da) × WellDefinedFunChangePoint f df a da f⊝-valid : ∀ (f g : A → B) → fvalid f (g f⊝ f) f⊝-valid = λ f g a da (v : valid a da) → ⊝-valid (f a) (g (a ⊕ da)) , ( begin f (a ⊕ da) ⊕ (g (a ⊕ da ⊕ nil (a ⊕ da)) ⊝ f (a ⊕ da)) ≡⟨ cong (λ □ → f (a ⊕ da) ⊕ (g □ ⊝ f (a ⊕ da))) (update-nil (a ⊕ da)) ⟩ f (a ⊕ da) ⊕ (g (a ⊕ da) ⊝ f (a ⊕ da)) ≡⟨ update-diff (g (a ⊕ da)) (f (a ⊕ da)) ⟩ g (a ⊕ da) ≡⟨ sym (update-diff (g (a ⊕ da)) (f a)) ⟩ f a ⊕ (g (a ⊕ da) ⊝ f a) ∎) -- Two alternatives. Proofs on f⊚ are a bit easier. -- f⊚ is optimized relying on the incrementalization property for df2. f⊚ f⊚2 : fCh → (A → B) → fCh → fCh f⊚ df1 f df2 = λ a da → (df1 a (nil a)) ⊚[ f a ] (df2 a da) f⊚-valid : (f : A → B) → (df1 : fCh) → fvalid f df1 → (df2 : fCh) → fvalid (f f⊕ df1) df2 → fvalid f (f⊚ df1 f df2) f⊚-valid f df1 fdf1 df2 fdf2 a da ada rewrite ⊚-correct (f a) (df1 a (nil a)) (proj₁ (fdf1 a (nil a) (nil-valid a))) (df2 a da) (proj₁ (fdf2 a da ada)) | ⊚-correct (f (a ⊕ da)) (df1 (a ⊕ da) (nil (a ⊕ da))) (proj₁ (fdf1 (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da)))) (df2 (a ⊕ da) (nil (a ⊕ da))) (proj₁ (fdf2 (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da)))) = ⊚-valid (f a) (df1 a (nil a)) (proj₁ (fdf1 a (nil a) (nil-valid a))) (df2 a da) (proj₁ (fdf2 a da ada)) , proj₂ (fdf2 a da ada) -- f⊚2 is optimized relying on the incrementalization property for df1, so we need to use that property to rewrite some goals. f⊚2 df1 f df2 = λ a da → df1 a da ⊚[ f a ] df2 (a ⊕ da) (nil (a ⊕ da)) f⊚-valid2 : (f : A → B) → (df1 : fCh) → fvalid f df1 → (df2 : fCh) → fvalid (f f⊕ df1) df2 → fvalid f (f⊚2 df1 f df2) f⊚-valid2 f df1 fdf1 df2 fdf2 = lemma where -- Prove that (df2 (a ⊕ da) (nil (a ⊕ da))) is valid for (f a ⊕ df1 a da). -- Using the incrementalization property for df1, that becomes (f ⊕ df1) (a ⊕ da). -- -- Since df2 is valid for f ⊕ df1, it follows that (df2 (a ⊕ da) (nil (a ⊕ da))) -- is indeed valid for (f ⊕ df1) (a ⊕ da). valid-df2-a2-nila2 : ∀ a da → (valid a da) → valid (f a ⊕ df1 a da) (df2 (a ⊕ da) (nil (a ⊕ da))) valid-df2-a2-nila2 a da ada rewrite sym (proj₂ (fdf1 a da ada)) = proj₁ (fdf2 (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da))) lemma : fvalid f (f⊚2 df1 f df2) lemma a da ada rewrite ⊚-correct (f a) (df1 a da) (proj₁ (fdf1 a da ada)) (df2 (a ⊕ da) (nil (a ⊕ da))) (valid-df2-a2-nila2 a da ada) | update-nil (a ⊕ da) | ⊚-correct (f (a ⊕ da)) (df1 (a ⊕ da) (nil (a ⊕ da))) (proj₁ (fdf1 (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da)))) (df2 (a ⊕ da) (nil (a ⊕ da))) (proj₁ (fdf2 (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da)))) | proj₂ (fdf1 a da ada) = ⊚-valid (f a) (df1 a da) (proj₁ (fdf1 a da ada)) (df2 (a ⊕ da) (nil (a ⊕ da))) (valid-df2-a2-nila2 a da ada) , refl f⊚-correct : ∀ (f : A → B) → (df1 : fCh) → fvalid f df1 → (df2 : fCh) → fvalid (f f⊕ df1) df2 → (a : A) → (f f⊕ f⊚ df1 f df2) a ≡ ((f f⊕ df1) f⊕ df2) a f⊚-correct f df1 fdf1 df2 fdf2 a = ⊚-correct (f a) (df1 a (nil a)) (proj₁ (fdf1 a (nil a) (nil-valid a))) (df2 a (nil a)) (proj₁ (fdf2 a (nil a) (nil-valid a))) private funUpdateDiff : ∀ g f a → (f f⊕ (g f⊝ f)) a ≡ g a funUpdateDiff g f a rewrite update-nil a = update-diff (g a) (f a) funCA = record { Ch = A → Ch A → Ch B ; isChAlg = record { _⊕_ = _f⊕_ ; _⊝_ = _f⊝_ ; valid = fvalid ; _⊚[_]_ = f⊚ ; ⊝-valid = f⊝-valid ; ⊕-⊝ = λ g f → ext (funUpdateDiff g f) ; ⊚-correct = λ f df1 fdf1 df2 fdf2 → ext (f⊚-correct f df1 fdf1 df2 fdf2) ; ⊚-valid = f⊚-valid } } private pCh = Ch A × Ch B _p⊕_ : A × B → Ch A × Ch B → A × B _p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db _p⊝_ : A × B → A × B → pCh _p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1 pvalid : A × B → pCh → Set (ℓ₂ ⊔ ℓ₁) pvalid (a , b) (da , db) = valid a da × valid b db p⊝-valid : (p1 p2 : A × B) → pvalid p1 (p2 p⊝ p1) p⊝-valid (a1 , b1) (a2 , b2) = ⊝-valid a1 a2 , ⊝-valid b1 b2 p⊕-⊝ : (p2 p1 : A × B) → p1 p⊕ (p2 p⊝ p1) ≡ p2 p⊕-⊝ (a2 , b2) (a1 , b1) = cong₂ _,_ (⊕-⊝ a2 a1) (⊕-⊝ b2 b1) _p⊚[_]_ : pCh → A × B → pCh → pCh (da1 , db1) p⊚[ a , b ] (da2 , db2) = da1 ⊚[ a ] da2 , db1 ⊚[ b ] db2 p⊚-valid : (p : A × B) (dp1 : pCh) → pvalid p dp1 → (dp2 : pCh) → pvalid (p p⊕ dp1) dp2 → pvalid p (dp1 p⊚[ p ] dp2) p⊚-valid (a , b) (da1 , db1) (ada1 , bdb1) (da2 , db2) (ada2 , bdb2) = ⊚-valid a da1 ada1 da2 ada2 , ⊚-valid b db1 bdb1 db2 bdb2 p⊚-correct : (p : A × B) (dp1 : pCh) → pvalid p dp1 → (dp2 : pCh) → pvalid (p p⊕ dp1) dp2 → p p⊕ (dp1 p⊚[ p ] dp2) ≡ (p p⊕ dp1) p⊕ dp2 p⊚-correct (a , b) (da1 , db1) (ada1 , bdb1) (da2 , db2) (ada2 , bdb2) rewrite ⊚-correct a da1 ada1 da2 ada2 | ⊚-correct b db1 bdb1 db2 bdb2 = refl instance pairCA : ChAlg (A × B) pairCA = record { Ch = pCh ; isChAlg = record { _⊕_ = _p⊕_ ; _⊝_ = _p⊝_ ; valid = pvalid ; ⊝-valid = p⊝-valid ; ⊕-⊝ = p⊕-⊝ ; _⊚[_]_ = _p⊚[_]_ ; ⊚-valid = p⊚-valid ; ⊚-correct = p⊚-correct } } private SumChange = (Ch A ⊎ Ch B) ⊎ (A ⊎ B) data SumChange2 : Set (ℓ₁ ⊔ ℓ₂) where ch₁ : (da : Ch A) → SumChange2 ch₂ : (db : Ch B) → SumChange2 rp : (s : A ⊎ B) → SumChange2 convert : SumChange → SumChange2 convert (inj₁ (inj₁ da)) = ch₁ da convert (inj₁ (inj₂ db)) = ch₂ db convert (inj₂ s) = rp s convert₁ : SumChange2 → SumChange convert₁ (ch₁ da) = inj₁ (inj₁ da) convert₁ (ch₂ db) = inj₁ (inj₂ db) convert₁ (rp s) = inj₂ s data SValid : A ⊎ B → SumChange → Set (ℓ₁ ⊔ ℓ₂) where sv₁ : ∀ (a : A) (da : Ch A) (ada : valid a da) → SValid (inj₁ a) (convert₁ (ch₁ da)) sv₂ : ∀ (b : B) (db : Ch B) (bdb : valid b db) → SValid (inj₂ b) (convert₁ (ch₂ db)) svrp₁ : ∀ a1 b2 → SValid (inj₁ a1) (convert₁ (rp (inj₂ b2))) svrp₂ : ∀ b1 a2 → SValid (inj₂ b1) (convert₁ (rp (inj₁ a2))) inv1 : ∀ ds → convert₁ (convert ds) ≡ ds inv1 (inj₁ (inj₁ da)) = refl inv1 (inj₁ (inj₂ db)) = refl inv1 (inj₂ s) = refl inv2 : ∀ ds → convert (convert₁ ds) ≡ ds inv2 (ch₁ da) = refl inv2 (ch₂ db) = refl inv2 (rp s) = refl private s⊕2 : A ⊎ B → SumChange2 → A ⊎ B s⊕2 (inj₁ a) (ch₁ da) = inj₁ (a ⊕ da) s⊕2 (inj₂ b) (ch₂ db) = inj₂ (b ⊕ db) s⊕2 (inj₂ b) (ch₁ da) = inj₂ b -- invalid s⊕2 (inj₁ a) (ch₂ db) = inj₁ a -- invalid s⊕2 s (rp s₁) = s₁ s⊕ : A ⊎ B → SumChange → A ⊎ B s⊕ s ds = s⊕2 s (convert ds) s⊝2 : A ⊎ B → A ⊎ B → SumChange2 s⊝2 (inj₁ x2) (inj₁ x1) = ch₁ (x2 ⊝ x1) s⊝2 (inj₂ y2) (inj₂ y1) = ch₂ (y2 ⊝ y1) s⊝2 s2 s1 = rp s2 s⊝ : A ⊎ B → A ⊎ B → SumChange s⊝ s2 s1 = convert₁ (s⊝2 s2 s1) s⊝-valid : (a b : A ⊎ B) → SValid a (s⊝ b a) s⊝-valid (inj₁ x1) (inj₁ x2) = sv₁ x1 (x2 ⊝ x1) (⊝-valid x1 x2) s⊝-valid (inj₂ y1) (inj₂ y2) = sv₂ y1 (y2 ⊝ y1) (⊝-valid y1 y2) s⊝-valid s1@(inj₁ x) s2@(inj₂ y) = svrp₁ x y s⊝-valid s1@(inj₂ y) s2@(inj₁ x) = svrp₂ y x s⊕-⊝ : (b a : A ⊎ B) → s⊕ a (s⊝ b a) ≡ b s⊕-⊝ (inj₁ x2) (inj₁ x1) rewrite ⊕-⊝ x2 x1 = refl s⊕-⊝ (inj₁ x2) (inj₂ y1) = refl s⊕-⊝ (inj₂ y2) (inj₁ x1) = refl s⊕-⊝ (inj₂ y2) (inj₂ y1) rewrite ⊕-⊝ y2 y1 = refl {-# TERMINATING #-} isSumCA : IsChAlg (A ⊎ B) SumChange s⊚-valid : (a : A ⊎ B) (da1 : SumChange) → SValid a da1 → (da2 : SumChange) → SValid (s⊕ a da1) da2 → SValid a (IsChAlg.default-⊚ isSumCA da1 a da2) s⊚-correct : (a : A ⊎ B) (da1 : SumChange) → SValid a da1 → (da2 : SumChange) → SValid (s⊕ a da1) da2 → s⊕ a (IsChAlg.default-⊚ isSumCA da1 a da2) ≡ s⊕ (s⊕ a da1) da2 instance sumCA : ChAlg (A ⊎ B) isSumCA = record { _⊕_ = s⊕ ; _⊝_ = s⊝ ; valid = SValid ; ⊝-valid = s⊝-valid ; ⊕-⊝ = s⊕-⊝ ; _⊚[_]_ = IsChAlg.default-⊚ isSumCA ; ⊚-valid = s⊚-valid ; ⊚-correct = s⊚-correct } s⊚-valid = IsChAlg.default-⊚-valid isSumCA s⊚-correct = IsChAlg.default-⊚-correct isSumCA sumCA = record { Ch = SumChange ; isChAlg = isSumCA } open import Data.Integer instance intCA : ChAlg ℤ intCA = record { Ch = ℤ ; isChAlg = record { _⊕_ = _+_ ; _⊝_ = _-_ ; valid = λ a b → ⊤ ; ⊝-valid = λ a b → tt ; ⊕-⊝ = λ b a → n+[m-n]=m {a} {b} ; ⊚-valid = λ a da1 _ da2 _ → tt ; _⊚[_]_ = λ da1 a da2 → da1 + da2 ; ⊚-correct = λ a da1 _ da2 _ → sym (associative-int a da1 da2) } }
{ "alphanum_fraction": 0.5030783503, "avg_line_length": 37.053125, "ext": "agda", "hexsha": "ba7c0af1eeff3cbe8a925073aa3b5dbfa443eea8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/Changes.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/Changes.agda", "max_line_length": 164, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/Changes.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 5700, "size": 11857 }
module Issue620 where module A where postulate _+_*_ : Set → Set → Set → Set postulate X : Set 2X : Set 2X = X A.+ X * X
{ "alphanum_fraction": 0.6220472441, "avg_line_length": 11.5454545455, "ext": "agda", "hexsha": "06e9924320ecb29c1f64a5e28f66532d71f9679e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue620.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue620.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue620.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 127 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Complete.Properties {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Product open import Relation.Binary open import Categories.Category.Complete open import Categories.Category.Complete.Finitely open import Categories.Category.Construction.Functors open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Limit.Properties open import Categories.Diagram.Equalizer.Limit C open import Categories.Diagram.Cone.Properties open import Categories.Object.Terminal open import Categories.Object.Product.Limit C open import Categories.Object.Terminal.Limit C open import Categories.Functor open import Categories.Functor.Limits open import Categories.Functor.Properties open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR import Categories.Morphism as Mor -- exports open import Categories.Category.Complete.Properties.Construction public open import Categories.Category.Complete.Properties.SolutionSet public private variable o′ ℓ′ e′ o″ ℓ″ e″ : Level module C = Category C module _ (Com : Complete o′ ℓ′ e′ C) where Complete⇒FinitelyComplete : FinitelyComplete C Complete⇒FinitelyComplete = record { cartesian = record { terminal = limit⇒⊥ (Com (⊥⇒limit-F _ _ _)) ; products = record { product = λ {A B} → limit⇒product (Com (product⇒limit-F _ _ _ A B)) } } ; equalizer = complete⇒equalizer Com } -- if the base category is complete, then the functor category is complete. -- in addition, the evaluation functor is continuous. -- -- Functors-Complete : Complete o″ ℓ″ e″ D^C -- evalF-Continuous : ∀ X → Continuous o″ ℓ″ e″ (evalF C D X) module _ {D : Category o′ ℓ′ e′} (Com : Complete o″ ℓ″ e″ D) where private D^C = Functors C D module D^C = Category D^C module D = Category D module _ {J : Category o″ ℓ″ e″} (F : Functor J D^C) where private module J = Category J module F = Functor F open F module F₀ j = Functor (F₀ j) module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f) ev : C.Obj → Functor D^C D ev = evalF C D F[-,_] : C.Obj → Functor J D F[-, X ] = ev X ∘F F F[-,-] : Functor C (Functors J D) F[-,-] = record { F₀ = F[-,_] ; F₁ = λ {A B} f → ntHelper record { η = λ j → F₀.₁ j f ; commute = λ {j k} g → begin F₀.₁ k f D.∘ F₁.η g A D.∘ F₀.₁ j C.id ≈⟨ pullˡ (F₁.sym-commute g f) ⟩ (F₁.η g B D.∘ F₀.₁ j f) D.∘ F₀.₁ j C.id ≈⟨ elimʳ (F₀.identity _) ⟩ F₁.η g B D.∘ F₀.₁ j f ≈⟨ introʳ (F₀.identity _) ⟩∘⟨refl ⟩ (F₁.η g B D.∘ F₀.₁ j C.id) D.∘ F₀.₁ j f ∎ } ; identity = F₀.identity _ ; homomorphism = F₀.homomorphism _ ; F-resp-≈ = λ eq → F₀.F-resp-≈ _ eq } where open D.HomReasoning open MR D module F[-,-] = Functor F[-,-] module LimFX X = Limit (Com F[-, X ]) open LimFX hiding (commute) K⇒lim : ∀ {X Y} (f : X C.⇒ Y) K → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) K , limit Y ] K⇒lim f K = rep-cone _ (nat-map-Cone (F[-,-].₁ f) K) lim⇒lim : ∀ {X Y} (f : X C.⇒ Y) → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) (limit X) , limit Y ] lim⇒lim f = K⇒lim f (limit _) module lim⇒lim {X Y} (f : X C.⇒ Y) = Co.Cone⇒ F[-, Y ] (lim⇒lim f) module FCone (K : Co.Cone F) where open Co.Cone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where open Co.Cone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ] FXcone X K = record { N = N.₀ X ; apex = record { ψ = λ j → ψ.η j X ; commute = λ f → D.∘-resp-≈ˡ (elimʳ (F₀.identity _)) ○ commute f } } where open FCone K open D.HomReasoning open MR D ⊤ : Co.Cone F ⊤ = record { N = record { F₀ = λ X → apex X ; F₁ = λ {A B} f → lim⇒lim.arr f ; identity = λ {X} → terminal.!-unique X record { arr = D.id ; commute = D.identityʳ ○ ⟺ (elimˡ (F₀.identity _)) } ; homomorphism = λ {X Y Z} {f g} → terminal.!-unique₂ Z {nat-map-Cone (F[-,-].₁ (g C.∘ f)) (limit X)} {terminal.! Z} {record { commute = λ {j} → begin proj Z j ∘ lim⇒lim.arr g ∘ lim⇒lim.arr f ≈⟨ pullˡ (lim⇒lim.commute g) ⟩ (F₀.₁ j g ∘ proj Y j) ∘ lim⇒lim.arr f ≈⟨ pullʳ (lim⇒lim.commute f) ⟩ F₀.₁ j g ∘ F₀.₁ j f ∘ proj X j ≈˘⟨ pushˡ (F₀.homomorphism j) ⟩ F₀.₁ j (g C.∘ f) ∘ proj X j ∎ }} ; F-resp-≈ = λ {A B} {f g} eq → terminal.!-unique B record { commute = lim⇒lim.commute g ○ ∘-resp-≈ˡ (F₀.F-resp-≈ _ (C.Equiv.sym eq)) } } ; apex = record { ψ = λ j → ntHelper record { η = λ X → proj X j ; commute = λ _ → LimFX.commute _ } ; commute = λ f {X} → ∘-resp-≈ˡ (introʳ (F₀.identity _)) ○ limit-commute X f } } where open D open D.HomReasoning open MR D K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ] K⇒⊤′ X {K} K⇒⊤ = record { arr = arr.η X ; commute = comm } where open FCone⇒ K⇒⊤ renaming (commute to comm) complete : Limit F complete = record { terminal = record { ⊤ = ⊤ ; ⊤-is-terminal = record { ! = λ {K} → let module K = FCone K in record { arr = ntHelper record { η = λ X → rep X (FXcone X K) ; commute = λ {X Y} f → terminal.!-unique₂ Y {nat-map-Cone (F[-,-].₁ f) (FXcone X K)} {record { commute = λ {j} → begin proj Y j ∘ rep Y (FXcone Y K) ∘ K.N.₁ f ≈⟨ pullˡ (LimFX.commute Y) ⟩ K.ψ.η j Y ∘ K.N.F₁ f ≈⟨ K.ψ.commute j f ⟩ F₀.₁ j f ∘ K.ψ.η j X ∎ }} {record { commute = λ {j} → begin proj Y j ∘ lim⇒lim.arr f ∘ rep X (FXcone X K) ≈⟨ pullˡ (lim⇒lim.commute f) ⟩ (F₀.₁ j f ∘ proj X j) ∘ rep X (FXcone X K) ≈⟨ pullʳ (LimFX.commute X) ⟩ F₀.₁ j f ∘ K.ψ.η j X ∎ }} } ; commute = λ {_} {X} → LimFX.commute X } ; !-unique = λ K⇒⊤ {X} → terminal.!-unique X (K⇒⊤′ X K⇒⊤) } } } where open D open D.HomReasoning open MR D module _ (L : Limit F) (X : C.Obj) where module LimExpanded (L : Limit F) where private module L = Limit L open L public module apex = Functor L.apex module proj j = NaturalTransformation (L.proj j) module L = LimExpanded L module complete = LimExpanded complete open MR D open D.HomReasoning cone-iso : Mor._≅_ (Co.Cones F) complete.limit L.limit cone-iso = up-to-iso-cone F complete L module cone-iso where open Mor._≅_ cone-iso public module from where open Co.Cone⇒ F from public module arr = NaturalTransformation arr module to where open Co.Cone⇒ F to public module arr = NaturalTransformation arr ft-iso : Mor._≅_ D^C complete.apex L.apex ft-iso = Lim.up-to-iso F complete L module ft-iso = Mor._≅_ ft-iso apex-iso : ∀ X → Mor._≅_ D (complete.apex.₀ X) (L.apex.₀ X) apex-iso X = record { from = NaturalTransformation.η ft-iso.from X ; to = NaturalTransformation.η ft-iso.to X ; iso = record { isoˡ = ft-iso.isoˡ ; isoʳ = ft-iso.isoʳ } } ! : {K : Co.Cone F[-, X ]} → Co.Cone⇒ F[-, X ] K (F-map-Coneˡ (ev X) L.limit) ! {K} = record { arr = cone-iso.from.arr.η X D.∘ rep X K ; commute = λ {j} → begin (L.proj.η j X D.∘ L.apex.₁ C.id) D.∘ cone-iso.from.arr.η X D.∘ rep X K ≈⟨ elimʳ L.apex.identity ⟩∘⟨refl ⟩ L.proj.η j X D.∘ cone-iso.from.arr.η X D.∘ rep X K ≈⟨ pullˡ cone-iso.from.commute ⟩ complete.proj.η j X D.∘ rep X K ≈⟨ LimFX.commute X {_} {K} ⟩ ψ j ∎ } where open Co.Cone _ K module ! K = Co.Cone⇒ _ (! {K}) !-unique : {K : Co.Cone F[-, X ]} (f : Co.Cone⇒ F[-, X ] K (F-map-Coneˡ (ev X) L.limit)) → !.arr K D.≈ Co.Cone⇒.arr f !-unique {K} f = ⟺ (switch-tofromˡ (cone-iso.apex-iso X) target) where open Co.Cone _ K module f = Co.Cone⇒ _ f target : cone-iso.to.arr.η X D.∘ f.arr D.≈ rep X K target = terminal.!-unique₂ X {K} {record { arr = cone-iso.to.arr.η X D.∘ f.arr ; commute = λ {j} → begin proj X j D.∘ cone-iso.to.arr.η X D.∘ f.arr ≈⟨ pullˡ cone-iso.to.commute ⟩ L.proj.η j X D.∘ f.arr ≈⟨ introʳ L.apex.identity ⟩∘⟨refl ⟩ (L.proj.η j X D.∘ L.apex.₁ C.id) D.∘ f.arr ≈⟨ f.commute ⟩ ψ j ∎ }} {record { arr = rep X K ; commute = λ {j} → begin proj X j D.∘ rep X K ≈⟨ LimFX.commute X ⟩ ψ j ∎ }} preserves : IsTerminal (Co.Cones F[-, X ]) (F-map-Coneˡ (ev X) L.limit) preserves = record { ! = ! ; !-unique = !-unique } Functors-Complete : Complete o″ ℓ″ e″ D^C Functors-Complete = complete evalF-Continuous : ∀ X → Continuous o″ ℓ″ e″ (evalF C D X) evalF-Continuous X {J} {F} L = preserves F L X
{ "alphanum_fraction": 0.4716520481, "avg_line_length": 36.8633333333, "ext": "agda", "hexsha": "02357213bb723b03a6c7c136e1526f77538dd9b7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "ad0f94b6cf18d8a448b844b021aeda58e833d152", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3579, "size": 11059 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Papers.Synthetic where -- Cubical synthetic homotopy theory -- Mörtberg and Pujet, „Cubical synthetic homotopy theory“. -- https://dl.acm.org/doi/abs/10.1145/3372885.3373825 -- 2.1 import Agda.Builtin.Cubical.Path as Path import Cubical.Foundations.Prelude as Prelude -- 2.2 import Agda.Primitive.Cubical as PrimitiveCubical import Cubical.Data.Bool as Bool import Cubical.Core.Primitives as CorePrimitives -- 2.3 import Cubical.HITs.S1 as S1 -- 2.4 import Cubical.Foundations.Equiv as Equiv import Cubical.Core.Glue as CoreGlue import Cubical.Foundations.Univalence as Univalence -- 3. import Cubical.HITs.Torus as T2 -- 3.1 import Cubical.Data.Int as Int import Cubical.Data.Int.Properties as IntProp import Cubical.Foundations.Isomorphism as Isomorphism -- 4.1 import Cubical.HITs.Susp as Suspension import Cubical.HITs.Sn as Sn import Agda.Builtin.Nat as BNat import Agda.Builtin.Bool as BBool import Cubical.Foundations.GroupoidLaws as GroupoidLaws import Cubical.HITs.S2 as S2 import Cubical.HITs.S3 as S3 -- 4.2 import Cubical.HITs.Pushout as Push import Cubical.HITs.Pushout.Properties as PushProp -- 4.3 import Cubical.HITs.Join as Join import Cubical.HITs.Join.Properties as JoinProp -- 5. import Cubical.HITs.Hopf as Hopf -------------------------------------------------------------------------------- -- 2. Cubical Agda -- 2.1 The Interval and Path Types -- 2.2 Transport and Composition -- 2.3 Higher Inductive Types -- 2.4 Glue Types and Univalence -------------------------------------------------------------------------------- -- 2.1 The Interval and Path Types open Path using (PathP) public open Prelude using (_≡_ ; refl ; funExt) public open Prelude renaming (sym to _⁻¹) public -- 2.2 Transport and Composition open Prelude using (transport ; subst ; J ; JRefl) public open PrimitiveCubical using (Partial) public open Bool using (Bool ; true ; false) public partialBool : ∀ i → Partial (i ∨ ~ i) Bool partialBool i = λ {(i = i1) → true ; (i = i0) → false} open CorePrimitives using (inS ; outS ; hcomp) public open Prelude using (_∙_) public -- 2.3 Higher Inductive Types open S1 using (S¹ ; base ; loop) public double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i -- 2.4 Glue Types and Univalence open Equiv using (idEquiv) public open CoreGlue using (Glue) public open Univalence using (ua) public -------------------------------------------------------------------------------- -- 3. The Circle and Torus -- 3.1 The Loop Spaces of the Circle and Torus -------------------------------------------------------------------------------- open T2 using ( Torus ; point ; line1 ; line2 ; square ; t2c ; c2t ; c2t-t2c ; t2c-c2t ; Torus≡S¹×S¹) -- 3.1 The Loop Spaces of the Circle and Torus open S1 using (ΩS¹) public open T2 using (ΩTorus) public open Int using (Int ; pos ; negsuc) public open IntProp using (sucPathInt) public open S1 using (helix ; winding) public -- Examples computing the winding numbers of the circle _ : winding (loop ∙ loop ∙ loop) ≡ pos 3 _ = refl _ : winding ((loop ⁻¹) ∙ loop ∙ (loop ⁻¹)) ≡ negsuc 0 _ = refl open S1 renaming (intLoop to loopn) public open S1 renaming (windingIntLoop to winding-loopn) public open S1 using (encode ; decode ; decodeEncode ; ΩS¹≡Int) public open Isomorphism using (isoToPath ; iso) public -- Notation of the paper, current notation under ΩS¹≡Int ΩS¹≡Int' : ΩS¹ ≡ Int ΩS¹≡Int' = isoToPath (iso winding loopn winding-loopn (decodeEncode base)) open T2 using (ΩTorus≡Int×Int ; windingTorus) public -- Examples at the end of section 3. _ : windingTorus (line1 ∙ line2) ≡ (pos 1 , pos 1) _ = refl _ : windingTorus ((line1 ⁻¹) ∙ line2 ∙ line1) ≡ (pos 0 , pos 1) _ = refl -------------------------------------------------------------------------------- -- 4. Suspension, Spheres and Pushouts -- 4.1 Suspension -- 4.2 Pushouts and the 3 × 3 Lemma -- 4.3 The Join and S³ -------------------------------------------------------------------------------- -- 4.1 Suspension open Suspension using (Susp ; north ; south ; merid) public open Sn using (S₊) public open Suspension using ( SuspBool→S¹ ; S¹→SuspBool ; SuspBool→S¹→SuspBool ; S¹→SuspBool→S¹) public -- Deprecated version of S₊ open BNat renaming (Nat to ℕ) hiding (_*_) public open CorePrimitives renaming (Type to Set) public open BBool using (Bool) public -- At the time the paper was published, Set was used instead of Type _-sphere : ℕ → Set 0 -sphere = Bool (suc n) -sphere = Susp (n -sphere) -- Lemma 4.1. The (1)-sphere is equal to the circle S1. open BBool using (true ; false) public -- Deprecated version of SuspBool→S¹ s2c : 1 -sphere → S¹ s2c north = base s2c south = base s2c (merid true i) = loop i s2c (merid false i) = base -- (loop ⁻¹) i -- Deprecated version of S¹→SuspBool c2s : S¹ → 1 -sphere c2s base = north c2s (loop i) = (merid true ∙ (merid false ⁻¹)) i open GroupoidLaws using (rUnit) public -- Deprecated version of SuspBool→S¹→SuspBool s2c-c2s : ∀ (p : S¹) → s2c (c2s p) ≡ p s2c-c2s base = refl s2c-c2s (loop i) j = rUnit loop (~ j) i h1 : I → I → 1 -sphere h1 i j = merid false (i ∧ j) h2 : I → I → 1 -sphere h2 i j = hcomp (λ k → λ { (i = i0) → north ; (i = i1) → merid false (j ∨ ~ k) ; (j = i1) → merid true i }) (merid true i) -- Deprecated version of S¹→SuspBool→S¹ c2s-s2c : ∀ (t : 1 -sphere) → c2s (s2c t) ≡ t c2s-s2c north j = north c2s-s2c south j = merid false j c2s-s2c (merid true i) j = h2 i j c2s-s2c (merid false i) j = merid false (i ∧ j) -- Notation of the paper, current notation under S¹≡SuspBool -- Proof of Lemma 4.1 1-sphere≡S¹ : 1 -sphere ≡ S¹ 1-sphere≡S¹ = isoToPath (iso s2c c2s s2c-c2s c2s-s2c) -- Definitions of S2 and S3 open S2 using (S²) public open S3 using (S³) public -- 4.2 Pushouts and the 3 × 3 Lemma open Push using (Pushout) public -- 3x3-span is implemented as a record open PushProp using (3x3-span) public open 3x3-span using (f□1) public -- The rest of the definitions inside the 3x3-lemma -- A□0-A○□ , A□○-A○□ ... open 3x3-span using (3x3-lemma) public -- 4.3 The Join and S³ open Join renaming (join to Join) using (S³≡joinS¹S¹) public open JoinProp using (join-assoc) public -------------------------------------------------------------------------------- -- 5. The Hopf Fibration -------------------------------------------------------------------------------- -- rot (denoted by _·_ here) in the paper is substituted by a rot and rotLoop in S1 open S1 using (_·_ ; rotLoop) public open Hopf renaming ( HopfSuspS¹ to Hopf ; JoinS¹S¹→TotalHopf to j2h ; TotalHopf→JoinS¹S¹ to h2j) using (HopfS²) public open S1 renaming (rotInv-1 to lem-rot-inv) public
{ "alphanum_fraction": 0.5891780822, "avg_line_length": 33.9534883721, "ext": "agda", "hexsha": "380b21d657fefc305b5b999bf062a89221a4c0dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Papers/Synthetic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Papers/Synthetic.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Papers/Synthetic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2251, "size": 7300 }
{-# OPTIONS --without-K #-} module well-typed-syntax-interpreter-full where open import common public open import well-typed-syntax open import well-typed-syntax-interpreter Contextε⇓ : Context⇓ ε Contextε⇓ = tt Typε⇓ : Typ ε → Set max-level Typε⇓ T = Typ⇓ T Contextε⇓ Termε⇓ : {T : Typ ε} → Term T → Typε⇓ T Termε⇓ t = Term⇓ t Contextε⇓ Typε▻⇓ : ∀ {A} → Typ (ε ▻ A) → Typε⇓ A → Set max-level Typε▻⇓ T A⇓ = Typ⇓ T (Contextε⇓ , A⇓) Termε▻⇓ : ∀ {A} → {T : Typ (ε ▻ A)} → Term T → (x : Typε⇓ A) → Typε▻⇓ T x Termε▻⇓ t x = Term⇓ t (Contextε⇓ , x)
{ "alphanum_fraction": 0.6113138686, "avg_line_length": 26.0952380952, "ext": "agda", "hexsha": "383e71c7ce874ea4b79e5b1f8db97b64d2722945", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/well-typed-syntax-interpreter-full.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/well-typed-syntax-interpreter-full.agda", "max_line_length": 73, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/well-typed-syntax-interpreter-full.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 263, "size": 548 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.Orthogonality module stash.modalities.Nullification where module _ {i} where postulate -- HIT P⟨_⟩ : (A X : Type i) → Type i p[_] : {A X : Type i} → X → P⟨ A ⟩ X is-orth : {A X : Type i} → ⟦ A ⊥ P⟨ A ⟩ X ⟧ module NullElim {A X : Type i} {Q : P⟨ A ⟩ X → Type i} (p : (x : P⟨ A ⟩ X) → ⟦ A ⊥ Q x ⟧) (d : (x : X) → Q p[ x ]) where postulate f : Π (P⟨ A ⟩ X) Q p[_]-β : ∀ x → f p[ x ] ↦ d x {-# REWRITE p[_]-β #-} open NullElim public renaming (f to Null-elim) module _ {i} (A : Type i) where NullModality : Modality i Modality.is-local NullModality X = ⟦ A ⊥ X ⟧ Modality.is-local-is-prop NullModality = is-equiv-is-prop Modality.◯ NullModality = P⟨ A ⟩ Modality.◯-is-local NullModality = is-orth Modality.η NullModality = p[_] Modality.◯-elim NullModality = Null-elim Modality.◯-elim-β NullModality _ _ _ = idp Modality.◯-=-is-local NullModality x y = pths-orth is-orth module _ {i} (A X : Type i) where f-aux : (x : P⟨ Susp A ⟩ X) → P⟨ A ⟩ (x == x) f-aux = Null-elim (λ x → susp-≻ A (P⟨ A ⟩ (x == x)) is-orth) (λ x → p[ idp ]) f : (x y : P⟨ Susp A ⟩ X) → x == y → P⟨ A ⟩ (x == y) f x .x idp = f-aux x module _ {i} {A B : Type i} (f : A → B) where ap-fib-to : {a₀ a₁ : A} (p : f a₀ == f a₁) → hfiber (ap f) p → Σ (hfiber f (f a₀)) (λ α → Σ (hfiber f (f a₁)) (λ β → Σ (fst α == fst β) (λ q → ap f q == snd α ∙ p ∙ ! (snd β)))) ap-fib-to {a₀} {a₁} .(ap f q) (q , idp) = (a₀ , idp) , (a₁ , idp) , q , ! (∙-unit-r (ap f q)) postulate ap-fib : {a₀ a₁ : A} (p : f a₀ == f a₁) → is-equiv (ap-fib-to p) new-ap-fib : {a₀ a₁ : A} (p : f a₀ == f a₁) → hfiber (ap f) p → Σ (hfiber f (f a₀)) (λ α → Σ (hfiber f (f a₁)) (λ β → α == β [ (λ z → hfiber f z) ↓ p ])) new-ap-fib = {!!} module _ {i} (A X : Type i) (x y : X) where module NMA = Modality (NullModality A) module NMSA = Modality (NullModality (Susp A)) -- Okay. Here is the map in question: pΣ : x == y → Path {A = P⟨ Susp A ⟩ X} p[ x ] p[ y ] pΣ = ap p[_] lemma : NMSA.is-◯-equiv pΣ lemma p = NMSA.equiv-preserves-◯-conn ((ap-fib-to p[_] p , ap-fib p[_] p) ⁻¹) {!!} thm : NMA.is-◯-equiv pΣ thm p = {!!} -- equiv-preserves-◯-conn : {A B : Type ℓ} → A ≃ B → is-◯-connected A → is-◯-connected B -- equiv-preserves-◯-conn e c = equiv-preserves-level (◯-emap e) c -- Okay, here's a better explanation: you are simply applying the -- full fledged join adjunction formula to the p[_]. I think -- the diagonal of this map will have fibers which are exactly -- the PathOver description you give above. Or something -- very close to this. That's the main idea. -- Theorem 19.1 of CwA and PA asserts that this map -- is A-connected. Have to trace through the argument. -- So we don't contruct a direct inverse ... -- He starts by observing that it is ΣA-connected. -- Do you have a proof of this? It should be obvious ... -- So by adjuction, loops on this fiber is A-connected. -- Then the claim is that you can commute with limits, i.e. -- that this is the fiber on loops of the canoncial map. -- Right. This is much clearer. We'll need some preparation, -- but I think this should be quite doable. -- this map is fairly easy by adjunction ... to : P⟨ A ⟩ (x == y) → (Path {A = P⟨ Susp A ⟩ X} p[ x ] p[ y ]) to = Null-elim (λ p → adj-orth A (P⟨ Susp A ⟩ X) is-orth p[ x ] p[ y ]) (λ p → ap p[_] p)
{ "alphanum_fraction": 0.5578651685, "avg_line_length": 32.0720720721, "ext": "agda", "hexsha": "d2bb3763e5f1b5124500d1c693b472568a81ffa3", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/Nullification.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/Nullification.agda", "max_line_length": 95, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/Nullification.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1415, "size": 3560 }
module Categories where open import Library record Cat {a b} : Set (lsuc (a ⊔ b)) where field Obj : Set a Hom : Obj → Obj → Set b iden : ∀{X} → Hom X X comp : ∀{X Y Z} → Hom Y Z → Hom X Y → Hom X Z idl : ∀{X Y}{f : Hom X Y} → comp iden f ≅ f idr : ∀{X Y}{f : Hom X Y} → comp f iden ≅ f ass : ∀{W X Y Z}{f : Hom Y Z}{g : Hom X Y}{h : Hom W X} → comp (comp f g) h ≅ comp f (comp g h) open Cat _Op : ∀{a b} → Cat {a}{b} → Cat C Op = record{ Obj = Obj C; Hom = λ X Y → Hom C Y X; iden = iden C; comp = λ f g → comp C g f; idl = idr C; idr = idl C; ass = sym (ass C)}
{ "alphanum_fraction": 0.4613050076, "avg_line_length": 26.36, "ext": "agda", "hexsha": "7aa38b8cc242dd5eb95b09583ea85cb69c870b49", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Categories.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Categories.agda", "max_line_length": 67, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Categories.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 275, "size": 659 }
module list where module List (A : Set) where data List : Set where nil : List _::_ : A -> List -> List _++_ : List -> List -> List nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys)
{ "alphanum_fraction": 0.4736842105, "avg_line_length": 14.9285714286, "ext": "agda", "hexsha": "072c344d4459e6737f9677502e12f0210ac9604b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/list.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/list.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/list.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 72, "size": 209 }
module x01-842Naturals-hc-2 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} one : ℕ one = suc zero two : ℕ two = suc (suc zero) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) seven : ℕ seven = suc (suc (suc (suc (suc (suc (suc zero)))))) _ : seven ≡ 7 _ = refl _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _ : 2 + 3 ≡ 5 _ = refl _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ -- is shorthand for (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- many steps condensed 5 ∎ _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + (m * n) _ = begin 2 * 3 ≡⟨⟩ -- many steps condensed 6 ∎ _ : 3 * 4 ≡ 12 _ = refl _^_ : ℕ → ℕ → ℕ m ^ zero = suc zero m ^ suc n = m * (m ^ n) _ : 2 ^ 0 ≡ 1 _ = refl _ : 2 ^ 1 ≡ 2 _ = refl _ : 2 ^ 2 ≡ 4 _ = refl _ : 2 ^ 3 ≡ 8 _ = refl _ : 3 ^ 3 ≡ 27 _ = refl _∸_ : ℕ → ℕ → ℕ zero ∸ n = zero m ∸ zero = m suc m ∸ suc n = m ∸ n _ : 3 ∸ 2 ≡ 1 _ = refl _ : 2 ∸ 3 ≡ 0 _ = refl infixl 6 _+_ _∸_ infixl 7 _*_ {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} {-# BUILTIN NATMINUS _∸_ #-} -- Binary representation. data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ -- Our representation of zero is different from PLFA. -- We use the empty sequence of bits (more consistent). bin-zero : Bin-ℕ bin-zero = bits bin-one : Bin-ℕ bin-one = bits x1 -- 1 in binary bin-two : Bin-ℕ bin-two = bits x1 x0 -- 10 in binary -- 842 exercise: Increment (1 point) -- Define increment (add one). inc : Bin-ℕ → Bin-ℕ inc bits = bits x1 inc (m x0) = m x1 inc (m x1) = (inc m) x0 _ : inc (bits) ≡ bits x1 _ = refl _ : inc (bits x1) ≡ bits x1 x0 _ = refl _ : inc (bits x1 x0) ≡ bits x1 x1 _ = refl _ : inc (bits x1 x1) ≡ bits x1 x0 x0 _ = refl _ : inc (bits x1 x0 x0) ≡ bits x1 x0 x1 _ = refl _ : inc (bits x1 x0 x1) ≡ bits x1 x1 x0 _ = refl _ : inc (bits x1 x1 x0) ≡ bits x1 x1 x1 _ = refl _ : inc (bits x1 x1 x1) ≡ bits x1 x0 x0 x0 _ = refl _ : inc (bits x1 x0 x1 x1) ≡ bits x1 x1 x0 x0 _ = refl dbl : ℕ → ℕ dbl zero = zero dbl (suc m) = suc (suc (dbl m)) tob : ℕ → Bin-ℕ tob zero = bits tob (suc m) = inc (tob m) fromb : Bin-ℕ → ℕ fromb bits = zero fromb (n x0) = dbl (fromb n) fromb (n x1) = suc (dbl (fromb n)) _ : tob 6 ≡ bits x1 x1 x0 _ = refl _ : fromb bits ≡ 0 _ = refl _ : fromb (bits x0) ≡ 0 _ = refl _ : fromb (bits x1) ≡ 1 _ = refl _ : fromb (bits x1 x0) ≡ 2 _ = refl _ : fromb (bits x1 x1) ≡ 3 _ = refl _ : fromb (bits x1 x1 x0) ≡ 6 _ = refl _ : fromb (bits x1 x1 x0) ≡ 6 _ = refl -- Do NOT use 'to' and 'from'. Work with Bin-ℕ as if ℕ did not exist. _bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ bits bin-+ n = n m bin-+ bits = m (m x0) bin-+ (n x0) = (m bin-+ n) x0 (m x0) bin-+ (n x1) = inc ((m bin-+ n) x0) (m x1) bin-+ (n x0) = inc ((m bin-+ n) x0) (m x1) bin-+ (n x1) = inc (inc ((m bin-+ n) x0)) _ : (bits x1 x0 x0 x0) bin-+ (bits x1) ≡ (bits x1 x0 x0 x1) _ = refl _ : (bits x1 x0 x0 x1) bin-+ (bits x1) ≡ (bits x1 x0 x1 x0) _ = refl _ : (bits x1 x0 x0 x0) bin-+ (bits x1 x1 x1) ≡ (bits x1 x1 x1 x1) _ = refl _ : (tob 6) bin-+ (tob 2) ≡ (tob 8) _ = refl _ : (bits x1 x0) bin-+ (bits x1 x1) ≡ (bits x1 x0 x1) _ = refl
{ "alphanum_fraction": 0.5181498829, "avg_line_length": 18.170212766, "ext": "agda", "hexsha": "a929e643a2ec6107eaa30e1d1711192b9a590874", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc-2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc-2.agda", "max_line_length": 69, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc-2.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1616, "size": 3416 }
{- A simpler definition of truncation ∥ A ∥ n from n ≥ -1 Note that this uses the HoTT book's indexing, so it will be off from `∥_∥_` in HITs.Truncation.Base by -2 -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.Base where open import Cubical.Data.NatMinusOne renaming (suc₋₁ to suc) open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.Sn.Base open import Cubical.Data.Nat.Base renaming (suc to sucℕ) open import Cubical.Data.Unit.Base open import Cubical.Data.Empty -- this definition is off by one. Use hLevelTrunc or ∥_∥ for truncations -- (off by 2 w.r.t. the HoTT-book) data HubAndSpoke {ℓ} (A : Type ℓ) (n : ℕ) : Type ℓ where ∣_∣ : A → HubAndSpoke A n hub : (f : S₊ n → HubAndSpoke A n) → HubAndSpoke A n spoke : (f : S₊ n → HubAndSpoke A n) (x : S₊ n) → hub f ≡ f x hLevelTrunc : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Type ℓ hLevelTrunc zero A = Unit* hLevelTrunc (sucℕ n) A = HubAndSpoke A n ∥_∥_ : ∀ {ℓ} (A : Type ℓ) (n : ℕ) → Type ℓ ∥ A ∥ n = hLevelTrunc n A
{ "alphanum_fraction": 0.6769953052, "avg_line_length": 32.2727272727, "ext": "agda", "hexsha": "b902713b5cb85d3d9b012edde5d9f1523c8e7bb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/HITs/Truncation/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/HITs/Truncation/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/HITs/Truncation/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 407, "size": 1065 }
{-# OPTIONS --guardedness-preserving-type-constructors #-} open import Agda.Builtin.Coinduction open import Agda.Builtin.IO open import Agda.Builtin.Unit data Rec (A : ∞ Set) : Set where fold : ♭ A → Rec A D : Set D = Rec (♯ (∞ D)) d : D d = fold (♯ d) postulate seq : {A B : Set} → A → B → B return : {A : Set} → A → IO A {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC seq = \_ _ -> seq #-} main : IO ⊤ main = seq d (return tt)
{ "alphanum_fraction": 0.5732758621, "avg_line_length": 18.56, "ext": "agda", "hexsha": "85d5ca52732bbb4d3637fcf11c01d649ca51d4d2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2909-3.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2909-3.agda", "max_line_length": 58, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2909-3.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 161, "size": 464 }
module FlatDomInequality-2 where postulate A : Set h : (@♭ x : A) → A h x = x q : A → A q = h
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 9, "ext": "agda", "hexsha": "236b959c6ab8ead59c722ed9de1a0f8c735d64ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/FlatDomInequality-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/FlatDomInequality-2.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/FlatDomInequality-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 44, "size": 99 }
module thms where open import bool-thms public open import bool-thms2 public open import list-thms public open import list-thms2 public open import maybe-thms public open import product-thms public open import string-thms public open import sum-thms public open import nat-thms public open import trie-thms public
{ "alphanum_fraction": 0.8312101911, "avg_line_length": 26.1666666667, "ext": "agda", "hexsha": "82ccf201a0f05a56fe56fe22ebaeb4049f435de5", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "thms.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "thms.agda", "max_line_length": 31, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "thms.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 76, "size": 314 }
{-# OPTIONS --no-positivity-check #-} open import Prelude hiding (id; Bool; _∷_; []) module Examples.Bad where data TC : Set where tc-int : TC tc-bool : TC tc-char : TC _tc≟_ : (a b : TC) → Dec (a ≡ b) tc-int tc≟ tc-int = yes refl tc-int tc≟ tc-bool = no (λ ()) tc-bool tc≟ tc-int = no (λ ()) tc-bool tc≟ tc-bool = yes refl tc-int tc≟ tc-char = no (λ ()) tc-bool tc≟ tc-char = no (λ ()) tc-char tc≟ tc-int = no (λ ()) tc-char tc≟ tc-bool = no (λ ()) tc-char tc≟ tc-char = yes refl open import Implicits.Oliveira.Types TC _tc≟_ open import Implicits.Oliveira.Terms TC _tc≟_ open import Implicits.Oliveira.Contexts TC _tc≟_ open import Implicits.Oliveira.WellTyped TC _tc≟_ open import Implicits.Oliveira.Substitutions TC _tc≟_ open import Implicits.Oliveira.Types.Unification TC _tc≟_ open import Implicits.Improved.Undecidable.Resolution TC _tc≟_ open import Data.Maybe open import Data.List open import Extensions.ListFirst Bool : ∀ {n} → Type n Bool = simpl (tc tc-bool) Int : ∀ {n} → Type n Int = simpl (tc tc-int) Char : ∀ {n} → Type n Char = simpl (tc tc-char) module Ex₀ where data Bad : Set where bad : ¬ Bad → Bad getFun : Bad → ¬ Bad getFun (bad x) = x omega : Bad → ⊥ omega b = getFun b b loop : ⊥ loop = omega (bad omega) module Ex₁ where Δ : ICtx zero Δ = Bool ⇒ Bool ∷ Bool ∷ [] Bad : Set Bad = Δ ⊢ (Bool ⇒ Bool ) ↓ (tc tc-bool) getFun : Bad → ¬ Bad getFun (i-iabs (r-simp (here p ._)) x₁) = {!!} getFun (i-iabs (r-simp (there ._ f x)) y) = f omega : Bad → ⊥ omega b = getFun b b bad : ¬ Bad → Bad bad ¬x = i-iabs (r-simp (there _ ¬x (here (i-simp (tc tc-bool)) []))) (i-simp (tc tc-bool)) loop : ⊥ loop = omega (bad omega)
{ "alphanum_fraction": 0.6258782201, "avg_line_length": 22.1818181818, "ext": "agda", "hexsha": "b82e3e49b683e98508bf411316da81711536702b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Examples/Bad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Examples/Bad.agda", "max_line_length": 93, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Examples/Bad.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 622, "size": 1708 }
module nouse_CollatzProof where open import Data.Nat -- 偽 data ⊥ : Set where -- 真 record ⊤ : Set where -- 選言 data _∨_ (P Q : Set) : Set where ∨Intro1 : P → P ∨ Q ∨Intro2 : Q → P ∨ Q ∨Elim : {P Q R : Set} → P ∨ Q → (P → R) → (Q → R) → R ∨Elim (∨Intro1 a) prfP _ = prfP a ∨Elim (∨Intro2 b) _ prfQ = prfQ b -- 否定 ¬ : Set → Set ¬ p = p → ⊥ ⊥Elim : {P : Set} → ⊥ → P ⊥Elim () postulate LEM : (P : Set) → (P ∨ ¬ P) smaller : ℕ → Set -- n:左端からの連続するビット1 -- k+2で小さくならない→k+1で小さくならない lemma1-3 : (k : ℕ) → ¬ (smaller (suc (suc k))) → ¬ (smaller (suc k)) lemma2 : smaller 0 -- evenは小さくなる lemma3 : smaller 1 -- 4x+1は小さくなる -- 二重否定除去 DNE1 : {p : Set} → p → ¬ (¬ p) DNE1 p q = q p DNE2 : {p : Set} → ¬ (¬ p) → p DNE2 {p0} p1 = ∨Elim (LEM p0) (λ y → y) (λ z → ⊥Elim (p1 z)) -- 対偶 contraposition : {A B : Set} → (A → B) → (¬ B → ¬ A) contraposition = λ f g x → g (f x) contraposition2 : {A B : Set} → (¬ B → ¬ A) → (A → B) contraposition2 p a = let t = (contraposition p) (DNE1 a) in DNE2 t -- 本論 -- n:最下位からの連続するビット1 proof : (n : ℕ) → smaller n proof zero = lemma2 -- even proof (suc zero) = lemma3 -- 4x+1 proof (suc (suc n)) = part n (proof (suc n)) where -- (k+2で小さくならない→k+1で小さくならない)→(k+1で小さくなる→k+2で小さくなる) part : (k : ℕ) → smaller (suc k) → smaller (suc (suc k)) part k = contraposition2 (lemma1-3 k)
