Search is not available for this dataset
text
string
meta
dict
module Issue1760c where -- Skipping an old-style mutual block: Before the `mutual` keyword. {-# NO_POSITIVITY_CHECK #-} mutual data D : Set where lam : (D → D) → D record U : Set where field ap : U → U
{ "alphanum_fraction": 0.6481481481, "avg_line_length": 19.6363636364, "ext": "agda", "hexsha": "a7564dca25c25e08a6e71081f7cf69a9abe2d5c5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1760c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1760c.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1760c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 216 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Symmetry {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties.Conversion open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE mutual -- Helper function for symmetry of type equality using shape views. symEqT : ∀ {Γ A B l l′} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ B ≡ A / [B] symEqT (ℕᵥ D D′) A≡B = ιx (ℕ₌ (red D)) symEqT (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M)) rewrite whrDet* (red D′ , ne neM) (red D₁ , ne neK₁) = ιx (ne₌ _ D neK (~-sym K≡M)) symEqT {Γ = Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , G₁≡G′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ [F₁≡F] : ∀ {Δ} {ρ} [ρ] ⊢Δ → _ [F₁≡F] {Δ} {ρ} [ρ] ⊢Δ = let ρF′≡ρF₁ ρ = PE.cong (wk ρ) (PE.sym F₁≡F′) [ρF′] {ρ} [ρ] ⊢Δ = PE.subst (λ x → Δ ⊩⟨ _ ⟩ wk ρ x) F₁≡F′ ([F]₁ [ρ] ⊢Δ) in irrelevanceEq′ {Δ} (ρF′≡ρF₁ ρ) ([ρF′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) (symEq ([F] [ρ] ⊢Δ) ([ρF′] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ)) in Π₌ _ _ (red D) (≅-sym (PE.subst (λ x → Γ ⊢ Π F ▹ G ≅ x) (PE.sym ΠF₁G₁≡ΠF′G′) A≡B)) [F₁≡F] (λ {ρ} [ρ] ⊢Δ [a] → let ρG′a≡ρG₁′a = PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′) [ρG′a] = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk (lift ρ) x [ _ ]) G₁≡G′ ([G]₁ [ρ] ⊢Δ [a]) [a]₁ = convTerm₁ ([F]₁ [ρ] ⊢Δ) ([F] [ρ] ⊢Δ) ([F₁≡F] [ρ] ⊢Δ) [a] in irrelevanceEq′ ρG′a≡ρG₁′a [ρG′a] ([G]₁ [ρ] ⊢Δ [a]) (symEq ([G] [ρ] ⊢Δ [a]₁) [ρG′a] ([G≡G′] [ρ] ⊢Δ [a]₁))) symEqT (Uᵥ _ _ _ _ _ _) A≡B = U₌ PE.refl symEqT (emb⁰¹ PE.refl x) (ιx A≡B) = symEqT x A≡B symEqT (emb¹⁰ PE.refl x) A≡B = ιx (symEqT x A≡B) -- Symmetry of type equality. symEq : ∀ {Γ A B l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ B ≡ A / [B] symEq [A] [B] A≡B = symEqT (goodCases [A] [B] A≡B) A≡B symNeutralTerm : ∀ {t u A Γ} → Γ ⊩neNf t ≡ u ∷ A → Γ ⊩neNf u ≡ t ∷ A symNeutralTerm (neNfₜ₌ neK neM k≡m) = neNfₜ₌ neM neK (~-sym k≡m) symNatural-prop : ∀ {Γ k k′} → [Natural]-prop Γ k k′ → [Natural]-prop Γ k′ k symNatural-prop (sucᵣ (ℕₜ₌ k k′ d d′ t≡u prop)) = sucᵣ (ℕₜ₌ k′ k d′ d (≅ₜ-sym t≡u) (symNatural-prop prop)) symNatural-prop zeroᵣ = zeroᵣ symNatural-prop (ne prop) = ne (symNeutralTerm prop) -- Symmetry of term equality. symEqTerm : ∀ {l Γ A t u} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊩⟨ l ⟩ u ≡ t ∷ A / [A] symEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [A] [B] [A≡B]) = Uₜ₌ B A d′ d typeB typeA (≅ₜ-sym A≡B) [B] [A] (symEq [A] [B] [A≡B]) symEqTerm (ℕᵣ D) (ιx (ℕₜ₌ k k′ d d′ t≡u prop)) = ιx (ℕₜ₌ k′ k d′ d (≅ₜ-sym t≡u) (symNatural-prop prop)) symEqTerm (ne′ K D neK K≡K) (ιx (neₜ₌ k m d d′ nf)) = ιx (neₜ₌ m k d′ d (symNeutralTerm nf)) symEqTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) = Πₜ₌ g f d′ d funcG funcF (≅ₜ-sym f≡g) [g] [f] (λ ρ ⊢Δ [a] → symEqTerm ([G] ρ ⊢Δ [a]) ([f≡g] ρ ⊢Δ [a])) symEqTerm (emb′ 0<1 x) (ιx t≡u) = ιx (symEqTerm x t≡u)
{ "alphanum_fraction": 0.4655172414, "avg_line_length": 42.7368421053, "ext": "agda", "hexsha": "d4d0d6fcd80fb76f0519d2d89b7a4c5b124c794a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Symmetry.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Symmetry.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Symmetry.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2001, "size": 4060 }
{-# OPTIONS --universe-polymorphism #-} module Prelude.Stream where -- open import Coinduction -- Infinite streams. open import Prelude.IO open import Prelude.Nat open import Prelude.Unit data Level : Set where zero : Level suc : (i : Level) → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} infixl 6 _⊔_ _⊔_ : Level → Level → Level zero ⊔ j = j suc i ⊔ zero = suc i suc i ⊔ suc j = suc (i ⊔ j) {-# BUILTIN LEVELMAX _⊔_ #-} infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A -- A stream processor SP A B consumes elements of A and produces -- elements of B. It can only consume a finite number of A’s before -- producing a B. data SP (A B : Set) : Set where get : (f : A → SP A B) → SP A B put : (b : B) (sp : ∞ (SP A B)) → SP A B -- The function eat is defined by an outer corecursion into Stream B -- and an inner recursion on SP A B. eat : ∀ {A B} → SP A B → Stream A → Stream B eat (get f) (a ∷ as) = eat (f a) (♭ as) eat (put b sp) as = b ∷ ♯ eat (♭ sp) as -- Composition of stream processors. _∘_ : ∀ {A B C} → SP B C → SP A B → SP A C get f₁ ∘ put x sp₂ = f₁ x ∘ ♭ sp₂ put x sp₁ ∘ sp₂ = put x (♯ (♭ sp₁ ∘ sp₂)) sp₁ ∘ get f₂ = get (λ x → sp₁ ∘ f₂ x) ones : Stream Nat ones = 1 ∷ (♯ ones) twos : Stream Nat twos = 2 ∷ (♯ twos) printStream : Nat -> Stream Nat -> IO Unit printStream Z _ = return unit printStream (S steps) (n ∷ ns) = printNat n ,, printStream steps (♭ ns) main : IO Unit main = printStream 100 twos
{ "alphanum_fraction": 0.5691102406, "avg_line_length": 23.2077922078, "ext": "agda", "hexsha": "88783ce763678eabff4eed897df6020c5aa3b4e2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/Stream.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 668, "size": 1787 }
-- Andreas, 2011-05-10 module MetaAppUnderLambda where data _≡_ {A : Set} (a : A) : A -> Set where refl : a ≡ a data D (A : Set) : Set where cons : A -> (A -> A) -> D A f : {A : Set} -> D A -> A f (cons a h) = a test : (A : Set) -> let X : A X = _ Y : A -> A Y = λ v -> _ v in f (cons X Y) ≡ X test A = refl -- should return "Unsolved Metas" -- executes the defauls A.App case in the type checker (which is not covered by appView)
{ "alphanum_fraction": 0.5102880658, "avg_line_length": 23.1428571429, "ext": "agda", "hexsha": "838794f226f68c9cf783835d587fe27a9acc0450", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/MetaAppUnderLambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/MetaAppUnderLambda.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/MetaAppUnderLambda.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 178, "size": 486 }
-- Andreas, 2015-08-26 {-# OPTIONS --rewriting #-} -- Should give error open import Agda.Builtin.Equality open import Common.List {-# BUILTIN REWRITE _≡_ #-} lengthMap : {A B : Set} (f : A → B) (xs : List A) → length (map f xs) ≡ length xs lengthMap f [] = refl lengthMap f (x ∷ xs) rewrite lengthMap f xs = refl {-# REWRITE lengthMap #-}
{ "alphanum_fraction": 0.6225352113, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "d0fb3bffb75d012a4d51dc62624085af07dec009", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RewritingNotSafe.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RewritingNotSafe.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RewritingNotSafe.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 113, "size": 355 }
open import Oscar.Prelude module Oscar.Class.Apply where module _ (𝔉 : ∀ {𝔣} → Ø 𝔣 → Ø 𝔣) 𝔬₁ 𝔬₂ where 𝓪pply = ∀ {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} → 𝔉 (𝔒₁ → 𝔒₂) → 𝔉 𝔒₁ → 𝔉 𝔒₂ record 𝓐pply : Ø ↑̂ (𝔬₁ ∙̂ 𝔬₂) where infixl 4 apply field apply : 𝓪pply syntax apply f x = f <*> x open 𝓐pply ⦃ … ⦄ public _<*>_ = apply
{ "alphanum_fraction": 0.5535168196, "avg_line_length": 18.1666666667, "ext": "agda", "hexsha": "309d954a8377dcbe390fd55fed3585e48651c692", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Apply.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Apply.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Apply.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 191, "size": 327 }
open import Coinduction using ( ∞ ; ♯_ ; ♭ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; ⟦_⟧ ; _≃_ ; equiv ) open import System.IO.Transducers.Session using ( Session ; I ; Σ ; _∼_ ; ∼-refl ; ∼-trans ) open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ) open import System.IO.Transducers.Properties.Lemmas using ( ⟦⟧-resp-∼ ; ≃-refl ; ≃-sym ; IsEquiv ; isEquiv ; ≃-equiv ; ∷-refl-≡₁ ; ∷-refl-≡₂ ) module System.IO.Transducers.Properties.Category where open Relation.Binary.PropositionalEquality.≡-Reasoning infixr 6 _⟦⟫⟧_ -- Coinductive equivalence of programs, note that in the -- case where done has type I ⇒ I, this is syntactic -- identity. data _⇒_⊨_≣_ : ∀ S T (P Q : S ⇒ T) → Set₁ where inp : ∀ {A V F T P Q} → ∞ (∀ a → ♭ F a ⇒ T ⊨ ♭ P a ≣ ♭ Q a) → (Σ {A} V F ⇒ T ⊨ inp P ≣ inp Q) out : ∀ {B W G S} b {P Q} → (S ⇒ ♭ G b ⊨ P ≣ Q) → (S ⇒ Σ {B} W G ⊨ out b P ≣ out b Q) done : ∀ {S} → (S ⇒ S ⊨ done ≣ done) inp-done : ∀ {A V F P} → ∞ (∀ a → ♭ F a ⇒ Σ V F ⊨ ♭ P a ≣ out a done) → (Σ {A} V F ⇒ Σ V F ⊨ inp P ≣ done) done-inp : ∀ {A V F P} → ∞ (∀ a → ♭ F a ⇒ Σ V F ⊨ out a done ≣ ♭ P a) → (Σ {A} V F ⇒ Σ V F ⊨ done ≣ inp P) _≣_ : ∀ {S T} (P Q : S ⇒ T) → Set₁ P ≣ Q = _ ⇒ _ ⊨ P ≣ Q -- Coinductive equivalence implies semantic equivalence ⟦⟧-resp-≣ : ∀ {S T} {P Q : S ⇒ T} → (P ≣ Q) → (⟦ P ⟧ ≃ ⟦ Q ⟧) ⟦⟧-resp-≣ (inp P≣Q) [] = refl ⟦⟧-resp-≣ (inp P≣Q) (a ∷ as) = ⟦⟧-resp-≣ (♭ P≣Q a) as ⟦⟧-resp-≣ (out b P≣Q) as = cong (_∷_ b) (⟦⟧-resp-≣ P≣Q as) ⟦⟧-resp-≣ done as = refl ⟦⟧-resp-≣ (inp-done P≣outadone) [] = refl ⟦⟧-resp-≣ (inp-done P≣outadone) (a ∷ as) = ⟦⟧-resp-≣ (♭ P≣outadone a) as ⟦⟧-resp-≣ (done-inp outadone≣P) [] = refl ⟦⟧-resp-≣ (done-inp outadone≣P) (a ∷ as) = ⟦⟧-resp-≣ (♭ outadone≣P a) as -- Semantic equivalence implies coinductive equivalence ⟦⟧-refl-≣ : ∀ {S T} (P Q : S ⇒ T) → (⟦ P ⟧ ≃ ⟦ Q ⟧) → (P ≣ Q) ⟦⟧-refl-≣ (inp P) (inp Q) P≃Q = inp (♯ λ a → ⟦⟧-refl-≣ (♭ P a) (♭ Q a) (λ as → P≃Q (a ∷ as))) ⟦⟧-refl-≣ (inp P) done P≃Q = inp-done (♯ λ a → ⟦⟧-refl-≣ (♭ P a) (out a done) (λ as → P≃Q (a ∷ as))) ⟦⟧-refl-≣ (out b P) (out c Q) P≃Q with ∷-refl-≡₁ refl refl (P≃Q []) ⟦⟧-refl-≣ (out b P) (out .b Q) P≃Q | refl = out b (⟦⟧-refl-≣ P Q (λ as → ∷-refl-≡₂ refl refl (P≃Q as))) ⟦⟧-refl-≣ done (inp Q) P≃Q = done-inp (♯ λ a → ⟦⟧-refl-≣ (out a done) (♭ Q a) (λ as → P≃Q (a ∷ as))) ⟦⟧-refl-≣ done done P≃Q = done ⟦⟧-refl-≣ (inp P) (out b Q) P≃Q with P≃Q [] ⟦⟧-refl-≣ (inp P) (out b Q) P≃Q | () ⟦⟧-refl-≣ (out b P) (inp Q) P≃Q with P≃Q [] ⟦⟧-refl-≣ (out b P) (inp Q) P≃Q | () ⟦⟧-refl-≣ (out b P) done P≃Q with P≃Q [] ⟦⟧-refl-≣ (out b P) done P≃Q | () ⟦⟧-refl-≣ done (out b Q) P≃Q with P≃Q [] ⟦⟧-refl-≣ done (out b Q) P≃Q | () -- Trace semantics of identity ⟦done⟧ : ∀ {S} → (Trace S) → (Trace S) ⟦done⟧ as = as done-semantics : ∀ {S} → ⟦ done {S} ⟧ ≃ ⟦done⟧ done-semantics as = refl -- Trace semantics of composition _⟦⟫⟧_ : ∀ {S T U} → (f : Trace S → Trace T) → (g : Trace T → Trace U) → (Trace S) → (Trace U) (f ⟦⟫⟧ g) as = g (f as) ⟫-semantics : ∀ {S T U} (P : S ⇒ T) (Q : T ⇒ U) → (⟦ P ⟫ Q ⟧ ≃ ⟦ P ⟧ ⟦⟫⟧ ⟦ Q ⟧) ⟫-semantics (inp P) (inp Q) [] = refl ⟫-semantics (inp P) (inp Q) (a ∷ as) = ⟫-semantics (♭ P a) (inp Q) as ⟫-semantics (inp P) (out c Q) as = cong (_∷_ c) (⟫-semantics (inp P) Q as) ⟫-semantics (inp P) done as = refl ⟫-semantics (out b P) (inp Q) as = ⟫-semantics P (♭ Q b) as ⟫-semantics (out b P) (out c Q) as = cong (_∷_ c) (⟫-semantics (out b P) Q as) ⟫-semantics (out b P) done as = refl ⟫-semantics done Q as = refl ⟫-≃-⟦⟫⟧ : ∀ {S T U} {P : S ⇒ T} {f : Trace S → Trace T} {Q : T ⇒ U} {g : Trace T → Trace U} → (⟦ P ⟧ ≃ f) → (⟦ Q ⟧ ≃ g) → (⟦ P ⟫ Q ⟧ ≃ f ⟦⟫⟧ g) ⟫-≃-⟦⟫⟧ {S} {T} {U} {P} {f} {Q} {g} P≃f Q≃g as = begin ⟦ P ⟫ Q ⟧ as ≡⟨ ⟫-semantics P Q as ⟩ ⟦ Q ⟧ (⟦ P ⟧ as) ≡⟨ cong ⟦ Q ⟧ (P≃f as) ⟩ ⟦ Q ⟧ (f as) ≡⟨ Q≃g (f as) ⟩ g (f as) ∎ -- Composition respects ≃ ⟫-resp-≃ : ∀ {S T U} {P₁ P₂ : S ⇒ T} {Q₁ Q₂ : T ⇒ U} → (⟦ P₁ ⟧ ≃ ⟦ P₂ ⟧) → (⟦ Q₁ ⟧ ≃ ⟦ Q₂ ⟧) → (⟦ P₁ ⟫ Q₁ ⟧ ≃ ⟦ P₂ ⟫ Q₂ ⟧) ⟫-resp-≃ {S} {T} {U} {P₁} {P₂} {Q₁} {Q₂} P₁≃P₂ Q₁≃Q₂ as = begin ⟦ P₁ ⟫ Q₁ ⟧ as ≡⟨ ⟫-≃-⟦⟫⟧ P₁≃P₂ Q₁≃Q₂ as ⟩ (⟦ P₂ ⟧ ⟦⟫⟧ ⟦ Q₂ ⟧) as ≡⟨ sym (⟫-semantics P₂ Q₂ as) ⟩ ⟦ P₂ ⟫ Q₂ ⟧ as ∎ -- Left identity of composition ⟫-identity₁ : ∀ {S T} (P : S ⇒ T) → ⟦ done ⟫ P ⟧ ≃ ⟦ P ⟧ ⟫-identity₁ P = ⟫-semantics done P -- Right identity of composition ⟫-identity₂ : ∀ {S T} (P : S ⇒ T) → ⟦ P ⟫ done ⟧ ≃ ⟦ P ⟧ ⟫-identity₂ P = ⟫-semantics P done -- Associativity of composition ⟫-assoc : ∀ {S T U V} (P : S ⇒ T) (Q : T ⇒ U) (R : U ⇒ V) → ⟦ (P ⟫ Q) ⟫ R ⟧ ≃ ⟦ P ⟫ (Q ⟫ R) ⟧ ⟫-assoc P Q R as = begin ⟦ (P ⟫ Q) ⟫ R ⟧ as ≡⟨ ⟫-≃-⟦⟫⟧ (⟫-semantics P Q) ≃-refl as ⟩ (⟦ P ⟧ ⟦⟫⟧ ⟦ Q ⟧ ⟦⟫⟧ ⟦ R ⟧) as ≡⟨ sym (⟫-≃-⟦⟫⟧ ≃-refl (⟫-semantics Q R) as) ⟩ ⟦ P ⟫ (Q ⟫ R) ⟧ as ∎ -- Identity is an equivalence equiv-resp-done : ∀ {S} → ⟦ done ⟧ ≃ ⟦ equiv (∼-refl {S}) ⟧ equiv-resp-done {I} as = refl equiv-resp-done {Σ V F} [] = refl equiv-resp-done {Σ V F} (a ∷ as) = cong (_∷_ a) (equiv-resp-done as) done-isEquiv : ∀ {S} → IsEquiv (done {S}) done-isEquiv = isEquiv {P = done} ∼-refl equiv-resp-done -- Composition respects being an equivalence equiv-resp-⟦⟫⟧ : ∀ {S T U} (S∼T : S ∼ T) (T∼U : T ∼ U) → ⟦ equiv S∼T ⟧ ⟦⟫⟧ ⟦ equiv T∼U ⟧ ≃ ⟦ equiv (∼-trans S∼T T∼U) ⟧ equiv-resp-⟦⟫⟧ I I as = refl equiv-resp-⟦⟫⟧ (Σ W F) (Σ .W G) [] = refl equiv-resp-⟦⟫⟧ (Σ W F) (Σ .W G) (a ∷ as) = cong (_∷_ a) (equiv-resp-⟦⟫⟧ (♭ F a) (♭ G a) as) equiv-resp-⟫ : ∀ {S T U} (S∼T : S ∼ T) (T∼U : T ∼ U) → ⟦ equiv S∼T ⟫ equiv T∼U ⟧ ≃ ⟦ equiv (∼-trans S∼T T∼U) ⟧ equiv-resp-⟫ S∼T T∼U as = begin ⟦ equiv S∼T ⟫ equiv T∼U ⟧ as ≡⟨ ⟫-semantics (equiv S∼T) (equiv T∼U) as ⟩ (⟦ equiv S∼T ⟧ ⟦⟫⟧ ⟦ equiv T∼U ⟧) as ≡⟨ equiv-resp-⟦⟫⟧ S∼T T∼U as ⟩ ⟦ equiv (∼-trans S∼T T∼U) ⟧ as ∎ ⟫-isEquiv : ∀ {S T U} {P : S ⇒ T} {Q : T ⇒ U} → (IsEquiv P) → (IsEquiv Q) → (IsEquiv (P ⟫ Q)) ⟫-isEquiv {S} {T} {U} {P} {Q} (isEquiv S∼T P≃S∼T) (isEquiv (T∼U) (Q≃T∼U)) = isEquiv (∼-trans S∼T T∼U) λ as → begin ⟦ P ⟫ Q ⟧ as ≡⟨ ⟫-resp-≃ P≃S∼T Q≃T∼U as ⟩ ⟦ equiv S∼T ⟫ equiv T∼U ⟧ as ≡⟨ equiv-resp-⟫ S∼T T∼U as ⟩ ⟦ equiv (∼-trans S∼T T∼U) ⟧ as ∎ -- Equivalences form isos equiv-is-iso : ∀ {S T} {P : S ⇒ T} {Q : T ⇒ S} → (IsEquiv P) → (IsEquiv Q) → ⟦ P ⟫ Q ⟧ ≃ ⟦ done ⟧ equiv-is-iso PisEq QisEq = ≃-equiv (⟫-isEquiv PisEq QisEq) done-isEquiv
{ "alphanum_fraction": 0.4644696189, "avg_line_length": 36.5430107527, "ext": "agda", "hexsha": "b80ab09b7b06329b8296c4c6b428f6b16f1f0a17", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Properties/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Properties/Category.agda", "max_line_length": 142, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Properties/Category.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 3665, "size": 6797 }
{-# OPTIONS --without-K --safe #-} -- Categorical equivalences preserve various structures module Categories.Category.Equivalence.Preserves where open import Level open import Categories.Adjoint.Equivalence using (⊣Equivalence) open import Categories.Category.Core open import Categories.Category.Equivalence using (WeakInverse; StrongEquivalence) open import Categories.Category.Equivalence.Properties using (C≅D) open import Categories.Diagram.Duality open import Categories.Functor.Core open import Categories.Morphism import Categories.Morphism.Reasoning as MR open import Categories.NaturalTransformation.NaturalIsomorphism.Properties open import Categories.Object.Initial open import Categories.Object.Terminal open import Categories.Object.Duality private variable o ℓ e o′ ℓ′ e′ : Level C : Category o ℓ e D : Category o′ ℓ′ e′ module _ (S : StrongEquivalence C D) where open StrongEquivalence S open IsInitial private module C = Category C module D = Category D module F = Functor F module G = Functor G X : ⊣Equivalence C D X = C≅D S -- see below the proof for the abbreviations that make the proof readable pres-IsInitial : {c : C.Obj} (i : IsInitial C c) → IsInitial D (F.₀ c) pres-IsInitial {c} i = record { ! = λ {A} → F∘G≈id.⇒.η A D.∘ F.₁ (! i) ; !-unique = λ {A} f → begin {- f : F.₀ c D.⇒ A -} FG⇒ A D.∘ F.₁ (! i) ≈⟨ (refl⟩∘⟨ F.F-resp-≈ (!-unique i _)) ⟩ FG⇒ A D.∘ F.₁ ((G.₁ f C.∘ GF⇒) C.∘ G.₁ FG⇐′ C.∘ GF⇐) ≈⟨ (refl⟩∘⟨ F.homomorphism) ⟩ FG⇒ A D.∘ F.₁ (G.₁ f C.∘ GF⇒) D.∘ F.₁ (G.₁ FG⇐′ C.∘ GF⇐) ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ (F.homomorphism ○ (D.Equiv.sym (F≃id-comm₂ F∘G≈id) ⟩∘⟨refl))) ⟩ FG⇒ A D.∘ F.₁ (G.₁ f C.∘ GF⇒) D.∘ FG⇐ D.∘ F.F₁ GF⇐ ≈⟨ (refl⟩∘⟨ F.homomorphism ⟩∘⟨refl) ⟩ FG⇒ A D.∘ (F.₁ (G.₁ f) D.∘ F.₁ GF⇒) D.∘ (FG⇐ D.∘ F.F₁ GF⇐) ≈⟨ (D.sym-assoc ○ (D.sym-assoc ⟩∘⟨refl) ○ D.assoc) ⟩ (FG⇒ A D.∘ F.₁ (G.₁ f)) D.∘ F.F₁ GF⇒ D.∘ FG⇐ D.∘ F.F₁ GF⇐ ≈⟨ (F∘G≈id.⇒.commute f ⟩∘⟨ D.sym-assoc) ⟩ (f D.∘ FG⇒ (F.₀ c)) D.∘ (F.F₁ GF⇒ D.∘ FG⇐) D.∘ F.F₁ GF⇐ ≈⟨ (D.assoc ○ (refl⟩∘⟨ D.sym-assoc)) ⟩ f D.∘ (FG⇒ (F.₀ c) D.∘ F.F₁ GF⇒ D.∘ FG⇐) D.∘ F.F₁ GF⇐ ≈⟨ elimʳ (⊣Equivalence.zig X) ⟩ f ∎ } where open D.HomReasoning open MR D FG⇒ : (A : D.Obj) → F.₀ (G.₀ A) D.⇒ A FG⇒ A = F∘G≈id.⇒.η A FG⇐ = F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ c))) FG⇐′ = F∘G≈id.⇐.η (F.₀ c) GF⇐ : c C.⇒ G.₀ (F.₀ c) GF⇐ = G∘F≈id.⇐.η c GF⇒ = G∘F≈id.⇒.η (G.F₀ (F.F₀ c)) pres-Initial : Initial C → Initial D pres-Initial i = record { ⊥ = F.₀ ⊥ ; ⊥-is-initial = pres-IsInitial ⊥-is-initial } where open Initial i -- We can do the other proof by duality pres-terminal : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (S : StrongEquivalence C D) {c : Category.Obj C} → (t : IsTerminal C c) → IsTerminal D (Functor.F₀ (StrongEquivalence.F S) c) pres-terminal {C = C} {D} S {c} t = IsInitial⇒coIsTerminal (Category.op D) (pres-IsInitial Sop (coIsTerminal⇒IsInitial (Category.op C) t)) where Sop : StrongEquivalence (Category.op C) (Category.op D) Sop = StrongEquivalence.op S pres-Terminal : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (S : StrongEquivalence C D) (t : Terminal C) → Terminal D pres-Terminal S t = record { ⊤ = Functor.F₀ F ⊤; ⊤-is-terminal = pres-terminal S ⊤-is-terminal} where open Terminal t open StrongEquivalence S
{ "alphanum_fraction": 0.5951417004, "avg_line_length": 42.6913580247, "ext": "agda", "hexsha": "92e9728e07ca712014d07dd152bc61818198a4c4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Equivalence/Preserves.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Equivalence/Preserves.agda", "max_line_length": 186, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Equivalence/Preserves.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1512, "size": 3458 }
-- An ATP local hint cannot be equal to the conjecture in which it is -- used. -- This error is detected by Syntax.Translation.ConcreteToAbstract. module ATPBadLocalHint1 where postulate D : Set p : D {-# ATP prove p p #-}
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 17.7692307692, "ext": "agda", "hexsha": "38bb9631bebae8118bc06b55eb24854453dea8b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/ATPBadLocalHint1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/ATPBadLocalHint1.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/ATPBadLocalHint1.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 61, "size": 231 }
------------------------------------------------------------------------ -- Reduced canonical kinding for the undecidability proof ------------------------------------------------------------------------ {-# OPTIONS --safe --exact-split --without-K #-} module FOmegaInt.Kinding.Canonical.Reduced where open import Data.Context.WellFormed open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.List using ([]; _∷_; _++_) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (∃; _,_; _×_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec as Vec using ([]; _∷_) open import Data.Vec.Properties as VecProps using (map-∘; map-cong) open import Function using (_∘_) open import Level using () renaming (zero to lzero) open import Relation.Binary.PropositionalEquality open import FOmegaInt.Syntax open import FOmegaInt.Syntax.HereditarySubstitution using (Kind/⟨★⟩-/) import FOmegaInt.Kinding.Canonical as CanonicalKinding module C where open CanonicalKinding public open Kinding public ------------------------------------------------------------------------ -- Reduced canonical kinding derivations. module Kinding where open ElimCtx open Syntax open Substitution using (_Kind′[_]) infix 4 _⊢_wf _ctx _⊢_kd infix 4 _⊢Nf_⇉_ _⊢Ne_⇉_ _⊢Var_⇉_ _⊢_⇉∙_⇉_ _⊢Nf_⇇_ infix 4 _⊢_<∷_ _⊢_∼_ infix 4 _⊢_⇉∙_∼_⇉_ mutual -- Formation of kinds, bindings, and contexts. -- -- NOTE. The rule kd-Π only supports first-order operators. data _⊢_kd {n} (Γ : Ctx n) : Kind Elim n → Set where kd-⋯ : ∀ {a b} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → Γ ⊢ a ⋯ b kd kd-Π : ∀ {a b k} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → kd (a ⋯ b) ∷ Γ ⊢ k kd → Γ ⊢ Π (a ⋯ b) k kd data _⊢_wf {n} (Γ : Ctx n) : ElimAsc n → Set where wf-kd : ∀ {a} → Γ ⊢ a kd → Γ ⊢ kd a wf wf-tp : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ tp a wf _ctx : ∀ {n} → Ctx n → Set Γ ctx = ContextFormation._wf _⊢_wf Γ -- Kind synthesis for variables, neutrals and βη-normal types. data _⊢Var_⇉_ {n} (Γ : Ctx n) : Fin n → Kind Elim n → Set where ⇉-var : ∀ {k} x → Γ ctx → lookup Γ x ≡ kd k → Γ ⊢Var x ⇉ k data _⊢Ne_⇉_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇉-∙ : ∀ {x j k} {as : Spine n} → Γ ⊢Var x ⇉ j → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢Ne var x ∙ as ⇉ k data _⊢Nf_⇉_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇉-⊥-f : Γ ctx → Γ ⊢Nf ⊥∙ ⇉ ⊥∙ ⋯ ⊥∙ ⇉-⊤-f : Γ ctx → Γ ⊢Nf ⊤∙ ⇉ ⊤∙ ⋯ ⊤∙ ⇉-s-i : ∀ {a b c} → Γ ⊢Ne a ⇉ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a -- Kind checking for η-long β-normal types. data _⊢Nf_⇇_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇇-⇑ : ∀ {a j k} → Γ ⊢Nf a ⇉ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k -- Kind synthesis for spines. -- -- Note the use of ordinary (instead of hereditary) substitution. data _⊢_⇉∙_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Kind Elim n → Set where ⇉-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ⇉ k ⇉-∷ : ∀ {a as b c j k} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ j Kind′[ ⌞ a ⌟ ] ⇉∙ as ⇉ k → Γ ⊢ Π (b ⋯ c) j ⇉∙ a ∷ as ⇉ k -- Reduced canonical subkinding derivations. -- -- NOTE. The rule <∷-Π only supports first-order operators. data _⊢_<∷_ {n} (Γ : Ctx n) : Kind Elim n → Kind Elim n → Set where <∷-⋯ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ ∼ a₁ → Γ ⊢ b₁ ∼ b₂ → Γ ⊢ a₁ ⋯ b₁ <∷ a₂ ⋯ b₂ <∷-Π : ∀ {a₁ a₂ b₁ b₂ k₁ k₂} → Γ ⊢ a₁ ∼ a₂ → Γ ⊢ b₂ ∼ b₁ → kd (a₂ ⋯ b₂) ∷ Γ ⊢ k₁ <∷ k₂ → Γ ⊢ Π (a₁ ⋯ b₁) k₁ <∷ Π (a₂ ⋯ b₂) k₂ -- Canonical relatedness of proper types and spines. data _⊢_∼_ {n} (Γ : Ctx n) : Elim n → Elim n → Set where ∼-trans : ∀ {a b c} → Γ ⊢ a ∼ b → Γ ⊢ b ∼ c → Γ ⊢ a ∼ c ∼-⊥ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ ⊥∙ ∼ a ∼-⊤ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ a ∼ ⊤∙ ∼-∙ : ∀ {x as₁ as₂ k b c} → Γ ⊢Var x ⇉ k → Γ ⊢ k ⇉∙ as₁ ∼ as₂ ⇉ b ⋯ c → Γ ⊢ var x ∙ as₁ ∼ var x ∙ as₂ ∼-⟨| : ∀ {a b c} → Γ ⊢Ne a ⇉ b ⋯ c → Γ ⊢ b ∼ a ∼-|⟩ : ∀ {a b c} → Γ ⊢Ne a ⇉ b ⋯ c → Γ ⊢ a ∼ c data _⊢_⇉∙_∼_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Spine n → Kind Elim n → Set where ∼-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ∼ [] ⇉ k ∼-∷ : ∀ {a as b bs c d j k} → Γ ⊢ c ∼ a → Γ ⊢ a ∼ d → Γ ⊢ a ∼ b → Γ ⊢ j Kind′[ ⌞ a ⌟ ] ⇉∙ as ∼ bs ⇉ k → Γ ⊢ Π (c ⋯ d) j ⇉∙ a ∷ as ∼ b ∷ bs ⇉ k -- Well-formed context extensions. open ContextFormation _⊢_wf public hiding (_wf; _⊢_wfExt) -- A wrapper for the kind checking judgment that also supports -- arbitrary variable bindings. infix 4 _⊢NfOrVar_∈_ data _⊢NfOrVar_∈_ {n} (Γ : Ctx n) : Term n → ElimAsc n → Set where ∈-nf : ∀ {a b c d e} → Γ ⊢Nf a ⇇ c ⋯ d → ⌞ a ⌟ ≡ b → kd (c ⋯ d) ≡ e → Γ ⊢NfOrVar b ∈ e ∈-var : ∀ x {a b} → Γ ctx → var x ≡ a → lookup Γ x ≡ b → Γ ⊢NfOrVar a ∈ b ------------------------------------------------------------------------ -- Simple properties of canonical kindings open Syntax open ElimCtx hiding (_++_) open Kinding -- An inversion lemma for interval subkinding. <∷-⋯-inv : ∀ {n} {Γ : Ctx n} {k a₂ b₂} → Γ ⊢ k <∷ a₂ ⋯ b₂ → ∃ λ a₁ → ∃ λ b₁ → Γ ⊢ a₂ ∼ a₁ × Γ ⊢ b₁ ∼ b₂ × k ≡ a₁ ⋯ b₁ <∷-⋯-inv (<∷-⋯ a₂∼a₁ b₁∼b₂) = _ , _ , a₂∼a₁ , b₁∼b₂ , refl -- An inversion lemma for _⊢_wf. wf-kd-inv : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ kd k wf → Γ ⊢ k kd wf-kd-inv (wf-kd k-kd) = k-kd -- The synthesized kind of a normal proper type is exactly the singleton -- containing that type. Nf⇉-≡ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → k ≡ a ⋯ a Nf⇉-≡ (⇉-⊥-f Γ-ctx) = refl Nf⇉-≡ (⇉-⊤-f Γ-ctx) = refl Nf⇉-≡ (⇉-s-i a∈b⋯c) = refl -- Derived singleton introduction rules where the premises are -- well-kinded normal forms rather than neutrals. Nf⇉-s-i : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢Nf a ⇉ a ⋯ a Nf⇉-s-i a⇉b⋯c with Nf⇉-≡ a⇉b⋯c Nf⇉-s-i a⇉a⋯a | refl = a⇉a⋯a Nf⇇-s-i : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a Nf⇇-s-i (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂∼b₁ c₁∼c₂)) = Nf⇉-s-i a⇉b₁⋯c₁ -- The synthesized kinds of neutrals kind-check. Nf⇇-ne : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Ne a ⇉ b ⋯ c → Γ ⊢Nf a ⇇ b ⋯ c Nf⇇-ne (⇉-∙ x∈k k⇉as⇉b⋯c) = ⇇-⇑ (⇉-s-i (⇉-∙ x∈k k⇉as⇉b⋯c)) (<∷-⋯ (∼-⟨| (⇉-∙ x∈k k⇉as⇉b⋯c)) (∼-|⟩ (⇉-∙ x∈k k⇉as⇉b⋯c))) -- The contexts of (most of) the above judgments are well-formed. -- -- NOTE. The exceptions are again the spine judgments. See the -- comment on context validity in FOmegaInt.Kinding.Canonical for why -- this doesn't matter. Var⇉-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ⇉ k → Γ ctx Var⇉-ctx (⇉-var x Γ-ctx _) = Γ-ctx Ne⇉-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ⇉ k → Γ ctx Ne⇉-ctx (⇉-∙ x∈j j⇉as⇉k) = Var⇉-ctx x∈j Nf⇉-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ctx Nf⇉-ctx (⇉-⊥-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-⊤-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-s-i a∈b⋯c) = Ne⇉-ctx a∈b⋯c Nf⇇-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ctx Nf⇇-ctx (⇇-⇑ a⇉j j<∷k) = Nf⇉-ctx a⇉j kd-ctx : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ctx kd-ctx (kd-⋯ a⇉a⋯a b⇉b⋯b) = Nf⇉-ctx a⇉a⋯a kd-ctx (kd-Π a⇉a⋯a b⇉b⋯b k-kd) = Nf⇉-ctx a⇉a⋯a ∼-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ∼ b → Γ ctx ∼-ctx (∼-trans a∼b b∼c) = ∼-ctx a∼b ∼-ctx (∼-⊥ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a ∼-ctx (∼-⊤ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a ∼-ctx (∼-∙ x∈j as∼bs) = Var⇉-ctx x∈j ∼-ctx (∼-⟨| a∈b⋯c) = Ne⇉-ctx a∈b⋯c ∼-ctx (∼-|⟩ a∈b⋯c) = Ne⇉-ctx a∈b⋯c <∷-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ctx <∷-ctx (<∷-⋯ a₂∼a₁ b₁∼b₂) = ∼-ctx a₂∼a₁ <∷-ctx (<∷-Π a₁∼a₂ b₂∼b₁ k₁<∷k₂) = ∼-ctx a₁∼a₂ wf-ctx : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ ctx wf-ctx (wf-kd k-kd) = kd-ctx k-kd wf-ctx (wf-tp a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a NfOrVar∈-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢NfOrVar a ∈ b → Γ ctx NfOrVar∈-ctx (∈-nf a⇇c⋯d _ _) = Nf⇇-ctx a⇇c⋯d NfOrVar∈-ctx (∈-var x Γ-ctx _ _) = Γ-ctx -- Reflexivity of the various relations. mutual <∷-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ k <∷-refl (kd-⋯ a⇉a⋯a b⇉b⋯b) = <∷-⋯ (∼-refl a⇉a⋯a) (∼-refl b⇉b⋯b) <∷-refl (kd-Π a⇉a⋯a b⇉b⋯b k-kd) = <∷-Π (∼-refl a⇉a⋯a) (∼-refl b⇉b⋯b) (<∷-refl k-kd) ∼-refl : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a ∼ a ∼-refl (⇉-⊥-f Γ-ctx) = ∼-⊥ (⇉-⊥-f Γ-ctx) ∼-refl (⇉-⊤-f Γ-ctx) = ∼-⊤ (⇉-⊤-f Γ-ctx) ∼-refl (⇉-s-i (⇉-∙ x∈j j⇉as⇉k)) = ∼-∙ x∈j (∼Sp-refl j⇉as⇉k) ∼Sp-refl : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢ j ⇉∙ as ∼ as ⇉ k ∼Sp-refl ⇉-[] = ∼-[] ∼Sp-refl (⇉-∷ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂∼b₁ c₁∼c₂)) k[a]⇉as⇉l) with Nf⇉-≡ a⇉b₁⋯c₁ ∼Sp-refl (⇉-∷ (⇇-⇑ a⇉a⋯a (<∷-⋯ b∼a a∼c)) k[a]⇉as⇉l) | refl = ∼-∷ b∼a a∼c (∼-refl a⇉a⋯a) (∼Sp-refl k[a]⇉as⇉l) -- Admissible projection rules for canonically kinded proper types. ∼-⟨|-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ b ∼ a ∼-⟨|-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c ∼-⟨|-Nf⇉ a⇉a⋯a | refl = ∼-refl a⇉a⋯a ∼-⟨|-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ b ∼ a ∼-⟨|-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂∼b₁ c₁∼c₂)) = ∼-trans b₂∼b₁ (∼-⟨|-Nf⇉ a⇉b₁⋯c₁) ∼-|⟩-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a ∼ c ∼-|⟩-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c ∼-|⟩-Nf⇉ a⇉a⋯a | refl = ∼-refl a⇉a⋯a ∼-|⟩-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ a ∼ c ∼-|⟩-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂∼b₁ c₁∼c₂)) = ∼-trans (∼-|⟩-Nf⇉ a⇉b₁⋯c₁) c₁∼c₂ -- Spines with interval-kinded heads are empty, and therefore have -- interval-kinded tails. Sp⇉-⋯ : ∀ {n} {Γ : Ctx n} {as b c k} → Γ ⊢ b ⋯ c ⇉∙ as ⇉ k → as ≡ [] × k ≡ b ⋯ c Sp⇉-⋯ ⇉-[] = refl , refl Sp∼-⋯ : ∀ {n} {Γ : Ctx n} {as bs c d k} → Γ ⊢ c ⋯ d ⇉∙ as ∼ bs ⇉ k → as ≡ [] × bs ≡ [] × k ≡ c ⋯ d Sp∼-⋯ ∼-[] = refl , refl , refl ---------------------------------------------------------------------- -- Well-kinded/typed substitutions (i.e. substitution lemmas) -- A shorthand for kindings and typings of Ts by kind or type -- ascriptions. ElimAscTyping : (ℕ → Set) → Set₁ ElimAscTyping T = Typing ElimAsc T ElimAsc Level.zero -- Liftings from well-typed Ts to well-typed/kinded normal forms or -- variables. LiftTo-NfOrVar∈ : ∀ {T} → ElimAscTyping T → Set₁ LiftTo-NfOrVar∈ _⊢T_∈_ = LiftTyped Substitution.elimAscTermSubst _⊢_wf _⊢T_∈_ _⊢NfOrVar_∈_ -- A helper lemma about untyped T-substitutions in raw kinds. record TypedSubstAppHelpers {T} (rawLift : Lift T Term) : Set where open Substitution using (_Kind′[_]) module A = SubstApp rawLift module L = Lift rawLift -- Substitutions in kinds and types commute. field Kind/-sub-↑ : ∀ {m n} k a (σ : Sub T m n) → k Kind′[ ⌞ a ⌟ ] A.Kind′/ σ ≡ (k A.Kind′/ σ L.↑) Kind′[ ⌞ a A.Elim/ σ ⌟ ] -- Application of generic well-typed T-substitutions to all the judgments. module TypedSubstApp {T : ℕ → Set} (_⊢T_∈_ : ElimAscTyping T) (liftTyped : LiftTo-NfOrVar∈ _⊢T_∈_) (helpers : TypedSubstAppHelpers (LiftTyped.rawLift liftTyped)) where open LiftTyped liftTyped renaming (lookup to /∈-lookup) hiding (∈-var) open TypedSubstAppHelpers helpers -- Well-typed/kinded substitutions preserve all the judgments. mutual wf-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a σ} → Γ ⊢ a wf → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A.ElimAsc/ σ wf wf-/ (wf-kd k-kd) σ∈Γ = wf-kd (kd-/ k-kd σ∈Γ) wf-/ (wf-tp a⇉a⋯a) σ∈Γ = wf-tp (Nf⇉-/ a⇉a⋯a σ∈Γ) kd-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {k σ} → Γ ⊢ k kd → Δ ⊢/ σ ∈ Γ → Δ ⊢ k A.Kind′/ σ kd kd-/ (kd-⋯ a⇉a⋯a b⇉b⋯b) σ∈Γ = kd-⋯ (Nf⇉-/ a⇉a⋯a σ∈Γ) (Nf⇉-/ b⇉b⋯b σ∈Γ) kd-/ (kd-Π a⇉a⋯a b⇉b⋯b k-kd) σ∈Γ = let a/σ⇉a/σ⋯a/σ = Nf⇉-/ a⇉a⋯a σ∈Γ b/σ⇉b/σ⋯b/σ = Nf⇉-/ b⇉b⋯b σ∈Γ in kd-Π a/σ⇉a/σ⋯a/σ b/σ⇉b/σ⋯b/σ (kd-/ k-kd (∈-↑ (wf-kd (kd-⋯ a/σ⇉a/σ⋯a/σ b/σ⇉b/σ⋯b/σ)) σ∈Γ)) Ne⇉-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k σ} → Γ ⊢Ne a ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢Nf a A.Elim/ σ ⇇ k A.Kind′/ σ ⊎ Δ ⊢Ne a A.Elim/ σ ⇉ k A.Kind′/ σ Ne⇉-/ (⇉-∙ (⇉-var x Γ-ctx Γ[x]≡j) j⇉as⇉k) σ∈Γ with ∈-lift (/∈-lookup σ∈Γ x) ... | ∈-nf {a} a⇇c⋯d ⌞a⌟≡σ[x] c⋯d≡Γ[x]/σ = let c⋯d≡j/σ = kd-inj (trans c⋯d≡Γ[x]/σ (cong (A._ElimAsc/ _) Γ[x]≡j)) c⋯d⇉as/σ⇉k/σ = subst (_ ⊢_⇉∙ _ ⇉ _) (sym c⋯d≡j/σ) (Sp⇉-/ j⇉as⇉k σ∈Γ) as≡[] , k/σ≡c⋯d = Sp⇉-⋯ c⋯d⇉as/σ⇉k/σ a≡⌜σ[x]⌝ = trans (sym (⌜⌝∘⌞⌟-id a)) (cong ⌜_⌝ ⌞a⌟≡σ[x]) ⌜σ[x]⌝∙∙as≡a = trans (cong₂ _∙∙_ (sym a≡⌜σ[x]⌝) as≡[]) (∙∙-[] _) in inj₁ (subst₂ (_ ⊢Nf_⇇_) (sym ⌜σ[x]⌝∙∙as≡a) (sym k/σ≡c⋯d) a⇇c⋯d) ... | ∈-var y Δ-ctx y≡σ[x] Δ[y]≡Γ[x]/σ = let Δ[y]≡j/σ = trans Δ[y]≡Γ[x]/σ (cong (A._ElimAsc/ _) Γ[x]≡j) in inj₂ (subst (_ ⊢Ne_⇉ _) (cong (_∙∙ _) (cong ⌜_⌝ y≡σ[x])) (⇉-∙ (⇉-var y Δ-ctx Δ[y]≡j/σ) (Sp⇉-/ j⇉as⇉k σ∈Γ))) Nf⇉-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k σ} → Γ ⊢Nf a ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢Nf a A.Elim/ σ ⇉ k A.Kind′/ σ Nf⇉-/ (⇉-⊥-f Γ-ctx) σ∈Γ = ⇉-⊥-f (/∈-wf σ∈Γ) Nf⇉-/ (⇉-⊤-f Γ-ctx) σ∈Γ = ⇉-⊤-f (/∈-wf σ∈Γ) Nf⇉-/ (⇉-s-i a∈b⋯c) σ∈Γ with Ne⇉-/ a∈b⋯c σ∈Γ ... | inj₁ a/σ⇇b/σ⋯c/σ = Nf⇇-s-i a/σ⇇b/σ⋯c/σ ... | inj₂ a/σ⇉b/σ⋯c/σ = ⇉-s-i a/σ⇉b/σ⋯c/σ Nf⇇-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k σ} → Γ ⊢Nf a ⇇ k → Δ ⊢/ σ ∈ Γ → Δ ⊢Nf a A.Elim/ σ ⇇ k A.Kind′/ σ Nf⇇-/ (⇇-⇑ a⇉j j<∷k) σ∈Γ = ⇇-⇑ (Nf⇉-/ a⇉j σ∈Γ) (<∷-/ j<∷k σ∈Γ) Sp⇉-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as j k σ} → Γ ⊢ j ⇉∙ as ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ j A.Kind′/ σ ⇉∙ as A.// σ ⇉ k A.Kind′/ σ Sp⇉-/ ⇉-[] σ∈Γ = ⇉-[] Sp⇉-/ (⇉-∷ {a} {j = j} a⇇b⋯c j[a]⇉as⇉k) σ∈Γ = ⇉-∷ (Nf⇇-/ a⇇b⋯c σ∈Γ) (subst (_ ⊢_⇉∙ _ ⇉ _) (Kind/-sub-↑ j a _) (Sp⇉-/ j[a]⇉as⇉k σ∈Γ)) <∷-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k σ} → Γ ⊢ j <∷ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ j A.Kind′/ σ <∷ k A.Kind′/ σ <∷-/ (<∷-⋯ a₂∼a₁ b₁∼b₂) σ∈Γ = <∷-⋯ (∼-/ a₂∼a₁ σ∈Γ) (∼-/ b₁∼b₂ σ∈Γ) <∷-/ (<∷-Π a₁∼a₂ b₂∼b₁ k₁<∷k₂) σ∈Γ = <∷-Π (∼-/ a₁∼a₂ σ∈Γ) (∼-/ b₂∼b₁ σ∈Γ) (<∷-/ k₁<∷k₂ (∈-↑ (<∷-/-wf k₁<∷k₂ σ∈Γ) σ∈Γ)) ∼-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} → Γ ⊢ a ∼ b → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A.Elim/ σ ∼ b A.Elim/ σ ∼-/ (∼-trans a∼b b∼c) σ∈Γ = ∼-trans (∼-/ a∼b σ∈Γ) (∼-/ b∼c σ∈Γ) ∼-/ (∼-⊥ a⇉a⋯a) σ∈Γ = ∼-⊥ (Nf⇉-/ a⇉a⋯a σ∈Γ) ∼-/ (∼-⊤ a⇉a⋯a) σ∈Γ = ∼-⊤ (Nf⇉-/ a⇉a⋯a σ∈Γ) ∼-/ (∼-∙ (⇉-var x Γ-ctx Γ[x]≡j) j⇉as∼bs⇉k) σ∈Γ with ∈-lift (/∈-lookup σ∈Γ x) ... | ∈-nf {a} (⇇-⇑ a⇉c₁⋯d₁ (<∷-⋯ _ _)) ⌞a⌟≡σ[x] c⋯d≡Γ[x]/σ = let c⋯d≡j/σ = kd-inj (trans c⋯d≡Γ[x]/σ (cong (A._ElimAsc/ _) Γ[x]≡j)) c⋯d⇉as/σ∼bs/σ⇉k/σ = subst (_ ⊢_⇉∙ _ ∼ _ ⇉ _) (sym c⋯d≡j/σ) (Sp∼-/ j⇉as∼bs⇉k σ∈Γ) as≡[] , bs≡[] , _ = Sp∼-⋯ c⋯d⇉as/σ∼bs/σ⇉k/σ a≡⌜σ[x]⌝ = trans (sym (⌜⌝∘⌞⌟-id a)) (cong ⌜_⌝ ⌞a⌟≡σ[x]) ⌜σ[x]⌝∙∙as≡a = trans (cong₂ _∙∙_ (sym a≡⌜σ[x]⌝) as≡[]) (∙∙-[] _) ⌜σ[x]⌝∙∙bs≡a = trans (cong₂ _∙∙_ (sym a≡⌜σ[x]⌝) bs≡[]) (∙∙-[] _) in subst₂ (_ ⊢_∼_) (sym ⌜σ[x]⌝∙∙as≡a) (sym ⌜σ[x]⌝∙∙bs≡a) (∼-refl a⇉c₁⋯d₁) ... | ∈-var y Δ-ctx y≡σ[x] Δ[y]≡Γ[x]/σ = let Δ[y]≡j/σ = trans Δ[y]≡Γ[x]/σ (cong (A._ElimAsc/ _) Γ[x]≡j) in subst₂ (_ ⊢_∼_) (cong (_∙∙ _) (cong ⌜_⌝ y≡σ[x])) (cong (_∙∙ _) (cong ⌜_⌝ y≡σ[x])) (∼-∙ (⇉-var y Δ-ctx Δ[y]≡j/σ) (Sp∼-/ j⇉as∼bs⇉k σ∈Γ)) ∼-/ (∼-⟨| a∈b⋯c) σ∈Γ with Ne⇉-/ a∈b⋯c σ∈Γ ... | inj₁ a⇇b⋯c = ∼-⟨|-Nf⇇ a⇇b⋯c ... | inj₂ a⇉b⋯c = ∼-⟨| a⇉b⋯c ∼-/ (∼-|⟩ a∈b⋯c) σ∈Γ with Ne⇉-/ a∈b⋯c σ∈Γ ... | inj₁ a⇇b⋯c = ∼-|⟩-Nf⇇ a⇇b⋯c ... | inj₂ a⇉b⋯c = ∼-|⟩ a⇉b⋯c Sp∼-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as bs j k σ} → Γ ⊢ j ⇉∙ as ∼ bs ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ j A.Kind′/ σ ⇉∙ as A.// σ ∼ bs A.// σ ⇉ k A.Kind′/ σ Sp∼-/ ∼-[] σ∈Γ = ∼-[] Sp∼-/ (∼-∷ {a} {j = j} c∼a a∼d a∼b as∼bs) σ∈Γ = ∼-∷ (∼-/ c∼a σ∈Γ) (∼-/ a∼d σ∈Γ) (∼-/ a∼b σ∈Γ) (subst (_ ⊢_⇉∙ _ ∼ _ ⇉ _) (Kind/-sub-↑ j a _) (Sp∼-/ as∼bs σ∈Γ)) -- Helpers (to satisfy the termination checker). -- -- These are simply (manual) expansions of the form -- -- XX-/-wf x σ∈Γ = wf-/ (wf-∷₁ (XX-ctx x)) σ∈Γ -- -- to ensure the above definitions remain structurally recursive -- in the various derivations. Nf⇉-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k σ} → kd j ∷ Γ ⊢Nf a ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind′/ σ) wf Nf⇉-/-wf (⇉-⊥-f (j-wf ∷ _)) σ∈Γ = wf-/ j-wf σ∈Γ Nf⇉-/-wf (⇉-⊤-f (j-wf ∷ _)) σ∈Γ = wf-/ j-wf σ∈Γ Nf⇉-/-wf (⇉-s-i a∈b⋯c) σ∈Γ = Ne⇉-/-wf a∈b⋯c σ∈Γ Ne⇉-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k σ} → kd j ∷ Γ ⊢Ne a ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind′/ σ) wf Ne⇉-/-wf (⇉-∙ x∈k _) σ∈Γ = Var⇉-/-wf x∈k σ∈Γ Var⇉-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k σ} → kd j ∷ Γ ⊢Var a ⇉ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind′/ σ) wf Var⇉-/-wf (⇉-var x (j-wf ∷ _) _) σ∈Γ = wf-/ j-wf σ∈Γ <∷-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l σ} → kd j ∷ Γ ⊢ k <∷ l → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind′/ σ) wf <∷-/-wf (<∷-⋯ a₂∼a₁ _) σ∈Γ = ∼-/-wf a₂∼a₁ σ∈Γ <∷-/-wf (<∷-Π a₁∼a₂ _ _) σ∈Γ = ∼-/-wf a₁∼a₂ σ∈Γ ∼-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j σ} → kd j ∷ Γ ⊢ a ∼ b → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind′/ σ) wf ∼-/-wf (∼-trans a∼b _) σ∈Γ = ∼-/-wf a∼b σ∈Γ ∼-/-wf (∼-⊥ a⇉a⋯a) σ∈Γ = Nf⇉-/-wf a⇉a⋯a σ∈Γ ∼-/-wf (∼-⊤ a⇉a⋯a) σ∈Γ = Nf⇉-/-wf a⇉a⋯a σ∈Γ ∼-/-wf (∼-∙ x∈j _) σ∈Γ = Var⇉-/-wf x∈j σ∈Γ ∼-/-wf (∼-⟨| a∈b⋯c) σ∈Γ = Ne⇉-/-wf a∈b⋯c σ∈Γ ∼-/-wf (∼-|⟩ a∈b⋯c) σ∈Γ = Ne⇉-/-wf a∈b⋯c σ∈Γ -- Renamings preserve wrapped variable typing NfOrVar∈-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} → Γ ⊢NfOrVar a ∈ b → Δ ⊢/ σ ∈ Γ → Δ ⊢NfOrVar a A./ σ ∈ b A.ElimAsc/ σ NfOrVar∈-/ (∈-nf {a} a⇇c⋯d refl refl) σ∈Γ = ∈-nf (Nf⇇-/ a⇇c⋯d σ∈Γ) (A.⌞⌟-/ a) refl NfOrVar∈-/ (∈-var x _ refl refl) σ∈Γ = ∈-lift (/∈-lookup σ∈Γ x) -- Well-kinded renamings and type substitutions. module KindedSubstitution where open Substitution using (simple; termSubst) open SimpleExt simple using (extension) open TermSubst termSubst using (varLift; termLift) open ≡-Reasoning private module S = Substitution module KL = TermLikeLemmas S.termLikeLemmasKind′ -- Helper lemmas about untyped renamings and substitutions in terms -- and kinds. varHelpers : TypedSubstAppHelpers varLift varHelpers = record { Kind/-sub-↑ = λ k a ρ → begin (k Kind′[ ⌞ a ⌟ ]) Kind′/Var ρ ≡⟨ KL./-sub-↑ k ⌞ a ⌟ ρ ⟩ (k Kind′/Var ρ VarSubst.↑) Kind′[ ⌞ a ⌟ /Var ρ ] ≡⟨ cong ((k Kind′/Var ρ VarSubst.↑) Kind′[_]) (sym (⌞⌟-/Var a)) ⟩ (k Kind′/Var ρ VarSubst.