Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.NatMinusTwo where
open import Cubical.Data.NatMinusTwo.Base public
open import Cubical.Data.NatMinusTwo.Properties public
open import Cubical.Data.NatMinusTwo.ToNatMinusOne using (1+_; ℕ₋₁→ℕ₋₂; -1+Path) public
| {
"alphanum_fraction": 0.7819548872,
"avg_line_length": 29.5555555556,
"ext": "agda",
"hexsha": "9e999ec17423e4aa6b4df9fe21375a6ff988afa4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Data/NatMinusTwo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Data/NatMinusTwo.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Data/NatMinusTwo.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 79,
"size": 266
} |
------------------------------------------------------------------------------
-- Mendelson's substitution
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOL.MendelsonSubstATP where
-- First-order logic with equality.
open import Common.FOL.FOL-Eq public
------------------------------------------------------------------------------
-- Mendelson's [2015] substitution (p. 93).
-- (A7) x = y ⇒ (A(x,x) ⇒ B(x,y)) (substitutivity of equality)
postulate mendelsonSubst : (A : D → D → Set) → ∀ {x y} → x ≡ y → A x x → A x y
{-# ATP prove mendelsonSubst #-}
------------------------------------------------------------------------------
-- References
-- Mendelson, Elliott (2015). Introduction to Mathematical Logic. CRC
-- Press, 6th edition.
| {
"alphanum_fraction": 0.4099378882,
"avg_line_length": 32.2,
"ext": "agda",
"hexsha": "ae93f175e173243d20264f6db9d0bb483cc6f8cf",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOL/MendelsonSubstATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOL/MendelsonSubstATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOL/MendelsonSubstATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 192,
"size": 966
} |
{-# OPTIONS --cubical-compatible #-}
postulate
A : Set
P : A → Set
Q : {x : A} → P x → P x → Set
variable
B : Set
@0 q : B
postulate
F : ∀ p → Q p q → Set
Test : {@0 x : A} ({q} p : P x) (q′ : Q p q) → Set
Test = F
| {
"alphanum_fraction": 0.4572649573,
"avg_line_length": 13.7647058824,
"ext": "agda",
"hexsha": "f83152b7be54af54b64b004c466784ba68d69064",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5058b.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5058b.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5058b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 101,
"size": 234
} |
{-# OPTIONS --prop --rewriting #-}
open import Calf.CostMonoid
module Calf (costMonoid : CostMonoid) where
open CostMonoid costMonoid
open import Calf.Prelude public
open import Calf.Metalanguage public
open import Calf.PhaseDistinction public
open import Calf.Step costMonoid public
open import Calf.Noninterference costMonoid public
| {
"alphanum_fraction": 0.8147058824,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "4efab28dd5529a1d93d8d803cc865433de30acd8",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf.agda",
"max_line_length": 50,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 88,
"size": 340
} |
open import MLib.Finite
module MLib.Finite.Properties {c ℓ} (finiteSet : FiniteSet c ℓ) where
open import MLib.Prelude
import Data.Fin.Permutation as Perm
import Relation.Binary as B
open FE using (cong)
open LeftInverse using () renaming (_∘_ to _ⁱ∘_)
open Algebra using (IdempotentCommutativeMonoid)
open Table hiding (setoid)
open FiniteSet finiteSet renaming (Carrier to A)
private
enumₜAt : ∀ {N} → OntoFin N → Table A N
enumₜAt = tabulate ∘ _⟨$⟩_ ∘ LeftInverse.from
module _ {c ℓ} (icMonoid : IdempotentCommutativeMonoid c ℓ) where
module S = IdempotentCommutativeMonoid icMonoid
open S using (_∙_; ∙-cong) renaming (Carrier to S; _≈_ to _≈′_)
open import Algebra.Operations.CommutativeMonoid S.commutativeMonoid
open import Algebra.Properties.CommutativeMonoid S.commutativeMonoid
foldMap : (A → S) → S
foldMap f = sumₜ (Table.map f enumₜ)
foldMap-cong : ∀ {f g} → (∀ x → f x ≈′ g x) → foldMap f ≈′ foldMap g
foldMap-cong p = sumₜ-cong-≈ (p ∘ lookup enumₜ)
private
inhabited : ∀ {N} (i : Fin N) → ∃ λ n → N ≡ Nat.suc n
inhabited Fin.zero = _ , ≡.refl
inhabited (Fin.suc i) = _ , ≡.refl
-- Folding with a constant function produces the constant.
foldMap-const : ∀ {x} → x ∙ foldMap (λ _ → x) ≈′ x
foldMap-const {x} =
begin
x ∙ foldMap (λ _ → x) ≡⟨⟩
x ∙ sumₜ (Table.map (λ _ → x) enumₜ) ≡⟨⟩
x ∙ sumₜ (Table.replicate {N} x) ≡⟨⟩
sumₜ (Table.replicate {Nat.suc N} x) ≈⟨ sumₜ-idem-replicate N (S.idem x) ⟩
x ∎
where open EqReasoning S.setoid
private
module _ {n : ℕ} (ontoFin′ : OntoFin (Nat.suc n)) where
from = LeftInverse.from ontoFin′ ⟨$⟩_
to = LeftInverse.to ontoFin′ ⟨$⟩_
from-to = LeftInverse.left-inverse-of ontoFin′
enumₜ′ : Table A (Nat.suc n)
enumₜ′ = enumₜAt ontoFin′
ap : setoid ⟶ S.setoid → A → S
ap = _⟨$⟩_
enumₜ-complete′ : ∀ (func : setoid ⟶ S.setoid) x → (func ⟨$⟩ x) ∙ sumₜ (map (ap func) enumₜ′) ≈′ sumₜ (map (ap func) enumₜ′)
enumₜ-complete′ func x =
begin
f x ∙ sumₜ (map f enumₜ′) ≈⟨ ∙-cong S.refl (sumₜ-permute (map f enumₜ′) (Perm.transpose Fin.zero i)) ⟩
f x ∙ sumₜ (permute (Perm.transpose Fin.zero i) (map f enumₜ′)) ≡⟨⟩
f x ∙ (f (from (to x)) ∙ _) ≈⟨ ∙-cong S.refl (∙-cong (cong func (from-to _)) S.refl) ⟩
f x ∙ (f x ∙ _) ≈⟨ S.sym (S.assoc _ _ _) ⟩
(f x ∙ f x) ∙ _ ≈⟨ ∙-cong (S.idem _) S.refl ⟩
f x ∙ _ ≈⟨ ∙-cong (cong func (sym (from-to _))) S.refl ⟩
f (from (to x)) ∙ _ ≡⟨⟩
sumₜ (permute (Perm.transpose Fin.zero i) (map f enumₜ′)) ≈⟨ S.sym (sumₜ-permute (map f enumₜ′) (Perm.transpose Fin.zero i)) ⟩
sumₜ (map f enumₜ′) ∎
where
f = ap func
i = to x
open EqReasoning S.setoid
private
enumₜ-complete′′ :
∀ {N} (ontoFin′ : OntoFin N) (f : setoid ⟶ S.setoid) x
→ (f ⟨$⟩ x) ∙ sumₜ (Table.map (f ⟨$⟩_) (enumₜAt ontoFin′))
≈′ sumₜ (Table.map (f ⟨$⟩_) (enumₜAt ontoFin′))
enumₜ-complete′′ ontoFin′ f x with inhabited (LeftInverse.to ontoFin′ ⟨$⟩ x)
enumₜ-complete′′ ontoFin′ f x | n , ≡.refl = enumₜ-complete′ ontoFin′ f x
sum/map-hom : ∀ {n} {a}{A : Set a} (f : A → S) (t : Table A n) → sumₗ (List.map f (toList t)) ≡ sumₜ (map f t)
sum/map-hom f t =
begin
sumₗ (List.map f (toList t)) ≡⟨ ≡.cong sumₗ (Table.map-toList-hom t) ⟩
sumₗ (toList (map f t)) ≡⟨ ≡.sym (sumₜ-toList (map f t)) ⟩
sumₜ (map f t) ∎
where
open ≡.Reasoning
-- Enumeration is complete: in any idempotent commutative monoid, adding one
-- more element to the sum won't change it. In particular, this works in the
-- powerset monoid, where 'f' is the singleton at its argument and addition
-- is set union. This shows that every member of 'A' is present in the
-- enumeration (even though the powerset monoid is quite difficult to
-- implement in Agda so this proof is not present).
enumₜ-complete : ∀ f x → (f ⟨$⟩ x) ∙ foldMap (f ⟨$⟩_) ≈′ foldMap (f ⟨$⟩_)
enumₜ-complete = enumₜ-complete′′ ontoFin
enumₗ-complete : ∀ (f : setoid ⟶ S.setoid) x → (f ⟨$⟩ x) ∙ sumₗ (List.map (f ⟨$⟩_) enumₗ) ≈′ sumₗ (List.map (f ⟨$⟩_) enumₗ)
enumₗ-complete func x =
begin
f x ∙ sumₗ (List.map f enumₗ) ≡⟨⟩
f x ∙ sumₗ (List.map f (toList enumₜ)) ≡⟨ ≡.cong₂ _∙_ ≡.refl (sum/map-hom f enumₜ) ⟩
f x ∙ sumₜ (map f enumₜ) ≈⟨ enumₜ-complete func x ⟩
sumₜ (map f enumₜ) ≡⟨ ≡.sym (sum/map-hom f enumₜ) ⟩
sumₗ (List.map f enumₗ) ∎
where
f = func ⟨$⟩_
open EqReasoning S.setoid
-- A finite set can be strictly totally ordered by its elements' indices
Ixorder : B.StrictTotalOrder _ _ _
Ixorder = record
{ _≈_ = _≈_
; _<_ = λ x y → toIx x Fin.< toIx y
; isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = Fin.<-trans
; compare = compare
}
}
where
compare : Trichotomous _≈_ (λ x y → toIx x Fin.< toIx y)
compare x y with B.StrictTotalOrder.compare (Fin.<-strictTotalOrder N) (toIx x) (toIx y)
compare x y | B.tri< a ¬b ¬c = B.tri< a (¬b ∘ cong (LeftInverse.to ontoFin)) ¬c
compare x y | B.tri≈ ¬a b ¬c = B.tri≈ ¬a (LeftInverse.injective ontoFin b) ¬c
compare x y | B.tri> ¬a ¬b c = B.tri> ¬a (¬b ∘ cong (LeftInverse.to ontoFin)) c
-- Equality between members of a finite set is decidable.
_≟_ : B.Decidable _≈_
_≟_ = B.StrictTotalOrder._≟_ Ixorder
| {
"alphanum_fraction": 0.5506853952,
"avg_line_length": 40.1972789116,
"ext": "agda",
"hexsha": "12908a9a77f51da4c388fe1ad04eb6c12f577e22",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Finite/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Finite/Properties.agda",
"max_line_length": 151,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Finite/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2139,
"size": 5909
} |
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
open import Common.Equality
module Issue2782 where
module Interval where
private
data I' : Set where
Izero' : I'
Ione' : I'
I : Set
I = I'
Izero : I
Izero = Izero'
Ione : I
Ione = Ione'
{--
postulate
Iseg : Izero ≡ Ione
--}
-- Fails when run with --safe flag in command-line
unquoteDecl Iseg = declarePostulate (vArg Iseg) (def (quote _≡_) (vArg (def (quote Izero) []) ∷ vArg (def (quote Ione) []) ∷ []))
open Interval public
pf : Izero ≡ Ione
pf = Iseg
| {
"alphanum_fraction": 0.6230636833,
"avg_line_length": 16.6,
"ext": "agda",
"hexsha": "1382c208a5db00a07191f649c4e8f331e43814e7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2782.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2782.agda",
"max_line_length": 131,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2782.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 197,
"size": 581
} |
open import Agda.Builtin.Reflection using (Name)
-- See Tactic.Nat for a description of the various tactics.
module Tactic.Nat.Generic (`≤ `toLeq `fromLeq : Name) where
open import Prelude
open import Tactic.Reflection
open import Tactic.Nat.Induction using (nat-induction)
open import Tactic.Nat.Subtract using (autosub-tactic; by-tactic; refutesub-tactic; simplifygoal-tactic; simplifysub-tactic)
private
a→0 : Type → Term
a→0 (def op _) = ifYes op == `≤ then def₀ `toLeq else def₀ (quote id)
a→0 _ = def₀ (quote id) -- TODO perhaps return unknown?
0→a : Type → Term
0→a (def op _) = ifYes op == `≤ then def₀ `fromLeq else def₀ (quote id)
0→a _ = def₀ (quote id) -- TODO perhaps return unknown?
applyTactic : (Type → TC Term) → Term → TC ⊤
applyTactic tac hole = do
goal ← inferType hole
unify hole ∘ (0→a goal `$_) =<< tac =<< inferNormalisedType (a→0 goal `$ hole)
macro
auto : Tactic
auto hole = applyTactic autosub-tactic hole
by : Term → Tactic
by prf hole = do
Prf ← inferNormalisedType prf
applyTactic (by-tactic (a→0 Prf `$ prf)) hole
refute : Term → Tactic
refute prf hole = do
Prf ← inferNormalisedType prf
unify hole =<< refutesub-tactic (a→0 Prf `$ prf)
simplify-goal : Tactic
simplify-goal hole = do
goal ← inferFunRange hole
s-goal₀ ← simplifygoal-tactic =<< inferFunRange (a→0 goal `∘ hole)
hole =′ 0→a goal `∘ s-goal₀ `∘ a→0 goal
simplify : Term → Tactic
simplify prf hole = do
goal ← inferFunRange hole
Prf ← inferNormalisedType prf
s-goal₀ ← simplifysub-tactic (a→0 Prf `$ prf) =<< inferFunRange (a→0 goal `∘ hole)
hole =′ (`λ $ 0→a goal `$ weaken 1 s-goal₀ `$ `λ $ a→0 goal `$ var₁ 1 (0→a Prf `$ var₀ 0))
induction : Tactic
induction hole = do
pi _ (abs _ goal) ← inferNormalisedType hole
where meta x _ → blockOnMeta x
_ → typeErrorS "Induction tactic must be applied to a function goal"
hole₀ ← (a→0 goal `∘ hole) :′ unknown
pi a b ← inferNormalisedType hole₀
where meta x _ → blockOnMeta x
_ → typeErrorS "Induction tactic must be applied to a function goal"
let P = lam visible b
inStepCxt : {A : Set} → TC A → TC A
inStepCxt {_} = λ′ (vArg (quoteTerm Nat)) ∘
λ′ (vArg unknown)
base ← unknown :′ unknown
step ← inStepCxt $ unknown :′ unknown
hole =′ 0→a goal `∘ def₃ (quote nat-induction)
P base (`λ $ `λ step)
unify base =<< autosub-tactic =<< inferNormalisedType base
inStepCxt (unify step =<< by-tactic (var₀ 0) =<< inferNormalisedType step)
| {
"alphanum_fraction": 0.634469697,
"avg_line_length": 36.1643835616,
"ext": "agda",
"hexsha": "410637d378dd66d4a359a8dbe0ca52cea87ba5e1",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Generic.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Generic.agda",
"max_line_length": 124,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Generic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 864,
"size": 2640
} |
module Issue550 where
data Box (A : Set) : Set where
[_] : A → Box A
postulate
A : Set
B : Set
b : B
f : B -> A
⋯ : {{a : A}} → A
⋯ {{a = a}} = a
test : Box A
test =
let a : A
a = f b
in [ ⋯ ]
-- should succeed. Old message:
-- No variable of type A was found in scope.
-- when checking that the expression ⋯ has type A
| {
"alphanum_fraction": 0.5375722543,
"avg_line_length": 14.4166666667,
"ext": "agda",
"hexsha": "086898c8e72bf37ea218ea5419400979a4d6229c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue550.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue550.agda",
"max_line_length": 49,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue550.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 131,
"size": 346
} |
{-# OPTIONS --without-K #-}
open import Base
open import HLevel
module Homotopy.Extensions.ToPropToConstSet {i}
{A B : Set i} ⦃ B-is-set : is-set B ⦄
(f : A → B) (f-is-const : ∀ a₁ a₂ → f a₁ ≡ f a₂) where
open import Homotopy.Truncation
open import Homotopy.Skeleton
private
skel : Set i
skel = π₀ (skeleton₁ f)
abstract
skel-has-all-paths : has-all-paths skel
skel-has-all-paths =
π₀-extend ⦃ λ _ → Π-is-set λ _ → ≡-is-set $ π₀-is-set _ ⦄
(skeleton₁-rec (λ s₁ → ∀ s₂ → proj s₁ ≡ s₂)
(λ a₁ → π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄
(skeleton₁-rec (λ s₂ → proj (point a₁) ≡ proj s₂)
(λ a₂ → ap proj $ link a₁ a₂ $ f-is-const a₁ a₂)
(λ _ _ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _)))
(λ _ _ _ → funext λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _))
skel-is-prop : is-prop skel
skel-is-prop = all-paths-is-prop skel-has-all-paths
cst-extend : [ A ] → B
cst-extend = π₀-extend-nondep ⦃ B-is-set ⦄ skeleton₁-lifted
◯ []-extend-nondep ⦃ skel-is-prop ⦄ (proj ◯ point)
| {
"alphanum_fraction": 0.5574354408,
"avg_line_length": 33.0294117647,
"ext": "agda",
"hexsha": "078738bc799da772183f340caa1b4beeb27e7a73",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Extensions/ToPropToConstSet.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Extensions/ToPropToConstSet.agda",
"max_line_length": 78,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Extensions/ToPropToConstSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 423,
"size": 1123
} |
-- The ATP pragma with the role <axiom> can be used with postulates.
module ATPAxiomPostulates where
postulate
D : Set
zero : D
succ : D → D
N : D → Set
postulate
zN : N zero
sN : ∀ {n} → N n → N (succ n)
{-# ATP axiom zN #-}
| {
"alphanum_fraction": 0.5910931174,
"avg_line_length": 16.4666666667,
"ext": "agda",
"hexsha": "91d37a6cd38de17a60920aa4c27abae685668fff",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "examples/ATPAxiomPostulates.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "examples/ATPAxiomPostulates.agda",
"max_line_length": 68,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "examples/ATPAxiomPostulates.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 89,
"size": 247
} |
{-# OPTIONS --without-K --safe #-}
module Tools.List where
open import Data.List public using (List; []; _∷_)
module L where
open import Data.List public
| {
"alphanum_fraction": 0.6918238994,
"avg_line_length": 17.6666666667,
"ext": "agda",
"hexsha": "fc72eae94dc6292c2ac6392f5603d1e6448e5944",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Tools/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Tools/List.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Tools/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 39,
"size": 159
} |
------------------------------------------------------------------------------
-- Conversion rules for the greatest common divisor
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Partial.ConversionRulesATP where
open import FOTC.Base
open import FOTC.Base.Loop
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Program.GCD.Partial.GCD
------------------------------------------------------------------------------
-- NB. These conversion rules are not used by the ATPs. They use the
-- official equation.
private
postulate gcd-00 : gcd zero zero ≡ error
{-# ATP prove gcd-00 #-}
postulate gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n
{-# ATP prove gcd-S0 #-}
postulate gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n
{-# ATP prove gcd-0S #-}
postulate
gcd-S>S : ∀ m n → succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m ∸ succ₁ n) (succ₁ n)
{-# ATP prove gcd-S>S #-}
postulate
gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m) (succ₁ n ∸ succ₁ m)
{-# ATP prove gcd-S≯S #-}
| {
"alphanum_fraction": 0.500753012,
"avg_line_length": 33.2,
"ext": "agda",
"hexsha": "d5680333ce2d3099817885a6316368384232d675",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/ConversionRulesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/ConversionRulesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/ConversionRulesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 353,
"size": 1328
} |
-- Andreas, 2019-06-25, issue #3855 reported by nad
-- Constraint solver needs to respect erasure.
open import Agda.Builtin.Bool
module _ where
record RB (b : Bool) : Set where
bPar : Bool
bPar = b
myBPar : (@0 b : Bool) → RB b → Bool
myBPar b r = RB.bPar {b = {!b!}} r -- should be rejected
| {
"alphanum_fraction": 0.6194968553,
"avg_line_length": 22.7142857143,
"ext": "agda",
"hexsha": "17986b682540426934a7f4fd077d58e1a36408f9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3855c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3855c.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3855c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 318
} |
{-# OPTIONS --cubical #-}
module Type.Cubical.Quotient where
open import Functional
import Lvl
open import Structure.Type.Identity
open import Type.Cubical
open import Type.Cubical.Path.Equality
open import Type
open import Syntax.Function
private variable ℓ ℓₗ : Lvl.Level
private variable T A B : Type{ℓ}
private variable x y : T
private variable P : T → Type{ℓ}
private variable _▫_ : T → T → Type{ℓ}
data Quotient(_▫_ : T → T → Type{ℓ}) : Type{Lvl.of(T) Lvl.⊔ ℓ} where
class : T → Quotient(_▫_)
class-extensionalityₗ : (class x ≡ class y) ← (x ▫ y)
open import Type.Cubical.Path
open import Type.Cubical.Univalence
open import Type.Properties.MereProposition
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
module _ (P : Quotient(_▫_) → Type{ℓ}) ⦃ prop-P : ∀{c} → MereProposition(P(c)) ⦄ where
Quotient-property-pathP : ∀{x y}{px : P(x)}{py : P(y)} → (xy : x ≡ y) → PathP(\i → P(xy i)) px py
Quotient-property-pathP {x}{y}{px}{py} xy = IdentityEliminator.elim Path-identity-eliminator (xy ↦ (∀{px}{py} → PathP(\i → P(xy i)) px py)) (\{c} → uniqueness(P(c))) {x}{y} xy {px}{py}
class-property : (∀{a} → P(class a)) → (∀{c} → P(c))
class-property p {class a} = p{a}
class-property p {class-extensionalityₗ {x} {y} xy i} = Quotient-property-pathP {px = p{x}}{py = p{y}} (class-extensionalityₗ xy) i
-- TODO: Use Structuve.Function.Surjective when it is generalized to support Type.Cubical.Logic.∃. The difference is that Type.Cubical.Logic.∃ is a mere propositions while surjective uses existence defined as Σ which is not
open import Type.Cubical.Logic
class-surjective : ∀{y} → ∃(x ↦ class{_▫_ = _▫_} x ≡ y)
class-surjective{_▫_ = _▫_} = class-property(y ↦ ∃(x ↦ class{_▫_ = _▫_} x ≡ y)) (\{a} → [∃]-intro a ⦃ reflexivity(_≡_) ⦄)
-- Note: The following holds by definition: ∀{P : (A → B) → Type{ℓ}}{f}{p} → P(f) → P(Quotient-recursion f p ∘ class).
Quotient-recursion : (f : A → B) → (∀{a b} → (a ▫ b) → (f(a) ≡ f(b))) → (Quotient(_▫_) → B)
Quotient-recursion f _ (class x) = f(x)
Quotient-recursion _ p (class-extensionalityₗ xy i) = p xy i
module _ where
open import Structure.Function
open import Structure.Setoid
Quotient-function : ∀{ℓₑ₁ ℓₑ₂}{equiv-A : Equiv{ℓₑ₁}(A)}{equiv-B : Equiv{ℓₑ₂}(B)} ⦃ sub : (Equiv._≡_ equiv-B) ⊆₂ Path ⦄ (f : A → B) ⦃ func : Function ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ f ⦄ → (Quotient(Equiv._≡_ equiv-A) → B)
Quotient-function {equiv-B = equiv-B} f(x) = Quotient-recursion f (sub₂(Equiv._≡_ equiv-B)(Path) ∘ congruence₁ ⦃ _ ⦄ ⦃ _ ⦄ (f)) x
module _ ⦃ equivalence : Equivalence(_▫_) ⦄ ⦃ prop : ∀{x y} → MereProposition(x ▫ y) ⦄ where
class-extensionalityᵣ : (class{_▫_ = _▫_} x ≡ class y) → (x ▫ y)
class-extensionalityᵣ {x = x} {y = y} p = sub₂(_≡_)(_→ᶠ_) ⦃ Path-coercion ⦄ xx-xy (reflexivity(_▫_)) where
xx-xy : (x ▫ x) ≡ (x ▫ y)
xx-xy i = Quotient-recursion (x ▫_) (\ab → propositional-extensionalityₗ ([↔]-intro (swap(transitivity(_▫_)) (symmetry(_▫_) ab)) (swap(transitivity(_▫_)) ab))) (p i)
class-extensionality : (class{_▫_ = _▫_} x ≡ class y) ↔ (x ▫ y)
class-extensionality = [↔]-intro class-extensionalityₗ class-extensionalityᵣ
module Syntax where
_/_ : (T : Type{ℓ}) → (T → T → Type{ℓₗ}) → Type
_ / (_▫_) = Quotient(_▫_)
[_] : T → (T / (_▫_))
[_] = class
| {
"alphanum_fraction": 0.6431610942,
"avg_line_length": 47.6811594203,
"ext": "agda",
"hexsha": "cd8507c679a8eaf33a98d55c05bdefbf4e82e5dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Quotient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Quotient.agda",
"max_line_length": 223,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1293,
"size": 3290
} |
-- Solver for Category
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Experiment.Categories.AnotherSolver.Category
{o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Relation.Binary using (Rel)
import Function.Base as Fun
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation renaming (id to idN)
import Categories.Morphism.Reasoning as MR
import Categories.Category.Equivalence as Eq
open Category 𝒞
open HomReasoning
open MR 𝒞
private
variable
A B C D E : Obj
infixr 9 _:∘_
data Expr : Rel Obj (o ⊔ ℓ) where
:id : Expr A A
_:∘_ : Expr B C → Expr A B → Expr A C
∥_∥ : A ⇒ B → Expr A B
data NExpr : Rel Obj (o ⊔ ℓ) where
:id : NExpr A A
_:∘_ : B ⇒ C → NExpr A B → NExpr A C
-- Semantics
⟦_⟧ : Expr A B → A ⇒ B
⟦ :id ⟧ = id
⟦ e₁ :∘ e₂ ⟧ = ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧
⟦ ∥ f ∥ ⟧ = f
⟦_⟧N : NExpr A B → A ⇒ B
⟦ :id ⟧N = id
⟦ f :∘ e ⟧N = f ∘ ⟦ e ⟧N
_∘N_ : NExpr B C → NExpr A B → NExpr A C
:id ∘N e₂ = e₂
(f :∘ e₁) ∘N e₂ = f :∘ (e₁ ∘N e₂)
linear : NExpr A B → Expr A B
linear :id = :id
linear (f :∘ e) = ∥ f ∥ :∘ linear e
normalise : Expr A B → NExpr A B
normalise :id = :id
normalise (e₁ :∘ e₂) = normalise e₁ ∘N normalise e₂
normalise ∥ f ∥ = f :∘ :id
∘N-homo : (e₁ : NExpr B C) (e₂ : NExpr A B) → ⟦ e₁ ∘N e₂ ⟧N ≈ ⟦ e₁ ⟧N ∘ ⟦ e₂ ⟧N
∘N-homo :id e₂ = sym identityˡ
∘N-homo (f :∘ e₁) e₂ = pushʳ (∘N-homo e₁ e₂)
NExpr-assoc : {f : NExpr A B} {g : NExpr B C} {h : NExpr C D} →
⟦ (h ∘N g) ∘N f ⟧N ≈ ⟦ h ∘N (g ∘N f) ⟧N
NExpr-assoc {f = f} {g} {:id} = refl
NExpr-assoc {f = f} {g} {x :∘ h} = ∘-resp-≈ʳ (NExpr-assoc {f = f} {g} {h})
NExpr-identityʳ : {f : NExpr A B} → ⟦ f ∘N :id ⟧N ≈ ⟦ f ⟧N
NExpr-identityʳ {f = :id} = refl
NExpr-identityʳ {f = x :∘ f} = ∘-resp-≈ʳ (NExpr-identityʳ {f = f})
normalise-correct : (e : Expr A B) → ⟦ normalise e ⟧N ≈ ⟦ e ⟧
normalise-correct :id = refl
normalise-correct (e₁ :∘ e₂) = begin
⟦ normalise e₁ ∘N normalise e₂ ⟧N ≈⟨ ∘N-homo (normalise e₁) (normalise e₂) ⟩
⟦ normalise e₁ ⟧N ∘ ⟦ normalise e₂ ⟧N ≈⟨ normalise-correct e₁ ⟩∘⟨ normalise-correct e₂ ⟩
⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧ ∎
normalise-correct ∥ f ∥ = identityʳ
normalise-cong : (e₁ e₂ : Expr A B) →
⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧ → ⟦ normalise e₁ ⟧N ≈ ⟦ normalise e₂ ⟧N
normalise-cong e₁ e₂ eq = trans (normalise-correct e₁) (trans eq (sym (normalise-correct e₂)))
normalise-inj : (e₁ e₂ : Expr A B) →
⟦ normalise e₁ ⟧N ≈ ⟦ normalise e₂ ⟧N → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
normalise-inj e₁ e₂ eq = trans (sym (normalise-correct e₁)) (trans eq (normalise-correct e₂))
linear-correct : (e : NExpr A B) → ⟦ linear e ⟧ ≈ ⟦ e ⟧N
linear-correct :id = refl
linear-correct (f :∘ e) = ∘-resp-≈ʳ (linear-correct e)
Expr-category : Category o (o ⊔ ℓ) e
Expr-category = categoryHelper record
{ Obj = Obj
; _⇒_ = Expr
; _≈_ = λ e₁ e₂ → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
; id = :id
; _∘_ = _:∘_
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
NExpr-category : Category o (o ⊔ ℓ) e
NExpr-category = categoryHelper record
{ Obj = Obj
; _⇒_ = NExpr
; _≈_ = λ e₁ e₂ → ⟦ e₁ ⟧N ≈ ⟦ e₂ ⟧N
; id = :id
; _∘_ = _∘N_
; assoc = λ {_} {_} {_} {_} {f = f} {g} {h} → NExpr-assoc {f = f} {g} {h}
; identityˡ = refl
; identityʳ = λ {_} {_} {f = f} → NExpr-identityʳ {f = f}
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = λ {_} {_} {_} {f} {h} {g} {i} f≈h g≈i →
trans (∘N-homo f g) (trans (∘-resp-≈ f≈h g≈i) (sym (∘N-homo h i)))
}
⟦⟧-functor : Functor Expr-category 𝒞
⟦⟧-functor = record
{ F₀ = Fun.id
; F₁ = ⟦_⟧
; identity = refl
; homomorphism = refl
; F-resp-≈ = Fun.id
}
⟦⟧N-functor : Functor NExpr-category 𝒞
⟦⟧N-functor = record
{ F₀ = Fun.id
; F₁ = ⟦_⟧N
; identity = refl
; homomorphism = λ {_} {_} {_} {f} {g} → ∘N-homo g f
; F-resp-≈ = Fun.id
}
normalise-functor : Functor Expr-category NExpr-category
normalise-functor = record
{ F₀ = Fun.id
; F₁ = normalise
; identity = refl
; homomorphism = λ {_} {_} {_} {f = f} {g} → refl
; F-resp-≈ = λ {_} {_} {f} {g} f≈g → normalise-cong f g f≈g
}
linear-functor : Functor NExpr-category Expr-category
linear-functor = record
{ F₀ = Fun.id
; F₁ = linear
; identity = refl
; homomorphism = λ {_} {_} {_} {f} {g} → begin
⟦ linear (g ∘N f) ⟧ ≈⟨ linear-correct (g ∘N f) ⟩
⟦ g ∘N f ⟧N ≈⟨ ∘N-homo g f ⟩
⟦ g ⟧N ∘ ⟦ f ⟧N ≈⟨ sym (linear-correct g) ⟩∘⟨ sym (linear-correct f) ⟩
⟦ linear g ⟧ ∘ ⟦ linear f ⟧ ∎
; F-resp-≈ = λ {_} {_} {f} {g} eq → begin
⟦ linear f ⟧ ≈⟨ linear-correct f ⟩
⟦ f ⟧N ≈⟨ eq ⟩
⟦ g ⟧N ≈⟨ sym (linear-correct g) ⟩
⟦ linear g ⟧ ∎
}
normalise-functor-Faithful : Faithful normalise-functor
normalise-functor-Faithful = normalise-inj
linear-functor-Faithful : Faithful linear-functor
linear-functor-Faithful = λ f g x → trans (sym (linear-correct f)) (trans x (linear-correct g))
⟦⟧n-functor : Functor Expr-category 𝒞
⟦⟧n-functor = ⟦⟧N-functor ∘F normalise-functor
⟦⟧l-functor : Functor NExpr-category 𝒞
⟦⟧l-functor = ⟦⟧-functor ∘F linear-functor
normalise-natural : NaturalTransformation ⟦⟧n-functor ⟦⟧-functor
normalise-natural = ntHelper record
{ η = λ X → id
; commute = λ e → begin
id ∘ ⟦ normalise e ⟧N ≈⟨ identityˡ ⟩
⟦ normalise e ⟧N ≈⟨ normalise-correct e ⟩
⟦ e ⟧ ≈⟨ sym identityʳ ⟩
⟦ e ⟧ ∘ id ∎
}
linear-natural : NaturalTransformation ⟦⟧l-functor ⟦⟧N-functor
linear-natural = ntHelper record
{ η = λ X → id
; commute = λ e → trans identityˡ (trans (linear-correct e) (sym identityʳ))
}
embedExpr : Functor 𝒞 Expr-category
embedExpr = record
{ F₀ = Fun.id
; F₁ = ∥_∥
; identity = refl
; homomorphism = refl
; F-resp-≈ = Fun.id
}
embedNExpr : Functor 𝒞 NExpr-category
embedNExpr = record
{ F₀ = Fun.id
; F₁ = λ e → e :∘ :id
; identity = identity²
; homomorphism = λ {_} {_} {_} {f} {g} → assoc
; F-resp-≈ = λ f≈g → trans identityʳ (trans f≈g (sym identityʳ))
}
{-
solve : (e₁ e₂ : Expr A B) → ⟦ e₁ ⟧N ≈ ⟦ e₂ ⟧N → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
solve e₁ e₂ eq = begin
⟦ e₁ ⟧ ≈˘⟨ ⟦e⟧N≈⟦e⟧ e₁ ⟩
⟦ e₁ ⟧N ≈⟨ eq ⟩
⟦ e₂ ⟧N ≈⟨ ⟦e⟧N≈⟦e⟧ e₂ ⟩
⟦ e₂ ⟧ ∎
∥-∥ : ∀ {f : A ⇒ B} → Expr A B
∥-∥ {f = f} = ∥ f ∥
-}
| {
"alphanum_fraction": 0.5285884455,
"avg_line_length": 28.9482758621,
"ext": "agda",
"hexsha": "4c4f967ce9039b13e4b7fa5b9b83fc2dd5aae94c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Categories/AnotherSolver/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Categories/AnotherSolver/Category.agda",
"max_line_length": 95,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Categories/AnotherSolver/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 2986,
"size": 6716
} |
module Luau.TypeNormalization where
open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_)
-- Operations on normalized types
_∪ᶠ_ : Type → Type → Type
_∪ⁿˢ_ : Type → Type → Type
_∩ⁿˢ_ : Type → Type → Type
_∪ⁿ_ : Type → Type → Type
_∩ⁿ_ : Type → Type → Type
-- Union of function types
(F₁ ∩ F₂) ∪ᶠ G = (F₁ ∪ᶠ G) ∩ (F₂ ∪ᶠ G)
F ∪ᶠ (G₁ ∩ G₂) = (F ∪ᶠ G₁) ∩ (F ∪ᶠ G₂)
(R ⇒ S) ∪ᶠ (T ⇒ U) = (R ∩ⁿ T) ⇒ (S ∪ⁿ U)
F ∪ᶠ G = F ∪ G
-- Union of normalized types
S ∪ⁿ (T₁ ∪ T₂) = (S ∪ⁿ T₁) ∪ T₂
S ∪ⁿ unknown = unknown
S ∪ⁿ never = S
never ∪ⁿ T = T
unknown ∪ⁿ T = unknown
(S₁ ∪ S₂) ∪ⁿ G = (S₁ ∪ⁿ G) ∪ S₂
F ∪ⁿ G = F ∪ᶠ G
-- Intersection of normalized types
S ∩ⁿ (T₁ ∪ T₂) = (S ∩ⁿ T₁) ∪ⁿˢ (S ∩ⁿˢ T₂)
S ∩ⁿ unknown = S
S ∩ⁿ never = never
(S₁ ∪ S₂) ∩ⁿ G = (S₁ ∩ⁿ G)
unknown ∩ⁿ G = G
never ∩ⁿ G = never
F ∩ⁿ G = F ∩ G
-- Intersection of normalized types with a scalar
(S₁ ∪ nil) ∩ⁿˢ nil = nil
(S₁ ∪ boolean) ∩ⁿˢ boolean = boolean
(S₁ ∪ number) ∩ⁿˢ number = number
(S₁ ∪ string) ∩ⁿˢ string = string
(S₁ ∪ S₂) ∩ⁿˢ T = S₁ ∩ⁿˢ T
unknown ∩ⁿˢ T = T
F ∩ⁿˢ T = never
-- Union of normalized types with an optional scalar
S ∪ⁿˢ never = S
unknown ∪ⁿˢ T = unknown
(S₁ ∪ nil) ∪ⁿˢ nil = S₁ ∪ nil
(S₁ ∪ boolean) ∪ⁿˢ boolean = S₁ ∪ boolean
(S₁ ∪ number) ∪ⁿˢ number = S₁ ∪ number
(S₁ ∪ string) ∪ⁿˢ string = S₁ ∪ string
(S₁ ∪ S₂) ∪ⁿˢ T = (S₁ ∪ⁿˢ T) ∪ S₂
F ∪ⁿˢ T = F ∪ T
-- Normalize!
normalize : Type → Type
normalize nil = never ∪ nil
normalize (S ⇒ T) = (normalize S ⇒ normalize T)
normalize never = never
normalize unknown = unknown
normalize boolean = never ∪ boolean
normalize number = never ∪ number
normalize string = never ∪ string
normalize (S ∪ T) = normalize S ∪ⁿ normalize T
normalize (S ∩ T) = normalize S ∩ⁿ normalize T
| {
"alphanum_fraction": 0.6125143513,
"avg_line_length": 26.3939393939,
"ext": "agda",
"hexsha": "08f144742a1ed4da8690cd01fed88505839f775b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sthagen/Roblox-luau",
"max_forks_repo_path": "prototyping/Luau/TypeNormalization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sthagen/Roblox-luau",
"max_issues_repo_path": "prototyping/Luau/TypeNormalization.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Libertus-Lab/luau",
"max_stars_repo_path": "prototyping/Luau/TypeNormalization.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z",
"num_tokens": 846,
"size": 1742
} |
-- Andreas, 2013-10-21
-- There was a bug in Rules/Builtin such that NATEQUALS' equations
-- would be checked at type Nat instead of Bool.
-- This bug surfaced only because of today's refactoring in Conversion,
-- because then I got a strange unsolved constraint true == true : Nat.
module NatEquals where
import Common.Level
data Bool : Set where
true false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
infix 40 _=?=_
_=?=_ : Nat -> Nat -> Bool
zero =?= zero = true
zero =?= suc _ = false
suc _ =?= zero = false
suc n =?= suc m = n =?= m
{-# BUILTIN NATEQUALS _=?=_ #-}
| {
"alphanum_fraction": 0.6433566434,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "8cd05c271dcf1bbb6fa5a45e079b6c06f8babc66",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/NatEquals.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/NatEquals.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/NatEquals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 210,
"size": 715
} |
{-# OPTIONS --cubical --safe #-}
module Data.List.Sugar where
open import Data.List.Base
open import Prelude
[_] : A → List A
[ x ] = x ∷ []
pure : A → List A
pure = [_]
_>>=_ : List A → (A → List B) → List B
_>>=_ = flip concatMap
_>>_ : List A → List B → List B
xs >> ys = xs >>= const ys
_<*>_ : List (A → B) → List A → List B
fs <*> xs = do
f ← fs
x ← xs
[ f x ]
guard : Bool → List ⊤
guard false = []
guard true = [ tt ]
| {
"alphanum_fraction": 0.5306122449,
"avg_line_length": 15.2068965517,
"ext": "agda",
"hexsha": "d040ea0250e3795a6b16e2d9ea7b09969760e37c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/List/Sugar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/List/Sugar.agda",
"max_line_length": 38,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/List/Sugar.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 157,
"size": 441
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Dyck.Payload where
open import Prelude
open import Data.Nat using (_+_)
open import Data.Vec.Iterated using (Vec; _∷_; []; foldlN; head)
private
variable
n : ℕ
--------------------------------------------------------------------------------
-- Binary trees: definition and associated functions
--------------------------------------------------------------------------------
infixl 6 _*_
data Tree (A : Type a) : Type a where
[_] : A → Tree A
_*_ : Tree A → Tree A → Tree A
--------------------------------------------------------------------------------
-- Dyckrams: definition and associated functions
--------------------------------------------------------------------------------
infixr 5 ⟨_!_ ⟩_
data Dyck (A : Type a) : ℕ → Type a where
⟩⋆ : Dyck A 1
⟨_!_ : A → Dyck A (1 + n) → Dyck A n
⟩_ : Dyck A (1 + n) → Dyck A (2 + n)
--------------------------------------------------------------------------------
-- Conversion from a Dyck to a Tree
--------------------------------------------------------------------------------
dyck→tree⊙ : Dyck A n → Vec (Tree A) n → Tree A
dyck→tree⊙ ⟩⋆ (v ∷ []) = v
dyck→tree⊙ (⟨ v ! is) st = dyck→tree⊙ is ([ v ] ∷ st)
dyck→tree⊙ (⟩ is) (t₁ ∷ t₂ ∷ st) = dyck→tree⊙ is (t₂ * t₁ ∷ st)
dyck→tree : Dyck A zero → Tree A
dyck→tree ds = dyck→tree⊙ ds []
--------------------------------------------------------------------------------
-- Conversion from a Tree to a Dyck
--------------------------------------------------------------------------------
tree→dyck⊙ : Tree A → Dyck A (suc n) → Dyck A n
tree→dyck⊙ [ x ] = ⟨ x !_
tree→dyck⊙ (xs * ys) = tree→dyck⊙ xs ∘ tree→dyck⊙ ys ∘ ⟩_
tree→dyck : Tree A → Dyck A zero
tree→dyck tr = tree→dyck⊙ tr ⟩⋆
--------------------------------------------------------------------------------
-- Proof of isomorphism
--------------------------------------------------------------------------------
tree→dyck→tree⊙ : {is : Dyck A (1 + n)} {st : Vec (Tree A) n} (e : Tree A) →
dyck→tree⊙ (tree→dyck⊙ e is) st ≡ dyck→tree⊙ is (e ∷ st)
tree→dyck→tree⊙ [ x ] = refl
tree→dyck→tree⊙ (xs * ys) = tree→dyck→tree⊙ xs ; tree→dyck→tree⊙ ys
dyck→tree→dyck⊙ : {st : Vec (Tree A) n} (is : Dyck A n) →
tree→dyck (dyck→tree⊙ is st) ≡ foldlN (Dyck A) tree→dyck⊙ is st
dyck→tree→dyck⊙ ⟩⋆ = refl
dyck→tree→dyck⊙ (⟨ v ! is) = dyck→tree→dyck⊙ is
dyck→tree→dyck⊙ (⟩ is) = dyck→tree→dyck⊙ is
dyck-iso : Dyck A zero ⇔ Tree A
dyck-iso .fun = dyck→tree
dyck-iso .inv = tree→dyck
dyck-iso .rightInv = tree→dyck→tree⊙
dyck-iso .leftInv = dyck→tree→dyck⊙
_ : tree→dyck (([ 1 ] * ([ 2 ] * [ 3 ])) * [ 4 ]) ≡ ⟨ 1 ! ⟨ 2 ! ⟨ 3 ! ⟩ ⟩ ⟨ 4 ! ⟩ ⟩⋆
_ = refl
| {
"alphanum_fraction": 0.4037063953,
"avg_line_length": 35.2820512821,
"ext": "agda",
"hexsha": "7143d12c6d12a561ba17c8548ebc90141b2061ff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Dyck/Payload.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Dyck/Payload.agda",
"max_line_length": 84,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Dyck/Payload.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 934,
"size": 2752
} |
-- Andreas, 2019-11-08, issue #4154 reported by Yashmine Sharoda.
-- Warn if a `renaming` clause clashes with an exported name
-- (that is not mentioned in a `using` clause).
module _ where
module M where
postulate
A B : Set
-- These produce warnings (#4154):
module N = M renaming (A to B)
open M renaming (A to B)
-- These produce errors (see also #3057)
-- as they produce ambiguous exports:
Test = B
TestN = N.B
module L = M using (B) renaming (A to B)
| {
"alphanum_fraction": 0.685106383,
"avg_line_length": 20.4347826087,
"ext": "agda",
"hexsha": "2d509ae4c2b98538f78c813693d6cac5cfdc9006",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4154.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4154.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4154.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 470
} |
{-# OPTIONS --safe #-}
module Issue2442-postulate where
postulate
A : Set
| {
"alphanum_fraction": 0.6708860759,
"avg_line_length": 9.875,
"ext": "agda",
"hexsha": "dc1037f8af33f940d9bb721a224ab9caa073d193",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2442-postulate.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2442-postulate.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2442-postulate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 79
} |
{-# OPTIONS --without-K #-}
module FT-Nat where
open import Data.Empty
open import Data.Unit
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product
import Data.Fin as F
open import Data.Vec
import Data.List as L
open import Function renaming (_∘_ to _○_)
open import FT
open import SimpleHoTT using (refl; pathInd; _≡_; ap)
open import Equivalences
open import TypeEquivalences using (path⊎)
open import Path2Equiv
open import LeftCancellation
------------------------------------------------------------------
-- Finite Types and the natural numbers are intimately related.
--
-- Basically, this is because both of them are models of
-- unital semirings, and the natural numbers are the initial object
-- in the category of unital semirings. In this case, things are
-- deeper still, and so we record many of these facts here.
--
-- And, of course, as Pi records the proof-theory of semirings in
-- a fairly explicit manner, we can use all this to link up
-- normalization of natural-numbers expressions and Pi-based paths.
toℕ : FT → ℕ
toℕ ZERO = zero
toℕ ONE = suc zero
toℕ (PLUS b₀ b₁) = (toℕ b₀) + (toℕ b₁)
toℕ (TIMES b₀ b₁) = (toℕ b₀) * (toℕ b₁)
fromℕ : ℕ → FT
fromℕ zero = ZERO
fromℕ (suc n) = PLUS ONE (fromℕ n)
toℕ∘fromℕ : toℕ ○ fromℕ ∼ id
toℕ∘fromℕ zero = refl zero
toℕ∘fromℕ (suc n) =
pathInd
(λ {x} {y} _ → suc x ≡ suc y)
(λ m → refl (suc m))
(toℕ∘fromℕ n)
assocr : {m : ℕ} (n : ℕ) → (PLUS (fromℕ n) (fromℕ m)) ⇛ fromℕ (n + m)
assocr zero = unite₊⇛
assocr (suc n) = assocr₊⇛ ◎ (id⇛ ⊕ (assocr n))
distr : (n₀ : ℕ) {n₁ : ℕ} → TIMES (fromℕ n₀) (fromℕ n₁) ⇛ fromℕ (n₀ * n₁)
distr zero = distz⇛
distr (suc n) {m} = dist⇛ ◎ (unite⋆⇛ ⊕ distr n) ◎ assocr m
-- normalize a finite type to (1 + (1 + (1 + ... + (1 + 0) ... )))
-- a bunch of ones ending with zero with left biased + in between
normalize : FT → FT
normalize = fromℕ ○ toℕ
normal : (b : FT) → b ⇛ normalize b
normal ZERO = id⇛
normal ONE = uniti₊⇛ ◎ swap₊⇛
normal (PLUS b₀ b₁) = (normal b₀ ⊕ normal b₁) ◎ assocr (toℕ b₀)
normal (TIMES b₀ b₁) = (normal b₀ ⊗ normal b₁) ◎ distr (toℕ b₀)
normalizeC : {B : FT} → ⟦ normalize B ⟧ ≃ ⟦ B ⟧
normalizeC {B} = path2equiv (sym⇛ (normal B))
mapNorm : {B₁ B₂ : FT} → (⟦ B₁ ⟧ ≃ ⟦ B₂ ⟧) → ⟦ normalize B₁ ⟧ ≃ ⟦ normalize B₂ ⟧
mapNorm {B₁} {B₂} eq = trans≃ (trans≃ (normalizeC {B₁}) eq) (sym≃ (normalizeC {B₂}))
⟦_⟧ℕ : ℕ → Set
⟦ zero ⟧ℕ = ⊥
⟦ suc n ⟧ℕ = ⊤ ⊎ ⟦ n ⟧ℕ
ℕrespects⟦⟧ : {n : ℕ} → ⟦ fromℕ n ⟧ ≃ ⟦ n ⟧ℕ
ℕrespects⟦⟧ {zero} = id≃
ℕrespects⟦⟧ {suc n} = path⊎ id≃ (ℕrespects⟦⟧ {n})
------------------------------------------------------------------------------
-- Understanding the syntactic structure of pi combinators with respect
-- to normalization
data FTNF : Set where
Z : FTNF
S : FTNF → FTNF
fromℕNF : ℕ → FTNF
fromℕNF zero = Z
fromℕNF (suc n) = S (fromℕNF n)
normalizeNF : FT → FTNF
normalizeNF = fromℕNF ○ toℕ
data FTN : FT → Set where
normalized : (b : FT) → FTN (normalize b)
-- in both the following two functions we are missing fundamental information
-- about how a type relates to its normal form...
{--
normalize⇛ : {b₁ b₂ : FT} → (b₁ ⇛ b₂) → (normalize b₁ ⇛ normalize b₂)
normalize⇛ unite₊⇛ = id⇛
normalize⇛ uniti₊⇛ = id⇛
normalize⇛ swap₊⇛ = {!!}
normalize⇛ assocl₊⇛ = {!!}
normalize⇛ assocr₊⇛ = {!!}
normalize⇛ unite⋆⇛ = {!!}
normalize⇛ uniti⋆⇛ = {!!}
normalize⇛ swap⋆⇛ = {!!}
normalize⇛ assocl⋆⇛ = {!!}
normalize⇛ assocr⋆⇛ = {!!}
normalize⇛ distz⇛ = id⇛
normalize⇛ factorz⇛ = id⇛
normalize⇛ dist⇛ = {!!}
normalize⇛ factor⇛ = {!!}
normalize⇛ id⇛ = id⇛
normalize⇛ (sym⇛ c) = sym⇛ (normalize⇛ c)
normalize⇛ (c₁ ◎ c₂) = normalize⇛ c₁ ◎ normalize⇛ c₂
normalize⇛ (c ⊕ c₁) = {!!}
normalize⇛ (c ⊗ c₁) = {!!}
--}
{--
swapii+1 : {b : FT} → (i : ℕ) → (b ⇛ b)
swapii+1 {PLUS ONE (PLUS ONE b)} 0 =
(assocl₊⇛ {ONE} {ONE} {b}) ◎ (swap₊⇛ ⊕ id⇛) ◎ (assocr₊⇛ {ONE} {ONE} {b})
swapii+1 {PLUS ONE b} (suc n) = id⇛ ⊕ swapii+1 n
swapii+1 _ = {!!}
--}
------------------------------------------------------------------------------
-- needs LeftCancellation
liftℕ : (n₁ n₂ : ℕ) → ⟦ n₁ ⟧ℕ ≃ ⟦ n₂ ⟧ℕ → (fromℕ n₁) ≡ (fromℕ n₂)
liftℕ zero zero eq = refl ZERO
liftℕ zero (suc n₂) (_ , mkisequiv g α h β) with h (inj₁ tt)
liftℕ zero (suc n₂) (_ , mkisequiv g α h β) | ()
liftℕ (suc n₁) zero (f , _) with f (inj₁ tt)
liftℕ (suc n₁) zero (f , _) | ()
liftℕ (suc n₁) (suc n₂) eq = ap (λ x → PLUS ONE x) (liftℕ n₁ n₂ (left-cancel-⊤ eq))
liftNormal : {B₁ B₂ : FT} → ⟦ normalize B₁ ⟧ ≃ ⟦ normalize B₂ ⟧ → (normalize B₁) ≡ (normalize B₂)
liftNormal {B₁} {B₂} eq =
liftℕ (toℕ B₁) (toℕ B₂)
(⟦ toℕ B₁ ⟧ℕ ≃⟨ sym≃ (ℕrespects⟦⟧ {toℕ B₁}) ⟩ ⟦ normalize B₁ ⟧ ≃⟨ eq ⟩ ⟦ normalize B₂ ⟧ ≃⟨ ℕrespects⟦⟧ {toℕ B₂} ⟩ id≃)
sameNorm : {B₁ B₂ : FT} → (⟦ B₁ ⟧ ≃ ⟦ B₂ ⟧) → (normalize B₁) ≡ (normalize B₂)
sameNorm {B₁} {B₂} eq = liftNormal {B₁} {B₂} (mapNorm eq)
bridge : {B₁ B₂ : FT} → (⟦ B₁ ⟧ ≃ ⟦ B₂ ⟧) → (normalize B₁) ⇛ (normalize B₂)
bridge eq =
pathInd
(λ {B₃} {B₄} _ → B₃ ⇛ B₄)
(λ _ → id⇛)
(sameNorm eq)
{--
Not used
exf : ⊤ ⊎ ℕ → ℕ
exf (inj₁ tt) = 0
exf (inj₂ n) = suc n
exg : ℕ → ⊤ ⊎ ℕ
exg 0 = inj₁ tt
exg (suc n) = inj₂ n
exα : exf ○ exg ∼ id
exα 0 = refl 0
exα (suc n) = refl (suc n)
exβ : exg ○ exf ∼ id
exβ (inj₁ tt) = refl (inj₁ tt)
exβ (inj₂ n) = refl (inj₂ n)
ex : (⊤ ⊎ ℕ) ≃ ℕ
ex = (exf , equiv₁ (mkqinv exg exα exβ))
exf2 : (⊤ ⊎ (⊤ ⊎ ℕ)) → (⊤ ⊎ ℕ)
exf2 (inj₁ tt) = inj₂ 0
exf2 (inj₂ (inj₁ tt)) = inj₂ 1
exf2 (inj₂ (inj₂ 0)) = inj₁ tt
exf2 (inj₂ (inj₂ (suc n))) = inj₂ (suc (suc n))
exg2 : (⊤ ⊎ ℕ) → (⊤ ⊎ (⊤ ⊎ ℕ))
exg2 (inj₁ tt) = inj₂ (inj₂ 0)
exg2 (inj₂ 0) = inj₁ tt
exg2 (inj₂ 1) = inj₂ (inj₁ tt)
exg2 (inj₂ (suc (suc n))) = inj₂ (inj₂ (suc n))
exα2 : exf2 ○ exg2 ∼ id
exα2 (inj₁ tt) = refl (inj₁ tt)
exα2 (inj₂ 0) = refl (inj₂ 0)
exα2 (inj₂ 1) = refl (inj₂ 1)
exα2 (inj₂ (suc (suc n))) = refl (inj₂ (suc (suc n)))
exβ2 : exg2 ○ exf2 ∼ id
exβ2 (inj₁ tt) = refl (inj₁ tt)
exβ2 (inj₂ (inj₁ tt)) = refl (inj₂ (inj₁ tt))
exβ2 (inj₂ (inj₂ 0)) = refl (inj₂ (inj₂ 0))
exβ2 (inj₂ (inj₂ (suc n))) = refl (inj₂ (inj₂ (suc n)))
ex2 : (⊤ ⊎ (⊤ ⊎ ℕ)) ≃ (⊤ ⊎ ℕ)
ex2 = (exf2 , equiv₁ (mkqinv exg2 exα2 exβ2))
--}
| {
"alphanum_fraction": 0.5748941713,
"avg_line_length": 28.7009345794,
"ext": "agda",
"hexsha": "9c71d8e01e6004ab7de88dd5482c1d57268294e6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/FT-Nat.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/FT-Nat.agda",
"max_line_length": 122,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/FT-Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2850,
"size": 6142
} |
-- Andreas, 2016-12-31, re issue #1976
-- Allow projection pattern disambiguation by parameters
{-# OPTIONS --allow-unsolved-metas #-}
postulate
A B : Set
module M (_ : Set) where
record R : Set₂ where
field
F : Set₁
open R public
module Succeeds where
open M _
open M B
test : M.R B
F test = Set
module ShouldFail where
open M A
open M _
test : M.R B
F test = Set -- should fail
module Fails where
open M _
open M A
test : M.R B
F test = Set
| {
"alphanum_fraction": 0.6323232323,
"avg_line_length": 13.3783783784,
"ext": "agda",
"hexsha": "fe3ad412ee6a3fcdbe99a112d0d3211df7ea8857",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Fail/Issue1976-constraints.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Fail/Issue1976-constraints.agda",
"max_line_length": 56,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Fail/Issue1976-constraints.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 163,
"size": 495
} |
module 747Connectives where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ)
open import Function using (_∘_)
-- Copied from 747Isomorphism.
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
infix 0 _≃_
record _≃_ (A B : Set) : Set where
constructor mk-≃ -- This has been added, not in PLFA
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
infix 0 _≲_
record _≲_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
open _≲_
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
-- You may copy over the various reasoning modules if you wish.
-- End of code from 747Isomorphism.