{ "alphanum_fraction": 0.5106685633, "avg_line_length": 23.8305084746, "ext": "agda", "hexsha": "5e4761a0e315cae09755e53eb733c864bab1cdaf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e3f7a76b8cb0db264175392ff5e584a26930379", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/collatzProof", "max_forks_repo_path": "nouse_CollatzProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e3f7a76b8cb0db264175392ff5e584a26930379", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/collatzProof", "max_issues_repo_path": "nouse_CollatzProof.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7e3f7a76b8cb0db264175392ff5e584a26930379", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/collatzProof", "max_stars_repo_path": "nouse_CollatzProof.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-25T14:44:08.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-25T14:44:08.000Z", "num_tokens": 698, "size": 1406 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Definition of and lemmas related to "true infinitely often" ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.InfinitelyOften where open import Category.Monad using (RawMonad) open import Level using (0ℓ) open import Data.Empty using (⊥-elim) open import Data.Nat open import Data.Nat.Properties open import Data.Product as Prod hiding (map) open import Data.Sum hiding (map) open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (¬¬-Monad; call/cc) open import Relation.Unary using (Pred; _∪_; _⊆_) open RawMonad (¬¬-Monad {p = 0ℓ}) -- Only true finitely often. Fin : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ Fin P = ∃ λ i → ∀ j → i ≤ j → ¬ P j -- A non-constructive definition of "true infinitely often". Inf : ∀ {ℓ} → Pred ℕ ℓ → Set ℓ Inf P = ¬ Fin P -- Fin is preserved by binary sums. _∪-Fin_ : ∀ {ℓp ℓq P Q} → Fin {ℓp} P → Fin {ℓq} Q → Fin (P ∪ Q) _∪-Fin_ {P = P} {Q} (i , ¬p) (j , ¬q) = (i ⊔ j , helper) where open ≤-Reasoning helper : ∀ k → i ⊔ j ≤ k → ¬ (P ∪ Q) k helper k i⊔j≤k (inj₁ p) = ¬p k (begin i ≤⟨ m≤m⊔n i j ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) p helper k i⊔j≤k (inj₂ q) = ¬q k (begin j ≤⟨ m≤m⊔n j i ⟩ j ⊔ i ≡⟨ ⊔-comm j i ⟩ i ⊔ j ≤⟨ i⊔j≤k ⟩ k ∎) q -- Inf commutes with binary sums (in the double-negation monad). commutes-with-∪ : ∀ {P Q} → Inf (P ∪ Q) → ¬ ¬ (Inf P ⊎ Inf Q) commutes-with-∪ p∪q = call/cc λ ¬[p⊎q] → (λ ¬p ¬q → ⊥-elim (p∪q (¬p ∪-Fin ¬q))) <$> ¬[p⊎q] ∘ inj₁ ⊛ ¬[p⊎q] ∘ inj₂ -- Inf is functorial. map : ∀ {ℓp ℓq P Q} → P ⊆ Q → Inf {ℓp} P → Inf {ℓq} Q map P⊆Q ¬fin = ¬fin ∘ Prod.map id (λ fin j i≤j → fin j i≤j ∘ P⊆Q) -- Inf is upwards closed. up : ∀ {ℓ P} n → Inf {ℓ} P → Inf (P ∘ _+_ n) up zero = id up {P = P} (suc n) = up n ∘ up₁ where up₁ : Inf P → Inf (P ∘ suc) up₁ ¬fin (i , fin) = ¬fin (suc i , helper) where helper : ∀ j → 1 + i ≤ j → ¬ P j helper ._ (s≤s i≤j) = fin _ i≤j -- A witness. witness : ∀ {ℓ P} → Inf {ℓ} P → ¬ ¬ ∃ P witness ¬fin ¬p = ¬fin (0 , λ i _ Pi → ¬p (i , Pi)) -- Two different witnesses. twoDifferentWitnesses : ∀ {P} → Inf P → ¬ ¬ ∃₂ λ m n → m ≢ n × P m × P n twoDifferentWitnesses inf = witness inf >>= λ w₁ → witness (up (1 + proj₁ w₁) inf) >>= λ w₂ → return (_ , _ , m≢1+m+n (proj₁ w₁) , proj₂ w₁ , proj₂ w₂)
{ "alphanum_fraction": 0.5218068536, "avg_line_length": 28.2197802198, "ext": "agda", "hexsha": "06b3b5abbf0b6e4c2bcee55dffe30643a77848bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/InfinitelyOften.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1037, "size": 2568 }
-- 2010-10-14 {-# OPTIONS --universe-polymorphism #-} module FakeProjectionsDoNotPreserveGuardedness where -- Coinduction is only available with universe polymorphism postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ -- Coinduction infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} -- Products infixr 4 _,_ infixr 2 _×_ -- fake product with projections postulate _×_ : (A B : Set) → Set _,_ : {A B : Set}(a : A)(b : B) → A × B proj₁ : {A B : Set}(p : A × B) → A proj₂ : {A B : Set}(p : A × B) → B -- Streams infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A mutual repeat : {A : Set}(a : A) → Stream A repeat a = a ∷ proj₂ (repeat' a) repeat' : {A : Set}(a : A) → A × ∞ (Stream A) repeat' a = a , ♯ repeat a
{ "alphanum_fraction": 0.5425065732, "avg_line_length": 18.7049180328, "ext": "agda", "hexsha": "c2085782e189631538ac95aaba5393382bb05e5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/fail/FakeProjectionsDoNotPreserveGuardedness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/fail/FakeProjectionsDoNotPreserveGuardedness.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/FakeProjectionsDoNotPreserveGuardedness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 455, "size": 1141 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout module lib.types.Join where module _ {i j} (A : Type i) (B : Type j) where *-span : Span *-span = span A B (A × B) fst snd _*_ : Type _ _*_ = Pushout *-span module _ {i j} (X : Ptd i) (Y : Ptd j) where *-⊙span : ⊙Span *-⊙span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd _⊙*_ : Ptd _ _⊙*_ = ⊙Pushout *-⊙span
{ "alphanum_fraction": 0.6041237113, "avg_line_length": 18.6538461538, "ext": "agda", "hexsha": "7c7d0a612997c647b0976ae4ed20f6e1bdf06798", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "lib/types/Join.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "lib/types/Join.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "lib/types/Join.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 194, "size": 485 }
module RandomAccessList.Redundant.Core.Properties where open import BuildingBlock open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf) open import RandomAccessList.Redundant.Core open import Data.Num.Redundant open import Data.Num.Redundant.Properties open import Data.Nat using (ℕ; zero; suc) open import Data.Nat.Etc open import Data.Nat.Properties.Simple open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect) open PropEq.≡-Reasoning ⟦[]⟧≈zero∷[] : ∀ {n A} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ ≈ zero ∷ [] ⟦[]⟧≈zero∷[] {n} {A} [] = <<<-zero n [] {eq refl} ⟦[]⟧≈zero∷[] ( 0∷ xs) {()} ⟦[]⟧≈zero∷[] (x 1∷ xs) {()} ⟦[]⟧≈zero∷[] (x , y 2∷ xs) {()} -------------------------------------------------------------------------------- -- On ⟦_⟧ and ⟦_⟧ₙ {- ⟦[]⟧ₙ≡0 : ∀ {A n} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ₙ ≡ zero ∷ [] ⟦[]⟧ₙ≡0 [] = refl ⟦[]⟧ₙ≡0 ( 0∷ xs) {()} ⟦[]⟧ₙ≡0 (x 1∷ xs) {()} ⟦[]⟧ₙ≡0 (x , y 2∷ xs) {()} ⟦[]⟧≡0 : ∀ {n A} → (xs : 0-2-RAL A n) → {xs≣[] : xs ≡ []} → ⟦ xs ⟧ ≡ zero ∷ [] ⟦[]⟧≡0 {n} [] {p} = begin n <<< (zero ∷ []) ≡⟨ {! !} ⟩ zero ∷ [] ∎ ⟦[]⟧≡0 ( 0∷ xs) {()} ⟦[]⟧≡0 (x 1∷ xs) {()} ⟦[]⟧≡0 (x , y 2∷ xs) {()} -- identity ⟦[]⟧ₙ≡0 : ∀ {A n} → (xs : 0-2-RAL A n) → xs ≡ [] → ⟦ xs ⟧ₙ ≡ zero ⟦[]⟧ₙ≡0 [] p = refl ⟦[]⟧ₙ≡0 ( 0∷ xs) () ⟦[]⟧ₙ≡0 (x 1∷ xs) () ⟦[]⟧ₙ≡0 (x , y 2∷ xs) () ⟦[]⟧≡0 : ∀ {n A} → (xs : 0-2-RAL A n) → xs ≡ [] → ⟦ xs ⟧ ≡ 0 ⟦[]⟧≡0 {zero } [] p = refl ⟦[]⟧≡0 {suc n} [] p = *-right-zero (2 * 2 ^ n) ⟦[]⟧≡0 ( 0∷ xs) () ⟦[]⟧≡0 (x 1∷ xs) () ⟦[]⟧≡0 (x , y 2∷ xs) () ⟦0∷xs⟧≡⟦xs⟧ : ∀ {n A} → (xs : 0-2-RAL A (suc n)) → ⟦ 0∷ xs ⟧ ≡ ⟦ xs ⟧ ⟦0∷xs⟧≡⟦xs⟧ {zero} xs = +-right-identity (2 * ⟦ xs ⟧ₙ) ⟦0∷xs⟧≡⟦xs⟧ {suc n} xs = begin 2 * 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ sym (*-assoc (2 * 2 ^ n) 2 ⟦ xs ⟧ₙ) ⟩ ((2 * 2 ^ n) * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → x * ⟦ xs ⟧ₙ) (*-comm (2 * 2 ^ n) 2) ⟩ (2 * (2 * 2 ^ n)) * ⟦ xs ⟧ₙ ∎ ⟦[]⟧≡⟦[]⟧ : ∀ {m n A} → ⟦ [] {A} {m} ⟧ ≡ ⟦ [] {A} {n} ⟧ ⟦[]⟧≡⟦[]⟧ {m} {n} = begin 2 ^ m * 0 ≡⟨ *-right-zero (2 ^ m) ⟩ 0 ≡⟨ sym (*-right-zero (2 ^ n)) ⟩ 2 ^ n * 0 ∎ splitIndex : ∀ {n A} → (x : BinaryLeafTree A n) → (xs : 0-2-RAL A (suc n)) → ⟦ x 1∷ xs ⟧ ≡ 1 * (2 ^ n) + ⟦ xs ⟧ splitIndex {n} x xs = begin 2 ^ n * suc (2 * ⟦ xs ⟧ₙ) ≡⟨ +-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ) ⟩ 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (λ w → 2 ^ n + w) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → w + (2 * 2 ^ n) * ⟦ xs ⟧ₙ) (sym (+-right-identity (2 ^ n))) ⟩ 2 ^ n + 0 + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ∎ splitIndex2 : ∀ {n A} → (x : BinaryLeafTree A n) → (y : BinaryLeafTree A n) → (xs : 0-2-RAL A (suc n)) → ⟦ x , y 2∷ xs ⟧ ≡ 2 * (2 ^ n) + ⟦ xs ⟧ splitIndex2 {n} x y xs = begin 2 ^ n * (1 + (1 + (2 * ⟦ xs ⟧ₙ))) ≡⟨ +-*-suc (2 ^ n) ((1 + (2 * ⟦ xs ⟧ₙ))) ⟩ 2 ^ n + 2 ^ n * (1 + (2 * ⟦ xs ⟧ₙ)) ≡⟨ cong (λ w → 2 ^ n + w) (+-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + (2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ)) ≡⟨ sym (+-assoc (2 ^ n) (2 ^ n) (2 ^ n * (2 * ⟦ xs ⟧ₙ))) ⟩ 2 ^ n + 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + 2 ^ n + (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ 2 ^ n + 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + w + (2 * 2 ^ n) * ⟦ xs ⟧ₙ) (sym (+-right-identity (2 ^ n))) ⟩ 2 ^ n + (2 ^ n + 0) + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ≡⟨ refl ⟩ 2 * 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ ∎ begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -} {- ⟦[]⟧≡⟦[]⟧ : ∀ {n A} → ⟦ [] {A} {suc n} ⟧ ≡ ⟦ [] {A} {n} ⟧ ⟦[]⟧≡⟦[]⟧ {n} = begin (2 * 2 ^ n) * 0 ≡⟨ *-right-zero (2 * 2 ^ n) ⟩ 0 ≡⟨ sym (*-right-zero (2 ^ n)) ⟩ 2 ^ n * 0 ∎ ⟦0∷xs⟧≡⟦xs⟧ {zero} xs = +-right-identity (2 * ⟦ xs ⟧ₙ) ⟦0∷xs⟧≡⟦xs⟧ {suc n} xs = begin 2 * 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ sym (*-assoc (2 * 2 ^ n) 2 ⟦ xs ⟧ₙ) ⟩ 2 * 2 ^ n * 2 * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → x * ⟦ xs ⟧ₙ) (*-assoc 2 (2 ^ n) 2) ⟩ 2 * (2 ^ n * 2) * ⟦ xs ⟧ₙ ≡⟨ cong (λ x → 2 * x * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ (2 * (2 * 2 ^ n)) * ⟦ xs ⟧ₙ ∎ ⟦0∷xs⟧≢0⇒⟦xs⟧≢0 : ∀ {n A} → (xs : 0-1-RAL A (suc n)) → ⟦ 0∷ xs ⟧ ≢ 0 → ⟦ xs ⟧ ≢ 0 ⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p = contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p -}
{ "alphanum_fraction": 0.3347098906, "avg_line_length": 31.0448717949, "ext": "agda", "hexsha": "cba53d3a581b08964ca9788cdc0e0d7c61652d66", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/Redundant/Core/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/Redundant/Core/Properties.agda", "max_line_length": 143, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/Redundant/Core/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2741, "size": 4843 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Equational.Theory module Fragment.Equational.Model.Synthetic (Θ : Theory) where open import Fragment.Algebra.Signature open import Fragment.Algebra.Algebra (Σ Θ) open import Fragment.Algebra.Free (Σ Θ) open import Fragment.Algebra.Homomorphism (Σ Θ) open import Fragment.Algebra.Quotient (Σ Θ) open import Fragment.Equational.Model.Base Θ using (Model; IsModel; Models) open import Fragment.Setoid.Morphism using (_·_) open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Empty using (⊥) open import Data.Nat using (ℕ) open import Data.Product using (proj₁; proj₂) open import Data.Vec using (map) open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise; []; _∷_) open import Relation.Binary using (Setoid; IsEquivalence) import Relation.Binary.PropositionalEquality as PE private variable a ℓ : Level module _ (A : Algebra {a} {ℓ}) where infix 4 _≊_ data _≊_ : ∥ A ∥ → ∥ A ∥ → Set (a ⊔ ℓ) where refl : ∀ {x} → x ≊ x sym : ∀ {x y} → x ≊ y → y ≊ x trans : ∀ {x y z} → x ≊ y → y ≊ z → x ≊ z inherit : ∀ {x y} → x =[ A ] y → x ≊ y cong : ∀ {n} → (f : ops (Σ Θ) n) → ∀ {xs ys} → Pointwise _≊_ xs ys → A ⟦ f ⟧ xs ≊ A ⟦ f ⟧ ys axiom : ∀ {n} → (eq : eqs Θ n) → (θ : Env A n) → ∣ inst A θ ∣ (proj₁ (Θ ⟦ eq ⟧ₑ)) ≊ ∣ inst A θ ∣ (proj₂ (Θ ⟦ eq ⟧ₑ)) private ≊-isEquivalence : IsEquivalence _≊_ ≊-isEquivalence = record { refl = refl ; sym = sym ; trans = trans } instance ≊-isDenom : IsDenominator A _≊_ ≊-isDenom = record { isEquivalence = ≊-isEquivalence ; isCompatible = cong ; isCoarser = inherit } Synthetic : Model Synthetic = record { ∥_∥/≈ = ∥ A ∥/ _≊_ ; isModel = isModel } where open module T = Setoid (∥ A ∥/ _≊_) open import Relation.Binary.Reasoning.Setoid (∥ A ∥/ _≊_) models : Models (A / _≊_) models eq θ = begin ∣ inst (A / _≊_) θ ∣ lhs ≈⟨ T.sym (lemma {x = lhs}) ⟩ ∣ (inc A _≊_) ⊙ (inst A θ) ∣ lhs ≈⟨ axiom eq θ ⟩ ∣ (inc A _≊_) ⊙ (inst A θ) ∣ rhs ≈⟨ lemma {x = rhs} ⟩ ∣ inst (A / _≊_) θ ∣ rhs ∎ where lhs = proj₁ (Θ ⟦ eq ⟧ₑ) rhs = proj₂ (Θ ⟦ eq ⟧ₑ) lemma = inst-universal (A / _≊_) θ {h = (inc A _≊_) ⊙ (inst A θ) } (λ x → PE.refl) isModel : IsModel (∥ A ∥/ _≊_) isModel = record { isAlgebra = A / _≊_ -isAlgebra ; models = models } J : ℕ → Model J = Synthetic ∘ F
{ "alphanum_fraction": 0.4921008403, "avg_line_length": 31.6489361702, "ext": "agda", "hexsha": "32617ddafbbe13560debc769b256eef8816f5321", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Model/Synthetic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Model/Synthetic.agda", "max_line_length": 67, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Model/Synthetic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 986, "size": 2975 }
------------------------------------------------------------------------------ -- Simple example of a nested recursive function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Ana Bove and Venanzio Capretta. Nested general recursion and -- partiality in type theory. Vol. 2152 of LNCS. 2001. module FOTC.Program.Nest.Nest where open import FOTC.Base ------------------------------------------------------------------------------ -- The nest function. postulate nest : D → D nest-0 : nest zero ≡ zero nest-S : ∀ n → nest (succ₁ n) ≡ nest (nest n) {-# ATP axioms nest-0 nest-S #-}
{ "alphanum_fraction": 0.4319018405, "avg_line_length": 33.9583333333, "ext": "agda", "hexsha": "31ebb03ba6e664548815b83a99426e8a3b517f04", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Nest/Nest.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Nest/Nest.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Nest/Nest.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 162, "size": 815 }
-- Jesper, 2015-12-18: the helper function shouldn't be accepted, since it -- matches on a heterogeneous equality and the equation between the types -- Box A and Box B cannot be solved without injective type constructors. data Box (A : Set) : Set where [_] : A → Box A data _≡_ (A : Set) : Set → Set₁ where refl : A ≡ A data _≅_ {A : Set₁} (x : A) : {B : Set₁} → B → Set₂ where refl : x ≅ x data C : Set → Set₁ where c₁ c₂ : (A : Set) → C (Box A) data D : {A : Set} → C A → Set₂ where d₁ : (A : Set) → D (c₁ A) d₂ : (A : Set) → D (c₂ A) D-elim-c₁-helper : (P : {A B : Set} {c : C A} → D c → A ≡ Box B → c ≅ c₁ B → Set₂) → ((A : Set) → P (d₁ A) refl refl) → {A B : Set} {c : C A} (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ D-elim-c₁-helper P p (d₂ A) () _ D-elim-c₁-helper P p (d₁ A) refl refl = p A
{ "alphanum_fraction": 0.5458823529, "avg_line_length": 29.3103448276, "ext": "agda", "hexsha": "1462b56fae015a50ba80a74964ec63d986b5fa66", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1435-helper.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1435-helper.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1435-helper.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 357, "size": 850 }
module sum-downFrom where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n) open import Data.Nat.Properties using (*-suc; *-identityʳ; *-distribʳ-+; *-distribˡ-∸; +-∸-assoc; +-∸-comm; m+n∸m≡n; m≤m*n) open import lists using (List; []; _∷_; [_,_,_]; sum) -- (n - 1), ⋯ , 0 を返す downFrom : ℕ → List ℕ downFrom zero = [] downFrom (suc n) = n ∷ downFrom n _ : downFrom 3 ≡ [ 2 , 1 , 0 ] _ = refl -- n ≤ n * n の証明 n≤n*n : ∀ (n : ℕ) → n ≤ n * n n≤n*n zero = z≤n n≤n*n (suc n) = m≤m*n (suc n) (s≤s z≤n) -- n ≤ n * 2 の証明 n≤n*2 : ∀ (n : ℕ) → n ≤ n * 2 n≤n*2 n = m≤m*n n (s≤s z≤n) -- n * 2 ∸ n = n の証明 n*2∸n≡n : ∀ (n : ℕ) → n * 2 ∸ n ≡ n n*2∸n≡n n = begin n * 2 ∸ n ≡⟨ cong (_∸ n) (*-suc n 1) ⟩ -- 積の展開 n + n * 1 ∸ n ≡⟨ m+n∸m≡n n (n * 1) ⟩ -- n ∸ n の除去 n * 1 ≡⟨ *-identityʳ n ⟩ -- * 1 の除去 n ∎ -- m * (n ∸ 1) = m * n ∸ m の証明 m*[n∸1]≡m*n∸m : ∀ (m n : ℕ) → m * (n ∸ 1) ≡ m * n ∸ m m*[n∸1]≡m*n∸m m n = begin m * (n ∸ 1) ≡⟨ *-distribˡ-∸ m n 1 ⟩ -- n * の分配 m * n ∸ m * 1 ≡⟨ cong (m * n ∸_) (*-identityʳ m) ⟩ -- * 1 の除去 m * n ∸ m ∎ -- (n - 1) + ⋯ + 0 と n * (n ∸ 1) / 2 が等しいことの証明 sum-downFrom : ∀ (n : ℕ) → sum (downFrom n) * 2 ≡ n * (n ∸ 1) sum-downFrom zero = begin sum (downFrom zero) * 2 ≡⟨⟩ sum [] * 2 ≡⟨⟩ zero -- = zero * (zero ∸ 1) ∎ sum-downFrom (suc n) = begin sum (downFrom (suc n)) * 2 ≡⟨⟩ sum (n ∷ downFrom n) * 2 ≡⟨⟩ (n + sum (downFrom n)) * 2 ≡⟨ *-distribʳ-+ 2 n (sum (downFrom n)) ⟩ -- * 2 の分配 (n * 2) + (sum (downFrom n)) * 2 ≡⟨ cong (n * 2 +_) (sum-downFrom n) ⟩ -- 帰納法 (n * 2) + (n * (n ∸ 1)) ≡⟨ cong (n * 2 +_) (m*[n∸1]≡m*n∸m n n) ⟩ -- n * の分配 (n * 2) + (n * n ∸ n) ≡⟨ sym (+-∸-assoc (n * 2) (n≤n*n n)) ⟩ -- 結合法則 (n * 2) + n * n ∸ n ≡⟨ +-∸-comm (n * n) (n≤n*2 n) ⟩ -- 交換法則 (n * 2) ∸ n + n * n ≡⟨ cong (_+ n * n) (n*2∸n≡n n) ⟩ -- n ∸ n の除去 n + n * n -- = n * (suc n) -- = (suc n) * n -- = (suc n) * ((suc n) ∸ 1) ∎
{ "alphanum_fraction": 0.4249642687, "avg_line_length": 24.1264367816, "ext": "agda", "hexsha": "14301fd8a7dfba069f44363617059136f4432394", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/sum-downFrom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/sum-downFrom.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/sum-downFrom.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 1246, "size": 2099 }
open import Categories open import Functors open import RMonads module RMonads.REM {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} (M : RMonad J) where open import Library open RMonad M open Fun record RAlg : Set (a ⊔ c ⊔ d) where constructor ralg open Cat D field acar : Obj astr : ∀ {Z} → Hom (OMap J Z) acar → Hom (T Z) acar alaw1 : ∀ {Z}{f : Hom (OMap J Z) acar} → f ≅ comp (astr f) η alaw2 : ∀{Z}{W}{k : Hom (OMap J Z) (T W)} {f : Hom (OMap J W) acar} → astr (comp (astr f) k) ≅ comp (astr f) (bind k) AlgEq : {X Y : RAlg} → RAlg.acar X ≅ RAlg.acar Y → ((λ {Z} → RAlg.astr X {Z}) ≅ (λ {Z} → RAlg.astr Y {Z})) → X ≅ Y AlgEq {ralg acar astr _ _}{ralg .acar .astr _ _} refl refl = let open Cat in cong₂ (ralg acar astr) (iext λ _ → iext λ _ → ir _ _) (iext λ _ → iext λ _ → iext λ _ → iext λ _ → ir _ _) astrnat : ∀(alg : RAlg){X Y} (f : Cat.Hom C X Y) → (g : Cat.Hom D (OMap J X) (RAlg.acar alg)) (g' : Cat.Hom D (OMap J Y) (RAlg.acar alg)) → Cat.comp D g' (HMap J f) ≅ g → Cat.comp D (RAlg.astr alg g') (RMonad.bind M (Cat.comp D (RMonad.η M) (HMap J f))) ≅ RAlg.astr alg g astrnat alg f g g' p = let open RAlg alg; open Cat D in proof comp (astr g') (bind (comp η (HMap J f))) ≅⟨ sym alaw2 ⟩ astr (comp (astr g') (comp η (HMap J f))) ≅⟨ cong astr (sym ass) ⟩ astr (comp (comp (astr g') η) (HMap J f)) ≅⟨ cong (λ g₁ → astr (comp g₁ (HMap J f))) (sym alaw1) ⟩ astr (comp g' (HMap J f)) ≅⟨ cong astr p ⟩ astr g ∎ record RAlgMorph (A B : RAlg) : Set (a ⊔ c ⊔ d) where constructor ralgmorph open Cat D open RAlg field amor : Hom (acar A) (acar B) ahom : ∀{Z}{f : Hom (OMap J Z) (acar A)} → comp amor (astr A f) ≅ astr B (comp amor f) open RAlgMorph RAlgMorphEq : ∀{X Y : RAlg}{f g : RAlgMorph X Y} → amor f ≅ amor g → f ≅ g RAlgMorphEq {X}{Y}{ralgmorph amor _}{ralgmorph .amor _} refl = cong (ralgmorph amor) (iext λ _ → iext λ _ → ir _ _) lemZ : ∀{X X' Y Y' : RAlg} {f : RAlgMorph X Y}{g : RAlgMorph X' Y'} → X ≅ X' → Y ≅ Y' → amor f ≅ amor g → f ≅ g lemZ refl refl = RAlgMorphEq IdMorph : ∀{A : RAlg} → RAlgMorph A A IdMorph {A} = let open Cat D; open RAlg A in record { amor = iden; ahom = λ {_ f} → proof comp iden (astr f) ≅⟨ idl ⟩ astr f ≅⟨ cong astr (sym idl) ⟩ astr (comp iden f) ∎} CompMorph : ∀{X Y Z : RAlg} → RAlgMorph Y Z → RAlgMorph X Y → RAlgMorph X Z CompMorph {X}{Y}{Z} f g = let open Cat D; open RAlg in record { amor = comp (amor f) (amor g); ahom = λ {_ f'} → proof comp (comp (amor f) (amor g)) (astr X f') ≅⟨ ass ⟩ comp (amor f) (comp (amor g) (astr X f')) ≅⟨ cong (comp (amor f)) (ahom g) ⟩ comp (amor f) (astr Y (comp (amor g) f')) ≅⟨ ahom f ⟩ astr Z (comp (amor f) (comp (amor g) f')) ≅⟨ cong (astr Z) (sym ass) ⟩ astr Z (comp (comp (amor f) (amor g)) f') ∎} idlMorph : {X Y : RAlg}{f : RAlgMorph X Y} → CompMorph IdMorph f ≅ f idlMorph = RAlgMorphEq (Cat.idl D) idrMorph : ∀{X Y : RAlg}{f : RAlgMorph X Y} → CompMorph f IdMorph ≅ f idrMorph = RAlgMorphEq (Cat.idr D) assMorph : ∀{W X Y Z : RAlg} {f : RAlgMorph Y Z}{g : RAlgMorph X Y}{h : RAlgMorph W X} → CompMorph (CompMorph f g) h ≅ CompMorph f (CompMorph g h) assMorph = RAlgMorphEq (Cat.ass D) EM : Cat EM = record{ Obj = RAlg; Hom = RAlgMorph; iden = IdMorph; comp = CompMorph; idl = idlMorph; idr = idrMorph; ass = λ{_ _ _ _ f g h} → assMorph {f = f}{g}{h}}
{ "alphanum_fraction": 0.5230192719, "avg_line_length": 30.1290322581, "ext": "agda", "hexsha": "116a9d74eb27a9da5b8db966536e91480a937f3d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/REM.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/REM.agda", "max_line_length": 76, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/REM.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1570, "size": 3736 }
module Data.Bool.Instance where open import Class.Equality open import Class.Show open import Data.Bool open import Relation.Binary.PropositionalEquality open import Relation.Nullary instance Bool-Eq : Eq Bool Bool-Eq = record { _≟_ = helper } where helper : ∀ (x y : Bool) → Dec (x ≡ y) helper false false = yes refl helper false true = no (λ ()) helper true false = no (λ ()) helper true true = yes refl Bool-Show : Show Bool Bool-Show = record { show = λ { false → "false" ; true → "true" } }
{ "alphanum_fraction": 0.6506469501, "avg_line_length": 25.7619047619, "ext": "agda", "hexsha": "7f01124a4460d6ab72bde7de683d4b2a22ce6ba7", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Bool/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Bool/Instance.agda", "max_line_length": 69, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Bool/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 148, "size": 541 }
module Type.Properties.Empty{ℓ} where import Lvl open import Type -- A type is empty when "empty functions" exists for it, which essentially means that there are no objects with this type. -- This is an useful definition because the empty type is not unique (There are an infinite number of "empty types"). -- An explanation for why there are an infinite number of them: -- · Types are not equal to each other extensionally (unlike sets, type equality is not based on their inhabitants (set equality is based on which elements that the set contains)). -- An alternative explanation: -- · Type equality is nominal (loosely: based on its name (assuming no other type could be named the same)), and not representional. -- Or more simply by an example: -- · `data Empty : Type where` defines an empty type. -- `data Empty2 : Type where` also defines an empty type. -- Now, `Empty` is not type equal to `Empty2` because the terms does not normalize further (by the rules of the language). -- So by proving IsEmpty(T), it means that the type T is empty, because empty types are the only types that has the property of having empty functions. record IsEmpty (T : Type{ℓ}) : Type{Lvl.𝐒(ℓ)} where constructor intro field -- Empty functions for an empty type -- For any type U, it is always possible to construct a function from T to U if T is empty empty : ∀{U : Type{ℓ}} → T → U
{ "alphanum_fraction": 0.7317596567, "avg_line_length": 60.7826086957, "ext": "agda", "hexsha": "865735c5b7620566d105ff6a62cf9e679c9607b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Properties/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Properties/Empty.agda", "max_line_length": 180, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Properties/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 340, "size": 1398 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Equational.Theory where open import Fragment.Equational.Theory.Base public
{ "alphanum_fraction": 0.7605633803, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "49f39404073f6749ca5ae5cfe560fbd7e0998543", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Theory.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Theory.agda", "max_line_length": 50, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Theory.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 31, "size": 142 }
{-# OPTIONS --without-K --safe #-} module Cats.Limit where open import Level open import Cats.Category.Base open import Cats.Category.Cones as Cones using (Cone ; Cones ; ConesF ; cone-iso→obj-iso) open import Cats.Category.Constructions.Terminal using (HasTerminal) open import Cats.Category.Constructions.Unique using (∃!′) open import Cats.Category.Fun as Fun using (Trans ; _↝_) open import Cats.Functor using (Functor) open import Cats.Util.Conv import Cats.Category.Constructions.Terminal as Terminal import Cats.Category.Constructions.Iso as Iso open Cone open Cones._⇒_ open Functor open Fun._≈_ open Trans private module Cs {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {F : Functor C D} = Category (Cones F) module _ {lo la l≈ lo′ la′ l≈′} {J : Category lo la l≈} {Z : Category lo′ la′ l≈′} where private module J = Category J module Z = Category Z IsLimit : {D : Functor J Z} → Cone D → Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) IsLimit {D} = Terminal.IsTerminal {C = Cones D} record Limit (D : Functor J Z) : Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) where field cone : Cone D isLimit : IsLimit cone open Cone cone using () renaming (arr to proj) private hasTerminal : HasTerminal (Cones D) hasTerminal = record { ⊤ = cone ; isTerminal = isLimit } open HasTerminal hasTerminal public using ( ! ; !-unique ) renaming ( ⊤-unique to cone-unique ; ⇒⊤-unique to ⇒cone-unique ) !! : (cone′ : Cone D) → cone′ .Cone.Apex Z.⇒ cone .Cone.Apex !! cone′ = ! cone′ .arr !!-unique : {cone′ : Cone D} (f : cone′ Cs.⇒ cone) → !! cone′ Z.≈ f .arr !!-unique f = !-unique f arr∘!! : ∀ cone′ {j} → proj j Z.∘ !! cone′ Z.≈ cone′ .Cone.arr j arr∘!! cone′ = ! cone′ .commute _ !!∘ : ∀ {C D} (f : C Cs.⇒ D) → !! D Z.∘ f .arr Z.≈ !! C !!∘ {C} {D} f = Z.≈.sym (!!-unique record { commute = λ j → let open Z.≈-Reasoning in begin proj j Z.∘ !! D Z.∘ f .arr ≈⟨ Z.unassoc ⟩ (proj j Z.∘ !! D) Z.∘ f .arr ≈⟨ Z.∘-resp-l (arr∘!! D) ⟩ D .arr j Z.∘ f .arr ≈⟨ f .commute j ⟩ C .arr j ∎ }) open Cone cone public open Limit public instance HasObj-Limit : ∀ {D} → HasObj (Limit D) _ _ _ HasObj-Limit {D} = record { Cat = Cones D ; _ᴼ = cone } module _ {D : Functor J Z} where unique : (l m : Limit D) → Iso.Build._≅_ (Cones D) (l ᴼ) (m ᴼ) unique l m = Terminal.terminal-unique (isLimit l) (isLimit m) obj-unique : (l m : Limit D) → Iso.Build._≅_ Z (l ᴼ ᴼ) (m ᴼ ᴼ) obj-unique l m = cone-iso→obj-iso _ (unique l m) module _ {F G : Functor J Z} where trans : (ϑ : Trans F G) (l : Limit F) (m : Limit G) → l .Apex Z.⇒ m .Apex trans ϑ l m = !! m (ConesF .fmap ϑ .fobj (l .cone)) arr∘trans : ∀ ϑ l m c → m .arr c Z.∘ trans ϑ l m Z.≈ ϑ .component c Z.∘ l .arr c arr∘trans ϑ l m c = arr∘!! m (ConesF .fmap ϑ .fobj (l .cone)) trans-resp : ∀ {ϑ ι} l m → ϑ Fun.≈ ι → trans ϑ l m Z.≈ trans ι l m trans-resp {ϑ} {ι} l m ϑ≈ι = !!-unique m record { commute = λ j → Z.≈.trans (arr∘trans ι l m j) (Z.∘-resp-l (Z.≈.sym (≈-elim ϑ≈ι))) } trans-id : {F : Functor J Z} (l : Limit F) → trans Fun.id l l Z.≈ Z.id trans-id l = !!-unique l record { commute = λ j → Z.≈.trans Z.id-r (Z.≈.sym Z.id-l) } trans-∘ : {F G H : Functor J Z} (ϑ : Trans G H) (ι : Trans F G) → ∀ l m n → trans ϑ m n Z.∘ trans ι l m Z.≈ trans (ϑ Fun.∘ ι) l n trans-∘ {F} {G} {H} ϑ ι l m n = Z.≈.sym (!!-unique n record { commute = λ j → let open Z.≈-Reasoning in begin n .arr j Z.∘ trans ϑ m n Z.∘ trans ι l m ≈⟨ Z.unassoc ⟩ (n .arr j Z.∘ trans ϑ m n) Z.∘ trans ι l m ≈⟨ Z.∘-resp-l (arr∘trans ϑ m n j ) ⟩ (ϑ .component j Z.∘ m .arr j) Z.∘ trans ι l m ≈⟨ Z.assoc ⟩ ϑ .component j Z.∘ m .arr j Z.∘ trans ι l m ≈⟨ Z.∘-resp-r (arr∘trans ι l m j) ⟩ ϑ .component j Z.∘ ι .component j Z.∘ l .arr j ≈⟨ Z.unassoc ⟩ (ϑ Fun.∘ ι) .component j Z.∘ l .arr j ∎ }) record _HasLimitsOf_ {lo la l≈} (C : Category lo la l≈) {lo′ la′ l≈′} (J : Category lo′ la′ l≈′) : Set (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′ ) where private module C = Category C module J↝C = Category (J ↝ C) field lim′ : (F : Functor J C) → Limit F lim : Functor J C → C.Obj lim F = lim′ F .cone .Apex limF : Functor (J ↝ C) C limF = record { fobj = λ F → lim F ; fmap = λ {F} {G} ϑ → trans ϑ (lim′ _) (lim′ _) ; fmap-resp = λ ϑ≈ι → trans-resp (lim′ _) (lim′ _) ϑ≈ι ; fmap-id = trans-id (lim′ _) ; fmap-∘ = trans-∘ _ _ (lim′ _) (lim′ _) (lim′ _) } record Complete {lo la l≈} (C : Category lo la l≈) lo′ la′ l≈′ : Set (lo ⊔ la ⊔ l≈ ⊔ suc (lo′ ⊔ la′ ⊔ l≈′)) where field lim′ : ∀ {J : Category lo′ la′ l≈′} (F : Functor J C) → Limit F hasLimitsOf : (J : Category lo′ la′ l≈′) → C HasLimitsOf J hasLimitsOf J ._HasLimitsOf_.lim′ = lim′ private open module HasLimitsOf {J} = _HasLimitsOf_ (hasLimitsOf J) public hiding (lim′) preservesLimits : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → Functor C D → (lo″ la″ l≈″ : Level) → Set _ preservesLimits {C = C} F lo″ la″ l≈″ = {J : Category lo″ la″ l≈″} → {D : Functor J C} → {c : Cone D} → IsLimit c → IsLimit (Cones.apFunctor F c)
{ "alphanum_fraction": 0.5264960346, "avg_line_length": 25.4495412844, "ext": "agda", "hexsha": "aa079b44703a03d74aba41c45bf98c59d10ff9c3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Limit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Limit.agda", "max_line_length": 84, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Limit.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 2268, "size": 5548 }
module Generic.Lib.Equality.Congn where open import Generic.Lib.Intro open import Generic.Lib.Equality.Propositional open import Generic.Lib.Data.Product open import Generic.Lib.Data.Nat open import Generic.Lib.Data.Pow open import Generic.Lib.Data.Sets zip≡ : ∀ {n αs} {As : Sets {n} αs} -> HList As -> HList As -> Sets (replicatePow n lzero) zip≡ {0} tt tt = tt zip≡ {suc _} (x , xs) (y , ys) = (x ≡ y) , zip≡ xs ys congn : ∀ {β} {B : Set β} n {αs} {As : Sets {n} αs} {xs ys : HList As} -> (f : FoldSets As B) -> FoldSets (zip≡ xs ys) (applyFoldSets f xs ≡ applyFoldSets f ys) congn 0 y = refl congn (suc n) f refl = congn n (f _) private module Test where cong′ : ∀ {α β} {A : Set α} {B : Set β} {x y} -> (f : A -> B) -> x ≡ y -> f x ≡ f y cong′ = congn 1 cong₂′ : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} {x₁ x₂ y₁ y₂} -> (g : A -> B -> C) -> x₁ ≡ x₂ -> y₁ ≡ y₂ -> g x₁ y₁ ≡ g x₂ y₂ cong₂′ = congn 2
{ "alphanum_fraction": 0.5584016393, "avg_line_length": 36.1481481481, "ext": "agda", "hexsha": "cad733e0e5597474c9f46d76b1295eeae5e2efe3", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Equality/Congn.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Equality/Congn.agda", "max_line_length": 95, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Equality/Congn.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 389, "size": 976 }
postulate A : Set a : A data D : A → Set where d : (a : A) → D a f : A → (D a → Set) → Set f a f = f (d a) -- Bad error: -- a != a of type A -- when checking that the pattern d a has type D a -- Better error: -- a != a of type A -- (because one is a variable and one a defined identifier) -- when checking that the pattern d a has type D a
{ "alphanum_fraction": 0.5885714286, "avg_line_length": 18.4210526316, "ext": "agda", "hexsha": "479a5f5c40c399667b8c6d9ab6ca9843c048990a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue998.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue998.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue998.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 118, "size": 350 }
module TermShape where open import Relation.Unary using (_∈_; _⊆_) open import Size open import Library open import Terms open import Substitution -- Evaluation contexts. data ECxt (Γ : Cxt) : (a b : Ty) → Set where appl : ∀ {a b} (u : Tm Γ a) → ECxt Γ (a →̂ b) b -- Ehole Et E t ~~ Et = E[t] data Ehole {Γ : Cxt} : {a b : Ty} → Tm Γ b → ECxt Γ a b → Tm Γ a → Set where appl : ∀ {a b} {t : Tm Γ (a →̂ b)} (u : Tm Γ a) → Ehole (app t u) (appl u) t -- Evaluation contexts are closed under substitution. substEC : ∀ {i vt Γ Δ a b} → (σ : RenSub {i} vt Γ Δ) → ECxt Γ a b → ECxt Δ a b substEC σ (appl u) = appl (subst σ u) substEh : ∀ {i vt Γ Δ a b} → (σ : RenSub {i} vt Γ Δ) → ∀ {E}{Et : Tm Γ b}{t : Tm Γ a} → (Eh : Ehole Et E t) → Ehole (subst σ Et) (substEC σ E) (subst σ t) substEh σ (appl u) = appl (subst σ u) mkEHole : ∀ {Γ} {a b} (E : ECxt Γ a b) {t} → ∃ λ E[t] → Ehole E[t] E t mkEHole (appl u) = _ , appl u _[_] : ∀ {Γ} {a b} (E : ECxt Γ a b) (t : Tm Γ a) → Tm Γ b E [ t ] = proj₁ (mkEHole E {t}) data ECxt* (Γ : Cxt) : Ty → Ty → Set where [] : ∀ {a} → ECxt* Γ a a _∷_ : ∀ {a₀ a₁ a₂} → ECxt Γ a₀ a₁ → ECxt* Γ a₁ a₂ → ECxt* Γ a₀ a₂ _[_]* : ∀ {Γ} {a b} (E : ECxt* Γ a b) (t : Tm Γ a) → Tm Γ b [] [ t ]* = t (E ∷ Es) [ t ]* = Es [ E [ t ] ]* _++*_ : ∀ {Γ a b c} → ECxt* Γ a b → ECxt* Γ b c → ECxt* Γ a c [] ++* ys = ys (x ∷ xs) ++* ys = x ∷ (xs ++* ys) _∷r_ : ∀ {Γ a b c} → ECxt* Γ a b → ECxt Γ b c → ECxt* Γ a c xs ∷r x = xs ++* (x ∷ []) data Ehole* {Γ : Cxt} : {a b : Ty} → Tm Γ b → ECxt* Γ a b → Tm Γ a → Set where [] : ∀ {a} {t : Tm Γ a} → Ehole* t [] t _∷_ : ∀ {a b c t} {E : ECxt Γ b c} {Es : ECxt* Γ a b} {EEst Est} → Ehole EEst E Est → Ehole* Est Es t → Ehole* EEst (Es ∷r E) t -- Inductive definition of strong normalization. -- Parameterized evaluation contexts data PCxt {Γ : Cxt} (P : ∀{c} → Tm Γ c → Set) : {a b : Ty} → Tm Γ b → ECxt Γ a b → Tm Γ a → Set where appl : ∀ {a b u}{t : Tm _ (a →̂ b)} → (𝒖 : P u) → PCxt P (app t u) (appl u) t -- Parameterized neutral terms. data PNe {Γ} (P : ∀{c} → Tm Γ c → Set) {b} : Tm Γ b → Set where var : ∀ x → PNe P (var x) elim : ∀ {a} {t : Tm Γ a} {E Et} → (𝒏 : PNe P t) (𝑬𝒕 : PCxt P Et E t) → PNe P Et -- Parametrized weak head reduction infix 10 _/_⇒_ data _/_⇒_ {Γ} (P : ∀{c} → Tm Γ c → Set): ∀ {a} → Tm Γ a → Tm Γ a → Set where β : ∀ {a b}{t : Tm (a ∷ Γ) b}{u} → (𝒖 : P u) → P / (app (abs t) u) ⇒ subst0 u t cong : ∀ {a b t t' Et Et'}{E : ECxt Γ a b} → (𝑬𝒕 : Ehole Et E t) → (𝑬𝒕' : Ehole Et' E t') → (t⇒ : P / t ⇒ t') → P / Et ⇒ Et' -- Weak head reduction is deterministic. detP⇒ : ∀ {a Γ} {P : ∀ {c} → Tm Γ c → Set} {t t₁ t₂ : Tm Γ a} → (t⇒₁ : P / t ⇒ t₁) (t⇒₂ : P / t ⇒ t₂) → t₁ ≡ t₂ {- detP⇒ (β 𝒖) (β 𝒖₁) = ≡.refl detP⇒ (β 𝒖) (cong (appl u) (appl .u) (cong () 𝑬𝒕' d')) detP⇒ (cong (appl u) (appl .u) (cong () 𝑬𝒕' d)) (β 𝒖) detP⇒ (cong (appl u) (appl .u) d) (cong (appl .u) (appl .u) d') = ≡.cong (λ t → app t u) (detP⇒ d d') -} detP⇒ (β _) (β _) = ≡.refl detP⇒ (β _) (cong (appl u) (appl .u) (cong () _ _)) detP⇒ (cong (appl u) (appl .u) (cong () _ _)) (β _) detP⇒ (cong (appl u) (appl .u) x) (cong (appl .u) (appl .u) y) = ≡.cong (λ t → app t u) (detP⇒ x y) -- Neutrals are closed under application. pneApp : ∀{Γ a b}{P : ∀{c} → Tm Γ c → Set}{t : Tm Γ (a →̂ b)}{u : Tm Γ a} → PNe P t → P u → PNe P (app t u) pneApp 𝒏 𝒖 = elim 𝒏 (appl 𝒖) -- Functoriality of the notions wrt. P. mapPCxt : ∀ {Γ} {P Q : ∀{c} → Tm Γ c → Set} (P⊆Q : ∀ {c}{t : Tm Γ c} → P t → Q t) {a b} {E : ECxt Γ a b}{Et t} → PCxt P Et E t -> PCxt Q Et E t mapPCxt P⊆Q (appl u∈P) = appl (P⊆Q u∈P) mapPNe : ∀ {Γ} {P Q : ∀{c} → Tm Γ c → Set} (P⊆Q : ∀ {c}{t : Tm Γ c} → P t → Q t) {a}{t : Tm Γ a} → PNe P t -> PNe Q t mapPNe P⊆Q (var x) = var x mapPNe P⊆Q (elim t∈Ne E∈SNh) = elim (mapPNe P⊆Q t∈Ne) (mapPCxt P⊆Q E∈SNh) mapP⇒ : ∀ {Γ} {P Q : ∀{c} → Tm Γ c → Set} (P⊆Q : ∀ {c}{t : Tm Γ c} → P t → Q t) {a}{t t' : Tm Γ a} → P / t ⇒ t' → Q / t ⇒ t' mapP⇒ P⊆Q (β t∈P) = β (P⊆Q t∈P) mapP⇒ P⊆Q (cong Et Et' t→t') = cong Et Et' (mapP⇒ P⊆Q t→t') _[_]⇒ : ∀ {Γ} {P : ∀{c} → Tm Γ c → Set} {a b} (E : ECxt Γ a b) {t₁ t₂ : Tm Γ a} → P / t₁ ⇒ t₂ → P / E [ t₁ ] ⇒ E [ t₂ ] E [ t⇒ ]⇒ = cong (proj₂ (mkEHole E)) (proj₂ (mkEHole E)) t⇒ _[_]⇒* : ∀ {Γ} {P : ∀{c} → Tm Γ c → Set} {a b} (E : ECxt* Γ a b) {t₁ t₂ : Tm Γ a} → P / t₁ ⇒ t₂ → P / E [ t₁ ]* ⇒ E [ t₂ ]* [] [ t⇒ ]⇒* = t⇒ (E ∷ Es) [ t⇒ ]⇒* = Es [ E [ t⇒ ]⇒ ]⇒* hole→≡ : ∀ {Γ a b}{Et t}{E : ECxt Γ a b} → (Es : Ehole Et E t) → Et ≡ E [ t ] hole→≡ (appl u) = ≡.refl lemma : ∀ {Γ b} {a} {t : Tm Γ a} (Es : ECxt* Γ a b) {b₁} {E : ECxt Γ b b₁} → E [ Es [ t ]* ] ≡ (Es ++* (E ∷ [])) [ t ]* lemma [] = ≡.refl lemma (x ∷ Es) = lemma Es hole*→≡ : ∀ {Γ a b}{Et t}{E : ECxt* Γ a b} → (Es : Ehole* Et E t) → Et ≡ E [ t ]* hole*→≡ [] = ≡.refl hole*→≡ {t = t} (_∷_ {Es = Es} x Es₁) rewrite hole→≡ x | hole*→≡ Es₁ = lemma Es ++*-unit : ∀ {Γ a b} → (xs : ECxt* Γ a b) → xs ++* [] ≡ xs ++*-unit [] = ≡.refl ++*-unit (x ∷ xs) = ≡.cong (_∷_ x) (++*-unit xs) ++*-assoc : ∀ {Γ a b c d} → (xs : ECxt* Γ a b) → {ys : ECxt* Γ b c} → {zs : ECxt* Γ c d} → xs ++* (ys ++* zs) ≡ (xs ++* ys) ++* zs ++*-assoc [] = ≡.refl ++*-assoc (x ∷ xs) = ≡.cong (_∷_ x) (++*-assoc xs) _++h*_ : ∀ {Γ a b c} {Es1 : ECxt* Γ a b} {Es2 : ECxt* Γ b c} → ∀ {t1 t2 t3} → Ehole* t2 Es1 t3 → Ehole* t1 Es2 t2 → Ehole* t1 (Es1 ++* Es2) t3 _++h*_ {Es1 = Es1} xs [] rewrite ++*-unit Es1 = xs _++h*_ {Es1 = Es1} xs (_∷_ {E = E} {Es = Es} x ys) rewrite ++*-assoc Es1 {Es} {E ∷ []} = x ∷ (xs ++h* ys) mkEhole* : ∀ {Γ} {a b} (E : ECxt* Γ a b) {t} → Ehole* (E [ t ]*) E t mkEhole* [] = [] mkEhole* (E ∷ Es) {t} = (proj₂ (mkEHole E) ∷ []) ++h* mkEhole* Es
{ "alphanum_fraction": 0.4500341064, "avg_line_length": 35.1137724551, "ext": "agda", "hexsha": "79dcb786ab3a9f51917ee47aa4c00eb3632b3dff", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/TermShape.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/TermShape.agda", "max_line_length": 143, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/TermShape.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 3000, "size": 5864 }
-- There was a bug with the new constraint machinery -- where a type error could be ignored and checking -- continued. module LostTypeError where postulate Wrap : (A : Set) (P : A → Set) → A → Set wrap : ∀ A (P : A → Set) (x : A) → P x → Wrap A P x A : Set data Box : Set where box : A → Box data Dummy : Set where box : Dummy postulate x y : A P : Box → Set px : P (box x) bad : Wrap Box P (box y) bad = wrap _ (λ a → P _) (box x) px
{ "alphanum_fraction": 0.5865800866, "avg_line_length": 19.25, "ext": "agda", "hexsha": "99a8287820f2e4b37b61874ead10b30e03a34e97", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/LostTypeError.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/LostTypeError.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/LostTypeError.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 160, "size": 462 }
{-# OPTIONS --type-in-type #-} -- Also called "Girard's paradox" or "Russell's paradox". module Miscellaneous.TypeInTypeInconsistency where data ISet : Set where set : ∀{I : Set} → (I → ISet) → ISet open import Functional open import Logic.Predicate open import Logic.Propositional open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator open import Syntax.Function _∉_ : ISet → ISet → Set a ∉ set(b) = ∀{ib} → (a ≢ b(ib)) NotSelfContaining : ISet → Set NotSelfContaining(a) = a ∉ a NotSelfContainingSet : ISet NotSelfContainingSet = set{∃(NotSelfContaining)} [∃]-witness is-not-in : NotSelfContainingSet ∉ NotSelfContainingSet is-not-in {[∃]-intro (set a) ⦃ proof ⦄} p = substitute₁ₗ(NotSelfContaining) p (\{_} → proof) {[∃]-intro (set a) ⦃ \{_} → proof ⦄} p is-in : ¬(NotSelfContainingSet ∉ NotSelfContainingSet) is-in p = p {[∃]-intro NotSelfContainingSet ⦃ \{proof} → p{proof} ⦄ } [≡]-intro contradiction : ⊥ contradiction = is-in (\{proof} → is-not-in {proof}) {- open import Data.Tuple as Tuple using () open import Logic.Predicate open import Logic.Propositional open import Functional import Structure.Relator.Names as Names open import Structure.Relator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Relator.Proofs open import Structure.Setoid using (Equiv) open import Syntax.Transitivity _≡_ : ISet → ISet → Set _∈_ : ISet → ISet → Set _∉_ : ISet → ISet → Set set {Ia} a ≡ set {Ib} b = ∃{Obj = Ib → Ia}(f ↦ ∀{ib} → (a(f(ib)) ≡ b(ib))) ∧ ∃{Obj = Ia → Ib}(f ↦ ∀{ia} → (a(ia) ≡ b(f(ia)))) a ∈ set(b) = ∃(ib ↦ (a ≡ b(ib))) _∉_ = (¬_) ∘₂ (_∈_) instance [≡]-reflexivity : Reflexivity(_≡_) [≡]-reflexivity = intro p where p : Names.Reflexivity(_≡_) p {set a} = [∧]-intro ([∃]-intro id ⦃ p ⦄) ([∃]-intro id ⦃ p ⦄) instance [≡]-symmetry : Symmetry(_≡_) [≡]-symmetry = intro p where p : Names.Symmetry(_≡_) p {set a}{set b} ([∧]-intro l r) = [∧]-intro ([∃]-map-proof (\eq {i} → p(eq{i})) r) (([∃]-map-proof (\eq {i} → p(eq{i})) l)) instance [≡]-transitivity : Transitivity(_≡_) [≡]-transitivity = intro p where p : Names.Transitivity(_≡_) p {set x} {set y} {set z} ([↔]-intro ([∃]-intro fyx ⦃ yx ⦄) ([∃]-intro fxy ⦃ xy ⦄)) ([↔]-intro ([∃]-intro fzy ⦃ zy ⦄) ([∃]-intro fyz ⦃ yz ⦄)) = [∧]-intro ([∃]-intro (fyx ∘ fzy) ⦃ p yx zy ⦄) ([∃]-intro (fyz ∘ fxy) ⦃ p xy yz ⦄) instance [≡]-equivalence : Equivalence(_≡_) [≡]-equivalence = intro instance [≡]-equiv : Equiv(ISet) Equiv._≡_ [≡]-equiv = (_≡_) Equiv.equivalence [≡]-equiv = [≡]-equivalence instance [∈]-unaryOperatorₗ : ∀{b} → UnaryRelator(_∈ b) UnaryRelator.substitution ([∈]-unaryOperatorₗ {set b}) {a₁} {a₂} a1a2 = [∃]-map-proof (symmetry(_≡_) a1a2 🝖_) instance [∈]-unaryOperatorᵣ : ∀{a} → UnaryRelator(a ∈_) UnaryRelator.substitution ([∈]-unaryOperatorᵣ {a}) {set b₁} {set b₂} ([∧]-intro _ ([∃]-intro fb1b2 ⦃ b1b2 ⦄)) ([∃]-intro ib₁ ⦃ p ⦄) = [∃]-intro (fb1b2(ib₁)) ⦃ p 🝖 b1b2 ⦄ instance [∈]-binaryOperator : BinaryRelator(_∈_) [∈]-binaryOperator = binaryRelator-from-unaryRelator NotSelfContaining : ISet NotSelfContaining = set{∃(a ↦ (a ∉ a))} [∃]-witness NotSelfContaining-membership : ∀{x} → (x ∈ NotSelfContaining) ↔ (x ∉ x) NotSelfContaining-membership = [↔]-intro l r where l : ∀{x} → (x ∈ NotSelfContaining) ← (x ∉ x) ∃.witness (l {x} xin) = [∃]-intro x ⦃ xin ⦄ ∃.proof (l {x} xin) = reflexivity(_≡_) r : ∀{x} → (x ∈ NotSelfContaining) → (x ∉ x) r {x} ([∃]-intro ([∃]-intro witness ⦃ nxinx ⦄) ⦃ p ⦄) xinx = nxinx(substitute₂(_∈_) p p xinx) NotSelfContaining-self : (NotSelfContaining ∈ NotSelfContaining) ∃.witness NotSelfContaining-self = [∃]-intro NotSelfContaining ⦃ \{s@([∃]-intro ([∃]-intro _ ⦃ p ⦄) ⦃ b ⦄) → p(substitute₂(_∈_) b b s)} ⦄ ∃.proof NotSelfContaining-self = [∧]-intro ([∃]-intro id ⦃ reflexivity(_≡_) ⦄) ([∃]-intro id ⦃ reflexivity(_≡_) ⦄) paradox : ⊥ paradox = [↔]-to-[→] NotSelfContaining-membership NotSelfContaining-self NotSelfContaining-self -}
{ "alphanum_fraction": 0.6284301607, "avg_line_length": 32.6209677419, "ext": "agda", "hexsha": "d41e8104edc2750e53c74c1ba83dade11421180b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/TypeInTypeInconsistency.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/TypeInTypeInconsistency.agda", "max_line_length": 229, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/TypeInTypeInconsistency.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1624, "size": 4045 }
