Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --universe-polymorphism #-} module Data.BitVector.Properties where open import Algebra using (CommutativeRing) open import Data.Bool using (_∧_; _∨_; _xor_) renaming (Bool to Bit; false to 0#; true to 1#) open import Data.Nat using (ℕ) renaming (zero to Nzero; suc to Nsuc) open import Data.Product using (_,_) open import Data.Vec hiding (last) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.BitVector last-cons : ∀ {n} x (xs : BitVector (Nsuc n)) → last (x ∷ xs) ≡ last xs last-cons _ (x ∷ xs) = refl last-snoc : ∀ {n} (xs : BitVector n) x → last (snoc xs x) ≡ x last-snoc [] _ = refl last-snoc (y ∷ []) _ = refl last-snoc (y ∷ y′ ∷ ys) x rewrite last-cons y′ (snoc ys x) = last-snoc ys x droplast-snoc : ∀ {n} (xs : BitVector n) x → droplast (snoc xs x) ≡ xs droplast-snoc [] _ = refl droplast-snoc (y ∷ ys) x rewrite droplast-snoc ys x = refl droplast-snoc-last : ∀ {n} (x : BitVector (Nsuc n)) → snoc (droplast x) (last x) ≡ x droplast-snoc-last (x ∷ []) = refl droplast-snoc-last (x ∷ x′ ∷ xs) rewrite droplast-snoc-last (x′ ∷ xs) = refl rotate∘unrotate≡id : ∀ {n} (x : BitVector n) → rotate (unrotate x) ≡ x rotate∘unrotate≡id [] = refl rotate∘unrotate≡id (x ∷ []) = refl rotate∘unrotate≡id (x ∷ x′ ∷ xs) rewrite last-cons x′ (snoc xs x) | last-snoc xs x | droplast-snoc xs x = refl unrotate∘rotate≡id : ∀ {n} (x : BitVector n) → unrotate (rotate x) ≡ x unrotate∘rotate≡id [] = refl unrotate∘rotate≡id (x ∷ xs) = droplast-snoc-last (x ∷ xs) private module P {n : ℕ} where import Algebra.FunctionProperties as FP; open FP (_≡_ {A = BitVector n}) public open P +-identityˡ : ∀ {n} → LeftIdentity (zero n) _+_ +-identityˡ [] = refl +-identityˡ (1# ∷ xs) rewrite +-identityˡ xs = refl +-identityˡ (0# ∷ xs) rewrite +-identityˡ xs = refl +-identityʳ : ∀ {n} → RightIdentity (zero n) _+_ +-identityʳ [] = refl +-identityʳ (1# ∷ xs) rewrite +-identityʳ xs = refl +-identityʳ (0# ∷ xs) rewrite +-identityʳ xs = refl add-carry : ∀ {n} c₁ c₂ (x y z : BitVector n) → add′ c₁ x (add′ c₂ y z) ≡ add′ c₂ x (add′ c₁ y z) add-carry c₁ c₂ [] [] [] = refl add-carry 0# 0# (0# ∷ xs) (y ∷ ys) (z ∷ zs) = refl add-carry 0# 0# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 0# 0# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) = refl add-carry 0# 0# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) = refl add-carry 0# 0# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-carry 0# 1# (0# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 0# 1# (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-carry 0# 1# xs ys zs = refl add-carry 0# 1# (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-carry 0# 1# xs ys zs = refl add-carry 0# 1# (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-carry 0# 1# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 0# 1# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-carry 0# 1# xs ys zs = refl add-carry 0# 1# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-carry 0# 1# xs ys zs = refl add-carry 0# 1# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-carry 1# 0# (0# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 1# 0# (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-carry 1# 0# xs ys zs = refl add-carry 1# 0# (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-carry 1# 0# xs ys zs = refl add-carry 1# 0# (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-carry 1# 0# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 1# 0# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-carry 1# 0# xs ys zs = refl add-carry 1# 0# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-carry 1# 0# xs ys zs = refl add-carry 1# 0# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-carry 1# 1# (0# ∷ xs) (y ∷ ys) (z ∷ zs) = refl add-carry 1# 1# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) = refl add-carry 1# 1# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) = refl add-carry 1# 1# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) = refl add-carry 1# 1# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) = refl add-assoc : ∀ {n} c₁ c₂ (x y z : BitVector n) → add′ c₁ (add′ c₂ x y) z ≡ add′ c₁ x (add′ c₂ y z) add-assoc c₁ c₂ [] [] [] = refl add-assoc c₁ 1# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 1# xs ys zs = refl add-assoc c₁ 1# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc c₁ 1# xs ys zs = refl add-assoc c₁ 1# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc c₁ 1# xs ys zs = refl add-assoc c₁ 1# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 1# xs ys zs | add-carry 0# 1# xs ys zs = refl add-assoc c₁ 1# (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc c₁ 1# xs ys zs = refl add-assoc c₁ 1# (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 1# xs ys zs = refl add-assoc c₁ 1# (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 0# xs ys zs | add-carry 1# 0# xs ys zs = refl add-assoc c₁ 1# (0# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc c₁ 0# xs ys zs = refl add-assoc c₁ 0# (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc c₁ 1# xs ys zs = refl add-assoc c₁ 0# (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 1# xs ys zs | add-carry 0# 1# xs ys zs = refl add-assoc c₁ 0# (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 0# xs ys zs = refl add-assoc c₁ 0# (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc c₁ 0# xs ys zs = refl add-assoc c₁ 0# (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 0# xs ys zs | add-carry 1# 0# xs ys zs = refl add-assoc c₁ 0# (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc c₁ 0# xs ys zs = refl add-assoc c₁ 0# (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc c₁ 0# xs ys zs = refl add-assoc c₁ 0# (0# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 0# xs ys zs = refl +-assoc : ∀ {n} → Associative {n} _+_ +-assoc [] [] [] = refl +-assoc (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc 0# 1# xs ys zs = refl +-assoc (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 1# xs ys zs | add-carry 0# 1# xs ys zs = refl +-assoc (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 0# xs ys zs = refl +-assoc (1# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 0# xs ys zs = refl +-assoc (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite add-assoc 1# 0# xs ys zs | add-carry 1# 0# xs ys zs = refl +-assoc (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 0# xs ys zs = refl +-assoc (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite add-assoc 0# 0# xs ys zs = refl +-assoc (0# ∷ xs) (0# ∷ ys) (0# ∷ zs) rewrite add-assoc 0# 0# xs ys zs = refl add-comm : ∀ {n} c (x y : BitVector n) → add′ c x y ≡ add′ c y x add-comm c [] [] = refl add-comm c (1# ∷ xs) (1# ∷ ys) rewrite add-comm 1# xs ys = refl add-comm c (1# ∷ xs) (0# ∷ ys) rewrite add-comm c xs ys = refl add-comm c (0# ∷ xs) (1# ∷ ys) rewrite add-comm c xs ys = refl add-comm c (0# ∷ xs) (0# ∷ ys) rewrite add-comm 0# xs ys = refl +-comm : ∀ {n} → Commutative {n} _+_ +-comm = add-comm 0# add-inverse : ∀ {n} xs → add′ 1# (zero n + bitwise-negation xs) xs ≡ zero n add-inverse [] = refl add-inverse (1# ∷ xs) rewrite add-inverse xs = refl add-inverse (0# ∷ xs) rewrite add-inverse xs = refl inverseˡ : ∀ {n} → LeftInverse (zero n) -_ _+_ inverseˡ [] = refl inverseˡ (1# ∷ xs) rewrite add-inverse xs = refl inverseˡ (0# ∷ xs) rewrite add-assoc 0# 1# (zero _) (bitwise-negation xs) xs | add-carry 0# 1# (zero _) (bitwise-negation xs) xs | sym (add-assoc 1# 0# (zero _) (bitwise-negation xs) xs) | add-inverse xs = refl inverseʳ : ∀ {n} → RightInverse (zero n) -_ _+_ inverseʳ x = trans (+-comm x (- x)) (inverseˡ x) *-zeroˡ : ∀ {n} → LeftZero (zero n) _*_ *-zeroˡ [] = refl *-zeroˡ {Nsuc n} x rewrite *-zeroˡ (droplast x) = refl 2*_ : ∀ {n} → Op₁ {0} (BitVector n) 2* x = droplast (0# ∷ x) 1+2*_ : ∀ {n} → Op₁ {0} (BitVector n) 1+2* x = droplast (1# ∷ x) _+2*_ : ∀ {n} → Bit → BitVector n → BitVector n b +2* x = droplast (b ∷ x) *-identityˡ : ∀ {n} → LeftIdentity (one n) _*_ *-identityˡ [] = refl *-identityˡ (0# ∷ xs) rewrite *-zeroˡ ( 2* xs) | +-identityʳ xs = refl *-identityˡ (1# ∷ xs) rewrite *-zeroˡ (1+2* xs) | +-identityʳ xs = refl *-comm : ∀ {n} → Commutative {n} _*_ *-comm [] [] = refl *-comm {Nsuc n} x y = *-comm1 x y where *-comm1 : ∀ {n} → Commutative {Nsuc n} _*_ *-comm1 (0# ∷ []) (0# ∷ []) = refl *-comm1 (0# ∷ []) (1# ∷ []) = refl *-comm1 (1# ∷ []) (0# ∷ []) = refl *-comm1 (1# ∷ []) (1# ∷ []) = refl *-comm1 {Nsuc _} (0# ∷ xs) (0# ∷ ys) rewrite *-comm1 xs (2* ys) | *-comm1 ys (2* xs) | *-comm (droplast ys) (droplast xs) = refl *-comm1 {Nsuc _} (0# ∷ xs) (1# ∷ ys) rewrite *-comm1 xs (1+2* ys) | *-comm1 ys (2* xs) | *-comm (droplast ys) (droplast xs) = refl *-comm1 {Nsuc _} (1# ∷ xs) (0# ∷ ys) rewrite *-comm1 xs (2* ys) | *-comm1 ys (1+2* xs) | *-comm (droplast ys) (droplast xs) = refl *-comm1 {Nsuc _} (1# ∷ xs) (1# ∷ ys) rewrite *-comm1 xs (1+2* ys) | *-comm1 ys (1+2* xs) | *-comm (droplast ys) (droplast xs) | sym (+-assoc ys xs (0# ∷ droplast xs * droplast ys)) | +-comm ys xs | +-assoc xs ys (0# ∷ droplast xs * droplast ys) = refl droplast-distrib-+ : ∀ {n} (x y : BitVector (Nsuc n)) → droplast (x + y) ≡ droplast x + droplast y droplast-distrib-+ {Nzero} _ _ = refl droplast-distrib-+ {Nsuc _} (0# ∷ xs) (0# ∷ ys) rewrite droplast-distrib-+ xs ys = refl droplast-distrib-+ {Nsuc _} (0# ∷ xs) (1# ∷ ys) rewrite droplast-distrib-+ xs ys = refl droplast-distrib-+ {Nsuc _} (1# ∷ xs) (0# ∷ ys) rewrite droplast-distrib-+ xs ys = refl droplast-distrib-+ {Nsuc _} (1# ∷ xs) (1# ∷ ys) rewrite droplast-distrib-+ xs ys = cong (_∷_ 0#) (lemma xs ys) where lemma : ∀ {n} (xs ys : BitVector (Nsuc n)) → droplast (add′ 1# xs ys) ≡ add′ 1# (droplast xs) (droplast ys) lemma {Nzero} _ _ = refl lemma {Nsuc _} (0# ∷ xs) (0# ∷ ys) rewrite droplast-distrib-+ xs ys = refl lemma {Nsuc _} (0# ∷ xs) (1# ∷ ys) rewrite lemma xs ys = refl lemma {Nsuc _} (1# ∷ xs) (0# ∷ ys) rewrite lemma xs ys = refl lemma {Nsuc _} (1# ∷ xs) (1# ∷ ys) rewrite lemma xs ys = refl droplast-distrib-* : ∀ {n} (x y : BitVector (Nsuc n)) → droplast (x * y) ≡ droplast x * droplast y droplast-distrib-* {Nzero} _ _ = refl droplast-distrib-* {Nsuc _} (0# ∷ xs) (y ∷ ys) rewrite droplast-distrib-* xs (y +2* ys) = refl droplast-distrib-* {Nsuc _} (1# ∷ xs) (0# ∷ ys) rewrite droplast-distrib-+ ys (xs * (2* ys)) | droplast-distrib-* xs (2* ys) = refl droplast-distrib-* {Nsuc _} (1# ∷ xs) (1# ∷ ys) rewrite droplast-distrib-+ ys (xs * (1+2* ys)) | droplast-distrib-* xs (1+2* ys) = refl extract-carry : ∀ {n} (xs ys : BitVector n) → add′ 1# xs ys ≡ one _ + (xs + ys) extract-carry [] [] = refl extract-carry (0# ∷ xs) (0# ∷ ys) rewrite +-identityˡ (xs + ys) = refl extract-carry (0# ∷ xs) (1# ∷ ys) rewrite add-carry 1# 0# (zero _) xs ys | +-identityˡ (add′ 1# xs ys) = refl extract-carry (1# ∷ xs) (0# ∷ ys) rewrite add-carry 1# 0# (zero _) xs ys | +-identityˡ (add′ 1# xs ys) = refl extract-carry (1# ∷ xs) (1# ∷ ys) rewrite +-identityˡ (add′ 1# xs ys) = refl shift-to-add : ∀ c {n} (x : BitVector n) → c +2* x ≡ add′ c x x shift-to-add _ [] = refl shift-to-add c (0# ∷ xs) rewrite shift-to-add 0# xs = refl shift-to-add c (1# ∷ xs) rewrite shift-to-add 1# xs = refl *-distribʳ : ∀ {n} → (_*_ {n}) DistributesOverʳ _+_ *-distribʳ [] [] [] = refl *-distribʳ {Nsuc n} xs ys zs = *-distribʳ1 xs ys zs where lemma : ∀ {n} c (xs ys zs : BitVector n) → add′ 1# ys zs * c +2* xs ≡ add′ c (xs + (ys * c +2* xs)) (xs + (zs * c +2* xs)) lemma c xs ys zs rewrite extract-carry ys zs | *-distribʳ (c +2* xs) (one _) (ys + zs) | *-identityˡ (c +2* xs) | *-distribʳ (c +2* xs) ys zs | shift-to-add c xs | *-comm ys (add′ c xs xs) | *-comm zs (add′ c xs xs) | +-comm (add′ c xs xs) (add′ c xs xs * ys + add′ c xs xs * zs) | add-carry 0# c (add′ c xs xs * ys + add′ c xs xs * zs) xs xs | add-assoc c 0# (add′ c xs xs * ys) (add′ c xs xs * zs) (xs + xs) | sym (+-assoc (add′ c xs xs * zs) xs xs) | +-comm (add′ c xs xs * zs) xs | +-comm (xs + add′ c xs xs * zs) xs | sym (add-assoc c 0# (add′ c xs xs * ys) xs (xs + add′ c xs xs * zs)) | +-comm (add′ c xs xs * ys) xs = refl *-distribʳ1 : ∀ {n} → (_*_ {Nsuc n}) DistributesOverʳ _+_ *-distribʳ1 xs (0# ∷ ys) (0# ∷ zs) rewrite *-distribʳ (droplast xs) ys zs = refl *-distribʳ1 (0# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite *-distribʳ (2* xs) ys zs | sym (+-assoc xs (ys * 2* xs) (zs * 2* xs)) | +-comm xs (ys * 2* xs) | +-assoc (ys * 2* xs) xs (zs * 2* xs) = refl *-distribʳ1 (1# ∷ xs) (0# ∷ ys) (1# ∷ zs) rewrite *-distribʳ (1+2* xs) ys zs | sym (+-assoc xs (ys * 1+2* xs) (zs * 1+2* xs)) | +-comm xs (ys * 1+2* xs) | +-assoc (ys * 1+2* xs) xs (zs * 1+2* xs) = refl *-distribʳ1 (0# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite *-distribʳ (2* xs) ys zs | +-assoc xs (ys * 2* xs) (zs * 2* xs) = refl *-distribʳ1 (1# ∷ xs) (1# ∷ ys) (0# ∷ zs) rewrite *-distribʳ (1+2* xs) ys zs | +-assoc xs (ys * 1+2* xs) (zs * 1+2* xs) = refl *-distribʳ1 (0# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite lemma 0# xs ys zs = refl *-distribʳ1 (1# ∷ xs) (1# ∷ ys) (1# ∷ zs) rewrite lemma 1# xs ys zs = refl *-assoc : ∀ {n} → Associative {n} _*_ *-assoc [] [] [] = refl *-assoc {Nsuc n} x y z = *-assoc1 x y z where *-assoc1 : ∀ {n} → Associative {Nsuc n} _*_ *-assoc1 (0# ∷ xs) ys zs rewrite *-assoc xs (droplast ys) (droplast zs) | droplast-distrib-* ys zs = refl *-assoc1 (1# ∷ xs) ys zs rewrite *-distribʳ zs ys (0# ∷ xs * droplast ys) | *-assoc xs (droplast ys) (droplast zs) | droplast-distrib-* ys zs = refl *-identityʳ : ∀ {n} → RightIdentity (one n) _*_ *-identityʳ x rewrite *-comm x (one _) = *-identityˡ x *-distribˡ : ∀ {n} → (_*_ {n}) DistributesOverˡ _+_ *-distribˡ x y z rewrite *-comm x (y + z) | *-distribʳ x y z | *-comm x y | *-comm x z = refl module Properties (n : ℕ) where open import Algebra.Structures +-isSemigroup : IsSemigroup {A = BitVector n} _≡_ _+_ +-isSemigroup = record { isEquivalence = isEquivalence; assoc = +-assoc; ∙-cong = cong₂ _+_ } +-isMonoid : IsMonoid _≡_ _+_ (zero n) +-isMonoid = record { isSemigroup = +-isSemigroup; identity = +-identityˡ , +-identityʳ } +-isGroup : IsGroup _≡_ _+_ (zero n) -_ +-isGroup = record { isMonoid = +-isMonoid; inverse = inverseˡ , inverseʳ; ⁻¹-cong = cong -_ } +-isAbelianGroup : IsAbelianGroup _≡_ _+_ (zero n) -_ +-isAbelianGroup = record { isGroup = +-isGroup; comm = +-comm } *-isSemigroup : IsSemigroup {A = BitVector n} _≡_ _*_ *-isSemigroup = record { isEquivalence = isEquivalence; assoc = *-assoc; ∙-cong = cong₂ _*_ } *-isMonoid : IsMonoid _≡_ _*_ (one n) *-isMonoid = record { isSemigroup = *-isSemigroup; identity = *-identityˡ , *-identityʳ } isRing : IsRing _≡_ _+_ _*_ -_ (zero n) (one n) isRing = record { +-isAbelianGroup = +-isAbelianGroup; *-isMonoid = *-isMonoid; distrib = *-distribˡ , *-distribʳ } isCommutativeRing : IsCommutativeRing _≡_ _+_ _*_ -_ (zero n) (one n) isCommutativeRing = record { isRing = isRing; *-comm = *-comm } commutativeRing : ∀ n → CommutativeRing _ _ commutativeRing n = record { Carrier = BitVector n; _≈_ = _≡_; _+_ = _+_; _*_ = _*_; -_ = -_; 0# = zero n; 1# = one n; isCommutativeRing = Properties.isCommutativeRing n }
{ "alphanum_fraction": 0.4540680994, "avg_line_length": 52.78, "ext": "agda", "hexsha": "6079084d1aeebbfc62501cca4a761cb5f21e7dbb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z", "max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/bitvector", "max_forks_repo_path": "Data/BitVector/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/bitvector", "max_issues_repo_path": "Data/BitVector/Properties.agda", "max_line_length": 101, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/bitvector", "max_stars_repo_path": "Data/BitVector/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z", "num_tokens": 7043, "size": 18473 }
open import Signature import Logic module Model (Σ Δ : Sig) (V : Set) (Φ : Logic.Program Σ Δ V) where open import Function open import Data.Empty renaming (⊥ to Ø) open import Data.Sum open import Data.Product renaming (Σ to ∐) open import Relation.Unary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Logic Σ Δ V open import Terms Σ -- | I-ary relations over A Rel : Set → Set → Set₁ Rel I A = (I → A) → Set _⊆ᵣ_ : ∀{I A} → Rel I A → Rel I A → Set R₁ ⊆ᵣ R₂ = ∀{t} → R₁ t → R₂ t PredInterpret : Set₁ PredInterpret = (Q : ∥ Δ ∥) → Rel (ar Δ Q) (T∞ Ø) _⊑ᵢ_ : PredInterpret → PredInterpret → Set I₁ ⊑ᵢ I₂ = ∀ {Q} → I₁ Q ⊆ᵣ I₂ Q liftApp∞ : ∀ {V W} {I : Set} → Subst∞ V W → (I → T∞ V) → (I → T∞ W) liftApp∞ σ f i = app∞ σ (f i) _≡[_]_ : T∞ Ø → Subst∞ V Ø → T V → Set t ≡[ σ ] s = t ~ app∞ σ (χ s) {- _⊨[_]_ : PredInterpret → Subst∞ V Ø → Formula → Set I ⊨[ σ ] (inj₁ (Q , ts)) = liftApp∞ σ (χ ∘ ts) ∈ I Q I ⊨[ σ ] (inj₂ _) = Ø -} _⊨[_]_ : PredInterpret → Subst∞ V Ø → Formula → Set I ⊨[ σ ] (Q , ts) = liftApp∞ σ (χ ∘ ts) ∈ I Q ⟦_⟧ : dom Φ → PredInterpret → PredInterpret ⟦ C ⟧ I = F (get Φ C) where -- | Forward closure for inductive clauses is given by -- F(h ⊢μ Q'(t))(I)(Q) -- = {t[σ] | σ : V → Ø ∧ Q ≡ Q' ∧ ∀ P(s) ∈ h. s[σ] ∈ I(P)}. -- The backwards closure for coinductive clauses is, on the other hand, -- given by -- F(h ⊢ν P(s))(I)(Q) = {t[σ] | σ : V → Ø ∧ Q(t) ∈ h ∧ s ∈ I(Q)} F : Clause → PredInterpret F (h ⊢[ ind ] (Q' , pat)) Q ts = ∐ (Q' ≡ Q) (λ p → ∃ (λ σ → ∀ i → ts (subst _ p i) ≡[ σ ] pat i × (∀ j → I ⊨[ σ ] get h j))) F (h ⊢[ coind ] φ) Q ts = ∃ (λ j → ∐ (proj₁ (get h j) ≡ Q) (λ p → ∃ (λ σ → ∀ i → ts (subst _ p i) ≡[ σ ] proj₂ (get h j) i × I ⊨[ σ ] φ))) FormInterpret : PredInterpret → Formula → Pred (Subst∞ V Ø) _ FormInterpret I (Q , ts) σ = (λ i → app∞ σ (χ (ts i))) ∈ I Q B : (Formula → Pred (Subst∞ V Ø) _) → (Formula → Pred (Subst∞ V Ø) _) B D F = {!!} record ModelData : Set₁ where field preds : PredInterpret
{ "alphanum_fraction": 0.5183946488, "avg_line_length": 27.5394736842, "ext": "agda", "hexsha": "89ee76043d0ca011d84721ba92fcca10b859c6ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP/Model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP/Model.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP/Model.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 911, "size": 2093 }
------------------------------------------------------------------------ -- Parsing of mixfix operators ------------------------------------------------------------------------ -- This module defines a grammar for the precedence graph g. open import RecursiveDescent.Hybrid.Mixfix.Expr module RecursiveDescent.Hybrid.Mixfix (g : PrecedenceGraph) where import Data.Vec as Vec import Data.List as List open List using (List; []; _∷_; foldr; foldl) import Data.Vec1 as Vec1 open Vec1 using (Vec₁) open import Data.Product renaming (_,_ to pair) open import Data.Product.Record using (_,_) open import Data.Bool open import Data.Unit open import Data.Nat open import Data.Function hiding (_⟨_⟩_) import Data.String as String open import RecursiveDescent.Hybrid.Mixfix.Fixity open import RecursiveDescent.Index open import RecursiveDescent.Hybrid open import RecursiveDescent.Hybrid.Simple open import RecursiveDescent.Hybrid.Lib open Token String.decSetoid -- Note that, even though grammar below is not recursive, these -- functions are (mutually). Fortunately the recursion is structural, -- though. Note also that the reason for not using the implementation -- -- grammar (nodes ts) = choiceMap (\t -> ! node t) ts -- -- is that this would lead to a definition of node-corners which -- was not structurally recursive. nodes-corners : PrecedenceGraph -> Corners nodes-corners [] = _ nodes-corners (p ∷ ps) = _ node-corners : PrecedenceTree -> Corners node-corners (precedence ops ps) = _ -- Nonterminals. data NT : ParserType where -- Expressions. expr : NT _ Expr -- Expressions corresponding to zero or more nodes in the precedence -- graph: operator applications where the outermost operator has one -- of the precedences ps. The graph g is used for internal -- expressions. nodes : (ps : PrecedenceGraph) -> NT (false , nodes-corners ps) Expr -- Expressions corresponding to one node in the precedence graph: -- operator applications where the outermost operator has -- precedence p. The graph g is used for internal expressions. node : (p : PrecedenceTree) -> NT (false , node-corners p) Expr -- The parser type used in this module. P : Index -> Set -> Set1 P = Parser NamePart NT -- A vector containing parsers recognising the name parts of the -- operator. nameParts : forall {fix arity} -> Operator fix arity -> Vec₁ (P _ NamePart) (1 + arity) nameParts (operator ns) = Vec1.map₀₁ sym ns -- Internal parts (all name parts plus internal expressions) of -- operators of the given precedence and fixity. internal : forall {fix} (ops : List (∃ (Operator fix))) -> P _ (Internal fix) internal = choiceMap (\op' -> let op = proj₂ op' in _∙_ op <$> (! expr between nameParts op)) -- The grammar. grammar : Grammar NamePart NT grammar expr = ! nodes g grammar (nodes []) = fail grammar (nodes (p ∷ ps)) = ! node p ∣ ! nodes ps grammar (node (precedence ops ps)) = ⟪_⟫ <$> ⟦ closed ⟧ ∣ _⟨_⟩_ <$> ↑ ⊛ ⟦ infx non ⟧ ⊛ ↑ ∣ flip (foldr _$_) <$> preRight + ⊛ ↑ ∣ foldl (flip _$_) <$> ↑ ⊛ postLeft + where -- ⟦ fix ⟧ parses the internal parts of operators with the -- current precedence level and fixity fix. ⟦_⟧ = \(fix : Fixity) -> internal (ops fix) -- Operator applications where the outermost operator binds -- tighter than the current precedence level. ↑ = ! nodes ps -- Right associative and prefix operators. preRight = ⟪_⟩_ <$> ⟦ prefx ⟧ ∣ _⟨_⟩_ <$> ↑ ⊛ ⟦ infx right ⟧ -- Left associative and postfix operators. postLeft = flip _⟨_⟫ <$> ⟦ postfx ⟧ ∣ (\op e₂ e₁ -> e₁ ⟨ op ⟩ e₂) <$> ⟦ infx left ⟧ ⊛ ↑ -- An expression parser. parseExpr : List NamePart -> List Expr parseExpr = parse-complete (! expr) grammar
{ "alphanum_fraction": 0.645236251, "avg_line_length": 33.1025641026, "ext": "agda", "hexsha": "13274579864116f9ea5869dcd359cc4cd88ed587", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1008, "size": 3873 }
module Refactoring where open import ParseTree hiding (after) open import Data.List open import Data.String hiding (_++_) open import Data.Sum hiding (map) open import Data.Product open import ScopeParseTree open import MatchUpNames open import ScopeState open import Data.Nat open import InterpretCommand open import Data.Maybe open import Data.Vec using (toList ; lookup ; Vec) open import Data.Fin open import AgdaHelperFunctions open import PushArgument renaming (pushArgument to push) open import IO.Primitive using (IO) open import Typing open import Data.Bool open import ExtractFunction using (extract) open import ExplicitImplicitConversion doNothing : List ParseTree -> List ParseTree doNothing x = x {-# COMPILE GHC doNothing as doNothing #-} scopeList : ScopeState (List ParseTree) scopeList = do env {numVars} vars maxScopes scopes current <- get let decl = Data.Vec.map getDeclared scopes let scopeDec = Data.Vec.map ( λ x -> Data.List.map (λ y -> Data.Vec.lookup y vars) x) decl fail $ Data.String.concat $ Data.List.map concatSpace $ Data.Vec.toList scopeDec where concatSpace : List String -> String concatSpace l = (Data.String.concat l) Data.String.++ "\n" varList : ScopeState (List ParseTree) varList = do env vars maxScopes scopes current <- get fail $ Data.String.concat $ Data.Vec.toList vars scopeOnly : List ParseTree -> IO (String ⊎ List ParseTree) scopeOnly program = runScopeState (matchUpNames after scopeParseTreeList $ program) newEnv {-# COMPILE GHC scopeOnly as scopeOnly #-} checkCommand' : List ParseTree -> ℕ -> ScopeState String checkCommand' list n = do let afterScoping = scopeOnly list newList <- scopeParseTreeList list just decl <- return $ getDeclarationIDForPoint newList n where nothing -> fail "Cursor is not in renameable instance" getNameForId decl checkCommand : List ParseTree -> ℕ -> IO (String ⊎ String) checkCommand list n = runScopeState (checkCommand' list n ) newEnv {-# COMPILE GHC checkCommand as checkCommand #-} rename' : List ParseTree -> ℕ -> String -> ScopeState (List ParseTree) rename' program point newName = do scoped <- scopeParseTreeList program just decl <- return $ getDeclarationIDForPoint scoped point where nothing -> fail "Cursor is not in renameable instance" noerror <- replaceID decl newName matchUpNames scoped rename : List ParseTree -> ℕ -> String -> IO (String ⊎ List ParseTree) rename program point newName = runScopeState (rename' program point newName) newEnv {-# COMPILE GHC rename as rename #-} pushArgument' : List ParseTree -> ℕ -> ScopeState (List ParseTree) pushArgument' program point = do scoped <- scopeParseTreeList program funcID , argNumber <- getFuncIdAndArgNumber scoped point push scoped funcID argNumber pushArgument : List ParseTree -> ℕ -> IO (String ⊎ List ParseTree) pushArgument program point = runScopeState (pushArgument' program point) newEnv {-# COMPILE GHC pushArgument as pushArgument #-} changeExplicitness' : List ParseTree -> ℕ -> ScopeState (List ParseTree) changeExplicitness' program point = do scoped <- scopeParseTreeList program funcID , argNumber <- getFuncIdAndArgNumber scoped point convert scoped funcID argNumber toggleExplicitness : List ParseTree -> ℕ -> IO (String ⊎ List ParseTree) toggleExplicitness program point = runScopeState (changeExplicitness' program point) newEnv {-# COMPILE GHC toggleExplicitness as toggleExplicitness #-} extractFunction : List ParseTree -> ℕ -> ℕ -> String -> IO (String ⊎ List ParseTree) extractFunction program startPoint endPoint filename = runScopeState (extract program startPoint endPoint filename) newEnv {-# COMPILE GHC extractFunction as extractFunction #-}
{ "alphanum_fraction": 0.7612140747, "avg_line_length": 36.5, "ext": "agda", "hexsha": "97617ab200b7500e3d8340ad31d9f822c837c74f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Refactoring.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Refactoring.agda", "max_line_length": 122, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Refactoring.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 891, "size": 3723 }
{-# OPTIONS --safe --warning=error --with-K #-} open import Sets.EquivalenceRelations open import Groups.Definition open import Orders open import Rings.Definition open import Numbers.Integers.Integers open import Numbers.Integers.Multiplication open import Setoids.Setoids open import LogicalFormulae open import Sets.FinSet open import Functions open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Numbers.Naturals.Semiring open import Numbers.Naturals.WithK open import Numbers.Modulo.Definition open import Numbers.Modulo.Addition open import Numbers.Modulo.Group open import Rings.Examples.Examples open import Numbers.Primes.PrimeNumbers open import Groups.Lemmas open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Isomorphisms.Definition open import Groups.Cyclic.Definition open import Groups.QuotientGroup.Definition open import Groups.Subgroups.Definition open import Groups.Subgroups.Normal.Definition module Groups.Examples.Examples where trivialGroup : Group (reflSetoid (FinSet 1)) λ _ _ → fzero Group.+WellDefined trivialGroup _ _ = refl Group.0G trivialGroup = fzero Group.inverse trivialGroup _ = fzero Group.+Associative trivialGroup = refl Group.identRight trivialGroup {fzero} = refl Group.identRight trivialGroup {fsucc ()} Group.identLeft trivialGroup {fzero} = refl Group.identLeft trivialGroup {fsucc ()} Group.invLeft trivialGroup = refl Group.invRight trivialGroup = refl elementPowZ : (n : ℕ) → (elementPower ℤGroup (nonneg 1) (nonneg n)) ≡ nonneg n elementPowZ zero = refl elementPowZ (succ n) rewrite elementPowZ n = refl ℤCyclic : CyclicGroup ℤGroup CyclicGroup.generator ℤCyclic = nonneg 1 CyclicGroup.cyclic ℤCyclic {nonneg x} = (nonneg x , elementPowZ x) CyclicGroup.cyclic ℤCyclic {negSucc x} = (negSucc x , ans) where ans : (Group.inverse ℤGroup ((nonneg 1) +Z elementPower ℤGroup (nonneg 1) (nonneg x))) ≡ negSucc x ans rewrite elementPowZ x = refl elementPowZn : (n : ℕ) → {pr : 0 <N succ (succ n)} → (power : ℕ) → (powerLess : power <N succ (succ n)) → {p : 1 <N succ (succ n)} → elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power) ≡ record { x = power ; xLess = powerLess } elementPowZn n zero powerLess = equalityZn _ _ refl elementPowZn n {pr} (succ power) powerLess {p} with TotalOrder.totality ℕTotalOrder (ℤn.x (elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power))) (succ n) elementPowZn n {pr} (succ power) powerLess {p} | inl (inl x) = equalityZn _ _ (applyEquality succ v) where t : elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = succPreservesInequality (succIsPositive n) }) (nonneg power) ≡ record { x = power ; xLess = PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (a<SuccA power) powerLess } t = elementPowZn n {pr} power (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (a<SuccA power) powerLess) {succPreservesInequality (succIsPositive n)} u : elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power) ≡ record { x = power ; xLess = PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (a<SuccA power) powerLess } u rewrite <NRefl p (succPreservesInequality (succIsPositive n)) = t v : ℤn.x (elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power)) ≡ power v rewrite u = refl elementPowZn n {pr} (succ power) powerLess {p} | inl (inr x) with elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power) elementPowZn n {pr} (succ power) powerLess {p} | inl (inr x) | record { x = x' ; xLess = xLess } = exFalso (noIntegersBetweenXAndSuccX _ x xLess) elementPowZn n {pr} (succ power) powerLess {p} | inr x with inspect (elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = p }) (nonneg power)) elementPowZn n {pr} (succ power) powerLess {p} | inr x | record { x = x' ; xLess = p' } with≡ inspected rewrite elementPowZn n {pr} power (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (a<SuccA power) powerLess) {p} | x = exFalso (PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) powerLess) ℤnCyclic : (n : ℕ) → (pr : 0 <N n) → CyclicGroup (ℤnGroup n pr) ℤnCyclic zero () CyclicGroup.generator (ℤnCyclic (succ zero) pr) = record { x = 0 ; xLess = pr } CyclicGroup.cyclic (ℤnCyclic (succ zero) pr) {record { x = zero ; xLess = xLess }} rewrite <NRefl xLess (succIsPositive 0) | <NRefl pr (succIsPositive 0) = (nonneg 0 , refl) CyclicGroup.cyclic (ℤnCyclic (succ zero) _) {record { x = succ x ; xLess = xLess }} = exFalso (zeroNeverGreater (canRemoveSuccFrom<N xLess)) ℤnCyclic (succ (succ n)) pr = record { generator = record { x = 1 ; xLess = succPreservesInequality (succIsPositive n) } ; cyclic = λ {x} → ans x } where ans : (z : ℤn (succ (succ n)) pr) → Sg ℤ (λ i → (elementPower (ℤnGroup (succ (succ n)) pr) (record { x = 1 ; xLess = succPreservesInequality (succIsPositive n) }) i) ≡ z) ans record { x = x ; xLess = xLess } = nonneg x , elementPowZn n x xLess multiplyByNHom : (n : ℕ) → GroupHom ℤGroup ℤGroup (λ i → i *Z nonneg n) GroupHom.groupHom (multiplyByNHom n) {x} {y} = lemma1 where open Setoid (reflSetoid ℤ) open Group ℤGroup lemma : nonneg n *Z (x +Z y) ≡ (nonneg n) *Z x +Z nonneg n *Z y lemma = Ring.*DistributesOver+ ℤRing {nonneg n} {x} {y} lemma1 : (x +Z y) *Z nonneg n ≡ x *Z nonneg n +Z y *Z nonneg n lemma1 rewrite Ring.*Commutative ℤRing {x +Z y} {nonneg n} | Ring.*Commutative ℤRing {x} {nonneg n} | Ring.*Commutative ℤRing {y} {nonneg n} = lemma GroupHom.wellDefined (multiplyByNHom n) {x} {.x} refl = refl modNExampleGroupHom : (n : ℕ) → (pr : 0 <N n) → GroupHom ℤGroup (ℤnGroup n pr) (mod n pr) GroupHom.groupHom (modNExampleGroupHom n 0<n) {x} {y} = {!!} GroupHom.wellDefined (modNExampleGroupHom n 0<n) {x} {.x} refl = refl intoZn : {n : ℕ} → {pr : 0 <N n} → (x : ℕ) → (x<n : x <N n) → mod n pr (nonneg x) ≡ record { x = x ; xLess = x<n } intoZn {zero} {()} intoZn {succ n} {0<n} x x<n with divisionAlg (succ n) x intoZn {succ n} {0<n} x x<n | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl y ; quotSmall = quotSmall } = equalityZn _ _ (modIsUnique (record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl y ; quotSmall = quotSmall }) (record { quot = 0 ; rem = x ; pr = ans ; remIsSmall = inl x<n ; quotSmall = inl (succIsPositive n)})) where ans : n *N 0 +N x ≡ x ans rewrite multiplicationNIsCommutative n 0 = refl intoZn {succ n} {0<n} x x<n | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () ; quotSmall = quotSmall } quotientZn : (n : ℕ) → (pr : 0 <N n) → GroupIso (quotientGroupByHom ℤGroup (modNExampleGroupHom n pr)) (ℤnGroup n pr) (mod n pr) GroupHom.groupHom (GroupIso.groupHom (quotientZn n pr)) = GroupHom.groupHom (modNExampleGroupHom n pr) GroupHom.wellDefined (GroupIso.groupHom (quotientZn n pr)) {x} {y} x~y = need where given : mod n pr (x +Z (Group.inverse ℤGroup y)) ≡ record { x = 0 ; xLess = pr } given = x~y given' : (mod n pr x) +n (mod n pr (Group.inverse ℤGroup y)) ≡ record { x = 0 ; xLess = pr } given' = transitivity (equalityCommutative (GroupHom.groupHom (modNExampleGroupHom n pr))) given given'' : (mod n pr x) +n Group.inverse (ℤnGroup n pr) (mod n pr y) ≡ record { x = 0 ; xLess = pr} given'' = transitivity (applyEquality (λ i → mod n pr x +n i) (equalityCommutative (homRespectsInverse (modNExampleGroupHom n pr)))) given' need : mod n pr x ≡ mod n pr y need = transferToRight (ℤnGroup n pr) given'' SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (quotientZn n pr))) {x} {y} x=y = {!!} SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (quotientZn n pr))) {x} {y} = SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (quotientZn n pr))) {x} {y} SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (quotientZn n pr))) {x} {y} fx~fy = need where given : mod n pr x +n Group.inverse (ℤnGroup n pr) (mod n pr y) ≡ record { x = 0 ; xLess = pr } given = transferToRight'' (ℤnGroup n pr) fx~fy given' : mod n pr (x +Z (Group.inverse ℤGroup y)) ≡ record { x = 0 ; xLess = pr } given' = identityOfIndiscernablesLeft _≡_ given (equalityCommutative (transitivity (GroupHom.groupHom (modNExampleGroupHom n pr) {x}) (applyEquality (λ i → mod n pr x +n i) (homRespectsInverse (modNExampleGroupHom n pr))))) need' : (mod n pr x) +n (mod n pr (Group.inverse ℤGroup y)) ≡ record { x = 0 ; xLess = pr } need' rewrite equalityCommutative (GroupHom.groupHom (modNExampleGroupHom n pr) {x} {Group.inverse ℤGroup y}) = given' need : mod n pr (x +Z (Group.inverse ℤGroup y)) ≡ record { x = 0 ; xLess = pr} need = identityOfIndiscernablesLeft _≡_ need' (equalityCommutative (GroupHom.groupHom (modNExampleGroupHom n pr))) SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (quotientZn n pr))) {record { x = x ; xLess = xLess }} = nonneg x , intoZn x xLess trivialGroupHom : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) → GroupHom trivialGroup G (λ _ → Group.0G G) GroupHom.groupHom (trivialGroupHom {S = S} G) = symmetric identRight where open Setoid S open Group G open Equivalence eq GroupHom.wellDefined (trivialGroupHom {S = S} G) _ = Equivalence.reflexive (Setoid.eq S)
{ "alphanum_fraction": 0.6938211209, "avg_line_length": 67.1642857143, "ext": "agda", "hexsha": "e25229d75a9b5ccbc4ce73111a22fbe91287f0de", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Examples/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Examples/Examples.agda", "max_line_length": 344, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Examples/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3242, "size": 9403 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.Cartesian where open import Data.Product using (proj₁; proj₂) renaming (_×_ to _×₀_) open import Data.Fin using (zero) open import Categories.Category open import Categories.Monoidal open import Categories.Object.BinaryProducts open import Categories.Object.Products open import Categories.Object.Products.Properties renaming (module Properties to ProductProperties) open import Categories.Object.Terminal open import Categories.Bifunctor using (Bifunctor) import Categories.Morphisms open import Categories.Square import Categories.Monoidal.Cartesian.Pentagon as Pentagon Cartesian : ∀ {o ℓ e} (C : Category o ℓ e) → Products C → Monoidal C Cartesian C Ps = record { ⊗ = ⊗ ; id = ⊤ ; identityˡ = record { F⇒G = record { η = λ X → π₂ ; commute = λ f → commute₂ } ; F⇐G = record { η = λ X → ⟨ ! , id ⟩ ; commute = λ f → unitˡ-natural } ; iso = λ X → _≅_.iso unitˡ } ; identityʳ = record { F⇒G = record { η = λ X → π₁ ; commute = λ f → commute₁ } ; F⇐G = record { η = λ X → ⟨ id , ! ⟩ ; commute = λ f → unitʳ-natural } ; iso = λ X → _≅_.iso unitʳ } ; assoc = record { F⇒G = record { η = λ X → assocˡ ; commute = λ f → assocˡ∘⁂ } ; F⇐G = record { η = λ X → assocʳ ; commute = λ f → assocʳ∘⁂ } ; iso = λ X → record { isoˡ = Iso.isoʳ (_≅_.iso ×-assoc) ; isoʳ = Iso.isoˡ (_≅_.iso ×-assoc) } } ; triangle = λ {X} → triangle {X} ; pentagon = pentagon } where open Categories.Morphisms C open Category C open Products Ps renaming (terminal to T₀; binary to P₀) open ProductProperties C Ps open Terminal T₀ using (⊤; !; !-unique; !-unique₂) open BinaryProducts P₀ open Pentagon.Law C P₀ using (pentagon) ⊗ : Bifunctor C C C ⊗ = record { F₀ = λ p → proj₁ p × proj₂ p ; F₁ = λ x → proj₁ x ⁂ proj₂ x ; identity = identity ; homomorphism = Equiv.sym ⁂∘⁂ ; F-resp-≡ = λ {A B F G} x → F-resp-≡ {A} {B} {F} {G} x } where .identity : ∀ {A : Obj ×₀ Obj} → (id {proj₁ A} ⁂ id {proj₂ A}) ≡ id identity = universal (id-comm {f = π₁}) (id-comm {f = π₂}) .F-resp-≡ : ∀ {A B F G} F≡G → _ F-resp-≡ {F = F} {G} x = ⟨⟩-cong₂ (∘-resp-≡ˡ (proj₁ x)) (∘-resp-≡ˡ (proj₂ x)) -- The implicit x is actually used implicitly by the rest of the expression, so don't take it out, -- or Agda will complain about something referring to something to which it has no access. -- The connection between the mentioned x and the rest of the type is given by the caller way up -- there, so if that were not using these the triangle and pentagon laws would be yellow. .triangle : ∀ {x} → first π₁ ≡ second π₂ ∘ assocˡ triangle = begin first π₁ ↓⟨ ⟨⟩-congʳ identityˡ ⟩ ⟨ π₁ ∘ π₁ , π₂ ⟩ ↑⟨ ⟨⟩-congʳ commute₂ ⟩ ⟨ π₁ ∘ π₁ , π₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ↑⟨ second∘⟨⟩ ⟩ second π₂ ∘ assocˡ ∎ where open HomReasoning open Equiv
{ "alphanum_fraction": 0.5886755613, "avg_line_length": 29.2666666667, "ext": "agda", "hexsha": "918fa2142596d8d3d7b3aa73e70335db6d292d33", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monoidal/Cartesian.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monoidal/Cartesian.agda", "max_line_length": 100, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monoidal/Cartesian.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1101, "size": 3073 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module Heapsort.Impl1.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ hiding (forget ; flatten) open import BBHeap.Heapify _≤_ tot≤ trans≤ open import BBHeap.Insert _≤_ tot≤ trans≤ open import BBHeap.Subtyping _≤_ trans≤ open import BHeap _≤_ hiding (forget) renaming (flatten to flatten') open import BHeap.Order _≤_ open import BHeap.Order.Properties _≤_ open import BHeap.Properties _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Nat renaming (_≤_ to _≤ₙ_) open import Data.Sum open import Heapsort.Impl1 _≤_ tot≤ trans≤ open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import List.Permutation.Base.Concatenation A open import OList _≤_ open import Order.Total _≤_ tot≤ open import Relation.Binary open DecTotalOrder decTotalOrder hiding (refl) lemma-flatten-flatten' : {b : Bound}(h : BHeap b)(accₕ : Acc h) → forget (flatten h accₕ) ∼ flatten' h lemma-flatten-flatten' lf _ = ∼[] lemma-flatten-flatten' (nd b≤x l r) (acc rs) = ∼x /head /head (trans∼ (lemma-flatten-flatten' (merge tot≤ l r) (rs (merge tot≤ l r) (lemma-merge≤′ tot≤ b≤x l r))) (lemma-merge∼ tot≤ l r)) lemma-flatten'-flatten : {b : Bound}(h : BHeap b)(accₕ : Acc h) → (flatten' h) ∼ (forget (flatten h accₕ)) lemma-flatten'-flatten h tₕ = sym∼ (lemma-flatten-flatten' h tₕ) lemma-subtyping≡ : {b b' : Bound}(b'≤b : LeB b' b)(h : BBHeap b) → (flatten' (relax (subtyping b'≤b h))) ≡ flatten' (relax h) lemma-subtyping≡ b'≤b leaf = refl lemma-subtyping≡ b'≤b (left {l = l} {r = r} b≤x l⋘r) rewrite lemma-subtyping≡ b≤x l | lemma-subtyping≡ b≤x r = refl lemma-subtyping≡ b'≤b (right {l = l} {r = r} b≤x l⋙r) rewrite lemma-subtyping≡ b≤x l | lemma-subtyping≡ b≤x r = refl lemma-insert∼ : {b : Bound}{x : A}(b≤x : LeB b (val x))(h : BBHeap b) → (x ∷ flatten' (relax h)) ∼ (flatten' (relax (insert b≤x h))) lemma-insert∼ b≤x leaf = refl∼ lemma-insert∼ {x = x} b≤x (left {x = y} {l = l} {r = r} b≤y l⋘r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) l) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) r = ∼x /head /head (lemma++∼r (lemma-insert∼ (lexy refl≤) l)) ... | inj₂ lᵢ⋗r rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) l) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) r = ∼x /head /head (lemma++∼r (lemma-insert∼ (lexy refl≤) l)) lemma-insert∼ {x = x} b≤x (left {x = y} {l = l} {r = r} b≤y l⋘r) | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = ∼x (/tail /head) /head (lemma++∼r (lemma-insert∼ (lexy y≤x) l)) ... | inj₂ lᵢ⋗r = ∼x (/tail /head) /head (lemma++∼r (lemma-insert∼ (lexy y≤x) l)) lemma-insert∼ {x = x} b≤x (right {x = y} {l = l} {r = r} b≤y l⋙r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) r) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) l = ∼x /head /head (trans∼ (∼x /head (lemma++/ {xs = flatten' (relax l)}) refl∼) (lemma++∼l {xs = flatten' (relax l)} (lemma-insert∼ (lexy refl≤) r))) ... | inj₂ l≃rᵢ rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) r) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) l = ∼x /head /head (trans∼ (∼x /head (lemma++/ {xs = flatten' (relax l)}) refl∼) (lemma++∼l {xs = flatten' (relax l)} (lemma-insert∼ (lexy refl≤) r))) lemma-insert∼ {x = x} b≤x (right {x = y} {l = l} {r = r} b≤y l⋙r) | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = ∼x (/tail /head) /head (trans∼ (∼x /head (lemma++/ {xs = flatten' (relax l)}) refl∼) (lemma++∼l {xs = flatten' (relax l)} (lemma-insert∼ (lexy y≤x) r))) ... | inj₂ l≃rᵢ = ∼x (/tail /head) /head (trans∼ (∼x /head (lemma++/ {xs = flatten' (relax l)}) refl∼) (lemma++∼l {xs = flatten' (relax l)} (lemma-insert∼ (lexy y≤x) r))) theorem-heapsort∼ : (xs : List A) → xs ∼ forget (heapsort xs) theorem-heapsort∼ [] = ∼[] theorem-heapsort∼ (x ∷ xs) = trans∼ (trans∼ (∼x /head /head (trans∼ (theorem-heapsort∼ xs) (lemma-flatten-flatten' h' accₕ'))) (lemma-insert∼ lebx h)) (lemma-flatten'-flatten (hᵢ) accₕᵢ) where h = heapify xs h' = relax h accₕ' = ≺-wf h' hᵢ = relax (insert lebx h) accₕᵢ = ≺-wf hᵢ
{ "alphanum_fraction": 0.5755573906, "avg_line_length": 55.6781609195, "ext": "agda", "hexsha": "6607af6cb281f34ab9bbedc137b6465b46f758c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Heapsort/Impl1/Correctness/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Heapsort/Impl1/Correctness/Permutation.agda", "max_line_length": 187, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Heapsort/Impl1/Correctness/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 2004, "size": 4844 }
open import Common.Prelude open import Common.Equality test : "foo" ≡ "bar" → Set₁ test refl = Set
{ "alphanum_fraction": 0.72, "avg_line_length": 16.6666666667, "ext": "agda", "hexsha": "f6358fa0762c52c7bdbf3d12859da254628bd61b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/LiteralConflict.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/LiteralConflict.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/LiteralConflict.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 100 }
-- 2012-02-22 module CorrectPrintingOfVariablesInSortCheckingForData where data Bool : Set where true false : Bool if_then_else_ : {A : Set2} → Bool → A → A → A if true then a else b = a if false then a else b = b data foo : (y : Bool) → if y then Set else Set data foo where bar : foo true -- This should print -- if y then Set else Set != Set of type Set₁ -- and not -- if @0 then ...