↑) Kind′[ ⌞ a Elim/Var ρ ⌟ ] ∎ } where open S termHelpers : TypedSubstAppHelpers termLift termHelpers = record { Kind/-sub-↑ = λ k a σ → begin (k Kind′[ ⌞ a ⌟ ]) Kind′/ σ ≡⟨ KL.sub-commutes k ⟩ (k Kind′/ σ ↑) Kind′[ ⌞ a ⌟ / σ ] ≡⟨ cong ((k Kind′/ σ ↑) Kind′[_]) (sym (⌞⌟-/ a)) ⟩ (k Kind′/ σ ↑) Kind′[ ⌞ a Elim/ σ ⌟ ] ∎ } where open S -- Kinded type substitutions. typedTermSubst : TypedTermSubst ElimAsc Term Level.zero TypedSubstAppHelpers typedTermSubst = record { _⊢_wf = _⊢_wf ; _⊢_∈_ = _⊢NfOrVar_∈_ ; termLikeLemmas = S.termLikeLemmasElimAsc ; varHelpers = varHelpers ; termHelpers = termHelpers ; wf-wf = wf-ctx ; ∈-wf = NfOrVar∈-ctx ; ∈-var = λ x Γ-ctx → ∈-var x Γ-ctx refl refl ; typedApp = TypedSubstApp.NfOrVar∈-/ } open TypedTermSubst typedTermSubst public hiding (_⊢_wf; _⊢_∈_; varHelpers; termHelpers; ∈-var; ∈-/Var; ∈-/) renaming (lookup to /∈-lookup) open TypedSubstApp _⊢Var_∈_ varLiftTyped varHelpers public using () renaming (wf-/ to wf-/Var; ∼-/ to ∼-/Var) open Substitution using (weakenElim; weakenElimAsc) -- Weakening preserves the various judgments. wf-weaken : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a wf → Γ ⊢ b wf → (a ∷ Γ) ⊢ weakenElimAsc b wf wf-weaken a-wf b-wf = wf-/Var b-wf (Var∈-wk a-wf) ∼-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b ∼ c → (a ∷ Γ) ⊢ weakenElim b ∼ weakenElim c ∼-weaken a-wf b∼c∈k = ∼-/Var b∼c∈k (Var∈-wk a-wf) open TypedSubstApp _⊢NfOrVar_∈_ termLiftTyped termHelpers public open Substitution using (_Kind′/_; id; sub; _Kind′[_]) -- Substitution of a single variable or normal form preserves the -- kinding judgments. kd-[] : ∀ {n} {Γ : Ctx n} {a b c k} → kd (b ⋯ c) ∷ Γ ⊢ k kd → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ k Kind′[ ⌞ a ⌟ ] kd kd-[] k-kd a⇇b⋯c = kd-/ k-kd (∈-sub (∈-nf a⇇b⋯c refl refl)) <∷-[] : ∀ {n} {Γ : Ctx n} {j k a b c} → kd (b ⋯ c) ∷ Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ j Kind′[ ⌞ a ⌟ ] <∷ k Kind′[ ⌞ a ⌟ ] <∷-[] j<∷k a⇇b⋯c = <∷-/ j<∷k (∈-sub (∈-nf a⇇b⋯c refl refl)) -- A typed substitution that narrows the kind of the first type -- variable. ∈-<∷-sub : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂} → Γ ⊢ (a₁ ⋯ b₁) kd → Γ ⊢ a₂ ∼ a₁ → Γ ⊢ b₁ ∼ b₂ → kd (a₁ ⋯ b₁) ∷ Γ ⊢/ id ∈ kd (a₂ ⋯ b₂) ∷ Γ ∈-<∷-sub a₁⋯b₁-kd a₁∼a₂ b₂∼b₁ = ∈-tsub (∈-nf (⇇-⇑ (⇉-s-i x∈a₁⋯a₂) (<∷-⋯ x∼a₂ b₂∼x)) refl refl) where a₁⋯b₁-wf = wf-kd a₁⋯b₁-kd Γ-ctx = kd-ctx a₁⋯b₁-kd x∈a₁⋯a₂ = ⇉-∙ (⇉-var zero (a₁⋯b₁-wf ∷ Γ-ctx) refl) ⇉-[] x∼a₂ = ∼-trans (∼-weaken a₁⋯b₁-wf a₁∼a₂) (∼-⟨| x∈a₁⋯a₂) b₂∼x = ∼-trans (∼-|⟩ x∈a₁⋯a₂) (∼-weaken a₁⋯b₁-wf b₂∼b₁) -- Narrowing the kind of the first type variable preserves -- subkinding ⇓-<∷ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ k₁ k₂} → Γ ⊢ (a₁ ⋯ b₁) kd → Γ ⊢ a₂ ∼ a₁ → Γ ⊢ b₁ ∼ b₂ → kd (a₂ ⋯ b₂) ∷ Γ ⊢ k₁ <∷ k₂ → kd (a₁ ⋯ b₁) ∷ Γ ⊢ k₁ <∷ k₂ ⇓-<∷ a₁⋯b₁-kd a₂∼a₁ b₁∼b₂ k₁<∷k₂ = subst₂ (_ ⊢_<∷_) (KL.id-vanishes _) (KL.id-vanishes _) (<∷-/ k₁<∷k₂ (∈-<∷-sub a₁⋯b₁-kd a₂∼a₁ b₁∼b₂)) -- Operations on well-formed contexts that require weakening of -- well-formedness judgments. module WfCtxOps where wfWeakenOps : WellFormedWeakenOps weakenOps wfWeakenOps = record { wf-weaken = KindedSubstitution.wf-weaken } open WellFormedWeakenOps wfWeakenOps public renaming (lookup to lookup-wf) -- Lookup the kind of a type variable in a well-formed context. lookup-kd : ∀ {m} {Γ : Ctx m} {k} x → Γ ctx → ElimCtx.lookup Γ x ≡ kd k → Γ ⊢ k kd lookup-kd x Γ-ctx Γ[x]≡kd-k = wf-kd-inv (subst (_ ⊢_wf) Γ[x]≡kd-k (lookup-wf Γ-ctx x)) open KindedSubstitution open WfCtxOps -- A corollary of context narrowing: transitivity of subkinding is -- admissible. <∷-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j <∷ k → Γ ⊢ k <∷ l → Γ ⊢ j <∷ l <∷-trans (<∷-⋯ a₂∼a₁ b₁∼b₂) (<∷-⋯ a₃∼a₂ b₂∼b₃) = <∷-⋯ (∼-trans a₃∼a₂ a₂∼a₁) (∼-trans b₁∼b₂ b₂∼b₃) <∷-trans (<∷-Π a₁∼a₂ b₂∼b₁ k₁<∷k₂) (<∷-Π a₂∼a₃ b₃∼b₂ k₂<∷k₃) = let a₃⋯b₃-kd = wf-kd-inv (wf-∷₁ (<∷-ctx k₂<∷k₃)) in <∷-Π (∼-trans a₁∼a₂ a₂∼a₃) (∼-trans b₃∼b₂ b₂∼b₁) (<∷-trans (⇓-<∷ a₃⋯b₃-kd a₂∼a₃ b₃∼b₂ k₁<∷k₂) k₂<∷k₃) -- Another corollary: subsumption is admissible in kind checking. Nf⇇-⇑ : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Nf a ⇇ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k Nf⇇-⇑ (⇇-⇑ a⇇j₁ j₁<∷j₂) j₂<∷j₃ = ⇇-⇑ a⇇j₁ (<∷-trans j₁<∷j₂ j₂<∷j₃) -- We can push kind formation proofs through spine kindings. kd-Sp⇉ : ∀ {n} {Γ : Ctx n} {j as k} → Γ ⊢ j kd → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢ k kd kd-Sp⇉ j-kd ⇉-[] = j-kd kd-Sp⇉ (kd-Π b⇉b⋯b c⇉c⋯c j-kd) (⇉-∷ a⇇b⋯c j[a]⇉as⇉k) = kd-Sp⇉ (kd-[] j-kd a⇇b⋯c) j[a]⇉as⇉k -- Kind-validity of neutrals Var⇉-valid : ∀ {n} {Γ : Ctx n} {x k} → Γ ⊢Var x ⇉ k → Γ ⊢ k kd Var⇉-valid (⇉-var x Γ-ctx Γ[x]≡k) = lookup-kd x Γ-ctx Γ[x]≡k Ne⇉-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ⇉ k → Γ ⊢ k kd Ne⇉-valid (⇉-∙ x⇉j j⇉as⇉k) = kd-Sp⇉ (Var⇉-valid x⇉j) j⇉as⇉k -- Left-hand validity of related types and spines mutual ∼-valid₁ : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ∼ b → Γ ⊢Nf a ⇉ a ⋯ a ∼-valid₁ (∼-trans a∼b _) = ∼-valid₁ a∼b ∼-valid₁ (∼-⊥ b⇉b⋯b) = ⇉-⊥-f (Nf⇉-ctx b⇉b⋯b) ∼-valid₁ (∼-⊤ a⇉a⋯a) = a⇉a⋯a ∼-valid₁ (∼-∙ x⇉j j⇉as⇉k) = ⇉-s-i (⇉-∙ x⇉j (∼Sp-valid₁ j⇉as⇉k)) ∼-valid₁ (∼-⟨| a⇉b⋯c) with Ne⇉-valid a⇉b⋯c ... | kd-⋯ b⇉b⋯b _ = b⇉b⋯b ∼-valid₁ (∼-|⟩ a⇉b⋯c) = ⇉-s-i a⇉b⋯c ∼Sp-valid₁ : ∀ {n} {Γ : Ctx n} {j as bs k} → Γ ⊢ j ⇉∙ as ∼ bs ⇉ k → Γ ⊢ j ⇉∙ as ⇉ k ∼Sp-valid₁ ∼-[] = ⇉-[] ∼Sp-valid₁ (∼-∷ c∼a a∼d a∼b j[x]⇉as⇉k) = ⇉-∷ (⇇-⇑ (∼-valid₁ a∼b) (<∷-⋯ c∼a a∼d)) (∼Sp-valid₁ j[x]⇉as⇉k) -- We can push subkinding proofs through spine kindings/relations. <∷-Sp⇉ : ∀ {n} {Γ : Ctx n} {j₁ j₂ as k₂} → Γ ⊢ j₁ <∷ j₂ → Γ ⊢ j₂ ⇉∙ as ⇉ k₂ → ∃ λ k₁ → Γ ⊢ j₁ ⇉∙ as ⇉ k₁ × Γ ⊢ k₁ <∷ k₂ <∷-Sp⇉ j₁<∷j₂ ⇉-[] = _ , ⇉-[] , j₁<∷j₂ <∷-Sp⇉ (<∷-Π b₁∼b₂ c₂∼c₁ j₁<∷j₂) (⇉-∷ a⇇b₂⋯c₂ j₂[a]⇉as⇉k₂) = let k₁ , j₁[a]⇉as⇉k₁ , k₁<∷k₂ = <∷-Sp⇉ (<∷-[] j₁<∷j₂ a⇇b₂⋯c₂) j₂[a]⇉as⇉k₂ in k₁ , ⇉-∷ (Nf⇇-⇑ a⇇b₂⋯c₂ (<∷-⋯ b₁∼b₂ c₂∼c₁)) j₁[a]⇉as⇉k₁ , k₁<∷k₂ <∷-Sp∼ : ∀ {n} {Γ : Ctx n} {j₁ j₂ as bs k₂} → Γ ⊢ j₁ <∷ j₂ → Γ ⊢ j₂ ⇉∙ as ∼ bs ⇉ k₂ → ∃ λ k₁ → Γ ⊢ j₁ ⇉∙ as ∼ bs ⇉ k₁ × Γ ⊢ k₁ <∷ k₂ <∷-Sp∼ j₁<∷j₂ ∼-[] = _ , ∼-[] , j₁<∷j₂ <∷-Sp∼ (<∷-Π c₁∼c₂ d₂∼d₁ j₁<∷j₂) (∼-∷ c₂∼a a∼d₂ a∼b j₂[a]⇉as∼bs⇉k₂) = let a⇇c₂⋯d₂ = ⇇-⇑ (∼-valid₁ a∼b) (<∷-⋯ c₂∼a a∼d₂) k₁ , j₁[a]⇉as∼bs⇉k₁ , k₁<∷k₂ = <∷-Sp∼ (<∷-[] j₁<∷j₂ a⇇c₂⋯d₂) j₂[a]⇉as∼bs⇉k₂ in k₁ , ∼-∷ (∼-trans c₁∼c₂ c₂∼a) (∼-trans a∼d₂ d₂∼d₁) a∼b j₁[a]⇉as∼bs⇉k₁ , k₁<∷k₂ ------------------------------------------------------------------------ -- Squashing of terms mutual squashElim : ∀ {n} → Elim n → Elim n squashElim (a ∙ as) = squashHead a ∙ squashSpine as squashHead : ∀ {n} → Head n → Head n squashHead (var x) = var x squashHead ⊥ = ⊥ squashHead ⊤ = ⊤ {-# CATCHALL #-} squashHead a = ⊤ -- all other types are squashed into ⊤ squashSpine : ∀ {n} → Spine n → Spine n squashSpine [] = [] squashSpine (a ∷ as) = squashElim a ∷ squashSpine as squashKind : ∀ {n} → Kind Elim n → Kind Elim n squashKind (a ⋯ b) = squashElim a ⋯ squashElim b squashKind (Π j k) = Π (squashKind j) (squashKind k) squashAsc : ∀ {n} → ElimAsc n → ElimAsc n squashAsc (kd k) = kd (squashKind k) squashAsc (tp a) = tp (squashElim a) squashCtx : ∀ {n} → Ctx n → Ctx n squashCtx [] = [] squashCtx (a ∷ Γ) = (squashAsc a) ∷ (squashCtx Γ) squashTerm : ∀ {n} → Term n → Term n squashTerm a = ⌞ squashElim ⌜ a ⌝ ⌟ squash-++ : ∀ {n} (as : Spine n) {bs} → squashSpine as ++ squashSpine bs ≡ squashSpine (as ++ bs) squash-++ [] = refl squash-++ (a ∷ as) = cong (_ ∷_) (squash-++ as) squash-∙∙ : ∀ {n} (a : Elim n) {bs} → squashElim a ∙∙ squashSpine bs ≡ squashElim (a ∙∙ bs) squash-∙∙ (a ∙ as) = cong (_ ∙_) (squash-++ as) -- Squashing commutes with generic substitutions. module SquashSubstAppLemmas {T : ℕ → Set} (l : Lift T Term) (squashSub : ∀ {m n} → Sub T m n → Sub T m n) (squash-↑ : ∀ {m n} (σ : Sub T m n) → Lift._↑ l (squashSub σ) ≡ squashSub (Lift._↑ l σ)) (squash-lift-lookup : ∀ {m n} (σ : Sub T m n) x → ⌜ Lift.lift l (Vec.lookup (squashSub σ) x) ⌝ ≡ squashElim ⌜ Lift.lift l (Vec.lookup σ x) ⌝) where open SubstApp l -- Squashing commutes with application of generic substitutions. mutual squashElim-/ : ∀ {m n} {σ : Sub T m n} a → squashElim a Elim/ squashSub σ ≡ squashElim (a Elim/ σ) squashElim-/ (a ∙ as) = trans (cong₂ _∙∙_ (squashHead-/ a) (squashSpine-/ as)) (squash-∙∙ _) squashHead-/ : ∀ {m n} {σ : Sub T m n} a → squashHead a Head/ squashSub σ ≡ squashElim (a Head/ σ) squashHead-/ (var x) = squash-lift-lookup _ x squashHead-/ ⊥ = refl squashHead-/ ⊤ = refl squashHead-/ (Π k a) = refl squashHead-/ (a ⇒ b) = refl squashHead-/ (Λ k a) = refl squashHead-/ (ƛ a b) = refl squashHead-/ (a ⊡ b) = refl squashSpine-/ : ∀ {m n} {σ : Sub T m n} as → squashSpine as // squashSub σ ≡ squashSpine (as // σ) squashSpine-/ [] = refl squashSpine-/ (a ∷ as) = cong₂ _∷_ (squashElim-/ a) (squashSpine-/ as) squashKind-/ : ∀ {m n} {σ : Sub T m n} k → squashKind k Kind′/ squashSub σ ≡ squashKind (k Kind′/ σ) squashKind-/ (a ⋯ b) = cong₂ _⋯_ (squashElim-/ a) (squashElim-/ b) squashKind-/ (Π j k) = cong₂ Π (squashKind-/ j) (trans (cong (_ Kind′/_) (squash-↑ _)) (squashKind-/ k)) squashAsc-/ : ∀ {m n} {σ : Sub T m n} a → squashAsc a ElimAsc/ squashSub σ ≡ squashAsc (a ElimAsc/ σ) squashAsc-/ (kd k) = cong kd (squashKind-/ k) squashAsc-/ (tp a) = cong tp (squashElim-/ a) squashTerm-/ : ∀ {m n} {σ : Sub T m n} a → squashTerm a / squashSub σ ≡ squashTerm (a / σ) squashTerm-/ {σ = σ} a = begin ⌞ squashElim ⌜ a ⌝ ⌟ / squashSub σ ≡˘⟨ ⌞⌟-/ (squashElim ⌜ a ⌝) ⟩ ⌞ squashElim ⌜ a ⌝ Elim/ squashSub σ ⌟ ≡⟨ cong ⌞_⌟ (squashElim-/ ⌜ a ⌝) ⟩ ⌞ squashElim (⌜ a ⌝ Elim/ σ) ⌟ ≡˘⟨ cong (⌞_⌟ ∘ squashElim) (⌜⌝-/ a) ⟩ ⌞ squashElim ⌜ a / σ ⌝ ⌟ ∎ where open ≡-Reasoning -- Squashing commutes with renamings and term substitutions. module SquashSubstLemmas where open Substitution using (termSubst; _↑; id; sub; weaken; _Kind′/_; _Kind′[_]) open TermSubst termSubst using (varLift; termLift) open ≡-Reasoning open SquashSubstAppLemmas varLift (λ x → x) (λ _ → refl) (λ _ _ → refl) public using () renaming ( squashAsc-/ to squashAsc-/Var ; squashTerm-/ to squashTerm-/Var ) -- Squashing applied point-wise to term substitutions. squashSub : ∀ {m n} → Sub Term m n → Sub Term m n squashSub = Vec.map squashTerm -- Helper lemmas about squashed substitutions. squash-↑ : ∀ {m n} (σ : Sub Term m n) → (squashSub σ) ↑ ≡ squashSub (σ ↑) squash-↑ σ = cong (_ ∷_) (begin Vec.map weaken (Vec.map squashTerm σ) ≡˘⟨ map-∘ weaken squashTerm σ ⟩ Vec.map (weaken ∘ squashTerm) σ ≡⟨ map-cong squashTerm-/Var σ ⟩ Vec.map (squashTerm ∘ weaken) σ ≡⟨ map-∘ squashTerm weaken σ ⟩ Vec.map squashTerm (Vec.map weaken σ) ∎) squash-lookup : ∀ {m n} (σ : Sub Term m n) x → ⌜ Vec.lookup (squashSub σ) x ⌝ ≡ squashElim ⌜ Vec.lookup σ x ⌝ squash-lookup σ x = begin ⌜ Vec.lookup (squashSub σ) x ⌝ ≡⟨ cong ⌜_⌝ (VecProps.lookup-map x squashTerm σ) ⟩ ⌜ squashTerm (Vec.lookup σ x) ⌝ ≡⟨ ⌜⌝∘⌞⌟-id (squashElim ⌜ Vec.lookup σ x ⌝) ⟩ squashElim ⌜ Vec.lookup σ x ⌝ ∎ open SquashSubstAppLemmas termLift squashSub squash-↑ squash-lookup public squash-id : ∀ {n} → squashSub (id {n}) ≡ id squash-id {zero} = refl squash-id {suc n} = cong (var zero ∷_) (begin Vec.map squashTerm (Vec.map weaken id) ≡˘⟨ map-∘ squashTerm weaken id ⟩ Vec.map (squashTerm ∘ weaken) id ≡˘⟨ map-cong squashTerm-/Var id ⟩ Vec.map (weaken ∘ squashTerm) id ≡⟨ map-∘ weaken squashTerm id ⟩ Vec.map weaken (Vec.map squashTerm id) ≡⟨ cong (Vec.map weaken) squash-id ⟩ Vec.map weaken id ∎) squash-sub : ∀ {n} (a : Term n) → squashSub (sub a) ≡ sub (squashTerm a) squash-sub a = cong (squashTerm a ∷_) squash-id -- Squashing commutes with single-variable substitutions in kinds. squashKind-[] : ∀ {n} k (a : Elim n) → squashKind (k Kind′[ ⌞ a ⌟ ]) ≡ squashKind k Kind′[ ⌞ squashElim a ⌟ ] squashKind-[] k a = begin squashKind (k Kind′[ ⌞ a ⌟ ]) ≡˘⟨ squashKind-/ k ⟩ squashKind k Kind′/ squashSub (sub ⌞ a ⌟) ≡⟨ cong (squashKind k Kind′/_) (squash-sub ⌞ a ⌟) ⟩ squashKind k Kind′[ squashTerm ⌞ a ⌟ ] ≡⟨ cong ((squashKind k Kind′[_]) ∘ ⌞_⌟ ∘ squashElim) (⌜⌝∘⌞⌟-id a) ⟩ squashKind k Kind′[ ⌞ squashElim a ⌟ ] ∎ open Substitution using (weakenElimAsc) open SquashSubstLemmas -- Context lookup and conversion to vector representation commute with -- squashing toVec-squashCtx : ∀ {n} (Γ : Ctx n) → toVec (squashCtx Γ) ≡ Vec.map squashAsc (toVec Γ) toVec-squashCtx [] = refl toVec-squashCtx (a ∷ Γ) = cong₂ _∷_ (squashAsc-/Var a) (begin Vec.map weakenElimAsc (toVec (squashCtx Γ)) ≡⟨ cong (Vec.map weakenElimAsc) (toVec-squashCtx Γ) ⟩ Vec.map weakenElimAsc (Vec.map squashAsc (toVec Γ)) ≡˘⟨ map-∘ weakenElimAsc squashAsc (toVec Γ) ⟩ Vec.map (weakenElimAsc ∘ squashAsc) (toVec Γ) ≡⟨ map-cong squashAsc-/Var (toVec Γ) ⟩ Vec.map (squashAsc ∘ weakenElimAsc) (toVec Γ) ≡⟨ map-∘ squashAsc weakenElimAsc (toVec Γ) ⟩ Vec.map squashAsc (Vec.map weakenElimAsc (toVec Γ)) ∎) where open ≡-Reasoning lookup-squashCtx : ∀ {n} (Γ : Ctx n) x → lookup (squashCtx Γ) x ≡ squashAsc (lookup Γ x) lookup-squashCtx {n} Γ x = begin Vec.lookup (toVec (squashCtx Γ)) x ≡⟨ cong (λ Δ → Vec.lookup Δ x) (toVec-squashCtx Γ) ⟩ Vec.lookup (Vec.map squashAsc (toVec Γ)) x ≡⟨ VecProps.lookup-map x squashAsc (toVec Γ) ⟩ squashAsc (Vec.lookup (toVec Γ) x) ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Predicates characterizing first-order kinds, bindings and contexts. data FOKind {n} : Kind Elim n → Set where fo-⋯ : ∀ {a b} → FOKind (a ⋯ b) fo-Π : ∀ {a b k} → FOKind k → FOKind (Π (a ⋯ b) k) data FOAsc {n} : ElimAsc n → Set where fo-kd : ∀ {k} → FOKind k → FOAsc (kd k) open ContextFormation (λ {n} Γ → FOAsc {n}) public using () renaming ( _wf to FOCtx; [] to fo-[]; _∷_ to fo-∷ ; WellFormedWeakenOps to FOWeakenOps) <∷-FOKind₂ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → FOKind k <∷-FOKind₂ (<∷-⋯ _ _) = fo-⋯ <∷-FOKind₂ (<∷-Π _ _ j<∷k) = fo-Π (<∷-FOKind₂ j<∷k) module FOSubstAppLemmas {T : ℕ → Set} (l : Lift T Term) where open SubstApp l FOKind-/ : ∀ {m n k} {σ : Sub T m n} → FOKind k → FOKind (k Kind′/ σ) FOKind-/ fo-⋯ = fo-⋯ FOKind-/ (fo-Π k-fo) = fo-Π (FOKind-/ k-fo) FOAsc-/ : ∀ {m n a} {σ : Sub T m n} → FOAsc a → FOAsc (a ElimAsc/ σ) FOAsc-/ (fo-kd k-fo) = fo-kd (FOKind-/ k-fo) module FOSubstLemmas where open Substitution using (termSubst) open TermSubst termSubst using (varLift; termLift) open FOSubstAppLemmas varLift public using () renaming (FOKind-/ to FOKind-/Var; FOAsc-/ to FOAsc-/Var) open FOSubstAppLemmas termLift public FOAsc-weaken : ∀ {n} {a : ElimAsc n} → FOAsc a → FOAsc (weakenElimAsc a) FOAsc-weaken a-fo = FOAsc-/Var a-fo open FOSubstLemmas foWeakenOps : FOWeakenOps weakenOps foWeakenOps = record { wf-weaken = λ _ → FOAsc-weaken } open FOWeakenOps foWeakenOps public using () renaming (lookup to lookup-FOAsc) lookup-FOKind : ∀ {m} {Γ : Ctx m} {k} x → FOCtx Γ → ElimCtx.lookup Γ x ≡ kd k → FOKind k lookup-FOKind x Γ-fo Γ[x]≡kd-a with subst FOAsc Γ[x]≡kd-a (lookup-FOAsc Γ-fo x) ... | fo-kd k-fo = k-fo ------------------------------------------------------------------------ -- Reduction of canonical judgments to their reduced forms open Substitution hiding (subst) mutual reduce-ctx : ∀ {n} {Γ : Ctx n} → FOCtx (squashCtx Γ) → Γ C.ctx → squashCtx Γ ctx reduce-ctx fo-[] C.[] = [] reduce-ctx (fo-∷ a-fo Γ-fo) (a-wf C.∷ Γ-ctx) = reduce-wf Γ-fo a-fo a-wf ∷ reduce-ctx Γ-fo Γ-ctx reduce-wf : ∀ {n} {Γ : Ctx n} {a} → FOCtx (squashCtx Γ) → FOAsc (squashAsc a) → Γ C.⊢ a wf → squashCtx Γ ⊢ squashAsc a wf reduce-wf Γ-fo (fo-kd k-fo) (C.wf-kd k-kd) = wf-kd (reduce-kd Γ-fo k-fo k-kd) reduce-wf Γ-fo _ (C.wf-tp a⇉a⋯a) = wf-tp (reduce-Nf⇉ Γ-fo a⇉a⋯a) reduce-kd : ∀ {n} {Γ : Ctx n} {k} → FOCtx (squashCtx Γ) → FOKind (squashKind k) → Γ C.⊢ k kd → squashCtx Γ ⊢ squashKind k kd reduce-kd Γ-fo _ (C.kd-⋯ a⇉a⋯a b⇉b⋯b) = kd-⋯ (reduce-Nf⇉ Γ-fo a⇉a⋯a) (reduce-Nf⇉ Γ-fo b⇉b⋯b) reduce-kd Γ-fo (fo-Π k-fo) (C.kd-Π (C.kd-⋯ a⇉a⋯a b⇉b⋯b) k-kd) = kd-Π (reduce-Nf⇉ Γ-fo a⇉a⋯a) (reduce-Nf⇉ Γ-fo b⇉b⋯b) (reduce-kd (fo-∷ (fo-kd fo-⋯) Γ-fo) k-fo k-kd) reduce-kd Γ-fo () (C.kd-Π (C.kd-Π _ _) k-kd) reduce-Var∈ : ∀ {n} {Γ : Ctx n} {x k} → FOCtx (squashCtx Γ) → Γ C.⊢Var x ∈ k → ∃ λ j → squashCtx Γ ⊢Var x ⇉ j × squashCtx Γ ⊢ j <∷ squashKind k reduce-Var∈ {_} {Γ} Γ-fo (C.⇉-var x Γ-ctx Γ[x]≡kd-j₁) = let Γ-ctx′ = reduce-ctx Γ-fo Γ-ctx Γ[x]≡kd-j₁′ = trans (lookup-squashCtx Γ x) (cong squashAsc Γ[x]≡kd-j₁) in _ , ⇉-var x Γ-ctx′ Γ[x]≡kd-j₁′ , <∷-refl (lookup-kd x Γ-ctx′ Γ[x]≡kd-j₁′) reduce-Var∈ Γ-fo (C.⇇-⇑ x∈k₁ k₁<∷k₂ _) = let j , x∈j , j<∷k₁ = reduce-Var∈ Γ-fo x∈k₁ in j , x∈j , <∷-trans j<∷k₁ (reduce-<∷ Γ-fo (<∷-FOKind₂ j<∷k₁) k₁<∷k₂) reduce-Ne∈ : ∀ {n} {Γ : Ctx n} {a b c} → FOCtx (squashCtx Γ) → Γ C.⊢Ne a ∈ (b ⋯ c) → squashCtx Γ ⊢Nf squashElim a ⇇ squashKind (b ⋯ c) reduce-Ne∈ {_} {Γ} Γ-fo (C.∈-∙ {as = as} x∈j₂ j₂⇉as⇉b₂⋯c₂) = let j₁ , x⇉j₁ , j₁<∷j₂ = reduce-Var∈ Γ-fo x∈j₂ j₂-fo = <∷-FOKind₂ j₁<∷j₂ j₂⇉as⇉b₂⋯c₂′ = reduce-Sp⇉ Γ-fo j₂-fo j₂⇉as⇉b₂⋯c₂ k₁ , j₁⇉as⇉k₁ , k₁<∷b₂⋯c₂ = <∷-Sp⇉ j₁<∷j₂ j₂⇉as⇉b₂⋯c₂′ _ , _ , b₂∼b₁ , c₁∼c₂ , k₁≡b₁⋯c₁ = <∷-⋯-inv k₁<∷b₂⋯c₂ j₁⇉as⇉b₁⋯c₁ = subst (squashCtx Γ ⊢ j₁ ⇉∙ squashSpine as ⇉_) k₁≡b₁⋯c₁ j₁⇉as⇉k₁ in Nf⇇-⇑ (Nf⇇-ne (⇉-∙ x⇉j₁ j₁⇉as⇉b₁⋯c₁)) (<∷-⋯ b₂∼b₁ c₁∼c₂) reduce-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → FOCtx (squashCtx Γ) → Γ C.⊢Nf a ⇉ b ⋯ c → squashCtx Γ ⊢Nf squashElim a ⇉ squashElim b ⋯ squashElim c reduce-Nf⇉ Γ-fo (C.⇉-⊥-f Γ-ctx) = ⇉-⊥-f (reduce-ctx Γ-fo Γ-ctx) reduce-Nf⇉ Γ-fo (C.⇉-⊤-f Γ-ctx) = ⇉-⊤-f (reduce-ctx Γ-fo Γ-ctx) reduce-Nf⇉ Γ-fo (C.⇉-∀-f k-kd _) = ⇉-⊤-f (reduce-kd-ctx Γ-fo k-kd) reduce-Nf⇉ Γ-fo (C.⇉-→-f a⇉a⋯a _) = ⇉-⊤-f (Nf⇉-ctx (reduce-Nf⇉ Γ-fo a⇉a⋯a)) reduce-Nf⇉ Γ-fo (C.⇉-s-i (C.∈-∙ x∈j j⇉as⇉b⋯c)) with reduce-Ne∈ Γ-fo (C.∈-∙ x∈j j⇉as⇉b⋯c) ... | ⇇-⇑ (⇉-s-i x∙as∈b′⋯c′) (<∷-⋯ _ _) = ⇉-s-i x∙as∈b′⋯c′ reduce-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → FOCtx (squashCtx Γ) → Γ C.⊢Nf a ⇇ b ⋯ c → squashCtx Γ ⊢Nf squashElim a ⇇ squashElim b ⋯ squashElim c reduce-Nf⇇ Γ-fo (C.⇇-⇑ a⇉b₁⋯c₁ (C.<∷-⋯ b₂<:b₁ c₁<:c₂)) = ⇇-⇑ (reduce-Nf⇉ Γ-fo a⇉b₁⋯c₁) (<∷-⋯ (reduce-<: Γ-fo b₂<:b₁) (reduce-<: Γ-fo c₁<:c₂)) reduce-Sp⇉ : ∀ {n} {Γ : Ctx n} {j as k} → FOCtx (squashCtx Γ) → FOKind (squashKind j) → Γ C.⊢ j ⇉∙ as ⇉ k → squashCtx Γ ⊢ squashKind j ⇉∙ squashSpine as ⇉ squashKind k reduce-Sp⇉ Γ-fo _ C.⇉-[] = ⇉-[] reduce-Sp⇉ Γ-fo (fo-Π k-fo) (C.⇉-∷ {a} {as} {b ⋯ c} {k} a⇇b⋯c _ k[a∈★]⇉as⇉l) = let k[a∈★]≡k[a] = trans (cong squashKind (Kind/⟨★⟩-/ k)) (squashKind-[] k a) k[a∈★]-fo = subst FOKind (sym k[a∈★]≡k[a]) (FOKind-/ {σ = sub ⌞ squashElim a ⌟} k-fo) in ⇉-∷ (reduce-Nf⇇ Γ-fo a⇇b⋯c) (subst (_ ⊢_⇉∙ _ ⇉ _) k[a∈★]≡k[a] (reduce-Sp⇉ Γ-fo k[a∈★]-fo k[a∈★]⇉as⇉l)) reduce-<∷ : ∀ {n} {Γ : Ctx n} {j k} → FOCtx (squashCtx Γ) → FOKind (squashKind j) → Γ C.⊢ j <∷ k → squashCtx Γ ⊢ squashKind j <∷ squashKind k reduce-<∷ Γ-fo a₁⋯a₂-fo (C.<∷-⋯ a₂<:a₁ b₁<:b₂) = <∷-⋯ (reduce-<: Γ-fo a₂<:a₁) (reduce-<: Γ-fo b₁<:b₂) reduce-<∷ Γ-fo (fo-Π k₁-fo) (C.<∷-Π (C.<∷-⋯ a₁<:a₂ b₂<:b₁) k₁<∷k₂ bb) = <∷-Π (reduce-<: Γ-fo a₁<:a₂) (reduce-<: Γ-fo b₂<:b₁) (reduce-<∷ (fo-∷ (fo-kd fo-⋯) Γ-fo) k₁-fo k₁<∷k₂) reduce-<: : ∀ {n} {Γ : Ctx n} {a b} → FOCtx (squashCtx Γ) → Γ C.⊢ a <: b → squashCtx Γ ⊢ squashElim a ∼ squashElim b reduce-<: Γ-fo (C.<:-trans a<:b b<:c) = ∼-trans (reduce-<: Γ-fo a<:b) (reduce-<: Γ-fo b<:c) reduce-<: Γ-fo (C.<:-⊥ b⇉b⋯b) = ∼-⊥ (reduce-Nf⇉ Γ-fo b⇉b⋯b) reduce-<: Γ-fo (C.<:-⊤ a⇉a⋯a) = ∼-⊤ (reduce-Nf⇉ Γ-fo a⇉a⋯a) reduce-<: Γ-fo (C.<:-∀ _ _ ∀ka⇉⋯) = ∼-⊤ (⇉-⊤-f (Nf⇉-ctx (reduce-Nf⇉ Γ-fo ∀ka⇉⋯))) reduce-<: Γ-fo (C.<:-→ a₂<:a₁ _) = ∼-⊤ (⇉-⊤-f (∼-ctx (reduce-<: Γ-fo a₂<:a₁))) reduce-<: {_} {Γ} Γ-fo (C.<:-∙ {as₁ = as} {bs} x∈j₂ j₂⇉as∼bs⇉c₂⋯d₂) = let j₁ , x⇉j₁ , j₁<∷j₂ = reduce-Var∈ Γ-fo x∈j₂ j₂-fo = <∷-FOKind₂ j₁<∷j₂ j₂⇉as∼bs⇉c₂⋯d₂′ = reduce-Sp≃ Γ-fo j₂-fo j₂⇉as∼bs⇉c₂⋯d₂ k₁ , j₁⇉as∼bs⇉k₁ , k₁<∷c₂⋯d₂ = <∷-Sp∼ j₁<∷j₂ j₂⇉as∼bs⇉c₂⋯d₂′ _ , _ , _ , _ , k₁≡c₁⋯d₁ = <∷-⋯-inv k₁<∷c₂⋯d₂ j₁⇉as∼bs⇉c₁⋯d₁ = subst (squashCtx Γ ⊢ j₁ ⇉∙ squashSpine as ∼ squashSpine bs ⇉_) k₁≡c₁⋯d₁ j₁⇉as∼bs⇉k₁ in ∼-∙ x⇉j₁ j₁⇉as∼bs⇉c₁⋯d₁ reduce-<: Γ-fo (C.<:-⟨| b∈a⋯c) with reduce-Ne∈ Γ-fo b∈a⋯c ... | b⇇a⋯c = ∼-⟨|-Nf⇇ b⇇a⋯c reduce-<: Γ-fo (C.<:-|⟩ a∈c⋯b) with reduce-Ne∈ Γ-fo a∈c⋯b ... | a⇇c⋯b = ∼-|⟩-Nf⇇ a⇇c⋯b reduce-Sp≃ : ∀ {n} {Γ : Ctx n} {j as bs k} → FOCtx (squashCtx Γ) → FOKind (squashKind j) → Γ C.⊢ j ⇉∙ as ≃ bs ⇉ k → squashCtx Γ ⊢ squashKind j ⇉∙ squashSpine as ∼ squashSpine bs ⇉ squashKind k reduce-Sp≃ Γ-fo _ C.≃-[] = ∼-[] reduce-Sp≃ Γ-fo (fo-Π k-fo) (C.≃-∷ {j = c ⋯ d} (C.<:-antisym _ (C.<:-⇇ (C.⇇-⇑ a⇉c₁⋯d₁ (C.<∷-⋯ _ _)) _ a<:b) _) k[a∈★]⇉as≃bs⇉l) with C.Nf⇉-≡ a⇉c₁⋯d₁ reduce-Sp≃ Γ-fo (fo-Π k-fo) (C.≃-∷ {a} {as} {b} {bs} {c ⋯ d} {k} (C.<:-antisym _ (C.<:-⇇ (C.⇇-⇑ a⇉a⋯a (C.<∷-⋯ c<:a a<:d)) _ a<:b) _) k[a∈★]⇉as≃bs⇉l) | refl , refl = let k[a∈★]≡k[a] = trans (cong squashKind (Kind/⟨★⟩-/ k)) (squashKind-[] k a) k[a∈★]-fo = subst FOKind (sym k[a∈★]≡k[a]) (FOKind-/ {σ = sub ⌞ squashElim a ⌟} k-fo) in ∼-∷ (reduce-<: Γ-fo c<:a) (reduce-<: Γ-fo a<:d) (reduce-<: Γ-fo a<:b) (subst (_ ⊢_⇉∙ _ ∼ _ ⇉ _) k[a∈★]≡k[a] (reduce-Sp≃ Γ-fo k[a∈★]-fo k[a∈★]⇉as≃bs⇉l)) -- A helper to satisfy the termination checker. reduce-kd-ctx : ∀ {n} {Γ : Ctx n} {k} → FOCtx (squashCtx Γ) → Γ C.⊢ k kd → squashCtx Γ ctx reduce-kd-ctx Γ-fo (C.kd-⋯ a⇉a⋯a _) = Nf⇉-ctx (reduce-Nf⇉ Γ-fo a⇉a⋯a) reduce-kd-ctx Γ-fo (C.kd-Π j-kd _) = reduce-kd-ctx Γ-fo j-kd
{ "alphanum_fraction": 0.4775337403, "avg_line_length": 39.4400369004, "ext": "agda", "hexsha": "53baf579ccfdca5ae6f877368281c4437bf43c1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical/Reduced.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical/Reduced.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical/Reduced.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 22974, "size": 42753 }
------------------------------------------------------------------------ -- An ad-hoc but straightforward solution to the problem of showing -- that elegant definitions of the Hamming numbers (see EWD 792) and -- the Fibonacci sequence are productive ------------------------------------------------------------------------ module StreamProg where open import Codata.Musical.Notation open import Codata.Musical.Stream as S using (Stream; _∷_; _≈_) open import Data.Nat open import Relation.Binary import Relation.Binary.PropositionalEquality as P private module SS {A : Set} = Setoid (S.setoid A) ------------------------------------------------------------------------ -- Merging of streams data Ord : Set where lt : Ord eq : Ord gt : Ord merge : {A : Set} → (A → A → Ord) → Stream A → Stream A → Stream A merge cmp (x ∷ xs) (y ∷ ys) with cmp x y ... | lt = x ∷ ♯ merge cmp (♭ xs) (y ∷ ys) ... | eq = x ∷ ♯ merge cmp (♭ xs) (♭ ys) ... | gt = y ∷ ♯ merge cmp (x ∷ xs) (♭ ys) ------------------------------------------------------------------------ -- Stream programs infixr 5 _∷_ data StreamP (A : Set) : Set1 where _∷_ : (x : A) (xs : ∞ (StreamP A)) → StreamP A zipWith : ∀ {B C} (f : B → C → A) (xs : StreamP B) (ys : StreamP C) → StreamP A map : ∀ {B} (f : B → A) (xs : StreamP B) → StreamP A mergeP : (cmp : A → A → Ord) (xs : StreamP A) (ys : StreamP A) → StreamP A data StreamW A : Set1 where _∷_ : (x : A) (xs : StreamP A) → StreamW A zipWithW : {A B C : Set} → (A → B → C) → StreamW A → StreamW B → StreamW C zipWithW f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys mapW : {A B : Set} → (A → B) → StreamW A → StreamW B mapW f (x ∷ xs) = f x ∷ map f xs mergeW : {A : Set} → (A → A → Ord) → StreamW A → StreamW A → StreamW A mergeW cmp (x ∷ xs) (y ∷ ys) with cmp x y ... | lt = x ∷ mergeP cmp xs (y ∷ ♯ ys) ... | eq = x ∷ mergeP cmp xs ys ... | gt = y ∷ mergeP cmp (x ∷ ♯ xs) ys whnf : ∀ {A} → StreamP A → StreamW A whnf (x ∷ xs) = x ∷ ♭ xs whnf (zipWith f xs ys) = zipWithW f (whnf xs) (whnf ys) whnf (map f xs) = mapW f (whnf xs) whnf (mergeP cmp xs ys) = mergeW cmp (whnf xs) (whnf ys) mutual ⟦_⟧W : ∀ {A} → StreamW A → Stream A ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P ⟦_⟧P : ∀ {A} → StreamP A → Stream A ⟦ xs ⟧P = ⟦ whnf xs ⟧W ------------------------------------------------------------------------ -- Examples fib : StreamP ℕ fib = 0 ∷ ♯ zipWith _+_ fib (1 ∷ ♯ fib) -- Alternative definition showing that definitions do not need to -- start with a cons constructor. fib′ : StreamP ℕ fib′ = zipWith _+_ (0 ∷ ♯ fib′) (0 ∷ ♯ (1 ∷ ♯ fib′)) cmp : ℕ → ℕ → Ord cmp m n = toOrd (compare m n) where toOrd : ∀ {m n} → Ordering m n → Ord toOrd (less _ _) = lt toOrd (equal _) = eq toOrd (greater _ _) = gt hamming : StreamP ℕ hamming = 1 ∷ ♯ mergeP cmp (map (_*_ 2) hamming) (map (_*_ 3) hamming) ------------------------------------------------------------------------ -- The definition of fib is correct -- ⟦_⟧P is homomorphic with respect to zipWith/S.zipWith. zipWith-hom : ∀ {A B C} (_∙_ : A → B → C) xs ys → ⟦ zipWith _∙_ xs ys ⟧P ≈ S.zipWith _∙_ ⟦ xs ⟧P ⟦ ys ⟧P zipWith-hom _∙_ xs ys with whnf xs | whnf ys zipWith-hom _∙_ xs ys | x ∷ xs′ | y ∷ ys′ = P.refl ∷ ♯ zipWith-hom _∙_ xs′ ys′ -- Unfortunately Agda's definitional equality for coinductive -- constructors is currently a little strange, so the result type -- cannot be written out completely here: fib-correct′ : ⟦ fib ⟧P ≈ 0 ∷ ♯ S.zipWith _+_ ⟦ fib ⟧P (1 ∷ _ {- ♯ ⟦ fib ⟧P -}) fib-correct′ = P.refl ∷ ♯ zipWith-hom _+_ fib (1 ∷ ♯ fib) -- Fortunately there is a workaround. fib-correct : ⟦ fib ⟧P ≈ 0 ∷ ♯ S.zipWith _+_ ⟦ fib ⟧P (1 ∷ ♯ ⟦ fib ⟧P) fib-correct = P.refl ∷ ♯ SS.trans (zipWith-hom _+_ fib (1 ∷ ♯ fib)) (S.zipWith-cong _+_ (SS.refl {x = 0 ∷ _}) (P.refl ∷ ♯ SS.refl)) -- For a proof showing that the given equation for fib has a unique -- solution, see MapIterate. ------------------------------------------------------------------------ -- The definition of hamming is correct -- ⟦_⟧P is homomorphic with respect to map/S.map. map-hom : ∀ {A B} (f : A → B) xs → ⟦ map f xs ⟧P ≈ S.map f ⟦ xs ⟧P map-hom f xs with whnf xs ... | x ∷ xs′ = P.refl ∷ ♯ map-hom f xs′ -- ⟦_⟧P is homomorphic with respect to mergeP/merge. merge-hom : ∀ {A} (cmp : A → A → Ord) xs ys → ⟦ mergeP cmp xs ys ⟧P ≈ merge cmp ⟦ xs ⟧P ⟦ ys ⟧P merge-hom cmp xs ys with whnf xs | whnf ys ... | x ∷ xs′ | y ∷ ys′ with cmp x y ... | lt = P.refl ∷ ♯ merge-hom cmp xs′ (y ∷ ♯ ys′) ... | eq = P.refl ∷ ♯ merge-hom cmp xs′ ys′ ... | gt = P.refl ∷ ♯ merge-hom cmp (x ∷ ♯ xs′) ys′ -- merge is a congruence. merge-cong : ∀ {A} (cmp : A → A → Ord) {xs xs′ ys ys′} → xs ≈ xs′ → ys ≈ ys′ → merge cmp xs ys ≈ merge cmp xs′ ys′ merge-cong cmp (_∷_ {x = x} P.refl xs≈) (_∷_ {x = y} P.refl ys≈) with cmp x y ... | lt = P.refl ∷ ♯ merge-cong cmp (♭ xs≈) (P.refl ∷ ys≈) ... | eq = P.refl ∷ ♯ merge-cong cmp (♭ xs≈) (♭ ys≈) ... | gt = P.refl ∷ ♯ merge-cong cmp (P.refl ∷ xs≈) (♭ ys≈) -- hamming is correct. hamming-correct : ⟦ hamming ⟧P ≈ 1 ∷ ♯ merge cmp (S.map (_*_ 2) ⟦ hamming ⟧P) (S.map (_*_ 3) ⟦ hamming ⟧P) hamming-correct = P.refl ∷ ♯ SS.trans (merge-hom cmp (map (_*_ 2) hamming) (map (_*_ 3) hamming)) (merge-cong cmp (map-hom (_*_ 2) hamming) (map-hom (_*_ 3) hamming))
{ "alphanum_fraction": 0.4902689314, "avg_line_length": 33.2470588235, "ext": "agda", "hexsha": "499361beb58656190173932e9e497e8459afa113", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "StreamProg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "StreamProg.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "StreamProg.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2038, "size": 5652 }
module AKS.Modular.Quotient where open import AKS.Modular.Quotient.Base public open import AKS.Modular.Quotient.Properties public
{ "alphanum_fraction": 0.8473282443, "avg_line_length": 26.2, "ext": "agda", "hexsha": "a11a3706d070ea4ba09aff7d99aa90ea6543dc58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Modular/Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Modular/Quotient.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Modular/Quotient.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 34, "size": 131 }
module Formalization.ClassicalPropositionalLogic.Semantics.Proofs where import Lvl open import Data open import Data.Boolean open import Data.Either as Either using (_‖_ ; Left ; Right) open import Formalization.ClassicalPropositionalLogic.Syntax open import Formalization.ClassicalPropositionalLogic.Semantics open import Functional open import Logic.Classical as Logic using (Classical) import Logic.Propositional as Logic import Logic.Predicate as Logic open import Relator.Equals open import Relator.Equals.Proofs open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) open import Type private variable ℓₚ ℓ : Lvl.Level private variable P : Type{ℓₚ} private variable 𝔐 : Model(P) private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ} private variable φ ψ : Formula(P) [⊧₊]-antimonotone : (Γ₁ ⊆ Γ₂) → ((_⊧₊ Γ₁) ⊇ (_⊧₊ Γ₂)) [⊧₊]-antimonotone Γ₁Γ₂ 𝔐Γ₂ Γ₁γ = 𝔐Γ₂ (Γ₁Γ₂ Γ₁γ) [⊧₊]-strengthen : (𝔐 ⊧₊ Γ₁) → (𝔐 ⊧₊ Γ₂) → (𝔐 ⊧₊ (Γ₁ ∪ Γ₂)) [⊧₊]-strengthen 𝔐Γ₁ 𝔐Γ₂ Γ₁Γ₂γ = Logic.[∨]-elim 𝔐Γ₁ 𝔐Γ₂ Γ₁Γ₂γ [⊧₊]-of-[∪]ₗ : (𝔐 ⊧₊ (Γ₁ ∪ Γ₂)) → (𝔐 ⊧₊ Γ₁) [⊧₊]-of-[∪]ₗ 𝔐Γ₁Γ₂ 𝔐Γ₁ = 𝔐Γ₁Γ₂ (Left 𝔐Γ₁) [⊧₊]-of-[∪]ᵣ : (𝔐 ⊧₊ (Γ₁ ∪ Γ₂)) → (𝔐 ⊧₊ Γ₂) [⊧₊]-of-[∪]ᵣ 𝔐Γ₁Γ₂ 𝔐Γ₂ = 𝔐Γ₁Γ₂ (Right 𝔐Γ₂) [⊧]-to-[⊧₊] : (𝔐 ⊧ φ) Logic.↔ (𝔐 ⊧₊ singleton(φ)) [⊧]-to-[⊧₊] = Logic.[↔]-intro (_$ [≡]-intro) (\𝔐φ φγ → [≡]-substitutionᵣ φγ 𝔐φ) [⊧]-contradiction : (𝔐 ⊧ φ) → (𝔐 ⊧ (¬ φ)) → (𝔐 ⊧ ⊥) [⊧]-contradiction = apply [⊨]-monotone : (Γ₁ ⊆ Γ₂) → ((Γ₁ ⊨_) ⊆ (Γ₂ ⊨_)) [⊨]-monotone Γ₁Γ₂ Γ₁φ 𝔐Γ₂ = Γ₁φ (Γ₁γ ↦ 𝔐Γ₂ (Γ₁Γ₂ Γ₁γ)) [⊨]-functionₗ : (Γ₁ ≡ₛ Γ₂) → ((Γ₁ ⊨_) ≡ₛ (Γ₂ ⊨_)) [⊨]-functionₗ {Γ₁ = Γ₁}{Γ₂ = Γ₂} Γ₁Γ₂ {φ} = Logic.[↔]-intro ([⊨]-monotone{Γ₁ = Γ₂}{Γ₂ = Γ₁}(\{x} → [≡]-to-[⊇] (Γ₁Γ₂{x}) {x}){φ}) ([⊨]-monotone{Γ₁ = Γ₁}{Γ₂ = Γ₂}(\{x} → [≡]-to-[⊆] (Γ₁Γ₂{x}) {x}){φ}) [⊨]-weaken : (Γ₁ ⊨ φ) → ((Γ₁ ∪ Γ₂) ⊨ φ) [⊨]-weaken Γ₁φ 𝔐Γ₁Γ₂ = Γ₁φ (Γ₁γ ↦ 𝔐Γ₁Γ₂ (Left Γ₁γ)) [⊨]-validity : (∀{Γ : Formulas(P){ℓ}} → (Γ ⊨ φ)) Logic.↔ Valid(φ) [⊨]-validity = Logic.[↔]-intro (λ r → const r) (λ l → l{∅} empty) [⊨]-contradiction : (Γ ⊨ φ) → (Γ ⊨ (¬ φ)) → (Γ ⊨ ⊥) [⊨]-contradiction Γφ Γ¬φ 𝔐Γ = Γ¬φ 𝔐Γ (Γφ 𝔐Γ) [⊨]-unsatisfiability : (Γ ⊨ ⊥) Logic.↔ Unsatisfiable(Γ) [⊨]-unsatisfiability {Γ = Γ} = Logic.[↔]-intro l r where l : (Γ ⊨ ⊥) ← Unsatisfiable(Γ) l unsatΓ {𝔐} 𝔐Γ = unsatΓ (Logic.[∃]-intro 𝔐 ⦃ 𝔐Γ ⦄) r : (Γ ⊨ ⊥) → Unsatisfiable(Γ) r Γ⊥ (Logic.[∃]-intro 𝔐 ⦃ 𝔐Γ ⦄) = Γ⊥ 𝔐Γ [⊨][¬]-intro : ((Γ ∪ singleton(φ)) ⊨ ⊥) Logic.↔ (Γ ⊨ (¬ φ)) [⊨][¬]-intro {Γ = Γ}{φ = φ} = Logic.[↔]-intro l r where l : ((Γ ∪ singleton(φ)) ⊨ ⊥) ← (Γ ⊨ (¬ φ)) l Γ¬φ 𝔐Γφ = Γ¬φ (𝔐Γφ ∘ Left) (𝔐Γφ (Right [≡]-intro)) r : ((Γ ∪ singleton(φ)) ⊨ ⊥) → (Γ ⊨ (¬ φ)) r Γφ⊥ 𝔐Γ 𝔐φ = Γφ⊥ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton(φ)} 𝔐Γ (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] 𝔐φ)) [∅]-satisfiable : Satisfiable{P = P}{ℓ = ℓ}(∅) [∅]-satisfiable = Logic.[∃]-intro (const(𝑇)) ⦃ \{_}() ⦄ module _ ⦃ classical : ∀{ℓ} → Logic.∀ₗ(Classical{ℓ}) ⦄ where [⊧]-of-[¬¬] : (𝔐 ⊧ ¬(¬ φ)) → (𝔐 ⊧ φ) [⊧]-of-[¬¬] {𝔐 = 𝔐}{φ = φ} = Logic.[¬¬]-elim [⊨]-entailment-unsatisfiability : (Γ ⊨ φ) Logic.↔ Unsatisfiable(Γ ∪ singleton(¬ φ)) [⊨]-entailment-unsatisfiability {Γ = Γ}{φ = φ} = Logic.[↔]-intro l r where l : (Γ ⊨ φ) ← Unsatisfiable(Γ ∪ singleton(¬ φ)) l r {𝔐} 𝔐Γ = [⊧]-of-[¬¬] {𝔐 = 𝔐}{φ = φ} (𝔐¬φ ↦ r (Logic.[∃]-intro 𝔐 ⦃ Logic.[∨]-elim 𝔐Γ (\{[≡]-intro → 𝔐¬φ}) ⦄)) r : (Γ ⊨ φ) → Unsatisfiable(Γ ∪ singleton(¬ φ)) r l (Logic.[∃]-intro 𝔐 ⦃ sat ⦄) = [⊧]-contradiction {φ = φ} 𝔐φ 𝔐¬φ where 𝔐φ = l([⊧₊]-of-[∪]ₗ {Γ₁ = Γ} sat) 𝔐¬φ = Logic.[↔]-to-[←] [⊧]-to-[⊧₊] ([⊧₊]-of-[∪]ᵣ {Γ₁ = Γ} sat) [⊨][⟶]-intro : ((Γ ∪ singleton(φ)) ⊨ ψ) Logic.↔ (Γ ⊨ (φ ⟶ ψ)) [⊨][⟶]-intro {Γ = Γ}{φ = φ}{ψ = ψ} = Logic.[↔]-intro l r where l : (Γ ⊨ (φ ⟶ ψ)) → ((Γ ∪ singleton(φ)) ⊨ ψ) l φψ {𝔐 = 𝔐} 𝔐Γφ = Logic.[∨]-elim (¬φ ↦ Logic.[⊥]-elim(¬φ 𝔐φ)) id (φψ 𝔐Γ) where 𝔐Γ : 𝔐 ⊧₊ Γ 𝔐Γ {γ} Γγ = 𝔐Γφ {γ} (Logic.[∨]-introₗ Γγ) 𝔐φ : 𝔐 ⊧ φ 𝔐φ = 𝔐Γφ {φ} (Logic.[∨]-introᵣ [≡]-intro) r : ((Γ ∪ singleton(φ)) ⊨ ψ) → (Γ ⊨ (φ ⟶ ψ)) r Γφψ {𝔐 = 𝔐} 𝔐Γ with Logic.excluded-middle(𝔐 ⊧ φ) ... | Logic.[∨]-introₗ 𝔐φ = Logic.[∨]-introᵣ (Γφψ(Logic.[∨]-elim 𝔐Γ \{[≡]-intro → 𝔐φ})) ... | Logic.[∨]-introᵣ ¬𝔐φ = Logic.[∨]-introₗ ¬𝔐φ
{ "alphanum_fraction": 0.5198135198, "avg_line_length": 41.25, "ext": "agda", "hexsha": "5d385b8644992b2d2f1700e7fe1ff461b97769b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics/Proofs.agda", "max_line_length": 197, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/Semantics/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2586, "size": 4290 }
module InstanceArgumentsHidden where record ⊤ : Set where -- check that the instance argument resolution takes into account -- instances which take hidden arguments to be of the correct type. postulate A1 A2 B : Set f1 : {{a : A1}} → B f2 : {{a : A2}} → B inst1 : {_ : ⊤} → A1 checkProperty : ⊤ → Set checkProperty _ = ⊤ postulate inst2 : {a : ⊤} → {_ : checkProperty a} → A2 test1 = f1 test2 = f2
{ "alphanum_fraction": 0.6189376443, "avg_line_length": 22.7894736842, "ext": "agda", "hexsha": "c253e71055f2808f1937c70b91cefe8b1c3bbfc7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/InstanceArgumentsHidden.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/InstanceArgumentsHidden.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/InstanceArgumentsHidden.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 135, "size": 433 }
module MagicWith where data _×_ (A : Set)(B : A -> Set) : Set where _,_ : (x : A) -> B x -> A × B fst : {A : Set}{B : A -> Set} -> A × B -> A fst (x , y) = x snd : {A : Set}{B : A -> Set}(p : A × B) -> B (fst p) snd (x , y) = y data Nat : Set where zero : Nat suc : Nat -> Nat record True : Set where data False : Set where IsZero : Nat -> Set IsZero zero = True IsZero (suc _) = False Uncurry : {A : Set}{B : A -> Set} -> ((x : A) -> B x -> Set) -> A × B -> Set Uncurry F p = F (fst p) (snd p) F : (n : Nat) -> IsZero n -> Set F zero _ = True F (suc _) () -- Trying to match only on fst p will give a (bad) error, -- just as it should. f : (p : Nat × IsZero) -> Uncurry F p f p with fst p | snd p f p | zero | q = _ f p | suc _ | ()
{ "alphanum_fraction": 0.5059445178, "avg_line_length": 21.0277777778, "ext": "agda", "hexsha": "eeaebc5f3f918666b58333861f30d6f7001fa0ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/MagicWith.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/MagicWith.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/MagicWith.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 297, "size": 757 }
------------------------------------------------------------------------ -- An alternative definition of listed finite subsets ------------------------------------------------------------------------ -- The code in this module is based on Frumin, Geuvers, Gondelman and -- van der Weide's "Finite Sets in Homotopy Type Theory". However, the -- type of subsets is defined mutually with a membership predicate, -- and two higher constructors have been replaced by a constructor -- that states that extensionally equal subsets are equal. -- -- The type in this module is perhaps harder to work with than the one -- in Finite-subset.Listed: the "natural" eliminator only works for -- motives that are propositional. However, the two types are shown to -- be equivalent. {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Finite-subset.Listed.Alternative {c⁺} (eq : ∀ {a p} → P.Equality-with-paths a p c⁺) where open P.Derived-definitions-and-properties eq hiding (elim) import Equality.Path.Univalence as EPU open import Logical-equivalence using (_⇔_) open import Prelude hiding (_∷_; swap) open import Bijection equality-with-J using (_↔_) import Bijection P.equality-with-J as PB open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence P.equality-with-J as PEq import Finite-subset.Listed eq as Listed open import Function-universe equality-with-J as F hiding (id; _∘_) import H-level P.equality-with-J as PH open import H-level.Closure equality-with-J import H-level.Closure P.equality-with-J as PHC open import H-level.Truncation.Propositional eq as Trunc using (∥_∥; _∥⊎∥_) open import Injection equality-with-J using (Injective) import Univalence-axiom P.equality-with-J as PU private variable a b p : Level A B : Type a P : A → Type p x x∼y y y₁ y₂ z z₁ z₂ : A ------------------------------------------------------------------------ -- Listed finite subsets mutual -- Listed finite subsets of a given type, defined mutually with a -- membership predicate. infixr 5 _∷_ data Finite-subset-of (A : Type a) : Type a where [] : Finite-subset-of A _∷_ : A → Finite-subset-of A → Finite-subset-of A extensionalityᴾ : x ∼ y → x P.≡ y is-setᴾ : P.Is-set (Finite-subset-of A) private Membership : {A : Type a} → A → Finite-subset-of A → PH.Proposition a -- Membership. infix 4 _∈_ _∈_ : {A : Type a} → A → Finite-subset-of A → Type a x ∈ y = proj₁ (Membership x y) -- Membership is propositional. ∈-propositionalᴾ : ∀ y → P.Is-proposition (x ∈ y) ∈-propositionalᴾ y = proj₂ (Membership _ y) -- Extensional equality. infix 4 _∼_ _∼_ : {A : Type a} → Finite-subset-of A → Finite-subset-of A → Type a x ∼ y = ∀ z → z ∈ x ⇔ z ∈ y Membership x [] = ⊥ , PHC.⊥-propositional Membership x (y ∷ z) = (x ≡ y ∥⊎∥ x ∈ z) , Trunc.truncation-is-propositionᴾ Membership x (extensionalityᴾ {x = y} {y = z} y∼z i) = lemma i where lemma : Membership x y P.≡ Membership x z lemma = P.Σ-≡,≡→≡ (x ∈ y P.≡⟨ PEq._≃_.from (PU.Propositional-extensionality-is-univalence-for-propositions P.ext) (λ _ _ → EPU.univ) (∈-propositionalᴾ y) (∈-propositionalᴾ z) (y∼z x) ⟩∎ x ∈ z ∎) (PHC.H-level-propositional P.ext 1 _ _) Membership x (is-setᴾ {x = y} {y = z} p q i j) = P.heterogeneous-UIP₀₀ {x = λ _ → Membership x y} {y = λ _ → Membership x z} {p = λ i → Membership x (p i)} {q = λ i → Membership x (q i)} (PU.∃-H-level-H-level-1+ P.ext EPU.univ 1) i j -- Variants of some of the constructors. extensionality : x ∼ y → x ≡ y extensionality = _↔_.from ≡↔≡ ∘ extensionalityᴾ is-set : Is-set (Finite-subset-of A) is-set = _↔_.from (H-level↔H-level 2) Finite-subset-of.is-setᴾ -- Membership is propositional. ∈-propositional : ∀ y → Is-proposition (x ∈ y) ∈-propositional = _↔_.from (H-level↔H-level 1) ∘ ∈-propositionalᴾ -- Unit tests documenting some of the computational behaviour of _∈_. _ : (x ∈ []) ≡ ⊥ _ = refl _ _ : (x ∈ y ∷ z) ≡ (x ≡ y ∥⊎∥ x ∈ z) _ = refl _ ------------------------------------------------------------------------ -- Eliminators private -- The following dependent eliminator is not exported, because the -- motive is necessarily pointwise propositional (see -- motive-propositional below). record Elimᴾ′ {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) is-setʳ : ∀ x → P.Is-set (P x) extensionalityʳ : (p : P x) (q : P y) → P.[ (λ i → P (extensionalityᴾ {x = x} {y = y} x∼y i)) ] p ≡ q open Elimᴾ′ elimᴾ′ : Elimᴾ′ P → (x : Finite-subset-of A) → P x elimᴾ′ {A = A} {P = P} e = helper where module E = Elimᴾ′ e helper : (x : Finite-subset-of A) → P x helper [] = E.[]ʳ helper (x ∷ y) = E.∷ʳ x (helper y) helper (extensionalityᴾ {x = x} {y = y} _ i) = E.extensionalityʳ (helper x) (helper y) i helper (is-setᴾ x y i j) = P.heterogeneous-UIP E.is-setʳ (is-setᴾ x y) (λ i → helper (x i)) (λ i → helper (y i)) i j -- The motive is necessarily pointwise propositional. motive-propositional : Elimᴾ′ P → ∀ x → P.Is-proposition (P x) motive-propositional {P = P} e x p q = p P.≡⟨ P.sym $ P.subst-refl P _ ⟩ P.subst P P.refl p P.≡⟨ P.cong (λ eq → P.subst P eq p) $ is-setᴾ _ _ ⟩ P.subst P (extensionalityᴾ λ _ → F.id) p P.≡⟨ PB._↔_.to (P.heterogeneous↔homogeneous _) (e .extensionalityʳ {x∼y = λ _ → F.id} p q) ⟩∎ q ∎ -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) is-propositionʳ : ∀ x → P.Is-proposition (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : Finite-subset-of A) → P x elimᴾ {A = A} {P = P} e = elimᴾ′ e′ where module E = Elimᴾ e e′ : Elimᴾ′ _ e′ .[]ʳ = e .[]ʳ e′ .∷ʳ = e .∷ʳ e′ .is-setʳ = PH.mono₁ 1 ∘ e .is-propositionʳ e′ .extensionalityʳ _ _ = PB._↔_.from (P.heterogeneous↔homogeneous _) (e .is-propositionʳ _ _ _) -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B is-propositionʳ : P.Is-proposition B open Recᴾ public recᴾ : Recᴾ A B → Finite-subset-of A → B recᴾ {A = A} {B = B} r = elimᴾ e where module R = Recᴾ r e : Elimᴾ _ e .[]ʳ = R.[]ʳ e .∷ʳ {y = y} x = R.∷ʳ x y e .is-propositionʳ _ = R.is-propositionʳ -- A dependent eliminator, expressed using equality. record Elim {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) is-propositionʳ : ∀ x → Is-proposition (P x) open Elim public elim : Elim P → (x : Finite-subset-of A) → P x elim e = elimᴾ e′ where module E = Elim e e′ : Elimᴾ _ e′ .[]ʳ = E.[]ʳ e′ .∷ʳ = E.∷ʳ e′ .is-propositionʳ = _↔_.to (H-level↔H-level 1) ∘ E.is-propositionʳ -- A non-dependent eliminator, expressed using equality. record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B is-propositionʳ : Is-proposition B open Rec public rec : Rec A B → Finite-subset-of A → B rec r = elim e where module R = Rec r e : Elim _ e .[]ʳ = R.[]ʳ e .∷ʳ {y = y} x = R.∷ʳ x y e .is-propositionʳ _ = R.is-propositionʳ ------------------------------------------------------------------------ -- Some lemmas -- If A is inhabited, then Finite-subset-of A is not a proposition. ¬-proposition : A → ¬ Is-proposition (Finite-subset-of A) ¬-proposition {A = A} x = Is-proposition (Finite-subset-of A) ↝⟨ (λ hyp → hyp _ _) ⟩ x ∷ [] ≡ [] ↝⟨ (λ hyp → subst (x ∈_) hyp (Trunc.∣inj₁∣ (refl _))) ⟩ x ∈ [] ↔⟨ ⊥↔⊥ ⟩□ ⊥ □ abstract -- Duplicated elements can be dropped. drop : x ∷ x ∷ y ≡ x ∷ y drop {x = x} {y = y} = extensionality λ z → z ≡ x ∥⊎∥ (z ≡ x ∥⊎∥ z ∈ y) ↔⟨ Trunc.drop-left-∥⊎∥ Trunc.∥⊎∥-propositional Trunc.∣inj₁∣ ⟩□ z ≡ x ∥⊎∥ z ∈ y □ -- The "first" two elements can be swapped. swap : x ∷ y ∷ z ≡ y ∷ x ∷ z swap {x = x} {y = y} {z = z} = extensionality λ u → u ≡ x ∥⊎∥ (u ≡ y ∥⊎∥ u ∈ z) ↔⟨ Trunc.∥⊎∥-assoc ⟩ (u ≡ x ∥⊎∥ u ≡ y) ∥⊎∥ u ∈ z ↔⟨ Trunc.∥⊎∥-comm Trunc.∥⊎∥-cong F.id ⟩ (u ≡ y ∥⊎∥ u ≡ x) ∥⊎∥ u ∈ z ↔⟨ inverse Trunc.∥⊎∥-assoc ⟩□ u ≡ y ∥⊎∥ (u ≡ x ∥⊎∥ u ∈ z) □ -- If x is a member of y, then x ∷ y is equal to y. ∈→∷≡ : x ∈ y → x ∷ y ≡ y ∈→∷≡ {x = x} = elim e _ where e : Elim (λ y → x ∈ y → x ∷ y ≡ y) e .∷ʳ {y = y} z hyp = Trunc.rec is-set [ (λ x≡z → x ∷ z ∷ y ≡⟨ cong (λ x → x ∷ _) x≡z ⟩ z ∷ z ∷ y ≡⟨ drop ⟩∎ z ∷ y ∎) , (λ x∈y → x ∷ z ∷ y ≡⟨ swap ⟩ z ∷ x ∷ y ≡⟨ cong (_ ∷_) (hyp x∈y) ⟩∎ z ∷ y ∎) ] e .is-propositionʳ _ = Π-closure ext 1 λ _ → is-set ------------------------------------------------------------------------ -- Some operations -- Singleton subsets. singleton : A → Finite-subset-of A singleton x = x ∷ [] -- A lemma characterising singleton. ∈singleton≃ : (x ∈ singleton y) ≃ ∥ x ≡ y ∥ ∈singleton≃ {x = x} {y = y} = x ∈ singleton y ↔⟨⟩ x ≡ y ∥⊎∥ ⊥ ↔⟨ Trunc.∥∥-cong $ drop-⊥-right ⊥↔⊥ ⟩□ ∥ x ≡ y ∥ □ -- If truncated equality is decidable, then membership is also -- decidable. member? : ((x y : A) → Dec ∥ x ≡ y ∥) → (x : A) (y : Finite-subset-of A) → Dec (x ∈ y) member? equal? x = elim e where e : Elim _ e .[]ʳ = no λ () e .∷ʳ {y = z} y = case equal? x y of [ (λ ∥x≡y∥ _ → yes (Trunc.∥∥-map inj₁ ∥x≡y∥)) , (λ ¬∥x≡y∥ → [ (λ x∈z → yes (Trunc.∣inj₂∣ x∈z)) , (λ x∉z → no ( x ∈ y ∷ z ↔⟨⟩ x ≡ y ∥⊎∥ x ∈ z ↝⟨ Trunc.∥∥-map [ ¬∥x≡y∥ ∘ Trunc.∣_∣ , x∉z ] ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.not-inhabited⇒∥∥↔⊥ id ⟩□ ⊥ □)) ]) ] e .is-propositionʳ y = Dec-closure-propositional ext (∈-propositional y) ------------------------------------------------------------------------ -- The union operation private -- A specification of what it means for a subset to be the union of -- two subsets. Is-union-of : {A : Type a} (_ _ _ : Finite-subset-of A) → Type a Is-union-of x y z = ∀ u → (u ∈ z) ≃ (u ∈ x ∥⊎∥ u ∈ y) -- Is-union-of x y is functional. Is-union-of-functional : (x y : Finite-subset-of A) → Is-union-of x y z₁ → Is-union-of x y z₂ → z₁ ≡ z₂ Is-union-of-functional {z₁ = z₁} {z₂ = z₂} x y p₁ p₂ = extensionality λ u → u ∈ z₁ ↔⟨ p₁ u ⟩ u ∈ x ∥⊎∥ u ∈ y ↔⟨ inverse $ p₂ u ⟩□ u ∈ z₂ □ -- Is-union-of is propositional. Is-union-of-propositional : (x y z : Finite-subset-of A) → Is-proposition (Is-union-of x y z) Is-union-of-propositional x y z = Π-closure ext 1 λ _ → Eq.left-closure ext 0 (∈-propositional z) -- The union operation, along with a correctness proof. union : (x y : Finite-subset-of A) → ∃ (Is-union-of x y) union = elim e where e : Elim _ e .[]ʳ y = y , λ u → u ∈ y ↔⟨ inverse $ Trunc.∥⊎∥-left-identity (∈-propositional y) ⟩□ ⊥ ∥⊎∥ u ∈ y □ e .∷ʳ {y = y} x hyp z = x ∷ proj₁ (hyp z) , λ u → u ∈ x ∷ proj₁ (hyp z) ↔⟨⟩ u ≡ x ∥⊎∥ u ∈ proj₁ (hyp z) ↝⟨ F.id Trunc.∥⊎∥-cong proj₂ (hyp z) u ⟩ u ≡ x ∥⊎∥ (u ∈ y ∥⊎∥ u ∈ z) ↔⟨ Trunc.∥⊎∥-assoc ⟩ (u ≡ x ∥⊎∥ u ∈ y) ∥⊎∥ u ∈ z ↔⟨⟩ u ∈ x ∷ y ∥⊎∥ u ∈ z □ e .is-propositionʳ x f g = ⟨ext⟩ λ y → Σ-≡,≡→≡ (Is-union-of-functional x y (proj₂ (f y)) (proj₂ (g y))) (Is-union-of-propositional x y (proj₁ (g y)) _ _) -- The union of two finite subsets. infixr 5 _∪_ _∪_ : Finite-subset-of A → Finite-subset-of A → Finite-subset-of A x ∪ y = proj₁ (union x y) -- Unit tests documenting some of the computational behaviour of _∪_. _ : [] ∪ x ≡ x _ = refl _ _ : (x ∷ y) ∪ z ≡ x ∷ (y ∪ z) _ = refl _ -- Membership of a union of two subsets can be expressed in terms of -- membership of the subsets. ∈∪≃∈∥⊎∥∈ : ∀ y → (x ∈ y ∪ z) ≃ (x ∈ y ∥⊎∥ x ∈ z) ∈∪≃∈∥⊎∥∈ {z = z} y = proj₂ (union y z) _ -- If x is a member of y, then x is a member of y ∪ z. ∈→∈∪ˡ : ∀ y → x ∈ y → x ∈ y ∪ z ∈→∈∪ˡ y = _≃_.from (∈∪≃∈∥⊎∥∈ y) ∘ Trunc.∣inj₁∣ -- If x is a member of z, then x is a member of y ∪ z. ∈→∈∪ʳ : ∀ y → x ∈ z → x ∈ y ∪ z ∈→∈∪ʳ y = _≃_.from (∈∪≃∈∥⊎∥∈ y) ∘ Trunc.∣inj₂∣ -- [] is a right identity of _∪_. ∪[] : (x : Finite-subset-of A) → x ∪ [] ≡ x ∪[] = elim e where e : Elim _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = y} x hyp = x ∷ y ∪ [] ≡⟨ cong (x ∷_) hyp ⟩∎ x ∷ y ∎ -- A lemma relating _∪_ and _∷_. ∪∷ : (x : Finite-subset-of A) → x ∪ (y ∷ z) ≡ y ∷ x ∪ z ∪∷ {y = y} {z = z} = elim e where e : Elim _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = u} x hyp = (x ∷ u) ∪ (y ∷ z) ≡⟨⟩ x ∷ u ∪ (y ∷ z) ≡⟨ cong (x ∷_) hyp ⟩ x ∷ y ∷ u ∪ z ≡⟨ swap ⟩ y ∷ x ∷ u ∪ z ≡⟨⟩ y ∷ (x ∷ u) ∪ z ∎ -- The union operator is associative. ∪-assoc : (x : Finite-subset-of A) → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z ∪-assoc {y = y} {z = z} = elim e where e : Elim _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = u} x hyp = x ∷ u ∪ (y ∪ z) ≡⟨ cong (x ∷_) hyp ⟩∎ x ∷ (u ∪ y) ∪ z ∎ -- The union operator is commutative. ∪-comm : (x : Finite-subset-of A) → x ∪ y ≡ y ∪ x ∪-comm {y = y} = elim e where e : Elim _ e .is-propositionʳ _ = is-set e .[]ʳ = [] ∪ y ≡⟨⟩ y ≡⟨ sym (∪[] y) ⟩∎ y ∪ [] ∎ e .∷ʳ {y = z} x hyp = x ∷ z ∪ y ≡⟨ cong (x ∷_) hyp ⟩ x ∷ y ∪ z ≡⟨ sym (∪∷ y) ⟩∎ y ∪ (x ∷ z) ∎ -- The union operator is idempotent. ∪-idem : (x : Finite-subset-of A) → x ∪ x ≡ x ∪-idem = elim e where e : Elim _ e .[]ʳ = [] ∪ [] ≡⟨⟩ [] ∎ e .∷ʳ {y = y} x hyp = (x ∷ y) ∪ (x ∷ y) ≡⟨⟩ x ∷ y ∪ x ∷ y ≡⟨ cong (_ ∷_) (∪∷ y) ⟩ x ∷ x ∷ y ∪ y ≡⟨ drop ⟩ x ∷ y ∪ y ≡⟨ cong (_ ∷_) hyp ⟩∎ x ∷ y ∎ e .is-propositionʳ = λ _ → is-set -- The union operator distributes from the left and right over itself. ∪-distrib-left : ∀ x → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ (x ∪ z) ∪-distrib-left {y = y} {z = z} x = x ∪ (y ∪ z) ≡⟨ cong (_∪ _) $ sym (∪-idem x) ⟩ (x ∪ x) ∪ (y ∪ z) ≡⟨ sym $ ∪-assoc x ⟩ x ∪ (x ∪ (y ∪ z)) ≡⟨ cong (x ∪_) $ ∪-assoc x ⟩ x ∪ ((x ∪ y) ∪ z) ≡⟨ cong ((x ∪_) ∘ (_∪ _)) $ ∪-comm x ⟩ x ∪ ((y ∪ x) ∪ z) ≡⟨ cong (x ∪_) $ sym $ ∪-assoc y ⟩ x ∪ (y ∪ (x ∪ z)) ≡⟨ ∪-assoc x ⟩∎ (x ∪ y) ∪ (x ∪ z) ∎ ∪-distrib-right : ∀ x → (x ∪ y) ∪ z ≡ (x ∪ z) ∪ (y ∪ z) ∪-distrib-right {y = y} {z = z} x = (x ∪ y) ∪ z ≡⟨ ∪-comm (x ∪ _) ⟩ z ∪ (x ∪ y) ≡⟨ ∪-distrib-left z ⟩ (z ∪ x) ∪ (z ∪ y) ≡⟨ cong₂ _∪_ (∪-comm z) (∪-comm z) ⟩∎ (x ∪ z) ∪ (y ∪ z) ∎ ------------------------------------------------------------------------ -- Subsets of subsets -- Subsets. infix 4 _⊆_ _⊆_ : {A : Type a} → Finite-subset-of A → Finite-subset-of A → Type a x ⊆ y = ∀ z → z ∈ x → z ∈ y -- _⊆_ is pointwise propositional. ⊆-propositional : (x y : Finite-subset-of A) → Is-proposition (x ⊆ y) ⊆-propositional x y = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ∈-propositional y -- The function x ∷_ is monotone with respect to _⊆_. ∷-cong-⊆ : ∀ y z → y ⊆ z → x ∷ y ⊆ x ∷ z ∷-cong-⊆ {x = x} y z y⊆z = λ u → u ∈ x ∷ y ↔⟨⟩ u ≡ x ∥⊎∥ u ∈ y ↝⟨ id Trunc.∥⊎∥-cong y⊆z _ ⟩ u ≡ x ∥⊎∥ u ∈ z ↔⟨⟩ u ∈ x ∷ z □ -- The union operator is monotone with respect to _⊆_. ∪-mono-⊆ : ∀ x₁ x₂ → x₁ ⊆ x₂ → y₁ ⊆ y₂ → x₁ ∪ y₁ ⊆ x₂ ∪ y₂ ∪-mono-⊆ {y₁ = y₁} {y₂ = y₂} x₁ x₂ x₁⊆x₂ y₁⊆y₂ = λ u → u ∈ x₁ ∪ y₁ ↔⟨ ∈∪≃∈∥⊎∥∈ x₁ ⟩ u ∈ x₁ ∥⊎∥ u ∈ y₁ ↝⟨ x₁⊆x₂ u Trunc.∥⊎∥-cong y₁⊆y₂ u ⟩ u ∈ x₂ ∥⊎∥ u ∈ y₂ ↔⟨ inverse $ ∈∪≃∈∥⊎∥∈ x₂ ⟩□ u ∈ x₂ ∪ y₂ □ -- The subset property can be expressed using _∪_ and _≡_. ⊆≃∪≡ : ∀ x → (x ⊆ y) ≃ (x ∪ y ≡ y) ⊆≃∪≡ {y = y} x = Eq.⇔→≃ (⊆-propositional x y) is-set (elim e x) (λ p z → z ∈ x ↝⟨ ∈→∈∪ˡ x ⟩ z ∈ x ∪ y ↝⟨ ≡⇒↝ _ (cong (z ∈_) p) ⟩□ z ∈ y □) where e : Elim (λ x → x ⊆ y → x ∪ y ≡ y) e .[]ʳ _ = [] ∪ y ≡⟨⟩ y ∎ e .∷ʳ {y = z} x hyp x∷z⊆y = x ∷ z ∪ y ≡⟨ cong (x ∷_) (hyp (λ _ → x∷z⊆y _ ∘ Trunc.∣inj₂∣)) ⟩ x ∷ y ≡⟨ ∈→∷≡ (x∷z⊆y x (Trunc.∣inj₁∣ (refl _))) ⟩∎ y ∎ e .is-propositionʳ _ = Π-closure ext 1 λ _ → is-set -- _⊆_ is a partial order. ⊆-refl : x ⊆ x ⊆-refl _ = id ⊆-trans : x ⊆ y → y ⊆ z → x ⊆ z ⊆-trans x⊆y y⊆z _ = y⊆z _ ∘ x⊆y _ ⊆-antisymmetric : x ⊆ y → y ⊆ x → x ≡ y ⊆-antisymmetric x⊆y y⊆x = extensionality λ z → record { to = x⊆y z; from = y⊆x z } ------------------------------------------------------------------------ -- Another lemma -- Equality can be expressed using _⊆_. ≡≃⊆×⊇ : (x ≡ y) ≃ (x ⊆ y × y ⊆ x) ≡≃⊆×⊇ {x = x} {y = y} = x ≡ y ↝⟨ Eq.⇔→≃ is-set (×-closure 1 is-set is-set) (λ x≡y → (x ∪ y ≡⟨ cong (_∪ _) x≡y ⟩ y ∪ y ≡⟨ ∪-idem y ⟩∎ y ∎) , (y ∪ x ≡⟨ cong (_∪ _) $ sym x≡y ⟩ x ∪ x ≡⟨ ∪-idem x ⟩∎ x ∎)) (λ (p , q) → x ≡⟨ sym q ⟩ y ∪ x ≡⟨ ∪-comm y ⟩ x ∪ y ≡⟨ p ⟩∎ y ∎) ⟩ x ∪ y ≡ y × y ∪ x ≡ x ↝⟨ inverse $ ⊆≃∪≡ x ×-cong ⊆≃∪≡ y ⟩□ x ⊆ y × y ⊆ x □ -- Extensional equality is equivalent to equality. ∼≃≡ : (x ∼ y) ≃ (x ≡ y) ∼≃≡ {x = x} {y = y} = x ∼ y ↔⟨⟩ (∀ z → z ∈ x ⇔ z ∈ y) ↔⟨ (∀-cong ext λ _ → ⇔↔→×→) ⟩ (∀ z → (z ∈ x → z ∈ y) × (z ∈ y → z ∈ x)) ↔⟨ ΠΣ-comm ⟩ x ⊆ y × y ⊆ x ↝⟨ inverse ≡≃⊆×⊇ ⟩□ x ≡ y □ ------------------------------------------------------------------------ -- Definitions related to the listed finite subsets defined in Listed -- Some lemmas used below. private module Listed≃Listed where -- Converts one kind of finite subset to another. from : Listed.Finite-subset-of A → Finite-subset-of A from = Listed.rec r where r : Listed.Rec _ _ r .Listed.Rec.[]ʳ = [] r .Listed.Rec.∷ʳ x _ y = x ∷ y r .Listed.Rec.dropʳ _ _ _ = drop r .Listed.Rec.swapʳ _ _ _ _ = swap r .Listed.Rec.is-setʳ = is-set -- A lemma relating from, _∈_ and Listed._∈_. ∈from≃ : ∀ x → (z ∈ from x) ≃ (z Listed.∈ x) ∈from≃ {z = z} = Listed.elim-prop e where e : Listed.Elim-prop _ e .Listed.Elim-prop.[]ʳ = z ∈ from Listed.[] ↔⟨⟩ ⊥ ↔⟨ ⊥↔⊥ ⟩ ⊥₀ ↝⟨ inverse $ Listed.∈[]≃ ⟩ z Listed.∈ Listed.[] □ e .Listed.Elim-prop.∷ʳ {y = y} x hyp = z ∈ from (x Listed.∷ y) ↔⟨⟩ z ≡ x ∥⊎∥ z ∈ from y ↝⟨ F.id Trunc.∥⊎∥-cong hyp ⟩ z ≡ x ∥⊎∥ z Listed.∈ y ↝⟨ inverse Listed.∈∷≃ ⟩□ z Listed.∈ x Listed.∷ y □ e .Listed.Elim-prop.is-propositionʳ _ = Eq.right-closure ext 0 Listed.∈-propositional -- A lemma relating from, _⊆_ and Listed._⊆_. from⊆from→ : (x y : Listed.Finite-subset-of A) → from x ⊆ from y → x Listed.⊆ y from⊆from→ = Listed.elim-prop e where e : Listed.Elim-prop _ e .Listed.Elim-prop.[]ʳ = Listed.elim-prop e′ where e′ : Listed.Elim-prop _ e′ .Listed.Elim-prop.[]ʳ _ = Listed.⊆-refl e′ .Listed.Elim-prop.∷ʳ {y = y} x _ _ z = z Listed.∈ Listed.[] ↔⟨ Listed.∈[]≃ ⟩ ⊥₀ ↝⟨ ⊥-elim ⟩□ z Listed.∈ x Listed.∷ y □ e′ .Listed.Elim-prop.is-propositionʳ _ = Π-closure ext 1 λ _ → Listed.⊆-propositional e .Listed.Elim-prop.∷ʳ {y = y₁} x hyp₁ y₂ = from (x Listed.∷ y₁) ⊆ from y₂ ↔⟨⟩ (∀ z → z ≡ x ∥⊎∥ z ∈ from y₁ → z ∈ from y₂) ↝⟨ (λ hyp₂ z → Trunc.rec Listed.∈-propositional [ ( z ≡ x ↝⟨ Trunc.∣inj₁∣ ⟩ z ≡ x ∥⊎∥ z ∈ from y₁ ↝⟨ hyp₂ z ⟩ z ∈ from y₂ ↔⟨ ∈from≃ _ ⟩□ z Listed.∈ y₂ □) , ($⟨ (λ z → hyp₂ z ∘ Trunc.∣inj₂∣) ⟩ from y₁ ⊆ from y₂ ↝⟨ hyp₁ y₂ ⟩ y₁ Listed.⊆ y₂ ↝⟨ _$ z ⟩□ (z Listed.∈ y₁ → z Listed.∈ y₂) □) ]) ⟩ (∀ z → z ≡ x ∥⊎∥ z Listed.∈ y₁ → z Listed.∈ y₂) ↔⟨ (∀-cong ext λ _ → →-cong ext (inverse Listed.∈∷≃) F.id) ⟩□ x Listed.∷ y₁ Listed.⊆ y₂ □ e .Listed.Elim-prop.is-propositionʳ _ = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Listed.⊆-propositional -- The function from is injective. from-injective : Injective (from {A = A}) from-injective {x = x} {y = y} = from x ≡ from y ↔⟨ ≡≃⊆×⊇ ⟩ from x ⊆ from y × from y ⊆ from x ↝⟨ Σ-map (from⊆from→ _ _) (from⊆from→ _ _) ⟩ x Listed.⊆ y × y Listed.⊆ x ↝⟨ uncurry Listed.⊆-antisymmetric ⟩□ x ≡ y □ -- Converts one kind of finite subset to another, and returns a -- partial correctness result. to : (x : Finite-subset-of A) → ∃ λ (y : Listed.Finite-subset-of A) → from y ≡ x to = elim e where e : Elim _ e .Elim.[]ʳ = Listed.[] , refl _ e .Elim.∷ʳ x (y , eq) = x Listed.∷ y , cong (x ∷_) eq e .Elim.is-propositionʳ x (y₁ , eq₁) (y₂ , eq₂) = Σ-≡,≡→≡ (from-injective (from y₁ ≡⟨ eq₁ ⟩ x ≡⟨ sym eq₂ ⟩∎ from y₂ ∎)) (is-set _ _) -- Another correctness result. to-from : (x : Listed.Finite-subset-of A) → proj₁ (to (from x)) ≡ x to-from = Listed.elim-prop e where e : Listed.Elim-prop _ e .Listed.Elim-prop.[]ʳ = refl _ e .Listed.Elim-prop.∷ʳ x = cong (x Listed.∷_) e .Listed.Elim-prop.is-propositionʳ _ = Listed.is-set -- The type of listed finite subsets defined above is pointwise -- equivalent to the type of listed finite subsets defined in Listed. Listed≃Listed : Finite-subset-of A ≃ Listed.Finite-subset-of A Listed≃Listed = Eq.↔→≃ (proj₁ ∘ to) from to-from (proj₂ ∘ to) where open Listed≃Listed -- The equivalence preserves membership. ∈≃∈ : ∀ y → (x ∈ y) ≃ (x Listed.∈ _≃_.to Listed≃Listed y) ∈≃∈ {x = x} y = x ∈ y ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ sym $ _≃_.left-inverse-of Listed≃Listed y ⟩ x ∈ _≃_.from Listed≃Listed (_≃_.to Listed≃Listed y) ↝⟨ ∈from≃ _ ⟩□ x Listed.∈ _≃_.to Listed≃Listed y □ where open Listed≃Listed -- Another dependent eliminator (expressed using equality). -- -- Note that the motive is not required to be propositional. record Elim′ {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) dropʳ : ∀ x (p : P y) → subst P (drop {x = x} {y = y}) (∷ʳ x (∷ʳ x p)) ≡ ∷ʳ x p swapʳ : ∀ x y (p : P z) → subst P (swap {x = x} {y = y} {z = z}) (∷ʳ x (∷ʳ y p)) ≡ ∷ʳ y (∷ʳ x p) is-setʳ : ∀ x → Is-set (P x) open Elim′ public elim′ : Elim′ P → (x : Finite-subset-of A) → P x elim′ {P = P} e x = subst P (_≃_.left-inverse-of Listed≃Listed x) (Listed.elim e′ (_≃_.to Listed≃Listed x)) where module E = Elim′ e e′ : Listed.Elim (P ∘ _≃_.from Listed≃Listed) e′ .Listed.[]ʳ = E.[]ʳ e′ .Listed.∷ʳ = E.∷ʳ e′ .Listed.dropʳ x p = subst (P ∘ _≃_.from Listed≃Listed) Listed.drop (e .∷ʳ x (e .∷ʳ x p)) ≡⟨ subst-∘ _ _ _ ⟩ subst P (cong (_≃_.from Listed≃Listed) Listed.drop) (e .∷ʳ x (e .∷ʳ x p)) ≡⟨ cong (flip (subst P) _) $ is-set _ _ ⟩ subst P drop (e .∷ʳ x (e .∷ʳ x p)) ≡⟨ e .dropʳ x p ⟩∎ e .∷ʳ x p ∎ e′ .Listed.swapʳ x y p = subst (P ∘ _≃_.from Listed≃Listed) Listed.swap (e .∷ʳ x (e .∷ʳ y p)) ≡⟨ subst-∘ _ _ _ ⟩ subst P (cong (_≃_.from Listed≃Listed) Listed.swap) (e .∷ʳ x (e .∷ʳ y p)) ≡⟨ cong (flip (subst P) _) $ is-set _ _ ⟩ subst P swap (e .∷ʳ x (e .∷ʳ y p)) ≡⟨ e .swapʳ x y p ⟩∎ e .∷ʳ y (e .∷ʳ x p) ∎ e′ .Listed.is-setʳ _ = E.is-setʳ _
