Search is not available for this dataset
text
string | meta
dict |
---|---|
module io where
open import bool
open import char
open import list
open import string
open import unit
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
postulate
IO : Set → Set
{-# COMPILED_TYPE IO IO #-}
{-# BUILTIN IO IO #-}
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixl 1 _>>=_
infixl 1 _>>_
----------------------------------------------------------------------
-- postulated operations
----------------------------------------------------------------------
postulate
return : ∀ {A : Set} → A → IO A
_>>=_ : ∀ {A B : Set} → IO A → (A → IO B) → IO B
{-# COMPILED return (\ _ -> return ) #-}
{-# COMPILED _>>=_ (\ _ _ -> (>>=)) #-}
postulate
putStr : string -> IO ⊤
-- Reads a file, which is assumed to be finite.
readFiniteFile : string → IO string
writeFile : string → string → IO ⊤
private
data simple-list (A : Set) : Set where
nil : simple-list A
cons : A → simple-list A → simple-list A
simple-list-to-𝕃 : ∀ {A : Set} → simple-list A → 𝕃 A
simple-list-to-𝕃 nil = []
simple-list-to-𝕃 (cons x xs) = x :: (simple-list-to-𝕃 xs)
{-# COMPILED_DATA simple-list ([]) [] (:) #-}
private
postulate
privGetArgs : IO (simple-list string)
privDoesFileExist : string → IO 𝔹
privTakeDirectory : string → string
privTakeFileName : string → string
privCombineFileNames : string → string → string
{-# COMPILED putStr putStr #-}
{-# COMPILED readFiniteFile readFile #-}
{-# COMPILED writeFile writeFile #-}
{-# IMPORT System.Environment #-}
{-# COMPILED privGetArgs System.Environment.getArgs #-}
{-# IMPORT System.Directory #-}
{-# COMPILED privDoesFileExist System.Directory.doesFileExist #-}
{-# IMPORT System.FilePath #-}
{-# COMPILED privTakeDirectory System.FilePath.takeDirectory #-}
{-# COMPILED privTakeFileName System.FilePath.takeFileName #-}
{-# COMPILED privCombineFileNames System.FilePath.combine #-}
getArgs : IO (𝕃 string)
getArgs = privGetArgs >>= (λ args → return (simple-list-to-𝕃 args))
doesFileExist : string → IO 𝔹
doesFileExist = privDoesFileExist
takeDirectory : string → string
takeDirectory = privTakeDirectory
takeFileName : string → string
takeFileName = privTakeFileName
combineFileNames : string → string → string
combineFileNames = privCombineFileNames
----------------------------------------------------------------------
-- defined operations
----------------------------------------------------------------------
_>>_ : ∀ {A B : Set} → IO A → IO B → IO B
x >> y = x >>= (λ q -> y)
base-filenameh : 𝕃 char → 𝕃 char
base-filenameh [] = []
base-filenameh ('.' :: cs) = cs
base-filenameh (_ :: cs) = base-filenameh cs
-- return the part of the string up to the last (rightmost) period ('.'); so for "foo.txt" return "foo"
base-filename : string → string
base-filename s = 𝕃char-to-string (reverse (base-filenameh (reverse (string-to-𝕃char s))))
|
{
"alphanum_fraction": 0.5369537275,
"avg_line_length": 28.8148148148,
"ext": "agda",
"hexsha": "491f67819022b2679455b62e0f77b56be896883e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "io.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "io.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "io.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 744,
"size": 3112
}
|
import Relation.Binary.EqReasoning as EqReasoning
open import SemiNearRingRecords
module OrderLemmas (snro : SemiNearRing) where
open SemiNearRing snro -- public
open import CommAssocLemmas s _≃s_ _+s_ zers isCommMon
using (assoc; comm)
renaming (SA to Ss)
open EqReasoning Ss
monoPlusLeft : ∀ {a} {b} {c} → a ≤s b →
(a +s c) ≤s (b +s c)
monoPlusLeft {a} {b} {c} a≤b =
begin
(a +s c) +s (b +s c)
≈⟨ assoc _ _ _ ⟩
a +s (c +s (b +s c))
≈⟨ refls <+> comm _ _ ⟩
a +s ((b +s c) +s c)
≈⟨ refls <+> assoc _ _ _ ⟩
a +s (b +s (c +s c))
≈⟨ sym (assoc _ _ _) ⟩
(a +s b) +s (c +s c)
≈⟨ a≤b <+> idem _ ⟩
b +s c
∎
monoTimesLeft : ∀ {a} {b} {c} → a ≤s b →
(a *s c) ≤s (b *s c)
monoTimesLeft {a} {b} {c} a≤b =
begin
(a *s c) +s (b *s c)
≈⟨ sym (distr _ _ _) ⟩
(a +s b) *s c
≈⟨ a≤b <*> refls ⟩ -- a≤=b means a+b==b
b *s c
∎
infixl 6 _[+]_
infixl 7 _[*]_
_[+]_ : ∀ {a} {a'} {b} {b'} -> a ≤s a' -> b ≤s b' ->
(a +s b) ≤s (a' +s b')
_[+]_ {a} {a'} {b} {b'} pa pb =
begin
(a +s b) +s (a' +s b')
≈⟨ assoc _ _ _ ⟩
a +s (b +s (a' +s b'))
≈⟨ refls <+> comm _ _ ⟩
a +s ((a' +s b') +s b)
≈⟨ refls <+> assoc _ _ _ ⟩
a +s (a' +s (b' +s b))
≈⟨ sym (assoc _ _ _) ⟩
(a +s a') +s (b' +s b)
≈⟨ pa <+> comm _ _ ⟩
a' +s (b +s b')
≈⟨ refls <+> pb ⟩
a' +s b'
∎
_[*]_ : ∀ {a} {a'} {b} {b'} -> a ≤s a' -> b ≤s b' ->
(a *s b) ≤s (a' *s b')
_[*]_ {a} {a'} {b} {b'} pa pb =
begin
(a *s b) +s (a' *s b')
≈⟨ refls <+> (sym pa <*> refls) ⟩
a *s b +s (a +s a') *s b'
≈⟨ refls <+> distr _ _ _ ⟩
a *s b +s (a *s b' +s a' *s b')
≈⟨ sym (assoc _ _ _) ⟩
(a *s b +s a *s b') +s a' *s b'
≈⟨ sym (distl _ _ _) <+> (refls <*> sym pb) ⟩
a *s (b +s b') +s a' *s (b +s b')
≈⟨ sym (distr _ _ _) ⟩
(a +s a') *s (b +s b')
≈⟨ pa <*> pb ⟩
a' *s b'
∎
≤s-trans : ∀ {a b c} → a ≤s b → b ≤s c → a ≤s c
≤s-trans {a} {b} {c} p q =
begin
a +s c
≈⟨ refls <+> sym q ⟩
a +s (b +s c)
≈⟨ sym (assoc _ _ _) ⟩
(a +s b) +s c
≈⟨ p <+> refls ⟩
b +s c
≈⟨ q ⟩
c
∎
≃sTo≤s : ∀ {a b} → a ≃s b → a ≤s b
≃sTo≤s {a} {b} a=b =
begin
a +s b
≈⟨ a=b <+> refls ⟩
b +s b
≈⟨ idem _ ⟩
b
∎
|
{
"alphanum_fraction": 0.3768907563,
"avg_line_length": 22.8846153846,
"ext": "agda",
"hexsha": "1410f8e08e021eb6fa3df31a628b8d0f1e080f0d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-29T04:53:48.000Z",
"max_forks_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DSLsofMath/ValiantAgda",
"max_forks_repo_path": "code/OrderLemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DSLsofMath/ValiantAgda",
"max_issues_repo_path": "code/OrderLemmas.agda",
"max_line_length": 54,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DSLsofMath/ValiantAgda",
"max_stars_repo_path": "code/OrderLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-15T03:04:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-23T00:41:14.000Z",
"num_tokens": 1267,
"size": 2380
}
|
-- The ATP roles must to have at least an argument
-- This error is detected by Syntax.Translation.ConcreteToAbstract.
module ATPMissingArgument where
{-# ATP axiom #-}
|
{
"alphanum_fraction": 0.761627907,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "2aa36721254121bcf09e2c56330d9b9068cfa85b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPMissingArgument.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPMissingArgument.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPMissingArgument.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 36,
"size": 172
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Inductive pointwise lifting of relations to vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Relation.Binary.Pointwise.Inductive where
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Product using (_×_; _,_; uncurry; <_,_>)
open import Data.Vec.Base as Vec hiding ([_]; head; tail; map; lookup; uncons)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Level using (Level; _⊔_)
open import Function.Base using (_∘_)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
open import Relation.Nullary.Decidable using (map′)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary using (Pred)
private
variable
a b c d ℓ ℓ₁ ℓ₂ : Level
A : Set a
B : Set b
C : Set c
D : Set d
------------------------------------------------------------------------
-- Definition
infixr 5 _∷_
data Pointwise {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) :
∀ {m n} (xs : Vec A m) (ys : Vec B n) → Set (a ⊔ b ⊔ ℓ)
where
[] : Pointwise _∼_ [] []
_∷_ : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n}
(x∼y : x ∼ y) (xs∼ys : Pointwise _∼_ xs ys) →
Pointwise _∼_ (x ∷ xs) (y ∷ ys)
------------------------------------------------------------------------
-- Properties
length-equal : ∀ {m n} {_∼_ : REL A B ℓ} {xs : Vec A m} {ys : Vec B n} →
Pointwise _∼_ xs ys → m ≡ n
length-equal [] = P.refl
length-equal (_ ∷ xs∼ys) = P.cong suc (length-equal xs∼ys)
------------------------------------------------------------------------
-- Operations
module _ {_∼_ : REL A B ℓ} where
head : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} →
Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y
head (x∼y ∷ xs∼ys) = x∼y
tail : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} →
Pointwise _∼_ (x ∷ xs) (y ∷ ys) → Pointwise _∼_ xs ys
tail (x∼y ∷ xs∼ys) = xs∼ys
uncons : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} →
Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y × Pointwise _∼_ xs ys
uncons = < head , tail >
lookup : ∀ {n} {xs : Vec A n} {ys : Vec B n} → Pointwise _∼_ xs ys →
∀ i → (Vec.lookup xs i) ∼ (Vec.lookup ys i)
lookup (x∼y ∷ _) zero = x∼y
lookup (_ ∷ xs∼ys) (suc i) = lookup xs∼ys i
map : ∀ {ℓ₂} {_≈_ : REL A B ℓ₂} →
_≈_ ⇒ _∼_ → ∀ {m n} → Pointwise _≈_ ⇒ Pointwise _∼_ {m} {n}
map ∼₁⇒∼₂ [] = []
map ∼₁⇒∼₂ (x∼y ∷ xs∼ys) = ∼₁⇒∼₂ x∼y ∷ map ∼₁⇒∼₂ xs∼ys
------------------------------------------------------------------------
-- Relational properties
refl : ∀ {_∼_ : Rel A ℓ} {n} →
Reflexive _∼_ → Reflexive (Pointwise _∼_ {n})
refl ∼-refl {[]} = []
refl ∼-refl {x ∷ xs} = ∼-refl ∷ refl ∼-refl
sym : ∀ {P : REL A B ℓ} {Q : REL B A ℓ} {m n} →
Sym P Q → Sym (Pointwise P) (Pointwise Q {m} {n})
sym sm [] = []
sym sm (x∼y ∷ xs∼ys) = sm x∼y ∷ sym sm xs∼ys
trans : ∀ {P : REL A B ℓ} {Q : REL B C ℓ} {R : REL A C ℓ} {m n o} →
Trans P Q R →
Trans (Pointwise P {m}) (Pointwise Q {n} {o}) (Pointwise R)
trans trns [] [] = []
trans trns (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) =
trns x∼y y∼z ∷ trans trns xs∼ys ys∼zs
decidable : ∀ {_∼_ : REL A B ℓ} →
Decidable _∼_ → ∀ {m n} → Decidable (Pointwise _∼_ {m} {n})
decidable dec [] [] = yes []
decidable dec [] (y ∷ ys) = no λ()
decidable dec (x ∷ xs) [] = no λ()
decidable dec (x ∷ xs) (y ∷ ys) =
map′ (uncurry _∷_) uncons (dec x y ×-dec decidable dec xs ys)
------------------------------------------------------------------------
-- Structures
module _ {_∼_ : Rel A ℓ} where
isEquivalence : IsEquivalence _∼_ → ∀ n →
IsEquivalence (Pointwise _∼_ {n})
isEquivalence equiv n = record
{ refl = refl Eq.refl
; sym = sym Eq.sym
; trans = trans Eq.trans
} where module Eq = IsEquivalence equiv
isDecEquivalence : IsDecEquivalence _∼_ → ∀ n →
IsDecEquivalence (Pointwise _∼_ {n})
isDecEquivalence decEquiv n = record
{ isEquivalence = isEquivalence Eq.isEquivalence n
; _≟_ = decidable Eq._≟_
} where module Eq = IsDecEquivalence decEquiv
------------------------------------------------------------------------
-- Bundles
setoid : Setoid a ℓ → ℕ → Setoid a (a ⊔ ℓ)
setoid S n = record
{ isEquivalence = isEquivalence Eq.isEquivalence n
} where module Eq = Setoid S
decSetoid : DecSetoid a ℓ → ℕ → DecSetoid a (a ⊔ ℓ)
decSetoid S n = record
{ isDecEquivalence = isDecEquivalence Eq.isDecEquivalence n
} where module Eq = DecSetoid S
------------------------------------------------------------------------
-- map
module _ {_∼₁_ : REL A B ℓ₁} {_∼₂_ : REL C D ℓ₂}
{f : A → C} {g : B → D}
where
map⁺ : (∀ {x y} → x ∼₁ y → f x ∼₂ g y) →
∀ {m n xs ys} → Pointwise _∼₁_ {m} {n} xs ys →
Pointwise _∼₂_ (Vec.map f xs) (Vec.map g ys)
map⁺ ∼₁⇒∼₂ [] = []
map⁺ ∼₁⇒∼₂ (x∼y ∷ xs∼ys) = ∼₁⇒∼₂ x∼y ∷ map⁺ ∼₁⇒∼₂ xs∼ys
------------------------------------------------------------------------
-- _++_
module _ {_∼_ : REL A B ℓ} where
++⁺ : ∀ {m n p q}
{ws : Vec A m} {xs : Vec B p} {ys : Vec A n} {zs : Vec B q} →
Pointwise _∼_ ws xs → Pointwise _∼_ ys zs →
Pointwise _∼_ (ws ++ ys) (xs ++ zs)
++⁺ [] ys∼zs = ys∼zs
++⁺ (w∼x ∷ ws∼xs) ys∼zs = w∼x ∷ (++⁺ ws∼xs ys∼zs)
++ˡ⁻ : ∀ {m n}
(ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} →
Pointwise _∼_ (ws ++ ys) (xs ++ zs) → Pointwise _∼_ ws xs
++ˡ⁻ [] [] _ = []
++ˡ⁻ (w ∷ ws) (x ∷ xs) (w∼x ∷ ps) = w∼x ∷ ++ˡ⁻ ws xs ps
++ʳ⁻ : ∀ {m n}
(ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} →
Pointwise _∼_ (ws ++ ys) (xs ++ zs) → Pointwise _∼_ ys zs
++ʳ⁻ [] [] ys∼zs = ys∼zs
++ʳ⁻ (w ∷ ws) (x ∷ xs) (_ ∷ ps) = ++ʳ⁻ ws xs ps
++⁻ : ∀ {m n}
(ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} →
Pointwise _∼_ (ws ++ ys) (xs ++ zs) →
Pointwise _∼_ ws xs × Pointwise _∼_ ys zs
++⁻ ws xs ps = ++ˡ⁻ ws xs ps , ++ʳ⁻ ws xs ps
------------------------------------------------------------------------
-- concat
module _ {_∼_ : REL A B ℓ} where
concat⁺ : ∀ {m n p q}
{xss : Vec (Vec A m) n} {yss : Vec (Vec B p) q} →
Pointwise (Pointwise _∼_) xss yss →
Pointwise _∼_ (concat xss) (concat yss)
concat⁺ [] = []
concat⁺ (xs∼ys ∷ ps) = ++⁺ xs∼ys (concat⁺ ps)
concat⁻ : ∀ {m n} (xss : Vec (Vec A m) n) (yss : Vec (Vec B m) n) →
Pointwise _∼_ (concat xss) (concat yss) →
Pointwise (Pointwise _∼_) xss yss
concat⁻ [] [] [] = []
concat⁻ (xs ∷ xss) (ys ∷ yss) ps =
++ˡ⁻ xs ys ps ∷ concat⁻ xss yss (++ʳ⁻ xs ys ps)
------------------------------------------------------------------------
-- tabulate
module _ {_∼_ : REL A B ℓ} where
tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → B} →
(∀ i → f i ∼ g i) →
Pointwise _∼_ (tabulate f) (tabulate g)
tabulate⁺ {zero} f∼g = []
tabulate⁺ {suc n} f∼g = f∼g zero ∷ tabulate⁺ (f∼g ∘ suc)
tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → B} →
Pointwise _∼_ (tabulate f) (tabulate g) →
(∀ i → f i ∼ g i)
tabulate⁻ (f₀∼g₀ ∷ _) zero = f₀∼g₀
tabulate⁻ (_ ∷ f∼g) (suc i) = tabulate⁻ f∼g i
------------------------------------------------------------------------
-- Degenerate pointwise relations
module _ {P : Pred A ℓ} where
Pointwiseˡ⇒All : ∀ {m n} {xs : Vec A m} {ys : Vec B n} →
Pointwise (λ x y → P x) xs ys → All P xs
Pointwiseˡ⇒All [] = []
Pointwiseˡ⇒All (p ∷ ps) = p ∷ Pointwiseˡ⇒All ps
Pointwiseʳ⇒All : ∀ {n} {xs : Vec B n} {ys : Vec A n} →
Pointwise (λ x y → P y) xs ys → All P ys
Pointwiseʳ⇒All [] = []
Pointwiseʳ⇒All (p ∷ ps) = p ∷ Pointwiseʳ⇒All ps
All⇒Pointwiseˡ : ∀ {n} {xs : Vec A n} {ys : Vec B n} →
All P xs → Pointwise (λ x y → P x) xs ys
All⇒Pointwiseˡ {ys = []} [] = []
All⇒Pointwiseˡ {ys = _ ∷ _} (p ∷ ps) = p ∷ All⇒Pointwiseˡ ps
All⇒Pointwiseʳ : ∀ {n} {xs : Vec B n} {ys : Vec A n} →
All P ys → Pointwise (λ x y → P y) xs ys
All⇒Pointwiseʳ {xs = []} [] = []
All⇒Pointwiseʳ {xs = _ ∷ _} (p ∷ ps) = p ∷ All⇒Pointwiseʳ ps
------------------------------------------------------------------------
-- Pointwise _≡_ is equivalent to _≡_
Pointwise-≡⇒≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys → xs ≡ ys
Pointwise-≡⇒≡ [] = P.refl
Pointwise-≡⇒≡ (P.refl ∷ xs∼ys) = P.cong (_ ∷_) (Pointwise-≡⇒≡ xs∼ys)
≡⇒Pointwise-≡ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → Pointwise _≡_ xs ys
≡⇒Pointwise-≡ P.refl = refl P.refl
Pointwise-≡↔≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys ⇔ xs ≡ ys
Pointwise-≡↔≡ = equivalence Pointwise-≡⇒≡ ≡⇒Pointwise-≡
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
Pointwise-≡ = Pointwise-≡↔≡
{-# WARNING_ON_USAGE Pointwise-≡
"Warning: Pointwise-≡ was deprecated in v0.15.
Please use Pointwise-≡↔≡ instead."
#-}
|
{
"alphanum_fraction": 0.4542173644,
"avg_line_length": 35.5238095238,
"ext": "agda",
"hexsha": "86d595be1b38afee250441ce4089f1a9dda0b985",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Binary/Pointwise/Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Binary/Pointwise/Inductive.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Binary/Pointwise/Inductive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3680,
"size": 9698
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Concrete.Obligations
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open EpochConfig
open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK
-- In this module, we assume that the implementation meets its
-- obligations, and use this assumption to prove that, in any reachable
-- state, the implementatioon enjoys one of the per-epoch correctness
-- conditions proved in Abstract.Properties. It can be extended to other
-- properties later.
module LibraBFT.Concrete.Properties
(impl-correct : ImplObligations)
{e}(st : SystemState e)
(r : ReachableSystemState st)
(eid : Fin e)
where
open ImplObligations impl-correct
open import LibraBFT.Concrete.System sps-cor
open PerState st r
open PerEpoch eid
open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Abs
open import LibraBFT.Concrete.Intermediate 𝓔 (ConcreteVoteEvidence 𝓔)
import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO-obl
import LibraBFT.Concrete.Obligations.LockedRound 𝓔 (ConcreteVoteEvidence 𝓔) as LR-obl
open import LibraBFT.Concrete.Properties.VotesOnce as VO
open import LibraBFT.Concrete.Properties.LockedRound as LR
--------------------------------------------------------------------------------------------
-- * A /ValidSysState/ is one in which both peer obligations are obeyed by honest peers * --
--------------------------------------------------------------------------------------------
record ValidSysState {ℓ}(𝓢 : IntermediateSystemState ℓ) : Set (ℓ+1 ℓ0 ℓ⊔ ℓ) where
field
vss-votes-once : VO-obl.Type 𝓢
vss-locked-round : LR-obl.Type 𝓢
open ValidSysState public
-- TODO-2 : This should be provided as a module parameter here, and the
-- proofs provided to instantiate it should be refactored into LibraBFT.Impl.
-- However, see the TODO-3 in LibraBFT.Concrete.Intermediate, which suggests
-- that those proofs may change, perhaps some parts of them will remain in
-- Concrete and others should be in Impl, depending on how that TODO-3 is
-- addressed. There is not much point in doing said refactoring until we
-- make progress on that question.
validState : ValidSysState IntSystemState
validState = record
{ vss-votes-once = VO.Proof.voo sps-cor vo₁ vo₂ st r eid
; vss-locked-round = LR.Proof.lrr sps-cor lr₁ st r eid
}
open IntermediateSystemState IntSystemState
open All-InSys-props InSys
open WithAssumptions InSys
-- We can now invoke the various abstract correctness properties, using
--
ConcCommitsDoNotConflict :
∀{q q'}
→ {rc : RecordChain (Abs.Q q)} → All-InSys rc
→ {rc' : RecordChain (Abs.Q q')} → All-InSys rc'
→ {b b' : Abs.Block}
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ Abs.bId ⊎ ((Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc)
ConcCommitsDoNotConflict = CommitsDoNotConflict
(VO-obl.proof IntSystemState (vss-votes-once validState))
(LR-obl.proof IntSystemState (vss-locked-round validState))
module _ (∈QC⇒AllSent : Complete InSys) where
ConcCommitsDoNotConflict' :
∀{q q'}{rc : RecordChain (Abs.Q q)}{rc' : RecordChain (Abs.Q q')}{b b' : Abs.Block}
→ InSys (Abs.Q q) → InSys (Abs.Q q')
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ Abs.bId ⊎ ((Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc)
ConcCommitsDoNotConflict' = CommitsDoNotConflict'
(VO-obl.proof IntSystemState (vss-votes-once validState))
(LR-obl.proof IntSystemState (vss-locked-round validState))
∈QC⇒AllSent
ConcCommitsDoNotConflict''
: ∀{o o' q q'}
→ {rcf : RecordChainFrom o (Abs.Q q)}
→ {rcf' : RecordChainFrom o' (Abs.Q q')}
→ {b b' : Abs.Block}
→ InSys (Abs.Q q)
→ InSys (Abs.Q q')
→ CommitRuleFrom rcf b
→ CommitRuleFrom rcf' b'
→ NonInjective-≡ Abs.bId ⊎ Σ (RecordChain (Abs.Q q')) ((Abs.B b) ∈RC_)
⊎ Σ (RecordChain (Abs.Q q)) ((Abs.B b') ∈RC_)
ConcCommitsDoNotConflict'' = CommitsDoNotConflict''
(VO-obl.proof IntSystemState (vss-votes-once validState))
(LR-obl.proof IntSystemState (vss-locked-round validState))
∈QC⇒AllSent
|
{
"alphanum_fraction": 0.6238955823,
"avg_line_length": 45.6880733945,
"ext": "agda",
"hexsha": "a92179445e3b22c4d06dd5b889026433f4dd2ddc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1395,
"size": 4980
}
|
{-# OPTIONS --without-K #-}
module hott.equivalence.coind where
open import level
open import sum
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.core
open import function.extensionality
open import function.fibration
open import function.isomorphism
open import function.overloading
open import container.core
open import container.fixpoint
open import container.m
open import hott.equivalence.core
open import hott.equivalence.alternative
open import hott.level
open import sets.unit
apply≅' : ∀ {i j}{X : Set i}{Y : Set j}
→ X ≅' Y → X → Y
apply≅' (i , _) = _≅_.to i
is-≅' : ∀ {i j}{X : Set i}{Y : Set j} → (X → Y) → Set _
is-≅' {X = X}{Y = Y} f = apply≅' ⁻¹ f
abstract
≅'-≈-fib-comm : ∀ {i j}{X : Set i}{Y : Set j}(eq : X ≅' Y)
→ proj₁ (≅'⇒≈ eq) ≡ apply≅' eq
≅'-≈-fib-comm eq = refl
≅'⇒≈-we : ∀ {i j}{X : Set i}{Y : Set j}
→ weak-equiv (≅'⇒≈ {X = X}{Y = Y})
≅'⇒≈-we = proj₂ (≅⇒≈ (sym≅ ≈⇔≅'))
is-≅'-≈-iso : ∀ {i j}{X : Set i}{Y : Set j}(f : X → Y)
→ is-≅' f ≅ weak-equiv f
is-≅'-≈-iso {X = X}{Y = Y} f = begin
is-≅' f
≡⟨ refl ⟩
(fib weak-equiv ∘' ≅'⇒≈) ⁻¹ f
≅⟨ fib-compose ≅'⇒≈ (fib weak-equiv) f ⟩
( Σ (fib weak-equiv ⁻¹ f) λ { (we , _) → ≅'⇒≈ ⁻¹ we } )
≅⟨ ( Σ-ap-iso refl≅ λ { (we , _)
→ contr-⊤-iso (≅'⇒≈-we we) } ) ⟩
( fib weak-equiv ⁻¹ f × ⊤ )
≅⟨ ×-right-unit ⟩
fib weak-equiv ⁻¹ f
≅⟨ fib-iso f ⟩
weak-equiv f
∎
where open ≅-Reasoning
is-≅'-h1 : ∀ {i j}{X : Set i}{Y : Set j}
→ (f : X → Y) → h 1 (is-≅' f)
is-≅'-h1 f = iso-level (sym≅ (is-≅'-≈-iso f)) (weak-equiv-h1 f)
≅'-Σ-iso : ∀ {i j}{X : Set i}{Y : Set j}
→ (X ≅' Y) ≅ (Σ (X → Y) λ f → is-≅' f)
≅'-Σ-iso {X = X}{Y = Y} = sym≅ (total-iso apply≅')
≅'-equality : ∀ {i j}{X : Set i}{Y : Set j}
→ {isom₁ isom₂ : X ≅' Y}
→ (apply isom₁ ≡ apply isom₂)
→ isom₁ ≡ isom₂
≅'-equality {X = X}{Y = Y} {isom₁}{isom₂} p = iso⇒inj ≅'-Σ-iso q
where
q : apply ≅'-Σ-iso isom₁ ≡ apply ≅'-Σ-iso isom₂
q = unapΣ (p , h1⇒prop (is-≅'-h1 _) _ _)
record F {i j}(Z : ∀ {i j} → Set i → Set j → Set (i ⊔ j))
(X : Set i)(Y : Set j) : Set (i ⊔ j) where
constructor mk-F
field
f : X → Y
g : Y → X
φ : (x : X)(y : Y) → Z (f x ≡ y) (x ≡ g y)
~-container : ∀ i → Container _ _ _
~-container i = record
{ I = Set i × Set i
; A = λ { (X , Y) → (X → Y) × (Y → X) }
; B = λ { {X , Y} _ → X × Y }
; r = λ { {a = f , g} (x , y) → (f x ≡ y) , (x ≡ g y) } }
module D {i} where
open Definition (~-container i) public
open Fixpoint (fix M fixpoint) public
hiding (fixpoint)
unfold≅' : ∀ {i}{X Y : Set i}
→ X ≅' Y → D.F (λ { (X , Y) → X ≅' Y }) (X , Y)
unfold≅' (isom , _)
= (to , from)
, λ { (x , y) → ≅⇒≅' (iso-adjunction isom x y) }
where
open _≅_ isom
--unfold≅' : ∀ {i}{X Y : Set i}
-- → X ≅' Y → D.F (λ { (X , Y) → X ≅' Y }) (X , Y)
--unfold≅' {X = X}{Y = Y} (iso f g α β , δ) =
-- ((f , g) , λ {(x , y) → ≅⇒≅' (φ x y)})
-- where
-- open ≡-Reasoning
--
-- δ' = co-coherence (iso f g α β) δ
--
-- iso₁ : {x : X}{y : Y}(p : f x ≡ y)
-- → ap f (sym (α x) · ap g p) · β y ≡ p
-- iso₁ {x} .{f x} refl = begin
-- ap f (sym (α x) · refl) · β (f x)
-- ≡⟨ ap (λ z → ap f z · β (f x)) (left-unit (sym (α x))) ⟩
-- ap f (sym (α x)) · β (f x)
-- ≡⟨ ap (λ z → z · β (f x)) (ap-inv f (α x)) ⟩
-- sym (ap f (α x)) · β (f x)
-- ≡⟨ ap (λ z → sym z · β (f x)) (δ x) ⟩
-- sym (β (f x)) · β (f x)
-- ≡⟨ right-inverse (β (f x)) ⟩
-- refl
-- ∎
--
-- iso₂' : {x : X}{y : Y}(q : g y ≡ x)
-- → sym (α x) · ap g (ap f (sym q) · β y) ≡ sym q
-- iso₂' .{g y}{y} refl = begin
-- sym (α (g y)) · ap g (refl · β y)
-- ≡⟨ ap (λ z → sym (α (g y)) · ap g z) (right-unit (β y)) ⟩
-- sym (α (g y)) · ap g (β y)
-- ≡⟨ ap (λ z → sym (α (g y)) · z) (δ' y) ⟩
-- sym (α (g y)) · α (g y)
-- ≡⟨ right-inverse (α (g y)) ⟩
-- refl
-- ∎
--
-- iso₂ : {x : X}{y : Y}(q : x ≡ g y)
-- → sym (α x) · ap g (ap f q · β y) ≡ q
-- iso₂ {x}{y} q =
-- subst (λ z → sym (α x) · ap g (ap f z · β y) ≡ z)
-- (double-inverse q)
-- (iso₂' (sym q))
--
-- φ : (x : X)(y : Y) → (f x ≡ y) ≅ (x ≡ g y)
-- φ x y = record
-- { to = λ p → sym (α x) · ap g p
-- ; from = λ q → ap f q · β y
-- ; iso₁ = iso₁
-- ; iso₂ = iso₂ }
Iso' : ∀ {i} → Set i × Set i → Set _
Iso' (X , Y) = X ≅' Y
_~_ : ∀ {i} → Set i → Set i → Set i
_~_ {i} X Y = D.M (X , Y)
apply~ : ∀ {i}{X Y : Set i} → X ~ Y → X → Y
apply~ eq = proj₁ (D.head eq)
invert~ : ∀ {i}{X Y : Set i} → X ~ Y → Y → X
invert~ eq = proj₂ (D.head eq)
private
u : ∀ {i}(XY : Set i × Set i)
→ let (X , Y) = XY in X ~ Y → X ≅' Y
u (X , Y) eq = ≅⇒≅' (iso f g α β)
where
f : X → Y
f = apply~ eq
g : Y → X
g = invert~ eq
φ : (x : X)(y : Y) → (f x ≡ y) ~ (x ≡ g y)
φ x y = D.tail eq (x , y)
α : (x : X) → g (f x) ≡ x
α x = sym (apply~ (φ x (f x)) refl)
β : (y : Y) → f (g y) ≡ y
β y = invert~ (φ (g y) y) refl
-- u-morphism : ∀ {i}{X Y : Set i}
-- → (eq : X ~ Y)
-- → unfold≅' (u _ eq)
-- ≡ D.imap u _ (D.out _ eq)
-- u-morphism {i}{X}{Y} eq = unapΣ (refl , funext λ {(x , y) → lem₂ x y})
-- where
-- f : X → Y
-- f = apply~ eq
--
-- g : Y → X
-- g = invert~ eq
--
-- φ : (x : X)(y : Y) → (f x ≡ y) ~ (x ≡ g y)
-- φ x y = D.tail eq (x , y)
--
-- σ τ : (x : X)(y : Y) → (f x ≡ y) ≅' (x ≡ g y)
-- σ x y = proj₂ (unfold≅' (u _ eq)) (x , y)
-- τ x y = u _ (φ x y)
--
-- lem : (x : X)(y : Y)(p : f x ≡ y)
-- → apply≅' (σ x y) p ≡ apply≅' (τ x y) p
-- lem x .(f x) refl = ?
--
-- lem₂ : (x : X)(y : Y) → proj₂ (unfold≅' (u (X , Y) eq)) (x , y)
-- ≡ u _ (D.tail eq (x , y))
-- lem₂ x y = ≅'-equality (funext (lem x y))
--
-- v : ∀ {i}(XY : Set i × Set i) → let (X , Y) = XY in X ≅' Y → X ~ Y
-- v = D.unfold (λ _ → unfold≅')
--
-- vu-morphism : ∀ {i}{X Y : Set i}
-- → (eq : X ~ Y)
-- → D.out _ (v _ (u _ eq))
-- ≡ D.imap (v D.∘ⁱ u) _ (D.out _ eq)
-- vu-morphism {X = X}{Y = Y} eq = ap (D.imap v _) (u-morphism eq)
--
-- vu-id : ∀ {i}{X Y : Set i} (eq : X ~ Y) → v _ (u _ eq) ≡ eq
-- vu-id eq = D.unfold-η D.out (v D.∘ⁱ u) vu-morphism eq · D.unfold-id eq
--
-- uv-id : ∀ {i}{X Y : Set i} (i : X ≅' Y) → u _ (v _ i) ≡ i
-- uv-id {X = X}{Y = Y} i = ≅'-equality refl
--
-- ~⇔≅' : ∀ {i}{X Y : Set i} → (X ~ Y) ≅ (X ≅' Y)
-- ~⇔≅' = iso (u _) (v _) vu-id uv-id
|
{
"alphanum_fraction": 0.4025859536,
"avg_line_length": 30.1150442478,
"ext": "agda",
"hexsha": "4f67193aa6e3a3e90c74555018d2aebc9675e835",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "hott/equivalence/coind.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/equivalence/coind.agda",
"max_line_length": 75,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "hott/equivalence/coind.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 3113,
"size": 6806
}
|
module TestInt where
open import PreludeInt
open import PreludeShow
mainS = showInt result where
result = (mod (((int 2) + (int 2)) * (int 5)) (int 3))
|
{
"alphanum_fraction": 0.6903225806,
"avg_line_length": 22.1428571429,
"ext": "agda",
"hexsha": "af0a2746c587fb917c7d5fb925a0b7353f562c4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/TestInt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/TestInt.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/TestInt.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 50,
"size": 155
}
|
------------------------------------------------------------------------------
-- Arithmetic properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Nat.Properties where
open import Common.FOL.Relation.Binary.EqReasoning
open import LTC-PCF.Base
open import LTC-PCF.Base.Properties
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Rec
open import LTC-PCF.Data.Nat.Rec.ConversionRules
open import LTC-PCF.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
-- Congruence properties
+-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o
+-leftCong refl = refl
+-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o
+-rightCong refl = refl
∸-leftCong : ∀ {m n o} → m ≡ n → m ∸ o ≡ n ∸ o
∸-leftCong refl = refl
∸-rightCong : ∀ {m n o} → n ≡ o → m ∸ n ≡ m ∸ o
∸-rightCong refl = refl
*-leftCong : ∀ {m n o} → m ≡ n → m * o ≡ n * o
*-leftCong refl = refl
*-rightCong : ∀ {m n o} → n ≡ o → m * n ≡ m * o
*-rightCong refl = refl
------------------------------------------------------------------------------
-- Conversion rules
+-0x : ∀ n → zero + n ≡ n
+-0x n = rec zero n _ ≡⟨ rec-0 n ⟩
n ∎
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)
+-Sx m n =
rec (succ₁ m) n (lam (λ _ → lam succ₁))
≡⟨ rec-S m n (lam (λ _ → lam succ₁)) ⟩
(lam (λ _ → lam succ₁)) · m · (m + n)
≡⟨ ·-leftCong (beta (λ _ → lam succ₁) m) ⟩
lam succ₁ · (m + n)
≡⟨ beta succ₁ (m + n) ⟩
succ₁ (m + n) ∎
∸-x0 : ∀ n → n ∸ zero ≡ n
∸-x0 n = rec zero n _ ≡⟨ rec-0 n ⟩
n ∎
∸-xS : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n)
∸-xS m n =
rec (succ₁ n) m (lam (λ _ → lam pred₁))
≡⟨ rec-S n m (lam (λ _ → lam pred₁)) ⟩
lam (λ x → lam pred₁) · n · (m ∸ n)
≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩
lam pred₁ · (m ∸ n)
≡⟨ beta pred₁ (m ∸ n) ⟩
pred₁ (m ∸ n) ∎
*-0x : ∀ n → zero * n ≡ zero
*-0x n = rec zero zero (lam (λ _ → lam (_+_ n))) ≡⟨ rec-0 zero ⟩
zero ∎
*-Sx : ∀ m n → succ₁ m * n ≡ n + m * n
*-Sx m n =
rec (succ₁ m) zero (lam (λ _ → lam (_+_ n)))
≡⟨ rec-S m zero (lam (λ _ → lam (_+_ n))) ⟩
(lam (λ _ → lam (_+_ n))) · m · (m * n)
≡⟨ ·-leftCong (beta (λ _ → lam (_+_ n)) m) ⟩
lam (_+_ n) · (m * n)
≡⟨ beta (_+_ n) (m * n) ⟩
n + (m * n) ∎
------------------------------------------------------------------------------
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity = +-0x
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity nzero = +-leftIdentity zero
+-rightIdentity (nsucc {n} Nn) =
trans (+-Sx n zero) (succCong (+-rightIdentity Nn))
pred-N : ∀ {n} → N n → N (pred₁ n)
pred-N nzero = subst N (sym pred-0) nzero
pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn
+-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn))
∸-N : ∀ {m n} → N m → N n → N (m ∸ n)
∸-N {m} Nm nzero = subst N (sym (∸-x0 m)) Nm
∸-N {m} Nm (nsucc {n} Nn) = subst N (sym (∸-xS m n)) (pred-N (∸-N Nm Nn))
+-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o)
+-assoc nzero n o =
zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩
n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩
zero + (n + o) ∎
+-assoc (nsucc {m} Nm) n o =
succ₁ m + n + o ≡⟨ +-leftCong (+-Sx m n) ⟩
succ₁ (m + n) + o ≡⟨ +-Sx (m + n) o ⟩
succ₁ (m + n + o) ≡⟨ succCong (+-assoc Nm n o) ⟩
succ₁ (m + (n + o)) ≡⟨ sym (+-Sx m (n + o)) ⟩
succ₁ m + (n + o) ∎
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n)
x+Sy≡S[x+y] nzero n =
zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩
succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩
succ₁ (zero + n) ∎
x+Sy≡S[x+y] (nsucc {m} Nm) n =
succ₁ m + succ₁ n ≡⟨ +-Sx m (succ₁ n) ⟩
succ₁ (m + succ₁ n) ≡⟨ succCong (x+Sy≡S[x+y] Nm n) ⟩
succ₁ (succ₁ (m + n)) ≡⟨ succCong (sym (+-Sx m n)) ⟩
succ₁ (succ₁ m + n) ∎
0∸x : ∀ {n} → N n → zero ∸ n ≡ zero
0∸x nzero = ∸-x0 zero
0∸x (nsucc {n} Nn) =
zero ∸ succ₁ n ≡⟨ ∸-xS zero n ⟩
pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩
pred₁ zero ≡⟨ pred-0 ⟩
zero ∎
S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n
S∸S {m} _ nzero =
succ₁ m ∸ [1] ≡⟨ ∸-xS (succ₁ m) zero ⟩
pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩
pred₁ (succ₁ m) ≡⟨ pred-S m ⟩
m ≡⟨ sym (∸-x0 m) ⟩
m ∸ zero ∎
S∸S nzero (nsucc {n} Nn) =
[1] ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS [1] (succ₁ n) ⟩
pred₁ ([1] ∸ succ₁ n) ≡⟨ predCong (S∸S nzero Nn) ⟩
pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩
pred₁ zero ≡⟨ pred-0 ⟩
zero ≡⟨ sym (0∸x (nsucc Nn)) ⟩
zero ∸ succ₁ n ∎
S∸S (nsucc {m} Nm) (nsucc {n} Nn) =
succ₁ (succ₁ m) ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS (succ₁ (succ₁ m)) (succ₁ n) ⟩
pred₁ (succ₁ (succ₁ m) ∸ succ₁ n) ≡⟨ predCong (S∸S (nsucc Nm) Nn) ⟩
pred₁ (succ₁ m ∸ n) ≡⟨ sym (∸-xS (succ₁ m) n) ⟩
succ₁ m ∸ succ₁ n ∎
[x+y]∸[x+z]≡y∸z : ∀ {m n o} → N m → N n → N o → (m + n) ∸ (m + o) ≡ n ∸ o
[x+y]∸[x+z]≡y∸z {n = n} {o} nzero _ _ =
(zero + n) ∸ (zero + o) ≡⟨ ∸-leftCong (+-leftIdentity n) ⟩
n ∸ (zero + o) ≡⟨ ∸-rightCong (+-leftIdentity o) ⟩
n ∸ o ∎
[x+y]∸[x+z]≡y∸z {n = n} {o} (nsucc {m} Nm) Nn No =
(succ₁ m + n) ∸ (succ₁ m + o) ≡⟨ ∸-leftCong (+-Sx m n) ⟩
succ₁ (m + n) ∸ (succ₁ m + o) ≡⟨ ∸-rightCong (+-Sx m o) ⟩
succ₁ (m + n) ∸ succ₁ (m + o) ≡⟨ S∸S (+-N Nm Nn) (+-N Nm No) ⟩
(m + n) ∸ (m + o) ≡⟨ [x+y]∸[x+z]≡y∸z Nm Nn No ⟩
n ∸ o ∎
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} nzero Nn =
zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎
+-comm {n = n} (nsucc {m} Nm) Nn =
succ₁ m + n ≡⟨ +-Sx m n ⟩
succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩
succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩
n + succ₁ m ∎
*-leftZero : ∀ n → zero * n ≡ zero
*-leftZero = *-0x
*-rightZero : ∀ {n} → N n → n * zero ≡ zero
*-rightZero nzero = *-leftZero zero
*-rightZero (nsucc {n} Nn) =
trans (*-Sx n zero)
(trans (+-leftIdentity (n * zero)) (*-rightZero Nn))
*-N : ∀ {m n} → N m → N n → N (m * n)
*-N {n = n} nzero _ = subst N (sym (*-leftZero n)) nzero
*-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (*-Sx m n)) (+-N Nn (*-N Nm Nn))
*-leftIdentity : ∀ {n} → N n → [1] * n ≡ n
*-leftIdentity {n} Nn =
[1] * n ≡⟨ *-Sx zero n ⟩
n + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩
n + zero ≡⟨ +-rightIdentity Nn ⟩
n ∎
x*Sy≡x+xy : ∀ {m n} → N m → N n → m * succ₁ n ≡ m + m * n
x*Sy≡x+xy {n = n} nzero Nn = sym
(
zero + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩
zero + zero ≡⟨ +-leftIdentity zero ⟩
zero ≡⟨ sym (*-leftZero (succ₁ n)) ⟩
zero * succ₁ n ∎
)
x*Sy≡x+xy {n = n} (nsucc {m} Nm) Nn =
succ₁ m * succ₁ n
≡⟨ *-Sx m (succ₁ n) ⟩
succ₁ n + m * succ₁ n
≡⟨ +-rightCong (x*Sy≡x+xy Nm Nn) ⟩
succ₁ n + (m + m * n)
≡⟨ +-Sx n (m + m * n) ⟩
succ₁ (n + (m + m * n))
≡⟨ succCong (sym (+-assoc Nn m (m * n))) ⟩
succ₁ (n + m + m * n)
≡⟨ succCong (+-leftCong (+-comm Nn Nm)) ⟩
succ₁ (m + n + m * n)
≡⟨ succCong (+-assoc Nm n (m * n)) ⟩
succ₁ (m + (n + m * n))
≡⟨ sym (+-Sx m (n + m * n)) ⟩
succ₁ m + (n + m * n)
≡⟨ +-rightCong (sym (*-Sx m n)) ⟩
succ₁ m + succ₁ m * n ∎
*-comm : ∀ {m n} → N m → N n → m * n ≡ n * m
*-comm {n = n} nzero Nn = trans (*-leftZero n) (sym (*-rightZero Nn))
*-comm {n = n} (nsucc {m} Nm) Nn =
succ₁ m * n ≡⟨ *-Sx m n ⟩
n + m * n ≡⟨ +-rightCong (*-comm Nm Nn) ⟩
n + n * m ≡⟨ sym (x*Sy≡x+xy Nn Nm) ⟩
n * succ₁ m ∎
*∸-leftDistributive : ∀ {m n o} → N m → N n → N o → (m ∸ n) * o ≡ m * o ∸ n * o
*∸-leftDistributive {m} {o = o} _ nzero _ =
(m ∸ zero) * o ≡⟨ *-leftCong (∸-x0 m) ⟩
m * o ≡⟨ sym (∸-x0 (m * o)) ⟩
m * o ∸ zero ≡⟨ ∸-rightCong (sym (*-leftZero o)) ⟩
m * o ∸ zero * o ∎
*∸-leftDistributive {o = o} nzero (nsucc {n} Nn) No =
(zero ∸ succ₁ n) * o ≡⟨ *-leftCong (0∸x (nsucc Nn)) ⟩
zero * o ≡⟨ *-leftZero o ⟩
zero ≡⟨ sym (0∸x (*-N (nsucc Nn) No)) ⟩
zero ∸ succ₁ n * o ≡⟨ ∸-leftCong (sym (*-leftZero o)) ⟩
zero * o ∸ succ₁ n * o ∎
*∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) nzero =
(succ₁ m ∸ succ₁ n) * zero
≡⟨ *-comm (∸-N (nsucc Nm) (nsucc Nn)) nzero ⟩
zero * (succ₁ m ∸ succ₁ n)
≡⟨ *-leftZero (succ₁ m ∸ succ₁ n) ⟩
zero
≡⟨ sym (0∸x (*-N (nsucc Nn) nzero)) ⟩
zero ∸ succ₁ n * zero
≡⟨ ∸-leftCong (sym (*-leftZero (succ₁ m))) ⟩
zero * succ₁ m ∸ succ₁ n * zero
≡⟨ ∸-leftCong (*-comm nzero (nsucc Nm)) ⟩
succ₁ m * zero ∸ succ₁ n * zero ∎
*∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) =
(succ₁ m ∸ succ₁ n) * succ₁ o
≡⟨ *-leftCong (S∸S Nm Nn) ⟩
(m ∸ n) * succ₁ o
≡⟨ *∸-leftDistributive Nm Nn (nsucc No) ⟩
m * succ₁ o ∸ n * succ₁ o
≡⟨ sym ([x+y]∸[x+z]≡y∸z (nsucc No) (*-N Nm (nsucc No)) (*-N Nn (nsucc No))) ⟩
(succ₁ o + m * succ₁ o) ∸ (succ₁ o + n * succ₁ o)
≡⟨ ∸-leftCong (sym (*-Sx m (succ₁ o))) ⟩
(succ₁ m * succ₁ o) ∸ (succ₁ o + n * succ₁ o)
≡⟨ ∸-rightCong (sym (*-Sx n (succ₁ o))) ⟩
(succ₁ m * succ₁ o) ∸ (succ₁ n * succ₁ o) ∎
*+-leftDistributive : ∀ {m n o} → N m → N n → N o → (m + n) * o ≡ m * o + n * o
*+-leftDistributive {m} {n} Nm Nn nzero =
(m + n) * zero
≡⟨ *-comm (+-N Nm Nn) nzero ⟩
zero * (m + n)
≡⟨ *-leftZero (m + n) ⟩
zero
≡⟨ sym (*-leftZero m) ⟩
zero * m
≡⟨ *-comm nzero Nm ⟩
m * zero
≡⟨ sym (+-rightIdentity (*-N Nm nzero)) ⟩
m * zero + zero
≡⟨ +-rightCong (trans (sym (*-leftZero n)) (*-comm nzero Nn)) ⟩
m * zero + n * zero ∎
*+-leftDistributive {n = n} nzero Nn (nsucc {o} No) =
(zero + n) * succ₁ o ≡⟨ *-leftCong (+-leftIdentity n) ⟩
n * succ₁ o ≡⟨ sym (+-leftIdentity (n * succ₁ o)) ⟩
zero + n * succ₁ o ≡⟨ +-leftCong (sym (*-leftZero (succ₁ o))) ⟩
zero * succ₁ o + n * succ₁ o ∎
*+-leftDistributive (nsucc {m} Nm) nzero (nsucc {o} No) =
(succ₁ m + zero) * succ₁ o
≡⟨ *-leftCong (+-rightIdentity (nsucc Nm)) ⟩
succ₁ m * succ₁ o
≡⟨ sym (+-rightIdentity (*-N (nsucc Nm) (nsucc No))) ⟩
succ₁ m * succ₁ o + zero
≡⟨ +-rightCong (sym (*-leftZero (succ₁ o))) ⟩
succ₁ m * succ₁ o + zero * succ₁ o ∎
*+-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) =
(succ₁ m + succ₁ n) * succ₁ o
≡⟨ *-leftCong (+-Sx m (succ₁ n)) ⟩
succ₁ (m + succ₁ n) * succ₁ o
≡⟨ *-Sx (m + succ₁ n) (succ₁ o) ⟩
succ₁ o + (m + succ₁ n) * succ₁ o
≡⟨ +-rightCong (*+-leftDistributive Nm (nsucc Nn) (nsucc No)) ⟩
succ₁ o + (m * succ₁ o + succ₁ n * succ₁ o)
≡⟨ sym (+-assoc (nsucc No) (m * succ₁ o) (succ₁ n * succ₁ o)) ⟩
succ₁ o + m * succ₁ o + succ₁ n * succ₁ o
≡⟨ +-leftCong (sym (*-Sx m (succ₁ o))) ⟩
succ₁ m * succ₁ o + succ₁ n * succ₁ o ∎
|
{
"alphanum_fraction": 0.4494963003,
"avg_line_length": 34.1981707317,
"ext": "agda",
"hexsha": "223294d7ff296fe288da395276f5ff52efa22649",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Properties.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Properties.agda",
"max_line_length": 81,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 5276,
"size": 11217
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.TLevel
open import lib.types.Pi
open import lib.types.Truncation
-- This module is dedicated to [Trunc 0 (x == y)]
module lib.types.PathSet where
_=₀_ : ∀ {i} {A : Type i} → A → A → Type i
_=₀_ x y = Trunc 0 (x == y)
_=0_ : ∀ {i} {A : Type i} → A → A → Type i
_=0_ = _=₀_
infix 80 _∙₀_ _∙₀'_ -- \.\0
_∙₀_ : ∀ {i} {A : Type i} {x y z : A} → x =₀ y → y =₀ z → x =₀ z
_∙₀_ = Trunc-fmap2 _∙_
_∙₀'_ : ∀ {i} {A : Type i} {x y z : A} → x =₀ y → y =₀ z → x =₀ z
_∙₀'_ = Trunc-fmap2 _∙'_
!₀ : ∀ {i} {A : Type i} {x y : A} → x =₀ y → y =₀ x
!₀ = Trunc-fmap !
idp₀ : ∀ {i} {A : Type i} {a : A} → a =₀ a
idp₀ = [ idp ]
ap₀ : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (f : A → B)
→ x =₀ y → f x =₀ f y
ap₀ f = Trunc-rec Trunc-level ([_] ∘ ap f)
coe₀ : ∀ {i} {A B : Type i} (_ : is-set B) (p : A =₀ B) → A → B
coe₀ B-level = Trunc-rec (→-is-set B-level) coe
transport₀ : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A}
(B-level : is-set (B y)) (p : x =₀ y) → (B x → B y)
transport₀ B B-level p = coe₀ B-level (ap₀ B p)
module _ {i} {A : Type i} where
abstract
∙₀-unit-r : ∀ {x y : A} (q : x =₀ y) → (q ∙₀ idp₀) == q
∙₀-unit-r = Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ p → ap [_] $ ∙-unit-r p)
∙₀-unit-l : ∀ {x y : A} (q : x =₀ y) → (idp₀ ∙₀ q) == q
∙₀-unit-l = Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ _ → idp)
∙₀-assoc : {x y z t : A} (p : x =₀ y) (q : y =₀ z) (r : z =₀ t)
→ (p ∙₀ q) ∙₀ r == p ∙₀ (q ∙₀ r)
∙₀-assoc = Trunc-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level 0 Trunc-level)
(λ p → Trunc-elim
(λ _ → Π-is-set λ _ → =-preserves-level 0 Trunc-level)
(λ q → Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ r → ap [_] $ ∙-assoc p q r)))
!₀-inv-l : {x y : A} (p : x =₀ y) → (!₀ p) ∙₀ p == idp₀
!₀-inv-l = Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ p → ap [_] $ !-inv-l p)
!₀-inv-r : {x y : A} (p : x =₀ y) → p ∙₀ (!₀ p) == idp₀
!₀-inv-r = Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ p → ap [_] $ !-inv-r p)
∙₀-ap₀ : ∀ {j} {B : Type j} (f : A → B) {x y z : A} (p : x =₀ y) (q : y =₀ z)
→ ap₀ f p ∙₀ ap₀ f q == ap₀ f (p ∙₀ q)
∙₀-ap₀ f = Trunc-elim
(λ _ → Π-is-set λ _ → =-preserves-level 0 Trunc-level)
(λ p → Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ q → ap [_] $ ∙-ap f p q))
ap₀-∘ : ∀ {j k} {B : Type j} {C : Type k} (g : B → C) (f : A → B)
{x y : A} (p : x =₀ y) → ap₀ (g ∘ f) p == ap₀ g (ap₀ f p)
ap₀-∘ f g = Trunc-elim
(λ _ → =-preserves-level 0 Trunc-level)
(λ p → ap [_] $ ap-∘ f g p)
coe₀-∙₀ : {B C : Type i} (B-level : is-set B) (C-level : is-set C)
→ (p : A =₀ B) (q : B =₀ C) (a : A)
→ coe₀ C-level (p ∙₀ q) a == coe₀ C-level q (coe₀ B-level p a)
coe₀-∙₀ B-level C-level = Trunc-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level 0 C-level)
(λ p → Trunc-elim
(λ _ → Π-is-set λ _ → =-preserves-level 0 C-level)
(λ q a → coe-∙ p q a))
trans₀-∙₀ : ∀ {j} {B : A → Type j}
→ (B-level : ∀ a → is-set (B a))
→ {x y z : A} (p : x =₀ y) (q : y =₀ z) (b : B x)
→ transport₀ B (B-level _) (p ∙₀ q) b
== transport₀ B (B-level _) q (transport₀ B (B-level _) p b)
trans₀-∙₀ B-level = Trunc-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level 0 $ B-level _)
(λ p → Trunc-elim
(λ _ → Π-is-set λ _ → =-preserves-level 0 $ B-level _)
(λ q b → trans-∙ p q b))
trans₀-∙₀' : ∀ {j} {B : A → Type j}
→ (B-level : ∀ a → is-set (B a))
→ {x y z : A} (p : x =₀ y) (q : y =₀ z) (b : B x)
→ transport₀ B (B-level _) (p ∙₀' q) b
== transport₀ B (B-level _) q (transport₀ B (B-level _) p b)
trans₀-∙₀' B-level = Trunc-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level 0 $ B-level _)
(λ p → Trunc-elim
(λ _ → Π-is-set λ _ → =-preserves-level 0 $ B-level _)
(λ q b → trans-∙' p q b))
{-
module _ {i} {A : Type i} where
trans-id≡₀cst : {a b c : A} (p : b ≡ c) (q : b ≡₀ a)
→ transport (λ x → x ≡₀ a) p q ≡ proj (! p) ∘₀ q
trans-id≡₀cst refl q = ! $ refl₀-left-unit q
trans-cst≡₀id : {a b c : A} (p : b ≡ c) (q : a ≡₀ b)
→ transport (λ x → a ≡₀ x) p q ≡ q ∘₀ proj p
trans-cst≡₀id refl q = ! $ refl₀-right-unit q
module _ {i} {A : Set i} where
homotopy₀-naturality : ∀ {j} {B : Set j} (f g : A → B)
(p : (x : A) → f x ≡₀ g x) {x y : A} (q : x ≡₀ y)
→ ap₀ f q ∘₀ p y ≡ p x ∘₀ ap₀ g q
homotopy₀-naturality f g p {x} {y} q = π₀-extend
⦃ λ q → ≡-is-set {x = ap₀ f q ∘₀ p y} {y = p x ∘₀ ap₀ g q}
$ π₀-is-set (f x ≡ g y) ⦄
(lemma {x} {y}) q
where
lemma : ∀ {x y : A} (q : x ≡ y) → ap₀ f (proj q) ∘₀ p y ≡ p x ∘₀ ap₀ g (proj q)
lemma refl =
refl₀ ∘₀ p _
≡⟨ refl₀-left-unit (p _) ⟩
p _
≡⟨ ! $ refl₀-right-unit _ ⟩∎
p _ ∘₀ refl₀
∎
-- Loop space commutes with truncation in the sense that
-- τ n (Ω X) = Ω (τ (S n) X)
-- (actually, this is true more generally for paths spaces and we need this
-- level of generality to prove it)
module _ {i} {n : ℕ₋₂} {A : Set i} where
private
to : (x y : A) → (τ n (x ≡ y)) → ((proj {n = S n} x) ≡ (proj y))
to x y = τ-extend-nondep ⦃ τ-is-truncated (S n) A _ _ ⦄ (ap proj)
-- [truncated-path-space (proj x) (proj y)] is [τ n (x ≡ y)]
truncated-path-space : (u v : τ (S n) A) → Type≤ n i
truncated-path-space = τ-extend-nondep
⦃ →-is-truncated (S n) (Type≤-is-truncated n _) ⦄
(λ x → τ-extend-nondep ⦃ Type≤-is-truncated n _ ⦄
(λ y → τ n (x ≡ y) , τ-is-truncated n _))
-- We now extend [to] to the truncation of [A], and this is why we needed to
-- first extend the return type of [to]
to' : (u v : τ (S n) A) → (π₁ (truncated-path-space u v) → u ≡ v)
to' = τ-extend ⦃ λ x → Π-is-truncated (S n) (λ a →
Π-is-truncated (S n) (λ b →
≡-is-truncated (S n)
(τ-is-truncated (S n) A)))⦄
(λ x → τ-extend ⦃ λ t → Π-is-truncated (S n) (λ a →
≡-is-truncated (S n)
(τ-is-truncated (S n) A))⦄
(λ y → to x y))
from'-refl : (u : τ (S n) A) → (π₁ (truncated-path-space u u))
from'-refl = τ-extend ⦃ λ x → truncated-is-truncated-S n
(π₂ (truncated-path-space x x))⦄
(λ x → proj refl)
from' : (u v : τ (S n) A) → (u ≡ v → π₁ (truncated-path-space u v))
from' u .u refl = from'-refl u
from : (x y : A) → (proj {n = S n} x ≡ proj y → τ n (x ≡ y))
from x y p = from' (proj x) (proj y) p
from-to : (x y : A) (p : τ n (x ≡ y)) → from x y (to x y p) ≡ p
from-to x y = τ-extend ⦃ λ _ → ≡-is-truncated n (τ-is-truncated n _)⦄
(from-to' x y) where
from-to' : (x y : A) (p : x ≡ y) → from x y (to x y (proj p)) ≡ proj p
from-to' x .x refl = refl
to'-from' : (u v : τ (S n) A) (p : u ≡ v) → to' u v (from' u v p) ≡ p
to'-from' x .x refl = to'-from'-refl x where
to'-from'-refl : (u : τ (S n) A) → to' u u (from' u u refl) ≡ refl
to'-from'-refl = τ-extend ⦃ λ _ → ≡-is-truncated (S n)
(≡-is-truncated (S n)
(τ-is-truncated (S n) A))⦄
(λ _ → refl)
to-from : (x y : A) (p : proj {n = S n} x ≡ proj y) → to x y (from x y p) ≡ p
to-from x y p = to'-from' (proj x) (proj y) p
τ-path-equiv-path-τ-S : {x y : A} → τ n (x ≡ y) ≃ (proj {n = S n} x ≡ proj y)
τ-path-equiv-path-τ-S {x} {y} =
(to x y , iso-is-eq _ (from x y) (to-from x y) (from-to x y))
module _ where
open import Homotopy.Connected
abstract
connected-has-connected-paths : is-connected (S n) A → (p q : A) → is-connected n (p ≡ q)
connected-has-connected-paths conn p q =
equiv-types-truncated ⟨-2⟩ (τ-path-equiv-path-τ-S ⁻¹) (contr-is-prop conn (proj p) (proj q))
connected-has-all-τ-paths : is-connected (S n) A → (p q : A) → τ n (p ≡ q)
connected-has-all-τ-paths conn p q = π₁ $ connected-has-connected-paths conn p q
-}
|
{
"alphanum_fraction": 0.4628040898,
"avg_line_length": 38.3288288288,
"ext": "agda",
"hexsha": "68744e9d2b12bad89d7c2e78daae528f76dc0811",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/PathSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/PathSet.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/PathSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3563,
"size": 8509
}
|
-- Issue #2791, reported by Ulf 2017-10-05
-- Reported fixed by Victor 2018-08-11
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
IF : Bool → Set → Set → Set
IF true X Y = X
IF false X Y = Y
postulate
F : (A : Set) (x : A) (B : Set) (y : B) → Set
mutual
?b : Bool
?b = _
IFb = IF ?b Nat Bool
?X : IFb
?X = _
?Y : Nat
?Y = _
foo : F Bool true Nat ?Y ≡ F IFb ?X IFb ?X
foo = refl
-- ?Y gets solved with 'true'
error : ?Y + 1 ≡ 3
error = refl
-- Expected failure:
-- Nat != Bool of type Set
-- when checking that the expression refl has type
-- F Bool true Nat ?Y ≡ F IFb ?X IFb ?X
|
{
"alphanum_fraction": 0.6021341463,
"avg_line_length": 16.8205128205,
"ext": "agda",
"hexsha": "2ebbc63550ca63037c6f1e4213e3e41505a3041d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2791.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2791.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2791.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 250,
"size": 656
}
|
{-# OPTIONS --safe #-}
module Definition.Conversion.Decidable where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Conversion.Soundness
open import Definition.Conversion.Symmetry
open import Definition.Conversion.Stability
open import Definition.Conversion.Conversion
open import Definition.Conversion.Lift
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Inequality as IE
open import Definition.Typed.Consequences.NeTypeEq
open import Definition.Typed.Consequences.SucCong
open import Definition.Conversion.HelperDecidable
open import Tools.Nat
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary
import Tools.PropositionalEquality as PE
abstract -- Agda will do some slow unfolding without abstract
~atℕ : ∀ {Γ t u}
→ Γ ⊢ t ~ t ↓! ℕ ^ ι ⁰
→ (∃ λ A → ∃ λ lA → Γ ⊢ t ~ u ↓! A ^ lA)
→ Γ ⊢ t ~ u ↓! ℕ ^ ι ⁰
~atℕ t (A , lA , t~u) =
let whnfA , neT , neU = ne~↓! t~u
⊢A , ⊢t , ⊢u = syntacticEqTerm (soundness~↓! t~u)
_ , ⊢t∷ℕ , _ = syntacticEqTerm (soundness~↓! t)
l≡l , ⊢ℕ≡A = neTypeEq neT ⊢t∷ℕ ⊢t
A≡ℕ = ℕ≡A ⊢ℕ≡A whnfA
in PE.subst₂ (λ X Y → _ ⊢ _ ~ _ ↓! X ^ Y) A≡ℕ (PE.sym l≡l) t~u
~atU : ∀ {Γ t u r lU l}
→ Γ ⊢ t ~ t ↓! Univ r lU ^ l
→ (∃ λ A → ∃ λ lA → Γ ⊢ t ~ u ↓! A ^ lA)
→ Γ ⊢ t ~ u ↓! Univ r lU ^ l
~atU t (A , lA , t~u) =
let whnfA , neT , neU = ne~↓! t~u
⊢A , ⊢t , ⊢u = syntacticEqTerm (soundness~↓! t~u)
_ , ⊢t∷U , _ = syntacticEqTerm (soundness~↓! t)
l≡l , ⊢U≡A = neTypeEq neT ⊢t∷U ⊢t
A≡U = U≡A-whnf ⊢U≡A whnfA
in PE.subst₂ (λ X Y → _ ⊢ _ ~ _ ↓! X ^ Y) A≡U (PE.sym l≡l) t~u
convert~ : ∀ {Γ Δ A lA B lB t M lM}
→ ⊢ Γ ≡ Δ
→ (Γ ⊢ A ~ A ↓! U lA ^ next lA)
→ (Δ ⊢ B ~ B ↓! U lB ^ next lB)
→ (Γ ⊢ A ~ B ↓! M ^ lM)
→ (Δ ⊢ t [conv↑] t ∷ B ^ ι lB)
→ (Δ ⊢ t [conv↑] t ∷ A ^ ι lA)
convert~ Γ≡Δ A B A~B t =
let
whnfM , neA , neB = ne~↓! A~B
⊢M , ⊢A , ⊢B = syntacticEqTerm (soundness~↓! A~B)
_ , ⊢A₂ , _ = syntacticEqTerm (soundness~↓! A)
_ , ⊢B₂ , _ = syntacticEqTerm (soundness~↓! B)
lA≡lM , ⊢UA≡M = neTypeEq neA ⊢A₂ ⊢A
lM≡lB , ⊢M≡UA = neTypeEq neB ⊢B (stabilityTerm (symConEq Γ≡Δ) ⊢B₂)
lA≡lB = next-inj (PE.trans lA≡lM lM≡lB)
UA≡M = U≡A-whnf ⊢UA≡M whnfM
⊢A≡B = stabilityEq Γ≡Δ (univ (sym (soundness~↓! (PE.subst₂ (λ X Y → _ ⊢ _ ~ _ ↓! X ^ Y) UA≡M (PE.sym lA≡lM) A~B))))
in convConv↑Term (reflConEq (wfTerm ⊢B₂)) ⊢A≡B (PE.subst (λ X → _ ⊢ _ [conv↑] _ ∷ _ ^ ι X) (PE.sym lA≡lB) t)
mutual
-- Decidability of algorithmic equality of neutrals.