{ "alphanum_fraction": 0.6550868486, "avg_line_length": 21.2105263158, "ext": "agda", "hexsha": "66fdfc5c6dfef93be8154ddec99f563c5b6ed4f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/CorrectPrintingOfVariablesInSortCheckingForData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/CorrectPrintingOfVariablesInSortCheckingForData.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/CorrectPrintingOfVariablesInSortCheckingForData.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 128, "size": 403 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring -- for length open import Lists.Definition open import Lists.Fold.Fold module Lists.Length where length : {a : _} {A : Set a} (l : List A) → ℕ length [] = zero length (x :: l) = succ (length l) length' : {a : _} {A : Set a} → (l : List A) → ℕ length' = fold (λ _ → succ) 0 length=length' : {a : _} {A : Set a} (l : List A) → length l ≡ length' l length=length' [] = refl length=length' (x :: l) = applyEquality succ (length=length' l)
{ "alphanum_fraction": 0.6337522442, "avg_line_length": 27.85, "ext": "agda", "hexsha": "d770c9aad3d0d663795f4b6470ea26687c4a6bb5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Length.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Length.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Length.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 181, "size": 557 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Bifunctor where -- Bifunctor, aka a Functor from C × D to E open import Level open import Categories.Category open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.Category.Product private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level C D D₁ D₂ E E₁ E₂ : Category o ℓ e Bifunctor : Category o ℓ e → Category o′ ℓ′ e′ → Category o″ ℓ″ e″ → Set _ Bifunctor C D E = Functor (Product C D) E overlap-× : ∀ (H : Bifunctor D₁ D₂ C) (F : Functor E D₁) (G : Functor E D₂) → Functor E C overlap-× H F G = H ∘F (F ※ G) reduce-× : ∀ (H : Bifunctor D₁ D₂ C) (F : Functor E₁ D₁) (G : Functor E₂ D₂) → Bifunctor E₁ E₂ C reduce-× H F G = H ∘F (F ⁂ G) flip-bifunctor : Bifunctor C D E → Bifunctor D C E flip-bifunctor b = b ∘F Swap appˡ : Bifunctor C D E → Category.Obj C → Functor D E appˡ F c = F ∘F constˡ c appʳ : Bifunctor C D E → Category.Obj D → Functor C E appʳ F d = F ∘F constʳ d
{ "alphanum_fraction": 0.6623376623, "avg_line_length": 29.4411764706, "ext": "agda", "hexsha": "abe71a2bc51aa0e42d7e8a9dcfa1a4070f4192a4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Bifunctor.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Bifunctor.agda", "max_line_length": 96, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Bifunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 384, "size": 1001 }
{-# OPTIONS --without-K #-} module Agda.Builtin.Sigma where open import Agda.Primitive record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B fst open Σ public infixr 4 _,_ {-# BUILTIN SIGMA Σ #-}
{ "alphanum_fraction": 0.601532567, "avg_line_length": 14.5, "ext": "agda", "hexsha": "51f8ad7f3b6603f1089165728252ded06f7f4b3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Sigma.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Sigma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 91, "size": 261 }
------------------------------------------------------------------------ -- Code for converting Vec₁ n A → B to and from n-ary functions ------------------------------------------------------------------------ -- I want universe polymorphism. module Data.Vec.N-ary1 where open import Data.Nat open import Data.Vec1 open import Relation.Binary.PropositionalEquality1 ------------------------------------------------------------------------ -- N-ary functions N-ary : ℕ → Set₁ → Set₁ → Set₁ N-ary zero A B = B N-ary (suc n) A B = A → N-ary n A B ------------------------------------------------------------------------ -- Conversion curryⁿ : ∀ {n A B} → (Vec₁ A n → B) → N-ary n A B curryⁿ {zero} f = f [] curryⁿ {suc n} f = λ x → curryⁿ (λ xs → f (x ∷ xs)) _$ⁿ_ : ∀ {n A B} → N-ary n A B → (Vec₁ A n → B) f $ⁿ [] = f f $ⁿ (x ∷ xs) = f x $ⁿ xs ------------------------------------------------------------------------ -- N-ary function equality Eq : ∀ {A B} n → (B → B → Set₁) → (f g : N-ary n A B) → Set₁ Eq zero _∼_ f g = f ∼ g Eq (suc n) _∼_ f g = ∀ x → Eq n _∼_ (f x) (g x) ------------------------------------------------------------------------ -- Some lemmas -- The two functions are inverses. left-inverse : ∀ {n A B} (f : Vec₁ A n → B) → ∀ xs → curryⁿ f $ⁿ xs ≡₁ f xs left-inverse f [] = refl left-inverse f (x ∷ xs) = left-inverse (λ xs → f (x ∷ xs)) xs data Lift {A : Set₁} (R : A → A → Set) x y : Set₁ where lift : R x y → Lift R x y right-inverse : ∀ {A B} n (f : N-ary n A B) → Eq n (Lift _≡₁_) (curryⁿ (_$ⁿ_ {n} f)) f right-inverse zero f = lift refl right-inverse (suc n) f = λ x → right-inverse n (f x) -- Conversion preserves equality. curryⁿ-pres : ∀ {n A B _∼_} (f g : Vec₁ A n → B) → (∀ xs → f xs ∼ g xs) → Eq n _∼_ (curryⁿ f) (curryⁿ g) curryⁿ-pres {zero} f g hyp = hyp [] curryⁿ-pres {suc n} f g hyp = λ x → curryⁿ-pres (λ xs → f (x ∷ xs)) (λ xs → g (x ∷ xs)) (λ xs → hyp (x ∷ xs)) curryⁿ-pres⁻¹ : ∀ {n A B _∼_} (f g : Vec₁ A n → B) → Eq n _∼_ (curryⁿ f) (curryⁿ g) → ∀ xs → f xs ∼ g xs curryⁿ-pres⁻¹ f g hyp [] = hyp curryⁿ-pres⁻¹ f g hyp (x ∷ xs) = curryⁿ-pres⁻¹ (λ xs → f (x ∷ xs)) (λ xs → g (x ∷ xs)) (hyp x) xs appⁿ-pres : ∀ {n A B _∼_} (f g : N-ary n A B) → Eq n _∼_ f g → (xs : Vec₁ A n) → (f $ⁿ xs) ∼ (g $ⁿ xs) appⁿ-pres f g hyp [] = hyp appⁿ-pres f g hyp (x ∷ xs) = appⁿ-pres (f x) (g x) (hyp x) xs appⁿ-pres⁻¹ : ∀ {n A B _∼_} (f g : N-ary n A B) → ((xs : Vec₁ A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) → Eq n _∼_ f g appⁿ-pres⁻¹ {zero} f g hyp = hyp [] appⁿ-pres⁻¹ {suc n} f g hyp = λ x → appⁿ-pres⁻¹ (f x) (g x) (λ xs → hyp (x ∷ xs))
{ "alphanum_fraction": 0.420331651, "avg_line_length": 32.6352941176, "ext": "agda", "hexsha": "1f24a645bbb2d456852ab7ccda8737d83b424baa", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Vec/N-ary1.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Vec/N-ary1.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Vec/N-ary1.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1048, "size": 2774 }
{-# OPTIONS --without-K --safe #-} module PlainPi where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality infixr 70 _×ᵤ_ infixr 60 _+ᵤ_ infixr 50 _⊚_ ------------------------------------------------------------------------------ -- Pi data 𝕌 : Set ⟦_⟧ : (A : 𝕌) → Set data _⟷_ : 𝕌 → 𝕌 → Set eval : {A B : 𝕌} → (A ⟷ B) → ⟦ A ⟧ → ⟦ B ⟧ data 𝕌 where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ data _⟷_ where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ⟷ t uniti₊l : {t : 𝕌} → t ⟷ 𝟘 +ᵤ t unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ⟷ t uniti₊r : {t : 𝕌} → t ⟷ t +ᵤ 𝟘 swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ⟷ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ⟷ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙 swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ⟷ 𝟘 absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ⟷ 𝟘 factorzr : {t : 𝕌} → 𝟘 ⟷ t ×ᵤ 𝟘 factorzl : {t : 𝕌} → 𝟘 ⟷ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤ t₂) ×ᵤ t₃ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤ t₃) id⟷ : {t : 𝕌} → t ⟷ t _⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤ t₂ ⟷ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄) eval unite₊l (inj₂ v) = v eval uniti₊l v = inj₂ v eval unite₊r (inj₁ v) = v eval uniti₊r v = inj₁ v eval swap₊ (inj₁ v) = inj₂ v eval swap₊ (inj₂ v) = inj₁ v eval assocl₊ (inj₁ v) = inj₁ (inj₁ v) eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) eval assocr₊ (inj₂ v) = inj₂ (inj₂ v) eval unite⋆l (tt , v) = v eval uniti⋆l v = (tt , v) eval unite⋆r (v , tt) = v eval uniti⋆r v = (v , tt) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) eval absorbl () eval absorbr () eval factorzl () eval factorzr () eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) eval distl (v , inj₁ v₁) = inj₁ (v , v₁) eval distl (v , inj₂ v₂) = inj₂ (v , v₂) eval factorl (inj₁ (v , v₁)) = (v , inj₁ v₁) eval factorl (inj₂ (v , v₂)) = (v , inj₂ v₂) eval id⟷ v = v eval (c₁ ⊚ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v) eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂)
{ "alphanum_fraction": 0.4795821462, "avg_line_length": 32.2346938776, "ext": "agda", "hexsha": "6589a2e144c3fd7bb0922286f07048f5d57d9e99", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/PlainPi.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/PlainPi.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/PlainPi.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2015, "size": 3159 }
{-# OPTIONS --erased-cubical --safe #-} module Transformation where open import Data.Integer using (ℤ; +_; _-_; -_) open import Data.List using (List; _∷_; []; map; reverse) open import Data.Product using (_,_) open import Note using (Note; tone; rest) open import Pitch using (Pitch; transposePitch) open import Interval using (PitchPair) retrograde : List Note → List Note retrograde = reverse -- Create a list of intervals between all adjacent tones, ignoring rests. intervals : List Note → List ℤ intervals [] = [] intervals (rest _ ∷ ns) = intervals ns intervals (tone d p ∷ ns) = intervals' p ns where intervals' : Pitch → List Note → List ℤ intervals' p [] = [] intervals' p (rest d ∷ ns) = intervals' p ns intervals' p (tone d q ∷ ns) = (+ q) - (+ p) ∷ intervals' q ns inversion : List Note → List Note inversion [] = [] inversion (rest d ∷ ns) = rest d ∷ inversion ns inversion xs@(tone d p ∷ ns) = tone d p ∷ inversion' p is ns where is : List ℤ is = map (-_) (intervals xs) inversion' : Pitch → List ℤ → List Note → List Note inversion' p [] ns = ns inversion' _ (_ ∷ _) [] = [] inversion' p is@(_ ∷ _) (rest d ∷ ns) = rest d ∷ inversion' p is ns inversion' p (i ∷ is) (tone d _ ∷ ns) = let q = transposePitch i p in (tone d q) ∷ inversion' q is ns
{ "alphanum_fraction": 0.5893108298, "avg_line_length": 37.4210526316, "ext": "agda", "hexsha": "62b6e0cff300d34e554045c48cca0d6b3aab642a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Transformation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Transformation.agda", "max_line_length": 105, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Transformation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 417, "size": 1422 }
------------------------------------------------------------------------------ -- Properties of the divisibility relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.Divisibility.By0.PropertiesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Divisibility.By0 open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.PropertiesATP ------------------------------------------------------------------------------ -- Any positive number divides 0. postulate S∣0 : ∀ n → succ₁ n ∣ zero {-# ATP prove S∣0 #-} -- 0 divides 0. postulate 0∣0 : zero ∣ zero {-# ATP prove 0∣0 #-} -- The divisibility relation is reflexive. postulate ∣-refl : ∀ {n} → N n → n ∣ n {-# ATP prove ∣-refl *-leftIdentity #-} -- If x divides y and z then x divides y ∸ z. postulate x∣y→x∣z→x∣y∸z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n ∸ o ≡ (k ∸ k') * m {-# ATP prove x∣y→x∣z→x∣y∸z-helper *∸-leftDistributive #-} x∣y→x∣z→x∣y∸z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n ∸ o x∣y→x∣z→x∣y∸z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k ∸ k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and z then x divides y + z. postulate x∣y→x∣z→x∣y+z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n + o ≡ (k + k') * m {-# ATP prove x∣y→x∣z→x∣y+z-helper *+-leftDistributive #-} x∣y→x∣z→x∣y+z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n + o x∣y→x∣z→x∣y+z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and y is positive, then x ≤ y. postulate x∣S→x≤S-helper₁ : ∀ {m n} → succ₁ n ≡ zero * m → ⊥ {-# ATP prove x∣S→x≤S-helper₁ #-} -- Nice proof by the ATPa. postulate x∣S→x≤S-helper₂ : ∀ {m n o} → N m → N n → N o → succ₁ n ≡ succ₁ o * m → m ≤ succ₁ n {-# ATP prove x∣S→x≤S-helper₂ x≤x+y *-N #-} x∣S→x≤S : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n x∣S→x≤S Nm Nn (.zero , nzero , Sn≡0*m) = ⊥-elim (x∣S→x≤S-helper₁ Sn≡0*m) x∣S→x≤S Nm Nn (.(succ₁ k) , nsucc {k} Nk , Sn≡Sk*m) = x∣S→x≤S-helper₂ Nm Nn Nk Sn≡Sk*m
{ "alphanum_fraction": 0.4574303406, "avg_line_length": 36.9142857143, "ext": "agda", "hexsha": "52f42a50820fd5b658651104504b683bfadec24a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/By0/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/By0/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/By0/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1036, "size": 2584 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category --(Binary) product of objects and morphisms module Categories.Object.Product {o ℓ e} (C : Category o ℓ e) where open import Categories.Object.Product.Core C public open import Categories.Object.Product.Morphisms C public
{ "alphanum_fraction": 0.7663230241, "avg_line_length": 29.1, "ext": "agda", "hexsha": "fe095f1d80476a08b995b36bbdb10c9f18fdc675", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Product.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Product.agda", "max_line_length": 67, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 65, "size": 291 }
module examplesPaperJFP.finn where open import Data.Nat data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) mutual data Even : ℕ → Set where 0p : Even 0 sucp : {n : ℕ} → Odd n → Even (suc n) data Odd : ℕ → Set where sucp : {n : ℕ} → Even n → Odd (suc n)
{ "alphanum_fraction": 0.5176470588, "avg_line_length": 21.25, "ext": "agda", "hexsha": "5e0a4e41e59fa5d3c777f979ec98aa3c1a310a4f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/finn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/finn.agda", "max_line_length": 49, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/finn.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 143, "size": 340 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.WhereTranslation where open import FOTC.Base open import FOTC.Data.Nat -- See Issue https://github.com/asr/apia/issues/81 . +-rightIdentityA : D → Set +-rightIdentityA i = i + zero ≡ i {-# ATP definition +-rightIdentityA #-} +-rightIdentity : ∀ {n} → N n → n + zero ≡ n +-rightIdentity Nn = N-ind +-rightIdentityA A0 is Nn where postulate A0 : +-rightIdentityA zero {-# ATP prove A0 #-} postulate is : ∀ {i} → +-rightIdentityA i → +-rightIdentityA (succ₁ i) {-# ATP prove is #-} A' : ∀ {n} → (Nn : N n) → D → Set A' Nn i = i + zero ≡ i -- {-# ATP definition A' #-} postulate A0' : ∀ {n} → (Nn : N n) → A' Nn zero -- {-# ATP prove A0' #-} postulate is' : ∀ {n} → (Nn : N n) → ∀ {i} → A' Nn i → A' Nn (succ₁ i) -- {-# ATP prove is' #-}
{ "alphanum_fraction": 0.5628299894, "avg_line_length": 27.8529411765, "ext": "agda", "hexsha": "e1f8b8b0c1e62bb7ec48ff4273654c3a6968a4a0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/CombiningProofs/WhereTranslation.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/CombiningProofs/WhereTranslation.agda", "max_line_length": 72, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/CombiningProofs/WhereTranslation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 315, "size": 947 }
-- (Pre)abelian categories {-# OPTIONS --safe #-} module Cubical.Categories.Abelian.Base where open import Cubical.Categories.Additive.Base open import Cubical.Categories.Category.Base open import Cubical.Categories.Morphism open import Cubical.Data.Sigma.Base open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level -- (Co)kernels module _ (C : PreaddCategory ℓ ℓ') where open PreaddCategory C module _ {x y : ob} (f : Hom[ x , y ]) where -- Kernels record IsKernel {k : ob} (ker : Hom[ k , x ]) : Type (ℓ-max ℓ ℓ') where field ker⋆f : ker ⋆ f ≡ 0h univ : ∀ (w : ob) (t : Hom[ w , x ]) → (t ⋆ f ≡ 0h) → ∃![ u ∈ Hom[ w , k ] ] (u ⋆ ker ≡ t) record Kernel : Type (ℓ-max ℓ ℓ') where constructor kernel field k : ob ker : Hom[ k , x ] isKer : IsKernel ker open IsKernel isKer public -- Cokernels record IsCokernel {c : ob} (coker : Hom[ y , c ]) : Type (ℓ-max ℓ ℓ') where field f⋆coker : f ⋆ coker ≡ 0h univ : ∀ (w : ob) (t : Hom[ y , w ]) → (f ⋆ t ≡ 0h) → ∃![ u ∈ Hom[ c , w ] ] (coker ⋆ u ≡ t) record Cokernel : Type (ℓ-max ℓ ℓ') where field c : ob coker : Hom[ y , c ] isCoker : IsCokernel coker open IsCokernel isCoker public -- Preabelian categories record PreabCategoryStr (C : AdditiveCategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where open AdditiveCategory C field hasKernels : {x y : ob} → (f : Hom[ x , y ]) → Kernel preaddcat f hasCokernels : {x y : ob} → (f : Hom[ x , y ]) → Cokernel preaddcat f -- Convenient ker/coker functions ker = λ {x y} (f : Hom[ x , y ]) → hasKernels f .Kernel.ker coker = λ {x y} (f : Hom[ x , y ]) → hasCokernels f .Cokernel.coker record PreAbCategory (ℓ ℓ' : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field additive : AdditiveCategory ℓ ℓ' preAbStr : PreabCategoryStr additive open AdditiveCategory additive public open PreabCategoryStr preAbStr public -- Abelian categories record AbelianCategoryStr (C : PreAbCategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where open PreAbCategory C private _=ker_ : ∀ {k x y} → Hom[ k , x ] → Hom[ x , y ] → Type (ℓ-max ℓ ℓ') m =ker f = IsKernel preaddcat f m _=coker_ : ∀ {c x y} → Hom[ y , c ] → Hom[ x , y ] → Type (ℓ-max ℓ ℓ') e =coker f = IsCokernel preaddcat f e field monNormal : {x y : ob} → (m : Hom[ x , y ]) → isMonic cat m → Σ[ z ∈ ob ] Σ[ f ∈ Hom[ y , z ] ] (m =ker f) epiNormal : {x y : ob} → (e : Hom[ x , y ]) → isEpic cat e → Σ[ w ∈ ob ] Σ[ f ∈ Hom[ w , x ] ] (e =coker f) record AbelianCategory (ℓ ℓ' : Level): Type (ℓ-suc (ℓ-max ℓ ℓ')) where field preAb : PreAbCategory ℓ ℓ' abelianStr : AbelianCategoryStr preAb open PreAbCategory preAb public open AbelianCategoryStr abelianStr public
{ "alphanum_fraction": 0.5815578065, "avg_line_length": 27.7961165049, "ext": "agda", "hexsha": "effa51a4f23b373e8d76c052df3d04ea6c92a2ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Categories/Abelian/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Categories/Abelian/Base.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Categories/Abelian/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1062, "size": 2863 }
module Prelude.Eq where open import Prelude.Level infix 4 _==_ data _==_ {l : Level}{A : Set l} (x : A) : A → Set l where refl : x == x cong : {A : Set}{B : Set}{x y : A}(f : A → B) → x == y → f x == f y cong f refl = refl {-# BUILTIN EQUALITY _==_ #-}
{ "alphanum_fraction": 0.5285171103, "avg_line_length": 16.4375, "ext": "agda", "hexsha": "4055bc492c585724649056843cd4c117d1a5a2c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/epic/Prelude/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/epic/Prelude/Eq.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/epic/Prelude/Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 103, "size": 263 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.Sigma open import lib.types.Truncation module lib.groups.SubgroupProp where record SubgroupProp {i} (G : Group i) j : Type (lmax i (lsucc j)) where private module G = Group G field prop : G.El → Type j level : ∀ g → is-prop (prop g) -- In theory being inhabited implies that the identity is included, -- but in practice let's just prove the identity case. ident : prop G.ident diff : ∀ {g₁ g₂} → prop g₁ → prop g₂ → prop (G.diff g₁ g₂) subEl-prop : SubtypeProp G.El j subEl-prop = prop , level SubEl = Subtype subEl-prop abstract {- ident : prop G.ident ident = transport prop (G.inv-r (fst inhab)) (diff (snd inhab) (snd inhab)) -} inv : ∀ {g} → prop g → prop (G.inv g) inv pg = transport prop (G.unit-l _) (diff ident pg) comp : ∀ {g₁ g₂} → prop g₁ → prop g₂ → prop (G.comp g₁ g₂) comp {g₁} {g₂} pg₁ pg₂ = transport prop (ap (G.comp g₁) (G.inv-inv g₂)) (diff pg₁ (inv pg₂)) is-fullᴳ : ∀ {i j} {G : Group i} → SubgroupProp G j → Type (lmax i j) is-fullᴳ P = ∀ g → SubgroupProp.prop P g -- Normal subgroups is-normal : ∀ {i j} {G : Group i} → SubgroupProp G j → Type (lmax i j) is-normal {G = G} P = ∀ g₁ {g₂} → P.prop g₂ → P.prop (Group.conj G g₁ g₂) where module P = SubgroupProp P NormalSubgroupProp : ∀ {i} (G : Group i) j → Type (lmax i (lsucc j)) NormalSubgroupProp {i} G j = Σ (SubgroupProp G j) is-normal module NormalSubgroupProp {i j} {G : Group i} (normal-prop : NormalSubgroupProp G j) where private module G = Group G propᴳ : SubgroupProp G j propᴳ = fst normal-prop open SubgroupProp propᴳ public conj : is-normal propᴳ conj = snd normal-prop abstract comm : ∀ g₁ g₂ → prop (G.comp g₁ g₂) → prop (G.comp g₂ g₁) comm g₁ g₂ pg₁g₂ = transport prop ( ap (λ g → G.comp g (G.inv g₂)) (! (G.assoc g₂ g₁ g₂)) ∙ G.assoc (G.comp g₂ g₁) g₂ (G.inv g₂) ∙ ap (G.comp (G.comp g₂ g₁)) (G.inv-r g₂) ∙ G.unit-r (G.comp g₂ g₁)) (conj g₂ pg₁g₂) {- So far this is not used. unconj : ∀ g₁ g₂ → prop (G.conj g₁ g₂) → prop g₂ unconj g₁ g₂ pg₁g₂ = transport prop path (conj (G.inv g₁) pg₁g₂) where path : G.conj (G.inv g₁) (G.conj g₁ g₂) == g₂ path = ! (G.conj-comp-l (G.inv g₁) g₁ g₂) ∙ ap (λ g → G.conj g g₂) (G.inv-l g₁) ∙ G.conj-unit-l g₂ -} abstract comm-is-normal : ∀ {i j} {G : Group i} (P : SubgroupProp G j) → (∀ g₁ g₂ → SubgroupProp.prop P (Group.comp G g₁ g₂) → SubgroupProp.prop P (Group.comp G g₂ g₁)) → is-normal P comm-is-normal {G = G} P P-comm g₁ {g₂} Pg₂ = transport! P.prop (G.assoc g₁ g₂ (G.inv g₁)) $ P-comm (G.diff g₂ g₁) g₁ $ transport! P.prop ( G.assoc g₂ (G.inv g₁) g₁ ∙ ap (G.comp g₂) (G.inv-l g₁) ∙ G.unit-r g₂) Pg₂ where module G = Group G module P = SubgroupProp P sub-abelian-is-normal : ∀ {i j} {G : Group i} → (G-is-abelian : is-abelian G) → (P : SubgroupProp G j) → is-normal P sub-abelian-is-normal {G = G} G-is-abelian P = comm-is-normal P λ g₁ g₂ Pg₁g₂ → transport P.prop (G.comm g₁ g₂) Pg₁g₂ where module G = AbGroup (G , G-is-abelian) module P = SubgroupProp P sub-abelian-normal : ∀ {i j} {G : Group i} → (G-is-abelian : is-abelian G) → SubgroupProp G j → NormalSubgroupProp G j sub-abelian-normal G-is-abelian P = P , sub-abelian-is-normal G-is-abelian P {- Subgroups of subgroups -} infix 40 _⊆ᴳ_ _⊆ᴳ_ : ∀ {i j k} {G : Group i} → SubgroupProp G j → SubgroupProp G k → Type (lmax i (lmax j k)) P ⊆ᴳ Q = ∀ g → P.prop g → Q.prop g where module P = SubgroupProp P module Q = SubgroupProp Q {- triviality -} trivial-propᴳ : ∀ {i} (G : Group i) → SubgroupProp G i trivial-propᴳ {i} G = record {M} where module G = Group G module M where prop : G.El → Type i prop g = g == G.ident ident : prop G.ident ident = idp level : ∀ g → is-prop (prop g) level g = G.El-level g G.ident abstract diff : {g₁ g₂ : G.El} → prop g₁ → prop g₂ → prop (G.diff g₁ g₂) diff g₁=id g₂=id = ap2 G.comp g₁=id (ap G.inv g₂=id ∙ G.inv-ident) ∙ G.unit-r G.ident is-trivial-propᴳ : ∀ {i j} {G : Group i} → SubgroupProp G j → Type (lmax i j) is-trivial-propᴳ {G = G} P = P ⊆ᴳ trivial-propᴳ G
{ "alphanum_fraction": 0.5940460081, "avg_line_length": 31.8992805755, "ext": "agda", "hexsha": "bc529037f100c3132eddf0355173e2e99dcd3f82", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/SubgroupProp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/SubgroupProp.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/SubgroupProp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1639, "size": 4434 }
{-# OPTIONS --safe #-} open import Generics.Prelude open import Generics.Telescope open import Generics.Desc open import Generics.Mu module Generics.Mu.Fold {P I n} {D : DataDesc P I n} {c} (X : ⟦ P , I ⟧xtel → Set c) (alg : ∀ {pi} → ⟦ D ⟧Data X pi → X pi) where private variable p : ⟦ P ⟧tel tt V : ExTele P i : ⟦ I ⟧tel p v : ⟦ V ⟧tel p fold : μ D (p , i) → X (p , i) foldIndArg : (C : ConDesc P V I) (x : ⟦ C ⟧IndArgω (μ D) (p , v)) → ⟦ C ⟧IndArg X (p , v) foldIndArg (var _) x = fold x foldIndArg (π ia _ C) x = fun< ia > λ s → foldIndArg C (x s) foldIndArg (A ⊗ B) (xa , xb) = foldIndArg A xa , foldIndArg B xb foldCon : (C : ConDesc P V I) (x : ⟦ C ⟧Conω (μ D) (p , v , i)) → ⟦ C ⟧Con X (p , v , i) foldCon (var _) (liftω refl) = refl foldCon (π _ _ C) (s , x) = (s , foldCon C x) foldCon (A ⊗ B) (xa , xb) = foldIndArg A xa , foldCon B xb fold ⟨ k , x ⟩ = alg (k , foldCon (lookupCon D k) x)
{ "alphanum_fraction": 0.5318930041, "avg_line_length": 26.2702702703, "ext": "agda", "hexsha": "ca0619e7095323b1f40490765cbefce269b9b93a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Mu/Fold.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Mu/Fold.agda", "max_line_length": 64, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Mu/Fold.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 404, "size": 972 }
{-# OPTIONS --safe #-} module Cubical.Data.SumFin.Properties where open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit import Cubical.Data.Fin as Fin open import Cubical.Data.Nat open import Cubical.Data.SumFin.Base as SumFin open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation private variable ℓ : Level k : ℕ SumFin→Fin : Fin k → Fin.Fin k SumFin→Fin = SumFin.elim (λ {k} _ → Fin.Fin k) Fin.fzero Fin.fsuc Fin→SumFin : Fin.Fin k → Fin k Fin→SumFin = Fin.elim (λ {k} _ → Fin k) fzero fsuc Fin→SumFin-fsuc : (fk : Fin.Fin k) → Fin→SumFin (Fin.fsuc fk) ≡ fsuc (Fin→SumFin fk) Fin→SumFin-fsuc = Fin.elim-fsuc (λ {k} _ → Fin k) fzero fsuc SumFin→Fin→SumFin : (fk : Fin k) → Fin→SumFin (SumFin→Fin fk) ≡ fk SumFin→Fin→SumFin = SumFin.elim (λ fk → Fin→SumFin (SumFin→Fin fk) ≡ fk) refl λ {k} {fk} eq → Fin→SumFin (Fin.fsuc (SumFin→Fin fk)) ≡⟨ Fin→SumFin-fsuc (SumFin→Fin fk) ⟩ fsuc (Fin→SumFin (SumFin→Fin fk)) ≡⟨ cong fsuc eq ⟩ fsuc fk ∎ Fin→SumFin→Fin : (fk : Fin.Fin k) → SumFin→Fin (Fin→SumFin fk) ≡ fk Fin→SumFin→Fin = Fin.elim (λ fk → SumFin→Fin (Fin→SumFin fk) ≡ fk) refl λ {k} {fk} eq → SumFin→Fin (Fin→SumFin (Fin.fsuc fk)) ≡⟨ cong SumFin→Fin (Fin→SumFin-fsuc fk) ⟩ Fin.fsuc (SumFin→Fin (Fin→SumFin fk)) ≡⟨ cong Fin.fsuc eq ⟩ Fin.fsuc fk ∎ SumFin≃Fin : ∀ k → Fin k ≃ Fin.Fin k SumFin≃Fin _ = isoToEquiv (iso SumFin→Fin Fin→SumFin Fin→SumFin→Fin SumFin→Fin→SumFin) SumFin≡Fin : ∀ k → Fin k ≡ Fin.Fin k SumFin≡Fin k = ua (SumFin≃Fin k) -- Closure properties of SumFin under type constructors private _⋆_ = compEquiv infixr 30 _⋆_ SumFin⊎≃ : (m n : ℕ) → (Fin m ⊎ Fin n) ≃ (Fin (m + n)) SumFin⊎≃ 0 n = ⊎-swap-≃ ⋆ ⊎-⊥-≃ SumFin⊎≃ (suc m) n = ⊎-assoc-≃ ⋆ ⊎-equiv (idEquiv ⊤) (SumFin⊎≃ m n) SumFinΣ≃ : (n : ℕ)(f : Fin n → ℕ) → (Σ (Fin n) (λ x → Fin (f x))) ≃ (Fin (totalSum f)) SumFinΣ≃ 0 f = ΣEmpty _ SumFinΣ≃ (suc n) f = Σ⊎≃ ⋆ ⊎-equiv (ΣUnit (λ tt → Fin (f (inl tt)))) (SumFinΣ≃ n (λ x → f (inr x))) ⋆ SumFin⊎≃ (f (inl tt)) (totalSum (λ x → f (inr x))) SumFin×≃ : (m n : ℕ) → (Fin m × Fin n) ≃ (Fin (m · n)) SumFin×≃ m n = SumFinΣ≃ m (λ _ → n) ⋆ pathToEquiv (λ i → Fin (totalSumConst {m = m} n i)) SumFinΠ≃ : (n : ℕ)(f : Fin n → ℕ) → ((x : Fin n) → Fin (f x)) ≃ (Fin (totalProd f)) SumFinΠ≃ 0 f = isContr→≃Unit (isContrΠ⊥) ⋆ invEquiv (⊎-⊥-≃) SumFinΠ≃ (suc n) f = Π⊎≃ ⋆ Σ-cong-equiv (ΠUnit (λ tt → Fin (f (inl tt)))) (λ _ → SumFinΠ≃ n (λ x → f (inr x))) ⋆ SumFin×≃ (f (inl tt)) (totalProd (λ x → f (inr x))) isNotZero : ℕ → ℕ isNotZero 0 = 0 isNotZero (suc n) = 1 SumFin∥∥≃ : (n : ℕ) → ∥ Fin n ∥ ≃ Fin (isNotZero n) SumFin∥∥≃ 0 = propTruncIdempotent≃ (isProp⊥) SumFin∥∥≃ (suc n) = isContr→≃Unit (inhProp→isContr ∣ inl tt ∣ isPropPropTrunc) ⋆ isContr→≃Unit (isContrUnit) ⋆ invEquiv (⊎-⊥-≃)
{ "alphanum_fraction": 0.6071768815, "avg_line_length": 33.8602150538, "ext": "agda", "hexsha": "76df5fc8a3084da102cb734ec3cde2b1879db898", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Data/SumFin/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1389, "size": 3149 }