{ "alphanum_fraction": 0.4465430273, "avg_line_length": 29.726042841, "ext": "agda", "hexsha": "d20f94f0c5db3763a4a4114d08cbb85399c4c982", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Finite-subset/Listed/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Finite-subset/Listed/Alternative.agda", "max_line_length": 123, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Finite-subset/Listed/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 10798, "size": 26367 }
------------------------------------------------------------------------------ -- Properties for the nest function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Nest.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Program.Nest.Nest ------------------------------------------------------------------------------ nest-x≡0 : ∀ {n} → N n → nest n ≡ zero nest-x≡0 nzero = prf where postulate prf : nest zero ≡ zero {-# ATP prove prf #-} nest-x≡0 (nsucc {n} Nn) = prf (nest-x≡0 Nn) where postulate prf : nest n ≡ zero → nest (succ₁ n) ≡ zero {-# ATP prove prf #-} postulate nest-N : ∀ {n} → N n → N (nest n) {-# ATP prove nest-N nest-x≡0 #-}
{ "alphanum_fraction": 0.4402583423, "avg_line_length": 33.1785714286, "ext": "agda", "hexsha": "bdf8aa6bfbe5f53d357ade35051987be14ebd929", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Nest/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Nest/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Nest/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 223, "size": 929 }
module README where import Semantics import Theory import Soundness import Categories.Category.Construction.Models import Categories.Category.Construction.Classifying import Categories.Functor.Construction.Inclusion import Internal import Examples
{ "alphanum_fraction": 0.873015873, "avg_line_length": 18, "ext": "agda", "hexsha": "2b2de66b28a908de263e69c1d3ff7e168fc3ce90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "README.agda", "max_line_length": 51, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 46, "size": 252 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.Records open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.Network as Network open import LibraBFT.Impl.Consensus.Network.Properties as NetworkProps open import LibraBFT.Impl.Consensus.RoundManager as RoundManager open import LibraBFT.Impl.Consensus.RoundManager.Properties open import LibraBFT.Impl.IO.OBM.InputOutputHandlers open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open Invariants open RoundManagerTransProps module LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers where module epvvSpec where contract : ∀ pre Post → let ep = pre ^∙ pssSafetyData-rm ∙ sdEpoch vv = pre ^∙ rmEpochState ∙ esVerifier in (Post (ep , vv) pre []) → LBFT-weakestPre epvv Post pre contract pre Post pf ._ refl ._ refl ._ refl ._ refl = pf module handleProposalSpec (now : Instant) (pm : ProposalMsg) where open handleProposal now pm module _ (pool : SentMessages) (pre : RoundManager) where open Invariants.Reqs (pm ^∙ pmProposal) (pre ^∙ lBlockTree) record Contract (_ : Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General properties / invariants rmInv : Preserves RoundManagerInv pre post invalidProposal : ¬ (BlockId-correct (pm ^∙ pmProposal)) → pre ≡ post × OutputProps.NoVotes outs noEpochChange : NoEpochChange pre post -- Voting voteAttemptCorrect : BlockId-correct (pm ^∙ pmProposal) → NoHC1 → Voting.VoteAttemptCorrectWithEpochReq pre post outs (pm ^∙ pmProposal) -- voteBuildsOnRC : TODO-2: We will need to know that, if we're sending a Vote, then there -- is a Block b such that the Vote's proposed id is bId B and there -- is a RecordChain (B b) and all the Records in that RecordChain -- are InSys. This is needed to prove ImplObligation-RC. However, -- before doing so, it may be worth considering strengthening the -- Concrete PreferredRound proof, so that only IsValidVote is -- required of the implementation, and that is used to construct -- the required RecordChain, independently of the implementation. -- QCs outQcs∈RM : QCProps.OutputQc∈RoundManager outs post qcPost : QCProps.∈Post⇒∈PreOr (_QC∈NM (P pm)) pre post contract : LBFT-weakestPre (handleProposal now pm) Contract pre contract = epvvSpec.contract pre Post-epvv contract-step₁ where Post-epvv : LBFT-Post (Epoch × ValidatorVerifier) Post-epvv = RWS-weakestPre-bindPost unit (λ where (myEpoch , vv) → step₁ myEpoch vv) Contract myEpoch = pre ^∙ pssSafetyData-rm ∙ sdEpoch vv = pre ^∙ rmEpochState ∙ esVerifier contractBail : ∀ outs → OutputProps.NoMsgs outs → Contract unit pre outs contractBail outs noMsgs = mkContract reflPreservesRoundManagerInv (const $ refl , OutputProps.NoMsgs⇒NoVotes outs noMsgs) (reflNoEpochChange{pre}) vac outQcs∈RM qcPost where vac : BlockId-correct (pm ^∙ pmProposal) → NoHC1 → Voting.VoteAttemptCorrectWithEpochReq pre pre outs (pm ^∙ pmProposal) vac _ _ = Voting.mkVoteAttemptCorrectWithEpochReq (Voting.voteAttemptBailed outs (OutputProps.NoMsgs⇒NoVotes outs noMsgs)) tt outQcs∈RM : QCProps.OutputQc∈RoundManager outs pre outQcs∈RM = QCProps.NoMsgs⇒OutputQc∈RoundManager outs pre noMsgs qcPost : QCProps.∈Post⇒∈PreOr _ pre pre qcPost qc = Left contract-step₁ : Post-epvv (myEpoch , vv) pre [] proj₁ (contract-step₁ (myEpoch@._ , vv@._) refl) (inj₁ e) pp≡Left = contractBail _ refl proj₁ (contract-step₁ (myEpoch@._ , vv@._) refl) (inj₂ i) pp≡Left = contractBail _ refl proj₂ (contract-step₁ (myEpoch@._ , vv@._) refl) unit pp≡Right = processProposalMsgMSpec.contract now pm proposalId≡ pre Contract pf where sdEpoch≡ : pre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ pm ^∙ pmProposal ∙ bEpoch sdEpoch≡ with processProposalSpec.contract pm myEpoch vv ...| con rewrite pp≡Right = sym (proj₁ con) proposalId≡ : BlockId-correct (pm ^∙ pmProposal) proposalId≡ with processProposalSpec.contract pm myEpoch vv ...| con rewrite pp≡Right = proj₂ con module PPM = processProposalMsgMSpec now pm proposalId≡ pf : RWS-Post-⇒ (PPM.Contract pre) Contract pf unit st outs con = mkContract PPMSpec.rmInv (λ x → ⊥-elim (x proposalId≡)) PPMSpec.noEpochChange vac PPMSpec.outQcs∈RM PPMSpec.qcPost where module PPMSpec = processProposalMsgMSpec.Contract con vac : BlockId-correct (pm ^∙ pmProposal) → NoHC1 → Voting.VoteAttemptCorrectWithEpochReq pre st outs (pm ^∙ pmProposal) vac _ nohc = Voting.mkVoteAttemptCorrectWithEpochReq (PPMSpec.voteAttemptCorrect nohc) (Voting.voteAttemptEpochReq! (PPMSpec.voteAttemptCorrect nohc) sdEpoch≡) contract! : LBFT-Post-True Contract (handleProposal now pm) pre contract! = LBFT-contract (handleProposal now pm) Contract pre contract module handleVoteSpec (now : Instant) (vm : VoteMsg) where open handleVote now vm module _ (pool : SentMessages) (pre : RoundManager) where record Contract (_ : Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General properties / invariants rmInv : Preserves RoundManagerInv pre post noEpochChange : NoEpochChange pre post noSDChange : NoSafetyDataChange pre post -- Output noVotes : OutputProps.NoVotes outs -- Signatures outQcs∈RM : QCProps.OutputQc∈RoundManager outs post qcPost : QCProps.∈Post⇒∈PreOr (_QC∈NM (V vm)) pre post -- TODO-2: `handleVote` can create a new QC once it receives enough -- votes. We need to be tracking /votes/ here, not QCs postulate -- TODO-2: prove (waiting on: refinement of `Contract`) contract : LBFT-weakestPre (handleVote now vm) Contract pre contract! : LBFT-Post-True Contract (handleVote now vm) pre contract! = LBFT-contract (handleVote now vm) Contract pre contract
{ "alphanum_fraction": 0.6711363008, "avg_line_length": 45.7848101266, "ext": "agda", "hexsha": "c78b306ed1883b37dfd5ffa6ceed128819aa1243", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/InputOutputHandlers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/InputOutputHandlers.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/Properties/InputOutputHandlers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1965, "size": 7234 }
{- Copyright 2019 Lisandra Silva Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} open import Prelude open import Data.Nat.Divisibility open import StateMachineModel {- This State Machine begins in a state equal to 0 or 1 and if : - The current state s is Even then jump to state (s + 2) - The current state is Odd jump to state (s + 1) We want to prove that a state s always leads-to a state Even -} module Examples.SMCounterEven where -- DEFINITIONS and proofs about Even and Odd Even : ℕ → Set Even n = 2 ∣ n Odd : ℕ → Set Odd = ¬_ ∘ Even even? : (n : ℕ) → Dec (Even n) even? n = 2 ∣? n evenK⇒even2+K : ∀ {k} → Even k → Even (2 + k) evenK⇒even2+K (divides q₁ refl) = divides (1 + q₁) refl -- The following are mutually recursive properties. oddK⇒even1+K : ∀ {k} → Odd k → Even (suc k) oddK⇒evenK-1 : ∀ {k} → Odd k → Even (pred k) oddK⇒even1+K {zero} x = ⊥-elim (x (divides 0 refl)) oddK⇒even1+K {suc k} x = evenK⇒even2+K (oddK⇒evenK-1 x) oddK⇒evenK-1 {zero} x = ⊥-elim (x (divides 0 refl)) oddK⇒evenK-1 {suc k} x with even? k ...| no imp = ⊥-elim (x (oddK⇒even1+K imp)) ...| yes prf = prf odd1 : Odd 1 odd1 (divides zero ()) odd1 (divides (suc q₁) ()) ----------------------------------------------------------------------------- -- SPECIFICATION ----------------------------------------------------------------------------- data MyEvent : Set where inc : MyEvent inc2 : MyEvent -- TODO : Try with an event iddle that doesn't do anything and is in another -- EventSet in the weakFairness relation (just to try) -- If we are in a state that is odd then the enabled event is inc -- otherwise the enabled event is inc2 data MyEnabled : MyEvent → ℕ → Set where odd : ∀ {n} → Odd n → MyEnabled inc n even : ∀ {n} → Even n → MyEnabled inc2 n MyStateMachine : StateMachine ℕ MyEvent MyStateMachine = record { initial = (0 ≡_) ∪ (1 ≡_) ; enabled = MyEnabled ; action = λ { {pre} {inc} cond → 1 + pre ; {pre} {inc2} cond → 2 + pre } } MyEventSet : EventSet {Event = MyEvent} MyEventSet inc = ⊤ MyEventSet inc2 = ⊤ data MyWeakFairness : EventSet → Set where wf : MyWeakFairness MyEventSet MySystem : System ℕ MyEvent MySystem = record { stateMachine = MyStateMachine ; weakFairness = MyWeakFairness } ----------------------------------------------------------------------------- -- PROOFS ----------------------------------------------------------------------------- open LeadsTo ℕ MyEvent MySystem -- In every state there is always an enabled transition alwaysEnabled : ∀ (s : ℕ) → enabledSet MyStateMachine MyEventSet s alwaysEnabled s with even? s ... | yes p = inc2 , tt , even p ... | no ¬p = inc , tt , odd ¬p -- Any state n leads to an Even state progressEven : ∀ {n : ℕ} → (n ≡_) l-t Even progressEven = viaEvSet MyEventSet wf (λ { inc ⊤ → hoare λ { refl (odd x) → oddK⇒even1+K x } ; inc2 ⊤ → hoare λ { refl (even x) → evenK⇒even2+K x } }) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ {s} rs n≡s → alwaysEnabled s -- QUESTION : Although we don't have weakfairness (WF) on event inc it was -- possible to prove this. -- ANSWER : This is because of the 2nd constraint in the viaEvSet constructor: -- - ∀ event e ∉ WF (in this case only inc) → [P] e [P ∪ Q], in this case -- we achieve Q (Even), because the event inc is enabled only in Odd states. -- REFACTOR: Maybe m is the one that should be explicit myWFR : ∀ {m} → ℕ → Z → Set myWFR {m} d s = m ≡ d + s -- For every m and even state s, or s is greater than m or there is a distance -- x between s and m [Q∪Fx] : ∀ {m} → (s : Z) → Even s → (m ≤ s × Even s) ⊎ ∃[ x ] myWFR {m} x s [Q∪Fx] {m} s sEven with m ≤? s ... | yes m≤s = inj₁ (m≤s , sEven) ... | no s<m = inj₂ ( m ∸ s , sym (m∸n+n≡m (<⇒≤ (≰⇒> s<m))) ) -- First constraint for WFR rule [P]l-t[Q∪Fx] : ∀ {n m} → (n ≡_) l-t ( ((m ≤_) ∩ Even) ∪ [∃ x ∶ myWFR {m} x ] ) [P]l-t[Q∪Fx] {n} {m} = viaEvSet MyEventSet wf (λ { inc ⊤ → hoare λ { refl (odd x) → [Q∪Fx] (1 + n) (oddK⇒even1+K x) } ; inc2 ⊤ → hoare λ { refl (even x) → [Q∪Fx] (2 + n) (evenK⇒even2+K x) }}) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ {s} rs n≡s → alwaysEnabled s -- If we are at distance 0 from m, which means state s ≡ m, then it leads-to a -- state s₁ > m ∩ Even s₁, because or we increment 1 if s is odd or we -- increment 2 if s is even. d≡0⇒Q : ∀ {m} → myWFR {m} 0 l-t ( (m ≤_) ∩ Even ) d≡0⇒Q {m} = viaEvSet MyEventSet wf (λ { inc ⊤ → hoare λ { refl (odd x) → m≤n+m m 1 , oddK⇒even1+K x } ; inc2 ⊤ → hoare λ { refl (even x) → m≤n+m m 2 , evenK⇒even2+K x }}) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ {s} rs F0 → alwaysEnabled s -- If we are at distance 1 from m, which means m ≡ s + 1. -- If s is odd then s is incremented by 1 (because of the enabling -- condition) then we go to an even state s₁ ≡ s + 1 ≡ m. -- If if s is even then s is incremented by 2, which leads to a state -- s₁ ≡ s + 2 > s + 1 ≡ m. As so, m ≤ s₁ ∩ Even s₁ will always hold. d≡1⇒Q∪d≡0 : ∀ {m} → myWFR {m} 1 l-t ( ((m ≤_) ∩ Even) ∪ [∃ x ⇒ _< 1 ∶ myWFR {m} x ] ) d≡1⇒Q∪d≡0 {m} = viaEvSet MyEventSet wf (λ { inc ⊤ → hoare λ { {ps} refl (odd x) → inj₁ (≤-refl , oddK⇒even1+K x) } ; inc2 ⊤ → hoare λ { {ps} refl (even x) → inj₁ (m≤n+m (suc ps) 1 , evenK⇒even2+K x) }}) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ {s} rs F1 → alwaysEnabled s -- Auxiliary properties assoc∘comm : ∀ {w s : ℕ} n → n + w + s ≡ w + (n + s) assoc∘comm {w} {s} n = trans (cong (_+ s) (+-comm n w)) (+-assoc w n s) assoc∘assoc : ∀ {w s : ℕ} n p → (n + p) + w + s ≡ n + w + (p + s) assoc∘assoc {w} {s} n p rewrite +-assoc n p w | +-comm p w | +-assoc n (w + p) s | +-assoc w p s | +-assoc n w (p + s) = refl -- If we are at a distance greater o equal to 2 then with we decrease the -- distance in 1 or 2, because we can jump 1 or 2 states (inc or onc2) -- This property together with d≡0⇒Q and d≡1⇒Q∪d≡0 allows to prove the -- second constraint for the WFR rule (see below) [d≡2+w]⇒[d≡1+w]∪[d≡w] : ∀ {m w} → myWFR {m} (2 + w) l-t ( myWFR {m} (1 + w) ∪ myWFR {m} w ) [d≡2+w]⇒[d≡1+w]∪[d≡w] {m} {w} = viaEvSet MyEventSet wf (λ { inc ⊤ → hoare λ { {ps} refl (odd x) → inj₁ (assoc∘assoc 1 1) } ; inc2 ⊤ → hoare λ { {ps} refl enEv → inj₂ (assoc∘comm 2) }}) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ {s} rs F2+d → alwaysEnabled s -- Second constraint for WFR rule [Fw]l-t[Q∪Fx] : ∀ {m w} → myWFR {m} w l-t ( ((m ≤_) ∩ Even) ∪ [∃ x ⇒ _< w ∶ myWFR {m} x ] ) [Fw]l-t[Q∪Fx] {m} {zero} = viaTrans d≡0⇒Q (viaInv (λ rs x → inj₁ x)) [Fw]l-t[Q∪Fx] {m} {suc zero} = d≡1⇒Q∪d≡0 [Fw]l-t[Q∪Fx] {m} {suc (suc w)} = viaTrans [d≡2+w]⇒[d≡1+w]∪[d≡w] (viaInv (λ { rs (inj₁ mfr[1+w]) → inj₂ ( 1 + w , s≤s ≤-refl , mfr[1+w] ) ; rs (inj₂ mfr[w]) → inj₂ ( w , s≤s (m≤n+m w 1) , mfr[w]) })) ------------------------------------------------------------------------------ -- MAIN PROPERTY ------------------------------------------------------------------------------ -- From any n, we can reach any state m such that m is Even progressAlwaysEven : ∀ {n m : ℕ} → (n ≡_) l-t ((m ≤_) ∩ Even) progressAlwaysEven {n} {m} = viaWFR (myWFR {m}) [P]l-t[Q∪Fx] λ w → [Fw]l-t[Q∪Fx]
{ "alphanum_fraction": 0.4575114618, "avg_line_length": 34.9962686567, "ext": "agda", "hexsha": "8a62537dffb4e9edb9422364ad45dff4c3099a6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lisandrasilva/agda-liveness", "max_forks_repo_path": "src/Examples/SMCounterEven.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "lisandrasilva/agda-liveness", "max_issues_repo_path": "src/Examples/SMCounterEven.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "lisandrasilva/agda-liveness", "max_stars_repo_path": "src/Examples/SMCounterEven.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3215, "size": 9379 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Instance.0-Truncation where -- 0-trucation of groupoids as a functor from Groupoids to Setoids. -- -- This is the right-adjoint of the inclusion functor from Setoids to -- Groupoids (see Categories.Functor.Adjoint.Instance.ZeroTruncation) import Function open import Function.Equality using (_⟶_) open import Relation.Binary using (Setoid) open import Categories.Category using (Category; _[_≈_]) open import Categories.Functor hiding (id) open import Categories.Category.Groupoid using (Groupoid) open import Categories.Category.Instance.Groupoids using (Groupoids) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_) Trunc : ∀ {o ℓ e} → Functor (Groupoids o ℓ e) (Setoids o ℓ) Trunc {o} {ℓ} {e} = record { F₀ = TruncSetoid ; F₁ = λ {G H} F → TruncMap {G} {H} F ; identity = Function.id ; homomorphism = λ {_ _ _ F G} f → F₁ G (F₁ F f) ; F-resp-≈ = λ {G H} → TruncRespNI {G} {H} } where open Groupoid using (category) open Functor TruncSetoid : Groupoid o ℓ e → Setoid o ℓ TruncSetoid G = record { Carrier = Obj ; _≈_ = _⇒_ ; isEquivalence = record { refl = id ; sym = _⁻¹ ; trans = λ f g → g ∘ f } } where open Groupoid G TruncMap : ∀ {G H} → Functor (category G) (category H) → TruncSetoid G ⟶ TruncSetoid H TruncMap F = record { _⟨$⟩_ = F₀ F ; cong = F₁ F } TruncRespNI : ∀ {G H : Groupoid o ℓ e} {E F : Functor (category G) (category H)} → E ≃ F → Setoids o ℓ [ TruncMap {G} {H} E ≈ TruncMap {G} {H} F ] TruncRespNI {_} {H} {_} {F} μ {a} f = F₁ F f ∘ ⇒.η a where open Groupoid H open NaturalIsomorphism μ
{ "alphanum_fraction": 0.6059517701, "avg_line_length": 34.1929824561, "ext": "agda", "hexsha": "d7f7554a221a5bab13e12470f09c02c7bed435b9", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Instance/0-Truncation.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Instance/0-Truncation.agda", "max_line_length": 82, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Instance/0-Truncation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 610, "size": 1949 }
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Relation.Nullary.Decidable using (False; toWitnessFalse) open import Data.Fin using (Fin; _≟_) open import Data.Nat using (ℕ; suc) open import Data.Product using (_×_; _,_) open import Common data Global (n : ℕ) : Set where endG : Global n msgSingle : (p q : Fin n) -> p ≢ q -> Label -> Global n -> Global n private variable n : ℕ p p′ q q′ r s : Fin n l l′ : Label g gSub gSub′ : Global n msgSingle′ : (p q : Fin n) -> {False (p ≟ q)} -> Label -> Global n -> Global n msgSingle′ p q {p≢q} l gSub = msgSingle p q (toWitnessFalse p≢q) l gSub size-g : ∀ { n : ℕ } -> (g : Global n) -> ℕ size-g endG = 0 size-g (msgSingle _ _ _ _ gSub) = suc (size-g gSub) size-g-reduces : ∀ { p≢q } -> g ≡ msgSingle {n} p q p≢q l gSub -> size-g g ≡ suc (size-g gSub) size-g-reduces {g = endG} () size-g-reduces {g = msgSingle _ _ _ _ gSub} refl = refl msgSingle-subst-left : ∀ { p≢q } -> g ≡ msgSingle {n} p q p≢q l gSub -> (p≡p′ : p ≡ p′) -> g ≡ msgSingle {n} p′ q (≢-subst-left p≢q p≡p′) l gSub msgSingle-subst-left refl refl = refl msgSingle-subst-right : ∀ { p≢q } -> g ≡ msgSingle {n} p q p≢q l gSub -> (q≡q′ : q ≡ q′) -> g ≡ msgSingle {n} p q′ (≢-subst-right p≢q q≡q′) l gSub msgSingle-subst-right refl refl = refl msgSingle-injective : ∀ { p≢q p′≢q′ } -> msgSingle {n} p q p≢q l gSub ≡ msgSingle p′ q′ p′≢q′ l′ gSub′ -> p ≡ p′ × q ≡ q′ × l ≡ l′ × gSub ≡ gSub′ msgSingle-injective refl = refl , refl , refl , refl data _-_→g_ {n : ℕ} : Global n -> Action n -> Global n -> Set where →g-prefix : ∀ { p≢q p≢q′ } -> (msgSingle p q p≢q l gSub) - (action p q p≢q′ l) →g gSub →g-cont : ∀ { p≢q r≢s } -> gSub - (action p q p≢q l) →g gSub′ -> p ≢ r -> q ≢ r -> p ≢ s -> q ≢ s -> (msgSingle r s r≢s l′ gSub) - (action p q p≢q l) →g (msgSingle r s r≢s l′ gSub′)
{ "alphanum_fraction": 0.5631825273, "avg_line_length": 29.1363636364, "ext": "agda", "hexsha": "90e5b93b79d30e94cf42808b65b801e073370704", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fangyi-zhou/mpst-in-agda", "max_forks_repo_path": "Global.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fangyi-zhou/mpst-in-agda", "max_issues_repo_path": "Global.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fangyi-zhou/mpst-in-agda", "max_stars_repo_path": "Global.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z", "num_tokens": 815, "size": 1923 }
-- Andreas, 2012-04-21 -- {-# OPTIONS -v tc.proj.like:100 -v tc.with:100 #-} module ReifyProjectionLike where data Maybe (A : Set) : Set where just : A → Maybe A fromJust : (A : Set) → Maybe A → A fromJust A (just a) = a data Sing (A : Set) : A -> Set where sing : (a : A) -> Sing A a succeed : (A : Set) -> Maybe A -> Set succeed A m with sing (fromJust A m) ... | _ = A fail : (A : Set) -> Maybe A -> Set fail A m with sing (fromJust A m) ... | (just x) = x -- error message is wrong: -- -- just is not a constructor of the datatype Sing -- when checking that the pattern just x has type Sing A (fromJust m) -- -- the "A" got dropped from "fromJust" -- -- correct message is -- -- just is not a constructor of the datatype Sing -- when checking that the pattern just x has type Sing A (fromJust A m)
{ "alphanum_fraction": 0.6233292831, "avg_line_length": 24.9393939394, "ext": "agda", "hexsha": "69bbe98326e56ceea1ce7fb385fc2b969686fc63", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ReifyProjectionLike.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ReifyProjectionLike.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ReifyProjectionLike.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 259, "size": 823 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) module Categories.Category.Monoidal.Braided.Properties {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (BM : Braided M) where open import Data.Product using (_,_) open import Categories.Category.Monoidal.Properties M open import Categories.Category.Monoidal.Reasoning M open import Categories.Category.Monoidal.Utilities M open import Categories.Functor using (Functor) open import Categories.Morphism C using (module ≅) open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Reasoning C hiding (push-eq) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq) open Category C open Braided BM open Commutation C private variable X Y Z : Obj -- A shorthand for the braiding B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) -- It's easier to prove the following lemma, which is the desired -- coherence theorem moduolo application of the |-⊗ unit| functor. -- Because |-⊗ unit| is equivalent to the identity functor, the -- lemma and the theorem are equivalent. -- The following diagram illustrates the hexagon that we are -- operating on. The main outer hexagon is hexagon₁, the braiding -- coherence, instantiated with X, 1 and 1 (Here we denote the unit -- by 1 for brevity). -- In the middle are X1 and 1X along with morphisms towards them. -- The lower hexagon (given by the double lines) commutes and is -- an intermediary in the final proof. It is there to effectively -- get rid of the top half of the main hexagon. -- The rest of the proof is isolating the bottom left triangle -- which represents our desired identity. It is doing that by -- proving that the pentagon to the right of it commutes. -- The pentagon commuting is, in turn, proved by gluing the -- rightmost "square" onto the middle triangle. -- -- -- ┌─────> X(11) ─────────> (11)X ──────┐ -- ┌┘ α │ B │ α └┐ -- ┌┘ │id⊗λ │λ⊗id └┐ -- ┌┘ V V V -- (X1)1 ═══════> X1 ════════════> 1X <══════ 1(1X) -- ╚╗ ρ⊗id Λ <───┐ B λ Λ -- ╚╗ │λ⊗id └────────┐ ╔╝ -- ╚╗ │ λ └┐ ╔╝ -- ╚═════> (1X)1 ═════════> 1(X1) ═════╝ -- B⊗id α id⊗B braiding-coherence⊗unit : [ (X ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ unit ]⟨ B ⊗₁ id ⇒⟨ (unit ⊗₀ X) ⊗₀ unit ⟩ unitorˡ.from ⊗₁ id ≈ unitorʳ.from ⊗₁ id ⟩ braiding-coherence⊗unit = cancel-fromˡ braiding.FX≅GX ( begin B ∘ unitorˡ.from ⊗₁ id ∘ B ⊗₁ id ≈⟨ pullˡ (⟺ (glue◽◃ unitorˡ-commute-from coherence₁)) ⟩ (unitorˡ.from ∘ id ⊗₁ B ∘ associator.from) ∘ B ⊗₁ id ≈⟨ assoc²' ⟩ unitorˡ.from ∘ id ⊗₁ B ∘ associator.from ∘ B ⊗₁ id ≈⟨ refl⟩∘⟨ hexagon₁ ⟩ unitorˡ.from ∘ associator.from ∘ B ∘ associator.from ≈⟨ pullˡ coherence₁ ⟩ unitorˡ.from ⊗₁ id ∘ B ∘ associator.from ≈˘⟨ pushˡ (braiding.⇒.commute _) ⟩ (B ∘ id ⊗₁ unitorˡ.from) ∘ associator.from ≈⟨ pullʳ triangle ⟩ B ∘ unitorʳ.from ⊗₁ id ∎) -- The desired theorem follows from |braiding-coherence⊗unit| by -- translating it along the right unitor (which is a natural iso). braiding-coherence : [ X ⊗₀ unit ⇒ X ]⟨ B ⇒⟨ unit ⊗₀ X ⟩ unitorˡ.from ≈ unitorʳ.from ⟩ braiding-coherence = push-eq unitorʳ-naturalIsomorphism (begin (unitorˡ.from ∘ B) ⊗₁ id ≈⟨ homomorphism ⟩ (unitorˡ.from ⊗₁ id) ∘ (B ⊗₁ id) ≈⟨ braiding-coherence⊗unit ⟩ unitorʳ.from ⊗₁ id ∎) where open Functor (-⊗ unit) -- Shorthands for working with isomorphisms. open ≅ using () renaming (refl to idᵢ; sym to _⁻¹) infixr 9 _∘ᵢ_ private _∘ᵢ_ = λ {A B C} f g → ≅.trans {A} {B} {C} g f Bᵢ = braiding.FX≅GX B⁻¹ = λ {X} {Y} → braiding.⇐.η (X , Y) -- Variants of the hexagon identities defined on isos. hexagon₁-iso : idᵢ ⊗ᵢ Bᵢ ∘ᵢ associator ∘ᵢ Bᵢ {X , Y} ⊗ᵢ idᵢ {Z} ≃ associator ∘ᵢ Bᵢ {X , Y ⊗₀ Z} ∘ᵢ associator hexagon₁-iso = ⌞ hexagon₁ ⌟ hexagon₂-iso : (Bᵢ ⊗ᵢ idᵢ ∘ᵢ associator ⁻¹) ∘ᵢ idᵢ {X} ⊗ᵢ Bᵢ {Y , Z} ≃ (associator ⁻¹ ∘ᵢ Bᵢ {X ⊗₀ Y , Z}) ∘ᵢ associator ⁻¹ hexagon₂-iso = ⌞ hexagon₂ ⌟ -- A variants of the above coherence law defined on isos. braiding-coherence-iso : unitorˡ ∘ᵢ Bᵢ ≃ unitorʳ {X} braiding-coherence-iso = ⌞ braiding-coherence ⌟ -- The inverse of the braiding is also a braiding on M. inv-Braided : Braided M inv-Braided = record { braiding = niHelper (record { η = λ _ → B⁻¹ ; η⁻¹ = λ _ → B ; commute = λ{ (f , g) → braiding.⇐.commute (g , f) } ; iso = λ{ (X , Y) → record { isoˡ = braiding.iso.isoʳ (Y , X) ; isoʳ = braiding.iso.isoˡ (Y , X) } } }) ; hexagon₁ = _≃_.to-≈ hexagon₂-iso ; hexagon₂ = _≃_.to-≈ hexagon₁-iso } -- A variant of the above coherence law for the inverse of the braiding. inv-braiding-coherence : [ unit ⊗₀ X ⇒ X ]⟨ B⁻¹ ⇒⟨ X ⊗₀ unit ⟩ unitorʳ.from ≈ unitorˡ.from ⟩ inv-braiding-coherence = ⟺ (switch-fromtoʳ Bᵢ braiding-coherence)
{ "alphanum_fraction": 0.5672108371, "avg_line_length": 39.4383561644, "ext": "agda", "hexsha": "a61306f456609bc54e42a7c357f83b20e1e488d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TOTBWF/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Braided/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TOTBWF/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Braided/Properties.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TOTBWF/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Braided/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2073, "size": 5758 }
module Implicits.Resolution.Ambiguous.Undecidable where open import Prelude hiding (Dec) open import Relation.Nullary open import Relation.Nullary.Decidable as DecM open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Binary.HeterogeneousEquality as H using () open import Implicits.Syntax open import Implicits.Resolution.Ambiguous.Resolution open import Implicits.Resolution.Ambiguous.Semantics open import Implicits.Resolution.Ambiguous.SystemFEquiv open import Implicits.Resolution.Embedding open import Implicits.Resolution.Embedding.Lemmas open import SystemF.Everything as F using () {- Assuming undecidability of the type inhabitation problem for System F (as proven by e.g. Barendregt) we can prove the undecidability of Ambiguous resolution -} private -- type of inhabitation problem decider ?:-Dec : Set ?:-Dec = ∀ {n ν} (Γ : F.Ctx ν n) (a : F.Type ν) → Dec (∃ λ t → Γ F.⊢ t ∈ a) module Undecidable (?:-undec : ¬ ?:-Dec) where -- type of decider for ambiguous resolution ⊢ᵣ-Dec : Set ⊢ᵣ-Dec = ∀ {ν} (Δ : ICtx ν) (a : Type ν) → Dec (Δ ⊢ᵣ a) -- proof that such a decider would imply a decider for type inhabitation problem reduction : ⊢ᵣ-Dec → ?:-Dec reduction f Γ x = DecM.map (equivalent' Γ x) (f ⟦ Γ ⟧ctx← ⟦ x ⟧tp←) -- completing the proof undecidable : ¬ ⊢ᵣ-Dec undecidable f = ?:-undec (reduction f)
{ "alphanum_fraction": 0.7300435414, "avg_line_length": 32.8095238095, "ext": "agda", "hexsha": "edcb23bd6b95c59e6af0d72c8880bbf5b1356d97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Ambiguous/Undecidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Ambiguous/Undecidable.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Ambiguous/Undecidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 431, "size": 1378 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation for types which have -- a decidable equality. This is commonly known as Order Preserving -- Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Agda.Builtin.Equality using (_≡_) module Data.List.Relation.Binary.Sublist.DecPropositional {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where open import Data.List.Relation.Binary.Equality.DecPropositional _≟_ using (_≡?_) import Data.List.Relation.Binary.Sublist.DecSetoid as DecSetoidSublist import Data.List.Relation.Binary.Sublist.Propositional as PropositionalSublist open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Re-export core definitions and operations open PropositionalSublist {A = A} public open DecSetoidSublist (decSetoid _≟_) using (_⊆?_) public ------------------------------------------------------------------------ -- Additional relational properties ⊆-isDecPartialOrder : IsDecPartialOrder _≡_ _⊆_ ⊆-isDecPartialOrder = record { isPartialOrder = ⊆-isPartialOrder ; _≟_ = _≡?_ ; _≤?_ = _⊆?_ } ⊆-decPoset : DecPoset a a a ⊆-decPoset = record { isDecPartialOrder = ⊆-isDecPartialOrder }
{ "alphanum_fraction": 0.5881133379, "avg_line_length": 32.8863636364, "ext": "agda", "hexsha": "40bcb19e99e31abc346849d172172ff0d2b81f2a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecPropositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 355, "size": 1447 }
module _ where open import Agda.Primitive.Cubical open import Agda.Builtin.Nat postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} postulate A : Set a : A b : A p : PathP (\ _ → A) a b test1 : ∀ {p : PathP (\ _ → A) a a} {P : A → Set} → P (p i0) → P a test1 x = x test2 : ∀ {P : A → Set} → P (p i0) → P a test2 x = x q : (x : Nat) → PathP (\ _ → Nat) x x q zero i = zero q (suc n) i = suc (q n i) test3 : ∀ {P : Nat → Set}{n : Nat} → P (q n i0) → P n test3 x = x
{ "alphanum_fraction": 0.4990583804, "avg_line_length": 17.7, "ext": "agda", "hexsha": "98031f4dd9d11d34d51f11a16756e2081095730f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2986.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2986.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2986.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 238, "size": 531 }
module NothingAppliedToHiddenArg where bad = {x}
{ "alphanum_fraction": 0.7843137255, "avg_line_length": 10.2, "ext": "agda", "hexsha": "3f2981d86b40afa00b1d16bb33bcf579e385b5cd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NothingAppliedToHiddenArg.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NothingAppliedToHiddenArg.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NothingAppliedToHiddenArg.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 51 }
module Utils.Decidable where open import Data.Nat open import Data.Char open import Data.String open import Data.Bool open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable hiding (True; False) open import Relation.Nullary open import Data.Product open import Data.Sum open import Function import Level as L {- A type class for decidable types. The part we actually end up using in the formal semantics proofs is mostly decidable equality (_≡⁇_). -} _=>_ : ∀ {α β} → Set α → Set β → Set (α L.⊔ β) Dict => A = ⦃ _ : Dict ⦄ → A infixr 5 _=>_ record Decidable {a}(A : Set a) : Set a where constructor rec field decide : Dec A DecRel : ∀ {a b}{A : Set a}{B : Set b} → (A → B → Set (a L.⊔ b)) → Set (a L.⊔ b) DecRel Rel = ∀ {x y} → Decidable (Rel x y) DecEq : ∀ {a} → Set a → Set a DecEq A = DecRel (_≡_ {_} {A}) _⁇ : ∀ {a} A → Decidable {a} A => Dec A _⁇ A ⦃ dict ⦄ = Decidable.decide dict _≡⁇_ : ∀ {a A} → DecEq {a} A => ((x y : A) → Dec (x ≡ y)) x ≡⁇ y = (x ≡ y) ⁇ True : ∀ {a} A → Decidable {a} A => Set True A = T ⌊ A ⁇ ⌋ F : Bool → Set F = T ∘ not False : ∀ {a} A → Decidable {a} A => Set False A = F ⌊ A ⁇ ⌋ _≤⁇_ : ∀ a b → Dec (a ≤ b) _≤⁇_ = _≤?_ _<⁇_ : ∀ a b → Dec (a < b) a <⁇ b = suc a ≤⁇ b module _ where open import Data.Nat.Properties _≤′⁇_ : ∀ a b → Dec (a ≤′ b) _≤′⁇_ a b with a ≤⁇ b ... | yes p = yes (≤⇒≤′ p) ... | no p = no (p ∘ ≤′⇒≤) _<′⁇_ : ∀ a b → Dec (a <′ b) a <′⁇ b = suc a ≤′⁇ b instance DecEqBool : DecEq Bool DecEqBool = rec (_ Data.Bool.≟ _) instance DecEqChar : DecEq Char DecEqChar = rec (_ Data.Char.≟ _) module _ where open import Data.Fin open import Data.Fin.Properties instance DecEqFin : ∀ {n} → DecEq (Fin n) DecEqFin = rec (_ Data.Fin.Properties.≟ _) instance DecEqℕ : DecEq ℕ DecEqℕ = rec (_ Data.Nat.≟ _) instance DecEqString : DecEq String DecEqString = rec (_ Data.String.≟ _) instance Decℕ≤ : DecRel _≤_ Decℕ≤ = rec (_ ≤⁇ _) instance Decℕ≤′ : DecRel _≤′_ Decℕ≤′ = rec (_ ≤′⁇ _) -- Conversions between decidable / boolean -------------------------------------------------- T→∧ : ∀ {a b} → T (a ∧ b) → T a × T b T→∧ {true} {true} x = _ T→∧ {true} {false} () T→∧ {false} () ∧→T : ∀ {a b} → T a → T b → T (a ∧ b) ∧→T {true} {true} p1 p2 = _ ∧→T {true} {false} p1 () ∧→T {false} () p2 F-not-elim : ∀ {b} → F (not b) → T b F-not-elim {true} p = p F-not-elim {false} p = p F-not-add : ∀ {b} → T b → F (not b) F-not-add {true} p = p F-not-add {false} p = p F-not-≡ : ∀ b → T b ≡ F (not b) F-not-≡ true = refl F-not-≡ false = refl TrueA→A : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → True A → A TrueA→A = toWitness FalseA→¬A : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → False A → ¬ A FalseA→¬A = toWitnessFalse A→TrueA : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → A → True A A→TrueA = fromWitness ¬A→FalseA : ∀ {a A}⦃ _ : Decidable {a} A ⦄ → ¬ A → False A ¬A→FalseA = fromWitnessFalse T→≡true : ∀ {b} → T b → b ≡ true T→≡true {true} p = refl T→≡true {false} () ≡true→T : ∀ {b} → b ≡ true → T b ≡true→T {true} p = _ ≡true→T {false} () ≡false→F : ∀ {b} → b ≡ false → F b ≡false→F {true} () ≡false→F {false} p = _ F→≡false : ∀ {b} → F b → b ≡ false F→≡false {true} () F→≡false {false} p = refl A→≡true : ∀ {a A}{Q : Dec {a} A} → A → ⌊ Q ⌋ ≡ true A→≡true = T→≡true ∘ fromWitness ¬A→≡false : ∀ {a A}{Q : Dec {a} A} → ¬ A → ⌊ Q ⌋ ≡ false ¬A→≡false = F→≡false ∘ fromWitnessFalse ≡true→A : ∀ {a A}{Q : Dec {a} A} → ⌊ Q ⌋ ≡ true → A ≡true→A = toWitness ∘ ≡true→T ≡false→¬A : ∀ {a A}{Q : Dec {a} A} → ⌊ Q ⌋ ≡ false → ¬ A ≡false→¬A = toWitnessFalse ∘ ≡false→F ----------------------------------------------------------- instance Dec¬ : ∀ {α A} → Decidable {α} A => Decidable (¬ A) Dec¬ {_}{A} = rec dec¬ where dec¬ : Dec (¬ A) dec¬ with A ⁇ ... | yes p = no (λ z → z p) ... | no ¬p = yes ¬p instance Dec⊎ : ∀ {α β A B} → Decidable {α} A => Decidable {β} B => Decidable (A ⊎ B) Dec⊎ {_}{_}{A}{B} = rec dec⊎ where dec⊎ : Dec (A ⊎ B) dec⊎ with A ⁇ | B ⁇ ... | yes p | _ = yes (inj₁ p) ... | _ | yes p = yes (inj₂ p) ... | no ¬p₁ | no ¬p₂ = no [ ¬p₁ , ¬p₂ ]′ instance Dec× : ∀ {α β A B} → Decidable {α} A => Decidable {β} B => Decidable (A × B) Dec× {_}{_}{A}{B} = rec dec× where dec× : Dec (A × B) dec× with A ⁇ | B ⁇ ... | yes p | yes p₁ = yes (p , p₁) ... | yes p | no ¬p = no (¬p ∘ proj₂) ... | no ¬p | _ = no (¬p ∘ proj₁)
{ "alphanum_fraction": 0.5004415011, "avg_line_length": 21.0697674419, "ext": "agda", "hexsha": "144cd033501a0b00fa0819346c1bc1b524194f2e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Utils/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Utils/Decidable.agda", "max_line_length": 80, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Utils/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 1991, "size": 4530 }
-- pull in Haskell Ints module int where open import bool open import string postulate int : Set int0 : int int1 : int _+int_ : int → int → int _*int_ : int → int → int _-int_ : int → int → int string-to-int : string → int is-zero-int : int → 𝔹 {-# COMPILED_TYPE int Int #-} {-# COMPILED int0 0 #-} {-# COMPILED int1 1 #-} {-# COMPILED _+int_ (+) #-} {-# COMPILED _*int_ (*) #-} {-# COMPILED _-int_ (-) #-} {-# COMPILED string-to-int (\ x -> read x :: Int) #-} {-# COMPILED is-zero-int ((==) 0) #-}
{ "alphanum_fraction": 0.5694980695, "avg_line_length": 21.5833333333, "ext": "agda", "hexsha": "e0d138657692a90b445358f4cbd2f7546dd8b883", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "int.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 518 }
-- {-# OPTIONS -v tc.rec:100 -v tc.signature:20 #-} module Issue414 where record P : Set₁ where field q : Set x : P x = record { q = q } -- Andreas 2011-05-19 -- record constructor should have been added to the signature -- before record module is constructed!
