Search is not available for this dataset
text
string
meta
dict
{- The naive, but incorrect, way to define the integers as a HIT. This file mainly contains a proof that IsoInt ≢ Int, and ends with a demonstration of how the same proof strategy fails for BiInvInt. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.IsoInt.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int open import Cubical.Data.Nat open import Cubical.Data.Empty open import Cubical.Relation.Nullary data IsoInt : Type₀ where zero : IsoInt suc : IsoInt -> IsoInt -- suc is an isomorphism: pred : IsoInt -> IsoInt suc-pred : ∀ z -> suc (pred z) ≡ z pred-suc : ∀ z -> pred (suc z) ≡ z suc-iso : Iso IsoInt IsoInt suc-iso = record { fun = suc ; inv = pred ; rightInv = suc-pred ; leftInv = pred-suc } -- this submodule is adapted from Section 5 of -- http://www.cs.ru.nl/~herman/PUBS/HIT-programming.pdf module NonTrivial where -- these two paths are distinct! p₁ p₂ : Path IsoInt (suc (pred (suc zero))) (suc zero) p₁ i = suc-pred (suc zero) i p₂ i = suc (pred-suc zero i) -- to prove this we map into S¹, sending p₁ to refl and p₂ to loop open import Cubical.HITs.S1 toS¹ : IsoInt → S¹ toS¹ zero = base toS¹ (suc x) = toS¹ x toS¹ (pred x) = toS¹ x toS¹ (suc-pred x i) = refl {x = toS¹ x} i toS¹ (pred-suc x i) = rotLoop (toS¹ x) i p₁≡refl : cong toS¹ p₁ ≡ refl p₁≡refl = refl p₂≡loop : cong toS¹ p₂ ≡ loop p₂≡loop = refl -- this is enough to show that p₁ and p₂ cannot be equal p₁≢p₂ : ¬ (p₁ ≡ p₂) p₁≢p₂ eq = znots 0≡1 where -- using winding numbers, p₁ ≡ p₂ implies 0 ≡ 1 0≡1 : 0 ≡ 1 0≡1 = injPos (cong (winding ∘ cong toS¹) eq) ¬isSet-IsoInt : ¬ (isSet IsoInt) ¬isSet-IsoInt pf = NonTrivial.p₁≢p₂ (pf _ _ NonTrivial.p₁ NonTrivial.p₂) ¬Int≡IsoInt : ¬ (Int ≡ IsoInt) ¬Int≡IsoInt p = ¬isSet-IsoInt (subst isSet p isSetInt) private -- Note: this same proof strategy fails for BiInvInt! open import Cubical.HITs.Ints.BiInvInt hiding (zero; suc; pred; suc-pred; pred-suc) import Cubical.HITs.Ints.BiInvInt as BiI p₁ p₂ : Path BiInvInt (BiI.suc (BiI.pred (BiI.suc BiI.zero))) (BiI.suc BiI.zero) p₁ i = BiI.suc-pred (BiI.suc BiI.zero) i p₂ i = BiI.suc (BiI.pred-suc BiI.zero i) open import Cubical.HITs.S1 toS¹ : BiInvInt → S¹ toS¹ BiI.zero = base toS¹ (BiI.suc x) = toS¹ x toS¹ (BiI.predr x) = toS¹ x toS¹ (BiI.predl x) = toS¹ x toS¹ (BiI.suc-predr x i) = refl {x = toS¹ x} i toS¹ (BiI.predl-suc x i) = rotLoop (toS¹ x) i -- still p₂ maps to loop... p₂≡loop : cong toS¹ p₂ ≡ loop p₂≡loop = refl open import Cubical.Foundations.GroupoidLaws -- ...but now so does p₁! p₁≡loop : cong toS¹ p₁ ≡ loop p₁≡loop = sym (decodeEncode base (cong toS¹ p₁)) ∙ sym (lUnit loop) -- if we use BiI.predr instead of BiI.pred (≡ BiI.predl) in p₁ and p₂, -- both paths in S¹ are refl
{ "alphanum_fraction": 0.6528651871, "avg_line_length": 26.7168141593, "ext": "agda", "hexsha": "ec3304dd859eec06989c5fe724e7d6df0609ad96", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/IsoInt/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/IsoInt/Base.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/IsoInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1157, "size": 3019 }
-- Andreas, 2017-01-12, issue #2386 postulate F : ∀{a}{A : Set a} → A → A data Eq (A : Set) : (x y : F A) → Set where refl : (x : F A) → Eq A x x {-# BUILTIN EQUALITY Eq #-} -- Expected error: -- The type of BUILTIN EQUALITY must be a polymorphic relation -- when checking the pragma BUILTIN EQUALITY Eq
{ "alphanum_fraction": 0.6217948718, "avg_line_length": 22.2857142857, "ext": "agda", "hexsha": "95284277b9088d5ae653e0ffd23e78a0578e93ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2386-c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2386-c.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2386-c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 312 }
-- Andreas, 2015-08-27 Rewrite rules in parametrized modules are fine. -- Jesper, 2015-10-14 Semantics of rewrite rules in parametrized modules has -- changed (see issue 1652) -- Jesper, 2015-11-9 Rewrite rules in parametrized modules are now -- generalized to the top-context automatically {-# OPTIONS --rewriting #-} open import Common.Nat open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} module _ (y z : Nat) where assoc+ : ∀ x → (x + y) + z ≡ x + (y + z) assoc+ zero = refl assoc+ (suc x) rewrite assoc+ x = refl {-# REWRITE assoc+ #-} test : ∀{x y} → (x + 0) + y ≡ x + y test = refl
{ "alphanum_fraction": 0.6163328197, "avg_line_length": 27.0416666667, "ext": "agda", "hexsha": "1d91fa367834b689f0ea766eb6090e862f8469b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/RewritingRuleInParametrizedModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/RewritingRuleInParametrizedModule.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/RewritingRuleInParametrizedModule.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 201, "size": 649 }
------------------------------------------------------------------------ -- Some examples ------------------------------------------------------------------------ module Contractive.Examples where open import Codata.Musical.Notation open import Codata.Musical.Stream open import Data.Nat open import Data.Nat.Properties import Data.Vec as Vec open Vec using (_∷_; []) open import Function open import Contractive import Contractive.Stream as S open import StreamProg using (Ord; lt; eq; gt; merge) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open COFE (S.cofe 0) fibF : ContractiveFun (S.cofe 0) fibF = record { F = F ; isContractive = isCon _ _ _ } where F = λ xs → 0 ∷ ♯ (1 ∷ ♯ zipWith _+_ xs (tail xs)) lemma₁ : ∀ _∙_ (xs ys : Stream ℕ) n → take n (zipWith _∙_ xs ys) ≡ Vec.zipWith _∙_ (take n xs) (take n ys) lemma₁ _∙_ _ _ zero = refl lemma₁ _∙_ (x ∷ xs) (y ∷ ys) (suc n) = cong (_∷_ (x ∙ y)) (lemma₁ _∙_ (♭ xs) (♭ ys) n) lemma₂ : ∀ (xs ys : Stream ℕ) n → Eq n xs ys → take n xs ≡ take n ys lemma₂ _ _ zero _ = refl lemma₂ (x ∷ xs) ( y ∷ ys) (suc n) hyp with cong Vec.head hyp | take n (♭ xs) | lemma₂ (♭ xs) (♭ ys) n (cong Vec.tail hyp) lemma₂ (x ∷ xs) (.x ∷ ys) (suc n) hyp | refl | .(take n (♭ ys)) | refl = refl isCon : ∀ (xs ys : Stream ℕ) n → (∀ {m} → m <′ n → Eq m xs ys) → Eq n (F xs) (F ys) isCon _ _ zero _ = refl isCon (x ∷ xs) (y ∷ ys) (suc n) hyp = cong (λ zs → 0 ∷ 1 ∷ zs) (begin take n (zipWith _+_ (x ∷ xs) (♭ xs)) ≡⟨ lemma₁ _+_ (x ∷ xs) (♭ xs) n ⟩ Vec.zipWith _+_ (take n (x ∷ xs)) (take n (♭ xs)) ≡⟨ cong₂ (Vec.zipWith _+_) (lemma₂ _ _ n (hyp ≤′-refl)) (cong Vec.tail (hyp ≤′-refl)) ⟩ Vec.zipWith _+_ (take n (y ∷ ys)) (take n (♭ ys)) ≡⟨ sym $ lemma₁ _+_ (y ∷ ys) (♭ ys) n ⟩ take n (zipWith _+_ (y ∷ ys) (♭ ys)) ∎) fib : Stream ℕ fib = ContractiveFun.fixpoint fibF -- Note that I could not be bothered to finish the following -- definition. hammingF : ContractiveFun (S.cofe 0) hammingF = record { F = F ; isContractive = isCon _ _ _ } where toOrd : ∀ {m n} → Ordering m n → Ord toOrd (less _ _) = lt toOrd (equal _) = eq toOrd (greater _ _) = gt cmp : ℕ → ℕ → Ord cmp m n = toOrd (compare m n) F = λ (xs : _) → 0 ∷ ♯ merge cmp (map (_*_ 2) xs) (map (_*_ 3) xs) postulate lemma : ∀ n → cmp (2 * suc n) (3 * suc n) ≡ lt isCon : ∀ (xs ys : Stream ℕ) n → (∀ {m} → m <′ n → Eq m xs ys) → Eq n (F xs) (F ys) isCon _ _ zero _ = refl isCon (x ∷ xs) (y ∷ ys) (suc n) hyp with cong Vec.head (hyp (s≤′s z≤′n)) isCon (0 ∷ xs) (.0 ∷ ys) (suc n) hyp | refl = cong (λ zs → 0 ∷ 0 ∷ zs) (begin take n (merge cmp (map (_*_ 2) (♭ xs)) (map (_*_ 3) (♭ xs))) ≡⟨ iCantBeBothered ⟩ take n (merge cmp (map (_*_ 2) (♭ ys)) (map (_*_ 3) (♭ ys))) ∎) where postulate iCantBeBothered : _ isCon (suc x ∷ xs) (.(suc x) ∷ ys) (suc n) hyp | refl with cmp (2 * suc x) (3 * suc x) | lemma x isCon (suc x ∷ xs) (.(suc x) ∷ ys) (suc n) hyp | refl | .lt | refl = cong (λ zs → 0 ∷ 2 * suc x ∷ zs) (begin take n (merge cmp (map (_*_ 2) (♭ xs)) (map (_*_ 3) (suc x ∷ xs))) ≡⟨ iCantBeBothered ⟩ take n (merge cmp (map (_*_ 2) (♭ ys)) (map (_*_ 3) (suc x ∷ ys))) ∎) where postulate iCantBeBothered : _ hamming : Stream ℕ hamming = ContractiveFun.fixpoint hammingF
{ "alphanum_fraction": 0.484375, "avg_line_length": 36.0388349515, "ext": "agda", "hexsha": "acd2356ce69d3454342b560191f950099ec8f243", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Contractive/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Contractive/Examples.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Contractive/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1400, "size": 3712 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Categories.Definition where record Category {a b : _} : Set (lsuc (a ⊔ b)) where field objects : Set a arrows : objects → objects → Set b id : (x : objects) → arrows x x _∘_ : {x y z : objects} → arrows y z → arrows x y → arrows x z rightId : {x y : objects} → (f : arrows x y) → (id y) ∘ f ≡ f leftId : {x y : objects} → (f : arrows x y) → f ∘ (id x) ≡ f compositionAssociative : {x y z w : objects} → (f : arrows z w) → (g : arrows y z) → (h : arrows x y) → (f ∘ (g ∘ h)) ≡ (f ∘ g) ∘ h
{ "alphanum_fraction": 0.5720720721, "avg_line_length": 39.1764705882, "ext": "agda", "hexsha": "b9e9080cd161fe04af632107c25c210d7d7b6e90", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Categories/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Categories/Definition.agda", "max_line_length": 135, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Categories/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 245, "size": 666 }
{-# OPTIONS --without-K --safe #-} -- The Simplex category Δ module Categories.Category.Instance.Simplex where open import Level using (0ℓ) open import Data.Product open import Data.Fin.Base using (Fin; zero; suc; _≤_; _<_; inject₁; punchIn) open import Data.Nat.Base using (ℕ; zero; suc; z≤n; s≤s) open import Function renaming (id to idF; _∘_ to _∙_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) open import Categories.Category.Core using (Category) -------------------------------------------------------------------------------- -- The Simplex Category -- -- Classically, the category Δ is defined as follows: -- * Objects are Natural Numbers -- * Morphisms 'm ⇒ n' are order-preserving maps 'Fin m → Fin n' -- -- We _can_ define this version of Δ, but it is generally /not/ the version we want. -- Most of the time we work with Δ, we only care about 2 classes of maps: -- * Face maps 'δᵢ : n ⇒ (1 + n)' whose image omits 'i' -- * Boundary maps 'σᵢ : (1 + n) ⇒ n' such that 'σᵢ i = σᵢ (i + 1) = i' -- It turns out that all of the maps of Δ can be decomposed into compositions -- of these 2 classes of maps[1], so most texts will define Functors out of Δ -- based solely how they act on these morphisms. -- -- Therefore, we want our definition of Δ to put these morphisms front and center, -- by encoding our homs as follows: infix 4 _Δ⇒_ infixr 9 _⊚_ data _Δ⇒_ : ℕ → ℕ → Set where ε : ∀ {n} → n Δ⇒ n δ : ∀ {n} → (i : Fin (suc n)) → n Δ⇒ (suc n) σ : ∀ {n} → (j : Fin n) → (suc n) Δ⇒ n _⊚_ : ∀ {l m n} → m Δ⇒ n → l Δ⇒ m → l Δ⇒ n -- However, this raises some tricky questions about equality of morphisms. It is tempting -- to use the Simplical Identities[2] directly as our notion of equality: -- * δᵢ ∘ δⱼ = δⱼ₊₁ ∘ δᵢ if i ≤ j -- * σⱼ ∘ σᵢ = σᵢ ∘ σⱼ₊₁ if i ≤ j -- * σⱼ ∘ δᵢ = δᵢ ∘ σⱼ₋₁ if i < j -- * σⱼ ∘ δᵢ = id if i = j or i = j + 1 -- * σⱼ ∘ δᵢ = δᵢ₋₁ ∘ σⱼ if j + 1 < i -- -- However, working with these isn't exactly pleasant and will prove these -- as theorems later. Instead of quotienting by these identities, -- we appeal to the denotational semantics of our formal chains of morphisms. -- In this case we interpret our morphisms as maps between finite ordinals: face : ∀ {n} → Fin (ℕ.suc n) → Fin n → Fin (ℕ.suc n) face = punchIn degen : ∀ {n} → Fin n → Fin (ℕ.suc n) → Fin n degen Fin.zero Fin.zero = Fin.zero degen Fin.zero (Fin.suc k) = k degen (Fin.suc i) Fin.zero = Fin.zero degen (Fin.suc i) (Fin.suc k) = Fin.suc (degen i k) ⟦_⟧ : ∀ {m n} → m Δ⇒ n → (Fin m → Fin n) ⟦ ε ⟧ x = x ⟦ δ i ⟧ x = face i x ⟦ σ j ⟧ x = degen j x ⟦ f ⊚ g ⟧ x = ⟦ f ⟧ (⟦ g ⟧ x) -- Now, we can define equality of morphisms by appealing to our semantics! infix 4 _≗_ -- We wrap this in a record so that we don't compute away what the original morphsims were. record _≗_ {m n} (f g : m Δ⇒ n) : Set where constructor Δ-eq field Δ-pointwise : ∀ {x} → ⟦ f ⟧ x ≡ ⟦ g ⟧ x open _≗_ public -- Now, we get the same benefits of being able to do induction on our input -- arguments when trying to prove equalities, as well as being able to define functors -- out of Δ via their action on face/degeneracy maps. Δ : Category 0ℓ 0ℓ 0ℓ Δ = record { Obj = ℕ ; _⇒_ = _Δ⇒_ ; _≈_ = _≗_ ; id = ε ; _∘_ = _⊚_ ; assoc = Δ-eq refl ; sym-assoc = Δ-eq refl ; identityˡ = Δ-eq refl ; identityʳ = Δ-eq refl ; identity² = Δ-eq refl ; equiv = record { refl = Δ-eq refl ; sym = λ eq → Δ-eq (sym (Δ-pointwise eq)) ; trans = λ eq₁ eq₂ → Δ-eq (trans (Δ-pointwise eq₁) (Δ-pointwise eq₂)) } ; ∘-resp-≈ = λ {_ _ _ f g h i} eq₁ eq₂ → Δ-eq (trans (cong ⟦ f ⟧ (Δ-pointwise eq₂)) (Δ-pointwise eq₁)) } -- For completeness, here are the aforementioned simplical identities. These may seem /slightly/ -- different than the ones presented before, but it's just re-indexing to avoid having to use 'pred'. open Category Δ -- δᵢ ∘ δⱼ = δⱼ₊₁ ∘ δᵢ if i ≤ j face-comm : ∀ {n} (i j : Fin (suc n)) → i ≤ j → δ (inject₁ i) ∘ δ j ≈ δ (suc j) ∘ δ i face-comm zero _ z≤n = Δ-eq refl face-comm (suc i) (suc j) (s≤s le) = Δ-eq (λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (face-comm i j le)) }) -- σⱼ ∘ σᵢ = σᵢ ∘ σⱼ₊₁ if i ≤ j degen-comm : ∀ {n} (i j : Fin n) → i ≤ j → σ j ∘ σ (inject₁ i) ≈ σ i ∘ σ (suc j) degen-comm zero zero z≤n = Δ-eq λ { {zero} → refl ; {suc x} → refl } degen-comm zero (suc _) z≤n = Δ-eq λ { {zero} → refl ; {suc x} → refl } degen-comm (suc i) (suc j) (s≤s le) = Δ-eq (λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (degen-comm i j le)) }) -- σⱼ ∘ δᵢ = δᵢ ∘ σⱼ₋₁ if i < j degen-face-comm : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i < suc j → σ (suc j) ∘ δ (inject₁ i) ≈ δ i ∘ σ j degen-face-comm zero _ (s≤s _) = Δ-eq refl degen-face-comm (suc i) (suc j) (s≤s le) = Δ-eq (λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (degen-face-comm i j le)) }) -- σⱼ ∘ δᵢ = id if i = j degen-face-id : ∀ {n} (i j : Fin n) → i ≡ j → σ j ∘ δ (inject₁ i) ≈ id degen-face-id zero zero refl = Δ-eq refl degen-face-id (suc i) (suc i) refl = Δ-eq (λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (degen-face-id i i refl)) }) -- σⱼ ∘ δᵢ = id if i = j + 1 degen-face-suc-id : ∀ {n} (i : Fin (suc n)) (j : Fin n) → i ≡ suc j → σ j ∘ δ i ≈ id degen-face-suc-id (suc zero) zero refl = Δ-eq λ { {zero} → refl ; {suc x} → refl } degen-face-suc-id (suc (suc i)) (suc i) refl = Δ-eq λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (degen-face-suc-id (suc i) i refl)) } -- σⱼ ∘ δᵢ = δᵢ₋₁ ∘ σⱼ if j + 1 < i degen-face-suc-comm : ∀ {n} (i : Fin (suc n)) (j : Fin n) → suc j < i → σ (inject₁ j) ∘ δ (suc i) ≈ δ i ∘ σ j degen-face-suc-comm (suc (suc i)) zero (s≤s (s≤s z≤n)) = Δ-eq (λ { {zero} → refl ; {suc x} → refl }) degen-face-suc-comm (suc (suc i)) (suc j) (s≤s le) = Δ-eq (λ { {zero} → refl ; {suc x} → cong suc (Δ-pointwise (degen-face-suc-comm (suc i) j le)) }) -- Further Work: -- If we had a means of decomposing any monotone map 'Fin n ⇒ Fin m' into a series of face/boundary -- maps, we would be able to compute normal forms in Δ by using normalization by evaluation. This is -- very promising, as it would let us define a reflection tactic to automatically perform -- proofs about chains of morphisms in Δ. -- Footnotes: -- 1. For a proof of this, see Categories for The Working Mathematician VII.5 -- 2. See https://ncatlab.org/nlab/show/simplex+category
{ "alphanum_fraction": 0.5951717734, "avg_line_length": 42.5131578947, "ext": "agda", "hexsha": "96448b6553fc47581916104e054e0b067d45e02a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_line_length": 156, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2559, "size": 6462 }
-- Sums and cocartesian categories module CategoryTheory.BCCCs.Cocartesian where open import CategoryTheory.Categories open import Relation.Binary using (IsEquivalence) module _ {n} (ℂ : Category n) where open Category ℂ -- Initial object in a category record InitialObj : Set (lsuc n) where field -- | Data -- The initial object ⊥ : obj -- Canonical morphism ¡ : {A : obj} -> (⊥ ~> A) -- | Laws -- Need to show that the canonical morphism ! is unique ¡-unique : {A : obj} -> (m : ⊥ ~> A) -> m ≈ ¡ -- Sum of two objects -- Based on github.com/copumpkin/categories record Sum (A B : obj) : Set (lsuc n) where infix 10 [_⁏_] field -- | Data -- Sum of A and B A⊕B : obj -- First injection ι₁ : A ~> A⊕B -- Second injection ι₂ : B ~> A⊕B -- Canonical mediator [_⁏_] : ∀{S} -> (A ~> S) -> (B ~> S) -> (A⊕B ~> S) -- | Laws -- [_⁏_] expresses that given another candidate sum S -- and candidate injections to A and B there is a morphism -- from A⊕B to S. We need to check that this mediator makes -- the sum diagram commute and is unique. ι₁-comm : ∀{S} -> {i₁ : A ~> S} {i₂ : B ~> S} -> [ i₁ ⁏ i₂ ] ∘ ι₁ ≈ i₁ ι₂-comm : ∀{S} -> {i₁ : A ~> S} {i₂ : B ~> S} -> [ i₁ ⁏ i₂ ] ∘ ι₂ ≈ i₂ ⊕-unique : ∀{S} -> {i₁ : A ~> S} {i₂ : B ~> S} {m : A⊕B ~> S} -> m ∘ ι₁ ≈ i₁ -> m ∘ ι₂ ≈ i₂ -> [ i₁ ⁏ i₂ ] ≈ m -- η-expansion of function sums (via morphisms) ⊕-η-exp : ∀{S} -> {m : A⊕B ~> S} -> [ m ∘ ι₁ ⁏ m ∘ ι₂ ] ≈ m ⊕-η-exp = ⊕-unique r≈ r≈ -- Summing of injection functions is the identity ⊕-η-id : [ ι₁ ⁏ ι₂ ] ≈ id ⊕-η-id = ⊕-unique id-left id-left -- Congruence over function summing [⁏]-cong : ∀{S} -> {i₁ j₁ : A ~> S} {i₂ j₂ : B ~> S} -> i₁ ≈ j₁ -> i₂ ≈ j₂ -> [ i₁ ⁏ i₂ ] ≈ [ j₁ ⁏ j₂ ] [⁏]-cong pr1 pr2 = ⊕-unique (ι₁-comm ≈> pr1 [sym]) (ι₂-comm ≈> pr2 [sym]) -- Type class for cocartesian categories record Cocartesian {n} (ℂ : Category n) : Set (lsuc n) where open Category ℂ field -- | Data -- Initial object init : InitialObj ℂ -- Binary sums for all pairs of objects sum : ∀(A B : obj) -> Sum ℂ A B open InitialObj init public open module S {A} {B} = Sum (sum A B) public -- Shorthand for sum object infixl 22 _⊕_ _⊕_ : (A B : obj) -> obj A ⊕ B = A⊕B {A} {B} -- Parallel sum of morphisms infixl 65 _⊹_ _⊹_ : {A B P Q : obj} -> (A ~> P) -> (B ~> Q) -> (A ⊕ B ~> P ⊕ Q) _⊹_ {A} {B} {P} {Q} f g = [ ι₁ ∘ f ⁏ ι₂ ∘ g ] -- Sum of three morphisms [_⁏_⁏_] : ∀{S A B C : obj} -> (A ~> S) -> (B ~> S) -> (C ~> S) -> (A ⊕ B ⊕ C ~> S) [ f ⁏ g ⁏ h ] = [ [ f ⁏ g ] ⁏ h ]
{ "alphanum_fraction": 0.4411575563, "avg_line_length": 32.0618556701, "ext": "agda", "hexsha": "65cf6fe05b6a412511e28be8ee532682319eafca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/BCCCs/Cocartesian.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/BCCCs/Cocartesian.agda", "max_line_length": 86, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/BCCCs/Cocartesian.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1122, "size": 3110 }
module BasicIPC.Metatheory.ClosedHilbert-TarskiGluedClosedHilbert where open import BasicIPC.Syntax.ClosedHilbert public open import BasicIPC.Semantics.TarskiGluedClosedHilbert public -- Internalisation of syntax as syntax representation in a particular model. module _ {{_ : Model}} where [_] : ∀ {A} → ⊢ A → [⊢] A [ app t u ] = [app] [ t ] [ u ] [ ci ] = [ci] [ ck ] = [ck] [ cs ] = [cs] [ cpair ] = [cpair] [ cfst ] = [cfst] [ csnd ] = [csnd] [ unit ] = [unit] -- Soundness with respect to all models, or evaluation, for closed terms only. eval₀ : ∀ {A} → ⊢ A → ⊨ A eval₀ (app t u) = eval₀ t ⟪$⟫ eval₀ u eval₀ ci = [ci] ⅋ I eval₀ ck = [ck] ⅋ ⟪K⟫ eval₀ cs = [cs] ⅋ ⟪S⟫′ eval₀ cpair = [cpair] ⅋ _⟪,⟫′_ eval₀ cfst = [cfst] ⅋ π₁ eval₀ csnd = [csnd] ⅋ π₂ eval₀ unit = ∙ -- Correctness of evaluation with respect to conversion. eval₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → eval₀ t ≡ eval₀ t′ eval₀✓ refl⋙ = refl eval₀✓ (trans⋙ p q) = trans (eval₀✓ p) (eval₀✓ q) eval₀✓ (sym⋙ p) = sym (eval₀✓ p) eval₀✓ (congapp⋙ p q) = cong² _⟪$⟫_ (eval₀✓ p) (eval₀✓ q) eval₀✓ (congi⋙ p) = cong I (eval₀✓ p) eval₀✓ (congk⋙ p q) = cong² K (eval₀✓ p) (eval₀✓ q) eval₀✓ (congs⋙ p q r) = cong³ ⟪S⟫ (eval₀✓ p) (eval₀✓ q) (eval₀✓ r) eval₀✓ (congpair⋙ p q) = cong² _,_ (eval₀✓ p) (eval₀✓ q) eval₀✓ (congfst⋙ p) = cong π₁ (eval₀✓ p) eval₀✓ (congsnd⋙ p) = cong π₂ (eval₀✓ p) eval₀✓ beta▻ₖ⋙ = refl eval₀✓ beta▻ₛ⋙ = refl eval₀✓ beta∧₁⋙ = refl eval₀✓ beta∧₂⋙ = refl eval₀✓ eta∧⋙ = refl eval₀✓ eta⊤⋙ = refl -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ⊢ α P ; [⊢]_ = ⊢_ ; [app] = app ; [ci] = ci ; [ck] = ck ; [cs] = cs ; [cpair] = cpair ; [cfst] = cfst ; [csnd] = csnd ; [unit] = unit } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ⊨ A → ⊢ A quot₀ s = reifyʳ s -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ⊢ A → ⊢ A norm₀ = quot₀ ∘ eval₀ -- Correctness of normalisation with respect to conversion. norm₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → norm₀ t ≡ norm₀ t′ norm₀✓ p = cong reifyʳ (eval₀✓ p)
{ "alphanum_fraction": 0.5316561845, "avg_line_length": 26.5, "ext": "agda", "hexsha": "69b669fa91379353d0aed14783a1254a702fdee1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedHilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedHilbert.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedHilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1046, "size": 2385 }
-- Andreas, 2012-04-18 make sure with functions of irrelevant functions -- are also irrelevant module IrrelevantWith where import Common.Level open import Common.Irrelevance .unsq : ∀ {a}{A : Set a} → Squash A → A unsq sq with Set ... | _ = unsquash sq
{ "alphanum_fraction": 0.7254901961, "avg_line_length": 23.1818181818, "ext": "agda", "hexsha": "32c8bb685479e3e596b6ff42e089d354c8fb8864", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/IrrelevantWith.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/IrrelevantWith.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/IrrelevantWith.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 75, "size": 255 }
{-# OPTIONS --safe #-} module Cubical.HITs.Rationals.HITQ.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Relation.Nullary open import Cubical.Data.Int open import Cubical.Data.Nat as ℕ hiding (_·_) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma -- ℚ as a higher inductive type data ℚ : Type₀ where con : (u : ℤ) (a : ℤ) → ¬ (a ≡ 0) → ℚ path : ∀ u a v b {p q} → (u · b) ≡ (v · a) → con u a p ≡ con v b q trunc : isSet ℚ [_] : ℤ × ℕ₊₁ → ℚ [ a , 1+ b ] = con a (pos (suc b)) (ℕ.snotz ∘ cong abs) module Elim {ℓ} {B : ℚ → Type ℓ} (con* : ∀ u a (p : ¬ (a ≡ 0)) → B (con u a p)) (path* : ∀ u a v b {p q} (eq : (u · b) ≡ (v · a)) → PathP (λ i → B (path u a v b {p} {q} eq i)) (con* u a p) (con* v b q)) (trunc* : (q : ℚ) → isSet (B q)) where f : (q : ℚ) → B q f (con u a x) = con* u a x f (path u a v b x i) = path* u a v b x i f (trunc xs ys p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f xs) (f ys) (cong f p) (cong f q) (trunc xs ys p q) i j module ElimProp {ℓ} {B : ℚ → Type ℓ} {BProp : {q : ℚ} → isProp (B q)} (con* : ∀ u a (p : ¬ (a ≡ 0)) → B (con u a p)) where f : (q : ℚ) → B q f = Elim.f con* (λ u a v b {p} {q} eq → toPathP (BProp (transport (λ i → B (path u a v b eq i)) (con* u a p)) (con* v b q))) λ q → isProp→isSet BProp module Rec {ℓ} {B : Type ℓ} {BType : isSet B} (con* : ∀ u a (p : ¬ (a ≡ 0)) → B) (path* : ∀ u a v b {p q} (eq : (u · b) ≡ (v · a)) → con* u a p ≡ con* v b q) where f : ℚ → B f = Elim.f con* path* λ _ → BType module Rec2 {ℓ} {B : Type ℓ} {BType : isSet B} (con* : ∀ u a (p : ¬ (a ≡ 0)) v b (q : ¬ (b ≡ 0)) → B) (path*₁ : ∀ u₁ a₁ {p₁} u₂ a₂ v₂ b₂ {p₂ q₂} (eq₁ : (u₁ · b₂) ≡ (v₂ · a₁)) → con* u₁ a₁ p₁ u₂ a₂ p₂ ≡ con* v₂ b₂ q₂ u₂ a₂ p₂) (path*₂ : ∀ u₁ a₁ {p₁} u₂ a₂ v₂ b₂ {p₂ q₂} (eq₂ : (u₂ · b₂) ≡ (v₂ · a₂)) → con* u₁ a₁ p₁ u₂ a₂ p₂ ≡ con* u₁ a₁ p₁ v₂ b₂ q₂) where f : ℚ → ℚ → B f = Rec.f {BType = λ x y p q i j w → BType (x w) (y w) (λ k → p k w) (λ k → q k w) i j} (λ u a p → Rec.f {BType = BType} (con* u a p) (path*₂ u a {p})) λ u a v b eq → funExt (ElimProp.f {BProp = BType _ _} λ u₂ a₂ p₂ → path*₁ _ _ _ _ _ _ eq) --- Natural number and negative integer literals for ℚ open import Cubical.Data.Nat.Literals public instance fromNatℚ : HasFromNat ℚ fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n , 1 ] } instance fromNegℚ : HasFromNeg ℚ fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n , 1 ] }
{ "alphanum_fraction": 0.5299242424, "avg_line_length": 30.3448275862, "ext": "agda", "hexsha": "ad94f9803b80452e85540a2e0c887e4628e975a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1201, "size": 2640 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Data.Fin.Recursive where open import Cubical.Data.Fin.Recursive.Base public open import Cubical.Data.Fin.Recursive.Properties public
{ "alphanum_fraction": 0.7810945274, "avg_line_length": 28.7142857143, "ext": "agda", "hexsha": "40d38939e9e9fb6867b77a7c39687212674e92ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 48, "size": 201 }
------------------------------------------------------------------------ -- A small definition of a dependently typed language, using the -- technique from McBride's "Outrageous but Meaningful Coincidences" ------------------------------------------------------------------------ {-# OPTIONS --type-in-type #-} -- The code contains an example, a partial definition of categories, -- which triggers the use of an enormous amount of memory (with the -- development version of Agda which is current at the time of -- writing). I'm not entirely sure if the code is correct: 2.5G heap -- doesn't seem to suffice to typecheck this code. /NAD module Language where ------------------------------------------------------------------------ -- Prelude open import Prelude subst : {A : Set} {x y : A} (P : A -> Set) -> x == y -> P x -> P y subst P = J (\ x y _ -> P x -> P y) (\ x p -> p) Empty : Set Empty = (A : Set) -> A record Unit : Set record Unit where constructor tt open Unit data Either (A : Set) (B : Set) : Set data Either A B where left : A -> Either A B right : B -> Either A B record Sigma (A : Set) (B : A -> Set) : Set record Sigma A B where constructor pair field fst : A snd : B fst open Sigma uncurry : {A : Set} {B : A -> Set} {C : Sigma A B -> Set} -> ((x : A) (y : B x) -> C (pair x y)) -> ((p : Sigma A B) -> C p) uncurry f p = f (fst p) (snd p) Times : Set -> Set -> Set Times A B = Sigma A (\ _ -> B) ------------------------------------------------------------------------ -- A universe data U : Set El : U -> Set data U where set : U el : Set -> U sigma : (a : U) -> (El a -> U) -> U pi : (a : U) -> (El a -> U) -> U El set = Set El (el A) = A El (sigma a b) = Sigma (El a) (\ x -> El (b x)) El (pi a b) = (x : El a) -> El (b x) -- Abbreviations. fun : U -> U -> U fun a b = pi a (\ _ -> b) times : U -> U -> U times a b = sigma a (\ _ -> b) -- Example. raw-categoryU : U raw-categoryU = sigma set (\ obj -> sigma (fun (el obj) (fun (el obj) set)) (\ hom -> times (pi (el obj) (\ x -> el (hom x x))) (pi (el obj) (\ x -> pi (el obj) (\ y -> pi (el obj) (\ z -> fun (el (hom x y)) (fun (el (hom y z)) (el (hom x z))))))))) ------------------------------------------------------------------------ -- Contexts -- Contexts. data Ctxt : Set -- Types. Ty : Ctxt -> Set -- Environments. Env : Ctxt -> Set data Ctxt where empty : Ctxt snoc : (G : Ctxt) -> Ty G -> Ctxt Ty G = Env G -> U Env empty = Unit Env (snoc G s) = Sigma (Env G) (\ g -> El (s g)) -- Variables (de Bruijn indices). Var : (G : Ctxt) -> Ty G -> Set Var empty t = Empty Var (snoc G s) t = Either ((\ g -> s (fst g)) == t) (Sigma _ (\ u -> Times ((\ g -> u (fst g)) == t) (Var G u))) zero : {G : _} {s : _} -> Var (snoc G s) (\ g -> s (fst g)) zero = left refl suc : {G : _} {s : _} {t : _} (x : Var G t) -> Var (snoc G s) (\ g -> t (fst g)) suc x = right (pair _ (pair refl x)) -- A lookup function. lookup : (G : Ctxt) (s : Ty G) -> Var G s -> (g : Env G) -> El (s g) lookup empty _ absurd _ = absurd _ lookup (snoc _ _) _ (left eq) g = subst (\ f -> El (f g)) eq (snd g) lookup (snoc _ _) t (right p) g = subst (\ f -> El (f g)) (fst (snd p)) (lookup _ _ (snd (snd p)) (fst g)) {- ------------------------------------------------------------------------ -- A language -- Syntax for types. data Type (G : Ctxt) (s : Ty G) : Set -- Terms. data Term (G : Ctxt) (s : Ty G) : Set -- The semantics of a term. eval : {G : _} {s : _} -> Term G s -> (g : Env G) -> El (s g) data Type G s where set'' : s == (\ _ -> set) -> Type G s el'' : (x : Term G (\ _ -> set)) -> (\ g -> el (eval x g)) == s -> Type G s sigma'' : {t : _} {u : _} -> Type G t -> Type (snoc G t) u -> (\ g -> sigma (t g) (\ v -> u (pair g v))) == s -> Type G s pi'' : {t : _} {u : _} -> Type G t -> Type (snoc G t) u -> (\ g -> pi (t g) (\ v -> u (pair g v))) == s -> Type G s data Term G s where var : Var G s -> Term G s lam'' : {t : _} {u : _} -> Term (snoc G t) (uncurry u) -> (\ g -> pi (t g) (\ v -> u g v)) == s -> Term G s app'' : {t : _} {u : (g : Env G) -> El (t g) -> U} -> Term G (\ g -> pi (t g) (\ v -> u g v)) -> (t2 : Term G t) -> (\ g -> u g (eval t2 g)) == s -> Term G s eval (var x) g = lookup _ _ x g eval (lam'' t eq) g = subst (\ f -> El (f g)) eq (\ v -> eval t (pair g v)) eval (app'' t1 t2 eq) g = subst (\ f -> El (f g)) eq (eval t1 g (eval t2 g)) -- Abbreviations. set' : {G : _} -> Type G (\ _ -> set) set' = set'' refl el' : {G : _} (x : Term G (\ _ -> set)) -> Type G (\ g -> el (eval x g)) el' x = el'' x refl sigma' : {G : _} {t : _} {u : _} -> Type G t -> Type (snoc G t) u -> Type G (\ g -> sigma (t g) (\ v -> u (pair g v))) sigma' s t = sigma'' s t refl pi' : {G : _} {t : _} {u : _} -> Type G t -> Type (snoc G t) u -> Type G (\ g -> pi (t g) (\ v -> u (pair g v))) pi' s t = pi'' s t refl lam : {G : _} {t : _} {u : _} -> Term (snoc G t) (uncurry u) -> Term G (\ g -> pi (t g) (\ v -> u g v)) lam t = lam'' t refl app : {G : _} {t : _} {u : (g : Env G) -> El (t g) -> U} -> Term G (\ g -> pi (t g) (\ v -> u g v)) -> (t2 : Term G t) -> Term G (\ g -> u g (eval t2 g)) app t1 t2 = app'' t1 t2 refl -- Example. raw-category : Type empty (\ _ -> raw-categoryU) raw-category = -- Objects. sigma' set' -- Morphisms. (sigma' (pi' (el' (var zero)) (pi' (el' (var (suc zero))) set')) -- Identity. (sigma' (pi' (el' (var (suc zero))) (el' (app (app (var (suc zero)) (var zero)) (var zero)))) -- Composition. (pi' (el' (var (suc (suc zero)))) -- X. (pi' (el' (var (suc (suc (suc zero))))) -- Y. (pi' (el' (var (suc (suc (suc (suc zero)))))) -- Z. (pi' (el' (app (app (var (suc (suc (suc (suc zero))))) (var (suc (suc zero)))) (var (suc zero)))) -- Hom X Y. (pi' (el' (app (app (var (suc (suc (suc (suc (suc zero)))))) (var (suc (suc zero)))) (var (suc zero)))) -- Hom Y Z. (el' (app (app (var (suc (suc (suc (suc (suc (suc zero))))))) (var (suc (suc (suc (suc zero)))))) (var (suc (suc zero)))))) -- Hom X Z. )))))) -}
{ "alphanum_fraction": 0.4069428238, "avg_line_length": 27.2063492063, "ext": "agda", "hexsha": "6c69fcf33c34e1cc465e3bd8949a85d827ffeb25", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Language.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Language.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Language.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 2252, "size": 6856 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition open import Numbers.Modulo.Definition open import Orders.Total.Definition module Fields.CauchyCompletion.BaseExpansion {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Orders.Limits.Definition {F = F} (record { oRing = order }) open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) open import Fields.Orders.Limits.Lemmas {F = F} (record { oRing = order }) open import Fields.Lemmas F open import Fields.Orders.Lemmas {F = F} record { oRing = order } open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Rings.Orders.Partial.Lemmas pRing open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.Approximation order F open import Rings.InitialRing R open import Rings.Orders.Partial.Bounded pRing open import Rings.Orders.Total.Bounded order open import Rings.Orders.Total.Cauchy order -- TODO this is not necessarily true :( the bounded sequence could oscillate between 1 and -1 cauchyTimesBoundedIsCauchy : {s : Sequence A} → cauchy s → {t : Sequence A} → Bounded t → cauchy (apply _*_ s t) cauchyTimesBoundedIsCauchy {s} cau {t} (K , bounded) e 0<e with allInvertible K (boundNonzero (K , bounded)) ... | 1/K , prK with cau (1/K * e) (orderRespectsMultiplication (reciprocalPositive K 1/K (boundGreaterThanZero (K , bounded)) (transitive *Commutative prK)) 0<e) ... | N , cauPr = N , ans where ans : {m n : ℕ} (N<m : N <N m) (N<n : N <N n) → (abs (index (apply _*_ s t) m + inverse (index (apply _*_ s t) n))) < e ans N<m N<n with cauPr N<m N<n ... | r = {!!} boundedTimesCauchyIsCauchy : {s : Sequence A} → cauchy s → {t : Sequence A} → Bounded t → cauchy (apply _*_ t s) boundedTimesCauchyIsCauchy {s} cau {t} bou = cauchyWellDefined (ans s t) (cauchyTimesBoundedIsCauchy cau bou) where ans : (s t : Sequence A) (m : ℕ) → index (apply _*_ s t) m ∼ index (apply _*_ t s) m ans s t m rewrite indexAndApply t s _*_ {m} | indexAndApply s t _*_ {m} = *Commutative private digitExpansionSeq : {n : ℕ} → .(0<n : 0 <N n) → Sequence (ℤn n 0<n) → Sequence A Sequence.head (digitExpansionSeq {n} 0<n seq) = fromN (ℤn.x (Sequence.head seq)) Sequence.tail (digitExpansionSeq {n} 0<n seq) = digitExpansionSeq 0<n (Sequence.tail seq) powerSeq : (i : A) → (start : A) → Sequence A Sequence.head (powerSeq i start) = start Sequence.tail (powerSeq i start) = powerSeq i (start * i) powerSeqInduction : (i : A) (start : A) → (m : ℕ) → (index (powerSeq i start) (succ m)) ∼ i * (index (powerSeq i start) m) powerSeqInduction i start zero = *Commutative powerSeqInduction i start (succ m) = powerSeqInduction i (start * i) m ofBaseExpansionSeq : {n : ℕ} → .(0<n : 0 <N n) → Sequence (ℤn n 0<n) → Sequence A ofBaseExpansionSeq {succ n} 0<n seq = apply _*_ (digitExpansionSeq 0<n seq) (powerSeq pow pow) where pow : A pow = underlying (allInvertible (fromN (succ n)) (charNotN n)) powerSeqPositive : {i : A} → (0R < i) → {s : A} → (0R < s) → (m : ℕ) → 0R < index (powerSeq i s) m powerSeqPositive {i} 0<i {s} 0<s zero = 0<s powerSeqPositive {i} 0<i {s} 0<s (succ m) = <WellDefined reflexive (symmetric (powerSeqInduction i s m)) (orderRespectsMultiplication 0<i (powerSeqPositive 0<i 0<s m)) powerSeqConvergesTo0 : (i : A) → (0R < i) → (i < 1R) → {s : A} → (0R < s) → (powerSeq i s) ~> 0G powerSeqConvergesTo0 i 0<i i<1 {s} 0<s e 0<e = {!!} powerSeqConverges : (i : A) → (0R < i) → (i < 1R) → {s : A} → (0R < s) → cauchy (powerSeq i s) powerSeqConverges i 0<i i<1 {s} 0<s = convergentSequenceCauchy nontrivial {r = 0R} (powerSeqConvergesTo0 i 0<i i<1 0<s) 0<n : {n : ℕ} → 1 <N n → 0 <N n 0<n 1<n = TotalOrder.<Transitive ℕTotalOrder (le 0 refl) 1<n digitExpansionBoundedLemma : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → (m : ℕ) → index (digitExpansionSeq _ seq) m < fromN n digitExpansionBoundedLemma {n} 0<n seq zero with Sequence.head seq ... | record { x = x ; xLess = xLess } = fromNPreservesOrder (0<1 nontrivial) {x} {n} ((squash<N xLess)) digitExpansionBoundedLemma 0<n seq (succ m) = digitExpansionBoundedLemma 0<n (Sequence.tail seq) m digitExpansionBoundedLemma2 : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → (m : ℕ) → inverse (fromN n) < index (digitExpansionSeq 0<n seq) m digitExpansionBoundedLemma2 {n} 0<n seq zero = <WellDefined identLeft (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition {_} {fromN (ℤn.x (Sequence.head seq)) + fromN n} (<WellDefined reflexive (fromNPreserves+ (ℤn.x (Sequence.head seq)) n) (fromNPreservesOrder (0<1 nontrivial) {0} {ℤn.x (Sequence.head seq) +N n} (canAddToOneSideOfInequality' _ (squash<N 0<n)))) (inverse (fromN n))) digitExpansionBoundedLemma2 0<n seq (succ m) = digitExpansionBoundedLemma2 0<n (Sequence.tail seq) m digitExpansionBounded : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → Bounded (digitExpansionSeq 0<n seq) digitExpansionBounded {n} 0<n seq = fromN n , λ m → ((digitExpansionBoundedLemma2 0<n seq m) ,, digitExpansionBoundedLemma 0<n seq m) private 1/nPositive : (n : ℕ) → 0R < underlying (allInvertible (fromN (succ n)) (charNotN n)) 1/nPositive n with allInvertible (fromN (succ n)) (charNotN n) ... | a , b = reciprocalPositive (fromN (succ n)) a (fromNPreservesOrder (0<1 nontrivial) (succIsPositive n)) (transitive *Commutative b) 1/n<1 : (n : ℕ) → (0 <N n) → underlying (allInvertible (fromN (succ n)) (charNotN n)) < 1R 1/n<1 n 1<n with allInvertible (fromN (succ n)) (charNotN n) ... | a , b = reciprocal<1 (fromN (succ n)) a (<WellDefined identRight reflexive (fromNPreservesOrder (0<1 nontrivial) {1} {succ n} (succPreservesInequality 1<n))) (transitive *Commutative b) -- Construct the real that is the given base-n expansion between 0 and 1. ofBaseExpansion : {n : ℕ} → .(1<n : 1 <N n) → (fromN n ∼ 0R → False) → Sequence (ℤn n (0<n 1<n)) → CauchyCompletion ofBaseExpansion {succ n} 1<n charNotN seq = record { elts = ofBaseExpansionSeq (0<n 1<n) seq ; converges = boundedTimesCauchyIsCauchy (powerSeqConverges _ (1/nPositive n) (1/n<1 n (canRemoveSuccFrom<N (squash<N 1<n))) (1/nPositive n)) (digitExpansionBounded (0<n 1<n) seq)} toBaseExpansion : {n : ℕ} → .(1<n : 1 <N n) → (fromN n ∼ 0R → False) → (a : CauchyCompletion) → 0R r<C a → a <Cr 1R → Sequence (ℤn n (0<n 1<n)) Sequence.head (toBaseExpansion {n} 1<n charNotN c 0<c c<1) = {!!} -- TOOD: approximate c to within 1/n^2, extract the first decimal of the result. Sequence.tail (toBaseExpansion {n} 1<n charNotN c 0<c c<1) = toBaseExpansion 1<n charNotN {!!} {!!} {!!} baseExpansionProof : {n : ℕ} → .{1<n : 1 <N n} → {charNotN : fromN n ∼ 0R → False} → (as : CauchyCompletion) → (0<a : 0R r<C as) → (a<1 : as <Cr 1R) → Setoid._∼_ cauchyCompletionSetoid (ofBaseExpansion 1<n charNotN (toBaseExpansion 1<n charNotN as 0<a a<1)) as baseExpansionProof = {!!}
{ "alphanum_fraction": 0.6934814453, "avg_line_length": 61.5939849624, "ext": "agda", "hexsha": "58715c0ac2cde6a19681fc4b45e7443fd1b2e86a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/BaseExpansion.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/BaseExpansion.agda", "max_line_length": 455, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/BaseExpansion.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2861, "size": 8192 }
module Builtin.Reflection where open import Prelude hiding (abs) open import Prelude.Equality.Unsafe open import Builtin.Float open import Container.Traversable open import Control.Monad.Zero open import Agda.Builtin.Reflection as Builtin open Builtin public hiding ( primQNameEquality ; primQNameLess ; primShowQName ; primMetaEquality ; primMetaLess ; primShowMeta ) --- Names --- instance ShowName : Show Name showsPrec {{ShowName}} _ x = showString (primShowQName x) instance EqName : Eq Name _==_ {{EqName}} x y with primQNameEquality x y ... | true = yes unsafeEqual ... | false = no unsafeNotEqual data LessName (x y : Name) : Set where less-name : primQNameLess x y ≡ true → LessName x y private cmpName : ∀ x y → Comparison LessName x y cmpName x y with inspect (primQNameLess x y) ... | true with≡ eq = less (less-name eq) ... | false with≡ _ with inspect (primQNameLess y x) ... | true with≡ eq = greater (less-name eq) ... | false with≡ _ = equal unsafeEqual instance OrdName : Ord Name OrdName = defaultOrd cmpName OrdLawsName : Ord/Laws Name Ord/Laws.super OrdLawsName = it less-antirefl {{OrdLawsName}} (less-name eq) = unsafeNotEqual eq less-trans {{OrdLawsName}} (less-name _) (less-name _) = less-name unsafeEqual --- Meta variables --- instance ShowMeta : Show Meta showsPrec {{ShowMeta}} _ x = showString (primShowMeta x) instance EqMeta : Eq Meta _==_ {{EqMeta}} x y with primMetaEquality x y ... | true = yes unsafeEqual ... | false = no unsafeNotEqual data LessMeta (x y : Meta) : Set where less-meta : primMetaLess x y ≡ true → LessMeta x y private cmpMeta : ∀ x y → Comparison LessMeta x y cmpMeta x y with inspect (primMetaLess x y) ... | true with≡ eq = less (less-meta eq) ... | false with≡ _ with inspect (primMetaLess y x) ... | true with≡ eq = greater (less-meta eq) ... | false with≡ _ = equal unsafeEqual instance OrdMeta : Ord Meta OrdMeta = defaultOrd cmpMeta OrdLawsMeta : Ord/Laws Meta Ord/Laws.super OrdLawsMeta = it less-antirefl {{OrdLawsMeta}} (less-meta eq) = unsafeNotEqual eq less-trans {{OrdLawsMeta}} (less-meta _) (less-meta _) = less-meta unsafeEqual --- Literals --- instance ShowLiteral : Show Literal showsPrec {{ShowLiteral}} _ (nat n) = shows n showsPrec {{ShowLiteral}} _ (word64 n) = shows n showsPrec {{ShowLiteral}} _ (float x) = shows x showsPrec {{ShowLiteral}} _ (char c) = shows c showsPrec {{ShowLiteral}} _ (string s) = shows s showsPrec {{ShowLiteral}} _ (name x) = shows x showsPrec {{ShowLiteral}} _ (meta x) = shows x --- Terms --- pattern vArg x = arg (arg-info visible relevant) x pattern hArg x = arg (arg-info hidden relevant) x pattern iArg x = arg (arg-info instance′ relevant) x unArg : ∀ {A} → Arg A → A unArg (arg _ x) = x getArgInfo : ∀ {A} → Arg A → ArgInfo getArgInfo (arg i _) = i getVisibility : ∀ {A} → Arg A → Visibility getVisibility (arg (arg-info v _) _) = v getRelevance : ∀ {A} → Arg A → Relevance getRelevance (arg (arg-info _ r) _) = r isVisible : ∀ {A} → Arg A → Bool isVisible (arg (arg-info visible _) _) = true isVisible _ = false instance FunctorArg : Functor Arg fmap {{FunctorArg}} f (arg i x) = arg i (f x) TraversableArg : Traversable Arg traverse {{TraversableArg}} f (arg i x) = ⦇ (arg i) (f x) ⦈ unAbs : ∀ {A} → Abs A → A unAbs (abs _ x) = x instance FunctorAbs : Functor Abs fmap {{FunctorAbs}} f (abs s x) = abs s (f x) TraversableAbs : Traversable Abs traverse {{TraversableAbs}} f (abs s x) = ⦇ (abs s) (f x) ⦈ absurd-lam : Term absurd-lam = pat-lam (absurd-clause (vArg absurd ∷ []) ∷ []) [] --- TC monad --- mapTC : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → TC A → TC B mapTC f m = bindTC m λ x → returnTC (f x) instance FunctorTC : ∀ {a} → Functor {a} TC fmap {{FunctorTC}} = mapTC ApplicativeTC : ∀ {a} → Applicative {a} TC pure {{ApplicativeTC}} = returnTC _<*>_ {{ApplicativeTC}} = monadAp bindTC MonadTC : ∀ {a} → Monad {a} TC _>>=_ {{MonadTC}} = bindTC FunctorTC′ : ∀ {a b} → Functor′ {a} {b} TC fmap′ {{FunctorTC′}} = mapTC ApplicativeTC′ : ∀ {a b} → Applicative′ {a} {b} TC _<*>′_ {{ApplicativeTC′}} = monadAp′ bindTC MonadTC′ : ∀ {a b} → Monad′ {a} {b} TC _>>=′_ {{MonadTC′}} = bindTC FunctorZeroTC : ∀ {a} → FunctorZero {a} TC empty {{FunctorZeroTC}} = typeError [] AlternativeTC : ∀ {a} → Alternative {a} TC _<|>_ {{AlternativeTC}} = catchTC Tactic = Term → TC ⊤ give : Term → Tactic give v = λ hole → unify hole v define : Arg Name → Type → List Clause → TC ⊤ define f a cs = declareDef f a >> defineFun (unArg f) cs newMeta : Type → TC Term newMeta = checkType unknown newMeta! : TC Term newMeta! = newMeta unknown typeErrorS : ∀ {a} {A : Set a} → String → TC A typeErrorS s = typeError (strErr s ∷ []) blockOnMeta! : ∀ {a} {A : Set a} → Meta → TC A blockOnMeta! x = commitTC >>=′ λ _ → blockOnMeta x inferNormalisedType : Term → TC Type inferNormalisedType t = withNormalisation true (inferType t) --- Convenient wrappers --- -- Zero for non-datatypes getParameters : Name → TC Nat getParameters d = caseM getDefinition d of λ { (data-type n _) → pure n ; _ → pure 0 } getConstructors : Name → TC (List Name) getConstructors d = caseM getDefinition d of λ { (data-type _ cs) → pure cs ; (record-type c _) → pure (c ∷ []) ; _ → typeError (strErr "Cannot get constructors of non-data or record type" ∷ nameErr d ∷ []) } getClauses : Name → TC (List Clause) getClauses d = caseM getDefinition d of λ { (function cs) → pure cs ; _ → typeError (strErr "Cannot get constructors of non-function type" ∷ nameErr d ∷ []) } -- Get the constructor of a record type (or single-constructor data type) recordConstructor : Name → TC Name recordConstructor r = caseM getConstructors r of λ { (c ∷ []) → pure c ; _ → typeError $ strErr "Cannot get constructor of non-record type" ∷ nameErr r ∷ [] } -- Injectivity of constructors arg-inj₁ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → i ≡ i′ arg-inj₁ refl = refl arg-inj₂ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → x ≡ x′ arg-inj₂ refl = refl arg-info-inj₁ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ arg-info-inj₁ refl = refl arg-info-inj₂ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′ arg-info-inj₂ refl = refl abs-inj₁ : ∀ {A s s′} {x x′ : A} → abs s x ≡ abs s′ x′ → s ≡ s′ abs-inj₁ refl = refl abs-inj₂ : ∀ {A s s′} {x x′ : A} → abs s x ≡ abs s′ x′ → x ≡ x′ abs-inj₂ refl = refl --- Terms --- var-inj₁ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → x ≡ x′ var-inj₁ refl = refl var-inj₂ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → args ≡ args′ var-inj₂ refl = refl con-inj₁ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → c ≡ c′ con-inj₁ refl = refl con-inj₂ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → args ≡ args′ con-inj₂ refl = refl def-inj₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′ def-inj₁ refl = refl def-inj₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′ def-inj₂ refl = refl meta-inj₁ : ∀ {f f′ args args′} → Term.meta f args ≡ meta f′ args′ → f ≡ f′ meta-inj₁ refl = refl meta-inj₂ : ∀ {f f′ args args′} → Term.meta f args ≡ meta f′ args′ → args ≡ args′ meta-inj₂ refl = refl lam-inj₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′ lam-inj₁ refl = refl lam-inj₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′ lam-inj₂ refl = refl pat-lam-inj₁ : ∀ {v v′ t t′} → pat-lam v t ≡ pat-lam v′ t′ → v ≡ v′ pat-lam-inj₁ refl = refl pat-lam-inj₂ : ∀ {v v′ t t′} → pat-lam v t ≡ pat-lam v′ t′ → t ≡ t′ pat-lam-inj₂ refl = refl pi-inj₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′ pi-inj₁ refl = refl pi-inj₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′ pi-inj₂ refl = refl sort-inj : ∀ {x y} → agda-sort x ≡ agda-sort y → x ≡ y sort-inj refl = refl lit-inj : ∀ {x y} → Term.lit x ≡ lit y → x ≡ y lit-inj refl = refl --- Sorts --- set-inj : ∀ {x y} → set x ≡ set y → x ≡ y set-inj refl = refl slit-inj : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y slit-inj refl = refl --- Patterns --- pcon-inj₁ : ∀ {x y z w} → Pattern.con x y ≡ con z w → x ≡ z pcon-inj₁ refl = refl pcon-inj₂ : ∀ {x y z w} → Pattern.con x y ≡ con z w → y ≡ w pcon-inj₂ refl = refl pvar-inj : ∀ {x y} → Pattern.var x ≡ var y → x ≡ y pvar-inj refl = refl plit-inj : ∀ {x y} → Pattern.lit x ≡ lit y → x ≡ y plit-inj refl = refl proj-inj : ∀ {x y} → Pattern.proj x ≡ proj y → x ≡ y proj-inj refl = refl --- Clauses --- clause-inj₁ : ∀ {x y z w} → clause x y ≡ clause z w → x ≡ z clause-inj₁ refl = refl clause-inj₂ : ∀ {x y z w} → clause x y ≡ clause z w → y ≡ w clause-inj₂ refl = refl absurd-clause-inj : ∀ {x y} → absurd-clause x ≡ absurd-clause y → x ≡ y absurd-clause-inj refl = refl --- Literals --- nat-inj : ∀ {x y} → nat x ≡ nat y → x ≡ y nat-inj refl = refl word64-inj : ∀ {x y} → word64 x ≡ word64 y → x ≡ y word64-inj refl = refl float-inj : ∀ {x y} → float x ≡ float y → x ≡ y float-inj refl = refl char-inj : ∀ {x y} → char x ≡ char y → x ≡ y char-inj refl = refl string-inj : ∀ {x y} → string x ≡ string y → x ≡ y string-inj refl = refl name-inj : ∀ {x y} → name x ≡ name y → x ≡ y name-inj refl = refl meta-inj : ∀ {x y} → Literal.meta x ≡ meta y → x ≡ y meta-inj refl = refl