-- Logical AND is Cartesian product.
data _×_ (A : Set) (B : Set) : Set where
⟨_,_⟩ :
A
→ B
-----
→ A × B
-- Destructors (eliminators) for ×.
proj₁ : ∀ {A B : Set}
→ A × B
-----
→ A
proj₁ A×B = {!!}
proj₂ : ∀ {A B : Set}
→ A × B
-----
→ B
proj₂ A×B = {!!}
-- An easier (equivalent) construction using records.
record _×′_ (A B : Set) : Set where
field
proj₁′ : A
proj₂′ : B
open _×′_
-- Eta-equivalence relates constructors and destructors.
η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w
η-× A×B = {!!}
-- Bool (Booleans), a type with exactly two members.
infixr 2 _×_
data Bool : Set where
true : Bool
false : Bool
-- A type with three members (useful for examples).
data Tri : Set where
aa : Tri
bb : Tri
cc : Tri
-- Bool × Tri has six members.
-- Here is a function counting them.
×-count : Bool × Tri → ℕ
×-count ⟨ true , aa ⟩ = 1
×-count ⟨ true , bb ⟩ = 2
×-count ⟨ true , cc ⟩ = 3
×-count ⟨ false , aa ⟩ = 4
×-count ⟨ false , bb ⟩ = 5
×-count ⟨ false , cc ⟩ = 6
-- Cartesian product is commutative and associative up to isomorphism.
×-comm : ∀ {A B : Set} → A × B ≃ B × A
×-comm = {!!}
×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C)
×-assoc = {!!}
-- 747/PLFA exercise: IffIsoIfOnlyIf (1 point)
-- Show A ⇔ B is isomorphic to (A → B) × (B → A).
iff-iso-if-onlyif : ∀ {A B : Set} → A ⇔ B ≃ (A → B) × (B → A)
iff-iso-if-onlyif = {!!}
-- Logical True is a type with one member (unit)
data ⊤ : Set where
tt :
--
⊤
η-⊤ : ∀ (w : ⊤) → tt ≡ w
η-⊤ w = {!!}
⊤-count : ⊤ → ℕ
⊤-count tt = 1
-- Unit is the left and right identity of product.
⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A
⊤-identityˡ = {!!}
⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A
⊤-identityʳ = {!!}
-- Logical OR (disjunction) is sum (disjoint union).
data _⊎_ : Set → Set → Set where
inj₁ : ∀ {A B : Set}
→ A
-----
→ A ⊎ B
inj₂ : ∀ {A B : Set}
→ B
-----
→ A ⊎ B
-- One way to eliminate a sum.
case-⊎ : ∀ {A B C : Set}
→ (A → C)
→ (B → C)
→ A ⊎ B
-----------
→ C
case-⊎ f g s = {!!}
-- We typically use pattern-matching to eliminate sums.
-- Eta equivalence for sums.
η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w
η-⊎ w = {!!}
-- A generalization.
uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) →
case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w
uniq-⊎ h w = {!!}
infix 1 _⊎_
-- Bool ⊎ Tri has five members
⊎-count : Bool ⊎ Tri → ℕ
⊎-count (inj₁ true) = 1
⊎-count (inj₁ false) = 2
⊎-count (inj₂ aa) = 3
⊎-count (inj₂ bb) = 4
⊎-count (inj₂ cc) = 5
-- 747/PLFA exercise: SumCommIso (1 point)
-- Sum is commutative up to isomorphism.
⊎-comm : ∀ {A B : Set} → A ⊎ B ≃ B ⊎ A
⊎-comm = {!!}
-- 747/PLFA exercise: SumAssocIso (1 point)
-- Sum is associative up to isomorphism.
⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C)
⊎-assoc = {!!}
-- Logical False is the empty type ("bottom", "empty").
data ⊥ : Set where
-- no clauses!
-- Ex falso quodlibet "from falsehood, anything follows".
⊥-elim : ∀ {A : Set}
→ ⊥
--
→ A
⊥-elim w = {!!}
uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w
uniq-⊥ h w = {!!}
⊥-count : ⊥ → ℕ
⊥-count w = {!!}
-- 747/PLFA exercise: EmptyLeftIdSumIso (1 point)
-- Empty is the left unit of sum up to isomorphism.
⊎-identityˡ : ∀ {A : Set} → ⊥ ⊎ A ≃ A
⊎-identityˡ = {!!}
-- 747/PLFA exercise: EmptyRightIdSumIso (1 point)
-- Empty is the right unit of sum up to isomorphism.
⊎-identityʳ : ∀ {A : Set} → A ⊎ ⊥ ≃ A
⊎-identityʳ = {!!}
-- Logical implication (if-then) is... the function type constructor!
-- Eliminating an if-then (modus ponens) is function application.
→-elim : ∀ {A B : Set}
→ (A → B)
→ A
-------
→ B
→-elim L M = L M
-- This works because eta-reduction for → is built in.
η-→ : ∀ {A B : Set} (f : A → B) → (λ (x : A) → f x) ≡ f
η-→ f = refl
-- The function space A → B is sometimes called the exponential Bᴬ.
-- Bool → Tri has 3² or 9 members.
→-count : (Bool → Tri) → ℕ
→-count f with f true | f false
... | aa | aa = 1
... | aa | bb = 2
... | aa | cc = 3
... | bb | aa = 4
... | bb | bb = 5
... | bb | cc = 6
... | cc | aa = 7
... | cc | bb = 8
... | cc | cc = 9
-- In math, (p ^ n) ^ m = p ^ (n * m).
-- For types, (A ^ B) ^ C ≃ A ^ (B × C).
-- In a language where functions take multiple parameters,
-- this is called "currying".
currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C)
currying = {!!}
-- In math, p ^ (n + m) = (p ^ n) * (p ^ m).
-- For types, (A ⊎ B → C) ≃ ((A → C) × (B → C)).
→-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B → C) ≃ ((A → C) × (B → C))
→-distrib-⊎ = {!!}
-- In math, (p * n) ^ m = (p ^ m) * (n ^ m).
-- For types, (A → B × C) ≃ (A → B) × (A → C).
→-distrib-× : ∀ {A B C : Set} → (A → B × C) ≃ (A → B) × (A → C)
→-distrib-× = {!!}
-- More distributive laws.
×-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B) × C ≃ (A × C) ⊎ (B × C)
×-distrib-⊎ = {!!}
⊎-distrib-× : ∀ {A B C : Set} → (A × B) ⊎ C ≲ (A ⊎ C) × (B ⊎ C)
⊎-distrib-× = {!!}
-- Think of a counterexample to show the above isn't an isomorphism.
-- 747/PLFA exercise: ImpProdRightDist (1 point)
×-distrib-→ : ∀ {A B C : Set} → (C → (A × B)) ≃ (C → A) × (C → B)
×-distrib-→ = {!!}
-- 747/PLFA exercise: ImpSumLeftDist (1 point)
⊎-distrib-→ : ∀ {A B C : Set} → ((A ⊎ B) → C) ≃ (A → C) × (B → C)
⊎-distrib-→ = {!!}
-- PLFA exercise: a weak distributive law.
-- ⊎-weak-× : ∀ {A B C : Set} → (A ⊎ B) × C → A ⊎ (B × C)
-- ⊎-weak-× A⊎B×C = {!!}
-- State and prove the strong law, and explain the relationship.
-- 747/PLFA exercise: SumOfProdImpProdOfSum (1 point)
-- A disjunct of conjuncts implies a conjunct of disjuncts.
⊎×-implies-×⊎ : ∀ {A B C D : Set} → (A × B) ⊎ (C × D) → (A ⊎ C) × (B ⊎ D)
⊎×-implies-×⊎ A×B⊎C×D = {!!}
-- PLFA exercise: Is the converse true? If so, prove it; if not, give a counterexample.
-- See PLFA for a number of slight differences with the standard library.
-- Unicode introduced in this chapter:
{-
× U+00D7 MULTIPLICATION SIGN (\x)
⊎ U+228E MULTISET UNION (\u+)
⊤ U+22A4 DOWN TACK (\top)
⊥ U+22A5 UP TACK (\bot)
η U+03B7 GREEK SMALL LETTER ETA (\eta)
₁ U+2081 SUBSCRIPT ONE (\_1)
₂ U+2082 SUBSCRIPT TWO (\_2)
⇔ U+21D4 LEFT RIGHT DOUBLE ARROW (\<=>, \iff, \lr=)
-}
| {
"alphanum_fraction": 0.5000674673,
"avg_line_length": 21.7970588235,
"ext": "agda",
"hexsha": "b489f113cc9a952fcef86c8c1a652257f344c93b",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x06-747Connectives.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x06-747Connectives.agda",
"max_line_length": 87,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x06-747Connectives.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3076,
"size": 7411
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.DunceCap.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.S1 using (S¹; base)
import Cubical.HITs.S1 as S¹
open import Cubical.HITs.MappingCones
-- definition of the dunce cap as a HIT
data Dunce : Type₀ where
base : Dunce
loop : base ≡ base
surf : PathP (λ i → loop i ≡ loop i) loop refl
-- definition of the dunce cap as a mapping cone
dunceMap : S¹ → S¹
dunceMap base = base
dunceMap (S¹.loop i) = (S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop) i
DunceCone : Type₀
DunceCone = Cone dunceMap
| {
"alphanum_fraction": 0.71561051,
"avg_line_length": 23.1071428571,
"ext": "agda",
"hexsha": "6d2057fbea7d779a13ed30a8fdc7727ad2a00f46",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/DunceCap/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/DunceCap/Base.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/DunceCap/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 221,
"size": 647
} |
module agda where
open import IO
main = run (putStrLn "Fuck You Github")
| {
"alphanum_fraction": 0.7432432432,
"avg_line_length": 14.8,
"ext": "agda",
"hexsha": "8852717c36da4a5874141b44fd751422b63c4509",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8c37d0f6be3dbe37d8ff5d9bf22ad997527331dc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ozcanyarimdunya/FuckYouGithub",
"max_forks_repo_path": "a/agda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c37d0f6be3dbe37d8ff5d9bf22ad997527331dc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ozcanyarimdunya/FuckYouGithub",
"max_issues_repo_path": "a/agda.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8c37d0f6be3dbe37d8ff5d9bf22ad997527331dc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ozcanyarimdunya/FuckYouGithub",
"max_stars_repo_path": "a/agda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20,
"size": 74
} |
module MLib.Fin.Parts.Nat.Simple where
open import MLib.Prelude
open import MLib.Fin.Parts.Core
open import MLib.Fin.Parts.Nat
open Nat using (_*_; _+_; _<_)
open Fin using (toℕ; fromℕ≤)
open Table
repl : ∀ n → ℕ → Table ℕ n
repl _ = replicate
-- abstract
-- TODO: why does this break reduction later?
sum-replicate-* : ∀ m n → sum (repl m n) ≡ m * n
sum-replicate-* zero _ = ≡.refl
sum-replicate-* (suc m) _ = ≡.cong₂ _+_ ≡.refl (sum-replicate-* m _)
fromParts : ∀ a b → ℕ × ℕ → ℕ
fromParts a b = Partsℕ.fromParts (constParts a b)
fromParts³′ : ∀ a b c → ℕ × ℕ × ℕ → ℕ
fromParts³′ a b c (i , j , k) = fromParts a (b * c) (i , fromParts b c (j , k))
fromParts³ : ∀ a b c → ℕ × ℕ × ℕ → ℕ
fromParts³ a b c (i , j , k) = fromParts (a * b) c (fromParts a b (i , j) , k)
open ≡.Reasoning
abstract
fromParts′-a-irrel : ∀ a k b i j → i < a → j < b → fromParts a b (i , j) ≡ fromParts (a + k) b (i , j)
fromParts′-a-irrel a k b zero j p q = ≡.refl
fromParts′-a-irrel (suc a) k b (suc i) j (Nat.s≤s p) q = ≡.cong₂ _+_ ≡.refl (fromParts′-a-irrel a k b i j p q)
fromParts′-0 : ∀ a b i → i < a → fromParts a b (i , 0) ≡ i * b
fromParts′-0 zero b i ()
fromParts′-0 (suc a) b zero (Nat.s≤s p) = ≡.refl
fromParts′-0 (suc a) b (suc i) (Nat.s≤s p) = ≡.cong₂ _+_ ≡.refl (fromParts′-0 a b i p)
lem′ : ∀ m a b i j → (m * b) + fromParts a b (i , j) ≡ fromParts (m + a) b (m + i , j)
lem′ zero a b i j = ≡.refl
lem′ (suc m) a b i j =
begin
b + m * b + fromParts a b (i , j) ≡⟨ Nat.+-assoc b _ _ ⟩
b + (m * b + fromParts a b (i , j)) ≡⟨ ≡.cong₂ _+_ ≡.refl (lem′ m a b i j) ⟩
b + fromParts (m + a) b (m + i , j) ∎
lem : ∀ a b c i k → i < a → fromParts a (b * c) (i , k) ≡ fromParts (a * b) c (i * b , k)
lem zero b c i k ()
lem (suc a) b c zero k p = ≡.refl
lem (suc a) b c (suc i) k (Nat.s≤s p) =
begin
(b * c) + fromParts a (b * c) (i , k) ≡⟨ ≡.cong₂ _+_ ≡.refl (lem a b c i k p) ⟩
(b * c) + fromParts (a * b) c (i * b , k) ≡⟨ lem′ b (a * b) c (i * b) k ⟩
fromParts (suc a * b) c (suc i * b , k) ∎
fromParts-assoc :
∀ {a b c} i j k → i < a → j < b → k < c →
fromParts³′ a b c (i , j , k) ≡ fromParts³ a b c (i , j , k)
fromParts-assoc {a} {b} {c} zero zero k p q r = ≡.refl
fromParts-assoc {suc a} {suc b} {c} zero (suc j) k (Nat.s≤s p) (Nat.s≤s q) r =
begin
fromParts³′ (suc a) (suc b) c (0 , suc j , k) ≡⟨⟩
fromParts (suc b) c (suc j , k) ≡⟨⟩
c + fromParts b c (j , k) ≡⟨ ≡.cong₂ _+_ ≡.refl (fromParts′-a-irrel b (a * suc b) c j k q r) ⟩
c + fromParts (b + a * suc b) c (j , k) ≡⟨⟩
fromParts (suc (b + a * suc b)) c (suc j , k) ≡⟨⟩
fromParts (suc a * suc b) c (suc j , k) ≡⟨⟩
fromParts³ (suc a) (suc b) c (0 , suc j , k) ∎
fromParts-assoc {zero} {b} {c} (suc i) j k () q r
fromParts-assoc {suc a} {b} {c} (suc i) zero k (Nat.s≤s p) q r =
begin
fromParts³′ (suc a) b c (suc i , 0 , k) ≡⟨⟩
fromParts (suc a) (b * c) (suc i , k) ≡⟨ lem (suc a) b c (suc i) k (Nat.s≤s p) ⟩
fromParts (suc a * b) c (suc i * b , k) ≡⟨ ≡.cong (λ h → fromParts (suc a * b) c (b + h , k)) (≡.sym (fromParts′-0 a b i p)) ⟩
fromParts (suc a * b) c (b + fromParts a b (i , 0) , k) ≡⟨⟩
fromParts (suc a * b) c (fromParts (suc a) b (suc i , 0) , k) ≡⟨⟩
fromParts³ (suc a) b c (suc i , 0 , k) ∎
fromParts-assoc {suc a} {zero} {c} (suc i) (suc j) k p () r
fromParts-assoc {suc a} {suc b} {c} (suc i) (suc j) k (Nat.s≤s p) q r =
let sb = suc b
sj = suc j
in begin
fromParts³′ (suc a) sb c (suc i , sj , k) ≡⟨⟩
fromParts (suc a) (sb * c) (suc i , fromParts sb c (sj , k)) ≡⟨⟩
sb * c + fromParts a (sb * c) (i , c + fromParts b c (j , k)) ≡⟨⟩
sb * c + fromParts³′ a sb c (i , sj , k) ≡⟨ ≡.cong₂ _+_ ≡.refl (fromParts-assoc i sj k p q r) ⟩
sb * c + fromParts³ a sb c (i , sj , k) ≡⟨⟩
sb * c + fromParts (a * sb) c (fromParts a sb (i , sj) , k) ≡⟨ Nat.+-assoc c _ _ ⟩
c + (b * c + fromParts (a * sb) c (fromParts a sb (i , sj) , k)) ≡⟨ ≡.cong₂ _+_ ≡.refl (lem′ b (a * sb) c _ k) ⟩
c + fromParts (b + a * sb) c (b + fromParts a sb (i , sj) , k) ≡⟨⟩
fromParts (suc a * sb) c (fromParts (suc a) sb (suc i , sj) , k) ≡⟨⟩
fromParts³ (suc a) sb c (suc i , sj , k) ∎
abstract
toParts-1ˡ : ∀ {b} i → i < b → Partsℕ.toParts (constParts 1 b) i ≡ (0 , i)
toParts-1ˡ {b} i p with Impl.compare′ i b
toParts-1ˡ {.(suc (i + k))} i p | Impl.less .i k = ≡.refl
toParts-1ˡ {.m} .(m + k) p | Impl.gte m k = ⊥-elim (Nat.m+n≮m m k p)
toParts-1ʳ : ∀ {a} i → i < a → Partsℕ.toParts (constParts a 1) i ≡ (i , 0)
toParts-1ʳ {zero} _ ()
toParts-1ʳ {suc a} zero p = ≡.refl
toParts-1ʳ {suc a} (suc i) (Nat.s≤s p) with Σ.≡⇒≡×≡ (toParts-1ʳ {a} i p)
toParts-1ʳ {suc a} (suc i) (Nat.s≤s p) | q , r with Impl.compare′ i 0
toParts-1ʳ {suc a} (suc i) (Nat.s≤s p) | q , r | Impl.gte .0 .i = Σ.≡×≡⇒≡ (≡.cong suc q , r)
| {
"alphanum_fraction": 0.4903846154,
"avg_line_length": 47.1851851852,
"ext": "agda",
"hexsha": "ca99a91aaf0c4107c8411afe1cc01ed30e6c6c55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Fin/Parts/Nat/Simple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Fin/Parts/Nat/Simple.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Fin/Parts/Nat/Simple.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2426,
"size": 5096
} |
module RandomAccessList.Zeroless.Core where
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf)
open import Data.Nat
open import Data.Nat.Etc
-- parameterized by the level of the least significant digit
data 1-2-RAL (A : Set) : ℕ → Set where
[] : ∀ {n} → 1-2-RAL A n
_1∷_ : ∀ {n} → BinaryLeafTree A n → 1-2-RAL A (suc n) → 1-2-RAL A n
_,_2∷_ : ∀ {n} → BinaryLeafTree A n → BinaryLeafTree A n → 1-2-RAL A (suc n) → 1-2-RAL A n
infixr 2 _1∷_
infixr 2 _,_2∷_
--------------------------------------------------------------------------------
-- to ℕ
⟦_⟧ₙ : ∀ {A n} → 1-2-RAL A n → ℕ
⟦ [] ⟧ₙ = 0
⟦ x 1∷ xs ⟧ₙ = 1 + 2 * ⟦ xs ⟧ₙ
⟦ x , y 2∷ xs ⟧ₙ = 2 + 2 * ⟦ xs ⟧ₙ
⟦_⟧ : ∀ {n A} → 1-2-RAL A n → ℕ
⟦_⟧ {n} xs = 2 ^ n * ⟦ xs ⟧ₙ
| {
"alphanum_fraction": 0.4512761021,
"avg_line_length": 33.1538461538,
"ext": "agda",
"hexsha": "651759fcb3188d8d090c676c2d1ea0e878d69ab6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Zeroless/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Zeroless/Core.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Zeroless/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 346,
"size": 862
} |
------------------------------------------------------------------------
-- Second-order abstract syntax
--
-- Formalisation of second-order abstract syntax with variable binding.
------------------------------------------------------------------------
module Everything where
-- Public exports of modules and definitions used throughout the library.
import SOAS.Common
-- Abstract categorical definitions of carrier categories with extra structure,
-- and associated free constructions.
import SOAS.Construction.Free
import SOAS.Construction.Structure
-- Skew monoidal and closed structure
import SOAS.Construction.Skew.SkewClosed
-- Add sorting to categories, and prove that various categorical
-- structure (CCC, monoidal, etc.) are preserved.
import SOAS.Sorting
-- Definition of simple contexts as lists of sorts.
import SOAS.Context
-- The sorted family of variables and generalised context maps
import SOAS.Variable
-- | Context maps as renamings, substitutions and category morphisms
-- Context map combinators
import SOAS.ContextMaps.Combinators
-- Category of contexts and renamings
import SOAS.ContextMaps.CategoryOfRenamings
-- Inductive context maps
import SOAS.ContextMaps.Inductive
-- Common properties of context maps
import SOAS.ContextMaps.Properties
-- | Families
-- Definition of the category of sorted families
import SOAS.Families.Core
-- Isomorphism between sorted families
import SOAS.Families.Isomorphism
-- Bi-Cartesian closed and linear monoidal closed structure of families
import SOAS.Families.BCCC
import SOAS.Families.Linear
-- Context extension endofunctor
import SOAS.Families.Delta
-- Inductive construction of families
import SOAS.Families.Build
-- | Abstract constructions
-- Box modality
import SOAS.Abstract.Box
-- □-coalgebra on families - renaming structure
import SOAS.Abstract.Coalgebra
-- Internal hom of families
import SOAS.Abstract.Hom
-- Closed monoid in families - substitution structure
import SOAS.Abstract.Monoid
-- Exponential strength
import SOAS.Abstract.ExpStrength
-- | Constructions built upon coalgebras
-- Coalgebraic maps 𝒳 ⇾ 〖𝒫 , 𝒴〗
import SOAS.Coalgebraic.Map
-- Lifting and strength
import SOAS.Coalgebraic.Lift
import SOAS.Coalgebraic.Strength
-- Monoids compatible with coalgebra structure
import SOAS.Coalgebraic.Monoid
-- | Metatheory for a second-order binding signature
-- Binding algebras
import SOAS.Metatheory.Algebra
-- Algebras with variables and metavariables
import SOAS.Metatheory.MetaAlgebra
-- Signature monoids
import SOAS.Metatheory.Monoid
-- Initial-algebra semantics
import SOAS.Metatheory.Semantics
-- Parametrised interpretations
import SOAS.Metatheory.Traversal
-- Renaming structure by initiality
import SOAS.Metatheory.Renaming
-- Coalgebraic maps by initiality
import SOAS.Metatheory.Coalgebraic
-- Substitution structure by initiality
import SOAS.Metatheory.Substitution
-- Free monoid structure
import SOAS.Metatheory.FreeMonoid
-- Syntactic structure
import SOAS.Metatheory.Syntax
-- | Second-order structure
-- Metasubstitution
import SOAS.Metatheory.SecondOrder.Metasubstitution
-- Unit of metasubstitution
import SOAS.Metatheory.SecondOrder.Unit
-- Equational theory
import SOAS.Metatheory.SecondOrder.Equality
-- | Term syntax of a second-order signature
-- Argument representation
import SOAS.Syntax.Arguments
-- Second-order binding signature
import SOAS.Syntax.Signature
-- Shorthand notation
import SOAS.Syntax.Shorthands
-- Signature construction
import SOAS.Syntax.Build
-- First-order term syntax
import SOAS.Syntax.Term
| {
"alphanum_fraction": 0.7736797988,
"avg_line_length": 22.9423076923,
"ext": "agda",
"hexsha": "2ca6df4bad4dfeb0943950bfa1fa4ee525712473",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 823,
"size": 3579
} |
open import Coinduction using ( ∞ ; ♭ ; ♯_ )
open import Data.Empty using ( ⊥ )
open import Data.Bool using ( Bool ; true ; false ; if_then_else_ )
open import Data.Product using ( ∃ ; _×_ ; _,_ ; ,_ )
open import Data.Strict using ( Strict ; ! )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Data.Unit using ( ⊤ ; tt )
open import System.IO.Transducers.Session
using ( Session ; I ; Σ ; _∼_ ; ∼-sym ; Γ ; _/_ ; IsΣ ; IsΣ-≡ ; ⟨_⟩ ; _&_ ; ¿ ; _+_ )
renaming ( unit₁ to ∼-unit₁ ; unit₂ to ∼-unit₂ ; assoc to ∼-assoc )
open import System.IO.Transducers.Trace using ( _≤_ ; _⊑_ ; Trace ; [] ; _∷_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
open import Relation.Nullary using ( Dec ; yes ; no )
module System.IO.Transducers.Lazy where
-- S ⇛ T is the type of transducers whose inputs
-- are traces through S, and whose output are traces through T.
-- Note that input is coinductive, but output is inductive,
-- which guarantees that transducers will map finite traces
-- to finite traces.
-- The name transducer comes from automata theory -- these
-- are essentially I/O automata, or strategies in a two-player
-- game without the move alternation restriction.
-- In this module, we give definitions for lazy transducers,
-- there is a separate module for stict transducers.
infixr 4 _⇒_ _≃_ _≲_
infixr 6 _⟫_
infixr 8 _[&]_ _⟨&⟩_ _⟨+⟩_ _⟨¿⟩_
-- Lazy transducers, which may perform output before input.
data _⇒_ : (S T : Session) → Set₁ where
inp : ∀ {T A V F} → ∞ ((a : A) → (♭ F a ⇒ T)) → (Σ V F ⇒ T)
out : ∀ {S B W G} → (b : B) → (S ⇒ ♭ G b) → (S ⇒ Σ W G)
done : ∀ {S} → (S ⇒ S)
-- Semantically, we only need done at type I,
-- we have it at all types just for efficiency.
data _⤇_ : (S T : Session) → Set₁ where
inp : ∀ {T A V F} → ∞ ((a : A) → (♭ F a ⤇ T)) → (Σ V F ⤇ T)
out : ∀ {S B W G} → (b : B) → (S ⤇ ♭ G b) → (S ⤇ Σ W G)
done : (I ⤇ I)
ι : ∀ {S T} → (S ⤇ T) → (S ⇒ T)
ι (inp P) = inp (♯ λ a → ι (♭ P a))
ι (out b P) = out b (ι P)
ι done = done
ι⁻¹ : ∀ {S T} → (S ⇒ T) → (S ⤇ T)
ι⁻¹ (inp P) = inp (♯ λ a → ι⁻¹ (♭ P a))
ι⁻¹ (out b P) = out b (ι⁻¹ P)
ι⁻¹ (done {I}) = done
ι⁻¹ (done {Σ V F}) = inp (♯ λ a → out a (ι⁻¹ done))
-- Helper functions to build transducers in terms of Γ and _/_
out' : ∀ {S T} b → (S ⇒ T / b) → (S ⇒ T)
out' {S} {I} () P
out' {S} {Σ W G} b P = out b P
-- Helper function to output a whole trace.
out* : ∀ {S T U} → (T ≤ U) → (S ⇒ T) → (S ⇒ U)
out* [] P = P
out* (b ∷ bs) P = out* bs (out' b P)
-- Semantics as a function from partial traces to partial traces
⟦_⟧ : ∀ {S T} → (S ⇒ T) → (Trace S) → (Trace T)
⟦ inp P ⟧ [] = []
⟦ inp P ⟧ (a ∷ as) = ⟦ ♭ P a ⟧ as
⟦ out b P ⟧ as = b ∷ ⟦ P ⟧ as
⟦ done ⟧ as = as
-- Extensional equivalence on trace functions
_≃_ : ∀ {S T} → (f g : Trace S → Trace T) → Set
f ≃ g = ∀ as → f as ≡ g as
-- Improvement order on trace functions
_≲_ : ∀ {S T} → (f g : Trace S → Trace T) → Set₁
f ≲ g = ∀ as → f as ⊑ g as
-- Equivalent sessions give rise to a transducer
equiv : ∀ {S T} → (S ∼ T) → (S ⇒ T)
equiv I = done
equiv (Σ V F) = inp (♯ λ a → out a (equiv (♭ F a)))
-- Transducers form a category with composition given by
-- parallel (data flow) composition. This is defined by the
-- usual expansion laws for parallel composition, together with
-- the unit law for done. Since composition is deterministic,
-- we prioritize output over input.
_⟫_ : ∀ {S T U} → (S ⇒ T) → (T ⇒ U) → (S ⇒ U)
done ⟫ Q = Q
P ⟫ done = P
P ⟫ out b Q = out b (P ⟫ Q)
out b P ⟫ inp Q = P ⟫ ♭ Q b
inp P ⟫ Q = inp (♯ λ a → ♭ P a ⟫ Q)
-- The category has monoidal structure given by &, with
-- action on morphisms:
_[&]_ : ∀ {S T U V} → (S ⇒ T) → (U ⇒ V) → ((S & U) ⇒ (T & V))
inp {I} P [&] out c Q = out c (inp P [&] Q)
inp P [&] Q = inp (♯ λ a → ♭ P a [&] Q)
out b P [&] Q = out b (P [&] Q)
done {I} [&] Q = Q
done {Σ V F} [&] Q = inp (♯ λ a → out a (done {♭ F a} [&] Q))
-- Units for &
unit₁ : ∀ {S} → (I & S) ⇒ S
unit₁ = equiv ∼-unit₁
unit₁⁻¹ : ∀ {S} → S ⇒ (I & S)
unit₁⁻¹ = equiv (∼-sym ∼-unit₁)
unit₂ : ∀ {S} → (S & I) ⇒ S
unit₂ = equiv ∼-unit₂
unit₂⁻¹ : ∀ {S} → S ⇒ (S & I)
unit₂⁻¹ = equiv (∼-sym ∼-unit₂)
-- Associativity of &
assoc : ∀ {S T U} → (S & (T & U)) ⇒ ((S & T) & U)
assoc {S} = equiv (∼-assoc {S})
assoc⁻¹ : ∀ {S T U} → ((S & T) & U) ⇒ (S & (T & U))
assoc⁻¹ {S} = equiv (∼-sym (∼-assoc {S}))
-- Projections
discard : ∀ {S} → (S ⇒ I)
discard {I} = done
discard {Σ V F} = inp (♯ λ a → discard)
π₁ : ∀ {S T} → (S & T ⇒ S)
π₁ {I} = discard
π₁ {Σ V F} = inp (♯ λ a → out a π₁)
π₂ : ∀ {S T} → (S & T ⇒ T)
π₂ {I} = done
π₂ {Σ V F} = inp (♯ λ a → π₂ {♭ F a})
-- The category is almost cartesian, at the cost of
-- buffering. WARNING. BUFFERING. This is bad. Do not do this.
-- The "almost" is due to a failure of the projection properties:
-- P ⟨&⟩ Q ⟫ π₂ is not equivalent to Q, since Q may do output immediately,
-- and P ⟨&⟩ Q ⟫ π₂ can only output after it has consumed all its input.
-- Similarly π₁ ⟨&⟩ π₂ is not equivalent to done, as π₂'s output will
-- be bufferred.
-- This implementation uses output buffering, hopefully output
-- is usually smaller than input.
buffer : ∀ {S T U V} → (S ⇒ T) → (S ⇒ U) → (U ≤ V) → (S ⇒ T & V)
buffer (inp P) (inp Q) cs = inp (♯ λ a → buffer (♭ P a) (♭ Q a) cs)
buffer (inp P) (out c Q) cs = buffer (inp P) Q (c ∷ cs)
buffer (inp P) done cs = inp (♯ λ c → buffer (♭ P c) done (c ∷ cs))
buffer (out b P) Q cs = out b (buffer P Q cs)
buffer (done {I}) Q cs = out* cs Q
buffer (done {Σ V F}) (inp Q) cs = inp (♯ λ a → out a (buffer done (♭ Q a) cs))
buffer (done {Σ V F}) (out c Q) cs = buffer done Q (c ∷ cs)
buffer (done {Σ V F}) done cs = inp (♯ λ c → out c (buffer done done (c ∷ cs)))
_⟨&⟩_ : ∀ {S T U} → (S ⇒ T) → (S ⇒ U) → (S ⇒ T & U)
P ⟨&⟩ Q = buffer P Q []
-- If you want input buffering, you can implement it using copy and _[&]_.
copy : ∀ {S} → (S ⇒ (S & S))
copy = done ⟨&⟩ done
-- Braiding structure
swap'' : ∀ {T U} → (I ≤ U) → T ⇒ (T & U)
swap'' {I} cs = out* cs done
swap'' {Σ W G} cs = inp (♯ λ b → out b (swap'' cs))
swap' : ∀ {S T} {isΣ : IsΣ T} {U} → (S ≤ U) → (S & T) ⇒ (T & U)
swap' {I} cs = swap'' cs
swap' {Σ V F} {Σ W G} cs = inp (♯ λ c → swap' (c ∷ cs))
swap' {Σ V F} {I} {} cs
swap : ∀ {S T} → ((S & T) ⇒ (T & S))
swap {I} {T} = unit₂⁻¹
swap {Σ V F} {I} = unit₂
swap {Σ V F} {Σ W G} = swap' {Σ V F} []
-- Choice
ι₁ : ∀ {S T} → (S ⇒ S + T)
ι₁ = out true done
ι₂ : ∀ {S T} → (T ⇒ S + T)
ι₂ = out false done
choice : ∀ {S T U} → (S ⇒ U) → (T ⇒ U) → ∀ b → ((if b then S else T) ⇒ U)
choice P Q true = P
choice P Q false = Q
_[+]_ : ∀ {S T U V} → (S ⇒ U) → (T ⇒ V) → ((S + T) ⇒ (U + V))
P [+] Q = inp (♯ choice (out true P) (out false Q))
_⟨+⟩_ : ∀ {S T U} {isΣ : IsΣ U} → (S ⇒ U) → (T ⇒ U) → ((S + T) ⇒ U)
_⟨+⟩_ {S} {T} {Σ X H} P Q = inp (♯ choice P Q)
_⟨+⟩_ {S} {T} {I} {} P Q
-- Options.
some : ∀ {S} → (S ⇒ ¿ S)
some = ι₁
none : ∀ {S} → (I ⇒ ¿ S)
none = ι₂
[¿] : ∀ {S T} → (S ⇒ T) → (¿ S ⇒ ¿ T)
[¿] P = P [+] done
_⟨¿⟩_ : ∀ {S T} {isΣ : IsΣ T} → (S ⇒ T) → (I ⇒ T) → (¿ S ⇒ T)
_⟨¿⟩_ {S} {T} {isΣ} = _⟨+⟩_ {S} {I} {T} {isΣ}
| {
"alphanum_fraction": 0.5095088247,
"avg_line_length": 31.235042735,
"ext": "agda",
"hexsha": "d378791700277975fde6099f1b5efb4069c92cec",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Lazy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Lazy.agda",
"max_line_length": 88,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Lazy.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 3031,
"size": 7309
} |
{-# OPTIONS --safe #-}
module Definition.Conversion.Weakening where
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Conversion
import Tools.PropositionalEquality as PE
mutual
-- Weakening of algorithmic equality of neutrals.
wk~↑! : ∀ {ρ t u A Γ Δ l} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t ~ u ↑! A ^ l
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑! U.wk ρ A ^ l
wk~↑! {ρ} [ρ] ⊢Δ (var-refl x₁ x≡y) = var-refl (wkTerm [ρ] ⊢Δ x₁) (PE.cong (wkVar ρ) x≡y)
wk~↑! ρ ⊢Δ (app-cong {rF = !} {G = G} t~u x) =
PE.subst (λ x → _ ⊢ _ ~ _ ↑! x ^ _) (PE.sym (wk-β G))
(app-cong (wk~↓! ρ ⊢Δ t~u) (wkConv↑Term ρ ⊢Δ x))
wk~↑! ρ ⊢Δ (app-cong {rF = %} {G = G} t~u x) =
PE.subst (λ x → _ ⊢ _ ~ _ ↑! x ^ _) (PE.sym (wk-β G))
(app-cong (wk~↓! ρ ⊢Δ t~u) (wk~↑% ρ ⊢Δ x))
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (natrec-cong {k} {l} {h} {g} {a₀} {b₀} {F} {G} {ll} x x₁ x₂ t~u) =
PE.subst (λ x → _ ⊢ U.wk ρ (natrec _ F a₀ h k) ~ _ ↑! x ^ _) (PE.sym (wk-β F))
(natrec-cong (wkConv↑ (lift [ρ]) (⊢Δ ∙ (univ (ℕⱼ ⊢Δ))) x)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x ^ _) (wk-β F)
(wkConv↑Term [ρ] ⊢Δ x₁))
(PE.subst (λ x → Δ ⊢ U.wk ρ h [conv↑] U.wk ρ g ∷ x ^ ι ll)
(wk-β-natrec _ F ! _) (wkConv↑Term [ρ] ⊢Δ x₂))
(wk~↓! [ρ] ⊢Δ t~u))
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Emptyrec-cong {k} {l} {F} {G} x t~u) =
Emptyrec-cong (wkConv↑ [ρ] ⊢Δ x) (wk~↑% [ρ] ⊢Δ t~u)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-cong X x x₁) = Id-cong (wk~↓! [ρ] ⊢Δ X) (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-ℕ x x₁) = Id-ℕ (wk~↓! [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-ℕ0 x) = Id-ℕ0 (wk~↓! [ρ] ⊢Δ x)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-ℕS x x₁) = Id-ℕS (wkConv↑Term [ρ] ⊢Δ x) (wk~↓! [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-U x x₁) = Id-U (wk~↓! [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-Uℕ x) = Id-Uℕ (wk~↓! [ρ] ⊢Δ x)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (Id-UΠ x x₁) = Id-UΠ (wkConv↑Term [ρ] ⊢Δ x) (wk~↓! [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-cong X x x₁ x₂ x₃) =
cast-cong (wk~↓! [ρ] ⊢Δ X) (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-ℕ X x x₁ x₂) =
cast-ℕ (wk~↓! [ρ] ⊢Δ X) (wkConv↑Term [ρ] ⊢Δ x) (wkTerm [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-ℕℕ X x x₁) =
cast-ℕℕ (wk~↓! [ρ] ⊢Δ X) (wkTerm [ρ] ⊢Δ x) (wkTerm [ρ] ⊢Δ x₁)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-Π x X x₁ x₂ x₃) =
cast-Π (wkConv↑Term [ρ] ⊢Δ x) (wk~↓! [ρ] ⊢Δ X) (wkConv↑Term [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-Πℕ x x₁ x₂ x₃) =
cast-Πℕ (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-ℕΠ x x₁ x₂ x₃) =
cast-ℕΠ (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) =
cast-ΠΠ%! (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁) (wkConv↑Term [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃) (wkTerm [ρ] ⊢Δ x₄)
wk~↑! {ρ} {Δ = Δ} [ρ] ⊢Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) =
cast-ΠΠ!% (wkConv↑Term [ρ] ⊢Δ x) (wkConv↑Term [ρ] ⊢Δ x₁) (wkConv↑Term [ρ] ⊢Δ x₂) (wkTerm [ρ] ⊢Δ x₃) (wkTerm [ρ] ⊢Δ x₄)
wk~↑% : ∀ {ρ t u A Γ Δ l } ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t ~ u ↑% A ^ l
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑% U.wk ρ A ^ l
wk~↑% [ρ] ⊢Δ (%~↑ ⊢k ⊢l) =
%~↑ (wkTerm [ρ] ⊢Δ ⊢k) (wkTerm [ρ] ⊢Δ ⊢l)
wk~↑ : ∀ {ρ t u A rA lA Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t ~ u ↑ A ^ [ rA , lA ]
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑ U.wk ρ A ^ [ rA , lA ]
wk~↑ [ρ] ⊢Δ (~↑! x) = ~↑! (wk~↑! [ρ] ⊢Δ x)
wk~↑ [ρ] ⊢Δ (~↑% x) = ~↑% (wk~↑% [ρ] ⊢Δ x)
-- Weakening of algorithmic equality of neutrals in WHNF.
wk~↓! : ∀ {ρ t u A Γ Δ l} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t ~ u ↓! A ^ l
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↓! U.wk ρ A ^ l
wk~↓! {ρ} [ρ] ⊢Δ ([~] A₁ D whnfA k~l) =
[~] (U.wk ρ A₁) (wkRed* [ρ] ⊢Δ D) (wkWhnf ρ whnfA) (wk~↑! [ρ] ⊢Δ k~l)
-- Weakening of algorithmic equality of types.
wkConv↑ : ∀ {ρ A B rA Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ A [conv↑] B ^ rA
→ Δ ⊢ U.wk ρ A [conv↑] U.wk ρ B ^ rA
wkConv↑ {ρ} [ρ] ⊢Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) =
[↑] (U.wk ρ A′) (U.wk ρ B′) (wkRed* [ρ] ⊢Δ D) (wkRed* [ρ] ⊢Δ D′)
(wkWhnf ρ whnfA′) (wkWhnf ρ whnfB′) (wkConv↓ [ρ] ⊢Δ A′<>B′)
-- Weakening of algorithmic equality of types in WHNF.
wkConv↓ : ∀ {ρ A B rA Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ A [conv↓] B ^ rA
→ Δ ⊢ U.wk ρ A [conv↓] U.wk ρ B ^ rA
wkConv↓ ρ ⊢Δ (U-refl eqr x) = U-refl eqr ⊢Δ
wkConv↓ ρ ⊢Δ (univ x) = univ (wkConv↓Term ρ ⊢Δ x)
-- Weakening of algorithmic equality of terms.
wkConv↑Term : ∀ {ρ t u A Γ Δ l} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t [conv↑] u ∷ A ^ l
→ Δ ⊢ U.wk ρ t [conv↑] U.wk ρ u ∷ U.wk ρ A ^ l
wkConv↑Term {ρ} [ρ] ⊢Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
[↑]ₜ (U.wk ρ B) (U.wk ρ t′) (U.wk ρ u′)
(wkRed* [ρ] ⊢Δ D) (wkRed*Term [ρ] ⊢Δ d) (wkRed*Term [ρ] ⊢Δ d′)
(wkWhnf ρ whnfB) (wkWhnf ρ whnft′) (wkWhnf ρ whnfu′)
(wkConv↓Term [ρ] ⊢Δ t<>u)
-- Weakening of algorithmic equality of terms in WHNF.
wkConv↓Term : ∀ {ρ t u A Γ Δ l} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ
→ Γ ⊢ t [conv↓] u ∷ A ^ l
→ Δ ⊢ U.wk ρ t [conv↓] U.wk ρ u ∷ U.wk ρ A ^ l
wkConv↓Term ρ ⊢Δ (U-refl eqr x) = U-refl eqr ⊢Δ
wkConv↓Term ρ ⊢Δ (ne x) = ne (wk~↓! ρ ⊢Δ x)
wkConv↓Term ρ ⊢Δ (ℕ-ins x) =
ℕ-ins (wk~↓! ρ ⊢Δ x)
-- wkConv↓Term ρ ⊢Δ (Empty-ins x) =
-- Empty-ins (wk~↓% ρ ⊢Δ x)
wkConv↓Term {ρ} [ρ] ⊢Δ (ne-ins t u x x₁) =
ne-ins (wkTerm [ρ] ⊢Δ t) (wkTerm [ρ] ⊢Δ u) (wkNeutral ρ x) (wk~↓! [ρ] ⊢Δ x₁)
wkConv↓Term ρ ⊢Δ (zero-refl x) = zero-refl ⊢Δ
wkConv↓Term ρ ⊢Δ (suc-cong t<>u) = suc-cong (wkConv↑Term ρ ⊢Δ t<>u)
wkConv↓Term {ρ} {Δ = Δ} [ρ] ⊢Δ (η-eq {F = F} {G = G} {rF = rF} {lF = lF} {lG = lG} l< l<' x x₁ x₂ y y₁ t<>u) =
let ⊢ρF = wk [ρ] ⊢Δ x
in η-eq l< l<' ⊢ρF (wkTerm [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂)
(wkFunction ρ y) (wkFunction ρ y₁)
(PE.subst₃ (λ x y z → Δ ∙ U.wk ρ F ^ [ rF , ι lF ] ⊢ x [conv↑] y ∷ z ^ ι lG)
(PE.cong₃ _∘_^_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl PE.refl)
(PE.cong₃ _∘_^_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl PE.refl)
PE.refl
(wkConv↑Term (lift [ρ]) (⊢Δ ∙ ⊢ρF) t<>u))
wkConv↓Term ρ ⊢Δ (ℕ-refl x) = ℕ-refl ⊢Δ
wkConv↓Term ρ ⊢Δ (Empty-refl x _) = Empty-refl x ⊢Δ
wkConv↓Term ρ ⊢Δ (Π-cong eql eqr eqlF eqlG l< l<' x A<>B A<>B₁) =
let ⊢ρF = wk ρ ⊢Δ x
in Π-cong eql eqr eqlF eqlG l< l<' ⊢ρF (wkConv↑Term ρ ⊢Δ A<>B) (wkConv↑Term (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁)
wkConv↓Term ρ ⊢Δ (∃-cong eql x A<>B A<>B₁) =
let ⊢ρF = wk ρ ⊢Δ x
in ∃-cong eql ⊢ρF (wkConv↑Term ρ ⊢Δ A<>B) (wkConv↑Term (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁)
| {
"alphanum_fraction": 0.4518030027,
"avg_line_length": 53.1865671642,
"ext": "agda",
"hexsha": "8eae00c08d4dd1fb6d032dc584e97c9906d107d9",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Weakening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Weakening.agda",
"max_line_length": 122,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Weakening.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 4037,
"size": 7127
} |
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.LensProofs.Valid-LensAtLocation where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.LensProofs.Valid-LensLeaf
open import Data.QuadTree.LensProofs.Valid-LensWrappedTree
open import Data.QuadTree.LensProofs.Valid-LensA
open import Data.QuadTree.LensProofs.Valid-LensBCD
open import Data.QuadTree.LensProofs.Valid-LensGo
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.DataLenses
---- Lens laws for go
ValidLens-AtLocation-ViewSet :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> ViewSet (atLocation {t} loc dep {ins})
ValidLens-AtLocation-ViewSet (x , y) dep {ins} v s = trans refl (prop-Composition-ViewSet (ValidLens-WrappedTree) (ValidLens-go (x , y) dep {ins}) v s)
ValidLens-AtLocation-SetView :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> SetView (atLocation {t} loc dep {ins})
ValidLens-AtLocation-SetView (x , y) dep {ins} s = trans refl (prop-Composition-SetView (ValidLens-WrappedTree) (ValidLens-go (x , y) dep {ins}) s)
ValidLens-AtLocation-SetSet :
{t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> SetSet (atLocation {t} loc dep {ins})
ValidLens-AtLocation-SetSet (x , y) dep {ins} v1 v2 s = trans refl (prop-Composition-SetSet (ValidLens-WrappedTree) (ValidLens-go (x , y) dep {ins}) v1 v2 s)
ValidLens-AtLocation : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {ins : IsTrue (isInsidePow loc dep)}
-> ValidLens (VQuadTree t {dep}) t
ValidLens-AtLocation {t} {{eqT}} (x , y) dep {ins} = CValidLens (atLocation (x , y) dep {ins}) (ValidLens-AtLocation-ViewSet (x , y) dep {ins}) (ValidLens-AtLocation-SetView (x , y) dep {ins}) (ValidLens-AtLocation-SetSet (x , y) dep {ins})
| {
"alphanum_fraction": 0.7100040502,
"avg_line_length": 46.5849056604,
"ext": "agda",
"hexsha": "067819b5d0a7593cb62f46c2690e10a73d80a989",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensAtLocation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensAtLocation.agda",
"max_line_length": 240,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensAtLocation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 759,
"size": 2469
} |
open import Relation.Binary using (Rel)
open import Algebra.Bundles using (CommutativeRing)
open import Algebra.Module.Morphism.Structures
open import Algebra.Module.Normed using (NormedModule)
module Algebra.Module.Limit
{r ℓr} {CR : CommutativeRing r ℓr}
(open CommutativeRing CR using () renaming (Carrier to X))
{rel} {_≤_ : Rel X rel}
{ma ℓma} (MA : NormedModule CR _≤_ ma ℓma)
{mb ℓmb} (MB : NormedModule CR _≤_ mb ℓmb)
where
open import Data.Product using (Σ-syntax; ∃-syntax; _×_; proj₁)
open CommutativeRing CR
open import Algebra.Module.Morphism.Module using (⊸-normed)
private
module MA = NormedModule MA
module MB = NormedModule MB
module MA⊸MB = NormedModule (⊸-normed MA MB)
open NormedModule MA using () renaming
( Carrierᴹ to Carrierᴬ
; _+ᴹ_ to _+ᴬ_
; _-ᴹ_ to _-ᴬ_
; ∥_∥ to ∥_∥ᴬ
; ⟨_,_⟩ to ⟨_,_⟩ᴬ
)
open NormedModule MB using () renaming
( Carrierᴹ to Carrierᴮ
; _+ᴹ_ to _+ᴮ_
; _-ᴹ_ to _-ᴮ_
; ∥_∥ to ∥_∥ᴮ
; ⟨_,_⟩ to ⟨_,_⟩ᴮ
)
open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ using (_<_)
Limit-syntax : (L : Carrierᴮ) (f : Carrierᴬ → Carrierᴮ) (c : Carrierᴬ) → Set _
Limit-syntax L f c =
∀ ε → 0# < ε → ∃[ δ ]
∀ x →
let d = ⟨ c , x ⟩ᴬ
in (0# < d) × (d < δ) → ⟨ f x , L ⟩ᴮ < ε
syntax Limit-syntax L (λ x → f) c = f ⟶ L As x ⟶ c
Limit-syntax-0 : (L : Carrierᴮ) (f : Carrierᴬ → Carrierᴮ) → Set _
Limit-syntax-0 L f =
∀ ε → 0# < ε → ∃[ δ ]
∀ x →
let d = ∥ x ∥ᴬ
in (0# < d) × (d < δ) → ⟨ f x , L ⟩ᴮ < ε
syntax Limit-syntax-0 L (λ x → f) = f ⟶ L As x ⟶0
Limit-syntax-0-0 : (f : Carrierᴬ → Carrierᴮ) → Set _
Limit-syntax-0-0 f =
∀ ε → 0# < ε → ∃[ δ ]
∀ x →
let d = ∥ x ∥ᴬ
in (0# < d) × (d < δ) → ∥ f x ∥ᴮ < ε
syntax Limit-syntax-0-0 (λ x → f) = f ⟶0 As x ⟶0
_Approximates_At_
: (δf : MA⊸MB.Carrierᴹ)
→ (f : Carrierᴬ → Carrierᴮ)
→ (x : Carrierᴬ)
→ Set _
δf Approximates f At x = (f (x +ᴬ dx) -ᴮ (f x +ᴮ proj₁ δf dx)) ⟶0 As dx ⟶0
_Differentiates_
: (δf : Carrierᴬ → MA⊸MB.Carrierᴹ)
→ (f : Carrierᴬ → Carrierᴮ)
→ Set _
δf Differentiates f = ∀ x → (f (x +ᴬ dx) -ᴮ (f x +ᴮ proj₁ (δf x) dx)) ⟶0 As dx ⟶0
D[_,_]_~_ : (f : Carrierᴬ → Carrierᴮ) (df : Carrierᴬ → MA⊸MB.Carrierᴹ) → Set _
D[_,_]_~_ f df = df Differentiates f
_DifferentiableAt_ : (f : Carrierᴬ → Carrierᴮ) (x : Carrierᴬ) → Set _
f DifferentiableAt x = ∃[ δf ] δf Approximates f At x
Differentiable : (f : Carrierᴬ → Carrierᴮ) → Set _
Differentiable f = ∀ x → f DifferentiableAt x
D[_,_][_,_] : (f : Carrierᴬ → Carrierᴮ) (x : Carrierᴬ) → Set _
D[_,_][_,_] f x = f DifferentiableAt x
-- [_,_]~[_~_]_
-- : (δf : Carrierᴬ → Carrierᴮ)
-- → (f : Carrierᴬ → Carrierᴮ)
-- → (x : Carrierᴬ)
-- → Set _
-- [_,_][_~_]_ df f x = {! df Approximates f At x !}
| {
"alphanum_fraction": 0.5903003981,
"avg_line_length": 27.3564356436,
"ext": "agda",
"hexsha": "383b78a173fe79a4700f98e40bba49728b3c1373",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/reals",
"max_forks_repo_path": "src/Algebra/Module/Limit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/reals",
"max_issues_repo_path": "src/Algebra/Module/Limit.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/reals",
"max_stars_repo_path": "src/Algebra/Module/Limit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1238,
"size": 2763
} |
open import FRP.JS.Geolocation.Angle using ( Angle ) renaming ( toString to toString° )
open import FRP.JS.String using ( String ; _++_ )
module FRP.JS.Geolocation.Coords where
-- Not including the optional fields yet.