{ "alphanum_fraction": 0.6605839416, "avg_line_length": 21.0769230769, "ext": "agda", "hexsha": "8b15788575a650095395d8ba9b3b80784ab1f93e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue414.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue414.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue414.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 79, "size": 274 }
------------------------------------------------------------------------ -- Contexts, variables, context morphisms, context extensions, etc. ------------------------------------------------------------------------ -- The contexts, variables, etc. are parametrised by a universe. open import Data.Universe.Indexed module deBruijn.Context {i u e} (Uni : IndexedUniverse i u e) where -- Contexts, variables, context morphisms, etc. import deBruijn.Context.Basics as Basics open Basics Uni public -- Context extensions with the rightmost element in the outermost -- position. import deBruijn.Context.Extension.Right as Right open Right Uni public -- Context extensions with the leftmost element in the outermost -- position. import deBruijn.Context.Extension.Left as Left open Left Uni public -- The two definitions of context extensions are isomorphic. import deBruijn.Context.Extension.Isomorphic as Isomorphic open Isomorphic Uni public -- An abstraction: term-like things. import deBruijn.Context.Term-like as Term-like open Term-like Uni public
{ "alphanum_fraction": 0.6804901037, "avg_line_length": 27.9210526316, "ext": "agda", "hexsha": "8f099c66bc485717b86c0a9c03a6aad8db6844d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Context.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Context.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Context.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 216, "size": 1061 }
data D : Set where c : D s : D → D predD : D → D predD c = c predD (s x) = x f : D → D f c = c f (s n) with c f x@(s _) | c = x f (s _) | s _ = c data E : D → Set where e : E c s : ∀ {x} → E x → E (s x) predE : ∀ {d} → E d → E (predD d) predE e = e predE (s x) = x g : ∀ {d} → E d → E (predD d) g e = e g (s x) with x g y@(s _) | s z = predE y g (s z@e) | e = predE z
{ "alphanum_fraction": 0.4230769231, "avg_line_length": 13.4482758621, "ext": "agda", "hexsha": "434bc2c1138ff724b9d07cfe5375cc39dfc0111c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2313.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2313.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2313.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 201, "size": 390 }
module Everything where import Prelude import Stack import Syntax import ProposedSemantics import Semantics.Ono import Semantics.BozicDosen import Semantics.AlechinaEtAl import Semantics.Iemhoff import CompleteProposedSemantics import CompleteSemantics.Ono import CompleteSemantics.BozicDosen import CompleteSemantics.AlechinaEtAl import CompleteSemantics.Iemhoff
{ "alphanum_fraction": 0.8885869565, "avg_line_length": 19.3684210526, "ext": "agda", "hexsha": "3567f065024b6ea5117c69d68a45e75f42ce4572", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/imla2017", "max_forks_repo_path": "src/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/imla2017", "max_issues_repo_path": "src/Everything.agda", "max_line_length": 37, "max_stars_count": 17, "max_stars_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/imla2017", "max_stars_repo_path": "src/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-17T13:02:58.000Z", "max_stars_repo_stars_event_min_datetime": "2017-02-27T05:04:55.000Z", "num_tokens": 93, "size": 368 }
{-# OPTIONS --cubical --safe #-} open import Prelude hiding (sym; refl) open import Relation.Binary module Relation.Binary.Lattice {ℓ₁ ℓ₂ ℓ₃} {𝑆 : Type ℓ₁} (totalOrder : TotalOrder 𝑆 ℓ₂ ℓ₃) where open TotalOrder totalOrder import Path as ≡ min-max : 𝑆 → 𝑆 → 𝑆 × 𝑆 min-max x y = bool′ (y , x) (x , y) (x <ᵇ y) _⊔_ : 𝑆 → 𝑆 → 𝑆 x ⊔ y = snd (min-max x y) _⊓_ : 𝑆 → 𝑆 → 𝑆 x ⊓ y = fst (min-max x y) min-max-assoc : ∀ x y z → map-Σ (_⊓ z) (_⊔ z) (min-max x y) ≡ map-Σ (x ⊓_) (x ⊔_) (min-max y z) min-max-assoc x y z with x <? y | inspect (x <ᵇ_) y | y <? z | inspect (y <ᵇ_) z min-max-assoc x y z | yes x≤y | 〖 xyp 〗 | yes y≤z | 〖 yzp 〗 with x <? z min-max-assoc x y z | yes x≤y | 〖 xyp 〗 | yes y≤z | 〖 yzp 〗 | yes x≤z = cong₂ _,_ (cong (fst ∘ bool _ _) (≡.sym xyp)) (cong (snd ∘ bool _ _) yzp) min-max-assoc x y z | yes x≤y | 〖 xyp 〗 | yes y≤z | 〖 yzp 〗 | no x≥z = ⊥-elim (x≥z (<-trans x≤y y≤z)) min-max-assoc x y z | no x≥y | 〖 xyp 〗 | yes y≤z | 〖 yzp 〗 = cong (_, (x ⊔ z)) (cong (fst ∘ bool _ _) yzp ; cong (fst ∘ bool _ _) (≡.sym xyp)) min-max-assoc x y z | yes x≤y | 〖 xyp 〗 | no y≥z | 〖 yzp 〗 = cong ((x ⊓ z) ,_) (cong (snd ∘ bool _ _) yzp ; cong (snd ∘ bool _ _) (≡.sym xyp)) min-max-assoc x y z | no x≥y | 〖 xyp 〗 | no y≥z | 〖 yzp 〗 with x <? z min-max-assoc x y z | no x≥y | 〖 xyp 〗 | no y≥z | 〖 yzp 〗 | no x≥z = cong₂ _,_ (cong (fst ∘ bool _ _) yzp) (cong (snd ∘ bool _ _) (≡.sym xyp)) min-max-assoc x y z | no x≥y | 〖 xyp 〗 | no y≥z | 〖 yzp 〗 | yes x≤z = cong₂ _,_ (cong (fst ∘ bool _ _) yzp ; lemma) (lemma ; cong (snd ∘ bool _ _) (≡.sym xyp)) where lemma : z ≡ x lemma = antisym (≤-trans (≮⇒≥ y≥z) (≮⇒≥ x≥y)) (<⇒≤ x≤z) ⊓-assoc : ∀ x y z → (x ⊓ y) ⊓ z ≡ x ⊓ (y ⊓ z) ⊓-assoc x y z = cong fst (min-max-assoc x y z) ⊔-assoc : ∀ x y z → (x ⊔ y) ⊔ z ≡ x ⊔ (y ⊔ z) ⊔-assoc x y z = cong snd (min-max-assoc x y z) min-max-comm : ∀ x y → min-max x y ≡ min-max y x min-max-comm x y with x <? y | y <? x min-max-comm x y | yes x<y | yes y<x = ⊥-elim (asym x<y y<x) min-max-comm x y | no x≮y | yes y<x = ≡.refl min-max-comm x y | yes x<y | no y≮x = ≡.refl min-max-comm x y | no x≮y | no y≮x = cong₂ _,_ (conn y≮x x≮y) (conn x≮y y≮x) ⊓-comm : ∀ x y → x ⊓ y ≡ y ⊓ x ⊓-comm x y = cong fst (min-max-comm x y) ⊔-comm : ∀ x y → x ⊔ y ≡ y ⊔ x ⊔-comm x y = cong snd (min-max-comm x y) min-max-idem : ∀ x → min-max x x ≡ (x , x) min-max-idem x = bool {P = λ r → bool′ (x , x) (x , x) r ≡ (x , x)} ≡.refl ≡.refl (x <ᵇ x) ⊓-idem : ∀ x → x ⊓ x ≡ x ⊓-idem x = cong fst (min-max-idem x) ⊔-idem : ∀ x → x ⊔ x ≡ x ⊔-idem x = cong snd (min-max-idem x) ≤⊔ : ∀ x y → x ≤ x ⊔ y ≤⊔ x y with x <? y ≤⊔ x y | yes x<y = <⇒≤ x<y ≤⊔ x y | no x≮y = refl ⊓≤ : ∀ x y → x ⊓ y ≤ x ⊓≤ x y with x <? y ⊓≤ x y | yes x<y = refl ⊓≤ x y | no x≮y = ≮⇒≥ x≮y
{ "alphanum_fraction": 0.5025436047, "avg_line_length": 38.2222222222, "ext": "agda", "hexsha": "3e0d96523ee4ed749afd3ca09e445c6ce5b418b0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Lattice.agda", "max_line_length": 161, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Lattice.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1497, "size": 2752 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.CupProduct.OnEM.InAllDegrees open import cohomology.CupProduct.OnEM.CommutativityInAllDegrees open import cohomology.EMModel open import cohomology.Theory open import groups.ToOmega open import homotopy.EilenbergMacLane open import homotopy.EilenbergMacLaneFunctor open import homotopy.Freudenthal open import homotopy.SuspensionLoopSpaceInverse module cohomology.CupProduct.Definition {i} (X : Ptd i) where private module M {k} (A : AbGroup k) = CohomologyTheory (EM-Cohomology A) open M ⊙×-diag : X ⊙→ X ⊙× X ⊙×-diag = (λ x → x , x) , idp smin-map : ∀ {j k} {Y : Ptd j} {Z : Ptd k} → X ⊙→ Y → X ⊙→ Z → X ⊙→ Y ⊙× Z smin-map f g = ⊙×-fmap f g ⊙∘ ⊙×-diag smin-map-⊙×-swap : ∀ {j k} (Y : Ptd j) (Z : Ptd k) (f : X ⊙→ Y) (g : X ⊙→ Z) → ⊙×-swap ⊙∘ smin-map g f == smin-map f g smin-map-⊙×-swap Y Z (_ , idp) (_ , idp) = idp module _ (G : AbGroup i) (H : AbGroup i) where private module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G open EMExplicit ⊙Ω×-cp-seq : ∀ (m n : ℕ) → (⊙Ω (⊙EM G (S m)) ⊙× ⊙Ω (⊙EM H (S n))) ⊙–→ ⊙Ω (⊙EM G⊗H.abgroup (S (m + n))) ⊙Ω×-cp-seq m n = ⊙<– (spectrum G⊗H.abgroup (m + n)) ◃⊙∘ ⊙×-cp G H m n ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf ⊙Ω×-cp : ∀ (m n : ℕ) → ⊙Ω (⊙EM G (S m)) ⊙× ⊙Ω (⊙EM H (S n)) ⊙→ ⊙Ω (⊙EM G⊗H.abgroup (S (m + n))) ⊙Ω×-cp m n = ⊙compose (⊙Ω×-cp-seq m n) _∪_ : ∀ {m n : ℕ} → CEl G (pos m) X → CEl H (pos n) X → CEl G⊗H.abgroup (pos (m + n)) X _∪_ {m} {n} = Trunc-fmap2 {n = 0} (λ s' t' → ⊙Ω×-cp m n ⊙∘ smin-map s' t') module _ (G : AbGroup i) (H : AbGroup i) where private module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G open EMExplicit abstract ⊙Ω×-cp-comm : ∀ (m n : ℕ) → ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ◃⊙∘ ⊙Ω×-cp G H m n ◃⊙idf =⊙∘ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙Ω×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙idf ⊙Ω×-cp-comm m n = ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ◃⊙∘ ⊙Ω×-cp G H m n ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand (⊙Ω×-cp-seq G H m n) ⟩ ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ◃⊙∘ ⊙<– (spectrum G⊗H.abgroup (m + n)) ◃⊙∘ ⊙×-cp G H m n ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙<–-spectrum-natural G⊗H.abgroup H⊗G.abgroup G⊗H.swap (m + n) ⟩ ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙<– (spectrum H⊗G.abgroup (m + n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (m + n) ◃⊙∘ ⊙×-cp G H m n ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm m n) (λ k → ⊙<– (spectrum H⊗G.abgroup k)) ⟩ ⊙<– (spectrum H⊗G.abgroup (n + m)) ◃⊙∘ ⊙transport (λ k → ⊙EM H⊗G.abgroup k) (+-comm m n) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (m + n) ◃⊙∘ ⊙×-cp G H m n ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙×-cp-comm G H m n ⟩ ⊙<– (spectrum H⊗G.abgroup (n + m)) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (n + m) (and (odd m) (odd n)) ◃⊙∘ ⊙×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙transport-natural-=⊙∘ (Bool-elim (inv-path H⊗G.abgroup) idp (and (odd m) (odd n))) (λ A → ⊙<– (spectrum A (n + m))) ⟩ ⊙transport (λ A → ⊙Ω (⊙EM A (S (n + m)))) neg ◃⊙∘ ⊙<– (spectrum H⊗G.abgroup (n + m)) ◃⊙∘ ⊙×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ⊙transport-⊙coe (λ A → ⊙Ω (⊙EM A (S (n + m)))) neg ∙ ap ⊙coe (ap-∘ ⊙Ω (λ A → ⊙EM A (S (n + m))) neg) ∙ ! (⊙transport-⊙coe ⊙Ω (ap (λ A → ⊙EM A (S (n + m))) neg)) ∙ ⊙transport-⊙Ω (ap (λ A → ⊙EM A (S (n + m))) neg) ∙ ap ⊙Ω-fmap (! (⊙transport-⊙coe (λ A → ⊙EM A (S (n + m))) neg)) ⟩ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙<– (spectrum H⊗G.abgroup (n + m)) ◃⊙∘ ⊙×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-fmap (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ◃⊙idf =⊙∘⟨ 3 & 2 & =⊙∘-in {gs = ⊙×-fmap (⊙–> (spectrum H n)) (⊙–> (spectrum G m)) ◃⊙∘ ⊙×-swap ◃⊙idf} $ ! $ ⊙λ= $ ⊙×-swap-natural (⊙–> (spectrum G m)) (⊙–> (spectrum H n)) ⟩ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙<– (spectrum H⊗G.abgroup (n + m)) ◃⊙∘ ⊙×-cp H G n m ◃⊙∘ ⊙×-fmap (⊙–> (spectrum H n)) (⊙–> (spectrum G m)) ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙contract ⟩ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙Ω×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ where neg : H⊗G.abgroup == H⊗G.abgroup neg = Bool-elim (inv-path H⊗G.abgroup) idp (and (odd m) (odd n)) ∪-swap : ∀ (m n : ℕ) → CEl G⊗H.abgroup (pos (m + n)) X → CEl H⊗G.abgroup (pos (n + m)) X ∪-swap m n = transport (λ k → CEl H⊗G.abgroup (pos k) X) (+-comm m n) ∘ EM-CEl-coeff-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (pos (m + n)) X maybe-inv : ∀ (n : ℤ) → Bool → CEl H⊗G.abgroup n X → CEl H⊗G.abgroup n X maybe-inv n = Bool-rec (Group.inv (C H⊗G.abgroup n X)) (idf _) private _G∪H_ = _∪_ G H _H∪G_ = _∪_ H G ∪-comm : ∀ {m n : ℕ} (s : CEl G (pos m) X) (t : CEl H (pos n) X) → ∪-swap m n (s G∪H t) == maybe-inv (pos (n + m)) (and (odd m) (odd n)) (t H∪G s) ∪-comm {m} {n} = Trunc-elim {{λ s → Π-level (λ t → =-preserves-level Trunc-level)}} $ λ s' → Trunc-elim {{λ t → =-preserves-level Trunc-level}} $ λ t' → transport (λ k → CEl H⊗G.abgroup (pos k) X) (+-comm m n) [ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ⊙∘ ⊙Ω×-cp G H m n ⊙∘ smin-map s' t' ] =⟨ app= step₁ [ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ⊙∘ ⊙Ω×-cp G H m n ⊙∘ smin-map s' t' ] ⟩ [ ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ⊙∘ ⊙Ω×-cp G H m n ⊙∘ smin-map s' t' ] =⟨ ap [_] (=⊙∘-out (step₂ s' t')) ⟩ Trunc-fmap (⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ⊙∘_) [ ⊙Ω×-cp H G n m ⊙∘ smin-map t' s' ] =⟨ app= (step₃ (n + m) (and (odd m) (odd n))) [ ⊙Ω×-cp H G n m ⊙∘ smin-map t' s' ] ⟩ maybe-inv (pos (n + m)) (and (odd m) (odd n)) [ ⊙Ω×-cp H G n m ⊙∘ smin-map t' s' ] =∎ where step₁ : transport (λ k → CEl H⊗G.abgroup (pos k) X) (+-comm m n) == Trunc-fmap (⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ⊙∘_) step₁ = transport (λ k → CEl H⊗G.abgroup (pos k) X) (+-comm m n) =⟨ ap coe (ap-∘ (Trunc 0) (λ k → X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) ⟩ transport (Trunc 0) (ap (λ k → X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) =⟨ transport-Trunc (ap (λ k → X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) ⟩ Trunc-fmap (transport (λ k → X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) =⟨ ap (Trunc-fmap ∘ coe) (ap-∘ (X ⊙→_) (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) ⟩ Trunc-fmap (transport (X ⊙→_) (ap (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n))) =⟨ ap Trunc-fmap $ λ= $ transport-post⊙∘ X (ap (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) ⟩ Trunc-fmap (⊙coe (ap (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n)) ⊙∘_) =⟨ ap (λ g → Trunc-fmap (g ⊙∘_)) $ ! $ ⊙transport-⊙coe (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ⟩ Trunc-fmap (⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ⊙∘_) =∎ step₂ : ∀ (s' : X ⊙→ ⊙Ω (⊙EM G (S m))) (t' : X ⊙→ ⊙Ω (⊙EM H (S n))) → ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ◃⊙∘ ⊙Ω×-cp G H m n ◃⊙∘ smin-map s' t' ◃⊙idf =⊙∘ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙Ω×-cp H G n m ◃⊙∘ smin-map t' s' ◃⊙idf step₂ s' t' = ⊙transport (λ k → ⊙Ω (⊙EM H⊗G.abgroup (S k))) (+-comm m n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + n))) ◃⊙∘ ⊙Ω×-cp G H m n ◃⊙∘ smin-map s' t' ◃⊙idf =⊙∘⟨ 0 & 3 & ⊙Ω×-cp-comm m n ⟩ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙Ω×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙∘ smin-map s' t' ◃⊙idf =⊙∘⟨ 2 & 2 & =⊙∘-in {gs = smin-map t' s' ◃⊙idf} $ smin-map-⊙×-swap (⊙Ω (⊙EM H (S n))) (⊙Ω (⊙EM G (S m))) t' s' ⟩ ⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S (n + m)) (and (odd m) (odd n))) ◃⊙∘ ⊙Ω×-cp H G n m ◃⊙∘ smin-map t' s' ◃⊙idf ∎⊙∘ step₃ : ∀ (k : ℕ) (b : Bool) → Trunc-fmap (⊙Ω-fmap (⊙cond-neg H⊗G.abgroup (S k) b) ⊙∘_) == maybe-inv (pos k) b step₃ k false = Trunc-fmap (⊙Ω-fmap (⊙idf (⊙EM H⊗G.abgroup (S k))) ⊙∘_) =⟨ ap (λ g → Trunc-fmap (g ⊙∘_)) ⊙Ω-fmap-idf ⟩ Trunc-fmap (⊙idf (⊙Ω (⊙EM H⊗G.abgroup (S k))) ⊙∘_) =⟨ ap Trunc-fmap (λ= (⊙λ= ∘ ⊙∘-unit-l)) ⟩ Trunc-fmap (idf (X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k)))) =⟨ λ= Trunc-fmap-idf ⟩ idf (Trunc 0 (X ⊙→ ⊙Ω (⊙EM H⊗G.abgroup (S k)))) =∎ step₃ k true = Trunc-fmap (⊙Ω-fmap (⊙transport (λ A → ⊙EM A (S k)) (inv-path H⊗G.abgroup)) ⊙∘_) =⟨ ap (λ f → Trunc-fmap (⊙Ω-fmap f ⊙∘_)) $ ⊙transport-⊙EM-uaᴬᴳ H⊗G.abgroup H⊗G.abgroup (inv-iso H⊗G.abgroup) (S k) ⟩ Trunc-fmap (⊙Ω-fmap (⊙EM-fmap H⊗G.abgroup H⊗G.abgroup (inv-hom H⊗G.abgroup) (S k)) ⊙∘_) =⟨ ap GroupHom.f (EM-C-coeff-fmap-inv-hom H⊗G.abgroup (pos k) X) ⟩ Group.inv (C H⊗G.abgroup (pos k) X) =∎
{ "alphanum_fraction": 0.457685158, "avg_line_length": 44.0560344828, "ext": "agda", "hexsha": "e942301491e02ec5ba8f7e1f2ee00875873c1636", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CupProduct/Definition.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CupProduct/Definition.agda", "max_line_length": 105, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CupProduct/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 5718, "size": 10221 }
open import Agda.Builtin.Unit data D : Set where c₁ c₂ : D @0 c₃ : D f : @0 D → ⊤ f c₁ = tt f c₂ = tt f c₃ = tt
{ "alphanum_fraction": 0.5508474576, "avg_line_length": 10.7272727273, "ext": "agda", "hexsha": "7cb9d2ff6f2263b28b72f312a8982a610d0d1907", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4638-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4638-1.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4638-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 118 }
------------------------------------------------------------------------ -- This file contains the definition of a preorder as a category with -- -- additional properties. -- ------------------------------------------------------------------------ module Category.Poset where open import Level renaming (suc to lsuc) open import Data.List open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Empty open import Data.Unit open import Setoid.Total open import Category.Category open import Category.Preorder open import Equality.Eq record Poset {l : Level} : Set (lsuc l) where field -- The underlying category. 𝕊 : PO {l} -- The poset axiom. PSax : ∀{A B}{f : el (Hom (po-cat 𝕊) A B)}{g : el (Hom (po-cat 𝕊) B A)} → A ≅ B open Poset public renaming (𝕊 to poset-cat) _≇_ : {l : Level}{A B : Set l} → (a : A) → (b : B) → Set l a ≇ b = (a ≅ b → ⊥) postulate eq-dec : ∀{l}{A B : Set l} → (a : A) → (b : B) → a ≅ b ⊎ a ≇ b PosetCat : {l : Level} → (J : Poset {l}) → Cat {l} PosetCat J = (po-cat (poset-cat J)) PosetObj : {l : Level} → (J : Poset {l}) → Set l PosetObj J = Obj (PosetCat J)
{ "alphanum_fraction": 0.527333894, "avg_line_length": 30.4871794872, "ext": "agda", "hexsha": "9cad590b0dcfda5a8fe772da7448f5c497f75460", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/Poset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/Poset.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/Poset.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 354, "size": 1189 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids module Setoids.Functions.Definition {a b c d : _} {A : Set a} {B : Set b} where WellDefined : (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) → Set (a ⊔ c ⊔ d) WellDefined S T f = {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)
{ "alphanum_fraction": 0.5994832041, "avg_line_length": 38.7, "ext": "agda", "hexsha": "1f04e6cf67ffdfe1c4f7918233f83c1853a59384", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Functions/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Functions/Definition.agda", "max_line_length": 89, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Functions/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 154, "size": 387 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver module cohomology.TwoPushouts where -- g h -- B --> C --> D K = A ⊔^B C / (f,g) d₁ = A <- B -> C -- f| | | L = K ⊔^C D / (left,h) d₂ = K <- C -> D -- v v v d = A <- B -> D -- A --> K --> L -- module TwoPushoutsEquiv {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : B → A) (g : B → C) (h : C → D) where private d₁ : Span d₁ = span A C B f g d₂ : Span d₂ = span (Pushout d₁) D C right h d : Span d = span A D B f (h ∘ g) module Inner = PushoutRec {d = d₁} {D = Pushout d} left (right ∘ h) glue module Into = PushoutRec {d = d} {D = Pushout d₂} (left ∘ left) right (λ b → ap left (glue b) ∙ glue (g b)) into : Pushout d -> Pushout d₂ into = Into.f module Out = PushoutRec {d = d₂} {D = Pushout d} Inner.f right (λ _ → idp) out : Pushout d₂ → Pushout d out = Out.f private square-extend-tr : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ b : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (q : a₁₀ == b) → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ (p₋₀ ∙ q) p₋₁ (! q ∙' p₁₋) square-extend-tr idp ids = ids square-corner-bl : ∀ {i} {A : Type i} {a₀ a₁ : A} (q : a₀ == a₁) → Square (! q) idp q idp square-corner-bl idp = ids into-inner : (k : Pushout d₁) → into (Inner.f k) == left k into-inner = Pushout-elim (λ a → idp) (λ c → ! (glue c)) (λ b → ↓-='-from-square $ (ap-∘ into Inner.f (glue b) ∙ ap (ap into) (Inner.glue-β b) ∙ Into.glue-β b) ∙v⊡ square-extend-tr (glue (g b)) vid-square) abstract into-out : (l : Pushout d₂) → into (out l) == l into-out = Pushout-elim into-inner (λ d → idp) (λ c → ↓-∘=idf-from-square into out $ ap (ap into) (Out.glue-β c) ∙v⊡ square-corner-bl (glue c)) out-into : (l : Pushout d) → out (into l) == l out-into = Pushout-elim (λ a → idp) (λ d → idp) (λ b → ↓-∘=idf-from-square out into $ vert-degen-square $ ap out (ap into (glue b)) =⟨ ap (ap out) (Into.glue-β b) ⟩ ap out (ap left (glue b) ∙ glue (g b)) =⟨ ap-∙ out (ap left (glue b)) (glue (g b)) ⟩ ap out (ap left (glue b)) ∙ ap out (glue (g b)) =⟨ ∘-ap out left (glue b) |in-ctx (λ w → w ∙ ap out (glue (g b))) ⟩ ap Inner.f (glue b) ∙ ap out (glue (g b)) =⟨ Out.glue-β (g b) |in-ctx (λ w → ap Inner.f (glue b) ∙ w) ⟩ ap Inner.f (glue b) ∙ idp =⟨ ∙-unit-r _ ⟩ ap Inner.f (glue b) =⟨ Inner.glue-β b ⟩ glue b ∎) two-pushouts-equiv : Pushout d ≃ Pushout d₂ two-pushouts-equiv = equiv into out into-out out-into two-pushouts : Lift {j = lmax l (lmax k (lmax j i))} (Pushout d) == Pushout d₂ two-pushouts = ua (two-pushouts-equiv ∘e lift-equiv) two-pushouts-left : lift ∘ left == left ∘ left [ (λ E → (A → E)) ↓ two-pushouts ] two-pushouts-left = codomain-over-equiv _ _ two-pushouts-right : lift ∘ right == right [ (λ E → (D → E)) ↓ two-pushouts ] two-pushouts-right = codomain-over-equiv _ _ two-pushouts-inner : lift ∘ Inner.f == left [ (λ E → (Pushout d₁ → E)) ↓ two-pushouts ] two-pushouts-inner = codomain-over-equiv _ _ ▹ λ= into-inner -- g h -- Y --> Z --> W K = X ⊔^Y Y / (f,g) ps₁ = X <- Y -> Z -- f| | | L = Z ⊔^Z W / (left,h) ps₂ = K <- Z -> W -- v v v ps = X <- Y -> W -- X --> K --> L -- module TwoPushoutsPtd {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (f : fst (Y ⊙→ X)) (g : fst (Y ⊙→ Z)) (h : fst (Z ⊙→ W)) where private ps₁ = ⊙span X Z Y f g ps₂ = ⊙span (⊙Pushout ps₁) W Z (⊙right ps₁) h ps = ⊙span X W Y f (h ⊙∘ g) open TwoPushoutsEquiv (fst f) (fst g) (fst h) public two-pushouts-ptd : ⊙Lift {j = lmax l (lmax k (lmax j i))} (⊙Pushout ps) == ⊙Pushout ps₂ two-pushouts-ptd = ⊙ua (two-pushouts-equiv ∘e lift-equiv) idp two-pushouts-⊙left : ⊙lift ⊙∘ ⊙left ps == ⊙left ps₂ ⊙∘ ⊙left ps₁ [ (λ V → fst (X ⊙→ V)) ↓ two-pushouts-ptd ] two-pushouts-⊙left = codomain-over-⊙equiv _ _ _ two-pushouts-⊙right : ⊙lift ⊙∘ ⊙right ps == ⊙right ps₂ [ (λ V → fst (W ⊙→ V)) ↓ two-pushouts-ptd ] two-pushouts-⊙right = codomain-over-⊙equiv _ _ _ ▹ pair= idp (lemma f g h) where lemma : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (f : fst (Y ⊙→ X)) (g : fst (Y ⊙→ Z)) (h : fst (Z ⊙→ W)) → ap (TwoPushoutsEquiv.into (fst f) (fst g) (fst h) ∘ lower {j = lmax l (lmax k (lmax j i))}) (snd (⊙lift ⊙∘ ⊙right (⊙span X W Y f (h ⊙∘ g)))) ∙ idp == ap right (! (snd h)) ∙ ! (glue (snd Z)) ∙' ap left (snd (⊙right (⊙span X Z Y f g))) lemma {Y = Y} (f , idp) (g , idp) (h , idp) = ap (2P.into ∘ lower) (ap lift (! (glue (snd Y))) ∙ idp) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (2P.into ∘ lower) (ap lift (! (glue (snd Y))) ∙ idp) =⟨ ∙-unit-r _ |in-ctx (ap (2P.into ∘ lower)) ⟩ ap (2P.into ∘ lower) (ap lift (! (glue (snd Y)))) =⟨ ∘-ap (2P.into ∘ lower) lift _ ⟩ ap 2P.into (! (glue (snd Y))) =⟨ ap-! 2P.into (glue (snd Y)) ⟩ ! (ap 2P.into (glue (snd Y))) =⟨ 2P.Into.glue-β (snd Y) |in-ctx ! ⟩ ! (ap left (glue (snd Y)) ∙ glue (g (snd Y))) =⟨ !-∙ (ap left (glue (snd Y))) (glue (g (snd Y))) ⟩ ! (glue (g (snd Y))) ∙ ! (ap left (glue (snd Y))) =⟨ !-ap left (glue (snd Y)) |in-ctx (λ w → ! (glue (g (snd Y))) ∙ w) ⟩ ! (glue (g (snd Y))) ∙ ap left (! (glue (snd Y))) =⟨ ∙=∙' (! (glue (g (snd Y)))) (ap left (! (glue (snd Y)))) ⟩ ! (glue (g (snd Y))) ∙' ap left (! (glue (snd Y))) ∎ where module 2P = TwoPushoutsEquiv f g h two-pushouts-⊙inner : ⊙lift ⊙∘ (Inner.f , idp) == ⊙left ps₂ [ (λ V → fst (⊙Pushout ps₁ ⊙→ V)) ↓ two-pushouts-ptd ] two-pushouts-⊙inner = codomain-over-⊙equiv _ _ _ ▹ ⊙λ= into-inner idp open TwoPushoutsEquiv using (two-pushouts-equiv; two-pushouts; two-pushouts-left; two-pushouts-right; two-pushouts-inner) open TwoPushoutsPtd using (two-pushouts-ptd; two-pushouts-⊙left; two-pushouts-⊙right; two-pushouts-⊙inner)
{ "alphanum_fraction": 0.484307023, "avg_line_length": 33.8736842105, "ext": "agda", "hexsha": "69d36c1e2abe9f19ea899e6864b877a5d0a8d00c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "cohomology/TwoPushouts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "cohomology/TwoPushouts.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "cohomology/TwoPushouts.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 2665, "size": 6436 }
data Foo : Set where foo = Foo -- Bad error message WAS: -- A postulate block can only contain type signatures or instance blocks
{ "alphanum_fraction": 0.7368421053, "avg_line_length": 22.1666666667, "ext": "agda", "hexsha": "f4c7e725cf8f10ebf8b52b08b4272547ca7f0713", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1698-data.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1698-data.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1698-data.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 133 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.EqualityRelation where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening using (_∷_⊆_) -- Generic equality relation used with the logical relation record EqRelSet : Set₁ where constructor eqRel field --------------- -- Relations -- --------------- -- Equality of types _⊢_≅_ : Con Term → (A B : Term) → Set -- Equality of terms _⊢_≅_∷_ : Con Term → (t u A : Term) → Set -- Equality of neutral terms _⊢_~_∷_ : Con Term → (t u A : Term) → Set ---------------- -- Properties -- ---------------- -- Generic equality compatibility ~-to-≅ₜ : ∀ {k l A Γ} → Γ ⊢ k ~ l ∷ A → Γ ⊢ k ≅ l ∷ A -- Judgmental conversion compatibility ≅-eq : ∀ {A B Γ} → Γ ⊢ A ≅ B → Γ ⊢ A ≡ B ≅ₜ-eq : ∀ {t u A Γ} → Γ ⊢ t ≅ u ∷ A → Γ ⊢ t ≡ u ∷ A -- Universe ≅-univ : ∀ {A B Γ} → Γ ⊢ A ≅ B ∷ U → Γ ⊢ A ≅ B -- Symmetry ≅-sym : ∀ {A B Γ} → Γ ⊢ A ≅ B → Γ ⊢ B ≅ A ≅ₜ-sym : ∀ {t u A Γ} → Γ ⊢ t ≅ u ∷ A → Γ ⊢ u ≅ t ∷ A ~-sym : ∀ {k l A Γ} → Γ ⊢ k ~ l ∷ A → Γ ⊢ l ~ k ∷ A -- Transitivity ≅-trans : ∀ {A B C Γ} → Γ ⊢ A ≅ B → Γ ⊢ B ≅ C → Γ ⊢ A ≅ C ≅ₜ-trans : ∀ {t u v A Γ} → Γ ⊢ t ≅ u ∷ A → Γ ⊢ u ≅ v ∷ A → Γ ⊢ t ≅ v ∷ A ~-trans : ∀ {k l m A Γ} → Γ ⊢ k ~ l ∷ A → Γ ⊢ l ~ m ∷ A → Γ ⊢ k ~ m ∷ A -- Conversion ≅-conv : ∀ {t u A B Γ} → Γ ⊢ t ≅ u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t ≅ u ∷ B ~-conv : ∀ {k l A B Γ} → Γ ⊢ k ~ l ∷ A → Γ ⊢ A ≡ B → Γ ⊢ k ~ l ∷ B -- Weakening ≅-wk : ∀ {A B ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ A ≅ B → Δ ⊢ wk ρ A ≅ wk ρ B ≅ₜ-wk : ∀ {t u A ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ t ≅ u ∷ A → Δ ⊢ wk ρ t ≅ wk ρ u ∷ wk ρ A ~-wk : ∀ {k l A ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ k ~ l ∷ A → Δ ⊢ wk ρ k ~ wk ρ l ∷ wk ρ A -- Weak head expansion ≅-red : ∀ {A A′ B B′ Γ} → Γ ⊢ A ⇒* A′ → Γ ⊢ B ⇒* B′ → Whnf A′ → Whnf B′ → Γ ⊢ A′ ≅ B′ → Γ ⊢ A ≅ B ≅ₜ-red : ∀ {a a′ b b′ A B Γ} → Γ ⊢ A ⇒* B → Γ ⊢ a ⇒* a′ ∷ B → Γ ⊢ b ⇒* b′ ∷ B → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a′ ≅ b′ ∷ B → Γ ⊢ a ≅ b ∷ A -- Universe type reflexivity ≅-Urefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ U ≅ U -- Natural number type reflexivity ≅-ℕrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ ℕ ≅ ℕ ≅ₜ-ℕrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ ℕ ≅ ℕ ∷ U -- Empty type reflexivity ≅-Emptyrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ Empty ≅ Empty ≅ₜ-Emptyrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ Empty ≅ Empty ∷ U -- Unit type reflexivity ≅-Unitrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ Unit ≅ Unit ≅ₜ-Unitrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ Unit ≅ Unit ∷ U -- Unit η-equality ≅ₜ-η-unit : ∀ {Γ e e'} → Γ ⊢ e ∷ Unit → Γ ⊢ e' ∷ Unit → Γ ⊢ e ≅ e' ∷ Unit -- Π-congruence ≅-Π-cong : ∀ {F G H E Γ} → Γ ⊢ F → Γ ⊢ F ≅ H → Γ ∙ F ⊢ G ≅ E → Γ ⊢ Π F ▹ G ≅ Π H ▹ E ≅ₜ-Π-cong : ∀ {F G H E Γ} → Γ ⊢ F → Γ ⊢ F ≅ H ∷ U → Γ ∙ F ⊢ G ≅ E ∷ U → Γ ⊢ Π F ▹ G ≅ Π H ▹ E ∷ U -- Σ-congruence ≅-Σ-cong : ∀ {F G H E Γ} → Γ ⊢ F → Γ ⊢ F ≅ H → Γ ∙ F ⊢ G ≅ E → Γ ⊢ Σ F ▹ G ≅ Σ H ▹ E ≅ₜ-Σ-cong : ∀ {F G H E Γ} → Γ ⊢ F → Γ ⊢ F ≅ H ∷ U → Γ ∙ F ⊢ G ≅ E ∷ U → Γ ⊢ Σ F ▹ G ≅ Σ H ▹ E ∷ U -- Zero reflexivity ≅ₜ-zerorefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ zero ≅ zero ∷ ℕ -- Successor congruence ≅-suc-cong : ∀ {m n Γ} → Γ ⊢ m ≅ n ∷ ℕ → Γ ⊢ suc m ≅ suc n ∷ ℕ -- η-equality ≅-η-eq : ∀ {f g F G Γ} → Γ ⊢ F → Γ ⊢ f ∷ Π F ▹ G → Γ ⊢ g ∷ Π F ▹ G → Function f → Function g → Γ ∙ F ⊢ wk1 f ∘ var 0 ≅ wk1 g ∘ var 0 ∷ G → Γ ⊢ f ≅ g ∷ Π F ▹ G -- η for product types ≅-Σ-η : ∀ {p r F G Γ} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ p ∷ Σ F ▹ G → Γ ⊢ r ∷ Σ F ▹ G → Product p → Product r → Γ ⊢ fst p ≅ fst r ∷ F → Γ ⊢ snd p ≅ snd r ∷ G [ fst p ] → Γ ⊢ p ≅ r ∷ Σ F ▹ G -- Variable reflexivity ~-var : ∀ {x A Γ} → Γ ⊢ var x ∷ A → Γ ⊢ var x ~ var x ∷ A -- Application congruence ~-app : ∀ {a b f g F G Γ} → Γ ⊢ f ~ g ∷ Π F ▹ G → Γ ⊢ a ≅ b ∷ F → Γ ⊢ f ∘ a ~ g ∘ b ∷ G [ a ] -- Product projections congruence ~-fst : ∀ {p r F G Γ} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ p ~ r ∷ Σ F ▹ G → Γ ⊢ fst p ~ fst r ∷ F ~-snd : ∀ {p r F G Γ} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ p ~ r ∷ Σ F ▹ G → Γ ⊢ snd p ~ snd r ∷ G [ fst p ] -- Natural recursion congruence ~-natrec : ∀ {z z′ s s′ n n′ F F′ Γ} → Γ ∙ ℕ ⊢ F ≅ F′ → Γ ⊢ z ≅ z′ ∷ F [ zero ] → Γ ⊢ s ≅ s′ ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) → Γ ⊢ n ~ n′ ∷ ℕ → Γ ⊢ natrec F z s n ~ natrec F′ z′ s′ n′ ∷ F [ n ] -- Empty recursion congruence ~-Emptyrec : ∀ {n n′ F F′ Γ} → Γ ⊢ F ≅ F′ → Γ ⊢ n ~ n′ ∷ Empty → Γ ⊢ Emptyrec F n ~ Emptyrec F′ n′ ∷ F -- Star reflexivity ≅ₜ-starrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ star ≅ star ∷ Unit ≅ₜ-starrefl [Γ] = ≅ₜ-η-unit (starⱼ [Γ]) (starⱼ [Γ]) -- Composition of universe and generic equality compatibility ~-to-≅ : ∀ {k l Γ} → Γ ⊢ k ~ l ∷ U → Γ ⊢ k ≅ l ~-to-≅ k~l = ≅-univ (~-to-≅ₜ k~l) ≅-W-cong : ∀ {F G H E Γ} W → Γ ⊢ F → Γ ⊢ F ≅ H → Γ ∙ F ⊢ G ≅ E → Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ H ▹ E ≅-W-cong BΠ = ≅-Π-cong ≅-W-cong BΣ = ≅-Σ-cong ≅ₜ-W-cong : ∀ {F G H E Γ} W → Γ ⊢ F → Γ ⊢ F ≅ H ∷ U → Γ ∙ F ⊢ G ≅ E ∷ U → Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ H ▹ E ∷ U ≅ₜ-W-cong BΠ = ≅ₜ-Π-cong ≅ₜ-W-cong BΣ = ≅ₜ-Σ-cong
{ "alphanum_fraction": 0.3334403081, "avg_line_length": 26.406779661, "ext": "agda", "hexsha": "e873435c91c7c39c5e95fb04774b75fe4b2a3249", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Typed/EqualityRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Typed/EqualityRelation.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Typed/EqualityRelation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2851, "size": 6232 }
module Oscar.Category.Morphism where open import Oscar.Category.Setoid open import Oscar.Level open import Oscar.Property open import Oscar.Data.Nat record Morphism {𝔬} (⋆ : Set 𝔬) 𝔪 𝔮 : Set (𝔬 ⊔ lsuc (𝔪 ⊔ 𝔮)) where constructor #_ field _⇒_ : ⋆ → ⋆ → Setoid 𝔪 𝔮 _↦_ : ⋆ → ⋆ → Set 𝔪 _↦_ x y = Setoid.⋆ (x ⇒ y) infix 4 _≞_ _≞_ : ∀ {x y} → x ↦ y → x ↦ y → Set 𝔮 _≞_ {x} {y} = Setoid._≋_ (x ⇒ y) instance IsSetoid↦ : ∀ {x y} → IsSetoid (_≞_ {x} {y}) IsSetoid↦ {x} {y} = Setoid.isSetoid (x ⇒ y) -- IsSetoid↦ : ∀ {x y} → IsSetoid (x ↦ y) 𝔮 -- IsSetoid↦ {x} {y} = Setoid.isSetoid (x ⇒ y) -- ⦃ isMorphism ⦄ : IsMorphism (λ {x} {y} → _≞_ {x} {y}) -- record Morphism 𝔬 𝔪 𝔮 : Set (lsuc (𝔬 ⊔ 𝔪 ⊔ 𝔮)) where -- constructor ↑_ -- infix 4 _≞_ -- field -- {⋆} : Set 𝔬 -- {_↦_} : ⋆ → ⋆ → Set 𝔪 -- _≞_ : ∀ {x y} → x ↦ y → x ↦ y → Set 𝔮 -- ⦃ isSetoid ⦄ : ∀ {x} {y} → IsSetoid (_≞_ {x} {y}) -- instance IsSetoid↦ : ∀ {x y} → IsSetoid (_≞_ {x} {y}) -- IsSetoid↦ {x} {y} = Setoid.isSetoid (x ⇒ y) -- setoid : ∀ {x y} → Setoid 𝔪 𝔮 -- setoid {x} {y} = ↑ _≞_ {x} {y}
{ "alphanum_fraction": 0.4968722073, "avg_line_length": 23.8085106383, "ext": "agda", "hexsha": "e8e0be3c0c5860468d5d7e02257b95dcc5add131", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Morphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Morphism.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 588, "size": 1119 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Exact where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) open import Cubical.Algebra.Group.GroupPath open import Cubical.Algebra.Group.Instances.Unit -- TODO : Define exact sequences -- (perhaps short, finite, ℕ-indexed and ℤ-indexed) SES→isEquiv : ∀ {ℓ ℓ'} {L R : Group ℓ-zero} → {G : Group ℓ} {H : Group ℓ'} → Unit ≡ L → Unit ≡ R → (lhom : GroupHom L G) (midhom : GroupHom G H) (rhom : GroupHom H R) → ((x : _) → isInKer midhom x → isInIm lhom x) → ((x : _) → isInKer rhom x → isInIm midhom x) → isEquiv (fst midhom) SES→isEquiv {R = R} {G = G} {H = H} = J (λ L _ → Unit ≡ R → (lhom : GroupHom L G) (midhom : GroupHom G H) (rhom : GroupHom H R) → ((x : fst G) → isInKer midhom x → isInIm lhom x) → ((x : fst H) → isInKer rhom x → isInIm midhom x) → isEquiv (fst midhom)) ((J (λ R _ → (lhom : GroupHom Unit G) (midhom : GroupHom G H) (rhom : GroupHom H R) → ((x : fst G) → isInKer midhom x → isInIm lhom x) → ((x : _) → isInKer rhom x → isInIm midhom x) → isEquiv (fst midhom)) main)) where main : (lhom : GroupHom Unit G) (midhom : GroupHom G H) (rhom : GroupHom H Unit) → ((x : fst G) → isInKer midhom x → isInIm lhom x) → ((x : fst H) → isInKer rhom x → isInIm midhom x) → isEquiv (fst midhom) main lhom midhom rhom lexact rexact = BijectionIsoToGroupEquiv {G = G} {H = H} bijIso' .fst .snd where bijIso' : BijectionIso G H BijectionIso.fun bijIso' = midhom BijectionIso.inj bijIso' x inker = pRec (GroupStr.is-set (snd G) _ _) (λ s → sym (snd s) ∙ IsGroupHom.pres1 (snd lhom)) (lexact _ inker) BijectionIso.surj bijIso' x = rexact x refl
{ "alphanum_fraction": 0.6032739528, "avg_line_length": 37.7636363636, "ext": "agda", "hexsha": "c2fa70aff0d2068afb51bc5c8b06e99b6f8707d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FernandoLarrain/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Exact.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FernandoLarrain/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Exact.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Exact.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T01:25:26.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T01:25:26.000Z", "num_tokens": 707, "size": 2077 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Construction.Minus2 where -- Any -2-Category is Monoidal. Of course, One is Monoidal, but -- we don't need to shrink to do this, it can be done directly. -- The assumptions in the construction of a -2-Category are all -- needed to make things work properly. open import Data.Product using (proj₁; proj₂) open import Categories.Minus2-Category open import Categories.Category.Monoidal import Categories.Morphism as M -- Doing it manually is just as easy as going through Cartesian here -2-Monoidal : ∀ {o ℓ e} → (C : -2-Category {o} {ℓ} {e}) → Monoidal (-2-Category.cat C) -2-Monoidal C = record { ⊗ = record { F₀ = proj₁ ; F₁ = proj₁ ; identity = Hom-Conn ; homomorphism = Hom-Conn ; F-resp-≈ = λ _ → Hom-Conn } ; unit = proj₁ Obj-Contr ; unitorˡ = λ {X} → proj₂ Obj-Contr X ; unitorʳ = M.≅.refl cat ; associator = M.≅.refl cat ; unitorˡ-commute-from = Hom-Conn ; unitorˡ-commute-to = Hom-Conn ; unitorʳ-commute-from = Hom-Conn ; unitorʳ-commute-to = Hom-Conn ; assoc-commute-from = Hom-Conn ; assoc-commute-to = Hom-Conn ; triangle = Hom-Conn ; pentagon = Hom-Conn } where open -2-Category C
{ "alphanum_fraction": 0.6701954397, "avg_line_length": 29.9512195122, "ext": "agda", "hexsha": "5c8d655828961c270eeeb76b4d5291097b569bf0", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Construction/Minus2.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Construction/Minus2.agda", "max_line_length": 86, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Construction/Minus2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 406, "size": 1228 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PushoutDef -- Suspension is defined as a particular case of pushout module Spaces.Suspension {i} (A : Set i) where suspension-diag : pushout-diag i suspension-diag = diag unit , unit , A , (λ _ → tt) , (λ _ → tt) suspension : Set i suspension = pushout suspension-diag north : suspension north = left tt south : suspension south = right tt paths : A → north ≡ south paths x = glue x suspension-rec : ∀ {j} (P : suspension → Set j) (n : P north) (s : P south) (p : (x : A) → transport P (paths x) n ≡ s) → ((x : suspension) → P x) suspension-rec P n s p = pushout-rec P (λ _ → n) (λ _ → s) p suspension-β-paths : ∀ {j} (P : suspension → Set j) (n : P north) (s : P south) (p : (x : A) → transport P (paths x) n ≡ s) → ((x : A) → apd (suspension-rec P n s p) (paths x) ≡ p x) suspension-β-paths P n s p = pushout-β-glue P (λ _ → n) (λ _ → s) p suspension-rec-nondep : ∀ {j} (C : Set j) (n s : C) (p : A → n ≡ s) → (suspension → C) suspension-rec-nondep C n s p = pushout-rec-nondep C (λ _ → n) (λ _ → s) p suspension-β-paths-nondep : ∀ {j} (C : Set j) (n s : C) (p : A → n ≡ s) → ((x : A) → ap (suspension-rec-nondep C n s p) (paths x) ≡ p x) suspension-β-paths-nondep C n s p = pushout-β-glue-nondep C (λ _ → n) (λ _ → s) p
{ "alphanum_fraction": 0.5937737282, "avg_line_length": 29.9318181818, "ext": "agda", "hexsha": "e8e544d0ae466f74c40f45f9d2615db422ba1ccd", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/Suspension.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/Suspension.agda", "max_line_length": 79, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Spaces/Suspension.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 516, "size": 1317 }
{-# OPTIONS --safe #-} module JVM.Contexts where open import JVM.Types open import Relation.Ternary.Construct.List.Overlapping Ty public renaming ( overlap-rel to ctx-rel ; overlap-commutative to ctx-commutative ; overlap-semigroup to ctx-semigroup ; overlap-monoid to ctx-monoid)
{ "alphanum_fraction": 0.7375415282, "avg_line_length": 25.0833333333, "ext": "agda", "hexsha": "57c03b4c341a1bb31fabe833e57f54941b744ca5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Contexts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Contexts.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Contexts.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 74, "size": 301 }
{-# OPTIONS --no-qualified-instances #-} module JVM.Printer where open import Function open import Data.Bool open import Data.Product hiding (swap) open import Data.List as L open import Data.List.Relation.Unary.Any open import Data.Nat as N open import Data.Nat.Show as Nat open import Data.Fin open import Data.String as S open import Relation.Unary open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax hiding (_∣_) open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Monad open import JVM.Types open import JVM.Contexts using (indexOf) open import JVM.Syntax.Values open import JVM.Syntax.Instructions as I hiding (Instr) open import JVM.Printer.Printer StackTy open import JVM.Printer.Jasmin as J hiding (procedure) private module _ {T : Set} where open import JVM.Model T public const-instr : Const a → Instr const-instr Const.null = aconst_null const-instr (num x) = sipush x const-instr (bool false) = iconst0 const-instr (bool true) = iconst1 load-instr : Ty → ℕ → Instr load-instr (ref _) = aload load-instr (array _) = iload load-instr int = iload load-instr boolean = iload load-instr byte = iload load-instr short = iload load-instr long = iload load-instr char = iload store-instr : Ty → ℕ → Instr store-instr (ref _) = astore store-instr (array _) = aastore store-instr int = istore store-instr boolean = istore store-instr byte = istore store-instr short = istore store-instr long = istore store-instr char = istore bop-instr : NativeBinOp a b c → Instr bop-instr add = iadd bop-instr sub = isub bop-instr mul = imul bop-instr div = idiv bop-instr xor = ixor if-instr : ∀ {as} → I.Comparator as → String → Instr if-instr eq = if eq if-instr ne = if ne if-instr lt = if lt if-instr ge = if ge if-instr gt = if gt if-instr le = if le if-instr icmpge = if icmpge if-instr icmpgt = if icmpgt if-instr icmpeq = if icmpeq if-instr icmpne = if icmpne if-instr icmplt = if icmplt if-instr icmple = if icmple module _ {𝑭} where prettyᵢ : ∀ {ψ₁ ψ₂} → ∀[ Down ⟨ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟩ ⇒ Printer Emp ] prettyᵢ (↓ noop) = print (instr nop) prettyᵢ (↓ pop) = print (instr pop) prettyᵢ (↓ dup) = print (instr dup) prettyᵢ (↓ swap) = print (instr swap) prettyᵢ (↓ (push x)) = print (instr (const-instr x)) prettyᵢ (↓ (bop x)) = print (instr (bop-instr x)) prettyᵢ (↓ (load {a = a} r)) = do print (instr (load-instr a (toℕ $ index r))) prettyᵢ (↓ (store {a = a} r)) = do print (instr (store-instr a (toℕ $ index r))) prettyᵢ (↓ (goto x)) = do emp n ← lookDown (↓ x) print (instr (goto (Nat.show n))) prettyᵢ (↓ (if c x)) = do emp n ← lookDown (↓ x) print (instr (if-instr c (Nat.show n))) import JVM.Syntax.Bytecode.Printer ⟨ 𝑭 ∣_↝_⟩ prettyᵢ as Printer pretty : ∀ {ψ₁ ψ₂ Φ} → ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ Φ → List Stat pretty bc = execPrinter (Printer.pretty bc) procedure : ∀ {ψ₁ ψ₂ Φ} → String → ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ Φ → Jasmin procedure name bc = J.procedure name (L.length 𝑭) 10 (pretty bc)
{ "alphanum_fraction": 0.6781461217, "avg_line_length": 29.3113207547, "ext": "agda", "hexsha": "6151fc2aa25aa7e514e4d55cda132d5f889f2a9f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Printer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Printer.agda", "max_line_length": 66, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Printer.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 1073, "size": 3107 }
module Generic.Test.Data where open import Generic.Test.Data.Fin public open import Generic.Test.Data.Lift public open import Generic.Test.Data.Product public open import Generic.Test.Data.List public open import Generic.Test.Data.Maybe public open import Generic.Test.Data.Vec public open import Generic.Test.Data.W public
{ "alphanum_fraction": 0.7780979827, "avg_line_length": 34.7, "ext": "agda", "hexsha": "ba4a48ad7c28f16054ad6d3c4d1431634ebbeb34", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Data.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Data.agda", "max_line_length": 44, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Data.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 71, "size": 347 }
-- binary search trees (not balanced) open import bool open import bool-thms2 open import eq open import maybe open import product open import product-thms open import bool-relations using (transitive ; total) module z05-01-bst (A : Set) -- type of elements (_≤A_ : A → A → 𝔹) -- ordering function (≤A-trans : transitive _≤A_) -- proof of transitivity of given ordering (≤A-total : total _≤A_) -- proof of totality of given ordering where {- IAL - relations.agda - models binary relation on A as functions from A to A to Set - bool-relations.agda - models binary realtion on A as functions from A to A to 𝔹 Cannot use A→A→Set relations here because code cannot manipulate types. But code can pattern match on values of type 𝔹, so boolean relations more useful. -} open import bool-relations _≤A_ hiding (transitive ; total) open import minmax _≤A_ ≤A-trans ≤A-total -- able to store values in bounds 'l' and 'u' -- l(ower) bound -- | u(upper) bound -- v v data bst : A → A → Set where bst-leaf : ∀ {l u : A} → l ≤A u ≡ tt → bst l u bst-node : ∀ {l l' u' u : A} → (d : A) -- value stored in this node → bst l' d -- left subtree of values ≤ stored value → bst d u' -- right subtree of values ≥ stored value → l ≤A l' ≡ tt → u' ≤A u ≡ tt → bst l u ------------------------------------------------------------------------------ bst-search : ∀ {l u : A} → (d : A) -- find a node that is isomorphic (_=A_) to d → bst l u → maybe (Σ A (λ d' → d iso𝔹 d' ≡ tt)) -- return that node or nothing bst-search d (bst-leaf _) = nothing -- could return proof not in tree instead -- compare given element with stored element bst-search d (bst-node d' L R _ _) with keep (d ≤A d') -- compare given element with stored element (other direction) bst-search d (bst-node d' L R _ _) | tt , p1 with keep (d' ≤A d) -- both are true implying iso, so return that element and proof bst-search d (bst-node d' L R _ _) | tt , p1 | tt , p2 = just (d' , iso𝔹-intro p1 p2) -- if either is false then search the appropriate branch bst-search d (bst-node d' L R _ _) | tt , p1 | ff , p2 = bst-search d L -- search in left bst-search d (bst-node d' L R _ _) | ff , p1 = bst-search d R -- search in right ------------------------------------------------------------------------------ -- change the lower bound from l' to l bst-dec-lb : ∀ {l l' u' : A} → bst l' u' → l ≤A l' ≡ tt → bst l u' bst-dec-lb (bst-leaf p) q = bst-leaf (≤A-trans q p) bst-dec-lb (bst-node d L R p1 p2) q = bst-node d L R (≤A-trans q p1) p2 -- change the upper bound from u' to u bst-inc-ub : ∀ {l' u' u : A} → bst l' u' → u' ≤A u ≡ tt → bst l' u bst-inc-ub (bst-leaf p) q = bst-leaf (≤A-trans p q) bst-inc-ub (bst-node d L R p1 p2) q = bst-node d L R p1 (≤A-trans p2 q) bst-insert : ∀{l u : A} → (d : A) -- insert 'd' → bst l u -- into this 'bst' → bst (min d l) (max d u) -- type might change bst-insert d (bst-leaf p) = bst-node d (bst-leaf ≤A-refl) (bst-leaf ≤A-refl) min-≤1 max-≤1 bst-insert d (bst-node d' L R p1 p2) with keep (d ≤A d') bst-insert d (bst-node d' L R p1 p2) | tt , p with bst-insert d L bst-insert d (bst-node d' L R p1 p2) | tt , p | L' rewrite p = bst-node d' L' (bst-inc-ub R (≤A-trans p2 max-≤2)) (min2-mono p1) ≤A-refl bst-insert d (bst-node d' L R p1 p2) | ff , p with bst-insert d R bst-insert d (bst-node d' L R p1 p2) | ff , p | R' rewrite p = bst-node d' (bst-dec-lb L p1) R' min-≤2 (max2-mono p2)