{ "alphanum_fraction": 0.6117847267, "avg_line_length": 26.8628571429, "ext": "agda", "hexsha": "d483be0e226f8ff5c93ab3131ca6fb43a17ab366", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Builtin/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Builtin/Reflection.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Builtin/Reflection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3486, "size": 9402 }
-- Strict A is a datatype isomorphic to A, with constructor ! : A → Strict A -- Semantically it has no impact, but its constructor is strict, so it can be -- used to force evaluation of a term to whnf by pattern-matching. open import Data.Strict.Primitive using () module Data.Strict where open Data.Strict.Primitive public using ( Strict ; ! )
{ "alphanum_fraction": 0.7421203438, "avg_line_length": 31.7272727273, "ext": "agda", "hexsha": "9612e898c001779bef684f0b8c2d8dca2ba6f20b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/Strict.agda", "max_line_length": 77, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 80, "size": 349 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Container.Relation.Unary.Any directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Data.Container.Any where open import Data.Container.Relation.Unary.Any public open import Data.Container.Relation.Unary.Any.Properties public
{ "alphanum_fraction": 0.5267665953, "avg_line_length": 33.3571428571, "ext": "agda", "hexsha": "14aafe9c87918d4bd703ea224cc775c198add5cc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Any.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Any.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 73, "size": 467 }
{-# OPTIONS --without-K #-} module Invertibility where open import Size open import Codata.Delay renaming (length to dlength ; map to dmap ) open import Codata.Thunk using (Thunk ; force) open import Relation.Binary.PropositionalEquality open import Data.Vec.Relation.Unary.All using (All ; [] ; _∷_) open import Data.Product open import Syntax open import Value open import Definitional open import Data.List using (List ; [] ; _∷_ ; length) open import Data.Vec using ([] ; _∷_) open import Level renaming (zero to lzero ; suc to lsuc) open import Function using () renaming (case_of_ to CASE_OF_) open import Relation.Nullary open import Data.Empty open import PInj open _⊢F_⇔_ -- m ⟶ v states that computation of m terminates in v, which is -- suitable for structural induction more than ⇓. data _⟶_ : {A : Set} (m : DELAY A ∞) (v : A) -> Set₁ where now⟶ : ∀ {A : Set} (v : A) -> Now v ⟶ v later⟶ : ∀ {A : Set} {x : Thunk (DELAY A) ∞} -> ∀ (v : A) -> (ev : force x ⟶ v) -> Later x ⟶ v bind⟶ : ∀ {A B : Set} {m : DELAY A ∞} {f : A -> DELAY B ∞} (u : A) (v : B) -> m ⟶ u -> f u ⟶ v -> Bind m f ⟶ v -- We will check that m ⟶ v conincides with the termination of thawed -- computation (d : runD m ⇓) that results in v (that is, extract d ≡ -- v). module _ where open import Data.Nat open import Data.Nat.Properties private -- It is unclear that we can prove the statement ⇓-⟶ by the -- indunction on m⇓, as it is not immediately clear that m⇓ does -- not involve infinite number of binds. So, we base ourselves on -- the number of 'later' and prove that the descruction of "bind" -- cannot increase the number ('lemma', below). -- steps len : ∀ {A : Set} {m : Delay A ∞} -> m ⇓ -> ℕ len (now _) = ℕ.zero len (later x) = ℕ.suc (len x) -- Destruction cannot increase "steps" lemma : ∀ {A B : Set} -> (m : Delay A ∞) (f : A -> Delay B ∞) -> (mf⇓ : bind m f ⇓) -> Σ (m ⇓) λ m⇓ → Σ (f (extract m⇓) ⇓) λ fu⇓ -> (extract mf⇓ ≡ extract fu⇓ × len m⇓ ≤ len mf⇓ × len fu⇓ ≤ len mf⇓) lemma (now x) f bd = (now x) , bd , refl , z≤n , ≤-refl lemma (later x) f (later bd) with lemma (force x) f bd ... | m⇓ , f⇓ , eq , rel₁ , rel₂ = later m⇓ , f⇓ , eq , s≤s rel₁ , ≤-step rel₂ -- A generalized statement for induction. aux : ∀ {A : Set} n -> (m : DELAY A ∞) -> (m⇓ : runD m ⇓) -> len m⇓ ≤ n -> m ⟶ extract m⇓ aux n (Now x) (now .x) ctr = now⟶ x aux zero (Later x) (later m⇓) () aux (suc n) (Later x) (later m⇓) (s≤s ctr) = later⟶ _ (aux n (force x) m⇓ ctr) aux n (Bind m f) mf⇓ ctr with lemma (runD m) _ mf⇓ ... | m⇓ , fu⇓ , eq , rel₁ , rel₂ with aux n m m⇓ (≤-trans rel₁ ctr) ... | m⟶u with aux n (f (extract m⇓)) fu⇓ (≤-trans rel₂ ctr) ... | fu⟶v rewrite eq = bind⟶ {m = m} {f} (extract m⇓) (extract fu⇓) m⟶u fu⟶v ⇓-⟶ : ∀ {A : Set} (m : DELAY A ∞) -> (m⇓ : runD m ⇓) -> m ⟶ extract m⇓ ⇓-⟶ m m⇓ = aux (len m⇓) m m⇓ (≤-refl) -- In contrast, the opposite direction is straightforward, thanks to -- the frozen bind. ⟶-⇓ : ∀ {A : Set} (m : DELAY A ∞) (v : A) -> m ⟶ v -> Σ[ m⇓ ∈ runD m ⇓ ] (extract m⇓ ≡ v) ⟶-⇓ .(Now v) v (now⟶ .v) = now v , refl ⟶-⇓ .(Later _) v (later⟶ .v m⟶v) with ⟶-⇓ _ v m⟶v ... | m⇓ , refl = later m⇓ , refl ⟶-⇓ .(Bind m f) v (bind⟶ {m = m} {f} u .v m⟶u fu⟶v) with ⟶-⇓ _ u m⟶u | ⟶-⇓ _ v fu⟶v ... | m⇓ , refl | fu⇓ , refl = bind-⇓ m⇓ fu⇓ , lemma m⇓ fu⇓ where lemma : ∀ {ℓ} {A B : Set ℓ} {m : Delay A ∞} {f : A → Delay B ∞} -> (m⇓ : m ⇓) -> (fu⇓ : f (extract m⇓) ⇓) -> extract (bind-⇓ m⇓ {f = f} fu⇓) ≡ extract fu⇓ lemma (now a) fu⇓ = refl lemma {f = f} (later m⇓) fu⇓ rewrite lemma {f = f} m⇓ fu⇓ = refl -- Never does not terminate. ¬Never⟶ : ∀ {A : Set} {v : A} -> ¬ (Never ⟶ v) ¬Never⟶ (later⟶ _ x) = ¬Never⟶ x -- A useful variant of now⟶ now⟶≡ : ∀ {A : Set} {v v' : A} -> v' ≡ v -> Now v' ⟶ v now⟶≡ refl = now⟶ _ -- Several properties on value environments (for forward and backward -- evaluations) and manipulations on them. RValEnv-∅-canon : ∀ {Θ} (ρ : RValEnv Θ ∅) -> ρ ≡ emptyRValEnv RValEnv-∅-canon {[]} [] = refl RValEnv-∅-canon {x ∷ Θ} (skip ρ) = cong skip (RValEnv-∅-canon {Θ} ρ) lkup-unlkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> (ok : varOk● Θ x Ξ) (ρ : RValEnv Θ Ξ) -> unlkup ok (lkup ok ρ) ≡ ρ lkup-unlkup (there ok) (skip ρ) = cong skip (lkup-unlkup ok ρ) lkup-unlkup (here ad) (x ∷ ρ) with all-zero-canon ad ρ ... | refl = refl unlkup-lkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> (ok : varOk● Θ x Ξ) (v : Value [] ∅ A) -> lkup ok (unlkup ok v) ≡ v unlkup-lkup (there ok) v = unlkup-lkup ok v unlkup-lkup (here ad) v = refl split-merge : ∀ {Θ Ξ₁ Ξ₂} -> (ano : all-no-omega (Ξ₁ +ₘ Ξ₂)) -> ∀ (ρ : RValEnv Θ (Ξ₁ +ₘ Ξ₂)) -> mergeRValEnv ano (proj₁ (splitRValEnv ρ)) (proj₂ (splitRValEnv ρ)) ≡ ρ split-merge {[]} {[]} {[]} ano [] = refl split-merge {x ∷ Θ} {Multiplicity₀.zero ∷ Ξ₁} {Multiplicity₀.zero ∷ Ξ₂} (px ∷ ano) (skip ρ) rewrite split-merge {Θ} {Ξ₁} {Ξ₂} ano ρ = refl split-merge {x ∷ Θ} {Multiplicity₀.zero ∷ Ξ₁} {one ∷ Ξ₂} (px ∷ ano) (v ∷ ρ) rewrite split-merge {Θ} {Ξ₁} {Ξ₂} ano ρ = refl split-merge {x ∷ Θ} {one ∷ Ξ₁} {Multiplicity₀.zero ∷ Ξ₂} (px ∷ ano) (v ∷ ρ) rewrite split-merge {Θ} {Ξ₁} {Ξ₂} ano ρ = refl merge-split : ∀ {Θ Ξ₁ Ξ₂} -> (ano : all-no-omega (Ξ₁ +ₘ Ξ₂)) -> (ρ₁ : RValEnv Θ Ξ₁) -> (ρ₂ : RValEnv Θ Ξ₂) -> splitRValEnv (mergeRValEnv ano ρ₁ ρ₂) ≡ (ρ₁ , ρ₂) merge-split {[]} {[]} {[]} ano [] [] = refl merge-split {x ∷ Θ} {zero ∷ Ξ₁} {zero ∷ Ξ₂} (px ∷ ano) (skip ρ₁) (skip ρ₂) rewrite merge-split ano ρ₁ ρ₂ = refl merge-split {x ∷ Θ} {zero ∷ Ξ₁} {one ∷ Ξ₂} (px ∷ ano) (skip ρ₁) (v ∷ ρ₂) rewrite merge-split ano ρ₁ ρ₂ = refl merge-split {x ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} (_ ∷ ano) (v ∷ ρ₁) (skip ρ₂) rewrite merge-split ano ρ₁ ρ₂ = refl merge-split {x ∷ Θ} {one ∷ Ξ₁} {one ∷ Ξ₂} (() ∷ ano) ρ₁ ρ₂ -- Round-trip properties (corresponding to Lemma 3.3 in the paper) forward-backward : ∀ {Θ Ξ A} -> (ano : all-no-omega Ξ) -> (E : Residual Θ Ξ (A ●)) -> let h = evalR ∞ ano E in ∀ ρ v -> Forward h ρ ⟶ v -> Backward h v ⟶ ρ forward-backward ano unit● ρ v fwd with RValEnv-∅-canon ρ ... | refl = now⟶ emptyRValEnv forward-backward ano (letunit● E E₁) ρ v fwd with all-no-omega-dist _ _ ano forward-backward ano (letunit● E E₁) ρ v (bind⟶ (unit refl) .v fwd fwd₁) | ano₁ , ano₂ = let bwd = forward-backward ano₁ E _ _ fwd bwd₁ = forward-backward ano₂ E₁ _ _ fwd₁ in bind⟶ _ _ bwd₁ (bind⟶ _ _ bwd (now⟶≡ (split-merge ano ρ))) forward-backward ano (pair● E₁ E₂) ρ (pair {Ξ₁ = []} {[]} spΞ v₁ v₂) fwd with all-no-omega-dist _ _ ano forward-backward ano (pair● E₁ E₂) ρ (pair {_} {[]} {[]} spΞ v₁ v₂) (bind⟶ _ _ fwd₁ (bind⟶ _ _ fwd₂ (now⟶ _))) | ano₁ , ano₂ = let bwd₁ = forward-backward ano₁ E₁ _ _ fwd₁ bwd₂ = forward-backward ano₂ E₂ _ _ fwd₂ in bind⟶ _ _ bwd₁ (bind⟶ _ _ bwd₂ (now⟶≡ (split-merge ano ρ))) forward-backward ano (letpair● E E₁) ρ v fwd with all-no-omega-dist _ _ ano forward-backward ano (letpair● E E₁) ρ v (bind⟶ (pair {Ξ₁ = []} {[]} refl v₁ v₂) .v fwd fwd₁) | ano₁ , ano₂ = let bwd = forward-backward ano₁ E _ _ fwd bwd₁ = forward-backward (one ∷ one ∷ ano₂) E₁ _ _ fwd₁ in bind⟶ _ _ bwd₁ (bind⟶ _ _ bwd (now⟶≡ (split-merge ano ρ))) forward-backward ano (inl● E) ρ _ (bind⟶ u _ fwd (now⟶ _)) = forward-backward ano E _ _ fwd forward-backward ano (inr● E) ρ _ (bind⟶ u _ fwd (now⟶ _)) = forward-backward ano E _ _ fwd forward-backward ano (case● E refl θ₁ t₁ θ₂ t₂ v₁) ρ v fwd with all-no-omega-dist _ _ ano forward-backward ano (case● E refl θ₁ t₁ θ₂ t₂ v₁) ρ v (bind⟶ (inl u) .v fwd (bind⟶ (red r₁) .v ev₁ (later⟶ .v (bind⟶ _ .v fwd₁ (bind⟶ (inl (unit refl)) .v ap (now⟶ _)))))) | ano₀ , ano- = bind⟶ _ _ ap ( bind⟶ _ _ ev₁ (later⟶ _ ( bind⟶ _ _ (forward-backward (one ∷ ano-) r₁ _ _ fwd₁) (bind⟶ _ _ (forward-backward ano₀ E _ _ fwd) (now⟶≡ (split-merge ano ρ)))))) forward-backward ano (case● E refl θ₁ t₁ θ₂ t₂ v₁) ρ v (bind⟶ (inl u) .v fwd (bind⟶ (red r₁) .v ev₁ (later⟶ .v (bind⟶ u₁ .v fwd₁ (bind⟶ (inr (unit refl)) .v ap nev))))) | ano₀ , ano- = ⊥-elim (¬Never⟶ nev) forward-backward ano (case● E refl θ₁ t₁ θ₂ t₂ v₁) ρ v (bind⟶ (inr u) .v fwd (bind⟶ (red r₁) .v ev₁ (later⟶ .v (bind⟶ u₁ .v fwd₁ (bind⟶ (inl (unit refl)) .v ap nev))))) | ano₀ , ano- = ⊥-elim (¬Never⟶ nev) forward-backward ano (case● E refl θ₁ t₁ θ₂ t₂ v₁) ρ v (bind⟶ (inr u) .v fwd (bind⟶ (red r₁) .v ev₁ (later⟶ .v (bind⟶ _ .v fwd₁ (bind⟶ (inr (unit refl)) .v ap (now⟶ _)))))) | ano₀ , ano- = bind⟶ _ _ ap ( bind⟶ _ _ ev₁ (later⟶ _ ( bind⟶ _ _ (forward-backward (one ∷ ano-) r₁ _ _ fwd₁) (bind⟶ _ _ (forward-backward ano₀ E _ _ fwd) (now⟶≡ (split-merge ano ρ)))))) forward-backward ano (var● x ok) ρ .(lkup ok ρ) (now⟶ _) rewrite lkup-unlkup ok ρ = now⟶ ρ forward-backward ano (pin E (clo .omega refl θ t)) ρ (pair {Ξ₁ = []} {[]} refl v₁ v₂) fwd with all-no-omega-dist _ _ ano forward-backward ano (pin E (clo .omega refl θ t)) ρ (pair {_} {[]} {[]} refl v₁ v₂) (bind⟶ _ _ fwd (later⟶ _ (bind⟶ (red r) _ ev (bind⟶ _ _ fwd₂ (now⟶ _))))) | ano₁ , ano₂ = later⟶ ρ (bind⟶ _ _ ev (bind⟶ _ ρ (forward-backward ano₂ r _ _ fwd₂) (bind⟶ _ _ (forward-backward ano₁ E _ _ fwd) (now⟶≡ (split-merge ano ρ))))) backward-forward : ∀ {Θ Ξ A} -> (ano : all-no-omega Ξ) -> (E : Residual Θ Ξ (A ●)) -> let h = evalR ∞ ano E in ∀ ρ v -> Backward h v ⟶ ρ -> Forward h ρ ⟶ v backward-forward ano unit● ρ (unit refl) bwd = now⟶ (unit refl) backward-forward ano (letunit● E E₁) ρ v (bind⟶ ρ₂ _ bwd₂ (bind⟶ ρ₁ _ bwd₁ (now⟶ _))) with all-no-omega-dist _ _ ano ... | ano₁ , ano₂ rewrite merge-split ano ρ₁ ρ₂ = bind⟶ _ _ (backward-forward ano₁ E _ _ bwd₁) (backward-forward ano₂ E₁ _ _ bwd₂) backward-forward ano (pair● E₁ E₂) ρ (pair {Ξ₁ = []} {[]} refl v₁ v₂) (bind⟶ ρ₁ _ bwd₁ (bind⟶ ρ₂ _ bwd₂ (now⟶ _))) with all-no-omega-dist _ _ ano ... | ano₁ , ano₂ rewrite merge-split ano ρ₁ ρ₂ = bind⟶ _ _ (backward-forward ano₁ E₁ _ _ bwd₁) (bind⟶ _ _ (backward-forward ano₂ E₂ _ _ bwd₂) (now⟶ (pair refl v₁ v₂))) backward-forward ano (letpair● E E₁) ρ v (bind⟶ (v₁ ∷ v₂ ∷ ρ₂) _ bwd₂ (bind⟶ ρ₁ _ bwd₁ (now⟶ _))) with all-no-omega-dist _ _ ano ... | ano₁ , ano₂ rewrite merge-split ano ρ₁ ρ₂ = bind⟶ _ _ (backward-forward ano₁ E _ _ bwd₁) (backward-forward (one ∷ one ∷ ano₂) E₁ _ _ bwd₂) backward-forward ano (inl● E) ρ (inl v) bwd = bind⟶ _ _ (backward-forward ano E ρ v bwd) (now⟶ (inl v)) backward-forward ano (inl● E) ρ (inr v) bwd = ⊥-elim (¬Never⟶ bwd) backward-forward ano (inr● E) ρ (inl v) bwd = ⊥-elim (¬Never⟶ bwd) backward-forward ano (inr● E) ρ (inr v) bwd = bind⟶ _ _ (backward-forward ano E ρ v bwd) (now⟶ (inr v)) backward-forward ano (case● E refl θ₁ t₁ θ₂ t₂ ϕ) ρ v (bind⟶ u _ ap bwd) with all-no-omega-dist _ _ ano backward-forward ano (case● E refl θ₁ t₁ θ₂ t₂ ϕ) ρ v (bind⟶ (inl u) .ρ ap (bind⟶ (red r) _ ev (later⟶ _ (bind⟶ (v₁ ∷ ρ-) _ bwd- (bind⟶ ρ₀ _ bwd₀ (now⟶ _)))))) | ano₀ , ano- rewrite merge-split ano ρ₀ ρ- = bind⟶ _ _ (backward-forward ano₀ E _ _ bwd₀) (bind⟶ _ _ ev (later⟶ _ (bind⟶ _ _ (backward-forward (one ∷ ano-) r _ _ bwd-) (bind⟶ _ _ ap (now⟶ v))))) backward-forward ano (case● E refl θ₁ t₁ θ₂ t₂ ϕ) ρ v (bind⟶ (inr u) .ρ ap (bind⟶ (red r) _ ev (later⟶ _ (bind⟶ (v₁ ∷ ρ-) _ bwd- (bind⟶ ρ₀ _ bwd₀ (now⟶ _)))))) | ano₀ , ano- rewrite merge-split ano ρ₀ ρ- = bind⟶ _ _ (backward-forward ano₀ E _ _ bwd₀) (bind⟶ _ _ ev (later⟶ _ (bind⟶ _ _ (backward-forward (one ∷ ano-) r _ _ bwd-) (bind⟶ _ _ ap (now⟶ v))))) backward-forward ano (var● x ok) .(unlkup ok v) v (now⟶ _) rewrite unlkup-lkup ok v = now⟶ v backward-forward ano (pin E (clo .omega refl θ t)) ρ (pair {_} {[]} {[]} refl v₁ v₂) (later⟶ _ (bind⟶ (red r) _ ev (bind⟶ ρ₂ _ bwd₂ (bind⟶ ρ₁ _ bwd₁ (now⟶ _))))) with all-no-omega-dist _ _ ano ... | ano₁ , ano₂ rewrite merge-split ano ρ₁ ρ₂ = bind⟶ _ _ (backward-forward ano₁ E _ _ bwd₁) (later⟶ _ (bind⟶ _ _ ev (bind⟶ _ _ (backward-forward ano₂ r _ _ bwd₂) (now⟶ (pair refl v₁ v₂)))))
{ "alphanum_fraction": 0.5770653514, "avg_line_length": 46.2547528517, "ext": "agda", "hexsha": "9cc4bba730b5319fc40267a68f1e4da9e17a2c18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kztk-m/sparcl-agda", "max_forks_repo_path": "Invertibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kztk-m/sparcl-agda", "max_issues_repo_path": "Invertibility.agda", "max_line_length": 205, "max_stars_count": null, "max_stars_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kztk-m/sparcl-agda", "max_stars_repo_path": "Invertibility.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5346, "size": 12165 }
module Issue628 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-} data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x data ⊥ : Set where 0≢1+n : ∀ {n} -> 0 ≡ suc n → ⊥ 0≢1+n () divSucAux : (k m n j : ℕ) -> ℕ divSucAux k m zero j = k divSucAux k m (suc n) zero = divSucAux (suc k) m n m divSucAux k m (suc n) (suc j) = divSucAux k m n j {-# BUILTIN NATDIVSUCAUX divSucAux #-} oh-noes : ⊥ oh-noes = 0≢1+n {divSucAux 0 0 0 1} refl
{ "alphanum_fraction": 0.5694980695, "avg_line_length": 18.5, "ext": "agda", "hexsha": "a4c00731ba194e6485718d16b645b32b6ae2214c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/Issue628.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/Issue628.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/Issue628.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 224, "size": 518 }
open import IO using ( _>>_ ; putStr ; run ) module System.IO.Examples.HelloRaw where main = run (putStr "Hello, World\n")
{ "alphanum_fraction": 0.696, "avg_line_length": 20.8333333333, "ext": "agda", "hexsha": "f192c8fc792a80fe8410e4a25e6d1f70fdfdb4d7", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Examples/HelloRaw.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Examples/HelloRaw.agda", "max_line_length": 44, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Examples/HelloRaw.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 36, "size": 125 }
module Examples.DivergingContext where open import Prelude data TC : Set where tc-int : TC tc-bool : TC _tc≟_ : (a b : TC) → Dec (a ≡ b) tc-int tc≟ tc-int = yes refl tc-int tc≟ tc-bool = no (λ ()) tc-bool tc≟ tc-int = no (λ ()) tc-bool tc≟ tc-bool = yes refl open import Implicits.Oliveira.Types TC _tc≟_ open import Implicits.Oliveira.Terms TC _tc≟_ open import Implicits.Oliveira.Contexts TC _tc≟_ open import Implicits.Oliveira.WellTyped TC _tc≟_ open import Implicits.Oliveira.Substitutions TC _tc≟_ open import Implicits.Oliveira.Types.Unification TC _tc≟_ open import Implicits.Improved.Infinite.Resolution TC _tc≟_ open import Data.Maybe open import Data.List open import Coinduction open import Data.List.Any.Membership using (map-mono) open import Data.List.Any open Membership-≡ Int : ∀ {ν} → Type ν Int = simpl (tc tc-int) module Ex₁ where r : Type zero r = (∀' (((simpl (x →' x)) ⇒ (simpl (x →' (simpl (x →' x))))) ⇒ x)) where x = (simpl (tvar zero)) Δ : ICtx zero Δ = r ∷ [] -- Exploiting coinductive definition here to show that there is an infinite derivation -- of any type under the context Δ with the special characteristic that the context grows to -- infinity as well! -- -- This may not be immediately obvious, but it can be seen by exploring the first argument of 'p' -- in the recursive calls, denoting the growing context. -- Also note that the element added to the context won't ever match the goal. -- This is not proven here, but an argument for it is made in the form of ¬r↓goal p : ∀ Δ' a → Δ ⊆ Δ' → Δ' ⊢ᵣ simpl a p Δ' a f = r-simp (f (here refl)) (i-tabs (simpl a) (i-iabs (♯ r-iabs (p (new-r ∷ Δ') new-goal (λ x → there (f x)))) (i-simp a))) where new-r = simpl (simpl a →' simpl a) new-goal = (simpl a →' simpl (simpl a →' simpl a)) ¬r↓goal : ¬ (new-r ∷ Δ') ⊢ new-r ↓ new-goal ¬r↓goal ()
{ "alphanum_fraction": 0.6590198123, "avg_line_length": 31.4426229508, "ext": "agda", "hexsha": "e984678764c646bfa4550525d9d88909b22a1eeb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Examples/DivergingContext.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Examples/DivergingContext.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Examples/DivergingContext.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 627, "size": 1918 }
-- Andreas, 2016-06-08 -- Better error message when case splitting is invoked in location -- where there is nothing to split record R : Set where field f : {!!} -- C-c C-c RET here gives: -- Cannot split here, as we are not in a function definition
{ "alphanum_fraction": 0.7035573123, "avg_line_length": 25.3, "ext": "agda", "hexsha": "ad35e82af92e5585dafca5872f6d233a5f085410", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue289r.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue289r.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue289r.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 253 }
module Numeral.Natural.Proofs where import Lvl open import Numeral.Natural open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function open import Structure.Function.Domain private variable n : ℕ [𝐒]-not-0 : (𝐒(n) ≢ 𝟎) [𝐒]-not-0 () 𝐒-not-self : (𝐒(n) ≢ n) 𝐒-not-self () instance [𝐒]-injectivity : Injective(𝐒) Injective.proof([𝐒]-injectivity) = congruence₁(𝐏) instance [𝐏][𝐒]-inverseᵣ : Inverseᵣ(𝐏)(𝐒) [𝐏][𝐒]-inverseᵣ = intro [≡]-intro
{ "alphanum_fraction": 0.7090163934, "avg_line_length": 19.52, "ext": "agda", "hexsha": "bc4f7d70eaa04db5f8314805671384ef69cf0386", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Proofs.agda", "max_line_length": 51, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 200, "size": 488 }
open import Data.Graph module Data.Graph.Path.Finite {ℓᵥ ℓₑ} (g : FiniteGraph ℓᵥ ℓₑ) where open import Category.Monad open import Data.Bool as Bool open import Data.Graph.Path.Cut g hiding (_∈_) open import Data.List as List hiding (_∷ʳ_) open import Data.List.Any as Any open import Data.List.Any.Properties open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties hiding (finite) open import Data.List.Categorical as ListCat open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s) open import Data.Nat.Properties open import Data.Product as Σ open import Data.Unit using (⊤; tt) open import Data.Sum as ⊎ open import Data.Vec as Vec using (Vec; []; _∷_) import Level as ℓ open import Finite open import Function open import Function.Equality using (Π) open import Function.Equivalence using (Equivalence) open import Function.Inverse using (Inverse) open import Function.LeftInverse using (LeftInverse; leftInverse) open import Relation.Binary open import Relation.Binary.Construct.Closure.ReflexiveTransitive hiding (_>>=_) open import Relation.Binary.PropositionalEquality as ≡ open import Relation.Binary.HeterogeneousEquality as ≅ open import Relation.Nullary hiding (module Dec) open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation open Π using (_⟨$⟩_) open Equivalence using (to; from) open FiniteGraph g open Inverse using (to; from) open IsFinite open RawMonad {ℓᵥ ℓ.⊔ ℓₑ} ListCat.monad isubst : ∀ {ℓ₁ ℓ₂ ℓ₃} {I : Set ℓ₁} (A : I → Set ℓ₂) (B : ∀ {k} → A k → Set ℓ₃) {i j : I} {x : A i} {y : A j} → i ≡ j → x ≅ y → B x → B y isubst A B refl refl = id True-unique : ∀ {ℓ} {A : Set ℓ} (A? : Dec A) (x y : True A?) → x ≡ y True-unique A? x y with A? True-unique A? tt tt | yes a = refl True-unique A? () y | no ¬a True-unique-≅ : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} (A? : Dec A) (B? : Dec B) (x : True A?) (y : True B?) → x ≅ y True-unique-≅ A? B? x y with A? | B? True-unique-≅ A? B? tt tt | yes a | yes b = refl True-unique-≅ A? B? x () | _ | no ¬b True-unique-≅ A? B? () y | no ¬a | _ ∃-≅ : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {P : A → Set ℓ₂} {x y : A} {p : P x} {q : P y} → x ≡ y → p ≅ q → (∃ P ∋ (x , p)) ≡ (y , q) ∃-≅ refl refl = refl nexts : ∀ {a b n} → Path a b n → List (∃ λ b → Path a b (suc n)) nexts {a} {b} p = List.map (λ where (_ , e) → -, p ∷ʳ e) (elements (edgeFinite b)) ∈-nexts : ∀ {a c n} → (pf : IsFinite (∃ λ b → Path a b n)) → (p : Path a c (suc n)) → (c , p) ∈ (elements pf >>= (nexts ∘ proj₂)) ∈-nexts pf p = case unsnoc p of λ where (_ , p′ , e′ , refl) → to >>=-∈↔ ⟨$⟩ (-, membership pf (-, p′) , ∈-map⁺ (membership (edgeFinite _) (-, e′))) Path-finite : ∀ n a → IsFinite (∃ λ b → Path a b n) Path-finite zero a = finite List.[ -, [] ] λ where (_ , []) → here refl Path-finite (suc n) a = let pf = Path-finite n a in finite (elements pf >>= (nexts ∘ proj₂)) (∈-nexts pf ∘ proj₂) ≤-top? : ∀ {x y} → x ≤ suc y → x ≤ y ⊎ x ≡ suc y ≤-top? z≤n = inj₁ z≤n ≤-top? {y = zero} (s≤s z≤n) = inj₂ refl ≤-top? {y = suc y} (s≤s p) = case ≤-top? p of λ where (inj₁ le) → inj₁ (s≤s le) (inj₂ refl) → inj₂ refl Path≤-finite : ∀ n a → IsFinite (∃ λ b → Path≤ a b n) Path≤-finite zero a = finite List.[ -, -, z≤n , [] ] λ where (_ , _ , z≤n , []) → here refl Path≤-finite (suc n) a = let finite xs elem = Path≤-finite n a finite xs′ elem′ = Path-finite (suc n) a in finite (List.map (Σ.map₂ (Σ.map₂ (Σ.map₁ ≤-step))) xs List.++ List.map (Σ.map₂ (_,_ (suc n) ∘ _,_ ≤-refl)) xs′) λ where (b , m , le , p) → case ≤-top? le of λ where (inj₁ le′) → to ++↔ ⟨$⟩ inj₁ (to map-∈↔ ⟨$⟩ (-, (elem (b , m , le′ , p)) , ≡.cong (λ q → b , m , q , p) (≤-irrelevance le (≤-step le′)))) (inj₂ refl) → to (++↔ {xs = List.map _ xs}) ⟨$⟩ inj₂ (to map-∈↔ ⟨$⟩ (-, elem′ (-, p) , ≡.cong (λ q → b , m , q , p) (≤-irrelevance le (s≤s ≤-refl)))) AcyclicPath-finite : ∀ a → IsFinite (∃₂ λ b n → ∃ λ (p : Path a b n) → True (acyclic? p)) AcyclicPath-finite a = via-left-inverse (IsFinite.filter (Path≤-finite (size vertexFinite) a) _) $ leftInverse (λ where (b , n , p , acp) → (b , n , acyclic-length-≤ p (toWitness acp) , p) , acp) (λ where ((b , n , le , p) , acp) → b , n , p , acp) λ where _ → refl AcyclicStar : Vertex → Vertex → Set _ AcyclicStar a b = ∃ λ (p : Star Edge a b) → True (acyclic? (fromStar p)) AcyclicStar-finite : ∀ a → IsFinite (∃ (AcyclicStar a)) AcyclicStar-finite a = via-left-inverse (AcyclicPath-finite a) $ leftInverse (λ where (b , p , acp) → b , starLength p , fromStar p , acp) (λ where (b , n , p , acp) → b , toStar p , isubst (Path a b) (True ∘ acyclic?) (starLength-toStar p) (fromStar-toStar p) acp) (λ where (b , p , acp) → ≡.cong (b ,_) $ ∃-≅ (≡.sym (toStar-fromStar p)) (True-unique-≅ _ _ _ _))
{ "alphanum_fraction": 0.5524744849, "avg_line_length": 33.7207792208, "ext": "agda", "hexsha": "6f2f9866d0aa6beb9d7c83f31fc715ecbc648e3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/graph", "max_forks_repo_path": "src/Data/Graph/Path/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/graph", "max_issues_repo_path": "src/Data/Graph/Path/Finite.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/graph", "max_stars_repo_path": "src/Data/Graph/Path/Finite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1973, "size": 5193 }
-- Andreas, AIM XXXV, 2022-05-09, issue #5728 -- Give a proper error rather than crashing. test : Set test with Set ... -- This used to be an internal error. -- Expected error now: -- The right-hand side can only be omitted if there is an absurd -- pattern, () or {}, in the left-hand side.
{ "alphanum_fraction": 0.6860068259, "avg_line_length": 24.4166666667, "ext": "agda", "hexsha": "856a6a4ec40d3dd5fd5e24c9fe9ab49125909258", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5728.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5728.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5728.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 79, "size": 293 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.Cokernel open import groups.Exactness open import groups.HomSequence open import groups.ExactSequence open import cw.CW module cw.cohomology.TipGrid {i} (OT : OrdinaryTheory i) (⊙skel : ⊙Skeleton {i} 1) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where open OrdinaryTheory OT open import cw.cohomology.Descending OT open import cw.cohomology.WedgeOfCells OT ⊙skel open import cw.cohomology.TipAndAugment OT (⊙cw-init ⊙skel) open import cw.cohomology.TipCoboundary OT ⊙skel import cohomology.LongExactSequence {- X₀ --> X₁ | | v v 1 -> X₁/X₀ -} private module LES n = cohomology.LongExactSequence cohomology-theory n (⊙cw-incl-last ⊙skel) Ker-cw-co∂-head' : C 0 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker cw-co∂-head' Ker-cw-co∂-head' = Exact2.G-trivial-implies-H-iso-ker (exact-seq-index 2 $ LES.C-cofiber-exact-seq -1) (exact-seq-index 0 $ LES.C-cofiber-exact-seq 0) (CXₙ/Xₙ₋₁-<-is-trivial ltS ac) {- NOT USED Ker-cw-co∂-head : G ×ᴳ C 0 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker cw-co∂-head Ker-cw-co∂-head = lemma ∘eᴳ ×ᴳ-emap (idiso G) Ker-cw-co∂-head' where lemma : G ×ᴳ Ker.grp cw-co∂-head' ≃ᴳ Ker.grp cw-co∂-head lemma = group-hom (λ{(g , (h , is-ker)) → ((g , h) , is-ker)}) (λ _ _ → Subtype=-out (Ker.subEl-prop cw-co∂-head) idp) , is-eq _ (λ{((g , h) , is-ker) → (g , (h , is-ker))}) (λ _ → idp) (λ _ → idp) -} private -- separate lemmas to speed up the type checking abstract lemma-exact₀ : is-exact (C-fmap 1 (⊙cfcod' (⊙cw-incl-last ⊙skel))) (C-fmap 1 (⊙cw-incl-last ⊙skel)) lemma-exact₀ = exact-seq-index 2 $ LES.C-cofiber-exact-seq 0 lemma-trivial : is-trivialᴳ (C 1 (⊙cw-head ⊙skel)) lemma-trivial = CX₀-≠-is-trivial (pos-≠ (ℕ-S≠O 0)) (⊙init-has-cells-with-choice ⊙skel ac) Coker-cw-co∂-head : CokerCo∂Head.grp ≃ᴳ C 1 ⊙⟦ ⊙skel ⟧ Coker-cw-co∂-head = Exact2.L-trivial-implies-coker-iso-K co∂-head-incl-exact lemma-exact₀ CX₁/X₀-is-abelian lemma-trivial
{ "alphanum_fraction": 0.6596910812, "avg_line_length": 32.3709677419, "ext": "agda", "hexsha": "9b8ee3a11543381c8989a7c2fd7623305a49b70d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/TipGrid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/TipGrid.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/TipGrid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 850, "size": 2007 }
{-# OPTIONS --safe #-} module Cubical.Homotopy.Loopspace where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.SetTruncation open import Cubical.HITs.Truncation hiding (elim2) renaming (rec to trRec) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.HalfAdjoint open Iso {- loop space of a pointed type -} Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ Ω (_ , a) = ((a ≡ a) , refl) {- n-fold loop space of a pointed type -} Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ (Ω^ 0) p = p (Ω^ (suc n)) p = Ω ((Ω^ n) p) {- homotopy Group -} π : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ π n A = ∥ typ ((Ω^ n) A) ∥ 2 {- loop space map -} Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B) Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙ {- Commutativity of loop spaces -} isComm∙ : ∀ {ℓ} (A : Pointed ℓ) → Type ℓ isComm∙ A = (p q : typ (Ω A)) → p ∙ q ≡ q ∙ p Eckmann-Hilton : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ ((Ω^ (suc n)) A) Eckmann-Hilton n α β = transport (λ i → cong (λ x → rUnit x (~ i)) α ∙ cong (λ x → lUnit x (~ i)) β ≡ cong (λ x → lUnit x (~ i)) β ∙ cong (λ x → rUnit x (~ i)) α) λ i → (λ j → α (j ∧ ~ i) ∙ β (j ∧ i)) ∙ λ j → α (~ i ∨ j) ∙ β (i ∨ j) isCommA→isCommTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ A → isOfHLevel (suc n) (typ A) → isComm∙ (∥ typ A ∥ (suc n) , ∣ pt A ∣) isCommA→isCommTrunc {A = (A , a)} n comm hlev p q = ((λ i j → (leftInv (truncIdempotentIso (suc n) hlev) ((p ∙ q) j) (~ i))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (cong (trRec hlev (λ x → x)) (p ∙ q))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) p q i))) ∙ ((λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (comm (cong (trRec hlev (λ x → x)) p) (cong (trRec hlev (λ x → x)) q) i)) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) q p (~ i))) ∙∙ (λ i j → (leftInv (truncIdempotentIso (suc n) hlev) ((q ∙ p) j) i))) ptdIso→comm : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Type ℓ'} (e : Iso (typ A) B) → isComm∙ A → isComm∙ (B , fun e (pt A)) ptdIso→comm {A = (A , a)} {B = B} e comm p q = sym (rightInv (congIso e) (p ∙ q)) ∙∙ (cong (fun (congIso e)) ((invCongFunct e p q) ∙∙ (comm (inv (congIso e) p) (inv (congIso e) q)) ∙∙ (sym (invCongFunct e q p)))) ∙∙ rightInv (congIso e) (q ∙ p) {- Homotopy group version -} π-comp : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → ∥ typ ((Ω^ (suc n)) A) ∥₂ → ∥ typ ((Ω^ (suc n)) A) ∥₂ → ∥ typ ((Ω^ (suc n)) A) ∥₂ π-comp n = elim2 (λ _ _ → isSetSetTrunc) λ p q → ∣ p ∙ q ∣₂ Eckmann-Hilton-π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p q : ∥ typ ((Ω^ (2 + n)) A) ∥₂) → π-comp (1 + n) p q ≡ π-comp (1 + n) q p Eckmann-Hilton-π n = elim2 (λ x y → isOfHLevelPath 2 isSetSetTrunc _ _) λ p q → cong ∣_∣₂ (Eckmann-Hilton n p q)
{ "alphanum_fraction": 0.5077202543, "avg_line_length": 44.6351351351, "ext": "agda", "hexsha": "29cfb40cad5b5df951155924e8f4dd1db2c7317b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kl-i/cubical-0.3", "max_forks_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kl-i/cubical-0.3", "max_issues_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kl-i/cubical-0.3", "max_stars_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1510, "size": 3303 }
------------------------------------------------------------------------ -- Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} -- Author: Sandro Stucki -- Copyright (c) 2017-2021 EPFL -- The code in this repository contains an Agda mechanization of the -- type system Fω extended with interval kinds ("F omega int"). An -- interval kind `A..B' represents a type interval bounded by a pair -- of types `A', `B'. It is inhabited by all proper types `C : A..B' -- that are both supertypes of `A' and subtypes of `B'. Interval -- kinds are flexible enough to express various features found in -- other type systems, such as -- -- * F-<:-style bounded polymorphism, -- * bounded type operators, -- * singleton kinds and first-class type definitions. -- -- The mechanization includes a small-step operational call-by-value -- semantics, declarative and canonical presentations of typing and -- kinding, along with (syntactic) proofs of various meta-theoretic -- properties, such as -- -- * weak normalization of types (and kinds) via hereditary substitution, -- * subject reduction for types (w.r.t. full β-reduction), -- * type safety (progress & preservation) w.r.t. to the CBV semantics, -- * undecidability of subtyping. -- -- For more details on Fω with interval kinds, see my PhD thesis -- "Higher-Order Subtyping with Type Intervals", which is available at -- -- http://dx.doi.org/10.5075/epfl-thesis-8014 -- -- The code makes heavy use of the Agda standard library, which is -- freely available at -- -- https://github.com/agda/agda-stdlib/ -- -- The code has been tested using Agda 2.6.1.3 and version 1.6 of -- the Agda standard library. module README where ------------------------------------------------------------------------ -- Modules related to Fω with interval kinds. -- Syntax of (untyped) terms along with support for substitutions, -- (untyped) hereditary substitutions and normalization. open import FOmegaInt.Syntax open import FOmegaInt.Syntax.SingleVariableSubstitution open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization -- Weak equality of (untyped) terms up to kind annotations in -- abstractions. open import FOmegaInt.Syntax.WeakEquality -- Variants of β-reduction/equivalence and properties thereof. open import FOmegaInt.Reduction.Cbv open import FOmegaInt.Reduction.Full -- Typing, kinding, subtyping, etc. along with corresponding -- substitution lemmas. open import FOmegaInt.Typing -- An alternate presentation of kinding and subtyping that is better -- suited for proving functionality and validity lemmas, along with a -- proof that the two presentations are equivalent. open import FOmegaInt.Kinding.Declarative open import FOmegaInt.Kinding.Declarative.Validity open import FOmegaInt.Kinding.Declarative.Equivalence -- Soundness of normalization w.r.t. to declarative kinding. open import FOmegaInt.Kinding.Declarative.Normalization -- Simple kinding of types, (hereditary) substitution lemmas. open import FOmegaInt.Kinding.Simple -- Lemmas about η-expansion of simply kinded and normalization and -- simultaneous simplification of declaratively kinded types. open import FOmegaInt.Kinding.Simple.EtaExpansion open import FOmegaInt.Kinding.Simple.Normalization -- Canonical kinding of types along with (hereditary) substitution, -- validity and inversion lemmas for canonical kinding and subtyping. open import FOmegaInt.Kinding.Canonical open import FOmegaInt.Kinding.Canonical.HereditarySubstitution open import FOmegaInt.Kinding.Canonical.Validity open import FOmegaInt.Kinding.Canonical.Inversion -- Lifting of weak (untyped) kind and type equality to canonical kind -- and type equality. open import FOmegaInt.Kinding.Canonical.WeakEquality -- Equivalence of canonical and declarative kinding. open import FOmegaInt.Kinding.Canonical.Equivalence -- Generation of typing and inversion of declarative subtyping in the -- empty context. open import FOmegaInt.Typing.Inversion -- Type safety (preservation/subject reduction and progress). open import FOmegaInt.Typing.Preservation open import FOmegaInt.Typing.Progress -- Encodings and properties of higher-order extremal types, interval -- kinds and bounded quantifiers. open import FOmegaInt.Typing.Encodings -- A reduced variant of the canonical system to be used in the -- undecidability proof. open import FOmegaInt.Kinding.Canonical.Reduced -- Setup for the undecidability proof: syntax and lemmas for the SK -- combinator calculus, and support for encoding/decoding SK terms and -- equality proofs into types and subtyping derivations. open import FOmegaInt.Undecidable.SK open import FOmegaInt.Undecidable.Encoding open import FOmegaInt.Undecidable.Decoding -- Undecidability of subtyping open import FOmegaInt.Undecidable ------------------------------------------------------------------------ -- Modules containing generic functionality -- Extra lemmas that are derivable in the substitution framework of -- the Agda standard library, as well as support for binary (term) -- relations lifted to substitutions, typed substitutions, and typed -- relations lifted to substitutions. open import Data.Context open import Data.Context.WellFormed open import Data.Context.Properties open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Relation open import Data.Fin.Substitution.Typed open import Data.Fin.Substitution.TypedRelation -- Support for generic reduction relations. open import Relation.Binary.Reduction -- Relational reasoning for transitive relations. open import Relation.Binary.TransReasoning
{ "alphanum_fraction": 0.7510103672, "avg_line_length": 38.1946308725, "ext": "agda", "hexsha": "ba81b5a5ab767fac05379d37dfa70cea4503c09f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/README.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1288, "size": 5691 }
-- Check if sharing is properly used for evaluation. -- E.g. (\x -> putStrLn x; putStrLn x) (computeString) -- should only evaluate computeString once. -- Doing the evaluation twice should still yield the correct result, -- but will incur a performance penalty. -- MAlonzo: seems to use proper sharing for this example with ghc -O, -- but not with ghc -O0. The sharing for -O0 is not introduced by MAlonzo, -- but by the cleverness of GHC. module Sharing where open import Common.Prelude open import Common.IO {-# IMPORT Debug.Trace #-} postulate primTrace : {b : Set} → String → b → b {-# COMPILED primTrace (\_ -> Debug.Trace.trace) #-} {-# COMPILED_UHC primTrace (\_ -> UHC.Agda.Builtins.primTrace) #-} main : IO Unit main = (λ x → putStrLn x ,, putStrLn x ) (primTrace "Eval" "hoi")
{ "alphanum_fraction": 0.7022613065, "avg_line_length": 30.6153846154, "ext": "agda", "hexsha": "45b9b6ba58bc535364077e7032c451a13921d75b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Compiler/simple/Sharing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Compiler/simple/Sharing.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/simple/Sharing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 212, "size": 796 }
open import Algebra open import Data.Product open import Data.Bool open import Data.List open import Data.List.Properties open import Relation.Binary.PropositionalEquality open import Function open import Data.Empty open import Relation.Nullary open import Relation.Nullary.Decidable module LM {A : Set} = Monoid (Data.List.Properties.++-monoid A) infixr 4 _⇒_ data Type : Set where o : Type _⇒_ : Type → Type → Type Env = List Type Type≡? : (A B : Type) → Dec (A ≡ B) Type≡? o o = yes refl Type≡? o (B ⇒ B₁) = no (λ ()) Type≡? (A ⇒ A₁) o = no (λ ()) Type≡? (A ⇒ B) (A' ⇒ B') with Type≡? A A' Type≡? (A ⇒ B) (.A ⇒ B') | yes refl with Type≡? B B' Type≡? (A ⇒ B) (.A ⇒ .B) | yes refl | yes refl = yes refl Type≡? (A ⇒ B) (.A ⇒ B') | yes refl | no ¬p = no (λ {refl → ¬p refl}) Type≡? (A ⇒ B) (A' ⇒ B') | no ¬p = no (λ {refl → ¬p refl}) Env≡? : (Γ Δ : Env) → Dec (Γ ≡ Δ) Env≡? [] [] = yes refl Env≡? [] (x ∷ Δ) = no (λ ()) Env≡? (x ∷ Γ) [] = no (λ ()) Env≡? (A ∷ Γ) (A' ∷ Δ) with Type≡? A A' Env≡? (A ∷ Γ) (A' ∷ Δ) | yes p with Env≡? Γ Δ Env≡? (A ∷ Γ) (.A ∷ .Γ) | yes refl | yes refl = yes refl Env≡? (A ∷ Γ) (A' ∷ Δ) | yes p | no ¬q = no (λ {refl → ¬q refl}) Env≡? (A ∷ Γ) (A' ∷ Δ) | no ¬p = no (λ {refl → ¬p refl}) data Var : Env → Type → Set where Z : ∀ {Γ : Env} {A : Type} → Var (A ∷ Γ) A S : ∀ {Γ : Env} {A B : Type} → Var Γ B → Var (A ∷ Γ) B data Exp : Env → Type → Set where var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A abs : ∀ {Γ : Env} {A B : Type} → Exp (A ∷ Γ) B → Exp Γ (A ⇒ B) app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B data PH (X : Type → Set) : Type → Set where var : ∀ {A : Type} → X A → PH X A abs : ∀ {A B : Type} → (X A → PH X B) → PH X (A ⇒ B) app : ∀ {A B : Type} → PH X (A ⇒ B) → PH X A → PH X B -- logical prediacte on PH PHᴾ : ∀ {X}(Xᴾ : ∀ {A} → X A → Set) → ∀ {A} → PH X A → Set PHᴾ Xᴾ (var a) = Xᴾ a PHᴾ Xᴾ (abs t) = ∀ a → Xᴾ a → PHᴾ Xᴾ (t a) PHᴾ Xᴾ (app t u) = PHᴾ Xᴾ t × PHᴾ Xᴾ u postulate free-thm : ∀ {A}(t : ∀ {X} → PH X A) → ∀ X (Xᴾ : ∀ {A} → X A → Set) → PHᴾ {X} Xᴾ t PH' : Type → Set PH' = PH (λ _ → Env) VarOK? : ∀ Γ A Δ → Dec (∃ λ Ξ → (Ξ ++ A ∷ Δ) ≡ Γ) VarOK? [] A Δ = no (λ {([] , ()) ; (_ ∷ _ , ())}) VarOK? (A' ∷ Γ) A Δ with Env≡? (A' ∷ Γ) (A ∷ Δ) VarOK? (A' ∷ Γ) .A' .Γ | yes refl = yes ([] , refl) VarOK? (A' ∷ Γ) A Δ | no ¬p with VarOK? Γ A Δ VarOK? (A' ∷ Γ) A Δ | no ¬p | yes (Σ , refl) = yes (A' ∷ Σ , refl) VarOK? (A' ∷ Γ) A Δ | no ¬p | no ¬q = no λ { ([] , refl) → ¬p refl ; (x ∷ Σ , s) → ¬q (Σ , proj₂ (∷-injective s))} OK : ∀ {A} → Env → PH' A → Set OK {A} Γ t = ∀ Δ → PHᴾ (λ {B} Σ → True (VarOK? (Δ ++ Γ) B Σ)) t toVar : ∀ {Γ Σ A} → (∃ λ Ξ → (Ξ ++ A ∷ Σ) ≡ Γ) → Var Γ A toVar ([] , refl) = Z toVar (x ∷ Ξ , refl) = S (toVar (Ξ , refl)) toExp' : ∀ {Γ A} (t : PH' A) → OK {A} Γ t → Exp Γ A toExp' (var x) p = var (toVar (toWitness (p []))) toExp' {Γ} (abs {A} {B} t) p = abs (toExp' (t Γ) λ Δ → subst (λ z → PHᴾ (λ {B₁} Σ₁ → True (VarOK? z B₁ Σ₁)) (t Γ)) (LM.assoc Δ (A ∷ []) Γ) (p (Δ ++ A ∷ []) Γ (fromWitness (Δ , sym (LM.assoc Δ (A ∷ []) Γ))))) toExp' (app t u) p = app (toExp' t (proj₁ ∘ p)) (toExp' u (proj₂ ∘ p)) toExp : ∀ {A} → (∀ {X} → PH X A) → Exp [] A toExp {A} t = toExp' t λ Δ → free-thm t _ _ -- examples ------------------------------------------------------------ t0 : ∀ {X} → PH X ((o ⇒ o) ⇒ o ⇒ o) t0 = abs var t1 : ∀ {X} → PH X ((o ⇒ o) ⇒ o ⇒ o) t1 = abs λ f → abs λ x → app (var f) (app (var f) (var x)) test1 : toExp t0 ≡ abs (var Z) test1 = refl test2 : toExp t1 ≡ abs (abs (app (var (S Z)) (app (var (S Z)) (var Z)))) test2 = refl
{ "alphanum_fraction": 0.462489695, "avg_line_length": 32.203539823, "ext": "agda", "hexsha": "51ed1a3a776576bc435edd84e4fd2e5fd45ca097", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/PHOAStoEXP.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/PHOAStoEXP.agda", "max_line_length": 87, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/PHOAStoEXP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 1714, "size": 3639 }
{-# OPTIONS --safe #-} module JVM.Syntax.Values where open import Data.Bool open import Data.Integer.Base open import Relation.Unary open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax open import JVM.Types data Const : Ty → Set where null : ∀ {c} → Const (ref c) num : ℤ → Const int bool : Bool → Const boolean
{ "alphanum_fraction": 0.7348484848, "avg_line_length": 23.2941176471, "ext": "agda", "hexsha": "b40444732186ae18111157bef9bf93d990f621b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Syntax/Values.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Syntax/Values.agda", "max_line_length": 46, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Syntax/Values.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 101, "size": 396 }
{-# OPTIONS --type-in-type #-} -- Yeah, that's type-in-type. I'm a sissy, I want to use the stdlib, I -- don't want to reimplement ℕ, ⊤, etc. in Set1. module ILabel where open import Data.String open import Data.Empty open import Data.Unit open import Data.Product open import Data.Maybe open import Data.Nat open import Relation.Binary.PropositionalEquality --**************************************************************** -- A universe of labels --**************************************************************** infixr 5 _∷_ data AllowedBy : Set -> Set where ε : forall {T} -> AllowedBy T _∷_ : {S : Set}{T : S -> Set} -> (s : S)(ts : AllowedBy (T s)) -> AllowedBy ((x : S) -> T x) UId = String -- The universe (that's a tiny one): data Label : Set where label : (u : UId)(T : Set)(ts : AllowedBy T) -> Label --**************************************************************** -- IDesc & co. --**************************************************************** data IDesc (I : Set1) : Set1 where var : I -> IDesc I const : Set -> IDesc I prod : IDesc I -> IDesc I -> IDesc I sigma : (S : Set) -> (S -> IDesc I) -> IDesc I pi : (S : Set) -> (S -> IDesc I) -> IDesc I desc : {I : Set1} -> IDesc I -> (I -> Set) -> Set desc (var i) P = P i desc (const X) P = X desc (prod D D') P = desc D P × desc D' P desc (sigma S T) P = Σ S (\s -> desc (T s) P) desc (pi S T) P = (s : S) -> desc (T s) P -- We (may) stuck a label on the fix-point: data IMu {I : Set1}(L : Maybe (I -> Label))(R : I -> IDesc I)(i : I) : Set where con : desc (R i) (\j -> IMu L R j) -> IMu L R i --**************************************************************** -- Example: Nat --**************************************************************** data NatConst : Set where Ze : NatConst Su : NatConst natCases : NatConst -> IDesc ⊤ natCases Ze = const ⊤ natCases Suc = var _ NatD : ⊤ → IDesc ⊤ NatD _ = sigma NatConst natCases Nat : Set Nat = IMu (just (\ _ -> label "Nat" Set ε)) NatD _ --**************************************************************** -- Example: Vector --**************************************************************** data VecConst : ℕ -> Set where Vnil : VecConst 0 Vcons : {n : ℕ} -> VecConst (1 + n) vecDChoice : Set -> (n : ℕ) -> VecConst n -> IDesc ℕ vecDChoice X 0 Vnil = const ⊤ vecDChoice X (suc n) Vcons = prod (const X) (var n) vecD : Set -> ℕ -> IDesc ℕ vecD X n = sigma (VecConst n) (vecDChoice X n) vec : Set -> ℕ -> Set vec X n = IMu (just (\n -> label "Vec" (ℕ -> Set) (n ∷ ε))) (vecD X) n --**************** -- Example: Fin --**************** data FinConst : ℕ -> Set where Fz : {n : ℕ} -> FinConst (1 + n) Fs : {n : ℕ} -> FinConst (1 + n) finDChoice : (n : ℕ) -> FinConst n -> IDesc ℕ finDChoice 0 () finDChoice (suc n) Fz = const ⊤ finDChoice (suc n) Fs = var n finD : ℕ -> IDesc ℕ finD n = sigma (FinConst n) (finDChoice n) fin : ℕ -> Set fin n = IMu (just (\ n -> label "Fin" (ℕ -> Set) (n ∷ ε))) finD n --**************** -- Example: Identity type --**************** -- data Id (A : Set) (a : A) : A -> Set := (refl : Id A a a) data IdConst : Set where Refl : IdConst idD : (A : Set)(a : A)(b : A) -> IDesc A idD A a b = sigma IdConst (\ _ -> const (a ≡ b)) id : (A : Set)(a : A)(b : A) -> Set id A a b = IMu (just (\ b -> label "Id" ((A : Set)(a : A)(b : A) -> Set) (A ∷ a ∷ b ∷ ε))) (idD A a) b