module Basic.Compiler.Code where open import Basic.AST open import Basic.BigStep open import Utils.Decidable open import Utils.Monoid open import Data.Fin using (Fin; #_) open import Data.Vec hiding (_∷ʳ_; _++_; [_]) open import Data.Nat open import Data.Bool renaming (not to notBool; if_then_else_ to ifBool_then_else) open import Data.List hiding ([_]) open import Data.List.Properties open import Relation.Binary.PropositionalEquality open import Function open import Data.Product open import Relation.Nullary open import Relation.Nullary.Decidable open import Data.Empty open import Algebra import Level as L private module LM {a A} = Algebra.Monoid (Data.List.monoid {a} A) {- Chapter 3.1 and 3.2. Semantics of an abstract machine and specification of the translation from While syntax to the abstract machine syntax. -} {- Definition of the stack and the AM We follow the book closely here. "nat-inj" and "bool-inj" just establish injectivity of context entry constructors. That we have to prove them is something of a limitation of the current Agda. In contrast, Coq derives injectivity of constructors automatically. -} data StackEntry : Set where nat : ℕ → StackEntry bool : Bool → StackEntry nat-inj : ∀ {n m} → (StackEntry ∋ nat n) ≡ nat m → n ≡ m nat-inj refl = refl bool-inj : ∀ {b b'} → (StackEntry ∋ bool b) ≡ bool b' → b ≡ b' bool-inj refl = refl Stack : Set Stack = List StackEntry mutual data Inst (n : ℕ) : Set where PUSH : ℕ → Inst n FETCH STORE : Fin n → Inst n ADD MUL SUB TRUE FALSE EQ LTE LT AND NOT NOOP : Inst n BRANCH LOOP : Code n → Code n → Inst n Code : ℕ → Set Code = List ∘ Inst -- Semantics ------------------------------------------------------------ data ⟨_,_,_⟩▷⟨_,_,_⟩ {n} : Code n → Stack → State n → Code n → Stack → State n → Set where PUSH : ∀ n {c e s} → -------------------------------------------- ⟨ PUSH n ∷ c , e , s ⟩▷⟨ c , nat n ∷ e , s ⟩ ADD : ∀ a b {c e s} → --------------------------------------------------------------- ⟨ ADD ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , nat (a + b) ∷ e , s ⟩ MUL : ∀ a b {c e s} → ---------------------------------------------------------------- ⟨ MUL ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , nat (a * b) ∷ e , s ⟩ SUB : ∀ a b {c e s} → ---------------------------------------------------------------- ⟨ SUB ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , nat (a ∸ b) ∷ e , s ⟩ TRUE : ∀ {c e s} → ----------------------------------------------- ⟨ TRUE ∷ c , e , s ⟩▷⟨ c , bool true ∷ e , s ⟩ FALSE : ∀ {c e s} → ------------------------------------------------ ⟨ FALSE ∷ c , e , s ⟩▷⟨ c , bool false ∷ e , s ⟩ EQ : ∀ a b {c e s} → ------------------------------------------------------------------- ⟨ EQ ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , bool ⌊ a ≡⁇ b ⌋ ∷ e , s ⟩ LT : ∀ a b {c e s} → ------------------------------------------------------------------- ⟨ LT ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , bool ⌊ a <⁇ b ⌋ ∷ e , s ⟩ LTE : ∀ a b {c e s} → -------------------------------------------------------------------- ⟨ LTE ∷ c , nat a ∷ nat b ∷ e , s ⟩▷⟨ c , bool ⌊ a ≤⁇ b ⌋ ∷ e , s ⟩ AND : ∀ a b {c e s} → ------------------------------------------------------------------- ⟨ AND ∷ c , bool a ∷ bool b ∷ e , s ⟩▷⟨ c , bool (a ∧ b) ∷ e , s ⟩ NOT : ∀ b {c e s} → ----------------------------------------------------------- ⟨ NOT ∷ c , bool b ∷ e , s ⟩▷⟨ c , bool (notBool b) ∷ e , s ⟩ FETCH : ∀ x {c e s} → --------------------------------------------------------- ⟨ FETCH x ∷ c , e , s ⟩▷⟨ c , nat (lookup x s) ∷ e , s ⟩ STORE : ∀ x {n c e s} → ------------------------------------------------------ ⟨ STORE x ∷ c , nat n ∷ e , s ⟩▷⟨ c , e , s [ x ]≔ n ⟩ BRANCH : ∀ {c₁ c₂ c t e s} → let c' = (ifBool t then c₁ else c₂) <> c in -------------------------------------------------------------- ⟨ BRANCH c₁ c₂ ∷ c , bool t ∷ e , s ⟩▷⟨ c' , e , s ⟩ NOOP : ∀ {c e s} → ------------------------------------ ⟨ NOOP ∷ c , e , s ⟩▷⟨ c , e , s ⟩ LOOP : ∀ {c₁ c₂ c e s} → let c' = c₁ <> BRANCH (c₂ ∷ʳ LOOP c₁ c₂ ) (NOOP ∷ []) ∷ c in ----------------------------------------------------------------------------------- ⟨ LOOP c₁ c₂ ∷ c , e , s ⟩▷⟨ c' , e , s ⟩ -- Computation sequences ------------------------------------------------------------ infixr 5 _∷_ data ⟨_,_,_⟩▷*⟨_,_,_⟩ {n} : Code n → Stack → State n → Code n → Stack → State n → Set where done : ∀ {e s} → --------------------------------- ⟨ [] , e , s ⟩▷*⟨ [] , e , s ⟩ {- We define "being stuck" explicitly as a configuration from which no transitions exist -} stuck : ∀ {c cs e s} → (∀ c' e' s' → ¬ ⟨ c ∷ cs , e , s ⟩▷⟨ c' , e' , s' ⟩) → ------------------------------------------------------------ ⟨ c ∷ cs , e , s ⟩▷*⟨ c ∷ cs , e , s ⟩ _∷_ : ∀ {c e s c' e' s' c'' e'' s''} → ⟨ c , e , s ⟩▷⟨ c' , e' , s' ⟩ → ⟨ c' , e' , s' ⟩▷*⟨ c'' , e'' , s'' ⟩ → ------------------------------------------------------------------------ ⟨ c , e , s ⟩▷*⟨ c'' , e'' , s'' ⟩ {- We will need the length of computation sequences for the compiler correctness proof -} ▷*-length : ∀ {n}{c c' e e'}{s s' : State n} → ⟨ c , e , s ⟩▷*⟨ c' , e' , s' ⟩ → ℕ ▷*-length done = 0 ▷*-length (stuck x) = 0 ▷*-length (x ∷ p) = suc (▷*-length p) -- Determinism (exercise 3.6) ------------------------------------------------------------ ▷-deterministic : ∀ {n}{c c' c'' e e' e''}{s s' s'' : State n} → ⟨ c , e , s ⟩▷⟨ c' , e' , s' ⟩ → ⟨ c , e , s ⟩▷⟨ c'' , e'' , s'' ⟩ → (c' ≡ c'') × (e' ≡ e'') × (s' ≡ s'') ▷-deterministic (PUSH n₁) (PUSH .n₁) = refl , refl , refl ▷-deterministic (ADD a b) (ADD .a .b) = refl , refl , refl ▷-deterministic (MUL a b) (MUL .a .b) = refl , refl , refl ▷-deterministic (SUB a b) (SUB .a .b) = refl , refl , refl ▷-deterministic TRUE TRUE = refl , refl , refl ▷-deterministic FALSE FALSE = refl , refl , refl ▷-deterministic (EQ a b) (EQ .a .b) = refl , refl , refl ▷-deterministic (LT a b) (LT .a .b) = refl , refl , refl ▷-deterministic (LTE a b) (LTE .a .b) = refl , refl , refl ▷-deterministic (AND a b) (AND .a .b) = refl , refl , refl ▷-deterministic (NOT b) (NOT .b) = refl , refl , refl ▷-deterministic (FETCH x) (FETCH .x) = refl , refl , refl ▷-deterministic (STORE x) (STORE .x) = refl , refl , refl ▷-deterministic BRANCH BRANCH = refl , refl , refl ▷-deterministic NOOP NOOP = refl , refl , refl ▷-deterministic LOOP LOOP = refl , refl , refl ▷*-deterministic : ∀ {n}{c c' c'' e e' e''}{s s' s'' : State n} → ⟨ c , e , s ⟩▷*⟨ c' , e' , s' ⟩ → ⟨ c , e , s ⟩▷*⟨ c'' , e'' , s'' ⟩ → (c' ≡ c'') × (e' ≡ e'') × (s' ≡ s'') ▷*-deterministic done done = refl , refl , refl ▷*-deterministic done (() ∷ p2) ▷*-deterministic (stuck x) (stuck x₁) = refl , refl , refl ▷*-deterministic (stuck x) (x₁ ∷ p2) = ⊥-elim (x _ _ _ x₁) ▷*-deterministic (() ∷ p1) done ▷*-deterministic (x ∷ p1) (stuck x₁) = ⊥-elim (x₁ _ _ _ x) ▷*-deterministic (x ∷ p1) (x₁ ∷ p2) with ▷-deterministic x x₁ ... | eq1 , eq2 , eq3 rewrite eq1 | eq2 | eq3 = ▷*-deterministic p1 p2 -- Compilation (chapter 3.2) ------------------------------------------------------------ 𝓒⟦_⟧ᵉ : ∀ {n t} → Exp n t → Code n 𝓒⟦ lit x ⟧ᵉ = PUSH x ∷ [] 𝓒⟦ add a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ ADD 𝓒⟦ mul a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ MUL 𝓒⟦ sub a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ SUB 𝓒⟦ var x ⟧ᵉ = FETCH x ∷ [] 𝓒⟦ tt ⟧ᵉ = TRUE ∷ [] 𝓒⟦ ff ⟧ᵉ = FALSE ∷ [] 𝓒⟦ eq a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ EQ 𝓒⟦ lte a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ LTE 𝓒⟦ lt a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ LT 𝓒⟦ Exp.and a b ⟧ᵉ = 𝓒⟦ b ⟧ᵉ <> 𝓒⟦ a ⟧ᵉ ∷ʳ AND 𝓒⟦ not e ⟧ᵉ = 𝓒⟦ e ⟧ᵉ ∷ʳ NOT 𝓒⟦_⟧ˢ : ∀ {n} → St n → Code n 𝓒⟦ x := e ⟧ˢ = 𝓒⟦ e ⟧ᵉ ∷ʳ STORE x 𝓒⟦ skip ⟧ˢ = NOOP ∷ [] 𝓒⟦ s₁ , s₂ ⟧ˢ = 𝓒⟦ s₁ ⟧ˢ <> 𝓒⟦ s₂ ⟧ˢ 𝓒⟦ if b then st₁ else st₂ ⟧ˢ = 𝓒⟦ b ⟧ᵉ ∷ʳ BRANCH 𝓒⟦ st₁ ⟧ˢ 𝓒⟦ st₂ ⟧ˢ 𝓒⟦ while b do st ⟧ˢ = LOOP 𝓒⟦ b ⟧ᵉ 𝓒⟦ st ⟧ˢ ∷ [] ------------------------------------------------------------ {- Some additional lemmas needed to the compiler correctness proofs. -} {- A weaker variant of exercise 3.4 -} weaken-step-code : ∀ {n}{c c' c'' e e'}{s s' : State n} → ⟨ c , e , s ⟩▷⟨ c' , e' , s' ⟩ → ⟨ c <> c'' , e , s ⟩▷⟨ c' <> c'' , e' , s' ⟩ weaken-step-code (PUSH n₁) = PUSH n₁ weaken-step-code (ADD a b) = ADD a b weaken-step-code (MUL a b) = MUL a b weaken-step-code (SUB a b) = SUB a b weaken-step-code TRUE = TRUE weaken-step-code FALSE = FALSE weaken-step-code (EQ a b) = EQ a b weaken-step-code (LT a b) = LT a b weaken-step-code (LTE a b) = LTE a b weaken-step-code (AND a b) = AND a b weaken-step-code (NOT b) = NOT b weaken-step-code (FETCH x) = FETCH x weaken-step-code (STORE x) = STORE x weaken-step-code {c'' = c''}(BRANCH {c₁}{c₂}{c}{t}) rewrite LM.assoc (ifBool t then c₁ else c₂) c c'' = BRANCH weaken-step-code {c'' = c''}(LOOP {c₁}{c₂}{c}) rewrite LM.assoc c₁ (BRANCH (c₂ ∷ʳ LOOP c₁ c₂) (NOOP ∷ []) ∷ c) c'' = LOOP weaken-step-code NOOP = NOOP {- This lemma is not in the book, but it's very convenient to use in the following proofs. It's just the analogue of Basic.SmallStep.append for the computation sequences here. -} infixr 5 _▷*<>_ _▷*<>_ : ∀ {n c c' e e' e''}{s s' s'' : State n} → ⟨ c , e , s ⟩▷*⟨ [] , e' , s' ⟩ → ⟨ c' , e' , s' ⟩▷*⟨ [] , e'' , s'' ⟩ → ⟨ c <> c' , e , s ⟩▷*⟨ [] , e'' , s'' ⟩ _▷*<>_ done p2 = p2 _▷*<>_ (step ∷ p1) p2 = weaken-step-code step ∷ p1 ▷*<> p2 {- Lemma 3.18 -} 𝓒-Exp-nat : ∀ {n e}{s : State n} exp -> ⟨ 𝓒⟦ exp ⟧ᵉ , e , s ⟩▷*⟨ [] , nat (⟦ exp ⟧ᵉ s) ∷ e , s ⟩ 𝓒-Exp-nat (lit x) = PUSH x ∷ done 𝓒-Exp-nat (add a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> (ADD _ _ ∷ done) 𝓒-Exp-nat (mul a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> (MUL _ _ ∷ done) 𝓒-Exp-nat (sub a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> (SUB _ _ ∷ done) 𝓒-Exp-nat (var x) = FETCH x ∷ done {- Lemma 3.19 -} 𝓒-Exp-bool : ∀ {n e}{s : State n} exp -> ⟨ 𝓒⟦ exp ⟧ᵉ , e , s ⟩▷*⟨ [] , bool (⟦ exp ⟧ᵉ s) ∷ e , s ⟩ 𝓒-Exp-bool tt = TRUE ∷ done 𝓒-Exp-bool ff = FALSE ∷ done 𝓒-Exp-bool (eq a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> EQ _ _ ∷ done 𝓒-Exp-bool (lte a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> LTE _ _ ∷ done 𝓒-Exp-bool (lt a b) = (𝓒-Exp-nat b ▷*<> 𝓒-Exp-nat a) ▷*<> LT _ _ ∷ done 𝓒-Exp-bool (Exp.and a b) = (𝓒-Exp-bool b ▷*<> 𝓒-Exp-bool a) ▷*<> AND _ _ ∷ done 𝓒-Exp-bool (not e) = 𝓒-Exp-bool e ▷*<> NOT _ ∷ done {- A "smart constructor" that gets rid of the trailing (++[]) at the end of the branch. This is not mentioned in the book, because it (rightfully) assumes that appendding an empty list to the end of a list results in the same list, while here we have to make this property explicit -} BRANCH-[] : ∀ {n c₁ c₂ e t}{s : State n} → let c' = ifBool t then c₁ else c₂ in ⟨ BRANCH c₁ c₂ ∷ [] , bool t ∷ e , s ⟩▷⟨ c' , e , s ⟩ BRANCH-[] {n}{c₁}{c₂}{e}{t}{s} = subst (λ b → ⟨ BRANCH c₁ c₂ ∷ [] , bool t ∷ e , s ⟩▷⟨ b , e , s ⟩) (proj₂ LM.identity (ifBool t then c₁ else c₂)) BRANCH
{ "alphanum_fraction": 0.4249217494, "avg_line_length": 35.2865671642, "ext": "agda", "hexsha": "67d817ecee41974723f03f3167f95bbef604ebc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Basic/Compiler/Code.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Basic/Compiler/Code.agda", "max_line_length": 96, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Basic/Compiler/Code.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 4683, "size": 11821 }
module ListNat where data Nat : Set where zero : Nat succ : Nat -> Nat data List (a : Set) : Set where [] : List a _::_ : a -> List a -> List a infixr 30 _::_ [1,0,2] = one :: zero :: succ one :: [] where one = succ zero
{ "alphanum_fraction": 0.5137254902, "avg_line_length": 17, "ext": "agda", "hexsha": "487234d4074d282352511166bae85680c66264b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/ListNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/ListNat.agda", "max_line_length": 41, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/ListNat.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 88, "size": 255 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Subtype where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.NatPlusOne open import Cubical.Data.Nat open import Cubical.Data.Sigma private variable ℓ ℓ' : Level -- The type of Subtypes of a type Subtype : {ℓ : Level} → (ℓ' : Level) → Type ℓ → Type (ℓ-max ℓ (ℓ-suc ℓ')) Subtype ℓ' A = A → (hProp ℓ') -- Coercion from Subtype to Type Subtype→Type : {ℓ ℓ' : Level} {A : Type ℓ} (B : Subtype ℓ' A) → Type (ℓ-max ℓ ℓ') Subtype→Type {A = A} B = Σ[ a ∈ A ] (fst (B a)) -- if A has Level n > 0 then so do all of its subtypes -} subtypePreservesHLevel : {ℓ ℓ' : Level} {A : Type ℓ} {n : ℕ₊₁} (p : isOfHLevel (ℕ₊₁→ℕ n) A) (B : Subtype ℓ' A) → isOfHLevel (ℕ₊₁→ℕ n) (Subtype→Type B) subtypePreservesHLevel {n = one} p B = isPropΣ p λ a → snd (B a) subtypePreservesHLevel {n = 1+ (suc n)} p B = isOfHLevelΣ (suc (suc n)) p λ a → isProp→isOfHLevelSuc (suc n) (snd (B a)) -- if two terms x and y of the original type A are equal by q, and p and p' witness that x , y are in -- the subtype then p ≡ p' over q subtypeWitnessIrrelevance : {A : Type ℓ} (B : Subtype ℓ' A) {xp yp : Subtype→Type B} (q : fst xp ≡ fst yp) → xp ≡ yp subtypeWitnessIrrelevance B q = Σ≡Prop (λ a → B a .snd) q
{ "alphanum_fraction": 0.6525037936, "avg_line_length": 39.9393939394, "ext": "agda", "hexsha": "1f003feb6e9fc44605122ef17e604c8e44ef6004", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Structures/Subtype.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Structures/Subtype.agda", "max_line_length": 150, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Structures/Subtype.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 520, "size": 1318 }
{-# OPTIONS --without-K #-} module higher.circle.properties where open import sum open import equality open import function.isomorphism open import sets.empty open import sets.bool open import hott.equivalence open import hott.univalence open import higher.circle.core non-simply-connected : ¬ (loop ≡ refl) non-simply-connected loop-trivial = inv-non-trivial inv-trivial where not-iso : Bool ≅' Bool not-iso = iso not not H H , γ where H : (x : Bool) → not (not x) ≡ x H true = refl H false = refl γ : (x : Bool) → ap not (H x) ≡ H (not x) γ true = refl γ false = refl abstract not-is-equiv : weak-equiv not not-is-equiv = proj₂ (≅'⇒≈ not-iso) not-equiv : Bool ≈ Bool not-equiv = not , not-is-equiv inv : Bool ≡ Bool inv = ≈⇒≡ not-equiv inv-non-trivial : ¬ (inv ≡ refl) inv-non-trivial q = distinct absurd where open ≡-Reasoning distinct : false ≡ true → ⊥ distinct () absurd : false ≡ true absurd = begin false ≡⟨ refl ⟩ not true ≡⟨ ap (λ g → g true) (sym (uni-coherence not-equiv)) ⟩ coerce inv true ≡⟨ ap (λ z → coerce z true) q ⟩ coerce refl true ≡⟨ refl ⟩ true ∎ f : S¹ → Set f = elim Bool inv f' : base ≡ base → Bool ≡ Bool f' p = ap f p β₂ : f' loop ≡ inv β₂ = β-loop Bool inv inv-trivial : inv ≡ refl inv-trivial = begin inv ≡⟨ sym β₂ ⟩ f' loop ≡⟨ ap f' loop-trivial ⟩ refl ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5228215768, "avg_line_length": 21.6282051282, "ext": "agda", "hexsha": "684024335d13e59b8a7ad9e84a40327dd019535c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/higher/circle/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/higher/circle/properties.agda", "max_line_length": 63, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/higher/circle/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 524, "size": 1687 }
-- Andreas, 2015-07-13 Better parse errors for illegal type signatures 1 : Set1 1 = Set
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 18, "ext": "agda", "hexsha": "e189046cb8307400865701738ae108446f3ca0d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1609.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1609.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1609.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 90 }
{-# OPTIONS --without-K #-} module Model.Quantification where open import Model.RGraph as RG using (RGraph) open import Model.Size as MS using (_<_ ; ⟦_⟧Δ ; ⟦_⟧n ; ⟦_⟧σ) open import Model.Type.Core open import Source.Size.Substitution.Theory open import Source.Size.Substitution.Universe as SS using (Sub⊢ᵤ) open import Util.HoTT.Equiv open import Util.HoTT.FunctionalExtensionality open import Util.HoTT.HLevel open import Util.Prelude hiding (_∘_) open import Util.Relation.Binary.PropositionalEquality using ( Σ-≡⁺ ; subst-sym-subst ; subst-subst-sym ) import Source.Size as SS import Source.Type as ST open RGraph open RG._⇒_ open SS.Ctx open SS.Sub⊢ᵤ record ⟦∀⟧′ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) (δ : Obj ⟦ Δ ⟧Δ) : Set where no-eta-equality field arr : ∀ m (m<n : m < ⟦ n ⟧n .fobj δ) → Obj T (δ , m , m<n) param : ∀ m m<n m′ m′<n → eq T _ (arr m m<n) (arr m′ m′<n) open ⟦∀⟧′ public ⟦∀⟧′Canon : ∀ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) (δ : Obj ⟦ Δ ⟧Δ) → Set ⟦∀⟧′Canon n T δ = Σ[ f ∈ (∀ m (m<n : m < ⟦ n ⟧n .fobj δ) → Obj T (δ , m , m<n)) ] (∀ m m<n m′ m′<n → eq T _ (f m m<n) (f m′ m′<n)) ⟦∀⟧′≅⟦∀⟧′Canon : ∀ {Δ n T δ} → ⟦∀⟧′ {Δ} n T δ ≅ ⟦∀⟧′Canon n T δ ⟦∀⟧′≅⟦∀⟧′Canon = record { forth = λ { record { arr = x ; param = y } → x , y } ; isIso = record { back = λ x → record { arr = proj₁ x ; param = proj₂ x } ; back∘forth = λ { record {} → refl } ; forth∘back = λ _ → refl } } abstract ⟦∀⟧′Canon-IsSet : ∀ {Δ n T δ} → IsSet (⟦∀⟧′Canon {Δ} n T δ) ⟦∀⟧′Canon-IsSet {T = T} = Σ-IsSet (∀-IsSet λ m → ∀-IsSet λ m<n → λ _ _ → T .Obj-IsSet _ _) (λ f → IsOfHLevel-suc 1 (∀-IsProp λ m → ∀-IsProp λ m<n → ∀-IsProp λ m′ → ∀-IsProp λ m′<n → T .eq-IsProp)) ⟦∀⟧′-IsSet : ∀ {Δ n T δ} → IsSet (⟦∀⟧′ {Δ} n T δ) ⟦∀⟧′-IsSet {Δ} {n} {T} {δ} = ≅-pres-IsOfHLevel 2 (≅-sym ⟦∀⟧′≅⟦∀⟧′Canon) (⟦∀⟧′Canon-IsSet {Δ} {n} {T} {δ}) ⟦∀⟧′-≡⁺ : ∀ {Δ n T δ} (f g : ⟦∀⟧′ {Δ} n T δ) → (∀ m m<n → f .arr m m<n ≡ g .arr m m<n) → f ≡ g ⟦∀⟧′-≡⁺ {T = T} record{} record{} f≈g = ≅-Injective ⟦∀⟧′≅⟦∀⟧′Canon (Σ-≡⁺ ( (funext λ m → funext λ m<n → f≈g m m<n) , funext λ m → funext λ m<n → funext λ m′ → funext λ m<n′ → T .eq-IsProp _ _)) ⟦∀⟧′-resp-≈⟦Type⟧ : ∀ {Δ n T U} → T ≈⟦Type⟧ U → ∀ {δ} → ⟦∀⟧′ {Δ} n T δ ≅ ⟦∀⟧′ n U δ ⟦∀⟧′-resp-≈⟦Type⟧ T≈U = record { forth = λ f → record { arr = λ m m<n → T≈U .forth .fobj (f .arr m m<n) ; param = λ m m<n m′ m′<n → T≈U .forth .feq _ (f .param m m<n m′ m′<n) } ; isIso = record { back = λ f → record { arr = λ m m<n → T≈U .back .fobj (f .arr m m<n) ; param = λ m m<n m′ m′<n → T≈U .back .feq _ (f .param m m<n m′ m′<n) } ; back∘forth = λ x → ⟦∀⟧′-≡⁺ _ _ λ m m<n → T≈U .back-forth .≈⁻ _ _ ; forth∘back = λ x → ⟦∀⟧′-≡⁺ _ _ λ m m<n → T≈U .forth-back .≈⁻ _ _ } } ⟦∀⟧ : ∀ {Δ} n (T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ) → ⟦Type⟧ ⟦ Δ ⟧Δ ⟦∀⟧ n T = record { ObjHSet = λ δ → HLevel⁺ (⟦∀⟧′ n T δ) ⟦∀⟧′-IsSet ; eqHProp = λ _ f g → ∀-HProp _ λ m → ∀-HProp _ λ m<n → ∀-HProp _ λ m′ → ∀-HProp _ λ m′<n → T .eqHProp _ (f .arr m m<n) (g .arr m′ m′<n) ; eq-refl = λ f → f .param } ⟦∀⟧-resp-≈⟦Type⟧ : ∀ {Δ} n {T U : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → T ≈⟦Type⟧ U → ⟦∀⟧ n T ≈⟦Type⟧ ⟦∀⟧ n U ⟦∀⟧-resp-≈⟦Type⟧ n T≈U = record { forth = record { fobj = ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .forth ; feq = λ δ≈δ′ x≈y a a₁ a₂ a₃ → T≈U .forth .feq _ (x≈y a a₁ a₂ a₃) } ; back = record { fobj = ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .back ; feq = λ δ≈δ′ x≈y a a₁ a₂ a₃ → T≈U .back .feq _ (x≈y a a₁ a₂ a₃) } ; back-forth = ≈⁺ λ δ x → ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .back∘forth _ ; forth-back = ≈⁺ λ δ x → ⟦∀⟧′-resp-≈⟦Type⟧ T≈U .forth∘back _ } absₛ : ∀ {Δ n} {Γ : ⟦Type⟧ ⟦ Δ ⟧Δ} {T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → subT ⟦ SS.Wk ⟧σ Γ ⇒ T → Γ ⇒ ⟦∀⟧ n T absₛ {Δ} {n} {Γ} {T} f = record { fobj = λ {δ} x → record { arr = λ m m<n → f .fobj x ; param = λ m m<n m′ m′<n → f .feq _ (Γ .eq-refl x) } ; feq = λ _ x≈y m m′ m<nγ m′<nγ′ → f .feq _ x≈y } appₛ : ∀ {Δ n m} {Γ : ⟦Type⟧ ⟦ Δ ⟧Δ} {T : ⟦Type⟧ ⟦ Δ ∙ n ⟧Δ} → (m<n : m SS.< n) → Γ ⇒ ⟦∀⟧ n T → Γ ⇒ subT ⟦ SS.Sing m<n ⟧σ T appₛ {m = m} {T = T} m<n f = record { fobj = λ {δ} x → f .fobj x .arr (⟦ m ⟧n .fobj δ) (MS.⟦<⟧ m<n) ; feq = λ δ≈δ′ {x y} x≈y → f .feq _ x≈y _ _ _ _ } subT-⟦∀⟧ : ∀ {Δ Ω n σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (T : ⟦Type⟧ ⟦ Ω ∙ n ⟧Δ) → ⟦∀⟧ (n [ σ ]ᵤ) (subT (⟦_⟧σ {Ω = Ω ∙ n} (Lift ⊢σ refl)) T) ≈⟦Type⟧ subT ⟦ ⊢σ ⟧σ (⟦∀⟧ n T) subT-⟦∀⟧ {Δ} {Ω} {n} {σ} ⊢σ T = record { forth = record { fobj = λ {γ} f → record { arr = λ m m<n → transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (f .arr m (subst (m <_) (sym (MS.⟦sub⟧ ⊢σ n)) m<n)) ; param = λ m m<n m′ m′<n → transportObj-resp-eq T _ _ (f .param _ _ _ _) } ; feq = λ γ≈γ′ f≈g a a₁ a₂ a₃ → transportObj-resp-eq T _ _ (f≈g _ _ _ _) } ; back = record { fobj = λ {γ} f → record { arr = λ m m<n → transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (f .arr m (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n)) ; param = λ m m<n m′ m′<n → transportObj-resp-eq T _ _ (f .param _ _ _ _) } ; feq = λ γ≈γ′ f≈g a a₁ a₂ a₃ → transportObj-resp-eq T _ _ (f≈g _ _ _ _) } ; back-forth = ≈⁺ λ γ f → ⟦∀⟧′-≡⁺ _ _ λ m m<n → trans (transportObj∘transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl)) (trans (cong (λ p → transportObj T (trans (MS.⟦Δ∙n⟧-≡⁺ Ω n (subst (m <_) (MS.⟦sub⟧ ⊢σ n) p) (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) (subst (m <_) (MS.⟦sub⟧ ⊢σ n) m<n) refl refl)) (f .arr m p)) (subst-sym-subst (MS.⟦sub⟧ ⊢σ n))) (transportObj-refl T _)) ; forth-back = ≈⁺ λ γ f → ⟦∀⟧′-≡⁺ _ _ λ m m<n → trans (transportObj∘transportObj T (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n _ _ refl refl)) (trans (cong (λ p → transportObj T (trans (MS.⟦Δ∙n⟧-≡⁺ Ω n p p refl refl) (MS.⟦Δ∙n⟧-≡⁺ Ω n p m<n refl refl)) (f .arr m p)) (subst-subst-sym (MS.⟦sub⟧ ⊢σ n))) (transportObj-refl T _)) }
{ "alphanum_fraction": 0.4393518519, "avg_line_length": 32.2388059701, "ext": "agda", "hexsha": "0e2b477eeeea3c2689cbeaa9783f05a40bac8151", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Quantification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Quantification.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Quantification.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 3363, "size": 6480 }
module Tactic.Nat.Subtract.Refute where open import Prelude open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection.Substitute open import Tactic.Reflection open import Control.Monad.State open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Simpl open import Tactic.Nat.Reflect open import Tactic.Nat.Subtract.Exp open import Tactic.Nat.Subtract.Reflect open import Tactic.Nat.Subtract.Lemmas open import Tactic.Nat.Less.Lemmas data Impossible : Set where invalidEquation : ⊤ invalidEquation = _ private 0≠suc : ∀ n → 0 ≡ Nat.suc n → ⊥ 0≠suc n () n≮0 : {n : Nat} → n < 0 → ⊥ n≮0 (diff k ()) lem-refute : ∀ n nf ρ → 0 ≡ ⟦ (suc n , []) ∷ nf ⟧ns (atomEnvS ρ) → ⊥ lem-refute n nf ρ eq = erase-⊥ $ 0≠suc (n + ⟦ nf ⟧n (atomEnvS ρ)) $ eq ⟨≡⟩ ns-sound ((suc n , []) ∷ nf) (atomEnvS ρ) ⟨≡⟩ auto refutation-proof : ∀ {a} {A : Set a} eqn ρ → Maybe (⟦ eqn ⟧eqn ρ → A) refutation-proof (a :≡ b) ρ with cancel (normSub a) (normSub b) | complicateSubEq a b ρ refutation-proof (a :≡ b) ρ | [] , (suc n , []) ∷ v | compl = just λ eq → ⊥-elim $ lem-refute n v ρ (compl eq) refutation-proof (a :≡ b) ρ | (suc n , []) ∷ v , [] | compl = just λ eq → ⊥-elim $ lem-refute n v ρ (sym (compl eq)) refutation-proof (a :≡ b) ρ | _ , _ | _ = nothing refutation-proof (a :< b) ρ with cancel (normSub a) (normSub b) | complicateSubLess a b ρ refutation-proof (a :< b) ρ | v , [] | compl = just λ eq → ⊥-elim $ erase-⊥ $ n≮0 (compl eq) refutation-proof (a :< b) ρ | _ , _ | _ = nothing -- Some trickery to make tactics call be erased get-absurd-proof : ∀ {a} {A : Set a} (prf : Maybe (A → ⊥)) → QED {x = prf} → A → ⊥ get-absurd-proof = get-proof get-refute-proof : ∀ {a b} {A : Set a} {B : Set b} (prf : Maybe (A → ⊥)) → QED {x = prf} → A → B get-refute-proof eq x y = ⊥-elim (get-absurd-proof eq x y) {-# INLINE get-refute-proof #-} refutesub-tactic : Term → TC Term refutesub-tactic prf = inferNormalisedType prf >>= λ a → caseM termToSubEqn a of λ { nothing → pure $ failedProof (quote invalidEquation) a ; (just (eqn , Γ)) → pure $ applyTerm (safe (getProof (quote cantProve) a $ def (quote refutation-proof) $ vArg (` eqn) ∷ vArg (quotedEnv Γ) ∷ []) _) (vArg prf ∷ []) }
{ "alphanum_fraction": 0.6285362854, "avg_line_length": 33.875, "ext": "agda", "hexsha": "094950c5c0f14d612ee2e497a30086d728b81642", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract/Refute.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract/Refute.agda", "max_line_length": 116, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract/Refute.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 913, "size": 2439 }
{-# OPTIONS --allow-unsolved-metas #-} module simple where module Nat where data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) module N = Nat z = N._+_ (N.suc N.zero) (N.suc N.zero) zz = Nat._+_ (Nat.suc Nat.zero) (Nat.suc Nat.zero) module List (A : Set) where infixr 15 _::_ _++_ data List : Set where nil : List _::_ : A -> List -> List _++_ : List -> List -> List nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) module TestList where open Nat module ListNat = List Nat open ListNat using (_++_; _::_; nil) zzz = (zero :: nil) ++ (suc zero :: nil) module EvenOdd where mutual data Even : Set where evenZero : Even evenSuc : Odd -> Even data Odd : Set where oddSuc : Even -> Odd module Monad where data Monad (m : Set -> Set) : Set1 where monad : ({a : Set} -> a -> m a) -> ({a b : Set} -> m a -> (a -> m b) -> m b) -> Monad m return : {m : Set -> Set} -> {a : Set} -> Monad m -> a -> m a return (monad ret _) x = ret x module Stack where abstract data Stack (A : Set) : Set where snil : Stack A scons : A -> Stack A -> Stack A module Ops where abstract empty : {A : Set} -> Stack A empty = snil push : {A : Set} -> A -> Stack A -> Stack A push x s = scons x s unit : {A : Set} -> A -> Stack A unit x = push x empty module TestStack where open Stack using (Stack) open Stack.Ops open Nat zzzz : Stack Nat zzzz = push zero (unit (suc zero)) module TestIdentity where postulate A : Set idA : A -> A F : Set -> Set H : (A B : Set) -> Set id0 : (A : Set) -> A -> A idH : {A : Set} -> A -> A fa : F A a : A test1 = id0 (F A) fa test2 = idH fa test3 = id0 _ fa test4 = idH {! foo bar !} -- test5 = id id -- we can't do this (on purpose)! id = \{A : Set}(x : A) -> x test = id a module prop where postulate _\/_ : Set -> Set -> Set inl : {P Q : Set} -> P -> P \/ Q inr : {P Q : Set} -> Q -> P \/ Q orE : {P Q R : Set} -> P \/ Q -> (P -> R) -> (Q -> R) -> R False : Set _==>_ : Set -> Set -> Set impI : {P Q : Set} -> (P -> Q) -> P ==> Q impE : {P Q : Set} -> P ==> Q -> P -> Q Not = \(P : Set) -> P ==> False notnotEM = \(P : Set) -> impI (\ (nEM : Not (P \/ Not P)) -> impE nEM ( inr ( impI (\ p -> impE nEM (inl p) ) ) ) ) module Tests where infix 5 _==_ postulate _==_ : {A : Set} -> A -> A -> Set refl : {A : Set} -> {x : A} -> x == x open TestList.ListNat open Nat test1 : TestList.zzz == zero :: suc zero :: nil test1 = refl
{ "alphanum_fraction": 0.4640614096, "avg_line_length": 19.4965986395, "ext": "agda", "hexsha": "8f93e27030f6ac10da8b42b3dd524eaf5b89b130", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/simple.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/simple.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/simple.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1005, "size": 2866 }
module Numeral.Natural.LinearSearch where open import Data.Boolean open import Data.Boolean.Stmt open import Data.List import Data.List.Functions as List open import Data.List.Relation.Membership using (_∈_) open import Data.List.Relation.Membership.Proofs open import Data.List.Relation.Quantification open import Data.List.Relation.Quantification.Proofs open import Data.List.Sorting open import Functional open import Logic.Propositional open import Numeral.Finite import Numeral.Finite.LinearSearch as 𝕟 open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Relation.Order open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function private variable a b n i j : ℕ private variable f : ℕ → Bool {- findBoundedMin : ℕ → ℕ → (ℕ → Bool) → Option(ℕ) findBoundedMin a b f = Option.map 𝕟-to-ℕ (𝕟.findMin{b −₀ a}(f ∘ (_+ a) ∘ 𝕟-to-ℕ)) findBoundedMin-None-correctness : (a < b) → (findBoundedMin a b f ≡ None) ↔ (∀{i} → (a ≤ i) → (i < b) → IsFalse(f(i))) findBoundedMin-None-correctness{a}{b}{f} ab with [↔]-intro l r ← 𝕟.findMin-None-correctness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ} = [↔]-intro (\p → congruence₁(Option.map 𝕟-to-ℕ) (l (\{i} → p ([≤]-of-[+]ᵣ {𝕟-to-ℕ i}) {![<]-with-[+]-weak ([∨]-introₗ ([∧]-intro ? ?))!}))) (\p{i} ai ib → {!r ? {?}!}) -} findBoundedAll : ℕ → ℕ → (ℕ → Bool) → List(ℕ) findBoundedAll a b f = List.map ((_+ a) ∘ 𝕟-to-ℕ) (𝕟.findAll{b −₀ a} (f ∘ (_+ a) ∘ 𝕟-to-ℕ)) findBoundedAll-correctness : AllElements(IsTrue ∘ f)(findBoundedAll a b f) findBoundedAll-correctness {f} {a} {b} with 𝕟.findAll{b −₀ a} (f ∘ (_+ a) ∘ 𝕟-to-ℕ) | 𝕟.findAll-correctness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ} ... | ∅ | ∅ = ∅ ... | _ ⊰ _ | p ⊰ ps = p ⊰ AllElements-mapᵣ ((_+ a) ∘ 𝕟-to-ℕ) id ps postulate findBoundedAll-completeness : IsTrue(f(i)) → (a ≤ i) → (i < b) → (i ∈ findBoundedAll a b f) -- findBoundedAll-completeness {f}{i}{a}{b} ai ib fi = {![∈]-map {f = 𝕟-to-ℕ} (𝕟.findAll-completeness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ}{ℕ-to-𝕟 (i −₀ a) ⦃ ? ⦄} ?)!} postulate findBoundedAll-emptyness : (∀{i} → (a ≤ i) → (i < b) → IsFalse(f(i))) ↔ (findBoundedAll a b f ≡ ∅) postulate findBoundedAll-sorted : Sorted(_≤?_)(findBoundedAll a b f) postulate findBoundedAll-membership : (i ∈ findBoundedAll a b f) ↔ ((a ≤ i) ∧ (i < b) ∧ IsTrue(f(i)))
{ "alphanum_fraction": 0.6506329114, "avg_line_length": 43.8888888889, "ext": "agda", "hexsha": "3d7ae9d208b14f15a1346d65bf3cff1ebda6153e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/LinearSearch.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/LinearSearch.agda", "max_line_length": 170, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/LinearSearch.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 938, "size": 2370 }
{-# OPTIONS --allow-unsolved-metas #-} record R : Set₁ where field A : Set f : A → A record Double {a} (A : Set a) : Set a where field double : A → A open Double {{...}} -- Type error (incomplete patterns in Patterns.Match) doubleR : Double R R.A (double {{doubleR}} x) = R.A x R.f (double {{doubleR}} x) z = R.f x (R.f x z) -- Internal error (incomplete patterns in Reduce.Fast) doubleR₁ : Double R R.A (double {{doubleR₁}} x) = R.A x R.f (double {{doubleR₁}} x) z = {!R.f x (R.f x z)!}
{ "alphanum_fraction": 0.5945419103, "avg_line_length": 22.3043478261, "ext": "agda", "hexsha": "c261d73e20ec7c17fed2358f9d98ba74de788d57", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2265.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2265.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2265.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 513 }
{- This files contains: - Facts about constructions on finite sets, especially when they preserve finiteness. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Constructors where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Univalence open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Empty as Empty open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Fin.LehmerCode as LehmerCode open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Data.FinSet.FiniteChoice open import Cubical.Relation.Nullary open import Cubical.Functions.Fibration open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection private variable ℓ ℓ' ℓ'' ℓ''' : Level module _ (X : Type ℓ)(p : isFinOrd X) where isFinOrd∥∥ : isFinOrd ∥ X ∥ isFinOrd∥∥ = _ , propTrunc≃ (p .snd) ⋆ SumFin∥∥≃ _ isFinOrd≃ : isFinOrd (X ≃ X) isFinOrd≃ = _ , equivComp (p .snd) (p .snd) ⋆ SumFin≃≃ _ module _ (X : Type ℓ )(p : isFinOrd X) (Y : Type ℓ')(q : isFinOrd Y) where isFinOrd⊎ : isFinOrd (X ⊎ Y) isFinOrd⊎ = _ , ⊎-equiv (p .snd) (q .snd) ⋆ SumFin⊎≃ _ _ isFinOrd× : isFinOrd (X × Y) isFinOrd× = _ , Σ-cong-equiv (p .snd) (λ _ → q .snd) ⋆ SumFin×≃ _ _ module _ (X : Type ℓ )(p : isFinOrd X) (Y : X → Type ℓ')(q : (x : X) → isFinOrd (Y x)) where private e = p .snd f : (x : X) → ℕ f x = q x .fst isFinOrdΣ : isFinOrd (Σ X Y) isFinOrdΣ = _ , Σ-cong-equiv {B' = λ x → Y (invEq e x)} e (transpFamily p) ⋆ Σ-cong-equiv-snd (λ x → q (invEq e x) .snd) ⋆ SumFinΣ≃ _ _ isFinOrdΠ : isFinOrd ((x : X) → Y x) isFinOrdΠ = _ , equivΠ {B' = λ x → Y (invEq e x)} e (transpFamily p) ⋆ equivΠCod (λ x → q (invEq e x) .snd) ⋆ SumFinΠ≃ _ _ -- closedness under several type constructors module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') where isFinSetΣ : isFinSet (Σ (X .fst) (λ x → Y x .fst)) isFinSetΣ = rec2 isPropIsFinSet (λ p q → isFinOrd→isFinSet (isFinOrdΣ (X .fst) (_ , p) (λ x → Y x .fst) q)) (X .snd .snd) (choice X (λ x → isFinOrd (Y x .fst)) (λ x → isFinSet→isFinSet' (Y x .snd))) isFinSetΠ : isFinSet ((x : X .fst) → Y x .fst) isFinSetΠ = rec2 isPropIsFinSet (λ p q → isFinOrd→isFinSet (isFinOrdΠ (X .fst) (_ , p) (λ x → Y x .fst) q)) (X .snd .snd) (choice X (λ x → isFinOrd (Y x .fst)) (λ x → isFinSet→isFinSet' (Y x .snd))) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → FinSet ℓ'') where isFinSetΠ2 : isFinSet ((x : X .fst) → (y : Y x .fst) → Z x y .fst) isFinSetΠ2 = isFinSetΠ X (λ x → _ , isFinSetΠ (Y x) (Z x)) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → FinSet ℓ'') (W : (x : X .fst) → (y : Y x .fst) → Z x y .fst → FinSet ℓ''') where isFinSetΠ3 : isFinSet ((x : X .fst) → (y : Y x .fst) → (z : Z x y .fst) → W x y z .fst) isFinSetΠ3 = isFinSetΠ X (λ x → _ , isFinSetΠ2 (Y x) (Z x) (W x)) module _ (X : FinSet ℓ) where isFinSet≡ : (a b : X .fst) → isFinSet (a ≡ b) isFinSet≡ a b = isDecProp→isFinSet (isFinSet→isSet (X .snd) a b) (isFinSet→Discrete (X .snd) a b) isFinSet∥∥ : isFinSet ∥ X .fst ∥ isFinSet∥∥ = Prop.rec isPropIsFinSet (λ p → isFinOrd→isFinSet (isFinOrd∥∥ (X .fst) (_ , p))) (X .snd .snd) isFinSetIsContr : isFinSet (isContr (X .fst)) isFinSetIsContr = isFinSetΣ X (λ x → _ , (isFinSetΠ X (λ y → _ , isFinSet≡ x y))) isFinSetIsProp : isFinSet (isProp (X .fst)) isFinSetIsProp = isFinSetΠ2 X (λ _ → X) (λ x x' → _ , isFinSet≡ x x') module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where isFinSetFiber : (y : Y .fst) → isFinSet (fiber f y) isFinSetFiber y = isFinSetΣ X (λ x → _ , isFinSet≡ Y (f x) y) isFinSetIsEquiv : isFinSet (isEquiv f) isFinSetIsEquiv = EquivPresIsFinSet (invEquiv (isEquiv≃isEquiv' f)) (isFinSetΠ Y (λ y → _ , isFinSetIsContr (_ , isFinSetFiber y))) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet⊎ : isFinSet (X .fst ⊎ Y .fst) isFinSet⊎ = card X + card Y , map2 (λ p q → isFinOrd⊎ (X .fst) (_ , p) (Y .fst) (_ , q) .snd) (X .snd .snd) (Y .snd .snd) isFinSet× : isFinSet (X .fst × Y .fst) isFinSet× = card X · card Y , map2 (λ p q → isFinOrd× (X .fst) (_ , p) (Y .fst) (_ , q) .snd) (X .snd .snd) (Y .snd .snd) isFinSet→ : isFinSet (X .fst → Y .fst) isFinSet→ = isFinSetΠ X (λ _ → Y) isFinSet≃ : isFinSet (X .fst ≃ Y .fst) isFinSet≃ = isFinSetΣ (_ , isFinSet→) (λ f → _ , isFinSetIsEquiv X Y f) module _ (X Y : FinSet ℓ ) where isFinSetType≡ : isFinSet (X .fst ≡ Y .fst) isFinSetType≡ = EquivPresIsFinSet (invEquiv univalence) (isFinSet≃ X Y) module _ (X : FinSet ℓ) where isFinSetAut : isFinSet (X .fst ≃ X .fst) isFinSetAut = LehmerCode.factorial (card X) , Prop.map (λ p → isFinOrd≃ (X .fst) (card X , p) .snd) (X .snd .snd) isFinSetTypeAut : isFinSet (X .fst ≡ X .fst) isFinSetTypeAut = EquivPresIsFinSet (invEquiv univalence) isFinSetAut module _ (X : FinSet ℓ) where isFinSet¬ : isFinSet (¬ (X .fst)) isFinSet¬ = isFinSet→ X (Fin 0 , isFinSetFin) module _ (X : FinSet ℓ) where isFinSetNonEmpty : isFinSet (NonEmpty (X .fst)) isFinSetNonEmpty = isFinSet¬ (_ , isFinSet¬ X) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where isFinSetIsEmbedding : isFinSet (isEmbedding f) isFinSetIsEmbedding = isFinSetΠ2 X (λ _ → X) (λ a b → _ , isFinSetIsEquiv (_ , isFinSet≡ X a b) (_ , isFinSet≡ Y (f a) (f b)) (cong f)) isFinSetIsSurjection : isFinSet (isSurjection f) isFinSetIsSurjection = isFinSetΠ Y (λ y → _ , isFinSet∥∥ (_ , isFinSetFiber X Y f y)) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet↪ : isFinSet (X .fst ↪ Y .fst) isFinSet↪ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsEmbedding X Y f) isFinSet↠ : isFinSet (X .fst ↠ Y .fst) isFinSet↠ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsSurjection X Y f) -- a criterion of being finite set module _ (X : Type ℓ)(Y : FinSet ℓ') (f : X → Y .fst) (h : (y : Y .fst) → isFinSet (fiber f y)) where isFinSetTotal : isFinSet X isFinSetTotal = EquivPresIsFinSet (invEquiv (totalEquiv f)) (isFinSetΣ Y (λ y → _ , h y)) -- a criterion of fibers being finite sets, more general than the previous result module _ (X : FinSet ℓ) (Y : Type ℓ')(h : Discrete Y) (f : X. fst → Y) where isFinSetFiberDisc : (y : Y) → isFinSet (fiber f y) isFinSetFiberDisc y = isFinSetΣ X (λ x → _ , isDecProp→isFinSet (Discrete→isSet h _ _) (h (f x) y))
