Search is not available for this dataset
text
string | meta
dict |
---|---|
module Oscar.Data.Vec.Injectivity where
open import Oscar.Data.Equality
open import Oscar.Data.Vec
Vec-head-inj : ∀ {a} {A : Set a} {x₁ x₂ : A} {N} {xs₁ xs₂ : Vec A N} → x₁ ∷ xs₁ ≡ x₂ ∷ xs₂ → x₁ ≡ x₂
Vec-head-inj refl = refl
Vec-tail-inj : ∀ {a} {A : Set a} {x₁ x₂ : A} {N} {xs₁ xs₂ : Vec A N} → x₁ ∷ xs₁ ≡ x₂ ∷ xs₂ → xs₁ ≡ xs₂
Vec-tail-inj refl = refl
|
{
"alphanum_fraction": 0.6022408964,
"avg_line_length": 29.75,
"ext": "agda",
"hexsha": "08dfd30abba4a47367d0ff41fb1ba8ddd281890f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Vec/Injectivity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Vec/Injectivity.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Vec/Injectivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 160,
"size": 357
}
|
{-# OPTIONS --without-K --rewriting #-}
module old.Sharp where
open import Basics
open import Flat
open import lib.Equivalence2
{- I want sthing like this
record ♯ {@♭ l : ULevel} (A : Type l) : Type l where
constructor _^♯
field
_/♯ :{♭} A
open ♯ publ
-}
-- Following Licata
postulate
-- Given a type A, ♯ A is a type
♯ : {i : ULevel} → Type i → Type i
-- Given an element a : A, we have an element ♯i a : ♯ A
♯i : {i : ULevel} {A : Type i} → A → ♯ A
-- To map out of ♯ A into some type ♯ (B a) depending on it, you may just map out of A.
♯-elim : {i j : ULevel} {A : Type i} (B : ♯ A → Type j)
→ ((a : A) → ♯ (B (♯i a)))
→ ((a : ♯ A) → ♯ (B a))
-- The resulting map out of ♯ A ``computes'' to the original map out of A on ♯i
♯-elim-β : {i j : ULevel} {A : Type i} {B : ♯ A → Type j}
(f : (a : A) → ♯ (B (♯i a))) (a : A)
→ (♯-elim B f (♯i a)) ↦ (f a)
{-# REWRITE ♯-elim-β #-}
-- The type of equalities in a codiscrete type are codiscrete
♯path : {i : ULevel} {A : Type i} {x y : ♯ A}
→ (♯i {A = x == y}) is-an-equiv
-- Given a crisp map into ♯ B, we get a cohesive map into it
-- This encodes the adjunction between ♭ and ♯ on the level of types.
uncrisp : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} (B : A → Type j)
→ ((@♭ a : A) → ♯ (B a))
→ (a : A) → ♯ (B a)
-- If we uncrispen a function and then apply it to a crisp variable, we get the original result judgementally
uncrisp-β : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} (B : A → Type j)
→ (f : (@♭ a : A) → ♯ (B a))
→ (@♭ a : A) → (uncrisp B f a) ↦ (f a)
{-# REWRITE uncrisp-β #-}
-- We can pull crisp elements out of ♯ A
♭♯e : {@♭ i : ULevel} {@♭ A : Type i} → ♯ A ::→ A
-- If we take a crisp element of A, put it into ♯ A, and pull it out again, we get where we were judgementally
♭♯β : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : A)
→ (♭♯e (♯i a)) ↦ a
{-# REWRITE ♭♯β #-}
-- If we pull out a crisp element of ♯ A and then put it back in, we get back where we were
-- Not sure why this isn't judgemental.
♭♯η : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : ♯ A) → a == ♯i (♭♯e a)
-- We also posulate the half-adjoint needed for this to be a coherent adjunction.
♭♯η-▵ : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : A) → ♭♯η (♯i a) == refl
♯path-eq : {i : ULevel} {A : Type i} {x y : ♯ A}
→ (x == y) ≃ (♯ (x == y))
♯path-eq = ♯i , ♯path
♯-rec : {i j : ULevel} {A : Type i} {B : Type j} →
(A → ♯ B) → (♯ A → ♯ B)
♯-rec {B = B} = ♯-elim (λ _ → B)
{-
Given a family B : (@♭ a : A) → Type j crisply varying over A,
we can form the family B' ≡ (λ (@♭ a : A) → ♯ (B a)).
According to Shulman, we should be able to then get a cohesive variation
B'' : (a : A) → Type j
with the property that if (@♭ a : A) , B'' a ≡ B' a
Or, shorter, from B : (@♭ a : A) → Type j, we should get C : (a : A) → Type j
with the property that for (@♭ a : A), C a ≡ ♯ (B a)
The signature of the operation B ↦ C must be ((@♭ a : A) → Type j) → (a : A) → Type j.
Unfortunately, this doesn't tell us anything about where its landing
-}
postulate
♯' : {@♭ @♭ i : ULevel} {Γ : Type i} {j : ULevel}
(A : Γ ::→ Type j)
→ Γ → Type j
♯'-law : {@♭ @♭ i : ULevel} {Γ : Type i} {j : ULevel}
(A : Γ ::→ Type j) (@♭ x : Γ)
→ (♯' A) x ↦ ♯ (A x)
{-# REWRITE ♯'-law #-}
{-
Here, we define let notations for ♯ to approximate the upper and lower ♯s
that Shulman uses in his paper.
We also define versions of the eliminator and uncrisper that take an implicit family argument, so
we can use the let notation without explicitly noting the family.
-}
syntax ♯-elim B (λ u → t) a = let♯ a :=♯i u in♯ t in-family B
syntax uncrisp B (λ u → t) a = let♯ a ↓♯:= u in♯ t in-family B
♯-elim' : {i j : ULevel} {A : Type i} {B : ♯ A → Type j}
→ ((a : A) → ♯ (B (♯i a)))
→ (a : ♯ A) → ♯ (B a)
♯-elim' {B = B} f = ♯-elim B f
syntax ♯-elim' (λ u → t) a = let♯ a :=♯i u in♯ t
uncrisp' : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : A → Type j}
→ (f : (@♭ a : A) → ♯ (B a))
→ (a : A) → ♯ (B a)
uncrisp' {B = B} f = uncrisp B f
syntax uncrisp' (λ u → t) a = let♯ u := a ↓♯in♯ t
-- A type A is codiscrete if the counit ♯i : A → ♯ A is an equivalence.
_is-codiscrete : {i : ULevel} (A : Type i) → Type i
_is-codiscrete {i} A = (♯i {A = A}) is-an-equiv
-- To prove a type is an equivalence, it suffices to give a retract of ♯i
_is-codiscrete-because_is-retract-by_ : {i : ULevel} (A : Type i)
(r : ♯ A → A) (p : (a : A) → r (♯i a) == a)
→ A is-codiscrete
A is-codiscrete-because r is-retract-by p =
(♯i {A = A}) is-an-equivalence-because r is-inverse-by
(λ a → -- Given an a : ♯ A,
(let♯ a :=♯i b in♯ -- We suppose a is ♯i b
(♯i (ap ♯i (p b))) -- apply p to b to get r (♯i b) == b,
-- then apply ♯i to get ♯i r ♯i b == ♯i b
-- then hit it with ♯i to get ♯ (♯i r ♯i b == ♯i b)
in-family (λ (b : ♯ A) → ♯i (r b) == b) -- which is ♯ (♯i r a == a) by our hypothesis,
)
|> (<– ♯path-eq) -- and we can strip the ♯ becacuse equality types are codiscrete.
)
and p
-- (λ a → (<– ♯path-eq) ((♯-elim (λ (b : ♯ A) → ♯i (r b) == b)
-- (λ b → ♯i (ap ♯i (p b)))) a))
♯→ : {i j : ULevel} {A : Type i} {B : Type j}
(f : A → B) → (♯ A) → (♯ B)
♯→ {A = A} {B = B} f = ♯-rec (♯i ∘ f)
-- Of course, ♯ A is codiscrete for any type A
♯-is-codiscrete : {i : ULevel} (A : Type i) → (♯ A) is-codiscrete
♯-is-codiscrete A =
(♯ A) is-codiscrete-because
(λ (a : ♯ (♯ A)) → let♯ a :=♯i x in♯ x) is-retract-by
(λ a → refl)
-- This is the actual equivalence A ≃ ♯ A, given that A is codiscrete
codisc-eq : {i : ULevel} {A : Type i} (p : A is-codiscrete)
→ A ≃ (♯ A)
codisc-eq = ♯i ,_
-- Theorem 3.7 of Shulman
module _ {@♭ i : ULevel} {@♭ A : Type i} where
code : (a b : ♯ A) → Type i
code a = ♯' {Γ = ♯ A} {!!}
{-
(let♯ u := a ↓♯in♯
(let♯ v := b ↓♯in♯
(♯i (♯ (u == v)))
)
)
-}
♯-identity-eq : (a b : A) → ((♯i a) == (♯i b)) ≃ ♯ (a == b)
♯-identity-eq a b = equiv {!!} fro {!!} {!!}
where
to : (♯i a) == (♯i b) → ♯ (a == b)
to p = {!!}
fro : ♯ (a == b) → ♯i a == ♯i b
fro p = (let♯ p :=♯i q in♯
♯i (ap ♯i q)
)
|> (<– ♯path-eq)
-- Theorem 6.22 of Shulman
-- ♭ and ♯ reflect into eachothers categories.
♭♯-eq : {@♭ i : ULevel} {@♭ A : Type i} → ♭ (♯ A) ≃ ♭ A
♭♯-eq {A = A} = equiv to fro to-fro fro-to
where
to : ♭ (♯ A) → ♭ A
to (a ^♭) = (♭♯e a) ^♭
fro : ♭ A → ♭ (♯ A)
fro (a ^♭) = (♯i a) ^♭
to-fro : (a : ♭ A) → to (fro a) == a
to-fro (a ^♭) = refl
fro-to : (a : ♭ (♯ A)) → fro (to a) == a
fro-to (a ^♭) = ♭-ap _^♭ (! (♭♯η a))
♯♭-eq : {@♭ i : ULevel} {@♭ A : Type i} → ♯ (♭ A) ≃ ♯ A
♯♭-eq {A = A} = equiv to fro to-fro fro-to
where
to : ♯ (♭ A) → ♯ A
to = ♯-rec (λ { (a ^♭) → (♯i a)})
fro : ♯ A → ♯ (♭ A)
fro = ♯-rec (uncrisp _ (λ (a : A) → ♯i (a ^♭)))
to-fro : (a : ♯ A) → to (fro a) == a
to-fro = (<– ♯path-eq) ∘
(♯-elim (λ a → to (fro a) == a) (λ a → ♯i refl))
fro-to : (a : ♯ (♭ A)) → fro (to a) == a
fro-to = (<– ♯path-eq) ∘
(♯-elim (λ a → fro (to a) == a) (λ { (a ^♭) → ♯i refl }))
-- Theorem 6.27 of Shulman
♭♯-adjoint : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : A → Type j}
→ ♭ ((a : ♭ A) → B (♭i a)) ≃ ♭ ((a : A) → ♯ (B a))
♭♯-adjoint {i} {j} {A} {B} = equiv to fro to-fro fro-to
where
to : ♭ ((a : ♭ A) → B (♭i a)) → ♭ ((a : A) → ♯ (B a))
to (f ^♭) = (uncrisp B (λ (@♭ a : A) → ♯i (f (a ^♭)))) ^♭
fro : ♭ ((a : A) → ♯ (B a)) → ♭ ((a : ♭ A) → B (♭i a))
fro (f ^♭) = (λ { (a ^♭) → ♭♯e (f a) }) ^♭
to-fro : (f : ♭ ((a : A) → ♯ (B a))) → to (fro f) == f
to-fro (f ^♭)= ♭-ap _^♭ {!!}
fro-to : (f : ♭ ((a : ♭ A) → B (♭i a))) → fro (to f) == f
fro-to (@♭ f ^♭) = ♭-ap _^♭ (λ= (λ a → {!(λ { (a₁ ^♭) → ♭♯e (uncrisp B (λ (a₂ : _) → ♯i (f (a₂ ^♭))) a₁) })!}))
has-level-is-codiscrete : {i : ULevel} {A : Type i} {n : ℕ₋₂}
→ (has-level n A) is-codiscrete
has-level-is-codiscrete = {!!}
♯-preserves-level : {i : ULevel} {A : Type i}
{n : ℕ₋₂} (p : has-level n A)
→ has-level n (♯ A)
♯-preserves-level {i} {A} {⟨-2⟩} p =
has-level-in (♯i (contr-center p) ,
(<– ♯path-eq) ∘ (♯-elim (λ a → ♯i (contr-center p) == a)
(λ a → ♯i (ap ♯i (contr-path p a)))))
♯-preserves-level {i} {A} {S n} p =
has-level-in (λ x y → (<– (codisc-eq has-level-is-codiscrete))
((♯-elim (λ y → has-level n (x == y)) {!!}) y)
)
{-
to-crisp : {@♭ i : ULevel} {j : ULevel} {A : ♭ (Type i)} {B : Type j}
→ (♭i A → B) → (A ♭:→ B)
to-crisp {A = (A ^♭)} f = (<– ♭-recursion-eq) (f ∘ ♭i)
_is-codiscrete : {@♭ j : ULevel} (B : Type j) → Type (lsucc j)
_is-codiscrete {j} B = (A : ♭ (Type j)) → to-crisp {A = A} {B = B} is-an-equiv
codisc-eq : {@♭ j : ULevel} {B : Type j} (p : B is-codiscrete)
{A : ♭ (Type j)} → (♭i A → B) ≃ (A ♭:→ B)
codisc-eq {j} {B} p {A} = (to-crisp {A = A} {B = B}) , (p A)
codisc-promote : {@♭ j : ULevel} {B : Type j} (p : B is-codiscrete)
{A : ♭ (Type j)} → (A ♭:→ B) → (♭i A → B)
codisc-promote p = <– (codisc-eq p)
_is-codiscrete-is-a-prop : {@♭ j : ULevel} (B : Type j) → (B is-codiscrete) is-a-prop
_is-codiscrete-is-a-prop {j} B =
mapping-into-prop-is-a-prop (λ { (A ^♭) → is-equiv-is-prop })
_is-codiscrete₀ : {@♭ j : ULevel} (B : Type j) → Type₀
_is-codiscrete₀ {j} B = (resize₀ ((B is-codiscrete) , (B is-codiscrete-is-a-prop))) holds
⊤-is-codiscrete : ⊤ is-codiscrete
⊤-is-codiscrete =
λ { (A ^♭) → to-crisp is-an-equivalence-because
(λ _ _ → unit) is-inverse-by
(λ f → refl) and (λ f → refl) }
{-
Π-codisc : {@♭ i : ULevel} {A : Type i} {B : A → Type i}
→ ((a : A) → (B a) is-codiscrete)
→ ((a : A) → B a) is-codiscrete
Π-codisc {i} {A} {B} f =
λ { (T ^♭) → to-crisp is-an-equivalence-because
(λ g → λ t a → {!codisc-promote (f a)!}) is-inverse-by
{!!} and {!!}}
-}
{-
question : {@♭ i : ULevel} (B : Type i)
(r : (A : ♭ (Type i)) → (to-crisp {A = A} {B = B}) is-split-inj)
→ B is-codiscrete
question {i = i} B r =
λ { (A ^♭) → to-crisp is-an-equivalence-because
fst (r (A ^♭)) is-inverse-by
(λ f → {!!})
and snd (r (A ^♭)) } -}
{- The idea from this proof is to map out of the suspension
=-is-codiscrete : {@♭ i : ULevel} {B : Type i} (p : B is-codiscrete)
(x y : B) → (x == y) is-codiscrete
=-is-codiscrete {i} {B} p x y =
λ { (A ^♭) → to-crisp is-an-equivalence-because
{!!} is-inverse-by {!!} and {!!} }
-}
-}
|
{
"alphanum_fraction": 0.427907777,
"avg_line_length": 34.9069069069,
"ext": "agda",
"hexsha": "56b2f3d643facdff2517714f34f91ba8b52d4377",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/old/Sharp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/old/Sharp.agda",
"max_line_length": 117,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/old/Sharp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 4927,
"size": 11624
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Decidable where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Conversion.Soundness
open import Definition.Conversion.Symmetry
open import Definition.Conversion.Stability
open import Definition.Conversion.Conversion
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Inequality as IE
open import Definition.Typed.Consequences.NeTypeEq
open import Definition.Typed.Consequences.SucCong
open import Definition.Typed.Consequences.Inversion
open import Tools.Nat
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary
import Tools.PropositionalEquality as PE
-- Algorithmic equality of variables infers propositional equality.
strongVarEq : ∀ {m n A Γ} → Γ ⊢ var n ~ var m ↑ A → n PE.≡ m
strongVarEq (var-refl x x≡y) = x≡y
-- Helper function for decidability of applications.
dec~↑-app : ∀ {k k₁ l l₁ F F₁ G G₁ B Γ}
→ Γ ⊢ k ∷ Π F ▹ G
→ Γ ⊢ k₁ ∷ Π F₁ ▹ G₁
→ Γ ⊢ k ~ k₁ ↓ B
→ Dec (Γ ⊢ l [conv↑] l₁ ∷ F)
→ Dec (∃ λ A → Γ ⊢ k ∘ l ~ k₁ ∘ l₁ ↑ A)
dec~↑-app k k₁ k~k₁ (yes p) =
let whnfA , neK , neL = ne~↓ k~k₁
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~k₁)
ΠFG₁≡A = neTypeEq neK k ⊢k
H , E , A≡ΠHE = Π≡A ΠFG₁≡A whnfA
F≡H , G₁≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) A≡ΠHE ΠFG₁≡A)
in yes (E [ _ ] , app-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡ΠHE k~k₁)
(convConvTerm p F≡H))
dec~↑-app k₂ k₃ k~k₁ (no ¬p) =
no (λ { (_ , app-cong x x₁) →
let whnfA , neK , neL = ne~↓ x
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ x)
ΠFG≡ΠF₂G₂ = neTypeEq neK k₂ ⊢k
F≡F₂ , G≡G₂ = injectivity ΠFG≡ΠF₂G₂
in ¬p (convConvTerm x₁ (sym F≡F₂)) })
-- Helper function for decidability for neutrals of natural number type.
decConv↓Term-ℕ-ins : ∀ {t u Γ}
→ Γ ⊢ t [conv↓] u ∷ ℕ
→ Γ ⊢ t ~ t ↓ ℕ
→ Γ ⊢ t ~ u ↓ ℕ
decConv↓Term-ℕ-ins (ℕ-ins x) t~t = x
decConv↓Term-ℕ-ins (ne-ins x x₁ () x₃) t~t
decConv↓Term-ℕ-ins (zero-refl x) ([~] A D whnfB ())
decConv↓Term-ℕ-ins (suc-cong x) ([~] A D whnfB ())
-- Helper function for decidability for neutrals of empty type.
decConv↓Term-Empty-ins : ∀ {t u Γ}
→ Γ ⊢ t [conv↓] u ∷ Empty
→ Γ ⊢ t ~ t ↓ Empty
→ Γ ⊢ t ~ u ↓ Empty
decConv↓Term-Empty-ins (Empty-ins x) t~t = x
decConv↓Term-Empty-ins (ne-ins x x₁ () x₃) t~t
-- Helper function for decidability for neutrals of a neutral type.
decConv↓Term-ne-ins : ∀ {t u A Γ}
→ Neutral A
→ Γ ⊢ t [conv↓] u ∷ A
→ ∃ λ B → Γ ⊢ t ~ u ↓ B
decConv↓Term-ne-ins () (ℕ-ins x)
decConv↓Term-ne-ins () (Empty-ins x)
decConv↓Term-ne-ins neA (ne-ins x x₁ x₂ x₃) = _ , x₃
decConv↓Term-ne-ins () (univ x x₁ x₂)
decConv↓Term-ne-ins () (zero-refl x)
decConv↓Term-ne-ins () (suc-cong x)
decConv↓Term-ne-ins () (η-eq x₁ x₂ x₃ x₄ x₅)
-- Helper function for decidability for impossibility of terms not being equal
-- as neutrals when they are equal as terms and the first is a neutral.
decConv↓Term-ℕ : ∀ {t u Γ}
→ Γ ⊢ t [conv↓] u ∷ ℕ
→ Γ ⊢ t ~ t ↓ ℕ
→ ¬ (Γ ⊢ t ~ u ↓ ℕ)
→ ⊥
decConv↓Term-ℕ (ℕ-ins x) t~t ¬u~u = ¬u~u x
decConv↓Term-ℕ (ne-ins x x₁ () x₃) t~t ¬u~u
decConv↓Term-ℕ (zero-refl x) ([~] A D whnfB ()) ¬u~u
decConv↓Term-ℕ (suc-cong x) ([~] A D whnfB ()) ¬u~u
-- Helper function for extensional equality of Unit.
decConv↓Term-Unit : ∀ {t u Γ}
→ Γ ⊢ t [conv↓] t ∷ Unit → Γ ⊢ u [conv↓] u ∷ Unit
→ Dec (Γ ⊢ t [conv↓] u ∷ Unit)
decConv↓Term-Unit tConv uConv =
let t≡t = soundnessConv↓Term tConv
u≡u = soundnessConv↓Term uConv
_ , [t] , _ = syntacticEqTerm t≡t
_ , [u] , _ = syntacticEqTerm u≡u
_ , tWhnf , _ = whnfConv↓Term tConv
_ , uWhnf , _ = whnfConv↓Term uConv
in yes (η-unit [t] [u] tWhnf uWhnf)
mutual
-- Decidability of algorithmic equality of neutrals.
dec~↑ : ∀ {k l R T Γ}
→ Γ ⊢ k ~ k ↑ R → Γ ⊢ l ~ l ↑ T
→ Dec (∃ λ A → Γ ⊢ k ~ l ↑ A)
dec~↑ (var-refl {n} x₂ x≡y) (var-refl {m} x₃ x≡y₁) with n ≟ m
... | yes PE.refl = yes (_ , var-refl x₂ x≡y₁)
... | no ¬p = no (λ { (A , k~l) → ¬p (strongVarEq k~l) })
dec~↑ (var-refl x₁ x≡y) (app-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑ (var-refl x₁ x≡y) (fst-cong x₂) = no (λ { (_ , ()) })
dec~↑ (var-refl x₁ x≡y) (snd-cong x₂) = no (λ { (_ , ()) })
dec~↑ (var-refl x₁ x≡y) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑ (var-refl x₁ x≡y) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑ (app-cong x x₁) (app-cong x₂ x₃)
with dec~↓ x x₂
... | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢l₁ , _ = syntacticEqTerm (soundness~↓ x)
_ , ⊢l₂ , _ = syntacticEqTerm (soundness~↓ x₂)
ΠFG≡A = neTypeEq neK ⊢l₁ ⊢k
ΠF′G′≡A = neTypeEq neL ⊢l₂ ⊢l
F≡F′ , G≡G′ = injectivity (trans ΠFG≡A (sym ΠF′G′≡A))
in dec~↑-app ⊢l₁ ⊢l₂ k~l (decConv↑TermConv F≡F′ x₁ x₃)
... | no ¬p = no (λ { (_ , app-cong x₄ x₅) → ¬p (_ , x₄) })
dec~↑ (app-cong x₁ x₂) (var-refl x₃ x≡y) = no (λ { (_ , ()) })
dec~↑ (app-cong x x₁) (fst-cong x₂) = no (λ { (_ , ()) })
dec~↑ (app-cong x x₁) (snd-cong x₂) = no (λ { (_ , ()) })
dec~↑ (app-cong x x₁) (natrec-cong x₂ x₃ x₄ x₅) = no (λ { (_ , ()) })
dec~↑ (app-cong x x₁) (Emptyrec-cong x₂ x₃) = no (λ { (_ , ()) })
dec~↑ (fst-cong {k} k~k) (fst-cong {l} l~l) with dec~↓ k~k l~l
... | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢k₁ , _ = syntacticEqTerm (soundness~↓ k~k)
ΣFG≡A = neTypeEq neK ⊢k₁ ⊢k
F , G , A≡ΣFG = Σ≡A ΣFG≡A whnfA
in yes (F , fst-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x)
A≡ΣFG
k~l))
... | no ¬p = no (λ { (_ , fst-cong x₂) → ¬p (_ , x₂) })
dec~↑ (fst-cong x) (var-refl x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (fst-cong x) (app-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (fst-cong x) (snd-cong x₁) = no (λ { (_ , ()) })
dec~↑ (fst-cong x) (natrec-cong x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑ (fst-cong x) (Emptyrec-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (snd-cong {k} k~k) (snd-cong {l} l~l) with dec~↓ k~k l~l
... | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢k₁ , _ = syntacticEqTerm (soundness~↓ k~k)
ΣFG≡A = neTypeEq neK ⊢k₁ ⊢k
F , G , A≡ΣFG = Σ≡A ΣFG≡A whnfA
in yes (G [ fst k ] , snd-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x)
A≡ΣFG
k~l))
... | no ¬p = no (λ { (_ , snd-cong x₂) → ¬p (_ , x₂) })
dec~↑ (snd-cong x) (var-refl x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (snd-cong x) (app-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (snd-cong x) (fst-cong x₁) = no (λ { (_ , ()) })
dec~↑ (snd-cong x) (natrec-cong x₁ x₂ x₃ x₄) = no (λ { (_ , ()) })
dec~↑ (snd-cong x) (Emptyrec-cong x₁ x₂) = no (λ { (_ , ()) })
dec~↑ (natrec-cong x x₁ x₂ x₃) (natrec-cong x₄ x₅ x₆ x₇)
with decConv↑ x x₄
... | yes p
with decConv↑TermConv
(substTypeEq (soundnessConv↑ p)
(refl (zeroⱼ (wfEqTerm (soundness~↓ x₃)))))
x₁ x₅
| decConv↑TermConv (sucCong (soundnessConv↑ p)) x₂ x₆
| dec~↓ x₃ x₇
... | yes p₁ | yes p₂ | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢l∷ℕ , _ = syntacticEqTerm (soundness~↓ x₃)
⊢ℕ≡A = neTypeEq neK ⊢l∷ℕ ⊢k
A≡ℕ = ℕ≡A ⊢ℕ≡A whnfA
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡ℕ k~l
in yes (_ , natrec-cong p p₁ p₂ k~l′)
... | yes p₁ | yes p₂ | no ¬p =
no (λ { (_ , natrec-cong x₈ x₉ x₁₀ x₁₁) → ¬p (_ , x₁₁) })
... | yes p₁ | no ¬p | r =
no (λ { (_ , natrec-cong x₈ x₉ x₁₀ x₁₁) → ¬p x₁₀ })
... | no ¬p | w | r =
no (λ { (_ , natrec-cong x₈ x₉ x₁₀ x₁₁) → ¬p x₉ })
dec~↑ (natrec-cong x x₁ x₂ x₃) (natrec-cong x₄ x₅ x₆ x₇)
| no ¬p = no (λ { (_ , natrec-cong x₈ x₉ x₁₀ x₁₁) → ¬p x₈ })
dec~↑ (natrec-cong _ _ _ _) (var-refl _ _) = no (λ { (_ , ()) })
dec~↑ (natrec-cong _ _ _ _) (fst-cong _) = no (λ { (_ , ()) })
dec~↑ (natrec-cong _ _ _ _) (snd-cong _) = no (λ { (_ , ()) })
dec~↑ (natrec-cong _ _ _ _) (app-cong _ _) = no (λ { (_ , ()) })
dec~↑ (natrec-cong _ _ _ _) (Emptyrec-cong _ _) = no (λ { (_ , ()) })
dec~↑ (Emptyrec-cong x x₁) (Emptyrec-cong x₄ x₅)
with decConv↑ x x₄ | dec~↓ x₁ x₅
... | yes p | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢l∷Empty , _ = syntacticEqTerm (soundness~↓ x₁)
⊢Empty≡A = neTypeEq neK ⊢l∷Empty ⊢k
A≡Empty = Empty≡A ⊢Empty≡A whnfA
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡Empty k~l
in yes (_ , Emptyrec-cong p k~l′)
... | yes p | no ¬p = no (λ { (_ , Emptyrec-cong a b) → ¬p (_ , b) })
... | no ¬p | r = no (λ { (_ , Emptyrec-cong a b) → ¬p a })
dec~↑ (Emptyrec-cong _ _) (var-refl _ _) = no (λ { (_ , ()) })
dec~↑ (Emptyrec-cong _ _) (fst-cong _) = no (λ { (_ , ()) })
dec~↑ (Emptyrec-cong _ _) (snd-cong _) = no (λ { (_ , ()) })
dec~↑ (Emptyrec-cong _ _) (app-cong _ _) = no (λ { (_ , ()) })
dec~↑ (Emptyrec-cong _ _) (natrec-cong _ _ _ _) = no (λ { (_ , ()) })
dec~↑′ : ∀ {k l R T Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ k ~ k ↑ R → Δ ⊢ l ~ l ↑ T
→ Dec (∃ λ A → Γ ⊢ k ~ l ↑ A)
dec~↑′ Γ≡Δ k~k l~l = dec~↑ k~k (stability~↑ (symConEq Γ≡Δ) l~l)
-- Decidability of algorithmic equality of neutrals with types in WHNF.
dec~↓ : ∀ {k l R T Γ}
→ Γ ⊢ k ~ k ↓ R → Γ ⊢ l ~ l ↓ T
→ Dec (∃ λ A → Γ ⊢ k ~ l ↓ A)
dec~↓ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁) with dec~↑ k~l k~l₁
dec~↓ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁) | yes (B , k~l₂) =
let ⊢B , _ , _ = syntacticEqTerm (soundness~↑ k~l₂)
C , whnfC , D′ = whNorm ⊢B
in yes (C , [~] B (red D′) whnfC k~l₂)
dec~↓ ([~] A D whnfB k~l) ([~] A₁ D₁ whnfB₁ k~l₁) | no ¬p =
no (λ { (A₂ , [~] A₃ D₂ whnfB₂ k~l₂) → ¬p (A₃ , k~l₂) })
-- Decidability of algorithmic equality of types.
decConv↑ : ∀ {A B Γ}
→ Γ ⊢ A [conv↑] A → Γ ⊢ B [conv↑] B
→ Dec (Γ ⊢ A [conv↑] B)
decConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″)
rewrite whrDet* (D , whnfA′) (D′ , whnfB′)
| whrDet* (D₁ , whnfA″) (D″ , whnfB″)
with decConv↓ A′<>B′ A′<>B″
decConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) | yes p =
yes ([↑] B′ B″ D′ D″ whnfB′ whnfB″ p)
decConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) | no ¬p =
no (λ { ([↑] A‴ B‴ D₂ D‴ whnfA‴ whnfB‴ A′<>B‴) →
let A‴≡B′ = whrDet* (D₂ , whnfA‴) (D′ , whnfB′)
B‴≡B″ = whrDet* (D‴ , whnfB‴)
(D″ , whnfB″)
in ¬p (PE.subst₂ (λ x y → _ ⊢ x [conv↓] y) A‴≡B′ B‴≡B″ A′<>B‴) })
decConv↑′ : ∀ {A B Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A [conv↑] A → Δ ⊢ B [conv↑] B
→ Dec (Γ ⊢ A [conv↑] B)
decConv↑′ Γ≡Δ A B = decConv↑ A (stabilityConv↑ (symConEq Γ≡Δ) B)
-- Decidability of algorithmic equality of types in WHNF.
decConv↓ : ∀ {A B Γ}
→ Γ ⊢ A [conv↓] A → Γ ⊢ B [conv↓] B
→ Dec (Γ ⊢ A [conv↓] B)
-- True cases
decConv↓ (U-refl x) (U-refl x₁) = yes (U-refl x)
decConv↓ (ℕ-refl x) (ℕ-refl x₁) = yes (ℕ-refl x)
decConv↓ (Empty-refl x) (Empty-refl x₁) = yes (Empty-refl x)
decConv↓ (Unit-refl x) (Unit-refl x₁) = yes (Unit-refl x)
-- Inspective cases
decConv↓ (ne x) (ne x₁) with dec~↓ x x₁
decConv↓ (ne x) (ne x₁) | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , _ = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢k∷U , _ = syntacticEqTerm (soundness~↓ x)
⊢U≡A = neTypeEq neK ⊢k∷U ⊢k
A≡U = U≡A ⊢U≡A
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡U k~l
in yes (ne k~l′)
decConv↓ (ne x) (ne x₁) | no ¬p =
no (λ x₂ → ¬p (U , decConv↓-ne x₂ x))
decConv↓ (Π-cong x x₁ x₂) (Π-cong x₃ x₄ x₅)
with decConv↑ x₁ x₄
... | yes p with decConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ p) x₂ x₅
... | yes p₁ = yes (Π-cong x p p₁)
... | no ¬p = no (λ { (ne ([~] A D whnfB ())) ; (Π-cong x₆ x₇ x₈) → ¬p x₈ })
decConv↓ (Π-cong x x₁ x₂) (Π-cong x₃ x₄ x₅) | no ¬p =
no (λ { (ne ([~] A D whnfB ())) ; (Π-cong x₆ x₇ x₈) → ¬p x₇ })
decConv↓ (Σ-cong x x₁ x₂) (Σ-cong x₃ x₄ x₅)
with decConv↑ x₁ x₄
... | yes p with decConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ p) x₂ x₅
... | yes p₁ = yes (Σ-cong x p p₁)
... | no ¬p = no (λ { (ne ([~] A D whnfB ())) ; (Σ-cong x₆ x₇ x₈) → ¬p x₈ })
decConv↓ (Σ-cong x x₁ x₂) (Σ-cong x₃ x₄ x₅) | no ¬p =
no (λ { (ne ([~] A D whnfB ())) ; (Σ-cong x₆ x₇ x₈) → ¬p x₇ })
-- False cases
decConv↓ (U-refl x) (ℕ-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (U-refl x) (Empty-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (U-refl x) (Unit-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (U-refl x) (ne x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x₁
in ⊥-elim (IE.U≢ne neK (soundnessConv↓ x₂)))
decConv↓ (U-refl x) (Π-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (U-refl x) (Σ-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ℕ-refl x) (U-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ℕ-refl x) (Empty-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ℕ-refl x) (Unit-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ℕ-refl x) (ne x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x₁
in ⊥-elim (IE.ℕ≢ne neK (soundnessConv↓ x₂)))
decConv↓ (ℕ-refl x) (Π-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ℕ-refl x) (Σ-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Empty-refl x) (U-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Empty-refl x) (ℕ-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Empty-refl x) (Unit-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Empty-refl x) (ne x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x₁
in ⊥-elim (IE.Empty≢neⱼ neK (soundnessConv↓ x₂)))
decConv↓ (Empty-refl x) (Π-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Empty-refl x) (Σ-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Unit-refl x) (U-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Unit-refl x) (ℕ-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Unit-refl x) (Empty-refl x₁) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Unit-refl x) (ne x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x₁
in ⊥-elim (IE.Unit≢neⱼ neK (soundnessConv↓ x₂)))
decConv↓ (Unit-refl x) (Π-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Unit-refl x) (Σ-cong x₁ x₂ x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (ne x) (U-refl x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.U≢ne neK (sym (soundnessConv↓ x₂))))
decConv↓ (ne x) (ℕ-refl x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.ℕ≢ne neK (sym (soundnessConv↓ x₂))))
decConv↓ (ne x) (Empty-refl x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.Empty≢neⱼ neK (sym (soundnessConv↓ x₂))))
decConv↓ (ne x) (Unit-refl x₁) =
no (λ x₂ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.Unit≢neⱼ neK (sym (soundnessConv↓ x₂))))
decConv↓ (ne x) (Π-cong x₁ x₂ x₃) =
no (λ x₄ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.Π≢ne neK (sym (soundnessConv↓ x₄))))
decConv↓ (ne x) (Σ-cong x₁ x₂ x₃) =
no (λ x₄ → let whnfA , neK , neL = ne~↓ x
in ⊥-elim (IE.Σ≢ne neK (sym (soundnessConv↓ x₄))))
decConv↓ (Π-cong x x₁ x₂) (U-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Π-cong x x₁ x₂) (ℕ-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Π-cong x x₁ x₂) (Empty-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Π-cong x x₁ x₂) (Unit-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Π-cong x x₁ x₂) (Σ-cong x₃ x₄ x₅) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Π-cong x x₁ x₂) (ne x₃) =
no (λ x₄ → let whnfA , neK , neL = ne~↓ x₃
in ⊥-elim (IE.Π≢ne neK (soundnessConv↓ x₄)))
decConv↓ (Σ-cong x x₁ x₂) (U-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Σ-cong x x₁ x₂) (ℕ-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Σ-cong x x₁ x₂) (Empty-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Σ-cong x x₁ x₂) (Unit-refl x₃) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Σ-cong x x₁ x₂) (Π-cong x₃ x₄ x₅) = no (λ { (ne ([~] A D whnfB ())) })
decConv↓ (Σ-cong x x₁ x₂) (ne x₃) =
no (λ x₄ → let whnfA , neK , neL = ne~↓ x₃
in ⊥-elim (IE.Σ≢ne neK (soundnessConv↓ x₄)))
-- Helper function for decidability of neutral types.
decConv↓-ne : ∀ {A B Γ}
→ Γ ⊢ A [conv↓] B
→ Γ ⊢ A ~ A ↓ U
→ Γ ⊢ A ~ B ↓ U
decConv↓-ne (U-refl x) A~A = A~A
decConv↓-ne (ℕ-refl x) A~A = A~A
decConv↓-ne (Empty-refl x) A~A = A~A
decConv↓-ne (ne x) A~A = x
decConv↓-ne (Π-cong x x₁ x₂) ([~] A D whnfB ())
-- Decidability of algorithmic equality of terms.
decConv↑Term : ∀ {t u A Γ}
→ Γ ⊢ t [conv↑] t ∷ A → Γ ⊢ u [conv↑] u ∷ A
→ Dec (Γ ⊢ t [conv↑] u ∷ A)
decConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
rewrite whrDet* (D , whnfB) (D₁ , whnfB₁)
| whrDet*Term (d , whnft′) (d′ , whnfu′)
| whrDet*Term (d₁ , whnft″) (d″ , whnfu″)
with decConv↓Term t<>u t<>u₁
decConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
| yes p =
yes ([↑]ₜ B₁ u′ u″ D₁
d′ d″ whnfB₁ whnfu′ whnfu″ p)
decConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₁ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁)
| no ¬p =
no (λ { ([↑]ₜ B₂ t‴ u‴ D₂ d₂ d‴ whnfB₂ whnft‴ whnfu‴ t<>u₂) →
let B₂≡B₁ = whrDet* (D₂ , whnfB₂)
(D₁ , whnfB₁)
t‴≡u′ = whrDet*Term (d₂ , whnft‴)
(PE.subst (λ x → _ ⊢ _ ⇒* _ ∷ x) (PE.sym B₂≡B₁) d′
, whnfu′)
u‴≡u″ = whrDet*Term (d‴ , whnfu‴)
(PE.subst (λ x → _ ⊢ _ ⇒* _ ∷ x)
(PE.sym B₂≡B₁)
d″
, whnfu″)
in ¬p (PE.subst₃ (λ x y z → _ ⊢ x [conv↓] y ∷ z)
t‴≡u′ u‴≡u″ B₂≡B₁ t<>u₂) })
decConv↑Term′ : ∀ {t u A Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ t [conv↑] t ∷ A → Δ ⊢ u [conv↑] u ∷ A
→ Dec (Γ ⊢ t [conv↑] u ∷ A)
decConv↑Term′ Γ≡Δ t u = decConv↑Term t (stabilityConv↑Term (symConEq Γ≡Δ) u)
-- Decidability of algorithmic equality of terms in WHNF.
decConv↓Term : ∀ {t u A Γ}
→ Γ ⊢ t [conv↓] t ∷ A → Γ ⊢ u [conv↓] u ∷ A
→ Dec (Γ ⊢ t [conv↓] u ∷ A)
-- True cases
decConv↓Term (zero-refl x) (zero-refl x₁) = yes (zero-refl x)
decConv↓Term (Unit-ins t~t) uConv = decConv↓Term-Unit (Unit-ins t~t) uConv
decConv↓Term (η-unit [t] _ tUnit _) uConv =
decConv↓Term-Unit (η-unit [t] [t] tUnit tUnit) uConv
-- Inspective cases
decConv↓Term (ℕ-ins x) (ℕ-ins x₁) with dec~↓ x x₁
decConv↓Term (ℕ-ins x) (ℕ-ins x₁) | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢l∷ℕ , _ = syntacticEqTerm (soundness~↓ x)
⊢ℕ≡A = neTypeEq neK ⊢l∷ℕ ⊢k
A≡ℕ = ℕ≡A ⊢ℕ≡A whnfA
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡ℕ k~l
in yes (ℕ-ins k~l′)
decConv↓Term (ℕ-ins x) (ℕ-ins x₁) | no ¬p =
no (λ x₂ → ¬p (ℕ , decConv↓Term-ℕ-ins x₂ x))
decConv↓Term (Empty-ins x) (Empty-ins x₁) with dec~↓ x x₁
decConv↓Term (Empty-ins x) (Empty-ins x₁) | yes (A , k~l) =
let whnfA , neK , neL = ne~↓ k~l
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓ k~l)
_ , ⊢l∷Empty , _ = syntacticEqTerm (soundness~↓ x)
⊢Empty≡A = neTypeEq neK ⊢l∷Empty ⊢k
A≡Empty = Empty≡A ⊢Empty≡A whnfA
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) A≡Empty k~l
in yes (Empty-ins k~l′)
decConv↓Term (Empty-ins x) (Empty-ins x₁) | no ¬p =
no (λ x₂ → ¬p (Empty , decConv↓Term-Empty-ins x₂ x))
decConv↓Term (ne-ins x x₁ x₂ x₃) (ne-ins x₄ x₅ x₆ x₇)
with dec~↓ x₃ x₇
decConv↓Term (ne-ins x x₁ x₂ x₃) (ne-ins x₄ x₅ x₆ x₇) | yes (A , k~l) =
yes (ne-ins x₁ x₄ x₆ k~l)
decConv↓Term (ne-ins x x₁ x₂ x₃) (ne-ins x₄ x₅ x₆ x₇) | no ¬p =
no (λ x₈ → ¬p (decConv↓Term-ne-ins x₆ x₈))
decConv↓Term (univ x x₁ x₂) (univ x₃ x₄ x₅)
with decConv↓ x₂ x₅
decConv↓Term (univ x x₁ x₂) (univ x₃ x₄ x₅) | yes p =
yes (univ x₁ x₃ p)
decConv↓Term (univ x x₁ x₂) (univ x₃ x₄ x₅) | no ¬p =
no (λ { (ne-ins x₆ x₇ () x₉)
; (univ x₆ x₇ x₈) → ¬p x₈ })
decConv↓Term (suc-cong x) (suc-cong x₁) with decConv↑Term x x₁
decConv↓Term (suc-cong x) (suc-cong x₁) | yes p =
yes (suc-cong p)
decConv↓Term (suc-cong x) (suc-cong x₁) | no ¬p =
no (λ { (ℕ-ins ([~] A D whnfB ()))
; (ne-ins x₂ x₃ () x₅)
; (suc-cong x₂) → ¬p x₂ })
decConv↓Term (Σ-η ⊢t _ tProd _ fstConvT sndConvT)
(Σ-η ⊢u _ uProd _ fstConvU sndConvU)
with decConv↑Term fstConvT fstConvU
... | yes P with let ⊢F , ⊢G = syntacticΣ (syntacticTerm ⊢t)
fstt≡fstu = soundnessConv↑Term P
Gfstt≡Gfstu = substTypeEq (refl ⊢G) fstt≡fstu
in decConv↑TermConv Gfstt≡Gfstu sndConvT sndConvU
... | yes Q = yes (Σ-η ⊢t ⊢u tProd uProd P Q)
... | no ¬Q = no (λ { (Σ-η _ _ _ _ _ Q) → ¬Q Q } )
decConv↓Term (Σ-η _ _ _ _ _ _) (Σ-η _ _ _ _ _ _)
| no ¬P = no (λ { (Σ-η _ _ _ _ P _) → ¬P P } )
decConv↓Term (η-eq x₁ x₂ x₃ x₄ x₅) (η-eq x₇ x₈ x₉ x₁₀ x₁₁)
with decConv↑Term x₅ x₁₁
decConv↓Term (η-eq x₁ x₂ x₃ x₄ x₅) (η-eq x₇ x₈ x₉ x₁₀ x₁₁) | yes p =
yes (η-eq x₂ x₇ x₄ x₁₀ p)
decConv↓Term (η-eq x₁ x₂ x₃ x₄ x₅) (η-eq x₇ x₈ x₉ x₁₀ x₁₁) | no ¬p =
no (λ { (ne-ins x₁₂ x₁₃ () x₁₅)
; (η-eq x₁₃ x₁₄ x₁₅ x₁₆ x₁₇) → ¬p x₁₇ })
-- False cases
decConv↓Term (ℕ-ins x) (zero-refl x₁) =
no (λ x₂ → decConv↓Term-ℕ x₂ x (λ { ([~] A D whnfB ()) }))
decConv↓Term (ℕ-ins x) (suc-cong x₁) =
no (λ x₂ → decConv↓Term-ℕ x₂ x (λ { ([~] A D whnfB ()) }))
decConv↓Term (zero-refl x) (ℕ-ins x₁) =
no (λ x₂ → decConv↓Term-ℕ (symConv↓Term′ x₂) x₁ (λ { ([~] A D whnfB ()) }))
decConv↓Term (zero-refl x) (suc-cong x₁) =
no (λ { (ℕ-ins ([~] A D whnfB ())) ; (ne-ins x₂ x₃ () x₅) })
decConv↓Term (suc-cong x) (ℕ-ins x₁) =
no (λ x₂ → decConv↓Term-ℕ (symConv↓Term′ x₂) x₁ (λ { ([~] A D whnfB ()) }))
decConv↓Term (suc-cong x) (zero-refl x₁) =
no (λ { (ℕ-ins ([~] A D whnfB ())) ; (ne-ins x₂ x₃ () x₅) })
-- Decidability of algorithmic equality of terms of equal types.
decConv↑TermConv : ∀ {t u A B Γ}
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↑] t ∷ A
→ Γ ⊢ u [conv↑] u ∷ B
→ Dec (Γ ⊢ t [conv↑] u ∷ A)
decConv↑TermConv A≡B t u =
decConv↑Term t (convConvTerm u (sym A≡B))
|
{
"alphanum_fraction": 0.4943458522,
"avg_line_length": 46.3288718929,
"ext": "agda",
"hexsha": "9f3b26ed0dea97e33089de08cffdf1cc7538e711",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Decidable.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11030,
"size": 24230
}
|
module _ where
record R : Set₁ where
field
Type : Set
postulate
A : Set
module M (x : A) (r₁ : R) (y : A) where
open R r₁
r₂ : R
r₂ = record { Type = A }
foo : R.Type r₂
foo = {!!} -- R.Type r₂
bar : R.Type r₁
bar = {!!} -- Type
|
{
"alphanum_fraction": 0.5076923077,
"avg_line_length": 11.8181818182,
"ext": "agda",
"hexsha": "2d6ce13913bcabcfc6c9d355f10575dc9ce94f8c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2210.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2210.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2210.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 106,
"size": 260
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Tuple where
open import Data.Tuple.Base public
|
{
"alphanum_fraction": 0.7127659574,
"avg_line_length": 15.6666666667,
"ext": "agda",
"hexsha": "48f3fa43da2c8d66919f9242472613858d490869",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Tuple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Tuple.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Tuple.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 23,
"size": 94
}
|
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module GGT.Structures
{a b ℓ₁ ℓ₂}
{G : Set a} -- The underlying group carrier
{Ω : Set b} -- The underlying set space
(_≈_ : Rel G ℓ₁) -- The underlying group equality
(_≋_ : Rel Ω ℓ₂) -- The underlying space equality
where
open import Level using (_⊔_)
open import Algebra.Core
open import Algebra.Structures {a} {ℓ₁} {G} using (IsGroup)
open import GGT.Definitions
record IsAction
(· : Opᵣ G Ω)
(∙ : Op₂ G)
(ε : G)
(⁻¹ : Op₁ G)
: Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
where
field
isEquivalence : IsEquivalence _≋_
isGroup : IsGroup _≈_ ∙ ε ⁻¹
actAssoc : ActAssoc _≈_ _≋_ · ∙
actId : ActLeftIdentity _≈_ _≋_ ε ·
·-cong : ·-≋-Congruence _≈_ _≋_ ·
G-ext : ≈-Ext _≈_ _≋_ ·
setoid : Setoid b ℓ₂
setoid = record
{ Carrier = Ω;
_≈_ = _≋_;
isEquivalence = isEquivalence }
|
{
"alphanum_fraction": 0.589055794,
"avg_line_length": 25.1891891892,
"ext": "agda",
"hexsha": "25fd6560135285a52d92c864259fbeb554e25f10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zampino/ggt",
"max_forks_repo_path": "src/ggt/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zampino/ggt",
"max_issues_repo_path": "src/ggt/Structures.agda",
"max_line_length": 62,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zampino/ggt",
"max_stars_repo_path": "src/ggt/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z",
"num_tokens": 364,
"size": 932
}
|
------------------------------------------------------------------------
-- Soundness and completeness
------------------------------------------------------------------------
module TotalParserCombinators.Derivative.SoundComplete where
open import Category.Monad
open import Codata.Musical.Notation
open import Data.List
import Data.List.Categorical
open import Data.Maybe hiding (_>>=_)
open import Data.Product
open import Level
open import Relation.Binary.PropositionalEquality
open RawMonad {f = zero} Data.List.Categorical.monad
using () renaming (_>>=_ to _>>=′_; _⊛_ to _⊛′_)
open import TotalParserCombinators.Derivative.Definition
import TotalParserCombinators.InitialBag as I
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics
------------------------------------------------------------------------
-- Soundness
sound : ∀ {Tok R xs x s} {t} (p : Parser Tok R xs) →
x ∈ D t p · s → x ∈ p · t ∷ s
sound token return = token
sound (p₁ ∣ p₂) (∣-left x∈p₁) = ∣-left (sound p₁ x∈p₁)
sound (_∣_ {xs₁ = xs₁} p₁ p₂) (∣-right ._ x∈p₂) = ∣-right xs₁ (sound p₂ x∈p₂)
sound (f <$> p) (<$> x∈p) = <$> sound p x∈p
sound (_⊛_ {fs = nothing} {xs = just _} p₁ p₂) (f∈p₁′ ⊛ x∈p₂) = [ ○ - ◌ ] sound p₁ f∈p₁′ ⊛ x∈p₂
sound (_⊛_ {fs = just _} {xs = just _} p₁ p₂) (∣-left (f∈p₁′ ⊛ x∈p₂)) = [ ○ - ○ ] sound p₁ f∈p₁′ ⊛ x∈p₂
sound (_⊛_ {fs = just fs} {xs = just _} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′)) with Return⋆.sound fs f∈ret⋆
sound (_⊛_ {fs = just fs} {xs = just _} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′)) | (refl , f∈fs) =
[ ○ - ○ ] I.sound p₁ f∈fs ⊛ sound p₂ x∈p₂′
sound (_⊛_ {fs = nothing} {xs = nothing} p₁ p₂) (f∈p₁′ ⊛ x∈p₂) = [ ◌ - ◌ ] sound (♭ p₁) f∈p₁′ ⊛ x∈p₂
sound (_⊛_ {fs = just _} {xs = nothing} p₁ p₂) (∣-left (f∈p₁′ ⊛ x∈p₂)) = [ ◌ - ○ ] sound (♭ p₁) f∈p₁′ ⊛ x∈p₂
sound (_⊛_ {fs = just fs} {xs = nothing} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′)) with Return⋆.sound fs f∈ret⋆
sound (_⊛_ {fs = just fs} {xs = nothing} p₁ p₂) (∣-right ._ (f∈ret⋆ ⊛ x∈p₂′)) | (refl , f∈fs) =
[ ◌ - ○ ] I.sound (♭ p₁) f∈fs ⊛ sound p₂ x∈p₂′
sound (_>>=_ {xs = nothing} {f = just _} p₁ p₂) (x∈p₁′ >>= y∈p₂x) = [ ○ - ◌ ] sound p₁ x∈p₁′ >>= y∈p₂x
sound (_>>=_ {xs = just xs} {f = just _} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y)) with Return⋆.sound xs y∈ret⋆
sound (_>>=_ {xs = just xs} {f = just _} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y)) | (refl , y∈xs) =
[ ○ - ○ ] I.sound p₁ y∈xs >>= sound (p₂ _) z∈p₂′y
sound (_>>=_ {xs = just xs} {f = just _} p₁ p₂) (∣-left (x∈p₁′ >>= y∈p₂x)) = [ ○ - ○ ] sound p₁ x∈p₁′ >>= y∈p₂x
sound (_>>=_ {xs = nothing} {f = nothing} p₁ p₂) (x∈p₁′ >>= y∈p₂x) = [ ◌ - ◌ ] sound (♭ p₁) x∈p₁′ >>= y∈p₂x
sound (_>>=_ {xs = just xs} {f = nothing} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y)) with Return⋆.sound xs y∈ret⋆
sound (_>>=_ {xs = just xs} {f = nothing} p₁ p₂) (∣-right ._ (y∈ret⋆ >>= z∈p₂′y)) | (refl , y∈xs) =
[ ◌ - ○ ] I.sound (♭ p₁) y∈xs >>= sound (p₂ _) z∈p₂′y
sound (_>>=_ {xs = just xs} {f = nothing} p₁ p₂) (∣-left (x∈p₁′ >>= y∈p₂x)) = [ ◌ - ○ ] sound (♭ p₁) x∈p₁′ >>= y∈p₂x
sound (nonempty p) x∈p = nonempty (sound p x∈p)
sound (cast _ p) x∈p = cast (sound p x∈p)
sound (return _) ()
sound fail ()
------------------------------------------------------------------------
-- Completeness
mutual
complete : ∀ {Tok R xs x s t} {p : Parser Tok R xs} →
x ∈ p · t ∷ s → x ∈ D t p · s
complete x∈p = complete′ _ x∈p refl
complete′ : ∀ {Tok R xs x s s′ t} (p : Parser Tok R xs) →
x ∈ p · s′ → s′ ≡ t ∷ s → x ∈ D t p · s
complete′ token token refl = return
complete′ (p₁ ∣ p₂) (∣-left x∈p₁) refl = ∣-left (complete x∈p₁)
complete′ (p₁ ∣ p₂) (∣-right _ x∈p₂) refl = ∣-right (D-bag _ p₁) (complete x∈p₂)
complete′ (f <$> p) (<$> x∈p) refl = <$> complete x∈p
complete′ (_⊛_ {fs = nothing} {xs = just _} p₁ p₂)
(_⊛_ {s₁ = _ ∷ _} f∈p₁ x∈p₂) refl = _⊛_ {fs = ○} {xs = ○} (complete f∈p₁) x∈p₂
complete′ (_⊛_ {fs = just _} {xs = just _} p₁ p₂)
(_⊛_ {s₁ = _ ∷ _} f∈p₁ x∈p₂) refl = ∣-left (_⊛_ {fs = ○} {xs = ○} (complete f∈p₁) x∈p₂)
complete′ (_⊛_ {fs = just _} {xs = just xs} p₁ p₂)
(_⊛_ {s₁ = []} f∈p₁ x∈p₂) refl = ∣-right (D-bag _ p₁ ⊛′ xs)
(_⊛_ {fs = ○} {xs = ○}
(Return⋆.complete (I.complete f∈p₁)) (complete x∈p₂))
complete′ (_⊛_ {fs = nothing} {xs = nothing} p₁ p₂)
(_⊛_ {s₁ = _ ∷ _} f∈p₁ x∈p₂) refl = _⊛_ {fs = ○} {xs = ◌} (complete f∈p₁) x∈p₂
complete′ (_⊛_ {fs = just _} {xs = nothing} p₁ p₂)
(_⊛_ {s₁ = _ ∷ _} f∈p₁ x∈p₂) refl = ∣-left (_⊛_ {fs = ○} {xs = ◌} (complete f∈p₁) x∈p₂)
complete′ (_⊛_ {fs = just _} {xs = nothing} p₁ p₂)
(_⊛_ {s₁ = []} f∈p₁ x∈p₂) refl = ∣-right []
(_⊛_ {fs = ○} {xs = ○}
(Return⋆.complete (I.complete f∈p₁)) (complete x∈p₂))
complete′ (_>>=_ {xs = nothing} {f = just _} p₁ p₂)
(_>>=_ {s₁ = _ ∷ _} x∈p₁ y∈p₂x) refl = _>>=_ {xs = ○} {f = ○} (complete x∈p₁) y∈p₂x
complete′ (_>>=_ {xs = just _} {f = just _} p₁ p₂)
(_>>=_ {s₁ = _ ∷ _} x∈p₁ y∈p₂x) refl = ∣-left (_>>=_ {xs = ○} {f = ○} (complete x∈p₁) y∈p₂x)
complete′ (_>>=_ {xs = just _} {f = just f} p₁ p₂)
(_>>=_ {s₁ = []} x∈p₁ y∈p₂x) refl = ∣-right (D-bag _ p₁ >>=′ f)
(_>>=_ {xs = ○} {f = ○}
(Return⋆.complete (I.complete x∈p₁)) (complete y∈p₂x))
complete′ (_>>=_ {xs = nothing} {f = nothing} p₁ p₂)
(_>>=_ {s₁ = _ ∷ _} x∈p₁ y∈p₂x) refl = _>>=_ {xs = ○} {f = ◌} (complete x∈p₁) y∈p₂x
complete′ (_>>=_ {xs = just _} {f = nothing} p₁ p₂)
(_>>=_ {s₁ = _ ∷ _} x∈p₁ y∈p₂x) refl = ∣-left (_>>=_ {xs = ○} {f = ◌} (complete x∈p₁) y∈p₂x)
complete′ (_>>=_ {xs = just _} {f = nothing} p₁ p₂)
(_>>=_ {s₁ = []} x∈p₁ y∈p₂x) refl = ∣-right []
(_>>=_ {xs = ○} {f = ○}
(Return⋆.complete (I.complete x∈p₁)) (complete y∈p₂x))
complete′ (nonempty p) (nonempty x∈p) refl = complete x∈p
complete′ (cast _ p) (cast x∈p) refl = complete x∈p
complete′ (return _) () refl
complete′ fail () refl
complete′ (_⊛_ {fs = nothing} _ _) (_⊛_ {s₁ = []} f∈p₁ _) _ with I.complete f∈p₁
... | ()
complete′ (_>>=_ {xs = nothing} _ _) (_>>=_ {s₁ = []} x∈p₁ _) _ with I.complete x∈p₁
... | ()
|
{
"alphanum_fraction": 0.4270732717,
"avg_line_length": 58.918699187,
"ext": "agda",
"hexsha": "dabde40dfe399818dd14c0b6c27735c48346e3fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Derivative/SoundComplete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Derivative/SoundComplete.agda",
"max_line_length": 137,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Derivative/SoundComplete.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 2998,
"size": 7247
}
|
module _ where
id : {A : Set} → A → A
id x = x
const : {A : Set₁} {B : Set} → A → (B → A)
const x = λ _ → x
{-# DISPLAY const x y = x #-}
infixr 4 _,_
infixr 2 _×_
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
_×_ : (A B : Set) → Set
A × B = Σ A (const B)
Σ-map : ∀ {A B : Set} {P : A → Set} {Q : B → Set} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
Σ-map f g = λ p → (f (proj₁ p) , g (proj₂ p))
foo : {A B : Set} → A × B → A × B
foo = Σ-map id {!!}
|
{
"alphanum_fraction": 0.4456327986,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "609de0dafd419061710a51ef71ae7a0521e71ce3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1873.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1873.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1873.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 254,
"size": 561
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.UnivariatePoly where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.Univariate.Base
open import Cubical.Algebra.Polynomials.Univariate.Properties
private
variable
ℓ : Level
UnivariatePoly : (CommRing ℓ) → CommRing ℓ
UnivariatePoly R = (PolyMod.Poly R) , str
where
open CommRingStr --(snd R)
str : CommRingStr (PolyMod.Poly R)
0r str = PolyModTheory.0P R
1r str = PolyModTheory.1P R
_+_ str = PolyModTheory._Poly+_ R
_·_ str = PolyModTheory._Poly*_ R
- str = PolyModTheory.Poly- R
isCommRing str = makeIsCommRing (PolyMod.isSetPoly R)
(PolyModTheory.Poly+Assoc R)
(PolyModTheory.Poly+Rid R)
(PolyModTheory.Poly+Inverses R)
(PolyModTheory.Poly+Comm R)
(PolyModTheory.Poly*Associative R)
(PolyModTheory.Poly*Rid R)
(PolyModTheory.Poly*LDistrPoly+ R)
(PolyModTheory.Poly*Commutative R)
|
{
"alphanum_fraction": 0.5657587549,
"avg_line_length": 37.7941176471,
"ext": "agda",
"hexsha": "227a3fffe974f902edba3ffe9546b418a9e9022c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 315,
"size": 1285
}
|
{- This example used to fail but after the point-free evaluation fix
it seems to work #-}
module Issue259c where
postulate
A : Set
a : A
b : ({x : A} → A) → A
C : A → Set
d : {x : A} → A
d {x} = a
e : A
e = b (λ {x} → d {x})
F : C e → Set₁
F _ with Set
F _ | _ = Set
|
{
"alphanum_fraction": 0.5283687943,
"avg_line_length": 14.1,
"ext": "agda",
"hexsha": "75bdd2ad1bcd27b9d4043709b9ffb186a95a43b2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue259c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue259c.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue259c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 114,
"size": 282
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Unit.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
open import Cubical.Data.Unit.Base
isContrUnit : isContr Unit
isContrUnit = tt , λ {tt → refl}
isPropUnit : isProp Unit
isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit
isOfHLevelUnit : (n : ℕ) → isOfHLevel n Unit
isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit
|
{
"alphanum_fraction": 0.7788461538,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "606a88c78a055ba5a7fa8f345e5b648917d71236",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 151,
"size": 520
}
|
-- The NO_POSITIVITY_CHECK pragma is not allowed in safe mode.
module Issue1614a where
{-# NO_POSITIVITY_CHECK #-}
data D : Set where
lam : (D → D) → D
|
{
"alphanum_fraction": 0.6987179487,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "518b629c0cafaa537e2017fa1a1163d3429c1440",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1614a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1614a.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1614a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 156
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module BottomBottom where
open import Common.FOL.FOL
postulate bot bot' : ⊥
{-# ATP prove bot bot' #-}
{-# ATP prove bot' bot #-}
-- $ apia-fot BottomBottom.agda
-- Proving the conjecture in /tmp/BottomBottom/8-bot.tptp ...