{-# OPTIONS --without-K #-} open import Base open import Spaces.Circle open import Integers module Spaces.LoopSpaceCircle where -- Path fibration path-fib : S¹ → Set path-fib t = (t ≡ base) tot-path-fib : Set tot-path-fib = Σ S¹ path-fib tot-path-fib-is-contr : is-contr tot-path-fib tot-path-fib-is-contr = pathto-is-contr base -- Universal cover succ-path : ℤ ≡ ℤ succ-path = eq-to-path succ-equiv universal-cover : S¹ → Set universal-cover = S¹-rec-nondep Set ℤ succ-path tot-cover : Set tot-cover = Σ S¹ universal-cover -- Transport in the universal cover loop-to-succ : (n : ℤ) → transport universal-cover loop n ≡ succ n loop-to-succ n = ! (trans-ap (λ A → A) universal-cover loop n) ∘ (ap (λ t → transport (λ A → A) t n) (S¹-β-loop-nondep Set ℤ succ-path) ∘ trans-id-eq-to-path succ-equiv n) {- The flattening lemma Here is an HIT declaration for the CW-complex of real numbers: data ℝ : Set where z : ℤ → ℝ e : (n : ℤ) → z n ≡ z (succ n) We want to show that [tot-cover] has the same introduction and elimination rules. -} -- Introduction rules R-z : ℤ → tot-cover R-z n = (base , n) R-e : (n : ℤ) → R-z n ≡ R-z (succ n) R-e n = Σ-eq loop (loop-to-succ n) -- Elimination rule module Tot-cover-is-ℝ {i} (P : tot-cover → Set i) (z : (n : ℤ) → P (R-z n)) (e : (n : ℤ) → transport P (R-e n) (z n) ≡ z (succ n)) where -- I redefine [R-e] and [e] to have something involving -- [transport universal-cover loop] instead of [succ] R-e' : (n : ℤ) → R-z n ≡ R-z (transport universal-cover loop n) R-e' n = Σ-eq loop refl e' : (n : ℤ) → transport P (R-e' n) (z n) ≡ z (transport universal-cover loop n) e' n = (trans-totalpath universal-cover P {x = (base , n)} {y = (base , transport universal-cover loop n)} loop refl z ∘ move!-transp-left (λ z → P (base , z)) _ (loop-to-succ n) (z (succ n)) (! (trans-totalpath universal-cover P {x = (base , n)} {y = (base , succ n)} loop (loop-to-succ n) z) ∘ e n)) ∘ apd z (! (loop-to-succ n)) -- Now I can prove what I want by induction on the circle P-base : (t : universal-cover base) → P (base , t) P-base t = z t P-loop : (t : universal-cover base) → transport (λ x → (u : universal-cover x) → P (x , u)) loop P-base t ≡ P-base t P-loop t = transport (λ t → transport (λ x → (u : universal-cover x) → P (x , u)) loop P-base t ≡ P-base t) (trans-trans-opposite universal-cover loop t) (! (trans-totalpath universal-cover P loop refl z) ∘ e' (transport universal-cover (! loop) t)) P-R-rec : (x : S¹) → (t : universal-cover x) → P (x , t) P-R-rec = S¹-rec (λ x → (t : universal-cover x) → P (x , t)) P-base (funext P-loop) -- Here is the conclusion of the elimination rule R-rec : (t : tot-cover) → P t R-rec (x , y) = P-R-rec x y -- We can now prove that [tot-cover] is contractible using [R-rec], that’s a -- little tedious but not difficult P-R-contr : (x : tot-cover) → Set _ P-R-contr x = R-z O ≡ x R-contr-base : (n : ℤ) → P-R-contr (R-z n) R-contr-base O = refl R-contr-base (pos O) = R-e O R-contr-base (pos (S y)) = R-contr-base (pos y) ∘ R-e (pos y) R-contr-base (neg O) = ! (R-e (neg O)) R-contr-base (neg (S y)) = R-contr-base (neg y) ∘ ! (R-e (neg (S y))) R-contr-loop : (n : ℤ) → transport P-R-contr (R-e n) (R-contr-base n) ≡ (R-contr-base (succ n)) R-contr-loop O = trans-cst≡id (R-e O) refl R-contr-loop (pos O) = trans-cst≡id (R-e (pos O)) (R-e O) R-contr-loop (pos (S y)) = trans-cst≡id (R-e (pos (S y))) (R-contr-base (pos y) ∘ R-e (pos y)) R-contr-loop (neg O) = trans-cst≡id (R-e (neg O)) (! (R-e (neg O))) ∘ opposite-left-inverse (R-e (neg O)) R-contr-loop (neg (S y)) = ((trans-cst≡id (R-e (neg (S y))) (R-contr-base (neg y) ∘ ! (R-e (neg (S y)))) ∘ concat-assoc (R-contr-base (neg y)) (! (R-e (neg (S y)))) (R-e (neg (S y)))) ∘ (whisker-left (R-contr-base (neg y)) (opposite-left-inverse (R-e (neg (S y)))))) ∘ refl-right-unit (R-contr-base (neg y)) R-contr : (x : tot-cover) → P-R-contr x R-contr = Tot-cover-is-ℝ.R-rec P-R-contr R-contr-base R-contr-loop tot-cover-is-contr : is-contr tot-cover tot-cover-is-contr = (R-z O , λ x → ! (R-contr x)) -- We define now a fiberwise map between the two fibrations [path-fib] -- and [universal-cover] fiberwise-map : (x : S¹) → (path-fib x → universal-cover x) fiberwise-map x p = transport universal-cover (! p) O -- This induces an equivalence on the total spaces, because both total spaces -- are contractible total-is-equiv : is-equiv (total-map fiberwise-map) total-is-equiv = contr-to-contr-is-equiv (total-map fiberwise-map) tot-path-fib-is-contr tot-cover-is-contr -- Hence an equivalence fiberwise fiberwise-map-is-equiv : (x : S¹) → is-equiv (fiberwise-map x) fiberwise-map-is-equiv x = fiberwise-is-equiv fiberwise-map total-is-equiv x -- We can then conclude that the based loop space of the circle is equivalent to -- the type of the integers ΩS¹≃ℤ : (base ≡ base) ≃ ℤ ΩS¹≃ℤ = (fiberwise-map base , fiberwise-map-is-equiv base) -- We can also deduce that the circle is 1-truncated ΩS¹-is-set : is-set (base ≡ base) ΩS¹-is-set = equiv-types-truncated _ (ΩS¹≃ℤ ⁻¹) ℤ-is-set S¹-is-gpd : is-gpd S¹ S¹-is-gpd = S¹-rec _ (S¹-rec _ ΩS¹-is-set -- [base ≡ base] is a set (π₁ (is-truncated-is-prop _ _ _))) (funext (S¹-rec _ (π₁ (is-truncated-is-prop _ _ _)) (prop-has-all-paths (≡-is-truncated _ (is-truncated-is-prop _)) _ _)))
{ "alphanum_fraction": 0.5722533537, "avg_line_length": 33.2711864407, "ext": "agda", "hexsha": "38d11d9454280a888e8b794cb94f316ece8a9513", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/LoopSpaceCircle.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/LoopSpaceCircle.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Spaces/LoopSpaceCircle.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1934, "size": 5889 }
open import Oscar.Prelude open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity module Oscar.Class.IsEquivalence where record IsEquivalence {𝔬} {𝔒 : Ø 𝔬} {ℓ} (_≈_ : 𝔒 → 𝔒 → Ø ℓ) : Ø 𝔬 ∙̂ ℓ where constructor ∁ field ⦃ `𝓡eflexivity ⦄ : Reflexivity.class _≈_ ⦃ `𝓢ymmetry ⦄ : Symmetry.class _≈_ ⦃ `𝓣ransitivity ⦄ : Transitivity.class _≈_
{ "alphanum_fraction": 0.6893203883, "avg_line_length": 22.8888888889, "ext": "agda", "hexsha": "5e2c42c81e6630e2435112b024656fde68b4d76c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/IsEquivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/IsEquivalence.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/IsEquivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 168, "size": 412 }
module AmbiguousName where module A where postulate X : Set module B where module A where postulate X : Set open A renaming (X to Y) open B Z = A.X
{ "alphanum_fraction": 0.6894409938, "avg_line_length": 10.7333333333, "ext": "agda", "hexsha": "ea51fa5acffddbbfb3ba35d97de7567b9b24e0e9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/AmbiguousName.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AmbiguousName.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AmbiguousName.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 161 }
module Lib.Id where data _≡_ {A : Set}(x : A) : A -> Set where refl : x ≡ x cong : {A B : Set}(f : A -> B){x y : A} -> x ≡ y -> f x ≡ f y cong f refl = refl subst : {A : Set}(P : A -> Set){x y : A} -> x ≡ y -> P y -> P x subst P refl px = px
{ "alphanum_fraction": 0.4578313253, "avg_line_length": 19.1538461538, "ext": "agda", "hexsha": "bb9c52c54f2201318562241a65f26a5ba6c55495", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/simple-lib/Lib/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/simple-lib/Lib/Id.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/simple-lib/Lib/Id.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 111, "size": 249 }
module inspect where open import eq -- From Norell's tutorial: data Inspect {A : Set}(x : A) : Set where it : (y : A) -> x ≡ y -> Inspect x inspect : {A : Set}(x : A) -> Inspect x inspect x = it x refl
{ "alphanum_fraction": 0.5933014354, "avg_line_length": 16.0769230769, "ext": "agda", "hexsha": "f54359624a0c6d47cf1713e9b8372b6f7343d272", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "nondet/inspect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "nondet/inspect.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "nondet/inspect.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 73, "size": 209 }
open import HoTT open import groups.Exactness open import groups.HomSequence module groups.ExactSequence where is-exact-seq : ∀ {i} {G H : Group i} → HomSequence G H → Type i is-exact-seq (_ ⊣|ᴳ) = Lift ⊤ is-exact-seq (_ →⟨ φ ⟩ᴳ _ ⊣|ᴳ) = Lift ⊤ is-exact-seq (_ →⟨ φ ⟩ᴳ _ →⟨ ψ ⟩ᴳ seq) = is-exact φ ψ × is-exact-seq (_ →⟨ ψ ⟩ᴳ seq) ExactSequence : ∀ {i} (G H : Group i) → Type (lsucc i) ExactSequence G H = Σ (HomSequence G H) is-exact-seq {- equivalences preserve exactness -} abstract seq-equiv-preserves-exact : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → HomSeqEquiv seq₀ seq₁ ξG ξH → is-exact-seq seq₀ → is-exact-seq seq₁ seq-equiv-preserves-exact ((_ ↓|ᴳ) , _) _ = lift tt seq-equiv-preserves-exact ((_ ↓⟨ _ ⟩ᴳ _ ↓|ᴳ) , _) _ = lift tt seq-equiv-preserves-exact ( (ξG ↓⟨ φ□ ⟩ᴳ _↓⟨_⟩ᴳ_ ξH {ξK} ψ□ seq-map) , (ξG-ise , ξH-ise , seq-map-ise)) (φ₀-ψ₀-is-exact , ψ₀-seq₀-is-exact-seq) = equiv-preserves-exact φ□ ψ□ ξG-ise ξH-ise (is-seqᴳ-equiv.head seq-map-ise) φ₀-ψ₀-is-exact , seq-equiv-preserves-exact ((ξH ↓⟨ ψ□ ⟩ᴳ seq-map) , (ξH-ise , seq-map-ise)) ψ₀-seq₀-is-exact-seq seq-equiv-preserves'-exact : ∀ {i} {G₀ G₁ H₀ H₁ : Group i} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → HomSeqEquiv seq₀ seq₁ ξG ξH → is-exact-seq seq₁ → is-exact-seq seq₀ seq-equiv-preserves'-exact seq-equiv = seq-equiv-preserves-exact (HomSeqEquiv-inverse seq-equiv) private exact-seq-index-type : ∀ {i} {G H : Group i} → ℕ → HomSequence G H → Type i exact-seq-index-type _ (G ⊣|ᴳ) = Lift ⊤ exact-seq-index-type _ (G →⟨ φ ⟩ᴳ H ⊣|ᴳ) = Lift ⊤ exact-seq-index-type O (G →⟨ φ ⟩ᴳ H →⟨ ψ ⟩ᴳ s) = is-exact φ ψ exact-seq-index-type (S n) (_ →⟨ _ ⟩ᴳ s) = exact-seq-index-type n s abstract exact-seq-index : ∀ {i} {G H : Group i} → (n : ℕ) (seq : ExactSequence G H) → exact-seq-index-type n (fst seq) exact-seq-index _ ((G ⊣|ᴳ) , _) = lift tt exact-seq-index _ ((G →⟨ φ ⟩ᴳ H ⊣|ᴳ) , _) = lift tt exact-seq-index O ((G →⟨ φ ⟩ᴳ H →⟨ ψ ⟩ᴳ seq) , ise-seq) = fst ise-seq exact-seq-index (S n) ((G →⟨ φ ⟩ᴳ H →⟨ ψ ⟩ᴳ seq) , ise-seq) = exact-seq-index n ((H →⟨ ψ ⟩ᴳ seq) , snd ise-seq) {- private exact-build-arg-type : ∀ {i} {G H : Group i} → HomSequence G H → List (Type i) exact-build-arg-type (G ⊣|) = nil exact-build-arg-type (G ⟨ φ ⟩→ H ⊣|) = nil exact-build-arg-type (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ s) = is-exact φ ψ :: exact-build-arg-type (H ⟨ ψ ⟩→ s) exact-build-helper : ∀ {i} {G H : Group i} (seq : HomSequence G H) → HList (exact-build-arg-type seq) → is-exact-seq seq exact-build-helper (G ⊣|) nil = exact-seq-zero exact-build-helper (G ⟨ φ ⟩→ H ⊣|) nil = exact-seq-one exact-build-helper (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ s) (ie :: ies) = exact-seq-more ie (exact-build-helper (H ⟨ ψ ⟩→ s) ies) exact-build : ∀ {i} {G H : Group i} (seq : HomSequence G H) → hlist-curry-type (exact-build-arg-type seq) (λ _ → is-exact-seq seq) exact-build seq = hlist-curry (exact-build-helper seq) hom-seq-concat : ∀ {i} {G H K : Group i} → HomSequence G H → HomSequence H K → HomSequence G K hom-seq-concat (G ⊣|) s₂ = s₂ hom-seq-concat (G ⟨ φ ⟩→ s₁) s₂ = G ⟨ φ ⟩→ (hom-seq-concat s₁ s₂) abstract exact-concat : ∀ {i} {G H K L : Group i} {seq₁ : HomSequence G H} {φ : H →ᴳ K} {seq₂ : HomSequence K L} → is-exact-seq (hom-seq-snoc seq₁ φ) → is-exact-seq (H ⟨ φ ⟩→ seq₂) → is-exact-seq (hom-seq-concat seq₁ (H ⟨ φ ⟩→ seq₂)) exact-concat {seq₁ = G ⊣|} exact-seq-one es₂ = es₂ exact-concat {seq₁ = G ⟨ ψ ⟩→ H ⊣|} (exact-seq-more ex _) es₂ = exact-seq-more ex es₂ exact-concat {seq₁ = G ⟨ ψ ⟩→ H ⟨ χ ⟩→ s} (exact-seq-more ex es₁) es₂ = exact-seq-more ex (exact-concat {seq₁ = H ⟨ χ ⟩→ s} es₁ es₂) -}
{ "alphanum_fraction": 0.585007728, "avg_line_length": 39.612244898, "ext": "agda", "hexsha": "492dd21593405a76fbc1e02e39658e73014267f9", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/ExactSequence.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/ExactSequence.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/ExactSequence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1708, "size": 3882 }
------------------------------------------------------------------------ -- The partiality monad ------------------------------------------------------------------------ module Category.Monad.Partiality where open import Coinduction open import Category.Monad open import Data.Nat open import Data.Bool -- The partiality monad. data _⊥ (A : Set) : Set where now : (x : A) → A ⊥ later : (x : ∞ (A ⊥)) → A ⊥ monad : RawMonad _⊥ monad = record { return = now ; _>>=_ = _>>=_ } where _>>=_ : ∀ {A B} → A ⊥ → (A → B ⊥) → B ⊥ now x >>= f = f x later x >>= f = later (♯ ♭ x >>= f) -- run x for n steps peels off at most n "later" constructors from x. run_for_steps : ∀ {A} → A ⊥ → ℕ → A ⊥ run now x for n steps = now x run later x for zero steps = later x run later x for suc n steps = run ♭ x for n steps -- Is the computation done? isNow : ∀ {A} → A ⊥ → Bool isNow (now x) = true isNow (later x) = false ------------------------------------------------------------------------ -- Productivity checker workaround -- The monad can be awkward to use, due to the limitations of guarded -- coinduction. The following code provides a (limited) workaround. infixl 1 _>>=_ data _⊥-prog : Set → Set₁ where now : ∀ {A} (x : A) → A ⊥-prog later : ∀ {A} (x : ∞₁ (A ⊥-prog)) → A ⊥-prog _>>=_ : ∀ {A B} (x : A ⊥-prog) (f : A → B ⊥-prog) → B ⊥-prog data _⊥-whnf : Set → Set₁ where now : ∀ {A} (x : A) → A ⊥-whnf later : ∀ {A} (x : A ⊥-prog) → A ⊥-whnf whnf : ∀ {A} → A ⊥-prog → A ⊥-whnf whnf (now x) = now x whnf (later x) = later (♭₁ x) whnf (x >>= f) with whnf x whnf (x >>= f) | now x′ = whnf (f x′) whnf (x >>= f) | later x′ = later (x′ >>= f) mutual value : ∀ {A} → A ⊥-whnf → A ⊥ value (now x) = now x value (later x) = later (♯ run x) run : ∀ {A} → A ⊥-prog → A ⊥ run x = value (whnf x) ------------------------------------------------------------------------ -- Examples module Examples where open import Relation.Nullary -- McCarthy's f91: f91′ : ℕ → ℕ ⊥-prog f91′ n with n ≤? 100 ... | yes _ = later (♯₁ (f91′ (11 + n) >>= f91′)) ... | no _ = now (n ∸ 10) f91 : ℕ → ℕ ⊥ f91 n = run (f91′ n)
{ "alphanum_fraction": 0.4684065934, "avg_line_length": 24.2666666667, "ext": "agda", "hexsha": "5e70d56688ef61c7de448fb2ce972bd52a718393", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Category/Monad/Partiality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Category/Monad/Partiality.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Category/Monad/Partiality.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 793, "size": 2184 }
module _ (A : Set) where open import Issue1701.ModParamsToLose module ParamA = Param A open ParamA failed : (A → A) → A → A failed G = S.F module fails where module S = r A G
{ "alphanum_fraction": 0.6684782609, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "f9dd7b903bf9541f9bcd2d22bafacc4ecffd7733", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1701c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1701c.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1701c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 184 }
{-# OPTIONS --universe-polymorphism #-} module Reflection where open import Common.Prelude hiding (Unit; module Unit) renaming (Nat to ℕ; module Nat to ℕ) open import Common.Reflect data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} data Id {A : Set}(x : A) : (B : Set) → B → Set where course : Id x A x primitive primTrustMe : ∀{a}{A : Set a}{x y : A} → x ≡ y open import Common.Level unEl : Type → Term unEl (el _ t) = t argᵛʳ : ∀{A} → A → Arg A argᵛʳ = arg (arginfo visible relevant) argʰʳ : ∀{A} → A → Arg A argʰʳ = arg (arginfo hidden relevant) el₀ : Term → Type el₀ = el (lit 0) el₁ : Term → Type el₁ = el (lit 1) set₀ : Type set₀ = el₁ (sort (lit 0)) unCheck : Term → Term unCheck (def x (_ ∷ _ ∷ arg _ t ∷ [])) = t unCheck t = unknown data Check {a}{A : Set a}(x : A) : Set where _is_of_ : (t t′ : Term) → Id (primTrustMe {x = unCheck t} {t′}) (t′ ≡ t′) refl → Check x `Check : QName `Check = quote Check test₁ : Check ({A : Set} → A → A) test₁ = quoteGoal t in t is pi (argʰʳ set₀) (el₀ (pi (argᵛʳ (el₀ (var 0 []))) (el₀ (var 1 [])))) of course test₂ : (X : Set) → Check (λ (x : X) → x) test₂ X = quoteGoal t in t is lam visible (var 0 []) of course infixr 40 _`∷_ _`∷_ : Term → Term → Term x `∷ xs = con (quote _∷_) (argᵛʳ x ∷ argᵛʳ xs ∷ []) `[] = con (quote []) [] `true = con (quote true) [] `false = con (quote false) [] test₃ : Check (true ∷ false ∷ []) test₃ = quoteGoal t in t is `true `∷ `false `∷ `[] of course `List : Term → Term `List A = def (quote List) (argᵛʳ A ∷ []) `ℕ = def (quote ℕ) [] `Term : Term `Term = def (quote Term) [] `Type : Term `Type = def (quote Type) [] `Sort : Term `Sort = def (quote Sort) [] test₄ : Check (List ℕ) test₄ = quoteGoal t in t is `List `ℕ of course test₅ : primQNameType (quote Term) ≡ set₀ test₅ = refl -- TODO => test₆ : primQNameType (quote set₀) ≡ el unknown `Type ≢ el₀ `Type test₆ : unEl (primQNameType (quote set₀)) ≡ `Type test₆ = refl test₇ : primQNameType (quote Sort.lit) ≡ el₀ (pi (argᵛʳ (el₀ `ℕ)) (el₀ `Sort)) test₇ = refl mutual ℕdef : DataDef ℕdef = _ test₈ : dataDef ℕdef ≡ primQNameDefinition (quote ℕ) test₈ = refl test₉ : primDataConstructors ℕdef ≡ quote ℕ.zero ∷ quote ℕ.suc ∷ [] test₉ = refl test₁₀ : primQNameDefinition (quote ℕ.zero) ≡ dataConstructor test₁₀ = refl postulate a : ℕ test₁₁ : primQNameDefinition (quote a) ≡ axiom test₁₁ = refl test₁₂ : primQNameDefinition (quote primQNameDefinition) ≡ prim test₁₂ = refl record Unit : Set where mutual UnitDef : RecordDef UnitDef = _ test₁₃ : recordDef UnitDef ≡ primQNameDefinition (quote Unit) test₁₃ = refl test₁₄ : Check 1 test₁₄ = quoteGoal t in t is con ( quote ℕ.suc ) (argᵛʳ (con (quote ℕ.zero) []) ∷ []) of course
{ "alphanum_fraction": 0.6022176022, "avg_line_length": 21.8636363636, "ext": "agda", "hexsha": "2c9e700aca8251478ab18e2f4af897125be4fa0c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Reflection.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 1108, "size": 2886 }
module tests.Mutual where open import Prelude.IO open import Prelude.String open import Prelude.Unit mutual data G : Set where GA : {g : G}(f : F g) -> G GB : G data F : G -> Set where FA : (g : G) -> F g FB : F GB mutual incG : G -> G incG GB = GA FB incG (GA f) = GA (incF f) incF : {g : G} -> F g -> F (incG g) incF FB = FA (GA FB) incF (FA g) = FA (incG g) mutual PrintF : {g : G} -> F g -> String PrintF FB = "FB" PrintF (FA g) = "(FA " +S+ PrintG g +S+ ")" PrintG : G -> String PrintG GB = "GB" PrintG (GA f) = "(GA " +S+ PrintF f +S+ ")" main : IO Unit main = putStrLn (PrintF (FA (GA (FA GB)))) ,, putStrLn (PrintG (incG (GA (incF FB)))) ,, -- return unit
{ "alphanum_fraction": 0.5154777927, "avg_line_length": 17.6904761905, "ext": "agda", "hexsha": "9f6cdb8e1c525ee2c0c776171f87c718aa2faff0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/epic/tests/Mutual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/epic/tests/Mutual.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/epic/tests/Mutual.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 288, "size": 743 }
data A : Set where consA : A → A A-false : {Y : Set} → A → Y A-false (consA b) = A-false b data Nat : Set where zero : Nat suc : Nat → Nat A-on-Nat : A → Nat → Nat A-on-Nat σ zero = A-false σ A-on-Nat σ (suc t) = suc (A-on-Nat σ t) module _ (any : {X : Set} → X) (P : Nat → Set) (p : (n : Nat) → P n → P (suc n)) (eternity : (a : A) (n : Nat) → P (A-on-Nat (A-false a) n)) where A-loop-term : (a : A) (n : Nat) → P (A-on-Nat a n) A-loop-term a zero = any A-loop-term a (suc n) = p _ (eternity _ n)
{ "alphanum_fraction": 0.5133079848, "avg_line_length": 20.2307692308, "ext": "agda", "hexsha": "b9fc37c6f24314dcdfbc5fee0bacf10a82be9bc5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3067.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3067.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3067.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 231, "size": 526 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Core.Everything where -- Basic primitives (some are from Agda.Primitive) open import Cubical.Core.Primitives public -- Definition of equivalences and Glue types open import Cubical.Core.Glue public -- Definition of cubical Identity types open import Cubical.Core.Id
{ "alphanum_fraction": 0.7791044776, "avg_line_length": 27.9166666667, "ext": "agda", "hexsha": "95b9469673c28d2033cf0deaf6a96fbf695c93ca", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Core/Everything.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Core/Everything.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Core/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 79, "size": 335 }
-- Andreas, 2019-03-02, issue #3601 reported by 3abc {-# OPTIONS --cubical --safe #-} open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMin to _∧_; primTransp to transp) open import Agda.Builtin.Cubical.Path module _ (A : Set) (x y z t : A) (f : y ≡ z) (g : y ≡ x) (h : z ≡ t) where test : PathP (λ i → g i ≡ h i) f (transp (λ i → g i ≡ h i) i0 f) test k i = transp (λ i → g (i ∧ k) ≡ h (i ∧ k)) (~ k) f i -- Should pass. -- Problem was: Agda did not accept overapplied primTransp -- Also should pass. -- We had a problem with checking the sides at the right type. test2 : ∀ {ℓ} (i : I) {A : Partial i (Set ℓ)} → PartialP i (λ z → A z) → (r : IsOne i) → A r test2 i {A} u r = primPOr i i {A} u (λ o → u o) r
{ "alphanum_fraction": 0.5631443299, "avg_line_length": 29.8461538462, "ext": "agda", "hexsha": "bba999a0dd415d4be2658e1108579b489c4fc0df", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3601.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3601.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3601.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 301, "size": 776 }
{- This second-order equational theory was created from the following second-order syntax description: syntax STLC | Λ type N : 0-ary _↣_ : 2-ary | r30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f -} module STLC.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import STLC.Signature open import STLC.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn private variable α β γ τ : ΛT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ Λ) α Γ → (𝔐 ▷ Λ) α Γ → Set where ƛβ : ⁅ α ⊩ β ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ (ƛ 𝔞⟨ x₀ ⟩) $ 𝔟 ≋ₐ 𝔞⟨ 𝔟 ⟩ ƛη : ⁅ α ↣ β ⁆̣ ▹ ∅ ⊢ ƛ (𝔞 $ x₀) ≋ₐ 𝔞 open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.6155339806, "avg_line_length": 21.4583333333, "ext": "agda", "hexsha": "4b46deeed527412324205b2ed3afc2a4d489b881", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/STLC/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/STLC/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/STLC/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 476, "size": 1030 }
open import bool open import eq using (_≡_) open import nat open import nat-thms open import z05-01-hc-slist2-base module z05-01-hc-slist2-test where data _R≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} -------- → zero R≤ n s≤s : ∀ {m n : ℕ} → m R≤ n ------------- → suc m R≤ suc n ≤-pred : ∀ {m n} → suc m R≤ suc n → m R≤ n ≤-pred (s≤s m≤n) = m≤n _≤?_ : Decidable _R≤_ zero ≤? _ = left z≤n suc m ≤? zero = right λ() suc m ≤? suc n with m ≤? n ... | left m≤n = left (s≤s m≤n) ... | right m≰n = right λ x → m≰n (≤-pred x) ℕ-Equivalence : Equivalence {X = ℕ} _≡_ ℕ-Equivalence = record { refl = _≡_.refl ; sym = λ x≡y → eq.sym x≡y ; trans = λ {_≡_.refl _≡_.refl → eq.trans _≡_.refl _≡_.refl} } xR≤y→x≤y≡tt : ∀ {x y : ℕ} → x R≤ y → x ≤ y ≡ bool.𝔹.tt xR≤y→x≤y≡tt {x} {y} z≤n = 0-≤ y xR≤y→x≤y≡tt {x} {y} (s≤s xR≤y) = xR≤y→x≤y≡tt xR≤y x≤y≡tt→xR≤y : ∀ {x y : ℕ} → x ≤ y ≡ bool.𝔹.tt → x R≤ y x≤y≡tt→xR≤y {zero} {_} _ = z≤n x≤y≡tt→xR≤y {suc x} {y} sucx≤y≡tt = {!!} -- TODO R≤-total : (x y : ℕ) → Either (x R≤ y) (y R≤ x) R≤-total zero zero = left z≤n R≤-total zero (suc y) = left z≤n R≤-total (suc x) zero = right z≤n R≤-total (suc x) (suc y) with R≤-total x y ... | left l = left (s≤s l) ... | right r = right (s≤s r) x≡y→xR≤y : ∀ {x y : ℕ} → x ≡ y → x R≤ y x≡y→xR≤y {zero} {_} _ = z≤n x≡y→xR≤y {suc x} {.(suc x)} _≡_.refl = s≤s (x≤y≡tt→xR≤y (≤-refl x)) ℕ-TotalOrder : TotalOrder {X = ℕ} _≡_ _R≤_ ℕ-TotalOrder = record { antisym = λ x≤y y≤x → ≤-antisym (xR≤y→x≤y≡tt x≤y) (xR≤y→x≤y≡tt y≤x) ; trans = λ {x} {y} {z} xR≤y yR≤z → x≤y≡tt→xR≤y (≤-trans {x} {y} {z} (xR≤y→x≤y≡tt xR≤y) (xR≤y→x≤y≡tt yR≤z)) ; total = R≤-total ; reflexive = x≡y→xR≤y ; equivalence = ℕ-Equivalence } import z05-01-hc-slist2-list as SL open SL {ℕ} {_≡_} {_R≤_} _≤?_ ℕ-TotalOrder empty : OList ⟦ 0 ⟧ ⟦ 9 ⟧ empty = nil (≤-lift z≤n) l-9 : OList ⟦ 0 ⟧ ⟦ 9 ⟧ l-9 = insert 9 empty (≤-lift z≤n) (≤-lift (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))))) l-5-9 : OList ⟦ 0 ⟧ ⟦ 9 ⟧ l-5-9 = insert 5 l-9 (≤-lift z≤n) (≤-lift (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))) l-1-5-9 : OList ⟦ 0 ⟧ ⟦ 9 ⟧ l-1-5-9 = insert 1 l-5-9 (≤-lift z≤n) (≤-lift (s≤s z≤n)) l-1-5-9' : OList ⊥ ⊤ l-1-5-9' = isort' (9 ∷ 1 ∷ 5 ∷ []) -- cannot do because lower/upper indices different : l-1-5-9 ≡ l-1-5-9' _ : toList l-1-5-9 ≡ toList l-1-5-9' _ = eq.refl
{ "alphanum_fraction": 0.4778582931, "avg_line_length": 27.2967032967, "ext": "agda", "hexsha": "e5acc02faf5b7a82ad73f3bd92980f7ee8a90320", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-test.agda", "max_line_length": 100, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-test.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1449, "size": 2484 }
module Data.Maybe.Primitive where {-# IMPORT Data.Maybe #-} -- In Agda 2.2.10 and below, there's no FFI binding for the stdlib -- Maybe type, so we have to roll our own. This will change. data #Maybe (X : Set) : Set where just : X → #Maybe X nothing : #Maybe X {-# COMPILED_DATA #Maybe Data.Maybe.Maybe Data.Maybe.Just Data.Maybe.Nothing #-}
{ "alphanum_fraction": 0.6905444126, "avg_line_length": 29.0833333333, "ext": "agda", "hexsha": "d45a03d4069787d5ad144878f325a25d511c489b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-data-bindings", "max_forks_repo_path": "src/Data/Maybe/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-data-bindings", "max_issues_repo_path": "src/Data/Maybe/Primitive.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-data-bindings", "max_stars_repo_path": "src/Data/Maybe/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z", "num_tokens": 99, "size": 349 }
open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection macro printType : Term → TC ⊤ printType hole = bindTC (inferType hole) λ t → typeError (termErr t ∷ []) test1 : (a : Nat) → Nat test1 = {! printType !} test2 : (a : Bool) → Bool test2 = {! printType !}
{ "alphanum_fraction": 0.6967213115, "avg_line_length": 22.875, "ext": "agda", "hexsha": "843af17afe0e2acd0300da7b789d912c32b2e993", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/interaction/Issue5695.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/interaction/Issue5695.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/interaction/Issue5695.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 366 }
module naturals where data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- 1) seven : ℕ seven = suc (suc (suc (suc (suc (suc (suc zero)))))) {-# BUILTIN NATURAL ℕ #-} open import Relation.Binary.PropositionalEquality open ≡-Reasoning _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) -- 2) _ : 3 + 4 ≡ 7 _ = begin 3 + 4 ≡⟨⟩ suc (2 + 4) ≡⟨⟩ suc (suc (1 + 4)) ≡⟨⟩ suc (suc (suc (0 + 4))) ≡⟨⟩ suc (suc (suc 4)) ≡⟨⟩ suc (suc 5) ≡⟨⟩ suc 6 ≡⟨⟩ 7 ∎ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) -- 3) _ : 3 * 4 ≡ 12 _ = begin 3 * 4 ≡⟨⟩ 4 + (2 * 4) ≡⟨⟩ 4 + (4 + (1 * 4)) ≡⟨⟩ 4 + (4 + (4 + (0 * 4))) ≡⟨⟩ 4 + (4 + (4 + 0)) ≡⟨⟩ 4 + (4 + (4)) ≡⟨⟩ 12 ∎ -- 4) _^_ : ℕ → ℕ → ℕ m ^ zero = suc zero m ^ suc n = m * (m ^ n) _ : 3 ^ 4 ≡ 81 _ = begin 3 ^ 4 ≡⟨⟩ 3 * (3 ^ 3) ≡⟨⟩ 3 * (3 * (3 ^ 2)) ≡⟨⟩ 3 * (3 * (3 * (3 ^ 1))) ≡⟨⟩ 3 * (3 * (3 * (3 * (3 ^ 0)))) ≡⟨⟩ 3 * (3 * (3 * (3 * 1))) ≡⟨⟩ 81 ∎ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n -- 5) _ : 5 ∸ 3 ≡ 2 _ = begin 5 ∸ 3 ≡⟨⟩ 4 ∸ 2 ≡⟨⟩ 3 ∸ 1 ≡⟨⟩ 2 ∸ 0 ≡⟨⟩ 2 ∎ _ : 3 ∸ 5 ≡ 0 _ = begin 3 ∸ 5 ≡⟨⟩ 2 ∸ 4 ≡⟨⟩ 1 ∸ 3 ≡⟨⟩ 0 ∸ 2 ≡⟨⟩ 0 ∎ infixl 6 _+_ _∸_ infixl 7 _*_ {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} {-# BUILTIN NATMINUS _∸_ #-} -- 6) data Bin : Set where - : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc - = - I inc (rest O) = rest I inc (rest I) = (inc rest) O to : ℕ → Bin to zero = - O to (suc n) = inc (to n) from : Bin → ℕ from - = 0 from (rest O) = 2 * from rest from (rest I) = 2 * from rest + 1
{ "alphanum_fraction": 0.3716255026, "avg_line_length": 11.7635135135, "ext": "agda", "hexsha": "45e17078a875639c2eb555a43042125cc4892e97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "aronerben/agda-playground", "max_forks_repo_path": "plfa/naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "aronerben/agda-playground", "max_issues_repo_path": "plfa/naturals.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "aronerben/agda-playground", "max_stars_repo_path": "plfa/naturals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1000, "size": 1741 }
{-# OPTIONS --copatterns --sized-types #-} -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.conv:10 -v tc.conv.size:15 #-} module Delay where --open import Library open import Size open import Category.Monad open import Level renaming (zero to lzero; suc to lsuc) open import Relation.Binary public import Relation.Binary.PreorderReasoning module Pre = Relation.Binary.PreorderReasoning open import Data.Product -- Coinductive delay monad. mutual data Delay (A : Set) (i : Size) : Set where now : A → Delay A i later : ∞Delay A i → Delay A i record ∞Delay (A : Set) (i : Size) : Set where coinductive constructor delay field force : {j : Size< i} → Delay A j open ∞Delay public -- Smart constructor. later! : ∀ {A i} → Delay A i → Delay A (↑ i) later! x = later (delay x) -- Monad instance. module Bind where mutual _>>=_ : ∀ {i A B} → Delay A i → (A → Delay B i) → Delay B i now x >>= f = f x later x >>= f = later (x ∞>>= f) _∞>>=_ : ∀ {i A B} → ∞Delay A i → (A → Delay B i) → ∞Delay B i force (x ∞>>= f) = force x >>= f delayMonad : ∀ {i} → RawMonad {f = lzero} (λ A → Delay A i) delayMonad {i} = record { return = now ; _>>=_ = _>>=_ {i} } where open Bind module _ {i : Size} where open module DelayMonad = RawMonad (delayMonad {i = i}) public renaming (_⊛_ to _<*>_) open Bind public using (_∞>>=_) -- Map for ∞Delay _∞<$>_ : ∀ {i A B} (f : A → B) (∞a : ∞Delay A i) → ∞Delay B i f ∞<$> ∞a = ∞a ∞>>= λ a → return (f a) -- force (f ∞<$> ∞a) = f <$> force ∞a -- Double bind _=<<2_,_ : ∀ {i A B C} → (A → B → Delay C i) → Delay A i → Delay B i → Delay C i f =<<2 x , y = x >>= λ a → y >>= λ b → f a b -- Strong bisimilarity mutual data _~_ {i : Size} {A : Set} : (a? b? : Delay A ∞) → Set where ~now : ∀ a → now a ~ now a ~later : ∀ {a∞ b∞} (eq : _∞~_ {i} a∞ b∞) → later a∞ ~ later b∞ record _∞~_ {i : Size} {A : Set} (a∞ b∞ : ∞Delay A ∞) : Set where coinductive constructor ~delay field ~force : {j : Size< i} → _~_ {j} (force a∞) (force b∞) open _∞~_ public -- Reflexivity mutual ~refl : ∀ {i A} (a? : Delay A ∞) → _~_ {i} a? a? ~refl (now a) = ~now a ~refl (later a∞) = ~later (∞~refl a∞) ∞~refl : ∀ {i A} (a∞ : ∞Delay A ∞) → _∞~_ {i} a∞ a∞ ~force (∞~refl a∞) = ~refl (force a∞) -- Symmetry mutual ~sym : ∀ {i A} {a? b? : Delay A ∞} → _~_ {i} a? b? → _~_ {i} b? a? ~sym (~now a) = ~now a ~sym (~later eq) = ~later (∞~sym eq) ∞~sym : ∀ {i A} {a? b? : ∞Delay A ∞} → _∞~_ {i} a? b? → _∞~_ {i} b? a? ~force (∞~sym eq) = ~sym (~force eq) -- Transitivity mutual ~trans : ∀ {i A} {a? b? c? : Delay A ∞} (eq : _~_ {i} a? b?) (eq' : _~_ {i} b? c?) → _~_ {i} a? c? ~trans (~now a) (~now .a) = ~now a ~trans (~later eq) (~later eq') = ~later (∞~trans eq eq') ∞~trans : ∀ {i A} {a∞ b∞ c∞ : ∞Delay A ∞} (eq : _∞~_ {i} a∞ b∞) (eq' : _∞~_ {i} b∞ c∞) → _∞~_ {i} a∞ c∞ ~force (∞~trans eq eq') = ~trans (~force eq) (~force eq') -- Equality reasoning ~setoid : (i : Size) (A : Set) → Setoid lzero lzero ~setoid i A = record { Carrier = Delay A ∞ ; _≈_ = _~_ {i} ; isEquivalence = record { refl = λ {a?} → ~refl a? ; sym = ~sym ; trans = ~trans } } module ~-Reasoning {i : Size} {A : Set} where open Pre (Setoid.preorder (~setoid i A)) public -- using (begin_; _∎) (_≈⟨⟩_ to _~⟨⟩_; _≈⟨_⟩_ to _~⟨_⟩_) renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _~⟨_⟩_; begin_ to proof_) ∞~setoid : (i : Size) (A : Set) → Setoid lzero lzero ∞~setoid i A = record { Carrier = ∞Delay A ∞ ; _≈_ = _∞~_ {i} ; isEquivalence = record { refl = λ {a?} → ∞~refl a? ; sym = ∞~sym ; trans = ∞~trans } } module ∞~-Reasoning {i : Size} {A : Set} where open Pre (Setoid.preorder (∞~setoid i A)) public -- using (begin_; _∎) (_≈⟨⟩_ to _~⟨⟩_; _≈⟨_⟩_ to _~⟨_⟩_) renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∞~⟨_⟩_; begin_ to proof_) -- Congruence laws. mutual bind-cong-l : ∀ {i A B} {a? b? : Delay A ∞} (eq : _~_ {i} a? b?) (k : A → Delay B ∞) → _~_ {i} (a? >>= k) (b? >>= k) bind-cong-l (~now a) k = ~refl _ bind-cong-l (~later eq) k = ~later (∞bind-cong-l eq k) ∞bind-cong-l : ∀ {i A B} {a∞ b∞ : ∞Delay A ∞} (eq : _∞~_ {i} a∞ b∞) → (k : A → Delay B ∞) → _∞~_ {i} (a∞ ∞>>= k) (b∞ ∞>>= k) ~force (∞bind-cong-l eq k) = bind-cong-l (~force eq) k _>>=l_ = bind-cong-l mutual bind-cong-r : ∀ {i A B} (a? : Delay A ∞) {k l : A → Delay B ∞} → (h : ∀ a → _~_ {i} (k a) (l a)) → _~_ {i} (a? >>= k) (a? >>= l) bind-cong-r (now a) h = h a bind-cong-r (later a∞) h = ~later (∞bind-cong-r a∞ h) ∞bind-cong-r : ∀ {i A B} (a∞ : ∞Delay A ∞) {k l : A → Delay B ∞} → (h : ∀ a → _~_ {i} (k a) (l a)) → _∞~_ {i} (a∞ ∞>>= k) (a∞ ∞>>= l) ~force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h _>>=r_ = bind-cong-r mutual bind-cong : ∀ {i A B} {a? b? : Delay A ∞} (eq : _~_ {i} a? b?) {k l : A → Delay B ∞} (h : ∀ a → _~_ {i} (k a) (l a)) → _~_ {i} (a? >>= k) (b? >>= l) bind-cong (~now a) h = h a bind-cong (~later eq) h = ~later (∞bind-cong eq h) ∞bind-cong : ∀ {i A B} {a∞ b∞ : ∞Delay A ∞} (eq : _∞~_ {i} a∞ b∞) {k l : A → Delay B ∞} (h : ∀ a → _~_ {i} (k a) (l a)) → _∞~_ {i} (a∞ ∞>>= k) (b∞ ∞>>= l) ~force (∞bind-cong eq h) = bind-cong (~force eq) h _~>>=_ = bind-cong -- Monad laws. mutual bind-assoc : ∀{i A B C}(m : Delay A ∞) {k : A → Delay B ∞}{l : B → Delay C ∞} → _~_ {i} ((m >>= k) >>= l) (m >>= λ a → k a >>= l) bind-assoc (now a) = ~refl _ bind-assoc (later a∞) = ~later (∞bind-assoc a∞) ∞bind-assoc : ∀{i A B C}(a∞ : ∞Delay A ∞) {k : A → Delay B ∞}{l : B → Delay C ∞} → _∞~_ {i} ((a∞ ∞>>= λ a → k a) ∞>>= l) (a∞ ∞>>= λ a → k a >>= l) ~force (∞bind-assoc a∞) = bind-assoc (force a∞) -- Termination/Convergence. Makes sense only for Delay A ∞. data _⇓_ {A : Set} : (a? : Delay A ∞) (a : A) → Set where now⇓ : ∀ {a} → now a ⇓ a later⇓ : ∀ {a} {a∞ : ∞Delay A ∞} → force a∞ ⇓ a → later a∞ ⇓ a _⇓ : {A : Set} (x : Delay A ∞) → Set x ⇓ = ∃ λ a → x ⇓ a -- Monotonicity. map⇓ : ∀ {A B} {a : A} {a? : Delay A ∞} (f : A → B) (a⇓ : a? ⇓ a) → (f <$> a?) ⇓ f a map⇓ f now⇓ = now⇓ map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) -- some lemmas about convergence subst~⇓ : ∀{A}{t t' : Delay A ∞}{n : A} → t ⇓ n → t ~ t' → t' ⇓ n subst~⇓ now⇓ (~now a) = now⇓ subst~⇓ (later⇓ p) (~later eq) = later⇓ (subst~⇓ p (~force eq)) -- this should also hold for weak bisimularity right? {- subst≈⇓ : ∀{A}{t t' : Delay A ∞}{n : A} → t ⇓ n → t ≈ t' → t' ⇓ n subst≈⇓ = ? -} ⇓>>= : ∀{A B}(f : A → Delay B ∞) {?a : Delay A ∞}{a : A} → ?a ⇓ a → {b : B} → (?a >>= f) ⇓ b → f a ⇓ b ⇓>>= f now⇓ q = q ⇓>>= f (later⇓ p) (later⇓ q) = ⇓>>= f p q >>=⇓ : ∀{A B}(f : A → Delay B ∞) {?a : Delay A ∞}{a : A} → ?a ⇓ a → {b : B} → f a ⇓ b → (?a >>= f) ⇓ b >>=⇓ f now⇓ q = q >>=⇓ f (later⇓ p) q = later⇓ (>>=⇓ f p q) -- handy when you can't pattern match like in a let definition unlater : ∀{A}{∞a : ∞Delay A ∞}{a : A} → later ∞a ⇓ a → force ∞a ⇓ a unlater (later⇓ p) = p {- mutual _⇓_ : {A : Set} {i : Size} (x : Delay A i) (a : A) → Set x ⇓ a = Terminates a x data Terminates {A : Set} {i : Size} (a : A) : Delay A i → Set where now : now a ⇓ a later : ∀ {x : ∞Delay A i} → (force x {j = ?}) ⇓ a → later x ⇓ a mutual cast : ∀ {A i} → Delay A i → (j : Size< ↑ i) → Delay A j cast (now x) j = now x cast (later x) j = {!later (∞cast x j)!} ∞cast : ∀ {A i} → ∞Delay A i → (j : Size< ↑ i) → ∞Delay A j ♭ (∞cast x j) {k} = cast {i = j} (♭ x) k -}
{ "alphanum_fraction": 0.4660394381, "avg_line_length": 28.3175182482, "ext": "agda", "hexsha": "f717df6b0ed2280e77b699f06e40d7461ea326b6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Delay.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Delay.agda", "max_line_length": 84, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Delay.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 3654, "size": 7759 }
module Cats.Adjunction where open import Level using (suc ; _⊔_) open import Cats.Category open import Cats.Category.Cat.Facts.Product using (First ; Second) open import Cats.Category.Fun using (Fun) open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Category.Product.Binary using (_×_) open import Cats.Category.Setoids using (Setoids) open import Cats.Functor using (Functor ; _∘_) open import Cats.Functor.Op using (Op) open import Cats.Functor.Representable using (Hom[_]) open Functor module _ {lo la l≈} {C D : Category lo la l≈} where private module Fun = Category (Fun ((C ᵒᵖ) × D) (Setoids la l≈)) record Adjunction (F : Functor C D) (U : Functor D C) : Set (lo ⊔ suc la ⊔ suc l≈) where field iso : (Hom[ D ] ∘ First (Op F)) Fun.≅ (Hom[ C ] ∘ Second U)
{ "alphanum_fraction": 0.6899128269, "avg_line_length": 27.6896551724, "ext": "agda", "hexsha": "2d7653b406dbc30d7b1d611add18526e7a166aae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Adjunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Adjunction.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Adjunction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 249, "size": 803 }
-- Example usage of solver {-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor renaming (id to idF) module Experiment.Categories.Solver.Functor.Example {o ℓ e o′ ℓ′ e′} {𝒞 : Category o ℓ e} {𝒟 : Category o′ ℓ′ e′} (F : Functor 𝒞 𝒟) where open Category 𝒟 open HomReasoning open Functor F open import Experiment.Categories.Solver.Functor F module _ {A B C D E} (f : 𝒞 [ D , E ]) (g : 𝒞 [ C , D ]) (h : 𝒞 [ B , C ]) (i : 𝒞 [ A , B ]) where _ : F₁ (f 𝒞.∘ g 𝒞.∘ h) ∘ F₁ 𝒞.id ∘ F₁ i ∘ id ≈ F₁ (f 𝒞.∘ g) ∘ F₁ (h 𝒞.∘ i) _ = solve (:F₁ (∥-∥′ :∘ ∥-∥′ :∘ ∥-∥′) :∘ :F₁ :id :∘ :F₁ (∥-∥′) :∘ :id) (:F₁ (∥-∥′ :∘ ∥-∥′) :∘ :F₁ (∥-∥′ :∘ ∥-∥′)) refl
{ "alphanum_fraction": 0.5096418733, "avg_line_length": 29.04, "ext": "agda", "hexsha": "652c61e7f49393ee9bd3430b6d584faf0b7854e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/Functor/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/Functor/Example.agda", "max_line_length": 86, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/Functor/Example.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 349, "size": 726 }
postulate P : (A : Set) → A → Set X : Set x : X P' : (A : Set) → _ R : Set R = P' _ x P' = P
{ "alphanum_fraction": 0.3883495146, "avg_line_length": 7.9230769231, "ext": "agda", "hexsha": "6dfef6ab3fb4bf8c01190f6cb17a15dba4998088", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1016.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1016.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1016.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 103 }
open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; cong; cong₂; isEquivalence; setoid) open import Relation.Binary.PropositionalEquality.WithK using (≡-irrelevant) open import Data.Unit using (⊤; tt) open import Agda.Builtin.FromNat using (Number) open import Data.Product using (_,_) module AKS.Rational.Properties where open import AKS.Rational.Base using (ℚ; _+_; _*_; -_; _/_; _≟_) open import Algebra.Structures {A = ℚ} _≡_ using ( IsCommutativeRing; IsRing; IsAbelianGroup ; IsGroup; IsMonoid; IsSemigroup; IsMagma ) open import Algebra.Definitions {A = ℚ} _≡_ using ( _DistributesOver_; _DistributesOverʳ_; _DistributesOverˡ_ ; RightIdentity; LeftIdentity; Identity; Associative; Commutative ; RightInverse; LeftInverse; Inverse ) open import AKS.Algebra.Structures ℚ _≡_ using (IsNonZeroCommutativeRing; IsIntegralDomain; IsGCDDomain; IsDecField) open import Algebra.Bundles using (Ring; CommutativeRing) open import AKS.Algebra.Bundles using (NonZeroCommutativeRing; DecField) open import AKS.Unsafe using (BOTTOM; ≢-irrelevant) +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } +-assoc : Associative _+_ +-assoc = BOTTOM +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-comm : Commutative _+_ +-comm = BOTTOM +-identityˡ : LeftIdentity 0 _+_ +-identityˡ = BOTTOM open import Algebra.FunctionProperties.Consequences.Propositional using (comm+idˡ⇒idʳ; comm+invˡ⇒invʳ; comm+distrˡ⇒distrʳ) +-identityʳ : RightIdentity 0 _+_ +-identityʳ = BOTTOM -- comm+idˡ⇒idʳ +-comm +-identityˡ +-identity : Identity 0 _+_ +-identity = +-identityˡ , +-identityʳ +-isMonoid : IsMonoid _+_ 0 +-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } -‿inverseˡ : LeftInverse 0 -_ _+_ -‿inverseˡ = BOTTOM -‿inverseʳ : RightInverse 0 -_ _+_ -‿inverseʳ = BOTTOM -- comm+invˡ⇒invʳ +-comm -‿inverseˡ -‿inverse : Inverse 0 -_ _+_ -‿inverse = -‿inverseˡ , -‿inverseʳ +-isGroup : IsGroup _+_ 0 -_ +-isGroup = record { isMonoid = +-isMonoid ; inverse = -‿inverse ; ⁻¹-cong = cong -_ } +-isAbelianGroup : IsAbelianGroup _+_ 0 -_ +-isAbelianGroup = record { isGroup = +-isGroup ; comm = +-comm } *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-assoc : Associative _*_ *-assoc = BOTTOM *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-comm : Commutative _*_ *-comm x y = BOTTOM *-identityˡ : LeftIdentity 1 _*_ *-identityˡ x = BOTTOM *-identityʳ : RightIdentity 1 _*_ *-identityʳ = BOTTOM -- comm+idˡ⇒idʳ *-comm *-identityˡ *-identity : Identity 1 _*_ *-identity = *-identityˡ , *-identityʳ *-isMonoid : IsMonoid _*_ 1 *-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = BOTTOM *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ = BOTTOM -- comm+distrˡ⇒distrʳ *-comm *-distribˡ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ +-*-isRing : IsRing _+_ _*_ -_ 0 1 +-*-isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-isMonoid ; distrib = *-distrib-+ } +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0 1 +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } +-*-isNonZeroCommutativeRing : IsNonZeroCommutativeRing _+_ _*_ -_ 0 1 +-*-isNonZeroCommutativeRing = record { isCommutativeRing = +-*-isCommutativeRing ; 0#≉1# = λ () } +-*-nonZeroCommutativeRing : NonZeroCommutativeRing 0ℓ 0ℓ +-*-nonZeroCommutativeRing = record { isNonZeroCommutativeRing = +-*-isNonZeroCommutativeRing } /-inverse : ∀ x y {y≢0} → x ≡ y * (x / y) {y≢0} /-inverse x y {y≢0} = BOTTOM open import AKS.Algebra.Consequences +-*-nonZeroCommutativeRing using (module Inverse⇒Field) open Inverse⇒Field _≟_ ≡-irrelevant ≢-irrelevant _/_ /-inverse using (gcd) renaming (isField to +-*-/-isField; [field] to +-*-/-field) public +-*-/-isDecField : IsDecField _≟_ _+_ _*_ -_ 0 1 _/_ gcd +-*-/-isDecField = record { isField = +-*-/-isField } +-*-/-decField : DecField 0ℓ 0ℓ +-*-/-decField = record { isDecField = +-*-/-isDecField }