{ "alphanum_fraction": 0.6183340679, "avg_line_length": 29.3405172414, "ext": "agda", "hexsha": "332138f50a35a66c583e00cf1c076148bbb1e029", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2858, "size": 6807 }
module Prelude.Int where open import Prelude.Unit open import Prelude.Empty open import Prelude.Nat open import Prelude.Number open import Prelude.String open import Prelude.Semiring open import Prelude.Equality open import Prelude.Equality.Inspect open import Prelude.Equality.Unsafe using (eraseEquality) open import Prelude.Ord open import Prelude.Decidable open import Prelude.Function open import Prelude.Nat.Properties open import Prelude.Int.Properties open import Prelude.Int.Core public open import Agda.Builtin.Int public private subInt-cancel-r : (a b c : Int) → a - b ≡ c → c + b ≡ a subInt-cancel-r a b c refl = addInt-assoc a (negate b) b ʳ⟨≡⟩ a +_ $≡ (addInt-commute (negate b) b ⟨≡⟩ subInt-equal b _ refl) ⟨≡⟩ addInt-zero-r a lem-equal : (a b : Int) → a - b ≡ 0 → a ≡ b lem-equal a b eq = subInt-cancel-r a b 0 eq ʳ⟨≡⟩ addInt-zero-l b lem-less : (a b c : Int) → a - b ≡ c → negate c + a ≡ b lem-less a b c eq = subInt-cancel-r b a (negate c) (negate-subInt a b ʳ⟨≡⟩ negate $≡ eq) -- Eq -- instance EqInt : Eq Int Eq._==_ EqInt = eqInt where eqInt : (a b : Int) → Dec (a ≡ b) eqInt a b with inspect (a - b) eqInt a b | pos zero with≡ eq = yes (lem-equal a b eq) eqInt a b | pos (suc n) with≡ eq = no λ a=b → case subInt-equal _ _ a=b ʳ⟨≡⟩ eq of λ () eqInt a b | negsuc n with≡ eq = no λ a=b → case subInt-equal _ _ a=b ʳ⟨≡⟩ eq of λ () -- Ord -- data LessInt (a b : Int) : Set where diff : (k : Nat) (eq : b ≡ pos (suc k) + a) → LessInt a b compareInt : (a b : Int) → Comparison LessInt a b compareInt a b with inspect (a - b) compareInt a b | pos zero with≡ eq = equal (eraseEquality (lem-equal a b eq)) compareInt a b | c@(pos (suc k)) with≡ eq = greater (diff k (eraseEquality (sym (subInt-cancel-r a b c eq)))) compareInt a b | c@(negsuc k) with≡ eq = less (diff k (eraseEquality (sym (lem-less a b c eq)))) {-# INLINE compareInt #-} private from-eq : ∀ x y → x ≡ y → LessInt x (1 + y) from-eq x y eq = diff 0 (eraseEquality (1 +_ $≡ sym eq)) from-lt : ∀ x y → LessInt x y → LessInt x (1 + y) from-lt (pos n) _ (diff k eq) = diff (suc k) (eraseEquality (1 +_ $≡ eq)) from-lt (negsuc n) _ (diff k eq) = diff (suc k) (eraseEquality ( 1 +_ $≡ eq ⟨≡⟩ addInt-pos 1 (suc k -NZ suc n) ⟨≡⟩ʳ -NZ-suc-l (suc k) (suc n))) from-leq : ∀ x y → LessInt x (1 + y) → LessEq LessInt x y from-leq x y (diff zero eq) = equal (eraseEquality (addInt-inj₂ 1 x y (sym eq))) from-leq x y (diff (suc k) eq) = less (diff k (eraseEquality (sucInt-inj y (_+_ (pos (suc k)) x) (addInt-pos 1 y ʳ⟨≡⟩ eq ⟨≡⟩ addInt-sucInt-l (pos (suc k)) x)))) instance OrdInt : Ord Int Ord._<_ OrdInt = _ Ord._≤_ OrdInt a b = LessInt a (1 + b) Ord.compare OrdInt = compareInt Ord.eq-to-leq OrdInt = from-eq _ _ Ord.lt-to-leq OrdInt = from-lt _ _ Ord.leq-to-lteq OrdInt = from-leq _ _ -- Ord/Laws -- private lessInt-antirefl : (a : Int) → a < a → ⊥ lessInt-antirefl a (diff k eq) = case addInt-inj₁ 0 (pos (suc k)) a (addInt-zero-l a ⟨≡⟩ eq) of λ () lessInt-antisym : (a b : Int) → a < b → b < a → ⊥ lessInt-antisym a b (diff k refl) (diff j eq) = case addInt-inj₁ 0 (pos (suc j) + pos (suc k)) a (addInt-zero-l a ⟨≡⟩ eq ⟨≡⟩ addInt-assoc (pos (suc j)) (pos (suc k)) a) of λ () lessInt-trans : {a b c : Int} → a < b → b < c → a < c lessInt-trans {a} (diff k eq) (diff j eq₁) = diff (j + suc k) (eraseEquality $ case eq of λ where refl → case eq₁ of λ where refl → addInt-assoc (pos (suc j)) (pos (suc k)) a) instance OrdIntLaws : Ord/Laws Int Ord/Laws.super OrdIntLaws = it less-antirefl {{OrdIntLaws}} = lessInt-antirefl _ less-trans {{OrdIntLaws}} = lessInt-trans
{ "alphanum_fraction": 0.6002624672, "avg_line_length": 35.2777777778, "ext": "agda", "hexsha": "3571d6f842e57bd5b128b27646312fb3cbf43a22", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Int.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Int.agda", "max_line_length": 109, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1422, "size": 3810 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Lattice where open import Cubical.Algebra.Lattice.Base public open import Cubical.Algebra.Lattice.Properties public
{ "alphanum_fraction": 0.8036809816, "avg_line_length": 27.1666666667, "ext": "agda", "hexsha": "2abec7db01686ce5bed4c913ad1c24c5c2b91fbf", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/Lattice.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/Lattice.agda", "max_line_length": 53, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/Lattice.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 36, "size": 163 }
{-# OPTIONS --without-K #-} module algebra.semigroup.morphism where open import level open import algebra.semigroup.core open import equality.core open import hott.level module _ {i}{j} {X : Set i}⦃ sX : IsSemigroup X ⦄ {Y : Set j}⦃ sY : IsSemigroup Y ⦄ where open IsSemigroup ⦃ ... ⦄ IsSemigroupMorphism : (X → Y) → Set (i ⊔ j) IsSemigroupMorphism f = (x₁ x₂ : X) → f (x₁ * x₂) ≡ f x₁ * f x₂ is-semigroup-morphism-level : (f : X → Y) → h 1 (IsSemigroupMorphism f) is-semigroup-morphism-level f = Π-level λ x₁ → Π-level λ x₂ → is-set _ _
{ "alphanum_fraction": 0.6374781086, "avg_line_length": 30.0526315789, "ext": "agda", "hexsha": "cca55b69ac8296cdd79b579ca33e400fe92c8dec", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/semigroup/morphism.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/semigroup/morphism.agda", "max_line_length": 74, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/semigroup/morphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 208, "size": 571 }
{-# OPTIONS --safe #-} {- Constructions of "sets" in the cumulative hierarchy. Including: - the empty set - unions - ω - replacement - separation -} module Cubical.HITs.CumulativeHierarchy.Constructions where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Functions.Embedding open import Cubical.Functions.Logic as L open import Cubical.Data.Sum hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Bool open import Cubical.Data.Unit open import Cubical.Data.Empty as E hiding (elim) open import Cubical.HITs.PropositionalTruncation as P hiding (elim; elim2) open import Cubical.HITs.CumulativeHierarchy.Base open import Cubical.HITs.CumulativeHierarchy.Properties import Cubical.HITs.PropositionalTruncation.Monad as PropMonad private variable ℓ ℓ' : Level ------------ -- Structures for building specific sets by giving encodings and decodings for their membership ----------- record SetStructure ℓ : Type (ℓ-suc ℓ) where field X : Type ℓ ix : X → V ℓ resSet : V ℓ resSet = sett X ix record SetPackage ℓ ℓ' : Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓ')) where field structure : SetStructure ℓ open SetStructure structure hiding (resSet) open SetStructure structure using (resSet) public field ∈-rep : V ℓ → hProp ℓ' unpack : (x : X) → ⟨ ∈-rep (ix x) ⟩ repack : {y : V ℓ} → ⟨ ∈-rep y ⟩ → ∥ fiber ix y ∥₁ open PropMonad classification : ⟨ ∀[ y ] (y ∈ₛ resSet ⇔ ∈-rep y) ⟩ classification y = intoClassifier , fromClassifier where intoClassifier : ⟨ y ∈ₛ resSet ⟩ → ⟨ ∈-rep y ⟩ intoClassifier (yi , yr) = proof (∈-rep y) by do (x , ix) ← ∈∈ₛ {b = resSet} .snd (yi , yr) return (subst (fst ∘ ∈-rep) ix (unpack x)) fromClassifier : ⟨ ∈-rep y ⟩ → ⟨ y ∈ₛ resSet ⟩ fromClassifier yr = ∈∈ₛ {b = resSet} .fst (repack {y = y} yr) ------------ -- Specific constructions ----------- open SetPackage using (structure; ∈-rep; unpack; repack) module EmptySet where EmptyStructure : SetStructure ℓ SetStructure.X EmptyStructure = Lift E.⊥ SetStructure.ix EmptyStructure () EmptyPackage : SetPackage ℓ ℓ-zero structure EmptyPackage = EmptyStructure ∈-rep EmptyPackage _ = L.⊥ unpack EmptyPackage () repack EmptyPackage () ∅ : V ℓ ∅ = SetStructure.resSet EmptyStructure ∅-empty : ⟨ ∀[ b ∶ V ℓ ] ¬ (b ∈ₛ ∅) ⟩ ∅-empty b = SetPackage.classification EmptyPackage b .fst open EmptySet using (∅; ∅-empty) public module UnionSet (S : V ℓ) where UnionStructure : SetStructure ℓ SetStructure.X UnionStructure = Σ[ r ∈ ⟪ S ⟫ ] ⟪ ⟪ S ⟫↪ r ⟫ SetStructure.ix UnionStructure (r , i) = ⟪ ⟪ S ⟫↪ r ⟫↪ i UNION : V ℓ UNION = SetStructure.resSet UnionStructure UnionPackage : SetPackage _ (ℓ-suc ℓ) structure UnionPackage = UnionStructure ∈-rep UnionPackage y = ∃[ v ] (v ∈ₛ S) ⊓ (y ∈ₛ v) unpack UnionPackage (vi , yi) = ∣ ⟪ S ⟫↪ vi , ∈ₛ⟪ S ⟫↪ vi , ∈ₛ⟪ ⟪ S ⟫↪ vi ⟫↪ yi ∣₁ repack UnionPackage {y = y} = P.rec squash₁ go where go : Σ[ v ∈ V _ ] ⟨ v ∈ₛ S ⟩ ⊓′ ⟨ y ∈ₛ v ⟩ → ∥ fiber _ y ∥₁ go (v , (vi , vS) , xv) = ∣ repFiber≃fiber _ _ .fst ((vi , key .fst) , key .snd) ∣₁ where path : v ≡ ⟪ S ⟫↪ vi path = sym (equivFun identityPrinciple vS) key : Σ[ i ∈ ⟪ ⟪ S ⟫↪ vi ⟫ ] ⟪ ⟪ S ⟫↪ vi ⟫↪ i ≊ y key = subst (λ v → Σ[ ix ∈ ⟪ v ⟫ ] ⟪ v ⟫↪ ix ≊ y) path xv union-ax : ⟨ ∀[ u ] (u ∈ₛ UNION ⇔ (∃[ v ] (v ∈ₛ S) ⊓ (u ∈ₛ v))) ⟩ union-ax = classification where open SetPackage UnionPackage using (classification) open UnionSet renaming (UNION to infixr 9 ⋃_) using (union-ax) public module PairingSet (a b : V ℓ) where PairingStructure : SetStructure ℓ SetStructure.X PairingStructure = Lift Bool SetStructure.ix PairingStructure (lift false) = a SetStructure.ix PairingStructure (lift true) = b open PropMonad PairingPackage : SetPackage _ (ℓ-suc ℓ) structure PairingPackage = PairingStructure ∈-rep PairingPackage d = (d ≡ₕ a) ⊔ (d ≡ₕ b) unpack PairingPackage (lift false) = L.inl refl unpack PairingPackage (lift true) = L.inr refl repack PairingPackage {y = y} = _>>= λ where (_⊎_.inl ya) → ∣ lift false , sym ya ∣₁ (_⊎_.inr yb) → ∣ lift true , sym yb ∣₁ PAIR : V ℓ PAIR = SetStructure.resSet PairingStructure pairing-ax : ⟨ ∀[ d ] (d ∈ₛ PAIR ⇔ (d ≡ₕ a) ⊔ (d ≡ₕ b)) ⟩ pairing-ax = classification where open SetPackage PairingPackage using (classification) -- pairing TODO: notation? open PairingSet renaming (PAIR to infix 12 ⁅_,_⁆) using (pairing-ax) public module SingletonSet (a : V ℓ) where SingletonStructure : SetStructure ℓ SetStructure.X SingletonStructure = Lift Unit SetStructure.ix SingletonStructure (lift tt) = a SingletonPackage : SetPackage _ (ℓ-suc ℓ) structure SingletonPackage = SingletonStructure ∈-rep SingletonPackage d = d ≡ₕ a unpack SingletonPackage _ = refl repack SingletonPackage ya = ∣ lift tt , sym ya ∣₁ SINGL : V ℓ SINGL = SetStructure.resSet SingletonStructure open SingletonSet renaming (SINGL to infix 10 ⁅_⁆s) public -- small unions _∪_ : (a b : V ℓ) → V ℓ a ∪ b = ⋃ ⁅ a , b ⁆ module InfinitySet {ℓ} where sucV : V ℓ → V ℓ sucV N = N ∪ ⁅ N ⁆s #_ : ℕ → V ℓ # zero = ∅ # suc n = sucV (# n) ωStructure : SetStructure ℓ SetStructure.X ωStructure = Lift ℕ SetStructure.ix ωStructure = #_ ∘ lower ω : V ℓ ω = SetStructure.resSet ωStructure open PropMonad ωPackage : SetPackage _ (ℓ-suc ℓ) structure ωPackage = ωStructure ∈-rep ωPackage d = (d ≡ₕ ∅) ⊔ (∃[ v ] (d ≡ₕ sucV v) ⊓ (v ∈ₛ ω)) unpack ωPackage (lift zero) = L.inl refl unpack ωPackage (lift (suc n)) = L.inr ∣ # n , refl , ∈∈ₛ {b = ω} .fst ∣ lift n , refl ∣₁ ∣₁ repack ωPackage {y = y} = ⊔-elim (y ≡ₕ ∅) ∥ _ ∥ₚ (λ _ → ∥ fiber _ y ∥ₚ) (λ e → ∣ lift zero , sym e ∣₁) (λ m → do (v , yv , vr) ← m (lift n , eq) ← ∈∈ₛ {b = ω} .snd vr ∣ lift (suc n) , sym (subst (λ v → y ≡ (v ∪ ⁅ v ⁆s)) (sym eq) yv) ∣₁ ) infinity-ax : ⟨ ∀[ y ] (y ∈ₛ ω ⇔ (y ≡ₕ ∅) ⊔ (∃[ v ] (y ≡ₕ sucV v) ⊓ (v ∈ₛ ω))) ⟩ infinity-ax = classification where open SetPackage ωPackage using (classification) ω-empty : ⟨ ∅ ∈ₛ ω ⟩ ω-empty = infinity-ax ∅ .snd (L.inl refl) ω-next : ⟨ ∀[ x ∶ V ℓ ] x ∈ₛ ω ⇒ sucV x ∈ₛ ω ⟩ ω-next x x∈ω = infinity-ax (sucV x) .snd (L.inr ∣ x , refl , x∈ω ∣₁) #-in-ω : ∀ n → ⟨ # n ∈ₛ ω ⟩ #-in-ω zero = ω-empty #-in-ω (suc n) = ω-next (# n) (#-in-ω n) open InfinitySet using (ω; ω-empty; ω-next; infinity-ax) public module ReplacementSet (r : V ℓ → V ℓ) (a : V ℓ) where ReplacementStructure : SetStructure ℓ SetStructure.X ReplacementStructure = ⟪ a ⟫ SetStructure.ix ReplacementStructure = r ∘ ⟪ a ⟫↪ REPLACED : V ℓ REPLACED = SetStructure.resSet ReplacementStructure open PropMonad ReplacementPackage : SetPackage _ (ℓ-suc ℓ) structure ReplacementPackage = ReplacementStructure ∈-rep ReplacementPackage y = ∃[ z ] (z ∈ₛ a) ⊓ (y ≡ₕ r z) unpack ReplacementPackage ⟪a⟫ = ∣ ⟪ a ⟫↪ ⟪a⟫ , (∈ₛ⟪ a ⟫↪ ⟪a⟫) , refl ∣₁ repack ReplacementPackage {y = y} m = do (z , (a , za) , yr) ← m ∣ a , cong r (equivFun identityPrinciple za) ∙ sym yr ∣₁ replacement-ax : ⟨ ∀[ y ] (y ∈ₛ REPLACED ⇔ (∃[ z ] (z ∈ₛ a) ⊓ (y ≡ₕ r z))) ⟩ replacement-ax y = classification y where open SetPackage ReplacementPackage using (classification) open ReplacementSet renaming (REPLACED to infix 12 ⁅_∣_⁆) using (replacement-ax) public module SeparationSet (a : V ℓ) (ϕ : V ℓ → hProp ℓ) where SeparationStructure : SetStructure ℓ SetStructure.X SeparationStructure = Σ[ x ∈ ⟪ a ⟫ ] ⟨ ϕ (⟪ a ⟫↪ x) ⟩ SetStructure.ix SeparationStructure = ⟪ a ⟫↪ ∘ fst SeparationPackage : SetPackage _ ℓ structure SeparationPackage = SeparationStructure ∈-rep SeparationPackage y = (y ∈ₛ a) ⊓ ϕ y unpack SeparationPackage (⟪a⟫ , phi) = (∈ₛ⟪ a ⟫↪ ⟪a⟫) , phi repack SeparationPackage ((⟪a⟫ , ya) , phi) = ∣ (⟪a⟫ , subst (fst ∘ ϕ) (sym (equivFun identityPrinciple ya)) phi) , equivFun identityPrinciple ya ∣₁ SEPAREE : V ℓ SEPAREE = SetStructure.resSet SeparationStructure separation-ax : ⟨ ∀[ y ] (y ∈ₛ SEPAREE ⇔ (y ∈ₛ a) ⊓ ϕ y) ⟩ separation-ax y = classification y .fst , classification y .snd where open SetPackage SeparationPackage using (classification) open SeparationSet renaming (SEPAREE to infix 12 ⁅_∶_⁆) using (separation-ax) public module Examples where open InfinitySet the1 : V ℓ-zero the1 = # 1 1-ok? : ∥ Bool ∥₁ 1-ok? = do prf ← infinity-ax the1 .fst (#-in-ω 1) case prf of λ { (⊎.inl _) → ∣ false ∣₁ ; (⊎.inr _) → ∣ true ∣₁ } where open PropMonad test : 1-ok? ≡ ∣ true ∣₁ test = refl
{ "alphanum_fraction": 0.63875, "avg_line_length": 33.7164750958, "ext": "agda", "hexsha": "03336f5c7ae2a4497838751f1e92acea892a6d8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/CumulativeHierarchy/Constructions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/CumulativeHierarchy/Constructions.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/CumulativeHierarchy/Constructions.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 3316, "size": 8800 }
module A1 where open import Data.Empty using (⊥) open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst) open import Data.Unit using (⊤; tt) open import Data.Bool using (Bool; false; true; _xor_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; Σ; Σ-syntax) open import Data.Nat using (ℕ; suc; _+_; _*_) open import Data.List using (List; []; _++_) open import Data.Vec using (Vec; []; _∷_) renaming (_++_ to _++V_) ------------------------------------------------------------------------------ -- Ch. 1 -- Theme: for each type, recursion principle and induction principle ------------------------------------------------------------------------------ -- Sec. 1.9 -- ℕ recℕ : ∀ {ℓ} → (C : Set ℓ) → C → (ℕ → C → C) → ℕ → C recℕ C z f 0 = z recℕ C z f (suc n) = f n (recℕ C z f n) indℕ : ∀ {ℓ} → (C : ℕ → Set ℓ) → C 0 → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n indℕ C z f 0 = z indℕ C z f (suc n) = f n (indℕ C z f n) -- Many examples in L.agda ------------------------------------------------------------------------------ -- Sec. 1.7 -- Empty type -- Ex falso quodlibet rec⊥ : ∀ {ℓ} → (C : Set ℓ) → ⊥ → C rec⊥ C () ind⊥ : ∀ {ℓ} → (C : ⊥ → Set ℓ) → (v : ⊥) → C v ind⊥ C () -- Examples ⊥→1≡2 : ⊥ → (1 ≡ 2) ⊥→1≡2 = rec⊥ (1 ≡ 2) ⊥→⊤≡⊥ : ⊥ → ⊤ ⊥→⊤≡⊥ = rec⊥ ⊤ ⊥→⊤≡⊥' : ⊥ → ⊤ ⊥→⊤≡⊥' = ind⊥ (λ v → ⊤) ------------------------------------------------------------------------------ -- Sec. 1.5 -- Unit type rec⊤ : ∀ {ℓ} → (C : Set ℓ) → C → ⊤ → C rec⊤ C c tt = c ind⊤ : ∀ {ℓ} → (C : ⊤ → Set ℓ) → C tt → (u : ⊤) → C u ind⊤ C c tt = c -- Example singleton⊤ : (u : ⊤) → (u ≡ tt) singleton⊤ = ind⊤ (λ u → u ≡ tt) refl ------------------------------------------------------------------------------ -- Sec. 1.8 -- Booleans recBool : ∀ {ℓ} → (C : Set ℓ) → C → C → Bool → C recBool C el th false = el recBool C el th true = th indBool : ∀ {ℓ} → (C : Bool → Set ℓ) → C false → C true → (b : Bool) → C b indBool C el th false = el indBool C el th true = th -- Example bool2 : (b : Bool) → (b ≡ false) ⊎ (b ≡ true) bool2 = indBool (λ b → (b ≡ false) ⊎ (b ≡ true)) (inj₁ refl) (inj₂ refl) ------------------------------------------------------------------------------ -- Sec. 1.5 -- Product types rec× : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : Set ℓ₂} → (C : Set ℓ₃) → (A → B → C) → A × B → C rec× C g (a , b) = g a b ind× : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : Set ℓ₂} → (C : A × B → Set ℓ₃) → ((a : A) → (b : B) → C (a , b)) → (p : A × B) → C p ind× C g ( a , b ) = g a b -- Examples fst : {A B : Set} → A × B → A fst {A} {B} = rec× A (λ a b → a) snd : {A B : Set} → A × B → B snd {A} {B} = rec× B (λ a b → b) surj-pair : ∀ {A B} → (p : A × B) → (fst p , snd p) ≡ p surj-pair = ind× (λ p → (fst p , snd p) ≡ p) (λ a b → refl) -- IMPORTANT: -- -- TO PROVE ANY PROPERTY OF SOMETHING OF TYPE A × B, IT IS SUFFICIENT -- TO PROVE IT FOR CANONICAL VALUES OF THAT TYPE, i.e. FOR (a , b) -- _Product_ : (A : Set) → (B : Set) → Set A Product B = (z : Bool) → recBool Set A B z pair : {A B : Set} → A → B → A Product B pair {A} {B} a b = indBool (λ z → recBool Set A B z) a b ------------------------------------------------------------------------------ -- Sigma types (dependent pair type) recΣ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (C : Set ℓ₃) → ((a : A) → B a → C) → Σ A B → C recΣ C g (a , b) = g a b indΣ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (C : Σ A B → Set ℓ₃) → ((a : A) → (b : B a) → C (a , b)) → (p : Σ A B) → C p indΣ C g ( a , b ) = g a b -- Examples dfst : {A : Set} {B : A → Set} → Σ A B → A dfst {A} {B} = recΣ A (λ a b → a) dsnd : {A : Set} {B : A → Set} → (p : Σ A B) → B (dfst p) dsnd {A} {B} = indΣ (λ p → B (dfst p)) (λ a b → b) ac : {A B : Set} {R : A → B → Set} → ((x : A) → (Σ[ y ∈ B ] (R x y))) → (Σ[ f ∈ (A → B) ] ((x : A) → R x (f x))) ac g = (λ x → dfst (g x)) , (λ x → dsnd (g x)) {-- In English :-) If for all x, exists y, such that x R y, then exists f such that for all x, x R f(x) ... this is one type-theoretic "axiom of choice" --} Magma : Set₁ Magma = Σ[ A ∈ Set ] (A → A → A) m₁ m₂ m₃ m₄ m₅ : Magma m₁ = (ℕ , _+_) m₂ = (ℕ , _*_) m₃ = (Bool , _xor_) m₄ = (List Bool , _++_) m₅ = (⊥ , λ ()) PointedMagma : Set₁ PointedMagma = Σ[ A ∈ Set ] ((A → A → A) × A) pm₁ pm₂ pm₃ pm₄ : PointedMagma pm₁ = (ℕ , _+_ , 0) pm₂ = (ℕ , _*_ , 1) pm₃ = (Bool , _xor_ , false) pm₄ = (List Bool , _++_ , []) ------------------------------------------------------------------------------ -- Sum types (coproducts) rec⊎ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : Set ℓ₂} → (C : Set ℓ₃) → (A → C) → (B → C) → (A ⊎ B → C) rec⊎ C f g (inj₁ a) = f a rec⊎ C f g (inj₂ b) = g b ind⊎ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : Set ℓ₂} → (C : A ⊎ B → Set ℓ₃) → ((a : A) → C (inj₁ a)) → ((b : B) → C (inj₂ b)) → ((x : A ⊎ B) → C x) ind⊎ C f g (inj₁ a) = f a ind⊎ C f g (inj₂ b) = g b -- Examples _Union_ : (A : Set) → (B : Set) → Set A Union B = Σ[ b ∈ Bool ] (recBool Set A B b) inLeft : {A B : Set} → A → A Union B inLeft a = (false , a) inRight : {A B : Set} → B → A Union B inRight b = (true , b) ------------------------------------------------------------------------------ -- Induction principle for vectors indVec : {A : Set} → (C : {n : ℕ} → Vec A n → Set) → C [] → ({m : ℕ} → (x : A) → (xs : Vec A m) → C xs → C (x ∷ xs)) → ({n : ℕ} → (xs : Vec A n) → C xs) indVec C cnil ccons [] = cnil indVec C cnil ccons (x ∷ xs) = ccons x xs (indVec C cnil ccons xs) -- Example []++v≡v : ∀ {A n} → (v : Vec A n) → [] ++V v ≡ v []++v≡v {A} {n} = indVec (λ v → [] ++V v ≡ v) refl (λ x xs p → refl) postulate n+0≡n : ∀ {n} → n + 0 ≡ n v++[]≡v : ∀ {n} {A : Set} → (v : Vec A n) → (subst (λ n -> Vec A n) n+0≡n (v ++V [])) ≡ v v++[]≡v {A} {n} = {!!} ------------------------------------------------------------------------------ -- Obvious omission from list of types -- No induction principle for functions ------------------------------------------------------------------------------ -- Propositions as types ¬ : Set → Set ¬ A = A → ⊥ ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3910034602, "avg_line_length": 26.2727272727, "ext": "agda", "hexsha": "5ccc1ef58bbaccb560fe7f84a36025601eb6fe41", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andmkent/misc-HoTT", "max_forks_repo_path": "A1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andmkent/misc-HoTT", "max_issues_repo_path": "A1.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andmkent/misc-HoTT", "max_stars_repo_path": "A1.agda", "max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z", "num_tokens": 2609, "size": 6358 }
module x02-842Induction-hc where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) -- associativity _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ +-identityᴸ : ∀ (m : ℕ) → zero + m ≡ m +-identityᴸ m = refl -- via def/eq +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ zero = refl +-identityʳ (suc m) -- suc m + zero ≡ suc m -- suc (m + zero) ≡ suc m rewrite +-identityʳ m -- suc m ≡ suc m = refl +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc zero n p = refl +-assoc (suc m) n p -- suc m + n + p ≡ suc m + (n + p) -- suc (m + n + p) ≡ suc (m + (n + p)) rewrite +-assoc m n p -- suc (m + (n + p)) ≡ suc (m + (n + p)) = refl +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n -- suc (m + suc n) ≡ suc (suc (m + n)) rewrite +-suc m n -- suc (suc (m + n)) ≡ suc (suc (m + n)) = refl +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm zero n -- zero + n ≡ n + zero -- n ≡ n + zero rewrite +-identityʳ n -- n ≡ n = refl +-comm (suc m) zero -- suc m + zero ≡ zero + suc m -- suc (m + zero) ≡ suc m rewrite +-identityʳ m -- suc m ≡ suc m = refl +-comm (suc m) (suc n) -- suc m + suc n ≡ suc n + suc m -- suc (m + suc n) ≡ suc (n + suc m) rewrite +-suc m n -- suc (suc (m + n)) ≡ suc (n + suc m) | +-suc n m -- suc (suc (m + n)) ≡ suc (suc (n + m)) | +-comm m n -- suc (suc (n + m)) ≡ suc (suc (n + m)) = refl -- without using induction/recursion +-swap : ∀ (m n p : ℕ) → (m + n) + p ≡ n + (m + p) +-swap zero n p = refl +-swap (suc m) n p -- suc m + n + p ≡ n + (suc m + p) -- suc (m + n + p) ≡ n + suc (m + p) rewrite +-suc n (m + p) -- suc (m + n + p) ≡ suc (n + (m + p)) | +-comm m n -- suc (n + m + p) ≡ suc (n + (m + p)) | +-assoc n m p -- suc (n + (m + p)) ≡ suc (n + (m + p)) = refl -- addition distributes over multiplication *-+-rdistrib : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-+-rdistrib zero n p = refl *-+-rdistrib (suc m) n p -- (suc m + n) * p ≡ suc m * p + n * p -- p + (m + n) * p ≡ p + m * p + n * p rewrite *-+-rdistrib m n p -- p + (m * p + n * p) ≡ p + m * p + n * p | +-assoc p (m * p) (n * p) -- p + (m * p + n * p) ≡ p + (m * p + n * p) = refl *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc zero n p = refl *-assoc (suc m) n p -- suc m * n * p ≡ suc m * (n * p) -- (n + m * n) * p ≡ n * p + m * (n * p) rewrite *-+-rdistrib n (m * n) p -- n * p + m * n * p ≡ n * p + m * (n * p) | *-assoc m n p -- n * p + m * (n * p) ≡ n * p + m * (n * p) = refl *0 : ∀ (n : ℕ) → n * zero ≡ zero *0 zero = refl *0 (suc n) = *0 n *-suc : ∀ (m n : ℕ) → m * suc n ≡ m + (m * n) *-suc zero n = refl *-suc (suc m) n -- suc m * suc n ≡ suc m + suc m * n -- suc (n + m * suc n) ≡ suc (m + (n + m * n)) rewrite *-suc m n -- suc (n + (m + m * n)) ≡ suc (m + (n + m * n)) | sym (+-assoc n m (m * n)) -- suc (n + m + m * n) ≡ suc (m + (n + m * n)) | +-comm n m -- suc (m + n + m * n) ≡ suc (m + (n + m * n)) | +-assoc m n (m * n) -- suc (m + (n + m * n)) ≡ suc (m + (n + m * n)) = refl *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm zero n rewrite *0 n = refl *-comm (suc m) n -- suc m * n ≡ n * suc m -- n + m * n ≡ n * suc m rewrite *-suc n m -- n + m * n ≡ n + n * m | *-comm m n -- n + n * m ≡ n + n * m = refl 0∸n≡0 : ∀ (m : ℕ) → zero ∸ m ≡ zero 0∸n≡0 zero = refl 0∸n≡0 (suc m) rewrite 0∸n≡0 m = refl -- form of associativity for monus ∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-+-assoc zero n p -- zero ∸ n ∸ p ≡ zero ∸ (n + p) rewrite 0∸n≡0 n -- 0 ∸ p ≡ 0 ∸ (n + p) | 0∸n≡0 p -- 0 ≡ 0 ∸ (n + p) | 0∸n≡0 (n + p) -- 0 ≡ 0 = refl ∸-+-assoc m zero p -- m ∸ p ≡ m ∸ p = refl ∸-+-assoc m n zero -- m ∸ n ≡ m ∸ (n + zero) rewrite +-identityʳ n -- m ∸ n ≡ m ∸ n = refl ∸-+-assoc (suc m) (suc n) p -- m ∸ n ∸ p ≡ m ∸ (n + p) rewrite ∸-+-assoc m n p -- m ∸ (n + p) ≡ m ∸ (n + p) = refl ------------------------------------------------------------------------------ -- properties of binary representation -- BEGIN copied from 842Naturals data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ dbl : ℕ → ℕ dbl zero = zero dbl (suc n) = suc (suc (dbl n)) inc : Bin-ℕ → Bin-ℕ inc bits = bits x1 inc (m x0) = m x1 inc (m x1) = inc m x0 tob : ℕ → Bin-ℕ tob zero = bits tob (suc m) = inc (tob m) fromb : Bin-ℕ → ℕ fromb bits = 0 fromb (n x0) = dbl (fromb n) fromb (n x1) = suc (dbl (fromb n)) _bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ bl bin-+ bits = bl bits bin-+ br = br (bl x0) bin-+ (br x0) = (bl bin-+ br) x0 (bl x0) bin-+ (br x1) = (bl bin-+ br) x1 (bl x1) bin-+ (br x0) = (bl bin-+ br) x1 (bl x1) bin-+ (br x1) = inc ((bl bin-+ br) x1) -- END copied from 842Naturals dblb : Bin-ℕ → Bin-ℕ dblb b = b x0 _ : dblb (tob 3) ≡ tob 6 _ = refl _ : dblb (tob 7) ≡ tob 14 _ = refl _ : dblb (tob 9) ≡ tob 18 _ = refl from∘inc : ∀ (b : Bin-ℕ) → fromb (inc b) ≡ suc (fromb b) from∘inc bits = refl from∘inc (b x0) = refl from∘inc (b x1) -- fromb (inc (b x1)) ≡ suc (fromb (b x1)) -- dbl (fromb (inc b)) ≡ suc (suc (dbl (fromb b))) rewrite from∘inc b -- suc (suc (dbl (fromb b))) ≡ suc (suc (dbl (fromb b))) = refl from∘tob : ∀ (m : ℕ) → fromb (tob m) ≡ m from∘tob zero = refl from∘tob (suc m) -- fromb (tob (suc m)) ≡ suc m -- fromb (inc (tob m)) ≡ suc m rewrite from∘inc (tob m) -- suc (fromb (tob m)) ≡ suc m | from∘tob m -- suc m ≡ suc m = refl -- The property ∀ (m : Bin-ℕ) → tob (fromb m) ≡ m cannot be proved. -- Because there are two representations of zero. -- The following restriction can be proved: to/from-corr : ∀ (b : Bin-ℕ) (n : ℕ) → b ≡ tob n → fromb b ≡ n -- TODO to/from-corr b n b≡tn = {!!} dblb∘inc : ∀ (b : Bin-ℕ) → dblb (inc b) ≡ inc (inc (dblb b)) dblb∘inc bits = refl dblb∘inc (b x0) -- dblb (inc (b x0)) ≡ inc (inc (dblb (b x0))) -- dblb (b x1) ≡ ((b x1) x0) rewrite dblb∘inc b -- ((b x1) x0) ≡ ((b x1) x0) = refl dblb∘inc (b x1) -- dblb (inc (b x1)) ≡ inc (inc (dblb (b x1))) -- dblb (inc b x0) ≡ ((inc b x0) x0) rewrite dblb∘inc b -- ((inc b x0) x0) ≡ ((inc b x0) x0) = refl {- -- more BIN properties to prove -- not sure this can be proved because of multiple representations of zero to∘dbl : ∀ (m : ℕ) → tob (dbl m) ≡ dblb (tob m) -- TODO -- not sure if provable because of zero to∘dbl zero -- tob (dbl zero) ≡ dblb (tob zero) -- bits ≡ dblb bits = {!!} to∘dbl (suc m) -- tob (dbl (suc m)) ≡ dblb (tob (suc m)) -- inc (inc (tob (dbl m))) ≡ dblb (inc (tob m)) rewrite to∘dbl m -- (inc (tob m) x0) ≡ (inc (tob m) x0) = refl from∘dblb : ∀ (b : Bin-ℕ) → fromb (dblb b) ≡ dbl (fromb b) from∘dblb b = refl -- bit version of second case for unary addition: suc m + n = suc (m + n) -- useful in the next proof -- hint: use induction on both parameters bin-+-linc : ∀ (b1 b2 : Bin-ℕ) → (inc b1) bin-+ b2 ≡ inc (b1 bin-+ b2) -- TODO bin-+-linc b1 bits = refl bin-+-linc bits (b2 x0) = {!!} bin-+-linc bits (b2 x1) = {!!} bin-+-linc (b1 x0) b2 = {!!} bin-+-linc (b1 x1) b2 = {!!} -- 842 exercise: PlusUnaryBinary (2 points) -- This theorem relates unary and binary addition. to∘+ : ∀ (m n : ℕ) → tob (m + n) ≡ tob m bin-+ tob n -- TODO to∘+ m n = {!!} -} {- The follwing theorems can be found in: import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm) -- Unicode ∀ U+2200 FOR ALL (\forall, \all) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) ′ U+2032 PRIME (\') ″ U+2033 DOUBLE PRIME (\') ‴ U+2034 TRIPLE PRIME (\') ⁗ U+2057 QUADRUPLE PRIME (\') -}
{ "alphanum_fraction": 0.4083936007, "avg_line_length": 34.5681818182, "ext": "agda", "hexsha": "eaaeb35b5843e1d808ebc04fe0280cbb1242674e", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc.agda", "max_line_length": 95, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 3769, "size": 9126 }
-- Instance arguments in records. module Issue509 where -- The instance version of _ ⋯ : {A : Set} {{ x : A }} → A ⋯ {{ x }} = x data ℕ : Set where zero : ℕ suc : ℕ → ℕ record T (n : ℕ) : Set where field nextPrime : ℕ T₁ : T (suc zero) T₁ = record { nextPrime = suc (suc zero) } T₂ : T (suc (suc zero)) T₂ = record { nextPrime = suc (suc (suc zero)) } data Param : ℕ → Set where param : ∀ n → Param (suc n) record R : Set where constructor r field {impl} : ℕ {{ inst }} : T impl p : Param impl s : ℕ -- The inst field should be an instance meta here testA : R testA = record { p = param zero; s = suc (suc zero) } -- So, pretty much this: testB : R testB = record { impl = _; inst = ⋯; p = param zero; s = suc (suc zero) } -- Or using the construcor testC : R testC = r { _ } {{ ⋯ }} (param zero) (suc (suc zero)) -- Omitting the fields also works when using the constructor (of course) testD : R testD = r (param zero) (suc (suc zero)) -- Note that {{ _ }} means explicitly giving the instance argument and saying -- it should be an ordinary meta. Going the other way would be {⋯}.