{ "alphanum_fraction": 0.5272030651, "avg_line_length": 39.9489795918, "ext": "agda", "hexsha": "dccd7c84e870aee124d2542f0fb23fc0d7b2e3a4", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda", "max_line_length": 94, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1218, "size": 3915 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of unnormalized Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational.Unnormalised.Properties where open import Algebra import Algebra.Consequences.Setoid as FC open import Algebra.Consequences.Propositional open import Data.Nat.Base using (suc) import Data.Nat.Properties as ℕ open import Data.Integer.Base as ℤ using (ℤ; +0; +[1+_]; 0ℤ; 1ℤ) open import Data.Integer.Solver renaming (module +-*-Solver to ℤ-solver) import Data.Integer.Properties as ℤ import Data.Integer.Properties open import Data.Rational.Unnormalised open import Data.Product using (_,_) open import Data.Sum.Base using ([_,_]′; inj₁; inj₂) open import Function.Base using (_on_; _$_; _∘_) open import Level using (0ℓ) open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Algebra.Properties.CommutativeSemigroup ℤ.*-commutativeSemigroup ------------------------------------------------------------------------ -- Properties of ↥_ and ↧_ ------------------------------------------------------------------------ ↥↧≡⇒≡ : ∀ {p q} → ↥ p ≡ ↥ q → ↧ₙ p ≡ ↧ₙ q → p ≡ q ↥↧≡⇒≡ refl refl = refl ------------------------------------------------------------------------ -- Properties of _≃_ ------------------------------------------------------------------------ drop-*≡* : ∀ {p q} → p ≃ q → ↥ p ℤ.* ↧ q ≡ ↥ q ℤ.* ↧ p drop-*≡* (*≡* eq) = eq ≃-refl : Reflexive _≃_ ≃-refl = *≡* refl ≃-reflexive : _≡_ ⇒ _≃_ ≃-reflexive refl = *≡* refl ≃-sym : Symmetric _≃_ ≃-sym (*≡* eq) = *≡* (sym eq) ≃-trans : Transitive _≃_ ≃-trans {x} {y} {z} (*≡* ad≡cb) (*≡* cf≡ed) = *≡* (ℤ.*-cancelʳ-≡ (↥ x ℤ.* ↧ z) (↥ z ℤ.* ↧ x) (↧ y) (λ()) (begin ↥ x ℤ.* ↧ z ℤ.* ↧ y ≡⟨ xy∙z≈xz∙y (↥ x) _ _ ⟩ ↥ x ℤ.* ↧ y ℤ.* ↧ z ≡⟨ cong (ℤ._* ↧ z) ad≡cb ⟩ ↥ y ℤ.* ↧ x ℤ.* ↧ z ≡⟨ xy∙z≈xz∙y (↥ y) _ _ ⟩ ↥ y ℤ.* ↧ z ℤ.* ↧ x ≡⟨ cong (ℤ._* ↧ x) cf≡ed ⟩ ↥ z ℤ.* ↧ y ℤ.* ↧ x ≡⟨ xy∙z≈xz∙y (↥ z) _ _ ⟩ ↥ z ℤ.* ↧ x ℤ.* ↧ y ∎)) where open ≡-Reasoning _≃?_ : Decidable _≃_ p ≃? q = Dec.map′ *≡* drop-*≡* (↥ p ℤ.* ↧ q ℤ.≟ ↥ q ℤ.* ↧ p) ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = record { refl = ≃-refl ; sym = ≃-sym ; trans = ≃-trans } ≃-isDecEquivalence : IsDecEquivalence _≃_ ≃-isDecEquivalence = record { isEquivalence = ≃-isEquivalence ; _≟_ = _≃?_ } ≃-setoid : Setoid 0ℓ 0ℓ ≃-setoid = record { isEquivalence = ≃-isEquivalence } ≃-decSetoid : DecSetoid 0ℓ 0ℓ ≃-decSetoid = record { isDecEquivalence = ≃-isDecEquivalence } ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ -- Relational properties drop-*≤* : ∀ {p q} → p ≤ q → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) drop-*≤* (*≤* pq≤qp) = pq≤qp ≤-reflexive : _≃_ ⇒ _≤_ ≤-reflexive (*≡* eq) = *≤* (ℤ.≤-reflexive eq) ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive ≃-refl ≤-trans : Transitive _≤_ ≤-trans {i = p@(mkℚᵘ n₁ d₁-1)} {j = q@(mkℚᵘ n₂ d₂-1)} {k = r@(mkℚᵘ n₃ d₃-1)} (*≤* eq₁) (*≤* eq₂) = let d₁ = ↧ p; d₂ = ↧ q; d₃ = ↧ r in *≤* $ ℤ.*-cancelʳ-≤-pos (n₁ ℤ.* d₃) (n₃ ℤ.* d₁) d₂-1 $ begin (n₁ ℤ.* d₃) ℤ.* d₂ ≡⟨ ℤ.*-assoc n₁ d₃ d₂ ⟩ n₁ ℤ.* (d₃ ℤ.* d₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm d₃ d₂) ⟩ n₁ ℤ.* (d₂ ℤ.* d₃) ≡⟨ sym (ℤ.*-assoc n₁ d₂ d₃) ⟩ (n₁ ℤ.* d₂) ℤ.* d₃ ≤⟨ ℤ.*-monoʳ-≤-pos d₃-1 eq₁ ⟩ (n₂ ℤ.* d₁) ℤ.* d₃ ≡⟨ cong (ℤ._* d₃) (ℤ.*-comm n₂ d₁) ⟩ (d₁ ℤ.* n₂) ℤ.* d₃ ≡⟨ ℤ.*-assoc d₁ n₂ d₃ ⟩ d₁ ℤ.* (n₂ ℤ.* d₃) ≤⟨ ℤ.*-monoˡ-≤-pos d₁-1 eq₂ ⟩ d₁ ℤ.* (n₃ ℤ.* d₂) ≡⟨ sym (ℤ.*-assoc d₁ n₃ d₂) ⟩ (d₁ ℤ.* n₃) ℤ.* d₂ ≡⟨ cong (ℤ._* d₂) (ℤ.*-comm d₁ n₃) ⟩ (n₃ ℤ.* d₁) ℤ.* d₂ ∎ where open ℤ.≤-Reasoning ≤-antisym : Antisymmetric _≃_ _≤_ ≤-antisym (*≤* le₁) (*≤* le₂) = *≡* (ℤ.≤-antisym le₁ le₂) ≤-total : Total _≤_ ≤-total p q = [ inj₁ ∘ *≤* , inj₂ ∘ *≤* ]′ (ℤ.≤-total (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p)) infix 4 _≤?_ _≤?_ : Decidable _≤_ p ≤? q = Dec.map′ *≤* drop-*≤* (↥ p ℤ.* ↧ q ℤ.≤? ↥ q ℤ.* ↧ p) ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant (*≤* p≤q₁) (*≤* p≤q₂) = cong *≤* (ℤ.≤-irrelevant p≤q₁ p≤q₂) ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≃_ _≤_ ≤-isPreorder = record { isEquivalence = ≃-isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≃_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≃_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≃_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≃?_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Raw bundles +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≃_ ; _∙_ = _+_ } +-rawMonoid : RawMonoid 0ℓ 0ℓ +-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℚᵘ } +-0-rawGroup : RawGroup 0ℓ 0ℓ +-0-rawGroup = record { Carrier = ℚᵘ ; _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℚᵘ ; _⁻¹ = -_ } +-*-rawRing : RawRing 0ℓ 0ℓ +-*-rawRing = record { Carrier = ℚᵘ ; _≈_ = _≃_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0ℚᵘ ; 1# = 1ℚᵘ } ------------------------------------------------------------------------ -- Algebraic properties -- Congruence +-cong : Congruent₂ _≃_ _+_ +-cong {x} {y} {u} {v} (*≡* ab′∼a′b) (*≡* cd′∼c′d) = *≡* (begin (↥x ℤ.* ↧u ℤ.+ ↥u ℤ.* ↧x) ℤ.* (↧y ℤ.* ↧v) ≡⟨ solve 6 (λ ↥x ↧x ↧y ↥u ↧u ↧v → (↥x :* ↧u :+ ↥u :* ↧x) :* (↧y :* ↧v) := (↥x :* ↧y :* (↧u :* ↧v)) :+ ↥u :* ↧v :* (↧x :* ↧y)) refl (↥ x) (↧ x) (↧ y) (↥ u) (↧ u) (↧ v) ⟩ ↥x ℤ.* ↧y ℤ.* (↧u ℤ.* ↧v) ℤ.+ ↥u ℤ.* ↧v ℤ.* (↧x ℤ.* ↧y) ≡⟨ cong₂ ℤ._+_ (cong (ℤ._* (↧u ℤ.* ↧v)) ab′∼a′b) (cong (ℤ._* (↧x ℤ.* ↧y)) cd′∼c′d) ⟩ ↥y ℤ.* ↧x ℤ.* (↧u ℤ.* ↧v) ℤ.+ ↥v ℤ.* ↧u ℤ.* (↧x ℤ.* ↧y) ≡⟨ solve 6 (λ ↧x ↥y ↧y ↧u ↥v ↧v → (↥y :* ↧x :* (↧u :* ↧v)) :+ ↥v :* ↧u :* (↧x :* ↧y) := (↥y :* ↧v :+ ↥v :* ↧y) :* (↧x :* ↧u)) refl (↧ x) (↥ y) (↧ y) (↧ u) (↥ v) (↧ v) ⟩ (↥y ℤ.* ↧v ℤ.+ ↥v ℤ.* ↧y) ℤ.* (↧x ℤ.* ↧u) ∎) where ↥x = ↥ x; ↧x = ↧ x; ↥y = ↥ y; ↧y = ↧ y; ↥u = ↥ u; ↧u = ↧ u; ↥v = ↥ v; ↧v = ↧ v open ≡-Reasoning open ℤ-solver -- Associativity +-assoc-↥ : Associative (_≡_ on ↥_) _+_ +-assoc-↥ p q r = solve 6 (λ ↥p ↧p ↥q ↧q ↥r ↧r → (↥p :* ↧q :+ ↥q :* ↧p) :* ↧r :+ ↥r :* (↧p :* ↧q) := ↥p :* (↧q :* ↧r) :+ (↥q :* ↧r :+ ↥r :* ↧q) :* ↧p) refl (↥ p) (↧ p) (↥ q) (↧ q) (↥ r) (↧ r) where open ℤ-solver +-assoc-↧ : Associative (_≡_ on ↧ₙ_) _+_ +-assoc-↧ p q r = ℕ.*-assoc (↧ₙ p) (↧ₙ q) (↧ₙ r) +-assoc-≡ : Associative _≡_ _+_ +-assoc-≡ p q r = ↥↧≡⇒≡ (+-assoc-↥ p q r) (+-assoc-↧ p q r) +-assoc : Associative _≃_ _+_ +-assoc p q r = ≃-reflexive (+-assoc-≡ p q r) -- Commutativity +-comm-↥ : Commutative (_≡_ on ↥_) _+_ +-comm-↥ p q = ℤ.+-comm (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p) +-comm-↧ : Commutative (_≡_ on ↧ₙ_) _+_ +-comm-↧ p q = ℕ.*-comm (↧ₙ p) (↧ₙ q) +-comm-≡ : Commutative _≡_ _+_ +-comm-≡ p q = ↥↧≡⇒≡ (+-comm-↥ p q) (+-comm-↧ p q) +-comm : Commutative _≃_ _+_ +-comm p q = ≃-reflexive (+-comm-≡ p q) -- Identities +-identityˡ-↥ : LeftIdentity (_≡_ on ↥_) 0ℚᵘ _+_ +-identityˡ-↥ p = begin 0ℤ ℤ.* ↧ p ℤ.+ ↥ p ℤ.* 1ℤ ≡⟨ cong₂ ℤ._+_ (ℤ.*-zeroˡ (↧ p)) (ℤ.*-identityʳ (↥ p)) ⟩ 0ℤ ℤ.+ ↥ p ≡⟨ ℤ.+-identityˡ (↥ p) ⟩ ↥ p ∎ where open ≡-Reasoning +-identityˡ-↧ : LeftIdentity (_≡_ on ↧ₙ_) 0ℚᵘ _+_ +-identityˡ-↧ p = ℕ.+-identityʳ (↧ₙ p) +-identityˡ-≡ : LeftIdentity _≡_ 0ℚᵘ _+_ +-identityˡ-≡ p = ↥↧≡⇒≡ (+-identityˡ-↥ p) (+-identityˡ-↧ p) +-identityˡ : LeftIdentity _≃_ 0ℚᵘ _+_ +-identityˡ p = ≃-reflexive (+-identityˡ-≡ p) +-identityʳ-≡ : RightIdentity _≡_ 0ℚᵘ _+_ +-identityʳ-≡ = comm+idˡ⇒idʳ +-comm-≡ {e = 0ℚᵘ} +-identityˡ-≡ +-identityʳ : RightIdentity _≃_ 0ℚᵘ _+_ +-identityʳ p = ≃-reflexive (+-identityʳ-≡ p) +-identity-≡ : Identity _≡_ 0ℚᵘ _+_ +-identity-≡ = +-identityˡ-≡ , +-identityʳ-≡ +-identity : Identity _≃_ 0ℚᵘ _+_ +-identity = +-identityˡ , +-identityʳ +-inverseˡ : LeftInverse _≃_ 0ℚᵘ -_ _+_ +-inverseˡ p = *≡* let n = ↥ p; d = ↧ p in ((ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d) ℤ.* 1ℤ ≡⟨ ℤ.*-identityʳ ((ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d) ⟩ (ℤ.- n) ℤ.* d ℤ.+ n ℤ.* d ≡˘⟨ cong (ℤ._+ (n ℤ.* d)) (ℤ.neg-distribˡ-* n d) ⟩ ℤ.- (n ℤ.* d) ℤ.+ n ℤ.* d ≡⟨ ℤ.+-inverseˡ (n ℤ.* d) ⟩ 0ℤ ∎ where open ≡-Reasoning +-inverseʳ : RightInverse _≃_ 0ℚᵘ -_ _+_ +-inverseʳ p = *≡* let n = ↥ p; d = ↧ p in (n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d) ℤ.* 1ℤ ≡⟨ ℤ.*-identityʳ (n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d) ⟩ n ℤ.* d ℤ.+ (ℤ.- n) ℤ.* d ≡˘⟨ cong (λ n+d → n ℤ.* d ℤ.+ n+d) (ℤ.neg-distribˡ-* n d) ⟩ n ℤ.* d ℤ.+ ℤ.- (n ℤ.* d) ≡⟨ ℤ.+-inverseʳ (n ℤ.* d) ⟩ 0ℤ ∎ where open ≡-Reasoning +-inverse : Inverse _≃_ 0ℚᵘ -_ _+_ +-inverse = +-inverseˡ , +-inverseʳ -‿cong : Congruent₁ _≃_ (-_) -‿cong {p} {q} (*≡* p≡q) = *≡* (begin ↥(- p) ℤ.* ↧ q ≡˘⟨ ℤ.*-identityˡ (ℤ.-(↥ p) ℤ.* ↧ q) ⟩ 1ℤ ℤ.* (↥(- p) ℤ.* ↧ q) ≡⟨ sym (ℤ.*-assoc 1ℤ (↥(- p)) (↧ q)) ⟩ (1ℤ ℤ.* ℤ.-(↥ p)) ℤ.* ↧ q ≡˘⟨ cong (ℤ._* ↧ q) (ℤ.neg-distribʳ-* 1ℤ (↥ p)) ⟩ ℤ.-(1ℤ ℤ.* ↥ p) ℤ.* ↧ q ≡⟨ cong (ℤ._* ↧ q) (ℤ.neg-distribˡ-* 1ℤ (↥ p)) ⟩ ((ℤ.- 1ℤ) ℤ.* ↥ p) ℤ.* ↧ q ≡⟨ ℤ.*-assoc (ℤ.- 1ℤ) (↥ p) (↧ q) ⟩ ℤ.- 1ℤ ℤ.* (↥ p ℤ.* ↧ q) ≡⟨ cong (λ r → ℤ.- 1ℤ ℤ.* r) p≡q ⟩ ℤ.- 1ℤ ℤ.* (↥ q ℤ.* ↧ p) ≡⟨ sym (ℤ.*-assoc (ℤ.- 1ℤ) (↥ q) (↧ p)) ⟩ (ℤ.- 1ℤ ℤ.* ↥ q) ℤ.* ↧ p ≡˘⟨ cong (ℤ._* ↧ p) (ℤ.neg-distribˡ-* 1ℤ (↥ q)) ⟩ ℤ.-(1ℤ ℤ.* ↥ q) ℤ.* ↧ p ≡⟨ cong (ℤ._* ↧ p) (ℤ.neg-distribʳ-* 1ℤ (↥ q)) ⟩ (1ℤ ℤ.* ↥(- q)) ℤ.* ↧ p ≡⟨ ℤ.*-assoc 1ℤ (ℤ.-(↥ q)) (↧ p) ⟩ 1ℤ ℤ.* (↥(- q) ℤ.* ↧ p) ≡⟨ ℤ.*-identityˡ (↥(- q) ℤ.* ↧ p) ⟩ ↥(- q) ℤ.* ↧ p ∎) where open ≡-Reasoning ------------------------------------------------------------------------ -- Algebraic structures +-isMagma : IsMagma _≃_ _+_ +-isMagma = record { isEquivalence = ≃-isEquivalence ; ∙-cong = +-cong } +-isSemigroup : IsSemigroup _≃_ _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-0-isMonoid : IsMonoid _≃_ _+_ 0ℚᵘ +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } +-0-isCommutativeMonoid : IsCommutativeMonoid _≃_ _+_ 0ℚᵘ +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = +-comm } +-0-isGroup : IsGroup _≃_ _+_ 0ℚᵘ (-_) +-0-isGroup = record { isMonoid = +-0-isMonoid ; inverse = +-inverse ; ⁻¹-cong = -‿cong } +-0-isAbelianGroup : IsAbelianGroup _≃_ _+_ 0ℚᵘ (-_) +-0-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = +-comm } ------------------------------------------------------------------------ -- Algebraic bundles +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-group : Group 0ℓ 0ℓ +-0-group = record { isGroup = +-0-isGroup } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-0-isAbelianGroup } ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Raw bundles *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≃_ ; _∙_ = _*_ } *-rawMonoid : RawMonoid 0ℓ 0ℓ *-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _*_ ; ε = 1ℚᵘ } ------------------------------------------------------------------------ -- Algebraic properties *-cong : Congruent₂ _≃_ _*_ *-cong {x} {y} {u} {v} (*≡* ↥x↧y≡↥y↧x) (*≡* ↥u↧v≡↥v↧u) = *≡* (begin (↥ x ℤ.* ↥ u) ℤ.* (↧ y ℤ.* ↧ v) ≡⟨ solve 4 (λ ↥x ↥u ↧y ↧v → (↥x :* ↥u) :* (↧y :* ↧v) := (↥u :* ↧v) :* (↥x :* ↧y)) refl (↥ x) (↥ u) (↧ y) (↧ v) ⟩ (↥ u ℤ.* ↧ v) ℤ.* (↥ x ℤ.* ↧ y) ≡⟨ cong₂ ℤ._*_ ↥u↧v≡↥v↧u ↥x↧y≡↥y↧x ⟩ (↥ v ℤ.* ↧ u) ℤ.* (↥ y ℤ.* ↧ x) ≡⟨ solve 4 (λ ↥v ↧u ↥y ↧x → (↥v :* ↧u) :* (↥y :* ↧x) := (↥y :* ↥v) :* (↧x :* ↧u)) refl (↥ v) (↧ u) (↥ y) (↧ x) ⟩ (↥ y ℤ.* ↥ v) ℤ.* (↧ x ℤ.* ↧ u) ∎) where open ≡-Reasoning; open ℤ-solver -- Associativity *-assoc-↥ : Associative (_≡_ on ↥_) _*_ *-assoc-↥ p q r = ℤ.*-assoc (↥ p) (↥ q) (↥ r) *-assoc-↧ : Associative (_≡_ on ↧ₙ_) _*_ *-assoc-↧ p q r = ℕ.*-assoc (↧ₙ p) (↧ₙ q) (↧ₙ r) *-assoc-≡ : Associative _≡_ _*_ *-assoc-≡ p q r = ↥↧≡⇒≡ (*-assoc-↥ p q r) (*-assoc-↧ p q r) *-assoc : Associative _≃_ _*_ *-assoc p q r = ≃-reflexive (*-assoc-≡ p q r) -- Commutativity *-comm-↥ : Commutative (_≡_ on ↥_) _*_ *-comm-↥ p q = ℤ.*-comm (↥ p) (↥ q) *-comm-↧ : Commutative (_≡_ on ↧ₙ_) _*_ *-comm-↧ p q = ℕ.*-comm (↧ₙ p) (↧ₙ q) *-comm-≡ : Commutative _≡_ _*_ *-comm-≡ p q = ↥↧≡⇒≡ (*-comm-↥ p q) (*-comm-↧ p q) *-comm : Commutative _≃_ _*_ *-comm p q = ≃-reflexive (*-comm-≡ p q) -- Identities *-identityˡ-≡ : LeftIdentity _≡_ 1ℚᵘ _*_ *-identityˡ-≡ p = ↥↧≡⇒≡ (ℤ.*-identityˡ (↥ p)) (ℕ.+-identityʳ (↧ₙ p)) *-identityʳ-≡ : RightIdentity _≡_ 1ℚᵘ _*_ *-identityʳ-≡ = comm+idˡ⇒idʳ *-comm-≡ {e = 1ℚᵘ} *-identityˡ-≡ *-identity-≡ : Identity _≡_ 1ℚᵘ _*_ *-identity-≡ = *-identityˡ-≡ , *-identityʳ-≡ *-identityˡ : LeftIdentity _≃_ 1ℚᵘ _*_ *-identityˡ p = ≃-reflexive (*-identityˡ-≡ p) *-identityʳ : RightIdentity _≃_ 1ℚᵘ _*_ *-identityʳ p = ≃-reflexive (*-identityʳ-≡ p) *-identity : Identity _≃_ 1ℚᵘ _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero _≃_ 0ℚᵘ _*_ *-zeroˡ p = *≡* refl *-zeroʳ : RightZero _≃_ 0ℚᵘ _*_ *-zeroʳ = FC.comm+zeˡ⇒zeʳ ≃-setoid *-comm *-zeroˡ *-zero : Zero _≃_ 0ℚᵘ _*_ *-zero = *-zeroˡ , *-zeroʳ *-distribˡ-+ : _DistributesOverˡ_ _≃_ _*_ _+_ *-distribˡ-+ p q r = let ↥p = ↥ p; ↧p = ↧ p ↥q = ↥ q; ↧q = ↧ q ↥r = ↥ r; ↧r = ↧ r eq : (↥p ℤ.* (↥q ℤ.* ↧r ℤ.+ ↥r ℤ.* ↧q)) ℤ.* (↧p ℤ.* ↧q ℤ.* (↧p ℤ.* ↧r)) ≡ (↥p ℤ.* ↥q ℤ.* (↧p ℤ.* ↧r) ℤ.+ ↥p ℤ.* ↥r ℤ.* (↧p ℤ.* ↧q)) ℤ.* (↧p ℤ.* (↧q ℤ.* ↧r)) eq = solve 6 (λ ↥p ↧p ↥q d e f → (↥p :* (↥q :* f :+ e :* d)) :* (↧p :* d :* (↧p :* f)) := (↥p :* ↥q :* (↧p :* f) :+ ↥p :* e :* (↧p :* d)) :* (↧p :* (d :* f))) refl ↥p ↧p ↥q ↧q ↥r ↧r in *≡* eq where open ℤ-solver *-distribʳ-+ : _DistributesOverʳ_ _≃_ _*_ _+_ *-distribʳ-+ = FC.comm+distrˡ⇒distrʳ ≃-setoid +-cong *-comm *-distribˡ-+ *-distrib-+ : _DistributesOver_ _≃_ _*_ _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ ------------------------------------------------------------------------ -- Algebraic structures *-isMagma : IsMagma _≃_ _*_ *-isMagma = record { isEquivalence = ≃-isEquivalence ; ∙-cong = *-cong } *-isSemigroup : IsSemigroup _≃_ _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-1-isMonoid : IsMonoid _≃_ _*_ 1ℚᵘ *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-isCommutativeMonoid : IsCommutativeMonoid _≃_ _*_ 1ℚᵘ *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = *-comm } +-*-isRing : IsRing _≃_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ +-*-isRing = record { +-isAbelianGroup = +-0-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ ; zero = *-zero } +-*-isCommutativeRing : IsCommutativeRing _≃_ _+_ _*_ -_ 0ℚᵘ 1ℚᵘ +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } ------------------------------------------------------------------------ -- Algebraic bundles *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing }
{ "alphanum_fraction": 0.4440433213, "avg_line_length": 29.5279187817, "ext": "agda", "hexsha": "6f7316f0eb549cd26801f79a9e9ef91d3c97ac24", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised/Properties.agda", "max_line_length": 114, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 8490, "size": 17451 }
data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A postulate String : Set {-# BUILTIN STRING String #-} infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} infixr 5 _∷_ data Colist (A : Set) : Set where [] : Colist A _∷_ : (x : A) (xs : ∞ (Colist A)) → Colist A postulate Char : Set {-# BUILTIN CHAR Char #-} Costring : Set Costring = Colist Char data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} private primitive primStringAppend : String → String → String primStringToList : String → List Char primStringFromList : List Char → String infixr 5 _++_ _++_ : String → String → String _++_ = primStringAppend toList : String → List Char toList = primStringToList fromList : List Char → String fromList = primStringFromList fromListToColist : {A : Set} → List A → Colist A fromListToColist [] = [] fromListToColist (x ∷ xs) = x ∷ ♯ fromListToColist xs toCostring : String → Costring toCostring s = fromListToColist (toList s) ------------------------------------------------------------------------ costringToString : Costring → ℕ → Maybe String costringToString [] _ = just "" costringToString (x ∷ xs) 0 with ♭ xs ... | [] = just (fromList (x ∷ [])) ... | _ ∷ _ = nothing costringToString (x ∷ xs) (suc n) with costringToString (♭ xs) n ... | nothing = nothing ... | just xs′ = just (fromList (x ∷ []) ++ xs′) test0 : costringToString (toCostring "") 0 ≡ just "" test0 = refl test1 : costringToString (toCostring "apa") 3 ≡ just "apa" test1 = refl
{ "alphanum_fraction": 0.5665301945, "avg_line_length": 21.2391304348, "ext": "agda", "hexsha": "2946f41ff48068156969fd2d2ee891a64e79f978", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1323.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1323.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1323.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 678, "size": 1954 }
module Everything where import Holes.Prelude import Holes.Term import Holes.Cong.Limited import Holes.Cong.General import Holes.Cong.Propositional
{ "alphanum_fraction": 0.8513513514, "avg_line_length": 18.5, "ext": "agda", "hexsha": "dd247a36fbcca2466a0a3cc93ec5e2d08ebb3acb", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "Everything.agda", "max_line_length": 31, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 39, "size": 148 }
module Issue118Comment9 where open import Common.Level open import Common.Coinduction data Box (A : Set) : Set where [_] : A → Box A postulate I : Set data P : I → Set where c : ∀ {i} → Box (∞ (P i)) → P i F : ∀ {i} → P i → I F (c x) = _ G : ∀ {i} → Box (∞ (P i)) → I G [ x ] = _ mutual f : ∀ {i} (x : P i) → P (F x) f (c x) = c (g x) g : ∀ {i} (x : Box (∞ (P i))) → Box (∞ (P (G x))) g [ x ] = [ ♯ f (♭ x) ] -- The code above type checks, but the termination checker should -- complain because the inferred definitions of F and G are -- F (c x) = G x and G [ x ] = F (♭ x), respectively. -- 2011-04-12 freezing: now the meta-variables remain uninstantiated. -- good.
{ "alphanum_fraction": 0.5433526012, "avg_line_length": 19.7714285714, "ext": "agda", "hexsha": "359e2f56bb82bea98d2cca8d1c4675ae6765c536", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue118Comment9.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue118Comment9.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue118Comment9.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 263, "size": 692 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Maximal where -- Stdlib imports open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Product using (_,_; ∃-syntax) open import Data.Empty using (⊥-elim) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) open import Relation.Binary using (Trichotomous; tri<; tri≈; tri>) -- Local imports open import Dodo.Unary.Equality open import Dodo.Unary.Unique open import Dodo.Binary.Equality -- # Definitions # maximal : ∀ {a ℓ : Level} {A : Set a} → Rel A ℓ -------------- → Pred A (a ⊔ ℓ) maximal r = λ x → ¬ (∃[ y ] r x y) -- # Properties # module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} where max-unique-tri : Trichotomous ≈ < → Unique₁ ≈ (maximal <) max-unique-tri tri {x} {y} ¬∃z[x<z] ¬∃z[y<z] with tri x y ... | tri< x<y _ _ = ⊥-elim (¬∃z[x<z] (y , x<y)) ... | tri≈ _ x≈y _ = x≈y ... | tri> _ _ y<x = ⊥-elim (¬∃z[y<z] (x , y<x)) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where max-flips-⊆ : P ⊆₂ Q → maximal Q ⊆₁ maximal P max-flips-⊆ P⊆Q = ⊆: lemma where lemma : maximal Q ⊆₁' maximal P lemma x ¬∃zQxz (z , Pxz) = ¬∃zQxz (z , ⊆₂-apply P⊆Q Pxz) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where max-preserves-⇔ : P ⇔₂ Q → maximal P ⇔₁ maximal Q max-preserves-⇔ = ⇔₁-sym ∘ ⇔₁-compose-⇔₂ max-flips-⊆ max-flips-⊆
{ "alphanum_fraction": 0.5681233933, "avg_line_length": 29.358490566, "ext": "agda", "hexsha": "20c5c2889eb20637c3f055250391b58e4596de46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Maximal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Maximal.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Maximal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 627, "size": 1556 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.NaturalIsomorphism.Functors where open import Level open import Categories.Category open import Categories.Category.Construction.Functors open import Categories.Functor open import Categories.NaturalTransformation.NaturalIsomorphism import Categories.Morphism as Mor private variable o ℓ e : Level C D : Category o ℓ e -- isomorphism in Functors category is the same as natural isomorphism module _ {F G : Functor C D} where open Mor (Functors C D) Functors-iso⇒NI : F ≅ G → NaturalIsomorphism F G Functors-iso⇒NI F≅G = record { F⇒G = from ; F⇐G = to ; iso = λ X → record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open Mor._≅_ F≅G NI⇒Functors-iso : NaturalIsomorphism F G → F ≅ G NI⇒Functors-iso α = record { from = F⇒G ; to = F⇐G ; iso = record { isoˡ = isoˡ (iso _) ; isoʳ = isoʳ (iso _) } } where open NaturalIsomorphism α open Mor.Iso
{ "alphanum_fraction": 0.6543330088, "avg_line_length": 22.8222222222, "ext": "agda", "hexsha": "8e1f28a0754663009b77a71bbe9635ca4853269a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Functors.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Functors.agda", "max_line_length": 73, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 341, "size": 1027 }
{- Part 4: Higher inductive types • Set quotients via HITs • Propositional truncation • A little synthetic homotopy theory -} {-# OPTIONS --cubical #-} module Part4 where open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Prod hiding (map) open import Part1 open import Part2 open import Part3 -- Another thing that Cubical Agda adds is the possibility to define -- higher inductive types. These are just like normal Agda datatypes, -- but they have also "higher" constructors specifying non-trivial -- paths, square, cubes, etc. in the type. These give a nice way of -- defining set quotiented types as well as higher dimensional types -- quotiented by some arbitrary relation. -- Let's start by looking at some set quotient examples. The following -- definition of finite multisets is due to Vikraman Choudhury and -- Marcelo Fiore. infixr 5 _∷_ data FMSet (A : Type ℓ) : Type ℓ where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : (x y : A) (xs : FMSet A) → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : (xs ys : FMSet A) (p q : xs ≡ ys) → p ≡ q infixr 30 _++_ _++_ : ∀ (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (λ k → p k ++ ys) (λ k → q k ++ ys) i j unitl-++ : (xs : FMSet A) → [] ++ xs ≡ xs unitl-++ xs = refl unitr-++ : (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ [] = refl unitr-++ (x ∷ xs) = cong (x ∷_) (unitr-++ xs) unitr-++ (comm x y xs i) j = comm x y (unitr-++ xs j) i unitr-++ (trunc xs ys p q i k) j = trunc (unitr-++ xs j) (unitr-++ ys j) (λ k → unitr-++ (p k) j) (λ k → unitr-++ (q k) j) i k -- Filling the goals for comm and trunc quickly gets tiresome and -- useful lemmas about eliminating into propositions are proved in -- Cubical.HITs.FiniteMultiset. As we're proving an equality of a set -- truncated type we can prove the trunc and comm cases once and for -- all so that we only have to give cases for [] and _∷_ when -- constructing a family of propositions. This is a very common -- pattern when working with set truncated HITs: first define the HIT, -- then prove special purpose recursors and eliminators for -- eliminating into types of different h-levels. All definitions are -- then written using these recursors and eliminators and one get very -- short proofs. -- A more efficient version of finite multisets based on association -- lists can be found in Cubical.HITs.AssocList.Base. It looks like -- this: data AssocList (A : Type ℓ) : Type ℓ where ⟨⟩ : AssocList A ⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A per : (a b : A) (m n : ℕ) (xs : AssocList A) → ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs agg : (a : A) (m n : ℕ) (xs : AssocList A) → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs ≡ ⟨ a , m + n ⟩∷ xs del : (a : A) (xs : AssocList A) → ⟨ a , 0 ⟩∷ xs ≡ xs trunc : (xs ys : AssocList A) (p q : xs ≡ ys) → p ≡ q -- Programming and proving is more complicated with AssocList compared -- to FMSet. This kind of example occurs everywhere in programming and -- mathematics: one representation is easier to work with, but not -- efficient, while another is efficient but difficult to work with. -- Using the SIP we can get the best of both worlds (see -- https://arxiv.org/abs/2009.05547 for details). -- Another nice CS example of a HIT can be found in Cubical.Data.Queue -- where we define a queue datastructure based on two lists. These -- examples are all special cases of set quotients and are very useful -- for programming and set level mathematics. We can define the -- general form as: data _/_ (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where [_] : A → A / R eq/ : (a b : A) → R a b → [ a ] ≡ [ b ] trunc : (a b : A / R) (p q : a ≡ b) → p ≡ q -- It's sometimes easier to work directly with _/_ instead of defining -- special HITs as one can reuse lemmas for _/_ instead of reproving -- things. For example, general lemmas about eliminating into -- propositions have already been proved for _/_. -- Proving that _/_ is "effective" (for prop-valued relation), i.e. that -- -- ((a b : A) → [ a ] ≡ [ b ] → R a b) -- -- requires univalence for propositions (hPropExt). -- Set quotients let us define things like in normal math: ℤ : Type₀ ℤ = (ℕ × ℕ) / rel where rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀ rel (x₀ , y₀) (x₁ , y₁) = x₀ + y₁ ≡ x₁ + y₀ -- Another useful class of HITs are truncations, especially -- propositional truncation: data ∥_∥ (A : Type ℓ) : Type ℓ where ∣_∣ : A → ∥ A ∥ squash : ∀ (x y : ∥ A ∥) → x ≡ y -- This lets us define mere existence: ∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') ∃ A B = ∥ Σ A B ∥ -- This is very useful to specify things where existence is weaker -- than Σ. This lets us define things like surjective functions or the -- image of a map which we cannot define properly in pre-HoTT type -- theory. -- We can define the recursor by pattern-matching rec : {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i -- And the eliminator then follows easily: elim : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim {P = P} Pprop f a = rec (Pprop a) (λ x → transport (λ i → P (squash ∣ x ∣ a i)) (f x)) a -- A very important point is that propositional truncation is proof -- relevant, so even though the elements are all equal one can still -- extract interesting information from them. A fun example is the -- "cost monad" which can be found in Cubical.HITs.Cost. There we pair -- A with ∥ ℕ ∥ and use the truncated number to count the number of -- recursive calls in various functions. As the number is truncated it -- doesn't affect any properties of the functions, but by running -- concrete computations we can extract the number of calls. ------------------------------------------------------------------------- -- Another source of HITs are inspired by topology -- We can define the circle as the following simple data declaration: data S¹ : Type₀ where base : S¹ loop : base ≡ base -- We can write functions on S¹ using pattern-matching: double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i -- Note that loop takes an i : I argument. This is not very surprising -- as it's a path base ≡ base, but it's an important difference to -- HoTT. Having the native notion of equality be heterogeneous makes -- it possible to quite directly define a general schema for a large -- class of HITs (more or less all in the HoTT book, with the -- exception for the Cauchy reals (I think?)). -- Let's use univalence to compute some winding numbers on the -- circle. We first define a family of types over the circle whos -- fibers are the integers. helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPath i -- The loopspace of the circle ΩS¹ : Type₀ ΩS¹ = base ≡ base -- We can then define a function computing how many times we've looped -- around the circle by: winding : ΩS¹ → Int winding p = subst helix p (pos 0) -- This reduces just fine: _ : winding (λ i → double ((loop ∙ loop) i)) ≡ pos 4 _ = refl -- This would not reduce in HoTT as univalence is an axiom. Having -- things compute makes it possible to substantially simplify many -- proofs from HoTT in Cubical Agda, more about this later. -- We can in fact prove that winding is an equivalence, this relies on -- the encode-decode method and Egbert will go through the proof in -- detail. For details about how this proof looks in Cubical Agda see: -- -- Cubical.HITs.S1.Base -- Complex multiplication on S¹, used in the Hopf fibration _⋆_ : S¹ → S¹ → S¹ base ⋆ x = x loop i ⋆ base = loop i loop i ⋆ loop j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) base -- We can define the Torus as: data Torus : Type₀ where point : Torus line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 i ≡ line1 i) line2 line2 -- The square corresponds to the usual folding diagram from topology: -- -- line1 -- p ----------> p -- ^ ^ -- ¦ ¦ -- line2 ¦ ¦ line2 -- ¦ ¦ -- p ----------> p -- line1 -- Proving that it is equivalent to two circles is pretty much trivial: t2c : Torus → S¹ × S¹ t2c point = (base , base) t2c (line1 i) = (loop i , base) t2c (line2 j) = (base , loop j) t2c (square i j) = (loop i , loop j) c2t : S¹ × S¹ → Torus c2t (base , base) = point c2t (loop i , base) = line1 i c2t (base , loop j) = line2 j c2t (loop i , loop j) = square i j c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t c2t-t2c point = refl c2t-t2c (line1 _) = refl c2t-t2c (line2 _) = refl c2t-t2c (square _ _) = refl t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p t2c-c2t (base , base) = refl t2c-c2t (base , loop _) = refl t2c-c2t (loop _ , base) = refl t2c-c2t (loop _ , loop _) = refl -- Using univalence we get the following equality: Torus≡S¹×S¹ : Torus ≡ S¹ × S¹ Torus≡S¹×S¹ = isoToPath (iso t2c c2t t2c-c2t c2t-t2c) -- We can also directly compute winding numbers on the torus windingTorus : point ≡ point → Int × Int windingTorus l = ( winding (λ i → proj₁ (t2c (l i))) , winding (λ i → proj₂ (t2c (l i)))) _ : windingTorus (line1 ∙ sym line2) ≡ (pos 1 , negsuc 0) _ = refl -- This proof turned out to be much more complicated in HoTT as -- eliminators out of HITs don't compute definitionally for higher -- constructors. In Cubical Agda this is not a problem as all cases -- reduce definitionally. -- We have many more topological examples in the library, including -- Klein bottle, RP^n, higher spheres, suspensions, join, wedges, -- smash product: -- open import Cubical.HITs.KleinBottle -- open import Cubical.HITs.RPn -- open import Cubical.HITs.S2 -- open import Cubical.HITs.S3 -- open import Cubical.HITs.Susp -- open import Cubical.HITs.Join -- open import Cubical.HITs.Wedge -- open import Cubical.HITs.SmashProduct -- There's also a proof of the "3x3 lemma" for pushouts in less than -- 200LOC. In HoTT-Agda this took about 3000LOC. For details see: -- https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3 -- open import Cubical.HITs.Pushout -- We also defined the Hopf fibration and proved that its total space -- is S³ in about 300LOC: -- open import Cubical.HITs.Hopf -- There is also some integer cohomology: -- open import Cubical.ZCohomology.Everything -- To compute cohomology groups of various spaces we need a bunch of -- interesting theorems: Freudenthal suspension theorem, -- Mayer-Vietoris sequence... -- For further references about doing synthetic algebraic topology in -- Cubical Agda see: -- Cubical Synthetic Homotopy Theory -- Anders Mörtberg, Loïc Pujet -- https://staff.math.su.se/anders.mortberg/papers/cubicalsynthetic.pdf -- Synthetic Cohomology Theory in Cubical Agda -- Guillaume Brunerie, Anders Mörtberg, Axel Ljungström. -- https://staff.math.su.se/anders.mortberg/papers/zcohomology.pdf --- The end! ---
{ "alphanum_fraction": 0.6482752552, "avg_line_length": 34.8588957055, "ext": "agda", "hexsha": "d3e688e48827c8da0c3d9945dcdd071a6d5d29bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z", "max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z", "max_forks_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "williamdemeo/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "williamdemeo/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "williamdemeo/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3683, "size": 11364 }
data ⊤ : Set where tt : ⊤ postulate IndexL : Set Ordered : IndexL → Set ¬ho-shr-morph : IndexL → IndexL pres-¬ord : ∀ ind → Ordered (¬ho-shr-morph ind) ¬ord-morph : ∀ ind → Ordered ind → Set postulate tt' : ⊤ poo : ∀ ind → ¬ord-morph (¬ho-shr-morph ind) (pres-¬ord ind) poo ind with tt | ¬ho-shr-morph ind ... | _ | _ = {!!}
{ "alphanum_fraction": 0.5543175487, "avg_line_length": 22.4375, "ext": "agda", "hexsha": "4e4b8d1c9cc2df66631a2307100f318f82d7f1ca", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2771.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2771.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2771.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 136, "size": 359 }
{-# OPTIONS --experimental-irrelevance #-} {-# OPTIONS --universe-polymorphism #-} module IrrelevantLevelToSet where open import Imports.Level -- should fail, because Set i /= Set j for i /= j, so i is not irrelevant in Set i MySet : .(i : Level) -> Set (suc i) MySet i = Set i
{ "alphanum_fraction": 0.6857142857, "avg_line_length": 28, "ext": "agda", "hexsha": "4dc63128accbf3a15d9a8d69cb8822f6aee1d85b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/IrrelevantLevelToSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/IrrelevantLevelToSet.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantLevelToSet.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 78, "size": 280 }
module Lam where f : {A : Set} → A → A f x = (λ y z → z) x x g : {A : Set} → A → A g {A = A} x = (λ (y' : A) (z : A) → z) x x
{ "alphanum_fraction": 0.3310344828, "avg_line_length": 8.5294117647, "ext": "agda", "hexsha": "0480c257a4bc839469d67e66f03570ce6c1c8595", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/expression/Lam.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/expression/Lam.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/expression/Lam.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 82, "size": 145 }
------------------------------------------------------------------------ -- Big-step semantics for the untyped λ-calculus ------------------------------------------------------------------------ module Lambda.Substitution.OneSemantics where open import Codata.Musical.Notation open import Data.Fin open import Function open import Data.Nat open import Lambda.Syntax open WHNF open import Lambda.Substitution -- Semantic domain. ⊥ represents non-termination. data Sem (n : ℕ) : Set where ⊥ : Sem n val : (v : Value n) → Sem n -- Big-step semantics. mutual infix 4 _⇒_ _⇒?_ data _⇒_ {n} : Tm n → Sem n → Set where val : ∀ {v} → ⌜ v ⌝ ⇒ val v app : ∀ {t₁ t₂ t v s} (t₁⇓ : t₁ ⇒? val (ƛ t)) (t₂⇓ : t₂ ⇒? val v) (t₁t₂⇒ : t / sub ⌜ v ⌝ ⇒? s) → t₁ · t₂ ⇒ s ·ˡ : ∀ {t₁ t₂} (t₁⇑ : t₁ ⇒? ⊥) → t₁ · t₂ ⇒ ⊥ ·ʳ : ∀ {t₁ t₂ v} (t₁⇓ : t₁ ⇒? val v) (t₂⇑ : t₂ ⇒? ⊥) → t₁ · t₂ ⇒ ⊥ -- Conditional coinduction: coinduction only for diverging -- computations. _⇒?_ : ∀ {n} → Tm n → Sem n → Set t ⇒? ⊥ = ∞ (t ⇒ ⊥) t ⇒? val v = t ⇒ val v -- Example. Ω-loops : Ω ⇒ ⊥ Ω-loops = app val val (♯ Ω-loops)
{ "alphanum_fraction": 0.4526143791, "avg_line_length": 22.6666666667, "ext": "agda", "hexsha": "89570c1bbf3a43845e37c98811eeb7146e768ae3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Substitution/OneSemantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Substitution/OneSemantics.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Substitution/OneSemantics.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 450, "size": 1224 }
-- simulating streams by Nat -> A module Stream where data Bool : Set where true : Bool false : Bool if_then_else_ : forall {A} -> Bool -> A -> A -> A if true then t else e = t if false then t else e = e data Nat : Set where zero : Nat succ : Nat -> Nat Stream : Set -> Set Stream A = Nat -> A _::_ : forall {A} -> A -> Stream A -> Stream A _::_ a as zero = a _::_ a as (succ n) = as n map : forall {A B} -> (A -> B) -> Stream A -> Stream B map f as n = f (as n) head : forall {A} -> Stream A -> A head as = as zero tail : forall {A} -> Stream A -> Stream A tail as n = as (succ n) -- construct the stream a :: f a :: f (f a) :: ... iterate : forall {A} -> (A -> A) -> A -> Stream A iterate f a zero = a iterate f a (succ n) = iterate f (f a) n zipWith : forall {A B C} -> (A -> B -> C) -> Stream A -> Stream B -> Stream C zipWith f as bs n = f (as n) (bs n) -- merge with with merge : forall {A} -> (A -> A -> Bool) -> Stream A -> Stream A -> Stream A merge le as bs with le (head as) (head bs) merge le as bs | true = head as :: merge le (tail as) bs merge le as bs | false = head bs :: merge le as (tail bs) {- -- without with merge' : forall {A} -> (A -> A -> Bool) -> Stream A -> Stream A -> Stream A merge' le as bs = if le (head as) (head bs) then (head as :: merge' le (tail as) bs) else (head bs :: merge' le as (tail bs)) -} -- BOTH VARIANTS OF MERGE ARE NOT STRUCTURALLY RECURSIVE
{ "alphanum_fraction": 0.5582822086, "avg_line_length": 25.2931034483, "ext": "agda", "hexsha": "24fd31458eb682dddd4148b0694f7905a77dd1f0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Termination/Stream.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Termination/Stream.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Termination/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 480, "size": 1467 }
{-# OPTIONS --warning=error --safe --guardedness --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.EuclideanAlgorithm open import Lists.Lists open import Numbers.Primes.PrimeNumbers open import Decidable.Relations open import Numbers.BinaryNaturals.Definition open import Numbers.BinaryNaturals.Addition open import Numbers.BinaryNaturals.Order open import Sequences open import Vectors open import Orders.Total.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Partial.Sequences open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Semirings.Definition module ProjectEuler.Problem2 where fibUnary : ℕ → ℕ fibUnary zero = 1 fibUnary (succ zero) = 1 fibUnary (succ (succ n)) = fibUnary (succ n) +N fibUnary n fibUnaryStrictlyPositive : (a : ℕ) → 0 <N fibUnary a fibUnaryStrictlyPositive zero = le zero refl fibUnaryStrictlyPositive (succ zero) = le zero refl fibUnaryStrictlyPositive (succ (succ a)) = addStrongInequalities (fibUnaryStrictlyPositive (succ a)) (fibUnaryStrictlyPositive a) fibUnaryIncreasing : (a : ℕ) → (fibUnary (succ a)) <N (fibUnary (succ (succ a))) fibUnaryIncreasing zero = le zero refl fibUnaryIncreasing (succ a) = identityOfIndiscernablesLeft _<N_ (additionPreservesInequalityOnLeft (fibUnary (succ a) +N fibUnary a) (fibUnaryStrictlyPositive (succ a))) (Semiring.sumZeroRight ℕSemiring (fibUnary (succ a) +N fibUnary a)) fibUnaryBiggerThanN : (a : ℕ) → (succ (succ (succ (succ a)))) <N fibUnary (succ (succ (succ (succ a)))) fibUnaryBiggerThanN zero = le zero refl fibUnaryBiggerThanN (succ a) = TotalOrder.<Transitive ℕTotalOrder (succPreservesInequality (fibUnaryBiggerThanN a)) (ans ((fibUnary (succ a) +N fibUnary a) +N fibUnary (succ a)) ans') where ans : {t : ℕ} → (u : ℕ) → 1 <N u → succ t <N t +N u ans {t} u (le x proof) rewrite Semiring.commutative ℕSemiring x 1 = le x (transitivity (applyEquality succ (Semiring.commutative ℕSemiring x (succ t))) (transitivity (applyEquality (λ i → succ (succ i)) (Semiring.commutative ℕSemiring t x)) (transitivity (applyEquality (_+N t) proof) (Semiring.commutative ℕSemiring u t)))) ans' : 1 <N (fibUnary (succ a) +N fibUnary a) +N fibUnary (succ a) ans' with fibUnaryStrictlyPositive (succ a) ... | fibPos with fibUnary (succ a) ans' | fibPos | succ bl rewrite Semiring.commutative ℕSemiring (bl +N fibUnary a) (succ bl) = succPreservesInequality (le (bl +N (bl +N fibUnary a)) (Semiring.sumZeroRight ℕSemiring _)) fibUnaryArchimedean : (a : ℕ) → Sg ℕ (λ i → a <N fibUnary i) fibUnaryArchimedean zero = 0 , le zero refl fibUnaryArchimedean (succ zero) = 2 , le zero refl fibUnaryArchimedean (succ (succ zero)) = 3 , le zero refl fibUnaryArchimedean (succ (succ (succ zero))) = 4 , le 1 refl fibUnaryArchimedean (succ (succ (succ (succ a)))) = (succ (succ (succ (succ a)))) , fibUnaryBiggerThanN a record FibEntry : Set where field prev : BinNat curr : BinNat nextFib : FibEntry → FibEntry nextFib record { prev = prev ; curr = curr } = record { prev = curr ; curr = prev +B curr } fib : Sequence BinNat fib = Sequences.map FibEntry.curr (unfold nextFib record { prev = NToBinNat 0 ; curr = NToBinNat 1 }) fibMove : (n : ℕ) → FibEntry.prev (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) (succ n)) ≡ FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) n) fibMove zero = refl fibMove (succ n) rewrite indexAndUnfold nextFib (record { prev = [] ; curr = one :: [] }) (succ n) = refl fibAlternative : (N : ℕ) → index fib N ≡ FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) N) fibAlternative n rewrite equalityCommutative (mapAndIndex (unfold nextFib record { prev = NToBinNat 0 ; curr = NToBinNat 1 }) FibEntry.curr n) = refl fibAlternative' : (n : ℕ) → FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) (succ n)) ≡ FibEntry.prev (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) n) +B FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) n) fibAlternative' zero = refl fibAlternative' (succ n) rewrite indexAndUnfold nextFib (record { prev = [] ; curr = one :: [] }) (succ n) = refl fibsCanonical : (n : ℕ) → canonical (index fib n) ≡ index fib n fibsCanonical zero = refl fibsCanonical (succ zero) = refl fibsCanonical (succ (succ n)) = transitivity (applyEquality canonical {index fib (succ (succ n))} {FibEntry.prev (index (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) n) +B FibEntry.curr (index (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) n)} (transitivity (fibAlternative (succ (succ n))) (fibAlternative' (succ n)))) (transitivity (sumCanonical (FibEntry.prev (index (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) n)) (FibEntry.curr (index (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) n)) (transitivity (transitivity (applyEquality canonical (fibMove n)) (transitivity (applyEquality canonical (equalityCommutative (fibAlternative n))) (transitivity (fibsCanonical n) (fibAlternative n)))) (equalityCommutative (fibMove n))) (transitivity (applyEquality canonical (mapAndIndex (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) FibEntry.curr n)) (transitivity (fibsCanonical (succ n)) (equalityCommutative (mapAndIndex (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) FibEntry.curr n))))) (equalityCommutative (transitivity (fibAlternative (succ (succ n))) (fibAlternative' (succ n))))) fibStart : take 5 fib ≡ vecMap NToBinNat (1 ,- 1 ,- 2 ,- 3 ,- 5 ,- []) fibStart = refl fibsMatch : (n : ℕ) → binNatToN (index fib n) ≡ fibUnary n fibsMatch zero = refl fibsMatch (succ zero) = refl fibsMatch (succ (succ n)) rewrite equalityCommutative (fibsMatch (succ n)) | equalityCommutative (fibsMatch n) | equalityCommutative (mapAndIndex (unfold nextFib record { prev = NToBinNat 0 ; curr = NToBinNat 1 }) FibEntry.curr (succ (succ n))) | indexAndUnfold nextFib (record { prev = [] ; curr = one :: [] }) (succ n) | equalityCommutative (mapAndIndex (unfold nextFib (nextFib (record { prev = [] ; curr = one :: [] }))) FibEntry.curr n) | equalityCommutative (mapAndIndex (unfold nextFib (record { prev = [] ; curr = one :: [] })) FibEntry.curr n) | indexAndUnfold nextFib (nextFib (record { prev = [] ; curr = one :: [] })) n | indexAndUnfold nextFib (record { prev = [] ; curr = one :: [] }) n = ans where x = FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) n) y = FibEntry.prev (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) n) ans : binNatToN (x +B (y +B x)) ≡ binNatToN (y +B x) +N binNatToN x ans rewrite +BCommutative x (y +B x) = +BIsHom (y +B x) x fibsMatch' : (n : ℕ) → NToBinNat (fibUnary n) ≡ index fib n fibsMatch' n = transitivity (applyEquality NToBinNat (equalityCommutative (fibsMatch n))) (transitivity (binToBin (index fib n)) (fibsCanonical n)) ArchimedeanSequence : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} (pOrder : SetoidPartialOrder S _<_) (S : Sequence A) → Set (a ⊔ c) ArchimedeanSequence {A = A} {_<_ = _<_} _ S = (x : A) → Sg ℕ (λ n → x < (index S n)) archimImpliesTailArchim : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} (pOrder : SetoidPartialOrder S _<_) {S : Sequence A} → ArchimedeanSequence pOrder S → (Sg ℕ (λ i → index S 0 < index S i)) → ArchimedeanSequence pOrder (Sequence.tail S) archimImpliesTailArchim {S} pOrder arch 0small x with arch x archimImpliesTailArchim pOrder {S} arch (zero , S0<SN) x | zero , pr = exFalso (SetoidPartialOrder.irreflexive pOrder S0<SN) archimImpliesTailArchim pOrder {S} arch (succ N , S0<SN) x | zero , pr = N , SetoidPartialOrder.<Transitive pOrder pr S0<SN archimImpliesTailArchim pOrder arch 0small x | succ N , pr = N , pr takeUpTo : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} {pOrder : SetoidPartialOrder S _<_} {seq : Sequence A} → (arch : ArchimedeanSequence pOrder seq) → (lim : A) → List A takeUpTo {seq = S} arch lim with arch lim takeUpTo {seq = S} arch lim | zero , pr = [] takeUpTo {seq = S} arch lim | succ N , pr = vecToList (take N S) archim : ArchimedeanSequence (partialOrderToSetoidPartialOrder BinNatOrder) fib archim x with fibUnaryArchimedean (binNatToN x) archim x | N , pr = N , u where t : (canonical x) <B (NToBinNat (binNatToN (index (Sequences.map FibEntry.curr (unfold nextFib (record { prev = [] ; curr = one :: [] }))) N))) t rewrite (fibsMatch N) = identityOfIndiscernablesLeft _<B_ (translate' _ _ pr) (binToBin x) u : x <B (index (Sequences.map FibEntry.curr (unfold nextFib (record { prev = [] ; curr = one :: [] }))) N) u rewrite equalityCommutative (mapAndIndex (unfold nextFib (record { prev = [] ; curr = one :: [] })) FibEntry.curr N) with transitivity (canonicalFirst x (NToBinNat (fibUnary N)) Equal) (identityOfIndiscernablesLeft _<B_ (translate' (binNatToN x) (fibUnary N) pr) (binToBin x)) ... | r = identityOfIndiscernablesRight {a = x} {b = NToBinNat (fibUnary N)} {c = FibEntry.curr (index (unfold nextFib (record { prev = [] ; curr = one :: [] })) N)} _<B_ r (transitivity (fibsMatch' N) (fibAlternative N)) isEven : BinNat → Set isEven [] = True isEven (zero :: xs) = True isEven (one :: xs) = False isEvenAgrees : (n : BinNat) → isEven n → 2 ∣ (binNatToN n) isEvenAgrees [] nEven = divides (record { quot = zero ; rem = zero ; pr = refl ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl)}) refl isEvenAgrees (zero :: n) nEven = divides (record { quot = binNatToN n ; rem = zero ; pr = Semiring.sumZeroRight ℕSemiring _ ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl) }) refl isEvenIncrs : (n : BinNat) → isEven n → isEven (incr (incr n)) isEvenIncrs [] nEven = record {} isEvenIncrs (zero :: n) nEven = record {} isEvenAgrees' : (n : ℕ) → 2 ∣ n → isEven (NToBinNat n) isEvenAgrees' zero nEven = record {} isEvenAgrees' (succ zero) (divides record { quot = (succ zero) ; rem = zero ; pr = () ; remIsSmall = remIsSmall ; quotSmall = (inl x) } refl) isEvenAgrees' (succ zero) (divides record { quot = (succ (succ quot)) ; rem = zero ; pr = () ; remIsSmall = remIsSmall ; quotSmall = (inl x) } refl) isEvenAgrees' (succ (succ n)) (divides record { quot = succ quot ; rem = zero ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = inl 0<2 } refl) with isEvenAgrees' n (divides record { quot = quot ; rem = zero ; pr = transitivity (transitivity (Semiring.sumZeroRight ℕSemiring _) (Semiring.commutative ℕSemiring quot (quot +N 0))) (succInjective (succInjective (transitivity (equalityCommutative (applyEquality succ (transitivity (Semiring.sumZeroRight ℕSemiring (quot +N succ (quot +N zero))) (Semiring.commutative ℕSemiring quot (succ (quot +N 0)))))) pr))) ; remIsSmall = remIsSmall ; quotSmall = inl 0<2 } refl) ... | bl = isEvenIncrs (NToBinNat n) bl isEvenWellDefined : (n m : BinNat) → canonical n ≡ canonical m → isEven n → isEven m isEvenWellDefined [] [] n=m nEven = record {} isEvenWellDefined [] (zero :: m) n=m nEven = record {} isEvenWellDefined (zero :: n) [] n=m nEven = record {} isEvenWellDefined (zero :: n) (zero :: m) n=m nEven = record {} isEvenWellDefined (zero :: n) (one :: m) n=m nEven with canonical n isEvenWellDefined (zero :: n) (one :: m) () nEven | [] isEvenWellDefined (zero :: n) (one :: m) () nEven | x :: bl isEvenDecidable : DecidableRelation isEven isEvenDecidable [] = inl (record {}) isEvenDecidable (zero :: x₁) = inl (record {}) isEvenDecidable (one :: x₁) = inr (λ x → x) increasing : StrictlyIncreasing (partialOrderToSetoidPartialOrder BinNatOrder) (Sequence.tail fib) increasing m = SetoidPartialOrder.<WellDefined (partialOrderToSetoidPartialOrder BinNatOrder) (fibsMatch' (succ m)) (fibsMatch' (succ (succ m))) (translate' (fibUnary (succ m)) (fibUnary (succ (succ m))) (fibUnaryIncreasing m)) -- increasingNaturalsBound : (S : Sequence ℕ) → StrictlyIncreasing S → (bound : ℕ) → List ℕ -- increasingNaturalsBound s n = {!!} {- fibsLessThan4Mil : List BinNat fibsLessThan4Mil = takeUpToMonotone {tOrder = BinNatTOrder} (archimImpliesTailArchim {tOrder = BinNatTOrder} archim (2 , ordersAgree 1 2 (le zero refl))) increasing (one :: one :: one :: one :: zero :: one :: zero :: zero :: zero :: zero :: one :: zero :: zero :: one :: zero :: zero :: zero :: zero :: zero :: zero :: zero :: one :: []) evens : List BinNat evens = filter' isEvenDecidable fibsLessThan4Mil ans : BinNat ans = fold _+B_ [] evens -}