{ "alphanum_fraction": 0.6873408933, "avg_line_length": 26.3475609756, "ext": "agda", "hexsha": "935be09790206cdd540adc00726d7f0546c5d774", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Rational/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Rational/Properties.agda", "max_line_length": 122, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Rational/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 1608, "size": 4321 }
------------------------------------------------------------------------ -- Progress of CBV reductions in pure type systems (PTS) ------------------------------------------------------------------------ -- This module contains a variant of the "progress" theorem for PTS. -- Progress says roughly that well-typed terms do not get stuck. -- I.e. a well-typed term is either a value or it can take a CBV -- reduction step. Together with the subject reduction (aka -- "preservation") theorem from Pts.Typing, progress ensures type -- soundness. For detials, see e.g. -- -- * B. C. Pierce, TAPL (2002), pp. 95. -- -- * A. Wright and M. Felleisen, "A Syntactic Approach to Type -- Soundness" (1994). module Pts.Typing.Progress where open import Data.Product using (_,_; ∃; _×_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contradiction) open import Pts.Typing open import Pts.Reduction.Cbv open import Pts.Reduction.Full -- Definitions and lemmas are parametrized by a given PTS instance. module _ {pts} where open PTS pts open Syntax open Ctx open Substitution using (_[_]) open Typing pts -- A helper lemma: sorts are not product types. Π≢sort : ∀ {n s} {a : Term n} {b} → ¬ (Π a b ≡β sort s) Π≢sort Πab≡s = let _ , Πab→*c , s→*c = ≡β⇒→β* Πab≡s _ , _ , _ , _ , Πa′b′≡c = Π-→β* Πab→*c in contradiction Πa′b′≡c (sort⇒¬Π (sort-→β* s→*c)) where sort⇒¬Π : ∀ {n s a b} {c : Term n} → sort s ≡ c → ¬ (Π a b ≡ c) sort⇒¬Π refl () -- A canonical forms lemma for dependent product values: closed -- values of product type are abstractions. Π-can : ∀ {f a b} → Val f → [] ⊢ f ∈ Π a b → ∃ λ a′ → ∃ λ t → f ≡ ƛ a′ t Π-can (sort s) s∈Πab = let _ , _ , Πab≡s′ = sort-gen s∈Πab in contradiction Πab≡s′ Π≢sort Π-can (Π c d) Πcd∈Πab = let _ , _ , _ , _ , _ , _ , Πab≡s = Π-gen Πcd∈Πab in contradiction Πab≡s Π≢sort Π-can (ƛ a′ t) (ƛ a∈s t∈b) = a′ , t , refl Π-can (ƛ a′ t) (conv λa′t∈c c∈s c≡Πab) = a′ , t , refl -- Progress: well-typed terms do not get stuck (under CBV reduction). prog : ∀ {a b} → [] ⊢ a ∈ b → Val a ⊎ (∃ λ a′ → a →v a′) prog (var () Γ-wf) prog (axiom a Γ-wf) = inj₁ (sort _) prog (Π r a∈s₁ b∈s₂) = inj₁ (Π _ _) prog (ƛ t∈b Πab∈s) = inj₁ (ƛ _ _) prog (f∈Πab · t∈a) with prog f∈Πab prog (f∈Πab · t∈a) | inj₁ u with prog t∈a prog (f∈Πab · t∈a) | inj₁ u | inj₁ v with Π-can u f∈Πab ...| a′ , t′ , refl = inj₂ (_ , cont a′ t′ v) prog (f∈Πab · t∈a) | inj₁ u | inj₂ (t′ , t→t′) = inj₂ (_ , u ·₂ t→t′) prog (f∈Πab · t∈a) | inj₂ (f′ , f→f′) = inj₂ (_ , f→f′ ·₁ _) prog (conv a∈b₁ b₂∈s b₁≡b₂) = prog a∈b₁
{ "alphanum_fraction": 0.5620280475, "avg_line_length": 38.095890411, "ext": "agda", "hexsha": "06331551b39d7a061634aa53ce19c927e3fe523c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z", "max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/pts-agda", "max_forks_repo_path": "src/Pts/Typing/Progress.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/pts-agda", "max_issues_repo_path": "src/Pts/Typing/Progress.agda", "max_line_length": 74, "max_stars_count": 21, "max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/pts-agda", "max_stars_repo_path": "src/Pts/Typing/Progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z", "num_tokens": 1133, "size": 2781 }
module Structure where -- Structures in meta-functions. module Function' where -- TODO: Temporary naming fix with tick module Properties ⦃ signature : Signature ⦄ where Type : Domain → Domain → Function → Formula Type(X)(Y)(f) = ∀ₛ(X)(x ↦ f(x) ∈ Y) Closed : Domain → Function → Formula Closed(S)(f) = Type(S)(S)(f) Injective'' : Domain → Function → Formula Injective''(A)(f) = ∀ₛ(A)(x ↦ ∀ₛ(A)(y ↦ (f(x) ≡ f(y)) ⟶ (x ≡ y))) Surjective'' : Domain → Domain → Function → Formula Surjective''(A)(B)(f) = ∀ₛ(B)(y ↦ ∃ₛ(A)(x ↦ f(x) ≡ y)) Bijective'' : Domain → Domain → Function → Formula Bijective''(A)(B)(f) = Injective''(A)(f) ∧ Surjective''(A)(B)(f) Preserving₁'' : Domain → Function → Function → Function → Formula Preserving₁''(A)(f)(g₁)(g₂) = ∀ₛ(A)(x ↦ f(g₁(x)) ≡ g₂(f(x))) Preserving₂'' : Domain → Domain → Function → BinaryOperator → BinaryOperator → Formula Preserving₂''(A)(B)(f)(_▫₁_)(_▫₂_) = ∀ₛ(A)(x ↦ ∀ₛ(B)(y ↦ f(x ▫₁ y) ≡ (f(x) ▫₂ f(y)))) module Relator where module Properties where Reflexivity : Domain → BinaryRelator → Formula Reflexivity(S)(_▫_) = ∀ₛ(S)(x ↦ x ▫ x) Irreflexivity : Domain → BinaryRelator → Formula Irreflexivity(S)(_▫_) = ∀ₛ(S)(x ↦ ¬(x ▫ x)) Symmetry : Domain → BinaryRelator → Formula Symmetry(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x ▫ y) ⟶ (y ▫ x))) Asymmetry : Domain → BinaryRelator → Formula Asymmetry(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x ▫ y) ⟶ ¬(y ▫ x))) Antisymmetry : Domain → BinaryRelator → Formula Antisymmetry(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x ▫ y)∧(y ▫ x) ⟶ (x ≡ y))) Transitivity : Domain → BinaryRelator → Formula Transitivity(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ ∀ₛ(S)(z ↦ (x ▫ y)∧(y ▫ z) ⟶ (x ▫ z)))) Equivalence : Domain → BinaryRelator → Formula Equivalence(S)(_▫_) = Reflexivity(S)(_▫_) ∧ Symmetry(S)(_▫_) ∧ Transitivity(S)(_▫_) SymmetricallyTotal : Domain → BinaryRelator → Formula SymmetricallyTotal(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x ▫ y) ∨ (y ▫ x))) module Ordering where open Relator.Properties Minima : Domain → BinaryRelator → Domain → Formula Minima(S)(_≤_)(min) = ∀ₛ(S)(x ↦ min ≤ x) Maxima : Domain → BinaryRelator → Domain → Formula Maxima(S)(_≤_)(max) = ∀ₛ(S)(x ↦ x ≤ max) module _ ⦃ signature : Signature ⦄ where open Signature ⦃ ... ⦄ lowerBounds : Domain → BinaryRelator → Domain → Domain lowerBounds(S)(_≤_)(Sₛ) = filter(S)(Minima(S)(_≤_)) upperBounds : Domain → BinaryRelator → Domain → Domain upperBounds(S)(_≤_)(Sₛ) = filter(S)(Maxima(S)(_≤_)) interval : Domain → BinaryRelator → Domain → Domain → Domain interval(S)(_≤_) (a)(b) = filter(S)(s ↦ (a ≤ s) ∧ (s ≤ b)) Bounded : Domain → BinaryRelator → Domain → Domain → Formula Bounded(S)(_≤_) (a)(b) = ∀ₛ(S)(s ↦ (a ≤ s) ∧ (s ≤ b)) Infima : Domain → BinaryRelator → Domain → Domain → Formula Infima(S)(_≤_)(Sₛ)(inf) = Maxima(lowerBounds(S)(_≤_)(Sₛ))(_≤_)(inf) Suprema : Domain → BinaryRelator → Domain → Domain → Formula Suprema(S)(_≤_)(Sₛ)(sup) = Minima(upperBounds(S)(_≤_)(Sₛ))(_≤_)(sup) module Weak where PartialOrder : Domain → BinaryRelator → Formula PartialOrder(S)(_≤_) = Reflexivity(S)(_≤_) ∧ Antisymmetry(S)(_≤_) ∧ Transitivity(S)(_≤_) TotalOrder : Domain → BinaryRelator → Formula TotalOrder(S)(_≤_) = PartialOrder(S)(_≤_) ∧ SymmetricallyTotal(S)(_≤_) module Strict where Order : Domain → BinaryRelator → Formula Order(S)(_<_) = Irreflexivity(S)(_<_) ∧ Asymmetry(S)(_<_) ∧ Transitivity(S)(_<_) Dense : Domain → BinaryRelator → Formula Dense(S)(_<_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x < y) ⟶ ∃ₛ(S)(z ↦ (x < z)∧(z < y)))) module Operator where module Properties where AssociativityPattern : Domain → Domain → Domain → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → Formula AssociativityPattern(x)(y)(z)(_▫₁_)(_▫₂_)(_▫₃_)(_▫₄_) = (((x ▫₁ y) ▫₂ z) ≡ (x ▫₃ (y ▫₄ z))) DistributivityₗPattern : Domain → Domain → Domain → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → Formula DistributivityₗPattern(x)(y)(z)(_▫₁_)(_▫₂_)(_▫₃_)(_▫₄_)(_▫₅_) = (x ▫₁ (y ▫₂ z)) ≡ ((x ▫₃ y) ▫₄ (x ▫₅ z)) DistributivityᵣPattern : Domain → Domain → Domain → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → Formula DistributivityᵣPattern(x)(y)(z)(_▫₁_)(_▫₂_)(_▫₃_)(_▫₄_)(_▫₅_) = ((x ▫₂ y) ▫₁ z) ≡ ((x ▫₃ z) ▫₄ (y ▫₅ z)) Type : BinaryOperator → Domain → Domain → Domain → Formula Type(_▫_)(X)(Y)(Z) = ∀ₛ(X)(x ↦ ∀ₛ(Y)(y ↦ (x ▫ y) ∈ Z)) Closed : Domain → BinaryOperator → Formula Closed(S)(_▫_) = Type(_▫_)(S)(S)(S) Commutativity : Domain → BinaryOperator → Formula Commutativity(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ (x ▫ y) ≡ (y ▫ x))) Associativity : Domain → BinaryOperator → Formula Associativity(S)(_▫_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ ∀ₛ(S)(z ↦ AssociativityPattern(x)(y)(z)(_▫_)(_▫_)(_▫_)(_▫_)))) Identityₗ : Domain → BinaryOperator → Domain → Formula Identityₗ(S)(_▫_)(id) = ∀ₛ(S)(x ↦ (id ▫ x) ≡ x) Identityᵣ : Domain → BinaryOperator → Domain → Formula Identityᵣ(S)(_▫_)(id) = ∀ₛ(S)(x ↦ (x ▫ id) ≡ x) Identity : Domain → BinaryOperator → Domain → Formula Identity(S)(_▫_)(id) = Identityₗ(S)(_▫_)(id) ∧ Identityᵣ(S)(_▫_)(id) Invertibleₗ : Domain → BinaryOperator → Domain → Formula Invertibleₗ(S)(_▫_)(id) = ∀ₛ(S)(x ↦ ∃ₛ(S)(x⁻¹ ↦ (x⁻¹ ▫ x) ≡ id)) Invertibleᵣ : Domain → BinaryOperator → Domain → Formula Invertibleᵣ(S)(_▫_)(id) = ∀ₛ(S)(x ↦ ∃ₛ(S)(x⁻¹ ↦ (x ▫ x⁻¹) ≡ id)) Invertible : Domain → BinaryOperator → Domain → Formula Invertible(S)(_▫_)(id) = ∀ₛ(S)(x ↦ ∃ₛ(S)(x⁻¹ ↦ ((x⁻¹ ▫ x) ≡ id) ∧ ((x ▫ x⁻¹) ≡ id))) Distributivityₗ : Domain → BinaryOperator → BinaryOperator → Formula Distributivityₗ(S)(_▫₁_)(_▫₂_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ ∀ₛ(S)(z ↦ DistributivityₗPattern(x)(y)(z)(_▫₁_)(_▫₂_)(_▫₁_)(_▫₂_)(_▫₁_)))) Distributivityᵣ : Domain → BinaryOperator → BinaryOperator → Formula Distributivityᵣ(S)(_▫₁_)(_▫₂_) = ∀ₛ(S)(x ↦ ∀ₛ(S)(y ↦ ∀ₛ(S)(z ↦ DistributivityᵣPattern(x)(y)(z)(_▫₁_)(_▫₂_)(_▫₁_)(_▫₂_)(_▫₁_)))) Distributivity : Domain → BinaryOperator → BinaryOperator → Formula Distributivity(S)(_▫₁_)(_▫₂_) = Distributivityₗ(S)(_▫₁_)(_▫₂_) ∧ Distributivityᵣ(S)(_▫₁_)(_▫₂_) Compatibility : Domain → Domain → BinaryOperator → BinaryOperator → Formula Compatibility(A)(B)(_▫₁_)(_▫₂_) = ∀ₛ(A)(a₁ ↦ ∀ₛ(A)(a₂ ↦ ∀ₛ(B)(b ↦ AssociativityPattern(a₁)(a₂)(b)(_▫₁_)(_▫₁_)(_▫₂_)(_▫₁_)))) Semigroup : Domain → BinaryOperator → Formula Semigroup(S)(_▫_) = Closed(S)(_▫_) ∧ Associativity(S)(_▫_) Monoid : Domain → BinaryOperator → Formula Monoid(S)(_▫_) = Semigroup(S)(_▫_) ∧ ∃ₛ(S)(Identity(S)(_▫_)) Group : Domain → BinaryOperator → Formula Group(S)(_▫_) = Monoid(S)(_▫_) ∧ ∀ₛ(S)(id ↦ Identity(S)(_▫_)(id) ⟶ Invertible(S)(_▫_)(id)) CommutativeGroup : Domain → BinaryOperator → Formula CommutativeGroup(S)(_▫_) = Group(S)(_▫_) ∧ Commutativity(S)(_▫_) Rng : Domain → BinaryOperator → BinaryOperator → Formula Rng(S)(_▫₁_)(_▫₂_) = CommutativeGroup(S)(_▫₁_) ∧ Semigroup(S)(_▫₂_) ∧ Distributivity(S)(_▫₂_)(_▫₁_) Ring : Domain → BinaryOperator → BinaryOperator → Formula Ring(S)(_▫₁_)(_▫₂_) = CommutativeGroup(S)(_▫₁_) ∧ Monoid(S)(_▫₂_) ∧ Distributivity(S)(_▫₂_)(_▫₁_) module _ ⦃ signature : Signature ⦄ where open Signature ⦃ ... ⦄ Field : Domain → BinaryOperator → BinaryOperator → Formula Field(S)(_▫₁_)(_▫₂_) = CommutativeGroup(S)(_▫₁_) ∧ ∀ₛ(S)(id₁ ↦ Identity(S)(_▫₁_)(id₁) ⟶ CommutativeGroup(S ∖ singleton(id₁))(_▫₂_)) ∧ Distributivity(S)(_▫₂_)(_▫₁_) VectorSpace : Domain → Domain → BinaryOperator → BinaryOperator → BinaryOperator → BinaryOperator → Formula VectorSpace(V)(S)(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) = CommutativeGroup(V)(_+ᵥ_) ∧ Field(S)(_+ₛ_)(_⋅ₛ_) ∧ ∀ₛ(S)(id ↦ Identity(S)(_⋅ₛ_)(id) ⟶ Identityₗ(V)(_⋅ₛᵥ_)(id)) ∧ Compatibility(S)(V)(_⋅ₛᵥ_)(_⋅ₛ_) ∧ ∀ₛ(S)(s ↦ ∀ₛ(V)(v₁ ↦ ∀ₛ(V)(v₂ ↦ DistributivityₗPattern(s)(v₁)(v₂)(_⋅ₛᵥ_)(_+ᵥ_)(_⋅ₛᵥ_)(_+ᵥ_)(_⋅ₛᵥ_)))) ∧ ∀ₛ(S)(s₁ ↦ ∀ₛ(S)(s₂ ↦ ∀ₛ(V)(v ↦ DistributivityᵣPattern(s₁)(s₂)(v)(_⋅ₛᵥ_)(_+ᵥ_)(_⋅ₛᵥ_)(_+ᵥ_)(_⋅ₛᵥ_)))) module Numeral where module Natural ⦃ signature : Signature ⦄ where open Signature ⦃ ... ⦄ FormulaInduction : Domain → Domain → Function → (Domain → Formula) → Formula FormulaInduction(ℕ)(𝟎)(𝐒) (φ) = (φ(𝟎) ∧ ∀ₛ(ℕ)(n ↦ φ(n) ⟶ φ(𝐒(n)))) ⟶ ∀ₛ(ℕ)(φ) SetInduction : Domain → Domain → Function → Formula SetInduction(ℕ)(𝟎)(𝐒) = ∀ₗ(X ↦ ((𝟎 ∈ X) ∧ ∀ₛ(ℕ)(n ↦ (n ∈ X) ⟶ (𝐒(n) ∈ X))) ⟶ (ℕ ⊆ X)) -- TODO: Can be expressed as ∀ₗ(X ↦ Inductive(X) ⟶ (ℕ ⊆ X)) -- A set ℕ which can be constructed ℕ-inductively. Peano : Domain → Domain → Function → Formula Peano(ℕ)(𝟎)(𝐒) = (𝟎 ∈ ℕ) ∧ Function'.Properties.Closed(ℕ)(𝐒) ∧ Function'.Properties.Injective''(ℕ)(𝐒) ∧ ∀ₛ(ℕ)(n ↦ 𝐒(n) ≢ 𝟎) ∧ SetInduction(ℕ)(𝟎)(𝐒)
{ "alphanum_fraction": 0.5585670764, "avg_line_length": 41.0301724138, "ext": "agda", "hexsha": "ff8638ff8eb7b58b89163febc01bb51dac555f21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/Structure/Relator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/Structure/Relator.agda", "max_line_length": 150, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/Structure/Relator.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3694, "size": 9519 }
module BasicIPC.Metatheory.Hilbert-TarskiConcreteGluedImplicit where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.TarskiConcreteGluedImplicit public open ImplicitSyntax (_⊢_) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A w} → w ⊩ A → unwrap w ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit reify⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ⟪K⟫ {A} a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁) ⅋ λ s₂ → app (app cs (syn s₁)) (syn s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a = app cpair (reify a) ⅋ _,_ a -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = ci ⅋ I eval ck γ = ck ⅋ ⟪K⟫ eval cs γ = cs ⅋ ⟪S⟫′ eval cpair γ = cpair ⅋ _⟪,⟫′_ eval cfst γ = cfst ⅋ π₁ eval csnd γ = csnd ⅋ π₂ eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ w P → unwrap w ⊢ α P } -- Soundness with respect to the canonical model. reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = t ⅋ λ a → reflectᶜ (app t (reify a)) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reify (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.5415813191, "avg_line_length": 24.6565656566, "ext": "agda", "hexsha": "41c5d63c53d74313252afac2bf7073ea0ddc89ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda", "max_line_length": 73, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1130, "size": 2441 }
open import Level hiding ( suc ; zero ) open import Algebra module sym5n where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ -- open import IO open import Data.String hiding (toList) open import Data.Unit open import Agda.Builtin.String sym5solvable : (n : ℕ) → String -- ¬ solvable (Symmetric 5) sym5solvable n = FListtoStr (CommFListN 5 n) where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 5) open import FLutil open import Data.List.Fresh hiding ([_]) open import Relation.Nary using (⌊_⌋) p0id : FL→perm (zero :: zero :: zero :: (zero :: (zero :: f0))) =p= pid p0id = pleq _ _ refl open import Data.List.Fresh.Relation.Unary.Any open import FLComm stage4FList = CommFListN 5 0 stage6FList = CommFListN 5 3 -- stage5FList = {!!} -- s2=s3 : CommFListN 5 2 ≡ CommFListN 5 3 -- s2=s3 = refl FLtoStr : {n : ℕ} → (x : FL n) → String FLtoStr f0 = "f0" FLtoStr (x :: y) = primStringAppend ( primStringAppend (primShowNat (toℕ x)) " :: " ) (FLtoStr y) FListtoStr : {n : ℕ} → (x : FList n) → String FListtoStr [] = "" FListtoStr (cons a x x₁) = primStringAppend (FLtoStr a) (primStringAppend "\n" (FListtoStr x)) open import Codata.Musical.Notation open import Data.Maybe hiding (_>>=_) open import Data.List open import Data.Char open import IO.Primitive open import Codata.Musical.Costring postulate getArgs : IO (List (List Char)) {-# FOREIGN GHC import qualified System.Environment #-} {-# COMPILE GHC getArgs = System.Environment.getArgs #-} charToDigit : Char → Maybe ℕ charToDigit '0' = just ( 0) charToDigit '1' = just ( 1) charToDigit '2' = just ( 2) charToDigit '3' = just ( 3) charToDigit '4' = just ( 4) charToDigit '5' = just ( 5) charToDigit '6' = just ( 6) charToDigit '7' = just ( 7) charToDigit '8' = just ( 8) charToDigit '9' = just ( 9) charToDigit _ = nothing getNumArg1 : (List (List Char)) → ℕ getNumArg1 [] = 0 getNumArg1 ([] ∷ y) = 0 getNumArg1 ((x ∷ _) ∷ y) with charToDigit x ... | just n = n ... | nothing = 0 -- -- CommFListN 5 x is too slow use compiler -- agda --compile sym5n.agda -- main : IO ⊤ main = getArgs >>= (λ x → putStrLn $ toCostring $ sym5solvable $ getNumArg1 x )
{ "alphanum_fraction": 0.6759735489, "avg_line_length": 26.1730769231, "ext": "agda", "hexsha": "f1c4e9900f08ac4fa4bda3de5331c052219fd703", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/sym5n.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/sym5n.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/sym5n.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 916, "size": 2722 }
-- Automatic solvers for equations over Gaussian Integers. {-# OPTIONS --without-K --safe #-} module GauInt.Solver where import Algebra.Solver.Ring.Simple as Solver import Algebra.Solver.Ring.AlmostCommutativeRing as ACR open import GauInt.Properties ------------------------------------------------------------------------ -- A module for automatically solving propositional equivalences -- containing _+𝔾_ and _*𝔾_ module +-*-Solver = Solver (ACR.fromCommutativeRing +-*-commutativeRing) _≟_
{ "alphanum_fraction": 0.666, "avg_line_length": 31.25, "ext": "agda", "hexsha": "708f6d53f692bc536d0c0c5f1f733a95170a33b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "GauInt/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "GauInt/Solver.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "GauInt/Solver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 114, "size": 500 }
module Agda.Builtin.Size where {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ω #-} {-# BUILTIN SIZEMAX _⊔ˢ_ #-}
{ "alphanum_fraction": 0.5650224215, "avg_line_length": 22.3, "ext": "agda", "hexsha": "15daf1b7449de2105da108abe3ba8a3a220c2d4f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_line_length": 31, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Size.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 75, "size": 223 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.SuspSmash open import homotopy.SuspSmashComm module homotopy.IterSuspSmash where module _ {i j} (X : Ptd i) (Y : Ptd j) where Σ^∧-out : (n : ℕ) → ⊙Susp^ n X ∧ Y → Susp^ n (X ∧ Y) Σ^∧-out O = idf _ Σ^∧-out (S n) = Susp-fmap (Σ^∧-out n) ∘ Σ∧-out (⊙Susp^ n X) Y private Σ^∧-out-pt : (n : ℕ) → Σ^∧-out n (pt (⊙Susp^ n X ⊙∧ Y)) == pt (⊙Susp^ n (X ⊙∧ Y)) Σ^∧-out-pt O = idp Σ^∧-out-pt (S n) = idp ⊙Σ^∧-out : (n : ℕ) → ⊙Susp^ n X ⊙∧ Y ⊙→ ⊙Susp^ n (X ⊙∧ Y) ⊙Σ^∧-out n = Σ^∧-out n , Σ^∧-out-pt n ∧Σ^-out : (n : ℕ) → X ∧ ⊙Susp^ n Y → Susp^ n (X ∧ Y) ∧Σ^-out O = idf _ ∧Σ^-out (S n) = Susp-fmap (∧Σ^-out n) ∘ ∧Σ-out X (⊙Susp^ n Y) private ∧Σ^-out-pt : (n : ℕ) → ∧Σ^-out n (pt (X ⊙∧ ⊙Susp^ n Y)) == pt (⊙Susp^ n (X ⊙∧ Y)) ∧Σ^-out-pt O = idp ∧Σ^-out-pt (S n) = idp ⊙∧Σ^-out : (n : ℕ) → X ⊙∧ ⊙Susp^ n Y ⊙→ ⊙Susp^ n (X ⊙∧ Y) ⊙∧Σ^-out n = ∧Σ^-out n , ∧Σ^-out-pt n private ⊙maybe-Susp^-flip-+ : ∀ {i} {X : Ptd i} (m n : ℕ) (b : Bool) → (m == 0 → b == false) → ⊙coe (⊙Susp^-+ m n {X}) ◃⊙∘ ⊙maybe-Susp^-flip {X = ⊙Susp^ n X} m b ◃⊙idf =⊙∘ ⊙maybe-Susp^-flip (m + n) b ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙idf ⊙maybe-Susp^-flip-+ O O b h = =⊙∘-in idp ⊙maybe-Susp^-flip-+ O (S n) true h = ⊥-elim (Bool-true≠false (h idp)) ⊙maybe-Susp^-flip-+ O (S n) false h = =⊙∘-in idp ⊙maybe-Susp^-flip-+ {X = X} (S m) n true h = ⊙coe (ap ⊙Susp (Susp^-+ m n)) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp^ n X)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ! p ⟩ ⊙Susp-fmap (fst (⊙coe (⊙Susp^-+ m n))) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp^ n X)) ◃⊙idf =⊙∘⟨ =⊙∘-in $ ! $ ⊙Susp-flip-natural (⊙coe (⊙Susp^-+ m n)) ⟩ ⊙Susp-flip (⊙Susp^ (m + n) X) ◃⊙∘ ⊙Susp-fmap (fst (⊙coe (⊙Susp^-+ m n))) ◃⊙idf =⊙∘₁⟨ 1 & 1 & p ⟩ ⊙Susp-flip (⊙Susp^ (m + n) X) ◃⊙∘ ⊙coe (ap ⊙Susp (Susp^-+ m n)) ◃⊙idf ∎⊙∘ where p : ⊙Susp-fmap (fst (⊙coe (⊙Susp^-+ m n {X}))) == ⊙coe (ap ⊙Susp (Susp^-+ m n)) p = ap (⊙Susp-fmap ∘ coe) (de⊙-⊙Susp^-+ m n {X}) ∙ ! (⊙transport-⊙Susp (Susp^-+ m n)) ∙ ⊙transport-⊙coe ⊙Susp (Susp^-+ m n) ⊙maybe-Susp^-flip-+ (S m) n false h = =⊙∘-in $ ! $ ⊙λ= $ ⊙∘-unit-l _ ⊙maybe-Susp^-flip-comm : ∀ {i} {X : Ptd i} (m n : ℕ) (b : Bool) → (m == 0 → b == false) → (n == 0 → b == false) → ⊙coe (⊙Susp^-comm m n {X = X}) ◃⊙∘ ⊙maybe-Susp^-flip {X = ⊙Susp^ n X} m b ◃⊙idf =⊙∘ ⊙maybe-Susp^-flip {X = ⊙Susp^ m X} n b ◃⊙∘ ⊙coe (⊙Susp^-comm m n) ◃⊙idf ⊙maybe-Susp^-flip-comm O O b h₁ h₂ = =⊙∘-in (! (⊙λ= (⊙∘-unit-l (⊙coe (⊙Susp^-comm 0 0))))) ⊙maybe-Susp^-flip-comm O (S _) true h₁ h₂ = ⊥-elim (Bool-true≠false (h₁ idp)) ⊙maybe-Susp^-flip-comm O (S _) false h₁ h₂ = =⊙∘-in (! (⊙λ= (⊙∘-unit-l _))) ⊙maybe-Susp^-flip-comm (S m) O true h₁ h₂ = ⊥-elim (Bool-true≠false (h₂ idp)) ⊙maybe-Susp^-flip-comm (S m) O false h₁ h₂ = =⊙∘-in (! (⊙λ= (⊙∘-unit-l _))) ⊙maybe-Susp^-flip-comm {X = X} (S m) (S n) true h₁ h₂ = ⊙coe (⊙Susp^-comm (S m) (S n)) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp^ (S n) X)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & p ⟩ ⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) ∙ ⊙Susp^-comm 1 n))) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp^ (S n) X)) ◃⊙idf =⊙∘⟨ =⊙∘-in $ ! $ ⊙Susp-flip-natural (⊙coe (⊙Susp^-comm m (S n) ∙ ⊙Susp^-comm 1 n)) ⟩ ⊙Susp-flip (⊙Susp^ n (⊙Susp^ (S m) X)) ◃⊙∘ ⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) ∙ ⊙Susp^-comm 1 n))) ◃⊙idf =⊙∘₁⟨ 1 & 1 & ! p ⟩ ⊙Susp-flip (⊙Susp^ n (⊙Susp^ (S m) X)) ◃⊙∘ ⊙Susp^-swap (S m) (S n) ◃⊙idf ∎⊙∘ where p : ⊙Susp^-swap (S m) (S n) {X} == ⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) {X} ∙ ⊙Susp^-comm 1 n {⊙Susp^ m X}))) p = ap ⊙coe (⊙Susp^-comm-S-S m n) ∙ ! (⊙transport-⊙coe ⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n)) ∙ ⊙transport-⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n) ∙ ! (ap (⊙Susp-fmap ∘ coe) (ap2 _∙_ (de⊙-⊙Susp^-comm m (S n)) (de⊙-⊙Susp^-comm 1 n))) ∙ ap (⊙Susp-fmap ∘ coe) (∙-ap de⊙ (⊙Susp^-comm m (S n)) (⊙Susp^-comm 1 n)) ⊙maybe-Susp^-flip-comm (S m) (S n) false h₁ h₂ = =⊙∘-in (! (⊙λ= (⊙∘-unit-l _))) ⊙∧Σ-Σ^∧-out : ∀ {i} {j} (X : Ptd i) (Y : Ptd j) (m : ℕ) → ⊙Susp-fmap (∧Σ^-out X Y m) ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ m Y) ◃⊙idf =⊙∘ ⊙Susp^-swap m 1 {X = X ⊙∧ Y} ◃⊙∘ ⊙maybe-Susp^-flip m (odd m) ◃⊙∘ ⊙Susp^-fmap m (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y m ◃⊙idf ⊙∧Σ-Σ^∧-out X Y 0 = ⊙Susp-fmap (idf (X ∧ Y)) ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙Susp-fmap-idf _ ⟩ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙idf =⊙∘⟨ 0 & 0 & ⊙contract ⟩ ⊙idf _ ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap ⊙coe (! (⊙Susp^-comm-0-l 1 (X ⊙∧ Y))) ⟩ ⊙Susp^-swap 0 1 ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙idf =⊙∘⟨ 1 & 0 & ⊙contract ⟩ ⊙Susp^-swap 0 1 ◃⊙∘ ⊙idf _ ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙idf =⊙∘⟨ 3 & 0 & ⊙contract ⟩ ⊙Susp^-swap 0 1 ◃⊙∘ ⊙idf _ ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ 0 Y) ◃⊙∘ ⊙idf _ ◃⊙idf ∎⊙∘ ⊙∧Σ-Σ^∧-out X Y (S m) = ⊙Susp-fmap (∧Σ^-out X Y (S m)) ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ (S m) Y) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙Susp-fmap-seq-∘ (Susp-fmap (∧Σ^-out X Y m) ◃∘ ∧Σ-out X (⊙Susp^ m Y) ◃idf) ⟩ ⊙Susp^-fmap 2 (⊙∧Σ^-out X Y m) ◃⊙∘ ⊙Susp-fmap (∧Σ-out X (⊙Susp^ m Y)) ◃⊙∘ ⊙Σ∧-out X (⊙Susp^ (S m) Y) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙∧Σ-Σ∧-out X (⊙Susp^ m Y) ⟩ ⊙Susp^-fmap 2 (⊙∧Σ^-out X Y m) ◃⊙∘ ⊙Susp-flip (⊙Susp (X ∧ ⊙Susp^ m Y)) ◃⊙∘ ⊙Susp-fmap (Σ∧-out X (⊙Susp^ m Y)) ◃⊙∘ ⊙∧Σ-out (⊙Susp (de⊙ X)) (⊙Susp^ m Y) ◃⊙idf =⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙Susp-flip (⊙Susp (Susp^ m (X ∧ Y))) ◃⊙∘ ⊙Susp^-fmap 2 (⊙∧Σ^-out X Y m) ◃⊙idf} $ ! (⊙Susp-flip-natural (⊙Susp-fmap (∧Σ^-out X Y m))) ⟩ ⊙Susp-flip (⊙Susp (Susp^ m (X ∧ Y))) ◃⊙∘ ⊙Susp^-fmap 2 (⊙∧Σ^-out X Y m) ◃⊙∘ ⊙Susp-fmap (Σ∧-out X (⊙Susp^ m Y)) ◃⊙∘ ⊙∧Σ-out (⊙Susp (de⊙ X)) (⊙Susp^ m Y) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙Susp-fmap-seq-=⊙∘ (de⊙-seq-=⊙∘ (⊙∧Σ-Σ^∧-out X Y m)) ⟩ ⊙Susp-flip (⊙Susp (Susp^ m (X ∧ Y))) ◃⊙∘ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm m 1))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip m (odd m))) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙Susp-fmap (∧Σ^-out (⊙Susp (de⊙ X)) Y m) ◃⊙∘ ⊙∧Σ-out (⊙Susp (de⊙ X)) (⊙Susp^ m Y) ◃⊙idf =⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm m 1))) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙idf} $ ⊙Susp-flip-natural (⊙coe (⊙Susp^-comm m 1)) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm m 1))) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip m (odd m))) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙Susp-fmap (∧Σ^-out (⊙Susp (de⊙ X)) Y m) ◃⊙∘ ⊙∧Σ-out (⊙Susp (de⊙ X)) (⊙Susp^ m Y) ◃⊙idf =⊙∘⟨ 4 & 2 & ⊙contract ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm m 1))) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip m (odd m))) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y (S m) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ! (⊙transport-⊙Susp (ap de⊙ (⊙Susp^-comm m 1))) ∙ ap (⊙transport ⊙Susp) (de⊙-⊙Susp^-comm m 1) ∙ ⊙transport-⊙coe ⊙Susp (Susp^-comm m 1) ∙ ap ⊙coe (! (⊙Susp^-comm-S-1 m {X ⊙∧ Y})) ⟩ ⊙coe (⊙Susp^-comm (S m) 1) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip m (odd m))) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y (S m) ◃⊙idf =⊙∘₁⟨ 2 & 1 & ap ⊙Susp-fmap (de⊙-⊙maybe-Susp^-flip m (odd m)) ⟩ ⊙coe (⊙Susp^-comm (S m) 1) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙∘ ⊙Susp-fmap (maybe-Susp^-flip m (odd m)) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y (S m) ◃⊙idf =⊙∘₁⟨ 2 & 1 & ⊙Susp-fmap-maybe-Susp^-flip m (odd m) (ap odd) ⟩ ⊙coe (⊙Susp^-comm (S m) 1) ◃⊙∘ ⊙Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) ◃⊙∘ ⊙maybe-Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) (odd m) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y (S m) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙maybe-Susp-flip-flip _ true (odd m) ⟩ ⊙coe (⊙Susp^-comm (S m) 1) ◃⊙∘ ⊙maybe-Susp-flip (⊙Susp^ m (⊙Susp (X ∧ Y))) (odd (S m)) ◃⊙∘ ⊙Susp^-fmap (S m) (⊙Σ∧-out X Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ X)) Y (S m) ◃⊙idf ∎⊙∘ module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙∧Σ^-Σ^∧-out : ∀ (m n : ℕ) → ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘ ⊙coe (⊙Susp^-comm n m) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf ⊙∧Σ^-Σ^∧-out O n = ⊙∧Σ^-out X Y n ◃⊙∘ ⊙idf _ ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙expand ⊙idf-seq ⟩ ⊙∧Σ^-out X Y n ◃⊙idf =⊙∘⟨ 0 & 0 & !⊙∘ (⊙Susp^-fmap-idf n (X ⊙∧ Y)) ⟩ ⊙Susp^-fmap n (⊙idf (X ⊙∧ Y)) ◃⊙∘ ⊙∧Σ^-out X Y n ◃⊙idf =⊙∘₁⟨ 0 & 0 & ! (⊙maybe-Susp^-flip-false n) ⟩ ⊙maybe-Susp^-flip n false ◃⊙∘ ⊙Susp^-fmap n (⊙idf (X ⊙∧ Y)) ◃⊙∘ ⊙∧Σ^-out X Y n ◃⊙idf =⊙∘₁⟨ 0 & 0 & ap ⊙coe (! (⊙Susp^-comm-0-r n _)) ⟩ ⊙coe (⊙Susp^-comm n O) ◃⊙∘ ⊙maybe-Susp^-flip n false ◃⊙∘ ⊙Susp^-fmap n (⊙idf (X ⊙∧ Y)) ◃⊙∘ ⊙∧Σ^-out X Y n ◃⊙idf ∎⊙∘ ⊙∧Σ^-Σ^∧-out (S m) n = ⊙Susp^-fmap (S m) (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) (S m) ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙expand (⊙Susp-fmap (Σ^∧-out X (⊙Susp^ n Y) m) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf) ⟩ ⊙Susp^-fmap (S m) (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Susp-fmap (Σ^∧-out X (⊙Susp^ n Y) m) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙Susp-fmap-seq-=⊙∘ (de⊙-seq-=⊙∘ (⊙∧Σ^-Σ^∧-out m n)) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip n (and (odd m) (odd n)))) ◃⊙∘ ⊙Susp-fmap (Susp^-fmap n (Σ^∧-out X Y m)) ◃⊙∘ ⊙Susp-fmap (∧Σ^-out (⊙Susp^ m X) Y n) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 3 & 2 & ⊙∧Σ-Σ^∧-out (⊙Susp^ m X) Y n ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip n (and (odd m) (odd n)))) ◃⊙∘ ⊙Susp-fmap (Susp^-fmap n (Σ^∧-out X Y m)) ◃⊙∘ ⊙Susp^-swap n 1 ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ∧-out (⊙Susp^ m X) Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘⟨ 2 & 2 & !⊙∘ $ ⊙Susp^-swap-natural n 1 (⊙Σ^∧-out X Y m) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip n (and (odd m) (odd n)))) ◃⊙∘ ⊙Susp^-swap n 1 ◃⊙∘ ⊙Susp^-fmap n (⊙Susp-fmap (Σ^∧-out X Y m)) ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ∧-out (⊙Susp^ m X) Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘⟨ 3 & 2 & ⊙maybe-Susp^-flip-natural-=⊙∘ (⊙Susp-fmap (Σ^∧-out X Y m)) n (odd n) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip n (and (odd m) (odd n)))) ◃⊙∘ ⊙Susp^-swap n 1 ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Susp-fmap (Σ^∧-out X Y m)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ∧-out (⊙Susp^ m X) Y) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘₁⟨ 4 & 2 & ! $ ⊙Susp^-fmap-∘ n (⊙Susp-fmap (Σ^∧-out X Y m)) (⊙Σ∧-out (⊙Susp^ m X) Y) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip n (and (odd m) (odd n)))) ◃⊙∘ ⊙Susp^-swap n 1 ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙maybe-Susp^-flip-⊙Susp^-comm _ n 1 (and (odd m) (odd n)) ⟩ ⊙Susp-fmap (coe (ap de⊙ (⊙Susp^-comm n m))) ◃⊙∘ ⊙coe (⊙Susp^-comm n 1) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘₁⟨ 0 & 1 & ! (⊙transport-⊙Susp (ap de⊙ (⊙Susp^-comm n m))) ∙ ⊙transport-⊙coe ⊙Susp (ap de⊙ (⊙Susp^-comm n m)) ∙ ap (⊙coe ∘ ap ⊙Susp) (de⊙-⊙Susp^-comm n m) ⟩ ⊙coe (ap ⊙Susp (Susp^-comm n m)) ◃⊙∘ ⊙coe (⊙Susp^-comm n 1) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘₁⟨ 0 & 2 & ! (=⊙∘-out (⊙coe-∙ (⊙Susp^-comm n 1) (ap ⊙Susp (Susp^-comm n m)))) ∙ ap ⊙coe (! (=ₛ-out (⊙Susp^-comm-S-r n m))) ⟩ ⊙coe (⊙Susp^-comm n (S m)) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙maybe-Susp^-flip n (odd n) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙maybe-Susp^-flip-flip n (and (odd m) (odd n)) (odd n) ⟩ ⊙coe (⊙Susp^-comm n (S m)) ◃⊙∘ ⊙maybe-Susp^-flip n (xor (and (odd m) (odd n)) (odd n)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf =⊙∘₁⟨ 1 & 1 & ap (⊙maybe-Susp^-flip n) (table (odd m) (odd n)) ⟩ ⊙coe (⊙Susp^-comm n (S m)) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd (S m)) (odd n)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y (S m)) ◃⊙∘ ⊙∧Σ^-out (⊙Susp (de⊙ (⊙Susp^ m X))) Y n ◃⊙idf ∎⊙∘ where table : ∀ (b c : Bool) → xor (and b c) c == and (negate b) c table true true = idp table true false = idp table false true = idp table false false = idp ⊙∧Σ^-Σ^∧-out' : ∀ (m n : ℕ) → ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf =⊙∘ ⊙coe (⊙Susp^-comm m n) ◃⊙∘ ⊙maybe-Susp^-flip m (and (odd m) (odd n)) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf ⊙∧Σ^-Σ^∧-out' m n = ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf =⊙∘₁⟨ 0 & 0 & ! (⊙maybe-Susp^-flip-false n) ∙ ap (⊙maybe-Susp^-flip n) (! (xor-diag (and (odd m) (odd n)))) ⟩ ⊙maybe-Susp^-flip n (xor (and (odd m) (odd n)) (and (odd m) (odd n))) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf =⊙∘⟨ 0 & 1 & !⊙∘ $ ⊙maybe-Susp^-flip-flip n (and (odd m) (odd n)) (and (odd m) (odd n)) ⟩ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf =⊙∘⟨ 1 & 0 & =⊙∘-in {gs = ⊙coe (! (⊙Susp^-comm n m)) ◃⊙∘ ⊙coe (⊙Susp^-comm n m) ◃⊙idf} $ ap ⊙coe (! (!-inv-r (⊙Susp^-comm n m))) ∙ =⊙∘-out (⊙coe-∙ (⊙Susp^-comm n m) (! (⊙Susp^-comm n m))) ⟩ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙coe (! (⊙Susp^-comm n m)) ◃⊙∘ ⊙coe (⊙Susp^-comm n m) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙Susp^-fmap n (⊙Σ^∧-out X Y m) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ m X) Y n ◃⊙idf =⊙∘⟨ 2 & 4 & !⊙∘ $ ⊙∧Σ^-Σ^∧-out m n ⟩ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙coe (! (⊙Susp^-comm n m)) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘₁⟨ 1 & 1 & ap ⊙coe (⊙Susp^-comm-! n m) ⟩ ⊙maybe-Susp^-flip n (and (odd m) (odd n)) ◃⊙∘ ⊙coe (⊙Susp^-comm m n) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙maybe-Susp^-flip-comm m n (and (odd m) (odd n)) (ap (λ k → and (odd k) (odd n))) (λ p → ap (and (odd m) ∘ odd) p ∙ and-false-r (odd m)) ⟩ ⊙coe (⊙Susp^-comm m n) ◃⊙∘ ⊙maybe-Susp^-flip m (and (odd m) (odd n)) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf ∎⊙∘ ⊙Σ^∧Σ^-out-seq : ∀ (m n : ℕ) → (⊙Susp^ m X ⊙∧ ⊙Susp^ n Y) ⊙–→ ⊙Susp^ (m + n) (X ⊙∧ Y) ⊙Σ^∧Σ^-out-seq m n = ⊙coe (⊙Susp^-+ m n {X ⊙∧ Y}) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf ⊙Σ^∧Σ^-out : ∀ (m n : ℕ) → ⊙Susp^ m X ⊙∧ ⊙Susp^ n Y ⊙→ ⊙Susp^ (m + n) (X ⊙∧ Y) ⊙Σ^∧Σ^-out m n = ⊙compose (⊙Σ^∧Σ^-out-seq m n) swap-⊙Σ^∧-out : ∀ (m : ℕ) → ⊙Susp^-fmap m (⊙∧-swap X Y) ◃⊙∘ ⊙Σ^∧-out X Y m ◃⊙idf =⊙∘ ⊙∧Σ^-out Y X m ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) Y ◃⊙idf swap-⊙Σ^∧-out O = =⊙∘-in $ ! $ ⊙λ= $ ⊙∘-unit-l (⊙∧-swap X Y) swap-⊙Σ^∧-out (S m) = ⊙Susp^-fmap (S m) (⊙∧-swap X Y) ◃⊙∘ ⊙Σ^∧-out X Y (S m) ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙expand (⊙Susp-fmap (Σ^∧-out X Y m) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) Y ◃⊙idf) ⟩ ⊙Susp^-fmap (S m) (⊙∧-swap X Y) ◃⊙∘ ⊙Susp-fmap (Σ^∧-out X Y m) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) Y ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙Susp-fmap-seq-=⊙∘ (de⊙-seq-=⊙∘ (swap-⊙Σ^∧-out m)) ⟩ ⊙Susp-fmap (∧Σ^-out Y X m) ◃⊙∘ ⊙Susp-fmap (∧-swap (⊙Susp^ m X) Y) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ m X) Y ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙swap-Σ∧-out (⊙Susp^ m X) Y ⟩ ⊙Susp-fmap (∧Σ^-out Y X m) ◃⊙∘ ⊙∧Σ-out Y (⊙Susp^ m X) ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ (⊙Susp^ m X))) Y ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙contract ⟩ ⊙∧Σ^-out Y X (S m) ◃⊙∘ ⊙∧-swap (⊙Susp^ (S m) X) Y ◃⊙idf ∎⊙∘ swap-⊙∧Σ^-out : ∀ (n : ℕ) → ⊙Susp^-fmap n (⊙∧-swap X Y) ◃⊙∘ ⊙∧Σ^-out X Y n ◃⊙idf =⊙∘ ⊙Σ^∧-out Y X n ◃⊙∘ ⊙∧-swap X (⊙Susp^ n Y) ◃⊙idf swap-⊙∧Σ^-out O = =⊙∘-in $ ! $ ⊙λ= $ ⊙∘-unit-l (⊙∧-swap X Y) swap-⊙∧Σ^-out (S n) = ⊙Susp^-fmap (S n) (⊙∧-swap X Y) ◃⊙∘ ⊙∧Σ^-out X Y (S n) ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙expand (⊙Susp-fmap (∧Σ^-out X Y n) ◃⊙∘ ⊙∧Σ-out X (⊙Susp^ n Y) ◃⊙idf) ⟩ ⊙Susp^-fmap (S n) (⊙∧-swap X Y) ◃⊙∘ ⊙Susp-fmap (∧Σ^-out X Y n) ◃⊙∘ ⊙∧Σ-out X (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙Susp-fmap-seq-=⊙∘ (de⊙-seq-=⊙∘ (swap-⊙∧Σ^-out n))⟩ ⊙Susp-fmap (fst (⊙Σ^∧-out Y X n)) ◃⊙∘ ⊙Susp-fmap (fst (⊙∧-swap X (⊙Susp^ n Y))) ◃⊙∘ ⊙∧Σ-out X (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙swap-∧Σ-out X (⊙Susp^ n Y) ⟩ ⊙Susp-fmap (fst (⊙Σ^∧-out Y X n)) ◃⊙∘ ⊙Σ∧-out (⊙Susp^ n Y) X ◃⊙∘ ⊙∧-swap X (⊙Susp (de⊙ (⊙Susp^ n Y))) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙contract ⟩ ⊙Σ^∧-out Y X (S n) ◃⊙∘ ⊙∧-swap X (⊙Susp^ (S n) Y) ◃⊙idf ∎⊙∘ ⊙Σ^∧Σ^-out-swap : ∀ {i} {j} (X : Ptd i) (Y : Ptd j) (m n : ℕ) → ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap X Y) ◃⊙∘ ⊙Σ^∧Σ^-out X Y m n ◃⊙idf =⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Σ^∧Σ^-out Y X n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf ⊙Σ^∧Σ^-out-swap X Y m n = ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap X Y) ◃⊙∘ ⊙Σ^∧Σ^-out X Y m n ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand (⊙Σ^∧Σ^-out-seq X Y m n) ⟩ ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap X Y) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘⟨ 1 & 2 & =⊙∘-in {gs = ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙Susp^-fmap m (⊙Susp^-fmap n (⊙∧-swap X Y)) ◃⊙idf} $ ! $ ⊙Susp^-+-natural m n (⊙∧-swap X Y) ⟩ ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙Susp^-fmap m (⊙Susp^-fmap n (⊙∧-swap X Y)) ◃⊙∘ ⊙Susp^-fmap m (⊙∧Σ^-out X Y n) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘⟨ 2 & 2 & ⊙Susp^-fmap-seq-=⊙∘ m $ swap-⊙∧Σ^-out X Y n ⟩ ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙Susp^-fmap m (⊙Σ^∧-out Y X n) ◃⊙∘ ⊙Susp^-fmap m (⊙∧-swap X (⊙Susp^ n Y)) ◃⊙∘ ⊙Σ^∧-out X (⊙Susp^ n Y) m ◃⊙idf =⊙∘⟨ 3 & 2 & swap-⊙Σ^∧-out X (⊙Susp^ n Y) m ⟩ ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙Susp^-fmap m (⊙Σ^∧-out Y X n) ◃⊙∘ ⊙∧Σ^-out (⊙Susp^ n Y) X m ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 2 & 2 & ⊙∧Σ^-Σ^∧-out' Y X n m ⟩ ⊙transport (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙coe (⊙Susp^-comm n m) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap n (⊙∧Σ^-out Y X m) ◃⊙∘ ⊙Σ^∧-out Y (⊙Susp^ m X) n ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ⊙transport-⊙coe (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ⟩ ⊙coe (ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n)) ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙∘ ⊙coe (⊙Susp^-comm n m) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap n (⊙∧Σ^-out Y X m) ◃⊙∘ ⊙Σ^∧-out Y (⊙Susp^ m X) n ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 0 & 3 & ⊙coe-seq-=ₛ p ⟩ ⊙coe (⊙Susp^-+ n m) ◃⊙∘ ⊙maybe-Susp^-flip n (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap n (⊙∧Σ^-out Y X m) ◃⊙∘ ⊙Σ^∧-out Y (⊙Susp^ m X) n ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙maybe-Susp^-flip-+ n m (and (odd n) (odd m)) (ap (λ k → and (odd k) (odd m))) ⟩ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙coe (⊙Susp^-+ n m) ◃⊙∘ ⊙Susp^-fmap n (⊙∧Σ^-out Y X m) ◃⊙∘ ⊙Σ^∧-out Y (⊙Susp^ m X) n ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙contract ⟩ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Σ^∧Σ^-out Y X n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m X) (⊙Susp^ n Y) ◃⊙idf ∎⊙∘ where p : ⊙Susp^-comm n m ◃∙ ⊙Susp^-+ m n {Y ⊙∧ X} ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃∎ =ₛ ⊙Susp^-+ n m {Y ⊙∧ X} ◃∎ p = ⊙Susp^-comm n m ◃∙ ⊙Susp^-+ m n {Y ⊙∧ X} ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃∎ =ₛ⟨ 0 & 1 & expand (⊙Susp^-comm-seq n m) ⟩ ⊙Susp^-+ n m ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm n m) ◃∙ ! (⊙Susp^-+ m n) ◃∙ ⊙Susp^-+ m n ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃∎ =ₛ⟨ 2 & 2 & seq-!-inv-l (⊙Susp^-+ m n ◃∎) ⟩ ⊙Susp^-+ n m ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm n m) ◃∙ ap (λ k → ⊙Susp^ k (Y ⊙∧ X)) (+-comm m n) ◃∎ =ₛ⟨ 1 & 2 & ap-seq-=ₛ (λ k → ⊙Susp^ k (Y ⊙∧ X)) $ =ₛ-in {s = +-comm n m ◃∙ +-comm m n ◃∎} {t = []} $ set-path ℕ-level _ _ ⟩ ⊙Susp^-+ n m ◃∎ ∎ₛ
{ "alphanum_fraction": 0.4183320257, "avg_line_length": 41.3492366412, "ext": "agda", "hexsha": "9f9d1019b2f2addfbb10c92c6bda0c94a4b41cad", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/IterSuspSmash.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/IterSuspSmash.agda", "max_line_length": 95, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/IterSuspSmash.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 14346, "size": 21667 }
open import Everything {- open import Oscar.Prelude open import Oscar.Class.HasEquivalence open import Oscar.Class.Symmetrical open import Oscar.Data.Fin open import Oscar.Data.Term open import Oscar.Data.Substitunction open import Oscar.Data.Proposequality open import Oscar.Data.Surjcollation open import Oscar.Data.Surjextenscollation import Oscar.Class.HasEquivalence.ExtensionṖroperty import Oscar.Class.HasEquivalence.Ṗroperty import Oscar.Class.Symmetrical.ExtensionalUnifies import Oscar.Class.Symmetrical.Unifies import Oscar.Property.Setoid.Proposequality -- FIXME see fact1⋆ below; comment this out to observe confusing error messages import Oscar.Property.Functor.SubstitunctionExtensionTerm import Oscar.Class.Surjection.⋆ -} module Test.Surjcollation {𝔭} (𝔓 : Ø 𝔭) where open Term 𝔓 open Substitunction 𝔓 module 𝓢 = Surjcollation Substitunction Proposequality module 𝓢̇ = Surjextenscollation Substitunction Proposextensequality fact1⋆ : ∀ {𝓃} (𝓈 𝓉 : Term 𝓃) → 𝓈 𝓢.⟹ 𝓉 ≈ 𝓉 𝓢.⟹ 𝓈 fact1⋆ 𝓈 𝓉 = symmetrical 𝓈 𝓉 -- fact1⋆ 𝓈 𝓉 = symmetrical ⦃ r = Oscar.Class.Symmetrical.Unifies.𝓢ymmetricalUnifies₀ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ Oscar.Property.Setoid.Proposequality.𝓢ymmetryProposequality ⦄ ⦄ 𝓈 𝓉 -- FIXME I wish Agda would tell us that this is how the instances were resolved fact1⋆s : ∀ {N 𝓃} (𝓈 𝓉 : Terms N 𝓃) → 𝓈 𝓢.⟹ 𝓉 ≈ 𝓉 𝓢.⟹ 𝓈 fact1⋆s 𝓈 𝓉 = symmetrical 𝓈 𝓉 fact1 : ∀ {𝓃} (𝓈 𝓉 : Term 𝓃) → 𝓈 𝓢̇.⟹ 𝓉 ≈ 𝓉 𝓢̇.⟹ 𝓈 fact1 𝓈 𝓉 = symmetrical 𝓈 𝓉
{ "alphanum_fraction": 0.7573479152, "avg_line_length": 39.5405405405, "ext": "agda", "hexsha": "87202123de403913315fe9a5d637a737bc9d424f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Surjcollation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Surjcollation.agda", "max_line_length": 249, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Surjcollation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 585, "size": 1463 }
-- Andreas, 2014-06-11, issue reported by Ulf -- {-# OPTIONS -v tc.check.internal:100 -v tc.conv.elim:40 #-} postulate Nat : Set zero : Nat module Projection where record _×_ (A B : Set) : Set where field fst : A snd : B open _×_ postulate T : (Nat × Nat → Nat) → Set foo : T fst → Nat works : T fst → Nat works t with foo t works t | z = zero module ProjectionLike where data _×_ (A B : Set) : Set where _,_ : A → B → A × B fst : {A B : Set} → A × B → A fst (x , y) = x postulate T : (Nat × Nat → Nat) → Set foo : T fst → Nat -- Error WAS:: -- {A B : Set} → A × B → A != Nat × Nat → Nat because one is an -- implicit function type and the other is an explicit function type -- when checking that the type (t : T fst) → Nat → Nat of the -- generated with function is well-formed test : T fst → Nat test t with foo t test t | z = zero -- Problem WAS: -- It looks like CheckInternal doesn't handle projection-like functions -- correctly. It works for actual projections (if you make _×_ a record) -- and non-projection-like functions (if you make fst a postulate). -- Should work without error.