-- Vampire 0.6 (revision 903) proved the conjecture
-- Proving the conjecture in /tmp/BottomBottom/8-bot39.tptp ...
-- Vampire 0.6 (revision 903) proved the conjecture
|
{
"alphanum_fraction": 0.6355633803,
"avg_line_length": 29.8947368421,
"ext": "agda",
"hexsha": "6a785fe1afbc3aa914dca95e38aedb3c4ef433fc",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/papers/fossacs-2012/BottomBottom.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/papers/fossacs-2012/BottomBottom.agda",
"max_line_length": 63,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/papers/fossacs-2012/BottomBottom.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 150,
"size": 568
}
|
------------------------------------------------------------------------------
-- The gcd is a common divisor
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Partial.CommonDivisorATP where
open import FOTC.Base
open import FOTC.Base.PropertiesATP
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Divisibility.NotBy0
open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP
open import FOTC.Data.Nat.Induction.NonAcc.LexicographicATP
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.PropertiesATP
open import FOTC.Program.GCD.Partial.Definitions
open import FOTC.Program.GCD.Partial.GCD
open import FOTC.Program.GCD.Partial.TotalityATP
------------------------------------------------------------------------------
-- Some cases of the gcd-∣₁.
-- We don't prove that
--
-- gcd-∣₁ : ... → (gcd m n) ∣ m
-- because this proof should be defined mutually recursive with the
-- proof
--
-- gcd-∣₂ : ... → (gcd m n) ∣ n.
--
-- Therefore, instead of proving
--
-- gcdCD : ... → CD m n (gcd m n)
--
-- using these proofs (i.e. the conjunction of them), we proved it
-- using well-founded induction.
-- gcd 0 (succ n) ∣ 0.
postulate gcd-0S-∣₁ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ zero
{-# ATP prove gcd-0S-∣₁ #-}
-- gcd (succ₁ m) 0 ∣ succ₁ m.
postulate gcd-S0-∣₁ : ∀ {n} → N n → gcd (succ₁ n) zero ∣ succ₁ n
{-# ATP prove gcd-S0-∣₁ ∣-refl-S #-}
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m, when succ₁ m ≯ succ₁ n.
postulate gcd-S≯S-∣₁ : ∀ {m n} → N m → N n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) →
succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ m
{-# ATP prove gcd-S≯S-∣₁ #-}
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m when succ₁ m > succ₁ n.
{- Proof:
1. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) IH
2. gcd (Sm ∸ Sn) Sn | Sn gcd-∣₂
3. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) + Sn m∣n→m∣o→m∣n+o 1,2
4. Sm > Sn Hip
5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m>n₂ 3,4
6. gcd Sm Sn = gcd (Sm ∸ Sn) Sn gcd eq. 4
7. gcd Sm Sn | Sm subst 5,6
-}
-- For the proof using the ATP we added the helper hypothesis:
-- 1. gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n) + succ₁ n.
-- 2. (succ₁ m ∸ succ₁ n) + succ₁ n ≡ succ₁ m.
postulate
gcd-S>S-∣₁-ah :
∀ {m n} → N m → N n →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)) →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) →
succ₁ m > succ₁ n →
gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n) + succ₁ n →
((succ₁ m ∸ succ₁ n) + succ₁ n ≡ succ₁ m) →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ m
{-# ATP prove gcd-S>S-∣₁-ah #-}
gcd-S>S-∣₁ :
∀ {m n} → N m → N n →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)) →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) →
succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ m
gcd-S>S-∣₁ {m} {n} Nm Nn ih gcd-∣₂ Sm>Sn =
gcd-S>S-∣₁-ah Nm Nn ih gcd-∣₂ Sm>Sn
(x∣y→x∣z→x∣y+z gcd-Sm-Sn,Sn-N Sm-Sn-N (nsucc Nn) ih gcd-∣₂)
(x>y→x∸y+y≡x (nsucc Nm) (nsucc Nn) Sm>Sn)
where
Sm-Sn-N : N (succ₁ m ∸ succ₁ n)
Sm-Sn-N = ∸-N (nsucc Nm) (nsucc Nn)
gcd-Sm-Sn,Sn-N : N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))
gcd-Sm-Sn,Sn-N = gcd-N Sm-Sn-N (nsucc Nn) (λ p → ⊥-elim (S≢0 (∧-proj₂ p)))
------------------------------------------------------------------------------
-- Some case of the gcd-∣₂.
-- We don't prove that gcd-∣₂ : ... → gcd m n ∣ n. The reason is
-- the same to don't prove gcd-∣₁ : ... → gcd m n ∣ m.
-- gcd 0 (succ₁ n) ∣₂ succ₁ n.
postulate gcd-0S-∣₂ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ succ₁ n
{-# ATP prove gcd-0S-∣₂ ∣-refl-S #-}
-- gcd (succ₁ m) 0 ∣ 0.
postulate gcd-S0-∣₂ : ∀ {m} → N m → gcd (succ₁ m) zero ∣ zero
{-# ATP prove gcd-S0-∣₂ #-}
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m ≯ succ₁ n.
{- Proof:
1. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) IH
2 gcd Sm (Sn ∸ Sm) | Sm gcd-∣₁
3. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) + Sm m∣n→m∣o→m∣n+o 1,2
4. Sm ≯ Sn Hip
5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m≤n₂ 3,4
6. gcd Sm Sn = gcd Sm (Sn ∸ Sm) gcd eq. 4
7. gcd Sm Sn | Sn subst 5,6
-}
-- For the proof using the ATP we added the helper hypothesis:
-- 1. gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m) + succ₁ m.
-- 2 (succ₁ n ∸ succ₁ m) + succ₁ m ≡ succ₁ n.
postulate
gcd-S≯S-∣₂-ah :
∀ {m n} → N m → N n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)) →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) →
succ₁ m ≯ succ₁ n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m) + succ₁ m) →
((succ₁ n ∸ succ₁ m) + succ₁ m ≡ succ₁ n) →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ n
{-# ATP prove gcd-S≯S-∣₂-ah #-}
gcd-S≯S-∣₂ :
∀ {m n} → N m → N n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)) →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) →
succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ n
gcd-S≯S-∣₂ {m} {n} Nm Nn ih gcd-∣₁ Sm≯Sn =
gcd-S≯S-∣₂-ah Nm Nn ih gcd-∣₁ Sm≯Sn
(x∣y→x∣z→x∣y+z gcd-Sm,Sn-Sm-N Sn-Sm-N (nsucc Nm) ih gcd-∣₁)
(x≤y→y∸x+x≡y (nsucc Nm) (nsucc Nn) (x≯y→x≤y (nsucc Nm) (nsucc Nn) Sm≯Sn))
where
Sn-Sm-N : N (succ₁ n ∸ succ₁ m)
Sn-Sm-N = ∸-N (nsucc Nn) (nsucc Nm)
gcd-Sm,Sn-Sm-N : N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))
gcd-Sm,Sn-Sm-N = gcd-N (nsucc Nm) (Sn-Sm-N) (λ p → ⊥-elim (S≢0 (∧-proj₁ p)))
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m > succ₁ n.
postulate gcd-S>S-∣₂ : ∀ {m n} → N m → N n →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) →
succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ n
{-# ATP prove gcd-S>S-∣₂ #-}
------------------------------------------------------------------------------
-- The gcd is CD.
-- We will prove that gcdCD : ... → CD m n (gcd m n).
-- The gcd 0 (succ₁ n) is CD.
gcd-0S-CD : ∀ {n} → N n → CD zero (succ₁ n) (gcd zero (succ₁ n))
gcd-0S-CD Nn = (gcd-0S-∣₁ Nn , gcd-0S-∣₂ Nn)
-- The gcd (succ₁ m) 0 is CD.
gcd-S0-CD : ∀ {m} → N m → CD (succ₁ m) zero (gcd (succ₁ m) zero)
gcd-S0-CD Nm = (gcd-S0-∣₁ Nm , gcd-S0-∣₂ Nm)
-- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is CD.
gcd-S>S-CD :
∀ {m n} → N m → N n →
(CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) →
succ₁ m > succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S>S-CD {m} {n} Nm Nn acc Sm>Sn =
(gcd-S>S-∣₁ Nm Nn acc-∣₁ acc-∣₂ Sm>Sn , gcd-S>S-∣₂ Nm Nn acc-∣₂ Sm>Sn)
where
acc-∣₁ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)
acc-∣₁ = ∧-proj₁ acc
acc-∣₂ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n
acc-∣₂ = ∧-proj₂ acc
-- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is CD.
gcd-S≯S-CD :
∀ {m n} → N m → N n →
(CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) →
succ₁ m ≯ succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S≯S-CD {m} {n} Nm Nn acc Sm≯Sn =
(gcd-S≯S-∣₁ Nm Nn acc-∣₁ Sm≯Sn , gcd-S≯S-∣₂ Nm Nn acc-∣₂ acc-∣₁ Sm≯Sn)
where
acc-∣₁ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m
acc-∣₁ = ∧-proj₁ acc
acc-∣₂ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)
acc-∣₂ = ∧-proj₂ acc
-- The gcd m n when m > n is CD.
gcd-x>y-CD :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → CD o p (gcd o p)) →
m > n →
x≢0≢y m n →
CD m n (gcd m n)
gcd-x>y-CD nzero Nn _ 0>n _ = ⊥-elim (0>x→⊥ Nn 0>n)
gcd-x>y-CD (nsucc Nm) nzero _ _ _ = gcd-S0-CD Nm
gcd-x>y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ =
gcd-S>S-CD Nm Nn ih Sm>Sn
where
-- Inductive hypothesis.
ih : CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))
ih = ah {succ₁ m ∸ succ₁ n}
{succ₁ n}
(∸-N (nsucc Nm) (nsucc Nn))
(nsucc Nn)
([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn)
(λ p → ⊥-elim (S≢0 (∧-proj₂ p)))
-- The gcd m n when m ≯ n is CD.
gcd-x≯y-CD :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → CD o p (gcd o p)) →
m ≯ n →
x≢0≢y m n →
CD m n (gcd m n)
gcd-x≯y-CD nzero nzero _ _ h = ⊥-elim (h (refl , refl))
gcd-x≯y-CD nzero (nsucc Nn) _ _ _ = gcd-0S-CD Nn
gcd-x≯y-CD (nsucc _) nzero _ Sm≯0 _ = ⊥-elim (S≯0→⊥ Sm≯0)
gcd-x≯y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ = gcd-S≯S-CD Nm Nn ih Sm≯Sn
where
-- Inductive hypothesis.
ih : CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))
ih = ah {succ₁ m}
{succ₁ n ∸ succ₁ m}
(nsucc Nm)
(∸-N (nsucc Nn) (nsucc Nm))
([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn)
(λ p → ⊥-elim (S≢0 (∧-proj₁ p)))
-- The gcd is CD.
gcdCD : ∀ {m n} → N m → N n → x≢0≢y m n → CD m n (gcd m n)
gcdCD = Lexi-wfind A h
where
A : D → D → Set
A i j = x≢0≢y i j → CD i j (gcd i j)
h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) →
A i j
h Ni Nj ah = case (gcd-x>y-CD Ni Nj ah) (gcd-x≯y-CD Ni Nj ah) (x>y∨x≯y Ni Nj)
|
{
"alphanum_fraction": 0.5020786697,
"avg_line_length": 36.0807692308,
"ext": "agda",
"hexsha": "6ae90633a306f314d1ea8a367e815d8d78750d2a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/CommonDivisorATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/CommonDivisorATP.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/CommonDivisorATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 4140,
"size": 9381
}
|
-- A DSL example in the language Agda: "polynomial types"
module TypeDSL where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Data.Nat
data E : Set1 where
Add : E -> E -> E
Mul : E -> E -> E
Zero : E
One : E
eval : E -> Set
eval (Add x y) = (eval x) ⊎ (eval y)
eval (Mul x y) = (eval x) × (eval y)
eval Zero = ⊥
eval One = ⊤
two = Add One One
three = Add One two
test1 : eval One
test1 = tt
false : eval two
false = inj₁ tt
true : eval two
true = inj₂ tt
test3 : eval three
test3 = inj₁ tt
card : E -> ℕ
card (Add x y) = card x + card y
card (Mul x y) = card x * card y
card Zero = 0
card One = 1
open import Data.Vec as V
variable
m n : ℕ
A B : Set
enumAdd : Vec A m -> Vec B n -> Vec (A ⊎ B) (m + n)
enumAdd xs ys = V.map inj₁ xs ++ V.map inj₂ ys
-- cartesianProduct
enumMul : Vec A m → Vec B n → Vec (A × B) (m * n)
enumMul xs ys = concat (V.map (\a -> V.map ((a ,_)) ys) xs)
enumerate : (t : E) -> Vec (eval t) (card t)
enumerate (Add x y) = enumAdd (enumerate x) (enumerate y)
enumerate (Mul x y) = enumMul (enumerate x) (enumerate y)
enumerate Zero = []
enumerate One = [ tt ]
test : Vec (eval three) 3
test = enumerate three
-- inj₁ tt ∷ inj₂ (inj₁ tt) ∷ inj₂ (inj₂ tt) ∷ []
-- Exercise: add a constructor for function types to the syntax E
|
{
"alphanum_fraction": 0.5947105075,
"avg_line_length": 21.5230769231,
"ext": "agda",
"hexsha": "56de41055c9400ccb85a2ae356673800639a6544",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22c9e02aaeb505baad7a001f179e0d1e1f6e511c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "felixwellen/DSLsofMath",
"max_forks_repo_path": "L/01/TypeDSL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22c9e02aaeb505baad7a001f179e0d1e1f6e511c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "felixwellen/DSLsofMath",
"max_issues_repo_path": "L/01/TypeDSL.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22c9e02aaeb505baad7a001f179e0d1e1f6e511c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "felixwellen/DSLsofMath",
"max_stars_repo_path": "L/01/TypeDSL.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 489,
"size": 1399
}
|
module _ where
open import Agda.Builtin.List
open import Agda.Builtin.Nat hiding (_==_)
open import Agda.Builtin.Equality
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
infix -1 _,_
record _×_ {a} (A B : Set a) : Set a where
constructor _,_
field fst : A
snd : B
open _×_
data Constraint : Set₁ where
mkConstraint : {A : Set} (x y : A) → x ≡ y → Constraint
infix 0 _==_
pattern _==_ x y = mkConstraint x y refl
infixr 5 _++_
_++_ : {A : Set} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
deepId : {A : Set} → List A → List A
deepId [] = []
deepId (x ∷ xs) = x ∷ deepId xs
nil : Constraint
nil = _ ++ [] == 1 ∷ 2 ∷ []
neutral : List Nat → Constraint
neutral ys = _ ++ deepId ys == 1 ∷ 2 ∷ deepId ys
spine : (ys zs : List Nat) → Constraint
spine ys zs = _ ++ zs == 1 ∷ ys ++ zs
N-ary : Nat → Set → Set
N-ary zero A = A
N-ary (suc n) A = A → N-ary n A
foo : N-ary _ Nat
foo = λ x y z → x
sum : (n : Nat) → Nat → N-ary n Nat
sum zero m = m
sum (suc n) m = λ p → sum n (m + p)
nary-sum : Nat
nary-sum = sum _ 1 2 3 4
plus : Nat → Constraint
plus n = _ + n == 2 + n
plus-lit : Constraint
plus-lit = _ + 0 == 3
dont-fail : Nat → Nat → Constraint × Constraint
dont-fail n m =
let X = _ in
X + (m + 0) == n + (m + 0) , X == n
-- Harder problems --
data Color : Set where
red green blue : Color
isRed : Color → Bool
isRed red = true
isRed green = false
isRed blue = false
non-unique : Constraint
non-unique = isRed _ == true
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
sumJust : Maybe Nat → Nat → Nat
sumJust nothing _ = 0
sumJust (just x) n = x + n
unknown-head : Nat → Constraint
unknown-head n = sumJust _ n == n
|
{
"alphanum_fraction": 0.5885386819,
"avg_line_length": 19.606741573,
"ext": "agda",
"hexsha": "f01c0ab71bc523590b16e2470f6dcc2d37d35400",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ImprovedInjectivity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ImprovedInjectivity.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ImprovedInjectivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 644,
"size": 1745
}
|
{-# OPTIONS --prop #-}
{-# TERMINATING #-}
makeloop : {P : Prop} → P → P
makeloop p = makeloop p
postulate
P : Prop
p : P
Q : P → Set
record X : Set where
field
f : Q (makeloop p)
data Y : Set where
f : Q (makeloop p) → Y
|
{
"alphanum_fraction": 0.55,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "c851595eeac833a6fcd4bc155df68b4b32d06bbc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4122.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4122.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4122.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 240
}
|
-- {-# OPTIONS -v reify:80 #-}
open import Common.Prelude
open import Common.Reflection
open import Common.Equality
module Issue1345 (A : Set) where
-- Andreas, 2016-07-17
-- Also test correct handling of abstract
abstract
unquoteDecl idNat = define (vArg idNat)
(funDef (pi (vArg (def (quote Nat) [])) (abs "" (def (quote Nat) [])))
(clause (vArg (var "") ∷ []) (var 0 []) ∷ []))
-- This raised the UselessAbstract error in error.
-- Should work.
abstract
thm : ∀ n → idNat n ≡ n
thm n = refl
|
{
"alphanum_fraction": 0.6285714286,
"avg_line_length": 23.8636363636,
"ext": "agda",
"hexsha": "c7565402e91cef0185d3431ebcb3649ba6bcce28",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1345.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue1345.agda",
"max_line_length": 74,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue1345.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 163,
"size": 525
}
|
open import Common.Prelude
open import TestHarness
open import TestBool using ( not; _∧_ ; _↔_ )
module TestNat where
_*_ : Nat → Nat → Nat
zero * n = zero
suc m * n = n + (m * n)
{-# COMPILED_JS _*_ function (x) { return function (y) { return x*y; }; } #-}
fact : Nat → Nat
fact zero = 1
fact (suc x) = suc x * fact x
_≟_ : Nat → Nat → Bool
zero ≟ zero = true
suc x ≟ suc y = x ≟ y
x ≟ y = false
{-# COMPILED_JS _≟_ function (x) { return function (y) { return x === y; }; } #-}
tests : Tests
tests _ = (
assert (0 ≟ 0) "0=0" ,
assert (not (0 ≟ 1)) "0≠1" ,
assert ((1 + 2) ≟ 3) "1+2=3" ,
assert ((2 ∸ 1) ≟ 1) "2∸1=1" ,
assert ((1 ∸ 2) ≟ 0) "1∸2=0" ,
assert ((2 * 3) ≟ 6) "2+3=6" ,
assert (fact 0 ≟ 1) "0!=1" ,
assert (fact 1 ≟ 1) "1!=1" ,
assert (fact 2 ≟ 2) "2!=2" ,
assert (fact 3 ≟ 6) "3!=6" ,
assert (fact 4 ≟ 24) "4!=24"
)
|
{
"alphanum_fraction": 0.4983240223,
"avg_line_length": 23.5526315789,
"ext": "agda",
"hexsha": "b219efefa7723758332d7b065f4c42daa0fb4635",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/js/TestNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/js/TestNat.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/js/TestNat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 399,
"size": 895
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples showing where the integers and some related
-- operations and properties are defined, and how they can be used
------------------------------------------------------------------------
module README.Integer where
-- The integers and various arithmetic operations are defined in
-- Data.Integer.
open import Data.Integer
-- The +_ function converts natural numbers into integers.
ex₁ : ℤ
ex₁ = + 2
-- The -_ function negates an integer.
ex₂ : ℤ
ex₂ = - + 4
-- Some binary operators are also defined, including addition,
-- subtraction and multiplication.
ex₃ : ℤ
ex₃ = + 1 + + 3 * - + 2 - + 4
-- Propositional equality and some related properties can be found
-- in Relation.Binary.PropositionalEquality.
open import Relation.Binary.PropositionalEquality as P using (_≡_)
ex₄ : ex₃ ≡ - + 9
ex₄ = P.refl
-- Data.Integer.Properties contains a number of properties related to
-- integers. Algebra defines what a commutative ring is, among other
-- things.
open import Algebra
import Data.Integer.Properties as Integer
private
module CR = CommutativeRing Integer.commutativeRing
ex₅ : ∀ i j → i * j ≡ j * i
ex₅ i j = CR.*-comm i j
-- The module ≡-Reasoning in Relation.Binary.PropositionalEquality
-- provides some combinators for equational reasoning.
open P.≡-Reasoning
open import Data.Product
ex₆ : ∀ i j → i * (j + + 0) ≡ j * i
ex₆ i j = begin
i * (j + + 0) ≡⟨ P.cong (_*_ i) (proj₂ CR.+-identity j) ⟩
i * j ≡⟨ CR.*-comm i j ⟩
j * i ∎
-- The module RingSolver in Data.Integer.Properties contains a solver
-- for integer equalities involving variables, constants, _+_, _*_, -_
-- and _-_.
ex₇ : ∀ i j → i * - j - j * i ≡ - + 2 * i * j
ex₇ = solve 2 (λ i j → i :* :- j :- j :* i := :- con (+ 2) :* i :* j)
P.refl
where open Integer.RingSolver
|
{
"alphanum_fraction": 0.6162610047,
"avg_line_length": 27.1971830986,
"ext": "agda",
"hexsha": "c6e3469ebdc3857b5cc571e471154665e2d9ecc6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/README/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/README/Integer.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/README/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 550,
"size": 1931
}
|
-- Issue #80.
-- The disjunction data type.
data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B
-- A different symbol for disjunction.
_⊕_ : Set → Set → Set
P ⊕ Q = P ∨ Q
{-# ATP definition _⊕_ #-}
postulate
P Q : Set
⊕-comm : P ⊕ Q → Q ⊕ P
{-# ATP prove ⊕-comm #-}
-- The previous error was:
-- $ apia Issue80.agda
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/Apia/Translation/Functions.hs:188
-- The current error is:
-- $ apia Issue80.agda
-- apia: the translation of ‘IssueXX._⊕_’ failed because it is not a FOL-definition
|
{
"alphanum_fraction": 0.6320132013,
"avg_line_length": 21.6428571429,
"ext": "agda",
"hexsha": "6ae04408d24c46e97a5bbeaf6d5d2637f1f8d40d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/Errors/Issue80.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Fail/Errors/Issue80.agda",
"max_line_length": 83,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/Errors/Issue80.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 209,
"size": 606
}
|
-- {-# OPTIONS -v tc.meta:20 #-}
module UnifyWithIrrelevantArgument where
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
fail : (A : Set) ->
let X : .A -> A
X = _
in (x : A) -> X x ≡ x
fail A x = refl
-- error: X cannot depend on its first argument
|
{
"alphanum_fraction": 0.5208333333,
"avg_line_length": 22.1538461538,
"ext": "agda",
"hexsha": "6918327e4ed88a92cad46cb230f5511cc9c37bc3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnifyWithIrrelevantArgument.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnifyWithIrrelevantArgument.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnifyWithIrrelevantArgument.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 101,
"size": 288
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Lists.Lists
open import Maybe
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Polynomials.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where
open Setoid S
open Equivalence eq
open Group G
NaivePoly : Set a
NaivePoly = List A
0P : NaivePoly
0P = []
polysEqual : NaivePoly → NaivePoly → Set (a ⊔ b)
polysEqual [] [] = True'
polysEqual [] (x :: b) = (x ∼ 0G) && polysEqual [] b
polysEqual (x :: a) [] = (x ∼ 0G) && polysEqual a []
polysEqual (x :: a) (y :: b) = (x ∼ y) && polysEqual a b
polysReflexive : {x : NaivePoly} → polysEqual x x
polysReflexive {[]} = record {}
polysReflexive {x :: y} = reflexive ,, polysReflexive
polysSymmetricZero : {x : NaivePoly} → polysEqual [] x → polysEqual x []
polysSymmetricZero {[]} 0=x = record {}
polysSymmetricZero {x :: y} (fst ,, snd) = fst ,, polysSymmetricZero snd
polysSymmetricZero' : {x : NaivePoly} → polysEqual x [] → polysEqual [] x
polysSymmetricZero' {[]} 0=x = record {}
polysSymmetricZero' {x :: y} (fst ,, snd) = fst ,, polysSymmetricZero' snd
polysSymmetric : {x y : NaivePoly} → polysEqual x y → polysEqual y x
polysSymmetric {[]} {y} x=y = polysSymmetricZero x=y
polysSymmetric {x :: xs} {[]} x=y = polysSymmetricZero' {x :: xs} x=y
polysSymmetric {x :: xs} {y :: ys} (fst ,, snd) = symmetric fst ,, polysSymmetric {xs} {ys} snd
polysTransitive : {x y z : NaivePoly} → polysEqual x y → polysEqual y z → polysEqual x z
polysTransitive {[]} {[]} {[]} x=y y=z = record {}
polysTransitive {[]} {[]} {x :: z} x=y y=z = y=z
polysTransitive {[]} {x :: y} {[]} (fst ,, snd) y=z = record {}
polysTransitive {[]} {x :: y} {x₁ :: z} (fst ,, snd) (fst2 ,, snd2) = transitive (symmetric fst2) fst ,, polysTransitive snd snd2
polysTransitive {x :: xs} {[]} {[]} x=y y=z = x=y
polysTransitive {x :: xs} {[]} {z :: zs} (fst ,, snd) (fst2 ,, snd2) = transitive fst (symmetric fst2) ,, polysTransitive snd snd2
polysTransitive {x :: xs} {y :: ys} {[]} (fst ,, snd) (fst2 ,, snd2) = transitive fst fst2 ,, polysTransitive snd snd2
polysTransitive {x :: xs} {y :: ys} {z :: zs} (fst ,, snd) (fst2 ,, snd2) = transitive fst fst2 ,, polysTransitive snd snd2
naivePolySetoid : Setoid NaivePoly
Setoid._∼_ naivePolySetoid = polysEqual
Equivalence.reflexive (Setoid.eq naivePolySetoid) = polysReflexive
Equivalence.symmetric (Setoid.eq naivePolySetoid) = polysSymmetric
Equivalence.transitive (Setoid.eq naivePolySetoid) = polysTransitive
polyInjection : A → NaivePoly
polyInjection a = a :: []
polyInjectionIsInj : SetoidInjection S naivePolySetoid polyInjection
SetoidInjection.wellDefined polyInjectionIsInj x=y = x=y ,, record {}
SetoidInjection.injective polyInjectionIsInj {x} {y} (fst ,, snd) = fst
-- the zero polynomial has no degree
-- all other polynomials have a degree
degree : ((x : A) → (x ∼ 0G) || ((x ∼ 0G) → False)) → NaivePoly → Maybe ℕ
degree decide [] = no
degree decide (x :: poly) with decide x
degree decide (x :: poly) | inl x=0 with degree decide poly
degree decide (x :: poly) | inl x=0 | no = no
degree decide (x :: poly) | inl x=0 | yes deg = yes (succ deg)
degree decide (x :: poly) | inr x!=0 with degree decide poly
degree decide (x :: poly) | inr x!=0 | no = yes 0
degree decide (x :: poly) | inr x!=0 | yes n = yes (succ n)
degreeWellDefined : (decide : ((x : A) → (x ∼ 0G) || ((x ∼ 0G) → False))) {x y : NaivePoly} → polysEqual x y → degree decide x ≡ degree decide y
degreeWellDefined decide {[]} {[]} x=y = refl
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) with decide x
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inl x=0 with inspect (degree decide y)
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inl x=0 | no with≡ pr rewrite pr = refl
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inl x=0 | yes bad with≡ pr rewrite pr = exFalso (noNotYes (transitivity (degreeWellDefined decide {[]} {y} snd) pr))
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inr x!=0 with inspect (degree decide y)
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inr x!=0 | no with≡ pr rewrite pr = exFalso (x!=0 fst)
degreeWellDefined decide {[]} {x :: y} (fst ,, snd) | inr x!=0 | yes deg with≡ pr rewrite pr = exFalso (x!=0 fst)
degreeWellDefined decide {x :: xs} {[]} x=y with decide x
degreeWellDefined decide {x :: xs} {[]} (fst ,, snd) | inl x=0 with inspect (degree decide xs)
degreeWellDefined decide {x :: xs} {[]} (fst ,, snd) | inl x=0 | no with≡ pr rewrite pr = refl
degreeWellDefined decide {x :: xs} {[]} (fst ,, snd) | inl x=0 | yes bad with≡ pr rewrite pr = exFalso (noNotYes (transitivity (equalityCommutative (degreeWellDefined decide snd)) pr))
degreeWellDefined decide {x :: xs} {[]} (fst ,, snd) | inr x!=0 = exFalso (x!=0 fst)
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) with decide x
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inl x=0 with decide y
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inl x=0 | inl y=0 with inspect (degree decide ys)
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inl x=0 | inl y=0 | no with≡ pr rewrite degreeWellDefined decide {xs} {ys} snd | pr = refl
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inl x=0 | inl y=0 | (yes th) with≡ pr rewrite degreeWellDefined decide {xs} {ys} snd | pr = refl
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inl x=0 | inr y!=0 = exFalso (y!=0 (transitive (symmetric fst) x=0))
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inr x!=0 with decide y
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inr x!=0 | inl y=0 = exFalso (x!=0 (transitive fst y=0))
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inr x!=0 | inr y!=0 with inspect (degree decide ys)
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inr x!=0 | inr y!=0 | no with≡ pr rewrite degreeWellDefined decide {xs} {ys} snd | pr = refl
degreeWellDefined decide {x :: xs} {y :: ys} (fst ,, snd) | inr x!=0 | inr y!=0 | yes x₁ with≡ pr rewrite degreeWellDefined decide {xs} {ys} snd | pr = refl
degreeNoImpliesZero : (decide : ((x : A) → (x ∼ 0G) || ((x ∼ 0G) → False))) → (a : NaivePoly) → degree decide a ≡ no → polysEqual a []
degreeNoImpliesZero decide [] not = record {}
degreeNoImpliesZero decide (x :: a) not with decide x
degreeNoImpliesZero decide (x :: a) not | inl x=0 with inspect (degree decide a)
degreeNoImpliesZero decide (x :: a) not | inl x=0 | no with≡ pr rewrite pr = x=0 ,, degreeNoImpliesZero decide a pr
degreeNoImpliesZero decide (x :: a) not | inl x=0 | (yes deg) with≡ pr rewrite pr = exFalso (noNotYes (equalityCommutative not))
degreeNoImpliesZero decide (x :: a) not | inr x!=0 with degree decide a
degreeNoImpliesZero decide (x :: a) () | inr x!=0 | no
degreeNoImpliesZero decide (x :: a) () | inr x!=0 | yes x₁
emptyImpliesDegreeZero : (decide : ((x : A) → (x ∼ 0G) || ((x ∼ 0G) → False))) → (a : NaivePoly) → polysEqual a [] → degree decide a ≡ no
emptyImpliesDegreeZero decide [] a=[] = refl
emptyImpliesDegreeZero decide (x :: a) (fst ,, snd) with decide x
emptyImpliesDegreeZero decide (x :: a) (fst ,, snd) | inl x=0 with inspect (degree decide a)
emptyImpliesDegreeZero decide (x :: a) (fst ,, snd) | inl x=0 | no with≡ pr rewrite pr = refl
emptyImpliesDegreeZero decide (x :: a) (fst ,, snd) | inl x=0 | (yes deg) with≡ pr rewrite pr = exFalso (noNotYes (transitivity (equalityCommutative (emptyImpliesDegreeZero decide a snd)) pr))
emptyImpliesDegreeZero decide (x :: a) (fst ,, snd) | inr x!=0 = exFalso (x!=0 fst)
|
{
"alphanum_fraction": 0.6539206821,
"avg_line_length": 60.9527559055,
"ext": "agda",
"hexsha": "64fc0346848ac7979cd485df25e42c8ff357319f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Polynomials/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Polynomials/Definition.agda",
"max_line_length": 192,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Polynomials/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2648,
"size": 7741
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- M-types (the dual of W-types)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.M where
open import Size
open import Level
open import Codata.Thunk using (Thunk; force)
open import Data.Product hiding (map)
open import Data.Container.Core as C hiding (map)
data M {s p} (C : Container s p) (i : Size) : Set (s ⊔ p) where
inf : ⟦ C ⟧ (Thunk (M C) i) → M C i
module _ {s p} {C : Container s p} where
head : ∀ {i} → M C i → Shape C
head (inf (x , f)) = x
tail : (x : M C ∞) → Position C (head x) → M C ∞
tail (inf (x , f)) = λ p → f p .force
-- map
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
(m : C₁ ⇒ C₂) where
map : ∀ {i} → M C₁ i → M C₂ i
map (inf t) = inf (⟪ m ⟫ (C.map (λ t → λ where .force → map (t .force)) t))
-- unfold
module _ {s p ℓ} {C : Container s p} (open Container C)
{S : Set ℓ} (alg : S → ⟦ C ⟧ S) where
unfold : S → ∀ {i} → M C i
unfold seed = let (x , next) = alg seed in
inf (x , λ p → λ where .force → unfold (next p))
|
{
"alphanum_fraction": 0.4873262469,
"avg_line_length": 27.7954545455,
"ext": "agda",
"hexsha": "7f4eefc59fd34fc63d61b4ba510d69d3579e7be2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/M.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/M.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/M.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 403,
"size": 1223
}
|
module builtin where
open import Agda.Builtin.IO
open import Agda.Builtin.Unit
open import Agda.Builtin.String
postulate putStrLn : String -> IO ⊤
{-# COMPILE GHC putStrLn = putStrLn . Data.Text.unpack #-}
main : IO ⊤
main = putStrLn "hallo"
|
{
"alphanum_fraction": 0.7357723577,
"avg_line_length": 18.9230769231,
"ext": "agda",
"hexsha": "5648b6f6accc796a1905ba622754bc3d76ee7fd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "neosimsim/merkdas",
"max_forks_repo_path": "agda-coinductive-io/builtin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "neosimsim/merkdas",
"max_issues_repo_path": "agda-coinductive-io/builtin.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "neosimsim/merkdas",
"max_stars_repo_path": "agda-coinductive-io/builtin.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z",
"num_tokens": 63,
"size": 246
}
|
import MJ.Classtable
import MJ.Syntax.Untyped as Syntax
import MJ.Classtable.Core as Core
module MJ.Semantics.Smallstep {c} (Ct : Core.Classtable c)(ℂ : Syntax.Classes Ct) where
open import Prelude
open import Data.Vec as V hiding (init; _>>=_; _∈_; _[_]=_)
open import Data.Vec.All.Properties.Extra as Vec∀++
open import Data.Sum
open import Data.String
open import Data.List.Most as List
open import Data.Maybe as Maybe using (Maybe; just; nothing)
open import Relation.Nullary.Decidable
open import Data.Star hiding (return; _>>=_)
import Data.Vec.All as Vec∀
open Syntax Ct
open Core c
open Classtable Ct
open import MJ.Classtable.Membership Ct
open import MJ.Types
{-}
-- fragment of a typed smallstep semantics;
-- this is tedious, because there are so many indices to repeat and keep track of
readvar : ∀ {W Γ a} → Var Γ a → Env Γ W → Store W → Val W a
readvar v E μ = {!!}
data Cont (Γ : Ctx) : Ty c → Ty c → Set where
k-iopₗ : ∀ {a} → NativeBinOp → Cont int a → Expr Γ
data State : Ty c → Set where
exp : ∀ {Γ W a b} → Store W → Env Γ W → Expr Γ a → Cont a b → State b
skip : ∀ {Γ W a b} → Store W → Env Γ W → Val W a → Cont a b → State b
data _⟶_ {b} : State b → State b → Set where
exp-var : ∀ {W Γ a}{μ : Store W}{E : Env Γ W}{x k} →
exp μ E (var {a = a} x) k ⟶ skip μ E (readvar x E μ) k
iopₗ : ∀ {W Γ a}{μ : Store W}{E : Env Γ W}{x k l r f} →
exp μ E (iop f l r) k ⟶ k-iopₗ
-}
Loc = ℕ
data Val : Set where
num : ℕ → Val
unit : Val
null : Val
ref : Cid c → Loc → Val
default : Ty c → Val
default a = {!!}
data StoreVal : Set where
val : Val → StoreVal
Env : ℕ → Set
Env = Vec Val
Store = List StoreVal
data Focus (n : ℕ) : ℕ → Set where
stmt : ∀ {o} → Stmt n o → Focus n o
continue : Focus n n
exp : Expr n → Focus n n
val : Val → Focus n n
vals : List Val → Focus n n
data Cont (n : ℕ) : Set where
k-done : Cont n
k-iopₗ : NativeBinOp → Cont n → Expr n → Cont n
k-iopᵣ : NativeBinOp → Val → Cont n → Cont n
k-new : Cid c → Cont n → Cont n
k-args : List Val → List (Expr n) → Cont n → Cont n
k-get : String → Cont n → Cont n
k-call : String → Cont n → Cont n
k-asgn : Fin n → Cont n → Cont n
k-seq : ∀ {o} → Stmts n o → Cont o → Cont n
k-set₁ : String → Expr n → Cont n → Cont n
k-set₂ : Val → String → Cont n → Cont n
data Config : Set where
⟨_,_,_,_⟩ : ∀ {n o} → Store → Env n → Focus n o → Cont o → Config
data _⟶_ : Config → Config → Set where
----
-- expressions
----
num : ∀ {n}{E : Env n}{μ i k} →
⟨ μ , E , exp (num i) , k ⟩ ⟶ ⟨ μ , E , val (num i) , k ⟩
unit : ∀ {n}{E : Env n}{μ k} →
⟨ μ , E , exp unit , k ⟩ ⟶ ⟨ μ , E , val unit , k ⟩
null : ∀ {n}{E : Env n}{μ k} →
⟨ μ , E , exp null , k ⟩ ⟶ ⟨ μ , E , val null , k ⟩
var : ∀ {n}{E : Env n}{μ x k ℓ v} →
μ [ ℓ ]= (val v) →
⟨ μ , E , exp (var x) , k ⟩ ⟶ ⟨ μ , E , val v , k ⟩
iopₗ : ∀ {n}{E : Env n}{μ k f l r} →
⟨ μ , E , exp (iop f l r) , k ⟩ ⟶ ⟨ μ , E , exp l , k-iopₗ f k r ⟩
iopᵣ : ∀ {n}{E : Env n}{μ k f v r} →
⟨ μ , E , val v , (k-iopₗ f k r) ⟩ ⟶ ⟨ μ , E , exp r , k-iopᵣ f v k ⟩
iop-red : ∀ {n}{E : Env n}{μ k f vᵣ vₗ} →
⟨ μ , E , val (num vᵣ) , (k-iopᵣ f (num vₗ) k) ⟩ ⟶ ⟨ μ , E , val (num (f vₗ vᵣ)) , k ⟩
new : ∀ {n}{E : Env n}{μ k cid e es} →
⟨ μ , E , exp (new cid (e ∷ es)), k ⟩ ⟶ ⟨ μ , E , exp e , k-args [] es (k-new cid k) ⟩
new-nil : ∀ {n}{E : Env n}{μ k cid} →
⟨ μ , E , exp (new cid []), k ⟩ ⟶ ⟨ μ List.∷ʳ {!!} , E , {!!} , k ⟩
new-red : ∀ {n}{E : Env n}{μ k cid vs} →
⟨ μ , E , vals vs , k-new cid k ⟩ ⟶ ⟨ μ List.∷ʳ {!!} , E , {!!} , k ⟩
args : ∀ {n}{E : Env n}{μ k e es v vs} →
⟨ μ , E , val v , k-args vs (e ∷ es) k ⟩ ⟶ ⟨ μ , E , exp e , k-args (vs List.∷ʳ v) es k ⟩
args-red : ∀ {n}{E : Env n}{μ k v vs} →
⟨ μ , E , val v , k-args vs [] k ⟩ ⟶ ⟨ μ , E , vals (vs List.∷ʳ v) , k ⟩
get : ∀ {n}{E : Env n}{μ k e m} →
⟨ μ , E , exp (get e m) , k ⟩ ⟶ ⟨ μ , E , exp e , k-get m k ⟩
get-red : ∀ {n}{E : Env n}{μ k c o m} →
⟨ μ , E , val (ref c o) , k-get m k ⟩ ⟶ ⟨ μ , E , {!!} , k ⟩
call : ∀ {n}{E : Env n}{μ k e m args} →
⟨ μ , E , exp (call e m args), k ⟩ ⟶ ⟨ μ , E , exp e , k-args [] args (k-call m k) ⟩
call-red : ∀ {n}{E : Env n}{μ k m v vs} →
⟨ μ , E , vals (v ∷ vs) , k-call m k ⟩ ⟶ ⟨ μ , E , {!!} , k ⟩
----
-- statements
----
next : ∀ {n}{E : Env n}{μ j o}{s : Stmt n j}{st : Stmts j o}{k} →
⟨ μ , E , continue , k-seq (s ◅ st) k ⟩ ⟶ ⟨ μ , E , stmt s , k-seq st k ⟩
loc : ∀ {n}{E : Env n}{μ k a} →
⟨ μ , E , stmt (loc a) , k ⟩ ⟶ ⟨ μ , default a ∷ E , continue , k ⟩
asgn : ∀ {n}{E : Env n}{μ k e x} →
⟨ μ , E , stmt (asgn x e) , k ⟩ ⟶ ⟨ μ , E , exp e , k-asgn x k ⟩
asgn-red : ∀ {n}{E : Env n}{μ k v x} →
⟨ μ , E , val v , k-asgn x k ⟩ ⟶ ⟨ μ , (E V.[ x ]≔ v) , continue , k ⟩
set₁ : ∀ {n}{E : Env n}{μ m k e e'} →
⟨ μ , E , stmt (set e m e') , k ⟩ ⟶ ⟨ μ , E , exp e , k-set₁ m e' k ⟩
set₂ : ∀ {n}{E : Env n}{μ m k v e'} →
⟨ μ , E , val v , k-set₁ m e' k ⟩ ⟶ ⟨ μ , E , exp e' , k-set₂ v m k ⟩
set-red : ∀ {n}{E : Env n}{μ μ' m C k v o O} →
maybe-lookup o μ ≡ just O →
maybe-write o {!!} μ ≡ just μ' →
⟨ μ , E , val v , k-set₂ (ref C o) m k ⟩ ⟶ ⟨ μ' , E , continue , k ⟩
-- A few useful predicates on configurations
Stuck : Config → Set
Stuck φ = ¬ ∃ λ φ' → φ ⟶ φ'
data Done : Config → Set where
done : ∀ {n}{E : Env n}{μ v} → Done ⟨ μ , E , val v , k-done ⟩
-- reflexive, transitive-closure of step
_⟶ₖ_ : Config → Config → Set
_⟶ₖ_ = Star _⟶_
|
{
"alphanum_fraction": 0.4935955259,
"avg_line_length": 31.8563218391,
"ext": "agda",
"hexsha": "8ac67f4cd9cff1a72da9a4dfabcc0b4aa7e4cc96",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Semantics/Smallstep.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Semantics/Smallstep.agda",
"max_line_length": 93,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Semantics/Smallstep.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 2383,
"size": 5543
}
|
{-# OPTIONS -WnoMissingDefinitions #-}
postulate
A : Set
B : A → Set
variable
a : A
data D : B a → Set
-- Expected: Warning about missing definition
-- Not expected: Complaint about generalizable variable
|
{
"alphanum_fraction": 0.6930232558,
"avg_line_length": 15.3571428571,
"ext": "agda",
"hexsha": "7ba04a2c23f5af4041aa158106f487e1eafaa547",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3436.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3436.agda",
"max_line_length": 55,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3436.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 56,
"size": 215
}
|
-- Andreas, 2017-01-01, issue 2372, reported by m0davis
open import Issue2372Inst
f : r → Set₁
f _ = Set
-- WAS: No instance of type R was found in scope.
-- Should succeed
|
{
"alphanum_fraction": 0.6949152542,
"avg_line_length": 16.0909090909,
"ext": "agda",
"hexsha": "43c8ba5e0e0c62781c37f10ff73a251f918e410e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2372ImportInst.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2372ImportInst.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2372ImportInst.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 59,
"size": 177
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Data.Vec.OperationsNat where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec.Base
open import Cubical.Data.Sigma
private variable
ℓ : Level
_+n-vec_ : {m : ℕ} → Vec ℕ m → Vec ℕ m → Vec ℕ m
_+n-vec_ {.zero} [] [] = []
_+n-vec_ {.(suc _)} (k ∷ v) (l ∷ v') = (k +n l) ∷ (v +n-vec v')
+n-vec-lid : {m : ℕ} → (v : Vec ℕ m) → replicate 0 +n-vec v ≡ v
+n-vec-lid {.zero} [] = refl
+n-vec-lid {.(suc _)} (k ∷ v) = cong (_∷_ k) (+n-vec-lid v)
+n-vec-rid : {m : ℕ} → (v : Vec ℕ m) → v +n-vec replicate 0 ≡ v
+n-vec-rid {.zero} [] = refl
+n-vec-rid {.(suc _)} (k ∷ v) = cong₂ _∷_ (+-zero k) (+n-vec-rid v)
+n-vec-assoc : {m : ℕ} → (v v' v'' : Vec ℕ m) → v +n-vec (v' +n-vec v'') ≡ (v +n-vec v') +n-vec v''
+n-vec-assoc [] [] [] = refl
+n-vec-assoc (k ∷ v) (l ∷ v') (p ∷ v'') = cong₂ _∷_ (+-assoc k l p) (+n-vec-assoc v v' v'')
+n-vec-comm : {m : ℕ} → (v v' : Vec ℕ m) → v +n-vec v' ≡ v' +n-vec v
+n-vec-comm {.zero} [] [] = refl
+n-vec-comm {.(suc _)} (k ∷ v) (l ∷ v') = cong₂ _∷_ (+-comm k l) (+n-vec-comm v v')
sep-vec : (k l : ℕ) → Vec ℕ (k +n l) → (Vec ℕ k) × (Vec ℕ l )
sep-vec zero l v = [] , v
sep-vec (suc k) l (x ∷ v) = (x ∷ fst (sep-vec k l v)) , (snd (sep-vec k l v))
sep-vec-fst : (k l : ℕ) → (v : Vec ℕ k) → (v' : Vec ℕ l) → fst (sep-vec k l (v ++ v')) ≡ v
sep-vec-fst zero l [] v' = refl
sep-vec-fst (suc k) l (x ∷ v) v' = cong (λ X → x ∷ X) (sep-vec-fst k l v v')
sep-vec-snd : (k l : ℕ) → (v : Vec ℕ k) → (v' : Vec ℕ l) → snd (sep-vec k l (v ++ v')) ≡ v'
sep-vec-snd zero l [] v' = refl
sep-vec-snd (suc k) l (x ∷ v) v' = sep-vec-snd k l v v'
sep-vec-id : (k l : ℕ) → (v : Vec ℕ (k +n l)) → fst (sep-vec k l v) ++ snd (sep-vec k l v) ≡ v
sep-vec-id zero l v = refl
sep-vec-id (suc k) l (x ∷ v) = cong (λ X → x ∷ X) (sep-vec-id k l v)
rep-concat : (k l : ℕ) → {B : Type ℓ} → (b : B) →
replicate {_} {k} {B} b ++ replicate {_} {l} {B} b ≡ replicate {_} {k +n l} {B} b
rep-concat zero l b = refl
rep-concat (suc k) l b = cong (λ X → b ∷ X) (rep-concat k l b)
+n-vec-concat : (k l : ℕ) → (v w : Vec ℕ k) → (v' w' : Vec ℕ l)
→ (v +n-vec w) ++ (v' +n-vec w') ≡ (v ++ v') +n-vec (w ++ w')
+n-vec-concat zero l [] [] v' w' = refl
+n-vec-concat (suc k) l (x ∷ v) (y ∷ w) v' w' = cong (λ X → x +n y ∷ X) (+n-vec-concat k l v w v' w')
|
{
"alphanum_fraction": 0.4965034965,
"avg_line_length": 41.9137931034,
"ext": "agda",
"hexsha": "59a2f242b5fcfebae54c0ef110956b345a51c167",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/Vec/OperationsNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/Vec/OperationsNat.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/Vec/OperationsNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1133,
"size": 2431
}
|
module Type.Dependent.Functions where
import Lvl
open import Functional.Dependent
open import Type
open import Type.Dependent
open import Syntax.Function
module _ {ℓ₁ ℓ₂ ℓ₃}
{A : Type{ℓ₁}}
{B : A → Type{ℓ₂}}
{C : ∀{x} → B(x) → Type{ℓ₃}}
where
_[Π]-∘_ : (∀{x} → Π(B(x))(C)) → (g : Π(A)(B)) → Π(A)(\x → C(Π.apply g x))
Π.apply (f [Π]-∘ g) x = Π.apply f (Π.apply g x)
depCurry : (Π(Σ A B) (C ∘ Σ.right)) → (Π A (a ↦ (Π(B(a)) C)))
Π.apply (Π.apply (depCurry f) a) b = Π.apply f (intro a b)
depUncurry : (Π A (a ↦ Π(B(a)) C)) → (Π(Σ A B) (C ∘ Σ.right))
Π.apply (depUncurry f) (intro a b) = Π.apply(Π.apply f a) b
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄}
{A₁ : Type{ℓ₁}}
{B₁ : A₁ → Type{ℓ₂}}
{A₂ : Type{ℓ₃}}
{B₂ : A₂ → Type{ℓ₄}}
where
[Σ]-apply : (x : Σ(A₁)(B₁)) → (l : A₁ → A₂) → (r : B₁(Σ.left x) → B₂(l(Σ.left x))) → Σ(A₂)(B₂)
[Σ]-apply x l r = intro(l(Σ.left x))(r(Σ.right x))
[ℰ]-apply : (x : Σ(A₁)(B₁)) → {l : A₁ → A₂} → (r : B₁(Σ.left x) → B₂(l(Σ.left x))) → Σ(A₂)(B₂)
[ℰ]-apply x {l} r = [Σ]-apply x l r
[Σ]-map : (l : A₁ → A₂) → (∀{a} → B₁(a) → B₂(l(a))) → (Σ(A₁)(B₁) → Σ(A₂)(B₂))
[Σ]-map l r (intro left right) = intro (l left) (r right)
[ℰ]-map : ∀{l : A₁ → A₂} → (∀{a} → B₁(a) → B₂(l(a))) → (Σ(A₁)(B₁) → Σ(A₂)(B₂))
[ℰ]-map {l} = [Σ]-map l
module _ {ℓ₁ ℓ₂ ℓ₃}
{A : Type{ℓ₁}}
{B₁ : A → Type{ℓ₂}}
{B₂ : A → Type{ℓ₃}}
where
[Σ]-applyᵣ : (x : Σ(A)(B₁)) → (r : B₁(Σ.left x) → B₂(Σ.left x)) → Σ(A)(B₂)
[Σ]-applyᵣ x r = intro(Σ.left x)(r(Σ.right x))
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆}
{A₁ : Type{ℓ₁}}
{B₁ : A₁ → Type{ℓ₂}}
{A₂ : Type{ℓ₃}}
{B₂ : A₂ → Type{ℓ₄}}
{A₃ : Type{ℓ₅}}
{B₃ : A₃ → Type{ℓ₆}}
where
[Σ]-apply₂ : (x : Σ(A₁)(B₁)) → (y : Σ(A₂)(B₂)) → (l : A₁ → A₂ → A₃) → (r : B₁(Σ.left x) → B₂(Σ.left y) → B₃(l(Σ.left x)(Σ.left y))) → Σ(A₃)(B₃)
[Σ]-apply₂ x y l r = intro(l(Σ.left x)(Σ.left y))(r(Σ.right x)(Σ.right y))
[ℰ]-apply₂ : (x : Σ(A₁)(B₁)) → (y : Σ(A₂)(B₂)) → {l : A₁ → A₂ → A₃} → (r : B₁(Σ.left x) → B₂(Σ.left y) → B₃(l(Σ.left x)(Σ.left y))) → Σ(A₃)(B₃)
[ℰ]-apply₂ x y {l} r = [Σ]-apply₂ x y l r
[Σ]-map₂ : (l : A₁ → A₂ → A₃) → (∀{a₁}{a₂} → B₁(a₁) → B₂(a₂) → B₃(l a₁ a₂)) → (Σ(A₁)(B₁) → Σ(A₂)(B₂) → Σ(A₃)(B₃))
[Σ]-map₂ l r (intro left₁ right₁) (intro left₂ right₂) = intro (l left₁ left₂) (r right₁ right₂)
[ℰ]-map₂ : ∀{l : A₁ → A₂ → A₃} → (∀{a₁}{a₂} → B₁(a₁) → B₂(a₂) → B₃(l a₁ a₂)) → (Σ(A₁)(B₁) → Σ(A₂)(B₂) → Σ(A₃)(B₃))
[ℰ]-map₂ {l} = [Σ]-map₂ l
|
{
"alphanum_fraction": 0.4587049244,
"avg_line_length": 37.9264705882,
"ext": "agda",
"hexsha": "9bdd7efe40b30f9b93b14196630b6dae0c4183e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Dependent/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Dependent/Functions.agda",
"max_line_length": 145,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Dependent/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1399,
"size": 2579
}
|
{-# OPTIONS --cubical --safe --no-import-sorts --postfix-projections #-}
module Cubical.Data.Fin.Recursive.Properties where
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Functions.Embedding
import Cubical.Data.Empty as Empty
open Empty hiding (rec; elim)
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.Nat.Order.Recursive
open import Cubical.Data.Sigma
import Cubical.Data.Sum as Sum
open Sum using (_⊎_; _⊎?_; inl; inr)
open import Cubical.Data.Fin.Recursive.Base
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
m n : ℕ
A : Type ℓ
x y : A
isPropFin0 : isProp (Fin 0)
isPropFin0 = isProp⊥
isContrFin1 : isContr (Fin 1)
isContrFin1 .fst = zero
isContrFin1 .snd zero = refl
Unit≡Fin1 : Unit ≡ Fin 1
Unit≡Fin1 = ua (const zero , ctr)
where
fibr : fiber (const zero) zero
fibr = tt , refl
fibr! : ∀ f → fibr ≡ f
fibr! (tt , p) i .fst = tt
fibr! (tt , p) i .snd = J (λ{ zero q → refl ≡ q }) refl p i
ctr : isEquiv (const zero)
ctr .equiv-proof zero .fst = fibr
ctr .equiv-proof zero .snd = fibr!