{ "alphanum_fraction": 0.6072695035, "avg_line_length": 22.1176470588, "ext": "agda", "hexsha": "689d69978a7f8c7594b4a3c49cba4f99f7113b92", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue509.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue509.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue509.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 379, "size": 1128 }
{-# OPTIONS --without-K --exact-split --rewriting #-} open import lib.Basics open import lib.NConnected open import Graphs.Definition open import Coequalizers.Definition {- We will consider two properties of graphs: if they are trees and if they are connected, both are defined in terms of the geometric realisation (coequalizer). -} module Graphs.Properties where {- A graph is a tree if its coequalizer is contractible. -} is-tree : {i j : ULevel} {E : Type i} {V : Type j} ( gph : Graph E V ) → Type (lmax i j) is-tree gph = is-contr (Coeq gph) {- A graph is connected if its coequalizer is connected. -} gph-is-connected : {i j : ULevel} {E : Type i} {V : Type j} (gph : Graph E V) → Type (lmax i j) gph-is-connected gph = is-connected 0 (Coeq gph)
{ "alphanum_fraction": 0.7017082786, "avg_line_length": 38.05, "ext": "agda", "hexsha": "cb373bbc3115c87b123d89fd702b30889277fe8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Graphs/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Graphs/Properties.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Graphs/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 225, "size": 761 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Integers, basic types and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Base where open import Data.Nat.Base as ℕ using (ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Sign as Sign using (Sign) renaming (_*_ to _S*_) open import Function open import Relation.Nullary using (¬_) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_) infix 8 -_ infixl 7 _*_ _⊓_ infixl 6 _+_ _-_ _⊖_ _⊔_ infix 4 _≤_ _≥_ _<_ _>_ _≰_ _≱_ _≮_ _≯_ ------------------------------------------------------------------------ -- The types open import Agda.Builtin.Int public using () renaming ( Int to ℤ ; pos to +_ -- "+ n" stands for "n" ; negsuc to -[1+_] -- "-[1+ n ]" stands for "- (1 + n)" ) ------------------------------------------------------------------------ -- Conversions -- Absolute value. ∣_∣ : ℤ → ℕ ∣ + n ∣ = n ∣ -[1+ n ] ∣ = ℕ.suc n -- Gives the sign. For zero the sign is arbitrarily chosen to be +. sign : ℤ → Sign sign (+ _) = Sign.+ sign -[1+ _ ] = Sign.- ------------------------------------------------------------------------ -- A view of integers as sign + absolute value infix 5 _◂_ _◃_ _◃_ : Sign → ℕ → ℤ _ ◃ ℕ.zero = + ℕ.zero Sign.+ ◃ n = + n Sign.- ◃ ℕ.suc n = -[1+ n ] data SignAbs : ℤ → Set where _◂_ : (s : Sign) (n : ℕ) → SignAbs (s ◃ n) signAbs : ∀ i → SignAbs i signAbs (+ ℕ.zero) = Sign.+ ◂ ℕ.zero signAbs (+ (ℕ.suc n)) = Sign.+ ◂ ℕ.suc n signAbs (-[1+ n ]) = Sign.- ◂ ℕ.suc n ------------------------------------------------------------------------ -- Arithmetic -- Negation. -_ : ℤ → ℤ - (+ ℕ.suc n) = -[1+ n ] - (+ ℕ.zero) = + ℕ.zero - -[1+ n ] = + ℕ.suc n -- Subtraction of natural numbers. _⊖_ : ℕ → ℕ → ℤ m ⊖ ℕ.zero = + m ℕ.zero ⊖ ℕ.suc n = -[1+ n ] ℕ.suc m ⊖ ℕ.suc n = m ⊖ n -- Addition. _+_ : ℤ → ℤ → ℤ -[1+ m ] + -[1+ n ] = -[1+ ℕ.suc (m ℕ+ n) ] -[1+ m ] + + n = n ⊖ ℕ.suc m + m + -[1+ n ] = m ⊖ ℕ.suc n + m + + n = + (m ℕ+ n) -- Subtraction. _-_ : ℤ → ℤ → ℤ i - j = i + (- j) -- Successor. suc : ℤ → ℤ suc i = (+ 1) + i -- Predecessor. pred : ℤ → ℤ pred i = (- + 1) + i -- Multiplication. _*_ : ℤ → ℤ → ℤ i * j = sign i S* sign j ◃ ∣ i ∣ ℕ* ∣ j ∣ -- Maximum. _⊔_ : ℤ → ℤ → ℤ -[1+ m ] ⊔ -[1+ n ] = -[1+ ℕ._⊓_ m n ] -[1+ m ] ⊔ + n = + n + m ⊔ -[1+ n ] = + m + m ⊔ + n = + (ℕ._⊔_ m n) -- Minimum. _⊓_ : ℤ → ℤ → ℤ -[1+ m ] ⊓ -[1+ n ] = -[1+ ℕ._⊔_ m n ] -[1+ m ] ⊓ + n = -[1+ m ] + m ⊓ -[1+ n ] = -[1+ n ] + m ⊓ + n = + (ℕ._⊓_ m n) ------------------------------------------------------------------------ -- Ordering data _≤_ : ℤ → ℤ → Set where -≤+ : ∀ {m n} → -[1+ m ] ≤ + n -≤- : ∀ {m n} → (n≤m : n ℕ.≤ m) → -[1+ m ] ≤ -[1+ n ] +≤+ : ∀ {m n} → (m≤n : m ℕ.≤ n) → + m ≤ + n _≥_ : Rel ℤ _ x ≥ y = y ≤ x _<_ : Rel ℤ _ x < y = suc x ≤ y _>_ : Rel ℤ _ x > y = y < x _≰_ : Rel ℤ _ x ≰ y = ¬ (x ≤ y) _≱_ : Rel ℤ _ x ≱ y = ¬ (x ≥ y) _≮_ : Rel ℤ _ x ≮ y = ¬ (x < y) _≯_ : Rel ℤ _ x ≯ y = ¬ (x > y)
{ "alphanum_fraction": 0.3853267571, "avg_line_length": 20.6624203822, "ext": "agda", "hexsha": "4490e7bfe2ce27d44effc9a4dfbe2ffe9ad95816", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1307, "size": 3244 }
module DeBruijnExSubst where open import Prelude -- using (_∘_) -- composition, identity open import Data.Maybe open import Logic.Identity renaming (subst to subst≡) import Logic.ChainReasoning module Chain = Logic.ChainReasoning.Poly.Homogenous _≡_ (\x -> refl) (\x y z -> trans) open Chain open import DeBruijn -- untyped de Bruijn terms data LamE (A : Set) : Set where varE : A -> LamE A appE : LamE A -> LamE A -> LamE A absE : LamE (Maybe A) -> LamE A flatE : LamE (LamE A) -> LamE A -- functoriality of LamE lamE : {A B : Set} -> (A -> B) -> LamE A -> LamE B lamE f (varE a) = varE (f a) lamE f (appE t1 t2) = appE (lamE f t1) (lamE f t2) lamE f (absE r) = absE (lamE (fmap f) r) lamE f (flatE r) = flatE (lamE (lamE f) r) {- from TCS 05 paper eval' : {A B : Set} -> (A -> B) -> LamE A -> Lam B eval' f (varE a) = var (f a) eval' f (appE t1 t2) = app (eval' f t1) (eval' f t2) eval' f (absE r) = abs (eval' (fmap f) r) eval' f (flatE r) = subst id (eval' (eval' f) r) eval : {A : Set} -> LamE A -> Lam A eval = eval' id -} eval : {A : Set} -> LamE A -> Lam A eval (varE a) = var a eval (appE t1 t2) = app (eval t1) (eval t2) eval (absE r) = abs (eval r) eval (flatE r) = subst eval (eval r) evalNAT : {A B : Set}(f : A -> B) -> (t : LamE A) -> eval (lamE f t) ≡ lam f (eval t) evalNAT f (varE a) = refl evalNAT f (appE t1 t2) = chain> eval (lamE f (appE t1 t2)) === eval (appE (lamE f t1) (lamE f t2)) by refl === app (eval (lamE f t1)) (eval (lamE f t2)) by refl === app (lam f (eval t1)) (eval (lamE f t2)) by cong (\ x -> app x (eval (lamE f t2))) (evalNAT f t1) === app (lam f (eval t1)) (lam f (eval t2)) by cong (\ x -> app (lam f (eval t1)) x) (evalNAT f t2) === lam f (app (eval t1) (eval t2)) by refl === lam f (eval (appE t1 t2)) by refl evalNAT f (absE r) = chain> eval (lamE f (absE r)) === eval (absE (lamE (fmap f) r)) by refl === abs (eval (lamE (fmap f) r)) by refl === abs (lam (fmap f) (eval r)) by cong abs (evalNAT (fmap f) r) === lam f (abs (eval r)) by refl === lam f (eval (absE r)) by refl evalNAT f (flatE r) = chain> eval (lamE f (flatE r)) === eval (flatE (lamE (lamE f) r)) by refl === subst eval (eval (lamE (lamE f) r)) by refl === subst eval (lam (lamE f) (eval r)) by cong (subst eval) (evalNAT (lamE f) r) === subst (eval ∘ lamE f) (eval r) by substLaw1 (lamE f) eval (eval r) === subst (lam f ∘ eval) (eval r) by substExt _ _ (evalNAT f) (eval r) === lam f (subst eval (eval r)) by substLaw2 f eval (eval r) === lam f (eval (flatE r)) by refl evalNATcor : {A : Set}(ee : LamE (LamE A)) -> subst id (eval (lamE eval ee)) ≡ eval (flatE ee) evalNATcor ee = chain> subst id (eval (lamE eval ee)) === subst id (lam eval (eval ee)) by cong (subst id) (evalNAT eval ee) === subst eval (eval ee) by substLaw1 eval id (eval ee) === eval (flatE ee) by refl
{ "alphanum_fraction": 0.5372848948, "avg_line_length": 34.8666666667, "ext": "agda", "hexsha": "1c9685761194addcba6e963d9983de929a574621", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/NestedDataTypes/DeBruijnExSubst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/NestedDataTypes/DeBruijnExSubst.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/NestedDataTypes/DeBruijnExSubst.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1202, "size": 3138 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Partial.Definition where record SetoidPartialOrder {a b c : _} {A : Set a} (S : Setoid {a} {b} A) (_<_ : Rel {a} {c} A) : Set (a ⊔ b ⊔ c) where open Setoid S field <WellDefined : {a b c d : A} → (a ∼ b) → (c ∼ d) → a < c → b < d irreflexive : {x : A} → (x < x) → False <Transitive : {a b c : A} → (a < b) → (b < c) → (a < c) _<=_ : Rel {a} {b ⊔ c} A a <= b = (a < b) || (a ∼ b) <=Transitive : {a b c : A} → (a <= b) → (b <= c) → (a <= c) <=Transitive (inl a<b) (inl b<c) = inl (<Transitive a<b b<c) <=Transitive (inl a<b) (inr b=c) = inl (<WellDefined (Equivalence.reflexive eq) b=c a<b) <=Transitive (inr a=b) (inl b<c) = inl (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<c) <=Transitive (inr a=b) (inr b=c) = inr (Equivalence.transitive eq a=b b=c) partialOrderToSetoidPartialOrder : {a b : _} {A : Set a} (P : PartialOrder {a} A {b}) → SetoidPartialOrder (reflSetoid A) (PartialOrder._<_ P) SetoidPartialOrder.<WellDefined (partialOrderToSetoidPartialOrder P) a=b c=d a<c rewrite a=b | c=d = a<c SetoidPartialOrder.irreflexive (partialOrderToSetoidPartialOrder P) = PartialOrder.irreflexive P SetoidPartialOrder.<Transitive (partialOrderToSetoidPartialOrder P) = PartialOrder.<Transitive P
{ "alphanum_fraction": 0.6601636249, "avg_line_length": 49.65625, "ext": "agda", "hexsha": "4a7750658ab26edf112dd926f681e5e30ed0f828", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Orders/Partial/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Orders/Partial/Definition.agda", "max_line_length": 142, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Orders/Partial/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 570, "size": 1589 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Nat.Lower where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Data.Bool open import Cubical.Data.Empty as Empty open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Data.Unit open import Cubical.Relation.Nullary isMonotone : (ℕ → Bool) → Type isMonotone f = ∀ n → f n ≥ f (suc n) isPropIsMonotone : ∀ f → isProp (isMonotone f) isPropIsMonotone f = isPropΠ λ n → isProp≥ (f n) (f (suc n)) isPropDepIsMonotone : isPropDep isMonotone isPropDepIsMonotone = isOfHLevel→isOfHLevelDep 1 isPropIsMonotone {_} Monotone : Type Monotone = Σ _ isMonotone isSetMonotone : isSet Monotone isSetMonotone = isSetΣ (isSet→ isSetBool) (isProp→isSet ∘ isPropIsMonotone) private variable ℓ : Level m n : Monotone private mz : ℕ → Bool mz _ = false ms : (ℕ → Bool) → (ℕ → Bool) ms _ zero = true ms f (suc m) = f m msm : ∀{f} → isMonotone f → isMonotone (ms f) msm _ zero = _ msm mf (suc m) = mf m mp : (ℕ → Bool) → (ℕ → Bool) mp f k = f (suc k) ms-mp : ∀ f → f 0 ≡ true → ms (mp f) ≡ f ms-mp f p i 0 = p (~ i) ms-mp f p i (suc k) = f (suc k) mz-lemma : ∀ f → isMonotone f → f 0 ≡ false → ∀ k → false ≡ f k mz-lemma f _ p zero = sym p mz-lemma f mf p (suc k) with f 1 | inspect f 1 | subst (_≥ f 1) p (mf 0) ... | false | [ q ]ᵢ | _ = mz-lemma (mp f) (mf ∘ suc) q k msuc : Monotone → Monotone msuc m .fst = ms (fst m) msuc m .snd = msm (snd m) mpred : Monotone → Monotone mpred f .fst k = f .fst (suc k) mpred f .snd k = f .snd (suc k) data MView : (ℕ → Bool) → Type where mzv : MView mz msv : ∀ n → MView (ms n) mview : ∀ f → isMonotone f → MView f mview f mf with f 0 | inspect f 0 ... | true | [ p ]ᵢ = subst MView (ms-mp f p) (msv (mp f)) ... | false | [ p ]ᵢ = subst MView (funExt (mz-lemma f mf p)) mzv ∞ : Monotone ∞ .fst _ = true ∞ .snd _ = _ Detached : (ℕ → Bool) → Type Detached p = Σ[ n ∈ ℕ ] Bool→Type (p n) Lower : Monotone → Type Lower m = Detached (fst m) Detached-ext : ∀{p : ℕ → Bool} (k l : Detached p) → k .fst ≡ l .fst → k ≡ l Detached-ext {p} (k , q) (l , r) s = ΣPathP (s , isPropDep∘ p isPropDep-Bool→Type q r s) Lower∞≃ℕ : Lower ∞ ≃ ℕ Lower∞≃ℕ = isoToEquiv λ where .fun → fst .inv n → n , _ .rightInv _ → refl .leftInv _ → refl where open Iso private apart : ℕ → ℕ → Type apart zero zero = ⊥ apart (suc m) (suc n) = apart m n apart _ _ = Unit ≢→apart : (i j : ℕ) → ¬ i ≡ j → apart i j ≢→apart zero zero ¬p = ¬p refl ≢→apart (suc i) (suc j) ¬p = ≢→apart i j (¬p ∘ cong suc) ≢→apart zero (suc _) _ = _ ≢→apart (suc _) zero _ = _ apart→≢ : (i j : ℕ) → apart i j → ¬ i ≡ j apart→≢ (suc _) zero _ = snotz apart→≢ zero (suc _) _ = znots apart→≢ (suc i) (suc j) i#j = apart→≢ i j i#j ∘ cong predℕ isPropApart : ∀ i j → isProp (apart i j) isPropApart 0 0 = isProp⊥ isPropApart (suc i) (suc j) = isPropApart i j isPropApart 0 (suc _) = isPropUnit isPropApart (suc _) 0 = isPropUnit _#_ : ∀{P : ℕ → Type ℓ} → Σ ℕ P → Σ ℕ P → Type u # v = apart (fst u) (fst v) _#?_ : ∀{P : ℕ → Type ℓ} → (u v : Σ ℕ P) → (u # v) ⊎ (fst u ≡ fst v) u #? v = decide (fst u) (fst v) where decide : (m n : ℕ) → apart m n ⊎ (m ≡ n) decide zero zero = inr refl decide zero (suc _) = inl _ decide (suc _) zero = inl _ decide (suc m) (suc n) = map (idfun _) (cong suc) (decide m n) #→≢ : ∀{P : ℕ → Type ℓ} (u v : Σ ℕ P) → u # v → ¬ u ≡ v #→≢ u v d = apart→≢ (fst u) (fst v) d ∘ cong fst isProp# : ∀{P : ℕ → Type ℓ} (u v : Σ ℕ P) → isProp (u # v) isProp# u v = isPropApart (fst u) (fst v) isProp#Depᵣ : ∀{P : ℕ → Type ℓ} (v : Σ ℕ P) → isPropDep (λ u → u # v) isProp#Depᵣ v = isOfHLevel→isOfHLevelDep 1 (λ u → isProp# u v) {_} {_} ≢→# : ∀{p} (u v : Detached p) → ¬ u ≡ v → u # v ≢→# u v ¬p = ≢→apart (fst u) (fst v) (¬p ∘ Detached-ext u v) dzero : ∀{f} → Detached (ms f) dzero = zero , _ dsuc : ∀{f} → Detached f → Detached (ms f) dsuc (l , p) = suc l , p module Untangle {α β} (f : Detached (ms α) → Detached (ms β)) (g : Detached (ms β) → Detached (ms α)) (rinv : section f g) (linv : retract f g) where default : ∀{γ} → (v d : Detached (ms γ)) → v # d → Detached γ default (suc l , p) _ _ = l , p default (0 , _) (suc l , p) _ = l , p #-f : ∀ u v → u # v → f u # f v #-f u v u#v with f u #? f v ... | inl fu#fv = fu#fv ... | inr fu≡fv = Empty.rec (#→≢ u v u#v u≡v) where u≡v : u ≡ v u≡v = sym (linv u) ∙∙ cong g (Detached-ext (f u) (f v) fu≡fv) ∙∙ linv v #-g : ∀ u v → u # v → g u # g v #-g u v u#v with g u #? g v ... | inl gu#gv = gu#gv ... | inr gu≡gv = Empty.rec (#→≢ u v u#v u≡v) where u≡v : u ≡ v u≡v = sym (rinv u) ∙∙ cong f (Detached-ext (g u) (g v) gu≡gv) ∙∙ rinv v f- : Detached α → Detached β f- v = default (f (dsuc v)) (f dzero) (#-f (dsuc v) dzero _) g- : Detached β → Detached α g- v = default (g (dsuc v)) (g dzero) (#-g (dsuc v) dzero _) g-f-z : ∀ v u → g dzero ≡ dsuc v → g (dsuc u) ≡ dzero → g- u ≡ v g-f-z v u r s with g (dsuc u) | g dzero | #-g (dsuc u) dzero _ ... | zero , _ | suc k , q | #gf = Detached-ext (k , q) v (cong (predℕ ∘ fst) r) ... | w@(suc k , _) | _ | #gf = Empty.rec (snotz (cong fst s)) g-f-s : ∀ v u → g (dsuc u) ≡ dsuc v → g- u ≡ v g-f-s v u r with g (dsuc u) | #-g (dsuc u) dzero _ ... | suc k , q | #gf = Detached-ext (k , q) v (cong (predℕ ∘ fst) r) ... | zero , _ | #gf = Empty.rec (znots (cong fst r)) g-f- : ∀(v : Detached α) → g- (f- v) ≡ v g-f- v with f (dsuc v) | linv (dsuc v) | #-f (dsuc v) dzero _ g-f- v | suc j , p | r | #f = g-f-s v (j , p) r ... | zero , _ | r | #f with f dzero | linv dzero ... | suc j , p | s = g-f-z v (j , p) r s f-g-z : ∀ v u → f dzero ≡ dsuc v → f (dsuc u) ≡ dzero → f- u ≡ v f-g-z v u r s with f (dsuc u) | f dzero | #-f (dsuc u) dzero _ ... | zero , _ | suc k , q | #fg = Detached-ext (k , q) v (cong (predℕ ∘ fst) r) ... | (suc _ , _) | _ | _ = Empty.rec (snotz (cong fst s)) f-g-s : ∀ v u → f (dsuc u) ≡ dsuc v → f- u ≡ v f-g-s v u r with f (dsuc u) | #-f (dsuc u) dzero _ ... | suc k , q | _ = Detached-ext (k , q) v (cong (predℕ ∘ fst) r) ... | zero , _ | _ = Empty.rec (znots (cong fst r)) f-g- : ∀ v → f- (g- v) ≡ v f-g- v with g (dsuc v) | rinv (dsuc v) | #-g (dsuc v) dzero _ ... | suc j , q | r | _ = f-g-s v (j , q) r ... | zero , _ | r | _ with g dzero | rinv dzero ... | suc k , q | s = f-g-z v (k , q) r s open Iso iso- : Iso (Detached α) (Detached β) iso- .fun = f- iso- .inv = g- iso- .rightInv = f-g- iso- .leftInv = g-f- iso-pred : ∀{α β} → Iso (Detached (ms α)) (Detached (ms β)) → Iso (Detached α) (Detached β) iso-pred i = Untangle.iso- fun inv rightInv leftInv where open Iso i isInjectiveLower : Lower m ≡ Lower n → m ≡ n isInjectiveLower {m} {n} P = curry ΣPathP (lemma (m .fst) (n .fst) (m .snd) (n .snd) (pathToIso P)) (isPropDepIsMonotone (m .snd) (n .snd) _) where lemma : ∀ α β → isMonotone α → isMonotone β → Iso (Detached α) (Detached β) → α ≡ β lemma α β mα mβ I i k with mview α mα | mview β mβ ... | mzv | mzv = mz k lemma α β mα mβ I i 0 | msv _ | msv _ = true lemma α β mα mβ I i (suc k) | msv α' | msv β' = lemma α' β' (mα ∘ suc) (mβ ∘ suc) (iso-pred I) i k lemma α β mα mβ I i k | mzv | msv β' = Empty.rec {A = α k ≡ β k} (Iso.inv I dzero .snd) i lemma α β mα mβ I i k | msv _ | mzv = Empty.rec {A = α k ≡ β k} (Iso.fun I dzero .snd) i
{ "alphanum_fraction": 0.5440578974, "avg_line_length": 29.2788104089, "ext": "agda", "hexsha": "abb8a88aa086d91df48c8cd59cc162f5b4533ffe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Lower.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Lower.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Lower.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 3499, "size": 7876 }
------------------------------------------------------------------------ -- An observation about weak bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Bisimilarity.Observation where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Function-universe equality-with-J as F hiding (_∘_) open import H-level.Closure equality-with-J ------------------------------------------------------------------------ -- The D type mutual -- A mixed inductive-coinductive type. data D (i : Size) : Type where -- Output a boolean and continue. Note that this constructor is -- inductive. put : Bool → D i → D i -- Wait. The intention is that finite delay should not be -- "observable" (as captured by weak bisimilarity). later : D′ i → D i record D′ (i : Size) : Type where coinductive field force : {j : Size< i} → D j open D′ public private variable b b′ : Bool n : ℕ i : Size x y z : D ∞ x′ y′ : D′ ∞ -- Making put inductive is a bit strange, because one can construct a -- coinductive variant of it by using later. put′ : Bool → D′ i → D i put′ b x = later λ { .force → put b (x .force) } ------------------------------------------------------------------------ -- Weak bisimilarity -- The output relation: x [ n ]≡ b means that x can output at least n -- times, and the n-th output is b. data _[_]≡_ : D ∞ → ℕ → Bool → Type where put-zero : put b x [ zero ]≡ b put-suc : x [ n ]≡ b → put b′ x [ suc n ]≡ b later : x′ .force [ n ]≡ b → later x′ [ n ]≡ b -- The output relation is propositional. []≡-propositional : Is-proposition (x [ n ]≡ b) []≡-propositional {b = true} put-zero put-zero = refl []≡-propositional {b = false} put-zero put-zero = refl []≡-propositional (put-suc p) (put-suc q) = cong put-suc ([]≡-propositional p q) []≡-propositional (later p) (later q) = cong later ([]≡-propositional p q) -- Weak bisimilarity. Two computations are weakly bisimilar if the -- output relation cannot distinguish between them. _≈_ : D ∞ → D ∞ → Type x ≈ y = ∀ {n b} → x [ n ]≡ b ⇔ y [ n ]≡ b -- Weak bisimilarity is propositional (assuming extensionality). ≈-propositional : Extensionality lzero lzero → Is-proposition (x ≈ y) ≈-propositional ext = implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → ⇔-closure ext 1 []≡-propositional []≡-propositional -- The put constructor and the function put′ are closely related. put≈put′ : put b (x′ .force) ≈ put′ b x′ put≈put′ ._⇔_.to q = later q put≈put′ ._⇔_.from (later q) = q -- Weak bisimilarity is an equivalence relation. reflexive-≈ : x ≈ x reflexive-≈ = F.id symmetric-≈ : x ≈ y → y ≈ x symmetric-≈ x≈y = F.inverse x≈y transitive-≈ : x ≈ y → y ≈ z → x ≈ z transitive-≈ x≈y y≈z = y≈z F.∘ x≈y -- The later constructor can be removed to the left and to the right. laterˡ⁻¹ : later x′ ≈ y → x′ .force ≈ y laterˡ⁻¹ p ._⇔_.to q = _⇔_.to p (later q) laterˡ⁻¹ p ._⇔_.from q with _⇔_.from p q … | later q′ = q′ laterʳ⁻¹ : x ≈ later y′ → x ≈ y′ .force laterʳ⁻¹ = symmetric-≈ ∘ laterˡ⁻¹ ∘ symmetric-≈ later⁻¹ : later x′ ≈ later y′ → x′ .force ≈ y′ .force later⁻¹ = laterˡ⁻¹ ∘ laterʳ⁻¹ -- The put constructor can be removed if it is removed on both sides -- at the same time. put⁻¹ : put b x ≈ put b′ y → x ≈ y put⁻¹ p ._⇔_.to q with _⇔_.to p (put-suc q) … | put-suc q′ = q′ put⁻¹ p ._⇔_.from q with _⇔_.from p (put-suc q) … | put-suc q′ = q′ ------------------------------------------------------------------------ -- Not weak bisimilarity module Not-weak-bisimilarity where mutual infix 4 [_]_≈_ [_]_≈′_ -- After having seen the definition of weak bisimilarity in -- Delay-monad.Bisimilarity one might believe that weak -- bisimilarity for D can be defined in the following way: data [_]_≈_ (i : Size) : D ∞ → D ∞ → Type where put : [ i ] x ≈ y → [ i ] put b x ≈ put b y later : [ i ] x′ .force ≈′ y′ .force → [ i ] later x′ ≈ later y′ laterˡ : [ i ] x′ .force ≈ y → [ i ] later x′ ≈ y laterʳ : [ i ] x ≈ y′ .force → [ i ] x ≈ later y′ record [_]_≈′_ (i : Size) (x y : D ∞) : Type where coinductive field force : {j : Size< i} → [ j ] x ≈ y open [_]_≈′_ public -- The relation [ i ]_≈_ is reflexive and symmetric. reflexive-[]≈ : [ i ] x ≈ x reflexive-[]≈ {x = put _ _} = put reflexive-[]≈ reflexive-[]≈ {x = later _} = later λ { .force → reflexive-[]≈ } symmetric-[]≈ : [ i ] x ≈ y → [ i ] y ≈ x symmetric-[]≈ (put p) = put (symmetric-[]≈ p) symmetric-[]≈ (later p) = later λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (laterˡ p) = laterʳ (symmetric-[]≈ p) symmetric-[]≈ (laterʳ p) = laterˡ (symmetric-[]≈ p) -- However, the relation [ ∞ ]_≈_ is not transitive. ¬-transitive-≈ : ¬ (∀ {x y z} → [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z) ¬-transitive-≈ trans = x≉z x≈z where x̲ : D i x̲ = later λ { .force → put true (put true x̲) } y̲ : D i y̲ = later λ { .force → put true y̲ } z̲ : D i z̲ = put true (later λ { .force → put true z̲ }) x≈y : [ i ] x̲ ≈ y̲ x≈y = later λ { .force → put (laterʳ (put x≈y)) } y≈z : [ i ] y̲ ≈ z̲ y≈z = laterˡ (put (later λ { .force → put y≈z })) x≉z : ¬ [ ∞ ] x̲ ≈ z̲ x≉z (laterˡ (put (laterʳ (put p)))) = x≉z p x≈z : [ ∞ ] x̲ ≈ z̲ x≈z = trans x≈y y≈z -- Thus the two relations _≈_ and [ ∞ ]_≈_ are not pointwise -- logically equivalent. ¬≈⇔[]≈ : ¬ (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ¬≈⇔[]≈ = (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ↝⟨ (λ hyp x≈y y≈z → _⇔_.to hyp (transitive-≈ (_⇔_.from hyp x≈y) (_⇔_.from hyp y≈z))) ⟩ (∀ {x y z} → [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z) ↝⟨ ¬-transitive-≈ ⟩□ ⊥ □ -- The relation [ ∞ ]_≈_ is contained in _≈_. []≈→≈ : [ ∞ ] x ≈ y → x ≈ y []≈→≈ = λ p → record { to = ≈→→ p; from = ≈→→ (symmetric-[]≈ p) } where ≈→→ : [ ∞ ] x ≈ y → x [ n ]≡ b → y [ n ]≡ b ≈→→ (put p) put-zero = put-zero ≈→→ (put p) (put-suc q) = put-suc (≈→→ p q) ≈→→ (later p) (later q) = later (≈→→ (p .force) q) ≈→→ (laterˡ p) (later q) = ≈→→ p q ≈→→ (laterʳ p) q = later (≈→→ p q) -- The relation _≈_ is not contained in [ ∞ ]_≈_. ¬≈→[]≈ : ¬ (∀ {x y} → x ≈ y → [ ∞ ] x ≈ y) ¬≈→[]≈ = (∀ {x y} → x ≈ y → [ ∞ ] x ≈ y) ↝⟨ (λ hyp → record { to = hyp; from = []≈→≈ }) ⟩ (∀ {x y} → x ≈ y ⇔ [ ∞ ] x ≈ y) ↝⟨ ¬≈⇔[]≈ ⟩□ ⊥ □ ------------------------------------------------------------------------ -- An alternative definition of weak bisimilarity mutual infix 4 [_]_≈_ [_]_≈′_ -- The problem with Not-weak-bisimilarity.[_]_≈_ is that its put -- constructor is inductive. The put constructor of D is inductive, -- but as noted above (put′, put≈put′) this is a bit strange, and it -- might make more sense to make put coinductive. -- -- The following definition of weak bisimilarity uses a coinductive -- put constructor. data [_]_≈_ (i : Size) : D ∞ → D ∞ → Type where put : [ i ] x ≈′ y → [ i ] put b x ≈ put b y later : [ i ] x′ .force ≈′ y′ .force → [ i ] later x′ ≈ later y′ laterˡ : [ i ] x′ .force ≈ y → [ i ] later x′ ≈ y laterʳ : [ i ] x ≈ y′ .force → [ i ] x ≈ later y′ record [_]_≈′_ (i : Size) (x y : D ∞) : Type where coinductive field force : {j : Size< i} → [ j ] x ≈ y open [_]_≈′_ public -- The relation [ ∞ ]_≈_ is not propositional. ¬-≈[]-propositional : ¬ (∀ {x y} → Is-proposition ([ ∞ ] x ≈ y)) ¬-≈[]-propositional = (∀ {x y} → Is-proposition ([ ∞ ] x ≈ y)) ↝⟨ (λ prop → prop _ _) ⟩ proof₁ ≡ proof₂ ↝⟨ (λ ()) ⟩□ ⊥ □ where never : D i never = later λ { .force → never } proof₁ : ∀ {i} → [ i ] never ≈ never proof₁ = later λ { .force → proof₁ } proof₂ : ∀ {i} → [ i ] never ≈ never proof₂ = laterˡ proof₁ -- The relation [ i ]_≈_ is reflexive and symmetric. reflexive-[]≈ : [ i ] x ≈ x reflexive-[]≈ {x = put _ _} = put λ { .force → reflexive-[]≈ } reflexive-[]≈ {x = later _} = later λ { .force → reflexive-[]≈ } symmetric-[]≈ : [ i ] x ≈ y → [ i ] y ≈ x symmetric-[]≈ (put p) = put λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (later p) = later λ { .force → symmetric-[]≈ (p .force) } symmetric-[]≈ (laterˡ p) = laterʳ (symmetric-[]≈ p) symmetric-[]≈ (laterʳ p) = laterˡ (symmetric-[]≈ p) -- The two relations _≈_ and [ ∞ ]_≈_ are pointwise logically -- equivalent. ≈⇔[]≈ : x ≈ y ⇔ [ ∞ ] x ≈ y ≈⇔[]≈ = record { to = to _ _ ; from = λ p → record { to = from p; from = from (symmetric-[]≈ p) } } where from : [ ∞ ] x ≈ y → x [ n ]≡ b → y [ n ]≡ b from (put p) put-zero = put-zero from (put p) (put-suc q) = put-suc (from (p .force) q) from (later p) (later q) = later (from (p .force) q) from (laterˡ p) (later q) = from p q from (laterʳ p) q = later (from p q) mutual to : ∀ x y → x ≈ y → [ i ] x ≈ y to (put b x) y p = symmetric-[]≈ (to′ (symmetric-≈ p) (_⇔_.to p put-zero)) to x (put b y) p = to′ p (_⇔_.from p put-zero) to (later x) (later y) p = later λ { .force → to _ _ (later⁻¹ p) } to′ : x ≈ put b y → x [ zero ]≡ b → [ i ] x ≈ put b y to′ p put-zero = put λ { .force → to _ _ (put⁻¹ p) } to′ p (later q) = laterˡ (to′ (laterˡ⁻¹ p) q) -- The relation [ ∞ ]_≈_ is transitive. transitive-[]≈ : [ ∞ ] x ≈ y → [ ∞ ] y ≈ z → [ ∞ ] x ≈ z transitive-[]≈ p q = _⇔_.to ≈⇔[]≈ (transitive-≈ (_⇔_.from ≈⇔[]≈ p) (_⇔_.from ≈⇔[]≈ q))
{ "alphanum_fraction": 0.4915970615, "avg_line_length": 31.546031746, "ext": "agda", "hexsha": "066aeba8e3817ad1165f521418254bb3ccbfc2c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Bisimilarity/Observation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Bisimilarity/Observation.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Bisimilarity/Observation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3969, "size": 9937 }
open import FRP.JS.String using ( String ) open import FRP.JS.Time using ( Time ) module FRP.JS.Date where postulate Date : Set fromTime : Time → Date toTime : Date → Time toString : Date → String toUTCString : Date → String {-# COMPILED_JS fromTime require("agda-frp-time").date #-} {-# COMPILED_JS toTime function(d) { return d.getTime(); } #-} {-# COMPILED_JS toString function(d) { return d.toString(); } #-} {-# COMPILED_JS toUTCString function(d) { return d.toUTCString(); } #-}
{ "alphanum_fraction": 0.6773547094, "avg_line_length": 27.7222222222, "ext": "agda", "hexsha": "bcfc7efb8e804d02dd5b81f5d77105cf8d1c84fb", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Date.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Date.agda", "max_line_length": 71, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Date.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 140, "size": 499 }
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym) module AKS.Nat.Combinatorial where open import AKS.Nat.Base using (ℕ; _+_; _∸_; _*_; _≤_) open ℕ open import AKS.Nat.Properties using (*-identityʳ) open import AKS.Nat.Properties using (0≤n; ≤-refl; m≤m+n; *-mono-≤; module ≤-Reasoning) open import AKS.Nat.Properties using (<-irrefl; *-mono-<) open import AKS.Nat.Divisibility using (_/_) open ≤-Reasoning _C_ : ℕ → ℕ → ℕ n C zero = 1 zero C suc k = 0 suc n C suc k = n C k + n C (suc k) _! : ℕ → ℕ zero ! = 1 suc n ! = suc n * n ! 1≤n! : ∀ n → 1 ≤ n ! 1≤n! zero = ≤-refl 1≤n! (suc n) = begin 1 ≤⟨ 1≤n! n ⟩ n ! ≤⟨ m≤m+n ⟩ n ! + n * n ! ≡⟨ refl ⟩ (1 + n) ! ∎ n≤n! : ∀ n → n ≤ n ! n≤n! zero = 0≤n n≤n! (suc n) = begin suc n ≡⟨ sym (*-identityʳ (suc n)) ⟩ suc n * 1 ≤⟨ *-mono-≤ (≤-refl {suc n}) (1≤n! n) ⟩ (1 + n) ! ∎ _C′_ : ℕ → ℕ → ℕ n C′ k = (n ! / (k ! * (n ∸ k) !)) {≢⇒¬≟ den≢0} where den≢0 : k ! * (n ∸ k) ! ≢ 0 den≢0 den≡0 = <-irrefl (sym den≡0) (*-mono-< (1≤n! k) (1≤n! (n ∸ k))) nC′0≡1 : ∀ {n} → n C′ 0 ≡ 1 nC′0≡1 {n} = lemma num≡dem where num≡dem : n ! ≡ (0 ! * (n ∸ 0) !) num≡dem = sym (+-identityʳ (n !)) lemma : ∀ {num dem} .{dem≢0} → num ≡ dem → (num / dem) {dem≢0} ≡ 1 lemma {num} {_} {dem≢0} refl = n/n≡1 num {dem≢0} -- 0C′n≡0 : ∀ {k} → 0 C′ k ≡ 0 -- 0C′n≡0 {k} = {!0/n≡0 (k ! * (0 ∸ k) !) {?}!} -- lem : ∀ {n k} → n C k ≡ n C′ k -- lem {n} {zero} = sym (nC′0≡1 {n}) -- lem {zero} {suc k} = {!refl!} -- lem {suc n} {suc k} with lem {n} {k} | lem {n} {suc k} -- ... | p₁ | p₂ = {!!}
{ "alphanum_fraction": 0.4856046065, "avg_line_length": 26.05, "ext": "agda", "hexsha": "e8fa8d881fb5767d4ec9effdf9e31727d94eb613", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Nat/Combinatorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Nat/Combinatorial.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Nat/Combinatorial.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 836, "size": 1563 }