{ "alphanum_fraction": 0.4599180807, "avg_line_length": 25.3185185185, "ext": "agda", "hexsha": "80fd2bd2cc0a5df5cb85c0f43f1ecad5afc04816", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/ILabel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/ILabel.agda", "max_line_length": 102, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/ILabel.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 1104, "size": 3418 }
------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------ module Relation.Binary.PropositionalEquality1 where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; refl) ------------------------------------------------------------------------ -- Propositional equality infix 4 _≡₁_ _≢₁_ data _≡₁_ {a : Set₁} (x : a) : a → Set where refl : x ≡₁ x -- Nonequality. _≢₁_ : {a : Set₁} → a → a → Set x ≢₁ y = ¬ x ≡₁ y ------------------------------------------------------------------------ -- Some properties reflexive : ∀ {a} (x : a) → x ≡₁ x reflexive _ = refl sym : ∀ {a} {x y : a} → x ≡₁ y → y ≡₁ x sym refl = refl trans : ∀ {a} {x y z : a} → x ≡₁ y → y ≡₁ z → x ≡₁ z trans refl refl = refl subst : {a b : Set} → a ≡₁ b → a → b subst refl x = x cong : ∀ {a b} (f : a → b) → ∀ {x y} → x ≡₁ y → f x ≡₁ f y cong _ refl = refl cong₂ : ∀ {a b c} (f : a → b → c) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≡₁ x₂ → y₁ ≡₁ y₂ → f x₁ y₁ ≡₁ f x₂ y₂ cong₂ _ refl refl = refl cong₀₁ : ∀ {a b} (f : a → b) → ∀ {x y} → x ≡ y → f x ≡₁ f y cong₀₁ _ refl = refl cong₁₀ : ∀ {a b} (f : a → b) → ∀ {x y} → x ≡₁ y → f x ≡ f y cong₁₀ _ refl = refl
{ "alphanum_fraction": 0.4247517189, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "40c26156d87399247601364a36013408334a08f4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality1.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality1.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality1.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 468, "size": 1309 }
open import Data.Empty open import Data.List hiding ([_]) renaming (_∷_ to _∷ₗ_) open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import AEff open import EffectAnnotations open import Preservation open import Progress open import Renamings open import Substitutions renaming (⟨_,_⟩ to ⟨_,,_⟩) open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation module Finality where -- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED COMPUTATIONS -- WITH INLINED EVALUATION CONTEXT RULES mutual infix 10 _↝↝_ data _↝↝_ {Γ : Ctx} : {C : CType} → Γ ⊢C⦂ C → Γ ⊢C⦂ C → Set where -- COMPUTATIONAL RULES apply : {X : VType} {C : CType} → (M : Γ ∷ X ⊢C⦂ C) → (V : Γ ⊢V⦂ X) → ---------------------- (ƛ M) · V ↝↝ M [ sub-id [ V ]s ]c let-return : {X Y : VType} {o : O} {i : I} → (V : Γ ⊢V⦂ X) → (N : Γ ∷ X ⊢C⦂ Y ! (o , i)) → ----------------------------- let= (return V) `in N ↝↝ N [ sub-id [ V ]s ]c let-↑ : {X Y : VType} {o : O} {i : I} {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ proj₁ (payload op)) → (M : Γ ⊢C⦂ X ! (o , i)) → (N : Γ ∷ X ⊢C⦂ Y ! (o , i)) → -------------------------------- let= (↑ op p V M) `in N ↝↝ ↑ op p V (let= M `in N) let-promise : {X Y Z : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : (o' , i') ⊑ lkpᵢ op i) → (M₁ : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) → (M₂ : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → (N : Γ ∷ Y ⊢C⦂ Z ! (o , i)) → --------------------------------------------------------------------------------------------------------- let= (promise op ∣ p ↦ M₁ `in M₂) `in N ↝↝ (promise op ∣ p ↦ M₁ `in (let= M₂ `in (C-rename (ren-cong ren-wk) N))) let-await : {X Y Z : VType} {o : O} {i : I} → (V : Γ ⊢V⦂ ⟨ X ⟩) → (M : Γ ∷ X ⊢C⦂ Y ! (o , i)) → (N : Γ ∷ Y ⊢C⦂ Z ! (o , i)) → ------------------------------------------------------- let= (await V until M) `in N ↝↝ await V until (let= M `in C-rename (ren-cong ren-wk) N) let-spawn : {X Y : VType} {C : CType} {o : O} {i : I} → (M : Γ ■ ⊢C⦂ C) → (N : Γ ⊢C⦂ X ! (o , i)) → (K : Γ ∷ X ⊢C⦂ Y ! (o , i)) → --------------------------------------- let= (spawn M N) `in K ↝↝ spawn M (let= N `in K) promise-↑ : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : (o' , i') ⊑ lkpᵢ op i) → (q : op' ∈ₒ o) → (V : Γ ∷ ⟨ X ⟩ ⊢V⦂ proj₁ (payload op')) → (M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → -------------------------------------------------------------------------------------------------------- (promise op ∣ p ↦ M `in (↑ op' q V N)) ↝↝ ↑ op' q (strengthen-val {Δ = X ∷ₗ []} (proj₂ (payload op')) V) (promise op ∣ p ↦ M `in N) promise-spawn : {X Y : VType} {C : CType} {o o' : O} {i i' : I} {op : Σₛ} → (p : (o' , i') ⊑ lkpᵢ op i) → (M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ■ ⊢C⦂ C) → (K : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → --------------------------------------------------------------------------------------------------------- (promise op ∣ p ↦ M `in (spawn N K)) ↝↝ spawn (strengthen-■-c {Γ' = []} {Δ = X ∷ₗ []} N) (promise op ∣ p ↦ M `in K) ↓-return : {X : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ proj₁ (payload op)) → (W : Γ ⊢V⦂ X) → ---------------------------------------------------------------- ↓ {o = o} {i = i} op V (return W) ↝↝ return {o = proj₁ (op ↓ₑ (o , i))} {i = proj₂ (op ↓ₑ (o , i))} W ↓-↑ : {X : VType} {o : O} {i : I} {op : Σₛ} {op' : Σₛ} → (p : op' ∈ₒ o) → (V : Γ ⊢V⦂ proj₁ (payload op)) → (W : Γ ⊢V⦂ proj₁ (payload op')) → (M : Γ ⊢C⦂ X ! (o , i)) → --------------------------------- ↓ op V (↑ op' p W M) ↝↝ ↑ op' (↓ₑ-⊑ₒ op' p) W (↓ op V M) ↓-promise-op : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : (o' , i') ⊑ lkpᵢ op i) → (V : Γ ⊢V⦂ proj₁ (payload op)) → (M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → -------------------------------------------------------------------------------------------------------------------------------------------------------- ↓ op V (promise op ∣ p ↦ M `in N ) ↝↝ (let= (coerce (⊑ₒ-trans (proj₁ (⊑-proj p (proj₂ (proj₂ (⊑-just p))))) (↓ₑ-⊑ₒ-o' {o = o} (proj₂ (proj₂ (⊑-just p))))) (⊑ᵢ-trans (proj₂ (⊑-proj p (proj₂ (proj₂ (⊑-just p))))) (↓ₑ-⊑ₒ-i' {o = o} (proj₂ (proj₂ (⊑-just p))))) (M [ (sub-id [ V ]s) [ ƛ (promise op ∣ subst (λ oi → (o' , i') ⊑ oi) (sym ite-≡) ⊑-refl ↦ C-rename (ren-cong (ren-cong ren-wk)) M `in return (` Hd)) ]s ]c)) `in (↓ op (V-rename ren-wk V) N)) ↓-promise-op' : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : ¬ op ≡ op') → (q : (o' , i') ⊑ lkpᵢ op' i) → (V : Γ ⊢V⦂ proj₁ (payload op)) → (M : Γ ∷ proj₁ (payload op') ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op' ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → ----------------------------------------------------------------------------------------------------------- ↓ op V (promise op' ∣ q ↦ M `in N ) ↝↝ promise op' ∣ (lkpᵢ-↓ₑ-neq-⊑ {o = o} {i = i} p q) ↦ M `in ↓ op (V-rename ren-wk V) N ↓-await : {X Y : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ proj₁ (payload op)) → (W : Γ ⊢V⦂ ⟨ X ⟩) → (M : Γ ∷ X ⊢C⦂ Y ! (o , i)) → ------------------------------------------ ↓ op V (await W until M) ↝↝ await W until (↓ op (V-rename ren-wk V) M) ↓-spawn : {X : VType} {C : CType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ proj₁ (payload op)) → (M : Γ ■ ⊢C⦂ C) → (N : Γ ⊢C⦂ X ! (o , i)) → -------------------------------- ↓ op V (spawn M N) ↝↝ spawn M (↓ op V N) await-promise : {X : VType} {C : CType} → (V : Γ ⊢V⦂ X) → (M : Γ ∷ X ⊢C⦂ C) → -------------------- await ⟨ V ⟩ until M ↝↝ M [ sub-id [ V ]s ]c box-unbox : {X : VType} {C : CType} → (V : Γ ■ ⊢V⦂ X) → (M : Γ ∷ X ⊢C⦂ C) → ---------------------------------------- unbox (□ V) `in M ↝↝ M [ ⟨ sub-id ,, ■-str-v {Γ' = []} V ⟩ ]c -- INLINED EVALUATION CONTEXT RULES context-let : {X Y : VType} {o : O} {i : I} → {M M' : Γ ⊢C⦂ X ! (o , i)} → {N : Γ ∷ X ⊢C⦂ Y ! (o , i)} → M ↝↝ M' → ----------------------------- let= M `in N ↝↝ let= M' `in N context-↑ : {X : VType} {o : O} {i : I} {op : Σₛ} {p : op ∈ₒ o} {V : Γ ⊢V⦂ proj₁ (payload op)} {M N : Γ ⊢C⦂ X ! (o , i)} → M ↝↝ N → --------------------------- ↑ op p V M ↝↝ ↑ op p V N context-↓ : {X : VType} {o : O} {i : I} {op : Σₛ} {V : Γ ⊢V⦂ proj₁ (payload op)} {M N : Γ ⊢C⦂ X ! (o , i)} → M ↝↝ N → ------------------------------ ↓ op V M ↝↝ ↓ op V N context-promise : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} → {r : (o' , i') ⊑ lkpᵢ op i} {M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')} → {N N' : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)} → N ↝↝ N' → -------------------------------------------------------------------------------------------------------- promise op ∣ r ↦ M `in N ↝↝ promise op ∣ r ↦ M `in N' context-spawn : {C D : CType} {M : Γ ■ ⊢C⦂ C} {N N' : Γ ⊢C⦂ D} → N ↝↝ N' → ------------------ spawn M N ↝↝ spawn M N' context-coerce : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → {M N : Γ ⊢C⦂ X ! (o , i)} → M ↝↝ N → --------------------------- coerce p q M ↝↝ coerce p q N -- COERCION RULES coerce-return : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → (V : Γ ⊢V⦂ X) → -------------------------------- coerce p q (return V) ↝↝ return V coerce-↑ : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : op ∈ₒ o) → (V : Γ ⊢V⦂ proj₁ (payload op)) → (M : Γ ⊢C⦂ X ! (o , i)) → ------------------------------- coerce p q (↑ op r V M) ↝↝ ↑ op (p op r) V (coerce p q M) coerce-promise : {X Y : VType} {o o' o'' : O} {i i' i'' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : (o'' , i'') ⊑ lkpᵢ op i ) (M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o'' , i'') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o'' , i'')) → (N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) → ------------------------------------------------------------------------------------------------------------- coerce p q (promise op ∣ r ↦ M `in N) ↝↝ promise_∣_↦_`in_ op (subst (λ oi → (o'' , i'') ⊑ oi) (sym (lkpᵢ-next-eq q (proj₂ (proj₂ (⊑-just r))))) (⊑-trans r (proj₂ (proj₂ (⊑-just r))) ( (lkpᵢ-next-⊑ₒ q (proj₂ (proj₂ (⊑-just r)))) , (lkpᵢ-next-⊑ᵢ q (proj₂ (proj₂ (⊑-just r))))))) M (coerce p q N) coerce-await : {X Y : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → (V : Γ ⊢V⦂ ⟨ X ⟩) → (M : Γ ∷ X ⊢C⦂ Y ! (o , i)) → ----------------------------- coerce p q (await V until M) ↝↝ await V until (coerce p q M) coerce-spawn : {X : VType} {C : CType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → (M : Γ ■ ⊢C⦂ C) → (N : Γ ⊢C⦂ X ! (o , i)) → ------------------------- coerce p q (spawn M N) ↝↝ spawn M (coerce p q N) -- ONE-TO-ONE CORRESPONDENCE BETWEEN THE TWO SETS OF REDUCTION RULES ↝↝-to-↝ : {Γ : Ctx} {C : CType} {M N : Γ ⊢C⦂ C} → M ↝↝ N → ----------------- M ↝ N ↝↝-to-↝ (apply M V) = apply M V ↝↝-to-↝ (let-return V N) = let-return V N ↝↝-to-↝ (let-↑ p V M N) = let-↑ p V M N ↝↝-to-↝ (let-promise p M₁ M₂ N) = let-promise p M₁ M₂ N ↝↝-to-↝ (let-await V M N) = let-await V M N ↝↝-to-↝ (let-spawn M N K) = let-spawn M N K ↝↝-to-↝ (promise-↑ p q V M N) = promise-↑ p q V M N ↝↝-to-↝ (promise-spawn p M N K) = promise-spawn p M N K ↝↝-to-↝ (↓-return V W) = ↓-return V W ↝↝-to-↝ (↓-↑ p V W M) = ↓-↑ p V W M ↝↝-to-↝ (↓-promise-op p V M N) = ↓-promise-op p V M N ↝↝-to-↝ (↓-promise-op' p q V M N) = ↓-promise-op' p q V M N ↝↝-to-↝ (↓-await V W M) = ↓-await V W M ↝↝-to-↝ (↓-spawn V M N) = ↓-spawn V M N ↝↝-to-↝ (await-promise V M) = await-promise V M ↝↝-to-↝ (box-unbox V M) = box-unbox V M ↝↝-to-↝ (context-let r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (context-↑ r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (context-↓ r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (context-promise r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (context-spawn r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (context-coerce r) = context _ (↝↝-to-↝ r) ↝↝-to-↝ (coerce-return V) = coerce-return V ↝↝-to-↝ (coerce-↑ p V M) = coerce-↑ p V M ↝↝-to-↝ (coerce-promise p M N) = coerce-promise p M N ↝↝-to-↝ (coerce-await V M) = coerce-await V M ↝↝-to-↝ (coerce-spawn M N) = coerce-spawn M N mutual ↝-context-to-↝↝ : {Γ : Ctx} {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → {M N : (Γ ⋈ Δ) ⊢C⦂ hole-ty-e E} → M ↝ N → --------------------------------- E [ M ] ↝↝ E [ N ] ↝-context-to-↝↝ [-] r = ↝-to-↝↝ r ↝-context-to-↝↝ (let= E `in x) r = context-let (↝-context-to-↝↝ E r) ↝-context-to-↝↝ (↑ op p V E) r = context-↑ (↝-context-to-↝↝ E r) ↝-context-to-↝↝ (↓ op V E) r = context-↓ (↝-context-to-↝↝ E r) ↝-context-to-↝↝ (promise op ∣ p ↦ M `in E) r = context-promise (↝-context-to-↝↝ E r) ↝-context-to-↝↝ (spawn M E) r = context-spawn (↝-context-to-↝↝ E r) ↝-context-to-↝↝ (coerce p q E) r = context-coerce (↝-context-to-↝↝ E r) ↝-to-↝↝ : {Γ : Ctx} {C : CType} {M N : Γ ⊢C⦂ C} → M ↝ N → ----------------- M ↝↝ N ↝-to-↝↝ (apply M V) = apply M V ↝-to-↝↝ (let-return V N) = let-return V N ↝-to-↝↝ (let-↑ p V M N) = let-↑ p V M N ↝-to-↝↝ (let-promise p M₁ M₂ N) = let-promise p M₁ M₂ N ↝-to-↝↝ (let-await V M N) = let-await V M N ↝-to-↝↝ (let-spawn M N K) = let-spawn M N K ↝-to-↝↝ (promise-↑ p q V M N) = promise-↑ p q V M N ↝-to-↝↝ (promise-spawn p M N K) = promise-spawn p M N K ↝-to-↝↝ (↓-return V W) = ↓-return V W ↝-to-↝↝ (↓-↑ p V W M) = ↓-↑ p V W M ↝-to-↝↝ (↓-promise-op p V M N) = ↓-promise-op p V M N ↝-to-↝↝ (↓-promise-op' p q V M N) = ↓-promise-op' p q V M N ↝-to-↝↝ (↓-await V W M) = ↓-await V W M ↝-to-↝↝ (↓-spawn V M N) = ↓-spawn V M N ↝-to-↝↝ (await-promise V M) = await-promise V M ↝-to-↝↝ (box-unbox V M) = box-unbox V M ↝-to-↝↝ (context E r) = ↝-context-to-↝↝ E r ↝-to-↝↝ (coerce-return V) = coerce-return V ↝-to-↝↝ (coerce-↑ p V M) = coerce-↑ p V M ↝-to-↝↝ (coerce-promise p M N) = coerce-promise p M N ↝-to-↝↝ (coerce-await V M) = coerce-await V M ↝-to-↝↝ (coerce-spawn M N) = coerce-spawn M N -- FINALITY OF RESULT FORMS run-finality-↝↝ : {Γ : MCtx} {C : CType} {M N : ⟨⟨ Γ ⟩⟩ ⊢C⦂ C} → RunResult⟨ Γ ∣ M ⟩ → M ↝↝ N → ----------------------- ⊥ run-finality-↝↝ (promise ()) (promise-↑ p q V M N) run-finality-↝↝ (promise ()) (promise-spawn p M N K) run-finality-↝↝ (promise R) (context-promise r) = run-finality-↝↝ R r comp-finality-↝↝ : {Γ : MCtx} {C : CType} {M N : ⟨⟨ Γ ⟩⟩ ⊢C⦂ C} → CompResult⟨ Γ ∣ M ⟩ → M ↝↝ N → ----------------------- ⊥ comp-finality-↝↝ (comp R) r = run-finality-↝↝ R r comp-finality-↝↝ (signal R) (context-↑ r) = comp-finality-↝↝ R r comp-finality-↝↝ (spawn R) (context-spawn r) = comp-finality-↝↝ R r comp-finality : {Γ : MCtx} {C : CType} {M N : ⟨⟨ Γ ⟩⟩ ⊢C⦂ C} → CompResult⟨ Γ ∣ M ⟩ → M ↝ N → ----------------------- ⊥ comp-finality R r = comp-finality-↝↝ R (↝-to-↝↝ r)
{ "alphanum_fraction": 0.2597924837, "avg_line_length": 35.8416370107, "ext": "agda", "hexsha": "5d7135f578eaab6739212d13d2933d4049ede092", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/modal-aeff-agda", "max_forks_repo_path": "Finality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/modal-aeff-agda", "max_issues_repo_path": "Finality.agda", "max_line_length": 174, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/higher-order-aeff-agda", "max_stars_repo_path": "Finality.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T18:50:26.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-17T15:00:34.000Z", "num_tokens": 6767, "size": 20143 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Substitutions ------------------------------------------------------------------------ -- Uses a variant of Conor McBride's technique from "Type-Preserving -- Renaming and Substitution". -- See Data.Fin.Substitution.Example for an example of how this module -- can be used: a definition of substitution for the untyped -- λ-calculus. {-# OPTIONS --without-K --safe #-} module Data.Fin.Substitution where open import Data.Nat hiding (_⊔_) open import Data.Fin using (Fin; zero; suc) open import Data.Vec open import Function as Fun using (flip) open import Relation.Binary.Construct.Closure.ReflexiveTransitive as Star using (Star; ε; _◅_) open import Level using (Level; _⊔_) import Level as L open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- General functionality -- A Sub T m n is a substitution which, when applied to something with -- at most m variables, yields something with at most n variables. Sub : ∀ {ℓ} → Pred ℕ ℓ → ℕ → ℕ → Set ℓ Sub T m n = Vec (T n) m -- A /reversed/ sequence of matching substitutions. Subs : ∀ {ℓ} → Pred ℕ ℓ → ℕ → ℕ → Set ℓ Subs T = flip (Star (flip (Sub T))) -- Some simple substitutions. record Simple {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where infix 10 _↑ infixl 10 _↑⋆_ _↑✶_ field var : ∀ {n} → Fin n → T n -- Takes variables to Ts. weaken : ∀ {n} → T n → T (suc n) -- Weakens Ts. -- Lifting. _↑ : ∀ {m n} → Sub T m n → Sub T (suc m) (suc n) ρ ↑ = var zero ∷ map weaken ρ _↑⋆_ : ∀ {m n} → Sub T m n → ∀ k → Sub T (k + m) (k + n) ρ ↑⋆ zero = ρ ρ ↑⋆ suc k = (ρ ↑⋆ k) ↑ _↑✶_ : ∀ {m n} → Subs T m n → ∀ k → Subs T (k + m) (k + n) ρs ↑✶ k = Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) ρs -- The identity substitution. id : ∀ {n} → Sub T n n id {zero} = [] id {suc n} = id ↑ -- Weakening. wk⋆ : ∀ k {n} → Sub T n (k + n) wk⋆ zero = id wk⋆ (suc k) = map weaken (wk⋆ k) wk : ∀ {n} → Sub T n (suc n) wk = wk⋆ 1 -- A substitution which only replaces the first variable. sub : ∀ {n} → T n → Sub T (suc n) n sub t = t ∷ id -- Application of substitutions. record Application {ℓ₁ ℓ₂ : Level} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where infixl 8 _/_ _/✶_ infixl 9 _⊙_ -- Post-application of substitutions to things. field _/_ : ∀ {m n} → T₁ m → Sub T₂ m n → T₁ n -- Reverse composition. (Fits well with post-application.) _⊙_ : ∀ {m n k} → Sub T₁ m n → Sub T₂ n k → Sub T₁ m k ρ₁ ⊙ ρ₂ = map (λ t → t / ρ₂) ρ₁ -- Application of multiple substitutions. _/✶_ : ∀ {m n} → T₁ m → Subs T₂ m n → T₁ n _/✶_ = Star.gfold Fun.id _ (flip _/_) {k = zero} -- A combination of the two records above. record Subst {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where field simple : Simple T application : Application T T open Simple simple public open Application application public -- Composition of multiple substitutions. ⨀ : ∀ {m n} → Subs T m n → Sub T m n ⨀ ε = id ⨀ (ρ ◅ ε) = ρ -- Convenient optimisation; simplifies some proofs. ⨀ (ρ ◅ ρs) = ⨀ ρs ⊙ ρ ------------------------------------------------------------------------ -- Instantiations and code for facilitating instantiations -- Liftings from T₁ to T₂. record Lift {ℓ₁ ℓ₂ : Level} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where field simple : Simple T₁ lift : ∀ {n} → T₁ n → T₂ n open Simple simple public -- Variable substitutions (renamings). module VarSubst where subst : Subst Fin subst = record { simple = record { var = Fun.id; weaken = suc } ; application = record { _/_ = flip lookup } } open Subst subst public -- "Term" substitutions. record TermSubst (T : Pred ℕ L.zero) : Set₁ where field var : ∀ {n} → Fin n → T n app : ∀ {T′ : Pred ℕ L.zero} → Lift T′ T → ∀ {m n} → T m → Sub T′ m n → T n module Lifted {T′ : Pred ℕ L.zero} (lift : Lift T′ T) where application : Application T T′ application = record { _/_ = app lift } open Lift lift public open Application application public varLift : Lift Fin T varLift = record { simple = VarSubst.simple; lift = var } infix 8 _/Var_ _/Var_ : ∀ {m n} → T m → Sub Fin m n → T n _/Var_ = app varLift simple : Simple T simple = record { var = var ; weaken = λ t → t /Var VarSubst.wk } termLift : Lift T T termLift = record { simple = simple; lift = Fun.id } subst : Subst T subst = record { simple = simple ; application = Lifted.application termLift } open Subst subst public hiding (var; simple)
{ "alphanum_fraction": 0.5596019479, "avg_line_length": 25.5297297297, "ext": "agda", "hexsha": "2a9d636b90c6ece7fc61d665156f3bf0a50578cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1595, "size": 4723 }
module IORef where data Unit : Set where unit : Unit data Pair (A B : Set) : Set where pair : A -> B -> Pair A B fst : {A B : Set} -> Pair A B -> A fst (pair a b) = a snd : {A B : Set} -> Pair A B -> B snd (pair a b) = b data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where fz : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) infixr 40 _::_ infixl 20 _!_ data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) _!_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A [] ! () x :: _ ! fz = x _ :: xs ! (fs i) = xs ! i Loc : Nat -> Set Loc = Fin -- A universe. IORefs can store data of type el(u), for some u : U postulate U : Set el : U -> Set -- Shapes tell you what types live on the heap. Shape : Nat -> Set Shape n = Vec U n -- Fin n -> U -- Shapes can grow as you allocate new memory _||_ : {n : Nat} -> Shape n -> U -> Shape (suc n) xs || u = u :: xs infixl 40 _▻_ infixl 60 _[_:=_] _[_] -- The heap maps locations to elements of the right type. data Heap : {n : Nat}(s : Shape n) -> Set where ε : Heap [] _▻_ : {n : Nat}{s : Shape n}{a : U} -> Heap s -> el a -> Heap (s || a) -- Heap : {n : Nat} -> Shape n -> Set -- Heap {n} shape = (k : Fin n) -> el (shape ! k) _[_:=_] : {n : Nat}{s : Shape n} -> Heap s -> (l : Loc n) -> el (s ! l) -> Heap s ε [ () := _ ] (h ▻ _) [ fz := x ] = h ▻ x (h ▻ y) [ fs i := x ] = h [ i := x ] ▻ y _[_] : {n : Nat}{s : Shape n} -> Heap s -> (l : Loc n) -> el (s ! l) ε [ () ] (h ▻ x) [ fz ] = x (h ▻ _) [ fs i ] = h [ i ] -- (h [ fz := x ]) fz = x -- (h [ fz := x ]) (fs i) = h (fs i) -- (h [ fs i := x ]) fz = h fz -- _[_:=_] {._}{_ :: s} h (fs i) x (fs j) = _[_:=_] {s = s} (\z -> h (fs z)) i x j -- Well-scoped, well-typed IORefs data IO (A : Set) : {n m : Nat} -> Shape n -> Shape m -> Set where Return : {n : Nat}{s : Shape n} -> A -> IO A s s WriteIORef : {n m : Nat}{s : Shape n}{t : Shape m} -> (loc : Loc n) -> el (s ! loc) -> IO A s t -> IO A s t ReadIORef : {n m : Nat}{s : Shape n}{t : Shape m} -> (loc : Loc n) -> (el (s ! loc) -> IO A s t) -> IO A s t NewIORef : {n m : Nat}{s : Shape n}{t : Shape m}{u : U} -> el u -> IO A (s || u) t -> IO A s t -- Running IO programs run : {A : Set} -> {n m : Nat} -> {s : Shape n} -> {t : Shape m} -> Heap s -> IO A s t -> Pair A (Heap t) run heap (Return x) = pair x heap run heap (WriteIORef l x io) = run (heap [ l := x ]) io run heap (ReadIORef l k) = run heap (k (heap [ l ])) run heap (NewIORef x k) = run (heap ▻ x) k infixr 10 _>>=_ _>>_ _>>=_ : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} -> IO A s₁ s₂ -> (A -> IO B s₂ s₃) -> IO B s₁ s₃ Return x >>= f = f x WriteIORef r x k >>= f = WriteIORef r x (k >>= f) ReadIORef r k >>= f = ReadIORef r (\x -> k x >>= f) NewIORef x k >>= f = NewIORef x (k >>= f) _>>_ : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} -> IO A s₁ s₂ -> IO B s₂ s₃ -> IO B s₁ s₃ a >> b = a >>= \_ -> b -- The operations without CPS data IORef : {n : Nat}(s : Shape n) -> U -> Set where ioRef : {n : Nat}{s : Shape n}(r : Loc n) -> IORef s (s ! r) return : {A : Set}{n : Nat}{s : Shape n} -> A -> IO A s s return = Return writeIORef : {n : Nat}{s : Shape n}{a : U} -> IORef s a -> el a -> IO Unit s s writeIORef (ioRef r) x = WriteIORef r x (Return unit) readIORef : {n : Nat}{s : Shape n}{a : U} -> IORef s a -> IO (el a) s s readIORef (ioRef r) = ReadIORef r Return newIORef : {n : Nat}{s : Shape n}{a : U} -> el a -> IO (IORef (s || a) a) s (s || a) newIORef x = NewIORef x (Return (ioRef fz)) -- Some nice properties infix 10 _==_ _≡_ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : {A : Set}(P : A -> Set){x y : A} -> x == y -> P y -> P x subst {A} P refl Px = Px cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong {A} f refl = refl trans : {A : Set}{x y z : A} -> x == y -> y == z -> x == z trans {A} refl p = p fsteq : {A B : Set}{x y : A}{z w : B} -> pair x z == pair y w -> x == y fsteq {A}{B} refl = refl -- Lemmas update-lookup : {n : Nat}{s : Shape n}(h : Heap s)(r : Loc n)(x : el (s ! r)) -> h [ r := x ] [ r ] == x update-lookup ε () _ update-lookup (h ▻ _) fz x = refl update-lookup (h ▻ _) (fs i) x = update-lookup h i x update-update : {n : Nat}{s : Shape n}(h : Heap s)(r : Loc n)(x y : el (s ! r)) -> h [ r := x ] [ r := y ] == h [ r := y ] update-update ε () _ _ update-update (h ▻ _) fz x y = refl update-update (h ▻ z) (fs i) x y = cong (\ ∙ -> ∙ ▻ z) (update-update h i x y) -- Equality of monadic computations data _≡_ {A : Set}{n m : Nat}{s : Shape n}{t : Shape m}(io₁ io₂ : IO A s t) : Set where eqIO : ((h : Heap s) -> run h io₁ == run h io₂) -> io₁ ≡ io₂ uneqIO : {A : Set}{n m : Nat}{s : Shape n}{t : Shape m}{io₁ io₂ : IO A s t} -> io₁ ≡ io₂ -> (h : Heap s) -> run h io₁ == run h io₂ uneqIO (eqIO e) = e -- Congruence properties cong->> : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} {io₁₁ io₁₂ : IO A s₁ s₂}{io₂₁ io₂₂ : A -> IO B s₂ s₃} -> io₁₁ ≡ io₁₂ -> ((x : A) -> io₂₁ x ≡ io₂₂ x) -> io₁₁ >>= io₂₁ ≡ io₁₂ >>= io₂₂ cong->> {A}{B}{s₁ = s₁}{s₂}{s₃}{io₁₁}{io₁₂}{io₂₁}{io₂₂}(eqIO eq₁) eq₂ = eqIO (prf io₁₁ io₁₂ io₂₁ io₂₂ eq₁ eq₂) where prf : {n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} (io₁₁ io₁₂ : IO A s₁ s₂)(io₂₁ io₂₂ : A -> IO B s₂ s₃) -> ((h : Heap s₁) -> run h io₁₁ == run h io₁₂) -> ((x : A) -> io₂₁ x ≡ io₂₂ x) -> (h : Heap s₁) -> run h (io₁₁ >>= io₂₁) == run h (io₁₂ >>= io₂₂) prf (Return x) (Return y) k₁ k₂ eq₁ eq₂ h = subst (\ ∙ -> run h (k₁ ∙) == run h (k₂ y)) x=y (uneqIO (eq₂ y) h) where x=y : x == y x=y = fsteq (eq₁ h) prf (WriteIORef r₁ x₁ k₁) (Return y) k₂ k₃ eq₁ eq₂ h = ? -- ... boring proofs -- Monad laws -- boring... -- IO laws new-read : {n : Nat}{s : Shape n}{a : U}(x : el a) -> newIORef {s = s} x >>= readIORef ≡ newIORef x >> return x new-read x = eqIO \h -> refl write-read : {n : Nat}{s : Shape n}{a : U}(r : IORef s a)(x : el a) -> writeIORef r x >> readIORef r ≡ writeIORef r x >> return x write-read (ioRef r) x = eqIO \h -> cong (\ ∙ -> pair ∙ (h [ r := x ])) (update-lookup h r x) write-write : {n : Nat}{s : Shape n}{a : U}(r : IORef s a)(x y : el a) -> writeIORef r x >> writeIORef r y ≡ writeIORef r y write-write (ioRef r) x y = eqIO \h -> cong (\ ∙ -> pair unit ∙) (update-update h r x y) -- Some separation properties would be nice
{ "alphanum_fraction": 0.4751341163, "avg_line_length": 31.9305555556, "ext": "agda", "hexsha": "48bb6ca23bf569f2fe07ce77632c83e18f5a1290", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/IORef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/IORef.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/IORef.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2876, "size": 6897 }
{-# OPTIONS --cubical --no-import-sorts --prop #-} module Utils where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Function.Base variable ℓ ℓ' ℓ'' : Level module Test where import Algebra.Properties.BooleanAlgebra open import Algebra.Bundles module _ (B : BooleanAlgebra ℓ ℓ') where open BooleanAlgebra B open import Algebra.Definitions _≈_ ∨-complementˡ : LeftInverse ⊤ ¬_ _∨_ ∨-complementˡ = {! comm+invʳ⇒invˡ ∨-comm ∨-complementʳ !} ∨-complement : Inverse ⊤ ¬_ _∨_ ∨-complement = {! ∨-complementˡ , ∨-complementʳ !} ∧-complementˡ : LeftInverse ⊥ ¬_ _∧_ ∧-complementˡ = {! comm+invʳ⇒invˡ ∧-comm ∧-complementʳ !} ∧-complement : Inverse ⊥ ¬_ _∧_ ∧-complement = {! ∧-complementˡ , ∧-complementʳ !} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) -- open import Cubical.Structures.CommRing -- open import Cubical.Relation.Nullary.Base -- ¬_ -- open import Cubical.Relation.Binary.Base -- open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) -- open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` -- -- open import Cubical.Structures.Poset -- open import Cubical.Foundations.Function -- open import Function.Base using (_∋_) -- open import Function.Base using (it) -- instance search open import Cubical.Foundations.Prelude open import Cubical.Foundations.Logic -- open import Algebra.Definitions -- open import Cubical.Data.Empty open import Cubical.HITs.PropositionalTruncation import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit.Base ⊥↑ : ∀{ℓ} → hProp ℓ ⊥↑ = Lift ⊥.⊥ , λ () ⊤↑ : ∀{ℓ} → hProp ℓ ⊤↑ = Lift Unit , isOfHLevelLift 1 (λ _ _ _ → tt) -- _ = {! ⇔toPath!} ⊔-complementˡ : ∀ x → ¬ x ⊔ x ≡ ⊤↑ -- LeftInverse _≡_ ⊤ ¬_ _⊔_ ⊔-complementˡ = {! comm+invʳ⇒invˡ ⊔-comm ⊔-complementʳ !} -- ⊔-complementʳ : ∀ x → x ⊔ ¬ x ≡ ∥ [ ⊤ ] ∥ₚ -- ⊔-complementʳ : ∀(x : hProp ℓ) → x ⊔ ¬ x ≡ ((hProp ℓ) ∋ ⊤) ⊔-complementʳ : ∀(x : hProp ℓ) → x ⊔ ¬ x ≡ ⊤↑ ⊔-complementʳ x = λ i → {! ⊔-comm x (¬ x) i !} ⊔-complement : (∀ x → ¬ x ⊔ x ≡ ⊤↑) × (∀ x → x ⊔ ¬ x ≡ ⊤↑) -- Inverse _≡_ ⊤ ¬_ _⊔_ ⊔-complement = ⊔-complementˡ , {! ⊔-complementʳ !} -- agda deduces -- Σ Type (λ A → (x y : A) → x ≡ y) -- hProp normalizes to -- λ ℓ → Σ (Type ℓ) (λ A → (x y : A) → x ≡ y) -- ⊓-complementˡ : ∀ x → ¬ x ⊓ x ≡ ⊥ -- LeftInverse _≡_ ⊥ ¬_ _⊓_ ⊓-complementˡ = {! isProp!} -- comm+invʳ⇒invˡ ⊓-comm ⊓-complementʳ ⊓-complementʳ : ∀ x → x ⊓ ¬ x ≡ ⊥ ⊓-complementʳ = {!!} ⊓-complement : (∀ x → ¬ x ⊓ x ≡ ⊥) × (∀ x → x ⊓ ¬ x ≡ ⊥) -- Inverse _≡_ ⊥ ¬_ _⊓_ ⊓-complement = ⊓-complementˡ , ⊓-complementʳ ⊓-⊔-distribʳ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → (Q ⊔ R) ⊓ P ≡ (Q ⊓ P) ⊔ (R ⊓ P) ⊓-⊔-distribʳ P Q R = ( (Q ⊔ R) ⊓ P ≡⟨ ⊓-comm _ _ ⟩ P ⊓ (Q ⊔ R) ≡⟨ ⊓-⊔-distribˡ P Q R ⟩ (P ⊓ Q) ⊔ (P ⊓ R) ≡⟨ ( λ i → ⊓-comm P Q i ⊔ ⊓-comm P R i) ⟩ (Q ⊓ P) ⊔ (R ⊓ P) ∎) _ : isProp ≡ (λ(A : Type ℓ) → (x y : A) → x ≡ y) _ = refl -- `sq` stands for "squashed" and |_| is the constructor for ∥_∥ -- -- data ∥_∥ {ℓ} (A : Type ℓ) : Type ℓ where -- ∣_∣ : A → ∥ A ∥ -- squash : ∀ (x y : ∥ A ∥) → x ≡ y -- -- (see https://ice1000.org/2018/12-06-CubicalAgda.html#propositional-truncation ) -- we also have -- -- hProp ℓ = Σ[ A ∈ Type ℓ ] (∀( x y : A) → x ≡ y) -- isContr {ℓ} = λ( A : Type ℓ ) → Σ[ x ∈ A ] (∀ y → x ≡ y) -- isProp {ℓ} = λ( A : Type ℓ ) → ∀( x y : A) → x ≡ y -- -- and in `Cubical.Foundations.Id` we have -- -- postulate -- Id : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ : ∀ {ℓ} {A : Type ℓ} → A → A → Type ℓ -- _≡_ = Id -- -- which is imported in `Cubical.Foundations.Everything`, but _≡_ is hidden in favour of the _≡_ from `Agda.Builtin.Cubical.Path`: -- -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- -- we have conversion functions between `Id` and `PathP` -- recall from https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html -- -- is-center X c = (x : X) → c ≡ x -- is-singleton X = Σ c ꞉ X , is-center X c -- is-subsingleton X = (x y : X) → x ≡ y -- 𝟘-is-subsingleton : is-subsingleton 𝟘 -- singletons-are-subsingletons : (X : 𝓤 ̇ ) → is-singleton X → is-subsingleton X -- 𝟙-is-subsingleton : is-subsingleton 𝟙 -- -- now, -- see https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#axiomatic-approach -- see https://ice1000.org/2018/12-06-CubicalAgda.html#propositional-truncation -- However I would not only use recPropTrunc explicitly as we can just use pattern-matching to define functions out of HITs. -- see https://cstheory.stackexchange.com/questions/30542/squash-type-vs-propositional-truncation-type -- Squash types correspond to judgmental truncation, not propositional truncation. -- In a type theory without a type for judgmental equality, there's non much of a way to make use of an inhabitant of a squash type; -- there's no way to write an eliminator into any type except another squash type. -- Relatedly, having squash types, as presented in the book you linked, makes typechecking undecidable; -- having propositional truncation types does not result in this drawback. -- there is https://github.com/agda/cubical/pull/136 -- Elimination of propositional truncation to higher types import Cubical.Foundations.Id import Cubical.HITs.PropositionalTruncation.Properties -- look here for examples ∥∥-isProp : {A : Type ℓ} → ∀ (x y : ∥ A ∥) → x ≡ y ∥∥-isProp {ℓ = ℓ} {A = A} x y = (squash x y) _ = propTruncIsProp propTruncIsProp' : {A : Type ℓ} → isProp ∥ A ∥ propTruncIsProp' x y = squash x y {- t0 : {A : Type ℓ} → (x y : ∥ A ∥) → x ≡ y -- isProp (∥ A ∥) t0 x ∣ y ∣ = squash x ∣ y ∣ -- Goal: ∥ A ∥ -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ t0 x y₀ j -- i = i1 ⊢ t0 x y₁ j -- j = i0 ⊢ x -- j = i1 ⊢ squash y₀ y₁ i t0 x (squash y₀ y₁ i) j = {! t0 !} -} {- -- Goal: ∣ x ∣ ≡ ∣ y ∣ t0 ∣ x ∣ ∣ y ∣ = squash ∣ x ∣ ∣ y ∣ -- Goal: ∣ x ∣ ≡ squash y₀ y₁ i -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ t0 ∣ x ∣ y₀ -- i = i1 ⊢ t0 ∣ x ∣ y₁ t0 ∣ x ∣ (squash y₀ y₁ i) = squash ∣ x ∣ (squash y₀ y₁ i) -- {! squash ∣ x ∣ (squash y₀ y₁ i)!} -- {! λ j → squash ∣ x ∣ (squash y₁ y₂ j) {! !} !} t0 (squash x₁ x₂ i) ∣ y ∣ = squash (squash x₁ x₂ i) ∣ y ∣ t0 (squash x₁ x₂ i) (squash y₁ y₂ j) = squash (squash x₁ x₂ i) (squash y₁ y₂ j) -} -- Definition 2.4.3. The propositional truncation of a type X -- is a proposition ∥ X ∥ -- together with a truncation map |_| : X → ∥ X ∥ -- such that for any other proposition Q, given a map g : X → Q, we obtain a map h : ∥ X ∥ → Q. -- -- Remark 2.4.4. The uniqueness of the obtained map ∥ X ∥ → Q follows from the fact that Q is a proposition, and function extensionality -- -- The propositional truncation ∥ X ∥ of a type X is a proposition. We may say, quite simply, -- that we have a constructor sq which is a proof that the type ∥ X ∥ is a squashed to be a propo- -- sition: it takes two elements of ∥ X ∥ and gives a proof that they are identical, i.e. squashed -- together. -- Definition 2.4.7. -- We refer to types that are propositions as properties. -- We refer to types that potentially have several witnesses as structure. {- module _ {ℓ} (X Y : Type ℓ) (g : X → Y) where f : ∥ X ∥ → Y f ∣ x ∣ = g x f (squash x₀ x₁ i) = {! !} -} -- well, that might not work at all -- ⊓-unliftˡ : {P : hProp ℓ} {Q : hProp ℓ'} import Cubical.HITs.PropositionalTruncation.Properties -- _ : (P : hProp P.ℓ) (Q : hProp Q.ℓ) (R : hProp R.ℓ) → (hProp P.ℓ → hProp Q.ℓ → hProp R.ℓ) → h -- _ = ? --_ = _≡ₚ_ ⊓-identityˡ-↑ : (P : hProp ℓ) → ⊤↑ {ℓ} ⊓ P ≡ P ⊓-identityˡ-↑ _ = ⇔toPath snd λ x → lift tt , x -- \ is \\ -- ↑ is \u private lemma : ∀ x y → x ⊓ y ≡ ⊥ → x ⊔ y ≡ ⊤ → ¬ x ≡ y lemma x y x⊓y=⊥ x⊔y=⊤ = ( ¬ x ≡⟨ sym (⊓-identityʳ _) ⟩ ¬ x ⊓ ⊤ ≡⟨ (λ i → ¬ x ⊓ x⊔y=⊤ (~ i) ) ⟩ ¬ x ⊓ (x ⊔ y) ≡⟨ ⊓-⊔-distribˡ (¬ x) x y ⟩ (¬ x ⊓ x) ⊔ (¬ x ⊓ y) ≡⟨ (λ i → ⊓-complementˡ x i ⊔ (¬ x ⊓ y)) ⟩ ⊥ ⊔ (¬ x ⊓ y) ≡⟨ (λ i → x⊓y=⊥ (~ i) ⊔ (¬ x ⊓ y)) ⟩ (x ⊓ y) ⊔ (¬ x ⊓ y) ≡⟨ sym (⊓-⊔-distribʳ y x (¬ x)) ⟩ (x ⊔ ¬ x) ⊓ y ≡⟨ (λ i → (⊔-complementʳ x) i ⊓ y ) ⟩ ⊤↑ ⊓ y ≡⟨ ⊓-identityˡ-↑ _ ⟩ y ∎) data Prop2Type (P : Prop ℓ) : Type (ℓ-suc ℓ) where inₚ : (p : P) → Prop2Type P Prop-to-hProp : Prop ℓ → hProp (ℓ-suc ℓ) Prop-to-hProp P = Prop2Type P , λ{ (inₚ x) (inₚ y) → refl }
{ "alphanum_fraction": 0.5589310187, "avg_line_length": 35.3064516129, "ext": "agda", "hexsha": "909a9360d80057710973251496fc7f5c20cca315", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/Utils.agda", "max_line_length": 148, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 3736, "size": 8756 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to propositional equality that relies on the K -- rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.PropositionalEquality.WithK where open import Axiom.UniquenessOfIdentityProofs.WithK open import Relation.Binary open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Re-exporting safe erasure function -- ≡-erase ignores its `x ≡ y` argument and reduces to refl whenever -- x and y are judgmentally equal. This is useful when the computation -- producing the proof `x ≡ y` is expensive. open import Agda.Builtin.Equality.Erase using () renaming ( primEraseEquality to ≡-erase ) public ------------------------------------------------------------------------ -- Proof irrelevance ≡-irrelevant : ∀ {a} {A : Set a} → Irrelevant {A = A} _≡_ ≡-irrelevant = uip ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 ≡-irrelevance = ≡-irrelevant {-# WARNING_ON_USAGE ≡-irrelevance "Warning: ≡-irrelevance was deprecated in v1.0. Please use ≡-irrelevant instead." #-}
{ "alphanum_fraction": 0.5189189189, "avg_line_length": 31.4893617021, "ext": "agda", "hexsha": "446b596c1c75e19534386a955e55ce12d677e8d9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/WithK.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 300, "size": 1480 }
{-# OPTIONS --without-K --exact-split #-} module 13-circle where import 12-univalence open 12-univalence public {- Section 11.1 The induction principle of the circle -} free-loops : { l1 : Level} (X : UU l1) → UU l1 free-loops X = Σ X (λ x → Id x x) base-free-loop : { l1 : Level} {X : UU l1} → free-loops X → X base-free-loop = pr1 loop-free-loop : { l1 : Level} {X : UU l1} (l : free-loops X) → Id (base-free-loop l) (base-free-loop l) loop-free-loop = pr2 -- Now we characterize the identity types of free loops Eq-free-loops : { l1 : Level} {X : UU l1} (l l' : free-loops X) → UU l1 Eq-free-loops (pair x l) l' = Σ (Id x (pr1 l')) (λ p → Id (l ∙ p) (p ∙ (pr2 l'))) reflexive-Eq-free-loops : { l1 : Level} {X : UU l1} (l : free-loops X) → Eq-free-loops l l reflexive-Eq-free-loops (pair x l) = pair refl right-unit Eq-free-loops-eq : { l1 : Level} {X : UU l1} (l l' : free-loops X) → Id l l' → Eq-free-loops l l' Eq-free-loops-eq l .l refl = reflexive-Eq-free-loops l abstract is-contr-total-Eq-free-loops : { l1 : Level} {X : UU l1} (l : free-loops X) → is-contr (Σ (free-loops X) (Eq-free-loops l)) is-contr-total-Eq-free-loops (pair x l) = is-contr-total-Eq-structure ( λ x l' p → Id (l ∙ p) (p ∙ l')) ( is-contr-total-path x) ( pair x refl) ( is-contr-is-equiv' ( Σ (Id x x) (λ l' → Id l l')) ( tot (λ l' α → right-unit ∙ α)) ( is-equiv-tot-is-fiberwise-equiv ( λ l' → is-equiv-concat right-unit l')) ( is-contr-total-path l)) abstract is-equiv-Eq-free-loops-eq : { l1 : Level} {X : UU l1} (l l' : free-loops X) → is-equiv (Eq-free-loops-eq l l') is-equiv-Eq-free-loops-eq l = fundamental-theorem-id l ( reflexive-Eq-free-loops l) ( is-contr-total-Eq-free-loops l) ( Eq-free-loops-eq l) dependent-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → UU l2 dependent-free-loops l P = Σ ( P (base-free-loop l)) ( λ p₀ → Id (tr P (loop-free-loop l) p₀) p₀) Eq-dependent-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → ( p p' : dependent-free-loops l P) → UU l2 Eq-dependent-free-loops (pair x l) P (pair y p) p' = Σ ( Id y (pr1 p')) ( λ q → Id (p ∙ q) ((ap (tr P l) q) ∙ (pr2 p'))) reflexive-Eq-dependent-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → ( p : dependent-free-loops l P) → Eq-dependent-free-loops l P p p reflexive-Eq-dependent-free-loops (pair x l) P (pair y p) = pair refl right-unit Eq-dependent-free-loops-eq : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → ( p p' : dependent-free-loops l P) → Id p p' → Eq-dependent-free-loops l P p p' Eq-dependent-free-loops-eq l P p .p refl = reflexive-Eq-dependent-free-loops l P p abstract is-contr-total-Eq-dependent-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → ( p : dependent-free-loops l P) → is-contr (Σ (dependent-free-loops l P) (Eq-dependent-free-loops l P p)) is-contr-total-Eq-dependent-free-loops (pair x l) P (pair y p) = is-contr-total-Eq-structure ( λ y' p' q → Id (p ∙ q) ((ap (tr P l) q) ∙ p')) ( is-contr-total-path y) ( pair y refl) ( is-contr-is-equiv' ( Σ (Id (tr P l y) y) (λ p' → Id p p')) ( tot (λ p' α → right-unit ∙ α)) ( is-equiv-tot-is-fiberwise-equiv ( λ p' → is-equiv-concat right-unit p')) ( is-contr-total-path p)) abstract is-equiv-Eq-dependent-free-loops-eq : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) ( p p' : dependent-free-loops l P) → is-equiv (Eq-dependent-free-loops-eq l P p p') is-equiv-Eq-dependent-free-loops-eq l P p = fundamental-theorem-id p ( reflexive-Eq-dependent-free-loops l P p) ( is-contr-total-Eq-dependent-free-loops l P p) ( Eq-dependent-free-loops-eq l P p) eq-Eq-dependent-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) ( p p' : dependent-free-loops l P) → Eq-dependent-free-loops l P p p' → Id p p' eq-Eq-dependent-free-loops l P p p' = inv-is-equiv (is-equiv-Eq-dependent-free-loops-eq l P p p') ev-free-loop' : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → ( (x : X) → P x) → dependent-free-loops l P ev-free-loop' (pair x₀ p) P f = pair (f x₀) (apd f p) induction-principle-circle : { l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) → UU ((lsuc l2) ⊔ l1) induction-principle-circle l2 {X} l = (P : X → UU l2) → sec (ev-free-loop' l P) {- Section 11.2 The universal property of the circle -} {- We first state the universal property of the circle -} ev-free-loop : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) → ( X → Y) → free-loops Y ev-free-loop l Y f = pair (f (pr1 l)) (ap f (pr2 l)) universal-property-circle : { l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) → UU _ universal-property-circle l2 l = ( Y : UU l2) → is-equiv (ev-free-loop l Y) {- A fairly straightforward proof of the universal property of the circle factors through the dependent universal property of the circle. -} dependent-universal-property-circle : { l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) → UU ((lsuc l2) ⊔ l1) dependent-universal-property-circle l2 {X} l = ( P : X → UU l2) → is-equiv (ev-free-loop' l P) {- We first prove that the dependent universal property of the circle follows from the induction principle of the circle. To show this, we have to show that the section of ev-free-loop' is also a retraction. This construction is also by the induction principle of the circle, but it requires (a minimal amount of) preparations. -} Eq-subst : { l1 l2 : Level} {X : UU l1} {P : X → UU l2} (f g : (x : X) → P x) → X → UU _ Eq-subst f g x = Id (f x) (g x) tr-Eq-subst : { l1 l2 : Level} {X : UU l1} {P : X → UU l2} (f g : (x : X) → P x) { x y : X} (p : Id x y) (q : Id (f x) (g x)) (r : Id (f y) (g y))→ ( Id ((apd f p) ∙ r) ((ap (tr P p) q) ∙ (apd g p))) → ( Id (tr (Eq-subst f g) p q) r) tr-Eq-subst f g refl q .((ap id q) ∙ refl) refl = inv (right-unit ∙ (ap-id q)) dependent-free-loops-htpy : {l1 l2 : Level} {X : UU l1} {l : free-loops X} {P : X → UU l2} {f g : (x : X) → P x} → ( Eq-dependent-free-loops l P (ev-free-loop' l P f) (ev-free-loop' l P g)) → ( dependent-free-loops l (λ x → Id (f x) (g x))) dependent-free-loops-htpy {l = (pair x l)} (pair p q) = pair p (tr-Eq-subst _ _ l p p q) isretr-ind-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → ( ind-circle : induction-principle-circle l2 l) (P : X → UU l2) → ( (pr1 (ind-circle P)) ∘ (ev-free-loop' l P)) ~ id isretr-ind-circle l ind-circle P f = eq-htpy ( pr1 ( ind-circle ( λ t → Id (pr1 (ind-circle P) (ev-free-loop' l P f) t) (f t))) ( dependent-free-loops-htpy ( Eq-dependent-free-loops-eq l P _ _ ( pr2 (ind-circle P) (ev-free-loop' l P f))))) abstract dependent-universal-property-induction-principle-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → induction-principle-circle l2 l → dependent-universal-property-circle l2 l dependent-universal-property-induction-principle-circle l ind-circle P = is-equiv-has-inverse ( pr1 (ind-circle P)) ( pr2 (ind-circle P)) ( isretr-ind-circle l ind-circle P) {- Now that we have established the dependent universal property, we can reduce the (non-dependent) universal property to the dependent case. We do so by constructing a commuting triangle relating ev-free-loop to ev-free-loop' via a comparison equivalence. -} tr-triv : {i j : Level} {A : UU i} {B : UU j} {x y : A} (p : Id x y) (b : B) → Id (tr (λ (a : A) → B) p b) b tr-triv refl b = refl apd-triv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (apd f p) ((tr-triv p (f x)) ∙ (ap f p)) apd-triv f refl = refl comparison-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) → free-loops Y → dependent-free-loops l (λ x → Y) comparison-free-loops l Y = tot (λ y l' → (tr-triv (pr2 l) y) ∙ l') abstract is-equiv-comparison-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) → is-equiv (comparison-free-loops l Y) is-equiv-comparison-free-loops l Y = is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-concat (tr-triv (pr2 l) y) y) triangle-comparison-free-loops : { l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) → ( (comparison-free-loops l Y) ∘ (ev-free-loop l Y)) ~ ( ev-free-loop' l (λ x → Y)) triangle-comparison-free-loops (pair x l) Y f = eq-Eq-dependent-free-loops ( pair x l) ( λ x → Y) ( comparison-free-loops (pair x l) Y (ev-free-loop (pair x l) Y f)) ( ev-free-loop' (pair x l) (λ x → Y) f) ( pair refl (right-unit ∙ (inv (apd-triv f l)))) abstract universal-property-dependent-universal-property-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → ( dependent-universal-property-circle l2 l) → ( universal-property-circle l2 l) universal-property-dependent-universal-property-circle l dup-circle Y = is-equiv-right-factor ( ev-free-loop' l (λ x → Y)) ( comparison-free-loops l Y) ( ev-free-loop l Y) ( htpy-inv (triangle-comparison-free-loops l Y)) ( is-equiv-comparison-free-loops l Y) ( dup-circle (λ x → Y)) {- Now we get the universal property of the circle from the induction principle of the circle by composing the earlier two proofs. -} abstract universal-property-induction-principle-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → induction-principle-circle l2 l → universal-property-circle l2 l universal-property-induction-principle-circle l = ( universal-property-dependent-universal-property-circle l) ∘ ( dependent-universal-property-induction-principle-circle l) unique-mapping-property-circle : { l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) → UU (l1 ⊔ (lsuc l2)) unique-mapping-property-circle l2 {X} l = ( Y : UU l2) (l' : free-loops Y) → is-contr (Σ (X → Y) (λ f → Eq-free-loops (ev-free-loop l Y f) l')) abstract unique-mapping-property-universal-property-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → universal-property-circle l2 l → unique-mapping-property-circle l2 l unique-mapping-property-universal-property-circle l up-circle Y l' = is-contr-is-equiv' ( fib (ev-free-loop l Y) l') ( tot (λ f → Eq-free-loops-eq (ev-free-loop l Y f) l')) ( is-equiv-tot-is-fiberwise-equiv ( λ f → is-equiv-Eq-free-loops-eq (ev-free-loop l Y f) l')) ( is-contr-map-is-equiv (up-circle Y) l') {- We show that if a type with a free loop satisfies the induction principle of the circle with respect to any universe level, then it satisfies the induction principle with respect to the zeroth universe level. -} naturality-tr-fiberwise-transformation : { l1 l2 l3 : Level} {X : UU l1} {P : X → UU l2} {Q : X → UU l3} ( f : (x : X) → P x → Q x) {x y : X} (α : Id x y) (p : P x) → Id (tr Q α (f x p)) (f y (tr P α p)) naturality-tr-fiberwise-transformation f refl p = refl functor-dependent-free-loops : { l1 l2 l3 : Level} {X : UU l1} (l : free-loops X) { P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) → dependent-free-loops l P → dependent-free-loops l Q functor-dependent-free-loops l {P} {Q} f = toto ( λ q₀ → Id (tr Q (loop-free-loop l) q₀) q₀) ( f (base-free-loop l)) ( λ p₀ α → ( naturality-tr-fiberwise-transformation f (loop-free-loop l) p₀) ∙ ( ap (f (base-free-loop l)) α)) coherence-square-functor-dependent-free-loops : { l1 l2 l3 : Level} {X : UU l1} {P : X → UU l2} {Q : X → UU l3} ( f : (x : X) → P x → Q x) {x y : X} (α : Id x y) ( h : (x : X) → P x) → Id ( ( naturality-tr-fiberwise-transformation f α (h x)) ∙ ( ap (f y) (apd h α))) ( apd (postcomp-Π f h) α) coherence-square-functor-dependent-free-loops f refl h = refl square-functor-dependent-free-loops : { l1 l2 l3 : Level} {X : UU l1} (l : free-loops X) { P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) → ( (functor-dependent-free-loops l f) ∘ (ev-free-loop' l P)) ~ ( (ev-free-loop' l Q) ∘ (postcomp-Π f)) square-functor-dependent-free-loops (pair x l) {P} {Q} f h = eq-Eq-dependent-free-loops (pair x l) Q ( functor-dependent-free-loops (pair x l) f ( ev-free-loop' (pair x l) P h)) ( ev-free-loop' (pair x l) Q (postcomp-Π f h)) ( pair refl ( right-unit ∙ (coherence-square-functor-dependent-free-loops f l h))) abstract is-equiv-functor-dependent-free-loops-is-fiberwise-equiv : { l1 l2 l3 : Level} {X : UU l1} (l : free-loops X) { P : X → UU l2} {Q : X → UU l3} {f : (x : X) → P x → Q x} ( is-equiv-f : (x : X) → is-equiv (f x)) → is-equiv (functor-dependent-free-loops l f) is-equiv-functor-dependent-free-loops-is-fiberwise-equiv (pair x l) {P} {Q} {f} is-equiv-f = is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map ( λ q₀ → Id (tr Q l q₀) q₀) ( _) ( _) ( is-equiv-f x) ( λ p₀ → is-equiv-comp' ( concat ( naturality-tr-fiberwise-transformation f l p₀) ( f x p₀)) ( ap (f x)) ( is-emb-is-equiv (f x) (is-equiv-f x) (tr P l p₀) p₀) ( is-equiv-concat ( naturality-tr-fiberwise-transformation f l p₀) ( f x p₀))) abstract lower-dependent-universal-property-circle : { l1 l2 : Level} (l3 : Level) {X : UU l1} (l : free-loops X) → dependent-universal-property-circle (l2 ⊔ l3) l → dependent-universal-property-circle l3 l lower-dependent-universal-property-circle {l1} {l2} l3 l dup-circle P = is-equiv-left-is-equiv-right-square ( ev-free-loop' l P) ( ev-free-loop' l (λ x → raise l2 (P x))) ( postcomp-Π (λ x → map-raise l2 (P x))) ( functor-dependent-free-loops l (λ x → map-raise l2 (P x))) ( square-functor-dependent-free-loops l (λ x → map-raise l2 (P x))) ( is-equiv-postcomp-Π _ (λ x → is-equiv-map-raise l2 (P x))) ( is-equiv-functor-dependent-free-loops-is-fiberwise-equiv l ( λ x → is-equiv-map-raise l2 (P x))) ( dup-circle (λ x → raise l2 (P x))) abstract lower-lzero-dependent-universal-property-circle : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → dependent-universal-property-circle l2 l → dependent-universal-property-circle lzero l lower-lzero-dependent-universal-property-circle = lower-dependent-universal-property-circle lzero {- The dependent universal property of the circle (and hence also the induction principle of the circle, implies that the circle is connected in the sense that for any family of propositions parametrized by the circle, if the proposition at the base holds, then it holds for any x : circle. -} {- Exercises -} -- Exercise 11.1 abstract is-connected-circle' : { l1 l2 : Level} {X : UU l1} (l : free-loops X) → ( dup-circle : dependent-universal-property-circle l2 l) ( P : X → UU l2) (is-prop-P : (x : X) → is-prop (P x)) → P (base-free-loop l) → (x : X) → P x is-connected-circle' l dup-circle P is-prop-P p = inv-is-equiv ( dup-circle P) ( pair p (center (is-prop-P _ (tr P (pr2 l) p) p)))