{ "alphanum_fraction": 0.6861348156, "avg_line_length": 72.1638418079, "ext": "agda", "hexsha": "e9f35441db2d03bf357f90b58c7eb47039d367d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "ProjectEuler/Problem2.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "ProjectEuler/Problem2.agda", "max_line_length": 1218, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "ProjectEuler/Problem2.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 4122, "size": 12773 }
module MetaCannotDependOn where data Nat : Set where zero : Nat suc : Nat -> Nat postulate Vec : Nat -> Set -> Set f : (A : Set) -> ((n : Nat) -> A -> Vec n Nat) -> Nat err : Nat err = f _ (\ n xs -> xs)
{ "alphanum_fraction": 0.5366972477, "avg_line_length": 14.5333333333, "ext": "agda", "hexsha": "7e856583e6e2f41702a9c38597346d8f3d898e3d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/MetaCannotDependOn.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/MetaCannotDependOn.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/MetaCannotDependOn.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 218 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GCD.Lemmas where open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Solver open import Function open import Relation.Binary.PropositionalEquality open +-*-Solver open ≡-Reasoning private distrib-comm : ∀ x k n → x * k + x * n ≡ x * (n + k) distrib-comm = solve 3 (λ x k n → x :* k :+ x :* n := x :* (n :+ k)) refl distrib-comm₂ : ∀ d x k n → d + x * (n + k) ≡ d + x * k + x * n distrib-comm₂ = solve 4 (λ d x k n → d :+ x :* (n :+ k) := d :+ x :* k :+ x :* n) refl -- Other properties -- TODO: Can this proof be simplified? An automatic solver which can -- handle ∸ would be nice... lem₀ : ∀ i j m n → i * m ≡ j * m + n → (i ∸ j) * m ≡ n lem₀ i j m n eq = begin (i ∸ j) * m ≡⟨ *-distribʳ-∸ m i j ⟩ (i * m) ∸ (j * m) ≡⟨ cong (_∸ j * m) eq ⟩ (j * m + n) ∸ (j * m) ≡⟨ cong (_∸ j * m) (+-comm (j * m) n) ⟩ (n + j * m) ∸ (j * m) ≡⟨ m+n∸n≡m n (j * m) ⟩ n ∎ lem₁ : ∀ i j → 2 + i ≤′ 2 + j + i lem₁ i j = ≤⇒≤′ $ s≤s $ s≤s $ n≤m+n j i lem₂ : ∀ d x {k n} → d + x * k ≡ x * n → d + x * (n + k) ≡ 2 * x * n lem₂ d x {k} {n} eq = begin d + x * (n + k) ≡⟨ distrib-comm₂ d x k n ⟩ d + x * k + x * n ≡⟨ cong₂ _+_ eq refl ⟩ x * n + x * n ≡⟨ solve 3 (λ x n k → x :* n :+ x :* n := con 2 :* x :* n) refl x n k ⟩ 2 * x * n ∎ lem₃ : ∀ d x {i k n} → d + (1 + x + i) * k ≡ x * n → d + (1 + x + i) * (n + k) ≡ (1 + 2 * x + i) * n lem₃ d x {i} {k} {n} eq = begin d + y * (n + k) ≡⟨ distrib-comm₂ d y k n ⟩ d + y * k + y * n ≡⟨ cong₂ _+_ eq refl ⟩ x * n + y * n ≡⟨ solve 3 (λ x n i → x :* n :+ (con 1 :+ x :+ i) :* n := (con 1 :+ con 2 :* x :+ i) :* n) refl x n i ⟩ (1 + 2 * x + i) * n ∎ where y = 1 + x + i lem₄ : ∀ d y {k i} n → d + y * k ≡ (1 + y + i) * n → d + y * (n + k) ≡ (1 + 2 * y + i) * n lem₄ d y {k} {i} n eq = begin d + y * (n + k) ≡⟨ distrib-comm₂ d y k n ⟩ d + y * k + y * n ≡⟨ cong₂ _+_ eq refl ⟩ (1 + y + i) * n + y * n ≡⟨ solve 3 (λ y i n → (con 1 :+ y :+ i) :* n :+ y :* n := (con 1 :+ con 2 :* y :+ i) :* n) refl y i n ⟩ (1 + 2 * y + i) * n ∎ lem₅ : ∀ d x {n k} → d + x * n ≡ x * k → d + 2 * x * n ≡ x * (n + k) lem₅ d x {n} {k} eq = begin d + 2 * x * n ≡⟨ solve 3 (λ d x n → d :+ con 2 :* x :* n := d :+ x :* n :+ x :* n) refl d x n ⟩ d + x * n + x * n ≡⟨ cong₂ _+_ eq refl ⟩ x * k + x * n ≡⟨ distrib-comm x k n ⟩ x * (n + k) ∎ lem₆ : ∀ d x {n i k} → d + x * n ≡ (1 + x + i) * k → d + (1 + 2 * x + i) * n ≡ (1 + x + i) * (n + k) lem₆ d x {n} {i} {k} eq = begin d + (1 + 2 * x + i) * n ≡⟨ solve 4 (λ d x i n → d :+ (con 1 :+ con 2 :* x :+ i) :* n := d :+ x :* n :+ (con 1 :+ x :+ i) :* n) refl d x i n ⟩ d + x * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩ y * k + y * n ≡⟨ distrib-comm y k n ⟩ y * (n + k) ∎ where y = 1 + x + i lem₇ : ∀ d y {i} n {k} → d + (1 + y + i) * n ≡ y * k → d + (1 + 2 * y + i) * n ≡ y * (n + k) lem₇ d y {i} n {k} eq = begin d + (1 + 2 * y + i) * n ≡⟨ solve 4 (λ d y i n → d :+ (con 1 :+ con 2 :* y :+ i) :* n := d :+ (con 1 :+ y :+ i) :* n :+ y :* n) refl d y i n ⟩ d + (1 + y + i) * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩ y * k + y * n ≡⟨ distrib-comm y k n ⟩ y * (n + k) ∎ lem₈ : ∀ {i j k q} x y → 1 + y * j ≡ x * i → j * k ≡ q * i → k ≡ (x * k ∸ y * q) * i lem₈ {i} {j} {k} {q} x y eq eq′ = sym (lem₀ (x * k) (y * q) i k lemma) where lemma = begin x * k * i ≡⟨ solve 3 (λ x k i → x :* k :* i := x :* i :* k) refl x k i ⟩ x * i * k ≡⟨ cong (_* k) (sym eq) ⟩ (1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k := y :* (j :* k) :+ k) refl y j k ⟩ y * (j * k) + k ≡⟨ cong (λ n → y * n + k) eq′ ⟩ y * (q * i) + k ≡⟨ solve 4 (λ y q i k → y :* (q :* i) :+ k := y :* q :* i :+ k) refl y q i k ⟩ y * q * i + k ∎ lem₉ : ∀ {i j k q} x y → 1 + x * i ≡ y * j → j * k ≡ q * i → k ≡ (y * q ∸ x * k) * i lem₉ {i} {j} {k} {q} x y eq eq′ = sym (lem₀ (y * q) (x * k) i k lemma) where lem = solve 3 (λ a b c → a :* b :* c := b :* c :* a) refl lemma = begin y * q * i ≡⟨ lem y q i ⟩ q * i * y ≡⟨ cong (λ n → n * y) (sym eq′) ⟩ j * k * y ≡⟨ sym (lem y j k) ⟩ y * j * k ≡⟨ cong (λ n → n * k) (sym eq) ⟩ (1 + x * i) * k ≡⟨ solve 3 (λ x i k → (con 1 :+ x :* i) :* k := x :* k :* i :+ k) refl x i k ⟩ x * k * i + k ∎ lem₁₀ : ∀ {a′} b c {d} e f → let a = suc a′ in a + b * (c * d * a) ≡ e * (f * d * a) → d ≡ 1 lem₁₀ {a′} b c {d} e f eq = i*j≡1⇒j≡1 (e * f ∸ b * c) d (lem₀ (e * f) (b * c) d 1 (*-cancelʳ-≡ (e * f * d) (b * c * d + 1) (begin e * f * d * a ≡⟨ solve 4 (λ e f d a → e :* f :* d :* a := e :* (f :* d :* a)) refl e f d a ⟩ e * (f * d * a) ≡⟨ sym eq ⟩ a + b * (c * d * a) ≡⟨ solve 4 (λ a b c d → a :+ b :* (c :* d :* a) := (b :* c :* d :+ con 1) :* a) refl a b c d ⟩ (b * c * d + 1) * a ∎))) where a = suc a′ lem₁₁ : ∀ {i j m n k d} x y → 1 + y * j ≡ x * i → i * k ≡ m * d → j * k ≡ n * d → k ≡ (x * m ∸ y * n) * d lem₁₁ {i} {j} {m} {n} {k} {d} x y eq eq₁ eq₂ = sym (lem₀ (x * m) (y * n) d k (begin x * m * d ≡⟨ *-assoc x m d ⟩ x * (m * d) ≡⟨ cong (x *_) (sym eq₁) ⟩ x * (i * k) ≡⟨ sym (*-assoc x i k) ⟩ x * i * k ≡⟨ cong₂ _*_ (sym eq) refl ⟩ (1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k := y :* (j :* k) :+ k) refl y j k ⟩ y * (j * k) + k ≡⟨ cong (λ p → y * p + k) eq₂ ⟩ y * (n * d) + k ≡⟨ cong₂ _+_ (sym $ *-assoc y n d) refl ⟩ y * n * d + k ∎))
{ "alphanum_fraction": 0.2963433573, "avg_line_length": 39.5698324022, "ext": "agda", "hexsha": "9658abce07d4be200cbb9cfd4c01111c9e4de219", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD/Lemmas.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3083, "size": 7083 }
-- {-# OPTIONS -v tc.size.solve:100 #-} open import Agda.Builtin.Size data Cx (U : Set) : Set where ⌀ : Cx U _,_ : Cx U → U → Cx U module _ {U : Set} where data _⊆_ : Cx U → Cx U → Set where done : ⌀ ⊆ ⌀ skip : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ (Γ′ , A) keep : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → (Γ , A) ⊆ (Γ′ , A) data _∈_ (A : U) : Cx U → Set where top : ∀ {Γ} → A ∈ (Γ , A) pop : ∀ {C Γ} → A ∈ Γ → A ∈ (Γ , C) mono∈ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′ mono∈ done () mono∈ (skip η) i = pop (mono∈ η i) mono∈ (keep η) top = top mono∈ (keep η) (pop i) = pop (mono∈ η i) refl⊆ : ∀ {Γ} → Γ ⊆ Γ refl⊆ {⌀} = done refl⊆ {Γ , A} = keep refl⊆ infixr 3 _⊃_ data Ty : Set where ι : Ty _⊃_ : Ty → Ty → Ty infix 1 _⊢⟨_⟩_ data _⊢⟨_⟩_ (Γ : Cx Ty) : Size → Ty → Set where var : ∀ {p A} → A ∈ Γ → Γ ⊢⟨ p ⟩ A lam : ∀ {n A B} {o : Size< n} → Γ , A ⊢⟨ o ⟩ B → Γ ⊢⟨ n ⟩ A ⊃ B app : ∀ {m A B} {l k : Size< m} → Γ ⊢⟨ k ⟩ A ⊃ B → Γ ⊢⟨ l ⟩ A → Γ ⊢⟨ m ⟩ B mono⊢ : ∀ {m A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⟨ m ⟩ A → Γ′ ⊢⟨ m ⟩ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) det : ∀ {i A B Γ} {j : Size< i} → Γ ⊢⟨ j ⟩ A ⊃ B → Γ , A ⊢⟨ i ⟩ B det t = app (mono⊢ (skip refl⊆) t) (var top) ccont : ∀ {m A B Γ} → Γ ⊢⟨ ↑ ↑ ↑ ↑ m ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B ccont = lam (lam (app (app (var (pop top)) (var top)) (var top))) cont : ∀ {m A B Γ} {m′ : Size< m} → (Γ , A) , A ⊢⟨ ↑ ↑ m′ ⟩ B → Γ , A ⊢⟨ ↑ ↑ ↑ ↑ ↑ m ⟩ B cont t = det (app ccont (lam (lam t))) cont′ : ∀ {q A B Γ} {r : Size< q} → (Γ , A) , A ⊢⟨ {!q!} ⟩ B → Γ , A ⊢⟨ {!!} ⟩ B cont′ t = det (app ccont (lam (lam t)))
{ "alphanum_fraction": 0.4005899705, "avg_line_length": 30.2678571429, "ext": "agda", "hexsha": "e6911f55ed4785c25e0f69f4b9fe1fb2b251065f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/interaction/Issue2096.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/interaction/Issue2096.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/interaction/Issue2096.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 923, "size": 1695 }
{-# OPTIONS --allow-unsolved-metas #-} module finiteSetUtil where open import Data.Nat hiding ( _≟_ ) open import Data.Fin renaming ( _<_ to _<<_ ; _>_ to _f>_ ; _≟_ to _f≟_ ) hiding (_≤_ ) open import Data.Fin.Properties hiding ( <-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Empty open import Relation.Nullary open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import logic open import nat open import finiteSet open import fin open import Data.Nat.Properties as NatP hiding ( _≟_ ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record Found ( Q : Set ) (p : Q → Bool ) : Set where field found-q : Q found-p : p found-q ≡ true open Bijection open import Axiom.Extensionality.Propositional open import Level hiding (suc ; zero) postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n -- (Level.suc n) module _ {Q : Set } (F : FiniteSet Q) where open FiniteSet F equal?-refl : { x : Q } → equal? x x ≡ true equal?-refl {x} with F←Q x ≟ F←Q x ... | yes refl = refl ... | no ne = ⊥-elim (ne refl) equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 equal→refl {q0} {q1} refl | yes eq = begin q0 ≡⟨ sym ( finiso→ q0) ⟩ Q←F (F←Q q0) ≡⟨ cong (λ k → Q←F k ) eq ⟩ Q←F (F←Q q1) ≡⟨ finiso→ q1 ⟩ q1 ∎ where open ≡-Reasoning eqP : (x y : Q) → Dec ( x ≡ y ) eqP x y with F←Q x ≟ F←Q y ... | yes eq = yes (subst₂ (λ j k → j ≡ k ) (finiso→ x) (finiso→ y) (cong Q←F eq) ) ... | no n = no (λ eq → n (cong F←Q eq)) End : (m : ℕ ) → (p : Q → Bool ) → Set End m p = (i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false first-end : ( p : Q → Bool ) → End finite p first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {finite} {i}) ) next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p → (m<n : m < finite ) → p (Q←F (fromℕ< m<n )) ≡ false → End m p next-end {m} p prev m<n np i m<i with NatP.<-cmp m (toℕ i) next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ< m<n ≡ i m<n=i i refl m<n = fromℕ<-toℕ i m<n found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true found {p} q pt = found1 finite (NatP.≤-refl ) ( first-end p ) where found1 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → ((i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (<to≤ m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (<to≤ m<n) p} ) found1 (suc m) m<n end | no np = begin p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p ≡⟨ bool-or-1 (¬-bool-t np ) ⟩ exists1 m (<to≤ m<n) p ≡⟨ found1 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) ⟩ true ∎ where open ≡-Reasoning not-found : { p : Q → Bool } → ( (q : Q ) → p q ≡ false ) → exists p ≡ false not-found {p} pn = not-found2 finite NatP.≤-refl where not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ finite ) → exists1 m m<n p ≡ false not-found2 zero _ = refl not-found2 ( suc m ) m<n with pn (Q←F (fromℕ< {m} {finite} m<n)) not-found2 (suc m) m<n | eq = begin p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p ≡⟨ bool-or-1 eq ⟩ exists1 m (<to≤ m<n) p ≡⟨ not-found2 m (<to≤ m<n) ⟩ false ∎ where open ≡-Reasoning found← : { p : Q → Bool } → exists p ≡ true → Found Q p found← {p} exst = found2 finite NatP.≤-refl (first-end p ) where found2 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → End m p → Found Q p found2 0 m<n end = ⊥-elim ( ¬-bool (not-found (λ q → end (F←Q q) z≤n ) ) (subst (λ k → exists k ≡ true) (sym lemma) exst ) ) where lemma : (λ z → p (Q←F (F←Q z))) ≡ p lemma = f-extensionality ( λ q → subst (λ k → p k ≡ p q ) (sym (finiso→ q)) refl ) found2 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ< m<n) ; found-p = eq } found2 (suc m) m<n end | no np = found2 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false not-found← {p} np q = ¬-bool-t ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ¬-bool np ep ) ) iso-fin : {A B : Set} → FiniteSet A → Bijection A B → FiniteSet B iso-fin {A} {B} fin iso = record { Q←F = λ f → fun→ iso ( FiniteSet.Q←F fin f ) ; F←Q = λ b → FiniteSet.F←Q fin (fun← iso b ) ; finiso→ = finiso→ ; finiso← = finiso← } where finiso→ : (q : B) → fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) ≡ q finiso→ q = begin fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) ≡⟨ cong (λ k → fun→ iso k ) (FiniteSet.finiso→ fin _ ) ⟩ fun→ iso (Bijection.fun← iso q) ≡⟨ fiso→ iso _ ⟩ q ∎ where open ≡-Reasoning finiso← : (f : Fin (FiniteSet.finite fin ))→ FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) ≡ f finiso← f = begin FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (Bijection.fiso← iso _) ⟩ FiniteSet.F←Q fin (FiniteSet.Q←F fin f) ≡⟨ FiniteSet.finiso← fin _ ⟩ f ∎ where open ≡-Reasoning data One : Set where one : One fin-∨1 : {B : Set} → (fb : FiniteSet B ) → FiniteSet (One ∨ B) fin-∨1 {B} fb = record { Q←F = Q←F ; F←Q = F←Q ; finiso→ = finiso→ ; finiso← = finiso← } where b = FiniteSet.finite fb Q←F : Fin (suc b) → One ∨ B Q←F zero = case1 one Q←F (suc f) = case2 (FiniteSet.Q←F fb f) F←Q : One ∨ B → Fin (suc b) F←Q (case1 one) = zero F←Q (case2 f ) = suc (FiniteSet.F←Q fb f) finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q finiso→ (case1 one) = refl finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b) finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q finiso← zero = refl finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f) fin-∨2 : {B : Set} → ( a : ℕ ) → FiniteSet B → FiniteSet (Fin a ∨ B) fin-∨2 {B} zero fb = iso-fin fb iso where iso : Bijection B (Fin zero ∨ B) iso = record { fun← = fun←1 ; fun→ = λ b → case2 b ; fiso→ = fiso→1 ; fiso← = λ _ → refl } where fun←1 : Fin zero ∨ B → B fun←1 (case2 x) = x fiso→1 : (f : Fin zero ∨ B ) → case2 (fun←1 f) ≡ f fiso→1 (case2 x) = refl fin-∨2 {B} (suc a) fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso where iso : Bijection (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B) fun← iso (case1 zero) = case1 one fun← iso (case1 (suc f)) = case2 (case1 f) fun← iso (case2 b) = case2 (case2 b) fun→ iso (case1 one) = case1 zero fun→ iso (case2 (case1 f)) = case1 (suc f) fun→ iso (case2 (case2 b)) = case2 b fiso← iso (case1 one) = refl fiso← iso (case2 (case1 x)) = refl fiso← iso (case2 (case2 x)) = refl fiso→ iso (case1 zero) = refl fiso→ iso (case1 (suc x)) = refl fiso→ iso (case2 x) = refl FiniteSet→Fin : {A : Set} → (fin : FiniteSet A ) → Bijection (Fin (FiniteSet.finite fin)) A fun← (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f fun→ (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f fiso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin fiso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin fin-∨ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∨ B) fin-∨ {A} {B} fa fb = iso-fin (fin-∨2 a fb ) iso2 where a = FiniteSet.finite fa ia = FiniteSet→Fin fa iso2 : Bijection (Fin a ∨ B ) (A ∨ B) fun← iso2 (case1 x) = case1 (fun← ia x ) fun← iso2 (case2 x) = case2 x fun→ iso2 (case1 x) = case1 (fun→ ia x ) fun→ iso2 (case2 x) = case2 x fiso← iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso← ia x) fiso← iso2 (case2 x) = refl fiso→ iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso→ ia x) fiso→ iso2 (case2 x) = refl open import Data.Product hiding ( map ) fin-× : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A × B) fin-× {A} {B} fa fb with FiniteSet→Fin fa ... | a=f = iso-fin (fin-×-f a ) iso-1 where a = FiniteSet.finite fa b = FiniteSet.finite fb iso-1 : Bijection (Fin a × B) ( A × B ) fun← iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x) fun→ iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x) fiso← iso-1 x = lemma where lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x ) lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ ) fiso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ ) iso-2 : {a : ℕ } → Bijection (B ∨ (Fin a × B)) (Fin (suc a) × B) fun← iso-2 (zero , b ) = case1 b fun← iso-2 (suc fst , b ) = case2 ( fst , b ) fun→ iso-2 (case1 b) = ( zero , b ) fun→ iso-2 (case2 (a , b )) = ( suc a , b ) fiso← iso-2 (case1 x) = refl fiso← iso-2 (case2 x) = refl fiso→ iso-2 (zero , b ) = refl fiso→ iso-2 (suc a , b ) = refl fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B) fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 open _∧_ fin-∧ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∧ B) fin-∧ {A} {B} fa fb with FiniteSet→Fin fa -- same thing for our tool ... | a=f = iso-fin (fin-×-f a ) iso-1 where a = FiniteSet.finite fa b = FiniteSet.finite fb iso-1 : Bijection (Fin a ∧ B) ( A ∧ B ) fun← iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x} fun→ iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x} fiso← iso-1 x = lemma where lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x } lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ ) fiso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ ) iso-2 : {a : ℕ } → Bijection (B ∨ (Fin a ∧ B)) (Fin (suc a) ∧ B) fun← iso-2 (record { proj1 = zero ; proj2 = b }) = case1 b fun← iso-2 (record { proj1 = suc fst ; proj2 = b }) = case2 ( record { proj1 = fst ; proj2 = b } ) fun→ iso-2 (case1 b) = record {proj1 = zero ; proj2 = b } fun→ iso-2 (case2 (record { proj1 = a ; proj2 = b })) = record { proj1 = suc a ; proj2 = b } fiso← iso-2 (case1 x) = refl fiso← iso-2 (case2 x) = refl fiso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl fiso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B) fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 -- import Data.Nat.DivMod open import Data.Vec hiding ( map ; length ) import Data.Product exp2 : (n : ℕ ) → exp 2 (suc n) ≡ exp 2 n Data.Nat.+ exp 2 n exp2 n = begin exp 2 (suc n) ≡⟨⟩ 2 * ( exp 2 n ) ≡⟨ *-comm 2 (exp 2 n) ⟩ ( exp 2 n ) * 2 ≡⟨ *-suc ( exp 2 n ) 1 ⟩ (exp 2 n ) Data.Nat.+ ( exp 2 n ) * 1 ≡⟨ cong ( λ k → (exp 2 n ) Data.Nat.+ k ) (proj₂ *-identity (exp 2 n) ) ⟩ exp 2 n Data.Nat.+ exp 2 n ∎ where open ≡-Reasoning open Data.Product cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → cast eq ( cast (sym eq ) f) ≡ f cast-iso refl zero = refl cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) fin2List : {n : ℕ } → FiniteSet (Vec Bool n) fin2List {zero} = record { Q←F = λ _ → Vec.[] ; F←Q = λ _ → # 0 ; finiso→ = finiso→ ; finiso← = finiso← } where Q = Vec Bool zero finiso→ : (q : Q) → [] ≡ q finiso→ [] = refl finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f finiso← zero = refl fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List ) (fin2List )) iso ) where QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n QtoR ( true ∷ x ) = case1 x QtoR ( false ∷ x ) = case2 x RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) RtoQ ( case1 x ) = true ∷ x RtoQ ( case2 x ) = false ∷ x isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x isoRQ (true ∷ _ ) = refl isoRQ (false ∷ _ ) = refl isoQR : (x : Vec Bool n ∨ Vec Bool n ) → QtoR ( RtoQ x ) ≡ x isoQR (case1 x) = refl isoQR (case2 x) = refl iso : Bijection (Vec Bool n ∨ Vec Bool n) (Vec Bool (suc n)) iso = record { fun← = QtoR ; fun→ = RtoQ ; fiso← = isoQR ; fiso→ = isoRQ } F2L : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → ( (q : Q) → toℕ (FiniteSet.F←Q fin q ) < n → Bool ) → Vec Bool n F2L {Q} {zero} fin _ Q→B = [] F2L {Q} {suc n} fin (s≤s n<m) Q→B = Q→B (FiniteSet.Q←F fin (fromℕ< n<m)) lemma6 ∷ F2L {Q} fin (NatP.<-trans n<m a<sa ) qb1 where lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m))) < suc n lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ< n<m )) a<sa ) qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool qb1 q q<n = Q→B q (NatP.<-trans q<n a<sa) List2Func : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → Q → Bool List2Func {Q} {zero} fin (s≤s z≤n) [] q = false List2Func {Q} {suc n} fin (s≤s n<m) (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ< n<m ... | yes _ = h ... | no _ = List2Func {Q} fin (NatP.<-trans n<m a<sa ) t q open import Level renaming ( suc to Suc ; zero to Zero) open import Axiom.Extensionality.Propositional -- postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n F2L-iso : { Q : Set } → (fin : FiniteSet Q ) → (x : Vec Bool (FiniteSet.finite fin) ) → F2L fin a<sa (λ q _ → List2Func fin a<sa x q ) ≡ x F2L-iso {Q} fin x = f2l m a<sa x where m = FiniteSet.finite fin f2l : (n : ℕ ) → (n<m : n < suc m )→ (x : Vec Bool n ) → F2L fin n<m (λ q q<n → List2Func fin n<m x q ) ≡ x f2l zero (s≤s z≤n) [] = refl f2l (suc n) (s≤s n<m) (h ∷ t ) = lemma1 lemma2 lemma3f where lemma1 : {n : ℕ } → {h h1 : Bool } → {t t1 : Vec Bool n } → h ≡ h1 → t ≡ t1 → h ∷ t ≡ h1 ∷ t1 lemma1 refl refl = refl lemma2 : List2Func fin (s≤s n<m) (h ∷ t) (FiniteSet.Q←F fin (fromℕ< n<m)) ≡ h lemma2 with FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m)) ≟ fromℕ< n<m lemma2 | yes p = refl lemma2 | no ¬p = ⊥-elim ( ¬p (FiniteSet.finiso← fin _) ) lemma4 : (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → List2Func fin (s≤s n<m) (h ∷ t) q ≡ List2Func fin (NatP.<-trans n<m a<sa) t q lemma4 q _ with FiniteSet.F←Q fin q ≟ fromℕ< n<m lemma4 q lt | yes p = ⊥-elim ( nat-≡< (toℕ-fromℕ< n<m) (lemma5 n lt (cong (λ k → toℕ k) p))) where lemma5 : {j k : ℕ } → ( n : ℕ) → suc j ≤ n → j ≡ k → k < n lemma5 {zero} (suc n) (s≤s z≤n) refl = s≤s z≤n lemma5 {suc j} (suc n) (s≤s lt) refl = s≤s (lemma5 {j} n lt refl) lemma4 q _ | no ¬p = refl lemma3f : F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) ≡ t lemma3f = begin F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) ≡⟨ cong (λ k → F2L fin (NatP.<-trans n<m a<sa) ( λ q q<n → k q q<n )) (f-extensionality ( λ q → (f-extensionality ( λ q<n → lemma4 q q<n )))) ⟩ F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (NatP.<-trans n<m a<sa) t q ) ≡⟨ f2l n (NatP.<-trans n<m a<sa ) t ⟩ t ∎ where open ≡-Reasoning L2F : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool L2F fin n<m x q q<n = List2Func fin n<m x q L2F-iso : { Q : Set } → (fin : FiniteSet Q ) → (f : Q → Bool ) → (q : Q ) → (L2F fin a<sa (F2L fin a<sa (λ q _ → f q) )) q (toℕ<n _) ≡ f q L2F-iso {Q} fin f q = l2f m a<sa (toℕ<n _) where m = FiniteSet.finite fin lemma11f : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ< n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n lemma11f n<m ¬q=n q≤n = lemma13 n<m (contra-position (lemma12 n<m _) ¬q=n ) q≤n where lemma13 : {n nq : ℕ } → (n<m : n < m ) → ¬ ( nq ≡ n ) → nq ≤ n → nq < n lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl ) lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NatP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n) lemma3f : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) lemma3f (s≤s lt) = refl lemma12f : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m lemma12f {zero} {suc m} (s≤s z≤n) zero refl = refl lemma12f {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3f n<m) ) ( cong ( λ k → suc k ) ( lemma12f {n} {m} n<m f refl ) ) l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F fin n<m (F2L fin n<m (λ q _ → f q))) q q<n ≡ f q l2f zero (s≤s z≤n) () l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ< n<m l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin f (FiniteSet.Q←F fin (fromℕ< n<m)) ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩ f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q )) ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩ f q ∎ where open ≡-Reasoning l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NatP.<-trans n<m a<sa) (lemma11f n<m ¬p n<q) fin→ : {A : Set} → FiniteSet A → FiniteSet (A → Bool ) fin→ {A} fin = iso-fin fin2List iso where a = FiniteSet.finite fin iso : Bijection (Vec Bool a ) (A → Bool) fun← iso x = F2L fin a<sa ( λ q _ → x q ) fun→ iso x = List2Func fin a<sa x fiso← iso x = F2L-iso fin x fiso→ iso x = lemma where lemma : List2Func fin a<sa (F2L fin a<sa (λ q _ → x q)) ≡ x lemma = f-extensionality ( λ q → L2F-iso fin x q ) Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } data fin-less { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) : Set where elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → fin-less fa n<m get-elm : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa } → fin-less fa n<m → A get-elm (elm1 a _ ) = a get-< : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa }→ (f : fin-less fa n<m ) → toℕ (FiniteSet.F←Q fa (get-elm f )) < n get-< (elm1 _ b ) = b fin-less-cong : { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) → (x y : fin-less fa n<m ) → get-elm {n} {A} {fa} x ≡ get-elm {n} {A} {fa} y → get-< x ≅ get-< y → x ≡ y fin-less-cong fa n<m (elm1 elm x) (elm1 elm x) refl HE.refl = refl fin-< : {A : Set} → { n : ℕ } → (fa : FiniteSet A ) → (n<m : n < FiniteSet.finite fa ) → FiniteSet (fin-less fa n<m ) fin-< {A} {n} fa n<m = iso-fin (Fin2Finite n) iso where m = FiniteSet.finite fa iso : Bijection (Fin n) (fin-less fa n<m ) lemma8f : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n lemma8f {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl lemma8f {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8f {i} {i} refl ) lemma10f : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n lemma10f refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8f refl )) lemma3f : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c lemma3f {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8f refl) lemma11f : {n : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x lemma11f {n} {x} n<m = begin toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡⟨ toℕ-fromℕ< _ ⟩ toℕ x ∎ where open ≡-Reasoning fun← iso (elm1 elm x) = fromℕ< x fun→ iso x = elm1 (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m ))) to<n where x<n : toℕ x < n x<n = toℕ<n x to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m)))) < n to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ< (NatP.<-trans x<n n<m) )) x<n ) fiso← iso x = lemma2 where lemma2 : fromℕ< (subst (λ k → toℕ k < n) (sym (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x lemma2 = begin fromℕ< (subst (λ k → toℕ k < n) (sym (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡⟨⟩ fromℕ< ( subst (λ k → toℕ ( k ) < n ) (sym (FiniteSet.finiso← fa _ )) lemma6 ) ≡⟨ lemma10 (cong (λ k → toℕ k) (FiniteSet.finiso← fa _ ) ) ⟩ fromℕ< lemma6 ≡⟨ lemma10 (lemma11 n<m ) ⟩ fromℕ< ( toℕ<n x ) ≡⟨ fromℕ<-toℕ _ _ ⟩ x ∎ where open ≡-Reasoning lemma6 : toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) < n lemma6 = subst ( λ k → k < n ) (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x ) fiso→ iso (elm1 elm x) = fin-less-cong fa n<m _ _ lemma (lemma8 (cong (λ k → toℕ (FiniteSet.F←Q fa k) ) lemma ) ) where lemma13 : toℕ (fromℕ< x) ≡ toℕ (FiniteSet.F←Q fa elm) lemma13 = begin toℕ (fromℕ< x) ≡⟨ toℕ-fromℕ< _ ⟩ toℕ (FiniteSet.F←Q fa elm) ∎ where open ≡-Reasoning lemma : FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m)) ≡ elm lemma = begin FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m)) ≡⟨⟩ FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans (toℕ<n ( fromℕ< x ) ) n<m)) ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 lemma13 ) ⟩ FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans x n<m)) ≡⟨ cong (λ k → FiniteSet.Q←F fa (fromℕ< k )) (HE.≅-to-≡ (lemma8 refl)) ⟩ FiniteSet.Q←F fa (fromℕ< ( toℕ<n (FiniteSet.F←Q fa elm))) ≡⟨ cong (λ k → FiniteSet.Q←F fa k ) ( fromℕ<-toℕ _ _ ) ⟩ FiniteSet.Q←F fa (FiniteSet.F←Q fa elm ) ≡⟨ FiniteSet.finiso→ fa _ ⟩ elm ∎ where open ≡-Reasoning open import Data.List open FiniteSet memberQ : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool memberQ {Q} finq q [] = false memberQ {Q} finq q (q0 ∷ qs) with equal? finq q q0 ... | true = true ... | false = memberQ finq q qs -- -- there is a duplicate element in finite list -- phase2 : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool phase2 finq q [] = false phase2 finq q (x ∷ qs) with equal? finq q x ... | true = true ... | false = phase2 finq q qs phase1 : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool phase1 finq q [] = false phase1 finq q (x ∷ qs) with equal? finq q x ... | true = phase2 finq q qs ... | false = phase1 finq q qs dup-in-list : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool dup-in-list {Q} finq q qs = phase1 finq q qs -- -- if length of the list is longer than kinds of a finite set, there is a duplicate -- prove this based on the theorem on Data.Fin -- dup-in-list+fin : { Q : Set } (finq : FiniteSet Q) → (q : Q) (qs : List Q ) → fin-dup-in-list (F←Q finq q) (map (F←Q finq) qs) ≡ true → dup-in-list finq q qs ≡ true dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase2 finq q qs ≡ true i-phase2 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) ... | true | _ | t = refl ... | false | _ | tri< a ¬b ¬c = i-phase2 qs p ... | false | record { eq = eq } | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) ... | false | _ | tri> ¬a ¬b c = i-phase2 qs p i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase1 finq q qs ≡ true i-phase1 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) ... | true | record { eq = eq } | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) ( equal→refl finq eq )) a ) ... | true | _ | tri≈ ¬a b ¬c = i-phase2 qs p ... | true | record { eq = eq} | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) (sym ( equal→refl finq eq ))) c ) ... | false | _ | tri< a ¬b ¬c = i-phase1 qs p ... | false | record {eq = eq} | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) ... | false | _ | tri> ¬a ¬b c = i-phase1 qs p record Dup-in-list {Q : Set } (finq : FiniteSet Q) (qs : List Q) : Set where field dup : Q is-dup : dup-in-list finq dup qs ≡ true dup-in-list>n : {Q : Set } → (finq : FiniteSet Q) → (qs : List Q) → (len> : length qs > finite finq ) → Dup-in-list finq qs dup-in-list>n {Q} finq qs lt = record { dup = Q←F finq (FDup-in-list.dup dl) ; is-dup = dup-in-list+fin finq (Q←F finq (FDup-in-list.dup dl)) qs dl01 } where maplen : (qs : List Q) → length (map (F←Q finq) qs) ≡ length qs maplen [] = refl maplen (x ∷ qs) = cong suc (maplen qs) dl : FDup-in-list (finite finq ) (map (F←Q finq) qs) dl = fin-dup-in-list>n (map (F←Q finq) qs) (subst (λ k → k > finite finq ) (sym (maplen qs)) lt) dl01 : fin-dup-in-list (F←Q finq (Q←F finq (FDup-in-list.dup dl))) (map (F←Q finq) qs) ≡ true dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true ) (sym (finiso← finq _)) ( FDup-in-list.is-dup dl )
{ "alphanum_fraction": 0.5169243168, "avg_line_length": 48.4007092199, "ext": "agda", "hexsha": "ccf51ffdad96f2ff78bcd841fcd0c2bf12b0ddd1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/finiteSetUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/finiteSetUtil.agda", "max_line_length": 159, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/finiteSetUtil.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11571, "size": 27298 }
module STLC.Lib.MaybeElim where open import Level open import Function open import Relation.Binary.PropositionalEquality open import Data.Unit.Base open import Data.Bool.Base open import Data.Maybe.Base infixl 1 _>>=ᵀ_ _>>=ᵗ_ _>>=⊤_ infixl 4 _<$>ᵗ_ infixr 1 _>=>ᵗ_ infixr 10 _<∘>ᵗ_ data _>>=ᵀ_ {α β} {A : Set α} : (mx : Maybe A) -> (∀ x -> mx ≡ just x -> Set β) -> Set β where nothingᵗ : ∀ {B} -> nothing >>=ᵀ B justᵗ : ∀ {x B} -> B x refl -> just x >>=ᵀ B -- We could write (Set (maybe (const β) zero mx)), -- but I don't want to introduce dependency at the type level. FromJustᵗ : ∀ {α β} {A : Set α} {mx : Maybe A} {B : ∀ x -> mx ≡ just x -> Set β} -> mx >>=ᵀ B -> Set β FromJustᵗ nothingᵗ = Lift ⊤ FromJustᵗ (justᵗ {x} {B} y) = B x refl fromJustᵗ : ∀ {α β} {A : Set α} {mx : Maybe A} {B : ∀ x -> mx ≡ just x -> Set β} -> (yᵗ : mx >>=ᵀ B) -> FromJustᵗ yᵗ fromJustᵗ nothingᵗ = _ fromJustᵗ (justᵗ y) = y _>>=ᵗ_ : ∀ {α β} {A : Set α} {B : A -> Set β} -> (mx : Maybe A) -> (∀ x -> B x) -> mx >>=ᵀ λ x _ -> B x nothing >>=ᵗ f = nothingᵗ just x >>=ᵗ f = justᵗ (f x) _>>=⊤_ : ∀ {α β} {A : Set α} {B : A -> Set β} -> (mx : Maybe A) -> (g : ∀ x -> B x) -> FromJustᵗ (mx >>=ᵗ g) mx >>=⊤ g = fromJustᵗ $ mx >>=ᵗ g runᵗ : ∀ {α β} {A : Set α} {mx : Maybe A} {B : ∀ x -> mx ≡ just x -> Set β} {x} -> mx >>=ᵀ B -> (p : mx ≡ just x) -> B x p runᵗ (justᵗ y) refl = y _<$>ᵗ_ : ∀ {α β γ} {A : Set α} {mx : Maybe A} {B : ∀ x -> mx ≡ just x -> Set β} {C : ∀ {x} {p : mx ≡ just x} -> B x p -> Set γ} -> (∀ {x} {p : mx ≡ just x} -> (y : B x p) -> C y) -> (yᵗ : mx >>=ᵀ B) -> mx >>=ᵀ λ _ -> C ∘ runᵗ yᵗ g <$>ᵗ nothingᵗ = nothingᵗ g <$>ᵗ justᵗ y = justᵗ (g y) _>=>ᵗ_ : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : ∀ {x} -> B x -> Set γ} -> (f : ∀ x -> Maybe (B x)) -> (∀ {x} -> (y : B x) -> C y) -> ∀ x -> f x >>=ᵀ λ y _ -> C y (f >=>ᵗ g) x = f x >>=ᵗ g _<∘>ᵗ_ : ∀ {α β γ δ} {A : Set α} {B : A -> Set β} {f : ∀ x -> Maybe (B x)} {C : ∀ x y -> f x ≡ just y -> Set γ} {D : ∀ {x y} {p : f x ≡ just y} -> C x y p -> Set δ} -> (∀ {x y} {p : f x ≡ just y} -> (z : C x y p) -> D z) -> (g : ∀ x -> f x >>=ᵀ C x) -> ∀ x -> f x >>=ᵀ λ _ -> D ∘ runᵗ (g x) (h <∘>ᵗ g) x = h <$>ᵗ g x
{ "alphanum_fraction": 0.4342442357, "avg_line_length": 35.4848484848, "ext": "agda", "hexsha": "fd05f0e802c6e2e936f46642d38d911abdabaaeb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/effectfully/STLC/3826d7555f37d032d07cf414c7f6770fc32918f1/src/STLC/Lib/MaybeElim.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/effectfully/STLC/3826d7555f37d032d07cf414c7f6770fc32918f1/src/STLC/Lib/MaybeElim.agda", "max_line_length": 94, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/effectfully/STLC/3826d7555f37d032d07cf414c7f6770fc32918f1/src/STLC/Lib/MaybeElim.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 1106, "size": 2342 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to indexed containers that uses heterogeneous -- equality ------------------------------------------------------------------------ -- The notation and presentation here is perhaps close to those used -- by Hancock and Hyvernat in "Programming interfaces and basic -- topology" (2006). {-# OPTIONS --with-K --safe --guardedness #-} module Data.Container.Indexed.WithK where open import Axiom.Extensionality.Heterogeneous using (Extensionality) open import Data.Container.Indexed hiding (module PlainMorphism) open import Data.Product as Prod hiding (map) open import Function renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_) open import Level open import Relation.Unary using (Pred; _⊆_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl) open import Relation.Binary.Indexed.Heterogeneous ------------------------------------------------------------------------ -- Equality, parametrised on an underlying relation. Eq : ∀ {i o c r ℓ} {I : Set i} {O : Set o} (C : Container I O c r) (X Y : Pred I ℓ) → IREL X Y ℓ → IREL (⟦ C ⟧ X) (⟦ C ⟧ Y) _ Eq C _ _ _≈_ {o₁} {o₂} (c , k) (c′ , k′) = o₁ ≡ o₂ × c ≅ c′ × (∀ r r′ → r ≅ r′ → k r ≈ k′ r′) private -- Note that, if propositional equality were extensional, then Eq _≅_ -- and _≅_ would coincide. Eq⇒≅ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} {C : Container I O c r} {X : Pred I ℓ} {o₁ o₂ : O} {xs : ⟦ C ⟧ X o₁} {ys : ⟦ C ⟧ X o₂} → Extensionality r ℓ → Eq C X X (λ x₁ x₂ → x₁ ≅ x₂) xs ys → xs ≅ ys Eq⇒≅ {xs = c , k} {.c , k′} ext (refl , refl , k≈k′) = H.cong (_,_ c) (ext (λ _ → refl) (λ r → k≈k′ r r refl)) setoid : ∀ {i o c r s} {I : Set i} {O : Set o} → Container I O c r → IndexedSetoid I s _ → IndexedSetoid O _ _ setoid C X = record { Carrier = ⟦ C ⟧ X.Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = refl , refl , λ { r .r refl → X.refl } ; sym = sym ; trans = λ { {_} {i = xs} {ys} {zs} → trans {_} {i = xs} {ys} {zs} } } } where module X = IndexedSetoid X _≈_ : IRel (⟦ C ⟧ X.Carrier) _ _≈_ = Eq C X.Carrier X.Carrier X._≈_ sym : Symmetric (⟦ C ⟧ X.Carrier) _≈_ sym {_} {._} {_ , _} {._ , _} (refl , refl , k) = refl , refl , λ { r .r refl → X.sym (k r r refl) } trans : Transitive (⟦ C ⟧ X.Carrier) _≈_ trans {._} {_} {._} {_ , _} {._ , _} {._ , _} (refl , refl , k) (refl , refl , k′) = refl , refl , λ { r .r refl → X.trans (k r r refl) (k′ r r refl) } ------------------------------------------------------------------------ -- Functoriality module Map where identity : ∀ {i o c r s} {I : Set i} {O : Set o} (C : Container I O c r) (X : IndexedSetoid I s _) → let module X = IndexedSetoid X in ∀ {o} {xs : ⟦ C ⟧ X.Carrier o} → Eq C X.Carrier X.Carrier X._≈_ xs (map C {X.Carrier} ⟨id⟩ xs) identity C X = IndexedSetoid.refl (setoid C X) composition : ∀ {i o c r s ℓ₁ ℓ₂} {I : Set i} {O : Set o} (C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂} (Z : IndexedSetoid I s _) → let module Z = IndexedSetoid Z in {f : Y ⊆ Z.Carrier} {g : X ⊆ Y} {o : O} {xs : ⟦ C ⟧ X o} → Eq C Z.Carrier Z.Carrier Z._≈_ (map C {Y} f (map C {X} g xs)) (map C {X} (f ⟨∘⟩ g) xs) composition C Z = IndexedSetoid.refl (setoid C Z) ------------------------------------------------------------------------ -- Plain morphisms module PlainMorphism {i o c r} {I : Set i} {O : Set o} where open Data.Container.Indexed.PlainMorphism -- Naturality. Natural : ∀ {ℓ} {C₁ C₂ : Container I O c r} → ((X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) → Set _ Natural {C₁ = C₁} {C₂} m = ∀ {X} Y → let module Y = IndexedSetoid Y in (f : X ⊆ Y.Carrier) → ∀ {o} (xs : ⟦ C₁ ⟧ X o) → Eq C₂ Y.Carrier Y.Carrier Y._≈_ (m Y.Carrier $ map C₁ {X} f xs) (map C₂ {X} f $ m X xs) -- Natural transformations. NT : ∀ {ℓ} (C₁ C₂ : Container I O c r) → Set _ NT {ℓ} C₁ C₂ = ∃ λ (m : (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) → Natural m -- Container morphisms are natural. natural : ∀ {ℓ} (C₁ C₂ : Container I O c r) (m : C₁ ⇒ C₂) → Natural {ℓ} ⟪ m ⟫ natural _ _ m {X} Y f _ = refl , refl , λ { r .r refl → lemma (coherent m) } where module Y = IndexedSetoid Y lemma : ∀ {i j} (eq : i ≡ j) {x} → P.subst Y.Carrier eq (f x) Y.≈ f (P.subst X eq x) lemma refl = Y.refl -- In fact, all natural functions of the right type are container -- morphisms. complete : ∀ {C₁ C₂ : Container I O c r} (nt : NT C₁ C₂) → ∃ λ m → (X : IndexedSetoid I _ _) → let module X = IndexedSetoid X in ∀ {o} (xs : ⟦ C₁ ⟧ X.Carrier o) → Eq C₂ X.Carrier X.Carrier X._≈_ (proj₁ nt X.Carrier xs) (⟪ m ⟫ X.Carrier {o} xs) complete {C₁} {C₂} (nt , nat) = m , (λ X xs → nat X (λ { (r , eq) → P.subst (IndexedSetoid.Carrier X) eq (proj₂ xs r) }) (proj₁ xs , (λ r → r , refl))) where m : C₁ ⇒ C₂ m = record { command = λ c₁ → proj₁ (lemma c₁) ; response = λ {_} {c₁} r₂ → proj₁ (proj₂ (lemma c₁) r₂) ; coherent = λ {_} {c₁} {r₂} → proj₂ (proj₂ (lemma c₁) r₂) } where lemma : ∀ {o} (c₁ : Command C₁ o) → Σ[ c₂ ∈ Command C₂ o ] ((r₂ : Response C₂ c₂) → Σ[ r₁ ∈ Response C₁ c₁ ] next C₁ c₁ r₁ ≡ next C₂ c₂ r₂) lemma c₁ = nt (λ i → Σ[ r₁ ∈ Response C₁ c₁ ] next C₁ c₁ r₁ ≡ i) (c₁ , λ r₁ → r₁ , refl) -- Composition commutes with ⟪_⟫. ∘-correct : {C₁ C₂ C₃ : Container I O c r} (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) (X : IndexedSetoid I (c ⊔ r) _) → let module X = IndexedSetoid X in ∀ {o} {xs : ⟦ C₁ ⟧ X.Carrier o} → Eq C₃ X.Carrier X.Carrier X._≈_ (⟪ f ∘ g ⟫ X.Carrier xs) (⟪ f ⟫ X.Carrier (⟪ g ⟫ X.Carrier xs)) ∘-correct f g X = refl , refl , λ { r .r refl → lemma (coherent g) (coherent f) } where module X = IndexedSetoid X lemma : ∀ {i j k} (eq₁ : i ≡ j) (eq₂ : j ≡ k) {x} → P.subst X.Carrier (P.trans eq₁ eq₂) x X.≈ P.subst X.Carrier eq₂ (P.subst X.Carrier eq₁ x) lemma refl refl = X.refl ------------------------------------------------------------------------ -- All and any -- Membership. infix 4 _∈_ _∈_ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} {C : Container I O c r} {X : Pred I (i ⊔ ℓ)} → IREL X (⟦ C ⟧ X) _ _∈_ {C = C} {X} x xs = ◇ C {X = X} ((x ≅_) ⟨∘⟩ proj₂) (-, xs)
{ "alphanum_fraction": 0.480209546, "avg_line_length": 37.347826087, "ext": "agda", "hexsha": "5fa10e4b829c0b98a9f770e891bce3df9f8940f0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/WithK.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2470, "size": 6872 }