record Coords : Set where
field
latitude : Angle
longitude : Angle
open Coords public
toString : Coords → String
toString c = toString° (latitude c) ++ "," ++ toString° (longitude c)
| {
"alphanum_fraction": 0.7146282974,
"avg_line_length": 24.5294117647,
"ext": "agda",
"hexsha": "4f6565dd25a249c02fe900b31285de8e40a65171",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Geolocation/Coords.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Geolocation/Coords.agda",
"max_line_length": 87,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Geolocation/Coords.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 104,
"size": 417
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-dependent product combinators for setoid equality preserving
-- functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Function.NonDependent.Setoid where
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Relation.Binary
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
------------------------------------------------------------------------
-- Combinators for equality preserving functions
module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂}
{A : Setoid a₁ a₂} {B : Setoid b₁ b₂}
{C : Setoid c₁ c₂} {D : Setoid d₁ d₂}
where
_×-⟶_ : (A ⟶ B) → (C ⟶ D) → (A ×ₛ C) ⟶ (B ×ₛ D)
_×-⟶_ f g = record
{ _⟨$⟩_ = fg
; cong = fg-cong
}
where
open Setoid (A ×ₛ C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ×ₛ D) using () renaming (_≈_ to _≈BD_)
fg = map (f ⟨$⟩_) (g ⟨$⟩_)
fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_
fg-cong (_∼₁_ , _∼₂_) = (F.cong f _∼₁_ , F.cong g _∼₂_)
module _ {a₁ a₂ b₁ b₂ c₁ c₂}
{A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂}
where
<_,_>ₛ : (A ⟶ B) → (A ⟶ C) → A ⟶ (B ×ₛ C)
< f , g >ₛ = record
{ _⟨$⟩_ = < f ⟨$⟩_ , g ⟨$⟩_ >
; cong = < F.cong f , F.cong g >
}
module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where
proj₁ₛ : (A ×ₛ B) ⟶ A
proj₁ₛ = record { _⟨$⟩_ = proj₁ ; cong = proj₁ }
proj₂ₛ : (A ×ₛ B) ⟶ B
proj₂ₛ = record { _⟨$⟩_ = proj₂ ; cong = proj₂ }
swapₛ : (A ×ₛ B) ⟶ (B ×ₛ A)
swapₛ = < proj₂ₛ , proj₁ₛ >ₛ
------------------------------------------------------------------------
-- Combinators for more complex function types
module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂}
{A : Setoid a₁ a₂} {B : Setoid b₁ b₂}
{C : Setoid c₁ c₂} {D : Setoid d₁ d₂}
where
_×-equivalence_ : Equivalence A B → Equivalence C D →
Equivalence (A ×ₛ C) (B ×ₛ D)
_×-equivalence_ A⇔B C⇔D = record
{ to = to A⇔B ×-⟶ to C⇔D
; from = from A⇔B ×-⟶ from C⇔D
} where open Equivalence
_×-injection_ : Injection A B → Injection C D →
Injection (A ×ₛ C) (B ×ₛ D)
A↣B ×-injection C↣D = record
{ to = to A↣B ×-⟶ to C↣D
; injective = map (injective A↣B) (injective C↣D)
} where open Injection
_×-left-inverse_ : LeftInverse A B → LeftInverse C D →
LeftInverse (A ×ₛ C) (B ×ₛ D)
A↞B ×-left-inverse C↞D = record
{ to = Equivalence.to eq
; from = Equivalence.from eq
; left-inverse-of = left
}
where
open LeftInverse
eq = LeftInverse.equivalence A↞B ×-equivalence
LeftInverse.equivalence C↞D
left : Equivalence.from eq LeftInverseOf Equivalence.to eq
left (x , y) = (left-inverse-of A↞B x , left-inverse-of C↞D y)
module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂}
{A : Setoid a₁ a₂} {B : Setoid b₁ b₂}
{C : Setoid c₁ c₂} {D : Setoid d₁ d₂}
where
_×-surjection_ : Surjection A B → Surjection C D →
Surjection (A ×ₛ C) (B ×ₛ D)
A↠B ×-surjection C↠D = record
{ to = LeftInverse.from inv
; surjective = record
{ from = LeftInverse.to inv
; right-inverse-of = LeftInverse.left-inverse-of inv
}
}
where
open Surjection
inv = right-inverse A↠B ×-left-inverse right-inverse C↠D
_×-inverse_ : Inverse A B → Inverse C D →
Inverse (A ×ₛ C) (B ×ₛ D)
A↔B ×-inverse C↔D = record
{ to = Surjection.to surj
; from = Surjection.from surj
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of inv
; right-inverse-of = Surjection.right-inverse-of surj
}
}
where
open Inverse
surj = Inverse.surjection A↔B ×-surjection
Inverse.surjection C↔D
inv = Inverse.left-inverse A↔B ×-left-inverse
Inverse.left-inverse C↔D
| {
"alphanum_fraction": 0.5451933702,
"avg_line_length": 31.8661971831,
"ext": "agda",
"hexsha": "afe1ea7f3612dd1995749081ff9e441ca0f999ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/NonDependent/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/NonDependent/Setoid.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/NonDependent/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1580,
"size": 4525
} |
{-# OPTIONS --cubical-compatible #-}
open import Agda.Builtin.Equality
postulate
A : Set
B : A → Set
data H (@0 A : Set) : Set where
con : (@0 x : A) → H A
data G : Set where
con : (@0 x : A) → (@0 b : B x) → G
data D : Set where
con : (@0 x : A) → B x → D
| {
"alphanum_fraction": 0.5257352941,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "52a3a5be7c5817829116a51d64007826a5723da6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue4784b.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue4784b.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue4784b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 105,
"size": 272
} |
module Graph (Node : Set) where
open import Basics
data Edge : Set where
edge : Node -> Node -> Edge
Graph : Set
Graph = List Edge
Step : Graph -> Node -> Node -> Set
Step G x y = Elem (edge x y) G
infixr 40 _<>_
data Path (G : Graph) : Node -> Node -> Set where
nul : forall {x} -> Path G x x
_<>_ : forall {x y z} -> Step G x y -> Path G y z -> Path G x z
| {
"alphanum_fraction": 0.5824468085,
"avg_line_length": 18.8,
"ext": "agda",
"hexsha": "d4b8875d885440c46b3969e5f8f01b56d74f37b6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Graph.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Graph.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Graph.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 376
} |
module Golden.Insertion where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Bool
insert : Nat -> List Nat -> List Nat
insert a [] = a ∷ []
insert x (a ∷ b) with x < a
... | true = x ∷ a ∷ b
... | false = a ∷ (insert x b)
lst : List Nat
lst = 2 ∷ []
slst : List Nat
slst = insert 3 lst
atDef : ∀ {a : Set} → a → List a -> Nat -> a
atDef def (x ∷ l) zero = x
atDef def (x ∷ l) (suc ix) = atDef def l ix
atDef def _ _ = def
l0 : Nat
l0 = atDef 0 slst 0
l1 : Nat
l1 = atDef 0 slst 1
| {
"alphanum_fraction": 0.6011450382,
"avg_line_length": 18.0689655172,
"ext": "agda",
"hexsha": "94f285153377a6b83a7fc331a1b191e2ce00e2e2",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z",
"max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-ocaml",
"max_forks_repo_path": "test/agda-ocaml/Golden/Insertion.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-ocaml",
"max_issues_repo_path": "test/agda-ocaml/Golden/Insertion.agda",
"max_line_length": 44,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-ocaml",
"max_stars_repo_path": "test/agda-ocaml/Golden/Insertion.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z",
"num_tokens": 207,
"size": 524
} |
module Spire.Examples.Standard where
----------------------------------------------------------------------
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data Vec (A : Set) : ℕ → Set where
nil : Vec A zero
cons : (n : ℕ) (a : A) (xs : Vec A n) → Vec A (suc n)
----------------------------------------------------------------------
elimℕ : (P : ℕ → Set)
(pzero : P zero)
(psuc : (m : ℕ) → P m → P (suc m))
(n : ℕ)
→ P n
elimℕ P pzero psuc zero = pzero
elimℕ P pzero psuc (suc n) = psuc n (elimℕ P pzero psuc n)
elimVec : (A : Set) (P : (n : ℕ) → Vec A n → Set)
(pnil : P zero nil)
(pcons : (n : ℕ) (a : A) (xs : Vec A n) → P n xs → P (suc n) (cons n a xs))
(n : ℕ)
(xs : Vec A n)
→ P n xs
elimVec A P pnil pcons .zero nil = pnil
elimVec A P pnil pcons .(suc n) (cons n a xs) = pcons n a xs (elimVec A P pnil pcons n xs)
----------------------------------------------------------------------
module PatternMatching where
add : ℕ → ℕ → ℕ
add zero n = n
add (suc m) n = suc (add m n)
mult : ℕ → ℕ → ℕ
mult zero n = zero
mult (suc m) n = add n (mult m n)
append : (A : Set) (m : ℕ) (xs : Vec A m) (n : ℕ) (ys : Vec A n) → Vec A (add m n)
append A .zero nil n ys = ys
append A .(suc m) (cons m x xs) n ys = cons (add m n) x (append A m xs n ys)
concat : (A : Set) (m n : ℕ) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m .zero nil = nil
concat A m .(suc n) (cons n xs xss) = append A m xs (mult n m) (concat A m n xss)
----------------------------------------------------------------------
module Eliminator where
add : ℕ → ℕ → ℕ
add = elimℕ (λ _ → ℕ → ℕ)
(λ n → n)
(λ m ih n → suc (ih n))
mult : ℕ → ℕ → ℕ
mult = elimℕ (λ _ → ℕ → ℕ)
(λ n → zero)
(λ m ih n → add n (ih n))
append : (A : Set) (m : ℕ) (xs : Vec A m) (n : ℕ) (ys : Vec A n) → Vec A (add m n)
append A = elimVec A (λ m xs → (n : ℕ) (ys : Vec A n) → Vec A (add m n))
(λ n ys → ys)
(λ m x xs ih n ys → cons (add m n) x (ih n ys))
concat : (A : Set) (m n : ℕ) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m = elimVec (Vec A m) (λ n xss → Vec A (mult n m))
nil
(λ n xs xss ih → append A m xs (mult n m) ih)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.4305249228,
"avg_line_length": 29.4415584416,
"ext": "agda",
"hexsha": "fb3bea7423703f96d7fd38011214d0a43598fa13",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/Examples/Standard.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/Examples/Standard.agda",
"max_line_length": 90,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/Examples/Standard.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 829,
"size": 2267
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import Functions.Lemmas
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Sets.FinSet.Definition
module Sets.FinSet.Lemmas where
fneSymmetric : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals a b → FinNotEquals b a
fneSymmetric {.1} {.a1} {.b1} (fne2 a1 b1 (inl x)) = fne2 b1 a1 (inr x)
fneSymmetric {.1} {.a1} {.b1} (fne2 a1 b1 (inr x)) = fne2 b1 a1 (inl x)
fneSymmetric {.(succ (succ _))} {.fzero} {b} (fneN .fzero b (inl (inl (refl ,, snd)))) = fneN b fzero (inl (inr (snd ,, refl)))
fneSymmetric {.(succ (succ _))} {a} {.fzero} (fneN a .fzero (inl (inr (fst ,, refl)))) = fneN fzero a (inl (inl (refl ,, fst)))
fneSymmetric {.(succ (succ _))} {a} {b} (fneN a b (inr ((fst ,, snd) , record { one = o ; two = p ; three = q }))) = fneN b a (inr ((snd ,, fst) , record { one = p ; two = o ; three = fneSymmetric q }))
private
underlyingProof : {l m : _} {L : Set l} {pr : L → Set m} → (a : Sg L pr) → pr (underlying a)
underlyingProof (a , b) = b
finSetNotEquals : {n : ℕ} → {a b : FinSet (succ n)} → (a ≡ b → False) → FinNotEquals {n} a b
finSetNotEquals {zero} {fzero} {fzero} pr = exFalso (pr refl)
finSetNotEquals {zero} {fzero} {fsucc ()} pr
finSetNotEquals {zero} {fsucc ()} {b} pr
finSetNotEquals {succ zero} {fzero} {fzero} pr = exFalso (pr refl)
finSetNotEquals {succ zero} {fzero} {fsucc fzero} pr = fne2 fzero (fsucc fzero) (inl (refl ,, refl))
finSetNotEquals {succ zero} {fzero} {fsucc (fsucc ())} pr
finSetNotEquals {succ zero} {fsucc fzero} {fzero} pr = fne2 (fsucc fzero) fzero (inr (refl ,, refl))
finSetNotEquals {succ zero} {fsucc fzero} {fsucc fzero} pr = exFalso (pr refl)
finSetNotEquals {succ zero} {fsucc fzero} {fsucc (fsucc ())} pr
finSetNotEquals {succ zero} {fsucc (fsucc ())}
finSetNotEquals {succ (succ n)} {fzero} {fzero} pr = exFalso (pr refl)
finSetNotEquals {succ (succ n)} {fzero} {fsucc b} pr = fneN fzero (fsucc b) (inl (inl (refl ,, (b , refl))))
finSetNotEquals {succ (succ n)} {fsucc a} {fzero} pr = fneN (fsucc a) fzero (inl (inr ((a , refl) ,, refl)))
finSetNotEquals {succ (succ n)} {fsucc a} {fsucc b} pr = fneN (fsucc a) (fsucc b) (inr ans)
where
q : a ≡ b → False
q refl = pr refl
t : FinNotEquals {succ n} a b
t = finSetNotEquals {succ n} {a} {b} q
ans : Sg (FinSet (succ (succ n)) && FinSet (succ (succ n))) (λ x → (fsucc a ≡ fsucc (_&&_.fst x)) & fsucc b ≡ fsucc (_&&_.snd x) & FinNotEquals (_&&_.fst x) (_&&_.snd x))
ans with t
ans | fne2 .fzero .(fsucc fzero) (inl (refl ,, refl)) = (a ,, b) , record { one = refl ; two = refl ; three = fne2 fzero (fsucc fzero) (inl (refl ,, refl)) }
ans | fne2 .(fsucc fzero) .fzero (inr (refl ,, refl)) = (a ,, b) , record { one = refl ; two = refl ; three = fne2 (fsucc fzero) fzero (inr (refl ,, refl)) }
ans | fneN a b _ = (a ,, b) , record { one = refl ; two = refl ; three = t }
fzeroNotFsucc : {n : ℕ} → {a : _} → fzero ≡ fsucc {succ n} a → False
fzeroNotFsucc ()
finSetNotEqualsSame : {n : ℕ} → {a : FinSet (succ n)} → FinNotEquals a a → False
finSetNotEqualsSame {.1} {fzero} (fne2 .fzero .fzero (inl (fst ,, ())))
finSetNotEqualsSame {.1} {fzero} (fne2 .fzero .fzero (inr (fst ,, ())))
finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inl (inl (refl ,, (a , ())))))
finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inl (inr ((a , ()) ,, refl))))
finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inr ((fst ,, snd) , record { one = () ; two = p ; three = q })))
finSetNotEqualsSame {.1} {fsucc a} (fne2 .(fsucc a) .(fsucc a) (inl (() ,, snd)))
finSetNotEqualsSame {.1} {fsucc a} (fne2 .(fsucc a) .(fsucc a) (inr (() ,, snd)))
finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inl (inl (() ,, snd))))
finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inl (inr (fst ,, ()))))
finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inr ((.a ,, .a) , record { one = refl ; two = refl ; three = q }))) = finSetNotEqualsSame q
finNotEqualsFsucc : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals (fsucc a) (fsucc b) → FinNotEquals a b
finNotEqualsFsucc {.0} {a} {b} (fne2 .(fsucc a) .(fsucc b) (inl (() ,, snd)))
finNotEqualsFsucc {.0} {a} {b} (fne2 .(fsucc a) .(fsucc b) (inr (() ,, snd)))
finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inl (inl (() ,, snd))))
finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inl (inr (fst ,, ()))))
finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inr ((fst ,, snd) , prf))) = identityOfIndiscernablesRight FinNotEquals ans (equalityCommutative b=snd)
where
a=fst : a ≡ fst
a=fst = fsuccInjective (_&_&_.one prf)
b=snd : b ≡ snd
b=snd = fsuccInjective (_&_&_.two prf)
ans : FinNotEquals a snd
ans = identityOfIndiscernablesLeft FinNotEquals (_&_&_.three prf) (equalityCommutative a=fst)
finSetNotEquals' : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals a b → (a ≡ b → False)
finSetNotEquals' {n} {a} {.a} fne refl = finSetNotEqualsSame fne
finset0Empty : FinSet zero → False
finset0Empty ()
finset1OnlyOne : (a b : FinSet 1) → a ≡ b
finset1OnlyOne fzero fzero = refl
finset1OnlyOne fzero (fsucc ())
finset1OnlyOne (fsucc ()) b
intoSmaller : {n m : ℕ} → .(n <N m) → (FinSet n → FinSet m)
intoSmaller {zero} {m} n<m = t
where
t : FinSet 0 → FinSet m
t ()
intoSmaller {succ n} {zero} ()
intoSmaller {succ n} {succ m} n<m with intoSmaller (canRemoveSuccFrom<N n<m)
intoSmaller {succ n} {succ m} n<m | prev = t
where
t : FinSet (succ n) → FinSet (succ m)
t fzero = fzero
t (fsucc arg) = fsucc (prev arg)
intoSmallerInj : {n m : ℕ} → (n<m : n <N m) → Injection (intoSmaller n<m)
intoSmallerInj {zero} {zero} (le x ())
intoSmallerInj {zero} {succ m} n<m = inj
where
t : FinSet 0 → FinSet (succ m)
t ()
inj : {x y : FinSet zero} → intoSmaller (succIsPositive m) x ≡ intoSmaller (succIsPositive m) y → x ≡ y
inj {()} {y}
intoSmallerInj {succ n} {zero} ()
intoSmallerInj {succ n} {succ m} n<m with intoSmallerInj (canRemoveSuccFrom<N n<m)
intoSmallerInj {succ n} {succ m} n<m | prevInj = inj
where
inj : Injection (intoSmaller n<m)
inj {fzero} {fzero} pr = refl
inj {fzero} {fsucc y} ()
inj {fsucc x} {fzero} ()
inj {fsucc x} {fsucc y} pr = applyEquality fsucc (prevInj (fsuccInjective pr))
toNat : {n : ℕ} → (a : FinSet n) → ℕ
toNat {.(succ _)} fzero = 0
toNat {.(succ _)} (fsucc a) = succ (toNat a)
toNatSmaller : {n : ℕ} → (a : FinSet n) → toNat a <N n
toNatSmaller {zero} ()
toNatSmaller {succ n} fzero = succIsPositive n
toNatSmaller {succ n} (fsucc a) = succPreservesInequality (toNatSmaller a)
ofNat : {n : ℕ} → (m : ℕ) → .(m <N n) → FinSet n
ofNat {zero} zero ()
ofNat {succ n} zero m<n = fzero
ofNat {zero} (succ m) ()
ofNat {succ n} (succ m) m<n = fsucc (ofNat {n} m (canRemoveSuccFrom<N m<n))
ofNatInjective : {n : ℕ} → (x y : ℕ) → .(pr : x <N n) → .(pr2 : y <N n) → ofNat x pr ≡ ofNat y pr2 → x ≡ y
ofNatInjective {zero} zero zero () y<n pr
ofNatInjective {zero} zero (succ y) () y<n pr
ofNatInjective {zero} (succ x) zero x<n () pr
ofNatInjective {zero} (succ x) (succ y) () y<n pr
ofNatInjective {succ n} zero zero x<n y<n pr = refl
ofNatInjective {succ n} zero (succ y) x<n y<n ()
ofNatInjective {succ n} (succ x) zero x<n y<n ()
ofNatInjective {succ n} (succ x) (succ y) x<n y<n pr = applyEquality succ (ofNatInjective x y (canRemoveSuccFrom<N x<n) (canRemoveSuccFrom<N y<n) (fsuccInjective pr))
toNatInjective : {n : ℕ} → (x y : FinSet n) → toNat x ≡ toNat y → x ≡ y
toNatInjective fzero fzero pr = refl
toNatInjective (fsucc x) (fsucc y) pr = applyEquality fsucc (toNatInjective x y (succInjective pr))
toNatOfNat : {n : ℕ} → (a : ℕ) → (a<n : a <N n) → toNat (ofNat a a<n) ≡ a
toNatOfNat {zero} zero (le x ())
toNatOfNat {zero} (succ a) (le x ())
toNatOfNat {succ n} zero a<n = refl
toNatOfNat {succ n} (succ a) a<n = applyEquality succ (toNatOfNat a (canRemoveSuccFrom<N a<n))
intoSmallerLemm : {n m : ℕ} → {n<m : n <N (succ m)} → {m<sm : m <N succ m} → (b : FinSet n) → intoSmaller n<m b ≡ ofNat m m<sm → False
intoSmallerLemm {.(succ _)} {m} {n<m} fzero pr with intoSmaller (canRemoveSuccFrom<N n<m)
intoSmallerLemm {.(succ _)} {zero} {n<m} fzero refl | bl = zeroNeverGreater (canRemoveSuccFrom<N n<m)
intoSmallerLemm {.(succ _)} {succ m} {n<m} fzero () | bl
intoSmallerLemm {.(succ _)} {m} {n<m} (fsucc b) pr with inspect (intoSmaller (canRemoveSuccFrom<N n<m))
intoSmallerLemm {.(succ _)} {zero} {n<m} (fsucc b) pr | bl with≡ _ = zeroNeverGreater (canRemoveSuccFrom<N n<m)
intoSmallerLemm {.(succ _)} {succ m} {n<m} {m<sm} (fsucc b) pr | bl with≡ p = intoSmallerLemm {n<m = canRemoveSuccFrom<N n<m} {m<sm = canRemoveSuccFrom<N m<sm} b (fsuccInjective pr)
intoSmallerNotSurj : {n m : ℕ} → {n<m : n <N m} → Surjection (intoSmaller n<m) → False
intoSmallerNotSurj {n} {zero} {le x ()} property
intoSmallerNotSurj {zero} {succ zero} {n<m} property with property fzero
... | () , _
intoSmallerNotSurj {succ n} {succ zero} {n<m} property = zeroNeverGreater (canRemoveSuccFrom<N n<m)
intoSmallerNotSurj {0} {succ (succ m)} {n<m} property with property fzero
... | () , _
intoSmallerNotSurj {succ n} {succ (succ m)} {n<m} property = problem
where
notHit : FinSet (succ (succ m))
notHit = ofNat (succ m) (le zero refl)
hitting : Sg (FinSet (succ n)) (λ i → intoSmaller n<m i ≡ notHit)
hitting = property notHit
problem : False
problem with hitting
... | a , pr = intoSmallerLemm {succ n} {succ m} {n<m} {le 0 refl} a pr
finsetDecidableEquality : {n : ℕ} → (x y : FinSet n) → (x ≡ y) || ((x ≡ y) → False)
finsetDecidableEquality fzero fzero = inl refl
finsetDecidableEquality fzero (fsucc y) = inr λ ()
finsetDecidableEquality (fsucc x) fzero = inr λ ()
finsetDecidableEquality (fsucc x) (fsucc y) with finsetDecidableEquality x y
finsetDecidableEquality (fsucc x) (fsucc y) | inl pr rewrite pr = inl refl
finsetDecidableEquality (fsucc x) (fsucc y) | inr pr = inr (λ f → pr (fsuccInjective f))
subInjection : {n : ℕ} → {f : FinSet (succ (succ n)) → FinSet (succ (succ n))} → Injection f → (FinSet (succ n) → FinSet (succ n))
subInjection {n} {f} inj x with inspect (f (fsucc x))
subInjection {f = f} inj x | fzero with≡ _ with inspect (f fzero)
subInjection {f = f} inj x | fzero with≡ pr | fzero with≡ pr2 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr))))
subInjection {f = f} inj x | fzero with≡ _ | fsucc bl with≡ _ = bl
subInjection {f = f} inj x | fsucc bl with≡ _ = bl
subInjIsInjective : {n : ℕ} → {f : FinSet (succ (succ n)) → FinSet (succ (succ n))} → (inj : Injection f) → Injection (subInjection inj)
subInjIsInjective {f = f} inj {x} {y} pr with inspect (f (fsucc x))
subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ _ with inspect (f (fzero))
subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fzero with≡ pr2 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr1))))
subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ with inspect (f (fsucc y))
subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ | fzero with≡ x₁ with inspect (f (fzero))
subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ | fzero with≡ x1 | fzero with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1))))
subInjIsInjective {f = f} inj {x} {y} refl | fzero with≡ pr1 | fsucc .bl2 with≡ _ | fzero with≡ x1 | fsucc bl2 with≡ _ = fsuccInjective (inj (transitivity pr1 (equalityCommutative x1)))
subInjIsInjective {f = f} inj {x} {y} refl | fzero with≡ pr1 | fsucc .bl2 with≡ pr2 | fsucc bl2 with≡ pr3 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr3))))
subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ with inspect (f (fsucc y))
subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ | fzero with≡ x₁ with inspect (f fzero)
subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ | fzero with≡ x1 | fzero with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1))))
subInjIsInjective {f = f} inj {x} {y} refl | fsucc .bl2 with≡ x1 | fzero with≡ x₁ | fsucc bl2 with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1))))
subInjIsInjective {f = f} inj {x} {y} refl | fsucc .y1 with≡ pr1 | fsucc y1 with≡ pr2 = fsuccInjective (inj (transitivity pr1 (equalityCommutative pr2)))
onepointBij : (f : FinSet 1 → FinSet 1) → Bijection f
Bijection.inj (onepointBij f) {x} {y} _ = finset1OnlyOne x y
Bijection.surj (onepointBij f) fzero with inspect (f fzero)
... | fzero with≡ pr = fzero , pr
... | fsucc () with≡ _
Bijection.surj (onepointBij f) (fsucc ())
nopointBij : (f : FinSet 0 → FinSet 0) → Bijection f
Bijection.inj (nopointBij f) {()}
Bijection.surj (nopointBij f) ()
private
flip : {n : ℕ} → (f : FinSet (succ n) → FinSet (succ n)) → FinSet (succ n) → FinSet (succ n)
flip {n} f fzero = f fzero
flip {n} f (fsucc a) with inspect (f fzero)
flip {n} f (fsucc a) | fzero with≡ x = fsucc a
flip {n} f (fsucc a) | fsucc y with≡ x with finsetDecidableEquality a y
flip {n} f (fsucc a) | fsucc y with≡ x | inl a=y = fzero
flip {n} f (fsucc a) | fsucc y with≡ x | inr a!=y = fsucc a
flipSwapsF0 : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (flip f (f fzero)) ≡ fzero
flipSwapsF0 {zero} {f} with inspect (f fzero)
flipSwapsF0 {zero} {f} | fzero with≡ x rewrite x = x
flipSwapsF0 {zero} {f} | fsucc () with≡ x
flipSwapsF0 {succ n} {f = f} with inspect (f fzero)
flipSwapsF0 {succ n} {f = f} | fzero with≡ pr rewrite pr = pr
flipSwapsF0 {succ n} {f = f} | fsucc b with≡ pr rewrite pr = ans
where
ans : flip f (fsucc b) ≡ fzero
ans with inspect (f fzero)
ans | fzero with≡ x = exFalso (fzeroNotFsucc (transitivity (equalityCommutative x) pr))
ans | fsucc y with≡ x with finsetDecidableEquality b y
ans | fsucc y with≡ x | inl b=y = refl
ans | fsucc y with≡ x | inr b!=y = exFalso (b!=y (fsuccInjective (transitivity (equalityCommutative pr) x)))
flipSwapsZero : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (flip f fzero) ≡ f fzero
flipSwapsZero {n} {f} = refl
flipMaintainsEverythingElse : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (x : FinSet n) → ((fsucc x ≡ f fzero) → False) → flip f (fsucc x) ≡ fsucc x
flipMaintainsEverythingElse {n} {f} x x!=f0 with inspect (f fzero)
flipMaintainsEverythingElse {n} {f} x x!=f0 | fzero with≡ pr = refl
flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr with finsetDecidableEquality x bl
flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr | inl x=bl = exFalso (x!=f0 (transitivity (applyEquality fsucc x=bl) (equalityCommutative pr)))
flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr | inr x!=bl = refl
bijFlip : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → Bijection (flip f)
bijFlip {zero} {f} = onepointBij (flip f)
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fzero} flx=fly = refl
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly with inspect (f fzero)
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fzero with≡ x rewrite x = exFalso (fzeroNotFsucc flx=fly)
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x with finsetDecidableEquality y f0
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x | inl x₁ = exFalso (fzeroNotFsucc (transitivity (equalityCommutative flx=fly) x))
Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x | inr pr = exFalso (pr (fsuccInjective (transitivity (equalityCommutative flx=fly) x)))
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly with inspect (f fzero)
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fzero with≡ pr = transitivity flx=fly pr
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ x₁ with finsetDecidableEquality x f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ pr | inl x₂ = exFalso (fzeroNotFsucc (transitivity flx=fly pr))
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ x1 | inr x!=f0 = exFalso (x!=f0 (fsuccInjective (transitivity flx=fly x1)))
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly with inspect (f fzero)
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fzero with≡ x₁ = flx=fly
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ with finsetDecidableEquality y f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inl y=f0 with finsetDecidableEquality x f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inl y=f0 | inl x=f0 = applyEquality fsucc (transitivity x=f0 (equalityCommutative y=f0))
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} () | fsucc f0 with≡ x₁ | inl y=f0 | inr x!=f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inr y!=f0 with finsetDecidableEquality x f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} () | fsucc f0 with≡ x₁ | inr y!=f0 | inl x=f0
Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inr y!=f0 | inr x!=f0 = flx=fly
Bijection.surj (bijFlip {succ n} {f}) fzero = f fzero , flipSwapsF0 {f = f}
Bijection.surj (bijFlip {succ n} {f}) (fsucc b) with inspect (f fzero)
Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fzero with≡ x = fsucc b , flipMaintainsEverythingElse {f = f} b λ pr → fzeroNotFsucc (transitivity (equalityCommutative x) (equalityCommutative pr))
Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x with finsetDecidableEquality y b
Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x | inl y=b = fzero , transitivity x (applyEquality fsucc y=b)
Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x | inr y!=b = fsucc b , flipMaintainsEverythingElse {f = f} b λ pr → y!=b (fsuccInjective (transitivity (equalityCommutative x) (equalityCommutative pr)))
injectionIsBijectionFinset : {n : ℕ} → {f : FinSet n → FinSet n} → Injection f → Bijection f
injectionIsBijectionFinset {zero} {f} inj = record { inj = inj ; surj = λ () }
injectionIsBijectionFinset {succ zero} {f} inj = record { inj = inj ; surj = ans }
where
ans : (b : FinSet (succ zero)) → Sg (FinSet (succ zero)) (λ a → f a ≡ b)
ans fzero with inspect (f fzero)
ans fzero | fzero with≡ x = fzero , x
ans fzero | fsucc () with≡ x
ans (fsucc ())
injectionIsBijectionFinset {succ (succ n)} {f} inj with injectionIsBijectionFinset {succ n} (subInjIsInjective inj)
... | sb = ans
where
subSurj : Surjection (subInjection inj)
subSurj = Bijection.surj sb
tweakedF : FinSet (succ (succ n)) → FinSet (succ (succ n))
tweakedF fzero = fzero
tweakedF (fsucc x) = fsucc (subInjection inj x)
tweakedBij : Bijection tweakedF
Bijection.inj tweakedBij {fzero} {fzero} f'x=f'y = refl
Bijection.inj tweakedBij {fzero} {fsucc y} ()
Bijection.inj tweakedBij {fsucc x} {fzero} ()
Bijection.inj tweakedBij {fsucc x} {fsucc y} f'x=f'y = applyEquality fsucc ((subInjIsInjective inj) (fsuccInjective f'x=f'y))
Bijection.surj tweakedBij fzero = fzero , refl
Bijection.surj tweakedBij (fsucc b) with subSurj b
... | ans , prop = fsucc ans , applyEquality fsucc prop
compBij : Bijection (λ i → flip f (tweakedF i))
compBij = bijectionComp tweakedBij bijFlip
undoTweakMakesF : {x : FinSet (succ (succ n))} → flip f (tweakedF x) ≡ f x
undoTweakMakesF {fzero} = refl
undoTweakMakesF {fsucc x} with inspect (f fzero)
undoTweakMakesF {fsucc x} | fzero with≡ x₁ with inspect (f (fsucc x))
undoTweakMakesF {fsucc x} | fzero with≡ x₁ | fzero with≡ x₂ with inspect (f fzero)
undoTweakMakesF {fsucc x} | fzero with≡ x₁ | fzero with≡ x2 | fzero with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x3 (equalityCommutative x2))))
undoTweakMakesF {fsucc x} | fzero with≡ x1 | fzero with≡ x2 | fsucc y with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x1 (equalityCommutative x2))))
undoTweakMakesF {fsucc x} | fzero with≡ x1 | fsucc y with≡ x2 = equalityCommutative x2
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ with inspect (f (fsucc x))
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x₂ with inspect (f fzero)
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x2 | fzero with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x3 (equalityCommutative x2))))
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x₂ | fsucc pr with≡ x₃ with finsetDecidableEquality pr y
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x2 | fsucc pr with≡ x₃ | inl x₄ = equalityCommutative x2
undoTweakMakesF {fsucc x} | fsucc y with≡ x1 | fzero with≡ x₂ | fsucc pr with≡ x3 | inr pr!=y = exFalso (pr!=y (fsuccInjective (transitivity (equalityCommutative x3) x1)))
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fsucc thi with≡ x₂ with finsetDecidableEquality thi y
undoTweakMakesF {fsucc x} | fsucc .thi with≡ x1 | fsucc thi with≡ x2 | inl refl = exFalso false
where
p : f fzero ≡ f (fsucc x)
p = transitivity x1 (equalityCommutative x2)
q : fzero ≡ fsucc x
q = inj p
false : False
false = fzeroNotFsucc q
undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fsucc thi with≡ x2 | inr thi!=y = equalityCommutative x2
ans : Bijection f
ans = bijectionPreservedUnderExtensionalEq compBij undoTweakMakesF
pigeonhole : {n m : ℕ} → (m <N n) → {f : FinSet n → FinSet m} → Injection f → False
pigeonhole {zero} {zero} () {f} property
pigeonhole {zero} {succ m} () {f} property
pigeonhole {succ n} {zero} m<n {f} property = finset0Empty (f fzero)
pigeonhole {succ zero} {succ m} m<n {f} property with canRemoveSuccFrom<N m<n
pigeonhole {succ zero} {succ m} m<n {f} property | le x ()
pigeonhole {succ (succ n)} {succ zero} m<n {f} property = fzeroNotFsucc (property (transitivity f0 (equalityCommutative f1)))
where
f0 : f (fzero) ≡ fzero
f0 with inspect (f fzero)
... | fzero with≡ x = x
... | fsucc () with≡ _
f1 : f (fsucc fzero) ≡ fzero
f1 with inspect (f (fsucc fzero))
... | fzero with≡ x = x
... | fsucc () with≡ _
pigeonhole {succ (succ n)} {succ (succ m)} m<n {f} injF = intoSmallerNotSurj {_}{_} {m<n} surj
where
inj : Injection ((intoSmaller m<n) ∘ f)
inj = injComp injF (intoSmallerInj m<n)
bij : Bijection ((intoSmaller m<n) ∘ f)
bij = injectionIsBijectionFinset inj
surj : Surjection (intoSmaller m<n)
surj = compSurjLeftSurj (Bijection.surj bij)
--surjectionIsBijectionFinset : {n : ℕ} → {f : FinSet n → FinSet n} → Surjection f → Bijection f
--surjectionIsBijectionFinset {zero} {f} surj = nopointBij f
--surjectionIsBijectionFinset {succ zero} {f} surj = onepointBij f
--surjectionIsBijectionFinset {succ (succ n)} {f} record { property = property } = {!!}
ofNatToNat : {n : ℕ} → (a : FinSet n) → ofNat (toNat a) (toNatSmaller a) ≡ a
ofNatToNat {zero} ()
ofNatToNat {succ n} fzero = refl
ofNatToNat {succ n} (fsucc a) = applyEquality fsucc (ofNatToNat a)
| {
"alphanum_fraction": 0.6518199642,
"avg_line_length": 62.2334217507,
"ext": "agda",
"hexsha": "13dcc9fd443005f7723679c182d80df9803136dd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/FinSet/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/FinSet/Lemmas.agda",
"max_line_length": 221,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/FinSet/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 9202,
"size": 23462
} |
{-# OPTIONS --without-K --rewriting #-}
module C1.LEM where
open import Basics
open import Bool
open import LEM
open import NotNot
open import Flat
open import Sharp
open import C1.Base
open import lib.NType2
-- UNFINISHED due to ♯-ptwise problems
♯-prop-is-¬¬ : ∀ {i}(P : PropT i) (p : (P holds) is-codiscrete) → (P holds) ≃ ((not (not P)) holds)
♯-prop-is-¬¬ P p =
iff-to-≃ {P = P} {Q = not (not P)}
-- ⇒
continue
-- ⇐
(not (not P) holds
–⟨ lemma ⟩→
♯ (P holds)
–⟨ un♯ p ⟩→
P holds
→∎)
where
postulate lemma : not (not P) holds → ♯ (P holds)
-- The problem here is that ♯-ptwise won't rewrite to ♯ (P holds)
-- So, we can't run the right proof.
-- I'm not sure why though...
nbhd-is-infinitesimal : ∀ {i} {A : hSet i} (a : ∈ A) → (nbhd a) is-infinitesimal
nbhd-is-infinitesimal {A = (A , p)} a =
has-level-in (((a , refl≈)^♯) ,
(λ b' → ♯-=-retract $
let♯ b ^♯:= b' in♯
(♯-=-compare
(<– (♯-prop-is-¬¬ (♯ₙ $ (a , refl≈) ==ₚ b)
(♯-is-codiscrete ((a , refl≈) == b)))
{!snd b!})) ^♯
in-family (λ b' → ((a , refl≈)^♯) == b')))
| {
"alphanum_fraction": 0.4556669237,
"avg_line_length": 28.8222222222,
"ext": "agda",
"hexsha": "8673faa1992a1be8ea19e1d922ebc03d809ee309",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/C1/LEM.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/C1/LEM.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/C1/LEM.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 465,
"size": 1297
} |
------------------------------------------------------------------------
-- Products implemented using records
------------------------------------------------------------------------
-- It it ever becomes convenient to pattern match on records I might
-- make this the default implementation of products.
module Data.Product.Record where
open import Data.Function
infixr 4 _,_
infixr 2 _×_ _-×-_ _-,-_
------------------------------------------------------------------------
-- Definition
record Σ (a : Set) (b : a → Set) : Set where
field
proj₁ : a
proj₂ : b proj₁
open Σ public
_×_ : (a b : Set) → Set
a × b = Σ a (λ _ → b)
------------------------------------------------------------------------
-- Functions
_,_ : ∀ {a b} → (x : a) → b x → Σ a b
(x , y) = record {proj₁ = x; proj₂ = y}
<_,_> : ∀ {A} {B : A → Set} {C : ∀ {x} → B x → Set}
(f : (x : A) → B x) → ((x : A) → C (f x)) →
((x : A) → Σ (B x) C)
< f , g > x = (f x , g x)
map : ∀ {A B P Q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
map f g = < f ∘ proj₁ , g ∘ proj₂ >
swap : ∀ {a b} → a × b → b × a
swap = < proj₂ , proj₁ >
_-×-_ : ∀ {a b} → (a → b → Set) → (a → b → Set) → (a → b → Set)
f -×- g = f -[ _×_ ]₁- g
_-,-_ : ∀ {a b c d} → (a → b → c) → (a → b → d) → (a → b → c × d)
f -,- g = f -[ _,_ ]- g
curry : {a : Set} {b : a → Set} {c : Σ a b → Set} →
((p : Σ a b) → c p) →
((x : a) → (y : b x) → c (x , y))
curry f x y = f (x , y)
uncurry : {a : Set} {b : a → Set} {c : Σ a b → Set} →
((x : a) → (y : b x) → c (x , y)) →
((p : Σ a b) → c p)
uncurry f p = f (proj₁ p) (proj₂ p)
| {
"alphanum_fraction": 0.3499090358,
"avg_line_length": 26.5967741935,
"ext": "agda",
"hexsha": "1a6d53301320b78e3203345dd2023dbe79e75180",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Product/Record.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Product/Record.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Product/Record.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 610,
"size": 1649
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Usage examples of the categorical view of the Sum type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum.Categorical.Examples where
open import Level
open import Data.Sum
import Data.Sum.Categorical.Left as Sumₗ
open import Category.Functor
open import Category.Monad
-- Note that these examples are simple unit tests, because the type
-- checker verifies them.
private
module Examplesₗ {a b} {A : Set a} {B : Set b} where
open import Agda.Builtin.Equality
open import Function
module Sₗ = Sumₗ A b
open RawFunctor Sₗ.functor
-- This type to the right of ⊎ needs to be a "lifted" version of (B : Set b)
-- that lives in the universe (Set (a ⊔ b)).
fmapId : (x : A ⊎ (Lift a B)) → (id <$> x) ≡ x
fmapId (inj₁ x) = refl
fmapId (inj₂ y) = refl
open RawMonad Sₗ.monad
-- Now, let's show that "return" is a unit for >>=. We use Lift in exactly
-- the same way as above. The data (x : B) then needs to be "lifted" to
-- this new type (Lift B).
returnUnitL : ∀ {x : B} {f : Lift a B → A ⊎ (Lift a B)}
→ ((return (lift x)) >>= f) ≡ f (lift x)
returnUnitL = refl
returnUnitR : (x : A ⊎ (Lift a B)) → (x >>= return) ≡ x
returnUnitR (inj₁ _) = refl
returnUnitR (inj₂ _) = refl
-- And another (limited version of a) monad law...
bindCompose : ∀ {f g : Lift a B → A ⊎ (Lift a B)}
→ (x : A ⊎ (Lift a B))
→ ((x >>= f) >>= g) ≡ (x >>= (λ y → (f y >>= g)))
bindCompose (inj₁ x) = refl
bindCompose (inj₂ y) = refl
| {
"alphanum_fraction": 0.538372764,
"avg_line_length": 31.5090909091,
"ext": "agda",
"hexsha": "fae9aa24bf05a51c35d4272cbcec6232b1cf6063",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Examples.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 517,
"size": 1733
} |
{-# OPTIONS --without-K --safe #-}
module Data.Empty.Base where
open import Level
data ⊥ : Type where
infix 4.5 ¬_
¬_ : Type a → Type a
¬ A = A → ⊥
⊥-elim : ⊥ → A
⊥-elim ()
| {
"alphanum_fraction": 0.5674157303,
"avg_line_length": 11.8666666667,
"ext": "agda",
"hexsha": "43a9e65b8a2f23c6723aa009aa932c250d4d9904",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Empty/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Empty/Base.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Empty/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 67,
"size": 178
} |
module btls-certs where
open import Data.Word8 using (Word8) renaming (primWord8fromNat to to𝕎)
open import Data.ByteString using (ByteString; Strict; Lazy; pack)
open import Data.ByteString.Primitive using (∣List∣≡∣Strict∣)
open import Data.ByteVec using (ByteVec)
open import Data.Nat using (ℕ; zero; suc; _<_; z≤n; s≤s; _≤?_; _∸_)
open import Data.Nat.DivMod using (_divMod_; result)
open import Data.Fin using (Fin; toℕ)
open import Data.Vec using (Vec; toList; tabulate)
open import Data.List using (List; []; _∷_; length; _++_; take)
open import Data.Product using (Σ; _,_; proj₁)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
import Data.ByteString.IO as BSIO
open import IO
open import Function using (_∘_)
open import ASN1.Util using (base256)
import ASN1.BER as BER
import ASN1.X509
open import Bee2.Crypto.Belt using (beltHash)
open import Bee2.Crypto.Bign using (Pri; Pub; Sig; bignCalcPubkey; bignSign2)
b : ℕ → List Word8
b n = toList (tabulate {n} (to𝕎 ∘ toℕ))
b256 = b 256
x : (len : ℕ) → ℕ → Σ (List Word8) (λ l → len ≡ length l)
x zero n = [] , refl
x (suc len) n with n divMod 256
... | result q r _ with x len q
... | ns , refl = (to𝕎 (toℕ r) ∷ ns) , refl
mkPri : ℕ → Pri
mkPri n with x 32 n
... | (ns , prf) = (pack ns) , sym (trans (∣List∣≡∣Strict∣ ns (p prf 32<2³¹)) (sym prf)) where
p : ∀ {u v k} → (u≡v : u ≡ v) → u < k → v < k
p refl u<k = u<k
32<2³¹ : 32 < _
32<2³¹ =
s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (
s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (
s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (
s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (
s≤s z≤n))))))))))))))))))))))))))))))))
ca-pri : Pri
ca-pri = mkPri 17
ca-pub : Pub
ca-pub = bignCalcPubkey ca-pri
sign : Pri → ByteString Strict → ByteString Strict
sign pri = proj₁ ∘ bignSign2 pri ∘ beltHash
ca-cert : ByteString Lazy
ca-cert = BER.encode′ cert where
open ASN1.X509.mkCert "issuer" "subject" "20170101000000Z" "20190101000000Z" (proj₁ ca-pub) (sign ca-pri)
main = run (BSIO.writeBinaryFile "ca.pkc" ca-cert)
| {
"alphanum_fraction": 0.6451918522,
"avg_line_length": 32.984375,
"ext": "agda",
"hexsha": "0d2cfc25eeec28c616f54569f09e294a800720b9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/asn1-agda",
"max_forks_repo_path": "app/btls-certs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/asn1-agda",
"max_issues_repo_path": "app/btls-certs.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/asn1-agda",
"max_stars_repo_path": "app/btls-certs.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 865,
"size": 2111
} |
module Functor where
open import Category as Cat
record Functor (ℂ ⅅ : Cat) : Set1 where
field
F : Cat.Obj ℂ -> Cat.Obj ⅅ
map : {A B : Cat.Obj ℂ} -> Cat._─→_ ℂ A B -> Cat._─→_ ⅅ (F A) (F B)
mapEq : {A B : Cat.Obj ℂ}{f g : Cat._─→_ ℂ A B} -> Category._==_ ℂ f g ->
Category._==_ ⅅ (map f) (map g)
mapId : {A : Cat.Obj ℂ} -> Category._==_ ⅅ (map (Cat.id ℂ {A})) (Cat.id ⅅ)
mapCompose : {A B C : Cat.Obj ℂ}{f : Cat._─→_ ℂ B C}{g : Cat._─→_ ℂ A B} ->
Category._==_ ⅅ (map (Cat._∘_ ℂ f g)) (Cat._∘_ ⅅ (map f) (map g))
| {
"alphanum_fraction": 0.4808013356,
"avg_line_length": 37.4375,
"ext": "agda",
"hexsha": "60060480b8b8f34bcc3bfce0714b1b1d897e123d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Functor.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Functor.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 253,
"size": 599
} |
-- Andreas, 2015-07-22
-- {-# OPTIONS -v tc.term:20 -v tc.meta.assign:10 -v tc.conv.coerce:10 #-}
open import Common.Size
data Nat (i : Size) : Set where
suc : (j : Size< i) → Nat j → Nat i
min : ∀ i → Nat i → Nat i → Nat i
min i (suc j n) (suc k m) = suc i' (min i' n m)
where i' = _
-- Size consistency check should not be circumvented
-- by putting the meta in a definition.
| {
"alphanum_fraction": 0.6108247423,
"avg_line_length": 24.25,
"ext": "agda",
"hexsha": "06ab8a8a37baeb942095a2ba130ac23ad4341791",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1615.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1615.agda",
"max_line_length": 74,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1615.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 135,
"size": 388
} |
open import FRP.JS.Nat using ( ℕ )
open import FRP.JS.String using ( String )
module FRP.JS.Geolocation.Angle where
postulate
Angle : Set
_° : ℕ → Angle
_′ : ℕ → Angle
_″ : ℕ → Angle
_+_ : Angle → Angle → Angle
toString : Angle → String
{-# COMPILED_JS _° function(x) { return ((x + 180) % 360) - 180; } #-}
{-# COMPILED_JS _′ function(x) { return (((x / 60) + 180) % 360) - 180; } #-}
{-# COMPILED_JS _″ function(x) { return (((x / 3600) + 180) % 360) - 180; } #-}
{-# COMPILED_JS _+_ function(x) { return function (y) { return x + y; }; } #-}
{-# COMPILED_JS toString function(x) { return x.toString(); } #-}
| {
"alphanum_fraction": 0.5862619808,
"avg_line_length": 32.9473684211,
"ext": "agda",
"hexsha": "be4c8ac7e07cc6c8daab77ca459615a731776d73",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Geolocation/Angle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Geolocation/Angle.agda",
"max_line_length": 79,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Geolocation/Angle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 216,
"size": 626
} |
-- Andreas, 2018-11-03, issue #3361
--
-- Empty variable blocks should trigger warning rather than parse error.
variable
-- Expected warning:
-- Empty variable block.
| {
"alphanum_fraction": 0.7337278107,
"avg_line_length": 18.7777777778,
"ext": "agda",
"hexsha": "4ad3bef4a1cfdd9fd68ea3cdb4162d1bdc99dfb2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3361.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3361.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3361.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 169
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Booleans
------------------------------------------------------------------------
module Data.Bool where
open import Function
open import Data.Unit using (⊤)
open import Data.Empty
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
infixr 6 _∧_
infixr 5 _∨_ _xor_
infix 0 if_then_else_
------------------------------------------------------------------------
-- The boolean type
data Bool : Set where
true : Bool
false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
{-# COMPILED_DATA Bool Bool True False #-}
------------------------------------------------------------------------
-- Some operations
not : Bool → Bool
not true = false
not false = true
-- A function mapping true to an inhabited type and false to an empty
-- type.
T : Bool → Set
T true = ⊤
T false = ⊥
if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
_∧_ : Bool → Bool → Bool
true ∧ b = b
false ∧ b = false
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
_xor_ : Bool → Bool → Bool
true xor b = not b
false xor b = b
------------------------------------------------------------------------
-- Queries
_≟_ : Decidable {A = Bool} _≡_
true ≟ true = yes refl
false ≟ false = yes refl
true ≟ false = no λ()
false ≟ true = no λ()
------------------------------------------------------------------------
-- Some properties
decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_
| {
"alphanum_fraction": 0.4893992933,
"avg_line_length": 21.4936708861,
"ext": "agda",
"hexsha": "8c804248a4d0fad338d3a0bbea6effc71cb9250a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Bool.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 422,
"size": 1698
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.Inversion where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Inversion of Universes
inversion-U : ∀ {Γ C rU lU r} → Γ ⊢ Univ rU lU ∷ C ^ r → Γ ⊢ C ≡ U ¹ ^ [ ! , next ¹ ] × r PE.≡ [ ! , next ¹ ] × lU PE.≡ ⁰
inversion-U (univ 0<1 x) = refl (Ugenⱼ x) , PE.refl , PE.refl
inversion-U (conv x x₁) with inversion-U x
... | [C≡U] , PE.refl , PE.refl = trans (sym x₁) [C≡U] , PE.refl , PE.refl
-- Inversion of natural number type.
inversion-ℕ : ∀ {Γ C r} → Γ ⊢ ℕ ∷ C ^ r → Γ ⊢ C ≡ U ⁰ ^ r × r PE.≡ [ ! , next ⁰ ]
inversion-ℕ (ℕⱼ x) = refl (Ugenⱼ x) , PE.refl
inversion-ℕ (conv x x₁) with inversion-ℕ x
... | [C≡U] , PE.refl = trans (sym x₁) [C≡U] , PE.refl
-- Inversion of Π-types.
inversion-Π : ∀ {F rF G r Γ C lF lG lΠ}
→ Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ∷ C ^ r
→ ∃ λ rG
→ lF ≤ lΠ
× lG ≤ lΠ
× Γ ⊢ F ∷ Univ rF lF ^ [ ! , next lF ]
× Γ ∙ F ^ [ rF , ι lF ] ⊢ G ∷ Univ rG lG ^ [ ! , next lG ]
× Γ ⊢ C ≡ Univ rG lΠ ^ [ ! , next lΠ ]
× r PE.≡ [ ! , next lΠ ]
inversion-Π (Πⱼ_▹_▹_▹_ {rF = rF} {r = rG} l< l<' x x₁) = rG , l< , l<' , x , x₁ , refl (Ugenⱼ (wfTerm x)) , PE.refl
inversion-Π (conv x x₁) = let rG , l< , l<' , a , b , c , r≡! = inversion-Π x
in rG , l< , l<' , a , b
, trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) c
, r≡!
-- Inversion of ∃-types.
inversion-∃ : ∀ {F G Γ C r}
→ Γ ⊢ ∃ F ▹ G ∷ C ^ r
→ ∃ λ l∃
→ Γ ⊢ F ∷ Univ % l∃ ^ [ ! , next l∃ ]
× Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ∷ Univ % l∃ ^ [ ! , next l∃ ]
× Γ ⊢ C ≡ Univ % l∃ ^ [ ! , next l∃ ]
× r PE.≡ [ ! , next l∃ ]
inversion-∃ (∃ⱼ_▹_ {l = l∃} x x₁) = l∃ , x , x₁ , refl (Ugenⱼ (wfTerm x)) , PE.refl
inversion-∃ (conv x x₁) = let l∃ , a , b , c , r≡! = inversion-∃ x
in l∃ , a , b , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) c , r≡!
inversion-Empty : ∀ {Γ C r l} → Γ ⊢ Empty l ∷ C ^ r → Γ ⊢ C ≡ SProp l ^ r × r PE.≡ [ ! , next l ]
inversion-Empty (Emptyⱼ x) = refl (Ugenⱼ x) , PE.refl
inversion-Empty (conv x x₁) =
let C≡SProp , r = inversion-Empty x
in trans (sym x₁) C≡SProp , r
-- Inversion of zero.
inversion-zero : ∀ {Γ C r} → Γ ⊢ zero ∷ C ^ r → Γ ⊢ C ≡ ℕ ^ [ ! , ι ⁰ ] × r PE.≡ [ ! , ι ⁰ ]
inversion-zero (zeroⱼ x) = univ (refl (ℕⱼ x)) , PE.refl
inversion-zero (conv x x₁) with inversion-zero x
... | [C≡ℕ] , PE.refl = trans (sym x₁) [C≡ℕ] , PE.refl
-- Inversion of successor.
inversion-suc : ∀ {Γ t C r} → Γ ⊢ suc t ∷ C ^ r → Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ] × Γ ⊢ C ≡ ℕ ^ [ ! , ι ⁰ ] × r PE.≡ [ ! , ι ⁰ ]
inversion-suc (sucⱼ x) = x , refl (univ (ℕⱼ (wfTerm x))) , PE.refl
inversion-suc (conv x x₁) with inversion-suc x
... | a , b , PE.refl = a , trans (sym x₁) b , PE.refl
-- Inversion of natural recursion.
inversion-natrec : ∀ {Γ c g n A C rlC lC} → Γ ⊢ natrec lC C c g n ∷ A ^ rlC
→ ∃ λ rC → (Γ ∙ ℕ ^ [ ! , ι ⁰ ]) ⊢ C ^ [ rC , ι lC ]
× Γ ⊢ c ∷ C [ zero ] ^ [ rC , ι lC ]
× Γ ⊢ g ∷ Π ℕ ^ ! ° ⁰ ▹ (C ^ rC ° lC ▹▹ C [ suc (var 0) ]↑ ° lC ° lC) ° lC ° lC ^ [ rC , ι lC ]
× Γ ⊢ n ∷ ℕ ^ [ ! , ι ⁰ ]
× Γ ⊢ A ≡ C [ n ] ^ [ rC , ι lC ]
× rlC PE.≡ [ rC , ι lC ]
inversion-natrec (natrecⱼ x d d₁ n) = _ , x , d , d₁ , n , refl (substType x n) , PE.refl
inversion-natrec (conv d x) = let a' , a , b , c , d , e , e' = inversion-natrec d
in a' , a , b , c , d , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) e' x)) e , e'
inversion-Emptyrec : ∀ {Γ e A C rlC lEmpty lC} → Γ ⊢ Emptyrec lC lEmpty C e ∷ A ^ rlC
→ ∃ λ rC → Γ ⊢ C ^ [ rC , ι lC ]
× Γ ⊢ e ∷ Empty lEmpty ^ [ % , ι lEmpty ]
× Γ ⊢ A ≡ C ^ [ rC , ι lC ]
× rlC PE.≡ [ rC , ι lC ]
inversion-Emptyrec (Emptyrecⱼ [C] [e]) = _ , [C] , [e] , refl [C] , PE.refl
inversion-Emptyrec (conv d x) = let r , a , b , c , e = inversion-Emptyrec d
in r , a , b , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) e x)) c , e
-- Inversion of application.
inversion-app : ∀ {Γ f a A r lΠ} → Γ ⊢ (f ∘ a ^ lΠ) ∷ A ^ r →
∃₂ λ F rF → ∃₂ λ lF G → ∃₂ λ lG rG → Γ ⊢ f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rG , ι lΠ ]
× Γ ⊢ a ∷ F ^ [ rF , ι lF ]
× Γ ⊢ A ≡ G [ a ] ^ [ rG , ι lG ]
× r PE.≡ [ rG , ι lG ]
inversion-app (d ∘ⱼ d₁) = _ , _ , _ , _ , _ , _ , d , d₁ , refl (substTypeΠ (syntacticTerm d) d₁) , PE.refl
inversion-app (conv d x) = let a , b , c , d , e , f , g , h , i , j = inversion-app d
in a , b , c , d , e , f , g , h , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) j x)) i , j
-- Inversion of lambda.
inversion-lam : ∀ {t F A r lΠ Γ} → Γ ⊢ lam F ▹ t ^ lΠ ∷ A ^ r →
∃₂ λ rF lF → ∃₂ λ G rG → ∃ λ lG → Γ ⊢ F ^ [ rF , ι lF ]
× Γ ∙ F ^ [ rF , ι lF ] ⊢ t ∷ G ^ [ rG , ι lG ]
× Γ ⊢ A ≡ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rG , ι lΠ ]
× r PE.≡ [ rG , ι lΠ ]
inversion-lam (lamⱼ l< l<' x x₁) = _ , _ , _ , _ , _ , x , x₁ ,
refl (univ (Πⱼ l< ▹ l<' ▹ (un-univ x) ▹ un-univ (syntacticTerm x₁))) , PE.refl
inversion-lam (conv x x₁) = let a , b , c , d , e , f , g , h , i = inversion-lam x
in a , b , c , d , e , f , g , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) i x₁)) h , i
-- Inversion of Id-types.
inversion-Id : ∀ {A t u C r Γ}
→ Γ ⊢ Id A t u ∷ C ^ r
→ ∃ λ l
→ Γ ⊢ A ∷ U l ^ [ ! , next l ]
× Γ ⊢ t ∷ A ^ [ ! , ι l ]
× Γ ⊢ u ∷ A ^ [ ! , ι l ]
× Γ ⊢ C ≡ SProp l ^ [ ! , next l ]
× r PE.≡ [ ! , next l ]
inversion-Id (Idⱼ {l = l} A t u) = l , A , t , u , refl (Ugenⱼ (wfTerm A)) , PE.refl
inversion-Id (conv x x₁) = let l , a , b , c , d , r≡! = inversion-Id x
in l , a , b , c , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) d , r≡!
-- Inversion of cast-types.
inversion-cast : ∀ {A B e t l C r Γ}
→ Γ ⊢ cast l A B e t ∷ C ^ r
→ ∃ λ rA
→ Γ ⊢ A ∷ Univ rA l ^ [ ! , next ⁰ ]
× Γ ⊢ B ∷ Univ rA l ^ [ ! , next ⁰ ]
× Γ ⊢ e ∷ Id (Univ rA l) A B ^ [ % , next ⁰ ]
× Γ ⊢ t ∷ A ^ [ rA , ι ⁰ ]
× Γ ⊢ C ≡ B ^ [ rA , ι ⁰ ]
× r PE.≡ [ rA , ι ⁰ ]
× l PE.≡ ⁰
inversion-cast (castⱼ X X₁ X₂ X₃) = _ , X , X₁ , X₂ , X₃ , refl (univ X₁) , PE.refl , PE.refl
inversion-cast (conv x x₁) = let r , a , b , c , d , e , r≡! , el = inversion-cast x
in r , a , b , c , d , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) e , r≡! , el
| {
"alphanum_fraction": 0.4391165359,
"avg_line_length": 46.8163265306,
"ext": "agda",
"hexsha": "58593bb8c7bd3e16b24beea37c1141f1d01ce218",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_line_length": 121,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 3138,
"size": 6882
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Unit {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Definition.LogicalRelation.Irrelevance
open import Tools.Unit
open import Tools.Product
-- Validity of the Unit type.
Unitᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ Unit / [Γ]
Unitᵛ [Γ] ⊢Δ [σ] = Unitᵣ (idRed:*: (Unitⱼ ⊢Δ)) , λ _ x₂ → id (Unitⱼ ⊢Δ)
-- Validity of the Unit type as a term.
Unitᵗᵛ : ∀ {Γ} ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ ¹ ⟩ Unit ∷ U / [Γ] / Uᵛ [Γ]
Unitᵗᵛ [Γ] ⊢Δ [σ] = let ⊢Unit = Unitⱼ ⊢Δ
[Unit] = Unitᵣ (idRed:*: (Unitⱼ ⊢Δ))
in Uₜ Unit (idRedTerm:*: ⊢Unit) Unitₙ (≅ₜ-Unitrefl ⊢Δ) [Unit]
, (λ x x₁ → Uₜ₌ Unit Unit (idRedTerm:*: ⊢Unit) (idRedTerm:*: ⊢Unit) Unitₙ Unitₙ
(≅ₜ-Unitrefl ⊢Δ) [Unit] [Unit] (id (Unitⱼ ⊢Δ)))
-- Validity of star.
starᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ star ∷ Unit / [Γ] / Unitᵛ [Γ]
starᵛ [Γ] ⊢Δ [σ] =
Unitₜ star (idRedTerm:*: (starⱼ ⊢Δ)) starₙ
, (λ _ x₁ → Unitₜ₌ (starⱼ ⊢Δ) (starⱼ ⊢Δ))
-- Validity of η-unit.