dec~↑! : ∀ {k l R T Γ Δ lR lT}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ k ~ k ↑! R ^ lR → Δ ⊢ l ~ l ↑! T ^ lT
→ Dec (∃ λ A → ∃ λ lA → Γ ⊢ k ~ l ↑! A ^ lA)
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (var-refl {m} ⊢y m≡m) with n ≟ m
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (var-refl {m} ⊢y m≡m) | yes PE.refl =
yes (_ , (_ , var-refl ⊢x n≡n))
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (var-refl {m} ⊢y m≡m) | no ¬p =
no λ (_ , (_ , eq)) → ¬p (strongVarEq eq)
dec~↑! Γ≡Δ (app-cong x~x t≡t) (app-cong y~y u≡u) with dec~↓! Γ≡Δ x~x y~y
dec~↑! Γ≡Δ (app-cong x~x t≡t) (app-cong y~y u≡u) | yes (A , lA , x~y) =
let
whnfA , neK , neK₀ = ne~↓! x~y
⊢A , ⊢k , ⊢k₀ = syntacticEqTerm (soundness~↓! x~y)
_ , ⊢k₁ , _ = syntacticEqTerm (soundness~↓! x~x)
_ , ⊢k₂ , _ = syntacticEqTerm (soundness~↓! y~y)
l₁≡lA , ΠFG≡A = neTypeEq neK ⊢k₁ ⊢k
l₂≡lA , ΠF′G′≡A = neTypeEq neK₀ (stabilityTerm (symConEq Γ≡Δ) ⊢k₂) ⊢k₀
l₂≡l₁ = ιinj (PE.trans l₂≡lA (PE.sym l₁≡lA))
ΠFG≡ΠF′G′ = trans ΠFG≡A (PE.subst (λ X → _ ⊢ _ ≡ _ ^ [ ! , ι X ]) l₂≡l₁ (sym ΠF′G′≡A))
F≡F′ , rF≡rF′ , lF≡lF′ , lG≡lG′ , G≡G′ = injectivity ΠFG≡ΠF′G′
⊢k₁′ = PE.subst₄ (λ X Y Z T → _ ⊢ _ ∷ Π _ ^ X ° Y ▹ _ ° Z ° T ^ [ ! , ι T ]) rF≡rF′ lF≡lF′ lG≡lG′ (PE.sym l₂≡l₁) ⊢k₁
F≡F″ = (PE.subst₂ (λ X Y → _ ⊢ _ ≡ _ ^ [ X , ι Y ]) rF≡rF′ lF≡lF′ F≡F′)
in PE.subst (λ X → Dec (∃ λ A → ∃ λ lA → _ ⊢ _ ∘ _ ^ X ~ _ ∘ _ ^ _ ↑! _ ^ _)) l₂≡l₁
(dec~↑!-app Γ≡Δ ⊢k₁′ ⊢k₂ x~y (decConv↑TermConv′ Γ≡Δ (PE.sym (PE.cong₂ (λ X Y → [ X , ι Y ]) rF≡rF′ lF≡lF′)) PE.refl F≡F″ t≡t u≡u))
dec~↑! Γ≡Δ (app-cong x~x t≡t) (app-cong y~y u≡u) | no ¬p =
no (λ { (_ , (_ , app-cong x′ y′)) → ¬p (_ , (_ , x′)) })
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = l₀} G b0 bS k₀)
with dec-level l l₀
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl
with decConv↑ (Γ≡Δ ∙ refl (univ (ℕⱼ (wfEqTerm (soundness~↓! k))))) F G
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | yes p
with decConv↑TermConv Γ≡Δ (substTypeEq (soundnessConv↑ p) (refl (zeroⱼ (wfEqTerm (soundness~↓! k))))) a0 b0
| decConv↑TermConv Γ≡Δ (sucCong (soundnessConv↑ p)) aS bS
| dec~↓! Γ≡Δ k k₀
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | yes p | yes p0 | yes pS | yes pK =
yes (_ , _ , natrec-cong p p0 pS (~atℕ k pK))
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | yes p | yes p0 | yes pS | no ¬pK =
no (λ { (_ , _ , natrec-cong x x₁ x₂ x₃) → ¬pK (_ , _ , x₃) })
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | yes p | yes p0 | no ¬pS | _ =
no (λ { (_ , _ , natrec-cong x x₁ x₂ x₃) → ¬pS x₂ })
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | yes p | no ¬p0 | _ | _ =
no (λ { (_ , _ , natrec-cong x x₁ x₂ x₃) → ¬p0 x₁ })
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = .l} G b0 bS k₀) | yes PE.refl | no ¬p =
no (λ { (_ , _ , natrec-cong x x₁ x₂ x₃) → ¬p x })
dec~↑! Γ≡Δ (natrec-cong {lF = l} F a0 aS k) (natrec-cong {lF = l₀} G b0 bS k₀) | no ¬p =
no (λ { (_ , .(ι l) , natrec-cong x x₁ x₂ x₃) → ¬p PE.refl })
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} {lEmpty = ll} F k) (Emptyrec-cong {ll = l₀} {lEmpty = ll₀} G k₀)
with dec-level l l₀ | dec-level ll ll₀
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} {lEmpty = ll} F k) (Emptyrec-cong {ll = .l} {lEmpty = .ll} G k₀) | yes PE.refl | yes PE.refl
with decConv↑ Γ≡Δ F G
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} {lEmpty = ll} F k) (Emptyrec-cong {ll = .l} {lEmpty = .ll} G k₀) | yes PE.refl | yes PE.refl | yes p =
let _ , ⊢k , _ = soundness~↑% k
_ , ⊢k₀ , _ = soundness~↑% k₀
⊢Γ = wfTerm ⊢k
in yes (_ , _ , Emptyrec-cong p (%~↑ ⊢k (stabilityTerm (symConEq Γ≡Δ) ⊢k₀)))
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} {lEmpty = ll} F k) (Emptyrec-cong {ll = .l} {lEmpty = .ll} G k₀) | yes PE.refl | yes PE.refl | no ¬p =
no (λ { (_ , .(ι l) , Emptyrec-cong x x₁) → ¬p x })
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} {lEmpty = ll} F k) (Emptyrec-cong {ll = .l} {lEmpty = ll₀} G k₀) | yes PE.refl | no ¬p =
no (λ { (_ , .(ι l) , Emptyrec-cong x x₁) → ¬p PE.refl })
dec~↑! Γ≡Δ (Emptyrec-cong {ll = l} F k) (Emptyrec-cong {ll = l₀} G k₀) | no ¬p | _ =
no (λ { (_ , .(ι l) , Emptyrec-cong x x₁) → ¬p PE.refl })
dec~↑! Γ≡Δ (Id-cong A t u) (Id-cong B v w) with dec~↓! Γ≡Δ A B
... | no ¬p = no λ { (.(SProp _) , .(next _) , Id-cong x x₁ x₂) → ¬p (_ , _ , x) }
... | yes (M , lM , A~B) with decConv↑Term Γ≡Δ t (convert~ Γ≡Δ A B A~B v) | decConv↑Term Γ≡Δ u (convert~ Γ≡Δ A B A~B w)
... | yes tv | yes uw = yes (_ , _ , Id-cong (~atU A (M , lM , A~B)) tv uw)
... | yes tv | no ¬uw =
no λ { (.(SProp _) , .(next _) , Id-cong x x₁ x₂) →
let
whnfU , neA , neB = ne~↓! x
⊢U , ⊢A , ⊢B = syntacticEqTerm (soundness~↓! x)
_ , ⊢A₂ , _ = syntacticEqTerm (soundness~↓! A)
nl≡nl , U≡U = neTypeEq neA ⊢A ⊢A₂
in ¬uw (PE.subst (λ X → _ ⊢ _ [conv↑] _ ∷ _ ^ ι X) (next-inj nl≡nl) x₂) }
... | no ¬tv | _ =
no λ { (.(SProp _) , .(next _) , Id-cong x x₁ x₂) →
let
whnfU , neA , neB = ne~↓! x
⊢U , ⊢A , ⊢B = syntacticEqTerm (soundness~↓! x)
_ , ⊢A₂ , _ = syntacticEqTerm (soundness~↓! A)
nl≡nl , U≡U = neTypeEq neA ⊢A ⊢A₂
in ¬tv (PE.subst (λ X → _ ⊢ _ [conv↑] _ ∷ _ ^ ι X) (next-inj nl≡nl) x₁) }
dec~↑! Γ≡Δ (Id-ℕ t u) (Id-ℕ v w) with dec~↓! Γ≡Δ t v | decConv↑Term Γ≡Δ u w
... | yes tv | yes uw = yes (_ , _ , Id-ℕ (~atℕ t tv) uw)
... | yes tv | no ¬uw = no λ { (_ , _ , Id-ℕ x x₁) → ¬uw x₁ }
... | no ¬tv | _ = no λ { (_ , _ , Id-ℕ x x₁) → ¬tv (_ , _ , x) }
dec~↑! Γ≡Δ (Id-ℕ0 t) (Id-ℕ0 u) with dec~↓! Γ≡Δ t u
... | yes tu = yes (_ , _ , Id-ℕ0 (~atℕ t tu))
... | no ¬tu = no λ { (_ , _ , Id-ℕ0 x) → ¬tu (_ , _ , x) }
dec~↑! Γ≡Δ (Id-ℕS t u) (Id-ℕS v w) with decConv↑Term Γ≡Δ t v | dec~↓! Γ≡Δ u w
... | yes tv | yes uw = yes (_ , _ , Id-ℕS tv (~atℕ u uw))
... | yes tv | no ¬uw = no λ { (_ , _ , Id-ℕS x x₁) → ¬uw (_ , _ , x₁) }
... | no ¬tv | _ = no λ { (_ , _ , Id-ℕS x x₁) → ¬tv x }
dec~↑! Γ≡Δ (Id-U t u) (Id-U v w) with dec~↓! Γ≡Δ t v | decConv↑Term Γ≡Δ u w
... | yes tv | yes uw = yes (_ , _ , Id-U (~atU t tv) uw)
... | yes tv | no ¬uw = no λ { (_ , _ , Id-U x x₁) → ¬uw x₁ }
... | no ¬tv | _ = no λ { (_ , _ , Id-U x x₁) → ¬tv (_ , _ , x) }
dec~↑! Γ≡Δ (Id-Uℕ t) (Id-Uℕ u) with dec~↓! Γ≡Δ t u
... | yes tu = yes (_ , _ , Id-Uℕ (~atU t tu))
... | no ¬tu = no λ { (_ , _ , Id-Uℕ x) → ¬tu (_ , _ , x) }
dec~↑! Γ≡Δ (Id-UΠ {rA = r} t u) (Id-UΠ {rA = r′} v w) with dec-relevance r r′ | decConv↑Term Γ≡Δ t v | dec~↓! Γ≡Δ u w
... | yes PE.refl | yes tv | yes uw = yes (_ , _ , Id-UΠ tv (~atU u uw))
... | yes PE.refl | yes tv | no ¬uw = no λ { (_ , _ , Id-UΠ x x₁) → ¬uw (_ , _ , x₁) }
... | yes PE.refl | no ¬tv | _ = no λ { (_ , _ , Id-UΠ x x₁) → ¬tv x }
... | no ¬p | _ | _ = no λ { (_ , _ , Id-UΠ x x₁) → ¬p PE.refl }
dec~↑! Γ≡Δ (cast-cong A B t eAB _) (cast-cong C D u eCD _)
with dec~↓! Γ≡Δ A C | decConv↑Term Γ≡Δ B D
... | no ¬AC | _ = no λ { (_ , _ , cast-cong x x₁ x₂ x₃ x₄) → ¬AC (_ , _ , x) }
... | yes AC | no ¬BD = no λ { (_ , _ , cast-cong x x₁ x₂ x₃ x₄) → ¬BD x₁ }
... | yes (_ , _ , A~C) | yes BD with decConv↑Term Γ≡Δ t (convert~ Γ≡Δ A C A~C u)
... | yes p = yes (_ , _ , cast-cong (~atU A (_ , _ , A~C)) BD p eAB (stabilityTerm (symConEq Γ≡Δ) eCD))
... | no ¬p = no λ { (_ , _ , cast-cong x x₁ x₂ x₃ x₄) → ¬p x₂ }
dec~↑! Γ≡Δ (cast-ℕ A t eℕA _) (cast-ℕ B u eℕB _)
with dec~↓! Γ≡Δ A B | decConv↑Term Γ≡Δ t u
... | yes AB | yes tu = yes (_ , _ , cast-ℕ (~atU A AB) tu eℕA (stabilityTerm (symConEq Γ≡Δ) eℕB))
... | yes AB | no ¬tu = no λ { (_ , _ , cast-ℕ x x₁ x₂ x₃) → ¬tu x₁ }
... | no ¬AB | _ = no λ { (_ , _ , cast-ℕ x x₁ x₂ x₃) → ¬AB (_ , _ , x) }
dec~↑! Γ≡Δ (cast-ℕℕ t eℕℕ _) (cast-ℕℕ u eℕℕ′ _) with dec~↓! Γ≡Δ t u
... | yes tu = yes (_ , _ , cast-ℕℕ (~atℕ t tu) eℕℕ (stabilityTerm (symConEq Γ≡Δ) eℕℕ′))
... | no ¬tu = no λ { (_ , _ , cast-ℕℕ x x₁ x₂) → ¬tu (_ , _ , x) }
dec~↑! Γ≡Δ (cast-Π {rA = r} Π A t eΠA _) (cast-Π {rA = r′} Π′ B u eΠB _)
with dec-relevance r r′ | decConv↑Term Γ≡Δ Π Π′ | dec~↓! Γ≡Δ A B
... | no ¬p | _ | _ = no λ { (_ , _ , cast-Π x x₁ x₂ x₃ x₄) → ¬p PE.refl }
... | yes PE.refl | no ¬ΠΠ′ | _ = no λ { (_ , _ , cast-Π x x₁ x₂ x₃ x₄) → ¬ΠΠ′ x }
... | yes PE.refl | yes ΠΠ′ | no ¬AB = no λ { (_ , _ , cast-Π x x₁ x₂ x₃ x₄) → ¬AB (_ , _ , x₁) }
... | yes PE.refl | yes ΠΠ′ | yes AB with decConv↑TermConv Γ≡Δ (univ (soundnessConv↑Term ΠΠ′)) t u
... | yes p = yes (_ , _ , cast-Π ΠΠ′ (~atU A AB) p eΠA (stabilityTerm (symConEq Γ≡Δ) eΠB))
... | no ¬p = no λ { (_ , _ , cast-Π x x₁ x₂ x₃ x₄) → ¬p x₂ }
dec~↑! Γ≡Δ (cast-Πℕ {rA = r} Π t eΠℕ _) (cast-Πℕ {rA = r′} Π′ u eΠℕ′ _)
with dec-relevance r r′ | decConv↑Term Γ≡Δ Π Π′
... | no ¬p | _ = no λ { (_ , _ , cast-Πℕ x x₁ x₂ x₃) → ¬p PE.refl }
... | yes PE.refl | no ¬ΠΠ′ = no λ { (_ , _ , cast-Πℕ x x₁ x₂ x₃) → ¬ΠΠ′ x }
... | yes PE.refl | yes ΠΠ′ with decConv↑TermConv Γ≡Δ (univ (soundnessConv↑Term ΠΠ′)) t u
... | yes p = yes (_ , _ , cast-Πℕ ΠΠ′ p eΠℕ (stabilityTerm (symConEq Γ≡Δ) eΠℕ′))
... | no ¬p = no λ { (_ , _ , cast-Πℕ x x₁ x₂ x₃) → ¬p x₁ }
dec~↑! Γ≡Δ (cast-ℕΠ {rA = r} Π t eΠℕ _) (cast-ℕΠ {rA = r′} Π′ u eΠℕ′ _)
with dec-relevance r r′ | decConv↑Term Γ≡Δ Π Π′ | decConv↑Term Γ≡Δ t u
... | no ¬p | _ | _ = no λ { (_ , _ , cast-ℕΠ x x₁ x₂ x₃) → ¬p PE.refl }
... | yes PE.refl | no ¬ΠΠ′ | _ = no λ { (_ , _ , cast-ℕΠ x x₁ x₂ x₃) → ¬ΠΠ′ x }
... | yes PE.refl | yes ΠΠ′ | no ¬p = no λ { (_ , _ , cast-ℕΠ x x₁ x₂ x₃) → ¬p x₁ }
... | yes PE.refl | yes ΠΠ′ | yes p = yes (_ , _ , cast-ℕΠ ΠΠ′ p eΠℕ (stabilityTerm (symConEq Γ≡Δ) eΠℕ′))
dec~↑! Γ≡Δ (cast-ΠΠ%! A B t eAB _) (cast-ΠΠ%! C D u eCD _)
with decConv↑Term Γ≡Δ A C | decConv↑Term Γ≡Δ B D
... | no ¬AC | _ = no λ { (_ , _ , cast-ΠΠ%! x x₁ x₂ x₃ x₄) → ¬AC x }
... | yes AC | no ¬BD = no λ { (_ , _ , cast-ΠΠ%! x x₁ x₂ x₃ x₄) → ¬BD x₁ }
... | yes AC | yes BD with decConv↑TermConv Γ≡Δ (univ (soundnessConv↑Term AC)) t u
... | yes p = yes (_ , _ , cast-ΠΠ%! AC BD p eAB (stabilityTerm (symConEq Γ≡Δ) eCD))
... | no ¬p = no λ { (_ , _ , cast-ΠΠ%! x x₁ x₂ x₃ x₄) → ¬p x₂ }
dec~↑! Γ≡Δ (cast-ΠΠ!% A B t eAB _) (cast-ΠΠ!% C D u eCD _)
with decConv↑Term Γ≡Δ A C | decConv↑Term Γ≡Δ B D
... | no ¬AC | _ = no λ { (_ , _ , cast-ΠΠ!% x x₁ x₂ x₃ x₄) → ¬AC x }
... | yes AC | no ¬BD = no λ { (_ , _ , cast-ΠΠ!% x x₁ x₂ x₃ x₄) → ¬BD x₁ }
... | yes AC | yes BD with decConv↑TermConv Γ≡Δ (univ (soundnessConv↑Term AC)) t u
... | yes p = yes (_ , _ , cast-ΠΠ!% AC BD p eAB (stabilityTerm (symConEq Γ≡Δ) eCD))
... | no ¬p = no λ { (_ , _ , cast-ΠΠ!% x x₁ x₂ x₃ x₄) → ¬p x₂ }
-- antidiagonal cases
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (app-cong x~x t≡t) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (natrec-cong x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Emptyrec-cong x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-cong x x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-ℕ x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-ℕ0 x) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-ℕS x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-U x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-Uℕ x) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (Id-UΠ x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-cong x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-ℕ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-ℕℕ x x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-Π x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-Πℕ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-ℕΠ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-ΠΠ%! x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (var-refl {n} ⊢x n≡n) (cast-ΠΠ!% x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (var-refl x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (natrec-cong x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Emptyrec-cong x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-cong x x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-ℕ x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-ℕ0 x) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-ℕS x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-U x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-Uℕ x) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (Id-UΠ x x₁) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-cong x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-ℕ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-ℕℕ x x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-Π x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-Πℕ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-ℕΠ x x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-ΠΠ%! x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (app-cong x~x t≡t) (cast-ΠΠ!% x x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (var-refl x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (app-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Emptyrec-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-cong x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-ℕ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-ℕ0 x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-ℕS x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-U x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-Uℕ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (Id-UΠ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-cong x₄ x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-ℕ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-ℕℕ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-Πℕ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-ℕΠ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-ΠΠ%! x₄ x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (natrec-cong x x₁ x₂ x₃) (cast-ΠΠ!% x₄ x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (var-refl x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-cong x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-ℕ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-ℕ0 x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-ℕS x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-U x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-Uℕ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (Id-UΠ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-cong x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-ℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-ℕℕ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-Π x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-Πℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-ℕΠ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-ΠΠ%! x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Emptyrec-cong x x₁) (cast-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (var-refl x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (app-cong x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (natrec-cong x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Emptyrec-cong x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-ℕ x₃ x₄) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → Idℕ-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-ℕ0 x₃) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → Idℕ-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-ℕS x₃ x₄) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → Idℕ-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-U x₃ x₄) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → IdU-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-Uℕ x₃) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → IdU-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (Id-UΠ x₃ x₄) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → IdU-elim neA e }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-cong x₃ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-ℕ x₃ x₄ x₅ e) = no λ { (_ , _ , ()) }
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-ℕℕ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-Π x₃ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-Πℕ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-ℕΠ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-ΠΠ%! x₃ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-cong x x₁ x₂) (cast-ΠΠ!% x₃ x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (var-refl x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-cong x₂ x₃ x₄) =
let _ , neA , _ = ne~↓! x₂ in no λ { ( _ , ( _ , e )) → Idℕ-elim' neA e }
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-ℕ0 x₂) =
let _ , net , _ = ne~↓! x in no (λ { ( _ , ( _ , e )) → Idℕ0-elim net e })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-ℕS x₂ x₃) =
let _ , net , _ = ne~↓! x in no (λ { ( _ , ( _ , e )) → IdℕS-elim net e })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-U x₂ x₃) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-Uℕ x₂) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ x x₁) (Id-UΠ x₂ x₃) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-cong x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-ℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-ℕℕ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-Π x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-Πℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-ℕΠ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-ΠΠ%! x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ x x₁) (cast-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (var-refl x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (app-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (natrec-cong x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (Emptyrec-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-cong x₁ x₂ x₃) =
let _ , neA , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → Idℕ-elim' neA e }
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-ℕ x₁ x₂) =
let _ , net , _ = ne~↓! x₁ in no (λ { ( _ , ( _ , e )) → Idℕ0-elim' net e })
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-ℕS x₁ x₂) = no λ { ( _ , ( _ , e )) → Idℕ0S-elim e }
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-U x₁ x₂) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-Uℕ x₁) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ0 x) (Id-UΠ x₁ x₂) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-cong x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-ℕ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-ℕℕ x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-Π x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-Πℕ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-ℕΠ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-ΠΠ%! x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕ0 x) (cast-ΠΠ!% x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (var-refl x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-cong x₂ x₃ x₄) =
let _ , neA , _ = ne~↓! x₂ in no λ { ( _ , ( _ , e )) → Idℕ-elim' neA e }
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-ℕ x₂ x₃) =
let _ , net , _ = ne~↓! x₂ in no (λ { ( _ , ( _ , e )) → IdℕS-elim' net e })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-ℕ0 x₂) = no λ { ( _ , ( _ , e )) → Idℕ0S-elim' e }
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-U x₂ x₃) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-Uℕ x₂) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕS x x₁) (Id-UΠ x₂ x₃) = no λ { ( _ , ( _ , e )) → IdℕU-elim e }
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-cong x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-ℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-ℕℕ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-Π x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-Πℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-ℕΠ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-ΠΠ%! x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-ℕS x x₁) (cast-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (var-refl x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (Id-cong x₂ x₃ x₄) =
let _ , neA , _ = ne~↓! x₂ in no λ { ( _ , ( _ , e )) → IdU-elim' neA e }
dec~↑! Γ≡Δ (Id-U x x₁) (Id-ℕ x₂ x₃) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-U x x₁) (Id-ℕ0 x₂) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-U x x₁) (Id-ℕS x₂ x₃) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-U x x₁) (Id-Uℕ x₂) = let _ , net , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → IdUUℕ-elim net e }
dec~↑! Γ≡Δ (Id-U x x₁) (Id-UΠ x₂ x₃) = let _ , net , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → IdUUΠ-elim net e }
dec~↑! Γ≡Δ (Id-U x x₁) (cast-cong x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-ℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-ℕℕ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-Π x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-Πℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-ℕΠ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-ΠΠ%! x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-U x x₁) (cast-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (var-refl x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (app-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (natrec-cong x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (Emptyrec-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-cong x₁ x₂ x₃) =
let _ , neA , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → IdU-elim' neA e }
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-ℕ x₁ x₂) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-ℕ0 x₁) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-ℕS x₁ x₂) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-U x₁ x₂) = let _ , net , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → IdUUℕ-elim' net e }
dec~↑! Γ≡Δ (Id-Uℕ x) (Id-UΠ x₁ x₂) = no λ { ( _ , ( _ , e )) → IdUUΠℕ-elim' e }
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-cong x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-ℕ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-ℕℕ x₁ x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-Π x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-Πℕ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-ℕΠ x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-ΠΠ%! x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-Uℕ x) (cast-ΠΠ!% x₁ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (var-refl x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-cong x₂ x₃ x₄) =
let _ , neA , _ = ne~↓! x₂ in no λ { ( _ , ( _ , e )) → IdU-elim' neA e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-ℕ x₂ x₃) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-ℕ0 x₂) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-ℕS x₂ x₃) = no λ { ( _ , ( _ , e )) → IdUℕ-elim e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-U x₂ x₃) = let _ , net , _ = ne~↓! x₂ in no λ { ( _ , ( _ , e )) → IdUUΠ-elim' net e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (Id-Uℕ x₂) = no λ { ( _ , ( _ , e )) → IdUUΠℕ-elim e }
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-cong x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-ℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-ℕℕ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-Π x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-Πℕ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-ℕΠ x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-ΠΠ%! x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (Id-UΠ x x₁) (cast-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (var-refl x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (app-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (natrec-cong x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Emptyrec-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-cong x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-ℕ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-ℕ0 x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-ℕS x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-U x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-Uℕ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (Id-UΠ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-ℕ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castℕ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-ℕℕ x₅ x₆ x₇) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castℕ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-Π x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castΠ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-Πℕ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castΠ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-ℕΠ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castℕ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-ΠΠ%! x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castΠ-elim neA e }
dec~↑! Γ≡Δ (cast-cong x x₁ x₂ x₃ x₄) (cast-ΠΠ!% x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castΠ-elim neA e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (var-refl x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (app-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (natrec-cong x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Emptyrec-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-cong x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-ℕ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-ℕ0 x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-ℕS x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-U x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-Uℕ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (Id-UΠ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-cong x₄ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x₄ in no λ { ( _ , ( _ , e )) → castℕ-elim' neA e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-ℕℕ x₄ x₅ x₆) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castℕℕ-elim neA e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-Πℕ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-ℕΠ x₄ x₅ x₆ x₇) =
let _ , neA , _ = ne~↓! x in no λ { ( _ , ( _ , e )) → castℕneΠ-elim neA e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-ΠΠ%! x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕ x x₁ x₂ x₃) (cast-ΠΠ!% x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (var-refl x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (app-cong x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (natrec-cong x₃ x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Emptyrec-cong x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-cong x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-ℕ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-ℕ0 x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-ℕS x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-U x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-Uℕ x₃) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (Id-UΠ x₃ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-cong x₃ x₄ x₅ x₆ x₇) =
let _ , neA , _ = ne~↓! x₃ in no λ { ( _ , ( _ , e )) → castℕ-elim' neA e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-ℕ x₃ x₄ x₅ x₆) =
let _ , neA , _ = ne~↓! x₃ in no λ { ( _ , ( _ , e )) → castℕℕ-elim' neA e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-Π x₃ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-Πℕ x₃ x₄ x₅ x₆) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-ℕΠ x₃ x₄ x₅ x₆) = no λ { ( _ , ( _ , e )) → castℕℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-ΠΠ%! x₃ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕℕ x x₁ x₂) (cast-ΠΠ!% x₃ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (var-refl x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (app-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (natrec-cong x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Emptyrec-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-cong x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-ℕ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-ℕ0 x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-ℕS x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-U x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-Uℕ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (Id-UΠ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-cong x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₅ in no λ { ( _ , ( _ , e )) → castΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-ℕ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-ℕℕ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-Πℕ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → castΠneℕ-elim neA e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-ℕΠ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Π {rA = rA} x x₁ x₂ x₃ x₄) (cast-ΠΠ%! x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → castΠneΠ-elim neA e }
dec~↑! Γ≡Δ (cast-Π x x₁ x₂ x₃ x₄) (cast-ΠΠ!% x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₁ in no λ { ( _ , ( _ , e )) → castΠneΠ-elim neA e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (var-refl x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (app-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (natrec-cong x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Emptyrec-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-cong x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-ℕ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-ℕ0 x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-ℕS x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-U x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-Uℕ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (Id-UΠ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-cong x₄ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x₄ in no λ { ( _ , ( _ , e )) → castΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-ℕ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-ℕℕ x₄ x₅ x₆) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x₅ in no λ { ( _ , ( _ , e )) → castΠneℕ-elim' neA e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-ℕΠ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-ΠΠ%! x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castΠΠℕ-elim e }
dec~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-ΠΠ!% x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castΠΠℕ-elim e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (var-refl x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (app-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (natrec-cong x₄ x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Emptyrec-cong x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-cong x₄ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-ℕ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-ℕ0 x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-ℕS x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-U x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-Uℕ x₄) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (Id-UΠ x₄ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-cong x₄ x₅ x₆ x₇ x₈) =
let _ , neA , _ = ne~↓! x₄ in no λ { ( _ , ( _ , e )) → castℕ-elim' neA e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-ℕ x₄ x₅ x₆ x₇) =
let _ , neA , _ = ne~↓! x₄ in no λ { ( _ , ( _ , e )) → castℕneΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-ℕℕ x₄ x₅ x₆) = no λ { ( _ , ( _ , e )) → castℕℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-Πℕ x₄ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-ΠΠ%! x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-ΠΠ!% x₄ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (var-refl x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (app-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (natrec-cong x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Emptyrec-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-cong x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-ℕ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-ℕ0 x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-ℕS x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-U x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-Uℕ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (Id-UΠ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-cong x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₅ in no λ { ( _ , ( _ , e )) → castΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-ℕ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-ℕℕ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-Π x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₆ in no λ { ( _ , ( _ , e )) → castΠneΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-Πℕ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castΠΠℕ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-ℕΠ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-ΠΠ!% x₅ x₆ x₇ x₈ x₉) = no λ { ( _ , ( _ , e )) → castΠΠ%!-elim e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (var-refl x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (app-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (natrec-cong x₅ x₆ x₇ x₈) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Emptyrec-cong x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-cong x₅ x₆ x₇) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-ℕ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-ℕ0 x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-ℕS x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-U x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-Uℕ x₅) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (Id-UΠ x₅ x₆) = no (λ { (_ , ()) })
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-cong x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₅ in no λ { ( _ , ( _ , e )) → castΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-ℕ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-ℕℕ x₅ x₆ x₇) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-Π x₅ x₆ x₇ x₈ x₉) =
let _ , neA , _ = ne~↓! x₆ in no λ { ( _ , ( _ , e )) → castΠneΠ-elim' neA e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-Πℕ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castΠΠℕ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-ℕΠ x₅ x₆ x₇ x₈) = no λ { ( _ , ( _ , e )) → castℕΠ-elim' e }
dec~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-ΠΠ%! x₅ x₆ x₇ x₈ x₉) = no λ { ( _ , ( _ , e )) → castΠΠ!%-elim e }
-- Decidability of algorithmic equality of neutrals with types in WHNF.
dec~↓! : ∀ {k l R T Γ Δ lR lT}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ k ~ k ↓! R ^ lR → Δ ⊢ l ~ l ↓! T ^ lT
→ Dec (∃ λ A → ∃ λ lA → Γ ⊢ k ~ l ↓! A ^ lA)
dec~↓! Γ≡Δ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁)
with dec~↑! Γ≡Δ k~l k~l₁
dec~↓! Γ≡Δ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁)
| yes (B , lB , k~l₂) =
let ⊢B , _ , _ = syntacticEqTerm (soundness~↑! k~l₂)
C , whnfC , D′ = whNorm ⊢B
in yes (C , _ , [~] B (red D′) whnfC k~l₂)
dec~↓! Γ≡Δ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁)
| no ¬p =
no (λ { (A₂ , _ , [~] A₃ D₂ whnfB₂ k~l₂) → ¬p (A₃ , _ , k~l₂) })
-- Decidability of algorithmic equality of types.
decConv↑ : ∀ {A B r Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A [conv↑] A ^ r → Δ ⊢ B [conv↑] B ^ r
→ Dec (Γ ⊢ A [conv↑] B ^ r)
decConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″)
rewrite whrDet* (D , whnfA′) (D′ , whnfB′)
| whrDet* (D₁ , whnfA″) (D″ , whnfB″)
with decConv↓ Γ≡Δ A′<>B′ A′<>B″
decConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) | yes p =
yes ([↑] B′ B″ D′ (stabilityRed* (symConEq Γ≡Δ) D″) whnfB′ whnfB″ p)
decConv↑ {r = r} Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) | no ¬p =
no (λ { ([↑] A‴ B‴ D₂ D‴ whnfA‴ whnfB‴ A′<>B‴) →
let A‴≡B′ = whrDet* (D₂ , whnfA‴) (D′ , whnfB′)
B‴≡B″ = whrDet* (D‴ , whnfB‴)
(stabilityRed* (symConEq Γ≡Δ) D″ , whnfB″)
in ¬p (PE.subst₂ (λ x y → _ ⊢ x [conv↓] y ^ r) A‴≡B′ B‴≡B″ A′<>B‴) })
-- Decidability of algorithmic equality of types in WHNF.
decConv↓ : ∀ {A B r Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A [conv↓] A ^ r → Δ ⊢ B [conv↓] B ^ r
→ Dec (Γ ⊢ A [conv↓] B ^ r)
decConv↓ Γ≡Δ (U-refl {r = r} x x₁) (U-refl {r = r′} x₂ x₃) with dec-relevance r r′
... | yes p = yes (U-refl p x₁)
... | no ¬p = no λ p → ¬p (proj₁ (Uinjectivity (soundnessConv↓ p)))
decConv↓ Γ≡Δ (univ x) (univ x₁) with decConv↓Term Γ≡Δ x x₁
... | yes p = yes (univ p)
... | no ¬p = no (λ { (univ x) → ¬p x })
-- Decidability of algorithmic equality of terms.
decConv↑Term : ∀ {t u A Γ Δ l}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ t [conv↑] t ∷ A ^ l → Δ ⊢ u [conv↑] u ∷ A ^ l
→ Dec (Γ ⊢ t [conv↑] u ∷ A ^ l)
decConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
rewrite whrDet* (D , whnfB) (stabilityRed* (symConEq Γ≡Δ) D₁ , whnfB₁)
| whrDet*Term (d , whnft′) (d′ , whnfu′)
| whrDet*Term (d₁ , whnft″) (d″ , whnfu″)
with decConv↓Term Γ≡Δ t<>u t<>u₁
decConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
| yes p =
let Δ≡Γ = symConEq Γ≡Δ
in yes ([↑]ₜ B₁ u′ u″ (stabilityRed* Δ≡Γ D₁)
d′ (stabilityRed*Term Δ≡Γ d″) whnfB₁ whnfu′ whnfu″ p)
decConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
| no ¬p =
no (λ { ([↑]ₜ B₂ t‴ u‴ D₂ d₂ d‴ whnfB₂ whnft‴ whnfu‴ t<>u₂) →
let B₂≡B₁ = whrDet* (D₂ , whnfB₂)
(stabilityRed* (symConEq Γ≡Δ) D₁ , whnfB₁)
t‴≡u′ = whrDet*Term (d₂ , whnft‴)
(PE.subst (λ x → _ ⊢ _ ⇒* _ ∷ x ^ _) (PE.sym B₂≡B₁) d′
, whnfu′)
u‴≡u″ = whrDet*Term (d‴ , whnfu‴)
(PE.subst (λ x → _ ⊢ _ ⇒* _ ∷ x ^ _)
(PE.sym B₂≡B₁)
(stabilityRed*Term (symConEq Γ≡Δ) d″)
, whnfu″)
in ¬p (PE.subst₃ (λ x y z → _ ⊢ x [conv↓] y ∷ z ^ _)
t‴≡u′ u‴≡u″ B₂≡B₁ t<>u₂) })
-- Decidability of algorithmic equality of terms in WHNF.
decConv↓Term : ∀ {t u A Γ Δ l}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ t [conv↓] t ∷ A ^ l → Δ ⊢ u [conv↓] u ∷ A ^ l
→ Dec (Γ ⊢ t [conv↓] u ∷ A ^ l)
decConv↓Term Γ≡Δ (U-refl {r = r} _ x) (U-refl {r = r′} _ x₁)
with dec-relevance r r′
... | yes p = yes (U-refl p x)
... | no ¬p = no λ p → ¬p (proj₁ (Uinjectivity (univ (soundnessConv↓Term p))))
decConv↓Term Γ≡Δ (ne K) (ne K₁)
with dec~↓! Γ≡Δ K K₁
... | yes (A , lA , K~K₁) = yes (ne (~atU K (A , lA , K~K₁)))
... | no ¬p = no (λ { x → ¬p (Univ _ _ , _ , decConv↓Term-U-ins x K) })
decConv↓Term Γ≡Δ (ℕ-refl x) (ℕ-refl x₁) = yes (ℕ-refl x)
decConv↓Term Γ≡Δ (Empty-refl {l = l} x x₁) (Empty-refl {l = l′} x₂ x₃)
with dec-level l l′
... | yes PE.refl = yes (Empty-refl x x₁)
... | no ¬p = no (λ { (Empty-refl x x₁) → ¬p PE.refl })
decConv↓Term Γ≡Δ (Π-cong {rF = rF} {lF = lF} {lG = lG} {lΠ = l} l≡ rF≡rF lF≡lF lG≡lG lF< lG< ⊢F F G)
(Π-cong {rF = rH} {lF = lH} {lG = lE} {lΠ = l′} l′≡ _ _ _ _ _ ⊢H H E)
with dec-relevance rF rH | dec-level lF lH | dec-level lG lE | dec-level l l′
... | yes PE.refl | yes PE.refl | yes PE.refl | no ¬p = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p PE.refl }
... | yes PE.refl | yes PE.refl | no ¬p | _ = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p x₃ }
... | yes PE.refl | no ¬p | _ | _ = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p x₂ }
... | no ¬p | _ | _ | _ = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p x₁ }
... | yes PE.refl | yes PE.refl | yes PE.refl | yes PE.refl
with decConv↑Term Γ≡Δ F H
... | no ¬p = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p x₇ }
... | yes pFH
with decConv↑Term (Γ≡Δ ∙ univ (soundnessConv↑Term pFH)) G E
... | no ¬p = no λ { (Π-cong x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) → ¬p x₈ }
... | yes pGE = yes (Π-cong l≡ rF≡rF lF≡lF lG≡lG lF< lG< ⊢F pFH pGE)
decConv↓Term Γ≡Δ (∃-cong {l = l} l≡ ⊢F F G) (∃-cong {l = l′} _ ⊢H H E)
with dec-level l l′
... | no ¬p = no λ { (∃-cong x x₁ x₂ x₃) → ¬p PE.refl }
... | yes PE.refl
with decConv↑Term Γ≡Δ F H
... | no ¬p = no λ { (∃-cong x x₁ x₂ x₃) → ¬p x₂ }
... | yes pFH
with decConv↑Term (Γ≡Δ ∙ univ (soundnessConv↑Term pFH)) G E
... | no ¬p = no λ { (∃-cong x x₁ x₂ x₃) → ¬p x₃ }
... | yes pGE = yes (∃-cong l≡ ⊢F pFH pGE)
decConv↓Term Γ≡Δ (ℕ-ins K) (ℕ-ins K₁)
with dec~↓! Γ≡Δ K K₁
... | yes p = yes (ℕ-ins (~atℕ K p))
... | no ¬p = no λ x → ¬p (ℕ , _ , decConv↓Term-ℕ-ins x K)
decConv↓Term Γ≡Δ (ne-ins ⊢k _ neA k) (ne-ins ⊢k₁ _ _ k₁)
with dec~↓! Γ≡Δ k k₁
... | yes (B , lB , k~k₁) =
let whnfB , neK , neK₁ = ne~↓! k~k₁
_ , ⊢k∷B , _ = syntacticEqTerm (soundness~↓! k~k₁)
l≡l , ⊢A≡B = neTypeEq neK ⊢k∷B ⊢k
in yes (ne-ins ⊢k (stabilityTerm (symConEq Γ≡Δ) ⊢k₁) neA (PE.subst (λ X → _ ⊢ _ ~ _ ↓! _ ^ X) l≡l k~k₁))
... | no ¬p = no λ x → ¬p (decConv↓Term-ne-ins neA x)
decConv↓Term Γ≡Δ (zero-refl x) (zero-refl x₁) = yes (zero-refl x)
decConv↓Term Γ≡Δ (suc-cong m) (suc-cong n)
with decConv↑Term Γ≡Δ m n
... | yes p = yes (suc-cong p)
... | no ¬p = no λ { (suc-cong x) → ¬p x }
decConv↓Term Γ≡Δ (η-eq lF< lG< ⊢F ⊢f _ funf _ f) (η-eq _ _ _ ⊢g _ fung _ g)
with decConv↑Term (Γ≡Δ ∙ refl ⊢F) f g
... | yes p = yes (η-eq lF< lG< ⊢F ⊢f (stabilityTerm (symConEq Γ≡Δ) ⊢g) funf fung p)
... | no ¬p = no (λ { (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) → ¬p x₇ })
decConv↓Term Γ≡Δ (U-refl x x₁) (ne x₂) =
no (λ x₃ → decConv↓Term-U (symConv↓Term Γ≡Δ x₃) x₂ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (U-refl x x₁) (Π-cong x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) = no λ { (ne ()) }
decConv↓Term Γ≡Δ (ne x) (U-refl x₁ x₂) =
no (λ x₃ → decConv↓Term-U x₃ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ne x) (ℕ-refl x₁) =
no (λ x₃ → decConv↓Term-U x₃ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ne x) (Empty-refl x₁ x₂) =
no (λ x₃ → decConv↓Term-U x₃ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ne x) (Π-cong x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉) =
no (λ x₃ → decConv↓Term-U x₃ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ne x) (∃-cong x₁ x₂ x₃ x₄) =
no (λ x₃ → decConv↓Term-U x₃ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ℕ-refl x) (ne x₁) =
no (λ x₃ → decConv↓Term-U (symConv↓Term Γ≡Δ x₃) x₁ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ℕ-refl x) (Π-cong x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (Empty-refl x x₁) (ne x₂) =
no (λ x₃ → decConv↓Term-U (symConv↓Term Γ≡Δ x₃) x₂ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (Empty-refl x x₁) (Π-cong x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (Empty-refl x x₁) (∃-cong x₂ x₃ x₄ x₅) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (Π-cong l x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (U-refl x₈ x₉) = no λ { (ne ()) }
decConv↓Term Γ≡Δ (Π-cong l x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ne x₈) =
no (λ x₉ → decConv↓Term-U (symConv↓Term Γ≡Δ x₉) x₈ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (Π-cong l x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ℕ-refl x₈) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (Π-cong l x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (Empty-refl x₈ x₉) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (Π-cong l x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (∃-cong x₈ x₉ x₁₀ x₁₁) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (∃-cong l x x₁ x₂) (ne x₃) =
no (λ x₉ → decConv↓Term-U (symConv↓Term Γ≡Δ x₉) x₃ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (∃-cong l x x₁ x₂) (Empty-refl x₃ x₄) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (∃-cong l x x₁ x₂) (Π-cong x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) = no λ { (ne ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (ℕ-ins x) (zero-refl x₁) =
no (λ x₂ → decConv↓Term-ℕ x₂ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ℕ-ins x) (suc-cong x₁) =
no (λ x₂ → decConv↓Term-ℕ x₂ x (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (ne x₄)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (ℕ-refl x₄)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (Empty-refl x₄ x₅)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (Π-cong x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (∃-cong x₄ x₅ x₆ x₇)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (ℕ-ins x₄)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (zero-refl x₄)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (suc-cong x₄)
decConv↓Term Γ≡Δ (ne-ins x x₁ () x₃) (η-eq x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁)
decConv↓Term Γ≡Δ (zero-refl x) (ℕ-ins x₁) =
no (λ x₂ → decConv↓Term-ℕ (symConv↓Term Γ≡Δ x₂) x₁ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (zero-refl x) (suc-cong x₁) = no λ { (ℕ-ins ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (suc-cong x) (ℕ-ins x₁) =
no (λ x₂ → decConv↓Term-ℕ (symConv↓Term Γ≡Δ x₂) x₁ (λ { ([~] A D whnfB ()) }))
decConv↓Term Γ≡Δ (suc-cong x) (zero-refl x₁) = no λ { (ℕ-ins ()) ; (ne-ins x x₁ () x₃) }
decConv↓Term Γ≡Δ (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ne-ins x₈ x₉ () x₁₁)
-- Decidability of algorithmic equality of terms of equal types.
decConv↑TermConv : ∀ {t u A B r Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A ≡ B ^ r
→ Γ ⊢ t [genconv↑] t ∷ A ^ r
→ Δ ⊢ u [genconv↑] u ∷ B ^ r
→ Dec (Γ ⊢ t [genconv↑] u ∷ A ^ r)
decConv↑TermConv {r = [ ! , l ]} Γ≡Δ A≡B t u =
decConv↑Term Γ≡Δ t (convConvTerm u (stabilityEq Γ≡Δ (sym A≡B)))
decConv↑TermConv {r = [ % , l ]} Γ≡Δ A≡B (%~↑ ⊢t ⊢t') (%~↑ ⊢u ⊢u') =
yes (%~↑ ⊢t (conv (stabilityTerm (symConEq Γ≡Δ) ⊢u) (sym A≡B)))
decConv↑TermConv′ : ∀ {t u A B r r₁ r₂ Γ Δ}
→ ⊢ Γ ≡ Δ
→ r PE.≡ r₁
→ r PE.≡ r₂
→ Γ ⊢ A ≡ B ^ r
→ Γ ⊢ t [genconv↑] t ∷ A ^ r₁
→ Δ ⊢ u [genconv↑] u ∷ B ^ r₂
→ Dec (Γ ⊢ t [genconv↑] u ∷ A ^ r)
decConv↑TermConv′ Γ≡Δ PE.refl PE.refl A≡B t u = decConv↑TermConv Γ≡Δ A≡B t u
|
{
"alphanum_fraction": 0.4704334959,
"avg_line_length": 62.4184720639,
"ext": "agda",
"hexsha": "dbd47e13c9e5f565adbc183b63c86a9ea9eab5fc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Decidable.agda",
"max_line_length": 139,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 31169,
"size": 54741
}
|
{-# OPTIONS --erased-cubical #-}
open import Agda.Builtin.Cubical.Glue
open import Agda.Primitive
open import Agda.Primitive.Cubical
-- Glue must only be used in erased contexts when --erased-cubical is
-- active.
_ : SSet (lsuc lzero)
_ =
(φ : I) (A : Set) (B : Partial φ Set)
(f : PartialP φ (λ x → B x ≃ A)) →
primGlue A B f
|
{
"alphanum_fraction": 0.6617210682,
"avg_line_length": 22.4666666667,
"ext": "agda",
"hexsha": "562a29f5f367ac6343240c79c309ad276542f2aa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Erased-cubical-Glue.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Erased-cubical-Glue.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Erased-cubical-Glue.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 337
}
|
-- {-# OPTIONS -v tc.inj:100 #-}
-- Andreas, 2012-11-06, issue raised by Guillaume Brunerie
module Issue747 where
data ℕ : Set where
O : ℕ
S : ℕ → ℕ
record Σ (A : Set) (P : A → Set) : Set where
field
π₁ : A
π₂ : P π₁
data _≡_ {A : Set} : A → A → Set where
refl : (a : A) → a ≡ a
is-contr : Set → Set
is-contr A = Σ A (λ x → ((y : A) → y ≡ x))
is-hlevel : (n : ℕ) → (Set → Set)
is-hlevel O A = is-contr A
is-hlevel (S n) A = (x y : A) → is-hlevel n (x ≡ y)
-- is-hlevel should be injective
postulate
t : ℕ → Set → Set
t-is-hlevel : {n : ℕ} {A : Set} → is-hlevel n (t n A)
A : Set
f : (n : ℕ) (B : Set) ⦃ x : is-hlevel n B ⦄ → Set
g : (n : ℕ) → Set
g n = f n (t n A) {- ⦃ t-is-hlevel {n} ⦄ -}
-- instance should be found (depends on is-hlevel being injective)
|
{
"alphanum_fraction": 0.5289672544,
"avg_line_length": 22.6857142857,
"ext": "agda",
"hexsha": "265019cb541c797a695ba38f9fb4ce9a7e3f7d72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue747.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue747.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue747.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 338,
"size": 794
}
|
postulate
A : Set
|
{
"alphanum_fraction": 0.65,
"avg_line_length": 6.6666666667,
"ext": "agda",
"hexsha": "97f50ec79fe708e3ac784d96210af1f70556e9f0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2229Base.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2229Base.agda",
"max_line_length": 9,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2229Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 20
}
|
{-# OPTIONS --rewriting #-}
module _ (R : Set) where
{-# REWRITE R #-}
|
{
"alphanum_fraction": 0.5479452055,
"avg_line_length": 12.1666666667,
"ext": "agda",
"hexsha": "f18d8cb13d7b495b40054bb215f3bf6239e385e5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1444.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1444.agda",
"max_line_length": 27,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1444.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 20,
"size": 73
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.elims.CofPushoutSection
module homotopy.CofiberComp {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : fst (X ⊙→ Z)) (g : fst (Y ⊙→ Z)) where
module CofiberComp where
module H = ⊙WedgeRec f g
⊙h = H.⊙f; h = H.f
module IntoCod = CofiberRec {f = fst f} {C = fst (⊙Cof ⊙h)}
cfbase
cfcod
(λ x → cfglue (winl x))
module Into = CofiberRec {f = fst (⊙cfcod' f ⊙∘ g)} {C = fst (⊙Cof ⊙h)}
cfbase
IntoCod.f
(λ y → cfglue (winr y))
into = Into.f
out-glue : (w : X ∨ Y)
→ cfbase' (fst (⊙cfcod' f ⊙∘ g)) == cfcod (cfcod (h w))
out-glue = Wedge-elim
(λ x → (cfglue (snd Y)
∙ ! (ap (cfcod ∘ cfcod) (snd f ∙ ! (snd g)))
∙ ! (ap cfcod (cfglue (snd X))))
∙ ap cfcod (cfglue x))
cfglue
(↓-cst=app-from-square $
out-square-lemma
(cfglue (snd Y))
(ap (cfcod ∘ cfcod) (snd f ∙ ! (snd g)))
(ap cfcod (cfglue (snd X)))
⊡v∙ ! (ap-∘ (cfcod ∘ cfcod) h wglue
∙ ap (ap (cfcod ∘ cfcod)) H.glue-β))
where
out-square-lemma : ∀ {i} {A : Type i} {x y z w : A}
(p : x == y) (q : z == y) (r : w == z)
→ Square ((p ∙ ! q ∙ ! r) ∙ r) idp q p
out-square-lemma idp idp idp = ids
module Out = CofiberRec {C = fst (⊙Cof (⊙cfcod' f ⊙∘ g))}
cfbase
(λ z → cfcod (cfcod z))
out-glue
out = Out.f
into-out : ∀ c → into (out c) == c
into-out = CofPushoutSection.elim {h = h} (λ _ → unit) (λ _ → idp)
idp
(λ _ → idp)
(↓-∘=idf-in into out ∘ λ x →
ap (ap into) (Out.glue-β (winl x))
∙ lemma₁ into
(Into.glue-β (snd Y))
(ap-! into (ap (cfcod ∘ cfcod) (snd f ∙ ! (snd g)))
∙ ap ! (∘-ap into (cfcod ∘ cfcod) (snd f ∙ ! (snd g)))
∙ ap (! ∘ ap cfcod) (! H.glue-β)
∙ ap ! (∘-ap cfcod h wglue))
(ap-! into (ap cfcod (cfglue (snd X)))
∙ ap ! (∘-ap into cfcod (cfglue (snd X))
∙ IntoCod.glue-β (snd X)))
(∘-ap into cfcod (cfglue x) ∙ IntoCod.glue-β x)
∙ ap (λ w → w ∙ cfglue (winl x)) (lemma₂ cfglue wglue))
(↓-∘=idf-in into out ∘ λ y →
ap (ap into) (Out.glue-β (winr y))
∙ Into.glue-β y)
where
lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z u v : A}
{p : x == y} {q : y == z} {r : z == u} {s : u == v}
{p' : f x == f y} {q' : f y == f z} {r' : f z == f u} {s' : f u == f v}
(α : ap f p == p') (β : ap f q == q')
(γ : ap f r == r') (δ : ap f s == s')
→ ap f ((p ∙ q ∙ r) ∙ s) == (p' ∙ q' ∙ r') ∙ s'
lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} idp idp idp idp = idp
lemma₂ : ∀ {i j} {A : Type i} {B : Type j} {g : A → B} {b : B}
(p : ∀ a → b == g a) {x y : A} (q : x == y)
→ p y ∙ ! (ap g q) ∙ ! (p x) == idp
lemma₂ p {x} idp = !-inv-r (p x)
out-into : ∀ κ → out (into κ) == κ
out-into = Cofiber-elim
idp
out-into-cod
(↓-∘=idf-from-square out into ∘ vert-degen-square ∘ λ y →
ap (ap out) (Into.glue-β y)
∙ Out.glue-β (winr y))
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)
→ Square p (p ∙ q) q idp
lemma idp idp = ids
out-into-cod : ∀ c → out (into (cfcod c)) == cfcod c
out-into-cod = Cofiber-elim
(cfglue (snd Y)
∙ ! (ap (cfcod ∘ cfcod) (snd f ∙ ! (snd g)))
∙ ! (ap cfcod (cfglue (snd X))))
(λ y → idp)
(↓-='-from-square ∘ λ x →
(ap-∘ out IntoCod.f (cfglue x)
∙ ap (ap out) (IntoCod.glue-β x)
∙ Out.glue-β (winl x))
∙v⊡ lemma _ _)
eq : fst (⊙Cof (⊙cfcod' f ⊙∘ g)) ≃ fst (⊙Cof ⊙h)
eq = equiv into out into-out out-into
⊙path : ⊙Cof (⊙cfcod' f ⊙∘ g) == ⊙Cof ⊙h
⊙path = ⊙ua (⊙≃-in eq idp)
|
{
"alphanum_fraction": 0.4507154213,
"avg_line_length": 32.2564102564,
"ext": "agda",
"hexsha": "93378f42e580abeb4a5fe0e2a40b542e2f5a48b9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/CofiberComp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/CofiberComp.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/CofiberComp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1727,
"size": 3774
}
|
-- Also works for parts of operators.