{ "alphanum_fraction": 0.6047098402, "avg_line_length": 23.3137254902, "ext": "agda", "hexsha": "bcbee5d30ed6587007dc71fc61693626d0188967", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1187.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1187.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1187.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 374, "size": 1189 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Type(s) used (only) when calling out to Haskell via the FFI ------------------------------------------------------------------------ module Foreign.Haskell where -- A unit type. data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-}
{ "alphanum_fraction": 0.3955431755, "avg_line_length": 23.9333333333, "ext": "agda", "hexsha": "e0c462a0a569316080eeb8cf9b396b37842bd585", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Foreign/Haskell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Foreign/Haskell.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Foreign/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 61, "size": 359 }
open import Prelude module MJ.Classtable (c : ℕ) where open import MJ.Classtable.Core c public
{ "alphanum_fraction": 0.7731958763, "avg_line_length": 16.1666666667, "ext": "agda", "hexsha": "b5d1024969bb9fbc06e46cd1bef288b863c2ce89", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Classtable.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Classtable.agda", "max_line_length": 39, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Classtable.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 26, "size": 97 }
module TermIsomorphism where open import OscarPrelude open import Term open import VariableName open import FunctionName open import Arity open import Vector open import Data.Fin using (fromℕ ; toℕ ) renaming (raise to raiseFin) open import Unify using (i ; leaf ; _fork_) renaming (Term to STerm ; AList to SAList) open import UnifyProof2 using (mgu-c) raiseSTerm : ∀ {m} n {o} → o ≡ n + m → STerm m → STerm o raiseSTerm n refl (i x) = i (raiseFin n x) raiseSTerm n o≡n+m leaf = leaf raiseSTerm n refl (τ₁ fork τ₂) = raiseSTerm n refl τ₁ fork raiseSTerm n refl τ₂ max' : Nat → Nat → Nat max' x y = if x >? y then x else y aux-lemma-m<n : ∀ {m n : Nat} → IsTrue (lessNat m n) → n ≡ n - m + m aux-lemma-m<n {zero} {zero} _ = refl aux-lemma-m<n {zero} {suc _} _ = auto aux-lemma-m<n {suc _} {zero} () aux-lemma-m<n {suc m} {suc n} m<n = by (aux-lemma-m<n {m} {n} m<n) aux-lemma-m≮n,n≮m : ∀ {m n : Nat} → ¬ IsTrue (lessNat m n) → ¬ IsTrue (lessNat n m) → m ≡ n aux-lemma-m≮n,n≮m {zero} {zero} m≮n n≮m = refl aux-lemma-m≮n,n≮m {zero} {suc n} m≮n n≮m = ⊥-elim (m≮n true) aux-lemma-m≮n,n≮m {suc m} {zero} m≮n n≮m = ⊥-elim (n≮m true) aux-lemma-m≮n,n≮m {suc m} {suc n} m≮n n≮m = by (aux-lemma-m≮n,n≮m {m} {n} m≮n n≮m) max-lemma-left : ∀ {m n : Nat} → max m n ≡ max m n - m + m max-lemma-left {m} {n} with decBool (lessNat n m) max-lemma-left {m} {n} | yes n<m = auto max-lemma-left {m} {n} | no n≮m with decBool (lessNat m n) max-lemma-left {m} {n} | no n≮m | (yes m<n) = aux-lemma-m<n m<n max-lemma-left {m} {n} | no n≮m | (no m≮n)rewrite aux-lemma-m≮n,n≮m {m} {n} m≮n n≮m = auto max-lemma-right : ∀ {m n : Nat} → max m n ≡ max m n - n + n max-lemma-right {m} {n} with decBool (lessNat n m) max-lemma-right {m} {n} | yes n<m = aux-lemma-m<n n<m max-lemma-right {m} {n} | no n≮m with decBool (lessNat m n) max-lemma-right {m} {n} | no n≮m | (yes m<n) = auto max-lemma-right {m} {n} | no n≮m | (no m≮n)rewrite aux-lemma-m≮n,n≮m {m} {n} m≮n n≮m = auto _⊕_ : ∃ STerm → ∃ STerm → ∃ STerm _⊕_ (n₁ , τ₁) (n₂ , τ₂) = max n₁ n₂ , raiseSTerm (max n₁ n₂ - n₁) (max-lemma-left {n₁}) τ₁ fork raiseSTerm (max n₁ n₂ - n₂) (max-lemma-right {n₁}) τ₂ functionNameToSTerm : FunctionName → STerm 0 functionNameToSTerm ⟨ zero ⟩ = leaf functionNameToSTerm ⟨ suc 𝑓 ⟩ = leaf fork functionNameToSTerm ⟨ 𝑓 ⟩ mutual termToSTerm : Term → ∃ STerm termToSTerm (variable x) = _ , i (fromℕ $ name x) termToSTerm (function 𝑓 τs) = (_ , functionNameToSTerm 𝑓) ⊕ termsToSTerm τs termsToSTerm : Terms → ∃ STerm termsToSTerm ⟨ ⟨ [] ⟩ ⟩ = 0 , leaf termsToSTerm ⟨ ⟨ τ ∷ τs ⟩ ⟩ = termToSTerm τ ⊕ termsToSTerm ⟨ ⟨ τs ⟩ ⟩ sTermToFunctionName : ∀ {n} → STerm n → Maybe FunctionName sTermToFunctionName (i x) = nothing sTermToFunctionName leaf = just ⟨ 0 ⟩ sTermToFunctionName (i x fork t₁) = nothing sTermToFunctionName (leaf fork t₁) = sTermToFunctionName t₁ >>= (λ { ⟨ n ⟩ → just ⟨ suc n ⟩}) sTermToFunctionName ((t fork t₁) fork t₂) = nothing mutual sTermToTerm : ∀ {n} → STerm n → Maybe Term sTermToTerm {n} (i x) = just $ variable ⟨ toℕ x ⟩ sTermToTerm {n} leaf = just $ function ⟨ 0 ⟩ ⟨ ⟨ [] ⟩ ⟩ sTermToTerm {n} (t₁ fork t₂) = sTermToFunctionName t₁ >>= λ 𝑓 → sTermToTerms t₂ >>= λ τs → just $ function 𝑓 τs sTermToTerms : ∀ {n} → STerm n → Maybe Terms sTermToTerms (i x) = nothing sTermToTerms leaf = just ⟨ ⟨ [] ⟩ ⟩ sTermToTerms (x fork x₁) = sTermToTerm x >>= λ τ → sTermToTerms x₁ >>= λ τs → just ⟨ ⟨ τ ∷ vector (terms τs) ⟩ ⟩ term-round-trip : ∀ τ → sTermToTerm (snd $ termToSTerm τ) ≡ just τ term-round-trip (variable ⟨ name₁ ⟩) = {!!} term-round-trip (function x x₁) = {!!} open import Relation.Binary.HeterogeneousEquality.Core as H open import Data.Product open import Data.Fin open import Data.Sum open import Data.Maybe.Base open import Data.Empty sTerm-round-trip : ∀ {n} → (t : STerm n) → (τ : Term) → just τ ≡ sTermToTerm t → snd (termToSTerm τ) H.≅ t sTerm-round-trip (i x) (variable .(⟨ toℕ x ⟩)) refl = {!!} sTerm-round-trip leaf (variable x) () sTerm-round-trip (i x fork t₁) (variable x₁) () sTerm-round-trip (t₁ fork t₂) (variable x) x₁ with sTermToFunctionName t₁ | sTermToTerms t₂ sTerm-round-trip (t₁ fork t₂) (variable x) () | nothing | ttt sTerm-round-trip (t₁ fork t₂) (variable x₁) () | just x | nothing sTerm-round-trip (t₁ fork t₂) (variable x₂) () | just x | (just x₁) sTerm-round-trip t (function x x₁) x₂ = {!mgu-c!} module Parameterized (Source : Nat → Set) (Target : Nat → Set) (let Sub : ∀ m n → Set Sub m n = Source m → Target n) where _≐'_ : {m n : Nat} -> Sub m n → Sub m n -> Set f ≐' g = ∀ x -> f x ≡ g x Property' : (m : Nat) → Set₁ Property' m = OscarPrelude.Σ (∀ {n} → (Sub m n) → Set) λ P → ∀ {m f g} -> f ≐' g -> P {m} f -> P g {- data AList : Set where anil : AList _asnoc_/_ : (σ : AList) (t' : Term) (x : VariableName) → AList aListToSAList : AList → ∃ -}
{ "alphanum_fraction": 0.6189503778, "avg_line_length": 38.5590551181, "ext": "agda", "hexsha": "2c2427904bb130ea7520ce852cd63404f5cae8b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/TermIsomorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/TermIsomorphism.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/TermIsomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2016, "size": 4897 }
module _ where open import Agda.Builtin.Unit open import Imports.Issue5583 tt _ : X _ = it
{ "alphanum_fraction": 0.7446808511, "avg_line_length": 10.4444444444, "ext": "agda", "hexsha": "f8a2c99e298f2026a6b1f2af8a441a55779e9d10", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5583.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5583.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5583.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 94 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Nat using (ℕ; zero; suc) _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) +-assoc′ : ∀ m n p → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl {- Goal: ℕ ———————————————————————————————————————————————————————————— n : ℕ -} {- Goal: ℕ ———————————————————————————————————————————————————————————— n : ℕ m : ℕ -}
{ "alphanum_fraction": 0.4234404537, "avg_line_length": 18.8928571429, "ext": "agda", "hexsha": "28a1b3a369439aa0c3fb7cc657eedecb3e1fc4fe", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Addition.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Addition.agda", "max_line_length": 60, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 187, "size": 529 }
{-# OPTIONS --guardedness #-} open import Agda.Builtin.Coinduction open import Agda.Builtin.IO open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.String open import Agda.Builtin.Unit private variable A : Set postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} record Stream₁ (A : Set) : Set where coinductive constructor _∷_ field head : A tail : Stream₁ A open Stream₁ repeat₁ : A → Stream₁ A repeat₁ x .head = x repeat₁ x .tail = repeat₁ x take₁ : Nat → Stream₁ A → List A take₁ zero xs = [] take₁ (suc n) xs = xs .head ∷ take₁ n (xs .tail) data List′ (A : Set) : Set where [] : List′ A _∷_ : A → List′ A → List′ A to-list : List′ A → List A to-list [] = [] to-list (x ∷ xs) = x ∷ to-list xs data Stream₂ (A : Set) : Set where _∷_ : A → ∞ (Stream₂ A) → Stream₂ A repeat₂ : A → Stream₂ A repeat₂ x = x ∷ ♯ repeat₂ x take₂ : Nat → Stream₂ A → List′ A take₂ zero _ = [] take₂ (suc n) (x ∷ xs) = x ∷ take₂ n (♭ xs) _++_ : List A → List′ A → List A [] ++ ys = to-list ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) main : IO ⊤ main = putStrLn (primStringFromList (take₁ 3 (repeat₁ '(') ++ take₂ 3 (repeat₂ ')')))
{ "alphanum_fraction": 0.6043110085, "avg_line_length": 20.296875, "ext": "agda", "hexsha": "6be3919d9a9f4428ec598a0ae551dbfe812acbc6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Strict.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Strict.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 456, "size": 1299 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type ------------------------------------------------------------------------ module Data.Maybe where open import Level ------------------------------------------------------------------------ -- The type open import Data.Maybe.Core public ------------------------------------------------------------------------ -- Some operations open import Data.Bool using (Bool; true; false; not) open import Data.Unit using (⊤) open import Function open import Relation.Nullary boolToMaybe : Bool → Maybe ⊤ boolToMaybe true = just _ boolToMaybe false = nothing is-just : ∀ {a} {A : Set a} → Maybe A → Bool is-just (just _) = true is-just nothing = false is-nothing : ∀ {a} {A : Set a} → Maybe A → Bool is-nothing = not ∘ is-just decToMaybe : ∀ {a} {A : Set a} → Dec A → Maybe A decToMaybe (yes x) = just x decToMaybe (no _) = nothing -- A dependent eliminator. maybe : ∀ {a b} {A : Set a} {B : Maybe A → Set b} → ((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x maybe j n (just x) = j x maybe j n nothing = n -- A non-dependent eliminator. maybe′ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → B → Maybe A → B maybe′ = maybe -- A safe variant of "fromJust". If the value is nothing, then the -- return type is the unit type. From-just : ∀ {a} (A : Set a) → Maybe A → Set a From-just A (just _) = A From-just A nothing = Lift ⊤ from-just : ∀ {a} {A : Set a} (x : Maybe A) → From-just A x from-just (just x) = x from-just nothing = _ ------------------------------------------------------------------------ -- Maybe monad open import Category.Functor open import Category.Monad open import Category.Monad.Identity map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Maybe A → Maybe B map f = maybe (just ∘ f) nothing functor : ∀ {f} → RawFunctor (Maybe {a = f}) functor = record { _<$>_ = map } monadT : ∀ {f} {M : Set f → Set f} → RawMonad M → RawMonad (λ A → M (Maybe A)) monadT M = record { return = M.return ∘ just ; _>>=_ = λ m f → M._>>=_ m (maybe f (M.return nothing)) } where module M = RawMonad M monad : ∀ {f} → RawMonad (Maybe {a = f}) monad = monadT IdentityMonad monadZero : ∀ {f} → RawMonadZero (Maybe {a = f}) monadZero = record { monad = monad ; ∅ = nothing } monadPlus : ∀ {f} → RawMonadPlus (Maybe {a = f}) monadPlus {f} = record { monadZero = monadZero ; _∣_ = _∣_ } where _∣_ : {A : Set f} → Maybe A → Maybe A → Maybe A nothing ∣ y = y just x ∣ y = just x ------------------------------------------------------------------------ -- Equality open import Relation.Binary as B data Eq {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Rel (Maybe A) (a ⊔ ℓ) where just : ∀ {x y} (x≈y : x ≈ y) → Eq _≈_ (just x) (just y) nothing : Eq _≈_ nothing nothing drop-just : ∀ {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} {x y : A} → just x ⟨ Eq _≈_ ⟩ just y → x ≈ y drop-just (just x≈y) = x≈y setoid : ∀ {ℓ₁ ℓ₂} → Setoid ℓ₁ ℓ₂ → Setoid _ _ setoid S = record { Carrier = Maybe S.Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where module S = Setoid S _≈_ = Eq S._≈_ refl : ∀ {x} → x ≈ x refl {just x} = just S.refl refl {nothing} = nothing sym : ∀ {x y} → x ≈ y → y ≈ x sym (just x≈y) = just (S.sym x≈y) sym nothing = nothing trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z trans (just x≈y) (just y≈z) = just (S.trans x≈y y≈z) trans nothing nothing = nothing decSetoid : ∀ {ℓ₁ ℓ₂} → DecSetoid ℓ₁ ℓ₂ → DecSetoid _ _ decSetoid D = record { isDecEquivalence = record { isEquivalence = Setoid.isEquivalence (setoid (DecSetoid.setoid D)) ; _≟_ = _≟_ } } where _≟_ : B.Decidable (Eq (DecSetoid._≈_ D)) just x ≟ just y with DecSetoid._≟_ D x y just x ≟ just y | yes x≈y = yes (just x≈y) just x ≟ just y | no x≉y = no (x≉y ∘ drop-just) just x ≟ nothing = no λ() nothing ≟ just y = no λ() nothing ≟ nothing = yes nothing ------------------------------------------------------------------------ -- Any and All open Data.Bool using (T) open import Data.Empty using (⊥) import Relation.Nullary.Decidable as Dec open import Relation.Unary as U data Any {a p} {A : Set a} (P : A → Set p) : Maybe A → Set (a ⊔ p) where just : ∀ {x} (px : P x) → Any P (just x) data All {a p} {A : Set a} (P : A → Set p) : Maybe A → Set (a ⊔ p) where just : ∀ {x} (px : P x) → All P (just x) nothing : All P nothing Is-just : ∀ {a} {A : Set a} → Maybe A → Set a Is-just = Any (λ _ → ⊤) Is-nothing : ∀ {a} {A : Set a} → Maybe A → Set a Is-nothing = All (λ _ → ⊥) to-witness : ∀ {p} {P : Set p} {m : Maybe P} → Is-just m → P to-witness (just {x = p} _) = p to-witness-T : ∀ {p} {P : Set p} (m : Maybe P) → T (is-just m) → P to-witness-T (just p) _ = p to-witness-T nothing () anyDec : ∀ {a p} {A : Set a} {P : A → Set p} → U.Decidable P → U.Decidable (Any P) anyDec p nothing = no λ() anyDec p (just x) = Dec.map′ just (λ { (Any.just px) → px }) (p x) allDec : ∀ {a p} {A : Set a} {P : A → Set p} → U.Decidable P → U.Decidable (All P) allDec p nothing = yes nothing allDec p (just x) = Dec.map′ just (λ { (All.just px) → px }) (p x)
{ "alphanum_fraction": 0.510626293, "avg_line_length": 27.1275510204, "ext": "agda", "hexsha": "39dc1583ee45c3c8dc6b98c05e095e2cb0fec708", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Maybe.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1890, "size": 5317 }
module Issue2762-2 where open import Agda.Builtin.List open import Agda.Builtin.Equality pattern [_] x = x ∷ [] singleton : {A : Set} → A → List A singleton x = x ∷ [] {-# DISPLAY _∷_ x [] = singleton x #-} _ : ∀ {A} (x : A) → singleton x ≡ [ x ] _ = {!!}
{ "alphanum_fraction": 0.5785440613, "avg_line_length": 17.4, "ext": "agda", "hexsha": "b23243a43ec37aa1f97853dc2e1475d9c451addc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2762-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2762-2.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2762-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 89, "size": 261 }
import Lvl module Type.Functions.Proofs {ℓₗ : Lvl.Level} where open import Functional import Function.Domains import Lang.Irrelevance import Logic.Predicate import Logic.Predicate.Theorems import Relator.Equals import Relator.Equals.Proofs open import Type open import Type.Properties.Empty import Type.Functions import Type.Singleton.Proofs open import Type.Properties.Singleton open import Type.Properties.Singleton.Proofs module _ {ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} {f : X → Y} where open Type.Functions {ℓₗ}{ℓₒ₁}{ℓₒ₂} {X}{Y} bijective-to-injective : ⦃ bij : Bijective(f) ⦄ → Injective(f) Injective.proof (bijective-to-injective ⦃ intro proof ⦄) {y} = unit-is-prop {ℓₒ₁} ⦃ proof{y} ⦄ bijective-to-surjective : ⦃ bij : Bijective(f) ⦄ → Surjective(f) Surjective.proof (bijective-to-surjective ⦃ intro proof ⦄) {y} = unit-is-pos {ℓₗ Lvl.⊔ ℓₒ₁} ⦃ proof{y} ⦄ injective-surjective-to-bijective : ⦃ inj : Injective(f) ⦄ → ⦃ surj : Surjective(f) ⦄ → Bijective(f) Bijective.proof(injective-surjective-to-bijective ⦃ intro inj ⦄ ⦃ intro surj ⦄) {y} = pos-prop-is-unit {ℓₗ Lvl.⊔ ℓₒ₁} ⦃ surj{y} ⦄ ⦃ inj{y} ⦄ module _ {ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} {f : X → Y} where open Function.Domains open Type.Functions {ℓₗ}{ℓₒ₁}{ℓₒ₂} {X}{Y} open Relator.Equals private _≡₁_ = _≡_ {ℓₗ Lvl.⊔ ℓₒ₁} Injective-apply : ⦃ _ : Injective(f) ⦄ → ∀{x y} → (f(x) ≡₁ f(y)) → (x ≡₁ y) Injective-apply ⦃ Injective.intro proof ⦄ {x}{y} (fxfy) with proof{f(y)} ... | MereProposition.intro uniqueness with uniqueness{Unapply.intro x ⦃ fxfy ⦄} {Unapply.intro y ⦃ [≡]-intro ⦄} ... | [≡]-intro = [≡]-intro module _ {ℓₒ : Lvl.Level} {X : Type{ℓₒ}} where open Type.Functions {ℓₗ Lvl.⊔ ℓₒ}{ℓₒ}{ℓₒ} {X}{X} open Type.Singleton.Proofs {ℓₗ}{ℓₒ} {X} instance id-is-bijective : Bijective(id) id-is-bijective = intro Singleton-is-unit
{ "alphanum_fraction": 0.6541471049, "avg_line_length": 35.5, "ext": "agda", "hexsha": "ee0e6d745b950408153b57bab16ecd0703c5a9cb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Type/Functions/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Type/Functions/Proofs.agda", "max_line_length": 114, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Type/Functions/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 804, "size": 1917 }
open import Agda.Builtin.Nat record C (A : Set) : Set where module M (X : Set) where module Ci = C {{...}} module CiNat = M.Ci Nat -- error: The module M.Ci is not parameterized...
{ "alphanum_fraction": 0.6417112299, "avg_line_length": 18.7, "ext": "agda", "hexsha": "e07ec0dfb271ba3625dcbef18357e4edfff445b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1983.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1983.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1983.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 187 }
module map-is-fold-Tree where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import map-Tree using (Tree; leaf; node; map-Tree) open import fold-Tree using (fold-Tree) postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- 外延性の公理を利用した証明のための補題 lemma : ∀ {A B C D : Set} → (f : A → C) → (g : B → D) → (tree : Tree A B) → map-Tree f g tree ≡ fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) tree lemma f g (leaf a) = begin map-Tree f g (leaf a) ≡⟨⟩ leaf (f a) ≡⟨⟩ fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) (leaf a) ∎ lemma f g (node treeˡ b treeʳ) = begin map-Tree f g (node treeˡ b treeʳ) ≡⟨⟩ node (map-Tree f g treeˡ) (g b) (map-Tree f g treeʳ) ≡⟨ cong (λ treeʳ′ → node (map-Tree f g treeˡ) (g b) treeʳ′) (lemma f g treeʳ) ⟩ node (map-Tree f g treeˡ) (g b) (fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) treeʳ) ≡⟨ cong (λ treeˡ′ → node treeˡ′ (g b) (fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) treeʳ)) (lemma f g treeˡ) ⟩ node (fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) treeˡ) (g b) (fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) treeʳ) ≡⟨⟩ fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) (node treeˡ b treeʳ) ∎ -- Treeのmapが畳み込みで表現できることの証明 map-is-fold-Tree : ∀ {A B C D : Set} → (f : A → C) → (g : B → D) → map-Tree f g ≡ fold-Tree (λ a → leaf (f a)) (λ treeˡ b treeʳ → node treeˡ (g b) treeʳ) map-is-fold-Tree f g = extensionality (lemma f g)
{ "alphanum_fraction": 0.5450620615, "avg_line_length": 35.6346153846, "ext": "agda", "hexsha": "15647b4007f56f78d297c7005e3e04e581cbabdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/map-is-fold-Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/map-is-fold-Tree.agda", "max_line_length": 107, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/map-is-fold-Tree.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 819, "size": 1853 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Type(s) used (only) when calling out to Haskell via the FFI ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module Foreign.Haskell where open import Level ------------------------------------------------------------------------ -- Pairs open import Foreign.Haskell.Pair public renaming ( toForeign to toForeignPair ; fromForeign to fromForeignPair ) ------------------------------------------------------------------------ -- Sums open import Foreign.Haskell.Either public renaming ( toForeign to toForeignEither ; fromForeign to fromForeignEither ) ------------------------------------------------------------------------ -- Maybe open import Foreign.Haskell.Maybe public renaming ( toForeign to toForeignMaybe ; fromForeign to fromForeignMaybe ) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. open import Data.Unit using (⊤; tt) -- Version 1.1 Unit = ⊤ {-# WARNING_ON_USAGE Unit "Warning: Unit was deprecated in v1.1. Please use ⊤ from Data.Unit instead." #-} unit = tt {-# WARNING_ON_USAGE unit "Warning: unit was deprecated in v1.1. Please use tt from Data.Unit instead." #-}
{ "alphanum_fraction": 0.4755525787, "avg_line_length": 24.8833333333, "ext": "agda", "hexsha": "6243ca498b84a0ac5aaac53b31595994acc7df6f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Foreign/Haskell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Foreign/Haskell.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Foreign/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 276, "size": 1493 }
open import Nat open import Prelude open import List open import contexts module core where -- types data typ : Set where b : typ ⦇·⦈ : typ _==>_ : typ → typ → typ _⊗_ : typ → typ → typ -- arrow type constructors bind very tightly infixr 25 _==>_ infixr 25 _⊗_ -- we use natural numbers as names throughout the development. here we -- provide some aliases to that the definitions below are more readable -- about what's being named, even though the underlying implementations -- are the same and there's no abstraction protecting you from breaking -- invariants. -- written `x` in math varname : Set varname = Nat -- written `u` in math holename : Set holename = Nat -- written `a` in math livelitname : Set livelitname = Nat -- "external expressions", or the middle layer of expressions. presented -- first because of the dependence structure below. data eexp : Set where c : eexp _·:_ : eexp → typ → eexp X : varname → eexp ·λ : varname → eexp → eexp ·λ_[_]_ : varname → typ → eexp → eexp ⦇⦈[_] : holename → eexp ⦇⌜_⌟⦈[_] : eexp → holename → eexp _∘_ : eexp → eexp → eexp ⟨_,_⟩ : eexp → eexp → eexp fst : eexp → eexp snd : eexp → eexp -- the type of type contexts, i.e. Γs in the judegments below tctx : Set tctx = typ ctx mutual -- identity substitution, substitition environments data env : Set where Id : (Γ : tctx) → env Subst : (d : iexp) → (y : varname) → env → env -- internal expressions, the bottom most layer of expresions. these are -- what the elaboration phase targets and the expressions on which -- evaluation is given. data iexp : Set where c : iexp X : varname → iexp ·λ_[_]_ : varname → typ → iexp → iexp ⦇⦈⟨_⟩ : (holename × env) → iexp ⦇⌜_⌟⦈⟨_⟩ : iexp → (holename × env) → iexp _∘_ : iexp → iexp → iexp _⟨_⇒_⟩ : iexp → typ → typ → iexp _⟨_⇒⦇⦈⇏_⟩ : iexp → typ → typ → iexp ⟨_,_⟩ : iexp → iexp → iexp fst : iexp → iexp snd : iexp → iexp -- convenient notation for chaining together two agreeable casts _⟨_⇒_⇒_⟩ : iexp → typ → typ → typ → iexp d ⟨ τ1 ⇒ τ2 ⇒ τ3 ⟩ = d ⟨ τ1 ⇒ τ2 ⟩ ⟨ τ2 ⇒ τ3 ⟩ record livelitdef : Set where field expand : iexp model-type : typ expansion-type : typ -- unexpanded expressions, the outermost layer of expressions: a langauge -- exactly like eexp, but also with livelits mutual data uexp : Set where c : uexp _·:_ : uexp → typ → uexp X : varname → uexp ·λ : varname → uexp → uexp ·λ_[_]_ : varname → typ → uexp → uexp ⦇⦈[_] : holename → uexp ⦇⌜_⌟⦈[_] : uexp → holename → uexp _∘_ : uexp → uexp → uexp ⟨_,_⟩ : uexp → uexp → uexp fst : uexp → uexp snd : uexp → uexp -- new forms below $_⟨_⁏_⟩[_] : (a : livelitname) → (d : iexp) → (ϕᵢ : List splice) → (u : holename) → uexp splice : Set splice = typ × uexp -- type consistency data _~_ : (t1 t2 : typ) → Set where TCRefl : {τ : typ} → τ ~ τ TCHole1 : {τ : typ} → τ ~ ⦇·⦈ TCHole2 : {τ : typ} → ⦇·⦈ ~ τ TCArr : {τ1 τ2 τ1' τ2' : typ} → τ1 ~ τ1' → τ2 ~ τ2' → τ1 ==> τ2 ~ τ1' ==> τ2' TCProd : {τ1 τ2 τ1' τ2' : typ} → τ1 ~ τ1' → τ2 ~ τ2' → (τ1 ⊗ τ2) ~ (τ1' ⊗ τ2') -- type inconsistency data _~̸_ : (τ1 τ2 : typ) → Set where ICBaseArr1 : {τ1 τ2 : typ} → b ~̸ τ1 ==> τ2 ICBaseArr2 : {τ1 τ2 : typ} → τ1 ==> τ2 ~̸ b ICArr1 : {τ1 τ2 τ3 τ4 : typ} → τ1 ~̸ τ3 → τ1 ==> τ2 ~̸ τ3 ==> τ4 ICArr2 : {τ1 τ2 τ3 τ4 : typ} → τ2 ~̸ τ4 → τ1 ==> τ2 ~̸ τ3 ==> τ4 ICBaseProd1 : {τ1 τ2 : typ} → b ~̸ τ1 ⊗ τ2 ICBaseProd2 : {τ1 τ2 : typ} → τ1 ⊗ τ2 ~̸ b ICProdArr1 : {τ1 τ2 τ3 τ4 : typ} → τ1 ==> τ2 ~̸ τ3 ⊗ τ4 ICProdArr2 : {τ1 τ2 τ3 τ4 : typ} → τ1 ⊗ τ2 ~̸ τ3 ==> τ4 ICProd1 : {τ1 τ2 τ3 τ4 : typ} → τ1 ~̸ τ3 → τ1 ⊗ τ2 ~̸ τ3 ⊗ τ4 ICProd2 : {τ1 τ2 τ3 τ4 : typ} → τ2 ~̸ τ4 → τ1 ⊗ τ2 ~̸ τ3 ⊗ τ4 --- matching for arrows data _▸arr_ : typ → typ → Set where MAHole : ⦇·⦈ ▸arr ⦇·⦈ ==> ⦇·⦈ MAArr : {τ1 τ2 : typ} → τ1 ==> τ2 ▸arr τ1 ==> τ2 -- matching for products data _▸prod_ : typ → typ → Set where MPHole : ⦇·⦈ ▸prod ⦇·⦈ ⊗ ⦇·⦈ MPProd : {τ1 τ2 : typ} → τ1 ⊗ τ2 ▸prod τ1 ⊗ τ2 -- the type of hole contexts, i.e. Δs in the judgements hctx : Set hctx = (typ ctx × typ) ctx -- notation for a triple to match the CMTT syntax _::_[_] : holename → typ → tctx → (holename × (tctx × typ)) u :: τ [ Γ ] = u , (Γ , τ) -- the hole name u does not appear in the term e data hole-name-new : (e : eexp) (u : holename) → Set where HNConst : ∀{u} → hole-name-new c u HNAsc : ∀{e τ u} → hole-name-new e u → hole-name-new (e ·: τ) u HNVar : ∀{x u} → hole-name-new (X x) u HNLam1 : ∀{x e u} → hole-name-new e u → hole-name-new (·λ x e) u HNLam2 : ∀{x e u τ} → hole-name-new e u → hole-name-new (·λ x [ τ ] e) u HNHole : ∀{u u'} → u' ≠ u → hole-name-new (⦇⦈[ u' ]) u HNNEHole : ∀{u u' e} → u' ≠ u → hole-name-new e u → hole-name-new (⦇⌜ e ⌟⦈[ u' ]) u HNAp : ∀{ u e1 e2 } → hole-name-new e1 u → hole-name-new e2 u → hole-name-new (e1 ∘ e2) u HNFst : ∀{ u e } → hole-name-new e u → hole-name-new (fst e) u HNSnd : ∀{ u e } → hole-name-new e u → hole-name-new (snd e) u HNPair : ∀{ u e1 e2 } → hole-name-new e1 u → hole-name-new e2 u → hole-name-new ⟨ e1 , e2 ⟩ u -- two terms that do not share any hole names data holes-disjoint : (e1 : eexp) → (e2 : eexp) → Set where HDConst : ∀{e} → holes-disjoint c e HDAsc : ∀{e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (e1 ·: τ) e2 HDVar : ∀{x e} → holes-disjoint (X x) e HDLam1 : ∀{x e1 e2} → holes-disjoint e1 e2 → holes-disjoint (·λ x e1) e2 HDLam2 : ∀{x e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (·λ x [ τ ] e1) e2 HDHole : ∀{u e2} → hole-name-new e2 u → holes-disjoint (⦇⦈[ u ]) e2 HDNEHole : ∀{u e1 e2} → hole-name-new e2 u → holes-disjoint e1 e2 → holes-disjoint (⦇⌜ e1 ⌟⦈[ u ]) e2 HDAp : ∀{e1 e2 e3} → holes-disjoint e1 e3 → holes-disjoint e2 e3 → holes-disjoint (e1 ∘ e2) e3 HDFst : ∀{e1 e2} → holes-disjoint e1 e2 → holes-disjoint (fst e1) e2 HDSnd : ∀{e1 e2} → holes-disjoint e1 e2 → holes-disjoint (snd e1) e2 HDPair : ∀{e1 e2 e3} → holes-disjoint e1 e3 → holes-disjoint e2 e3 → holes-disjoint ⟨ e1 , e2 ⟩ e3 -- bidirectional type checking judgements for eexp mutual -- synthesis data _⊢_=>_ : (Γ : tctx) (e : eexp) (τ : typ) → Set where SConst : {Γ : tctx} → Γ ⊢ c => b SAsc : {Γ : tctx} {e : eexp} {τ : typ} → Γ ⊢ e <= τ → Γ ⊢ (e ·: τ) => τ SVar : {Γ : tctx} {τ : typ} {x : varname} → (x , τ) ∈ Γ → Γ ⊢ X x => τ SAp : {Γ : tctx} {e1 e2 : eexp} {τ τ1 τ2 : typ} → holes-disjoint e1 e2 → Γ ⊢ e1 => τ1 → τ1 ▸arr τ2 ==> τ → Γ ⊢ e2 <= τ2 → Γ ⊢ (e1 ∘ e2) => τ SEHole : {Γ : tctx} {u : holename} → Γ ⊢ ⦇⦈[ u ] => ⦇·⦈ SNEHole : {Γ : tctx} {e : eexp} {τ : typ} {u : holename} → hole-name-new e u → Γ ⊢ e => τ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] => ⦇·⦈ SLam : {Γ : tctx} {e : eexp} {τ1 τ2 : typ} {x : varname} → x # Γ → (Γ ,, (x , τ1)) ⊢ e => τ2 → Γ ⊢ ·λ x [ τ1 ] e => τ1 ==> τ2 SFst : ∀{ e τ τ1 τ2 Γ} → Γ ⊢ e => τ → τ ▸prod τ1 ⊗ τ2 → Γ ⊢ fst e => τ1 SSnd : ∀{ e τ τ1 τ2 Γ} → Γ ⊢ e => τ → τ ▸prod τ1 ⊗ τ2 → Γ ⊢ snd e => τ2 SPair : ∀{ e1 e2 τ1 τ2 Γ} → holes-disjoint e1 e2 → Γ ⊢ e1 => τ1 → Γ ⊢ e2 => τ2 → Γ ⊢ ⟨ e1 , e2 ⟩ => τ1 ⊗ τ2 -- analysis data _⊢_<=_ : (Γ : tctx) (e : eexp) (τ : typ) → Set where ASubsume : {Γ : tctx} {e : eexp} {τ τ' : typ} → Γ ⊢ e => τ' → τ ~ τ' → Γ ⊢ e <= τ ALam : {Γ : tctx} {e : eexp} {τ τ1 τ2 : typ} {x : varname} → x # Γ → τ ▸arr τ1 ==> τ2 → (Γ ,, (x , τ1)) ⊢ e <= τ2 → Γ ⊢ (·λ x e) <= τ -- those types without holes data _tcomplete : typ → Set where TCBase : b tcomplete TCArr : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ==> τ2) tcomplete TCProd : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ⊗ τ2) tcomplete -- those external expressions without holes data _ecomplete : eexp → Set where ECConst : c ecomplete ECAsc : ∀{τ e} → τ tcomplete → e ecomplete → (e ·: τ) ecomplete ECVar : ∀{x} → (X x) ecomplete ECLam1 : ∀{x e} → e ecomplete → (·λ x e) ecomplete ECLam2 : ∀{x e τ} → e ecomplete → τ tcomplete → (·λ x [ τ ] e) ecomplete ECAp : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (e1 ∘ e2) ecomplete ECFst : ∀{e} → e ecomplete → (fst e) ecomplete ECSnd : ∀{e} → e ecomplete → (snd e) ecomplete ECPair : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → ⟨ e1 , e2 ⟩ ecomplete -- those internal expressions without holes data _dcomplete : iexp → Set where DCVar : ∀{x} → (X x) dcomplete DCConst : c dcomplete DCLam : ∀{x τ d} → d dcomplete → τ tcomplete → (·λ x [ τ ] d) dcomplete DCAp : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → (d1 ∘ d2) dcomplete DCCast : ∀{d τ1 τ2} → d dcomplete → τ1 tcomplete → τ2 tcomplete → (d ⟨ τ1 ⇒ τ2 ⟩) dcomplete DCFst : ∀{d} → d dcomplete → (fst d) dcomplete DCSnd : ∀{d} → d dcomplete → (snd d) dcomplete DCPair : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → ⟨ d1 , d2 ⟩ dcomplete -- contexts that only produce complete types _gcomplete : tctx → Set Γ gcomplete = (x : varname) (τ : typ) → (x , τ) ∈ Γ → τ tcomplete -- those internal expressions where every cast is the identity cast and -- there are no failed casts data cast-id : iexp → Set where CIConst : cast-id c CIVar : ∀{x} → cast-id (X x) CILam : ∀{x τ d} → cast-id d → cast-id (·λ x [ τ ] d) CIHole : ∀{u} → cast-id (⦇⦈⟨ u ⟩) CINEHole : ∀{d u} → cast-id d → cast-id (⦇⌜ d ⌟⦈⟨ u ⟩) CIAp : ∀{d1 d2} → cast-id d1 → cast-id d2 → cast-id (d1 ∘ d2) CICast : ∀{d τ} → cast-id d → cast-id (d ⟨ τ ⇒ τ ⟩) CIFst : ∀{d} → cast-id d → cast-id (fst d) CISnd : ∀{d} → cast-id d → cast-id (snd d) CIPair : ∀{d1 d2} → cast-id d1 → cast-id d2 → cast-id ⟨ d1 , d2 ⟩ -- expansion mutual -- synthesis data _⊢_⇒_~>_⊣_ : (Γ : tctx) (e : eexp) (τ : typ) (d : iexp) (Δ : hctx) → Set where ESConst : ∀{Γ} → Γ ⊢ c ⇒ b ~> c ⊣ ∅ ESVar : ∀{Γ x τ} → (x , τ) ∈ Γ → Γ ⊢ X x ⇒ τ ~> X x ⊣ ∅ ESLam : ∀{Γ x τ1 τ2 e d Δ } → (x # Γ) → (Γ ,, (x , τ1)) ⊢ e ⇒ τ2 ~> d ⊣ Δ → Γ ⊢ ·λ x [ τ1 ] e ⇒ (τ1 ==> τ2) ~> ·λ x [ τ1 ] d ⊣ Δ ESAp : ∀{Γ e1 τ τ1 τ1' τ2 τ2' d1 Δ1 e2 d2 Δ2 } → holes-disjoint e1 e2 → Δ1 ## Δ2 → Γ ⊢ e1 => τ1 → τ1 ▸arr τ2 ==> τ → Γ ⊢ e1 ⇐ (τ2 ==> τ) ~> d1 :: τ1' ⊣ Δ1 → Γ ⊢ e2 ⇐ τ2 ~> d2 :: τ2' ⊣ Δ2 → Γ ⊢ e1 ∘ e2 ⇒ τ ~> (d1 ⟨ τ1' ⇒ τ2 ==> τ ⟩) ∘ (d2 ⟨ τ2' ⇒ τ2 ⟩) ⊣ (Δ1 ∪ Δ2) ESEHole : ∀{ Γ u } → Γ ⊢ ⦇⦈[ u ] ⇒ ⦇·⦈ ~> ⦇⦈⟨ u , Id Γ ⟩ ⊣ ■ (u :: ⦇·⦈ [ Γ ]) ESNEHole : ∀{ Γ e τ d u Δ } → Δ ## (■ (u , Γ , ⦇·⦈)) → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇒ ⦇·⦈ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ ⊣ (Δ ,, u :: ⦇·⦈ [ Γ ]) ESAsc : ∀ {Γ e τ d τ' Δ} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → Γ ⊢ (e ·: τ) ⇒ τ ~> d ⟨ τ' ⇒ τ ⟩ ⊣ Δ ESFst : ∀{Γ e τ τ' d τ1 τ2 Δ} → Γ ⊢ e => τ → τ ▸prod τ1 ⊗ τ2 → Γ ⊢ e ⇐ τ1 ⊗ τ2 ~> d :: τ' ⊣ Δ → Γ ⊢ fst e ⇒ τ1 ~> fst (d ⟨ τ' ⇒ τ1 ⊗ τ2 ⟩) ⊣ Δ ESSnd : ∀{Γ e τ τ' d τ1 τ2 Δ} → Γ ⊢ e => τ → τ ▸prod τ1 ⊗ τ2 → Γ ⊢ e ⇐ τ1 ⊗ τ2 ~> d :: τ' ⊣ Δ → Γ ⊢ snd e ⇒ τ2 ~> snd (d ⟨ τ' ⇒ τ1 ⊗ τ2 ⟩) ⊣ Δ ESPair : ∀{Γ e1 τ1 d1 Δ1 e2 τ2 d2 Δ2} → holes-disjoint e1 e2 → Δ1 ## Δ2 → Γ ⊢ e1 ⇒ τ1 ~> d1 ⊣ Δ1 → Γ ⊢ e2 ⇒ τ2 ~> d2 ⊣ Δ2 → Γ ⊢ ⟨ e1 , e2 ⟩ ⇒ τ1 ⊗ τ2 ~> ⟨ d1 , d2 ⟩ ⊣ (Δ1 ∪ Δ2) -- analysis data _⊢_⇐_~>_::_⊣_ : (Γ : tctx) (e : eexp) (τ : typ) (d : iexp) (τ' : typ) (Δ : hctx) → Set where EALam : ∀{Γ x τ τ1 τ2 e d τ2' Δ } → (x # Γ) → τ ▸arr τ1 ==> τ2 → (Γ ,, (x , τ1)) ⊢ e ⇐ τ2 ~> d :: τ2' ⊣ Δ → Γ ⊢ ·λ x e ⇐ τ ~> ·λ x [ τ1 ] d :: τ1 ==> τ2' ⊣ Δ EASubsume : ∀{e Γ τ' d Δ τ} → ((u : holename) → e ≠ ⦇⦈[ u ]) → ((e' : eexp) (u : holename) → e ≠ ⦇⌜ e' ⌟⦈[ u ]) → Γ ⊢ e ⇒ τ' ~> d ⊣ Δ → τ ~ τ' → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ EAEHole : ∀{ Γ u τ } → Γ ⊢ ⦇⦈[ u ] ⇐ τ ~> ⦇⦈⟨ u , Id Γ ⟩ :: τ ⊣ ■ (u :: τ [ Γ ]) EANEHole : ∀{ Γ e u τ d τ' Δ } → Δ ## (■ (u , Γ , τ)) → Γ ⊢ e ⇒ τ' ~> d ⊣ Δ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇐ τ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ :: τ ⊣ (Δ ,, u :: τ [ Γ ]) -- ground types data _ground : (τ : typ) → Set where GBase : b ground GHole : ⦇·⦈ ==> ⦇·⦈ ground GProd : ⦇·⦈ ⊗ ⦇·⦈ ground mutual -- substitution typing data _,_⊢_:s:_ : hctx → tctx → env → tctx → Set where STAId : ∀{Γ Γ' Δ} → ((x : varname) (τ : typ) → (x , τ) ∈ Γ' → (x , τ) ∈ Γ) → Δ , Γ ⊢ Id Γ' :s: Γ' STASubst : ∀{Γ Δ σ y Γ' d τ } → Δ , Γ ,, (y , τ) ⊢ σ :s: Γ' → Δ , Γ ⊢ d :: τ → Δ , Γ ⊢ Subst d y σ :s: Γ' -- type assignment data _,_⊢_::_ : (Δ : hctx) (Γ : tctx) (d : iexp) (τ : typ) → Set where TAConst : ∀{Δ Γ} → Δ , Γ ⊢ c :: b TAVar : ∀{Δ Γ x τ} → (x , τ) ∈ Γ → Δ , Γ ⊢ X x :: τ TALam : ∀{ Δ Γ x τ1 d τ2} → x # Γ → Δ , (Γ ,, (x , τ1)) ⊢ d :: τ2 → Δ , Γ ⊢ ·λ x [ τ1 ] d :: (τ1 ==> τ2) TAAp : ∀{ Δ Γ d1 d2 τ1 τ} → Δ , Γ ⊢ d1 :: τ1 ==> τ → Δ , Γ ⊢ d2 :: τ1 → Δ , Γ ⊢ d1 ∘ d2 :: τ TAEHole : ∀{ Δ Γ σ u Γ' τ} → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇⦈⟨ u , σ ⟩ :: τ TANEHole : ∀ { Δ Γ d τ' Γ' u σ τ } → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ d :: τ' → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇⌜ d ⌟⦈⟨ u , σ ⟩ :: τ TACast : ∀{ Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ~ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2 TAFailedCast : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ground → τ2 ground → τ1 ≠ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ :: τ2 TAFst : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 ⊗ τ2 → Δ , Γ ⊢ fst d :: τ1 TASnd : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 ⊗ τ2 → Δ , Γ ⊢ snd d :: τ2 TAPair : ∀{Δ Γ d1 d2 τ1 τ2} → Δ , Γ ⊢ d1 :: τ1 → Δ , Γ ⊢ d2 :: τ2 → Δ , Γ ⊢ ⟨ d1 , d2 ⟩ :: τ1 ⊗ τ2 -- substitution [_/_]_ : iexp → varname → iexp → iexp [ d / y ] c = c [ d / y ] X x with natEQ x y [ d / y ] X .y | Inl refl = d [ d / y ] X x | Inr neq = X x [ d / y ] (·λ x [ x₁ ] d') with natEQ x y [ d / y ] (·λ .y [ τ ] d') | Inl refl = ·λ y [ τ ] d' [ d / y ] (·λ x [ τ ] d') | Inr x₁ = ·λ x [ τ ] ( [ d / y ] d') [ d / y ] ⦇⦈⟨ u , σ ⟩ = ⦇⦈⟨ u , Subst d y σ ⟩ [ d / y ] ⦇⌜ d' ⌟⦈⟨ u , σ ⟩ = ⦇⌜ [ d / y ] d' ⌟⦈⟨ u , Subst d y σ ⟩ [ d / y ] (d1 ∘ d2) = ([ d / y ] d1) ∘ ([ d / y ] d2) [ d / y ] (d' ⟨ τ1 ⇒ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒ τ2 ⟩ [ d / y ] (d' ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ [ d / y ] ⟨ d1 , d2 ⟩ = ⟨ [ d / y ] d1 , [ d / y ] d2 ⟩ [ d / y ] (fst d') = fst ([ d / y ] d') [ d / y ] (snd d') = snd ([ d / y ] d') -- applying an environment to an expression apply-env : env → iexp → iexp apply-env (Id Γ) d = d apply-env (Subst d y σ) d' = [ d / y ] ( apply-env σ d') -- values data _val : (d : iexp) → Set where VConst : c val VLam : ∀{x τ d} → (·λ x [ τ ] d) val VPair : ∀{d1 d2} → d1 val → d2 val → ⟨ d1 , d2 ⟩ val -- boxed values data _boxedval : (d : iexp) → Set where BVVal : ∀{d} → d val → d boxedval BVPair : ∀{d1 d2} → d1 boxedval → d2 boxedval → ⟨ d1 , d2 ⟩ boxedval BVArrCast : ∀{ d τ1 τ2 τ3 τ4 } → τ1 ==> τ2 ≠ τ3 ==> τ4 → d boxedval → d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ boxedval BVProdCast : ∀{ d τ1 τ2 τ3 τ4 } → τ1 ⊗ τ2 ≠ τ3 ⊗ τ4 → d boxedval → d ⟨ (τ1 ⊗ τ2) ⇒ (τ3 ⊗ τ4) ⟩ boxedval BVHoleCast : ∀{ τ d } → τ ground → d boxedval → d ⟨ τ ⇒ ⦇·⦈ ⟩ boxedval mutual -- indeterminate forms data _indet : (d : iexp) → Set where IEHole : ∀{u σ} → ⦇⦈⟨ u , σ ⟩ indet INEHole : ∀{d u σ} → d final → ⦇⌜ d ⌟⦈⟨ u , σ ⟩ indet IAp : ∀{d1 d2} → ((τ1 τ2 τ3 τ4 : typ) (d1' : iexp) → d1 ≠ (d1' ⟨(τ1 ==> τ2) ⇒ (τ3 ==> τ4)⟩)) → d1 indet → d2 final → (d1 ∘ d2) indet IFst : ∀{d} → d indet → (∀{d1 d2} → d ≠ ⟨ d1 , d2 ⟩) → (∀{d' τ1 τ2 τ3 τ4} → d ≠ (d' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) → (fst d) indet ISnd : ∀{d} → d indet → (∀{d1 d2} → d ≠ ⟨ d1 , d2 ⟩) → (∀{d' τ1 τ2 τ3 τ4} → d ≠ (d' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) → (snd d) indet IPair1 : ∀{d1 d2} → d1 indet → d2 final → ⟨ d1 , d2 ⟩ indet IPair2 : ∀{d1 d2} → d1 final → d2 indet → ⟨ d1 , d2 ⟩ indet ICastArr : ∀{d τ1 τ2 τ3 τ4} → τ1 ==> τ2 ≠ τ3 ==> τ4 → d indet → d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ indet ICastProd : ∀{d τ1 τ2 τ3 τ4} → τ1 ⊗ τ2 ≠ τ3 ⊗ τ4 → d indet → d ⟨ (τ1 ⊗ τ2) ⇒ (τ3 ⊗ τ4) ⟩ indet ICastGroundHole : ∀{ τ d } → τ ground → d indet → d ⟨ τ ⇒ ⦇·⦈ ⟩ indet ICastHoleGround : ∀ { d τ } → ((d' : iexp) (τ' : typ) → d ≠ (d' ⟨ τ' ⇒ ⦇·⦈ ⟩)) → d indet → τ ground → d ⟨ ⦇·⦈ ⇒ τ ⟩ indet IFailedCast : ∀{ d τ1 τ2 } → d final → τ1 ground → τ2 ground → τ1 ≠ τ2 → d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ indet -- final expressions data _final : (d : iexp) → Set where FBoxedVal : ∀{d} → d boxedval → d final FIndet : ∀{d} → d indet → d final -- contextual dynamics -- evaluation contexts data ectx : Set where ⊙ : ectx _∘₁_ : ectx → iexp → ectx _∘₂_ : iexp → ectx → ectx ⦇⌜_⌟⦈⟨_⟩ : ectx → (holename × env ) → ectx fst·_ : ectx → ectx snd·_ : ectx → ectx ⟨_,_⟩₁ : ectx → iexp → ectx ⟨_,_⟩₂ : iexp → ectx → ectx _⟨_⇒_⟩ : ectx → typ → typ → ectx _⟨_⇒⦇·⦈⇏_⟩ : ectx → typ → typ → ectx -- note: this judgement is redundant: in the absence of the premises in -- the red brackets, all syntactically well formed ectxs are valid. with -- finality premises, that's not true, and that would propagate through -- additions to the calculus. so we leave it here for clarity but note -- that, as written, in any use case its either trival to prove or -- provides no additional information --ε is an evaluation