η-unitᵛ : ∀ {Γ l e e'} ([Γ] : ⊩ᵛ Γ)
([Unit] : Γ ⊩ᵛ⟨ l ⟩ Unit / [Γ])
([e] : Γ ⊩ᵛ⟨ l ⟩ e ∷ Unit / [Γ] / [Unit])
([e'] : Γ ⊩ᵛ⟨ l ⟩ e' ∷ Unit / [Γ] / [Unit])
→ Γ ⊩ᵛ⟨ l ⟩ e ≡ e' ∷ Unit / [Γ] / [Unit]
η-unitᵛ {Γ} {l} {e} {e'} [Γ] [Unit] [e] [e'] {Δ} {σ} ⊢Δ [σ] =
let J = proj₁ ([Unit] ⊢Δ [σ])
[σe] = proj₁ ([e] ⊢Δ [σ])
[σe'] = proj₁ ([e'] ⊢Δ [σ])
UnitJ : Δ ⊩⟨ l ⟩ Unit
UnitJ = Unitᵣ (idRed:*: (Unitⱼ ⊢Δ))
[σe] = irrelevanceTerm J UnitJ [σe]
[σe'] = irrelevanceTerm J UnitJ [σe']
⊢σe = escapeTerm UnitJ [σe]
⊢σe' = escapeTerm UnitJ [σe']
in irrelevanceEqTerm UnitJ J (Unitₜ₌ ⊢σe ⊢σe')
| {
"alphanum_fraction": 0.5613540197,
"avg_line_length": 36.6724137931,
"ext": "agda",
"hexsha": "c4c95a91c7cf42397b6f717a2df1c34ad522b1d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Unit.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 961,
"size": 2127
} |
module z03-natural-numbers where
open import bool
open import bool-thms using (𝔹-contra)
open import eq
open import level
-- p 50
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- p 51
{-# BUILTIN NATURAL ℕ #-}
-------------------------
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n) -- recursive call on structurally smaller left side 'm' -- termination
-- p 53
-------------------------
0+ : ∀ (x : ℕ)
→ 0 + x ≡ x
0+ _ = refl -- via definitional equality
{- fails because _+_ defined in terms of pattern matching on left arg
+0 : ∀ (x : ℕ)
→ x + 0 ≡ x
+0 _ = refl
-- p 55
solution is for proof to call itself recursively:
-------------------------
-}
+0 : ∀ (x : ℕ)
→ x + 0 ≡ x
-- BASE
+0 zero = refl -- via definitional equality
-- INDUCTIVE
-- note: name of 'y' variable, if renamed to 'x', is not same as 'x' in signature
+0 (suc y) rewrite +0 y = refl
{- ^
|
'x' in sig instantiated to 'suc y'
so trying to prove (the goal) : suc y + 0 ≡ suc y
goal can be simplified by inductive case of def of _+_
so goal definitionally equal to : suc (y + 0) ≡ suc y
rewrite recursive call proves y + 0 ≡ y
type of proof is x + 0 ≡ x
so Agda with replace occurrences of x + 0 with x
leaving : suc y ≡ suc y
-- p 57
PROOF BY INDUCTION: recursive proofs
------------------------------------------------------------------------------
+ ASSOCIATIVITY
When theorem has multiple variables, must decide which one to use for induction.
Generally: var used where a recursive fun will patten match on it.
If several vars are pattern matched, prefer the one that is matched the most.
Since _+_ matches on 1st arg, then do induction here on 1st arg.
Here 'x' is matched twice but 'y' only once -- so use 'x'.
-}
-------------------------
+assoc : ∀ (x y z : ℕ)
→ x + (y + z)
≡ (x + y) + z
{-
BASE case
goal: zero + (y + z) ≡ (zero + y) + z
via def/eq
-}
+assoc zero y z = refl
{-
INDUCTIVE case
goal : suc (x + (y + z)) ≡ suc ((x + y) + z)
need proof of : (x + (y + z)) ≡ ((x + y) + z)
that is exactly the inductive hypotheses
so use rewrite to recursively apply the proof
-}
+assoc (suc x) y z rewrite +assoc x y z = refl
------------------------------------------------------------------------------
-- p 60 + COMMUTATIVITY (rewrite with multiple equations)
-------------------------
+suc : ∀ (x y : ℕ) → x + (suc y) ≡ suc (x + y)
+suc zero y = refl
+suc (suc x) y rewrite +suc x y = refl
-------------------------
+comm : ∀ (x y : ℕ) → x + y ≡ y + x
{-
BASE
Goal: : y ≡ (y + zero)
so rewrite right hand side using +0 proof
simplifies to : y ≡ y
-}
+comm zero y rewrite +0 y = refl
{-
INDUCTIVE
Goal : suc (x + y) ≡ (y + suc x)
-}
+comm (suc x) y rewrite +suc y x | +comm x y = refl
------------------------------------------------------------------------------
-- p 62 MULTIPLICATION
-------------------------
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + (m * n)
-------------------------
-- p 63 - right distributivity of * over +
-- variable counts x : 2; y : 1; z : 0 : so use x
*distribr : ∀ (x y z : ℕ)
→ (x + y) * z ≡ (x * z) + (y * z)
-- BASE
*distribr zero y z = refl
{-
INDUCTIVE
Goal: ((suc x + y) * z) ≡ ((suc x * z) + (y * z))
Goal: (z + ((x + y) * z)) ≡ ((z + (x * z)) + (y * z))
*distribr (suc x) y z rewrite *distribr x y z = {!!}
Goal: (z + ((x * z) + (y * z))) ≡ ((z + (x * z)) + (y * z))
right-associated left-associated
so reassociate: to prove
A + (B + C) ≡ (A + B) + C
^ ^ ^
| | |
z | |
x * z |
y * z
-}
*distribr (suc x) y z
rewrite
*distribr x y z
= +assoc z (x * z) (y * z)
------------------------------------------------------------------------------
-- p 65 * COMMUTATIVITY
-------------------------
*0 : ∀ (x : ℕ)
→ x * 0 ≡ 0
-- BASE
*0 zero = refl -- def/eq : (zero * 0) ≡ 0
{-
INDUCTIVE
(suc x * 0) ≡ 0
(x * 0) ≡ 0 -- IH
rewrite
0 ≡ 0
-}
*0 (suc y) rewrite *0 y = refl
-------------------------
*suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + (x * y)
{-
BASE
(zero * suc y) ≡ (zero + (zero * y))
def/eq zero ≡ zero
-}
*suc zero y = refl
{-
INDUCTIVE
(suc x * suc y) ≡ (suc x + (suc x * y))
def/eq suc (y + (x * suc y)) ≡ suc (x + (y + (x * y)))
rw *suc suc (y + (x + (x * y))) ≡ suc (x + (y + (x * y)))
rw +assoc suc ((y + x) + (x * y)) ≡ suc (x + (y + (x * y)))
rw +assoc suc ((y + x) + (x * y)) ≡ suc ((x + y) + (x * y))
rw +comm suc ((x + y) + (x * y)) ≡ suc ((x + y) + (x * y))
-}
*suc (suc x) y
rewrite
*suc x y
| +assoc y x (x * y)
| +assoc x y (x * y)
| +comm y x = refl
-------------------------
*comm : ∀ (x y : ℕ) → x * y ≡ y * x
{-
BASE
(zero * y) ≡ (y * zero)
def/eq zero ≡ (y * zero)
rs *0 zero ≡ zero
-}
*comm zero y rewrite *0 y = refl
{-
INDUCTIVE
(suc x * y) ≡ (y * suc x)
def/eq (y + (x * y)) ≡ (y * suc x)
rw *suc (y + (x * y)) ≡ (y + (y * x))
rw *comm (y + (y * x)) ≡ (y + (y * x))
-}
*comm (suc x) y
rewrite
*suc y x
| *comm x y = refl
------------------------------------------------------------------------------
-- p 66 * ASSOCIATIVITY
*assoc : ∀ (x y z : ℕ) → x * (y * z) ≡ (x * y) * z
{-
BASE
(zero * (y * z)) ≡ ((zero * y) * z)
def/eq zero ≡ zero
-}
*assoc zero y z = refl
{-
INDUCTIVE
(suc x * (y * z)) ≡ ((suc x * y) * z)
def/eq ((y * z) + (x * (y * z))) ≡ ((y + (x * y)) * z)
rw *distribr ((y * z) + (x * (y * z))) ≡ ((y * z) + ((x * y) * z))
rw *assoc ((y * z) + ((x * y) * z)) ≡ ((y * z) + ((x * y) * z))
-}
*assoc (suc x) y z
rewrite
*distribr y (x * y) z
| *assoc x y z = refl
------------------------------------------------------------------------------
-- p 67 LESS-THEN <
_<_ : ℕ → ℕ → 𝔹
0 < 0 = ff
0 < (suc y) = tt
(suc x) < (suc y) = x < y
(suc x) < 0 = ff
-------------------------
-- < is TRANSITIVE
{-
xx : ∀ {x y z : ℕ}
→ x < y
→ y < z
→ x < z
Above will not type check because _<_ returns 𝔹 VALUE, not a type
Types have type Set in Agda -- 𝔹 is not the same as Set.
Could define _<_ as a relation: ℕ → ℕ → Set.
But then _<_ could not be used computationally.
Expressions with type Set describe code -- they are NOT code themselves
- e.g., cannot pattern-match on expressions of type Set
cannot compute with them
Transitivity theorem is statement about behavior of the PROGRAM _<_.
-}
-- p 69
-------------------------
<-0 : ∀ (x : ℕ) → x < 0 ≡ ff
<-0 0 = refl -- (zero < 0) ≡ ff; ff ≡ ff
<-0 (suc y) = refl -- (suc y < 0) ≡ ff; ff ≡ ff
-------------------------
<-trans : ∀ {x y z : ℕ}
→ x < y ≡ tt
→ y < z ≡ tt
→ x < z ≡ tt
{-
p1 : (x < zero) ≡ tt ; p2 : (zero < z) ≡ tt = Goal: (x < z) ≡ tt
rw <-0 p1 : ff ≡ tt ; p2 : (0 < z) ≡ tt = Goal: (x < z) ≡ tt
-}
<-trans {x} {0} p1 p2 rewrite <-0 x = 𝔹-contra p1
-- can't be called like this so no proof needed
<-trans {0} {suc y} {0} p1 ()
-- p1 : (zero < suc y) ≡ tt ; p2 : (suc y < suc z) ≡ tt = Goal: (zero < suc z) ≡ tt
<-trans {0} {suc y} {suc z} p1 p2 = refl
-- can't be called like this so no proof needed
<-trans {suc x} {suc y} {0} p1 ()
-- p1 : (suc x < suc y) ≡ tt; p2 : (suc y < suc z) ≡ tt = Goal: (suc x < suc z) ≡ tt
<-trans {suc x} {suc y} {suc z} p1 p2 = <-trans {x} {y} {z} p1 p2 -- uses IH via recursive call
------------------------------------------------------------------------------
-- p 71 EQUALITY TEST for ℕ
{-
so far, rely on
- def/eq : done automatically during type checking
- ≡ : express, as a TYPE, a proposition that two VALUES are equal
there are other kinds of equality, e,g.,
COMPUTATIONAL EQUALITY : tests VALUE equality
-}
_=ℕ_ : ℕ → ℕ → 𝔹
0 =ℕ 0 = tt
suc x =ℕ suc y = x =ℕ y
_ =ℕ _ = ff
_≤_ : ℕ → ℕ → 𝔹
x ≤ y = (x < y) || x =ℕ y
-------------------------
=ℕ-refl : ∀ (x : ℕ) → (x =ℕ x) ≡ tt
=ℕ-refl 0 = refl
=ℕ-refl (suc x) = (=ℕ-refl x)
-------------------------
-- SOUNDNESS property: things indicated to be true really are true
=ℕ-to-≡ : ∀ {x y : ℕ} → x =ℕ y ≡ tt → x ≡ y
=ℕ-to-≡ {0} {0} _ = refl
=ℕ-to-≡ {suc x} {0} ()
=ℕ-to-≡ {0} {suc y} ()
=ℕ-to-≡ {suc x} {suc y} p
rewrite
=ℕ-to-≡ {x} {y} p = refl
-------------------------
=ℕ-from-≡ : ∀ {x y : ℕ}
→ x ≡ y
→ x =ℕ y ≡ tt
=ℕ-from-≡ {x} refl = =ℕ-refl x
------------------------------------------------------------------------------
-- p 73 EXERCISES
-- 1 nat-thms
--------------------------------------------------
-- properties of addition
--------------------------------------------------
+1 : ∀ (x : ℕ) → x + 1 ≡ suc x
+1 zero = refl
+1 (suc n) rewrite +1 n = refl
+perm : ∀ (x y z : ℕ) → x + (y + z) ≡ y + (x + z)
+perm zero y z = refl
+perm (suc x) y z -- (suc x + (y + z)) ≡ (y + (suc x + z))
-- suc (x + (y + z)) ≡ (y + suc (x + z))
rewrite
+suc y (x + z) -- suc (x + (y + z)) ≡ suc (y + (x + z))
| +assoc x y z -- suc ((x + y) + z) ≡ suc (y + (x + z))
| +comm x y -- suc ((y + x) + z) ≡ suc (y + (x + z))
| +assoc y x z -- suc ((y + x) + z) ≡ suc ((y + x) + z)
= refl
--------------------------------------------------
-- properties of multiplication
--------------------------------------------------
*1 : ∀ {n : ℕ} → n * 1 ≡ n
*1 {zero} = refl
*1 {suc n} -- (suc n * 1) ≡ suc n
-- suc (n * 1) ≡ suc n
rewrite
*comm n 1 -- suc (n + 0) ≡ suc n
| +0 n -- suc n ≡ suc n
= refl
--------------------------------------------------
-- properties of <, ≤, and =ℕ, iszero
--------------------------------------------------
0-≤ : ∀ (x : ℕ) → 0 ≤ x ≡ tt
0-≤ zero = refl
0-≤ (suc n) -- (0 ≤ suc n) ≡ tt
rewrite 0-≤ n -- tt ≡ tt
= refl
=ℕ-sym : ∀ (x y : ℕ) → (x =ℕ y) ≡ (y =ℕ x)
=ℕ-sym zero zero = refl
=ℕ-sym (suc x) zero = refl -- (suc x =ℕ zero) ≡ (zero =ℕ suc x); ff ≡ ff
=ℕ-sym zero (suc y) = refl -- (zero =ℕ suc y) ≡ (suc y =ℕ zero); ff ≡ ff
=ℕ-sym (suc x) (suc y) rewrite =ℕ-sym x y = refl
=ℕ-suc : ∀ (x : ℕ) → suc x =ℕ x ≡ ff
=ℕ-suc zero = refl
=ℕ-suc (suc n) rewrite =ℕ-suc n = refl
<-suc : ∀ (n : ℕ) → n < suc n ≡ tt
<-suc zero = refl
<-suc (suc n) rewrite <-suc n = refl
-- TODO: understand
suc-inj : ∀ {n m : ℕ} → suc n ≡ suc m → n ≡ m
suc-inj {0} {0} _ = refl
suc-inj {m = suc m} refl = refl
<=ℕff : ∀ (x : ℕ) → 0 < x ≡ tt → x =ℕ 0 ≡ ff
<=ℕff (suc x) _ = refl
<≤ : ∀ {n m : ℕ} → n < m ≡ tt → n ≤ m ≡ tt
<≤ {0} {0} _ = refl
<≤ {suc _} {0} ()
<≤ {0} {suc _} _ = refl
<≤ {suc n} {suc m} p rewrite <≤ {n} {m} p = refl
--------------------------------------------------
-- ordering properties of < and ≤ℕ
--------------------------------------------------
<-irrefl : ∀ (n : ℕ) → n < n ≡ ff
<-irrefl zero = refl
<-irrefl (suc n) rewrite <-irrefl n = refl
<-asym : ∀ {x y : ℕ}
→ x < y ≡ tt
→ y < x ≡ ff
<-asym {0} {0} _ = refl
<-asym {0} {suc _} _ = refl
<-asym {suc _} {0} ()
<-asym {suc x} {suc y} p = <-asym {x} {y} p
ℕ-trichotomy𝔹 : ∀ (n m : ℕ) → n < m || n =ℕ m || m < n ≡ tt
ℕ-trichotomy𝔹 0 0 = refl
ℕ-trichotomy𝔹 0 (suc m) = refl
ℕ-trichotomy𝔹 (suc n) 0 = refl
ℕ-trichotomy𝔹 (suc n) (suc m) = ℕ-trichotomy𝔹 n m
<≤-trans : ∀ {x y z : ℕ}
→ x < y ≡ tt
→ y ≤ z ≡ tt
→ x < z ≡ tt
<≤-trans {x} {0} p1 _ rewrite <-0 x = 𝔹-contra p1
<≤-trans {0} {suc y} {0} _ ()
<≤-trans {0} {suc y} {suc z} _ _ = refl
<≤-trans {suc x} {suc y} {0} _ ()
<≤-trans {suc x} {suc y} {suc z} p1 p2 = <≤-trans {x} {y} {z} p1 p2
≤-refl : ∀ (x : ℕ) → x ≤ x ≡ tt
≤-refl zero = refl
≤-refl (suc x) rewrite ≤-refl x = refl
--------------------------------------------------
-- injectivity properties of addition
--------------------------------------------------
+inj1 : ∀ {x y z : ℕ}
→ x + y ≡ x + z
→ y ≡ z
+inj1 {0} {y} {z} p = p
+inj1 {suc x} {y} {z} p = +inj1 {x} {y} {z} (suc-inj p)
+inj2 : ∀ {x y z : ℕ}
→ x + z ≡ y + z
→ x ≡ y
+inj2 {x} {y} {z} p -- p : (x + z) ≡ (y + z); Goal: x ≡ y
rewrite
+comm x z -- p : (z + x) ≡ (y + z); Goal: x ≡ y
| +comm y z -- p : (z + x) ≡ (z + y); Goal: x ≡ y
= +inj1 {z} {x} {y} p -- NOTE: '+inj1'
------------------------------------------------------------------------------
-- 2
{- TODO
nat.agda
>, >= : defined in terms of < and <=
Prove versions of theorems like <-trans and <+
- modified to use _>_ instead of _<_
for practice writing out formulas in Agda
since the proofs can be written just to invoke the theorems dealing with _<_
-}
_>_ : ℕ → ℕ → 𝔹
a > b = b < a
_≥_ : ℕ → ℕ → 𝔹
a ≥ b = b ≤ a
<-trans2 : ∀ {x y z : ℕ}
→ y > x ≡ tt
→ z > y ≡ tt
→ z > x ≡ tt
<-trans2 {x} {y} {z} = <-trans {x} {y} {z}
------------------------------------------------------------------------------
-- 3a
f : (n : ℕ) → ℕ
f 0 = 1
f (suc x) = (suc x) * (f x)
f-is-factorial : f 5 ≡ 120
f-is-factorial = refl
-- 3b
f' : ℕ → 𝔹
fb : ℕ → 𝔹
-- is-odd
f' 0 = ff
f' (suc x) = fb x
-- is-even
fb 0 = tt
fb (suc x) = f' x
f'-is-odd : f' (suc 0) ≡ tt
f'-is-odd = refl
fb-is-even : fb (suc (suc 0)) ≡ tt
fb-is-even = refl
| {
"alphanum_fraction": 0.4037441038,
"avg_line_length": 25.0794824399,
"ext": "agda",
"hexsha": "b8ecc2f982821bf43142fcea0d2d821fe50a33ad",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z03-natural-numbers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z03-natural-numbers.agda",
"max_line_length": 95,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z03-natural-numbers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 5260,
"size": 13568
} |
{- Denotational semantics of the contexts in the category of temporal types. -}
module Semantics.Context where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.Comonad
open import CategoryTheory.NatTrans
open import TemporalOps.Box
open import TemporalOps.Diamond
open import Syntax.Context
open import Semantics.Types
open import Data.Product renaming (_,_ to _,,_)
open import Relation.Binary.PropositionalEquality
open Comonad W-□
private module F-□ = Functor F-□
-- | Denotation of judgements and contexts
-- Denotation of judgements
⟦_⟧ⱼ : Judgement -> τ
⟦ A now ⟧ⱼ = ⟦ A ⟧ₜ
⟦ A always ⟧ⱼ = □ ⟦ A ⟧ₜ
infix 50 ⟦_⟧ⱼ
-- Denotation of contexts as a finite product of temporal types.
⟦_⟧ₓ : Context -> τ
⟦ ∙ ⟧ₓ = ⊤
⟦ Γ , A ⟧ₓ = ⟦ Γ ⟧ₓ ⊗ ⟦ A ⟧ⱼ
infix 50 ⟦_⟧ₓ
-- Denotation of context to denotation of stabilised context
-- Standard morphism arising from Γ ˢ ⊆ Γ
⟦_ˢ⟧ : ∀ Γ -> ⟦ Γ ⟧ₓ ⇴ ⟦ Γ ˢ ⟧ₓ
⟦ ∙ ˢ⟧ = !
⟦ Γ , A now ˢ⟧ = ⟦ Γ ˢ⟧ ∘ π₁
⟦ Γ , A always ˢ⟧ = ⟦ Γ ˢ⟧ * id
-- Denotation of context to stable denotation of stabilised context
-- Uses the Cartesian functor property of the □ comonad
⟦_ˢ⟧□ : ∀ Γ -> ⟦ Γ ⟧ₓ ⇴ □ ⟦ Γ ˢ ⟧ₓ
⟦ ∙ ˢ⟧□ = u
⟦ Γ , A now ˢ⟧□ = ⟦ Γ ˢ⟧□ ∘ π₁
⟦ Γ , A always ˢ⟧□ = m (⟦ Γ ˢ ⟧ₓ) (□ ⟦ A ⟧ₜ) ∘ (⟦ Γ ˢ⟧□ * δ.at ⟦ A ⟧ₜ)
-- The normal stabilisation transformation factors through
-- the comonadic one via ε
⟦ˢ⟧-factor : ∀ Γ -> ⟦ Γ ˢ⟧ ≈ ε.at ⟦ Γ ˢ ⟧ₓ ∘ ⟦ Γ ˢ⟧□
⟦ˢ⟧-factor ∙ = refl
⟦ˢ⟧-factor (Γ , A now) {n} {x ,, y} = ⟦ˢ⟧-factor Γ
⟦ˢ⟧-factor (Γ , A always) {n} {x ,, y} rewrite ⟦ˢ⟧-factor Γ {n} {x} = refl
-- Applying ⟦ˢ⟧□ twice can be replaced with one ⟦ˢ⟧□ and duplication
⟦ˢ⟧□-twice : ∀ Δ -> F-□.fmap ⟦ Δ ˢ ˢ⟧□ ∘ ⟦ Δ ˢ⟧□ ≈ δ.at ⟦ Δ ˢ ˢ ⟧ₓ ∘ ⟦ Δ ˢ ˢ⟧□ ∘ ⟦ Δ ˢ⟧
⟦ˢ⟧□-twice ∙ = refl
⟦ˢ⟧□-twice (Δ , A now) = ⟦ˢ⟧□-twice Δ
⟦ˢ⟧□-twice (Δ , A always) {n} {⟦Δ⟧ ,, □⟦A⟧} = ext λ k → ext λ l → cong (_,, □⟦A⟧) (lemma k l)
where lemma : ∀ k l -> ⟦ Δ ˢ ˢ⟧□ k (⟦ Δ ˢ⟧□ n ⟦Δ⟧ k) l
≡ ⟦ Δ ˢ ˢ⟧□ n (⟦ Δ ˢ⟧ n ⟦Δ⟧) l
lemma k l = □-≡ k l (□-≡ n k (⟦ˢ⟧□-twice Δ {n} {⟦Δ⟧}) k) l
-- Applying ⟦ˢ⟧□ and ⟦ˢ⟧ can be commuted
⟦ˢ⟧-comm : ∀ Δ -> ⟦ Δ ˢ ˢ⟧□ ∘ ⟦ Δ ˢ⟧ ≈ F-□.fmap ⟦ Δ ˢ ˢ⟧ ∘ ⟦ Δ ˢ⟧□
⟦ˢ⟧-comm Δ {n} {⟦Δ⟧} = ext (lemma Δ ⟦Δ⟧)
where
lemma : ∀ Δ ⟦Δ⟧ l -> (⟦ Δ ˢ ˢ⟧□ ∘ ⟦ Δ ˢ⟧) n ⟦Δ⟧ l ≡ (F-□.fmap ⟦ Δ ˢ ˢ⟧ ∘ ⟦ Δ ˢ⟧□) n ⟦Δ⟧ l
lemma ∙ ⟦Δ⟧ l = refl
lemma (Δ , A now) (⟦Δ⟧ ,, ⟦A⟧) l = lemma Δ ⟦Δ⟧ l
lemma (Δ , A always) (⟦Δ⟧ ,, □⟦A⟧) l = cong (_,, □⟦A⟧) (lemma Δ ⟦Δ⟧ l)
| {
"alphanum_fraction": 0.5529503712,
"avg_line_length": 35.0547945205,
"ext": "agda",
"hexsha": "1bc2770b994a2bde48ed602ce8b9e4162a3ad61f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Context.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Context.agda",
"max_line_length": 93,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1400,
"size": 2559
} |
module Examples where
open import Prelude
open import Star
open import Modal
El : Set -> Rel True
El A _ _ = A
List : Set -> Set
List A = Star (El A) _ _
Nat = List True
zero : Nat
zero = ε
suc : Nat -> Nat
suc n = _ • n
-- Vectors
Vec : Set -> Nat -> Set
Vec A = All (\_ -> A)
infixr 40 _::_
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = check x • xs
-- Fin
Fin : Nat -> Set
Fin = Any (\_ -> True)
-- Turning a vector to a list
vecToList : {A : Set}{n : Nat} -> Vec A n -> List A
vecToList {A} = map ! uncheck
listToVec : {A : Set}(xs : List A) -> Vec A (length xs)
listToVec ε = ε
listToVec (x • xs) = x :: listToVec xs
-- span
test : Vec Nat (suc (suc (suc zero)))
test = zero :: suc zero :: suc (suc zero) :: ε
| {
"alphanum_fraction": 0.562992126,
"avg_line_length": 15.5510204082,
"ext": "agda",
"hexsha": "3dc38d2517537eaed7978fe2fde624ec9018db94",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM6/Path/Examples.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM6/Path/Examples.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM6/Path/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 275,
"size": 762
} |
module Control.Monad.Maybe where
open import Prelude
open import Control.Monad.Zero
open import Control.Monad.Transformer
record MaybeT {a} (M : Set a → Set a) (A : Set a) : Set a where
no-eta-equality
constructor maybeT
field runMaybeT : M (Maybe A)
open MaybeT public
module _ {a} {M : Set a → Set a} where
instance
FunctorMaybeT : {{_ : Functor M}} → Functor {a = a} (MaybeT M)
runMaybeT (fmap {{FunctorMaybeT}} f m) = fmap f <$> runMaybeT m
FunctorZeroMaybeT : {{_ : Monad M}} → FunctorZero {a = a} (MaybeT M)
runMaybeT (empty {{FunctorZeroMaybeT}}) = return nothing
AlternativeMaybeT : {{_ : Monad M}} → Alternative {a = a} (MaybeT M)
runMaybeT (_<|>_ {{AlternativeMaybeT {{monadM}}}} mx my) = do
just x ← runMaybeT mx
where nothing → runMaybeT my
return (just x)
module _ {{_ : Monad M}} where
private
bindMaybeT : ∀ {A B} → MaybeT M A → (A → MaybeT M B) → MaybeT M B
runMaybeT (bindMaybeT m f) = do
just x ← runMaybeT m
where nothing → return nothing
runMaybeT (f x)
instance
ApplicativeMaybeT : Applicative {a = a} (MaybeT M)
runMaybeT (pure {{ApplicativeMaybeT}} x) = pure (just x)
_<*>_ {{ApplicativeMaybeT}} = monadAp bindMaybeT
MonadMaybeT : Monad {a = a} (MaybeT M)
_>>=_ {{MonadMaybeT}} = bindMaybeT
liftMaybeT : {A : Set a} → M A → MaybeT M A
runMaybeT (liftMaybeT m) = just <$> m
instance
TransformerMaybeT : ∀ {a} → Transformer {a} MaybeT
lift {{TransformerMaybeT}} = liftMaybeT
| {
"alphanum_fraction": 0.6252414681,
"avg_line_length": 29.3018867925,
"ext": "agda",
"hexsha": "8e6b1bd8c3c04f29413692efedc0e381189beb14",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Control/Monad/Maybe.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Control/Monad/Maybe.agda",
"max_line_length": 72,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Control/Monad/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 498,
"size": 1553
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Nat
open import Data.Maybe
open import Data.Char
open import Data.String
open import Data.List hiding (product)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.PropositionalEquality as PE
using (_≡_; refl)
import Relation.Binary.Definitions as BD
import Relation.Binary as RB
------------------------------------------------------------------------------
open import Function
open import Optics.All
module Optics.Example where
infixl 1 _&_
_&_ = Function._|>_
-- First we declare a record; which must be EXACTLY
-- like the record 'Person' below.
-- that is; must contain a constructor and
-- a number of /simple/ fields (of type Set; no proofs please!)
record Person : Set where
constructor person
field
pName : String
pAge : ℕ
-- Then, we do some template agda:
-- Yes,I know it looks weird; but it says:
-- Put 'pName' and 'pAge' into scope as
-- new identifiers; and run the metacomputation mkLens
-- passing this newly created identifiers; the mkLens
-- will then bind these identifiers to their respective
-- generated lenses for the record Person
--
-- IMPORTANT: Note how I did NOT /open Person/; otherwise, we'd
-- have to give different names to the lenses.
--
-- IMPORTANT: the list of names passed to unquoteDecl must come
-- in the same order as the fields of Person.
unquoteDecl pName pAge = mkLens (quote Person) (pName ∷ pAge ∷ [])
-- Ok; lets do more recors for fun
record Store : Set where
constructor store
field
sId : ℕ
sManager : Person
unquoteDecl sId sManager = mkLens (quote Store) (sId ∷ sManager ∷ [])
record Product : Set where
constructor product
field
pId : ℕ
pTag : String
pStore : Store
unquoteDecl pId pTag pStore = mkLens (quote Product)
(pId ∷ pTag ∷ pStore ∷ [])
-- Let's now do a simple example:
mary : Person
mary = person "Mary" 41
compilers-from-mary : Store
compilers-from-mary = store 0 mary
ghc : Product
ghc = product 13 "v8.0.0" compilers-from-mary
-- Now say mary turns 42 years old;
ghc-from-older-mary : Product
ghc-from-older-mary = ghc & pStore ∙ sManager ∙ pAge ∙~ 42
same-ghc-from-mary : Product
same-ghc-from-mary = ghc & pStore ∙ sManager ∙ pAge %~ suc
all-is-fine : ghc-from-older-mary ≡ same-ghc-from-mary
all-is-fine = refl
mary's-age-was-updated : ghc-from-older-mary ^∙ pStore ∙ sManager ∙ pAge ≡ 42
mary's-age-was-updated = refl
| {
"alphanum_fraction": 0.6797361671,
"avg_line_length": 28.4270833333,
"ext": "agda",
"hexsha": "34df05fcfee1e8b7b0114d0d49b56de9dba58593",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Optics/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Optics/Example.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Optics/Example.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 747,
"size": 2729
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Equivalence where
-- Strong equivalence of categories. Same as ordinary equivalence in Cat.
-- May not include everything we'd like to think of as equivalences, namely
-- the full, faithful functors that are essentially surjective on objects.
open import Level
open import Relation.Binary using (IsEquivalence; Setoid)
open import Categories.Category.Core using (Category)
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation.NaturalIsomorphism as ≃
using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_)
private
variable
o ℓ e : Level
C D E : Category o ℓ e
record WeakInverse (F : Functor C D) (G : Functor D C) : Set (levelOfTerm F ⊔ levelOfTerm G) where
field
F∘G≈id : NaturalIsomorphism (F ∘F G) idF
G∘F≈id : NaturalIsomorphism (G ∘F F) idF
module F∘G≈id = NaturalIsomorphism F∘G≈id
module G∘F≈id = NaturalIsomorphism G∘F≈id
record StrongEquivalence {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
F : Functor C D
G : Functor D C
weak-inverse : WeakInverse F G
open WeakInverse weak-inverse public
refl : StrongEquivalence C C
refl = record
{ F = idF
; G = idF
; weak-inverse = record
{ F∘G≈id = unitorˡ
; G∘F≈id = unitorˡ
}
}
sym : StrongEquivalence C D → StrongEquivalence D C
sym e = record
{ F = G
; G = F
; weak-inverse = record
{ F∘G≈id = G∘F≈id
; G∘F≈id = F∘G≈id
}
}
where open StrongEquivalence e
trans : StrongEquivalence C D → StrongEquivalence D E → StrongEquivalence C E
trans {C = C} {D = D} {E = E} e e′ = record
{ F = e′.F ∘F e.F
; G = e.G ∘F e′.G
; weak-inverse = record
{ F∘G≈id = let module S = Setoid (≃.Functor-NI-setoid E E)
in S.trans (S.trans (associator (e.G ∘F e′.G) e.F e′.F)
(e′.F ⓘˡ (unitorˡ ⓘᵥ (e.F∘G≈id ⓘʳ e′.G) ⓘᵥ ≃.sym (associator e′.G e.G e.F))))
e′.F∘G≈id
; G∘F≈id = let module S = Setoid (≃.Functor-NI-setoid C C)
in S.trans (S.trans (associator (e′.F ∘F e.F) e′.G e.G)
(e.G ⓘˡ (unitorˡ ⓘᵥ (e′.G∘F≈id ⓘʳ e.F) ⓘᵥ ≃.sym (associator e.F e′.F e′.G))))
e.G∘F≈id
}
}
where module e = StrongEquivalence e
module e′ = StrongEquivalence e′
isEquivalence : ∀ {o ℓ e} → IsEquivalence (StrongEquivalence {o} {ℓ} {e})
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : ∀ o ℓ e → Setoid _ _
setoid o ℓ e = record
{ Carrier = Category o ℓ e
; _≈_ = StrongEquivalence
; isEquivalence = isEquivalence
}
| {
"alphanum_fraction": 0.581754386,
"avg_line_length": 31.6666666667,
"ext": "agda",
"hexsha": "60c36ac4a5769efba23a5acf637e0ad084b416bb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Equivalence.agda",
"max_line_length": 125,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1034,
"size": 2850
} |
module Numeral.Natural.Oper.Modulo.Proofs where
import Lvl
open import Data
open import Data.Boolean.Stmt
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Modulo.Proofs.Algorithm
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Order
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Existence using ([≤]-equivalence)
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function
open import Structure.Operator
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Implication
open import Syntax.Transitivity
open import Syntax.Type
open import Type
open import Numeral.Natural.Oper.DivMod.Proofs
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- mod₀ and mod
mod₀-mod : ∀{a b} → ((a mod₀ 𝐒(b)) ≡ (a mod 𝐒(b)))
mod₀-mod = [≡]-intro
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- mod
open import Numeral.Natural.Inductions
open import Structure.Relator
open import Structure.Relator.Ordering
{-
mod-elim : ∀{ℓ} → (P : {ℕ} → ℕ → Type{ℓ}) → ∀{b} ⦃ _ : IsTrue(positive?(b)) ⦄ → (∀{a} → (a < b) → P{a}(a)) → (∀{a} → (a ≥ b) → P{a −₀ b}((a −₀ b) mod b) → P{a}(a mod b)) → (∀{a} → P{a}(a mod b))
mod-elim P {𝐒 b} base step {a} = Strict.Properties.wellfounded-recursion(_<_) {P = a ↦ P(a mod 𝐒(b))} p a where
ord : ∀{a b} → (b < a) → (a −₀ 𝐒(b) < a)
ord {𝐒 a} {b} _ = succ ([−₀]-lesser {a}{b})
p : (a : ℕ) → ((prev : ℕ) ⦃ _ : prev < a ⦄ → P(prev mod 𝐒(b))) → P(a mod 𝐒(b))
p a prev with [<][≥]-dichotomy {a}{𝐒 b}
... | [∨]-introₗ lt = substitute₁ₗ(P) (mod'-lesser-dividend ([≤]-without-[𝐒] lt)) (base{a} lt)
... | [∨]-introᵣ ge = step ge (prev(a −₀ 𝐒(b)) ⦃ ord{a}{b} ge ⦄)
-}
-- 0 is 0 in every modulus.
mod-of-0 : ∀{b} → (0 mod 𝐒(b) ≡ 0)
mod-of-0 = [≡]-intro
-- There is only one value when the modulus is 1, and that is 0.
mod-of-1 : ∀{a} → (a mod 1 ≡ 0)
mod-of-1 {a} = mod'-zero-all-except-dividend {a}
-- When the dividend is lesser than the modulus, the result is unchanged.
mod-lesser-than-modulus : ∀{a b} → ⦃ _ : a ≤ b ⦄ → (a mod 𝐒(b) ≡ a)
mod-lesser-than-modulus {a} {b} ⦃ ab ⦄ = mod'-lesser-dividend ab
-- The value of the modulo operation is always strictly less than the modulus.
-- This is because the value loops around at the end by definition.
mod-maxᵣ : ∀{a b} → ⦃ _ : IsTrue(positive?(b)) ⦄ → (a mod b < b)
mod-maxᵣ {𝟎} {𝐒 𝟎} = [≤]-with-[𝐒]
mod-maxᵣ {𝟎} {𝐒(𝐒 b)} = [≤]-with-[𝐒]
mod-maxᵣ {𝐒 a} {𝐒 𝟎} = mod-maxᵣ {a}{𝐒 𝟎}
mod-maxᵣ {𝐒 a} {𝐒(𝐒 b)} = [≤]-with-[𝐒] ⦃ mod'-maxᵣ {1}{b}{a}{b} ⦃ reflexivity(_≤_)⦄ ⦄
-- When proving properties about the modulo operation, only proofs about numbers lesser than the modulus is necessary.
mod-intro : ∀{ℓ} → (P : {ℕ} → ℕ → Type{ℓ}) → ∀{b} ⦃ _ : IsTrue(positive?(b)) ⦄ → (∀{a n} → (a < b) → P{a + (n ⋅ b)}(a)) → (∀{a} → P{a}(a mod b))
mod-intro P {𝐒 b} proof {a} with [<][≥]-dichotomy {a}{𝐒 b}
... | [∨]-introₗ lt = substitute₂(\x y → P{x}(y))
(reflexivity(_≡_))
(symmetry(_≡_) (mod-lesser-than-modulus ⦃ [≤]-without-[𝐒] lt ⦄))
(proof{a}{0} lt)
... | [∨]-introᵣ ge = substitute₂(\x y → P{x}(y))
([↔]-to-[→] ([−₀][+]-nullify2ᵣ {(a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)}{a}) (subtransitivityᵣ(_≤_)(_≡_) ([≤]-of-[+]ₗ {(a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)}{a mod 𝐒(b)}) ([⌊/⌋][mod]-is-division-with-remainder {a}{b})))
(symmetry(_≡_) ([⌊/⌋][⋅]-inverseOperatorᵣ-error {a}{b}))
(proof{a −₀ ((a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b))}{a ⌊/⌋ 𝐒(b)} (subtransitivityₗ(_<_)(_≡_) (symmetry(_≡_) ([⌊/⌋][⋅]-inverseOperatorᵣ-error {a}{b})) (mod-maxᵣ{a}{𝐒 b})))
mod-intro₂ : ∀{ℓ} → (P : {ℕ} → {ℕ} → ℕ → ℕ → Type{ℓ}) → ∀{m} ⦃ _ : IsTrue(positive?(m)) ⦄ → (∀{a b n₁ n₂} → (a < m) → (b < m) → P{a + (n₁ ⋅ m)}{b + (n₂ ⋅ m)}(a)(b)) → (∀{a b} → P{a}{b}(a mod m)(b mod m))
mod-intro₂ P {m} p {a}{b} = mod-intro(\{a} am → P{a}{b}(am)(b mod m)) {m} (\{a}{n₁} an₁ → mod-intro(\{b} bm → P{a + (n₁ ⋅ m)}{b}(a)(bm)) {m} (\{b}{n₂} bn₂ → p {a}{b}{n₁}{n₂} an₁ bn₂) {b}) {a}
-- The modulus is the loop point of the dividend.
mod-of-modulus : ∀{b} → (𝐒(b) mod 𝐒(b) ≡ 𝟎)
mod-of-modulus {b} = mod'-equal-dividend {𝟎}{b}{b}
-- Adding the modulus to the dividend does not alter the result.
mod-of-modulus-add : ∀{a b} → ((𝐒(b) + a) mod 𝐒(b) ≡ a mod 𝐒(b))
mod-of-modulus-add {a}{b} = mod'-sumₗ-modulo {𝟎}{b}{a}{b}
mod-of-modulus-addᵣ : ∀{a b} → ((a + 𝐒(b)) mod 𝐒(b) ≡ a mod 𝐒(b))
mod-of-modulus-addᵣ {a}{b} = mod'-sumᵣ-modulo {𝟎}{b}{a}{b}
-- A multiple of the modulus in the dividend is always 0.
mod-of-modulus-multiple : ∀{a b} → ((𝐒(b) ⋅ a) mod 𝐒(b) ≡ 𝟎)
mod-of-modulus-multiple {𝟎} {b} = [≡]-intro
mod-of-modulus-multiple {𝐒 a} {b} = mod-of-modulus-add {𝐒(b) ⋅ a}{b} 🝖 mod-of-modulus-multiple {a} {b}
mod-of-modulus-sum-multiple : ∀{a b c} ⦃ _ : IsTrue(positive?(b)) ⦄ → ((a + (b ⋅ c)) mod b ≡ a mod b)
mod-of-modulus-sum-multiple {a} {𝐒 b} {𝟎} = [≡]-intro
mod-of-modulus-sum-multiple {a} {𝐒 b} {𝐒 c} =
(a + (𝐒(b) ⋅ 𝐒(c))) mod 𝐒(b) 🝖[ _≡_ ]-[]
(a + (𝐒(b) + (𝐒(b) ⋅ c))) mod 𝐒(b) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(b)) (associativity(_+_) {a}{𝐒(b)}{𝐒(b) ⋅ c}) ]-sym
((a + 𝐒(b)) + (𝐒(b) ⋅ c)) mod 𝐒(b) 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple {a + 𝐒(b)} {𝐒 b} {c} ]
(a + 𝐒(b)) mod 𝐒(b) 🝖[ _≡_ ]-[ mod-of-modulus-addᵣ {a}{b} ]
a mod 𝐒(b) 🝖-end
mod-of-modulus-sum-multiple-commuted : ∀{a b c} ⦃ _ : IsTrue(positive?(b)) ⦄ → ((a + (c ⋅ b)) mod b ≡ a mod b)
mod-of-modulus-sum-multiple-commuted {a}{𝐒 b}{c} = congruence₁(_mod 𝐒(b)) (congruence₂ᵣ(_+_)(a) (commutativity(_⋅_) {c}{𝐒 b})) 🝖 mod-of-modulus-sum-multiple{a}{𝐒 b}{c}
-- When the dividend is greater than the modulus, the modulus can be subtracted from the dividend without altering the result.
mod-greater-than-modulus : ∀{a b} → ⦃ _ : (a > b) ⦄ → (a mod 𝐒(b) ≡ (a −₀ 𝐒(b)) mod 𝐒(b))
mod-greater-than-modulus {a}{b} ⦃ a>b ⦄ =
symmetry(_≡_) ([≡]-with(_mod 𝐒(b)) ([↔]-to-[→] [−₀][+]-nullify2 a>b))
🝖 mod-of-modulus-add {a −₀ 𝐒(b)} {b}
mod-cases : ∀{a b} → (a mod 𝐒(b) ≡ a) ∨ (a mod 𝐒(b) ≡ (a −₀ 𝐒(b)) mod 𝐒(b))
mod-cases {a}{b} with [≤][>]-dichotomy {a}{b}
mod-cases {a}{b} | [∨]-introₗ a≤b = [∨]-introₗ (mod-lesser-than-modulus ⦃ a≤b ⦄)
mod-cases {a}{b} | [∨]-introᵣ b>a = [∨]-introᵣ (mod-greater-than-modulus ⦃ b>a ⦄)
mod-nested : ∀{a b c} → ⦃ b ≤ c ⦄ → ((a mod 𝐒(b)) mod 𝐒(c) ≡ a mod 𝐒(b))
mod-nested {a} {b} {c} ⦃ bc ⦄ = mod-lesser-than-modulus {a mod 𝐒(b)} ⦃ [≤]-without-[𝐒] (mod-maxᵣ {a}) 🝖 bc ⦄
mod-maxₗ : ∀{a b} → ⦃ _ : IsTrue(positive?(b)) ⦄ → (a mod b ≤ a)
mod-maxₗ{a}{𝐒 b} = mod'-maxₗ{0}{b}{a}{b}
-- Alternative proof:
-- • Using [mod][∣ᵣₑₘ]-remainder-equality and that (_∣ᵣₑₘ_) using (r = 0) is equivalent to (_∣_).
-- • A special case of: mod-congruence-[𝄩].
mod-divisibility : ∀{a b} → ⦃ _ : IsTrue(positive?(b)) ⦄ → (a mod b ≡ 𝟎) ↔ (b ∣ a)
mod-divisibility {a}{𝐒(b)} = [↔]-intro l r where
l : ∀{a b} → (a mod 𝐒(b) ≡ 𝟎) ← (𝐒(b) ∣ a)
l {.0} {b} Div𝟎 = [≡]-intro
l {.(𝐒 (b + a))} {b} (Div𝐒 {x = a} ba) = mod-of-modulus-add {a}{b} 🝖 l ba
r : ∀{a b} → (a mod 𝐒(b) ≡ 𝟎) → (𝐒(b) ∣ a)
r{a}{b} = Strict.Properties.wellfounded-recursion(_<_) {P = a ↦ ((a mod 𝐒(b) ≡ 𝟎) → (𝐒(b) ∣ a))} p a where
p : (a : ℕ) → ((prev : ℕ) ⦃ _ : prev < a ⦄ → (prev mod 𝐒(b) ≡ 𝟎) → (𝐒(b) ∣ prev)) → (a mod 𝐒(b) ≡ 𝟎) → (𝐒(b) ∣ a)
p a prev ab0 with [≤][>]-dichotomy {a}{b}
... | [∨]-introₗ ab rewrite symmetry(_≡_) (mod-lesser-than-modulus ⦃ ab ⦄) 🝖 ab0 = Div𝟎
... | [∨]-introᵣ ba with [↔]-to-[←] [≤]-equivalence ba
... | [∃]-intro p ⦃ [≡]-intro ⦄ =
divides-with-[+]
divides-reflexivity
(prev p ⦃ succ ([≤]-of-[+]ᵣ {b}{p}) ⦄ (
p mod 𝐒(b) 🝖-[ symmetry(_≡_) (mod-of-modulus-add {p}{b}) ]
(𝐒(b) + p) mod 𝐒(b) 🝖-[ ab0 ]
𝟎 🝖-end
))
mod-of-𝐒 : ∀{a b} → ⦃ pos : IsTrue(positive?(b)) ⦄ → (𝐒(a) mod b ≡ 𝐒(a mod b) mod b)
mod-of-𝐒 {a} {𝐒 b} = mod-intro(\{a} → expr ↦ 𝐒(a) mod 𝐒(b) ≡ 𝐒(expr) mod 𝐒(b)) {𝐒(b)} (\{a}{n} → p{a}{n}) {a} where
p : ∀{a n} → (a < 𝐒(b)) → (𝐒(a + (n ⋅ 𝐒(b))) mod 𝐒(b)) ≡ (𝐒(a) mod 𝐒(b))
p {a}{n} ab =
𝐒(a + (n ⋅ 𝐒(b))) mod 𝐒(b) 🝖[ _≡_ ]-[]
(𝐒(a) + (n ⋅ 𝐒(b))) mod 𝐒(b) 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple-commuted {𝐒(a)}{𝐒(b)}{n} ]
𝐒(a) mod 𝐒(b) 🝖-end
mod-of-[+] : ∀{a b m} → ⦃ pos : IsTrue(positive?(m)) ⦄ → ((a + b) mod m ≡ ((a mod m) + (b mod m)) mod m)
mod-of-[+] {a}{b}{𝐒 m} =
(a + b) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂(_+_) ([⌊/⌋][mod]-is-division-with-remainder{a}{m}) ([⌊/⌋][mod]-is-division-with-remainder{b}{m})) ]-sym
((((a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) + (a mod 𝐒(m))) + (((b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) + (b mod 𝐒(m)))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (One.associate-commute4-c {_▫_ = _+_} {a = (a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)}{a mod 𝐒(m)}{(b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)}{b mod 𝐒(m)}) ]
((((a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) + ((b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m))) + ((a mod 𝐒(m)) + (b mod 𝐒(m)))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (commutativity(_+_) {((a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) + ((b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m))}{(a mod 𝐒(m)) + (b mod 𝐒(m))}) ]
(((a mod 𝐒(m)) + (b mod 𝐒(m))) + (((a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) + ((b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)))) mod 𝐒(m) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(m)) (congruence₂ᵣ(_+_)((a mod 𝐒(m)) + (b mod 𝐒(m))) (distributivityᵣ(_⋅_)(_+_) {a ⌊/⌋ 𝐒(m)}{b ⌊/⌋ 𝐒(m)}{𝐒(m)})) ]-sym
(((a mod 𝐒(m)) + (b mod 𝐒(m))) + (((a ⌊/⌋ 𝐒(m)) + (b ⌊/⌋ 𝐒(m))) ⋅ 𝐒(m))) mod 𝐒(m) 🝖[ _≡_ ]-[ mod-of-modulus-sum-multiple-commuted{(a mod 𝐒(m)) + (b mod 𝐒(m))}{𝐒(m)}{(a ⌊/⌋ 𝐒(m)) + (b ⌊/⌋ 𝐒(m))} ]
((a mod 𝐒(m)) + (b mod 𝐒(m))) mod 𝐒(m) 🝖-end
{-
open import Functional
open import Structure.Function
open import Structure.Function.Domain
{-# TERMINATING #-}
mod-of-𝐒 : ∀{a b} → ⦃ pos : IsTrue(positive?(b)) ⦄ → (𝐒(a) mod b ≡ 𝐒(a mod b)) ∨ (𝐒(a) mod b ≡ 𝟎)
mod-of-𝐒 {𝟎} {𝐒 𝟎} = [∨]-introᵣ [≡]-intro
mod-of-𝐒 {𝟎} {𝐒 (𝐒 b)} = [∨]-introₗ [≡]-intro
mod-of-𝐒 {a} {𝐒 b} with [<]-trichotomy {a}{b}
... | [∨]-introₗ([∨]-introₗ lt) = [∨]-introₗ $
𝐒(a) mod 𝐒(b) 🝖[ _≡_ ]-[ mod-lesser-than-modulus ⦃ lt ⦄ ]
𝐒(a) 🝖[ _≡_ ]-[ congruence₁(𝐒) (mod-lesser-than-modulus ⦃ [≤]-predecessor lt ⦄) ]-sym
𝐒(a mod 𝐒(b)) 🝖-end
... | [∨]-introₗ([∨]-introᵣ [≡]-intro) = [∨]-introᵣ(mod-of-modulus{b})
... | [∨]-introᵣ gt with mod-of-𝐒 {a −₀ 𝐒(b)}{𝐒 b}
... | [∨]-introₗ q = [∨]-introₗ ∘ injective(𝐒) $
𝐒(𝐒(a) mod 𝐒(b)) 🝖[ _≡_ ]-[ congruence₁(𝐒) (mod-greater-than-modulus ⦃ [≤]-successor gt ⦄) ]
𝐒((𝐒(a) −₀ 𝐒(b)) mod 𝐒(b)) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₁(_mod 𝐒(b)) ([↔]-to-[→] [−₀][𝐒]ₗ-equality gt)) ]
𝐒(𝐒(a −₀ 𝐒(b)) mod 𝐒(b)) 🝖[ _≡_ ]-[ congruence₁(𝐒) q ]
𝐒(𝐒((a −₀ 𝐒(b)) mod 𝐒(b))) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₁(𝐒) (mod-greater-than-modulus ⦃ gt ⦄)) ]-sym
𝐒(𝐒(a mod 𝐒(b))) 🝖-end
... | [∨]-introᵣ q = [∨]-introᵣ $
(𝐒(a) mod 𝐒(b)) 🝖[ _≡_ ]-[ mod-greater-than-modulus ⦃ [≤]-successor gt ⦄ ]
((𝐒(a) −₀ 𝐒(b)) mod 𝐒(b)) 🝖[ _≡_ ]-[ congruence₁(_mod 𝐒(b)) ([↔]-to-[→] [−₀][𝐒]ₗ-equality gt) ]
(𝐒(a −₀ 𝐒(b)) mod 𝐒(b)) 🝖[ _≡_ ]-[ q ]
0 🝖-end
-}
{-mod-congruence-with-𝐒 {a}{b}{𝐒 m} p with mod-of-𝐒 {a}{𝐒 m} | mod-of-𝐒 {b}{𝐒 m}
... | [∨]-introₗ pa | [∨]-introₗ pb = pa 🝖 congruence₁(𝐒) p 🝖 symmetry(_≡_) pb
... | [∨]-introₗ pa | [∨]-introᵣ pb = {!pa 🝖 congruence₁(𝐒) p!}
... | [∨]-introᵣ pa | [∨]-introₗ pb = pa 🝖 {!!} 🝖 symmetry(_≡_) pb
... | [∨]-introᵣ pa | [∨]-introᵣ pb = pa 🝖 symmetry(_≡_) pb-}
{-mod-congruence-with-𝐒 {𝟎} {𝟎} {𝐒 m} p = [≡]-intro
mod-congruence-with-𝐒 {𝟎} {𝐒 b} {𝐒 m} p = {!!}
mod-congruence-with-𝐒 {𝐒 a} {𝟎} {𝐒 m} p = {!!}
mod-congruence-with-𝐒 {𝐒 a} {𝐒 b} {𝐒 m} p = {!!}-}
{-mod-congruence-without-𝐒 {𝟎} {𝟎} {𝐒 m} p = [≡]-intro
mod-congruence-without-𝐒 {𝟎} {𝐒 b} {𝐒 m} p = {!!}
mod-congruence-without-𝐒 {𝐒 a} {𝟎} {𝐒 m} p = {!!}
mod-congruence-without-𝐒 {𝐒 a} {𝐒 b} {𝐒 m} p = {!!}-}
{-
-- TODO: Use Structure.Arithmetic instead of the actual ℕ (without the induction principle). Then ℕ with (𝟎 , 𝐒) fulfills such a structure (hom is id), but also ℕ with (a , 𝐒) for any a (hom is (a +_)). Or maybe ℕ with (𝟎 , (a +_)) (hom is (a ⋅_)), or ℕ with (1 , (a ⋅_)). Though this will not help mod-congruence-linear because addition and modulo for example in this new structure also changes.