{-# OPTIONS --without-K #-} module Lecture6 where import Lecture5 open Lecture5 public -- Section 6.1 Contractible types is-contr : {i : Level} → UU i → UU i is-contr A = Sigma A (λ a → (x : A) → Id a x) center : {i : Level} {A : UU i} → is-contr A → A center (dpair c C) = c -- We make sure that the contraction is coherent in a straightforward way contraction : {i : Level} {A : UU i} (H : is-contr A) → (const A A (center H) ~ id) contraction (dpair c C) x = concat _ (inv (C c)) (C x) coh-contraction : {i : Level} {A : UU i} (H : is-contr A) → Id (contraction H (center H)) refl coh-contraction (dpair c C) = left-inv (C c) ev-pt : {i j : Level} (A : UU i) (a : A) (B : A → UU j) → ((x : A) → B x) → B a ev-pt A a B f = f a sing-ind-is-contr : {i j : Level} (A : UU i) (H : is-contr A) (B : A → UU j) → B (center H) → (x : A) → B x sing-ind-is-contr A H B b x = tr B (contraction H x) b sing-comp-is-contr : {i j : Level} (A : UU i) (H : is-contr A) (B : A → UU j) → (((ev-pt A (center H) B) ∘ (sing-ind-is-contr A H B)) ~ id) sing-comp-is-contr A H B b = ap (λ (ω : Id (center H) (center H)) → tr B ω b) (coh-contraction H) is-sing-is-contr : {i j : Level} (A : UU i) (H : is-contr A) (B : A → UU j) → sec (ev-pt A (center H) B) is-sing-is-contr A H B = dpair (sing-ind-is-contr A H B) (sing-comp-is-contr A H B) is-sing : {i : Level} (A : UU i) → A → UU (lsuc i) is-sing {i} A a = (B : A → UU i) → sec (ev-pt A a B) is-contr-is-sing : {i : Level} (A : UU i) (a : A) → is-sing A a → is-contr A is-contr-is-sing A a S = dpair a (pr1 (S (λ y → Id a y)) refl) is-sing-unit : is-sing unit star is-sing-unit B = dpair ind-unit (λ b → refl) is-contr-unit : is-contr unit is-contr-unit = is-contr-is-sing unit star (is-sing-unit) is-sing-total-path : {i : Level} (A : UU i) (a : A) → is-sing (Σ A (λ x → Id a x)) (dpair a refl) is-sing-total-path A a B = dpair (ind-Σ ∘ (ind-Id _)) (λ b → refl) is-contr-total-path : {i : Level} (A : UU i) (a : A) → is-contr (Σ A (λ x → Id a x)) is-contr-total-path A a = is-contr-is-sing _ _ (is-sing-total-path A a) -- Section 6.2 Contractible maps fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (b : B) → UU (i ⊔ j) fib f b = Σ _ (λ x → Id (f x) b) is-contr-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-contr-map f = (y : _) → is-contr (fib f y) -- Our goal is to show that contractible maps are equivalences. -- First we construct the inverse of a contractible map. inv-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-contr-map f → B → A inv-is-contr-map H y = pr1 (center (H y)) -- Then we show that the inverse is a section. issec-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (H : is-contr-map f) → (f ∘ (inv-is-contr-map H)) ~ id issec-is-contr-map H y = pr2 (center (H y)) -- Then we show that the inverse is also a retraction. isretr-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (H : is-contr-map f) → ((inv-is-contr-map H) ∘ f) ~ id isretr-is-contr-map {_} {_} {A} {B} {f} H x = ap {_} {_} {fib f (f x)} {A} pr1 {dpair (inv-is-contr-map H (f x)) (issec-is-contr-map H (f x))} {dpair x refl} ( concat (center (H (f x))) (inv (contraction (H (f x)) (dpair (inv-is-contr-map H (f x)) (issec-is-contr-map H (f x))))) (contraction (H (f x)) (dpair x refl))) -- Finally we put it all together to show that contractible maps are equivalences. is-equiv-is-contr-map : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-contr-map f → is-equiv f is-equiv-is-contr-map H = pair (dpair (inv-is-contr-map H) (issec-is-contr-map H)) (dpair (inv-is-contr-map H) (isretr-is-contr-map H)) -- Section 6.3 Equivalences are contractible maps htpy-nat : {i j : Level} {A : UU i} {B : UU j} {f g : A → B} (H : f ~ g) {x y : A} (p : Id x y) → Id (concat _ (H x) (ap g p)) (concat _ (ap f p) (H y)) htpy-nat H refl = right-unit (H _) -- Should left-unwhisk and right-unwhisk be moved to Lecture 4? That's where they most naturally fit. left-unwhisk : {i : Level} {A : UU i} {x y z : A} (p : Id x y) {q r : Id y z} → Id (concat _ p q) (concat _ p r) → Id q r left-unwhisk refl s = concat _ (inv (left-unit _)) (concat _ s (left-unit _)) right-unwhisk : {i : Level} {A : UU i} {x y z : A} {p q : Id x y} (r : Id y z) → Id (concat _ p r) (concat _ q r) → Id p q right-unwhisk refl s = concat _ (inv (right-unit _)) (concat _ s (right-unit _)) htpy-red : {i : Level} {A : UU i} {f : A → A} (H : f ~ id) → (x : A) → Id (H (f x)) (ap f (H x)) htpy-red {_} {A} {f} H x = right-unwhisk (H x) (concat (concat (f x) (H (f x)) (ap id (H x))) (ap (concat (f x) (H (f x))) (inv (ap-id (H x)))) (htpy-nat H (H x))) center-is-invertible : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-invertible f → (y : B) → fib f y center-is-invertible {i} {j} {A} {B} {f} (dpair g (dpair issec isretr)) y = (dpair (g y) (concat _ (inv (ap (f ∘ g) (issec y))) (concat _ (ap f (isretr (g y))) (issec y)))) mv-left : {i : Level} {A : UU i} {x y z : A} (p : Id x y) {q : Id y z} {r : Id x z} → Id (concat _ p q) r → Id q (concat _ (inv p) r) mv-left refl s = s square : {i : Level} {A : UU i} {x y1 y2 z : A} (p1 : Id x y1) (q1 : Id y1 z) (p2 : Id x y2) (q2 : Id y2 z) → UU i square p q p' q' = Id (concat _ p q) (concat _ p' q') sq-left-whisk : {i : Level} {A : UU i} {x y1 y2 z : A} {p1 p1' : Id x y1} (s : Id p1 p1') {q1 : Id y1 z} {p2 : Id x y2} {q2 : Id y2 z} → square p1 q1 p2 q2 → square p1' q1 p2 q2 sq-left-whisk refl sq = sq sq-top-whisk : {i : Level} {A : UU i} {x y1 y2 z : A} {p1 : Id x y1} {q1 : Id y1 z} {p2 p2' : Id x y2} (s : Id p2 p2') {q2 : Id y2 z} → square p1 q1 p2 q2 → square p1 q1 p2' q2 sq-top-whisk refl sq = sq contraction-is-invertible : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (I : is-invertible f) → (y : B) → (t : fib f y) → Id (center-is-invertible I y) t contraction-is-invertible {i} {j} {A} {B} {f} (dpair g (dpair issec isretr)) y (dpair x refl) = eq-pair (dpair (isretr x) (concat _ (tr-fib (isretr x) (f x) (pr2 (center-is-invertible (dpair g (dpair issec isretr)) (f x)))) (inv (mv-left (ap f (isretr x)) (concat _ (right-unit (ap f (isretr x))) (mv-left (ap (f ∘ g) (issec y)) (sq-left-whisk {_} {_} {f(g(f(g(f x))))} {f(g(f x))} {f(g(f x))} {f x} {issec (f(g(f x)))} {ap (f ∘ g) (issec (f x))} (htpy-red issec (f x)) {ap f (isretr x)} {ap f (isretr (g (f x)))} {issec (f x)} (sq-top-whisk {_} {_} {f(g(f(g(f x))))} {f(g(f x))} {f(g(f x))} {f x} {issec (f(g(f x)))} {_} {_} {_} (concat _ (ap-comp f (g ∘ f) (isretr x)) (inv (ap (ap f) (htpy-red isretr x)))) (htpy-nat (htpy-right-whisk issec f) (isretr x)))))))))) is-contr-map-is-invertible : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-invertible f → is-contr-map f is-contr-map-is-invertible {i} {j} {A} {B} {f} I y = dpair (center-is-invertible I y) (contraction-is-invertible I y) is-contr-map-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → is-contr-map f is-contr-map-is-equiv = is-contr-map-is-invertible ∘ is-invertible-is-equiv is-contr-total-path' : {i : Level} (A : UU i) (a : A) → is-contr (Σ A (λ x → Id x a)) is-contr-total-path' A a = is-contr-map-is-equiv (is-equiv-id _) a -- Exercises -- Exercise 6.1 is-prop-is-contr : {i : Level} {A : UU i} → is-contr A → (x y : A) → is-contr (Id x y) is-prop-is-contr {i} {A} C = sing-ind-is-contr A C (λ x → ((y : A) → is-contr (Id x y))) (λ y → dpair (contraction C y) (ind-Id (λ z (p : Id (center C) z) → Id (contraction C z) p) (coh-contraction C) y)) -- Exercise 6.2 is-contr-retract-of : {i j : Level} {A : UU i} (B : UU j) → A retract-of B → is-contr B → is-contr A is-contr-retract-of B (dpair i (dpair r isretr)) C = dpair (r (center C)) (λ x → concat (r (i x)) (ap r (contraction C (i x))) (isretr x)) -- Exercise 6.3 is-equiv-const-is-contr : {i : Level} {A : UU i} → is-contr A → is-equiv (const A unit star) is-equiv-const-is-contr {i} {A} H = pair (dpair (ind-unit (center H)) (ind-unit refl)) (dpair (const unit A (center H)) (contraction H)) is-contr-is-equiv-const : {i : Level} {A : UU i} → is-equiv (const A unit star) → is-contr A is-contr-is-equiv-const (dpair (dpair g issec) (dpair h isretr)) = dpair (h star) isretr is-contr-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-contr B → is-contr A is-contr-is-equiv f Ef C = is-contr-is-equiv-const (is-equiv-comp (λ x → refl) Ef (is-equiv-const-is-contr C)) is-contr-is-equiv' : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-contr A → is-contr B is-contr-is-equiv' f Ef C = is-contr-is-equiv (inv-is-equiv Ef) (is-equiv-inv-is-equiv Ef) C is-equiv-is-contr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-contr A → is-contr B → is-equiv f is-equiv-is-contr {i} {j} {A} {B} f CA CB = pair (dpair (const B A (center CA)) (sing-ind-is-contr B CB _ (inv (contraction CB (f (center CA)))))) (dpair (const B A (center CA)) (contraction CA))
{ "alphanum_fraction": 0.5440797941, "avg_line_length": 39.8461538462, "ext": "agda", "hexsha": "b8e1e1e4675cfa3b6f82468f2bccb9180d80eaae", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z", "max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "glangmead/hott_cmu80818", "max_forks_repo_path": "Lecture6.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "glangmead/hott_cmu80818", "max_issues_repo_path": "Lecture6.agda", "max_line_length": 136, "max_stars_count": 4, "max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "glangmead/hott_cmu80818", "max_stars_repo_path": "Lecture6.agda", "max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z", "num_tokens": 3851, "size": 9324 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Construct.DirectProduct module Construct.DirectProduct where open import Algebra import Algebra.Construct.DirectProduct as DirectProduct open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Level using (Level; _⊔_) private variable a b ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Raw bundles rawQuasigroup : RawQuasigroup a ℓ₁ → RawQuasigroup b ℓ₂ → RawQuasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawQuasigroup M N = record { Carrier = M.Carrier × N.Carrier ; _≈_ = Pointwise M._≈_ N._≈_ ; _∙_ = zip M._∙_ N._∙_ ; _\\_ = zip M._\\_ N._\\_ ; _//_ = zip M._//_ N._//_ } where module M = RawQuasigroup M; module N = RawQuasigroup N rawLoop : RawLoop a ℓ₁ → RawLoop b ℓ₂ → RawLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawLoop M N = record { Carrier = M.Carrier × N.Carrier ; _≈_ = Pointwise M._≈_ N._≈_ ; _∙_ = zip M._∙_ N._∙_ ; _\\_ = zip M._\\_ N._\\_ ; _//_ = zip M._//_ N._//_ ; ε = M.ε , N.ε } where module M = RawLoop M; module N = RawLoop N ------------------------------------------------------------------------ -- Bundles unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) unitalMagma M N = record { ε = M.ε , N.ε ; isUnitalMagma = record { isMagma = Magma.isMagma (magma M.magma N.magma) ; identity = (M.identityˡ , N.identityˡ <*>_) , (M.identityʳ , N.identityʳ <*>_) } } where module M = UnitalMagma M; module N = UnitalMagma N invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleMagma M N = record { _⁻¹ = map M._⁻¹ N._⁻¹ ; isInvertibleMagma = record { isMagma = Magma.isMagma (magma M.magma N.magma) ; inverse = (λ x → (M.inverseˡ , N.inverseˡ) <*> x) , (λ x → (M.inverseʳ , N.inverseʳ) <*> x) } } where module M = InvertibleMagma M; module N = InvertibleMagma N invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleUnitalMagma M N = record { ε = M.ε , N.ε ; isInvertibleUnitalMagma = record { isInvertibleMagma = InvertibleMagma.isInvertibleMagma (invertibleMagma M.invertibleMagma N.invertibleMagma) ; identity = (M.identityˡ , N.identityˡ <*>_) , (M.identityʳ , N.identityʳ <*>_) } } where module M = InvertibleUnitalMagma M; module N = InvertibleUnitalMagma N
{ "alphanum_fraction": 0.6073401736, "avg_line_length": 35.1944444444, "ext": "agda", "hexsha": "4ac62a0f6e0418ab4f6297b33f7df6484a3727fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Construct/DirectProduct.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Construct/DirectProduct.agda", "max_line_length": 121, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Construct/DirectProduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 912, "size": 2534 }
{-# OPTIONS --without-K #-} open import Base module Homotopy.PullbackDef where record pullback-diag (i : Level) : Set (suc i) where constructor diag_,_,_,_,_ field A : Set i B : Set i C : Set i f : A → C g : B → C pullback-diag-raw-eq : ∀ {i} {A A' : Set i} (p : A ≡ A') {B B' : Set i} (q : B ≡ B') {C C' : Set i} (r : C ≡ C') {f : A → C} {f' : A' → C'} (s : f' ◯ (transport _ p) ≡ transport _ r ◯ f) {g : B → C} {g' : B' → C'} (t : transport _ r ◯ g ≡ g' ◯ (transport _ q)) → (diag A , B , C , f , g) ≡ (diag A' , B' , C' , f' , g') pullback-diag-raw-eq refl refl refl refl refl = refl pullback-diag-eq : ∀ {i} {A A' : Set i} (p : A ≃ A') {B B' : Set i} (q : B ≃ B') {C C' : Set i} (r : C ≃ C') {f : A → C} {f' : A' → C'} (s : (a : A) → f' ((π₁ p) a) ≡ (π₁ r) (f a)) {g : B → C} {g' : B' → C'} (t : (b : B) → (π₁ r) (g b) ≡ g' ((π₁ q) b)) → (diag A , B , C , f , g) ≡ (diag A' , B' , C' , f' , g') pullback-diag-eq p q r {f} {f'} s {g} {g'} t = pullback-diag-raw-eq (eq-to-path p) (eq-to-path q) (eq-to-path r) (funext (λ a → ap f' (trans-id-eq-to-path p a) ∘ (s a ∘ ! (trans-id-eq-to-path r (f a))))) (funext (λ b → trans-id-eq-to-path r (g b) ∘ (t b ∘ ap g' (! (trans-id-eq-to-path q b))))) module Pullback {i} (D : pullback-diag i) where open pullback-diag D record pullback : Set i where constructor _,_,_ field a : A b : B h : f a ≡ g b pullback-eq : {a a' : A} (p : a ≡ a') {b b' : B} (q : b ≡ b') {h : f a ≡ g b} {h' : f a' ≡ g b'} (r : h ∘ ap g q ≡ ap f p ∘ h') → (a , b , h) ≡ (a' , b' , h') pullback-eq refl refl r = ap (λ u → _ , _ , u) (! (refl-right-unit _) ∘ r) open Pullback public
{ "alphanum_fraction": 0.4455899198, "avg_line_length": 31.7454545455, "ext": "agda", "hexsha": "baf7eeb89bf027fcb9c470315a8891cd9a7e8806", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PullbackDef.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PullbackDef.agda", "max_line_length": 75, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PullbackDef.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 784, "size": 1746 }
-- Module shadowing using generated modules for records and datatypes module Issue260b where module R where record R : Set where
{ "alphanum_fraction": 0.8076923077, "avg_line_length": 21.6666666667, "ext": "agda", "hexsha": "71f9ba92842292bab5a1b836efa69ddac233d350", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue260b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue260b.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue260b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 130 }
module UniDB.Subst.StarPrime where open import UniDB.Subst.Core open import UniDB.Morph.StarPrime open import UniDB.Morph.Depth module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} where mutual instance iLkStar* : Lk T (Star* Ξ) lk {{iLkStar*}} refl i = vr i lk {{iLkStar*}} (incl ξ) i = lk ξ i iLkStar₁ : Lk T (Star+ Ξ) lk {{iLkStar₁}} (step ξs ξ) i = ap {T} (depth ξ 0) (lk ξs i)
{ "alphanum_fraction": 0.5684210526, "avg_line_length": 22.619047619, "ext": "agda", "hexsha": "3aaa3d6b9c8b0384afc51ef8f90f53088d619a19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Subst/StarPrime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Subst/StarPrime.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Subst/StarPrime.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 204, "size": 475 }
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Hilbert-style formalisation of syntax. -- Nested terms. module BasicIPC.Syntax.Hilbert where open import BasicIPC.Syntax.Common public -- Derivations. infix 3 _⊢_ data _⊢_ (Γ : Cx Ty) : Ty → Set where var : ∀ {A} → A ∈ Γ → Γ ⊢ A app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B ci : ∀ {A} → Γ ⊢ A ▻ A ck : ∀ {A B} → Γ ⊢ A ▻ B ▻ A cs : ∀ {A B C} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cpair : ∀ {A B} → Γ ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → Γ ⊢ A ∧ B ▻ A csnd : ∀ {A B} → Γ ⊢ A ∧ B ▻ B unit : Γ ⊢ ⊤ infix 3 _⊢⋆_ _⊢⋆_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ ∅ = 𝟙 Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A -- Monotonicity with respect to context inclusion. mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η ci = ci mono⊢ η ck = ck mono⊢ η cs = cs mono⊢ η cpair = cpair mono⊢ η cfst = cfst mono⊢ η csnd = csnd mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Shorthand for variables. v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A v₂ = var i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem. lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ▻ B lam (var top) = ci lam (var (pop i)) = app ck (var i) lam (app t u) = app (app cs (lam t)) (lam u) lam ci = app ck ci lam ck = app ck ck lam cs = app ck cs lam cpair = app ck cpair lam cfst = app ck cfst lam csnd = app ck csnd lam unit = app ck unit lam⋆ : ∀ {Ξ Γ A} → Γ ⧺ Ξ ⊢ A → Γ ⊢ Ξ ▻⋯▻ A lam⋆ {∅} = I lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam lam⋆₀ : ∀ {Γ A} → Γ ⊢ A → ∅ ⊢ Γ ▻⋯▻ A lam⋆₀ {∅} = I lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam -- Detachment theorem. det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B det t = app (mono⊢ weak⊆ t) v₀ det⋆ : ∀ {Ξ Γ A} → Γ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⊢ A det⋆ {∅} = I det⋆ {Ξ , B} = det ∘ det⋆ {Ξ} det⋆₀ : ∀ {Γ A} → ∅ ⊢ Γ ▻⋯▻ A → Γ ⊢ A det⋆₀ {∅} = I det⋆₀ {Γ , B} = det ∘ det⋆₀ -- Cut and multicut. cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut t u = app (lam u) t multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″ trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in functional form. pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B pair t u = app (app cpair t) u fst : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ A fst t = app cfst t snd : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ B snd t = app csnd t -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) -- Convertibility. data _⋙_ {Γ : Cx Ty} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where refl⋙ : ∀ {A} → {t : Γ ⊢ A} → t ⋙ t trans⋙ : ∀ {A} → {t t′ t″ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t″ → t ⋙ t″ sym⋙ : ∀ {A} → {t t′ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t congapp⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ▻ B} → {u u′ : Γ ⊢ A} → t ⋙ t′ → u ⋙ u′ → app t u ⋙ app t′ u′ congi⋙ : ∀ {A} → {t t′ : Γ ⊢ A} → t ⋙ t′ → app ci t ⋙ app ci t′ congk⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app ck t) u ⋙ app (app ck t′) u′ congs⋙ : ∀ {A B C} → {t t′ : Γ ⊢ A ▻ B ▻ C} → {u u′ : Γ ⊢ A ▻ B} → {v v′ : Γ ⊢ A} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → app (app (app cs t) u) v ⋙ app (app (app cs t′) u′) v′ congpair⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app cpair t) u ⋙ app (app cpair t′) u′ congfst⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → app cfst t ⋙ app cfst t′ congsnd⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → app csnd t ⋙ app csnd t′ -- TODO: Verify this. beta▻ₖ⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app (app ck t) u ⋙ t -- TODO: Verify this. beta▻ₛ⋙ : ∀ {A B C} → {t : Γ ⊢ A ▻ B ▻ C} → {u : Γ ⊢ A ▻ B} → {v : Γ ⊢ A} → app (app (app cs t) u) v ⋙ app (app t v) (app u v) -- TODO: What about eta for ▻? beta∧₁⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app cfst (app (app cpair t) u) ⋙ t beta∧₂⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app csnd (app (app cpair t) u) ⋙ u eta∧⋙ : ∀ {A B} → {t : Γ ⊢ A ∧ B} → t ⋙ app (app cpair (app cfst t)) (app csnd t) eta⊤⋙ : ∀ {t : Γ ⊢ ⊤} → t ⋙ unit
{ "alphanum_fraction": 0.3829027872, "avg_line_length": 25.9207048458, "ext": "agda", "hexsha": "cf2a2c51ce779fb8264480e5309495758b1f10f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Syntax/Hilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Syntax/Hilbert.agda", "max_line_length": 86, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Syntax/Hilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2958, "size": 5884 }
------------------------------------------------------------------------ -- Small parser combinator library used by Mixfix.Acyclic.Grammar ------------------------------------------------------------------------ -- Note that while Mixfix.Acyclic.Lib and Mixfix.Cyclic.Lib may appear -- to be very similar, there are some important differences: -- -- • Mixfix.Cyclic.Lib._⊛∞_ accepts delayed parsers, -- Mixfix.Acyclic.Lib._⊛_ does not. -- -- • There is a translation from the parsers in Mixfix.Acyclic.Lib to -- the /simplified/ parsers in -- StructurallyRecursiveDescentParsing.Simplified; no such -- translation is defined for the parsers in Mixfix.Cyclic.Lib. Note -- that the depth-first backend in -- StructurallyRecursiveDescentParsing.DepthFirst only handles -- simplified parsers. module Mixfix.Acyclic.Lib where open import Algebra open import Codata.Musical.Notation open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.List using (List; []; _∷_; _++_) open import Data.List.NonEmpty using (List⁺; _∷_; [_]; _∷⁺_; _⁺∷ʳ_) import Data.List.Properties private module LM {A : Set} = Monoid (Data.List.Properties.++-monoid A) open import Data.Vec using (Vec; []; _∷_) open import Data.Product import Data.String.Properties as String open import Relation.Binary open DecSetoid String.≡-decSetoid using (_≟_) open import Relation.Nullary open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) import StructurallyRecursiveDescentParsing.Simplified as Simplified open Simplified hiding (⟦_⟧) open import StructurallyRecursiveDescentParsing.Simplified.Semantics as Sem hiding (cast∈; sound; complete) open import Mixfix.Operator using (NamePart) ------------------------------------------------------------------------ -- Programs -- Agda's termination checker only accepts corecursive definitions if -- they are /syntactically/ guarded by constructors. The following -- small language of "parser programs" reifies a selection of parser -- combinators as /constructors/. These constructors are then used in -- Mixfix.Acyclic.Grammar in order to ensure that Agda accepts the -- grammars defined there. infix 55 _+ infixl 50 _⊛_ _<$>_ infixl 5 _∣_ infixr 5 _∥_ data ParserProg : Set → Set1 where fail : ∀ {R} → ParserProg R _∣_ : ∀ {R} (p₁ : ParserProg R) (p₂ : ParserProg R) → ParserProg R _⊛_ : ∀ {R₁ R₂} (p₁ : ParserProg (R₁ → R₂)) (p₂ : ParserProg R₁) → ParserProg R₂ _<$>_ : ∀ {R₁ R₂} (f : R₁ → R₂) (p : ParserProg R₁) → ParserProg R₂ _+ : ∀ {R} (p : ParserProg R) → ParserProg (List⁺ R) _between_ : ∀ {R n} (p : ∞ (ParserProg R)) (toks : Vec NamePart (1 + n)) → ParserProg (Vec R n) _∥_ : ∀ {I i} {R : I → Set} (p₁ : ParserProg (R i)) (p₂ : ParserProg (∃ R)) → ParserProg (∃ R) -- Parses a given token. tok : NamePart → Parser NamePart false NamePart tok tok = token !>>= λ tok′ → ♯ ok tok′ module TheToken where okIndex : NamePart → Bool okIndex tok′ with tok ≟ tok′ ... | yes _ = true ... | no _ = false ok : (tok′ : NamePart) → Parser NamePart (okIndex tok′) NamePart ok tok′ with tok ≟ tok′ ... | yes _ = return tok′ ... | no _ = fail -- Interprets the parser programs as parsers. private infix 10 ♯′_ ♯′_ : {A : Set₁} → A → ∞ A ♯′ x = ♯ x ⟦_⟧ : ∀ {R} → ParserProg R → Parser NamePart false R ⟦ fail ⟧ = fail ⟦ p₁ ∣ p₂ ⟧ = ⟦ p₁ ⟧ ∣ ⟦ p₂ ⟧ ⟦ p₁ ⊛ p₂ ⟧ = ⟦ p₁ ⟧ !>>= λ f → ♯ ⟦ f <$> p₂ ⟧ ⟦ f <$> p ⟧ = ⟦ p ⟧ !>>= λ x → ♯′ return (f x) ⟦ p + ⟧ = ⟦ p ⟧ !>>= λ x → ♯ (⟦ _∷⁺_ x <$> p + ⟧ ∣ return [ x ]) ⟦ p between (t ∷ []) ⟧ = tok t !>>= λ _ → ♯′ return [] ⟦ p between (t ∷ t′ ∷ ts) ⟧ = tok t !>>= λ _ → ♯ ⟦ _∷_ <$> ♭ p ⊛ (p between (t′ ∷ ts)) ⟧ ⟦ p₁ ∥ p₂ ⟧ = (⟦ p₁ ⟧ !>>= λ x → ♯′ return (-, x)) ∣ ⟦ p₂ ⟧ ------------------------------------------------------------------------ -- Semantics of the programs module Semantics where -- This definition may seem unnecessary: why not simply define -- -- x ∈⟦ p ⟧· s = x ∈ ⟦ p ⟧ · s? -- -- One reason is that it is hard for Agda to infer the value of p -- from ⟦ p ⟧ (note that ⟦_⟧ is a function which evaluates). By -- using the definition below this problem is avoided. A more -- important reason may be that the definition below ensures that -- the details of ⟦_⟧ do not need to be understood. infix 60 <$>_ infixl 50 _⊛_ infix 4 _∈⟦_⟧·_ data _∈⟦_⟧·_ : ∀ {R} → R → ParserProg R → List NamePart → Set₁ where ∣ˡ : ∀ {R x s} {p₁ : ParserProg R} {p₂ : ParserProg R} (x∈p₁ : x ∈⟦ p₁ ⟧· s) → x ∈⟦ p₁ ∣ p₂ ⟧· s ∣ʳ : ∀ {R x s} {p₁ : ParserProg R} {p₂ : ParserProg R} (x∈p₂ : x ∈⟦ p₂ ⟧· s) → x ∈⟦ p₁ ∣ p₂ ⟧· s _⊛_ : ∀ {s₁ s₂ R₁ R₂ f x} {p₁ : ParserProg (R₁ → R₂)} {p₂ : ParserProg R₁} (f∈p₁ : f ∈⟦ p₁ ⟧· s₁) (x∈p₂ : x ∈⟦ p₂ ⟧· s₂) → f x ∈⟦ p₁ ⊛ p₂ ⟧· s₁ ++ s₂ <$>_ : ∀ {s R₁ R₂ x} {f : R₁ → R₂} {p : ParserProg R₁} (x∈p : x ∈⟦ p ⟧· s) → f x ∈⟦ f <$> p ⟧· s +-[] : ∀ {R x s} {p : ParserProg R} (x∈p : x ∈⟦ p ⟧· s) → [ x ] ∈⟦ p + ⟧· s +-∷ : ∀ {R x s₁ s₂ xs} {p : ParserProg R} (x∈p : x ∈⟦ p ⟧· s₁) (xs∈p : xs ∈⟦ p + ⟧· s₂) → x ∷⁺ xs ∈⟦ p + ⟧· s₁ ++ s₂ between-[] : ∀ {R t} {p : ∞ (ParserProg R)} → [] ∈⟦ p between (t ∷ []) ⟧· t ∷ [] between-∷ : ∀ {R n t x xs s₁ s₂} {p : ∞ (ParserProg R)} {ts : Vec NamePart (suc n)} (x∈p : x ∈⟦ ♭ p ⟧· s₁) (xs∈⋯ : xs ∈⟦ p between ts ⟧· s₂) → x ∷ xs ∈⟦ p between (t ∷ ts) ⟧· t ∷ s₁ ++ s₂ ∥ˡ : ∀ {I i} {R : I → Set} {x s} {p₁ : ParserProg (R i)} {p₂ : ParserProg (∃ R)} (x∈p₁ : x ∈⟦ p₁ ⟧· s) → (-, x) ∈⟦ p₁ ∥ p₂ ⟧· s ∥ʳ : ∀ {I i} {R : I → Set} {x s} {p₁ : ParserProg (R i)} {p₂ : ParserProg (∃ R)} (x∈p₂ : x ∈⟦ p₂ ⟧· s) → x ∈⟦ p₁ ∥ p₂ ⟧· s -- The semantics is correct. (Note that this proof only establishes -- language equivalence, not parser equivalence; see -- TotalParserCombinators.Semantics.) private drop-[] : ∀ {R s x} {p : Parser NamePart false R} → x ∈ p · s ++ [] → x ∈ p · s drop-[] = Sem.cast∈ refl refl (proj₂ LM.identity _) add-[] : ∀ {R s x} {p : ParserProg R} → x ∈⟦ p ⟧· s → x ∈⟦ p ⟧· s ++ [] add-[] {s = s} x∈p rewrite proj₂ LM.identity s = x∈p ⊛-complete : ∀ {s₁ s₂ R₁ R₂ f x} (p₁ : ParserProg (R₁ → R₂)) {p₂ : ParserProg R₁} → f ∈ ⟦ p₁ ⟧ · s₁ → x ∈ ⟦ p₂ ⟧ · s₂ → f x ∈ ⟦ p₁ ⊛ p₂ ⟧ · s₁ ++ s₂ ⊛-complete _ f∈p₁ x∈p₂ = f∈p₁ !>>= drop-[] (x∈p₂ !>>= return) tok-sound : ∀ {t t′ s} → t′ ∈ tok t · s → t ≡ t′ × s ≡ t′ ∷ [] tok-sound {t} (_!>>=_ {x = t″} token t′∈) with t ≟ t″ tok-sound (token !>>= return) | yes t≈t″ = (t≈t″ , refl) tok-sound (token !>>= ()) | no t≉t″ tok-complete : ∀ {t} → t ∈ tok t · t ∷ [] tok-complete {t} = token !>>= ok-lemma where ok-lemma : t ∈ TheToken.ok t t · [] ok-lemma with t ≟ t ... | yes refl = return ... | no t≢t with t≢t refl ... | () sound : ∀ {R x s} {p : ParserProg R} → x ∈⟦ p ⟧· s → x ∈ ⟦ p ⟧ · s sound (∣ˡ x∈p₁) = ∣ˡ (sound x∈p₁) sound (∣ʳ x∈p₂) = ∣ʳ false (sound x∈p₂) sound (_⊛_ {p₁ = p₁} f∈p₁ x∈p₂) = ⊛-complete p₁ (sound f∈p₁) (sound x∈p₂) sound (<$> x∈p) = drop-[] (sound x∈p !>>= return) sound (+-[] x∈p) = drop-[] (sound x∈p !>>= ∣ʳ false return) sound (+-∷ x∈p xs∈p) = sound x∈p !>>= ∣ˡ (drop-[] (sound xs∈p !>>= return)) sound (∥ˡ x∈p₁) = drop-[] (∣ˡ {x = (-, _)} (sound x∈p₁ !>>= return)) sound (∥ʳ x∈p₂) = ∣ʳ false (sound x∈p₂) sound between-[] = tok-complete !>>= return sound (between-∷ {s₁ = s₁} {p = p} {ts = _ ∷ _} x∈p xs∈⋯) = tok-complete !>>= ⊛-complete (_ <$> ♭ p) (drop-[] {s = s₁} (sound x∈p !>>= return)) (sound xs∈⋯) complete : ∀ {R x s} (p : ParserProg R) → x ∈ ⟦ p ⟧ · s → x ∈⟦ p ⟧· s complete fail () complete (p₁ ∣ p₂) (∣ˡ x∈p₁) = ∣ˡ (complete p₁ x∈p₁) complete (p₁ ∣ p₂) (∣ʳ .false x∈p₂) = ∣ʳ (complete p₂ x∈p₂) complete (p₁ ⊛ p₂) (f∈p₁ !>>= (y∈p₂ !>>= return)) = complete p₁ f∈p₁ ⊛ add-[] (complete p₂ y∈p₂) complete (f <$> p) (x∈p !>>= return) = add-[] (<$> complete p x∈p) complete (p +) (x∈p !>>= ∣ˡ (xs∈p+ !>>= return)) = +-∷ (complete p x∈p) (add-[] (complete (p +) xs∈p+)) complete (p +) (x∈p !>>= ∣ʳ .false return) = add-[] (+-[] (complete p x∈p)) complete (p between (t ∷ [])) (t∈ !>>= return) with tok-sound t∈ ... | (refl , refl) = between-[] complete (p between (t ∷ t′ ∷ ts)) (t∈ !>>= (x∈p !>>= return !>>= (xs∈ !>>= return))) with tok-sound t∈ ... | (refl , refl) = between-∷ (add-[] (complete (♭ p) x∈p)) (add-[] (complete (p between (t′ ∷ ts)) xs∈)) complete (p₁ ∥ p₂) (∣ˡ (x∈p₁ !>>= return)) = add-[] (∥ˡ (complete p₁ x∈p₁)) complete (p₁ ∥ p₂) (∣ʳ .false x∈p₂) = ∥ʳ (complete p₂ x∈p₂) ------------------------------------------------------------------------ -- A variant of the semantics -- The alternative semantics defined below may be slightly harder to -- understand, but it is (language) equivalent to the one above, and -- it simplifies the proof in Mixfix.Acyclic.Show. module Semantics-⊕ where infix 60 <$>_ infixl 50 _⊛_ infix 4 _⊕_∈⟦_⟧·_ data _⊕_∈⟦_⟧·_ : ∀ {R} → R → List NamePart → ParserProg R → List NamePart → Set1 where ∣ˡ : ∀ {R x s s₁} {p₁ : ParserProg R} {p₂ : ParserProg R} (x∈p₁ : x ⊕ s₁ ∈⟦ p₁ ⟧· s) → x ⊕ s₁ ∈⟦ p₁ ∣ p₂ ⟧· s ∣ʳ : ∀ {R x s s₁} {p₁ : ParserProg R} {p₂ : ParserProg R} (x∈p₂ : x ⊕ s₁ ∈⟦ p₂ ⟧· s) → x ⊕ s₁ ∈⟦ p₁ ∣ p₂ ⟧· s _⊛_ : ∀ {s s₁ s₂ R₁ R₂ f x} {p₁ : ParserProg (R₁ → R₂)} {p₂ : ParserProg R₁} (f∈p₁ : f ⊕ s₁ ∈⟦ p₁ ⟧· s) (x∈p₂ : x ⊕ s₂ ∈⟦ p₂ ⟧· s₁) → f x ⊕ s₂ ∈⟦ p₁ ⊛ p₂ ⟧· s <$>_ : ∀ {s s′ R₁ R₂ x} {f : R₁ → R₂} {p : ParserProg R₁} (x∈p : x ⊕ s′ ∈⟦ p ⟧· s) → f x ⊕ s′ ∈⟦ f <$> p ⟧· s +-[] : ∀ {R x s s₁} {p : ParserProg R} (x∈p : x ⊕ s₁ ∈⟦ p ⟧· s) → [ x ] ⊕ s₁ ∈⟦ p + ⟧· s +-∷ : ∀ {R x s s₁ s₂ xs} {p : ParserProg R} (x∈p : x ⊕ s₁ ∈⟦ p ⟧· s) (xs∈p : xs ⊕ s₂ ∈⟦ p + ⟧· s₁) → x ∷⁺ xs ⊕ s₂ ∈⟦ p + ⟧· s between-[] : ∀ {R t s} {p : ∞ (ParserProg R)} → [] ⊕ s ∈⟦ p between (t ∷ []) ⟧· t ∷ s between-∷ : ∀ {R n t x xs s s₁ s₂} {p : ∞ (ParserProg R)} {ts : Vec NamePart (suc n)} (x∈p : x ⊕ s₁ ∈⟦ ♭ p ⟧· s) (xs∈⋯ : xs ⊕ s₂ ∈⟦ p between ts ⟧· s₁) → x ∷ xs ⊕ s₂ ∈⟦ p between (t ∷ ts) ⟧· t ∷ s ∥ˡ : ∀ {I i} {R : I → Set} {x s s′} {p₁ : ParserProg (R i)} {p₂ : ParserProg (∃ R)} (x∈p₁ : x ⊕ s′ ∈⟦ p₁ ⟧· s) → (-, x) ⊕ s′ ∈⟦ p₁ ∥ p₂ ⟧· s ∥ʳ : ∀ {I i} {R : I → Set} {s s′ i′} {x : R i′} {p₁ : ParserProg (R i)} {p₂ : ParserProg (∃ R)} (x∈p₂ : (-, x) ⊕ s′ ∈⟦ p₂ ⟧· s) → (-, x) ⊕ s′ ∈⟦ p₁ ∥ p₂ ⟧· s -- The semantics is correct. ⊛-complete : ∀ {s s₁ s₂ R₁ R₂ f x} (p₁ : ParserProg (R₁ → R₂)) {p₂ : ParserProg R₁} → f ⊕ s₁ ∈ ⟦ p₁ ⟧ · s → x ⊕ s₂ ∈ ⟦ p₂ ⟧ · s₁ → f x ⊕ s₂ ∈ ⟦ p₁ ⊛ p₂ ⟧ · s ⊛-complete _ f∈p₁ x∈p₂ = f∈p₁ !>>= (x∈p₂ !>>= return) tok-sound : ∀ {t t′ s₁ s} → t′ ⊕ s₁ ∈ tok t · s → t ≡ t′ × s ≡ t′ ∷ s₁ tok-sound ∈ with Sem.⊕-sound′ ∈ tok-sound ∈ | (s , refl , ∈′) with Semantics.tok-sound ∈′ tok-sound {t} ∈ | (.(t ∷ []) , refl , ∈′) | (refl , refl) = (refl , refl) tok-complete : ∀ {t s} → t ⊕ s ∈ tok t · t ∷ s tok-complete = Sem.⊕-complete′ (_ , refl , Semantics.tok-complete) sound : ∀ {R x s s′} {p : ParserProg R} → x ⊕ s′ ∈⟦ p ⟧· s → x ⊕ s′ ∈ ⟦ p ⟧ · s sound (∣ˡ x∈p₁) = ∣ˡ (sound x∈p₁) sound (∣ʳ x∈p₂) = ∣ʳ false (sound x∈p₂) sound (_⊛_ {p₁ = p₁} f∈p₁ x∈p₂) = ⊛-complete p₁ (sound f∈p₁) (sound x∈p₂) sound (<$> x∈p) = sound x∈p !>>= return sound (+-[] x∈p) = sound x∈p !>>= ∣ʳ false return sound (+-∷ x∈p xs∈p) = sound x∈p !>>= ∣ˡ (sound xs∈p !>>= return) sound (∥ˡ x∈p₁) = ∣ˡ (sound x∈p₁ !>>= return) sound (∥ʳ x∈p₂) = ∣ʳ false (sound x∈p₂) sound between-[] = tok-complete !>>= return sound (between-∷ {p = p} {ts = _ ∷ _} x∈p xs∈⋯) = tok-complete !>>= ⊛-complete (_ <$> ♭ p) (sound x∈p !>>= return) (sound xs∈⋯) complete : ∀ {R x s s′} (p : ParserProg R) → x ⊕ s′ ∈ ⟦ p ⟧ · s → x ⊕ s′ ∈⟦ p ⟧· s complete fail () complete (p₁ ∣ p₂) (∣ˡ x∈p₁) = ∣ˡ (complete p₁ x∈p₁) complete (p₁ ∣ p₂) (∣ʳ .false x∈p₂) = ∣ʳ (complete p₂ x∈p₂) complete (p₁ ⊛ p₂) (f∈p₁ !>>= (y∈p₂ !>>= return)) = complete p₁ f∈p₁ ⊛ complete p₂ y∈p₂ complete (f <$> p) (x∈p !>>= return) = <$> complete p x∈p complete (p +) (x∈p !>>= ∣ˡ (xs∈p+ !>>= return)) = +-∷ (complete p x∈p) (complete (p +) xs∈p+) complete (p +) (x∈p !>>= ∣ʳ .false return) = +-[] (complete p x∈p) complete (p between (t ∷ [])) (t∈ !>>= return) with tok-sound t∈ ... | (refl , refl) = between-[] complete (p between (t ∷ t′ ∷ ts)) (t∈ !>>= (x∈p !>>= return !>>= (xs∈ !>>= return))) with tok-sound t∈ ... | (refl , refl) = between-∷ (complete (♭ p) x∈p) (complete (p between (t′ ∷ ts)) xs∈) complete (p₁ ∥ p₂) (∣ˡ (x∈p₁ !>>= return)) = ∥ˡ (complete p₁ x∈p₁) complete (p₁ ∥ p₂) (∣ʳ .false x∈p₂) = ∥ʳ (complete p₂ x∈p₂) -- Some lemmas. +-∷ʳ : ∀ {R x s s₁ s₂ xs} {p : ParserProg R} → xs ⊕ s₁ ∈⟦ p + ⟧· s → x ⊕ s₂ ∈⟦ p ⟧· s₁ → xs ⁺∷ʳ x ⊕ s₂ ∈⟦ p + ⟧· s +-∷ʳ {xs = _ ∷ ._} (+-[] x∈p) y∈p = +-∷ x∈p (+-[] y∈p) +-∷ʳ {xs = _ ∷ ._} (+-∷ x∈p xs∈p) y∈p = +-∷ x∈p (+-∷ʳ xs∈p y∈p) cast∈ : ∀ {R x₁ x₂ s s′} {p : ParserProg R} → x₁ ≡ x₂ → x₁ ⊕ s′ ∈⟦ p ⟧· s → x₂ ⊕ s′ ∈⟦ p ⟧· s cast∈ refl x∈p = x∈p
{ "alphanum_fraction": 0.4403535588, "avg_line_length": 40.7777777778, "ext": "agda", "hexsha": "84b99073ad1cbe080205c9572392d73be7162c21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Acyclic/Lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Acyclic/Lib.agda", "max_line_length": 105, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "Mixfix/Acyclic/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 6139, "size": 15047 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A Categorical view of the Sum type (Left-biased) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.Sum.Categorical.Left {a} (A : Set a) (b : Level) where open import Data.Sum open import Category.Functor open import Category.Applicative open import Category.Monad import Function.Identity.Categorical as Id open import Function -- To minimize the universe level of the RawFunctor, we require that elements of -- B are "lifted" to a copy of B at a higher universe level (a ⊔ b). See the -- examples for how this is done. ------------------------------------------------------------------------ -- Left-biased monad instance for _⊎_ Sumₗ : Set (a ⊔ b) → Set (a ⊔ b) Sumₗ B = A ⊎ B functor : RawFunctor Sumₗ functor = record { _<$>_ = map₂ } applicative : RawApplicative Sumₗ applicative = record { pure = inj₂ ; _⊛_ = [ const ∘ inj₁ , map₂ ]′ } -- The monad instance also requires some mucking about with universe levels. monadT : RawMonadT (_∘′ Sumₗ) monadT M = record { return = M.pure ∘ inj₂ ; _>>=_ = λ ma f → ma M.>>= [ M.pure ∘′ inj₁ , f ]′ } where module M = RawMonad M monad : RawMonad Sumₗ monad = monadT Id.monad ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Sumₗ (F A) → F (Sumₗ A) sequenceA (inj₁ a) = pure (inj₁ a) sequenceA (inj₂ x) = inj₂ <$> x mapA : ∀ {A B} → (A → F B) → Sumₗ A → F (Sumₗ B) mapA f = sequenceA ∘ map₂ f forA : ∀ {A B} → Sumₗ A → (A → F B) → F (Sumₗ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Sumₗ (M A) → M (Sumₗ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Sumₗ A → M (Sumₗ B) mapM = mapA App forM : ∀ {A B} → Sumₗ A → (A → M B) → M (Sumₗ B) forM = forA App
{ "alphanum_fraction": 0.5472589792, "avg_line_length": 26.7848101266, "ext": "agda", "hexsha": "2bd7f2b11b73c6346c231c906abd4bdb6a1f7ddb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Left.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Left.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Left.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 679, "size": 2116 }
{-# REWRITE #-}