{ "alphanum_fraction": 0.5962471692, "avg_line_length": 37.8799019608, "ext": "agda", "hexsha": "a50486854e66897b6227a7085a8fe33adacf680f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/13-circle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/13-circle.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/13-circle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5500, "size": 15455 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Fin.Literals where open import Agda.Builtin.Nat using (suc) open import Agda.Builtin.FromNat renaming (Number to HasFromNat) open import Cubical.Data.Fin.Base using (Fin; fromℕ≤) open import Cubical.Data.Nat.Order.Recursive using (_≤_) instance fromNatFin : {n : _} → HasFromNat (Fin (suc n)) fromNatFin {n} = record { Constraint = λ m → m ≤ n ; fromNat = λ m ⦃ m≤n ⦄ → fromℕ≤ m n m≤n }
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 26.5263157895, "ext": "agda", "hexsha": "f32eb5f12156f0750d984d8f8523e02744ef4e80", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Fin/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Fin/Literals.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Fin/Literals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 177, "size": 504 }
{- Diamond operator. -} module TemporalOps.Diamond.Functor where open import CategoryTheory.Categories open import CategoryTheory.Instances.Reactive open import CategoryTheory.Functor open import TemporalOps.Common open import TemporalOps.Next open import TemporalOps.Delay open import Data.Product -- Arbitrary delay ◇_ : τ -> τ (◇ A) n = Σ[ k ∈ ℕ ] (delay A by k at n) infixr 65 ◇_ -- ◇ instances F-◇ : Endofunctor ℝeactive F-◇ = record { omap = ◇_ ; fmap = fmap-◇ ; fmap-id = fmap-◇-id ; fmap-∘ = fmap-◇-∘ ; fmap-cong = fmap-◇-cong } where -- Lifting of ◇ fmap-◇ : {A B : τ} -> A ⇴ B -> ◇ A ⇴ ◇ B fmap-◇ f n (k , v) = k , (Functor.fmap (F-delay k) f at n) v -- ◇ preserves identities fmap-◇-id : ∀ {A : τ} {n : ℕ} {a : (◇ A) n} -> (fmap-◇ (id {A}) at n) a ≡ a fmap-◇-id {A} {n} {zero , v} = refl fmap-◇-id {A} {zero} {suc k , v} = refl fmap-◇-id {A} {suc n} {suc k , v} rewrite delay-+ {A} 1 k n | Functor.fmap-id (F-delay (suc k)) {A} {suc n} {v} = refl -- ◇ preserves composition fmap-◇-∘ : ∀ {A B C : τ} {g : B ⇴ C} {f : A ⇴ B} {n : ℕ} {a : (◇ A) n} -> (fmap-◇ (g ∘ f) at n) a ≡ (fmap-◇ g ∘ fmap-◇ f at n) a fmap-◇-∘ {n = n} {zero , v} = refl fmap-◇-∘ {n = zero} {suc k , v} = refl fmap-◇-∘ {A} {B} {C} {g} {f} {suc n} {suc k , v} rewrite delay-+ {A} 1 k n | Functor.fmap-∘ (F-delay (suc k)) {A} {B} {C} {g} {f} {suc n} {v} = refl -- ▹ is congruent fmap-◇-cong : ∀{A B : τ} {f f′ : A ⇴ B} -> ({n : ℕ} {a : A at n} -> f n a ≡ f′ n a) -> ({n : ℕ} {a : ◇ A at n} -> (fmap-◇ f at n) a ≡ (fmap-◇ f′ at n) a) fmap-◇-cong {A} e {n} {zero , a} rewrite delay-+-left0 {A} 0 n | e {n} {a} = refl fmap-◇-cong e {zero} {suc k , a} = refl fmap-◇-cong {A} {B} {f} {f′} e {suc n} {suc k , a} rewrite delay-+ {A} 1 k n | Functor.fmap-cong (F-delay (suc k)) {A} {B} {f} {f′} e {suc n} {a} = refl
{ "alphanum_fraction": 0.4533838145, "avg_line_length": 33.5396825397, "ext": "agda", "hexsha": "9f4244c8ea7cf3ad87cc6e41389a4f173a616d3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/TemporalOps/Diamond/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/TemporalOps/Diamond/Functor.agda", "max_line_length": 82, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/TemporalOps/Diamond/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 921, "size": 2113 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SmashProduct.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.HITs.Pushout.Base open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.HITs.Wedge open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws data Smash {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') : Type (ℓ-max ℓ ℓ') where basel : Smash A B baser : Smash A B proj : (x : typ A) → (y : typ B) → Smash A B gluel : (a : typ A) → proj a (pt B) ≡ basel gluer : (b : typ B) → proj (pt A) b ≡ baser private variable ℓ ℓ' : Level A B C D : Pointed ℓ Smash-map : (f : A →∙ C) (g : B →∙ D) → Smash A B → Smash C D Smash-map f g basel = basel Smash-map f g baser = baser Smash-map (f , fpt) (g , gpt) (proj x y) = proj (f x) (g y) Smash-map (f , fpt) (g , gpt) (gluel a i) = ((λ j → proj (f a) (gpt j)) ∙ gluel (f a)) i Smash-map (f , fpt) (g , gpt) (gluer b i) = ((λ j → proj (fpt j) (g b)) ∙ gluer (g b)) i -- Commutativity comm : Smash A B → Smash B A comm basel = baser comm baser = basel comm (proj x y) = proj y x comm (gluel a i) = gluer a i comm (gluer b i) = gluel b i commK : (x : Smash A B) → comm (comm x) ≡ x commK basel = refl commK baser = refl commK (proj x y) = refl commK (gluel a x) = refl commK (gluer b x) = refl -- WIP below SmashPt : (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') SmashPt A B = (Smash A B , basel) SmashPtProj : (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') SmashPtProj A B = Smash A B , (proj (snd A) (snd B)) --- Alternative definition i∧ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → A ⋁ B → (typ A) × (typ B) i∧ {A = A , ptA} {B = B , ptB} (inl x) = x , ptB i∧ {A = A , ptA} {B = B , ptB} (inr x) = ptA , x i∧ {A = A , ptA} {B = B , ptB} (push tt i) = ptA , ptB _⋀_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Type (ℓ-max ℓ ℓ') A ⋀ B = Pushout {A = (A ⋁ B)} (λ _ → tt) i∧ _⋀∙_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋀∙ B = Pushout {A = (A ⋁ B)} (λ _ → tt) i∧ , (inl tt) _⋀→_ : (f : A →∙ C) (g : B →∙ D) → A ⋀ B → C ⋀ D (f ⋀→ g) (inl tt) = inl tt ((f , fpt) ⋀→ (g , gpt)) (inr (x , x₁)) = inr (f x , g x₁) _⋀→_ {B = B} {D = D} (f , fpt) (b , gpt) (push (inl x) i) = (push (inl (f x)) ∙ (λ i → inr (f x , gpt (~ i)))) i _⋀→_ (f , fpt) (g , gpt) (push (inr x) i) = (push (inr (g x)) ∙ (λ i → inr (fpt (~ i) , g x))) i _⋀→_ {A = A} {C = C} {B = B} {D = D} (f , fpt) (g , gpt) (push (push tt j) i) = hcomp (λ k → λ { (i = i0) → inl tt ; (i = i1) → inr (fpt (~ k) , gpt (~ k)) ; (j = i0) → compPath-filler (push (inl (fpt (~ k)))) ((λ i → inr (fpt (~ k) , gpt (~ i)))) k i ; (j = i1) → compPath-filler (push (inr (gpt (~ k)))) ((λ i → inr (fpt (~ i) , gpt (~ k)))) k i}) (push (push tt j) i) ⋀→Smash : A ⋀ B → Smash A B ⋀→Smash (inl x) = basel ⋀→Smash (inr (x , x₁)) = proj x x₁ ⋀→Smash (push (inl x) i) = gluel x (~ i) ⋀→Smash {A = A} {B = B} (push (inr x) i) = (sym (gluel (snd A)) ∙∙ gluer (snd B) ∙∙ sym (gluer x)) i ⋀→Smash {A = A} {B = B} (push (push a j) i) = hcomp (λ k → λ { (i = i0) → gluel (snd A) (k ∨ ~ j) ; (i = i1) → gluer (snd B) (~ k ∧ j) ; (j = i0) → gluel (snd A) (~ i)}) (invSides-filler (gluel (snd A)) (gluer (snd B)) j (~ i)) Smash→⋀ : Smash A B → A ⋀ B Smash→⋀ basel = inl tt Smash→⋀ baser = inl tt Smash→⋀ (proj x y) = inr (x , y) Smash→⋀ (gluel a i) = push (inl a) (~ i) Smash→⋀ (gluer b i) = push (inr b) (~ i) {- associativity maps for smash produts. Proof pretty much direcly translated from https://github.com/ecavallo/redtt/blob/master/library/pointed/smash.red -} private pivotl : (b b' : typ B) → Path (Smash A B) (proj (snd A) b) (proj (snd A) b') pivotl b b' i = (gluer b ∙ sym (gluer b')) i pivotr : (a a' : typ A) → Path (Smash A B) (proj a (snd B)) (proj a' (snd B)) pivotr a a' i = (gluel a ∙ sym (gluel a')) i pivotlrId : {A : Pointed ℓ} {B : Pointed ℓ'} → _ pivotlrId {A = A} {B = B} = rCancel (gluer (snd B)) ∙ sym (rCancel (gluel (snd A))) rearrange-proj : (c : fst C) → (Smash A B) → Smash (SmashPtProj C B) A rearrange-proj c basel = baser rearrange-proj c baser = basel rearrange-proj c (proj x y) = proj (proj c y) x rearrange-proj {C = C} c (gluel a i) = hcomp (λ k → λ { (i = i0) → proj (pivotr (snd C) c k) a ; (i = i1) → baser}) (gluer a i) rearrange-proj c (gluer b i) = gluel (proj c b) i rearrange-gluel : (s : Smash A B) → Path (Smash (SmashPtProj C B) A) basel (rearrange-proj (snd C) s) rearrange-gluel {A = A} {B = B} {C = C} basel = sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A) rearrange-gluel baser = refl rearrange-gluel {A = A} {B = B} {C = C} (proj a b) i = hcomp (λ k → λ { (i = i0) → (sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A)) (~ k) ; (i = i1) → proj (pivotl (snd B) b k) a}) (gluer a (~ i)) rearrange-gluel {A = A} {B = B} {C = C} (gluel a i) j = hcomp (λ k → λ { (i = i1) → ((λ i₁ → gluel (proj (snd C) (snd B)) (~ i₁)) ∙ gluer (snd A)) (~ k ∨ j) ; (j = i0) → ((λ i₁ → gluel (proj (snd C) (snd B)) (~ i₁)) ∙ gluer (snd A)) (~ k) ; (j = i1) → top-filler i k}) (gluer a (i ∨ ~ j)) where top-filler : I → I → Smash (SmashPtProj C B) A top-filler i j = hcomp (λ k → λ { (i = i0) → side-filler k j ; (i = i1) → gluer a (j ∨ k) ; (j = i0) → gluer a (i ∧ k)}) (gluer a (i ∧ j)) where side-filler : I → I → Smash (SmashPtProj C B) A side-filler i j = hcomp (λ k → λ { (i = i0) → proj (proj (snd C) (snd B)) a ; (i = i1) → proj ((rCancel (gluel (snd C)) ∙ sym (rCancel (gluer (snd B)))) k j) a ; (j = i0) → proj (proj (snd C) (snd B)) a ; (j = i1) → (proj ((gluel (snd C) ∙ sym (gluel (snd C))) i) a)}) (proj ((gluel (snd C) ∙ sym (gluel (snd C))) (j ∧ i)) a) rearrange-gluel {A = A} {B = B} {C = C} (gluer b i) j = hcomp (λ k → λ {(i = i1) → ((sym (gluel (proj (snd C) (snd B)))) ∙ gluer (snd A)) (~ k) ; (j = i0) → ((sym (gluel (proj (snd C) (snd B)))) ∙ gluer (snd A)) (~ k) ; (j = i1) → top-filler1 i k}) (gluer (snd A) (i ∨ (~ j))) where top-filler1 : I → I → Smash (SmashPtProj C B) A top-filler1 i j = hcomp (λ k → λ { (i = i0) → congFunct (λ x → proj x (snd A)) (gluer (snd B)) (sym (gluer b)) (~ k) j ; (i = i1) → (sym (gluel (proj (snd C) (snd B))) ∙ gluer (snd A)) (~ j) ; (j = i0) → gluer (snd A) i ; (j = i1) → gluel (proj (snd C) b) i}) (top-filler2 i j) where top-filler2 : I → I → Smash (SmashPtProj C B) A top-filler2 i j = hcomp (λ k → λ { (j = i0) → gluer (snd A) (i ∧ k) ; (j = i1) → gluel (gluer b (~ k)) i}) (hcomp (λ k → λ { (j = i0) → gluel (gluer (snd B) i0) (~ k ∧ (~ i)) ; (j = i1) → gluel (baser) (~ k ∨ i) ; (i = i0) → gluel (gluer (snd B) j) (~ k) ; (i = i1) → gluel (proj (snd C) (snd B)) j }) (gluel (proj (snd C) (snd B)) (j ∨ (~ i)))) rearrange : Smash (SmashPtProj A B) C → Smash (SmashPtProj C B) A rearrange basel = basel rearrange baser = baser rearrange (proj x y) = rearrange-proj y x rearrange (gluel a i) = rearrange-gluel a (~ i) rearrange {A = A} {B = B} {C = C} (gluer b i) = ((λ j → proj (pivotr b (snd C) j) (snd A)) ∙ gluer (snd A)) i ⋀∙→SmashPtProj : (A ⋀∙ B) →∙ SmashPtProj A B ⋀∙→SmashPtProj {A = A} {B = B} = fun , refl where fun : (A ⋀ B) → Smash A B fun (inl x) = proj (snd A) (snd B) fun (inr (x , x₁)) = proj x x₁ fun (push (inl x) i) = pivotr (snd A) x i fun (push (inr x) i) = pivotl (snd B) x i fun (push (push a j) i) = pivotlrId (~ j) i SmashPtProj→⋀∙ : (SmashPtProj A B) →∙ (A ⋀∙ B) SmashPtProj→⋀∙ {A = A} {B = B} = Smash→⋀ , sym (push (inr (snd B))) SmashAssociate : Smash (SmashPtProj A B) C → Smash A (SmashPtProj B C) SmashAssociate = comm ∘ Smash-map (comm , refl) (idfun∙ _) ∘ rearrange SmashAssociate⁻ : Smash A (SmashPtProj B C) → Smash (SmashPtProj A B) C SmashAssociate⁻ = rearrange ∘ comm ∘ Smash-map (idfun∙ _) (comm , refl) ⋀-associate : (A ⋀∙ B) ⋀ C → A ⋀ (B ⋀∙ C) ⋀-associate = (idfun∙ _ ⋀→ SmashPtProj→⋀∙) ∘ Smash→⋀ ∘ SmashAssociate ∘ ⋀→Smash ∘ (⋀∙→SmashPtProj ⋀→ idfun∙ _) ⋀-associate⁻ : A ⋀ (B ⋀∙ C) → (A ⋀∙ B) ⋀ C ⋀-associate⁻ = (SmashPtProj→⋀∙ ⋀→ idfun∙ _) ∘ Smash→⋀ ∘ SmashAssociate⁻ ∘ ⋀→Smash ∘ (idfun∙ _ ⋀→ ⋀∙→SmashPtProj)
{ "alphanum_fraction": 0.4732947233, "avg_line_length": 43.5700934579, "ext": "agda", "hexsha": "ac90a41c182f3eea7ce1dd2d049cb5e1de2f757d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/SmashProduct/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/SmashProduct/Base.agda", "max_line_length": 157, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/SmashProduct/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3908, "size": 9324 }
module Issue616 where open import Common.Coinduction const : ∀ {a b}{A : Set a}{B : Set b} → A → B → A const x _ = x -- The recursive call should be ignored by the termination checker, -- since ♭ is a projection function and shouldn't store its implicit -- arguments. contrived : Set₁ contrived = ♭ {A = const _ contrived} (♯ Set)
{ "alphanum_fraction": 0.6895522388, "avg_line_length": 23.9285714286, "ext": "agda", "hexsha": "12c5395b526e652d3ae827e210e8708887ace9a0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue616.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue616.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue616.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 97, "size": 335 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Cocomplete.Finitely module Categories.Category.Cocomplete.Finitely.Properties {o ℓ e} {C : Category o ℓ e} (finite : FinitelyCocomplete C) where open import Categories.Category.Duality C private module C = Category C open C open import Categories.Category.Finite.Fin open import Categories.Category.Complete.Finitely C.op open import Categories.Category.Complete.Finitely.Properties (FinitelyCocomplete⇒coFinitelyComplete finite) open import Categories.Diagram.Colimit open import Categories.Diagram.Limit open import Categories.Diagram.Duality C open import Categories.Functor finiteColimit : (shape : FinCatShape) (F : Functor (FinCategory shape) C) → Colimit F finiteColimit shape F = coLimit⇒Colimit (finiteLimit shape.op F.op) where module shape = FinCatShape shape module F = Functor F
{ "alphanum_fraction": 0.7958287596, "avg_line_length": 35.0384615385, "ext": "agda", "hexsha": "4606c17155f211e6602e4dac1e63ebb3d416d20b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cocomplete/Finitely/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cocomplete/Finitely/Properties.agda", "max_line_length": 124, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cocomplete/Finitely/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 215, "size": 911 }
------------------------------------------------------------------------ -- Some algebraic structures (not packed up with sets, operations, -- etc.) ------------------------------------------------------------------------ open import Relation.Binary module Algebra.Structures where import Algebra.FunctionProperties as FunctionProperties open FunctionProperties using (Op₁; Op₂) import Relation.Binary.EqReasoning as EqR open import Data.Function open import Data.Product ------------------------------------------------------------------------ -- One binary operation record IsSemigroup {A} (≈ : Rel A) (∙ : Op₂ A) : Set where open FunctionProperties ≈ field isEquivalence : IsEquivalence ≈ assoc : Associative ∙ ∙-pres-≈ : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈ open IsEquivalence isEquivalence public record IsMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where open FunctionProperties ≈ field isSemigroup : IsSemigroup ≈ ∙ identity : Identity ε ∙ open IsSemigroup isSemigroup public record IsCommutativeMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where open FunctionProperties ≈ field isMonoid : IsMonoid ≈ ∙ ε comm : Commutative ∙ open IsMonoid isMonoid public record IsGroup {A} (≈ : Rel A) (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set where open FunctionProperties ≈ infixl 7 _-_ field isMonoid : IsMonoid ≈ _∙_ ε inverse : Inverse ε _⁻¹ _∙_ ⁻¹-pres-≈ : _⁻¹ Preserves ≈ ⟶ ≈ open IsMonoid isMonoid public _-_ : Op₂ A x - y = x ∙ (y ⁻¹) record IsAbelianGroup {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set where open FunctionProperties ≈ field isGroup : IsGroup ≈ ∙ ε ⁻¹ comm : Commutative ∙ open IsGroup isGroup public isCommutativeMonoid : IsCommutativeMonoid ≈ ∙ ε isCommutativeMonoid = record { isMonoid = isMonoid ; comm = comm } ------------------------------------------------------------------------ -- Two binary operations record IsNearSemiring {A} (≈ : Rel A) (+ * : Op₂ A) (0# : A) : Set where open FunctionProperties ≈ field +-isMonoid : IsMonoid ≈ + 0# *-isSemigroup : IsSemigroup ≈ * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc ; ∙-pres-≈ to +-pres-≈ ; isSemigroup to +-isSemigroup ; identity to +-identity ) open IsSemigroup *-isSemigroup public using () renaming ( assoc to *-assoc ; ∙-pres-≈ to *-pres-≈ ) record IsSemiringWithoutOne {A} (≈ : Rel A) (+ * : Op₂ A) (0# : A) : Set where open FunctionProperties ≈ field +-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0# *-isSemigroup : IsSemigroup ≈ * distrib : * DistributesOver + zero : Zero 0# * open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; ∙-pres-≈ to +-pres-≈ ; isSemigroup to +-isSemigroup ; identity to +-identity ; isMonoid to +-isMonoid ; comm to +-comm ) open IsSemigroup *-isSemigroup public using () renaming ( assoc to *-assoc ; ∙-pres-≈ to *-pres-≈ ) isNearSemiring : IsNearSemiring ≈ + * 0# isNearSemiring = record { +-isMonoid = +-isMonoid ; *-isSemigroup = *-isSemigroup ; distribʳ = proj₂ distrib ; zeroˡ = proj₁ zero } record IsSemiringWithoutAnnihilatingZero {A} (≈ : Rel A) (+ * : Op₂ A) (0# 1# : A) : Set where open FunctionProperties ≈ field -- Note that these structures do have an additive unit, but this -- unit does not necessarily annihilate multiplication. +-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0# *-isMonoid : IsMonoid ≈ * 1# distrib : * DistributesOver + open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; ∙-pres-≈ to +-pres-≈ ; isSemigroup to +-isSemigroup ; identity to +-identity ; isMonoid to +-isMonoid ; comm to +-comm ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-pres-≈ to *-pres-≈ ; isSemigroup to *-isSemigroup ; identity to *-identity ) record IsSemiring {A} (≈ : Rel A) (+ * : Op₂ A) (0# 1# : A) : Set where open FunctionProperties ≈ field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero ≈ + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0# isSemiringWithoutOne = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isSemigroup = *-isSemigroup ; distrib = distrib ; zero = zero } open IsSemiringWithoutOne isSemiringWithoutOne public using (isNearSemiring) record IsCommutativeSemiringWithoutOne {A} (≈ : Rel A) (+ * : Op₂ A) (0# : A) : Set where open FunctionProperties ≈ field isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0# *-comm : Commutative * open IsSemiringWithoutOne isSemiringWithoutOne public record IsCommutativeSemiring {A} (≈ : Rel A) (+ * : Op₂ A) (0# 1# : A) : Set where open FunctionProperties ≈ field isSemiring : IsSemiring ≈ + * 0# 1# *-comm : Commutative * open IsSemiring isSemiring public *-isCommutativeMonoid : IsCommutativeMonoid ≈ * 1# *-isCommutativeMonoid = record { isMonoid = *-isMonoid ; comm = *-comm } isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne ≈ + * 0# isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne ; *-comm = *-comm } record IsRing {A} (≈ : Rel A) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set where open FunctionProperties ≈ field +-isAbelianGroup : IsAbelianGroup ≈ _+_ 0# -_ *-isMonoid : IsMonoid ≈ _*_ 1# distrib : _*_ DistributesOver _+_ open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-pres-≈ to +-pres-≈ ; isSemigroup to +-isSemigroup ; identity to +-identity ; isMonoid to +-isMonoid ; inverse to -‿inverse ; ⁻¹-pres-≈ to -‿pres-≈ ; isGroup to +-isGroup ; comm to +-comm ; isCommutativeMonoid to +-isCommutativeMonoid ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-pres-≈ to *-pres-≈ ; isSemigroup to *-isSemigroup ; identity to *-identity ) zero : Zero 0# _*_ zero = (zeroˡ , zeroʳ) where open EqR (record { isEquivalence = isEquivalence }) zeroˡ : LeftZero 0# _*_ zeroˡ x = begin 0# * x ≈⟨ sym $ proj₂ +-identity _ ⟩ (0# * x) + 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₂ -‿inverse _) ⟩ (0# * x) + ((0# * x) + - (0# * x)) ≈⟨ sym $ +-assoc _ _ _ ⟩ ((0# * x) + (0# * x)) + - (0# * x) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-pres-≈ ⟩ refl ⟩ ((0# + 0#) * x) + - (0# * x) ≈⟨ (proj₂ +-identity _ ⟨ *-pres-≈ ⟩ refl) ⟨ +-pres-≈ ⟩ refl ⟩ (0# * x) + - (0# * x) ≈⟨ proj₂ -‿inverse _ ⟩ 0# ∎ zeroʳ : RightZero 0# _*_ zeroʳ x = begin x * 0# ≈⟨ sym $ proj₂ +-identity _ ⟩ (x * 0#) + 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₂ -‿inverse _) ⟩ (x * 0#) + ((x * 0#) + - (x * 0#)) ≈⟨ sym $ +-assoc _ _ _ ⟩ ((x * 0#) + (x * 0#)) + - (x * 0#) ≈⟨ sym (proj₁ distrib _ _ _) ⟨ +-pres-≈ ⟩ refl ⟩ (x * (0# + 0#)) + - (x * 0#) ≈⟨ (refl ⟨ *-pres-≈ ⟩ proj₂ +-identity _) ⟨ +-pres-≈ ⟩ refl ⟩ (x * 0#) + - (x * 0#) ≈⟨ proj₂ -‿inverse _ ⟩ 0# ∎ isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero ≈ _+_ _*_ 0# 1# isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-isMonoid ; distrib = distrib } isSemiring : IsSemiring ≈ _+_ _*_ 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero ; zero = zero } open IsSemiring isSemiring public using (isNearSemiring; isSemiringWithoutOne) record IsCommutativeRing {A} (≈ : Rel A) (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set where open FunctionProperties ≈ field isRing : IsRing ≈ + * - 0# 1# *-comm : Commutative * open IsRing isRing public isCommutativeSemiring : IsCommutativeSemiring ≈ + * 0# 1# isCommutativeSemiring = record { isSemiring = isSemiring ; *-comm = *-comm } open IsCommutativeSemiring isCommutativeSemiring public using (isCommutativeSemiringWithoutOne) record IsLattice {A} (≈ : Rel A) (∨ ∧ : Op₂ A) : Set where open FunctionProperties ≈ field isEquivalence : IsEquivalence ≈ ∨-comm : Commutative ∨ ∨-assoc : Associative ∨ ∨-pres-≈ : ∨ Preserves₂ ≈ ⟶ ≈ ⟶ ≈ ∧-comm : Commutative ∧ ∧-assoc : Associative ∧ ∧-pres-≈ : ∧ Preserves₂ ≈ ⟶ ≈ ⟶ ≈ absorptive : Absorptive ∨ ∧ open IsEquivalence isEquivalence public record IsDistributiveLattice {A} (≈ : Rel A) (∨ ∧ : Op₂ A) : Set where open FunctionProperties ≈ field isLattice : IsLattice ≈ ∨ ∧ ∨-∧-distribʳ : ∨ DistributesOverʳ ∧ open IsLattice isLattice public record IsBooleanAlgebra {A} (≈ : Rel A) (∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set where open FunctionProperties ≈ field isDistributiveLattice : IsDistributiveLattice ≈ ∨ ∧ ∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧ ¬-pres-≈ : ¬ Preserves ≈ ⟶ ≈ open IsDistributiveLattice isDistributiveLattice public
{ "alphanum_fraction": 0.5089831281, "avg_line_length": 32.7313432836, "ext": "agda", "hexsha": "9e1e9d05f804e890cdce7483f5cd3a6f0f545220", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/Structures.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/Structures.agda", "max_line_length": 92, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 3492, "size": 10965 }
-- Andreas, 2018-05-28, issue #3095, cannot make hidden shadowing variable visible -- Andreas, 2019-07-15, issue #3919, make hidden variable visible in par. module open import Agda.Builtin.Equality module _ (A : Set) where data Nat : Set where suc : {n : Nat} → Nat data IsSuc : Nat → Set where isSuc : ∀{n} → IsSuc (suc {n}) test₁ : ∀{n} → IsSuc n → Set test₁ p = aux p where aux : ∀{n} → IsSuc n → Set aux isSuc = {!n!} -- C-c C-c -- Expected: aux (isSuc {n}) = {!!} -- Context: -- p : IsSuc n -- n : Nat (not in scope) -- n₁ : Nat (not in scope) -- WAS: ERROR -- Ambiguous variable n -- when checking that the expression ? has type Set test₂ : ∀{m} → IsSuc m → Set test₂ p = aux p where aux : ∀{n} → IsSuc n → Set aux isSuc = {!m!} -- C-c C-c -- Expected: cannot make hidden module parameter m visible test₃ : ∀ m → IsSuc m → Set test₃ m p = aux p refl where aux : ∀{n} → IsSuc n → m ≡ n → Set aux isSuc refl = {!n!} -- C-c C-c -- Expected: aux (isSuc {n}) refl = ? test₄ : Nat → Nat test₄ x = bar x where bar : Nat → Nat bar y = {!x!} -- C-c C-c -- Expected: cannot split on module parameter x test₅ : Nat → {n : Nat} → Nat → Nat test₅ = λ x y → {!n!} -- C-c C-c -- Expected: cannot make hidden lambda-bound variable n visible issue3919 : {n m : Nat} → n ≡ m issue3919 = {!m!} -- C-c C-c -- Expected: issue3919 {m = m} = ?
{ "alphanum_fraction": 0.583632448, "avg_line_length": 24.0172413793, "ext": "agda", "hexsha": "dd81a8e40703486f634a706a71cdb466da44ab37", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "strake/agda", "max_forks_repo_path": "test/interaction/Issue3095.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "strake/agda", "max_issues_repo_path": "test/interaction/Issue3095.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "strake/agda", "max_stars_repo_path": "test/interaction/Issue3095.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 514, "size": 1393 }
module PlfaInduction where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_ ; refl ; cong ; sym) open Eq.≡-Reasoning using (begin_ ; _≡⟨⟩_ ; _≡⟨_⟩_ ; _∎ ) open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _*_ ; _^_ ) +-assoc : ∀ (a b c : ℕ) → (a + b) + c ≡ a + (b + c) +-assoc zero b c = begin (zero + b) + c ≡⟨⟩ b + c ≡⟨⟩ zero + (b + c) ∎ +-assoc (suc a) b c = begin (suc a + b) + c ≡⟨⟩ suc (a + b) + c ≡⟨⟩ suc ((a + b) + c) ≡⟨ cong suc (+-assoc a b c) ⟩ suc (a + (b + c)) ≡⟨⟩ suc a + (b + c) ∎ +-identityʳ : ∀ (a : ℕ) → a + zero ≡ a +-identityʳ zero = begin zero + zero ≡⟨⟩ zero ∎ +-identityʳ (suc a) = begin suc a + zero ≡⟨⟩ suc (a + zero) ≡⟨ cong suc (+-identityʳ a) ⟩ suc a ∎ +-suc : ∀ (a b : ℕ) → a + suc b ≡ suc (a + b) +-suc zero b = begin zero + suc b ≡⟨⟩ suc b ≡⟨⟩ suc (zero + b) ∎ +-suc (suc a) b = begin suc a + suc b ≡⟨⟩ suc (a + suc b) ≡⟨ cong suc (+-suc a b) ⟩ suc (suc a + b) ∎ +-comm : ∀ (a b : ℕ) → a + b ≡ b + a +-comm zero b = begin zero + b ≡⟨⟩ b ≡⟨ sym (+-identityʳ b) ⟩ b + zero ∎ +-comm (suc a) b = begin suc a + b ≡⟨⟩ suc (a + b) ≡⟨ cong suc (+-comm a b) ⟩ suc (b + a) ≡⟨ sym (+-suc b a) ⟩ b + suc a ∎ +-rearrange : ∀ (a b c d : ℕ) → (a + b) + (c + d) ≡ (a + (b + c)) + d +-rearrange a b c d = begin -- Because addition associates to the left -- a + b + (c + d) -- is the same as (a + b) + (c + d) ≡⟨ +-assoc a b (c + d) ⟩ a + (b + (c + d)) -- Lesson: The + and the _ in in (a +_) MUST be next to each other (no spaces allowed) ≡⟨ cong (a +_) (sym (+-assoc b c d)) ⟩ a + ((b + c) + d) ≡⟨ sym (+-assoc a (b + c) d) ⟩ (a + (b + c)) + d ∎ -- Let's do it again, now using the rewrite magic --+-assoc' : ∀ (a b c : ℕ) → a + b + c ≡ a + (b + c) --+-assoc' zero b c = refl --+-assoc' (suc a) b c rewrite +-assoc' a b c = refl --+-suc' : ∀ (a b : ℕ) → a + suc b ≡ suc (a + b) --+-suc' zero b = refl --+-suc' (suc a) b rewrite +-suc' a b = refl +-swap : ∀ (a b c : ℕ) → a + (b + c) ≡ b + (a + c) +-swap a b c rewrite sym (+-assoc a b c) | +-comm a b | +-assoc b a c = refl *-zero : ∀ (a : ℕ) → a * zero ≡ zero *-zero zero = refl *-zero (suc a) rewrite *-zero a = refl *-rsucdist : ∀ (n m : ℕ) → n * suc m ≡ n + n * m *-rsucdist zero m = refl *-rsucdist (suc n) m rewrite *-rsucdist n m | +-swap m n (n * m) = refl *-distrib : ∀ (x b c : ℕ) → (b + c) * x ≡ b * x + c * x *-distrib zero b c rewrite *-zero (b + c) | *-zero b | *-zero c = refl *-distrib (suc x) b c rewrite *-rsucdist (b + c) x | *-distrib x b c | +-rearrange b c (b * x) (c * x) | +-comm c (b * x) | sym (+-rearrange b (b * x) c (c * x) ) | sym (*-rsucdist b x) | sym (*-rsucdist c x) = refl *-assoc : ∀ (a b c : ℕ) → (a * b) * c ≡ a * (b * c) *-assoc zero b c = refl *-assoc (suc a) b c = begin (suc a * b) * c ≡⟨⟩ (b + a * b) * c ≡⟨ *-distrib c b (a * b) ⟩ b * c + (a * b) * c ≡⟨ cong (λ { x → b * c + x }) (*-assoc a b c) ⟩ suc a * (b * c) ∎ *-comm : ∀ (a b : ℕ) → a * b ≡ b * a *-comm zero b rewrite *-zero b = refl *-comm (suc a) b rewrite *-comm a b | sym (*-rsucdist b a) = refl infixl 6 _∸_ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ (suc n) = zero (suc m) ∸ (suc n) = m ∸ n ∸-zero : ∀ (a : ℕ) → zero ∸ a ≡ zero ∸-zero zero = refl ∸-zero (suc a) = refl ∸-suc : ∀ (a b : ℕ) → a ∸ suc b ≡ a ∸ 1 ∸ b ∸-suc zero b rewrite ∸-zero b = refl ∸-suc (suc a) b = refl -- ∸-+-assoc : ∀ (a b c : ℕ) → a ∸ b ∸ c ≡ a ∸ (b + c) -- ∸-+-assoc a zero c = refl -- ∸-+-assoc a (suc b) c = -- begin -- a ∸ suc b ∸ c -- ≡⟨ cong (λ x → x ∸ c) (∸-suc a b) ⟩ -- a ∸ 1 ∸ b ∸ c -- Remember this is equal to ((a ∸ 1) ∸ b) ∸ c -- ≡⟨ ∸-+-assoc ⟩ -- ≡⟨ ∸-suc a (b + c) ⟩ -- a ∸ (b + c) -- ∎
{ "alphanum_fraction": 0.4177623419, "avg_line_length": 23.0342857143, "ext": "agda", "hexsha": "48629a8b183f20bd62ffef34842eeaeaa10bb4b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "GustavoMF31/upgraded-happiness", "max_forks_repo_path": "PlfaInduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "GustavoMF31/upgraded-happiness", "max_issues_repo_path": "PlfaInduction.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "GustavoMF31/upgraded-happiness", "max_stars_repo_path": "PlfaInduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1881, "size": 4031 }
------------------------------------------------------------------------------ -- Theorems which require a non-empty domain ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.NonEmptyDomain.TheoremsATP where open import FOL.Base ------------------------------------------------------------------------------ -- We postulate some formulae and propositional functions. postulate A : Set A¹ : D → Set postulate ∀→∃ : (∀ {x} → A¹ x) → ∃ A¹ {-# ATP prove ∀→∃ #-} -- Let A be a formula. If x is not free in A then ⊢ (∃x)A ↔ A -- (Mendelson 1997, proposition 2.18 (b), p. 70). postulate ∃-erase-add₁ : (∃[ _ ] A) ↔ A {-# ATP prove ∃-erase-add₁ #-} -- Quantification over a variable that does not occur can be erased or -- added. postulate ∀-erase-add : ((x : D) → A) ↔ A {-# ATP prove ∀-erase-add #-} postulate ∃-erase-add₂ : (∃[ x ] (A ∨ A¹ x)) ↔ A ∨ (∃[ x ] A¹ x) {-# ATP prove ∃-erase-add₂ #-} ------------------------------------------------------------------------------ -- References -- -- Mendelson, Elliott (1997). Introduction to Mathematical Logic. 4th -- ed. Chapman & Hall.
{ "alphanum_fraction": 0.4493865031, "avg_line_length": 31.8048780488, "ext": "agda", "hexsha": "e2468f40fb8533d33b198d735cfd84159b051f2c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 324, "size": 1304 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Digits and digit expansions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Digit where open import Data.Nat using (ℕ; zero; suc; pred; _+_; _*_; _≤?_; _≤′_) open import Data.Nat.Properties open import Data.Nat.Solver open import Data.Fin as Fin using (Fin; zero; suc; toℕ) open import Data.Char using (Char) open import Data.List.Base open import Data.Product open import Data.Vec as Vec using (Vec; _∷_; []) open import Data.Nat.DivMod open import Induction.Nat using (<′-rec; <′-Rec) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Function open +-*-Solver ------------------------------------------------------------------------ -- Digits -- Digit b is the type of digits in base b. Digit : ℕ → Set Digit b = Fin b -- Some specific digit kinds. Decimal = Digit 10 Bit = Digit 2 -- Some named digits. 0b : Bit 0b = zero 1b : Bit 1b = suc zero ------------------------------------------------------------------------ -- Showing digits -- The characters used to show the first 16 digits. digitChars : Vec Char 16 digitChars = '0' ∷ '1' ∷ '2' ∷ '3' ∷ '4' ∷ '5' ∷ '6' ∷ '7' ∷ '8' ∷ '9' ∷ 'a' ∷ 'b' ∷ 'c' ∷ 'd' ∷ 'e' ∷ 'f' ∷ [] -- showDigit shows digits in base ≤ 16. showDigit : ∀ {base} {base≤16 : True (base ≤? 16)} → Digit base → Char showDigit {base≤16 = base≤16} d = Vec.lookup digitChars (Fin.inject≤ d (toWitness base≤16)) ------------------------------------------------------------------------ -- Digit expansions Expansion : ℕ → Set Expansion base = List (Fin base) -- fromDigits takes a digit expansion of a natural number, starting -- with the _least_ significant digit, and returns the corresponding -- natural number. fromDigits : ∀ {base} → Expansion base → ℕ fromDigits [] = 0 fromDigits {base} (d ∷ ds) = toℕ d + fromDigits ds * base -- toDigits b n yields the digits of n, in base b, starting with the -- _least_ significant digit. -- -- Note that the list of digits is always non-empty. toDigits : (base : ℕ) {base≥2 : True (2 ≤? base)} (n : ℕ) → ∃ λ (ds : Expansion base) → fromDigits ds ≡ n toDigits zero {base≥2 = ()} _ toDigits (suc zero) {base≥2 = ()} _ toDigits (suc (suc k)) n = <′-rec Pred helper n where base = suc (suc k) Pred = λ n → ∃ λ ds → fromDigits ds ≡ n cons : ∀ {m} (r : Fin base) → Pred m → Pred (toℕ r + m * base) cons r (ds , eq) = (r ∷ ds , P.cong (λ i → toℕ r + i * base) eq) open ≤-Reasoning lem : ∀ x k r → 2 + x ≤′ r + (1 + x) * (2 + k) lem x k r = ≤⇒≤′ $ begin 2 + x ≤⟨ m≤m+n _ _ ⟩ 2 + x + (x + (1 + x) * k + r) ≡⟨ solve 3 (λ x r k → con 2 :+ x :+ (x :+ (con 1 :+ x) :* k :+ r) := r :+ (con 1 :+ x) :* (con 2 :+ k)) refl x r k ⟩ r + (1 + x) * (2 + k) ∎ helper : ∀ n → <′-Rec Pred n → Pred n helper n rec with n divMod base helper .(toℕ r + 0 * base) rec | result zero r refl = ([ r ] , refl) helper .(toℕ r + suc x * base) rec | result (suc x) r refl = cons r (rec (suc x) (lem (pred (suc x)) k (toℕ r)))
{ "alphanum_fraction": 0.5161384123, "avg_line_length": 29.3931623932, "ext": "agda", "hexsha": "bd935b910ec1b5a491370b105d4018d7d286f525", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Digit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Digit.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Digit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1084, "size": 3439 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A solver for proving that one list is a sublist of the other. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (DecSetoid) module Data.List.Relation.Binary.Sublist.DecSetoid.Solver {c ℓ} (S : DecSetoid c ℓ) where open DecSetoid S open import Data.List.Relation.Binary.Sublist.Heterogeneous.Solver _≈_ refl _≟_ using (Item; module Item; TList; module TList; prove) public
{ "alphanum_fraction": 0.5561312608, "avg_line_length": 34.0588235294, "ext": "agda", "hexsha": "7a2d70e754c284763127966874b655bd3cbd169a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid/Solver.agda", "max_line_length": 89, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid/Solver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 123, "size": 579 }
postulate F : Set₁ → Set₁ record R : Set₁ where field f : F Set {-# COMPILE GHC F = \ _ -> () #-} {-# FOREIGN GHC data D = C () #-} {-# COMPILE GHC R = data D (C) #-}
{ "alphanum_fraction": 0.4972067039, "avg_line_length": 13.7692307692, "ext": "agda", "hexsha": "e610339745866c23eb10669fdd542136209cc640", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2913.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2913.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2913.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 179 }
{-# OPTIONS --cubical --safe --guardedness #-} module Data.PolyP.Types where open import Function hiding (_⟨_⟩_) open import Data.Sum open import Data.Sigma open import Level open import Data.Unit open import Data.Nat open import Data.Empty open import WellFounded open import Literals.Number open import Data.Fin.Indexed.Literals open import Data.Fin.Indexed.Properties open import Data.Fin.Indexed open import Data.Nat.Literals open import Data.Maybe open import Data.PolyP.Universe open import Data.PolyP.Composition open import Data.PolyP.Currying open import Data.PolyP.RecursionSchemes LIST : ∀ {n} → Functor (suc n) LIST = μ⟨ ① ⊕ ! (fs f0) ⊗ ! f0 ⟩ -- The free near-semiring FOREST : Functor 1 FOREST = μ⟨ LIST ⊚ (① ⊕ ! (fs f0) ⊗ ! f0) ⟩ -- Lists of lists LEVELS : Functor 1 LEVELS = μ⟨ ① ⊕ ! (fs f0) ⊗ ! f0 ⟩ ⊚ μ⟨ ① ⊕ ! (fs f0) ⊗ ! f0 ⟩ -- The free monad FREE : Functor 1 → Functor 1 FREE f = μ⟨ ! (fs f0) ⊕ f0 ⇑ f ⟩ COFREE : Functor 1 → Functor 1 COFREE f = μ⟨ ! (fs f0) ⊗ f0 ⇑ f ⟩ ROSE : Functor 1 ROSE = μ⟨ ! (fs f0) ⊗ f0 ⇑ LIST ⟩ module _ {A B : Type} where FOLDR : (A → B → B) → B → ⟦ LIST ⟧ ~ A → B FOLDR f b = cata (const b ▿ uncurry f) open import Data.List open import Data.List.Properties open import Function.Isomorphism open import Path pattern _∷′_ x xs = ⟨ inr (x , xs) ⟩ pattern []′ = ⟨ inl tt ⟩ generic-list : List A ⇔ ⟦ LIST ⟧ ~ A generic-list .fun = foldr _∷′_ []′ generic-list .inv = FOLDR _∷_ [] generic-list .leftInv = list-elim _ (λ x xs p i → x ∷ p i) λ i → [] generic-list .rightInv = elim _ λ { (inr ( x , xs , p)) i → x ∷′ p i ; (inl _) i → []′ } open import Data.Vec STREAM : Type → Type STREAM A = ν (! (fs f0) ⊗ ! f0) ~ A nats : ℕ → STREAM ℕ nats n .unfold = n , nats (suc n)
{ "alphanum_fraction": 0.6157662624, "avg_line_length": 25.5492957746, "ext": "agda", "hexsha": "bf003f6a17f70bc919da38fbe4c311154044ae8b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/PolyP/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/PolyP/Types.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/PolyP/Types.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 689, "size": 1814 }
------------------------------------------------------------------------ -- Extension The Agda standard library -- -- Properties of indexed binary relations ------------------------------------------------------------------------ module Relation.Binary.Indexed.Extra where open import Data.Product open import Data.Sum open import Function open import Level -- import Relation.Binary.PropositionalEquality.Core as PropEq -- open import Relation.Binary.Consequences as Consequences open import Relation.Binary.Core as Core using (_≡_) open import Relation.Binary.Indexed.Core open import Relation.Binary.Indexed import Relation.Binary as B ------------------------------------------------------------------------ -- Simple properties and equivalence relations -- open Core public hiding (_≡_; refl; _≢_) -- -- open Consequences public using (Total) ------------------------------------------------------------------------ -- Simple properties of indexed binary relations -- Implication/containment. Could also be written ⊆. [_][_]_⇒_ : ∀ {i₁ i₂ a b ℓ₁ ℓ₂} {I₁ : Set i₁} {I₂ : Set i₂} (A : I₁ → Set a) (B : I₂ → Set b) → REL A B ℓ₁ → REL A B ℓ₂ → Set _ [ A ][ B ] P ⇒ Q = ∀ {i₁ i₂} {x : A i₁} {y : B i₂} → P x y → Q x y -- _Preserves_⟶_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : A → Set b} → -- ((x : A) → B x) → B.Rel A ℓ₁ → Rel B ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ a)) -- f Preserves P ⟶ Q = P =[ f ]⇒ Q _Respects_ : ∀ {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} {A : I → Set a} {i : I} → (A i → Set ℓ₁) → Rel A ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ a)) P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y [_]_Respects₂_ : ∀ {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} (A : I → Set a) → Rel A ℓ₁ → Rel A ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ (a ⊔ 𝒾))) [ A ] P Respects₂ _∼_ = (∀ {i} {x : A i} → _Respects_ {A = A} {i = i} (P x) _∼_) × (∀ {i} {y : A i} → _Respects_ {A = A} {i = i} (flip P y) _∼_) ------------------------------------------------------------------------ -- Preorders record IsPreorder {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} (A : I → Set a) (_≈_ : Rel A ℓ₁) -- The underlying equality. (_∼_ : Rel A ℓ₂) -- The relation. : Set (𝒾 ⊔ a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence A _≈_ -- Reflexivity is expressed in terms of an underlying equality: reflexive : [ A ][ A ] _≈_ ⇒ _∼_ trans : Transitive A _∼_ module Eq = IsEquivalence isEquivalence refl : Reflexive A _∼_ refl = reflexive Eq.refl ∼-resp-≈ : [ A ] _∼_ Respects₂ _≈_ ∼-resp-≈ = (λ x≈y z∼x → trans z∼x (reflexive x≈y)) , (λ x≈y x∼z → trans (reflexive $ Eq.sym x≈y) x∼z) record Preorder {i} (I : Set i) c ℓ₁ ℓ₂ : Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : I → Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _∼_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder Carrier _≈_ _∼_ open IsPreorder isPreorder public SetoidIsPreorder : ∀ {𝒾} {I : Set 𝒾} {c ℓ} (S : Setoid I c ℓ) → IsPreorder (Setoid.Carrier S) (Setoid._≈_ S) (Setoid._≈_ S) SetoidIsPreorder {𝒾} {I} S = record { isEquivalence = isEquivalence ; reflexive = id ; trans = IsEquivalence.trans isEquivalence } where open Setoid S Setoid⇒Preorder : ∀ {𝒾} {I : Set 𝒾} {c ℓ} (S : Setoid I c ℓ) → Preorder I c ℓ ℓ Setoid⇒Preorder S = record { isPreorder = SetoidIsPreorder S } -- record -- { Carrier = {! !} -- ; _≈_ = {! !} -- ; _∼_ = {! !} -- ; isPreorder = {! !} -- } -- IsEquivalence.reflexive (Setoid.isEquivalence S) -- where open IsEquivalence {! !} -- -- isPreorder : IsPreorder _≡_ _≈_ -- isPreorder = record -- { isEquivalence = PropEq.isEquivalence -- ; reflexive = reflexive -- ; trans = trans -- } -- -- preorder : Preorder c c ℓ -- preorder = record { isPreorder = isPreorder }
{ "alphanum_fraction": 0.505700532, "avg_line_length": 34.9292035398, "ext": "agda", "hexsha": "c77649ea2f08c8d56df2b3341a10f5c1b32ec5c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/categories", "max_forks_repo_path": "src/Relation/Binary/Indexed/Extra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/categories", "max_issues_repo_path": "src/Relation/Binary/Indexed/Extra.agda", "max_line_length": 123, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/categories", "max_stars_repo_path": "src/Relation/Binary/Indexed/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z", "max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z", "num_tokens": 1386, "size": 3947 }
open import Relation.Binary.Core module Bound.Lower.Order.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ transLeB : {a b c : Bound} → LeB a b → LeB b c → LeB a c transLeB lebx _ = lebx transLeB (lexy x≤y) (lexy y≤z) = lexy (trans≤ x≤y y≤z)
{ "alphanum_fraction": 0.6021798365, "avg_line_length": 28.2307692308, "ext": "agda", "hexsha": "c9e9fde2dc34d823f29f6dbae4acc1f137e98c98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Bound/Lower/Order/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Bound/Lower/Order/Properties.agda", "max_line_length": 56, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Bound/Lower/Order/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 136, "size": 367 }
------------------------------------------------------------------------------ -- The program to sort a list is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module prove the correctness of a program which sorts a list -- by converting it into an ordered tree and then back to a list -- (Burstall 1969, p. 45). module FOTC.Program.SortList.CorrectnessProofI where open import FOTC.Base open import FOTC.Data.Nat.List.Type open import FOTC.Program.SortList.PropertiesI open import FOTC.Program.SortList.Properties.Totality.TreeI open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- Main theorem: The sort program generates an ordered list. sortCorrect : ∀ {is} → ListN is → OrdList (sort is) sortCorrect {is} Lis = subst OrdList refl (flatten-OrdList (makeTree-Tree Lis) (makeTree-OrdTree Lis)) ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.