module NotInScope where
postulate
X : Set
if_then_else_ : X -> X -> X -> X
x : X
bad = if x thenn x else x
|
{
"alphanum_fraction": 0.6363636364,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "8b5f80b19be30dbe921cfbfbdeda461429544dbf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/NotInScope.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/NotInScope.agda",
"max_line_length": 37,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/NotInScope.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 51,
"size": 154
}
|
{-# OPTIONS --without-K --exact-split #-}
module 19-fundamental-cover where
import 18-circle
open 18-circle public
{- Section 12.1 Families over the circle -}
Aut :
{ l1 : Level} → UU l1 → UU l1
Aut Y = Y ≃ Y
Fam-circle :
( l1 : Level) → UU (lsuc l1)
Fam-circle l1 = Σ (UU l1) Aut
Eq-Fam-circle :
{ l1 : Level} → Fam-circle l1 → Fam-circle l1 → UU l1
Eq-Fam-circle P Q =
Σ ( (pr1 P) ≃ (pr1 Q))
( λ h →
( (map-equiv h) ∘ (map-equiv (pr2 P))) ~ ((map-equiv (pr2 Q)) ∘ (map-equiv h)))
reflexive-Eq-Fam-circle :
{ l1 : Level} (P : Fam-circle l1) → Eq-Fam-circle P P
reflexive-Eq-Fam-circle (pair X e) =
pair (equiv-id X) refl-htpy
Eq-Fam-circle-eq :
{ l1 : Level} (P Q : Fam-circle l1) → Id P Q → Eq-Fam-circle P Q
Eq-Fam-circle-eq P .P refl = reflexive-Eq-Fam-circle P
abstract
is-contr-total-Eq-Fam-circle :
{ l1 : Level} (P : Fam-circle l1) →
is-contr (Σ (Fam-circle l1) (Eq-Fam-circle P))
is-contr-total-Eq-Fam-circle (pair X e) =
is-contr-total-Eq-structure
( λ Y f h →
((map-equiv h) ∘ (map-equiv e)) ~ ((map-equiv f) ∘ (map-equiv h)))
( is-contr-total-equiv X)
( pair X (equiv-id X))
( is-contr-total-htpy-equiv e)
abstract
is-equiv-Eq-Fam-circle-eq :
{ l1 : Level} (P Q : Fam-circle l1) → is-equiv (Eq-Fam-circle-eq P Q)
is-equiv-Eq-Fam-circle-eq P =
fundamental-theorem-id P
( reflexive-Eq-Fam-circle P)
( is-contr-total-Eq-Fam-circle P)
( Eq-Fam-circle-eq P)
eq-Eq-Fam-circle :
{ l1 : Level} (P Q : Fam-circle l1) → Eq-Fam-circle P Q → Id P Q
eq-Eq-Fam-circle P Q = inv-is-equiv (is-equiv-Eq-Fam-circle-eq P Q)
ev-fam-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( X → UU l2) → Fam-circle l2
ev-fam-circle l P =
pair
( P (base-free-loop l))
( equiv-tr P (loop-free-loop l))
comparison-fam-circle :
( l1 : Level) → free-loops (UU l1) → Fam-circle l1
comparison-fam-circle l1 = tot (λ Y → equiv-eq)
abstract
is-equiv-comparison-fam-circle :
( l1 : Level) → is-equiv (comparison-fam-circle l1)
is-equiv-comparison-fam-circle l1 =
is-equiv-tot-is-fiberwise-equiv (λ Y → univalence Y Y)
triangle-comparison-fam-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
(ev-fam-circle l) ~ ((comparison-fam-circle l2) ∘ (ev-free-loop l (UU l2)))
triangle-comparison-fam-circle l P =
eq-Eq-Fam-circle
( ev-fam-circle l P)
( comparison-fam-circle _ (ev-free-loop l (UU _) P))
( pair (equiv-id _) (htpy-inv (tr-equiv-eq-ap (pr2 l))))
abstract
is-equiv-ev-fam-circle-universal-property-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X)
( up-circle : universal-property-circle (lsuc l2) l) →
is-equiv (ev-fam-circle {l2 = l2} l)
is-equiv-ev-fam-circle-universal-property-circle {l2 = l2} l up-circle =
is-equiv-comp
( ev-fam-circle l)
( comparison-fam-circle l2)
( ev-free-loop l (UU l2))
( triangle-comparison-fam-circle l)
( up-circle (UU l2))
( is-equiv-comparison-fam-circle l2)
unique-family-property-circle :
{ l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) →
UU (l1 ⊔ (lsuc l2))
unique-family-property-circle l2 {X} l =
( Q : Fam-circle l2) →
is-contr (Σ (X → UU l2) (λ P → Eq-Fam-circle Q (ev-fam-circle l P)))
abstract
unique-family-property-universal-property-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
universal-property-circle (lsuc l2) l → unique-family-property-circle l2 l
unique-family-property-universal-property-circle l up-circle Q =
is-contr-is-equiv'
( fib (ev-fam-circle l) Q)
( tot (λ P → (Eq-Fam-circle-eq Q (ev-fam-circle l P)) ∘ inv))
( is-equiv-tot-is-fiberwise-equiv
( λ P →
is-equiv-comp' _ _
( is-equiv-inv _ _)
( is-equiv-Eq-Fam-circle-eq Q (ev-fam-circle l P))))
( is-contr-map-is-equiv
( is-equiv-ev-fam-circle-universal-property-circle l up-circle)
( Q))
Section-Fam-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : Fam-circle l2) → UU _
Section-Fam-circle l P =
Σ (pr1 P) (λ p → Id (map-equiv (pr2 P) p) p)
fam-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( dependent-universal-property-circle (lsuc l2) l) →
Fam-circle l2 → X → UU l2
fam-circle {l1} {l2} l dup-circle =
inv-is-equiv
( is-equiv-ev-fam-circle-universal-property-circle l
( universal-property-dependent-universal-property-circle l dup-circle))
section-fam-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle l2 l) →
( Q : X → UU l2) (P : Fam-circle l2) →
( e : Eq-Fam-circle P (ev-fam-circle l Q)) →
Section-Fam-circle l P → (x : X) → Q x
section-fam-circle l dup-circle Q P (pair e H) (pair p α) =
inv-is-equiv
( dup-circle Q)
( pair (map-equiv e p) ((inv (H p)) ∙ (ap (map-equiv e) α)))
{- Section 12.2 The fundamental cover of the circle -}
{- We show that if a type with a free loop satisfies the induction principle
of the circle with respect to any universe level, then it satisfies the
induction principle with respect to the zeroth universe level. -}
naturality-tr-fiberwise-transformation :
{ l1 l2 l3 : Level} {X : UU l1} {P : X → UU l2} {Q : X → UU l3}
( f : (x : X) → P x → Q x) {x y : X} (α : Id x y) (p : P x) →
Id (tr Q α (f x p)) (f y (tr P α p))
naturality-tr-fiberwise-transformation f refl p = refl
functor-dependent-free-loops :
{ l1 l2 l3 : Level} {X : UU l1} (l : free-loops X)
{ P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) →
dependent-free-loops l P → dependent-free-loops l Q
functor-dependent-free-loops l {P} {Q} f =
toto
( λ q₀ → Id (tr Q (loop-free-loop l) q₀) q₀)
( f (base-free-loop l))
( λ p₀ α →
( naturality-tr-fiberwise-transformation f (loop-free-loop l) p₀) ∙
( ap (f (base-free-loop l)) α))
coherence-square-functor-dependent-free-loops :
{ l1 l2 l3 : Level} {X : UU l1} {P : X → UU l2} {Q : X → UU l3}
( f : (x : X) → P x → Q x) {x y : X} (α : Id x y)
( h : (x : X) → P x) →
Id ( ( naturality-tr-fiberwise-transformation f α (h x)) ∙
( ap (f y) (apd h α)))
( apd (postcomp-Π f h) α)
coherence-square-functor-dependent-free-loops f refl h = refl
square-functor-dependent-free-loops :
{ l1 l2 l3 : Level} {X : UU l1} (l : free-loops X)
{ P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) →
( (functor-dependent-free-loops l f) ∘ (ev-free-loop' l P)) ~
( (ev-free-loop' l Q) ∘ (postcomp-Π f))
square-functor-dependent-free-loops (pair x l) {P} {Q} f h =
eq-Eq-dependent-free-loops (pair x l) Q
( functor-dependent-free-loops (pair x l) f
( ev-free-loop' (pair x l) P h))
( ev-free-loop' (pair x l) Q (postcomp-Π f h))
( pair refl
( right-unit ∙ (coherence-square-functor-dependent-free-loops f l h)))
abstract
is-equiv-functor-dependent-free-loops-is-fiberwise-equiv :
{ l1 l2 l3 : Level} {X : UU l1} (l : free-loops X)
{ P : X → UU l2} {Q : X → UU l3} {f : (x : X) → P x → Q x}
( is-equiv-f : (x : X) → is-equiv (f x)) →
is-equiv (functor-dependent-free-loops l f)
is-equiv-functor-dependent-free-loops-is-fiberwise-equiv
(pair x l) {P} {Q} {f} is-equiv-f =
is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map
( λ q₀ → Id (tr Q l q₀) q₀)
( _)
( _)
( is-equiv-f x)
( λ p₀ →
is-equiv-comp'
( concat
( naturality-tr-fiberwise-transformation f l p₀)
( f x p₀))
( ap (f x))
( is-emb-is-equiv (f x) (is-equiv-f x) (tr P l p₀) p₀)
( is-equiv-concat
( naturality-tr-fiberwise-transformation f l p₀)
( f x p₀)))
abstract
lower-dependent-universal-property-circle :
{ l1 l2 : Level} (l3 : Level) {X : UU l1} (l : free-loops X) →
dependent-universal-property-circle (l2 ⊔ l3) l →
dependent-universal-property-circle l3 l
lower-dependent-universal-property-circle {l1} {l2} l3 l dup-circle P =
is-equiv-left-is-equiv-right-square
( ev-free-loop' l P)
( ev-free-loop' l (λ x → raise l2 (P x)))
( postcomp-Π (λ x → map-raise l2 (P x)))
( functor-dependent-free-loops l (λ x → map-raise l2 (P x)))
( square-functor-dependent-free-loops l (λ x → map-raise l2 (P x)))
( is-equiv-postcomp-Π _ (λ x → is-equiv-map-raise l2 (P x)))
( is-equiv-functor-dependent-free-loops-is-fiberwise-equiv l
( λ x → is-equiv-map-raise l2 (P x)))
( dup-circle (λ x → raise l2 (P x)))
abstract
lower-lzero-dependent-universal-property-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
dependent-universal-property-circle l2 l →
dependent-universal-property-circle lzero l
lower-lzero-dependent-universal-property-circle =
lower-dependent-universal-property-circle lzero
{- The definition of the fundamental cover -}
{- The fundamental cover -}
abstract
Fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l →
Σ ( X → UU lzero)
( λ P → Eq-Fam-circle (pair ℤ equiv-succ-ℤ) (ev-fam-circle l P))
Fundamental-cover-circle {l1} l dup-circle =
center
( unique-family-property-universal-property-circle l
( universal-property-dependent-universal-property-circle l
( lower-dependent-universal-property-circle
{l2 = l1} (lsuc lzero) l dup-circle))
( pair ℤ equiv-succ-ℤ))
fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l →
X → UU lzero
fundamental-cover-circle l dup-circle =
pr1 (Fundamental-cover-circle l dup-circle)
comp-fiber-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
ℤ ≃ fundamental-cover-circle l dup-circle (base-free-loop l)
comp-fiber-fundamental-cover-circle l dup-circle =
pr1 ( pr2 ( Fundamental-cover-circle l dup-circle))
comp-tr-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( ( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle)) ∘
( succ-ℤ)) ~
( ( tr (fundamental-cover-circle l dup-circle) (loop-free-loop l)) ∘
( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle)))
comp-tr-fundamental-cover-circle l dup-circle =
pr2 ( pr2 ( Fundamental-cover-circle l dup-circle))
{- We show that the fundamental cover of the circle is a family of sets. -}
abstract
is-set-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( x : X) → is-set (fundamental-cover-circle l dup-circle x)
is-set-fundamental-cover-circle l dup-circle =
is-connected-circle' l
( lower-dependent-universal-property-circle lzero l dup-circle)
( λ x → is-set (fundamental-cover-circle l dup-circle x))
( λ x → is-prop-is-set (fundamental-cover-circle l dup-circle x))
( is-trunc-is-equiv' zero-𝕋 ℤ
( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle))
( is-equiv-map-equiv (comp-fiber-fundamental-cover-circle l dup-circle))
( is-set-ℤ))
{- Contractibility of a general total space -}
contraction-total-space :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} (center : Σ A B) →
( x : A) → UU (l1 ⊔ l2)
contraction-total-space {B = B} center x =
( y : B x) → Id center (pair x y)
path-total-path-fiber :
{ l1 l2 : Level} {A : UU l1} (B : A → UU l2) (x : A) →
{ y y' : B x} (q : Id y' y) → Id {A = Σ A B} (pair x y) (pair x y')
path-total-path-fiber B x q = eq-pair refl (inv q)
tr-path-total-path-fiber :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) (x : A) →
{ y y' : B x} (q : Id y' y) (α : Id c (pair x y')) →
Id ( tr (λ z → Id c (pair x z)) q α)
( α ∙ (inv (path-total-path-fiber B x q)))
tr-path-total-path-fiber c x refl α = inv right-unit
segment-Σ :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} →
{ x x' : A} (p : Id x x')
{ F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x')
( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) (y : F) →
Id (pair x (map-equiv e y)) (pair x' (map-equiv e' (map-equiv f y)))
segment-Σ refl f e e' H y = path-total-path-fiber _ _ (H y)
contraction-total-space' :
{ l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
( x : A) → {F : UU l3} (e : F ≃ B x) → UU (l1 ⊔ (l2 ⊔ l3))
contraction-total-space' c x {F} e =
( y : F) → Id c (pair x (map-equiv e y))
equiv-tr-contraction-total-space' :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
{ x x' : A} (p : Id x x') →
{ F : UU l3} {F' : UU l4} (f : F ≃ F') (e : F ≃ B x) (e' : F' ≃ B x') →
( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) →
( contraction-total-space' c x' e') ≃ (contraction-total-space' c x e)
equiv-tr-contraction-total-space' c p f e e' H =
( equiv-postcomp-Π
( λ y → equiv-concat' c (inv (segment-Σ p f e e' H y)))) ∘e
( precomp-Π-equiv f _)
equiv-contraction-total-space :
{ l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
( x : A) → {F : UU l3} (e : F ≃ B x) →
( contraction-total-space c x) ≃ (contraction-total-space' c x e)
equiv-contraction-total-space c x e =
precomp-Π-equiv e (λ y → Id c (pair x y))
tr-path-total-tr-coherence :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) (x : A) →
{ F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x)
( H : ((map-equiv e') ∘ (map-equiv f)) ~ (map-equiv e)) →
(y : F) (α : Id c (pair x (map-equiv e' (map-equiv f y)))) →
Id ( tr (λ z → Id c (pair x z)) (H y) α)
( α ∙ (inv (segment-Σ refl f e e' H y)))
tr-path-total-tr-coherence c x f e e' H y α =
tr-path-total-path-fiber c x (H y) α
square-tr-contraction-total-space :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
{ x x' : A} (p : Id x x')
{ F : UU l3} {F' : UU l4} (f : F ≃ F') (e : F ≃ B x) (e' : F' ≃ B x')
( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e)))
(h : contraction-total-space c x) →
( map-equiv
( ( equiv-tr-contraction-total-space' c p f e e' H) ∘e
( ( equiv-contraction-total-space c x' e') ∘e
( equiv-tr (contraction-total-space c) p)))
( h)) ~
( map-equiv (equiv-contraction-total-space c x e) h)
square-tr-contraction-total-space c refl f e e' H h y =
( inv (tr-path-total-tr-coherence c _ f e e' H y
( h (map-equiv e' (map-equiv f y))))) ∙
( apd h (H y))
path-over-contraction-total-space' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
{x x' : A} (p : Id x x') →
{F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x')
(H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) →
(h : (y : F) → Id c (pair x (map-equiv e y))) →
(h' : (y' : F') → Id c (pair x' (map-equiv e' y'))) →
UU _
path-over-contraction-total-space' c {x} {x'} p {F} {F'} f e e' H h h' =
( postcomp-Π
( λ y → concat' c (segment-Σ p f e e' H y)) h) ~
( precomp-Π
( map-equiv f)
( λ y' → Id c (pair x' (map-equiv e' y')))
( h'))
map-path-over-contraction-total-space' :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
{ x x' : A} (p : Id x x') →
{ F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x')
( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) →
( h : contraction-total-space' c x e) →
( h' : contraction-total-space' c x' e') →
( path-over-contraction-total-space' c p f e e' H h h') →
( path-over (contraction-total-space c) p
( inv-map-equiv (equiv-contraction-total-space c x e) h)
( inv-map-equiv (equiv-contraction-total-space c x' e') h'))
map-path-over-contraction-total-space' c {x} {.x} refl f e e' H h h' α =
inv-map-equiv
( equiv-ap
( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e
( equiv-contraction-total-space c x e'))
( inv-map-equiv (equiv-contraction-total-space c x e) h)
( inv-map-equiv (equiv-contraction-total-space c x e') h'))
( ( ( eq-htpy
( square-tr-contraction-total-space c refl f e e' H
( inv-map-equiv (equiv-contraction-total-space c x e) h))) ∙
( issec-inv-is-equiv
( is-equiv-map-equiv (equiv-contraction-total-space c x e))
( h))) ∙
( ( eq-htpy
( htpy-con-inv h
( segment-Σ refl f e e' H)
( precomp-Π
( map-equiv f)
( λ y' → Id c (pair x (map-equiv e' y')))
( h'))
( α))) ∙
( inv
( ap
( map-equiv (equiv-tr-contraction-total-space' c refl f e e' H))
( issec-inv-is-equiv
( is-equiv-map-equiv
( precomp-Π-equiv e' (λ y' → Id c (pair x y'))))
( h'))))))
equiv-path-over-contraction-total-space' :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) →
{ x x' : A} (p : Id x x') →
{ F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x')
( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) →
( h : contraction-total-space' c x e) →
( h' : contraction-total-space' c x' e') →
( path-over (contraction-total-space c) p
( inv-map-equiv (equiv-contraction-total-space c x e) h)
( inv-map-equiv (equiv-contraction-total-space c x' e') h')) ≃
( path-over-contraction-total-space' c p f e e' H h h')
equiv-path-over-contraction-total-space' c {x} {.x} refl f e e' H h h' =
( inv-equiv
( equiv-htpy-con-inv h
( segment-Σ refl f e e' H)
( precomp-Π
( map-equiv f)
( λ y' → Id c (pair x (map-equiv e' y')))
( h')))) ∘e
( ( equiv-funext) ∘e
( ( equiv-concat' h
( ap
( map-equiv (equiv-tr-contraction-total-space' c refl f e e' H))
( issec-inv-is-equiv
( is-equiv-map-equiv
( precomp-Π-equiv e' (λ y' → Id c (pair x y'))))
( h')))) ∘e
( ( equiv-concat
( inv
( ( eq-htpy
( square-tr-contraction-total-space c refl f e e' H
( inv-map-equiv (equiv-contraction-total-space c x e) h))) ∙
( issec-inv-is-equiv
( is-equiv-map-equiv (equiv-contraction-total-space c x e))
( h))))
( map-equiv
( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e
( ( equiv-contraction-total-space c x e') ∘e
( inv-equiv (equiv-contraction-total-space c x e'))))
( h'))) ∘e
( equiv-ap
( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e
( equiv-contraction-total-space c x e'))
( inv-map-equiv (equiv-contraction-total-space c x e) h)
( inv-map-equiv (equiv-contraction-total-space c x e') h')))))
{- We use the above construction to provide sufficient conditions for the total
space of the fundamental cover to be contractible. -}
center-total-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
Σ X (fundamental-cover-circle l dup-circle)
center-total-fundamental-cover-circle l dup-circle =
pair
( base-free-loop l)
( map-equiv
( comp-fiber-fundamental-cover-circle l dup-circle) zero-ℤ)
path-over-loop-contraction-total-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( h : contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle)) →
( p : path-over-contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( loop-free-loop l)
( equiv-succ-ℤ)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-tr-fundamental-cover-circle l dup-circle)
( h)
( h)) →
path-over
( contraction-total-space
( center-total-fundamental-cover-circle l dup-circle))
( pr2 l)
( inv-map-equiv
( equiv-contraction-total-space
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle))
( h))
( inv-map-equiv
( equiv-contraction-total-space
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle))
( h))
path-over-loop-contraction-total-fundamental-cover-circle l dup-circle h p =
map-path-over-contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( loop-free-loop l)
( equiv-succ-ℤ)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-tr-fundamental-cover-circle l dup-circle)
( h)
( h)
( p)
contraction-total-fundamental-cover-circle-data :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( h : contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle)) →
( p : path-over-contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( loop-free-loop l)
( equiv-succ-ℤ)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-tr-fundamental-cover-circle l dup-circle)
( h)
( h)) →
( t : Σ X (fundamental-cover-circle l dup-circle)) →
Id (center-total-fundamental-cover-circle l dup-circle) t
contraction-total-fundamental-cover-circle-data
{l1} l dup-circle h p (pair x y) =
inv-is-equiv
( lower-dependent-universal-property-circle
{ l2 = lsuc lzero} l1 l dup-circle
( contraction-total-space
( center-total-fundamental-cover-circle l dup-circle)))
( pair
( inv-map-equiv
( equiv-contraction-total-space
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle))
( h))
( path-over-loop-contraction-total-fundamental-cover-circle
l dup-circle h p))
x y
is-contr-total-fundamental-cover-circle-data :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( h : contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( base-free-loop l)
( comp-fiber-fundamental-cover-circle l dup-circle)) →
( p : path-over-contraction-total-space'
( center-total-fundamental-cover-circle l dup-circle)
( loop-free-loop l)
( equiv-succ-ℤ)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-tr-fundamental-cover-circle l dup-circle)
( h)
( h)) →
is-contr (Σ X (fundamental-cover-circle l dup-circle))
is-contr-total-fundamental-cover-circle-data l dup-circle h p =
pair
( center-total-fundamental-cover-circle l dup-circle)
( contraction-total-fundamental-cover-circle-data l dup-circle h p)
{- Section 12.4 The dependent universal property of ℤ -}
abstract
elim-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( k : ℤ) → P k
elim-ℤ P p0 pS (inl zero-ℕ) =
inv-is-equiv (is-equiv-map-equiv (pS neg-one-ℤ)) p0
elim-ℤ P p0 pS (inl (succ-ℕ x)) =
inv-is-equiv
( is-equiv-map-equiv (pS (inl (succ-ℕ x))))
( elim-ℤ P p0 pS (inl x))
elim-ℤ P p0 pS (inr (inl star)) = p0
elim-ℤ P p0 pS (inr (inr zero-ℕ)) = map-equiv (pS zero-ℤ) p0
elim-ℤ P p0 pS (inr (inr (succ-ℕ x))) =
map-equiv
( pS (inr (inr x)))
( elim-ℤ P p0 pS (inr (inr x)))
comp-zero-elim-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
Id (elim-ℤ P p0 pS zero-ℤ) p0
comp-zero-elim-ℤ P p0 pS = refl
comp-succ-elim-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) (k : ℤ) →
Id ( elim-ℤ P p0 pS (succ-ℤ k)) (map-equiv (pS k)
( elim-ℤ P p0 pS k))
comp-succ-elim-ℤ P p0 pS (inl zero-ℕ) =
inv
( issec-inv-is-equiv
( is-equiv-map-equiv (pS (inl zero-ℕ)))
( elim-ℤ P p0 pS (succ-ℤ (inl zero-ℕ))))
comp-succ-elim-ℤ P p0 pS (inl (succ-ℕ x)) =
inv
( issec-inv-is-equiv
( is-equiv-map-equiv (pS (inl (succ-ℕ x))))
( elim-ℤ P p0 pS (succ-ℤ (inl (succ-ℕ x)))))
comp-succ-elim-ℤ P p0 pS (inr (inl star)) = refl
comp-succ-elim-ℤ P p0 pS (inr (inr x)) = refl
ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) → UU l1
ELIM-ℤ P p0 pS =
Σ ( (k : ℤ) → P k) (λ f →
( ( Id (f zero-ℤ) p0) ×
( (k : ℤ) → Id (f (succ-ℤ k)) ((map-equiv (pS k)) (f k)))))
Elim-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) → ELIM-ℤ P p0 pS
Elim-ℤ P p0 pS =
pair
( elim-ℤ P p0 pS)
( pair
( comp-zero-elim-ℤ P p0 pS)
( comp-succ-elim-ℤ P p0 pS))
equiv-comparison-map-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) (k : ℤ) →
Id ((pr1 s) k) ((pr1 t) k) ≃ Id ((pr1 s) (succ-ℤ k)) ((pr1 t) (succ-ℤ k))
equiv-comparison-map-Eq-ELIM-ℤ P p0 pS s t k =
( ( equiv-concat (pr2 (pr2 s) k) (pr1 t (succ-ℤ k))) ∘e
( equiv-concat' (map-equiv (pS k) (pr1 s k)) (inv (pr2 (pr2 t) k)))) ∘e
( equiv-ap (pS k) (pr1 s k) (pr1 t k))
zero-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) (H : (pr1 s) ~ (pr1 t)) → UU l1
zero-Eq-ELIM-ℤ P p0 pS s t H =
Id (H zero-ℤ) ((pr1 (pr2 s)) ∙ (inv (pr1 (pr2 t))))
succ-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) (H : (pr1 s) ~ (pr1 t)) → UU l1
succ-Eq-ELIM-ℤ P p0 pS s t H =
( k : ℤ) → Id
( H (succ-ℤ k))
( map-equiv (equiv-comparison-map-Eq-ELIM-ℤ P p0 pS s t k) (H k))
Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) → UU l1
Eq-ELIM-ℤ P p0 pS s t =
ELIM-ℤ
( λ k → Id (pr1 s k) (pr1 t k))
( (pr1 (pr2 s)) ∙ (inv (pr1 (pr2 t))))
( equiv-comparison-map-Eq-ELIM-ℤ P p0 pS s t)
reflexive-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1)
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s : ELIM-ℤ P p0 pS) → Eq-ELIM-ℤ P p0 pS s s
reflexive-Eq-ELIM-ℤ P p0 pS (pair f (pair p H)) =
pair
( refl-htpy)
( pair
( inv (right-inv p))
( λ k → inv (right-inv (H k))))
Eq-ELIM-ℤ-eq :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) → Id s t → Eq-ELIM-ℤ P p0 pS s t
Eq-ELIM-ℤ-eq P p0 pS s .s refl = reflexive-Eq-ELIM-ℤ P p0 pS s
abstract
is-contr-total-htpy' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) →
is-contr (Σ ((x : A) → B x) (λ g → g ~ f))
is-contr-total-htpy' {A = A} {B} f =
is-contr-is-equiv'
( Σ ((x : A) → B x) (λ g → f ~ g))
( tot (λ g → htpy-inv))
( is-equiv-tot-is-fiberwise-equiv (λ g → is-equiv-htpy-inv f g))
( is-contr-total-htpy f)
abstract
is-contr-total-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s : ELIM-ℤ P p0 pS) → is-contr (Σ (ELIM-ℤ P p0 pS) (Eq-ELIM-ℤ P p0 pS s))
is-contr-total-Eq-ELIM-ℤ P p0 pS s =
is-contr-total-Eq-structure
( λ f t H →
( zero-Eq-ELIM-ℤ P p0 pS s (pair f t) H) ×
( succ-Eq-ELIM-ℤ P p0 pS s (pair f t) H))
( is-contr-total-htpy (pr1 s))
( pair (pr1 s) refl-htpy)
( is-contr-total-Eq-structure
( λ p K
( q : zero-Eq-ELIM-ℤ P p0 pS s
( pair (pr1 s) (pair p K))
( refl-htpy)) →
succ-Eq-ELIM-ℤ P p0 pS s
( pair (pr1 s) (pair p K))
( refl-htpy))
( is-contr-is-equiv'
( Σ (Id (pr1 s zero-ℤ) p0) (λ α → Id α (pr1 (pr2 s))))
( tot (λ α → con-inv refl α (pr1 (pr2 s))))
( is-equiv-tot-is-fiberwise-equiv
( λ α → is-equiv-con-inv refl α (pr1 (pr2 s))))
( is-contr-total-path' (pr1 (pr2 s))))
( pair (pr1 (pr2 s)) (inv (right-inv (pr1 (pr2 s)))))
( is-contr-is-equiv'
( Σ ( ( k : ℤ) → Id (pr1 s (succ-ℤ k)) (pr1 (pS k) (pr1 s k)))
( λ β → β ~ (pr2 (pr2 s))))
( tot (λ β → htpy-con-inv refl-htpy β (pr2 (pr2 s))))
( is-equiv-tot-is-fiberwise-equiv
( λ β → is-equiv-htpy-con-inv refl-htpy β (pr2 (pr2 s))))
( is-contr-total-htpy' (pr2 (pr2 s)))))
abstract
is-equiv-Eq-ELIM-ℤ-eq :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) → is-equiv (Eq-ELIM-ℤ-eq P p0 pS s t)
is-equiv-Eq-ELIM-ℤ-eq P p0 pS s =
fundamental-theorem-id s
( reflexive-Eq-ELIM-ℤ P p0 pS s)
( is-contr-total-Eq-ELIM-ℤ P p0 pS s)
( Eq-ELIM-ℤ-eq P p0 pS s)
eq-Eq-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
( s t : ELIM-ℤ P p0 pS) → Eq-ELIM-ℤ P p0 pS s t → Id s t
eq-Eq-ELIM-ℤ P p0 pS s t = inv-is-equiv (is-equiv-Eq-ELIM-ℤ-eq P p0 pS s t)
abstract
is-prop-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
is-prop (ELIM-ℤ P p0 pS)
is-prop-ELIM-ℤ P p0 pS =
is-prop-is-prop'
( λ s t → eq-Eq-ELIM-ℤ P p0 pS s t
( Elim-ℤ
( λ k → Id (pr1 s k) (pr1 t k))
( (pr1 (pr2 s)) ∙ (inv (pr1 (pr2 t))))
( equiv-comparison-map-Eq-ELIM-ℤ P p0 pS s t)))
-- We finally arrive at the dependent universal property of ℤ
abstract
is-contr-ELIM-ℤ :
{ l1 : Level} (P : ℤ → UU l1) →
( p0 : P zero-ℤ) (pS : (k : ℤ) → (P k) ≃ (P (succ-ℤ k))) →
is-contr (ELIM-ℤ P p0 pS)
is-contr-ELIM-ℤ P p0 pS =
is-contr-is-prop-inh (is-prop-ELIM-ℤ P p0 pS) (Elim-ℤ P p0 pS)
-- The universal property of ℤ is now just a special case
ELIM-ℤ' :
{ l1 : Level} {X : UU l1} (x : X) (e : X ≃ X) → UU l1
ELIM-ℤ' {X = X} x e = ELIM-ℤ (λ k → X) x (λ k → e)
abstract
universal-property-ℤ :
{ l1 : Level} {X : UU l1} (x : X) (e : X ≃ X) → is-contr (ELIM-ℤ' x e)
universal-property-ℤ {X = X} x e = is-contr-ELIM-ℤ (λ k → X) x (λ k → e)
{- Section 12.5 The identity type of the circle -}
path-total-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l)
(k : ℤ) →
Id {A = Σ X (fundamental-cover-circle l dup-circle)}
( pair
( base-free-loop l)
( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle) k))
( pair
( base-free-loop l)
( map-equiv
( comp-fiber-fundamental-cover-circle l dup-circle)
( succ-ℤ k)))
path-total-fundamental-cover-circle l dup-circle k =
segment-Σ
( loop-free-loop l)
( equiv-succ-ℤ)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-fiber-fundamental-cover-circle l dup-circle)
( comp-tr-fundamental-cover-circle l dup-circle)
k
CONTRACTION-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
UU l1
CONTRACTION-fundamental-cover-circle l dup-circle =
ELIM-ℤ
( λ k →
Id ( center-total-fundamental-cover-circle l dup-circle)
( pair
( base-free-loop l)
( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle) k)))
( refl)
( λ k → equiv-concat'
( center-total-fundamental-cover-circle l dup-circle)
( path-total-fundamental-cover-circle l dup-circle k))
Contraction-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
CONTRACTION-fundamental-cover-circle l dup-circle
Contraction-fundamental-cover-circle l dup-circle =
Elim-ℤ
( λ k →
Id ( center-total-fundamental-cover-circle l dup-circle)
( pair
( base-free-loop l)
( map-equiv (comp-fiber-fundamental-cover-circle l dup-circle) k)))
( refl)
( λ k → equiv-concat'
( center-total-fundamental-cover-circle l dup-circle)
( path-total-fundamental-cover-circle l dup-circle k))
abstract
is-contr-total-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
is-contr (Σ X (fundamental-cover-circle l dup-circle))
is-contr-total-fundamental-cover-circle l dup-circle =
is-contr-total-fundamental-cover-circle-data l dup-circle
( pr1 (Contraction-fundamental-cover-circle l dup-circle))
( htpy-inv
( pr2 (pr2 (Contraction-fundamental-cover-circle l dup-circle))))
pt-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
fundamental-cover-circle l dup-circle (base-free-loop l)
pt-fundamental-cover-circle l dup-circle =
map-equiv (comp-fiber-fundamental-cover-circle l dup-circle) zero-ℤ
fundamental-cover-circle-eq :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( x : X) → Id (base-free-loop l) x → fundamental-cover-circle l dup-circle x
fundamental-cover-circle-eq l dup-circle .(base-free-loop l) refl =
pt-fundamental-cover-circle l dup-circle
abstract
is-equiv-fundamental-cover-circle-eq :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( x : X) → is-equiv (fundamental-cover-circle-eq l dup-circle x)
is-equiv-fundamental-cover-circle-eq l dup-circle =
fundamental-theorem-id
( base-free-loop l)
( pt-fundamental-cover-circle l dup-circle)
( is-contr-total-fundamental-cover-circle l dup-circle)
( fundamental-cover-circle-eq l dup-circle)
equiv-fundamental-cover-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( x : X) →
( Id (base-free-loop l) x) ≃ (fundamental-cover-circle l dup-circle x)
equiv-fundamental-cover-circle l dup-circle x =
pair
( fundamental-cover-circle-eq l dup-circle x)
( is-equiv-fundamental-cover-circle-eq l dup-circle x)
comp-loop-space-circle :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle (l1 ⊔ (lsuc lzero)) l) →
( Id (base-free-loop l) (base-free-loop l)) ≃ ℤ
comp-loop-space-circle l dup-circle =
( inv-equiv (comp-fiber-fundamental-cover-circle l dup-circle)) ∘e
( equiv-fundamental-cover-circle l dup-circle (base-free-loop l))
|
{
"alphanum_fraction": 0.5696071867,
"avg_line_length": 38.8763557484,
"ext": "agda",
"hexsha": "bd73b74c08d665d4ca4203fe9e3ae778c8e2dec8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/19-fundamental-cover.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/19-fundamental-cover.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/19-fundamental-cover.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 13180,
"size": 35844
}
|
module MLib.Algebra.PropertyCode.Structures where
open import MLib.Prelude
open import MLib.Finite
open import MLib.Algebra.PropertyCode.RawStruct public
open import MLib.Algebra.PropertyCode.Core public
open import MLib.Algebra.PropertyCode public
open import Relation.Binary as B using (Setoid)
open import Data.List.Any using (Any; here; there)
open import Data.Bool using (_∨_)
open import Category.Applicative
--------------------------------------------------------------------------------
-- Combinators for constructing property sets from smaller sets
--------------------------------------------------------------------------------
subΠ : ∀ {k k′} {code : Code k} {code′ : Code k′} →
let open Code code using (K)
open Code code′ using () renaming (K to K′)
in (∀ {n} → K′ n → Maybe (K n)) →
Properties code → Properties code′ → Properties code′
hasProperty (subΠ f Π₀ Π₁) (π , κs) = hasProperty Π₁ (π , κs) ∨ satUnder
where
satUnder : Bool
satUnder with List.All.traverse f κs
satUnder | just κs′ = hasProperty Π₀ (π , κs′)
satUnder | nothing = false
subΠ′ : ∀ {k k′} {code : Code k} {code′ : Code k′} →
let open Code code using (K)
open Code code′ using () renaming (K to K′)
in (∀ {n} → K′ n → Maybe (K n)) →
Properties code → List (Property K′) → Properties code′
subΠ′ f Π πs = subΠ f Π (fromList πs)
--------------------------------------------------------------------------------
-- Code Types
--------------------------------------------------------------------------------
data MagmaK : ℕ → Set where
∙ : MagmaK 2
data MonoidK : ℕ → Set where
ε : MonoidK 0
∙ : MonoidK 2
data BimonoidK : ℕ → Set where
0# 1# : BimonoidK 0
+ * : BimonoidK 2
--------------------------------------------------------------------------------
-- Code Proofs
--------------------------------------------------------------------------------
module _ where
open Code
-- TODO: automate proofs like these.
magmaCode : Code _
K magmaCode = MagmaK
boundAt magmaCode 2 = 1
boundAt magmaCode _ = 0
isFiniteAt magmaCode 0 = enumerable-isFiniteSet [] λ ()
isFiniteAt magmaCode 1 = enumerable-isFiniteSet [] λ ()
isFiniteAt magmaCode (suc (suc (suc _))) = enumerable-isFiniteSet [] λ ()
isFiniteAt magmaCode 2 = enumerable-isFiniteSet (∙ ∷ []) λ {∙ → here ≡.refl}
monoidCode : Code _
K monoidCode = MonoidK
boundAt monoidCode 0 = 1
boundAt monoidCode 2 = 1
boundAt monoidCode _ = 0
isFiniteAt monoidCode 0 = enumerable-isFiniteSet (ε ∷ []) λ {ε → here ≡.refl}
isFiniteAt monoidCode 1 = enumerable-isFiniteSet [] λ ()
isFiniteAt monoidCode 2 = enumerable-isFiniteSet (∙ ∷ []) λ {∙ → here ≡.refl}
isFiniteAt monoidCode (suc (suc (suc _))) = enumerable-isFiniteSet [] λ ()
bimonoidCode : Code _
K bimonoidCode = BimonoidK
boundAt bimonoidCode 0 = 2
boundAt bimonoidCode 2 = 2
boundAt bimonoidCode _ = 0
isFiniteAt bimonoidCode 0 = enumerable-isFiniteSet (0# ∷ 1# ∷ []) λ {0# → here ≡.refl; 1# → there (here ≡.refl)}
isFiniteAt bimonoidCode 1 = enumerable-isFiniteSet [] λ ()
isFiniteAt bimonoidCode 2 = enumerable-isFiniteSet (+ ∷ * ∷ []) λ {+ → here ≡.refl; * → there (here ≡.refl)}
isFiniteAt bimonoidCode (suc (suc (suc _))) = enumerable-isFiniteSet [] λ ()
--------------------------------------------------------------------------------
-- Subparts of bimonoids
--------------------------------------------------------------------------------
+-part : ∀ {n} → BimonoidK n → Maybe (MonoidK n)
+-part 0# = just ε
+-part + = just ∙
+-part _ = nothing
*-part : ∀ {n} → BimonoidK n → Maybe (MonoidK n)
*-part 1# = just ε
*-part * = just ∙
*-part _ = nothing
--------------------------------------------------------------------------------
-- Some named property combinations
--------------------------------------------------------------------------------
isSemigroup : Properties magmaCode
isSemigroup = fromList (associative on ∙ ∷ [])
isMonoid : Properties monoidCode
isMonoid = subΠ′ (λ {∙ → just ∙; _ → nothing}) isSemigroup
( ε is leftIdentity for ∙
∷ ε is rightIdentity for ∙
∷ [])
isCommutativeMonoid : Properties monoidCode
isCommutativeMonoid = subΠ just isMonoid (fromList (commutative on ∙ ∷ []))
isSemiring : Properties bimonoidCode
isSemiring =
subΠ +-part isCommutativeMonoid (
subΠ′ *-part isMonoid
( 0# is leftZero for *
∷ 0# is rightZero for *
∷ * ⟨ distributesOverˡ ⟩ₚ +
∷ * ⟨ distributesOverʳ ⟩ₚ +
∷ []
))
--------------------------------------------------------------------------------
-- Subcode Proofs
--------------------------------------------------------------------------------
magma⊂monoid : IsSubcode magmaCode monoidCode
magma⊂monoid .subK→supK ∙ = ∙
magma⊂monoid .supK→subK ∙ = just ∙
magma⊂monoid .supK→subK ε = nothing
magma⊂monoid .acrossSub ∙ = ≡.refl
+-monoid⊂bimonoid : IsSubcode monoidCode bimonoidCode
+-monoid⊂bimonoid .subK→supK ∙ = +
+-monoid⊂bimonoid .subK→supK ε = 0#
+-monoid⊂bimonoid .supK→subK + = just ∙
+-monoid⊂bimonoid .supK→subK 0# = just ε
+-monoid⊂bimonoid .supK→subK _ = nothing
+-monoid⊂bimonoid .acrossSub ∙ = ≡.refl
+-monoid⊂bimonoid .acrossSub ε = ≡.refl
*-monoid⊂bimonoid : IsSubcode monoidCode bimonoidCode
*-monoid⊂bimonoid .subK→supK ∙ = *
*-monoid⊂bimonoid .subK→supK ε = 1#
*-monoid⊂bimonoid .supK→subK * = just ∙
*-monoid⊂bimonoid .supK→subK 1# = just ε
*-monoid⊂bimonoid .supK→subK _ = nothing
*-monoid⊂bimonoid .acrossSub ∙ = ≡.refl
*-monoid⊂bimonoid .acrossSub ε = ≡.refl
--------------------------------------------------------------------------------
-- Conversion to structures from the agda standard library
--------------------------------------------------------------------------------
module Into {c ℓ} where
open Algebra using (Semigroup; Monoid; CommutativeMonoid; Semiring)
module _ (struct : Struct magmaCode c ℓ) where
open Struct struct
semigroup : ∀ ⦃ hasSemigroup : Hasₚ isSemigroup ⦄ → Semigroup _ _
semigroup ⦃ hasSemigroup ⦄ = record
{ _∙_ = ⟦ ∙ ⟧
; isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = from hasSemigroup (associative on ∙)
; ∙-cong = cong ∙
}
}
module _ (struct : Struct monoidCode c ℓ) where
open Struct struct
monoid : ⦃ hasMonoid : Hasₚ isMonoid ⦄ → Monoid c ℓ
monoid ⦃ hasMonoid ⦄ = record
{ isMonoid = record
{ isSemigroup = S.isSemigroup
; identity = from hasMonoid (ε is leftIdentity for ∙) , from hasMonoid (ε is rightIdentity for ∙)
}
}
where
magmaPart : Struct magmaCode c ℓ
magmaPart = substruct magma⊂monoid
module S = Semigroup (semigroup magmaPart ⦃ toSubstruct magma⊂monoid (weaken hasMonoid) ⦄)
commutativeMonoid : ⦃ hasCommutativeMonoid : Hasₚ isCommutativeMonoid ⦄ → CommutativeMonoid c ℓ
commutativeMonoid ⦃ hasCommutativeMonoid ⦄ = record
{ isCommutativeMonoid = record
{ isSemigroup = S.isSemigroup
; identityˡ = from hasCommutativeMonoid (ε is leftIdentity for ∙)
; comm = from hasCommutativeMonoid (commutative on ∙)
}
}
where
magmaPart : Struct magmaCode c ℓ
magmaPart = substruct magma⊂monoid
module S = Semigroup (semigroup magmaPart ⦃ toSubstruct magma⊂monoid (weaken hasCommutativeMonoid) ⦄)
module _ (struct : Struct bimonoidCode c ℓ) where
open Struct struct
semiring : ⦃ hasSemiring : Hasₚ isSemiring ⦄ → Semiring c ℓ
semiring ⦃ hasSemiring ⦄ = record
{ isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-CM.isCommutativeMonoid
; *-isMonoid = *-M.isMonoid
; distrib = from hasSemiring (* ⟨ distributesOverˡ ⟩ₚ +),
from hasSemiring (* ⟨ distributesOverʳ ⟩ₚ +)
}
; zero = from hasSemiring (0# is leftZero for *) ,
from hasSemiring (0# is rightZero for *)
}
}
where
+-monoidPart : Struct monoidCode c ℓ
+-monoidPart = substruct +-monoid⊂bimonoid
*-monoidPart : Struct monoidCode c ℓ
*-monoidPart = substruct *-monoid⊂bimonoid
module +-CM = CommutativeMonoid (commutativeMonoid +-monoidPart ⦃ toSubstruct +-monoid⊂bimonoid (weaken hasSemiring) ⦄)
module *-M = Monoid (monoid *-monoidPart ⦃ toSubstruct *-monoid⊂bimonoid (weaken hasSemiring) ⦄)
|
{
"alphanum_fraction": 0.5712581992,
"avg_line_length": 34.9375,
"ext": "agda",
"hexsha": "88550db0654555420212156ef995e0ca1ea80bb0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Algebra/PropertyCode/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Algebra/PropertyCode/Structures.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Algebra/PropertyCode/Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2641,
"size": 8385
}
|
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness --sized-types #-}
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Data.List using ([]; _∷_; _∷ʳ_; _++_)
open import Relation.Nullary
open import Relation.Unary using (_∈_; _⊆_;_∉_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst; sym)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (_◅◅_)
open import Function.Base using (case_of_)
open import Common
module Convergence {ℙ : Set} (message : Message ℙ)
where
open import Trace message
open import SessionType message
open import Transitions message
open import HasTrace message
open import Session message
open import TraceInclusion message
open import Divergence message
open import FairCompliance message
PreConvergence : (SessionType -> SessionType -> Set) -> SessionType -> SessionType -> Set
PreConvergence rel T S =
∀{φ} (tφ : T HasTrace φ) (sφ : ¬ S HasTrace φ) ->
∃[ ψ ] ∃[ x ] (ψ ⊑ φ × ∃ λ (tψ : T HasTrace (ψ ∷ʳ O x)) ->
∃ λ (sψ : S HasTrace (ψ ∷ʳ O x)) ->
rel (after tψ) (after sψ))
data _↓_ : SessionType -> SessionType -> Set where
converge : ∀{T S} -> PreConvergence _↓_ T S -> T ↓ S
Convergence : SessionType -> SessionType -> Set
Convergence = PreConvergence _↓_
con-sound : ∀{T S} -> T ↓ S -> ConvergenceS T S
con-sound {T} {S} (converge C) {R} comp with fair-compliance->may-succeed comp
... | (R' # T') , reds , win#def w tdef with unzip-red* reds
... | φ , rr , tr with S HasTrace? φ
... | yes (S' , sdef , sr) = _ , zip-red* rr sr , win#def w sdef
... | no nsφ with C (_ , tdef , tr) nsφ
... | (ψ , x , prefix , tψx , sψx , con)
with ⊑-has-co-trace prefix (_ , win->defined w , rr) | has-trace-snoc sψx
... | rψ | sψ@(_ , sdef , _) , _ with client-wins-or-accepts-prefix comp rψ tψx
... | inj₁ wψ = _ , zip-traces rψ sψ , win#def wψ sdef
... | inj₂ rψx with zip-traces rψx tψx
... | reds' with con-sound con (fair-compliance-red* comp reds')
... | (_ , reds'' , success) = _ , zip-traces rψx sψx ◅◅ reds'' , success
inclusion->convergence : ∀{T S} -> TraceInclusionS T S -> T ↓ S
inclusion->convergence sub = converge λ tφ nsφ -> ⊥-elim (nsφ (sub tφ))
not-convergence->exclusion : ∀{T S} -> ¬ T ↓ S -> ¬ TraceInclusionS T S
not-convergence->exclusion not sub = not (inclusion->convergence sub)
not-convergence+divergence : ∀{T S} -> T ↓ S -> T ↑ S -> ⊥
not-convergence+divergence (converge F) div =
let φ = _↑_.trace div in
let tφ = _↑_.with-trace div in
let nsφ = _↑_.without-trace div in
let _ , _ , pre , tψx , sψx , con' = F tφ nsφ in
let div' = _↑_.divergence div pre tψx sψx in
not-convergence+divergence con' div'
↓->preconv : ∀{S T} → S ↓ T → PreConvergence _↓_ S T
↓->preconv (converge x) = x
conv->defined : ∀{S T} → Defined S → S ↓ T → Defined T
conv->defined {_} {nil} inp (converge f) with f {[]} (inp _ , inp , refl) (λ x → not-nil-has-trace x)
... | _ , _ , none , _ , ht , _ = ⊥-elim (not-nil-has-trace ht)
conv->defined {_} {inp _} inp (converge _) = inp
conv->defined {_} {out _} inp (converge _) = out
conv->defined {_} {nil} out (converge f) with f {[]} (out _ , out , refl) (λ x → not-nil-has-trace x)
... | _ , _ , none , _ , ht , _ = ⊥-elim (not-nil-has-trace ht)
conv->defined {_} {inp _} out (converge _) = inp
conv->defined {_} {out _} out (converge _) = out
nil-converges : ∀{S} → nil ↓ S
nil-converges {S} = converge λ tφ _ → ⊥-elim (not-nil-has-trace tφ)
end-converges : ∀{T S} → End T → Defined S → T ↓ S
end-converges (inp e) def = converge λ tφ sφ →
let eq = empty-inp-has-empty-trace e tφ in
⊥-elim (sφ (subst (λ ψ → _ HasTrace ψ) (sym eq) (_ , def , refl)))
end-converges (out e) def = converge λ tφ sφ →
let eq = empty-out-has-empty-trace e tφ in
⊥-elim (sφ (subst (λ ψ → _ HasTrace ψ) (sym eq) (_ , def , refl)))
pre-conv-inp-back : ∀{f g}
→ (∀{x} → x ∈ dom f → PreConvergence _↓_ (f x .force) (g x .force))
→ PreConvergence _↓_ (inp f) (inp g)
pre-conv-inp-back _ {[]} _ no-tr = ⊥-elim (no-tr (_ , inp , refl))
pre-conv-inp-back {f} conv {I x ∷ tr} ok-tr no-tr with x ∈? f
pre-conv-inp-back {f} conv {I x ∷ tr} (_ , def , step inp red) no-tr | yes ok-x =
let ϕ , α , (pref , (_ , d , r) , (_ , d' , r') , pr) = conv ok-x (_ , def , red) λ (_ , d , r) → no-tr (_ , d , step inp r) in
I x ∷ ϕ , α , some pref , (_ , d , step inp r) , (_ , d' , step inp r') , pr
pre-conv-inp-back {f} conv {I x ∷ tr} ok-tr no-tr | no no-x = ⊥-elim (no-x (inp-hastrace->defined ok-tr))
pre-conv-inp-back _ {O _ ∷ _} (_ , _ , step () _) _
|
{
"alphanum_fraction": 0.643886156,
"avg_line_length": 44.1240310078,
"ext": "agda",
"hexsha": "4f549ef39cfa98e2d988313e9325846ed3d3a29c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Convergence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Convergence.agda",
"max_line_length": 130,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Convergence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 1932,
"size": 5692
}
|
module TestsTransport where
open import Function
open import Data.Product
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
open import Isomorphisms
open import Tests
Foo : (A : Set) → (T : Testable A) →
(x y : A) → (φ : Test T) → Set
Foo A T x y ⊤ =
_⊨_ {A} {T} x ⊤ ≡ _⊨_ {A} {T} y ⊤
Foo A T x y ⊥ =
_⊨_ {A} {T} x ⊥ ≡ _⊨_ {A} {T} y ⊥
Foo A T x y (nonTriv nt) = sat≡ (kind T) (subT nt) (obs T)
where
sat≡ : (k : Kind) → SubTests T k → (A → ObsTy (index T) (parts T) k) → Set
sat≡ ind φs o =
cotuple (λ i y → y ⊨ app φs i) (o x)
≡ cotuple (λ i y → y ⊨ app φs i) (o y)
sat≡ coind (i , φ) o =
app (o x) i ⊨ φ ≡ app (o y) i ⊨ φ
-- Note: Maybe Reveal_is_ can help to match on (kind T)??
{-
≃-transport : {A B : Set} → {T : Testable A} → (I : Iso A B) →
(x y : A) → x ≃〈 T 〉 y →
(Iso.iso I x) ≃〈 iso-testable T I 〉 (Iso.iso I y)
≃-transport {A} {B} {T₁} I x y p = record { eqProof = q }
where
T₂ = iso-testable T₁ I
f : A → B
f = Iso.iso I
g : B → A
g = IsIso.inv (Iso.indeedIso I)
o₁ = obs T₁
o₂ = obs T₂
lem : (a : A) → (o₂ ∘ f) a ≡ o₁ a
lem a =
begin
(o₂ ∘ f) a
≡⟨ refl ⟩
(o₁ ∘ g ∘ f) a
≡⟨ cong (λ x₁ → o₁ x₁) (IsIso.isLeftInv (Iso.indeedIso I) a) ⟩
o₁ a
∎
q : (φ : Test T₂) → f x ⊨ φ ≡ f y ⊨ φ
q ⊤ = refl
q ⊥ = refl
q (nonTriv (nonTrivTest t)) =
begin
sat (kind T₂) t (o₂ (f x))
≡⟨ cong (λ u → sat (kind T₂) t u) (lem x) ⟩
sat (kind T₂) t (o₁ x)
≡⟨ sat≡ (index T₁) (parts T₁) (kind T₁)
o₂ (obsIso T₂) (partsTestable T₁) o₁ (obsIso T₁) lem p t ⟩
sat (kind T₂) t (o₁ y)
≡⟨ cong (λ u → sat (kind T₂) t u) (sym $ lem y) ⟩
sat (kind T₂) t (o₂ (f y))
∎
where
-- Agda complains at this point that
-- T₁ != record { index = index T₁ ; parts = parts T₁ ; kind = kind T₁
-- ; obs = obs T₁ ; obsIso = obsIso T₁
-- ; partsTestable = partsTestable T₁}
-- ...
-- Is it possible to circumvent this issue?
sat≡ : (Idx : Set) → (P : Idx → Set) → (k : Kind) →
(o₂ : B → ObsTy Idx P k) → (isoT₂ : IsIso o₂) →
(pTestable : (i : Idx) → Testable (P i)) →
(o₁ : A → ObsTy Idx P k) → (isoT₁ : IsIso o₁) →
((a : A) → (o₂ ∘ f) a ≡ o₁ a) →
x ≃〈 record
{ index = Idx
; parts = P
; kind = k
; obs = o₁
; obsIso = isoT₁
; partsTestable = pTestable
} 〉 y →
(t' : SubTests
( record
{ index = Idx ; parts = P ; kind = k ; obs = o₂
; obsIso = isoT₂ ; partsTestable = pTestable }) k ) →
sat k t' (o₁ x) ≡ sat k t' (o₁ y)
sat≡ = {!!}
-}
{-
≃-transport {A} {B} {T₁} I x y p =
q (index T₁) (parts T₁) (kind T₁) (obs T₂) (obsIso T₂) (partsTestable T₁)
(obs T₁) (obsIso T₁) lem {!!}
-- Agda complains at this point that
-- T₁ != record { index = index T₁ ; parts = parts T₁ ; kind = kind T₁
-- ; obs = obs T₁ ; obsIso = obsIso T₁
-- ; partsTestable = partsTestable T₁}
-- ...
-- Is it possible to circumvent this issue?
where
T₂ = iso-testable T₁ I
f : A → B
f = Iso.iso I
g : B → A
g = IsIso.inv (Iso.indeedIso I)
o₁ = obs T₁
o₂ = obs T₂
lem : (a : A) → (o₂ ∘ f) a ≡ o₁ a
lem a =
begin
(o₂ ∘ f) a
≡⟨ refl ⟩
(o₁ ∘ g ∘ f) a
≡⟨ cong (λ x₁ → o₁ x₁) (IsIso.isLeftInv (Iso.indeedIso I) a) ⟩
o₁ a
∎
q : (Idx : Set) → (P : Idx → Set) → (k : Kind) →
(o₂ : B → ObsTy Idx P k) → (isoT₂ : IsIso o₂) →
(pTestable : (i : Idx) → Testable (P i)) →
(o₁ : A → ObsTy Idx P k) → (isoT₁ : IsIso o₁) →
((a : A) → (o₂ ∘ f) a ≡ o₁ a) →
x ≃〈 record
{ index = Idx
; parts = P
; kind = k
; obs = o₁
; obsIso = isoT₁
; partsTestable = pTestable
} 〉 y →
f x ≃〈 record
{ index = Idx
; parts = P
; kind = k
; obs = o₂
; obsIso = isoT₂
; partsTestable = pTestable
} 〉
f y
q Idx P ind o₂ isoT₂ pTestable o₁ isoT₁ lem p = record { eqProof = qi }
where
T₁' = record
{ index = Idx ; parts = P ; kind = ind
; obs = o₁ ; obsIso = isoT₁ ; partsTestable = pTestable }
T₂' = record
{ index = Idx ; parts = P ; kind = ind
; obs = o₂ ; obsIso = isoT₂ ; partsTestable = pTestable }
qi : (φ : Test T₂') → f x ⊨ φ ≡ f y ⊨ φ
qi ⊤ = refl
qi ⊥ = refl
qi (nonTriv (nonTrivTest φs)) =
begin
cotuple (λ i z → z ⊨ app φs i) (o₂ (f x))
≡⟨ cong (λ u → cotuple (λ i z → z ⊨ app φs i) u) (lem x) ⟩
cotuple (λ i z → z ⊨ app φs i) (o₁ x)
≡⟨ refl ⟩
_⊨_ {A} {T₁'} x (nonTriv (nonTrivTest φs))
≡⟨ eqProof p (nonTriv (nonTrivTest φs)) ⟩
_⊨_ {A} {T₁'} y (nonTriv (nonTrivTest φs))
≡⟨ refl ⟩
cotuple (λ i z → z ⊨ app φs i) (o₁ y)
≡⟨ cong (λ u → cotuple (λ i z → z ⊨ app φs i) u) (sym $ lem y) ⟩
cotuple (λ i z → z ⊨ app φs i) (o₂ (f y))
∎
q Idx P coind o₂ isoT₂ pTestable o₁ isoT₁ lem p = record { eqProof = qc }
where
T₁' = record
{ index = Idx ; parts = P ; kind = coind
; obs = o₁ ; obsIso = isoT₁ ; partsTestable = pTestable }
T₂' = record
{ index = Idx ; parts = P ; kind = coind
; obs = o₂ ; obsIso = isoT₂ ; partsTestable = pTestable }
qc : (φ : Test T₂') → f x ⊨ φ ≡ f y ⊨ φ
qc ⊤ = refl
qc ⊥ = refl
qc (nonTriv (nonTrivTest (i , φ))) =
begin
app (o₂ (f x)) i ⊨ φ
≡⟨ cong (λ u → app u i ⊨ φ) (lem x) ⟩
app (o₁ x) i ⊨ φ
≡⟨ {!!} ⟩
app (o₁ y) i ⊨ φ
≡⟨ cong (λ u → app u i ⊨ φ) (sym $ lem y) ⟩
app (o₂ (f y)) i ⊨ φ
∎
-}
|
{
"alphanum_fraction": 0.4220341639,
"avg_line_length": 33.5842105263,
"ext": "agda",
"hexsha": "9cedbfc7636c5f9f7c5012a4b0db139489afaa2e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "OTTTests/TestsTransport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "OTTTests/TestsTransport.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "OTTTests/TestsTransport.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2482,
"size": 6381
}
|
------------------------------------------------------------------------------
-- Exclusive disjunction theorems
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.ExclusiveDisjunction.TheoremsI where
-- The theorems below are valid on intuitionistic logic and with an
-- empty domain.
open import FOL.Base hiding ( D≢∅ ; pem )
open import FOL.ExclusiveDisjunction.Base
------------------------------------------------------------------------------
p⊻q→p→¬q : {P Q : Set} → P ⊻ Q → P → ¬ Q
p⊻q→p→¬q (inj₁ _ , h) p q = h (p , q)
p⊻q→p→¬q (inj₂ _ , h) p q = h (p , q)
p⊻q→q→¬p : {P Q : Set} → P ⊻ Q → Q → ¬ P
p⊻q→q→¬p (inj₁ _ , h) q p = h (p , q)
p⊻q→q→¬p (inj₂ _ , h) q p = h (p , q)
p⊻q→¬p→q : {P Q : Set} → P ⊻ Q → ¬ P → Q
p⊻q→¬p→q (inj₁ p , _) ¬p = ⊥-elim (¬p p)
p⊻q→¬p→q (inj₂ q , _) _ = q
p⊻q→¬q→p : {P Q : Set} → P ⊻ Q → ¬ Q → P
p⊻q→¬q→p (inj₁ p , _) ¬q = p
p⊻q→¬q→p (inj₂ q , _) ¬q = ⊥-elim (¬q q)
|
{
"alphanum_fraction": 0.4003558719,
"avg_line_length": 33.0588235294,
"ext": "agda",
"hexsha": "333903e5edd1f3483defc57eed57e606e806b6ea",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 426,
"size": 1124
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Structures.VectorSpace
{k ℓᵏ} (K : Field k ℓᵏ)
where
open import Algebra.FunctionProperties
open import Relation.Binary using (Rel)
open import Level using (_⊔_)
open import Data.Nat using (ℕ)
module VectorSpaceField where
open Field K public
using ()
renaming
( Carrier to K'
; _≈_ to _≈ᵏ_
; refl to ≈ᵏ-refl
; sym to ≈ᵏ-sym
; trans to ≈ᵏ-trans
; reflexive to ≈ᵏ-reflexive
; isEquivalence to ≈ᵏ-isEquiv
; setoid to K-setoid
; _+_ to _+ᵏ_
; _*_ to _*ᵏ_
; _-_ to _-ᵏ_
; 0# to 0ᵏ
; 1# to 1ᵏ
; -_ to -ᵏ_
; _⁻¹ to _⁻¹ᵏ
; +-cong to +ᵏ-cong
; +-identity to +ᵏ-identity
; +-identityˡ to +ᵏ-identityˡ
; +-identityʳ to +ᵏ-identityʳ
; +-assoc to +ᵏ-assoc
; +-comm to +ᵏ-comm
; *-cong to *ᵏ-cong
; *-identity to *ᵏ-identity
; *-identityˡ to *ᵏ-identityˡ
; *-identityʳ to *ᵏ-identityʳ
; *-assoc to *ᵏ-assoc
; *-comm to *ᵏ-comm
; zero to *ᵏ-zero
; zeroˡ to *ᵏ-zeroˡ
; zeroʳ to *ᵏ-zeroʳ
; distrib to *ᵏ-+ᵏ-distrib
; distribˡ to *ᵏ-+ᵏ-distribˡ
; distribʳ to *ᵏ-+ᵏ-distribʳ
; -‿distribˡ-* to -ᵏ‿distribˡ-*ᵏ
; -‿distribʳ-* to -ᵏ‿distribʳ-*ᵏ
; -‿cong to -ᵏ‿cong
; -‿inverse to -ᵏ‿inverse
; -‿inverseˡ to -ᵏ‿inverseˡ
; -‿inverseʳ to -ᵏ‿inverseʳ
; uniqueˡ-⁻¹ to uniqueˡ-⁻¹ᵏ
; uniqueʳ-⁻¹ to uniqueʳ-⁻¹ᵏ
; _⁻¹-inverse to _⁻¹ᵏ-inverse
; _⁻¹-involutive to _⁻¹ᵏ-involutive
; 0#-not-1# to 0ᵏ-not-1ᵏ
)
module _
{v ℓ} {V : Set v}
(_≈_ : Rel V ℓ)
where
open VectorSpaceField
open import Algebra.Structures _≈_
record IsVectorSpace (_+_ : Op₂ V) (_∙_ : K' → V → V) (-_ : Op₁ V) (0# : V) : Set (v ⊔ k ⊔ ℓ ⊔ ℓᵏ) where
field
isAbelianGroup : IsAbelianGroup _+_ 0# -_
*ᵏ-∙-compat : ∀ (a b : K') (u : V) -> ((a *ᵏ b) ∙ u) ≈ (a ∙ (b ∙ u))
∙-+-distrib : ∀ (a : K') (u v : V) -> (a ∙ (u + v)) ≈ ((a ∙ u) + (a ∙ v))
∙-+ᵏ-distrib : ∀ (a b : K') (u : V) -> ((a +ᵏ b) ∙ u) ≈ ((a ∙ u) + (b ∙ u))
∙-cong : ∀ {a b : K'} {u v : V} -> a ≈ᵏ b -> u ≈ v -> (a ∙ u) ≈ (b ∙ v)
∙-identity : ∀ (x : V) → (1ᵏ ∙ x) ≈ x
∙-absorbˡ : ∀ (x : V) → (0ᵏ ∙ x) ≈ 0#
open IsAbelianGroup isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; comm to +-comm
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
)
open import Algebra.Properties.AbelianGroup (record { isAbelianGroup = isAbelianGroup }) public
renaming
( ε⁻¹≈ε to -0≈0
; ∙-cancelˡ to +-cancelˡ
; ∙-cancelʳ to +-cancelʳ
; ∙-cancel to +-cancel
; identityˡ-unique to +-identityˡ-unique
; identityʳ-unique to +-identityʳ-unique
; identity-unique to +-identity-unique
; inverseˡ-unique to +-inverseˡ-unique
; inverseʳ-unique to +-inverseʳ-unique
; xyx⁻¹≈y to x+y-x≈y
; ⁻¹-∙-comm to -‿+-comm
)
open import Relation.Binary.EqReasoning setoid
∙-absorbʳ : ∀ (a : K') -> (a ∙ 0#) ≈ 0#
∙-absorbʳ a =
begin
a ∙ 0#
≈⟨ trans (∙-cong ≈ᵏ-refl (sym (∙-absorbˡ 0#))) (sym (*ᵏ-∙-compat a 0ᵏ 0#)) ⟩
(a *ᵏ 0ᵏ) ∙ 0#
≈⟨ ∙-cong (*ᵏ-zeroʳ a) refl ⟩
0ᵏ ∙ 0#
≈⟨ ∙-absorbˡ 0# ⟩
0#
∎
∙-∙-comm : ∀ (a b : K') (u : V) -> (a ∙ (b ∙ u)) ≈ (b ∙ (a ∙ u))
∙-∙-comm a b u =
begin
a ∙ (b ∙ u)
≈⟨ sym (*ᵏ-∙-compat a b u) ⟩
(a *ᵏ b) ∙ u
≈⟨ ∙-cong (*ᵏ-comm a b) refl ⟩
(b *ᵏ a) ∙ u
≈⟨ *ᵏ-∙-compat b a u ⟩
b ∙ (a ∙ u)
∎
private
lemma-inverseʳ : ∀ (u : V) -> (u + ((-ᵏ 1ᵏ) ∙ u)) ≈ 0#
lemma-inverseʳ u =
begin
u + ((-ᵏ 1ᵏ) ∙ u)
≈⟨ +-cong (sym (∙-identity u)) refl ⟩
(1ᵏ ∙ u) + ((-ᵏ 1ᵏ) ∙ u)
≈⟨ sym (∙-+ᵏ-distrib 1ᵏ (-ᵏ 1ᵏ) u) ⟩
(1ᵏ +ᵏ (-ᵏ 1ᵏ)) ∙ u
≈⟨ ∙-cong (-ᵏ‿inverseʳ 1ᵏ) refl ⟩
0ᵏ ∙ u
≈⟨ ∙-absorbˡ u ⟩
0#
∎
-1∙u≈-u : ∀ (u : V) -> ((-ᵏ 1ᵏ) ∙ u) ≈ (- u)
-1∙u≈-u u =
begin
((-ᵏ 1ᵏ) ∙ u)
≈⟨ +-inverseʳ-unique u ((-ᵏ 1ᵏ) ∙ u) (lemma-inverseʳ u) ⟩
- u
∎
|
{
"alphanum_fraction": 0.4391709845,
"avg_line_length": 30.15625,
"ext": "agda",
"hexsha": "01b143e40d17a11ca95562b2a38838343a2cad90",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Structures/VectorSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Structures/VectorSpace.agda",
"max_line_length": 106,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Structures/VectorSpace.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 2226,
"size": 4825
}
|
-- Andreas, 2016-06-21 fixed context for a debug message
{-# OPTIONS -v tc.section:10 #-} -- KEEP! to print debug message
module _ {A : Set} where
postulate B : Set
module M {A : Set} where
-- Intentional crash:
fail : Set
fail = Set
-- Expected debug printout:
-- checking section Issue2018debug {A = A₁ : Set}
-- actual tele: {A : Set}
-- checking section M {A = A₁ : Set}
-- actual tele: {A : Set} {A₁ : Set}
--
-- The last "actual tele" hints to a problem: Agda has renamed the second parameter!
|
{
"alphanum_fraction": 0.6492248062,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "cf1dc7b038151f410b36b0dd6664436f50e5becc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2018debug.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2018debug.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2018debug.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 153,
"size": 516
}
|
module hello-agda where
open import IO using (run; putStrLn)
import Agda.Builtin.IO as Builtin using (IO)
open import Data.Unit.Polymorphic.Base using (⊤)
open import Agda.Primitive using (lzero)
main : Builtin.IO {lzero} ⊤
main = run (putStrLn "Hello, Agda!")
|
{
"alphanum_fraction": 0.7480916031,
"avg_line_length": 29.1111111111,
"ext": "agda",
"hexsha": "72131b42cdb9d188337b80ba0f553f64c322169f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20fe690cbeddb9b80c8be54ff2818b4dd3f96470",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "neosimsim/myenv",
"max_forks_repo_path": "tests/hello-agda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20fe690cbeddb9b80c8be54ff2818b4dd3f96470",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "neosimsim/myenv",
"max_issues_repo_path": "tests/hello-agda.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "20fe690cbeddb9b80c8be54ff2818b4dd3f96470",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "neosimsim/myenv",
"max_stars_repo_path": "tests/hello-agda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 78,
"size": 262
}
|
module lambda.hw7 where
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary.PropositionalEquality hiding (subst)
open import Data.Nat
open import Data.Fin hiding (lift)
open import lambda.untyped
open import lambda.vec
open import lambda.system-f renaming (⊢_∶_ to ⊢F_∶_; type to typeF)
hiding (subst; ↑; lift; subst₁)
open import lambda.system-d renaming (⊢_∶_ to ⊢D_∶_; type to typeD;
_⊢_∶_ to _⊢D_∶_; context to contextD)
-- Peio BORTHELLE -- Homework 7
-- Maybe it's a bit unusual to present things like this, we didn't do any Agda
-- but it would really have been more hassle formalizing the homework in Coq.
-- So here it is, there are some utilities in the other files and also some
-- bonus simply-typed lambda calculus. It was a bit more fun for me than to
-- write again some long derivation tree with no guarantee at all that there
-- isn't a stupid mistake kicking in. I tried to get the notations close to
-- what we had in the lesson, hope this doesn't look too alien.
-- Utilities
A B C : typeD
A = base 0
B = base 1
C = base 1
V₀ : ∀ {n} → typeF (suc n)
V₀ = var zero
V₁ : ∀ {n} → typeF (suc (suc n))
V₁ = var (suc zero)
module Q₁ where
-- Source terms
t₁ t₂ t₃ t₄ : term 0
t₁ = lam (app (var zero) (var zero))
t₂ = app t₁ (lam (var zero))
t₃ = app t₁ t₁
t₄ = lam (lam (app (var (suc zero)) (app (var zero) (var (suc zero)))))
-- a) system F
F₁ F₂ F₄ : typeF 0
F₁ = (∀' V₀ ⇒ V₀) ⇒ (∀' V₀ ⇒ V₀)
F₂ = ∀' V₀ ⇒ V₀
F₄ = ∀' ∀' (V₀ ⇒ V₁) ⇒ ((V₀ ⇒ V₁) ⇒ V₀) ⇒ V₁
F₁-p : ⊢F t₁ ∶ F₁
F₁-p = lam (∀' V₀ ⇒ V₀) (app (sub (∀' V₀ ⇒ V₀) ax) ax)
F₂-p : ⊢F t₂ ∶ F₂
F₂-p = app (lam (∀' V₀ ⇒ V₀) (app (sub (∀' V₀ ⇒ V₀) ax) ax)) (gen (lam V₀ ax))
-- t₃ is not normalizing: it has a non-trivial beta-reduction to itself.
-- Because system F is strongly normalizing this prooves that it has no valid
-- typing judgment.
t₃-no-norm : t₃ β* t₃
t₃-no-norm = β-beta ← ε
F₄-p : ⊢F t₄ ∶ F₄
F₄-p = gen (gen (lam (V₀ ⇒ V₁) (lam ((V₀ ⇒ V₁) ⇒ V₀) (app ax (app ax ax)))))
-- b) system D
σ₁ σ₂ σ₄ : typeD
σ₁ = (A ∧ A ⇒ B) ⇒ B
σ₂ = A ⇒ A
σ₄ = (A ⇒ B) ⇒ ((A ⇒ B) ⇒ A) ⇒ B
σ₁-p : ⊢D t₁ ∶ σ₁
σ₁-p = lam (app (∧ᵉʳ ax) (∧ᵉˡ ax))
σ₂-p : ⊢D t₂ ∶ σ₂
σ₂-p = app (lam (app (∧ᵉʳ ax) (∧ᵉˡ ax))) (∧ⁱ (lam ax) (lam ax))
-- Same as system F for t₃ because of the strongly normalizing property.
σ₄-p : ⊢D t₄ ∶ σ₄
σ₄-p = lam (lam (app ax (app ax ax)))
module Q₂ where
--
σ₁ σ₂ σ₃ σ₄ : typeD
σ₁ = ((A ∧ B) ⇒ C) ⇒ A ⇒ B ⇒ C
σ₂ = (A ⇒ B ⇒ C) ⇒ (A ∧ B) ⇒ C
σ₃ = (C ⇒ A ∧ C ⇒ B) ⇒ C ⇒ (A ∧ B)
σ₄ = C ⇒ (A ∧ B) ⇒ (C ⇒ A ∧ C ⇒ B)
σ₁-p : ∀ {t} → ¬ ⊢D t ∶ σ₁
σ₁-p p = {!!}
σ₂-p : ⊢D lam (lam (app (app (var (suc zero)) (var zero)) (var zero))) ∶ σ₂
σ₂-p = lam (lam (app (app ax (∧ᵉˡ ax)) (∧ᵉʳ ax)))
σ₃-p : ⊢D lam (lam (app (var (suc zero)) (var zero))) ∶ σ₃
σ₃-p = lam (lam (∧ⁱ (app (∧ᵉˡ ax) ax) (app (∧ᵉʳ ax) ax)))
σ₄-p : ⊢D lam (lam (lam (var (suc zero)))) ∶ σ₄
σ₄-p = lam (lam (∧ⁱ (lam (∧ᵉˡ ax)) (lam (∧ᵉʳ ax))))
module Q₃ where
-- I got stuck on applying the substitution lemma on function type that are
-- not lambda abstractions but ∧ eliminations. I don't manage to get from
-- a proof of that type to a proof with the argument type on the top of the
-- context. Maybe the substitution lemma is not well choosen.
subj-red : ∀ {n T} → {x y : term n} → {Γ : contextD n} → Γ ⊢D x ∶ T → x →β y → Γ ⊢D y ∶ T
subj-red ax ()
subj-red (∧ⁱ x₁ x₂) p = ∧ⁱ (subj-red x₁ p) (subj-red x₂ p)
subj-red (∧ᵉˡ x) p = ∧ᵉˡ (subj-red x p)
subj-red (∧ᵉʳ x) p = ∧ᵉʳ (subj-red x p)
subj-red (app (lam x) y) β-beta = subst-p x (λ { zero → y; (suc i) → ax })
subj-red (app (∧ᵉˡ x) y) β-beta = {! !}
subj-red (app (∧ᵉʳ x) y) β-beta = {! !}
subj-red (app x y) (β-app₁ p) = app (subj-red x p) y
subj-red (app x y) (β-app₂ p) = app x (subj-red y p)
subj-red (lam x) (β-lam p) = lam (subj-red x p)
module Q₄ where
-- The BNF grammar i use is:
--
-- <NF> ::= "λ" <VAR> "." <NF> | <NE>
-- <NE> ::= <NE> <NF> | <VAR>
--
-- I implemented this grammar as a judgment on untyped lambda terms
-- with the datatypes `lambda.untyped.norm` and `lambda.untyped.neut`.