module Cover where
Cover : FinF A → FinF A → Type _
Cover zero zero = Unit
Cover (suc x) (suc y) = x ≡ y
Cover _ _ = ⊥
crefl : Cover x x
crefl {x = zero} = _
crefl {x = suc x} = refl
cover : x ≡ y → Cover x y
cover p = transport (λ i → Cover (p i0) (p i)) crefl
predp : Path (FinF A) (suc x) (suc y) → x ≡ y
predp {x = x} p = transport (λ i → Cover (suc x) (p i)) refl
suc-predp-refl
: Path (Path (FinF A) (suc x) (suc x))
(λ i → suc (predp (λ _ → suc x) i)) refl
suc-predp-refl {x = x} i j
= suc (transportRefl (refl {x = x}) i j)
suc-retract : (p : Path (FinF A) (suc x) (suc y)) → (λ i → suc (predp p i)) ≡ p
suc-retract
= J (λ{ (suc m) q → (λ i → suc (predp q i)) ≡ q ; zero _ → ⊥}) suc-predp-refl
isEmbedding-suc : isEmbedding {B = FinF A} suc
isEmbedding-suc w x = isoToIsEquiv theIso
where
open Iso
theIso : Iso (w ≡ x) (suc w ≡ suc x)
theIso .fun = cong suc
theIso .inv p = predp p
theIso .rightInv = suc-retract
theIso .leftInv
= J (λ _ q → transport (λ i → w ≡ q i) refl ≡ q) (transportRefl refl)
private
zK : (p : Path (FinF A) zero zero) → p ≡ refl
zK = J (λ{ zero q → q ≡ refl ; one _ → ⊥ }) refl
isSetFinF : isSet A → isSet (FinF A)
isSetFinF Aset zero zero p
= J (λ{ zero q → p ≡ q ; _ _ → ⊥ }) (zK p)
isSetFinF Aset (suc x) (suc y)
= isOfHLevelRetract 1 Cover.predp (cong suc) Cover.suc-retract (Aset x y)
isSetFinF Aset zero (suc _) p = Empty.rec (Cover.cover p)
isSetFinF Aset (suc _) zero p = Empty.rec (Cover.cover p)
isSetFin : isSet (Fin m)
isSetFin {zero} = isProp→isSet isPropFin0
isSetFin {suc m} = isSetFinF isSetFin
discreteFin : Discrete (Fin m)
discreteFin {suc m} zero zero = yes refl
discreteFin {suc m} (suc i) (suc j) with discreteFin i j
... | yes p = yes (cong suc p)
... | no ¬p = no (¬p ∘ Cover.predp)
discreteFin {suc m} zero (suc _) = no Cover.cover
discreteFin {suc m} (suc _) zero = no Cover.cover
inject< : m < n → Fin m → Fin n
inject< {suc m} {suc n} _ zero = zero
inject< {suc m} {suc n} m<n (suc i) = suc (inject< m<n i)
inject≤ : m ≤ n → Fin m → Fin n
inject≤ {suc m} {suc n} _ zero = zero
inject≤ {suc m} {suc n} m≤n (suc i) = suc (inject≤ m≤n i)
any? : {P : Fin m → Type ℓ} → (∀ i → Dec (P i)) → Dec (Σ _ P)
any? {zero} P? = no fst
any? {suc m} P? with P? zero ⊎? any? (P? ∘ suc)
... | yes (inl p) = yes (zero , p)
... | yes (inr (i , p)) = yes (suc i , p)
... | no k = no λ where
(zero , p) → k (inl p)
(suc x , p) → k (inr (x , p))
_#_ : Fin m → Fin m → Type₀
_#_ {m = suc m} zero zero = ⊥
_#_ {m = suc m} (suc i) zero = Unit
_#_ {m = suc m} zero (suc j) = Unit
_#_ {m = suc m} (suc i) (suc j) = i # j
#→≢ : ∀{i j : Fin m} → i # j → ¬ i ≡ j
#→≢ {suc _} {zero} {suc j} _ = Cover.cover
#→≢ {suc _} {suc i} {zero} _ = Cover.cover
#→≢ {suc m} {suc i} {suc j} ap p = #→≢ ap (Cover.predp p)
≢→# : ∀{i j : Fin m} → ¬ i ≡ j → i # j
≢→# {suc m} {zero} {zero} ¬p = ¬p refl
≢→# {suc m} {zero} {suc j} _ = _
≢→# {suc m} {suc i} {zero} _ = _
≢→# {suc m} {suc i} {suc j} ¬p = ≢→# {m} {i} {j} (¬p ∘ cong suc)
#-inject< : ∀{l : m < n} (i j : Fin m) → i # j → inject< {m} {n} l i # inject< l j
#-inject< {suc m} {suc n} zero (suc _) _ = _
#-inject< {suc m} {suc n} (suc _) zero _ = _
#-inject< {suc m} {suc n} (suc i) (suc j) a = #-inject< {m} {n} i j a
punchOut : (i j : Fin (suc m)) → i # j → Fin m
punchOut {suc m} zero (suc j) _ = j
punchOut {suc m} (suc i) zero _ = zero
punchOut {suc m} (suc i) (suc j) ap = suc (punchOut i j ap)
punchOut-inj
: ∀{i j k : Fin (suc m)}
→ (i#j : i # j) (i#k : i # k)
→ punchOut i j i#j ≡ punchOut i k i#k
→ j ≡ k
punchOut-inj {suc m} {suc i} {zero} {zero} i#j i#k p = refl
punchOut-inj {suc m} {zero} {suc j} {suc k} i#j i#k p = cong suc p
punchOut-inj {suc m} {suc i} {suc j} {suc k} i#j i#k p
= cong suc (punchOut-inj {m} {i} {j} {k} i#j i#k (Cover.predp p))
punchOut-inj {suc m} {suc i} {zero} {suc x} i#j i#k p
= Empty.rec (Cover.cover p)
punchOut-inj {suc m} {suc i} {suc j} {zero} i#j i#k p
= Empty.rec (Cover.cover p)
_⊕_ : (m : ℕ) → Fin n → Fin (m + n)
zero ⊕ i = i
suc m ⊕ i = suc (m ⊕ i)
toFin : (n : ℕ) → Fin (suc n)
toFin zero = zero
toFin (suc n) = suc (toFin n)
inject<#toFin : ∀(i : Fin n) → inject< (≤-refl (suc n)) i # toFin n
inject<#toFin {suc n} zero = _
inject<#toFin {suc n} (suc i) = inject<#toFin {n} i
inject≤#⊕ : ∀(i : Fin m) (j : Fin n) → inject≤ (k≤k+n m) i # (m ⊕ j)
inject≤#⊕ {suc m} {suc n} zero j = _
inject≤#⊕ {suc m} {suc n} (suc i) j = inject≤#⊕ i j
split : (m : ℕ) → Fin (m + n) → Fin m ⊎ Fin n
split zero j = inr j
split (suc m) zero = inl zero
split (suc m) (suc i) with split m i
... | inl k = inl (suc k)
... | inr j = inr j
pigeonhole
: m < n
→ (f : Fin n → Fin m)
→ Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (i # j) × (f i ≡ f j)
pigeonhole {zero} {suc n} m<n f = Empty.rec (f zero)
pigeonhole {suc m} {suc n} m<n f with any? (λ i → discreteFin (f zero) (f (suc i)))
... | yes (j , p) = zero , suc j , _ , p
... | no ¬p = let i , j , ap , p = pigeonhole {m} {n} m<n g
in suc i , suc j , ap
, punchOut-inj {i = f zero} (apart i) (apart j) p
where
apart : (i : Fin n) → f zero # f (suc i)
apart i = ≢→# {suc m} {f zero} (¬p ∘ _,_ i)
g : Fin n → Fin m
g i = punchOut (f zero) (f (suc i)) (apart i)
Fin-inj₀ : m < n → ¬ Fin n ≡ Fin m
Fin-inj₀ m<n P with pigeonhole m<n (transport P)
... | i , j , i#j , p = #→≢ i#j i≡j
where
i≡j : i ≡ j
i≡j = transport (λ k → transport⁻Transport P i k ≡ transport⁻Transport P j k)
(cong (transport⁻ P) p)
Fin-inj : (m n : ℕ) → Fin m ≡ Fin n → m ≡ n
Fin-inj m n P with m ≟ n
... | eq p = p
... | lt m<n = Empty.rec (Fin-inj₀ m<n (sym P))
... | gt n<m = Empty.rec (Fin-inj₀ n<m P)
module Isos where
open Iso
up : Fin m → Fin (m + n)
up {m} = inject≤ (k≤k+n m)
resplit-identᵣ₀ : ∀ m (i : Fin n) → Sum.⊎Path.Cover (split m (m ⊕ i)) (inr i)
resplit-identᵣ₀ zero i = lift refl
resplit-identᵣ₀ (suc m) i with split m (m ⊕ i) | resplit-identᵣ₀ m i
... | inr j | p = p
resplit-identᵣ : ∀ m (i : Fin n) → split m (m ⊕ i) ≡ inr i
resplit-identᵣ m i = Sum.⊎Path.decode _ _ (resplit-identᵣ₀ m i)
resplit-identₗ₀ : ∀ m (i : Fin m) → Sum.⊎Path.Cover (split {n} m (up i)) (inl i)
resplit-identₗ₀ (suc m) zero = lift refl
resplit-identₗ₀ {n} (suc m) (suc i)
with split {n} m (up i) | resplit-identₗ₀ {n} m i
... | inl j | lift p = lift (cong suc p)
resplit-identₗ : ∀ m (i : Fin m) → split {n} m (up i) ≡ inl i
resplit-identₗ m i = Sum.⊎Path.decode _ _ (resplit-identₗ₀ m i)
desplit-ident : ∀ m → (i : Fin (m + n)) → Sum.rec up (m ⊕_) (split m i) ≡ i
desplit-ident zero i = refl
desplit-ident (suc m) zero = refl
desplit-ident (suc m) (suc i) with split m i | desplit-ident m i
... | inl j | p = cong suc p
... | inr j | p = cong suc p
sumIso : Iso (Fin m ⊎ Fin n) (Fin (m + n))
sumIso {m} .fun = Sum.rec up (m ⊕_)
sumIso {m} .inv i = split m i
sumIso {m} .rightInv i = desplit-ident m i
sumIso {m} .leftInv (inr j) = resplit-identᵣ m j
sumIso {m} .leftInv (inl i) = resplit-identₗ m i
sum≡ : Fin m ⊎ Fin n ≡ Fin (m + n)
sum≡ = isoToPath Isos.sumIso
|
{
"alphanum_fraction": 0.5683072947,
"avg_line_length": 31.8838951311,
"ext": "agda",
"hexsha": "33ca4eecf231d655b154cb5ed675b2accc48c3a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Data/Fin/Recursive/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Data/Fin/Recursive/Properties.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Data/Fin/Recursive/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3751,
"size": 8513
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.EilenbergMacLane1 {i} (G : Group i) where
private
module G = Group G
comp-equiv : ∀ g → G.El ≃ G.El
comp-equiv g = equiv
(λ x → G.comp x g)
(λ x → G.comp x (G.inv g))
(λ x → G.assoc x (G.inv g) g ∙ ap (G.comp x) (G.inv-l g) ∙ G.unit-r x)
(λ x → G.assoc x g (G.inv g) ∙ ap (G.comp x) (G.inv-r g) ∙ G.unit-r x)
comp-equiv-comp : (g₁ g₂ : G.El) → comp-equiv (G.comp g₁ g₂)
== (comp-equiv g₂ ∘e comp-equiv g₁)
comp-equiv-comp g₁ g₂ =
pair= (λ= (λ x → ! (G.assoc x g₁ g₂)))
(prop-has-all-paths-↓ {B = is-equiv})
Ω-group : Group (lsucc i)
Ω-group = Ω^S-group 0
⊙[ (0 -Type i) , (G.El , G.El-level) ]
Codes-hom : G →ᴳ Ω-group
Codes-hom = group-hom (nType=-out ∘ ua ∘ comp-equiv) pres-comp where
abstract
pres-comp : ∀ g₁ g₂
→ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂)))
== nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁))
∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂))
pres-comp g₁ g₂ =
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂)))
=⟨ comp-equiv-comp g₁ g₂ |in-ctx nType=-out ∘ ua ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂ ∘e comp-equiv g₁))
=⟨ ua-∘e (comp-equiv g₁) (comp-equiv g₂) |in-ctx nType=-out ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁) ∙ ua (comp-equiv g₂))
=⟨ ! $ nType-∙ {A = G.El , G.El-level} {B = G.El , G.El-level} {C = G.El , G.El-level}
(ua (comp-equiv g₁)) (ua (comp-equiv g₂)) ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁))
∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂))
=∎
module CodesRec = EM₁Level₁Rec {G = G} {C = 0 -Type i} (G.El , G.El-level) Codes-hom
Codes : EM₁ G → 0 -Type i
Codes = CodesRec.f
encode : {x : EM₁ G} → embase == x → fst (Codes x)
encode α = transport (fst ∘ Codes) α G.ident
abstract
transp-Codes-β : ∀ g g' → transport (fst ∘ Codes) (emloop g) g' == G.comp g' g
transp-Codes-β g g' =
coe (ap (fst ∘ Codes) (emloop g)) g'
=⟨ ap (λ v → coe v g') (ap-∘ fst Codes (emloop g)) ⟩
coe (ap fst (ap Codes (emloop g))) g'
=⟨ ap (λ v → coe (ap fst v) g') (CodesRec.emloop-β g) ⟩
coe (ap fst (nType=-out (ua (comp-equiv g)))) g'
=⟨ ap (λ v → coe v g') (fst=-β (ua (comp-equiv g)) _) ⟩
coe (ua (comp-equiv g)) g'
=⟨ coe-β (comp-equiv g) g' ⟩
–> (comp-equiv g) g' =∎
encode-emloop : ∀ g → encode (emloop g) == g
encode-emloop g =
transport (fst ∘ Codes) (emloop g) G.ident
=⟨ transp-Codes-β g G.ident ⟩
G.comp G.ident g
=⟨ G.unit-l g ⟩
g =∎
module Decode where
private
{- transport in path fibration of EM₁ -}
transp-PF : embase' G == embase → embase' G == embase → embase' G == embase
transp-PF = transport (embase' G ==_)
{- transport in Codes -}
transp-C : embase' G == embase → G.El → G.El
transp-C = transport (fst ∘ Codes)
transp-emloop : embase' G == embase → G.El → embase' G == embase
transp-emloop p = transp-PF p ∘ emloop
emloop-transp : embase' G == embase → G.El → embase' G == embase
emloop-transp p = emloop ∘ transp-C p
swap-transp-emloop-seq : ∀ g h → transp-emloop (emloop g) h =-= emloop-transp (emloop g) h
swap-transp-emloop-seq g h =
transp-emloop (emloop g) h
=⟪ transp-cst=idf (emloop g) (emloop h) ⟫
emloop h ∙ emloop g
=⟪ ! (emloop-comp h g) ⟫
emloop (G.comp h g)
=⟪ ap emloop (! (transp-Codes-β g h)) ⟫
emloop-transp (emloop g) h ∎∎
swap-transp-emloop : ∀ g h → transp-emloop (emloop g) h == emloop-transp (emloop g) h
swap-transp-emloop g h = ↯ (swap-transp-emloop-seq g h)
private
decode-emloop-comp : ∀ g₁ g₂ h →
swap-transp-emloop (G.comp g₁ g₂) h ◃∙
ap (λ p → emloop (transp-C p h)) (emloop-comp g₁ g₂) ◃∙
ap emloop (transp-∙ (emloop g₁) (emloop g₂) h) ◃∎
=ₛ
ap (λ p → transp-PF p (emloop h)) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (swap-transp-emloop g₁ h) ◃∙
swap-transp-emloop g₂ (transp-C (emloop g₁) h) ◃∎
decode-emloop-comp g₁ g₂ h =
swap-transp-emloop g₁g₂ h ◃∙
ap (λ p → emloop-transp p h) (emloop-comp g₁ g₂) ◃∙
ap emloop (transp-∙ (emloop g₁) (emloop g₂) h) ◃∎
=ₛ₁⟨ 1 & 1 & ap-∘ emloop (λ p → transp-C p h) (emloop-comp g₁ g₂) ⟩
swap-transp-emloop g₁g₂ h ◃∙
ap emloop (ap (λ p → transp-C p h) (emloop-comp g₁ g₂)) ◃∙
ap emloop (transp-∙ (emloop g₁) (emloop g₂) h) ◃∎
=ₛ⟨ 0 & 1 & expand (swap-transp-emloop-seq g₁g₂ h) ⟩
transp-cst=idf (emloop g₁g₂) (emloop h) ◃∙
! (emloop-comp h g₁g₂) ◃∙
ap emloop (! (transp-Codes-β g₁g₂ h)) ◃∙
ap emloop (ap (λ p → transp-C p h) (emloop-comp g₁ g₂)) ◃∙
ap emloop (transp-∙ (emloop g₁) (emloop g₂) h) ◃∎
=ₛ⟨ 2 & 3 &
ap-seq-=ₛ emloop $
=ₛ-in {s = ! (transp-Codes-β g₁g₂ h) ◃∙
ap (λ p → transp-C p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) h ◃∎}
{t = ! (G.assoc h g₁ g₂) ◃∙
ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h)) ◃∙
! (transp-Codes-β g₂ (transp-C (emloop g₁) h)) ◃∎} $
prop-path (has-level-apply G.El-level _ _) _ _
⟩
transp-cst=idf (emloop g₁g₂) (emloop h) ◃∙
! (emloop-comp h g₁g₂) ◃∙
ap emloop (! (G.assoc h g₁ g₂)) ◃∙
ap emloop (ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h))) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 0 & 1 &
post-rotate-in {p = _ ◃∎} $ !ₛ $
homotopy-naturality (λ p → transp-PF p (emloop h))
(emloop h ∙_)
(λ p → transp-cst=idf p (emloop h))
(emloop-comp g₁ g₂)
⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-cst=idf (emloop g₁ ∙ emloop g₂) (emloop h) ◃∙
! (ap (emloop h ∙_) (emloop-comp g₁ g₂)) ◃∙
! (emloop-comp h g₁g₂) ◃∙
ap emloop (! (G.assoc h g₁ g₂)) ◃∙
ap emloop (ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h))) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ₁⟨ 4 & 1 & ap-! emloop (G.assoc h g₁ g₂) ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-cst=idf (emloop g₁ ∙ emloop g₂) (emloop h) ◃∙
! (ap (emloop h ∙_) (emloop-comp g₁ g₂)) ◃∙
! (emloop-comp h g₁g₂) ◃∙
! (ap emloop (G.assoc h g₁ g₂)) ◃∙
ap emloop (ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h))) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 2 & 3 & !ₛ (!-=ₛ (emloop-coh' G h g₁ g₂)) ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-cst=idf (emloop g₁ ∙ emloop g₂) (emloop h) ◃∙
! (∙-assoc (emloop h) (emloop g₁) (emloop g₂)) ◃∙
! (ap (_∙ emloop g₂) (emloop-comp h g₁)) ◃∙
! (emloop-comp (G.comp h g₁) g₂) ◃∙
ap emloop (ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h))) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 1 & 2 &
post-rotate'-in {p = _ ◃∙ _ ◃∙ _ ◃∎} $
transp-cst=idf-pentagon (emloop g₁) (emloop g₂) (emloop h)
⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
transp-cst=idf (emloop g₂) (emloop h ∙ emloop g₁) ◃∙
! (ap (_∙ emloop g₂) (emloop-comp h g₁)) ◃∙
! (emloop-comp (G.comp h g₁) g₂) ◃∙
ap emloop (ap (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h))) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ₁⟨ 6 & 1 & ∘-ap emloop (λ k → G.comp k g₂) (! (transp-Codes-β g₁ h)) ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
transp-cst=idf (emloop g₂) (emloop h ∙ emloop g₁) ◃∙
! (ap (_∙ emloop g₂) (emloop-comp h g₁)) ◃∙
! (emloop-comp (G.comp h g₁) g₂) ◃∙
ap (λ k → emloop (G.comp k g₂)) (! (transp-Codes-β g₁ h)) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 5 & 2 & !ₛ $
homotopy-naturality (λ k → emloop k ∙ emloop g₂)
(λ k → emloop (G.comp k g₂))
(λ k → ! (emloop-comp k g₂))
(! (transp-Codes-β g₁ h))
⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
transp-cst=idf (emloop g₂) (emloop h ∙ emloop g₁) ◃∙
! (ap (_∙ emloop g₂) (emloop-comp h g₁)) ◃∙
ap (λ k → emloop k ∙ emloop g₂) (! (transp-Codes-β g₁ h)) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ₁⟨ 4 & 1 & !-ap (_∙ emloop g₂) (emloop-comp h g₁) ⟩
ap (λ p → transp-PF p (emloop h)) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
transp-cst=idf (emloop g₂) (emloop h ∙ emloop g₁) ◃∙
ap (_∙ emloop g₂) (! (emloop-comp h g₁)) ◃∙
ap (λ k → emloop k ∙ emloop g₂) (! (transp-Codes-β g₁ h)) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 3 & 2 & !ₛ $
homotopy-naturality (transp-PF (emloop g₂))
(_∙ emloop g₂)
(transp-cst=idf (emloop g₂))
(! (emloop-comp h g₁))
⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
ap (transp-PF (emloop g₂)) (! (emloop-comp h g₁)) ◃∙
transp-cst=idf (emloop g₂) (emloop (G.comp h g₁)) ◃∙
ap (λ k → emloop k ∙ emloop g₂) (! (transp-Codes-β g₁ h)) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ₁⟨ 5 & 1 & ap-∘ (_∙ emloop g₂) emloop (! (transp-Codes-β g₁ h)) ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
ap (transp-PF (emloop g₂)) (! (emloop-comp h g₁)) ◃∙
transp-cst=idf (emloop g₂) (emloop (G.comp h g₁)) ◃∙
ap (_∙ emloop g₂) (ap emloop (! (transp-Codes-β g₁ h))) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 4 & 2 & !ₛ $
homotopy-naturality (transp-PF (emloop g₂))
(_∙ emloop g₂)
(transp-cst=idf (emloop g₂))
(ap emloop (! (transp-Codes-β g₁ h)))
⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (transp-cst=idf (emloop g₁) (emloop h)) ◃∙
ap (transp-PF (emloop g₂)) (! (emloop-comp h g₁)) ◃∙
ap (transp-PF (emloop g₂)) (ap emloop (! (transp-Codes-β g₁ h))) ◃∙
transp-cst=idf (emloop g₂) (emloop (transp-C (emloop g₁) h)) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 2 & 3 & ∙-ap-seq (transp-PF (emloop g₂)) (swap-transp-emloop-seq g₁ h) ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (swap-transp-emloop g₁ h) ◃∙
transp-cst=idf (emloop g₂) (emloop (transp-C (emloop g₁) h)) ◃∙
! (emloop-comp (transp-C (emloop g₁) h) g₂) ◃∙
ap emloop (! (transp-Codes-β g₂ (transp-C (emloop g₁) h))) ◃∎
=ₛ⟨ 3 & 3 & contract ⟩
ap (λ p → transp-emloop p h) (emloop-comp g₁ g₂) ◃∙
transp-∙ (emloop g₁) (emloop g₂) (emloop h) ◃∙
ap (transp-PF (emloop g₂)) (swap-transp-emloop g₁ h) ◃∙
swap-transp-emloop g₂ (transp-C (emloop g₁) h) ◃∎ ∎ₛ
where g₁g₂ = G.comp g₁ g₂
decode : {x : EM₁ G} → fst (Codes x) → embase == x
decode {x} = Decode.f x
where
module Decode =
EM₁Level₁FunElim {B = fst ∘ Codes} {C = embase' G ==_}
emloop
swap-transp-emloop
decode-emloop-comp
open Decode using (decode)
decode-encode : ∀ {x} (α : embase' G == x) → decode (encode α) == α
decode-encode idp = emloop-ident {G = G}
emloop-equiv : G.El ≃ (embase' G == embase)
emloop-equiv = equiv emloop encode decode-encode encode-emloop
⊙emloop-equiv : G.⊙El ⊙≃ ⊙Ω (⊙EM₁ G)
⊙emloop-equiv = ≃-to-⊙≃ emloop-equiv emloop-ident
abstract
instance
EM₁-level₁ : {n : ℕ₋₂} → has-level (S (S (S n))) (EM₁ G)
EM₁-level₁ {⟨-2⟩} = has-level-in pathspace-is-set
where
embase-loopspace-is-set : is-set (embase' G == embase)
embase-loopspace-is-set = transport is-set (ua emloop-equiv) ⟨⟩
pathspace-is-set : ∀ (x y : EM₁ G) → is-set (x == y)
pathspace-is-set = EM₁-prop-elim (EM₁-prop-elim embase-loopspace-is-set)
EM₁-level₁ {S n} = raise-level _ EM₁-level₁
Ω¹-EM₁ : Ω^S-group 0 (⊙EM₁ G) ≃ᴳ G
Ω¹-EM₁ = ≃-to-≃ᴳ (emloop-equiv ⁻¹)
(λ l₁ l₂ → <– (ap-equiv emloop-equiv _ _) $
emloop (encode (l₁ ∙ l₂))
=⟨ decode-encode (l₁ ∙ l₂) ⟩
l₁ ∙ l₂
=⟨ ! $ ap2 _∙_ (decode-encode l₁) (decode-encode l₂) ⟩
emloop (encode l₁) ∙ emloop (encode l₂)
=⟨ ! $ emloop-comp (encode l₁) (encode l₂) ⟩
emloop (G.comp (encode l₁) (encode l₂))
=∎)
π₁-EM₁ : πS 0 (⊙EM₁ G) ≃ᴳ G
π₁-EM₁ = Ω¹-EM₁ ∘eᴳ unTrunc-iso (Ω^S-group-structure 0 (⊙EM₁ G))
|
{
"alphanum_fraction": 0.4870230989,
"avg_line_length": 49.0828025478,
"ext": "agda",
"hexsha": "5c1d31c88521f8f0713f5e7f6ee652d157ee3eed",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_line_length": 110,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 6251,
"size": 15412
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor.Algebras where
open import Level hiding (lift)
open import Categories.Category
open import Categories.Functor hiding (_≡_; id; _∘_; equiv; assoc; identityˡ; identityʳ; ∘-resp-≡)
open import Categories.Functor.Algebra
record F-Algebra-Morphism {o ℓ e} {C : Category o ℓ e} {F : Endofunctor C} (X Y : F-Algebra F) : Set (ℓ ⊔ e) where
constructor _,_
open Category C
module X = F-Algebra X
module Y = F-Algebra Y
open Functor F
field
f : X.A ⇒ Y.A
.commutes : f ∘ X.α ≡ Y.α ∘ F₁ f
F-Algebras : ∀ {o ℓ e} {C : Category o ℓ e} → Endofunctor C → Category (ℓ ⊔ o) (e ⊔ ℓ) e
F-Algebras {C = C} F = record
{ Obj = Obj′
; _⇒_ = Hom′
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = id′
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≡ = ∘-resp-≡
}
where
open Category C
open Equiv
open Functor F
Obj′ = F-Algebra F
Hom′ : (A B : Obj′) → Set _
Hom′ = F-Algebra-Morphism
_≡′_ : ∀ {A B} (f g : Hom′ A B) → Set _
(f , _) ≡′ (g , _) = f ≡ g
_∘′_ : ∀ {A B C} → Hom′ B C → Hom′ A B → Hom′ A C
_∘′_ {A} {B} {C} (f , pf₁) (g , pf₂) = _,_ {X = A} {C} (f ∘ g) pf -- TODO: find out why the hell I need to provide these implicits
where
module A = F-Algebra A
module B = F-Algebra B
module C = F-Algebra C
.pf : (f ∘ g) ∘ A.α ≡ C.α ∘ (F₁ (f ∘ g))
pf = begin
(f ∘ g) ∘ A.α
↓⟨ assoc ⟩
f ∘ (g ∘ A.α)
↓⟨ ∘-resp-≡ʳ pf₂ ⟩
f ∘ (B.α ∘ F₁ g)
↑⟨ assoc ⟩
(f ∘ B.α) ∘ F₁ g
↓⟨ ∘-resp-≡ˡ pf₁ ⟩
(C.α ∘ F₁ f) ∘ F₁ g
↓⟨ assoc ⟩
C.α ∘ (F₁ f ∘ F₁ g)
↑⟨ ∘-resp-≡ʳ homomorphism ⟩
C.α ∘ (F₁ (f ∘ g))
∎
where
open HomReasoning
id′ : ∀ {A} → Hom′ A A
id′ {A} = _,_ {X = A} {A} id pf
where
module A = F-Algebra A
.pf : id ∘ A.α ≡ A.α ∘ F₁ id
pf = begin
id ∘ A.α
↓⟨ identityˡ ⟩
A.α
↑⟨ identityʳ ⟩
A.α ∘ id
↑⟨ ∘-resp-≡ʳ identity ⟩
A.α ∘ F₁ id
∎
where
open HomReasoning
open import Categories.Object.Initial
module Lambek {o ℓ e} {C : Category o ℓ e} {F : Endofunctor C} (I : Initial (F-Algebras F)) where
open Category C
open Equiv
module FA = Category (F-Algebras F) renaming (_∘_ to _∘FA_; _≡_ to _≡FA_)
open Functor F
import Categories.Morphisms as Morphisms
open Morphisms C
open Initial I
open F-Algebra ⊥
lambek : A ≅ F₀ A
lambek = record
{ f = f′
; g = g′
; iso = iso′
}
where
f′ : A ⇒ F₀ A
f′ = F-Algebra-Morphism.f (! {lift ⊥})
g′ : F₀ A ⇒ A
g′ = α
.iso′ : Iso f′ g′
iso′ = record
{ isoˡ = isoˡ′
; isoʳ = begin
f′ ∘ g′
↓⟨ F-Algebra-Morphism.commutes (! {lift ⊥}) ⟩
F₁ g′ ∘ F₁ f′
↑⟨ homomorphism ⟩
F₁ (g′ ∘ f′)
↓⟨ F-resp-≡ isoˡ′ ⟩
F₁ id
↓⟨ identity ⟩
id
∎
}
where
open FA hiding (id; module HomReasoning)
open HomReasoning
isoˡ′ = ⊥-id ((_,_ {C = C} {F} g′ refl) ∘FA !)
open Lambek public
|
{
"alphanum_fraction": 0.4769461078,
"avg_line_length": 23.5211267606,
"ext": "agda",
"hexsha": "ebc0d4d18abc7377c68a7f368b3fc1f41617d478",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Algebras.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Algebras.agda",
"max_line_length": 132,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Algebras.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1369,
"size": 3340
}
|
module Agda.Builtin.TrustMe where
open import Agda.Builtin.Equality
primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
|
{
"alphanum_fraction": 0.679389313,
"avg_line_length": 18.7142857143,
"ext": "agda",
"hexsha": "1108f9b0157647533cd2e652560ac394679564fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 47,
"size": 131
}
|
module Issue2649-1 where
module MyModule (A : Set) (a : A) where
foo : A
foo = a
|
{
"alphanum_fraction": 0.6206896552,
"avg_line_length": 12.4285714286,
"ext": "agda",
"hexsha": "be631e543dcf5d5104801dd01e22c5c4663517b1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/customised/Issue2649-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/customised/Issue2649-1.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/customised/Issue2649-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 33,
"size": 87
}
|
module Prelude.Semigroup where
open import Prelude.Function
open import Prelude.Maybe
open import Prelude.List
open import Prelude.Semiring
open import Prelude.Applicative
open import Prelude.Functor
open import Prelude.Equality
record Semigroup {a} (A : Set a) : Set a where
infixr 6 _<>_
field
_<>_ : A → A → A
open Semigroup {{...}} public
{-# DISPLAY Semigroup._<>_ _ a b = a <> b #-}
{-# DISPLAY Semigroup._<>_ _ = _<>_ #-}
record Semigroup/Laws {a} (A : Set a) : Set a where
field
{{super}} : Semigroup A
semigroup-assoc : (a b c : A) → (a <> b) <> c ≡ a <> (b <> c)
open Semigroup/Laws {{...}} public hiding (super)
instance
SemigroupList : ∀ {a} {A : Set a} → Semigroup (List A)
_<>_ {{SemigroupList}} = _++_
SemigroupFun : ∀ {a b} {A : Set a} {B : A → Set b} {{_ : ∀ {x} → Semigroup (B x)}} → Semigroup (∀ x → B x)
_<>_ {{SemigroupFun}} f g x = f x <> g x
SemigroupMaybe : ∀ {a} {A : Set a} → Semigroup (Maybe A)
_<>_ {{SemigroupMaybe}} nothing y = y
_<>_ {{SemigroupMaybe}} (just x) _ = just x
|
{
"alphanum_fraction": 0.6037914692,
"avg_line_length": 27.0512820513,
"ext": "agda",
"hexsha": "b51199989a09bac4a9eaa5ee7ba6568497c4bfe2",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Semigroup.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Semigroup.agda",
"max_line_length": 108,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 360,
"size": 1055
}
|
------------------------------------------------------------------------
-- Comparisons of different kinds of lenses, focusing on the
-- definition of composable record setters and getters
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
-- This module uses both dependent and non-dependent lenses, in order
-- to illustrate a problem with the non-dependent ones. It also uses
-- two kinds of dependent lenses, in order to illustrate a minor
-- problem with one of them.
module README.Record-getters-and-setters where
open import Equality.Propositional.Cubical
open import Prelude hiding (_∘_)
open import Bijection equality-with-J as Bij using (_↔_; module _↔_)
open import Equality.Decision-procedures equality-with-J
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J as F hiding (_∘_)
import Lens.Dependent
import Lens.Non-dependent.Higher equality-with-paths as Higher
------------------------------------------------------------------------
-- Dependent lenses with "remainder types" visible in the type
module Dependent₃ where
open Lens.Dependent
-- Nested records.
record R₁ (A : Set) : Set where
field
f : A → A
x : A
lemma : ∀ y → f y ≡ y
record R₂ : Set₁ where
field
A : Set
r₁ : R₁ A
-- Lenses for each of the three fields of R₁.
-- The x field is easiest, because it is independent of the others.
--
-- (Note that the from function is inferred automatically.)
x : {A : Set} →
Lens₃ (R₁ A) (∃ λ (f : A → A) → ∀ y → f y ≡ y) (λ _ → A)
x = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = λ r → (R₁.f r , R₁.lemma r) , R₁.x r
; from = _
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
})
-- The lemma field depends on the f field, so whenever the f field
-- is set the lemma field needs to be updated as well.
f : {A : Set} →
Lens₃ (R₁ A) A (λ _ → ∃ λ (f : A → A) → ∀ y → f y ≡ y)
f = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = λ r → R₁.x r , (R₁.f r , R₁.lemma r)
; from = _
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
})
-- The lemma field can be updated independently.
lemma : {A : Set} →
Lens₃ (R₁ A) (A × (A → A)) (λ r → ∀ y → proj₂ r y ≡ y)
lemma = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = λ r → (R₁.x r , R₁.f r) , R₁.lemma r
; from = _
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
})
-- Note that the type of the last lens may not be quite
-- satisfactory: the type of the lens does not guarantee that the
-- lemma applies to the input's f field. The following lemma may
-- provide some form of consolation:
consolation : {A : Set} (r : R₁ A) → ∀ y → R₁.f r y ≡ y
consolation = Lens₃.get lemma
-- Let us now construct lenses for the same fields, but accessed
-- through an R₂ record.
-- First we define lenses for the fields of R₂ (note that the A lens
-- does not seem to be very useful):
A : Lens₃ R₂ ⊤ (λ _ → R₂)
A = id₃
r₁ : Lens₃ R₂ Set R₁
r₁ = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = λ r → R₂.A r , R₂.r₁ r
; from = _
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
})
-- The lenses for the three R₁ fields can now be defined by
-- composition:
x₂ : Lens₃ R₂ _ (λ r → proj₁ r)
x₂ = x ₃∘₃ r₁
f₂ : Lens₃ R₂ _ (λ r → ∃ λ (f : proj₁ r → proj₁ r) → ∀ y → f y ≡ y)
f₂ = f ₃∘₃ r₁
lemma₂ : Lens₃ R₂ _ (λ r → ∀ y → proj₂ (proj₂ r) y ≡ y)
lemma₂ = lemma ₃∘₃ r₁
consolation₂ : (r : R₂) → ∀ y → proj₁ (Lens₃.get f₂ r) y ≡ y
consolation₂ = Lens₃.get lemma₂
------------------------------------------------------------------------
-- Dependent lenses without "remainder types" visible in the type
module Dependent where
open Lens.Dependent
open Dependent₃ using (R₁; module R₁; R₂; module R₂)
-- Lenses for each of the three fields of R₁.
x : {A : Set} → Lens (R₁ A) (λ _ → A)
x = Lens₃-to-Lens Dependent₃.x
f : {A : Set} → Lens (R₁ A) (λ _ → ∃ λ (f : A → A) → ∀ y → f y ≡ y)
f = Lens₃-to-Lens Dependent₃.f
lemma : {A : Set} → Lens (R₁ A) (λ r → ∀ y → R₁.f r y ≡ y)
lemma = Lens₃-to-Lens Dependent₃.lemma
-- Note that the type of lemma is now more satisfactory: the type of
-- the lens /does/ guarantee that the lemma applies to the input's f
-- field.
-- A lens for the r₁ field of R₂.
r₁ : Lens R₂ (λ r → R₁ (R₂.A r))
r₁ = Lens₃-to-Lens {-a = # 0-} Dependent₃.r₁
-- Lenses for the fields of R₁, accessed through an R₂ record. Note
-- the use of /forward/ composition.
x₂ : Lens R₂ (λ r → R₂.A r)
x₂ = r₁ ⨾ x
f₂ : Lens R₂ (λ r → ∃ λ (f : R₂.A r → R₂.A r) → ∀ y → f y ≡ y)
f₂ = r₁ ⨾ f
lemma₂ : Lens R₂ (λ r → ∀ y → R₁.f (R₂.r₁ r) y ≡ y)
lemma₂ = r₁ ⨾ lemma
------------------------------------------------------------------------
-- Non-dependent lenses
module Non-dependent where
open Higher
open Lens-combinators
-- Labels.
data Label : Set where
″f″ ″x″ ″lemma″ ″A″ ″r₁″ : Label
-- Labels come with decidable equality.
Label↔Fin : Label ↔ Fin 5
Label↔Fin = record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to∘from
}
; left-inverse-of = from∘to
}
where
to : Label → Fin 5
to ″f″ = fzero
to ″x″ = fsuc fzero
to ″lemma″ = fsuc (fsuc fzero)
to ″A″ = fsuc (fsuc (fsuc fzero))
to ″r₁″ = fsuc (fsuc (fsuc (fsuc fzero)))
from : Fin 5 → Label
from fzero = ″f″
from (fsuc fzero) = ″x″
from (fsuc (fsuc fzero)) = ″lemma″
from (fsuc (fsuc (fsuc fzero))) = ″A″
from (fsuc (fsuc (fsuc (fsuc fzero)))) = ″r₁″
from (fsuc (fsuc (fsuc (fsuc (fsuc ())))))
to∘from : ∀ i → to (from i) ≡ i
to∘from fzero = refl
to∘from (fsuc fzero) = refl
to∘from (fsuc (fsuc fzero)) = refl
to∘from (fsuc (fsuc (fsuc fzero))) = refl
to∘from (fsuc (fsuc (fsuc (fsuc fzero)))) = refl
to∘from (fsuc (fsuc (fsuc (fsuc (fsuc ())))))
from∘to : ∀ ℓ → from (to ℓ) ≡ ℓ
from∘to ″f″ = refl
from∘to ″x″ = refl
from∘to ″lemma″ = refl
from∘to ″A″ = refl
from∘to ″r₁″ = refl
_≟_ : Decidable-equality Label
_≟_ = Bij.decidable-equality-respects (inverse Label↔Fin) Fin._≟_
-- Records.
open import Records-with-with equality-with-J Label _≟_
-- Nested records (defined using the record language from Record, so
-- that we can use manifest fields).
R₁ : Set → Signature _
R₁ A = ∅ , ″f″ ∶ (λ _ → A → A)
, ″x″ ∶ (λ _ → A)
, ″lemma″ ∶ (λ r → ∀ y → (r · ″f″) y ≡ y)
R₂ : Signature _
R₂ = ∅ , ″A″ ∶ (λ _ → Set)
, ″r₁″ ∶ (λ r → ↑ _ (Record (R₁ (r · ″A″))))
-- Lenses for each of the three fields of R₁.
-- The x field is easiest, because it is independent of the others.
x : {A : Set} → Lens (Record (R₁ A)) A
x {A} = isomorphism-to-lens
(Record (R₁ A) ↝⟨ Record↔Recʳ ⟩
(∃ λ (f : A → A) → ∃ λ (x : A) → ∀ y → f y ≡ y) ↝⟨ ∃-comm ⟩
(A × ∃ λ (f : A → A) → ∀ y → f y ≡ y) ↝⟨ ×-comm ⟩□
(∃ λ (f : A → A) → ∀ y → f y ≡ y) × A □)
-- The lemma field depends on the f field, so whenever the f field
-- is set the lemma field needs to be updated as well.
f : {A : Set} →
Lens (Record (R₁ A))
(Record (∅ , ″f″ ∶ (λ _ → A → A)
, ″lemma″ ∶ (λ r → ∀ x → (r · ″f″) x ≡ x)))
f {A} = isomorphism-to-lens
(Record (R₁ A) ↝⟨ Record↔Recʳ ⟩
(∃ λ (f : A → A) → ∃ λ (x : A) → ∀ y → f y ≡ y) ↝⟨ ∃-comm ⟩
A × (∃ λ (f : A → A) → ∀ y → f y ≡ y) ↝⟨ F.id ×-cong inverse Record↔Recʳ ⟩□
A × Record _ □)
-- The lemma field can be updated independently. Note the use of a
-- manifest field in the type of the lens to capture the dependency
-- between the two lens parameters.
lemma : {A : Set} {f : A → A} →
Lens (Record (R₁ A With ″f″ ≔ (λ _ → f)))
(∀ x → f x ≡ x)
lemma {A} {f} = isomorphism-to-lens
(Record (R₁ A With ″f″ ≔ (λ _ → f)) ↝⟨ Record↔Recʳ ⟩□
A × (∀ x → f x ≡ x) □)
-- The use of a manifest field is problematic, because the domain of
-- the lens is no longer Record (R₁ A). It is easy to convert
-- records into the required form, but this conversion is not a
-- non-dependent lens (due to the dependency).
convert : {A : Set} (r : Record (R₁ A)) →
Record (R₁ A With ″f″ ≔ (λ _ → r · ″f″))
convert (rec (rec (rec (_ , f) , x) , lemma)) =
rec (rec (_ , x) , lemma)
-- Let us now try to construct lenses for the same fields, but
-- accessed through an R₂ record.
-- First we define a lens for the r₁ field.
r₁ : {A : Set} →
Lens (Record (R₂ With ″A″ ≔ λ _ → A)) (Record (R₁ A))
r₁ {A} = isomorphism-to-lens
(Record (R₂ With ″A″ ≔ λ _ → A) ↝⟨ Record↔Recʳ ⟩
↑ _ (Record (R₁ A)) ↝⟨ Bij.↑↔ ⟩
Record (R₁ A) ↝⟨ inverse ×-left-identity ⟩
⊤ × Record (R₁ A) ↝⟨ inverse Bij.↑↔ ×-cong F.id ⟩□
↑ _ ⊤ × Record (R₁ A) □)
-- It is now easy to construct lenses for the embedded x and f
-- fields using composition of lenses.
x₂ : {A : Set} →
Lens (Record (R₂ With ″A″ ≔ λ _ → A)) A
x₂ = ⟨ _ , _ ⟩ x ∘ r₁
f₂ : {A : Set} →
Lens (Record (R₂ With ″A″ ≔ λ _ → A))
(Record (∅ , ″f″ ∶ (λ _ → A → A)
, ″lemma″ ∶ (λ r → ∀ x → (r · ″f″) x ≡ x)))
f₂ = ⟨ _ , _ ⟩ f ∘ r₁
-- It is less obvious how to construct the corresponding lens for
-- the embedded lemma field.
module Lemma-lens
(r₁₂ : {A : Set} {r : Record (R₁ A)} →
Lens (Record (R₂ With ″A″ ≔ (λ _ → A)
With ″r₁″ ≔ (λ _ → lift r)))
(Record (R₁ A With ″f″ ≔ (λ _ → r · ″f″)))) where
-- To start with, what should the type of the lemma lens be? The
-- type used below is an obvious choice.
lemma₂ : {A : Set} {r : Record (R₁ A)} →
Lens (Record (R₂ With ″A″ ≔ (λ _ → A)
With ″r₁″ ≔ (λ _ → lift r)))
(∀ x → (r · ″f″) x ≡ x)
-- If we can construct a suitable lens r₁₂, with the type
-- signature given above, then we can define the lemma lens using
-- composition.
lemma₂ = ⟨ _ , _ ⟩ lemma ∘ r₁₂
-- However, we cannot define r₁₂.
not-r₁₂ : ⊥
not-r₁₂ = no-isomorphism isomorphism
where
open Lens
isomorphisms : ∀ _ _ → _
isomorphisms = λ A r →
⊤ ↝⟨ inverse Bij.↑↔ ⟩
↑ _ ⊤ ↝⟨ inverse Record↔Recʳ ⟩
Record (R₂ With ″A″ ≔ (λ _ → A)
With ″r₁″ ≔ (λ _ → lift r)) ↔⟨ equiv r₁₂ ⟩
R r₁₂ × Record (R₁ A With ″f″ ≔ (λ _ → r · ″f″)) ↝⟨ F.id ×-cong Record↔Recʳ ⟩□
R r₁₂ × A × (∀ y → (r · ″f″) y ≡ y) □
isomorphism : ∃ λ (A : Set₁) → ⊤ ↔ A × Bool
isomorphism =
_ ,
(⊤ ↝⟨ isomorphisms Bool r ⟩
R r₁₂ × Bool × (∀ b → b ≡ b) ↝⟨ F.id ×-cong ×-comm ⟩
R r₁₂ × (∀ b → b ≡ b) × Bool ↝⟨ ×-assoc ⟩□
(R r₁₂ × (∀ b → b ≡ b)) × Bool □)
where
r : Record (R₁ Bool)
r = rec (rec (rec (_ , F.id) , true) , λ _ → refl)
no-isomorphism : ¬ ∃ λ (A : Set₁) → ⊤ ↔ A × Bool
no-isomorphism (A , iso) = Bool.true≢false (
true ≡⟨⟩
proj₂ (a , true) ≡⟨ cong proj₂ $ sym $ right-inverse-of (a , true) ⟩
proj₂ (to (from (a , true))) ≡⟨⟩
proj₂ (to (from (a , false))) ≡⟨ cong proj₂ $ right-inverse-of (a , false) ⟩
proj₂ (a , false) ≡⟨ refl ⟩∎
false ∎)
where
open _↔_ iso
a : A
a = proj₁ (to _)
-- Conclusion: The use of manifest fields limits the usefulness of
-- these lenses, because they do not compose as well as they do for
-- non-dependent records. Dependent lenses seem to be more useful.
|
{
"alphanum_fraction": 0.4936243448,
"avg_line_length": 31.9575,
"ext": "agda",
"hexsha": "3e130041098c2e40fba3fffbecd2c7c4640a2cf4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "README/Record-getters-and-setters.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "README/Record-getters-and-setters.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "README/Record-getters-and-setters.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4434,
"size": 12783
}
|
module Type.Category.ExtensionalFunctionsCategory{ℓ} where
open import Data
open import Functional
open import Function.Equals
open import Function.Equals.Proofs
open import Logic.Propositional
import Relator.Equals as Eq
open import Relator.Equals.Proofs.Equiv
open import Structure.Category
open import Structure.Categorical.Properties
open import Type
open import Type.Properties.Singleton
-- The set category but the equality on the morphisms/functions is pointwise/extensional.
typeExtensionalFnCategory : Category{Obj = Type{ℓ}}(_→ᶠ_) ⦃ [⊜]-equiv ⦃ [≡]-equiv ⦄ ⦄
Category._∘_ typeExtensionalFnCategory = _∘_
Category.id typeExtensionalFnCategory = id
Category.binaryOperator typeExtensionalFnCategory = [⊜][∘]-binaryOperator
Morphism.Associativity.proof (Category.associativity typeExtensionalFnCategory) {x = _} {_} {_} {x = f} {g} {h} = [⊜]-associativity {x = f}{y = g}{z = h}
Category.identity typeExtensionalFnCategory = [∧]-intro (Morphism.intro (Dependent.intro Eq.[≡]-intro)) (Morphism.intro (Dependent.intro Eq.[≡]-intro))
typeExtensionalFnCategoryObject : CategoryObject
typeExtensionalFnCategoryObject = intro typeExtensionalFnCategory
Empty-initialObject : Object.Initial{Obj = Type{ℓ}}(_→ᶠ_) ⦃ [⊜]-equiv ⦃ [≡]-equiv ⦄ ⦄ (Empty)
IsUnit.unit Empty-initialObject = empty
_⊜_.proof (IsUnit.uniqueness Empty-initialObject {f}) {}
Unit-terminalObject : Object.Terminal{Obj = Type{ℓ}}(_→ᶠ_) ⦃ [⊜]-equiv ⦃ [≡]-equiv ⦄ ⦄ (Unit)
IsUnit.unit Unit-terminalObject = const <>
_⊜_.proof (IsUnit.uniqueness Unit-terminalObject {f}) {_} = Eq.[≡]-intro
|
{
"alphanum_fraction": 0.7621483376,
"avg_line_length": 47.3939393939,
"ext": "agda",
"hexsha": "82fba45e0a7d8c3b0d17bcd5aa63dc7496256611",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Category/ExtensionalFunctionsCategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Category/ExtensionalFunctionsCategory.agda",
"max_line_length": 153,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Category/ExtensionalFunctionsCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 474,
"size": 1564
}
|
module Oscar.Data.Vec where
open import Data.Vec public
open import Oscar.Data.Nat
open import Oscar.Data.Equality
open import Data.Nat
map₂ : ∀ {a b} {A : Set a} {B : Set b} {m n}
→ ∀ {c} {C : Set c} (f : A → B → C)
→ Vec A m → Vec B n → Vec C (m * n)
map₂ f xs ys = map f xs ⊛* ys
open import Data.Fin
delete : ∀ {a n} {A : Set a} → Fin (suc n) → Vec A (suc n) → Vec A n
delete zero (x ∷ xs) = xs
delete {n = zero} (suc ()) _
delete {n = suc n} (suc i) (x ∷ xs) = x ∷ delete i xs
open import Function
open import Data.Product
tabulate⋆ : ∀ {n a} {A : Set a} → (F : Fin n → A) → ∃ λ (v : Vec A n) → ∀ (i : Fin n) → F i ∈ v
tabulate⋆ {zero} F = [] , (λ ())
tabulate⋆ {suc n} F = let v , t = tabulate⋆ (F ∘ suc) in F zero ∷ v , (λ { zero → here ; (suc i) → there (t i)})
|
{
"alphanum_fraction": 0.535,
"avg_line_length": 28.5714285714,
"ext": "agda",
"hexsha": "f9dc32eca4de0ecf39b5ee53b5ee033b7599a5d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Vec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Vec.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Vec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 326,
"size": 800
}
|
{-# OPTIONS --without-K #-}
module PiG where
import Level as L
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Data.Nat
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Binary
------------------------------------------------------------------------------
-- Reasoning about paths
pathInd : ∀ {u u'} → {A : Set u} →
(C : (x y : A) → (x ≡ y) → Set u') →
(c : (x : A) → C x x refl) →
((x y : A) (p : x ≡ y) → C x y p)
pathInd C c x .x refl = c x
trans' : {A : Set} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
trans' {A} {x} {y} {z} p q =
pathInd
(λ x y p → ((z : A) → (q : y ≡ z) → (x ≡ z)))
(pathInd (λ x z q → x ≡ z) (λ _ → refl))
x y p z q
ap : {A B : Set} {x y : A} → (f : A → B) → (x ≡ y) → (f x ≡ f y)
ap {A} {B} {x} {y} f p =
pathInd
(λ x y p → f x ≡ f y)
(λ x → refl)
x y p
ap× : {A B : Set} {x y : A} {z w : B} → (x ≡ y) → (z ≡ w) →
((x , z) ≡ (y , w))
ap× {A} {B} {x} {y} {z} {w} p₁ p₂ =
pathInd
(λ x y p₁ → ((z : B) (w : B) (p₂ : z ≡ w) → ((x , z) ≡ (y , w))))
(λ x → pathInd
(λ z w p₂ → ((x , z) ≡ (x , w)))
(λ z → refl))
x y p₁ z w p₂
transport : {A : Set} {x y : A} {P : A → Set} → (p : x ≡ y) → P x → P y
transport {A} {x} {y} {P} p =
pathInd
(λ x y p → (P x → P y))
(λ x → id)
x y p
------------------------------------------------------------------------------
-- Codes for our types
data B : Set where
-- no zero because we map types to POINTED SETS
ONE : B
PLUS : B → B → B
TIMES : B → B → B
HALF : B -- used to explore fractionals
{--
Now let's define groups/groupoids
The type 1/2 is modeled by the group { refl , loop }
where loop is self-inverse, i.e., loop . loop = refl
We always get refl, inverses, and associativity for free. We need to
explicitly add the new element 'loop' and the new equation
'loop . loop = refl'
--}
cut-path : {A : Set} → {x : A} → (f g : ( x ≡ x) → (x ≡ x)) → x ≡ x → Set
cut-path f g a = f a ≡ g a
record GroupoidVal : Set₁ where
constructor •[_,_,_,_,_,_]
field
∣_∣ : Set
• : ∣_∣
path : • ≡ • -- the additional path (loop)
-- truncate : trans' path path ≡ refl -- the equivalence used to truncate
-- truncate : (f : • ≡ • → • ≡ •) → (b : • ≡ •) → f b ≡ refl
path-rel₁ : • ≡ • → • ≡ •
path-rel₂ : • ≡ • → • ≡ •
truncate : cut-path path-rel₁ path-rel₂ path
open GroupoidVal public
-- Example:
const-loop : {A : Set} {x : A} → (y : x ≡ x) → x ≡ x
const-loop _ = refl
postulate iloop : tt ≡ tt
itruncate : (f : tt ≡ tt → tt ≡ tt) → cut-path f const-loop iloop
-- (trans' iloop iloop) ≡ refl
2loop : {A : Set} → {x : A} → x ≡ x → x ≡ x
2loop x = trans' x x
half : GroupoidVal
half = •[ ⊤ , tt , iloop , 2loop , const-loop , itruncate 2loop ]
-- Interpretations of types
⟦_⟧ : B → GroupoidVal
⟦ ONE ⟧ = •[ ⊤ , tt , refl , id , id , refl ]
⟦ PLUS b₁ b₂ ⟧ with ⟦ b₁ ⟧ | ⟦ b₂ ⟧
... | •[ B₁ , x₁ , p₁ , f₁ , g₁ , t₁ ] | •[ B₂ , x₂ , p₂ , f₂ , g₂ , t₂ ] =
•[ B₁ ⊎ B₂ , inj₁ x₁ , ap inj₁ p₁ , id , id , refl ]
⟦ TIMES b₁ b₂ ⟧ with ⟦ b₁ ⟧ | ⟦ b₂ ⟧
... | •[ B₁ , x₁ , p₁ , f₁ , g₁ , t₁ ] | •[ B₂ , x₂ , p₂ , f₂ , g₂ , t₂ ] =
•[ B₁ × B₂ , (x₁ , x₂) , ap× p₁ p₂ , id , id , refl ]
⟦ HALF ⟧ = half
-- Combinators
data _⟷_ : B → B → Set₁ where
swap× : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
record GFunctor (G₁ G₂ : GroupoidVal) : Set where
field
fun : ∣ G₁ ∣ → ∣ G₂ ∣
baseP : fun (• G₁) ≡ (• G₂)
-- dependent paths??
isoP : {x y : ∣ G₁ ∣} (p : x ≡ y) → (fun x ≡ fun y)
eval : {b₁ b₂ : B} → (b₁ ⟷ b₂) → GFunctor ⟦ b₁ ⟧ ⟦ b₂ ⟧
eval swap× =
record {
fun = swap;
baseP = refl;
isoP = λ p → ap swap p
}
------------------------------------------------------------------------------
{-
Some old scribblings
A-2 : Set
A-2 = ⊤
postulate
S⁰ : Set
S¹ : Set
record Trunc-1 (A : Set) : Set where
field
embed : A → Trunc-1 A
hub : (r : S⁰ → Trunc-1 A) → Trunc-1 A
spoke : (r : S⁰ → Trunc-1 A) → (x : S⁰) → r x ≡ hub r
-}
--------------------
record 2Groupoid : Set₁ where
constructor ²[_,_,_]
field
obj : Set
hom : Rel obj L.zero -- paths (loop)
2path : ∀ {a b} → hom a b → hom a b → Set -- 2paths, i.e. path eqns
open 2Groupoid public
hom⊤ : Rel ⊤ L.zero
hom⊤ = _≡_
2path⊤ : Rel (hom⊤ tt tt) L.zero
2path⊤ = _≡_
half' : 2Groupoid
half' = ²[ ⊤ , hom⊤ , 2path⊤ ]
|
{
"alphanum_fraction": 0.4434561626,
"avg_line_length": 26.2333333333,
"ext": "agda",
"hexsha": "7e6281c0965cd8b17efa592abbe1101351f9a784",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "PiG.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "PiG.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "PiG.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1864,
"size": 4722
}
|
module free-vars where
open import cedille-types
open import syntax-util
open import general-util
open import type-util
infixr 7 _++ₛ_
_++ₛ_ : stringset → stringset → stringset
s₁ ++ₛ s₂ = stringset-insert* s₂ (stringset-strings s₁)
stringset-single : string → stringset
stringset-single = flip trie-single triv
{-# TERMINATING #-}
free-vars : ∀ {ed} → ⟦ ed ⟧ → stringset
free-vars? : ∀ {ed} → maybe ⟦ ed ⟧ → stringset
free-vars-args : args → stringset
free-vars-arg : arg → stringset
free-vars-cases : cases → stringset
free-vars-case : case → stringset
free-vars-tk : tpkd → stringset
free-vars-tT : tmtp → stringset
free-vars-tk = free-vars -tk'_
free-vars-tT = free-vars -tT'_
free-vars? = maybe-else empty-stringset free-vars
free-vars {TERM} (App t t') = free-vars t ++ₛ free-vars t'
free-vars {TERM} (AppE t tT) = free-vars t ++ₛ free-vars -tT' tT
free-vars {TERM} (Beta t t') = free-vars t ++ₛ free-vars t'
free-vars {TERM} (Delta b? T t) = free-vars? (fst <$> b?) ++ₛ free-vars? (snd <$> b?) ++ₛ free-vars T ++ₛ free-vars t
free-vars {TERM} (Hole pi) = empty-stringset
free-vars {TERM} (IotaPair t t' x T) = free-vars t ++ₛ free-vars t' ++ₛ stringset-remove (free-vars T) x
free-vars {TERM} (IotaProj t n) = free-vars t
free-vars {TERM} (Lam me x tk t) = maybe-else empty-stringset (free-vars-tk) tk ++ₛ stringset-remove (free-vars t) x
free-vars {TERM} (LetTm me x T? t t') = free-vars? T? ++ₛ free-vars t ++ₛ stringset-remove (free-vars t') x
free-vars {TERM} (LetTp x k T t) = free-vars k ++ₛ free-vars T ++ₛ stringset-remove (free-vars t) x
free-vars {TERM} (Phi tₑ t₁ t₂) = free-vars tₑ ++ₛ free-vars t₁ ++ₛ free-vars t₂
free-vars {TERM} (Rho t x T t') = free-vars t ++ₛ stringset-remove (free-vars T) x ++ₛ free-vars t'
free-vars {TERM} (Sigma t) = free-vars t
free-vars {TERM} (Mu μ t T t~ cs) = free-vars t ++ₛ free-vars? T ++ₛ free-vars-cases cs
free-vars {TERM} (Var x) = stringset-single x
free-vars {TYPE} (TpAbs me x tk T) = free-vars-tk tk ++ₛ stringset-remove (free-vars T) x
free-vars {TYPE} (TpIota x T₁ T₂) = free-vars T₁ ++ₛ stringset-remove (free-vars T₂) x
free-vars {TYPE} (TpApp T tT) = free-vars T ++ₛ free-vars -tT' tT
free-vars {TYPE} (TpEq t₁ t₂) = free-vars t₁ ++ₛ free-vars t₂
free-vars {TYPE} (TpHole pi) = empty-stringset
free-vars {TYPE} (TpLam x tk T) = free-vars-tk tk ++ₛ stringset-remove (free-vars T) x
free-vars {TYPE} (TpVar x) = stringset-single x
free-vars {KIND} KdStar = empty-stringset
free-vars {KIND} (KdHole pi) = empty-stringset
free-vars {KIND} (KdAbs x tk k) = free-vars-tk tk ++ₛ stringset-remove (free-vars k) x
free-vars-arg (Arg t) = free-vars t
free-vars-arg (ArgE tT) = free-vars -tT' tT
free-vars-args = foldr (_++ₛ_ ∘ free-vars-arg) empty-stringset
free-vars-case (Case x cas t T) = foldr (λ {(CaseArg e x tk) → flip trie-remove x}) (free-vars t) cas
free-vars-cases = foldr (_++ₛ_ ∘ free-vars-case) empty-stringset
{-# TERMINATING #-}
erase : ∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧
erase-cases : cases → cases
erase-case : case → case
erase-args : args → 𝕃 term
erase-params : params → 𝕃 var
erase-tk : tpkd → tpkd
erase-tT : tmtp → tmtp
erase-is-mu : is-mu → is-mu
erase-is-mu = either-else (λ _ → inj₁ nothing) inj₂
erase-tk = erase -tk_
erase-tT = erase -tT_
erase {TERM} (App t t') = App (erase t) (erase t')
erase {TERM} (AppE t T) = erase t
erase {TERM} (Beta t t') = erase t'
erase {TERM} (Delta b? T t) = id-term
erase {TERM} (Hole pi) = Hole pi
erase {TERM} (IotaPair t t' x T) = erase t
erase {TERM} (IotaProj t n) = erase t
erase {TERM} (Lam me x tk t) = if me then erase t else Lam ff x nothing (erase t)
erase {TERM} (LetTm me x T? t t') =
let t'' = erase t' in
if ~ me && stringset-contains (free-vars t'') x
then LetTm ff x nothing (erase t) t''
else t''
erase {TERM} (LetTp x k T t) = erase t
erase {TERM} (Phi tₑ t₁ t₂) = erase t₂
erase {TERM} (Rho t x T t') = erase t'
erase {TERM} (Sigma t) = erase t
erase {TERM} (Mu μ t T t~ ms) = Mu (erase-is-mu μ) (erase t) nothing t~ (erase-cases ms)
erase {TERM} (Var x) = Var x
erase {TYPE} (TpAbs me x tk T) = TpAbs me x (erase-tk tk) (erase T)
erase {TYPE} (TpIota x T₁ T₂) = TpIota x (erase T₁) (erase T₂)
erase {TYPE} (TpApp T tT) = TpApp (erase T) (erase -tT tT)
erase {TYPE} (TpEq t₁ t₂) = TpEq (erase t₁) (erase t₂)
erase {TYPE} (TpHole pi) = TpHole pi
erase {TYPE} (TpLam x tk T) = TpLam x (erase-tk tk) (erase T)
erase {TYPE} (TpVar x) = TpVar x
erase {KIND} KdStar = KdStar
erase {KIND} (KdHole pi) = KdHole pi
erase {KIND} (KdAbs x tk k) = KdAbs x (erase-tk tk) (erase k)
erase-case-args : case-args → case-args
erase-case-args (CaseArg ff x _ :: cas) = CaseArg ff x nothing :: erase-case-args cas
erase-case-args (_ :: cas) = erase-case-args cas
erase-case-args [] = []
erase-cases = map erase-case
erase-case (Case x cas t T) = Case x (erase-case-args cas) (erase t) T
erase-args (Arg t :: as) = erase t :: erase-args as
erase-args (_ :: as) = erase-args as
erase-args [] = []
erase-arg-keep : arg → arg
erase-args-keep : args → args
erase-args-keep = map erase-arg-keep
erase-arg-keep (Arg t) = Arg (erase t)
erase-arg-keep (ArgE tT) = ArgE (erase -tT tT)
erase-params (Param ff x (Tkt T) :: ps) = x :: erase-params ps
erase-params (_ :: ps) = erase-params ps
erase-params [] = []
free-vars-erased : ∀ {ed} → ⟦ ed ⟧ → stringset
free-vars-erased = free-vars ∘ erase
is-free-in : ∀ {ed} → var → ⟦ ed ⟧ → 𝔹
is-free-in x t = stringset-contains (free-vars t) x
are-free-in-h : ∀ {X} → trie X → stringset → 𝔹
are-free-in-h xs fxs = list-any (trie-contains fxs) (map fst (trie-mappings xs))
are-free-in : ∀ {X} {ed} → trie X → ⟦ ed ⟧ → 𝔹
are-free-in xs t = are-free-in-h xs (free-vars t)
erase-if : ∀ {ed} → 𝔹 → ⟦ ed ⟧ → ⟦ ed ⟧
erase-if tt = erase
erase-if ff = id
infix 5 `|_|`
`|_|` = erase
|
{
"alphanum_fraction": 0.6494432846,
"avg_line_length": 39.3698630137,
"ext": "agda",
"hexsha": "512b23e6fb0ab9d02e75882af4918e88ee7d645b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/free-vars.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/free-vars.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/free-vars.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2146,
"size": 5748
}
|
-- Reported and fixed by Andrea Vezzosi.
module Issue902 where
module M (A : Set) where
postulate
A : Set
F : Set -> Set
test : A
test = {! let module m = M (F A) in ? !}
-- C-c C-r gives let module m = M F A in ?