context data _evalctx : (ε : ectx) → Set where ECDot : ⊙ evalctx ECAp1 : ∀{d ε} → ε evalctx → (ε ∘₁ d) evalctx ECAp2 : ∀{d ε} → -- d final → -- red brackets ε evalctx → (d ∘₂ ε) evalctx ECNEHole : ∀{ε u σ} → ε evalctx → ⦇⌜ ε ⌟⦈⟨ u , σ ⟩ evalctx ECFst : ∀{ε} → (fst· ε) evalctx ECSnd : ∀{ε} → (snd· ε) evalctx ECPair1 : ∀{d ε} → ε evalctx → ⟨ ε , d ⟩₁ evalctx ECPair2 : ∀{d ε} → -- d final → -- red brackets ε evalctx → ⟨ d , ε ⟩₂ evalctx ECCast : ∀{ ε τ1 τ2} → ε evalctx → (ε ⟨ τ1 ⇒ τ2 ⟩) evalctx ECFailedCast : ∀{ ε τ1 τ2 } → ε evalctx → ε ⟨ τ1 ⇒⦇·⦈⇏ τ2 ⟩ evalctx -- d is the result of filling the hole in ε with d' data _==_⟦_⟧ : (d : iexp) (ε : ectx) (d' : iexp) → Set where FHOuter : ∀{d} → d == ⊙ ⟦ d ⟧ FHAp1 : ∀{d1 d1' d2 ε} → d1 == ε ⟦ d1' ⟧ → (d1 ∘ d2) == (ε ∘₁ d2) ⟦ d1' ⟧ FHAp2 : ∀{d1 d2 d2' ε} → -- d1 final → -- red brackets d2 == ε ⟦ d2' ⟧ → (d1 ∘ d2) == (d1 ∘₂ ε) ⟦ d2' ⟧ FHNEHole : ∀{ d d' ε u σ} → d == ε ⟦ d' ⟧ → ⦇⌜ d ⌟⦈⟨ (u , σ ) ⟩ == ⦇⌜ ε ⌟⦈⟨ (u , σ ) ⟩ ⟦ d' ⟧ FHFst : ∀{d d' ε} → d == ε ⟦ d' ⟧ → fst d == (fst· ε) ⟦ d' ⟧ FHSnd : ∀{d d' ε} → d == ε ⟦ d' ⟧ → snd d == (snd· ε) ⟦ d' ⟧ FHPair1 : ∀{d1 d1' d2 ε} → d1 == ε ⟦ d1' ⟧ → ⟨ d1 , d2 ⟩ == ⟨ ε , d2 ⟩₁ ⟦ d1' ⟧ FHPair2 : ∀{d1 d2 d2' ε} → d2 == ε ⟦ d2' ⟧ → ⟨ d1 , d2 ⟩ == ⟨ d1 , ε ⟩₂ ⟦ d2' ⟧ FHCast : ∀{ d d' ε τ1 τ2 } → d == ε ⟦ d' ⟧ → d ⟨ τ1 ⇒ τ2 ⟩ == ε ⟨ τ1 ⇒ τ2 ⟩ ⟦ d' ⟧ FHFailedCast : ∀{ d d' ε τ1 τ2} → d == ε ⟦ d' ⟧ → (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) == (ε ⟨ τ1 ⇒⦇·⦈⇏ τ2 ⟩) ⟦ d' ⟧ -- matched ground types data _▸gnd_ : typ → typ → Set where MGArr : ∀{τ1 τ2} → (τ1 ==> τ2) ≠ (⦇·⦈ ==> ⦇·⦈) → (τ1 ==> τ2) ▸gnd (⦇·⦈ ==> ⦇·⦈) MGProd : ∀{τ1 τ2} → (τ1 ⊗ τ2) ≠ (⦇·⦈ ⊗ ⦇·⦈) → (τ1 ⊗ τ2) ▸gnd (⦇·⦈ ⊗ ⦇·⦈) -- instruction transition judgement data _→>_ : (d d' : iexp) → Set where ITLam : ∀{ x τ d1 d2 } → -- d2 final → -- red brackets ((·λ x [ τ ] d1) ∘ d2) →> ([ d2 / x ] d1) ITFst : ∀{d1 d2} → -- d1 final → -- red brackets -- d2 final → -- red brackets fst ⟨ d1 , d2 ⟩ →> d1 ITSnd : ∀{d1 d2} → -- d1 final → -- red brackets -- d2 final → -- red brackets snd ⟨ d1 , d2 ⟩ →> d2 ITCastID : ∀{d τ } → -- d final → -- red brackets (d ⟨ τ ⇒ τ ⟩) →> d ITCastSucceed : ∀{d τ } → -- d final → -- red brackets τ ground → (d ⟨ τ ⇒ ⦇·⦈ ⇒ τ ⟩) →> d ITCastFail : ∀{ d τ1 τ2} → -- d final → -- red brackets τ1 ground → τ2 ground → τ1 ≠ τ2 → (d ⟨ τ1 ⇒ ⦇·⦈ ⇒ τ2 ⟩) →> (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) ITApCast : ∀{d1 d2 τ1 τ2 τ1' τ2' } → -- d1 final → -- red brackets -- d2 final → -- red brackets ((d1 ⟨ (τ1 ==> τ2) ⇒ (τ1' ==> τ2')⟩) ∘ d2) →> ((d1 ∘ (d2 ⟨ τ1' ⇒ τ1 ⟩)) ⟨ τ2 ⇒ τ2' ⟩) ITFstCast : ∀{d τ1 τ2 τ1' τ2' } → -- d final → -- red brackets fst (d ⟨ τ1 ⊗ τ2 ⇒ τ1' ⊗ τ2' ⟩) →> ((fst d) ⟨ τ1 ⇒ τ1' ⟩) ITSndCast : ∀{d τ1 τ2 τ1' τ2' } → -- d final → -- red brackets snd (d ⟨ τ1 ⊗ τ2 ⇒ τ1' ⊗ τ2' ⟩) →> ((snd d) ⟨ τ2 ⇒ τ2' ⟩) ITGround : ∀{ d τ τ'} → -- d final → -- red brackets τ ▸gnd τ' → (d ⟨ τ ⇒ ⦇·⦈ ⟩) →> (d ⟨ τ ⇒ τ' ⇒ ⦇·⦈ ⟩) ITExpand : ∀{d τ τ' } → -- d final → -- red brackets τ ▸gnd τ' → (d ⟨ ⦇·⦈ ⇒ τ ⟩) →> (d ⟨ ⦇·⦈ ⇒ τ' ⇒ τ ⟩) -- single step (in contextual evaluation sense) data _↦_ : (d d' : iexp) → Set where Step : ∀{ d d0 d' d0' ε} → d == ε ⟦ d0 ⟧ → d0 →> d0' → d' == ε ⟦ d0' ⟧ → d ↦ d' -- reflexive transitive closure of single steps into multi steps data _↦*_ : (d d' : iexp) → Set where MSRefl : ∀{d} → d ↦* d MSStep : ∀{d d' d''} → d ↦ d' → d' ↦* d'' → d ↦* d'' -- freshness mutual -- ... with respect to a hole context data envfresh : varname → env → Set where EFId : ∀{x Γ} → x # Γ → envfresh x (Id Γ) EFSubst : ∀{x d σ y} → fresh x d → envfresh x σ → x ≠ y → envfresh x (Subst d y σ) -- ... for inernal expressions data fresh : varname → iexp → Set where FConst : ∀{x} → fresh x c FVar : ∀{x y} → x ≠ y → fresh x (X y) FLam : ∀{x y τ d} → x ≠ y → fresh x d → fresh x (·λ y [ τ ] d) FHole : ∀{x u σ} → envfresh x σ → fresh x (⦇⦈⟨ u , σ ⟩) FNEHole : ∀{x d u σ} → envfresh x σ → fresh x d → fresh x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) FAp : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x (d1 ∘ d2) FCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒ τ2 ⟩) FFailedCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) FFst : ∀{x d} → fresh x d → fresh x (fst d) FSnd : ∀{x d} → fresh x d → fresh x (snd d) FPair : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x ⟨ d1 , d2 ⟩ -- ... for external expressions data freshe : varname → eexp → Set where FRHConst : ∀{x} → freshe x c FRHAsc : ∀{x e τ} → freshe x e → freshe x (e ·: τ) FRHVar : ∀{x y} → x ≠ y → freshe x (X y) FRHLam1 : ∀{x y e} → x ≠ y → freshe x e → freshe x (·λ y e) FRHLam2 : ∀{x τ e y} → x ≠ y → freshe x e → freshe x (·λ y [ τ ] e) FRHEHole : ∀{x u} → freshe x (⦇⦈[ u ]) FRHNEHole : ∀{x u e} → freshe x e → freshe x (⦇⌜ e ⌟⦈[ u ]) FRHAp : ∀{x e1 e2} → freshe x e1 → freshe x e2 → freshe x (e1 ∘ e2) FRHFst : ∀{x e} → freshe x e → freshe x (fst e) FRHSnd : ∀{x e} → freshe x e → freshe x (snd e) FRHPair : ∀{x e1 e2} → freshe x e1 → freshe x e2 → freshe x ⟨ e1 , e2 ⟩ -- with respect to all bindings in a context freshΓ : {A : Set} → (Γ : A ctx) → (e : eexp) → Set freshΓ {A} Γ e = (x : varname) → dom Γ x → freshe x e -- x is not used in a binding site in d mutual data unbound-in-σ : varname → env → Set where UBσId : ∀{x Γ} → unbound-in-σ x (Id Γ) UBσSubst : ∀{x d y σ} → unbound-in x d → unbound-in-σ x σ → x ≠ y → unbound-in-σ x (Subst d y σ) data unbound-in : (x : varname) (d : iexp) → Set where UBConst : ∀{x} → unbound-in x c UBVar : ∀{x y} → unbound-in x (X y) UBLam2 : ∀{x d y τ} → x ≠ y → unbound-in x d → unbound-in x (·λ_[_]_ y τ d) UBHole : ∀{x u σ} → unbound-in-σ x σ → unbound-in x (⦇⦈⟨ u , σ ⟩) UBNEHole : ∀{x u σ d } → unbound-in-σ x σ → unbound-in x d → unbound-in x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) UBAp : ∀{ x d1 d2 } → unbound-in x d1 → unbound-in x d2 → unbound-in x (d1 ∘ d2) UBCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒ τ2 ⟩) UBFailedCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) UBFst : ∀{x d} → unbound-in x d → unbound-in x (fst d) UBSnd : ∀{x d} → unbound-in x d → unbound-in x (snd d) UBPair : ∀{x d1 d2} → unbound-in x d1 → unbound-in x d2 → unbound-in x ⟨ d1 , d2 ⟩ mutual remove-from-free' : varname → eexp → List varname remove-from-free' x e = remove-all natEQ (free-vars e) x free-vars : (e : eexp) → List varname free-vars c = [] free-vars (e ·: τ) = free-vars e free-vars (X x) = x :: [] free-vars (·λ x e) = remove-from-free' x e free-vars (·λ x [ τ ] e) = remove-from-free' x e free-vars ⦇⦈[ u ] = [] free-vars ⦇⌜ e ⌟⦈[ u ] = free-vars e free-vars (e₁ ∘ e₂) = free-vars e₁ ++ free-vars e₂ free-vars ⟨ x , x₁ ⟩ = free-vars x ++ free-vars x₁ free-vars (fst x) = free-vars x free-vars (snd x) = free-vars x mutual data binders-disjoint-σ : env → iexp → Set where BDσId : ∀{Γ d} → binders-disjoint-σ (Id Γ) d BDσSubst : ∀{d1 d2 y σ} → binders-disjoint d1 d2 → binders-disjoint-σ σ d2 → binders-disjoint-σ (Subst d1 y σ) d2 -- two terms that do not share any binders data binders-disjoint : (d1 : iexp) → (d2 : iexp) → Set where BDConst : ∀{d} → binders-disjoint c d BDVar : ∀{x d} → binders-disjoint (X x) d BDLam : ∀{x τ d1 d2} → binders-disjoint d1 d2 → unbound-in x d2 → binders-disjoint (·λ_[_]_ x τ d1) d2 BDHole : ∀{u σ d2} → binders-disjoint-σ σ d2 → binders-disjoint (⦇⦈⟨ u , σ ⟩) d2 BDNEHole : ∀{u σ d1 d2} → binders-disjoint-σ σ d2 → binders-disjoint d1 d2 → binders-disjoint (⦇⌜ d1 ⌟⦈⟨ u , σ ⟩) d2 BDAp : ∀{d1 d2 d3} → binders-disjoint d1 d3 → binders-disjoint d2 d3 → binders-disjoint (d1 ∘ d2) d3 BDCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒ τ2 ⟩) d2 BDFailedCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) d2 BDFst : ∀{d1 d2} → binders-disjoint d1 d2 → binders-disjoint (fst d1) d2 BDSnd : ∀{d1 d2} → binders-disjoint d1 d2 → binders-disjoint (snd d1) d2 BDPair : ∀{d1 d2 d3} → binders-disjoint d1 d3 → binders-disjoint d2 d3 → binders-disjoint ⟨ d1 , d2 ⟩ d3 mutual -- each term has to be binders unique, and they have to be pairwise -- disjoint with the collection of bound vars data binders-unique-σ : env → Set where BUσId : ∀{Γ} → binders-unique-σ (Id Γ) BUσSubst : ∀{d y σ} → binders-unique d → binders-unique-σ σ → binders-disjoint-σ σ d → binders-unique-σ (Subst d y σ) -- all the variable names in the term are unique data binders-unique : iexp → Set where BUHole : binders-unique c BUVar : ∀{x} → binders-unique (X x) BULam : {x : varname} {τ : typ} {d : iexp} → binders-unique d → unbound-in x d → binders-unique (·λ_[_]_ x τ d) BUEHole : ∀{u σ} → binders-unique-σ σ → binders-unique (⦇⦈⟨ u , σ ⟩) BUNEHole : ∀{u σ d} → binders-unique d → binders-unique-σ σ → binders-unique (⦇⌜ d ⌟⦈⟨ u , σ ⟩) BUAp : ∀{d1 d2} → binders-unique d1 → binders-unique d2 → binders-disjoint d1 d2 → binders-unique (d1 ∘ d2) BUCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒ τ2 ⟩) BUFailedCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) BUFst : ∀{d} → binders-unique d → binders-unique (fst d) BUSnd : ∀{d} → binders-unique d → binders-unique (snd d) BUPair : ∀{d1 d2} → binders-unique d1 → binders-unique d2 → binders-disjoint d1 d2 → binders-unique ⟨ d1 , d2 ⟩ _⇓_ : iexp → iexp → Set d1 ⇓ d2 = (d1 ↦* d2 × d2 final) -- this is the decoding function, so half the iso. this won't work long term postulate _↑_ : iexp → eexp → Set _↓_ : eexp → iexp → Set iso : Set Exp : typ -- naming conventions: -- -- type contexts, tctx, are named Γ (because they always are) -- hole contextst, ??, are named Δ -- -- types, typ, are named τ -- unexpanded expressions, uexp, are named ê (for "_e_xpression but also following the POPL17 notation) -- expanded expressions, eexp, are named e (for "_e_xpression") -- internal expressions, iexp, are named d (because they have a _d_ynamics) -- splices are named ψ -- function-like livelit context well-formedness mutual livelitctx = Σ[ Φ' ∈ livelitdef ctx ] (Φ' livelitctx') data _livelitctx' : (Φ' : livelitdef ctx) → Set where PhiWFEmpty : ∅ livelitctx' PhiWFMac : ∀{a π} → (Φ : livelitctx) → a # π1 Φ → (π1 Φ ,, (a , π)) livelitctx' _₁ : (Φ : livelitctx) → livelitdef ctx _₁ = π1 infixr 25 _₁ _,,_::_⦅given_⦆ : (Φ : livelitctx) → (a : livelitname) → livelitdef → a # (Φ)₁ → livelitctx Φ ,, a :: π ⦅given #h ⦆ = ((Φ)₁ ,, (a , π) , PhiWFMac Φ #h) -- livelit expansion mutual data _,_⊢_~~>_⇒_ : (Φ : livelitctx) → (Γ : tctx) → (ê : uexp) → (e : eexp) → (τ : typ) → Set where SPEConst : ∀{Φ Γ} → Φ , Γ ⊢ c ~~> c ⇒ b SPEAsc : ∀{Φ Γ ê e τ} → Φ , Γ ⊢ ê ~~> e ⇐ τ → Φ , Γ ⊢ (ê ·: τ) ~~> e ·: τ ⇒ τ SPEVar : ∀{Φ Γ x τ} → (x , τ) ∈ Γ → Φ , Γ ⊢ (X x) ~~> (X x) ⇒ τ SPELam : ∀{Φ Γ x e τ1 τ2 ê} → x # Γ → Φ , Γ ,, (x , τ1) ⊢ ê ~~> e ⇒ τ2 → Φ , Γ ⊢ (·λ_[_]_ x τ1 ê) ~~> (·λ x [ τ1 ] e) ⇒ (τ1 ==> τ2) SPEAp : ∀{Φ Γ ê1 ê2 τ1 τ2 τ e1 e2} → Φ , Γ ⊢ ê1 ~~> e1 ⇒ τ1 → τ1 ▸arr τ2 ==> τ → Φ , Γ ⊢ ê2 ~~> e2 ⇐ τ2 → holes-disjoint e1 e2 → Φ , Γ ⊢ ê1 ∘ ê2 ~~> e1 ∘ e2 ⇒ τ SPEHole : ∀{Φ Γ u} → Φ , Γ ⊢ ⦇⦈[ u ] ~~> ⦇⦈[ u ] ⇒ ⦇·⦈ SPNEHole : ∀{Φ Γ ê e τ u} → hole-name-new e u → Φ , Γ ⊢ ê ~~> e ⇒ τ → Φ , Γ ⊢ ⦇⌜ ê ⌟⦈[ u ] ~~> ⦇⌜ e ⌟⦈[ u ] ⇒ ⦇·⦈ SPEFst : ∀{Φ Γ ê e τ τ1 τ2} → Φ , Γ ⊢ ê ~~> e ⇒ τ → τ ▸prod τ1 ⊗ τ2 → Φ , Γ ⊢ fst ê ~~> fst e ⇒ τ1 SPESnd : ∀{Φ Γ ê e τ τ1 τ2} → Φ , Γ ⊢ ê ~~> e ⇒ τ → τ ▸prod τ1 ⊗ τ2 → Φ , Γ ⊢ snd ê ~~> snd e ⇒ τ2 SPEPair : ∀{Φ Γ ê1 ê2 τ1 τ2 e1 e2} → Φ , Γ ⊢ ê1 ~~> e1 ⇒ τ1 → Φ , Γ ⊢ ê2 ~~> e2 ⇒ τ2 → holes-disjoint e1 e2 → Φ , Γ ⊢ ⟨ ê1 , ê2 ⟩ ~~> ⟨ e1 , e2 ⟩ ⇒ τ1 ⊗ τ2 SPEApLivelit : ∀{Φ Γ a dm π denc eexpanded τsplice psplice esplice u} → holes-disjoint eexpanded esplice → freshΓ Γ eexpanded → (a , π) ∈ (Φ)₁ → ∅ , ∅ ⊢ dm :: (livelitdef.model-type π) → ((livelitdef.expand π) ∘ dm) ⇓ denc → denc ↑ eexpanded → Φ , Γ ⊢ psplice ~~> esplice ⇐ τsplice → ∅ ⊢ eexpanded <= τsplice ==> (livelitdef.expansion-type π) → Φ , Γ ⊢ $ a ⟨ dm ⁏ (τsplice , psplice) :: [] ⟩[ u ] ~~> ((eexpanded ·: τsplice ==> livelitdef.expansion-type π) ∘ esplice) ⇒ livelitdef.expansion-type π data _,_⊢_~~>_⇐_ : (Φ : livelitctx) → (Γ : tctx) → (ê : uexp) → (e : eexp) → (τ : typ) → Set where APELam : ∀{Φ Γ x e τ τ1 τ2 ê} → x # Γ → τ ▸arr τ1 ==> τ2 → Φ , Γ ,, (x , τ1) ⊢ ê ~~> e ⇐ τ2 → Φ , Γ ⊢ (·λ x ê) ~~> (·λ x e) ⇐ τ APESubsume : ∀{Φ Γ ê e τ τ'} → Φ , Γ ⊢ ê ~~> e ⇒ τ' → τ ~ τ' → Φ , Γ ⊢ ê ~~> e ⇐ τ
{ "alphanum_fraction": 0.4021015481, "avg_line_length": 38.3993839836, "ext": "agda", "hexsha": "4453c13c104f2cb9195ca5dfbbe3659204f7fdc1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "core.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "core.agda", "max_line_length": 177, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "core.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 15299, "size": 37401 }
open import Prelude module Implicits.Resolution.Finite.Expressiveness where open import Coinduction open import Data.Fin.Substitution open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Resolution.Deterministic.Resolution as D open import Implicits.Resolution.Ambiguous.Resolution as A open import Implicits.Resolution.Finite.Resolution as F open import Implicits.Resolution.Infinite.Resolution as ∞ open import Implicits.Resolution.Termination module Finite⊆Infinite where p : ∀ {ν} {a} {Δ : ICtx ν} → Δ F.⊢ᵣ a → Δ ∞.⊢ᵣ a p (r-simp a a↓τ) = r-simp a (lem a↓τ) where lem : ∀ {ν} {a τ} {Δ : ICtx ν} → Δ F.⊢ a ↓ τ → Δ ∞.⊢ a ↓ τ lem (i-simp τ) = i-simp τ lem (i-iabs _ ⊢ᵣa b↓τ) = i-iabs (p ⊢ᵣa) (lem b↓τ) lem (i-tabs b a[/b]↓τ) = i-tabs b (lem a[/b]↓τ) p (r-iabs x) = r-iabs (p x) p (r-tabs x) = r-tabs (p x) module Finite⊆Ambiguous where p : ∀ {ν} {a} {Δ : ICtx ν} → Δ F.⊢ᵣ a → Δ A.⊢ᵣ a p (r-simp a a↓τ) = lem a↓τ (r-ivar a) where lem : ∀ {ν} {a τ} {Δ : ICtx ν} → Δ F.⊢ a ↓ τ → Δ A.⊢ᵣ a → Δ A.⊢ᵣ simpl τ lem (i-simp τ) K⊢ᵣτ = K⊢ᵣτ lem (i-iabs _ ⊢ᵣa b↓τ) K⊢ᵣa⇒b = lem b↓τ (r-iapp K⊢ᵣa⇒b (p ⊢ᵣa)) lem (i-tabs b a[/b]↓τ) K⊢ᵣ∀a = lem a[/b]↓τ (r-tapp b K⊢ᵣ∀a) p (r-iabs x) = r-iabs (p x) p (r-tabs x) = r-tabs (p x) module Deterministic⊆Finite where open import Extensions.ListFirst -- Oliveira's termination condition is part of the well-formdness of types -- So we assume here that ⊢term x holds for all types x p : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → (∀ {ν} (a : Type ν) → ⊢term a) → Δ D.⊢ᵣ a → Δ F.⊢ᵣ a p term (r-simp {ρ = r} x r↓a) = r-simp (proj₁ $ first⟶∈ x) (lem r↓a) where lem : ∀ {ν} {Δ : ICtx ν} {a r} → Δ D.⊢ r ↓ a → Δ F.⊢ r ↓ a lem (i-simp a) = i-simp a lem (i-iabs {ρ₁ = ρ₁} {ρ₂ = ρ₂} ⊢ᵣρ₁ ρ₂↓τ) with term (ρ₁ ⇒ ρ₂) lem (i-iabs ⊢ᵣρ₁ ρ₂↓τ) | term-iabs _ _ a-ρ<-b _ = i-iabs a-ρ<-b (p term ⊢ᵣρ₁) (lem ρ₂↓τ) lem (i-tabs b x₁) = i-tabs b (lem x₁) p term (r-iabs ρ₁ {ρ₂ = ρ₂} x) = r-iabs (p term x) p term (r-tabs x) = r-tabs (p term x)
{ "alphanum_fraction": 0.5814726841, "avg_line_length": 37.5892857143, "ext": "agda", "hexsha": "59d9e95076388ea3e5bc8c654e9d9c395d0fbcf3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Finite/Expressiveness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Finite/Expressiveness.agda", "max_line_length": 94, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Finite/Expressiveness.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1004, "size": 2105 }
module Numeral.Natural.LinearSearchDecidable where -- TODO: Maybe move and rename to Numeral.Natural.Sequence.BoundedSearch -- TODO: Maybe more natural to use 𝕟 (finite naturals) instead of ℕ (naturals)? open import Data.Boolean open import Data.Boolean.Stmt open import Data.List import Data.List.Functions as List open import Data.List.Relation.Membership using (_∈_) open import Data.List.Relation.Membership.Proofs open import Data.List.Relation.Quantification open import Data.List.Relation.Quantification.Proofs open import Data.List.Sorting open import Data.Option import Data.Option.Functions as Option open import Functional open import Logic.Propositional open import Numeral.Finite import Numeral.Finite.LinearSearch as 𝕟 open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation.Order open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function private variable a b n i j : ℕ private variable f : ℕ → Bool {- open import Data.Boolean open import Data.Boolean.Stmt open import Data.Option import Data.Option.Functions as Option open import Functional open import Logic open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Relation.Order open import Structure.Relator.Ordering -- Finds the maximal argument satisfying the given argument within the given search upper bound by searching linearly. -- Examples: -- findUpperBoundedMax(10 ∣?_) 5 = None -- findUpperBoundedMax(10 ∣?_) 20 = Some 20 -- findUpperBoundedMax(10 ∣?_) 22 = Some 20 -- findUpperBoundedMax(10 ∣?_) 100 = Some 100 -- findUpperBoundedMax(10 ∣?_) 102 = Some 100 findUpperBoundedMax : (ℕ → Bool) → ℕ → Option(ℕ) findUpperBoundedMax f(i) with f(i) findUpperBoundedMax f(i) | 𝑇 = Some i findUpperBoundedMax f(𝟎) | 𝐹 = None findUpperBoundedMax f(𝐒(i)) | 𝐹 = findUpperBoundedMax f(i) findMaxIndexInRange : (ℕ → Bool) → ℕ → ℕ → Option(ℕ) findMaxIndexInRange f min max = Option.map (_+ min) (findUpperBoundedMax (f ∘ (_+ min)) (max −₀ min)) -- Finds the minimal argument satisfying the given argument within the given search upper bound by searching linearly. -- Examples: -- findUpperBoundedMin(10 ∣?_) 5 = None -- findUpperBoundedMin(10 ∣?_) 20 = Some 10 -- findUpperBoundedMin(10 ∣?_) 22 = Some 10 -- findUpperBoundedMin(10 ∣?_) 100 = Some 10 -- findUpperBoundedMax(10 ∣?_) 102 = Some 10 findUpperBoundedMin : (ℕ → Bool) → ℕ → Option(ℕ) findUpperBoundedMin f(i) with f(𝟎) findUpperBoundedMin f(i) | 𝑇 = Some 𝟎 findUpperBoundedMin f(𝟎) | 𝐹 = None findUpperBoundedMin f(𝐒(i)) | 𝐹 = Option.map 𝐒 (findUpperBoundedMin (f ∘ 𝐒)(i)) open import Data open import Data.Boolean.Stmt.Proofs open import Data.Option.Equiv.Id open import Lang.Inspect open import Logic.Predicate open import Logic.Propositional open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function.Domain open import Structure.Relator.Properties open import Structure.Relator findUpperBoundedMax-correctness : ∀{f}{max i} → (findUpperBoundedMax f(max) ≡ Some(i)) → ((i ≤ max) ∧ IsTrue(f(i))) findUpperBoundedMax-correctness {f} {max} {i} p with f(max) | inspect f(max) findUpperBoundedMax-correctness {f} {max} {.max} [≡]-intro | 𝑇 | intro eq = [∧]-intro (reflexivity(_≤_)) (substitute₁ₗ(IsTrue) eq <>) findUpperBoundedMax-correctness {f} {𝟎} {i} () | 𝐹 | _ findUpperBoundedMax-correctness {f} {𝐒(max)} {i} p | 𝐹 | intro eq with findUpperBoundedMax-correctness {f} {max} {i} p ... | [∧]-intro a b = [∧]-intro ([≤]-successor a) b findUpperBoundedMin-correctness : ∀{f}{max i} → (findUpperBoundedMin f(max) ≡ Some(i)) → ((i ≤ max) ∧ IsTrue(f(i))) findUpperBoundedMin-correctness {f} {max} {i} p with f(𝟎) | inspect f(𝟎) findUpperBoundedMin-correctness {f} {max} {.𝟎} [≡]-intro | 𝑇 | intro eq = [∧]-intro [≤]-minimum ([↔]-to-[←] IsTrue.is-𝑇 eq) findUpperBoundedMin-correctness {f} {𝐒 max} {𝟎} p | 𝐹 | intro eq with findUpperBoundedMin (f ∘ 𝐒) max findUpperBoundedMin-correctness {f} {𝐒 max} {𝟎} () | 𝐹 | intro eq | None findUpperBoundedMin-correctness {f} {𝐒 max} {𝟎} () | 𝐹 | intro eq | Some _ findUpperBoundedMin-correctness {f} {𝐒 max} {𝐒 i} p | 𝐹 | intro eq = [∧]-map (\p → [≤]-with-[𝐒] ⦃ p ⦄) id (findUpperBoundedMin-correctness {f ∘ 𝐒} {max} {i} (injective(Option.map 𝐒) ⦃ map-injectivity ⦄ p)) findUpperBoundedMin-minimal : ∀{f}{max i j} → (findUpperBoundedMin f(max) ≡ Some(i)) → IsTrue(f(j)) → (i ≤ j) findUpperBoundedMin-minimal {i = 𝟎} {_} p q = [≤]-minimum findUpperBoundedMin-minimal {i = 𝐒 i} {𝟎} p q = {!!} findUpperBoundedMin-minimal {i = 𝐒 i} {𝐒 j} p q = [≤]-with-[𝐒] ⦃ findUpperBoundedMin-minimal {i = i}{j} {!!} q ⦄ -- foldRange : () {- searchUntilUpperBound : (f : ℕ → Bool) → ∃(IsTrue ∘ f) → ℕ searchUntilUpperBound f ([∃]-intro upperBound ⦃ proof ⦄) = {!fold!} searchUntilUpperBoundProof : ∀{f}{upperBound} → (IsTrue ∘ f)(searchUntilUpperBound f upperBound) searchUntilUpperBoundProof = {!!} bruteforceMinExistence : ∀{ℓ} → (P : ℕ → Stmt{ℓ}) → ⦃ ComputablyDecidable(P) ⦄ → ∃(P) → ∃(Weak.Properties.MinimumOf(_≤_)(P)) ∃.witness (bruteforceMinExistence P upperBound) = {!!} ∃.proof (bruteforceMinExistence P upperBound) = {!!} -} -}
{ "alphanum_fraction": 0.7106274008, "avg_line_length": 45.5583333333, "ext": "agda", "hexsha": "2ca1cda55d54f80972ee2282565b7767d15ef288", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/LinearSearchDecidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/LinearSearchDecidable.agda", "max_line_length": 213, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/LinearSearchDecidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1881, "size": 5467 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths module lib.types.Unit where pattern tt = unit ⊙Unit : Ptd₀ ⊙Unit = ⊙[ Unit , unit ] -- Unit is contractible instance Unit-level : {n : ℕ₋₂} → has-level n Unit Unit-level {n = ⟨-2⟩} = has-level-in (unit , λ y → idp) Unit-level {n = S n} = raise-level n Unit-level
{ "alphanum_fraction": 0.6438356164, "avg_line_length": 20.2777777778, "ext": "agda", "hexsha": "a6f7c37f36b25bfde9516080b7d7b0b02c33551c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Unit.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Unit.agda", "max_line_length": 57, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 119, "size": 365 }
open import Prelude module Implicits.Resolution.Termination.Stack where open import Induction.WellFounded open import Induction.Nat open import Data.Fin.Substitution open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Data.List open import Data.List.All open import Data.List.Any open Membership-≡ open import Implicits.Resolution.Termination.SizeMeasures -- on the stack we maintain, for each rule in Δ, -- the last goal type that resulted from using the rule Stack : ∀ {ν} → ICtx ν → Set Stack {ν} Δ = All (const $ Type ν) Δ ---------------------------------------------------------------- -- basic stack operations _push_for_ : ∀ {ν r} {Δ : ICtx ν} → Stack Δ → Type ν → r ∈ Δ → Stack Δ (a All.∷ s) push a' for here _ = a' All.∷ s (b All.∷ s) push a for there r∈Δ = b All.∷ s push a for r∈Δ _prepend_ : ∀ {ν r} {Δ : ICtx ν} → Stack Δ → Type ν → Stack (r ∷ Δ) s prepend a = a All.∷ s _get_ : ∀ {ν r} {Δ : ICtx ν} → Stack Δ → r ∈ Δ → Type ν (a All.∷ s) get here _ = a (a All.∷ s) get there r∈Δ = s get r∈Δ ssum : ∀ {ν} {Δ : ICtx ν} → Stack Δ → ℕ ssum All.[] = 0 ssum (a All.∷ s) = h|| a || + ssum s stack-weaken : ∀ {ν} {Δ : ICtx ν} → Stack Δ → Stack (ictx-weaken Δ) stack-weaken All.[] = All.[] stack-weaken (px All.∷ s) = (tp-weaken px) All.∷ (stack-weaken s) ---------------------------------------------------------------- -- stack ordering _s<_ : ∀ {ν} {Δ : ICtx ν} → (s s' : Stack Δ) → Set s s< s' = ssum s < ssum s' _for_⊬dom_ : ∀ {ν r} {Δ : ICtx ν} → Type ν → r ∈ Δ → Stack Δ → Set a for r∈Δ ⊬dom s = (s push a for r∈Δ) s< s
{ "alphanum_fraction": 0.5929887106, "avg_line_length": 30.0535714286, "ext": "agda", "hexsha": "a88259e22cf76be5c3f70c74933444b6f4c05d9b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Termination/Stack.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Termination/Stack.agda", "max_line_length": 70, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Termination/Stack.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 594, "size": 1683 }
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} open import Agda.Primitive using (Level; _⊔_; Setω; lzero; lsuc) module Issue4032 where infix 4 _≡_ data _≡_ {ℓ : Level} {A : Set ℓ} (a : A) : A → Set ℓ where refl : a ≡ a {-# BUILTIN REWRITE _≡_ #-} run : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B run refl x = x nur : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → B → A nur refl x = x convert : ∀ {ℓ} {A B : Set ℓ} (p : A ≡ B) (a : A) → nur p (run p a) ≡ a convert refl a = refl trevnoc : ∀ {ℓ} {A B : Set ℓ} (p : A ≡ B) (b : B) → run p (nur p b) ≡ b trevnoc refl b = refl ap : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {a₁ a₂} → a₁ ≡ a₂ → f a₁ ≡ f a₂ ap f refl = refl transport : ∀ {a b} {A : Set a} (B : A → Set b) {x y : A} (p : x ≡ y) → B x → B y transport B p = run (ap B p) apD : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {a₁ a₂} → (p : a₁ ≡ a₂) → transport B p (f a₁) ≡ f a₂ apD f refl = refl ap2 : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} (f : (x : A) → B x → C) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} → transport B pa b₁ ≡ b₂ → f a₁ b₁ ≡ f a₂ b₂ ap2 f refl refl = refl postulate fromIso : ∀ {ℓ} {A B : Set ℓ} (f : A → B) (g : B → A) (η : (x : A) → g (f x) ≡ x) (ε : (x : B) → f (g x) ≡ x) (τ : (x : A) → ap f (η x) ≡ ε (f x)) → A ≡ B postulate fromIso-refl : ∀ {ℓ} {A : Set ℓ} → fromIso {ℓ} {A} {A} (λ x → x) (λ x → x) (λ x → refl) (λ x → refl) (λ x → refl) ≡ refl {-# REWRITE fromIso-refl #-} J : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {a : A} (P : (b : A) → a ≡ b → Set ℓ₂) {b : A} (p : a ≡ b) → P a refl → P b p J R refl r = r module foo {-ℓ₁-} {ℓ} {Γ : Set ℓ{-₁-}} {xs ys : Γ} (ps : xs ≡ ys) (tA : Γ → Set ℓ) (tB : (γ : Γ) → tA γ → Set ℓ) where module pf where iso-f : ((a : tA xs) → (tB xs) a) → ((a : tA ys) → (tB ys) a) iso-f var1 var0 = run (ap2 tB ps (trevnoc (ap tA ps) var0)) (var1 (nur (ap tA ps) var0)) iso-g : ((a : tA ys) → (tB ys) a) → ((a : tA xs) → (tB xs) a) iso-g var1 var0 = nur (ap2 tB ps refl) (var1 (run (ap tA ps) var0)) iso-η : (var0 : _) → iso-g (iso-f var0) ≡ var0 iso-η var0 = J (λ ys (ps : xs ≡ ys) → (λ var1 → nur (ap2 tB ps refl) (run (ap2 tB ps (trevnoc (ap tA ps) (run (ap tA ps) var1))) (var0 (nur (ap tA ps) (run (ap tA ps) var1))))) ≡ var0) ps refl iso-ε : (var0 : _) → iso-f (iso-g var0) ≡ var0 iso-ε = J (λ ys (ps : xs ≡ ys) → (var0 : (a : tA ys) → tB ys a) → (λ var1 → run (ap2 tB ps (trevnoc (ap tA ps) var1)) (nur (ap2 tB ps refl) (var0 (run (ap tA ps) (nur (ap tA ps) var1))))) ≡ var0) ps (λ var0 → refl) iso-τ : (var0 : _) → ap iso-f (iso-η var0) ≡ iso-ε (iso-f var0) iso-τ var0 = J (λ ys (ps : xs ≡ ys) → ap (λ var1 var2 → run (ap2 tB ps (trevnoc (ap tA ps) var2)) (var1 (nur (ap tA ps) var2))) (J (λ ys₁ ps₁ → (λ var1 → nur (ap2 tB ps₁ refl) (run (ap2 tB ps₁ (trevnoc (ap tA ps₁) (run (ap tA ps₁) var1))) (var0 (nur (ap tA ps₁) (run (ap tA ps₁) var1))))) ≡ var0) ps refl) ≡ J (λ ys₁ ps₁ → (var1 : (a : tA ys₁) → tB ys₁ a) → (λ var2 → run (ap2 tB ps₁ (trevnoc (ap tA ps₁) var2)) (nur (ap2 tB ps₁ refl) (var1 (run (ap tA ps₁) (nur (ap tA ps₁) var2))))) ≡ var1) ps (λ var1 → refl) (λ var1 → run (ap2 tB ps (trevnoc (ap tA ps) var1)) (var0 (nur (ap tA ps) var1)))) ps refl open pf pf : ((a : tA xs) → (tB xs) a) ≡ ((a : tA ys) → (tB ys) a) pf = fromIso iso-f iso-g iso-η iso-ε iso-τ module bar {ℓ} {Γ : Set ℓ} {γ : Γ} {A : Γ → Set ℓ} {B : (γ : Γ) → A γ → Set ℓ} where g1 : ((a : A γ) → B γ a) → (a : A γ) → B γ a g2 : ((a : A γ) → B γ a) → (a : A γ) → B γ a g1 = foo.pf.iso-g {xs = γ} refl A B g2 = λ f x → f x pfg : g1 ≡ g2 pfg = refl baz : foo.pf {xs = γ} refl A B ≡ refl baz = pf where pf : fromIso {_} {(x : A γ) → B γ x} (λ f x → f x) g2 (foo.pf.iso-η refl A B) (foo.pf.iso-ε refl A B) (foo.pf.iso-τ refl A B) ≡ refl pf = refl {- WAS: refl != fromIso (foo.pf.iso-f refl A B) (foo.pf.iso-g refl A B) (foo.pf.iso-η refl A B) (foo.pf.iso-ε refl A B) (foo.pf.iso-τ refl A B) of type ((x : A γ) → B γ x) ≡ ((x : A γ) → B γ x) when checking that the expression pf has type foo.pf refl A B ≡ refl -}
{ "alphanum_fraction": 0.4307529162, "avg_line_length": 39.9576271186, "ext": "agda", "hexsha": "81e36dd853d325675ef0410e64735af57f5efed6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue4032.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue4032.agda", "max_line_length": 218, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue4032.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2030, "size": 4715 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Predicate transformers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Unary.PredicateTransformer where open import Level hiding (_⊔_) open import Function open import Data.Product open import Relation.Nullary open import Relation.Unary open import Relation.Binary using (REL) ------------------------------------------------------------------------ -- Heterogeneous and homogeneous predicate transformers PT : ∀ {a b} → Set a → Set b → (ℓ₁ ℓ₂ : Level) → Set _ PT A B ℓ₁ ℓ₂ = Pred A ℓ₁ → Pred B ℓ₂ Pt : ∀ {a} → Set a → (ℓ : Level) → Set _ Pt A ℓ = PT A A ℓ ℓ -- Composition and identity _⍮_ : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → PT B C ℓ₂ ℓ₃ → PT A B ℓ₁ ℓ₂ → PT A C ℓ₁ _ S ⍮ T = S ∘ T skip : ∀ {a ℓ} {A : Set a} → PT A A ℓ ℓ skip P = P ------------------------------------------------------------------------ -- Operations on predicates extend pointwise to predicate transformers module _ {a b} {A : Set a} {B : Set b} where -- The bottom and the top of the predicate transformer lattice. abort : PT A B zero zero abort = λ _ → ∅ magic : PT A B zero zero magic = λ _ → U -- Negation. ∼_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ ∼ T = ∁ ∘ T -- Refinement. infix 4 _⊑_ _⊒_ _⊑′_ _⊒′_ _⊑_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → Set _ S ⊑ T = ∀ {X} → S X ⊆ T X _⊑′_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → Set _ S ⊑′ T = ∀ X → S X ⊆ T X _⊒_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → Set _ T ⊒ S = T ⊑ S _⊒′_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → Set _ T ⊒′ S = S ⊑′ T -- The dual of refinement. infix 4 _⋢_ _⋢_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → Set _ S ⋢ T = ∃ λ X → S X ≬ T X -- Union. infixl 6 _⊓_ _⊓_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ S ⊓ T = λ X → S X ∪ T X -- Intersection. infixl 7 _⊔_ _⊔_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ S ⊔ T = λ X → S X ∩ T X -- Implication. infixl 8 _⇛_ _⇛_ : ∀ {ℓ₁ ℓ₂} → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ → PT A B ℓ₁ ℓ₂ S ⇛ T = λ X → S X ⇒ T X -- Infinitary union and intersection. infix 9 ⨆ ⨅ ⨆ : ∀ {ℓ₁ ℓ₂ i} (I : Set i) → (I → PT A B ℓ₁ ℓ₂) → PT A B ℓ₁ _ ⨆ I T = λ X → ⋃[ i ∶ I ] T i X syntax ⨆ I (λ i → T) = ⨆[ i ∶ I ] T ⨅ : ∀ {ℓ₁ ℓ₂ i} (I : Set i) → (I → PT A B ℓ₁ ℓ₂) → PT A B ℓ₁ _ ⨅ I T = λ X → ⋂[ i ∶ I ] T i X syntax ⨅ I (λ i → T) = ⨅[ i ∶ I ] T -- Angelic and demonic update. ⟨_⟩ : ∀ {ℓ} → REL A B ℓ → PT B A ℓ _ ⟨ R ⟩ P = λ x → R x ≬ P [_] : ∀ {ℓ} → REL A B ℓ → PT B A ℓ _ [ R ] P = λ x → R x ⊆ P
{ "alphanum_fraction": 0.4579847217, "avg_line_length": 22.9083333333, "ext": "agda", "hexsha": "6cda31c3cf237bae832a3741e73cbf2929a68055", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/PredicateTransformer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/PredicateTransformer.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/PredicateTransformer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1246, "size": 2749 }
{-# OPTIONS --without-K #-} -- This should really be called FinSet. From nlab: -- FinSet is the category of finite sets and all functions between -- them: the full subcategory of Set on finite sets. It is easy (and -- thus common) to make FinSet skeletal; there is one object for each -- natural number n (including n=0), and a morphism from m to n is an -- m-tuple (f0,…,fm−1) of numbers satisfying 0≤fi<n. This amounts to -- identifying n with the set {0,…,n−1}. (Sometimes {1,…,n} is used -- instead.) This is exactly what we do below -- Definition of the Operations on permutations, based on the Vector representation -- There are 2 sets of definitions here: -- 1. pure Vector, in which the contents are arbitrary sets -- 2. specialized to Fin contents. -- Some notes: -- - There are operations (such as sequential composition) which 'lift' more -- awkwardly. -- - To avoid a proliferation of bad names, we use sub-modules -- Cauchy representation Vec (Fin m) n without checks that m=n or -- checks of uniqueness and completeness has a commutative semiring -- structure (modulo a postulate about sym). This is the main building -- block of ConcretePermutation module FinVec where open import Data.Nat using (ℕ; _+_; _*_) open import Data.Vec renaming (map to mapV; _++_ to _++V_; concat to concatV) open import Data.Fin using (Fin; inject+; raise; zero; suc) open import Function using (_∘_; id; _$_) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) renaming (map to map⊎) open import Data.Product using (_×_; _,′_; proj₁; proj₂) open import Equiv open import TypeEquiv using (swap₊; swap⋆) import TypeEquiv as TE open import FinEquiv using (module Plus; module Times; module PlusTimes) open import Proofs using ( -- VectorLemmas _!!_; concat-map; map-map-map; lookup-map; map-∘ ) import Level open import Algebra open import Algebra.Structures open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality using (subst; sym; trans; cong₂) open import Groupoid ------------------------------------------------------------------------------ -- Pure vector operations -- Does not involve Fin at all. -- Note: not exported! private module V where _⊎v_ : ∀ {m n} {A B : Set} → Vec A m → Vec B n → Vec (A ⊎ B) (m + n) α ⊎v β = tabulate (inj₁ ∘ _!!_ α) ++V tabulate (inj₂ ∘ _!!_ β) swap+ : {m n : ℕ} {A B : Set} → Vec (A ⊎ B) (m + n) → Vec (B ⊎ A) (m + n) swap+ v = tabulate (swap₊ ∘ _!!_ v) _×v_ : ∀ {m n} {A B : Set} → Vec A m → Vec B n → Vec (A × B) (m * n) α ×v β = α >>= (λ b → mapV (_,′_ b) β) 0v : {A : Set} → Vec A 0 0v = [] ------------------------------------------------------------------------------ -- Elementary permutations, Fin version -- Cauchy Representation Vec (Fin m) n without checks of uniqueness -- and completeness -- We need to define (at least) 0, 1, +, *, ∘, swap+, swap* module F where open import Data.Nat.Properties.Simple using (+-right-identity) open import Data.Vec.Properties using (lookup-allFin; tabulate∘lookup; lookup∘tabulate; tabulate-∘; lookup-++-inject+) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning) open ≡-Reasoning open import Equiv using (_∼_) open import Proofs using (congD!; -- FinNatLemmas inject+0≡uniti+; -- FiniteFunctions finext; -- VectorLemmas lookupassoc; map-++-commute; tabulate-split; left!!; right!!; lookup-++-raise; unSplit; tab++[]≡tab∘̂unite+ ) open V -- convenient abbreviations FinVec : ℕ → ℕ → Set FinVec m n = Vec (Fin m) n private fwd : {m n : ℕ} → (Fin m ⊎ Fin n) → Fin (m + n) fwd = proj₁ Plus.fwd-iso bwd : {m n : ℕ} → Fin (m + n) → (Fin m ⊎ Fin n) bwd = Equiv.qinv.g (proj₂ Plus.fwd-iso) bwd∘fwd~id : {m n : ℕ} → bwd {m} {n} ∘ fwd ∼ id bwd∘fwd~id = Equiv.qinv.β (proj₂ Plus.fwd-iso) -- make all the definitions abstract. Note that the type isn't, -- otherwise we could not do anything at all with it! abstract -- principal component of the identity permutation 1C : {n : ℕ} → FinVec n n 1C {n} = allFin n -- corresponds to ⊥ ≃ (⊥ × A) and other impossibilities -- but don't use it, as it is abstract and will confuse external proofs! 0C : FinVec 0 0 0C = 1C {0} -- Sequential composition _∘̂_ : {n₀ n₁ n₂ : ℕ} → Vec (Fin n₁) n₀ → Vec (Fin n₂) n₁ → Vec (Fin n₂) n₀ π₁ ∘̂ π₂ = tabulate (_!!_ π₂ ∘ _!!_ π₁) -- swap the first m elements with the last n elements -- [ v₀ , v₁ , v₂ , ... , vm-1 , vm , vm₊₁ , ... , vm+n-1 ] -- ==> -- [ vm , vm₊₁ , ... , vm+n-1 , v₀ , v₁ , v₂ , ... , vm-1 ] swap+cauchy : (m n : ℕ) → FinVec (n + m) (m + n) swap+cauchy m n = tabulate (Plus.swapper m n) -- Parallel additive composition -- conceptually, what we want is _⊎c'_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎c'_ α β = mapV fwd (α ⊎v β) -- but the above is tedious to work with. Instead, inline a bit to get _⊎c_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎c_ {m₁} α β = tabulate (fwd ∘ inj₁ ∘ _!!_ α) ++V tabulate (fwd {m₁} ∘ inj₂ ∘ _!!_ β) -- see ⊎c≡⊎c' lemma below _⊎fv_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎fv_ {m₁} α β = tabulate (λ j → fwd (map⊎ (_!!_ α) (_!!_ β) (bwd j))) ⊎-equiv : ∀ {m₁ n₁ m₂ n₂} → (α : FinVec m₁ m₂) → (β : FinVec n₁ n₂) → α ⊎c β ≡ α ⊎fv β ⊎-equiv {m₁} {n₁} {m₂} {n₂} α β = let mm s = map⊎ (_!!_ α) (_!!_ β) s in let g = fwd ∘ mm ∘ bwd in begin ( tabulate (λ j → fwd (inj₁ (α !! j))) ++V tabulate (λ j → fwd {m₁} (inj₂ (β !! j))) ≡⟨ refl ⟩ -- map⊎ evaluates on inj₁/inj₂ tabulate (fwd ∘ mm ∘ inj₁) ++V tabulate (fwd ∘ mm ∘ inj₂) ≡⟨ cong₂ _++V_ (finext (λ i → cong (fwd ∘ mm) (sym (bwd∘fwd~id (inj₁ i))))) (finext (λ i → cong (fwd ∘ mm) (sym (bwd∘fwd~id (inj₂ i))))) ⟩ tabulate {m₂} (g ∘ fwd ∘ inj₁) ++V tabulate {n₂} (g ∘ fwd {m₂} ∘ inj₂) ≡⟨ sym (tabulate-split {m₂} {n₂} {f = g}) ⟩ tabulate g ∎) where open ≡-Reasoning -- Tensor multiplicative composition -- Transpositions in α correspond to swapping entire rows -- Transpositions in β correspond to swapping entire columns _×c_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ * n₁) (m₂ * n₂) α ×c β = mapV Times.fwd (α ×v β) -- swap⋆ -- -- This is essentially the classical problem of in-place matrix transpose: -- "http://en.wikipedia.org/wiki/In-place_matrix_transposition" -- Given m and n, the desired permutation in Cauchy representation is: -- P(i) = m*n-1 if i=m*n-1 -- = m*i mod m*n-1 otherwise -- transposeIndex : {m n : ℕ} → Fin m × Fin n → Fin (n * m) -- transposeIndex = Times.fwd ∘ swap -- inject≤ (fromℕ (toℕ d * m + toℕ b)) (i*n+k≤m*n d b) swap⋆cauchy : (m n : ℕ) → FinVec (n * m) (m * n) swap⋆cauchy m n = tabulate (Times.swapper m n) -- mapV transposeIndex (V.tcomp 1C 1C) ------------------------------------------------------------------------------------------- -- Things which are the foundations of other permutations, but coming -- from properties, rather than being operators unite+ : {m : ℕ} → FinVec m (0 + m) unite+ {m} = tabulate (proj₁ (Plus.unite+ {m})) uniti+ : {m : ℕ} → FinVec (0 + m) m uniti+ {m} = tabulate (proj₁ (Plus.uniti+ {m})) unite+r : {m : ℕ} → FinVec m (m + 0) unite+r {m} = tabulate (proj₁ (Plus.unite+r {m})) uniti+r : {m : ℕ} → FinVec (m + 0) m uniti+r {m} = tabulate (proj₁ (Plus.uniti+r {m})) assocl+ : {m n o : ℕ} → FinVec ((m + n) + o) (m + (n + o)) assocl+ {m} {n} {o} = tabulate (proj₁ (Plus.assocl+ {m} {n} {o})) assocr+ : {m n o : ℕ} → FinVec (m + (n + o)) (m + n + o) assocr+ {m} {n} {o} = tabulate (proj₁ (Plus.assocr+ {m} {n} {o})) unite* : {m : ℕ} → FinVec m (1 * m) unite* {m} = tabulate (proj₁ (Times.unite* {m})) uniti* : {m : ℕ} → FinVec (1 * m) m uniti* {m} = tabulate (proj₁ (Times.uniti* {m})) unite*r : {m : ℕ} → FinVec m (m * 1) unite*r {m} = tabulate (proj₁ (Times.unite*r {m})) uniti*r : {m : ℕ} → FinVec (m * 1) m uniti*r {m} = tabulate (proj₁ (Times.uniti*r {m})) assocl* : {m n o : ℕ} → FinVec ((m * n) * o) (m * (n * o)) assocl* {m} {n} {o} = tabulate (proj₁ (Times.assocl* {m} {n} {o})) assocr* : {m n o : ℕ} → FinVec (m * (n * o)) (m * n * o) assocr* {m} {n} {o} = tabulate (proj₁ (Times.assocr* {m} {n} {o})) dist*+ : ∀ {m n o} → FinVec (m * o + n * o) ((m + n) * o) dist*+ {m} {n} {o} = tabulate (proj₁ (PlusTimes.dist {m} {n} {o})) factor*+ : ∀ {m n o} → FinVec ((m + n) * o) (m * o + n * o) factor*+ {m} {n} {o} = tabulate (proj₁ (PlusTimes.factor {m} {n} {o})) distl*+ : ∀ {m n o} → FinVec (m * n + m * o) (m * (n + o)) distl*+ {m} {n} {o} = tabulate (proj₁ (PlusTimes.distl {m} {n} {o})) factorl*+ : ∀ {m n o} → FinVec (m * (n + o)) (m * n + m * o) factorl*+ {m} {n} {o} = tabulate (proj₁ (PlusTimes.factorl {m} {n} {o})) right-zero*l : ∀ {m} → FinVec 0 (m * 0) right-zero*l {m} = tabulate (proj₁ (Times.distzr {m})) right-zero*r : ∀ {m} → FinVec (m * 0) 0 right-zero*r {m} = tabulate (proj₁ (Times.factorzr {m})) ------------------------------------------------------------------------------------------- -- Below here, we start with properties -- Useful stuff infix 4 _∼p_ _∼p_ : {n m : ℕ} (p₁ p₂ : Vec (Fin m) n) → Set _∼p_ {n} p₁ p₂ = (i : Fin n) → p₁ !! i ≡ p₂ !! i ∼p⇒≡ : {n : ℕ} {p₁ p₂ : Vec (Fin n) n} → (p₁ ∼p p₂) → p₁ ≡ p₂ ∼p⇒≡ {n} {p₁} {p₂} eqv = begin ( p₁ ≡⟨ sym (tabulate∘lookup p₁) ⟩ tabulate (_!!