-- Proof that NF and NE don't allow further derivation
-- This proof as well as the reciprocical were quite mechanized but still
-- a bit cumbersome.
nf-last : ∀ {n} → {x : term n} → norm x → ¬ ∃[ y ] (x →β y)
ne-last : ∀ {n} → {x : term n} → neut x → ¬ ∃[ y ] (x →β y)
nf-last (lam x) (lam y , β-lam p) = nf-last x (y , p)
nf-last (gnd x) (lam y , p) = ne-last x (lam y , p)
nf-last (gnd x) (var i , p) = ne-last x (var i , p)
nf-last (gnd x) (app a b , p) = ne-last x (app a b , p)
ne-last var (y , ())
ne-last (app () y) (_ , β-beta)
ne-last (app x y) (app a b , β-app₁ p) = ne-last x (a , p)
ne-last (app x y) (app a b , β-app₂ p) = nf-last y (b , p)
-- Proof that terms with no further derivation are in NF
last-nf : ∀ {n} → (x : term n) → ¬ ∃[ y ] (x →β y) → norm x
last-ne : ∀ {n y} → (x : term n) → ¬ ∃[ z ] (app x y →β z) → neut x
last-nf (lam x) p = lam (last-nf x λ { (y , p₂) → p (lam y , β-lam p₂) })
last-nf (var x) p = gnd var
last-nf (app x y) p = gnd (app
(last-ne x λ { (z , p₁) → p (z , p₁) })
(last-nf y λ { (a , b) → p (app x a , β-app₂ b) }))
last-ne {y = y} (lam x) p with p (subst₁ x y , β-beta)
... | ()
last-ne (var x) p = var
last-ne {y = y} (app x z) p = app
(last-ne x λ { (a , b) → p (app a y , β-app₁ b) })
(last-nf z λ { (a , b) → p (app (app x a) y , (β-app₁ (β-app₂ b))) })
const : ∀ {n} → contextD n
const {zero} = ε
const {suc n} = const ▸ base 0
-- Again because i messed up the renaming/substitution on ⊢D terms, i
-- did not get to formalize the typing properly here.
type-n : ∀ {n} → {x : term n} → norm x → ∃ (λ Γ → ∃ (λ T → Γ ⊢D x ∶ T))
type-e : ∀ {n} → {x : term n} → neut x → ∃ (λ Γ → ∃ (λ T → Γ ⊢D x ∶ T))
-- Here we compute inductively on the subterm, then "unload" the top of
-- the context A and the result type B into the type A ⇒ B.
type-n (lam x) = {! !}
type-n (gnd x) = type-e x
-- Here we create a context with fresh base types, assigning the matching
-- one to the term.
type-e (var {i}) = {! !}
-- Here we compute inductively on both subterms:
-- Γx ⊢D x ∶ Tx Γy ⊢D y ∶ Ty
-- x is a neutral term so it has a type looking like
-- T ⇒ A₁ ∧ T ⇒ A₁ ⇒ A₂ ∧ …
-- We then simply extend it with An = Ty. This requires some proof
-- rewriting with ∧ᵉ*.
type-e (app x y) = {! !}
-- Question 5
-- a) The definition of the conjunction in system F is:
-- conjⁱ : Γ ⊢F x ∶ A → Γ ⊢F y ∶ B → Γ ⊢F (x , y) ∶ A ∧F B
-- conjᵉʳ : Γ ⊢F x ∶ A ∧F B → Γ ⊢F π₀ x ∶ A
-- conjᵉˡ : Γ ⊢F x : A ∧F B → Γ ⊢F π₁ x ∶ B
-- The difference is that in system D, the conjunction is more of
-- an intersection: if a single term has 2 type judgements, then
-- it has a judgment for the intersection, whereas for system F
-- it is a couple of 2 different terms.
|
{
"alphanum_fraction": 0.5592790763,
"avg_line_length": 34.8137254902,
"ext": "agda",
"hexsha": "06a8cd208bc0b054acd8044550c29354fae619e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "Lapin0t/lambda",
"max_forks_repo_path": "lambda/hw7.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "Lapin0t/lambda",
"max_issues_repo_path": "lambda/hw7.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "Lapin0t/lambda",
"max_stars_repo_path": "lambda/hw7.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2907,
"size": 7102
}
|
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.FunctorProofs.FunctorLaws where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.QuadTree.Implementation.Functors
-- First, define the Functor laws
IdentityLaw : (f : (t : Set) -> {{ eqT : Eq t }} -> Set) -> {{ff : FunctorEq f}} -> Set₁
IdentityLaw f {{ff}} = {t : Set} -> {{ eqT : Eq t }}
-> (v : f t) -> fmapₑ ff id v ≡ id v
CompositionLaw : (f : (t : Set) -> {{ eqT : Eq t }} -> Set) -> {{ff : FunctorEq f}} -> Set₁
CompositionLaw f {{ff}} = {a b c : Set} -> {{ eqA : Eq a }} {{ eqB : Eq b }} {{ eqC : Eq c }}
-> (v : f a) -> (fun1 : a -> b) -> (fun2 : b -> c) -> fmapₑ ff (fun2 ∘ fun1) v ≡ fmapₑ ff fun2 (fmapₑ ff fun1 v)
|
{
"alphanum_fraction": 0.592503023,
"avg_line_length": 41.35,
"ext": "agda",
"hexsha": "44d8660188802050231d1e4dbd5b4a10b3478d3f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/FunctorProofs/FunctorLaws.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/FunctorProofs/FunctorLaws.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/FunctorProofs/FunctorLaws.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 289,
"size": 827
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.StructurallySmaller.StructurallySmallerSL where
open import Data.List
data Tree (D : Set) : Set where
tree : D → List (Tree D) → Tree D
foo : {D : Set} → Tree D → D
foo (tree a []) = a
foo (tree a (t ∷ ts)) = foo (tree a ts)
bar : {D : Set} → Tree D → D
bar (tree a []) = a
bar {D} (tree a (t ∷ ts)) = helper (bar t) (bar (tree a ts))
where
postulate helper : D → D → D
|
{
"alphanum_fraction": 0.5466666667,
"avg_line_length": 27.2727272727,
"ext": "agda",
"hexsha": "e8b2ae36f1f254f798a9b74fde8643deda015fac",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmallerSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmallerSL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmallerSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 184,
"size": 600
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.Equivalence2
open import lib.types.Unit
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Paths
open import lib.types.TLevel
open import lib.types.Truncation
module lib.NConnected where
is-connected : ∀ {i} → ℕ₋₂ → Type i → Type i
is-connected n A = is-contr (Trunc n A)
has-conn-fibers : ∀ {i j} {A : Type i} {B : Type j} → ℕ₋₂ → (A → B) → Type (lmax i j)
has-conn-fibers {A = A} {B = B} n f =
Π B (λ b → is-connected n (hfiber f b))
{- all types are -2-connected -}
-2-conn : ∀ {i} (A : Type i) → is-connected -2 A
-2-conn A = Trunc-level
{- all inhabited types are -1-connected -}
inhab-conn : ∀ {i} {A : Type i} (a : A) → is-connected -1 A
inhab-conn a = has-level-in ([ a ] , prop-has-all-paths [ a ])
{- connectedness is a prop -}
is-connected-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i}
→ is-prop (is-connected n A)
is-connected-is-prop = is-contr-is-prop
{- "induction principle" for n-connected maps (where codomain is n-type) -}
abstract
pre∘-conn-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (∀ {k} (P : B → n -Type k) → is-equiv (λ (s : Π B (fst ∘ P)) → s ∘ h))
pre∘-conn-is-equiv {A = A} {B = B} {n = n} {h = h} c P = is-eq f g f-g g-f
where f : Π B (fst ∘ P) → Π A (fst ∘ P ∘ h)
f k a = k (h a)
helper : Π A (fst ∘ P ∘ h)
→ (b : B) → Trunc n (Σ A (λ a → h a == b)) → (fst (P b))
helper t b r =
Trunc-rec {{snd (P b)}}
(λ x → transport (λ y → fst (P y)) (snd x) (t (fst x)))
r
g : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
g t b = helper t b (contr-center (c b))
f-g : ∀ t → f (g t) == t
f-g t = λ= $ λ a → transport
(λ r → Trunc-rec {{snd (P (h a))}} _ r == t a)
(! (contr-path(c (h a)) [ (a , idp) ]))
idp
g-f : ∀ k → g (f k) == k
g-f k = λ= $ λ (b : B) →
Trunc-elim {{λ r → =-preserves-level {x = helper (k ∘ h) b r} (snd (P b))}}
(λ x → lemma (fst x) b (snd x)) (contr-center (c b))
where
lemma : ∀ xl → ∀ b → (p : h xl == b) →
helper (k ∘ h) b [ (xl , p) ] == k b
lemma xl ._ idp = idp
conn-extend : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (P : B → n -Type k)
→ Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
conn-extend c P f = is-equiv.g (pre∘-conn-is-equiv c P) f
conn-out = conn-extend
conn-extend-β : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
{h : A → B} (c : has-conn-fibers n h)
(P : B → n -Type k) (f : Π A (fst ∘ P ∘ h))
→ ∀ a → (conn-extend c P f (h a)) == f a
conn-extend-β c P f = app= (is-equiv.f-g (pre∘-conn-is-equiv c P) f)
{- generalized "almost induction principle" for maps into ≥n-types
TODO: rearrange this to use ≤T? -}
conn-extend-general : ∀ {i j} {A : Type i} {B : Type j} {n k : ℕ₋₂}
→ {f : A → B} → has-conn-fibers n f
→ ∀ {l} (P : B → (k +2+ n) -Type l)
→ ∀ t → has-level k (Σ (Π B (fst ∘ P)) (λ s → (s ∘ f) == t))
conn-extend-general {k = ⟨-2⟩} c P t =
equiv-is-contr-map (pre∘-conn-is-equiv c P) t
conn-extend-general {B = B} {n = n} {k = S k'} {f = f} c P t = has-level-in
λ {(g , p) (h , q) →
equiv-preserves-level (e g h p q)
{{conn-extend-general {k = k'} c (Q g h) (app= (p ∙ ! q))}} }
where
Q : (g h : Π B (fst ∘ P)) → B → (k' +2+ n) -Type _
Q g h b = ((g b == h b) , has-level-apply (snd (P b)) _ _)
app=-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : B → Type k}
(f : A → B) {g h : Π B C} (p : g == h)
→ app= (ap (λ k → k ∘ f) p) == (app= p ∘ f)
app=-ap f idp = idp
move-right-on-right-econv : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : x == z) (r : y == z)
→ (p == q ∙ ! r) ≃ (p ∙ r == q)
move-right-on-right-econv {x = x} p idp idp =
(_ , pre∙-is-equiv (∙-unit-r p))
lemma : ∀ g h p q → (H : g ∼ h)
→ ((H ∘ f) == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) ∙ q == p)
lemma g h p q H =
move-right-on-right-econv (ap (λ v → v ∘ f) (λ= H)) p q
∘e transport (λ w → (w == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) == p ∙ ! q))
(app=-ap f (λ= H) ∙ ap (λ k → k ∘ f) (λ= $ app=-β H))
(ap-equiv app=-equiv _ _ ⁻¹)
e : ∀ g h p q →
(Σ (g ∼ h) (λ r → (r ∘ f) == app= (p ∙ ! q)))
≃ ((g , p) == (h , q))
e g h p q =
((=Σ-econv _ _ ∘e Σ-emap-r (λ u → ↓-app=cst-econv ∘e !-equiv))
∘e (Σ-emap-l _ λ=-equiv)) ∘e Σ-emap-r (lemma g h p q)
conn-in : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} {h : A → B}
→ (∀ (P : B → n -Type (lmax i j))
→ Σ (Π A (fst ∘ P ∘ h) → Π B (fst ∘ P))
(λ u → ∀ (t : Π A (fst ∘ P ∘ h)) → u t ∘ h ∼ t))
→ has-conn-fibers n h
conn-in {A = A} {B = B} {h = h} sec b =
let s = sec (λ b → (Trunc _ (hfiber h b) , Trunc-level))
in has-level-in (fst s (λ a → [ a , idp ]) b ,
Trunc-elim (λ k → transport
(λ v → fst s (λ a → [ a , idp ]) (fst v) == [ fst k , snd v ])
(contr-path (pathfrom-is-contr (h (fst k))) (b , snd k))
(snd s (λ a → [ a , idp ]) (fst k))))
abstract
pointed-conn-in : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
→ has-conn-fibers {A = ⊤} n (cst a₀) → is-connected (S n) A
pointed-conn-in {n = n} A a₀ c = has-level-in
([ a₀ ] ,
Trunc-elim
(λ a → Trunc-rec
(λ x → ap [_] (snd x)) (contr-center $ c a)))
abstract
pointed-conn-out : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
{{_ : is-connected (S n) A}} → has-conn-fibers {A = ⊤} n (cst a₀)
pointed-conn-out {n = n} A a₀ {{c}} a = has-level-in
(point ,
λ y → ! (cancel point)
∙ (ap out $ contr-has-all-paths (into point) (into y))
∙ cancel y)
where
into-aux : Trunc n (Σ ⊤ (λ _ → a₀ == a)) → Trunc n (a₀ == a)
into-aux = Trunc-fmap snd
into : Trunc n (Σ ⊤ (λ _ → a₀ == a))
→ [_] {n = S n} a₀ == [ a ]
into = <– (Trunc=-equiv [ a₀ ] [ a ]) ∘ into-aux
out-aux : Trunc n (a₀ == a) → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out-aux = Trunc-fmap (λ p → (tt , p))
out : [_] {n = S n} a₀ == [ a ] → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out = out-aux ∘ –> (Trunc=-equiv [ a₀ ] [ a ])
cancel : (x : Trunc n (Σ ⊤ (λ _ → a₀ == a))) → out (into x) == x
cancel x =
out (into x)
=⟨ ap out-aux (<–-inv-r (Trunc=-equiv [ a₀ ] [ a ]) (into-aux x)) ⟩
out-aux (into-aux x)
=⟨ Trunc-fmap-∘ _ _ x ⟩
Trunc-fmap (λ q → (tt , (snd q))) x
=⟨ Trunc-elim {P = λ x → Trunc-fmap (λ q → (tt , snd q)) x == x}
(λ _ → idp) x ⟩
x =∎
point : Trunc n (Σ ⊤ (λ _ → a₀ == a))
point = out $ contr-has-all-paths [ a₀ ] [ a ]
prop-over-connected : ∀ {i j} {A : Type i} {a : A} {{p : is-connected 0 A}}
→ (P : A → hProp j)
→ fst (P a) → Π A (fst ∘ P)
prop-over-connected P x = conn-extend (pointed-conn-out _ _) P (λ _ → x)
{- Connectedness of a truncated type -}
instance
Trunc-preserves-conn : ∀ {i} {A : Type i} {n : ℕ₋₂} {m : ℕ₋₂}
→ is-connected n A → is-connected n (Trunc m A)
Trunc-preserves-conn {n = ⟨-2⟩} _ = Trunc-level
Trunc-preserves-conn {A = A} {n = S n} {m} c = lemma (contr-center c) (contr-path c)
where
lemma : (x₀ : Trunc (S n) A) → (∀ x → x₀ == x) → is-connected (S n) (Trunc m A)
lemma = Trunc-elim
(λ a → λ p → has-level-in ([ [ a ] ] ,
Trunc-elim
(Trunc-elim
{{λ _ → =-preserves-level
(Trunc-preserves-level (S n) Trunc-level)}}
(λ x → <– (Trunc=-equiv [ [ a ] ] [ [ x ] ])
(Trunc-fmap (ap [_])
(–> (Trunc=-equiv [ a ] [ x ]) (p [ x ])))))))
{- Connectedness of a Σ-type -}
abstract
instance
Σ-conn : ∀ {i} {j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ is-connected n A → (∀ a → is-connected n (B a))
→ is-connected n (Σ A B)
Σ-conn {A = A} {B = B} {n = ⟨-2⟩} cA cB = -2-conn (Σ A B)
Σ-conn {A = A} {B = B} {n = S m} cA cB =
Trunc-elim
{P = λ ta → (∀ tx → ta == tx) → is-connected (S m) (Σ A B)}
(λ a₀ pA →
Trunc-elim
{P = λ tb → (∀ ty → tb == ty) → is-connected (S m) (Σ A B)}
(λ b₀ pB → has-level-in
([ a₀ , b₀ ] ,
Trunc-elim
{P = λ tp → [ a₀ , b₀ ] == tp}
(λ {(r , s) →
Trunc-rec
(λ pa → Trunc-rec
(λ pb → ap [_] (pair= pa (from-transp! B pa pb)))
(–> (Trunc=-equiv [ b₀ ] [ transport! B pa s ])
(pB [ transport! B pa s ])))
(–> (Trunc=-equiv [ a₀ ] [ r ]) (pA [ r ]))})))
(contr-center (cB a₀)) (contr-path (cB a₀)))
(contr-center cA) (contr-path cA)
×-conn : ∀ {i} {j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ is-connected n A → is-connected n B
→ is-connected n (A × B)
×-conn cA cB = Σ-conn cA (λ _ → cB)
{- connectedness of a path space -}
abstract
instance
path-conn : ∀ {i} {A : Type i} {x y : A} {n : ℕ₋₂}
→ is-connected (S n) A → is-connected n (x == y)
path-conn {x = x} {y = y} cA =
equiv-preserves-level (Trunc=-equiv [ x ] [ y ])
{{has-level-apply (contr-is-prop cA) [ x ] [ y ]}}
{- an n-Type which is n-connected is contractible -}
connected-at-level-is-contr : ∀ {i} {A : Type i} {n : ℕ₋₂}
{{pA : has-level n A}} {{cA : is-connected n A}} → is-contr A
connected-at-level-is-contr {{pA}} {{cA}} =
equiv-preserves-level (unTrunc-equiv _) {{cA}}
{- if A is n-connected and m ≤ n, then A is m-connected -}
connected-≤T : ∀ {i} {m n : ℕ₋₂} {A : Type i}
→ m ≤T n → {{_ : is-connected n A}} → is-connected m A
connected-≤T {m = m} {n = n} {A = A} leq =
transport (λ B → is-contr B)
(ua (Trunc-fuse A m n) ∙ ap (λ k → Trunc k A) (minT-out-l leq))
(Trunc-preserves-level m ⟨⟩)
{- Equivalent types have the same connectedness -}
equiv-preserves-conn : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B)
{{_ : is-connected n A}} → is-connected n B
equiv-preserves-conn {n = n} e = equiv-preserves-level (Trunc-emap e)
{- Composite of two connected functions is connected -}
∘-conn : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ {n : ℕ₋₂} → (f : A → B) → (g : B → C)
→ has-conn-fibers n f
→ has-conn-fibers n g
→ has-conn-fibers n (g ∘ f)
∘-conn {n = n} f g cf cg =
conn-in (λ P → conn-extend cg P ∘ conn-extend cf (P ∘ g) , lemma P)
where
lemma : ∀ P h x → conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x)) == h x
lemma P h x =
conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x))
=⟨ conn-extend-β cg P (conn-extend cf (P ∘ g) h) (f x) ⟩
conn-extend cf (P ∘ g) h (f x)
=⟨ conn-extend-β cf (P ∘ g) h x ⟩
h x
=∎
|
{
"alphanum_fraction": 0.4572228747,
"avg_line_length": 38.4340277778,
"ext": "agda",
"hexsha": "e6f2b79282d887b6d54055a9525c79b7a5db0721",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/NConnected.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/NConnected.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/NConnected.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4438,
"size": 11069
}
|
-- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 #-}
-- Andreas, 2013-02-26
module Issue778 (Param : Set) where
data ⊥ : Set where
interactive : ⊥ → ⊥
interactive = λ {x → {!x!}}
where aux : ⊥ → ⊥
aux x = x
-- splitting did not work for extended lambda in the presence of
-- module parameters and where block
data ⊤ : Set where
tt : ⊤
test : ⊤ → ⊤
test = λ { x → {!x!} }
where aux : ⊤ → ⊤
aux x = x
|
{
"alphanum_fraction": 0.5869565217,
"avg_line_length": 20.9090909091,
"ext": "agda",
"hexsha": "b3cf312543c49061389dd4dbacb0a60141086674",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue778.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue778.agda",
"max_line_length": 86,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue778.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 159,
"size": 460
}
|
module Shift (Gnd : Set)(U : Set)(El : U -> Set) where
open import Basics
open import Pr
open import Nom
import Kind
open Kind Gnd U El
import Cxt
open Cxt Kind
import Loc
open Loc Kind
import Term
open Term Gnd U El
popH : {D : Cxt}{M : Loc}{S T : Kind} ->
D [ M / Head ]- T -> D [ M * S / Head ]- T
popH ( ` x -! xg ) = ` x -! xg
popH ( # v -! _ ) = # (pop v) -! _
weak : {G D : Cxt}{L M : Loc}{S : Kind} ->
({T : Kind} -> G [ L / Head ]- T -> D [ M / Head ]- T) ->
{T : Kind} -> G [ L * S / Head ]- T -> D [ M * S / Head ]- T
weak rho (` x -! p ) = popH (rho (` x -! p))
weak rho (# top -! _ ) = # top -! _
weak rho (# (pop v) -! _ ) = popH (rho (# v -! _))
shift : {G D : Cxt}{L M : Loc} ->
({T : Kind} -> G [ L / Head ]- T -> D [ M / Head ]- T) ->
{j : Jud}{T : Kind} -> G [ L / j ]- T -> D [ M / j ]- T
shift {G} {D} rho (t -! tg) = chug rho t tg where
chug : {j : Jud}{L M : Loc} ->
({T : Kind} -> G [ L / Head ]- T -> D [ M / Head ]- T) ->
{T : Kind}(t : L [ j ]- T) -> [| Good G t |] -> D [ M / j ]- T
chug {Head} rho h hg = rho ( h -! hg )
chug rho [ s ] sg = G[ chug rho s sg ]
chug rho (fn A f) fg = Gfn A (\ a -> chug rho (f a) (fg a))
chug rho (\\ b) bg = G\\ (chug (weak rho) b bg)
chug rho (a ^ s) sg = a G^ chug rho s sg
chug rho (r & s) rsg = chug rho r (fst rsg) G& chug rho s (snd rsg)
chug rho nil _ = Gnil
chug rho (h $ s) hsg = chug rho h (fst hsg) G$ chug rho s (snd hsg)
bind : {G : Cxt}(x : Nom){Gx : [| G Hasn't x |]}{S : Kind}{j : Jud}{T : Kind} ->
(G [ x - S ]) {Gx} [ EL / j ]- T -> G [ EL * S / j ]- T
bind {G} x {Gx}{S} = shift topx where
topx : {T : Kind} -> (G [ x - S ]) {Gx} [ EL / Head ]- T ->
G [ EL * S / Head ]- T
topx (` y -! yg) with nomEq x y
topx (` .x -! refl) | yes refl = # top -! _
topx (` y -! yg) | no _ = ` y -! yg
topx (# () -! _)
|
{
"alphanum_fraction": 0.4402748414,
"avg_line_length": 36.3846153846,
"ext": "agda",
"hexsha": "622caa1832910f46284d2bffd2e641f2b771efce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Shift.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Shift.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/Syntacticosmos/Shift.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 815,
"size": 1892
}
|
-- Andreas, 2015-03-16
open import Common.Size
open import Common.Prelude
-- Note: the assumption of pred is absurd,
-- but still should not make Agda loop.
module _ (pred : ∀ i → Size< i) where
data D (i : Size) : Set where
wrap : (j : Size< i) → D i
loop : ∀ i → D i → ⊥
loop i (wrap j) = loop j (wrap (pred j))
-- Loops during injectivity check
d : ∀ i → D i
d i = wrap (pred i)
absurd : ⊥
absurd = FIXME loop ∞ (d ∞)
-- Testcase temporarily mutilated, original error:
-- -Issue1428a.agda:9,20-31
-- -Functions may not return sizes, thus, function type
-- -(i : Size) → Size< i is illegal
-- -when checking that the expression ∀ i → Size< i is a type
-- +Issue1428a.agda:22,10-15
-- +Not in scope:
-- + FIXME at Issue1428a.agda:22,10-15
-- +when scope checking FIXME
|
{
"alphanum_fraction": 0.6491677337,
"avg_line_length": 23.6666666667,
"ext": "agda",
"hexsha": "c3fe6549c95b2ec643b195d2cb0a693bc080c56a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1428a.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Issue1428a.agda",
"max_line_length": 61,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Issue1428a.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 263,
"size": 781
}
|
{-# OPTIONS --without-K --safe #-}
-- | Exclusive option for predicates
module Dodo.Unary.XOpt where
-- Stdlib imports
open import Level using (Level)
open import Relation.Unary using (Pred)
-- Local imports
open import Dodo.Nullary.XOpt
-- # XOpt₂
XOptPred₂ : {a ℓ₁ ℓ₂ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
XOptPred₂ {A = A} P Q = ∀ (x : A) → XOpt₂ (P x) (Q x)
-- # XOpt₃
XOptPred₃ : {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A ℓ₃ → Set _
XOptPred₃ {A = A} P Q R = ∀ (x : A) → XOpt₃ (P x) (Q x) (R x)
|
{
"alphanum_fraction": 0.6069469835,
"avg_line_length": 23.7826086957,
"ext": "agda",
"hexsha": "4e06cef88415d497b3e403296e5c2e69ee7631c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Unary/XOpt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Unary/XOpt.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Unary/XOpt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 224,
"size": 547
}
|
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Product.Nat.Properties where
open import Data.Nat.Properties
open import Math.NumberTheory.Product.Generic.Properties
-- TODO rename _≈_ to _≡_
open CommutativeMonoidProductProperties *-1-commutativeMonoid public
|
{
"alphanum_fraction": 0.8007246377,
"avg_line_length": 27.6,
"ext": "agda",
"hexsha": "e24086c7bfe2305de20a14f2c563d40700a18c76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Product/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Product/Nat/Properties.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Product/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 64,
"size": 276
}
|
open import Prelude hiding (id; Bool)
module Examples.Unification where
data TC : Set where
tc-int : TC
tc-bool : TC
_tc≟_ : (a b : TC) → Dec (a ≡ b)
tc-int tc≟ tc-int = yes refl
tc-int tc≟ tc-bool = no (λ ())
tc-bool tc≟ tc-int = no (λ ())
tc-bool tc≟ tc-bool = yes refl
open import Implicits.Oliveira.Types TC _tc≟_
open import Implicits.Oliveira.Terms TC _tc≟_
open import Implicits.Oliveira.Contexts TC _tc≟_
open import Implicits.Oliveira.WellTyped TC _tc≟_
open import Implicits.Oliveira.Substitutions TC _tc≟_
open import Implicits.Oliveira.Types.Unification TC _tc≟_
open import Implicits.Oliveira.Types.Unification.McBride TC _tc≟_ as McBride using ()
open import Data.Star as S
open import Data.Maybe
open import Level using () renaming (zero to level₀)
open import Data.Maybe using (monad; functor)
open import Category.Functor
open RawFunctor {level₀} functor
module M = MetaTypeMetaSubst
module T = MetaTypeTypeSubst
Bool : ∀ {n} → Type n
Bool = simpl (tc tc-bool)
Int : ∀ {n} → Type n
Int = simpl (tc tc-int)
module ex₂ where
-- mgu test for simple 2 variable substitution
a : MetaType (suc (suc zero)) (suc zero)
a = open-meta $ open-meta $ to-meta $ (simpl ((simpl (tvar zero)) →' (simpl (simpl (tvar (suc zero)) →' simpl (tvar (suc (suc zero)))))))
b : SimpleType (suc zero)
b = Int →' (simpl (Int →' simpl (tvar zero)))
s = mgu a b
u = asub (proj₁ $ from-just s)
unifies : a M./ u ≡ (simpl (to-smeta b))
unifies = refl
module ex₃ where
-- mgu test for simple 1 variable substitution
-- (limited α)
a : MetaType (suc zero) (suc zero)
a = open-meta (to-meta (∀' (simpl ((simpl (tvar zero)) →' simpl (tvar (suc zero))))))
b : SimpleType (suc zero)
b = Int →' Int
s : mgu a b ≡ nothing
s = refl
module ex₄ where
-- with ∀' in there somewhere
a : MetaType (suc zero) (suc zero)
a = simpl ((∀' (s-mvar zero)) →' (s-tc tc-int))
-- won't unify with a because we'd need to instantiate s-mvar zero with
-- a s-tvar that's not yet introduced
b : SimpleType (suc zero)
b = (∀' (simpl (tvar zero))) →' Int
s : mgu a b ≡ nothing
s = refl
module ex₅ where
-- renaming example
a : MetaType (suc (suc zero)) (suc zero)
a = (s-mvar zero) ⇒ (s-mvar (suc zero))
b : Type (suc zero)
b = (simpl (tvar (zero))) ⇒ (simpl (tvar zero))
s : is-just (McBride.mgu a b) ≡ true
s = refl
open ex₅
|
{
"alphanum_fraction": 0.6564468711,
"avg_line_length": 25.0631578947,
"ext": "agda",
"hexsha": "03246eff2cd02913b65b7fa10694c765173f1f79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Examples/Unification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Examples/Unification.agda",
"max_line_length": 139,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Examples/Unification.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 842,
"size": 2381
}
|
{-# OPTIONS --cubical-compatible #-}
-- {-# OPTIONS -v tc.data:100 #-}
module Issue865Big where
data _≡_ (A : Set) : Set → Set₁ where
refl : A ≡ A
K : {A : Set} (P : A ≡ A → Set) → P refl → (p : A ≡ A) → P p
K P h refl = h
|
{
"alphanum_fraction": 0.5286343612,
"avg_line_length": 22.7,
"ext": "agda",
"hexsha": "8fcdaa37bb0c2094025647e52175a5eb644df3b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue865Big.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue865Big.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue865Big.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 90,
"size": 227
}
|
------------------------------------------------------------------------
-- agda-combinatorics
-- All modules
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module AgdaCombinatoricsEverything where
import Math.BinomialTheorem.Generic
-- Proof of the binomial theorem
import Math.BinomialTheorem.Nat
-- Definitions of combinatorial functions
import Math.Combinatorics.Function
-- Properties of combinatorial functions
import Math.Combinatorics.Function.Properties
-- Definitions of combinatorial functions on integer
import Math.Combinatorics.IntegerFunction
-- Properties of combinatorial functions on integer
import Math.Combinatorics.IntegerFunction.Properties
import Math.Combinatorics.ListFunction
import Math.Combinatorics.ListFunction.Properties
import Math.Combinatorics.VecFunction
|
{
"alphanum_fraction": 0.692575406,
"avg_line_length": 26.9375,
"ext": "agda",
"hexsha": "2a638ac2d2bb58c71a9d258faefe194c3f29a785",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-combinatorics",
"max_forks_repo_path": "AgdaCombinatoricsEverything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-combinatorics",
"max_issues_repo_path": "AgdaCombinatoricsEverything.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-combinatorics",
"max_stars_repo_path": "AgdaCombinatoricsEverything.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z",
"num_tokens": 162,
"size": 862
}
|
module Cats.Category.Constructions.Equalizer where
open import Level
open import Cats.Category.Base
open import Cats.Util.Conv
import Cats.Category.Constructions.Mono as Mono
import Cats.Category.Constructions.Unique as Unique
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
open Mono.Build Cat
open Unique.Build Cat
record IsEqualizer {A B} (f g : A ⇒ B) {E} (e : E ⇒ A)
: Set (lo ⊔ la ⊔ l≈)
where
field
equalizes : f ∘ e ≈ g ∘ e
universal : ∀ {Z} (z : Z ⇒ A)
→ f ∘ z ≈ g ∘ z
→ ∃![ u ] (e ∘ u ≈ z)
record Equalizer {A B} (f g : A ⇒ B) : Set (lo ⊔ la ⊔ l≈) where
field
{E} : Obj
e : E ⇒ A
isEqualizer : IsEqualizer f g e
open IsEqualizer isEqualizer public
instance
HasObj-Equalizer : ∀ {A B} {f g : A ⇒ B}
→ HasObj (Equalizer f g) lo la l≈
HasObj-Equalizer = record { Cat = Cat ; _ᴼ = Equalizer.E }
HasArrow-Equalizer : ∀ {A B} {f g : A ⇒ B}
→ HasArrow (Equalizer f g) lo la l≈
HasArrow-Equalizer = record { Cat = Cat ; _⃗ = Equalizer.e }
equalizer→mono : ∀ {A B} {f g : A ⇒ B} {E} {e : E ⇒ A}
→ IsEqualizer f g e
→ IsMono e
equalizer→mono {f = f} {g} {E} {e} eql {Z} {i} {j} e∘i≈e∘j
= ∃!→≈ (universal (e ∘ j) lemma) e∘i≈e∘j ≈.refl
where
open IsEqualizer eql
lemma : f ∘ e ∘ j ≈ g ∘ e ∘ j
lemma
= begin
f ∘ e ∘ j
≈⟨ unassoc ⟩
(f ∘ e) ∘ j
≈⟨ ∘-resp-l equalizes ⟩
(g ∘ e) ∘ j
≈⟨ assoc ⟩
g ∘ e ∘ j
∎
|
{
"alphanum_fraction": 0.5157958688,
"avg_line_length": 23.8550724638,
"ext": "agda",
"hexsha": "d5578c410403b2f66eed9c759ba543369190af6f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Equalizer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Equalizer.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Equalizer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 621,
"size": 1646
}
|
module DenotCommutes where
open import Prelude
open import T
---- Proof that dynamic semantics commute with denotational semantics
module DenotCommutes where
-- Proving that the dynamic semantics and the denotational semantics
-- commute (at least if we are using regular equality as our
-- equality for interpreted terms) basically requires
-- extensionality, since we need to show that things at function
-- type are equal.
postulate iext : {A : Set}{B : A → Set}{f : ∀ {a} → B a}{g : ∀{a} → B a} →
(∀ a → f {a} ≡ g {a}) →
_≡_ { A = {a : A} → B a} f g
postulate ext : {A : Set}{B : A → Set}{f : ∀ a → B a}{g : ∀ a → B a} →
(∀ a → f a ≡ g a) → f ≡ g
-- Show that renaming and substitution commute with denotational semantics
-- in the appropriate sense. This mirrors a bunch of the machinery in SubstTheory.
-- Some equality related stuff
Meaning≡ : ∀ {Γ}(f g : meaningη Γ) → Set
Meaning≡ f g = ∀ {A} x → f {A} x ≡ g {A} x
-- These are extensionality like lemmas. I feel like they are usually nicer
-- to use than actually using extensionality.
-- They could be proven legitimately but we have ext and I am feeling lazy.
meaningeq : ∀{Γ A} {f g : meaningη Γ} → Meaning≡ f g → (e : TExp Γ A) →
meaning e f ≡ meaning e g
meaningeq eq e = resp (meaning e) (iext (λ B → ext (λ x → eq x)))
foldeq : ∀{A} {a0 a0' : A} {an an' : Nat} {as as' : Nat → A → A} →
a0 ≡ a0' →
((n : Nat) (x : A) → as n x ≡ as' n x) →
an ≡ an' →
NAT.fold a0 as an ≡ NAT.fold a0' as' an'
foldeq eq0 eqs eqn = resp3 NAT.fold eq0 (ext (λ n → ext (λ a → eqs n a))) eqn
-- First stuff for renaming, lifting
meaning-ren-wk : ∀{A B Γ Γ'} → (γ : TRen Γ Γ') →
(η : meaningη Γ') →
(a : interp A) →
(x : B ∈ A :: Γ) →
extendη η a (wk γ x) ≡ extendη (λ y → η (γ y)) a x
meaning-ren-wk γ η a Z = Refl
meaning-ren-wk γ η a (S x) = Refl
meaning-ren : ∀{A Γ Γ'} → (γ : TRen Γ Γ') →
(e : TExp Γ A) →
(η : meaningη Γ') →
meaning (ren γ e) η ≡ meaning e (η o γ)
meaning-ren γ (var x) η = Refl
meaning-ren γ (Λ e) η =
ext (λ M →
meaning-ren (wk γ) e (extendη η M) ≡≡ meaningeq (meaning-ren-wk γ η M) e)
meaning-ren γ (e $ e') η = resp2 (λ x y → x y) (meaning-ren γ e η) (meaning-ren γ e' η)
meaning-ren γ zero η = Refl
meaning-ren γ (suc e) η = resp S (meaning-ren γ e η)
meaning-ren γ (rec en e0 es) η =
foldeq
(meaning-ren γ e0 η)
(λ _ M → meaning-ren (wk γ) es (extendη η M) ≡≡ meaningeq (meaning-ren-wk γ η M) es)
(meaning-ren γ en η)
meaning-sub-lift : ∀{A B Γ Γ'} → (γ : TSubst Γ Γ') →
(η : meaningη Γ') →
(a : interp A) →
(x : B ∈ A :: Γ) →
meaning (liftγ γ x) (extendη η a) ≡
extendη (λ y → meaning (γ y) η) a x
meaning-sub-lift γ η a Z = Refl
meaning-sub-lift γ η a (S x) =
(meaning-ren S (γ x) (extendη η a)) ≡≡
resp (meaning (γ x)) (iext (λ C → ext (λ x → Refl)))
-- Define a notion of how to commute a substitution with a
-- denotational interpretation
substMeaning : ∀{A Γ Γ'} → (γ : TSubst Γ Γ') →
(f : meaningη Γ → interp A) →
(meaningη Γ' → interp A)
substMeaning γ f η = f (λ x → meaning (γ x) η)
-- And show that that notion actually does commute with it.
meaning-sub : ∀{A Γ Γ'} → (γ : TSubst Γ Γ') →
(e : TExp Γ A) →
(η : meaningη Γ') →
meaning (ssubst γ e) η ≡ substMeaning γ (meaning e) η
meaning-sub γ (var x) η = Refl
meaning-sub γ (Λ e) η =
ext (λ M →
meaning-sub (liftγ γ) e (extendη η M) ≡≡ meaningeq (meaning-sub-lift γ η M) e)
meaning-sub γ (e $ e') η = resp2 (λ x y → x y) (meaning-sub γ e η) (meaning-sub γ e' η)
meaning-sub γ zero η = Refl
meaning-sub γ (suc e) η = resp S (meaning-sub γ e η)
meaning-sub γ (rec en e0 es) η =
foldeq
(meaning-sub γ e0 η)
(λ _ M → meaning-sub (liftγ γ) es (extendη η M) ≡≡ meaningeq (meaning-sub-lift γ η M) es)
(meaning-sub γ en η)
-- Easy lemma about singleton contexts
meaning-sing : ∀{A B}(e' : TCExp B) →
(x : A ∈ [ B ]) →
meaning (singγ e' x) emptyη ≡ extendη emptyη (meaning e' emptyη) x
meaning-sing e Z = Refl
meaning-sing e (S x) = Refl
-- The basic fact we need about substitution.
meaning-subst : ∀{A B}(e' : TCExp B)(e : TExp [ B ] A) →
meaning e (extendη emptyη (cmeaning e')) ≡
cmeaning (subst e' e)
meaning-subst e' e =
symm (meaning-sub (singγ e') e emptyη ≡≡
resp (meaning e) (iext (λ A → ext (λ x → meaning-sing e' x))))
-- The main theorem about the dynamic semantics
meaning-steps : ∀{A}{e e' : TCExp A} → (e ~> e') → cmeaning e ≡ cmeaning e'
meaning-steps {e = e₁ $ e₂} (step-app-l St) =
resp (λ f → f (meaning e₂ emptyη)) (meaning-steps St)
meaning-steps {e = (Λ e₁) $ e₂} step-beta = meaning-subst e₂ e₁
meaning-steps (step-suc St) = resp S (meaning-steps St)
meaning-steps {e = rec e e₀ es} (step-rec St) =
resp (λ e' → NAT.fold (meaning e₀ emptyη)
(λ n x → meaning es (extendη emptyη x)) e')
(meaning-steps St)
meaning-steps step-rec-z = Refl
meaning-steps {e = rec (suc e) e₀ es} (step-rec-s _) = meaning-subst (rec e e₀ es) es
meaning-eval : ∀{A}{e e' : TCExp A} → (e ~>* e') → cmeaning e ≡ cmeaning e'
meaning-eval eval-refl = Refl
meaning-eval (eval-cons S1 E) = meaning-steps S1 ≡≡ meaning-eval E
open DenotCommutes public
|
{
"alphanum_fraction": 0.5427476928,
"avg_line_length": 39.8819444444,
"ext": "agda",
"hexsha": "e02b5022d3f863c04f6a3826ba2975163b000eb8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z",
"max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msullivan/godels-t",
"max_forks_repo_path": "DenotCommutes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msullivan/godels-t",
"max_issues_repo_path": "DenotCommutes.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msullivan/godels-t",
"max_stars_repo_path": "DenotCommutes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z",
"num_tokens": 2021,
"size": 5743
}
|
module Introduction.All where
import Introduction.Basics
import Introduction.Universes
import Introduction.Unicode
import Introduction.Built-in
import Introduction.Modules
import Introduction.Implicit
import Introduction.Data.Vec
import Introduction.Data.Empty
import Introduction.Data.Parameterised
import Introduction.Data.ByRecursion
import Introduction.Operators
import Introduction.Modules.Parameterised
|
{
"alphanum_fraction": 0.8853658537,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "68d33acb84ecb2c660c4e32e31e28226bb731a21",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/Introduction/All.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/Introduction/All.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/Introduction/All.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 410
}
|
-- Andreas, 2011-09-11
module Issue392 where
import Common.Irrelevance
-- Create an irrelevant record R1 (all fields irrelevant).
record R1 : Set1 where
field
.f1 : Set
{- module R1 .(r : R1) where
.f1 : Set -- = R1.f1 r
-}
-- Create an irrelevant instance f2 of R1.
record R2 : Set2 where
field
.f2 : R1
f3 : Set
-- This succeeds even though f2 is irrelevant.
open R1 f2 public
{- A more realistic use would be s.th. like
record IsEquivalence {a ℓ} {A : Set a}
(_≈_ : Rel A ℓ) : Set (a ⊔ ℓ) where
field
.refl : Reflexive _≈_
.sym : Symmetric _≈_
.trans : Transitive _≈_
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
.isEquivalence : IsEquivalence _≈_
open IsEquivalence isEquivalence public
-}
|
{
"alphanum_fraction": 0.5933940774,
"avg_line_length": 20.9047619048,
"ext": "agda",
"hexsha": "1c8b9dd2f9fcfbbcf4fa77093b1ac839bd473a35",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue392.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue392.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue392.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 299,
"size": 878
}
|
{-# OPTIONS --without-K --rewriting #-}
{-
Ribbon is an explicit covering space construction.
This construction is given by Daniel Grayson, Favonia
and Guillaume Brunerie together.
-}
open import HoTT
-- A is the pointed base space.
-- El is intended to be a (group-)set,
module homotopy.RibbonCover {i : ULevel} where
-- The HIT ribbon---reconstructed covering space
module _ (X : Ptd i) {j} (gs : GroupSet (πS 0 X) j) (a₂ : de⊙ X) where
private
A = de⊙ X
a₁ = pt X
El = GroupSet.El gs
El-level = GroupSet.El-level gs
infix 80 _⊙_
_⊙_ = GroupSet.act gs
RibbonSet : Type (lmax i j)
RibbonSet = El × (a₁ =₀ a₂)
data RibbonRel : RibbonSet → RibbonSet → Type (lmax i j) where
ribbon-rel : ∀ el loop (p : a₁ =₀ a₂)
→ RibbonRel (el ⊙ loop , p) (el , loop ∙₀ p)
Ribbon : Type (lmax i j)
Ribbon = SetQuot RibbonRel
module _ {X : Ptd i} {j} {gs : GroupSet (πS 0 X) j} {a₂ : de⊙ X} where
private
A = de⊙ X
a = pt X
El = GroupSet.El gs
El-level = GroupSet.El-level gs
infix 80 _⊙_
_⊙_ = GroupSet.act gs
-- A point in the fiber [a₂].
{-
[e] is a point in the [fiber a], and
[p] is a path to transport [y] to fiber [a₂].
-}
trace : El → a =₀ a₂ → Ribbon X gs a₂
trace el p = q[ el , p ]
{-
A loop based at [a] can used as a group action
or for concatination. Both should be equivalent.
-}
paste : ∀ el loop (p : a =₀ a₂) → trace (el ⊙ loop) p == trace el (loop ∙₀ p)
paste el loop p = quot-rel (ribbon-rel el loop p)
{-
Make each fiber a set and cancel all higher structures
due to [paste].
-}
Ribbon-level : is-set (Ribbon X gs a₂)
Ribbon-level = SetQuot-level
Ribbon-is-set = Ribbon-level
-- Elimination rules.
module RibbonElim {j} {P : Ribbon X gs a₂ → Type j}
(P-level : ∀ r → is-set (P r))
(trace* : ∀ el p → P (trace el p))
(paste* : ∀ el loop p
→ trace* (el ⊙ loop) p == trace* el (loop ∙₀ p)
[ P ↓ paste el loop p ]) where
private
q[_]* : (α : RibbonSet X gs a₂) → P q[ α ]
q[ el , p ]* = trace* el p
rel* : ∀ {α₁ α₂} (r : RibbonRel X gs a₂ α₁ α₂) → q[ α₁ ]* == q[ α₂ ]* [ P ↓ quot-rel r ]
rel* (ribbon-rel el loop p) = paste* el loop p
module M = SetQuotElim P-level q[_]* rel*
f : Π (Ribbon X gs a₂) P
f = M.f
open RibbonElim public using () renaming (f to Ribbon-elim)
module RibbonRec {j} {P : Type j}
(P-level : is-set P)
(trace* : ∀ el p → P)
(paste* : ∀ el loop p
→ trace* (el ⊙ loop) p == trace* el (loop ∙₀ p)) where
private
module M = RibbonElim (λ _ → P-level) trace*
(λ el loop p → ↓-cst-in (paste* el loop p))
f : Ribbon X gs a₂ → P
f = M.f
open RibbonRec public using () renaming (f to Ribbon-rec)
-- This data structure gives a cover.
Ribbon-cover : ∀ (X : Ptd i) {j} (gs : GroupSet (πS 0 X) j)
→ Cover (de⊙ X) (lmax i j)
Ribbon-cover X gs = record
{ Fiber = Ribbon X gs
; Fiber-level = λ a → Ribbon-level
}
transp-trace : ∀ {A : Type i} {a₁} {j}
{gs : GroupSet (πS 0 ⊙[ A , a₁ ]) j}
{a₂} (q : a₁ == a₂) y p
→ transport (Ribbon ⊙[ A , a₁ ] gs) q (trace y p) == trace y (p ∙₀ [ q ])
transp-trace idp y p = ap (trace y) $ ! $ ∙₀-unit-r p
|
{
"alphanum_fraction": 0.5371611775,
"avg_line_length": 28.5916666667,
"ext": "agda",
"hexsha": "fde4d608d512dd5a528403d560428d57bc6b628b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/RibbonCover.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/RibbonCover.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/RibbonCover.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1186,
"size": 3431
}
|
{-# OPTIONS --safe #-} -- --without-K #-}
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong)
open import Function using (_∘_)
import Data.Empty as Empty
import Data.Product as Product
import Data.Product.Properties as Productₚ
import Data.Unit as Unit
import Data.Nat as Nat
import Data.Vec as Vec
import Data.Vec.Properties as Vecₚ
import Data.Bool as Bool
import Data.Fin as Fin
import Data.Vec.Relation.Unary.All as All
open Empty using (⊥-elim)
open Nat using (ℕ; zero; suc)
open Vec using (Vec; []; _∷_)
open All using (All; []; _∷_)
open Fin using (Fin ; zero ; suc)
open Product using (_,_; proj₁; proj₂)
import PiCalculus.Syntax
open PiCalculus.Syntax.Scoped
open import PiCalculus.Semantics
open import PiCalculus.LinearTypeSystem.Algebras
module PiCalculus.LinearTypeSystem.Strengthening (Ω : Algebras) where
open Algebras Ω
open import PiCalculus.LinearTypeSystem Ω
open import PiCalculus.LinearTypeSystem.ContextLemmas Ω
private
variable
n : ℕ
idxs : Idxs n
idx idx' : Idx
t t' : Type
i j : Fin n
P Q : Scoped n
∋-strengthen : {γ : PreCtx (suc n)} {idxs : Idxs (suc n)} {Γ Θ : Ctx idxs} {m' : Usage idx' ²}
→ (i : Fin (suc n))
→ (i≢j : i ≢ j)
→ γ ; Γ ∋[ j ] t' ; m' ▹ Θ
→ Vec.remove γ i ; ctx-remove Γ i ∋[ Fin.punchOut i≢j ] t' ; m' ▹ ctx-remove Θ i
∋-strengthen zero i≢x (zero , zero _) = ⊥-elim (i≢x refl)
∋-strengthen zero i≢x (suc t , suc x) = t , x
∋-strengthen {γ = _ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} (suc i) i≢x (zero , zero xyz) = zero , zero xyz
∋-strengthen {γ = _ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} (suc i) i≢x (suc t , suc x) = there (∋-strengthen i (i≢x ∘ cong suc) (t , x))
⊢-strengthen : {P : Scoped (suc n)} {γ : PreCtx (suc n)} {idxs : Idxs (suc n)} {Γ Θ : Ctx idxs}
→ (i : Fin (suc n))
→ (uP : Unused i P)
→ γ ; Γ ⊢ P ▹ Θ
→ Vec.remove γ i ; ctx-remove Γ i ⊢ lower i P uP ▹ ctx-remove Θ i
⊢-strengthen i uP 𝟘 = 𝟘
⊢-strengthen {γ = _ -, _} {Γ = _ -, _} {Θ = _ -, _} i uP (ν t m μ ⊢P)
= ν t m μ (⊢-strengthen (suc i) uP ⊢P)
⊢-strengthen {γ = _ -, _} {Γ = _ -, _} {Θ = _ -, _} i (i≢x , uP) (_⦅⦆_ {Ξ = _ -, _} x ⊢P)
= ∋-strengthen i i≢x x ⦅⦆ ⊢-strengthen (suc i) uP ⊢P
⊢-strengthen {γ = _ -, _} i (i≢x , i≢y , uP) (x ⟨ y ⟩ ⊢P)
= ∋-strengthen i i≢x x ⟨ ∋-strengthen i i≢y y ⟩ ⊢-strengthen i uP ⊢P
⊢-strengthen {γ = _ -, _} i (uP , uQ) (⊢P ∥ ⊢Q)
= ⊢-strengthen i uP ⊢P ∥ ⊢-strengthen i uQ ⊢Q
|
{
"alphanum_fraction": 0.5716535433,
"avg_line_length": 37.9104477612,
"ext": "agda",
"hexsha": "ccf80f30ea51d5b1b7741d1443c45de7b66de7b2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z",
"max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/typing-linear-pi",
"max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Strengthening.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/typing-linear-pi",
"max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Strengthening.agda",
"max_line_length": 150,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/typing-linear-pi",
"max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Strengthening.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z",
"num_tokens": 1046,
"size": 2540
}
|
open import Functional hiding (Domain)
import Structure.Logic.Classical.NaturalDeduction
module Structure.Logic.Classical.SetTheory.ZFC {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
open import Lang.Instance
import Lvl
open import Structure.Logic.Classical.NaturalDeduction.Proofs ⦃ classicLogic ⦄
open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_)
open import Structure.Logic.Classical.SetTheory.Relation ⦃ classicLogic ⦄ (_∈_)
open import Structure.Logic.Constructive.Functions.Properties ⦃ constructiveLogicSignature ⦄
private
module Meta where
open import Numeral.Finite public
open import Numeral.Finite.Bound{ℓₗ} public
open import Numeral.Natural public
-- The symbols/signature of ZFC set theory.
record Signature : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
infixl 3000 _∪_
infixl 3001 _∩_
infixl 3002 _⨯_ _∖_
field
-- Empty set
-- The set consisting of no elements.
∅ : Domain
-- Pair set.
-- The set consisting of only two elements.
pair : Domain → Domain → Domain
-- Subset filtering.
-- The subset of the specified set where all elements satisfy the specified formula.
filter : Domain → (Domain → Formula) → Domain
-- Power set.
-- The set of all subsets of the specified set.
℘ : Domain → Domain
-- Union over arbitrary sets.
-- Constructs a set which consists of elements which are in any of the specified sets.
⋃ : Domain → Domain
-- An inductive set.
-- A set which has the `Inductive`-property. Also infinite.
inductiveSet : Domain
-- The map of a set.
-- The set of values when a function is applied to every element of a set.
-- Or: The image of the function on the set.
-- Or: The image of the function.
map : (Domain → Domain) → Domain → Domain
-- An inverse function of a function from its domain to its image.
inv : (Domain → Domain) → Domain → Domain
-- Singleton set.
-- A set consisting of only a single element.
singleton : Domain → Domain
singleton(s) = pair(s)(s)
-- Union operator.
-- Constructs a set which consists of both elements from LHS and RHS.
_∪_ : Domain → Domain → Domain
a ∪ b = ⋃(pair a b)
-- Intersection operator.
-- Constructs a set which consists of elements which are in both LHS and RHS.
_∩_ : Domain → Domain → Domain
a ∩ b = filter(a)(_∈ b)
-- "Without"-operator.
-- Constructs a set which consists of elements which are in LHS, but not RHS.
_∖_ : Domain → Domain → Domain
a ∖ b = filter(a)(_∉ b)
-- Intersection over arbitrary sets.
-- Constructs a set which consists of elements which are in all of the specified sets.
⋂ : Domain → Domain
⋂(a) = filter(⋃(a)) (a₁ ↦ ∀ₗ(a₂ ↦ (a₂ ∈ a) ⟶ (a₁ ∈ a₂)))
-- Tuple value.
-- An ordered pair of values.
_,_ : Domain → Domain → Domain
a , b = pair(singleton(a)) (pair(a)(b))
-- Set product (Set of tuples) (Cartesian product).
_⨯_ : Domain → Domain → Domain
a ⨯ b = filter(℘(℘(a ∪ b))) (t ↦ ∃ₗ(x ↦ (x ∈ a) ∧ ∃ₗ(y ↦ (y ∈ b) ∧ (t ≡ (x , y)))))
identityPairing : Domain → Domain
identityPairing(D) = filter(D ⨯ D) (xy ↦ ∃ₗ(a ↦ xy ≡ (a , a)))
-- swappedPairing : Domain → Domain
-- swappedPairing() =
-- Set product over a finite indexed family (Cartesian product).
-- TODO: Not really like this. See definition of (_⨯_) and (_,_), and try to express the same here
-- TODO: Also, make it possible to take the set product of infinite indexed families
-- TODO: Maybe just use functions like (𝕟(n) →ₛₑₜ _) for finite and (ℕ → _) for infinite
-- ∏_ : ∀{n} → FiniteIndexedFamily(n) → Domain
-- ∏_ {Meta.𝟎} _ = singleton(∅)
-- ∏_ {Meta.𝐒(Meta.𝟎)} I = I(Meta.𝟎)
-- ∏_ {Meta.𝐒(Meta.𝐒(n))} I = I(Meta.maximum) ⨯ (∏_ {Meta.𝐒(n)} (I ∘ Meta.bound-𝐒))
-- Quotient set.
-- The set of equivalence classes.
_/_ : Domain → BinaryRelator → Domain
a / (_▫_) = filter(℘(a))(aₛ ↦ ∀ₛ(aₛ)(x ↦ ∀ₛ(aₛ)(y ↦ x ▫ y)))
-- Equivalence class
-- The set of elements which are equivalent to the specified one.
[_of_,_] : Domain → Domain → BinaryRelator → Domain
[ x of a , (_▫_) ] = filter(a)(y ↦ x ▫ y)
-- TODO: Implement a choice function (the "axiom of choice" one) by inv
-- choice : Domain → Domain → Domain
-- The unmap of a set.
-- The set of elements in the domain X when applied to a function gives an element in Y.
-- Or: The inverse image of the function on the set.
-- Or: The pre-image of the function on the set.
-- Note:
-- The domain is neccessary because a class function's domain is not neccesarily a set.
-- For example: `const(x): Domain → Domain` for any (x: Domain) is a class function for which its domain is not a set.
-- This is because const is defined for all objects in `Domain`, so if a set would have to have all objects in `Domain`, it has to be the universal set, but there is no universal set.
unmap : Domain → (Domain → Domain) → Domain → Domain
unmap(X) f(Y) = filter(X) (x ↦ f(x) ∈ Y)
{-
module Function ⦃ signature : Signature ⦄ where
open Signature ⦃ ... ⦄
record SetRepresentable (f : Function) : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
constructor intro
field
set : Domain
field
proof : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ (f(x) ≡ y) ⟷ ((x , y) ∈ set))))
-- An instance of Type(f) means that the function f has a default domain and codomain, and a proof that the function actually are closed inside this domain/codomain pair.
record Type (f : Function) : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
constructor intro
field
domain : Domain
codomain : Domain
field
closure : Proof(∀ₛ(domain)(x ↦ f(x) ∈ codomain))
open Type ⦃ ... ⦄ public
-}
module Tuple ⦃ signature : Signature ⦄ where -- TODO: Move
open Signature ⦃ ... ⦄
left : Domain → Domain
left(s) = ⋃(⋂ s)
right : Domain → Domain
right(s) = (⋃ s) ∖ left(s)
-- A model of natural numbers expressed in set theory (using only sets).
module NumeralNatural ⦃ signature : Signature ⦄ where -- TODO: Move
open Signature ⦃ ... ⦄
-- The zero constant from the standard inductive set definition of ℕ in ZFC set theory.
𝟎 : Domain
𝟎 = ∅
-- The successor function from the standard inductive set definition of ℕ in ZFC set theory.
-- This means that all lesser numbers are contained in every number.
-- Examples:
-- • 0: {}
-- • 1: 0∪{0} = {0} = {{},{{}}}
-- • 2: 1∪{1} = {0}∪{1} = {0,1} = {{},{{},{{}}}}
-- • 3: 2∪{2} = {0,1}∪{2} = {0,1,2} = {{{},{{},{{}}}},{{{},{{},{{}}}}}}
-- • 4: 3∪{3} = {0,1,2}∪{3} = {0,1,2,3} = {{{{},{{},{{}}}},{{{},{{},{{}}}}}},{{{{},{{},{{}}}},{{{},{{},{{}}}}}}}}
𝐒 : Domain → Domain
𝐒(n) = n ∪ singleton(n)
-- A set is ℕ-inductive when has zero and all its successors.
-- In loose terms: Inductive(I) means (I ⊆ ℕ)
Inductive : Domain → Formula
Inductive(I) = (𝟎 ∈ I) ∧ (∀ₗ(x ↦ (x ∈ I) ⟶ (𝐒(x) ∈ I)))
-- The "smallest" inductive set is the set of natural numbers.
-- All elements which can be expressed using only 𝟎 and 𝐒.
ℕ : Domain
ℕ = ⋂(filter(℘(inductiveSet)) Inductive) -- TODO: This pattern seems useful
-- The relation "lesser than" in this model of ℕ.
-- This works for all elements in ℕ by the definition of 𝟎 and 𝐒.
_<_ : BinaryRelator
a < b = a ∈ b
_≤_ : BinaryRelator
a ≤ b = (a < b) ∨ (a ≡ b)
_>_ : BinaryRelator
a > b = b < a
_≥_ : BinaryRelator
a ≥ b = b ≤ a
infixl 2000 _<_ _≤_ _>_ _≥_
𝕟 : Domain → Domain
𝕟(n) = filter(ℕ) (_< n)
module Axioms ⦃ signature : Signature ⦄ where
open NumeralNatural using () renaming (Inductive to [ℕ]-Inductive)
open Signature ⦃ ... ⦄
-- `∅` is a set which is empty.
-- • Allows a construction of an empty set.
EmptySetMembership : Formula
EmptySetMembership = Empty(∅)
-- `pair` is the construction of a set with two elements.
-- • Allows a construction of a set with two elements.
PairingMembership : Formula
PairingMembership = ∀ₗ(x₁ ↦ ∀ₗ(x₂ ↦ (∀ₗ(x ↦ (x ∈ pair(x₁)(x₂)) ⟷ (x ≡ x₁)∨(x ≡ x₂)))))
-- `filter` is the set which is the subset of a set where all elements satisfies a predicate.
RestrictedComprehension : (Domain → Formula) → Formula
RestrictedComprehension(φ) = ∀ₗ(s ↦ ∀ₗ(x ↦ ((x ∈ filter(s)(φ)) ⟷ ((x ∈ s) ∧ φ(x)))))
-- `℘` is the construction of a set which contains all the subsets of a set.
-- • Allows a construction of a set that is the powerset of a set.
PowerSetMembership : Formula
PowerSetMembership = ∀ₗ(s ↦ ∀ₗ(x ↦ (x ∈ ℘(s)) ⟷ (x ⊆ s)))
-- `⋃` is the construction of a set which contains all the elements of a collection of sets.
-- • Allows a construction of a set that is the union of some sets.
UnionMembership : Formula
UnionMembership = ∀ₗ(ss ↦ ∀ₗ(x ↦ (x ∈ ⋃(ss)) ⟷ ∃ₗ(s ↦ (s ∈ ss)∧(x ∈ s))))
-- `inductiveSet` is ℕ-inductive.
-- • An inductive set is infinite, so this implies that an infinite set exists.
-- • Makes it possible to construct the set of natural numbers (ℕ).
Infinity : Formula
Infinity = [ℕ]-Inductive(inductiveSet)
-- Set identity is extensionally determined. More specifically by its contents.
-- • Guarantees the definition of equality for sets.
Extensionality : Formula
Extensionality = ∀ₗ(s₁ ↦ ∀ₗ(s₂ ↦ ∀ₗ(x ↦ (x ∈ s₁)⟷(x ∈ s₂)) ⟷ (s₁ ≡ s₂)))
-- A non-empty set contain sets that are disjoint to it.
-- • Prevents sets containing themselves.
-- • Makes every set have an ordinal rank.
Regularity : Formula
Regularity = ∀ₗ(s₁ ↦ (NonEmpty(s₁) ⟶ ∃ₗ(s₂ ↦ (s₂ ∈ s₁) ∧ Disjoint(s₁)(s₂))))
-- `map` is the construction of the image of a function restricted to a set.
-- • The `map`-function on a function is a function from sets to sets.
Replacement : (Domain → Domain) → Formula
Replacement(f) = ∀ₗ(A ↦ ∀ₗ(y ↦ (y ∈ map f(A)) ⟷ ∃ₛ(A)(x ↦ y ≡ f(x))))
-- ReplacementTraditional = ∀{φ : Domain → Domain → Formula} → Proof(∀ₗ(A ↦ TotalFunction(φ)(A) ⟶ ∃ₗ(B ↦ ∀ₗ(y ↦ (y ∈ B) ⟷ ∃ₗ(x ↦ (x ∈ A) ∧ φ(x)(y))))))
-- The set product of non-empty finite indexed family of sets where all the sets are non-empty is non-empty.
-- TODO: Should the indexed family really be finite? https://en.wikipedia.org/wiki/Cartesian_product#Infinite_Cartesian_products
-- Choice = ∀{n : Meta.ℕ}{F : FiniteIndexedFamily(Meta.𝐒(n))} → (∀{i : Meta.𝕟(Meta.𝐒(n))} → Proof(NonEmpty(F(i)))) → Proof(NonEmpty(∏ F))
-- `inv` constructs the right inverse for function composition.
-- • All surjective class functions have a right inverse.
-- • An element applied to the inverse function of a function yields/returns one of the arguments that yield/return this element as a value when it exists.
-- TODO: MAybe this is too strong of a statement? Because the image is not neccessarily a set if the class function is defined for all objects (in the domain) in the theory? Is this really equivalent to `ChoiceTraditional`?
Choice : (Domain → Domain) → Formula
Choice(f) = ∀ₗ(y ↦ (Value f(y)) ⟶ ((f ∘ (inv f))(y) ≡ y))
-- ChoiceTraditional = Proof(∀ₗ(s ↦ (∅ ∉ s) ⟶ ∃ₛ(s →ₛₑₜ (⋃ s))(f ↦ ∀ₛ(s)(x ↦ ∀ₛ(⋃ s)(y ↦ ((x , y) ∈ f) ⟶ (y ∈ x))))))
-- ChoiceTraditional : (Domain → Domain → Domain) → Formula
-- ChoiceTraditional(choice) = ∀ₗ(s ↦ ∀ₛ(s)(x ↦ NonEmpty(x) ⟶ (choice(s)(x) ∈ x)))
record Z ⦃ signature : Signature ⦄ : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
open Axioms
open Signature ⦃ ... ⦄
field
extensional : Proof(Extensionality)
empty : Proof(EmptySetMembership)
pairing : Proof(PairingMembership)
comprehension : ∀{φ} → Proof(RestrictedComprehension(φ))
union : Proof(UnionMembership)
power : Proof(PowerSetMembership)
infinity : Proof(Infinity)
record ZF ⦃ signature : Signature ⦄ : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
open Axioms
open Signature ⦃ ... ⦄
field
extensional : Proof(Extensionality)
empty : Proof(EmptySetMembership)
pairing : Proof(PairingMembership)
comprehension : ∀{φ} → Proof(RestrictedComprehension(φ))
union : Proof(UnionMembership)
power : Proof(PowerSetMembership)
infinity : Proof(Infinity)
regular : Proof(Regularity)
replacement : ∀{f} → Proof(Replacement(f))
record ZFC ⦃ signature : Signature ⦄ : Set((ℓₗ Lvl.⊔ ℓₒ) Lvl.⊔ ℓₘₗ) where
open Axioms
open Signature ⦃ ... ⦄
field
extensional : Proof(Extensionality)
empty : Proof(EmptySetMembership)
pairing : Proof(PairingMembership)
comprehension : ∀{φ} → Proof(RestrictedComprehension(φ))
union : Proof(UnionMembership)
power : Proof(PowerSetMembership)
infinity : Proof(Infinity)
regular : Proof(Regularity)
replacement : ∀{f} → Proof(Replacement(f))
choice : ∀{f} → Proof(Choice(f))
|
{
"alphanum_fraction": 0.6302067263,
"avg_line_length": 40.012345679,
"ext": "agda",
"hexsha": "ce4c3baf5bb6b09b01648ed65a5cb5bb35a0db54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC.agda",
"max_line_length": 225,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4301,
"size": 12964
}
|
module Luau.RuntimeError where
open import Agda.Builtin.Equality using (_≡_)
open import Luau.Heap using (Heap; _[_])
open import FFI.Data.Maybe using (just; nothing)
open import FFI.Data.String using (String)
open import Luau.Syntax using (Block; Expr; nil; var; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; binexp)
open import Luau.RuntimeType using (RuntimeType; valueType)
open import Luau.Value using (val)
open import Properties.Equality using (_≢_)
data RuntimeErrorᴮ {a} (H : Heap a) : Block a → Set
data RuntimeErrorᴱ {a} (H : Heap a) : Expr a → Set
data RuntimeErrorᴱ H where
TypeMismatch : ∀ t v → (t ≢ valueType v) → RuntimeErrorᴱ H (val v)
UnboundVariable : ∀ x → RuntimeErrorᴱ H (var x)
SEGV : ∀ a → (H [ a ] ≡ nothing) → RuntimeErrorᴱ H (addr a)
app₁ : ∀ {M N} → RuntimeErrorᴱ H M → RuntimeErrorᴱ H (M $ N)
app₂ : ∀ {M N} → RuntimeErrorᴱ H N → RuntimeErrorᴱ H (M $ N)
block : ∀ b {B} → RuntimeErrorᴮ H B → RuntimeErrorᴱ H (block b is B end)
bin₁ : ∀ {M N op} → RuntimeErrorᴱ H M → RuntimeErrorᴱ H (binexp M op N)
bin₂ : ∀ {M N op} → RuntimeErrorᴱ H N → RuntimeErrorᴱ H (binexp M op N)
data RuntimeErrorᴮ H where
local : ∀ x {M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (local x ← M ∙ B)
return : ∀ {M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (return M ∙ B)
|
{
"alphanum_fraction": 0.6798780488,
"avg_line_length": 46.8571428571,
"ext": "agda",
"hexsha": "b479a72a4f73a7c13993c7df5ff57448d4747b6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/RuntimeError.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/RuntimeError.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/RuntimeError.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 454,
"size": 1312
}
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Sets.Facts.Terminal where
open import Data.Unit using (⊤)
open import Level using (Lift ; lift ; lower)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Cats.Category
open import Cats.Category.Sets using (Sets)
instance
hasTerminal : ∀ {l} → HasTerminal (Sets l)
hasTerminal = record
{ ⊤ = Lift _ ⊤
; isTerminal = λ X → record { unique = λ _ _ → refl }
}
|
{
"alphanum_fraction": 0.6846652268,
"avg_line_length": 25.7222222222,
"ext": "agda",
"hexsha": "0de98dc12e6875a7679ac29a9adbfface5aa72ba",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Sets/Facts/Terminal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Sets/Facts/Terminal.agda",
"max_line_length": 68,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Sets/Facts/Terminal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 125,
"size": 463
}
|
{-# OPTIONS -WUnknownFixityInMixfixDecl #-}
data Nat : Set where
zero : Nat
suc : Nat → Nat
_+_ : Nat → Nat → Nat
zero + n = n
(suc m) + n = suc (m + n)
private
_*_ : Nat → Nat → Nat
zero * n = zero
(suc m) * n = n + (m * n)
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr _<>_ n [] = n
foldr _<>_ n (x ∷ xs) = x <> (foldr _<>_ n xs)
sumOfPowers : Nat → List Nat → Nat
sumOfPowers x = foldr (λ p → (x ^ p) +_) zero where
_^_ : Nat → Nat → Nat
m ^ zero = suc zero
m ^ suc n = m * (m ^ n)
|
{
"alphanum_fraction": 0.4991708126,
"avg_line_length": 20.1,
"ext": "agda",
"hexsha": "e741723a775c642964753346d240975d72915e82",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2899.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2899.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2899.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 252,
"size": 603
}
|
------------------------------------------------------------------------
-- An implementation of tree sort, formally proved to return a
-- permutation of the input
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
open import Prelude hiding (id)
module Tree-sort.Partial
{c⁺}
(eq : ∀ {a p} → Equality-with-J a p c⁺)
{A : Type}
(_≤_ : A → A → Bool) -- A comparison function.
where
open Derived-definitions-and-properties eq
open import Bag-equivalence eq
open import Bijection eq using (_↔_)
open import Function-universe eq hiding (_∘_)
open import List eq
open import Tree eq
------------------------------------------------------------------------
-- Insertion into trees
-- Inserts an element into the tree.
insert : A → Tree A → Tree A
insert x leaf = singleton x
insert x (node l y r) =
if x ≤ y then node (insert x l) y r
else node l y (insert x r)
-- The insert function inserts.