-- instead of let module m = M (F A) in ?
|
{
"alphanum_fraction": 0.5873605948,
"avg_line_length": 17.9333333333,
"ext": "agda",
"hexsha": "e7b0db7c520cc191f1148dfc88bd59a8ced65097",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue902.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue902.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue902.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 269
}
|
-- Andreas, 2013-06-15 reported by Guillaume Brunerie
-- {-# OPTIONS -v malonzo.definition:100 #-}
module Issue867 where
{- The program below gives the following error when trying to compile it (using MAlonzo)
$ agda -c Test.agda
Checking Test (/tmp/Test.agda).
Finished Test.
Compiling Test in /tmp/Test.agdai to /tmp/MAlonzo/Code/Test.hs
Calling: ghc -O -o /tmp/Test -Werror -i/tmp -main-is MAlonzo.Code.Test /tmp/MAlonzo/Code/Test.hs --make -fwarn-incomplete-patterns -fno-warn-overlapping-patterns
[1 of 2] Compiling MAlonzo.RTE ( MAlonzo/RTE.hs, MAlonzo/RTE.o )
[2 of 2] Compiling MAlonzo.Code.Test ( /tmp/MAlonzo/Code/Test.hs, /tmp/MAlonzo/Code/Test.o )
Compilation error:
/tmp/MAlonzo/Code/Test.hs:21:35:
Not in scope: `d5'
Perhaps you meant one of these:
`d1' (line 11), `d4' (line 26), `d9' (line 29)
-}
-- Here is the program
module Test where
data ℕ : Set where
O : ℕ
S : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
postulate
IO : ∀ {i} → Set i → Set i
return : ∀ {i} {A : Set i} → A → IO A
{-# BUILTIN IO IO #-}
main : IO ℕ
main = return (S 1)
{- It’s the first time I try to compile an Agda program, so presumably I’m doing something wrong. But even if I’m doing something wrong, Agda should be the one giving the error, not ghc. -}
-- Should work now.
|
{
"alphanum_fraction": 0.6774691358,
"avg_line_length": 27.5744680851,
"ext": "agda",
"hexsha": "9cbfb417bc2632537c1d2e7be9e12810b03f8ed8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue867.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue867.agda",
"max_line_length": 189,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue867.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 428,
"size": 1296
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Limits.Pullback where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.PropositionalTruncation.Base
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Cospan
private
variable
ℓ ℓ' : Level
module _ (C : Category ℓ ℓ') where
open Category C
open Functor
record Cospan : Type (ℓ-max ℓ ℓ') where
constructor cospan
field
l m r : ob
s₁ : C [ l , m ]
s₂ : C [ r , m ]
open Cospan
isPullback : (cspn : Cospan) →
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → Type (ℓ-max ℓ ℓ')
isPullback cspn {c} p₁ p₂ H =
∀ {d} (h : C [ d , cspn .l ]) (k : C [ d , cspn .r ])
(H' : h ⋆ cspn .s₁ ≡ k ⋆ cspn .s₂)
→ ∃![ hk ∈ C [ d , c ] ] (h ≡ hk ⋆ p₁) × (k ≡ hk ⋆ p₂)
isPropIsPullback : (cspn : Cospan) →
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → isProp (isPullback cspn p₁ p₂ H)
isPropIsPullback cspn p₁ p₂ H =
isPropImplicitΠ (λ x → isPropΠ3 λ h k H' → isPropIsContr)
record Pullback (cspn : Cospan) : Type (ℓ-max ℓ ℓ') where
field
pbOb : ob
pbPr₁ : C [ pbOb , cspn .l ]
pbPr₂ : C [ pbOb , cspn .r ]
pbCommutes : pbPr₁ ⋆ cspn .s₁ ≡ pbPr₂ ⋆ cspn .s₂
univProp : isPullback cspn pbPr₁ pbPr₂ pbCommutes
open Pullback
pullbackArrow :
{cspn : Cospan} (pb : Pullback cspn)
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → C [ c , pb . pbOb ]
pullbackArrow pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .fst
pullbackArrowPr₁ :
{cspn : Cospan} (pb : Pullback cspn)
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) →
p₁ ≡ pullbackArrow pb p₁ p₂ H ⋆ pbPr₁ pb
pullbackArrowPr₁ pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .snd .fst
pullbackArrowPr₂ :
{cspn : Cospan} (pb : Pullback cspn)
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) →
p₂ ≡ pullbackArrow pb p₁ p₂ H ⋆ pbPr₂ pb
pullbackArrowPr₂ pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .snd .snd
pullbackArrowUnique :
{cspn : Cospan} (pb : Pullback cspn)
{c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ])
(H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂)
(pbArrow' : C [ c , pb .pbOb ])
(H₁ : p₁ ≡ pbArrow' ⋆ pbPr₁ pb) (H₂ : p₂ ≡ pbArrow' ⋆ pbPr₂ pb)
→ pullbackArrow pb p₁ p₂ H ≡ pbArrow'
pullbackArrowUnique pb p₁ p₂ H pbArrow' H₁ H₂ =
cong fst (pb .univProp p₁ p₂ H .snd (pbArrow' , (H₁ , H₂)))
Pullbacks : Type (ℓ-max ℓ ℓ')
Pullbacks = (cspn : Cospan) → Pullback cspn
hasPullbacks : Type (ℓ-max ℓ ℓ')
hasPullbacks = ∥ Pullbacks ∥
-- TODO: finish the following show that this definition of Pullback
-- is equivalent to the Cospan limit
module _ {C : Category ℓ ℓ'} where
open Category C
open Functor
Cospan→Func : Cospan C → Functor CospanCat C
Cospan→Func (cospan l m r f g) .F-ob ⓪ = l
Cospan→Func (cospan l m r f g) .F-ob ① = m
Cospan→Func (cospan l m r f g) .F-ob ② = r
Cospan→Func (cospan l m r f g) .F-hom {⓪} {①} k = f
Cospan→Func (cospan l m r f g) .F-hom {②} {①} k = g
Cospan→Func (cospan l m r f g) .F-hom {⓪} {⓪} k = id
Cospan→Func (cospan l m r f g) .F-hom {①} {①} k = id
Cospan→Func (cospan l m r f g) .F-hom {②} {②} k = id
Cospan→Func (cospan l m r f g) .F-id {⓪} = refl
Cospan→Func (cospan l m r f g) .F-id {①} = refl
Cospan→Func (cospan l m r f g) .F-id {②} = refl
Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {⓪} φ ψ = sym (⋆IdL _)
Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {①} φ ψ = sym (⋆IdL _)
Cospan→Func (cospan l m r f g) .F-seq {⓪} {①} {①} φ ψ = sym (⋆IdR _)
Cospan→Func (cospan l m r f g) .F-seq {①} {①} {①} φ ψ = sym (⋆IdL _)
Cospan→Func (cospan l m r f g) .F-seq {②} {②} {②} φ ψ = sym (⋆IdL _)
Cospan→Func (cospan l m r f g) .F-seq {②} {②} {①} φ ψ = sym (⋆IdL _)
Cospan→Func (cospan l m r f g) .F-seq {②} {①} {①} φ ψ = sym (⋆IdR _)
|
{
"alphanum_fraction": 0.5717008099,
"avg_line_length": 35.5762711864,
"ext": "agda",
"hexsha": "47c665c6711c8b3db70765c92a87f8c4f7011df9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Categories/Limits/Pullback.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Categories/Limits/Pullback.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Categories/Limits/Pullback.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1974,
"size": 4198
}
|
module Issue1839.B where
open import Issue1839.A
postulate
DontPrintThis : Set
{-# DISPLAY DontPrintThis = PrintThis #-}
|
{
"alphanum_fraction": 0.7480314961,
"avg_line_length": 12.7,
"ext": "agda",
"hexsha": "76f72cc737f3b4e2789a69b5d405e4b7317d1a9d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1839/B.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1839/B.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1839/B.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 34,
"size": 127
}
|
-- Andreas, 2019-04-12, issue #3684
-- Report also available record fields in case user gives spurious fields.
-- {-# OPTIONS -v tc.record:30 #-}
record R : Set₁ where
field
foo {boo} moo : Set
test : (A : Set) → R
test A = record
{ moo = A
; bar = A
; far = A
}
-- The record type R does not have the fields bar, far but it would
-- have the fields foo, boo
-- when checking that the expression
-- record { moo = A ; bar = A ; far = A } has type R
|
{
"alphanum_fraction": 0.6231263383,
"avg_line_length": 22.2380952381,
"ext": "agda",
"hexsha": "8381fc3b8d17a9ccf98e976bdfe39de0129a151d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3684.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Issue3684.agda",
"max_line_length": 74,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Issue3684.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 146,
"size": 467
}
|
{-# OPTIONS --cubical --safe #-}
module Data.List.Relation.Unary where
open import Prelude
open import Data.List.Base
open import Data.Fin
open import Relation.Nullary
open import Data.Sum
private
variable p : Level
module Inductive◇ where
data ◇ {A : Type a} (P : A → Type p) : List A → Type (a ℓ⊔ p) where
here : ∀ {x xs} → P x → ◇ P (x ∷ xs)
there : ∀ {x xs} → ◇ P xs → ◇ P (x ∷ xs)
◇ : (P : A → Type p) → List A → Type _
◇ P xs = ∃[ i ] P (xs ! i)
◇! : (P : A → Type p) → List A → Type _
◇! P xs = isContr (◇ P xs)
module Exists {a} {A : Type a} {p} (P : A → Type p) where
push : ∀ {x xs} → ◇ P xs → ◇ P (x ∷ xs)
push (n , p) = fs n , p
pull : ∀ {x xs} → ¬ P x → ◇ P (x ∷ xs) → ◇ P xs
pull ¬Px (f0 , p) = ⊥-elim (¬Px p)
pull ¬Px (fs n , p) = n , p
uncons : ∀ {x xs} → ◇ P (x ∷ xs) → P x ⊎ ◇ P xs
uncons (f0 , p) = inl p
uncons (fs x , p) = inr (x , p)
infixr 5 _++◇_ _◇++_
_++◇_ : ∀ {xs} ys → ◇ P xs → ◇ P (ys ++ xs)
[] ++◇ ys = ys
(x ∷ xs) ++◇ ys = push (xs ++◇ ys)
_◇++_ : ∀ xs → ◇ P xs → ∀ {ys} → ◇ P (xs ++ ys)
_◇++_ (x ∷ xs) (f0 , ∃Pxs) = f0 , ∃Pxs
_◇++_ (x ∷ xs) (fs n , ∃Pxs) = push (xs ◇++ (n , ∃Pxs))
push! : ∀ {x xs} → ¬ P x → ◇! P xs → ◇! P (x ∷ xs)
push! ¬Px x∈!xs .fst = push (x∈!xs .fst)
push! ¬Px x∈!xs .snd (f0 , px) = ⊥-elim (¬Px px)
push! ¬Px x∈!xs .snd (fs n , y∈xs) i = push (x∈!xs .snd (n , y∈xs) i)
pull! : ∀ {x xs} → ¬ P x → ◇! P (x ∷ xs) → ◇! P xs
pull! ¬Px ((f0 , px ) , uniq) = ⊥-elim (¬Px px)
pull! ¬Px ((fs n , x∈xs ) , uniq) .fst = (n , x∈xs)
pull! ¬Px ((fs n , x∈xs ) , uniq) .snd (m , x∈xs′) i =
pull ¬Px (uniq (fs m , x∈xs′ ) i)
here! : ∀ {x xs} → isContr (P x) → ¬ ◇ P xs → ◇! P (x ∷ xs)
here! Px p∉xs .fst = f0 , Px .fst
here! Px p∉xs .snd (f0 , p∈xs) i .fst = f0
here! Px p∉xs .snd (f0 , p∈xs) i .snd = Px .snd p∈xs i
here! Px p∉xs .snd (fs n , p∈xs) = ⊥-elim (p∉xs (n , p∈xs))
module _ (P? : ∀ x → Dec (P x)) where
open import Relation.Nullary.Decidable.Logic
◇? : ∀ xs → Dec (◇ P xs)
◇? [] = no λ ()
◇? (x ∷ xs) = ⟦yes ⟦l f0 ,_ ,r push ⟧ ,no uncons ⟧ (P? x || ◇? xs)
◻ : (P : A → Type p) → List A → Type _
◻ P xs = ∀ i → P (xs ! i)
module Forall {a} {A : Type a} {p} (P : A → Type p) where
push : ∀ {x xs} → P x → ◻ P xs → ◻ P (x ∷ xs)
push Px Pxs f0 = Px
push Px Pxs (fs n) = Pxs n
uncons : ∀ {x xs} → ◻ P (x ∷ xs) → P x × ◻ P xs
uncons Pxs = Pxs f0 , Pxs ∘ fs
pull : ∀ {x xs} → ◻ P (x ∷ xs) → ◻ P xs
pull = snd ∘ uncons
_++◇_ : ∀ xs {ys} → ◻ P (xs ++ ys) → ◻ P ys
[] ++◇ xs⊆P = xs⊆P
(x ∷ xs) ++◇ xs⊆P = xs ++◇ (xs⊆P ∘ fs)
_◇++_ : ∀ xs {ys} → ◻ P (xs ++ ys) → ◻ P xs
([] ◇++ xs⊆P) ()
((x ∷ xs) ◇++ xs⊆P) f0 = xs⊆P f0
((x ∷ xs) ◇++ xs⊆P) (fs n) = (xs ◇++ pull xs⊆P) n
both : ∀ xs {ys} → ◻ P xs → ◻ P ys → ◻ P (xs ++ ys)
both [] xs⊆P ys⊆P = ys⊆P
both (x ∷ xs) xs⊆P ys⊆P f0 = xs⊆P f0
both (x ∷ xs) xs⊆P ys⊆P (fs i) = both xs (pull xs⊆P) ys⊆P i
empty : ◻ P []
empty ()
module _ where
open import Relation.Nullary.Decidable.Logic
◻? : (∀ x → Dec (P x)) → ∀ xs → Dec (◻ P xs)
◻? P? [] = yes λ ()
◻? P? (x ∷ xs) = ⟦yes uncurry push
,no uncons
⟧ (P? x && ◻? P? xs)
module Forall-NotExists {a} {A : Type a} {p} (P : A → Type p) where
open import Relation.Nullary.Stable
open import Data.Empty.Properties
open Forall P
¬P = ¬_ ∘ P
module ∃¬ = Exists ¬P
∀⇒¬∃¬ : ∀ xs → ◻ P xs → ¬ (◇ ¬P xs)
∀⇒¬∃¬ (x ∷ xs) xs⊆P (f0 , ∃¬P∈xs) = ∃¬P∈xs(xs⊆P f0)
∀⇒¬∃¬ (x ∷ xs) xs⊆P (fs n , ∃¬P∈xs) = ∀⇒¬∃¬ xs (xs⊆P ∘ fs) (n , ∃¬P∈xs)
module _ (stable : ∀ {x} → Stable (P x)) where
¬∃¬⇒∀ : ∀ xs → ¬ (◇ ¬P xs) → ◻ P xs
¬∃¬⇒∀ (x ∷ xs) ¬∃¬P∈xs f0 = stable (¬∃¬P∈xs ∘ (f0 ,_))
¬∃¬⇒∀ (x ∷ xs) ¬∃¬P∈xs (fs n) = ¬∃¬⇒∀ xs (¬∃¬P∈xs ∘ ∃¬.push) n
leftInv′ : ∀ (prop : ∀ {x} → isProp (P x)) xs → (x : ◻ P xs) → ¬∃¬⇒∀ xs (∀⇒¬∃¬ xs x) ≡ x
leftInv′ prop [] x i ()
leftInv′ prop (x ∷ xs) xs⊆P i f0 = prop (stable λ ¬p → ¬p (xs⊆P f0)) (xs⊆P f0) i
leftInv′ prop (x ∷ xs) xs⊆P i (fs n) = leftInv′ prop xs (pull xs⊆P) i n
∀⇔¬∃¬ : ∀ (prop : ∀ {x} → isProp (P x)) xs → ◻ P xs ⇔ (¬ ◇ ¬P xs)
∀⇔¬∃¬ _ xs .fun = ∀⇒¬∃¬ xs
∀⇔¬∃¬ _ xs .inv = ¬∃¬⇒∀ xs
∀⇔¬∃¬ p xs .leftInv = leftInv′ p xs
∀⇔¬∃¬ _ xs .rightInv x = isProp¬ _ _ x
module Exists-NotForall {a} {A : Type a} {p} (P : A → Type p) where
open Exists P
¬P = ¬_ ∘ P
module ∀¬ = Forall ¬P
∃⇒¬∀¬ : ∀ xs → ◇ P xs → ¬ ◻ ¬P xs
∃⇒¬∀¬ (x ∷ xs) (f0 , P∈xs) xs⊆P = xs⊆P f0 P∈xs
∃⇒¬∀¬ (x ∷ xs) (fs n , P∈xs) xs⊆P = ∃⇒¬∀¬ xs (n , P∈xs) (xs⊆P ∘ fs)
module _ (P? : ∀ x → Dec (P x)) where
¬∀¬⇒∃ : ∀ xs → ¬ ◻ ¬P xs → ◇ P xs
¬∀¬⇒∃ [] ¬xs⊆¬P = ⊥-elim (¬xs⊆¬P λ ())
¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P with P? x
¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P | yes p = f0 , p
¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P | no ¬p = push (¬∀¬⇒∃ xs (¬xs⊆¬P ∘ ∀¬.push ¬p))
module Congruence {p q} (P : A → Type p) (Q : B → Type q)
{f : A → B} (f↑ : ∀ {x} → P x → Q (f x)) where
cong-◇ : ∀ xs → ◇ P xs → ◇ Q (map f xs)
cong-◇ (x ∷ xs) (f0 , P∈xs) = f0 , f↑ P∈xs
cong-◇ (x ∷ xs) (fs n , P∈xs) = Exists.push Q (cong-◇ xs (n , P∈xs))
◇-concat : ∀ (P : A → Type p) xs → ◇ (◇ P) xs → ◇ P (concat xs)
◇-concat P (x ∷ xs) (f0 , ps) = Exists._◇++_ P x ps
◇-concat P (x ∷ xs) (fs n , ps) = Exists._++◇_ P x (◇-concat P xs (n , ps))
◻-concat : ∀ (P : A → Type p) xs → ◻ (◻ P) xs → ◻ P (concat xs)
◻-concat P [] xs⊆P ()
◻-concat P (x ∷ xs) xs⊆P = Forall.both P x (xs⊆P f0) (◻-concat P xs (xs⊆P ∘ fs))
module Search {A : Type a} where
data Result {p} (P : A → Type p) (xs : List A) : Bool → Type (a ℓ⊔ p) where
all′ : ◻ P xs → Result P xs true
except′ : ◇ (¬_ ∘ P) xs → Result P xs false
record Found {p} (P : A → Type p) (xs : List A) : Type (a ℓ⊔ p) where
field
found? : Bool
result : Result P xs found?
open Found public
pattern all ps = record { found? = true ; result = all′ ps }
pattern except ¬p = record { found? = false ; result = except′ ¬p }
module _ {p} {P : A → Type p} (P? : ∀ x → Dec (P x)) where
search : ∀ xs → Found P xs
search [] = all λ ()
search (x ∷ xs) = search′ x xs (P? x) (search xs)
where
search′ : ∀ x xs → Dec (P x) → Found P xs → Found P (x ∷ xs)
search′ x xs Px Pxs .found? = Px .does and Pxs .found?
search′ x xs (no ¬p) Pxs .result = except′ (f0 , ¬p)
search′ x xs (yes p) (except ¬p) .result = except′ (Exists.push (¬_ ∘ P) ¬p)
search′ x xs (yes p) (all ps) .result = all′ (Forall.push P p ps)
|
{
"alphanum_fraction": 0.4440195779,
"avg_line_length": 34.2303664921,
"ext": "agda",
"hexsha": "2194e050743f459faff1cd91cb1b9e4836417dee",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/List/Relation/Unary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/List/Relation/Unary.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/List/Relation/Unary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 3363,
"size": 6538
}
|
module Issue332 where
id : {A : Set} → A → A
id x = x
syntax id x = id x -- This makes parsing id x ambiguous
|
{
"alphanum_fraction": 0.6120689655,
"avg_line_length": 10.5454545455,
"ext": "agda",
"hexsha": "34c45ea53c53a159b7b0cfc3b6881733a27ee31b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue332.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue332.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue332.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 36,
"size": 116
}
|
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Naturals
open import Numbers.BinaryNaturals.Definition
open import Numbers.BinaryNaturals.Addition
open import Semirings.Definition
module Numbers.BinaryNaturals.Multiplication where
_*Binherit_ : BinNat → BinNat → BinNat
a *Binherit b = NToBinNat (binNatToN a *N binNatToN b)
_*B_ : BinNat → BinNat → BinNat
[] *B b = []
(zero :: a) *B b = zero :: (a *B b)
(one :: a) *B b = (zero :: (a *B b)) +B b
private
contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2
*BEmpty : (a : BinNat) → canonical (a *B []) ≡ []
*BEmpty [] = refl
*BEmpty (zero :: a) rewrite *BEmpty a = refl
*BEmpty (one :: a) rewrite *BEmpty a = refl
canonicalDistributesPlus : (a b : BinNat) → canonical (a +B b) ≡ canonical a +B canonical b
canonicalDistributesPlus a b = transitivity ans (+BIsInherited (canonical a) (canonical b) (canonicalIdempotent a) (canonicalIdempotent b))
where
ans : canonical (a +B b) ≡ NToBinNat (binNatToN (canonical a) +N binNatToN (canonical b))
ans rewrite binNatToNIsCanonical a | binNatToNIsCanonical b = equalityCommutative (+BIsInherited' a b)
incrPullsOut : (a b : BinNat) → incr (a +B b) ≡ (incr a) +B b
incrPullsOut [] [] = refl
incrPullsOut [] (zero :: b) = refl
incrPullsOut [] (one :: b) = refl
incrPullsOut (zero :: a) [] = refl
incrPullsOut (zero :: a) (zero :: b) = refl
incrPullsOut (zero :: a) (one :: b) = refl
incrPullsOut (one :: a) [] = refl
incrPullsOut (one :: a) (zero :: b) = applyEquality (zero ::_) (incrPullsOut a b)
incrPullsOut (one :: a) (one :: b) = applyEquality (one ::_) (incrPullsOut a b)
timesZero : (a b : BinNat) → canonical a ≡ [] → canonical (a *B b) ≡ []
timesZero [] b pr = refl
timesZero (zero :: a) b pr with inspect (canonical a)
timesZero (zero :: a) b pr | [] with≡ prA rewrite prA | timesZero a b prA = refl
timesZero (zero :: a) b pr | (a1 :: as) with≡ prA rewrite prA = exFalso (nonEmptyNotEmpty pr)
timesZero'' : (a b : BinNat) → canonical (a *B b) ≡ [] → (canonical a ≡ []) || (canonical b ≡ [])
timesZero'' [] b pr = inl refl
timesZero'' (x :: a) [] pr = inr refl
timesZero'' (zero :: as) (zero :: bs) pr with inspect (canonical as)
timesZero'' (zero :: as) (zero :: bs) pr | y with≡ x with inspect (canonical bs)
timesZero'' (zero :: as) (zero :: bs) pr | [] with≡ prAs | y₁ with≡ prBs rewrite prAs = inl refl
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | [] with≡ prBs rewrite prBs = inr refl
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (x :: y) with≡ prBs with inspect (canonical (as *B (zero :: bs)))
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' with timesZero'' as (zero :: bs) pr'
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' | inl x rewrite prAs | prBs | pr' | x = exFalso (nonEmptyNotEmpty x)
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' | inr x rewrite prBs | pr' | x = exFalso (nonEmptyNotEmpty x)
timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | (x :: y) with≡ pr' rewrite prAs | prBs | pr' = exFalso (nonEmptyNotEmpty pr)
timesZero'' (zero :: as) (one :: bs) pr with inspect (canonical as)
timesZero'' (zero :: as) (one :: bs) pr | [] with≡ x rewrite x = inl refl
timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x with inspect (canonical (as *B (one :: bs)))
timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | [] with≡ pr' with timesZero'' as (one :: bs) pr'
timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | [] with≡ pr' | inl pr'' rewrite x | pr' | pr'' = exFalso (nonEmptyNotEmpty pr'')
timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | (x₁ :: y) with≡ pr' rewrite x | pr' = exFalso (nonEmptyNotEmpty pr)
timesZero'' (one :: as) (zero :: bs) pr with inspect (canonical bs)
timesZero'' (one :: as) (zero :: bs) pr | [] with≡ x rewrite x = inr refl
timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB with inspect (canonical ((as *B (zero :: bs)) +B bs))
timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB | [] with≡ x rewrite equalityCommutative (+BIsInherited' (as *B (zero :: bs)) bs) = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prB) v))
where
t : binNatToN (as *B (zero :: bs)) +N binNatToN bs ≡ 0
t = transitivity (equalityCommutative (nToN _)) (applyEquality binNatToN x)
u : (binNatToN (as *B (zero :: bs)) ≡ 0) && (binNatToN bs ≡ 0)
u = sumZeroImpliesSummandsZero t
v : canonical bs ≡ []
v with u
... | fst ,, snd = binNatToNZero bs snd
timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB | (x₁ :: y) with≡ x rewrite prB | x = exFalso (nonEmptyNotEmpty pr)
lemma : {i : Bit} → (a b : BinNat) → canonical a ≡ canonical b → canonical (i :: a) ≡ canonical (i :: b)
lemma {zero} a b pr with inspect (canonical a)
lemma {zero} a b pr | [] with≡ x rewrite x | equalityCommutative pr = refl
lemma {zero} a b pr | (a1 :: as) with≡ x rewrite x | equalityCommutative pr = refl
lemma {one} a b pr = applyEquality (one ::_) pr
binNatToNDistributesPlus : (a b : BinNat) → binNatToN (a +B b) ≡ binNatToN a +N binNatToN b
binNatToNDistributesPlus a b = transitivity (equalityCommutative (binNatToNIsCanonical (a +B b))) (transitivity (applyEquality binNatToN (equalityCommutative (+BIsInherited' a b))) (nToN (binNatToN a +N binNatToN b)))
+BAssociative : (a b c : BinNat) → canonical (a +B (b +B c)) ≡ canonical ((a +B b) +B c)
+BAssociative a b c rewrite equalityCommutative (+BIsInherited' a (b +B c)) | equalityCommutative (+BIsInherited' (a +B b) c) | binNatToNDistributesPlus a b | binNatToNDistributesPlus b c | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN a) (binNatToN b) (binNatToN c)) = refl
timesOne : (a b : BinNat) → (canonical b) ≡ (one :: []) → canonical (a *B b) ≡ canonical a
timesOne [] b pr = refl
timesOne (zero :: a) b pr with inspect (canonical (a *B b))
timesOne (zero :: a) b pr | [] with≡ prAB with timesZero'' a b prAB
timesOne (zero :: a) b pr | [] with≡ prAB | inl a=0 rewrite a=0 | prAB = refl
timesOne (zero :: a) b pr | [] with≡ prAB | inr b=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr) b=0))
timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB with inspect (canonical a)
timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB | [] with≡ x = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prAB) (timesZero a b x)))
timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB | (x₁ :: y) with≡ x rewrite prAB | x | timesOne a b pr = applyEquality (zero ::_) (transitivity (equalityCommutative prAB) x)
timesOne (one :: a) (zero :: b) pr with canonical b
timesOne (one :: a) (zero :: b) () | []
timesOne (one :: a) (zero :: b) () | x :: bl
timesOne (one :: a) (one :: b) pr rewrite canonicalDistributesPlus (a *B (one :: b)) b | ::Inj pr | +BCommutative (canonical (a *B (one :: b))) [] | timesOne a (one :: b) pr = refl
timesZero' : (a b : BinNat) → canonical b ≡ [] → canonical (a *B b) ≡ []
timesZero' [] b pr = refl
timesZero' (zero :: a) b pr with inspect (canonical (a *B b))
timesZero' (zero :: a) b pr | [] with≡ x rewrite x = refl
timesZero' (zero :: a) b pr | (ab1 :: abs) with≡ prAB rewrite prAB = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prAB) (timesZero' a b pr)))
timesZero' (one :: a) b pr rewrite canonicalDistributesPlus (zero :: (a *B b)) b | pr | +BCommutative (canonical (zero :: (a *B b))) [] = ans
where
ans : canonical (zero :: (a *B b)) ≡ []
ans with inspect (canonical (a *B b))
ans | [] with≡ x rewrite x = refl
ans | (x₁ :: y) with≡ x rewrite x = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative x) (timesZero' a b pr)))
canonicalDistributesTimes : (a b : BinNat) → canonical (a *B b) ≡ canonical ((canonical a) *B (canonical b))
canonicalDistributesTimes [] b = refl
canonicalDistributesTimes (zero :: a) b with inspect (canonical a)
canonicalDistributesTimes (zero :: a) b | [] with≡ x rewrite timesZero a b x | x = refl
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA with inspect (canonical b)
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | [] with≡ prB rewrite prA | prB = ans
where
ans : canonical (zero :: (a *B b)) ≡ canonical (zero :: ((a1 :: as) *B []))
ans with inspect (canonical ((a1 :: as) *B []))
ans | [] with≡ x rewrite x | timesZero' a b prB = refl
ans | (x₁ :: y) with≡ x = exFalso (nonEmptyNotEmpty (equalityCommutative (transitivity (equalityCommutative (timesZero' (a1 :: as) [] refl)) x)))
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB with inspect (canonical (a *B b))
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x with timesZero'' a b x
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x | inl a=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prA) a=0))
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x | inr b=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prB) b=0))
canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | (ab1 :: abs) with≡ x rewrite prA | prB | x = ans
where
ans : zero :: ab1 :: abs ≡ canonical (zero :: ((a1 :: as) *B (b1 :: bs)))
ans rewrite equalityCommutative prA | equalityCommutative prB | equalityCommutative (canonicalDistributesTimes a b) | x = refl
canonicalDistributesTimes (one :: a) b = transitivity (canonicalDistributesPlus (zero :: (a *B b)) b) (transitivity (transitivity (applyEquality (_+B canonical b) (transitivity (equalityCommutative (canonicalAscends'' (a *B b))) (transitivity (applyEquality (λ i → canonical (zero :: i)) (canonicalDistributesTimes a b)) (canonicalAscends'' (canonical a *B canonical b))))) (applyEquality (λ i → canonical (zero :: (canonical a *B canonical b)) +B i) (canonicalIdempotent b))) (equalityCommutative (canonicalDistributesPlus (zero :: (canonical a *B canonical b)) (canonical b))))
NToBinNatDistributesPlus : (a b : ℕ) → NToBinNat (a +N b) ≡ NToBinNat a +B NToBinNat b
NToBinNatDistributesPlus zero b = refl
NToBinNatDistributesPlus (succ a) b with inspect (NToBinNat a)
... | bl with≡ prA with inspect (NToBinNat (a +N b))
... | q with≡ prAB = transitivity (applyEquality incr (NToBinNatDistributesPlus a b)) (incrPullsOut (NToBinNat a) (NToBinNat b))
timesCommutative : (a b : BinNat) → canonical (a *B b) ≡ canonical (b *B a)
timesCommLemma : (a b : BinNat) → canonical (zero :: (b *B a)) ≡ canonical (b *B (zero :: a))
timesCommLemma a b rewrite timesCommutative b (zero :: a) | equalityCommutative (canonicalAscends'' {zero} (b *B a)) | equalityCommutative (canonicalAscends'' {zero} (a *B b)) | timesCommutative b a = refl
timesCommutative [] b rewrite timesZero' b [] refl = refl
timesCommutative (x :: a) [] rewrite timesZero' (x :: a) [] refl = refl
timesCommutative (zero :: as) (zero :: b) rewrite equalityCommutative (canonicalAscends'' {zero} (as *B (zero :: b))) | timesCommutative as (zero :: b) | canonicalAscends'' {zero} (zero :: b *B as) | equalityCommutative (canonicalAscends'' {zero} (b *B (zero :: as))) | timesCommutative b (zero :: as) | canonicalAscends'' {zero} (zero :: (as *B b)) = ans
where
ans : canonical (zero :: zero :: (b *B as)) ≡ canonical (zero :: zero :: (as *B b))
ans rewrite equalityCommutative (canonicalAscends'' {zero} (zero :: (b *B as))) | equalityCommutative (canonicalAscends'' {zero} (b *B as)) | timesCommutative b as | canonicalAscends'' {zero} (as *B b) | canonicalAscends'' {zero} (zero :: (as *B b)) = refl
timesCommutative (zero :: as) (one :: b) = transitivity (equalityCommutative (canonicalAscends'' (as *B (one :: b)))) (transitivity (applyEquality (λ i → canonical (zero :: i)) (timesCommutative as (one :: b))) (transitivity (applyEquality (λ i → canonical (zero :: i)) ans) (canonicalAscends'' ((b *B (zero :: as)) +B as))))
where
ans : canonical ((zero :: (b *B as)) +B as) ≡ canonical ((b *B (zero :: as)) +B as)
ans rewrite canonicalDistributesPlus (zero :: (b *B as)) as | canonicalDistributesPlus (b *B (zero :: as)) as = applyEquality (_+B canonical as) (timesCommLemma as b)
timesCommutative (one :: as) (zero :: bs) = transitivity (equalityCommutative (canonicalAscends'' ((as *B (zero :: bs)) +B bs))) (transitivity (applyEquality (λ i → canonical (zero :: i)) ans) (canonicalAscends'' (bs *B (one :: as))))
where
ans : canonical ((as *B (zero :: bs)) +B bs) ≡ canonical (bs *B (one :: as))
ans rewrite timesCommutative bs (one :: as) | canonicalDistributesPlus (as *B (zero :: bs)) bs | canonicalDistributesPlus (zero :: (as *B bs)) bs = applyEquality (_+B canonical bs) (equalityCommutative (timesCommLemma bs as))
timesCommutative (one :: as) (one :: bs) = applyEquality (one ::_) (transitivity (canonicalDistributesPlus (as *B (one :: bs)) bs) (transitivity (transitivity (applyEquality (_+B canonical bs) (timesCommutative as (one :: bs))) (transitivity ans (equalityCommutative (applyEquality (_+B canonical as) (timesCommutative bs (one :: as)))))) (equalityCommutative (canonicalDistributesPlus (bs *B (one :: as)) as))))
where
ans : canonical ((zero :: (bs *B as)) +B as) +B canonical bs ≡ canonical ((zero :: (as *B bs)) +B bs) +B canonical as
ans rewrite equalityCommutative (canonicalDistributesPlus ((zero :: (bs *B as)) +B as) bs) | equalityCommutative (canonicalDistributesPlus ((zero :: (as *B bs)) +B bs) as) | equalityCommutative (+BAssociative (zero :: (bs *B as)) as bs) | equalityCommutative (+BAssociative (zero :: (as *B bs)) bs as) | canonicalDistributesPlus (zero :: (bs *B as)) (as +B bs) | canonicalDistributesPlus (zero :: (as *B bs)) (bs +B as) | equalityCommutative (canonicalAscends'' {zero} (bs *B as)) | timesCommutative bs as | canonicalAscends'' {zero} (as *B bs) | +BCommutative as bs = refl
*BIsInherited : (a b : BinNat) → a *Binherit b ≡ canonical (a *B b)
*BIsInherited a b = transitivity (applyEquality NToBinNat t) (transitivity (binToBin (canonical (a *B b))) (equalityCommutative (canonicalIdempotent (a *B b))))
where
ans : (a b : BinNat) → binNatToN a *N binNatToN b ≡ binNatToN (a *B b)
ans [] b = refl
ans (zero :: a) b rewrite equalityCommutative (ans a b) = equalityCommutative (Semiring.*Associative ℕSemiring 2 (binNatToN a) (binNatToN b))
ans (one :: a) b rewrite binNatToNDistributesPlus (zero :: (a *B b)) b | Semiring.commutative ℕSemiring (binNatToN b) ((2 *N (binNatToN a)) *N (binNatToN b)) | equalityCommutative (ans a b) = applyEquality (_+N binNatToN b) (equalityCommutative (Semiring.*Associative ℕSemiring 2 (binNatToN a) (binNatToN b)))
t : (binNatToN a *N binNatToN b) ≡ binNatToN (canonical (a *B b))
t = transitivity (ans a b) (equalityCommutative (binNatToNIsCanonical (a *B b)))
|
{
"alphanum_fraction": 0.6480666973,
"avg_line_length": 83.2404371585,
"ext": "agda",
"hexsha": "df629bb46167d73aa1b55ddffa3f0c080b4f56b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/BinaryNaturals/Multiplication.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/BinaryNaturals/Multiplication.agda",
"max_line_length": 579,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/BinaryNaturals/Multiplication.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 5289,
"size": 15233
}
|
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Numbers.BinaryNaturals.Definition
open import Maybe
module Numbers.BinaryNaturals.SubtractionGo where
go : Bit → BinNat → BinNat → Maybe BinNat
go zero [] [] = yes []
go one [] [] = no
go zero [] (zero :: b) = go zero [] b
go zero [] (one :: b) = no
go one [] (x :: b) = no
go zero (zero :: a) [] = yes (zero :: a)
go one (zero :: a) [] = mapMaybe (one ::_) (go one a [])
go zero (zero :: a) (zero :: b) = mapMaybe (zero ::_) (go zero a b)
go one (zero :: a) (zero :: b) = mapMaybe (one ::_) (go one a b)
go zero (zero :: a) (one :: b) = mapMaybe (one ::_) (go one a b)
go one (zero :: a) (one :: b) = mapMaybe (zero ::_) (go one a b)
go zero (one :: a) [] = yes (one :: a)
go zero (one :: a) (zero :: b) = mapMaybe (one ::_) (go zero a b)
go zero (one :: a) (one :: b) = mapMaybe (zero ::_) (go zero a b)
go one (one :: a) [] = yes (zero :: a)
go one (one :: a) (zero :: b) = mapMaybe (zero ::_) (go zero a b)
go one (one :: a) (one :: b) = mapMaybe (one ::_) (go one a b)
_-B_ : BinNat → BinNat → Maybe BinNat
a -B b = go zero a b
goEmpty : (a : BinNat) → go zero a [] ≡ yes a
goEmpty [] = refl
goEmpty (zero :: a) = refl
goEmpty (one :: a) = refl
goOneSelf : (a : BinNat) → go one a a ≡ no
goOneSelf [] = refl
goOneSelf (zero :: a) rewrite goOneSelf a = refl
goOneSelf (one :: a) rewrite goOneSelf a = refl
goOneEmpty : (b : BinNat) {t : BinNat} → go one [] b ≡ yes t → False
goOneEmpty [] {t} ()
goOneEmpty (x :: b) {t} ()
goOneEmpty' : (b : BinNat) → go one [] b ≡ no
goOneEmpty' b with inspect (go one [] b)
goOneEmpty' b | no with≡ x = x
goOneEmpty' b | yes x₁ with≡ x = exFalso (goOneEmpty b x)
goZeroEmpty : (b : BinNat) {t : BinNat} → go zero [] b ≡ yes t → canonical b ≡ []
goZeroEmpty [] {t} = λ _ → refl
goZeroEmpty (zero :: b) {t} pr with inspect (canonical b)
goZeroEmpty (zero :: b) {t} pr | [] with≡ pr2 rewrite pr2 = refl
goZeroEmpty (zero :: b) {t} pr | (x :: r) with≡ pr2 with goZeroEmpty b pr
... | u = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr2) u))
goZeroEmpty' : (b : BinNat) {t : BinNat} → go zero [] b ≡ yes t → canonical t ≡ []
goZeroEmpty' [] {[]} pr = refl
goZeroEmpty' (x :: b) {[]} pr = refl
goZeroEmpty' (zero :: b) {x₁ :: t} pr = goZeroEmpty' b pr
goZeroIncr : (b : BinNat) → go zero [] (incr b) ≡ no
goZeroIncr [] = refl
goZeroIncr (zero :: b) = refl
goZeroIncr (one :: b) = goZeroIncr b
goPreservesCanonicalRightEmpty : (b : BinNat) → go zero [] (canonical b) ≡ go zero [] b
goPreservesCanonicalRightEmpty [] = refl
goPreservesCanonicalRightEmpty (zero :: b) with inspect (canonical b)
goPreservesCanonicalRightEmpty (zero :: b) | [] with≡ x with goPreservesCanonicalRightEmpty b
... | pr2 rewrite x = pr2
goPreservesCanonicalRightEmpty (zero :: b) | (x₁ :: y) with≡ x with goPreservesCanonicalRightEmpty b
... | pr2 rewrite x = pr2
goPreservesCanonicalRightEmpty (one :: b) = refl
goZero : (b : BinNat) {t : BinNat} → mapMaybe canonical (go zero [] b) ≡ yes t → t ≡ []
goZero b {[]} pr = refl
goZero b {x :: t} pr with inspect (go zero [] b)
goZero b {x :: t} pr | no with≡ pr2 rewrite pr2 = exFalso (noNotYes pr)
goZero b {x :: t} pr | yes x₁ with≡ pr2 with goZeroEmpty b pr2
... | u with applyEquality (mapMaybe canonical) (goPreservesCanonicalRightEmpty b)
... | bl rewrite u | pr = exFalso (nonEmptyNotEmpty (equalityCommutative (yesInjective bl)))
|
{
"alphanum_fraction": 0.6222739168,
"avg_line_length": 40.9404761905,
"ext": "agda",
"hexsha": "aca774331ef2085686c802d7b869334ad1a19937",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/BinaryNaturals/SubtractionGo.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/BinaryNaturals/SubtractionGo.agda",
"max_line_length": 100,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/BinaryNaturals/SubtractionGo.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1213,
"size": 3439
}
|
-- Agda program using the Iowa Agda library
open import bool
module PROOF-sortPreservesLength
(Choice : Set)
(choose : Choice → 𝔹)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where
open import eq
open import nat
open import list
open import maybe
---------------------------------------------------------------------------
-- Translated Curry operations:
insert : ℕ → 𝕃 ℕ → 𝕃 ℕ
insert x [] = x :: []
insert y (z :: u) = if y ≤ z then y :: (z :: u) else z :: (insert y u)
sort : 𝕃 ℕ → 𝕃 ℕ
sort [] = []
sort (x :: y) = insert x (sort y)
---------------------------------------------------------------------------
insertIncLength : (x : ℕ) → (xs : 𝕃 ℕ)
→ length (insert x xs) ≡ suc (length xs)
insertIncLength x [] = refl
insertIncLength x (y :: ys) with (x ≤ y)
... | tt = refl
... | ff rewrite insertIncLength x ys = refl
sortPreservesLength : (xs : 𝕃 ℕ) → length (sort xs) ≡ length xs
sortPreservesLength [] = refl
sortPreservesLength (x :: xs)
rewrite insertIncLength x (sort xs) | sortPreservesLength xs = refl
---------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5052724077,
"avg_line_length": 26.4651162791,
"ext": "agda",
"hexsha": "1e75a12d9d1821a5bc73ae8844ad46d693e717f6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phlummox/curry-tools",
"max_forks_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phlummox/curry-tools",
"max_issues_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phlummox/curry-tools",
"max_stars_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 299,
"size": 1138
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group.Base
private
variable
ℓ ℓ' ℓ'' : Level
module GroupLemmas (G : Group {ℓ}) where
open Group G public
abstract
simplL : (a : Carrier) {b c : Carrier} → a + b ≡ a + c → b ≡ c
simplL a {b} {c} p =
b
≡⟨ sym (lid b) ∙ cong (_+ b) (sym (invl a)) ∙ sym (assoc _ _ _) ⟩
- a + (a + b)
≡⟨ cong (- a +_) p ⟩
- a + (a + c)
≡⟨ assoc _ _ _ ∙ cong (_+ c) (invl a) ∙ lid c ⟩
c ∎
simplR : {a b : Carrier} (c : Carrier) → a + c ≡ b + c → a ≡ b
simplR {a} {b} c p =
a
≡⟨ sym (rid a) ∙ cong (a +_) (sym (invr c)) ∙ assoc _ _ _ ⟩
(a + c) - c
≡⟨ cong (_- c) p ⟩
(b + c) - c
≡⟨ sym (assoc _ _ _) ∙ cong (b +_) (invr c) ∙ rid b ⟩
b ∎
invInvo : (a : Carrier) → - (- a) ≡ a
invInvo a = simplL (- a) (invr (- a) ∙ sym (invl a))
invId : - 0g ≡ 0g
invId = simplL 0g (invr 0g ∙ sym (lid 0g))
idUniqueL : {e : Carrier} (x : Carrier) → e + x ≡ x → e ≡ 0g
idUniqueL {e} x p = simplR x (p ∙ sym (lid _))
idUniqueR : (x : Carrier) {e : Carrier} → x + e ≡ x → e ≡ 0g
idUniqueR x {e} p = simplL x (p ∙ sym (rid _))
invUniqueL : {g h : Carrier} → g + h ≡ 0g → g ≡ - h
invUniqueL {g} {h} p = simplR h (p ∙ sym (invl h))
invUniqueR : {g h : Carrier} → g + h ≡ 0g → h ≡ - g
invUniqueR {g} {h} p = simplL g (p ∙ sym (invr g))
invDistr : (a b : Carrier) → - (a + b) ≡ - b - a
invDistr a b = sym (invUniqueR γ) where
γ : (a + b) + (- b - a) ≡ 0g
γ = (a + b) + (- b - a)
≡⟨ sym (assoc _ _ _) ⟩
a + b + (- b) + (- a)
≡⟨ cong (a +_) (assoc _ _ _ ∙ cong (_+ (- a)) (invr b)) ⟩
a + (0g - a)
≡⟨ cong (a +_) (lid (- a)) ∙ invr a ⟩
0g ∎
isPropIsGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G)
→ isProp (IsGroup 0g _+_ -_)
IsGroup.isMonoid (isPropIsGroup 0g _+_ -_ g1 g2 i) = isPropIsMonoid _ _ (IsGroup.isMonoid g1) (IsGroup.isMonoid g2) i
IsGroup.inverse (isPropIsGroup 0g _+_ -_ g1 g2 i) = isPropInv (IsGroup.inverse g1) (IsGroup.inverse g2) i
where
isSetG : isSet _
isSetG = IsSemigroup.is-set (IsMonoid.isSemigroup (IsGroup.isMonoid g1))
isPropInv : isProp ((x : _) → ((x + (- x)) ≡ 0g) × (((- x) + x) ≡ 0g))
isPropInv = isPropΠ λ _ → isProp× (isSetG _ _) (isSetG _ _)
|
{
"alphanum_fraction": 0.5077622113,
"avg_line_length": 33.858974359,
"ext": "agda",
"hexsha": "6783ed64f60fd1ac08af822adecc1e4111d6ff5f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1114,
"size": 2641
}
|
open import Data.Nat.Base
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
test : 0 ≡ 0
test = begin
0 ≡⟨ {!!} ⟩
0
∎
-- WAS: Goal is garbled:
--
-- ?0 : (.Relation.Binary.Setoid.preorder (setoid ℕ)
-- .Relation.Binary.Preorder.∼ 0)
-- 0
-- EXPECTED: Nice goal:
--
-- ?0 : 0 ≡ 0
|
{
"alphanum_fraction": 0.6221498371,
"avg_line_length": 14.619047619,
"ext": "agda",
"hexsha": "c0a867b6a4f6c384cfb7be7dbea2712fecdf50b5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/lib-interaction/EqReasoning.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/lib-interaction/EqReasoning.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/lib-interaction/EqReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 117,
"size": 307
}
|
{-# OPTIONS --type-in-type #-}
-- {-# OPTIONS --guardedness-preserving-type-constructors #-}
module PatternSynonymsErrorLocation where
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
infixr 2 _,_
record Unit : Set where
data Sigma (A : Set)(B : A -> Set) : Set where
_,_ : (fst : A) -> B fst -> Sigma A B
-- Prod does not communicate guardedness
Prod : (A B : Set) -> Set
Prod A B = Sigma A \ _ -> B
data Empty : Set where
data ListTag : Set where nil cons : ListTag
{-# TERMINATING #-}
List : (A : Set) -> Set
List A = Sigma ListTag T where
T : ListTag -> Set
T nil = Unit
T cons = Sigma A \ _ -> List A
infix 5 _∷_
pattern [] = nil , _
pattern _∷_ x xs = cons , x , xs
-- FAILS: pattern x ∷ xs = cons , x , xs
data TyTag : Set where base arr : TyTag
{-# TERMINATING #-}
Ty : Set
Ty = Sigma TyTag T where
T : TyTag -> Set
T base = Unit
T arr = Sigma Ty \ _ -> Ty -- Prod Ty Ty
infix 10 _⇒_
pattern ★ = base , _
pattern _⇒_ A B = arr , A , B
Context = List Ty
data NatTag : Set where zero succ : NatTag
Var : (Gamma : Context)(C : Ty) -> Set
Var [] C = Empty
Var (cons , A , Gamma) C = Sigma NatTag T
where T : NatTag -> Set
T zero = A ≡ C
T succ = Var Gamma C
pattern vz = zero , refl
pattern vs x = succ , x
idVar : (Gamma : Context)(C : Ty)(x : Var Gamma C) -> Var Gamma C
idVar [] _ ()
-- CORRECT: idVar (A ∷ Gamma) C (zero , proof) = zero , proof
idVar (A ∷ Gamma) C vz = vz
idVar (A ∷ Gamma) C (vs x) = vs (idVar Gamma C x)
|
{
"alphanum_fraction": 0.5763707572,
"avg_line_length": 21.8857142857,
"ext": "agda",
"hexsha": "b8c3660f3f075f6e5372a4c8fbbe07fefba7b74e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/PatternSynonymsErrorLocation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/PatternSynonymsErrorLocation.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/PatternSynonymsErrorLocation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 521,
"size": 1532
}
|
record Unit : Set where
data Bool : Set where true false : Bool
F : Bool -> Set
F true = Bool
F false = Unit
f : (b : Bool) -> F b
f true = true
f false = record {}
-- this should give an error, but only gives yellow
test : Bool
test = f _ false
|
{
"alphanum_fraction": 0.6414342629,
"avg_line_length": 16.7333333333,
"ext": "agda",
"hexsha": "edd5ab6c809c3272e1a584b03babf0f418963adb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue437.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue437.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue437.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 251
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Algebra.Group.Base
open import Cubical.HITs.PropositionalTruncation hiding (map)
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' : Level
-- The following definition of GroupHom and GroupEquiv are level-wise heterogeneous.