module Logic.Classical.DoubleNegated where open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Names open import Logic.Propositional as Constructive using (¬¬_) import Logic.Predicate as Constructive open import Logic import Lvl open import Syntax.Type open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable X Y Z W : Stmt{ℓ} private variable P : X → Stmt{ℓ} -- Classical propositions are expressed as propositions wrapped in double negation. -- TODO: I am not sure, but I think this works? My reasoning is the following: -- • [¬¬]-elim ↔ excluded-middle -- Double negation elimination is equivalent to excluded middle in constructive logic. -- • Theory(ClassicalLogic) = Theory(ConstructiveLogic ∪ {excludedMiddle}) -- Constructive logic is classical logic without EM. -- EM is the difference between classical and constructive. -- • Theory(ClassicalLogic) ⊈ Theory(ConstructiveLogic) -- • Theory(ClassicalLogic) ⊇ Theory(ConstructiveLogic) -- This seems to be a common description of constructive logic. -- • [¬¬]-intro ∈ Theory(ConstructiveLogic) -- Double negation introduction exists in constructive logic. -- • (∀φ. ¬¬¬¬φ → ¬¬φ) ∈ Theory(ConstructiveLogic) -- Double negation elimination exists inside a double negation in constructive logic. -- • Every natural deduction introduction/elimination rule in constructive logic can be expressed inside a double negation. -- Therefore: -- • Theory(ClassicalLogic) = Theory(ConstructiveLogic ∪ {[¬¬]-elim}). -- • The theory inside double negation in constructive logic is (at least) a classical logic. -- Because every intro/elim rule exists in there, -- the propositions inside a double negation are at least a constructive logic. -- But [¬¬]-elim also exists in there. -- Therefore it is at least a classical logic. -- This cannot be done with predicate logic because the translation for [∀] does not hold in both directions. module _ where infixl 1011 •_ infixl 1010 ¬_ infixl 1005 _∧_ infixl 1004 _∨_ infixl 1000 _⟵_ _⟷_ _⟶_ •_ : Stmt{ℓ} → Stmt •_ = ¬¬_ _∧_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt _∧_ = (¬¬_) ∘₂ (Constructive._∧_) _⟶_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt _⟶_ = (¬¬_) ∘₂ (_→ᶠ_) _⟵_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt _⟵_ = (¬¬_) ∘₂ (_←_) _⟷_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt _⟷_ = (¬¬_) ∘₂ (Constructive._↔_) _∨_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt _∨_ = (¬¬_) ∘₂ (Constructive._∨_) ⊥ : Stmt ⊥ = ¬¬ Constructive.⊥ ⊤ : Stmt ⊤ = ¬¬ Constructive.⊤ ¬_ : Stmt{ℓ} → Stmt ¬_ = (¬¬_) ∘ Constructive.¬_ ∀ₗ : (X → Stmt{ℓ}) → Stmt ∀ₗ = (¬¬_) ∘ Constructive.∀ₗ ∘ ((¬¬_) ∘_) ∃ : (X → Stmt{ℓ}) → Stmt ∃ = (¬¬_) ∘ Constructive.∃ import Logic.Propositional.Theorems as Constructive import Logic.Predicate.Theorems as Constructive [→]ₗ-[¬¬]-elim : ((¬¬ X) → Y) → (X → Y) [→]ₗ-[¬¬]-elim = liftᵣ(Constructive.[¬¬]-intro) [→]ᵣ-[¬¬]-move-out : (X → (¬¬ Y)) → ¬¬(X → Y) [→]ᵣ-[¬¬]-move-out xnny nxy = nxy (x ↦ Constructive.[⊥]-elim(xnny x (y ↦ nxy (const y)))) double-contrapositiveᵣ : (X → Y) → ((¬¬ X) → (¬¬ Y)) -- DoubleNegated(X → Y) → DoubleNegated(¬¬ X → ¬¬ Y) double-contrapositiveᵣ = Constructive.contrapositiveᵣ ∘ Constructive.contrapositiveᵣ [¬¬]-double-contrapositiveₗ : ¬¬(X → Y) ← ((¬¬ X) → (¬¬ Y)) [¬¬]-double-contrapositiveₗ p = [→]ᵣ-[¬¬]-move-out ([→]ₗ-[¬¬]-elim p) -- Also called: Double-negation shift. [¬¬][→]-preserving : ¬¬(X → Y) Constructive.↔ ((¬¬ X) → (¬¬ Y)) [¬¬][→]-preserving{X = X}{Y = Y} = Constructive.[↔]-intro l r where l : ¬¬(X → Y) ← ((¬¬ X) → (¬¬ Y)) l = [→]ᵣ-[¬¬]-move-out ∘ [→]ₗ-[¬¬]-elim r : ¬¬(X → Y) → ((¬¬ X) → (¬¬ Y)) r(nnxy)(nnx)(ny) = ((Constructive.[→]-elim ((xy ↦ ((Constructive.[→]-elim ((Constructive.[→]-elim ((Constructive.[⊥]-elim ((Constructive.[→]-elim ((x ↦ ((Constructive.[→]-elim ((Constructive.[→]-elim x xy) :of: Y) (ny :of: (Y → Constructive.⊥)) ) :of: Constructive.⊥) ) :of: (X → Constructive.⊥)) (nnx :of: ((X → Constructive.⊥) → Constructive.⊥)) ) :of: Constructive.⊥) ) :of: X) (xy :of: (X → Y)) ) :of: Y) (ny :of: (Y → Constructive.⊥)) ) :of: Constructive.⊥) ) :of: ((X → Y) → Constructive.⊥)) (nnxy :of: ¬¬(X → Y)) ) :of: Constructive.⊥) ------------------------------------------ -- Converting theorems with implication in constructive logic to classical logic prop-intro : X → (¬¬ X) prop-intro = Constructive.[¬¬]-intro [→]₁-intro : (X → Y) → ((¬¬ X) → (¬¬ Y)) [→]₁-intro = double-contrapositiveᵣ [→]₂-intro : (X → Y → Z) → ((¬¬ X) → (¬¬ Y) → (¬¬ Z)) [→]₂-intro(xyz) = (Constructive.[↔]-to-[→] [¬¬][→]-preserving) ∘ ([→]₁-intro(xyz)) [→]₃-intro : (X → Y → Z → W) → ((¬¬ X) → (¬¬ Y) → (¬¬ Z) → (¬¬ W)) [→]₃-intro(xyzw) = (Constructive.[↔]-to-[→] [¬¬][→]-preserving) ∘₂ ([→]₂-intro(xyzw)) ------------------------------------------ -- Theorems [→][∧]-assumptionₗ : ¬¬((X Constructive.∧ Y) → Z) ← ¬¬(X → Y → Z) [→][∧]-assumptionₗ = [→]₁-intro(Tuple.uncurry) [→][∧]-assumptionᵣ : ¬¬((X Constructive.∧ Y) → Z) → ¬¬(X → Y → Z) [→][∧]-assumptionᵣ = [→]₁-intro(Tuple.curry) [¬¬]-intro : (¬¬ X) → ¬¬(¬¬ X) [¬¬]-intro = Constructive.[¬¬]-intro ------------------------------------------ -- Conjunction (AND) [∧]-intro : (• X) → (• Y) → (X ∧ Y) [∧]-intro = [→]₂-intro Constructive.[∧]-intro [∧]-elimₗ : (X ∧ Y) → (• X) [∧]-elimₗ = [→]₁-intro Constructive.[∧]-elimₗ [∧]-elimᵣ : (X ∧ Y) → (• Y) [∧]-elimᵣ = [→]₁-intro Constructive.[∧]-elimᵣ ------------------------------------------ -- Implication [→]-elim : (X ⟶ Y) → (• X) → (• Y) [→]-elim = [→]₂-intro(swap Constructive.[→]-elim) [→]-intro : ((• X) → (• Y)) → (X ⟶ Y) [→]-intro = [¬¬]-double-contrapositiveₗ ------------------------------------------ -- Reverse implication [←]-intro : ((• Y) ← (• X)) → (Y ⟵ X) [←]-intro = [¬¬]-double-contrapositiveₗ [←]-elim : (• X) → (Y ⟵ X) → (• Y) [←]-elim = [→]₂-intro(Constructive.[←]-elim) ------------------------------------------ -- Equivalence [↔]-intro : ((• X) ← (• Y)) → ((• X) → (• Y)) → (X ⟷ Y) [↔]-intro yx xy = ([→]₂-intro(Constructive.[↔]-intro)) ([→]-intro yx) ([→]-intro xy) [↔]-elimₗ : (X ⟷ Y) → (• X) ← (• Y) [↔]-elimₗ = [→]-elim ∘ ([→]₁-intro(Constructive.[↔]-to-[←])) [↔]-elimᵣ : (X ⟷ Y) → (• X) → (• Y) [↔]-elimᵣ = [→]-elim ∘ ([→]₁-intro(Constructive.[↔]-to-[→])) ------------------------------------------ -- Disjunction (OR) [∨]-introₗ : (• X) → (X ∨ Y) [∨]-introₗ = [→]₁-intro(Constructive.[∨]-introₗ) [∨]-introᵣ : (• Y) → (X ∨ Y) [∨]-introᵣ = [→]₁-intro(Constructive.[∨]-introᵣ) [∨]-elim : ((• X) → (• Z)) → ((• Y) → (• Z)) → (X ∨ Y) → (¬¬ Z) [∨]-elim xz yz = ([→]₃-intro(Constructive.[∨]-elim)) ([→]-intro xz) ([→]-intro yz) ------------------------------------------ -- Bottom (false, absurdity, empty, contradiction) [⊥]-intro : (• X) → (¬ X) → ⊥ [⊥]-intro = [→]₂-intro(Constructive.[⊥]-intro) [⊥]-elim : ⊥ → (• X) [⊥]-elim = [→]₁-intro(Constructive.[⊥]-elim) ------------------------------------------ -- Top (true, truth, unit, validity) [⊤]-intro : ⊤ [⊤]-intro = prop-intro(Constructive.[⊤]-intro) ------------------------------------------ -- Negation [¬]-intro : ((• X) → ⊥) → (¬ X) [¬]-intro = ([→]₁-intro(Constructive.[¬]-intro)) ∘ [→]-intro [¬]-elim : ((¬ X) → ⊥) → (• X) [¬]-elim nnx nx = nnx (apply nx) id ------------------------------------------ -- For-all quantification [∀]-intro : (∀{x} → • P(x)) → (∀ₗ P) [∀]-intro = apply [∀]-elim : (∀ₗ P) → ∀{x} → • P(x) [∀]-elim apx npx = apx(\px → apply npx px) ------------------------------------------ -- Existential quantification [∃]-intro : ∀{x} → • P(x) → (∃ P) [∃]-intro {x = x} = [→]₁-intro(proof ↦ Constructive.[∃]-intro (x) ⦃ proof ⦄) [∃]-elim : (∀{x} → • P(x) → • X) → (∃ P) → • X [∃]-elim apx nnep nx = nnep (Constructive.[∃]-elim (p ↦ apx (apply p) nx)) ------------------------------------------ -- Theorems exclusive to classic logic (compared to constructive logic) [¬¬]-elim : ¬¬(¬¬ X) → (• X) [¬¬]-elim = Constructive.[¬¬¬]-elim excluded-middle : (X ∨ (Constructive.¬ X)) excluded-middle{X = X} = Constructive.[¬¬]-excluded-middle [→]-disjunctive-formᵣ : (X ⟶ Y) → (Constructive.¬ X ∨ Y) [→]-disjunctive-formᵣ n-n-x→y n-nx∨y = (n-nx∨y ∘ Constructive.[∨]-introₗ) (n-n-x→y ∘ (n-nx∨y ∘ Constructive.[∨]-introᵣ ∘₂ apply)) -- contrapositiveₗ : (X ⟶ Y) ← ((Constructive.¬ X) ⟵ (Constructive.¬ Y)) -- contrapositiveₗ n-n-ny→nx = {!!} -- Constructive.[→]-intro ([¬¬]-elim ∘ Constructive.contrapositiveᵣ(Constructive.[→]-elim n-n-ny→nx) ∘ Constructive.[¬¬]-intro) module _ where _∨ʷᵉᵃᵏ_ : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt X ∨ʷᵉᵃᵏ Y = Constructive.¬((Constructive.¬ X) Constructive.∧ (Constructive.¬ Y)) [∨ʷᵉᵃᵏ]-introₗ : X → (X ∨ʷᵉᵃᵏ Y) [∨ʷᵉᵃᵏ]-introₗ = swap Constructive.[∧]-elimₗ [∨ʷᵉᵃᵏ]-introᵣ : Y → (X ∨ʷᵉᵃᵏ Y) [∨ʷᵉᵃᵏ]-introᵣ = swap Constructive.[∧]-elimᵣ [∨ʷᵉᵃᵏ]-elim : (X → Z) → (Y → Z) → DoubleNegationOn(Z) → (X ∨ʷᵉᵃᵏ Y) → Z [∨ʷᵉᵃᵏ]-elim xz yz nnzz xy = nnzz(nz ↦ xy(Constructive.[∧]-intro (nz ∘ xz) (nz ∘ yz))) ∃ʷᵉᵃᵏ : (X → Stmt{ℓ}) → Stmt ∃ʷᵉᵃᵏ P = Constructive.¬(∀{x} → (Constructive.¬ P(x))) [∃ʷᵉᵃᵏ]-intro : ∀(x) → ⦃ proof : P(x) ⦄ → (∃ʷᵉᵃᵏ P) [∃ʷᵉᵃᵏ]-intro _ ⦃ px ⦄ axnpx = axnpx px [∃ʷᵉᵃᵏ]-elim : (∀{x} → P(x) → X) → DoubleNegationOn(X) → (∃ʷᵉᵃᵏ P) → X [∃ʷᵉᵃᵏ]-elim axpxx nnxx ep = nnxx(ep ∘ (_∘ axpxx))
{ "alphanum_fraction": 0.5012774655, "avg_line_length": 34.2132867133, "ext": "agda", "hexsha": "af3a8e62ed1d5a86964ca3f47800374a1df47bda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Classical/DoubleNegated.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Classical/DoubleNegated.agda", "max_line_length": 131, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Classical/DoubleNegated.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4047, "size": 9785 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Identity.Boolean open import HoTT.Identity.Coproduct open import HoTT.Identity.Sigma open import HoTT.Identity.Identity open import HoTT.Identity.Pi open import HoTT.Identity.NaturalNumber open import HoTT.Transport.Identity open import HoTT.Equivalence open import HoTT.Equivalence.Lift open import HoTT.Equivalence.Transport open import HoTT.Homotopy module HoTT.HLevel where open variables private variable n : ℕ isContr : 𝒰 i → 𝒰 i isContr A = Σ[ a ∶ A ] Π[ x ∶ A ] (a == x) -- Use a record so that we can use instances (technique from HoTT-Agda) record hlevel (n : ℕ) (A : 𝒰 i) : 𝒰 i hlevel-type : ℕ → 𝒰 i → 𝒰 i hlevel-type zero = isContr hlevel-type (succ n) A = {x y : A} → hlevel n (x == y) record hlevel n A where inductive eta-equality constructor hlevel-in field hlevel-out : hlevel-type n A open hlevel public center : ⦃ hlevel 0 A ⦄ → A center ⦃ hlevel-in (c , _) ⦄ = c contr : ⦃ _ : hlevel 0 A ⦄ {x : A} → center == x contr ⦃ hlevel-in (_ , p) ⦄ = p _ isProp : 𝒰 i → 𝒰 i isProp A = (x y : A) → x == y record hlevel𝒰 (n : ℕ) (i : _) : 𝒰 (lsuc i) where constructor type infix 90 _ty field _ty : 𝒰 i ⦃ h ⦄ : hlevel n _ty open hlevel𝒰 using (_ty) public Prop𝒰 = hlevel𝒰 1 Prop𝒰₀ = Prop𝒰 lzero isSet : 𝒰 i → 𝒰 i isSet A = {x y : A} → isProp (x == y) Set𝒰 = hlevel𝒰 2 Set𝒰₀ = Set𝒰 lzero instance =-hlevel : {x y : A} → ⦃ hlevel (succ n) A ⦄ → hlevel n (x == y) =-hlevel ⦃ hlevel-in h ⦄ = h _◃_ : 𝒰 i → 𝒰 j → 𝒰 (i ⊔ j) A ◃ B = Σ (A → B) rinv infixr 5 _◃_ -- Theorem 7.1.4 retract-hlevel : A ◃ B → ⦃ hlevel n A ⦄ → hlevel n B retract-hlevel {n = zero} (p , s , ε) = hlevel-in (p center , λ b → ap p contr ∙ ε b) retract-hlevel {A = A} {B = B} {n = succ n} (p , s , ε) = hlevel-in (retract-hlevel {n = n} r) where -- t = r : {y y' : B} → (s y == s y') ◃ (y == y') r {y} {y'} = t , ap s , λ u → ε y ⁻¹ ∙ ap p (ap s u) ∙ ε y' =⟨ _ ∙ₗ ap-∘ p s u ⁻¹ ∙ᵣ _ ⟩ ε y ⁻¹ ∙ ap (p ∘ s) u ∙ ε y' =⟨ assoc ⁻¹ ⟩ ε y ⁻¹ ∙ (ap (p ∘ s) u ∙ ε y') =⟨ pivotₗ (~-natural-id ε u) ⁻¹ ⟩ u ∎ where open =-Reasoning t : _ t q = ε y ⁻¹ ∙ ap p q ∙ ε y' equiv-hlevel : A ≃ B → ⦃ hlevel n A ⦄ → hlevel n B equiv-hlevel e = retract-hlevel (pr₁ e , qinv→rinv (isequiv→qinv (pr₂ e))) Π-implicit-equiv : ({x : A} → P x) ≃ Π A P Π-implicit-equiv = iso→eqv λ{.f x _ → x ; .g h → h _ ; .η _ → refl ; .ε _ → refl} where open Iso raise : ⦃ {_ : A} → hlevel n A ⦄ → hlevel (succ n) A raise {n = zero} ⦃ f ⦄ = hlevel-in λ {x} → hlevel-in (contr ⦃ f {x} ⦄ ⁻¹ ∙ contr , λ{refl → invₗ}) raise {n = succ n} ⦃ f ⦄ = hlevel-in λ {x} → raise ⦃ =-hlevel ⦃ f {x} ⦄ ⦄ add : ℕ → ℕ → ℕ add n zero = n add n (succ m) = succ (add n m) raise* : {A : 𝒰 i} → ⦃ hlevel n A ⦄ → {m : ℕ} → hlevel (add n (succ m)) A raise* {m = zero} = raise raise* {m = succ m} = raise ⦃ raise* ⦄ instance Lift-hlevel : ⦃ hlevel n A ⦄ → hlevel n (Lift {i} A) Lift-hlevel = equiv-hlevel (Lift-equiv ⁻¹ₑ) 𝟎-hlevel : hlevel (succ n) (𝟎 {i}) 𝟎-hlevel {zero} = hlevel-in λ where {()} 𝟎-hlevel {succ _} = raise 𝟏-hlevel : hlevel n (𝟏 {i}) 𝟏-hlevel {zero} = hlevel-in (★ , λ where ★ → refl) 𝟏-hlevel {succ _} = raise 𝟐-hlevel : hlevel (succ (succ n)) 𝟐 𝟐-hlevel {n} = hlevel-in (equiv-hlevel (=𝟐-equiv ⁻¹ₑ)) where code-hlevel : {x y : 𝟐} → hlevel (succ n) (x =𝟐 y) code-hlevel {0₂} {0₂} = ⟨⟩ code-hlevel {0₂} {1₂} = ⟨⟩ code-hlevel {1₂} {0₂} = ⟨⟩ code-hlevel {1₂} {1₂} = ⟨⟩ instance _ = code-hlevel Π-hlevel : ⦃ {x : A} → hlevel n (P x) ⦄ → hlevel n (Π A P) Π-hlevel {n = zero} = hlevel-in ((λ _ → center) , (λ _ → funext λ _ → contr)) Π-hlevel {n = succ n} = hlevel-in (equiv-hlevel (=Π-equiv ⁻¹ₑ)) Π-implicit-hlevel : ⦃ {x : A} → hlevel n (P x) ⦄ → hlevel n ({x : A} → P x) Π-implicit-hlevel = equiv-hlevel (Π-implicit-equiv ⁻¹ₑ) +-hlevel : ⦃ hlevel (succ (succ n)) A ⦄ → ⦃ hlevel (succ (succ n)) B ⦄ → hlevel (succ (succ n)) (A + B) +-hlevel {n} {A = A} {B = B} = hlevel-in (equiv-hlevel (=+-equiv ⁻¹ₑ)) where code-hlevel : {x y : A + B} → hlevel (succ n) (x =+ y) code-hlevel {inl _} {inl _} = ⟨⟩ code-hlevel {inl _} {inr _} = ⟨⟩ code-hlevel {inr _} {inl _} = ⟨⟩ code-hlevel {inr _} {inr _} = ⟨⟩ instance _ = code-hlevel ℕ-hlevel : hlevel 2 ℕ hlevel-out ℕ-hlevel {x} = equiv-hlevel (=ℕ-equiv ⁻¹ₑ) where code-hlevel : {x y : ℕ} → hlevel 1 (x =ℕ y) code-hlevel {zero} {zero} = ⟨⟩ code-hlevel {zero} {succ y} = ⟨⟩ code-hlevel {succ x} {zero} = ⟨⟩ code-hlevel {succ x} {succ y} = code-hlevel {x} instance _ = code-hlevel {x} -- Make Σ-hlevel a private instance so it can be installed as-needed. -- There are too many cases where we want to use some other instance -- instead. Σ-hlevel : ⦃ h₁ : hlevel n A ⦄ → ⦃ h₂ : {x : A} → hlevel n (P x) ⦄ → hlevel n (Σ A P) private instance _ = Σ-hlevel Σ-hlevel {n = zero} = hlevel-in ((center , center) , λ x → pair⁼' (contr , contr)) Σ-hlevel {n = succ n} = hlevel-in (equiv-hlevel (=Σ-equiv ⁻¹ₑ)) →-hlevel : ⦃ hlevel n B ⦄ → hlevel n (A → B) →-hlevel = ⟨⟩ ×-hlevel : ⦃ h₁ : hlevel n A ⦄ → ⦃ h₂ : hlevel n B ⦄ → hlevel n (A × B) ×-hlevel = ⟨⟩ isContr-hlevel : hlevel 1 (isContr A) hlevel-out (isContr-hlevel {A = A}) {h} = ⟨⟩ where instance _ = raise* ⦃ hlevel-in h ⦄ hlevel-equiv : hlevel-type n A ≃ hlevel n A hlevel-equiv = hlevel-in , qinv→isequiv (hlevel-out , (λ _ → refl) , (λ _ → refl)) instance hlevel-hlevel : hlevel 1 (hlevel n A) hlevel-hlevel {zero} = equiv-hlevel hlevel-equiv ⦃ isContr-hlevel ⦄ hlevel-hlevel {succ n} = equiv-hlevel hlevel-equiv hlevel⁼ : ⦃ h₁ : hlevel n A ⦄ ⦃ h₂ : hlevel n B ⦄ → A == B → type A == type B hlevel⁼ ⦃ h₁ ⦄ ⦃ h₂ ⦄ refl rewrite center ⦃ =-hlevel {x = h₁} {h₂} ⦄ = refl hlevel1→isProp : ⦃ hlevel 1 A ⦄ → isProp A hlevel1→isProp = center hlevel2→isSet : ⦃ hlevel 2 A ⦄ → isSet A hlevel2→isSet = center isProp→hlevel1 : isProp A → hlevel 1 A hlevel-out (isProp→hlevel1 f) {x} {y} = ⟨⟩ where instance _ = raise ⦃ hlevel-in (x , f x) ⦄ isProp-hlevel1 : hlevel 1 (isProp A) hlevel-out isProp-hlevel1 {f} = ⟨⟩ where instance _ = raise ⦃ isProp→hlevel1 f ⦄ isProp-prop : isProp (isProp A) isProp-prop = hlevel1→isProp ⦃ isProp-hlevel1 ⦄ isProp→isSet : isProp A → isSet A isProp→isSet A-prop {x} {y} p q = center where instance _ = raise ⦃ isProp→hlevel1 A-prop ⦄ isContr-prop : isProp (isContr A) isContr-prop (a , p) (a' , p') = pair⁼ (p a' , center) where instance _ = raise* ⦃ hlevel-in (a , p) ⦄ prop-equiv : ⦃ h₁ : hlevel 1 A ⦄ → ⦃ h₂ : hlevel 1 B ⦄ → (A → B) → (B → A) → A ≃ B prop-equiv f g = f , qinv→isequiv (g , (λ _ → center) , (λ _ → center)) Σ-contr₁ : ⦃ _ : hlevel 0 A ⦄ → Σ A P ≃ P center Σ-contr₁ {A = A} {P = P} ⦃ h ⦄ = let open Iso in iso→eqv λ where .f → transport P (contr ⁻¹) ∘ pr₂ .g y → center , y .η x → pair⁼ (contr , Eqv.ε (transport-equiv (contr {A = A})) _) .ε y → ap {x = contr ⁻¹} (λ p → transport P p y) let instance _ = raise* ⦃ h ⦄ in center Σ-contr₂ : ⦃ {x : A} → hlevel 0 (P x) ⦄ → Σ A P ≃ A Σ-contr₂ = let open Iso in iso→eqv λ where .f → pr₁ .g x → x , center .η _ → pair⁼ (refl , contr) .ε _ → refl ×-contr₁ : ⦃ hlevel 0 A ⦄ → A × B ≃ B ×-contr₁ = Σ-contr₁ ×-contr₂ : ⦃ hlevel 0 B ⦄ → A × B ≃ A ×-contr₂ = Σ-contr₂ Π-contr₁ : ⦃ _ : hlevel 0 A ⦄ → Π A P ≃ P center Π-contr₁ {A = A} {P = P} ⦃ h ⦄ = let open Iso in iso→eqv λ where .f h → h center .g x _ → transport P contr x .η h → funext (λ _ → apd h contr) .ε x → ap {x = contr} (λ p → transport P p x) let instance _ = raise* ⦃ h ⦄ in center =-contrₗ : (a : A) → hlevel 0 (Σ A (a ==_)) =-contrₗ a = hlevel-in ((a , refl) , λ (_ , p) → pair⁼ (p , transport=-const-id p a refl ∙ unitₗ ⁻¹)) =-contrᵣ : (a : A) → hlevel 0 (Σ A (_== a)) =-contrᵣ a = hlevel-in ((a , refl) , λ (_ , p) → pair⁼ (p ⁻¹ , transport=-id-const a (p ⁻¹) refl ∙ unitᵣ ⁻¹ ∙ invinv))
{ "alphanum_fraction": 0.5664624234, "avg_line_length": 31.3607843137, "ext": "agda", "hexsha": "313268fe40662385ea10e2e72b6c6aa67be00170", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/HLevel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/HLevel.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/HLevel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3612, "size": 7997 }
------------------------------------------------------------------------ -- Parsing of mixfix operators ------------------------------------------------------------------------ -- This module defines a grammar for the precedence graph g. The -- grammar is neither left nor right recursive. open import Mixfix.Expr open import Mixfix.Acyclic.PrecedenceGraph using (acyclic; precedence) module Mixfix.Acyclic.Grammar (g : PrecedenceGraphInterface.PrecedenceGraph acyclic) where open import Codata.Musical.Notation open import Data.List using (List; []; _∷_) open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.List.NonEmpty using (foldr; foldl) open import Data.Product open import Data.Bool import Data.String as String import Relation.Binary.PropositionalEquality as P open PrecedenceCorrect acyclic g import StructurallyRecursiveDescentParsing.Simplified as Simplified open Simplified hiding (Parser; ⟦_⟧) open import Mixfix.Fixity open import Mixfix.Operator open import Mixfix.Acyclic.Lib renaming (ParserProg to Parser) -- The following definition uses a lexicographic combination of -- guarded corecursion and structural recursion. The only "corecursive -- call", where the size of the inductive input can increase -- arbitrarily, is the one in expr. mutual -- Expressions. expr : ∞ (Parser (Expr g)) expr = ♯ precs g -- Expressions corresponding to zero or more nodes in the precedence -- graph: operator applications where the outermost operator has one -- of the precedences ps. The graph g is used for internal -- expressions. precs : (ps : List Precedence) → Parser (Expr ps) precs [] = fail precs (p ∷ ps) = (λ e → here P.refl ∙ proj₂ e) <$> prec p ∣ weakenE <$> precs ps -- Expressions corresponding to one node in the precedence graph: -- operator applications where the outermost operator has -- precedence p. The graph g is used for internal expressions. prec : (p : Precedence) → Parser (∃ (ExprIn p)) prec (precedence ops sucs) = ⟪_⟫ <$> [ closed ] ∥ _⟨_⟩_ <$> p↑ ⊛ [ infx non ] ⊛ p↑ ∥ appʳ <$> preRight + ⊛ p↑ ∥ appˡ <$> p↑ ⊛ postLeft + ∥ fail module Prec where p = precedence ops sucs -- [ fix ] parses the internal parts of operators with the -- current precedence level and fixity fix. [_] = λ (fix : Fixity) → inner (ops fix) -- Operator applications where the outermost operator binds -- tighter than the current precedence level. p↑ = precs sucs -- Right associative and prefix operators. preRight : Parser (Outer p right → ExprIn p right) preRight = ⟪_⟩_ <$> [ prefx ] ∣ _⟨_⟩ʳ_ <$> p↑ ⊛ [ infx right ] -- Left associative and postfix operators. postLeft : Parser (Outer p left → ExprIn p left) postLeft = (λ op e₁ → e₁ ⟨ op ⟫ ) <$> [ postfx ] ∣ (λ op e₂ e₁ → e₁ ⟨ op ⟩ˡ e₂) <$> [ infx left ] ⊛ p↑ -- Post-processing for the non-empty lists returned by _+. appʳ = λ fs e → foldr (λ f e → f (similar e)) (λ f → f (tighter e)) fs appˡ = λ e fs → foldl (λ e f → f (similar e)) (λ f → f (tighter e)) fs -- Internal parts (all name parts plus internal expressions) of -- operators of the given precedence and fixity. inner : ∀ {fix} (ops : List (∃ (Operator fix))) → Parser (Inner ops) inner [] = fail inner ((_ , op) ∷ ops) = (λ args → here P.refl ∙ args) <$> (expr between nameParts op) ∣ weakenI <$> inner ops -- Expression parsers. expression : Simplified.Parser NamePart false (Expr g) expression = ⟦ ♭ expr ⟧
{ "alphanum_fraction": 0.6253319172, "avg_line_length": 35.5283018868, "ext": "agda", "hexsha": "cd116460581de3ee96ada337e1480f61ce4d7de9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Acyclic/Grammar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Acyclic/Grammar.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "Mixfix/Acyclic/Grammar.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1012, "size": 3766 }
module Numeral.Finite.LinearSearch where -- TODO: Maybe move to Numeral.CoordinateVector.LinearSearch open import Data.Boolean open import Data.Boolean.Stmt open import Data.List import Data.List.Functions as List open import Data.Option import Data.Option.Functions as Option open import Functional open import Logic open import Numeral.Finite open import Numeral.Finite.Bound open import Numeral.Natural open import Structure.Relator.Ordering private variable n : ℕ private variable i j min max : 𝕟(n) private variable f : 𝕟(n) → Bool -- Finds the maximal argument satisfying the given decidable predicate by searching linearly. -- Examples: -- findMax{5} (10 ∣?_) = None -- findMax{10} (10 ∣?_) = None -- findMax{20} (10 ∣?_) = Some 10 -- findMax{21} (10 ∣?_) = Some 20 -- findMax{22} (10 ∣?_) = Some 20 -- findMax{100} (10 ∣?_) = Some 90 -- findMax{102} (10 ∣?_) = Some 100 -- Alternative implementation: findMax f = Option.map Wrapping.[−]_ (findMin(f ∘ Wrapping.[−]_)) findMax : (𝕟(n) → Bool) → Option(𝕟(n)) findMax {𝟎} f = None findMax {𝐒(n)} f with f(maximum) findMax {𝐒(n)} f | 𝑇 = Some maximum findMax {𝐒(n)} f | 𝐹 = Option.map bound-𝐒 (findMax{n} (f ∘ bound-𝐒)) -- Finds the minimal argument satisfying the given decidable predicate by searching linearly. -- Examples: -- findMin{5} (10 ∣?_) = None -- findMin{10} (10 ∣?_) = None -- findMin{20} (10 ∣?_) = Some 10 -- findMin{21} (10 ∣?_) = Some 10 -- findMin{22} (10 ∣?_) = Some 10 -- findMin{100} (10 ∣?_) = Some 10 -- findMax{102} (10 ∣?_) = Some 10 findMin : (𝕟(n) → Bool) → Option(𝕟(n)) findMin{𝟎} f = None findMin{𝐒(n)} f with f(𝟎) findMin{𝐒(n)} f | 𝑇 = Some 𝟎 findMin{𝐒(n)} f | 𝐹 = Option.map 𝐒 (findMin{n} (f ∘ 𝐒)) -- Finds all arguments satisfying the given decidable predicate by searching linearly. -- Examples: -- findAll{10} (2 ∣?_) = [0,2,4,6,8] findAll : (𝕟(n) → Bool) → List(𝕟(n)) findAll{𝟎} f = ∅ findAll{𝐒(n)} f = (if f(𝟎) then (𝟎 ⊰_) else id) (List.map 𝐒 (findAll{n} (f ∘ 𝐒))) open import Data open import Data.Boolean.Stmt.Proofs open import Data.List.Relation.Membership using (_∈_) open import Data.List.Relation.Membership.Proofs open import Data.List.Relation.Pairwise open import Data.List.Relation.Pairwise.Proofs open import Data.List.Relation.Quantification open import Data.List.Relation.Quantification.Proofs open import Data.List.Sorting open import Data.Option.Equiv.Id open import Lang.Inspect open import Logic.Propositional open import Logic.Propositional.Theorems open import Numeral.Finite.Oper.Comparisons open import Numeral.Finite.Oper.Comparisons.Proofs open import Numeral.Finite.Proofs open import Numeral.Finite.Relation.Order as 𝕟 using (_≤_ ; _>_ ; _<_ ; [≤]-minimum ; [≤]-maximum) import Numeral.Natural.Relation.Order as ℕ open import Numeral.Natural.Relation.Order.Proofs as ℕ open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function open import Structure.Function.Domain open import Structure.Relator.Properties open import Structure.Relator open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs {- open import Syntax.Number test : 𝕟(5) → Bool test 𝟎 = 𝐹 test (𝐒 𝟎) = 𝐹 test (𝐒 (𝐒 𝟎)) = 𝑇 test (𝐒 (𝐒 (𝐒 𝟎))) = 𝐹 test (𝐒 (𝐒 (𝐒 (𝐒 𝟎)))) = 𝐹 test2 : 𝕟(1) → Bool test2 𝟎 = 𝑇 test3 : findMax test2 ≡ Some 0 test3 = [≡]-intro tst4 = {!Option.map bound-𝐒 (findMax (test ∘ bound-𝐒))!} -} findMax-None-correctness : (findMax f ≡ None) ↔ (∀{i} → IsFalse(f(i))) findMax-None-correctness = [↔]-intro l r where l : (findMax f ≡ None) ← (∀{i} → IsFalse(f(i))) l {𝟎} {f} p = [≡]-intro l {𝐒 n} {f} p with f(maximum) | inspect f(maximum) ... | 𝑇 | intro fmax with () ← disjointness p ([↔]-to-[←] IsTrue.is-𝑇 fmax) ... | 𝐹 | intro fmax = congruence₁(Option.map bound-𝐒) (l p) r-result : IsFalse(f(maximum)) → (∀{i : 𝕟(n)} → IsFalse((f ∘ bound-𝐒) i)) → (∀{i : 𝕟(n)} → IsFalse(f(𝐒 i))) r-result {𝐒 n} {f} p q {𝐒 i} = r-result {n}{f ∘ 𝐒} p (\{i} → q{𝐒 i}) {i} r-result {𝐒 𝟎} {f} p q {𝟎} = p r-result {𝐒 (𝐒 n)} {f} p q {𝟎} = q{𝐒 𝟎} r : (findMax f ≡ None) → (∀{i} → IsFalse(f(i))) r {𝐒 n} {f} p {i} with f(maximum) | inspect f(maximum) r {𝐒 n} {f} p {𝐒 i} | 𝐹 | intro fmax = r-result {f = f} ([↔]-to-[←] IsFalse.is-𝐹 fmax) (\{i} → r {n}{f ∘ bound-𝐒} (map-None p) {i}) {i} r {𝐒 𝟎} {f} p {𝟎} | 𝐹 | intro fmax = [↔]-to-[←] IsFalse.is-𝐹 fmax r {𝐒 (𝐒 n)} {f} p {𝟎} | 𝐹 | intro fmax = r {𝐒 n} {f ∘ bound-𝐒} (map-None p) {𝟎} findMax-Some-correctness : (findMax f ≡ Some(i)) → IsTrue(f(i)) findMax-Some-correctness {𝐒 n} {f} {i} eq with f(maximum) | inspect f(maximum) findMax-Some-correctness {𝐒 n} {f} {.maximum} [≡]-intro | 𝑇 | intro fmax = [↔]-to-[←] IsTrue.is-𝑇 fmax findMax-Some-correctness {𝐒 n} {f} {i} eq | 𝐹 | intro fmax with findMax(f ∘ bound-𝐒) | inspect findMax(f ∘ bound-𝐒) findMax-Some-correctness {𝐒 n} {f} {.(_)} [≡]-intro | 𝐹 | intro fmax | Some x | intro p = findMax-Some-correctness {f = f ∘ bound-𝐒} p findMin-None-correctness : (findMin f ≡ None) ↔ (∀{i} → IsFalse(f(i))) findMin-None-correctness = [↔]-intro l r where l : (findMin f ≡ None) ← (∀{i} → IsFalse(f(i))) l {𝟎} {f} p = [≡]-intro l {𝐒 n} {f} p with f(𝟎) | inspect f(𝟎) ... | 𝑇 | intro f0 with () ← disjointness p ([↔]-to-[←] IsTrue.is-𝑇 f0) ... | 𝐹 | intro f0 = congruence₁(Option.map 𝐒) (l p) r : (findMin f ≡ None) → (∀{i} → IsFalse(f(i))) r {𝐒 n} {f} p {i} with f(𝟎) | inspect f(𝟎) r {𝐒 n} {f} p {𝟎} | 𝐹 | intro f0 = [↔]-to-[←] IsFalse.is-𝐹 f0 r {𝐒 n} {f} p {𝐒 i} | 𝐹 | intro f0 = r {f = f ∘ 𝐒} (injective(Option.map 𝐒) ⦃ map-injectivity ⦄ p) findMin-Some-correctness : (findMin f ≡ Some(min)) → IsTrue(f(min)) findMin-Some-correctness {𝐒 n} {f} {min} eq with f(𝟎) | inspect f(𝟎) findMin-Some-correctness {𝐒 n} {f} {𝟎} [≡]-intro | 𝑇 | intro f0 = [↔]-to-[←] IsTrue.is-𝑇 f0 findMin-Some-correctness {𝐒 n} {f} {𝟎} eq | 𝐹 | intro f0 with findMin{n} (f ∘ 𝐒) findMin-Some-correctness {𝐒 n} {f} {𝟎} () | 𝐹 | intro f0 | None findMin-Some-correctness {𝐒 n} {f} {𝟎} () | 𝐹 | intro f0 | Some _ findMin-Some-correctness {𝐒 n} {f} {𝐒 min} eq | 𝐹 | intro f0 = findMin-Some-correctness {n} {f ∘ 𝐒} {min} (injective(Option.map 𝐒) ⦃ map-injectivity ⦄ eq) findMin-minimal-true : (findMin f ≡ Some(min)) → IsTrue(f(i)) → (min ≤ i) findMin-minimal-true {𝐒 n} {f} {min} {i} eq p with f(𝟎) | inspect f(𝟎) findMin-minimal-true {𝐒 n} {f} {.𝟎} {i} [≡]-intro p | 𝑇 | intro f0 = 𝕟.[≤]-minimum {a = i} findMin-minimal-true {𝐒 n} {f} {𝟎} {i} eq p | 𝐹 | intro f0 with findMin{n} (f ∘ 𝐒) findMin-minimal-true {𝐒 n} {f} {𝟎} {i} () p | 𝐹 | intro f0 | None findMin-minimal-true {𝐒 n} {f} {𝟎} {i} () p | 𝐹 | intro f0 | Some _ findMin-minimal-true {𝐒 n} {f} {𝐒 min} {𝟎} eq p | 𝐹 | intro f0 = disjointness p ([↔]-to-[←] IsFalse.is-𝐹 f0) findMin-minimal-true {𝐒 n} {f} {𝐒 min} {𝐒 i} eq p | 𝐹 | intro f0 = findMin-minimal-true {n} {f ∘ 𝐒} {min} {i} (injective(Option.map 𝐒) ⦃ map-injectivity ⦄ eq) p findMin-minimal-false : (findMin f ≡ Some(min)) → (min > i) → IsFalse(f(i)) findMin-minimal-false {n}{f}{min}{i} eq = [↔]-to-[←] false-true-opposites ∘ contrapositiveᵣ(findMin-minimal-true{n}{f}{min}{i} eq) ∘ [↔]-to-[←] decider-true ∘ substitute₁ₗ(IsTrue) (⋚-elim₃-negation-distribution {x = min}{y = i}) {- instance [≤]-with-[𝐒]-injective : ∀{a b} → Injective(\p → ℕ.[≤]-with-[𝐒] {a}{b} ⦃ p ⦄) Injective.proof [≤]-with-[𝐒]-injective [≡]-intro = [≡]-intro import Structure.Function.Names as Names open import Function.Equals bound-[≤]-injective : ∀{a b} → Injective ⦃ [≡]-equiv ⦄ ⦃ [⊜]-equiv ⦄ (bound-[≤] {a}{b}) bound-[≤]-injective {a}{b} = intro proof where proof : Names.Injective ⦃ [≡]-equiv ⦄ ⦃ [⊜]-equiv ⦄ (bound-[≤] {a}{b}) proof {ℕ.[≤]-minimum} {ℕ.[≤]-minimum} p = [≡]-intro proof {ℕ.[≤]-with-[𝐒] ⦃ x ⦄} {ℕ.[≤]-with-[𝐒] ⦃ y ⦄} (intro p) = {!(injective ⦃ ? ⦄ ⦃ ? ⦄ (𝕟.𝐒) ⦃ ? ⦄ {x = bound-[≤] x}{y = bound-[≤] y} p)!} --Injective.proof bound-[≤]-injective {ℕ.[≤]-minimum} {ℕ.[≤]-minimum} p = [≡]-intro --Injective.proof bound-[≤]-injective {ℕ.[≤]-with-[𝐒] {y = _} ⦃ x ⦄} {ℕ.[≤]-with-[𝐒] {y = _} ⦃ y ⦄} (intro p) = {!injective(𝐒) ⦃ ? ⦄ p!} -- injective(𝐒) ⦃ [≤]-with-[𝐒]-injective ⦄ bound-𝐒-injective : Injective(bound-𝐒 {n}) Injective.proof bound-𝐒-injective {𝟎} {𝟎} p = [≡]-intro Injective.proof bound-𝐒-injective {𝐒 x} {𝐒 y} p = congruence₁(𝐒) (Injective.proof bound-𝐒-injective {x} {y} (injective(𝐒) p)) -} -- TODO postulate findMax-maximal-true : (findMax f ≡ Some(max)) → IsTrue(f(i)) → (i ≤ max) {-findMax-maximal {𝐒 n}{f} eq p with f(maximum) | inspect f(maximum) findMax-maximal {𝐒 n} {f} {i = i} [≡]-intro p | 𝑇 | intro m = [≤]-maximum {𝐒 n}{i} (reflexivity(ℕ._≤_)) findMax-maximal {𝐒 n} {f} {i = i} eq p | 𝐹 | intro m with findMax{n} (f ∘ bound-𝐒) | inspect (findMax{n}) (f ∘ bound-𝐒) findMax-maximal {𝐒 n} {f} {i = i} eq p | 𝐹 | intro m | Some x | intro findMax-x = {!findMax-maximal {n} {f ∘ bound-𝐒} {i = ?} !} -} {- TODO test : ∀{i : 𝕟(𝐒(n))} → ¬(maximum{n} < i) test {𝟎} {𝟎} p = p test {𝐒 n} {𝟎} p = p test {𝐒 n} {𝐒 i} p = test {n}{i} p {- findMax-maximal2 : (findMax f ≡ Some(max)) → (i > max) → IsFalse(f(i)) findMax-maximal2 {𝐒 n} {f} {max} {i} eq p with f(maximum) | inspect f(maximum) findMax-maximal2 {𝐒 n} {f} {𝟎} {𝐒 i} eq p | 𝑇 | intro fmax with maximum-0(injective(Some) eq) findMax-maximal2 {𝐒 .0} {f} {𝟎} {𝐒 ()} eq p | 𝑇 | intro fmax | [≡]-intro findMax-maximal2 {𝐒 (𝐒 n)} {f} {𝐒 max} {𝐒 i} eq p | 𝑇 | intro fmax with f(bound-𝐒 maximum) | inspect (f ∘ bound-𝐒)(maximum) findMax-maximal2 {𝐒 (𝐒 n)} {f} {𝐒 .maximum} {𝐒 i} [≡]-intro p | 𝑇 | intro fmax | 𝑇 | intro x with () ← test{n} p findMax-maximal2 {𝐒 (𝐒 n)} {f} {𝐒 {.(𝐒 n)} .(maximum {n})} {𝐒 {.(𝐒 n)} i} ([≡]-intro {x = .(Some (𝐒 {𝐒 n} (maximum {n})))}) p | 𝑇 | intro fmax | 𝐹 | intro x with () ← test{n} p findMax-maximal2 {𝐒 n} {f} {𝟎} {𝐒 i} eq p | 𝐹 | intro fmax = {!!} findMax-maximal2 {𝐒 n} {f} {𝐒 max} {𝐒 i} eq p | 𝐹 | intro fmax = {!!} -} test2 : (bound-𝐒 i ≡ 𝟎) → (i ≡ 𝟎) test2 {i = 𝟎} p = [≡]-intro findMax-maximal : (findMax f ≡ Some(max)) → IsTrue(f(i)) → (i ≤ max) findMax-maximal {𝐒 n}{f} eq p with f(maximum) | inspect f(maximum) findMax-maximal {𝐒 n} {f} {_}{i} [≡]-intro p | 𝑇 | intro fmax = [≤]-maximum {𝐒 n}{i} (reflexivity(ℕ._≤_)) findMax-maximal {𝐒 n} {f} {max} {𝟎} eq p | 𝐹 | intro fmax = [≤]-minimum {a = max} findMax-maximal {𝐒 (𝐒 n)} {f} {max} {𝐒 i} eq p | 𝐹 | intro fmax with f(bound-𝐒 maximum) | inspect (f ∘ bound-𝐒)(maximum) findMax-maximal {𝐒 (𝐒 n)} {f} {𝟎} {𝐒 i} eq p | 𝐹 | intro fmax | 𝑇 | intro x = {!maximum-0(test2(injective(Some) eq))!} findMax-maximal {𝐒 (𝐒 n)} {f} {𝐒 max} {𝐒 i} eq p | 𝐹 | intro fmax | 𝑇 | intro x = {!!} ... | 𝐹 | intro x = {!!} -- findMax-maximal {f = f ∘ bound-𝐒} {i = i} (injective(Option.map bound-𝐒) ⦃ map-injectivity ⦃ ? ⦄ ⦄ {findMax(f ∘ bound-𝐒)} {Some 𝟎} eq) {-findMax-maximal {𝐒 n} {f} {max} {i} eq p with f(maximum) | inspect f(maximum) findMax-maximal {𝐒 n} {f} {.maximum} {i} [≡]-intro p | 𝑇 | intro fmax = [≤]-maximum {𝐒 n}{i}{n = n} (reflexivity(ℕ._≤_)) findMax-maximal {𝐒 n} {f} {max} {i} eq p | 𝐹 | intro fmax with findMax{n} (f ∘ bound-𝐒) findMax-maximal {𝐒 n} {f} {max} {i} () p | 𝐹 | intro fmax | None -} {-findMax-maximal {𝐒 n} {f} {𝟎} {𝟎} eq p | 𝐹 | intro fmax | Some x = <> findMax-maximal {𝐒 n} {f} {𝐒 max} {𝟎} eq p | 𝐹 | intro fmax | Some x = <> findMax-maximal {𝐒(𝐒 n)} {f} {𝟎} {𝐒 i} eq p | 𝐹 | intro fmax | Some 𝟎 = {!findMax-maximal!} findMax-maximal {𝐒 n} {f} {𝐒 max} {𝐒 i} eq p | 𝐹 | intro fmax | Some x = {!!} -} {-findMax-maximal {𝐒 n} {f} {.(bound-[≤] ([≤]-successor ([≡]-to-[≤] [≡]-intro)) x)} {𝟎} [≡]-intro p | 𝐹 | intro fmax | Some x = [≤]-minimum {a = bound-𝐒(x)} findMax-maximal {𝐒 .(𝐒 _)} {f} {.(bound-[≤] ([≤]-successor ([≡]-to-[≤] [≡]-intro)) 𝟎)} {𝐒 i} [≡]-intro p | 𝐹 | intro fmax | Some 𝟎 = {!!} findMax-maximal {𝐒 .(𝐒 _)} {f} {.(bound-[≤] ([≤]-successor ([≡]-to-[≤] [≡]-intro)) (𝐒 x))} {𝐒 i} [≡]-intro p | 𝐹 | intro fmax | Some (𝐒 x) = {!!}-} -} {- open import Numeral.Finite.Oper findMax-findMin : findMax f ≡ Option.map Wrapping.[−]_ (findMin(f ∘ Wrapping.[−]_)) findMax-findMin {𝟎} {f} = [≡]-intro findMax-findMin {𝐒 n} {f} with f(maximum) | inspect f(maximum) ... | 𝑇 | intro fmax = [≡]-intro ... | 𝐹 | intro fmax = {!!} -} findAll-correctness : AllElements(IsTrue ∘ f)(findAll f) findAll-correctness {𝟎} {f} = ∅ findAll-correctness {𝐒 n} {f} with f(𝟎) | inspect f(𝟎) ... | 𝑇 | intro f0 = ([↔]-to-[←] IsTrue.is-𝑇 f0) ⊰ (AllElements-mapᵣ 𝐒 id (findAll-correctness {n}{f ∘ 𝐒})) ... | 𝐹 | intro _ = AllElements-mapᵣ 𝐒 id (findAll-correctness {n}{f ∘ 𝐒}) findAll-completeness : IsTrue(f(i)) → (i ∈ findAll f) findAll-completeness {𝐒 n} {f} {i} p with f(𝟎) | inspect f(𝟎) findAll-completeness {𝐒 n} {f} {𝟎} p | 𝑇 | intro _ = • [≡]-intro findAll-completeness {𝐒 n} {f} {𝐒 i} p | 𝑇 | intro _ = ⊰ [∈]-map (findAll-completeness{n}{f ∘ 𝐒}{i} p) findAll-completeness {𝐒 n} {f} {𝟎} p | 𝐹 | intro f0 with () ← disjointness p ([↔]-to-[←] IsFalse.is-𝐹 f0) findAll-completeness {𝐒 n} {f} {𝐒 i} p | 𝐹 | intro _ = [∈]-map (findAll-completeness {n} {f ∘ 𝐒} {i} p) findAll-sorted : Sorted(_≤?_)(findAll f) findAll-sorted {𝟎} {f} = AdjacentlyPairwise.empty findAll-sorted {𝐒 𝟎} {f} with f(𝟎) | inspect f(𝟎) findAll-sorted {𝐒 𝟎} {f} | 𝑇 | intro f0 = AdjacentlyPairwise.single findAll-sorted {𝐒 𝟎} {f} | 𝐹 | intro f0 = AdjacentlyPairwise.empty findAll-sorted {𝐒(𝐒 n)} {f} with f(𝟎) | f(𝐒 𝟎) | AdjacentlyPairwise-map {_▫₁_ = IsTrue ∘₂ _≤?_}{f = 𝐒}{_▫₂_ = IsTrue ∘₂ _≤?_} id (findAll-sorted {𝐒 n}{f ∘ 𝐒}) ... | 𝑇 | 𝑇 | prev = AdjacentlyPairwise.step ⦃ <> ⦄ ⦃ prev ⦄ ... | 𝑇 | 𝐹 | prev = AdjacentlyPairwise-prepend (\{ {𝟎} → <> ; {𝐒 _} → <>}) prev ... | 𝐹 | 𝑇 | prev = prev ... | 𝐹 | 𝐹 | prev = prev
{ "alphanum_fraction": 0.5895803184, "avg_line_length": 51.375464684, "ext": "agda", "hexsha": "5f86f6deab3239a8e9108373177831f903dbbc7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Finite/LinearSearch.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Finite/LinearSearch.agda", "max_line_length": 176, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Finite/LinearSearch.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6453, "size": 13820 }
{-# OPTIONS --safe #-} module Cubical.HITs.FreeAbGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function infixl 7 _·_ infix 20 _⁻¹ private variable ℓ ℓ' : Level A : Type ℓ data FreeAbGroup (A : Type ℓ) : Type ℓ where ⟦_⟧ : A → FreeAbGroup A ε : FreeAbGroup A _·_ : FreeAbGroup A → FreeAbGroup A → FreeAbGroup A _⁻¹ : FreeAbGroup A → FreeAbGroup A assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z comm : ∀ x y → x · y ≡ y · x identityᵣ : ∀ x → x · ε ≡ x invᵣ : ∀ x → x · x ⁻¹ ≡ ε trunc : isSet (FreeAbGroup A) module Elim {B : FreeAbGroup A → Type ℓ'} (⟦_⟧* : (x : A) → B ⟦ x ⟧) (ε* : B ε) (_·*_ : ∀ {x y} → B x → B y → B (x · y)) (_⁻¹* : ∀ {x} → B x → B (x ⁻¹)) (assoc* : ∀ {x y z} → (xs : B x) (ys : B y) (zs : B z) → PathP (λ i → B (assoc x y z i)) (xs ·* (ys ·* zs)) ((xs ·* ys) ·* zs)) (comm* : ∀ {x y} → (xs : B x) (ys : B y) → PathP (λ i → B (comm x y i)) (xs ·* ys) (ys ·* xs)) (identityᵣ* : ∀ {x} → (xs : B x) → PathP (λ i → B (identityᵣ x i)) (xs ·* ε*) xs) (invᵣ* : ∀ {x} → (xs : B x) → PathP (λ i → B (invᵣ x i)) (xs ·* (xs ⁻¹*)) ε*) (trunc* : ∀ xs → isSet (B xs)) where f : (xs : FreeAbGroup A) → B xs f ⟦ x ⟧ = ⟦ x ⟧* f ε = ε* f (xs · ys) = f xs ·* f ys f (xs ⁻¹) = f xs ⁻¹* f (assoc xs ys zs i) = assoc* (f xs) (f ys) (f zs) i f (comm xs ys i) = comm* (f xs) (f ys) i f (identityᵣ xs i) = identityᵣ* (f xs) i f (invᵣ xs i) = invᵣ* (f xs) i f (trunc xs ys p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f xs) (f ys) (cong f p) (cong f q) (trunc xs ys p q) i j module ElimProp {B : FreeAbGroup A → Type ℓ'} (BProp : {xs : FreeAbGroup A} → isProp (B xs)) (⟦_⟧* : (x : A) → B ⟦ x ⟧) (ε* : B ε) (_·*_ : ∀ {x y} → B x → B y → B (x · y)) (_⁻¹* : ∀ {x} → B x → B (x ⁻¹)) where f : (xs : FreeAbGroup A) → B xs f = Elim.f ⟦_⟧* ε* _·*_ _⁻¹* (λ {x y z} xs ys zs → toPathP (BProp (transport (λ i → B (assoc x y z i)) (xs ·* (ys ·* zs))) ((xs ·* ys) ·* zs))) (λ {x y} xs ys → toPathP (BProp (transport (λ i → B (comm x y i)) (xs ·* ys)) (ys ·* xs))) (λ {x} xs → toPathP (BProp (transport (λ i → B (identityᵣ x i)) (xs ·* ε*)) xs)) (λ {x} xs → toPathP (BProp (transport (λ i → B (invᵣ x i)) (xs ·* (xs ⁻¹*))) ε*)) (λ _ → (isProp→isSet BProp)) module Rec {B : Type ℓ'} (BType : isSet B) (⟦_⟧* : (x : A) → B) (ε* : B) (_·*_ : B → B → B) (_⁻¹* : B → B) (assoc* : (x y z : B) → x ·* (y ·* z) ≡ (x ·* y) ·* z) (comm* : (x y : B) → x ·* y ≡ y ·* x) (identityᵣ* : (x : B) → x ·* ε* ≡ x) (invᵣ* : (x : B) → x ·* (x ⁻¹*) ≡ ε*) where f : FreeAbGroup A → B f = Elim.f ⟦_⟧* ε* _·*_ _⁻¹* assoc* comm* identityᵣ* invᵣ* (const BType)
{ "alphanum_fraction": 0.4413256679, "avg_line_length": 36.5061728395, "ext": "agda", "hexsha": "d377b0dce6866f3803e76299ab7840ffd0915f1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/FreeAbGroup/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/FreeAbGroup/Base.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/FreeAbGroup/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1376, "size": 2957 }
{-# OPTIONS --type-in-type #-} module chu where open import functors open import prelude record Chu : Set where constructor _,_!_ field _⁺ _⁻ : Set _Ω_ : _⁺ → _⁻ → Set module _ (A@(A⁺ , A⁻ ! _Ω₁_) B@(B⁺ , B⁻ ! _Ω₂_) : Chu) where record Chu[_,_] : Set where -- Morphisms of chu spaces constructor _↔_!_ field to : A⁺ → B⁺ from : B⁻ → A⁻ adj : ∀ a⁺ b⁻ → to a⁺ Ω₂ b⁻ ≡ a⁺ Ω₁ from b⁻ module _ {A@(A⁺ , A⁻ ! _Ω₁_) B@(B⁺ , B⁻ ! _Ω₂_) C@(C⁺ , C⁻ ! _Ω₃_) : Chu} (F@(f ↔ fᵗ ! _†₁_) : Chu[ A , B ]) (G@(g ↔ gᵗ ! _†₂_) : Chu[ B , C ]) where adj-comp : ∀ a⁺ c⁻ → (g ∘ f) a⁺ Ω₃ c⁻ ≡ a⁺ Ω₁ (fᵗ ∘ gᵗ) c⁻ adj-comp a⁺ c⁻ = trans (f a⁺ †₂ c⁻) -- g (f a⁺) Ω₃ c⁻ ( a⁺ †₁ gᵗ c⁻) -- f a⁺ Ω₂ gᵗ c⁻ -- a⁺ Ω₁ fᵗ (gᵗ c⁻) chu-comp : Chu[ A , C ] chu-comp = (g ∘ f) ↔ (fᵗ ∘ gᵗ) ! adj-comp instance chu-cat : Category Chu[_,_] chu-cat = 𝒾: (id ↔ id ! λ _ _ → refl) ▸: chu-comp 𝒾▸: (λ (_ ↔ _ ! _†_) → (λ x → _ ↔ _ ! x) ⟨$⟩ extensionality2 λ a⁺ b⁻ → trans-refl (a⁺ † b⁻)) ▸𝒾: (λ _ → refl)
{ "alphanum_fraction": 0.3896414343, "avg_line_length": 33.0263157895, "ext": "agda", "hexsha": "40878ff55ba439ece0b78fdc890d092b92dc0ffd", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/chu.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/chu.agda", "max_line_length": 69, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/chu.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 585, "size": 1255 }
{-# OPTIONS --without-K #-} module Agda.Builtin.IO where postulate IO : ∀ {a} → Set a → Set a {-# BUILTIN IO IO #-} {-# FOREIGN GHC type AgdaIO a b = IO b #-} {-# COMPILE GHC IO = type MAlonzo.Code.Agda.Builtin.IO.AgdaIO #-}
{ "alphanum_fraction": 0.6184210526, "avg_line_length": 22.8, "ext": "agda", "hexsha": "b700f4f61c5dfd95730327fba300572dc3e324e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Blaisorblade/Agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Blaisorblade/Agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Blaisorblade/Agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 69, "size": 228 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Semigroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.NAryOp private variable ℓ ℓ' : Level raw-semigroup-structure : Type ℓ → Type ℓ raw-semigroup-structure X = X → X → X raw-semigroup-is-SNS : SNS {ℓ} raw-semigroup-structure _ raw-semigroup-is-SNS = nAryFunSNS 2 semigroup-axioms : (X : Type ℓ) → raw-semigroup-structure X → Type ℓ semigroup-axioms X _·_ = isSet X × ((x y z : X) → (x · (y · z)) ≡ ((x · y) · z)) semigroup-structure : Type ℓ → Type ℓ semigroup-structure = add-to-structure (raw-semigroup-structure) semigroup-axioms Semigroup : Type (ℓ-suc ℓ) Semigroup {ℓ} = TypeWithStr ℓ semigroup-structure -- Operations for extracting components ⟨_⟩ : Semigroup → Type ℓ ⟨ G , _ ⟩ = G semigroup-operation : (G : Semigroup {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ semigroup-operation (_ , f , _) = f module semigroup-operation-syntax where semigroup-operation-syntax : (G : Semigroup {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ semigroup-operation-syntax = semigroup-operation infixl 20 semigroup-operation-syntax syntax semigroup-operation-syntax G x y = x ·⟨ G ⟩ y open semigroup-operation-syntax semigroup-isSet : (G : Semigroup {ℓ}) → isSet ⟨ G ⟩ semigroup-isSet (_ , _ , P , _) = P semigroup-assoc : (G : Semigroup {ℓ}) → (x y z : ⟨ G ⟩) → (x ·⟨ G ⟩ (y ·⟨ G ⟩ z)) ≡ ((x ·⟨ G ⟩ y) ·⟨ G ⟩ z) semigroup-assoc (_ , _ , _ , P) = P -- Semigroup equivalences semigroup-iso : StrIso semigroup-structure ℓ semigroup-iso = add-to-iso (nAryFunIso 2) semigroup-axioms semigroup-axiom-isProp : (X : Type ℓ) → (s : raw-semigroup-structure X) → isProp (semigroup-axioms X s) semigroup-axiom-isProp X _·_ = isPropΣ isPropIsSet λ isSetX → isPropΠ (λ x → isPropΠ (λ y → isPropΠ (λ z → isSetX _ _))) semigroup-is-SNS : SNS {ℓ} semigroup-structure semigroup-iso semigroup-is-SNS = add-axioms-SNS _ semigroup-axiom-isProp (nAryFunSNS 2) SemigroupPath : (M N : Semigroup {ℓ}) → (M ≃[ semigroup-iso ] N) ≃ (M ≡ N) SemigroupPath = SIP semigroup-is-SNS -- Semigroup ·syntax module semigroup-·syntax (G : Semigroup {ℓ}) where infixr 18 _·_ _·_ : ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ _·_ = semigroup-operation G
{ "alphanum_fraction": 0.64544722, "avg_line_length": 30.2682926829, "ext": "agda", "hexsha": "0fb0e0ad6bb657f87ee1f1c9d1cb9f3520948a4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/Semigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/Semigroup.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/Semigroup.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 862, "size": 2482 }
open import Data.Char using ( Char ) open import Data.Bool using ( Bool ) module Data.Char.Classifier.Primitive where postulate isAscii : Char → Bool isLatin1 : Char → Bool isControl : Char → Bool isSpace : Char → Bool isLower : Char → Bool isUpper : Char → Bool isAlpha : Char → Bool isAlphaNum : Char → Bool isPrint : Char → Bool isDigit : Char → Bool isOctDigit : Char → Bool isHexDigit : Char → Bool {-# IMPORT Data.Char #-} {-# COMPILED isAscii Data.Char.isAscii #-} {-# COMPILED isLatin1 Data.Char.isLatin1 #-} {-# COMPILED isControl Data.Char.isControl #-} {-# COMPILED isSpace Data.Char.isSpace #-} {-# COMPILED isLower Data.Char.isLower #-} {-# COMPILED isUpper Data.Char.isUpper #-} {-# COMPILED isAlpha Data.Char.isAlpha #-} {-# COMPILED isAlphaNum Data.Char.isAlphaNum #-} {-# COMPILED isPrint Data.Char.isPrint #-} {-# COMPILED isDigit Data.Char.isDigit #-} {-# COMPILED isOctDigit Data.Char.isOctDigit #-} {-# COMPILED isHexDigit Data.Char.isHexDigit #-}
{ "alphanum_fraction": 0.6923847695, "avg_line_length": 30.2424242424, "ext": "agda", "hexsha": "4637738f1dec47c150b8ce08da0663124f4c2e5a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/Char/Classifier/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/Char/Classifier/Primitive.agda", "max_line_length": 48, "max_stars_count": 2, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/Char/Classifier/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z", "num_tokens": 275, "size": 998 }
{-# OPTIONS --safe #-} module Cubical.Categories.Presheaf.Base where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Instances.Functors PreShv : ∀ {ℓ ℓ'} → Category ℓ ℓ' → (ℓS : Level) → Category (ℓ-max (ℓ-max ℓ ℓ') (ℓ-suc ℓS)) (ℓ-max (ℓ-max ℓ ℓ') ℓS) PreShv C ℓS = FUNCTOR (C ^op) (SET ℓS)
{ "alphanum_fraction": 0.6775700935, "avg_line_length": 30.5714285714, "ext": "agda", "hexsha": "c1b4e2d7f4f6966046178f2fb42d4edb57f7ebcf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 144, "size": 428 }
------------------------------------------------------------------------------ -- Issue 12 ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Issue12 where postulate D : Set ∃ : (A : D → Set) → Set postulate foo : (B C : D → Set) → ∃ C → ∃ C {-# ATP prove foo #-} postulate bar : (B C : D → Set) → ∃ B → ∃ B {-# ATP prove bar #-}
{ "alphanum_fraction": 0.3443223443, "avg_line_length": 26, "ext": "agda", "hexsha": "0d2eb86480841e2ac8e2a9fdb2a1642ed6a0db34", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/non-fol-theorems/Issue12.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/non-fol-theorems/Issue12.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/non-fol-theorems/Issue12.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 120, "size": 546 }
-- Andreas, 2012-04-18, bug reported by sanzhiyan -- {-# OPTIONS -v tc.with:100 #-} module Issue610-4 where import Common.Level open import Common.Equality data ⊥ : Set where record ⊤ : Set where record A : Set₁ where constructor set field .a : Set .ack : A → Set ack x = A.a x hah : set ⊤ ≡ set ⊥ hah = refl -- SHOULD FAIL for the same reason that the next decl fails .moo : ⊥ moo with cong ack hah moo | q = subst (λ x → x) q _ {- FAILS .moo' : ⊥ moo' = subst (λ x → x) (cong ack hah) _ -} baa : .⊥ → ⊥ baa () yoink : ⊥ yoink = baa moo
{ "alphanum_fraction": 0.6151079137, "avg_line_length": 14.6315789474, "ext": "agda", "hexsha": "e2a7b39a4a514a6ffc7a7a394d53d948699dafe2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue610-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue610-4.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue610-4.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 212, "size": 556 }
-- Andreas, 2012-11-13 issue reported by joshkos module Issue754 where data RDesc (I : Set) : Set₁ where ∎ : RDesc I ṿ : (i : I) → RDesc I σ : (S : Set) (D : S → RDesc I) → RDesc I data ROrn {I J} (e : J → I) : RDesc I → RDesc J → Set₁ where ∎ : ROrn e ∎ ∎ ṿ : ∀ j i → ROrn e (ṿ i) (ṿ j) σ : (S : Set) → ∀ {D E} (O : ∀ s → ROrn e (D s) (E s)) → ROrn e (σ S D) (σ S E) Δ : (T : Set) → ∀ {D E} (O : ∀ t → ROrn e D (E t)) → ROrn e D (σ T E) scROrn : ∀ {I J K} {e : J → I} {f : K → J} {D E F} → ROrn e D E → ROrn f E F → ROrn (λ x → e (f x)) D F scROrn ∎ ∎ = ∎ scROrn {e = e} ∎ (Δ T P) = Δ T λ t → scROrn {e = e} ∎ (P t) -- culprit? scROrn (ṿ j i) (ṿ k .j) = ṿ k i scROrn {e = e} (ṿ j i) (Δ T P) = Δ T λ t → scROrn {e = e} (ṿ j i) (P t) -- culprit? scROrn (σ S O) (σ .S P) = σ S λ s → scROrn (O s) (P s) scROrn (σ S O) (Δ T P) = Δ T λ t → scROrn (σ S O) (P t) -- culprit? scROrn (Δ T O) (σ .T P) = Δ T λ t → scROrn (O t) (P t) scROrn (Δ T O) (Δ T' P) = Δ T' λ t → scROrn (Δ T O) (P t) -- Internal error message was: -- blowUpSparseVec (n = 2) aux i=3 j=3 length l = 2 -- The error was triggered by some operations on matrix-shaped orders -- which did not preserve the internal invariants of sparse matrices.