Any-insert : ∀ (P : A → Type) x t →
AnyT P (insert x t) ↔ P x ⊎ AnyT P t
Any-insert P x leaf =
AnyT P (singleton x) ↔⟨ Any-singleton P ⟩
P x ↔⟨ inverse ⊎-right-identity ⟩
P x ⊎ ⊥ ↔⟨⟩
P x ⊎ AnyT P leaf □
Any-insert P x (node l y r) with x ≤ y
... | true =
AnyT P (insert x l) ⊎ P y ⊎ AnyT P r ↔⟨ Any-insert P x l ⊎-cong id ⟩
(P x ⊎ AnyT P l) ⊎ P y ⊎ AnyT P r ↔⟨ inverse ⊎-assoc ⟩
P x ⊎ AnyT P l ⊎ P y ⊎ AnyT P r □
... | false =
AnyT P l ⊎ P y ⊎ AnyT P (insert x r) ↔⟨ id ⊎-cong id ⊎-cong Any-insert P x r ⟩
AnyT P l ⊎ P y ⊎ P x ⊎ AnyT P r ↔⟨ lemma (AnyT P l) (P y) (P x) (AnyT P r) ⟩
P x ⊎ AnyT P l ⊎ P y ⊎ AnyT P r □
where
-- The following lemma is easy to prove automatically (for instance
-- by using a ring solver).
lemma : (A B C D : Type) → A ⊎ B ⊎ C ⊎ D ↔ C ⊎ A ⊎ B ⊎ D
lemma A B C D =
A ⊎ B ⊎ C ⊎ D ↔⟨ id ⊎-cong ⊎-assoc ⟩
A ⊎ (B ⊎ C) ⊎ D ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id ⟩
A ⊎ (C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⟩
(A ⊎ C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⊎-cong id ⟩
((A ⊎ C) ⊎ B) ⊎ D ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id ⟩
((C ⊎ A) ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⊎-cong id ⟩
(C ⊎ A ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⟩
C ⊎ (A ⊎ B) ⊎ D ↔⟨ id ⊎-cong inverse ⊎-assoc ⟩
C ⊎ A ⊎ B ⊎ D □
------------------------------------------------------------------------
-- Turning a list into a search tree
-- Converts the list to a search tree.
to-search-tree : List A → Tree A
to-search-tree = foldr insert leaf
-- No elements are added or removed.
to-search-tree-lemma : ∀ xs z → z ∈T to-search-tree xs ↔ z ∈ xs
to-search-tree-lemma [] = λ z →
z ∈T leaf ↔⟨⟩
z ∈ [] □
to-search-tree-lemma (x ∷ xs) = λ z →
z ∈T insert x (to-search-tree xs) ↔⟨ Any-insert (λ x → z ≡ x) _ _ ⟩
z ≡ x ⊎ z ∈T to-search-tree xs ↔⟨ id ⊎-cong to-search-tree-lemma xs z ⟩
z ∈ x ∷ xs □
------------------------------------------------------------------------
-- Sorting
-- Sorts a list.
tree-sort : List A → List A
tree-sort = flatten ∘ to-search-tree
-- The result is a permutation of the input.
tree-sort-permutes : ∀ xs → tree-sort xs ≈-bag xs
tree-sort-permutes xs = λ z →
z ∈ flatten (to-search-tree xs) ↔⟨ flatten-lemma (to-search-tree xs) z ⟩
z ∈T to-search-tree xs ↔⟨ to-search-tree-lemma xs z ⟩
z ∈ xs □
|
{
"alphanum_fraction": 0.4837386464,
"avg_line_length": 32.5047619048,
"ext": "agda",
"hexsha": "400a8e4fda12a9bfaa7af56ca1eb8d2858b85f04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Tree-sort/Partial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Tree-sort/Partial.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Tree-sort/Partial.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1201,
"size": 3413
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Enriched where
open import Categories.Category
open import Categories.Monoidal
-- moar
|
{
"alphanum_fraction": 0.7945205479,
"avg_line_length": 20.8571428571,
"ext": "agda",
"hexsha": "527a2fd1bb5abfd7cf63fc92cd47326f0af5618a",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Enriched.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Enriched.agda",
"max_line_length": 39,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Enriched.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 30,
"size": 146
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.cubical.Square
open import lib.types.Bool
open import lib.types.Coproduct
open import lib.types.FunctionSeq
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.Span
open import lib.types.Pushout
open import lib.types.Sigma
module lib.types.Smash where
module _ {i j} (X : Ptd i) (Y : Ptd j) where
⊙∧-span : ⊙Span
⊙∧-span = ⊙span (X ⊙× Y) ⊙Bool (X ⊙⊔ Y)
(⊔-rec (_, pt Y) (pt X ,_) , idp)
(⊙⊔-fmap {Y = Y} ⊙cst ⊙cst)
∧-span : Span
∧-span = ⊙Span-to-Span ⊙∧-span
abstract
_∧_ : Type (lmax i j)
_∧_ = Pushout ∧-span
Smash = _∧_
module _ {i j} {X : Ptd i} {Y : Ptd j} where
abstract
smin : de⊙ X → de⊙ Y → Smash X Y
smin x y = left (x , y)
module _ {i j} (X : Ptd i) (Y : Ptd j) where
_⊙∧_ = ptd (X ∧ Y) (smin (pt X) (pt Y))
⊙Smash = _⊙∧_
module _ {i j} {X : Ptd i} {Y : Ptd j} where
abstract
smbasel : Smash X Y
smbasel = right true
smbaser : Smash X Y
smbaser = right false
smgluel : (x : de⊙ X) → smin x (pt Y) == smbasel
smgluel x = glue (inl x)
smgluer : (y : de⊙ Y) → smin (pt X) y == smbaser
smgluer y = glue (inr y)
∧-norm-l-seq : (x : de⊙ X) → smin x (pt Y) =-= smin (pt X) (pt Y)
∧-norm-l-seq x = smgluel x ◃∙ ! (smgluel (pt X)) ◃∎
∧-norm-l : (x : de⊙ X) → smin x (pt Y) == smin (pt X) (pt Y)
∧-norm-l x = ↯ (∧-norm-l-seq x)
∧-norm-r-seq : (y : de⊙ Y) → smin (pt X) y =-= smin (pt X) (pt Y)
∧-norm-r-seq y = smgluer y ◃∙ ! (smgluer (pt Y)) ◃∎
∧-norm-r : (y : de⊙ Y) → smin (pt X) y == smin (pt X) (pt Y)
∧-norm-r y = ↯ (∧-norm-r-seq y)
∧-⊙inl : de⊙ Y → X ⊙→ ⊙Smash X Y
∧-⊙inl y = (λ x → smin x y) , smgluer y ∙ ! (smgluer (pt Y))
∧-⊙inr : de⊙ X → Y ⊙→ ⊙Smash X Y
∧-⊙inr x = (λ y → smin x y) , smgluel x ∙ ! (smgluel (pt X))
∧-glue-lr : smbasel == smbaser
∧-glue-lr = ! (smgluel (pt X)) ∙ smgluer (pt Y)
ap-smin-l : {a b : de⊙ X} (p : a == b)
→ ap (λ x → smin x (pt Y)) p == smgluel a ∙ ! (smgluel b)
ap-smin-l = ap-null-homotopic (λ x → smin x (pt Y)) smgluel
ap-smin-r : {a b : de⊙ Y} (p : a == b)
→ ap (smin (pt X)) p == smgluer a ∙ ! (smgluer b)
ap-smin-r = ap-null-homotopic (λ y → smin (pt X) y) smgluer
module _ {i j} {X : Ptd i} {Y : Ptd j} where
module SmashElim {k} {P : Smash X Y → Type k}
(smin* : (x : de⊙ X) (y : de⊙ Y) → P (smin x y))
(smbasel* : P smbasel) (smbaser* : P smbaser)
(smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel* [ P ↓ smgluel x ])
(smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser* [ P ↓ smgluer y ]) where
-- It would be better to encapsulate the repetition in the following definitions in a
-- private module as follows. Unfortunately, this is not possible when the smash
-- datatype is declared abstract.
{-private
module M = PushoutElim
(uncurry smin*)
(Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*))
(Coprod-elim smgluel* smgluer*)-}
abstract
f : (s : X ∧ Y) → P s
f = PushoutElim.f (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*)
smin-β : ∀ x y → f (smin x y) ↦ smin* x y
smin-β x y = PushoutElim.left-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) (x , y)
{-# REWRITE smin-β #-}
smbasel-β : f smbasel ↦ smbasel*
smbasel-β = PushoutElim.right-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) true
{-# REWRITE smbasel-β #-}
smbaser-β : f smbaser ↦ smbaser*
smbaser-β = PushoutElim.right-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) false
{-# REWRITE smbaser-β #-}
smgluel-β : ∀ (x : de⊙ X) → apd f (smgluel x) == smgluel* x
smgluel-β = PushoutElim.glue-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inl
smgluer-β : ∀ (y : de⊙ Y) → apd f (smgluer y) == smgluer* y
smgluer-β = PushoutElim.glue-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inr
Smash-elim = SmashElim.f
module SmashRec {k} {C : Type k}
(smin* : (x : de⊙ X) (y : de⊙ Y) → C)
(smbasel* smbaser* : C)
(smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel*)
(smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser*) where
-- It would be better to encapsulate the repetition in the following definitions in a
-- private module as follows. Unfortunately, this is not possible when the smash
-- datatype is declared abstract.
{-private
module M = PushoutRec {d = ∧-span X Y}
(uncurry smin*)
(Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*))
(Coprod-elim smgluel* smgluer*)-}
abstract
f : X ∧ Y → C
f = PushoutRec.f (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*)
smin-β : ∀ x y → f (smin x y) ↦ smin* x y
smin-β x y = PushoutRec.left-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) (x , y)
{-# REWRITE smin-β #-}
smbasel-β : f smbasel ↦ smbasel*
smbasel-β = PushoutRec.right-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) true
{-# REWRITE smbasel-β #-}
smbaser-β : f smbaser ↦ smbaser*
smbaser-β = PushoutRec.right-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) false
{-# REWRITE smbaser-β #-}
smgluel-β : ∀ (x : de⊙ X) → ap f (smgluel x) == smgluel* x
smgluel-β = PushoutRec.glue-β (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inl
smgluer-β : ∀ (y : de⊙ Y) → ap f (smgluer y) == smgluer* y
smgluer-β = PushoutRec.glue-β (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inr
∧-norm-l-β : ∀ (x : de⊙ X) → ap f (∧-norm-l x) == smgluel* x ∙ ! (smgluel* (pt X))
∧-norm-l-β x =
ap f (∧-norm-l x)
=⟨ ap-∙ f (smgluel x) (! (smgluel (pt X))) ⟩
ap f (smgluel x) ∙ ap f (! (smgluel (pt X)))
=⟨ ap2 _∙_ (smgluel-β x)
(ap-! f (smgluel (pt X)) ∙
ap ! (smgluel-β (pt X))) ⟩
smgluel* x ∙ ! (smgluel* (pt X)) =∎
∧-norm-r-β : ∀ (y : de⊙ Y) → ap f (∧-norm-r y) == smgluer* y ∙ ! (smgluer* (pt Y))
∧-norm-r-β y =
ap f (∧-norm-r y)
=⟨ ap-∙ f (smgluer y) (! (smgluer (pt Y))) ⟩
ap f (smgluer y) ∙ ap f (! (smgluer (pt Y)))
=⟨ ap2 _∙_ (smgluer-β y)
(ap-! f (smgluer (pt Y)) ∙
ap ! (smgluer-β (pt Y))) ⟩
smgluer* y ∙ ! (smgluer* (pt Y)) =∎
Smash-rec = SmashRec.f
module SmashPathOverElim {k} {P : Smash X Y → Type k}
(g₁ g₂ : (xy : Smash X Y) → P xy)
(smin* : (x : de⊙ X) (y : de⊙ Y) → g₁ (smin x y) == g₂ (smin x y))
(smbasel* : g₁ smbasel == g₂ smbasel)
(smbaser* : g₁ smbaser == g₂ smbaser)
(smgluel* : (x : de⊙ X) →
smin* x (pt Y) ◃ apd g₂ (smgluel x) ==
apd g₁ (smgluel x) ▹ smbasel*)
(smgluer* : (y : de⊙ Y) →
smin* (pt X) y ◃ apd g₂ (smgluer y) ==
apd g₁ (smgluer y) ▹ smbaser*)
where
f : g₁ ∼ g₂
f =
Smash-elim
{P = λ xy → g₁ xy == g₂ xy}
smin*
smbasel*
smbaser*
(λ x → ↓-=-in (smgluel* x))
(λ y → ↓-=-in (smgluer* y))
Smash-PathOver-elim = SmashPathOverElim.f
module SmashPathElim {k} {C : Type k}
(g₁ g₂ : Smash X Y → C)
(smin* : (x : de⊙ X) (y : de⊙ Y) → g₁ (smin x y) == g₂ (smin x y))
(smbasel* : g₁ smbasel == g₂ smbasel)
(smbaser* : g₁ smbaser == g₂ smbaser)
(smgluel* : (x : de⊙ X) →
Square (smin* x (pt Y)) (ap g₁ (smgluel x))
(ap g₂ (smgluel x)) smbasel*)
(smgluer* : (y : de⊙ Y) →
Square (smin* (pt X) y) (ap g₁ (smgluer y))
(ap g₂ (smgluer y)) smbaser*)
where
f : g₁ ∼ g₂
f =
Smash-elim
{P = λ xy → g₁ xy == g₂ xy}
smin*
smbasel*
smbaser*
(λ x → ↓-='-from-square (smgluel* x))
(λ y → ↓-='-from-square (smgluer* y))
Smash-Path-elim = SmashPathElim.f
module _ {i j k l} {X : Ptd i} {Y : Ptd j} {X' : Ptd k} {Y' : Ptd l} (f : X ⊙→ X') (g : Y ⊙→ Y') where
private
module M = SmashRec
{C = X' ∧ Y'}
(λ x y → smin (fst f x) (fst g y))
(smin (pt X') (pt Y'))
(smin (pt X') (pt Y'))
(λ x → ap (λ y' → smin (fst f x) y') (snd g) ∙ ∧-norm-l (fst f x))
(λ y → ap (λ x' → smin x' (fst g y)) (snd f) ∙ ∧-norm-r (fst g y))
abstract
∧-fmap : X ∧ Y → X' ∧ Y'
∧-fmap = M.f
∧-fmap-smin-β : ∀ x y → ∧-fmap (smin x y) ↦ smin (fst f x) (fst g y)
∧-fmap-smin-β = M.smin-β
{-# REWRITE ∧-fmap-smin-β #-}
∧-fmap-smbasel-β : ∧-fmap smbasel ↦ smin (pt X') (pt Y')
∧-fmap-smbasel-β = M.smbasel-β
{-# REWRITE ∧-fmap-smbasel-β #-}
∧-fmap-smbaser-β : ∧-fmap smbaser ↦ smin (pt X') (pt Y')
∧-fmap-smbaser-β = M.smbaser-β
{-# REWRITE ∧-fmap-smbaser-β #-}
∧-fmap-smgluel-β' : ∀ x →
ap ∧-fmap (smgluel x)
==
ap (λ y' → smin (fst f x) y') (snd g) ∙
∧-norm-l (fst f x)
∧-fmap-smgluel-β' x = M.smgluel-β x
∧-fmap-smgluer-β' : ∀ y →
ap ∧-fmap (smgluer y)
==
ap (λ x' → smin x' (fst g y)) (snd f) ∙
∧-norm-r (fst g y)
∧-fmap-smgluer-β' = M.smgluer-β
∧-fmap-smgluel-β : ∀ x →
ap ∧-fmap (smgluel x) ◃∎
=ₛ
ap (λ y' → smin (fst f x) y') (snd g) ◃∙
∧-norm-l (fst f x) ◃∎
∧-fmap-smgluel-β x = =ₛ-in (∧-fmap-smgluel-β' x)
∧-fmap-smgluer-β : ∀ y →
ap ∧-fmap (smgluer y) ◃∎
=ₛ
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∎
∧-fmap-smgluer-β y = =ₛ-in (∧-fmap-smgluer-β' y)
⊙∧-fmap : X ⊙∧ Y ⊙→ X' ⊙∧ Y'
⊙∧-fmap = ∧-fmap , ap2 smin (snd f) (snd g)
∧-fmap-norm-l : ∀ x →
ap ∧-fmap (∧-norm-l x) ◃∎
=ₛ
ap (λ y' → smin (fst f x) y') (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
∧-fmap-norm-l x =
ap ∧-fmap (∧-norm-l x) ◃∎
=ₛ⟨ ap-seq-∙ ∧-fmap (∧-norm-l-seq x) ⟩
ap ∧-fmap (smgluel x) ◃∙
ap ∧-fmap (! (smgluel (pt X))) ◃∎
=ₛ₁⟨ 1 & 1 & ap-! ∧-fmap (smgluel (pt X)) ⟩
ap ∧-fmap (smgluel x) ◃∙
! (ap ∧-fmap (smgluel (pt X))) ◃∎
=ₛ⟨ 0 & 1 & ∧-fmap-smgluel-β x ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (ap ∧-fmap (smgluel (pt X))) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (∧-fmap-smgluel-β (pt X)) ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (∧-norm-l (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (expand (∧-norm-l-seq (fst f (pt X)))) ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (! (smgluel (pt X'))) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-l-seq (fst f x)) ⟩
ap (smin (fst f x)) (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (pt X')) ◃∙
! (! (smgluel (pt X'))) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-r (! (smgluel (pt X')) ◃∎) ⟩
ap (smin (fst f x)) (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎ ∎ₛ
∧-fmap-norm-r : ∀ y →
ap ∧-fmap (∧-norm-r y) ◃∎
=ₛ
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
∧-fmap-norm-r y =
ap ∧-fmap (∧-norm-r y) ◃∎
=ₛ⟨ ap-seq-∙ ∧-fmap (∧-norm-r-seq y) ⟩
ap ∧-fmap (smgluer y) ◃∙
ap ∧-fmap (! (smgluer (pt Y))) ◃∎
=ₛ₁⟨ 1 & 1 & ap-! ∧-fmap (smgluer (pt Y)) ⟩
ap ∧-fmap (smgluer y) ◃∙
! (ap ∧-fmap (smgluer (pt Y))) ◃∎
=ₛ⟨ 0 & 1 & ∧-fmap-smgluer-β y ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (ap ∧-fmap (smgluer (pt Y))) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (∧-fmap-smgluer-β (pt Y)) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (∧-norm-r (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (expand (∧-norm-r-seq (fst g (pt Y)))) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (! (smgluer (pt Y'))) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-r-seq (fst g y)) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (pt Y')) ◃∙
! (! (smgluer (pt Y'))) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x → smin x (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-r (! (smgluer (pt Y')) ◃∎) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎ ∎ₛ
module _ {i i' i'' j j' j''}
{X : Ptd i} {X' : Ptd i'} {X'' : Ptd i''} (f : X ⊙→ X') (f' : X' ⊙→ X'')
{Y : Ptd j} {Y' : Ptd j'} {Y'' : Ptd j''} (g : Y ⊙→ Y') (g' : Y' ⊙→ Y'') where
∧-fmap-comp : ∀ xy →
∧-fmap (f' ⊙∘ f) (g' ⊙∘ g) xy == ∧-fmap f' g' (∧-fmap f g xy)
∧-fmap-comp =
Smash-elim {X = X} {Y = Y}
{P = λ xy → ∧-fmap (f' ⊙∘ f) (g' ⊙∘ g) xy == ∧-fmap f' g' (∧-fmap f g xy)}
(λ x y → idp)
(! (ap2 smin (snd f') (snd g')))
(! (ap2 smin (snd f') (snd g')))
(λ x → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ₁⟨ ap-∘ (∧-fmap f' g') (∧-fmap f g) (smgluel x) ⟩
ap (∧-fmap f' g') (ap (∧-fmap f g) (smgluel x)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-fmap f' g') (∧-fmap-smgluel-β f g x) ⟩
ap (∧-fmap f' g') (ap (smin (fst f x)) (snd g)) ◃∙
ap (∧-fmap f' g') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap f' g') (smin (fst f x)) (snd g) ⟩
ap (smin (fst (f' ⊙∘ f) x) ∘ fst g') (snd g) ◃∙
ap (∧-fmap f' g') (∧-norm-l (fst f x)) ◃∎
=ₛ⟨ 1 & 1 & ∧-fmap-norm-l f' g' (fst f x) ⟩
ap (smin (fst (f' ⊙∘ f) x) ∘ fst g') (snd g) ◃∙
ap (smin (fst (f' ⊙∘ f) x)) (snd g') ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (smin (fst (f' ⊙∘ f) x)) (fst g') (snd g) ⟩
ap (smin (fst (f' ⊙∘ f) x)) (ap (fst g') (snd g)) ◃∙
ap (smin (fst (f' ⊙∘ f) x)) (snd g') ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 0 & 2 & ∙-ap-seq (smin (fst (f' ⊙∘ f) x)) (ap (fst g') (snd g) ◃∙ snd g' ◃∎) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-r (ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∎)) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∙
! (ap (λ x'' → smin x'' (pt Y'')) (snd f')) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 4 & 2 & !ₛ $ !-=ₛ $ ap2-out' smin (snd f') (snd g') ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 3 & 1 &
=ₛ-in {t = smgluel (fst f' (pt X')) ◃∙ ! (smgluel (pt X'')) ◃∎} $
ap-null-homotopic (λ x'' → smin x'' (pt Y'')) smgluel (snd f') ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
smgluel (fst f' (pt X')) ◃∙
! (smgluel (pt X'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-l (smgluel (fst f' (pt X')) ◃∎) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (pt X'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 1 & 2 & contract ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
∧-norm-l (fst (f' ⊙∘ f) x) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 0 & 2 & !ₛ (∧-fmap-smgluel-β (f' ⊙∘ f) (g' ⊙∘ g) x) ⟩
ap (∧-fmap (f' ⊙∘ f) (g' ⊙∘ g)) (smgluel x) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎ ∎ₛ)
(λ y → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ₁⟨ ap-∘ (∧-fmap f' g') (∧-fmap f g) (smgluer y) ⟩
ap (∧-fmap f' g') (ap (∧-fmap f g) (smgluer y)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-fmap f' g') (∧-fmap-smgluer-β f g y) ⟩
ap (∧-fmap f' g') (ap (λ x' → smin x' (fst g y)) (snd f)) ◃∙
ap (∧-fmap f' g') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap f' g') (λ x' → smin x' (fst g y)) (snd f) ⟩
ap (λ x' → smin (fst f' x') (fst (g' ⊙∘ g) y)) (snd f) ◃∙
ap (∧-fmap f' g') (∧-norm-r (fst g y)) ◃∎
=ₛ⟨ 1 & 1 & ∧-fmap-norm-r f' g' (fst g y) ⟩
ap (λ x' → smin (fst f' x') (fst (g' ⊙∘ g) y)) (snd f) ◃∙
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd f') ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (fst f') (snd f) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (ap (fst f') (snd f)) ◃∙
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd f') ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 0 & 2 & ∙-ap-seq (λ x'' → smin x'' (fst (g' ⊙∘ g) y))
(ap (fst f') (snd f) ◃∙ snd f' ◃∎) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-r (ap (smin (pt X'')) (snd g') ◃∎)) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
ap (smin (pt X'')) (snd g') ◃∙
! (ap (smin (pt X'')) (snd g')) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 4 & 2 & !ₛ $ !-=ₛ $ ap2-out smin (snd f') (snd g') ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
ap (smin (pt X'')) (snd g') ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 3 & 1 &
=ₛ-in {t = smgluer (fst g' (pt Y')) ◃∙ ! (smgluer (pt Y'')) ◃∎} $
ap-null-homotopic (smin (pt X'')) smgluer (snd g') ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
smgluer (fst g' (pt Y')) ◃∙
! (smgluer (pt Y'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-l (smgluer (fst g' (pt Y')) ◃∎) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (pt Y'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 1 & 2 & contract ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
∧-norm-r (fst (g' ⊙∘ g) y) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 0 & 2 & !ₛ (∧-fmap-smgluer-β (f' ⊙∘ f) (g' ⊙∘ g) y) ⟩
ap (∧-fmap (f' ⊙∘ f) (g' ⊙∘ g)) (smgluer y) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎ ∎ₛ)
module _ {i j} {X : Ptd i} {Y : Ptd j} where
×-to-∧ : de⊙ X × de⊙ Y → X ∧ Y
×-to-∧ (x , y) = smin x y
×-⊙to-∧ : X ⊙× Y ⊙→ X ⊙∧ Y
×-⊙to-∧ = ×-to-∧ , idp
module _ {i j} (X : Ptd i) (Y : Ptd j) where
module SmashSwap =
SmashRec {X = X} {Y = Y}
{C = Y ∧ X}
(λ x y → smin y x)
(smin (pt Y) (pt X))
(smin (pt Y) (pt X))
∧-norm-r
∧-norm-l
∧-swap : X ∧ Y → Y ∧ X
∧-swap = SmashSwap.f
⊙∧-swap : X ⊙∧ Y ⊙→ Y ⊙∧ X
⊙∧-swap = ∧-swap , idp
∧-swap-norm-l-β : ∀ x →
ap ∧-swap (∧-norm-l x) == ∧-norm-r x
∧-swap-norm-l-β x =
ap ∧-swap (∧-norm-l x)
=⟨ SmashSwap.∧-norm-l-β x ⟩
∧-norm-r x ∙ ! (∧-norm-r (pt X))
=⟨ ap (λ u → ∧-norm-r x ∙ ! u) (!-inv-r (smgluer (pt X))) ⟩
∧-norm-r x ∙ idp
=⟨ ∙-unit-r (∧-norm-r x) ⟩
∧-norm-r x =∎
∧-swap-norm-r-β : ∀ y →
ap ∧-swap (∧-norm-r y) == ∧-norm-l y
∧-swap-norm-r-β y =
ap ∧-swap (∧-norm-r y)
=⟨ SmashSwap.∧-norm-r-β y ⟩
∧-norm-l y ∙ ! (∧-norm-l (pt Y))
=⟨ ap (λ u → ∧-norm-l y ∙ ! u) (!-inv-r (smgluel (pt Y))) ⟩
∧-norm-l y ∙ idp
=⟨ ∙-unit-r (∧-norm-l y) ⟩
∧-norm-l y =∎
×-to-∧-swap : ∧-swap ∘ ×-to-∧ ∼ ×-to-∧ ∘ ×-swap
×-to-∧-swap (x , y) = idp
×-⊙to-∧-swap :
⊙∧-swap ◃⊙∘ ×-⊙to-∧ ◃⊙idf
=⊙∘
×-⊙to-∧ ◃⊙∘ ⊙×-swap ◃⊙idf
×-⊙to-∧-swap = =⊙∘-in $
⊙λ=' ×-to-∧-swap idp
module _ {i j} (X : Ptd i) (Y : Ptd j) where
module SmashSwapInvolutive =
SmashElim {X = X} {Y = Y}
{P = λ xy → ∧-swap Y X (∧-swap X Y xy) == xy}
(λ x y → idp)
(smgluel (pt X))
(smgluer (pt Y))
(λ x → ↓-app=idf-in $ ! $
ap (∧-swap Y X ∘ ∧-swap X Y) (smgluel x) ∙ smgluel (pt X)
=⟨ ap (_∙ smgluel (pt X)) $
ap-∘ (∧-swap Y X) (∧-swap X Y) (smgluel x) ⟩
ap (∧-swap Y X) (ap (∧-swap X Y) (smgluel x)) ∙ smgluel (pt X)
=⟨ ap (λ p → ap (∧-swap Y X) p ∙ smgluel (pt X)) $
SmashSwap.smgluel-β X Y x ⟩
ap (∧-swap Y X) (∧-norm-r x) ∙ smgluel (pt X)
=⟨ ap (_∙ smgluel (pt X)) (∧-swap-norm-r-β Y X x) ⟩
∧-norm-l x ∙ smgluel (pt X)
=⟨ ∙-assoc (smgluel x) (! (smgluel (pt X))) (smgluel (pt X))⟩
smgluel x ∙ ! (smgluel (pt X)) ∙ smgluel (pt X)
=⟨ ap (smgluel x ∙_) (!-inv-l (smgluel (pt X))) ⟩
smgluel x ∙ idp
=⟨ ∙-unit-r (smgluel x) ⟩
smgluel x
=⟨ ! (∙'-unit-l (smgluel x)) ⟩
idp ∙' smgluel x =∎)
(λ y → ↓-app=idf-in $ ! $
ap (∧-swap Y X ∘ ∧-swap X Y) (smgluer y) ∙ smgluer (pt Y)
=⟨ ap (_∙ smgluer (pt Y)) $
ap-∘ (∧-swap Y X) (∧-swap X Y) (smgluer y) ⟩
ap (∧-swap Y X) (ap (∧-swap X Y) (smgluer y)) ∙ smgluer (pt Y)
=⟨ ap (λ p → ap (∧-swap Y X) p ∙ smgluer (pt Y)) $
SmashSwap.smgluer-β X Y y ⟩
ap (∧-swap Y X) (∧-norm-l y) ∙ smgluer (pt Y)
=⟨ ap (_∙ smgluer (pt Y)) (∧-swap-norm-l-β Y X y) ⟩
∧-norm-r y ∙ smgluer (pt Y)
=⟨ ∙-assoc (smgluer y) (! (smgluer (pt Y))) (smgluer (pt Y)) ⟩
smgluer y ∙ ! (smgluer (pt Y)) ∙ smgluer (pt Y)
=⟨ ap (smgluer y ∙_) (!-inv-l (smgluer (pt Y))) ⟩
smgluer y ∙ idp
=⟨ ∙-unit-r (smgluer y) ⟩
smgluer y
=⟨ ! (∙'-unit-l (smgluer y)) ⟩
idp ∙' smgluer y =∎)
∧-swap-inv : ∀ xy → ∧-swap Y X (∧-swap X Y xy) == xy
∧-swap-inv = SmashSwapInvolutive.f
⊙∧-swap-inv : ⊙∧-swap Y X ◃⊙∘ ⊙∧-swap X Y ◃⊙idf =⊙∘ ⊙idf-seq
⊙∧-swap-inv = =⊙∘-in (⊙λ=' ∧-swap-inv idp)
module _ {i j} (X : Ptd i) (Y : Ptd j) where
∧-swap-is-equiv : is-equiv (∧-swap X Y)
∧-swap-is-equiv = is-eq _ (∧-swap Y X) (∧-swap-inv Y X) (∧-swap-inv X Y)
∧-swap-equiv : (X ∧ Y) ≃ (Y ∧ X)
∧-swap-equiv = ∧-swap X Y , ∧-swap-is-equiv
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
(f : X ⊙→ X') (g : Y ⊙→ Y') where
∧-swap-naturality : ∀ xy →
∧-fmap g f (∧-swap X Y xy) == ∧-swap X' Y' (∧-fmap f g xy)
∧-swap-naturality =
Smash-elim {X = X} {Y = Y}
{P = λ xy → ∧-fmap g f (∧-swap X Y xy) == ∧-swap X' Y' (∧-fmap f g xy)}
(λ x y → idp)
(ap2 smin (snd g) (snd f))
(ap2 smin (snd g) (snd f))
(λ x → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ₁⟨ ap-∘ (∧-swap X' Y') (∧-fmap f g) (smgluel x) ⟩
ap (∧-swap X' Y') (ap (∧-fmap f g) (smgluel x)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-swap X' Y') (∧-fmap-smgluel-β f g x) ⟩
ap (∧-swap X' Y') (ap (smin (fst f x)) (snd g)) ◃∙
ap (∧-swap X' Y') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-swap X' Y') (smin (fst f x)) (snd g) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
ap (∧-swap X' Y') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 1 & 1 & ∧-swap-norm-l-β X' Y' (fst f x) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
∧-norm-r (fst f x) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-r-seq (fst f x)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (pt X')) ◃∎
=ₛ⟨ 2 & 0 & !ₛ (seq-!-inv-l (smgluer (fst f (pt X)) ◃∎)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
smgluer (fst f (pt X)) ◃∙
! (smgluer (pt X')) ◃∎
=ₛ₁⟨ 3 & 2 & ! (ap-null-homotopic (smin (pt Y')) smgluer (snd f)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-l (ap (λ y' → smin y' (fst f (pt X))) (snd g) ◃∎)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
! (ap (λ y' → smin y' (fst f (pt X))) (snd g)) ◃∙
ap (λ y' → smin y' (fst f (pt X))) (snd g) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ 4 & 2 & !ₛ (ap2-out smin (snd g) (snd f)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
! (ap (λ y' → smin y' (fst f (pt X))) (snd g)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ 0 & 4 & !ₛ (∧-fmap-norm-r g f x) ⟩
ap (∧-fmap g f) (∧-norm-r x) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ! (ap (ap (∧-fmap g f)) (SmashSwap.smgluel-β X Y x)) ⟩
ap (∧-fmap g f) (ap (∧-swap X Y) (smgluel x)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap g f) (∧-swap X Y) (smgluel x) ⟩
ap (∧-fmap g f ∘ ∧-swap X Y) (smgluel x) ◃∙
ap2 smin (snd g) (snd f) ◃∎ ∎ₛ)
(λ y → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ₁⟨ ap-∘ (∧-swap X' Y') (∧-fmap f g) (smgluer y) ⟩
ap (∧-swap X' Y') (ap (∧-fmap f g) (smgluer y)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-swap X' Y') (∧-fmap-smgluer-β f g y) ⟩
ap (∧-swap X' Y') (ap (λ x' → smin x' (fst g y)) (snd f)) ◃∙
ap (∧-swap X' Y') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-swap X' Y') (λ x' → smin x' (fst g y)) (snd f) ⟩
ap (smin (fst g y)) (snd f) ◃∙
ap (∧-swap X' Y') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 1 & 1 & ∧-swap-norm-r-β X' Y' (fst g y) ⟩
ap (smin (fst g y)) (snd f) ◃∙
∧-norm-l (fst g y) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-l-seq (fst g y)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (pt Y')) ◃∎
=ₛ⟨ 2 & 0 & !ₛ (seq-!-inv-l (smgluel (fst g (pt Y)) ◃∎)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
smgluel (fst g (pt Y)) ◃∙
! (smgluel (pt Y')) ◃∎
=ₛ₁⟨ 3 & 2 & ! (ap-null-homotopic (λ y' → smin y' (pt X')) smgluel (snd g)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
ap (λ y' → smin y' (pt X')) (snd g) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-l (ap (smin (fst g (pt Y))) (snd f) ◃∎)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
! (ap (smin (fst g (pt Y))) (snd f)) ◃∙
ap (smin (fst g (pt Y))) (snd f) ◃∙
ap (λ y' → smin y' (pt X')) (snd g) ◃∎
=ₛ⟨ 4 & 2 & !ₛ (ap2-out' smin (snd g) (snd f)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
! (ap (smin (fst g (pt Y))) (snd f)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ 0 & 4 & !ₛ (∧-fmap-norm-l g f y) ⟩
ap (∧-fmap g f) (∧-norm-l y) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ! (ap (ap (∧-fmap g f)) (SmashSwap.smgluer-β X Y y)) ⟩
ap (∧-fmap g f) (ap (∧-swap X Y) (smgluer y)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap g f) (∧-swap X Y) (smgluer y) ⟩
ap (∧-fmap g f ∘ ∧-swap X Y) (smgluer y) ◃∙
ap2 smin (snd g) (snd f) ◃∎ ∎ₛ)
⊙∧-swap-naturality : ⊙∧-fmap g f ⊙∘ ⊙∧-swap X Y ==
⊙∧-swap X' Y' ⊙∘ ⊙∧-fmap f g
⊙∧-swap-naturality =
⊙λ=' ∧-swap-naturality $ =ₛ-out $
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ ap2-out smin (snd g) (snd f) ⟩
ap (λ u → smin u (fst f (pt X))) (snd g) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ !ₛ $ ap2-out' (λ x y → smin y x) (snd f) (snd g) ⟩
ap2 (λ x y → smin y x) (snd f) (snd g) ◃∎
=ₛ₁⟨ ! $ ap-ap2 (∧-swap X' Y') smin (snd f) (snd g) ⟩
ap (∧-swap X' Y') (ap2 smin (snd f) (snd g)) ◃∎
=ₛ⟨ 1 & 0 & contract ⟩
ap (∧-swap X' Y') (ap2 smin (snd f) (snd g)) ◃∙ idp ◃∎ ∎ₛ
∧-swap-fmap : ∀ xy →
∧-swap Y' X' (∧-fmap g f (∧-swap X Y xy)) == ∧-fmap f g xy
∧-swap-fmap xy =
∧-swap Y' X' (∧-fmap g f (∧-swap X Y xy))
=⟨ ap (∧-swap Y' X') (∧-swap-naturality xy) ⟩
∧-swap Y' X' (∧-swap X' Y' (∧-fmap f g xy))
=⟨ ∧-swap-inv X' Y' (∧-fmap f g xy) ⟩
∧-fmap f g xy =∎
|
{
"alphanum_fraction": 0.4261576971,
"avg_line_length": 38.9256410256,
"ext": "agda",
"hexsha": "96764bfb1e5faf757851c0a9860950a0c459694c",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Smash.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Smash.agda",
"max_line_length": 156,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Smash.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 15141,
"size": 30362
}
|
-- Testing parameterised records in parameterised modules
module Exist (X : Set) where
data [_] (a : Set) : Set where
[] : [ a ]
_∷_ : a -> [ a ] -> [ a ]
map : forall {a b} -> (a -> b) -> [ a ] -> [ b ]
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
record ∃ (a : Set) (P : a -> Set) : Set where
field
witness : a
proof : P witness
ListP : (a : Set) -> (a -> Set) -> Set
ListP a P = [ ∃ a P ]
mapP : forall {a b P Q}
-> (f : a -> b) -> (forall {x} -> P x -> Q (f x))
-> ListP a P -> ListP b Q
mapP {a} {b} {P} {Q} f pres xs = map helper xs
where
helper : ∃ a P -> ∃ b Q
helper r = record { witness = f (∃.witness r)
; proof = pres (∃.proof r)
}
|
{
"alphanum_fraction": 0.4517906336,
"avg_line_length": 24.2,
"ext": "agda",
"hexsha": "aea3fc8ea2ab7707e1da32a9a518734d3f13f070",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Exist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Exist.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Exist.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 273,
"size": 726
}
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
open import Algebra.Core
open import Level using (_⊔_)
open import Data.Product using (_,_; proj₁; proj₂)
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Definitions _≈_
------------------------------------------------------------------------
-- Structures with 1 binary operation
------------------------------------------------------------------------
record IsLatinQuasigroup (∙ : Op₂ A ) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
latinSquare : LatinSquare ∙
open IsMagma isMagma public
latinSquare₁ : LatinSquare₁ ∙
latinSquare₁ = proj₁ latinSquare
latinSquare₂ : LatinSquare₂ ∙
latinSquare₂ = proj₂ latinSquare
record IsIdempotentMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
idem : Idempotent ∙
open IsMagma isMagma public
record IsAlternateMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
alter : Alternative ∙
open IsMagma isMagma public
record IsFlexibleMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
flex : Flexible ∙
open IsMagma isMagma public
record IsMedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
medial : Medial ∙
open IsMagma isMagma public
record IsSemimedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
semiMedial : Semimedial ∙
open IsMagma isMagma public
record IsInverseSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
pseudoInverse : PseudoInverse ∙
open IsSemigroup isSemigroup public
------------------------------------------------------------------------
-- Structures with 1 binary operation and 1 element
------------------------------------------------------------------------
record IsLeftUnitalMagma (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
identity : LeftIdentity ε ∙
open IsMagma isMagma public
record IsRightUnitalMagma (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
identity : RightIdentity ε ∙
open IsMagma isMagma public
------------------------------------------------------------------------
-- Structures with 2 binary operations, 1 unary operation & 1 element
------------------------------------------------------------------------
record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent₂ *
identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-identityˡ : LeftIdentity 1# *
*-identityˡ = proj₁ identity
*-identityʳ : RightIdentity 1# *
*-identityʳ = proj₂ identity
------------------------------------------------------------------------
-- Structures with 3 binary operation and 1 element
------------------------------------------------------------------------
record IsLeftBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
leftBol : LeftBol ∙
open IsLoop isLoop public
record IsRightBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
rightBol : RightBol ∙
open IsLoop isLoop public
record IsMoufangLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
moufangIdentity : MoufangIdentity₁ ∙
moufangIdentity₂ : MoufangIdentity₂ ∙
moufangIdentity₃ : MoufangIdentity₃ ∙
moufangIdentity₄ : MoufangIdentity₄ ∙
open IsLoop isLoop public
record IsPique (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isQuasigroup : IsQuasigroup ∙ \\ //
idem : Idempotent ∙
open IsQuasigroup isQuasigroup public
|
{
"alphanum_fraction": 0.537531196,
"avg_line_length": 29.4293785311,
"ext": "agda",
"hexsha": "023236c273f4c8a4777cff09afa65fd68a86e543",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/Agda-Algebra",
"max_forks_repo_path": "src/Structures.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/Agda-Algebra",
"max_issues_repo_path": "src/Structures.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/Agda-Algebra",
"max_stars_repo_path": "src/Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1587,
"size": 5209
}
|
-- Andreas, 2016-10-04, issue #2236
-- Result splitting should not insert hidden arguments visibly
-- {-# OPTIONS -v interaction.case:100 #-}
-- {-# OPTIONS -v tc.cover:100 #-}
-- {-# OPTIONS -v reify.clause:100 #-}
-- {-# OPTIONS -v reify.implicit:100 #-}
splitMe : (A : Set) {B : Set} → Set
splitMe = {!!} -- C-c C-c RET inserts hidden {B}
splitMe' : (A : Set) {B : Set} (C : Set) {D : Set} → Set
splitMe' = {!!} -- C-c C-c RET inserts hidden {B} and {D}
splitMe'' : {B : Set} (C : Set) {D : Set} → Set
splitMe'' = {!!} -- C-c C-c RET inserts hidden {D}
postulate
N : Set
P : N → Set
test : (A : Set) → ∀ {n} → P n → Set
test = {!!} -- C-c C-c RET inserts hidden {n}
-- Correct is:
-- No hidden arguments inserted on lhs.
|
{
"alphanum_fraction": 0.5636856369,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "c249a087281b3b75f37406df20b8d9defcaf12d5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2236.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2236.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2236.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 256,
"size": 738
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Free.Base (Σ : Signature) where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Free.Atoms public
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Data.Empty using (⊥)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive
using (Pointwise; []; _∷_)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Set a) where
data Term : Set a where
atom : A → Term
term : ∀ {arity} → (f : ops Σ arity) → Vec Term arity → Term
module _ (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
data _~_ : Term A → Term A → Set (a ⊔ ℓ) where
atom : ∀ {x y} → x ≈ y → atom x ~ atom y
term : ∀ {arity xs ys} {f : ops Σ arity}
→ Pointwise _~_ xs ys
→ term f xs ~ term f ys
private
mutual
map-~-refl : ∀ {n} {xs : Vec _ n} → Pointwise _~_ xs xs
map-~-refl {xs = []} = []
map-~-refl {xs = x ∷ xs} = ~-refl ∷ map-~-refl
~-refl : ∀ {x} → x ~ x
~-refl {atom _} = atom refl
~-refl {term _ _} = term map-~-refl
mutual
map-~-sym : ∀ {n} {xs ys : Vec _ n}
→ Pointwise _~_ xs ys
→ Pointwise _~_ ys xs
map-~-sym [] = []
map-~-sym (x≈y ∷ xs≈ys) =
~-sym x≈y ∷ map-~-sym xs≈ys
~-sym : ∀ {x y} → x ~ y → y ~ x
~-sym (atom x≈y) = atom (sym x≈y)
~-sym (term xs≈ys) = term (map-~-sym xs≈ys)
mutual
map-~-trans : ∀ {n} {xs ys zs : Vec _ n}
→ Pointwise _~_ xs ys
→ Pointwise _~_ ys zs
→ Pointwise _~_ xs zs
map-~-trans [] [] = []
map-~-trans (x≈y ∷ xs≈ys) (y≈z ∷ ys≈zs) =
~-trans x≈y y≈z ∷ map-~-trans xs≈ys ys≈zs
~-trans : ∀ {x y z} → x ~ y → y ~ z → x ~ z
~-trans (atom x≈y) (atom y≈z) =
atom (trans x≈y y≈z)
~-trans (term xs≈ys) (term ys≈zs) =
term (map-~-trans xs≈ys ys≈zs)
~-isEquivalence : IsEquivalence _~_
~-isEquivalence = record { refl = ~-refl
; sym = ~-sym
; trans = ~-trans
}
Herbrand : Setoid _ _
Herbrand = record { Carrier = Term A
; _≈_ = _~_
; isEquivalence = ~-isEquivalence
}
Free : Algebra
Free = record { ∥_∥/≈ = Herbrand
; ∥_∥/≈-isAlgebra = Free-isAlgebra
}
where term-cong : Congruence Herbrand term
term-cong f p = term p
Free-isAlgebra : IsAlgebra Herbrand
Free-isAlgebra = record { ⟦_⟧ = term
; ⟦⟧-cong = term-cong
}
F : ℕ → Algebra
F = Free ∘ Atoms (PE.setoid ⊥)
|
{
"alphanum_fraction": 0.4960025584,
"avg_line_length": 29.2242990654,
"ext": "agda",
"hexsha": "bf03eae1905e0f8c12f3e1cebd89bb81e29a41e4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Free/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Free/Base.agda",
"max_line_length": 67,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Free/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 1042,
"size": 3127
}
|
-- 2011-09-14 posted by Nisse
-- Andreas: this failed since SubstHH for Telescopes was wrong.
-- {-# OPTIONS --show-implicit -v tc.lhs.unify:15 #-}
module Issue292-14 where
data D : Set where
d : D
postulate T : D → D → Set
data T′ (x y : D) : Set where
c : T x y → T′ x y
F : D → D → Set
F x d = T′ x d -- blocking unfolding of F x y
record [F] : Set where
field
x y : D
f : F x y -- T′ x y works
data _≡_ (x : [F]) : [F] → Set where
refl : x ≡ x
Foo : ∀ {x} {t₁ t₂ : T x d} →
record { f = c t₁ } ≡ record { f = c t₂ } → Set₁
Foo refl = Set
|
{
"alphanum_fraction": 0.5460869565,
"avg_line_length": 20.5357142857,
"ext": "agda",
"hexsha": "41942a400ae45bab6f04d1d8f5ae106ae6e8bf81",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue292-14.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue292-14.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue292-14.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 230,
"size": 575
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
{-# OPTIONS --type-in-type #-}
-- Note: Using this module is discouraged unless absolutely necessary.
-- Use `Data.Product` or `Data.Both` instead.
module Light.Indexed where
open import Light.Level using (Level)
postulate ℓ : Level
record Indexed {aℓ} (𝕒 : Set aℓ) {aℓf : 𝕒 → Level} (𝕓 : ∀ a → Set (aℓf a)) : Set ℓ where
constructor indexed
field index : 𝕒
field thing : 𝕓 index
open Indexed public
|
{
"alphanum_fraction": 0.6772908367,
"avg_line_length": 29.5294117647,
"ext": "agda",
"hexsha": "4c516ae997489838fbb11fcf8b138f19c2210765",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Indexed.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 148,
"size": 502
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Action where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Morphism
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Notation
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Structures.LeftAction
open import Cubical.Structures.Axioms
open import Cubical.Structures.Macro
open import Cubical.Structures.Auto
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' : Level
record IsGroupAction (G : Group {ℓ = ℓ})
(H : Group {ℓ = ℓ'})
(_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩) : Type (ℓ-max ℓ ℓ') where
constructor isgroupaction
open GroupNotationG G
field
isHom : (g : ⟨ G ⟩) → isGroupHom H H (g α_)
identity : (h : ⟨ H ⟩) → 0ᴳ α h ≡ h
assoc : (g g' : ⟨ G ⟩) → (h : ⟨ H ⟩) → (g +ᴳ g') α h ≡ g α (g' α h)
record GroupAction (G : Group {ℓ}) (H : Group {ℓ'}): Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor groupaction
field
_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩
isGroupAction : IsGroupAction G H _α_
module ActionΣTheory {ℓ ℓ' : Level} where
module _ (G : Group {ℓ}) (H : Group {ℓ'}) (_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩) where
open GroupNotationG G
IsGroupActionΣ : Type (ℓ-max ℓ ℓ')
IsGroupActionΣ = ((g : ⟨ G ⟩) → isGroupHom H H (g α_))
× ((h : ⟨ H ⟩) → 0ᴳ α h ≡ h)
× ((g g' : ⟨ G ⟩) → (h : ⟨ H ⟩) → (g +ᴳ g') α h ≡ g α (g' α h))
isPropIsGroupActionΣ : isProp IsGroupActionΣ
isPropIsGroupActionΣ = isPropΣ isPropIsHom λ _ → isPropΣ isPropIdentity λ _ → isPropAssoc
where
isPropIsHom = isPropΠ (λ g → isPropIsGroupHom H H)
isPropIdentity = isPropΠ (λ h → GroupStr.is-set (snd H) (0ᴳ α h) h)
isPropAssoc = isPropΠ3 (λ g g' h → GroupStr.is-set (snd H) ((g +ᴳ g') α h) (g α (g' α h)))
IsGroupAction→IsGroupActionΣ : IsGroupAction G H _α_ → IsGroupActionΣ
IsGroupAction→IsGroupActionΣ (isgroupaction isHom identity assoc) = isHom , identity , assoc
IsGroupActionΣ→IsGroupAction : IsGroupActionΣ → IsGroupAction G H _α_
IsGroupActionΣ→IsGroupAction (isHom , identity , assoc) = isgroupaction isHom identity assoc
IsGroupActionΣIso : Iso (IsGroupAction G H _α_) IsGroupActionΣ
Iso.fun IsGroupActionΣIso = IsGroupAction→IsGroupActionΣ
Iso.inv IsGroupActionΣIso = IsGroupActionΣ→IsGroupAction
Iso.rightInv IsGroupActionΣIso = λ _ → refl
Iso.leftInv IsGroupActionΣIso = λ _ → refl
open ActionΣTheory
isPropIsGroupAction : {ℓ ℓ' : Level }
(G : Group {ℓ}) (H : Group {ℓ'})
(_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩)
→ isProp (IsGroupAction G H _α_)
isPropIsGroupAction G H _α_ = isOfHLevelRespectEquiv 1
(invEquiv (isoToEquiv (IsGroupActionΣIso G H _α_)))
(isPropIsGroupActionΣ G H _α_)
module ActionNotationα {N : Group {ℓ}} {H : Group {ℓ'}} (Act : GroupAction H N) where
_α_ = GroupAction._α_ Act
private
isGroupAction = GroupAction.isGroupAction Act
α-id = IsGroupAction.identity isGroupAction
α-hom = IsGroupAction.isHom isGroupAction
α-assoc = IsGroupAction.assoc isGroupAction
module ActionLemmas {G : Group {ℓ}} {H : Group {ℓ'}} (Act : GroupAction G H) where
open ActionNotationα {N = H} {H = G} Act
open GroupNotationᴴ H
open GroupNotationG G
open MorphismLemmas {G = H} {H = H}
open GroupLemmas
abstract
actOnUnit : (g : ⟨ G ⟩) → g α 0ᴴ ≡ 0ᴴ
actOnUnit g = mapId (grouphom (g α_) (α-hom g))
actOn-Unit : (g : ⟨ G ⟩) → g α (-ᴴ 0ᴴ) ≡ 0ᴴ
actOn-Unit g = (cong (g α_) (invId H)) ∙ actOnUnit g
actOn- : (g : ⟨ G ⟩) (h : ⟨ H ⟩) → g α (-ᴴ h) ≡ -ᴴ (g α h)
actOn- g h = mapInv (grouphom (g α_) (α-hom g)) h
-idAct : (h : ⟨ H ⟩) → (-ᴳ 0ᴳ) α h ≡ h
-idAct h = (cong (_α h) (invId G)) ∙ (α-id h)
-- Examples
-- left adjoint action of a group on a normal subgroup
|
{
"alphanum_fraction": 0.6263378315,
"avg_line_length": 36.735042735,
"ext": "agda",
"hexsha": "655ec4a63580e18d0699a3b2e78dd35b45bb1cab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Action.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Action.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Action.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1511,
"size": 4298
}
|
{-
This file contains:
- Properties of set truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetTruncation.Properties where
open import Cubical.HITs.SetTruncation.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
private
variable
ℓ : Level
A : Type ℓ
-- lemma 6.9.1 in HoTT book
elim : {B : ∥ A ∥₀ → Type ℓ} →
(Bset : (x : ∥ A ∥₀) → isSet (B x)) →
(g : (a : A) → B (∣ a ∣₀)) →
(x : ∥ A ∥₀) → B x
elim Bset g ∣ a ∣₀ = g a
elim {A = A} {B = B} Bset g (squash₀ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 Bset _ _
(cong (elim Bset g) p) (cong (elim Bset g) q) (squash₀ x y p q) i j
setTruncUniversal : {B : Type ℓ} → (isSet B) → (∥ A ∥₀ → B) ≃ (A → B)
setTruncUniversal Bset = isoToEquiv (iso intro out leftInv rightInv)
where
intro = (λ h a → h ∣ a ∣₀)
out = elim (λ x → Bset)
leftInv : ∀ g → intro (out g) ≡ g
leftInv g = refl
rightInv : ∀ h → out (intro h) ≡ h
rightInv h i x =
elim (λ x → isProp→isSet (Bset (out (intro h) x) (h x))) (λ a → refl) x i
elim2 : {B : ∥ A ∥₀ → ∥ A ∥₀ → Type ℓ}
(Bset : ((x y : ∥ A ∥₀) → isSet (B x y)))
(g : (a b : A) → B ∣ a ∣₀ ∣ b ∣₀)
(x y : ∥ A ∥₀) → B x y
elim2 Bset g =
elim (λ _ → isOfHLevelPi 2 (λ _ → Bset _ _))
(λ a → elim (λ _ → Bset _ _) (λ b → g a b))
elim3 : {B : (x y z : ∥ A ∥₀) → Type ℓ}
(Bset : ((x y z : ∥ A ∥₀) → isSet (B x y z)))
(g : (a b c : A) → B ∣ a ∣₀ ∣ b ∣₀ ∣ c ∣₀)
(x y z : ∥ A ∥₀) → B x y z
elim3 Bset g =
elim2 (λ _ _ → isOfHLevelPi 2 λ _ → Bset _ _ _)
(λ a b → elim (λ _ → Bset _ _ _) (λ c → g a b c))
setTruncIsSet : isSet ∥ A ∥₀
setTruncIsSet a b p q = squash₀ a b p q
setId : isSet A → ∥ A ∥₀ ≡ A
setId {A = A} isset =
isoToPath (iso (elim {A = A} (λ _ → isset) (λ x → x)) (λ x → ∣ x ∣₀) (λ b → refl) (λ b → idLemma b))
where
idLemma : ∀ (b : ∥ A ∥₀) → ∣ elim (λ x → isset) (λ x → x) b ∣₀ ≡ b
idLemma b =
elim {B = (λ x → ∣ elim (λ _ → isset) (λ x → x) x ∣₀ ≡ x)}
(λ x → isOfHLevelSuc 2 (setTruncIsSet {A = A}) ∣ elim (λ _ → isset) (λ x₁ → x₁) x ∣₀ x)
(λ _ → refl)
b
|
{
"alphanum_fraction": 0.5345303867,
"avg_line_length": 28.96,
"ext": "agda",
"hexsha": "a9f795e55c8c9720eb1748b9f7d4f4b1acdc0f04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 993,
"size": 2172
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.TruncatedHIT
open import Spaces.Spheres
open import Integers
module Sets.Quotient {i j} (A : Set i) ⦃ p : is-set A ⦄
(R : A → A → Set j) ⦃ q : (x y : A) → is-prop (R x y) ⦄ where
private
data _#/_ : Set (max i j) where
#proj : A → _#/_
#top : (f : hSⁿ ⟨0⟩ → _#/_) → _#/_
_/_ : Set (max i j)
_/_ = _#/_
proj : A → _/_
proj = #proj
postulate -- HIT
eq : (x y : A) (p : R x y) → proj x ≡ proj y
top : (f : hSⁿ ⟨0⟩ → _/_) → _/_
top = #top
postulate -- HIT
rays : (f : hSⁿ ⟨0⟩ → _/_) (x : hSⁿ ⟨0⟩) → top f ≡ f x
#/-rec : ∀ {k} (P : _/_ → Set k)
(proj* : (x : A) → P (proj x))
(eq* : (x y : A) (p : R x y) → transport P (eq x y p) (proj* x) ≡ proj* y)
(top* : (f : hSⁿ ⟨0⟩ → _/_) (p : (x : hSⁿ ⟨0⟩) → P (f x)) → P (top f))
(rays* : (f : hSⁿ ⟨0⟩ → _/_) (p : (x : hSⁿ ⟨0⟩) → P (f x)) (x : hSⁿ ⟨0⟩)
→ transport P (rays f x) (top* f p) ≡ p x)
→ ((t : _/_) → P t)
#/-rec P proj* eq* top* rays* (#proj x) = proj* x
#/-rec P proj* eq* top* rays* (#top f) =
top* f (λ x → #/-rec P proj* eq* top* rays* (f x))
#/-rec-nondep : ∀ {k} (B : Set k)
(proj* : A → B)
(eq* : (x y : A) (p : R x y) → proj* x ≡ proj* y)
(top* : (f : hSⁿ ⟨0⟩ → _/_) (p : hSⁿ ⟨0⟩ → B) → B)
(rays* : (f : hSⁿ ⟨0⟩ → _/_) (p : hSⁿ ⟨0⟩ → B) (x : hSⁿ ⟨0⟩) → top* f p ≡ p x)
→ (_/_ → B)
#/-rec-nondep B proj* eq* top* rays* (#proj x) = proj* x
#/-rec-nondep B proj* eq* top* rays* (#top f) =
top* f (λ x → #/-rec-nondep B proj* eq* top* rays* (f x))
/-rec : ∀ {k} (P : _/_ → Set k)
(proj* : (x : A) → P (proj x))
(eq* : (x y : A) (p : R x y) → transport P (eq x y p) (proj* x) ≡ proj* y)
(trunc : (x : _/_) → is-set (P x))
→ ((t : _/_) → P t)
/-rec P proj* eq* trunc = #/-rec P proj* eq*
(λ f p₁ → π₁ (u f p₁))
(λ f p₁ → π₂ (u f p₁)) where
u : _
u = truncated-has-filling-dep _/_ P ⟨0⟩ (λ ()) (λ f → (top f , rays f))
/-rec-nondep : ∀ {k} (B : Set k)
(proj* : A → B)
(eq* : (x y : A) (p : R x y) → proj* x ≡ proj* y)
(trunc : is-set B)
→ (_/_ → B)
/-rec-nondep B proj* eq* trunc = #/-rec-nondep B proj* eq*
(λ _ p → π₁ (u p))
(λ _ p → π₂ (u p)) where
u : _
u = truncated-has-spheres-filled ⟨0⟩ _ trunc
-- Reduction rules for paths are not needed
|
{
"alphanum_fraction": 0.4343141318,
"avg_line_length": 31.3376623377,
"ext": "agda",
"hexsha": "c188e91e931b3864662318e6520d8ff56cf98a4c",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Sets/Quotient.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Sets/Quotient.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Sets/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1065,
"size": 2413
}
|
{-# OPTIONS --allow-unsolved-metas #-}
-- When instantiating metas, we can't ignore variables occurring in
-- irrelevant terms. If we do the irrelevant terms will become illformed
-- (and we get __IMPOSSIBLE__s)
-- For instance
-- _42 := DontCare (Just (Var 0 []))
-- is a bad thing to do. In the example below we hit the __IMPOSSIBLE__ in
-- the rename function in TypeChecking.MetaVars.assign.
module DontIgnoreIrrelevantVars where
import Common.Level
import Common.Irrelevance
record Category : Set₁ where
field
.Arr : Set
postulate C : Category
_∙_ : ∀ {A : Set} {B : A → Set} {C : Set} →
(∀ {x} → B x → C) → (g : ∀ x → B x) → A → C
f ∙ g = λ x → f (g x)
Exp : (I : Set) → Category
Exp I = record { Arr = I → Category.Arr C }
postulate
Functor : Category → Set
postulate
flattenP : ∀ D → Functor D → Functor D
flattenHʳ : ∀ J → Functor (Exp J) → Functor (Exp J)
flattenH : ∀ I → Functor (Exp I) → Functor (Exp I)
flattenH I = flattenHʳ _ ∙ flattenP _
|
{
"alphanum_fraction": 0.6534552846,
"avg_line_length": 26.5945945946,
"ext": "agda",
"hexsha": "6f9ac3fa996e0b58d3cb9d3ed05dcb4fe2b89eaa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/DontIgnoreIrrelevantVars.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/DontIgnoreIrrelevantVars.agda",
"max_line_length": 74,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/DontIgnoreIrrelevantVars.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 313,
"size": 984
}
|
module Categories.Support.Experimental where
open import Relation.Binary.PropositionalEquality.TrustMe
open import Categories.Support.PropositionalEquality
≣-relevant : ∀ {l} {A : Set l} {X Y : A} -> .(X ≣ Y) -> X ≣ Y
≣-relevant _ = trustMe
private
≣-coe : ∀ {a} {A B : Set a} → (A ≣ B) -> A -> B
≣-coe ≣-refl a = a
≣-subst′ : ∀ {a p} {A : Set a} → (P : A -> Set p) -> {x y : A} -> .(x ≣ y) -> P x -> P y
≣-subst′ P eq Px = ≣-coe (≣-relevant (≣-cong P eq)) Px
|
{
"alphanum_fraction": 0.5628997868,
"avg_line_length": 29.3125,
"ext": "agda",
"hexsha": "0af5c856f5703983954a9531c6df4d9b4dcc3b44",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/Experimental.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/Experimental.agda",
"max_line_length": 88,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Support/Experimental.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 193,
"size": 469
}
|
{-# OPTIONS --without-K --safe #-}
open import Polynomial.Parameters
module Polynomial.NormalForm.Construction
{a ℓ}
(coeffs : RawCoeff a ℓ)
where
open import Relation.Nullary using (Dec; yes; no)
open import Level using (lift; lower; _⊔_)
open import Data.Unit using (tt)
open import Data.List using (_∷_; []; List; foldr)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Nat.Properties using (z≤′n)
open import Data.Product using (_×_; _,_; map₁; curry; uncurry)
open import Data.Maybe using (just; nothing)
open import Data.Bool using (if_then_else_; true; false)
open import Function
open import Polynomial.NormalForm.InjectionIndex
open import Polynomial.NormalForm.Definition coeffs
open RawCoeff coeffs
----------------------------------------------------------------------
-- Construction
--
-- Because the polynomial is stored in a canonical form, we use a
-- normalising cons operator to construct the coefficient lists.
----------------------------------------------------------------------
-- Decision procedure for Zero
zero? : ∀ {n} → (p : Poly n) → Dec (Zero p)
zero? (Σ _ Π _) = no (λ z → z)
zero? (Κ x Π _) with Zero-C x
... | true = yes tt
... | false = no (λ z → z)
{-# INLINE zero? #-}
-- Exponentiate the first variable of a polynomial
infixr 8 _⍓*_ _⍓+_
_⍓*_ : ∀ {n} → Coeff n * → ℕ → Coeff n *
_⍓+_ : ∀ {n} → Coeff n + → ℕ → Coeff n +
[] ⍓* _ = []
(∹ xs) ⍓* i = ∹ xs ⍓+ i
coeff (head (xs ⍓+ i)) = coeff (head xs)
pow (head (xs ⍓+ i)) = pow (head xs) ℕ.+ i
tail (xs ⍓+ i) = tail xs
infixr 5 _∷↓_
_∷↓_ : ∀ {n} → PowInd (Poly n) → Coeff n * → Coeff n *
x Δ i ∷↓ xs = case zero? x of
λ { (yes p) → xs ⍓* suc i
; (no ¬p) → ∹ _≠0 x {¬p} Δ i & xs
}
{-# INLINE _∷↓_ #-}
-- Inject a polynomial into a larger polynomoial with more variables
_Π↑_ : ∀ {n m} → Poly n → (suc n ≤′ m) → Poly m
(xs Π i≤n) Π↑ n≤m = xs Π (≤′-step i≤n ⟨ ≤′-trans ⟩ n≤m)
{-# INLINE _Π↑_ #-}
infixr 4 _Π↓_
_Π↓_ : ∀ {i n} → Coeff i * → suc i ≤′ n → Poly n
[] Π↓ i≤n = Κ 0# Π z≤′n
(∹ x ≠0 Δ zero & [] ) Π↓ i≤n = x Π↑ i≤n
(∹ x Δ zero & ∹ xs) Π↓ i≤n = Σ (x Δ zero & ∹ xs) Π i≤n
(∹ x Δ suc j & xs ) Π↓ i≤n = Σ (x Δ suc j & xs) Π i≤n
{-# INLINE _Π↓_ #-}
--------------------------------------------------------------------------------
-- These folds allow us to abstract over the proofs later: we try to avoid
-- using ∷↓ and Π↓ directly anywhere except here, so if we prove that this fold
-- acts the same on a normalised or non-normalised polynomial, we can prove th
-- same about any operation which uses it.