{ "alphanum_fraction": 0.5326821938, "avg_line_length": 38.0285714286, "ext": "agda", "hexsha": "99fadb52ac4ea722f3ff9fb8c6c708f0212860d3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 269, "size": 1331 }
module plfa.working.Naturals where data ℕ : Set where zero : ℕ suc : ℕ → ℕ seven : ℕ seven = suc(suc(suc(suc(suc(suc(suc(zero))))))) {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc(m + n) _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ (suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ suc( (suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ (suc(suc (zero + (suc (suc (suc zero)))))) ≡⟨⟩ (suc (suc (suc (suc (suc zero))))) ≡⟨⟩ 5 ∎ _ : 2 + 3 ≡ 5 _ = begin 2 + 3 ≡⟨⟩ suc (1 + 3) ≡⟨⟩ suc (suc (0 + 3)) ≡⟨⟩ suc (suc 3) ≡⟨⟩ 5 ∎ _ : 3 + 4 ≡ 7 _ = begin 3 + 4 ≡⟨⟩ suc (2 + 4) ≡⟨⟩ suc (2 + (suc 3)) ≡⟨⟩ suc (suc (2 + 3)) ≡⟨⟩ suc (suc 5) ≡⟨⟩ 7 ∎ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (n * m) _ : 3 * 4 ≡ 12 _ = begin 3 * 4 ≡⟨⟩ (suc 2) * 4 ≡⟨⟩ 4 + (4 * 2) ≡⟨⟩ 4 + ((suc 3) * 2) ≡⟨⟩ 4 + (2 + (2 * 3)) ≡⟨⟩ 4 + (2 + (suc 1 * 3)) ≡⟨⟩ 4 + (2 + (3 + (3 * 1))) ≡⟨⟩ 4 + (2 + (3 + (suc 2 * 1))) ≡⟨⟩ 4 + (2 + (3 + (1 + (1 * 2)))) ≡⟨⟩ 12 ∎ _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) _ : 3 ^ 4 ≡ 81 _ = begin 3 ^ 4 ≡⟨⟩ 3 ^ (1 + 3) ≡⟨⟩ 3 * (3 ^ 3) ≡⟨⟩ 3 * (3 * (3 ^ 2)) ≡⟨⟩ 3 * (3 * (3 * (3 ^ 1))) ≡⟨⟩ 3 * (3 * (3 * 3)) ≡⟨⟩ 81 ∎ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n _ : 5 ∸ 3 ≡ 2 _ = begin 5 ∸ 3 ≡⟨⟩ (1 + 4) ∸ (1 + 2) ≡⟨⟩ 4 ∸ 2 ≡⟨⟩ 3 ∸ 1 ≡⟨⟩ 2 ∸ 0 ≡⟨⟩ 2 ∎ _ : 2 ∸ 5 ≡ 0 _ = begin 2 ∸ 5 ≡⟨⟩ 1 ∸ 4 ≡⟨⟩ 0 ∸ 3 ≡⟨⟩ 0 ∎ data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (p O) = p I inc (p I) = (inc p) O _ : inc (⟨⟩ O O O O) ≡ ⟨⟩ O O O I _ = refl _ : inc (⟨⟩ O O O I) ≡ ⟨⟩ O O I O _ = refl _ : inc (⟨⟩ O O I O) ≡ ⟨⟩ O O I I _ = refl _ : inc (⟨⟩ O O I I) ≡ ⟨⟩ O I O O _ = refl _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl to : ℕ → Bin to zero = ⟨⟩ O to (suc n) = inc (to n) from : Bin → ℕ from ⟨⟩ = zero from (p O) = from p * 2 from (p I) = suc ((from p) * 2) _ : to 3 ≡ ⟨⟩ I I _ = refl _ : from (⟨⟩ I I) ≡ 3 _ = refl
{ "alphanum_fraction": 0.284129119, "avg_line_length": 15.5706806283, "ext": "agda", "hexsha": "35077b0bf60002b445a1c6cc16fd55efa3d8140d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "kaychaks/plfa.github.io", "max_forks_repo_path": "src/plfa/working/Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "kaychaks/plfa.github.io", "max_issues_repo_path": "src/plfa/working/Naturals.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "5365a4ba8ba0dc80cb77ab73aee92c645d0787d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "kaychaks/plfa.github.io", "max_stars_repo_path": "src/plfa/working/Naturals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1444, "size": 2974 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Graphs where -- The "Underlying Graph" <-> "Free Category on a Graph" Adjunction. -- Lots of surprises here, of various level of surprisingness -- 1. The Free Category rises universe levels of arrows (and equivalences); the Underlying Graph does not -- (due to the Transitive Closure "Star" construction) -- 2. As a consequence of (1), the eventual Adjunction will be for all Levels being the same -- 3. If you want a Functor Categories Graph, then the object/hom levels are straightforward, -- but if you use "Categories" with NaturalIsomorphism, then the 2-point Groupoid is contractible -- (thus equivalent to the 1-point Category), and yet those two Graphs shouldn't be considered to -- be the same! So _≡F_ must be used so that we have no wiggle room when mapping Graphs around. -- Interestingly, this only shows up when trying to prove that the Underlying Functor respects -- _≈_, which is not traditionally a requirement of a Functor! This requirement is usually left -- implicit. If we were to allow Functor to not respect _≈_, things would be fine. But of course -- we couldn't do any reasonable equational reasoning anymore. Of course, if _≈_ were the global -- _≡_, this isn't an issue, but that is definitely not wanted here. -- 4. A lot of weird little lemmas about _≡_ and subst/transport are needed, because we're in a mixed -- reasoning situation with both ≡ and ≈ present. These could probably be generalized and factored -- into a separate module (or into the standard library). open import Level open import Function using (_$_; flip) renaming (id to idFun; _∘_ to _⊚_) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) import Relation.Binary.EqReasoning as EqR open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties hiding (trans) open import Data.Product using (proj₁; proj₂; _,_) open import Categories.Category open import Categories.Functor using (Functor) open import Categories.Functor.Equivalence open import Categories.Category.Instance.StrictCats open import Categories.Utils.EqReasoning open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl; sym; trans; isEquivalence) open import Categories.Adjoint import Categories.Morphism.HeterogeneousIdentity as HId -- a graph has vertices Obj and edges _⇒_, where edges form a setoid over _≈_. record Graph o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where infix 4 _≈_ _⇒_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) setoid : {A B : Obj} → Setoid _ _ setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } module Equiv {A} {B} = IsEquivalence (equiv {A} {B}) module EdgeReasoning {A B : Obj} = EqR (setoid {A} {B}) private variable o o′ ℓ ℓ′ e e′ : Level -- This doesn't belong here... but will do for now module PathEquiv {o ℓ e : Level} {Obj : Set o} {_⇒_ : Obj → Obj → Set ℓ} (_≈_ : {A B : Obj} → Rel (A ⇒ B) e) (equiv : {A B : Obj} → IsEquivalence ( _≈_ {A} {B})) where private module E {A} {B} = IsEquivalence (equiv {A} {B}) open E renaming (refl to ≈refl; sym to ≈sym; trans to ≈trans) infix 4 _≈*_ data _≈*_ : {A B : Obj} (p q : Star _⇒_ A B) → Set (o ⊔ ℓ ⊔ e) where ε : {A : Obj} → _≈*_ {A} ε ε _◅_ : {A B C : Obj} {x y : A ⇒ B} {p q : Star _⇒_ B C} (x≈y : x ≈ y) (p≈q : p ≈* q) → x ◅ p ≈* y ◅ q refl : {A B : Obj} {p : Star _⇒_ A B} → p ≈* p refl {p = ε} = ε refl {p = x ◅ p} = ≈refl ◅ refl sym : {A B : Obj} {p q : Star _⇒_ A B} → p ≈* q → q ≈* p sym ε = ε sym (x≈y ◅ eq) = ≈sym x≈y ◅ sym eq ≡⇒≈* : {A B : Obj} {p q : Star _⇒_ A B} → p ≡ q → p ≈* q ≡⇒≈* ≡.refl = refl ≡⇒≈ : {A B : Obj} → {p q : A ⇒ B} → p ≡ q → p ≈ q ≡⇒≈ ≡.refl = ≈refl trans : {A B : Obj} {p q r : Star _⇒_ A B} → p ≈* q → q ≈* r → p ≈* r trans ε ε = ε trans (x≈y ◅ ss) (y≈z ◅ tt) = ≈trans x≈y y≈z ◅ trans ss tt isEquivalence : {A B : Obj} → IsEquivalence (λ (p q : Star _⇒_ A B) → p ≈* q) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : Obj → Obj → Setoid (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) setoid A B = record { _≈_ = _≈*_ ; isEquivalence = isEquivalence {A} {B} } -- convenient to define here -- -- FIXME: this should go into the standard library at -- Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties ◅◅-identityʳ : {A B : Obj} → (f : Star _⇒_ A B) → f ◅◅ ε ≈* f ◅◅-identityʳ ε = ε ◅◅-identityʳ (x ◅ f) = ≈refl ◅ ◅◅-identityʳ f module PathEqualityReasoning {A B} where open EqR (setoid A B) public module _ (G : Graph o ℓ e) where open Graph G private module P = PathEquiv {o} {ℓ} {e} {Obj} {_⇒_} _≈_ equiv open P Free : Category o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) Free = record { Obj = Obj ; _⇒_ = Star _⇒_ ; _≈_ = _≈*_ ; id = ε ; _∘_ = _▻▻_ ; assoc = λ {_ _ _ _} {f g h} → sym $ ≡⇒≈* $ ◅◅-assoc f g h ; sym-assoc = λ {_ _ _ _} {f g h} → ≡⇒≈* $ ◅◅-assoc f g h ; identityˡ = λ {_ _ f} → ◅◅-identityʳ f ; identityʳ = refl ; identity² = refl ; equiv = isEquivalence ; ∘-resp-≈ = resp } where resp : ∀ {A B C} {f h : Star _⇒_ B C} {g i : Star _⇒_ A B} → f ≈* h → g ≈* i → (f ▻▻ g) ≈* (h ▻▻ i) resp eq ε = eq resp eq (eq₁ ◅ eq₂) = eq₁ ◅ (resp eq eq₂) open P public renaming (_≈*_ to [_]_≈*_) record GraphMorphism (G : Graph o ℓ e) (G′ : Graph o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module G = Graph G module G′ = Graph G′ field M₀ : G.Obj → G′.Obj M₁ : ∀ {A B} → A G.⇒ B → M₀ A G′.⇒ M₀ B M-resp-≈ : ∀ {A B} {f g : A G.⇒ B} → f G.≈ g → M₁ f G′.≈ M₁ g idGHom : {G : Graph o ℓ e} → GraphMorphism G G idGHom = record { M₀ = idFun ; M₁ = idFun ; M-resp-≈ = idFun } _∘GM_ : {G₁ G₂ G₃ : Graph o ℓ e} (m₁ : GraphMorphism G₂ G₃) (m₂ : GraphMorphism G₁ G₂) → GraphMorphism G₁ G₃ m₁ ∘GM m₂ = record { M₀ = M₀ m₁ ⊚ M₀ m₂ ; M₁ = M₁ m₁ ⊚ M₁ m₂ ; M-resp-≈ = M-resp-≈ m₁ ⊚ M-resp-≈ m₂ } where open GraphMorphism module Trsp (G : Graph o ℓ e) where open Graph G -- Two shorthands that will be useful for the definition of morphism -- equality: transport the domain or codomain of an edge along an -- equality. infixr 9 _◂_ infixl 9 _▸_ _◂_ : ∀ {A B C} → A ≡ B → B ⇒ C → A ⇒ C p ◂ f = ≡.subst (_⇒ _) (≡.sym p) f _▸_ : ∀ {A B C} → A ⇒ B → B ≡ C → A ⇒ C f ▸ p = ≡.subst (_ ⇒_) p f -- Some simple properties of transports ◂-▸-comm : ∀ {A B C D} (p : A ≡ B) (f : B ⇒ C) (q : C ≡ D) → p ◂ (f ▸ q) ≡ (p ◂ f) ▸ q ◂-▸-comm ≡.refl f ≡.refl = ≡.refl ◂-trans : ∀ {A B C D} (p : A ≡ B) (q : B ≡ C) (f : C ⇒ D) → p ◂ q ◂ f ≡ (≡.trans p q) ◂ f ◂-trans ≡.refl ≡.refl f = ≡.refl ▸-trans : ∀ {A B C D} (f : A ⇒ B) (p : B ≡ C) (q : C ≡ D) → f ▸ p ▸ q ≡ f ▸ ≡.trans p q ▸-trans f ≡.refl ≡.refl = ≡.refl ◂-resp-≈ : ∀ {A B C} (p : A ≡ B) {f g : B ⇒ C} → f ≈ g → p ◂ f ≈ p ◂ g ◂-resp-≈ ≡.refl f≈g = f≈g ▸-resp-≈ : ∀ {A B C} {f g : A ⇒ B} → f ≈ g → (p : B ≡ C) → f ▸ p ≈ g ▸ p ▸-resp-≈ f≈g ≡.refl = f≈g module TrspGM {G : Graph o ℓ e} {H : Graph o′ ℓ′ e′} (m : GraphMorphism G H) where module G = Graph G module H = Graph H open GraphMorphism m open Trsp G open Trsp H using () renaming (_◂_ to _◃_; _▸_ to _▹_) M-resp-▸ : ∀ {A B C} (f : A G.⇒ B) (p : B ≡ C) → M₁ (f ▸ p) ≡ M₁ f ▹ ≡.cong M₀ p M-resp-▸ f ≡.refl = ≡.refl M-resp-◂ : ∀ {A B C} (p : A ≡ B) (f : B G.⇒ C) → M₁ (p ◂ f) ≡ ≡.cong M₀ p ◃ M₁ f M-resp-◂ ≡.refl f = ≡.refl record GraphMorphism≈ {G : Graph o ℓ e} {G′ : Graph o′ ℓ′ e′} (M M′ : GraphMorphism G G′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module G = Graph G module G′ = Graph G′ module M = GraphMorphism M module M′ = GraphMorphism M′ open Trsp G′ -- Pick a presentation of equivalence for graph morphisms that works -- well with functor equality. field M₀≡ : ∀ {X} → M.M₀ X ≡ M′.M₀ X M₁≡ : ∀ {A B} {f : A G.⇒ B} → M.M₁ f ▸ M₀≡ G′.≈ M₀≡ ◂ M′.M₁ f Graphs : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Graphs o ℓ e = record { Obj = Graph o ℓ e ; _⇒_ = GraphMorphism ; _≈_ = GraphMorphism≈ ; id = idGHom ; _∘_ = _∘GM_ ; assoc = λ {_ _ _ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; sym-assoc = λ {_ _ _ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; identityˡ = λ {_ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; identityʳ = λ {_ G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; identity² = λ {G} → record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; equiv = λ {_ G} → record { refl = record { M₀≡ = ≡.refl ; M₁≡ = Equiv.refl G } ; sym = λ {i j} eq → record { M₀≡ = ≡.sym (M₀≡ eq) ; M₁≡ = λ {_ _ f} → let open EdgeReasoning G open Trsp G in begin M₁ j f ▸ ≡.sym (M₀≡ eq) ≡˘⟨ ≡.cong (_◂ (M₁ j f ▸ _)) (≡.trans-symˡ (M₀≡ eq)) ⟩ ≡.trans (≡.sym $ M₀≡ eq) (M₀≡ eq) ◂ (M₁ j f ▸ ≡.sym (M₀≡ eq)) ≡˘⟨ ◂-trans (≡.sym $ M₀≡ eq) (M₀≡ eq) _ ⟩ ≡.sym (M₀≡ eq) ◂ M₀≡ eq ◂ (M₁ j f ▸ ≡.sym (M₀≡ eq)) ≡⟨ ≡.cong (≡.sym (M₀≡ eq) ◂_) (◂-▸-comm (M₀≡ eq) (M₁ j f) (≡.sym $ M₀≡ eq)) ⟩ ≡.sym (M₀≡ eq) ◂ ((M₀≡ eq ◂ M₁ j f) ▸ ≡.sym (M₀≡ eq)) ≈˘⟨ ◂-resp-≈ (≡.sym (M₀≡ eq)) (▸-resp-≈ (M₁≡ eq) (≡.sym (M₀≡ eq))) ⟩ ≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ M₀≡ eq ▸ ≡.sym (M₀≡ eq)) ≡⟨ ≡.cong (≡.sym (M₀≡ eq) ◂_) (▸-trans (M₁ i f) (M₀≡ eq) (≡.sym (M₀≡ eq))) ⟩ ≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ ≡.trans (M₀≡ eq) (≡.sym (M₀≡ eq))) ≡⟨ ≡.cong (λ p → ≡.sym (M₀≡ eq) ◂ (M₁ i f ▸ p)) (≡.trans-symʳ (M₀≡ eq)) ⟩ ≡.sym (M₀≡ eq) ◂ M₁ i f ∎ } ; trans = λ {i j k} eq eq′ → record { M₀≡ = ≡.trans (M₀≡ eq) (M₀≡ eq′) ; M₁≡ = λ {_ _ f} → let open EdgeReasoning G open Trsp G in begin M₁ i f ▸ ≡.trans (M₀≡ eq) (M₀≡ eq′) ≡˘⟨ ▸-trans (M₁ i f) (M₀≡ eq) (M₀≡ eq′) ⟩ (M₁ i f ▸ M₀≡ eq) ▸ M₀≡ eq′ ≈⟨ ▸-resp-≈ (M₁≡ eq) (M₀≡ eq′) ⟩ (M₀≡ eq ◂ M₁ j f) ▸ M₀≡ eq′ ≡˘⟨ ◂-▸-comm (M₀≡ eq) (M₁ j f) (M₀≡ eq′) ⟩ M₀≡ eq ◂ (M₁ j f ▸ M₀≡ eq′) ≈⟨ ◂-resp-≈ (M₀≡ eq) (M₁≡ eq′) ⟩ M₀≡ eq ◂ (M₀≡ eq′ ◂ M₁ k f) ≡⟨ ◂-trans (M₀≡ eq) (M₀≡ eq′) (M₁ k f) ⟩ ≡.trans (M₀≡ eq) (M₀≡ eq′) ◂ M₁ k f ∎ } } ; ∘-resp-≈ = λ {_ G H} {f g h i} eq eq′ → record { M₀≡ = ≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ; M₁≡ = λ {_ _ j} → let open EdgeReasoning H open Trsp H open Trsp G using () renaming (_▸_ to _▹_; _◂_ to _◃_) open TrspGM in begin M₁ (f ∘GM h) j ▸ ≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ≡˘⟨ ▸-trans (M₁ f (M₁ h j)) (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ⟩ M₁ f (M₁ h j) ▸ ≡.cong (M₀ f) (M₀≡ eq′) ▸ M₀≡ eq ≡˘⟨ ≡.cong (_▸ M₀≡ eq) (M-resp-▸ f (M₁ h j) (M₀≡ eq′)) ⟩ M₁ f (M₁ h j ▹ M₀≡ eq′) ▸ M₀≡ eq ≈⟨ M₁≡ eq ⟩ M₀≡ eq ◂ M₁ g (M₁ h j ▹ M₀≡ eq′) ≈⟨ ◂-resp-≈ (M₀≡ eq) (M-resp-≈ g (M₁≡ eq′)) ⟩ M₀≡ eq ◂ M₁ g (M₀≡ eq′ ◃ M₁ i j) ≡⟨ ≡.cong (M₀≡ eq ◂_) (M-resp-◂ g (M₀≡ eq′) (M₁ i j)) ⟩ M₀≡ eq ◂ ≡.cong (M₀ g) (M₀≡ eq′) ◂ M₁ g (M₁ i j) ≡⟨ ◂-trans (M₀≡ eq) (≡.cong (M₀ g) (M₀≡ eq′)) (M₁ g (M₁ i j)) ⟩ ≡.trans (M₀≡ eq) (≡.cong (M₀ g) (M₀≡ eq′)) ◂ M₁ g (M₁ i j) ≡˘⟨ ≡.cong (_◂ M₁ g (M₁ i j)) (≡.naturality (λ _ → M₀≡ eq)) ⟩ ≡.trans (≡.cong (M₀ f) (M₀≡ eq′)) (M₀≡ eq) ◂ M₁ g (M₁ i j) ∎ } } where open Graph open GraphMorphism open GraphMorphism≈ open _≡F_ -- Put the rest of the Graph stuff here too: Underlying₀ : Category o ℓ e → Graph o ℓ e Underlying₀ C = record { Obj = C.Obj ; _⇒_ = C._⇒_ ; _≈_ = C._≈_ ; equiv = C.equiv } where module C = Category C Underlying₁ : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → GraphMorphism (Underlying₀ C) (Underlying₀ D) Underlying₁ F = record { M₀ = F.F₀ ; M₁ = F.F₁ ; M-resp-≈ = F.F-resp-≈ } where module F = Functor F Underlying : Functor (Cats o ℓ e) (Graphs o ℓ e) Underlying = record { F₀ = Underlying₀ ; F₁ = Underlying₁ ; identity = λ {A} → record { M₀≡ = ≡.refl ; M₁≡ = Category.Equiv.refl A } ; homomorphism = λ where {Z = Z} → record { M₀≡ = ≡.refl ; M₁≡ = Category.Equiv.refl Z } ; F-resp-≈ = λ {A} {B} {F} {G} F≈G → record { M₀≡ = λ {X} → eq₀ F≈G X ; M₁≡ = λ {x} {y} {f} → let open Category B open HId B open Trsp (Underlying₀ B) open Functor open Graph.EdgeReasoning (Underlying₀ B) in begin F₁ F f ▸ eq₀ F≈G y ≈⟨ hid-subst-cod (F₁ F f) (eq₀ F≈G y) ⟩ hid (eq₀ F≈G y) ∘ F₁ F f ≈⟨ eq₁ F≈G f ⟩ F₁ G f ∘ hid (eq₀ F≈G x) ≈˘⟨ hid-subst-dom (eq₀ F≈G x) (F₁ G f) ⟩ eq₀ F≈G x ◂ F₁ G f ∎ } } where open NaturalTransformation open NaturalIsomorphism -- Transports on paths module TrspStar (G : Graph o ℓ e) where open Graph G open Trsp (Underlying₀ (Free G)) public using () renaming ( _◂_ to _◂*_ ; _▸_ to _▸*_ ) open Trsp G -- Lemmas relating transports to path operations. ◂*-▸*-ε : ∀ {A B : Obj} (p : A ≡ B) → ε ▸* p ≡ p ◂* ε ◂*-▸*-ε ≡.refl = ≡.refl ◂*-◅ : ∀ {A B C D : Obj} (p : A ≡ B) (f : B ⇒ C) (fs : Star _⇒_ C D) → p ◂* (f ◅ fs) ≡ (p ◂ f) ◅ fs ◂*-◅ ≡.refl f fs = ≡.refl ◅-▸* : ∀ {A B C D : Obj} (f : A ⇒ B) (fs : Star _⇒_ B C) (p : C ≡ D) → (f ◅ fs) ▸* p ≡ f ◅ (fs ▸* p) ◅-▸* f fs ≡.refl = ≡.refl ◅-◂*-▸ : ∀ {A B C D : Obj} (f : A ⇒ B) (p : B ≡ C) (fs : Star _⇒_ C D) → _≡_ {_} {Star _⇒_ A D} (f ◅ (p ◂* fs)) ((f ▸ p) ◅ fs) ◅-◂*-▸ f ≡.refl fs = ≡.refl -- define these ahead of time module _ {G₁ G₂ : Graph o ℓ e} (G⇒ : GraphMorphism G₁ G₂) where open Graph G₁ renaming (_⇒_ to _⇒₁_; Obj to Obj₁) open Graph G₂ renaming (_⇒_ to _⇒₂_; Obj to Obj₂; module Equiv to Equiv₂) open GraphMorphism G⇒ mapGraph : {A B : Obj₁} → Star _⇒₁_ A B → Star _⇒₂_ (M₀ A) (M₀ B) mapGraph ε = ε mapGraph (x ◅ y) = M₁ x ◅ mapGraph y map-hom : {X Y Z : Graph.Obj G₁} (f : Star _⇒₁_ X Y) {g : Star _⇒₁_ Y Z} → [ G₂ ] mapGraph (f ◅◅ g) ≈* (mapGraph f ◅◅ mapGraph g) map-hom ε {g} = refl G₂ map-hom (x ◅ f) {g} = Equiv₂.refl ◅ map-hom f map-resp : {A B : Obj₁} (f : Star _⇒₁_ A B) {g : Star _⇒₁_ A B} → [ G₁ ] f ≈* g → [ G₂ ] mapGraph f ≈* mapGraph g map-resp ε ε = ε map-resp (x ◅ f) (f≈* ◅ eq) = M-resp-≈ f≈* ◅ map-resp f eq -- don't want a single global GraphMorphism module _ {G : Graph o ℓ e} where open Graph G map-id : {A B : Obj} (f : Star _⇒_ A B) → [ G ] mapGraph (idGHom {G = G}) f ≈* f map-id ε = ε map-id (fs ◅ f) = Equiv.refl ◅ map-id f module _ {X Y Z : Graph o ℓ e} {G₁ : GraphMorphism X Y} {G₂ : GraphMorphism Y Z} where open Graph X map-∘ : {A B : Obj} (f : Star _⇒_ A B) → [ Z ] (mapGraph (G₂ ∘GM G₁) f) ≈* mapGraph G₂ (mapGraph G₁ f) map-∘ ε = ε map-∘ (fs ◅ f) = Graph.Equiv.refl Z ◅ map-∘ f module _ {G H : Graph o ℓ e} {f g : GraphMorphism G H} (f≈g : GraphMorphism≈ f g) where open Graph G open GraphMorphism open GraphMorphism≈ f≈g open TrspStar H open Trsp H map-M₁≡ : {A B : Obj} (hs : Star _⇒_ A B) → [ H ] mapGraph f hs ▸* M₀≡ ≈* M₀≡ ◂* mapGraph g hs map-M₁≡ ε = ≡⇒≈* H (◂*-▸*-ε M₀≡) map-M₁≡ (hs ◅ h) = begin (M₁ f hs ◅ mapGraph f h) ▸* M₀≡ ≡⟨ ◅-▸* (M₁ f hs) _ M₀≡ ⟩ M₁ f hs ◅ (mapGraph f h ▸* M₀≡) ≈⟨ Graph.Equiv.refl H ◅ map-M₁≡ h ⟩ M₁ f hs ◅ (M₀≡ ◂* mapGraph g h) ≡⟨ ◅-◂*-▸ (M₁ f hs) M₀≡ _ ⟩ (M₁ f hs ▸ M₀≡) ◅ mapGraph g h ≈⟨ M₁≡ ◅ (refl H) ⟩ (M₀≡ ◂ M₁ g hs) ◅ mapGraph g h ≡˘⟨ ◂*-◅ M₀≡ (M₁ g hs) _ ⟩ M₀≡ ◂* (M₁ g hs ◅ mapGraph g h) ∎ where open PathEqualityReasoning H module _ (C : Category o ℓ e) where open Category C open HomReasoning -- A helper that should probably go into Categories.Morphism.Reasoning... toSquare : ∀ {A B} {f g : A ⇒ B} → f ≈ g → CommutativeSquare f id id g toSquare {_} {_} {f} {g} f≈g = begin id ∘ f ≈⟨ identityˡ ⟩ f ≈⟨ f≈g ⟩ g ≈˘⟨ identityʳ ⟩ g ∘ id ∎ CatF : Functor (Graphs o ℓ e) (Cats o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) CatF = record { F₀ = Free ; F₁ = λ {G₁} {G₂} G⇒ → record { F₀ = M₀ G⇒ ; F₁ = mapGraph G⇒ ; identity = refl G₂ ; homomorphism = λ {_} {_} {_} {f} → map-hom G⇒ f ; F-resp-≈ = λ { {f = f} → map-resp G⇒ f} } ; identity = λ {G} → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ f → toSquare (Free G) (map-id f) } ; homomorphism = λ {_} {_} {G} → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ h → toSquare (Free G) (map-∘ h) } ; F-resp-≈ = λ {_} {G} {f} {g} f≈g → record { eq₀ = λ _ → M₀≡ f≈g ; eq₁ = λ h → let open Category (Free G) open HId (Free G) open TrspStar G open HomReasoning in begin mapGraph f h ◅◅ (hid $ M₀≡ f≈g) ≈˘⟨ hid-subst-cod (mapGraph f h) (M₀≡ f≈g) ⟩ mapGraph f h ▸* M₀≡ f≈g ≈⟨ map-M₁≡ f≈g h ⟩ M₀≡ f≈g ◂* mapGraph g h ≈⟨ hid-subst-dom (M₀≡ f≈g) (mapGraph g h) ⟩ (hid $ M₀≡ f≈g) ◅◅ mapGraph g h ∎ } } where open GraphMorphism open GraphMorphism≈ -- Because of the Level changes in CatF, sizes must all be same: CatF-is-Free : (o : Level) → Adjoint (CatF {o} {o} {o}) (Underlying) CatF-is-Free o = record { unit = ntHelper record { η = GM ; commute = λ {X} {Y} f → record { M₀≡ = ≡.refl ; M₁≡ = Graph.Equiv.refl Y ◅ ε } } ; counit = ntHelper record { η = λ X → record { F₀ = idFun ; F₁ = unwind X ; identity = Category.Equiv.refl X ; homomorphism = λ { {f = f} {g} → unwind-◅◅ X {f = f} {g} } ; F-resp-≈ = unwind-resp-≈ X } ; commute = λ {_} {Y} F → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ f → toSquare Y (comm F f) } } ; zig = λ {G} → record { eq₀ = λ _ → ≡.refl ; eq₁ = λ f → toSquare (Free G) (zig′ G f) } ; zag = λ {B} → record { M₀≡ = ≡.refl ; M₁≡ = Category.identityˡ B } } where GM : (X : Graph o o o) → GraphMorphism X (Underlying₀ (Free X)) GM _ = record { M₀ = idFun ; M₁ = return ; M-resp-≈ = λ f≈g → f≈g ◅ ε } module _ (X : Category o o o) where open Category X open HomReasoning unwind : {A B : Obj} → Star _⇒_ A B → A ⇒ B unwind = fold _⇒_ (flip _∘_) id unwind-◅◅ : {A B C : Obj} {f : Star _⇒_ A B} {g : Star _⇒_ B C} → unwind (f ◅◅ g) ≈ (unwind g) ∘ (unwind f) unwind-◅◅ {f = ε} {g} = Equiv.sym identityʳ unwind-◅◅ {f = x ◅ f} {g} = ∘-resp-≈ˡ (unwind-◅◅ {f = f} {g}) ○ assoc unwind-resp-≈ : {A B : Obj} {f g : Star _⇒_ A B} → [ Underlying₀ X ] f ≈* g → unwind f ≈ unwind g unwind-resp-≈ ε = Equiv.refl unwind-resp-≈ (x ◅ eq) = ∘-resp-≈ (unwind-resp-≈ eq) x zig′ : (X : Graph o o o) → {A B : Graph.Obj X} → (f : Star (Graph._⇒_ X) A B) → let Y = Free X in [ X ] (unwind Y) (mapGraph (GM X) f) ≈* f zig′ A ε = ε zig′ A (fs ◅ f) = Graph.Equiv.refl A ◅ zig′ A f module _ {X Y : Category o o o} (F : Functor X Y) where open Category X renaming (Obj to Obj₁; _⇒_ to _⇒₁_) open Category Y renaming (_≈_ to _≈₂_; module Equiv to EY) open Category.HomReasoning Y open Functor F comm : {A B : Obj₁} (f : Star _⇒₁_ A B) → unwind Y (mapGraph (Underlying₁ F) f) ≈₂ F₁ (unwind X f) comm ε = EY.sym identity comm (x ◅ f) = EY.sym (homomorphism ○ Category.∘-resp-≈ˡ Y (EY.sym (comm f)))
{ "alphanum_fraction": 0.5119590834, "avg_line_length": 36.5926605505, "ext": "agda", "hexsha": "38bb94518fce804cb7ef45c3a1e14e1ce5c39657", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Construction/Graphs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Construction/Graphs.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Construction/Graphs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9230, "size": 19943 }
module bug where data True : Set where tt : True data Sigma (x : True) : Set where pair : True -> Sigma x postulate p : True T : True -> Sigma p -> Set T tt (pair _) = True postulate S : True -> Sigma p -> Set z : Sigma p z = pair p postulate build : (q : Sigma p) -> T p q -> True pz : T p z
{ "alphanum_fraction": 0.5727848101, "avg_line_length": 12.1538461538, "ext": "agda", "hexsha": "c55ad304adbfc457452444df15e40951702bd699", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/fixed/DroppingParameters.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/fixed/DroppingParameters.agda", "max_line_length": 40, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/fixed/DroppingParameters.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 109, "size": 316 }
module conversion where open import constants open import cedille-types open import ctxt open import free-vars open import rename open import subst open import syntax-util open import general-util open import type-util record unfolding : Set where constructor unfold field unfold-all : 𝔹 unfold-defs : 𝔹 unfold-erase : 𝔹 unfold-all : unfolding unfold-all = unfold tt tt tt unfold-head : unfolding unfold-head = unfold ff tt tt unfold-head-elab : unfolding unfold-head-elab = unfold ff tt ff unfold-no-defs : unfolding unfold-no-defs = unfold tt ff ff unfold-head-no-defs : unfolding unfold-head-no-defs = unfold ff ff ff unfold-dampen : unfolding → unfolding unfold-dampen (unfold a d e) = unfold a (a && d) e conv-t : Set → Set conv-t T = ctxt → T → T → 𝔹 {-# TERMINATING #-} -- main entry point -- does not assume erased conv-term : conv-t term conv-type : conv-t type conv-kind : conv-t kind -- assume erased conv-terme : conv-t term conv-argse : conv-t (𝕃 term) conv-typee : conv-t type conv-kinde : conv-t kind -- call hnf, then the conv-X-norm functions conv-term' : conv-t term conv-type' : conv-t type hnf : ∀ {ed : exprd} → ctxt → (u : unfolding) → ⟦ ed ⟧ → ⟦ ed ⟧ -- assume head normalized inputs conv-term-norm : conv-t term conv-type-norm : conv-t type conv-kind-norm : conv-t kind -- does not assume erased conv-tpkd : conv-t tpkd conv-tmtp : conv-t tmtp conv-tmtp* : conv-t (𝕃 tmtp) -- assume erased conv-tpkde : conv-t tpkd conv-tmtpe : conv-t tmtp conv-tmtpe* : conv-t (𝕃 tmtp) conv-ctr-ps : ctxt → var → var → maybe (ℕ × ℕ) conv-ctr-args : conv-t (var × args) conv-ctr : conv-t var conv-term Γ t t' = conv-terme Γ (erase t) (erase t') conv-terme Γ t t' with decompose-apps t | decompose-apps t' conv-terme Γ t t' | Var x , args | Var x' , args' = ctxt-eq-rep Γ x x' && conv-argse Γ (erase-args args) (erase-args args') || conv-ctr-args Γ (x , args) (x' , args') || conv-term' Γ t t' conv-terme Γ t t' | _ | _ = conv-term' Γ t t' conv-argse Γ [] [] = tt conv-argse Γ (a :: args) (a' :: args') = conv-terme Γ a a' && conv-argse Γ args args' conv-argse Γ _ _ = ff conv-type Γ t t' = conv-typee Γ (erase t) (erase t') conv-typee Γ t t' with decompose-tpapps t | decompose-tpapps t' conv-typee Γ t t' | TpVar x , args | TpVar x' , args' = ctxt-eq-rep Γ x x' && conv-tmtp* Γ args args' || conv-type' Γ t t' conv-typee Γ t t' | _ | _ = conv-type' Γ t t' conv-kind Γ k k' = conv-kinde Γ (erase k) (erase k') conv-kinde Γ k k' = conv-kind-norm Γ (hnf Γ unfold-head k) (hnf Γ unfold-head k') conv-term' Γ t t' = conv-term-norm Γ (hnf Γ unfold-head t) (hnf Γ unfold-head t') conv-type' Γ t t' = conv-type-norm Γ (hnf Γ unfold-head t) (hnf Γ unfold-head t') hnf {TERM} Γ u (AppE t T) = hnf Γ u t hnf {TERM} Γ u (Beta _ t) = hnf Γ u t hnf {TERM} Γ u (Delta b? T t) = id-term hnf {TERM} Γ u (Hole pi) = Hole pi hnf {TERM} Γ u (IotaPair t₁ t₂ x Tₓ) = hnf Γ u t₁ hnf {TERM} Γ u (IotaProj t n) = hnf Γ u t hnf {TERM} Γ u (Lam tt x T t) = hnf Γ u t hnf {TERM} Γ u (LetTp x k T t) = hnf Γ u t hnf {TERM} Γ u (Phi tₑ t₁ t₂) = hnf Γ u t₂ hnf {TERM} Γ u (Rho tₑ x Tₓ t) = hnf Γ u t hnf {TERM} Γ u (VarSigma t) = hnf Γ u t hnf {TERM} Γ u (App t t') with hnf Γ u t ...| Lam ff x nothing t'' = hnf Γ u ([ Γ - t' / x ] t'') ...| t'' = App t'' (hnf Γ (unfold-dampen u) t') hnf {TERM} Γ u (Lam ff x _ t) with hnf (ctxt-var-decl x Γ) u t ...| App t' (Var x') = if x' =string x && ~ is-free-in x t' then t' else Lam ff x nothing (App t' (Var x')) ...| t' = Lam ff x nothing t' hnf {TERM} Γ u (LetTm me x T t t') = hnf Γ u ([ Γ - t / x ] t') hnf {TERM} Γ u (Var x) with ifMaybe (unfolding.unfold-defs u) $ ctxt-lookup-term-var-def Γ x ...| nothing = Var x ...| just t = hnf Γ (unfold-dampen u) t hnf {TERM} Γ u (Mu f tₒ _ t~ cs') = let t = hnf Γ u tₒ Γ' = ctxt-var-decl f Γ cs = erase-cases cs' t-else = λ t → Mu f t nothing t~ $ flip map cs λ where (Case x cas t T) → Case x cas (hnf (add-caseArgs-to-ctxt cas Γ') (unfold-dampen u) t) T case-matches : var → args → case → maybe (term × case-args × args) case-matches = λ {cₓ as (Case cₓ' cas t T) → conv-ctr-ps Γ cₓ' cₓ ≫=maybe uncurry λ ps' ps → ifMaybej (length as =ℕ length cas + ps) (t , cas , drop ps as)} matching-case = λ cₓ as → foldr (_||-maybe_ ∘ case-matches cₓ as) nothing cs sub-mu = let x = fresh-var Γ "x" in , Lam ff x nothing (t-else (Var x)) sub = λ Γ → substs Γ (trie-insert (trie-single f sub-mu) (data-to/ f) (, id-term)) in maybe-else' (decompose-var-headed t ≫=maybe uncurry matching-case) (t-else t) λ where (tₓ , cas , as) → hnf Γ u (recompose-apps as (case-args-to-lams cas (sub (add-caseArgs-to-ctxt cas Γ') tₓ))) hnf {TERM} Γ u (Sigma mt tₒ _ t~ cs') = let t = hnf Γ u tₒ cs = erase-cases cs' t-else = λ t → Sigma nothing t nothing t~ $ flip map cs λ where (Case x cas t T) → Case x cas (hnf (add-caseArgs-to-ctxt cas Γ) (unfold-dampen u) t) T case-matches : var → args → case → maybe (term × case-args × args) case-matches = λ {cₓ as (Case cₓ' cas t T) → conv-ctr-ps Γ cₓ' cₓ ≫=maybe uncurry λ ps' ps → ifMaybej (length as =ℕ length cas + ps) (t , cas , drop ps as)} matching-case = λ cₓ as → foldr (_||-maybe_ ∘ case-matches cₓ as) nothing cs sub = λ Γ → id {A = term} in maybe-else' (decompose-var-headed t ≫=maybe uncurry matching-case) (t-else t) λ where (tₓ , cas , as) → hnf Γ u (recompose-apps as (case-args-to-lams cas (sub (add-caseArgs-to-ctxt cas Γ) tₓ))) hnf{TYPE} Γ u (TpAbs me x tk tp) = TpAbs me x (hnf Γ (unfold-dampen u) -tk tk) (hnf (ctxt-var-decl x Γ) (unfold-dampen u) tp) hnf{TYPE} Γ u (TpIota x tp₁ tp₂) = TpIota x (hnf Γ (unfold-dampen u) tp₁) (hnf (ctxt-var-decl x Γ) (unfold-dampen u) tp₂) hnf{TYPE} Γ u (TpAppTp tp tp') with hnf Γ u tp ...| TpLam x _ tp'' = hnf Γ u ([ Γ - tp' / x ] tp'') ...| tp'' = TpAppTp tp'' (hnf Γ (unfold-dampen u) tp') hnf{TYPE} Γ u (TpAppTm tp tm) with hnf Γ u tp ...| TpLam x _ tp'' = hnf Γ u ([ Γ - tm / x ] tp'') ...| tp'' = TpAppTm tp'' (if unfolding.unfold-erase u then hnf Γ (unfold-dampen u) tm else tm) hnf{TYPE} Γ u (TpEq tm₁ tm₂) = TpEq (hnf Γ (unfold-dampen u) tm₁) (hnf Γ (unfold-dampen u) tm₂) hnf{TYPE} Γ u (TpHole pi) = TpHole pi hnf{TYPE} Γ u (TpLam x tk tp) = TpLam x (hnf Γ (unfold-dampen u) -tk tk) (hnf (ctxt-var-decl x Γ) (unfold-dampen u) tp) hnf{TYPE} Γ u (TpVar x) with ifMaybe (unfolding.unfold-defs u) $ ctxt-lookup-type-var-def Γ x ...| nothing = TpVar x ...| just t = hnf Γ (unfold-dampen u) t hnf{KIND} Γ u (KdAbs x tk kd) = KdAbs x (hnf Γ (unfold-dampen u) -tk tk) (hnf (ctxt-var-decl x Γ) u kd) hnf{KIND} Γ u (KdHole pi) = KdHole pi hnf{KIND} Γ u KdStar = KdStar hanf : ctxt → (erase : 𝔹) → term → term hanf Γ e t with erase-if e t ...| t' = maybe-else t' id (decompose-var-headed t' ≫=maybe uncurry λ x as → ctxt-lookup-term-var-def Γ x ≫=maybe λ t'' → just (recompose-apps as t'')) -- unfold across the term-type barrier hnf-term-type : ctxt → (erase : 𝔹) → type → type hnf-term-type Γ e (TpEq t₁ t₂) = TpEq (hanf Γ e t₁) (hanf Γ e t₂) hnf-term-type Γ e (TpAppTm tp t) = hnf Γ (record unfold-head {unfold-erase = e}) (TpAppTm tp (hanf Γ e t)) hnf-term-type Γ e tp = hnf Γ unfold-head tp conv-cases : conv-t cases conv-cases Γ cs₁ cs₂ = isJust $ foldl (λ c₂ x → x ≫=maybe λ cs₁ → conv-cases' Γ cs₁ c₂) (just cs₁) cs₂ where conv-cases' : ctxt → cases → case → maybe cases conv-cases' Γ [] (Case x₂ as₂ t₂ T₂) = nothing conv-cases' Γ (c₁ @ (Case x₁ as₁ t₁ T₁) :: cs₁) c₂ @ (Case x₂ as₂ t₂ T₂) with conv-ctr Γ x₁ x₂ ...| ff = conv-cases' Γ cs₁ c₂ ≫=maybe λ cs₁ → just (c₁ :: cs₁) ...| tt = ifMaybej (length as₂ =ℕ length as₁ && conv-term Γ (expand-case c₁) (expand-case (Case x₂ as₂ t₂ T₂))) cs₁ ctxt-term-udef : posinfo → defScope → opacity → var → term → ctxt → ctxt conv-term-norm Γ (Var x) (Var x') = ctxt-eq-rep Γ x x' || conv-ctr Γ x x' -- hnf implements erasure for terms, so we can ignore some subterms for App and Lam cases below conv-term-norm Γ (App t1 t2) (App t1' t2') = conv-term-norm Γ t1 t1' && conv-term Γ t2 t2' conv-term-norm Γ (Lam ff x _ t) (Lam ff x' _ t') = conv-term (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) t t' conv-term-norm Γ (Hole _) _ = tt conv-term-norm Γ _ (Hole _) = tt conv-term-norm Γ (Mu x₁ t₁ _ _ cs₁) (Mu x₂ t₂ _ _ cs₂) = let Γ' = ctxt-rename x₁ x₂ $ ctxt-var-decl x₂ Γ in conv-term Γ t₁ t₂ && conv-cases Γ' cs₁ cs₂ conv-term-norm Γ (Sigma _ t₁ _ _ cs₁) (Sigma _ t₂ _ _ cs₂) = conv-term Γ t₁ t₂ && conv-cases Γ cs₁ cs₂ {- it can happen that a term is equal to a lambda abstraction in head-normal form, if that lambda-abstraction would eta-contract following some further beta-reductions. We implement this here by implicitly eta-expanding the variable and continuing the comparison. A simple example is λ v . t ((λ a . a) v) ≃ t -} conv-term-norm Γ (Lam ff x _ t) t' = let x' = fresh-var Γ x in conv-term (ctxt-rename x x' Γ) t (App t' (Var x')) conv-term-norm Γ t' (Lam ff x _ t) = let x' = fresh-var Γ x in conv-term (ctxt-rename x x' Γ) (App t' (Var x')) t conv-term-norm Γ _ _ = ff conv-type-norm Γ (TpVar x) (TpVar x') = ctxt-eq-rep Γ x x' conv-type-norm Γ (TpApp t1 t2) (TpApp t1' t2') = conv-type-norm Γ t1 t1' && conv-tmtp Γ t2 t2' conv-type-norm Γ (TpAbs me x tk tp) (TpAbs me' x' tk' tp') = (me iff me') && conv-tpkd Γ tk tk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp' conv-type-norm Γ (TpIota x m tp) (TpIota x' m' tp') = conv-type Γ m m' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp' conv-type-norm Γ (TpEq t₁ t₂) (TpEq t₁' t₂') = conv-term Γ t₁ t₁' && conv-term Γ t₂ t₂' conv-type-norm Γ (TpLam x tk tp) (TpLam x' tk' tp') = conv-tpkd Γ tk tk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp' conv-type-norm Γ _ _ = ff {- even though hnf turns Pi-kinds where the variable is not free in the body into arrow kinds, we still need to check off-cases, because normalizing the body of a kind could cause the bound variable to be erased (hence allowing it to match an arrow kind). -} conv-kind-norm Γ (KdAbs x tk k) (KdAbs x' tk' k'') = conv-tpkd Γ tk tk' && conv-kind (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) k k'' conv-kind-norm Γ KdStar KdStar = tt conv-kind-norm Γ _ _ = ff conv-tpkd Γ tk tk' = conv-tpkde Γ (erase -tk tk) (erase -tk tk') conv-tmtp Γ tT tT' = conv-tmtpe Γ (erase -tT tT) (erase -tT tT') conv-tpkde Γ (Tkk k) (Tkk k') = conv-kind Γ k k' conv-tpkde Γ (Tkt t) (Tkt t') = conv-type Γ t t' conv-tpkde Γ _ _ = ff conv-tmtpe Γ (Ttm t) (Ttm t') = conv-term Γ t t' conv-tmtpe Γ (Ttp T) (Ttp T') = conv-type Γ T T' conv-tmtpe Γ _ _ = ff conv-tmtp* = =𝕃 ∘ conv-tmtp conv-tmtpe* = =𝕃 ∘ conv-tmtpe conv-ctr Γ x₁ x₂ = conv-ctr-args Γ (x₁ , []) (x₂ , []) conv-ctr-ps Γ x₁ x₂ with env-lookup Γ x₁ | env-lookup Γ x₂ ...| just (ctr-def ps₁ T₁ n₁ i₁ a₁ , _) | just (ctr-def ps₂ T₂ n₂ i₂ a₂ , _) = ifMaybej (n₁ =ℕ n₂ && i₁ =ℕ i₂ && a₁ =ℕ a₂) (length (erase-params ps₁) , length (erase-params ps₂)) ...| _ | _ = nothing conv-ctr-args Γ (x₁ , as₁) (x₂ , as₂) = maybe-else' (conv-ctr-ps Γ x₁ x₂) ff $ uncurry λ ps₁ ps₂ → let as₁ = erase-args as₁; as₂ = erase-args as₂ in ps₁ ∸ length as₁ =ℕ ps₂ ∸ length as₂ && conv-argse Γ (drop ps₁ as₁) (drop ps₂ as₂) {-# TERMINATING #-} inconv : ctxt → term → term → 𝔹 inconv Γ t₁ t₂ = inconv-lams empty-renamectxt empty-renamectxt (hnf Γ unfold-all t₁) (hnf Γ unfold-all t₂) where fresh : var → renamectxt → renamectxt → var fresh x ρ₁ ρ₂ = fresh-h (λ x → ctxt-binds-var Γ x || renamectxt-in-field ρ₁ x || renamectxt-in-field ρ₂ x) x make-subst : renamectxt → renamectxt → 𝕃 var → 𝕃 var → term → term → (renamectxt × renamectxt × term × term) make-subst ρ₁ ρ₂ [] [] t₁ t₂ = ρ₁ , ρ₂ , t₁ , t₂ make-subst ρ₁ ρ₂ (x₁ :: xs₁) [] t₁ t₂ = let x = fresh x₁ ρ₁ ρ₂ in make-subst (renamectxt-insert ρ₁ x₁ x) (renamectxt-insert ρ₂ x x) xs₁ [] t₁ (App t₂ $ Var x) make-subst ρ₁ ρ₂ [] (x₂ :: xs₂) t₁ t₂ = let x = fresh x₂ ρ₁ ρ₂ in make-subst (renamectxt-insert ρ₁ x x) (renamectxt-insert ρ₂ x₂ x) [] xs₂ (App t₁ $ Var x) t₂ make-subst ρ₁ ρ₂ (x₁ :: xs₁) (x₂ :: xs₂) t₁ t₂ = let x = fresh x₁ ρ₁ ρ₂ in make-subst (renamectxt-insert ρ₁ x₁ x) (renamectxt-insert ρ₂ x₂ x) xs₁ xs₂ t₁ t₂ inconv-lams : renamectxt → renamectxt → term → term → 𝔹 inconv-apps : renamectxt → renamectxt → var → var → args → args → 𝔹 inconv-ctrs : renamectxt → renamectxt → var → var → args → args → 𝔹 inconv-mu : renamectxt → renamectxt → maybe (var × var) → cases → cases → 𝔹 inconv-args : renamectxt → renamectxt → args → args → 𝔹 inconv-args ρ₁ ρ₂ a₁ a₂ = let a₁ = erase-args a₁; a₂ = erase-args a₂ in ~ length a₁ =ℕ length a₂ || list-any (uncurry $ inconv-lams ρ₁ ρ₂) (zip a₁ a₂) inconv-lams ρ₁ ρ₂ t₁ t₂ = elim-pair (decompose-lams t₁) λ l₁ b₁ → elim-pair (decompose-lams t₂) λ l₂ b₂ → elim-pair (make-subst ρ₁ ρ₂ l₁ l₂ b₁ b₂) λ ρ₁ ρ₂b₁₂ → elim-pair ρ₂b₁₂ λ ρ₂ b₁₂ → elim-pair b₁₂ λ b₁ b₂ → case (decompose-apps b₁ , decompose-apps b₂) of uncurry λ where (Var x₁ , a₁) (Var x₂ , a₂) → inconv-apps ρ₁ ρ₂ x₁ x₂ a₁ a₂ || inconv-ctrs ρ₁ ρ₂ x₁ x₂ a₁ a₂ (Mu x₁ t₁ _ _ ms₁ , a₁) (Mu x₂ t₂ _ _ ms₂ , a₂) → inconv-mu ρ₁ ρ₂ (just $ x₁ , x₂) ms₁ ms₂ || inconv-lams ρ₁ ρ₂ t₁ t₂ || inconv-args ρ₁ ρ₂ a₁ a₂ (Sigma _ t₁ _ _ ms₁ , a₁) (Sigma _ t₂ _ _ ms₂ , a₂) → inconv-mu ρ₁ ρ₂ nothing ms₁ ms₂ || inconv-lams ρ₁ ρ₂ t₁ t₂ || inconv-args ρ₁ ρ₂ a₁ a₂ _ _ → ff inconv-apps ρ₁ ρ₂ x₁ x₂ a₁ a₂ = maybe-else' (renamectxt-lookup ρ₁ x₁) ff λ x₁ → maybe-else' (renamectxt-lookup ρ₂ x₂) ff λ x₂ → ~ x₁ =string x₂ || inconv-args ρ₁ ρ₂ a₁ a₂ inconv-ctrs ρ₁ ρ₂ x₁ x₂ as₁ as₂ with env-lookup Γ x₁ | env-lookup Γ x₂ ...| just (ctr-def ps₁ _ n₁ i₁ a₁ , _) | just (ctr-def ps₂ _ n₂ i₂ a₂ , _) = let ps₁ = erase-params ps₁; ps₂ = erase-params ps₂ as₁ = erase-args as₁; as₂ = erase-args as₂ in length as₁ ≤ length ps₁ + a₁ && -- Could use of "≤" here conflict with η-equality? length as₂ ≤ length ps₂ + a₂ && (~ n₁ =ℕ n₂ || ~ i₁ =ℕ i₂ || ~ a₁ =ℕ a₂ || ~ length as₁ + length ps₂ =ℕ length as₂ + length ps₁ || -- ^ as₁ ∸ ps₁ ≠ as₂ ∸ ps₂, + ps₁ + ps₂ to both sides ^ list-any (uncurry $ inconv-lams ρ₁ ρ₂) (zip (drop (length ps₁) as₁) (drop (length ps₂) as₂))) ...| _ | _ = ff inconv-mu ρ₁ ρ₂ xs? ms₁ ms₂ = ~ length ms₁ =ℕ length ms₂ || maybe-else ff id (foldr {B = maybe 𝔹} (λ c b? → b? ≫=maybe λ b → inconv-case c ≫=maybe λ b' → just (b || b')) (just ff) ms₁) where matching-case : case → maybe (term × ℕ × ℕ) matching-case (Case x _ _ _) = foldl (λ where (Case xₘ cas tₘ _) m? → m? ||-maybe (conv-ctr-ps Γ xₘ x ≫=maybe uncurry λ psₘ ps → just (case-args-to-lams cas tₘ , length cas , ps))) nothing ms₂ inconv-case : case → maybe 𝔹 inconv-case c₁ @ (Case x cas₁ t₁ _) = matching-case c₁ ≫=maybe λ c₂ → just (inconv-lams ρ₁ ρ₂ (case-args-to-lams cas₁ t₁) (fst c₂)) ctxt-kind-def : posinfo → var → params → kind → ctxt → ctxt ctxt-kind-def pi v ps2 k Γ = record Γ { qual = qualif-insert-params (ctxt.qual Γ) (ctxt.mn Γ # v) v (ctxt.ps Γ); syms = trie-insert-append2 (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ) v; i = trie-insert (ctxt.i Γ) (ctxt.mn Γ # v) (kind-def (ctxt.ps Γ ++ ps2) (hnf Γ unfold-head-elab k) , ctxt.fn Γ , pi) } ctxt-datatype-decl : var → var → args → ctxt → ctxt ctxt-datatype-decl vₒ vᵣ as Γ = record Γ { μ' = trie-insert (ctxt.μ' Γ) (mu-Type/ vᵣ) (vₒ , as); μ̲ = stringset-insert (ctxt.μ̲ Γ) (mu-Type/ vᵣ) } ctxt-datatype-undef : var → ctxt → ctxt ctxt-datatype-undef v Γ = record Γ { μ = trie-remove (ctxt.μ Γ) v; μ' = trie-remove (ctxt.μ' Γ) v; Is/μ = trie-remove (ctxt.Is/μ Γ) v; μ~ = trie-remove (ctxt.μ~ Γ) v; μ̲ = trie-remove (ctxt.μ̲ Γ) v } ctxt-datatype-def : posinfo → var → params → kind → kind → ctrs → encoding-defs → ctxt → ctxt ctxt-datatype-def pi D psᵢ kᵢ k cs eds Γ = let D' = ctxt.mn Γ # D ecds = record { Is/D = data-Is/ D'; is/D = data-is/ D'; to/D = data-to/ D'; TypeF/D = data-TypeF/ D'; fmap/D = data-fmap/ D'; IndF/D = data-IndF/ D'} in record Γ { qual = qualif-insert-params (ctxt.qual Γ) D' D (ctxt.ps Γ); syms = trie-insert-append2 (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ) D; i = trie-insert (ctxt.i Γ) D' (type-def (just (ctxt.ps Γ)) tt nothing (abs-expand-kind psᵢ k) , ctxt.fn Γ , pi); μ = trie-insert (ctxt.μ Γ) D' (ctxt.ps Γ ++ psᵢ , kᵢ , k , cs , eds , ecds); Is/μ = trie-insert (ctxt.Is/μ Γ) (data-Is/ D') D'; μ~ = trie-insert (ctxt.μ~ Γ) D' (foldl pull-defs [] (encoding-defs.ecs eds ++ encoding-defs.gcs eds)); μᵤ = just eds; μ̲ = stringset-insert (ctxt.μ̲ Γ) D' } where pull-defs : cmd → 𝕃 (var × tmtp) → 𝕃 (var × tmtp) pull-defs (CmdDefTerm x t) μ~ = ((ctxt.mn Γ # x) , Ttm t) :: μ~ pull-defs (CmdDefType x k T) μ~ = ((ctxt.mn Γ # x) , Ttp T) :: μ~ pull-defs _ μ~ = μ~ ctxt-type-def : posinfo → defScope → opacity → var → maybe type → kind → ctxt → ctxt ctxt-type-def _ _ _ ignored-var _ _ Γ = Γ ctxt-type-def pi s op v t k Γ = let v' = if s iff localScope then pi % v else ctxt.mn Γ # v in record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' v (if s iff localScope then [] else ctxt.ps Γ); i = trie-insert (ctxt.i Γ) v' (type-def (def-params s (ctxt.ps Γ)) op (hnf Γ unfold-head-elab <$> t) k , ctxt.fn Γ , pi) } ctxt-ctr-def : posinfo → var → type → params → (ctrs-length ctr-index : ℕ) → ctxt → ctxt ctxt-ctr-def pi c t ps' n i Γ = let c' = ctxt.mn Γ # c in record Γ { qual = qualif-insert-params (ctxt.qual Γ) c' c (ctxt.ps Γ); syms = trie-insert-append2 (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ) c; i = trie-insert (ctxt.i Γ) c' (ctr-def ps' t n i (unerased-arrows t) , ctxt.fn Γ , pi) } ctxt-term-def : posinfo → defScope → opacity → var → maybe term → type → ctxt → ctxt ctxt-term-def _ _ _ ignored-var _ _ Γ = Γ ctxt-term-def pi s op v t tp Γ = let v' = if s iff localScope then pi % v else ctxt.mn Γ # v in record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' v (if s iff localScope then [] else ctxt.ps Γ); syms = if s iff localScope then ctxt.syms Γ else trie-insert-append2 (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ) v; i = trie-insert (ctxt.i Γ) v' (term-def (def-params s (ctxt.ps Γ)) op (hnf Γ unfold-head <$> t) tp , ctxt.fn Γ , pi) } ctxt-term-udef _ _ _ ignored-var _ Γ = Γ ctxt-term-udef pi s op v t Γ = let v' = if s iff localScope then pi % v else ctxt.mn Γ # v in record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' v (if s iff localScope then [] else ctxt.ps Γ); syms = if s iff localScope then ctxt.syms Γ else trie-insert-append2 (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ) v; i = trie-insert (ctxt.i Γ) v' (term-udef (def-params s (ctxt.ps Γ)) op (hnf Γ unfold-head t) , ctxt.fn Γ , pi) }
{ "alphanum_fraction": 0.6073453675, "avg_line_length": 42.1557017544, "ext": "agda", "hexsha": "7b8fa0dc801751a4162c9b4e961f6ad47b91ec60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/conversion.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/conversion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7447, "size": 19223 }
module IrrelevantModuleParameter1 (A : Set) .(a : A) where postulate P : A -> Set p : P a -- cannot use a here, because it is irrelevant
{ "alphanum_fraction": 0.6690140845, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "57ce5d72918f4b4e13f6b72b8bf6577741f57d37", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IrrelevantModuleParameter1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IrrelevantModuleParameter1.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantModuleParameter1.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 45, "size": 142 }
{-# OPTIONS --cubical --no-positivity-check --no-termination-check --allow-unsolved-metas #-} open import Prelude open import Algebra open import Algebra.Monus open import Relation.Binary open import Data.Maybe open import Data.List using (List; _∷_; []; foldr) module Control.Monad.HeapT.Sized {ℓ} (mon : CTMAPOM ℓ) (gmon : GradedMonad (CTMAPOM.monoid mon) ℓ ℓ) where open CTMAPOM mon open GradedMonad gmon private variable w i j : 𝑆 infixr 5 _∷_ infixr 6 _⋊_ mutual data Root′ (A : Type ℓ) (i : 𝑆) : Type ℓ where _⋊_ : ∀ w → (w < i → 𝐹 w (Branch A (i ∸ w))) → Root′ A i data Node (A : Type ℓ) (i : 𝑆) : Type ℓ where ⌊_⌋ : A → Node A i ⌈_⌉ : Root′ A i → Node A i data Branch (A : Type ℓ) (i : 𝑆) : Type ℓ where [] : Branch A i _∷_ : Node A i → 𝐹 ε (Branch A i) → Branch A i Heap : Type ℓ → Type ℓ Heap A = ∀ {i} → 𝐹 ε (Branch A i) infixr 5 _++_ _++_ : 𝐹 w (Branch A i) → 𝐹 ε (Branch A i) → 𝐹 w (Branch A i) xs ++ ys = xs >>=ε λ { [] → ys ; (x ∷ xs) → pure (x ∷ xs ++ ys) } infixr 1 _>>=ᴺ_ _>>=ᴴ_ mutual _>>=ᴺ_ : Node A i → (A → Heap B) → 𝐹 ε (Branch B i) ⌊ x ⌋ >>=ᴺ f = f x ⌈ w ⋊ s ⌉ >>=ᴺ f = pure (⌈ w ⋊ (λ w<i → s w<i >>=ᴴ f) ⌉ ∷ pure []) _>>=ᴴ_ : 𝐹 w (Branch A i) → (A → Heap B) → 𝐹 w (Branch B i) xs >>=ᴴ f = xs >>=ε λ { [] → pure [] ; (x ∷ xs) → (x >>=ᴺ f) ++ (xs >>=ᴴ f) } pureᴴ : A → Heap A pureᴴ x = pure (⌊ x ⌋ ∷ pure []) liftᴴ : 𝐹 w A → Heap A liftᴴ xs = pure (⌈ _ ⋊ const (map (λ x → ⌊ x ⌋ ∷ pure []) xs) ⌉ ∷ pure []) flatten : 𝐹 w (Branch A i) → 𝐹 w (List A × List (Root′ A i)) flatten xs = xs >>=ε λ { [] → pure ([] , []) ; (⌊ x ⌋ ∷ xs) → map (map₁ (x ∷_)) (flatten xs) ; (⌈ x ⌉ ∷ xs) → map (map₂ (x ∷_)) (flatten xs) } module PopMin (decomp : ∀ {A B w₁ w₂ w₃} → 𝐹 (w₁ ∙ w₂) A → 𝐹 (w₁ ∙ w₃) B → 𝐹 w₁ (𝐹 w₂ A × 𝐹 w₃ B)) (choice : {w : 𝑆} → {A B : Type ℓ} → (A → 𝐹 w B) → 𝐹 w (A → B)) where _∪_ : Root′ A i → Root′ A i → Root′ A i _∪_ {i = i} (wˣ ⋊ xs) (wʸ ⋊ ys) with wˣ ≤|≥ wʸ ... | inr (k , wˣ≡wʸ∙k) = {!!} ... | inl (k , wʸ≡wˣ∙k) = wˣ ⋊ λ wˣ<i → map (λ { (xs , ys) → ⌈ k ⋊ (λ k<i∸wˣ → subst (𝐹 _ ∘ Branch _) (cong (_ ∸_) wʸ≡wˣ∙k ; sym (∸‿assoc _ wˣ k)) (map (_$ subst (_< i) (sym wʸ≡wˣ∙k) {!!}) ys)) ⌉ ∷ xs }) (decomp (subst (flip 𝐹 _) (sym (∙ε _)) (xs wˣ<i)) (subst (flip 𝐹 _) wʸ≡wˣ∙k (choice ys))) where lemma : ∀ x y z → x < z → y < z ∸ x → x ∙ y < z lemma = {!!} -- ⋃⁺ : Root A → List (Root A) → Root A -- ⋃⁺ x₁ [] = x₁ -- ⋃⁺ x₁ (x₂ ∷ []) = x₁ ∪ x₂ -- ⋃⁺ x₁ (x₂ ∷ x₃ ∷ xs) = (x₁ ∪ x₂) ∪ ⋃⁺ x₃ xs -- ⋃ : List (Root A) → Maybe (Root A) -- ⋃ [] = nothing -- ⋃ (x ∷ xs) = just (⋃⁺ x xs) -- popMin : 𝐹 w (Branch A) → 𝐹 w (List A × Maybe (Root A)) -- popMin = map (map₂ ⋃) ∘ flatten
{ "alphanum_fraction": 0.4643864598, "avg_line_length": 30.170212766, "ext": "agda", "hexsha": "5ef6211a17f6acfb60f3209468a30f68478dd41f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/HeapT/Sized.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/HeapT/Sized.agda", "max_line_length": 296, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/HeapT/Sized.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1443, "size": 2836 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _++_; _∷_; _∷ʳ_) open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; subst) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_; _◅◅_; return) open import Common module FairCompliance {ℙ : Set} (message : Message ℙ) where open import Trace message open import Session message open import SessionType message open import Transitions message open import HasTrace message fair-compliance-red* : ∀{S S'} -> FairComplianceS S -> Reductions S S' -> FairComplianceS S' fair-compliance-red* comp reds reds' = comp (reds ◅◅ reds') fair-compliance->may-succeed : ∀{S} -> FairComplianceS S -> MaySucceed S fair-compliance->may-succeed fcomp = fcomp ε fc-after-output : ∀{f g x} -> FairComplianceS (out f # inp g) -> x ∈ dom f -> FairComplianceS (f x .force # g x .force) fc-after-output comp fx reds = comp (sync (out fx) inp ◅ reds) fc-after-input : ∀{f g x} -> FairComplianceS (inp f # out g) -> x ∈ dom g -> FairComplianceS (f x .force # g x .force) fc-after-input comp gx reds = comp (sync inp (out gx) ◅ reds) fc-input : ∀{R f} -> FairComplianceS (R # inp f) -> Win R ⊎ ∃[ g ] (R ≡ out g × Witness g × (∀{x} (!x : x ∈ dom g) -> FairComplianceS (g x .force # f x .force))) fc-input {nil} spec with spec ε ... | _ , ε , win#def () _ ... | _ , sync () _ ◅ _ , _ fc-input {inp _} spec with spec ε ... | _ , ε , win#def () _ ... | _ , sync () inp ◅ _ , _ fc-input {out g} spec with Empty? g ... | inj₁ U = inj₁ (out U) ... | inj₂ W = inj₂ (g , refl , W , λ !x -> fair-compliance-red* spec (return (sync (out !x) inp))) fc-output : ∀{R f} -> FairComplianceS (R # out f) -> Win R ⊎ ∃[ g ] (R ≡ inp g × Witness f × (∀{x} (!x : x ∈ dom f) -> FairComplianceS (g x .force # f x .force))) fc-output {nil} spec with spec ε ... | _ , ε , win#def () out ... | _ , sync () _ ◅ _ , _ fc-output {inp g} {f} spec with Empty? f ... | inj₂ W = inj₂ (g , refl , W , λ !x -> fair-compliance-red* spec (return (sync inp (out !x)))) ... | inj₁ U with spec ε ... | _ , ε , win#def () _ ... | _ , sync inp (out !x) ◅ _ , _ = ⊥-elim (U _ !x) fc-output {out g} spec with Empty? g ... | inj₁ U = inj₁ (out U) ... | inj₂ (_ , !x) with spec ε ... | _ , ε , win#def (out U) out = ⊥-elim (U _ !x) ... | _ , sync () (out _) ◅ _ , _ fc-transitions : ∀{R R' T T' φ} -> Transitions R (co-trace φ) R' -> Transitions T φ T' -> FairComplianceS (R # T) -> FairComplianceS (R' # T') fc-transitions rr tr comp = fair-compliance-red* comp (zip-red* rr tr) fc-trace : ∀{R T φ} -> FairComplianceS (R # T) -> (rφ : R HasTrace (co-trace φ)) (tφ : T HasTrace φ) -> FairComplianceS (after rφ # after tφ) fc-trace comp (_ , _ , rr) (_ , _ , tr) = fc-transitions rr tr comp fc-output-trace : ∀{R T x} -> FairComplianceS (R # T) -> T HasTrace (O x ∷ []) -> Win R ⊎ (R HasTrace (I x ∷ [])) fc-output-trace {nil} comp tφ with comp ε ... | _ , ε , win#def () _ ... | _ , sync () _ ◅ _ , _ fc-output-trace {inp f} {_} {x} comp (_ , _ , step (out gx) refl) with x ∈? f ... | yes fx = inj₂ (_ , fx , step inp refl) ... | no nfx with comp (return (sync inp (out gx))) ... | _ , ε , win#def w _ = ⊥-elim (nfx (win->defined w)) ... | _ , sync r _ ◅ _ , _ = ⊥-elim (contraposition transition->defined nfx r) fc-output-trace {out f} comp (_ , _ , step (out _) refl) with comp ε ... | _ , ε , win#def w _ = inj₁ w ... | _ , sync () (out _) ◅ _ , _ has-trace-snoc : ∀{T φ α} -> T HasTrace (φ ∷ʳ α) -> ∃ λ (tφ : T HasTrace φ) -> after tφ HasTrace (α ∷ []) has-trace-snoc {_} {[]} tα@(_ , _ , step inp refl) = (_ , inp , refl) , tα has-trace-snoc {_} {[]} tα@(_ , _ , step (out _) refl) = (_ , out , refl) , tα has-trace-snoc {_} {_ ∷ φ} (_ , def , step t tr) = let (_ , tdef , sr) , tφ/α = has-trace-snoc (_ , def , tr) in (_ , tdef , step t sr) , tφ/α client-wins-or-accepts-prefix : ∀{R T φ x} (comp : FairComplianceS (R # T)) (rφ : R HasTrace (co-trace φ)) (tφ : T HasTrace (φ ∷ʳ O x)) -> Win (after rφ) ⊎ R HasTrace (co-trace (φ ∷ʳ O x)) client-wins-or-accepts-prefix {_} {_} {φ} comp rφ tφα with has-trace-snoc tφα ... | tφ , tφ/α with fc-trace comp rφ tφ ... | comp/φ with fc-output-trace comp/φ tφ/α ... | inj₁ w = inj₁ w ... | inj₂ rφ/α = let rφα = join-trace rφ rφ/α in inj₂ (subst (_ HasTrace_) (sym (co-trace-++ φ _)) rφα)