{ "alphanum_fraction": 0.4835501148, "avg_line_length": 43.5666666667, "ext": "agda", "hexsha": "f4472838fc7909a51f75d86494b2fb78e24715e4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue754.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue754.agda", "max_line_length": 103, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue754.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 630, "size": 1307 }
--------------------------------------------------------------- -- This file contains the definitions of several versions of -- -- subcategories. -- --------------------------------------------------------------- module Category.Subcategory where open import Level open import Data.Product open import Setoid.Total open import Relation.Relation open import Category.Category open Setoid open SetoidFun open Pred open Subcarrier open EqRel open Cat -- Categorical Predicate: A predicate on objects, and morphisms such -- that the latter is closed under identities and composition. record CatPred {l : Level} (ℂ : Cat {l}) : Set (lsuc l) where field oinc : Obj ℂ → Set l minc : ∀{A B} → oinc A → oinc B → Pred {l} (Hom ℂ A B) cp-idPf : ∀{A} → {p : oinc A} → pf (minc p p) (id ℂ {A}) cp-compPf : ∀{A B C} → (op₁ : (oinc A)) → (op₂ : (oinc B)) → (op₃ : (oinc C)) → {f : el (Hom ℂ A B)} → {g : el (Hom ℂ B C)} → (pf (minc op₁ op₂) f) → (pf (minc op₂ op₃) g) → (pf (minc op₁ op₃) (f ○[ comp ℂ ] g)) open CatPred -- Subcategories: -- The restriction of a category ℂ to the category determined by the -- categorical predicate P. Note that the objects of this category -- are pairs of an object and a proof that the object belongs in the -- category, and morphisms are similarly defined but using setoid -- predicates. subcatPred : {l : Level}{ℂ : Cat {l}} → (P : CatPred ℂ) → Cat {l} subcatPred {_}{ℂ} P = record { Obj = Σ[ x ∈ Obj ℂ ]( oinc P x) ; Hom = λ AP BP → let A = proj₁ AP B = proj₁ BP op₁ = proj₂ AP op₂ = proj₂ BP in Subsetoid (Hom ℂ A B) (minc P op₁ op₂) ; comp = λ {AP}{BP}{CP} → let A = proj₁ AP B = proj₁ BP C = proj₁ CP op₁ = proj₂ AP op₂ = proj₂ BP op₃ = proj₂ CP in record { appT = λ x → record { appT = λ x₁ → record { subel = (subel x) ○[ comp ℂ ] (subel x₁) ; insub = cp-compPf P op₁ op₂ op₃ (insub x) (insub x₁) } ; extT = λ {y} {z} x₂ → eq-comp-right {_}{ℂ}{A}{B}{C}{subel x}{subel y}{subel z} x₂ } ; extT = λ {f₁}{f₂} pf g₂ → extT (comp ℂ) pf (subel g₂) } ; id = λ {AP} → let A = proj₁ AP A-op = proj₂ AP in record { subel = id ℂ ; insub = cp-idPf P {_}{A-op} } ; assocPf = assocPf ℂ ; idPfCom = idPfCom ℂ ; idPf = idPf ℂ } -- Subcategories using subsetoids. subcat : {l : Level} → (ℂ : Cat {l})(O : Set l) → (oinc : O → Obj ℂ) → (minc : ∀{A B} → Pred {l} (Hom ℂ (oinc A) (oinc B))) → (∀{A} → pf (minc {A}{A}) (id ℂ {oinc A})) → (∀{A B C} → {f : el (Hom ℂ (oinc A) (oinc B))} → {g : el (Hom ℂ (oinc B) (oinc C))} → (pf minc f) → (pf minc g) → (pf minc (f ○[ comp ℂ ] g))) → Cat {l} subcat ℂ O oinc minc idPF compPF = record { Obj = O; Hom = λ A B → Subsetoid (Hom ℂ (oinc A) (oinc B)) (minc {A}{B}); comp = λ {A} {B} {C} → record { appT = λ x → record { appT = λ x₁ → record { subel = (subel x) ○[ comp ℂ ] (subel x₁); insub = compPF {f = subel x}{subel x₁} (insub x) (insub x₁) }; extT = λ {y}{z} p → extT (appT (comp ℂ {oinc A}{oinc B}{oinc C}) (subel x)) {subel y}{subel z} p }; extT = λ {y}{z} x₁ x₂ → extT (comp ℂ {oinc A} {oinc B} {oinc C}) x₁ (subel x₂) }; id = λ {A} → record { subel = id ℂ {oinc A}; insub = idPF {A} }; assocPf = assocPf ℂ; idPf = idPf ℂ; idPfCom = idPfCom ℂ } -- An alternate definition of a subcategory where the predicate is not -- a setoid predicate. subcat-pred : {l : Level} → (ℂ : Cat {l})(O : Set l) → (oinc : O → Obj ℂ) → (minc : ∀{A B} → el (Hom ℂ (oinc A) (oinc B)) → Set l) → (∀{A} → minc (id ℂ {oinc A})) → (∀{A B C} → {f : el (Hom ℂ (oinc A) (oinc B))} → {g : el (Hom ℂ (oinc B) (oinc C))} → (minc f) → (minc g) → (minc (f ○[ comp ℂ ] g))) → Cat {l} subcat-pred ℂ O oinc minc idPF compPF = record { Obj = O; Hom = λ A B → ↓Setoid (Hom ℂ (oinc A) (oinc B)) (minc {A}{B}); comp = λ {A} {B} {C} → ↓BinSetoidFun (comp ℂ) compPF; id = (id ℂ , idPF); assocPf = assocPf ℂ; idPf = idPf ℂ; idPfCom = idPfCom ℂ}
{ "alphanum_fraction": 0.4408229782, "avg_line_length": 37.1893939394, "ext": "agda", "hexsha": "35f836b1ec451466051406c0a235a535c6331933", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/Subcategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/Subcategory.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/Subcategory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1662, "size": 4909 }
-- Andreas, 2019-06-26, issue #3872, make --no-forcing a pragma option {-# OPTIONS --no-forcing #-} open import Agda.Builtin.Nat data List {a} (A : Set a) : Set a where [] : List A _∷_ : A → List A → List A pattern [_] x = x ∷ [] module _ {a} {A : Set a} where _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) variable x y z : A @0 xs ys zs : List A data FSet : List A → Set a where ∅ : FSet [] _∪_ : FSet xs → FSet ys → FSet (xs ++ ys) sg : (x : A) → FSet [ x ] -- x is forced here, but this is not wanted. -- We need a way to tell the forcing machinery to not erase x. -- Since xs is erased, we cannot get x from sg x : FSet xs (with xs = [ x ]) -- unless x is retained in sg x. elements : {@0 xs : List A} → FSet xs → List A elements ∅ = [] elements (s ∪ t) = elements s ++ elements t elements (sg x) = [ x ] -- ERROR WAS: -- Variable x is declared erased, so it cannot be used here -- when checking that the expression x has type A mySet = (sg 1 ∪ sg 2) ∪ (sg 3 ∪ sg 4)
{ "alphanum_fraction": 0.5535055351, "avg_line_length": 25.8095238095, "ext": "agda", "hexsha": "167a2423efd3e30ee8cc92d1ccaab32db625666d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3872.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3872.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3872.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 384, "size": 1084 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-Quotient where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly renaming (PolyCommRing to A[X1,···,Xn] ; Poly to A[x1,···,xn]) private variable ℓ : Level ----------------------------------------------------------------------------- -- General Nth polynome / quotient -- Better to declare an alias PolyCommRing-Quotient : (A : CommRing ℓ) → {n m : ℕ} → FinVec (fst (A[X1,···,Xn] A n)) m → CommRing ℓ PolyCommRing-Quotient A {n} {m} v = A[X1,···,Xn] A n / genIdeal (A[X1,···,Xn] A n) v ----------------------------------------------------------------------------- -- Notation in the general case and some real cases 1, 2, 3 module _ (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where <Xkʲ> : (k j : ℕ) → FinVec (A[x1,···,xn] Ar n) 1 <Xkʲ> k j zero = base (genδℕ-Vec n k j 0) (CommRingStr.1r Astr) A[X1,···,Xn]/<Xkʲ> : (k j : ℕ) → CommRing ℓ A[X1,···,Xn]/<Xkʲ> k j = (A[X1,···,Xn] Ar n) / (genIdeal ((A[X1,···,Xn] Ar n)) (<Xkʲ> k j)) A[x1,···,xn]/<xkʲ> : (k j : ℕ) → Type ℓ A[x1,···,xn]/<xkʲ> k j = fst (A[X1,···,Xn]/<Xkʲ> k j) <X1,···,Xn> : FinVec (A[x1,···,xn] Ar n) n <X1,···,Xn> = λ k → base (δℕ-Vec n (toℕ k)) (CommRingStr.1r Astr) A[X1,···,Xn]/<X1,···,Xn> : CommRing ℓ A[X1,···,Xn]/<X1,···,Xn> = (A[X1,···,Xn] Ar n) / (genIdeal ((A[X1,···,Xn] Ar n)) <X1,···,Xn>) A[x1,···,xn]/<x1,···,xn> : Type ℓ A[x1,···,xn]/<x1,···,xn> = fst A[X1,···,Xn]/<X1,···,Xn>
{ "alphanum_fraction": 0.5886627907, "avg_line_length": 35.5862068966, "ext": "agda", "hexsha": "b14638becab49bef29e3471f3bb65c1c45c8bbfa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-Quotient.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-Quotient.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 834, "size": 2064 }
------------------------------------------------------------------------ -- Examples showing how Tree-sort can be used ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Tree-sort.Examples {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Prelude open import Bag-equivalence eq import Nat eq as Nat -- Comparison functions for natural numbers. _≤?_ : ℕ → ℕ → Bool m ≤? n with Nat.total m n ... | inj₁ m≤n = true ... | inj₂ n<m = false import Tree-sort.Partial eq _≤?_ as P open import Tree-sort.Full eq Nat._≤_ Nat.total as F using (cons; nil) -- The sort functions return ordered lists. orderedP : P.tree-sort (3 ∷ 1 ∷ 2 ∷ []) ≡ 1 ∷ 2 ∷ 3 ∷ [] orderedP = refl _ orderedF : F.tree-sort (3 ∷ 1 ∷ 2 ∷ []) ≡ cons 1 (cons 2 (cons 3 (nil _) _) _) _ orderedF = refl _ -- The sort functions return lists which are bag equivalent to the -- input. This property can be used to establish bag equivalences -- between concrete lists. a-bag-equivalenceP : 1 ∷ 2 ∷ 3 ∷ [] ≈-bag 3 ∷ 1 ∷ 2 ∷ [] a-bag-equivalenceP = P.tree-sort-permutes (3 ∷ 1 ∷ 2 ∷ []) a-bag-equivalenceF : 1 ∷ 2 ∷ 3 ∷ [] ≈-bag 3 ∷ 1 ∷ 2 ∷ [] a-bag-equivalenceF = F.tree-sort-permutes (3 ∷ 1 ∷ 2 ∷ [])
{ "alphanum_fraction": 0.5661375661, "avg_line_length": 28.1489361702, "ext": "agda", "hexsha": "8576f8fa9c5a38601b85cdbb392a9c96d76de997", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Tree-sort/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Tree-sort/Examples.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Tree-sort/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 417, "size": 1323 }
module main-old where import parse import run open import lib open import cedille-types -- for parser for Cedille source files import cedille module parsem = parse cedille.gratr2-nt ptr open parsem.pnoderiv cedille.rrs cedille.cedille-rtn module pr = run ptr open pr.noderiv {- from run.agda -} -- for parser for options files import options import options-types module parsem2 = parse options.gratr2-nt options-types.ptr module options-parse = parsem2.pnoderiv options.rrs options.options-rtn module pr2 = run options-types.ptr module options-run = pr2.noderiv -- for parser for Cedille comments & whitespace import cws import cws-types module parsem3 = parse cws.gratr2-nt cws-types.ptr module cws-parse = parsem3.pnoderiv cws.rrs cws.cws-rtn module pr3 = run cws.ptr module cws-run = pr3.noderiv --open import cedille-find --open import classify open import ctxt open import constants --open import conversion open import general-util open import process-cmd open import spans open import syntax-util open import to-string open import toplevel-state import interactive-cmds open import rkt opts : Set opts = options-types.opts {------------------------------------------------------------------------------- .cede support -------------------------------------------------------------------------------} dot-cedille-directory : string → string dot-cedille-directory dir = combineFileNames dir ".cedille" cede-filename : (ced-path : string) → string cede-filename ced-path = let dir = takeDirectory ced-path in let unit-name = base-filename (takeFileName ced-path) in combineFileNames (dot-cedille-directory dir) (unit-name ^ ".cede") -- .cede files are just a dump of the spans, prefixed by 'e' if there is an error write-cede-file : (ced-path : string) → (ie : include-elt) → IO ⊤ write-cede-file ced-path ie = -- putStrLn ("write-cede-file " ^ ced-path ^ " : " ^ contents) >> let dir = takeDirectory ced-path in createDirectoryIfMissing ff (dot-cedille-directory dir) >> writeFile (cede-filename ced-path) ((if (include-elt.err ie) then "e" else "") ^ (include-elt-spans-to-string ie)) -- we assume the cede file is known to exist at this point read-cede-file : (ced-path : string) → IO (𝔹 × string) read-cede-file ced-path = get-file-contents (cede-filename ced-path) >>= λ c → finish c where finish : maybe string → IO (𝔹 × string) finish nothing = return (tt , global-error-string ("Could not read the file " ^ cede-filename ced-path ^ ".")) finish (just ss) with string-to-𝕃char ss finish (just ss) | ('e' :: ss') = forceFileRead ss >> return (tt , 𝕃char-to-string ss') finish (just ss) | _ = forceFileRead ss >> return (ff , ss) add-cedille-extension : string → string add-cedille-extension x = x ^ "." ^ cedille-extension find-imported-file : (dirs : 𝕃 string) → (unit-name : string) → IO string find-imported-file [] unit-name = return (add-cedille-extension unit-name) -- assume the current directory if the unit is not found find-imported-file (dir :: dirs) unit-name = let e = combineFileNames dir (add-cedille-extension unit-name) in doesFileExist e >>= λ b → if b then return e else find-imported-file dirs unit-name -- return a list of pairs (i,p) where i is the import string in the file, and p is the full path for that imported file find-imported-files : (dirs : 𝕃 string) → (imports : 𝕃 string) → IO (𝕃 (string × string)) find-imported-files dirs (u :: us) = find-imported-file dirs u >>= λ p → find-imported-files dirs us >>= λ ps → return ((u , p) :: ps) find-imported-files dirs [] = return [] ced-file-up-to-date : (ced-path : string) → IO 𝔹 ced-file-up-to-date ced-path = let e = cede-filename ced-path in doesFileExist e >>= λ b → if b then fileIsOlder ced-path e else return ff paths-to-𝕃string : options-types.paths → 𝕃 string paths-to-𝕃string options-types.PathsNil = [] paths-to-𝕃string (options-types.PathsCons p ps) = p :: paths-to-𝕃string ps opts-get-include-path : opts → 𝕃 string opts-get-include-path options-types.OptsNil = [] opts-get-include-path (options-types.OptsCons (options-types.Lib ps) oo) = (paths-to-𝕃string ps) ++ opts-get-include-path oo opts-get-include-path (options-types.OptsCons options-types.NoCedeFiles oo) = opts-get-include-path oo opts-get-include-path (options-types.OptsCons options-types.NoRktFiles oo) = opts-get-include-path oo --opts-get-include-path (options-types.OptsCons _ oo) = opts-get-include-path oo {- see if "no-cede-files" is turned on in the options file -} opts-get-no-cede-files : opts → 𝔹 opts-get-no-cede-files options-types.OptsNil = ff opts-get-no-cede-files (options-types.OptsCons options-types.NoCedeFiles oo) = tt opts-get-no-cede-files (options-types.OptsCons options-types.NoRktFiles oo) = opts-get-no-cede-files oo opts-get-no-cede-files (options-types.OptsCons (options-types.Lib _) oo) = opts-get-no-cede-files oo {- see if "no-rkt-files" is turned on in the options file -} opts-get-no-rkt-files : opts → 𝔹 opts-get-no-rkt-files options-types.OptsNil = ff opts-get-no-rkt-files (options-types.OptsCons options-types.NoCedeFiles oo) = opts-get-no-rkt-files oo opts-get-no-rkt-files (options-types.OptsCons options-types.NoRktFiles oo) = tt opts-get-no-rkt-files (options-types.OptsCons (options-types.Lib _) oo) = opts-get-no-rkt-files oo {- reparse the given file, and update its include-elt in the toplevel-state appropriately -} reparse : toplevel-state → (filename : string) → IO toplevel-state reparse st filename = -- putStrLn ("reparsing " ^ filename) >> doesFileExist filename >>= λ b → (if b then (readFiniteFile filename >>= processText) else return (error-include-elt ("The file " ^ filename ^ " could not be opened for reading."))) >>= λ ie → return (set-include-elt st filename ie) where processText : string → IO include-elt processText x with string-to-𝕃char x processText x | s with runRtn s processText x | s | inj₁ cs = return (error-include-elt ("Parse error in file " ^ filename ^ " at position " ^ (ℕ-to-string (length s ∸ length cs)) ^ ".")) processText x | s | inj₂ r with rewriteRun r processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] with cws-parse.runRtn s processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₁ cs = return (error-include-elt ("This shouldn't happen in " ^ filename ^ " at position " ^ (ℕ-to-string (length s ∸ length cs)) ^ ".")) processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 with cws-parse.rewriteRun r2 processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 | cws-run.ParseTree (cws-types.parsed-start t2) :: [] = find-imported-files (toplevel-state.include-path st) (get-imports t) >>= λ deps → return (new-include-elt filename deps t t2) processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 | _ = return (error-include-elt ("Parse error in file " ^ filename ^ ".")) processText x | s | inj₂ r | _ = return (error-include-elt ("Parse error in file " ^ filename ^ ".")) add-spans-if-up-to-date : (up-to-date : 𝔹) → (use-cede-files : 𝔹) → (filename : string) → include-elt → IO include-elt add-spans-if-up-to-date up-to-date use-cede-files filename ie = if up-to-date && use-cede-files then (read-cede-file filename >>= finish) else return ie where finish : 𝔹 × string → IO include-elt finish (err , ss) = return (set-do-type-check-include-elt (set-spans-string-include-elt ie err ss) ff) {- make sure that the current ast and dependencies are stored in the toplevel-state, updating the state as needed. -} ensure-ast-deps : toplevel-state → (filename : string) → IO toplevel-state ensure-ast-deps s filename with get-include-elt-if s filename ensure-ast-deps s filename | nothing = let ucf = (toplevel-state.use-cede-files s) in reparse s filename >>= λ s → ced-file-up-to-date filename >>= λ up-to-date → add-spans-if-up-to-date up-to-date ucf filename (get-include-elt s filename) >>= λ ie → return (set-include-elt s filename ie) ensure-ast-deps s filename | just ie = let ucf = (toplevel-state.use-cede-files s) in ced-file-up-to-date filename >>= λ up-to-date → if up-to-date then (add-spans-if-up-to-date up-to-date (toplevel-state.use-cede-files s) filename (get-include-elt s filename) >>= λ ie → return (set-include-elt s filename ie)) else reparse s filename {- helper function for update-asts, which keeps track of the files we have seen so we avoid importing the same file twice, and also avoid following cycles in the import graph. -} {-# TERMINATING #-} update-astsh : stringset {- seen already -} → toplevel-state → (filename : string) → IO (stringset {- seen already -} × toplevel-state) update-astsh seen s filename = -- putStrLn ("update-astsh [filename = " ^ filename ^ "]") >> if stringset-contains seen filename then return (seen , s) else (ensure-ast-deps s filename >>= cont (stringset-insert seen filename)) where cont : stringset → toplevel-state → IO (stringset × toplevel-state) cont seen s with get-include-elt s filename cont seen s | ie with include-elt.deps ie cont seen s | ie | ds = proc seen s ds where proc : stringset → toplevel-state → 𝕃 string → IO (stringset × toplevel-state) proc seen s [] = if (list-any (get-do-type-check s) ds) then return (seen , set-include-elt s filename (set-do-type-check-include-elt ie tt)) else return (seen , s) proc seen s (d :: ds) = update-astsh seen s d >>= λ p → proc (fst p) (snd p) ds {- this function updates the ast associated with the given filename in the toplevel state. So if we do not have an up-to-date .cede file (i.e., there is no such file at all, or it is older than the given file), reparse the file. We do this recursively for all dependencies (i.e., imports) of the file. -} update-asts : toplevel-state → (filename : string) → IO toplevel-state update-asts s filename = update-astsh empty-stringset s filename >>= λ p → return (snd p) {- this function checks the given file (if necessary), updates .cede and .rkt files (again, if necessary), and replies on stdout if appropriate -} checkFile : toplevel-state → (filename : string) → (should-print-spans : 𝔹) → IO toplevel-state checkFile s filename should-print-spans = -- putStrLn ("checkFile " ^ filename) >> update-asts s filename >>= λ s → finish (process-file s filename) -- ignore-errors s filename) where reply : toplevel-state → IO ⊤ reply s with get-include-elt-if s filename reply s | nothing = putStrLn (global-error-string ("Internal error looking up information for file " ^ filename ^ ".")) reply s | just ie = if should-print-spans then putStrLn (include-elt-spans-to-string ie) else return triv finish : toplevel-state × mod-info → IO toplevel-state finish (s , m) with s finish (s , m) | mk-toplevel-state use-cede make-rkt ip mod is Γ = writeo mod >> reply s >> return (mk-toplevel-state use-cede make-rkt ip [] is (ctxt-set-current-mod Γ m)) where writeo : 𝕃 string → IO ⊤ writeo [] = return triv writeo (f :: us) = let ie = get-include-elt s f in (if use-cede then (write-cede-file f ie) else (return triv)) >> (if make-rkt then (write-rkt-file f (toplevel-state.Γ s) ie) else (return triv)) >> writeo us remove-dup-include-paths : 𝕃 string → 𝕃 string remove-dup-include-paths l = stringset-strings (stringset-insert* empty-stringset l) -- this is the function that handles requests (from the frontend) on standard input {-# TERMINATING #-} readCommandsFromFrontend : toplevel-state → IO ⊤ readCommandsFromFrontend s = getLine >>= λ input → let input-list : 𝕃 string input-list = (string-split (undo-escape-string input) delimiter) in (handleCommands input-list s) >>= λ s → readCommandsFromFrontend s where delimiter : char delimiter = '§' errorCommand : 𝕃 string → toplevel-state → IO toplevel-state errorCommand ls s = putStrLn (global-error-string "Invalid command sequence \"" ^ (𝕃-to-string (λ x → x) ", " ls) ^ "\".") >>= λ x → return s debugCommand : toplevel-state → IO toplevel-state debugCommand s = putStrLn (escape-string (toplevel-state-to-string s)) >>= λ x → return s checkCommand : 𝕃 string → toplevel-state → IO toplevel-state checkCommand (input :: []) s = canonicalizePath input >>= λ input-filename → checkFile (set-include-path s (remove-dup-include-paths (takeDirectory input-filename :: toplevel-state.include-path s))) input-filename tt {- should-print-spans -} checkCommand ls s = errorCommand ls s interactiveCommand : 𝕃 string → toplevel-state → IO toplevel-state interactiveCommand xs s = interactive-cmds.interactive-cmd xs s {- findCommand : 𝕃 string → toplevel-state → IO toplevel-state findCommand (symbol :: []) s = putStrLn (find-symbols-to-JSON symbol (toplevel-state-lookup-occurrences symbol s)) >>= λ x → return s findCommand _ s = errorCommand s -} handleCommands : 𝕃 string → toplevel-state → IO toplevel-state handleCommands ("check" :: xs) s = checkCommand xs s handleCommands ("debug" :: []) s = debugCommand s handleCommands ("interactive" :: xs) s = interactiveCommand xs s -- handleCommands ("find" :: xs) s = findCommand xs s handleCommands ls s = errorCommand ls s -- function to process command-line arguments processArgs : opts → 𝕃 string → IO ⊤ -- this is the case for when we are called with a single command-line argument, the name of the file to process processArgs oo (input-filename :: []) = canonicalizePath input-filename >>= λ input-filename → checkFile (new-toplevel-state (takeDirectory input-filename :: opts-get-include-path oo) (~ (opts-get-no-cede-files oo)) (~ (opts-get-no-rkt-files oo)) ) input-filename ff {- should-print-spans -} >>= finish input-filename where finish : string → toplevel-state → IO ⊤ finish input-filename s = let ie = get-include-elt s input-filename in if include-elt.err ie then (putStrLn (include-elt-spans-to-string ie)) else return triv -- this is the case where we will go into a loop reading commands from stdin, from the fronted processArgs oo [] = readCommandsFromFrontend (new-toplevel-state (opts-get-include-path oo) (~ (opts-get-no-cede-files oo)) (~ (opts-get-no-rkt-files oo))) -- all other cases are errors processArgs oo xs = putStrLn ("Run with the name of one file to process, or run with no command-line arguments and enter the\n" ^ "names of files one at a time followed by newlines (this is for the emacs mode).") -- helper function to try to parse the options file processOptions : string → string → (string ⊎ options-types.opts) processOptions filename s with string-to-𝕃char s ... | i with options-parse.runRtn i ... | inj₁ cs = inj₁ ("Parse error in file " ^ filename ^ " at position " ^ (ℕ-to-string (length i ∸ length cs)) ^ ".") ... | inj₂ r with options-parse.rewriteRun r ... | options-run.ParseTree (options-types.parsed-start (options-types.File oo)) :: [] = inj₂ oo ... | _ = inj₁ ("Parse error in file " ^ filename ^ ". ") -- read the ~/.cedille/options file readOptions : IO (string ⊎ options-types.opts) readOptions = getHomeDirectory >>= λ homedir → let homecedir = dot-cedille-directory homedir in let optsfile = combineFileNames homecedir options-file-name in createDirectoryIfMissing ff homecedir >> doesFileExist optsfile >>= λ b → if b then (readFiniteFile optsfile >>= λ f → return (processOptions optsfile f)) else (return (inj₂ options-types.OptsNil)) postulate initializeStdinToUTF8 : IO ⊤ setStdinNewlineMode : IO ⊤ {-# COMPILED initializeStdinToUTF8 System.IO.hSetEncoding System.IO.stdin System.IO.utf8 #-} {-# COMPILED setStdinNewlineMode System.IO.hSetNewlineMode System.IO.stdin System.IO.universalNewlineMode #-} -- main entrypoint for the backend main : IO ⊤ main = initializeStdoutToUTF8 >> initializeStdinToUTF8 >> setStdoutNewlineMode >> setStdinNewlineMode >> readOptions >>= next where next : string ⊎ options-types.opts → IO ⊤ next (inj₁ s) = putStrLn (global-error-string s) next (inj₂ oo) = getArgs >>= processArgs oo
{ "alphanum_fraction": 0.6378841138, "avg_line_length": 49.8248587571, "ext": "agda", "hexsha": "a0fa76304d5d357533359b5b064d71d8a179d036", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/main-old.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/main-old.agda", "max_line_length": 188, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/main-old.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4602, "size": 17638 }
module Utils.HaskellFunctions where open import bool open import maybe open import Utils.HaskellTypes postulate _str-eq_ : String → String → 𝔹 {-# COMPILED _str-eq_ (==) #-} infixr 20 _++s_ postulate _++s_ : String → String → String {-# COMPILED _++s_ Data.Text.append #-} fst : {A B : Set} → Prod A B → A fst (x , y) = x snd : {A B : Set} → Prod A B → B snd (x , y) = y fstT : {A B C : Set} → Triple A B C → A fstT (triple x y z) = x sndT : {A B C : Set} → Triple A B C → B sndT (triple x y z) = y trdT : {A B C : Set} → Triple A B C → C trdT (triple x y z) = z fstMapT : {A₁ A₂ B C : Set} → (A₁ → A₂) → Triple A₁ B C → Triple A₂ B C fstMapT f (triple x y z) = triple (f x) y z _++_ : {A : Set} → List A → List A → List A [] ++ l₂ = l₂ (x :: l₁) ++ l₂ = x :: (l₁ ++ l₂) map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs list-member : {A : Set}(eq : A → A → 𝔹)(a : A)(l : List A) → 𝔹 list-member eq a [] = ff list-member eq a (x :: xs) with eq a x ... | tt = tt ... | ff = list-member eq a xs foldr : {A : Set}{B : Set} → (A → B → B) → B → List A → B foldr f b [] = b foldr f b (a :: as) = f a (foldr f b as) foldl : {A : Set}{B : Set} → (B → A → B) → B → List A → B foldl f b [] = b foldl f b (x :: xs) = foldl f (f b x) xs lookup : ∀{A B} → (A → A → 𝔹) → A → List (Prod A B) → maybe B lookup _eq_ x [] = nothing lookup _eq_ x ((y , b) :: l) with x eq y ... | tt = just b ... | ff = lookup _eq_ x l disjoint : {A : Set} → (A → A → 𝔹) → List A → List A → 𝔹 disjoint _eq_ (x :: l₁) (y :: l₂) with x eq y ... | tt = ff ... | ff = disjoint _eq_ l₁ l₂ disjoint _ [] _ = tt disjoint _ _ [] = tt
{ "alphanum_fraction": 0.5221078134, "avg_line_length": 24.6417910448, "ext": "agda", "hexsha": "8114bc7ccff1b48ebfb8bca9be312dd1d8e774fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Utils/HaskellFunctions.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Utils/HaskellFunctions.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Utils/HaskellFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 706, "size": 1651 }
module Coirc.Network where open import Function open import Coinduction open import Data.Unit open import Data.String open import Data.Maybe open import IO open import Coirc open import Coirc.Parser import Coirc.Network.Primitive as Prim private Handle = Prim.Handle hConnect : String → IO Handle hConnect s = lift (Prim.hConnect s) hGetLine : Handle → IO String hGetLine h = ♯ lift (Prim.hGetLine h) >>= λ s → ♯ (♯ putStrLn s >> ♯ return (s ++ "\n")) hPutStr : Handle → String → IO ⊤ hPutStr h s = ♯ lift (Prim.hPutStr h s) >> ♯ return tt hSend : Handle → String → IO ⊤ hSend h s = ♯ putStrLn ("> " ++ s) >> ♯ hPutStr h (s ++ "\r\n") getEvent : Handle → IO (Maybe Event) getEvent h = ♯ hGetLine h >>= (λ x → ♯ f x) where f : String → IO (Maybe Event) f = return ∘ parse-Event ∘ toList runAction : Handle → Action → IO ⊤ runAction h (print text) = putStrLn text runAction h (nick name) = hSend h ("NICK " ++ name) runAction h (user name real) = hSend h ("USER " ++ name ++ " 0 * :" ++ real) runAction h (pong name) = hSend h ("PONG " ++ name) runAction h (join channel) = hSend h ("JOIN " ++ channel) runAction h (part channel) = hSend h ("PART " ++ channel) runAction h (privmsg target text) = hSend h ("PRIVMSG " ++ target ++ " :" ++ text) runAction h (quit text) = hSend h ("QUIT :" ++ text) runSP : Handle → Bot → IO ⊤ runSP h (get f) = ♯ getEvent h >>= λ e? → ♯ g e? where g : Maybe Event → IO ⊤ g nothing = ♯ putStrLn "<disconnect>" >> ♯ return tt g (just e) = runSP h (f e) runSP h (put a sp) = ♯ runAction h a >> ♯ runSP h (♭ sp) runBot : Bot → String → IO ⊤ runBot bot server = ♯ hConnect server >>= λ h → ♯ runSP h bot
{ "alphanum_fraction": 0.5812917595, "avg_line_length": 24.602739726, "ext": "agda", "hexsha": "8c31b94b6af1b099aa7168f7253d9f2662a45652", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/coirc", "max_forks_repo_path": "src/Coirc/Network.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/coirc", "max_issues_repo_path": "src/Coirc/Network.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/coirc", "max_stars_repo_path": "src/Coirc/Network.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 603, "size": 1796 }
------------------------------------------------------------------------------ -- Distributive laws on a binary operation: Task B ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.TaskB.UnprovedATP where open import DistributiveLaws.Base ------------------------------------------------------------------------------ -- 2018-06-28: The ATPs could not prove the theorem (300 sec). postulate prop₂ : ∀ u x y z → (x · y · (z · u)) · ((x · y · (z · u)) · (x · z · (y · u))) ≡ x · z · (y · u) {-# ATP prove prop₂ #-}
{ "alphanum_fraction": 0.3699346405, "avg_line_length": 36.4285714286, "ext": "agda", "hexsha": "2ab5e3a122f2fe6790bcc70a13ac3d462e17ba3e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/DistributiveLaws/TaskB/UnprovedATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/DistributiveLaws/TaskB/UnprovedATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/DistributiveLaws/TaskB/UnprovedATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 158, "size": 765 }
module DynTheory where open import Prelude open import T ---- Some theory about the dynamic semantics module DynTheory where -- prove some obvious theorems about iterated stepping -- transitivity (which makes sense, given that it is the transitive closure) eval-trans : ∀{A} {e e' e'' : TCExp A} → e ~>* e' → e' ~>* e'' → e ~>* e'' eval-trans eval-refl E2 = E2 eval-trans (eval-cons S1 E1') E2 = eval-cons S1 (eval-trans E1' E2) -- prove that we can life any compatibility rule from steps to eval eval-compat : ∀{A B} {P : TCExp A -> TCExp B} → (∀{e e'} → (e ~> e' → P e ~> P e')) → {e e' : TCExp A} → e ~>* e' → P e ~>* P e' eval-compat f eval-refl = eval-refl eval-compat f (eval-cons S1 D) = eval-cons (f S1) (eval-compat f D) -- Lemma we need to prove determism not-val-and-step : ∀{C : Set} {A : TTp} {e e' : TCExp A} → TVal e → e ~> e' → C not-val-and-step val-zero () not-val-and-step val-lam () not-val-and-step (val-suc v) (step-suc S1) = not-val-and-step v S1 -- Show that the dynamic semantics are a function step-deterministic : ∀{A} → (e : TCExp A) → {e' e'' : TCExp A} → e ~> e' → e ~> e'' -> e' ≡ e'' -- Trivial contradictory cases step-deterministic (var x) () S2 step-deterministic (Λ e) () S2 step-deterministic zero () S2 step-deterministic (Λ e $ e') step-beta (step-app-l ()) step-deterministic (Λ e $ e') (step-app-l ()) step-beta step-deterministic (rec .zero e'' e₂) (step-rec ()) step-rec-z step-deterministic (rec zero e₀ es) step-rec-z (step-rec ()) -- Nontrival contradictory cases step-deterministic (rec (suc e) e₁ e₂) (step-rec (step-suc S1)) (step-rec-s v) = not-val-and-step v S1 step-deterministic (rec (suc e) e₁ e₂) (step-rec-s v) (step-rec (step-suc S2)) = not-val-and-step v S2 -- Normal cases step-deterministic (e $ e') (step-app-l S1) (step-app-l S2) = resp (λ x → x $ e') (step-deterministic e S1 S2) step-deterministic (Λ e $ e') step-beta step-beta = Refl step-deterministic (suc e) (step-suc S1) (step-suc S2) = resp suc (step-deterministic e S1 S2) step-deterministic (rec e e₁ e₂) (step-rec S1) (step-rec S2) = resp (λ x → rec x e₁ e₂) (step-deterministic e S1 S2) step-deterministic (rec zero _ _) step-rec-z step-rec-z = Refl step-deterministic (rec (suc e) e₁ e₂) (step-rec-s x) (step-rec-s x₁) = Refl -- Prove that if we evaluate to two expressions, and one is a value, -- then the other evaluates to it. eval-finish : ∀{A} → {e : TCExp A} → {e' e'' : TCExp A} → e ~>* e' → e ~>* e'' → TVal e'' → e' ~>* e'' eval-finish eval-refl E2 v = E2 eval-finish (eval-cons S1 E1) eval-refl v = not-val-and-step v S1 eval-finish (eval-cons S1 E1) (eval-cons S2 E2) v with step-deterministic _ S1 S2 ... | Refl = eval-finish E1 E2 v -- Prove that if we evaluate to two values, they are the same eval-deterministic : ∀{A} → {e : TCExp A} → {e' e'' : TCExp A} → e ~>* e' → e ~>* e'' → TVal e' → TVal e'' → e' ≡ e'' eval-deterministic E1 E2 v1 v2 with eval-finish E1 E2 v2 ... | eval-refl = Refl ... | eval-cons S1 _ = not-val-and-step v1 S1 open DynTheory public
{ "alphanum_fraction": 0.5700412007, "avg_line_length": 42.475, "ext": "agda", "hexsha": "554eef790a4d293a8db481b4745cd537f42e006f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "DynTheory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "DynTheory.agda", "max_line_length": 104, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "DynTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 1157, "size": 3398 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Nat.Mod where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.Nat.Order -- Defining x mod 0 to be 0. This way all the theorems below are true -- for n : ℕ instead of n : ℕ₊₁. ------ Preliminary definitions ------ modInd : (n : ℕ) → ℕ → ℕ modInd n = +induction n (λ _ → ℕ) (λ x _ → x) λ _ x → x modIndBase : (n m : ℕ) → m < suc n → modInd n m ≡ m modIndBase n = +inductionBase n (λ _ → ℕ) (λ x _ → x) (λ _ x → x) modIndStep : (n m : ℕ) → modInd n (suc n + m) ≡ modInd n m modIndStep n = +inductionStep n (λ _ → ℕ) (λ x _ → x) (λ _ x → x) ------------------------------------- _mod_ : (x n : ℕ) → ℕ x mod zero = 0 x mod (suc n) = modInd n x mod< : (n x : ℕ) → x mod (suc n) < (suc n) mod< n = +induction n (λ x → x mod (suc n) < suc n) (λ x base → fst base , (cong (λ x → fst base + suc x) (modIndBase n x base) ∙ snd base)) λ x ind → fst ind , cong (λ x → fst ind + suc x) (modIndStep n x) ∙ snd ind mod-rUnit : (n x : ℕ) → x mod n ≡ ((x + n) mod n) mod-rUnit zero x = refl mod-rUnit (suc n) x = sym (modIndStep n x) ∙ cong (modInd n) (+-comm (suc n) x) mod-lUnit : (n x : ℕ) → x mod n ≡ ((n + x) mod n) mod-lUnit zero _ = refl mod-lUnit (suc n) x = sym (modIndStep n x) mod+mod≡mod : (n x y : ℕ) → (x + y) mod n ≡ (((x mod n) + (y mod n)) mod n) mod+mod≡mod zero _ _ = refl mod+mod≡mod (suc n) = +induction n (λ z → (x : ℕ) → ((z + x) mod (suc n)) ≡ (((z mod (suc n)) + (x mod (suc n))) mod (suc n))) (λ x p → +induction n _ (λ y q → cong (modInd n) (sym (cong₂ _+_ (modIndBase n x p) (modIndBase n y q)))) λ y ind → cong (modInd n) (cong (x +_) (+-comm (suc n) y) ∙ (+-assoc x y (suc n))) ∙∙ sym (mod-rUnit (suc n) (x + y)) ∙∙ ind ∙ cong (λ z → modInd n ((modInd n x + z))) (mod-rUnit (suc n) y ∙ cong (modInd n) (+-comm y (suc n)))) λ x p y → cong (modInd n) (cong suc (sym (+-assoc n x y))) ∙∙ sym (mod-lUnit (suc n) (x + y)) ∙∙ p y ∙ sym (cong (modInd n) (cong (_+ modInd n y) (cong (modInd n) (+-comm (suc n) x) ∙ sym (mod-rUnit (suc n) x)))) mod-idempotent : {n : ℕ} (x : ℕ) → (x mod n) mod n ≡ x mod n mod-idempotent {n = zero} _ = refl mod-idempotent {n = suc n} = +induction n (λ x → (x mod suc n) mod (suc n) ≡ x mod (suc n)) (λ x p → cong (_mod (suc n)) (modIndBase n x p)) λ x p → cong (_mod (suc n)) (modIndStep n x) ∙∙ p ∙∙ mod-rUnit (suc n) x ∙ (cong (_mod (suc n)) (+-comm x (suc n))) mod-rCancel : (n x y : ℕ) → (x + y) mod n ≡ (x + y mod n) mod n mod-rCancel zero x y = refl mod-rCancel (suc n) x = +induction n _ (λ y p → cong (λ z → (x + z) mod (suc n)) (sym (modIndBase n y p))) λ y p → cong (_mod suc n) (+-assoc x (suc n) y ∙∙ (cong (_+ y) (+-comm x (suc n))) ∙∙ sym (+-assoc (suc n) x y)) ∙∙ sym (mod-lUnit (suc n) (x + y)) ∙∙ (p ∙ cong (λ z → (x + z) mod suc n) (mod-lUnit (suc n) y)) mod-lCancel : (n x y : ℕ) → (x + y) mod n ≡ (x mod n + y) mod n mod-lCancel n x y = cong (_mod n) (+-comm x y) ∙∙ mod-rCancel n y x ∙∙ cong (_mod n) (+-comm y (x mod n)) zero-charac : (n : ℕ) → n mod n ≡ 0 zero-charac zero = refl zero-charac (suc n) = cong (_mod suc n) (+-comm 0 (suc n)) ∙∙ modIndStep n 0 ∙∙ modIndBase n 0 (n , (+-comm n 1)) -- remainder and quotient after division by n -- Again, allowing for 0-division to get nicer syntax remainder_/_ : (x n : ℕ) → ℕ remainder x / zero = x remainder x / suc n = x mod (suc n) quotient_/_ : (x n : ℕ) → ℕ quotient x / zero = 0 quotient x / suc n = +induction n (λ _ → ℕ) (λ _ _ → 0) (λ _ → suc) x ≡remainder+quotient : (n x : ℕ) → (remainder x / n) + n · (quotient x / n) ≡ x ≡remainder+quotient zero x = +-comm x 0 ≡remainder+quotient (suc n) = +induction n (λ x → (remainder x / (suc n)) + (suc n) · (quotient x / (suc n)) ≡ x) (λ x base → cong₂ _+_ (modIndBase n x base) (cong ((suc n) ·_) (+inductionBase n _ _ _ x base)) ∙∙ cong (x +_) (·-comm n 0) ∙∙ +-comm x 0) λ x ind → cong₂ _+_ (modIndStep n x) (cong ((suc n) ·_) (+inductionStep n _ _ _ x)) ∙∙ cong (modInd n x +_) (·-suc (suc n) (+induction n _ _ _ x)) ∙∙ cong (modInd n x +_) (+-comm (suc n) ((suc n) · (+induction n _ _ _ x))) ∙∙ +-assoc (modInd n x) ((suc n) · +induction n _ _ _ x) (suc n) ∙∙ cong (_+ suc n) ind ∙ +-comm x (suc n) private test₀ : 100 mod 81 ≡ 19 test₀ = refl test₁ : ((11 + (10 mod 3)) mod 3) ≡ 0 test₁ = refl
{ "alphanum_fraction": 0.4455686715, "avg_line_length": 34.6558441558, "ext": "agda", "hexsha": "4eddabaf490104ef13b33c39b9d63b9ac12fe0a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FernandoLarrain/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Mod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FernandoLarrain/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Mod.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Mod.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z", "num_tokens": 1957, "size": 5337 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.NAryOp open import Cubical.Structures.Pointed open import Cubical.Structures.Semigroup hiding (⟨_⟩) open import Cubical.Structures.Monoid hiding (⟨_⟩) open import Cubical.Structures.Group.Base open import Cubical.Structures.Group.Properties open import Cubical.Structures.Group.Morphism open Iso private variable ℓ ℓ' ℓ'' : Level isPropIsGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (isGroupHom G H f) isPropIsGroupHom G H {f} = isPropΠ2 λ a b → Group.is-set H _ _ isSetGroupHom : {G : Group {ℓ}} {H : Group {ℓ'}} → isSet (GroupHom G H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set H) λ _ → isProp→isSet (isPropIsGroupHom G H)) where open Group equiv : (Σ[ g ∈ (Carrier G → Carrier H) ] (isGroupHom G H g)) ≃ GroupHom G H equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ (grouphom g m) → g , m) (λ _ → refl) λ _ → refl) -- Morphism composition isGroupHomComp : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → (f : GroupHom F G) → (g : GroupHom G H) → isGroupHom F H (GroupHom.fun g ∘ GroupHom.fun f) isGroupHomComp (grouphom f morph-f) (grouphom g morph-g) x y = cong g (morph-f _ _) ∙ morph-g _ _ compGroupHom : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupHom F G → GroupHom G H → GroupHom F H compGroupHom {F = F} {G = G} {H = H} f g = grouphom _ (isGroupHomComp f g) compGroupEquiv : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupEquiv F G → GroupEquiv G H → GroupEquiv F H compGroupEquiv {F = F} {G = G} {H = H} f g = groupequiv (compEquiv f.eq g.eq) (isGroupHomComp f.hom g.hom) where module f = GroupEquiv f module g = GroupEquiv g idGroupEquiv : (G : Group {ℓ}) → GroupEquiv G G idGroupEquiv G = groupequiv (idEquiv (Group.Carrier G)) (λ _ _ → refl) -- Isomorphism inversion isGroupHomInv : {G : Group {ℓ}} {H : Group {ℓ'}} (f : GroupEquiv G H) → isGroupHom H G (invEq (GroupEquiv.eq f)) isGroupHomInv {G = G} {H = H} (groupequiv (f , eq) morph) h h' = isInj-f _ _ ( f (g (h ⋆² h') ) ≡⟨ retEq (f , eq) _ ⟩ h ⋆² h' ≡⟨ sym (λ i → retEq (f , eq) h i ⋆² retEq (f , eq) h' i) ⟩ f (g h) ⋆² f (g h') ≡⟨ sym (morph _ _) ⟩ f (g h ⋆¹ g h') ∎) where _⋆¹_ = Group._+_ G _⋆²_ = Group._+_ H g = invEq (f , eq) isEmbedding-f : isEmbedding f isEmbedding-f = isEquiv→isEmbedding eq isInj-f : (x y : ⟨ G ⟩) → f x ≡ f y → x ≡ y isInj-f x y = invEq (_ , isEquiv→isEmbedding eq x y) invGroupEquiv : {G : Group {ℓ}} {H : Group {ℓ'}} → GroupEquiv G H → GroupEquiv H G invGroupEquiv {G = G} {H = H} f = groupequiv (invEquiv (eq f)) (isGroupHomInv f) where open GroupEquiv groupHomEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupHom G H} → (GroupHom.fun f ≡ GroupHom.fun g) → f ≡ g groupHomEq {G = G} {H = H} {grouphom f fm} {grouphom g gm} p i = grouphom (p i) (p-hom i) where p-hom : PathP (λ i → isGroupHom G H (p i)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _) groupEquivEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupEquiv G H} → (GroupEquiv.eq f ≡ GroupEquiv.eq g) → f ≡ g groupEquivEq {G = G} {H = H} {groupequiv f fm} {groupequiv g gm} p i = groupequiv (p i) (p-hom i) where p-hom : PathP (λ i → isGroupHom G H (p i .fst)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure = SemigroupΣTheory.RawSemigroupStructure rawGroupUnivalentStr : UnivalentStr RawGroupStructure _ rawGroupUnivalentStr = SemigroupΣTheory.rawSemigroupUnivalentStr -- The neutral element and the inverse function will be derived from the -- axioms, instead of being defined in the RawGroupStructure in order -- to have that group equivalences are equivalences that preserves -- multiplication (so we don't have to show that they also preserve inversion -- and neutral element, although they will preserve them). GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G _·_ = IsSemigroup _·_ × (Σ[ e ∈ G ] ((x : G) → (x · e ≡ x) × (e · x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x · x' ≡ e) × (x' · x ≡ e))) GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure -- Structured equivalences for groups are those for monoids (but different axioms) GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr (BinaryFunEquivStr PointedEquivStr) GroupAxioms open MonoidTheory isPropGroupAxioms : (G : Type ℓ) → (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G _+_ = isPropΣ (isPropIsSemigroup _) γ where γ : (h : IsSemigroup _+_) → isProp (Σ[ e ∈ G ] ((x : G) → (x + e ≡ x) × (e + x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e))) γ h (e , P , _) (e' , Q , _) = Σ≡Prop (λ x → isPropΣ (isPropΠ λ _ → isProp× (isSetG _ _) (isSetG _ _)) (β x)) (sym (fst (Q e)) ∙ snd (P e')) where isSetG : isSet G isSetG = IsSemigroup.is-set h β : (e : G) → ((x : G) → (x + e ≡ x) × (e + x ≡ x)) → isProp ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e)) β e He = isPropΠ λ { x (x' , _ , P) (x'' , Q , _) → Σ≡Prop (λ _ → isProp× (isSetG _ _) (isSetG _ _)) (inv-lemma ℳ x x' x'' P Q) } where ℳ : Monoid ℳ = makeMonoid e _+_ isSetG (IsSemigroup.assoc h) (λ x → He x .fst) (λ x → He x .snd) Group→GroupΣ : Group → GroupΣ Group→GroupΣ (group _ _ _ -_ isGroup) = _ , _ , IsMonoid.isSemigroup (IsGroup.isMonoid isGroup) , _ , IsMonoid.identity (IsGroup.isMonoid isGroup) , λ x → (- x) , IsGroup.inverse isGroup x GroupΣ→Group : GroupΣ → Group GroupΣ→Group (_ , _ , SG , _ , H0g , w ) = group _ _ _ (λ x → w x .fst) (isgroup (ismonoid SG H0g) λ x → w x .snd) GroupIsoGroupΣ : Iso Group GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) (λ _ → refl) groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath (groupequiv e h) = (e , h) inv GroupIsoΣPath (e , h) = groupequiv e h rightInv GroupIsoΣPath _ = refl leftInv GroupIsoΣPath _ = refl GroupPath : (G H : Group) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ isoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ -- Extract the characterization of equality of groups GroupPath : (G H : Group {ℓ}) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath uaGroup : {G H : Group {ℓ}} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) carac-uaGroup : {G H : Group {ℓ}} (f : GroupEquiv G H) → cong Group.Carrier (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup (groupequiv f m) = (refl ∙∙ ua f ∙∙ refl) ≡⟨ sym (rUnit (ua f)) ⟩ ua f ∎ -- Group-ua functoriality open Group Group≡ : (G H : Group {ℓ}) → ( Σ[ p ∈ Carrier G ≡ Carrier H ] Σ[ q ∈ PathP (λ i → p i) (0g G) (0g H) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_+_ G) (_+_ H) ] Σ[ s ∈ PathP (λ i → p i → p i) (-_ G) (-_ H) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup G) (isGroup H)) ≃ (G ≡ H) Group≡ G H = isoToEquiv (iso (λ (p , q , r , s , t) i → group (p i) (q i) (r i) (s i) (t i)) (λ p → cong Carrier p , cong 0g p , cong _+_ p , cong -_ p , cong isGroup p) (λ _ → refl) (λ _ → refl)) caracGroup≡ : {G H : Group {ℓ}} (p q : G ≡ H) → cong Group.Carrier p ≡ cong Group.Carrier q → p ≡ q caracGroup≡ {G = G} {H = H} p q t = cong (fst (Group≡ G H)) (Σ≡Prop (λ t → isPropΣ (isOfHLevelPathP' 1 (is-set H) _ _) λ t₁ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set H) _ _) λ t₂ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set H) _ _) λ t₃ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) t) uaGroupId : (G : Group {ℓ}) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group {ℓ}} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong Carrier (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡⟨ cong (_∙ ua (eq g)) (sym (carac-uaGroup f)) ⟩ cong Carrier (uaGroup f) ∙ ua (eq g) ≡⟨ cong (cong Carrier (uaGroup f) ∙_) (sym (carac-uaGroup g)) ⟩ cong Carrier (uaGroup f) ∙ cong Carrier (uaGroup g) ≡⟨ sym (cong-∙ Carrier (uaGroup f) (uaGroup g)) ⟩ cong Carrier (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
{ "alphanum_fraction": 0.6176232002, "avg_line_length": 41.7881355932, "ext": "agda", "hexsha": "9b575da4fe78f41c8221dd59dad84374a55f0393", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Group/MorphismProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Group/MorphismProperties.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Group/MorphismProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3870, "size": 9862 }
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Inference.Prenexer(x : X) where import OutsideIn.Constraints as C import OutsideIn.Expressions as E open E(x) open C(x) open X(x) private module PlusN-m n = Monad (PlusN-is-monad {n}) module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n})) module Constraint-f {s} = Functor (constraint-is-functor {s}) module QC-f = Functor (qconstraint-is-functor) data _prenex:_,_ {n : Set} : Constraint n Extended → (m : ℕ) → Constraint (n ⨁ m) Flat → Set where PN-QC : ∀ {x} → QC x prenex: 0 , QC x PN-∧ : ∀ {a b}{na nb}{a′}{b′} → a prenex: na , a′ → b prenex: nb , b′ → (a ∧′ b) prenex: (na + nb) , (Constraint-f.map ((subst id (sym (PlusN-collect {n}{na}{nb}))) ∘ PlusN-m.unit nb) a′ ∧′ Constraint-f.map ((subst id (sym (PlusN-collect {n}{na}{nb}))) ∘ PlusN-f.map nb (PlusN-m.unit na)) b′) PN-Imp : ∀ {q}{c}{m}{c′} → c prenex: m , c′ → Imp′ q c prenex: 0 , Imp (∃ m · q ⊃ c′) PN-Ext : ∀ {x}{n}{x′} → x prenex: n , x′ → (Ⅎ_ x) prenex: suc n , x′ prenex : ∀ {n} → (C : Constraint n Extended) → ∃ (λ m → ∃ (λ C′ → C prenex: m , C′)) prenex (QC x) = _ , _ , PN-QC prenex {n} (a ∧′ b) with prenex a | prenex b ... | na , a′ , p₁ | nb , b′ , p₂ = _ , _ , PN-∧ p₁ p₂ prenex {n} (Imp′ q c) with prenex c ... | m , c′ , p = _ , _ , PN-Imp p prenex (Ⅎ_ x) with prenex x ... | n , x′ , p = _ , _ , PN-Ext p
{ "alphanum_fraction": 0.4975124378, "avg_line_length": 47.2941176471, "ext": "agda", "hexsha": "15bb897fd8ce04b6e0af50137888a6a51b1f2a3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Inference/Prenexer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Inference/Prenexer.agda", "max_line_length": 151, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Inference/Prenexer.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 598, "size": 1608 }
module Class.Monad.Except where open import Class.Monad open import Class.Monoid open import Data.Maybe open import Level private variable a : Level A : Set a record MonadExcept (M : Set a → Set a) {{_ : Monad M}} (E : Set a) : Set (suc a) where field throwError : E → M A catchError : M A → (E → M A) → M A appendIfError : {{_ : Monoid E}} → M A → E → M A appendIfError x s = catchError x λ e → throwError (e + s) maybeToError : Maybe A → E → M A maybeToError (just x) e = return x maybeToError nothing e = throwError e tryElse : M A → M A → M A tryElse x y = catchError x λ _ → y open MonadExcept {{...}} public
{ "alphanum_fraction": 0.6305343511, "avg_line_length": 22.5862068966, "ext": "agda", "hexsha": "c420d557ded8b5a7f5f7348ea633977a7ce8b11b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/Monad/Except.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/Monad/Except.agda", "max_line_length": 86, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/Monad/Except.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 212, "size": 655 }
-- Andreas, 2016-10-11, AIM XXIV, issue #2250 {-# OPTIONS --injective-type-constructors #-} open import Common.Prelude open import Common.Equality abstract f : Bool → Bool f x = true same : f true ≡ f false same = refl -- f should not be treated as injective here, -- even though f true and f false do not reduce. not-same : f true ≡ f false → ⊥ not-same () -- should be yellow absurd : ⊥ absurd = not-same same
{ "alphanum_fraction": 0.6721311475, "avg_line_length": 18.5652173913, "ext": "agda", "hexsha": "107eb0dd06a5b414c239cdf5538780011e1db0ce", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2250.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2250.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2250.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 132, "size": 427 }
open import Prelude renaming (_++_ to _++-List_) open import Data.Maybe using (Maybe; just; nothing) open import Data.Nat using (ℕ; suc; zero; _+_; _≤_; z≤n; s≤s; _≤?_) renaming (decTotalOrder to decTotalOrder-ℕ) open import Data.Nat.Properties as ℕ-Props open import Data.Nat.Properties.Simple using (+-suc; +-comm) open import Data.Fin using (Fin; toℕ; fromℕ≤) renaming (inject+ to finject; raise to fraise; zero to fzero; suc to fsuc) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; cong; sym) open import Algebra using (module CommutativeSemiring; module DistributiveLattice) open import Relation.Binary using (module DecTotalOrder) open import RW.Language.RTerm open import RW.Language.RTermUtils using (typeArity; typeResult) -- Utility Module to handle (RTerm (Fin n)), or, -- finite-scope terms. -- -- Adapted from "Auto In Agda", by Pepijn Kokke and Wouter Swierstra. -- https://github.com/pepijnkokke/AutoInAgda -- module RW.Language.FinTerm where ----------------------------------------- -- Unification/Instantiation -- by Structural Recursion -- -- We have to bypass some problems with the termination checker; -- The trick is to represent variables using a finite datatype, -- this way we can prove that the index of the variables to be -- replaced decreases. -- -- To work with FinTerms, as we'll call them: FinTerm : ℕ → Set FinTerm = RTerm ∘ Fin -- We're going to need a lot of machinery to inject and raise -- FinTerms in loads of different contexts. -- -- The beginning of this module is reserved for that boilerplate. -- -------------------------------------------- -- Fin Boilerplate record Inject (T : ℕ → Set) : Set where constructor inj field inject : ∀ {m} n → T m → T (m + n) inject≤ : ∀ {m n} → m ≤ n → T m → T n inject≤ {m} {n} p t = P.subst T (sym (Δ-correct p)) (inject (Δ p) t) open Inject {{...}} using (inject; inject≤) record Raise (T : ℕ → Set) : Set where constructor rai field raise : ∀ {m} n → T m → T (n + m) raise≤ : ∀ {m n} → m ≤ n → T m → T n raise≤ {m} {n} p t = P.subst T (sym (P.trans (Δ-correct p) (+-comm m (Δ p)))) (raise (Δ p) t) open Raise {{...}} using (raise; raise≤) instance InjectFin : Inject Fin InjectFin = inj finject RaiseFin : Raise Fin RaiseFin = rai fraise InjectRTerm : Inject FinTerm InjectRTerm = inj (λ n → replace-A (ovar ∘ inject n)) RaiseRTerm : Raise FinTerm RaiseRTerm = rai (λ n → replace-A (ovar ∘ raise n)) InjectRTerms : Inject (List ∘ FinTerm) InjectRTerms = inj (λ n → map (inject n)) RaiseRTerms : Raise (List ∘ FinTerm) RaiseRTerms = rai (λ n → map (raise n)) open DistributiveLattice ℕ-Props.distributiveLattice using (_∧_; ∧-comm) public open DecTotalOrder decTotalOrder-ℕ using (total) public private supremumLemma : ∀{m n} → m ≤ n → m ∧ n ≡ n supremumLemma z≤n = refl supremumLemma (s≤s p) = cong suc (supremumLemma p) -- Match indexes of injectable types. match : ∀{m n} {I J} ⦃ i : Inject I ⦄ ⦃ j : Inject J ⦄ → I m → J n → I (m ∧ n) × J (m ∧ n) match {m} {n} i j with total m n ...| i1 m≤n rewrite supremumLemma m≤n = inject≤ m≤n i , j ...| i2 n≤m rewrite ∧-comm m n | supremumLemma n≤m = i , inject≤ n≤m j -- Conversion of regular terms to finite terms. mutual R2FinTerm : RTerm ℕ → ∃ FinTerm R2FinTerm (ovar x) = suc x , ovar (fromℕ x) R2FinTerm (ivar n) = 0 , ivar n R2FinTerm (rlit l) = 0 , rlit l R2FinTerm (rlam t) with R2FinTerm t ...| (n , t') = n , rlam t' R2FinTerm (rapp n ts) with R2FinTerm* ts ...| (k , l) = k , rapp n l R2FinTerm* : List (RTerm ℕ) → ∃ (List ∘ FinTerm) R2FinTerm* [] = 0 , [] R2FinTerm* (x ∷ xs) with R2FinTerm x | R2FinTerm* xs ...| kx , x' | kxs , xs' with match x' xs' ...| rx , rxs = kx ∧ kxs , rx ∷ rxs Fin2RTerm : ∀{n} → FinTerm n → RTerm ℕ Fin2RTerm = replace-A (ovar ∘ toℕ) R2FinType : RTerm ℕ → ∃ FinTerm R2FinType t with typeArity t ...| ar = ar , replace-A fix-ovars t where fix-ovars : ℕ → FinTerm ar fix-ovars fn with suc fn ≤? ar ...| yes prf = ovar (fromℕ≤ prf) ...| no _ = ivar fn Fin2RTerm⊥ : FinTerm zero → RTerm ⊥ Fin2RTerm⊥ = replace-A (λ ())
{ "alphanum_fraction": 0.6078071183, "avg_line_length": 32.9924242424, "ext": "agda", "hexsha": "f54b64fa4255f7c1e9f54f6ce5d0f565956a68ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Language/FinTerm.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Language/FinTerm.agda", "max_line_length": 120, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Language/FinTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 1501, "size": 4355 }
{-# OPTIONS --without-K #-} open import M-types.Base.Core open import M-types.Base.Sum open import M-types.Base.Prod open import M-types.Base.Eq open import M-types.Base.Equi open import M-types.Base.Axiom module M-types.Base.Rel where SpanRel : Ty ℓ → Ty (ℓ-suc ℓ) SpanRel {ℓ} X = ∑[ ty ∈ Ty ℓ ] (ty → X) × (ty → X) ρ₀ : {X : Ty ℓ₀} {Y Z : X → Ty ℓ₁} → ∏[ s ∈ ∑[ x ∈ X ] (Y x × Z x) ] Y (pr₀ s) ρ₀ = pr₀ ∘ pr₁ ρ₁ : {X : Ty ℓ₀} {Y Z : X → Ty ℓ₁} → ∏[ s ∈ ∑[ x ∈ X ] (Y x × Z x) ] Z (pr₀ s) ρ₁ = pr₁ ∘ pr₁ SpanRel-syntax : {X : Ty ℓ} → ∏[ ∼ ∈ SpanRel X ] ∏[ x₀ ∈ X ] ∏[ x₁ ∈ X ] Ty ℓ SpanRel-syntax ∼ x₀ x₁ = ∑[ s ∈ (ty ∼) ] ((ρ₀ ∼ s ≡ x₀) × (ρ₁ ∼ s ≡ x₁)) syntax SpanRel-syntax ∼ x₀ x₁ = x₀ ⟨ ∼ ⟩ x₁ ≡-spanRel : {X : Ty ℓ} → SpanRel X ≡-spanRel {_} {X} = (X , id , id) SpanRelMor : {X : Ty ℓ} → SpanRel X → SpanRel X → Ty ℓ SpanRelMor {_} {X} ∼ ≈ = ∑[ fun ∈ (ty ∼ → ty ≈) ] (ρ₀ ≈ ∘ fun ≡ ρ₀ ∼) × (ρ₁ ≈ ∘ fun ≡ ρ₁ ∼) com₀ : {X : Ty ℓ₀} {Y Z : X → Ty ℓ₁} → ∏[ s ∈ ∑[ x ∈ X ] (Y x × Z x) ] Y (pr₀ s) com₀ = pr₀ ∘ pr₁ com₁ : {X : Ty ℓ₀} {Y Z : X → Ty ℓ₁} → ∏[ s ∈ ∑[ x ∈ X ] (Y x × Z x) ] Z (pr₀ s) com₁ = pr₁ ∘ pr₁ id-spanRel : {X : Ty ℓ} {∼ : SpanRel X} → SpanRelMor ∼ ∼ id-spanRel {_} {X} {∼} = (id , refl , refl) infixr 9 _∘-spanRel_ _∘-spanRel_ : {X : Ty ℓ} {∼₀ ∼₁ ∼₂ : SpanRel X} → SpanRelMor ∼₁ ∼₂ → SpanRelMor ∼₀ ∼₁ → SpanRelMor ∼₀ ∼₂ g ∘-spanRel f = ( fun g ∘ fun f , ap (λ k → k ∘ fun f) (com₀ g) · com₀ f , ap (λ k → k ∘ fun f) (com₁ g) · com₁ f ) DepRel : Ty ℓ → Ty (ℓ-suc ℓ) DepRel {ℓ} X = X → X → Ty ℓ DepRel-syntax : {X : Ty ℓ} → ∏[ ∼ ∈ DepRel X ] ∏[ x₀ ∈ X ] ∏[ x₁ ∈ X ] Ty ℓ DepRel-syntax ∼ x₀ x₁ = ∼ x₀ x₁ syntax DepRel-syntax ∼ x₀ x₁ = x₀ [ ∼ ] x₁ ≡-depRel : {X : Ty ℓ} → DepRel X ≡-depRel = λ x₀ → λ x₁ → x₀ ≡ x₁ DepRelMor : {X : Ty ℓ} → DepRel X → DepRel X → Ty ℓ DepRelMor {_} {X} ∼ ≈ = ∏[ x₀ ∈ X ] ∏[ x₁ ∈ X ] (x₀ [ ∼ ] x₁ → x₀ [ ≈ ] x₁) id-depRel : {X : Ty ℓ} {∼ : DepRel X} → DepRelMor ∼ ∼ id-depRel {_} {X} {∼} = λ x₀ → λ x₁ → id infixr 9 _∘-depRel_ _∘-depRel_ : {X : Ty ℓ} {∼₀ ∼₁ ∼₂ : DepRel X} → DepRelMor ∼₁ ∼₂ → DepRelMor ∼₀ ∼₁ → DepRelMor ∼₀ ∼₂ g ∘-depRel f = λ x₀ → λ x₁ → g x₀ x₁ ∘ f x₀ x₁ SpanRel→DepRel : {X : Ty ℓ} → SpanRel X → DepRel X SpanRel→DepRel {_} {X} ∼ = λ x₀ → λ x₁ → x₀ ⟨ ∼ ⟩ x₁ DepRel→SpanRel : {X : Ty ℓ} → DepRel X → SpanRel X DepRel→SpanRel {_} {X} ∼ = ( (∑[ x₀ ∈ X ] ∑[ x₁ ∈ X ] x₀ [ ∼ ] x₁) , pr₀ , pr₀ ∘ pr₁ ) SpanRel→DepRel-pres : {X : Ty ℓ} → ∏[ ∼ ∈ SpanRel X ] ∏[ x₀ ∈ X ] ∏[ x₁ ∈ X ] (x₀ [ SpanRel→DepRel ∼ ] x₁) ≡ (x₀ ⟨ ∼ ⟩ x₁) SpanRel→DepRel-pres ∼ x₀ x₁ = refl DepRel→SpanRel-pres : {X : Ty ℓ} → ∏[ ∼ ∈ DepRel X ] ∏[ x₀ ∈ X ] ∏[ x₁ ∈ X ] (x₀ ⟨ DepRel→SpanRel ∼ ⟩ x₁) ≃ (x₀ [ ∼ ] x₁) DepRel→SpanRel-pres ∼ x₀ x₁ = ( (λ ((y₀ , y₁ , s) , p₀ , p₁) → tra (λ x → x [ ∼ ] x₁) p₀ (tra (λ y → y₀ [ ∼ ] y) p₁ s) ) , Qinv→IsEqui ( (λ s → ((x₀ , x₁ , s) , refl , refl)) , (λ {((x₀ , x₁ , s) , refl , refl) → refl}) , (λ s → refl) ) ) SpanRel→SpanRel-mor : {X : Ty ℓ} → ∏[ ∼ ∈ SpanRel X ] SpanRelMor ∼ (DepRel→SpanRel (SpanRel→DepRel ∼)) SpanRel→SpanRel-mor ∼ = ( (λ s → (ρ₀ ∼ s , ρ₁ ∼ s , (s , refl , refl))) , refl , refl ) DepRel→DepRel-mor : {X : Ty ℓ} → ∏[ ∼ ∈ DepRel X ] DepRelMor ∼ (SpanRel→DepRel (DepRel→SpanRel ∼)) DepRel→DepRel-mor ∼ = λ x₀ → λ x₁ → λ s → ((x₀ , x₁ , s) , refl , refl) ≡-SpanRel→DepRel-mor : {X : Ty ℓ} → DepRelMor {ℓ} {X} (SpanRel→DepRel ≡-spanRel) ≡-depRel ≡-SpanRel→DepRel-mor = λ x₀ → λ x₁ → λ(s , p₀ , p₁) → p₀ ⁻¹ · p₁ ≡-DepRel→SpanRel-mor : {X : Ty ℓ} → SpanRelMor {ℓ} {X} (DepRel→SpanRel ≡-depRel) ≡-spanRel ≡-DepRel→SpanRel-mor = ( (λ (x₀ , x₁ , p) → x₀) , refl , funext (λ (x₀ , x₁ , p) → p) ) SpanRelMor→DepRelMor : {X : Ty ℓ} {∼ ≈ : SpanRel X} → SpanRelMor ∼ ≈ → DepRelMor (SpanRel→DepRel ∼) (SpanRel→DepRel ≈) SpanRelMor→DepRelMor (fun , refl , refl) x₀ x₁ (s , refl , refl) = ( fun s , refl , refl ) DepRelMor→SpanRelMor : {X : Ty ℓ} {∼ ≈ : DepRel X} → DepRelMor ∼ ≈ → SpanRelMor (DepRel→SpanRel ∼) (DepRel→SpanRel ≈) DepRelMor→SpanRelMor f = ( (λ (x₀ , x₁ , s) → (x₀ , x₁ , f x₀ x₁ s)) , refl {_} {_} {pr₀} , refl )
{ "alphanum_fraction": 0.4202224469, "avg_line_length": 28.75, "ext": "agda", "hexsha": "565ea93906bd3093a6151ffec669d74125dd37bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Rel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Rel.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Rel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2225, "size": 4945 }
module Data.Tree.Base where open import Class.Monoid open import Class.Show open import Data.List using (List; sum; map; replicate; intersperse) open import Data.Nat using (ℕ; suc) open import Data.Nat.Instance open import Data.String using (String) open import Data.String.Instance open import Function data Tree (A : Set) : Set where Node : A -> List (Tree A) -> Tree A {-# TERMINATING #-} lengthTree : ∀ {A} -> Tree A -> ℕ lengthTree (Node x x₁) = 1 + sum (map lengthTree x₁) -- show tree that is compatible with org mode {-# TERMINATING #-} showTreeOrg : ∀ {A} {{_ : Show A}} -> Tree A -> String showTreeOrg = helper 1 where helper : ∀ {A} {{_ : Show A}} -> ℕ -> Tree A -> String helper level (Node x x₁) = (concat $ replicate level "*") + " " + show x + "\n" + (concat $ intersperse "\n" $ map (helper (suc level)) x₁) + "\n"
{ "alphanum_fraction": 0.6426076834, "avg_line_length": 30.6785714286, "ext": "agda", "hexsha": "a23ea398237e887cf4e0037c7b1a6c3cebeb342d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Tree/Base.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Tree/Base.agda", "max_line_length": 70, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Tree/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 253, "size": 859 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary where open import Dodo.Binary.Acyclic public open import Dodo.Binary.Composition public open import Dodo.Binary.Cycle public open import Dodo.Binary.Dec public open import Dodo.Binary.Disjoint public open import Dodo.Binary.Domain public open import Dodo.Binary.Empty public open import Dodo.Binary.Equality public open import Dodo.Binary.Filter public open import Dodo.Binary.Flip public open import Dodo.Binary.Functional public open import Dodo.Binary.Identity public open import Dodo.Binary.Immediate public open import Dodo.Binary.Intersection public open import Dodo.Binary.Irreflexive public open import Dodo.Binary.Maximal public open import Dodo.Binary.Precedes public open import Dodo.Binary.Product public open import Dodo.Binary.SplittableOrder public open import Dodo.Binary.Subtraction public open import Dodo.Binary.Transitive public open import Dodo.Binary.Trichotomous public open import Dodo.Binary.Union public open ⊆₂-Reasoning public open ⇔₂-Reasoning public
{ "alphanum_fraction": 0.8351012536, "avg_line_length": 33.4516129032, "ext": "agda", "hexsha": "504ed316163ce253fc1e91e88265308a97e7d8b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 242, "size": 1037 }