PolyF : ℕ → Set a
PolyF i = Poly i × Coeff i *
Fold : ℕ → Set a
Fold i = PolyF i → PolyF i
para : ∀ {i} → Fold i → Coeff i + → Coeff i *
para f (x ≠0 Δ i & []) = case f (x , []) of λ { (y , ys) → y Δ i ∷↓ ys }
para f (x ≠0 Δ i & ∹ xs) = case f (x , para f xs) of λ { (y , ys) → y Δ i ∷↓ ys }
poly-map : ∀ {i} → (Poly i → Poly i) → Coeff i + → Coeff i *
poly-map f = para (λ { (x , y) → (f x , y)})
{-# INLINE poly-map #-}
|
{
"alphanum_fraction": 0.5226615236,
"avg_line_length": 33.4516129032,
"ext": "agda",
"hexsha": "953962552902040173d90cff336bde125e59bfe2",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/NormalForm/Construction.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/NormalForm/Construction.agda",
"max_line_length": 81,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/NormalForm/Construction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 1077,
"size": 3111
}
|
-- Andreas, 2011-04-14
module UnificationUndecidedForNonStronglyRigidOccurrence where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
i : (f : Nat -> Nat)(n : Nat) -> n ≡ f n -> Nat
i f n ()
-- this should fail, since n ≡ f n is not always empty, only in case of f=suc
-- thus, an occurrence does not always mean no match, only strict occurrences
-- mean that.
|
{
"alphanum_fraction": 0.6471962617,
"avg_line_length": 26.75,
"ext": "agda",
"hexsha": "fe290ae090f722660e716907776528f9bbccf864",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/UnificationUndecidedForNonStronglyRigidOccurrence.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/UnificationUndecidedForNonStronglyRigidOccurrence.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/UnificationUndecidedForNonStronglyRigidOccurrence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 428
}
|
{-# OPTIONS --safe #-}
module JVM.Compiler where
open import JVM.Types
open import JVM.Syntax.Instructions
module _ 𝑭 where
open import JVM.Compiler.Monad StackTy ⟨ 𝑭 ∣_↝_⟩ noop using (Compiler) public
module _ {𝑭} where
open import JVM.Compiler.Monad StackTy ⟨ 𝑭 ∣_↝_⟩ noop hiding (Compiler) public
|
{
"alphanum_fraction": 0.7394136808,
"avg_line_length": 25.5833333333,
"ext": "agda",
"hexsha": "d3abed2e814fdf6880c95c7bd6834ece31fcefaf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Compiler.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Compiler.agda",
"max_line_length": 80,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Compiler.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 90,
"size": 307
}
|
open import Data.Nat
open import Data.Nat.Properties
open import Data.Bool
open import Function.Base
open import Data.Product
-- Sizes are ordinals up to ω, i.e. naturals
𝕊 : Set
𝕊 = ℕ
hat : 𝕊 → 𝕊
hat = suc
-- Sized naturals and lists indexed by a size
data SNat : (k : 𝕊) → Set where
SZero : (k : 𝕊) → SNat k
SSucc : (k : 𝕊) → SNat k → SNat (hat k)
data SList (A : Set) : (k : 𝕊) → Set where
SNil : (k : 𝕊) → SList A k
SCons : (k : 𝕊) → A → SList A k → SList A (hat k)
-- Helpers to shift the size of lists up as needed
shift : ∀ {A k} → SList A k → SList A (suc k)
shift (SNil k) = SNil (suc k)
shift (SCons k hd tl) = SCons (suc k) hd (shift tl)
shiftBy : ∀ {A} → (k offset : 𝕊) → SList A k → SList A (k + offset)
shiftBy _ offset (SNil k) = SNil (k + offset)
shiftBy _ offset (SCons k hd tl) = SCons (k + offset) hd (shiftBy k offset tl)
-- Minus and div functions, no unrolling needed
-- Minus is size-preserving in the first argument, with an arbitrary second argument size
-- Div is the same, also happening to be size-preesrving in the first argument
minus : (k l : 𝕊) → SNat k → SNat l → SNat k
minus _ _ (SZero k) _ = SZero k
minus _ _ k (SZero l) = k
minus _ _ (SSucc k n) (SSucc l m) = SSucc k (minus k l n m)
div : (k l : 𝕊) → SNat k → SNat l → SNat k
div _ _ (SZero k) _ = SZero k
div _ _ (SSucc k n) m = SSucc _ (div k _ (minus k _ n m) m)
-- Size-preserving filter
filter : ∀ {A} → (k : 𝕊) → (A → Bool) → SList A k → SList A k
filter zero _ ls = ls
filter (suc k) _ (SNil _) = SNil _
filter (suc k) pred (SCons k hd tl) =
if (pred hd)
then SCons k hd (filter k pred tl)
else shift (filter k pred tl)
-- Two appends: First one explicitly returns a list whose size is the sum of the input list sizes,
-- while the second one returns a list with *some* size, which we don't know is the sum of the sizes
append : ∀ {A} → (k l : 𝕊) → SList A k → SList A l → SList A (k + l)
append zero _ _ ls = ls
append k l (SNil _) ls rewrite (+-comm k l) = shiftBy l k ls
append (suc k) l (SCons k hd tl) ls = SCons (k + l) hd (append k l tl ls)
append' : ∀ {A} → (k l : 𝕊) → SList A k → SList A l → ∃[ kl ] SList A kl
append' zero l _ ls = l , ls
append' k l (SNil _) ls = l , ls
append' (suc k) l (SCons k hd tl) ls =
let kl , kls = append' k l tl ls
in suc kl , SCons kl hd kls
-- Qsort returning a list of some size
-- The most specific size we could give it would probably be exponential
qsort : (k : 𝕊) → SList ℕ k → ∃[ k ] (SList ℕ k)
qsort zero ls = zero , ls
qsort k (SNil _) = k , SNil _
qsort (suc k) (SCons k hd tl) =
let k1 , q1 = qsort k (filter k (_<ᵇ hd) tl)
k2 , q2 = qsort k (filter k (not ∘ _<ᵇ_ hd) tl)
in suc (k1 + k2) , SCons (k1 + k2) hd (append k1 k2 q1 q2)
-- Longer example: base 2 logarithm
data LogDom : (s : 𝕊) → (p : ℕ) → Set where
LogDom1 : (s : 𝕊) → LogDom s (suc zero)
LogDom2 : (s : 𝕊) → (p : ℕ) → LogDom s (suc ⌊ p /2⌋) → LogDom (hat s) (suc (suc p))
postulate logdomInv : (s : 𝕊) → (p : ℕ) → LogDom (hat s) (suc (suc p)) → LogDom s (suc ⌊ p /2⌋)
|
{
"alphanum_fraction": 0.6115321252,
"avg_line_length": 33.7222222222,
"ext": "agda",
"hexsha": "6a1e92ffba61ecc8af886ab8b22d1b5431c6b367",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "ionathanch/msc-thesis",
"max_forks_repo_path": "code/InftyPair.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "ionathanch/msc-thesis",
"max_issues_repo_path": "code/InftyPair.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "ionathanch/msc-thesis",
"max_stars_repo_path": "code/InftyPair.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1203,
"size": 3035
}
|
module Impure.STLCRef.Welltyped where
open import Prelude
open import Data.Nat
open import Data.Vec
open import Data.List
open import Data.Fin hiding (_<_)
open import Extensions.List as L using ()
open import Impure.STLCRef.Syntax
-- store typings
World : Set
World = List Type
_⊢loc_∶_ : World → ℕ → Type → Set
Σ ⊢loc i ∶ A = Σ L.[ i ]= A
Ctx : (n : ℕ) → Set
Ctx n = Vec Type n
data _,_⊢_∶_ : ∀ {n} → Ctx n → World → Exp n → Type → Set where
unit : ∀ {n} {Γ : Ctx n} {Σ} →
---------------------------------------
Γ , Σ ⊢ unit ∶ Unit
var : ∀ {n i A} {Γ : Ctx n} {Σ} →
Γ [ i ]= A →
---------------------------------------
Γ , Σ ⊢ var i ∶ A
loc : ∀ {n i A} {Γ : Ctx n} {Σ} →
Σ ⊢loc i ∶ A →
---------------------------------------
Γ , Σ ⊢ loc i ∶ Ref A
ƛ : ∀ {n e A B} {Γ : Ctx n} {Σ} →
(A ∷ Γ) , Σ ⊢ e ∶ B →
---------------------------------------
Γ , Σ ⊢ (ƛ A e) ∶ (A ⇒ B)
_·_ : ∀ {n f x A B} {Γ : Ctx n} {Σ} →
Γ , Σ ⊢ f ∶ (A ⇒ B) →
Γ , Σ ⊢ x ∶ A →
---------------------------------------
Γ , Σ ⊢ (f · x) ∶ B
ref : ∀ {n x A} {Γ : Ctx n} {Σ} →
Γ , Σ ⊢ x ∶ A →
---------------------------------------
Γ , Σ ⊢ ref x ∶ Ref A
!_ : ∀ {n x A} {Γ : Ctx n} {Σ} →
Γ , Σ ⊢ x ∶ Ref A →
---------------------------------------
Γ , Σ ⊢ (! x) ∶ A
_≔_ : ∀ {n i x A} {Γ : Ctx n} {Σ} →
Γ , Σ ⊢ i ∶ Ref A →
Γ , Σ ⊢ x ∶ A →
---------------------------------------
Γ , Σ ⊢ (i ≔ x) ∶ Unit
open import Relation.Binary.List.Pointwise
-- store welltypedness relation
-- as a pointwise lifting of the welltyped relation on closed expressions between a world and a store
_,_⊢_ : ∀ {n} → Ctx n → World → Store n → Set
Γ , Σ ⊢ μ = Rel (λ A x → Γ , Σ ⊢ proj₁ x ∶ A) Σ μ
|
{
"alphanum_fraction": 0.3650793651,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "6e79c11752b0fb147b98742ac3b7bec6af7c52a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/STLCRef/Welltyped.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/STLCRef/Welltyped.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/STLCRef/Welltyped.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 709,
"size": 1890
}
|
module STLC.Coquand.Soundness where
open import STLC.Coquand.Completeness public
--------------------------------------------------------------------------------
-- Un⟦_⟧
postulate
⟦_⟧Un : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ (M : Ξ ⊢ A) → Un⋆ ρ
→ Un (⟦ M ⟧ ρ)
-- 𝒰⋆⟦_⟧ₛ
postulate
⟦_⟧Un⋆ : ∀ {Γ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ}
→ (σ : Ξ ⊢⋆ Φ) → Un⋆ ρ
→ Un⋆ (⟦ σ ⟧⋆ ρ)
postulate
⟦_⟧Eq : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ (M : Ξ ⊢ A) → Eq⋆ ρ₁ ρ₂ → Un⋆ ρ₁ → Un⋆ ρ₂
→ Eq (⟦ M ⟧ ρ₁) (⟦ M ⟧ ρ₂)
-- Eq⋆⟦_⟧ₛ
postulate
⟦_⟧Eq⋆ : ∀ {Γ Ξ Φ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ (σ : Ξ ⊢⋆ Φ) → Eq⋆ ρ₁ ρ₂ → Un⋆ ρ₁ → Un⋆ ρ₂
→ Eq⋆ (⟦ σ ⟧⋆ ρ₁) (⟦ σ ⟧⋆ ρ₂)
--------------------------------------------------------------------------------
-- ⟦_⟧⬗Eq = symEq ∘ ↑⟨_⟩Eq⟦_⟧
⟦_⟧⬗Eq : ∀ {Γ Γ′ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ (M : Ξ ⊢ A) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ
→ Eq (⟦ M ⟧ (η ⬗ ρ))
(acc η (⟦ M ⟧ ρ))
⟦_⟧⬗Eq (𝓋 i) η υ = get⬗Eq η i υ
⟦_⟧⬗Eq (ƛ M) η υ = eq⊃ (λ η′ u →
⟦ M ⟧Eq (comp⬗◇Eq⋆ η′ η υ , reflEq u)
(cong⬗Un⋆ η′ (cong⬗Un⋆ η υ) , u)
(cong⬗Un⋆ (η′ ○ η) υ , u))
⟦_⟧⬗Eq (M ∙ N) η υ =
cong⟦∙⟧Eq idᵣ (⟦ M ⟧⬗Eq η υ) (⟦ M ⟧Un (cong⬗Un⋆ η υ)) (congaccUn η (⟦ M ⟧Un υ))
(⟦ N ⟧⬗Eq η υ) (⟦ N ⟧Un (cong⬗Un⋆ η υ)) (congaccUn η (⟦ N ⟧Un υ))
⦙ acc⟦∙⟧idEq η (⟦ M ⟧Un υ) (congaccUn η (⟦ N ⟧Un υ))
⦙ (cong⟦∙⟧Eq η ((lidaccEq (⟦ M ⟧Un υ)) ⁻¹) (⟦ M ⟧Un υ) (congaccUn idᵣ (⟦ M ⟧Un υ))
(reflEq (congaccUn η (⟦ N ⟧Un υ))) (congaccUn η (⟦ N ⟧Un υ)) (congaccUn η (⟦ N ⟧Un υ))
⦙ acc⟦∙⟧Eq idᵣ η (⟦ M ⟧Un υ) (⟦ N ⟧Un υ))
-- ⟦_⟧⬗Eq⋆ = symEq ∘ ↑⟨_⟩Eq⋆⟦_⟧ₛ
⟦_⟧⬗Eq⋆ : ∀ {Γ Γ′ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ}
→ (σ : Ξ ⊢⋆ Φ) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ
→ Eq⋆ (⟦ σ ⟧⋆ (η ⬗ ρ))
(η ⬗ ⟦ σ ⟧⋆ ρ)
⟦_⟧⬗Eq⋆ ∅ η υ = ∅
⟦_⟧⬗Eq⋆ (σ , M) η υ = ⟦ σ ⟧⬗Eq⋆ η υ , ⟦ M ⟧⬗Eq η υ
--------------------------------------------------------------------------------
-- TODO: Generalise to zap⬖
postulate
aux₄₈₁ : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ} {a : Γ ⊩ A}
→ Un⋆ ρ
→ Eq⋆ ((ρ , a) ⬖ wkᵣ idᵣ) ρ
-- TODO
-- Basic properties of _◇_
-- Advanced properties of _◇_
-- Basic properties of _⬗_
-- Basic properties of _◆_
-- Advanced properties of _⬗_
-- Advanced properties of _◆_
-- TODO: Fix the instance argument problem; abstract over models; rename η to ξ…
--------------------------------------------------------------------------------
renlift⟦_⟧Eq : ∀ {Γ Γ′ A B w w′} → {ρ : w ⊩⋆ Γ′} {a : w′ ⊩ A}
→ (M : Γ , A ⊢ B) (η₁ : Γ′ ∋⋆ Γ) (η₂ : w′ ∋⋆ w) → Un⋆ ρ → Un a
→ Eq (⟦ ren (liftᵣ {A} η₁) M ⟧ (η₂ ⬗ ρ , a))
(⟦ M ⟧ (η₂ ⬗ (ρ ⬖ η₁) , a))
renlift⟦_⟧Eq (𝓋 zero) η₁ η₂ υ u = reflEq u
renlift⟦_⟧Eq {ρ = ρ} {a} (𝓋 (suc i)) η₁ η₂ υ u =
≡→Eq ((getᵥ (η₂ ⬗ ρ , a)) & natgetᵣ η₁ i)
(conggetUn (getᵣ (wkᵣ η₁) i) (cong⬗Un⋆ η₂ υ , u))
⦙ get⬖Eq η₁ (getᵣ η₁ i) i (cong⬗Un⋆ η₂ υ) ⁻¹
⦙ conggetEq i (comp⬗⬖Eq⋆ η₂ η₁ υ ⁻¹)
renlift⟦_⟧Eq (ƛ M) η₁ η₂ υ u =
eq⊃ (λ η′ u′ → renlift⟦ M ⟧Eq (liftᵣ η₁) η′ (cong⬗Un⋆ η₂ υ , u) u′
⦙ ⟦ M ⟧Eq ( ( cong⬗Eq⋆ η′ (( comp⬗⬖Eq⋆ η₂ η₁ υ
⦙ zap⬖Eq⋆ (wkᵣ η₁) η₁ (cong⬗Un⋆ η₂ υ) ⁻¹
) ⁻¹)
, reflEq (congaccUn η′ u)
)
, reflEq u′
)
((cong⬗Un⋆ η′ (cong⬖Un⋆ (wkᵣ η₁) (cong⬗Un⋆ η₂ υ , u)) , congaccUn η′ u) , u′)
((cong⬗Un⋆ η′ (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ)) , congaccUn η′ u) , u′))
renlift⟦_⟧Eq (M ∙ N) η₁ η₂ υ u =
cong⟦∙⟧Eq idᵣ (renlift⟦ M ⟧Eq η₁ η₂ υ u) (⟦ ren (liftᵣ η₁) M ⟧Un (cong⬗Un⋆ η₂ υ , u)) (⟦ M ⟧Un (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ) , u))
(renlift⟦ N ⟧Eq η₁ η₂ υ u) (⟦ ren (liftᵣ η₁) N ⟧Un (cong⬗Un⋆ η₂ υ , u)) (⟦ N ⟧Un (cong⬗Un⋆ η₂ (cong⬖Un⋆ η₁ υ) , u))
--------------------------------------------------------------------------------
renwk⟦_⟧Eq : ∀ {Γ Γ′ A C w} → {ρ : w ⊩⋆ Γ′} {a : w ⊩ A}
→ (M : Γ ⊢ C) (η : Γ′ ∋⋆ Γ) → Un⋆ ρ → Un a
→ Eq (⟦ ren (wkᵣ {A} η) M ⟧ (ρ , a))
(⟦ M ⟧ (ρ ⬖ η))
renwk⟦_⟧Eq (𝓋 i) η υ u =
get⬖Eq (wkᵣ η) (getᵣ (wkᵣ η) i) i (υ , u) ⁻¹
⦙ conggetEq i (zap⬖Eq⋆ (wkᵣ η) η υ)
renwk⟦_⟧Eq (ƛ M) η υ u =
eq⊃ (λ η′ u′ → renlift⟦ M ⟧Eq (wkᵣ η) η′ (υ , u) u′
⦙ ⟦ M ⟧Eq (cong⬗Eq⋆ η′ (zap⬖Eq⋆ (wkᵣ η) η υ) , reflEq u′)
(cong⬗Un⋆ η′ (cong⬖Un⋆ (wkᵣ η) (υ , u)) , u′)
(cong⬗Un⋆ η′ (cong⬖Un⋆ η υ) , u′))
renwk⟦_⟧Eq (M ∙ N) η υ u =
cong⟦∙⟧Eq idᵣ (renwk⟦ M ⟧Eq η υ u) (⟦ ren (wkᵣ η) M ⟧Un (υ , u)) (⟦ M ⟧Un (cong⬖Un⋆ η υ))
(renwk⟦ N ⟧Eq η υ u) (⟦ ren (wkᵣ η) N ⟧Un (υ , u)) (⟦ N ⟧Un (cong⬖Un⋆ η υ))
--------------------------------------------------------------------------------
wk⟦_⟧Eq : ∀ {Γ A C w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A}
→ (M : Γ ⊢ C) → Un⋆ ρ → Un a
→ Eq (⟦ wk {A} M ⟧ (ρ , a))
(⟦ M ⟧ ρ)
wk⟦_⟧Eq M υ u = renwk⟦ M ⟧Eq idᵣ υ u
⦙ ⟦ M ⟧Eq (rid⬖Eq⋆ υ) (cong⬖Un⋆ idᵣ υ) υ
wk⟦_⟧Eq⋆ : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A}
→ (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a
→ Eq⋆ (⟦ wkₛ {A} σ ⟧⋆ (ρ , a))
(⟦ σ ⟧⋆ ρ)
wk⟦_⟧Eq⋆ ∅ υ u = ∅
wk⟦_⟧Eq⋆ (σ , M) υ u = wk⟦ σ ⟧Eq⋆ υ u , wk⟦ M ⟧Eq υ u
--------------------------------------------------------------------------------
get⟦_⟧Eq : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ}
→ (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → Un⋆ ρ
→ Eq (⟦ getₛ σ i ⟧ ρ)
(getᵥ (⟦ σ ⟧⋆ ρ) i)
get⟦_⟧Eq (σ , M) zero υ = reflEq (⟦ M ⟧Un υ)
get⟦_⟧Eq (σ , M) (suc i) υ = get⟦ σ ⟧Eq i υ
--------------------------------------------------------------------------------
sublift⟦_⟧Eq : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A}
→ (M : Ξ , A ⊢ B) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a
→ Eq (⟦ sub (liftₛ {A} σ) M ⟧ (ρ , a))
(⟦ M ⟧ (⟦ σ ⟧⋆ ρ , a))
sublift⟦_⟧Eq (𝓋 zero) σ υ u = reflEq u
sublift⟦_⟧Eq {ρ = ρ} {a} (𝓋 (suc i)) σ υ u =
≡→Eq ((λ M′ → ⟦ M′ ⟧ (ρ , a)) & natgetₛ σ i)
(⟦ getₛ (wkₛ σ) i ⟧Un (υ , u))
⦙ wk⟦ getₛ σ i ⟧Eq υ u
⦙ get⟦ σ ⟧Eq i υ
sublift⟦_⟧Eq (ƛ M) σ υ u =
eq⊃ (λ η′ u′ → sublift⟦ M ⟧Eq (liftₛ σ) (cong⬗Un⋆ η′ υ , congaccUn η′ u) u′
⦙ ⟦ M ⟧Eq ((⟦ wkₛ σ ⟧⬗Eq⋆ η′ (υ , u) , reflEq (congaccUn η′ u)) , reflEq u′)
((⟦ wkₛ σ ⟧Un⋆ (cong⬗Un⋆ η′ υ , congaccUn η′ u) , congaccUn η′ u) , u′)
((cong⬗Un⋆ η′ (⟦ wkₛ σ ⟧Un⋆ (υ , u)) , congaccUn η′ u) , u′)
⦙ ⟦ M ⟧Eq ((cong⬗Eq⋆ η′ (wk⟦ σ ⟧Eq⋆ υ u) , reflEq (congaccUn η′ u)) , reflEq u′)
((cong⬗Un⋆ η′ (⟦ wkₛ σ ⟧Un⋆ (υ , u)) , congaccUn η′ u) , u′)
((cong⬗Un⋆ η′ (⟦ σ ⟧Un⋆ υ) , congaccUn η′ u) , u′))
sublift⟦_⟧Eq (M ∙ N) σ υ u =
cong⟦∙⟧Eq idᵣ (sublift⟦ M ⟧Eq σ υ u) (⟦ sub (liftₛ σ) M ⟧Un (υ , u)) (⟦ M ⟧Un (⟦ σ ⟧Un⋆ υ , u))
(sublift⟦ N ⟧Eq σ υ u) (⟦ sub (liftₛ σ) N ⟧Un (υ , u)) (⟦ N ⟧Un (⟦ σ ⟧Un⋆ υ , u))
--------------------------------------------------------------------------------
subliftwk⟦_⟧Eq : ∀ {Γ Ξ A A′ B w w′} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A} {a′ : w′ ⊩ A′}
→ (M : Ξ , A′ ⊢ B) (σ : Γ ⊢⋆ Ξ) (η : w′ ∋⋆ w) → Un⋆ ρ → Un a → Un a′
→ Eq (⟦ sub (liftₛ (wkₛ σ)) M ⟧ (η ⬗ ρ , acc η a , a′))
(⟦ sub (liftₛ σ) M ⟧ (η ⬗ ρ , a′))
subliftwk⟦_⟧Eq M σ η υ u u′ = sublift⟦ M ⟧Eq (wkₛ σ) (cong⬗Un⋆ η υ , congaccUn η u) u′
⦙ ⟦ M ⟧Eq (wk⟦ σ ⟧Eq⋆ (cong⬗Un⋆ η υ) (congaccUn η u) , reflEq u′)
(⟦ wkₛ σ ⟧Un⋆ (cong⬗Un⋆ η υ , congaccUn η u) , u′)
(⟦ σ ⟧Un⋆ (cong⬗Un⋆ η υ) , u′)
⦙ sublift⟦ M ⟧Eq σ (cong⬗Un⋆ η υ) u′ ⁻¹
--------------------------------------------------------------------------------
subwk⟦_⟧Eq : ∀ {Γ Ξ A C w} → {ρ : w ⊩⋆ Γ} {a : w ⊩ A}
→ (M : Ξ ⊢ C) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ → Un a
→ Eq (⟦ sub (wkₛ {A} σ) M ⟧ (ρ , a))
(⟦ sub σ M ⟧ ρ)
subwk⟦_⟧Eq {ρ = ρ} {a} (𝓋 i) σ υ u =
≡→Eq ((λ M′ → ⟦ M′ ⟧ (ρ , a)) & (natgetₛ σ i))
(⟦ getₛ (wkₛ σ) i ⟧Un (υ , u))
⦙ wk⟦ getₛ σ i ⟧Eq υ u
subwk⟦_⟧Eq (ƛ {A = A′} M) σ υ u =
eq⊃ (λ η u′ → subliftwk⟦ M ⟧Eq σ η υ u u′)
subwk⟦_⟧Eq (M ∙ N) σ υ u =
cong⟦∙⟧Eq idᵣ (subwk⟦ M ⟧Eq σ υ u) (⟦ sub (wkₛ σ) M ⟧Un (υ , u)) (⟦ sub σ M ⟧Un υ)
(subwk⟦ N ⟧Eq σ υ u) (⟦ sub (wkₛ σ) N ⟧Un (υ , u)) (⟦ sub σ N ⟧Un υ)
--------------------------------------------------------------------------------
sub⟦_⟧Eq : ∀ {Γ Ξ A w} → {ρ : w ⊩⋆ Γ}
→ (M : Ξ ⊢ A) (σ : Γ ⊢⋆ Ξ) → Un⋆ ρ
→ Eq (⟦ sub σ M ⟧ ρ)
(⟦ M ⟧ (⟦ σ ⟧⋆ ρ))
sub⟦_⟧Eq (𝓋 i) σ υ = get⟦ σ ⟧Eq i υ
sub⟦_⟧Eq (ƛ M) σ υ =
eq⊃ (λ η u → sublift⟦ M ⟧Eq σ (cong⬗Un⋆ η υ) u
⦙ ⟦ M ⟧Eq (⟦ σ ⟧⬗Eq⋆ η υ , reflEq u)
(⟦ σ ⟧Un⋆ (cong⬗Un⋆ η υ) , u)
(cong⬗Un⋆ η (⟦ σ ⟧Un⋆ υ) , u))
sub⟦_⟧Eq (M ∙ N) σ υ =
cong⟦∙⟧Eq idᵣ (sub⟦ M ⟧Eq σ υ) (⟦ sub σ M ⟧Un υ) (⟦ M ⟧Un (⟦ σ ⟧Un⋆ υ))
(sub⟦ N ⟧Eq σ υ) (⟦ sub σ N ⟧Un υ) (⟦ N ⟧Un (⟦ σ ⟧Un⋆ υ))
--------------------------------------------------------------------------------
-- TODO: Rename this
sublift⟦⟧Eq⁈ : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ}
→ (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A) → Un⋆ ρ
→ Eq (⟦ sub (liftₛ {A} σ) M ⟧ (ρ , ⟦ N ⟧ ρ))
(⟦ sub (σ , N) M ⟧ ρ)
sublift⟦⟧Eq⁈ {ρ = ρ} σ M N υ = sublift⟦ M ⟧Eq σ υ (⟦ N ⟧Un υ)
⦙ sub⟦ M ⟧Eq (σ , N) υ ⁻¹
--------------------------------------------------------------------------------
-- TODO: Generalise theorem 4 over models
module _ where
open 𝔐 canon
mutual
lemƛ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ} {M M′ : Γ , A ⊢ B}
→ M ∼ M′ → Un⋆ ρ
→ Eq (⟦ ƛ M ⟧ ρ) (⟦ ƛ M′ ⟧ ρ)
lemƛ p υ = eq⊃ (λ xs u → cong⟦ p ⟧Eq (cong⬗Un⋆ xs υ , u))
lem∙ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ} {M M′ : Γ ⊢ A ⇒ B} {N N′ : Γ ⊢ A}
→ M ∼ M′ → N ∼ N′ → Un⋆ ρ
→ Eq (⟦ M ∙ N ⟧ ρ) (⟦ M′ ∙ N′ ⟧ ρ)
lem∙ {M = M} {M′} {N} {N′} p q υ = cong⟦∙⟧Eq idᵣ (cong⟦ p ⟧Eq υ) (⟦ M ⟧Un υ) (⟦ M′ ⟧Un υ)
(cong⟦ q ⟧Eq υ) (⟦ N ⟧Un υ) (⟦ N′ ⟧Un υ)
lemred⇒ : ∀ {Γ Ξ A B w} → {ρ : w ⊩⋆ Γ}
→ (σ : Γ ⊢⋆ Ξ) (M : Ξ , A ⊢ B) (N : Γ ⊢ A) → Un⋆ ρ
→ Eq (⟦ sub σ (ƛ M) ∙ N ⟧ ρ) (⟦ sub (σ , N) M ⟧ ρ)
lemred⇒ {ρ = ρ} σ M N υ =
⟦ sub (liftₛ σ) M ⟧Eq (lid⬗Eq⋆ υ , reflEq (⟦ N ⟧Un υ))
(cong⬗Un⋆ idᵣ υ , ⟦ N ⟧Un υ)
(υ , ⟦ N ⟧Un υ)
⦙ sublift⟦⟧Eq⁈ σ M N υ
lemexp⇒ : ∀ {Γ A B w} → {ρ : w ⊩⋆ Γ}
→ (M : Γ ⊢ A ⇒ B) → Un⋆ ρ
→ Eq (⟦ M ⟧ ρ) (⟦ ƛ (wk M ∙ 0) ⟧ ρ)
lemexp⇒ {ρ = ρ} M υ =
eq⊃ (λ η {a} u → acc⟦∙⟧idEq η (⟦ M ⟧Un υ) u ⁻¹
⦙ cong⟦∙⟧Eq idᵣ (⟦ M ⟧⬗Eq η υ ⁻¹) (congaccUn η (⟦ M ⟧Un υ)) (⟦ M ⟧Un (cong⬗Un⋆ η υ))
(reflEq u) u u
⦙ cong⟦∙⟧Eq idᵣ (wk⟦ M ⟧Eq (cong⬗Un⋆ η υ) u ⁻¹) (⟦ M ⟧Un (cong⬗Un⋆ η υ)) (⟦ wk M ⟧Un (cong⬗Un⋆ η υ , u))
(reflEq u) u u)
-- Theorem 4.
cong⟦_⟧Eq : ∀ {Γ A w} → {M M′ : Γ ⊢ A} {ρ : w ⊩⋆ Γ}
→ M ∼ M′ → Un⋆ ρ
→ Eq (⟦ M ⟧ ρ) (⟦ M′ ⟧ ρ)
cong⟦ refl∼ {M = M} ⟧Eq υ = reflEq (⟦ M ⟧Un υ)
cong⟦ p ⁻¹∼ ⟧Eq υ = cong⟦ p ⟧Eq υ ⁻¹
cong⟦ p ⦙∼ q ⟧Eq υ = cong⟦ p ⟧Eq υ ⦙ cong⟦ q ⟧Eq υ
cong⟦ ƛ∼ p ⟧Eq υ = lemƛ p υ
cong⟦ p ∙∼ q ⟧Eq υ = lem∙ p q υ
cong⟦ red⇒ σ M N ⟧Eq υ = lemred⇒ σ M N υ
cong⟦ exp⇒ M ⟧Eq υ = lemexp⇒ M υ
--------------------------------------------------------------------------------
-- Theorem 5.
thm₅ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → nf M ≡ nf M′
→ M ∼ M′
thm₅ M M′ p = thm₂ M
⦙ ≡→∼ p
⦙ (thm₂ M′ ⁻¹)
--------------------------------------------------------------------------------
-- proj⟨_⟩𝒰⋆
⌊_⌋ᵤ : ∀ {Γ Γ′} → (η : Γ′ ∋⋆ Γ)
→ Un⋆ ⌊ η ⌋ᵥ
⌊ ∅ ⌋ᵤ = ∅
⌊ η , i ⌋ᵤ = ⌊ η ⌋ᵤ , ⟪𝓋 i ⟫ᵤ
-- refl𝒰⋆
idᵤ : ∀ {Γ} → Un⋆ (idᵥ {Γ})
idᵤ = ⌊ idᵣ ⌋ᵤ
-- Theorem 6.
thm₆ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → M ∼ M′
→ nf M ≡ nf M′
thm₆ M M′ p = cor₁ M M′ (cong⟦ p ⟧Eq idᵤ)
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.2956981244,
"avg_line_length": 37.8478873239,
"ext": "agda",
"hexsha": "d0f31e6b1aef204686363a5b778e1c3d2f86f445",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Coquand/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Coquand/Soundness.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Coquand/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6955,
"size": 13436
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group where
open import Cubical.Algebra.Group.Base public
open import Cubical.Algebra.Group.Properties public
open import Cubical.Algebra.Group.GroupPath public
open import Cubical.Algebra.Group.DirProd public
open import Cubical.Algebra.Group.Morphisms public
open import Cubical.Algebra.Group.MorphismProperties public
open import Cubical.Algebra.Group.Subgroup public
open import Cubical.Algebra.Group.QuotientGroup public
open import Cubical.Algebra.Group.IsomorphismTheorems public
open import Cubical.Algebra.Group.Instances.Unit public
open import Cubical.Algebra.Group.Instances.Bool public
open import Cubical.Algebra.Group.Instances.Int public
|
{
"alphanum_fraction": 0.85021398,
"avg_line_length": 43.8125,
"ext": "agda",
"hexsha": "df70cc3b22ad6f966f8fece1d8d62832cba0d98c",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group.agda",
"max_line_length": 60,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 154,
"size": 701
}
|
-- Andreas, 2020-04-15, issue #4586
-- Better error for invalid let pattern.
import Agda.Builtin.Nat
test : Set₁
test = let 13 = Set
in Set
-- WAS:
-- Set != x of type Set₁
-- when checking that the given dot pattern Set matches the inferred
-- value x
-- EXPECTED:
-- Not a valid let pattern
-- when scope checking let .Set = Set in Set
|
{
"alphanum_fraction": 0.6742857143,
"avg_line_length": 19.4444444444,
"ext": "agda",
"hexsha": "a5c484394fbf67bcf1dede9244be094fbfd6ca27",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4586LetPatternLiteral.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4586LetPatternLiteral.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4586LetPatternLiteral.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 102,
"size": 350
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A binary representation of natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Bin where
open import Data.Nat as Nat
using (ℕ; zero; z≤n; s≤s) renaming (suc to 1+_)
open import Data.Digit using (fromDigits; toDigits; Bit)
open import Data.Fin as Fin using (Fin; zero)
renaming (suc to 1+_)
open import Data.Fin.Properties as FP using (_+′_)
open import Data.List.Base as List hiding (downFrom)
open import Function
open import Data.Product using (uncurry; _,_; _×_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl; sym)
open import Relation.Nullary
open import Relation.Nullary.Decidable
------------------------------------------------------------------------
-- Bits
pattern 0b = zero
pattern 1b = 1+ zero
pattern ⊥b = 1+ 1+ ()
------------------------------------------------------------------------
-- The type
-- A representation of binary natural numbers in which there is
-- exactly one representative for every number. The function toℕ below
-- defines the meaning of Bin.
-- `bs 1#` stands for the binary number "1<reverse bs>" e.g.
-- `(0b ∷ []) 1#` represents "10"
-- `(0b ∷ 1b ∷ 1b ∷ []) 1#` represents "1110"
Bin⁺ : Set
Bin⁺ = List Bit
infix 8 _1#
data Bin : Set where
0# : Bin
_1# : (bs : Bin⁺) → Bin
------------------------------------------------------------------------
-- Conversion functions
-- Converting to a list of bits starting with the _least_ significant
-- one.
toBits : Bin → List Bit
toBits 0# = [ 0b ]
toBits (bs 1#) = bs ++ [ 1b ]
-- Converting to a natural number.
toℕ : Bin → ℕ
toℕ = fromDigits ∘ toBits
-- Converting from a list of bits, starting with the _least_
-- significant one.
fromBits : List Bit → Bin
fromBits [] = 0#
fromBits (b ∷ bs) with fromBits bs
fromBits (b ∷ bs) | bs′ 1# = (b ∷ bs′) 1#
fromBits (0b ∷ bs) | 0# = 0#
fromBits (1b ∷ bs) | 0# = [] 1#
fromBits (⊥b ∷ bs) | _
private
pattern 2+_ n = 1+ 1+ n
ntoBits′ : ℕ → ℕ → List Bit
ntoBits′ 0 _ = []
ntoBits′ 1 0 = 0b ∷ 1b ∷ []
ntoBits′ 1 1 = 1b ∷ []
ntoBits′ (2+ k) 0 = 0b ∷ ntoBits′ (1+ k) k
ntoBits′ (2+ k) 1 = 1b ∷ ntoBits′ (1+ k) (1+ k)
ntoBits′ (1+ k) (2+ n) = ntoBits′ k n
ntoBits : ℕ → List Bit
ntoBits n = ntoBits′ n n
-- Converting from a natural number.
fromℕ : ℕ → Bin
fromℕ n = fromBits $ ntoBits n
------------------------------------------------------------------------
-- Order relation.
-- Wrapped so that the parameters can be inferred.
infix 4 _<_
data _<_ (b₁ b₂ : Bin) : Set where
less : (lt : (Nat._<_ on toℕ) b₁ b₂) → b₁ < b₂
less-injective : ∀ {b₁ b₂} {lt₁ lt₂} → (b₁ < b₂ ∋ less lt₁) ≡ less lt₂ → lt₁ ≡ lt₂
less-injective refl = refl
------------------------------------------------------------------------
-- Arithmetic
-- Power of two.
infixr 8 2^_
2^_ : ℕ → Bin⁺
2^ 0 = []
2^ (1+ n) = 0b ∷ 2^ n
-- Base 2 logarithm (rounded downwards).
⌊log₂_⌋ : Bin⁺ → ℕ
⌊log₂ (b ∷ bs) ⌋ = 1+ ⌊log₂ bs ⌋
⌊log₂ [] ⌋ = 0
-- Multiplication by 2.
infix 7 _*2 _*2+1
_*2 : Bin → Bin
0# *2 = 0#
(bs 1#) *2 = (0b ∷ bs) 1#
_*2+1 : Bin → Bin
0# *2+1 = [] 1#
(bs 1#) *2+1 = (1b ∷ bs) 1#
-- Division by 2, rounded downwards.
⌊_/2⌋ : Bin → Bin
⌊ 0# /2⌋ = 0#
⌊ [] 1# /2⌋ = 0#
⌊ (b ∷ bs) 1# /2⌋ = bs 1#
-- Addition.
Carry : Set
Carry = Bit
addBits : Carry → Bit → Bit → Carry × Bit
addBits c b₁ b₂ with c +′ (b₁ +′ b₂)
... | zero = (0b , 0b)
... | 1+ zero = (0b , 1b)
... | 1+ 1+ zero = (1b , 0b)
... | 1+ 1+ 1+ zero = (1b , 1b)
... | 1+ 1+ 1+ 1+ ()
addCarryToBitList : Carry → List Bit → List Bit
addCarryToBitList 0b bs = bs
addCarryToBitList 1b [] = 1b ∷ []
addCarryToBitList 1b (0b ∷ bs) = 1b ∷ bs
addCarryToBitList 1b (1b ∷ bs) = 0b ∷ addCarryToBitList 1b bs
addCarryToBitList ⊥b _
addCarryToBitList _ (⊥b ∷ _)
addBitLists : Carry → List Bit → List Bit → List Bit
addBitLists c [] bs₂ = addCarryToBitList c bs₂
addBitLists c bs₁ [] = addCarryToBitList c bs₁
addBitLists c (b₁ ∷ bs₁) (b₂ ∷ bs₂) with addBits c b₁ b₂
... | (c' , b') = b' ∷ addBitLists c' bs₁ bs₂
infixl 6 _+_
_+_ : Bin → Bin → Bin
m + n = fromBits (addBitLists 0b (toBits m) (toBits n))
-- Multiplication.
infixl 7 _*_
_*_ : Bin → Bin → Bin
0# * n = 0#
[] 1# * n = n
-- (b + 2 * bs 1#) * n = b * n + 2 * (bs 1# * n)
(b ∷ bs) 1# * n with bs 1# * n
(b ∷ bs) 1# * n | 0# = 0#
(0b ∷ bs) 1# * n | bs' 1# = (0b ∷ bs') 1#
(1b ∷ bs) 1# * n | bs' 1# = n + (0b ∷ bs') 1#
(⊥b ∷ _) 1# * _ | _
-- Successor.
suc : Bin → Bin
suc n = [] 1# + n
-- Division by 2, rounded upwards.
⌈_/2⌉ : Bin → Bin
⌈ n /2⌉ = ⌊ suc n /2⌋
-- Predecessor.
pred : Bin⁺ → Bin
pred [] = 0#
pred (0b ∷ bs) = pred bs *2+1
pred (1b ∷ bs) = (zero ∷ bs) 1#
pred (⊥b ∷ bs)
-- downFrom n enumerates all numbers from n - 1 to 0. This function is
-- linear in n. Analysis: fromℕ takes linear time, and the preds used
-- take amortised constant time (to see this, let the cost of a pred
-- be 2, and put 1 debit on every bit which is 1).
downFrom : ℕ → List Bin
downFrom n = helper n (fromℕ n)
where
helper : ℕ → Bin → List Bin
helper zero 0# = []
helper (1+ n) (bs 1#) = n′ ∷ helper n n′
where n′ = pred bs
-- Impossible cases:
helper zero (_ 1#) = []
helper (1+ _) 0# = []
------------------------------------------------------------------------
-- Tests
-- The tests below are run when this module is type checked.
-- First some test helpers:
private
testLimit : ℕ
testLimit = 5
nats : List ℕ
nats = List.downFrom testLimit
nats⁺ : List ℕ
nats⁺ = filter (1 Nat.≤?_) nats
natPairs : List (ℕ × ℕ)
natPairs = List.zip nats (reverse nats)
_=[_]_ : (ℕ → ℕ) → List ℕ → (Bin → Bin) → Set
f =[ ns ] g = List.map f ns ≡ List.map (toℕ ∘ g ∘ fromℕ) ns
_=[_]₂_ : (ℕ → ℕ → ℕ) → List (ℕ × ℕ) → (Bin → Bin → Bin) → Set
f =[ ps ]₂ g =
List.map (uncurry f) ps ≡ List.map (toℕ ∘ uncurry (g on fromℕ)) ps
-- And then the tests:
private
test-*2+1 : (λ n → Nat._+_ (Nat._*_ n 2) 1) =[ nats ] _*2+1
test-*2+1 = refl
test-*2 : (λ n → Nat._*_ n 2) =[ nats ] _*2
test-*2 = refl
test-⌊_/2⌋ : Nat.⌊_/2⌋ =[ nats ] ⌊_/2⌋
test-⌊_/2⌋ = refl
test-+ : Nat._+_ =[ natPairs ]₂ _+_
test-+ = refl
test-* : Nat._*_ =[ natPairs ]₂ _*_
test-* = refl
test-suc : 1+_ =[ nats ] suc
test-suc = refl
test-⌈_/2⌉ : Nat.⌈_/2⌉ =[ nats ] ⌈_/2⌉
test-⌈_/2⌉ = refl
drop-1# : Bin → Bin⁺
drop-1# 0# = []
drop-1# (bs 1#) = bs
test-pred : Nat.pred =[ nats⁺ ] (pred ∘ drop-1#)
test-pred = refl
test-downFrom : List.map toℕ (downFrom testLimit) ≡
List.downFrom testLimit
test-downFrom = refl
|
{
"alphanum_fraction": 0.5137232361,
"avg_line_length": 23.9965517241,
"ext": "agda",
"hexsha": "00732bfb53720faf7dc41ec1717aa0a8ce3d6611",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2693,
"size": 6959
}
|
------------------------------------------------------------------------
-- A compiler
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Lambda.Simplified.Compiler where
open import Equality.Propositional.Cubical
open import Prelude
open import Vec.Function equality-with-J
open import Lambda.Simplified.Syntax
open import Lambda.Simplified.Virtual-machine
private
module C = Closure Code
module T = Closure Tm
-- The compiler (which takes a code continuation).
comp : ∀ {n} → Tm n → Code n → Code n
comp (var x) c = var x ∷ c
comp (ƛ t) c = clo (comp t (ret ∷ [])) ∷ c
comp (t₁ · t₂) c = comp t₁ (comp t₂ (app ∷ c))
-- Environments and values can also be compiled.
mutual
comp-env : ∀ {n} → T.Env n → C.Env n
comp-env ρ n = comp-val (ρ n)
comp-val : T.Value → C.Value
comp-val (T.ƛ t ρ) = C.ƛ (comp t (ret ∷ [])) (comp-env ρ)
-- Compilation takes empty environments to empty environments.
comp-nil : comp-env nil ≡ nil
comp-nil = empty≡nil ext
-- Compilation commutes with cons.
comp-cons : ∀ {n} {ρ : T.Env n} {v} →
comp-env (cons v ρ) ≡ cons (comp-val v) (comp-env ρ)
comp-cons = non-empty≡cons-head-tail ext _
|
{
"alphanum_fraction": 0.5772357724,
"avg_line_length": 25.625,
"ext": "agda",
"hexsha": "9976a639fa1c54a8193273357e8b4bfeac7bed46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Simplified/Compiler.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Simplified/Compiler.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Simplified/Compiler.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 342,
"size": 1230
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Examples
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import WellFoundedInduction
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.EuclideanDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (E : EuclideanDomain R) where
open import Rings.PrincipalIdealDomains.Definition (EuclideanDomain.isIntegralDomain E)
open import Rings.Ideals.Principal.Definition R
open import Rings.Divisible.Definition R
open Setoid S
open Ring R
open Equivalence eq
euclideanDomainIsPid : {c : _} → PrincipalIdealDomain {c}
euclideanDomainIsPid {pred = pred} ideal = {!!}
-- We definitely need to be able to decide equality in order to deduce this; otherwise we can't tell the difference
-- between "everything is 0" and "something is nonzero", and the proofs are genuinely different in the two cases.
where
r : A
r = {!!}
r!=0 : (r ∼ 0R) → False
r!=0 = {!!}
predR : pred r
predR = {!!}
sr : (s : A) → r ∣ s
sr = EuclideanDomain.divisionAlg r!=0 s!=0 ?
|
{
"alphanum_fraction": 0.7507635919,
"avg_line_length": 35.5869565217,
"ext": "agda",
"hexsha": "5ce73b11cf320633a0de974fb8d9a4f589467395",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/EuclideanDomains/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/EuclideanDomains/Lemmas.agda",
"max_line_length": 154,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/EuclideanDomains/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 452,
"size": 1637
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module StructurallySmaller where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)
-- Foo is not structurally recursive even though zero + n normalises
-- to n.
{-# TERMINATING #-}
foo : ℕ → ℕ
foo zero = zero
foo (succ n) = foo (zero + n)
|
{
"alphanum_fraction": 0.5456475584,
"avg_line_length": 21.4090909091,
"ext": "agda",
"hexsha": "0542a268bdd51437c908c4942e6e20f6bca4beb7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/StructurallySmaller.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/StructurallySmaller.agda",
"max_line_length": 68,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/StructurallySmaller.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 134,
"size": 471
}
|
{- In some cases you may want to block certain terms from being
evaluated by Agda at compile time. I found I needed to do this
when generating large terms intended for evaluation at run-time only.
You can use the runtime-only function for this. If its first
argument is tt, then we will use a postulate runtime-identity
to block Agda's compile-time evaluation. Otherwise, we will
not block compile-time evaluation. -}
module runtime-only where
open import bool
postulate
runtime-identity : ∀{A : Set} → A → A
{-# COMPILED runtime-identity (\ _ x -> x ) #-}
runtime-only : ∀{A : Set} → 𝔹 → A → A
runtime-only ff = λ x → x
runtime-only tt = runtime-identity
|
{
"alphanum_fraction": 0.7142857143,
"avg_line_length": 35.7368421053,
"ext": "agda",
"hexsha": "637be7f0b3d001c3191918cef61970abd6380401",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "runtime-only.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "runtime-only.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "runtime-only.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 179,
"size": 679
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example showing how to define an indexed container
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe --guardedness #-}
module README.Data.Container.Indexed where
open import Data.Unit
open import Data.Empty
open import Data.Nat.Base
open import Data.Product
open import Function
open import Data.W.Indexed
open import Data.Container.Indexed
open import Data.Container.Indexed.WithK
module _ {a} (A : Set a) where
------------------------------------------------------------------------
-- Vector as an indexed container
-- An indexed container is defined by three things:
-- 1. Commands the user can emit
-- 2. Responses the indexed container returns to these commands
-- 3. Update of the index based on the command and the response issued.
-- For a vector, commands are constructors, responses are the number of subvectors
-- (0 if the vector is empty, 1 otherwise) and the update corresponds to setting the
-- size of the tail (if it exists). We can formalize these ideas like so:
-- Depending on the size of the vector, we may have reached the end already (nil)
-- or we may specify what the head should be (cons). This is the type of commands.
data VecC : ℕ → Set a where
nil : VecC zero
cons : ∀ n → A → VecC (suc n)
Vec : Container ℕ ℕ a _
Command Vec = VecC
-- We then treat each command independently, specifying both the response and the
-- next index based on that response.
-- In the nil case, the response is the empty type: there won't be any tail. As
-- a consequence, the next index won't be needed (and we can rely on the fact the
-- user will never be able to call it).
Response Vec nil = ⊥
next Vec nil = λ ()
-- In the cons case, the response is the unit type: there is exactly one tail. The
-- next index is the predecessor of the current one. It is handily handed over to
-- use by `cons`.
-- cons
Response Vec (cons n a) = ⊤
next Vec (cons n a) = λ _ → n
-- Finally we can define the type of Vector as the least fixed point of Vec.
Vector : ℕ → Set a
Vector = μ Vec
module _ {a} {A : Set a} where
-- We can recover the usual constructors by using `sup` to enter the fixpoint
-- and then using the appropriate pairing of a command & a handler for the
-- response.
-- For [], the response is ⊥ which makes it easy to conclude.
[] : Vector A 0
[] = sup (nil , λ ())
-- For _∷_, the response is ⊤ so we need to pass a tail. We give the one we took
-- as an argument.
infixr 3 _∷_
_∷_ : ∀ {n} → A → Vector A n → Vector A (suc n)
x ∷ xs = sup (cons _ x , λ _ → xs)
-- We can now use these constructors to build up vectors:
1⋯3 : Vector ℕ 3
1⋯3 = 1 ∷ 2 ∷ 3 ∷ []
-- Horrible thing to check the definition of _∈_ is not buggy.
-- Not sure whether we can say anything interesting about it in the case of Vector...
open import Relation.Binary.HeterogeneousEquality
_ : _∈_ {C = Vec ℕ} {X = Vector ℕ} 1⋯3 (⟦ Vec ℕ ⟧ (Vector ℕ) 4 ∋ cons _ 0 , λ _ → 1⋯3)
_ = _ , refl
|
{
"alphanum_fraction": 0.6373239437,
"avg_line_length": 30.9306930693,
"ext": "agda",
"hexsha": "0c94e182eca4c07305dd8523c942a46442ee8122",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Data/Container/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Data/Container/Indexed.agda",
"max_line_length": 86,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Data/Container/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 819,
"size": 3124
}
|
{-# OPTIONS --safe --without-K #-}
module Level where
open import Agda.Primitive
using (Level)
renaming ( _⊔_ to _ℓ⊔_
; lzero to ℓzero
; lsuc to ℓsuc )
public
Type : (ℓ : Level) → Set (ℓsuc ℓ)
Type ℓ = Set ℓ
Type₀ = Type ℓzero
Type₁ = Type (ℓsuc ℓzero)
Type₂ = Type (ℓsuc (ℓsuc ℓzero))
Type₃ = Type (ℓsuc (ℓsuc (ℓsuc ℓzero)))
variable
a b c : Level
A : Type a
B : Type b
C : Type c
|
{
"alphanum_fraction": 0.5929411765,
"avg_line_length": 16.3461538462,
"ext": "agda",
"hexsha": "a250e7eba74b53c4cc0a662f3104651d90ee30ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Level.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Level.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 179,
"size": 425
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.DirProd where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Semigroup
open GroupStr
open IsGroup hiding (rid ; lid ; invr ; invl)
open IsMonoid hiding (rid ; lid)
open IsSemigroup
DirProd : ∀ {ℓ ℓ'} → Group ℓ → Group ℓ' → Group (ℓ-max ℓ ℓ')
fst (DirProd G H) = fst G × fst H
1g (snd (DirProd G H)) = (1g (snd G)) , (1g (snd H))
_·_ (snd (DirProd G H)) x y = _·_ (snd G) (fst x) (fst y)
, _·_ (snd H) (snd x) (snd y)
(inv (snd (DirProd G H))) x = (inv (snd G) (fst x)) , (inv (snd H) (snd x))
is-set (isSemigroup (isMonoid (isGroup (snd (DirProd G H))))) =
isSet× (is-set (snd G)) (is-set (snd H))
assoc (isSemigroup (isMonoid (isGroup (snd (DirProd G H))))) x y z i =
assoc (snd G) (fst x) (fst y) (fst z) i , assoc (snd H) (snd x) (snd y) (snd z) i
fst (identity (isMonoid (isGroup (snd (DirProd G H)))) x) i =
rid (snd G) (fst x) i , rid (snd H) (snd x) i
snd (identity (isMonoid (isGroup (snd (DirProd G H)))) x) i =
lid (snd G) (fst x) i , lid (snd H) (snd x) i
fst (inverse (isGroup (snd (DirProd G H))) x) i =
(invr (snd G) (fst x) i) , invr (snd H) (snd x) i
snd (inverse (isGroup (snd (DirProd G H))) x) i =
(invl (snd G) (fst x) i) , invl (snd H) (snd x) i
|
{
"alphanum_fraction": 0.6169467787,
"avg_line_length": 42,
"ext": "agda",
"hexsha": "352d5446fc029d5f369d325f61d2711d31ead933",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/DirProd.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/DirProd.agda",
"max_line_length": 83,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/DirProd.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 539,
"size": 1428
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Conats
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Conat.Bisimilarity where
open import Size
open import Codata.Thunk
open import Codata.Conat
open import Relation.Binary
infix 1 _⊢_≈_
data _⊢_≈_ i : (m n : Conat ∞) → Set where
zero : i ⊢ zero ≈ zero
suc : ∀ {m n} → Thunk^R _⊢_≈_ i m n → i ⊢ suc m ≈ suc n
refl : ∀ {i m} → i ⊢ m ≈ m
refl {m = zero} = zero
refl {m = suc m} = suc λ where .force → refl
sym : ∀ {i m n} → i ⊢ m ≈ n → i ⊢ n ≈ m
sym zero = zero
sym (suc eq) = suc λ where .force → sym (eq .force)
trans : ∀ {i m n p} → i ⊢ m ≈ n → i ⊢ n ≈ p → i ⊢ m ≈ p
trans zero zero = zero
trans (suc eq₁) (suc eq₂) = suc λ where .force → trans (eq₁ .force) (eq₂ .force)
infix 1 _⊢_≲_
data _⊢_≲_ i : (m n : Conat ∞) → Set where
z≲n : ∀ {n} → i ⊢ zero ≲ n
s≲s : ∀ {m n} → Thunk^R _⊢_≲_ i m n → i ⊢ suc m ≲ suc n
≈⇒≲ : ∀ {i m n} → i ⊢ m ≈ n → i ⊢ m ≲ n
≈⇒≲ zero = z≲n
≈⇒≲ (suc eq) = s≲s λ where .force → ≈⇒≲ (eq .force)
≲-refl : ∀ {i m} → i ⊢ m ≲ m
≲-refl = ≈⇒≲ refl
≲-antisym : ∀ {i m n} → i ⊢ m ≲ n → i ⊢ n ≲ m → i ⊢ m ≈ n
≲-antisym z≲n z≲n = zero
≲-antisym (s≲s le) (s≲s ge) = suc λ where .force → ≲-antisym (le .force) (ge .force)
≲-trans : ∀ {i m n p} → i ⊢ m ≲ n → i ⊢ n ≲ p → i ⊢ m ≲ p
≲-trans z≲n _ = z≲n
≲-trans (s≲s le₁) (s≲s le₂) = s≲s λ where .force → ≲-trans (le₁ .force) (le₂ .force)
|
{
"alphanum_fraction": 0.4644670051,
"avg_line_length": 30.3076923077,
"ext": "agda",
"hexsha": "c9e3503a77ea4a5458f18fe3c644e9dbf9ff49a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Bisimilarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Bisimilarity.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 723,
"size": 1576
}
|
{-# OPTIONS --without-K #-}
open import Base
module Homotopy.Pushout where
open import Homotopy.PushoutDef public
pushout-diag-flip : ∀ {i} → pushout-diag i → pushout-diag i
pushout-diag-flip (diag A , B , C , f , g) = diag B , A , C , g , f
pushout-flip : ∀ {i} {d : pushout-diag i} → pushout d → pushout (pushout-diag-flip d)
pushout-flip {d = d} = pushout-rec-nondep
(pushout $ pushout-diag-flip d)
right left (! ◯ glue)
pushout-flip-flip : ∀ {i} {d : pushout-diag i} (p : pushout d)
→ pushout-flip (pushout-flip p) ≡ p
pushout-flip-flip {d = d} = pushout-rec
(λ p → pushout-flip (pushout-flip p) ≡ p)
(λ _ → refl)
(λ _ → refl)
(λ c →
transport (λ p → pushout-flip (pushout-flip p) ≡ p) (glue c) refl
≡⟨ trans-app≡id (pushout-flip ◯ pushout-flip) (glue c) refl ⟩
! (ap (pushout-flip ◯ pushout-flip) (glue c)) ∘ glue c
≡⟨ ap (λ x → ! x ∘ glue c)
$ ap-compose pushout-flip pushout-flip (glue c) ⟩
! (ap pushout-flip (ap pushout-flip (glue c))) ∘ glue c
≡⟨ ap (λ x → ! (ap pushout-flip x) ∘ glue c)
$ pushout-β-glue-nondep (pushout $ pushout-diag-flip d) right left (! ◯ glue) c ⟩
! (ap pushout-flip (! (glue c))) ∘ glue c
≡⟨ ap (λ x → ! x ∘ glue c) $ ap-opposite pushout-flip (glue c) ⟩
! (! (ap pushout-flip (glue c))) ∘ glue c
≡⟨ ap (λ x → ! (! x) ∘ glue c)
$ pushout-β-glue-nondep (pushout d) right left (! ◯ glue) c ⟩
! (! (! (glue c))) ∘ glue c
≡⟨ ap (λ x → ! x ∘ glue c) $ opposite-opposite $ glue c ⟩
! (glue c) ∘ glue c
≡⟨ opposite-left-inverse (glue c) ⟩∎
refl
∎)
pushout-β-!glue-nondep : ∀ {i} {d : pushout-diag i} {l} (D : Set l) →
let open pushout-diag d in
(left* : A → D) (right* : B → D)
(glue* : (c : C) → left* (f c) ≡ right* (g c)) (c : C)
→ ap (pushout-rec-nondep D left* right* glue*) (! (glue c)) ≡ ! (glue* c)
pushout-β-!glue-nondep D left* right* glue* c =
ap (pushout-rec-nondep D left* right* glue*) (! (glue c))
≡⟨ ap-opposite (pushout-rec-nondep D left* right* glue*) $ glue c ⟩
! (ap (pushout-rec-nondep D left* right* glue*) $ glue c)
≡⟨ ap ! $ pushout-β-glue-nondep D left* right* glue* c ⟩∎
! (glue* c)
∎
|
{
"alphanum_fraction": 0.5541027953,
"avg_line_length": 39.6071428571,
"ext": "agda",
"hexsha": "471e09d9abeac88ab320cfb8c52685cddcc05602",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Pushout.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Pushout.agda",
"max_line_length": 93,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 903,
"size": 2218
}
|
module Negative1 where
data D : Set where
lam : (D -> D) -> D
|
{
"alphanum_fraction": 0.5735294118,
"avg_line_length": 11.3333333333,
"ext": "agda",
"hexsha": "a337e3a418e0f78db5ae9eb2f96fd7b7dccd6dd8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Negative1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Negative1.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Negative1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 68
}
|
module FFI.Data.Text.Encoding where
open import Agda.Builtin.String using (String)
open import FFI.Data.ByteString using (ByteString)
{-# FOREIGN GHC import qualified Data.Text.Encoding #-}
postulate encodeUtf8 : String → ByteString
{-# COMPILE GHC encodeUtf8 = Data.Text.Encoding.encodeUtf8 #-}
|
{
"alphanum_fraction": 0.7733333333,
"avg_line_length": 27.2727272727,
"ext": "agda",
"hexsha": "54f324860d714a950fdee537cb198104775c7718",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/FFI/Data/Text/Encoding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/FFI/Data/Text/Encoding.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/FFI/Data/Text/Encoding.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 64,
"size": 300
}
|
{-| A custom prelude -}
module Eth.Prelude where
import Prelude
import Prelude.Bool -- using (bool)
import Prelude.List -- using (intercalate)
import Prelude.Monad -- using ((>=>))
import Control.Monad.Identity -- using
import Control.Monad.Writer -- using
-- (MonadWriter, WriterT, Writer, execWriterT, execWriter, tell)
import Control.Monad.Reader -- using
-- (MonadReader, ReaderT, Reader, runReaderT, runReader, ask, local)
infixl 6 <>
export
isNullStr : String -> Bool
isNullStr = (== neutral)
-- export
-- (<>) : Monoid m => m -> m -> m
-- (<>) = (<+>)
export
bool : a -> a -> Bool -> a
bool x y b = case b of
True => x
False => y
export
execWriterT : Functor m => WriterT w m a -> m w
execWriterT = map snd . runWriterT
-- works : WriterT w (ReaderT r Identity) _ -> ReaderT r Identity w
-- works = execWriterT @{ }
-- doesnt : WriterT w (Reader r) _ -> Reader r w
-- doesnt = execWriterT @{ FunctorReaderT }
-- using ReaderTFunctor
export
execWriter : Writer w a -> w
execWriter = runIdentity . execWriterT
export
runReader : Reader r a -> r -> a
runReader m = runIdentity . runReaderT m
-- M : Type -> Type -> Type -> Type
-- M w r a = WriterT w (Reader r) a
-- unM : M w r a -> w -> r -> a
-- unM = ?foo
|
{
"alphanum_fraction": 0.6464401294,
"avg_line_length": 22.4727272727,
"ext": "agda",
"hexsha": "715f4cb560a234cd794d98b6323e658b8b78402b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "fredefox/ethambda-agda",
"max_forks_repo_path": "src/Eth/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "fredefox/ethambda-agda",
"max_issues_repo_path": "src/Eth/Prelude.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "fredefox/ethambda-agda",
"max_stars_repo_path": "src/Eth/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 372,
"size": 1236
}
|
-- 2014-07-30 Andreas, issue reported by toporoskyy.y
data Nat : Set where
Zero : Nat
Succ : Nat -> Nat
boom : Nat -> Nat
boom n@(Succ _) = Zero
-- EXPECTED:
-- Not supported: @-patterns
-- when scope checking the left-hand side boom n@(Succ _) in the
-- definition of boom
|
{
"alphanum_fraction": 0.6643109541,
"avg_line_length": 20.2142857143,
"ext": "agda",
"hexsha": "5dadaf4baca52c556a8292d1fe3328c2ee8b2b0f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1236.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1236.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1236.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 87,
"size": 283
}
|
A : Set
|
{
"alphanum_fraction": 0.5,
"avg_line_length": 4,
"ext": "agda",
"hexsha": "31e6184cf1c46b422afb176373a3e5089f14bf9d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/HighlightMissingDefinition.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/HighlightMissingDefinition.agda",
"max_line_length": 7,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/HighlightMissingDefinition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 4,
"size": 8
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
F : Bool → Set
F false = Bool
F true = Nat
f : ∀ b → F b → Nat
f false false = 0
f false true = 1
f true x = 2
data D : Nat → Set where
mkD : (b : Bool) (x : F b) → D (f b x)
mutual
?X : Nat → Set
?X = _
?b : Nat → Bool
?b = _
-- Here we should check
-- (n : Nat) → ?X n == (x : F (?b 0)) → D (f (?b 0) x)
-- and get stuck on comparing the domains, but special inference
-- for constructors is overeager and compares the target types,
-- solving
-- ?X : Nat → Set
-- ?X x := D (f (?b 0) x)
-- Note that the call to f is not well-typed unless we solve the
-- (as yet unsolved) constraint Nat == F (?b 0).
constr₁ : (n : Nat) → ?X n
constr₁ = mkD (?b 0)
-- Now we can form other constraints on ?X. This one simplifies to
-- f (?b 0) 1 ≡ 0 (*)
constr₂ : ?X 1 ≡ D 0
constr₂ = refl
-- Finally, we pick the wrong solution for ?b, causing (*) to become
-- f false 1 ≡ 0
-- which crashes with an impossible when we try to reduce the call to f.