{ "alphanum_fraction": 0.4375, "avg_line_length": 8, "ext": "agda", "hexsha": "5b21f0f1aaf284c00e0e74ee577cc8320f0d401b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2592/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2592/A.agda", "max_line_length": 15, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2592/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 4, "size": 16 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module SAT-solver where import 14-univalence open 14-univalence public {- The literates are atomic propositions or negations thereof. We simply use the natural numbers to encode the atomic propositions, and we use the booleans to tell whether it should be negated or not. -} Literate = ℕ × bool neg-Literate : Literate → Literate neg-Literate (pair n b) = pair n (neg-𝟚 b) zero-true-Literate : Literate zero-true-Literate = pair zero-ℕ true truth-value-Literate : (ℕ → bool) → Literate → bool truth-value-Literate f (pair n true) = f n truth-value-Literate f (pair n false) = neg-𝟚 (f n) bool-Eq-ℕ : ℕ → ℕ → bool bool-Eq-ℕ zero-ℕ zero-ℕ = true bool-Eq-ℕ zero-ℕ (succ-ℕ n) = false bool-Eq-ℕ (succ-ℕ m) zero-ℕ = false bool-Eq-ℕ (succ-ℕ m) (succ-ℕ n) = bool-Eq-ℕ m n bool-Eq-𝟚 : bool → bool → bool bool-Eq-𝟚 true true = true bool-Eq-𝟚 true false = false bool-Eq-𝟚 false true = false bool-Eq-𝟚 false false = true bool-Eq-Literate : Literate → Literate → bool bool-Eq-Literate (pair m x) (pair n y) = conjunction-𝟚 (bool-Eq-ℕ m n) (bool-Eq-𝟚 x y) {- Clauses are finite disjunctions of literates. We simply encode them using lists of literates. -} Clause = list Literate clause-Literate : Literate → Clause clause-Literate l = cons l nil is-literate-Clause : Clause → UU lzero is-literate-Clause c = Σ Literate (λ l → Id (clause-Literate l) c) zero-true-Clause = clause-Literate zero-true-Literate truth-value-Clause : (ℕ → bool) → Clause → bool truth-value-Clause f nil = false truth-value-Clause f (cons l c) = disjunction-𝟚 (truth-value-Literate f l) (truth-value-Clause f c) contains-Clause : Literate → Clause → bool contains-Clause l nil = false contains-Clause l (cons l' c) = disjunction-𝟚 (bool-Eq-Literate l l') (contains-Clause l c) if-then-else : {l : Level} {A : UU l} → bool → A → A → A if-then-else true x y = x if-then-else false x y = y if-then-else-dep : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (b : bool) {x y : A} (u : Id b true → B x) (v : Id b false → B y) → B (if-then-else b x y) if-then-else-dep B true u v = u refl if-then-else-dep B false u v = v refl {- We write a function that simplifies a clause in the following way: * simplified clauses do not contain any literate more than once. * if a simplified clause contains a literate and its negation, then it is of the form l ∨ ¬l. -} simplify-Clause : Clause → Clause simplify-Clause nil = nil simplify-Clause (cons l c) = if-then-else ( contains-Clause (neg-Literate l) c) ( cons l (cons (neg-Literate l) nil)) ( if-then-else ( contains-Clause l c) ( simplify-Clause c) ( cons l (simplify-Clause c))) is-satisfiable-Clause : Clause → UU lzero is-satisfiable-Clause c = Σ (ℕ → bool) (λ f → Id (truth-value-Clause f c) true) {- We show that any non-empty disjunctive clause is satisfiable. -} right-true-law-disjunction-𝟚 : (b : bool) → Id (disjunction-𝟚 b true) true right-true-law-disjunction-𝟚 true = refl right-true-law-disjunction-𝟚 false = refl left-true-law-disjunction-𝟚 : (b : bool) → Id (disjunction-𝟚 true b) true left-true-law-disjunction-𝟚 true = refl left-true-law-disjunction-𝟚 false = refl is-satisfiable-cons-Clause : ( l : Literate) (c : Clause) → is-satisfiable-Clause (cons l c) is-satisfiable-cons-Clause (pair n true) c = pair ( const ℕ bool true) ( left-true-law-disjunction-𝟚 (truth-value-Clause (const ℕ bool true) c)) is-satisfiable-cons-Clause (pair n false) c = pair ( const ℕ bool false) ( left-true-law-disjunction-𝟚 (truth-value-Clause (const ℕ bool false) c)) {- Formulas in conjunctive normal form are finite conjunctions of clauses, as defined above. Therefore we encode them as lists of clauses. -} CNF = list Clause truth-value-CNF : (ℕ → bool) → CNF → bool truth-value-CNF f nil = true truth-value-CNF f (cons c φ) = conjunction-𝟚 (truth-value-Clause f c) (truth-value-CNF f φ) {- A formula φ is in conjunctive normal form is said to be satisfiable if there is a map ℕ → bool which evaluates φ to true. -} is-satisfiable-CNF : CNF → UU lzero is-satisfiable-CNF φ = Σ (ℕ → bool) (λ f → Id (truth-value-CNF f φ) true) contains-CNF : (l : Literate) (φ : CNF) → bool contains-CNF l nil = false contains-CNF l (cons c φ) = disjunction-𝟚 (contains-Clause l c) (contains-CNF l φ) contains simplify-CNF : CNF → CNF simplify-CNF nil = nil simplify-CNF (cons c φ) = cons (simplify-Clause c) (simplify-CNF φ)
{ "alphanum_fraction": 0.6858093126, "avg_line_length": 31.9858156028, "ext": "agda", "hexsha": "56f84368a2d37da7c64c4c88351587fbabc4ccfb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/SAT-solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/SAT-solver.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/SAT-solver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1501, "size": 4510 }
open import Data.Product using ( _,_ ) open import Data.Unit using ( ⊤ ; tt ) open import FRP.LTL.ISet.Core using ( ISet ; [_] ; _,_ ) module FRP.LTL.ISet.Unit where T : ISet T = [ (λ i → ⊤) , (λ i j i~j t → (tt , tt)) , (λ i j i⊑j t → tt) ]
{ "alphanum_fraction": 0.5714285714, "avg_line_length": 24.5, "ext": "agda", "hexsha": "ce7ebfa4feed4920f429d8e48a3f652e3ddcefda", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet/Unit.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet/Unit.agda", "max_line_length": 66, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 95, "size": 245 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Extensional pointwise lifting of relations to vectors ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Binary.Pointwise.Extensional where open import Data.Fin using (zero; suc) open import Data.Nat using (zero; suc) open import Data.Vec as Vec hiding ([_]; head; tail; map) open import Data.Vec.Relation.Binary.Pointwise.Inductive as Inductive using ([]; _∷_) renaming (Pointwise to IPointwise) open import Level using (_⊔_) open import Function using (_∘_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Equiv using (_⇔_; ⇔-setoid; equivalence; module Equivalence) open import Level using (_⊔_) renaming (zero to ℓ₀) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Binary.Construct.Closure.Transitive as Plus hiding (equivalent; map) open import Relation.Nullary import Relation.Nullary.Decidable as Dec record Pointwise {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) {n} (xs : Vec A n) (ys : Vec B n) : Set (a ⊔ b ⊔ ℓ) where constructor ext field app : ∀ i → lookup xs i ∼ lookup ys i ------------------------------------------------------------------------ -- Operations head : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {n x y xs} {ys : Vec B n} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y head (ext app) = app zero tail : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {n x y xs} {ys : Vec B n} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → Pointwise _∼_ xs ys tail (ext app) = ext (app ∘ suc) map : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ _∼′_ : REL A B ℓ} {n} → _∼_ ⇒ _∼′_ → Pointwise _∼_ ⇒ Pointwise _∼′_ {n} map ∼⇒∼′ xs∼ys = ext (∼⇒∼′ ∘ Pointwise.app xs∼ys) gmap : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : Rel A ℓ} {_∼′_ : Rel B ℓ} {f : A → B} {n} → _∼_ =[ f ]⇒ _∼′_ → Pointwise _∼_ =[ Vec.map {n = n} f ]⇒ Pointwise _∼′_ gmap {_} ∼⇒∼′ {[]} {[]} xs∼ys = ext λ() gmap {_∼′_ = _∼′_} ∼⇒∼′ {x ∷ xs} {y ∷ ys} xs∼ys = ext λ { zero → ∼⇒∼′ (head xs∼ys) ; (suc i) → Pointwise.app (gmap {_∼′_ = _∼′_} ∼⇒∼′ (tail xs∼ys)) i } ------------------------------------------------------------------------ -- The inductive and extensional definitions are equivalent. module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where extensional⇒inductive : ∀ {n} {xs : Vec A n} {ys : Vec B n} → Pointwise _∼_ xs ys → IPointwise _∼_ xs ys extensional⇒inductive {zero} {[]} {[]} xs∼ys = [] extensional⇒inductive {suc n} {x ∷ xs} {y ∷ ys} xs∼ys = (head xs∼ys) ∷ extensional⇒inductive (tail xs∼ys) inductive⇒extensional : ∀ {n} {xs : Vec A n} {ys : Vec B n} → IPointwise _∼_ xs ys → Pointwise _∼_ xs ys inductive⇒extensional [] = ext λ() inductive⇒extensional (x∼y ∷ xs∼ys) = ext λ { zero → x∼y ; (suc i) → Pointwise.app (inductive⇒extensional xs∼ys) i } equivalent : ∀ {n} {xs : Vec A n} {ys : Vec B n} → Pointwise _∼_ xs ys ⇔ IPointwise _∼_ xs ys equivalent = equivalence extensional⇒inductive inductive⇒extensional ------------------------------------------------------------------------ -- Relational properties refl : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → ∀ {n} → Reflexive _∼_ → Reflexive (Pointwise _∼_ {n = n}) refl ∼-rfl = ext (λ _ → ∼-rfl) sym : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : REL A B ℓ} {Q : REL B A ℓ} {n} → Sym P Q → Sym (Pointwise P) (Pointwise Q {n = n}) sym sm xs∼ys = ext λ i → sm (Pointwise.app xs∼ys i) trans : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} {P : REL A B ℓ} {Q : REL B C ℓ} {R : REL A C ℓ} {n} → Trans P Q R → Trans (Pointwise P) (Pointwise Q) (Pointwise R {n = n}) trans trns xs∼ys ys∼zs = ext λ i → trns (Pointwise.app xs∼ys i) (Pointwise.app ys∼zs i) decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} → Decidable _∼_ → ∀ {n} → Decidable (Pointwise _∼_ {n = n}) decidable dec xs ys = Dec.map (Setoid.sym (⇔-setoid _) equivalent) (Inductive.decidable dec xs ys) isEquivalence : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → ∀ {n} → IsEquivalence _∼_ → IsEquivalence (Pointwise _∼_ {n = n}) isEquivalence equiv = record { refl = refl Eq.refl ; sym = sym Eq.sym ; trans = trans Eq.trans } where module Eq = IsEquivalence equiv isDecEquivalence : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → ∀ {n} → IsDecEquivalence _∼_ → IsDecEquivalence (Pointwise _∼_ {n = n}) isDecEquivalence decEquiv = record { isEquivalence = isEquivalence DecEq.isEquivalence ; _≟_ = decidable DecEq._≟_ } where module DecEq = IsDecEquivalence decEquiv ------------------------------------------------------------------------ -- Pointwise _≡_ is equivalent to _≡_. module _ {a} {A : Set a} where Pointwise-≡⇒≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys → xs ≡ ys Pointwise-≡⇒≡ {zero} {[]} {[]} (ext app) = P.refl Pointwise-≡⇒≡ {suc n} {x ∷ xs} {y ∷ ys} xs∼ys = P.cong₂ _∷_ (head xs∼ys) (Pointwise-≡⇒≡ (tail xs∼ys)) ≡⇒Pointwise-≡ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → Pointwise _≡_ xs ys ≡⇒Pointwise-≡ P.refl = refl P.refl Pointwise-≡↔≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys ⇔ xs ≡ ys Pointwise-≡↔≡ {ℓ} {A} = Equiv.equivalence Pointwise-≡⇒≡ ≡⇒Pointwise-≡ ------------------------------------------------------------------------ -- Pointwise and Plus commute when the underlying relation is -- reflexive. module _ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} where ⁺∙⇒∙⁺ : ∀ {n} {xs ys : Vec A n} → Plus (Pointwise _∼_) xs ys → Pointwise (Plus _∼_) xs ys ⁺∙⇒∙⁺ [ ρ≈ρ′ ] = ext (λ x → [ Pointwise.app ρ≈ρ′ x ]) ⁺∙⇒∙⁺ (ρ ∼⁺⟨ ρ≈ρ′ ⟩ ρ′≈ρ″) = ext (λ x → _ ∼⁺⟨ Pointwise.app (⁺∙⇒∙⁺ ρ≈ρ′ ) x ⟩ Pointwise.app (⁺∙⇒∙⁺ ρ′≈ρ″) x) ∙⁺⇒⁺∙ : ∀ {n} {xs ys : Vec A n} → Reflexive _∼_ → Pointwise (Plus _∼_) xs ys → Plus (Pointwise _∼_) xs ys ∙⁺⇒⁺∙ rfl = Plus.map (_⟨$⟩_ (Equivalence.from equivalent)) ∘ helper ∘ _⟨$⟩_ (Equivalence.to equivalent) where helper : ∀ {n} {xs ys : Vec A n} → IPointwise (Plus _∼_) xs ys → Plus (IPointwise _∼_) xs ys helper [] = [ [] ] helper (_∷_ {x = x} {y = y} {xs = xs} {ys = ys} x∼y xs∼ys) = x ∷ xs ∼⁺⟨ Plus.map (_∷ Inductive.refl rfl) x∼y ⟩ y ∷ xs ∼⁺⟨ Plus.map (rfl ∷_) (helper xs∼ys) ⟩∎ y ∷ ys ∎ -- ∙⁺⇒⁺∙ cannot be defined if the requirement of reflexivity -- is dropped. private module Counterexample where data D : Set where i j x y z : D data _R_ : Rel D ℓ₀ where iRj : i R j xRy : x R y yRz : y R z xR⁺z : x [ _R_ ]⁺ z xR⁺z = x ∼⁺⟨ [ xRy ] ⟩ y ∼⁺⟨ [ yRz ] ⟩∎ z ∎ ix : Vec D 2 ix = i ∷ x ∷ [] jz : Vec D 2 jz = j ∷ z ∷ [] ix∙⁺jz : IPointwise (Plus _R_) ix jz ix∙⁺jz = [ iRj ] ∷ xR⁺z ∷ [] ¬ix⁺∙jz : ¬ Plus′ (IPointwise _R_) ix jz ¬ix⁺∙jz [ iRj ∷ () ∷ [] ] ¬ix⁺∙jz ((iRj ∷ xRy ∷ []) ∷ [ () ∷ yRz ∷ [] ]) ¬ix⁺∙jz ((iRj ∷ xRy ∷ []) ∷ (() ∷ yRz ∷ []) ∷ _) counterexample : ¬ (∀ {n} {xs ys : Vec D n} → Pointwise (Plus _R_) xs ys → Plus (Pointwise _R_) xs ys) counterexample ∙⁺⇒⁺∙ = ¬ix⁺∙jz (Equivalence.to Plus.equivalent ⟨$⟩ Plus.map (_⟨$⟩_ (Equivalence.to equivalent)) (∙⁺⇒⁺∙ (Equivalence.from equivalent ⟨$⟩ ix∙⁺jz))) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 Pointwise-≡ = Pointwise-≡↔≡ {-# WARNING_ON_USAGE Pointwise-≡ "Warning: Pointwise-≡ was deprecated in v0.15. Please use Pointwise-≡↔≡ instead." #-}
{ "alphanum_fraction": 0.4940759741, "avg_line_length": 35.5956521739, "ext": "agda", "hexsha": "da9f1c527dba0b6a29ee6f7696f37221ab721fdb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Extensional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Extensional.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Extensional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3209, "size": 8187 }
module IPC.Metatheory.Hilbert-BasicTarski where open import IPC.Syntax.Hilbert public open import IPC.Semantics.BasicTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = (eval t γ) (eval u γ) eval ci γ = I eval ck γ = K eval cs γ = S eval cpair γ = _,_ eval cfst γ = π₁ eval csnd γ = π₂ eval unit γ = ∙ eval cboom γ = elim𝟘 eval cinl γ = ι₁ eval cinr γ = ι₂ eval ccase γ = elim⊎ -- Correctness of evaluation with respect to conversion. eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congi⋙ p) = cong I (eval✓ p) eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q) eval✓ (congs⋙ {A} {B} {C} p q r) = cong³ (⟦S⟧ {A} {B} {C}) (eval✓ p) (eval✓ q) (eval✓ r) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ (congboom⋙ {C} p) = cong (⟦elim𝟘⟧ {C}) (eval✓ p) eval✓ (conginl⋙ {A} {B} p) = cong (⟦ι₁⟧ {A} {B}) (eval✓ p) eval✓ (conginr⋙ {A} {B} p) = cong (⟦ι₂⟧ {A} {B}) (eval✓ p) eval✓ (congcase⋙ {A} {B} {C} p q r) = cong³ (⟦celim⊎⟧ {A} {B} {C}) (eval✓ p) (eval✓ q) (eval✓ r) eval✓ beta▻ₖ⋙ = refl eval✓ beta▻ₛ⋙ = refl eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl eval✓ beta∨₁⋙ = refl eval✓ beta∨₂⋙ = refl
{ "alphanum_fraction": 0.4485368315, "avg_line_length": 39.64, "ext": "agda", "hexsha": "d36f621ee15dd4060ce18ccd625b6482a22d98f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Metatheory/Hilbert-BasicTarski.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Metatheory/Hilbert-BasicTarski.agda", "max_line_length": 96, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Metatheory/Hilbert-BasicTarski.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 878, "size": 1982 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Groups.Abelian.Definition open import Groups.FiniteGroups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Setoids.Setoids open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Functions open import Semirings.Definition open import Numbers.Modulo.Definition open import Numbers.Modulo.Addition open import Orders.Total.Definition open import Numbers.Modulo.ModuloFunction open import Numbers.Integers.Definition open import Numbers.Modulo.Group open import Modules.Definition open import Numbers.Integers.RingStructure.Ring module Numbers.Modulo.ZModule {n : ℕ} (pr : 0 <N n) where timesNat : ℕ → ℤn n pr → ℤn n pr timesNat 0 b = record { x = 0 ; xLess = pr } timesNat (succ x) b = _+n_ pr b (timesNat x b) times : ℤ → ℤn n pr → ℤn n pr times (nonneg x) b = timesNat x b times (negSucc x) b = Group.inverse (ℤnGroup n pr) (timesNat (succ x) b) dotDistributesLeft : (r : ℤ) → (x y : ℤn n pr) → times r ((_ +n x) y) ≡ (_ +n times r x) (times r y) dotDistributesLeft (nonneg zero) x y = equalityCommutative (Group.identRight (ℤnGroup n pr)) dotDistributesLeft (nonneg (succ r)) x y rewrite dotDistributesLeft (nonneg r) x y = equalityZn (transitivity (equalityCommutative (modExtracts pr _ _)) (transitivity (applyEquality (mod n pr) (transitivity (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring (ℤn.x x) _ _)) (applyEquality (ℤn.x x +N_) (transitivity (Semiring.commutative ℕSemiring (ℤn.x y) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring _ (ℤn.x (timesNat r y)) (ℤn.x y))) (applyEquality (ℤn.x (timesNat r x) +N_) (Semiring.commutative ℕSemiring (ℤn.x (timesNat r y)) (ℤn.x y))))))) (Semiring.+Associative ℕSemiring (ℤn.x x) _ _))) (modExtracts pr _ _))) dotDistributesLeft (negSucc r) x y = {!!} ZnZModule : Module ℤRing (ℤnAbGroup n pr) times Module.dotWellDefined (ZnZModule) refl refl = refl Module.dotDistributesLeft (ZnZModule) {r} {x} {y} = dotDistributesLeft r x y Module.dotDistributesRight (ZnZModule) = {!!} Module.dotAssociative (ZnZModule) = {!!} Module.dotIdentity (ZnZModule) {record { x = x ; xLess = xLess }} = {!!}
{ "alphanum_fraction": 0.7483815278, "avg_line_length": 51.4888888889, "ext": "agda", "hexsha": "5915c027213ad78ff6485cfd7eba73b8f2349382", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Modulo/ZModule.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Modulo/ZModule.agda", "max_line_length": 660, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Modulo/ZModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 747, "size": 2317 }
------------------------------------------------------------------------------ -- Group theory properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.PropertiesATP where open import GroupTheory.Base ------------------------------------------------------------------------------ postulate leftCancellation : ∀ {a b c} → a · b ≡ a · c → b ≡ c {-# ATP prove leftCancellation #-} postulate rightIdentity : ∀ a → a · ε ≡ a {-# ATP prove rightIdentity #-} postulate rightInverse : ∀ a → a · a ⁻¹ ≡ ε {-# ATP prove rightInverse #-} postulate rightCancellation : ∀ {a b c} → b · a ≡ c · a → b ≡ c {-# ATP prove rightCancellation #-} postulate y≡x⁻¹[xy] : ∀ a b → b ≡ a ⁻¹ · (a · b) {-# ATP prove y≡x⁻¹[xy] #-} postulate x≡[xy]y⁻¹ : ∀ a b → a ≡ (a · b) · b ⁻¹ {-# ATP prove x≡[xy]y⁻¹ #-} postulate rightIdentityUnique : ∀ r → (∀ a → a · r ≡ a) → r ≡ ε {-# ATP prove rightIdentityUnique #-} -- A more appropiate version to be used in the proofs. postulate rightIdentityUnique' : ∀ a r → a · r ≡ a → r ≡ ε {-# ATP prove rightIdentityUnique' #-} postulate leftIdentityUnique : ∀ l → (∀ a → l · a ≡ a) → l ≡ ε {-# ATP prove leftIdentityUnique #-} -- A more appropiate version to be used in the proofs. postulate leftIdentityUnique' : ∀ a l → l · a ≡ a → l ≡ ε {-# ATP prove leftIdentityUnique' #-} postulate rightInverseUnique : ∀ {a} → ∃[ r ] (a · r ≡ ε) ∧ (∀ r' → a · r' ≡ ε → r ≡ r') {-# ATP prove rightInverseUnique #-} -- A more appropiate version to be used in the proofs. postulate rightInverseUnique' : ∀ {a r} → a · r ≡ ε → a ⁻¹ ≡ r {-# ATP prove rightInverseUnique' #-} postulate leftInverseUnique : ∀ {a} → ∃[ l ] (l · a ≡ ε) ∧ (∀ l' → l' · a ≡ ε → l ≡ l') {-# ATP prove leftInverseUnique #-} -- A more appropiate version to be used in the proofs. postulate leftInverseUnique' : ∀ {a l} → l · a ≡ ε → a ⁻¹ ≡ l {-# ATP prove leftInverseUnique' #-} postulate ⁻¹-involutive : ∀ a → a ⁻¹ ⁻¹ ≡ a {-# ATP prove ⁻¹-involutive #-} postulate identityInverse : ε ⁻¹ ≡ ε {-# ATP prove identityInverse #-} postulate inverseDistributive : ∀ a b → (a · b) ⁻¹ ≡ b ⁻¹ · a ⁻¹ {-# ATP prove inverseDistributive #-} -- The equation xa = b has an unique solution. postulate xa≡b-uniqueSolution : ∀ a b → ∃[ x ] (x · a ≡ b) ∧ (∀ x' → x' · a ≡ b → x ≡ x') {-# ATP prove xa≡b-uniqueSolution #-} -- The equation ax = b has an unique solution. postulate ax≡b-uniqueSolution : ∀ a b → ∃[ x ] (a · x ≡ b) ∧ (∀ x' → a · x' ≡ b → x ≡ x') {-# ATP prove ax≡b-uniqueSolution #-} -- If the square of every element is the identity, the system is -- commutative. From: TPTP 6.4.0 problem GRP/GRP001-2.p. postulate x²≡ε→comm : (∀ a → a · a ≡ ε) → ∀ {b c d} → b · c ≡ d → c · b ≡ d {-# ATP prove x²≡ε→comm #-}
{ "alphanum_fraction": 0.5384090133, "avg_line_length": 33.6666666667, "ext": "agda", "hexsha": "a1b0b94f2c188784bd9bea34c7e109c38f49d218", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/PropertiesATP.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 941, "size": 2929 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Ring.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Poset open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open import Cubical.HITs.PropositionalTruncation private variable ℓ ℓ' ℓ'' ℓ''' ℓ'''' : Level {- some basic calculations (used for example in QuotientRing.agda), that should become obsolete or subject to change once we have a ring solver (see https://github.com/agda/cubical/issues/297) -} module RingTheory (R' : Ring ℓ) where open RingStr (snd R') private R = ⟨ R' ⟩ implicitInverse : (x y : R) → x + y ≡ 0r → y ≡ - x implicitInverse x y p = y ≡⟨ sym (+Lid y) ⟩ 0r + y ≡⟨ cong (λ u → u + y) (sym (+Linv x)) ⟩ (- x + x) + y ≡⟨ sym (+Assoc _ _ _) ⟩ (- x) + (x + y) ≡⟨ cong (λ u → (- x) + u) p ⟩ (- x) + 0r ≡⟨ +Rid _ ⟩ - x ∎ equalByDifference : (x y : R) → x - y ≡ 0r → x ≡ y equalByDifference x y p = x ≡⟨ sym (+Rid _) ⟩ x + 0r ≡⟨ cong (λ u → x + u) (sym (+Linv y)) ⟩ x + ((- y) + y) ≡⟨ +Assoc _ _ _ ⟩ (x - y) + y ≡⟨ cong (λ u → u + y) p ⟩ 0r + y ≡⟨ +Lid _ ⟩ y ∎ 0Selfinverse : - 0r ≡ 0r 0Selfinverse = sym (implicitInverse _ _ (+Rid 0r)) 0Idempotent : 0r + 0r ≡ 0r 0Idempotent = +Lid 0r +Idempotency→0 : (x : R) → x ≡ x + x → x ≡ 0r +Idempotency→0 x p = x ≡⟨ sym (+Rid x) ⟩ x + 0r ≡⟨ cong (λ u → x + u) (sym (+Rinv _)) ⟩ x + (x + (- x)) ≡⟨ +Assoc _ _ _ ⟩ (x + x) + (- x) ≡⟨ cong (λ u → u + (- x)) (sym p) ⟩ x + (- x) ≡⟨ +Rinv _ ⟩ 0r ∎ -Idempotent : (x : R) → -(- x) ≡ x -Idempotent x = - (- x) ≡⟨ sym (implicitInverse (- x) x (+Linv _)) ⟩ x ∎ 0RightAnnihilates : (x : R) → x · 0r ≡ 0r 0RightAnnihilates x = let x·0-is-idempotent : x · 0r ≡ x · 0r + x · 0r x·0-is-idempotent = x · 0r ≡⟨ cong (λ u → x · u) (sym 0Idempotent) ⟩ x · (0r + 0r) ≡⟨ ·Rdist+ _ _ _ ⟩ (x · 0r) + (x · 0r) ∎ in (+Idempotency→0 _ x·0-is-idempotent) 0LeftAnnihilates : (x : R) → 0r · x ≡ 0r 0LeftAnnihilates x = let 0·x-is-idempotent : 0r · x ≡ 0r · x + 0r · x 0·x-is-idempotent = 0r · x ≡⟨ cong (λ u → u · x) (sym 0Idempotent) ⟩ (0r + 0r) · x ≡⟨ ·Ldist+ _ _ _ ⟩ (0r · x) + (0r · x) ∎ in +Idempotency→0 _ 0·x-is-idempotent -DistR· : (x y : R) → x · (- y) ≡ - (x · y) -DistR· x y = implicitInverse (x · y) (x · (- y)) (x · y + x · (- y) ≡⟨ sym (·Rdist+ _ _ _) ⟩ x · (y + (- y)) ≡⟨ cong (λ u → x · u) (+Rinv y) ⟩ x · 0r ≡⟨ 0RightAnnihilates x ⟩ 0r ∎) -DistL· : (x y : R) → (- x) · y ≡ - (x · y) -DistL· x y = implicitInverse (x · y) ((- x) · y) (x · y + (- x) · y ≡⟨ sym (·Ldist+ _ _ _) ⟩ (x - x) · y ≡⟨ cong (λ u → u · y) (+Rinv x) ⟩ 0r · y ≡⟨ 0LeftAnnihilates y ⟩ 0r ∎) -Swap· : (x y : R) → (- x) · y ≡ x · (- y) -Swap· _ _ = -DistL· _ _ ∙ sym (-DistR· _ _) -IsMult-1 : (x : R) → - x ≡ (- 1r) · x -IsMult-1 _ = sym (·Lid _) ∙ sym (-Swap· _ _) -Dist : (x y : R) → (- x) + (- y) ≡ - (x + y) -Dist x y = implicitInverse _ _ ((x + y) + ((- x) + (- y)) ≡⟨ sym (+Assoc _ _ _) ⟩ x + (y + ((- x) + (- y))) ≡⟨ cong (λ u → x + (y + u)) (+Comm _ _) ⟩ x + (y + ((- y) + (- x))) ≡⟨ cong (λ u → x + u) (+Assoc _ _ _) ⟩ x + ((y + (- y)) + (- x)) ≡⟨ cong (λ u → x + (u + (- x))) (+Rinv _) ⟩ x + (0r + (- x)) ≡⟨ cong (λ u → x + u) (+Lid _) ⟩ x + (- x) ≡⟨ +Rinv _ ⟩ 0r ∎) translatedDifference : (x a b : R) → a - b ≡ (x + a) - (x + b) translatedDifference x a b = a - b ≡⟨ cong (λ u → a + u) (sym (+Lid _)) ⟩ (a + (0r + (- b))) ≡⟨ cong (λ u → a + (u + (- b))) (sym (+Rinv _)) ⟩ (a + ((x + (- x)) + (- b))) ≡⟨ cong (λ u → a + u) (sym (+Assoc _ _ _)) ⟩ (a + (x + ((- x) + (- b)))) ≡⟨ (+Assoc _ _ _) ⟩ ((a + x) + ((- x) + (- b))) ≡⟨ cong (λ u → u + ((- x) + (- b))) (+Comm _ _) ⟩ ((x + a) + ((- x) + (- b))) ≡⟨ cong (λ u → (x + a) + u) (-Dist _ _) ⟩ ((x + a) - (x + b)) ∎ +Assoc-comm1 : (x y z : R) → x + (y + z) ≡ y + (x + z) +Assoc-comm1 x y z = +Assoc x y z ∙∙ cong (λ x → x + z) (+Comm x y) ∙∙ sym (+Assoc y x z) +Assoc-comm2 : (x y z : R) → x + (y + z) ≡ z + (y + x) +Assoc-comm2 x y z = +Assoc-comm1 x y z ∙∙ cong (λ x → y + x) (+Comm x z) ∙∙ +Assoc-comm1 y z x +ShufflePairs : (a b c d : R) → (a + b) + (c + d) ≡ (a + c) + (b + d) +ShufflePairs a b c d = (a + b) + (c + d) ≡⟨ +Assoc _ _ _ ⟩ ((a + b) + c) + d ≡⟨ cong (λ u → u + d) (sym (+Assoc _ _ _)) ⟩ (a + (b + c)) + d ≡⟨ cong (λ u → (a + u) + d) (+Comm _ _) ⟩ (a + (c + b)) + d ≡⟨ cong (λ u → u + d) (+Assoc _ _ _) ⟩ ((a + c) + b) + d ≡⟨ sym (+Assoc _ _ _) ⟩ (a + c) + (b + d) ∎ ·-assoc2 : (x y z w : R) → (x · y) · (z · w) ≡ x · (y · z) · w ·-assoc2 x y z w = ·Assoc (x · y) z w ∙ cong (_· w) (sym (·Assoc x y z)) module RingHoms where open IsRingHom idRingHom : (R : Ring ℓ) → RingHom R R fst (idRingHom R) = idfun (fst R) snd (idRingHom R) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl) compIsRingHom : {A : Ring ℓ} {B : Ring ℓ'} {C : Ring ℓ''} {g : ⟨ B ⟩ → ⟨ C ⟩} {f : ⟨ A ⟩ → ⟨ B ⟩} → IsRingHom (B .snd) g (C .snd) → IsRingHom (A .snd) f (B .snd) → IsRingHom (A .snd) (g ∘ f) (C .snd) compIsRingHom {g = g} {f} gh fh .pres0 = cong g (fh .pres0) ∙ gh .pres0 compIsRingHom {g = g} {f} gh fh .pres1 = cong g (fh .pres1) ∙ gh .pres1 compIsRingHom {g = g} {f} gh fh .pres+ x y = cong g (fh .pres+ x y) ∙ gh .pres+ (f x) (f y) compIsRingHom {g = g} {f} gh fh .pres· x y = cong g (fh .pres· x y) ∙ gh .pres· (f x) (f y) compIsRingHom {g = g} {f} gh fh .pres- x = cong g (fh .pres- x) ∙ gh .pres- (f x) compRingHom : {R : Ring ℓ} {S : Ring ℓ'} {T : Ring ℓ''} → RingHom R S → RingHom S T → RingHom R T fst (compRingHom f g) x = g .fst (f .fst x) snd (compRingHom f g) = compIsRingHom (g .snd) (f .snd) syntax compRingHom f g = g ∘r f compIdRingHom : {R S : Ring ℓ} (φ : RingHom R S) → compRingHom (idRingHom R) φ ≡ φ compIdRingHom φ = RingHom≡ refl idCompRingHom : {R S : Ring ℓ} (φ : RingHom R S) → compRingHom φ (idRingHom S) ≡ φ idCompRingHom φ = RingHom≡ refl compAssocRingHom : {R S T U : Ring ℓ} (φ : RingHom R S) (ψ : RingHom S T) (χ : RingHom T U) → compRingHom (compRingHom φ ψ) χ ≡ compRingHom φ (compRingHom ψ χ) compAssocRingHom _ _ _ = RingHom≡ refl module RingEquivs where open RingStr open IsRingHom open RingHoms compIsRingEquiv : {A : Ring ℓ} {B : Ring ℓ'} {C : Ring ℓ''} {g : ⟨ B ⟩ ≃ ⟨ C ⟩} {f : ⟨ A ⟩ ≃ ⟨ B ⟩} → IsRingEquiv (B .snd) g (C .snd) → IsRingEquiv (A .snd) f (B .snd) → IsRingEquiv (A .snd) (compEquiv f g) (C .snd) compIsRingEquiv {g = g} {f} gh fh = compIsRingHom {g = g .fst} {f .fst} gh fh compRingEquiv : {A : Ring ℓ} {B : Ring ℓ'} {C : Ring ℓ''} → RingEquiv A B → RingEquiv B C → RingEquiv A C fst (compRingEquiv f g) = compEquiv (f .fst) (g .fst) snd (compRingEquiv f g) = compIsRingEquiv {g = g .fst} {f = f .fst} (g .snd) (f .snd) isRingHomInv : {A : Ring ℓ} → {B : Ring ℓ'} → (e : RingEquiv A B) → IsRingHom (snd B) (invEq (fst e)) (snd A) isRingHomInv {A = A} {B = B} e = makeIsRingHom ((cong g (sym (pres1 fcrh))) ∙ retEq et (1r (snd A))) (λ x y → g (snd B ._+_ x y) ≡⟨ cong g (sym (cong₂ (snd B ._+_) (secEq et x) (secEq et y))) ⟩ g (snd B ._+_ (f (g x)) (f (g y))) ≡⟨ cong g (sym (pres+ fcrh (g x) (g y))) ⟩ g (f (snd A ._+_ (g x) (g y))) ≡⟨ retEq et (snd A ._+_ (g x) (g y)) ⟩ snd A ._+_ (g x) (g y) ∎) (λ x y → g (snd B ._·_ x y) ≡⟨ cong g (sym (cong₂ (snd B ._·_) (secEq et x) (secEq et y))) ⟩ g (snd B ._·_ (f (g x)) (f (g y))) ≡⟨ cong g (sym (pres· fcrh (g x) (g y))) ⟩ g (f (snd A ._·_ (g x) (g y))) ≡⟨ retEq et (snd A ._·_ (g x) (g y)) ⟩ snd A ._·_ (g x) (g y) ∎) where et = fst e f = fst et fcrh = snd e g = invEq et invEquivRing : {A : Ring ℓ} → {B : Ring ℓ'} → RingEquiv A B → RingEquiv B A fst (invEquivRing e) = invEquiv (fst e) snd (invEquivRing e) = isRingHomInv e module RingHomTheory {R S : Ring ℓ} (φ : RingHom R S) where open RingTheory ⦃...⦄ open RingStr ⦃...⦄ open IsRingHom (φ .snd) private instance _ = R _ = S _ = snd R _ = snd S f = fst φ ker≡0→inj : ({x : ⟨ R ⟩} → f x ≡ 0r → x ≡ 0r) → ({x y : ⟨ R ⟩} → f x ≡ f y → x ≡ y) ker≡0→inj ker≡0 {x} {y} p = equalByDifference _ _ (ker≡0 path) where path : f (x - y) ≡ 0r path = f (x - y) ≡⟨ pres+ _ _ ⟩ f x + f (- y) ≡⟨ cong (f x +_) (pres- _) ⟩ f x - f y ≡⟨ cong (_- f y) p ⟩ f y - f y ≡⟨ +Rinv _ ⟩ 0r ∎ -- the Ring version of uaCompEquiv module RingUAFunctoriality where open RingStr open RingEquivs Ring≡ : (A B : Ring ℓ) → ( Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ] Σ[ q0 ∈ PathP (λ i → p i) (0r (snd A)) (0r (snd B)) ] Σ[ q1 ∈ PathP (λ i → p i) (1r (snd A)) (1r (snd B)) ] Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ] Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ] Σ[ s ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ] PathP (λ i → IsRing (q0 i) (q1 i) (r+ i) (r· i) (s i)) (isRing (snd A)) (isRing (snd B))) ≃ (A ≡ B) Ring≡ A B = isoToEquiv theIso where open Iso theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , r· , s , t) i = p i , ringstr (q0 i) (q1 i) (r+ i) (r· i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (0r ∘ snd) x , cong (1r ∘ snd) x , cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (isRing ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracRing≡ : {A B : Ring ℓ} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracRing≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (Ring≡ A B)) p) ∙∙ cong (transport (ua (Ring≡ A B))) helper ∙∙ transportTransport⁻ (ua (Ring≡ A B)) q where helper : transport (sym (ua (Ring≡ A B))) p ≡ transport (sym (ua (Ring≡ A B))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsRing _ _ _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaCompRingEquiv : {A B C : Ring ℓ} (f : RingEquiv A B) (g : RingEquiv B C) → uaRing (compRingEquiv f g) ≡ uaRing f ∙ uaRing g uaCompRingEquiv f g = caracRing≡ _ _ ( cong ⟨_⟩ (uaRing (compRingEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaRing f) ∙ cong ⟨_⟩ (uaRing g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaRing f) (uaRing g)) ⟩ cong ⟨_⟩ (uaRing f ∙ uaRing g) ∎) open RingEquivs open RingUAFunctoriality recPT→Ring : {A : Type ℓ'} (𝓕 : A → Ring ℓ) → (σ : ∀ x y → RingEquiv (𝓕 x) (𝓕 y)) → (∀ x y z → σ x z ≡ compRingEquiv (σ x y) (σ y z)) ------------------------------------------------------ → ∥ A ∥ → Ring ℓ recPT→Ring 𝓕 σ compCoh = rec→Gpd isGroupoidRing 𝓕 (3-ConstantCompChar 𝓕 (λ x y → uaRing (σ x y)) λ x y z → sym ( cong uaRing (compCoh x y z) ∙ uaCompRingEquiv (σ x y) (σ y z)))
{ "alphanum_fraction": 0.4329202779, "avg_line_length": 41.9249249249, "ext": "agda", "hexsha": "a66b40cf16b0f824f81ad56e44d36832ae5d5417", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring/Properties.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5531, "size": 13961 }
module SystemF.Everything where open import SystemF.Syntax public open import SystemF.WellTyped public open import SystemF.Substitutions.Lemmas public open import SystemF.Substitutions public open import SystemF.NormalForm public open TypeLemmas public hiding (var)
{ "alphanum_fraction": 0.8576779026, "avg_line_length": 29.6666666667, "ext": "agda", "hexsha": "fcb8410f67ca0d6d3a36cea4ad8b5443c7ce92e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/Everything.agda", "max_line_length": 47, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 61, "size": 267 }
data Nat : Set where zero : Nat suc : Nat → Nat test : ∀{N M : Nat} → Nat → Nat → Nat test N M = {!.N N .M!}
{ "alphanum_fraction": 0.5087719298, "avg_line_length": 16.2857142857, "ext": "agda", "hexsha": "06f83433c237edf265a52384f6f40afe5e58d592", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/interaction/SplitOnHidden.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/interaction/SplitOnHidden.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/SplitOnHidden.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 46, "size": 114 }
module nodcap.NF.Show where open import Data.String using (String) open import nodcap.Base open import nodcap.NF.Typing import nodcap.Show as S showTerm : {Γ : Environment} → ⊢ⁿᶠ Γ → String showTerm {Γ} x = S.showTerm (fromNF x)
{ "alphanum_fraction": 0.735042735, "avg_line_length": 19.5, "ext": "agda", "hexsha": "ca7575c06026778799e419538f037ffe955498b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/NF/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/NF/Show.agda", "max_line_length": 45, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/NF/Show.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 77, "size": 234 }
{-# OPTIONS --without-K --safe #-} -- This module shows that D<: typing is undecidable. module DsubTermUndec where open import Data.List as List open import Data.List.All as All open import Data.Nat as ℕ open import Data.Maybe as Maybe open import Data.Product open import Data.Sum open import Data.Empty renaming (⊥ to False) open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_) open import Function open import Data.Maybe.Properties as Maybeₚ open import Data.Nat.Properties as ℕₚ open import Relation.Nullary open import Relation.Binary.PropositionalEquality as ≡ open import DsubDef open import DsubFull open import DsubReduced open import Dsub renaming (_⊢_<:_ to _⊢′_<:_) open import Utils open import DsubEquivSimpler module DifferentProof where open import FsubMinus open FsubMinus.FsubMinus hiding (_↑_) open FsubMinusToDsubR open Undecidability′ F<:⇒typing′ : ∀ {Γ S U} → Γ ⊢F S <: U → ⟪ Γ ⟫ ⊢ val ⟨A= ⟦ S ⟧ ⟩ ∶ ⟨A: ⊥ ⋯ ⟦ U ⟧ ⟩ F<:⇒typing′ S<:U = <∶ ⟨A⟩-I (bnd ⊥<: (<:′⇒<: $ F<:⇒D<: S<:U)) bnd<:⇒F<:′ : ∀ {Γ S U} → ⟪ Γ ⟫ ⊢″ ⟨A: ⟦ S ⟧ ⋯ ⟦ S ⟧ ⟩ <: ⟨A: ⊥ ⋯ ⟦ U ⟧ ⟩ → Γ ⊢F S <: U bnd<:⇒F<:′ {Γ} {S} {U} bnd<: = helper where open DsubInvProperties contraInvertible cΓ = ⟪⟫-contraEnv Γ helper : Γ ⊢F S <: U helper with ⟨A:⟩<:⟨A:⟩ (<:⇒<:ᵢ (<:″⇒<: bnd<:) cΓ) cΓ ... | _ , S<:U = D<:⇒F<: $ <:ᵢ⇒<: S<:U typing⇒F<:′ : ∀ {Γ S U} → ⟪ Γ ⟫ ⊢ val ⟨A= ⟦ S ⟧ ⟩ ∶ ⟨A: ⊥ ⋯ ⟦ U ⟧ ⟩ → Γ ⊢F S <: U typing⇒F<:′ typ = bnd<:⇒F<:′ $ <:⇒<:″ $ <:⇒<:′ (helper typ refl refl) where helper : ∀ {Γ Γ′ S S′ T} → Γ′ ⊢ val ⟨A= S′ ⟩ ∶ T → Γ′ ≡ ⟪ Γ ⟫ → S′ ≡ ⟦ S ⟧ → ⟪ Γ ⟫ ⊢ ⟨A: ⟦ S ⟧ ⋯ ⟦ S ⟧ ⟩ <: T helper ⟨A⟩-I eqΓ refl = refl helper (<∶ typ x) refl eqS = tran _ (helper typ refl eqS) x
{ "alphanum_fraction": 0.5140809012, "avg_line_length": 32.55, "ext": "agda", "hexsha": "26a0de32b98eef4118f3ebb2e32ccb94e1e05551", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "HuStmpHrrr/popl20-artifact", "max_forks_repo_path": "agda/DsubTermUndec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "HuStmpHrrr/popl20-artifact", "max_issues_repo_path": "agda/DsubTermUndec.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "HuStmpHrrr/popl20-artifact", "max_stars_repo_path": "agda/DsubTermUndec.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z", "num_tokens": 817, "size": 1953 }