record Homomorphism(f : ℕ → ℕ) : Type{Lvl.𝟎} where
field
preserves-𝟎 : (f(𝟎) ≡ 𝟎)
preserves-𝐒 : ∀{n} → (f(𝐒(n)) ≡ 𝐒(f(n)))
preserves-[+] : ∀{a b} → (f(a + b) ≡ f(a) + f(b))
preserves-[+] {a} {𝟎} = symmetry(_≡_) (congruence₂ᵣ(_+_)(f(a)) preserves-𝟎)
preserves-[+] {a} {𝐒 b} = preserves-𝐒 🝖 congruence₁(𝐒) (preserves-[+] {a} {b}) 🝖 congruence₂ᵣ(_+_)(f(a)) (symmetry(_≡_) preserves-𝐒)
preserves-[⋅]ₗ : ∀{a b} → (f(a ⋅ b) ≡ f(a) ⋅ b)
preserves-[⋅]ₗ {a} {𝟎} = preserves-𝟎
preserves-[⋅]ₗ {a} {𝐒 b} = preserves-[+] {a}{a ⋅ b} 🝖 congruence₂ᵣ(_+_)(f(a)) (preserves-[⋅]ₗ {a}{b})
preserves-[−₀] : ∀{a b} → (f(a −₀ b) ≡ f(a) −₀ f(b))
preserves-[−₀] {𝟎} {b} = preserves-𝟎 🝖 congruence₂ₗ(_−₀_)(f(b)) (symmetry(_≡_) preserves-𝟎)
preserves-[−₀] {𝐒 a} {𝟎} = congruence₂ᵣ(_−₀_)(f(𝐒(a))) (symmetry(_≡_) preserves-𝟎)
preserves-[−₀] {𝐒 a} {𝐒 b} = preserves-[−₀] {a} {b} 🝖 symmetry(_≡_) (congruence₂(_−₀_) (preserves-𝐒{a}) (preserves-𝐒{b}))
-- TODO: But we also need to prove that floored division is a function without mentioning modulo (otherwise, circle argument). Below is the proof of modulo being a function depending on floored division being a function
open import Syntax.Implication
mod-congruence-linear : ∀{a b m} ⦃ pos : IsTrue(positive?(m)) ⦄ {f : ℕ → ℕ} ⦃ hom-f : Homomorphism(f) ⦄ → (a mod m ≡ b mod m) → (f(a) mod m ≡ f(b) mod m)
mod-congruence-linear {a}{b}{𝐒 m}{f} ⦃ hom-f ⦄ =
a mod 𝐒(m) ≡ b mod 𝐒(m) ⇒-[ (p ↦ symmetry(_≡_) ([⌊/⌋][⋅]-inverseOperatorᵣ-error{a}{m}) 🝖 p 🝖 [⌊/⌋][⋅]-inverseOperatorᵣ-error{b}{m}) ]
a −₀ (a ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ≡ b −₀ (b ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ⇒-[ congruence₁(f) ]
f(a −₀ (a ⌊/⌋ 𝐒(m) ⋅ 𝐒(m))) ≡ f(b −₀ (b ⌊/⌋ 𝐒(m) ⋅ 𝐒(m))) ⇒-[ {!!} ]
f(a) −₀ f(a ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ≡ f(b) −₀ f(b ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ⇒-[ {!!} ]
f(a) −₀ (f(a ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) ≡ f(b) −₀ (f(b ⌊/⌋ 𝐒(m)) ⋅ 𝐒(m)) ⇒-[ {!!} ]
f(a) −₀ (f(a) ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ≡ f(b) −₀ (f(b) ⌊/⌋ 𝐒(m) ⋅ 𝐒(m)) ⇒-[ {!!} ]
f(a) mod 𝐒(m) ≡ f(b) mod 𝐒(m) ⇒-end
where
open Homomorphism(hom-f)
-}
postulate [⋅][mod]-distributivityₗ : ∀{a b c} → (c ⋅ (a mod₀ b) ≡ ((c ⋅ a) mod₀ (c ⋅ b)))
{-[⋅][mod]-distributivityₗ {𝟎} {𝟎} {𝟎} = [≡]-intro
[⋅][mod]-distributivityₗ {𝟎} {𝟎} {𝐒 c} = [≡]-intro
[⋅][mod]-distributivityₗ {𝟎} {𝐒 b} {𝟎} = [≡]-intro
[⋅][mod]-distributivityₗ {𝟎} {𝐒 b} {𝐒 c} = [≡]-intro
[⋅][mod]-distributivityₗ {𝐒 a} {𝟎} {𝟎} = [≡]-intro
[⋅][mod]-distributivityₗ {𝐒 a} {𝟎} {𝐒 c} = [≡]-intro
[⋅][mod]-distributivityₗ {𝐒 a} {𝐒 b} {𝟎} = [≡]-intro
[⋅][mod]-distributivityₗ {𝐒 a} {𝐒 b} {𝐒 c} = ?-}
{- TODO: Above is true. Prove using the division theorem
(((c ⋅ a) / (c ⋅ b)) ⋅ (c ⋅ b)) + ((c ⋅ a) mod₀ (c ⋅ b)) ≡ c ⋅ a //Division theorem on (c ⋅ a)
(((c ⋅ a) / (c ⋅ b)) ⋅ (c ⋅ b)) + (c ⋅ (a mod₀ b)) ≡
((a / b) ⋅ (c ⋅ b)) + (c ⋅ (a mod₀ b)) ≡ //a/b = (c⋅a)/(c⋅b)
(c ⋅ ((a / b) ⋅ b)) + (c ⋅ (a mod₀ b)) ≡ //Commuting and associating ⋅
c ⋅ ((a / b) ⋅ b) + (a mod₀ b) ≡ c ⋅ a //...equal to LHS here by distributivity of (_⋅_) over (_+_), and this identity is division theorem on a with congruenced (c ⋅_)
((a / b) ⋅ b) + (a mod₀ b) ≡ a-}
{-
mod-equality-diff : ∀{a b m} → (a mod 𝐒(m) ≡ b mod 𝐒(m)) → ((a 𝄩 b) mod 𝐒(m) ≡ 𝟎)
mod-equality-diff {𝟎} {𝟎} {m} ab = [≡]-intro
mod-equality-diff {𝟎} {𝐒 b} {m} ab = symmetry(_≡_) ab
mod-equality-diff {𝐒 a} {𝟎} {m} ab = ab
mod-equality-diff {𝐒 a} {𝐒 b} {m} ab = mod-equality-diff {a} {b} {m} {!!}
-}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- mod₀
{-
-- mod₀-eq-predecessor : ∀{a b} → ((𝐒(a) mod₀ b) ≡ 𝐒(c)) → ((a mod₀ b) ≡ c)
postulate mod₀-of-𝐒 : ∀{a b} → (𝐒(a) mod₀ b ≡ 𝟎) ∨ (𝐒(a) mod₀ b ≡ 𝐒(a mod₀ b))
-- TODO: Should also be satisfied for b, not just 𝐒(b)
-- mod₀-of-modulus-pre-eq : ∀{a b} → (𝐒(a) mod₀ 𝐒(b) ≡ 𝟎) → (a mod₀ 𝐒(b) ≡ b)
-- mod₀-of-modulus-pre-eq : ∀{a b} → (𝐒(a) mod₀ 𝐒(b) ≡ 𝐒(c)) → (a mod₀ 𝐒(b) ≡ c)
postulate mod₀-[⋅]ₗ-equality : ∀{a b k c} → ((a mod₀ c) ≡ (b mod₀ c)) → (((k ⋅ a) mod₀ c) ≡ ((k ⋅ b) mod₀ c))
postulate mod₀-[⋅]ᵣ-equality : ∀{a b k c} → ((a mod₀ c) ≡ (b mod₀ c)) → (((a ⋅ k) mod₀ c) ≡ ((b ⋅ k) mod₀ c))
postulate mod₀-[⋅]-equality : ∀{a₁ b₁ a₂ b₂ c} → ((a₁ mod₀ c) ≡ (b₁ mod₀ c)) → ((a₂ mod₀ c) ≡ (b₂ mod₀ c)) → (((a₁ ⋅ a₂) mod₀ c) ≡ ((b₁ ⋅ b₂) mod₀ c))
-- postulate mod₀-[^]ᵣ-equality : ∀{a b k c} → ((a mod₀ c) ≡ (b mod₀ c)) → (((a ^ k) mod₀ c) ≡ ((b ^ k) mod₀ c))
-- postulate mod₀-[/]ₗ-equality : ∀{a b k c} → ((a mod₀ c) ≡ (b mod₀ c)) → (k ∣ a) → (k ∣ b) → (((k / a) mod₀ c) ≡ ((k / b) mod₀ c))
-- postulate mod₀-[/]ᵣ-equality : ∀{a b k c} → ((a mod₀ c) ≡ (b mod₀ c)) ∧ (k ∣ a) ∧ (k ∣ b) ← (((a / k) mod₀ c) ≡ ((b / k) mod₀ c))
-- postulate modulo-multiplication : ∀{a₁ a₂ b} → (((a₁ ⋅ a₂) mod₀ b) ≡ (((a₁ mod₀ b) ⋅ (a₂ mod₀ b)) mod₀ b))
-}
| {
"alphanum_fraction": 0.5157193302,
"avg_line_length": 56.4565916399,
"ext": "agda",
"hexsha": "3c0cb64b9a4d8a842319c5163ae8e91619beb26f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Modulo/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Modulo/Proofs.agda",
"max_line_length": 396,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Modulo/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 9063,
"size": 17558
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Category where
open import Level
open import Relation.Binary using (Rel; IsEquivalence; module IsEquivalence; Reflexive; Symmetric; Transitive) renaming (_⇒_ to _⊆_)
open import Function using (flip)
open import Categories.Support.PropositionalEquality
open import Categories.Support.Equivalence
open import Categories.Support.EqReasoning
open import Data.Product
postulate
.irr : ∀ {a} {A : Set a} → .A → A
record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
eta-equality
infix 4 _≡_ _⇒_
infixr 9 _∘_
field
Obj : Set o
_⇒_ : Rel Obj ℓ
{_≡_} : ∀ {A B} → Rel (A ⇒ B) e
{id} : ∀ {A} → (A ⇒ A)
{_∘_} : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
field
.{assoc} : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≡ h ∘ (g ∘ f)
.{identityˡ} : ∀ {A B} {f : A ⇒ B} → id ∘ f ≡ f
.{identityʳ} : ∀ {A B} {f : A ⇒ B} → f ∘ id ≡ f
.{equiv} : ∀ {A B} → IsEquivalence (_≡_ {A} {B})
.{∘-resp-≡} : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≡ h → g ≡ i → f ∘ g ≡ h ∘ i
-- with irrelevant modules this would be:
-- module .Equiv {A B : Obj} = IsEquivalence (equiv {A} {B})
module Equiv {A B : Obj} where
module e = IsEquivalence
private
.q : IsEquivalence _≡_
q = equiv {A} {B}
.refl : Reflexive _≡_
refl = e.refl q
.trans : Transitive _≡_
trans = e.trans q
.sym : Symmetric _≡_
sym = e.sym q
.reflexive : _≣_ ⊆ _≡_
reflexive = e.reflexive q
open Equiv
domain : ∀ {A B} → (A ⇒ B) → Obj
domain {A} _ = A
codomain : ∀ {A B} → (A ⇒ B) → Obj
codomain {B = B} _ = B
.∘-resp-≡ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≡ h → f ∘ g ≡ h ∘ g
∘-resp-≡ˡ pf = ∘-resp-≡ pf refl
.∘-resp-≡ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≡ h → g ∘ f ≡ g ∘ h
∘-resp-≡ʳ pf = ∘-resp-≡ refl pf
hom-setoid : ∀ {A B} → Setoid _ _
hom-setoid {A} {B} = record
{ Carrier = A ⇒ B
; _≈_ = _≡_
; isEquivalence = equiv
}
module HomReasoning {A B : Obj} where
open SetoidReasoning (hom-setoid {A} {B}) public
infixr 4 _⟩∘⟨_
._⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≡ h → g ≡ i → f ∘ g ≡ h ∘ i
_⟩∘⟨_ = ∘-resp-≡
op : Category o ℓ e
op = record
{ Obj = Obj
; _⇒_ = flip _⇒_
; _≡_ = _≡_
; _∘_ = flip _∘_
; id = id
; assoc = sym assoc
; identityˡ = identityʳ
; identityʳ = identityˡ
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≡ = flip ∘-resp-≡
}
CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _
CommutativeSquare f g h i = h ∘ f ≡ i ∘ g
.id-unique : ∀ {o} {f : o ⇒ o} → (∀ g → g ∘ f ≡ g) → f ≡ id
id-unique g∘f≡g = trans (sym identityˡ) (g∘f≡g id)
.id-comm : ∀ {a b} {f : a ⇒ b} → f ∘ id ≡ id ∘ f
id-comm = trans identityʳ (sym identityˡ)
infix 10 _[_,_] _[_≡_] _[_∘_]
_[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ
_[_,_] = Category._⇒_
_[_≡_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y} (f g : C [ X , Y ]) → Set e
_[_≡_] = Category._≡_
_[_∘_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y Z} (f : C [ Y , Z ]) → (g : C [ X , Y ]) → C [ X , Z ]
_[_∘_] = Category._∘_
-- Should this live in the Category record itself? It doesn't seem terribly useful for most situations
module Heterogeneous {o ℓ e} (C : Category o ℓ e) where
open Category C
open Equiv renaming (refl to refl′; sym to sym′; trans to trans′; reflexive to reflexive′)
infix 4 _∼_
data _∼_ {A B} (f : A ⇒ B) : ∀ {X Y} → (X ⇒ Y) → Set (ℓ ⊔ e) where
≡⇒∼ : {g : A ⇒ B} → .(f ≡ g) → f ∼ g
refl : ∀ {A B} {f : A ⇒ B} → f ∼ f
refl = ≡⇒∼ refl′
sym : ∀ {A B} {f : A ⇒ B} {D E} {g : D ⇒ E} → f ∼ g → g ∼ f
sym (≡⇒∼ f≡g) = ≡⇒∼ (sym′ f≡g)
trans : ∀ {A B} {f : A ⇒ B}
{D E} {g : D ⇒ E}
{F G} {h : F ⇒ G}
→ f ∼ g → g ∼ h → f ∼ h
trans (≡⇒∼ f≡g) (≡⇒∼ g≡h) = ≡⇒∼ (trans′ f≡g g≡h)
reflexive : ∀ {A B} {f g : A ⇒ B} → f ≣ g → f ∼ g
reflexive f≣g = ≡⇒∼ (reflexive′ f≣g)
∘-resp-∼ : ∀ {A B C A′ B′ C′} {f : B ⇒ C} {h : B′ ⇒ C′} {g : A ⇒ B} {i : A′ ⇒ B′} → f ∼ h → g ∼ i → (f ∘ g) ∼ (h ∘ i)
∘-resp-∼ (≡⇒∼ f≡h) (≡⇒∼ g≡i) = ≡⇒∼ (∘-resp-≡ f≡h g≡i)
∘-resp-∼ˡ : ∀ {A B C C′} {f : B ⇒ C} {h : B ⇒ C′} {g : A ⇒ B} → f ∼ h → (f ∘ g) ∼ (h ∘ g)
∘-resp-∼ˡ (≡⇒∼ f≡h) = ≡⇒∼ (∘-resp-≡ˡ f≡h)
∘-resp-∼ʳ : ∀ {A A′ B C} {f : A ⇒ B} {h : A′ ⇒ B} {g : B ⇒ C} → f ∼ h → (g ∘ f) ∼ (g ∘ h)
∘-resp-∼ʳ (≡⇒∼ f≡h) = ≡⇒∼ (∘-resp-≡ʳ f≡h)
.∼⇒≡ : ∀ {A B} {f g : A ⇒ B} → f ∼ g → f ≡ g
∼⇒≡ (≡⇒∼ f≡g) = irr f≡g
domain-≣ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → A ≣ A′
domain-≣ (≡⇒∼ _) = ≣-refl
codomain-≣ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → B ≣ B′
codomain-≣ (≡⇒∼ _) = ≣-refl
∼-cong : ∀ {t : Level} {T : Set t} {dom cod : T → Obj} (f : (x : T) → dom x ⇒ cod x) → ∀ {i j} (eq : i ≣ j) → f i ∼ f j
∼-cong f ≣-refl = refl
-- floating morphisms on ≣
float₂ : ∀ {A A′ B B′} → A ≣ A′ → B ≣ B′ → A ⇒ B → A′ ⇒ B′
float₂ = ≣-subst₂ _⇒_
relaxed : ∀ {A B} {f : A ⇒ B} {X Y} {g : X ⇒ Y} -> (A≣X : A ≣ X) (B≣Y : B ≣ Y) -> float₂ A≣X B≣Y f ≡ g -> f ∼ g
relaxed ≣-refl ≣-refl f≡g = ≡⇒∼ f≡g
floatˡ : ∀ {A B B′} → B ≣ B′ → A ⇒ B → A ⇒ B′
floatˡ {A} = ≣-subst (_⇒_ A)
floatˡ-resp-trans : ∀ {A B B′ B″} (B≣B′ : B ≣ B′) (B′≣B″ : B′ ≣ B″) (f : A ⇒ B) → floatˡ (≣-trans B≣B′ B′≣B″) f ≣ floatˡ B′≣B″ (floatˡ B≣B′ f)
floatˡ-resp-trans {A} = ≣-subst-trans (_⇒_ A)
floatʳ : ∀ {A A′ B} → A ≣ A′ → A ⇒ B → A′ ⇒ B
floatʳ {B = B} = ≣-subst (λ X → X ⇒ B)
float₂-breakdown-lr : ∀ {A A′} (A≣A′ : A ≣ A′) {B B′} (B≣B′ : B ≣ B′) (f : A ⇒ B) → float₂ A≣A′ B≣B′ f ≣ floatˡ B≣B′ (floatʳ A≣A′ f)
float₂-breakdown-lr = ≣-subst₂-breakdown-lr _⇒_
float₂-breakdown-rl : ∀ {A A′} (A≣A′ : A ≣ A′) {B B′} (B≣B′ : B ≣ B′) (f : A ⇒ B) → float₂ A≣A′ B≣B′ f ≣ floatʳ A≣A′ (floatˡ B≣B′ f)
float₂-breakdown-rl = ≣-subst₂-breakdown-rl _⇒_
-- henry ford versions
.∼⇒≡₂ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → (A≣A′ : A ≣ A′) (B≣B′ : B ≣ B′) → float₂ A≣A′ B≣B′ f ≡ f′
∼⇒≡₂ pf ≣-refl ≣-refl = ∼⇒≡ pf
.∼⇒≡ˡ : ∀ {A B B′} {f : A ⇒ B} {f′ : A ⇒ B′} → f ∼ f′ → (B≣B′ : B ≣ B′) → floatˡ B≣B′ f ≡ f′
∼⇒≡ˡ pf ≣-refl = ∼⇒≡ pf
.∼⇒≡ʳ : ∀ {A A′ B} {f : A ⇒ B} {f′ : A′ ⇒ B} → f ∼ f′ → (A≣A′ : A ≣ A′) → floatʳ A≣A′ f ≡ f′
∼⇒≡ʳ pf ≣-refl = ∼⇒≡ pf
≡⇒∼ʳ : ∀ {A A′ B} {f : A ⇒ B} {f′ : A′ ⇒ B} → (A≣A′ : A ≣ A′) → .(floatʳ A≣A′ f ≡ f′) → f ∼ f′
≡⇒∼ʳ ≣-refl pf = ≡⇒∼ pf
float₂-resp-∼ : ∀ {A A′ B B′} (A≣A′ : A ≣ A′) (B≣B′ : B ≣ B′) {f : C [ A , B ]} → f ∼ float₂ A≣A′ B≣B′ f
float₂-resp-∼ ≣-refl ≣-refl = refl
floatˡ-resp-∼ : ∀ {A B B′} (B≣B′ : B ≣ B′) {f : C [ A , B ]} → f ∼ floatˡ B≣B′ f
floatˡ-resp-∼ ≣-refl = refl
floatʳ-resp-∼ : ∀ {A A′ B} (A≣A′ : A ≣ A′) {f : C [ A , B ]} → f ∼ floatʳ A≣A′ f
floatʳ-resp-∼ ≣-refl = refl
_[_∼_] : ∀ {o ℓ e} (C : Category o ℓ e) {A B} (f : C [ A , B ]) {X Y} (g : C [ X , Y ]) → Set (ℓ ⊔ e)
C [ f ∼ g ] = Heterogeneous._∼_ C f g
| {
"alphanum_fraction": 0.436299435,
"avg_line_length": 33.2394366197,
"ext": "agda",
"hexsha": "005a50990d8062b6a6ee826daca32f5cfb79977c",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Category.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Category.agda",
"max_line_length": 144,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 3855,
"size": 7080
} |
-- Andreas, 2016-07-20
-- With clauses should follow the parent clause
-- what copattern style (prefix/postfix) concerns.
record R : Set₂ where
field f : Set₁
test : R
test .R.f with R -- post-fix here
R.f test | _ = Set -- pre-fix there
-- That's not nice, thus, it is an error.
| {
"alphanum_fraction": 0.6655172414,
"avg_line_length": 20.7142857143,
"ext": "agda",
"hexsha": "8d5bfd605b50c2cb5baa8f3286384704632f96bd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1963WrongFixProjectionInWithClause.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1963WrongFixProjectionInWithClause.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1963WrongFixProjectionInWithClause.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 88,
"size": 290
} |
------------------------------------------------------------------------------
-- Testing the translation of definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Definition07d where
infixl 6 _+_
infix 4 _≡_
postulate
D : Set
zero : D
succ : D → D
_≡_ : D → D → Set
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ n)
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ n)) →
∀ {n} → N n → A n
N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ m + n ≡ succ (m + n)
{-# ATP axioms +-0x +-Sx #-}
-- We test the translation of a definition where we need to erase
-- proof terms.
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity Nn = N-ind A A0 is Nn
where
A : D → Set
A i = i + zero ≡ i
{-# ATP definition A #-}
postulate A0 : A zero
{-# ATP prove A0 #-}
postulate is : ∀ {i} → A i → A (succ i)
{-# ATP prove is #-}
| {
"alphanum_fraction": 0.4374495561,
"avg_line_length": 23.8269230769,
"ext": "agda",
"hexsha": "478824c8e052db87870e3c38665f590969f7de68",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "issues/Issue81/Definition07d.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "issues/Issue81/Definition07d.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "issues/Issue81/Definition07d.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 399,
"size": 1239
} |
open import Level using (_⊔_)
open import Algebra using (module CommutativeSemiring; module DistributiveLattice)
open import Function using (id; const; _∘_; _$_)
open import Coinduction using (∞; ♯_; ♭)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.List as List using (List; _∷_; []; [_]; _++_; length; concat; foldr; concatMap)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat using (ℕ; suc; zero; _≤_; z≤n; s≤s)
open import Data.Nat.Properties using (commutativeSemiring; distributiveLattice; ≤-decTotalOrder)
open import Data.Product using (∃; _×_; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec as Vec using (Vec; _∷_; []; fromList)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Binary using (module DecTotalOrder)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; subst)
module ProofSearch
(RuleName : Set)
(TermName : Set) (_≟-TermName_ : (x y : TermName) → Dec (x ≡ y))
(Literal : Set) (_≟-Literal_ : (x y : Literal) → Dec (x ≡ y))
where
open import Unification TermName _≟-TermName_ Literal _≟-Literal_ public hiding (_++_)
----------------------------------------------------------------------------
-- * define rules and utility functions * --
----------------------------------------------------------------------------
private
∃-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (b ⊔ a)
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
-- introduce rules
record Rule (n : ℕ) : Set where
constructor rule
field
name : RuleName
conclusion : Term n
premises : List (Term n)
open Rule using (name; conclusion; premises)
-- alias for list of rules
Rules : Set
Rules = List (∃ Rule)
-- compute the arity of a rule
arity : ∀ {n} (r : Rule n) → ℕ
arity = length ∘ premises
-- open instances relevant to definitions of difference, inject and raise
open CommutativeSemiring commutativeSemiring using (_+_; +-comm)
open DistributiveLattice distributiveLattice using (_∧_; ∧-comm)
open DecTotalOrder ≤-decTotalOrder using (total)
-- compute the difference between two natural numbers, given an
-- ordering between them.
Δ_ : ∀ {m n} → m ≤ n → ℕ
Δ z≤n {k} = k
Δ s≤s p = Δ p
-- correctness proof of the difference operator Δ.
Δ-correct : ∀ {m n} (p : m ≤ n) → n ≡ m + Δ p
Δ-correct z≤n = refl
Δ-correct (s≤s p) = cong suc (Δ-correct p)
-- type class for injections in the fashion of Fin.inject+
record Inject (T : ℕ → Set) : Set where
field
inject : ∀ {m} n → T m → T (m + n)
inject≤ : ∀ {m n} → m ≤ n → T m → T n
inject≤ {m} {n} p t = subst T (sym (Δ-correct p)) (inject (Δ p) t)
open Inject {{...}} using (inject; inject≤)
-- type class for raising in the fashion of Fin.raise
record Raise (T : ℕ → Set) : Set where
field
raise : ∀ {m} n → T m → T (n + m)
raise≤ : ∀ {m n} → m ≤ n → T m → T n
raise≤ {m} {n} p t = subst T (sym (trans (Δ-correct p) (+-comm m (Δ p)))) (raise (Δ p) t)
open Raise {{...}} using (raise; raise≤)
-- instances for inject/raise for all used data types
instance
InjectFin : Inject Fin
InjectFin = record { inject = Fin.inject+ }
RaiseFin : Raise Fin
RaiseFin = record { raise = Fin.raise }
InjectTerm : Inject Term
InjectTerm = record { inject = λ n → replace (var ∘ inject n) }
RaiseTerm : Raise Term
RaiseTerm = record { raise = λ m → replace (var ∘ raise m) }
InjectTerms : Inject (List ∘ Term)
InjectTerms = record { inject = λ n → List.map (inject n) }
RaiseTerms : Raise (List ∘ Term)
RaiseTerms = record { raise = λ m → List.map (raise m) }
InjectGoals : ∀ {k} → Inject (λ n → Vec (Term n) k)
InjectGoals = record { inject = λ n → Vec.map (inject n) }
RaiseGoals : ∀ {k} → Raise (λ n → Vec (Term n) k)
RaiseGoals = record { raise = λ m → Vec.map (raise m) }
InjectRule : Inject Rule
InjectRule = record { inject = λ n → λ { (rule nm c p) → rule nm (inject n c) (inject n p) } }
RaiseRule : Raise Rule
RaiseRule = record { raise = λ m → λ { (rule nm c p) → rule nm (raise m c) (raise m p) } }
-- could rephrase inject/raise in terms of allowing modification by
-- a function ℕ → ℕ, but really... why would I... it makes all the
-- other instances much, much more obtuse
injectSubst : ∀ {m n} (δ : ℕ) → Subst m n → Subst (m + δ) (n + δ)
injectSubst _ nil = nil
injectSubst δ (snoc s t x) = snoc (injectSubst δ s) (inject δ t) (inject δ x)
private
m≤n→m⊔n=n : ∀ {m n} → m ≤ n → m ∧ n ≡ n
m≤n→m⊔n=n z≤n = refl
m≤n→m⊔n=n (s≤s p) = cong suc (m≤n→m⊔n=n p)
-- match indices of injectable data types
match : ∀ {m n} {I J} {{i : Inject I}} {{j : Inject J}}
→ I m → J n → I (m ∧ n) × J (m ∧ n)
match {m} {n} i j with total m n
... | inj₁ p rewrite m≤n→m⊔n=n p = (inject≤ p i , j)
... | inj₂ p rewrite ∧-comm m n | m≤n→m⊔n=n p = (i , inject≤ p j)
----------------------------------------------------------------------------
-- * define hint databases * --
----------------------------------------------------------------------------
record IsHintDB : Set₁ where
field
HintDB : Set
Hint : ℕ → Set
Hints : Set
Hints = List (∃ Hint)
field
getHints : HintDB → Hints
getRule : ∀ {k} → Hint k → Rule k
getTr : ∀ {k} → Hint k → (HintDB → HintDB)
ε : HintDB
_∙_ : HintDB → HintDB → HintDB
return : ∀ {k} → Rule k → HintDB
fromRules : Rules → HintDB
fromRules [] = ε
fromRules ((k , r) ∷ rs) = return r ∙ fromRules rs
----------------------------------------------------------------------------
-- * define simple hint databases * --
----------------------------------------------------------------------------
simpleHintDB : IsHintDB
simpleHintDB = record
{ HintDB = Rules
; Hint = Rule
; getHints = id
; getRule = id
; getTr = const id
; ε = []
; _∙_ = _++_
; return = λ r → [ _ , r ]
}
----------------------------------------------------------------------------
-- * define search trees, proofs and partial proofs * --
----------------------------------------------------------------------------
-- simple alias to set apart the goal term
Goal = Term
-- search trees
data SearchTree (A : Set) : Set where
leaf : A → SearchTree A
node : List (∞ (SearchTree A)) → SearchTree A
-- representation of a failed branch
fail : ∀ {A} → SearchTree A
fail = node []
data Proof : Set where
con : (name : RuleName) (args : List Proof) → Proof
-- representation of an incomplete proof
Proof′ : ℕ → Set
Proof′ m = ∃[ k ] (Vec (Goal m) k × (Vec Proof k → Proof))
con′ : ∀ {n k} (r : Rule n) → Vec Proof (arity r + k) → Vec Proof (suc k)
con′ {n} {k} r xs = head ∷ rest
where
head : Proof
head = con (name r) (Vec.toList $ Vec.take (arity r) xs)
rest : Vec Proof k
rest = Vec.drop (arity r) xs
----------------------------------------------------------------------------
-- * define proof search function * --
----------------------------------------------------------------------------
module Extensible (isHintDB : IsHintDB) where
open IsHintDB isHintDB
solve : ∀ {m} → Goal m → HintDB → SearchTree Proof
solve {m} g = solveAcc {m} (1 , g ∷ [] , Vec.head)
where
solveAcc : ∀ {m} → Proof′ m → HintDB → SearchTree Proof
solveAcc {m} (0 , [] , p) _ = leaf (p [])
solveAcc {m} (suc k , g ∷ gs , p) db = node (steps (getHints db))
where
step : ∃[ δ ] (Hint δ) → ∞ (SearchTree Proof)
step (δ , h) with unify (inject δ g) (raise m (conclusion (getRule h)))
... | nothing = ♯ node [] -- fail
... | just (n , mgu) = ♯ solveAcc {n} prf (getTr h db)
where
prf : Proof′ n
prf = arity (getRule h) + k , gs′ , (p ∘ con′ (getRule h))
where
prm′ = raise m (Vec.fromList (premises (getRule h)))
gs′ = Vec.map (replace (sub mgu)) (prm′ Vec.++ inject δ gs)
-- equivalent to `map step` due to termination checker
steps : List (∃ Hint) → List (∞ (SearchTree Proof))
steps [] = []
steps (h ∷ hs) = step h ∷ steps hs
----------------------------------------------------------------------------
-- * define various search strategies * --
----------------------------------------------------------------------------
Strategy : Set₁
Strategy = ∀ {A} (depth : ℕ) → SearchTree A → List A
dfs : Strategy
dfs zero _ = []
dfs (suc k) (leaf x) = x ∷ []
dfs (suc k) (node xs) = concatMap (λ x → dfs k (♭ x)) xs
bfs : Strategy
bfs depth t = concat (Vec.toList (bfsAcc depth t))
where
merge : ∀ {A : Set} {k} → (xs ys : Vec (List A) k) → Vec (List A) k
merge [] [] = []
merge (x ∷ xs) (y ∷ ys) = (x ++ y) ∷ merge xs ys
empty : ∀ {A : Set} {k} → Vec (List A) k
empty {k = zero} = []
empty {k = suc k} = [] ∷ empty
bfsAcc : ∀ {A} (depth : ℕ) → SearchTree A → Vec (List A) depth
bfsAcc zero _ = []
bfsAcc (suc k) (leaf x) = (x ∷ []) ∷ empty
bfsAcc (suc k) (node xs) = [] ∷ foldr merge empty (List.map (λ x → bfsAcc k (♭ x)) xs)
| {
"alphanum_fraction": 0.4725663717,
"avg_line_length": 36.9818181818,
"ext": "agda",
"hexsha": "17689d877d2e1b6ab372003524bd1a3912ef46d9",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z",
"max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/AutoInAgda",
"max_forks_repo_path": "src/ProofSearch.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/AutoInAgda",
"max_issues_repo_path": "src/ProofSearch.agda",
"max_line_length": 116,
"max_stars_count": 22,
"max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/AutoInAgda",
"max_stars_repo_path": "src/ProofSearch.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z",
"num_tokens": 2956,
"size": 10170
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.HomotopyGroup.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
import Cubical.Foundations.GroupoidLaws as GL
open import Cubical.Data.Nat
open import Cubical.Data.Group.Base
open import Cubical.HITs.SetTruncation
Pointed : ∀ {ℓ} → Type (ℓ-suc ℓ)
Pointed {ℓ} = Σ[ A ∈ Type ℓ ] A
Ω : ∀ {ℓ} → Pointed {ℓ} → Pointed {ℓ}
Ω (A , a ) = ( (a ≡ a) , refl)
Ω^_ : ∀ {ℓ} → ℕ → Pointed {ℓ} → Pointed {ℓ}
(Ω^ 0) p = p
(Ω^ (suc n)) p = Ω ((Ω^ n) p)
π^_ : ∀ {ℓ} → ℕ → Pointed {ℓ} → Group {ℓ}
π^_ {ℓ} n p = group ∥ A ∥₀ squash₀ g
where
n' : ℕ
n' = suc n
A : Type ℓ
A = (Ω^ n') p .fst
g : isGroup ∥ A ∥₀
g = group-struct e _⁻¹ _⊙_ lUnit rUnit assoc lCancel rCancel
where
e : ∥ A ∥₀
e = ∣ (Ω^ n') p .snd ∣₀
_⁻¹ : ∥ A ∥₀ → ∥ A ∥₀
_⁻¹ = elimSetTrunc {B = λ _ → ∥ A ∥₀} (λ x → squash₀) λ a → ∣ sym a ∣₀
_⊙_ : ∥ A ∥₀ → ∥ A ∥₀ → ∥ A ∥₀
_⊙_ = elimSetTrunc2 (λ _ _ → squash₀) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₀
lUnit : (a : ∥ A ∥₀) → (e ⊙ a) ≡ a
lUnit = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _))
(λ a → cong ∣_∣₀ (sym (GL.lUnit a) ))
rUnit : (a : ∥ A ∥₀) → a ⊙ e ≡ a
rUnit = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _))
(λ a → cong ∣_∣₀ (sym (GL.rUnit a) ))
assoc : (a b c : ∥ A ∥₀) → ((a ⊙ b) ⊙ c) ≡ (a ⊙ (b ⊙ c))
assoc = elimSetTrunc3 (λ _ _ _ → isProp→isSet (squash₀ _ _))
(λ a b c → cong ∣_∣₀ (sym (GL.assoc _ _ _)))
lCancel : (a : ∥ A ∥₀) → ((a ⁻¹) ⊙ a) ≡ e
lCancel = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _))
λ a → cong ∣_∣₀ (GL.lCancel _)
rCancel : (a : ∥ A ∥₀) → (a ⊙ (a ⁻¹)) ≡ e
rCancel = elimSetTrunc (λ _ → isProp→isSet (squash₀ _ _))
λ a → cong ∣_∣₀ (GL.rCancel _)
| {
"alphanum_fraction": 0.4882260597,
"avg_line_length": 30.3333333333,
"ext": "agda",
"hexsha": "1c2a8544144d932b0ab915248d59c18245666355",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Data/HomotopyGroup/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Data/HomotopyGroup/Base.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Data/HomotopyGroup/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 861,
"size": 1911
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.FunctionSeq
open import lib.types.Pointed
open import lib.types.Suspension.Core
open import lib.types.Suspension.Flip
open import lib.types.Suspension.Iterated
open import lib.types.Suspension.IteratedEquivs
open import lib.types.Suspension.IteratedTrunc
open import lib.types.Suspension.Trunc
open import lib.types.TLevel
open import lib.types.Truncation
module lib.types.Suspension.IteratedFlip where
module _ {i} {A : Type i} where
maybe-Susp^-flip : ∀ (n : ℕ)
→ Bool
→ Susp^ n A → Susp^ n A
maybe-Susp^-flip 0 _ = idf _
maybe-Susp^-flip (S _) b = maybe-Susp-flip b
Susp-fmap-maybe-Susp^-flip : ∀ (n : ℕ) (b : Bool)
→ (n == 0 → b == false)
→ maybe-Susp^-flip (S n) b ∼ Susp-fmap (maybe-Susp^-flip n b)
Susp-fmap-maybe-Susp^-flip O b h x =
maybe-Susp^-flip 1 b x
=⟨ ap (λ c → maybe-Susp^-flip 1 c x) (h idp) ⟩
x
=⟨ ! (Susp-fmap-idf A x) ⟩
Susp-fmap (idf A) x =∎
Susp-fmap-maybe-Susp^-flip (S n) true h x = ! (Susp-fmap-flip x)
Susp-fmap-maybe-Susp^-flip (S n) false h x = ! (Susp-fmap-idf (Susp^ (S n) A) x)
module _ {i} {X : Ptd i} where
⊙maybe-Susp^-flip : ∀ (n : ℕ)
→ Bool
→ ⊙Susp^ n X ⊙→ ⊙Susp^ n X
⊙maybe-Susp^-flip 0 _ = ⊙idf _
⊙maybe-Susp^-flip (S n) b = ⊙maybe-Susp-flip (⊙Susp^ n X) b
de⊙-⊙maybe-Susp^-flip : ∀ (n : ℕ) (b : Bool)
→ fst (⊙maybe-Susp^-flip n b) == maybe-Susp^-flip n b
de⊙-⊙maybe-Susp^-flip O b = idp
de⊙-⊙maybe-Susp^-flip (S n) b = de⊙-⊙maybe-Susp-flip _ b
⊙maybe-Susp^-flip-false : ∀ (n : ℕ)
→ ⊙maybe-Susp^-flip n false == ⊙idf _
⊙maybe-Susp^-flip-false O = idp
⊙maybe-Susp^-flip-false (S n) = idp
⊙maybe-Susp^-flip-flip : ∀ (n : ℕ) (b c : Bool)
→ ⊙maybe-Susp^-flip n b ◃⊙∘ ⊙maybe-Susp^-flip n c ◃⊙idf
=⊙∘
⊙maybe-Susp^-flip n (xor b c) ◃⊙idf
⊙maybe-Susp^-flip-flip 0 _ _ = =⊙∘-in idp
⊙maybe-Susp^-flip-flip (S n) b c = ⊙maybe-Susp-flip-flip (⊙Susp^ n X) b c
⊙Susp-fmap-maybe-Susp^-flip : ∀ (n : ℕ) (b : Bool)
→ (n == 0 → b == false)
→ ⊙Susp-fmap (maybe-Susp^-flip n b) == ⊙maybe-Susp^-flip (S n) b
⊙Susp-fmap-maybe-Susp^-flip 0 b h =
⊙Susp-fmap (idf (de⊙ X))
=⟨ =⊙∘-out (⊙Susp-fmap-idf _) ⟩
⊙idf _
=⟨ ap (⊙maybe-Susp^-flip 1) (! (h idp)) ⟩
⊙maybe-Susp^-flip 1 b =∎
⊙Susp-fmap-maybe-Susp^-flip (S n) b h = ⊙Susp-fmap-maybe-Susp-flip b
Susp^-fmap-Susp-flip : ∀ {i} (m : ℕ) {A : Type i} (s : Susp^ (S m) (Susp A))
→ Susp^-fmap (S m) Susp-flip s == Susp-flip s
Susp^-fmap-Susp-flip O {A} s = Susp-fmap-flip s
Susp^-fmap-Susp-flip (S m) {A} s =
Susp^-fmap (S (S m)) Susp-flip s
=⟨ ap (λ f → Susp-fmap f s) (λ= (Susp^-fmap-Susp-flip m)) ⟩
Susp-fmap Susp-flip s
=⟨ Susp-fmap-flip s ⟩
Susp-flip s =∎
abstract
⊙Susp^-fmap-⊙Susp-flip : ∀ {i} (m : ℕ) {X : Ptd i}
→ ⊙Susp^-fmap (S m) (⊙Susp-flip X) == ⊙Susp-flip (⊙Susp^ m (⊙Susp (de⊙ X)))
⊙Susp^-fmap-⊙Susp-flip 0 {X} = ⊙Susp-fmap-Susp-flip
⊙Susp^-fmap-⊙Susp-flip (S m) {X} =
⊙Susp^-fmap (S (S m)) (⊙Susp-flip X)
=⟨ ap ⊙Susp-fmap (λ= (Susp^-fmap-Susp-flip m)) ⟩
⊙Susp-fmap Susp-flip
=⟨ ⊙Susp-fmap-Susp-flip ⟩
⊙Susp-flip (⊙Susp^ (S m) (⊙Susp (de⊙ X))) =∎
⊙maybe-Susp^-flip-natural : ∀ {i} {j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
(n : ℕ) (b : Bool)
→ ⊙Susp^-fmap n f ⊙∘ ⊙maybe-Susp^-flip n b ==
⊙maybe-Susp^-flip n b ⊙∘ ⊙Susp^-fmap n f
⊙maybe-Susp^-flip-natural f O b = ! (⊙λ= (⊙∘-unit-l f))
⊙maybe-Susp^-flip-natural f (S n) b = ⊙maybe-Susp-flip-natural (⊙Susp^-fmap n f) b
⊙maybe-Susp^-flip-natural-=⊙∘ : ∀ {i} {X Y : Ptd i} (f : X ⊙→ Y)
(n : ℕ) (b : Bool)
→ ⊙Susp^-fmap n f ◃⊙∘
⊙maybe-Susp^-flip n b ◃⊙idf
=⊙∘
⊙maybe-Susp^-flip n b ◃⊙∘
⊙Susp^-fmap n f ◃⊙idf
⊙maybe-Susp^-flip-natural-=⊙∘ f n b =
=⊙∘-in (⊙maybe-Susp^-flip-natural f n b)
abstract
⊙Susp^-comm-flip : ∀ {i} (m n : ℕ) (X : Ptd i)
→ ⊙Susp^-fmap n (⊙Susp-flip (⊙Susp^ m X)) ◃⊙∘
⊙coe (⊙Susp^-comm (S m) n {X}) ◃⊙idf
=⊙∘
⊙coe (⊙Susp^-comm (S m) n {X}) ◃⊙∘
⊙Susp-flip (⊙Susp^ m (⊙Susp^ n X)) ◃⊙idf
⊙Susp^-comm-flip m O X =
⊙Susp-flip (⊙Susp^ m X) ◃⊙∘
⊙coe (⊙Susp^-comm (S m) 0) ◃⊙idf
=⊙∘⟨ 1 & 1 & =⊙∘-in {gs = ⊙idf-seq} $ ap ⊙coe (⊙Susp^-comm-0-r (S m) X) ⟩
⊙Susp-flip (⊙Susp^ m X) ◃⊙idf
=⊙∘⟨ 0 & 0 & =⊙∘-in {gs = ⊙coe (⊙Susp^-comm (S m) O) ◃⊙idf} $
! $ ap ⊙coe (⊙Susp^-comm-0-r (S m) X) ⟩
⊙coe (⊙Susp^-comm (S m) O) ◃⊙∘
⊙Susp-flip (⊙Susp^ m (⊙Susp^ O X)) ◃⊙idf ∎⊙∘
⊙Susp^-comm-flip m (S n) X =
⊙Susp^-fmap (S n) (⊙Susp-flip (⊙Susp^ m X)) ◃⊙∘
⊙coe (⊙Susp^-comm (S m) (S n)) ◃⊙idf
=⊙∘₁⟨ 0 & 1 & ⊙Susp^-fmap-⊙Susp-flip n {⊙Susp^ m X} ⟩
⊙Susp-flip (⊙Susp^ n (⊙Susp (Susp^ m (de⊙ X)))) ◃⊙∘
⊙coe (⊙Susp^-comm (S m) (S n)) ◃⊙idf
=⊙∘₁⟨ 1 & 1 & p ⟩
⊙Susp-flip (⊙Susp^ n (⊙Susp (Susp^ m (de⊙ X)))) ◃⊙∘
⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) ∙ ⊙Susp^-comm 1 n))) ◃⊙idf
=⊙∘⟨ =⊙∘-in {gs = ⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) {X} ∙ ⊙Susp^-comm 1 n {⊙Susp^ m X}))) ◃⊙∘
⊙Susp-flip (⊙Susp^ m (⊙Susp (Susp^ n (de⊙ X)))) ◃⊙idf} $
⊙Susp-flip-natural (⊙coe (⊙Susp^-comm m (S n) ∙ ⊙Susp^-comm 1 n)) ⟩
⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) {X} ∙ ⊙Susp^-comm 1 n {⊙Susp^ m X}))) ◃⊙∘
⊙Susp-flip (⊙Susp^ m (⊙Susp (Susp^ n (de⊙ X)))) ◃⊙idf
=⊙∘₁⟨ 0 & 1 & ! p ⟩
⊙coe (⊙Susp^-comm (S m) (S n)) ◃⊙∘
⊙Susp-flip (⊙Susp^ m (⊙Susp^ (S n) X)) ◃⊙idf ∎⊙∘
where
p : ⊙coe (⊙Susp^-comm (S m) (S n) {X}) ==
⊙Susp-fmap (fst (⊙coe (⊙Susp^-comm m (S n) {X} ∙ ⊙Susp^-comm 1 n {⊙Susp^ m X})))
p =
ap ⊙coe (⊙Susp^-comm-S-S m n) ∙
! (⊙transport-⊙coe ⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n)) ∙
⊙transport-⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n) ∙
ap (⊙Susp-fmap ∘ coe) (ap2 _∙_ (! (de⊙-⊙Susp^-comm m (S n) {X}))
(! (de⊙-⊙Susp^-comm 1 n {⊙Susp^ m X}))) ∙
ap (⊙Susp-fmap ∘ coe) (∙-ap de⊙ (⊙Susp^-comm m (S n)) (⊙Susp^-comm 1 n))
⊙maybe-Susp^-flip-⊙Susp^-comm : ∀ {i} (X : Ptd i) (m n : ℕ) (b : Bool)
→ ⊙Susp^-fmap n (⊙maybe-Susp^-flip m b) ◃⊙∘
⊙coe (⊙Susp^-comm m n {X}) ◃⊙idf
=⊙∘
⊙coe (⊙Susp^-comm m n {X}) ◃⊙∘
⊙maybe-Susp^-flip m b ◃⊙idf
⊙maybe-Susp^-flip-⊙Susp^-comm X O n b =
⊙Susp^-fmap n (⊙idf X) ◃⊙∘
⊙coe (⊙Susp^-comm 0 n) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙Susp^-fmap-idf n X ⟩
⊙coe (⊙Susp^-comm 0 n) ◃⊙idf
=⊙∘⟨ 1 & 0 & ⊙contract ⟩
⊙coe (⊙Susp^-comm 0 n) ◃⊙∘
⊙idf (⊙Susp^ n X) ◃⊙idf ∎⊙∘
⊙maybe-Susp^-flip-⊙Susp^-comm X (S m) n true = ⊙Susp^-comm-flip m n X
⊙maybe-Susp^-flip-⊙Susp^-comm X (S m) n false =
⊙Susp^-fmap n (⊙idf (⊙Susp^ (S m) X)) ◃⊙∘
⊙coe (⊙Susp^-comm (S m) n) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙Susp^-fmap-idf n (⊙Susp^ (S m) X) ⟩
⊙coe (⊙Susp^-comm (S m) n) ◃⊙idf
=⊙∘⟨ 1 & 0 & ⊙contract ⟩
⊙coe (⊙Susp^-comm (S m) n) ◃⊙∘
⊙idf (⊙Susp^ (S m) (⊙Susp^ n X)) ◃⊙idf ∎⊙∘
module _ {i} (X : Ptd i) (m : ℕ₋₂) where
⊙Susp^-Trunc-swap-⊙maybe-Susp^-flip : ∀ (n : ℕ) (b : Bool)
→ ⊙Susp^-Trunc-swap X m n ◃⊙∘
⊙maybe-Susp^-flip n b ◃⊙idf
=⊙∘
⊙Trunc-fmap (⊙maybe-Susp^-flip n b) ◃⊙∘
⊙Susp^-Trunc-swap X m n ◃⊙idf
⊙Susp^-Trunc-swap-⊙maybe-Susp^-flip O b =
=⊙∘-in (! (⊙λ= ⊙Trunc-fmap-⊙idf))
⊙Susp^-Trunc-swap-⊙maybe-Susp^-flip (S n) true =
⊙Susp^-Trunc-swap X m (S n) ◃⊙∘
⊙Susp-flip (⊙Susp^ n (⊙Trunc m X)) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙expand $
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf ⟩
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙∘
⊙Susp-flip (⊙Susp^ n (⊙Trunc m X)) ◃⊙idf
=⊙∘⟨ 1 & 2 & =⊙∘-in
{gs = ⊙Susp-flip (⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf} $
! $ ⊙Susp-flip-natural (⊙Susp^-Trunc-swap X m n) ⟩
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-flip (⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf
=⊙∘⟨ 0 & 2 & ⊙Susp-Trunc-swap-⊙Susp-flip (⟨ n ⟩₋₂ +2+ m) ⟩
⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n X)) ◃⊙∘
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & ⊙contract ⟩
⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n X)) ◃⊙∘
⊙Susp^-Trunc-swap X m (S n) ◃⊙idf ∎⊙∘
⊙Susp^-Trunc-swap-⊙maybe-Susp^-flip (S n) false =
⊙Susp^-Trunc-swap X m (S n) ◃⊙∘
⊙idf _ ◃⊙idf
=⊙∘⟨ 1 & 1 & ⊙expand ⊙idf-seq ⟩
⊙Susp^-Trunc-swap X m (S n) ◃⊙idf
=⊙∘₁⟨ 0 & 0 & ! (⊙λ= ⊙Trunc-fmap-⊙idf) ⟩
⊙Trunc-fmap (⊙idf (⊙Susp (de⊙ (⊙Susp^ n X)))) ◃⊙∘
⊙Susp^-Trunc-swap X m (S n) ◃⊙idf ∎⊙∘
| {
"alphanum_fraction": 0.4980254993,
"avg_line_length": 40.2863636364,
"ext": "agda",
"hexsha": "c24b73af7f8bcafcc4903b54361beae8f18b523a",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Suspension/IteratedFlip.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Suspension/IteratedFlip.agda",
"max_line_length": 108,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Suspension/IteratedFlip.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4832,
"size": 8863
} |
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Float
NaN : Float
NaN = primFloatDiv 0.0 0.0
-NaN : Float
-NaN = primFloatNegate NaN
NaN≮NaN : primFloatNumericalLess NaN NaN ≡ false
NaN≮NaN = refl
-NaN≮-NaN : primFloatNumericalLess -NaN -NaN ≡ false
-NaN≮-NaN = refl
NaN≮-NaN : primFloatNumericalLess NaN -NaN ≡ false
NaN≮-NaN = refl
-NaN<NaN : primFloatNumericalLess -NaN NaN ≡ false
-NaN<NaN = refl
| {
"alphanum_fraction": 0.7394209354,
"avg_line_length": 19.5217391304,
"ext": "agda",
"hexsha": "0d3030e34dc2147e71c5bc8bb00386b5690777f5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2208.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue2208.agda",
"max_line_length": 52,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue2208.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 160,
"size": 449
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Monoid.Submonoid where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra
open import Cubical.Algebra.Monoid.Morphism
open import Cubical.Algebra.Semigroup.Subsemigroup
open import Cubical.Relation.Unary
open import Cubical.Relation.Unary.Subtype
open import Cubical.HITs.PropositionalTruncation
record IsSubmonoid {c ℓ} (M : Monoid c) (Member : Pred ⟨ M ⟩ ℓ) : Type (ℓ-max c ℓ) where
constructor issubmonoid
private module M = Monoid M
field
preservesOp : M._•_ Preserves₂ Member
preservesId : M.ε ∈ Member
isSubsemigroup : IsSubsemigroup M.semigroup Member
isSubsemigroup = record { closed = preservesOp }
open IsSubsemigroup isSubsemigroup hiding (closed; _^_) public
ε : Carrier
ε = M.ε , preservesId
identityˡ : LeftIdentity ε _•_
identityˡ _ = ΣPathTransport→PathΣ _ _ (M.identityˡ _ , isProp[ Member ] _ _ _)
identityʳ : RightIdentity ε _•_
identityʳ _ = ΣPathTransport→PathΣ _ _ (M.identityʳ _ , isProp[ Member ] _ _ _)
identity : Identity ε _•_
identity = identityˡ , identityʳ
isMonoid : IsMonoid Carrier _•_ ε
isMonoid = record
{ isSemigroup = isSemigroup
; identity = identity
}
monoid : Monoid _
monoid = record { isMonoid = isMonoid }
open Monoid monoid using (ε-uniqueˡ; ε-uniqueʳ; _^_) public
record Submonoid {c} (M : Monoid c) ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where
constructor mksubmonoid