_ p₁) ≡⟨ finext eqv ⟩ tabulate (_!!_ p₂) ≡⟨ tabulate∘lookup p₂ ⟩ p₂ ∎) where open ≡-Reasoning -- note the flip! ∘̂⇒∘ : {m n o : ℕ} → (f : Fin m → Fin n) → (g : Fin n → Fin o) → tabulate f ∘̂ tabulate g ∼p tabulate (g ∘ f) ∘̂⇒∘ f g i = begin ( (tabulate f ∘̂ tabulate g) !! i ≡⟨ lookup∘tabulate _ i ⟩ (tabulate g) !! (tabulate f !! i) ≡⟨ lookup∘tabulate _ (tabulate f !! i) ⟩ g (tabulate f !! i) ≡⟨ cong g (lookup∘tabulate f i) ⟩ g (f i) ≡⟨ sym (lookup∘tabulate (g ∘ f) i) ⟩ tabulate (g ∘ f) !! i ∎) where open ≡-Reasoning -- this is just tabulate∘lookup, but it hides the details; should this be -- called 'join' or 'flatten' ? cauchyext : {m n : ℕ} (π : FinVec m n) → tabulate (_!!_ π) ≡ π cauchyext π = tabulate∘lookup π -- we could go through ~p, but this works better in practice ~⇒≡ : {m n : ℕ} {f : Fin m → Fin n} {g : Fin n → Fin m} → (f ∘ g ∼ id) → (tabulate g ∘̂ tabulate f ≡ 1C) ~⇒≡ {f = f} {g} β = ∼p⇒≡ (λ i → trans (∘̂⇒∘ g f i) (cong (λ x → x !! i) (finext β))) -- make a permutation from something lower level, directly -- ~⇒≡ {m} {n = m} {o = m} (p∘!p≡id {p = Plus.unite+ {m}}) -- properties of sequential composition ∘̂-assoc : {m₁ m₂ m₃ m₄ : ℕ} → (a : Vec (Fin m₂) m₁) (b : Vec (Fin m₃) m₂) (c : Vec (Fin m₄) m₃) → a ∘̂ (b ∘̂ c) ≡ (a ∘̂ b) ∘̂ c ∘̂-assoc a b c = finext (lookupassoc a b c) ∘̂-rid : {m n : ℕ} → (π : Vec (Fin m) n) → π ∘̂ 1C ≡ π ∘̂-rid π = trans (finext (λ i → lookup-allFin (π !! i))) (cauchyext π) ∘̂-lid : {m n : ℕ} → (π : Vec (Fin m) n) → 1C ∘̂ π ≡ π ∘̂-lid π = trans (finext (λ i → cong (_!!_ π) (lookup-allFin i))) (cauchyext π) !!⇒∘̂ : {n₁ n₂ n₃ : ℕ} → (π₁ : Vec (Fin n₁) n₂) → (π₂ : Vec (Fin n₂) n₃) → (i : Fin n₃) → π₁ !! (π₂ !! i) ≡ (π₂ ∘̂ π₁) !! i !!⇒∘̂ π₁ π₂ i = begin ( π₁ !! (π₂ !! i) ≡⟨ sym (lookup∘tabulate (λ j → (π₁ !! (π₂ !! j))) i) ⟩ tabulate (λ i → π₁ !! (π₂ !! i)) !! i ≡⟨ refl ⟩ (π₂ ∘̂ π₁) !! i ∎) where open ≡-Reasoning -- properties of sequential composition 0C∘̂0C≡0C : 1C {0} ∘̂ 1C {0} ≡ 1C {0} 0C∘̂0C≡0C = refl -- properties of parallel composition -- trivial ones first 1C₀⊎x≡x : ∀ {m n} {x : FinVec m n} → 1C {0} ⊎c x ≡ x 1C₀⊎x≡x {x = x} = cauchyext x unite+∘[0⊎x]≡x∘unite+ : ∀ {m n} {x : FinVec m n} → unite+ ∘̂ (1C {0} ⊎c x) ≡ x ∘̂ unite+ unite+∘[0⊎x]≡x∘unite+ {m} {n} {x} = finext pf where pf : (i : Fin n) → (0C ⊎c x) !! (unite+ !! i) ≡ unite+ !! (x !! i) pf i = begin ( tabulate (λ y → x !! y) !! (tabulate id !! i) ≡⟨ cong (λ j → tabulate (λ y → x !! y) !! j) (lookup∘tabulate id i) ⟩ tabulate (λ y → x !! y) !! i ≡⟨ lookup∘tabulate (_!!_ x) i ⟩ x !! i ≡⟨ sym (lookup∘tabulate id (x !! i)) ⟩ tabulate id !! (x !! i) ∎) uniti+∘x≡[0⊎x]∘uniti+ : ∀ {m n} {x : FinVec m n} → uniti+ ∘̂ x ≡ (1C {0} ⊎c x) ∘̂ uniti+ uniti+∘x≡[0⊎x]∘uniti+ {m} {n} {x} = finext pf where pf : (i : Fin n) → x !! (uniti+ !! i) ≡ uniti+ !! ((0C ⊎c x) !! i) pf i = begin ( x !! (tabulate id !! i) ≡⟨ cong (_!!_ x) (lookup∘tabulate id i) ⟩ x !! i ≡⟨ sym (lookup∘tabulate (λ y → x !! y) i) ⟩ tabulate (λ y → x !! y) !! i ≡⟨ sym (lookup∘tabulate id _) ⟩ tabulate id !! (tabulate (λ y → x !! y) !! i) ∎) {- x⊎1C₀≡x : ∀ {m n} {x : FinVec m n} → x ⊎c (1C {0}) ≡ ? x⊎1C₀≡x {m} {n} {x = x} = let e = proj₁ (Plus.unite+) in let i = proj₁ (Plus.uniti+) in let eq = sym (+-right-identity m) in begin ( tabulate (λ j → inject+ 0 (x !! j)) ++V [] ≡⟨ cong (λ x → x ++V []) (finext (λ j → inject+0≡uniti+ (x !! j) eq)) ⟩ tabulate (λ j → i (x !! j)) ++V [] ≡⟨ tab++[]≡tab∘̂unite+ (λ j → i (x !! j)) (+-right-identity n) ⟩ tabulate (λ j → i (x !! e j)) ≡⟨ finext (λ j → sym (lookup∘tabulate (λ k → i (x !! k)) (e j))) ⟩ tabulate (λ j → tabulate (λ k → i (x !! k)) !! (e j)) ≡⟨ finext (λ j → cong₂ _!!_ (finext (λ k → sym (lookup∘tabulate i (x !! k)))) (sym (lookup∘tabulate e j))) ⟩ tabulate (λ j → (tabulate (λ k → tabulate i !! (x !! k))) !! ((tabulate e) !! j)) ∎) where open ≡-Reasoning -} 1C⊎1C≡1C : ∀ {m n} → 1C {m} ⊎c 1C {n} ≡ 1C 1C⊎1C≡1C {m} {n} = begin ( tabulate {m} (inject+ n ∘ _!!_ 1C) ++V tabulate {n} (raise m ∘ _!!_ 1C) ≡⟨ cong₂ (_++V_ {m = m}) (finext (λ i → cong (inject+ n) (lookup-allFin i))) (finext (λ i → cong (raise m) (lookup-allFin i))) ⟩ tabulate {m} (inject+ n) ++V tabulate {n} (raise m) ≡⟨ unSplit {m} id ⟩ tabulate {m + n} id ∎) where open ≡-Reasoning 1C!!i≡i : ∀ {m} {i : Fin m} → 1C {m} !! i ≡ i 1C!!i≡i = lookup∘tabulate id _ unite+∘̂uniti+~id : ∀ {m} → (unite+ {m}) ∘̂ uniti+ ≡ 1C {m} unite+∘̂uniti+~id {m} = ~⇒≡ {m} {n = m} (p∘!p≡id {p = Plus.unite+ {m}}) uniti+∘̂unite+~id : ∀ {m} → (uniti+ {m}) ∘̂ unite+ ≡ 1C {m} uniti+∘̂unite+~id {m} = ~⇒≡ {m} {n = m} (p∘!p≡id {p = Plus.uniti+}) unite+r∘̂uniti+r~id : ∀ {m} → (unite+r {m}) ∘̂ uniti+r ≡ 1C {m + 0} unite+r∘̂uniti+r~id {m} = ~⇒≡ {m} (p∘!p≡id {p = Plus.unite+r {m}}) uniti+r∘̂unite+r~id : ∀ {m} → (uniti+r {m}) ∘̂ unite+r ≡ 1C {m} uniti+r∘̂unite+r~id {m} = ~⇒≡ (p∘!p≡id {p = Plus.uniti+r}) assocl+∘̂assocr+~id : ∀ {m n o} → assocl+ {m} {n} {o} ∘̂ assocr+ {m} ≡ 1C assocl+∘̂assocr+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Plus.assocl+ {m}}) assocr+∘̂assocl+~id : ∀ {m n o} → assocr+ {m} {n} {o} ∘̂ assocl+ {m} ≡ 1C assocr+∘̂assocl+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Plus.assocr+ {m}}) swap+-inv : ∀ {m n} → swap+cauchy m n ∘̂ swap+cauchy n m ≡ 1C swap+-inv {m} {n} = ~⇒≡ (Plus.swap-inv m n) idˡ⊕ : ∀ {m n} {x : FinVec m n} → uniti+ ∘̂ (1C {0} ⊎c x) ≡ x ∘̂ uniti+ idˡ⊕ {m} {n} {x} = finext pf where open ≡-Reasoning pf : (i : Fin n) → (1C {0} ⊎c x) !! (uniti+ !! i) ≡ (uniti+ !! (x !! i)) pf i = begin ( tabulate (λ y → x !! y) !! (tabulate id !! i) ≡⟨ cong (_!!_ (tabulate λ y → x !! y)) (lookup∘tabulate id i) ⟩ (tabulate (λ y → x !! y)) !! i ≡⟨ lookup∘tabulate (λ y → x !! y) i ⟩ x !! i ≡⟨ sym (lookup∘tabulate id (x !! i)) ⟩ tabulate id !! (x !! i) ∎) [,]-commute : {A B C D E : Set} → {f : A → C} → {g : B → C} → {h : C → D} → ∀ x → h ([ f , g ]′ x) ≡ [ (h ∘ f) , (h ∘ g) ]′ x [,]-commute (inj₁ x) = refl [,]-commute (inj₂ y) = refl {- assocl-commute : ∀ {m₁ m₂ m₃ n₁ n₂ n₃} {a : FinVec m₁ n₁} {b : FinVec m₂ n₂} {c : FinVec m₃ n₃} → assocl+ {n₁} ∘̂ ((a ⊎c b) ⊎c c) ≡ (a ⊎c (b ⊎c c)) ∘̂ assocl+ {m₁} assocl-commute {m₁} {m₂} {m₃} {n₁} {n₂} {n₃} {a} {b} {c} = begin ( assocl+ {n₁} ∘̂ ((a ⊎c b) ⊎c c) ≡⟨ cong (λ x → assocl+ {n₁} ∘̂ x) (trans (⊎-equiv (a ⊎c b) c) (cong (λ x → x ⊎fv c) (⊎-equiv a b))) ⟩ assocl+ {n₁} ∘̂ ((a ⊎fv b) ⊎fv c) ≡⟨ refl ⟩ tabulate (λ i → ((a ⊎fv b) ⊎fv c) !! (assocl+ {n₁} !! i)) ≡⟨ finext pf₁ ⟩ tabulate (λ i → assocl+ {m₁} !! ((a ⊎fv (b ⊎fv c)) !! i) ) ≡⟨ refl ⟩ (a ⊎fv (b ⊎fv c)) ∘̂ assocl+ {m₁} ≡⟨ cong (λ x → x ∘̂ assocl+ {m₁}) (sym (trans (cong (λ x → a ⊎c x) (⊎-equiv b c)) (⊎-equiv a (b ⊎fv c)))) ⟩ (a ⊎c (b ⊎c c)) ∘̂ assocl+ {m₁} ∎) where pf₁ : ∀ i → ((a ⊎fv b) ⊎fv c) !! (assocl+ {n₁} !! i) ≡ assocl+ {m₁} !! ((a ⊎fv (b ⊎fv c)) !! i) pf₁ i = let assoc1 k = proj₁ (Plus.assocl+ {n₁}) k in let assoc2 k = proj₁ (Plus.assocl+ {m₁} {m₂}) k in let abc!! = (_!!_ ((a ⊎fv b) ⊎fv c)) in let a!! = (_!!_ a) in let b!! = (_!!_ b) in let c!! = (_!!_ c) in let ab!! = (_!!_ (a ⊎fv b)) in let bc!! = (_!!_ (b ⊎fv c)) in let iso4 = ((sym≃ (Plus.fwd-iso {n₁})) ● ((path⊎ id≃ (sym≃ Plus.fwd-iso)) ● (TE.assocl₊equiv ● (path⊎ Plus.fwd-iso id≃)))) in let iso3 = (sym≃ (Plus.fwd-iso {n₁})) ● ((path⊎ id≃ (sym≃ Plus.fwd-iso)) ● (TE.assocl₊equiv)) in let iso4b = (path⊎ id≃ (sym≃ Plus.fwd-iso) ● ((TE.assocl₊equiv ● path⊎ Plus.fwd-iso id≃) ● Plus.fwd-iso)) in begin ( ((a ⊎fv b) ⊎fv c) !! (assocl+ {n₁} !! i) ≡⟨ cong abc!! (lookup∘tabulate _ i) ⟩ abc!! (assoc1 i) ≡⟨ lookup∘tabulate _ (assoc1 i) ⟩ fwd (map⊎ ab!! c!! (bwd (assoc1 i))) ≡⟨ cong (fwd ∘ map⊎ ab!! c!!) (bwd∘fwd~id (iso4 ⋆ i)) ⟩ fwd (map⊎ ab!! c!! (iso4 ⋆ i)) ≡⟨ cong fwd (merge-[,] {h = fwd} {i = id} (iso3 ⋆ i)) ⟩ fwd (map⊎ (ab!! ∘ fwd) c!! (iso3 ⋆ i)) ≡⟨ {!!} ⟩ iso4b ⋆ (map⊎ a!! bc!! (bwd i)) ≡⟨ sym (cong (λ x → iso4b ⋆ x) (bwd∘fwd~id (map⊎ a!! bc!! (bwd i)))) ⟩ assoc2 (fwd (map⊎ a!! bc!! (bwd i))) ≡⟨ sym (cong assoc2 (lookup∘tabulate _ i)) ⟩ assoc2 ((a ⊎fv (b ⊎fv c)) !! i) ≡⟨ sym (lookup∘tabulate assoc2 _) ⟩ assocl+ {m₁} !! ((a ⊎fv (b ⊎fv c)) !! i) ∎) -} -- properties of multiplicative composition unite*∘̂uniti*~id : ∀ {m} → (unite* {m}) ∘̂ uniti* ≡ 1C {1 * m} unite*∘̂uniti*~id {m} = ~⇒≡ {m} {n = 1 * m} (p∘!p≡id {p = Times.unite* {m}}) uniti*∘̂unite*~id : ∀ {m} → (uniti* {m}) ∘̂ unite* ≡ 1C {m} uniti*∘̂unite*~id {m} = ~⇒≡ {1 * m} {n = m} (p∘!p≡id {p = Times.uniti* {m}}) unite*r∘̂uniti*r~id : ∀ {m} → (unite*r {m}) ∘̂ uniti*r ≡ 1C {m * 1} unite*r∘̂uniti*r~id {m} = ~⇒≡ {m} {n = m * 1} (p∘!p≡id {p = Times.unite*r {m}}) uniti*r∘̂unite*r~id : ∀ {m} → (uniti*r {m}) ∘̂ unite*r ≡ 1C {m} uniti*r∘̂unite*r~id {m} = ~⇒≡ {m * 1} {n = m} (p∘!p≡id {p = Times.uniti*r {m}}) assocl*∘̂assocr*~id : ∀ {m n o} → assocl* {m} {n} {o} ∘̂ assocr* {m} ≡ 1C assocl*∘̂assocr*~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Times.assocl* {m}}) assocr*∘̂assocl*~id : ∀ {m n o} → assocr* {m} {n} {o} ∘̂ assocl* {m} ≡ 1C assocr*∘̂assocl*~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Times.assocr* {m}}) dist*+∘̂factor*+~id : ∀ {m n o} → dist*+ {m} {n} {o} ∘̂ factor*+ {m} ≡ 1C dist*+∘̂factor*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.dist {m}}) factor*+∘̂dist*+~id : ∀ {m n o} → factor*+ {m} {n} {o} ∘̂ dist*+ {m} ≡ 1C factor*+∘̂dist*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.factor {m}}) distl*+∘̂factorl*+~id : ∀ {m n o} → distl*+ {m} {n} {o} ∘̂ factorl*+ {m} ≡ 1C distl*+∘̂factorl*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.distl {m}}) factorl*+∘̂distl*+~id : ∀ {m n o} → factorl*+ {m} {n} {o} ∘̂ distl*+ {m} ≡ 1C factorl*+∘̂distl*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.factorl {m}}) right-zero*l∘̂right-zero*r~id : ∀ {m} → right-zero*l {m} ∘̂ right-zero*r {m} ≡ 1C {m * 0} right-zero*l∘̂right-zero*r~id {m} = ~⇒≡ {f = proj₁ (Times.factorzr {m})} (p∘!p≡id {p = Times.distzr {m}}) right-zero*r∘̂right-zero*l~id : ∀ {m} → right-zero*r {m} ∘̂ right-zero*l {m} ≡ 1C right-zero*r∘̂right-zero*l~id {m} = ~⇒≡ { f = proj₁ (Times.factorz {m})} (p∘!p≡id {p = Times.distz {m}}) private left⊎⊎!! : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → (p₁ : FinVec m₁ n₁) → (p₂ : FinVec m₂ n₂) → (p₃ : FinVec m₃ m₁) → (p₄ : FinVec m₄ m₂) → (i : Fin n₁) → (p₃ ⊎c p₄) !! ( (p₁ ⊎c p₂) !! inject+ n₂ i ) ≡ inject+ m₄ ( (p₁ ∘̂ p₃) !! i) left⊎⊎!! {m₁} {m₂} {_} {m₄} {_} {n₂} p₁ p₂ p₃ p₄ i = let pp = p₃ ⊎c p₄ in let qq = p₁ ⊎c p₂ in begin ( pp !! (qq !! inject+ n₂ i) ≡⟨ cong (_!!_ pp) (lookup-++-inject+ (tabulate (inject+ m₂ ∘ _!!_ p₁)) (tabulate (raise m₁ ∘ _!!_ p₂)) i) ⟩ pp !! (tabulate (inject+ m₂ ∘ _!!_ p₁ ) !! i) ≡⟨ cong (_!!_ pp) (lookup∘tabulate _ i) ⟩ pp !! (inject+ m₂ (p₁ !! i)) ≡⟨ left!! (p₁ !! i) (inject+ m₄ ∘ (_!!_ p₃)) ⟩ inject+ m₄ (p₃ !! (p₁ !! i)) ≡⟨ cong (inject+ m₄) (sym (lookup∘tabulate _ i)) ⟩ inject+ m₄ ((p₁ ∘̂ p₃) !! i) ∎ ) right⊎⊎!! : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → (p₁ : FinVec m₁ n₁) → (p₂ : FinVec m₂ n₂) → (p₃ : FinVec m₃ m₁) → (p₄ : FinVec m₄ m₂) → (i : Fin n₂) → (p₃ ⊎c p₄) !! ( (p₁ ⊎c p₂) !! raise n₁ i ) ≡ raise m₃ ( (p₂ ∘̂ p₄) !! i) right⊎⊎!! {m₁} {m₂} {m₃} {_} {n₁} {_} p₁ p₂ p₃ p₄ i = let pp = p₃ ⊎c p₄ in let qq = p₁ ⊎c p₂ in begin ( pp !! (qq !! raise n₁ i) ≡⟨ cong (_!!_ pp) (lookup-++-raise (tabulate (inject+ m₂ ∘ _!!_ p₁)) (tabulate (raise m₁ ∘ _!!_ p₂)) i) ⟩ pp !! (tabulate (raise m₁ ∘ _!!_ p₂) !! i) ≡⟨ cong (_!!_ pp) (lookup∘tabulate _ i) ⟩ pp !! raise m₁ (p₂ !! i) ≡⟨ right!! {m₁} (p₂ !! i) (raise m₃ ∘ (_!!_ p₄)) ⟩ raise m₃ (p₄ !! (p₂ !! i)) ≡⟨ cong (raise m₃) (sym (lookup∘tabulate _ i)) ⟩ raise m₃ ((p₂ ∘̂ p₄) !! i) ∎ ) ⊎c-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : FinVec m₁ n₁} → {p₂ : FinVec m₂ n₂} → {p₃ : FinVec m₃ m₁} → {p₄ : FinVec m₄ m₂} → (p₁ ⊎c p₂) ∘̂ (p₃ ⊎c p₄) ≡ (p₁ ∘̂ p₃) ⊎c (p₂ ∘̂ p₄) ⊎c-distrib {m₁} {m₂} {m₃} {m₄} {n₁} {n₂} {p₁} {p₂} {p₃} {p₄} = let p₃₄ = p₃ ⊎c p₄ in let p₁₂ = p₁ ⊎c p₂ in let lhs = λ i → p₃₄ !! (p₁₂ !! i) in begin ( tabulate lhs ≡⟨ tabulate-split {n₁} {n₂} ⟩ tabulate {n₁} (lhs ∘ inject+ n₂) ++V tabulate {n₂} (lhs ∘ raise n₁) ≡⟨ cong₂ _++V_ (finext (left⊎⊎!! p₁ _ _ _)) (finext (right⊎⊎!! p₁ _ _ _)) ⟩ tabulate {n₁} (λ i → inject+ m₄ ((p₁ ∘̂ p₃) !! i)) ++V tabulate {n₂} (λ i → raise m₃ ((p₂ ∘̂ p₄) !! i)) ≡⟨ refl ⟩ (p₁ ∘̂ p₃) ⊎c (p₂ ∘̂ p₄) ∎) ------------------------------------------------------------------------------ -- properties of ×c private concat!! : {A : Set} {m n : ℕ} → (a : Fin m) → (b : Fin n) → (xss : Vec (Vec A n) m) → concatV xss !! (Times.fwd (a ,′ b)) ≡ (xss !! a) !! b concat!! zero b (xs ∷ xss) = lookup-++-inject+ xs (concatV xss) b concat!! (suc a) b (xs ∷ xss) = trans (lookup-++-raise xs (concatV xss) (Times.fwd (a ,′ b))) (concat!! a b xss) ×c-equiv : {m₁ m₂ n₁ n₂ : ℕ} (p₁ : FinVec m₁ n₁) (p₂ : FinVec m₂ n₂) → (p₁ ×c p₂) ≡ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) ×c-equiv p₁ p₂ = let zss = mapV (λ b → mapV (λ x → b ,′ x) p₂) p₁ in begin ( (p₁ ×c p₂) ≡⟨ refl ⟩ mapV Times.fwd (concatV zss) ≡⟨ sym (concat-map zss Times.fwd) ⟩ concatV (mapV (mapV Times.fwd) zss) ≡⟨ cong concatV (map-map-map Times.fwd (λ b → mapV (λ x → b ,′ x) p₂) p₁) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) ∎) lookup-2d : {A : Set} (m n : ℕ) → (k : Fin (m * n)) → {f : Fin m × Fin n → A} → concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j)))) !! k ≡ f (Times.bwd k) lookup-2d m n k {f} = let lhs = concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j)))) in let a = proj₁ (Times.bwd {m} {n} k) in let b = proj₂ (Times.bwd {m} {n} k) in begin ( lhs !! k ≡⟨ cong (_!!_ lhs) (sym (Times.fwd∘bwd~id {m} k)) ⟩ lhs !! (Times.fwd (a ,′ b)) ≡⟨ concat!! a b _ ⟩ (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j))) !! a) !! b ≡⟨ cong (λ x → x !! b) (lookup∘tabulate _ a) ⟩ tabulate {n} (λ j → f (a ,′ j)) !! b ≡⟨ lookup∘tabulate _ b ⟩ f (a ,′ b) ≡⟨ refl ⟩ f (Times.bwd k) ∎) ×c!! : {m₁ m₂ n₁ n₂ : ℕ} (p₁ : FinVec m₁ n₁) (p₂ : FinVec m₂ n₂) (k : Fin (n₁ * n₂)) → (p₁ ×c p₂) !! k ≡ Times.fwd (p₁ !! proj₁ (Times.bwd k) ,′ p₂ !! proj₂ (Times.bwd {n₁} k)) ×c!! {n₁ = n₁} p₁ p₂ k = let a = proj₁ (Times.bwd {n₁} k) in let b = proj₂ (Times.bwd {n₁} k) in begin ( (p₁ ×c p₂) !! k ≡⟨ cong₂ _!!_ (×c-equiv p₁ p₂) (sym (Times.fwd∘bwd~id {n₁} k)) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) !! Times.fwd (a ,′ b) ≡⟨ concat!! a b _ ⟩ ((mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) !! a) !! b ≡⟨ cong (λ x → x !! b) (lookup-map a _ p₁) ⟩ mapV Times.fwd (mapV (λ x → p₁ !! a ,′ x) p₂) !! b ≡⟨ cong (λ x → x !! b) (sym (map-∘ Times.fwd _ p₂)) ⟩ mapV (Times.fwd ∘ (λ x → p₁ !! a ,′ x)) p₂ !! b ≡⟨ lookup-map b _ p₂ ⟩ Times.fwd (p₁ !! a ,′ p₂ !! b) ∎) ×c-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : FinVec m₁ n₁} → {p₂ : FinVec m₂ n₂} → {p₃ : FinVec m₃ m₁} → {p₄ : FinVec m₄ m₂} → (p₁ ×c p₂) ∘̂ (p₃ ×c p₄) ≡ (p₁ ∘̂ p₃) ×c (p₂ ∘̂ p₄) ×c-distrib {m₁} {m₂} {m₃} {m₄} {n₁} {n₂} {p₁} {p₂} {p₃} {p₄} = let p₃₄ = p₃ ×c p₄ in let p₁₂ = p₁ ×c p₂ in let p₂₄ = p₂ ∘̂ p₄ in let p₁₃ = p₁ ∘̂ p₃ in let lhs = λ i → p₃₄ !! (p₁₂ !! i) in let zss = mapV (λ b → mapV (λ x → b ,′ x) (p₂ ∘̂ p₄)) (p₁ ∘̂ p₃) in begin ( tabulate {n₁ * n₂} (λ i → p₃₄ !! (p₁₂ !! i)) ≡⟨ finext (λ j → cong (_!!_ p₃₄) (×c!! p₁ p₂ j)) ⟩ tabulate {n₁ * n₂} (λ i → p₃₄ !! Times.fwd (p₁ !! proj₁ (Times.bwd i) ,′ p₂ !! proj₂ (Times.bwd i))) ≡⟨ finext (λ j → ×c!! p₃ p₄ _) ⟩ tabulate (λ i → let k = Times.fwd (p₁ !! proj₁ (Times.bwd i) ,′ p₂ !! proj₂ (Times.bwd i)) in Times.fwd (p₃ !! proj₁ (Times.bwd k) ,′ p₄ !! proj₂ (Times.bwd k))) ≡⟨ finext (λ i → cong₂ (λ x y → Times.fwd (p₃ !! proj₁ x ,′ p₄ !! proj₂ y)) (Times.bwd∘fwd~id {m₁} {m₂} (p₁ !! proj₁ (Times.bwd i) ,′ _)) (Times.bwd∘fwd~id (_ ,′ p₂ !! proj₂ (Times.bwd i)))) ⟩ tabulate (λ i → Times.fwd (p₃ !! (p₁ !! proj₁ (Times.bwd i)) ,′ (p₄ !! (p₂ !! proj₂ (Times.bwd i))))) ≡⟨ finext (λ k → sym (lookup-2d n₁ n₂ k)) ⟩ tabulate (λ k → concatV (tabulate {n₁} (λ z → tabulate {n₂} (λ w → Times.fwd ((p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) !! k) ≡⟨ tabulate∘lookup _ ⟩ concatV (tabulate {n₁} (λ z → tabulate {n₂} (λ w → Times.fwd ((p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) ≡⟨ cong concatV (finext (λ i → tabulate-∘ Times.fwd (λ w → ((p₃ !! (p₁ !! i)) ,′ (p₄ !! (p₂ !! w)))) )) ⟩ concatV (tabulate (λ z → mapV Times.fwd (tabulate (λ w → (p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) ≡⟨ cong concatV (finext (λ i → cong (mapV Times.fwd) (tabulate-∘ (λ x → (p₃ !! (p₁ !! i)) ,′ x) (_!!_ p₄ ∘ _!!_ p₂)))) ⟩ concatV (tabulate (λ z → mapV Times.fwd (mapV (λ x → (p₃ !! (p₁ !! z)) ,′ x) p₂₄))) ≡⟨ cong concatV (tabulate-∘ _ (_!!_ p₃ ∘ _!!_ p₁)) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂₄)) p₁₃) ≡⟨ sym (×c-equiv p₁₃ p₂₄) ⟩ (p₁ ∘̂ p₃) ×c (p₂ ∘̂ p₄) ∎) -- there might be a simpler proofs of this using tablate∘lookup right -- at the start. 1C×1C≡1C : ∀ {m n} → (1C {m} ×c 1C {n}) ≡ 1C {m * n} 1C×1C≡1C {m} {n} = begin ( 1C {m} ×c 1C ≡⟨ ×c-equiv 1C 1C ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (_,′_ y) (1C {n}))) (1C {m})) ≡⟨ cong (concatV {n = m}) (sym (tabulate-∘ _ id)) ⟩ concatV {n = m} (tabulate (λ y → mapV Times.fwd (mapV (_,′_ y) (1C {n})))) ≡⟨ cong (concatV {n = m}) (finext (λ y → sym (map-∘ Times.fwd (λ x → y ,′ x) 1C))) ⟩ concatV (tabulate {n = m} (λ y → mapV (Times.fwd ∘ (_,′_ y)) (1C {n}))) ≡⟨ cong (concatV {m = n} {m}) (finext (λ y → sym (tabulate-∘ (Times.fwd ∘ (_,′_ y)) id))) ⟩ concatV (tabulate {n = m} (λ a → tabulate {n = n} (λ b → Times.fwd (a ,′ b)))) ≡⟨ sym (tabulate∘lookup _) ⟩ tabulate (λ k → concatV (tabulate {n = m} (λ a → tabulate {n = n} (λ b → Times.fwd (a ,′ b)))) !! k) ≡⟨ finext (λ k → lookup-2d m n k) ⟩ tabulate (λ k → Times.fwd {m} {n} (Times.bwd k)) ≡⟨ finext (Times.fwd∘bwd~id {m} {n}) ⟩ 1C {m * n} ∎ ) swap*-inv : ∀ {m n} → swap⋆cauchy m n ∘̂ swap⋆cauchy n m ≡ 1C swap*-inv {m} {n} = ~⇒≡ (Times.swap-inv m n) ------------------------ -- A few "reveal" functions, to let us peek into the representation reveal1C : ∀ {m} → allFin m ≡ 1C reveal1C = refl reveal0C : [] ≡ 1C {0} reveal0C = refl reveal⊎c : ∀ {m₁ n₁ m₂ n₂} → {α : FinVec m₁ m₂} → {β : FinVec n₁ n₂} → α ⊎c β ≡ tabulate (fwd ∘ inj₁ ∘ _!!_ α) ++V tabulate (fwd {m₁} ∘ inj₂ ∘ _!!_ β) reveal⊎c = refl ------------------------------------------------------------------------------ -- Commutative semiring structure open F _cauchy≃_ : (m n : ℕ) → Set m cauchy≃ n = FinVec m n id-iso : {m : ℕ} → FinVec m m id-iso = 1C private postulate sym-iso : {m n : ℕ} → FinVec m n → FinVec n m trans-iso : {m n o : ℕ} → FinVec m n → FinVec n o → FinVec m o trans-iso c₁ c₂ = c₂ ∘̂ c₁ cauchy≃IsEquiv : IsEquivalence {Level.zero} {Level.zero} {ℕ} _cauchy≃_ cauchy≃IsEquiv = record { refl = id-iso ; sym = sym-iso ; trans = trans-iso } cauchyPlusIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _+_ cauchyPlusIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl+ {m} {n} {o} ; ∙-cong = _⊎c_ } cauchyTimesIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _*_ cauchyTimesIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl* {m} {n} {o} ; ∙-cong = _×c_ } cauchyPlusIsCM : IsCommutativeMonoid _cauchy≃_ _+_ 0 cauchyPlusIsCM = record { isSemigroup = cauchyPlusIsSG ; identityˡ = λ m → 1C ; comm = λ m n → swap+cauchy n m } cauchyTimesIsCM : IsCommutativeMonoid _cauchy≃_ _*_ 1 cauchyTimesIsCM = record { isSemigroup = cauchyTimesIsSG ; identityˡ = λ m → uniti* {m} ; comm = λ m n → swap⋆cauchy n m } cauchyIsCSR : IsCommutativeSemiring _cauchy≃_ _+_ _*_ 0 1 cauchyIsCSR = record { +-isCommutativeMonoid = cauchyPlusIsCM ; *-isCommutativeMonoid = cauchyTimesIsCM ; distribʳ = λ o m n → factor*+ {m} {n} {o} ; zeroˡ = λ m → 0C } cauchyCSR : CommutativeSemiring Level.zero Level.zero cauchyCSR = record { Carrier = ℕ ; _≈_ = _cauchy≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = cauchyIsCSR } ------------------------------------------------------------------------------ -- Groupoid structure private postulate linv : {m n : ℕ} (c : FinVec m n) → (sym-iso c) ∘̂ c ≡ 1C postulate rinv : {m n : ℕ} (c : FinVec m n) → c ∘̂ (sym-iso c) ≡ 1C G : 1Groupoid G = record { set = ℕ ; _↝_ = _cauchy≃_ ; _≈_ = _≡_ ; id = id-iso ; _∘_ = λ c₁ c₂ → trans-iso c₂ c₁ ; _⁻¹ = sym-iso ; lneutr = ∘̂-lid ; rneutr = ∘̂-rid ; assoc = λ c₁ c₂ c₃ → sym (∘̂-assoc c₁ c₂ c₃) ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; linv = linv ; rinv = rinv ; ∘-resp-≈ = cong₂ _∘̂_ } {-- -- Move to its own spot later merge-[,] : {A B C D E : Set} → {h : A → C} → {i : B → D} → {f : C → E} → {g : D → E} → (x : A ⊎ B) → [ f , g ]′ ( map⊎ h i x ) ≡ [ (f ∘ h) , (g ∘ i) ]′ x merge-[,] (inj₁ x) = refl merge-[,] (inj₂ y) = refl --}
{ "alphanum_fraction": 0.4626393889, "avg_line_length": 40.7720763723, "ext": "agda", "hexsha": "a2d11240dff3cac802b2dfcf597ad0b83530c82e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/FinVec.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/FinVec.agda", "max_line_length": 135, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/FinVec.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 15083, "size": 34167 }
------------------------------------------------------------------------ -- Equivalences ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Partly based on Voevodsky's work on so-called univalent -- foundations. open import Equality module Equivalence {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq open import Equality.Decidable-UIP eq using (propositional-identity⇒set) import Equivalence.Half-adjoint eq as HA open import Groupoid eq open import H-level eq as H-level open import H-level.Closure eq open import Injection eq using (_↣_; Injective) open import Logical-equivalence as L-eq using (_⇔_) open import Nat eq open import Preimage eq as Preimage using (_⁻¹_) open import Prelude as P hiding (id) renaming (_∘_ to _⊚_) open import Surjection eq as Surjection using (_↠_) ------------------------------------------------------------------------ -- Is-equivalence open HA public using (Is-equivalence; propositional; sometimes-contractible; respects-extensional-equality; function-between-contractible-types-is-equivalence; drop-Σ-map-id; inverse-drop-Σ-map-id; ext⁻¹-is-equivalence) ------------------------------------------------------------------------ -- _≃_ private module Dummy where -- Equivalences. infix 4 _≃_ record _≃_ {a b} (A : Type a) (B : Type b) : Type (a ⊔ b) where constructor ⟨_,_⟩ field to : A → B is-equivalence : Is-equivalence to open Dummy public using (_≃_; ⟨_,_⟩) hiding (module _≃_) -- Some definitions with erased type arguments. module _≃₀_ {a b} {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ B) where -- The forward direction of the equivalence. to : A → B to = Dummy._≃_.to A≃B -- The function to is an equivalence. is-equivalence : Is-equivalence to is-equivalence = Dummy._≃_.is-equivalence A≃B -- Equivalent types are isomorphic. from : B → A from = HA.inverse is-equivalence right-inverse-of : ∀ x → to (from x) ≡ x right-inverse-of = HA.right-inverse-of is-equivalence left-inverse-of : ∀ x → from (to x) ≡ x left-inverse-of = HA.left-inverse-of is-equivalence bijection : A ↔ B bijection = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = right-inverse-of } ; left-inverse-of = left-inverse-of } module _≃_ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) where open _≃₀_ A≃B public open _↔_ bijection public hiding (from; to; right-inverse-of; left-inverse-of) -- All preimages of an element under the equivalence are equal. irrelevance : ∀ y (p : to ⁻¹ y) → (from y , right-inverse-of y) ≡ p irrelevance = HA.irrelevance is-equivalence -- The two proofs left-inverse-of and right-inverse-of are -- related. left-right-lemma : ∀ x → cong to (left-inverse-of x) ≡ right-inverse-of (to x) left-right-lemma = proj₂ (proj₂ (proj₂ is-equivalence)) right-left-lemma : ∀ x → cong from (right-inverse-of x) ≡ left-inverse-of (from x) right-left-lemma = proj₂ (proj₂ (proj₂ (HA.inverse-equivalence is-equivalence))) -- Equivalences are isomorphic to pairs. ≃-as-Σ : ∀ {a b} {A : Type a} {B : Type b} → A ≃ B ↔ ∃ λ (f : A → B) → Is-equivalence f ≃-as-Σ = record { surjection = record { logical-equivalence = record { to = λ { ⟨ f , is ⟩ → f , is } ; from = uncurry ⟨_,_⟩ } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Bijections are equivalences. -- -- Note that the right inverse proof is preserved unchanged. ↔⇒≃ : ∀ {a b} {A : Type a} {B : Type b} → A ↔ B → A ≃ B ↔⇒≃ A↔B = record { to = _↔_.to A↔B ; is-equivalence = HA.↔→Is-equivalenceʳ A↔B } _ : ∀ {a b} {A : Type a} {B : Type b} {A↔B : A ↔ B} → _≃_.right-inverse-of (↔⇒≃ A↔B) ≡ _↔_.right-inverse-of A↔B _ = refl _ -- A variant of the previous result. -- -- Note that the right inverse proof is preserved unchanged. ↔→≃ : ∀ {a b} {A : Type a} {B : Type b} → (f : A → B) (g : B → A) → (∀ x → f (g x) ≡ x) → (∀ x → g (f x) ≡ x) → A ≃ B ↔→≃ f g f∘g g∘f = ↔⇒≃ (record { surjection = record { logical-equivalence = record { to = f ; from = g } ; right-inverse-of = f∘g } ; left-inverse-of = g∘f }) _ : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} {g : B → A} {f-g : ∀ x → f (g x) ≡ x} {g-f : ∀ x → g (f x) ≡ x} → _≃_.right-inverse-of (↔→≃ f g f-g g-f) ≡ f-g _ = refl _ -- There is a logical equivalence between A ↔ B and A ≃ B. ↔⇔≃ : ∀ {a b} {A : Type a} {B : Type b} → (A ↔ B) ⇔ (A ≃ B) ↔⇔≃ = record { to = ↔⇒≃ ; from = _≃_.bijection } -- The function subst is an equivalence family. subst-as-equivalence : ∀ {a p} {A : Type a} (P : A → Type p) {x y : A} (x≡y : x ≡ y) → P x ≃ P y subst-as-equivalence P {y = y} x≡y = ↔⇒≃ (record { surjection = record { logical-equivalence = record { to = subst P x≡y ; from = subst P (sym x≡y) } ; right-inverse-of = subst-subst-sym P x≡y } ; left-inverse-of = λ p → subst P (sym x≡y) (subst P x≡y p) ≡⟨ cong (λ eq → subst P (sym x≡y) (subst P eq _)) $ sym $ sym-sym _ ⟩ subst P (sym x≡y) (subst P (sym (sym x≡y)) p) ≡⟨ subst-subst-sym P _ _ ⟩∎ p ∎ }) abstract subst-is-equivalence : ∀ {a p} {A : Type a} (P : A → Type p) {x y : A} (x≡y : x ≡ y) → Is-equivalence (subst P x≡y) subst-is-equivalence P x≡y = _≃_.is-equivalence (subst-as-equivalence P x≡y) ------------------------------------------------------------------------ -- Equivalence -- Equivalences are equivalence relations. id : ∀ {a} {A : Type a} → A ≃ A id = ⟨ P.id , HA.id-equivalence ⟩ inverse : ∀ {a b} {A : Type a} {B : Type b} → A ≃ B → B ≃ A inverse A≃B = ⟨ HA.inverse (_≃_.is-equivalence A≃B) , HA.inverse-equivalence (_≃_.is-equivalence A≃B) ⟩ infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → B ≃ C → A ≃ B → A ≃ C f ∘ g = ⟨ _≃_.to f ⊚ _≃_.to g , HA.composition-equivalence (_≃_.is-equivalence f) (_≃_.is-equivalence g) ⟩ -- Equational reasoning combinators. infix -1 finally-≃ infixr -2 step-≃ -- For an explanation of why step-≃ is defined in this way, see -- Equality.step-≡. step-≃ : ∀ {a b c} (A : Type a) {B : Type b} {C : Type c} → B ≃ C → A ≃ B → A ≃ C step-≃ _ = _∘_ syntax step-≃ A B≃C A≃B = A ≃⟨ A≃B ⟩ B≃C finally-≃ : ∀ {a b} (A : Type a) (B : Type b) → A ≃ B → A ≃ B finally-≃ _ _ A≃B = A≃B syntax finally-≃ A B A≃B = A ≃⟨ A≃B ⟩□ B □ -- Some simplification lemmas. right-inverse-of-id : ∀ {a} {A : Type a} {x : A} → _≃_.right-inverse-of id x ≡ refl x right-inverse-of-id {x = x} = refl (refl x) left-inverse-of-id : ∀ {a} {A : Type a} {x : A} → _≃_.left-inverse-of id x ≡ refl x left-inverse-of-id {x = x} = refl (refl x) right-inverse-of∘inverse : ∀ {a b} {A : Type a} {B : Type b} → ∀ (A≃B : A ≃ B) {x} → _≃_.right-inverse-of (inverse A≃B) x ≡ _≃_.left-inverse-of A≃B x right-inverse-of∘inverse _ = refl _ left-inverse-of∘inverse : ∀ {a b} {A : Type a} {B : Type b} → ∀ (A≃B : A ≃ B) {x} → _≃_.left-inverse-of (inverse A≃B) x ≡ _≃_.right-inverse-of A≃B x left-inverse-of∘inverse _ = refl _ ------------------------------------------------------------------------ -- One can replace either of the functions with an extensionally equal -- function with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (f : A → B) → (∀ x → _≃_.to A≃B x ≡ f x) → A ≃ B with-other-function ⟨ g , is-equivalence ⟩ f g≡f = ⟨ f , respects-extensional-equality g≡f is-equivalence ⟩ with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (f : B → A) → (∀ x → _≃_.from A≃B x ≡ f x) → A ≃ B with-other-inverse A≃B f from≡f = inverse $ with-other-function (inverse A≃B) f from≡f private -- The two functions above compute in the right way. to∘with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (f : A → B) (to≡f : ∀ x → _≃_.to A≃B x ≡ f x) → _≃_.to (with-other-function A≃B f to≡f) ≡ f to∘with-other-function _ _ _ = refl _ from∘with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (f : A → B) (to≡f : ∀ x → _≃_.to A≃B x ≡ f x) → _≃_.from (with-other-function A≃B f to≡f) ≡ _≃_.from A≃B from∘with-other-function _ _ _ = refl _ to∘with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (g : B → A) (from≡g : ∀ x → _≃_.from A≃B x ≡ g x) → _≃_.to (with-other-inverse A≃B g from≡g) ≡ _≃_.to A≃B to∘with-other-inverse _ _ _ = refl _ from∘with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) (g : B → A) (from≡g : ∀ x → _≃_.from A≃B x ≡ g x) → _≃_.from (with-other-inverse A≃B g from≡g) ≡ g from∘with-other-inverse _ _ _ = refl _ ------------------------------------------------------------------------ -- The two-out-of-three property -- If two out of three of f, g and g ∘ f are equivalences, then the -- third one is also an equivalence. record Two-out-of-three {a b c} {A : Type a} {B : Type b} {C : Type c} (f : A → B) (g : B → C) : Type (a ⊔ b ⊔ c) where field f-g : Is-equivalence f → Is-equivalence g → Is-equivalence (g ⊚ f) g-g∘f : Is-equivalence g → Is-equivalence (g ⊚ f) → Is-equivalence f g∘f-f : Is-equivalence (g ⊚ f) → Is-equivalence f → Is-equivalence g two-out-of-three : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} (f : A → B) (g : B → C) → Two-out-of-three f g two-out-of-three f g = record { f-g = λ f-eq g-eq → _≃_.is-equivalence (⟨ g , g-eq ⟩ ∘ ⟨ f , f-eq ⟩) ; g-g∘f = λ g-eq g∘f-eq → respects-extensional-equality (λ x → let g⁻¹ = _≃_.from ⟨ g , g-eq ⟩ in g⁻¹ (g (f x)) ≡⟨ _≃_.left-inverse-of ⟨ g , g-eq ⟩ (f x) ⟩∎ f x ∎) (_≃_.is-equivalence (inverse ⟨ g , g-eq ⟩ ∘ ⟨ _ , g∘f-eq ⟩)) ; g∘f-f = λ g∘f-eq f-eq → respects-extensional-equality (λ x → let f⁻¹ = _≃_.from ⟨ f , f-eq ⟩ in g (f (f⁻¹ x)) ≡⟨ cong g (_≃_.right-inverse-of ⟨ f , f-eq ⟩ x) ⟩∎ g x ∎) (_≃_.is-equivalence (⟨ _ , g∘f-eq ⟩ ∘ inverse ⟨ f , f-eq ⟩)) } ------------------------------------------------------------------------ -- Extensionality -- f ≡ g and ∀ x → f x ≡ g x are isomorphic (assuming extensionality). extensionality-isomorphism : ∀ {a b} → Extensionality a b → {A : Type a} {B : A → Type b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) ≃ (f ≡ g) extensionality-isomorphism ext = inverse ⟨ _ , ext⁻¹-is-equivalence (apply-ext ext) ⟩ -- Note that the isomorphism gives us a really well-behaved notion of -- extensionality. good-ext : ∀ {a b} → Extensionality a b → Extensionality a b apply-ext (good-ext ext) = _≃_.to (extensionality-isomorphism ext) abstract good-ext-is-equivalence : ∀ {a b} (ext : Extensionality a b) → {A : Type a} {B : A → Type b} {f g : (x : A) → B x} → Is-equivalence {A = ∀ x → f x ≡ g x} (apply-ext (good-ext ext)) good-ext-is-equivalence ext = _≃_.is-equivalence (extensionality-isomorphism ext) good-ext-refl : ∀ {a b} (ext : Extensionality a b) {A : Type a} {B : A → Type b} (f : (x : A) → B x) → apply-ext (good-ext ext) (λ x → refl (f x)) ≡ refl f good-ext-refl ext f = _≃_.to (extensionality-isomorphism ext) (λ x → refl (f x)) ≡⟨ cong (_≃_.to (extensionality-isomorphism ext)) $ sym $ apply-ext ext (λ _ → ext⁻¹-refl f) ⟩ _≃_.to (extensionality-isomorphism ext) (ext⁻¹ (refl f)) ≡⟨ _≃_.right-inverse-of (extensionality-isomorphism ext) _ ⟩∎ refl f ∎ good-ext-const : ∀ {a b} (ext : Extensionality a b) {A : Type a} {B : Type b} {x y : B} (x≡y : x ≡ y) → apply-ext (good-ext ext) (const {B = A} x≡y) ≡ cong const x≡y good-ext-const ext x≡y = apply-ext (good-ext ext) (const x≡y) ≡⟨ cong (apply-ext (good-ext ext) ⊚ const) $ cong-id _ ⟩ apply-ext (good-ext ext) (const (cong P.id x≡y)) ≡⟨⟩ apply-ext (good-ext ext) (λ z → cong ((_$ z) ⊚ const) x≡y) ≡⟨ cong (apply-ext (good-ext ext)) $ apply-ext (good-ext ext) (λ _ → sym $ cong-∘ _ _ _) ⟩ apply-ext (good-ext ext) (ext⁻¹ (cong const x≡y)) ≡⟨ _≃_.right-inverse-of (extensionality-isomorphism ext) _ ⟩∎ cong const x≡y ∎ cong-good-ext : ∀ {a b} (ext : Extensionality a b) {A : Type a} {B : A → Type b} {f g : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) {x} → cong (_$ x) (apply-ext (good-ext ext) f≡g) ≡ f≡g x cong-good-ext ext f≡g {x} = cong (_$ x) (apply-ext (good-ext ext) f≡g) ≡⟨⟩ ext⁻¹ (apply-ext (good-ext ext) f≡g) x ≡⟨ cong (_$ x) $ _≃_.left-inverse-of (extensionality-isomorphism ext) f≡g ⟩∎ f≡g x ∎ good-ext-cong : ∀ {a b c} (ext : Extensionality b c) {A : Type a} {B : Type b} {C : B → Type c} {f : A → (x : B) → C x} {x y : A} {x≡y : x ≡ y} → apply-ext (good-ext ext) (λ z → cong (flip f z) x≡y) ≡ cong f x≡y good-ext-cong ext {f = f} {x≡y = x≡y} = apply-ext (good-ext ext) (λ z → cong (flip f z) x≡y) ≡⟨ (cong (apply-ext (good-ext ext)) $ apply-ext ext λ _ → sym $ cong-∘ _ _ _) ⟩ apply-ext (good-ext ext) (λ z → cong (_$ z) (cong f x≡y)) ≡⟨⟩ apply-ext (good-ext ext) (ext⁻¹ (cong f x≡y)) ≡⟨ _≃_.right-inverse-of (extensionality-isomorphism ext) _ ⟩∎ cong f x≡y ∎ subst-good-ext : ∀ {a b p} (ext : Extensionality a b) {A : Type a} {B : A → Type b} {f g : (x : A) → B x} {x} (P : B x → Type p) {p} (f≡g : ∀ x → f x ≡ g x) → subst (λ f → P (f x)) (apply-ext (good-ext ext) f≡g) p ≡ subst P (f≡g x) p subst-good-ext ext {f = f} {g} {x} P {p} f≡g = subst (λ f → P (f x)) (apply-ext (good-ext ext) f≡g) p ≡⟨ subst-∘ P (_$ x) _ ⟩ subst P (cong (_$ x) (apply-ext (good-ext ext) f≡g)) p ≡⟨ cong (λ eq → subst P eq p) (cong-good-ext ext f≡g) ⟩∎ subst P (f≡g x) p ∎ elim-good-ext : ∀ {a b p} (ext : Extensionality a b) {A : Type a} {B : A → Type b} {x : A} (P : B x → B x → Type p) (p : (y : B x) → P y y) {f g : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) → elim (λ {f g} _ → P (f x) (g x)) (p ⊚ (_$ x)) (apply-ext (good-ext ext) f≡g) ≡ elim (λ {x y} _ → P x y) p (f≡g x) elim-good-ext ext {x = x} P p f≡g = elim (λ {f g} _ → P (f x) (g x)) (p ⊚ (_$ x)) (apply-ext (good-ext ext) f≡g) ≡⟨ sym $ elim-cong _ _ _ ⟩ elim (λ {x y} _ → P x y) p (cong (_$ x) (apply-ext (good-ext ext) f≡g)) ≡⟨ cong (elim (λ {x y} _ → P x y) p) (cong-good-ext ext f≡g) ⟩ elim (λ {x y} _ → P x y) p (f≡g x) ∎ -- I based the statements of the following three lemmas on code in -- the Lean Homotopy Type Theory Library with Jakob von Raumer and -- Floris van Doorn listed as authors. The file was claimed to have -- been ported from the Coq HoTT library. (The third lemma has later -- been generalised.) good-ext-sym : ∀ {a b} (ext : Extensionality a b) {A : Type a} {B : A → Type b} {f g : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) → apply-ext (good-ext ext) (sym ⊚ f≡g) ≡ sym (apply-ext (good-ext ext) f≡g) good-ext-sym ext f≡g = apply-ext (good-ext ext) (sym ⊚ f≡g) ≡⟨ cong (apply-ext (good-ext ext) ⊚ (sym ⊚_)) $ sym $ _≃_.left-inverse-of (extensionality-isomorphism ext) _ ⟩ apply-ext (good-ext ext) (sym ⊚ ext⁻¹ (apply-ext (good-ext ext) f≡g)) ≡⟨⟩ apply-ext (good-ext ext) (λ x → sym $ cong (_$ x) (apply-ext (good-ext ext) f≡g)) ≡⟨ cong (apply-ext (good-ext ext)) $ apply-ext ext (λ _ → sym $ cong-sym _ _) ⟩ apply-ext (good-ext ext) (λ x → cong (_$ x) (sym $ apply-ext (good-ext ext) f≡g)) ≡⟨⟩ apply-ext (good-ext ext) (ext⁻¹ (sym $ apply-ext (good-ext ext) f≡g)) ≡⟨ _≃_.right-inverse-of (extensionality-isomorphism ext) _ ⟩∎ sym (apply-ext (good-ext ext) f≡g) ∎ good-ext-trans : ∀ {a b} (ext : Extensionality a b) {A : Type a} {B : A → Type b} {f g h : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) (g≡h : ∀ x → g x ≡ h x) → apply-ext (good-ext ext) (λ x → trans (f≡g x) (g≡h x)) ≡ trans (apply-ext (good-ext ext) f≡g) (apply-ext (good-ext ext) g≡h) good-ext-trans ext f≡g g≡h = apply-ext (good-ext ext) (λ x → trans (f≡g x) (g≡h x)) ≡⟨ sym $ cong₂ (λ f g → apply-ext (good-ext ext) (λ x → trans (f x) (g x))) (_≃_.left-inverse-of (extensionality-isomorphism ext) _) (_≃_.left-inverse-of (extensionality-isomorphism ext) _) ⟩ apply-ext (good-ext ext) (λ x → trans (ext⁻¹ (apply-ext (good-ext ext) f≡g) x) (ext⁻¹ (apply-ext (good-ext ext) g≡h) x)) ≡⟨⟩ apply-ext (good-ext ext) (λ x → trans (cong (_$ x) (apply-ext (good-ext ext) f≡g)) (cong (_$ x) (apply-ext (good-ext ext) g≡h))) ≡⟨ cong (apply-ext (good-ext ext)) $ apply-ext ext (λ _ → sym $ cong-trans _ _ _) ⟩ apply-ext (good-ext ext) (λ x → cong (_$ x) (trans (apply-ext (good-ext ext) f≡g) (apply-ext (good-ext ext) g≡h))) ≡⟨⟩ apply-ext (good-ext ext) (ext⁻¹ (trans (apply-ext (good-ext ext) f≡g) (apply-ext (good-ext ext) g≡h))) ≡⟨ _≃_.right-inverse-of (extensionality-isomorphism ext) _ ⟩∎ trans (apply-ext (good-ext ext) f≡g) (apply-ext (good-ext ext) g≡h) ∎ cong-post-∘-good-ext : ∀ {a b c} {A : Type a} {B : A → Type b} {C : A → Type c} {f g : (x : A) → B x} {h : ∀ {x} → B x → C x} (ext₁ : Extensionality a b) (ext₂ : Extensionality a c) (f≡g : ∀ x → f x ≡ g x) → cong (h ⊚_) (apply-ext (good-ext ext₁) f≡g) ≡ apply-ext (good-ext ext₂) (cong h ⊚ f≡g) cong-post-∘-good-ext {f = f} {g} {h} ext₁ ext₂ f≡g = cong (h ⊚_) (apply-ext (good-ext ext₁) f≡g) ≡⟨ sym $ _≃_.right-inverse-of (extensionality-isomorphism ext₂) _ ⟩ apply-ext (good-ext ext₂) (ext⁻¹ (cong (h ⊚_) (apply-ext (good-ext ext₁) f≡g))) ≡⟨⟩ apply-ext (good-ext ext₂) (λ x → cong (_$ x) (cong (h ⊚_) (apply-ext (good-ext ext₁) f≡g))) ≡⟨ cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ (λ _ → cong-∘ _ _ _) ⟩ apply-ext (good-ext ext₂) (λ x → cong (λ f → h (f x)) (apply-ext (good-ext ext₁) f≡g)) ≡⟨ cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ (λ _ → sym $ cong-∘ _ _ _) ⟩ apply-ext (good-ext ext₂) (λ x → cong h (cong (_$ x) (apply-ext (good-ext ext₁) f≡g))) ≡⟨⟩ apply-ext (good-ext ext₂) (cong h ⊚ ext⁻¹ (apply-ext (good-ext ext₁) f≡g)) ≡⟨ cong (apply-ext (good-ext ext₂) ⊚ (cong h ⊚_)) $ _≃_.left-inverse-of (extensionality-isomorphism ext₁) _ ⟩∎ apply-ext (good-ext ext₂) (cong h ⊚ f≡g) ∎ cong-pre-∘-good-ext : ∀ {a b c} {A : Type a} {B : Type b} {C : B → Type c} {f g : (x : B) → C x} {h : A → B} (ext₁ : Extensionality a c) (ext₂ : Extensionality b c) (f≡g : ∀ x → f x ≡ g x) → cong (_⊚ h) (apply-ext (good-ext ext₂) f≡g) ≡ apply-ext (good-ext ext₁) (f≡g ⊚ h) cong-pre-∘-good-ext {f = f} {g} {h} ext₁ ext₂ f≡g = cong (_⊚ h) (apply-ext (good-ext ext₂) f≡g) ≡⟨ sym $ _≃_.right-inverse-of (extensionality-isomorphism ext₁) _ ⟩ apply-ext (good-ext ext₁) (ext⁻¹ (cong (_⊚ h) (apply-ext (good-ext ext₂) f≡g))) ≡⟨⟩ apply-ext (good-ext ext₁) (λ x → cong (_$ x) (cong (_⊚ h) (apply-ext (good-ext ext₂) f≡g))) ≡⟨ cong (apply-ext (good-ext ext₁)) $ apply-ext ext₁ (λ _ → cong-∘ _ _ _) ⟩ apply-ext (good-ext ext₁) (λ x → cong (_$ h x) (apply-ext (good-ext ext₂) f≡g)) ≡⟨ cong (apply-ext (good-ext ext₁)) $ apply-ext ext₁ (λ _ → cong-good-ext ext₂ _) ⟩ apply-ext (good-ext ext₁) (λ x → f≡g (h x)) ≡⟨⟩ apply-ext (good-ext ext₁) (f≡g ⊚ h) ∎ cong-∘-good-ext : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} {f g : B → C} (ext₁ : Extensionality b c) (ext₂ : Extensionality (a ⊔ b) (a ⊔ c)) (ext₃ : Extensionality a c) (f≡g : ∀ x → f x ≡ g x) → cong {B = (A → B) → (A → C)} (λ f → f ⊚_) (apply-ext (good-ext ext₁) f≡g) ≡ apply-ext (good-ext ext₂) λ h → apply-ext (good-ext ext₃) λ x → f≡g (h x) cong-∘-good-ext ext₁ ext₂ ext₃ f≡g = cong (λ f → f ⊚_) (apply-ext (good-ext ext₁) f≡g) ≡⟨ sym $ _≃_.right-inverse-of (extensionality-isomorphism ext₂) _ ⟩ (apply-ext (good-ext ext₂) λ h → cong (_$ h) (cong (λ f → f ⊚_) (apply-ext (good-ext ext₁) f≡g))) ≡⟨ (cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ λ _ → cong-∘ _ _ _) ⟩ (apply-ext (good-ext ext₂) λ h → cong (_⊚ h) (apply-ext (good-ext ext₁) f≡g)) ≡⟨ (cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ λ _ → cong-pre-∘-good-ext ext₃ ext₁ _) ⟩∎ (apply-ext (good-ext ext₂) λ h → apply-ext (good-ext ext₃) λ x → f≡g (h x)) ∎ ------------------------------------------------------------------------ -- Groupoid abstract -- Two proofs of equivalence are equal if the function components -- are equal (assuming extensionality). -- -- See also Function-universe.