{ "alphanum_fraction": 0.6206595708, "avg_line_length": 37.4575163399, "ext": "agda", "hexsha": "da1cde639f292092f5067585d64e74c941706520", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/FairCompliance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/FairCompliance.agda", "max_line_length": 121, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/FairCompliance.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1932, "size": 5731 }
module OscarPrelude where open import Prelude public renaming (_==_ to _≟_) -- TODO ask Agda to rename Eq._==_ to Eq._≟_ renaming (force to force!) -- needed by ∞Delay renaming (forceLemma to force!Lemma) _≢_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ x ≢ y = ¬ (x ≡ y) infix 0 _↔_ _↔_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ↔ Q = (P → Q) × (Q → P) infix 0 _←⊗→_ _←⊗→_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ←⊗→ Q = (P → ¬ Q) × (Q → ¬ P) ∃ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∃ = Σ _ ∄ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∄ = ¬_ ∘ ∃ infixl 4 _⊎_ _⊎_ = Either {-# DISPLAY Either = _⊎_ #-} --open import Agda.Builtin.Size public open import Size public open import Control.Monad.State public open import Control.Monad.Identity public open import Container.Traversable public open import Container.List renaming (_∈_ to _∈Container_) public sequence : ∀ {a b} {A : Set a} {F : Set a → Set b} ⦃ _ : Applicative F ⦄ → List (F A) → F ⊤′ sequence [] = pure tt sequence (x ∷ xs) = x *> sequence xs open import Tactic.Nat public open import Tactic.Deriving.Eq public
{ "alphanum_fraction": 0.5919589393, "avg_line_length": 25.4130434783, "ext": "agda", "hexsha": "3e0ab62bc0962d12981f5f5e40e7ef3d1744eb6d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/OscarPrelude.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/OscarPrelude.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/OscarPrelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 531, "size": 1169 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Semi-heterogeneous vector equality over setoids ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.Vec.Relation.Binary.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Data.Vec open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW using (Pointwise) open import Function open import Level using (_⊔_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definition of equality infix 4 _≋_ _≋_ : ∀ {m n} → REL (Vec A m) (Vec A n) (a ⊔ ℓ) _≋_ = Pointwise _≈_ open Pointwise public using ([]; _∷_) open PW public using (length-equal) ------------------------------------------------------------------------ -- Relational properties ≋-refl : ∀ {n} → Reflexive (_≋_ {n}) ≋-refl = PW.refl refl ≋-sym : ∀ {n m} → Sym _≋_ (_≋_ {m} {n}) ≋-sym = PW.sym sym ≋-trans : ∀ {n m o} → Trans (_≋_ {m}) (_≋_ {n} {o}) (_≋_) ≋-trans = PW.trans trans ≋-isEquivalence : ∀ n → IsEquivalence (_≋_ {n}) ≋-isEquivalence = PW.isEquivalence isEquivalence ≋-setoid : ℕ → Setoid a (a ⊔ ℓ) ≋-setoid = PW.setoid S ------------------------------------------------------------------------ -- map open PW public using ( map⁺) ------------------------------------------------------------------------ -- ++ open PW public using (++⁺ ; ++⁻ ; ++ˡ⁻; ++ʳ⁻) ++-identityˡ : ∀ {n} (xs : Vec A n) → [] ++ xs ≋ xs ++-identityˡ _ = ≋-refl ++-identityʳ : ∀ {n} (xs : Vec A n) → xs ++ [] ≋ xs ++-identityʳ [] = [] ++-identityʳ (x ∷ xs) = refl ∷ ++-identityʳ xs map-++-commute : ∀ {b m n} {B : Set b} (f : B → A) (xs : Vec B m) {ys : Vec B n} → map f (xs ++ ys) ≋ map f xs ++ map f ys map-++-commute f [] = ≋-refl map-++-commute f (x ∷ xs) = refl ∷ map-++-commute f xs ------------------------------------------------------------------------ -- concat open PW public using (concat⁺; concat⁻) ------------------------------------------------------------------------ -- replicate replicate-shiftʳ : ∀ {m} n x (xs : Vec A m) → replicate {n = n} x ++ (x ∷ xs) ≋ replicate {n = 1 + n} x ++ xs replicate-shiftʳ zero x xs = ≋-refl replicate-shiftʳ (suc n) x xs = refl ∷ (replicate-shiftʳ n x xs)
{ "alphanum_fraction": 0.4499229584, "avg_line_length": 28.8444444444, "ext": "agda", "hexsha": "5403745b902bf83f1e426b8022140e9fd604c67b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Setoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 770, "size": 2596 }
module IIRD where open import LF -- A code for an IIRD (captures both general and restricted IIRDs) -- I - index set -- D - return type of the recursive component -- E - generalised return type of the recursive component (including the index) -- for restricted IIRD E = D i for an external i -- and for general IIRD E = (i : I) × D i -- The intuition is that restricted IIRD are parameterised over the index, -- whereas general IIRD compute their indices. data OP (I : Set)(D : I -> Set1)(E : Set1) : Set1 where -- Nullary constructor, contains the result of the recursive component ι : E -> OP I D E -- Non-recursive argument A, following arguments may depend on this argument. -- To code multi-constructor datatypes, the first argument is the name of the -- constructor and γ does the appropriate case-split on the name. σ : (A : Set)(γ : A -> OP I D E) -> OP I D E -- Recursive argument -- A - assumptions, for instance lim : (Nat -> Ord) -> Ord, where A = Nat -- i - the index of the inductive occurrence -- γ - the rest of the arguments, may depend on the result of calling the -- recursive function on the inductive argument δ : (A : Set)(i : A -> I)(γ : ((a : A) -> D (i a)) -> OP I D E) -> OP I D E -- Helper function. The definition is simple, but the type is not. _«_×_» : {A B : Set}{C : B -> Set}{D : B -> Set1} (f : (b : B) -> C b -> D b) (g : A -> B)(h : (a : A) -> C (g a)) -> (a : A) -> D (g a) f « g × h » = \a -> f (g a) (h a) -- The type of constructor arguments. Parameterised over -- U - the inductive type -- T - the recursive function -- This is the F of the simple polynomial type μF Ku : {I : Set}{D : I -> Set1}{E : Set1} -> OP I D E -> (U : I -> Set)(T : (i : I) -> U i -> D i) -> Set Ku (ι e) U T = One Ku (σ A γ) U T = A × \a -> Ku (γ a) U T Ku (δ A i γ) U T = ((a : A) -> U (i a)) × \g -> Ku (γ (T « i × g »)) U T -- The recursive function. As with Ku this is only the top-level structure. -- To get the real function there is a recursive knot to be tied. Kt : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> Ku γ U T -> E Kt (ι e) U T ★ = e Kt (σ A γ) U T < a | b > = Kt (γ a) U T b Kt (δ A i γ) U T < g | b > = Kt (γ (T « i × g »)) U T b -- The assumptions of a particular inductive occurrence in a value. KIArg : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> Ku γ U T -> Set KIArg (ι e) U T ★ = Zero KIArg (σ A γ) U T < a | b > = KIArg (γ a) U T b KIArg (δ A i γ) U T < g | b > = A + KIArg (γ (T « i × g »)) U T b -- Given the assumptions of an inductive occurence in a value we can compute -- its index. KIArg→I : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> (a : Ku γ U T) -> KIArg γ U T a -> I KIArg→I (ι e) U T ★ () KIArg→I (σ A γ) U T < a | b > c = KIArg→I (γ a) U T b c KIArg→I (δ A i γ) U T < g | b > (inl a) = i a KIArg→I (δ A i γ) U T < g | b > (inr a) = KIArg→I (γ (T « i × g »)) U T b a -- Given the assumptions of an inductive occurrence in a value we can compute -- its value. KIArg→U : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> (a : Ku γ U T)(v : KIArg γ U T a) -> U (KIArg→I γ U T a v) KIArg→U (ι e) U T ★ () KIArg→U (σ A γ) U T < a | b > c = KIArg→U (γ a) U T b c KIArg→U (δ A i γ) U T < g | b > (inl a) = g a KIArg→U (δ A i γ) U T < g | b > (inr a) = KIArg→U (γ (T « i × g »)) U T b a -- The type of induction hypotheses. Basically -- forall assumptions, the predicate holds for an inductive occurrence with -- those assumptions KIH : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> (F : (i : I) -> U i -> Set1)(a : Ku γ U T) -> Set1 KIH γ U T F a = (v : KIArg γ U T a) -> F (KIArg→I γ U T a v) (KIArg→U γ U T a v) -- If we can prove a predicate F for any values, we can construct the inductive -- hypotheses for a given value. -- Termination note: g will only be applied to values smaller than a Kmap : {I : Set}{D : I -> Set1}{E : Set1} (γ : OP I D E)(U : I -> Set)(T : (i : I) -> U i -> D i) -> (F : (i : I) -> U i -> Set1) (g : (i : I)(u : U i) -> F i u) (a : Ku γ U T) -> KIH γ U T F a Kmap γ U T F g a = \v -> g (KIArg→I γ U T a v) (KIArg→U γ U T a v) -- Things needed for general IIRD OPg : (I : Set)(D : I -> Set1) -> Set1 OPg I D = OP I D (I ×' D) Gu : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i) -> Set Gu γ U T = Ku γ U T Gi : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i) (a : Gu γ U T) -> I Gi γ U T a = π₀' (Kt γ U T a) Gt : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i) (a : Gu γ U T) -> D (Gi γ U T a) Gt γ U T a = π₁' (Kt γ U T a) -- Things needed for restricted IIRD OPr : (I : Set)(D : I -> Set1) -> Set1 OPr I D = (i : I) -> OP I D (D i) Hu : {I : Set}{D : I -> Set1} (γ : OPr I D)(U : I -> Set)(T : (i : I) -> U i -> D i) (i : I) -> Set Hu γ U T i = Ku (γ i) U T Ht : {I : Set}{D : I -> Set1} (γ : OPr I D)(U : I -> Set)(T : (i : I) -> U i -> D i) (i : I)(a : Hu γ U T i) -> D i Ht γ U T i a = Kt (γ i) U T a
{ "alphanum_fraction": 0.5059974165, "avg_line_length": 40.4402985075, "ext": "agda", "hexsha": "59b2b1141b2fd7eae19feadaa5a058eb0463b101", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IIRD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IIRD.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IIRD.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2129, "size": 5419 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Conversion {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.RedSteps open import Definition.Typed.Properties import Definition.Typed.Weakening as Wk open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Tools.Product import Tools.PropositionalEquality as PE -- Conversion of syntactic reduction closures. convRed:*: : ∀ {t u A B Γ} → Γ ⊢ t :⇒*: u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t :⇒*: u ∷ B convRed:*: [ ⊢t , ⊢u , d ] A≡B = [ conv ⊢t A≡B , conv ⊢u A≡B , conv* d A≡B ] mutual -- Helper function for conversion of terms converting from left to right. convTermT₁ : ∀ {l l′ Γ A B t} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] convTermT₁ (ℕᵥ D D′) A≡B t = t convTermT₁ (Emptyᵥ D D′) A≡B t = t convTermT₁ (Unitᵥ D D′) A≡B t = t convTermT₁ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ k d (neNfₜ neK₂ ⊢k k≡k)) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ k (convRed:*: d K≡K₁) (neNfₜ neK₂ (conv ⊢k K≡K₁) (~-conv k≡k K≡K₁)) convTermT₁ {Γ = Γ} (Bᵥ BΠ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΠ ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d ΠFG≡ΠF₁G₁) funcF (≅-conv f≡f ΠFG≡ΠF₁G₁) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₁ {l} {l′} {Γ} (Bᵥ BΣ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Σₜ f d pProd f≡f [fst] [snd]) = let ΣF₁G₁≡ΣF′G′ = whrDet* (red D₁ , Σₙ) (D′ , Σₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΣ ΣF₁G₁≡ΣF′G′ ΣFG≡ΣF₁G₁ = PE.subst (λ x → Γ ⊢ Σ F ▹ G ≡ x) (PE.sym ΣF₁G₁≡ΣF′G′) (≅-eq A≡B) ⊢Γ = wf ⊢F F≡F₁ = PE.subst (λ x → Γ ⊩⟨ l ⟩ wk id F ≡ wk id x / [F] Wk.id ⊢Γ) (PE.sym F₁≡F′) ([F≡F′] Wk.id ⊢Γ) [fst]₁ = convTerm₁ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id (wf ⊢F₁)) F≡F₁ [fst] G≡G₁ = PE.subst (λ x → Γ ⊩⟨ l ⟩ wk (lift id) G [ fst f ] ≡ wk (lift id) x [ fst f ] / [G] Wk.id ⊢Γ [fst]) (PE.sym G₁≡G′) ([G≡G′] Wk.id ⊢Γ [fst]) [snd]₁ = convTerm₁ ([G] Wk.id ⊢Γ [fst]) ([G]₁ Wk.id (wf ⊢F₁) [fst]₁) G≡G₁ [snd] in Σₜ f (convRed:*: d ΣFG≡ΣF₁G₁) pProd (≅-conv f≡f ΣFG≡ΣF₁G₁) [fst]₁ [snd]₁ convTermT₁ (Uᵥ (Uᵣ .⁰ 0<1 ⊢Γ) (Uᵣ .⁰ 0<1 ⊢Γ₁)) A≡B t = t convTermT₁ (emb⁰¹ x) A≡B t = convTermT₁ x A≡B t convTermT₁ (emb¹⁰ x) A≡B t = convTermT₁ x A≡B t -- Helper function for conversion of terms converting from right to left. convTermT₂ : ∀ {l l′ Γ A B t} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] convTermT₂ (ℕᵥ D D′) A≡B t = t convTermT₂ (Emptyᵥ D D′) A≡B t = t convTermT₂ (Unitᵥ D D′) A≡B t = t convTermT₂ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ k d (neNfₜ neK₂ ⊢k k≡k)) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ k (convRed:*: d K₁≡K) (neNfₜ neK₂ (conv ⊢k K₁≡K) (~-conv k≡k K₁≡K)) convTermT₂ {Γ = Γ} (Bᵥ BΠ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΠ ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d (sym ΠFG≡ΠF₁G₁)) funcF (≅-conv f≡f (sym ΠFG≡ΠF₁G₁)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₂ {l} {l′} {Γ = Γ} (Bᵥ BΣ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Σₜ f d pProd f≡f [fst]₁ [snd]₁) = let ΣF₁G₁≡ΣF′G′ = whrDet* (red D₁ , Σₙ) (D′ , Σₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΣ ΣF₁G₁≡ΣF′G′ ΣFG≡ΣF₁G₁ = PE.subst (λ x → Γ ⊢ Σ F ▹ G ≡ x) (PE.sym ΣF₁G₁≡ΣF′G′) (≅-eq A≡B) ⊢Γ = wf ⊢F ⊢Γ₁ = wf ⊢F₁ F≡F₁ = PE.subst (λ x → Γ ⊩⟨ l ⟩ wk id F ≡ wk id x / [F] Wk.id ⊢Γ) (PE.sym F₁≡F′) ([F≡F′] Wk.id ⊢Γ) [fst] = (convTerm₂ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fst]₁) G≡G₁ = PE.subst (λ x → Γ ⊩⟨ l ⟩ wk (lift id) G [ fst f ] ≡ wk (lift id) x [ fst f ] / [G] Wk.id ⊢Γ [fst]) (PE.sym G₁≡G′) ([G≡G′] Wk.id ⊢Γ [fst]) [snd] = (convTerm₂ ([G] Wk.id ⊢Γ [fst]) ([G]₁ Wk.id ⊢Γ₁ [fst]₁) G≡G₁ [snd]₁) in Σₜ f (convRed:*: d (sym ΣFG≡ΣF₁G₁)) pProd (≅-conv f≡f (sym ΣFG≡ΣF₁G₁)) [fst] [snd] convTermT₂ (Uᵥ (Uᵣ .⁰ 0<1 ⊢Γ) (Uᵣ .⁰ 0<1 ⊢Γ₁)) A≡B t = t convTermT₂ (emb⁰¹ x) A≡B t = convTermT₂ x A≡B t convTermT₂ (emb¹⁰ x) A≡B t = convTermT₂ x A≡B t -- Conversion of terms converting from left to right. convTerm₁ : ∀ {Γ A B t l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] convTerm₁ [A] [B] A≡B t = convTermT₁ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from right to left. convTerm₂ : ∀ {Γ A B t l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] -- NOTE: this would be easier to define by mutual induction with symEq (which needs conversion), -- rather than by defining everything from scratch for both left-to-right and right-to-left, -- but with the mutual definition termination checking fails in Agda. convTerm₂ [A] [B] A≡B t = convTermT₂ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from right to left -- with some propositionally equal types. convTerm₂′ : ∀ {Γ A B B′ t l l′} → B PE.≡ B′ → ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B′ / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] convTerm₂′ PE.refl [A] [B] A≡B t = convTerm₂ [A] [B] A≡B t -- Helper function for conversion of term equality converting from left to right. convEqTermT₁ : ∀ {l l′ Γ A B t u} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] convEqTermT₁ (ℕᵥ D D′) A≡B t≡u = t≡u convEqTermT₁ (Emptyᵥ D D′) A≡B t≡u = t≡u convEqTermT₁ (Unitᵥ D D′) A≡B t≡u = t≡u convEqTermT₁ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m)) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ₌ k m (convRed:*: d K≡K₁) (convRed:*: d′ K≡K₁) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K≡K₁)) convEqTermT₁ {Γ = Γ} (Bᵥ BΠ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Bᵣ′ BΠ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d ΠFG≡ΠF₁G₁) (convRed:*: d′ ΠFG≡ΠF₁G₁) funcF funcG (≅-conv t≡u ΠFG≡ΠF₁G₁) (convTerm₁ [A] [B] [A≡B] [t]) (convTerm₁ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , G₁≡G′ = B-PE-injectivity BΠ (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₁ {Γ = Γ} (Bᵥ BΣ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Σₜ₌ p r d d′ pProd rProd p≅r [t] [u] [fstp] [fstr] [fst≡] [snd≡]) = let [A] = Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Bᵣ′ BΣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΣF₁G₁≡ΣF′G′ = whrDet* (red D₁ , Σₙ) (D′ , Σₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΣ ΣF₁G₁≡ΣF′G′ ΣFG≡ΣF₁G₁ = PE.subst (λ x → Γ ⊢ Σ F ▹ G ≡ x) (PE.sym ΣF₁G₁≡ΣF′G′) (≅-eq A≡B) ⊢Γ = wf ⊢F ⊢Γ₁ = wf ⊢F₁ F≡F₁ = PE.subst (λ x → Γ ⊩⟨ _ ⟩ wk id F ≡ wk id x / [F] Wk.id ⊢Γ) (PE.sym F₁≡F′) ([F≡F′] Wk.id ⊢Γ) [fstp]₁ = convTerm₁ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fstp] [fstr]₁ = convTerm₁ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fstr] [fst≡]₁ = convEqTerm₁ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fst≡] G≡G₁ = PE.subst (λ x → Γ ⊩⟨ _ ⟩ wk (lift id) G [ fst p ] ≡ wk (lift id) x [ fst p ] / [G] Wk.id ⊢Γ [fstp]) (PE.sym G₁≡G′) ([G≡G′] Wk.id ⊢Γ [fstp]) [snd≡]₁ = convEqTerm₁ ([G] Wk.id ⊢Γ [fstp]) ([G]₁ Wk.id ⊢Γ₁ [fstp]₁) G≡G₁ [snd≡] in Σₜ₌ p r (convRed:*: d ΣFG≡ΣF₁G₁) (convRed:*: d′ ΣFG≡ΣF₁G₁) pProd rProd (≅-conv p≅r ΣFG≡ΣF₁G₁) (convTerm₁ [A] [B] [A≡B] [t]) (convTerm₁ [A] [B] [A≡B] [u]) [fstp]₁ [fstr]₁ [fst≡]₁ [snd≡]₁ convEqTermT₁ (Uᵥ (Uᵣ .⁰ 0<1 ⊢Γ) (Uᵣ .⁰ 0<1 ⊢Γ₁)) A≡B t≡u = t≡u convEqTermT₁ (emb⁰¹ x) A≡B t≡u = convEqTermT₁ x A≡B t≡u convEqTermT₁ (emb¹⁰ x) A≡B t≡u = convEqTermT₁ x A≡B t≡u -- Helper function for conversion of term equality converting from right to left. convEqTermT₂ : ∀ {l l′ Γ A B t u} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] convEqTermT₂ (ℕᵥ D D′) A≡B t≡u = t≡u convEqTermT₂ (Emptyᵥ D D′) A≡B t≡u = t≡u convEqTermT₂ (Unitᵥ D D′) A≡B t≡u = t≡u convEqTermT₂ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m)) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ₌ k m (convRed:*: d K₁≡K) (convRed:*: d′ K₁≡K) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K₁≡K)) convEqTermT₂ {Γ = Γ} (Bᵥ BΠ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Bᵣ′ BΠ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d (sym ΠFG≡ΠF₁G₁)) (convRed:*: d′ (sym ΠFG≡ΠF₁G₁)) funcF funcG (≅-conv t≡u (sym ΠFG≡ΠF₁G₁)) (convTerm₂ [A] [B] [A≡B] [t]) (convTerm₂ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , G₁≡G′ = B-PE-injectivity BΠ (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₂ {Γ = Γ} (Bᵥ BΣ (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Σₜ₌ p r d d′ funcF funcG t≡u [t] [u] [fstp]₁ [fstr]₁ [fst≡]₁ [snd≡]₁) = let [A] = Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Bᵣ′ BΣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΣF₁G₁≡ΣF′G′ = whrDet* (red D₁ , Σₙ) (D′ , Σₙ) F₁≡F′ , G₁≡G′ = B-PE-injectivity BΣ ΣF₁G₁≡ΣF′G′ ΣFG≡ΣF₁G₁ = PE.subst (λ x → Γ ⊢ Σ F ▹ G ≡ x) (PE.sym ΣF₁G₁≡ΣF′G′) (≅-eq A≡B) ⊢Γ = wf ⊢F ⊢Γ₁ = wf ⊢F₁ F≡F₁ = PE.subst (λ x → Γ ⊩⟨ _ ⟩ wk id F ≡ wk id x / [F] Wk.id ⊢Γ) (PE.sym F₁≡F′) ([F≡F′] Wk.id ⊢Γ) [fstp] = convTerm₂ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fstp]₁ [fstr] = convTerm₂ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fstr]₁ [fst≡] = convEqTerm₂ ([F] Wk.id ⊢Γ) ([F]₁ Wk.id ⊢Γ₁) F≡F₁ [fst≡]₁ G≡G₁ = PE.subst (λ x → Γ ⊩⟨ _ ⟩ wk (lift id) G [ fst p ] ≡ wk (lift id) x [ fst p ] / [G] Wk.id ⊢Γ [fstp]) (PE.sym G₁≡G′) ([G≡G′] Wk.id ⊢Γ [fstp]) [snd≡] = convEqTerm₂ ([G] Wk.id ⊢Γ [fstp]) ([G]₁ Wk.id ⊢Γ₁ [fstp]₁) G≡G₁ [snd≡]₁ in Σₜ₌ p r (convRed:*: d (sym ΣFG≡ΣF₁G₁)) (convRed:*: d′ (sym ΣFG≡ΣF₁G₁)) funcF funcG (≅-conv t≡u (sym ΣFG≡ΣF₁G₁)) (convTerm₂ [A] [B] [A≡B] [t]) (convTerm₂ [A] [B] [A≡B] [u]) [fstp] [fstr] [fst≡] [snd≡] convEqTermT₂ (Uᵥ (Uᵣ .⁰ 0<1 ⊢Γ) (Uᵣ .⁰ 0<1 ⊢Γ₁)) A≡B t≡u = t≡u convEqTermT₂ (emb⁰¹ x) A≡B t≡u = convEqTermT₂ x A≡B t≡u convEqTermT₂ (emb¹⁰ x) A≡B t≡u = convEqTermT₂ x A≡B t≡u -- Conversion of term equality converting from left to right. convEqTerm₁ : ∀ {l l′ Γ A B t u} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] convEqTerm₁ [A] [B] A≡B t≡u = convEqTermT₁ (goodCases [A] [B] A≡B) A≡B t≡u -- Conversion of term equality converting from right to left. convEqTerm₂ : ∀ {l l′ Γ A B t u} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] convEqTerm₂ [A] [B] A≡B t≡u = convEqTermT₂ (goodCases [A] [B] A≡B) A≡B t≡u
{ "alphanum_fraction": 0.3967094197, "avg_line_length": 54.5100286533, "ext": "agda", "hexsha": "0029c838e1119f6bdf918d22f4c8340cd300b13e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9787, "size": 19024 }
module Negative4 where data Empty : Set where data NSPos : Set where c : ((NSPos -> Empty) -> NSPos) -> NSPos
{ "alphanum_fraction": 0.6355932203, "avg_line_length": 11.8, "ext": "agda", "hexsha": "0cbf4aa364f4176eb274650e4f59c6c3a242c672", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Negative4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Negative4.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Negative4.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 35, "size": 118 }
module Implicits.Syntax.Type.Constructors where open import Prelude open import Implicits.Syntax.Type open import Implicits.Substitutions open TypeSubst -- polymorphic identity tid : ∀ {n} → Type n tid = ∀' (simpl ((TVar zero) →' (TVar zero))) -- type of bools encoding tbool : Type 0 tbool = ∀' (simpl ((TVar zero) →' (simpl ((TVar zero) →' (TVar zero))))) -- church numerals tnat : Type 0 tnat = ∀' (simpl ((simpl ((TVar zero) →' (TVar zero))) →' (simpl ((TVar zero) →' (TVar zero))))) -- existential quantification ∃' : ∀ {n} → (Type (suc n)) → Type n ∃' a = ∀' (∀' (simpl ((a tp/tp (wk ↑)) →' (simpl ((TVar (suc zero)) →' (TVar zero)))))) -- unit type ⊤' : ∀ {n} → Type n ⊤' = tid -- zero type ⊥' : ∀ {n} → Type n ⊥' = ∀' (TVar zero) -- n-ary function type infixr 7 _→ⁿ_ _→ⁿ_ : ∀ {n k} → Vec (Type n) k → Type n → Type n [] →ⁿ z = z (a ∷ as) →ⁿ z = as →ⁿ (simpl (a →' z)) -- Record/finite tuple rec : ∀ {n k} → Vec (Type n) k → Type n rec [] = ⊤' rec (a ∷ as) = ∀' (simpl ((map tp-weaken (a ∷ as) →ⁿ TVar zero) →' TVar zero)) -- tuple _×'_ : ∀ {n} → Type n → Type n → Type n a ×' b = rec (a ∷ b ∷ [])
{ "alphanum_fraction": 0.5510204082, "avg_line_length": 24.5, "ext": "agda", "hexsha": "aa7b2b89d99c518b1018accf58dc588639a50141", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax/Type/Constructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax/Type/Constructors.agda", "max_line_length": 96, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax/Type/Constructors.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 465, "size": 1127 }
{-# OPTIONS --without-K --rewriting #-} module Flat where open import lib.Basics open import Basics open import Bool open import lib.types.Bool open import lib.NType2 open import lib.Equivalence2 open import lib.types.Suspension open import lib.types.IteratedSuspension open import lib.types.Pushout as Pushout open import lib.types.Truncation -- The type of points of A, ♭ A, is inductively generated by the crisp elements of A data ♭ {@♭ l : ULevel} (@♭ A : Type l) : Type l where _^♭ : A ::→ ♭ A -- The deduced mapping principle of ♭ A: it represents crisp functions. ♭-elim : {c : ULevel} {@♭ l : ULevel}{@♭ A : Type l} → (C : ♭ A → Type c) → ((@♭ u : A) → C (u ^♭)) → (x : ♭ A) → C x ♭-elim C f (x ^♭) = f x syntax ♭-elim C (λ u → t) a = let♭ u ^♭:= a in♭ t in-family C {- Mike's "let" notation (following Felix) -} -- An implicit version of ♭-elim let♭ : {@♭ i j : ULevel} {@♭ A : Type i} {B : ♭ A → Type j} (a : ♭ A) (f : (@♭ u : A) → B (u ^♭)) → B a let♭ (u ^♭) f = f u syntax let♭ a (λ u → t) = let♭ u ^♭:= a in♭ t ♭-rec : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : Type j} → (A ::→ B) → (♭ A) → B ♭-rec f (a ^♭) = f a ♭-rec-eq : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : Type j} → (A ::→ B) ≃ (♭ A → B) ♭-rec-eq {A = A} {B = B} = equiv ♭-rec (λ f → λ (@♭ a : A) → f (a ^♭)) -- fro (λ f → λ= (λ { (a ^♭) → refl })) -- to-fro (λ f → refl) -- fro-to -- Crisp function types, but from A : ♭ Type _♭:→_ : {@♭ i : ULevel} {j : ULevel} (A : ♭ (Type i)) (B : Type j) → Type (lmax i j) (A ^♭) ♭:→ B = A ::→ B -- The inclusion of the points of A into A _↓♭ : {@♭ i : ULevel} {@♭ A : Type i} → (♭ A → A) _↓♭ (x ^♭) = x -- The (judgemental) computation rule for mapping out of points ♭-β : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : ♭ A) → ((a ↓♭) ^♭) == a ♭-β (a ^♭) = refl -- Application of crisp functions to crisp equalities -- Used mostly to apply _^♭. ♭-ap : {@♭ i j : ULevel} {@♭ A : Type i} {B : Type j} (f : (@♭ a : A) → B) {@♭ x y : A} (@♭ p : x == y) → (f x) == (f y) ♭-ap f refl = refl -- ♭ is a functor ♭→ : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} → (@♭ f : A → B) → (♭ A → ♭ B) ♭→ f (x ^♭) = (f x) ^♭ -- The naturality square of the inclusion of points (judgemental!) ♭→-nat : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} (@♭ f : A → B) → (a : ♭ A) → (f ∘ _↓♭) a == (_↓♭ ∘ (♭→ f)) a ♭→-nat f (a ^♭) = refl -- Proof of functoriality ♭→∘ : {@♭ i j k : ULevel} {@♭ A : Type i} {@♭ B : Type j} {@♭ C : Type k} {@♭ f : A → B} {@♭ g : B → C} → ♭→ (g ∘ f) == (♭→ g) ∘ (♭→ f) ♭→∘ {f = f} {g = g} = λ= (λ a → -- We test on elements, but let♭ u ^♭:= a in♭ -- might as well assume those elements are crisp refl -- where it follows by definition. in-family (λ a → (♭→ (g ∘ f)) a == ((♭→ g) ∘ (♭→ f)) a) ) -- ♭→ preserves crisp equivalences ♭→e : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} → (@♭ e : A ≃ B) → (♭ A) ≃ (♭ B) ♭→e e = equiv (♭→ (–> e)) (♭→ (<– e)) (λ { (a ^♭) → ♭-ap _^♭ (<–-inv-r e a) }) (λ { (a ^♭) → ♭-ap _^♭ (<–-inv-l e a) }) -- A type is discrete if the inclusion of its point is an equivalence. _is-discrete : {@♭ l : ULevel} → (@♭ A : Type l) → Type l _is-discrete {l} A = is-equiv {l} {l} {♭ A} {A} _↓♭ -- The equivalence between the points of a discrete type and itself discrete-eq : {@♭ l : ULevel} {@♭ A : Type l} → A is-discrete → (♭ A) ≃ A discrete-eq = _↓♭ ,_ _is-discrete-is-a-prop : {@♭ l : ULevel} (@♭ A : Type l) → (A is-discrete) is-a-prop A is-discrete-is-a-prop = is-equiv-is-prop is-discrete-prop : {@♭ l : ULevel} → SubtypeProp (♭ (Type l)) l is-discrete-prop = (λ { (A ^♭) → A is-discrete }) , (λ { (A ^♭) → A is-discrete-is-a-prop }) -- The subtype of discrete types Discrete : (@♭ l : ULevel) → Type (lsucc l) Discrete l = Subtype is-discrete-prop Discrete-_-Type_ : (@♭ n : ℕ₋₂) (@♭ i : ULevel) → Type (lsucc i) Discrete- n -Type i = Subtype prop where prop : SubtypeProp (♭ (n -Type i)) i prop = (λ { (A ^♭) → (fst A) is-discrete }) , (λ { (A ^♭) → (fst A) is-discrete-is-a-prop }) DiscSet : (@♭ i : ULevel) → Type (lsucc i) DiscSet i = Discrete- ⟨ S (S O) ⟩₋₂ -Type i DiscSet₀ = DiscSet lzero ∈Disc : {@♭ i : ULevel} (A : DiscSet i) → Type i ∈Disc A = ((♭→ ∈) (fst A)) ↓♭ DiscSet-to-Set : {@♭ i : ULevel} → DiscSet i → hSet i DiscSet-to-Set A = (fst A) ↓♭ -- DiscSet_is-discrete : {@♭ i : ULevel} → (@♭ A : DiscSet i) → (∈Disc A) is-discrete -- DiscSet A is-discrete = {!(snd A)!} -- Just in case, we apply univalence to the discrete-eq discrete-id : {@♭ l : ULevel} {@♭ A : Type l} → A is-discrete → (♭ A) == A discrete-id p = ua (discrete-eq p) -- Obviously, the points of a type are discrete ♭-is-discrete : {@♭ l : ULevel} {@♭ A : Type l} → (♭ A) is-discrete ♭-is-discrete {_} {A} = _↓♭ is-an-equivalence-because fro is-inverse-by to-fro and fro-to where fro : ♭ A → ♭ (♭ A) fro (a ^♭) = (a ^♭) ^♭ to-fro : (a : ♭ A) → ((fro a) ↓♭) == a to-fro (a ^♭) = refl fro-to : (a : ♭ (♭ A)) → fro (a ↓♭) == a fro-to ((a ^♭) ^♭) = refl -- To prove the ♭i is an equivalence, it suffices to give a section of it. _is-discrete-because_is-section-by_ : {@♭ l : ULevel} (@♭ A : Type l) (@♭ s : A → ♭ A) (@♭ p : (a : A) → ((s a) ↓♭)== a) → A is-discrete A is-discrete-because s is-section-by p = _↓♭ is-an-equivalence-because s is-inverse-by p and (λ { (a ^♭) → ! (♭-β (s a)) ∙ (♭-ap _^♭ (p a))}) -- ♭ commutes with identity types in the following sense module _ {@♭ i : ULevel} {@♭ A : Type i} where ♭-identity-eq : (@♭ x y : A) → ♭ (x == y) ≃ ((x ^♭) == (y ^♭)) ♭-identity-eq _ _ = equiv to fro to-fro fro-to where to : {@♭ x y : A} → ♭ (x == y) → ((x ^♭) == (y ^♭)) to (refl ^♭) = refl fro : {@♭ x y : A} → ((x ^♭) == (y ^♭)) → ♭ (x == y) fro refl = refl ^♭ to-fro : {@♭ x y : A} → (p : (x ^♭) == (y ^♭)) → (to (fro p) == p) to-fro refl = refl fro-to : {@♭ x y : A} → (p : ♭ (x == y)) → fro (to p) == p fro-to (refl ^♭) = refl {- From Tslil: There once was a Bear in a Zoo Who didn't know quite what to do It bored him so To walk to and fro So he flipped it and walked fro and to -} -- ♭ preserves crisp level. ♭-preserves-level : {@♭ i : ULevel} {@♭ A : Type i} {@♭ n : ℕ₋₂} (@♭ p : has-level n A) → has-level n (♭ A) ♭-preserves-level {_}{A}{⟨-2⟩} p = has-level-in ((a ^♭) , (λ {(y ^♭) → (–> (♭-identity-eq a y)) ((contr-path p y )^♭)})) where -- If A contracts onto a, then ♭ A contracts onto a ^♭ a = contr-center p ♭-preserves-level {_}{A}{S n} p = has-level-in (λ {(x ^♭) (y ^♭) → equiv-preserves-level (♭-identity-eq x y) {{♭-preserves-level {_}{(x == y)}{n} (has-level-apply p x y)}}}) {- Because the equality types of ♭ A are themselves ♭ (x == y) for x y : A, and because we know that x == y has level n if A has level (S n), we can recurse to show that ♭ (x == y) has level n and therefore ♭ A has level (S n). -} -- A version of ♭ that acts on n-types. ♭ₙ : {@♭ i : ULevel} {@♭ n : ℕ₋₂} → (@♭ A : n -Type i) → (n -Type i) ♭ₙ A = (♭ (fst A)) , ♭-preserves-level (snd A) ♭-Trunc-map : {@♭ i : ULevel} {@♭ n : ℕ₋₂} (@♭ X : Type i) → (Trunc n (♭ X)) → ♭ (Trunc n X) ♭-Trunc-map X = Trunc-elim {{p = ♭-preserves-level Trunc-level}} (λ { (a ^♭) → [ a ] ^♭ }) -- Until ♯ works we have to postulate this. ♭-Trunc-eq : {@♭ i : ULevel} {@♭ n : ℕ₋₂} (@♭ X : Type i) → (Trunc n (♭ X)) ≃ ♭ (Trunc n X) ♭-Trunc-eq X = (♭-Trunc-map X) , unproven where postulate unproven : (♭-Trunc-map X) is-an-equiv ⊤-is-discrete : ⊤ is-discrete ⊤-is-discrete = _↓♭ is-an-equivalence-because (λ {unit → unit ^♭}) is-inverse-by (λ {unit → refl}) and (λ {(unit ^♭) → refl}) -- ♭ commutes with coproducts. ♭-commutes-with-⊔ : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} → ♭ (A ⊔ B) ≃ (♭ A) ⊔ (♭ B) ♭-commutes-with-⊔ = to , (to is-an-equivalence-because fro is-inverse-by (λ { (inl (a ^♭)) → refl ; (inr (b ^♭)) → refl }) and (λ { ((inl a) ^♭) → refl ; ((inr b) ^♭) → refl })) where to : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} → ♭ (A ⊔ B) → (♭ A) ⊔ (♭ B) to ((inl a) ^♭) = inl (a ^♭) to ((inr b) ^♭) = inr (b ^♭) fro : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} → (♭ A) ⊔ (♭ B) → ♭ (A ⊔ B) fro (inl (a ^♭)) = (inl a) ^♭ fro (inr (b ^♭)) = (inr b) ^♭ -- ♭ commutes with Σ types for crisp families. module _ {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : A → Type j} where ♭-commutes-with-Σ : ♭ (Σ A B) ≃ Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u)) ♭-commutes-with-Σ = equiv to fro ((λ { ((a ^♭) , (b ^♭)) → refl })) ((λ { ((a , b) ^♭) → refl })) where to : ♭ (Σ A B) → Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u)) to ((a , b) ^♭) = ((a ^♭) , (b ^♭)) fro : Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u)) → ♭ (Σ A B) fro ((a ^♭) , (b ^♭)) = (a , b) ^♭ ℕ-is-discrete : ℕ is-discrete ℕ-is-discrete = ℕ is-discrete-because fro is-section-by to-fro where fro : ℕ → ♭ ℕ fro O = O ^♭ fro (S n) = (♭→ S) (fro n) to-fro : (n : ℕ) → ((fro n) ↓♭) == n to-fro O = refl to-fro (S n) = (fro (S n)) ↓♭ =⟨ ! ((♭→-nat S) (fro n)) ⟩ (S ∘ _↓♭) (fro n) =⟨ ap S (to-fro n) ⟩ S n =∎ {- When proving this equality by induction on n, the case of 0 presents no problem, but when we work with (S n), we have to deal with the fact that n is not crisp. However, as a constructor (and therefore defined in the empty context), S is crisp. Therefore, we can use the naturality sqaure of ♭ to commute it past fro, and then recurse. -} -- We copy the proof for ULevel (or would but we can't pattern match on lsucc?) {- ULevel-is-discrete : ULevel is-discrete ULevel-is-discrete = ULevel is-discrete-because fro is-section-by to-fro where fro : ULevel → ♭ ULevel fro lzero = lzero ^♭ fro (lsucc n) = (♭→ lsucc) (fro n) to-fro : (n : ULevel) → ♭i (fro n) == n to-fro lzero = refl to-fro (lsucc n) = ♭i (fro (lsucc n)) =⟨ ! ((♭→-nat lsucc) (fro n)) ⟩ (lsucc ∘ ♭i) (fro n) =⟨ ap lsucc (to-fro n) ⟩ lsucc n =∎ -} Bool-is-discrete : Bool is-discrete Bool-is-discrete = Bool is-discrete-because fro is-section-by to-fro where fro : Bool → ♭ Bool fro true = true ^♭ fro false = false ^♭ to-fro : (b : Bool) → ((fro b) ↓♭)== b to-fro true = refl to-fro false = refl Bool-to-♭PropT₀ : Bool → ♭ PropT₀ Bool-to-♭PropT₀ true = True ^♭ Bool-to-♭PropT₀ false = False ^♭ Bool-to-♭PropT₀∘↓♭=♭→Bool-to-PropT₀ : Bool-to-♭PropT₀ ∘ _↓♭ == (♭→ Bool-to-PropT₀) Bool-to-♭PropT₀∘↓♭=♭→Bool-to-PropT₀ = λ= (λ { (true ^♭) → refl ; (false ^♭) → refl }) {- _-Sphere-is-discrete : (@♭ n : ℕ) → (Sphere n) is-discrete n -Sphere-is-discrete = (Sphere n) is-discrete-because (fro n) is-section-by {!!} where ♭-north : {@♭ n : ℕ} → ♭ (Sphere n) ♭-north {O} = true ^♭ ♭-north {S n} = {!north!} ♭-south : {@♭ n : ℕ} → ♭ (Sphere n) ♭-south = {!!} fro : (@♭ n : ℕ) → (Sphere n) → ♭ (Sphere n) fro O = λ { true → true ^♭ ; false → false ^♭ } fro (S n) = {!Susp-rec {A = Sphere n} {C = ♭ (Sphere (S n))} ♭-north ♭-south!} -}
{ "alphanum_fraction": 0.437833595, "avg_line_length": 35.6862745098, "ext": "agda", "hexsha": "37423864d848ff876c2abf613b6840c3a695a06c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Flat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Flat.agda", "max_line_length": 102, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Flat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 5103, "size": 12740 }
record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ infixr 1 _,_ _∩_ : {I : Set} → (I → Set) → (I → Set) → I → Set P ∩ Q = λ i → P i × Q i record Preorder : Set₁ where no-eta-equality field I : Set infix 4 _∈_ postulate Ty World Cxt : Set All : (P : Ty → Set) → Cxt → Set _∈_ : Ty → World → Set module Monotone (pre : Preorder) where open Preorder pre postulate Monotone : (I → Set) → Set instance postulate all-monotone : {Γ : Cxt} {C : Ty → I → Set} ⦃ w : ∀ {ty} → Monotone (C ty) ⦄ → Monotone (λ W → All (λ ty → C ty W) Γ) module Monad (pre : Preorder) (let open Preorder pre) (M : (I → Set) → I → Set) where postulate _>>=_ : ∀ {P Q W} → M P W → (∀ {W'} → P W' → M Q W') → M Q W postulate M : (World → Set) → World → Set Val : World → Set preorder : Preorder preorder .Preorder.I = World module Inner (Dummy : Set) where -- Succeeds if no Dummy private -- Succeeds if type is given pre : _ -- Preorder pre = preorder open Monotone pre open Monad pre M postulate R : World → Set instance any-monotone : ∀ {ty} → Monotone (ty ∈_) local : ∀ Γ {W} → R W × All (_∈ W) Γ → M Val W ^ : ∀ {Q : World → Set} ⦃ m : Monotone Q ⦄ → ∀ {W} → Q W → M (R ∩ Q) W eval-method : ∀ Γ {W} → All (_∈ W) Γ → M Val W eval-method Γ args = ^ args >>= local _ -- Succeeds if giving Γ for _
{ "alphanum_fraction": 0.5226504395, "avg_line_length": 20.8309859155, "ext": "agda", "hexsha": "68bfaf8a71d7cd8e10be953ff0de8f0669724be1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3177a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3177a.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3177a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 564, "size": 1479 }
module Prelude.Vec where open import Prelude.Nat open import Prelude.Fin open import Prelude.Unit open import Prelude.List using (List ; [] ; _::_) infixr 40 _::_ data Vec (A : Set) : Nat -> Set where _::_ : forall {n} -> A -> Vec A n -> Vec A (S n) [] : Vec A Z infixr 30 _++_ _++_ : {A : Set}{m n : Nat} -> Vec A m -> Vec A n -> Vec A (m + n) [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) snoc : {A : Set}{n : Nat} -> Vec A n -> A -> Vec A (S n) snoc [] e = e :: [] snoc (x :: xs) e = x :: snoc xs e length : {A : Set}{n : Nat} -> Vec A n -> Nat length [] = Z length (x :: xs) = 1 + length xs length' : {A : Set}{n : Nat} -> Vec A n -> Nat length' {n = n} _ = n zipWith3 : ∀ {A B C D n} -> (A -> B -> C -> D) -> Vec A n -> Vec B n -> Vec C n -> Vec D n zipWith3 f [] [] [] = [] zipWith3 f (x :: xs) (y :: ys) (z :: zs) = f x y z :: zipWith3 f xs ys zs zipWith : ∀ {A B C n} -> (A -> B -> C) -> Vec A n -> Vec B n -> {u : Unit} -> Vec C n zipWith _ [] [] = [] zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys {u = unit} _!_ : ∀ {A n} -> Vec A n -> Fin n -> A x :: xs ! fz = x _ :: xs ! fs n = xs ! n [] ! () _[_]=_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A -> Vec A n (a :: as) [ fz ]= e = e :: as (a :: as) [ fs n ]= e = a :: (as [ n ]= e) [] [ () ]= e map : ∀ {A B n}(f : A -> B)(xs : Vec A n) -> Vec B n map f [] = [] map f (x :: xs) = f x :: map f xs forgetL : {A : Set}{n : Nat} -> Vec A n -> List A forgetL [] = [] forgetL (x :: xs) = x :: forgetL xs rem : {A : Set}(xs : List A) -> Vec A (Prelude.List.length xs) rem [] = [] rem (x :: xs) = x :: rem xs
{ "alphanum_fraction": 0.4444444444, "avg_line_length": 27.7627118644, "ext": "agda", "hexsha": "d9d2df104a3b101be8afeaf4045bf26562fde4bd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/epic/Prelude/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/epic/Prelude/Vec.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/epic/Prelude/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 652, "size": 1638 }
{-# OPTIONS --without-K #-} module Fmmh where open import Data.List using (List) open import Pitch -- Reconstruction of "Functional Modelling of Musical Harmony" (ICFP 2011) -- using similar notation. Original code: -- https://github.com/chordify/HarmTrace-Base data Mode : Set where maj : Mode min : Mode data ChordQuality : Set where maj : ChordQuality min : ChordQuality dom7 : ChordQuality dim : ChordQuality data Chord : DiatonicDegree → ChordQuality → Set where chord : (d : DiatonicDegree) → (q : ChordQuality) → Chord d q data Ton : Mode → Set where maj : Chord d1 maj → Ton maj min : Chord d1 min → Ton min data SDom : Mode → Set where ii : Chord d2 min → SDom maj iv-maj : Chord d4 maj → SDom maj iii-iv : Chord d3 min → Chord d4 maj → SDom maj iv-min : Chord d4 min → SDom min data Dom (m : Mode) : Set where v7 : Chord d5 dom7 → Dom m v : Chord d5 maj → Dom m vii : Chord d7 dim → Dom m sdom : SDom m → Dom m → Dom m ii-v : Chord d2 dom7 → Chord d5 dom7 → Dom m data Phrase (m : Mode) : Set where i-v-i : Ton m → Dom m → Ton m → Phrase m v-i : Dom m → Ton m → Phrase m data Piece : Set where piece : {m : Mode} → List (Phrase m) → Piece
{ "alphanum_fraction": 0.6469622332, "avg_line_length": 24.8571428571, "ext": "agda", "hexsha": "7c372232f413bb661f42692cb3944709dda4e3b8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/Fmmh.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/Fmmh.agda", "max_line_length": 74, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/Fmmh.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 419, "size": 1218 }
module muRec where open import Data.Nat open import Data.Sum open import Relation.Binary.PropositionalEquality as PE open import PropsAsTypes mutual record D (A : Set) : Set where coinductive field step : Dμ A data Dμ (A : Set) : Set where now : A → Dμ A later : D A → Dμ A open D public coiter-D : {A X : Set} → (X → A ⊎ X) → X → D A coiter-D c x .step with c x ... | inj₁ a = now a ... | inj₂ x' = later (coiter-D c x') compute-D₁ : {A X : Set} (c : X → A ⊎ X) (x : X) → ∀ a → c x ≡ inj₁ a → coiter-D c x .step ≡ now a compute-D₁ c x a p with c x compute-D₁ c x .a refl | inj₁ a = refl compute-D₁ c x a () | inj₂ y compute-D₂ : {A X : Set} (c : X → A ⊎ X) (x : X) → ∀ x' → c x ≡ inj₂ x' → coiter-D c x .step ≡ later (coiter-D c x') compute-D₂ c x x' p with c x compute-D₂ c x x' () | inj₁ a compute-D₂ c x .x' refl | inj₂ x' = refl compute-D-inv₁ : {A X : Set} (c : X → A ⊎ X) (x : X) → ∀ a → coiter-D c x .step ≡ now a → c x ≡ inj₁ a compute-D-inv₁ c x a p with c x compute-D-inv₁ c x .a refl | inj₁ a = refl compute-D-inv₁ c x a () | inj₂ y compute-D-inv₂ : {A X : Set} (c : X → A ⊎ X) (x : X) → ∀ x' → c x ≡ inj₂ x' → coiter-D c x .step ≡ later (coiter-D c x') compute-D-inv₂ c x x' p with c x compute-D-inv₂ c x x' () | inj₁ a compute-D-inv₂ c x .x' refl | inj₂ x' = refl ifIsZero_then_else_ : {A : Set} → ℕ → A → A → A ifIsZero zero then x else y = x ifIsZero (suc _) then x else y = y isZeroProof : ∀{m n k : ℕ} → ifIsZero m then inj₁ n else inj₂ k ≡ inj₁ n → m ≡ 0 isZeroProof {zero} p = refl isZeroProof {suc m} () μ-rec'-coalg : (ℕ → ℕ) → ℕ → ℕ ⊎ ℕ μ-rec'-coalg f n = ifIsZero f n then inj₁ n else inj₂ (suc n) μ-rec' : (ℕ → ℕ) → ℕ → D ℕ μ-rec' f = coiter-D (μ-rec'-coalg f) μ-rec : (ℕ → ℕ) → D ℕ μ-rec f = μ-rec' f 0 data _↓_ {A : Set} (d : D A) (a : A) : Prop where stopped : d .step ≡ now a → d ↓ a delayed : {d' : D A} → d .step ≡ later d' → d' ↓ a → d ↓ a μ-rec'-coalg-correct : (f : ℕ → ℕ) (n : ℕ) → μ-rec'-coalg f n ≡ inj₁ n → f n ≡ 0 μ-rec'-coalg-correct f n p = isZeroProof p μ-rec'-correct : (f : ℕ → ℕ) (m n : ℕ) → (μ-rec' f m ↓ n) → f (m + n) ≡ 0 μ-rec'-correct f m n (stopped p) = let q = compute-D-inv₁ (μ-rec'-coalg f) m n p in {!!} μ-rec'-correct f m n (delayed d' p) = {!!} μ-rec-correct : (f : ℕ → ℕ) (n : ℕ) → (μ-rec f ↓ n) → f n ≡ 0 μ-rec-correct f n (stopped p) = let q = compute-D-inv₁ (μ-rec'-coalg f) 0 n p in μ-rec'-coalg-correct f n {!!} μ-rec-correct f n (delayed d' p) = {!!}