private module M = Monoid M
field
Member : Pred ⟨ M ⟩ ℓ
isSubmonoid : IsSubmonoid M Member
open IsSubmonoid isSubmonoid public
subsemigroup : Subsemigroup M.semigroup ℓ
subsemigroup = record { isSubsemigroup = isSubsemigroup }
open Subsemigroup subsemigroup public using (submagma)
instance
SubmonoidCarrier : ∀ {c ℓ} {M : Monoid c} → HasCarrier (Submonoid M ℓ) _
SubmonoidCarrier = record { ⟨_⟩ = Submonoid.Carrier }
module _ {ℓ} (M : Monoid ℓ) where
open Monoid M
ε-isSubmonoid : IsSubmonoid M { ε }
ε-isSubmonoid = record
{ preservesOp = map2 λ p q → cong₂ _•_ p q ∙ identityʳ ε
; preservesId = ∣ refl ∣
}
ε-submonoid : Submonoid M _
ε-submonoid = record { isSubmonoid = ε-isSubmonoid }
U-isSubmonoid : IsSubmonoid M U
U-isSubmonoid = record {} -- trivial
U-submonoid : Submonoid M _
U-submonoid = record { isSubmonoid = U-isSubmonoid }
| {
"alphanum_fraction": 0.7138844302,
"avg_line_length": 24.92,
"ext": "agda",
"hexsha": "421e2252f13cbaa09a7a2b597ebcc5eb72ba84c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Submonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Submonoid.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Submonoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 822,
"size": 2492
} |
open import Preliminaries
open import Source-lang
module Examples-Source where
----- examples
nexp = [] |- nat
dbl-test4 : nexp
dbl-test4 = app dbl (suc (suc z))
four : nexp
four = suc (suc (suc (suc z)))
eqs4 : evals dbl-test4 four ((0c +c 0c) +c (0c +c (1c +c (0c +c (0c +c (1c +c (0c +c (0c +c (1c +c 0c)))))))))
eqs4 = app-evals lam-evals (s-evals (s-evals z-evals)) (rec-evals (s-evals (s-evals z-evals)) (evals-rec-s (s-evals (s-evals (force-evals delay-evals (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals))))))))))))
dbl-test0 : nexp
dbl-test0 = app dbl z
zero : nexp
zero = z
eqs0 : evals dbl-test0 zero ((0c +c 0c) +c (0c +c (1c +c 0c)))
eqs0 = app-evals lam-evals z-evals (rec-evals z-evals (evals-rec-z z-evals))
add-test0 : nexp
add-test0 = app (app add z) z
eqs01 : evals add-test0 zero ((((0c +c 0c) +c 0c) +c 0c) +c (0c +c (1c +c 0c)))
eqs01 = app-evals (app-evals lam-evals z-evals lam-evals) z-evals (rec-evals z-evals (evals-rec-z z-evals))
one : nexp
one = suc z
two : nexp
two = suc (suc z)
add-test1 : nexp
add-test1 = app (app add (suc z)) z
eqs11 : evals add-test1 one ((((0c +c 0c) +c 0c) +c 0c) +c
(0c +c (1c +c (0c +c (0c +c (1c +c 0c))))))
eqs11 = app-evals (app-evals lam-evals (s-evals z-evals) lam-evals) z-evals (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals))))))
add-test1' : nexp
add-test1' = app (app add z) (suc z)
eqs11' : evals add-test1' one ((((0c +c 0c) +c 0c) +c 0c) +c (0c +c (1c +c 0c)))
eqs11' = app-evals (app-evals lam-evals z-evals lam-evals) (s-evals z-evals) (rec-evals z-evals (evals-rec-z (s-evals z-evals)))
add-test2 : nexp
add-test2 = app (app add z) four
eqs12 : evals add-test2 four ((((0c +c 0c) +c 0c) +c 0c) +c (0c +c (1c +c 0c)))
eqs12 = app-evals (app-evals lam-evals z-evals lam-evals) (s-evals (s-evals (s-evals (s-evals z-evals)))) (rec-evals z-evals (evals-rec-z (s-evals (s-evals (s-evals (s-evals z-evals))))))
add-test2' : nexp
add-test2' = app (app add four) z
eqs12' : evals add-test2' four ((((0c +c 0c) +c 0c) +c 0c) +c
(0c +c
(1c +c
(0c +c
(0c +c
(1c +c
(0c +c
(0c +c
(1c +c (0c +c (0c +c (1c +c (0c +c (0c +c (1c +c 0c)))))))))))))))
eqs12' = app-evals (app-evals lam-evals (s-evals (s-evals (s-evals (s-evals z-evals)))) lam-evals) z-evals (rec-evals (s-evals (s-evals (s-evals (s-evals z-evals)))) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals (s-evals (s-evals (s-evals z-evals))) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals (s-evals (s-evals z-evals)) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals))))))))))))))))))
mult-test1 : nexp
mult-test1 = app (app mult two) two
eqs111 : evals mult-test1 four ((((0c +c 0c) +c 0c) +c 0c) +c
(0c +c
(1c +c
((((0c +c 0c) +c 0c) +c
(0c +c
(0c +c
(1c +c
((((0c +c 0c) +c 0c) +c (0c +c (0c +c (1c +c 0c)))) +c
(0c +c
(1c +c (0c +c (0c +c (1c +c (0c +c (0c +c (1c +c 0c)))))))))))))
+c
(0c +c
(1c +c (0c +c (0c +c (1c +c (0c +c (0c +c (1c +c 0c))))))))))))
eqs111 = app-evals (app-evals lam-evals (s-evals (s-evals z-evals)) lam-evals) (s-evals (s-evals z-evals)) (rec-evals (s-evals (s-evals z-evals)) (evals-rec-s (app-evals (app-evals lam-evals (s-evals (s-evals z-evals)) lam-evals) (force-evals delay-evals (rec-evals (s-evals z-evals) (evals-rec-s (app-evals (app-evals lam-evals (s-evals (s-evals z-evals)) lam-evals) (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals))) (rec-evals (s-evals (s-evals z-evals)) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals)))))))))))))) (rec-evals (s-evals (s-evals z-evals)) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z (s-evals (s-evals z-evals)))))))))))))))
mult-test2 : nexp
mult-test2 = app (app mult one) one
eqs112 : evals mult-test2 one ((((0c +c 0c) +c 0c) +c 0c) +c
(0c +c
(1c +c
((((0c +c 0c) +c 0c) +c (0c +c (0c +c (1c +c 0c)))) +c
(0c +c (1c +c (0c +c (0c +c (1c +c 0c)))))))))
eqs112 = app-evals (app-evals lam-evals (s-evals z-evals) lam-evals) (s-evals z-evals) (rec-evals (s-evals z-evals) (evals-rec-s (app-evals (app-evals lam-evals (s-evals z-evals) lam-evals) (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals))) (rec-evals (s-evals z-evals) (evals-rec-s (s-evals (force-evals delay-evals (rec-evals z-evals (evals-rec-z z-evals)))))))))
mult-test0 : nexp
mult-test0 = app (app mult zero) zero
eqs00 : evals mult-test0 zero ((((0c +c 0c) +c 0c) +c 0c) +c (0c +c (1c +c 0c)))
eqs00 = app-evals (app-evals lam-evals z-evals lam-evals) z-evals (rec-evals z-evals (evals-rec-z z-evals))
| {
"alphanum_fraction": 0.5168200837,
"avg_line_length": 63.5638297872,
"ext": "agda",
"hexsha": "2559dea1cce768c517d0f92f482632280b76f255",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity-drafts/Examples-Source.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity-drafts/Examples-Source.agda",
"max_line_length": 888,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity-drafts/Examples-Source.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 2244,
"size": 5975
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.FunctionSeq
open import lib.types.Nat
open import lib.types.Pointed
open import lib.types.Suspension.Core
open import lib.types.Suspension.Iterated
module lib.types.Suspension.IteratedEquivs where
Susp^-+ : ∀ {i} (m n : ℕ) {A : Type i}
→ Susp^ m (Susp^ n A) == Susp^ (m + n) A
Susp^-+ O n = idp
Susp^-+ (S m) n = ap Susp (Susp^-+ m n)
⊙Susp^-+ : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^ m (⊙Susp^ n X) == ⊙Susp^ (m + n) X
⊙Susp^-+ 0 n {X} = idp
⊙Susp^-+ (S m) n {X} = ap ⊙Susp (Susp^-+ m n)
de⊙-⊙Susp^-+ : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ap de⊙ (⊙Susp^-+ m n {X}) == Susp^-+ m n {de⊙ X}
de⊙-⊙Susp^-+ 0 n {X} = idp
de⊙-⊙Susp^-+ (S m) n {X} = ∘-ap de⊙ ⊙Susp (Susp^-+ m n)
Susp^-+-0-r : ∀ {i} (m : ℕ) {A : Type i}
→ Susp^-+ m 0 ◃∙ ap (λ k → Susp^ k A) (+-unit-r m) ◃∎ =ₛ []
Susp^-+-0-r O {A} = =ₛ-in $
ap (ap (λ k → Susp^ k A))
(set-path ℕ-level (+-unit-r 0) idp)
Susp^-+-0-r (S m) {A} =
ap Susp (Susp^-+ m 0) ◃∙
ap (λ k → Susp^ k A) (+-unit-r (S m)) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → Susp^ k A)) $
set-path ℕ-level (+-unit-r (S m)) (ap S (+-unit-r m)) ⟩
ap Susp (Susp^-+ m 0) ◃∙
ap (λ k → Susp^ k A) (ap S (+-unit-r m)) ◃∎
=ₛ₁⟨ 1 & 1 &
∘-ap (λ k → Susp^ k A) S (+-unit-r m) ∙
ap-∘ Susp (λ k → Susp^ k A) (+-unit-r m) ⟩
ap Susp (Susp^-+ m 0) ◃∙
ap Susp (ap (λ k → Susp^ k A) (+-unit-r m)) ◃∎
=ₛ⟨ ap-seq-=ₛ Susp (Susp^-+-0-r m) ⟩
[] ∎ₛ
⊙Susp^-+-0-r : ∀ {i} (m : ℕ) {X : Ptd i}
→ ⊙Susp^-+ m 0 ◃∙ ap (λ k → ⊙Susp^ k X) (+-unit-r m) ◃∎ =ₛ []
⊙Susp^-+-0-r 0 {X} = =ₛ-in $
ap (ap (λ k → ⊙Susp^ k X))
(set-path ℕ-level (+-unit-r 0) idp)
⊙Susp^-+-0-r (S m) {X} =
ap ⊙Susp (Susp^-+ m 0) ◃∙
ap (λ k → ⊙Susp^ k X) (+-unit-r (S m)) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → ⊙Susp^ k X)) $
set-path ℕ-level (+-unit-r (S m)) (ap S (+-unit-r m)) ⟩
ap ⊙Susp (Susp^-+ m 0) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-unit-r m)) ◃∎
=ₛ₁⟨ 1 & 1 &
∘-ap (λ k → ⊙Susp^ k X) S (+-unit-r m) ∙
ap-∘ ⊙Susp (λ k → Susp^ k (de⊙ X)) (+-unit-r m) ⟩
ap ⊙Susp (Susp^-+ m 0) ◃∙
ap ⊙Susp (ap (λ k → Susp^ k (de⊙ X)) (+-unit-r m)) ◃∎
=ₛ⟨ ap-seq-=ₛ ⊙Susp (Susp^-+-0-r m) ⟩
[] ∎ₛ
Susp^-+-assoc-coh : ∀ {i} (m n o : ℕ) {A : Type i}
→ ap (Susp^ m) (Susp^-+ n o {A}) ◃∙
Susp^-+ m (n + o) {A} ◃∎
=ₛ
Susp^-+ m n {Susp^ o A} ◃∙
Susp^-+ (m + n) o ◃∙
ap (λ k → Susp^ k A) (+-assoc m n o) ◃∎
Susp^-+-assoc-coh O n o {A} =
ap (idf _) (Susp^-+ n o {A}) ◃∙
idp ◃∎
=ₛ₁⟨ 0 & 1 & ap-idf (Susp^-+ n o {A}) ⟩
Susp^-+ n o {A} ◃∙
idp ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → Susp^ k A)) $
set-path ℕ-level idp (+-assoc 0 n o) ⟩
Susp^-+ n o {A} ◃∙
ap (λ k → Susp^ k A) (+-assoc 0 n o) ◃∎
=ₛ⟨ 0 & 0 & contract ⟩
idp ◃∙
Susp^-+ n o {A} ◃∙
ap (λ k → Susp^ k A) (+-assoc 0 n o) ◃∎ ∎ₛ
Susp^-+-assoc-coh (S m) n o {A} =
ap (Susp ∘ Susp^ m) (Susp^-+ n o {A}) ◃∙
ap Susp (Susp^-+ m (n + o) {A}) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ Susp (Susp^ m) (Susp^-+ n o {A}) ⟩
ap Susp (ap (Susp^ m) (Susp^-+ n o {A})) ◃∙
ap Susp (Susp^-+ m (n + o) {A}) ◃∎
=ₛ⟨ ap-seq-=ₛ Susp (Susp^-+-assoc-coh m n o) ⟩
ap Susp (Susp^-+ m n) ◃∙
ap Susp (Susp^-+ (m + n) o) ◃∙
ap Susp (ap (λ k → Susp^ k A) (+-assoc m n o)) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap Susp (λ k → Susp^ k A) (+-assoc m n o) ∙
ap-∘ (λ k → Susp^ k A) S (+-assoc m n o) ⟩
ap Susp (Susp^-+ m n) ◃∙
ap Susp (Susp^-+ (m + n) o) ◃∙
ap (λ k → Susp^ k A) (ap S (+-assoc m n o)) ◃∎
=ₛ₁⟨ 2 & 1 & ap (ap (λ k → Susp^ k A)) $
set-path ℕ-level (ap S (+-assoc m n o)) (+-assoc (S m) n o) ⟩
ap Susp (Susp^-+ m n) ◃∙
ap Susp (Susp^-+ (m + n) o) ◃∙
ap (λ k → Susp^ k A) (+-assoc (S m) n o) ◃∎ ∎ₛ
⊙Susp^-+-assoc-coh : ∀ {i} (m n o : ℕ) {X : Ptd i}
→ ap (⊙Susp^ m) (⊙Susp^-+ n o {X}) ◃∙
⊙Susp^-+ m (n + o) {X} ◃∎
=ₛ
⊙Susp^-+ m n {⊙Susp^ o X} ◃∙
⊙Susp^-+ (m + n) o ◃∙
ap (λ k → ⊙Susp^ k X) (+-assoc m n o) ◃∎
⊙Susp^-+-assoc-coh O n o {X} =
ap (idf _) (⊙Susp^-+ n o) ◃∙
idp ◃∎
=ₛ₁⟨ 0 & 1 & ap-idf (⊙Susp^-+ n o) ⟩
⊙Susp^-+ n o ◃∙
idp ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → ⊙Susp^ k X)) $
set-path ℕ-level idp (+-assoc 0 n o) ⟩
⊙Susp^-+ n o ◃∙
ap (λ k → ⊙Susp^ k X) (+-assoc 0 n o) ◃∎
=ₛ⟨ 0 & 0 & contract ⟩
idp ◃∙
⊙Susp^-+ n o ◃∙
ap (λ k → ⊙Susp^ k X) (+-assoc 0 n o) ◃∎ ∎ₛ
⊙Susp^-+-assoc-coh (S m) n o {X} =
ap (⊙Susp ∘ Susp^ m ∘ de⊙) (⊙Susp^-+ n o {X}) ◃∙
ap ⊙Susp (Susp^-+ m (n + o) {de⊙ X}) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (⊙Susp ∘ Susp^ m) de⊙ (⊙Susp^-+ n o {X}) ⟩
ap (⊙Susp ∘ Susp^ m) (ap de⊙ (⊙Susp^-+ n o {X})) ◃∙
ap ⊙Susp (Susp^-+ m (n + o) {de⊙ X}) ◃∎
=ₛ₁⟨ 0 & 1 & ap (ap (⊙Susp ∘ Susp^ m)) (de⊙-⊙Susp^-+ n o {X}) ⟩
ap (⊙Susp ∘ Susp^ m) (Susp^-+ n o {de⊙ X}) ◃∙
ap ⊙Susp (Susp^-+ m (n + o) {de⊙ X}) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ ⊙Susp (Susp^ m) (Susp^-+ n o {de⊙ X}) ⟩
ap ⊙Susp (ap (Susp^ m) (Susp^-+ n o {de⊙ X})) ◃∙
ap ⊙Susp (Susp^-+ m (n + o) {de⊙ X}) ◃∎
=ₛ⟨ ap-seq-=ₛ ⊙Susp (Susp^-+-assoc-coh m n o) ⟩
ap ⊙Susp (Susp^-+ m n) ◃∙
ap ⊙Susp (Susp^-+ (m + n) o) ◃∙
ap ⊙Susp (ap (λ k → Susp^ k (de⊙ X)) (+-assoc m n o)) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap ⊙Susp (λ k → Susp^ k (de⊙ X)) (+-assoc m n o) ∙
ap-∘ (λ k → ⊙Susp^ k X) S (+-assoc m n o) ⟩
ap ⊙Susp (Susp^-+ m n) ◃∙
ap ⊙Susp (Susp^-+ (m + n) o) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-assoc m n o)) ◃∎
=ₛ₁⟨ 2 & 1 & ap (ap (λ k → ⊙Susp^ k X)) $
set-path ℕ-level (ap S (+-assoc m n o)) (+-assoc (S m) n o) ⟩
ap ⊙Susp (Susp^-+ m n) ◃∙
ap ⊙Susp (Susp^-+ (m + n) o) ◃∙
ap (λ k → ⊙Susp^ k X) (+-assoc (S m) n o) ◃∎ ∎ₛ
Susp^-comm-seq : ∀ {i} (m n : ℕ) {A : Type i}
→ Susp^ m (Susp^ n A) =-= Susp^ n (Susp^ m A)
Susp^-comm-seq m n {A} =
Susp^ m (Susp^ n A)
=⟪ Susp^-+ m n ⟫
Susp^ (m + n) A
=⟪ ap (λ k → Susp^ k A) (+-comm m n) ⟫
Susp^ (n + m) A
=⟪ ! (Susp^-+ n m) ⟫
Susp^ n (Susp^ m A) ∎∎
Susp^-comm : ∀ {i} (m n : ℕ) {A : Type i}
→ Susp^ m (Susp^ n A) == Susp^ n (Susp^ m A)
Susp^-comm m n {A} = ↯ (Susp^-comm-seq m n {A})
⊙Susp^-comm-seq : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^ m (⊙Susp^ n X) =-= ⊙Susp^ n (⊙Susp^ m X)
⊙Susp^-comm-seq m n {X} =
⊙Susp^ m (⊙Susp^ n X)
=⟪ ⊙Susp^-+ m n ⟫
⊙Susp^ (m + n) X
=⟪ ap (λ k → ⊙Susp^ k X) (+-comm m n) ⟫
⊙Susp^ (n + m) X
=⟪ ! (⊙Susp^-+ n m) ⟫
⊙Susp^ n (⊙Susp^ m X) ∎∎
⊙Susp^-comm : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^ m (⊙Susp^ n X) == ⊙Susp^ n (⊙Susp^ m X)
⊙Susp^-comm m n {X} = ↯ (⊙Susp^-comm-seq m n {X})
de⊙-⊙Susp^-comm : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ap de⊙ (⊙Susp^-comm m n {X}) == Susp^-comm m n {de⊙ X}
de⊙-⊙Susp^-comm m n {X} = =ₛ-out {t = Susp^-comm m n {de⊙ X} ◃∎} $
ap de⊙ (⊙Susp^-comm m n {X}) ◃∎
=ₛ⟨ ap-seq-∙ de⊙ (⊙Susp^-comm-seq m n {X}) ⟩
ap de⊙ (⊙Susp^-+ m n) ◃∙
ap de⊙ (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃∙
ap de⊙ (! (⊙Susp^-+ n m)) ◃∎
=ₛ₁⟨ 0 & 1 & de⊙-⊙Susp^-+ m n ⟩
Susp^-+ m n ◃∙
ap de⊙ (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃∙
ap de⊙ (! (⊙Susp^-+ n m)) ◃∎
=ₛ₁⟨ 1 & 1 & ∘-ap de⊙ (λ k → ⊙Susp^ k X) (+-comm m n) ⟩
Susp^-+ m n ◃∙
ap (λ k → Susp^ k (de⊙ X)) (+-comm m n) ◃∙
ap de⊙ (! (⊙Susp^-+ n m)) ◃∎
=ₛ₁⟨ 2 & 1 & ap-! de⊙ (⊙Susp^-+ n m) ⟩
Susp^-+ m n ◃∙
ap (λ k → Susp^ k (de⊙ X)) (+-comm m n) ◃∙
! (ap de⊙ (⊙Susp^-+ n m)) ◃∎
=ₛ₁⟨ 2 & 1 & ap ! (de⊙-⊙Susp^-+ n m) ⟩
Susp^-+ m n ◃∙
ap (λ k → Susp^ k (de⊙ X)) (+-comm m n) ◃∙
! (Susp^-+ n m) ◃∎
=ₛ⟨ contract ⟩
Susp^-comm m n ◃∎ ∎ₛ
⊙Susp^-swap : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^ m (⊙Susp^ n X) ⊙→ ⊙Susp^ n (⊙Susp^ m X)
⊙Susp^-swap m n {X} = ⊙coe (⊙Susp^-comm m n {X})
abstract
⊙Susp^-comm-diag : ∀ {i} (m : ℕ) {X : Ptd i}
→ ⊙Susp^-comm m m {X} ◃∎ =ₛ []
⊙Susp^-comm-diag m {X} =
↯ (⊙Susp^-comm-seq m m {X}) ◃∎
=ₛ⟨ expand (⊙Susp^-comm-seq m m {X}) ⟩
⊙Susp^-+ m m ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m m) ◃∙
! (⊙Susp^-+ m m) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → ⊙Susp^ k X)) (set-path ℕ-level (+-comm m m) idp) ⟩
⊙Susp^-+ m m ◃∙
idp ◃∙
! (⊙Susp^-+ m m) ◃∎
=ₛ⟨ 1 & 1 & expand [] ⟩
⊙Susp^-+ m m ◃∙
! (⊙Susp^-+ m m) ◃∎
=ₛ⟨ seq-!-inv-r (⊙Susp^-+ m m ◃∎) ⟩
[] ∎ₛ
Susp^-comm-! : ∀ {i} (m n : ℕ) {A : Type i}
→ ! (Susp^-comm m n {A}) == Susp^-comm n m
Susp^-comm-! m n {A} = =ₛ-out $
! (↯ (Susp^-comm-seq m n {A})) ◃∎
=ₛ⟨ !-∙-seq (Susp^-comm-seq m n {A}) ⟩
! (! (Susp^-+ n m)) ◃∙
! (ap (λ k → Susp^ k A) (+-comm m n)) ◃∙
! (Susp^-+ m n) ◃∎
=ₛ₁⟨ 0 & 1 & !-! (Susp^-+ n m) ⟩
Susp^-+ n m ◃∙
! (ap (λ k → Susp^ k A) (+-comm m n)) ◃∙
! (Susp^-+ m n) ◃∎
=ₛ₁⟨ 1 & 1 & !-ap (λ k → Susp^ k A) (+-comm m n) ⟩
Susp^-+ n m ◃∙
ap (λ k → Susp^ k A) (! (+-comm m n)) ◃∙
! (Susp^-+ m n) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → Susp^ k A)) $
set-path ℕ-level (! (+-comm m n)) (+-comm n m) ⟩
Susp^-+ n m ◃∙
ap (λ k → Susp^ k A) (+-comm n m) ◃∙
! (Susp^-+ m n) ◃∎ ∎ₛ
⊙Susp^-comm-! : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ! (⊙Susp^-comm m n {X}) == ⊙Susp^-comm n m
⊙Susp^-comm-! m n {X} = =ₛ-out $
! (↯ (⊙Susp^-comm-seq m n {X})) ◃∎
=ₛ⟨ !-∙-seq (⊙Susp^-comm-seq m n {X}) ⟩
! (! (⊙Susp^-+ n m)) ◃∙
! (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃∙
! (⊙Susp^-+ m n) ◃∎
=ₛ₁⟨ 0 & 1 & !-! (⊙Susp^-+ n m) ⟩
⊙Susp^-+ n m ◃∙
! (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃∙
! (⊙Susp^-+ m n) ◃∎
=ₛ₁⟨ 1 & 1 & !-ap (λ k → ⊙Susp^ k X) (+-comm m n) ⟩
⊙Susp^-+ n m ◃∙
ap (λ k → ⊙Susp^ k X) (! (+-comm m n)) ◃∙
! (⊙Susp^-+ m n) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → ⊙Susp^ k X)) $
set-path ℕ-level (! (+-comm m n)) (+-comm n m) ⟩
⊙Susp^-+ n m ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm n m) ◃∙
! (⊙Susp^-+ m n) ◃∎ ∎ₛ
⊙Susp^-comm-0-r : ∀ {i} (m : ℕ) (X : Ptd i)
→ ⊙Susp^-comm m 0 {X} == idp
⊙Susp^-comm-0-r m X = =ₛ-out $
⊙Susp^-+ m 0 ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m 0) ◃∙
! (⊙Susp^-+ 0 m) ◃∎
=ₛ⟨ 2 & 1 & expand [] ⟩
⊙Susp^-+ m 0 ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m 0) ◃∎
=ₛ₁⟨ 1 & 1 & ap (ap (λ k → ⊙Susp^ k X)) $
set-path ℕ-level (+-comm m 0) (+-unit-r m) ⟩
⊙Susp^-+ m 0 ◃∙
ap (λ k → ⊙Susp^ k X) (+-unit-r m) ◃∎
=ₛ⟨ ⊙Susp^-+-0-r m ⟩
[] ∎ₛ
⊙Susp^-comm-0-l : ∀ {i} (n : ℕ) (X : Ptd i)
→ ⊙Susp^-comm 0 n {X} == idp
⊙Susp^-comm-0-l n X =
⊙Susp^-comm 0 n {X}
=⟨ ! (⊙Susp^-comm-! n 0 {X}) ⟩
! (⊙Susp^-comm n 0 {X})
=⟨ ap ! (⊙Susp^-comm-0-r n X) ⟩
idp =∎
⊙Susp^-comm-S-r : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^-comm m (S n) {X} ◃∎ =ₛ ⊙Susp^-comm m 1 {⊙Susp^ n X} ◃∙ ap ⊙Susp (Susp^-comm m n) ◃∎
⊙Susp^-comm-S-r m n {X} =
⊙Susp^-comm m (S n) {X} ◃∎
=ₛ⟨ expand (⊙Susp^-comm-seq m (S n) {X}) ⟩
⊙Susp^-+ m (S n) ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m (S n)) ◃∙
! (⊙Susp^-+ (S n) m {X}) ◃∎
=ₛ⟨ 0 & 0 & contract ⟩
idp ◃∙
⊙Susp^-+ m (S n) ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m (S n)) ◃∙
! (⊙Susp^-+ (S n) m {X}) ◃∎
=ₛ⟨ 0 & 2 & ⊙Susp^-+-assoc-coh m 1 n ⟩
⊙Susp^-+ m 1 ◃∙
⊙Susp^-+ (m + 1) n ◃∙
ap (λ k → ⊙Susp^ k X) (+-assoc m 1 n) ◃∙
ap (λ k → ⊙Susp^ k X) (+-comm m (S n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ⟨ 2 & 2 & ap-seq-=ₛ (λ k → ⊙Susp^ k X) $
=ₛ-in {s = +-assoc m 1 n ◃∙ +-comm m (S n) ◃∎}
{t = ap (_+ n) (+-comm m 1) ◃∙ ap S (+-comm m n) ◃∎} $
set-path ℕ-level _ _ ⟩
⊙Susp^-+ m 1 ◃∙
⊙Susp^-+ (m + 1) n ◃∙
ap (λ k → ⊙Susp^ k X) (ap (_+ n) (+-comm m 1)) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap (λ k → ⊙Susp^ k X) (_+ n) (+-comm m 1) ⟩
⊙Susp^-+ m 1 ◃∙
⊙Susp^-+ (m + 1) n ◃∙
ap (λ k → ⊙Susp^ (k + n) X) (+-comm m 1) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ⟨ 1 & 2 & !ₛ $ homotopy-naturality
(λ l → ⊙Susp^ l (⊙Susp^ n X))
(λ l → ⊙Susp^ (l + n) X)
(λ l → ⊙Susp^-+ l n)
(+-comm m 1) ⟩
⊙Susp^-+ m 1 ◃∙
ap (λ l → ⊙Susp^ l (⊙Susp^ n X)) (+-comm m 1) ◃∙
ap ⊙Susp (Susp^-+ m n) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ⟨ 2 & 0 & contract ⟩
⊙Susp^-+ m 1 ◃∙
ap (λ l → ⊙Susp^ l (⊙Susp^ n X)) (+-comm m 1) ◃∙
idp ◃∙
ap ⊙Susp (Susp^-+ m n) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ⟨ 0 & 3 & contract ⟩
⊙Susp^-comm m 1 ◃∙
ap ⊙Susp (Susp^-+ m n) ◃∙
ap (λ k → ⊙Susp^ k X) (ap S (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap (λ k → ⊙Susp^ k X) S (+-comm m n) ∙
ap-∘ ⊙Susp (λ k → Susp^ k (de⊙ X)) (+-comm m n) ⟩
⊙Susp^-comm m 1 ◃∙
ap ⊙Susp (Susp^-+ m n) ◃∙
ap ⊙Susp (ap (λ k → Susp^ k (de⊙ X)) (+-comm m n)) ◃∙
! (ap ⊙Susp (Susp^-+ n m)) ◃∎
=ₛ₁⟨ 3 & 1 & !-ap ⊙Susp (Susp^-+ n m) ⟩
⊙Susp^-comm m 1 ◃∙
ap ⊙Susp (Susp^-+ m n) ◃∙
ap ⊙Susp (ap (λ k → Susp^ k (de⊙ X)) (+-comm m n)) ◃∙
ap ⊙Susp (! (Susp^-+ n m)) ◃∎
=ₛ⟨ 1 & 3 & ∙-ap-seq ⊙Susp (Susp^-comm-seq m n) ⟩
⊙Susp^-comm m 1 ◃∙
ap ⊙Susp (Susp^-comm m n) ◃∎ ∎ₛ
⊙Susp^-comm-S-l : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^-comm (S m) n {X} ◃∎ =ₛ ap ⊙Susp (Susp^-comm m n) ◃∙ ⊙Susp^-comm 1 n {⊙Susp^ m X} ◃∎
⊙Susp^-comm-S-l m n {X} =
⊙Susp^-comm (S m) n {X} ◃∎
=ₛ₁⟨ ! (⊙Susp^-comm-! n (S m) {X}) ⟩
! (⊙Susp^-comm n (S m) {X}) ◃∎
=ₛ⟨ !-=ₛ (⊙Susp^-comm-S-r n m {X}) ⟩
! (ap ⊙Susp (Susp^-comm n m)) ◃∙
! (⊙Susp^-comm n 1) ◃∎
=ₛ₁⟨ 0 & 1 & !-ap ⊙Susp (Susp^-comm n m) ⟩
ap ⊙Susp (! (Susp^-comm n m)) ◃∙
! (⊙Susp^-comm n 1) ◃∎
=ₛ₁⟨ 0 & 1 & ap (ap ⊙Susp) (Susp^-comm-! n m) ⟩
ap ⊙Susp (Susp^-comm m n) ◃∙
! (⊙Susp^-comm n 1) ◃∎
=ₛ₁⟨ 1 & 1 & ⊙Susp^-comm-! n 1 ⟩
ap ⊙Susp (Susp^-comm m n) ◃∙
⊙Susp^-comm 1 n ◃∎ ∎ₛ
⊙Susp^-comm-S-1 : ∀ {i} (m : ℕ) {X : Ptd i}
→ ⊙Susp^-comm (S m) 1 {X} == ap ⊙Susp (Susp^-comm m 1 {de⊙ X})
⊙Susp^-comm-S-1 m {X} = =ₛ-out $
⊙Susp^-comm (S m) 1 {X} ◃∎
=ₛ⟨ ⊙Susp^-comm-S-l m 1 ⟩
ap ⊙Susp (Susp^-comm m 1) ◃∙
⊙Susp^-comm 1 1 ◃∎
=ₛ⟨ 1 & 1 & ⊙Susp^-comm-diag 1 ⟩
ap ⊙Susp (Susp^-comm m 1) ◃∎ ∎ₛ
⊙Susp^-comm-1-S : ∀ {i} (n : ℕ) {X : Ptd i}
→ ⊙Susp^-comm 1 (S n) {X} == ap ⊙Susp (Susp^-comm 1 n {de⊙ X})
⊙Susp^-comm-1-S n {X} =
⊙Susp^-comm 1 (S n) {X}
=⟨ ! (⊙Susp^-comm-! (S n) 1 {X}) ⟩
! (⊙Susp^-comm (S n) 1 {X})
=⟨ ap ! (⊙Susp^-comm-S-1 n {X}) ⟩
! (ap ⊙Susp (Susp^-comm n 1 {de⊙ X}))
=⟨ !-ap ⊙Susp (Susp^-comm n 1 {de⊙ X}) ⟩
ap ⊙Susp (! (Susp^-comm n 1 {de⊙ X}))
=⟨ ap (ap ⊙Susp) (Susp^-comm-! n 1 {de⊙ X}) ⟩
ap ⊙Susp (Susp^-comm 1 n {de⊙ X}) =∎
⊙Susp^-comm-S-S : ∀ {i} (m n : ℕ) {X : Ptd i}
→ ⊙Susp^-comm (S m) (S n) {X} == ap ⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n)
⊙Susp^-comm-S-S m n {X} = =ₛ-out $
⊙Susp^-comm (S m) (S n) {X} ◃∎
=ₛ⟨ ⊙Susp^-comm-S-l m (S n) ⟩
ap ⊙Susp (Susp^-comm m (S n)) ◃∙
⊙Susp^-comm 1 (S n) ◃∎
=ₛ₁⟨ 1 & 1 & ⊙Susp^-comm-1-S n ⟩
ap ⊙Susp (Susp^-comm m (S n)) ◃∙
ap ⊙Susp (Susp^-comm 1 n) ◃∎
=ₛ⟨ ∙-ap-seq ⊙Susp (Susp^-comm m (S n) ◃∙ Susp^-comm 1 n ◃∎) ⟩
ap ⊙Susp (Susp^-comm m (S n) ∙ Susp^-comm 1 n) ◃∎ ∎ₛ
abstract
Susp^-+-natural : ∀ {i j} (m n : ℕ) {A : Type i} {B : Type j} (f : A → B)
→ coe (Susp^-+ m n) ∘ Susp^-fmap m (Susp^-fmap n f) ∼
Susp^-fmap (m + n) f ∘ coe (Susp^-+ m n)
Susp^-+-natural O n f sa = idp
Susp^-+-natural (S m) n f sa =
transport Susp (Susp^-+ m n) (Susp^-fmap (S m) (Susp^-fmap n f) sa)
=⟨ transport-Susp (Susp^-+ m n) (Susp^-fmap (S m) (Susp^-fmap n f) sa) ⟩
Susp-fmap (coe (Susp^-+ m n)) (Susp^-fmap (S m) (Susp^-fmap n f) sa)
=⟨ ! (Susp-fmap-∘ (coe (Susp^-+ m n)) (Susp^-fmap m (Susp^-fmap n f)) sa) ⟩
Susp-fmap (coe (Susp^-+ m n) ∘ Susp^-fmap m (Susp^-fmap n f)) sa
=⟨ ap (λ f → Susp-fmap f sa) (λ= (Susp^-+-natural m n f)) ⟩
Susp-fmap (Susp^-fmap (m + n) f ∘ coe (Susp^-+ m n)) sa
=⟨ Susp-fmap-∘ (Susp^-fmap (m + n) f) (coe (Susp^-+ m n)) sa ⟩
Susp^-fmap (S m + n) f (Susp-fmap (coe (Susp^-+ m n)) sa)
=⟨ ap (Susp^-fmap (S m + n) f) (! (transport-Susp (Susp^-+ m n) sa)) ⟩
Susp^-fmap (S m + n) f (transport Susp (Susp^-+ m n) sa) =∎
⊙Susp^-+-natural : ∀ {i j} (m n : ℕ) {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ ⊙coe (⊙Susp^-+ m n) ⊙∘ ⊙Susp^-fmap m (⊙Susp^-fmap n f) ==
⊙Susp^-fmap (m + n) f ⊙∘ ⊙coe (⊙Susp^-+ m n)
⊙Susp^-+-natural 0 n f = ⊙λ= (⊙∘-unit-l _)
⊙Susp^-+-natural (S m) n f =
⊙coe (ap ⊙Susp (Susp^-+ m n)) ⊙∘
⊙Susp^-fmap (S m) (⊙Susp^-fmap n f)
=⟨ ap (_⊙∘ ⊙Susp^-fmap (S m) (⊙Susp^-fmap n f)) $
! (⊙transport-⊙coe ⊙Susp (Susp^-+ m n)) ∙
⊙transport-⊙Susp (Susp^-+ m n) ⟩
⊙Susp-fmap (coe (Susp^-+ m n)) ⊙∘
⊙Susp^-fmap (S m) (⊙Susp^-fmap n f)
=⟨ ! $ ⊙Susp-fmap-∘ (coe (Susp^-+ m n)) (Susp^-fmap m (Susp^-fmap n (fst f))) ⟩
⊙Susp-fmap (coe (Susp^-+ m n) ∘ Susp^-fmap m (Susp^-fmap n (fst f)))
=⟨ ap ⊙Susp-fmap (λ= (Susp^-+-natural m n (fst f))) ⟩
⊙Susp-fmap (Susp^-fmap (m + n) (fst f) ∘ coe (Susp^-+ m n))
=⟨ ⊙Susp-fmap-∘ (Susp^-fmap (m + n) (fst f)) (coe (Susp^-+ m n)) ⟩
⊙Susp-fmap (Susp^-fmap (m + n) (fst f)) ⊙∘
⊙Susp-fmap (coe (Susp^-+ m n))
=⟨ ap (⊙Susp-fmap (Susp^-fmap (m + n) (fst f)) ⊙∘_) $
! (⊙transport-⊙Susp (Susp^-+ m n)) ∙
⊙transport-⊙coe ⊙Susp (Susp^-+ m n) ⟩
⊙Susp-fmap (Susp^-fmap (m + n) (fst f)) ⊙∘
⊙coe (ap ⊙Susp (Susp^-+ m n)) =∎
Susp^-+-natural' : ∀ {i j} (m n : ℕ) {A : Type i} {B : Type j} (f : A → B)
→ Susp^-fmap m (Susp^-fmap n f) ∘ coe (! (Susp^-+ m n)) ∼
coe (! (Susp^-+ m n)) ∘ Susp^-fmap (m + n) f
Susp^-+-natural' m n f sa =
Susp^-fmap m (Susp^-fmap n f) (coe (! (Susp^-+ m n)) sa)
=⟨ ap (λ p → coe p (Susp^-fmap m (Susp^-fmap n f) (coe (! (Susp^-+ m n)) sa))) $
! $ !-inv-r (Susp^-+ m n) ⟩
coe (Susp^-+ m n ∙ ! (Susp^-+ m n))
(Susp^-fmap m (Susp^-fmap n f) (coe (! (Susp^-+ m n)) sa))
=⟨ coe-∙ (Susp^-+ m n) (! (Susp^-+ m n))
(Susp^-fmap m (Susp^-fmap n f) (coe (! (Susp^-+ m n)) sa)) ⟩
coe (! (Susp^-+ m n)) (coe (Susp^-+ m n) (Susp^-fmap m (Susp^-fmap n f) (coe (! (Susp^-+ m n)) sa)))
=⟨ ap (coe (! (Susp^-+ m n))) $
Susp^-+-natural m n f (coe (! (Susp^-+ m n)) sa) ⟩
coe (! (Susp^-+ m n)) (Susp^-fmap (m + n) f (coe (Susp^-+ m n) (coe (! (Susp^-+ m n)) sa)))
=⟨ ap (coe (! (Susp^-+ m n)) ∘ Susp^-fmap (m + n) f) $
! $ coe-∙ (! (Susp^-+ m n)) (Susp^-+ m n) sa ⟩
coe (! (Susp^-+ m n)) (Susp^-fmap (m + n) f (coe (! (Susp^-+ m n) ∙ Susp^-+ m n) sa))
=⟨ ap (λ p → coe (! (Susp^-+ m n)) (Susp^-fmap (m + n) f (coe p sa))) $
!-inv-l (Susp^-+ m n) ⟩
coe (! (Susp^-+ m n)) (Susp^-fmap (m + n) f sa) =∎
⊙Susp^-+-natural' : ∀ {i j} (m n : ℕ) {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ ⊙Susp^-fmap m (⊙Susp^-fmap n f) ⊙∘ ⊙coe (! (⊙Susp^-+ m n)) ==
⊙coe (! (⊙Susp^-+ m n)) ⊙∘ ⊙Susp^-fmap (m + n) f
⊙Susp^-+-natural' m n f =
⊙Susp^-fmap m (⊙Susp^-fmap n f) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (_⊙∘ ⊙coe (! (⊙Susp^-+ m n))) $
! $ ⊙λ= $ ⊙∘-unit-l (⊙Susp^-fmap m (⊙Susp^-fmap n f)) ⟩
(⊙idf _ ⊙∘
⊙Susp^-fmap m (⊙Susp^-fmap n f)) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (_⊙∘ ⊙coe (! (⊙Susp^-+ m n))) $
ap (_⊙∘ ⊙Susp^-fmap m (⊙Susp^-fmap n f)) $
ap ⊙coe (! (!-inv-r (⊙Susp^-+ m n))) ∙
=⊙∘-out (⊙coe-∙ (⊙Susp^-+ m n) (! (⊙Susp^-+ m n))) ⟩
((⊙coe (! (⊙Susp^-+ m n)) ⊙∘
⊙coe (⊙Susp^-+ m n)) ⊙∘
⊙Susp^-fmap m (⊙Susp^-fmap n f)) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (_⊙∘ ⊙coe (! (⊙Susp^-+ m n))) $ ⊙λ= $
⊙∘-assoc (⊙coe (! (⊙Susp^-+ m n)))
(⊙coe (⊙Susp^-+ m n))
(⊙Susp^-fmap m (⊙Susp^-fmap n f)) ⟩
(⊙coe (! (⊙Susp^-+ m n)) ⊙∘
⊙coe (⊙Susp^-+ m n) ⊙∘
⊙Susp^-fmap m (⊙Susp^-fmap n f)) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (_⊙∘ ⊙coe (! (⊙Susp^-+ m n))) $
ap (⊙coe (! (⊙Susp^-+ m n)) ⊙∘_) $
⊙Susp^-+-natural m n f ⟩
(⊙coe (! (⊙Susp^-+ m n)) ⊙∘
⊙Susp^-fmap (m + n) f ⊙∘
⊙coe (⊙Susp^-+ m n)) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ⊙λ= $ ⊙∘-assoc
(⊙coe (! (⊙Susp^-+ m n)))
(⊙Susp^-fmap (m + n) f ⊙∘ ⊙coe (⊙Susp^-+ m n))
(⊙coe (! (⊙Susp^-+ m n))) ⟩
⊙coe (! (⊙Susp^-+ m n)) ⊙∘
(⊙Susp^-fmap (m + n) f ⊙∘
⊙coe (⊙Susp^-+ m n)) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (⊙coe (! (⊙Susp^-+ m n)) ⊙∘_) $ ⊙λ= $
⊙∘-assoc (⊙Susp^-fmap (m + n) f)
(⊙coe (⊙Susp^-+ m n))
(⊙coe (! (⊙Susp^-+ m n))) ⟩
⊙coe (! (⊙Susp^-+ m n)) ⊙∘
⊙Susp^-fmap (m + n) f ⊙∘
⊙coe (⊙Susp^-+ m n) ⊙∘
⊙coe (! (⊙Susp^-+ m n))
=⟨ ap (⊙coe (! (⊙Susp^-+ m n)) ⊙∘_) $
ap (⊙Susp^-fmap (m + n) f ⊙∘_) $
! (=⊙∘-out (⊙coe-∙ (! (⊙Susp^-+ m n)) (⊙Susp^-+ m n))) ∙
ap ⊙coe (!-inv-l (⊙Susp^-+ m n)) ⟩
⊙coe (! (⊙Susp^-+ m n)) ⊙∘
⊙Susp^-fmap (m + n) f =∎
Susp^-comm-natural : ∀ {i j} {A : Type i} {B : Type j} (m n : ℕ)
(f : A → B)
→ coe (Susp^-comm m n) ∘ Susp^-fmap m (Susp^-fmap n f) ∼
Susp^-fmap n (Susp^-fmap m f) ∘ coe (Susp^-comm m n)
Susp^-comm-natural {A = A} {B = B} m n f s =
coe (Susp^-comm m n) (Susp^-fmap m (Susp^-fmap n f) s)
=⟨ coe-∙ (Susp^-+ m n)
(ap (λ k → Susp^ k B) (+-comm m n) ∙ ! (Susp^-+ n m))
(Susp^-fmap m (Susp^-fmap n f) s) ⟩
coe (ap (λ k → Susp^ k B) (+-comm m n) ∙ ! (Susp^-+ n m))
(coe (Susp^-+ m n) (Susp^-fmap m (Susp^-fmap n f) s))
=⟨ ap (coe (ap (λ k → Susp^ k B) (+-comm m n) ∙ ! (Susp^-+ n m)))
(Susp^-+-natural m n f s) ⟩
coe (ap (λ k → Susp^ k B) (+-comm m n) ∙ ! (Susp^-+ n m))
(Susp^-fmap (m + n) f (coe (Susp^-+ m n) s))
=⟨ coe-∙ (ap (λ k → Susp^ k B) (+-comm m n))
(! (Susp^-+ n m))
(Susp^-fmap (m + n) f (coe (Susp^-+ m n) s)) ⟩
coe (! (Susp^-+ n m))
(transport (λ k → Susp^ k B) (+-comm m n)
(Susp^-fmap (m + n) f (coe (Susp^-+ m n) s)))
=⟨ ! $ ap (coe (! (Susp^-+ n m))) $
app= (transp-naturality (λ {k} → Susp^-fmap k f) (+-comm m n))
(coe (Susp^-+ m n) s) ⟩
coe (! (Susp^-+ n m)) (Susp^-fmap (n + m) f
(transport (λ k → Susp^ k A) (+-comm m n) (coe (Susp^-+ m n) s)))
=⟨ ! $ Susp^-+-natural' n m f
(transport (λ k → Susp^ k A) (+-comm m n) (coe (Susp^-+ m n) s)) ⟩
Susp^-fmap n (Susp^-fmap m f)
(coe (! (Susp^-+ n m)) (transport (λ k → Susp^ k A) (+-comm m n) (coe (Susp^-+ m n) s)))
=⟨ ap (Susp^-fmap n (Susp^-fmap m f)) $ ! $
coe-∙ (ap (λ k → Susp^ k A) (+-comm m n))
(! (Susp^-+ n m))
(coe (Susp^-+ m n) s) ⟩
Susp^-fmap n (Susp^-fmap m f)
(coe (ap (λ k → Susp^ k A) (+-comm m n) ∙ ! (Susp^-+ n m)) (coe (Susp^-+ m n) s))
=⟨ ! $ ap (Susp^-fmap n (Susp^-fmap m f)) $
coe-∙ (Susp^-+ m n) (ap (λ k → Susp^ k A) (+-comm m n) ∙ ! (Susp^-+ n m)) s ⟩
Susp^-fmap n (Susp^-fmap m f) (coe (Susp^-comm m n) s) =∎
⊙Susp^-swap-natural : ∀ {i} {X Y : Ptd i} (m n : ℕ) (f : X ⊙→ Y)
→ ⊙Susp^-swap m n ◃⊙∘ ⊙Susp^-fmap m (⊙Susp^-fmap n f) ◃⊙idf
=⊙∘
⊙Susp^-fmap n (⊙Susp^-fmap m f) ◃⊙∘ ⊙Susp^-swap m n ◃⊙idf
⊙Susp^-swap-natural {X = X} {Y = Y} m n f =
⊙Susp^-swap m n ◃⊙∘
⊙Susp^-fmap m (⊙Susp^-fmap n f) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙coe-∙ (⊙Susp^-+ m n)
(ap (λ k → ⊙Susp^ k Y) (+-comm m n) ∙ ! (⊙Susp^-+ n m)) ⟩
⊙coe (ap (λ k → ⊙Susp^ k Y) (+-comm m n) ∙ ! (⊙Susp^-+ n m)) ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙∘
⊙Susp^-fmap m (⊙Susp^-fmap n f) ◃⊙idf
=⊙∘⟨ 1 & 2 & =⊙∘-in {gs = ⊙Susp^-fmap (m + n) f ◃⊙∘ ⊙coe (⊙Susp^-+ m n) ◃⊙idf} $
⊙Susp^-+-natural m n f ⟩
⊙coe (ap (λ k → ⊙Susp^ k Y) (+-comm m n) ∙ ! (⊙Susp^-+ n m)) ◃⊙∘
⊙Susp^-fmap (m + n) f ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙coe-∙ (ap (λ k → ⊙Susp^ k Y) (+-comm m n)) (! (⊙Susp^-+ n m)) ⟩
⊙coe (! (⊙Susp^-+ n m)) ◃⊙∘
⊙coe (ap (λ k → ⊙Susp^ k Y) (+-comm m n)) ◃⊙∘
⊙Susp^-fmap (m + n) f ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘₁⟨ 1 & 1 & ! $ ⊙transport-⊙coe (λ k → ⊙Susp^ k Y) (+-comm m n) ⟩
⊙coe (! (⊙Susp^-+ n m)) ◃⊙∘
⊙transport (λ k → ⊙Susp^ k Y) (+-comm m n) ◃⊙∘
⊙Susp^-fmap (m + n) f ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm m n) (λ k → ⊙Susp^-fmap k f) ⟩
⊙coe (! (⊙Susp^-+ n m)) ◃⊙∘
⊙Susp^-fmap (n + m) f ◃⊙∘
⊙transport (λ k → ⊙Susp^ k X) (+-comm m n) ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘₁⟨ 2 & 1 & ⊙transport-⊙coe (λ k → ⊙Susp^ k X) (+-comm m n) ⟩
⊙coe (! (⊙Susp^-+ n m)) ◃⊙∘
⊙Susp^-fmap (n + m) f ◃⊙∘
⊙coe (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙Susp^-fmap n (⊙Susp^-fmap m f) ◃⊙∘
⊙coe (! (⊙Susp^-+ n m)) ◃⊙idf} $
! $ ⊙Susp^-+-natural' n m f ⟩
⊙Susp^-fmap n (⊙Susp^-fmap m f) ◃⊙∘
⊙coe (! (⊙Susp^-+ n m)) ◃⊙∘
⊙coe (ap (λ k → ⊙Susp^ k X) (+-comm m n)) ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙coe-∙ (ap (λ k → ⊙Susp^ k X) (+-comm m n)) (! (⊙Susp^-+ n m)) ⟩
⊙Susp^-fmap n (⊙Susp^-fmap m f) ◃⊙∘
⊙coe (ap (λ k → ⊙Susp^ k X) (+-comm m n) ∙ ! (⊙Susp^-+ n m)) ◃⊙∘
⊙coe (⊙Susp^-+ m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & !⊙∘ $
⊙coe-∙ (⊙Susp^-+ m n)
(ap (λ k → ⊙Susp^ k X) (+-comm m n) ∙ ! (⊙Susp^-+ n m)) ⟩
⊙Susp^-fmap n (⊙Susp^-fmap m f) ◃⊙∘
⊙Susp^-swap m n ◃⊙idf ∎⊙∘
Susp^-Susp-split-iso : ∀ {i} (n : ℕ) (A : Type i)
→ Susp (Susp^ n A) ≃ Susp^ n (Susp A)
Susp^-Susp-split-iso O A = ide _
Susp^-Susp-split-iso (S n) A = Susp-emap (Susp^-Susp-split-iso n A)
⊙Susp^-Susp-split-iso : ∀ {i} (n : ℕ) (A : Type i)
→ ⊙Susp (Susp^ n A) ⊙≃ ⊙Susp^ n (⊙Susp A)
⊙Susp^-Susp-split-iso O A = ⊙ide _
⊙Susp^-Susp-split-iso (S n) A = ⊙Susp-emap (Susp^-Susp-split-iso n A)
| {
"alphanum_fraction": 0.3985482198,
"avg_line_length": 39.6301369863,
"ext": "agda",
"hexsha": "442689bc86128e6f10115511e69ba767be7ee081",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Suspension/IteratedEquivs.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Suspension/IteratedEquivs.agda",
"max_line_length": 104,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Suspension/IteratedEquivs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 14289,
"size": 26037
} |
open import Issue481PonderBase using (List)
module Issue481PonderImportMe (as bs : List) where
| {
"alphanum_fraction": 0.8125,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "4ea78719c60db9cccff4c11f29c696acbc46a1f1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue481PonderImportMe.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue481PonderImportMe.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue481PonderImportMe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 96
} |
-- Andreas, 2018-06-19, issue #3130
-- Produce parenthesized dot pattern .(p) instead of .p
-- when is a projection.
-- {-# OPTIONS -v reify.pat:80 #-}
record R : Set₁ where
field p : Set
open R
data D : (R → Set) → Set₁ where
c : D p
test : (f : R → Set) (x : D f) → Set₁
test f x = {!x!} -- split on x
-- Expected:
-- test .(p) c = ?
| {
"alphanum_fraction": 0.5664739884,
"avg_line_length": 18.2105263158,
"ext": "agda",
"hexsha": "58aad59324c28aab06c46f1700442442e7a13f7a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3130Split.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3130Split.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3130Split.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 346
} |
-- This is the preferred version of the integers in the library. Other
-- versions can be found in the MoreInts directory.
{-# OPTIONS --safe #-}
module Cubical.Data.Int.Base where
open import Cubical.Core.Everything
open import Cubical.Data.Bool
open import Cubical.Data.Nat hiding (_+_ ; _·_) renaming (isEven to isEvenℕ ; isOdd to isOddℕ)
infix 8 -_
infixl 7 _·_
infixl 6 _+_ _-_
data ℤ : Type₀ where
pos : (n : ℕ) → ℤ
negsuc : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
neg zero = pos zero
neg (suc n) = negsuc n
sucℤ : ℤ → ℤ
sucℤ (pos n) = pos (suc n)
sucℤ (negsuc zero) = pos zero
sucℤ (negsuc (suc n)) = negsuc n
predℤ : ℤ → ℤ
predℤ (pos zero) = negsuc zero
predℤ (pos (suc n)) = pos n
predℤ (negsuc n) = negsuc (suc n)
isEven : ℤ → Bool
isEven (pos n) = isEvenℕ n
isEven (negsuc n) = isOddℕ n
isOdd : ℤ → Bool
isOdd (pos n) = isOddℕ n
isOdd (negsuc n) = isEvenℕ n
abs : ℤ → ℕ
abs (pos n) = n
abs (negsuc n) = suc n
_ℕ-_ : ℕ → ℕ → ℤ
a ℕ- 0 = pos a
0 ℕ- suc b = negsuc b
suc a ℕ- suc b = a ℕ- b
_+pos_ : ℤ → ℕ → ℤ
z +pos 0 = z
z +pos (suc n) = sucℤ (z +pos n)
_+negsuc_ : ℤ → ℕ → ℤ
z +negsuc 0 = predℤ z
z +negsuc (suc n) = predℤ (z +negsuc n)
_+_ : ℤ → ℤ → ℤ
m + pos n = m +pos n
m + negsuc n = m +negsuc n
-_ : ℤ → ℤ
- pos zero = pos zero
- pos (suc n) = negsuc n
- negsuc n = pos (suc n)
_-_ : ℤ → ℤ → ℤ
m - n = m + (- n)
_·_ : ℤ → ℤ → ℤ
pos zero · m = pos zero
pos (suc n) · m = m + pos n · m
negsuc zero · m = - m
negsuc (suc n) · m = - m + negsuc n · m
-- Natural number and negative integer literals for ℤ
open import Cubical.Data.Nat.Literals public
instance
fromNatℤ : HasFromNat ℤ
fromNatℤ = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n }
instance
fromNegℤ : HasFromNeg ℤ
fromNegℤ = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
| {
"alphanum_fraction": 0.6027548209,
"avg_line_length": 21.1046511628,
"ext": "agda",
"hexsha": "b7d9c48b52077693f63820b4c4ac31da9cc040d6",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Data/Int/Base.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Data/Int/Base.agda",
"max_line_length": 94,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Data/Int/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 791,
"size": 1815
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
-- Defines BinaryProducts -- for when a Category has all Binary Products
module Categories.Category.BinaryProducts {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level hiding (suc)
open import Data.Product using (uncurry)
open Category 𝒞
open HomReasoning
open import Categories.Object.Product 𝒞
open import Categories.Morphism 𝒞 using (_≅_; module Iso)
open import Categories.Morphism.Reasoning 𝒞 using (pullʳ; pullˡ; elimʳ; cancelˡ)
open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Functor using (Functor) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor; appʳ; appˡ)
private
variable
A B C D X Y Z : Obj
f f′ g g′ h i : A ⇒ B
record BinaryProducts : Set (levelOfTerm 𝒞) where
infixr 7 _×_
infixr 8 _⁂_
infix 11 ⟨_,_⟩
field
product : ∀ {A B} → Product A B
private
module product {A} {B} = Product (product {A} {B})
_×_ : Obj → Obj → Obj
A × B = Product.A×B (product {A} {B})
×-comm : A × B ≅ B × A
×-comm = Commutative product product
×-assoc : X × Y × Z ≅ (X × Y) × Z
×-assoc = Associative product product product product
open product hiding (⟨_,_⟩; ∘-distribʳ-⟨⟩) public
-- define it like this instead of reexporting to redefine fixity
⟨_,_⟩ : X ⇒ A → X ⇒ B → X ⇒ A × B
⟨_,_⟩ = Product.⟨_,_⟩ product
_⁂_ : A ⇒ B → C ⇒ D → A × C ⇒ B × D
f ⁂ g = [ product ⇒ product ] f × g
assocˡ : (A × B) × C ⇒ A × B × C
assocˡ = _≅_.to ×-assoc
assocʳ : A × B × C ⇒ (A × B) × C
assocʳ = _≅_.from ×-assoc
assocʳ∘assocˡ : assocʳ {A}{B}{C} ∘ assocˡ {A}{B}{C} ≈ id
assocʳ∘assocˡ = Iso.isoʳ (_≅_.iso ×-assoc)
assocˡ∘assocʳ : assocˡ {A}{B}{C} ∘ assocʳ {A}{B}{C} ≈ id
assocˡ∘assocʳ = Iso.isoˡ (_≅_.iso ×-assoc)
⟨⟩-congʳ : f ≈ f′ → ⟨ f , g ⟩ ≈ ⟨ f′ , g ⟩
⟨⟩-congʳ pf = ⟨⟩-cong₂ pf Equiv.refl
⟨⟩-congˡ : g ≈ g′ → ⟨ f , g ⟩ ≈ ⟨ f , g′ ⟩
⟨⟩-congˡ pf = ⟨⟩-cong₂ Equiv.refl pf
swap : A × B ⇒ B × A
swap = ⟨ π₂ , π₁ ⟩
-- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version
-- that doesn't have an explicit id in it, too?