≃-to-≡↔≡. lift-equality : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → {A : Type a} {B : Type b} {p q : A ≃ B} → _≃_.to p ≡ _≃_.to q → p ≡ q lift-equality {a} {b} ext {p = ⟨ f , f-eq ⟩} {q = ⟨ g , g-eq ⟩} f≡g = elim (λ {f g} f≡g → ∀ f-eq g-eq → ⟨ f , f-eq ⟩ ≡ ⟨ g , g-eq ⟩) (λ f f-eq g-eq → cong (⟨_,_⟩ f) (propositional ext f f-eq g-eq)) f≡g f-eq g-eq -- A computation rule for lift-equality. lift-equality-refl : ∀ {a b} {A : Type a} {B : Type b} {p : A ≃ B} {q : Is-equivalence (_≃_.to p)} (ext : Extensionality (a ⊔ b) (a ⊔ b)) → lift-equality ext (refl (_≃_.to p)) ≡ cong ⟨ _≃_.to p ,_⟩ (propositional ext (_≃_.to p) (_≃_.is-equivalence p) q) lift-equality-refl ext = cong (λ f → f _ _) $ elim-refl (λ {f g} f≡g → ∀ f-eq g-eq → ⟨ f , f-eq ⟩ ≡ ⟨ g , g-eq ⟩) _ -- Two proofs of equivalence are equal if the /inverses/ of the -- function components are equal (assuming extensionality). -- -- See also Function-universe.≃-from-≡↔≡. lift-equality-inverse : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → {A : Type a} {B : Type b} {p q : A ≃ B} → _≃_.from p ≡ _≃_.from q → p ≡ q lift-equality-inverse ext {p = p} {q = q} f≡g = p ≡⟨ lift-equality ext (refl _) ⟩ inverse (inverse p) ≡⟨ cong inverse $ lift-equality ext {p = inverse p} {q = inverse q} f≡g ⟩ inverse (inverse q) ≡⟨ lift-equality ext (refl _) ⟩∎ q ∎ -- An equality rearrangement lemma. cong-to-from-lift-equality : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} {eq₁ eq₂ : A ≃ B} {f : (A → B) → (B → A) → C} {eq : _≃_.to eq₁ ≡ _≃_.to eq₂} → (ext₁ : Extensionality (a ⊔ b) (a ⊔ b)) (ext₂ : Extensionality b a) → cong (λ eq → f (_≃_.to eq) (_≃_.from eq)) (lift-equality ext₁ {p = eq₁} {q = eq₂} eq) ≡ cong₂ f eq (apply-ext (good-ext ext₂) λ b → _≃_.from eq₁ b ≡⟨ cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b ⟩ _≃_.from eq₁ (_≃_.to eq₂ (_≃_.from eq₂ b)) ≡⟨ cong (_≃_.from eq₁) $ cong (_$ _≃_.from eq₂ b) $ sym eq ⟩ _≃_.from eq₁ (_≃_.to eq₁ (_≃_.from eq₂ b)) ≡⟨ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b) ⟩∎ _≃_.from eq₂ b ∎) cong-to-from-lift-equality {eq₂ = eq₂} {f = f} {eq = eq} ext₁ ext₂ = elim₁ (λ {g} eq → (is-eq : Is-equivalence g) → let eq₁ = ⟨ g , is-eq ⟩ in cong (λ eq → f (_≃_.to eq) (_≃_.from eq)) (lift-equality ext₁ {p = eq₁} {q = eq₂} eq) ≡ cong₂ f eq (apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b) $ trans (cong (_≃_.from eq₁) $ cong (_$ _≃_.from eq₂ b) $ sym eq) $ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b))) (λ is-eq → let eq₁ = ⟨ _≃_.to eq₂ , is-eq ⟩ in cong (λ eq → f (_≃_.to eq) (_≃_.from eq)) (lift-equality ext₁ (refl _)) ≡⟨ cong (cong _) $ lift-equality-refl ext₁ ⟩ cong (λ eq → f (_≃_.to eq) (_≃_.from eq)) (cong ⟨ _≃_.to eq₂ ,_⟩ (propositional ext₁ (_≃_.to eq₂) _ _)) ≡⟨ cong-∘ _ _ _ ⟩ cong (λ is-eq → f (_≃_.to eq₂) (_≃_.from ⟨ _ , is-eq ⟩)) (propositional ext₁ (_≃_.to eq₂) _ _) ≡⟨ sym $ cong-∘ _ _ _ ⟩ cong (f (_≃_.to eq₂)) (cong (λ is-eq → _≃_.from ⟨ _ , is-eq ⟩) (propositional ext₁ (_≃_.to eq₂) _ _)) ≡⟨ cong (cong _) $ elim₁ (λ {is-eq} eq → let eq₁ = ⟨ _≃_.to eq₂ , is-eq ⟩ in cong (λ is-eq → _≃_.from ⟨ _ , is-eq ⟩) eq ≡ apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b) $ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b)) ( cong (λ is-eq → _≃_.from ⟨ _ , is-eq ⟩) (refl _) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym (good-ext-refl ext₂ _) ⟩ (apply-ext (good-ext ext₂) λ _ → refl _) ≡⟨ (cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ λ _ → sym $ trans-symˡ _) ⟩ (apply-ext (good-ext ext₂) λ b → trans (sym $ cong (_≃_.from eq₂) $ _≃_.right-inverse-of eq₂ b) $ cong (_≃_.from eq₂) $ _≃_.right-inverse-of eq₂ b) ≡⟨ (cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ λ _ → cong₂ trans (sym $ cong-sym _ _) (_≃_.right-left-lemma eq₂ _)) ⟩∎ (apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₂) $ sym $ _≃_.right-inverse-of eq₂ b) $ _≃_.left-inverse-of eq₂ (_≃_.from eq₂ b)) ∎) (propositional ext₁ (_≃_.to eq₂) _ _) ⟩ cong (f (_≃_.to eq₂)) (apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b) $ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b)) ≡⟨ (cong (cong _) $ cong (apply-ext (good-ext ext₂)) $ apply-ext ext₂ λ _ → cong (trans _) $ sym $ trans (cong (flip trans _) $ trans (cong (cong _) $ trans (cong (cong _) sym-refl) $ cong-refl _) $ cong-refl _) $ trans-reflˡ _) ⟩ cong (f (_≃_.to eq₂)) (apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b) $ trans (cong (_≃_.from eq₁) $ cong (_$ _≃_.from eq₂ b) $ sym $ refl (_≃_.to eq₂)) $ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b)) ≡⟨ sym $ cong₂-reflˡ _ ⟩∎ cong₂ f (refl _) (apply-ext (good-ext ext₂) λ b → trans (cong (_≃_.from eq₁) $ sym $ _≃_.right-inverse-of eq₂ b) $ trans (cong (_≃_.from eq₁) $ cong (_$ _≃_.from eq₂ b) $ sym $ refl (_≃_.to eq₂)) $ _≃_.left-inverse-of eq₁ (_≃_.from eq₂ b)) ∎) eq _ -- _≃_ comes with a groupoid structure (assuming extensionality). groupoid : ∀ {ℓ} → Extensionality ℓ ℓ → Groupoid (lsuc ℓ) ℓ groupoid {ℓ} ext = record { Object = Type ℓ ; _∼_ = _≃_ ; id = id ; _∘_ = _∘_ ; _⁻¹ = inverse ; left-identity = left-identity ; right-identity = right-identity ; assoc = assoc ; left-inverse = left-inverse ; right-inverse = right-inverse } where abstract left-identity : {X Y : Type ℓ} (p : X ≃ Y) → id ∘ p ≡ p left-identity _ = lift-equality ext (refl _) right-identity : {X Y : Type ℓ} (p : X ≃ Y) → p ∘ id ≡ p right-identity _ = lift-equality ext (refl _) assoc : {W X Y Z : Type ℓ} (p : Y ≃ Z) (q : X ≃ Y) (r : W ≃ X) → p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r assoc _ _ _ = lift-equality ext (refl _) left-inverse : {X Y : Type ℓ} (p : X ≃ Y) → inverse p ∘ p ≡ id left-inverse p = lift-equality ext (apply-ext ext $ _≃_.left-inverse-of p) right-inverse : {X Y : Type ℓ} (p : X ≃ Y) → p ∘ inverse p ≡ id right-inverse p = lift-equality ext (apply-ext ext $ _≃_.right-inverse-of p) -- Inverse is involutive (assuming extensionality). -- -- This property is more general than -- Groupoid.involutive (groupoid …), because A and B do not have to -- have the same size. inverse-involutive : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (p : A ≃ B) → inverse (inverse p) ≡ p inverse-involutive ext p = lift-equality ext (refl _) -- Inverse is a logical equivalence. inverse-logical-equivalence : ∀ {a b} {A : Type a} {B : Type b} → A ≃ B ⇔ B ≃ A inverse-logical-equivalence = record { to = inverse ; from = inverse } -- Inverse is an isomorphism (assuming extensionality). -- -- This property is more general than -- Groupoid.⁻¹-bijection (groupoid …), because A and B do not have to -- have the same size. inverse-isomorphism : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → A ≃ B ↔ B ≃ A inverse-isomorphism ext = record { surjection = record { logical-equivalence = inverse-logical-equivalence ; right-inverse-of = inverse-involutive ext } ; left-inverse-of = inverse-involutive ext } ------------------------------------------------------------------------ -- A surjection from A ↔ B to A ≃ B, and related results private abstract -- ↔⇒≃ is a left inverse of _≃_.bijection (assuming extensionality). ↔⇒≃-left-inverse : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (A≃B : A ≃ B) → ↔⇒≃ (_≃_.bijection A≃B) ≡ A≃B ↔⇒≃-left-inverse ext _ = lift-equality ext (refl _) -- When sets are used ↔⇒≃ is a right inverse of _≃_.bijection -- (assuming extensionality). ↔⇒≃-right-inverse : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set A → (A↔B : A ↔ B) → _≃_.bijection (↔⇒≃ A↔B) ≡ A↔B ↔⇒≃-right-inverse {a} {b} {B = B} ext A-set A↔B = cong₂ (λ l r → record { surjection = record { logical-equivalence = _↔_.logical-equivalence A↔B ; right-inverse-of = r } ; left-inverse-of = l }) (apply-ext (lower-extensionality b b ext) λ _ → A-set _ _) (apply-ext (lower-extensionality a a ext) λ _ → B-set _ _) where B-set : Is-set B B-set = respects-surjection (_↔_.surjection A↔B) 2 A-set -- There is a surjection from A ↔ B to A ≃ B (assuming -- extensionality). ↔↠≃ : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (A ↔ B) ↠ (A ≃ B) ↔↠≃ ext = record { logical-equivalence = ↔⇔≃ ; right-inverse-of = ↔⇒≃-left-inverse ext } -- When A is a set A ↔ B and A ≃ B are isomorphic (assuming -- extensionality). ↔↔≃ : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set A → (A ↔ B) ↔ (A ≃ B) ↔↔≃ ext A-set = record { surjection = ↔↠≃ ext ; left-inverse-of = ↔⇒≃-right-inverse ext A-set } -- When B is a set A ↔ B and A ≃ B are isomorphic (assuming -- extensionality). ↔↔≃′ : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set B → (A ↔ B) ↔ (A ≃ B) ↔↔≃′ ext B-set = record { surjection = ↔↠≃ ext ; left-inverse-of = λ A↔B → ↔⇒≃-right-inverse ext (H-level.respects-surjection (_↔_.surjection $ Bijection.inverse A↔B) 2 B-set) A↔B } -- For propositional types there is a split surjection from -- equivalence to logical equivalence. ≃↠⇔ : ∀ {a b} {A : Type a} {B : Type b} → Is-proposition A → Is-proposition B → (A ≃ B) ↠ (A ⇔ B) ≃↠⇔ {A = A} {B} A-prop B-prop = record { logical-equivalence = record { to = _≃_.logical-equivalence ; from = ⇔→≃ } ; right-inverse-of = refl } where ⇔→≃ : A ⇔ B → A ≃ B ⇔→≃ A⇔B = ↔⇒≃ record { surjection = record { logical-equivalence = A⇔B ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where open _⇔_ A⇔B abstract to∘from : ∀ x → to (from x) ≡ x to∘from _ = B-prop _ _ from∘to : ∀ x → from (to x) ≡ x from∘to _ = A-prop _ _ -- A corollary. ⇔→≃ : ∀ {a b} {A : Type a} {B : Type b} → Is-proposition A → Is-proposition B → (A → B) → (B → A) → A ≃ B ⇔→≃ A-prop B-prop to from = _↠_.from (≃↠⇔ A-prop B-prop) (record { to = to; from = from }) -- For propositional types logical equivalence is isomorphic to -- equivalence (assuming extensionality). ⇔↔≃ : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → {A : Type a} {B : Type b} → Is-proposition A → Is-proposition B → (A ⇔ B) ↔ (A ≃ B) ⇔↔≃ ext {A} {B} A-prop B-prop = record { surjection = record { logical-equivalence = L-eq.inverse $ _↠_.logical-equivalence $ ≃↠⇔ A-prop B-prop ; right-inverse-of = λ _ → lift-equality ext (refl _) } ; left-inverse-of = refl } -- If there is a propositional, reflexive relation on A, and related -- elements are equal, then A is a set, and (assuming extensionality) -- the relation is equivalent to equality. -- -- (This is more or less Theorem 7.2.2 from "Homotopy Type Theory: -- Univalent Foundations of Mathematics" (first edition).) propositional-identity≃≡ : ∀ {a b} {A : Type a} (B : A → A → Type b) → (∀ x y → Is-proposition (B x y)) → (∀ x → B x x) → (∀ x y → B x y → x ≡ y) → Is-set A × (Extensionality (a ⊔ b) (a ⊔ b) → ∀ {x y} → B x y ≃ (x ≡ y)) propositional-identity≃≡ B B-prop B-refl f = A-set , λ ext → _↔_.to (⇔↔≃ ext (B-prop _ _) A-set) (record { to = f _ _ ; from = λ x≡y → subst (B _) x≡y (B-refl _) }) where A-set = propositional-identity⇒set B B-prop B-refl f ------------------------------------------------------------------------ -- Closure, preservation abstract -- All h-levels are closed under the equivalence operator (assuming -- extensionality). h-level-closure : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ {A : Type a} {B : Type b} n → H-level n A → H-level n B → H-level n (A ≃ B) h-level-closure {a} {b} ext {A = A} {B} n hA hB = H-level.respects-surjection (_↔_.surjection $ Bijection.inverse ≃-as-Σ) n lemma₂ where lemma₁ : ∀ n {to : A → B} → H-level n A → H-level n B → H-level n (Is-equivalence to) lemma₁ zero cA cB = sometimes-contractible ext cA (mono₁ 0 cB) lemma₁ (suc n) _ _ = mono (m≤m+n 1 n) (propositional ext _) lemma₂ : H-level n (∃ λ (to : A → B) → Is-equivalence to) lemma₂ = Σ-closure n (Π-closure (lower-extensionality b a ext) n (λ _ → hB)) (λ _ → lemma₁ n hA hB) -- For positive h-levels it is enough if one of the sides has the -- given h-level. left-closure : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ {A : Type a} {B : Type b} n → H-level (1 + n) A → H-level (1 + n) (A ≃ B) left-closure ext {A = A} {B} n hA = H-level.[inhabited⇒+]⇒+ n λ (A≃B : A ≃ B) → h-level-closure ext (1 + n) hA $ H-level.respects-surjection (_≃_.surjection A≃B) (1 + n) hA right-closure : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ {A : Type a} {B : Type b} n → H-level (1 + n) B → H-level (1 + n) (A ≃ B) right-closure ext {A = A} {B} n hB = H-level.[inhabited⇒+]⇒+ n λ (A≃B : A ≃ B) → left-closure ext n $ H-level.respects-surjection (_≃_.surjection (inverse A≃B)) (1 + n) hB -- This is not enough for level 0. ¬-left-closure : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → ∃ λ (A : Type a) → ∃ λ (B : Type b) → Contractible A × Is-proposition B × ¬ Contractible (A ≃ B) ¬-left-closure ext = ↑ _ ⊤ , ⊥ , ↑-closure 0 ⊤-contractible , ⊥-propositional , λ c → ⊥-elim (_≃_.to (proj₁ c) _) ¬-right-closure : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → ∃ λ (A : Type a) → ∃ λ (B : Type b) → Is-proposition A × Contractible B × ¬ Contractible (A ≃ B) ¬-right-closure ext = ⊥ , ↑ _ ⊤ , ⊥-propositional , ↑-closure 0 ⊤-contractible , λ c → ⊥-elim (_≃_.from (proj₁ c) _) -- ⊥ ≃ ⊥ is contractible (assuming extensionality). ⊥≃⊥-contractible : ∀ {ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → Contractible (⊥ {ℓ = ℓ₁} ≃ ⊥ {ℓ = ℓ₂}) ⊥≃⊥-contractible {ℓ₁} {ℓ₂} ext = ↔⇒≃ ⊥↔⊥ , λ ⊥↔⊥′ → lift-equality ext $ apply-ext (lower-extensionality ℓ₂ ℓ₁ ext) λ x → ⊥-elim x where ⊥↔⊥ : ⊥ {ℓ = ℓ₁} ↔ ⊥ {ℓ = ℓ₂} ⊥↔⊥ = record { surjection = record { logical-equivalence = record { to = ⊥-elim ; from = ⊥-elim } ; right-inverse-of = λ x → ⊥-elim x } ; left-inverse-of = λ x → ⊥-elim x } -- Equalities are closed, in a strong sense, under applications of -- equivalences. ≃-≡ : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) {x y : A} → let open _≃_ A≃B in (to x ≡ to y) ≃ (x ≡ y) ≃-≡ A≃B {x} {y} = ↔⇒≃ record { surjection = surjection′ ; left-inverse-of = left-inverse-of′ } where open _≃_ A≃B surjection′ : (to x ≡ to y) ↠ (x ≡ y) surjection′ = Surjection.↠-≡ $ _↔_.surjection $ Bijection.inverse $ _≃_.bijection A≃B abstract left-inverse-of′ : ∀ p → _↠_.from surjection′ (_↠_.to surjection′ p) ≡ p left-inverse-of′ = λ to-x≡to-y → cong to ( trans (sym (left-inverse-of x)) $ trans (cong from to-x≡to-y) $ left-inverse-of y) ≡⟨ cong-trans to _ _ ⟩ trans (cong to (sym (left-inverse-of x))) ( cong to (trans (cong from to-x≡to-y) ( left-inverse-of y))) ≡⟨ cong₂ trans (cong-sym to _) (cong-trans to _ _) ⟩ trans (sym (cong to (left-inverse-of x))) ( trans (cong to (cong from to-x≡to-y)) ( cong to (left-inverse-of y))) ≡⟨ cong₂ (λ eq₁ eq₂ → trans (sym eq₁) $ trans (cong to (cong from to-x≡to-y)) $ eq₂) (left-right-lemma x) (left-right-lemma y) ⟩ trans (sym (right-inverse-of (to x))) ( trans (cong to (cong from to-x≡to-y)) ( right-inverse-of (to y))) ≡⟨ _↠_.right-inverse-of (Surjection.↠-≡ $ _≃_.surjection A≃B) to-x≡to-y ⟩∎ to-x≡to-y ∎ -- A "computation rule" for ≃-≡. to-≃-≡-refl : ∀ {a b} {A : Type a} {B : Type b} (A≃B : A ≃ B) {x : A} → _≃_.to (≃-≡ A≃B) (refl (_≃_.to A≃B x)) ≡ refl x to-≃-≡-refl A≃B = Surjection.to-↠-≡-refl (_↔_.surjection $ Bijection.inverse $ _≃_.bijection A≃B) -- ∃ preserves equivalences. ∃-cong : ∀ {a b₁ b₂} {A : Type a} {B₁ : A → Type b₁} {B₂ : A → Type b₂} → (∀ x → B₁ x ≃ B₂ x) → ∃ B₁ ≃ ∃ B₂ ∃-cong B₁≃B₂ = ↔⇒≃ (record { surjection = Surjection.∃-cong (_≃_.surjection ⊚ B₁≃B₂) ; left-inverse-of = uncurry λ x y → cong (_,_ x) (_≃_.left-inverse-of (B₁≃B₂ x) y) }) abstract private -- We can push subst through certain function applications. push-subst : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} (B₁ : A₁ → Type b₁) {B₂ : A₂ → Type b₂} {f : A₂ → A₁} {x₁ x₂ : A₂} {y : B₁ (f x₁)} (g : ∀ x → B₁ (f x) → B₂ x) (eq : x₁ ≡ x₂) → subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong f eq) y) push-subst B₁ {B₂} {f} g eq = elim (λ {x₁ x₂} eq → ∀ y → subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong f eq) y)) (λ x y → subst B₂ (refl x) (g x y) ≡⟨ subst-refl B₂ _ ⟩ g x y ≡⟨ sym $ cong (g x) $ subst-refl B₁ _ ⟩ g x (subst B₁ (refl (f x)) y) ≡⟨ cong (λ eq → g x (subst B₁ eq y)) (sym $ cong-refl f) ⟩∎ g x (subst B₁ (cong f (refl x)) y) ∎) eq _ push-subst′ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} (A₁≃A₂ : A₁ ≃ A₂) (B₁ : A₁ → Type b₁) (B₂ : A₂ → Type b₂) → let open _≃_ A₁≃A₂ in {x₁ x₂ : A₁} {y : B₁ (from (to x₁))} (g : ∀ x → B₁ (from (to x)) → B₂ (to x)) (eq : to x₁ ≡ to x₂) → subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong from eq) y) push-subst′ A₁≃A₂ B₁ B₂ {x₁} {x₂} {y} g eq = subst B₂ eq (g x₁ y) ≡⟨ cong (subst B₂ eq) $ sym $ g′-lemma _ _ ⟩ subst B₂ eq (g′ (to x₁) y) ≡⟨ push-subst B₁ g′ eq ⟩ g′ (to x₂) (subst B₁ (cong from eq) y) ≡⟨ g′-lemma _ _ ⟩∎ g x₂ (subst B₁ (cong from eq) y) ∎ where open _≃_ A₁≃A₂ g′ : ∀ x′ → B₁ (from x′) → B₂ x′ g′ x′ y = subst B₂ (right-inverse-of x′) $ g (from x′) $ subst B₁ (sym $ cong from $ right-inverse-of x′) y g′-lemma : ∀ x y → g′ (to x) y ≡ g x y g′-lemma x y = let lemma = λ y → let gy = g (from (to x)) $ subst B₁ (sym $ cong from $ cong to (refl _)) y in subst B₂ (cong to (refl _)) gy ≡⟨ cong (λ p → subst B₂ p gy) $ cong-refl to ⟩ subst B₂ (refl _) gy ≡⟨ subst-refl B₂ gy ⟩ gy ≡⟨ cong (λ p → g (from (to x)) $ subst B₁ (sym $ cong from p) y) $ cong-refl to ⟩ g (from (to x)) (subst B₁ (sym $ cong from (refl _)) y) ≡⟨ cong (λ p → g (from (to x)) $ subst B₁ (sym p) y) $ cong-refl from ⟩ g (from (to x)) (subst B₁ (sym (refl _)) y) ≡⟨ cong (λ p → g (from (to x)) $ subst B₁ p y) sym-refl ⟩ g (from (to x)) (subst B₁ (refl _) y) ≡⟨ cong (g (from (to x))) $ subst-refl B₁ y ⟩∎ g (from (to x)) y ∎ in subst B₂ (right-inverse-of (to x)) (g (from (to x)) $ subst B₁ (sym $ cong from $ right-inverse-of (to x)) y) ≡⟨ cong (λ p → subst B₂ p (g (from (to x)) $ subst B₁ (sym $ cong from p) y)) $ sym $ left-right-lemma x ⟩ subst B₂ (cong to $ left-inverse-of x) (g (from (to x)) $ subst B₁ (sym $ cong from $ cong to $ left-inverse-of x) y) ≡⟨ elim¹ (λ {x′} eq → (y : B₁ (from (to x′))) → subst B₂ (cong to eq) (g (from (to x)) $ subst B₁ (sym $ cong from $ cong to eq) y) ≡ g x′ y) lemma (left-inverse-of x) y ⟩∎ g x y ∎ -- If the first component is instantiated to the identity, then the -- following lemmas state that ∃ preserves injections and bijections. ∃-preserves-injections : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : A₁ → Type b₁} {B₂ : A₂ → Type b₂} (A₁≃A₂ : A₁ ≃ A₂) → (∀ x → B₁ x ↣ B₂ (_≃_.to A₁≃A₂ x)) → Σ A₁ B₁ ↣ Σ A₂ B₂ ∃-preserves-injections {A₁ = A₁} {A₂} {B₁} {B₂} A₁≃A₂ B₁↣B₂ = record { to = to′ ; injective = injective′ } where open _↣_ to′ : Σ A₁ B₁ → Σ A₂ B₂ to′ = Σ-map (_≃_.to A₁≃A₂) (_↣_.to (B₁↣B₂ _)) abstract injective′ : Injective to′ injective′ {x = (x₁ , x₂)} {y = (y₁ , y₂)} = _↔_.to Bijection.Σ-≡,≡↔≡ ⊚ Σ-map (_≃_.injective A₁≃A₂) (λ {eq₁} eq₂ → let lemma = to (B₁↣B₂ y₁) (subst B₁ (_≃_.injective A₁≃A₂ eq₁) x₂) ≡⟨ refl _ ⟩ to (B₁↣B₂ y₁) (subst B₁ (trans (sym (_≃_.left-inverse-of A₁≃A₂ x₁)) $ trans (cong (_≃_.from A₁≃A₂) eq₁) (_≃_.left-inverse-of A₁≃A₂ y₁)) x₂) ≡⟨ cong (to (B₁↣B₂ y₁)) $ sym $ subst-subst B₁ _ _ _ ⟩ to (B₁↣B₂ y₁) (subst B₁ (trans (cong (_≃_.from A₁≃A₂) eq₁) (_≃_.left-inverse-of A₁≃A₂ y₁)) $ subst B₁ (sym (_≃_.left-inverse-of A₁≃A₂ x₁)) x₂) ≡⟨ cong (to (B₁↣B₂ y₁)) $ sym $ subst-subst B₁ _ _ _ ⟩ to (B₁↣B₂ y₁) (subst B₁ (_≃_.left-inverse-of A₁≃A₂ y₁) $ subst B₁ (cong (_≃_.from A₁≃A₂) eq₁) $ subst B₁ (sym (_≃_.left-inverse-of A₁≃A₂ x₁)) x₂) ≡⟨ sym $ push-subst′ A₁≃A₂ B₁ B₂ (λ x y → to (B₁↣B₂ x) (subst B₁ (_≃_.left-inverse-of A₁≃A₂ x) y)) eq₁ ⟩ subst B₂ eq₁ (to (B₁↣B₂ x₁) $ subst B₁ (_≃_.left-inverse-of A₁≃A₂ x₁) $ subst B₁ (sym (_≃_.left-inverse-of A₁≃A₂ x₁)) x₂) ≡⟨ cong (subst B₂ eq₁ ⊚ to (B₁↣B₂ x₁)) $ subst-subst B₁ _ _ _ ⟩ subst B₂ eq₁ (to (B₁↣B₂ x₁) $ subst B₁ (trans (sym (_≃_.left-inverse-of A₁≃A₂ x₁)) (_≃_.left-inverse-of A₁≃A₂ x₁)) x₂) ≡⟨ cong (λ p → subst B₂ eq₁ (to (B₁↣B₂ x₁) (subst B₁ p x₂))) $ trans-symˡ _ ⟩ subst B₂ eq₁ (to (B₁↣B₂ x₁) $ subst B₁ (refl _) x₂) ≡⟨ cong (subst B₂ eq₁ ⊚ to (B₁↣B₂ x₁)) $ subst-refl B₁ x₂ ⟩ subst B₂ eq₁ (to (B₁↣B₂ x₁) x₂) ≡⟨ eq₂ ⟩∎ to (B₁↣B₂ y₁) y₂ ∎ in subst B₁ (_≃_.injective A₁≃A₂ eq₁) x₂ ≡⟨ _↣_.injective (B₁↣B₂ y₁) lemma ⟩∎ y₂ ∎) ⊚ Σ-≡,≡←≡ ∃-preserves-bijections : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : A₁ → Type b₁} {B₂ : A₂ → Type b₂} (A₁≃A₂ : A₁ ≃ A₂) → (∀ x → B₁ x ↔ B₂ (_≃_.to A₁≃A₂ x)) → Σ A₁ B₁ ↔ Σ A₂ B₂ ∃-preserves-bijections {A₁ = A₁} {A₂} {B₁} {B₂} A₁≃A₂ B₁↔B₂ = record { surjection = surjection′ ; left-inverse-of = left-inverse-of′ } where open _↔_ surjection′ : Σ A₁ B₁ ↠ Σ A₂ B₂ surjection′ = Surjection.Σ-cong (_≃_.surjection A₁≃A₂) (surjection ⊚ B₁↔B₂) abstract left-inverse-of′ : ∀ p → _↠_.from surjection′ (_↠_.to surjection′ p) ≡ p left-inverse-of′ = λ p → Σ-≡,≡→≡ (_≃_.left-inverse-of A₁≃A₂ (proj₁ p)) (subst B₁ (_≃_.left-inverse-of A₁≃A₂ (proj₁ p)) (from (B₁↔B₂ _) (subst B₂ (sym (_≃_.right-inverse-of A₁≃A₂ (_≃_.to A₁≃A₂ (proj₁ p)))) (to (B₁↔B₂ _) (proj₂ p)))) ≡⟨ push-subst B₂ (λ x → from (B₁↔B₂ x)) (_≃_.left-inverse-of A₁≃A₂ (proj₁ p)) ⟩ from (B₁↔B₂ _) (subst B₂ (cong (_≃_.to A₁≃A₂) (_≃_.left-inverse-of A₁≃A₂ (proj₁ p))) (subst B₂ (sym (_≃_.right-inverse-of A₁≃A₂ (_≃_.to A₁≃A₂ (proj₁ p)))) (to (B₁↔B₂ _) (proj₂ p)))) ≡⟨ cong (λ eq → from (B₁↔B₂ _) (subst B₂ eq (subst B₂ (sym (_≃_.right-inverse-of A₁≃A₂ _)) (to (B₁↔B₂ _) (proj₂ p))))) $ _≃_.left-right-lemma A₁≃A₂ _ ⟩ from (B₁↔B₂ _) (subst B₂ (_≃_.right-inverse-of A₁≃A₂ (_≃_.to A₁≃A₂ (proj₁ p))) (subst B₂ (sym (_≃_.right-inverse-of A₁≃A₂ (_≃_.to A₁≃A₂ (proj₁ p)))) (to (B₁↔B₂ _) (proj₂ p)))) ≡⟨ cong (from (B₁↔B₂ _)) $ subst-subst-sym B₂ _ _ ⟩ from (B₁↔B₂ _) (to (B₁↔B₂ _) (proj₂ p)) ≡⟨ left-inverse-of (B₁↔B₂ _) _ ⟩∎ proj₂ p ∎) -- Σ preserves equivalence. Σ-preserves : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : A₁ → Type b₁} {B₂ : A₂ → Type b₂} (A₁≃A₂ : A₁ ≃ A₂) → (∀ x → B₁ x ≃ B₂ (_≃_.to A₁≃A₂ x)) → Σ A₁ B₁ ≃ Σ A₂ B₂ Σ-preserves A₁≃A₂ B₁≃B₂ = ↔⇒≃ $ ∃-preserves-bijections A₁≃A₂ (_≃_.bijection ⊚ B₁≃B₂) -- A part of the implementation of ≃-preserves (see below) that does -- not depend on extensionality. ≃-preserves-⇔ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : Type b₁} {B₂ : Type b₂} → A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ ≃ B₁) ⇔ (A₂ ≃ B₂) ≃-preserves-⇔ A₁≃A₂ B₁≃B₂ = record { to = λ A₁≃B₁ → B₁≃B₂ ∘ A₁≃B₁ ∘ inverse A₁≃A₂ ; from = λ A₂≃B₂ → inverse B₁≃B₂ ∘ A₂≃B₂ ∘ A₁≃A₂ } -- Equivalence preserves equivalences (assuming extensionality). ≃-preserves : ∀ {a₁ a₂ b₁ b₂} → Extensionality (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂) (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂) → {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : Type b₁} {B₂ : Type b₂} → A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ ≃ B₁) ≃ (A₂ ≃ B₂) ≃-preserves {a₁} {a₂} {b₁} {b₂} ext {A₁} {A₂} {B₁} {B₂} A₁≃A₂ B₁≃B₂ = ↔⇒≃ (record { surjection = record { logical-equivalence = ≃-preserves-⇔ A₁≃A₂ B₁≃B₂ ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where open _≃_ ext₁ = lower-extensionality (a₁ ⊔ b₁) (a₁ ⊔ b₁) ext ext₂ = lower-extensionality (a₂ ⊔ b₂) (a₂ ⊔ b₂) ext abstract to∘from : (A₂≃B₂ : A₂ ≃ B₂) → B₁≃B₂ ∘ (inverse B₁≃B₂ ∘ A₂≃B₂ ∘ A₁≃A₂) ∘ inverse A₁≃A₂ ≡ A₂≃B₂ to∘from A₂≃B₂ = lift-equality ext₁ $ apply-ext (lower-extensionality b₂ a₂ ext₁) λ x → to B₁≃B₂ (from B₁≃B₂ (to A₂≃B₂ (to A₁≃A₂ (from A₁≃A₂ x)))) ≡⟨ right-inverse-of B₁≃B₂ _ ⟩ to A₂≃B₂ (to A₁≃A₂ (from A₁≃A₂ x)) ≡⟨ cong (to A₂≃B₂) $ right-inverse-of A₁≃A₂ _ ⟩∎ to A₂≃B₂ x ∎ from∘to : (A₁≃B₁ : A₁ ≃ B₁) → inverse B₁≃B₂ ∘ (B₁≃B₂ ∘ A₁≃B₁ ∘ inverse A₁≃A₂) ∘ A₁≃A₂ ≡ A₁≃B₁ from∘to A₁≃B₁ = lift-equality ext₂ $ apply-ext (lower-extensionality b₁ a₁ ext₂) λ x → from B₁≃B₂ (to B₁≃B₂ (to A₁≃B₁ (from A₁≃A₂ (to A₁≃A₂ x)))) ≡⟨ left-inverse-of B₁≃B₂ _ ⟩ to A₁≃B₁ (from A₁≃A₂ (to A₁≃A₂ x)) ≡⟨ cong (to A₁≃B₁) $ left-inverse-of A₁≃A₂ _ ⟩∎ to A₁≃B₁ x ∎ -- Equivalence preserves bijections (assuming extensionality). ≃-preserves-bijections : ∀ {a₁ a₂ b₁ b₂} → Extensionality (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂) (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂) → {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : Type b₁} {B₂ : Type b₂} → A₁ ↔ A₂ → B₁ ↔ B₂ → (A₁ ≃ B₁) ↔ (A₂ ≃ B₂) ≃-preserves-bijections ext A₁↔A₂ B₁↔B₂ = _≃_.bijection $ ≃-preserves ext (↔⇒≃ A₁↔A₂) (↔⇒≃ B₁↔B₂) ------------------------------------------------------------------------ -- More lemmas abstract -- As a consequence of extensionality-isomorphism and ≃-≡ we get a -- strengthening of W-≡,≡↠≡. W-≡,≡≃≡ : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ {x y} {f : B x → W A B} {g : B y → W A B} → (∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ≃ (sup x f ≡ sup y g) W-≡,≡≃≡ {a} {A = A} {B} ext {x} {y} {f} {g} = (∃ λ p → ∀ i → f i ≡ g (subst B p i)) ≃⟨ Σ-preserves id lemma ⟩ (∃ λ p → subst (λ x → B x → W A B) p f ≡ g) ≃⟨ ↔⇒≃ Bijection.Σ-≡,≡↔≡ ⟩ ((x , f) ≡ (y , g)) ≃⟨ ≃-≡ (↔⇒≃ W-unfolding) ⟩□ (sup x f ≡ sup y g) □ where lemma : (p : x ≡ y) → (∀ i → f i ≡ g (subst B p i)) ≃ (subst (λ x → B x → W A B) p f ≡ g) lemma p = elim (λ {x y} p → (f : B x → W A B) (g : B y → W A B) → (∀ i → f i ≡ g (subst B p i)) ≃ (subst (λ x → B x → W A B) p f ≡ g)) (λ x f g → (∀ i → f i ≡ g (subst B (refl x) i)) ≃⟨ subst (λ h → (∀ i → f i ≡ g (h i)) ≃ (∀ i → f i ≡ g i)) (sym (apply-ext (lower-extensionality lzero a ext) (subst-refl B))) id ⟩ (∀ i → f i ≡ g i) ≃⟨ extensionality-isomorphism ext ⟩ (f ≡ g) ≃⟨ subst (λ h → (f ≡ g) ≃ (h ≡ g)) (sym $ subst-refl (λ x' → B x' → W A B) f) id ⟩□ (subst (λ x → B x → W A B) (refl x) f ≡ g) □) p f g -- Some rearrangement lemmas. to-subst : ∀ {a p q} {A : Type a} {P : A → Type p} {Q : A → Type q} {x y : A} {eq : x ≡ y} {f : P x ≃ Q x} → _≃_.to (subst (λ x → P x ≃ Q x) eq f) ≡ subst (λ x → P x → Q x) eq (_≃_.to f) to-subst {P = P} {Q = Q} {eq = eq} {f = f} = elim¹ (λ eq → _≃_.to (subst (λ x → P x ≃ Q x) eq f) ≡ subst (λ x → P x → Q x) eq (_≃_.to f)) (_≃_.to (subst (λ x → P x ≃ Q x) (refl _) f) ≡⟨ cong _≃_.to $ subst-refl (λ _ → _ ≃ _) _ ⟩ _≃_.to f ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → P x → Q x) (refl _) (_≃_.to f) ∎) eq from-subst : ∀ {a p q} {A : Type a} {P : A → Type p} {Q : A → Type q} {x y : A} {eq : x ≡ y} {f : P x ≃ Q x} → _≃_.from (subst (λ x → P x ≃ Q x) eq f) ≡ subst (λ x → Q x → P x) eq (_≃_.from f) from-subst {P = P} {Q = Q} {eq = eq} {f = f} = elim¹ (λ eq → _≃_.from (subst (λ x → P x ≃ Q x) eq f) ≡ subst (λ x → Q x → P x) eq (_≃_.from f)) (_≃_.from (subst (λ x → P x ≃ Q x) (refl _) f) ≡⟨ cong _≃_.from $ subst-refl (λ _ → _ ≃ _) _ ⟩ _≃_.from f ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → Q x → P x) (refl _) (_≃_.from f) ∎) eq -- If P is pointwise equivalent to x ≡_, then every function of type -- {y : A} → x ≡ y → P y is an equivalence (pointwise). -- -- Andrea Vezzosi showed me a similar result, that he thought that -- Thierry Coquand had informed him about. ≡≃→≡→→Is-equivalence : ∀ {a p} {A : Type a} {x : A} (P : A → Type p) → ({y : A} → (x ≡ y) ≃ P y) → (f : {y : A} → x ≡ y → P y) → {y : A} → Is-equivalence (f {y = y}) ≡≃→≡→→Is-equivalence {x = x} P ≡≃P f {y = y} = drop-Σ-map-id f equiv₂ y where equiv₁ : (∃ λ y → x ≡ y) ≃ ∃ P equiv₁ = ∃-cong λ _ → ≡≃P contr : Contractible (∃ P) contr = H-level.respects-surjection (_≃_.surjection equiv₁) 0 (other-singleton-contractible _) equiv₂ : Is-equivalence (Σ-map P.id f) equiv₂ = _≃_.is-equivalence $ with-other-function equiv₁ _ (λ _ → mono₁ 0 contr _ _)
{ "alphanum_fraction": 0.4504995612, "avg_line_length": 38.9815789474, "ext": "agda", "hexsha": "f1f798a6f6088c1936e9628b6ca4f3438b3d141d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equivalence.agda", "max_line_length": 166, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 21810, "size": 59252 }
module Data.Char.Instance where open import Agda.Builtin.Char open import Class.Equality open import Class.Show open import Data.Char renaming (_≟_ to _≟C_) open import Data.List open import Data.String instance Char-Eq : Eq Char Char-Eq = record { _≟_ = _≟C_ } Char-EqB : EqB Char Char-EqB = record { _≣_ = primCharEquality } Char-Show : Show Char Char-Show = record { show = λ c -> fromList [ c ] } CharList-Show : Show (List Char) CharList-Show = record { show = fromList }
{ "alphanum_fraction": 0.6947791165, "avg_line_length": 22.6363636364, "ext": "agda", "hexsha": "15b43a437d394dee024ffa4a5be92e03975a595c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Char/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Char/Instance.agda", "max_line_length": 53, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Char/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 155, "size": 498 }
{-# OPTIONS --without-K --rewriting #-} module lib.types.Types where open import lib.Basics open import lib.types.BigWedge public open import lib.types.Bool public open import lib.types.Choice public open import lib.types.Circle public open import lib.types.Cofiber public open import lib.types.CommutingSquare public open import lib.types.Coproduct public open import lib.types.Cospan public open import lib.types.Cover public open import lib.types.EilenbergMacLane1 public open import lib.types.Empty public open import lib.types.Fin public open import lib.types.NatColim public open import lib.types.Group public open import lib.types.GroupSet public open import lib.types.Groupoid public open import lib.types.HList public open import lib.types.Int public open import lib.types.IteratedSuspension public open import lib.types.Join public open import lib.types.Lift public open import lib.types.List public open import lib.types.LoopSpace public open import lib.types.Modality public open import lib.types.Nat public open import lib.types.PathSeq public open import lib.types.PathSet public open import lib.types.Paths public open import lib.types.Pi public open import lib.types.Pointed public open import lib.types.Pullback public open import lib.types.Pushout public open import lib.types.PushoutFlattening public open import lib.types.PushoutFlip public open import lib.types.PushoutFmap public open import lib.types.SetQuotient public open import lib.types.Sigma public open import lib.types.Smash public open import lib.types.Span public open import lib.types.Subtype public open import lib.types.Suspension public open import lib.types.TLevel public open import lib.types.Torus public open import lib.types.Truncation public open import lib.types.Unit public open import lib.types.Wedge public open import lib.types.Word public -- This should probably not be exported -- module Generic1HIT {i j} (A : Type i) (B : Type j) (f g : B → A) where -- open import lib.types.Generic1HIT A B f g public
{ "alphanum_fraction": 0.8168242907, "avg_line_length": 35.2456140351, "ext": "agda", "hexsha": "1549a581bff7bf660727b3989b55c7fc2dbf66f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Types.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 466, "size": 2009 }
{-# OPTIONS --without-K --safe #-} module Algebra.Linear.Core where open import Relation.Binary open import Relation.Nullary using (¬_) open import Level using (_⊔_) open import Data.Fin using (Fin; suc; zero) VectorAddition : ∀ {c} -> Set c -> Set c VectorAddition V = V -> V -> V ScalarMultiplication : ∀ {c k} -> Set k -> Set c -> Set (k ⊔ c) ScalarMultiplication K V = K -> V -> V
{ "alphanum_fraction": 0.6606683805, "avg_line_length": 25.9333333333, "ext": "agda", "hexsha": "cbd3b7c6aeb6db17928f32252382022e97c86ec5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Core.agda", "max_line_length": 63, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 111, "size": 389 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.LowerBound {e} {E : Type e} {r} (totalOrder : TotalOrder E r) where open TotalOrder totalOrder renaming (refl to ≤-refl) import Data.Unit.UniversePolymorphic as Poly import Data.Empty.UniversePolymorphic as Poly data ⌊∙⌋ : Type e where ⌊⊥⌋ : ⌊∙⌋ ⌊_⌋ : E → ⌊∙⌋ _≤⌊_⌋ : ⌊∙⌋ → E → Type r ⌊⊥⌋ ≤⌊ y ⌋ = Poly.⊤ ⌊ x ⌋ ≤⌊ y ⌋ = x ≤ y _⌊≤⌋_ : ⌊∙⌋ → ⌊∙⌋ → Type r x ⌊≤⌋ ⌊ y ⌋ = x ≤⌊ y ⌋ ⌊⊥⌋ ⌊≤⌋ ⌊⊥⌋ = Poly.⊤ ⌊ x ⌋ ⌊≤⌋ ⌊⊥⌋ = Poly.⊥ lb-ord : TotalOrder ⌊∙⌋ r PartialOrder._≤_ (TotalOrder.partialOrder lb-ord) = _⌊≤⌋_ PartialOrder.refl (partialOrder lb-ord) {⌊⊥⌋} = Poly.tt PartialOrder.refl (partialOrder lb-ord) {⌊ x ⌋} = ≤-refl PartialOrder.antisym (TotalOrder.partialOrder lb-ord) {⌊⊥⌋} {⌊⊥⌋} x≤y y≤x _ = ⌊⊥⌋ PartialOrder.antisym (TotalOrder.partialOrder lb-ord) {⌊ x ⌋} {⌊ x₁ ⌋} x≤y y≤x i = ⌊ antisym x≤y y≤x i ⌋ PartialOrder.trans (TotalOrder.partialOrder lb-ord) {⌊⊥⌋} {⌊⊥⌋} {⌊⊥⌋} x≤y y≤z = Poly.tt PartialOrder.trans (TotalOrder.partialOrder lb-ord) {⌊⊥⌋} {⌊⊥⌋} {⌊ x ⌋} x≤y y≤z = Poly.tt PartialOrder.trans (TotalOrder.partialOrder lb-ord) {⌊⊥⌋} {⌊ x ⌋} {⌊ x₁ ⌋} x≤y y≤z = Poly.tt PartialOrder.trans (TotalOrder.partialOrder lb-ord) {⌊ x ⌋} {⌊ x₁ ⌋} {⌊ x₂ ⌋} x≤y y≤z = trans x≤y y≤z TotalOrder._≤?_ lb-ord ⌊⊥⌋ ⌊⊥⌋ = inl Poly.tt TotalOrder._≤?_ lb-ord ⌊ x ⌋ ⌊⊥⌋ = inr Poly.tt TotalOrder._≤?_ lb-ord ⌊⊥⌋ ⌊ x₁ ⌋ = inl Poly.tt TotalOrder._≤?_ lb-ord ⌊ x ⌋ ⌊ y ⌋ = x ≤? y
{ "alphanum_fraction": 0.5937291528, "avg_line_length": 37.475, "ext": "agda", "hexsha": "b47f5888fedb2b33f2670b2f1950c1fa54649c71", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Relation/Binary/Construct/LowerBound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Relation/Binary/Construct/LowerBound.agda", "max_line_length": 104, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Relation/Binary/Construct/LowerBound.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 903, "size": 1499 }
module Logic.DiagonalMethod where open import Functional open import Logic.Predicate open import Logic.Propositional import Lvl open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Domain open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Function open import Type.Size open import Type private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} -- Also called: Diagonal method, Cantor's diagonal argument. function-type-surjectivity-fixpoint : (A ≽ (A → B)) → ∀{f : B → B} → ∃(Fixpoint f) function-type-surjectivity-fixpoint ([∃]-intro s) {f} with [∃]-intro i ⦃ p ⦄ ← surjective(s) {f ∘ (s $₂_)} = [∃]-intro(s i i) ⦃ intro(symmetry(_≡_) (congruence₂ₗ(_$_)(i) p)) ⦄ module _ where open import Data.Boolean open import Data.Boolean.Proofs decidable-power-set-no-surjection : ¬(T ≽ (T → Bool)) decidable-power-set-no-surjection = (p ↦ [!]-no-fixpoints(Fixpoint.proof([∃]-proof(p{not})))) ∘ function-type-surjectivity-fixpoint module _ where open import Data.Boolean open import Data.Boolean.Proofs open import Function.Inverseᵣ open import Structure.Function.Domain.Proofs open import Structure.Function open import Syntax.Transitivity function-type-no-surjection : (B ≽ Bool) → ¬(A ≽ (A → B)) function-type-no-surjection ([∃]-intro r-bool) surj with [∃]-intro i ⦃ fix ⦄ ← function-type-surjectivity-fixpoint surj {invᵣ r-bool ⦃ surjective-to-invertibleᵣ ⦄ ∘ not ∘ r-bool} = [!]-no-fixpoints(symmetry(_≡_) (Inverseᵣ.proof surjective-to-inverseᵣ) 🝖 congruence₁(r-bool) (Fixpoint.proof fix)) module _ where open import Numeral.Natural open import Numeral.Natural.Oper.Proofs ℕ-function-non-surjectivity : ¬(ℕ ≽ (ℕ → ℕ)) ℕ-function-non-surjectivity = (p ↦ 𝐒-not-self(Fixpoint.proof([∃]-proof(p{𝐒})))) ∘ function-type-surjectivity-fixpoint
{ "alphanum_fraction": 0.723347548, "avg_line_length": 36.7843137255, "ext": "agda", "hexsha": "0cd7b0ce0d37e0ed0c639b2c6c74d9dff26f6e39", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/DiagonalMethod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/DiagonalMethod.agda", "max_line_length": 133, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/DiagonalMethod.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 594, "size": 1876 }