-- This allows for example to deduce that G ≡ F from a chain of isomorphisms
-- G ≃ H ≃ F, even if H does not lie in the same level as G and F.
isGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) (f : ⟨ G ⟩ → ⟨ H ⟩) → Type _
isGroupHom G H f = (x y : ⟨ G ⟩) → f (x G.+ y) ≡ (f x H.+ f y) where
module G = Group G
module H = Group H
record GroupHom (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor grouphom
no-eta-equality
field
fun : ⟨ G ⟩ → ⟨ H ⟩
isHom : isGroupHom G H fun
record GroupEquiv (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor groupequiv
no-eta-equality
field
eq : ⟨ G ⟩ ≃ ⟨ H ⟩
isHom : isGroupHom G H (equivFun eq)
hom : GroupHom G H
hom = grouphom (equivFun eq) isHom
open GroupHom
open GroupEquiv
η-hom : {G : Group {ℓ}} {H : Group {ℓ'}} → (a : GroupHom G H)
→ grouphom (fun a) (isHom a) ≡ a
fun (η-hom a i) = fun a
isHom (η-hom a i) = isHom a
η-equiv : {G : Group {ℓ}} {H : Group {ℓ'}} → (a : GroupEquiv G H)
→ groupequiv (eq a) (isHom a) ≡ a
eq (η-equiv a i) = eq a
isHom (η-equiv a i) = isHom a
×hom : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}}
→ GroupHom A C → GroupHom B D → GroupHom (dirProd A B) (dirProd C D)
fun (×hom mf1 mf2) = map-× (fun mf1) (fun mf2)
isHom (×hom mf1 mf2) a b = ≡-× (isHom mf1 _ _) (isHom mf2 _ _)
open Group
isInIm : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → (GroupHom G H)
→ ⟨ H ⟩ → Type (ℓ-max ℓ ℓ')
isInIm G H ϕ h = ∃[ g ∈ ⟨ G ⟩ ] (fun ϕ) g ≡ h
isInKer : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → (GroupHom G H)
→ ⟨ G ⟩ → Type ℓ'
isInKer G H ϕ g = (fun ϕ) g ≡ 0g H
isSurjective : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isSurjective G H ϕ = (x : ⟨ H ⟩) → isInIm G H ϕ x
isInjective : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isInjective G H ϕ = (x : ⟨ G ⟩) → isInKer G H ϕ x → x ≡ 0g G
|
{
"alphanum_fraction": 0.5815691158,
"avg_line_length": 32.5540540541,
"ext": "agda",
"hexsha": "be2f40684c6a9b8c5d7f12d088ba4833cddb8f7d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 993,
"size": 2409
}
|
-- Andreas, 2019-03-28, issue #3248, reported by guillaumebrunerie
{-# OPTIONS --sized-types --show-implicit #-}
-- {-# OPTIONS -v tc:10 #-}
-- {-# OPTIONS -v tc.term:20 #-}
-- {-# OPTIONS -v tc.conv.size:45 #-}
-- {-# OPTIONS -v tc.conv.coerce:45 #-}
-- {-# OPTIONS -v tc.term.args.target:45 #-}
{-# BUILTIN SIZEUNIV SizeUniv #-} -- SizeUniv : SizeUniv
{-# BUILTIN SIZE Size #-} -- Size : SizeUniv
{-# BUILTIN SIZELT Size<_ #-} -- Size<_ : ..Size → SizeUniv
{-# BUILTIN SIZESUC ↑_ #-} -- ↑_ : Size → Size
{-# BUILTIN SIZEINF ∞ #-} -- ∞ : Size
{-# BUILTIN SIZEMAX _⊔ˢ_ #-} -- _⊔ˢ_ : Size → Size → Size
data D (i : Size) : Set where
c : {j : Size< i} → D j → D i
f : {i : Size} → D i → D i → D i
f (c {j₁} l1)
(c {j₂} l2) = c {j = j₁ ⊔ˢ j₂} (f {j₁ ⊔ˢ j₂} l1 l2)
-- The problem was that the new "check target first" logic
-- e49d1ca276e5adbf2eb9f6cd33926b786cef78f7
-- for checking applications does not work for Size<.
--
-- Checking target types first
-- inferred = Size
-- expected = Size< i
--
-- It is not the case that Size <= Size< i, however, coerce succeeds,
-- since e.g. j : Size <= Size< i if j : Size< i.
--
-- The solution is to switch off the check target first logic
-- if the target type of a (possibly empty) application is Size< _.
|
{
"alphanum_fraction": 0.5701492537,
"avg_line_length": 35.2631578947,
"ext": "agda",
"hexsha": "25019e2377719b6c885547aa16ce4a8ad5849541",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3248.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3248.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3248.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 482,
"size": 1340
}
|
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Classical.Semantics (𝔏 : Signature) {ℓₘ} where
open Signature(𝔏)
import Lvl
open import Data.Boolean
open import Data.ListSized
open import Numeral.Natural
open import Type
private variable args : ℕ
-- Model.
-- A model decides which propositional constants that are true or false.
-- A model in a signature `s` consists of a domain and interpretations of the function/relation symbols in `s`.
-- Also called: Structure.
-- Note: A model satisfying `∀{args} → Empty(Prop args)` is called an "Algebraic structure".
record Model : Type{ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ Lvl.𝐒(ℓₘ)} where
field
Domain : Type{ℓₘ} -- The type of objects that quantifications quantifies over and functions/relations maps from.
function : Obj(args) → List(Domain)(args) → Domain -- Maps Obj to a n-ary function (n=0 is interpreted as a constant).
relation : Prop(args) → List(Domain)(args) → Bool -- Maps Prop to a boolean n-ary relation (n=0 is interpreted as a proposition).
open Model public using() renaming (Domain to dom ; function to fn ; relation to rel)
|
{
"alphanum_fraction": 0.720890411,
"avg_line_length": 44.9230769231,
"ext": "agda",
"hexsha": "c4723b1f46cce238529e07701a0f7756bcd4b105",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Classical/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Classical/Semantics.agda",
"max_line_length": 149,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Classical/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 310,
"size": 1168
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.Cospan where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open Category
data 𝟛 : Type ℓ-zero where
⓪ : 𝟛
① : 𝟛
② : 𝟛
CospanCat : Category ℓ-zero ℓ-zero
CospanCat .ob = 𝟛
CospanCat .Hom[_,_] ⓪ ① = Unit
CospanCat .Hom[_,_] ② ① = Unit
CospanCat .Hom[_,_] ⓪ ⓪ = Unit
CospanCat .Hom[_,_] ① ① = Unit
CospanCat .Hom[_,_] ② ② = Unit
CospanCat .Hom[_,_] _ _ = ⊥
CospanCat ._⋆_ {x = ⓪} {⓪} {⓪} f g = tt
CospanCat ._⋆_ {x = ①} {①} {①} f g = tt
CospanCat ._⋆_ {x = ②} {②} {②} f g = tt
CospanCat ._⋆_ {x = ⓪} {①} {①} f g = tt
CospanCat ._⋆_ {x = ②} {①} {①} f g = tt
CospanCat ._⋆_ {x = ⓪} {⓪} {①} f g = tt
CospanCat ._⋆_ {x = ②} {②} {①} f g = tt
CospanCat .id {⓪} = tt
CospanCat .id {①} = tt
CospanCat .id {②} = tt
CospanCat .⋆IdL {⓪} {①} _ = refl
CospanCat .⋆IdL {②} {①} _ = refl
CospanCat .⋆IdL {⓪} {⓪} _ = refl
CospanCat .⋆IdL {①} {①} _ = refl
CospanCat .⋆IdL {②} {②} _ = refl
CospanCat .⋆IdR {⓪} {①} _ = refl
CospanCat .⋆IdR {②} {①} _ = refl
CospanCat .⋆IdR {⓪} {⓪} _ = refl
CospanCat .⋆IdR {①} {①} _ = refl
CospanCat .⋆IdR {②} {②} _ = refl
CospanCat .⋆Assoc {⓪} {⓪} {⓪} {⓪} _ _ _ = refl
CospanCat .⋆Assoc {⓪} {⓪} {⓪} {①} _ _ _ = refl
CospanCat .⋆Assoc {⓪} {⓪} {①} {①} _ _ _ = refl
CospanCat .⋆Assoc {⓪} {①} {①} {①} _ _ _ = refl
CospanCat .⋆Assoc {①} {①} {①} {①} _ _ _ = refl
CospanCat .⋆Assoc {②} {②} {②} {②} _ _ _ = refl
CospanCat .⋆Assoc {②} {②} {②} {①} _ _ _ = refl
CospanCat .⋆Assoc {②} {②} {①} {①} _ _ _ = refl
CospanCat .⋆Assoc {②} {①} {①} {①} _ _ _ = refl
CospanCat .isSetHom {⓪} {⓪} = isSetUnit
CospanCat .isSetHom {⓪} {①} = isSetUnit
CospanCat .isSetHom {①} {①} = isSetUnit
CospanCat .isSetHom {②} {①} = isSetUnit
CospanCat .isSetHom {②} {②} = isSetUnit
|
{
"alphanum_fraction": 0.6004378763,
"avg_line_length": 28.1076923077,
"ext": "agda",
"hexsha": "0b57f294421e7f1ebfdcd826af907270b6ff629d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mzeuner/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Cospan.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mzeuner/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Cospan.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mzeuner/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Cospan.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1055,
"size": 1827
}
|
import Lvl
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.InfiniteDimensional
{ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
open VectorSpace(vectorSpace)
open import Data.Tuple using (_⨯_ ; _,_)
open import Logic
open import Logic.Predicate
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.Finite
open import Numeral.Natural
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
import Structure.Operator.Vector.FiniteDimensional as FiniteDimensional
open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄
open import Syntax.Function
private variable ℓ ℓₗ : Lvl.Level
private variable n : ℕ
InfiniteDimensional = ∀{n} → ∃(vf ↦ FiniteDimensional.Spanning ⦃ vectorSpace = vectorSpace ⦄ {n}(vf))
-- TODO: Not sure if correct
-- This states that all finite sequences `vf` of length `n` (in terms of `Vec`) that consists of elements from the set `vs` satisfies `P`.
-- This can be used in infinite-dimensional vector spaces to define linear independence, span and basis by: `∃(n ↦ AllFiniteSubsets(n)(P)(vs))`
AllFiniteSubsets : (n : ℕ) → (Vec(n)(V) → Stmt{ℓ}) → (PredSet{ℓₗ}(V) → Stmt)
AllFiniteSubsets(n) P(vs) = (∀{vf : Vec(n)(V)} ⦃ distinct : Vec.Distinct(vf) ⦄ → (∀{i : 𝕟(n)} → (Vec.proj(vf)(i) ∈ vs)) → P(vf))
LinearlyIndependent : PredSet{ℓₗ}(V) → Stmt
LinearlyIndependent(vs) = ∃(n ↦ AllFiniteSubsets(n)(FiniteDimensional.LinearlyIndependent)(vs))
Spanning : PredSet{ℓₗ}(V) → Stmt
Spanning(vs) = ∃(n ↦ AllFiniteSubsets(n)(FiniteDimensional.Spanning)(vs))
-- Also called: Hamel basis (TODO: I think)
Basis : PredSet{ℓₗ}(V) → Stmt
Basis(vs) = ∃(n ↦ AllFiniteSubsets(n)(FiniteDimensional.Basis)(vs))
|
{
"alphanum_fraction": 0.7057356608,
"avg_line_length": 40.9183673469,
"ext": "agda",
"hexsha": "d30026a145210331f322c746932e59070ff18ab8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/InfiniteDimensional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/InfiniteDimensional.agda",
"max_line_length": 143,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/InfiniteDimensional.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 724,
"size": 2005
}
|
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Algebra.Category.Semigroupoid where
open import Core
-- A semigroupoid is a set of objects and morphisms between objects
-- together with an associative binary function that combines morphisms.
record Semigroupoid {c h r} : Set (lsuc (c ⊔ h ⊔ r)) where
field
Ob : Set c
Hom : Ob → Ob → Set h
Eq : ∀ {A B} → Equiv {r = r} (Hom A B)
_∘_ : ∀ {A B C} → Hom B C → Hom A B → Hom A C
infixl 6 _∘_
open module MyEquiv {A} {B} = Equiv (Eq {A} {B}) public
field
∘-cong :
∀ {A B C}
{f1 f2 : Hom B C} {g1 g2 : Hom A B}
→ f1 ≈ f2 → g1 ≈ g2 → f1 ∘ g1 ≈ f2 ∘ g2
assoc :
∀ {A B C D}
(f : Hom C D) (g : Hom B C) (h : Hom A B)
→ (f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
Epic : ∀ {A B} → (f : Hom A B) → Set _
Epic f = ∀ {C} {g1 g2 : Hom _ C} → g1 ∘ f ≈ g2 ∘ f → g1 ≈ g2
Monic : ∀ {B C} → (f : Hom B C) → Set _
Monic f = ∀ {A} {g1 g2 : Hom A _} → f ∘ g1 ≈ f ∘ g2 → g1 ≈ g2
Unique : ∀ {A B} → (f : Hom A B) → Set _
Unique f = ∀ g → f ≈ g
IsProduct : ∀ A B AB → (fst : Hom AB A) (snd : Hom AB B) → Set _
IsProduct A B AB fst snd =
∀ AB' (fst' : Hom AB' A) (snd' : Hom AB' B) →
∃ (λ (u : Hom AB' AB) → Unique u × (fst ∘ u ≈ fst') × (snd ∘ u ≈ snd'))
record Product A B : Set (c ⊔ h ⊔ r) where
field
A×B : Ob
cfst : Hom A×B A
csnd : Hom A×B B
isProduct : IsProduct A B A×B cfst csnd
record _bimonic_ A B : Set (c ⊔ h ⊔ r) where
field
to : Hom A B
from : Hom B A
to-monic : Monic to
from-monic : Monic from
-- A semifunctor is a composition-preserving mapping from a semigroupoid
-- to another.
record Semifunctor
{cc ch cr dc dh dr}
(C : Semigroupoid {cc} {ch} {cr})
(D : Semigroupoid {dc} {dh} {dr})
: Set (cc ⊔ ch ⊔ cr ⊔ dc ⊔ dh ⊔ dr)
where
private
module C = Semigroupoid C
module D = Semigroupoid D
field
F : C.Ob → D.Ob
map : ∀ {A B} → C.Hom A B → D.Hom (F A) (F B)
map-cong :
∀ {A B} {f g : C.Hom A B}
→ f C.≈ g
→ map f D.≈ map g
∘-preserving :
∀ {A B C}
(f : C.Hom B C) (g : C.Hom A B)
→ map (f C.∘ g) D.≈ map f D.∘ map g
|
{
"alphanum_fraction": 0.4963251189,
"avg_line_length": 25.4175824176,
"ext": "agda",
"hexsha": "a1e59b957649dc72a3eca7cd7d6ed68c26be4d01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Algebra/Category/Semigroupoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Algebra/Category/Semigroupoid.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Algebra/Category/Semigroupoid.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 958,
"size": 2313
}
|
module par-swap.union-confluent where
open import par-swap
open import par-swap.properties
open import par-swap.confluent
open import par-swap.dpg
open import Data.Nat using (_+_ ; _≤′_ ; _<′_ ; suc ; zero ; ≤′-refl ; ℕ)
open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc)
open import Data.Nat.Properties using (s≤′s ; z≤′n)
open import Data.MoreNatProp using (≤′-trans ; suc≤′⇒≤′)
open import Data.Product
open import Data.Sum
open import Data.Bool
open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_)
open import Data.Empty
open import Induction.Nat using (<-rec)
open import Induction.Lexicographic using ()
open import Induction using ()
open import Induction.WellFounded using ()
open import Level using ()
open import Relation.Binary using (Rel)
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Environment as Env
open import Esterel.Context
open import Esterel.Lang.Binding
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; subst ; cong ; trans ;
module ≡-Reasoning ; cong₂ ; subst₂ ; inspect)
open import sn-calculus
open import context-properties -- get view, E-views
open import binding-preserve using (sn⟶-maintains-binding ; sn⟶*-maintains-binding)
open import noetherian using (noetherian ; ∥_∥s)
open import sn-calculus-props
∥R-preserves-∥∥s : ∀ {p q} -> p ∥R q -> ∥ q ∥s ≡ ∥ p ∥s
∥R-preserves-∥∥s (∥Rstep{C}{p}{q} d≐C⟦p∥q⟧c)
rewrite sym (unplugc d≐C⟦p∥q⟧c) = ∥∥par-sym p q C where
∥∥par-sym : ∀ p q C -> ∥ C ⟦ q ∥ p ⟧c ∥s ≡ ∥ C ⟦ p ∥ q ⟧c ∥s
∥∥par-sym p q [] rewrite +-comm ∥ p ∥s ∥ q ∥s = refl
∥∥par-sym p q (_ ∷ C) with ∥∥par-sym p q C
∥∥par-sym p q (ceval (epar₁ _) ∷ C) | R rewrite R = refl
∥∥par-sym p q (ceval (epar₂ _) ∷ C) | R rewrite R = refl
∥∥par-sym p q (ceval (eseq _) ∷ C) | R rewrite R = refl
∥∥par-sym p q (ceval (eloopˢ _) ∷ C) | R rewrite R = refl
∥∥par-sym p q (ceval (esuspend _) ∷ C) | R rewrite R = refl
∥∥par-sym p q (ceval etrap ∷ C) | R rewrite R = refl
∥∥par-sym p q (csignl _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cpresent₁ _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cpresent₂ _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cloop ∷ C) | R rewrite R = refl
∥∥par-sym p q (cloopˢ₂ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cseq₂ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cshared _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cvar _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cif₁ _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cif₂ _ _ ∷ C) | R rewrite R = refl
∥∥par-sym p q (cenv _ _ ∷ C) | R rewrite R = refl
∥R*-preserves-∥∥s : ∀ {p q} -> p ∥R* q -> ∥ q ∥s ≡ ∥ p ∥s
∥R*-preserves-∥∥s ∥R0 = refl
∥R*-preserves-∥∥s (∥Rn p∥Rq p∥R*q) with ∥R*-preserves-∥∥s p∥R*q
... | x rewrite ∥R-preserves-∥∥s p∥Rq = x
module LexicographicLE {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(RelA : Rel A ℓ₁)
(RelB : Rel B ℓ₂) where
open import Level
open import Relation.Binary
open import Induction.WellFounded
open import Data.Product
open import Function
open import Induction
open import Relation.Unary
data _<_ : Rel (Σ A \ _ → B) (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
left : ∀ {x₁ y₁ x₂ y₂} (x₁<x₂ : RelA x₁ x₂) → (x₁ , y₁) < (x₂ , y₂)
right : ∀ {x₁ y₁ x₂ y₂} (y₁<y₂ : RelB y₁ y₂) → (x₁ ≡ x₂ ⊎ RelA x₁ x₂) →
(x₁ , y₁) < (x₂ , y₂)
mutual
accessibleLE : ∀ {x y} →
Acc RelA x → WellFounded RelB →
Acc _<_ (x , y)
accessibleLE accA wfB = acc (accessibleLE′ accA (wfB _) wfB)
accessibleLE′ :
∀ {x y} →
Acc RelA x → Acc RelB y → WellFounded RelB →
WfRec _<_ (Acc _<_) (x , y)
accessibleLE′ (acc rsA) _ wfB ._ (left x′<x) = accessibleLE (rsA _ x′<x) wfB
accessibleLE′ accA (acc rsB) wfB .(_ , _) (right y′<y (inj₁ refl)) =
acc (accessibleLE′ accA (rsB _ y′<y) wfB)
accessibleLE′ (acc rsA) (acc rsB) wfB .(_ , _) (right y′<y (inj₂ x′<x)) =
acc (accessibleLE′ (rsA _ x′<x) (rsB _ y′<y) wfB)
wellFounded : WellFounded RelA → WellFounded RelB →
WellFounded _<_
wellFounded wfA wfB p = accessibleLE (wfA (proj₁ p)) wfB
module _ where
open LexicographicLE _<′_ _<′_ public
renaming (_<_ to _<<′_;
wellFounded to <<′-wellFounded;
left to <<′-left;
right to <<′-right)
module _ {ℓ} where
open Induction.WellFounded.All
(<<′-wellFounded Induction.Nat.<′-wellFounded Induction.Nat.<′-wellFounded) ℓ public
renaming (wfRec-builder to <<′-rec-builder;
wfRec to <<′-rec)
{-
proof from _On the Power of Simple Diagrams_
by Roberto Di Cosmo, RTA 1996 (lemma 7)
-}
∥R*-sn⟶*-commute : CB-COMMUTE _∥R*_ _sn⟶*_
∥R*-sn⟶*-commute = thm where
redlen : ∀ {p q} -> p ∥R* q -> ℕ
redlen ∥R0 = zero
redlen (∥Rn p∥Rq p∥R*q) = suc (redlen p∥R*q)
sharedtype : (ℕ × ℕ) -> Set
sharedtype (sizeb , distab) =
∀ {a b c BV FV} ->
CorrectBinding a BV FV ->
(a∥R*b : a ∥R* b) ->
a sn⟶* c ->
redlen a∥R*b ≡ distab ->
∥ b ∥s ≡ sizeb ->
∃ \ {d -> b sn⟶* d × c ∥R* d}
{- this proof is not working the way that
Di Cosmo intended; it uses properties
about ∥R* reduction directly -}
composing-the-diagram-in-the-hypothesis-down :
∀ {p1 p2 p3 q1 q3} ->
p1 sn⟶ p2 ->
p2 sn⟶* p3 ->
p1 ∥R* q1 ->
p3 ∥R* q3 ->
(∥ q3 ∥s) <′ (∥ q1 ∥s)
composing-the-diagram-in-the-hypothesis-down = thm where
thm-no-∥R* : ∀ {p1 p2 p3} ->
p1 sn⟶ p2 ->
p2 sn⟶* p3 ->
∥ p3 ∥s <′ ∥ p1 ∥s
thm-no-∥R* p1sn⟶p2 rrefl = noetherian p1sn⟶p2
thm-no-∥R* {p1}{p2}{p3} p1sn⟶p2 (rstep{q = r} p2sn⟶r rsn⟶*p3)
with thm-no-∥R* p2sn⟶r rsn⟶*p3
... | ∥p3∥s<′∥p2∥s =
≤′-trans {y = ∥ p2 ∥s}
∥p3∥s<′∥p2∥s
(suc≤′⇒≤′ ∥ p2 ∥s ∥ p1 ∥s (noetherian p1sn⟶p2))
thm : ∀ {p1 p2 p3 q1 q3} ->
p1 sn⟶ p2 ->
p2 sn⟶* p3 ->
p1 ∥R* q1 ->
p3 ∥R* q3 ->
(∥ q3 ∥s) <′ (∥ q1 ∥s)
thm p1sn⟶p2 p2sn⟶*p3 p1∥R*q1 p3∥R*q3
rewrite ∥R*-preserves-∥∥s p1∥R*q1
| ∥R*-preserves-∥∥s p3∥R*q3 =
thm-no-∥R* p1sn⟶p2 p2sn⟶*p3
step : ∀ nm ->
(∀ (nm′ : ℕ × ℕ) -> nm′ <<′ nm -> sharedtype nm′) ->
sharedtype nm
step (sizeb , distab) rec CBa ∥R0 asn⟶*c redlena∥R*b≡distab ∥b∥s≡sizeb = _ , asn⟶*c , ∥R0
step (sizeb , distab) rec CBa a∥R*b rrefl redlena∥R*b≡distab ∥b∥s≡sizeb = _ , rrefl , a∥R*b
step (sizeb , distab) rec {a} {b} {c} CBa
(∥Rn{q = a″} a∥Ra″ a″∥R*b)
(rstep{q = a′} asn⟶a′ a′sn⟶*c)
redlena∥R*b≡distab
∥b∥s≡sizeb rewrite sym redlena∥R*b≡distab
with sn⟶-maintains-binding CBa asn⟶a′
... | (_ , CBa′ , _)
with DPG a∥Ra″ asn⟶a′
... | (a‴ , gap) , a″sn⟶gap , gapsn⟶*a‴ , a′∥R*a‴
with rec (sizeb , redlen a″∥R*b) (<<′-right (s≤′s ≤′-refl) (inj₁ refl))
(∥R-maintains-binding CBa a∥Ra″)
a″∥R*b (rstep a″sn⟶gap gapsn⟶*a‴) refl ∥b∥s≡sizeb
... | (b′ , bsn⟶*b′ , a‴∥R*b′) rewrite sym ∥b∥s≡sizeb
with composing-the-diagram-in-the-hypothesis-down a″sn⟶gap gapsn⟶*a‴ a″∥R*b a‴∥R*b′
... | ∥b′∥s<′∥b∥s
with rec (∥ b′ ∥s , redlen (∥R*-concat a′∥R*a‴ a‴∥R*b′))
(<<′-left ∥b′∥s<′∥b∥s)
CBa′ (∥R*-concat a′∥R*a‴ a‴∥R*b′) a′sn⟶*c refl refl
... | ( d , b′sn⟶*d , c∥R*d) = d , sn⟶*+ bsn⟶*b′ b′sn⟶*d , c∥R*d
lemma7-commutation : ∀ (nm : ℕ × ℕ) -> sharedtype nm
lemma7-commutation = <<′-rec _ step
thm : CB-COMMUTE _∥R*_ _sn⟶*_
thm {p}{q}{r} CBp p∥R*q psn⟶*r =
lemma7-commutation (∥ q ∥s , redlen p∥R*q) CBp p∥R*q psn⟶*r refl refl
∥R*∪sn⟶*-confluent : CB-CONFLUENT _∥R*∪sn⟶*_
∥R*∪sn⟶*-confluent =
\ { CBp p∥R*∪sn⟶*q p∥R*∪sn⟶*r ->
hindley-rosen
(redlen p∥R*∪sn⟶*q , redlen p∥R*∪sn⟶*r)
CBp p∥R*∪sn⟶*q p∥R*∪sn⟶*r refl refl} where
redlen : ∀ {p q} -> p ∥R*∪sn⟶* q -> ℕ
redlen (∪∥R* _ r) = suc (redlen r)
redlen (∪sn⟶* _ r) = suc (redlen r)
redlen ∪refl = zero
sharedtype : ℕ × ℕ -> Set
sharedtype (n , m) = ∀ {p q r BV FV} ->
CorrectBinding p BV FV ->
(p∥R*∪sn⟶*q : p ∥R*∪sn⟶* q) ->
(p∥R*∪sn⟶*r : p ∥R*∪sn⟶* r) ->
n ≡ redlen p∥R*∪sn⟶*q ->
m ≡ redlen p∥R*∪sn⟶*r ->
∃ λ {z → (q ∥R*∪sn⟶* z × r ∥R*∪sn⟶* z)}
length-lemma : ∀ {a b} (l : a ∥R*∪sn⟶* b) ->
suc zero ≡ suc (redlen l) ⊎
suc zero <′ suc (redlen l)
length-lemma (∪∥R* p∥R*q l) = inj₂ (s≤′s (s≤′s z≤′n))
length-lemma (∪sn⟶* psn⟶*q l) = inj₂ (s≤′s (s≤′s z≤′n))
length-lemma ∪refl = inj₁ refl
step : ∀ nm ->
(∀ (nm′ : ℕ × ℕ) -> nm′ <<′ nm -> sharedtype nm′) ->
sharedtype nm
step (n , m) rec CBp (∪∥R* p∥R*q a) ∪refl n≡ m≡ = _ , ∪refl , ∪∥R* p∥R*q a
step (n , m) rec CBp (∪sn⟶* psn⟶*q a) ∪refl n≡ m≡ = _ , ∪refl , ∪sn⟶* psn⟶*q a
step (n , m) rec CBp ∪refl (∪∥R* p∥R*q b) n≡ m≡ = _ , ∪∥R* p∥R*q b , ∪refl
step (n , m) rec CBp ∪refl (∪sn⟶* psn⟶*q b) n≡ m≡ = _ , ∪sn⟶* psn⟶*q b , ∪refl
step (n , m) rec CBp ∪refl ∪refl n≡ m≡ = _ , ∪refl , ∪refl
step(n , m) rec {p}{q}{r} CBp
(∪∥R* {_}{q₁} p∥R*q₁ q₁∥R*∪sn⟶*q)
(∪∥R* {_}{r₁} p∥R*r₁ r₁∥R*∪sn⟶*r)
n≡ m≡ rewrite n≡ | m≡
with BVFVcorrect _ _ _ CBp
... | refl , refl
with ∥R*-maintains-binding CBp p∥R*q₁
... | CBq₁
with BVFVcorrect _ _ _ CBq₁
... | refl , refl
with ∥R*-maintains-binding CBp p∥R*r₁
... | CBr₁
with BVFVcorrect _ _ _ CBr₁
... | refl , refl
with ∥R*-confluent CBp p∥R*q₁ p∥R*r₁
... | q₁r₁ , q₁∥R*q₁r₁ , r₁∥R*q₁r₁
with rec (suc zero , redlen r₁∥R*∪sn⟶*r)
(<<′-right ≤′-refl (length-lemma q₁∥R*∪sn⟶*q))
CBr₁ (∪∥R* r₁∥R*q₁r₁ ∪refl) r₁∥R*∪sn⟶*r
refl refl
... | q₁r₁r , q₁r₁∥R*∪sn⟶*q₁r₁r , r∥R*∪sn⟶*q₁r₁r
with rec (redlen q₁∥R*∪sn⟶*q , suc (redlen q₁r₁∥R*∪sn⟶*q₁r₁r))
(<<′-left ≤′-refl)
CBq₁ q₁∥R*∪sn⟶*q (∪∥R* q₁∥R*q₁r₁ q₁r₁∥R*∪sn⟶*q₁r₁r)
refl refl
... | qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , q₁r₁r∥R*∪sn⟶*qq₁r₁r
= qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , ∥R*∪sn⟶*-concat r∥R*∪sn⟶*q₁r₁r q₁r₁r∥R*∪sn⟶*qq₁r₁r
step (n , m) rec {p}{q}{r} CBp
(∪∥R*{_}{q₁} p∥R*q₁ q₁∥R*∪sn⟶*q)
(∪sn⟶*{_}{r₁} psn⟶*r₁ r₁∥R*∪sn⟶*r)
n≡ m≡ rewrite n≡ | m≡
with BVFVcorrect _ _ _ CBp
... | refl , refl
with ∥R*-maintains-binding CBp p∥R*q₁
... | CBq₁
with BVFVcorrect _ _ _ CBq₁
... | refl , refl
with sn⟶*-maintains-binding CBp psn⟶*r₁
... | (BVr₁ , FVr₁) , CBr₁
with ∥R*-sn⟶*-commute CBp p∥R*q₁ psn⟶*r₁
... | q₁r₁ , q₁sn⟶*q₁r₁ , r₁∥R*q₁r₁
with rec (suc zero , redlen r₁∥R*∪sn⟶*r)
(<<′-right ≤′-refl (length-lemma q₁∥R*∪sn⟶*q))
CBr₁ (∪∥R* r₁∥R*q₁r₁ ∪refl) r₁∥R*∪sn⟶*r
refl refl
... | q₁r₁r , q₁r₁∥R*∪sn⟶*q₁r₁r , r∥R*∪sn⟶*q₁r₁r
with rec (redlen q₁∥R*∪sn⟶*q , suc (redlen q₁r₁∥R*∪sn⟶*q₁r₁r))
(<<′-left ≤′-refl)
CBq₁ q₁∥R*∪sn⟶*q (∪sn⟶* q₁sn⟶*q₁r₁ q₁r₁∥R*∪sn⟶*q₁r₁r)
refl refl
... | qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , q₁r₁r∥R*∪sn⟶*qq₁r₁r
= qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , ∥R*∪sn⟶*-concat r∥R*∪sn⟶*q₁r₁r q₁r₁r∥R*∪sn⟶*qq₁r₁r
step (n , m) rec {p}{q}{r} CBp
(∪sn⟶*{_}{q₁} psn⟶*q₁ q₁∥R*∪sn⟶*q)
(∪∥R*{_}{r₁} p∥R*r₁ r₁∥R*∪sn⟶*r)
n≡ m≡ rewrite n≡ | m≡
with BVFVcorrect _ _ _ CBp
... | refl , refl
with sn⟶*-maintains-binding CBp psn⟶*q₁
... | (BVq₁ , FVq₁) , CBq₁
with ∥R*-maintains-binding CBp p∥R*r₁
... | CBr₁
with BVFVcorrect _ _ _ CBr₁
... | refl , refl
with ∥R*-sn⟶*-commute CBp p∥R*r₁ psn⟶*q₁
... | r₁q₁ , r₁sn⟶*r₁q₁ , q₁∥R*r₁q₁
with rec (suc zero , redlen r₁∥R*∪sn⟶*r)
(<<′-right ≤′-refl (length-lemma q₁∥R*∪sn⟶*q))
CBr₁ (∪sn⟶* r₁sn⟶*r₁q₁ ∪refl) r₁∥R*∪sn⟶*r
refl refl
... | r₁q₁r , r₁q₁∥R*∪sn⟶*r₁q₁r , r∥R*∪sn⟶*r₁q₁r
with rec (redlen q₁∥R*∪sn⟶*q , suc (redlen r₁q₁∥R*∪sn⟶*r₁q₁r))
(<<′-left ≤′-refl)
CBq₁ q₁∥R*∪sn⟶*q (∪∥R* q₁∥R*r₁q₁ r₁q₁∥R*∪sn⟶*r₁q₁r)
refl refl
... | qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , q₁r₁r∥R*∪sn⟶*qq₁r₁r
= qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , ∥R*∪sn⟶*-concat r∥R*∪sn⟶*r₁q₁r q₁r₁r∥R*∪sn⟶*qq₁r₁r
step (n , m) rec {p}{q}{r} CBp
(∪sn⟶*{_}{q₁} psn⟶*q₁ q₁∥R*∪sn⟶*q)
(∪sn⟶*{_}{r₁} psn⟶*r₁ r₁∥R*∪sn⟶*r)
n≡ m≡ rewrite n≡ | m≡
with BVFVcorrect _ _ _ CBp
... | refl , refl
with sn⟶*-maintains-binding CBp psn⟶*q₁
... | (BVq₁ , FVq₁) , CBq₁
with sn⟶*-maintains-binding CBp psn⟶*r₁
... | (BVr₁ , FVr₁) , CBr₁
with sn⟶*-confluent CBp psn⟶*q₁ psn⟶*r₁
... | q₁r₁ , q₁sn⟶*q₁r₁ , r₁sn⟶*q₁r₁
with rec (suc zero , redlen r₁∥R*∪sn⟶*r)
(<<′-right ≤′-refl (length-lemma q₁∥R*∪sn⟶*q))
CBr₁ (∪sn⟶* r₁sn⟶*q₁r₁ ∪refl) r₁∥R*∪sn⟶*r
refl refl
... | q₁r₁r , q₁r₁∥R*∪sn⟶*q₁r₁r , r∥R*∪sn⟶*q₁r₁r
with rec (redlen q₁∥R*∪sn⟶*q , suc (redlen q₁r₁∥R*∪sn⟶*q₁r₁r))
(<<′-left ≤′-refl)
CBq₁ q₁∥R*∪sn⟶*q (∪sn⟶* q₁sn⟶*q₁r₁ q₁r₁∥R*∪sn⟶*q₁r₁r)
refl refl
... | qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , q₁r₁r∥R*∪sn⟶*qq₁r₁r
= qq₁r₁r , q∥R*∪sn⟶*qq₁r₁r , ∥R*∪sn⟶*-concat r∥R*∪sn⟶*q₁r₁r q₁r₁r∥R*∪sn⟶*qq₁r₁r
hindley-rosen : ∀ (nm : ℕ × ℕ) -> sharedtype nm
hindley-rosen = <<′-rec _ step
|
{
"alphanum_fraction": 0.5252037428,
"avg_line_length": 37.3295774648,
"ext": "agda",
"hexsha": "24a75585cd40a61122086cbe75b10096fd475c0a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/par-swap/union-confluent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/par-swap/union-confluent.agda",
"max_line_length": 93,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/par-swap/union-confluent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 6813,
"size": 13252
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.EqRelInstance where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening using (_∷_⊆_; wkEq)
open import Definition.Conversion
open import Definition.Conversion.Reduction
open import Definition.Conversion.Universe
open import Definition.Conversion.Stability
open import Definition.Conversion.Soundness
open import Definition.Conversion.Lift
open import Definition.Conversion.Conversion
open import Definition.Conversion.Symmetry
open import Definition.Conversion.Transitivity
open import Definition.Conversion.Weakening
open import Definition.Typed.EqualityRelation
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Inversion
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Function
-- Algorithmic equality of neutrals with injected conversion.
record _⊢_~_∷_ (Γ : Con Term) (k l A : Term) : Set where
inductive
constructor ↑
field
{B} : Term
A≡B : Γ ⊢ A ≡ B
k~↑l : Γ ⊢ k ~ l ↑ B
-- Properties of algorithmic equality of neutrals with injected conversion.
~-var : ∀ {x A Γ} → Γ ⊢ var x ∷ A → Γ ⊢ var x ~ var x ∷ A
~-var x =
let ⊢A = syntacticTerm x
in ↑ (refl ⊢A) (var-refl x PE.refl)
~-app : ∀ {f g a b F G Γ}
→ Γ ⊢ f ~ g ∷ Π F ▹ G
→ Γ ⊢ a [conv↑] b ∷ F
→ Γ ⊢ f ∘ a ~ g ∘ b ∷ G [ a ]
~-app (↑ A≡B x) x₁ =
let _ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D = whNorm ⊢B
ΠFG≡B′ = trans A≡B (subset* (red D))
H , E , B≡ΠHE = Π≡A ΠFG≡B′ whnfB′
F≡H , G≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) B≡ΠHE ΠFG≡B′)
_ , ⊢f , _ = syntacticEqTerm (soundnessConv↑Term x₁)
in ↑ (substTypeEq G≡E (refl ⊢f))
(app-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x)
B≡ΠHE
([~] _ (red D) whnfB′ x))
(convConvTerm x₁ F≡H))
~-fst : ∀ {Γ p r F G}
→ Γ ⊢ p ~ r ∷ Σ F ▹ G
→ Γ ⊢ fst p ~ fst r ∷ F
~-fst (↑ A≡B p~r) =
let _ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D = whNorm ⊢B
ΣFG≡B′ = trans A≡B (subset* (red D))
H , E , B≡ΣHE = Σ≡A ΣFG≡B′ whnfB′
F≡H , G≡E = Σ-injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) B≡ΣHE ΣFG≡B′)
p~r↓ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x)
B≡ΣHE
([~] _ (red D) whnfB′ p~r)
in ↑ F≡H (fst-cong p~r↓)
~-snd : ∀ {Γ p r F G}
→ Γ ⊢ p ~ r ∷ Σ F ▹ G
→ Γ ⊢ snd p ~ snd r ∷ G [ fst p ]
~-snd (↑ A≡B p~r) =
let ⊢ΣFG , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D = whNorm ⊢B
ΣFG≡B′ = trans A≡B (subset* (red D))
H , E , B≡ΣHE = Σ≡A ΣFG≡B′ whnfB′
F≡H , G≡E = Σ-injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) B≡ΣHE ΣFG≡B′)
p~r↓ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x)
B≡ΣHE
([~] _ (red D) whnfB′ p~r)
⊢F , ⊢G = syntacticΣ ⊢ΣFG
_ , ⊢p , _ = syntacticEqTerm (soundness~↑ p~r)
⊢fst = fstⱼ ⊢F ⊢G (conv ⊢p (sym A≡B))
in ↑ (substTypeEq G≡E (refl ⊢fst)) (snd-cong p~r↓)
~-natrec : ∀ {z z′ s s′ n n′ F F′ Γ}
→ (Γ ∙ ℕ) ⊢ F [conv↑] F′ →
Γ ⊢ z [conv↑] z′ ∷ (F [ zero ]) →
Γ ⊢ s [conv↑] s′ ∷ (Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑)) →
Γ ⊢ n ~ n′ ∷ ℕ →
Γ ⊢ natrec F z s n ~ natrec F′ z′ s′ n′ ∷ (F [ n ])
~-natrec x x₁ x₂ (↑ A≡B x₄) =
let _ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D = whNorm ⊢B
ℕ≡B′ = trans A≡B (subset* (red D))
B≡ℕ = ℕ≡A ℕ≡B′ whnfB′
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡ℕ
([~] _ (red D) whnfB′ x₄)
⊢F , _ = syntacticEq (soundnessConv↑ x)
_ , ⊢n , _ = syntacticEqTerm (soundness~↓ k~l′)
in ↑ (refl (substType ⊢F ⊢n))
(natrec-cong x x₁ x₂ k~l′)
~-Emptyrec : ∀ {n n′ F F′ Γ}
→ Γ ⊢ F [conv↑] F′ →
Γ ⊢ n ~ n′ ∷ Empty →
Γ ⊢ Emptyrec F n ~ Emptyrec F′ n′ ∷ F
~-Emptyrec x (↑ A≡B x₄) =
let _ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D = whNorm ⊢B
Empty≡B′ = trans A≡B (subset* (red D))
B≡Empty = Empty≡A Empty≡B′ whnfB′
k~l′ = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡Empty
([~] _ (red D) whnfB′ x₄)
⊢F , _ = syntacticEq (soundnessConv↑ x)
_ , ⊢n , _ = syntacticEqTerm (soundness~↓ k~l′)
in ↑ (refl ⊢F)
(Emptyrec-cong x k~l′)
~-sym : {k l A : Term} {Γ : Con Term} → Γ ⊢ k ~ l ∷ A → Γ ⊢ l ~ k ∷ A
~-sym (↑ A≡B x) =
let ⊢Γ = wfEq A≡B
B , A≡B′ , l~k = sym~↑ (reflConEq ⊢Γ) x
in ↑ (trans A≡B A≡B′) l~k
~-trans : {k l m A : Term} {Γ : Con Term}
→ Γ ⊢ k ~ l ∷ A → Γ ⊢ l ~ m ∷ A
→ Γ ⊢ k ~ m ∷ A
~-trans (↑ x x₁) (↑ x₂ x₃) =
let ⊢Γ = wfEq x
k~m , _ = trans~↑ x₁ x₃
in ↑ x k~m
~-wk : {k l A : Term} {ρ : Wk} {Γ Δ : Con Term} →
ρ ∷ Δ ⊆ Γ →
⊢ Δ → Γ ⊢ k ~ l ∷ A → Δ ⊢ wk ρ k ~ wk ρ l ∷ wk ρ A
~-wk x x₁ (↑ x₂ x₃) = ↑ (wkEq x x₁ x₂) (wk~↑ x x₁ x₃)
~-conv : {k l A B : Term} {Γ : Con Term} →
Γ ⊢ k ~ l ∷ A → Γ ⊢ A ≡ B → Γ ⊢ k ~ l ∷ B
~-conv (↑ x x₁) x₂ = ↑ (trans (sym x₂) x) x₁
~-to-conv : {k l A : Term} {Γ : Con Term} →
Γ ⊢ k ~ l ∷ A → Γ ⊢ k [conv↑] l ∷ A
~-to-conv (↑ x x₁) = convConvTerm (lift~toConv↑ x₁) (sym x)
-- Algorithmic equality instance of the generic equality relation.
instance eqRelInstance : EqRelSet
eqRelInstance = record {
_⊢_≅_ = _⊢_[conv↑]_;
_⊢_≅_∷_ = _⊢_[conv↑]_∷_;
_⊢_~_∷_ = _⊢_~_∷_;
~-to-≅ₜ = ~-to-conv;
≅-eq = soundnessConv↑;
≅ₜ-eq = soundnessConv↑Term;
≅-univ = univConv↑;
≅-sym = symConv;
≅ₜ-sym = symConvTerm;
~-sym = ~-sym;
≅-trans = transConv;
≅ₜ-trans = transConvTerm;
~-trans = ~-trans;
≅-conv = convConvTerm;
~-conv = ~-conv;
≅-wk = wkConv↑;
≅ₜ-wk = wkConv↑Term;
~-wk = ~-wk;
≅-red = λ x x₁ x₂ x₃ x₄ → reductionConv↑ x x₁ x₄;
≅ₜ-red = λ x x₁ x₂ x₃ x₄ x₅ x₆ → reductionConv↑Term x x₁ x₂ x₆;
≅-Urefl = liftConv ∘ᶠ U-refl;
≅-ℕrefl = liftConv ∘ᶠ ℕ-refl;
≅ₜ-ℕrefl = λ x → liftConvTerm (univ (ℕⱼ x) (ℕⱼ x) (ℕ-refl x));
≅-Emptyrefl = liftConv ∘ᶠ Empty-refl;
≅ₜ-Emptyrefl = λ x → liftConvTerm (univ (Emptyⱼ x) (Emptyⱼ x) (Empty-refl x));
≅-Unitrefl = liftConv ∘ᶠ Unit-refl;
≅ₜ-Unitrefl = λ ⊢Γ → liftConvTerm (univ (Unitⱼ ⊢Γ) (Unitⱼ ⊢Γ) (Unit-refl ⊢Γ));
≅ₜ-η-unit = λ [e] [e'] → let u , uWhnf , uRed = whNormTerm [e]
u' , u'Whnf , u'Red = whNormTerm [e']
[u] = ⊢u-redₜ uRed
[u'] = ⊢u-redₜ u'Red
in [↑]ₜ Unit u u'
(red (idRed:*: (syntacticTerm [e])))
(redₜ uRed)
(redₜ u'Red)
Unitₙ uWhnf u'Whnf
(η-unit [u] [u'] uWhnf u'Whnf);
≅-Π-cong = λ x x₁ x₂ → liftConv (Π-cong x x₁ x₂);
≅ₜ-Π-cong = λ x x₁ x₂ → let _ , F∷U , H∷U = syntacticEqTerm (soundnessConv↑Term x₁)
_ , G∷U , E∷U = syntacticEqTerm (soundnessConv↑Term x₂)
⊢Γ = wfTerm F∷U
F<>H = univConv↑ x₁
G<>E = univConv↑ x₂
F≡H = soundnessConv↑ F<>H
E∷U′ = stabilityTerm (reflConEq ⊢Γ ∙ F≡H) E∷U
in liftConvTerm (univ (Πⱼ F∷U ▹ G∷U) (Πⱼ H∷U ▹ E∷U′)
(Π-cong x F<>H G<>E));
≅-Σ-cong = λ x x₁ x₂ → liftConv (Σ-cong x x₁ x₂);
≅ₜ-Σ-cong = λ x x₁ x₂ → let _ , F∷U , H∷U = syntacticEqTerm (soundnessConv↑Term x₁)
_ , G∷U , E∷U = syntacticEqTerm (soundnessConv↑Term x₂)
⊢Γ = wfTerm F∷U
F<>H = univConv↑ x₁
G<>E = univConv↑ x₂
F≡H = soundnessConv↑ F<>H
E∷U′ = stabilityTerm (reflConEq ⊢Γ ∙ F≡H) E∷U
in liftConvTerm (univ (Σⱼ F∷U ▹ G∷U) (Σⱼ H∷U ▹ E∷U′)
(Σ-cong x F<>H G<>E));
≅ₜ-zerorefl = liftConvTerm ∘ᶠ zero-refl;
≅-suc-cong = liftConvTerm ∘ᶠ suc-cong;
≅-η-eq = λ x x₁ x₂ x₃ x₄ x₅ → liftConvTerm (η-eq x₁ x₂ x₃ x₄ x₅);
≅-Σ-η = λ x x₁ x₂ x₃ x₄ x₅ x₆ x₇ → (liftConvTerm (Σ-η x₂ x₃ x₄ x₅ x₆ x₇));
~-var = ~-var;
~-app = ~-app;
~-fst = λ x x₁ x₂ → ~-fst x₂;
~-snd = λ x x₁ x₂ → ~-snd x₂;
~-natrec = ~-natrec;
~-Emptyrec = ~-Emptyrec }
|
{
"alphanum_fraction": 0.4926665897,
"avg_line_length": 37.8122270742,
"ext": "agda",
"hexsha": "da670516203d42a3d2a5c9d12f7e8aa1077f5d59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/EqRelInstance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/EqRelInstance.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/EqRelInstance.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3731,
"size": 8659
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.DistLatticeSheaf where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.DistLattice.Basis
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.CommRings
open import Cubical.Categories.Instances.Poset
open import Cubical.Categories.Instances.Semilattice
open import Cubical.Categories.Instances.Lattice
open import Cubical.Categories.Instances.DistLattice
private
variable
ℓ ℓ' ℓ'' : Level
module _ (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) where
open Category hiding (_⋆_)
open Functor
open Order (DistLattice→Lattice L)
open DistLatticeStr (snd L)
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L))
open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L))
using (∧≤RCancel ; ∧≤LCancel)
open PosetStr (IndPoset .snd) hiding (_≤_)
𝟙 : ob C
𝟙 = terminalOb C T
DLCat : Category ℓ ℓ
DLCat = DistLatticeCategory L
open Category DLCat
-- C-valued presheaves on a distributive lattice
DLPreSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLPreSheaf = Functor (DLCat ^op) C
hom-∨₁ : (x y : L .fst) → DLCat [ x , x ∨l y ]
hom-∨₁ = ∨≤RCancel
-- TODO: isn't the fixity of the operators a bit weird?
hom-∨₂ : (x y : L .fst) → DLCat [ y , x ∨l y ]
hom-∨₂ = ∨≤LCancel
hom-∧₁ : (x y : L .fst) → DLCat [ x ∧l y , x ]
hom-∧₁ _ _ = (≤m→≤j _ _ (∧≤RCancel _ _))
hom-∧₂ : (x y : L .fst) → DLCat [ x ∧l y , y ]
hom-∧₂ _ _ = (≤m→≤j _ _ (∧≤LCancel _ _))
{-
x ∧ y ----→ y
| |
| sq |
V V
x ----→ x ∨ y
-}
sq : (x y : L .fst) → hom-∧₂ x y ⋆ hom-∨₂ x y ≡ hom-∧₁ x y ⋆ hom-∨₁ x y
sq x y = is-prop-valued (x ∧l y) (x ∨l y) (hom-∧₂ x y ⋆ hom-∨₂ x y) (hom-∧₁ x y ⋆ hom-∨₁ x y)
{-
F(x ∨ y) ----→ F(y)
| |
| Fsq |
V V
F(x) ------→ F(x ∧ y)
-}
Fsq : (F : DLPreSheaf) (x y : L .fst)
→ F .F-hom (hom-∨₂ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₂ x y) ≡
F .F-hom (hom-∨₁ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₁ x y)
Fsq F x y = sym (F-seq F (hom-∨₂ x y) (hom-∧₂ x y))
∙∙ cong (F .F-hom) (sq x y)
∙∙ F-seq F (hom-∨₁ x y) (hom-∧₁ x y)
isDLSheaf : (F : DLPreSheaf) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLSheaf F = (F-ob F 0l ≡ 𝟙)
× ((x y : L .fst) → isPullback C _ _ _ (Fsq F x y))
-- TODO: might be better to define this as a record
DLSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLSheaf = Σ[ F ∈ DLPreSheaf ] isDLSheaf F
module Lemma1 (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) (L' : ℙ (fst L)) (hB : IsBasis L L') where
open Category hiding (_⋆_)
open Functor
open DistLatticeStr (snd L)
open IsBasis hB
isDLBasisSheaf : (F : DLPreSheaf L C T) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLBasisSheaf F = (F-ob F 0l ≡ 𝟙 L C T)
× ((x y : L .fst) → x ∈ L' → y ∈ L' → isPullback C _ _ _ (Fsq L C T F x y))
DLBasisSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLBasisSheaf = Σ[ F ∈ DLPreSheaf L C T ] isDLBasisSheaf F
-- To prove the statement we probably need that C is:
-- 1. univalent
-- 2. has finite limits (or pullbacks and a terminal object)
-- 3. isGroupoid (C .ob)
-- The last point is not strictly necessary, but we have to have some
-- control over the hLevel as we want to write F(x) in terms of its
-- basis cover which is information hidden under a prop truncation...
-- Alternatively we just prove the statement for C = CommRingsCategory
-- TODO: is unique existence expressed like this what we want?
-- statement : (F' : DLBasisSheaf)
-- → ∃![ F ∈ DLSheaf L C T ] ((x : fst L) → (x ∈ L') → CatIso C (F-ob (fst F) x) (F-ob (fst F') x)) -- TODO: if C is univalent the CatIso could be ≡?
-- statement (F' , h1 , hPb) = ?
-- It might be easier to prove all of these if we use the definition
-- in terms of particular limits instead
-- Scrap zone:
-- -- Sublattices: upstream later
-- record isSublattice (L' : ℙ (fst L)) : Type ℓ where
-- field
-- 1l-closed : 1l ∈ L'
-- 0l-closed : 0l ∈ L'
-- ∧l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∧l y ∈ L'
-- ∨l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∨l y ∈ L'
-- open isSublattice
-- Sublattice : Type (ℓ-suc ℓ)
-- Sublattice = Σ[ L' ∈ ℙ (fst L) ] isSublattice L'
-- restrictDLSheaf : DLSheaf → Sublattice → DLSheaf
-- F-ob (fst (restrictDLSheaf F (L' , HL'))) x = {!F-ob (fst F) x!} -- Hmm, not nice...
-- F-hom (fst (restrictDLSheaf F L')) = {!!}
-- F-id (fst (restrictDLSheaf F L')) = {!!}
-- F-seq (fst (restrictDLSheaf F L')) = {!!}
-- snd (restrictDLSheaf F L') = {!!}
|
{
"alphanum_fraction": 0.6010558069,
"avg_line_length": 33.15,
"ext": "agda",
"hexsha": "c131a1de043da5f42236642d28b5ee3dd1ac9513",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Categories/DistLatticeSheaf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Categories/DistLatticeSheaf.agda",
"max_line_length": 161,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Categories/DistLatticeSheaf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2032,
"size": 5304
}
|
open import Prelude
module Implicits.Resolution.Scala.Type where
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas.Type
open import Implicits.Substitutions.Type as TS using ()
-- predicate on types to limit them to non-rule types
-- (as those don't exist in Scala currently)
mutual
data ScalaSimpleType {ν} : SimpleType ν → Set where
tc : (c : ℕ) → ScalaSimpleType (tc c)
tvar : (n : Fin ν) → ScalaSimpleType (tvar n)
_→'_ : ∀ {a b} → ScalaType a → ScalaType b → ScalaSimpleType (a →' b)
data ScalaType {ν} : Type ν → Set where
simpl : ∀ {τ} → ScalaSimpleType {ν} τ → ScalaType (simpl τ)
∀' : ∀ {a} → ScalaType a → ScalaType (∀' a)
data ScalaRule {ν} : Type ν → Set where
idef : ∀ {a b} → ScalaType a → ScalaType b → ScalaRule (a ⇒ b)
ival : ∀ {a} → ScalaType a → ScalaRule a
ScalaICtx : ∀ {ν} → ICtx ν → Set
ScalaICtx Δ = All ScalaRule Δ
mutual
weaken-scalastype : ∀ {ν} k {a : SimpleType (k N+ ν)} → ScalaSimpleType a →
ScalaType (a TS.simple/ (TS.wk TS.↑⋆ k))
weaken-scalastype k (tc c) = simpl (tc c)
weaken-scalastype k (tvar n) = Prelude.subst
(λ z → ScalaType z)
(sym $ var-/-wk-↑⋆ k n)
(simpl (tvar (lift k suc n)))
weaken-scalastype k (a →' b) = simpl ((weaken-scalatype k a) →' (weaken-scalatype k b))
weaken-scalatype : ∀ {ν} k {a : Type (k N+ ν)} → ScalaType a → ScalaType (a TS./ TS.wk TS.↑⋆ k)
weaken-scalatype k (simpl {τ} x) = weaken-scalastype k x
weaken-scalatype k (∀' p) = ∀' (weaken-scalatype (suc k) p)
weaken-scalarule : ∀ {ν} k {a : Type (k N+ ν)} → ScalaRule a → ScalaRule (a TS./ (TS.wk TS.↑⋆ k))
weaken-scalarule k (idef x y) = idef (weaken-scalatype k x) (weaken-scalatype k y)
weaken-scalarule k (ival x) = ival (weaken-scalatype k x)
weaken-scalaictx : ∀ {ν} {Δ : ICtx ν} → ScalaICtx Δ → ScalaICtx (ictx-weaken Δ)
weaken-scalaictx All.[] = All.[]
weaken-scalaictx (px All.∷ ps) = weaken-scalarule zero px All.∷ weaken-scalaictx ps
|
{
"alphanum_fraction": 0.6387512389,
"avg_line_length": 38.8076923077,
"ext": "agda",
"hexsha": "6753b04df613e9138bd888633c736b5565a8371a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Scala/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Scala/Type.agda",
"max_line_length": 97,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Scala/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 714,
"size": 2018
}
|
{-
This file contains:
- The inductive family 𝕁 can be constructed by iteratively applying pushouts;
- The special cases of 𝕁 n for n = 0, 1 and 2;
- Connectivity of inclusion maps.
Easy, almost direct consequences of the very definition.