first : A ⇒ B → A × C ⇒ B × C
first f = f ⁂ id
second : C ⇒ D → A × C ⇒ A × D
second g = id ⁂ g
-- Just to make this more obvious
π₁∘⁂ : π₁ ∘ (f ⁂ g) ≈ f ∘ π₁
π₁∘⁂ {f = f} {g} = project₁
π₂∘⁂ : π₂ ∘ (f ⁂ g) ≈ g ∘ π₂
π₂∘⁂ {f = f} {g} = project₂
⁂-cong₂ : f ≈ g → h ≈ i → f ⁂ h ≈ g ⁂ i
⁂-cong₂ = [ product ⇒ product ]×-cong₂
⁂∘⟨⟩ : (f ⁂ g) ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f ∘ f′ , g ∘ g′ ⟩
⁂∘⟨⟩ = [ product ⇒ product ]×∘⟨⟩
first∘⟨⟩ : first f ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f ∘ f′ , g′ ⟩
first∘⟨⟩ = [ product ⇒ product ]×id∘⟨⟩
second∘⟨⟩ : second g ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f′ , g ∘ g′ ⟩
second∘⟨⟩ = [ product ⇒ product ]id×∘⟨⟩
⁂∘⁂ : (f ⁂ g) ∘ (f′ ⁂ g′) ≈ (f ∘ f′) ⁂ (g ∘ g′)
⁂∘⁂ = [ product ⇒ product ⇒ product ]×∘×
⟨⟩∘ : ⟨ f , g ⟩ ∘ h ≈ ⟨ f ∘ h , g ∘ h ⟩
⟨⟩∘ = [ product ]⟨⟩∘
first∘first : ∀ {C} → first {C = C} f ∘ first g ≈ first (f ∘ g)
first∘first = [ product ⇒ product ⇒ product ]×id∘×id
second∘second : ∀ {A} → second {A = A} f ∘ second g ≈ second (f ∘ g)
second∘second = [ product ⇒ product ⇒ product ]id×∘id×
first∘second : first f ∘ second g ≈ f ⁂ g
first∘second {f = f} {g = g} = begin
first f ∘ second g ≈⟨ first∘⟨⟩ ⟩
⟨ f ∘ id ∘ π₁ , g ∘ π₂ ⟩ ≈⟨ ⟨⟩-congʳ (∘-resp-≈ʳ identityˡ) ⟩
f ⁂ g ∎
second∘first : second f ∘ first g ≈ g ⁂ f
second∘first {f = f} {g = g} = begin
second f ∘ first g ≈⟨ second∘⟨⟩ ⟩
⟨ g ∘ π₁ , f ∘ id ∘ π₂ ⟩ ≈⟨ ⟨⟩-congˡ (∘-resp-≈ʳ identityˡ) ⟩
g ⁂ f ∎
first↔second : first f ∘ second g ≈ second g ∘ first f
first↔second = [ product ⇒ product , product ⇒ product ]first↔second
firstid : ∀ {f : A ⇒ A} (g : A ⇒ C) → first {C = C} f ≈ id → f ≈ id
firstid {f = f} g eq = begin
f ≈˘⟨ elimʳ project₁ ⟩
f ∘ π₁ ∘ ⟨ id , g ⟩ ≈⟨ pullˡ fπ₁≈π₁ ⟩
π₁ ∘ ⟨ id , g ⟩ ≈⟨ project₁ ⟩
id ∎
where fπ₁≈π₁ = begin
f ∘ π₁ ≈˘⟨ project₁ ⟩
π₁ ∘ first f ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ id ≈⟨ identityʳ ⟩
π₁ ∎
swap∘⟨⟩ : swap ∘ ⟨ f , g ⟩ ≈ ⟨ g , f ⟩
swap∘⟨⟩ {f = f} {g = g} = begin
⟨ π₂ , π₁ ⟩ ∘ ⟨ f , g ⟩ ≈⟨ ⟨⟩∘ ⟩
⟨ π₂ ∘ ⟨ f , g ⟩ , π₁ ∘ ⟨ f , g ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ project₂ project₁ ⟩
⟨ g , f ⟩ ∎
swap∘⁂ : swap ∘ (f ⁂ g) ≈ (g ⁂ f) ∘ swap
swap∘⁂ {f = f} {g = g} = begin
swap ∘ (f ⁂ g) ≈⟨ swap∘⟨⟩ ⟩
⟨ g ∘ π₂ , f ∘ π₁ ⟩ ≈˘⟨ ⁂∘⟨⟩ ⟩
(g ⁂ f) ∘ swap ∎
swap∘swap : (swap {A}{B}) ∘ (swap {B}{A}) ≈ id
swap∘swap = Equiv.trans swap∘⟨⟩ η
assocʳ∘⟨⟩ : assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈ ⟨ ⟨ f , g ⟩ , h ⟩
assocʳ∘⟨⟩ {f = f} {g = g} {h = h} = begin
assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈⟨ ⟨⟩∘ ⟩
⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₂ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩ ≈⟨ ⟨⟩-cong₂ ⟨⟩∘ (pullʳ project₂) ⟩
⟨ ⟨ π₁ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₁ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩
, π₂ ∘ ⟨ g , h ⟩
⟩ ≈⟨ ⟨⟩-cong₂ (⟨⟩-cong₂ project₁
(pullʳ project₂ ○ project₁))
project₂ ⟩
⟨ ⟨ f , g ⟩ , h ⟩ ∎
assocˡ∘⟨⟩ : assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩ ≈ ⟨ f , ⟨ g , h ⟩ ⟩
assocˡ∘⟨⟩ {f = f} {g = g} {h = h} = begin
assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩ ≈˘⟨ refl⟩∘⟨ assocʳ∘⟨⟩ ⟩
assocˡ ∘ assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈⟨ cancelˡ assocˡ∘assocʳ ⟩
⟨ f , ⟨ g , h ⟩ ⟩ ∎
assocʳ∘⁂ : assocʳ ∘ (f ⁂ (g ⁂ h)) ≈ ((f ⁂ g) ⁂ h) ∘ assocʳ
assocʳ∘⁂ {f = f} {g = g} {h = h} =
begin
assocʳ ∘ (f ⁂ (g ⁂ h))
≈⟨ refl⟩∘⟨ ⟨⟩-congˡ ⟨⟩∘ ⟩
assocʳ ∘ ⟨ f ∘ π₁ , ⟨ (g ∘ π₁) ∘ π₂ , (h ∘ π₂) ∘ π₂ ⟩ ⟩
≈⟨ assocʳ∘⟨⟩ ⟩
⟨ ⟨ f ∘ π₁ , (g ∘ π₁) ∘ π₂ ⟩ , (h ∘ π₂) ∘ π₂ ⟩
≈⟨ ⟨⟩-cong₂ (⟨⟩-congˡ assoc) assoc ⟩
⟨ ⟨ f ∘ π₁ , g ∘ π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
≈˘⟨ ⟨⟩-congʳ ⁂∘⟨⟩ ⟩
⟨ (f ⁂ g) ∘ ⟨ π₁ , π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
≈˘⟨ ⁂∘⟨⟩ ⟩
((f ⁂ g) ⁂ h) ∘ assocʳ
∎
assocˡ∘⁂ : assocˡ ∘ ((f ⁂ g) ⁂ h) ≈ (f ⁂ (g ⁂ h)) ∘ assocˡ
assocˡ∘⁂ {f = f} {g = g} {h = h} =
begin
assocˡ ∘ ((f ⁂ g) ⁂ h)
≈⟨ refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩
assocˡ ∘ ⟨ ⟨ (f ∘ π₁) ∘ π₁ , (g ∘ π₂) ∘ π₁ ⟩ , h ∘ π₂ ⟩
≈⟨ assocˡ∘⟨⟩ ⟩
⟨ (f ∘ π₁) ∘ π₁ , ⟨ (g ∘ π₂) ∘ π₁ , h ∘ π₂ ⟩ ⟩
≈⟨ ⟨⟩-cong₂ assoc (⟨⟩-congʳ assoc) ⟩
⟨ f ∘ π₁ ∘ π₁ , ⟨ g ∘ π₂ ∘ π₁ , h ∘ π₂ ⟩ ⟩
≈˘⟨ ⟨⟩-congˡ ⁂∘⟨⟩ ⟩
⟨ f ∘ π₁ ∘ π₁ , (g ⁂ h) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
≈˘⟨ ⁂∘⟨⟩ ⟩
(f ⁂ (g ⁂ h)) ∘ assocˡ
∎
Δ : ∀ {C} → C ⇒ C × C
Δ {C} = ⟨ id {C} , id ⟩
Δ∘ : Δ ∘ f ≈ ⟨ f , f ⟩
Δ∘ {f = f} = begin
Δ ∘ f ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ f , id ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ f , f ⟩ ∎
⁂∘Δ : (f ⁂ g) ∘ Δ ≈ ⟨ f , g ⟩
⁂∘Δ {f = f} {g = g} = begin
(f ⁂ g) ∘ Δ ≈⟨ ⁂∘⟨⟩ ⟩
⟨ f ∘ id , g ∘ id ⟩ ≈⟨ ⟨⟩-cong₂ identityʳ identityʳ ⟩
⟨ f , g ⟩ ∎
-×- : Bifunctor 𝒞 𝒞 𝒞
-×- = record
{ F₀ = uncurry _×_
; F₁ = uncurry _⁂_
; identity = id×id product
; homomorphism = ⟺ ⁂∘⁂
; F-resp-≈ = uncurry [ product ⇒ product ]×-cong₂
}
-×_ : Obj → Functor 𝒞 𝒞
-×_ = appʳ -×-
_×- : Obj → Functor 𝒞 𝒞
_×- = appˡ -×-
| {
"alphanum_fraction": 0.4297699594,
"avg_line_length": 30.5371900826,
"ext": "agda",
"hexsha": "42371d4cd63955d24fe253cbd259b91ec1d969ac",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/BinaryProducts.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/BinaryProducts.agda",
"max_line_length": 105,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/BinaryProducts.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 3746,
"size": 7390
} |
open import Data.Nat using (ℕ) renaming (_+_ to _+ᵢ_; _≤?_ to _≤?ᵢ_)
open import Agda.Builtin.Float renaming (primFloatPlus to _+ᵣ_; primFloatLess to _≤?ᵣ_)
open import Data.Bool using (Bool; true; false; not; _∧_)
open import Data.Sum using (inj₁; inj₂; _⊎_)
open import Data.Product using (_×_; _,_; -,_; _-,-_; ∃; ∃-syntax; proj₂)
open import Data.String using (String; _≟_)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
vname = String
int = ℕ
real = Float
bool = Bool
data val : Set where
Iv : int → val
Rv : real → val
data aexp : Set where
Ic : int → aexp
Rc : real → aexp
V : vname → aexp
Plus : aexp → aexp → aexp
data bexp : Set where
Bc : Bool → bexp
Not : bexp → bexp
And : bexp → bexp → bexp
Less : aexp → aexp → bexp
data com : Set where
SKIP : com
_::=_ : String → aexp → com
_::_ : com → com → com
IF_THEN_ELSE_ : bexp → com → com → com
WHILE_DO_ : bexp → com → com
data ty : Set where
Ity : ty
Rty : ty
tyenv = vname → ty
state = vname → val
_[_::=_] : state → vname → val → state
(s [ X ::= n ]) Y with Y ≟ X
... | yes _ = n
... | no _ = s Y
data _⊢ₐ_∷_ : tyenv → aexp → ty → Set where
taexpI : ∀{Γ i} → Γ ⊢ₐ Ic i ∷ Ity
taexpR : ∀{Γ r} → Γ ⊢ₐ Rc r ∷ Rty
taexpV : ∀{Γ x} → Γ ⊢ₐ V x ∷ Γ x
taexpP : ∀{Γ a₁ a₂ τ}
→ Γ ⊢ₐ a₁ ∷ τ
→ Γ ⊢ₐ a₂ ∷ τ
→ Γ ⊢ₐ Plus a₁ a₂ ∷ τ
data _⊢₆_ : tyenv → bexp → Set where
tbexpC : ∀{Γ v} → Γ ⊢₆ Bc v
tbexpN : ∀{Γ b} → Γ ⊢₆ b
→ Γ ⊢₆ Not b
tbexpA : ∀{Γ b₁ b₂}
→ Γ ⊢₆ b₁
→ Γ ⊢₆ b₂
→ Γ ⊢₆ And b₁ b₂
tbexpL : ∀{Γ a₁ a₂ τ}
→ Γ ⊢ₐ a₁ ∷ τ
→ Γ ⊢ₐ a₂ ∷ τ
→ Γ ⊢₆ Less a₁ a₂
data _⊢_ : tyenv → com → Set where
TSkip : ∀{Γ} → Γ ⊢ SKIP
TLoc : ∀{Γ a x} → Γ ⊢ₐ a ∷ Γ x
→ Γ ⊢ (x ::= a)
TSeq : ∀{Γ c₁ c₂}
→ Γ ⊢ c₁
→ Γ ⊢ c₂
→ Γ ⊢ (c₁ :: c₂)
TIf : ∀{Γ b c₁ c₂}
→ Γ ⊢₆ b
→ Γ ⊢ c₁
→ Γ ⊢ c₂
→ Γ ⊢ (IF b THEN c₁ ELSE c₂)
TWhile : ∀{Γ b c}
→ Γ ⊢₆ b
→ Γ ⊢ c
→ Γ ⊢ (WHILE b DO c)
type : val → ty
type (Iv i) = Ity
type (Rv r) = Rty
_⊢ₛ_ : tyenv → state → Set
Γ ⊢ₛ s = ∀ x → type (s x) ≡ Γ x
data taval : aexp → state → val → Set where
tavalI : ∀{i s}
→ taval (Ic i) s (Iv i)
tavalR : ∀{r s}
→ taval (Rc r) s (Rv r)
tavalV : ∀{x s}
→ taval (V x) s (s x)
tavalSI : ∀{s a₁ a₂ i₁ i₂}
→ taval a₁ s (Iv i₁)
→ taval a₂ s (Iv i₂)
→ taval (Plus a₁ a₂) s (Iv (i₁ +ᵢ i₂))
tavalSR : ∀{s a₁ a₂ r₁ r₂}
→ taval a₁ s (Rv r₁)
→ taval a₂ s (Rv r₂)
→ taval (Plus a₁ a₂) s (Rv (r₁ +ᵣ r₂))
data tbval : bexp → state → bool → Set where
tbvalC : ∀{s v}
→ tbval (Bc v) s v
tbvalN : ∀{s b bv}
→ tbval b s bv
→ tbval (Not b) s (not bv)
tbvalA : ∀{s b₁ b₂ bv₁ bv₂}
→ tbval b₁ s bv₁
→ tbval b₂ s bv₂
→ tbval (And b₁ b₂) s (bv₁ ∧ bv₂)
tbvalLI : ∀{s a₁ a₂ i₁ i₂}
→ taval a₁ s (Iv i₁)
→ taval a₂ s (Iv i₂)
→ tbval (Less a₁ a₂) s (⌊ i₁ ≤?ᵢ i₂ ⌋)
tbvalLR : ∀{s a₁ a₂ r₁ r₂}
→ taval a₁ s (Rv r₁)
→ taval a₂ s (Rv r₂)
→ tbval (Less a₁ a₂) s (r₁ ≤?ᵣ r₂)
data ⦅_,_⦆→⦅_,_⦆ : com → state → com → state → Set where
Loc : ∀{x a s v}
→ taval a s v
→ ⦅ x ::= a , s ⦆→⦅ SKIP , s [ x ::= v ] ⦆
Comp₁ : ∀{c s}
→ ⦅ SKIP :: c , s ⦆→⦅ c , s ⦆
Comp₂ : ∀{c₁ c₁′ c₂ s s′}
→ ⦅ c₁ , s ⦆→⦅ c₁′ , s′ ⦆
→ ⦅ c₁ :: c₂ , s ⦆→⦅ c₁′ :: c₂ , s′ ⦆
IfTrue : ∀{b s c₁ c₂}
→ tbval b s true
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⦅ c₁ , s ⦆
IfFalse : ∀{b s c₁ c₂}
→ tbval b s false
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⦅ c₂ , s ⦆
While : ∀{b s c}
→ ⦅ WHILE b DO c , s ⦆→⦅ IF b THEN (c :: (WHILE b DO c)) ELSE SKIP , s ⦆
data ⦅_,_⦆→*⦅_,_⦆ : com → state → com → state → Set where
Ref : ∀{c s} → ⦅ c , s ⦆→*⦅ c , s ⦆
Step : ∀{c c′ c² s s′ s²}
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆
→ ⦅ c′ , s′ ⦆→*⦅ c² , s² ⦆
→ ⦅ c , s ⦆→*⦅ c² , s² ⦆
trans : ∀{c c′ c² s s′ s²}
→ ⦅ c , s ⦆→*⦅ c′ , s′ ⦆
→ ⦅ c′ , s′ ⦆→*⦅ c² , s² ⦆
→ ⦅ c , s ⦆→*⦅ c² , s² ⦆
trans Ref b = b
trans (Step x a) b = Step x (trans a b)
preservation-aval : ∀{Γ a s τ v}
→ Γ ⊢ₐ a ∷ τ
→ Γ ⊢ₛ s
→ taval a s v
→ type v ≡ τ
preservation-aval taexpI b tavalI = refl
preservation-aval taexpR b tavalR = refl
preservation-aval taexpV b (tavalV {x}) = b x
preservation-aval (taexpP a a₁) b (tavalSI c c₁) = preservation-aval a₁ b c₁
preservation-aval (taexpP a a₁) b (tavalSR c c₁) = preservation-aval a₁ b c₁
extract-ity : ∀ v
→ type v ≡ Ity
→ ∃[ i ] (v ≡ Iv i)
extract-ity (Iv x) r = x , refl
extract-rty : ∀ v
→ type v ≡ Rty
→ ∃[ i ] (v ≡ Rv i)
extract-rty (Rv x) r = x , refl
progress-aval : ∀{Γ a s τ}
→ Γ ⊢ₐ a ∷ τ
→ Γ ⊢ₛ s
→ ∃[ v ] (taval a s v)
progress-aval taexpI b = -, tavalI
progress-aval taexpR b = -, tavalR
progress-aval taexpV b = -, tavalV
progress-aval {τ = Ity} (taexpP a₁ a₂) b with progress-aval a₁ b | progress-aval a₂ b
... | rv , r | mv , m with extract-ity rv (preservation-aval a₁ b r)
| extract-ity mv (preservation-aval a₂ b m)
... | v1 , e1 | v2 , e2 rewrite e1 | e2 = -, tavalSI r m
progress-aval {τ = Rty} (taexpP a₁ a₂) b with progress-aval a₁ b | progress-aval a₂ b
... | rv , r | mv , m with extract-rty rv (preservation-aval a₁ b r)
| extract-rty mv (preservation-aval a₂ b m)
... | v1 , e1 | v2 , e2 rewrite e1 | e2 = -, tavalSR r m
progress-bval : ∀{Γ b s}
→ Γ ⊢₆ b
→ Γ ⊢ₛ s
→ ∃[ v ] (tbval b s v)
progress-bval tbexpC x₁ = -, tbvalC
progress-bval (tbexpN x) x₁ = -, tbvalN (proj₂ (progress-bval x x₁))
progress-bval (tbexpA a b) x = -, tbvalA (proj₂ (progress-bval a x))
(proj₂ (progress-bval b x))
progress-bval (tbexpL {τ = Ity} a₁ a₂) b with progress-aval a₁ b | progress-aval a₂ b
... | rv , r | mv , m with extract-ity rv (preservation-aval a₁ b r)
| extract-ity mv (preservation-aval a₂ b m)
... | v1 , e1 | v2 , e2 rewrite e1 | e2 = -, tbvalLI r m
progress-bval (tbexpL {τ = Rty} a₁ a₂) b with progress-aval a₁ b | progress-aval a₂ b
... | rv , r | mv , m with extract-rty rv (preservation-aval a₁ b r)
| extract-rty mv (preservation-aval a₂ b m)
... | v1 , e1 | v2 , e2 rewrite e1 | e2 = -, tbvalLR r m
preservation-com : ∀{Γ c s c′ s′}
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆
→ Γ ⊢ c
→ Γ ⊢ c′
preservation-com (Loc x₁) (TLoc x₂) = TSkip
preservation-com Comp₁ (TSeq b b₁) = b₁
preservation-com (Comp₂ a) (TSeq b b₁) = TSeq (preservation-com a b) b₁
preservation-com (IfTrue x) (TIf x₁ b b₁) = b
preservation-com (IfFalse x) (TIf x₁ b b₁) = b₁
preservation-com While (TWhile x b) = TIf x (TSeq b (TWhile x b)) TSkip
preservation-state : ∀{Γ c s c′ s′}
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆
→ Γ ⊢ c
→ Γ ⊢ₛ s
→ Γ ⊢ₛ s′
preservation-state (Loc {x₃} x₁) (TLoc x₂) r x₄ with x₄ ≟ x₃
... | no ¬p = r x₄
... | yes p with preservation-aval x₂ r x₁
... | z rewrite p = z
preservation-state Comp₁ (TSeq c c₁) r = r
preservation-state (Comp₂ d) (TSeq c c₁) r = preservation-state d c r
preservation-state (IfTrue x) (TIf x₁ c c₁) r = r
preservation-state (IfFalse x) (TIf x₁ c c₁) r = r
preservation-state While (TWhile x c) r = r
preservation : ∀{Γ c s c′ s′}
→ Γ ⊢ c
→ Γ ⊢ₛ s
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆
→ Γ ⊢ c′ × Γ ⊢ₛ s′
preservation a b c = preservation-com c a , preservation-state c a b
either-skip : ∀ c
→ c ≡ SKIP ⊎ ¬ c ≡ SKIP
either-skip SKIP = inj₁ refl
either-skip (x ::= x₁) = inj₂ (λ ())
either-skip (c :: c₁) = inj₂ (λ ())
either-skip (IF x THEN c ELSE c₁) = inj₂ (λ ())
either-skip (WHILE x DO c) = inj₂ (λ ())
progress : ∀{Γ c s}
→ Γ ⊢ c
→ Γ ⊢ₛ s
→ ¬ c ≡ SKIP
→ ∃[ c′ ] (∃[ s′ ] ( ⦅ c , s ⦆→⦅ c′ , s′ ⦆ ))
progress TSkip b c = contradiction refl c
progress {s = s} (TLoc x) b _ = SKIP , -, Loc (proj₂ (progress-aval x b))
progress {s = s} (TSeq {_}{c₁}{c₂} a a₁) b _ with either-skip c₁
... | inj₁ skip rewrite skip = c₂ , s , Comp₁
... | inj₂ ¬skip = let c₁′ , s′ , r = progress a b ¬skip
in c₁′ :: c₂ , s′ , Comp₂ r
progress (TIf x a a₁) b _ with progress-bval x b
... | false , tb = -, -, IfFalse tb
... | true , tb = -, -, IfTrue tb
progress (TWhile x a) b _ = -, -, While
type-soundness : ∀{c s c′ s′ Γ}
→ ⦅ c , s ⦆→*⦅ c′ , s′ ⦆
→ Γ ⊢ c
→ Γ ⊢ₛ s
→ ¬ c′ ≡ SKIP
→ ∃[ c″ ] (∃[ s″ ] ( ⦅ c′ , s′ ⦆→⦅ c″ , s″ ⦆ ))
type-soundness Ref c d e = progress c d e
type-soundness (Step x r) c d e with preservation c d x
... | ct , st = type-soundness r ct st e
| {
"alphanum_fraction": 0.5093894074,
"avg_line_length": 29.9427609428,
"ext": "agda",
"hexsha": "e6c40976aa9ea5d2c2803c073d23c3da6e3fa5d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/imp-semantics",
"max_forks_repo_path": "Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/imp-semantics",
"max_issues_repo_path": "Types.agda",
"max_line_length": 87,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/imp-semantics",
"max_stars_repo_path": "Types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z",
"num_tokens": 4039,
"size": 8893
} |
module Test where
open import Agda.Primitive
f : Level -> Level
f x = x
| {
"alphanum_fraction": 0.7027027027,
"avg_line_length": 10.5714285714,
"ext": "agda",
"hexsha": "2975e9dbde598ba28e2d6fdc4db01c1c7581ef41",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fe6be7731e968c78aef73f4fc14bf7976a607c79",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phile314/agda-build",
"max_forks_repo_path": "test-lib/src/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fe6be7731e968c78aef73f4fc14bf7976a607c79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phile314/agda-build",
"max_issues_repo_path": "test-lib/src/Test.agda",
"max_line_length": 26,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fe6be7731e968c78aef73f4fc14bf7976a607c79",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phile314/agda-build",
"max_stars_repo_path": "test-lib/src/Test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 22,
"size": 74
} |
{-# OPTIONS --without-K #-}
module container where
import container.core
import container.fixpoint
import container.equality
import container.m
import container.w
| {
"alphanum_fraction": 0.8,
"avg_line_length": 16.5,
"ext": "agda",
"hexsha": "a5c161f01fe48cf6f815413823fd4afebfce7fd3",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/container.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/container.agda",
"max_line_length": 27,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/container.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 32,
"size": 165
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.EilenbergMacLane
open import homotopy.EilenbergMacLaneFunctor
open import cohomology.CupProduct.OnEM.CommutativityInLowDegrees
module cohomology.CupProduct.OnEM.CommutativityInLowDegrees2 {i} {j} (G : AbGroup i) (H : AbGroup j) where
private
module G = AbGroup G
module H = AbGroup H
module G⊗H = TensorProduct G H
module H⊗G = TensorProduct H G
module GHc = CP₁₁-comm G H
module HGc = CP₁₁-comm H G
import cohomology.CupProduct.OnEM.InLowDegrees2 G H as GH
import cohomology.CupProduct.OnEM.InLowDegrees2 H G as HG
private
∧-cp₁₁-comm-smgluel : ∀ (x : EM₁ G.grp)
→ Square (GHc.CP₁₁Comm.f x embase)
(ap GH.∧-cp₁₁ (smgluel x))
(ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluel x))
idp
∧-cp₁₁-comm-smgluel x =
GH.∧-cp₁₁-Rec.smgluel-β x ∙v⊡
lt-square (GH.cp₁₁-embase-r x) ⊡v∙
! bottom-path
where
bottom-path : ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluel x) == idp
bottom-path =
ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluel x)
=⟨ ap-∘ (GHc.− ∘ HG.∧-cp₁₁) (∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluel x) ⟩
ap (GHc.− ∘ HG.∧-cp₁₁) (ap (∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluel x))
=⟨ ap (ap (GHc.− ∘ HG.∧-cp₁₁)) (SmashSwap.smgluel-β (⊙EM₁ G.grp) (⊙EM₁ H.grp) x) ⟩
ap (GHc.− ∘ HG.∧-cp₁₁) (∧-norm-r x)
=⟨ ap-∘ GHc.− HG.∧-cp₁₁ (∧-norm-r x) ⟩
ap GHc.− (ap HG.∧-cp₁₁ (∧-norm-r x))
=⟨ ap (ap GHc.−) (HG.∧-cp₁₁-Rec.∧-norm-r-β x) ⟩
idp =∎
cp₁₁-comm-sym : ∀ (y : EM₁ H.grp)
→ ! (GHc.CP₁₁Comm.f embase y) == ap GHc.− (HGc.CP₁₁Comm.f y embase)
cp₁₁-comm-sym =
EM₁-set-elim
{P = λ y → ! (GHc.CP₁₁Comm.f embase y) == ap GHc.− (HGc.CP₁₁Comm.f y embase)}
{{λ y → has-level-apply (has-level-apply (Trunc-level {n = 2}) _ _) _ _}}
idp $ λ h →
↓-=-in $
idp ◃ apd (λ y → ap GHc.− (HGc.CP₁₁Comm.f y embase)) (emloop h)
=⟨ idp◃ (apd (λ y → ap GHc.− (HGc.CP₁₁Comm.f y embase)) (emloop h)) ⟩
apd (λ y → ap GHc.− (HGc.CP₁₁Comm.f y embase)) (emloop h)
=⟨ apd-∘' (ap GHc.−) (λ y → HGc.CP₁₁Comm.f y embase) (emloop h) ⟩
ap↓ (ap GHc.−) (apd (λ y → HGc.CP₁₁Comm.f y embase) (emloop h))
=⟨ ap (ap↓ (ap GHc.−)) (HGc.CP₁₁Comm.emloop-embase-β h) ⟩
ap↓ (ap GHc.−) (↓-='-from-square (HGc.comm-emloop-embase h))
=⟨ ↓-='-from-square-post-∘ {h = GHc.−} (HGc.comm-emloop-embase h) ⟩
↓-='-from-square (ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
ap-square GHc.− (HGc.comm-emloop-embase h) ⊡v∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h))
=⟨ ap ↓-='-from-square (square-path h) ⟩
↓-='-from-square (!□v (GHc.comm-embase-emloop h))
=⟨ ! (↓-='-from-square-! (GHc.comm-embase-emloop h)) ⟩
ap↓ ! (↓-='-from-square (GHc.comm-embase-emloop h))
=⟨ ap (ap↓ !) (! (GHc.CP₁₁Comm.embase-emloop-β h)) ⟩
ap↓ ! (apd (λ y → GHc.CP₁₁Comm.f embase y) (emloop h))
=⟨ ! (apd-∘' ! (λ y → GHc.CP₁₁Comm.f embase y) (emloop h)) ⟩
apd (λ y → ! (GHc.CP₁₁Comm.f embase y)) (emloop h)
=⟨ ! (▹idp (apd (λ y → ! (GHc.CP₁₁Comm.f embase y)) (emloop h))) ⟩
apd (λ y → ! (GHc.CP₁₁Comm.f embase y)) (emloop h) ▹ idp =∎
where
=ₛ-path : ∀ (h : H.El) →
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
ap (ap GHc.−) (HGc.comm-emloop-embase' h) ◃∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h) ◃∎
=ₛ
! (GHc.comm-embase-emloop' h) ◃∎
=ₛ-path h = !ₛ $
! (GHc.comm-embase-emloop' h) ◃∎
=ₛ⟨ !-∙-seq (GHc.comm-embase-emloop-seq h) ⟩
! (∘-ap GHc.− (λ y → HG.cp₁₁ y embase) (emloop h)) ◃∙
! (! (ap (ap GHc.−) (HG.ap-cp₁₁-embase h))) ◃∙
! (ap-cst [ north ] (emloop h)) ◃∎
=ₛ₁⟨ 0 & 1 & ap ! (! (!ap-∘=∘-ap GHc.− (λ y → HG.cp₁₁ y embase) (emloop h))) ∙
!-! (ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h)) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
! (! (ap (ap GHc.−) (HG.ap-cp₁₁-embase h))) ◃∙
! (ap-cst [ north ] (emloop h)) ◃∎
=ₛ₁⟨ 1 & 1 & !-! (ap (ap GHc.−) (HG.ap-cp₁₁-embase h)) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
ap (ap GHc.−) (HG.ap-cp₁₁-embase h) ◃∙
! (ap-cst [ north ]₂ (emloop h)) ◃∎
=ₛ⟨ 2 & 2 & !ₛ $
post-rotate-in {p = _ ◃∙ _ ◃∎} $
pre-rotate'-in $
ap-∘-cst-coh GHc.− [ north ]₂ (emloop h) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
ap (ap GHc.−) (HG.ap-cp₁₁-embase h) ◃∙
! (ap (ap GHc.−) (ap-cst [ north ] (emloop h))) ◃∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h) ◃∎
=ₛ₁⟨ 2 & 1 & !-ap (ap GHc.−) (ap-cst [ north ]₂ (emloop h)) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
ap (ap GHc.−) (HG.ap-cp₁₁-embase h) ◃∙
ap (ap GHc.−) (! (ap-cst [ north ]₂ (emloop h))) ◃∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h) ◃∎
=ₛ⟨ 1 & 2 & ∙-ap-seq (ap GHc.−) (HGc.comm-emloop-embase-seq h) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ◃∙
ap (ap GHc.−) (HGc.comm-emloop-embase' h) ◃∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h) ◃∎ ∎ₛ
square-path : ∀ (h : H.El) →
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
ap-square GHc.− (HGc.comm-emloop-embase h) ⊡v∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)
==
!□v (GHc.comm-embase-emloop h)
square-path h =
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
ap-square GHc.− (HGc.comm-emloop-embase h) ⊡v∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)
=⟨ ap (λ u → ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
u ⊡v∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)) $
ap-vert-degen-square GHc.− (HGc.comm-emloop-embase' h) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
vert-degen-square (ap (ap GHc.−) (HGc.comm-emloop-embase' h))
⊡v∙ ∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)
=⟨ ap (ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡_) $
vert-degen-square-⊡v∙ (ap (ap GHc.−) (HGc.comm-emloop-embase' h))
(∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)) ⟩
ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙v⊡
vert-degen-square (ap (ap GHc.−) (HGc.comm-emloop-embase' h) ∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h))
=⟨ vert-degen-square-∙v⊡
(ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h))
(ap (ap GHc.−) (HGc.comm-emloop-embase' h) ∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h)) ⟩
vert-degen-square (ap-∘ GHc.− (λ y → HG.cp₁₁ y embase) (emloop h) ∙
ap (ap GHc.−) (HGc.comm-emloop-embase' h) ∙
∘-ap GHc.− (λ y → HGc.− (GH.cp₁₁ embase y)) (emloop h))
=⟨ ap vert-degen-square (=ₛ-out (=ₛ-path h)) ⟩
vert-degen-square (! (GHc.comm-embase-emloop' h))
=⟨ ! (!□v-vert-degen-square (GHc.comm-embase-emloop' h)) ⟩
!□v (GHc.comm-embase-emloop h) =∎
∧-cp₁₁-comm-smgluer : ∀ (y : EM₁ H.grp)
→ Square (GHc.CP₁₁Comm.f embase y)
(ap GH.∧-cp₁₁ (smgluer y))
(ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluer y))
idp
∧-cp₁₁-comm-smgluer y =
GH.∧-cp₁₁-Rec.smgluer-β y ∙v⊡
lb-square (GHc.CP₁₁Comm.f embase y) ⊡v∙
(cp₁₁-comm-sym y ∙ ! bottom-path)
where
bottom-path : ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluer y) == ap GHc.− (HG.cp₁₁-embase-r y)
bottom-path =
ap (GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluer y)
=⟨ ap-∘ (GHc.− ∘ HG.∧-cp₁₁) (∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluer y) ⟩
ap (GHc.− ∘ HG.∧-cp₁₁) (ap (∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) (smgluer y))
=⟨ ap (ap (GHc.− ∘ HG.∧-cp₁₁)) (SmashSwap.smgluer-β (⊙EM₁ G.grp) (⊙EM₁ H.grp) y) ⟩
ap (GHc.− ∘ HG.∧-cp₁₁) (∧-norm-l y)
=⟨ ap-∘ GHc.− HG.∧-cp₁₁ (∧-norm-l y) ⟩
ap GHc.− (ap HG.∧-cp₁₁ (∧-norm-l y))
=⟨ ap (ap GHc.−) (HG.∧-cp₁₁-Rec.∧-norm-l-β y) ⟩
ap GHc.− (HG.cp₁₁-embase-r y ∙ idp)
=⟨ ap (ap GHc.−) (∙-unit-r (HG.cp₁₁-embase-r y)) ⟩
ap GHc.− (HG.cp₁₁-embase-r y) =∎
private
∧-cp₁₁-comm' : GH.∧-cp₁₁ ∼ GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)
∧-cp₁₁-comm' =
Smash-Path-elim
GH.∧-cp₁₁
(GHc.− ∘ HG.∧-cp₁₁ ∘ ∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp))
GHc.CP₁₁Comm.f
idp
idp
∧-cp₁₁-comm-smgluel
∧-cp₁₁-comm-smgluer
⊙∧-cp₁₁-comm' : GH.⊙∧-cp₁₁ ◃⊙idf
=⊙∘
GHc.⊙− ◃⊙∘
HG.⊙∧-cp₁₁ ◃⊙∘
⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) ◃⊙idf
⊙∧-cp₁₁-comm' = =⊙∘-in (⊙λ=' ∧-cp₁₁-comm' idp)
⊙∧-cp₁₁-comm : ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 2 ◃⊙∘
GH.⊙∧-cp₁₁ ◃⊙idf
=⊙∘
⊙EM-neg H⊗G.abgroup 2 ◃⊙∘
HG.⊙∧-cp₁₁ ◃⊙∘
⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) ◃⊙idf
⊙∧-cp₁₁-comm =
⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 2 ◃⊙∘
GH.⊙∧-cp₁₁ ◃⊙idf
=⊙∘⟨ 1 & 1 & ⊙∧-cp₁₁-comm' ⟩
⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 2 ◃⊙∘
GHc.⊙− ◃⊙∘
HG.⊙∧-cp₁₁ ◃⊙∘
⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) ◃⊙idf
=⊙∘⟨ 1 & 1 & minus ⟩
⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 2 ◃⊙∘
⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap 2 ◃⊙∘
⊙EM-neg H⊗G.abgroup 2 ◃⊙∘
HG.⊙∧-cp₁₁ ◃⊙∘ ⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) ◃⊙idf
=⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙idf-seq} $
! (⊙EM-fmap-∘ H⊗G.abgroup G⊗H.abgroup H⊗G.abgroup G⊗H.swap H⊗G.swap 2) ∙
ap (λ φ → ⊙EM-fmap H⊗G.abgroup H⊗G.abgroup φ 2) H⊗G.swap-swap-idhom ∙
⊙EM-fmap-idhom H⊗G.abgroup 2 ⟩
⊙EM-neg H⊗G.abgroup 2 ◃⊙∘
HG.⊙∧-cp₁₁ ◃⊙∘ ⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) ◃⊙idf ∎⊙∘
where
minus : GHc.⊙− ◃⊙idf
=⊙∘
⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap 2 ◃⊙∘
⊙EM-neg H⊗G.abgroup 2 ◃⊙idf
minus = =⊙∘-in $
⊙Trunc-fmap (⊙Susp-fmap (EM₁-fmap (inv-hom G⊗H.abgroup) ∘ EM₁-fmap H⊗G.swap))
=⟨ ap (⊙Trunc-fmap ∘ ⊙Susp-fmap) $ ! $
λ= (EM₁-fmap-∘ (inv-hom G⊗H.abgroup) H⊗G.swap) ⟩
⊙EM-fmap H⊗G.abgroup G⊗H.abgroup (inv-hom G⊗H.abgroup ∘ᴳ H⊗G.swap) 2
=⟨ ap (λ φ → ⊙EM-fmap H⊗G.abgroup G⊗H.abgroup φ 2) $
! $ inv-hom-natural H⊗G.abgroup G⊗H.abgroup H⊗G.swap ⟩
⊙EM-fmap H⊗G.abgroup G⊗H.abgroup (H⊗G.swap ∘ᴳ inv-hom H⊗G.abgroup) 2
=⟨ ⊙EM-fmap-∘ H⊗G.abgroup H⊗G.abgroup G⊗H.abgroup (H⊗G.swap) (inv-hom H⊗G.abgroup) 2 ⟩
⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap 2 ⊙∘ ⊙EM-neg H⊗G.abgroup 2 =∎
| {
"alphanum_fraction": 0.4984689617,
"avg_line_length": 46.8565217391,
"ext": "agda",
"hexsha": "518b7ec2f8e47b503e3377b8079503d474eebd18",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees2.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees2.agda",
"max_line_length": 120,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInLowDegrees2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 5595,
"size": 10777
} |
------------------------------------------------------------------------
-- Modules that are not safe because they use --sized-types
------------------------------------------------------------------------
{-# OPTIONS --without-K --sized-types #-}
module README.Unsafe.Sized-types where
-- Support for sized types.
import Prelude.Size
-- Some results that could not be placed in Function-universe because
-- they make use of --sized-types.
import Function-universe.Size
-- Conatural numbers.
import Conat
-- Colists.
import Colist
-- M-types.
import M
| {
"alphanum_fraction": 0.5390070922,
"avg_line_length": 19.4482758621,
"ext": "agda",
"hexsha": "72a47654e1ce6722e9f6d91b73081bef323e6d9a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Unsafe/Sized-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Unsafe/Sized-types.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Unsafe/Sized-types.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 101,
"size": 564
} |
module unit where
open import level
open import eq
data ⊤ : Set where
triv : ⊤
{-# COMPILED_DATA ⊤ () () #-}
single-range : ∀{U : Set}{g : U → ⊤} → ∀{u : U} → g u ≡ triv
single-range {U}{g}{u} with g u
... | triv = refl
| {
"alphanum_fraction": 0.5462555066,
"avg_line_length": 16.2142857143,
"ext": "agda",
"hexsha": "6822ed0f3f2fe000afc1574a3ad5dd3be702b53b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "logicshan/IAL",
"max_forks_repo_path": "unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "logicshan/IAL",
"max_issues_repo_path": "unit.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "logicshan/IAL",
"max_stars_repo_path": "unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 88,
"size": 227
} |
-- Reported by nad, 2018-12-13.
-- The option --no-sized-types should turn off sized types
{-# OPTIONS --no-sized-types #-}
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZELT Size<_ #-}
record Stream (A : Set) (i : Size) : Set where
coinductive
field
head : A
tail : {j : Size< i} → Stream A j
open Stream
postulate
destroy-guardedness : {A : Set} → A → A
repeat : ∀ {A i} → A → Stream A i
repeat x .head = x
repeat x .tail = destroy-guardedness (repeat x)
| {
"alphanum_fraction": 0.6181434599,
"avg_line_length": 21.5454545455,
"ext": "agda",
"hexsha": "8210753cacad804cd8f159aa16c8343f61648e04",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3451.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3451.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3451.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 151,
"size": 474
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Operations on nullary relations (like negation and decidability)
------------------------------------------------------------------------
-- Some operations on/properties of nullary relations, i.e. sets.
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary where
open import Data.Empty hiding (⊥-elim)
open import Data.Empty.Irrelevant
open import Level
-- Negation.
infix 3 ¬_
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ P = P → ⊥
-- Decidable relations.
data Dec {p} (P : Set p) : Set p where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
-- Given an irrelevant proof of a decidable type, a proof can
-- be recomputed and subsequently used in relevant contexts.
recompute : ∀ {a} {A : Set a} → Dec A → .A → A
recompute (yes x) _ = x
recompute (no ¬p) x = ⊥-elim (¬p x)
| {
"alphanum_fraction": 0.5405405405,
"avg_line_length": 25.3714285714,
"ext": "agda",
"hexsha": "74d26ecc73db62c698a5bc0443e787d65535c443",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 240,
"size": 888
} |
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module Quicksort {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Bound.Total A
open import Bound.Total.Order _≤_
open import Data.List
open import Data.Product
open import Data.Sum
open import SBList _≤_
open import Size
open import SOList.Total _≤_
deal : {ι : Size}{b t : Bound}{x : A} → LeB b (val x) → LeB (val x) t → SBList {ι} b t → SBList {ι} b (val x) × SBList {ι} (val x) t
deal b≤x x≤t (nil b≤t) = (nil b≤x , nil x≤t)
deal {x = x} b≤x x≤t (cons y b≤y y≤t ys)
with tot≤ x y | deal b≤x x≤t ys
... | inj₁ x≤y | (us , vs) = (us , cons y (lexy x≤y) y≤t vs)
... | inj₂ y≤x | (us , vs) = (cons y b≤y (lexy y≤x) us , vs)
quickSort : {ι : Size}{b t : Bound} → SBList {ι} b t → SOList b t
quickSort (nil b≤t) = onil b≤t
quickSort (cons x b≤x x≤t xs)
with deal b≤x x≤t xs
... | (ys , zs) = ocons x (quickSort ys) (quickSort zs)
| {
"alphanum_fraction": 0.5736514523,
"avg_line_length": 32.1333333333,
"ext": "agda",
"hexsha": "0af5fdfd67255705eb94c16621e3a84573f28180",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Quicksort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Quicksort.agda",
"max_line_length": 132,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Quicksort.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 403,
"size": 964
} |
{-# OPTIONS --safe #-}
module Confluence where
open import Relation.Binary.PropositionalEquality
using (_≡_; refl)
cong : ∀ {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl
data ℕ : Set where
Z : ℕ
S : ℕ → ℕ
add : ℕ → ℕ → ℕ
add n Z = n
add n (S m) = S (add n m)
_ : ∀ {a : ℕ} → add a Z ≡ a
_ = refl
thm : ∀ {a : ℕ} → add Z a ≡ a
thm {a = Z} = refl
thm {a = (S m)} = cong S thm
-- Confluence checking is not supported;
-- Check out Jesper Cockx's Phd thesis for overlapping patterns.
| {
"alphanum_fraction": 0.5673076923,
"avg_line_length": 19.2592592593,
"ext": "agda",
"hexsha": "fde0b93c08bd4c978581745191f18acfc78435b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "anqurvanillapy/fpl",
"max_forks_repo_path": "agda/Confluence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "anqurvanillapy/fpl",
"max_issues_repo_path": "agda/Confluence.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "anqurvanillapy/fpl",
"max_stars_repo_path": "agda/Confluence.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z",
"num_tokens": 200,
"size": 520
} |
module Prelude.Nat.Core where
open import Prelude.Unit
open import Prelude.Empty
open import Prelude.Number
open import Prelude.Semiring
open import Agda.Builtin.Nat public
renaming ( _+_ to _+N_
; _*_ to _*N_
; _-_ to _-N_
; _==_ to eqNat
; _<_ to lessNat
; div-helper to divAux
; mod-helper to modAux )
{-# DISPLAY _+N_ = _+_ #-}
{-# DISPLAY _-N_ = _-_ #-}
{-# DISPLAY _*N_ = _*_ #-}
--- Semiring ---
instance
NumberNat : Number Nat
Number.Constraint NumberNat _ = ⊤
Number.fromNat NumberNat n = n
SemiringNat : Semiring Nat
zro {{SemiringNat}} = 0
one {{SemiringNat}} = 1
_+_ {{SemiringNat}} = _+N_
_*_ {{SemiringNat}} = _*N_
SubtractiveNat : Subtractive Nat
_-_ {{SubtractiveNat}} = _-N_
negate {{SubtractiveNat}} _ = 0
--- Division and modulo ---
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc _) = ⊤
infixl 7 natDiv natMod
syntax natDiv m n = n div m
natDiv : (m : Nat) {{nz : NonZero m}} → Nat → Nat
natDiv zero {{}} n
natDiv (suc m) n = divAux 0 m n m
syntax natMod m n = n mod m
natMod : (m : Nat) {{nz : NonZero m}} → Nat → Nat
natMod zero {{}} n
natMod (suc m) n = modAux 0 m n m
{-# INLINE natMod #-}
{-# INLINE natDiv #-}
| {
"alphanum_fraction": 0.5839813375,
"avg_line_length": 22.1724137931,
"ext": "agda",
"hexsha": "a3243523f29500bf304a45c2234d5ac3985051d5",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Nat/Core.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Nat/Core.agda",
"max_line_length": 49,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Nat/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 424,
"size": 1286
} |
import Lvl
module Function.Names where
open import Functional.Dependent
open import Logic.Predicate
open import Structure.Setoid
open import Type
private variable ℓ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
-- Extensional equality on functions.
-- Alternative definition: f ⊜ g = (∀{x} → (f(x) ≡ g(x)))
_⊜_ : ((a : A) → B(a)) → ((a : A) → B(a)) → Type
_⊜_ = ∀¹ ∘₂ pointwise₂,₁(_≡_)
_⊜₁_ = _⊜_
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
_⊜ᵢ_ : ({a : A} → B(a)) → ({a : A} → B(a)) → Type
_⊜ᵢ_ f g = (∀{x} → (f{x} ≡ g{x}))
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₃}(B(a)) ⦄ where
_⦃⊜⦄_ : (⦃ a : A ⦄ → B(a)) → (⦃ a : A ⦄ → B(a)) → Type
_⦃⊜⦄_ f g = (∀{x} → (f ⦃ x ⦄ ≡ g ⦃ x ⦄))
module _ {A₁ : Type{ℓₒ₁}} {A₂ : A₁ → Type{ℓₒ₂}} {B : (a₁ : A₁) → A₂(a₁) → Type{ℓₒ₂}} ⦃ _ : ∀{a₁}{a₂} → Equiv{ℓₗ₃}(B(a₁)(a₂)) ⦄ where
-- Alternative definition: f ⊜ g = (∀{x}{y} → (f(x)(y) ≡ g(x)(y)))
_⊜₂_ : (f g : ∀(a₁)(a₂) → B(a₁)(a₂)) → Type
_⊜₂_ = ∀¹ ∘₂ (∀¹ ∘₃ pointwise₂,₂(_≡_))
module _ {A₁ : Type{ℓₒ₁}} {A₂ : A₁ → Type{ℓₒ₂}} {A₃ : (a₁ : A₁) → A₂(a₁) → Type{ℓₒ₂}} {B : (a₁ : A₁) → (a₂ : A₂(a₁)) → A₃(a₁)(a₂) → Type{ℓₒ₂}} ⦃ _ : ∀{a₁}{a₂}{a₃} → Equiv{ℓₗ₃}(B(a₁)(a₂)(a₃)) ⦄ where
-- Alternative definition: f ⊜ g = (∀{x}{y}{z} → (f(x)(y)(z) ≡ g(x)(y)(z)))
_⊜₃_ : (f g : ∀(a₁)(a₂)(a₃) → B(a₁)(a₂)(a₃)) → Type
_⊜₃_ = ∀¹ ∘₂ (∀¹ ∘₃ (∀¹ ∘₄ pointwise₂,₃(_≡_)))
| {
"alphanum_fraction": 0.4888304862,
"avg_line_length": 42.2777777778,
"ext": "agda",
"hexsha": "1dcf737765b94986b7daab4dddcf4349d1a81817",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/Names.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/Names.agda",
"max_line_length": 198,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 921,
"size": 1522
} |
{-# OPTIONS --cubical #-}
module Data.Boolean.Equiv.Path where
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Functional
open import Logic.Propositional
open import Structure.Relator.Properties
open import Structure.Relator
open import Type.Cubical.Path.Equality
open import Type.Cubical.Path
open import Type.Identity
Bool-different-values : ¬(Path 𝐹 𝑇)
Bool-different-values p = substitute₁ₗ(IsTrue) p <>
Bool-Path-to-Id : ∀{x y : Bool} → (Path x y) → (Id x y)
Bool-Path-to-Id {𝑇} {𝑇} _ = intro
Bool-Path-to-Id {𝑇} {𝐹} = [⊥]-elim ∘ Bool-different-values ∘ symmetry(Path)
Bool-Path-to-Id {𝐹} {𝑇} = [⊥]-elim ∘ Bool-different-values
Bool-Path-to-Id {𝐹} {𝐹} _ = intro
| {
"alphanum_fraction": 0.7215189873,
"avg_line_length": 29.625,
"ext": "agda",
"hexsha": "a3195564129b1feecc9494779df45a07a8f0b9de",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Boolean/Equiv/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Boolean/Equiv/Path.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Boolean/Equiv/Path.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 241,
"size": 711
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Logging.Logging
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LIWS
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Types.EpochState where
verify : EpochState → LedgerInfoWithSignatures → Either ErrLog Unit
verify self ledgerInfo = do
lcheck (self ^∙ esEpoch == ledgerInfo ^∙ liwsLedgerInfo ∙ liEpoch)
( "EpochState" ∷ "LedgerInfo has unexpected epoch" ∷ [])
--, show (self^.esEpoch), show (ledgerInfo^.liwsLedgerInfo.liEpoch) ]
LIWS.verifySignatures ledgerInfo (self ^∙ esVerifier)
epochChangeVerificationRequired : EpochState → Epoch → Bool
epochChangeVerificationRequired self epoch = ⌊ self ^∙ esEpoch <? epoch ⌋
isLedgerInfoStale : EpochState → LedgerInfo → Bool
isLedgerInfoStale self ledgerInfo = ⌊ ledgerInfo ^∙ liEpoch <? self ^∙ esEpoch ⌋
| {
"alphanum_fraction": 0.7641996558,
"avg_line_length": 41.5,
"ext": "agda",
"hexsha": "73146ed99b1440448c5350d16df2594cae9f5fec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/EpochState.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/EpochState.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/EpochState.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 331,
"size": 1162
} |
open import Level using (_⊔_; suc)
open import Data.Empty using (⊥)
open import Relation.Binary using (Rel; Decidable; DecSetoid)
module AKS.Algebra.Bundles where
open import AKS.Nat using (ℕ)
open import Algebra.Core using (Op₁; Op₂)
open import Algebra.Bundles using (CommutativeRing) public
open import AKS.Algebra.Structures using
( IsNonZeroCommutativeRing; IsIntegralDomain; IsGCDDomain
; IsUniqueFactorizationDomain; IsEuclideanDomain; IsField
; IsDecField; IsFiniteField
) public
record NonZeroCommutativeRing a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isNonZeroCommutativeRing : IsNonZeroCommutativeRing Carrier _≈_ _+_ _*_ -_ 0# 1#
open IsNonZeroCommutativeRing isNonZeroCommutativeRing using (isCommutativeRing; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#; C/0; 1#-nonzero; -1#-nonzero) public
commutativeRing : CommutativeRing a ℓ
commutativeRing = record { isCommutativeRing = isCommutativeRing }
open CommutativeRing commutativeRing using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; setoid; isEquivalence
) public
record IntegralDomain a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isIntegralDomain : IsIntegralDomain Carrier _≈_ _+_ _*_ -_ 0# 1#
open IsIntegralDomain isIntegralDomain using (isNonZeroCommutativeRing; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_) public
nonZeroCommutativeRing : NonZeroCommutativeRing a ℓ
nonZeroCommutativeRing = record { isNonZeroCommutativeRing = isNonZeroCommutativeRing }
open NonZeroCommutativeRing nonZeroCommutativeRing using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#; C/0; 1#-nonzero; -1#-nonzero
; setoid; isEquivalence
) public
record GCDDomain a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
gcd : Op₂ Carrier
isGCDDomain : IsGCDDomain Carrier _≈_ _+_ _*_ -_ 0# 1# gcd
open IsGCDDomain isGCDDomain using (isIntegralDomain) public
integralDomain : IntegralDomain a ℓ
integralDomain = record { isIntegralDomain = isIntegralDomain }
open IntegralDomain integralDomain using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; 1#-nonzero; -1#-nonzero
; setoid; isEquivalence
) public
record UniqueFactorizationDomain a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
gcd : Op₂ Carrier
isUniqueFactorizationDomain : IsUniqueFactorizationDomain Carrier _≈_ _+_ _*_ -_ 0# 1# gcd
open IsUniqueFactorizationDomain isUniqueFactorizationDomain using (isGCDDomain) public
gcdDomain : GCDDomain a ℓ
gcdDomain = record { isGCDDomain = isGCDDomain }
open GCDDomain gcdDomain using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; 1#-nonzero; -1#-nonzero
; setoid; isEquivalence
) public
record EuclideanDomain a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 7 _div_
infixl 7 _mod_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ
_div_ : ∀ (n m : Carrier) {m≉0 : m ≉ 0#} → Carrier
_mod_ : ∀ (n m : Carrier) {m≉0 : m ≉ 0#} → Carrier
gcd : Op₂ Carrier
isEuclideanDomain : IsEuclideanDomain Carrier _≈_ _+_ _*_ -_ 0# 1# ∣_∣ _div_ _mod_ gcd
open import AKS.Algebra.Structures Carrier _≈_ using (module Modulus)
open Modulus 0# ∣_∣ _mod_ using (Remainder; 0≈; 0≉)
open IsEuclideanDomain isEuclideanDomain using
( isUniqueFactorizationDomain
; division; modulus
) public
uniqueFactorizationDomain : UniqueFactorizationDomain a ℓ
uniqueFactorizationDomain = record { isUniqueFactorizationDomain = isUniqueFactorizationDomain }
open UniqueFactorizationDomain uniqueFactorizationDomain using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; 1#-nonzero; -1#-nonzero
; setoid; isEquivalence
) public
record Field a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 7 _/_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
_/_ : ∀ (n m : Carrier) {m≉0 : m ≉ 0#} → Carrier
gcd : Op₂ Carrier
isField : IsField Carrier _≈_ _+_ _*_ -_ 0# 1# _/_ gcd
open IsField isField using
( isEuclideanDomain
; m*[n/m]≈n; [n/m]*m≈n; /-cong; _/-nonzero_
; _⁻¹; ⁻¹-inverseʳ; ⁻¹-inverseˡ
; x⁻¹≉0; ⁻¹-cong
)public
euclideanDomain : EuclideanDomain a ℓ
euclideanDomain = record { isEuclideanDomain = isEuclideanDomain }
open EuclideanDomain euclideanDomain using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; 1#-nonzero; -1#-nonzero
; setoid; isEquivalence
) public
record DecField a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 7 _/_
infixl 6 _+_
infix 4 _≈_
infix 4 _≈?_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
_≈?_ : Decidable _≈_
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
_/_ : ∀ (n m : Carrier) {m≉0 : m ≉ 0#} → Carrier
gcd : Op₂ Carrier
isDecField : IsDecField Carrier _≈_ _≈?_ _+_ _*_ -_ 0# 1# _/_ gcd
open IsDecField isDecField using (isField; isDecEquivalence) public
[field] : Field a ℓ
[field] = record { isField = isField }
decSetoid : DecSetoid a ℓ
decSetoid = record { isDecEquivalence = isDecEquivalence }
open Field [field] using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; _/-nonzero_; 1#-nonzero; -1#-nonzero
; m*[n/m]≈n; [n/m]*m≈n; /-cong
; _⁻¹; ⁻¹-inverseʳ; ⁻¹-inverseˡ
; x⁻¹≉0; ⁻¹-cong
; setoid; isEquivalence
) public
record FiniteField a ℓ : Set (suc (a ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 7 _/_
infixl 6 _+_
infix 4 _≈_
infix 4 _≈?_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
_≈?_ : Decidable _≈_
infix 4 _≉_
_≉_ : Rel Carrier ℓ
x ≉ y = x ≈ y → ⊥
field
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
_/_ : ∀ (n m : Carrier) {m≉0 : m ≉ 0#} → Carrier
gcd : Op₂ Carrier
cardinality : ℕ
isFiniteField : IsFiniteField Carrier _≈_ _≈?_ _+_ _*_ -_ 0# 1# _/_ gcd cardinality
open IsFiniteField isFiniteField using (isDecField) public
decField : DecField a ℓ
decField = record { isDecField = isDecField }
open DecField decField using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; +-group; +-abelianGroup; _-_
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne; commutativeSemiring
; ring; commutativeRing; nonZeroCommutativeRing
; 0#≉1#; 1#≉0#; 0#≉-1#; -1#≉0#
; C/0; *-cancelˡ; *-cancelʳ; *≉0; _*-nonzero_; _/-nonzero_; 1#-nonzero; -1#-nonzero
; m*[n/m]≈n; [n/m]*m≈n; /-cong
; _⁻¹; ⁻¹-inverseʳ; ⁻¹-inverseˡ
; x⁻¹≉0; ⁻¹-cong
; setoid; isEquivalence; decSetoid; isDecEquivalence
) public
| {
"alphanum_fraction": 0.6317088217,
"avg_line_length": 29.5494791667,
"ext": "agda",
"hexsha": "a67ec01c84e6506846aac1189e186be3e9920fa8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Algebra/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Algebra/Bundles.agda",
"max_line_length": 149,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Algebra/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 4503,
"size": 11347
} |
module Languages.ILL.Syntax where
open import level
open import bool
open import nat
open import unit
open import empty
open import eq
open import sum
open import product
open import Utils.HaskellTypes
open import Utils.HaskellFunctions
open import Languages.ILL.TypeSyntax
True : Set
True = ⊤{lzero}
False : Set
False = ⊥{lzero}
Name : Set
Name = ℕ
name-in : ∀{A : Set} → (A → A → 𝔹) → A → List A → Set
name-in eq x ctx with list-member eq x ctx
name-in _ x ctx | tt = True
name-in _ x ctx | ff = False
-- Bound Variable Labels:
data VLabel : Set where
LLPV : VLabel -- Let-Bound Left Pattern Variable
RLPV : VLabel -- Let-Bound Right Pattern Variable
LCPV : VLabel -- Copy-Bound Left Pattern Variable
RCPV : VLabel -- Copy-Bound Right Pattern Variable
BV : VLabel -- λ-Bound Variable
PBV : VLabel -- Promote-Bound Variable that is ith in the sequence
_vl-eq_ : VLabel → VLabel → 𝔹
LLPV vl-eq LLPV = tt
RLPV vl-eq RLPV = tt
LCPV vl-eq LCPV = tt
RCPV vl-eq RCPV = tt
BV vl-eq BV = tt
PBV vl-eq PBV = tt
_ vl-eq _ = ff
data Pattern : Set where
PTriv : Pattern
PTensor : String → String → Pattern
data Term : Set where
Triv : Term
FVar : String → Term
BVar : Name → String → VLabel → Term
Let : Term → Type → Pattern → Term → Term
Lam : String → Type → Term → Term
App : Term → Term → Term
Tensor : Term → Term → Term
Promote : List (Triple Term String Type) → Term → Term
Discard : Term → Term → Term
Copy : Term → (Prod String String) → Term → Term
Derelict : Term → Term
{-# TERMINATING #-}
open-t : Name → String → VLabel → Term → Term → Term
open-t x xs l u (BVar y ys l') with x =ℕ y | xs str-eq ys | l vl-eq l'
... | tt | tt | tt = u
... | _ | _ | _ = BVar y ys l'
open-t x xs BV u (Let t₁ y z t₂) = Let (open-t x xs BV u t₁) y z (open-t x xs BV u t₂)
open-t x xs l@LCPV u (Let t₁ y z t₂) = Let (open-t x xs l u t₁) y z (open-t x xs l u t₂)
open-t x xs l@RCPV u (Let t₁ y z t₂) = Let (open-t x xs l u t₁) y z (open-t x xs l u t₂)
open-t x xs l u (Let t₁ a p t₂) = Let (open-t x xs l u t₁) a p (open-t (suc x) xs l u t₂)
open-t x xs BV u (Lam ys a t) = Lam ys a (open-t (suc x) xs BV u t)
open-t x xs l u (Lam ys a t) = Lam ys a (open-t x xs l u t)
open-t x xs l u (App t₁ t₂) = App (open-t x xs l u t₁) (open-t x xs l u t₂)
open-t x xs l u (Tensor t₁ t₂) = Tensor (open-t x xs l u t₁) (open-t x xs l u t₂)
open-t x xs l@PBV y (Promote ms n) = Promote oms (open-t (suc x) xs l y n)
where
oms = map (fstMapT (open-t x xs l y)) ms
open-t x xs l y (Promote ms n) = Promote oms (open-t x xs l y n)
where
oms = map (fstMapT (open-t x xs l y)) ms
open-t x xs l@LCPV y (Copy m p n) = Copy (open-t x xs l y m ) p (open-t (suc x) xs l y n)
open-t x xs l@RCPV y (Copy m p n) = Copy (open-t x xs l y m ) p (open-t (suc x) xs l y n)
open-t x xs l y (Copy m p n) = Copy (open-t x xs l y m ) p (open-t x xs l y n)
open-t x xs l y (Discard m n) = Discard (open-t x xs l y m) (open-t x xs l y n)
open-t x xs l y (Derelict m) = Derelict (open-t x xs l y m)
open-t _ _ _ _ t = t
{-# TERMINATING #-}
close-t : Name → String → VLabel → String → Term → Term
close-t x xs l y (FVar z) with y str-eq z
... | tt = BVar x xs l
... | ff = FVar z
close-t x xs l@LLPV y (Let t₁ ty p t₂) = Let (close-t x xs l y t₁) ty p (close-t (suc x) xs l y t₂)
close-t x xs l@RLPV y (Let t₁ ty p t₂) = Let (close-t x xs l y t₁) ty p (close-t (suc x) xs l y t₂)
close-t x xs l y (Let t₁ ty p t₂) = Let (close-t x xs l y t₁) ty p (close-t x xs l y t₂)
close-t x xs l@BV y (Lam ys a t) = Lam ys a (close-t (suc x) xs l y t)
close-t x xs l y (Lam ys a t) = Lam ys a (close-t x xs l y t)
close-t x xs l y (App t₁ t₂) = App (close-t x xs l y t₁) (close-t x xs l y t₂)
close-t x xs l y (Tensor t₁ t₂) = Tensor (close-t x xs l y t₁) (close-t x xs l y t₂)
close-t x xs l@PBV y (Promote ms n) = Promote cms (close-t (suc x) xs l y n)
where
cms = map (fstMapT (close-t x xs l y)) ms
close-t x xs l y (Promote ms n) = Promote cms (close-t x xs l y n)
where
cms = map (fstMapT (close-t x xs l y)) ms
close-t x xs l@LCPV y (Copy m p n) = Copy (close-t x xs l y m) p (close-t (suc x) xs l y n)
close-t x xs l@RCPV y (Copy m p n) = Copy (close-t x xs l y m) p (close-t (suc x) xs l y n)
close-t x xs l y (Copy m p n) = Copy (close-t x xs l y m) p (close-t x xs l y n)
close-t x xs l y (Discard m n) = Discard (close-t x xs l y m) (close-t x xs l y n)
close-t x xs l y (Derelict m) = Derelict (close-t x xs l y m)
close-t _ _ _ _ t = t
| {
"alphanum_fraction": 0.6100420261,
"avg_line_length": 39.3130434783,
"ext": "agda",
"hexsha": "58169acfe7220b25ef99199004a73647bc10d75b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "heades/Agda-LLS",
"max_forks_repo_path": "Source/ALL/Languages/ILL/Syntax.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "heades/Agda-LLS",
"max_issues_repo_path": "Source/ALL/Languages/ILL/Syntax.agda",
"max_line_length": 99,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "heades/Agda-LLS",
"max_stars_repo_path": "Source/ALL/Languages/ILL/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z",
"num_tokens": 1750,
"size": 4521
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.PtdAdjoint
module homotopy.SuspAdjointLoop {i} where
private
SuspFunctor : PtdFunctor i i
SuspFunctor = record {
obj = ⊙Susp;
arr = ⊙Susp-fmap;
id = ⊙Susp-fmap-idf;
comp = ⊙Susp-fmap-∘}
LoopFunctor : PtdFunctor i i
LoopFunctor = record {
obj = ⊙Ω;
arr = ⊙Ω-fmap;
id = λ _ → ⊙Ω-fmap-idf;
comp = ⊙Ω-fmap-∘}
module _ (X : Ptd i) where
η : de⊙ X → Ω (⊙Susp X)
η x = σloop X x
module E = SuspRec (pt X) (pt X) (idf _)
ε : de⊙ (⊙Susp (⊙Ω X)) → de⊙ X
ε = E.f
⊙η : X ⊙→ ⊙Ω (⊙Susp X)
⊙η = (η , σloop-pt)
⊙ε : ⊙Susp (⊙Ω X) ⊙→ X
⊙ε = (ε , idp)
η-natural : {X Y : Ptd i} (f : X ⊙→ Y)
→ ⊙η Y ⊙∘ f == ⊙Ω-fmap (⊙Susp-fmap f) ⊙∘ ⊙η X
η-natural {X = X} (f , idp) = ⊙λ='
(λ x → ! $
ap-∙ (Susp-fmap f) (merid x) (! (merid (pt X)))
∙ SuspFmap.merid-β f x
∙2 (ap-! (Susp-fmap f) (merid (pt X))
∙ ap ! (SuspFmap.merid-β f (pt X))))
(pt-lemma (Susp-fmap f) (merid (pt X)) (SuspFmap.merid-β f (pt X)))
where
pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q)
→ !-inv-r q == ap (ap f) (!-inv-r p) ∙ idp
[ _== idp ↓ ! (ap-∙ f p (! p) ∙ α ∙2 (ap-! f p ∙ ap ! α)) ]
pt-lemma f idp idp = idp
ε-natural : {X Y : Ptd i} (f : X ⊙→ Y)
→ ⊙ε Y ⊙∘ ⊙Susp-fmap (⊙Ω-fmap f) == f ⊙∘ ⊙ε X
ε-natural (f , idp) = ⊙λ='
(SuspElim.f idp idp
(λ p → ↓-='-from-square $ vert-degen-square $
ap-∘ (ε _) (Susp-fmap (ap f)) (merid p)
∙ ap (ap (ε _)) (SuspFmap.merid-β (ap f) p)
∙ E.merid-β _ (ap f p)
∙ ap (ap f) (! (E.merid-β _ p))
∙ ∘-ap f (ε _) (merid p)))
idp
εΣ-Ση : (X : Ptd i) → ⊙ε (⊙Susp X) ⊙∘ ⊙Susp-fmap (⊙η X) == ⊙idf _
εΣ-Ση X = ⊙λ='
(SuspElim.f
idp
(merid (pt X))
(λ x → ↓-='-from-square $
(ap-∘ (ε (⊙Susp X)) (Susp-fmap (η X)) (merid x)
∙ ap (ap (ε (⊙Susp X))) (SuspFmap.merid-β (η X) x)
∙ E.merid-β _ (merid x ∙ ! (merid (pt X))))
∙v⊡ square-lemma (merid x) (merid (pt X))
⊡v∙ ! (ap-idf (merid x))))
idp
where
square-lemma : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : z == y)
→ Square idp (p ∙ ! q) p q
square-lemma idp idp = ids
Ωε-ηΩ : (X : Ptd i) → ⊙Ω-fmap (⊙ε X) ⊙∘ ⊙η (⊙Ω X) == ⊙idf _
Ωε-ηΩ X = ⊙λ='
(λ p → ap-∙ (ε X) (merid p) (! (merid idp))
∙ (E.merid-β X p ∙2 (ap-! (ε X) (merid idp) ∙ ap ! (E.merid-β X idp)))
∙ ∙-unit-r _)
(pt-lemma (ε X) (merid idp) (E.merid-β X idp))
where
pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q)
→ ap (ap f) (!-inv-r p) ∙ idp == idp
[ _== idp ↓ ap-∙ f p (! p) ∙ (α ∙2 (ap-! f p ∙ ap ! α)) ∙ !-inv-r q ]
pt-lemma f idp idp = idp
module Eta = E
adj : CounitUnitAdjoint SuspFunctor LoopFunctor
adj = record {
η = ⊙η;
ε = ⊙ε;
η-natural = η-natural;
ε-natural = ε-natural;
εF-Fη = εΣ-Ση;
Gε-ηG = Ωε-ηΩ}
hadj = counit-unit-to-hom adj
open CounitUnitAdjoint adj public
open HomAdjoint hadj public
| {
"alphanum_fraction": 0.4590979782,
"avg_line_length": 27.9565217391,
"ext": "agda",
"hexsha": "dce20c39a2ab73f91a5444012e8b71b23de87047",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SuspAdjointLoop.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SuspAdjointLoop.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SuspAdjointLoop.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1564,
"size": 3215
} |
------------------------------------------------------------------------
-- Code related to the paper Beating the Productivity Checker Using
-- Embedded Languages
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
module Productivity where
------------------------------------------------------------------------
-- Making Programs Guarded
-- A definition of the stream of Fibonacci numbers, as well
-- as a definition of the Hamming numbers.