{ "alphanum_fraction": 0.5171762929, "avg_line_length": 29.7640449438, "ext": "agda", "hexsha": "4093780888ffd0706a3b86a35535324cc8206011", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Lecture/muRec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Lecture/muRec.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Lecture/muRec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1083, "size": 2649 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Instances.FreeCommAlgebra where {- The free commutative algebra over a commutative ring, or in other words the ring of polynomials with coefficients in a given ring. Note that this is a constructive definition, which entails that polynomials cannot be represented by lists of coefficients, where the last one is non-zero. For rings with decidable equality, that is still possible. I learned about this (and other) definition(s) from David Jaz Myers. You can watch him talk about these things here: https://www.youtube.com/watch?v=VNp-f_9MnVk This file contains * the definition of the free commutative algebra on a type I over a commutative ring R as a HIT (let us call that R[I]) * a prove that the construction is an commutative R-algebra * definitions of the induced maps appearing in the universal property of R[I], that is: * for any map I → A, where A is a commutative R-algebra, the induced algebra homomorphism R[I] → A ('inducedHom') * for any hom R[I] → A, the 'restricttion to variables' I → A ('evaluateAt') * a proof that the two constructions are inverse to each other ('homRetrievable' and 'mapRetrievable') * a proof, that the corresponding pointwise equivalence of functors is natural ('naturalR', 'naturalL') -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Function hiding (const) open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring using () open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.Algebra open import Cubical.HITs.SetTruncation private variable ℓ ℓ' ℓ'' : Level module Construction (R : CommRing ℓ) where open CommRingStr (snd R) using (1r; 0r) renaming (_+_ to _+r_; _·_ to _·r_) data R[_] (I : Type ℓ') : Type (ℓ-max ℓ ℓ') where var : I → R[ I ] const : ⟨ R ⟩ → R[ I ] _+_ : R[ I ] → R[ I ] → R[ I ] -_ : R[ I ] → R[ I ] _·_ : R[ I ] → R[ I ] → R[ I ] -- \cdot +-assoc : (x y z : R[ I ]) → x + (y + z) ≡ (x + y) + z +-rid : (x : R[ I ]) → x + (const 0r) ≡ x +-rinv : (x : R[ I ]) → x + (- x) ≡ (const 0r) +-comm : (x y : R[ I ]) → x + y ≡ y + x ·-assoc : (x y z : R[ I ]) → x · (y · z) ≡ (x · y) · z ·-lid : (x : R[ I ]) → (const 1r) · x ≡ x ·-comm : (x y : R[ I ]) → x · y ≡ y · x ldist : (x y z : R[ I ]) → (x + y) · z ≡ (x · z) + (y · z) +HomConst : (s t : ⟨ R ⟩) → const (s +r t) ≡ const s + const t ·HomConst : (s t : ⟨ R ⟩) → const (s ·r t) ≡ (const s) · (const t) 0-trunc : (x y : R[ I ]) (p q : x ≡ y) → p ≡ q _⋆_ : {I : Type ℓ'} → ⟨ R ⟩ → R[ I ] → R[ I ] r ⋆ x = const r · x ⋆-assoc : {I : Type ℓ'} → (s t : ⟨ R ⟩) (x : R[ I ]) → (s ·r t) ⋆ x ≡ s ⋆ (t ⋆ x) ⋆-assoc s t x = const (s ·r t) · x ≡⟨ cong (λ u → u · x) (·HomConst _ _) ⟩ (const s · const t) · x ≡⟨ sym (·-assoc _ _ _) ⟩ const s · (const t · x) ≡⟨ refl ⟩ s ⋆ (t ⋆ x) ∎ ⋆-ldist-+ : {I : Type ℓ'} → (s t : ⟨ R ⟩) (x : R[ I ]) → (s +r t) ⋆ x ≡ (s ⋆ x) + (t ⋆ x) ⋆-ldist-+ s t x = (s +r t) ⋆ x ≡⟨ cong (λ u → u · x) (+HomConst _ _) ⟩ (const s + const t) · x ≡⟨ ldist _ _ _ ⟩ (s ⋆ x) + (t ⋆ x) ∎ ⋆-rdist-+ : {I : Type ℓ'} → (s : ⟨ R ⟩) (x y : R[ I ]) → s ⋆ (x + y) ≡ (s ⋆ x) + (s ⋆ y) ⋆-rdist-+ s x y = const s · (x + y) ≡⟨ ·-comm _ _ ⟩ (x + y) · const s ≡⟨ ldist _ _ _ ⟩ (x · const s) + (y · const s) ≡⟨ cong (λ u → u + (y · const s)) (·-comm _ _) ⟩ (s ⋆ x) + (y · const s) ≡⟨ cong (λ u → (s ⋆ x) + u) (·-comm _ _) ⟩ (s ⋆ x) + (s ⋆ y) ∎ ⋆-assoc-· : {I : Type ℓ'} → (s : ⟨ R ⟩) (x y : R[ I ]) → (s ⋆ x) · y ≡ s ⋆ (x · y) ⋆-assoc-· s x y = (s ⋆ x) · y ≡⟨ sym (·-assoc _ _ _) ⟩ s ⋆ (x · y) ∎ 0a : {I : Type ℓ'} → R[ I ] 0a = (const 0r) 1a : {I : Type ℓ'} → R[ I ] 1a = (const 1r) isCommAlgebra : {I : Type ℓ'} → IsCommAlgebra R {A = R[ I ]} 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra = makeIsCommAlgebra 0-trunc +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ldist ·-comm ⋆-assoc ⋆-ldist-+ ⋆-rdist-+ ·-lid ⋆-assoc-· _[_] : (R : CommRing ℓ) (I : Type ℓ') → CommAlgebra R (ℓ-max ℓ ℓ') (R [ I ]) = R[ I ] , commalgebrastr 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra where open Construction R module Theory {R : CommRing ℓ} {I : Type ℓ'} where open CommRingStr (snd R) using (0r; 1r) renaming (_·_ to _·r_; _+_ to _+r_; ·Comm to ·r-comm; ·Rid to ·r-rid) module _ (A : CommAlgebra R ℓ'') (φ : I → ⟨ A ⟩) where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) imageOf0Works : 0r ⋆ 1a ≡ 0a imageOf0Works = 0-actsNullifying 1a imageOf1Works : 1r ⋆ 1a ≡ 1a imageOf1Works = ⋆-lid 1a inducedMap : ⟨ R [ I ] ⟩ → ⟨ A ⟩ inducedMap (var x) = φ x inducedMap (const r) = r ⋆ 1a inducedMap (P +c Q) = (inducedMap P) + (inducedMap Q) inducedMap (-c P) = - inducedMap P inducedMap (Construction.+-assoc P Q S i) = +-assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+-rid P i) = let eq : (inducedMap P) + (inducedMap (const 0r)) ≡ (inducedMap P) eq = (inducedMap P) + (inducedMap (const 0r)) ≡⟨ refl ⟩ (inducedMap P) + (0r ⋆ 1a) ≡⟨ cong (λ u → (inducedMap P) + u) (imageOf0Works) ⟩ (inducedMap P) + 0a ≡⟨ +-rid _ ⟩ (inducedMap P) ∎ in eq i inducedMap (Construction.+-rinv P i) = let eq : (inducedMap P - inducedMap P) ≡ (inducedMap (const 0r)) eq = (inducedMap P - inducedMap P) ≡⟨ +-rinv _ ⟩ 0a ≡⟨ sym imageOf0Works ⟩ (inducedMap (const 0r))∎ in eq i inducedMap (Construction.+-comm P Q i) = +-comm (inducedMap P) (inducedMap Q) i inducedMap (P ·c Q) = inducedMap P · inducedMap Q inducedMap (Construction.·-assoc P Q S i) = ·Assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.·-lid P i) = let eq = inducedMap (const 1r) · inducedMap P ≡⟨ cong (λ u → u · inducedMap P) imageOf1Works ⟩ 1a · inducedMap P ≡⟨ ·Lid (inducedMap P) ⟩ inducedMap P ∎ in eq i inducedMap (Construction.·-comm P Q i) = ·-comm (inducedMap P) (inducedMap Q) i inducedMap (Construction.ldist P Q S i) = ·Ldist+ (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+HomConst s t i) = ⋆-ldist s t 1a i inducedMap (Construction.·HomConst s t i) = let eq = (s ·r t) ⋆ 1a ≡⟨ cong (λ u → u ⋆ 1a) (·r-comm _ _) ⟩ (t ·r s) ⋆ 1a ≡⟨ ⋆-assoc t s 1a ⟩ t ⋆ (s ⋆ 1a) ≡⟨ cong (λ u → t ⋆ u) (sym (·Rid _)) ⟩ t ⋆ ((s ⋆ 1a) · 1a) ≡⟨ ⋆-rassoc t (s ⋆ 1a) 1a ⟩ (s ⋆ 1a) · (t ⋆ 1a) ∎ in eq i inducedMap (Construction.0-trunc P Q p q i j) = isSetAlgebra (CommAlgebra→Algebra A) (inducedMap P) (inducedMap Q) (cong _ p) (cong _ q) i j module _ where open IsAlgebraHom inducedHom : AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) inducedHom .fst = inducedMap inducedHom .snd .pres0 = 0-actsNullifying _ inducedHom .snd .pres1 = imageOf1Works inducedHom .snd .pres+ x y = refl inducedHom .snd .pres· x y = refl inducedHom .snd .pres- x = refl inducedHom .snd .pres⋆ r x = (r ⋆ 1a) · inducedMap x ≡⟨ ⋆-lassoc r 1a (inducedMap x) ⟩ r ⋆ (1a · inducedMap x) ≡⟨ cong (λ u → r ⋆ u) (·Lid (inducedMap x)) ⟩ r ⋆ inducedMap x ∎ module _ (A : CommAlgebra R ℓ'') where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) Hom = AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) open IsAlgebraHom evaluateAt : Hom → I → ⟨ A ⟩ evaluateAt φ x = φ .fst (var x) mapRetrievable : ∀ (φ : I → ⟨ A ⟩) → evaluateAt (inducedHom A φ) ≡ φ mapRetrievable φ = refl proveEq : ∀ {X : Type ℓ''} (isSetX : isSet X) (f g : ⟨ R [ I ] ⟩ → X) → (var-eq : (x : I) → f (var x) ≡ g (var x)) → (const-eq : (r : ⟨ R ⟩) → f (const r) ≡ g (const r)) → (+-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x +c y) ≡ g (x +c y)) → (·-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x ·c y) ≡ g (x ·c y)) → (-eq : (x : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → f (-c x) ≡ g (-c x)) → f ≡ g proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (var x) = var-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (const x) = const-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x +c y) = +-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (-c x) = -eq x ((λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x)) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x ·c y) = ·-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (y +c z)) ≡ g (x +c (y +c z)) a₀₋ = +-eq _ _ (rec x) (+-eq _ _ (rec y) (rec z)) a₁₋ : f ((x +c y) +c z) ≡ g ((x +c y) +c z) a₁₋ = +-eq _ _ (+-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x +c (y +c z)) ≡ f ((x +c y) +c z) a₋₀ = cong f (Construction.+-assoc x y z) a₋₁ : g (x +c (y +c z)) ≡ g ((x +c y) +c z) a₋₁ = cong g (Construction.+-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (const 0r)) ≡ g (x +c (const 0r)) a₀₋ = +-eq _ _ (rec x) (const-eq 0r) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f (x +c (const 0r)) ≡ f x a₋₀ = cong f (Construction.+-rid x) a₋₁ : g (x +c (const 0r)) ≡ g x a₋₁ = cong g (Construction.+-rid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rinv x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (-c x)) ≡ g (x +c (-c x)) a₀₋ = +-eq x (-c x) (rec x) (-eq x (rec x)) a₁₋ : f (const 0r) ≡ g (const 0r) a₁₋ = const-eq 0r a₋₀ : f (x +c (-c x)) ≡ f (const 0r) a₋₀ = cong f (Construction.+-rinv x) a₋₁ : g (x +c (-c x)) ≡ g (const 0r) a₋₁ = cong g (Construction.+-rinv x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c y) ≡ g (x +c y) a₀₋ = +-eq x y (rec x) (rec y) a₁₋ : f (y +c x) ≡ g (y +c x) a₁₋ = +-eq y x (rec y) (rec x) a₋₀ : f (x +c y) ≡ f (y +c x) a₋₀ = cong f (Construction.+-comm x y) a₋₁ : g (x +c y) ≡ g (y +c x) a₋₁ = cong g (Construction.+-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c (y ·c z)) ≡ g (x ·c (y ·c z)) a₀₋ = ·-eq _ _ (rec x) (·-eq _ _ (rec y) (rec z)) a₁₋ : f ((x ·c y) ·c z) ≡ g ((x ·c y) ·c z) a₁₋ = ·-eq _ _ (·-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x ·c (y ·c z)) ≡ f ((x ·c y) ·c z) a₋₀ = cong f (Construction.·-assoc x y z) a₋₁ : g (x ·c (y ·c z)) ≡ g ((x ·c y) ·c z) a₋₁ = cong g (Construction.·-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-lid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((const 1r) ·c x) ≡ g ((const 1r) ·c x) a₀₋ = ·-eq _ _ (const-eq 1r) (rec x) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f ((const 1r) ·c x) ≡ f x a₋₀ = cong f (Construction.·-lid x) a₋₁ : g ((const 1r) ·c x) ≡ g x a₋₁ = cong g (Construction.·-lid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c y) ≡ g (x ·c y) a₀₋ = ·-eq _ _ (rec x) (rec y) a₁₋ : f (y ·c x) ≡ g (y ·c x) a₁₋ = ·-eq _ _ (rec y) (rec x) a₋₀ : f (x ·c y) ≡ f (y ·c x) a₋₀ = cong f (Construction.·-comm x y) a₋₁ : g (x ·c y) ≡ g (y ·c x) a₋₁ = cong g (Construction.·-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.ldist x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((x +c y) ·c z) ≡ g ((x +c y) ·c z) a₀₋ = ·-eq (x +c y) z (+-eq _ _ (rec x) (rec y)) (rec z) a₁₋ : f ((x ·c z) +c (y ·c z)) ≡ g ((x ·c z) +c (y ·c z)) a₁₋ = +-eq _ _ (·-eq _ _ (rec x) (rec z)) (·-eq _ _ (rec y) (rec z)) a₋₀ : f ((x +c y) ·c z) ≡ f ((x ·c z) +c (y ·c z)) a₋₀ = cong f (Construction.ldist x y z) a₋₁ : g ((x +c y) ·c z) ≡ g ((x ·c z) +c (y ·c z)) a₋₁ = cong g (Construction.ldist x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s +r t)) ≡ g (const (s +r t)) a₀₋ = const-eq (s +r t) a₁₋ : f (const s +c const t) ≡ g (const s +c const t) a₁₋ = +-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s +r t)) ≡ f (const s +c const t) a₋₀ = cong f (Construction.+HomConst s t) a₋₁ : g (const (s +r t)) ≡ g (const s +c const t) a₋₁ = cong g (Construction.+HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s ·r t)) ≡ g (const (s ·r t)) a₀₋ = const-eq (s ·r t) a₁₋ : f (const s ·c const t) ≡ g (const s ·c const t) a₁₋ = ·-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s ·r t)) ≡ f (const s ·c const t) a₋₀ = cong f (Construction.·HomConst s t) a₋₁ : g (const (s ·r t)) ≡ g (const s ·c const t) a₋₁ = cong g (Construction.·HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.0-trunc x y p q j k) = let P : (x : ⟨ R [ I ] ⟩) → f x ≡ g x P x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x Q : (x : ⟨ R [ I ] ⟩) → f x ≡ g x Q x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x in isOfHLevel→isOfHLevelDep 2 (λ z → isProp→isSet (isSetX (f z) (g z))) _ _ (cong P p) (cong Q q) (Construction.0-trunc x y p q) j k i homRetrievable : ∀ (f : Hom) → inducedMap A (evaluateAt f) ≡ fst f homRetrievable f = proveEq (isSetAlgebra (CommAlgebra→Algebra A)) (inducedMap A (evaluateAt f)) (λ x → f $a x) (λ x → refl) (λ r → r ⋆ 1a ≡⟨ cong (λ u → r ⋆ u) (sym f.pres1) ⟩ r ⋆ (f $a (const 1r)) ≡⟨ sym (f.pres⋆ r _) ⟩ f $a (const r ·c const 1r) ≡⟨ cong (λ u → f $a u) (sym (Construction.·HomConst r 1r)) ⟩ f $a (const (r ·r 1r)) ≡⟨ cong (λ u → f $a (const u)) (·r-rid r) ⟩ f $a (const r) ∎) (λ x y eq-x eq-y → ι (x +c y) ≡⟨ refl ⟩ (ι x + ι y) ≡⟨ cong (λ u → u + ι y) eq-x ⟩ ((f $a x) + ι y) ≡⟨ cong (λ u → (f $a x) + u) eq-y ⟩ ((f $a x) + (f $a y)) ≡⟨ sym (f.pres+ _ _) ⟩ (f $a (x +c y)) ∎) (λ x y eq-x eq-y → ι (x ·c y) ≡⟨ refl ⟩ ι x · ι y ≡⟨ cong (λ u → u · ι y) eq-x ⟩ (f $a x) · (ι y) ≡⟨ cong (λ u → (f $a x) · u) eq-y ⟩ (f $a x) · (f $a y) ≡⟨ sym (f.pres· _ _) ⟩ f $a (x ·c y) ∎) (λ x eq-x → ι (-c x) ≡⟨ refl ⟩ - ι x ≡⟨ cong (λ u → - u) eq-x ⟩ - (f $a x) ≡⟨ sym (f.pres- x) ⟩ f $a (-c x) ∎) where ι = inducedMap A (evaluateAt f) module f = IsAlgebraHom (f .snd) evaluateAt : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A)) → (I → ⟨ A ⟩) evaluateAt A f x = f $a (Construction.var x) inducedHom : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (φ : I → ⟨ A ⟩) → AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) inducedHom A φ = Theory.inducedHom A φ module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where A′ = CommAlgebra→Algebra A B′ = CommAlgebra→Algebra B R′ = (CommRing→Ring R) ν : AlgebraHom A′ B′ → (⟨ A ⟩ → ⟨ B ⟩) ν φ = φ .fst {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[I],B) → (I → B) -} naturalR : {I : Type ℓ'} (ψ : AlgebraHom A′ B′) (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) A′) → (ν ψ) ∘ evaluateAt A f ≡ evaluateAt B (ψ ∘a f) naturalR ψ f = refl {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[J],A) → (J → A) -} naturalL : {I J : Type ℓ'} (φ : J → I) (f : AlgebraHom (CommAlgebra→Algebra (R [ I ])) A′) → (evaluateAt A f) ∘ φ ≡ evaluateAt A (f ∘a (inducedHom (R [ I ]) (λ x → Construction.var (φ x)))) naturalL φ f = refl
{ "alphanum_fraction": 0.467994167, "avg_line_length": 43.6118421053, "ext": "agda", "hexsha": "2638d4cec4e22ade0941759770e7d25b49bd24d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/FreeCommAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8260, "size": 19887 }
module Imports.Issue5357-B where import Imports.Issue5357-D
{ "alphanum_fraction": 0.85, "avg_line_length": 20, "ext": "agda", "hexsha": "73911edaa3f6823f38973634630504b8438082a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Imports/Issue5357-B.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Imports/Issue5357-B.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Imports/Issue5357-B.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 60 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Reflection-based solver for monoid equalities ------------------------------------------------------------------------ -- -- This solver automates the construction of proofs of equivalences -- between monoid expressions. -- When called like so: -- -- proof : ∀ x y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) ∙ ε -- proof x y z = solve mon -- -- The following diagram describes what happens under the hood: -- -- ┌▸x ∙ (y ∙ (z ∙ ε)) ════ x ∙ (y ∙ (z ∙ ε))◂┐ -- │ ║ ║ │ -- │ ║ ║ │ -- [_⇓] ║ ║ [_⇓] -- ╱ ║ ║ ╲ -- ╱ ║ ║ ╲ -- (x ∙′ y) ∙′ z homo homo x ∙′ (y ∙′ z) ∙′ ε′ -- ▴ ╲ ║ ║ ╱ ▴ -- │ ╲ ║ ║ ╱ │ -- │ [_↓] ║ ║ [_↓] │ -- │ │ ║ ║ │ │ -- │ │ ║ ║ │ │ -- │ └───▸(x ∙ y) ∙ z x ∙ (y ∙ z) ∙ ε◂─┘ │ -- │ │ │ │ -- │ │ │ │ -- └────reflection────┘ └───reflection──────┘ -- -- The actual output—the proof constructed by the solver—is represented -- by the double-lined path (══). -- -- We start at the bottom, with our two expressions. -- Through reflection, we convert these two expressions to their AST -- representations, in the Expr type. -- We then can evaluate the AST in two ways: one simply gives us back -- the two expressions we put in ([_↓]), and the other normalises -- ([_⇓]). -- We use the homo function to prove equivalence between these two -- forms: joining up these two proofs gives us the desired overall -- proof. -- Note: What's going on with the Monoid parameter? -- -- This module is not parameterised over a monoid, which is contrary -- to what you might expect. Instead, we take the monoid record as an -- argument to the solve macro, and then pass it around as an -- argument wherever we need it. -- -- We need to get the monoid record at the call site, not the import -- site, to ensure that it's consistent with the rest of the context. -- For instance, if we wanted to produce `x ∙ y` using the monoid record -- as imported, we would run into problems: -- * If we tried to just reflect on the expression itself -- (quoteTerm (x ∙ y)) we would likely get some de Bruijn indices -- wrong (in x and y), and ∙ might not even be in scope where the -- user wants us to solve! If they're solving an expression like -- x + (y + z), they can pass in the +-0-monoid, but don't have to -- open it themselves. -- * If instead we tried to construct a term which accesses the _∙_ -- field on the reflection of the record, we'd run into similar -- problems again. While the record is a parameter for us, it might -- not be for the user. -- Basically, we need the Monoid we're looking at to be exactly the -- same as the one the user is looking at, and in order to do that we -- quote it at the call site. {-# OPTIONS --without-K --safe #-} module Tactic.MonoidSolver where open import Algebra open import Function open import Data.Bool as Bool using (Bool; _∨_; if_then_else_) open import Data.Maybe as Maybe using (Maybe; just; nothing; maybe) open import Data.List as List using (List; _∷_; []) open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Product as Product using (_×_; _,_) open import Agda.Builtin.Reflection open import Reflection.Argument open import Reflection.Term using (getName; _⋯⟅∷⟆_) open import Reflection.TypeChecking.MonadSyntax import Relation.Binary.Reasoning.Setoid as SetoidReasoning ---------------------------------------------------------------------- -- The Expr type with homomorphism proofs ---------------------------------------------------------------------- infixl 7 _∙′_ data Expr {a} (A : Set a) : Set a where _∙′_ : Expr A → Expr A → Expr A ε′ : Expr A [_↑] : A → Expr A module _ {m₁ m₂} (monoid : Monoid m₁ m₂) where open Monoid monoid open SetoidReasoning setoid -- Convert the AST to an expression (i.e. evaluate it) without -- normalising. [_↓] : Expr Carrier → Carrier [ x ∙′ y ↓] = [ x ↓] ∙ [ y ↓] [ ε′ ↓] = ε [ [ x ↑] ↓] = x -- Convert an AST to an expression (i.e. evaluate it) while -- normalising. -- -- This first function actually converts an AST to the Cayley -- representation of the underlying monoid. -- This obeys the monoid laws up to beta-eta equality, which is the -- property which gives us the "normalising" behaviour we want. [_⇓]′ : Expr Carrier → Carrier → Carrier [ x ∙′ y ⇓]′ z = [ x ⇓]′ ([ y ⇓]′ z) [ ε′ ⇓]′ y = y [ [ x ↑] ⇓]′ y = x ∙ y [_⇓] : Expr Carrier → Carrier [ x ⇓] = [ x ⇓]′ ε homo′ : ∀ x y → [ x ⇓] ∙ y ≈ [ x ⇓]′ y homo′ ε′ y = identityˡ y homo′ [ x ↑] y = ∙-congʳ (identityʳ x) homo′ (x ∙′ y) z = begin [ x ∙′ y ⇓] ∙ z ≡⟨⟩ [ x ⇓]′ [ y ⇓] ∙ z ≈˘⟨ ∙-congʳ (homo′ x [ y ⇓]) ⟩ ([ x ⇓] ∙ [ y ⇓]) ∙ z ≈⟨ assoc [ x ⇓] [ y ⇓] z ⟩ [ x ⇓] ∙ ([ y ⇓] ∙ z) ≈⟨ ∙-congˡ (homo′ y z) ⟩ [ x ⇓] ∙ ([ y ⇓]′ z) ≈⟨ homo′ x ([ y ⇓]′ z) ⟩ [ x ⇓]′ ([ y ⇓]′ z) ∎ homo : ∀ x → [ x ⇓] ≈ [ x ↓] homo ε′ = refl homo [ x ↑] = identityʳ x homo (x ∙′ y) = begin [ x ∙′ y ⇓] ≡⟨⟩ [ x ⇓]′ [ y ⇓] ≈˘⟨ homo′ x [ y ⇓] ⟩ [ x ⇓] ∙ [ y ⇓] ≈⟨ ∙-cong (homo x) (homo y) ⟩ [ x ↓] ∙ [ y ↓] ∎ ---------------------------------------------------------------------- -- Helpers for reflection ---------------------------------------------------------------------- _==_ = primQNameEquality {-# INLINE _==_ #-} getArgs : Term → Maybe (Term × Term) getArgs (def _ xs) = go xs where go : List (Arg Term) → Maybe (Term × Term) go (vArg x ∷ vArg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getArgs _ = nothing ---------------------------------------------------------------------- -- Getting monoid names ---------------------------------------------------------------------- -- We try to be flexible here, by matching two kinds of names. -- The first is the field accessor for the monoid record itself. -- However, users will likely want to use the solver with -- expressions like: -- -- xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs -- -- So we also evaluate the field accessor to find functions like ++. record MonoidNames : Set where field is-∙ : Name → Bool is-ε : Name → Bool buildMatcher : Name → Maybe Name → Name → Bool buildMatcher n nothing x = n == x buildMatcher n (just m) x = n == x ∨ m == x findMonoidNames : Term → TC MonoidNames findMonoidNames mon = do ∙-altName ← normalise (def (quote Monoid._∙_) (2 ⋯⟅∷⟆ mon ⟨∷⟩ [])) ε-altName ← normalise (def (quote Monoid.ε) (2 ⋯⟅∷⟆ mon ⟨∷⟩ [])) returnTC record { is-∙ = buildMatcher (quote Monoid._∙_) (getName ∙-altName) ; is-ε = buildMatcher (quote Monoid.ε) (getName ε-altName) } ---------------------------------------------------------------------- -- Building Expr ---------------------------------------------------------------------- -- We now define a function that takes an AST representing the LHS -- or RHS of the equation to solve and converts it into an AST -- respresenting the corresponding Expr. ″ε″ : Term ″ε″ = quote ε′ ⟨ con ⟩ [] [_↑]′ : Term → Term [ t ↑]′ = quote [_↑] ⟨ con ⟩ (t ⟨∷⟩ []) module _ (names : MonoidNames) where open MonoidNames names mutual ″∙″ : List (Arg Term) → Term ″∙″ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _∙′_ ⟨ con ⟩ buildExpr x ⟨∷⟩ buildExpr y ⟨∷⟩ [] ″∙″ (x ∷ xs) = ″∙″ xs ″∙″ _ = unknown buildExpr : Term → Term buildExpr t@(def n xs) = if is-∙ n then ″∙″ xs else if is-ε n then ″ε″ else [ t ↑]′ buildExpr t@(con n xs) = if is-∙ n then ″∙″ xs else if is-ε n then ″ε″ else [ t ↑]′ buildExpr t = quote [_↑] ⟨ con ⟩ (t ⟨∷⟩ []) ---------------------------------------------------------------------- -- Constructing the solution ---------------------------------------------------------------------- -- This function joins up the two homomorphism proofs. It constructs -- a proof of the following form: -- -- trans (sym (homo x)) (homo y) -- -- where x and y are the Expr representations of each side of the -- goal equation. constructSoln : Term → MonoidNames → Term → Term → Term constructSoln mon names lhs rhs = quote Monoid.trans ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote Monoid.sym ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ (quote homo ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ buildExpr names lhs ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩ (quote homo ⟨ def ⟩ 2 ⋯⟅∷⟆ mon ⟨∷⟩ buildExpr names rhs ⟨∷⟩ []) ⟨∷⟩ [] ---------------------------------------------------------------------- -- Macro ---------------------------------------------------------------------- solve-macro : Term → Term → TC _ solve-macro mon hole = do hole′ ← inferType hole >>= normalise names ← findMonoidNames mon just (lhs , rhs) ← returnTC (getArgs hole′) where nothing → typeError (termErr hole′ ∷ []) let soln = constructSoln mon names lhs rhs unify hole soln macro solve : Term → Term → TC _ solve = solve-macro
{ "alphanum_fraction": 0.4810574521, "avg_line_length": 35.3235294118, "ext": "agda", "hexsha": "e9f150e22f6d86a1eb8aead1a1cd0aef6097703b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/MonoidSolver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/MonoidSolver.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/MonoidSolver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2925, "size": 9608 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SmashProduct where open import Cubical.HITs.SmashProduct.Base public -- open import Cubical.HITs.SmashProduct.Properties public
{ "alphanum_fraction": 0.7810945274, "avg_line_length": 28.7142857143, "ext": "agda", "hexsha": "9a9c934212d8506ec51a8035dd9a4322496d5bb8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/SmashProduct.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/SmashProduct.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/SmashProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 52, "size": 201 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor -- Street fibration, which is the version of fibration that respects the principle of equivalence. -- https://ncatlab.org/nlab/show/Grothendieck+fibration#StreetFibration module Categories.Functor.Fibration {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) where open import Level open import Categories.Morphism D using (_≅_) open import Categories.Morphism.Cartesian using (Cartesian) private module C = Category C module D = Category D open Functor F record Fibration : Set (levelOfTerm F) where field universal₀ : ∀ {A B} (f : A D.⇒ F₀ B) → C.Obj universal₁ : ∀ {A B} (f : A D.⇒ F₀ B) → universal₀ f C.⇒ B iso : ∀ {A B} (f : A D.⇒ F₀ B) → F₀ (universal₀ f) ≅ A module iso {A B} (f : A D.⇒ F₀ B) = _≅_ (iso f) field commute : ∀ {A B} (f : A D.⇒ F₀ B) → f D.∘ iso.from f D.≈ F₁ (universal₁ f) cartesian : ∀ {A B} (f : A D.⇒ F₀ B) → Cartesian F (universal₁ f) module cartesian {A B} (f : A D.⇒ F₀ B) = Cartesian (cartesian f)
{ "alphanum_fraction": 0.6395663957, "avg_line_length": 33.5454545455, "ext": "agda", "hexsha": "96732aad876672ad58c19f5988a3dd83190bef8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Fibration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Fibration.agda", "max_line_length": 121, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Fibration.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 399, "size": 1107 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.EilenbergSteenrod where {- This module contains the Eilenberg-Steenrod axioms for ordinary reduced cohomology theories with binary additivity. The axioms are based on the ones given in Cavallo's MSc thesis (https://www.cs.cmu.edu/~ecavallo/works/thesis15.pdf) and Buchholtz/Favonia (2018) -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.HITs.Susp open import Cubical.Data.Empty open import Cubical.Relation.Nullary open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.Data.Int open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open GroupEquiv open GroupHom record coHomTheory {ℓ ℓ' : Level} (H : (n : Int) → Pointed ℓ → AbGroup {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where Boolℓ : Pointed ℓ Boolℓ = Lift Bool , lift true field Hmap : (n : Int) → {A B : Pointed ℓ} (f : A →∙ B) → AbGroupHom (H n B) (H n A) Suspension : Σ[ F ∈ ((n : Int) {A : Pointed ℓ} → AbGroupEquiv (H (sucInt n) (Susp (typ A) , north)) (H n A)) ] ({A B : Pointed ℓ} (f : A →∙ B) (n : Int) → fun (Hmap (sucInt n) (suspFun (fst f) , refl)) ∘ invEq (eq (F n {A = B})) ≡ invEq (eq (F n {A = A})) ∘ fun (Hmap n f)) Exactness : {A B : Pointed ℓ} (f : A →∙ B) (n : Int) → Ker (Hmap n f) ≡ Im (Hmap n {B = _ , inr (pt B)} (cfcod (fst f) , refl)) Dimension : (n : Int) → ¬ n ≡ 0 → isContr (fst (H n Boolℓ)) BinaryWedge : (n : Int) {A B : Pointed ℓ} → AbGroupEquiv (H n (A ⋁ B , (inl (pt A)))) (dirProdAb (H n A) (H n B))
{ "alphanum_fraction": 0.6415401302, "avg_line_length": 36.88, "ext": "agda", "hexsha": "ffcef42b61207e2053f4ef319dbe9ad305975846", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Homotopy/EilenbergSteenrod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Homotopy/EilenbergSteenrod.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Homotopy/EilenbergSteenrod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 652, "size": 1844 }
data D : Set → Set1 where c : (A B : Set) → D (A → B) test : (X : Set) → D X → Set test .(A → B) (c A B) = A -- this should crash Epic as long as A is considered forced in constructor c
{ "alphanum_fraction": 0.5706806283, "avg_line_length": 21.2222222222, "ext": "agda", "hexsha": "ccf52b1f824b0b273120d2f07d2e9631194b5215", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue1441-5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue1441-5.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue1441-5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 70, "size": 191 }
postulate A : Set P : A → Set p : (a : A) → P a record R : Set where field a : A b : P _ b = p a test : A test = R.b
{ "alphanum_fraction": 0.4592592593, "avg_line_length": 9.6428571429, "ext": "agda", "hexsha": "afdc14b918bc4db01678f9a2c7f5a6f5108c28a3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3566.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3566.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3566.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 135 }
-- Andreas, 2014-09-23 -- Check fixity declarations also in new 'instance' block. module _ where postulate D : Set instance infixl 0 D Undeclared postulate d : D -- Should fail with error: -- Names out of scope in fixity declarations: Undeclared
{ "alphanum_fraction": 0.7265625, "avg_line_length": 17.0666666667, "ext": "agda", "hexsha": "00c5a37b30e40c7dd8bde1e3abcb7d16affb364f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue329a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue329a.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue329a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 75, "size": 256 }
------------------------------------------------------------------------------ -- Example using distributive laws on a binary operation via Agsy ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 17 May 2012. module Agsy.DistributiveLaws.TaskB-TopDown where open import Relation.Binary.PropositionalEquality open ≡-Reasoning infixl 7 _·_ ------------------------------------------------------------------------------ -- Distributive laws axioms postulate D : Set -- The universe _·_ : D → D → D -- The binary operation. leftDistributive : ∀ x y z → x · (y · z) ≡ (x · y) · (x · z) rightDistributive : ∀ x y z → (x · y) · z ≡ (x · z) · (y · z) -- We test Agsy with the longest chains of equalities from -- DistributiveLaws.TaskB-TopDownATP. taskB : ∀ u x y z → (x · y · (z · u)) · ((x · y · ( z · u)) · (x · z · (y · u))) ≡ x · z · (y · u) taskB u x y z = -- The numbering of the proof step justifications are associated with -- the numbers used in DistributiveLaws.TaskB-I. begin xy·zu · (xy·zu · xz·yu) ≡⟨ j₁₋₅ ⟩ xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡⟨ j₅₋₉ ⟩ xy·zu · (xz · xyu · (yxz · yu)) ≡⟨ j₉₋₁₄ ⟩ xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₄₋₂₀ ⟩ xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₀₋₂₃ ⟩ xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₃₋₂₅ ⟩ (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡⟨ j₂₅₋₃₀ ⟩ xz · xyu · (y·zy · xzu) ≡⟨ j₃₀₋₃₅ ⟩ xz·yu ∎ where -- Two variables abbreviations xz = x · z yu = y · u yz = y · z -- Three variables abbreviations xyu = x · y · u xyz = x · y · z xzu = x · z · u yxz = y · x · z y·xu = y · (x · u) y·yu = y · (y · u) y·zu = y · (z · u) y·zy = y · (z · y) z·xu = z · (x · u) z·yu = z · (y · u) -- Four variables abbreviations xu·yu = x · u · (y · u) xu·zu = x · u · (z · u) xy·zu = x · y · (z · u) xz·yu = x · z · (y · u) -- Steps justifications j₁₋₅ : xy·zu · (xy·zu · xz·yu) ≡ xy·zu · (xz · xu·yu · (y·zu · xz·yu)) j₁₋₅ = {!-t 20 -m !} -- Agsy fails j₅₋₉ : xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡ xy·zu · (xz · xyu · (yxz · yu)) j₅₋₉ = {!-t 20 -m !} -- Agsy fails j₉₋₁₄ : xy·zu · (xz · xyu · (yxz · yu)) ≡ xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) j₉₋₁₄ = {!-t 20 -m!} -- Agsy fails j₁₄₋₂₀ : xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡ xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) j₁₄₋₂₀ = {!-t 20 -m!} -- Agsy fails j₂₀₋₂₃ : xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡ xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) j₂₀₋₂₃ = {!-t 20 -m!} -- Agsy fails j₂₃₋₂₅ : xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡ (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) j₂₃₋₂₅ = {!-t 20 -m!} -- Agsy fails j₂₅₋₃₀ : (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡ xz · xyu · (y·zy · xzu) j₂₅₋₃₀ = {!-t 20 -m!} -- Agsy fails j₃₀₋₃₅ : xz · xyu · (y·zy · xzu) ≡ xz·yu j₃₀₋₃₅ = {!-t 20 -m!} -- Agsy fails
{ "alphanum_fraction": 0.4126721763, "avg_line_length": 31.8421052632, "ext": "agda", "hexsha": "8981ecc12a391eec35640dd1a2cfb2b83af96105", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB-TopDown.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB-TopDown.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Agsy/DistributiveLaws/TaskB-TopDown.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1596, "size": 3630 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.Algebra where open import Cubical.Algebra.Algebra.Base public
{ "alphanum_fraction": 0.7591240876, "avg_line_length": 27.4, "ext": "agda", "hexsha": "3ae394189ffb5e53469b8d3200524d01c5e00692", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/Algebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/Algebra.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/Algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 34, "size": 137 }
{-# OPTIONS --safe #-} module Definition.Conversion.FullReduction where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.Typed.Weakening open import Definition.Conversion open import Definition.Conversion.Whnf open import Definition.Conversion.Stability open import Definition.Typed.Consequences.Inversion open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.RelevanceUnicity open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Definition.Typed.Consequences.TypeUnicity open import Tools.Empty using (⊥; ⊥-elim) open import Tools.Product import Tools.PropositionalEquality as PE mutual data NfNeutral (Γ : Con Term) : Term → Set where var : ∀ n → NfNeutral Γ (var n) ∘ₙ : ∀ {k u l} → NfNeutral Γ k → Nf Γ u → NfNeutral Γ (k ∘ u ^ l) natrecₙ : ∀ {l C c g k} → Nf (Γ ∙ ℕ ^ [ ! , ι ⁰ ]) C → Nf Γ c → Nf Γ g → NfNeutral Γ k → NfNeutral Γ (natrec l C c g k) Idₙ : ∀ {A t u} → NfNeutral Γ A → Nf Γ t → Nf Γ u → NfNeutral Γ (Id A t u) Idℕₙ : ∀ {t u} → NfNeutral Γ t → Nf Γ u → NfNeutral Γ (Id ℕ t u) Idℕ0ₙ : ∀ {u} → NfNeutral Γ u → NfNeutral Γ (Id ℕ zero u) IdℕSₙ : ∀ {t u} → Nf Γ t → NfNeutral Γ u → NfNeutral Γ (Id ℕ (suc t) u) IdUₙ : ∀ {t u l} → NfNeutral Γ t → Nf Γ u → NfNeutral Γ (Id (U l) t u) IdUℕₙ : ∀ {u l} → NfNeutral Γ u → NfNeutral Γ (Id (U l) ℕ u) IdUΠₙ : ∀ {A rA lA B lB l u} → Nf Γ A → Nf (Γ ∙ A ^ [ rA , ι lA ]) B → NfNeutral Γ u → NfNeutral Γ (Id (U l) (Π A ^ rA ° lA ▹ B ° lB ° l) u) castₙ : ∀ {l A B e t} → NfNeutral Γ A → Nf Γ B → Nf Γ t → NfNeutral Γ (cast l A B e t) castℕₙ : ∀ {l B e t} → NfNeutral Γ B → Nf Γ t → NfNeutral Γ (cast l ℕ B e t) castΠₙ : ∀ {l A rA lA P lP B e t} → Nf Γ A → Nf (Γ ∙ A ^ [ rA , ι lA ]) P → NfNeutral Γ B → Nf Γ t → NfNeutral Γ (cast l (Π A ^ rA ° lA ▹ P ° lP ° l) B e t) castℕℕₙ : ∀ {l e t} → NfNeutral Γ t → NfNeutral Γ (cast l ℕ ℕ e t) castℕΠₙ : ∀ {l A rA B e t} → Nf Γ A → Nf (Γ ∙ A ^ [ rA , ι ⁰ ]) B → Nf Γ t → NfNeutral Γ (cast l ℕ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) e t) castΠℕₙ : ∀ {l A rA B e t} → Nf Γ A → Nf (Γ ∙ A ^ [ rA , ι ⁰ ]) B → Nf Γ t → NfNeutral Γ (cast l (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) ℕ e t) castΠΠ%!ₙ : ∀ {l A B A' B' e t} → Nf Γ A → Nf (Γ ∙ A ^ [ % , ι ⁰ ]) B → Nf Γ A' → Nf (Γ ∙ A' ^ [ ! , ι ⁰ ]) B' → Nf Γ t → NfNeutral Γ (cast l (Π A ^ % ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ ! ° ⁰ ▹ B' ° ⁰ ° l) e t) castΠΠ!%ₙ : ∀ {l A B A' B' e t} → Nf Γ A → Nf (Γ ∙ A ^ [ ! , ι ⁰ ]) B → Nf Γ A' → Nf (Γ ∙ A' ^ [ % , ι ⁰ ]) B' → Nf Γ t → NfNeutral Γ (cast l (Π A ^ ! ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ % ° ⁰ ▹ B' ° ⁰ ° l) e t) Emptyrecₙ : ∀ {l lEmpty A e} → Nf Γ A → NfNeutral Γ (Emptyrec l lEmpty A e) data Nf (Γ : Con Term) : Term → Set where Uₙ : ∀ {r l} → Nf Γ (Univ r l) Πₙ : ∀ {A r lA B lB l} → Nf Γ A → Nf (Γ ∙ A ^ [ r , ι lA ]) B → Nf Γ (Π A ^ r ° lA ▹ B ° lB ° l) ∃ₙ : ∀ {l A B} → Γ ⊢ A ^ [ % , ι l ] → Nf Γ A → Nf (Γ ∙ A ^ [ % , ι l ]) B → Nf Γ (∃ A ▹ B) ℕₙ : Nf Γ ℕ Emptyₙ : ∀ {l} → Nf Γ (Empty l) lamₙ : ∀ {A l rF lF t} → Γ ⊢ A ^ [ rF , ι lF ] → Nf (Γ ∙ A ^ [ rF , ι lF ]) t → Nf Γ (lam A ▹ t ^ l) zeroₙ : Nf Γ zero sucₙ : ∀ {t} → Nf Γ t → Nf Γ (suc t) ne : ∀ {n} → NfNeutral Γ n → Nf Γ n sprop : ∀ {t A l} → Γ ⊢ t ∷ A ^ [ % , l ] → Nf Γ t NfNeutralNeutral : ∀ {t Γ} → NfNeutral Γ t → Neutral t NfNeutralNeutral (var n) = var n NfNeutralNeutral (∘ₙ X x) = ∘ₙ (NfNeutralNeutral X) NfNeutralNeutral (natrecₙ x x₁ x₂ X) = natrecₙ (NfNeutralNeutral X) NfNeutralNeutral (Idₙ X x x₁) = Idₙ (NfNeutralNeutral X) NfNeutralNeutral (Idℕₙ X x) = Idℕₙ (NfNeutralNeutral X) NfNeutralNeutral (Idℕ0ₙ X) = Idℕ0ₙ (NfNeutralNeutral X) NfNeutralNeutral (IdℕSₙ x X) = IdℕSₙ (NfNeutralNeutral X) NfNeutralNeutral (IdUₙ X x) = IdUₙ (NfNeutralNeutral X) NfNeutralNeutral (IdUℕₙ X) = IdUℕₙ (NfNeutralNeutral X) NfNeutralNeutral (IdUΠₙ x x₁ X) = IdUΠₙ (NfNeutralNeutral X) NfNeutralNeutral (castₙ X x x₁) = castₙ (NfNeutralNeutral X) NfNeutralNeutral (castℕₙ X x) = castℕₙ (NfNeutralNeutral X) NfNeutralNeutral (castΠₙ x x₁ X x₂) = castΠₙ (NfNeutralNeutral X) NfNeutralNeutral (castℕℕₙ X) = castℕℕₙ (NfNeutralNeutral X) NfNeutralNeutral (castℕΠₙ x x₁ x₂) = castℕΠₙ NfNeutralNeutral (castΠℕₙ x x₁ x₂) = castΠℕₙ NfNeutralNeutral (castΠΠ%!ₙ x x₁ x₂ x₃ x₄) = castΠΠ%!ₙ NfNeutralNeutral (castΠΠ!%ₙ x x₁ x₂ x₃ x₄) = castΠΠ!%ₙ NfNeutralNeutral (Emptyrecₙ x) = Emptyrecₙ NfWhnf : ∀ {Γ t A l} → Γ ⊢ t ∷ A ^ [ ! , l ] → Nf Γ t → Whnf t NfWhnf ⊢t Uₙ = Uₙ NfWhnf ⊢t (Πₙ X X₁) = Πₙ NfWhnf ⊢t (∃ₙ _ X X₁) = ∃ₙ NfWhnf ⊢t ℕₙ = ℕₙ NfWhnf ⊢t Emptyₙ = Emptyₙ NfWhnf ⊢t (lamₙ _ X) = lamₙ NfWhnf ⊢t zeroₙ = zeroₙ NfWhnf ⊢t (sucₙ X) = sucₙ NfWhnf ⊢t (ne x) = ne (NfNeutralNeutral x) NfWhnf ⊢t (sprop ⊢t') = let !≡% , _ = type-uniq ⊢t ⊢t' in ⊥-elim (!≢% !≡%) NfΠinversion : ∀ {F G rF lF lG lΠ Γ} → Nf Γ (Π F ^ rF ° lF ▹ G ° lG ° lΠ ) → Nf Γ F × Nf (Γ ∙ F ^ [ rF , ι lF ]) G NfΠinversion (Πₙ X Y) = X , Y NfΠinversion (sprop ⊢t) = let _ , _ , _ , _ , _ , _ , e = inversion-Π ⊢t %≡! , _ = typelevel-injectivity e in ⊥-elim (!≢% (PE.sym %≡!)) NfΠA′ : ∀ {A F G rF lF lG lΠ Γ l} ([Π] : Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ ! , lΠ ] ) → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ A ^ [ ! , ι lΠ ] / (Π-intr [Π]) → Nf Γ A → ∃₂ λ H E → Nf Γ H × Nf (Γ ∙ H ^ [ rF , ι lF ]) E × A PE.≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ NfΠA′ (noemb (Πᵣ rF′ lF′ lG′ lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) nfA = let _ , rF≡rF′ , lF≡lF′ , _ , lG≡lG′ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) X = whnfRed* D′ (NfWhnf (un-univ (redFirst* D′)) nfA) NfH , NfE = NfΠinversion (PE.subst (Nf _) X nfA) in F′ , G′ , NfH , PE.subst₂ (λ r l → Nf (_ ∙ _ ^ [ r , ι l ]) _) (PE.sym rF≡rF′) (PE.sym lF≡lF′) NfE , PE.subst (λ r → _ PE.≡ Π _ ^ r ° _ ▹ _ ° _ ° _) (PE.sym rF≡rF′) (PE.subst (λ l → _ PE.≡ Π _ ^ _ ° l ▹ _ ° _ ° _) (PE.sym lF≡lF′) (PE.subst (λ l → _ PE.≡ Π _ ^ _ ° _ ▹ _ ° l ° _) (PE.sym lG≡lG′) X)) NfΠA′ (emb emb< [Π]) [Π≡A] nfA = NfΠA′ [Π] [Π≡A] nfA NfΠA′ (emb ∞< [Π]) [Π≡A] nfA = NfΠA′ [Π] [Π≡A] nfA NfΠA : ∀ {A F G rF lF lG lΠ Γ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ A ^ [ ! , ι lΠ ] → Nf Γ A → ∃₂ λ H E → Nf Γ H × Nf (Γ ∙ H ^ [ rF , ι lF ]) E × A PE.≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ NfΠA {A} Π≡A whnfA = let X = reducibleEq Π≡A [Π] = proj₁ X [A] = proj₁ (proj₂ X) [Π≡A] = proj₂ (proj₂ X) in NfΠA′ (Π-elim [Π]) (irrelevanceEq [Π] (Π-intr (Π-elim [Π])) [Π≡A]) whnfA mutual convNfNeutral : ∀ {Γ Δ t A r} → ⊢ Γ ≡ Δ → Γ ⊢ t ∷ A ^ r → NfNeutral Γ t → NfNeutral Δ t convNfNeutral Γ≡Δ ⊢t (var n) = var n convNfNeutral Γ≡Δ ⊢t (∘ₙ X x) = let F , rF , lF , G , lG , rG , ⊢k , ⊢u , _ , erl = inversion-app ⊢t in ∘ₙ (convNfNeutral Γ≡Δ ⊢k X) (convNf Γ≡Δ ⊢u x) convNfNeutral Γ≡Δ ⊢t (natrecₙ x x₁ x₂ X) = let _ , ⊢x , ⊢x₁ , ⊢x₂ , ⊢X , _ = inversion-natrec ⊢t in natrecₙ (convNf (Γ≡Δ ∙ refl (univ (ℕⱼ (wfTerm ⊢t)))) (un-univ ⊢x) x) (convNf Γ≡Δ ⊢x₁ x₁) (convNf Γ≡Δ ⊢x₂ x₂) (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (Idₙ X x x₁) = let _ , ⊢X , ⊢x , ⊢x₁ , _ = inversion-Id ⊢t in Idₙ (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x x) (convNf Γ≡Δ ⊢x₁ x₁) convNfNeutral Γ≡Δ ⊢t (Idℕₙ X x) = let _ , _ , ⊢X , ⊢x , _ = inversion-Id ⊢t in Idℕₙ (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x x) convNfNeutral Γ≡Δ ⊢t (Idℕ0ₙ X) = let _ , _ , _ , ⊢X , _ = inversion-Id ⊢t in Idℕ0ₙ (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (IdℕSₙ x X) = let _ , _ , ⊢x , ⊢X , _ = inversion-Id ⊢t in IdℕSₙ (convNf Γ≡Δ (proj₁ (inversion-suc ⊢x)) x) (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (IdUₙ X x) = let _ , _ , ⊢X , ⊢x , _ = inversion-Id ⊢t in IdUₙ (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x x) convNfNeutral Γ≡Δ ⊢t (IdUℕₙ X) = let _ , _ , _ , ⊢X , _ = inversion-Id ⊢t in IdUℕₙ (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (IdUΠₙ x x₁ X) = let _ , _ , ⊢Π , ⊢X , _ = inversion-Id ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π in IdUΠₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (castₙ X x x₁) = let _ , ⊢X , ⊢x , ⊢e , ⊢x₁ , _ = inversion-cast ⊢t in castₙ (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x x) (convNf Γ≡Δ ⊢x₁ x₁) convNfNeutral Γ≡Δ ⊢t (castℕₙ X x) = let _ , _ , ⊢X , ⊢e , ⊢x , _ = inversion-cast ⊢t in castℕₙ (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x x) convNfNeutral Γ≡Δ ⊢t (castΠₙ x x₁ X x₂) = let _ , ⊢Π , ⊢X , ⊢e , ⊢x₂ , _ = inversion-cast ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π in castΠₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNfNeutral Γ≡Δ ⊢X X) (convNf Γ≡Δ ⊢x₂ x₂) convNfNeutral Γ≡Δ ⊢t (castℕℕₙ X) = let _ , _ , _ , _ , ⊢X , _ = inversion-cast ⊢t in castℕℕₙ (convNfNeutral Γ≡Δ ⊢X X) convNfNeutral Γ≡Δ ⊢t (castℕΠₙ x x₁ x₂) = let _ , _ , ⊢Π , ⊢e , ⊢x₂ , _ = inversion-cast ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π in castℕΠₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNf Γ≡Δ ⊢x₂ x₂) convNfNeutral Γ≡Δ ⊢t (castΠℕₙ x x₁ x₂) = let _ , ⊢Π , _ , ⊢e , ⊢x₂ , _ = inversion-cast ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π in castΠℕₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNf Γ≡Δ ⊢x₂ x₂) convNfNeutral Γ≡Δ ⊢t (castΠΠ%!ₙ x x₁ x₂ x₃ x₄) = let _ , ⊢Π , ⊢Π' , ⊢e , ⊢x₄ , _ = inversion-cast ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π _ , _ , _ , ⊢F' , ⊢G' , _ = inversion-Π ⊢Π' in castΠΠ%!ₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNf Γ≡Δ ⊢F' x₂) (convNf (Γ≡Δ ∙ refl (univ ⊢F')) ⊢G' x₃) (convNf Γ≡Δ ⊢x₄ x₄) convNfNeutral Γ≡Δ ⊢t (castΠΠ!%ₙ x x₁ x₂ x₃ x₄) = let _ , ⊢Π , ⊢Π' , ⊢e , ⊢x₄ , _ = inversion-cast ⊢t _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢Π _ , _ , _ , ⊢F' , ⊢G' , _ = inversion-Π ⊢Π' in castΠΠ!%ₙ (convNf Γ≡Δ ⊢F x) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G x₁) (convNf Γ≡Δ ⊢F' x₂) (convNf (Γ≡Δ ∙ refl (univ ⊢F')) ⊢G' x₃) (convNf Γ≡Δ ⊢x₄ x₄) convNfNeutral Γ≡Δ ⊢t (Emptyrecₙ x) = let _ , ⊢x , _ = inversion-Emptyrec ⊢t in Emptyrecₙ (convNf Γ≡Δ (un-univ ⊢x) x) convNf : ∀ {Γ Δ t A r} → ⊢ Γ ≡ Δ → Γ ⊢ t ∷ A ^ r → Nf Γ t → Nf Δ t convNf Γ≡Δ ⊢t Uₙ = Uₙ convNf Γ≡Δ ⊢t (Πₙ X X₁) = let _ , _ , _ , ⊢F , ⊢G , _ = inversion-Π ⊢t in Πₙ (convNf Γ≡Δ ⊢F X) (convNf (Γ≡Δ ∙ refl (univ ⊢F)) ⊢G X₁) convNf Γ≡Δ ⊢t (∃ₙ ⊢A X X₁) = let l , ⊢F , ⊢G , _ , erl = inversion-∃ ⊢t _ , _ , erl = type-uniq (un-univ ⊢A) ⊢F _ , elA = Uinjectivity erl in ∃ₙ (stability Γ≡Δ ⊢A) (convNf Γ≡Δ ⊢F X) (convNf (Γ≡Δ ∙ refl (⊢A)) (PE.subst (λ l → _ ∙ _ ^ [ % , ι l ] ⊢ _ ∷ SProp l ^ [ ! , next l ]) (PE.sym elA) ⊢G) X₁) convNf Γ≡Δ ⊢t ℕₙ = ℕₙ convNf Γ≡Δ ⊢t Emptyₙ = Emptyₙ convNf Γ≡Δ ⊢t (lamₙ ⊢F X) = let rF , lF , G , rG , lG , ⊢F' , ⊢t' , _ , erl = inversion-lam ⊢t er , el = typelevel-injectivity erl _ , _ , erl = type-uniq (un-univ ⊢F) (un-univ ⊢F') erF , elF = Uinjectivity erl in lamₙ (stability Γ≡Δ ⊢F) (convNf (Γ≡Δ ∙ refl ⊢F) (PE.subst₂ (λ r l → _ ∙ _ ^ [ r , ι l ] ⊢ _ ∷ G ^ [ rG , ι lG ]) (PE.sym erF) (PE.sym elF) ⊢t') X) convNf Γ≡Δ ⊢t zeroₙ = zeroₙ convNf Γ≡Δ ⊢t (sucₙ X) = sucₙ (convNf Γ≡Δ (proj₁ (inversion-suc ⊢t)) X ) convNf Γ≡Δ ⊢t (ne x) = ne (convNfNeutral Γ≡Δ ⊢t x) convNf Γ≡Δ ⊢t (sprop x) = sprop (stabilityTerm Γ≡Δ x) mutual fullRedNe : ∀ {t A l Γ} → Γ ⊢ t ~ t ↑! A ^ l → ∃ λ u → NfNeutral Γ u × Γ ⊢ t ≡ u ∷ A ^ [ ! , l ] fullRedNe (var-refl x _) = var _ , var _ , refl x fullRedNe (app-cong {rF = !} {lΠ = lΠ} t u) = let t′ , nfT′ , t≡t′ = fullRedNe′ t u′ , nfU′ , u≡u′ = fullRedTerm u in (t′ ∘ u′ ^ lΠ) , ∘ₙ nfT′ nfU′ , app-cong t≡t′ u≡u′ fullRedNe (app-cong {t = a} {rF = %} {lΠ = lΠ} t (%~↑ ⊢a ⊢a')) = let t′ , nfT′ , t≡t′ = fullRedNe′ t in (t′ ∘ a ^ lΠ) , ∘ₙ nfT′ (sprop ⊢a) , app-cong t≡t′ (proof-irrelevance ⊢a ⊢a') fullRedNe (natrec-cong {lF = l} C z s n) = let C′ , nfC′ , C≡C′ = fullRed C z′ , nfZ′ , z≡z′ = fullRedTerm z s′ , nfS′ , s≡s′ = fullRedTerm s n′ , nfN′ , n≡n′ = fullRedNe′ n in natrec l C′ z′ s′ n′ , natrecₙ nfC′ nfZ′ nfS′ nfN′ , natrec-cong C≡C′ z≡z′ s≡s′ n≡n′ fullRedNe (Emptyrec-cong {k = k} {ll = l} {lEmpty = lEmpty} C (%~↑ ⊢e ⊢e')) = let C′ , nfC′ , C≡C′ = fullRed C in Emptyrec l lEmpty C′ k , Emptyrecₙ nfC′ , Emptyrec-cong C≡C′ ⊢e ⊢e' fullRedNe (Id-cong A t u) = let A′ , nfA′ , A≡A′ = fullRedNe′ A t′ , nfT′ , t≡t′ = fullRedTerm t u′ , nfU′ , u≡u′ = fullRedTerm u in Id A′ t′ u′ , Idₙ nfA′ nfT′ nfU′ , Id-cong A≡A′ t≡t′ u≡u′ fullRedNe (Id-ℕ t u) = let t′ , nfT′ , t≡t′ = fullRedNe′ t u′ , nfU′ , u≡u′ = fullRedTerm u in Id ℕ t′ u′ , Idℕₙ nfT′ nfU′ , Id-cong (refl (ℕⱼ (wfEqTerm u≡u′))) t≡t′ u≡u′ fullRedNe (Id-ℕ0 t) = let t′ , nfT′ , t≡t′ = fullRedNe′ t in Id ℕ zero t′ , Idℕ0ₙ nfT′ , Id-cong (refl (ℕⱼ (wfEqTerm t≡t′))) (refl (zeroⱼ (wfEqTerm t≡t′))) t≡t′ fullRedNe (Id-ℕS t u) = let t′ , nfT′ , t≡t′ = fullRedTerm t u′ , nfU′ , u≡u′ = fullRedNe′ u in Id ℕ (suc t′) u′ , IdℕSₙ nfT′ nfU′ , Id-cong (refl (ℕⱼ (wfEqTerm u≡u′))) (suc-cong t≡t′) u≡u′ fullRedNe (Id-U t u) = let t′ , nfT′ , t≡t′ = fullRedNe′ t u′ , nfU′ , u≡u′ = fullRedTerm u in Id (U _) t′ u′ , IdUₙ nfT′ nfU′ , Id-cong (refl (univ 0<1 (wfEqTerm u≡u′))) t≡t′ u≡u′ fullRedNe (Id-Uℕ t) = let t′ , nfT′ , t≡t′ = fullRedNe′ t in Id (U _) ℕ t′ , IdUℕₙ nfT′ , Id-cong (refl (univ 0<1 (wfEqTerm t≡t′))) (refl (ℕⱼ (wfEqTerm t≡t′))) t≡t′ fullRedNe (Id-UΠ {rA = rA} A t) = let t′ , nfT′ , t≡t′ = fullRedNe′ t A′ , nfA′ , A≡A′ = fullRedTerm A H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ in Id (U _) (Π H ^ rA ° ⁰ ▹ E ° ⁰ ° ⁰) t′ , IdUΠₙ NfH NfE nfT′ , Id-cong (refl (univ 0<1 (wfEqTerm t≡t′))) (PE.subst (λ A → _ ⊢ _ ≡ A ∷ U ⁰ ^ _) Π≡HE A≡A′) t≡t′ fullRedNe (cast-cong {e = e} {e' = e'} x x₁ x₂ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedNe′ x B′ , nfB′ , B≡B′ = fullRedTerm x₁ t′ , nft′ , t≡t′ = fullRedTerm x₂ in cast ⁰ A′ B′ e t′ , castₙ nfA′ nfB′ nft′ , cast-cong A≡A′ B≡B′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) A≡A′ B≡B′))) fullRedNe (cast-ℕ {e = e} {e' = e'} x x₁ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedNe′ x t′ , nft′ , t≡t′ = fullRedTerm x₁ in cast ⁰ _ A′ e t′ , castℕₙ nfA′ nft′ , cast-cong (refl (ℕⱼ (wfTerm ⊢e)) ) A≡A′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) (refl (ℕⱼ (wfTerm ⊢e))) A≡A′))) fullRedNe (cast-ℕℕ {e = e} {e' = e'} x ⊢e ⊢e') = let t′ , nft′ , t≡t′ = fullRedNe′ x in cast ⁰ _ _ e t′ , castℕℕₙ nft′ , cast-cong (refl (ℕⱼ (wfTerm ⊢e)) ) (refl (ℕⱼ (wfTerm ⊢e)) ) t≡t′ ⊢e ⊢e fullRedNe (cast-Π {e = e} {e' = e'} x x₁ x₂ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedTerm x B′ , nfB′ , B≡B′ = fullRedNe′ x₁ t′ , nft′ , t≡t′ = fullRedTerm x₂ H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ nfCast = castΠₙ NfH NfE nfB′ nft′ in cast ⁰ A′ B′ e t′ , PE.subst (λ A → NfNeutral _ (cast ⁰ A _ _ _)) (PE.sym Π≡HE) nfCast , cast-cong A≡A′ B≡B′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) A≡A′ B≡B′))) fullRedNe (cast-Πℕ {e = e} {e' = e'} x x₁ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedTerm x t′ , nft′ , t≡t′ = fullRedTerm x₁ H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ nfCast = castΠℕₙ NfH NfE nft′ in cast ⁰ A′ ℕ e t′ , PE.subst (λ A → NfNeutral _ (cast ⁰ A _ _ _)) (PE.sym Π≡HE) nfCast , cast-cong A≡A′ (refl (ℕⱼ (wfTerm ⊢e))) t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) A≡A′ (refl (ℕⱼ (wfTerm ⊢e)))))) fullRedNe (cast-ℕΠ {e = e} {e' = e'} x x₁ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedTerm x t′ , nft′ , t≡t′ = fullRedTerm x₁ H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ nfCast = castℕΠₙ NfH NfE nft′ in cast ⁰ ℕ A′ e t′ , PE.subst (λ A → NfNeutral _ (cast ⁰ _ A _ _)) (PE.sym Π≡HE) nfCast , cast-cong (refl (ℕⱼ (wfTerm ⊢e))) A≡A′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) (refl (ℕⱼ (wfTerm ⊢e))) A≡A′ ))) fullRedNe (cast-ΠΠ%! {e = e} {e' = e'} x x₁ x₂ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedTerm x B′ , nfB′ , B≡B′ = fullRedTerm x₁ t′ , nft′ , t≡t′ = fullRedTerm x₂ H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ H' , E' , NfH' , NfE' , Π≡HE' = NfΠA (univ B≡B′) nfB′ nfCast = castΠΠ%!ₙ NfH NfE NfH' NfE' nft′ in cast ⁰ A′ B′ e t′ , PE.subst₂ (λ A B → NfNeutral _ (cast ⁰ A B _ _)) (PE.sym Π≡HE) (PE.sym Π≡HE') nfCast , cast-cong A≡A′ B≡B′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) A≡A′ B≡B′ ))) fullRedNe (cast-ΠΠ!% {e = e} {e' = e'} x x₁ x₂ ⊢e ⊢e') = let A′ , nfA′ , A≡A′ = fullRedTerm x B′ , nfB′ , B≡B′ = fullRedTerm x₁ t′ , nft′ , t≡t′ = fullRedTerm x₂ H , E , NfH , NfE , Π≡HE = NfΠA (univ A≡A′) nfA′ H' , E' , NfH' , NfE' , Π≡HE' = NfΠA (univ B≡B′) nfB′ nfCast = castΠΠ!%ₙ NfH NfE NfH' NfE' nft′ in cast ⁰ A′ B′ e t′ , PE.subst₂ (λ A B → NfNeutral _ (cast ⁰ A B _ _)) (PE.sym Π≡HE) (PE.sym Π≡HE') nfCast , cast-cong A≡A′ B≡B′ t≡t′ ⊢e (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e)) ) A≡A′ B≡B′ ))) fullRedNe′ : ∀ {t A rA Γ} → Γ ⊢ t ~ t ↓! A ^ rA → ∃ λ u → NfNeutral Γ u × Γ ⊢ t ≡ u ∷ A ^ [ ! , rA ] fullRedNe′ ([~] A D whnfB k~l) = let u , nf , t≡u = fullRedNe k~l in u , nf , conv t≡u (subset* D) fullRed : ∀ {A rA Γ} → Γ ⊢ A [conv↑] A ^ rA → ∃ λ B → Nf Γ B × Γ ⊢ A ≡ B ^ rA fullRed ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) rewrite whrDet* (D , whnfA′) (D′ , whnfB′) = let B″ , nf , B′≡B″ = fullRed′ A′<>B′ in B″ , nf , trans (subset* D′) B′≡B″ fullRed′ : ∀ {A rA Γ} → Γ ⊢ A [conv↓] A ^ rA → ∃ λ B → Nf Γ B × Γ ⊢ A ≡ B ^ rA fullRed′ (U-refl {r = r} _ ⊢Γ) = Univ r ¹ , Uₙ , refl (Uⱼ ⊢Γ) fullRed′ (univ x) = let u , Nfu , u≡u = fullRedTerm′ x in u , Nfu , univ u≡u fullRedTerm : ∀ {t A l Γ} → Γ ⊢ t [conv↑] t ∷ A ^ l → ∃ λ u → Nf Γ u × Γ ⊢ t ≡ u ∷ A ^ [ ! , l ] fullRedTerm ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) rewrite whrDet*Term (d , whnft′) (d′ , whnfu′) = let u″ , nf , u′≡u″ = fullRedTerm′ t<>u in u″ , nf , conv (trans (subset*Term d′) u′≡u″) (sym (subset* D)) fullRedTerm′ : ∀ {t A l Γ} → Γ ⊢ t [conv↓] t ∷ A ^ l → ∃ λ u → Nf Γ u × Γ ⊢ t ≡ u ∷ A ^ [ ! , l ] fullRedTerm′ (U-refl {r = r} _ ⊢Γ) = Univ r ⁰ , Uₙ , refl (univ 0<1 ⊢Γ) fullRedTerm′ (ne A) = let B , nf , A≡B = fullRedNe′ A in B , ne nf , A≡B fullRedTerm′ (ℕ-refl ⊢Γ) = ℕ , ℕₙ , refl (ℕⱼ ⊢Γ) fullRedTerm′ (Empty-refl PE.refl ⊢Γ) = Empty _ , Emptyₙ , refl (Emptyⱼ ⊢Γ) fullRedTerm′ (Π-cong {rF = rF} PE.refl PE.refl PE.refl PE.refl l< l<' ⊢F F G) = let F′ , nfF′ , F≡F′ = fullRedTerm F G′ , nfG′ , G≡G′ = fullRedTerm G in Π F′ ^ rF ° _ ▹ G′ ° _ ° _ , Πₙ nfF′ (convNf (reflConEq (wf ⊢F) ∙ univ F≡F′) (proj₂ (proj₂ (syntacticEqTerm G≡G′))) nfG′) , Π-cong l< l<' ⊢F F≡F′ G≡G′ fullRedTerm′ (∃-cong PE.refl ⊢F F G) = let F′ , nfF′ , F≡F′ = fullRedTerm F G′ , nfG′ , G≡G′ = fullRedTerm G in ∃ F′ ▹ G′ , ∃ₙ (univ (proj₂ (proj₂ (syntacticEqTerm F≡F′)))) nfF′ (convNf (reflConEq (wf ⊢F) ∙ univ F≡F′) (proj₂ (proj₂ (syntacticEqTerm G≡G′))) nfG′) , ∃-cong ⊢F F≡F′ G≡G′ fullRedTerm′ (ℕ-ins t) = let u , nf , t≡u = fullRedNe′ t in u , ne nf , t≡u fullRedTerm′ (ne-ins ⊢t _ _ t) = let u , nfU , t≡u = fullRedNe′ t _ , ⊢t∷M , _ = syntacticEqTerm t≡u _ , neT , _ = ne~↓! t in u , ne nfU , conv t≡u (proj₂ (neTypeEq neT ⊢t∷M ⊢t)) fullRedTerm′ (zero-refl ⊢Γ) = zero , zeroₙ , refl (zeroⱼ ⊢Γ) fullRedTerm′ (suc-cong t) = let u , nf , t≡u = fullRedTerm t in suc u , sucₙ nf , suc-cong t≡u fullRedTerm′ (η-eq {F = F} {l = l} l< l<' ⊢F ⊢t _ _ _ t∘0) = let u , nf , t∘0≡u = fullRedTerm t∘0 _ , _ , ⊢u = syntacticEqTerm t∘0≡u ΓF⊢ = wf ⊢F ∙ ⊢F wk⊢F = wk (step id) ΓF⊢ ⊢F ΓFF'⊢ = ΓF⊢ ∙ wk⊢F wk⊢u = wkTerm (lift (step id)) ΓFF'⊢ ⊢u λu∘0 = (lam _ ▹ (U.wk (lift (step id)) u) ^ _) ∘ var 0 ^ l in lam _ ▹ u ^ _ , lamₙ ⊢F nf , η-eq l< l<' ⊢F ⊢t (lamⱼ l< l<' ⊢F ⊢u) (trans t∘0≡u (PE.subst₂ (λ x y → _ ⊢ x ≡ λu∘0 ∷ y ^ _) (wkSingleSubstId u) (wkSingleSubstId _) (sym (β-red l< l<' wk⊢F wk⊢u (var ΓF⊢ here)))))