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.James.Inductive.PushoutFormula where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Pointed hiding (pt)
open import Cubical.Data.Nat
open import Cubical.Algebra.NatSolver.Reflection
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.HITs.Wedge
open import Cubical.HITs.Pushout
open import Cubical.HITs.Pushout.PushoutProduct
open import Cubical.HITs.SequentialColimit
open import Cubical.HITs.James.Inductive.Base
renaming (𝕁ames to 𝕁amesContruction ; 𝕁ames∞ to 𝕁ames∞Contruction)
open import Cubical.Homotopy.Connected
private
variable
ℓ : Level
module _
(X∙@(X , x₀) : Pointed ℓ) where
private
𝕁ames = 𝕁amesContruction (X , x₀)
𝕁ames∞ = 𝕁ames∞Contruction (X , x₀)
𝕁amesPush : (n : ℕ) → Type ℓ
𝕁amesPush n = Pushout {A = 𝕁ames n} {B = X × 𝕁ames n} {C = 𝕁ames (1 + n)} (λ xs → x₀ , xs) incl
X→𝕁ames1 : X → 𝕁ames 1
X→𝕁ames1 x = x ∷ []
𝕁ames1→X : 𝕁ames 1 → X
𝕁ames1→X (x ∷ []) = x
𝕁ames1→X (incl []) = x₀
𝕁ames1→X (unit [] i) = x₀
X→𝕁ames1→X : (x : X) → 𝕁ames1→X (X→𝕁ames1 x) ≡ x
X→𝕁ames1→X x = refl
𝕁ames1→X→𝕁ames1 : (xs : 𝕁ames 1) → X→𝕁ames1 (𝕁ames1→X xs) ≡ xs
𝕁ames1→X→𝕁ames1 (x ∷ []) = refl
𝕁ames1→X→𝕁ames1 (incl []) i = unit [] (~ i)
𝕁ames1→X→𝕁ames1 (unit [] i) j = unit [] (i ∨ ~ j)
leftMap : {n : ℕ} → 𝕁amesPush n → X × 𝕁ames (1 + n)
leftMap (inl (x , xs)) = x , incl xs
leftMap (inr ys) = x₀ , ys
leftMap (push xs i) = x₀ , incl xs
rightMap : {n : ℕ} → 𝕁amesPush n → 𝕁ames (1 + n)
rightMap (inl (x , xs)) = x ∷ xs
rightMap (inr ys) = ys
rightMap (push xs i) = unit xs (~ i)
PushMap : {n : ℕ} → Pushout {A = 𝕁amesPush n} leftMap rightMap → 𝕁ames (2 + n)
PushMap (inl (x , xs)) = x ∷ xs
PushMap (inr ys) = incl ys
PushMap (push (inl (x , xs)) i) = incl∷ x xs (~ i)
PushMap (push (inr ys) i) = unit ys (~ i)
PushMap (push (push xs i) j) = coh xs (~ i) (~ j)
PushInv : {n : ℕ} → 𝕁ames (2 + n) → Pushout {A = 𝕁amesPush n} leftMap rightMap
PushInv (x ∷ xs) = inl (x , xs)
PushInv (incl xs) = inr xs
PushInv (incl∷ x xs i) = push (inl (x , xs)) (~ i)
PushInv (unit xs i) = push (inr xs) (~ i)
PushInv (coh xs i j) = push (push xs (~ i)) (~ j)
PushInvMapInv : {n : ℕ}(xs : 𝕁ames (2 + n)) → PushMap (PushInv xs) ≡ xs
PushInvMapInv (x ∷ xs) = refl
PushInvMapInv (incl xs) = refl
PushInvMapInv (incl∷ x xs i) = refl
PushInvMapInv (unit xs i) = refl
PushInvMapInv (coh xs i j) = refl
PushMapInvMap : {n : ℕ}(xs : Pushout {A = 𝕁amesPush n} leftMap rightMap) → PushInv (PushMap xs) ≡ xs
PushMapInvMap (inl (x , xs)) = refl
PushMapInvMap (inr ys) = refl
PushMapInvMap (push (inl (x , xs)) i) = refl
PushMapInvMap (push (inr ys) i) = refl
PushMapInvMap (push (push xs i) j) = refl
-- The special case 𝕁ames 2
P0→X⋁X : 𝕁amesPush 0 → X∙ ⋁ X∙
P0→X⋁X (inl (x , [])) = inl x
P0→X⋁X (inr (x ∷ [])) = inr x
P0→X⋁X (inr (incl [])) = inr x₀
P0→X⋁X (inr (unit [] i)) = inr x₀
P0→X⋁X (push [] i) = push tt i
X⋁X→P0 : X∙ ⋁ X∙ → 𝕁amesPush 0
X⋁X→P0 (inl x) = inl (x , [])
X⋁X→P0 (inr x) = inr (x ∷ [])
X⋁X→P0 (push tt i) = (push [] ∙ (λ i → inr (unit [] i))) i
P0→X⋁X→P0 : (x : 𝕁amesPush 0) → X⋁X→P0 (P0→X⋁X x) ≡ x
P0→X⋁X→P0 (inl (x , [])) = refl
P0→X⋁X→P0 (inr (x ∷ [])) = refl
P0→X⋁X→P0 (inr (incl [])) i = inr (unit [] (~ i))
P0→X⋁X→P0 (inr (unit [] i)) j = inr (unit [] (i ∨ ~ j))
P0→X⋁X→P0 (push [] i) j =
hcomp (λ k → λ
{ (i = i0) → inl (x₀ , [])
; (i = i1) → inr (unit [] (~ j ∧ k))
; (j = i0) → compPath-filler (push []) (λ i → inr (unit [] i)) k i
; (j = i1) → push [] i })
(push [] i)
X⋁X→P0→X⋁X : (x : X∙ ⋁ X∙) → P0→X⋁X (X⋁X→P0 x) ≡ x
X⋁X→P0→X⋁X (inl x) = refl
X⋁X→P0→X⋁X (inr x) = refl
X⋁X→P0→X⋁X (push tt i) j =
hcomp (λ k → λ
{ (i = i0) → inl x₀
; (i = i1) → inr x₀
; (j = i0) → P0→X⋁X (compPath-filler (push []) refl k i)
; (j = i1) → push tt i })
(push tt i)
P0≃X⋁X : 𝕁amesPush 0 ≃ X∙ ⋁ X∙
P0≃X⋁X = isoToEquiv (iso P0→X⋁X X⋁X→P0 X⋁X→P0→X⋁X P0→X⋁X→P0)
-- The type family 𝕁ames can be constructed by iteratively using pushouts
𝕁ames0≃ : 𝕁ames 0 ≃ Unit
𝕁ames0≃ = isoToEquiv (iso (λ { [] → tt }) (λ { tt → [] }) (λ { tt → refl }) (λ { [] → refl }))
𝕁ames1≃ : 𝕁ames 1 ≃ X
𝕁ames1≃ = isoToEquiv (iso 𝕁ames1→X X→𝕁ames1 X→𝕁ames1→X 𝕁ames1→X→𝕁ames1)
𝕁ames2+n≃ : (n : ℕ) → 𝕁ames (2 + n) ≃ Pushout leftMap rightMap
𝕁ames2+n≃ n = isoToEquiv (iso PushInv PushMap PushMapInvMap PushInvMapInv)
private
left≃ : X × 𝕁ames 1 ≃ X × X
left≃ = ≃-× (idEquiv _) 𝕁ames1≃
lComm : (x : 𝕁amesPush 0) → left≃ .fst (leftMap x) ≡ ⋁↪ (P0→X⋁X x)
lComm (inl (x , [])) = refl
lComm (inr (x ∷ [])) = refl
lComm (inr (incl [])) = refl
lComm (inr (unit [] i)) = refl
lComm (push [] i) = refl
rComm : (x : 𝕁amesPush 0) → 𝕁ames1≃ .fst (rightMap x) ≡ fold⋁ (P0→X⋁X x)
rComm (inl (x , [])) = refl
rComm (inr (x ∷ [])) = refl
rComm (inr (incl [])) = refl
rComm (inr (unit [] i)) = refl
rComm (push [] i) = refl
𝕁ames2≃ : 𝕁ames 2 ≃ Pushout {A = X∙ ⋁ X∙} ⋁↪ fold⋁
𝕁ames2≃ =
compEquiv (𝕁ames2+n≃ 0)
(pushoutEquiv _ _ _ _ P0≃X⋁X left≃ 𝕁ames1≃ (funExt lComm) (funExt rComm))
-- The leftMap can be seen as pushout-product
private
Unit×-≃ : {A : Type ℓ} → A ≃ Unit × A
Unit×-≃ = isoToEquiv (invIso lUnit×Iso)
pt : Unit → X
pt _ = x₀
𝕁amesPush' : (n : ℕ) → Type ℓ
𝕁amesPush' n = PushProd {X = Unit} {A = X} {Y = 𝕁ames n} {B = 𝕁ames (1 + n)} pt incl
leftMap' : {n : ℕ} → 𝕁amesPush' n → X × 𝕁ames (1 + n)
leftMap' = pt ×̂ incl
𝕁amesPush→Push' : (n : ℕ) → 𝕁amesPush n → 𝕁amesPush' n
𝕁amesPush→Push' n (inl x) = inr x
𝕁amesPush→Push' n (inr x) = inl (tt , x)
𝕁amesPush→Push' n (push x i) = push (tt , x) (~ i)
𝕁amesPush'→Push : (n : ℕ) → 𝕁amesPush' n → 𝕁amesPush n
𝕁amesPush'→Push n (inl (tt , x)) = inr x
𝕁amesPush'→Push n (inr x) = inl x
𝕁amesPush'→Push n (push (tt , x) i) = push x (~ i)
𝕁amesPush≃ : (n : ℕ) → 𝕁amesPush n ≃ 𝕁amesPush' n
𝕁amesPush≃ n = isoToEquiv
(iso (𝕁amesPush→Push' n) (𝕁amesPush'→Push n)
(λ { (inl x) → refl ; (inr x) → refl ; (push x i) → refl })
(λ { (inl x) → refl ; (inr x) → refl ; (push x i) → refl }))
≃𝕁ames1 : X ≃ 𝕁ames 1
≃𝕁ames1 = isoToEquiv (iso X→𝕁ames1 𝕁ames1→X 𝕁ames1→X→𝕁ames1 X→𝕁ames1→X)
≃𝕁ames2+n : (n : ℕ) → Pushout leftMap rightMap ≃ 𝕁ames (2 + n)
≃𝕁ames2+n n = isoToEquiv (iso PushMap PushInv PushInvMapInv PushMapInvMap)
-- The connectivity of inclusion
private
comp1 : (n : ℕ) → leftMap' ∘ 𝕁amesPush≃ n .fst ≡ leftMap
comp1 n = funExt (λ { (inl x) → refl ; (inr x) → refl ; (push x i) → refl })
comp2 : (n : ℕ) → ≃𝕁ames2+n n .fst ∘ inr ≡ incl
comp2 n = funExt (λ _ → refl)
comp3 : ≃𝕁ames1 .fst ∘ pt ∘ 𝕁ames0≃ .fst ≡ incl
comp3 i [] = unit [] (~ i)
isConnIncl0 :
(n : ℕ) → isConnected (1 + n) X
→ isConnectedFun n (incl {X∙ = X∙} {n = 0})
isConnIncl0 n conn =
subst (isConnectedFun _) comp3
(isConnectedComp _ _ _ (isEquiv→isConnected _ (≃𝕁ames1 .snd) _)
(isConnectedComp _ _ _ (isConnectedPoint _ conn _)
(isEquiv→isConnected _ (𝕁ames0≃ .snd) _)))
isConnIncl-ind :
(m n k : ℕ) → isConnected (1 + m) X
→ isConnectedFun n (incl {X∙ = X∙} {n = k})
→ isConnectedFun (m + n) (incl {X∙ = X∙} {n = 1 + k})
isConnIncl-ind m n k connX connf =
subst (isConnectedFun _) (comp2 _)
(isConnectedComp _ _ _ (isEquiv→isConnected _ (≃𝕁ames2+n k .snd) _)
(inrConnected _ _ _
(subst (isConnectedFun _) (comp1 _)
(isConnectedComp _ _ _
(isConnected×̂ (isConnectedPoint _ connX _) connf)
(isEquiv→isConnected _ (𝕁amesPush≃ k .snd) _)))))
nat-path : (n m k : ℕ) → (1 + (k + m)) · n ≡ k · n + (1 + m) · n
nat-path = solve
-- Connectivity results
isConnectedIncl : (n : ℕ) → isConnected (1 + n) X
→ (m : ℕ) → isConnectedFun ((1 + m) · n) (incl {X∙ = X∙} {n = m})
isConnectedIncl n conn 0 = subst (λ d → isConnectedFun d _) (sym (+-zero n)) (isConnIncl0 n conn)
isConnectedIncl n conn (suc m) = isConnIncl-ind _ _ _ conn (isConnectedIncl n conn m)
isConnectedIncl>n : (n : ℕ) → isConnected (1 + n) X
→ (m k : ℕ) → isConnectedFun ((1 + m) · n) (incl {X∙ = X∙} {n = k + m})
isConnectedIncl>n n conn m k = isConnectedFunSubtr _ (k · n) _
(subst (λ d → isConnectedFun d (incl {X∙ = X∙} {n = k + m}))
(nat-path n m k) (isConnectedIncl n conn (k + m)))
private
inl∞ : (n : ℕ) → 𝕁ames n → 𝕁ames∞
inl∞ _ = inl
isConnectedInl : (n : ℕ) → isConnected (1 + n) X
→ (m : ℕ) → isConnectedFun ((1 + m) · n) (inl∞ m)
isConnectedInl n conn m = isConnectedInl∞ _ _ _ (isConnectedIncl>n _ conn _)
|
{
"alphanum_fraction": 0.5663678583,
"avg_line_length": 34.0404411765,
"ext": "agda",
"hexsha": "b535067891baa160d41d5acb217ede7c0a68b5a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James/Inductive/PushoutFormula.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James/Inductive/PushoutFormula.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James/Inductive/PushoutFormula.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 4277,
"size": 9259
}
|
module InstanceArgumentsBraces where
record T' : Set where
record T'' : Set where
field a : T'
testT'' : T''
testT'' = record { a = record {}}
|
{
"alphanum_fraction": 0.6418918919,
"avg_line_length": 14.8,
"ext": "agda",
"hexsha": "6263ceffedba9acbc6527411bdef2baa8faa542e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/InstanceArgumentsBraces.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/InstanceArgumentsBraces.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/InstanceArgumentsBraces.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 148
}
|
module Prelude where
-- Booleans
data Bool : Set where
tt : Bool
ff : Bool
_||_ : Bool -> Bool -> Bool
tt || y = tt
ff || y = y
_&&_ : Bool -> Bool -> Bool
tt && y = y
ff && y = ff
if_then_else : {A : Set} -> Bool -> A -> A -> A
if tt then x else _ = x
if ff then _ else y = y
-- Eq "type class"
record Eq (A : Set) : Set where
field
_==_ : A -> A -> Bool
open Eq {{...}} public
-- Function composition
_∘_ : ∀ {x y z : Set} -> (y -> z) -> (x -> y) -> (x -> z)
(f ∘ g) x = f (g x)
-- Product type
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
uncurry : ∀ {x y z : Set} -> (x -> y -> z) -> (x × y) -> z
uncurry f (a , b) = f a b
-- Lists
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
infixr 20 _::_
infixr 15 _++_
[_] : ∀ {A} -> A -> List A
[ x ] = x :: []
_++_ : ∀ {A} -> List A -> List A -> List A
[] ++ l = l
(x :: xs) ++ l = x :: (xs ++ l)
foldr : ∀ {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f b [] = b
foldr f b (x :: xs) = f x (foldr f b xs)
map : ∀ {A B} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
zip : ∀ {A B} -> List A -> List B -> List (A × B)
zip [] _ = []
zip _ [] = []
zip (x :: xs) (y :: ys) = (x , y) :: zip xs ys
-- Bottom type
-- data ⊥ : Set where
-- ¬ : Set -> Set
-- ¬ A = A -> ⊥
-- Decidable propositions and relations:
-- Rel : Set -> Set₁
-- Rel a = a -> a -> Set
-- data Dec (P : Set) : Set where
-- yes : (p : P) → Dec P
-- no : (¬p : ¬ P) → Dec P
-- Decidable : {a : Set} → Rel a → Set
-- Decidable _∼_ = forall x y → Dec (x ∼ y)
-- Natural numbers
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
|
{
"alphanum_fraction": 0.4221218962,
"avg_line_length": 20.367816092,
"ext": "agda",
"hexsha": "ef138dc7eeea1454c37561c0f090113be03ac680",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tuura/selective-theory-agda",
"max_forks_repo_path": "src/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tuura/selective-theory-agda",
"max_issues_repo_path": "src/Prelude.agda",
"max_line_length": 59,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tuura/selective-theory-agda",
"max_stars_repo_path": "src/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-22T12:31:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-11T14:42:19.000Z",
"num_tokens": 667,
"size": 1772
}
|
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.Inference(x : X) where
import OutsideIn.TopLevel as TL
import OutsideIn.TypeSchema as TS
import OutsideIn.Expressions as E
import OutsideIn.Environments as V
import OutsideIn.Constraints as C
import OutsideIn.Inference.Solver as S
import OutsideIn.Inference.Prenexer as P
import OutsideIn.Inference.Separator as SP
import OutsideIn.Inference.ConstraintGen as CG
open S(x)
open P(x)
open SP(x)
open CG(x)
open X(x)
open TL(x)
open TS(x)
open E(x)
open V(x)
open C(x)
private
module PlusN-m {n} = Monad(PlusN-is-monad {n})
module QC-f = Functor(qconstraint-is-functor)
module Ax-f = Functor(axiomscheme-is-functor)
module Exp-f {ev}{s} = Functor(expression-is-functor₂ {ev}{s})
module TS-f {x} = Functor(type-schema-is-functor {x})
module Type-m = Monad(type-is-monad)
module Type-f = Functor(type-is-functor)
open Type-m
data _,_►_ {x ev : Set}⦃ eq : Eq x ⦄(Q : AxiomScheme x)(Γ : Environment ev x) : Program ev x → Set where
Empty : Q , Γ ► end
BindA : ∀ {r}{m}{e : Expression ev (x ⨁ m) r}{prog : Program (Ⓢ ev) x}{τ}{C : Constraint (x ⨁ m) Extended}{Qc}{f}{f′}
{C′ : Constraint ((x ⨁ m) ⨁ f) Flat}{r}{C′′ : SeparatedConstraint ((x ⨁ m) ⨁ f) r}{θ : (x ⨁ m) ⨁ f → Type ((x ⨁ m) ⨁ f′)}
→ TS-f.map (PlusN-m.unit {m}) ∘ Γ ► e ∶ τ ↝ C
→ C prenex: f , C′
→ C′ separate: r , C′′
→ let eq′ = PlusN-eq {m} eq in Ax-f.map (PlusN-m.unit {m}) Q , Qc , f solv► C′′ ↝ f′ , ε , θ
→ Q , ⟨ ∀′ m · Qc ⇒ τ ⟩, Γ ► prog
→ Q , Γ ► bind₂ m · e ∷ Qc ⇒ τ , prog
Bind : ∀{r}{e : Expression ev x r}{prog : Program (Ⓢ ev) x}{C : Constraint (Ⓢ x) Extended}{f}{C′ : Constraint (x ⨁ suc f) Flat}
{r′}{C′′ : SeparatedConstraint (x ⨁ suc f) r′}{n}{θ : x ⨁ suc f → Type (x ⨁ n)}{Qr}
→ TS-f.map (suc) ∘ Γ ► Exp-f.map suc e ∶ unit zero ↝ C
→ C prenex: f , C′
→ C′ separate: r′ , C′′
→ Q , ε , suc f solv► C′′ ↝ n , Qr , θ
→ Q , ⟨ ∀′ n · Qr ⇒ (θ (PlusN-m.unit {f} zero)) ⟩, Γ ► prog
→ Q , Γ ► bind₁ e , prog
go : {ev tv : Set}(Q : AxiomScheme tv)(Γ : Environment ev tv) → (eq : Eq tv) → (p : Program ev tv) → Ⓢ (Q , Γ ► p)
go Q Γ eq (end) = suc Empty
go {ev}{tv} Q Γ eq (bind₁ e , prog)
with genConstraint {ev}{Ⓢ tv} (TS-f.map suc ∘ Γ) (Exp-f.map suc e) (unit zero)
... | C , prf₁ with prenex C
... | f , C′ , prf₂ with separate C′
... | r , C′′ , prf₃ with solver eq (suc f) Q ε C′′
... | zero = zero
... | suc (m , Qr , θ , prf₄) with go Q (⟨ ∀′ m · Qr ⇒ (θ (PlusN-m.unit {f} zero)) ⟩, Γ) eq prog
... | zero = zero
... | suc prf₅ = suc (Bind prf₁ prf₂ prf₃ prf₄ prf₅)
go Q Γ eq (bind₂ m · e ∷ Qc ⇒ τ , prog)
with genConstraint (TS-f.map (PlusN-m.unit {m}) ∘ Γ) e τ
... | C , prf₁ with prenex C
... | f , C′ , prf₂ with separate C′
... | r , C′′ , prf₃ with solver (PlusN-eq {m} eq) f (Ax-f.map (PlusN-m.unit {m}) Q) Qc C′′
... | zero = zero
... | suc (f′ , Qr , θ , prf₄) with is-ε Qr
... | no _ = zero
... | yes prf₄′ with go Q (⟨ ∀′ m · Qc ⇒ τ ⟩, Γ) eq prog
... | zero = zero
... | suc prf₅ = let
eq′ = PlusN-eq {m} eq
in suc (BindA prf₁ prf₂ prf₃ (subst (λ Qr → Ax-f.map (PlusN-m.unit {m}) Q , Qc , f solv► C′′ ↝ f′ , Qr , θ ) prf₄′ prf₄) prf₅)
|
{
"alphanum_fraction": 0.5229172672,
"avg_line_length": 42.3048780488,
"ext": "agda",
"hexsha": "87344e0290671a8d3445c332f3bb95d74e4ba55e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Inference.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Inference.agda",
"max_line_length": 135,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Inference.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 1388,
"size": 3469
}
|
postulate
T : Set
pre : (T → T) → T
pre!_ : (T → T) → T
_post : T → Set
_+_ : T → T → T
_>>=_ : T → (T → T) → T
infix 5 pre!_ _>>=_
infix 4 _post
infixl 3 _+_
-- add parens
test-1a : Set
test-1a = {!pre λ x → x!} post
-- no parens
test-1b : Set
test-1b = {!pre (λ x → x)!} post
-- add parens
test-1c : Set
test-1c = {!pre! λ x → x!} post
-- no parens
test-1d : Set
test-1d = {!pre! (λ x → x)!} post
-- add parens
test-1e : T → Set
test-1e e = {!e >>= λ x → x!} post
-- no parens
test-1f : T → Set
test-1f e = {!e >>= (λ x → x)!} post
-- add parens
test-2a : Set
test-2a = pre {!λ x → x!} post
-- add parens
test-2b : Set
test-2b = pre! {!λ x → x!} post
-- no parens
test-3a : T
test-3a = pre {!λ x → x!}
-- no parens
test-3b : T
test-3b = pre! {!λ x → x!}
-- no parens
test-4a : T → T
test-4a e = e + {!pre λ x → x!}
-- no parens
test-4b : T → T
test-4b e = e + {!pre! λ x → x!}
|
{
"alphanum_fraction": 0.5049288061,
"avg_line_length": 14.9672131148,
"ext": "agda",
"hexsha": "f7521c3cae7209c3c9e0f5712341838c6d627898",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2718.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2718.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2718.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 437,
"size": 913
}
|
{-# OPTIONS --without-K #-}
module sets where
import sets.bool
import sets.empty
import sets.fin
import sets.nat
import sets.int
import sets.unit
import sets.vec
import sets.list
open import sets.properties
open import sets.finite
|
{
"alphanum_fraction": 0.7854077253,
"avg_line_length": 15.5333333333,
"ext": "agda",
"hexsha": "5d73650e6664f9eab8717bd050b87449ce9ff81e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets.agda",
"max_line_length": 27,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 54,
"size": 233
}
|
------------------------------------------------------------------------
-- Truncation, defined using a kind of Church encoding
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Partly following the HoTT book.
open import Equality
module H-level.Truncation.Church
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Prelude
open import Logical-equivalence using (_⇔_)
open import Bijection eq as Bijection using (_↔_)
open Derived-definitions-and-properties eq
open import Embedding eq hiding (_∘_)
open import Equality.Decidable-UIP eq
import Equality.Groupoid eq as EG
open import Equivalence eq as Eq using (_≃_; Is-equivalence)
import Equivalence.Half-adjoint eq as HA
open import Function-universe eq as F hiding (_∘_)
open import Groupoid eq
open import H-level eq as H-level
open import H-level.Closure eq
open import Nat eq
open import Preimage eq as Preimage using (_⁻¹_)
open import Surjection eq using (_↠_; Split-surjective)
-- Truncation.
∥_∥ : ∀ {a} → Type a → ℕ → (ℓ : Level) → Type (a ⊔ lsuc ℓ)
∥ A ∥ n ℓ = (P : Type ℓ) → H-level n P → (A → P) → P
-- If A is inhabited, then ∥ A ∥ n ℓ is also inhabited.
∣_∣ : ∀ {n ℓ a} {A : Type a} → A → ∥ A ∥ n ℓ
∣ x ∣ = λ _ _ f → f x
-- A special case of ∣_∣.
∣_∣₁ : ∀ {ℓ a} {A : Type a} → A → ∥ A ∥ 1 ℓ
∣ x ∣₁ = ∣_∣ {n = 1} x
-- The truncation produces types of the right h-level (assuming
-- extensionality).
truncation-has-correct-h-level :
∀ n {ℓ a} {A : Type a} →
Extensionality (a ⊔ lsuc ℓ) (a ⊔ ℓ) →
H-level n (∥ A ∥ n ℓ)
truncation-has-correct-h-level n {ℓ} {a} ext =
Π-closure (lower-extensionality a lzero ext) n λ _ →
Π-closure (lower-extensionality (a ⊔ lsuc ℓ) lzero ext) n λ h →
Π-closure (lower-extensionality (lsuc ℓ) a ext) n λ _ →
h
-- Primitive "recursion" for truncated types.
rec :
∀ n {a b} {A : Type a} {B : Type b} →
H-level n B →
(A → B) → ∥ A ∥ n b → B
rec _ h f x = x _ h f
private
-- The function rec computes in the right way.
rec-∣∣ :
∀ {n a b} {A : Type a} {B : Type b}
(h : H-level n B) (f : A → B) (x : A) →
rec _ h f ∣ x ∣ ≡ f x
rec-∣∣ _ _ _ = refl _
-- Map function.
∥∥-map : ∀ n {a b ℓ} {A : Type a} {B : Type b} →
(A → B) →
∥ A ∥ n ℓ → ∥ B ∥ n ℓ
∥∥-map _ f x = λ P h g → x P h (g ∘ f)
-- The truncation operator preserves logical equivalences.
∥∥-cong-⇔ : ∀ {n a b ℓ} {A : Type a} {B : Type b} →
A ⇔ B → ∥ A ∥ n ℓ ⇔ ∥ B ∥ n ℓ
∥∥-cong-⇔ A⇔B = record
{ to = ∥∥-map _ (_⇔_.to A⇔B)
; from = ∥∥-map _ (_⇔_.from A⇔B)
}
-- The truncation operator preserves bijections (assuming
-- extensionality).
∥∥-cong : ∀ {k n a b ℓ} {A : Type a} {B : Type b} →
Extensionality (a ⊔ b ⊔ lsuc ℓ) (a ⊔ b ⊔ ℓ) →
A ↔[ k ] B → ∥ A ∥ n ℓ ↔[ k ] ∥ B ∥ n ℓ
∥∥-cong {k} {n} {a} {b} {ℓ} ext A↝B = from-bijection (record
{ surjection = record
{ logical-equivalence = record
{ to = ∥∥-map _ (_↔_.to A↔B)
; from = ∥∥-map _ (_↔_.from A↔B)
}
; right-inverse-of = lemma (lower-extensionality a a ext) A↔B
}
; left-inverse-of = lemma (lower-extensionality b b ext) (inverse A↔B)
})
where
A↔B = from-isomorphism A↝B
lemma :
∀ {c d} {C : Type c} {D : Type d} →
Extensionality (d ⊔ lsuc ℓ) (d ⊔ ℓ) →
(C↔D : C ↔ D) (∥d∥ : ∥ D ∥ n ℓ) →
∥∥-map _ (_↔_.to C↔D) (∥∥-map _ (_↔_.from C↔D) ∥d∥) ≡ ∥d∥
lemma {d = d} ext C↔D ∥d∥ =
apply-ext (lower-extensionality d lzero ext) λ P →
apply-ext (lower-extensionality _ lzero ext) λ h →
apply-ext (lower-extensionality (lsuc ℓ) d ext) λ g →
∥d∥ P h (g ∘ _↔_.to C↔D ∘ _↔_.from C↔D) ≡⟨ cong (λ f → ∥d∥ P h (g ∘ f)) $
apply-ext (lower-extensionality (lsuc ℓ) ℓ ext)
(_↔_.right-inverse-of C↔D) ⟩∎
∥d∥ P h g ∎
-- The universe level can be decreased (unless it is zero).
with-lower-level :
∀ ℓ₁ {ℓ₂ a} n {A : Type a} →
∥ A ∥ n (ℓ₁ ⊔ ℓ₂) → ∥ A ∥ n ℓ₂
with-lower-level ℓ₁ _ x =
λ P h f → lower (x (↑ ℓ₁ P) (↑-closure _ h) (lift ∘ f))
private
-- The function with-lower-level computes in the right way.
with-lower-level-∣∣ :
∀ {ℓ₁ ℓ₂ a n} {A : Type a} (x : A) →
with-lower-level ℓ₁ {ℓ₂ = ℓ₂} n ∣ x ∣ ≡ ∣ x ∣
with-lower-level-∣∣ _ = refl _
-- ∥_∥ is downwards closed in the h-level.
downwards-closed :
∀ {m n a ℓ} {A : Type a} →
n ≤ m →
∥ A ∥ m ℓ → ∥ A ∥ n ℓ
downwards-closed n≤m x = λ P h f → x P (H-level.mono n≤m h) f
private
-- The function downwards-closed computes in the right way.
downwards-closed-∣∣ :
∀ {m n a ℓ} {A : Type a} (n≤m : n ≤ m) (x : A) →
downwards-closed {ℓ = ℓ} n≤m ∣ x ∣ ≡ ∣ x ∣
downwards-closed-∣∣ _ _ = refl _
-- The function rec can be used to define a kind of dependently typed
-- eliminator for the propositional truncation (assuming
-- extensionality).
prop-elim :
∀ {ℓ a p} {A : Type a} →
Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a ⊔ p) →
(P : ∥ A ∥ 1 ℓ → Type p) →
(∀ x → Is-proposition (P x)) →
((x : A) → P ∣ x ∣₁) →
∥ A ∥ 1 (lsuc ℓ ⊔ a ⊔ p) → (x : ∥ A ∥ 1 ℓ) → P x
prop-elim {ℓ} {a} {p} ext P P-prop f =
rec 1
(Π-closure (lower-extensionality lzero (ℓ ⊔ a) ext) 1 P-prop)
(λ x _ → subst P
(truncation-has-correct-h-level 1
(lower-extensionality lzero p ext) _ _)
(f x))
abstract
-- The eliminator gives the right result, up to propositional
-- equality, when applied to ∣ x ∣ and ∣ x ∣.
prop-elim-∣∣ :
∀ {ℓ a p} {A : Type a}
(ext : Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a ⊔ p))
(P : ∥ A ∥ 1 ℓ → Type p)
(P-prop : ∀ x → Is-proposition (P x))
(f : (x : A) → P ∣ x ∣₁) (x : A) →
prop-elim ext P P-prop f ∣ x ∣₁ ∣ x ∣₁ ≡ f x
prop-elim-∣∣ _ _ P-prop _ _ = P-prop _ _ _
-- Nested truncations can sometimes be flattened.
flatten↠ :
∀ {m n a ℓ} {A : Type a} →
Extensionality (a ⊔ lsuc ℓ) (a ⊔ ℓ) →
m ≤ n →
∥ ∥ A ∥ m ℓ ∥ n (a ⊔ lsuc ℓ) ↠ ∥ A ∥ m ℓ
flatten↠ ext m≤n = record
{ logical-equivalence = record
{ to = rec _
(H-level.mono m≤n
(truncation-has-correct-h-level _ ext))
F.id
; from = ∣_∣
}
; right-inverse-of = refl
}
flatten↔ :
∀ {a ℓ} {A : Type a} →
Extensionality (lsuc (a ⊔ lsuc ℓ)) (lsuc (a ⊔ lsuc ℓ)) →
(∥ ∥ A ∥ 1 ℓ ∥ 1 (a ⊔ lsuc ℓ) →
∥ ∥ A ∥ 1 ℓ ∥ 1 (lsuc (a ⊔ lsuc ℓ))) →
∥ ∥ A ∥ 1 ℓ ∥ 1 (a ⊔ lsuc ℓ) ↔ ∥ A ∥ 1 ℓ
flatten↔ ext resize = record
{ surjection = flatten↠ {m = 1} ext′ ≤-refl
; left-inverse-of = λ x →
prop-elim
ext
(λ x → ∣ rec 1
(H-level.mono (≤-refl {n = 1})
(truncation-has-correct-h-level 1 ext′))
F.id x ∣₁ ≡ x)
(λ _ → ⇒≡ 1 $ truncation-has-correct-h-level
1 (lower-extensionality lzero _ ext))
(λ _ → refl _)
(resize x)
x
}
where
ext′ = lower-extensionality _ _ ext
-- Surjectivity.
--
-- I'm not quite sure what the universe level of the truncation should
-- be, so I've included it as a parameter.
Surjective : ∀ {a b} ℓ {A : Type a} {B : Type b} →
(A → B) → Type (a ⊔ b ⊔ lsuc ℓ)
Surjective ℓ f = ∀ b → ∥ f ⁻¹ b ∥ 1 ℓ
-- The property Surjective ℓ f is a proposition (assuming
-- extensionality).
Surjective-propositional :
∀ {ℓ a b} {A : Type a} {B : Type b} {f : A → B} →
Extensionality (a ⊔ b ⊔ lsuc ℓ) (a ⊔ b ⊔ lsuc ℓ) →
Is-proposition (Surjective ℓ f)
Surjective-propositional {ℓ} {a} ext =
Π-closure (lower-extensionality (a ⊔ lsuc ℓ) lzero ext) 1 λ _ →
truncation-has-correct-h-level 1
(lower-extensionality lzero (lsuc ℓ) ext)
-- Split surjective functions are surjective.
Split-surjective→Surjective :
∀ {a b ℓ} {A : Type a} {B : Type b} {f : A → B} →
Split-surjective f → Surjective ℓ f
Split-surjective→Surjective s = λ b → ∣ s b ∣₁
-- Being both surjective and an embedding is equivalent to being an
-- equivalence.
--
-- This is Corollary 4.6.4 from the first edition of the HoTT book
-- (the proof is perhaps not quite identical).
surjective×embedding≃equivalence :
∀ {a b} ℓ {A : Type a} {B : Type b} {f : A → B} →
Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (lsuc (a ⊔ b ⊔ ℓ)) →
(Surjective (a ⊔ b ⊔ ℓ) f × Is-embedding f) ≃ Is-equivalence f
surjective×embedding≃equivalence {a} {b} ℓ {f = f} ext =
Eq.⇔→≃
(×-closure 1 (Surjective-propositional ext)
(Is-embedding-propositional
(lower-extensionality _ _ ext)))
(Eq.propositional (lower-extensionality _ _ ext) _)
(λ (is-surj , is-emb) →
_⇔_.from HA.Is-equivalence⇔Is-equivalence-CP $ λ y →
$⟨ is-surj y ⟩
∥ f ⁻¹ y ∥ 1 (a ⊔ b ⊔ ℓ) ↝⟨ with-lower-level ℓ 1 ⟩
∥ f ⁻¹ y ∥ 1 (a ⊔ b) ↝⟨ rec 1
(Contractible-propositional
(lower-extensionality _ _ ext))
(f ⁻¹ y ↝⟨ propositional⇒inhabited⇒contractible
(embedding→⁻¹-propositional is-emb y) ⟩□
Contractible (f ⁻¹ y) □) ⟩□
Contractible (f ⁻¹ y) □)
(λ is-eq →
(λ y → $⟨ HA.inverse is-eq y
, HA.right-inverse-of is-eq y
⟩
f ⁻¹ y ↝⟨ ∣_∣₁ ⟩□
∥ f ⁻¹ y ∥ 1 (a ⊔ b ⊔ ℓ) □)
, ($⟨ is-eq ⟩
Is-equivalence f ↝⟨ Embedding.is-embedding ∘ from-equivalence ∘ Eq.⟨ _ ,_⟩ ⟩□
Is-embedding f □))
-- If the underlying type has a certain h-level, then there is a split
-- surjection from corresponding truncations (if they are "big"
-- enough) to the type itself.
∥∥↠ : ∀ ℓ {a} {A : Type a} n →
H-level n A → ∥ A ∥ n (a ⊔ ℓ) ↠ A
∥∥↠ ℓ _ h = record
{ logical-equivalence = record
{ to = rec _ h F.id ∘ with-lower-level ℓ _
; from = ∣_∣
}
; right-inverse-of = refl
}
-- If the underlying type is a proposition, then propositional
-- truncations of the type are isomorphic to the type itself (if they
-- are "big" enough, and assuming extensionality).
∥∥↔ : ∀ ℓ {a} {A : Type a} →
Extensionality (lsuc (a ⊔ ℓ)) (a ⊔ ℓ) →
Is-proposition A → ∥ A ∥ 1 (a ⊔ ℓ) ↔ A
∥∥↔ ℓ ext A-prop = record
{ surjection = ∥∥↠ ℓ 1 A-prop
; left-inverse-of = λ _ →
truncation-has-correct-h-level 1 ext _ _
}
-- A simple isomorphism involving propositional truncation.
∥∥×↔ :
∀ {ℓ a} {A : Type a} →
Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a) →
∥ A ∥ 1 ℓ × A ↔ A
∥∥×↔ {ℓ} {A = A} ext =
∥ A ∥ 1 ℓ × A ↝⟨ ×-comm ⟩
A × ∥ A ∥ 1 ℓ ↝⟨ (drop-⊤-right λ a →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(truncation-has-correct-h-level 1 ext)
∣ a ∣₁) ⟩□
A □
-- A variant of ∥∥×↔, introduced to ensure that the right-inverse-of
-- proof is, by definition, simple (see right-inverse-of-∥∥×≃ below).
∥∥×≃ :
∀ {ℓ a} {A : Type a} →
Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a) →
(∥ A ∥ 1 ℓ × A) ≃ A
∥∥×≃ ext = Eq.↔→≃
proj₂
(λ x → ∣ x ∣₁ , x)
refl
(λ _ → cong (_, _) (truncation-has-correct-h-level 1 ext _ _))
private
right-inverse-of-∥∥×≃ :
∀ {ℓ a} {A : Type a}
(ext : Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a)) (x : A) →
_≃_.right-inverse-of (∥∥×≃ {ℓ = ℓ} ext) x ≡ refl x
right-inverse-of-∥∥×≃ _ x = refl (refl x)
-- ∥_∥ commutes with _×_ (assuming extensionality and a resizing
-- function for the propositional truncation).
∥∥×∥∥↔∥×∥ :
∀ {a b} ℓ {A : Type a} {B : Type b} →
Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ) →
(∀ {x} {X : Type x} →
∥ X ∥ 1 (a ⊔ b ⊔ ℓ) →
∥ X ∥ 1 (lsuc (a ⊔ b ⊔ ℓ))) →
let ℓ′ = a ⊔ b ⊔ ℓ in
(∥ A ∥ 1 ℓ′ × ∥ B ∥ 1 ℓ′) ↔ ∥ A × B ∥ 1 ℓ′
∥∥×∥∥↔∥×∥ _ ext resize = record
{ surjection = record
{ logical-equivalence = record
{ from = λ p → ∥∥-map 1 proj₁ p , ∥∥-map 1 proj₂ p
; to = λ { (x , y) →
rec 1
(truncation-has-correct-h-level 1 ext)
(λ x → rec 1
(truncation-has-correct-h-level 1 ext)
(λ y → ∣ x , y ∣₁)
(resize y))
(resize x) }
}
; right-inverse-of = λ _ → truncation-has-correct-h-level 1 ext _ _
}
; left-inverse-of = λ _ →
×-closure 1
(truncation-has-correct-h-level 1 ext)
(truncation-has-correct-h-level 1 ext)
_ _
}
-- If A is merely inhabited (at a certain level), then the
-- propositional truncation of A (at the same level) is isomorphic to
-- the unit type (assuming extensionality).
inhabited⇒∥∥↔⊤ :
∀ {ℓ a} {A : Type a} →
Extensionality (lsuc ℓ ⊔ a) (ℓ ⊔ a) →
∥ A ∥ 1 ℓ → ∥ A ∥ 1 ℓ ↔ ⊤
inhabited⇒∥∥↔⊤ ext ∥a∥ =
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(truncation-has-correct-h-level 1 ext)
∥a∥
-- If A is not inhabited, then the propositional truncation of A is
-- isomorphic to the empty type.
not-inhabited⇒∥∥↔⊥ :
∀ {ℓ₁ ℓ₂ a} {A : Type a} →
¬ A → ∥ A ∥ 1 ℓ₁ ↔ ⊥ {ℓ = ℓ₂}
not-inhabited⇒∥∥↔⊥ {A = A} =
¬ A ↝⟨ (λ ¬a ∥a∥ → rec 1 ⊥-propositional ¬a (with-lower-level _ 1 ∥a∥)) ⟩
¬ ∥ A ∥ 1 _ ↝⟨ inverse ∘ Bijection.⊥↔uninhabited ⟩□
∥ A ∥ 1 _ ↔ ⊥ □
-- The following two results come from "Generalizations of Hedberg's
-- Theorem" by Kraus, Escardó, Coquand and Altenkirch.
-- Types with constant endofunctions are "h-stable" (meaning that
-- "mere inhabitance" implies inhabitance).
constant-endofunction⇒h-stable :
∀ {a} {A : Type a} {f : A → A} →
Constant f → ∥ A ∥ 1 a → A
constant-endofunction⇒h-stable {a} {A} {f} c =
∥ A ∥ 1 a ↝⟨ rec 1 (fixpoint-lemma f c) (λ x → f x , c (f x) x) ⟩
(∃ λ (x : A) → f x ≡ x) ↝⟨ proj₁ ⟩□
A □
-- Having a constant endofunction is logically equivalent to being
-- h-stable (assuming extensionality).
constant-endofunction⇔h-stable :
∀ {a} {A : Type a} →
Extensionality (lsuc a) a →
(∃ λ (f : A → A) → Constant f) ⇔ (∥ A ∥ 1 a → A)
constant-endofunction⇔h-stable ext = record
{ to = λ { (_ , c) → constant-endofunction⇒h-stable c }
; from = λ f → f ∘ ∣_∣₁ , λ x y →
f ∣ x ∣₁ ≡⟨ cong f $ truncation-has-correct-h-level 1 ext _ _ ⟩∎
f ∣ y ∣₁ ∎
}
-- The following three lemmas were communicated to me by Nicolai
-- Kraus. (In slightly different form.) They are closely related to
-- Lemma 2.1 in his paper "The General Universal Property of the
-- Propositional Truncation".
-- A variant of ∥∥×≃.
drop-∥∥ :
∀ ℓ {a b} {A : Type a} {B : A → Type b} →
Extensionality (lsuc (a ⊔ ℓ)) (a ⊔ b ⊔ ℓ) →
(∥ A ∥ 1 (a ⊔ ℓ) → ∀ x → B x)
↔
(∀ x → B x)
drop-∥∥ ℓ {a} {b} {A} {B} ext =
(∥ A ∥ 1 _ → ∀ x → B x) ↝⟨ inverse currying ⟩
((p : ∥ A ∥ 1 _ × A) → B (proj₂ p)) ↝⟨ Π-cong (lower-extensionality lzero (a ⊔ ℓ) ext)
(∥∥×≃ (lower-extensionality lzero b ext))
(λ _ → F.id) ⟩□
(∀ x → B x) □
-- Another variant of ∥∥×≃.
push-∥∥ :
∀ ℓ {a b c} {A : Type a} {B : A → Type b} {C : (∀ x → B x) → Type c} →
Extensionality (lsuc (a ⊔ ℓ)) (a ⊔ b ⊔ c ⊔ ℓ) →
(∥ A ∥ 1 (a ⊔ ℓ) → ∃ λ (f : ∀ x → B x) → C f)
↔
(∃ λ (f : ∀ x → B x) → ∥ A ∥ 1 (a ⊔ ℓ) → C f)
push-∥∥ ℓ {a} {b} {c} {A} {B} {C} ext =
(∥ A ∥ 1 _ → ∃ λ (f : ∀ x → B x) → C f) ↝⟨ ΠΣ-comm ⟩
(∃ λ (f : ∥ A ∥ 1 _ → ∀ x → B x) → ∀ ∥x∥ → C (f ∥x∥)) ↝⟨ Σ-cong (drop-∥∥ ℓ (lower-extensionality lzero c ext)) (λ f →
∀-cong (lower-extensionality lzero (a ⊔ b ⊔ ℓ) ext) λ ∥x∥ →
≡⇒↝ _ $ cong C $ apply-ext (lower-extensionality _ (a ⊔ c ⊔ ℓ) ext) λ x →
f ∥x∥ x ≡⟨ cong (λ ∥x∥ → f ∥x∥ x) $
truncation-has-correct-h-level 1
(lower-extensionality lzero (b ⊔ c) ext)
_ _ ⟩
f ∣ x ∣₁ x ≡⟨ sym $ subst-refl _ _ ⟩∎
subst B (refl x) (f ∣ x ∣₁ x) ∎) ⟩□
(∃ λ (f : ∀ x → B x) → ∥ A ∥ 1 _ → C (λ x → f x)) □
-- This is an instance of a variant of Lemma 2.1 from "The General
-- Universal Property of the Propositional Truncation" by Kraus.
drop-∥∥₃ :
∀ ℓ {a b c d}
{A : Type a} {B : A → Type b} {C : A → (∀ x → B x) → Type c}
{D : A → (f : ∀ x → B x) → (∀ x → C x f) → Type d} →
Extensionality (lsuc (a ⊔ ℓ)) (a ⊔ b ⊔ c ⊔ d ⊔ ℓ) →
(∥ A ∥ 1 (a ⊔ ℓ) →
∃ λ (f : ∀ x → B x) → ∃ λ (g : ∀ x → C x f) → ∀ x → D x f g)
↔
(∃ λ (f : ∀ x → B x) → ∃ λ (g : ∀ x → C x f) → ∀ x → D x f g)
drop-∥∥₃ ℓ {b = b} {c} {A = A} {B} {C} {D} ext =
(∥ A ∥ 1 _ →
∃ λ (f : ∀ x → B x) → ∃ λ (g : ∀ x → C x f) → ∀ x → D x f g) ↝⟨ push-∥∥ ℓ ext ⟩
(∃ λ (f : ∀ x → B x) →
∥ A ∥ 1 _ → ∃ λ (g : ∀ x → C x f) → ∀ x → D x f g) ↝⟨ (∃-cong λ _ →
push-∥∥ ℓ (lower-extensionality lzero b ext)) ⟩
(∃ λ (f : ∀ x → B x) → ∃ λ (g : ∀ x → C x f) →
∥ A ∥ 1 _ → ∀ x → D x f g) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
drop-∥∥ ℓ (lower-extensionality lzero (b ⊔ c) ext)) ⟩□
(∃ λ (f : ∀ x → B x) → ∃ λ (g : ∀ x → C x f) → ∀ x → D x f g) □
-- Having a coherently constant function into a groupoid is equivalent
-- to having a function from a propositionally truncated type into the
-- groupoid (assuming extensionality). This result is Proposition 2.3
-- in "The General Universal Property of the Propositional Truncation"
-- by Kraus.
Coherently-constant :
∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Coherently-constant f =
∃ λ (c : Constant f) →
∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃
coherently-constant-function≃∥inhabited∥⇒inhabited :
∀ {a b} ℓ {A : Type a} {B : Type b} →
Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ) →
H-level 3 B →
(∃ λ (f : A → B) → Coherently-constant f) ≃ (∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B)
coherently-constant-function≃∥inhabited∥⇒inhabited {a} {b} ℓ {A} {B}
ext B-groupoid =
(∃ λ (f : A → B) → Coherently-constant f) ↔⟨ inverse $ drop-∥∥₃ (b ⊔ ℓ) ext ⟩
(∥ A ∥ 1 ℓ′ → ∃ λ (f : A → B) → Coherently-constant f) ↝⟨ ∀-cong (lower-extensionality lzero ℓ ext) (inverse ∘ equivalence₂) ⟩□
(∥ A ∥ 1 ℓ′ → B) □
where
ℓ′ = a ⊔ b ⊔ ℓ
rearrangement-lemma = λ a₀ →
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ ∃-comm ⟩
(∃ λ (f : A → B) →
∃ λ (f₁ : B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) →
∃ λ (f₁ : B) →
∃ λ (c : Constant f) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (f₁ : B) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-cong λ _ → ∃-cong λ _ → ×-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (d₂ : (a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) →
trans (c a₀ a₀) (c₁ a₀) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-cong λ _ → ∃-comm) ⟩□
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₂ : (a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
trans (c a₀ a₀) (c₁ a₀) ≡ c₂) □
equivalence₁ : A → (B ≃ ∃ λ (f : A → B) → Coherently-constant f)
equivalence₁ a₀ = Eq.↔⇒≃ (
B ↝⟨ (inverse $ drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 0 λ _ →
singleton-contractible _) ⟩
(∃ λ (f₁ : B) →
(a : A) → ∃ λ (b : B) → b ≡ f₁) ↝⟨ (∃-cong λ _ → ΠΣ-comm) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → (a : A) → f a ≡ f₁) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → inverse $ drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure (lower-extensionality _ ℓ ext) 0 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 0 λ _ →
singleton-contractible _) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∀ a₁ a₂ → ∃ λ (c : f a₁ ≡ f a₂) → c ≡ trans (c₁ a₁) (sym (c₁ a₂))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∀-cong (lower-extensionality _ ℓ ext) λ _ →
∀-cong (lower-extensionality _ (a ⊔ ℓ) ext) λ _ →
∃-cong λ _ → ≡⇒↝ _ $ sym $ [trans≡]≡[≡trans-symʳ] _ _ _) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∀ a₁ a₂ → ∃ λ (c : f a₁ ≡ f a₂) → trans c (c₁ a₂) ≡ c₁ a₁) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∀-cong (lower-extensionality _ ℓ ext) λ _ →
ΠΣ-comm) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∀ a₁ → ∃ λ (c : ∀ a₂ → f a₁ ≡ f a₂) →
∀ a₂ → trans (c a₂) (c₁ a₂) ≡ c₁ a₁) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ΠΣ-comm) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) → ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
inverse $ drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → trans (c a₀ a₀) (c₁ a₀) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ c₁ → ∃-cong λ c → ∃-cong λ d₁ →
∃-cong λ _ → inverse $ drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure (lower-extensionality _ ℓ ext) 1 λ _ →
Π-closure (lower-extensionality _ ℓ ext) 1 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 1 λ _ →
B-groupoid)
(λ a₁ a₂ a₃ →
trans (c a₁ a₂) (c a₂ a₃) ≡⟨ cong₂ trans (≡⇒↝ implication
([trans≡]≡[≡trans-symʳ] _ _ _) (d₁ _ _))
(≡⇒↝ implication
([trans≡]≡[≡trans-symʳ] _ _ _) (d₁ _ _)) ⟩
trans (trans (c₁ a₁) (sym (c₁ a₂)))
(trans (c₁ a₂) (sym (c₁ a₃))) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (trans (c₁ a₁) (sym (c₁ a₂))) (c₁ a₂))
(sym (c₁ a₃)) ≡⟨ cong (flip trans _) $ trans-[trans-sym]- _ _ ⟩
trans (c₁ a₁) (sym (c₁ a₃)) ≡⟨ sym $ ≡⇒↝ implication
([trans≡]≡[≡trans-symʳ] _ _ _) (d₁ _ _) ⟩∎
c a₁ a₃ ∎)) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ c₁ → ∃-cong λ c → ∃-cong λ d₁ →
∃-cong λ c₂ → ∃-cong λ d₃ → inverse $ drop-⊤-right λ d →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 1 λ _ →
B-groupoid)
(λ a →
trans (c a₀ a) (c₁ a) ≡⟨ cong (λ x → trans x _) $ sym $ d _ _ _ ⟩
trans (trans (c a₀ a₀) (c a₀ a)) (c₁ a) ≡⟨ trans-assoc _ _ _ ⟩
trans (c a₀ a₀) (trans (c a₀ a) (c₁ a)) ≡⟨ cong (trans _) $ d₁ _ _ ⟩
trans (c a₀ a₀) (c₁ a₀) ≡⟨ d₃ ⟩∎
c₂ ∎)) ⟩
(∃ λ (f₁ : B) →
∃ λ (f : A → B) → ∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (c : Constant f) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
∃ λ (c₂ : f a₀ ≡ f₁) → ∃ λ (d₃ : trans (c a₀ a₀) (c₁ a₀) ≡ c₂) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ rearrangement-lemma a₀ ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₂ : (a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) →
∃ λ (d₁ : ∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) →
trans (c a₀ a₀) (c₁ a₀) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-cong λ _ → ∃-cong λ d₂ → drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(B-groupoid)
(d₂ _)) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
∃ λ (d₂ : (a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) →
∀ a₁ a₂ → trans (c a₁ a₂) (c₁ a₂) ≡ c₁ a₁) ↝⟨ (∃-cong λ _ → ∃-cong λ c → ∃-cong λ d → ∃-cong λ _ → ∃-cong λ c₂ →
∃-cong λ c₁ → drop-⊤-right λ d₂ →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure (lower-extensionality _ ℓ ext) 1 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 1 λ _ →
B-groupoid)
(λ a₁ a₂ →
trans (c a₁ a₂) (c₁ a₂) ≡⟨ cong₂ trans (sym $ d _ _ _)
(≡⇒↝ implication
([trans≡]≡[≡trans-symˡ] _ _ _) (d₂ _)) ⟩
trans (trans (c a₁ a₀) (c a₀ a₂)) (trans (sym (c a₀ a₂)) c₂) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (trans (c a₁ a₀) (c a₀ a₂)) (sym (c a₀ a₂))) c₂ ≡⟨ cong (flip trans _) $ trans-[trans]-sym _ _ ⟩
trans (c a₁ a₀) c₂ ≡⟨ cong (trans _) $ sym $ d₂ _ ⟩
trans (c a₁ a₀) (trans (c a₀ a₁) (c₁ a₁)) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (c a₁ a₀) (c a₀ a₁)) (c₁ a₁) ≡⟨ cong (flip trans _) $ d _ _ _ ⟩
trans (c a₁ a₁) (c₁ a₁) ≡⟨ cong (flip trans _) $
Groupoid.idempotent⇒≡id (EG.groupoid _) (d _ _ _) ⟩
trans (refl _) (c₁ a₁) ≡⟨ trans-reflˡ _ ⟩∎
c₁ a₁ ∎)) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
∃ λ (c₁ : (a : A) → f a ≡ f₁) →
(a : A) → trans (c a₀ a) (c₁ a) ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
inverse ΠΣ-comm) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
(a : A) → ∃ λ (c₁ : f a ≡ f₁) → trans (c a₀ a) c₁ ≡ c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∀-cong (lower-extensionality _ (a ⊔ ℓ) ext) λ _ → ∃-cong λ _ →
≡⇒↝ _ $ [trans≡]≡[≡trans-symˡ] _ _ _) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → ∃ λ (c₂ : f a₀ ≡ f₁) →
(a : A) → ∃ λ (c₁ : f a ≡ f₁) → c₁ ≡ trans (sym (c a₀ a)) c₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 0 λ _ →
singleton-contractible _) ⟩
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∃ λ (d : ∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) →
∃ λ (f₁ : B) → f a₀ ≡ f₁) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩□
(∃ λ (f : A → B) → ∃ λ (c : Constant f) →
∀ a₁ a₂ a₃ → trans (c a₁ a₂) (c a₂ a₃) ≡ c a₁ a₃) □)
-- An alternative implementation of the forward component of the
-- equivalence above (with shorter proofs).
to : B → ∃ λ (f : A → B) → Coherently-constant f
to b =
(λ _ → b)
, (λ _ _ → refl b)
, (λ _ _ _ → trans-refl-refl)
to-is-an-equivalence : A → Is-equivalence to
to-is-an-equivalence a₀ =
Eq.respects-extensional-equality
(λ b →
Σ-≡,≡→≡ (refl _) $
Σ-≡,≡→≡
(proj₁ (subst Coherently-constant
(refl _)
(proj₂ (_≃_.to (equivalence₁ a₀) b))) ≡⟨ cong proj₁ $ subst-refl Coherently-constant _ ⟩
(λ _ _ → trans (refl b) (sym (refl b))) ≡⟨ (apply-ext (lower-extensionality _ ℓ ext) λ _ →
apply-ext (lower-extensionality _ (a ⊔ ℓ) ext) λ _ →
trans-symʳ _) ⟩∎
(λ _ _ → refl b) ∎)
((Π-closure (lower-extensionality _ ℓ ext) 1 λ _ →
Π-closure (lower-extensionality _ ℓ ext) 1 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 1 λ _ →
B-groupoid) _ _))
(_≃_.is-equivalence (equivalence₁ a₀))
-- The forward component of the equivalence above does not depend on
-- the value a₀ of type A, so it suffices to assume that A is merely
-- inhabited.
equivalence₂ :
∥ A ∥ 1 ℓ′ → (B ≃ ∃ λ (f : A → B) → Coherently-constant f)
equivalence₂ ∥a∥ =
Eq.⟨ to
, rec 1
(Eq.propositional (lower-extensionality _ ℓ ext) _)
to-is-an-equivalence
(with-lower-level ℓ 1 ∥a∥)
⟩
-- Having a constant function into a set is equivalent to having a
-- function from a propositionally truncated type into the set
-- (assuming extensionality). The statement of this result is that of
-- Proposition 2.2 in "The General Universal Property of the
-- Propositional Truncation" by Kraus, but it uses a different proof:
-- as observed by Kraus this result follows from Proposition 2.3.
constant-function≃∥inhabited∥⇒inhabited :
∀ {a b} ℓ {A : Type a} {B : Type b} →
Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ) →
Is-set B →
(∃ λ (f : A → B) → Constant f) ≃ (∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B)
constant-function≃∥inhabited∥⇒inhabited {a} {b} ℓ {A} {B} ext B-set =
(∃ λ (f : A → B) → Constant f) ↔⟨ (∃-cong λ f → inverse $ drop-⊤-right λ c →
_⇔_.to contractible⇔↔⊤ $
Π-closure (lower-extensionality _ ℓ ext) 0 λ _ →
Π-closure (lower-extensionality _ ℓ ext) 0 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 0 λ _ →
+⇒≡ B-set) ⟩
(∃ λ (f : A → B) → Coherently-constant f) ↝⟨ coherently-constant-function≃∥inhabited∥⇒inhabited ℓ ext (mono₁ 2 B-set) ⟩□
(∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B) □
private
-- One direction of the proposition above computes in the right way.
to-constant-function≃∥inhabited∥⇒inhabited :
∀ {a b} ℓ {A : Type a} {B : Type b}
(ext : Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ))
(B-set : Is-set B)
(f : ∃ λ (f : A → B) → Constant f) (x : A) →
_≃_.to (constant-function≃∥inhabited∥⇒inhabited ℓ ext B-set)
f ∣ x ∣₁ ≡ proj₁ f x
to-constant-function≃∥inhabited∥⇒inhabited _ _ _ _ _ = refl _
-- The propositional truncation's universal property (defined using
-- extensionality).