import StreamProg
------------------------------------------------------------------------
-- Several Types at Once
-- By indexing the program and WHNF types on a universe one can handle
-- several types at the same time.
import UniverseIndex
-- Breadth-first labelling of trees, /almost/ implementing the classic
-- tie-the-recursive-knot algorithm due to Jeremy Gibbons and Geraint
-- Jones (see "Linear-time Breadth-first Tree Algorithms: An Exercise
-- in the Arithmetic of Folds and Zips", or Chris Okasaki's
-- explanation in "Breadth-First Numbering: Lessons from a Small
-- Exercise in Algorithm Design"). Proper sharing is not maintained,
-- though, so this implementation is far from being linear in the size
-- of the tree.
import Stream
import Tree
import BreadthFirst.Universe
import BreadthFirst.Programs
import BreadthFirst
-- A simplified variant of the code above, without any correctness
-- statement or proof.
import BreadthFirstWithoutProof
------------------------------------------------------------------------
-- Making Proofs Guarded
-- Proofs of the map-iterate property and iterate fusion.
import MapIterate
-- A formalisation of parts of Ralf Hinze's paper "Streams and Unique
-- Fixed Points".
import Stream
import Stream.Programs
import Stream.Equality
import Stream.Pointwise
import Hinze.Lemmas
import Hinze.Section2-4
import Hinze.Section3
import Hinze.Simplified.Section2-4
import Hinze.Simplified.Section3
-- Code not mentioned in the paper:
-- An investigation of various ways to define the semantics of an
-- untyped λ-calculus and a virtual machine, and a discussion of
-- compiler correctness. The module Lambda.Closure.Relational uses the
-- language-based technique to establish guardedness.
import Lambda
import Lambda.Closure.Relational
------------------------------------------------------------------------
-- Destructors
-- A somewhat more elaborate/complicated variant of the method which
-- can handle functions like tail.
import SingletonChunks
-- Code not mentioned in the paper:
-- Another variant which can handle tail. I believe that this one has
-- limited applicability.
import LargeCombinators
------------------------------------------------------------------------
-- Other Chunk Sizes
-- A generalised variant of (parts of) SingletonChunks, plus some
-- extra examples.
import ArbitraryChunks
-- Implementations of the Thue-Morse sequence, using non-uniform chunk
-- sizes.
import ThueMorse
import ThueMorseLeq
------------------------------------------------------------------------
-- Nested Applications
-- An example which shows that nested applications of the defined
-- function can be handled.
import Nested
-- Code not mentioned in the paper:
-- A solution to a problem posed by Venanzio Capretta: The equation
--
-- φ s = s ⋎ φ (evens (φ s))
--
-- has at most one solution. (Notice the nested uses of φ, and the use
-- of evens which removes every other element from its input.)
import VenanziosProblem
------------------------------------------------------------------------
-- Related Work
-- Formalisation of subtyping for recursive types, partly based on
-- "Coinductive Axiomatization of Recursive Type Equality and
-- Subtyping" by Michael Brandt and Fritz Henglein.
import RecursiveTypes
-- The following modules use the language-based technique to establish
-- guardedness. The last of them was briefly discussed in the paper.
import RecursiveTypes.Subtyping.Semantic.Coinductive
import RecursiveTypes.Subtyping.Axiomatic.Coinductive
import RecursiveTypes.Subtyping.Axiomatic.Inductive
-- An implementation of "A Unifying Approach to Recursive and
-- Co-recursive Definitions" by Pietro Di Gianantonio and Marino
-- Miculan. Contains one postulate.
import Contractive
import Contractive.Function
import Contractive.Stream
import Contractive.Examples
------------------------------------------------------------------------
-- Appendix
-- A sound, inductive approximation of stream equality.
import InductiveStreamEquality
| {
"alphanum_fraction": 0.6595463554,
"avg_line_length": 29.2967741935,
"ext": "agda",
"hexsha": "69dbd0b6d4ae3924e385b1b4b8ed938ceb6126ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Productivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Productivity.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Productivity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 884,
"size": 4541
} |
-- Andreas, 2011-04-14
-- {-# OPTIONS -v tc.cover:20 -v tc.lhs.unify:20 #-}
module Issue291a where
open import Imports.Coinduction
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
data RUnit : Set where
runit : ∞ RUnit -> RUnit
j : (u : ∞ RUnit) -> ♭ u ≡ runit u -> Set
j u ()
-- needs to fail (reports a Bad split!)
| {
"alphanum_fraction": 0.5963855422,
"avg_line_length": 20.75,
"ext": "agda",
"hexsha": "68e6fedebe77e67f7f7be95c7e833b35141a6e5f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue291a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue291a.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue291a.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 126,
"size": 332
} |
open import Agda.Primitive using (_⊔_ ; lsuc ; Level)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Product using (Product)
open import MultiSorted.AlgebraicTheory
import MultiSorted.Product as Product
import MultiSorted.Interpretation
module MultiSorted.InterpretationCategory
{o ℓ e}
{𝓈 ℴ}
(Σ : Signature {𝓈} {ℴ})
{𝒞 : Category.Category o ℓ e}
(cartesian-𝒞 : Cartesian.Cartesian 𝒞) where
open Signature Σ
open Category.Category 𝒞
open Cartesian.Cartesian cartesian-𝒞
open MultiSorted.Interpretation Σ cartesian-𝒞
-- Equality of homomorphisms of interpretations
_≈I_ : ∀ {I J : Interpretation} → I ⇒I J → I ⇒I J → Set (e ⊔ 𝓈)
_≈I_ {I} {J} ϕ ψ =
let open _⇒I_ in ∀ (A : sort) → hom-morphism ϕ {A} ≈ hom-morphism ψ
-- The category of interpretations of Σ in 𝒞
ℐ𝓃𝓉 : Category.Category (o ⊔ ℓ ⊔ e ⊔ 𝓈 ⊔ ℴ) (o ⊔ ℓ ⊔ e ⊔ 𝓈 ⊔ ℴ) (e ⊔ 𝓈)
ℐ𝓃𝓉 = record
{ Obj = Interpretation
; _⇒_ = _⇒I_
; _≈_ = _≈I_
; id = id-I
; _∘_ = _∘I_
; assoc = λ _ → assoc
; sym-assoc = λ _ → sym-assoc
; identityˡ = λ _ → identityˡ
; identityʳ = λ _ → identityʳ
; identity² = λ _ → identity²
; equiv = record { refl = λ A → Equiv.refl
; sym = λ p A → Equiv.sym (p A)
; trans = λ p₁ p₂ A → Equiv.trans (p₁ A) (p₂ A)
}
; ∘-resp-≈ = λ p₁ p₂ A → ∘-resp-≈ (p₁ A) (p₂ A)
}
-- Cartesian structure on the category on interpretations of Σ in 𝒞
module _ (I J : Interpretation) where
open Interpretation
open Product.Producted
open HomReasoning
A×B-ℐ𝓃𝓉 : Interpretation
interp-sort A×B-ℐ𝓃𝓉 A = interp-sort I A × interp-sort J A
-- Contexts
-- -- Structure
prod (interp-ctx A×B-ℐ𝓃𝓉) Γ = prod (interp-ctx I) Γ × prod (interp-ctx J) Γ
π (interp-ctx A×B-ℐ𝓃𝓉) x = (π (interp-ctx I) x) ⁂ (π (interp-ctx J) x)
tuple (interp-ctx A×B-ℐ𝓃𝓉) Γ fs = ⟨ (tuple (interp-ctx I) Γ λ x → π₁ ∘ fs x) , ((tuple (interp-ctx J) Γ λ x → π₂ ∘ fs x)) ⟩
project (interp-ctx A×B-ℐ𝓃𝓉) {Γ} {B} {x} {fs} =
begin
π (interp-ctx A×B-ℐ𝓃𝓉) x ∘
(tuple (interp-ctx A×B-ℐ𝓃𝓉) Γ fs) ≈⟨ ⁂∘⟨⟩ ⟩
⟨ π (interp-ctx I) x ∘ tuple (interp-ctx I) Γ (λ x₁ → π₁ ∘ fs x₁) ,
π (interp-ctx J) x ∘ tuple (interp-ctx J) Γ (λ x₁ → π₂ ∘ fs x₁) ⟩ ≈⟨ ⟨⟩-congʳ (project (interp-ctx I)) ⟩
⟨ π₁ ∘ fs x ,
π (interp-ctx J) x ∘ tuple (interp-ctx J) Γ (λ x₁ → π₂ ∘ fs x₁) ⟩ ≈⟨ ⟨⟩-congˡ (project (interp-ctx J)) ⟩
⟨ π₁ ∘ fs x , π₂ ∘ fs x ⟩ ≈⟨ Product.unique product Equiv.refl Equiv.refl ⟩
fs x ∎
unique (interp-ctx A×B-ℐ𝓃𝓉) {Γ} {A} {g} {fs} ps = Product.unique product
(⟺ (unique (interp-ctx I) λ i → begin
π (interp-ctx I) i ∘ product.π₁ ∘ fs ≈⟨ sym-assoc ⟩
(π (interp-ctx I) i ∘ product.π₁) ∘ fs ≈⟨ (Π-nat₁ i ⟩∘⟨refl) ⟩
(product.π₁ ∘ (π (interp-ctx A×B-ℐ𝓃𝓉) i)) ∘ fs ≈⟨ assoc ⟩
product.π₁ ∘((π (interp-ctx A×B-ℐ𝓃𝓉) i) ∘ fs) ≈⟨ (refl⟩∘⟨ ps i) ⟩
product.π₁ ∘ g i ∎))
(⟺ (unique (interp-ctx J) λ i → begin
(π (interp-ctx J) i ∘ π₂ ∘ fs) ≈⟨ sym-assoc ⟩
((π (interp-ctx J) i ∘ π₂) ∘ fs) ≈⟨ (Π-nat₂ i ⟩∘⟨refl) ⟩
((product.π₂ ∘ π (interp-ctx A×B-ℐ𝓃𝓉) i) ∘ fs) ≈⟨ assoc ⟩
(π₂ ∘ π (interp-ctx A×B-ℐ𝓃𝓉) i ∘ fs) ≈⟨ (refl⟩∘⟨ ps i) ⟩
(π₂ ∘ g i) ∎))
where
Π-nat₁ : {Γ : Context} → (i : var Γ) → π (interp-ctx I) i ∘ product.π₁ ≈ product.π₁ ∘ π (interp-ctx A×B-ℐ𝓃𝓉) i
Π-nat₁ = λ i → ⟺ project₁
Π-nat₂ : {Γ : Context} → (i : var Γ) → π (interp-ctx J) i ∘ product.π₂ ≈ product.π₂ ∘ π (interp-ctx A×B-ℐ𝓃𝓉) i
Π-nat₂ = λ i → ⟺ project₂
-- Operations
interp-oper A×B-ℐ𝓃𝓉 = λ f → (interp-oper I f) ⁂ (interp-oper J f)
-- Useful propoerties for the definition of projections
module _ (I J : Interpretation) f where
open Product.Producted
open Interpretation
open HomReasoning
Π-nat₁ : {Γ : Context} → (i : var Γ) → π (interp-ctx I) i ∘ product.π₁ ≈ product.π₁ ∘ π (interp-ctx (A×B-ℐ𝓃𝓉 I J)) i
Π-nat₁ = λ i → ⟺ project₁
Π-nat₂ : {Γ : Context} → (i : var Γ) → π (interp-ctx J) i ∘ product.π₂ ≈ product.π₂ ∘ π (interp-ctx (A×B-ℐ𝓃𝓉 I J)) i
Π-nat₂ = λ i → ⟺ project₂
π₁-tuple : π₁ ≈ tuple (interp-ctx I) (oper-arity f) (λ i → π₁ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i))
π₁-tuple = ⟺ (begin
tuple (interp-ctx I) (oper-arity f)
(λ i → π₁ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i)) ≈⟨ tuple-cong (interp-ctx I) (λ i → π₁∘⁂) ⟩
tuple (interp-ctx I) (oper-arity f) (λ x → π (interp-ctx I) x ∘ π₁) ≈⟨ ∘-distribʳ-tuple (interp-ctx I) ⟩
(tuple (interp-ctx I) (oper-arity f) (λ x → π (interp-ctx I) x) ∘ π₁) ≈⟨ ∘-resp-≈ˡ (Product.Producted.η (interp-ctx I)) ⟩
(id ∘ π₁) ≈⟨ identityˡ ⟩
π₁ ∎)
π₂-tuple : π₂ ≈ tuple (interp-ctx J) (oper-arity f) (λ i → π₂ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i))
π₂-tuple = ⟺ (begin
tuple (interp-ctx J) (oper-arity f)
(λ i → π₂ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i)) ≈⟨ tuple-cong (interp-ctx J) (λ i → π₂∘⁂) ⟩
tuple (interp-ctx J) (oper-arity f) (λ x → π (interp-ctx J) x ∘ π₂) ≈⟨ ∘-distribʳ-tuple (interp-ctx J) ⟩
(tuple (interp-ctx J) (oper-arity f) (λ x → π (interp-ctx J) x) ∘ π₂) ≈⟨ ∘-resp-≈ˡ (Product.Producted.η (interp-ctx J)) ⟩
(id ∘ π₂) ≈⟨ identityˡ ⟩
π₂ ∎)
-- Definition of projections
π₁-ℐ𝓃𝓉 : ∀ {I J : Interpretation} → A×B-ℐ𝓃𝓉 I J ⇒I I
π₁-ℐ𝓃𝓉 {I} {J} =
let open HomReasoning in
let open Product.Producted in
let open Interpretation in
record
{ hom-morphism = Cartesian.Cartesian.π₁ cartesian-𝒞
; hom-commute = λ f → begin
(π₁ ∘ interp-oper (A×B-ℐ𝓃𝓉 I J) f) ≈⟨ π₁∘⁂ ⟩
(interp-oper I f ∘ π₁) ≈⟨ ∘-resp-≈ʳ (π₁-tuple I J f) ⟩
(interp-oper I f ∘
tuple (interp-ctx I) (oper-arity f)
(λ i → π₁ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i))) ∎
}
π₂-ℐ𝓃𝓉 : ∀ {I J : Interpretation} → A×B-ℐ𝓃𝓉 I J ⇒I J
π₂-ℐ𝓃𝓉 {I} {J} =
let open HomReasoning in
let open Product.Producted in
let open Interpretation in
record
{ hom-morphism = Cartesian.Cartesian.π₂ cartesian-𝒞
; hom-commute = λ f → begin
(π₂ ∘ interp-oper (A×B-ℐ𝓃𝓉 I J) f) ≈⟨ π₂∘⁂ ⟩
(interp-oper J f ∘ π₂) ≈⟨ ∘-resp-≈ʳ (π₂-tuple I J f) ⟩
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ i → π₂ ∘ (π (interp-ctx I) i ⁂ π (interp-ctx J) i))) ∎
}
-- Useful properties for the definition of ⟨_,_⟩-ℐ𝓃𝓉
module _ (I J K : Interpretation) f (ϕ : I ⇒I J) (ψ : I ⇒I K) where
open Interpretation
open HomReasoning
open Product.Producted
⟨⟩-left : interp-oper J f ∘ tuple
(interp-ctx J)
(oper-arity f)
(λ x → π₁ ∘ ⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x) ≈ _⇒I_.hom-morphism ϕ ∘ interp-oper I f
⟨⟩-left = begin
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ x →
π₁ ∘
⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x)) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx J) λ i → sym-assoc) ⟩
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ x →
(π₁ ∘ ⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩) ∘
π (interp-ctx I) x)) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx J) λ i → ∘-resp-≈ˡ project₁) ⟩
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ x → _⇒I_.hom-morphism ϕ ∘ π (interp-ctx I) x)) ≈⟨ ⟺ (_⇒I_.hom-commute ϕ f) ⟩
(_⇒I_.hom-morphism ϕ ∘ interp-oper I f) ∎
⟨⟩-right : interp-oper K f ∘ tuple
(interp-ctx K)
(oper-arity f)
(λ x → π₂ ∘ ⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x) ≈ _⇒I_.hom-morphism ψ ∘ interp-oper I f
⟨⟩-right = begin
(interp-oper K f ∘
tuple (interp-ctx K) (oper-arity f)
(λ x →
π₂ ∘
⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x)) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx K) λ i → sym-assoc) ⟩
(interp-oper K f ∘
tuple (interp-ctx K) (oper-arity f)
(λ x →
(π₂ ∘ ⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩) ∘
π (interp-ctx I) x)) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx K) λ i → ∘-resp-≈ˡ project₂) ⟩
(interp-oper K f ∘
tuple (interp-ctx K) (oper-arity f)
(λ x → _⇒I_.hom-morphism ψ ∘ π (interp-ctx I) x)) ≈⟨ ⟺ (_⇒I_.hom-commute ψ f) ⟩
(_⇒I_.hom-morphism ψ ∘ interp-oper I f) ∎
-- Definition of pairing
⟨_,_⟩-ℐ𝓃𝓉 : ∀ {I J K : Interpretation} → I ⇒I J → I ⇒I K → I ⇒I A×B-ℐ𝓃𝓉 J K
⟨_,_⟩-ℐ𝓃𝓉 {I} {J} {K} ϕ ψ =
let open HomReasoning in
let open Product.Producted in
let open Interpretation in
record
{ hom-morphism = λ {A} → ⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩
; hom-commute = λ f →
⟺ (begin
(interp-oper (A×B-ℐ𝓃𝓉 J K) f ∘
tuple (interp-ctx (A×B-ℐ𝓃𝓉 J K)) (oper-arity f)
(λ i →
⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) i)) ≈⟨ ⁂∘⟨⟩ ⟩
⟨
interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ x →
π₁ ∘
⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x)
,
interp-oper K f ∘
tuple (interp-ctx K) (oper-arity f)
(λ x →
π₂ ∘
⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ π (interp-ctx I) x)
⟩ ≈⟨ ⟨⟩-cong₂ (⟨⟩-left I J K f ϕ ψ) (⟨⟩-right I J K f ϕ ψ) ⟩
product.⟨ _⇒I_.hom-morphism ϕ ∘ interp-oper I f ,
_⇒I_.hom-morphism ψ ∘ interp-oper I f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(⟨ _⇒I_.hom-morphism ϕ , _⇒I_.hom-morphism ψ ⟩ ∘ interp-oper I f) ∎)
}
-- Properties about projections and unicity
project₁-ℐ𝓃𝓉 : {I J K : Interpretation} {h : I ⇒I J} {i : I ⇒I K} (A : sort) → π₁ ∘ ⟨ _⇒I_.hom-morphism {I} {J} h {A} , _⇒I_.hom-morphism {I} {K} i ⟩ ≈ _⇒I_.hom-morphism h
project₁-ℐ𝓃𝓉 A = project₁
project₂-ℐ𝓃𝓉 : {I J K : Interpretation} {h : I ⇒I J} {i : I ⇒I K} (A : sort) → π₂ ∘ ⟨ _⇒I_.hom-morphism {I} {J} h {A} , _⇒I_.hom-morphism {I} {K} i ⟩ ≈ _⇒I_.hom-morphism i
project₂-ℐ𝓃𝓉 A = project₂
unique-ℐ𝓃𝓉 : {I J K : Interpretation}
{h : I ⇒I A×B-ℐ𝓃𝓉 J K}
{i : I ⇒I J} {j : I ⇒I K} →
((A : sort) → π₁ ∘ _⇒I_.hom-morphism h {A} ≈ _⇒I_.hom-morphism i) →
((A : sort) → π₂ ∘ _⇒I_.hom-morphism h {A} ≈ _⇒I_.hom-morphism j) →
(A : sort) →
⟨ _⇒I_.hom-morphism i {A} , _⇒I_.hom-morphism j ⟩ ≈ _⇒I_.hom-morphism h
unique-ℐ𝓃𝓉 = λ p₁ p₂ A → unique (p₁ A) (p₂ A)
-- Definition of the structure of the product
product-ℐ𝓃𝓉 : ∀ {I J} → Product ℐ𝓃𝓉 I J
product-ℐ𝓃𝓉 {I} {J} =
record
{ A×B = A×B-ℐ𝓃𝓉 I J
; π₁ = π₁-ℐ𝓃𝓉 {I} {J}
; π₂ = π₂-ℐ𝓃𝓉 {I} {J}
; ⟨_,_⟩ = ⟨_,_⟩-ℐ𝓃𝓉
; project₁ = λ {K} {h} {i} A → project₁-ℐ𝓃𝓉 {K} {I} {J} {h} {i} A
; project₂ = λ {K} {h} {i} A → project₂-ℐ𝓃𝓉 {K} {I} {J} {h} {i} A
; unique = λ {K} {h} {i} {j} p₁ p₂ A → unique-ℐ𝓃𝓉 {K} {I} {J} {h} {i} {j} p₁ p₂ A
}
-- The terminal object
terminal-ℐ𝓃𝓉 : Terminal ℐ𝓃𝓉
terminal-ℐ𝓃𝓉 =
record
{ ⊤ = Trivial
; ⊤-is-terminal =
record
{ ! =
record
{ hom-morphism = !
; hom-commute = λ f → !-unique₂
}
; !-unique = λ f A → !-unique₂
}
}
-- The category of interpretations is cartesian
cartesian-ℐ𝓃𝓉 : Cartesian.Cartesian ℐ𝓃𝓉
cartesian-ℐ𝓃𝓉 =
record
{ terminal = terminal-ℐ𝓃𝓉
; products = record { product = product-ℐ𝓃𝓉 }
}
-- Each projection is a natural transformation with respect to the interpretation
open Interpretation
open HomReasoning
open Product.Producted
natural-π₁ : {I J : Interpretation} {A : sort} {Γ : Context} (t : Term Γ A) → π₁ ∘ (interp-term (A×B-ℐ𝓃𝓉 I J) t) ≈ (interp-term I t) ∘ π₁
natural-π₁ {I} {J} (Signature.tm-var x) = project₁
natural-π₁ {I} {J} (Signature.tm-oper f xs) = begin
(π₁ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (tm-oper f xs)) ≈⟨ ∘-resp-≈ʳ ⁂∘⟨⟩ ⟩
(π₁ ∘
⟨
interp-oper I f ∘
Product.Producted.tuple (interp-ctx I) (oper-arity f)
(λ i → π₁ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))
,
interp-oper J f ∘
Product.Producted.tuple (interp-ctx J) (oper-arity f)
(λ i → π₂ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))
⟩) ≈⟨ project₁ ⟩
(interp-oper I f ∘
Product.Producted.tuple (interp-ctx I) (oper-arity f)
(λ i → π₁ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx I) λ i → natural-π₁ {I} {J} {arg-sort f i} (xs i)) ⟩
(interp-oper I f ∘
tuple (interp-ctx I) (oper-arity f)
(λ i → interp-term I (xs i) ∘ π₁)) ≈⟨ ∘-resp-≈ʳ (∘-distribʳ-tuple (interp-ctx I)) ⟩
(interp-oper I f ∘
tuple (interp-ctx I) (oper-arity f) (λ x → interp-term I (xs x)) ∘
π₁) ≈⟨ sym-assoc ⟩
((interp-oper I f ∘
tuple (interp-ctx I) (oper-arity f) (λ x → interp-term I (xs x)))
∘ π₁) ∎
natural-π₂ : {I J : Interpretation} {A : sort} {Γ : Context} (t : Term Γ A) → π₂ ∘ (interp-term (A×B-ℐ𝓃𝓉 I J) t) ≈ (interp-term J t) ∘ π₂
natural-π₂ {I} {J} (Signature.tm-var x) = project₂
natural-π₂ {I} {J} (Signature.tm-oper f xs) = begin
(π₂ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (tm-oper f xs)) ≈⟨ ∘-resp-≈ʳ ⁂∘⟨⟩ ⟩
(π₂ ∘
⟨
interp-oper I f ∘
Product.Producted.tuple (interp-ctx I) (oper-arity f)
(λ i → π₁ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))
,
interp-oper J f ∘
Product.Producted.tuple (interp-ctx J) (oper-arity f)
(λ i → π₂ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))
⟩) ≈⟨ project₂ ⟩
(interp-oper J f ∘
Product.Producted.tuple (interp-ctx J) (oper-arity f)
(λ i → π₂ ∘ interp-term (A×B-ℐ𝓃𝓉 I J) (xs i))) ≈⟨ ∘-resp-≈ʳ (tuple-cong (interp-ctx J) λ i → natural-π₂ {I} {J} {arg-sort f i} (xs i)) ⟩
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f)
(λ i → interp-term J (xs i) ∘ π₂)) ≈⟨ ∘-resp-≈ʳ (∘-distribʳ-tuple (interp-ctx J)) ⟩
(interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f) (λ x → interp-term J (xs x)) ∘
π₂) ≈⟨ sym-assoc ⟩
((interp-oper J f ∘
tuple (interp-ctx J) (oper-arity f) (λ x → interp-term J (xs x)))
∘ π₂) ∎
| {
"alphanum_fraction": 0.4020467836,
"avg_line_length": 55.3526011561,
"ext": "agda",
"hexsha": "e1f22eed646eee6de438f5b449a8d5ee469882f4",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/InterpretationCategory.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/InterpretationCategory.agda",
"max_line_length": 187,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/InterpretationCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 6575,
"size": 19152
} |
{-# OPTIONS --cubical --safe #-}
module Interpreter where
open import Function.Base using (_$_)
open import FreeReader
-- Runs it in the reader monad
runFree : ∀ {R A} → R → FreeReader R A → A
runFree r (Pure x) = x
runFree r (Bind x f) = runFree r $ f $ runFree r x
runFree r Ask = r
-- Since it's so simple, all these compute nicely
runFree r (LeftId a f i) = runFree r $ f a
runFree r (RightId x i) = runFree r x
runFree r (Assoc x f g i) = runFree r $ g $ runFree r $ f $ runFree r x
| {
"alphanum_fraction": 0.6639511202,
"avg_line_length": 28.8823529412,
"ext": "agda",
"hexsha": "711baaeee53e01466c045d3e8d5f8549c1347f81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mb64/cubical-free-monads",
"max_forks_repo_path": "Interpreter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mb64/cubical-free-monads",
"max_issues_repo_path": "Interpreter.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mb64/cubical-free-monads",
"max_stars_repo_path": "Interpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-17T17:53:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-17T17:53:44.000Z",
"num_tokens": 163,
"size": 491
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Object.Initial {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open Category C
open import Categories.Morphism C using (Epi; _≅_)
open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟)
open import Categories.Morphism.Reasoning C
open HomReasoning
record Initial : Set (o ⊔ ℓ ⊔ e) where
field
⊥ : Obj
! : {A : Obj} → (⊥ ⇒ A)
!-unique : ∀ {A} → (f : ⊥ ⇒ A) → ! ≈ f
!-unique₂ : ∀ {A} → (f g : ⊥ ⇒ A) → f ≈ g
!-unique₂ f g = begin
f ≈˘⟨ !-unique f ⟩
! ≈⟨ !-unique g ⟩
g ∎
where open HomReasoning
⊥-id : (f : ⊥ ⇒ ⊥) → f ≈ id
⊥-id f = !-unique₂ f id
open Initial
to-⊥-is-Epi : ∀ {A : Obj} {i : Initial} → (f : A ⇒ ⊥ i) → Epi f
to-⊥-is-Epi {_} {i} _ = λ g h _ → !-unique₂ i g h
up-to-iso : (i₁ i₂ : Initial) → ⊥ i₁ ≅ ⊥ i₂
up-to-iso i₁ i₂ = record
{ from = ! i₁
; to = ! i₂
; iso = record { isoˡ = ⊥-id i₁ _; isoʳ = ⊥-id i₂ _ }
}
transport-by-iso : (i : Initial) → ∀ {X} → ⊥ i ≅ X → Initial
transport-by-iso i {X} i≅X = record
{ ⊥ = X
; ! = ! i ∘ to
; !-unique = λ h → begin
! i ∘ to ≈⟨ !-unique i (h ∘ from) ⟩∘⟨refl ⟩
(h ∘ from) ∘ to ≈⟨ cancelʳ isoʳ ⟩
h ∎
}
where open _≅_ i≅X
up-to-iso-unique : ∀ i i′ → (iso : ⊥ i ≅ ⊥ i′) → up-to-iso i i′ ≃ iso
up-to-iso-unique i i′ iso = ⌞ !-unique i _ ⌟
up-to-iso-invˡ : ∀ {t X} {i : ⊥ t ≅ X} → up-to-iso t (transport-by-iso t i) ≃ i
up-to-iso-invˡ {t} {i = i} = up-to-iso-unique t (transport-by-iso t i) i
up-to-iso-invʳ : ∀ {t t′} → ⊥ (transport-by-iso t (up-to-iso t t′)) ≡ ⊥ t′
up-to-iso-invʳ {t} {t′} = ≡.refl
| {
"alphanum_fraction": 0.5240023135,
"avg_line_length": 27.4444444444,
"ext": "agda",
"hexsha": "54cc274fdd2288d0e561c172e421f63bbf995cd9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Object/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Object/Initial.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Object/Initial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 783,
"size": 1729
} |
module BTA-ken where
-- specialize two-level typed terms to untyped lambda calculus
open import Data.Nat hiding (_<_)
open import Data.Bool
open import Data.Fin hiding (_≤_ ; pred; _+_)
open import Data.List
open import Data.Product
open import Function
open import Algebra.FunctionProperties using (Commutative; Identity; RightIdentity)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
open import Data.Nat.Properties
-- Binding times
data BT : Set where
S : BT
D : BT
-- defining a data type [BT],where two members are
-- [S] standing for "static" and [D] standing for dynamic.
-- ``subsumption'' binding times; static can be treated as dynamic,
-- but not vice versa
_≼_ : BT → BT → Bool
_≼_ D S = false
_≼_ _ _ = true
record True : Set where
data False : Set where
isTrue : Bool → Set
isTrue true = True
isTrue false = False
-- More general purpose definitions (should also be in standard library)
-- list membership
infix 4 _∈_
data _∈_ {A : Set} : A → List A → Set where
hd : ∀ {x xs} → x ∈ (x ∷ xs)
tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs)
-- Types of the calculus
mutual
-- s ^ BT
data AType : Set where
Ann : BT → SType → AType
-- int | t -> t
data SType : Set where
SInt : SType
SFun : AType → AType → SType
-- aux definitions
ATInt : BT → AType
ATInt bt = Ann bt SInt
ATFun : BT → AType → AType → AType
ATFun bt at1 at2 = Ann bt (SFun at1 at2)
-- projection: get the BT from a type
btof : AType → BT
btof (Ann bt _) = bt
-- well-formedness
data wft : AType → Set where
wf-int : ∀ {bt} → wft (Ann bt SInt)
wf-fun : ∀ {bt at1 at2} → wft at1 → wft at2
→ isTrue (bt ≼ btof at1) → isTrue (bt ≼ btof at2) → wft (Ann bt (SFun at1 at2))
-- test for dynamic by wellformedness
data IsDynamic : AType → Set where
is-dyn : ∀ σ → IsDynamic (Ann D σ)
lem-IsDynamic-by-wf : ∀ α → isTrue (D ≼ btof α) → IsDynamic α
lem-IsDynamic-by-wf (Ann S σ) ()
lem-IsDynamic-by-wf (Ann D σ) _ = is-dyn σ
-- typed annotated expressions
ACtx = List AType
data AExp (Δ : ACtx) : AType → Set where
AVar : ∀ {α} → α ∈ Δ → AExp Δ α
AInt : (bt : BT) → ℕ → AExp Δ (ATInt bt)
ALam : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp (α₂ ∷ Δ) α₁ → AExp Δ (ATFun bt α₂ α₁)
AApp : ∀ {α₁ α₂} (bt : BT) → wft (ATFun bt α₂ α₁) → AExp Δ (ATFun bt α₂ α₁) → AExp Δ α₂ → AExp Δ α₁
-- Untyped expression, but correctly scoped
data Exp' : ℕ → Set where
EVar : ∀ {n} → Fin n → Exp' n
EInt : ∀ {n} → ℕ → Exp' n
ELam : ∀ {n} → Exp' (suc n) → Exp' n
EApp : ∀ {n} → Exp' n → Exp' n → Exp' n
---
m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n)
m+1+n≡1+m+n zero n = refl
m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n)
n+0≡n : ∀ n → n + 0 ≡ n
n+0≡n zero = refl
n+0≡n (suc n) = cong suc $ n+0≡n n
+-comm : ∀ m n → m + n ≡ n + m
+-comm zero n = sym (n+0≡n n)
+-comm (suc m) n =
begin
suc m + n
≡⟨ refl ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨ sym (m+1+n≡1+m+n n m) ⟩
n + suc m
∎
≤-refl : ∀ {n} → n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
≤-trans : ∀ {a b c} → a ≤ b → b ≤ c → a ≤ c
≤-trans z≤n q = z≤n
≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q)
≤-suc-right : ∀ {m n} → m ≤ n → m ≤ suc n
≤-suc-right z≤n = z≤n
≤-suc-right (s≤s p) = s≤s (≤-suc-right p)
≤-suc-left : ∀ {m n} → suc m ≤ n → m ≤ n
≤-suc-left (s≤s p) = ≤-suc-right p
xlate : ∀ {m} {n} → Exp' (m + suc n) → Exp' (suc (n + m))
xlate {m} {n} e rewrite m+1+n≡1+m+n m n | +-comm m n = e
shifter1 : ∀ {n} m → Exp' (suc n) → Exp' (suc (n + m))
shifter1 {n} m (EVar x) = xlate {m} (EVar (raise m x))
shifter1 m (EInt x) = EInt x
shifter1 m (ELam e) = ELam (shifter1 m e)
shifter1 m (EApp e e₁) = EApp (shifter1 m e) (shifter1 m e₁)
shifter0 : ∀ m → Exp' zero → Exp' m
shifter0 m (EVar ())
shifter0 m (EInt x) = EInt x
shifter0 m (ELam e) = ELam (shifter1 m e)
shifter0 m (EApp e e₁) = EApp (shifter0 m e) (shifter0 m e₁)
shifter : ∀ m d → Exp' m → Exp' (m + d)
shifter zero d e = shifter0 d e
shifter (suc m) d e = shifter1 d e
-- m+n∸m≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n
-- m+n∸m≡n p
helper : ∀ {m n} → n ≤ m → Exp' (n + (m ∸ n)) → Exp' m
helper p e rewrite m+n∸m≡n p = e
-- index m = nesting level of dynamic definitions
Imp : (m : ℕ) → AType → Set
Imp m (Ann S SInt) = ℕ
Imp m (Ann S (SFun α₁ α₂)) = ∀ n → m ≤ n → (Imp n α₁ → Imp n α₂)
Imp m (Ann D σ) = Exp' m
-- index = nesting level of dynamic definitions
data AEnv1 : ℕ → ACtx → Set where
[] : AEnv1 0 []
consS : ∀ {m Δ o} → m ≤ o → (α : AType) → Imp o α → AEnv1 m Δ → AEnv1 o (α ∷ Δ)
consD : ∀ {m Δ} → (α : AType) → isTrue (D ≼ btof α) → Imp (suc m) α → AEnv1 m Δ → AEnv1 (suc m) (α ∷ Δ)
lift1 : ∀ {m n} α → m ≤ n → Imp m α → Imp n α
lift1 (Ann S SInt) p v = v
lift1 (Ann S (SFun x x₁)) p v = λ k n≤k → v k (≤-trans p n≤k)
lift1 {m} {n} (Ann D σ) p v = helper p (shifter m (n ∸ m) v)
lookup1 : ∀ {α Δ m n} → m ≤ n → AEnv1 m Δ → α ∈ Δ → Imp n α
lookup1 {α} p (consS _ .α x env) hd = lift1 α p x
lookup1 {α} p (consD .α x x₁ env) hd = lift1 α p x₁
lookup1 p (consS p' .y x env) (tl {_} {y} x₁) = lookup1 (≤-trans p' p) env x₁
lookup1 p (consD .y x x₁ env) (tl {_} {y} x₂) = lookup1 (≤-suc-left p) env x₂
pe1 : ∀ {α Δ} m → AExp Δ α → AEnv1 m Δ → Imp m α
pe1 m (AVar x) env = lookup1 ≤-refl env x
pe1 m (AInt S x) env = x
pe1 m (AInt D x) env = EInt x
pe1 m (ALam S x e) env = λ o p → λ v → pe1 o e (consS p _ v env)
pe1 m (ALam {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e) env
with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂
pe1 m (ALam {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun _ _ d≤bt₁ d≤bt₂) e) env
| is-dyn σ₁ | is-dyn σ₂ = ELam (pe1 (suc m) e (consD (Ann D σ₁) d≤bt₁ (EVar zero) env))
pe1 m (AApp S x e e₁) env = (pe1 m e env) m ≤-refl (pe1 m e₁ env)
pe1 m (AApp {α₂} {α₁} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env
with lem-IsDynamic-by-wf α₁ d≤bt₁ | lem-IsDynamic-by-wf α₂ d≤bt₂
pe1 m (AApp {.(Ann D σ₂)} {.(Ann D σ₁)} D (wf-fun w₁ w₂ d≤bt₁ d≤bt₂) e e₁) env
| is-dyn σ₁ | is-dyn σ₂ = EApp (pe1 m e env) (pe1 m e₁ env)
| {
"alphanum_fraction": 0.5720408836,
"avg_line_length": 30.4824120603,
"ext": "agda",
"hexsha": "4755a2cb3f94d9b664e0a8512edebce12187e29c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "luminousfennell/polybta",
"max_forks_repo_path": "BTA-ken.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "luminousfennell/polybta",
"max_issues_repo_path": "BTA-ken.agda",
"max_line_length": 105,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "luminousfennell/polybta",
"max_stars_repo_path": "BTA-ken.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z",
"num_tokens": 2736,
"size": 6066
} |
{-# OPTIONS --universe-polymorphism #-}
module Graphs.GraphMorphism where
open import Data.Product
open import Level
open import Relation.Binary
renaming (_⇒_ to _⊆_)
open import Relation.Binary.PropositionalEquality
using ()
renaming
(_≡_ to _≣_
; refl to ≣-refl
; sym to ≣-sym
; trans to ≣-trans
; cong to ≣-cong
)
open import Graphs.Graph
record GraphMorphism {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
(A : Graph o₁ ℓ₁ e₁) (B : Graph o₂ ℓ₂ e₂) : Set (o₁ ⊔ o₂ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ e₁ ⊔ e₂) where
module A = Graph A
module B = Graph B
field
F₀ : A.Obj → B.Obj
F₁ : ∀ {X Y} → A [ X ↝ Y ] → B [ F₀ X ↝ F₀ Y ]
.F-resp-≈ : ∀ {X Y}{f g : A [ X ↝ Y ]} → A [ f ≈ g ] → B [ F₁ f ≈ F₁ g ]
infixr 9 _∘_
infix 4 _≈_
id : ∀{o ℓ e}{A : Graph o ℓ e} → GraphMorphism A A
id = record
{ F₀ = λ A → A
; F₁ = λ f → f
; F-resp-≈ = λ f≈g → f≈g
}
_∘_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
{A : Graph o₀ ℓ₀ e₀} {B : Graph o₁ ℓ₁ e₁} {C : Graph o₂ ℓ₂ e₂}
→ GraphMorphism B C → GraphMorphism A B → GraphMorphism A C
G ∘ F = record
{ F₀ = λ A → G₀ (F₀ A)
; F₁ = λ f → G₁ (F₁ f)
; F-resp-≈ = λ f≈g → G-resp-≈ (F-resp-≈ f≈g)
} where
open GraphMorphism F
open GraphMorphism G renaming (F₀ to G₀; F₁ to G₁; F-resp-≈ to G-resp-≈)
_≈₀_ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ (F G : GraphMorphism A B)
→ Set (o₁ ⊔ o₂)
_≈₀_ {A = A}{B} F G
= ∀ X → F₀ X ≣ G₀ X
where
open GraphMorphism F using (F₀)
open GraphMorphism G renaming (F₀ to G₀)
isEquivalence₀ : ∀{o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ IsEquivalence (_≈₀_ {A = A}{B})
isEquivalence₀ {A = A}{B} = record
{ refl = λ x → ≣-refl
; sym = λ p x → ≣-sym (p x)
; trans = λ p q x → ≣-trans (p x) (q x)
}
_≈₁_ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ (F G : GraphMorphism A B)
→ Set (o₁ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ e₂)
_≈₁_ {A = A}{B} F G
= ∀ {X Y} (f : A [ X ↝ Y ]) → B [ F₁ f ~ G₁ f ]
where
open GraphMorphism F using (F₁)
open GraphMorphism G renaming (F₁ to G₁)
isEquivalence₁ : ∀{o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ IsEquivalence (_≈₁_ {A = A}{B})
isEquivalence₁ {A = A}{B} = record
{ refl = λ f → refl
; sym = λ p f → sym (p f)
; trans = λ p q f → trans (p f) (q f)
} where open Heterogeneous B
_≈_ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ (F G : GraphMorphism A B)
→ Set (o₁ ⊔ o₂ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ e₂)
_≈_ = _≈₀_ -×- _≈₁_
isEquivalence : ∀{o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Graph o₁ ℓ₁ e₁} {B : Graph o₂ ℓ₂ e₂}
→ IsEquivalence (_≈_ {A = A}{B})
isEquivalence {A = A}{B} = record
{ refl = λ {x} → refl₀ {x} , λ f → refl₁ {x} f
; sym = λ {x}{y} → map (sym₀ {x}{y}) (sym₁ {x}{y})
; trans = λ {x}{y}{z} → zip (trans₀ {x}{y}{z}) (trans₁ {x}{y}{z})
}
where
open IsEquivalence isEquivalence₀
renaming (refl to refl₀; sym to sym₀; trans to trans₀)
open IsEquivalence isEquivalence₁
renaming (refl to refl₁; sym to sym₁; trans to trans₁)
.∘-resp-≈ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
{A : Graph o₀ ℓ₀ e₀} {B : Graph o₁ ℓ₁ e₁} {C : Graph o₂ ℓ₂ e₂}
{F H : GraphMorphism B C} {G I : GraphMorphism A B}
→ F ≈ H → G ≈ I → F ∘ G ≈ H ∘ I
∘-resp-≈ {B = B} {C} {F}{H}{G}{I} F≈H G≈I
= (λ x → helper₁ (proj₁ G≈I x) (proj₁ F≈H (GraphMorphism.F₀ I x)))
, (λ q → helper₂ (proj₂ G≈I q) (proj₂ F≈H (GraphMorphism.F₁ I q)))
where
open Heterogeneous C
module C = Graph C
helper₁ : ∀ {x}
→ GraphMorphism.F₀ G x ≣ GraphMorphism.F₀ I x
→ GraphMorphism.F₀ F (GraphMorphism.F₀ I x) ≣ GraphMorphism.F₀ H (GraphMorphism.F₀ I x)
→ GraphMorphism.F₀ F (GraphMorphism.F₀ G x) ≣ GraphMorphism.F₀ H (GraphMorphism.F₀ I x)
helper₁ g≣i f≣h = ≣-trans (≣-cong (GraphMorphism.F₀ F) g≣i) f≣h
helper₂ : ∀ {a b c d} {z w} {f : B [ a ↝ b ]} {h : B [ c ↝ d ]} {i : C [ z ↝ w ]}
→ B [ f ~ h ] → C [ GraphMorphism.F₁ F h ~ i ] → C [ GraphMorphism.F₁ F f ~ i ]
helper₂ (≈⇒~ f≈h) (≈⇒~ g≈i) = ≈⇒~ (C.Equiv.trans (GraphMorphism.F-resp-≈ F f≈h) g≈i)
| {
"alphanum_fraction": 0.5375121007,
"avg_line_length": 34.1487603306,
"ext": "agda",
"hexsha": "7490586923147543d7e5bc8a661327f387bde6c9",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Graphs/GraphMorphism.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Graphs/GraphMorphism.agda",
"max_line_length": 91,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Graphs/GraphMorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1977,
"size": 4132
} |
------------------------------------------------------------------------
-- Library stuff
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
if_then_else_ : ∀ {A : Set} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
_≤_ : ℕ → ℕ → Bool
zero ≤ n = true
suc m ≤ zero = false
suc m ≤ suc n = m ≤ n
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
[_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ]₁ (inj₁ x) = f x
[ f , g ]₁ (inj₂ y) = g y
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
record Σ (X : Set) (Y : X → Set) : Set where
constructor _,_
field
proj₁ : X
proj₂ : Y proj₁
_×_ : Set → Set → Set
X × Y = Σ X λ _ → Y
record Sig : Set₁ where
constructor _◃_
field
Parameter : Set
Arity : Parameter → Set
open Sig public
⟦_⟧ : Sig → Set → Set
⟦ P ◃ A ⟧ X = Σ P λ p → A p → X
Alg : Sig → Set → Set
Alg Σ X = ⟦ Σ ⟧ X → X
data μ (C : Sig) : Set where
sup : Alg C (μ C)
const^C : Set → Sig
const^C X = X ◃ λ _ → ⊥
_⊎^C_ : Sig → Sig → Sig
(P₁ ◃ A₁) ⊎^C (P₂ ◃ A₂) = (P₁ ⊎ P₂) ◃ [ A₁ , A₂ ]₁
_⋆^C_ : Sig → Set → Sig
C ⋆^C X = const^C X ⊎^C C
_⋆_ : Sig → Set → Set
C ⋆ X = μ (C ⋆^C X)
do : ∀ {C X} → Alg C (C ⋆ X)
do (p , k) = sup (inj₂ p , k)
record Monad (T : Set → Set) : Set₁ where
infixl 1 _>>=_
field
return : ∀ {X} → X → T X
_>>=_ : ∀ {X Y} → T X → (X → T Y) → T Y
monad : ∀ {Σ} → Monad (_⋆_ Σ)
monad {Σ} = record
{ return = λ x → sup (inj₁ x , λ ())
; _>>=_ = _>>=_
}
where
_>>=_ : ∀ {X Y} → Σ ⋆ X → (X → Σ ⋆ Y) → Σ ⋆ Y
sup (inj₁ x , _) >>= f = f x
sup (inj₂ p , k) >>= f = do (p , λ a → k a >>= f)
generic : ∀ {Σ} (p : Parameter Σ) → Σ ⋆ Arity Σ p
generic p = do (p , return)
where
open Monad monad
------------------------------------------------------------------------
-- Example
Π : (X : Set) → (X → Set) → Set
Π X Y = (x : X) → (X ◃ Y) ⋆ Y x
call : ∀ {X Y} → Π X Y
call x = generic x
dom : ∀ {X Y} → ∀ {x} → (X ◃ Y) ⋆ Y x → (X → Set) → Set
dom (sup (inj₁ _ , _)) R = ⊤
dom {Y = Y} (sup (inj₂ x , k)) R
= R x × ((y : Y x) → dom (k y) R)
data Dom {X}{Y} (f : (x : X) → (X ◃ Y) ⋆ Y x) : X → Set
where
⟨_⟩ : ∀ {x} → dom (f x) (Dom f) → Dom f x
dom-map : ∀ {X Y} {R₁ R₂ : X → Set} {x}
{w : (X ◃ Y) ⋆ Y x} →
(∀ {x} → R₁ x → R₂ x) → dom w R₁ → dom w R₂
dom-map {w = sup (inj₁ _ , _)} f _ = tt
dom-map {w = sup (inj₂ _ , _)} f (y₁ , k) =
f y₁ , λ y₂ → dom-map f (k y₂)
{-# TERMINATING #-}
bove-capretta : ∀ {X Y} (f : Π X Y) → (x : X) → Dom f x → Y x
bove-capretta {X}{Y} f x ⟨ d ⟩
= helper (f x) (dom-map (λ {x′} → bove-capretta f x′) d)
where
helper : ∀ {x} (w : (X ◃ Y) ⋆ Y x) → dom w Y → Y x
helper (sup (inj₁ y , _)) _ = y
helper (sup (inj₂ _ , k)) (d , dk) = helper (k d) (dk d)
module _ where
open Monad monad
gcd : Π (ℕ × ℕ) (λ _ → ℕ)
gcd (0 , n) = return n
gcd (m , 0) = return m
gcd (suc m , suc n) = if m ≤ n
then call (suc m , (n ∸ m))
else call ((m ∸ n) , suc n)
acc : Dom gcd (8 , 12)
acc = ⟨ ⟨ ⟨ ⟨ _ ⟩ , _ ⟩ , _ ⟩ , _ ⟩ -- ⟨ ⟨ ⟨ ⟨ tt ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩
test-gcd′ : bove-capretta gcd (8 , 12) acc ≡ 4
test-gcd′ = refl
| {
"alphanum_fraction": 0.4183588317,
"avg_line_length": 23.0448717949,
"ext": "agda",
"hexsha": "14ecde1b1af4cf9bbbbf493fc70359ec938fc88b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1324.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1324.agda",
"max_line_length": 96,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1324.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 1647,
"size": 3595
} |
module Cats.Category.One where
open import Data.Unit using (⊤ ; tt)
open import Level
open import Cats.Category
One : ∀ lo la l≈ → Category lo la l≈
One lo la l≈ = record
{ Obj = Lift lo ⊤
; _⇒_ = λ _ _ → Lift la ⊤
; _≈_ = λ _ _ → Lift l≈ ⊤
; id = lift tt
; _∘_ = λ _ _ → lift tt
; equiv
= record
{ refl = lift tt
; sym = λ _ → lift tt
; trans = λ _ _ → lift tt
}
; ∘-resp = λ _ _ → lift tt
; id-r = lift tt
; id-l = lift tt
; assoc = lift tt
}
| {
"alphanum_fraction": 0.487804878,
"avg_line_length": 19.7407407407,
"ext": "agda",
"hexsha": "bafaac9b2f04b2300192e2ef4237c154a992e2da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/One.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/One.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/One.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 194,
"size": 533
} |
module regex where
data Regex ( Σ : Set) : Set where
ε : Regex Σ -- empty
φ : Regex Σ -- fail
_* : Regex Σ → Regex Σ
_&_ : Regex Σ → Regex Σ → Regex Σ
_||_ : Regex Σ → Regex Σ → Regex Σ
<_> : Σ → Regex Σ
infixr 40 _&_ _||_
| {
"alphanum_fraction": 0.4463087248,
"avg_line_length": 19.8666666667,
"ext": "agda",
"hexsha": "2873f67cba7ee6a47026db6e95636ed6fae1ae5e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/regex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/regex.agda",
"max_line_length": 41,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/regex.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 121,
"size": 298
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.