solve-b : ?b ≡ λ _ → false
solve-b = refl
|
{
"alphanum_fraction": 0.5766233766,
"avg_line_length": 24.5744680851,
"ext": "agda",
"hexsha": "16cf6948a9e3c6c43a77c55b9469b5d112d31309",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Bugs/Issue3027.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Bugs/Issue3027.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Bugs/Issue3027.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 418,
"size": 1155
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Torus where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Connected
open import Cubical.ZCohomology.MayerVietorisUnreduced
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.Groups.Prelims
open import Cubical.ZCohomology.KcompPrelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sigma
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Algebra.Group
open import Cubical.HITs.Pushout
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) hiding (map)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim2 to pElim2 ; ∣_∣ to ∣_∣₁) hiding (map)
open import Cubical.HITs.Nullification
open import Cubical.HITs.Truncation renaming (elim to trElim ; elim2 to trElim2 ; map to trMap ; rec to trRec)
open GroupHom
open GroupIso
private
module congLemma (key : Unit') where
module K = lockedCohom key
main : (n : ℕ) (p : Path (coHomK n) (0ₖ n) (0ₖ n))
→ Path (K.+K n (0ₖ n) (0ₖ n) ≡ K.+K n (0ₖ n) (0ₖ n))
(cong (K.+K n (0ₖ n)) p) (cong (λ x → K.+K n x (0ₖ n)) p)
main n = congIdLeft≡congIdRight (K.+K n) (K.-K n) (0ₖ n) (K.rUnitK n) (K.lUnitK n) (rUnitlUnit0K key n)
--------- H⁰(T²) ------------
H⁰-T²≅ℤ : GroupIso (coHomGr 0 (S₊ 1 × S₊ 1)) intGroup
H⁰-T²≅ℤ =
H⁰-connected (base , base)
λ (a , b) → pRec propTruncIsProp
(λ id1 → pRec propTruncIsProp
(λ id2 → ∣ ΣPathP (id1 , id2) ∣₁)
(Sn-connected 0 b) )
(Sn-connected 0 a)
--------- H¹(T²) -------------------------------
H¹-T²≅ℤ×ℤ : GroupIso (coHomGr 1 ((S₊ 1) × (S₊ 1))) (dirProd intGroup intGroup)
H¹-T²≅ℤ×ℤ = theIso □ dirProdGroupIso (invGroupIso (Hⁿ-Sⁿ≅ℤ 0)) (H⁰-Sⁿ≅ℤ 0)
where
helper : (x : hLevelTrunc 3 (S₊ 1)) → ∣ (S¹map x) ∣ ≡ x
helper = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ a → refl
typIso : Iso _ _
typIso = setTruncIso (curryIso ⋄ codomainIso S1→K₁≡S1×Int ⋄ toProdIso)
⋄ setTruncOfProdIso
theIso : GroupIso _ _
fun (map theIso) = Iso.fun (typIso)
isHom (map theIso) =
sElim2 (λ _ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet (λ _ → setTruncIsSet)) _ _)
λ f g → ΣPathP ((cong ∣_∣₂
(funExt (λ x → helper (f (x , base) +ₖ g (x , base))
∙ sym (cong₂ (λ x y → x +ₖ y)
(helper (f (x , base)))
(helper (g (x , base))))))) ,
(cong ∣_∣₂
(funExt
(toPropElim
(λ _ → isSetInt _ _)
(cong winding
(basechange-lemma2
(λ x → f (base , x))
(λ x → g (base , x))
λ x → S¹map x)
∙∙ winding-hom
(basechange2⁻
(S¹map (f (base , base)))
(λ i → S¹map (f (base , (loop i)))))
(basechange2⁻
(S¹map (g (base , base)))
(λ i → S¹map (g (base , (loop i)))))
∙∙ sym (addLemma
(winding
(basechange2⁻
(S¹map (f (base , base)))
(λ i → S¹map (f (base , (loop i))))))
(winding
(basechange2⁻
(S¹map (g (base , base)))
(λ i → S¹map (g (base , (loop i))))))))))))
inv theIso = Iso.inv typIso
rightInv theIso = Iso.rightInv typIso
leftInv theIso = Iso.leftInv typIso
----------------------- H²(T²) ------------------------------
open import Cubical.Foundations.Equiv
H²-T²≅ℤ : GroupIso (coHomGr 2 (S₊ 1 × S₊ 1)) intGroup
H²-T²≅ℤ = invGroupIso (ℤ≅H²-T² unlock)
where
module _ (key : Unit') where
module K = lockedCohom key
private
_+K_ : {n : ℕ} → coHomK n → coHomK n → coHomK n
_+K_ {n = n} = K.+K n
-K_ : {n : ℕ} → coHomK n → coHomK n
-K_ {n = n} = K.-K n
-H_ : {A : Type₀} {n : ℕ} → coHom n A → coHom n A
-H_ {n = n} = K.-H n
_+H_ : {A : Type₀} {n : ℕ} → coHom n A → coHom n A → coHom n A
_+H_ {n = n} = K.+H n
typIso : Iso _ _
typIso = helper
⋄ (invIso (prodIso (GroupIso→Iso (Hⁿ-S¹≅0 0))
(invIso (GroupIso→Iso (Hⁿ-Sⁿ≅ℤ 0))))
⋄ ((invIso setTruncOfProdIso)
⋄ (invIso (setTruncIso (curryIso
⋄ codomainIso (S1→K2≡K2×K1' key)
⋄ toProdIso)))))
where
helper : Iso Int (Unit × Int)
Iso.inv helper = snd
Iso.fun helper x = tt , x
Iso.leftInv helper _ = refl
Iso.rightInv helper _ = refl
mapIsHom : (x y : Int)
→ Iso.fun typIso (x +ℤ y) ≡ ((Iso.fun typIso x) +H Iso.fun typIso y)
mapIsHom a b =
(cong f ((GroupHom.isHom (GroupIso.map (invGroupIso (dirProdGroupIso (Hⁿ-S¹≅0 0) (invGroupIso (Hⁿ-Sⁿ≅ℤ 0)))))
(_ , a) (_ , b))
∙ λ i → guyId i , +H≡+ₕ key _ (~ i) (g a) (g b)))
∙∙ helper (g a) (g b)
∙∙ cong₂ (_+H_) (λ i → f (guyId2 (~ i) , g a)) λ i → f (guyId2 (~ i) , g b)
where
f = Iso.fun (((invIso setTruncOfProdIso ⋄ invIso (setTruncIso (curryIso ⋄ codomainIso (S1→K2≡K2×K1' key) ⋄ toProdIso)))))
g = GroupIso.inv (invGroupIso (Hⁿ-Sⁿ≅ℤ 0))
isPropH²-S¹ : isProp (coHom 2 (S₊ 1))
isPropH²-S¹ = isPropRetract (fun (map (Hⁿ-S¹≅0 0)))
(inv (Hⁿ-S¹≅0 0))
(leftInv (Hⁿ-S¹≅0 0))
isPropUnit
guyId : ∣ _ ∣₂ ≡ 0ₕ 2
guyId = isPropH²-S¹ _ _
guyId2 : ∣ _ ∣₂ ≡ 0ₕ 2
guyId2 = isPropH²-S¹ _ _
helper : (x y : ∥ ((S₊ 1) → (hLevelTrunc 3 (S₊ 1) )) ∥₂) →
f ((0ₕ 2) , (x +H y)) ≡ f ((0ₕ 2) , x) +H f (0ₕ 2 , y)
helper =
sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g i → ∣ (λ x → helper2 (f (fst x)) (g (fst x)) (snd x) i) ∣₂
where
helper2 : (x y : coHomK 1) (s : S₊ 1)
→ Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , x +K y) s ≡ (Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , x)) s +K (Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , y)) s
helper2 =
trElim2 (λ _ _ → isOfHLevelΠ 3 λ _ → isOfHLevelTrunc 4 _ _)
λ a b → λ {base → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂))
; (loop i) j → hcomp (λ k → λ{ (i = i0) → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂)) (j ∧ k)
; (i = i1) → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂)) (j ∧ k)
; (j = i0) → 0₂ +K (Kn→ΩKn+1 1 (∣ a ∣ +K ∣ b ∣) i)
; (j = i1) → cong₂ (_+K_) (sym (K.lUnitK _ (Kn→ΩKn+1 1 ∣ a ∣ i)))
(sym (K.lUnitK _ (Kn→ΩKn+1 1 ∣ b ∣ i))) k})
(helper3 ∣ a ∣ ∣ b ∣ j i)}
where
helper3 : (a b : coHomK 1) → cong (0₂ +K_) (Kn→ΩKn+1 1 (a +K b)) ≡ cong₂ (_+K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b)
helper3 a b = cong (cong (0₂ +K_)) (+K→∙ key 1 a b)
∙ (congFunct (0₂ +K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b)
∙∙ (λ i → congLemma.main key 2 (Kn→ΩKn+1 1 a) i ∙ cong (_+K_ ∣ north ∣) (λ i → Kn→ΩKn+1 1 b i))
∙∙ sym (cong₂Funct (_+K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b)))
ℤ≅H²-T² : GroupIso intGroup (coHomGr 2 (S₊ 1 × S₊ 1))
fun (map ℤ≅H²-T²) = Iso.fun typIso
isHom (map ℤ≅H²-T²) = pm key mapIsHom
where
pm : (t : Unit')
→ ((x y : Int)
→ Iso.fun typIso (x +ℤ y) ≡ (lockedCohom.+H t _ (Iso.fun typIso x) (Iso.fun typIso y)))
→ isGroupHom intGroup (coHomGr 2 (S₊ 1 × S₊ 1)) (Iso.fun typIso)
pm unlock p = p
inv ℤ≅H²-T² = Iso.inv typIso
rightInv ℤ≅H²-T² = Iso.rightInv typIso
leftInv ℤ≅H²-T² = Iso.leftInv typIso
private
to₂ : coHom 2 (S₊ 1 × S₊ 1) → Int
to₂ = fun (map H²-T²≅ℤ)
from₂ : Int → coHom 2 (S₊ 1 × S₊ 1)
from₂ = inv H²-T²≅ℤ
to₁ : coHom 1 (S₊ 1 × S₊ 1) → Int × Int
to₁ = fun (map H¹-T²≅ℤ×ℤ)
from₁ : Int × Int → coHom 1 (S₊ 1 × S₊ 1)
from₁ = inv H¹-T²≅ℤ×ℤ
to₀ : coHom 0 (S₊ 1 × S₊ 1) → Int
to₀ = fun (map H⁰-T²≅ℤ)
from₀ : Int → coHom 0 (S₊ 1 × S₊ 1)
from₀ = inv H⁰-T²≅ℤ
{-
-- Compute fast:
test : to₁ (from₁ (0 , 1) +ₕ from₁ (1 , 0)) ≡ (1 , 1)
test = refl
test2 : to₁ (from₁ (5 , 1) +ₕ from₁ (-2 , 3)) ≡ (3 , 4)
test2 = refl
-- Will not compute:
test3 : to₂ (from₂ 0) ≡ 0
test3 = refl
-}
|
{
"alphanum_fraction": 0.4571595672,
"avg_line_length": 42.7458333333,
"ext": "agda",
"hexsha": "2e4a5934a02b7f4f31cffdd0c2852f9bae093e51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_line_length": 152,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Torus.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3685,
"size": 10259
}
|
------------------------------------------------------------------------------
-- Properties related with lists
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.PropertiesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesI
open import FOTC.Base.PropertiesI
open import FOTC.Data.Conat
open import FOTC.Data.List
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Congruence properties
++-leftCong : ∀ {xs ys zs} → xs ≡ ys → xs ++ zs ≡ ys ++ zs
++-leftCong refl = refl
++-rightCong : ∀ {xs ys zs} → ys ≡ zs → xs ++ ys ≡ xs ++ zs
++-rightCong refl = refl
mapCong₂ : ∀ {f xs ys} → xs ≡ ys → map f xs ≡ map f ys
mapCong₂ refl = refl
revCong₁ : ∀ {xs ys zs} → xs ≡ ys → rev xs zs ≡ rev ys zs
revCong₁ refl = refl
revCong₂ : ∀ {xs ys zs} → ys ≡ zs → rev xs ys ≡ rev xs zs
revCong₂ refl = refl
reverseCong : ∀ {xs ys} → xs ≡ ys → reverse xs ≡ reverse ys
reverseCong refl = refl
reverse'Cong : ∀ {xs ys} → xs ≡ ys → reverse' xs ≡ reverse' ys
reverse'Cong refl = refl
lengthCong : ∀ {xs ys} → xs ≡ ys → length xs ≡ length ys
lengthCong refl = refl
------------------------------------------------------------------------------
-- Totality properties
lengthList-N : ∀ {xs} → List xs → N (length xs)
lengthList-N lnil = subst N (sym length-[]) nzero
lengthList-N (lcons x {xs} Lxs) =
subst N (sym (length-∷ x xs)) (nsucc (lengthList-N Lxs))
++-List : ∀ {xs ys} → List xs → List ys → List (xs ++ ys)
++-List {ys = ys} lnil Lys = subst List (sym (++-[] ys)) Lys
++-List {ys = ys} (lcons x {xs} Lxs) Lys =
subst List (sym (++-∷ x xs ys)) (lcons x (++-List Lxs Lys))
map-List : ∀ f {xs} → List xs → List (map f xs)
map-List f lnil = subst List (sym (map-[] f)) lnil
map-List f (lcons x {xs} Lxs) =
subst List (sym (map-∷ f x xs)) (lcons (f · x) (map-List f Lxs))
rev-List : ∀ {xs ys} → List xs → List ys → List (rev xs ys)
rev-List {ys = ys} lnil Lys = subst List (sym (rev-[] ys)) Lys
rev-List {ys = ys} (lcons x {xs} Lxs) Lys =
subst List (sym (rev-∷ x xs ys)) (rev-List Lxs (lcons x Lys))
reverse-List : ∀ {xs} → List xs → List (reverse xs)
reverse-List Lxs = rev-List Lxs lnil
reverse'-List : ∀ {xs} → List xs → List (reverse' xs)
reverse'-List lnil = subst List (sym reverse'-[]) lnil
reverse'-List (lcons x {xs} Lxs) =
subst List (sym (reverse'-∷ x xs)) (++-List (reverse'-List Lxs) (lcons x lnil))
-- Length properties
lg-x<lg-x∷xs : ∀ x {xs} → List xs → length xs < length (x ∷ xs)
lg-x<lg-x∷xs x lnil =
lt (length []) (length (x ∷ []))
≡⟨ subst₂ (λ t t' → lt (length []) (length (x ∷ [])) ≡ lt t t')
length-[]
(length-∷ x [])
refl
⟩
lt zero (succ₁ (length []))
≡⟨ lt-0S (length []) ⟩
true ∎
lg-x<lg-x∷xs x (lcons y {xs} Lxs) =
lt (length (y ∷ xs)) (length (x ∷ y ∷ xs))
≡⟨ subst₂ (λ t t' → lt (length (y ∷ xs)) (length (x ∷ y ∷ xs)) ≡ lt t t')
(length-∷ y xs)
(length-∷ x (y ∷ xs))
refl
⟩
lt (succ₁ (length xs)) (succ₁ (length (y ∷ xs)))
≡⟨ lt-SS (length xs) (length (y ∷ xs)) ⟩
lt (length xs) (length (y ∷ xs))
≡⟨ lg-x<lg-x∷xs y Lxs ⟩
true ∎
lg-xs<lg-[]→⊥ : ∀ {xs} → List xs → ¬ (length xs < length [])
lg-xs<lg-[]→⊥ lnil lg-[]<lg-[] = ⊥-elim (0<0→⊥ helper)
where
helper : zero < zero
helper =
lt zero zero
≡⟨ subst₂ (λ t t' → lt zero zero ≡ lt t t')
(sym length-[])
(sym length-[])
refl
⟩
lt (length []) (length [])
≡⟨ lg-[]<lg-[] ⟩
true ∎
lg-xs<lg-[]→⊥ (lcons x {xs} Lxs) lg-x∷xs<lg-[] = ⊥-elim (S<0→⊥ helper)
where
helper : succ₁ (length xs) < zero
helper =
lt (succ₁ (length xs)) zero
≡⟨ subst₂ (λ t t' → lt (succ₁ (length xs)) zero ≡ lt t t')
(sym (length-∷ x xs))
(sym length-[])
refl
⟩
lt (length (x ∷ xs)) (length [])
≡⟨ lg-x∷xs<lg-[] ⟩
true ∎
lg-xs≡∞→lg-x∷xs≡∞ : ∀ x xs → length xs ≡ ∞ → length (x ∷ xs) ≡ ∞
lg-xs≡∞→lg-x∷xs≡∞ x xs h =
length (x ∷ xs) ≡⟨ length-∷ x xs ⟩
succ₁ (length xs) ≡⟨ succCong h ⟩
succ₁ ∞ ≡⟨ sym ∞-eq ⟩
∞ ∎
-- Append properties
++-leftIdentity : ∀ xs → [] ++ xs ≡ xs
++-leftIdentity = ++-[]
++-rightIdentity : ∀ {xs} → List xs → xs ++ [] ≡ xs
++-rightIdentity lnil = ++-leftIdentity []
++-rightIdentity (lcons x {xs} Lxs) =
(x ∷ xs) ++ [] ≡⟨ ++-∷ x xs [] ⟩
x ∷ (xs ++ []) ≡⟨ ∷-rightCong (++-rightIdentity Lxs) ⟩
x ∷ xs ∎
++-assoc : ∀ {xs} → List xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
++-assoc lnil ys zs =
([] ++ ys) ++ zs ≡⟨ ++-leftCong (++-leftIdentity ys) ⟩
ys ++ zs ≡⟨ sym (++-leftIdentity (ys ++ zs)) ⟩
[] ++ ys ++ zs ∎
++-assoc (lcons x {xs} Lxs) ys zs =
((x ∷ xs) ++ ys) ++ zs ≡⟨ ++-leftCong (++-∷ x xs ys) ⟩
(x ∷ (xs ++ ys)) ++ zs ≡⟨ ++-∷ x (xs ++ ys) zs ⟩
x ∷ ((xs ++ ys) ++ zs) ≡⟨ ∷-rightCong (++-assoc Lxs ys zs) ⟩
x ∷ (xs ++ ys ++ zs) ≡⟨ sym (++-∷ x xs (ys ++ zs)) ⟩
(x ∷ xs) ++ ys ++ zs ∎
-- Map properties
map-++ : ∀ f {xs} → List xs → ∀ ys → map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++ f lnil ys =
map f ([] ++ ys) ≡⟨ mapCong₂ (++-leftIdentity ys) ⟩
map f ys ≡⟨ sym (++-leftIdentity (map f ys)) ⟩
[] ++ map f ys ≡⟨ ++-leftCong (sym (map-[] f)) ⟩
map f [] ++ map f ys ∎
map-++ f (lcons x {xs} Lxs) ys =
map f ((x ∷ xs) ++ ys) ≡⟨ mapCong₂ (++-∷ x xs ys) ⟩
map f (x ∷ xs ++ ys) ≡⟨ map-∷ f x (xs ++ ys) ⟩
f · x ∷ map f (xs ++ ys) ≡⟨ ∷-rightCong (map-++ f Lxs ys) ⟩
f · x ∷ (map f xs ++ map f ys) ≡⟨ sym (++-∷ (f · x) (map f xs) (map f ys)) ⟩
(f · x ∷ map f xs) ++ map f ys ≡⟨ ++-leftCong (sym (map-∷ f x xs)) ⟩
map f (x ∷ xs) ++ map f ys ∎
map≡[] : ∀ {f xs} → List xs → map f xs ≡ [] → xs ≡ []
map≡[] lnil h = refl
map≡[] {f} (lcons x {xs} Lxs) h = ⊥-elim ([]≢cons (trans (sym h) (map-∷ f x xs)))
-- Reverse properties
reverse-[x]≡[x] : ∀ x → reverse (x ∷ []) ≡ x ∷ []
reverse-[x]≡[x] x =
rev (x ∷ []) [] ≡⟨ rev-∷ x [] [] ⟩
rev [] (x ∷ []) ≡⟨ rev-[] (x ∷ []) ⟩
x ∷ [] ∎
rev-++ : ∀ {xs} → List xs → ∀ ys → rev xs ys ≡ rev xs [] ++ ys
rev-++ lnil ys =
rev [] ys ≡⟨ rev-[] ys ⟩
ys ≡⟨ sym (++-leftIdentity ys) ⟩
[] ++ ys ≡⟨ ++-leftCong (sym (rev-[] [])) ⟩
rev [] [] ++ ys ∎
rev-++ (lcons x {xs} Lxs) ys =
rev (x ∷ xs) ys
≡⟨ rev-∷ x xs ys ⟩
rev xs (x ∷ ys)
≡⟨ rev-++ Lxs (x ∷ ys) ⟩
rev xs [] ++ x ∷ ys
≡⟨ subst (λ t → rev xs [] ++ x ∷ ys ≡ rev xs [] ++ t)
(sym (
(x ∷ []) ++ ys ≡⟨ ++-∷ x [] ys ⟩
x ∷ ([] ++ ys) ≡⟨ ∷-rightCong (++-leftIdentity ys) ⟩
x ∷ ys ∎
)
)
refl
⟩
rev xs [] ++ (x ∷ []) ++ ys
≡⟨ sym (++-assoc (rev-List Lxs lnil) (x ∷ []) ys) ⟩
(rev xs [] ++ (x ∷ [])) ++ ys
≡⟨ ++-leftCong (sym (rev-++ Lxs (x ∷ []))) ⟩
rev xs (x ∷ []) ++ ys
≡⟨ ++-leftCong (sym (rev-∷ x xs [])) ⟩
rev (x ∷ xs) [] ++ ys ∎
reverse-++ : ∀ {xs ys} → List xs → List ys →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++ {ys = ys} lnil Lys =
reverse ([] ++ ys) ≡⟨ reverseCong (++-leftIdentity ys) ⟩
reverse ys ≡⟨ sym (++-rightIdentity (reverse-List Lys)) ⟩
reverse ys ++ [] ≡⟨ ++-rightCong (sym (rev-[] [])) ⟩
reverse ys ++ reverse [] ∎
reverse-++ (lcons x {xs} Lxs) lnil =
reverse ((x ∷ xs) ++ [])
≡⟨ reverseCong (++-rightIdentity (lcons x Lxs)) ⟩
reverse (x ∷ xs)
≡⟨ sym (++-leftIdentity (reverse (x ∷ xs))) ⟩
[] ++ reverse (x ∷ xs)
≡⟨ ++-leftCong (sym (rev-[] [])) ⟩
reverse [] ++ reverse (x ∷ xs) ∎
reverse-++ (lcons x {xs} Lxs) (lcons y {ys} Lys) =
reverse ((x ∷ xs) ++ y ∷ ys)
≡⟨ refl ⟩
rev ((x ∷ xs) ++ y ∷ ys) []
≡⟨ revCong₁ (++-∷ x xs (y ∷ ys)) ⟩
rev (x ∷ (xs ++ y ∷ ys)) []
≡⟨ rev-∷ x (xs ++ y ∷ ys) [] ⟩
rev (xs ++ y ∷ ys) (x ∷ [])
≡⟨ rev-++ (++-List Lxs (lcons y Lys)) (x ∷ []) ⟩
rev (xs ++ y ∷ ys) [] ++ (x ∷ [])
≡⟨ refl ⟩
reverse (xs ++ y ∷ ys) ++ (x ∷ [])
≡⟨ ++-leftCong (reverse-++ Lxs (lcons y Lys)) ⟩
(reverse (y ∷ ys) ++ reverse xs) ++ x ∷ []
≡⟨ ++-assoc (reverse-List (lcons y Lys)) (reverse xs) (x ∷ []) ⟩
reverse (y ∷ ys) ++ reverse xs ++ x ∷ []
≡⟨ refl ⟩
reverse (y ∷ ys) ++ rev xs [] ++ x ∷ []
≡⟨ ++-rightCong (sym (rev-++ Lxs (x ∷ []))) ⟩
reverse (y ∷ ys) ++ rev xs (x ∷ [])
≡⟨ ++-rightCong (sym (rev-∷ x xs [])) ⟩
reverse (y ∷ ys) ++ rev (x ∷ xs) []
≡⟨ refl ⟩
reverse (y ∷ ys) ++ reverse (x ∷ xs) ∎
reverse-∷ : ∀ x {ys} → List ys →
reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])
reverse-∷ x lnil =
rev (x ∷ []) [] ≡⟨ rev-∷ x [] [] ⟩
rev [] (x ∷ []) ≡⟨ rev-[] (x ∷ []) ⟩
x ∷ [] ≡⟨ sym (++-leftIdentity (x ∷ [])) ⟩
[] ++ x ∷ [] ≡⟨ ++-leftCong (sym (rev-[] [])) ⟩
rev [] [] ++ x ∷ [] ∎
reverse-∷ x (lcons y {ys} Lys) = sym prf
where
prf : reverse (y ∷ ys) ++ x ∷ [] ≡ reverse (x ∷ y ∷ ys)
prf =
reverse (y ∷ ys) ++ x ∷ []
≡⟨ ++-rightCong (sym (reverse-[x]≡[x] x)) ⟩
(reverse (y ∷ ys) ++ reverse (x ∷ []))
≡⟨ sym (reverse-++ (lcons x lnil) (lcons y Lys)) ⟩
reverse ((x ∷ []) ++ (y ∷ ys))
≡⟨ reverseCong (++-∷ x [] (y ∷ ys)) ⟩
reverse (x ∷ ([] ++ (y ∷ ys)))
≡⟨ reverseCong (∷-rightCong (++-leftIdentity (y ∷ ys))) ⟩
reverse (x ∷ y ∷ ys) ∎
reverse'-involutive-helper : ∀ x {ys} → List ys →
reverse' (ys ++ x ∷ []) ≡ x ∷ reverse' ys
reverse'-involutive-helper x lnil =
reverse' ([] ++ x ∷ []) ≡⟨ reverse'Cong (++-[] (x ∷ [])) ⟩
reverse' (x ∷ []) ≡⟨ reverse'-∷ x [] ⟩
reverse' [] ++ x ∷ [] ≡⟨ ++-leftCong reverse'-[] ⟩
[] ++ x ∷ [] ≡⟨ ++-[] (x ∷ []) ⟩
x ∷ [] ≡⟨ ∷-rightCong (sym reverse'-[]) ⟩
x ∷ reverse' [] ∎
reverse'-involutive-helper x (lcons y {ys} Lys) =
reverse' ((y ∷ ys) ++ x ∷ [])
≡⟨ reverse'Cong (++-∷ y ys (x ∷ [])) ⟩
reverse' (y ∷ ys ++ x ∷ [])
≡⟨ reverse'-∷ y (ys ++ x ∷ []) ⟩
reverse' (ys ++ x ∷ []) ++ y ∷ []
≡⟨ ++-leftCong (reverse'-involutive-helper x Lys) ⟩
(x ∷ reverse' ys) ++ (y ∷ [])
≡⟨ ++-∷ x (reverse' ys) (y ∷ []) ⟩
x ∷ (reverse' ys ++ y ∷ [])
≡⟨ ∷-rightCong (sym (reverse'-∷ y ys)) ⟩
x ∷ reverse' (y ∷ ys) ∎
-- Adapted from (Bird and Wadler, 1988 §5.4.2).
reverse'-involutive : ∀ {xs} → List xs → reverse' (reverse' xs) ≡ xs
reverse'-involutive lnil =
reverse' (reverse' []) ≡⟨ reverse'Cong reverse'-[] ⟩
reverse' [] ≡⟨ reverse'-[] ⟩
[] ∎
reverse'-involutive (lcons x {xs} Lxs) =
reverse' (reverse' (x ∷ xs))
≡⟨ reverse'Cong (reverse'-∷ x xs) ⟩
reverse' (reverse' xs ++ (x ∷ []))
≡⟨ reverse'-involutive-helper x (reverse'-List Lxs) ⟩
x ∷ reverse' (reverse' xs)
≡⟨ ∷-rightCong (reverse'-involutive Lxs) ⟩
x ∷ xs ∎
------------------------------------------------------------------------------
-- References
-- Bird, R. and Wadler, P. (1988). Introduction to Functional
-- Programming. Prentice Hall International.
|
{
"alphanum_fraction": 0.4509383838,
"avg_line_length": 34.3205882353,
"ext": "agda",
"hexsha": "f1af226446ad6024a5f0b1f786f74e3c729fb287",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/PropertiesI.agda",
"max_line_length": 81,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 4658,
"size": 11669
}
|
module Vec where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Vec (A : Set) : Nat -> Set where
ε : Vec A zero
_►_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
vec : {A : Set}{n : Nat} -> A -> Vec A n
vec {n = zero} x = ε
vec {n = suc n} x = x ► vec x
_<*>_ : {A B : Set}{n : Nat} -> Vec (A -> B) n -> Vec A n -> Vec B n
ε <*> ε = ε
(f ► fs) <*> (x ► xs) = f x ► (fs <*> xs)
-- map
-- zip
|
{
"alphanum_fraction": 0.4312354312,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "e98a58dfbf2f028a317a3b4014aee97aed476e5f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tactics/bool/Vec.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tactics/bool/Vec.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tactics/bool/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 176,
"size": 429
}
|
module MisformedTypeSignature where
postulate A : Set
(f g) : A
|
{
"alphanum_fraction": 0.7424242424,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "5e4b9a49121371049ddb18f582ba4a75f868adc4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/MisformedTypeSignature.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/MisformedTypeSignature.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/MisformedTypeSignature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 66
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors defined as functions from a finite set to a type.
------------------------------------------------------------------------
-- This implementation is designed for reasoning about fixed-size
-- vectors where ease of retrieval of elements is prioritised.
-- See `Data.Vec` for an alternative implementation using inductive
-- data-types, which is more suitable for reasoning about vectors that
-- will grow or shrink in size.
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Functional where
open import Data.Fin.Base using (Fin; zero; suc; splitAt; punchIn)
open import Data.List.Base as L using (List)
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Product using (Σ; ∃; _×_; _,_; proj₁; proj₂)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_])
open import Data.Vec.Base as V using (Vec)
open import Function
open import Level using (Level)
infixr 5 _∷_ _++_
infixl 4 _⊛_
private
variable
a b c : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Definition
Vector : Set a → ℕ → Set a
Vector A n = Fin n → A
------------------------------------------------------------------------
-- Conversion
toVec : ∀ {n} → Vector A n → Vec A n
toVec = V.tabulate
fromVec : ∀ {n} → Vec A n → Vector A n
fromVec = V.lookup
toList : ∀ {n} → Vector A n → List A
toList = L.tabulate
fromList : ∀ (xs : List A) → Vector A (L.length xs)
fromList = L.lookup
------------------------------------------------------------------------
-- Construction and deconstruction
[] : Vector A zero
[] ()
_∷_ : ∀ {n} → A → Vector A n → Vector A (suc n)
(x ∷ xs) zero = x
(x ∷ xs) (suc i) = xs i
head : ∀ {n} → Vector A (suc n) → A
head xs = xs zero
tail : ∀ {n} → Vector A (suc n) → Vector A n
tail xs = xs ∘ suc
uncons : ∀ {n} → Vector A (suc n) → A × Vector A n
uncons xs = head xs , tail xs
replicate : ∀ {n} → A → Vector A n
replicate = const
remove : ∀ {n} → Fin (suc n) → Vector A (suc n) → Vector A n
remove i t = t ∘ punchIn i
------------------------------------------------------------------------
-- Transformations
map : (A → B) → ∀ {n} → Vector A n → Vector B n
map f xs = f ∘ xs
_++_ : ∀ {m n} → Vector A m → Vector A n → Vector A (m + n)
_++_ {m = m} xs ys i = [ xs , ys ] (splitAt m i)
foldr : (A → B → B) → B → ∀ {n} → Vector A n → B
foldr f z {n = zero} xs = z
foldr f z {n = suc n} xs = f (head xs) (foldr f z (tail xs))
foldl : (B → A → B) → B → ∀ {n} → Vector A n → B
foldl f z {n = zero} xs = z
foldl f z {n = suc n} xs = foldl f (f z (head xs)) (tail xs)
rearrange : ∀ {m n} → (Fin m → Fin n) → Vector A n → Vector A m
rearrange r xs = xs ∘ r
_⊛_ : ∀ {n} → Vector (A → B) n → Vector A n → Vector B n
_⊛_ = _ˢ_
zipWith : (A → B → C) → ∀ {n} → Vector A n → Vector B n → Vector C n
zipWith f xs ys i = f (xs i) (ys i)
zip : ∀ {n} → Vector A n → Vector B n → Vector (A × B) n
zip = zipWith _,_
|
{
"alphanum_fraction": 0.5154605263,
"avg_line_length": 27.3873873874,
"ext": "agda",
"hexsha": "1bc0eef9f58cda9c3bc9c1f0036aa8c8d2d74fa4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Functional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Functional.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Functional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 948,
"size": 3040
}
|
open import Type
open import Logic.Classical as Logic using (Classical)
open import Logic.Predicate as Logic using ()
module Formalization.ClassicalPropositionalLogic ⦃ classical : ∀{ℓ} → Logic.∀ₗ(Classical{ℓ}) ⦄ where
import Lvl
open import Data
open import Data.Boolean
import Data.Boolean.Operators
open import Data.Boolean.Stmt
open import Data.Either as Either using (_‖_ ; Left ; Right)
open import Data.Tuple as Tuple using ()
private module BoolOp = Data.Boolean.Operators.Logic
open import Functional
open import Function.Names using (_⊜_)
open import Logic
open import Logic.Propositional as Logic using (_←_)
open import Logic.Propositional.Theorems as Logic using ()
open import Logic.Predicate.Theorems as Logic using ()
open import Relator.Equals
open import Relator.Equals.Proofs
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_)
open Sets.PredicateSet.BoundedQuantifiers
open import Structure.Relator.Properties
open import Syntax.Function
open import Type.Properties.Decidable.Proofs
open import Type.Properties.Decidable
open import Type.Size.Countable
private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level
open import Formalization.ClassicalPropositionalLogic.NaturalDeduction
open import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs
open import Formalization.ClassicalPropositionalLogic.Syntax
open import Formalization.ClassicalPropositionalLogic.Syntax.Proofs
open import Formalization.ClassicalPropositionalLogic.Semantics
open import Formalization.ClassicalPropositionalLogic.Semantics.Proofs
import Formalization.ClassicalPropositionalLogic.TruthTable as TruthTable
instance _ = classical-to-decidable
instance _ = classical-to-decider
module NaturalDeduction where
private variable P : Type{ℓₚ}
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ}
private variable φ ψ : Formula(P)
[⊢]-functionₗ : (Γ₁ ≡ₛ Γ₂) → ((Γ₁ ⊢_) ≡ₛ (Γ₂ ⊢_))
[⊢]-functionₗ Γ₁Γ₂ = Logic.[↔]-intro (weaken (Logic.[↔]-to-[←] Γ₁Γ₂)) (weaken (Logic.[↔]-to-[→] Γ₁Γ₂))
[⊢]-compose : (Γ ⊢ φ) → ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ ψ)
[⊢]-compose Γφ Γφψ = [∨]-elim Γφψ Γφψ ([∨]-introₗ Γφ)
-- TODO: Is this provable? Does one need to include it in the definition of (_⊢_)? Is it even possible to include it?
-- [⊢]-hypothesis : ((Γ ⊢ φ) → (Γ ⊢ ψ)) → ((Γ ∪ singleton(φ)) ⊢ ψ)
-- [⊢]-hypothesis hyp = {!!}
[⊢][→]-intro-from-[∨] : (Γ ⊢ ¬ φ) Logic.∨ (Γ ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ))
[⊢][→]-intro-from-[∨] {Γ = Γ}{φ}{ψ} (Left x) = [⟶]-intro ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) (weaken-union {Γ₂ = singleton φ} x)))
[⊢][→]-intro-from-[∨] (Right x) = [⟶]-intro (weaken-union x)
-- A smallest finite set of assumptions that is able to derive a formula.
finiteAssumptions : ∀{φ : Formula(P)} → (Γ ⊢ φ) → Formulas(P){Lvl.of(P)}
finiteAssumptions {φ = φ} (direct _) = singleton(φ)
finiteAssumptions {φ = .⊤} [⊤]-intro = ∅
finiteAssumptions {φ = .⊥} ([⊥]-intro p q) = finiteAssumptions p ∪ finiteAssumptions q
finiteAssumptions {φ = φ} ([⊥]-elim p) = finiteAssumptions p
finiteAssumptions {φ = ¬ φ} ([¬]-intro{φ = φ} p) = finiteAssumptions p ∖ singleton(φ)
finiteAssumptions {φ = φ} ([¬]-elim {φ = φ} p) = finiteAssumptions p ∖ singleton(¬ φ)
finiteAssumptions {φ = .(_ ∧ _)} ([∧]-intro p q) = finiteAssumptions p ∪ finiteAssumptions q
finiteAssumptions {φ = φ} ([∧]-elimₗ p) = finiteAssumptions p
finiteAssumptions {φ = φ} ([∧]-elimᵣ p) = finiteAssumptions p
finiteAssumptions {φ = .(_ ∨ _)} ([∨]-introₗ p) = finiteAssumptions p
finiteAssumptions {φ = .(_ ∨ _)} ([∨]-introᵣ p) = finiteAssumptions p
finiteAssumptions {φ = _} ([∨]-elim {φ = φ}{ψ} p q r) = ((finiteAssumptions p ∖ singleton(φ)) ∪ (finiteAssumptions q ∖ singleton(ψ))) ∪ finiteAssumptions r
finiteAssumptions {φ = .(_ ⟶ _)} ([⟶]-intro{φ = φ} p) = finiteAssumptions p ∖ singleton(φ)
finiteAssumptions {φ = φ} ([⟶]-elim p q) = finiteAssumptions p ∪ finiteAssumptions q
finiteAssumptions {φ = .(_ ⟷ _)} ([⟷]-intro{φ = φ}{ψ} p q) = (finiteAssumptions p ∖ singleton(ψ)) ∪ (finiteAssumptions q ∖ singleton(φ))
finiteAssumptions {φ = φ} ([⟷]-elimₗ p q) = finiteAssumptions p ∪ finiteAssumptions q
finiteAssumptions {φ = φ} ([⟷]-elimᵣ p q) = finiteAssumptions p ∪ finiteAssumptions q
finiteAssumptions-correctness : (p : (Γ ⊢ φ)) → (finiteAssumptions p ⊢ φ)
finiteAssumptions-correctness (direct x) = direct [≡]-intro
finiteAssumptions-correctness [⊤]-intro = [⊤]-intro
finiteAssumptions-correctness ([⊥]-intro p q) = [⊥]-intro (weaken Left (finiteAssumptions-correctness p)) (weaken Right (finiteAssumptions-correctness q))
finiteAssumptions-correctness ([⊥]-elim p) = [⊥]-elim (finiteAssumptions-correctness p)
finiteAssumptions-correctness ([¬]-intro p) = [¬]-intro (weaken (Logic.[↔]-to-[←] ([∖][∪]-is-[∪] {A = finiteAssumptions p}{B = singleton _}) ∘ Logic.[∨]-introₗ) (finiteAssumptions-correctness p))
finiteAssumptions-correctness ([¬]-elim p) = [¬]-elim (weaken (Logic.[↔]-to-[←] ([∖][∪]-is-[∪] {A = finiteAssumptions p}{B = singleton _}) ∘ Logic.[∨]-introₗ) (finiteAssumptions-correctness p))
finiteAssumptions-correctness ([∧]-intro p q) = [∧]-intro (weaken Left (finiteAssumptions-correctness p)) (weaken Right (finiteAssumptions-correctness q))
finiteAssumptions-correctness ([∧]-elimₗ p) = [∧]-elimₗ (finiteAssumptions-correctness p)
finiteAssumptions-correctness ([∧]-elimᵣ p) = [∧]-elimᵣ (finiteAssumptions-correctness p)
finiteAssumptions-correctness ([∨]-introₗ p) = [∨]-introₗ (finiteAssumptions-correctness p)
finiteAssumptions-correctness ([∨]-introᵣ p) = [∨]-introᵣ (finiteAssumptions-correctness p)
finiteAssumptions-correctness ([∨]-elim{φ = φ}{ψ} p q r) = [∨]-elim (weaken (sl ∘ Left) (finiteAssumptions-correctness p)) (weaken (sr ∘ Left) (finiteAssumptions-correctness q)) (weaken Right (finiteAssumptions-correctness r)) where
postulate sl : (finiteAssumptions p ∪ singleton(φ)) ⊆ ((((finiteAssumptions p ∖ singleton(φ)) ∪ (finiteAssumptions q ∖ singleton(ψ))) ∪ finiteAssumptions r) ∪ singleton(φ))
postulate sr : (finiteAssumptions q ∪ singleton(ψ)) ⊆ ((((finiteAssumptions p ∖ singleton(φ)) ∪ (finiteAssumptions q ∖ singleton(ψ))) ∪ finiteAssumptions r) ∪ singleton(ψ))
finiteAssumptions-correctness ([⟶]-intro p) = [⟶]-intro (weaken (Logic.[↔]-to-[←] ([∖][∪]-is-[∪] {A = finiteAssumptions p}{B = singleton _}) ∘ Logic.[∨]-introₗ) (finiteAssumptions-correctness p))
finiteAssumptions-correctness ([⟶]-elim p q) = [⟶]-elim (weaken Left (finiteAssumptions-correctness p)) (weaken Right (finiteAssumptions-correctness q))
finiteAssumptions-correctness ([⟷]-intro p q) = [⟷]-intro (weaken (sl ∘ Left) (finiteAssumptions-correctness p)) (weaken (sr ∘ Left) (finiteAssumptions-correctness q)) where
postulate sl : (finiteAssumptions p ∪ singleton(φ)) ⊆ (((finiteAssumptions p ∖ singleton(φ)) ∪ (finiteAssumptions q ∖ singleton(ψ))) ∪ singleton(φ))
postulate sr : (finiteAssumptions q ∪ singleton(ψ)) ⊆ (((finiteAssumptions p ∖ singleton(φ)) ∪ (finiteAssumptions q ∖ singleton(ψ))) ∪ singleton(ψ))
finiteAssumptions-correctness ([⟷]-elimₗ p q) = [⟷]-elimₗ (weaken Left (finiteAssumptions-correctness p)) (weaken Right (finiteAssumptions-correctness q))
finiteAssumptions-correctness ([⟷]-elimᵣ p q) = [⟷]-elimᵣ (weaken Left (finiteAssumptions-correctness p)) (weaken Right (finiteAssumptions-correctness q))
finiteAssumptions-subset : (p : (Γ ⊢ φ)) → (finiteAssumptions p ⊆ Γ)
finiteAssumptions-subset (direct x) = \{[≡]-intro → x}
finiteAssumptions-subset [⊤]-intro = empty
finiteAssumptions-subset ([⊥]-intro p q) = [∪]-subset (\{x} → finiteAssumptions-subset p {x}) (\{x} → finiteAssumptions-subset q {x})
finiteAssumptions-subset ([⊥]-elim p) = finiteAssumptions-subset p
finiteAssumptions-subset ([¬]-intro p) = [∪][∖]-invertᵣ-[⊆] {A = finiteAssumptions p} (finiteAssumptions-subset p)
finiteAssumptions-subset ([¬]-elim p) = [∪][∖]-invertᵣ-[⊆] {A = finiteAssumptions p} (finiteAssumptions-subset p)
finiteAssumptions-subset ([∧]-intro p q) = [∪]-subset (\{x} → finiteAssumptions-subset p {x}) (\{x} → finiteAssumptions-subset q {x})
finiteAssumptions-subset ([∧]-elimₗ p) = finiteAssumptions-subset p
finiteAssumptions-subset ([∧]-elimᵣ p) = finiteAssumptions-subset p
finiteAssumptions-subset ([∨]-introₗ p) = finiteAssumptions-subset p
finiteAssumptions-subset ([∨]-introᵣ p) = finiteAssumptions-subset p
finiteAssumptions-subset{Γ = Γ} ([∨]-elim p q r) = [∪]-subset (\{x} → [∪]-subset{C = Γ} ([∪][∖]-invertᵣ-[⊆] {B = Γ} (finiteAssumptions-subset p)) ([∪][∖]-invertᵣ-[⊆] {B = Γ} (finiteAssumptions-subset q)) {x}) (finiteAssumptions-subset r)
finiteAssumptions-subset ([⟶]-intro p) = \{(Logic.[∧]-intro fpx φx) → Logic.[∨]-elim id (Logic.[⊥]-elim ∘ φx) (finiteAssumptions-subset p fpx)}
finiteAssumptions-subset ([⟶]-elim p q) = [∪]-subset (\{x} → finiteAssumptions-subset p {x}) (\{x} → finiteAssumptions-subset q {x})
finiteAssumptions-subset ([⟷]-intro p q) = Logic.[∨]-elim ([∪][∖]-invertᵣ-[⊆] {A = finiteAssumptions p} (finiteAssumptions-subset p)) ([∪][∖]-invertᵣ-[⊆] {A = finiteAssumptions q} (finiteAssumptions-subset q))
finiteAssumptions-subset ([⟷]-elimₗ p q) = [∪]-subset (\{x} → finiteAssumptions-subset p {x}) (\{x} → finiteAssumptions-subset q {x})
finiteAssumptions-subset ([⟷]-elimᵣ p q) = [∪]-subset (\{x} → finiteAssumptions-subset p {x}) (\{x} → finiteAssumptions-subset q {x})
{-
module _ where
open import Numeral.Natural
finiteAssumptions-index : (p : (Γ ⊢ φ)) → ∀{x} → (x ∈ finiteAssumptions p) → ℕ
finiteAssumptions-index (direct x) [≡]-intro = {!!}
finiteAssumptions-index [⊤]-intro ()
finiteAssumptions-index ([⊥]-intro p q) (Left x) = {!!}
finiteAssumptions-index ([⊥]-intro p q) (Right x) = {!!}
finiteAssumptions-index ([⊥]-elim p) = {!!}
finiteAssumptions-index ([¬]-intro p) = {!!}
finiteAssumptions-index ([¬]-elim p) = {!!}
finiteAssumptions-index ([∧]-intro p p₁) = {!!}
finiteAssumptions-index ([∧]-elimₗ p) = {!!}
finiteAssumptions-index ([∧]-elimᵣ p) = {!!}
finiteAssumptions-index ([∨]-introₗ p) = {!!}
finiteAssumptions-index ([∨]-introᵣ p) = {!!}
finiteAssumptions-index ([∨]-elim p p₁ p₂) = {!!}
finiteAssumptions-index ([⟶]-intro p) = {!!}
finiteAssumptions-index ([⟶]-elim p p₁) = {!!}
finiteAssumptions-index ([⟷]-intro p p₁) = {!!}
finiteAssumptions-index ([⟷]-elimₗ p p₁) = {!!}
finiteAssumptions-index ([⟷]-elimᵣ p p₁) = {!!}
-}
module _ (Γ : Formulas(P){ℓ}) where
ConsistentSubsetMaximality = ∀{Δ : Formulas(P){Lvl.of(P) Lvl.⊔ ℓ}} → Consistent(Δ) → (Γ ⊆ Δ) → (Δ ⊆ Γ)
ConsistentElementMaximality = ∀{φ} → Consistent(Γ ∪ singleton(φ)) → (φ ∈ Γ)
CompleteDerivability = ∀{φ} → (Γ ⊢ φ) Logic.∨ (Γ ⊢ (¬ φ))
CompleteMembership = ∀{φ} → (φ ∈ Γ) Logic.∨ ((¬ φ) ∈ Γ)
-- Equivalences when `Γ` is consistent. Used in the definition of `MaximallyConsistent`.
data ConsistentlyComplete : Stmt{Lvl.𝐒(Lvl.of(P) Lvl.⊔ ℓ)} where
subset-intro : ConsistentSubsetMaximality → ConsistentlyComplete
element-intro : ConsistentElementMaximality → ConsistentlyComplete
complete-deriv-intro : CompleteDerivability → ConsistentlyComplete
complete-member-intro : CompleteMembership → ConsistentlyComplete
module CompleteMembership(p : CompleteMembership) where
consistentSubsetMaximality : ConsistentSubsetMaximality
consistentSubsetMaximality conΔ ΓΔ {φ} φΔ = Logic.[∨]-not-right (p{φ}) (¬φΓ ↦ conΔ([⊥]-intro (direct φΔ) (direct(ΓΔ ¬φΓ))))
module ConsistentElementMaximality(element-maximal : ConsistentElementMaximality) where
consistentSubsetMaximality : ConsistentSubsetMaximality
consistentSubsetMaximality conΔ ΓΔ {φ} φΔ = element-maximal ([⊢]-subset-consistency (Logic.[∨]-elim ΓΔ (\{([≡]-intro) → φΔ})) conΔ)
element-maximal-contra : (φ ∉ Γ) → Inconsistent(Γ ∪ singleton(φ))
element-maximal-contra = Logic.[↔]-to-[←] Logic.contrapositive-variant2 element-maximal
[⊢]-derivability-consistencyₗ : ((Γ ⊢ φ) ← Consistent(Γ ∪ singleton(φ)))
[⊢]-derivability-consistencyₗ = direct ∘ element-maximal
module Consistent(consistent : Consistent(Γ)) where
[⊢]-to-[∈] : (Γ ⊢ φ) → (φ ∈ Γ)
[⊢]-to-[∈] = Logic.[→]-from-contrary (\Γφ φ∉Γ → consistent ([⊢]-compose-inconsistency Γφ (element-maximal-contra φ∉Γ)))
[⊢][∈]-equivalence : (Γ ⊢ φ) Logic.↔ (φ ∈ Γ)
[⊢][∈]-equivalence = Logic.[↔]-intro direct [⊢]-to-[∈]
-- [•]-maximal-membership : ((• p) ∈ Γ) Logic.↔ ?
-- [•]-maximal-membership =
[⊤]-maximal-membership : (⊤ ∈ Γ) Logic.↔ Logic.⊤
[⊤]-maximal-membership = Logic.[↔]-intro l r where
l = const (element-maximal (Γ⊤-incons ↦ consistent([⊢]-compose-inconsistency [⊤]-intro Γ⊤-incons)))
r = const Logic.[⊤]-intro
[⊥]-maximal-membership : (⊥ ∈ Γ) Logic.↔ Logic.⊥
[⊥]-maximal-membership = Logic.[↔]-intro l r where
l = Logic.[⊥]-elim
r = consistent ∘ direct
[¬]-maximal-membership : ((¬ φ) ∈ Γ) Logic.↔ (φ ∉ Γ)
[¬]-maximal-membership = Logic.[↔]-intro l r where
l = [⊢]-to-[∈] ∘ [¬]-intro ∘ element-maximal-contra
r = [⊢]-consistent-noncontradicting-membership consistent
[∧]-maximal-membership : ((φ ∧ ψ) ∈ Γ) Logic.↔ ((φ ∈ Γ) Logic.∧ (ψ ∈ Γ))
[∧]-maximal-membership = Logic.[↔]-intro l r where
l = \{(Logic.[∧]-intro φΓ ψΓ) → [⊢]-to-[∈] ([∧]-intro (direct φΓ) (direct ψΓ))}
r = φψΓ ↦ Logic.[∧]-intro ([⊢]-to-[∈] ([∧]-elimₗ(direct φψΓ))) ([⊢]-to-[∈] ([∧]-elimᵣ(direct φψΓ)))
[∨]-maximal-membership : ((φ ∨ ψ) ∈ Γ) Logic.↔ ((φ ∈ Γ) Logic.∨ (ψ ∈ Γ))
[∨]-maximal-membership = Logic.[↔]-intro l r where
l = Logic.[∨]-elim ([⊢]-to-[∈] ∘ [∨]-introₗ ∘ direct) ([⊢]-to-[∈] ∘ [∨]-introᵣ ∘ direct)
r = Logic.contrapositiveₗ ⦃ classical ⦄ ((\{(Logic.[∧]-intro ¬φΓ ¬ψΓ) → φψΓ ↦ consistent([∨]-elim (element-maximal-contra ¬φΓ) (element-maximal-contra ¬ψΓ) (direct φψΓ))}) ∘ Logic.[↔]-to-[→] Logic.[¬]-preserves-[∨][∧])
[⟶]-maximal-membership : ((φ ⟶ ψ) ∈ Γ) Logic.↔ ((φ ∉ Γ) Logic.∨ (ψ ∈ Γ))
[⟶]-maximal-membership =
Logic.[↔]-symmetry [⊢][∈]-equivalence ⦗ Logic.[↔]-transitivity ⦘ₗ
[→]-disjunctive-form ⦗ Logic.[↔]-transitivity ⦘ₗ
[⊢][∈]-equivalence ⦗ Logic.[↔]-transitivity ⦘ₗ
[∨]-maximal-membership ⦗ Logic.[↔]-transitivity ⦘ₗ
Logic.[↔]-intro
(Either.mapLeft (Logic.[↔]-to-[←] [¬]-maximal-membership))
(Either.mapLeft ((Logic.[↔]-to-[→] [¬]-maximal-membership)))
[⟷]-maximal-membership : ((φ ⟷ ψ) ∈ Γ) Logic.↔ (((φ ∈ Γ) Logic.∧ (ψ ∈ Γ)) Logic.∨ ((φ ∉ Γ) Logic.∧ (ψ ∉ Γ)))
[⟷]-maximal-membership =
Logic.[↔]-symmetry [⊢][∈]-equivalence ⦗ Logic.[↔]-transitivity ⦘ₗ
[⟷]-conjunction-disjunction-negation ⦗ Logic.[↔]-transitivity ⦘ₗ
[⊢][∈]-equivalence ⦗ Logic.[↔]-transitivity ⦘ₗ
[∨]-maximal-membership ⦗ Logic.[↔]-transitivity ⦘ₗ
Logic.[↔]-intro
(Either.map (Logic.[↔]-to-[←] [∧]-maximal-membership) (Logic.[↔]-to-[←] [∧]-maximal-membership))
(Either.map (Logic.[↔]-to-[→] [∧]-maximal-membership) (Logic.[↔]-to-[→] [∧]-maximal-membership))
⦗ Logic.[↔]-transitivity ⦘ₗ
Logic.[↔]-intro
(Either.mapRight (Tuple.map (Logic.[↔]-to-[←] [¬]-maximal-membership) (Logic.[↔]-to-[←] [¬]-maximal-membership)))
(Either.mapRight (Tuple.map (Logic.[↔]-to-[→] [¬]-maximal-membership) (Logic.[↔]-to-[→] [¬]-maximal-membership)))
complete-membership : CompleteMembership
complete-membership = Logic.[¬→]-disjunctive-formᵣ (Logic.[↔]-to-[←] [¬]-maximal-membership)
equal-model-existence : Logic.∃(𝔐 ↦ (Γ ≡ₛ (𝔐 ⊧_)))
equal-model-existence = Logic.[∃]-intro witness ⦃ Logic.[↔]-intro l r ⦄ where
witness = (p ↦ decide(0)((• p) ∈ Γ))
l : (witness ⊧ φ) → (φ ∈ Γ)
r : witness ⊧₊ Γ
r {• x} = Logic.[↔]-to-[→] decider-true
r {⊤} = Logic.[↔]-to-[→] [⊤]-maximal-membership
r {⊥} = Logic.[↔]-to-[→] [⊥]-maximal-membership
r {¬ φ} = Logic.contrapositiveᵣ l ∘ Logic.[↔]-to-[→] [¬]-maximal-membership
r {φ ∧ ψ} = Tuple.map r r ∘ Logic.[↔]-to-[→] [∧]-maximal-membership
r {φ ∨ ψ} = Either.map r r ∘ Logic.[↔]-to-[→] [∨]-maximal-membership
r {φ ⟶ ψ} = Either.map (Logic.contrapositiveᵣ l) r ∘ Logic.[↔]-to-[→] [⟶]-maximal-membership
r {φ ⟷ ψ} = Either.map (Tuple.map r r) (Tuple.map (Logic.contrapositiveᵣ l) (Logic.contrapositiveᵣ l)) ∘ Logic.[↔]-to-[→] [⟷]-maximal-membership
l {• x} = Logic.[↔]-to-[←] decider-true
l {⊤} = Logic.[↔]-to-[←] [⊤]-maximal-membership
l {¬ φ} = Logic.[↔]-to-[←] [¬]-maximal-membership ∘ Logic.contrapositiveᵣ r
l {φ ∧ ψ} = Logic.[↔]-to-[←] [∧]-maximal-membership ∘ Tuple.map l l
l {φ ∨ ψ} = Logic.[↔]-to-[←] [∨]-maximal-membership ∘ Either.map l l
l {φ ⟶ ψ} = Logic.[↔]-to-[←] [⟶]-maximal-membership ∘ Either.map (Logic.contrapositiveᵣ r) l
l {φ ⟷ ψ} = Logic.[↔]-to-[←] [⟷]-maximal-membership ∘ Either.map (Tuple.map l l) (Tuple.map (Logic.contrapositiveᵣ r) (Logic.contrapositiveᵣ r))
satisfiable : Satisfiable(Γ)
satisfiable = Logic.[∃]-map-proof (\eq {φ} → Logic.[↔]-to-[→] (eq{φ})) equal-model-existence
module ConsistentSubsetMaximality(p : ConsistentSubsetMaximality) where
consistentElementMaximality : ConsistentElementMaximality
consistentElementMaximality con = p con Left (Right [≡]-intro)
module CompleteDerivability(p : CompleteDerivability) where
module Consistent(consistent : Consistent(Γ)) where
[⊢]-to-[∈]' : (Γ ⊢ φ) → (φ ∈ Γ)
[⊢]-to-[∈]' {φ = φ} = Logic.[→]-disjunctive-formₗ {!!}
consistentSubsetMaximality : ConsistentSubsetMaximality
consistentSubsetMaximality {Δ} conΔ ΓΔ {φ} φΔ = {!Logic.[¬→]-disjunctive-formₗ (Either.map (weaken ΓΔ) (weaken ΓΔ) (p{φ}))!}
{-with p{φ} | Logic.excluded-middle((¬ φ) ∈ Δ)
... | Left q | Left r = {!!}
... | Left q | Right r with () ← Logic.contrapositiveᵣ(weaken ΓΔ) {!!} {!!}
... | Right q | _ with () ← conΔ([⊥]-intro (direct φΔ) (weaken ΓΔ q))-}
-- conΔ([⊥]-intro (direct φΔ) (direct(ΓΔ ¬φΓ)))
-- Logic.[∨]-not-right (p{φ}) (¬φΓ ↦ ?)
consistentElementMaximality : ConsistentElementMaximality
consistentElementMaximality {φ} conΓφ with p{φ} | Logic.excluded-middle((¬ φ) ∈ Γ)
... | Left q | Left r with () ← consistent([⊥]-intro q (direct r))
... | Left q | Right r = Logic.[¬¬]-elim (¬Γφ ↦ {![⊢]-consistent-noncontradicting-membership consistent !})
... | Right q | _ with () ← conΓφ([¬]-intro-converse q)
-- ConsistentSubsetMaximality.consistentElementMaximality {!!}
-- [⊢]-derivability-consistencyᵣ consistent q
-- [¬]-intro(Logic.[↔]-to-[→] [⊢]-derivability-inconsistency q)
-- Logic.contrapositiveᵣ direct conΓφ
-- (¬φΓ ↦ Logic.contrapositiveᵣ direct (conΓφ ∘ [¬]-intro-converse) {!r ∘ direct!})
-- [⊢]-consistent-noncontradicting-membership consistent
-- (r ∘ direct)
completeMembership : CompleteMembership
completeMembership = Either.map [⊢]-to-[∈] [⊢]-to-[∈] p where
[⊢]-to-[∈] = (ConsistentElementMaximality.Consistent.[⊢]-to-[∈] consistentElementMaximality consistent)
record MaximallyConsistent (Γ : Formulas(P){ℓ}) : Stmt{Lvl.𝐒(Lvl.of(P) Lvl.⊔ ℓ)} where
field
consistent : Consistent(Γ)
maximal : ConsistentlyComplete(Γ)
subset-maximal : ConsistentSubsetMaximality(Γ)
element-maximal : ConsistentElementMaximality(Γ)
element-maximal with maximal
... | subset-intro p = ConsistentSubsetMaximality.consistentElementMaximality Γ p
... | element-intro p = p
... | complete-deriv-intro p = ConsistentSubsetMaximality.consistentElementMaximality Γ subset-maximal where
... | complete-member-intro p = ConsistentSubsetMaximality.consistentElementMaximality Γ (CompleteMembership.consistentSubsetMaximality Γ p)
open ConsistentElementMaximality Γ element-maximal using
( element-maximal-contra
; [⊢]-derivability-consistencyₗ
) public
open ConsistentElementMaximality.Consistent Γ element-maximal consistent using
( [⊢]-to-[∈]
; equal-model-existence
) public
subset-maximal with maximal
... | subset-intro p = p
... | element-intro p = ConsistentElementMaximality.consistentSubsetMaximality Γ p
... | complete-deriv-intro p = CompleteMembership.consistentSubsetMaximality Γ (Either.map [⊢]-to-[∈] [⊢]-to-[∈] p)
... | complete-member-intro p = CompleteMembership.consistentSubsetMaximality Γ p
{-r : (term-model(max Γ con) ⊧ φ) → (φ ∈ max Γ con)
r {• x} modelsφ Γφ-incons = Logic.[↔]-to-[←] Logic.decide-is-true modelsφ Γφ-incons
r {⊤} modelsφ Γφ-incons = con([⊢]-compose-inconsistency [⊤]-intro Γφ-incons)-}
open MaximallyConsistent ⦃ … ⦄ using
( [⊢]-derivability-consistencyₗ
; [⊤]-maximal-membership
; [⊥]-maximal-membership
; [¬]-maximal-membership
; [∧]-maximal-membership
; [∨]-maximal-membership
; [⟶]-maximal-membership
; [⟷]-maximal-membership
) public
module _ ⦃ countable-P : CountablyInfinite P ⦄ where
-- Also called: Lindenbaums' lemma
open import Numeral.Natural
private variable n : ℕ
{-
data maxi (Γ : Formulas(P){ℓ}) : ℕ → Formulas(P){Lvl.of(P) Lvl.⊔ ℓ} where
base : Γ ⊆ maxi Γ 𝟎
step : maxi Γ n ⊆ maxi Γ (𝐒(n))
form : let ψ = Logic.[∃]-witness (Formula-is-countably-infinite {P = P}) n
in maxi Γ (𝐒(n)) (if Logic.decide(maxi Γ n ⊢ ψ) then ψ else (¬ ψ))
maxi-zero : (Γ ≡ₛ maxi Γ 𝟎)
maxi-zero = Logic.[↔]-intro (\{(base p) → p}) base
maxi-succ : let ψ = Logic.[∃]-witness (Formula-is-countably-infinite {P = P}) n in (((maxi Γ n) ∪ singleton(if Logic.decide(maxi Γ n ⊢ ψ) then ψ else (¬ ψ))) ≡ₛ maxi Γ (𝐒(n)))
maxi-succ {n = n}{Γ = Γ} = Logic.[↔]-intro l r where
p = Logic.[∃]-witness (Formula-is-countably-infinite {P = P}) n
l : ((maxi Γ n) ∪ singleton(if Logic.decide(maxi Γ n ⊢ p) then p else (¬ p))) ⊇ maxi Γ (𝐒(n))
l (step x) = Left x
l form = Right [≡]-intro
r : ((maxi Γ n) ∪ singleton(if Logic.decide(maxi Γ n ⊢ p) then p else (¬ p))) ⊆ maxi Γ (𝐒(n))
r (Left x) = step x
r (Right [≡]-intro) = form
maxi-superset : Consistent(Γ) → (∀{n} → (Γ ⊆ maxi Γ n))
maxi-superset {Γ = Γ} con {𝟎} = Logic.[↔]-to-[→] maxi-zero
maxi-superset {Γ = Γ} con {𝐒 n} {φ} Γφ = {!!}
instance
maxi-consistent : Consistent(Γ) → (∀{n} → Consistent(maxi Γ n))
maxi-consistent con {n = 𝟎} = [⊢]-subset-consistency (Logic.[↔]-to-[←] maxi-zero) con
maxi-consistent {Γ = Γ} con {n = 𝐒 n} = [⊢]-subset-consistency (Logic.[↔]-to-[←] maxi-succ) con-eq where
p = Logic.[∃]-witness (Formula-is-countably-infinite {P = P}) n
con-eq : Consistent((maxi Γ n) ∪ singleton(if Logic.decide(maxi Γ n ⊢ p) then p else (¬ p)))
con-eq with Logic.excluded-middle(maxi Γ n ⊢ p) | Logic.decide(maxi Γ n ⊢ p)
... | Left derp | _ = [⊢]-compose-consistency derp (maxi-consistent con {n = n})
... | Right dernp | _ = [⊬]-negation-consistency(dernp ∘ [¬¬]-elim)
-}
maxi2 : Formulas(P){ℓ} → ℕ → Formulas(P){Lvl.of(P) Lvl.⊔ ℓ}
maxi2 Γ 𝟎 = Lvl.Up{Lvl.of(P)} ∘ Γ
maxi2 Γ (𝐒(n)) = let ψ = CountablyInfinite.index(Formula P) n
in (maxi2 Γ n) ∪ singleton(if decide(0)(maxi2 Γ n ⊢ ψ) then ψ else (¬ ψ))
maxi2-succ : let ψ = CountablyInfinite.index(Formula P) n in (((maxi2 Γ n) ∪ singleton(if decide(0)(maxi2 Γ n ⊢ ψ) then ψ else (¬ ψ))) ≡ₛ maxi2 Γ (𝐒(n)))
-- maxi2-succ {n = n}{Γ = Γ} = Logic.[↔]-intro {!!} {!!}
maxi2-zero : (Γ ≡ₛ maxi2 Γ 𝟎)
maxi2-zero {Γ = Γ} = Logic.[↔]-symmetry (Sets.PredicateSet.LvlUp-set-equality {S = Γ})
maxi2-superset : ∀{n} → (Γ ⊆ maxi2 Γ n)
maxi2-superset {Γ = Γ} {𝟎} = Logic.[↔]-to-[→] (maxi2-zero {Γ = Γ})
maxi2-superset {Γ = Γ} {𝐒 n} = Left ∘ maxi2-superset {Γ = Γ} {n}
instance
maxi2-consistent : Consistent(Γ) → (∀{n} → Consistent(maxi2 Γ n))
maxi2-consistent {Γ = Γ} con {n = 𝟎} = [⊢]-subset-consistency (Logic.[↔]-to-[←] (maxi2-zero {Γ = Γ})) con
maxi2-consistent {Γ = Γ} con {n = 𝐒 n} = [⊢]-subset-consistency (Logic.[↔]-to-[←] (maxi2-succ {Γ = Γ})) con-eq where
p = CountablyInfinite.index(Formula P) n
con-eq : Consistent((maxi2 Γ n) ∪ singleton(if decide(0)(maxi2 Γ n ⊢ p) then p else (¬ p)))
con-eq with Logic.excluded-middle(maxi2 Γ n ⊢ p) | decide(0)(maxi2 Γ n ⊢ p)
... | Left derp | _ = [⊢]-compose-consistency derp (maxi2-consistent con {n = n})
... | Right dernp | _ = [⊬]-negation-consistency(dernp ∘ [¬¬]-elim)
max : (Γ : Formulas(P){ℓ}) → Formulas(P){Lvl.of(P) Lvl.⊔ ℓ}
max(Γ) φ = Logic.∃(n ↦ φ ∈ maxi2 Γ n)
maxi2-subset-max : (maxi2 Γ n ⊆ max Γ)
maxi2-subset-max {Γ = Γ} {n} p = Logic.[∃]-intro n ⦃ p ⦄
open import Lang.Inspect
max-maximal : (φ ∈ max Γ) Logic.∨ ((¬ φ) ∈ max Γ)
max-maximal {φ = φ}{Γ = Γ}
with n ← CountablyInfinite.indexing(Formula P) φ
with Logic.excluded-middle(maxi2 Γ n ⊢ CountablyInfinite.index(Formula P) n) | inspect(maxi2 Γ) (𝐒 n)
... | Left p | intro q with r ← [≡]-with(_$ CountablyInfinite.index(Formula P) n) q = Left (Logic.[∃]-intro (𝐒(n)) ⦃ Right {!!} ⦄)
... | Right p | intro q = Right (Logic.[∃]-intro (𝐒(n)) ⦃ Right {!q!} ⦄)
instance
max-consistent : Consistent(Γ) → Consistent(max Γ)
max-consistent {Γ = Γ} con = [⊢]-subset-consistency (Logic.[∃]-proof test5) (maxi2-consistent con {Logic.[∃]-witness test5}) where
open import Numeral.Natural.Relation.Order
open import Type.Properties.Inhabited
test2 : (φ ∈ max Γ) → Logic.∃(n ↦ (φ ∈ maxi2 Γ n))
test2 p = p
test3a : ∀{φ} → Logic.∃(n ↦ ((φ ∈ max Γ) → (φ ∈ maxi2 Γ n)))
test3a = Logic.[∃]-unrelatedᵣ-[→]ₗ ⦃ pos = intro ⦃ 𝟎 ⦄ ⦄ test2
test3b : Logic.∃{Obj = Formula(P) → ℕ}(n ↦ (max Γ) ⊆ (φ ↦ φ ∈ maxi2 Γ (n(φ))))
test3b = Logic.[∀][∃]-to-function-existence test3a
test4 : ∀{a b} → (a ≤ b) → ∀{Γ : Formulas(P){ℓ}} → ((maxi2 Γ a) ⊆ (maxi2 Γ b))
test4 {a = 𝟎} {𝟎} [≤]-minimum p = p
test4 {a = 𝟎} {𝐒 b} [≤]-minimum {Γ} p = Left(test4 {a = 𝟎}{b} [≤]-minimum {Γ} p)
test4 {a = 𝐒 a} {𝐒 b} ([≤]-with-[𝐒] ⦃ ab ⦄) {Γ} (Left p) = Left (test4 {a = a}{b} ab p)
test4 {a = 𝐒 a} {𝐒 b} ([≤]-with-[𝐒] ⦃ ab ⦄) {Γ}{φ} (Right p) = {!test4 {a = a}{b = b} ab {Γ ∪ singleton(if Logic.decide(maxi2 Γ b ⊢ β) then β else (¬ β))}{φ} ? !} where
β = CountablyInfinite.index(Formula P) b
{-with Logic.excluded-middle(maxi2 Γ a ⊢ Logic.[∃]-witness Formula-is-countably-infinite a) | p
... | Left x | [≡]-intro = {!!}
... | Right x | q = test4 {a} {𝐒 b} {!!} {!!}-}
-- TODO: Because test3 and test4
test5 : Logic.∃(n ↦ (max Γ) ⊆ (maxi2 Γ n))
-- with [∃]-intro n ⦃ pn ⦄ ← max Γ = {!!}
-- [⊢]-subset-consistency (\{φ} → {!maxi2-consistent con {n = 𝟎}!}) {!con!}
instance
max-maximally-consistent : Consistent(Γ) → MaximallyConsistent(max Γ)
MaximallyConsistent.consistent (max-maximally-consistent con) = max-consistent con
MaximallyConsistent.maximal (max-maximally-consistent {Γ = Γ} con) = {!!}
-- {φ} conm with n ← CountablyInfinite.indexing(Formula P) φ = {!!}
max-superset : Γ ⊆ max Γ
max-superset {Γ = Γ} Γφ = Logic.[∃]-intro 𝟎 ⦃ maxi2-superset {Γ = Γ}{n = 𝟎} Γφ ⦄
{-
{-
max : (Γ : Formulas(P){ℓ}) → Consistent(Γ) → Formulas(P){Lvl.𝐒(Lvl.of(P) Lvl.⊔ ℓ)}
max Γ con φ = Consistent(Γ ∪ singleton(φ)) -- TODO: Probably not like this. The problem with this definition is that (Consistent(Γ ∪ singleton(φ)) → (Γ ⊢ φ)) is impossible to prove, and it is neccessary for proving that (max Γ con) for any Γ is a consistent set of formulas. This is related to the issue that if both (Γ ∪ singleton(φ)) and (Γ ∪ singleton(¬ φ)) is consistent, then both of them will be included. But this would lead to (max Γ cons) not necccesarily consistent.