{ "alphanum_fraction": 0.5101382919, "avg_line_length": 51.2057416268, "ext": "agda", "hexsha": "253e2907a3353b2ceaa60efbeac261bdbfd4fc74", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/FullReduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/FullReduction.agda", "max_line_length": 141, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/FullReduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 11493, "size": 21404 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.EpochManager as EpochManager open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.Consensus.TestUtils.MockStorage as MockStorage import LibraBFT.Impl.Types.OnChainConfig.ValidatorSet as ValidatorSet import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner import LibraBFT.Impl.Types.Waypoint as Waypoint import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile import LibraBFT.Impl.OBM.ConfigHardCoded as ConfigHardCoded open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.PKCS open import Util.Prelude hiding (_++_) ------------------------------------------------------------------------------ open import Data.String using (String; _++_) module LibraBFT.Impl.Consensus.ConsensusProvider where obmInitialData : GenKeyFile.NfLiwsVsVvPe → Either ErrLog (NodeConfig × OnChainConfigPayload × LedgerInfoWithSignatures × SK × ProposerElection) obmInitialData ( _numFaults , genesisLIWS , validatorSigner , validatorVerifier , proposerElection ) = do let vs = ValidatorSet.obmFromVV validatorVerifier occp = onChainConfigPayload vs wp ← Waypoint.newEpochBoundary (genesisLIWS ^∙ liwsLedgerInfo) let nc = nodeConfig wp pure (nc , occp , genesisLIWS , validatorSigner ^∙ vsPrivateKey , proposerElection) where onChainConfigPayload : ValidatorSet → OnChainConfigPayload onChainConfigPayload = OnChainConfigPayload∙new ({-Epoch-} 1) nodeConfig : Waypoint → NodeConfig nodeConfig genesisWaypoint = record -- NodeConfig { _ncObmMe = validatorSigner ^∙ vsAuthor ; _ncConsensus = record -- ConsensusConfig { _ccMaxPrunedBlocksInMem = ConfigHardCoded.maxPrunedBlocksInMem ; _ccRoundInitialTimeoutMS = ConfigHardCoded.roundInitialTimeoutMS ; _ccSafetyRules = record -- SafetyRulesConfig { _srcService = SRSLocal ; _srcExportConsensusKey = true ; _srcObmGenesisWaypoint = genesisWaypoint } ; _ccSyncOnly = false } } abstract obmInitialData-ed-abs : GenKeyFile.NfLiwsVsVvPe → EitherD ErrLog (NodeConfig × OnChainConfigPayload × LedgerInfoWithSignatures × SK × ProposerElection) obmInitialData-ed-abs = fromEither ∘ obmInitialData ------------------------------------------------------------------------------ -- LBFT-OBM-DIFF -- 'start_consensus' in Rust inits and loops -- that is split so 'startConsensus' returns init data -- then loop is called with that data. module startConsensus-ed (nodeConfig : NodeConfig) -- BEGIN OBM (obmNow : Instant) (obmPayload : OnChainConfigPayload) (obmGenesisLIWS : LedgerInfoWithSignatures) (obmSK : SK) (obmNeedFetch : ObmNeedFetch) (obmProposalGenerator : ProposalGenerator) (obmStateComputer : StateComputer) where -- END OBM step₁ : ValidatorSet → (RecoveryData × PersistentLivenessStorage) → EitherD ErrLog (EpochManager × List Output) step₂ : PersistentLivenessStorage → ValidatorInfo → EitherD ErrLog (EpochManager × List Output) step₀ : EitherD ErrLog (EpochManager × List Output) step₀ = do let obmValidatorSet = obmPayload ^∙ occpObmValidatorSet eitherS (MockStorage.startForTesting obmValidatorSet (just obmGenesisLIWS)) LeftD (step₁ obmValidatorSet) step₁ obmValidatorSet (_obmRecoveryData , persistentLivenessStorage) = do let stateComputer = obmStateComputer eitherS (ValidatorSet.obmGetValidatorInfo (nodeConfig ^∙ ncObmMe) obmValidatorSet) LeftD (step₂ persistentLivenessStorage) step₂ persistentLivenessStorage vi = do eitherS (EpochManager.new nodeConfig stateComputer persistentLivenessStorage (vi ^∙ viAccountAddress) obmSK) LeftD $ λ epochMgr → EpochManager.start-ed epochMgr obmNow obmPayload obmNeedFetch obmProposalGenerator obmGenesisLIWS abstract startConsensus-ed-abs = startConsensus-ed.step₀ startConsensus-ed-abs-≡ : startConsensus-ed-abs ≡ startConsensus-ed.step₀ startConsensus-ed-abs-≡ = refl
{ "alphanum_fraction": 0.6799103504, "avg_line_length": 43.8214285714, "ext": "agda", "hexsha": "cd5e8aa03295a6a0a5af9b43ecfdfdb0f904abd9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusProvider.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusProvider.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusProvider.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1257, "size": 4908 }
{-# OPTIONS --type-in-type --guardedness-preserving-type-constructors #-} module Issue690b where open import Common.Coinduction data Rec (A : ∞ Set) : Set where fold : (x : ♭ A) → Rec A infixr 4 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ infix 4 _≡_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data ⊥ : Set where {-# NON_TERMINATING #-} D : Set D = Rec (♯ Σ Set λ E → Σ (D ≡ E) λ _ → E → ⊥) lam : (D → ⊥) → D lam f = fold (D , refl , f) app : D → D → ⊥ app (fold (.D , refl , f)) d = f d omega : D omega = lam (λ x → app x x) Omega : ⊥ Omega = app omega omega
{ "alphanum_fraction": 0.5457271364, "avg_line_length": 16.2682926829, "ext": "agda", "hexsha": "4982d3e5aea9c4a2addc9b0fd281bc66628fab58", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue690b.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue690b.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue690b.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 258, "size": 667 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Core properties related to propositional list membership. -- -- This file is needed to break the cyclic dependency with the proof -- `Any-cong` in `Data.Any.Properties` which relies on `Any↔` in this -- file. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Membership.Propositional.Properties.Core where open import Function using (flip; id; _∘_) open import Function.Inverse using (_↔_; inverse) open import Data.List.Base using (List) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional open import Data.Product as Prod using (_,_; proj₁; proj₂; uncurry′; ∃; _×_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Unary using (_⊆_) -- Lemmas relating map and find. map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → let p′ = find p in {f : _≡_ (proj₁ p′) ⊆ P} → f refl ≡ proj₂ (proj₂ p′) → Any.map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = P.cong here hyp map∘find (there p) hyp = P.cong there (map∘find p hyp) find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs : List A} (p : Any P xs) (f : P ⊆ Q) → find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl -- find satisfies a simple equality when the predicate is a -- propositional equality. find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) → find x∈xs ≡ (x , x∈xs , refl) find-∈ (here refl) = refl find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl -- find and lose are inverses (more or less). lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (p : Any P xs) → uncurry′ lose (proj₂ (find p)) ≡ p lose∘find p = map∘find p P.refl find∘lose : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} (x∈xs : x ∈ xs) (pp : P x) → find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp) find∘lose P x∈xs p rewrite find∘map x∈xs (flip (P.subst P) p) | find-∈ x∈xs = refl -- Any can be expressed using _∈_ ∃∈-Any : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∃ λ x → x ∈ xs × P x) → Any P xs ∃∈-Any = uncurry′ lose ∘ proj₂ Any↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∃ λ x → x ∈ xs × P x) ↔ Any P xs Any↔ = inverse ∃∈-Any find from∘to lose∘find where from∘to : ∀ v → find (∃∈-Any v) ≡ v from∘to p = find∘lose _ (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
{ "alphanum_fraction": 0.5413895048, "avg_line_length": 35.1428571429, "ext": "agda", "hexsha": "3710a14308a178ebc035875ba78680ea62df93c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 970, "size": 2706 }
module core where open import Data.Nat open import Data.Vec open import Data.Fin open import Data.String open import Data.Rational open import Data.Sum open import Data.Unit open import Binders.Var {- module ABTLearning where data View {univ : Set} (f : univ -> Set) (a : univ) : list univ -> Set where Syn : f a -> View f a [] Var : record ABT {u : Set} data Var (a b : Set) where Free -} module Term where data Literal : Set where Nat : ℕ -> Literal Rat : ℚ -> Literal Str : String -> Literal data term (a : Set) : Set where v : a -> term a app : ∀ (n : ℕ ) -> term a -> Vec (term a) n -> term a abs : ∀ (n : ℕ ) -> term (Var (Fin n) (term a))-> term a primcall : ∀ {n : ℕ } -> String -> Vec (term a) n -> term a lit : Literal -> term a force : term a -> term a delay : term a -> term a module TypedTerm where data PrimType : Set where Nat : PrimType Rat : PrimType Str : PrimType data Sort : Set where -- should this be a record?? lit : ℕ -> Sort -- var : -- univ→ : data Literal : PrimType -> Set where NatL : ℕ -> Literal Nat RatL : ℚ -> Literal Rat StrL : String -> Literal Str module PHOAS where data Exp (a : Set) : Set where Lam : (a -> Exp a) -> Exp a App : (Exp a) -> Exp a -> Exp a
{ "alphanum_fraction": 0.5442225392, "avg_line_length": 22.253968254, "ext": "agda", "hexsha": "b17baaee9e65b5f392bba2be835aa27006d17f8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "hopper-lang/hopper-v0", "max_forks_repo_path": "models/agda/core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_issues_repo_issues_event_max_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_issues_event_min_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "hopper-lang/hopper-v0", "max_issues_repo_path": "models/agda/core.agda", "max_line_length": 79, "max_stars_count": 17, "max_stars_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "hopper-lang/hopper-v0", "max_stars_repo_path": "models/agda/core.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-18T03:02:06.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-23T16:03:03.000Z", "num_tokens": 429, "size": 1402 }
{-# OPTIONS --without-K #-} open import HoTT hiding (_::_) module algebra.ReducedWord {i} (A : Type i) (dec : has-dec-eq A) where open import algebra.Word A is-reduced : Word → Type i is-reduced nil = Lift ⊤ is-reduced (x :: nil) = Lift ⊤ is-reduced (x :: y :: w) = is-reduced (y :: w) is-reduced (x :: y inv:: w) = (x ≠ y) × is-reduced (y inv:: w) is-reduced (x inv:: nil) = Lift Unit is-reduced (x inv:: y :: w) = (x ≠ y) × is-reduced (y :: w) is-reduced (x inv:: y inv:: w) = is-reduced (y inv:: w) ReducedWord : Type i ReducedWord = Σ Word is-reduced -- Everything is a set. A-is-set : is-set A A-is-set = dec-eq-is-set dec Word-has-dec-eq : has-dec-eq (Word) Word-has-dec-eq nil nil = inl idp Word-has-dec-eq nil (x :: w) = inr (lower ∘ Word=-out) Word-has-dec-eq nil (x inv:: w) = inr (lower ∘ Word=-out) Word-has-dec-eq (x :: v) nil = inr (lower ∘ Word=-out) Word-has-dec-eq (x :: v) (y :: w) with (dec x y) Word-has-dec-eq (x :: v) (y :: w) | inl x=y with (Word-has-dec-eq v w) Word-has-dec-eq (x :: v) (y :: w) | inl x=y | inl v=w = inl (Word=-in (x=y , v=w)) Word-has-dec-eq (x :: v) (y :: w) | inl x=y | inr v≠w = inr (v≠w ∘ Word-snd=) Word-has-dec-eq (x :: v) (y :: w) | inr x≠y = inr (x≠y ∘ Word-fst=) Word-has-dec-eq (x :: v) (y inv:: w) = inr (lower ∘ Word=-out) Word-has-dec-eq (x inv:: v) nil = inr (lower ∘ Word=-out) Word-has-dec-eq (x inv:: v) (y :: w) = inr (lower ∘ Word=-out) Word-has-dec-eq (x inv:: v) (y inv:: w) with (dec x y) Word-has-dec-eq (x inv:: v) (y inv:: w) | inl x=y with (Word-has-dec-eq v w) Word-has-dec-eq (x inv:: v) (y inv:: w) | inl x=y | inl v=w = inl (Word=-in (x=y , v=w)) Word-has-dec-eq (x inv:: v) (y inv:: w) | inl x=y | inr v≠w = inr (v≠w ∘ Word-snd=') Word-has-dec-eq (x inv:: v) (y inv:: w) | inr x≠y = inr (x≠y ∘ Word-fst=') Word-is-set : is-set Word Word-is-set = dec-eq-is-set Word-has-dec-eq is-reduced-is-prop : (w : Word) → is-prop (is-reduced w) is-reduced-is-prop nil = Lift-level Unit-is-prop is-reduced-is-prop (x :: nil) = Lift-level Unit-is-prop is-reduced-is-prop (x :: y :: w) = is-reduced-is-prop (y :: w) is-reduced-is-prop (x :: y inv:: w) = ×-level (Π-is-prop (λ _ → λ ())) (is-reduced-is-prop (y inv:: w)) is-reduced-is-prop (x inv:: nil) = Lift-level Unit-is-prop is-reduced-is-prop (x inv:: y :: w) = ×-level (Π-is-prop (λ _ → λ ())) (is-reduced-is-prop (y :: w)) is-reduced-is-prop (x inv:: y inv:: w) = is-reduced-is-prop (y inv:: w) ReducedWord-is-set : is-set ReducedWord ReducedWord-is-set = subtype-level Word-is-set is-reduced-is-prop ReducedWord= : ReducedWord → ReducedWord → Type i ReducedWord= = subtype= ReducedWord=-in : {x y : ReducedWord} → ReducedWord= x y → x == y ReducedWord=-in = subtype=-in is-reduced-is-prop
{ "alphanum_fraction": 0.5427422058, "avg_line_length": 44.5223880597, "ext": "agda", "hexsha": "f9d0aede8a1b1e3d339b476a3eb8ab8b3f332b7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "algebra/ReducedWord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "algebra/ReducedWord.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "algebra/ReducedWord.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1152, "size": 2983 }
{-# OPTIONS --no-termination-check #-} ------------------------------------------------------------------------ -- Examples ------------------------------------------------------------------------ module RecursiveDescent.Coinductive.Examples where open import Data.List open import Data.Nat open import Data.Bool open import Data.Product.Record open import Relation.Binary.PropositionalEquality using (_≡_; refl) import Data.Char as C import Data.String as S open C using (Char) open S using (String) open import RecursiveDescent.Coinductive open import Utilities open import RecursiveDescent.Coinductive.Lib open Sym C.decSetoid -- A function used to simplify the examples a little. _∈?_ : forall {i r} -> String -> Parser Char i r -> List r s ∈? p = parse-complete p (S.toList s) {- module Ex₀ where -- This is not well-typed. p : Parser Char _ String p ~ return 5 ⊛> p -} module Ex₁ where -- e ∷= 0 + e | 0 e ~ sym '0' ⊛> sym '+' ⊛> e ∣ sym '0' ex₁ : "0+0" ∈? e ≡ '0' ∷ [] ex₁ = refl module Ex₂ where -- e ∷= f + e | f -- f ∷= 0 | 0 * f | ( e ) mutual expr ~ factor ⊛> sym '+' ⊛> expr ∣ factor factor ~ sym '0' ∣ sym '0' ⊛> sym '*' ⊛> factor ∣ sym '(' ⊛> expr <⊛ sym ')' ex₁ : "(0*)" ∈? expr ≡ [] ex₁ = refl ex₂ : "0*(0+0)" ∈? expr ≡ '0' ∷ [] ex₂ = refl {- module Ex₃ where -- This is not allowed: -- e ∷= f + e | f -- f ∷= 0 | f * 0 | ( e ) mutual expr = factor ⊛> sym '+' ⊛> expr ∣ factor factor = sym '0' ∣ factor ⊛> sym '*' ⊛> sym '0' ∣ sym '(' ⊛> expr <⊛ sym ')' -} module Ex₄ where -- The language aⁿbⁿcⁿ, which is not context free. -- The non-terminal top returns the number of 'a' characters parsed. -- top ∷= aⁿbⁿcⁿ -- as n ∷= aˡ⁺¹bⁿ⁺ˡ⁺¹cⁿ⁺ˡ⁺¹ -- bcs x n ∷= xⁿ⁺¹ bcs : Char -> ℕ -> Parser Char _ ℕ bcs c zero = sym c ⊛> return 0 bcs c (suc n) = sym c ⊛> bcs c n as : ℕ -> Parser Char _ ℕ as n ~ suc <$ sym 'a' ⊛ ( as (suc n) ∣ _+_ <$> bcs 'b' n ⊛ bcs 'c' n ) top = return 0 ∣ as zero ex₁ : "aaabbbccc" ∈? top ≡ 3 ∷ [] ex₁ = refl ex₂ : "aaabbccc" ∈? top ≡ [] ex₂ = refl module Ex₅ where -- A grammar making use of a parameterised parser from the library. a = sym 'a' as = length <$> a ⋆ ex₁ : "aaaaa" ∈? as ≡ 5 ∷ [] ex₁ = refl module Ex₆ where -- A grammar which uses the chain₁ combinator. op = _+_ <$ sym '+' ∣ _*_ <$ sym '*' ∣ _∸_ <$ sym '∸' expr : Assoc -> Parser Char _ ℕ expr a = chain₁ a number op ex₁ : "12345" ∈? number ≡ 12345 ∷ [] ex₁ = refl ex₂ : "1+5*2∸3" ∈? expr left ≡ 9 ∷ [] ex₂ = refl ex₃ : "1+5*2∸3" ∈? expr right ≡ 1 ∷ [] ex₃ = refl module Ex₇ where -- A proper expression example. addOp = _+_ <$ sym '+' ∣ _∸_ <$ sym '∸' mulOp = _*_ <$ sym '*' mutual expr ~ chain₁ left term addOp term ~ chain₁ left factor mulOp factor ~ sym '(' ⊛> expr <⊛ sym ')' ∣ number ex₁ : "1+5*2∸3" ∈? expr ≡ 8 ∷ [] ex₁ = refl ex₂ : "1+5*(2∸3)" ∈? expr ≡ 1 ∷ [] ex₂ = refl
{ "alphanum_fraction": 0.5017622557, "avg_line_length": 18.9151515152, "ext": "agda", "hexsha": "d2179f6f6512ab064f5f3b4142e1e7dabd76ddce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Coinductive/Examples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Coinductive/Examples.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Coinductive/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1168, "size": 3121 }
-- The debug output should include the text "Termination checking -- mutual block MutId 0" once, not three times. {-# OPTIONS -vterm.mutual.id:40 #-} open import Agda.Builtin.Nat record R : Set₁ where field A : Set f0 : Nat → Nat f0 zero = zero f0 (suc n) = f0 n f1 : Nat → Nat f1 zero = zero f1 (suc n) = f1 n f2 : Nat → Nat f2 zero = zero f2 (suc n) = f2 n -- Included in order to make the code fail to type-check. Bad : Set Bad = Set
{ "alphanum_fraction": 0.6150627615, "avg_line_length": 17.0714285714, "ext": "agda", "hexsha": "62714781123051e7ba048148ab5f6cc32f444c6f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3590-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3590-2.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3590-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 171, "size": 478 }
-- Andreas, 2013-11-07 -- Instance candidates are now considered modulo judgemental equality. module Issue899 where postulate A B : Set f : {{ x : A }} → B instance a : A instance a' : A a' = a test : B test = f {- The previous code fails with the following message: Resolve implicit argument _x_257 : A. Candidates: [a : A, a : A] There are indeed two values in scope of type A (a and a'), but given that they are definitionally equal, Agda should not complain about it but just pick any one of them. -} -- Andreas, 2017-07-28: the other example now also works, thanks to G. Brunerie record Eq (A : Set) : Set₁ where field _==_ : A → A → Set record Ord (A : Set) : Set₁ where field {{eq}} : Eq A _<_ : A → A → Set postulate N : Set eqN : N → N → Set ordN : N → N → Set instance EqN : Eq N EqN = record {_==_ = eqN} OrdN : Ord N OrdN = record {_<_ = ordN} ordToEq : {A : Set} → Ord A → Eq A ordToEq o = Ord.eq o postulate f2 : (A : Set) {{e : Eq A}} → Set → Set test2 = f2 N N
{ "alphanum_fraction": 0.6142034549, "avg_line_length": 18.6071428571, "ext": "agda", "hexsha": "0dbc72c2f9fa975a98a02b696ac8b18e4e77ffbd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue899.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue899.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue899.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 360, "size": 1042 }
variable X : Set postulate foo : ∀ A -> X -- error at `src/full/Agda/TypeChecking/Monad/MetaVars.hs:98` -- expected: `{X : Set} -> _1 -> X` Y : Set bar : ∀ A -> Y -- normal `_1 -> Y` type with unsolved metavar
{ "alphanum_fraction": 0.5308641975, "avg_line_length": 24.3, "ext": "agda", "hexsha": "8f4ec3a0b305e6d3d14f310fc62894a38e068652", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3157.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3157.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3157.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 243 }
-- Andreas, 2012-09-15 -- Positive effects of making Agda recognize constant functions. -- Arguments to constant functions are ignored in definitional equality. {-# OPTIONS --copatterns #-} module NonvariantPolarity where open import Common.Equality data ⊥ : Set where record ⊤ : Set where constructor trivial data Bool : Set where true false : Bool True : Bool → Set True true = ⊤ True false = ⊥ module IgnoreArg where -- A function ignoring its first argument knot : Bool → Bool → Bool knot x true = false knot x false = true test : (y : Bool) → knot true y ≡ knot false y test y = refl module UnusedModulePar where -- An unused module parameter module M (x : Bool) where not : Bool → Bool not true = false not false = true open M true open M false renaming (not to not′) test : (y : Bool) → not y ≡ not′ y test y = refl module Absurd where -- Absurd patterns do not count as matches; abort is constant in its 2nd arg. abort : (A : Set) → ⊥ → A abort A () test : (x y : ⊥) → abort Bool x ≡ abort Bool y test x y = refl module ProofIrrelevance where -- Record and absurd patterns do not count as match. fun : (b : Bool) → True b → Bool fun true trivial = true fun false () -- This gives us a kind of proof irrelevance. test : (b : Bool) → (x y : True b) → fun b x ≡ fun b y test b x y = refl module CoinductiveUnit where record Unit : Set where coinductive constructor delay field force : Unit open Unit -- The identity on Unit does not match on its argument, so it is constant. id : Unit → Unit force (id x) = id (force x) idConst : (x y : Unit) → id x ≡ id y idConst x y = refl -- That does not imply x ≡ y (needs bisimulation).
{ "alphanum_fraction": 0.654109589, "avg_line_length": 21.3658536585, "ext": "agda", "hexsha": "781e0e82139ebf59070138bcf9e6b226166a1ed2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/NonvariantPolarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/NonvariantPolarity.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/NonvariantPolarity.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 520, "size": 1752 }
{-# OPTIONS --cubical --safe --guardedness #-} module Issue3564-2 where open import Issue3564
{ "alphanum_fraction": 0.7113402062, "avg_line_length": 16.1666666667, "ext": "agda", "hexsha": "d29e22a06e747004c19709f453a9bb67cdb83f07", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3564-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3564-2.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3564-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 97 }
-- Andreas, 2016-08-08, issue #2131 reported by Andrea {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS --show-irrelevant #-} -- {-# OPTIONS -v tc:25 #-} postulate A : Set P : (F : .(U : Set) → Set) → Set const : (X : Set) .(Y : Set) → Set const X Y = X works : (G : .(Z : Set) → Set) (p : P G) → P (λ V → const (G _) V) -- V is irrelevant works G p = p irr : (G : .(Z : Set) → Set) (p : P G) → P (const (G {!!})) irr G p = p -- Agda computes as follows: -- P G =? P (const (G (?0 G p))) : Set -- G =? const (G (?0 G p)) : .(U : Set) → Set -- G U =? const (G (?0 G p)) U : Set -- G U =? G (?0 G p) -- ?0 G p := U -- This assignment fails, since U is not in scope of ?0 -- However, since ?0 is in irrelevant context, this should not be -- a definite failure, but leave the meta unsolved.
{ "alphanum_fraction": 0.5264452645, "avg_line_length": 27.1, "ext": "agda", "hexsha": "7db79af0d3e85b50b2e5758765c3ce706a071ad6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2131.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2131.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2131.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 307, "size": 813 }
module Lec5 where open import Lec1Done open import Lec2Done open import Lec3Done data List (X : Set) : Set where -- BUILTIN insists on level polymorphism [] : List X _,-_ : (x : X)(xs : List X) -> List X {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _,-_ #-} {-# COMPILE GHC List = data [] ([] | (:)) #-} list : {X Y : Set} -> (X -> Y) -> List X -> List Y list f [] = [] list f (x ,- xs) = f x ,- list f xs data Two : Set where ff tt : Two {-# BUILTIN BOOL Two #-} {-# BUILTIN FALSE ff #-} {-# BUILTIN TRUE tt #-} ---------------------------------------------------------------------------- -- chars and strings ---------------------------------------------------------------------------- postulate -- this means that we just suppose the following things exist... Char : Set String : Set {-# BUILTIN CHAR Char #-} {-# BUILTIN STRING String #-} primitive -- these are baked in; they even work! primCharEquality : Char -> Char -> Two primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String --------------------------------------------------------------------------- -- COLOURS --------------------------------------------------------------------------- -- We're going to be making displays from coloured text. data Colour : Set where black red green yellow blue magenta cyan white : Colour {-# COMPILE GHC Colour = data HaskellSetup.Colour (HaskellSetup.Black | HaskellSetup.Red | HaskellSetup.Green | HaskellSetup.Yellow | HaskellSetup.Blue | HaskellSetup.Magenta | HaskellSetup.Cyan | HaskellSetup.White) #-} record _**_ (S T : Set) : Set where constructor _,_ field outl : S outr : T open _**_ {-# COMPILE GHC _**_ = data (,) ((,)) #-} infixr 4 _**_ _,_ {- Here's the characterization of keys I give you -} data Direction : Set where up down left right : Direction data Modifier : Set where normal shift control : Modifier data Key : Set where char : Char -> Key arrow : Modifier -> Direction -> Key enter : Key backspace : Key delete : Key escape : Key tab : Key data Event : Set where key : (k : Key) -> Event resize : (w h : Nat) -> Event {- This type collects the things you're allowed to do with the text window. -} data Action : Set where goRowCol : Nat -> Nat -> Action -- send the cursor somewhere sendText : List Char -> Action -- send some text move : Direction -> Nat -> Action -- which way and how much fgText : Colour -> Action bgText : Colour -> Action {- I wire all of that stuff up to its Haskell counterpart. -} {-# FOREIGN GHC import qualified ANSIEscapes #-} {-# FOREIGN GHC import qualified HaskellSetup #-} {-# COMPILE GHC Direction = data ANSIEscapes.Dir (ANSIEscapes.DU | ANSIEscapes.DD | ANSIEscapes.DL | ANSIEscapes.DR) #-} {-# COMPILE GHC Modifier = data HaskellSetup.Modifier (HaskellSetup.Normal | HaskellSetup.Shift | HaskellSetup.Control) #-} {-# COMPILE GHC Key = data HaskellSetup.Key (HaskellSetup.Char | HaskellSetup.Arrow | HaskellSetup.Enter | HaskellSetup.Backspace | HaskellSetup.Delete | HaskellSetup.Escape | HaskellSetup.Tab) #-} {-# COMPILE GHC Event = data HaskellSetup.Event (HaskellSetup.Key | HaskellSetup.Resize) #-} {-# COMPILE GHC Action = data HaskellSetup.Action (HaskellSetup.GoRowCol | HaskellSetup.SendText | HaskellSetup.Move | HaskellSetup.FgText | HaskellSetup.BgText) #-} data ColourChar : Set where _-_/_ : (fg : Colour)(c : Char)(bg : Colour) -> ColourChar -- ... e.g. green - '*' / black for a green * on black. Matrix : Set -> Nat * Nat -> Set Matrix C (w , h) = Vec (Vec C w) h Painting : Nat * Nat -> Set Painting = Matrix ColourChar vecFoldR : {X Y : Set} -> (X -> Y -> Y) -> Y -> {n : Nat} -> Vec X n -> Y vecFoldR c n [] = n vecFoldR c n (x ,- xs) = c x (vecFoldR c n xs) paintAction : {wh : Nat * Nat} -> Matrix ColourChar wh -> List Action paintAction = vecFoldR (vecFoldR (\ {(f - c / b) k -> \ as -> fgText f ,- bgText b ,- sendText (c ,- []) ,- k as}) id) [] postulate -- Haskell has a monad for doing IO, which we use at the top level IO : Set -> Set return : {A : Set} -> A -> IO A _>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B infixl 1 _>>=_ {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} {-# COMPILE GHC return = (\ _ -> return) #-} {-# COMPILE GHC _>>=_ = (\ _ _ -> (>>=)) #-} --------------------------------------------------------------------------- -- APPLICATIONS -- --------------------------------------------------------------------------- -- Here's a general idea of what it means to be an "application". -- You need to choose some sort of size-dependent state, then provide these -- bits and pieces. We need to know how the state is updated according to -- events, with resizing potentially affecting the state's type. We must -- be able to paint the state. The state should propose a cursor position. -- (Keen students may modify this definition to ensure the cursor must be -- within the bounds of the application.) record Application (wh : Nat * Nat) : Set where coinductive field handleKey : Key -> Application wh handleResize : (wh' : Nat * Nat) -> Application wh' paintMe : Painting wh cursorMe : Nat * Nat -- x,y coords open Application public -- Now your turn. Build the appropriate handler to connect these -- applications with mainAppLoop. Again, work in two stages, first -- figuring out how to do the right actions, then managing the -- state properly. (1 mark) _+L_ : {X : Set} -> List X -> List X -> List X [] +L ys = ys (x ,- xs) +L ys = x ,- (xs +L ys) infixr 3 _+L_ APP : Set APP = Sg (Nat * Nat) Application appPaint : APP -> List Action appPaint (_ , app) = goRowCol 0 0 ,- paintAction p -- must have composition here, to work around compiler bug -- paintAction (paintMatrix p) -- segfaults, because p is erased +L (goRowCol (snd xy) (fst xy) ,- []) where p = paintMe app xy = cursorMe app appHandler : Event -> APP -> APP ** List Action appHandler (key k) (wh , app) = app' , appPaint app' where app' : APP app' = _ , handleKey app k appHandler (resize w h) (wh , app) = app' , appPaint app' where app' : APP app' = _ , handleResize app (w , h) {- This is the bit of code I wrote in Haskell to animate your code. -} postulate mainAppLoop : {S : Set} -> -- program state -- INITIALIZER S -> -- initial state -- EVENT HANDLER (Event -> S -> -- event and state in S ** List Action) -> -- new state and screen actions out -- PUT 'EM TOGETHER AND YOU'VE GOT AN APPLICATION! IO One {-# COMPILE GHC mainAppLoop = (\ _ -> HaskellSetup.mainAppLoop) #-} appMain : (forall wh -> Application wh) -> IO One appMain app = mainAppLoop ((0 , 0) , app (0 , 0)) appHandler -- will get resized dynamically to size of terminal, first thing vPure : {n : Nat}{X : Set} -> X -> Vec X n vPure {zero} x = [] vPure {suc n} x = x ,- vPure x rectApp : Char -> forall wh -> Application wh handleKey (rectApp c wh) (char x) = rectApp x wh handleKey (rectApp c wh) _ = rectApp c wh handleResize (rectApp c _) wh = rectApp c wh paintMe (rectApp c wh) = vPure (vPure (green - c / black)) cursorMe (rectApp c wh) = wh main : IO One main = appMain (rectApp '*') -- agda --compile --ghc-flag "-lncurses" Lec5.agda
{ "alphanum_fraction": 0.5869536511, "avg_line_length": 35.5539906103, "ext": "agda", "hexsha": "c2d17a528560997d58645ac4aca852be134130c3", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec5.agda", "max_line_length": 220, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec5.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 2038, "size": 7573 }
open import Agda.Builtin.Size postulate X : Set P : X → Set Q : (x : X) → P x → Set data D (i : Size) : Set where c : D i f : (i : Size) → D i → X f i c = {!!} g : (x : X) (y : P x) → Q x y → Q x y g _ _ q = q h : (i : Size) (n : D i) → P (f i n) h _ c = {!!} k : (n : D ∞) → Q (f ∞ n) (h ∞ n) k _ = g _ (h _ {!!}) _
{ "alphanum_fraction": 0.3987915408, "avg_line_length": 15.0454545455, "ext": "agda", "hexsha": "d348721978461bf3b2d96ca240e1b99b590f716f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2881.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2881.agda", "max_line_length": 37, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2881.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 162, "size": 331 }
{-# OPTIONS --without-K #-} module ConcretePermutation where import Level using (zero) open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin; zero; suc; inject+; raise) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) renaming (map to map⊎) open import Data.Product using (_×_; proj₁; proj₂; _,′_) open import Data.Vec using (Vec; _∷_; []; tabulate; _>>=_; allFin) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Data.Vec.Properties using (lookup-allFin; tabulate∘lookup; lookup∘tabulate; lookup-++-inject+; tabulate-∘) open import Function using (_∘_; id) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Relation.Binary using (IsEquivalence) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning; proof-irrelevance) open import Proofs using ( -- FiniteFunctions finext; -- VectorLemmas lookup-++-raise; lookupassoc; tabulate-split; _!!_; unSplit; concat-map; map-map-map; lookup-map; map-∘; left!!; right!! ) open import FinVec -- using () open import FinVecProperties -- using () ------------------------------------------------------------------------------ -- a concrete permutation has 4 components: -- - the permutation -- - its inverse -- - and 2 proofs that it is indeed inverse record CPerm (values : ℕ) (size : ℕ) : Set where constructor cp field π : FinVec values size πᵒ : FinVec size values αp : π ∘̂ πᵒ ≡ 1C βp : πᵒ ∘̂ π ≡ 1C πᵒ≡ : ∀ {m n} → (π₁ π₂ : CPerm m n) → (CPerm.π π₁ ≡ CPerm.π π₂) → (CPerm.πᵒ π₁ ≡ CPerm.πᵒ π₂) πᵒ≡ {n} (cp π πᵒ αp βp) (cp .π πᵒ₁ αp₁ βp₁) refl = begin ( πᵒ ≡⟨ sym (∘̂-rid πᵒ) ⟩ πᵒ ∘̂ 1C ≡⟨ cong (_∘̂_ πᵒ) (sym αp₁) ⟩ πᵒ ∘̂ (π ∘̂ πᵒ₁) ≡⟨ ∘̂-assoc πᵒ π πᵒ₁ ⟩ (πᵒ ∘̂ π) ∘̂ πᵒ₁ ≡⟨ cong (λ x → x ∘̂ πᵒ₁) βp ⟩ 1C ∘̂ πᵒ₁ ≡⟨ ∘̂-lid πᵒ₁ ⟩ πᵒ₁ ∎) where open ≡-Reasoning p≡ : ∀ {m n} → {π₁ π₂ : CPerm m n} → (CPerm.π π₁ ≡ CPerm.π π₂) → π₁ ≡ π₂ p≡ {m} {n} {cp π πᵒ αp βp} {cp .π πᵒ₁ αp₁ βp₁} refl with πᵒ≡ (cp π πᵒ αp βp) (cp π πᵒ₁ αp₁ βp₁) refl p≡ {m} {n} {cp π πᵒ αp βp} {cp .π .πᵒ αp₁ βp₁} refl | refl with proof-irrelevance αp αp₁ | proof-irrelevance βp βp₁ p≡ {m} {n} {cp π πᵒ αp βp} {cp .π .πᵒ .αp .βp} refl | refl | refl | refl = refl idp : ∀ {n} → CPerm n n idp {n} = cp 1C 1C (∘̂-rid _) (∘̂-lid _) symp : ∀ {m n} → CPerm m n → CPerm n m symp (cp p₁ p₂ α β) = cp p₂ p₁ β α transp : ∀ {m₁ m₂ m₃} → CPerm m₂ m₁ → CPerm m₃ m₂ → CPerm m₃ m₁ transp {n} (cp π πᵒ αp βp) (cp π₁ πᵒ₁ αp₁ βp₁) = cp (π ∘̂ π₁) (πᵒ₁ ∘̂ πᵒ) pf₁ pf₂ where open ≡-Reasoning pf₁ : (π ∘̂ π₁) ∘̂ (πᵒ₁ ∘̂ πᵒ) ≡ 1C pf₁ = begin ( (π ∘̂ π₁) ∘̂ (πᵒ₁ ∘̂ πᵒ) ≡⟨ ∘̂-assoc _ _ _ ⟩ ((π ∘̂ π₁) ∘̂ πᵒ₁) ∘̂ πᵒ ≡⟨ cong (λ x → x ∘̂ πᵒ) (sym (∘̂-assoc _ _ _)) ⟩ (π ∘̂ (π₁ ∘̂ πᵒ₁)) ∘̂ πᵒ ≡⟨ cong (λ x → (π ∘̂ x) ∘̂ πᵒ) (αp₁) ⟩ (π ∘̂ 1C) ∘̂ πᵒ ≡⟨ cong (λ x → x ∘̂ πᵒ) (∘̂-rid _) ⟩ π ∘̂ πᵒ ≡⟨ αp ⟩ 1C ∎) pf₂ : (πᵒ₁ ∘̂ πᵒ) ∘̂ (π ∘̂ π₁) ≡ 1C pf₂ = begin ( (πᵒ₁ ∘̂ πᵒ) ∘̂ (π ∘̂ π₁) ≡⟨ ∘̂-assoc _ _ _ ⟩ ((πᵒ₁ ∘̂ πᵒ) ∘̂ π) ∘̂ π₁ ≡⟨ cong (λ x → x ∘̂ π₁) (sym (∘̂-assoc _ _ _)) ⟩ (πᵒ₁ ∘̂ (πᵒ ∘̂ π)) ∘̂ π₁ ≡⟨ cong (λ x → (πᵒ₁ ∘̂ x) ∘̂ π₁) βp ⟩ (πᵒ₁ ∘̂ 1C) ∘̂ π₁ ≡⟨ cong (λ x → x ∘̂ π₁) (∘̂-rid _) ⟩ πᵒ₁ ∘̂ π₁ ≡⟨ βp₁ ⟩ 1C ∎) -- zero permutation 0p : CPerm 0 0 0p = idp {0} _⊎p_ : ∀ {m₁ m₂ n₁ n₂} → CPerm m₁ m₂ → CPerm n₁ n₂ → CPerm (m₁ + n₁) (m₂ + n₂) _⊎p_ {m₁} {m₂} {n₁} {n₂} π₀ π₁ = cp ((π π₀) ⊎c (π π₁)) ((πᵒ π₀) ⊎c (πᵒ π₁)) pf₁ pf₂ where open CPerm open ≡-Reasoning pf₁ : (π π₀ ⊎c π π₁) ∘̂ (πᵒ π₀ ⊎c πᵒ π₁) ≡ 1C pf₁ = begin ( (π π₀ ⊎c π π₁) ∘̂ (πᵒ π₀ ⊎c πᵒ π₁) ≡⟨ ⊎c-distrib {p₁ = π π₀} ⟩ (π π₀ ∘̂ πᵒ π₀) ⊎c (π π₁ ∘̂ πᵒ π₁) ≡⟨ cong₂ _⊎c_ (αp π₀) (αp π₁) ⟩ 1C {m₂} ⊎c 1C {n₂} ≡⟨ 1C⊎1C≡1C {m₂} ⟩ 1C ∎) pf₂ : (πᵒ π₀ ⊎c πᵒ π₁) ∘̂ (π π₀ ⊎c π π₁) ≡ 1C pf₂ = begin ( (πᵒ π₀ ⊎c πᵒ π₁) ∘̂ (π π₀ ⊎c π π₁) ≡⟨ ⊎c-distrib {p₁ = πᵒ π₀} ⟩ (πᵒ π₀ ∘̂ π π₀) ⊎c (πᵒ π₁ ∘̂ π π₁) ≡⟨ cong₂ _⊎c_ (βp π₀) (βp π₁) ⟩ 1C {m₁} ⊎c 1C {n₁} ≡⟨ 1C⊎1C≡1C {m₁} ⟩ 1C ∎ ) -- For the rest of the permutations, it is convenient to lift things from -- FinVec in one go; but don't use it yet, it makes other things fall apart {-- mkPerm : {m n : ℕ} (eq : Fin m ≃ Fin n) → CPerm m n mkPerm {m} {n} eq = cp p q p∘̂q≡1 q∘̂p≡1 where f = proj₁ eq g = proj₁ (sym≃ eq) p = tabulate g -- note the flip! q = tabulate f q∘̂p≡1 = ~⇒≡ {f = g} {g = f} (p∘!p≡id {p = eq}) p∘̂q≡1 = ~⇒≡ {f = f} {g = g} (p∘!p≡id {p = sym≃ eq}) --} unite+p : {m : ℕ} → CPerm m (0 + m) unite+p {m} = cp (unite+ {m}) (uniti+ {m}) (unite+∘̂uniti+~id {m}) (uniti+∘̂unite+~id {m}) uniti+p : {m : ℕ} → CPerm (0 + m) m uniti+p {m} = symp (unite+p {m}) unite+rp : {m : ℕ} → CPerm m (m + 0) unite+rp {m} = cp (unite+r {m}) (uniti+r) (unite+r∘̂uniti+r~id) (uniti+r∘̂unite+r~id) uniti+rp : {m : ℕ} → CPerm (m + 0) m uniti+rp {m} = symp (unite+rp {m}) assocl+p : {m n o : ℕ} → CPerm ((m + n) + o) (m + (n + o)) assocl+p {m} = cp (assocl+ {m}) (assocr+ {m}) (assocl+∘̂assocr+~id {m}) (assocr+∘̂assocl+~id {m}) assocr+p : {m n o : ℕ} → CPerm (m + (n + o)) ((m + n) + o) assocr+p {m} = symp (assocl+p {m}) swap+p : {m n : ℕ} → CPerm (n + m) (m + n) swap+p {m} {n} = cp (swap+cauchy m n) (swap+cauchy n m) (swap+-inv {m}) (swap+-inv {n}) unite*p : {m : ℕ} → CPerm m (1 * m) unite*p {m} = cp (unite* {m}) (uniti* {m}) (unite*∘̂uniti*~id {m}) (uniti*∘̂unite*~id {m}) uniti*p : {m : ℕ} → CPerm (1 * m) m uniti*p {m} = symp (unite*p {m}) unite*rp : {m : ℕ} → CPerm m (m * 1) unite*rp {m} = cp (unite*r {m}) (uniti*r {m}) (unite*r∘̂uniti*r~id {m}) (uniti*r∘̂unite*r~id {m}) uniti*rp : {m : ℕ} → CPerm (m * 1) m uniti*rp {m} = symp (unite*rp {m}) swap*p : {m n : ℕ} → CPerm (n * m) (m * n) swap*p {m} {n} = cp (swap⋆cauchy m n) (swap⋆cauchy n m) (swap*-inv {m}) (swap*-inv {n}) assocl*p : {m n o : ℕ} → CPerm ((m * n) * o) (m * (n * o)) assocl*p {m} = cp (assocl* {m}) (assocr* {m}) (assocl*∘̂assocr*~id {m}) (assocr*∘̂assocl*~id {m}) assocr*p : {m n o : ℕ} → CPerm (m * (n * o)) ((m * n) * o) assocr*p {m} = symp (assocl*p {m}) _×p_ : ∀ {m₁ m₂ n₁ n₂} → CPerm m₁ m₂ → CPerm n₁ n₂ → CPerm (m₁ * n₁) (m₂ * n₂) _×p_ {m₁} {m₂} {n₁} {n₂} π₀ π₁ = cp ((π π₀) ×c (π π₁)) ((πᵒ π₀) ×c (πᵒ π₁)) pf₁ pf₂ where open CPerm open ≡-Reasoning pf₁ : (π π₀ ×c π π₁) ∘̂ (πᵒ π₀ ×c πᵒ π₁) ≡ 1C pf₁ = begin ( (π π₀ ×c π π₁) ∘̂ (πᵒ π₀ ×c πᵒ π₁) ≡⟨ ×c-distrib {p₁ = π π₀} ⟩ (π π₀ ∘̂ πᵒ π₀) ×c (π π₁ ∘̂ πᵒ π₁) ≡⟨ cong₂ _×c_ (αp π₀) (αp π₁) ⟩ 1C ×c 1C ≡⟨ 1C×1C≡1C ⟩ 1C ∎) pf₂ : (πᵒ π₀ ×c πᵒ π₁) ∘̂ (π π₀ ×c π π₁) ≡ 1C pf₂ = begin ( (πᵒ π₀ ×c πᵒ π₁) ∘̂ (π π₀ ×c π π₁) ≡⟨ ×c-distrib {p₁ = πᵒ π₀} ⟩ (πᵒ π₀ ∘̂ π π₀) ×c (πᵒ π₁ ∘̂ π π₁) ≡⟨ cong₂ _×c_ (βp π₀) (βp π₁) ⟩ 1C ×c 1C ≡⟨ 1C×1C≡1C ⟩ 1C ∎) distp : {m n o : ℕ} → CPerm (m * o + n * o) ((m + n) * o) distp {m} {n} {o} = cp (dist*+ {m}) (factor*+ {m}) (dist*+∘̂factor*+~id {m}) (factor*+∘̂dist*+~id {m}) factorp : {m n o : ℕ} → CPerm ((m + n) * o) (m * o + n * o) factorp {m} = symp (distp {m}) distlp : {m n o : ℕ} → CPerm (m * n + m * o) (m * (n + o)) distlp {m} {n} {o} = cp (distl*+ {m}) (factorl*+ {m}) (distl*+∘̂factorl*+~id {m}) (factorl*+∘̂distl*+~id {m}) factorlp : {m n o : ℕ} → CPerm (m * (n + o)) (m * n + m * o) factorlp {m} = symp (distlp {m}) -- right-zero absorbing permutation 0pr : ∀ {n} → CPerm 0 (n * 0) 0pr {n} = cp (right-zero*l {n}) (right-zero*r {n}) (right-zero*l∘̂right-zero*r~id {n}) (right-zero*r∘̂right-zero*l~id {n}) -- and its symmetric version 0pl : ∀ {n} → CPerm (n * 0) 0 0pl {n} = symp (0pr {n}) -- ridp : ∀ {m₁ m₂} {p : CPerm m₂ m₁} → transp p idp ≡ p ridp {p = p} = p≡ (∘̂-rid (CPerm.π p)) lidp : ∀ {m₁ m₂} {p : CPerm m₂ m₁} → transp idp p ≡ p lidp {p = p} = p≡ (∘̂-lid (CPerm.π p)) assocp : ∀ {m₁ m₂ m₃ n₁} → {p₁ : CPerm m₁ n₁} → {p₂ : CPerm m₂ m₁} → {p₃ : CPerm m₃ m₂} → transp p₁ (transp p₂ p₃) ≡ transp (transp p₁ p₂) p₃ assocp {p₁ = p₁} {p₂} {p₃} = p≡ (∘̂-assoc (CPerm.π p₁) (CPerm.π p₂) (CPerm.π p₃)) linv : ∀ {m₁ m₂} (p : CPerm m₂ m₁) → transp p (symp p) ≡ idp linv p = p≡ (CPerm.αp p) rinv : ∀ {m₁ m₂} (p : CPerm m₂ m₁) → transp (symp p) p ≡ idp rinv p = p≡ (CPerm.βp p) transp-resp-≡ : ∀ {m₁ m₂ m₃} {f h : CPerm m₂ m₃} {g i : CPerm m₁ m₂} → f ≡ h → g ≡ i → transp f g ≡ transp h i transp-resp-≡ refl refl = refl 1p⊎1p≡1p : ∀ {m n} → idp {m} ⊎p idp {n} ≡ idp 1p⊎1p≡1p {m} = p≡ (1C⊎1C≡1C {m}) 1p×1p≡1p : ∀ {m n} → idp {m} ×p idp {n} ≡ idp 1p×1p≡1p {m} = p≡ (1C×1C≡1C {m}) ⊎p-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : CPerm m₁ n₁} → {p₂ : CPerm m₂ n₂} → {p₃ : CPerm m₃ m₁} → {p₄ : CPerm m₄ m₂} → transp (p₁ ⊎p p₂) (p₃ ⊎p p₄) ≡ (transp p₁ p₃) ⊎p (transp p₂ p₄) ⊎p-distrib {p₁ = p₁} = p≡ (⊎c-distrib {p₁ = CPerm.π p₁}) ×p-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : CPerm m₁ n₁} → {p₂ : CPerm m₂ n₂} → {p₃ : CPerm m₃ m₁} → {p₄ : CPerm m₄ m₂} → (transp p₁ p₃) ×p (transp p₂ p₄) ≡ transp (p₁ ×p p₂) (p₃ ×p p₄) ×p-distrib {p₁ = p₁} = p≡ (sym (×c-distrib {p₁ = CPerm.π p₁})) 0p⊎x≡x : ∀ {m n} {p : CPerm m n} → idp {0} ⊎p p ≡ p 0p⊎x≡x {p = p} = p≡ 1C₀⊎x≡x -- this comes from looking at things categorically: unite+p∘[0⊎x]≡x∘unite+p : ∀ {m n} (p : CPerm m n) → transp unite+p (0p ⊎p p) ≡ transp p unite+p unite+p∘[0⊎x]≡x∘unite+p p = p≡ unite+∘[0⊎x]≡x∘unite+ uniti+p∘x≡[0⊎x]∘uniti+p : ∀ {m n} (p : CPerm m n) → transp uniti+p p ≡ transp (0p ⊎p p) uniti+p uniti+p∘x≡[0⊎x]∘uniti+p p = p≡ (uniti+∘x≡[0⊎x]∘uniti+ {x = CPerm.π p}) -- and the right version {- unite+rp∘[x⊎0]≡x∘unite+rp : ∀ {m n} (p : CPerm m n) → transp unite+rp (p ⊎p 0p) ≡ transp p unite+rp unite+rp∘[x⊎0]≡x∘unite+rp p = p≡ ? uniti+rp∘[x⊎0]≡x∘uniti+rp : ∀ {m n} (p : CPerm m n) → transp uniti+rp (p ⊎p 0p) ≡ transp p uniti+rp uniti+rp∘[x⊎0]≡x∘uniti+rp p = p≡ {!!} -} -- SCPerm : ℕ → ℕ → Setoid zero zero -- SCPerm m n = setoid (CPerm m n) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4885314552, "avg_line_length": 32.4290123457, "ext": "agda", "hexsha": "5c602b9f660e9e1cfd708ad8ecce04e5ef9e10c9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/ConcretePermutation.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/ConcretePermutation.agda", "max_line_length": 86, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/ConcretePermutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 5759, "size": 10507 }
{- Reflection-based tools for converting between iterated record types, particularly between record types and iterated Σ-types. Currently requires eta equality. See end of file for examples. -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Reflection.RecordEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.List as List open import Cubical.Data.Nat open import Cubical.Data.Maybe open import Cubical.Data.Sigma import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base Projections = List R.Name -- Describes a correspondence between two iterated record types Assoc = List (Projections × Projections) -- Describes a correspondence between a record type and an iterated Σ-types; -- more convenient than Assoc for this special case data ΣFormat : Type where leaf : R.Name → ΣFormat _,_ : ΣFormat → ΣFormat → ΣFormat infixr 4 _,_ module Internal where flipAssoc : Assoc → Assoc flipAssoc = List.map λ {p .fst → p .snd; p .snd → p .fst} list→ΣFormat : List R.Name → Maybe ΣFormat list→ΣFormat [] = nothing list→ΣFormat (x ∷ []) = just (leaf x) list→ΣFormat (x ∷ y ∷ xs) = map-Maybe (leaf x ,_) (list→ΣFormat (y ∷ xs)) recordName→ΣFormat : R.Name → R.TC (Maybe ΣFormat) recordName→ΣFormat name = R.getDefinition name >>= go where go : R.Definition → R.TC (Maybe ΣFormat) go (R.record-type c fs) = R.returnTC (list→ΣFormat (List.map (λ {(R.arg _ n) → n}) fs)) go _ = R.typeError (R.strErr "Not a record type name:" ∷ R.nameErr name ∷ []) ΣFormat→Assoc : ΣFormat → Assoc ΣFormat→Assoc = go [] where go : List R.Name → ΣFormat → Assoc go prefix (leaf fieldName) = [ prefix , [ fieldName ] ] go prefix (sig₁ , sig₂) = go (quote fst ∷ prefix) sig₁ ++ go (quote snd ∷ prefix) sig₂ MaybeΣFormat→Assoc : Maybe ΣFormat → Assoc MaybeΣFormat→Assoc nothing = [ [] , [] ] MaybeΣFormat→Assoc (just sig) = ΣFormat→Assoc sig convertTerm : Assoc → R.Term → R.Term convertTerm al term = R.pat-lam (List.map makeClause al) [] where makeClause : Projections × Projections → R.Clause makeClause (projl , projr) = R.clause [] (goPat [] projr) (goTm projl) where goPat : List (R.Arg R.Pattern) → List R.Name → List (R.Arg R.Pattern) goPat acc [] = acc goPat acc (π ∷ projs) = goPat (varg (R.proj π) ∷ acc) projs goTm : List R.Name → R.Term goTm [] = term goTm (π ∷ projs) = R.def π [ varg (goTm projs) ] convertFun : Assoc → R.Term convertFun al = vlam "ρ" (convertTerm al (v 0)) convertMacro : Assoc → R.Term → R.TC Unit convertMacro al hole = R.unify hole (convertFun al) equivMacro : Assoc → R.Term → R.TC Unit equivMacro al hole = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → let iso : R.Term iso = R.pat-lam ( R.clause [] [ varg (R.proj (quote Iso.fun)) ] hole₁ ∷ R.clause [] [ varg (R.proj (quote Iso.inv)) ] hole₂ ∷ R.clause [] [ varg (R.proj (quote Iso.rightInv)) ] (vlam "_" (R.def (quote refl) [])) ∷ R.clause [] [ varg (R.proj (quote Iso.leftInv)) ] (vlam "_" (R.def (quote refl) [])) ∷ [] ) [] in R.unify hole (R.def (quote isoToEquiv) [ varg iso ]) >> convertMacro al hole₁ >> convertMacro (flipAssoc al) hole₂ open Internal macro -- ΣFormat → <Σ-Type> ≃ <RecordType> Σ≃Record : ΣFormat → R.Term → R.TC Unit Σ≃Record sig = equivMacro (ΣFormat→Assoc sig) -- ΣFormat → <RecordType> ≃ <Σ-Type> Record≃Σ : ΣFormat → R.Term → R.TC Unit Record≃Σ sig = equivMacro (flipAssoc (ΣFormat→Assoc sig)) -- <RecordTypeName> → <Σ-Type> ≃ <RecordType> FlatΣ≃Record : R.Name → R.Term → R.TC Unit FlatΣ≃Record name hole = recordName→ΣFormat name >>= λ sig → equivMacro (MaybeΣFormat→Assoc sig) hole -- <RecordTypeName> → <RecordType> ≃ <Σ-Type> Record≃FlatΣ : R.Name → R.Term → R.TC Unit Record≃FlatΣ name hole = recordName→ΣFormat name >>= λ sig → equivMacro (flipAssoc (MaybeΣFormat→Assoc sig)) hole -- ΣFormat → <RecordType₁> ≃ <RecordType₂> Record≃Record : Assoc → R.Term → R.TC Unit Record≃Record = equivMacro module Example where private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ' record Example {A : Type ℓ} (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where field cool : A fun : A wow : B cool open Example {- Example: Equivalence between a Σ-type and record type using FlatΣ≃Record -} Example0 : (Σ[ a ∈ A ] Σ[ a' ∈ A ] B a) ≃ Example B Example0 = FlatΣ≃Record Example Example0' : Example B ≃ (Σ[ a ∈ A ] Σ[ a' ∈ A ] B a) Example0' = Record≃FlatΣ Example Example0'' : Unit ≃ Unit -- any record with no fields is equivalent to unit Example0'' = FlatΣ≃Record Unit {- Example: Equivalence between an arbitrarily arrange Σ-type and record type using Σ≃Record -} Example1 : (Σ[ p ∈ A × A ] B (p .snd)) ≃ Example B Example1 = Σ≃Record ((leaf (quote fun) , leaf (quote cool)) , leaf (quote wow)) {- Example: Equivalence between arbitrary iterated record types (less convenient) using Record≃Record -} record Inner {A : Type ℓ} (B : A → Type ℓ') (a : A) : Type (ℓ-max ℓ ℓ') where field fun' : A wow' : B a record Outer {A : Type ℓ} (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where field cool' : A inner : B cool' open Inner open Outer Example2 : Example B ≃ Outer (Inner B) Example2 = Record≃Record ( ([ quote cool ] , [ quote cool' ]) ∷ ([ quote fun ] , (quote fun' ∷ quote inner ∷ [])) ∷ ([ quote wow ] , (quote wow' ∷ quote inner ∷ [])) ∷ [] )
{ "alphanum_fraction": 0.6239257477, "avg_line_length": 29.5329949239, "ext": "agda", "hexsha": "d054d023aa191431255484b87b08432dfbccd32f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Reflection/RecordEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1917, "size": 5818 }