--
-- As observed by Kraus this result follows from Proposition 2.2 in
-- his "The General Universal Property of the Propositional
-- Truncation".
universal-property :
∀ {a b} ℓ {A : Type a} {B : Type b} →
Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ) →
Is-proposition B →
(∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B) ≃ (A → B)
universal-property {a = a} {b} ℓ {A} {B} ext B-prop =
Eq.with-other-function
((∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B) ↝⟨ inverse $ constant-function≃∥inhabited∥⇒inhabited ℓ ext (mono₁ 1 B-prop) ⟩
(∃ λ (f : A → B) → Constant f) ↔⟨ (drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure (lower-extensionality _ ℓ ext) 0 λ _ →
Π-closure (lower-extensionality _ (a ⊔ ℓ) ext) 0 λ _ →
+⇒≡ B-prop) ⟩□
(A → B) □)
(_∘ ∣_∣₁)
(λ f → apply-ext (lower-extensionality _ (a ⊔ ℓ) ext) λ x →
subst (const B) (refl x) (f ∣ x ∣₁) ≡⟨ subst-refl _ _ ⟩∎
f ∣ x ∣₁ ∎)
private
-- The universal property computes in the right way.
to-universal-property :
∀ {a b} ℓ {A : Type a} {B : Type b}
(ext : Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ))
(B-prop : Is-proposition B)
(f : ∥ A ∥ 1 (a ⊔ b ⊔ ℓ) → B) →
_≃_.to (universal-property ℓ ext B-prop) f ≡ f ∘ ∣_∣₁
to-universal-property _ _ _ _ = refl _
from-universal-property :
∀ {a b} ℓ {A : Type a} {B : Type b}
(ext : Extensionality (lsuc (a ⊔ b ⊔ ℓ)) (a ⊔ b ⊔ ℓ))
(B-prop : Is-proposition B)
(f : A → B) (x : A) →
_≃_.from (universal-property ℓ ext B-prop) f ∣ x ∣₁ ≡ f x
from-universal-property _ _ _ _ _ = refl _
-- Some properties of an imagined "real" /propositional/ truncation.
module Real-propositional-truncation
(∥_∥ʳ : ∀ {a} → Type a → Type a)
(∣_∣ʳ : ∀ {a} {A : Type a} → A → ∥ A ∥ʳ)
(truncation-is-proposition :
∀ {a} {A : Type a} → Is-proposition ∥ A ∥ʳ)
(recʳ :
∀ {a b} {A : Type a} {B : Type b} →
Is-proposition B →
(A → B) → ∥ A ∥ʳ → B)
where
-- The function recʳ can be used to define a dependently typed
-- eliminator (assuming extensionality).
elimʳ :
∀ {a p} {A : Type a} →
Extensionality a p →
(P : ∥ A ∥ʳ → Type p) →
(∀ x → Is-proposition (P x)) →
((x : A) → P ∣ x ∣ʳ) →
(x : ∥ A ∥ʳ) → P x
elimʳ {A = A} ext P P-prop f x =
recʳ {A = A}
{B = ∀ x → P x}
(Π-closure ext 1 P-prop)
(λ x _ → subst P
(truncation-is-proposition _ _)
(f x))
x
x
-- The eliminator gives the right result, up to propositional
-- equality, when applied to ∣ x ∣ʳ.
elimʳ-∣∣ʳ :
∀ {a p} {A : Type a}
(ext : Extensionality a p)
(P : ∥ A ∥ʳ → Type p)
(P-prop : ∀ x → Is-proposition (P x))
(f : (x : A) → P ∣ x ∣ʳ)
(x : A) →
elimʳ ext P P-prop f ∣ x ∣ʳ ≡ f x
elimʳ-∣∣ʳ ext P P-prop f x =
P-prop _ _ _
-- The "real" propositional truncation is isomorphic to the one
-- defined above (assuming extensionality).
isomorphic :
∀ {ℓ a} {A : Type a} →
Extensionality (lsuc (a ⊔ ℓ)) (a ⊔ ℓ) →
∥ A ∥ʳ ↔ ∥ A ∥ 1 (a ⊔ ℓ)
isomorphic {ℓ} ext = record
{ surjection = record
{ logical-equivalence = record
{ to = recʳ (truncation-has-correct-h-level 1 ext) ∣_∣₁
; from = lower {ℓ = ℓ} ∘
rec 1
(↑-closure 1 truncation-is-proposition)
(lift ∘ ∣_∣ʳ)
}
; right-inverse-of = λ _ →
truncation-has-correct-h-level 1 ext _ _
}
; left-inverse-of = λ _ → truncation-is-proposition _ _
}
-- The axiom of choice, in one of the alternative forms given in the
-- HoTT book (§3.8).
--
-- The HoTT book uses a "real" propositional truncation, rather than
-- the defined one used here. Note that I don't know if the universe
-- levels used below (b ⊔ ℓ and a ⊔ b ⊔ ℓ) make sense. However, in the
-- presence of a "real" propositional truncation (and extensionality)
-- they can be dropped (see Real-propositional-truncation.isomorphic).
Axiom-of-choice : (a b ℓ : Level) → Type (lsuc (a ⊔ b ⊔ ℓ))
Axiom-of-choice a b ℓ =
{A : Type a} {B : A → Type b} →
Is-set A → (∀ x → ∥ B x ∥ 1 (b ⊔ ℓ)) → ∥ (∀ x → B x) ∥ 1 (a ⊔ b ⊔ ℓ)
|
{
"alphanum_fraction": 0.4026660933,
"avg_line_length": 45.111542192,
"ext": "agda",
"hexsha": "38c92d9b004f4b8a015845ffc681fe7da92d73e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/H-level/Truncation/Church.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/H-level/Truncation/Church.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/H-level/Truncation/Church.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 17934,
"size": 46510
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Truncation
open import lib.types.Groupoid
open import lib.types.PathSet
module lib.groupoids.FundamentalPreGroupoid {i} (A : Type i) where
fundamental-pregroupoid : PreGroupoid i i
fundamental-pregroupoid = record
{ El = A
; Arr = _=₀_ {A = A}
; Arr-level = λ _ _ → Trunc-level
; groupoid-struct = record
{ ident = idp₀
; inv = !₀
; comp = _∙₀_
; unit-l = ∙₀-unit-l
; assoc = ∙₀-assoc
; inv-l = !₀-inv-l
}
}
|
{
"alphanum_fraction": 0.6049822064,
"avg_line_length": 23.4166666667,
"ext": "agda",
"hexsha": "4c8e9b01f3cf6961a64c01096d91b0479404414d",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groupoids/FundamentalPreGroupoid.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groupoids/FundamentalPreGroupoid.agda",
"max_line_length": 66,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groupoids/FundamentalPreGroupoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 180,
"size": 562
}
|
------------------------------------------------------------------------
-- Properties satisfied by total orders
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Props.TotalOrder (t : TotalOrder) where
open Relation.Binary.TotalOrder t
open import Relation.Binary.Consequences
decTotalOrder : Decidable _≈_ → DecTotalOrder
decTotalOrder ≟ = record
{ isDecTotalOrder = record
{ isTotalOrder = isTotalOrder
; _≟_ = ≟
; _≤?_ = total+dec⟶dec reflexive antisym total ≟
}
}
|
{
"alphanum_fraction": 0.5219594595,
"avg_line_length": 29.6,
"ext": "agda",
"hexsha": "63c1559181b8ead114feea3cbb156f9ebf7d055e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Props/TotalOrder.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Props/TotalOrder.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Props/TotalOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 125,
"size": 592
}
|
module Slides where
import Background
import OpenTheory
import OpenTheory2
import ClosedTheory
import ClosedTheory2
import ClosedTheory3
import ClosedTheory4
|
{
"alphanum_fraction": 0.8867924528,
"avg_line_length": 15.9,
"ext": "agda",
"hexsha": "3840c74d3e98adfddca92e1c59fff8e090ac3618",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z",
"max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/generic-elim",
"max_forks_repo_path": "slides/Slides.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/generic-elim",
"max_issues_repo_path": "slides/Slides.agda",
"max_line_length": 20,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/generic-elim",
"max_stars_repo_path": "slides/Slides.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z",
"num_tokens": 36,
"size": 159
}
|
{-# OPTIONS --without-K --safe #-}
open import Data.Nat using (ℕ)
module Categories.Category.Construction.Fin (n : ℕ) where
open import Level
open import Data.Fin.Properties
open import Categories.Category
open import Categories.Category.Construction.Thin 0ℓ (≤-poset n)
Fin : Category 0ℓ 0ℓ 0ℓ
Fin = Thin
|
{
"alphanum_fraction": 0.7524115756,
"avg_line_length": 20.7333333333,
"ext": "agda",
"hexsha": "7de3eb278f035af308a6b36d6326edc7dce30288",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Fin.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Fin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 88,
"size": 311
}
|
-- Andreas, 2016-12-09, issue #2331
-- Testcase from Nisse's application
open import Common.Size
data D (i : Size) : Set where
c : (j : Size< i) → D i
postulate
f : (i : Size) → ((j : Size< i) → D j → Set) → Set
module Mutual where
mutual
test : (i : Size) → D i → Set
test i (c j) = f j (helper i j)
helper : (i : Size) (j : Size< i) (k : Size< j) → D k → Set
helper i j k = test k
module Where where
test : (i : Size) → D i → Set
test i (c j) = f j helper
where
helper : (k : Size< j) → D k → Set
helper k = test k
-- While k is an unusable size per se, in combination with the usable size j
-- (which comes from a inductive pattern match)
-- it should be fine to certify termination.
|
{
"alphanum_fraction": 0.5893587995,
"avg_line_length": 24.4333333333,
"ext": "agda",
"hexsha": "b256db7ae11f70b8fd1ed96ed2fd8668ee4ccf7d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/features/Issue2331.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/features/Issue2331.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/features/Issue2331.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 252,
"size": 733
}
|
------------------------------------------------------------------------
-- The torus, defined as a HIT
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- This module is based on the discussion of the torus in the HoTT
-- book.
-- The module is parametrised by a notion of equality. The higher
-- constructors of the HIT defining the torus use path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Torus
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Circle eq as Circle using (𝕊¹; base; loopᴾ)
private
variable
a p : Level
A : Type a
P : A → Type p
------------------------------------------------------------------------
-- The torus
mutual
-- The torus.
data T² : Type where
base hub : T²
loop₁ᴾ loop₂ᴾ : base P.≡ base
spokeᴾ : (x : 𝕊¹) → rimᴾ x P.≡ hub
private
-- A synonym used to work around an Agda restriction.
base′ = base
-- A function used to define the spoke constructor.
--
-- Note that this function is defined using Circle.recᴾ, not
-- Circle.rec.
rimᴾ : 𝕊¹ → T²
rimᴾ = Circle.recᴾ base loop₁₂₋₁₋₂ᴾ
-- A loop.
loop₁₂₋₁₋₂ᴾ : base′ P.≡ base′
loop₁₂₋₁₋₂ᴾ =
base P.≡⟨ loop₁ᴾ ⟩
base P.≡⟨ loop₂ᴾ ⟩
base P.≡⟨ P.sym loop₁ᴾ ⟩
base P.≡⟨ P.sym loop₂ᴾ ⟩∎
base ∎
-- The constructors (and loop₁₂₋₁₋₂ᴾ) expressed using _≡_ instead of
-- paths.
loop₁ : base ≡ base
loop₁ = _↔_.from ≡↔≡ loop₁ᴾ
loop₂ : base ≡ base
loop₂ = _↔_.from ≡↔≡ loop₂ᴾ
loop₁₂₋₁₋₂ : base ≡ base
loop₁₂₋₁₋₂ = _↔_.from ≡↔≡ loop₁₂₋₁₋₂ᴾ
spoke : (x : 𝕊¹) → rimᴾ x ≡ hub
spoke = _↔_.from ≡↔≡ ∘ spokeᴾ
-- A variant of rimᴾ, defined using Circle.rec and loop₁₂₋₁₋₂.
rim : 𝕊¹ → T²
rim = Circle.rec base loop₁₂₋₁₋₂
-- The functions rim and rimᴾ are pointwise equal.
rim≡rimᴾ : ∀ x → rim x ≡ rimᴾ x
rim≡rimᴾ = Circle.elim
_
(refl _)
(subst (λ x → rim x ≡ rimᴾ x) Circle.loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong rim Circle.loop))
(trans (refl _) (cong rimᴾ Circle.loop)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (sym (cong rim Circle.loop)) (cong rimᴾ Circle.loop) ≡⟨ cong₂ (trans ∘ sym) Circle.rec-loop lemma ⟩
trans (sym loop₁₂₋₁₋₂) loop₁₂₋₁₋₂ ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
where
lemma =
cong rimᴾ Circle.loop ≡⟨ cong≡cong ⟩
_↔_.from ≡↔≡ (P.cong rimᴾ loopᴾ) ≡⟨⟩
_↔_.from ≡↔≡ loop₁₂₋₁₋₂ᴾ ≡⟨⟩
loop₁₂₋₁₋₂ ∎
------------------------------------------------------------------------
-- Eliminators expressed using paths
-- A dependent eliminator, expressed using paths.
record Elimᴾ₀ (P : T² → Type p) : Type p where
no-eta-equality
field
baseʳ : P base
loop₁ʳ : P.[ (λ i → P (loop₁ᴾ i)) ] baseʳ ≡ baseʳ
loop₂ʳ : P.[ (λ i → P (loop₂ᴾ i)) ] baseʳ ≡ baseʳ
-- A dependent path.
loop₁₂₋₁₋₂ʳ : P.[ (λ i → P (loop₁₂₋₁₋₂ᴾ i)) ] baseʳ ≡ baseʳ
loop₁₂₋₁₋₂ʳ =
baseʳ P.≡⟨ loop₁ʳ ⟩[ P ]
baseʳ P.≡⟨ loop₂ʳ ⟩[ P ]
baseʳ P.≡⟨ P.hsym loop₁ʳ ⟩[ P ]
baseʳ P.≡⟨ P.hsym loop₂ʳ ⟩∎h
baseʳ ∎
-- A special case of elimᴾ, used in the type of elimᴾ.
elimᴾ-rimᴾ : (x : 𝕊¹) → P (rimᴾ x)
elimᴾ-rimᴾ = Circle.elimᴾ (P ∘ rimᴾ) baseʳ loop₁₂₋₁₋₂ʳ
record Elimᴾ (P : T² → Type p) : Type p where
no-eta-equality
field
elimᴾ₀ : Elimᴾ₀ P
open Elimᴾ₀ elimᴾ₀ public
field
hubʳ : P hub
spokeʳ : (x : 𝕊¹) → P.[ (λ i → P (spokeᴾ x i)) ] elimᴾ-rimᴾ x ≡ hubʳ
elimᴾ : Elimᴾ P → (x : T²) → P x
elimᴾ {P = P} e = helper
where
module E = Elimᴾ e
helper : (x : T²) → P x
helper = λ where
base → E.baseʳ
hub → E.hubʳ
(loop₁ᴾ i) → E.loop₁ʳ i
(loop₂ᴾ i) → E.loop₂ʳ i
(spokeᴾ base i) → E.spokeʳ base i
(spokeᴾ (loopᴾ j) i) → E.spokeʳ (loopᴾ j) i
-- The special case is a special case.
elimᴾ-rimᴾ≡elimᴾ-rimᴾ :
(e : Elimᴾ P) (x : 𝕊¹) → elimᴾ e (rimᴾ x) ≡ Elimᴾ.elimᴾ-rimᴾ e x
elimᴾ-rimᴾ≡elimᴾ-rimᴾ _ = Circle.elimᴾ _ (refl _) (λ _ → refl _)
-- A non-dependent eliminator, expressed using paths.
Recᴾ : Type a → Type a
Recᴾ A = Elimᴾ (λ _ → A)
recᴾ : Recᴾ A → T² → A
recᴾ = elimᴾ
------------------------------------------------------------------------
-- Eliminators
-- A dependent eliminator.
record Elim (P : T² → Type p) : Type p where
no-eta-equality
field
baseʳ : P base
loop₁ʳ : subst P loop₁ baseʳ ≡ baseʳ
loop₂ʳ : subst P loop₂ baseʳ ≡ baseʳ
-- An instance of Elimᴾ₀ P.
elimᴾ₀ : Elimᴾ₀ P
elimᴾ₀ = λ where
.Elimᴾ₀.baseʳ → baseʳ
.Elimᴾ₀.loop₁ʳ → subst≡→[]≡ loop₁ʳ
.Elimᴾ₀.loop₂ʳ → subst≡→[]≡ loop₂ʳ
-- A special case of elim, used in the type of elim.
elim-rimᴾ : (x : 𝕊¹) → P (rimᴾ x)
elim-rimᴾ = Elimᴾ₀.elimᴾ-rimᴾ elimᴾ₀
field
hubʳ : P hub
spokeʳ : (x : 𝕊¹) → subst P (spoke x) (elim-rimᴾ x) ≡ hubʳ
-- The eliminator.
elim : (x : T²) → P x
elim = elimᴾ λ where
.Elimᴾ.elimᴾ₀ → elimᴾ₀
.Elimᴾ.hubʳ → hubʳ
.Elimᴾ.spokeʳ → subst≡→[]≡ ∘ spokeʳ
-- The special case is a special case.
elim-rimᴾ≡elim-rimᴾ : (x : 𝕊¹) → elim (rimᴾ x) ≡ elim-rimᴾ x
elim-rimᴾ≡elim-rimᴾ = elimᴾ-rimᴾ≡elimᴾ-rimᴾ _
-- A variant of spokeʳ with a slightly different type.
spokeʳ′ : (x : 𝕊¹) → subst P (spoke x) (elim (rimᴾ x)) ≡ hubʳ
spokeʳ′ = Circle.elimᴾ _ (spokeʳ base) (λ i → spokeʳ (loopᴾ i))
-- Computation rules.
elim-loop₁ : dcong elim loop₁ ≡ loop₁ʳ
elim-loop₁ = dcong-subst≡→[]≡ (refl _)
elim-loop₂ : dcong elim loop₂ ≡ loop₂ʳ
elim-loop₂ = dcong-subst≡→[]≡ (refl _)
elim-spoke : (x : 𝕊¹) → dcong elim (spoke x) ≡ spokeʳ′ x
elim-spoke = Circle.elimᴾ _
(dcong-subst≡→[]≡ (refl _))
(λ _ → dcong-subst≡→[]≡ (refl _))
-- A non-dependent eliminator.
record Rec (A : Type a) : Type a where
no-eta-equality
field
baseʳ : A
loop₁ʳ : baseʳ ≡ baseʳ
loop₂ʳ : baseʳ ≡ baseʳ
-- An instance of Elimᴾ₀ P.
elimᴾ₀ : Elimᴾ₀ (λ _ → A)
elimᴾ₀ = λ where
.Elimᴾ₀.baseʳ → baseʳ
.Elimᴾ₀.loop₁ʳ → _↔_.to ≡↔≡ loop₁ʳ
.Elimᴾ₀.loop₂ʳ → _↔_.to ≡↔≡ loop₂ʳ
-- A special case of recᴾ, used in the type of rec.
rec-rimᴾ : 𝕊¹ → A
rec-rimᴾ = Elimᴾ₀.elimᴾ-rimᴾ elimᴾ₀
field
hubʳ : A
spokeʳ : (x : 𝕊¹) → rec-rimᴾ x ≡ hubʳ
-- The eliminator.
rec : T² → A
rec = recᴾ λ where
.Elimᴾ.elimᴾ₀ → elimᴾ₀
.Elimᴾ.hubʳ → hubʳ
.Elimᴾ.spokeʳ → _↔_.to ≡↔≡ ∘ spokeʳ
-- The special case is a special case.
rec-rimᴾ≡rec-rimᴾ : (x : 𝕊¹) → rec (rimᴾ x) ≡ rec-rimᴾ x
rec-rimᴾ≡rec-rimᴾ = elimᴾ-rimᴾ≡elimᴾ-rimᴾ _
-- A variant of spokeʳ with a slightly different type.
spokeʳ′ : (x : 𝕊¹) → rec (rimᴾ x) ≡ hubʳ
spokeʳ′ = Circle.elimᴾ _ (spokeʳ base) (λ i → spokeʳ (loopᴾ i))
-- Computation rules.
rec-loop₁ : cong rec loop₁ ≡ loop₁ʳ
rec-loop₁ = cong-≡↔≡ (refl _)
rec-loop₂ : cong rec loop₂ ≡ loop₂ʳ
rec-loop₂ = cong-≡↔≡ (refl _)
rec-spoke : (x : 𝕊¹) → cong rec (spoke x) ≡ spokeʳ′ x
rec-spoke = Circle.elimᴾ _
(cong-≡↔≡ (refl _))
(λ _ → cong-≡↔≡ (refl _))
------------------------------------------------------------------------
-- Some lemmas
-- The remaining results are not taken from the HoTT book.
-- One can express loop₁₂₋₁₋₂ using loop₁ and loop₂.
loop₁₂₋₁₋₂≡ :
loop₁₂₋₁₋₂ ≡ trans (trans loop₁ loop₂) (sym (trans loop₂ loop₁))
loop₁₂₋₁₋₂≡ =
_↔_.from ≡↔≡ loop₁₂₋₁₋₂ᴾ ≡⟨⟩
_↔_.from ≡↔≡
(P.trans loop₁ᴾ (P.trans loop₂ᴾ
(P.trans (P.sym loop₁ᴾ) (P.sym loop₂ᴾ)))) ≡⟨ sym trans≡trans ⟩
trans loop₁
(_↔_.from ≡↔≡ (P.trans loop₂ᴾ
(P.trans (P.sym loop₁ᴾ) (P.sym loop₂ᴾ)))) ≡⟨ cong (trans _) $ sym trans≡trans ⟩
trans loop₁
(trans loop₂
(_↔_.from ≡↔≡ (P.trans (P.sym loop₁ᴾ) (P.sym loop₂ᴾ)))) ≡⟨ cong (λ eq → trans loop₁ (trans loop₂ eq)) $ sym trans≡trans ⟩
trans loop₁
(trans loop₂
(trans (_↔_.from ≡↔≡ (P.sym loop₁ᴾ))
(_↔_.from ≡↔≡ (P.sym loop₂ᴾ)))) ≡⟨ cong₂ (λ p q → trans loop₁ (trans loop₂ (trans p q)))
(sym sym≡sym)
(sym sym≡sym) ⟩
trans loop₁ (trans loop₂ (trans (sym loop₁) (sym loop₂))) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans loop₁ loop₂) (trans (sym loop₁) (sym loop₂)) ≡⟨ cong (trans _) $ sym $ sym-trans _ _ ⟩∎
trans (trans loop₁ loop₂) (sym (trans loop₂ loop₁)) ∎
|
{
"alphanum_fraction": 0.5428957442,
"avg_line_length": 26.833836858,
"ext": "agda",
"hexsha": "b65ee873f3cdc4fa849d238f4d8f14d81e51bb90",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Torus.agda",
"max_line_length": 131,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Torus.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3857,
"size": 8882
}
|
module Builtin.Float where
open import Prelude
open import Prelude.Equality.Unsafe
open import Agda.Builtin.Float
open Agda.Builtin.Float public using (Float)
natToFloat : Nat → Float
natToFloat = primNatToFloat
intToFloat : Int → Float
intToFloat (pos x) = natToFloat x
intToFloat (negsuc x) = primFloatMinus -1.0 (natToFloat x)
instance
EqFloat : Eq Float
_==_ {{EqFloat}} x y with primFloatEquality x y
... | true = yes unsafeEqual
... | false = no unsafeNotEqual
data LessFloat (x y : Float) : Set where
less-float : primFloatLess x y ≡ true → LessFloat x y
instance
OrdFloat : Ord Float
OrdFloat = defaultOrd cmpFloat
where
cmpFloat : ∀ x y → Comparison LessFloat x y
cmpFloat x y with inspect (primFloatLess x y)
... | true with≡ eq = less (less-float eq)
... | false with≡ _ with inspect (primFloatLess y x)
... | true with≡ eq = greater (less-float eq)
... | false with≡ _ = equal unsafeEqual
OrdLawsFloat : Ord/Laws Float
Ord/Laws.super OrdLawsFloat = it
less-antirefl {{OrdLawsFloat}} (less-float eq) = unsafeNotEqual eq
less-trans {{OrdLawsFloat}} (less-float _) (less-float _) = less-float unsafeEqual
instance
ShowFloat : Show Float
ShowFloat = simpleShowInstance primShowFloat
instance
NumFloat : Number Float
Number.Constraint NumFloat _ = ⊤
Number.fromNat NumFloat x = primNatToFloat x
SemiringFloat : Semiring Float
Semiring.zro SemiringFloat = 0.0
Semiring.one SemiringFloat = 1.0
Semiring._+_ SemiringFloat = primFloatPlus
Semiring._*_ SemiringFloat = primFloatTimes
SubFloat : Subtractive Float
Subtractive._-_ SubFloat = primFloatMinus
Subtractive.negate SubFloat = primFloatNegate
NegFloat : Negative Float
Negative.Constraint NegFloat _ = ⊤
Negative.fromNeg NegFloat x = negate (primNatToFloat x)
FracFloat : Fractional Float
Fractional.Constraint FracFloat _ _ = ⊤
Fractional._/_ FracFloat x y = primFloatDiv x y
floor = primFloor
round = primRound
ceiling = primCeiling
exp = primExp
ln = primLog
sin = primSin
sqrt = primFloatSqrt
π : Float
π = 3.141592653589793
cos : Float → Float
cos x = sin (π / 2.0 - x)
tan : Float → Float
tan x = sin x / cos x
log : Float → Float → Float
log base x = ln x / ln base
_**_ : Float → Float → Float
a ** x = exp (x * ln a)
NaN : Float
NaN = 0.0 / 0.0
Inf : Float
Inf = 1.0 / 0.0
-Inf : Float
-Inf = -1.0 / 0.0
|
{
"alphanum_fraction": 0.6886252046,
"avg_line_length": 24.44,
"ext": "agda",
"hexsha": "fcd80704b336e352ee468021f531cdd735ce8559",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Builtin/Float.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Builtin/Float.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Builtin/Float.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 777,
"size": 2444
}
|
module Tactic.Monoid.Proofs where
open import Prelude
open import Structure.Monoid.Laws
open import Tactic.Monoid.Exp
⟦_⟧_ : ∀ {a} {A : Set a} {{_ : Monoid A}} → Exp → (Nat → A) → A
⟦ var x ⟧ ρ = ρ x
⟦ ε ⟧ ρ = mempty
⟦ e ⊕ e₁ ⟧ ρ = ⟦ e ⟧ ρ <> ⟦ e₁ ⟧ ρ
⟦_⟧n_ : ∀ {a} {A : Set a} {{_ : Monoid A}} → List Nat → (Nat → A) → A
⟦ xs ⟧n ρ = mconcat (map ρ xs)
map/++ : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys
map/++ f [] ys = refl
map/++ f (x ∷ xs) ys = f x ∷_ $≡ map/++ f xs ys
module _ {a} {A : Set a} {{Mon : Monoid A}} {{Laws : MonoidLaws A}} where
mconcat/++ : (xs ys : List A) → mconcat (xs ++ ys) ≡ mconcat xs <> mconcat ys
mconcat/++ [] ys = sym (idLeft _)
mconcat/++ (x ∷ xs) ys = x <>_ $≡ mconcat/++ xs ys ⟨≡⟩ <>assoc x _ _
sound : ∀ e (ρ : Nat → A) → ⟦ e ⟧ ρ ≡ ⟦ flatten e ⟧n ρ
sound (var x) ρ = sym (idRight (ρ x))
sound ε ρ = refl
sound (e ⊕ e₁) ρ = _<>_ $≡ sound e ρ *≡ sound e₁ ρ ⟨≡⟩ʳ
mconcat $≡ map/++ ρ (flatten e) (flatten e₁) ⟨≡⟩
mconcat/++ (map ρ (flatten e)) _
proof : ∀ e e₁ (ρ : Nat → A) → flatten e ≡ flatten e₁ → ⟦ e ⟧ ρ ≡ ⟦ e₁ ⟧ ρ
proof e e₁ ρ nfeq = eraseEquality $ sound e ρ ⟨≡⟩ (⟦_⟧n ρ) $≡ nfeq ⟨≡⟩ʳ sound e₁ ρ
|
{
"alphanum_fraction": 0.4913657771,
"avg_line_length": 33.5263157895,
"ext": "agda",
"hexsha": "84b8ee1323af5716ab11a4f01b540c92a8bf72e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Monoid/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Monoid/Proofs.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Monoid/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 596,
"size": 1274
}
|
------------------------------------------------------------------------------
-- Example of a partial function using the Bove-Capretta method
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From: Ana Bove and Venanzio Capretta. Nested general recursion and
-- partiality in type theory. vol 2152 LNCS. 2001.
module FOT.FOTC.Program.Min.MinBC-SL where
open import Data.Nat renaming ( suc to succ )
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
data minAcc : (ℕ → ℕ) → Set where
minacc0 : (f : ℕ → ℕ) → f 0 ≡ 0 → minAcc f
minacc1 : (f : ℕ → ℕ) → f 0 ≢ 0 → minAcc (λ n → f (succ n)) → minAcc f
min : (f : ℕ → ℕ) → minAcc f → ℕ
min f (minacc0 .f q) = 0
min f (minacc1 .f q h) = succ (min (λ n → f (succ n)) h)
|
{
"alphanum_fraction": 0.4648166501,
"avg_line_length": 37.3703703704,
"ext": "agda",
"hexsha": "c4bdb3294be4c6d384e9299a424382c8e457b84a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Min/MinBC-SL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Min/MinBC-SL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Min/MinBC-SL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 258,
"size": 1009
}
|
open import Logic
open import Logic.Classical
open import Structure.Setoid
open import Structure.OrderedField
open import Type
module Structure.Function.Metric
{ℓF ℓₑF ℓ≤}
{F : Type{ℓF}}
⦃ equiv-F : Equiv{ℓₑF}(F) ⦄
{_+_}{_⋅_}
{_≤_ : _ → _ → Type{ℓ≤}}
⦃ orderedField-F : OrderedField{F = F}(_+_)(_⋅_)(_≤_) ⦄
⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄
where
open OrderedField(orderedField-F)
import Lvl
open import Data.Boolean
open import Data.Boolean.Proofs
import Data.Either as Either
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional as Fn
open import Logic.Propositional
open import Logic.Predicate
open import Relator.Ordering
open import Sets.PredicateSet renaming (_≡_ to _≡ₛ_)
open import Structure.Setoid.Uniqueness
open import Structure.Function.Ordering
open import Structure.Operator.Field
open import Structure.Operator.Monoid
open import Structure.Operator.Group
open import Structure.Operator.Proofs
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Relator.Ordering
open Structure.Relator.Ordering.Weak.Properties
open import Structure.Relator.Properties
open import Syntax.Transitivity
F₊ = ∃(Positive)
module _ where
record MetricSpace {ℓₘ ℓₑₘ} {M : Type{ℓₘ}} ⦃ equiv-M : Equiv{ℓₑₘ}(M) ⦄ (d : M → M → F) : Type{ℓF Lvl.⊔ ℓ≤ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑₘ Lvl.⊔ ℓₑF} where
field
⦃ distance-binary-operator ⦄ : BinaryOperator(d)
self-distance : ∀{x y} → (d(x)(y) ≡ 𝟎) ↔ (x ≡ y)
⦃ distance-commutativity ⦄ : Commutativity(d)
triangle-inequality : ∀{x y z} → (d(x)(z) ≤ (d(x)(y) + d(y)(z)))
⦃ non-negativity ⦄ : ∀{x y} → NonNegative(d(x)(y))
{-
non-negativity{x}{y} =
([≤]ₗ-of-[+] (
𝟎
d(x)(x)
d(x)(y) + d(y)(x)
d(x)(y) + d(x)(y)
2 ⋅ d(x)(y)
))
-}
distance-to-self : ∀{x} → (d(x)(x) ≡ 𝟎)
distance-to-self = [↔]-to-[←] self-distance (reflexivity(_≡_))
Neighborhood : M → F₊ → PredSet(M)
Neighborhood(p)([∃]-intro r)(q) = (d(p)(q) < r)
Neighborhoods : ∀{ℓ} → M → PredSet(PredSet{ℓ}(M))
Neighborhoods(p)(N) = ∃(r ↦ N ≡ₛ Neighborhood(p)(r))
PuncturedNeighborhood : M → F₊ → PredSet(M)
PuncturedNeighborhood(p)([∃]-intro r)(q) = (𝟎 < d(p)(q) < r)
LimitPoint : ∀{ℓ} → PredSet{ℓ}(M) → PredSet(M)
LimitPoint(E)(p) = ∀{r} → Overlapping(PuncturedNeighborhood(p)(r)) (E)
IsolatedPoint : ∀{ℓ} → PredSet{ℓ}(M) → PredSet(M)
IsolatedPoint(E)(p) = ∃(r ↦ Disjoint(PuncturedNeighborhood(p)(r)) (E))
Interior : ∀{ℓ} → PredSet{ℓ}(M) → PredSet(M)
Interior(E)(p) = ∃(r ↦ Neighborhood(p)(r) ⊆ E)
Closed : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Closed(E) = LimitPoint(E) ⊆ E
Open : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Open(E) = E ⊆ Interior(E)
Perfect : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Perfect(E) = LimitPoint(E) ≡ₛ E
Bounded : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Bounded(E) = ∃(p ↦ ∃(r ↦ E ⊆ Neighborhood(p)(r)))
Discrete : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Discrete(E) = E ⊆ IsolatedPoint(E)
Closure : ∀{ℓ} → PredSet{ℓ}(M) → PredSet(M)
Closure(E) = E ∪ LimitPoint(E)
Dense : ∀{ℓ} → PredSet(PredSet{ℓ}(M))
Dense(E) = ∀{p} → (p ∈ Closure(E))
-- Compact
Separated : ∀{ℓ₁ ℓ₂} → PredSet{ℓ₁}(M) → PredSet{ℓ₂}(M) → Stmt
Separated(A)(B) = Disjoint(A)(Closure(B)) ∧ Disjoint(Closure(A))(B)
Connected : ∀{ℓ} → PredSet{ℓ}(M) → Stmtω
Connected(E) = ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → ((A ∪ B) ≡ₛ E) → Separated(A)(B) → ⊥
-- Complete = Sequence.Cauchy ⊆ Sequence.Converging
neighborhood-contains-center : ∀{p}{r} → (p ∈ Neighborhood(p)(r))
neighborhood-contains-center {p}{[∃]-intro r ⦃ intro positive-r ⦄} =
d(p)(p) 🝖-[ sub₂(_≡_)(_≤_) distance-to-self ]-sub
𝟎 🝖-semiend
r 🝖-end-from-[ positive-r ]
-- TODO: Not always the case?
-- subneighborhood-subradius : ∀{p₁ p₂}{r₁ r₂} → (Neighborhood(p₁)(r₁) ⊆ Neighborhood(p₂)(r₂)) → ([∃]-witness r₁ ≤ [∃]-witness r₂)
subneighborhood-radius : ∀{p₁ p₂}{r₁ r₂} → (Neighborhood(p₁)(r₁) ⊆ Neighborhood(p₂)(r₂)) ← (d(p₂)(p₁) ≤ ([∃]-witness r₂ − [∃]-witness r₁))
subneighborhood-radius {p₁} {p₂} {[∃]-intro r₁} {[∃]-intro r₂} p {q} qN₁ =
d(p₂)(q) 🝖[ _≤_ ]-[ triangle-inequality ]-sub
d(p₂)(p₁) + d(p₁)(q) 🝖[ _<_ ]-[ [<][+]-preserve-subₗ p qN₁ ]-super
(r₂ − r₁) + r₁ 🝖[ _≡_ ]-[ {!inverseOperₗ ? ?!} ] -- inverseOperatorᵣ(_+_)(_−_)
r₂ 🝖-end
{-where
r₁r₂ : (r₁ ≤ r₂) -- TODO: This seems to be provable, but not used here
r₁r₂ =
r₁ 🝖-[ {!!} ]
d(p₁)(p₂) + r₁ 🝖-[ {!!} ]
r₂ 🝖-end
-}
subneighborhood-radius-on-same : ∀{p}{r₁ r₂} → (Neighborhood(p)(r₁) ⊆ Neighborhood(p)(r₂)) ← ([∃]-witness r₁ ≤ [∃]-witness r₂)
subneighborhood-radius-on-same {p} {[∃]-intro r₁} {[∃]-intro r₂} r₁r₂ {x} xN₁ xN₂ = xN₁ (r₁r₂ 🝖 xN₂)
interior-is-subset : ∀{ℓ}{E : PredSet{ℓ}(M)} → Interior(E) ⊆ E
interior-is-subset {ℓ} {E} {x} ([∃]-intro ([∃]-intro r ⦃ intro positive-r ⦄) ⦃ N⊆E ⦄) =
N⊆E {x} (p ↦ positive-r (
r 🝖[ _≤_ ]-[ p ]-super
d(x)(x) 🝖[ _≡_ ]-[ distance-to-self ]
𝟎 🝖[ _≡_ ]-end
))
neighborhood-interior-is-self : ∀{p}{r} → (Interior(Neighborhood(p)(r)) ≡ₛ Neighborhood(p)(r))
∃.witness (Tuple.left (neighborhood-interior-is-self {p} {r}) x) = r
∃.proof (Tuple.left (neighborhood-interior-is-self {p} {r} {x}) Nx) = {!!}
Tuple.right (neighborhood-interior-is-self {p} {r}) = {!!}
neighborhood-is-open : ∀{p}{r} → Open(Neighborhood(p)(r))
interior-is-largest-subspace : ∀{ℓ₁ ℓ₂}{E : PredSet{ℓ₁}(M)}{Eₛ : PredSet{ℓ₂}(M)} → Open(Eₛ) → (Eₛ ⊆ E) → (Eₛ ⊆ Interior(E))
nested-interior : ∀{ℓ}{E : PredSet{ℓ}(M)} → Interior(Interior(E)) ≡ₛ Interior(E)
isolated-limit-eq : ∀{ℓ}{E : PredSet{ℓ}(M)} → (IsolatedPoint(E) ⊆ ∅ {Lvl.𝟎}) ↔ (E ⊆ LimitPoint(E))
interior-closure-eq1 : ∀{ℓ}{E : PredSet{ℓ}(M)} → ((∁ Interior(E)) ≡ₛ Closure(∁ E))
interior-closure-eq2 : ∀{ℓ}{E : PredSet{ℓ}(M)} → (Interior(∁ E) ≡ₛ (∁ Closure(E)))
open-closed-eq1 : ∀{ℓ}{E : PredSet{ℓ}(M)} → (Open(E) ↔ Closed(∁ E))
open-closed-eq2 : ∀{ℓ}{E : PredSet{ℓ}(M)} → (Open(∁ E) ↔ Closed(E))
union-is-open : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Open(A) → Open(B) → Open(A ∪ B)
intersection-is-open : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Open(A) → Open(B) → Open(A ∩ B)
-- open-subsubspace : ∀{ℓ₁ ℓ₂}{Eₛ : PredSet{ℓ₁}(M)}{E : PredSet{ℓ₂}(M)} →
separated-is-disjoint : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Separated(A)(B) → Disjoint(A)(B)
unionₗ-is-connected : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Connected(A ∪ B) → Connected(A)
unionᵣ-is-connected : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Connected(A ∪ B) → Connected(B)
intersection-is-connected : ∀{ℓ₁ ℓ₂}{A : PredSet{ℓ₁}(M)}{B : PredSet{ℓ₂}(M)} → Connected(A) → Connected(B) → Connected(A ∩ B)
module Sequence {ℓ} {M : Type{ℓ}} ⦃ equiv-M : Equiv(M) ⦄ (d : M → M → F) where
open import Numeral.Natural
import Numeral.Natural.Relation.Order as ℕ
ConvergesTo : (ℕ → M) → M → Stmt
ConvergesTo f(L) = ∃{Obj = F₊ → ℕ}(N ↦ ∀{ε : F₊}{n} → (n ℕ.≥ N(ε)) → (d(f(n))(L) < [∃]-witness ε))
Converging : (ℕ → M) → Stmt
Converging(f) = ∃(ConvergesTo(f))
Diverging : (ℕ → M) → Stmt
Diverging(f) = ∀{L} → ¬(ConvergesTo f(L))
lim : (f : ℕ → M) → ⦃ Converging(f) ⦄ → M
lim(f) ⦃ [∃]-intro L ⦄ = L
Cauchy : (ℕ → M) → Stmt
Cauchy(f) = ∃{Obj = F₊ → ℕ}(N ↦ ∀{ε : F₊}{a b} → (a ℕ.≥ N(ε)) → (b ℕ.≥ N(ε)) → (d(f(a))(f(b)) < [∃]-witness ε))
Complete : Stmt
Complete = Cauchy ⊆ Converging
Bounded : (ℕ → M) → Stmt
Bounded(f) = ∃(r ↦ ∃(p ↦ ∀{n} → (d(p)(f(n)) < r)))
unique-converges-to : ∀{f} → Unique(ConvergesTo(f))
converging-bounded : Converging ⊆ Bounded
-- strictly-ordered-sequence-limit : ∀{f g : ℕ → M} → (∀{n} → (f(n) < g(n))) → (lim f < lim g)
-- ordered-sequence-limit : ∀{f g : ℕ → M} → (∀{n} → (f(n) ≤ g(n))) → (lim f ≤ lim g)
-- limit-point-converging-sequence : ∀{E}{p} → LimitPoint(E)(p) → ∃(f ↦ (ConvergesTo f(p)) ∧ (∀{x} → (f(x) ∈ E)))
-- TODO: Apparently, this requires both axiom of choice and excluded middle? At least the (←)-direction?
-- continuous-sequence-convergence-composition : (ContinuousOn f(p)) ↔ (∀{g} → (ConvergesTo g(p)) → (ConvergesTo(f ∘ g)(f(p))))
{-
module Series where
∑ : (ℕ → M) → ℕ → M
∑ f(𝟎) = 𝟎
∑ f(𝐒(n)) = (∑ f(n)) + f(𝐒(n))
∑₂ : (ℕ → M) → (ℕ ⨯ ℕ) → M
∑₂ f(a , b) = ∑ (f ∘ (a +_))(b − a)
ConvergesTo : (ℕ → M) → M → Stmt
ConvergesTo f(L) = Sequence.ConvergesTo(∑ f)(L)
Converging : (ℕ → M) → Stmt
Converging(f) = ∃(ConvergesTo(f))
Diverging : (ℕ → M) → Stmt
Diverging(f) = ∀{L} → ¬(ConvergesTo f(L))
ConvergesTo : (ℕ → M) → M → Stmt
AbsolutelyConvergesTo f(L) = ConvergesTo (‖_‖ ∘ f)(L)
AbsolutelyConverging : (ℕ → M) → Stmt
AbsolutelyConverging(f) = ∃(AbsolutelyConvergesTo(f))
AbsolutelyDiverging : (ℕ → M) → Stmt
AbsolutelyDiverging(f) = ∀{L} → ¬(AbsolutelyConvergesTo f(L))
ConditionallyConverging : (ℕ → M) → Stmt
ConditionallyConverging(f) = AbsolutelyDiverging(f) ∧ Converging(f)
sequence-of-converging-series-converges-to-0 : Converging(f) → (Sequence.ConvergesTo f(𝟎))
convergence-by-ordering : (∀{n} → f(n) ≤ g(n)) → (Converging(f) ← Converging(g))
divergence-by-ordering : (∀{n} → f(n) ≤ g(n)) → (Diverging(f) → Diverging(g))
convergence-by-quotient : Sequence.Converging(n ↦ f(n) / g(n)) → (Converging(f) ↔ Converging(g))
-}
module Analysis
{ℓ₁ ℓ₂}
{M₁ : Type{ℓ₁}} ⦃ equiv-M₁ : Equiv(M₁) ⦄ (d₁ : M₁ → M₁ → F)
⦃ space₁ : MetricSpace(d₁) ⦄
{M₂ : Type{ℓ₂}} ⦃ equiv-M₂ : Equiv(M₂) ⦄ (d₂ : M₂ → M₂ → F)
⦃ space₂ : MetricSpace(d₂) ⦄
where
open MetricSpace
Lim : ∀{ℓ}{E : PredSet{ℓ}(M₁)} → ((x : M₁) → ⦃ x ∈ E ⦄ → M₂) → M₁ → M₂ → Stmt
Lim {E = E} f(p)(L) = ∃{Obj = F₊ → F₊}(δ ↦ ∀{ε : F₊}{x} → ⦃ ex : x ∈ E ⦄ → (p ∈ PuncturedNeighborhood(space₁)(x)(δ(ε))) → (L ∈ Neighborhood(space₂)(f(x) ⦃ ex ⦄)(ε)))
lim : ∀{ℓ}{E : PredSet{ℓ}(M₁)} → (f : (x : M₁) → ⦃ x ∈ E ⦄ → M₂) → (p : M₁) → ⦃ ∃(Lim f(p)) ⦄ → M₂
lim f(p) ⦃ [∃]-intro L ⦄ = L
ContinuousOn : ∀{ℓ}{E : PredSet{ℓ}(M₁)} → ((x : M₁) → ⦃ x ∈ E ⦄ → M₂) → (p : M₁) → ⦃ p ∈ E ⦄ → Stmt
ContinuousOn f(p) = Lim f(p) (f(p))
Continuous : ∀{ℓ}{E : PredSet{ℓ}(M₁)} → ((x : M₁) → ⦃ x ∈ E ⦄ → M₂) → Stmt
Continuous{E = E}(f) = ∀{p} → ⦃ ep : p ∈ E ⦄ → ContinuousOn f(p) ⦃ ep ⦄
-- continuous-mapping-connected : Continuous(f) → Connected(E) → Connected(map f(E))
|
{
"alphanum_fraction": 0.5517627308,
"avg_line_length": 38.1565836299,
"ext": "agda",
"hexsha": "674ac393a2251b388cde441ecc2f11b3900435e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Function/Metric.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Function/Metric.agda",
"max_line_length": 167,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Function/Metric.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4566,
"size": 10722
}
|
module Positivity where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
data Tree : Set where
node : List Tree -> Tree
data Loop (A : Set) : Set where
loop : Loop (Loop A) -> Loop A
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
data PList (A : Set) : Set where
leaf : A -> PList A
succ : PList (A × A) -> PList A
data Bush (A : Set) : Set where
nil : Bush A
cons : A -> Bush (Bush A) -> Bush A
F : Set -> Set
F A = A
data Ok : Set where
ok : F Ok -> Ok
|
{
"alphanum_fraction": 0.5426086957,
"avg_line_length": 16.4285714286,
"ext": "agda",
"hexsha": "040cfa56a89b548ce7f5ee554c2524b71a8f00e3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Positivity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Positivity.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Positivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 211,
"size": 575
}
|
module Section10 where
open import Section9 public
-- 10. Conclusions
-- ===============
--
-- We have defined a calculus of proof trees for simply typed λ-calculus with explicit substitutions
-- and we have proved that this calculus is sound and complete with respect to Kripke
-- models. A decision algorithm for convertibility based on the technique of “normalisation by
-- evaluation” has also been proven correct.
--
-- One application of the results for proof trees is the soundness and completeness for a
-- formulation of an implicitly-typed λ-calculus with explicit substitutions.
--
-- An important aspect of this work is that it has been carried out on a machine; actually,
-- the problem was partly chosen because it seemed possible to do the formalization in a nice
-- way using ALF. It is often emphasised that a proof is machine checked, but this is the very
-- minimum one can ask of a proof system. Another important aspect is that the system helps
-- you to develop your proof, and I feel that ALF is on the right way: this work was not done
-- first by pen and paper and then typed into the machine, but was from the very beginning
-- carried out in interaction with the system.
--
-- NOTE: The above paragraphs apply to Agda, as well.
--
--
-- Appendix
-- --------
--
-- (…)
--
--
-- Acknowledgement
-- ---------------
--
-- The author wants to thank the editor Olivier Danvy for having had the patience with delays
-- and still being supportive. She is also grateful to Bernd Grobauer for help with improving
-- the presentation. The comments of the anonymous referees have also been very valuable.
--
--
-- References
-- ----------
--
-- 1. Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J.
-- Explicit substitutions.
-- Journal of Functional Programming, 1(4) (1991) 375–416.
--
-- 2. Berger, U.
-- Program extraction from normalization proofs.
-- In Proceedings of TLCA’93, LNCS, Vol. 664, Springer Verlag, Berlin, 1993, pp. 91–106.
--
-- 3. Berger, U. and Schwichtenberg, H.
-- An inverse of the evaluation functional for typed λ-calculus.
-- In Proceedings of the 6th Annual IEEE Symposium on Logic in Comp. Sci., Amsterdam, 1991, pp. 203–211.
--
-- 4. Coquand, Th.
-- Pattern matching with dependent types.
-- In Proceedings of the 1992 Workshop on Types for Proofs and Programs, B. Nordström, K. Petersson, and
-- G. Plotkin (Eds.). Dept. of Comp. Sci. Chalmers Univ. of Technology and Göteborg Univ.
-- Available at (…), pp. 66–79.
--
-- 5. Coquand, Th. and Dybjer, P.
-- Intuitionistic model constructions and normalisation proofs.
-- Math. Structures Comp. Sci., 7(1) (1997) 75–94.
--
-- 6. Coquand, Th. and Gallier, J.
-- A proof of strong normalization for the theory of constructions using a Kripke-like interpretation.
-- In Proceedings of the First Workshop in Logical Frameworks, G. Huet and G. Plotkin (Eds.).
-- Available at (…), pp. 479–497.
--
-- 7. Coquand, Th., Nordström, B., Smith, J., and von Sydow, B.
-- Type theory and programming.
-- EATCS, 52 (1994) 203–228.
--
-- 8. Curien, P.-L.
-- An abstract framework for environment machines.
-- Theoretical Comp. Sci., 82 (1991) 389–402.
--
-- 9. Friedman, H.
-- Equality between functionals.
-- In Logic Colloquium, Symposium on Logic, held at Boston, 1972–1973, LNCS, Vol. 453,
-- Springer-Verlag, Berlin, 1975, pp. 22–37.
--
-- 10. Gandy, R.O.
-- On the axiom of extensionality—Part I.
-- The Journal of symbolic logic, 21 (1956) 36–48.
--
-- 11. Kripke S.A.
-- Semantical analysis of intuitionistic logic I.
-- In Formal Systems and Recursive Functions, J.N. Crossley and M.A.E. Dummet (Eds.).
-- North-Holland, Amsterdam, 1965, pp. 92–130.
--
-- 12. Magnusson, L. and Nordström, B.
-- The ALF proof editor and its proof engine.
-- In Types for Proofs and Programs, LNCS, Vol. 806, Springer-Verlag, Berlin, 1994, pp. 213–237.
--
-- 13. Martin-Löf, P.
-- Substitution calculus.
-- Handwritten notes, Göteborg, 1992.
--
-- 14. Mitchell, J.C.
-- Type systems for programming languages.
-- In Handbook of Theoretical Comp. Sci., Volume B: Formal Models and Semantics, J. van Leeuwen (Ed.).
-- Elsevier and MIT Press, Amsterdam, 1990, pp. 365–458.
--
-- 15. Mitchell, J.C. and Moggi, E.
-- Kripke-style models for typed lambda calculus.
-- Annals for Pure and Applied Logic, 51 (1991) 99–124.
--
-- 16. Nordström, B., Petersson, K., and Smith, J.
-- Programming in Martin-Löf’s Type THeory. An Introduction.
-- Oxford University Press, Oxford, UK, 1990.
--
-- 17. Scott, D.S.
-- Relating theories lambda calculus.
-- In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism.
-- Academic Press, New York, 1980, pp. 403–450.
--
-- 18. Statman, R.
-- Logical relation and the typed λ-calculus.
-- Information and Control, 65 (1985) 85–97.
--
-- 19. Streicher, T.
-- Semantics of Type Theory.
-- Birkhäuser, Basel, 1991.
--
-- 20. Tasistro, A.
-- Formulation of Martin-Löf’s theory of types with explicit substitutions.
-- Licentiate thesis, Dept. of Comp. Sci. Chalmers Univ. of Technology and Göteborg Univ., 1993.
|
{
"alphanum_fraction": 0.6761504678,
"avg_line_length": 39.9770992366,
"ext": "agda",
"hexsha": "ee8bb292d1a7eae4a9ba7689e60c596c9931c544",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand",
"max_forks_repo_path": "src/Section10.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand",
"max_issues_repo_path": "src/Section10.agda",
"max_line_length": 108,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand",
"max_stars_repo_path": "src/Section10.agda",
"max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z",
"num_tokens": 1494,
"size": 5237
}
|
{-# OPTIONS --cubical-compatible #-}
module _ where
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
instance refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-} -- This should trigger a warning!
|
{
"alphanum_fraction": 0.6017316017,
"avg_line_length": 23.1,
"ext": "agda",
"hexsha": "6dba9f1ec2fb607d0b8c3597687e3125e053547a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1988.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1988.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1988.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 81,
"size": 231
}
|
open import Agda.Primitive
open import Agda.Builtin.List
open import Agda.Builtin.Equality
private
variable
a p : Level
A : Set a
P Q : A → Set p
data Any {a p} {A : Set a} (P : A → Set p) : List A → Set (a ⊔ p) where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)
map : (∀ {x} → P x → Q x) → (∀ {xs} → Any P xs → Any Q xs)
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
postulate
map-id : ∀ (f : ∀ {x} → P x → P x) → (∀ {x} (p : P x) → f p ≡ p) →
∀ {xs} → (p : Any P xs) → map f p ≡ p
|
{
"alphanum_fraction": 0.4899665552,
"avg_line_length": 27.1818181818,
"ext": "agda",
"hexsha": "40bffaa3764d0a08a3f2d4352035180db72efb91",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5147.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5147.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5147.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 255,
"size": 598
}
|
module Avionics.SafetyEnvelopes where
open import Data.Bool using (Bool; true; false; _∧_; _∨_)
open import Data.List using (List; []; _∷_; any; map; foldl; length)
open import Data.List.Relation.Unary.Any as Any using (Any)
open import Data.List.Relation.Unary.All as All using (All)
open import Data.Maybe using (Maybe; just; nothing; is-just; _>>=_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl; cong; subst; sym)
open import Relation.Unary using (_∈_)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Nullary.Decidable using (fromWitnessFalse)
open import Avionics.Real
using (ℝ; _+_; _-_; _*_; _÷_; _^_; _<ᵇ_; _≤ᵇ_; _≤_; _<_; _<?_; _≤?_; _≟_;
1/_;
0ℝ; 1ℝ; 2ℝ; 1/2; _^2; √_; fromℕ)
--open import Avionics.Product using (_×_; ⟨_,_⟩; proj₁; proj₂)
open import Avionics.Probability using (Dist; NormalDist; ND; BiNormalDist)
sum : List ℝ → ℝ
sum = foldl _+_ 0ℝ
inside : NormalDist → ℝ → ℝ → Bool
inside nd z x = ((μ - z * σ) <ᵇ x) ∧ (x <ᵇ (μ + z * σ))
where open NormalDist nd using (μ; σ)
mahalanobis1 : ℝ → ℝ → ℝ → ℝ
mahalanobis1 u v IV = √((u - v) * IV * (u - v))
inside' : NormalDist → ℝ → ℝ → Bool
inside' nd z x = mahalanobis1 μ x σ²-¹ <ᵇ z
where open NormalDist nd using (μ; σ)
σ²-¹ = 1/ (σ * σ)
mahalanobis2 : (ℝ × ℝ) → (ℝ × ℝ) → (ℝ × ℝ × ℝ × ℝ) → ℝ
--mahalanobis2 u v VI = ...
mahalanobis2 ⟨ u₁ , u₂ ⟩ ⟨ v₁ , v₂ ⟩
⟨ iv₁₁ , ⟨ iv₁₂ , ⟨ iv₂₁ , iv₂₂ ⟩ ⟩ ⟩ = √ ⟨u-v⟩IV⟨u-v⟩'
where x₁ = u₁ - v₁
x₂ = u₂ - v₂
⟨u-v⟩IV⟨u-v⟩' = (x₁ * x₁ * iv₁₁ + x₁ * x₂ * iv₁₂
+ x₁ * x₂ * iv₂₁ + x₂ * x₂ * iv₂₂)
insideBiv : BiNormalDist → ℝ → (ℝ × ℝ) → Bool
insideBiv bnd z x = mahalanobis2 μ x Σ-¹ <ᵇ z
where open BiNormalDist bnd using (μ; Σ-¹)
FlightState = (ℝ × ℝ)
record Model : Set where
field
-- Flight states
SM : List FlightState
-- Map from flight states to Normal Distributions
fM : List (FlightState × (NormalDist × ℝ))
-- Every flight state must be represented in the map fM
.fMisMap₁ : All (λ θ → Any (λ θ,ND → proj₁ θ,ND ≡ θ) fM ) SM
.fMisMap₂ : All (λ θ,ND → Any (λ θ → proj₁ θ,ND ≡ θ) SM ) fM
.lenSM>0 : length SM ≢ 0
--.lenfM>0 : length fM ≢ 0 -- this is the result of the bijection above and .lenSM>0
z-predictable' : List NormalDist → ℝ → ℝ → ℝ × Bool
z-predictable' nds z x = ⟨ x , any (λ nd → inside nd z x) nds ⟩
z-predictable : Model → ℝ → ℝ → ℝ × Bool
z-predictable M z x = z-predictable' (map (proj₁ ∘ proj₂) (Model.fM M)) z x
--
sample-z-predictable : List NormalDist → ℝ → ℝ → List ℝ → Maybe (ℝ × ℝ × Bool)
sample-z-predictable nds zμ zσ [] = nothing
sample-z-predictable nds zμ zσ (_ ∷ []) = nothing
sample-z-predictable nds zμ zσ xs@(_ ∷ _ ∷ _) = just ⟨ mean , ⟨ var_est , any inside'' nds ⟩ ⟩
where
n = fromℕ (length xs)
mean = (sum xs ÷ n)
var_est = (sum (map (λ{x →(x - mean)^2}) xs) ÷ (n - 1ℝ))
inside'' : NormalDist → Bool
inside'' nd = ((μ - zμ * σ) <ᵇ mean) ∧ (mean <ᵇ (μ + zμ * σ))
∧ (σ^2 - zσ * std[σ^2] <ᵇ var) ∧ (var <ᵇ σ^2 + zσ * std[σ^2])
where open NormalDist nd using (μ; σ)
σ^2 = σ ^2
--Var[σ^2] = 2 * (σ^2)^2 / n
std[σ^2] = (√ 2ℝ) * (σ^2 ÷ (√ n))
-- Notice that the estimated variance here is computed assuming `μ`
-- it's the mean of the distribution. This is so that Cramer-Rao
-- lower bound can be applied to it
var = (sum (map (λ{x →(x - μ)^2}) xs) ÷ n)
nonneg-cf : ℝ → ℝ × Bool
nonneg-cf x = ⟨ x , 0ℝ ≤ᵇ x ⟩
data StallClasses : Set where
Stall NoStall Uncertain : StallClasses
P[stall]f⟨_|stall⟩_ : ℝ → List (ℝ × ℝ × Dist ℝ) → ℝ
P[stall]f⟨ x |stall⟩ pbs = sum (map unpack pbs)
where
unpack : ℝ × ℝ × Dist ℝ → ℝ
unpack ⟨ P[θ] , ⟨ P[stall|θ] , dist ⟩ ⟩ = pdf x * P[θ] * P[stall|θ]
where open Dist dist using (pdf)
f⟨_⟩_ : ℝ → List (ℝ × ℝ × Dist ℝ) → ℝ
f⟨ x ⟩ pbs = sum (map unpack pbs)
where
unpack : ℝ × ℝ × Dist ℝ → ℝ
unpack ⟨ P[θ] , ⟨ _ , dist ⟩ ⟩ = pdf x * P[θ]
where open Dist dist using (pdf)
-- There should be a proof showing that the resulting value will always be in the interval [0,1]
P[_|X=_]_ : StallClasses → ℝ → List (ℝ × ℝ × Dist ℝ) → Maybe ℝ
P[ Stall |X= x ] pbs with f⟨ x ⟩ pbs ≟ 0ℝ
... | yes _ = nothing
... | no _ = just (((P[stall]f⟨ x |stall⟩ pbs) ÷ (f⟨ x ⟩ pbs)))
P[ NoStall |X= x ] pbs with f⟨ x ⟩ pbs ≟ 0ℝ
... | yes _ = nothing
... | no _ = just (1ℝ - ((P[stall]f⟨ x |stall⟩ pbs) ÷ (f⟨ x ⟩ pbs)))
P[ Uncertain |X= _ ] _ = nothing
postulate
-- TODO: Find out how to prove this!