-- if decide(Consistent(Γ ∪ singleton(φ))) then (Γ ∪ singleton(φ)) else (Γ ∪ singleton(¬ φ))
{-data max2 (Γ : Formulas(P){ℓ}) (con : Consistent(Γ)) : Formulas(P){Lvl.𝐒(Lvl.of(P) Lvl.⊔ ℓ)} where
Positive : Consistent (Γ ∪ singleton(φ)) → Inconsistent(Γ ∪ singleton(¬ φ)) → max2 Γ con φ
Negative : Inconsistent(Γ ∪ singleton(φ)) → Consistent (Γ ∪ singleton(¬ φ)) → max2 Γ con φ
-}
max2 : (Γ : Formulas(P){ℓ}) → Consistent(Γ) → Formulas(P){Lvl.𝐒(Lvl.of(P) Lvl.⊔ ℓ)}
max2 Γ con φ = Consistent(Γ ∪ singleton(φ)) Logic.∧ Inconsistent(Γ ∪ singleton(¬ φ))
max-maximal : ∀{con : Consistent(Γ)} → (φ ∈ max Γ con) Logic.∨ ((¬ φ) ∈ max Γ con)
max-maximal {Γ = Γ}{φ = φ}{con = con} with Logic.excluded-middle(Inconsistent(Γ ∪ singleton(φ))) ⦃ classical ⦄
... | Logic.[∨]-introₗ Γφ⊥ = Logic.[∨]-introᵣ (Γ¬φ⊥ ↦ Logic.[⊥]-elim(con ([⊥]-intro ([¬]-elim Γ¬φ⊥) ([¬]-intro Γφ⊥))))
... | Logic.[∨]-introᵣ ¬Γφ⊥ = Logic.[∨]-introₗ ¬Γφ⊥
max-no-bottom : ∀{con : Consistent(Γ)} → (⊥ ∉ max Γ con)
max-no-bottom = apply(direct(Right [≡]-intro))
max-consistent-containment : ∀{con : Consistent(Γ)} → (φ ∈ max Γ con) → ((¬ φ) ∈ max Γ con) → Logic.⊥
max-consistent-containment {Γ = Γ}{φ = φ}{con = con} ¬Γφ⊥ ¬Γ¬φ⊥ = ¬Γφ⊥ ([⊥]-intro (direct (Right [≡]-intro)) {!!})
max-consistency-membership : ∀{con} → Consistent(Γ ∪ singleton(φ)) Logic.↔ (φ ∈ max Γ con)
max-consistency-membership = Logic.[↔]-intro id id
max-inconsistency-membership2 : ∀{con} → Inconsistent(Γ ∪ singleton(φ)) Logic.↔ (φ ∉ max Γ con)
max-inconsistency-membership2 = Logic.[↔]-intro Logic.[¬¬]-elim apply
test : ∀{con} → (φ ∉ max Γ con) → ((¬ φ) ∈ max Γ con)
test {con = con} p = [⊢]-compose-consistency ([¬]-intro(Logic.[¬¬]-elim p)) con
max-consistent : ∀{con : Consistent(Γ)} → Consistent(max Γ con)
max-consistent {Γ = Γ} {con = con} = Logic.contrapositiveᵣ {!!} con
{-max-consistent {Γ = Γ} {con = con} (direct x) = max-no-bottom{con = con} x
max-consistent {Γ = Γ} {con = con} ([⊥]-intro p q) = {!max-consistent q!}
max-consistent {Γ = Γ} {con = con} ([⊥]-elim p) = max-consistent{con = con} p
max-consistent {Γ = Γ} {con = con} ([¬]-elim p) = {!!}
max-consistent {Γ = Γ} {con = con} ([∧]-elimₗ p) = {!max-consistent !}
max-consistent {Γ = Γ} {con = con} ([∧]-elimᵣ p) = {!!}
max-consistent {Γ = Γ} {con = con} ([∨]-elim p q r) = {!!}
max-consistent {Γ = Γ} {con = con} ([⟶]-elim p q) = {!!}
max-consistent {Γ = Γ} {con = con} ([⟷]-elimₗ p q) = {!!}
max-consistent {Γ = Γ} {con = con} ([⟷]-elimᵣ p q) = {!!}-}
{-
test2 : ∀{con} → ((¬ φ) ∈ max Γ con) → (φ ∉ max Γ con)
test2 {con = con} p q = {!!}
test3 : ∀{con} → (max Γ con ⊢ φ) → (Γ ⊢ φ)
test3 {Γ = Γ} {φ} {con = con} (direct x) = {!!}
test3 {Γ = Γ} {.⊤} {con = con} [⊤]-intro = {!!}
test3 {Γ = Γ} {.⊥} {con = con} ([⊥]-intro p p₁) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([⊥]-elim p) = {!!}
test3 {Γ = Γ} {.(¬ _)} {con = con} ([¬]-intro p) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([¬]-elim p) = {!!}
test3 {Γ = Γ} {.(_ ∧ _)} {con = con} ([∧]-intro p p₁) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([∧]-elimₗ p) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([∧]-elimᵣ p) = {!!}
test3 {Γ = Γ} {.(_ ∨ _)} {con = con} ([∨]-introₗ p) = {!!}
test3 {Γ = Γ} {.(_ ∨ _)} {con = con} ([∨]-introᵣ p) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([∨]-elim p p₁ p₂) = {!!}
test3 {Γ = Γ} {.(_ ⟶ _)} {con = con} ([⟶]-intro p) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([⟶]-elim p p₁) = {!!}
test3 {Γ = Γ} {.(_ ⟷ _)} {con = con} ([⟷]-intro p p₁) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([⟷]-elimₗ p p₁) = {!!}
test3 {Γ = Γ} {φ} {con = con} ([⟷]-elimᵣ p p₁) = {!!}
-}
max-inconsistency-membership : ∀{con} → Inconsistent(Γ ∪ singleton(φ)) Logic.↔ ((¬ φ) ∈ max Γ con)
max-inconsistency-membership {Γ = Γ}{φ = φ}{con = con} =
Logic.double-negation ⦗ Logic.[↔]-transitivity ⦘ₗ
Logic.[¬]-unaryOperator max-consistency-membership ⦗ Logic.[↔]-transitivity ⦘ₗ
Logic.[↔]-intro
ll
(Γ¬φ-incons ↦ Γφ-incons ↦ con([⊥]-intro ([¬]-elim Γφ-incons) ([¬]-intro (Logic.[¬¬]-elim Γ¬φ-incons))))
where
ll : Logic.¬((Γ ∪ singleton(¬ φ)) ⊢ ⊥) → Logic.¬((Γ ∪ singleton(φ)) ⊢ ⊥) → Empty
ll ¬φin φin = {!!}
-- () ← ¬φin([⊥]-intro {!!} (direct (Right [≡]-intro)))
-- con([⊥]-intro {!!} {!!})
--
-- {![⊥]-intro (direct φin) (direct ¬φin)!})
-- Logic.contrapositiveₗ ⦃ classical ⦄ (Γ¬φ-incons ↦ Γφ-incons ↦ con([⊥]-intro ([¬]-elim (Logic.[¬¬]-elim Γ¬φ-incons)) ([¬]-intro Γφ-incons)))
max-superset : ∀{con : Consistent(Γ)} → (Γ ⊆ max Γ con)
max-superset {con = con} {x = φ} φΓ Γφ⊥ = con ([⊥]-intro (direct φΓ) ([¬]-intro Γφ⊥))
-- TODO: Are there any easy ways to prove this?
instance
max-maximally-consistent : ∀{con : Consistent(Γ)} → MaximallyConsistent(max Γ con)
MaximallyConsistent.consistent (max-maximally-consistent {con = con}) = max-consistent{con = con}
MaximallyConsistent.element-maximal max-maximally-consistent p = {!!} -- max-consistency-membership {!Logic.contrapositive-variant2ₗ weaken-union-singleton!} -- max-consistency-membership {!p!}
-- max-[⊢]-subset : ∀{con : Consistent(Γ)} → ((max Γ con ⊢_) ⊆ (Γ ⊢_))
-- max-[⊢]-subset {con = con} p = {!!}
-}
-}
module _ where
open NaturalDeduction
private variable P : Type{ℓₚ}
private variable φ ψ : Formula(P)
module _ where
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓₚ}
soundness : (Γ ⊢ φ) → (Γ ⊨ φ)
soundness (direct Γφ) 𝔐Γ = 𝔐Γ(Γφ)
soundness [⊤]-intro = const(Logic.[⊤]-intro)
soundness ([⊥]-intro Γφ Γ¬φ) 𝔐Γ = (soundness Γ¬φ 𝔐Γ) (soundness Γφ 𝔐Γ)
soundness ([⊥]-elim Γ⊥) 𝔐Γ = Logic.[⊥]-elim(soundness Γ⊥ 𝔐Γ)
soundness {Γ = Γ}{φ = φ} ([¬]-intro Γφ⊥) 𝔐Γ 𝔐φ = soundness Γφ⊥ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton _} (𝔐Γ) (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] 𝔐φ))
soundness {Γ = Γ}{φ = φ} ([¬]-elim Γ¬φ⊥) {𝔐} 𝔐Γ = Logic.[¬¬]-elim {P = (𝔐 ⊧ φ)} (¬𝔐φ ↦ soundness Γ¬φ⊥ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton _} 𝔐Γ (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] ¬𝔐φ)))
soundness ([∧]-intro Γφ Γψ) 𝔐Γ = (Logic.[∧]-intro (soundness Γφ 𝔐Γ) (soundness Γψ 𝔐Γ))
soundness ([∧]-elimₗ Γφψ) = Logic.[∧]-elimₗ ∘ (soundness Γφψ)
soundness ([∧]-elimᵣ Γφψ) = Logic.[∧]-elimᵣ ∘ (soundness Γφψ)
soundness ([∨]-introₗ Γφ) = Logic.[∨]-introₗ ∘ (soundness Γφ)
soundness ([∨]-introᵣ Γψ) = Logic.[∨]-introᵣ ∘ (soundness Γψ)
soundness {Γ = Γ}{φ = φ} ([∨]-elim {φ = ψ₁} {ψ₂} Γψ₁φ Γψ₂φ Γψ₁ψ₂) {𝔐} 𝔐Γ =
(Logic.[∨]-elim
(𝔐ψ₁ ↦ soundness Γψ₁φ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton _} (𝔐Γ) (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] 𝔐ψ₁)))
(𝔐ψ₂ ↦ soundness Γψ₂φ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton _} (𝔐Γ) (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] 𝔐ψ₂)))
(soundness Γψ₁ψ₂ 𝔐Γ)
)
soundness {Γ = Γ} ([⟶]-intro Γφψ) 𝔐Γ = Logic.[→]-disjunctive-formᵣ (𝔐φ ↦ soundness Γφψ ([⊧₊]-strengthen {Γ₁ = Γ}{Γ₂ = singleton _} (𝔐Γ) (Logic.[↔]-to-[→] [⊧]-to-[⊧₊] 𝔐φ)))
soundness ([⟶]-elim Γφ Γφψ) 𝔐Γ = Logic.[→]-disjunctive-formₗ((soundness Γφψ) 𝔐Γ) (soundness Γφ 𝔐Γ)
soundness {Γ = Γ} ([⟷]-intro {φ = φ} {ψ = ψ} Γψφ Γφψ) {𝔐} 𝔐Γ with Logic.excluded-middle(𝔐 ⊧ φ) | Logic.excluded-middle(𝔐 ⊧ ψ)
... | Logic.[∨]-introₗ 𝔐φ | Logic.[∨]-introₗ 𝔐ψ = Logic.[∨]-introₗ (Logic.[∧]-intro 𝔐φ 𝔐ψ)
... | Logic.[∨]-introₗ 𝔐φ | Logic.[∨]-introᵣ ¬𝔐ψ = (Logic.[⊥]-elim ∘ ¬𝔐ψ ∘ soundness Γφψ) (Logic.[∨]-elim 𝔐Γ \{[≡]-intro → 𝔐φ})
... | Logic.[∨]-introᵣ ¬𝔐φ | Logic.[∨]-introₗ 𝔐ψ = (Logic.[⊥]-elim ∘ ¬𝔐φ ∘ soundness Γψφ) (Logic.[∨]-elim 𝔐Γ \{[≡]-intro → 𝔐ψ})
... | Logic.[∨]-introᵣ ¬𝔐φ | Logic.[∨]-introᵣ ¬𝔐ψ = Logic.[∨]-introᵣ (Logic.[∧]-intro ¬𝔐φ ¬𝔐ψ)
soundness {Γ = Γ} ([⟷]-elimₗ {φ = φ} {ψ = ψ} Γψ Γφψ) 𝔐Γ with soundness Γφψ 𝔐Γ
... | Logic.[∨]-introₗ(Logic.[∧]-intro 𝔐φ 𝔐ψ ) = 𝔐φ
... | Logic.[∨]-introᵣ(Logic.[∧]-intro ¬𝔐φ ¬𝔐ψ) = Logic.[⊥]-elim(¬𝔐ψ(soundness Γψ 𝔐Γ))
soundness {Γ = Γ} ([⟷]-elimᵣ {φ = φ} {ψ = ψ} Γφ Γφψ) 𝔐Γ with soundness Γφψ 𝔐Γ
... | Logic.[∨]-introₗ(Logic.[∧]-intro 𝔐φ 𝔐ψ ) = 𝔐ψ
... | Logic.[∨]-introᵣ(Logic.[∧]-intro ¬𝔐φ ¬𝔐ψ) = Logic.[⊥]-elim(¬𝔐φ(soundness Γφ 𝔐Γ))
satisfiable-consistent : Satisfiable(Γ) → Consistent(Γ)
satisfiable-consistent sat = Logic.contrapositiveᵣ soundness (\p → Logic.[↔]-to-[→] [⊨]-unsatisfiability p sat)
consistency-of-∅ : Consistent{P = P}{ℓ = ℓ}(∅)
consistency-of-∅ = satisfiable-consistent [∅]-satisfiable
module _ where
open import Data.Boolean.Stmt.Proofs
open import Lang.Inspect
modelSet : Model(P) → Formulas(P)
modelSet(𝔐) = 𝔐 ⊧_
module _ {𝔐 : Model(P)} where
modelSet-satisfiable : Satisfiable(modelSet(𝔐))
modelSet-satisfiable = Logic.[∃]-intro 𝔐 ⦃ id ⦄
modelSet-maximally-consistent : MaximallyConsistent(modelSet(𝔐))
MaximallyConsistent.consistent modelSet-maximally-consistent = satisfiable-consistent modelSet-satisfiable
MaximallyConsistent.maximal modelSet-maximally-consistent = element-intro p where
p : ConsistentElementMaximality(modelSet(𝔐))
p {φ} cons with TruthTable.eval 𝔐 φ | inspect (TruthTable.eval 𝔐) φ
... | 𝑇 | intro eval-𝑇 = TruthTable.eval-to-models {φ = φ} (Logic.[↔]-to-[←] IsTrue.is-𝑇 eval-𝑇)
... | 𝐹 | intro eval-𝐹 = Logic.[⊥]-elim (cons ([⊥]-intro (direct (Right [≡]-intro)) (weaken Left (direct (TruthTable.eval-to-models {φ = ¬ φ} (Logic.[↔]-to-[←] IsTrue.is-𝑇 ([≡]-with(BoolOp.¬) eval-𝐹)))))))
{-maximally-consistent-is-modelSet : MaximallyConsistent(Γ) → (Γ ≡ₛ modelSet(𝔐))
maximally-consistent-is-modelSet maxCon {• x} = Logic.[↔]-intro {!Logic.[↔]-to-[←] Logic.decide-is-true!} {!Logic.[↔]-to-[→] Logic.decide-is-true!}
maximally-consistent-is-modelSet maxCon {⊤} = [⊤]-maximal-membership ⦃ maxCon ⦄
maximally-consistent-is-modelSet maxCon {⊥} = [⊥]-maximal-membership ⦃ maxCon ⦄
maximally-consistent-is-modelSet maxCon {¬ φ} = Logic.[↔]-transitivity ([¬]-maximal-membership ⦃ maxCon ⦄) (Logic.[¬]-unaryOperator (maximally-consistent-is-modelSet maxCon))
maximally-consistent-is-modelSet maxCon {φ ∧ ψ} = Logic.[↔]-transitivity ([∧]-maximal-membership ⦃ maxCon ⦄) (Logic.[∧]-binaryOperator (maximally-consistent-is-modelSet maxCon) (maximally-consistent-is-modelSet maxCon))
maximally-consistent-is-modelSet maxCon {φ ∨ ψ} = Logic.[↔]-transitivity ([∨]-maximal-membership ⦃ maxCon ⦄) (Logic.[∨]-binaryOperator (maximally-consistent-is-modelSet maxCon) (maximally-consistent-is-modelSet maxCon))
maximally-consistent-is-modelSet maxCon {φ ⟶ ψ} = {!!}
maximally-consistent-is-modelSet maxCon {φ ⟷ ψ} = {!!}-}
term-model : Formulas(P){ℓ} → Model(P)
term-model(Γ) p = decide(0)((• p) ∈ Γ)
module _ ⦃ countable-P : CountablyInfinite(P) ⦄ where
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓₚ}
term-model-of-max-proof : (con : Consistent(Γ)) → (max Γ ≡ₛ (term-model(max Γ) ⊧_))
term-model-of-max-proof {Γ = Γ} con = Logic.[∃]-proof(MaximallyConsistent.equal-model-existence (max-maximally-consistent con))
consistent-satisfiable : Consistent(Γ) → Satisfiable(Γ)
Logic.∃.witness (consistent-satisfiable {Γ = Γ} con) = term-model(max Γ)
Logic.∃.proof (consistent-satisfiable {Γ = Γ} con) {γ} = (Logic.[↔]-to-[→] (term-model-of-max-proof {Γ = Γ} con {γ})) ∘ max-superset
completeness : (Γ ⊨ φ) → (Γ ⊢ φ)
completeness {Γ = Γ}{φ = φ} =
(Logic.[↔]-to-[←] [⊢]-derivability-inconsistency)
∘ (Logic.[↔]-to-[←] Logic.contrapositive-variant2 consistent-satisfiable)
∘ (Logic.[↔]-to-[→] [⊨]-entailment-unsatisfiability)
|
{
"alphanum_fraction": 0.5879659108,
"avg_line_length": 61.776096823,
"ext": "agda",
"hexsha": "5ec13c943f419a79d3dd052d5565cb1da8b5e4e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/ClassicalPropositionalLogic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/ClassicalPropositionalLogic.agda",
"max_line_length": 478,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/ClassicalPropositionalLogic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 16047,
"size": 40834
}
|
open import Agda.Builtin.Nat
[_] : (Nat → Set) → Set
[ T ] = ∀ {i} → T i
data D : Nat → Nat → Set where
c : ∀ {i} → [ D i ]
|
{
"alphanum_fraction": 0.4692307692,
"avg_line_length": 14.4444444444,
"ext": "agda",
"hexsha": "b353e08f7541bcffd811518ddff3e4c61657915b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2947.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2947.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2947.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 56,
"size": 130
}
|
open import Haskell.Prelude
mutual
data Map (k : Set) (a : Set) : Set where
Bin : (sz : Nat) → (kx : k) → (x : a)
→ (l : Map k a) → (r : Map k a)
→ {{szVal : sz ≡ (size l) + (size r) + 1}}
→ Map k a
Tip : Map k a
{-# COMPILE AGDA2HS Map #-}
size : {k a : Set} → Map k a → Nat
size Tip = 0
size (Bin sz _ _ _ _) = sz
{-# COMPILE AGDA2HS size #-}
|
{
"alphanum_fraction": 0.4623115578,
"avg_line_length": 23.4117647059,
"ext": "agda",
"hexsha": "997e717b466d692129dde9de9042e2199ecaaa35",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Issue69.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Issue69.agda",
"max_line_length": 52,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Issue69.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 156,
"size": 398
}
|
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.Coalg.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function using ( _∘_ )
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Prod
open import Cubical.Data.Sigma
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.helper
-------------------------------
-- Definition of a Coalgebra --
-------------------------------
Coalg₀ : ∀ {ℓ} {S : Container ℓ} -> Type (ℓ-suc ℓ)
Coalg₀ {ℓ} {S = S} = Σ[ C ∈ Type ℓ ] (C → P₀ S C)
--------------------------
-- Definition of a Cone --
--------------------------
Cone₀ : ∀ {ℓ} {S : Container ℓ} {C,γ : Coalg₀ {S = S}} -> Type ℓ
Cone₀ {S = S} {C , _} = (n : ℕ) → C → X (sequence S) n
Cone₁ : ∀ {ℓ} {S : Container ℓ} {C,γ : Coalg₀ {S = S}} -> (f : Cone₀ {C,γ = C,γ}) -> Type ℓ
Cone₁ {S = S} {C , _} f = (n : ℕ) → π (sequence S) ∘ (f (suc n)) ≡ f n
Cone : ∀ {ℓ} {S : Container ℓ} (C,γ : Coalg₀ {S = S}) -> Type ℓ
Cone {S = S} C,γ = Σ[ Cone ∈ (Cone₀ {C,γ = C,γ}) ] (Cone₁{C,γ = C,γ} Cone)
|
{
"alphanum_fraction": 0.5991058122,
"avg_line_length": 33.55,
"ext": "agda",
"hexsha": "95ce9fc1ee5aab0fdbb88a5f0650f7efee960819",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/Coalg/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/Coalg/Base.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/Coalg/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 467,
"size": 1342
}
|
module Contexts where
open import Prelude
open import T
open import SubstTheory
module Contexts where
infix 60 _e$_ _$e_
-- Has a hole of type (Γ ⊢ A), produces a term of type (Γ' ⊢ A')
data TCtx (Γ : Ctx) (A : TTp) : (Γ' : Ctx) → (A' : TTp) → Set where
∘ : TCtx Γ A Γ A
_e$_ : ∀{Γ' A' B} (e₁ : TExp Γ' (A' ⇒ B)) (C₂ : TCtx Γ A Γ' A') → TCtx Γ A Γ' B
_$e_ : ∀{Γ' A' B} (C₁ : TCtx Γ A Γ' (A' ⇒ B)) (e₂ : TExp Γ' A') → TCtx Γ A Γ' B
Λ : ∀{A₁ A₂ Γ'} (C : TCtx Γ A (A₁ :: Γ') A₂) → TCtx Γ A Γ' (A₁ ⇒ A₂)
suc : ∀{Γ'} (C : TCtx Γ A Γ' nat) → TCtx Γ A Γ' nat
rec1 : ∀{Γ' B} → (C : TCtx Γ A Γ' nat) → (e₀ : TExp Γ' B) → (es : TExp (B :: Γ') B) →
TCtx Γ A Γ' B
rec2 : ∀{Γ' B} → (e : TExp Γ' nat) → (C₀ : TCtx Γ A Γ' B) → (es : TExp (B :: Γ') B) →
TCtx Γ A Γ' B
rec3 : ∀{Γ' B} → (e : TExp Γ' nat) → (e₀ : TExp Γ' B) → (Cs : TCtx Γ A (B :: Γ') B) →
TCtx Γ A Γ' B
_<_> : ∀{Γ A Γ' A'} → TCtx Γ A Γ' A' → TExp Γ A → TExp Γ' A'
∘ < e' > = e'
(e₁ e$ C₂) < e' > = e₁ $ C₂ < e' >
(C₁ $e e₂) < e' > = C₁ < e' > $ e₂
Λ C < e' > = Λ (C < e' >)
suc C < e' > = suc (C < e' >)
rec1 C e₀ es < e' > = rec (C < e' >) e₀ es
rec2 e C₀ es < e' > = rec e (C₀ < e' >) es
rec3 e e₀ Cs < e' > = rec e e₀ (Cs < e' >)
infix 70 _<<_>> _<_>
_<<_>> : ∀{Γ A Γ' A' Γ'' A''} → TCtx Γ' A' Γ'' A'' → TCtx Γ A Γ' A' →
TCtx Γ A Γ'' A''
∘ << C' >> = C'
(e₁ e$ C₂) << C' >> = e₁ e$ C₂ << C' >>
(C₁ $e e₂) << C' >> = C₁ << C' >> $e e₂
Λ C << C' >> = Λ (C << C' >>)
suc C << C' >> = suc (C << C' >>)
rec1 C e₀ es << C' >> = rec1 (C << C' >>) e₀ es
rec2 e C₀ es << C' >> = rec2 e (C₀ << C' >>) es
rec3 e e₀ Cs << C' >> = rec3 e e₀ (Cs << C' >>)
-- I hate having to prove this sort of theorem.
composing-commutes : ∀{Γ A Γ' A' Γ'' A''} →
(C : TCtx Γ' A' Γ'' A'') →
(C' : TCtx Γ A Γ' A') →
(e : TExp Γ A) →
((C << C' >>) < e >) ≡ C < C' < e > >
composing-commutes ∘ C' e = Refl
composing-commutes (e₁ e$ C) C' e = resp (_$_ e₁) (composing-commutes C C' e)
composing-commutes (C $e e₂) C' e = resp (λ x → x $ e₂) (composing-commutes C C' e)
composing-commutes (Λ C) C' e = resp Λ (composing-commutes C C' e)
composing-commutes (suc C) C' e = resp suc (composing-commutes C C' e)
composing-commutes (rec1 C e₀ es) C' e = resp (λ x → rec x e₀ es) (composing-commutes C C' e)
composing-commutes (rec2 e' C es) C' e = resp (λ x → rec e' x es) (composing-commutes C C' e)
composing-commutes (rec3 e' e₀ C) C' e = resp (λ x → rec e' e₀ x) (composing-commutes C C' e)
-- If the hole is closed, then the rest needs to be too.
tctx-empty-thing : ∀{F : Set} {Γ A A' B} → TCtx [] A (B :: Γ) A' → F
tctx-empty-thing (e₁ e$ C) = tctx-empty-thing C
tctx-empty-thing (C $e e₂) = tctx-empty-thing C
tctx-empty-thing (Λ C) = tctx-empty-thing C
tctx-empty-thing (suc C) = tctx-empty-thing C
tctx-empty-thing (rec1 C e₀ es) = tctx-empty-thing C
tctx-empty-thing (rec2 e C es) = tctx-empty-thing C
tctx-empty-thing (rec3 e e₀ C) = tctx-empty-thing C
-- Very restricted function for weakening a program context where
-- the hole also occurs under no free variables.
weaken-closed-tctx : ∀{Γ A A'} → TCtx [] A [] A' → TCtx Γ A Γ A'
weaken-closed-tctx ∘ = ∘
weaken-closed-tctx (e₁ e$ C) = weaken-closed e₁ e$ weaken-closed-tctx C
weaken-closed-tctx (C $e e₂) = weaken-closed-tctx C $e weaken-closed e₂
weaken-closed-tctx (Λ C) = tctx-empty-thing C
weaken-closed-tctx (suc C) = suc (weaken-closed-tctx C)
weaken-closed-tctx (rec1 C e₀ es) =
rec1 (weaken-closed-tctx C) (weaken-closed e₀) (ren (wk closed-wkγ) es)
weaken-closed-tctx (rec2 e C es) =
rec2 (weaken-closed e) (weaken-closed-tctx C) (ren (wk closed-wkγ) es)
weaken-closed-tctx (rec3 e e₀ C) = tctx-empty-thing C
-- Substitution commutes with a closed context
subst-commutes-w-closed-tctx : ∀{Γ A A'} → (γ : TSubst Γ []) → (C : TCtx [] A [] A') → (e : TExp Γ A) →
C < ssubst γ e > ≡ ssubst γ ((weaken-closed-tctx C) < e >)
subst-commutes-w-closed-tctx γ ∘ e = Refl
subst-commutes-w-closed-tctx γ (e₁ e$ C) e =
resp2 _$_
(symm (closed-subst _ e₁) ≡≡ symm (subren γ closed-wkγ e₁))
(subst-commutes-w-closed-tctx γ C e)
subst-commutes-w-closed-tctx γ (C $e e₂) e =
resp2 _$_
(subst-commutes-w-closed-tctx γ C e)
(symm (closed-subst _ e₂) ≡≡ symm (subren γ closed-wkγ e₂))
subst-commutes-w-closed-tctx γ (Λ C) e = tctx-empty-thing C
subst-commutes-w-closed-tctx γ (suc C) e =
resp suc (subst-commutes-w-closed-tctx γ C e)
subst-commutes-w-closed-tctx γ (rec1 C e₀ es) e with subren (liftγ γ) (wk closed-wkγ) es
... | lol1 with subeq (liftwk γ closed-wkγ) es
... | lol2 with lift-closed-subst (γ o closed-wkγ) es
... | lol3 with symm lol3 ≡≡ symm lol2 ≡≡ symm lol1
... | lol = resp3 rec
(subst-commutes-w-closed-tctx γ C e)
(symm (closed-subst _ e₀) ≡≡ symm (subren γ closed-wkγ e₀))
lol
subst-commutes-w-closed-tctx γ (rec2 en C es) e with subren (liftγ γ) (wk closed-wkγ) es
... | lol1 with subeq (liftwk γ closed-wkγ) es
... | lol2 with lift-closed-subst (γ o closed-wkγ) es
... | lol3 with symm lol3 ≡≡ symm lol2 ≡≡ symm lol1
... | lol = resp3 rec
(symm (closed-subst _ en) ≡≡ symm (subren γ closed-wkγ en))
(subst-commutes-w-closed-tctx γ C e)
lol
subst-commutes-w-closed-tctx γ (rec3 e e₀ C) e₁ = tctx-empty-thing C
open Contexts public
|
{
"alphanum_fraction": 0.5375866359,
"avg_line_length": 45.3790322581,
"ext": "agda",
"hexsha": "6bde34b218af017a641aacca9b1161334a1cc51c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z",
"max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msullivan/godels-t",
"max_forks_repo_path": "Contexts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msullivan/godels-t",
"max_issues_repo_path": "Contexts.agda",
"max_line_length": 105,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msullivan/godels-t",
"max_stars_repo_path": "Contexts.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z",
"num_tokens": 2332,
"size": 5627
}
|
------------------------------------------------------------------------
-- Specialised eliminators
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Partiality-monad.Inductive.Eliminators where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (⊥)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Nat equality-with-J as Nat
open import Partiality-monad.Inductive
------------------------------------------------------------------------
-- Non-dependent eliminators
Inc-nd : ∀ {a p q}
(A : Type a) (P : Type p)
(Q : P → P → Type q) → Type (p ⊔ q)
Inc-nd A P Q = ∃ λ (p : ℕ → P) → ∀ n → Q (p n) (p (suc n))
record Arguments-nd {a} p q (A : Type a) : Type (a ⊔ lsuc (p ⊔ q)) where
field
P : Type p
Q : P → P → Type q
pe : P
po : (x : A) → P
pl : (s : Increasing-sequence A) (pq : Inc-nd A P Q) → P
pa : (p₁ p₂ : P) (q₁ : Q p₁ p₂) (q₂ : Q p₂ p₁) → p₁ ≡ p₂
ps : Is-set P
qr : (x : A ⊥) (p : P) → Q p p
qt : {x y z : A ⊥} → x ⊑ y → y ⊑ z →
(px py pz : P) → Q px py → Q py pz → Q px pz
qe : (x : A ⊥) (p : P) → Q pe p
qu : (s : Increasing-sequence A) (pq : Inc-nd A P Q) (n : ℕ) →
Q (proj₁ pq n) (pl s pq)
ql : ∀ s (ub : A ⊥) (is-ub : Is-upper-bound s ub) pq (pu : P)
(qu : ∀ n → Q (proj₁ pq n) pu) →
Q (pl s pq) pu
qp : (p₁ p₂ : P) → Is-proposition (Q p₁ p₂)
module _ {a p q} {A : Type a} (args : Arguments-nd p q A) where
open Arguments-nd args
private
args′ : Arguments p q A
args′ = record
{ P = λ _ → P
; Q = λ p-x p-y _ → Q p-x p-y
; pe = pe
; po = po
; pl = pl
; pa = λ x⊑y x⊒y p₁ p₂ q₁ q₂ →
subst (const P) (antisymmetry x⊑y x⊒y) p₁ ≡⟨ subst-const (antisymmetry x⊑y x⊒y) ⟩
p₁ ≡⟨ pa p₁ p₂ q₁ q₂ ⟩∎
p₂ ∎
; pp = ps
; qr = qr
; qt = qt
; qe = qe
; qu = qu
; ql = ql
; qp = λ p-x p-y _ → qp p-x p-y
}
⊥-rec-nd : A ⊥ → P
⊥-rec-nd = ⊥-rec args′
⊑-rec-nd : ∀ {x y} → x ⊑ y → Q (⊥-rec-nd x) (⊥-rec-nd y)
⊑-rec-nd = ⊑-rec args′
inc-rec-nd : Increasing-sequence A → Inc-nd A P Q
inc-rec-nd = inc-rec args′
⊥-rec-nd-never : ⊥-rec-nd never ≡ pe
⊥-rec-nd-never = ⊥-rec-never _
⊥-rec-nd-now : ∀ x → ⊥-rec-nd (now x) ≡ po x
⊥-rec-nd-now = ⊥-rec-now _
⊥-rec-nd-⨆ : ∀ s → ⊥-rec-nd (⨆ s) ≡ pl s (inc-rec-nd s)
⊥-rec-nd-⨆ = ⊥-rec-⨆ _
------------------------------------------------------------------------
-- Eliminators which are trivial for _⊑_
record Arguments-⊥ {a} p (A : Type a) : Type (a ⊔ lsuc p) where
field
P : A ⊥ → Type p
pe : P never
po : ∀ x → P (now x)
pl : ∀ s (p : ∀ n → P (s [ n ])) → P (⨆ s)
pp : ∀ x → Is-proposition (P x)
module _ {a p} {A : Type a} (args : Arguments-⊥ p A) where
open Arguments-⊥ args
⊥-rec-⊥ : (x : A ⊥) → P x
⊥-rec-⊥ = ⊥-rec (record
{ Q = λ _ _ _ → ⊤
; pe = pe
; po = po
; pl = λ s pq → pl s (proj₁ pq)
; pa = λ _ _ _ _ _ _ → pp _ _ _
; pp = mono₁ 1 (pp _)
; qp = λ _ _ _ _ _ → refl
})
inc-rec-⊥ : (s : ℕ → A ⊥) → ∀ n → P (s n)
inc-rec-⊥ s = ⊥-rec-⊥ ∘ s
⊥-rec-⊥-never : ⊥-rec-⊥ never ≡ pe
⊥-rec-⊥-never = ⊥-rec-never _
⊥-rec-⊥-now : ∀ x → ⊥-rec-⊥ (now x) ≡ po x
⊥-rec-⊥-now = ⊥-rec-now _
⊥-rec-⊥-⨆ : ∀ s → ⊥-rec-⊥ (⨆ s) ≡ pl s (λ n → ⊥-rec-⊥ (s [ n ]))
⊥-rec-⊥-⨆ = ⊥-rec-⨆ _
------------------------------------------------------------------------
-- Eliminators which are trivial for _⊥
record Arguments-⊑ {a} q (A : Type a) : Type (a ⊔ lsuc q) where
field
Q : {x y : A ⊥} → x ⊑ y → Type q
qr : ∀ x → Q (⊑-refl x)
qt : ∀ {x y z} (x⊑y : x ⊑ y) (y⊑z : y ⊑ z) →
Q x⊑y → Q y⊑z → Q (⊑-trans x⊑y y⊑z)
qe : ∀ x → Q (never⊑ x)
qu : ∀ s (q : ∀ n → Q (increasing s n)) n →
Q (upper-bound s n)
ql : ∀ s ub is-ub (q : ∀ n → Q (increasing s n))
(qu : ∀ n → Q (is-ub n)) →
Q (least-upper-bound s ub is-ub)
qp : ∀ {x y} (x⊑y : x ⊑ y) →
Is-proposition (Q x⊑y)
module _ {a q} {A : Type a} (args : Arguments-⊑ q A) where
open Arguments-⊑ args
⊑-rec-⊑ : ∀ {x y} (x⊑y : x ⊑ y) → Q x⊑y
⊑-rec-⊑ = ⊑-rec (record
{ P = λ _ → ⊤
; Q = λ _ _ → Q
; pa = λ _ _ _ _ _ _ → refl
; pp = mono (Nat.zero≤ 2) ⊤-contractible
; qr = λ x _ → qr x
; qt = λ x⊑y y⊑z _ _ _ → qt x⊑y y⊑z
; qe = λ x _ → qe x
; qu = λ s pq → qu s (proj₂ pq)
; ql = λ s ub is-ub pq _ → ql s ub is-ub (proj₂ pq)
; qp = λ _ _ → qp
})
inc-rec-⊑ : (s : Increasing-sequence A) → ∀ n → Q (increasing s n)
inc-rec-⊑ (_ , inc) = ⊑-rec-⊑ ∘ inc
|
{
"alphanum_fraction": 0.4191493733,
"avg_line_length": 29.1437125749,
"ext": "agda",
"hexsha": "88a388e809e6e77bc15501bba0f3398d1dd846af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Inductive/Eliminators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Inductive/Eliminators.agda",
"max_line_length": 97,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Inductive/Eliminators.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 2095,
"size": 4867
}
|
module x01naturals where
{-
------------------------------------------------------------------------------
naturals : inductive datatype
definition as a pair of inference rules:
-- no assumptions
---------
zero : ℕ -- base case
m : ℕ -- assuming m is Natural
---------
suc m : ℕ -- inductive case : then suc m is also a Natural
in Agda:
-}
data ℕ : Set where
zero : ℕ -- base case
suc : ℕ → ℕ -- inductive case
-- #### Exercise Write out `7` in longhand.
seven : ℕ
seven = suc (suc (suc (suc (suc (suc (suc zero))))))
{-
inference rules consists of
- zero or more _judgments_ written above a horizontal line, called the _hypotheses_
- single judgment written below, called the _conclusion_
`Set` : the way in Agda of saying that it is a type
Inductive case defines natural numbers in terms of natural numbers.
Base case jump starts the process of induction.
## Philosophy and history
inductive def of nats is relatively recent
- 1888
Richard Dedekind's paper "_Was sind und was sollen die Zahlen?_"
(What are and what should be the numbers?)
- 1889
Giuseppe Peano's book "_Arithmetices principia, nova methodo exposita_"
(The principles of arithmetic presented by a new method)
------------------------------------------------------------------------------
## PRAGMA
the line
-}
{-# BUILTIN NATURAL ℕ #-}
{-
tells Agda that `ℕ` corresponds to the natural numbers
- pragma must be given a previously declared type (in this case `ℕ`)
- enables 0, 1, 2, ... shorthand
- enables efficient internal Haskell representation
## IMPORTS
To write equations that hold between terms involving natural numbers
import the definition of equality and notations for reasoning about equality
from the Agda standard library:
-}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
{-
1st line : brings equality module into scope and gives it the name `Eq`.
2nd line : opens that module and adds names in `using` clause into scope.
3rd line : opens module that specifies operators to support reasoning about equivalence
and adds names in `using` clause into scope.
later will see their definitions in Chapter Equality
underbars indicate where terms appear
- `_≡_` and `_≡⟨⟩_` : terms on each side
- `begin_` is prefix : terms after
- : `_∎` : terms before
------------------------------------------------------------------------------
## operations on naturals are recursive functions
-}
-- ADDITION
_+_ : ℕ → ℕ → ℕ
zero + n = n -- base case : 0 + n ≡ n
(suc m) + n = suc (m + n) -- inductive case : (1 + m) + n ≡ 1 + (m + n) : associativity
{-
Inductive definition works because addition of larger numbers is defined
in terms of addition of smaller numbers : WELL FOUNDED
-}
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3 ≡⟨⟩ -- is shorthand for
(suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- inductive case
suc ((suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ -- inductive case
suc (suc (zero + (suc (suc (suc zero))))) ≡⟨⟩ -- base case
suc (suc (suc (suc (suc zero)))) ≡⟨⟩ -- is longhand for
5
∎ -- ∎ is QED
-- equivalent
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3 ≡⟨⟩
suc (1 + 3) ≡⟨⟩
suc (suc (0 + 3)) ≡⟨⟩
suc (suc 3) ≡⟨⟩
5
∎
-- A binary relation is said to be REFLEXIVE if every value relates to itself.
-- Evidence that a value is equal to itself is written `refl`
_ : 2 + 3 ≡ 5
_ = refl
{-
above derivations consist of
- a signature (written with a colon, `:`), giving a type
- a binding (written with an equal sign, `=`), giving a term of the given type.
the dummy name `_` can be reused
consists of a series of terms separated by `≡⟨⟩`.
duality of interpretation
- type as a proposition
- term as evidence (aka proof)
#### Exercise `+-example` Compute `3 + 4`
-}
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4 ≡⟨⟩
suc (2 + 4) ≡⟨⟩
suc (suc (1 + 4)) ≡⟨⟩
suc (suc (suc (0 + 4))) ≡⟨⟩
suc (suc (suc 4)) ≡⟨⟩
7
∎
_ : 3 + 4 ≡ 7
_ = refl
{-
------------------------------------------------------------------------------
## MULTIPLICATION
-}
_*_ : ℕ → ℕ → ℕ
zero * n = zero -- 0 * n ≡ 0
(suc m) * n = n + (m * n) -- (1 + m) * n ≡ n + (m * n)
{-
computing `m * n` returns the sum of `m` copies of `n`.
2nd line because multiplication distributes over addition:
(m + n) * p ≡ (m * p) + (n * p)
We get the second equation from the third by
- taking `m` to be `1`
- `n` to be `m`
- `p` to be `n`
- then use fact that one is identity for multiplication, so
- `1 * n ≡ n`
WELL FOUNDED : _*_ of larger numbers is defined in terms of _*_ of smaller numbers
-}
_ : 2 * 3 ≡ 6
_ =
begin
2 * 3 ≡⟨⟩ -- inductive case
3 + (1 * 3) ≡⟨⟩ -- inductive case
3 + (3 + (0 * 3)) ≡⟨⟩ -- base case
3 + (3 + 0) ≡⟨⟩ -- simplify
6
∎
{-
#### Exercise `*-example` Compute `3 * 4`
-}
_ : 3 * 4 ≡ 12
_ =
begin
3 * 4 ≡⟨⟩
4 + (2 * 4) ≡⟨⟩
4 + (4 + (1 * 4)) ≡⟨⟩
4 + (4 + (4 + (0 * 4))) ≡⟨⟩ -- base case
4 + (4 + (4 + 0)) ≡⟨⟩ -- addition
12
∎
-- HC
_*hc_ : ℕ → ℕ → ℕ
n *hc zero = zero
n *hc (suc m) = (n *hc m) + n
_ : 2 *hc 3 ≡ 6
_ =
begin
2 *hc 3 ≡⟨⟩
(2 *hc 2) + 2 ≡⟨⟩
((2 *hc 1) + 2) + 2 ≡⟨⟩
(((2 *hc 0) + 2) + 2) + 2 ≡⟨⟩
(( 0 + 2) + 2) + 2 ≡⟨⟩
( 2 + 2) + 2 ≡⟨⟩
6
∎
{-
------------------------------------------------------------------------------
#### Exercise (recommended) Define EXPONENTIATION
-}
_^_ : ℕ → ℕ → ℕ
m ^ 0 = 1 -- m ^ 0 = 1
m ^ (suc n) = m * (m ^ n) -- m ^ (1 + n) = m * (m ^ n)
-- Check that `3 ^ 4` is `81`.
_ : 3 ^ 4 ≡ 81
_ = refl
_ : 2 ^ 3 ≡ 8
_ = refl
{-
------------------------------------------------------------------------------
## MONUS SUBTRACTION
uses pattern matching against both arguments:
-}
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
-- WELL FOUNDED : monus on bigger numbers is defined in terms of monus on smaller numbers.
_ =
begin
3 ∸ 2 ≡⟨⟩
2 ∸ 1 ≡⟨⟩
1 ∸ 0 ≡⟨⟩
1
∎
_ =
begin
2 ∸ 3 ≡⟨⟩
1 ∸ 2 ≡⟨⟩
0 ∸ 1 ≡⟨⟩
0
∎
{-
#### Exercise Compute `5 ∸ 3` and `3 ∸ 5`, reasoning as a chain of equations.
-}
_ =
begin
5 ∸ 3 ≡⟨⟩
4 ∸ 2 ≡⟨⟩
3 ∸ 1 ≡⟨⟩
2 ∸ 0 ≡⟨⟩
2
∎
_ =
begin
3 ∸ 5 ≡⟨⟩
2 ∸ 4 ≡⟨⟩
1 ∸ 3 ≡⟨⟩
0 ∸ 2 ≡⟨⟩
0
∎
{-
------------------------------------------------------------------------------
## PRECEDENCE
Application higher than operators : `suc m + n` means `(suc m) + n`
multiplication higher than addition : `n + m * n` means `n + (m * n)`
addition _associates to the left_ : `m + n + p` means `(m + n) + p`
declare precedence and associativity of infix operators
-}
infixl 6 _+_ _∸_
infixl 7 _*_
{-
`infixl` : associate to the left
`infixr` : associate to the right
`infix` : indicates that parentheses are required to disambiguate
------------------------------------------------------------------------------
## CURRYING
a function of two arguments in terms of
- a function of the first argument
- that returns a function of the second argument
Function arrows associate to the right : `ℕ → ℕ → ℕ` stands for `ℕ → (ℕ → ℕ)`
Application associates to the left : `_+_ 2 3` stands for `(_+_ 2) 3`
Named for Haskell Curry.
The idea actually appears in the _Begriffsschrift_ of Gottlob Frege, published in 1879.
------------------------------------------------------------------------------
## The story of creation, revisited
inductive definition defines naturals in terms of naturals
recursive definition defines addition in terms of addition
n : ℕ
--------------
zero + n = n
m + n = p
---------------------
(suc m) + n = suc p
------------------------------------------------------------------------------
## The story of creation, finitely {name=finite-creation}
SKIPPED
------------------------------------------------------------------------------
## Writing definitions interactively
_+_ : ℕ → ℕ → ℕ
m + n = ?
? : ask Agda to fill in
`C-c C-l`
? replaced:
_+_ : ℕ → ℕ → ℕ
m + n = { }0
empty braces : a "numbered" *hole*
Emacs will also create a window displaying the text
?0 : ℕ
to indicate that hole 0 is to be filled in with a term of type `ℕ`.
`C-c C-f` (for **f**orward) will move you into the next hole.
To define addition by recursion on the first argument:
cursor in hole : `C-c C-c` (for **c**ase).
prompt:
pattern variables to case (empty for split on result):
Type `m` : case split on `m`:
_+_ : ℕ → ℕ → ℕ
zero + n = { }0
suc m + n = { }1
window at the bottom type of each:
?0 : ℕ
?1 : ℕ
in hole 0 : `C-c C-,`
displays info on required type of hole, and what free variables are available:
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
suggests filling the hole with `n`
after hole filled in : `C-c C-space` : removes hole:
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = { }1
in hole 1 : `C-c C-,`
displays info
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
m : ℕ
in hole : `C-c C-r` (for **r**efine)
will fill in with a constructor (if there is a unique choice)
or tell you what constructors you might use, if there is a choice
Don't know which constructor to introduce of zero or suc
fill in hole with `suc ?` : `C-c C-space`
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc { }1
in new hole : `C-c C-,`
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
m : ℕ
fill hole with `m + n` : `C-c C-space`
complete the program:
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
------------------------------------------------------------------------------
## More pragmas
-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
{-# BUILTIN NATMINUS _∸_ #-}
{-
tells Agda correspondance between operators correspond and the usual ones.
Enables using corresponding Haskell operators on arbitrary-precision integer type.
------------------------------------------------------------------------------
#### Exercise `Bin` (stretch) {name=Bin} represent nat as bitstring
-}
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
{-
bitstring 1011 (eleven) encoded as ⟨⟩ I O I I
or, with leading zeros, ⟨⟩ O O I O I I
define
inc : Bin → Bin
converts bitstring to bitstring for next higher number
-}
-- this definition has TWO forms of ZERO: '⟨⟩' and '⟨⟩ O'
-- will probably cause problems later on
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (⟨⟩ O) = ⟨⟩ I
inc (⟨⟩ I) = ⟨⟩ I O
inc (b O) = b I
inc (b I) = (inc b) O
-- `IOII` eleven to `1100` twelve
_ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O
_ = refl
-- Confirm correct answer for the bitstrings encoding zero through four.
_ : inc (⟨⟩ O) ≡ ⟨⟩ I
_ = refl
_ : inc (⟨⟩ I) ≡ ⟨⟩ I O
_ = refl
_ : inc (⟨⟩ I O) ≡ ⟨⟩ I I
_ = refl
_ : inc (⟨⟩ I I) ≡ ⟨⟩ I O O
_ = refl
_ : inc (⟨⟩ I O O) ≡ ⟨⟩ I O I
_ = refl
{-
using above, define
to : ℕ → Bin
from : Bin → ℕ
`to` should not have leading zeros, except represent zero as `⟨⟩ O`
confirm for zero through four
-}
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc m) = inc (to m)
from : Bin → ℕ
from ⟨⟩ = 0
from (b O) = 2 * from b
from (b I) = 2 * from b + 1
_ : from (⟨⟩ O) ≡ 0
_ = refl
_ : from (⟨⟩ I) ≡ 1
_ = refl
_ : from (⟨⟩ I O) ≡ 2
_ = refl
_ : from (⟨⟩ I I) ≡ 3
_ = refl
_ : from (⟨⟩ I O O) ≡ 4
_ = refl
_ : from (⟨⟩ I I O) ≡ 6
_ = refl
_ : to 0 ≡ (⟨⟩ O)
_ = refl
_ : to 1 ≡ (⟨⟩ I)
_ = refl
_ : to 2 ≡ (⟨⟩ I O)
_ = refl
_ : to 3 ≡ (⟨⟩ I I)
_ = refl
_ : to 4 ≡ (⟨⟩ I O O)
_ = refl
_ : to 6 ≡ (⟨⟩ I I O)
_ = refl
_ : from (to 12) ≡ 12
_ = refl
_ : to (from (⟨⟩ I I O O)) ≡ ⟨⟩ I I O O
_ = refl
-- 842 exercise : bin-+
_bin-+_ : Bin → Bin → Bin
⟨⟩ bin-+ ⟨⟩ = ⟨⟩
⟨⟩ bin-+ b = b
b bin-+ ⟨⟩ = b
(bl O) bin-+ (br O) = let r = bl bin-+ br in r O
(bl O) bin-+ (br I) = let r = bl bin-+ br in r I
(bl I) bin-+ (br O) = let r = bl bin-+ br in r I
(bl I) bin-+ (br I) = let r = bl bin-+ br in (inc r) O
_ : (⟨⟩) bin-+ (⟨⟩) ≡ (⟨⟩)
_ = refl
_ : (⟨⟩) bin-+ (⟨⟩ O) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩ O) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩ I) ≡ (⟨⟩ I)
_ = refl
_ : (⟨⟩ I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I O)
_ = refl
_ : (⟨⟩ I O) bin-+ (⟨⟩ I O) ≡ (⟨⟩ I O O)
_ = refl
_ : (⟨⟩ I I) bin-+ (⟨⟩ I I) ≡ (⟨⟩ I I O)
_ = refl
_ : (⟨⟩ I O I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I I O)
_ = refl
_ : (⟨⟩ I I I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I O O O)
_ = refl
------------------------------------------------------------------------------
-- hc exercise : explore two representation of ZERO
z1-bin-+ : ∀ (b1 b2 : Bin)
→ b1 ≡ ⟨⟩
→ b1 bin-+ b2 ≡ b2
z1-bin-+ b1 ⟨⟩ p -- (b1 bin-+ ⟨⟩) ≡ ⟨⟩
rewrite
p -- (⟨⟩ bin-+ ⟨⟩) ≡ ⟨⟩
-- ⟨⟩ ≡ ⟨⟩
= refl
z1-bin-+ b1 (⟨⟩ O) p -- (b1 bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
rewrite
p -- (⟨⟩ bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
-- (⟨⟩ O) ≡ (⟨⟩ O)
= refl
z1-bin-+ b1 (b O) p -- (b1 bin-+ (b O)) ≡ (b O)
rewrite
p -- (⟨⟩ bin-+ (b O)) ≡ (b O)
-- (b O) ≡ (b O)
= refl
z1-bin-+ b1 (b I) p -- (b1 bin-+ (b I)) ≡ (b I)
rewrite
p -- (⟨⟩ bin-+ (b I)) ≡ (b I)
-- (b I) ≡ (b I)
= refl
z-bin-+ : ∀ (b1 b2 : Bin)
→ b1 ≡ (⟨⟩ O)
→ b1 bin-+ b2 ≡ b2
z-bin-+ b1 ⟨⟩ p -- (b1 bin-+ ⟨⟩) ≡ ⟨⟩
rewrite
p -- ((⟨⟩ O) bin-+ ⟨⟩) ≡ ⟨⟩
-- (⟨⟩ O) ≡ ⟨⟩
= {!!}
z-bin-+ b1 (⟨⟩ O) p -- (b1 bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
rewrite
p -- ((⟨⟩ O) bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
-- (⟨⟩ O) ≡ (⟨⟩ O)
= refl
z-bin-+ b1 (b O) p -- (b1 bin-+ (b O)) ≡ (b O)
rewrite
p -- ((⟨⟩ O) bin-+ (b O)) ≡ (b O)
-- ((⟨⟩ bin-+ b) O) ≡ (b O)
= {!!}
z-bin-+ b1 (b I) p -- (b1 bin-+ (b I)) ≡ (b I)
rewrite
p -- ((⟨⟩ O) bin-+ (b I)) ≡ (b I)
-- ((⟨⟩ bin-+ b) I) ≡ (b I)
= {!!}
hc : ∀ (m n : ℕ) → from (to m bin-+ to n) ≡ m + n
hc zero n -- from (to zero bin-+ to n) ≡ zero + n
= {!!} -- from ( (⟨⟩ O) bin-+ to n) ≡ n
hc (suc m) n = {!!}
{-
------------------------------------------------------------------------------
## Standard library
where to find relevant definitions in the standard library
Naturals, constructors, operators :
import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_)
https://agda.readthedocs.io/en/v2.6.1/language/pragmas.html
------------------------------------------------------------------------------
## Unicode
This chapter uses the following unicode:
char code name emacs
------------------------------------------------------
ℕ U+2115 DOUBLE-STRUCK CAPITAL N (\bN)
→ U+2192 RIGHTWARDS ARROW (\to, \r, \->)
∸ U+2238 DOT MINUS (\.-)
≡ U+2261 IDENTICAL TO (\==)
⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<)
⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>)
∎ U+220E END OF PROOF (\qed)
`\r` : variety of right arrows
`\l` : variety of left arrows
All the characters supported by `agda-mode`:
M-x agda-input-show-translations
To see how to input an existing specific Unicode character in an agda file,
move cursor to character
M-x quail-show-key
-}
|
{
"alphanum_fraction": 0.4559169037,
"avg_line_length": 23.9614814815,
"ext": "agda",
"hexsha": "4bd982345eb69efd96087a6fb29b80172284b584",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda",
"max_line_length": 90,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 5735,
"size": 16174
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Connected where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁)
open import Cubical.HITs.Nullification
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (rec to trRec)
open import Cubical.Algebra.Group
open import Cubical.Homotopy.Connected
open import Cubical.Foundations.Equiv
private
H⁰-connected-type : ∀ {ℓ} {A : Type ℓ} (a : A) → isConnected 2 A → Iso (coHom 0 A) Int
Iso.fun (H⁰-connected-type a con) = sRec isSetInt λ f → f a
Iso.inv (H⁰-connected-type a con) b = ∣ (λ x → b) ∣₂
Iso.rightInv (H⁰-connected-type a con) b = refl
Iso.leftInv (H⁰-connected-type a con) =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt λ x → trRec (isSetInt _ _) (cong f) (isConnectedPath 1 con a x .fst))
H⁰-connected : ∀ {ℓ} {A : Type ℓ} (a : A) → ((x : A) → ∥ a ≡ x ∥₁) → GroupIso (coHomGr 0 A) intGroup
GroupHom.fun (GroupIso.map (H⁰-connected a con)) = sRec isSetInt (λ f → f a)
GroupHom.isHom (GroupIso.map (H⁰-connected a con)) =
sElim2 (λ _ _ → isProp→isSet (isSetInt _ _)) λ x y → addLemma (x a) (y a)
GroupIso.inv (H⁰-connected a con) b = ∣ (λ _ → b) ∣₂
GroupIso.rightInv (H⁰-connected a con) _ = refl
GroupIso.leftInv (H⁰-connected a con) =
sElim (λ _ → isProp→isSet (setTruncIsSet _ _))
(λ f → cong ∣_∣₂ (funExt λ x → pRec (isSetInt _ _) (cong f) (con x)))
|
{
"alphanum_fraction": 0.7072564612,
"avg_line_length": 45.7272727273,
"ext": "agda",
"hexsha": "280be782b8d40042abe5e8b4e54f9a476bae45c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Connected.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Connected.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Connected.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 717,
"size": 2012
}
|
{-# OPTIONS --without-K #-}
module LeftCancellation where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_,_; proj₁; proj₂)
open import Function renaming (_∘_ to _○_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong)
renaming (trans to _∘_; sym to !_)
open import Equiv using (_∼_; _≃_; sym≃; inj≃; qinv; _●_)
------------------------------------------------------------------------------
-- This is WAY simpler than using 'with' and 'inspect'!
record Ev {A B : Set} (f : A → B) (x : A) : Set where
constructor ev
field
v : B
fx=v : f x ≡ v
mkV : {A B : Set} → (f : A → B) → (x : A) → Ev f x
mkV f x = ev (f x) refl
private
bad-path : {A B : Set} → (a : A) → (b : B) → inj₁ a ≡ inj₂ b → ⊥
bad-path x y ()
------------------------------------------------------------------------------
-- Very complex proof that we can cancel units on the left of ⊎
-- Some repeated patterns:
inj₁≡ : {A B : Set} → {a b : A} → inj₁ {A = A} {B} a ≡ inj₁ b → a ≡ b
inj₁≡ refl = refl
inj₂≡ : {A B : Set} → {a b : B} → inj₂ {A = A} {B} a ≡ inj₂ b → a ≡ b
inj₂≡ refl = refl
-- use injectivity of equivalences to go from f x ≡ f y to x ≡ y
injectivity : {A B : Set} (equiv : (⊤ ⊎ A) ≃ (⊤ ⊎ B)) →
(a : A) → proj₁ equiv (inj₁ tt) ≡ proj₁ equiv (inj₂ a) → (inj₁ tt ≡ inj₂ a)
injectivity equiv x path = inj≃ equiv (inj₁ tt) (inj₂ x) path
left-cancel-⊤ : {A B : Set} → ((⊤ ⊎ A) ≃ (⊤ ⊎ B)) → A ≃ B
left-cancel-⊤ {A} {B} (f₁ , qinv g₁ α₁ β₁) =
let eqv = (f₁ , qinv g₁ α₁ β₁) in
let v₁ = mkV f₁ (inj₁ tt) in
let v₂ = mkV g₁ (inj₁ tt) in
mk₁ {A} {B} eqv v₁ v₂
where
mk₁ : {A B : Set} (e : (⊤ ⊎ A) ≃ (⊤ ⊎ B)) →
let (f₁ , qinv g₁ α₁ β₁) = e in
Ev f₁ (inj₁ tt) → Ev g₁ (inj₁ tt) → A ≃ B
mk₁ {A} {B} (f , qinv g α β) (ev (inj₁ tt) eq₁) (ev (inj₁ tt) eq₂) = A≃B
where
equiv : (⊤ ⊎ A) ≃ (⊤ ⊎ B)
equiv = (f , qinv g α β)
elim-path : {X Y Z : Set} → (e : (⊤ ⊎ X) ≃ (⊤ ⊎ Y)) → (x : X) →
(proj₁ e) (inj₁ tt) ≡ (proj₁ e) (inj₂ x) → Z
elim-path e a path = ⊥-elim (bad-path tt a (injectivity e a path))
mkf : (a : A) → Ev f (inj₂ a) → B
mkf a (ev (inj₁ tt) eq) = elim-path equiv a (eq₁ ∘ ! eq)
mkf a (ev (inj₂ y) fx≡v) = y
ff : A → B
ff a = mkf a (mkV f (inj₂ a))
mkg : (b : B) → Ev g (inj₂ b) → A
mkg b (ev (inj₁ tt) eq) = elim-path (sym≃ equiv) b (eq₂ ∘ ! eq)
mkg b (ev (inj₂ a) eq) = a
gg : B → A
gg b = mkg b (mkV g (inj₂ b))
mkα : (b : B) → (e : Ev g (inj₂ b)) → ff (mkg b e) ≡ b
mkα b (ev (inj₁ tt) eq) = elim-path (sym≃ equiv) b (eq₂ ∘ ! eq)
mkα b (ev (inj₂ a) eq) = mkα' (mkV f (inj₂ a))
where
mkα' : (ev : Ev f (inj₂ a)) → mkf a ev ≡ b
mkα' (ev (inj₁ tt) eq₃) = elim-path equiv a (eq₁ ∘ ! eq₃)
mkα' (ev (inj₂ _) eq₃) = inj₂≡ (! (cong f eq ∘ eq₃) ∘ α (inj₂ b))
αα : ff ○ gg ∼ id
αα b = mkα b (mkV g (inj₂ b))
-- need to expand the definition of ff and gg "by hand" otherwise there is
-- nowhere to 'stick in' the explicit e₁ and e₂ we have.
mkβ : (a : A) → (e₁ : Ev f (inj₂ a)) → (e₂ : Ev g (inj₂ (mkf a e₁))) →
mkg (mkf a e₁) e₂ ≡ a
mkβ a (ev (inj₁ tt) eq) _ = elim-path equiv a (eq₁ ∘ ! eq)
mkβ a (ev (inj₂ y) eq) (ev (inj₁ tt) eq₃) =
elim-path (sym≃ equiv) y (eq₂ ∘ ! eq₃)
mkβ a (ev (inj₂ _) eq) (ev (inj₂ _) eq₃) =
inj₂≡ (((! eq₃) ∘ cong g (! eq)) ∘ β (inj₂ a))
ββ : gg ○ ff ∼ id
ββ a = let ev₁ = mkV f (inj₂ a) in mkβ a ev₁ (mkV g (inj₂ (mkf a ev₁)))
A≃B : A ≃ B
A≃B = ff , qinv gg αα ββ
mk₁ (f , qinv g α β) (ev (inj₁ tt) eq₁) (ev (inj₂ a) eq₂) =
let e = (f , qinv g α β) in
⊥-elim
(bad-path tt a
(injectivity e a ((eq₁ ∘ ! (α (inj₁ tt))) ∘ cong f eq₂)))
mk₁ (f , qinv g α β) (ev (inj₂ b) eq₁) (ev (inj₁ tt) eq₂) =
⊥-elim (bad-path tt b (((! α (inj₁ tt)) ∘ cong f eq₂) ∘ eq₁))
mk₁ {A} {B} (f , qinv g α β) (ev (inj₂ x) ftt=x) (ev (inj₂ y) gtt=y) =
A≃B
where
equiv : (⊤ ⊎ A) ≃ (⊤ ⊎ B)
equiv = (f , qinv g α β)
elim-path : {X Y Z : Set} → (e : (⊤ ⊎ X) ≃ (⊤ ⊎ Y)) → (x : X) →
(proj₁ e) (inj₁ tt) ≡ (proj₁ e) (inj₂ x) → Z
elim-path e a path = ⊥-elim (bad-path tt a (injectivity e a path))
mkf : (a : A) → Ev f (inj₂ a) → B
mkf a (ev (inj₁ tt) _) = x
mkf a (ev (inj₂ y) _) = y
ff : A → B
ff a = mkf a (mkV f (inj₂ a))
mkg : (b : B) → Ev g (inj₂ b) → A
mkg b (ev (inj₁ tt) eq) = y
mkg b (ev (inj₂ a) eq) = a
gg : B → A
gg b = mkg b (mkV g (inj₂ b))
mkα : (b : B) → (e₁ : Ev g (inj₂ b)) → (e₂ : Ev f (inj₂ (mkg b e₁))) →
mkf (mkg b e₁) e₂ ≡ b
mkα b (ev (inj₁ tt) gb=tt) (ev (inj₁ tt) fgb=tt) =
inj₂≡ ((! ftt=x ∘ ! cong f gb=tt) ∘ α (inj₂ b))
mkα b (ev (inj₁ tt) gb=tt) (ev (inj₂ y₁) fy=y₁) =
elim-path
(sym≃ equiv)
y₁
( ! ((! cong g fy=y₁ ∘ β (inj₂ y)) ∘ (! gtt=y)))
mkα b (ev (inj₂ z) gb=z) (ev (inj₁ tt) fgb=tt) =
elim-path
(sym≃ equiv) b ((cong g (! fgb=tt) ∘ β (inj₂ z)) ∘ (! gb=z))
mkα b (ev (inj₂ z) gb=z) (ev (inj₂ z₂) fgb=z₂) =
let path = (cong g (! fgb=z₂) ∘ β (inj₂ z)) ∘ ! gb=z in
inj₂≡ (inj≃ (sym≃ equiv) (inj₂ z₂) (inj₂ b) path)
αα : ff ○ gg ∼ id
αα b = let ev₁ = mkV g (inj₂ b) in mkα b ev₁ (mkV f (inj₂ (mkg b ev₁)))
-- need to expand the definition of ff and gg "by hand"
-- otherwise there is nowhere to 'stick in' the explicit e₁
-- and e₂ we have.
mkβ : (a : A) → (e₁ : Ev f (inj₂ a)) →
(e₂ : Ev g (inj₂ (mkf a e₁))) → mkg (mkf a e₁) e₂ ≡ a
mkβ a (ev (inj₁ tt) eq) (ev (inj₁ _) eq₃) =
inj₂≡ (! (cong g eq ∘ gtt=y) ∘ β (inj₂ a))
mkβ a (ev (inj₁ tt) eq) (ev (inj₂ y₁) eq₃) =
elim-path equiv y₁ ((ftt=x ∘ (! α (inj₂ x))) ∘ cong f eq₃)
mkβ a (ev (inj₂ z) fa=z) (ev (inj₁ tt) eq₃) =
elim-path equiv a ((cong f (! eq₃) ∘ α (inj₂ z)) ∘ (! fa=z) )
mkβ a (ev (inj₂ _) fa=y) (ev (inj₂ _) eq₃) =
inj₂≡ (((! eq₃) ∘ cong g (! fa=y)) ∘ β (inj₂ a))
ββ : gg ○ ff ∼ id
ββ a = let ev₁ = mkV f (inj₂ a) in mkβ a ev₁ (mkV g (inj₂ (mkf a ev₁)))
A≃B : A ≃ B
A≃B = ff , qinv gg αα ββ
------------------------------------------------------------------------------
open import Data.Nat using (ℕ; _+_)
open import Data.Fin using (Fin)
open import FinEquivPlusTimes using (module Plus; Fin1≃⊤)
open Plus using (⊎≃+; +≃⊎)
open import Equiv using (_⊎≃_; id≃)
left-cancel-1 : {m n : ℕ} → (Fin (1 + m) ≃ Fin (1 + n)) → Fin m ≃ Fin n
left-cancel-1 pf = left-cancel-⊤ ((Fin1≃⊤ ⊎≃ id≃) ● +≃⊎ ● (pf ● ⊎≃+) ● (sym≃ Fin1≃⊤ ⊎≃ id≃))
|
{
"alphanum_fraction": 0.4521246459,
"avg_line_length": 36.7708333333,
"ext": "agda",
"hexsha": "27a47e1aa75180c05e621c461f080a7a8208753b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/LeftCancellation.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/LeftCancellation.agda",
"max_line_length": 92,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/LeftCancellation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3092,
"size": 7060
}
|
module maryjohn2 where
postulate Person : Set
postulate john : Person
postulate mary : Person
postulate barbara : Person
postulate IsStudent : Person -> Set
postulate maryIsStudent : IsStudent mary
postulate implication : IsStudent mary -> IsStudent john
Lemma1 : Set
Lemma1 = IsStudent john
proof-lemma1 : Lemma1
proof-lemma1 = implication maryIsStudent
Lemma2 : Set
Lemma2 = IsStudent john -> IsStudent barbara
proof-lemma2 : Lemma2
proof-lemma2 = \(x : IsStudent john) -> _
|
{
"alphanum_fraction": 0.7159309021,
"avg_line_length": 21.7083333333,
"ext": "agda",
"hexsha": "c33a4305d9fda6dcc53d917e8be8907ee740f248",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/maryjohn2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/maryjohn2.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/maryjohn2.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 137,
"size": 521
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.