-- It probably requires to prove that P[Stall|X=x] + P[NoStall|X=x] ≡ 1
Stall≡1-NoStall : ∀ {x pbs p}
→ P[ Stall |X= x ] pbs ≡ just p
→ P[ NoStall |X= x ] pbs ≡ just (1ℝ - p)
NoStall≡1-Stall : ∀ {x pbs p}
→ P[ NoStall |X= x ] pbs ≡ just p
→ P[ Stall |X= x ] pbs ≡ just (1ℝ - p)
-- Main assumptions
-- * 0.5 < τ ≤ 1
-- * 0 ≤ p ≤ 1
-- Of course, these assumptions are never explicit in the code. But note
-- that, only the first assumption can be broken by an user bad input. The
-- second assumption stems for probability theory, yet not proven but
-- should be true
≤p→¬≤1-p : ∀ {τ p}
-- This first line are the assumptions. From them, the rest should follow
→ 1/2 < τ → τ ≤ 1ℝ -- 0.5 < τ ≤ 1
→ 0ℝ ≤ p → p ≤ 1ℝ -- 0 ≤ p ≤ 1
→ τ ≤ p
→ ¬ τ ≤ (1ℝ - p)
≤1-p→¬≤p : ∀ {τ p}
→ 1/2 < τ → τ ≤ 1ℝ -- 0.5 < τ ≤ 1
→ 0ℝ ≤ p → p ≤ 1ℝ -- 0 ≤ p ≤ 1
→ τ ≤ (1ℝ - p)
→ ¬ τ ≤ p
classify'' : List (ℝ × ℝ × Dist ℝ) → ℝ → ℝ → StallClasses
classify'' pbs τ x with P[ Stall |X= x ] pbs
... | nothing = Uncertain
... | just p with τ ≤? p | τ ≤? (1ℝ - p)
... | yes _ | no _ = Stall
... | no _ | yes _ = NoStall
... | _ | _ = Uncertain -- the only missing case is `no _ | no _`, `yes _ | yes _` is not possible
M→pbs : Model → List (ℝ × ℝ × Dist ℝ)
M→pbs M = map convert (Model.fM M)
where
n = fromℕ (length (Model.fM M))
convert : (ℝ × ℝ) × (NormalDist × ℝ) → ℝ × ℝ × Dist ℝ
convert ⟨ _ , ⟨ nd , P[stall|c] ⟩ ⟩ = ⟨ 1/ n , ⟨ P[stall|c] , dist ⟩ ⟩
where open NormalDist nd using (dist)
classify : Model → ℝ → ℝ → StallClasses
classify M = classify'' (M→pbs M)
no-uncertain : StallClasses → Bool
no-uncertain Uncertain = false
no-uncertain _ = true
τ-confident : Model → ℝ → ℝ → Bool
τ-confident M τ = no-uncertain ∘ classify M τ
safety-envelope : Model → ℝ → ℝ → ℝ → Bool
safety-envelope M z τ x = proj₂ (z-predictable M z x)
∧ τ-confident M τ x
|
{
"alphanum_fraction": 0.5509729887,
"avg_line_length": 36.6276595745,
"ext": "agda",
"hexsha": "38da35db2e60e89063a2df1ba307b8fda0be629f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "helq/safety-envelopes-sentinels",
"max_forks_repo_path": "agda/Avionics/SafetyEnvelopes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "helq/safety-envelopes-sentinels",
"max_issues_repo_path": "agda/Avionics/SafetyEnvelopes.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "helq/safety-envelopes-sentinels",
"max_stars_repo_path": "agda/Avionics/SafetyEnvelopes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2684,
"size": 6886
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Coinduction
module CoindEquiv where
-- Coinductive equivalences
record _∼_ {i j} (A : Set i) (B : Set j) : Set (max i j) where
constructor _,_,_
field
to : A → B
from : B → A
eq : ∞ ((a : A) (b : B) → ((to a ≡ b) ∼ (a ≡ from b)))
-- Identity
id-∼ : ∀ {i} (A : Set i) → A ∼ A
id-∼ A = (id A) , (id A) , ♯ (λ a b → id-∼ (a ≡ b))
-- Transitivity
trans-∼ : ∀ {i} {A B C : Set i} → A ∼ B → B ∼ C → A ∼ C
trans-∼ (to , from , eq) (to' , from' , eq') =
((to' ◯ to) , (from ◯ from') ,
♯ (λ a c → trans-∼ (♭ eq' (to a) c) (♭ eq a (from' c))) ) --(λ a c → ♯ trans-∼ (♭ (eq' (to a) c)) (♭ (eq a (from' c)))))
-- -- Left unity
-- left-unit-∼ : ∀ {i} {A B : Set i} (f : A ∼ B) → trans-∼ (id-∼ A) f ≡ f
-- left-unit-∼ f = {!!}
postulate
!-≡ : ∀ {i} {A : Set i} {u v : A} → (u ≡ v) ≡ (v ≡ u)
-- Symmetry is harder
sym-∼ : ∀ {i} {A B : Set i} → A ∼ B → B ∼ A
sym-∼ (to , from , eq) = (from , to ,
♯ (λ b a → let (too , fromo , eqo) = sym-∼ (♭ eq a b) in ((! ◯ (too ◯ !)) , {!!} , {!!})))
--(λ a b → transport (λ u → ∞ (u ∼ (a ≡ to b))) !-≡ (transport (λ u → ∞ ((b ≡ from a) ∼ u)) !-≡ (♯ (sym-∼ (♭ (eq b a))))))) --♯ trans-∼ {!!} (trans-∼ (sym-∼ (♭ (eq b a))) {!!})))
-- Logical equivalence with the usual notion of equivalences
∼-to-≃ : ∀ {i j} {A : Set i} {B : Set j} → (A ∼ B → A ≃ B)
∼-to-≃ (to , from , eq) =
(to , iso-is-eq to from (λ b → _∼_.from (♭ eq (from b) b) refl)
(λ a → ! (_∼_.to (♭ eq a (to a)) refl)))
≃-to-∼ : ∀ {i j} {A : Set i} {B : Set j} → (A ≃ B → A ∼ B)
≃-to-∼ e = (π₁ e) , (inverse e) ,
♯ (λ a b → ≃-to-∼ (equiv-compose
(path-to-eq (ap (λ b → e ☆ a ≡ b) (! (inverse-right-inverse e b))))
((equiv-ap e a (inverse e b))⁻¹)))
-- Unfinished attempt to prove that this notion is coherent
∼-eq-raw : ∀ {i j} {A : Set i} {B : Set j}
{f f' : A → B} (p : f ≡ f') {g g' : B → A} (q : g ≡ g')
{eq : ∞ ((a : A) (b : B) → ((f a ≡ b) ∼ (a ≡ g b)))}
{eq' : ∞ ((a : A) (b : B) → ((f' a ≡ b) ∼ (a ≡ g' b)))}
(r : transport _ p (transport _ q eq) ≡ eq')
→ (f , g , eq) ≡ (f' , g' , eq')
∼-eq-raw refl refl refl = refl
-- ∼-eq : ∀ {i j} {A : Set i} {B : Set j}
-- {f f' : A → B} (p : (a : A) → f a ≡ f' a)
-- {g g' : B → A} (q : (b : B) → g b ≡ g' b)
-- {eq : (a : A) (b : B) → ∞ ((f a ≡ b) ∼ (a ≡ g b))}
-- {eq' : (a : A) (b : B) → ∞ ((f' a ≡ b) ∼ (a ≡ g' b))}
-- (r : (a : A) (b : B) →
-- transport (λ u → (u ≡ b) ∼ (a ≡ g' b)) (p a) (
-- transport (λ u → (f a ≡ b) ∼ (a ≡ u)) (q b) (♭ (eq a b)))
-- ≡ ♭ (eq' a b))
-- → (f , g , eq) ≡ (f' , g' , eq')
-- ∼-eq p q r = ∼-eq-raw (funext p) (funext q)
-- (funext (λ a → (funext (λ b → {!r a b!}))))
-- coherent : ∀ {i j} (A : Set i) (B : Set j) → ((A ≃ B) ≃ (A ∼ B))
-- coherent A B = (≃-to-∼ A B , iso-is-eq _ (∼-to-≃ A B)
-- (λ y → ∼-eq (λ a → refl _)
-- (λ b → happly (inverse-iso-is-eq (_∼_.to y) (_∼_.from y) _ _) b)
-- (λ a b → {!!}))
-- (λ e → Σ-eq (refl _) (π₁ (is-equiv-is-prop _ _ _))))
|
{
"alphanum_fraction": 0.3943476832,
"avg_line_length": 36.6626506024,
"ext": "agda",
"hexsha": "8ac3f2ed28d94ca9047b63de8e4ad3dca3e544c4",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/CoindEquiv.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/CoindEquiv.agda",
"max_line_length": 178,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/CoindEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1494,
"size": 3043
}
|
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.Substitution where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.Typed.Weakening
open import Definition.Typed.Consequences.Syntactic
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Irrelevance
open import Definition.LogicalRelation.Fundamental
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Well-formed substitution of types.
substitution : ∀ {A rA Γ Δ σ} → Γ ⊢ A ^ rA → Δ ⊢ˢ σ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ A ^ rA
substitution A σ ⊢Δ =
let X = fundamental A
[Γ] = proj₁ X
[A] = proj₂ X
Y = fundamentalSubst (wf A) ⊢Δ σ
[Γ]′ = proj₁ Y
[σ] = proj₂ Y
in escape (proj₁ ([A] ⊢Δ (irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ])))
-- Well-formed substitution of type equality.
substitutionEq : ∀ {A B rA Γ Δ σ σ′}
→ Γ ⊢ A ≡ B ^ rA → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ A ≡ subst σ′ B ^ rA
substitutionEq A≡B σ ⊢Δ =
let X = fundamentalEq A≡B
[Γ] = proj₁ X
[A] = proj₁ (proj₂ X)
[B] = proj₁ (proj₂ (proj₂ X))
[A≡B] = proj₂ (proj₂ (proj₂ X))
Y = fundamentalSubstEq (wfEq A≡B) ⊢Δ σ
[Γ]′ = proj₁ Y
[σ] = proj₁ (proj₂ Y)
[σ′] = proj₁ (proj₂ (proj₂ Y))
[σ≡σ′] = proj₂ (proj₂ (proj₂ Y))
[σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
[σ′]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′]
[σ≡σ′]′ = irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′]
in escapeEq (proj₁ ([A] ⊢Δ [σ]′))
(transEq (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([B] ⊢Δ [σ]′))
(proj₁ ([B] ⊢Δ [σ′]′)) ([A≡B] ⊢Δ [σ]′)
(proj₂ ([B] ⊢Δ [σ]′) [σ′]′ [σ≡σ′]′))
-- Well-formed substitution of terms.
substitutionTerm : ∀ {t A rA Γ Δ σ}
→ Γ ⊢ t ∷ A ^ rA → Δ ⊢ˢ σ ∷ Γ → ⊢ Δ → Δ ⊢ subst σ t ∷ subst σ A ^ rA
substitutionTerm t σ ⊢Δ =
let X = fundamentalTerm t
[Γ] = proj₁ X
[A] = proj₁ (proj₂ X)
[t] = proj₂ (proj₂ X)
Y = fundamentalSubst (wfTerm t) ⊢Δ σ
[Γ]′ = proj₁ Y
[σ] = proj₂ Y
[σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
in escapeTerm (proj₁ ([A] ⊢Δ [σ]′)) (proj₁ ([t] ⊢Δ [σ]′))
-- Well-formed substitution of term equality.
substitutionEqTerm : ∀ {t u A rA Γ Δ σ σ′}
→ Γ ⊢ t ≡ u ∷ A ^ rA → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ⊢ Δ
→ Δ ⊢ subst σ t ≡ subst σ′ u ∷ subst σ A ^ rA
substitutionEqTerm t≡u σ≡σ′ ⊢Δ with fundamentalTermEq t≡u
substitutionEqTerm t≡u σ≡σ′ ⊢Δ | [Γ] , modelsTermEq [A] [t] [u] [t≡u] =
let Y = fundamentalSubstEq (wfEqTerm t≡u) ⊢Δ σ≡σ′
[Γ]′ = proj₁ Y
[σ] = proj₁ (proj₂ Y)
[σ′] = proj₁ (proj₂ (proj₂ Y))
[σ≡σ′] = proj₂ (proj₂ (proj₂ Y))
[σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
[σ′]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′]
[σ≡σ′]′ = irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′]
in escapeTermEq (proj₁ ([A] ⊢Δ [σ]′))
(transEqTerm (proj₁ ([A] ⊢Δ [σ]′)) ([t≡u] ⊢Δ [σ]′)
(proj₂ ([u] ⊢Δ [σ]′) [σ′]′ [σ≡σ′]′))
-- Reflexivity of well-formed substitution.
substRefl : ∀ {σ Γ Δ}
→ Δ ⊢ˢ σ ∷ Γ
→ Δ ⊢ˢ σ ≡ σ ∷ Γ
substRefl id = id
substRefl (σ , x) = substRefl σ , genRefl x
-- Weakening of well-formed substitution.
wkSubst′ : ∀ {ρ σ Γ Δ Δ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′)
([ρ] : ρ ∷ Δ′ ⊆ Δ)
([σ] : Δ ⊢ˢ σ ∷ Γ)
→ Δ′ ⊢ˢ ρ •ₛ σ ∷ Γ
wkSubst′ ε ⊢Δ ⊢Δ′ ρ id = id
wkSubst′ (_∙_ {Γ} {A} ⊢Γ ⊢A) ⊢Δ ⊢Δ′ ρ (tailσ , headσ) =
wkSubst′ ⊢Γ ⊢Δ ⊢Δ′ ρ tailσ
, PE.subst (λ x → _ ⊢ _ ∷ x ^ _) (wk-subst A) (wkTerm ρ ⊢Δ′ headσ)
-- Weakening of well-formed substitution by one.
wk1Subst′ : ∀ {F rF σ Γ Δ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ)
(⊢F : Δ ⊢ F ^ rF)
([σ] : Δ ⊢ˢ σ ∷ Γ)
→ (Δ ∙ F ^ rF) ⊢ˢ wk1Subst σ ∷ Γ
wk1Subst′ {F} {σ} {Γ} {Δ} ⊢Γ ⊢Δ ⊢F [σ] =
wkSubst′ ⊢Γ ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ]
-- Lifting of well-formed substitution.
liftSubst′ : ∀ {F rF σ Γ Δ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ)
(⊢F : Γ ⊢ F ^ rF)
([σ] : Δ ⊢ˢ σ ∷ Γ)
→ (Δ ∙ subst σ F ^ rF) ⊢ˢ liftSubst σ ∷ Γ ∙ F ^ rF
liftSubst′ {F} {rF} {σ} {Γ} {Δ} ⊢Γ ⊢Δ ⊢F [σ] =
let ⊢Δ∙F = ⊢Δ ∙ substitution ⊢F [σ] ⊢Δ
in wkSubst′ ⊢Γ ⊢Δ ⊢Δ∙F (step id) [σ]
, var ⊢Δ∙F (PE.subst (λ x → 0 ∷ x ^ rF ∈ (Δ ∙ subst σ F ^ rF))
(wk-subst F) here)
-- Well-formed identity substitution.
idSubst′ : ∀ {Γ} (⊢Γ : ⊢ Γ)
→ Γ ⊢ˢ idSubst ∷ Γ
idSubst′ ε = id
idSubst′ (_∙_ {Γ} {A} {rA} ⊢Γ ⊢A) =
wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ)
, PE.subst (λ x → Γ ∙ A ^ rA ⊢ _ ∷ x ^ rA) (wk1-tailId A) (var (⊢Γ ∙ ⊢A) here)
-- Well-formed substitution composition.
substComp′ : ∀ {σ σ′ Γ Δ Δ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′)
([σ] : Δ′ ⊢ˢ σ ∷ Δ)
([σ′] : Δ ⊢ˢ σ′ ∷ Γ)
→ Δ′ ⊢ˢ σ ₛ•ₛ σ′ ∷ Γ
substComp′ ε ⊢Δ ⊢Δ′ [σ] id = id
substComp′ (_∙_ {Γ} {A} {rA} ⊢Γ ⊢A) ⊢Δ ⊢Δ′ [σ] ([tailσ′] , [headσ′]) =
substComp′ ⊢Γ ⊢Δ ⊢Δ′ [σ] [tailσ′]
, PE.subst (λ x → _ ⊢ _ ∷ x ^ rA) (substCompEq A)
(substitutionTerm [headσ′] [σ] ⊢Δ′)
-- Well-formed singleton substitution of terms.
singleSubst : ∀ {A t rA Γ} → Γ ⊢ t ∷ A ^ rA → Γ ⊢ˢ sgSubst t ∷ Γ ∙ A ^ rA
singleSubst {A} {rA = rA} t =
let ⊢Γ = wfTerm t
in idSubst′ ⊢Γ , PE.subst (λ x → _ ⊢ _ ∷ x ^ rA) (PE.sym (subst-id A)) t
-- Well-formed singleton substitution of term equality.
singleSubstEq : ∀ {A t u rA Γ} → Γ ⊢ t ≡ u ∷ A ^ rA
→ Γ ⊢ˢ sgSubst t ≡ sgSubst u ∷ Γ ∙ A ^ rA
singleSubstEq {A} {rA = rA} t =
let ⊢Γ = wfEqTerm t
in substRefl (idSubst′ ⊢Γ) , PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x ^ rA) (PE.sym (subst-id A)) t
-- Well-formed singleton substitution of terms with lifting.
singleSubst↑ : ∀ {A t rA Γ} → Γ ∙ A ^ rA ⊢ t ∷ wk1 A ^ rA
→ Γ ∙ A ^ rA ⊢ˢ consSubst (wk1Subst idSubst) t ∷ Γ ∙ A ^ rA
singleSubst↑ {A} {rA = rA} t with wfTerm t
... | ⊢Γ ∙ ⊢A = wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ)
, PE.subst (λ x → _ ∙ A ^ rA ⊢ _ ∷ x ^ _) (wk1-tailId A) t
-- Well-formed singleton substitution of term equality with lifting.
singleSubst↑Eq : ∀ {A rA t u Γ} → Γ ∙ A ^ rA ⊢ t ≡ u ∷ wk1 A ^ rA
→ Γ ∙ A ^ rA ⊢ˢ consSubst (wk1Subst idSubst) t ≡ consSubst (wk1Subst idSubst) u ∷ Γ ∙ A ^ rA
singleSubst↑Eq {A} {rA} t with wfEqTerm t
... | ⊢Γ ∙ ⊢A = substRefl (wk1Subst′ ⊢Γ ⊢Γ ⊢A (idSubst′ ⊢Γ))
, PE.subst (λ x → _ ∙ A ^ rA ⊢ _ ≡ _ ∷ x ^ rA) (wk1-tailId A) t
-- Helper lemmas for single substitution
substType : ∀ {t F rF G rG Γ} → Γ ∙ F ^ rF ⊢ G ^ rG → Γ ⊢ t ∷ F ^ rF → Γ ⊢ G [ t ] ^ rG
substType {t} {F} {G} ⊢G ⊢t =
let ⊢Γ = wfTerm ⊢t
in substitution ⊢G (singleSubst ⊢t) ⊢Γ
substTypeEq : ∀ {t u F rF G E rG Γ} → Γ ∙ F ^ rF ⊢ G ≡ E ^ rG
→ Γ ⊢ t ≡ u ∷ F ^ rF
→ Γ ⊢ G [ t ] ≡ E [ u ] ^ rG
substTypeEq {F = F} ⊢G ⊢t =
let ⊢Γ = wfEqTerm ⊢t
in substitutionEq ⊢G (singleSubstEq ⊢t) ⊢Γ
substTerm : ∀ {F rF G rG t f Γ} → Γ ∙ F ^ rF ⊢ f ∷ G ^ rG
→ Γ ⊢ t ∷ F ^ rF
→ Γ ⊢ f [ t ] ∷ G [ t ] ^ rG
substTerm {F} {G} {t} {f} ⊢f ⊢t =
let ⊢Γ = wfTerm ⊢t
in substitutionTerm ⊢f (singleSubst ⊢t) ⊢Γ
substTypeΠ : ∀ {t F rF lF lG G rΠ lΠ Γ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] → Γ ⊢ t ∷ F ^ [ rF , ι lF ]
→ Γ ⊢ G [ t ] ^ [ rΠ , ι lG ]
substTypeΠ ΠFG t with syntacticΠ ΠFG
substTypeΠ ΠFG t | F , G = substType G t
subst↑Type : ∀ {t F rF G rG Γ}
→ Γ ∙ F ^ rF ⊢ G ^ rG
→ Γ ∙ F ^ rF ⊢ t ∷ wk1 F ^ rF
→ Γ ∙ F ^ rF ⊢ G [ t ]↑ ^ rG
subst↑Type ⊢G ⊢t = substitution ⊢G (singleSubst↑ ⊢t) (wfTerm ⊢t)
subst↑TypeEq : ∀ {t u F rF G E rG Γ}
→ Γ ∙ F ^ rF ⊢ G ≡ E ^ rG
→ Γ ∙ F ^ rF ⊢ t ≡ u ∷ wk1 F ^ rF
→ Γ ∙ F ^ rF ⊢ G [ t ]↑ ≡ E [ u ]↑ ^ rG
subst↑TypeEq ⊢G ⊢t = substitutionEq ⊢G (singleSubst↑Eq ⊢t) (wfEqTerm ⊢t)
|
{
"alphanum_fraction": 0.4979012346,
"avg_line_length": 39.3203883495,
"ext": "agda",
"hexsha": "cd58d3e580f253f4f52069473f1ac22e4f96cc16",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Substitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Substitution.agda",
"max_line_length": 117,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 3847,
"size": 8100
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Kleisli where
open import Level
open import Categories.Category
open import Categories.Functor using (Functor; module Functor)
open import Categories.NaturalTransformation hiding (id)
open import Categories.Monad
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
Kleisli : {𝒞 : Category o ℓ e} → Monad 𝒞 → Category o ℓ e
Kleisli {𝒞 = 𝒞} M = record
{ Obj = Obj
; _⇒_ = λ A B → (A ⇒ F₀ B)
; _≈_ = _≈_
; _∘_ = λ f g → (μ.η _ ∘ F₁ f) ∘ g
; id = η.η _
; assoc = assoc′
; sym-assoc = Equiv.sym assoc′
; identityˡ = identityˡ′
; identityʳ = identityʳ′
; identity² = identity²′
; equiv = equiv
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ (∘-resp-≈ʳ (F-resp-≈ f≈h)) g≈i
}
where
module M = Monad M
open M using (μ; η; F)
open Functor F
open Category 𝒞
open HomReasoning
open MR 𝒞
-- shorthands to make the proofs nicer
F≈ = F-resp-≈
assoc′ : ∀ {A B C D} {f : A ⇒ F₀ B} {g : B ⇒ F₀ C} {h : C ⇒ F₀ D}
→ (μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g))) ∘ f ≈ (μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f)
assoc′ {A} {B} {C} {D} {f} {g} {h} =
begin
(μ.η D ∘ F₁ ((μ.η D ∘ F₁ h) ∘ g)) ∘ f ≈⟨ assoc ⟩
μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g) ∘ f) ≈⟨ refl⟩∘⟨ (F≈ assoc ⟩∘⟨refl ) ⟩
μ.η D ∘ (F₁ (μ.η D ∘ (F₁ h ∘ g)) ∘ f) ≈⟨ refl⟩∘⟨ (homomorphism ⟩∘⟨refl) ⟩
μ.η D ∘ ((F₁ (μ.η D) ∘ F₁ (F₁ h ∘ g)) ∘ f) ≈⟨ refl⟩∘⟨ assoc ○ ⟺ assoc ⟩
(μ.η D ∘ F₁ (μ.η D)) ∘ (F₁ (F₁ h ∘ g) ∘ f) ≈⟨ M.assoc ⟩∘⟨refl ○ assoc ⟩
μ.η D ∘ (μ.η (F₀ D) ∘ (F₁ (F₁ h ∘ g) ∘ f)) ≈˘⟨ refl⟩∘⟨ assoc ⟩
μ.η D ∘ ((μ.η (F₀ D) ∘ F₁ (F₁ h ∘ g)) ∘ f) ≈⟨ refl⟩∘⟨ ( (refl⟩∘⟨ homomorphism) ⟩∘⟨refl) ⟩
μ.η D ∘ ((μ.η (F₀ D) ∘ (F₁ (F₁ h) ∘ F₁ g)) ∘ f) ≈˘⟨ refl⟩∘⟨ (assoc ⟩∘⟨refl) ⟩
μ.η D ∘ (((μ.η (F₀ D) ∘ F₁ (F₁ h)) ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ ((μ.commute h ⟩∘⟨refl) ⟩∘⟨refl) ⟩
μ.η D ∘ (((F₁ h ∘ μ.η C) ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ (assoc ⟩∘⟨refl) ⟩
μ.η D ∘ ((F₁ h ∘ (μ.η C ∘ F₁ g)) ∘ f) ≈⟨ refl⟩∘⟨ assoc ○ ⟺ assoc ⟩
(μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f)
∎
identityˡ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ (η.η B)) ∘ f ≈ f
identityˡ′ {A} {B} {f} = elimˡ M.identityˡ
identityʳ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ f) ∘ η.η A ≈ f
identityʳ′ {A} {B} {f} =
begin
(μ.η B ∘ F₁ f) ∘ η.η A ≈⟨ assoc ⟩
μ.η B ∘ (F₁ f ∘ η.η A) ≈˘⟨ refl⟩∘⟨ η.commute f ⟩
μ.η B ∘ (η.η (F₀ B) ∘ f) ≈˘⟨ assoc ⟩
(μ.η B ∘ η.η (F₀ B)) ∘ f ≈⟨ elimˡ M.identityʳ ⟩
f
∎
identity²′ : {A : Obj} → (μ.η A ∘ F₁ (η.η A)) ∘ η.η A ≈ η.η A
identity²′ = elimˡ M.identityˡ
|
{
"alphanum_fraction": 0.4455587393,
"avg_line_length": 37.2266666667,
"ext": "agda",
"hexsha": "11f320ba4ba4b7c2d047581a5af20442f699a6a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Construction/Kleisli.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Construction/Kleisli.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Construction/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1478,
"size": 2792
}
|
{-# OPTIONS --rewriting #-}
module Examples.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (true; false)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +; <; val; bool; ~=; string)
open import Luau.Run using (run; return)
ex1 : (run (function "id" ⟨ var "x" ⟩ is return (var "x") ∙ done end ∙ return (var "id" $ val nil) ∙ done) ≡ return nil _)
ex1 = refl
ex2 : (run (function "fn" ⟨ var "x" ⟩ is return (val (number 123.0)) ∙ done end ∙ return (var "fn" $ val nil) ∙ done) ≡ return (number 123.0) _)
ex2 = refl
ex3 : (run (function "fn" ⟨ var "x" ⟩ is return (binexp (val (number 1.0)) + (val (number 2.0))) ∙ done end ∙ return (var "fn" $ val nil) ∙ done) ≡ return (number 3.0) _)
ex3 = refl
ex4 : (run (function "fn" ⟨ var "x" ⟩ is return (binexp (val (number 1.0)) < (val (number 2.0))) ∙ done end ∙ return (var "fn" $ val nil) ∙ done) ≡ return (bool true) _)
ex4 = refl
ex5 : (run (function "fn" ⟨ var "x" ⟩ is return (binexp (val (string "foo")) ~= (val (string "bar"))) ∙ done end ∙ return (var "fn" $ val nil) ∙ done) ≡ return (bool true) _)
ex5 = refl
|
{
"alphanum_fraction": 0.6164965986,
"avg_line_length": 49,
"ext": "agda",
"hexsha": "84ebf84e2278ad456ea0ae4d949b0fd0ff1a6094",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Examples/Run.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Examples/Run.agda",
"max_line_length": 174,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Examples/Run.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 443,
"size": 1176
}
|
------------------------------------------------------------------------------
-- Properties for the bisimilarity relation
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Relation.Binary.Bisimilarity.PropertiesATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Stream.Type
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, the
-- bisimilarity relation _≈_ on unbounded lists is also a pre-fixed
-- point of the bisimulation functional (see
-- FOTC.Relation.Binary.Bisimulation).
-- See Issue https://github.com/asr/apia/issues/81 .
≈-inB : D → D → Set
≈-inB xs ys = ∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys'
{-# ATP definition ≈-inB #-}
≈-in : ∀ {xs ys} →
∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys' →
xs ≈ ys
≈-in h = ≈-coind ≈-inB h' h
where
postulate
h' : ∀ {xs} {ys} → ≈-inB xs ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ ≈-inB xs' ys'
{-# ATP prove h' #-}
-- See Issue https://github.com/asr/apia/issues/81 .
≈-reflB : D → D → Set
≈-reflB xs ys = xs ≡ ys ∧ Stream xs
{-# ATP definition ≈-reflB #-}
≈-refl : ∀ {xs} → Stream xs → xs ≈ xs
≈-refl {xs} Sxs = ≈-coind ≈-reflB h₁ h₂
where
postulate
h₁ : ∀ {xs ys} → ≈-reflB xs ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ ≈-reflB xs' ys'
{-# ATP prove h₁ #-}
postulate h₂ : ≈-reflB xs xs
{-# ATP prove h₂ #-}
-- See Issue https://github.com/asr/apia/issues/81 .
≈-symB : D → D → Set
≈-symB xs ys = ys ≈ xs
{-# ATP definition ≈-symB #-}
≈-sym : ∀ {xs ys} → xs ≈ ys → ys ≈ xs
≈-sym {xs} {ys} xs≈ys = ≈-coind ≈-symB h₁ h₂
where
postulate
h₁ : ∀ {ys} {xs} → ≈-symB ys xs →
∃[ y' ] ∃[ ys' ] ∃[ xs' ] ys ≡ y' ∷ ys' ∧ xs ≡ y' ∷ xs' ∧ ≈-symB ys' xs'
{-# ATP prove h₁ #-}
postulate h₂ : ≈-symB ys xs
{-# ATP prove h₂ #-}
-- See Issue https://github.com/asr/apia/issues/81 .
≈-transB : D → D → Set
≈-transB xs zs = ∃[ ys ] xs ≈ ys ∧ ys ≈ zs
{-# ATP definition ≈-transB #-}
≈-trans : ∀ {xs ys zs} → xs ≈ ys → ys ≈ zs → xs ≈ zs
≈-trans {xs} {ys} {zs} xs≈ys ys≈zs = ≈-coind ≈-transB h₁ h₂
where
postulate
h₁ : ∀ {as} {cs} → ≈-transB as cs →
∃[ a' ] ∃[ as' ] ∃[ cs' ] as ≡ a' ∷ as' ∧ cs ≡ a' ∷ cs' ∧ ≈-transB as' cs'
{-# ATP prove h₁ #-}
postulate h₂ : ≈-transB xs zs
{-# ATP prove h₂ #-}
postulate ∷-injective≈ : ∀ {x xs ys} → x ∷ xs ≈ x ∷ ys → xs ≈ ys
{-# ATP prove ∷-injective≈ #-}
postulate ∷-rightCong≈ : ∀ {x xs ys} → xs ≈ ys → x ∷ xs ≈ x ∷ ys
{-# ATP prove ∷-rightCong≈ ≈-in #-}
|
{
"alphanum_fraction": 0.4763202726,
"avg_line_length": 31.5591397849,
"ext": "agda",
"hexsha": "c7cdb7ae88d13094ef05e49d5b874faa30dc20d2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda",
"max_line_length": 83,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1151,
"size": 2935
}
|
open import Data.Nat hiding ( _+_; _*_; _⊔_; zero )
open import Algebra hiding (Zero)
open import Level using (Level; _⊔_)
open import Data.Product
module quad { c ℓ } ( ring : Ring c ℓ ) where
open Ring ring
data Nat4 : Set where
One : Nat4
Suc : Nat4 -> Nat4
variable
a b d : Level
A : Set a
B : Set b
C : Set c
m n : Nat4
-- Indu:ctive definition of a Quad matrix
data Quad ( A : Set a ) : Nat4 → Set a where
Zero : Quad A n
Scalar : A → Quad A One
Mtx : ( nw ne sw se : Quad A n ) → Quad A (Suc n)
-- Zero with explicit size
zeroQ : ( n : Nat4) → Quad A n
zeroQ n = Zero
oneQ : ∀ { n } → Quad Carrier n
oneQ {One} = Scalar 1#
oneQ {Suc n} = Mtx oneQ Zero
Zero oneQ
-- Equality
-- eq-Zero is only valid when m ≡ n
data EqQ {A : Set a} (_∼_ : A -> A -> Set d) :
(xs : Quad A m) (ys : Quad A n) → Set (a ⊔ d)
where
eq-Zero : ∀ { n } → EqQ _∼_ (zeroQ n) (zeroQ n)
eq-Scalar : { x y : A } ( x∼y : x ∼ y ) → EqQ _∼_ (Scalar x) (Scalar y)
eq-Mtx : { nw1 ne1 sw1 se1 : Quad A m } { nw2 ne2 sw2 se2 : Quad A n }
( nw : EqQ _∼_ nw1 nw2 ) ( ne : EqQ _∼_ ne1 ne2 )
( sw : EqQ _∼_ sw1 sw2 ) ( se : EqQ _∼_ se1 se2 ) →
EqQ _∼_ (Mtx nw1 ne1 sw1 se1) (Mtx nw2 ne2 sw2 se2)
_=q_ : Quad Carrier n -> Quad Carrier n -> Set ( c ⊔ ℓ)
_=q_ = EqQ _≈_
-- Functions
mapq : ∀ { A B : Set } → ( A → B ) → Quad A n -> Quad B n
mapq f Zero = Zero
mapq f (Scalar x) = Scalar (f x)
mapq f (Mtx nw ne sw se) = Mtx (mapq f nw) (mapq f ne) (mapq f sw) (mapq f se)
-- Addition on Quads
_+q_ : ( x y : Quad Carrier n) → Quad Carrier n
Zero +q y = y
Scalar x +q Zero = Scalar x
Scalar x +q Scalar x₁ = Scalar (x + x₁)
Mtx x x₁ x₂ x₃ +q Zero = Mtx x x₁ x₂ x₃
Mtx x x₁ x₂ x₃ +q Mtx y y₁ y₂ y₃ = Mtx (x +q y) (x₁ +q y₁) (x₂ +q y₂) (x₃ +q y₃)
-- Multiplication
data Q' ( A : Set a) : Set a where
Mtx' : ( nw ne sw se : A ) → Q' A
Q'toQuad : Q' (Quad A n) → Quad A (Suc n)
-- Q'toQuad (Mtx' Zero Zero Zero Zero) = Zero
Q'toQuad (Mtx' nw ne sw se) = Mtx nw ne sw se
zipQ' : ( A → B → C ) → Q' A → Q' B → Q' C
zipQ' _op_ (Mtx' nw ne sw se) (Mtx' nw₁ ne₁ sw₁ se₁) = Mtx' (nw op nw₁) (ne op ne₁)
(sw op sw₁) (se op se₁)
colExchange : Q' A → Q' A
colExchange (Mtx' nw ne sw se) = Mtx' ne nw se sw
prmDiagSqsh : Q' A → Q' A
prmDiagSqsh (Mtx' nw ne sw se) = Mtx' nw se nw se
offDiagSqsh : Q' A → Q' A
offDiagSqsh (Mtx' nw ne sw se) = Mtx' sw ne sw se
_*q_ : ( x y : Quad Carrier n) → Quad Carrier n
Zero *q y = Zero
Scalar x *q Zero = Zero
Scalar x *q Scalar x₁ = Scalar (x * x₁)
Mtx x x₁ x₂ x₃ *q Zero = Zero
Mtx x x₁ x₂ x₃ *q Mtx y y₁ y₂ y₃ =
let X = Mtx' x x₁ x₂ x₃
Y = Mtx' y y₁ y₂ y₃
in Q'toQuad (zipQ' _+q_ (zipQ' _*q_ (colExchange X) (offDiagSqsh Y))
(zipQ' _*q_ X (prmDiagSqsh Y)))
-- Example Quad
q1 : Quad ℕ (Suc One)
q1 = Mtx (Scalar 2) (Scalar 7) Zero Zero
q2 : Quad ℕ (Suc (Suc One))
q2 = Mtx q1 q1 Zero (Mtx (Scalar 1) Zero Zero (Scalar 1))
-- Proofs
quad-refl : { a : Quad Carrier n } → a =q a
quad-refl { n } { Zero } = eq-Zero
quad-refl { n } { (Scalar x) } = eq-Scalar refl
quad-refl { n } { (Mtx a a₁ a₂ a₃) } = eq-Mtx quad-refl quad-refl quad-refl quad-refl
quad-sym : { a b : Quad Carrier n } → a =q b → b =q a
quad-sym eq-Zero = eq-Zero
quad-sym (eq-Scalar x∼y) = eq-Scalar (sym x∼y)
quad-sym (eq-Mtx x x₁ x₂ x₃) = eq-Mtx (quad-sym x) (quad-sym x₁) (quad-sym x₂) (quad-sym x₃)
quad-zerol : ∀ { n } ( x : Quad Carrier n ) → ( Zero +q x ) =q x
quad-zerol x = quad-refl
quad-zeror : ∀ { n } ( x : Quad Carrier n ) → ( x +q Zero ) =q x
quad-zeror Zero = quad-refl
quad-zeror (Scalar x) = quad-refl
quad-zeror (Mtx x x₁ x₂ x₃) = quad-refl
-- Need a proof that Zero is left and right +q-identity
-- Should be some kind of (quad-zerol, quad-zeror)
quad-comm : ( a b : Quad Carrier n ) → ( a +q b) =q ( b +q a )
quad-comm Zero b = quad-sym (quad-zeror b)
quad-comm (Scalar x) Zero = quad-refl
quad-comm (Scalar x) (Scalar x₁) = eq-Scalar (+-comm x x₁)
quad-comm (Mtx a a₁ a₂ a₃) Zero = quad-refl
quad-comm (Mtx a a₁ a₂ a₃) (Mtx b b₁ b₂ b₃) = eq-Mtx (quad-comm a b) (quad-comm a₁ b₁)
(quad-comm a₂ b₂) (quad-comm a₃ b₃)
quad-assoc : ( a b c : Quad Carrier n ) → ((a +q b ) +q c ) =q ( a +q ( b +q c ))
quad-assoc Zero b c = quad-refl
quad-assoc (Scalar x) Zero c = quad-refl
quad-assoc (Scalar x) (Scalar x₁) Zero = quad-refl
quad-assoc (Scalar x) (Scalar x₁) (Scalar x₂) = eq-Scalar (+-assoc x x₁ x₂)
quad-assoc (Mtx a a₁ a₂ a₃) Zero c = quad-refl
quad-assoc (Mtx a a₁ a₂ a₃) (Mtx b b₁ b₂ b₃) Zero = quad-refl
quad-assoc (Mtx a a₁ a₂ a₃) (Mtx b b₁ b₂ b₃) (Mtx c c₁ c₂ c₃) = eq-Mtx (quad-assoc a b c ) (quad-assoc a₁ b₁ c₁)
(quad-assoc a₂ b₂ c₂) (quad-assoc a₃ b₃ c₃)
quad-*-zerol : ( x : Quad Carrier n ) → ( Zero *q x ) =q Zero
quad-*-zerol x = eq-Zero
quad-*-zeror : ( x : Quad Carrier n ) → ( x *q Zero ) =q Zero
quad-*-zeror Zero = eq-Zero
quad-*-zeror (Scalar x) = eq-Zero
quad-*-zeror (Mtx x x₁ x₂ x₃) = eq-Zero
quad-onel : ( x : Quad Carrier n ) → ( oneQ *q x ) =q x
quad-onel-lemma : ( x : Quad Carrier n ) → ((oneQ *q x) +q Zero) =q x
quad-onel-lemma {One} Zero = eq-Zero
quad-onel-lemma {Suc n} Zero = eq-Zero
quad-onel-lemma (Scalar x) = eq-Scalar (*-identityˡ x)
quad-onel-lemma (Mtx x x₁ x₂ x₃) = eq-Mtx (quad-onel x) (quad-onel-lemma x₁) (quad-onel-lemma x₂) (quad-onel x₃)
quad-onel Zero = quad-*-zeror oneQ
quad-onel (Scalar x) = eq-Scalar (*-identityˡ x)
quad-onel (Mtx x x₁ x₂ x₃) = eq-Mtx (quad-onel x) (quad-onel-lemma x₁) (quad-onel-lemma x₂) (quad-onel x₃)
|
{
"alphanum_fraction": 0.5581752947,
"avg_line_length": 30.6439790576,
"ext": "agda",
"hexsha": "208af95f451fcfdf17a19b042ccc8e7a336e3a96",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DSLsofMath/BScProj2021",
"max_forks_repo_path": "agda/quad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DSLsofMath/BScProj2021",
"max_issues_repo_path": "agda/quad.agda",
"max_line_length": 114,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DSLsofMath/BScProj2021",
"max_stars_repo_path": "agda/quad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2366,
"size": 5853
}
|
-- Andreas, 2016-09-20, issue #2196 reported by mechvel
-- Test case by Ulf
-- {-# OPTIONS -v tc.lhs.dot:40 #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
record _×_ (A B : Set) : Set where
constructor _,_
field fst : A
snd : B
open _×_
EqP₁ : ∀ {A B} (p q : A × B) → Set
EqP₁ (x , y) (z , w) = (x ≡ z) × (y ≡ w)
EqP₂ : ∀ {A B} (p q : A × B) → Set
EqP₂ p q = (fst p ≡ fst q) × (snd p ≡ snd q)
works : {A : Set} (p q : A × A) → EqP₁ p q → Set₁
works (x , y) .(x , y) (refl , refl) = Set
test : {A : Set} (p q : A × A) → EqP₂ p q → Set₁
test (x , y) .(x , y) (refl , refl) = Set
-- ERROR WAS:
-- Failed to infer the value of dotted pattern
-- when checking that the pattern .(x , y) has type .A × .A
|
{
"alphanum_fraction": 0.5114401077,
"avg_line_length": 24.7666666667,
"ext": "agda",
"hexsha": "4ad7613cf7acd003ff4067c2044b0183711d73d0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2196.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2196.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2196.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 325,
"size": 743
}
|
{-
This file contains:
- The first Eilenberg–Mac Lane type as a HIT
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.EilenbergMacLane1.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Group.Base
private
variable ℓ : Level
module _ (G : Group {ℓ}) where
open Group G
data EM₁ : Type ℓ where
embase : EM₁
emloop : Carrier → embase ≡ embase
emcomp : (g h : Carrier)
→ PathP (λ j → embase ≡ emloop h j) (emloop g) (emloop (g + h))
-- emsquash : ∀ (x y : EM₁) (p q : x ≡ y) (r s : p ≡ q) → r ≡ s
emsquash : isGroupoid EM₁
{- The comp// constructor fills the square:
emloop (g + h)
[a]— — — >[c]
‖ ^
‖ | emloop h ^
‖ | j |
[a]— — — >[b] ∙ — >
emloop g i
We use this to give another constructor-like construction:
-}
emloop-comp : (g h : Carrier) → emloop (g + h) ≡ emloop g ∙ emloop h
emloop-comp g h i = compPath-unique refl (emloop g) (emloop h)
(emloop (g + h) , emcomp g h)
(emloop g ∙ emloop h , compPath-filler (emloop g) (emloop h)) i .fst
|
{
"alphanum_fraction": 0.5555555556,
"avg_line_length": 25.8,
"ext": "agda",
"hexsha": "defded51bbcc0b26c06cf7f61a00f868bcc3d3e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/HITs/EilenbergMacLane1/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/HITs/EilenbergMacLane1/Base.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/HITs/EilenbergMacLane1/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 401,
"size": 1161
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.FGIdeal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Data.FinData
open import Cubical.Data.Nat
open import Cubical.Data.Vec
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal using ()
renaming (generatedIdeal to generatedIdealCommRing;
indInIdeal to ringIncInIdeal;
0FGIdeal to 0FGIdealCommRing)
open import Cubical.Algebra.CommAlgebra
open import Cubical.Algebra.CommAlgebra.Ideal
private
variable
ℓ : Level
R : CommRing ℓ
generatedIdeal : {n : ℕ} (A : CommAlgebra R ℓ) → FinVec (fst A) n → IdealsIn A
generatedIdeal A = generatedIdealCommRing (CommAlgebra→CommRing A)
incInIdeal : {n : ℕ} (A : CommAlgebra R ℓ)
(U : FinVec ⟨ A ⟩ n) (i : Fin n) → U i ∈ fst (generatedIdeal A U)
incInIdeal A = ringIncInIdeal (CommAlgebra→CommRing A)
syntax generatedIdeal A V = ⟨ V ⟩[ A ]
module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where
open CommAlgebraStr (snd A)
0FGIdeal : {n : ℕ} → ⟨ replicateFinVec n 0a ⟩[ A ] ≡ (0Ideal A)
0FGIdeal = 0FGIdealCommRing (CommAlgebra→CommRing A)
|
{
"alphanum_fraction": 0.7081681205,
"avg_line_length": 33.1842105263,
"ext": "agda",
"hexsha": "e06ed81b11f3a1179beb778046dc6a0c84665109",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 385,
"size": 1261
}
|
{-# OPTIONS --without-K #-}
module algebra.monoid.morphism where
open import level
open import algebra.monoid.core
open import algebra.semigroup.morphism
open import equality.core
open import function.isomorphism
open import hott.level
open import sum
module _ {i}{j}
{X : Set i}⦃ sX : IsMonoid X ⦄
{Y : Set j}⦃ sY : IsMonoid Y ⦄ where
open IsMonoid ⦃ ... ⦄
record IsMonoidMorphism (f : X → Y) : Set (i ⊔ j) where
constructor mk-is-monoid-morphism
field
sgrp-mor : IsSemigroupMorphism f
id-pres : f e ≡ e
is-monoid-morphism-struct-iso : (f : X → Y)
→ IsMonoidMorphism f ≅ (IsSemigroupMorphism f × (f e ≡ e))
is-monoid-morphism-struct-iso f = record
{ to = λ mor → ( IsMonoidMorphism.sgrp-mor mor
, IsMonoidMorphism.id-pres mor )
; from = λ { (s , i) → mk-is-monoid-morphism s i }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
is-monoid-morphism-level : (f : X → Y) → h 1 (IsMonoidMorphism f)
is-monoid-morphism-level f =
iso-level (sym≅ (is-monoid-morphism-struct-iso f))
(×-level (is-semigroup-morphism-level f)
(is-set _ _))
|
{
"alphanum_fraction": 0.6300884956,
"avg_line_length": 30.5405405405,
"ext": "agda",
"hexsha": "fe76198e28aaba99c55c8df43c9fd283bb919f76",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/monoid/morphism.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/monoid/morphism.agda",
"max_line_length": 67,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/monoid/morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 381,
"size": 1130
}
|
{-
DUARel for the constant unit family
-}
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Displayed.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
open import Cubical.Displayed.Base
open import Cubical.Displayed.Constant
private
variable
ℓA ℓ≅A : Level
𝒮-Unit : UARel Unit ℓ-zero
𝒮-Unit .UARel._≅_ _ _ = Unit
𝒮-Unit .UARel.ua _ _ = invEquiv (isContr→≃Unit (isProp→isContrPath isPropUnit _ _))
𝒮ᴰ-Unit : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) → DUARel 𝒮-A (λ _ → Unit) ℓ-zero
𝒮ᴰ-Unit 𝒮-A = 𝒮ᴰ-const 𝒮-A 𝒮-Unit
|
{
"alphanum_fraction": 0.7245696401,
"avg_line_length": 22.8214285714,
"ext": "agda",
"hexsha": "6d24f8539e3f38c408bdbcd0c944a44d084aa63a",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Displayed/Unit.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Displayed/Unit.agda",
"max_line_length": 83,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Displayed/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 252,
"size": 639
}
|
------------------------------------------------------------------------
-- Compiler correctness
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --sized-types #-}
module Lambda.Simplified.Delay-monad.Compiler-correctness where
import Equality.Propositional as E
open import Prelude
open import Prelude.Size
open import Monad E.equality-with-J
open import Vec.Function E.equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Monad
open import Lambda.Simplified.Compiler
open import Lambda.Simplified.Delay-monad.Interpreter
open import Lambda.Simplified.Delay-monad.Virtual-machine
open import Lambda.Simplified.Syntax
open import Lambda.Simplified.Virtual-machine
private
module C = Closure Code
module T = Closure Tm
-- Compiler correctness.
mutual
⟦⟧-correct :
∀ {i n} t {ρ : T.Env n} {c s}
{k : T.Value → Delay (Maybe C.Value) ∞} →
(∀ v → [ i ] exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈ k v) →
[ i ] exec ⟨ comp t c , s , comp-env ρ ⟩ ≈ ⟦ t ⟧ ρ >>= k
⟦⟧-correct (var x) {ρ} {c} {s} {k} hyp =
exec ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨⟩
exec ⟨ c , val (comp-val (ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (ρ x) ⟩∼
k (ρ x) ∼⟨⟩
⟦ var x ⟧ ρ >>= k ∎
⟦⟧-correct (ƛ t) {ρ} {c} {s} {k} hyp =
exec ⟨ clo (comp t (ret ∷ [])) ∷ c , s , comp-env ρ ⟩ ≳⟨⟩
exec ⟨ c , val (comp-val (T.ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (T.ƛ t ρ) ⟩∼
k (T.ƛ t ρ) ∼⟨⟩
⟦ ƛ t ⟧ ρ >>= k ∎
⟦⟧-correct (t₁ · t₂) {ρ} {c} {s} {k} hyp =
exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t₁ λ v₁ → ⟦⟧-correct t₂ λ v₂ → ∙-correct v₁ v₂ hyp) ⟩∼
(⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ (⟦ t₁ ⟧ ρ ∎) >>=-cong (λ _ → associativity′ (⟦ t₂ ⟧ ρ) _ _) ⟩
(⟦ t₁ ⟧ ρ >>= λ v₁ → (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂) >>= k) ∼⟨ associativity′ (⟦ t₁ ⟧ ρ) _ _ ⟩
⟦ t₁ · t₂ ⟧ ρ >>= k ∎
∙-correct :
∀ {i n} v₁ v₂ {ρ : T.Env n} {c s}
{k : T.Value → Delay (Maybe C.Value) ∞} →
(∀ v → [ i ] exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈ k v) →
[ i ] exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val v₁) ∷ s
, comp-env ρ
⟩ ≈
v₁ ∙ v₂ >>= k
∙-correct (T.ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp =
exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val (T.ƛ t₁ ρ₁)) ∷ s
, comp-env ρ
⟩ ≈⟨ later (λ { .force →
exec ⟨ comp t₁ (ret ∷ [])
, ret c (comp-env ρ) ∷ s
, cons (comp-val v₂) (comp-env ρ₁)
⟩ ≡⟨ E.cong (λ ρ′ →
exec ⟨ comp t₁ (ret ∷ []) , ret c (comp-env ρ) ∷ s , ρ′ ⟩) $
E.sym comp-cons ⟩
exec ⟨ comp t₁ (ret ∷ [])
, ret c (comp-env ρ) ∷ s
, comp-env (cons v₂ ρ₁)
⟩ ≈⟨ ⟦⟧-correct t₁ (λ v →
exec ⟨ ret ∷ []
, val (comp-val v) ∷ ret c (comp-env ρ) ∷ s
, comp-env (cons v₂ ρ₁)
⟩ ≳⟨⟩
exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈⟨ hyp v ⟩∎
k v ∎) ⟩∼
⟦ t₁ ⟧ (cons v₂ ρ₁) >>= k ∎ }) ⟩∎
T.ƛ t₁ ρ₁ ∙ v₂ >>= k ∎
-- Note that the equality that is used here is syntactic.
correct :
∀ t →
exec ⟨ comp t [] , [] , nil ⟩ ≈
⟦ t ⟧ nil >>= λ v → return (just (comp-val v))
correct t =
exec ⟨ comp t [] , [] , nil ⟩ ≡⟨ E.cong (λ ρ → exec ⟨ comp t [] , [] , ρ ⟩) $ E.sym comp-nil ⟩
exec ⟨ comp t [] , [] , comp-env nil ⟩ ≈⟨ ⟦⟧-correct t (λ v → return (just (comp-val v)) ∎) ⟩
(⟦ t ⟧ nil >>= λ v → return (just (comp-val v))) ∎
|
{
"alphanum_fraction": 0.3820406279,
"avg_line_length": 39.3818181818,
"ext": "agda",
"hexsha": "999f97d6a15fc151c51fb0299ca23c965fd5216b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Simplified/Delay-monad/Compiler-correctness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Simplified/Delay-monad/Compiler-correctness.agda",
"max_line_length": 141,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Simplified/Delay-monad/Compiler-correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 1480,
"size": 4332
}
|
module omega-automaton where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat
open import Data.List
open import Data.Maybe
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) renaming ( not to negate )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary -- using (not_; Dec; yes; no)
open import Data.Empty
open import logic
open import automaton
open Automaton
ω-run : { Q Σ : Set } → (Ω : Automaton Q Σ ) → (astart : Q ) → ℕ → ( ℕ → Σ ) → Q
ω-run Ω x zero s = x
ω-run Ω x (suc n) s = δ Ω (ω-run Ω x n s) ( s n )
--
-- accept as Buchi automaton
--
record Buchi { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where
field
from : ℕ
stay : (x : Q) → (n : ℕ ) → n > from → aend Ω ( ω-run Ω x n S ) ≡ true
open Buchi
-- after sometimes, always p
--
-- not p
-- ------------>
-- <> [] p * <> [] p
-- <-----------
-- p
--
-- accept as Muller automaton
--
record Muller { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where
field
next : (n : ℕ ) → ℕ
infinite : (x : Q) → (n : ℕ ) → aend Ω ( ω-run Ω x (n + (next n)) S ) ≡ true
-- always sometimes p
--
-- not p
-- ------------>
-- [] <> p * [] <> p
-- <-----------
-- p
data States3 : Set where
ts* : States3
ts : States3
transition3 : States3 → Bool → States3
transition3 ts* true = ts*
transition3 ts* false = ts
transition3 ts true = ts*
transition3 ts false = ts
mark1 : States3 → Bool
mark1 ts* = true
mark1 ts = false
ωa1 : Automaton States3 Bool
ωa1 = record {
δ = transition3
; aend = mark1
}
true-seq : ℕ → Bool
true-seq _ = true
false-seq : ℕ → Bool
false-seq _ = false
flip-seq : ℕ → Bool
flip-seq zero = false
flip-seq (suc n) = not ( flip-seq n )
lemma0 : Muller ωa1 flip-seq
lemma0 = record {
next = λ n → suc (suc n)
; infinite = lemma01
} where
lemma01 : (x : States3) (n : ℕ) →
aend ωa1 (ω-run ωa1 x (n + suc (suc n)) flip-seq) ≡ true
lemma01 = {!!}
lemma1 : Buchi ωa1 true-seq
lemma1 = record {
from = zero
; stay = {!!}
} where
lem1 : ( n : ℕ ) → n > zero → aend ωa1 (ω-run ωa1 {!!} n true-seq ) ≡ true
lem1 zero ()
lem1 (suc n) (s≤s z≤n) with ω-run ωa1 {!!} n true-seq
lem1 (suc n) (s≤s z≤n) | ts* = {!!}
lem1 (suc n) (s≤s z≤n) | ts = {!!}
ωa2 : Automaton States3 Bool
ωa2 = record {
δ = transition3
; aend = λ x → not ( mark1 x )
}
flip-dec : (n : ℕ ) → Dec ( flip-seq n ≡ true )
flip-dec n with flip-seq n
flip-dec n | false = no λ ()
flip-dec n | true = yes refl
flip-dec1 : (n : ℕ ) → flip-seq (suc n) ≡ ( not ( flip-seq n ) )
flip-dec1 n = let open ≡-Reasoning in
flip-seq (suc n )
≡⟨⟩
( not ( flip-seq n ) )
∎
flip-dec2 : (n : ℕ ) → not flip-seq (suc n) ≡ flip-seq n
flip-dec2 n = {!!}
record flipProperty : Set where
field
flipP : (n : ℕ) → ω-run ωa2 {!!} {!!} ≡ ω-run ωa2 {!!} {!!}
lemma2 : Muller ωa2 flip-seq
lemma2 = record {
next = next
; infinite = {!!}
} where
next : ℕ → ℕ
next = {!!}
infinite' : (n m : ℕ) → n ≥″ m → aend ωa2 {!!} ≡ true → aend ωa2 {!!} ≡ true
infinite' = {!!}
infinite : (n : ℕ) → aend ωa2 {!!} ≡ true
infinite = {!!}
lemma3 : Buchi ωa1 false-seq → ⊥
lemma3 = {!!}
lemma4 : Muller ωa1 flip-seq → ⊥
lemma4 = {!!}
|
{
"alphanum_fraction": 0.4888405008,
"avg_line_length": 23.5512820513,
"ext": "agda",
"hexsha": "a4ae5705057e62a2779c9aed04c33525fe1f98aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/omega-automaton.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/omega-automaton.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/omega-automaton.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1316,
"size": 3674
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.