{-# OPTIONS --warning=error --safe --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Numbers.Integers.Integers open import Numbers.Naturals.Semiring open import Numbers.Naturals.Subtraction open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Exponentiation open import Numbers.Primes.PrimeNumbers open import Maybe open import Semirings.Definition open import Numbers.Naturals.EuclideanAlgorithm open import Sequences open import Vectors module LectureNotes.NumbersAndSets.Examples1 where open Semiring ℕSemiring open import Semirings.Solver ℕSemiring multiplicationNIsCommutative private abstract q1Lemma1 : {q r : ℕ} → 3 *N succ q +N r ≡ succ (succ (succ (3 *N q +N r))) q1Lemma1 {q} {r} rewrite sumZeroRight q | commutative q (succ q) | commutative q (succ (succ (q +N q))) | +Associative q q q = refl q1Lemma : {n : ℕ} → (2 <N n) → ((3 ∣ n) || (3 ∣ (n +N 2))) || (3 ∣ (n +N 4)) q1Lemma {zero} () q1Lemma {succ zero} (le zero ()) q1Lemma {succ zero} (le (succ x) ()) q1Lemma {succ (succ zero)} (le (succ x) proof) rewrite Semiring.commutative ℕSemiring x 2 = exFalso (naughtE (equalityCommutative (succInjective (succInjective proof)))) q1Lemma {succ (succ (succ zero))} 2<n = inl (inl (aDivA 3)) q1Lemma {succ (succ (succ (succ zero)))} 2<n = inl (inr (divides (record { quot = 2 ; rem = zero ; pr = refl ; remIsSmall = inl (le 2 refl) ; quotSmall = inl (le 2 refl)}) refl)) q1Lemma {succ (succ (succ (succ (succ zero))))} 2<n = inr (divides (record { quot = 3 ; rem = zero ; pr = refl ; remIsSmall = inl (le 2 refl) ; quotSmall = inl (le 2 refl)}) refl) q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n with q1Lemma {succ (succ (succ n))} (le n (applyEquality succ (Semiring.commutative ℕSemiring n 2))) q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inl (inl (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x)) = inl (inl (divides (record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) }) x)) q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inl (inr (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x)) = inl (inr (divides record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) } x)) q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inr (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x) = inr (divides record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) } x) q1 : {n : ℕ} → Prime n → Prime (n +N 2) → Prime (n +N 4) → n ≡ 3 q1 {succ zero} record { p>1 = (le zero ()) ; pr = pr } pN+2 pN+4 q1 {succ zero} record { p>1 = (le (succ x) ()) ; pr = pr } pN+2 pN+4 q1 {succ (succ zero)} pN record { p>1 = p>1 ; pr = pr } pN+4 with pr {2} (divides (record { quot = 2 ; rem = zero ; pr = refl ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl)}) refl) (le 1 refl) (le 1 refl) q1 {succ (succ zero)} pN record { p>1 = p>1 ; pr = pr } pN+4 | () q1 {succ (succ (succ n))} pN pN+2 pN+4 with q1Lemma {succ (succ (succ n))} (le n (applyEquality succ (commutative n 2))) q1 {succ (succ (succ n))} pN pN+2 pN+4 | inl (inl 3|n) = equalityCommutative (primeDivPrimeImpliesEqual threeIsPrime pN 3|n) q1 {succ (succ (succ n))} pN pN+2 pN+4 | inl (inr 3|n+2) with primeDivPrimeImpliesEqual threeIsPrime pN+2 3|n+2 ... | bl rewrite commutative n 2 = exFalso (naughtE (succInjective (succInjective (succInjective bl)))) q1 {succ (succ (succ n))} pN pN+2 pN+4 | inr 3|n+4 with primeDivPrimeImpliesEqual threeIsPrime pN+4 3|n+4 ... | bl rewrite commutative n 4 = exFalso (naughtE (succInjective (succInjective (succInjective bl)))) q3Differences : ℕ → ℕ q3Differences a = 2 *N a q3Seq : (start : ℕ) → ℕ → ℕ q3Seq start zero = start q3Seq start (succ n) = q3Differences (succ n) +N q3Seq start n q3SeqFirst : take 5 (funcToSequence (q3Seq 41)) ≡ 41 ,- 43 ,- 47 ,- 53 ,- 61 ,- [] q3SeqFirst = refl q3N : (start : ℕ) (a : ℕ) → q3Seq start a ≡ start +N (a +N (a *N a)) q3N start zero = equalityCommutative (sumZeroRight start) q3N start (succ a) rewrite q3N start a | sumZeroRight a = from (succ (plus (plus (const a) (succ (const a))) (plus (const start) (plus (const a) (times (const a) (const a)))))) to (plus (const start) (succ (plus (const a) (succ (plus (const a) (times (const a) (succ (const a)))))))) by applyEquality (λ i → succ (succ i)) (transitivity (+Associative (a +N a) start _) (transitivity (transitivity (applyEquality (_+N (a +N a *N a)) (commutative (a +N a) start)) (equalityCommutative (+Associative start _ _))) (applyEquality (start +N_) (equalityCommutative (+Associative a a (a +N a *N a)))))) q3NDivision : (start : ℕ) → start ∣ (q3Seq start start) q3NDivision 0 = aDivA 0 q3NDivision (succ start) rewrite q3N (succ start) (succ start) = dividesBothImpliesDividesSum {succ start} {succ start} (aDivA (succ start)) (dividesBothImpliesDividesSum {succ start} {succ start} (aDivA (succ start)) (divides (record { quot = succ start ; rem = 0 ; pr = sumZeroRight _ ; remIsSmall = inl (succIsPositive start) ; quotSmall = inl (succIsPositive start) }) refl)) q3 : (start : ℕ) → ((n : ℕ) → Prime (q3Seq start n)) → False q3 zero a with a 2 ... | record { p>1 = p>1 ; pr = pr } with pr {2} (divides (record { quot = 3 ; rem = 0 ; pr = refl ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl) }) refl) (le 3 refl) (succIsPositive 1) ... | () q3 (succ zero) a with a 0 ... | record { p>1 = le zero () ; pr = pr } ... | record { p>1 = le (succ x) () ; pr = pr } q3 (succ (succ start)) a with q3NDivision (succ (succ start)) ... | r with a (succ (succ start)) ... | s = compositeImpliesNotPrime (succ (succ start)) _ (succPreservesInequality (succIsPositive start)) (le (succ (succ start) +N ((start +N succ start) +N q3Seq (succ (succ start)) start)) (applyEquality (λ i → succ (succ i)) (from (succ (plus (plus (const start) (plus (plus (const start) (succ (const start))) (const (q3Seq (succ (succ start)) start)))) (succ (succ (const start))))) to plus (plus (const start) (succ (succ (plus (const start) zero)))) (succ (plus (plus (const start) (succ (plus (const start) zero))) (const (q3Seq (succ (succ start)) start)))) by applyEquality (λ i → succ (succ (succ (succ i)))) (transitivity (commutative _ start) (+Associative start start _))))) r s q3' : ((n : ℕ) → Prime (q3Seq 41 n)) → False q3' = q3 41 q6 : {n : ℕ} → 3 ∣ (n *N n) → 3 ∣ n q6 {n} 3|n^2 with primesArePrime {3} {n} {n} threeIsPrime 3|n^2 q6 {n} 3|n^2 | inl x = x q6 {n} 3|n^2 | inr x = x _*q10_ : {a : ℕ} → {b : ℕ} → (0 <N a) → (0 <N b) → ℕ *q10Pos : {a : ℕ} → {b : ℕ} → (0<a : 0 <N a) → (0<b : 0 <N b) → 0 <N (_*q10_ 0<a 0<b) _*q10_ {succ zero} {succ b} 0<a 0<b = succ (succ b) _*q10_ {succ (succ a)} {succ zero} 0<a 0<b = _*q10_ {succ a} {2} (le a (applyEquality succ (sumZeroRight a))) (le 1 refl) _*q10_ {succ (succ a)} {succ (succ b)} 0<a 0<b = _*q10_ {succ a} {_*q10_ {succ (succ a)} {succ b} 0<a (le b (applyEquality succ (sumZeroRight b)))} (le a (applyEquality succ (sumZeroRight a))) (*q10Pos 0<a (le b (applyEquality succ (sumZeroRight b)))) *q10Pos {succ zero} {succ b} 0<a 0<b = le (succ b) (applyEquality (λ i → succ (succ i)) (sumZeroRight b)) *q10Pos {succ (succ a)} {succ zero} 0<a 0<b = *q10Pos (le a (applyEquality succ (sumZeroRight a))) (le 1 refl) *q10Pos {succ (succ a)} {succ (succ b)} 0<a 0<b = *q10Pos (le a (applyEquality succ (sumZeroRight a))) (*q10Pos 0<a (le b (applyEquality succ (sumZeroRight b))))
{ "alphanum_fraction": 0.6453944908, "avg_line_length": 81.8673469388, "ext": "agda", "hexsha": "419293a8856d5918ffa79373db7a71e11d03baad", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "LectureNotes/NumbersAndSets/Examples1.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "LectureNotes/NumbersAndSets/Examples1.agda", "max_line_length": 693, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "LectureNotes/NumbersAndSets/Examples1.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2976, "size": 8023 }
{- This second-order signature was created from the following second-order syntax description: syntax Monoid | M type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) -} module Monoid.Signature where open import SOAS.Context open import SOAS.Common open import SOAS.Syntax.Signature *T public open import SOAS.Syntax.Build *T public -- Operator symbols data Mₒ : Set where unitₒ addₒ : Mₒ -- Term signature M:Sig : Signature Mₒ M:Sig = sig λ { unitₒ → ⟼₀ * ; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * } open Signature M:Sig public
{ "alphanum_fraction": 0.6096491228, "avg_line_length": 16.6829268293, "ext": "agda", "hexsha": "4e3f5bfd55d65e62c09cf80586d0f514dc3c5d16", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Monoid/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Monoid/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Monoid/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 269, "size": 684 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import Level using (0ℓ) -- This module incldes various Agda lemmas that are independent of the project's domain module LibraBFT.Lemmas where cong₃ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (f : A → B → C → D) → ∀{x y u v m n} → x ≡ y → u ≡ v → m ≡ n → f x u m ≡ f y v n cong₃ f refl refl refl = refl ≡-pi : ∀{a}{A : Set a}{x y : A}(p q : x ≡ y) → p ≡ q ≡-pi refl refl = refl Unit-pi : {u1 u2 : Unit} → u1 ≡ u2 Unit-pi {unit} {unit} = refl ++-inj : ∀{a}{A : Set a}{m n o p : List A} → length m ≡ length n → m ++ o ≡ n ++ p → m ≡ n × o ≡ p ++-inj {m = []} {x ∷ n} () hip ++-inj {m = x ∷ m} {[]} () hip ++-inj {m = []} {[]} lhip hip = refl , hip ++-inj {m = m ∷ ms} {n ∷ ns} lhip hip with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip)) ...| (mn , op) rewrite proj₁ (∷-injective hip) = cong (n ∷_) mn , op ++-abs : ∀{a}{A : Set a}{n : List A}(m : List A) → 1 ≤ length m → [] ≡ m ++ n → ⊥ ++-abs [] () ++-abs (x ∷ m) imp () data All-vec {ℓ} {A : Set ℓ} (P : A → Set ℓ) : ∀ {n} → Vec {ℓ} A n → Set (Level.suc ℓ) where [] : All-vec P [] _∷_ : ∀ {x n} {xs : Vec A n} (px : P x) (pxs : All-vec P xs) → All-vec P (x ∷ xs) ≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n ≤-unstep (s≤s ss) = ≤-step ss ≡⇒≤ : ∀{m n} → m ≡ n → m ≤ n ≡⇒≤ refl = ≤-refl ∈-cong : ∀{a b}{A : Set a}{B : Set b}{x : A}{l : List A} → (f : A → B) → x ∈ l → f x ∈ List-map f l ∈-cong f (here px) = here (cong f px) ∈-cong f (there hyp) = there (∈-cong f hyp) All-self : ∀{a}{A : Set a}{xs : List A} → All (_∈ xs) xs All-self = All-tabulate (λ x → x) All-reduce⁺ : ∀{a b}{A : Set a}{B : Set b}{Q : A → Set}{P : B → Set} → { xs : List A } → (f : ∀{x} → Q x → B) → (∀{x} → (prf : Q x) → P (f prf)) → (all : All Q xs) → All P (All-reduce f all) All-reduce⁺ f hyp [] = [] All-reduce⁺ f hyp (ax ∷ axs) = (hyp ax) ∷ All-reduce⁺ f hyp axs All-reduce⁻ : ∀{a b}{A : Set a}{B : Set b} {Q : A → Set} → { xs : List A } → ∀ {vdq} → (f : ∀{x} → Q x → B) → (all : All Q xs) → vdq ∈ All-reduce f all → ∃[ v ] ∃[ v∈xs ] (vdq ≡ f {v} v∈xs) All-reduce⁻ {Q = Q} {(h ∷ _)} {vdq} f (px ∷ pxs) (here refl) = h , px , refl All-reduce⁻ {Q = Q} {(_ ∷ t)} {vdq} f (px ∷ pxs) (there vdq∈) = All-reduce⁻ {xs = t} f pxs vdq∈ List-index : ∀ {A : Set} → (_≟A_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)) → A → (l : List A) → Maybe (Fin (length l)) List-index _≟A_ x l with break (_≟A x) l ...| not≡ , _ with length not≡ <? length l ...| no _ = nothing ...| yes found = just ( fromℕ< {length not≡} {length l} found) nats : ℕ → List ℕ nats 0 = [] nats (suc n) = (nats n) ++ (n ∷ []) _ : nats 4 ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] _ = refl _ : Maybe-map toℕ (List-index _≟_ 2 (nats 4)) ≡ just 2 _ = refl _ : Maybe-map toℕ (List-index _≟_ 4 (nats 4)) ≡ nothing _ = refl allDistinct : ∀ {A : Set} → List A → Set allDistinct l = ∀ (i j : Σ ℕ (_< length l)) → proj₁ i ≡ proj₁ j ⊎ List-lookup l (fromℕ< (proj₂ i)) ≢ List-lookup l (fromℕ< (proj₂ j)) postulate -- TODO-1: currently unused; prove it, if needed allDistinct? : ∀ {A : Set} → {≟A : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)} → (l : List A) → Dec (allDistinct l) -- Extends an arbitrary relation to work on the head of -- the supplied list, if any. data OnHead {A : Set}(P : A → A → Set) (x : A) : List A → Set where [] : OnHead P x [] on-∷ : ∀{y ys} → P x y → OnHead P x (y ∷ ys) -- Establishes that a list is sorted according to the supplied -- relation. data IsSorted {A : Set}(_<_ : A → A → Set) : List A → Set where [] : IsSorted _<_ [] _∷_ : ∀{x xs} → OnHead _<_ x xs → IsSorted _<_ xs → IsSorted _<_ (x ∷ xs) OnHead-prop : ∀{A}(P : A → A → Set)(x : A)(l : List A) → Irrelevant P → isPropositional (OnHead P x l) OnHead-prop P x [] hyp [] [] = refl OnHead-prop P x (x₁ ∷ l) hyp (on-∷ x₂) (on-∷ x₃) = cong on-∷ (hyp x₂ x₃) IsSorted-prop : ∀{A}(_<_ : A → A → Set)(l : List A) → Irrelevant _<_ → isPropositional (IsSorted _<_ l) IsSorted-prop _<_ [] hyp [] [] = refl IsSorted-prop _<_ (x ∷ l) hyp (x₁ ∷ a) (x₂ ∷ b) = cong₂ _∷_ (OnHead-prop _<_ x l hyp x₁ x₂) (IsSorted-prop _<_ l hyp a b) IsSorted-map⁻ : {A : Set}{_≤_ : A → A → Set} → {B : Set}(f : B → A)(l : List B) → IsSorted (λ x y → f x ≤ f y) l → IsSorted _≤_ (List-map f l) IsSorted-map⁻ f .[] [] = [] IsSorted-map⁻ f .(_ ∷ []) (x ∷ []) = [] ∷ [] IsSorted-map⁻ f .(_ ∷ _ ∷ _) (on-∷ x ∷ (x₁ ∷ is)) = (on-∷ x) ∷ IsSorted-map⁻ f _ (x₁ ∷ is) transOnHead : ∀ {A} {l : List A} {y x : A} {_<_ : A → A → Set} → Transitive _<_ → OnHead _<_ y l → x < y → OnHead _<_ x l transOnHead _ [] _ = [] transOnHead trans (on-∷ y<f) x<y = on-∷ (trans x<y y<f) ++-OnHead : ∀ {A} {xs ys : List A} {y : A} {_<_ : A → A → Set} → OnHead _<_ y xs → OnHead _<_ y ys → OnHead _<_ y (xs ++ ys) ++-OnHead [] y<y₁ = y<y₁ ++-OnHead (on-∷ y<x) _ = on-∷ y<x h∉t : ∀ {A} {t : List A} {h : A} {_<_ : A → A → Set} → Irreflexive _<_ _≡_ → Transitive _<_ → IsSorted _<_ (h ∷ t) → h ∉ t h∉t irfl trans (on-∷ h< ∷ sxs) (here refl) = ⊥-elim (irfl h< refl) h∉t irfl trans (on-∷ h< ∷ (x₁< ∷ sxs)) (there h∈t) = h∉t irfl trans ((transOnHead trans x₁< h<) ∷ sxs) h∈t ≤-head : ∀ {A} {l : List A} {x y : A} {_<_ : A → A → Set} {_≤_ : A → A → Set} → Reflexive _≤_ → Trans _<_ _≤_ _≤_ → y ∈ (x ∷ l) → IsSorted _<_ (x ∷ l) → _≤_ x y ≤-head ref≤ trans (here refl) _ = ref≤ ≤-head ref≤ trans (there y∈) (on-∷ x<x₁ ∷ sl) = trans x<x₁ (≤-head ref≤ trans y∈ sl) -- TODO-1 : Better name and/or replace with library property Any-sym : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → Any (λ x → tgt ≡ f x) l → Any (λ x → f x ≡ tgt) l Any-sym (here x) = here (sym x) Any-sym (there x) = there (Any-sym x) Any-lookup-correct : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → (p : Any (λ x → f x ≡ tgt) l) → Any-lookup p ∈ l Any-lookup-correct (here px) = here refl Any-lookup-correct (there p) = there (Any-lookup-correct p) Any-lookup-correctP : ∀ {a}{A : Set a}{l : List A}{P : A → Set} → (p : Any P l) → Any-lookup p ∈ l Any-lookup-correctP (here px) = here refl Any-lookup-correctP (there p) = there (Any-lookup-correctP p) Any-witness : ∀ {a b} {A : Set a} {l : List A} {P : A → Set b} → (p : Any P l) → P (Any-lookup p) Any-witness (here px) = px Any-witness (there x) = Any-witness x -- TODO-1: there is probably a library property for this. ∈⇒Any : ∀ {A : Set}{x : A} → {xs : List A} → x ∈ xs → Any (_≡ x) xs ∈⇒Any {x = x} (here refl) = here refl ∈⇒Any {x = x} {h ∷ t} (there xxxx) = there (∈⇒Any {xs = t} xxxx) false≢true : false ≢ true false≢true () witness : {A : Set}{P : A → Set}{x : A}{xs : List A} → x ∈ xs → All P xs → P x witness x y = All-lookup y x maybe-⊥ : ∀{a}{A : Set a}{x : A}{y : Maybe A} → y ≡ just x → y ≡ nothing → ⊥ maybe-⊥ () refl Maybe-map-cool : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → x ≢ nothing Maybe-map-cool {x = nothing} () Maybe-map-cool {x = just y} prf = λ x → ⊥-elim (maybe-⊥ (sym x) refl) Maybe-map-cool-1 : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → Σ S (λ x' → f x' ≡ z) Maybe-map-cool-1 {x = nothing} () Maybe-map-cool-1 {x = just y} {z = z} refl = y , refl Maybe-map-cool-2 : ∀ {S S₁ : Set} {f : S → S₁} {x : S} {z} → f x ≡ z → Maybe-map f (just x) ≡ just z Maybe-map-cool-2 {S}{S₁}{f}{x}{z} prf rewrite prf = refl T⇒true : ∀ {a : Bool} → T a → a ≡ true T⇒true {true} _ = refl isJust : ∀ {A : Set}{aMB : Maybe A}{a : A} → aMB ≡ just a → Is-just aMB isJust refl = just tt to-witness-isJust-≡ : ∀ {A : Set}{aMB : Maybe A}{a prf} → to-witness (isJust {aMB = aMB} {a} prf) ≡ a to-witness-isJust-≡ {aMB = just a'} {a} {prf} with to-witness-lemma (isJust {aMB = just a'} {a} prf) refl ...| xxx = just-injective (trans (sym xxx) prf) deMorgan : ∀ {A B : Set} → (¬ A) ⊎ (¬ B) → ¬ (A × B) deMorgan (inj₁ ¬a) = λ a×b → ¬a (proj₁ a×b) deMorgan (inj₂ ¬b) = λ a×b → ¬b (proj₂ a×b) ¬subst : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {P : A → Set ℓ₂} → {x y : A} → ¬ (P x) → y ≡ x → ¬ (P y) ¬subst px refl = px ∸-suc-≤ : ∀ (x w : ℕ) → suc x ∸ w ≤ suc (x ∸ w) ∸-suc-≤ x zero = ≤-refl ∸-suc-≤ zero (suc w) rewrite 0∸n≡0 w = z≤n ∸-suc-≤ (suc x) (suc w) = ∸-suc-≤ x w m∸n≤o⇒m∸o≤n : ∀ (x z w : ℕ) → x ∸ z ≤ w → x ∸ w ≤ z m∸n≤o⇒m∸o≤n x zero w p≤ rewrite m≤n⇒m∸n≡0 p≤ = z≤n m∸n≤o⇒m∸o≤n zero (suc z) w p≤ rewrite 0∸n≡0 w = z≤n m∸n≤o⇒m∸o≤n (suc x) (suc z) w p≤ = ≤-trans (∸-suc-≤ x w) (s≤s (m∸n≤o⇒m∸o≤n x z w p≤)) tail-⊆ : ∀ {A : Set} {x} {xs ys : List A} → (x ∷ xs) ⊆List ys → xs ⊆List ys tail-⊆ xxs⊆ys x∈xs = xxs⊆ys (there x∈xs) allDistinctTail : ∀ {A : Set} {x} {xs : List A} → allDistinct (x ∷ xs) → allDistinct xs allDistinctTail allDist (i , i<l) (j , j<l) with allDist (suc i , s≤s i<l) (suc j , s≤s j<l) ...| inj₁ 1+i≡1+j = inj₁ (cong pred 1+i≡1+j) ...| inj₂ lookup≢ = inj₂ lookup≢ ∈-Any-Index-elim : ∀ {A : Set} {x y} {ys : List A} (x∈ys : x ∈ ys) → x ≢ y → y ∈ ys → y ∈ ys ─ Any-index x∈ys ∈-Any-Index-elim (here refl) x≢y (here refl) = ⊥-elim (x≢y refl) ∈-Any-Index-elim (here refl) _ (there y∈ys) = y∈ys ∈-Any-Index-elim (there _) _ (here refl) = here refl ∈-Any-Index-elim (there x∈ys) x≢y (there y∈ys) = there (∈-Any-Index-elim x∈ys x≢y y∈ys) ∉∧⊆List⇒∉ : ∀ {A : Set} {x} {xs ys : List A} → x ∉ xs → ys ⊆List xs → x ∉ ys ∉∧⊆List⇒∉ x∉xs ys∈xs x∈ys = ⊥-elim (x∉xs (ys∈xs x∈ys)) allDistinctʳʳ : ∀ {A : Set} {x x₁ : A} {xs : List A} → allDistinct (x ∷ x₁ ∷ xs) → allDistinct (x ∷ xs) allDistinctʳʳ _ (zero , _) (zero , _) = inj₁ refl allDistinctʳʳ allDist (zero , i<l) (suc j , j<l) with allDist (0 , s≤s z≤n) (suc (suc j) , s≤s j<l) ...| inj₂ x≢lookup = inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs) allDistinctʳʳ allDist (suc i , i<l) (zero , j<l) with allDist (suc (suc i) , s≤s i<l) (0 , s≤s z≤n) ...| inj₂ x≢lookup = inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs) allDistinctʳʳ allDist (suc i , i<l) (suc j , j<l) with allDist (2 + i , (s≤s i<l)) (2 + j , s≤s j<l) ...| inj₁ si≡sj = inj₁ (cong pred si≡sj) ...| inj₂ lookup≡ = inj₂ lookup≡ allDistinct⇒∉ : ∀ {A : Set} {x} {xs : List A} → allDistinct (x ∷ xs) → x ∉ xs allDistinct⇒∉ allDist (here x≡x₁) with allDist (0 , s≤s z≤n) (1 , s≤s (s≤s z≤n)) ... | inj₂ x≢x₁ = ⊥-elim (x≢x₁ x≡x₁) allDistinct⇒∉ allDist (there x∈xs) = allDistinct⇒∉ (allDistinctʳʳ allDist) x∈xs sumListMap : ∀ {A : Set} {x} {xs : List A} (f : A → ℕ) → (x∈xs : x ∈ xs) → f-sum f xs ≡ f x + f-sum f (xs ─ Any-index x∈xs) sumListMap _ (here refl) = refl sumListMap {_} {x} {x₁ ∷ xs} f (there x∈xs) rewrite sumListMap f x∈xs | sym (+-assoc (f x) (f x₁) (f-sum f (xs ─ Any-index x∈xs))) | +-comm (f x) (f x₁) | +-assoc (f x₁) (f x) (f-sum f (xs ─ Any-index x∈xs)) = refl lookup⇒Any : ∀ {A : Set} {xs : List A} {P : A → Set} (i : Fin (length xs)) → P (List-lookup xs i) → Any P xs lookup⇒Any {_} {_ ∷ _} zero px = here px lookup⇒Any {_} {_ ∷ _} (suc i) px = there (lookup⇒Any i px) x∉→AllDistinct : ∀ {A : Set} {x} {xs : List A} → allDistinct xs → x ∉ xs → allDistinct (x ∷ xs) x∉→AllDistinct _ _ (0 , _) (0 , _) = inj₁ refl x∉→AllDistinct _ x∉xs (0 , _) (suc j , j<l) = inj₂ (λ x≡lkp → x∉xs (lookup⇒Any (fromℕ< (≤-pred j<l)) x≡lkp)) x∉→AllDistinct _ x∉xs (suc i , i<l) (0 , _) = inj₂ (λ x≡lkp → x∉xs (lookup⇒Any (fromℕ< (≤-pred i<l)) (sym x≡lkp))) x∉→AllDistinct allDist x∉xs (suc i , i<l) (suc j , j<l) with allDist (i , (≤-pred i<l)) (j , (≤-pred j<l)) ...| inj₁ i≡j = inj₁ (cong suc i≡j) ...| inj₂ lkup≢ = inj₂ lkup≢ module DecLemmas {A : Set} (_≟D_ : Decidable {A = A} (_≡_)) where _∈?_ : ∀ (x : A) → (xs : List A) → Dec (Any (x ≡_) xs) x ∈? xs = Any-any (x ≟D_) xs y∉xs⇒Allxs≢y : ∀ {xs : List A} {x y} → y ∉ (x ∷ xs) → x ≢ y × y ∉ xs y∉xs⇒Allxs≢y {xs} {x} {y} y∉ with y ∈? xs ...| yes y∈xs = ⊥-elim (y∉ (there y∈xs)) ...| no y∉xs with x ≟D y ...| yes x≡y = ⊥-elim (y∉ (here (sym x≡y))) ...| no x≢y = x≢y , y∉xs ⊆List-Elim : ∀ {x} {xs ys : List A} (x∈ys : x ∈ ys) → x ∉ xs → xs ⊆List ys → xs ⊆List ys ─ Any-index x∈ys ⊆List-Elim (here refl) x∉xs xs∈ys x₂∈xs with xs∈ys x₂∈xs ...| here refl = ⊥-elim (x∉xs x₂∈xs) ...| there x∈xs = x∈xs ⊆List-Elim (there x∈ys) x∉xs xs∈ys x₂∈xxs with x₂∈xxs ...| there x₂∈xs = ⊆List-Elim (there x∈ys) (proj₂ (y∉xs⇒Allxs≢y x∉xs)) (tail-⊆ xs∈ys) x₂∈xs ...| here refl with xs∈ys x₂∈xxs ...| here refl = here refl ...| there x₂∈ys = there (∈-Any-Index-elim x∈ys (≢-sym (proj₁ (y∉xs⇒Allxs≢y x∉xs))) x₂∈ys) sum-⊆-≤ : ∀ {ys} (xs : List A) (f : A → ℕ) → allDistinct xs → xs ⊆List ys → f-sum f xs ≤ f-sum f ys sum-⊆-≤ [] _ _ _ = z≤n sum-⊆-≤ (x ∷ xs) f dxs xs⊆ys rewrite sumListMap f (xs⊆ys (here refl)) = let x∉xs = allDistinct⇒∉ dxs xs⊆ysT = tail-⊆ xs⊆ys xs⊆ys-x = ⊆List-Elim (xs⊆ys (here refl)) x∉xs xs⊆ysT disTail = allDistinctTail dxs in +-monoʳ-≤ (f x) (sum-⊆-≤ xs f disTail xs⊆ys-x) intersect : List A → List A → List A intersect xs [] = [] intersect xs (y ∷ ys) with y ∈? xs ...| yes _ = y ∷ intersect xs ys ...| no _ = intersect xs ys union : List A → List A → List A union xs [] = xs union xs (y ∷ ys) with y ∈? xs ...| yes _ = union xs ys ...| no _ = y ∷ union xs ys ∈-intersect : ∀ (xs ys : List A) {α} → α ∈ intersect xs ys → α ∈ xs × α ∈ ys ∈-intersect xs (y ∷ ys) α∈int with y ∈? xs | α∈int ...| no y∉xs | α∈ = ×-map₂ there (∈-intersect xs ys α∈) ...| yes y∈xs | here refl = y∈xs , here refl ...| yes y∈xs | there α∈ = ×-map₂ there (∈-intersect xs ys α∈) x∉⇒x∉intersect : ∀ {x} {xs ys : List A} → x ∉ xs ⊎ x ∉ ys → x ∉ intersect xs ys x∉⇒x∉intersect {x} {xs} {ys} x∉ x∈int = contraposition (∈-intersect xs ys) (deMorgan x∉) x∈int intersectDistinct : ∀ (xs ys : List A) → allDistinct xs → allDistinct ys → allDistinct (intersect xs ys) intersectDistinct xs (y ∷ ys) dxs dys with y ∈? xs ...| yes y∈xs = let distTail = allDistinctTail dys intDTail = intersectDistinct xs ys dxs distTail y∉intTail = x∉⇒x∉intersect (inj₂ (allDistinct⇒∉ dys)) in x∉→AllDistinct intDTail y∉intTail ...| no y∉xs = intersectDistinct xs ys dxs (allDistinctTail dys) x∉⇒x∉union : ∀ {x} {xs ys : List A} → x ∉ xs × x ∉ ys → x ∉ union xs ys x∉⇒x∉union {_} {_} {[]} (x∉xs , _) x∈∪ = ⊥-elim (x∉xs x∈∪) x∉⇒x∉union {x} {xs} {y ∷ ys} (x∉xs , x∉ys) x∈union with y ∈? xs | x∈union ...| yes y∈xs | x∈∪ = ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪) ...| no y∉xs | here refl = ⊥-elim (proj₁ (y∉xs⇒Allxs≢y x∉ys) refl) ...| no y∉xs | there x∈∪ = ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪) unionDistinct : ∀ (xs ys : List A) → allDistinct xs → allDistinct ys → allDistinct (union xs ys) unionDistinct xs [] dxs dys = dxs unionDistinct xs (y ∷ ys) dxs dys with y ∈? xs ...| yes y∈xs = unionDistinct xs ys dxs (allDistinctTail dys) ...| no y∉xs = let distTail = allDistinctTail dys uniDTail = unionDistinct xs ys dxs distTail y∉intTail = x∉⇒x∉union (y∉xs , allDistinct⇒∉ dys) in x∉→AllDistinct uniDTail y∉intTail sumIntersect≤ : ∀ (xs ys : List A) (f : A → ℕ) → f-sum f (intersect xs ys) ≤ f-sum f (xs ++ ys) sumIntersect≤ _ [] _ = z≤n sumIntersect≤ xs (y ∷ ys) f with y ∈? xs ...| yes y∈xs rewrite map-++-commute f xs (y ∷ ys) | sum-++-commute (List-map f xs) (List-map f (y ∷ ys)) | sym (+-assoc (f-sum f xs) (f y) (f-sum f ys)) | +-comm (f-sum f xs) (f y) | +-assoc (f y) (f-sum f xs) (f-sum f ys) | sym (sum-++-commute (List-map f xs) (List-map f ys)) | sym (map-++-commute f xs ys) = +-monoʳ-≤ (f y) (sumIntersect≤ xs ys f) ...| no y∉xs rewrite map-++-commute f xs (y ∷ ys) | sum-++-commute (List-map f xs) (List-map f (y ∷ ys)) | +-comm (f y) (f-sum f ys) | sym (+-assoc (f-sum f xs) (f-sum f ys) (f y)) | sym (sum-++-commute (List-map f xs) (List-map f ys)) | sym (map-++-commute f xs ys) = ≤-stepsʳ (f y) (sumIntersect≤ xs ys f)
{ "alphanum_fraction": 0.4728523099, "avg_line_length": 37.33126294, "ext": "agda", "hexsha": "4e46b3a6ba5ffde39fd34151e06639028c537ed3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Lemmas.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7804, "size": 18031 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.Eq where open import Haskell.Modules.ToBool ------------------------------------------------------------------------------ open import Data.Bool hiding (_≟_; not) open import Data.List as DL open import Data.Maybe using (Maybe; just; nothing) import Data.Nat as DN open import Function using (_$_; _∘_) import Relation.Binary.PropositionalEquality as PE using (_≡_; refl) import Relation.Nullary as RN record Eq {a} (A : Set a) : Set a where infix 4 _≟_ _==_ _/=_ field _≟_ : (a b : A) → RN.Dec (a PE.≡ b) _==_ : A → A → Bool a == b = toBool $ a ≟ b _/=_ : A → A → Bool a /= b = not (a == b) open Eq ⦃ ... ⦄ public import Data.List.Relation.Unary.Any as Any using (any) elem : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → A → DL.List A → Bool elem x = toBool ∘ Any.any (x ≟_) instance Eq-Nat : Eq DN.ℕ Eq._≟_ Eq-Nat = DN._≟_ Eq-Maybe : ∀ {a} {A : Set a} ⦃ _ : Eq A ⦄ → Eq (Maybe A) Eq._≟_ Eq-Maybe nothing nothing = RN.yes PE.refl Eq._≟_ Eq-Maybe (just _) nothing = RN.no λ () Eq._≟_ Eq-Maybe nothing (just _) = RN.no λ () Eq._≟_ Eq-Maybe (just a) (just b) with a ≟ b ... | RN.no proof = RN.no λ where PE.refl → proof PE.refl ... | RN.yes PE.refl = RN.yes PE.refl
{ "alphanum_fraction": 0.5575221239, "avg_line_length": 32.2857142857, "ext": "agda", "hexsha": "4d8824685a5bd83a2547f19d78a0620c10f8d129", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/Eq.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 517, "size": 1582 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Cat.Facts.Exponential where open import Data.Product using (_,_) open import Level using (_⊔_) open import Relation.Binary using (IsEquivalence) open import Cats.Bifunctor using (Bifunctor ; Bifunctor→Functor₁ ; transposeBifunctor₁ ; transposeBifunctor₁-resp) open import Cats.Category open import Cats.Category.Cat as Cat′ using (Cat ; Functor ; _∘_ ; _≈_) renaming (id to Id) open import Cats.Category.Cat.Facts.Product using (hasBinaryProducts ; ⟨_×_⟩) open import Cats.Category.Fun using (_↝_ ; Trans ; ≈-intro ; ≈-elim) open import Cats.Category.Fun.Facts.Iso using (≈→≅) open import Cats.Category.Product.Binary using (_×_) open import Cats.Trans.Iso as NatIso using (NatIso) open import Cats.Util.Conv import Cats.Category.Base as Base import Cats.Category.Constructions.Unique as Unique import Cats.Category.Constructions.Iso as Iso open Functor open Trans open Iso.Iso private module Cat≈ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} = IsEquivalence (Cat′.equiv {C = C} {D}) module Fun {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} = Category (C ↝ D) module _ {lo la l≈ lo′ la′ l≈′} {B : Category lo la l≈} {C : Category lo′ la′ l≈′} where private module B = Category B module C = Category C Eval : Bifunctor (B ↝ C) B C Eval = record { fobj = λ where (F , x) → fobj F x ; fmap = λ where {F , a} {G , b} (θ , f) → fmap G f C.∘ component θ a ; fmap-resp = λ where {F , a} {G , b} {θ , f} {ι , g} (θ≈ι , f≈g) → C.∘-resp (fmap-resp G f≈g) (≈-elim θ≈ι) ; fmap-id = λ { {F , b} → C.≈.trans (C.∘-resp-l (fmap-id F)) C.id-l } ; fmap-∘ = λ where {F , a} {G , b} {H , c} {θ , f} {ι , g} → begin (fmap H f C.∘ component θ b) C.∘ (fmap G g C.∘ component ι a) ≈⟨ C.∘-resp-l (C.≈.sym (natural θ)) ⟩ (component θ c C.∘ fmap G f) C.∘ (fmap G g C.∘ component ι a) ≈⟨ C.assoc ⟩ component θ c C.∘ fmap G f C.∘ (fmap G g C.∘ component ι a) ≈⟨ C.∘-resp-r C.unassoc ⟩ component θ c C.∘ (fmap G f C.∘ fmap G g) C.∘ component ι a ≈⟨ C.∘-resp-r (C.∘-resp-l (fmap-∘ G)) ⟩ component θ c C.∘ fmap G (f B.∘ g) C.∘ component ι a ≈⟨ C.unassoc ⟩ (component θ c C.∘ fmap G (f B.∘ g)) C.∘ component ι a ≈⟨ C.∘-resp-l (natural θ) ⟩ (fmap H (f B.∘ g) C.∘ component θ a) C.∘ component ι a ≈⟨ C.assoc ⟩ fmap H (f B.∘ g) C.∘ component θ a C.∘ component ι a ∎ } where open C.≈-Reasoning module _ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} {B : Category lo la l≈} {C : Category lo′ la′ l≈′} {D : Category lo″ la″ l≈″} where private module B = Category B module C = Category C module D = Category D Curry : Bifunctor B C D → Functor B (C ↝ D) Curry F = transposeBifunctor₁ F Curry-resp : ∀ {F G} → F ≈ G → Curry F ≈ Curry G Curry-resp = transposeBifunctor₁-resp Curry-correct : ∀ {F} → Eval ∘ ⟨ Curry F × Id ⟩ ≈ F Curry-correct {F} = record { iso = D.≅.refl ; forth-natural = λ where {a , a′} {b , b′} {f , f′} → begin D.id D.∘ fmap F (B.id , f′) D.∘ fmap F (f , C.id) ≈⟨ D.≈.trans D.id-l (fmap-∘ F) ⟩ fmap F (B.id B.∘ f , f′ C.∘ C.id) ≈⟨ fmap-resp F (B.id-l , C.id-r) ⟩ fmap F (f , f′) ≈⟨ D.≈.sym D.id-r ⟩ fmap F (f , f′) D.∘ D.id ∎ } where open D.≈-Reasoning Curry-unique : ∀ {F Curry′} → Eval ∘ ⟨ Curry′ × Id ⟩ ≈ F → Curry′ ≈ Curry F Curry-unique {F} {Curry′} eq@record { iso = iso ; forth-natural = fnat } = record { iso = λ {x} → let open Fun.≅-Reasoning in Fun.≅.sym ( begin fobj (Curry F) x ≈⟨ NatIso.iso (Curry-resp (Cat≈.sym eq)) ⟩ fobj (Curry (Eval ∘ ⟨ Curry′ × Id ⟩)) x ≈⟨ ≈→≅ (lem x) ⟩ fobj Curry′ x ∎ ) ; forth-natural = λ {a} {b} {f} → ≈-intro λ {x} → -- TODO We need a simplification tactic. let open D.≈-Reasoning in triangle (forth iso D.∘ component (fmap Curry′ f) x) ( begin ((forth iso D.∘ (fmap (fobj Curry′ b) C.id D.∘ component (fmap Curry′ B.id) x) D.∘ D.id) D.∘ D.id D.∘ D.id) D.∘ component (fmap Curry′ f) x ≈⟨ D.∘-resp-l (D.≈.trans (D.∘-resp-r D.id-l) (D.≈.trans D.id-r (D.≈.trans (D.∘-resp-r (D.≈.trans D.id-r (D.≈.trans (D.∘-resp (fmap-id (fobj Curry′ b)) (≈-elim (fmap-id Curry′))) D.id-l))) D.id-r))) ⟩ forth iso D.∘ component (fmap Curry′ f) x ∎ ) ( begin fmap F (f , C.id) D.∘ (forth iso D.∘ (fmap (fobj Curry′ a) C.id D.∘ component (fmap Curry′ B.id) x) D.∘ D.id) D.∘ D.id D.∘ D.id ≈⟨ D.∘-resp-r (D.≈.trans (D.∘-resp-r D.id-r) (D.≈.trans D.id-r (D.≈.trans (D.∘-resp-r (D.≈.trans D.id-r (D.≈.trans (D.∘-resp-l (fmap-id (fobj Curry′ a))) (D.≈.trans D.id-l (≈-elim (fmap-id Curry′)))))) D.id-r))) ⟩ fmap F (f , C.id) D.∘ forth iso ≈⟨ D.≈.sym fnat ⟩ forth iso D.∘ fmap (fobj Curry′ b) C.id D.∘ component (fmap Curry′ f) x ≈⟨ D.∘-resp-r (D.≈.trans (D.∘-resp-l (fmap-id (fobj Curry′ b))) D.id-l) ⟩ forth iso D.∘ component (fmap Curry′ f) x ∎ ) } where lem : ∀ x → NatIso (Bifunctor→Functor₁ (Eval ∘ ⟨ Curry′ × Id ⟩) x) (fobj Curry′ x) lem x = record { iso = D.≅.refl ; forth-natural = D.≈.trans D.id-l (D.∘-resp-r (≈-elim (fmap-id Curry′))) } -- We get the following lemmas for free from HasExponentials, but only when -- all the categories are at the same (single) level. Uncurry : Functor B (C ↝ D) → Bifunctor B C D Uncurry F = Eval ∘ ⟨ F × Id ⟩ Curry∘Uncurry : {F : Functor B (C ↝ D)} → Curry (Uncurry F) ≈ F Curry∘Uncurry {F} = Cat≈.sym (Curry-unique {Curry′ = F} Cat≈.refl) Uncurry∘Curry : {F : Bifunctor B C D} → Uncurry (Curry F) ≈ F Uncurry∘Curry {F} = Curry-correct {F = F} instance hasExponentials : ∀ {l} → HasExponentials (Cat l l l) hasExponentials {l} = record { _↝′_ = λ B C → record { Cᴮ = B ↝ C ; eval = Eval ; curry′ = λ {A} F → record { arr = Curry F ; prop = Curry-correct {B = A} {B} {C} {F} ; unique = λ {g} eq → Cat≈.sym (Curry-unique eq) } } }
{ "alphanum_fraction": 0.4898938491, "avg_line_length": 33.2222222222, "ext": "agda", "hexsha": "45dec570f6ea106eb6b2df7d7881c1302cf30151", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_line_length": 105, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 2666, "size": 6877 }
module OlderBasicILP.Indirect.Translation where open import OlderBasicILP.Indirect public import OlderBasicILP.Indirect.Hilbert.Sequential as HS import OlderBasicILP.Indirect.Hilbert.Nested as HN import OlderBasicILP.Indirect.Gentzen as G open HS using () renaming (_⊢×_ to HS⟨_⊢×_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open HN using () renaming (_⊢_ to HN⟨_⊢_⟩ ; _⊢⋆_ to HN⟨_⊢⋆_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩ ; _⊢⋆_ to G⟨_⊢⋆_⟩) public -- Translation from sequential Hilbert-style to nested. hs→hnᵀᵐ : HS.Tm → HN.Tm hs→hnᵀᵐ TS = aux TS 0 where aux : HS.Tm → ℕ → HN.Tm aux HS.NIL zero = {!!} aux (HS.VAR I TS) zero = HN.VAR I aux (HS.MP I J TS) zero = HN.APP (aux TS I) (aux TS J) aux (HS.CI TS) zero = HN.CI aux (HS.CK TS) zero = HN.CK aux (HS.CS TS) zero = HN.CS aux (HS.NEC SS TS) zero = HN.BOX (aux SS 0) aux (HS.CDIST TS) zero = HN.CDIST aux (HS.CUP TS) zero = HN.CUP aux (HS.CDOWN TS) zero = HN.CDOWN aux (HS.CPAIR TS) zero = HN.CPAIR aux (HS.CFST TS) zero = HN.CFST aux (HS.CSND TS) zero = HN.CSND aux (HS.UNIT TS) zero = HN.UNIT aux HS.NIL (suc K) = {!!} aux (HS.VAR I TS) (suc K) = aux TS K aux (HS.MP I J TS) (suc K) = aux TS K aux (HS.CI TS) (suc K) = aux TS K aux (HS.CK TS) (suc K) = aux TS K aux (HS.CS TS) (suc K) = aux TS K aux (HS.NEC SS TS) (suc K) = aux TS K aux (HS.CDIST TS) (suc K) = aux TS K aux (HS.CUP TS) (suc K) = aux TS K aux (HS.CDOWN TS) (suc K) = aux TS K aux (HS.CPAIR TS) (suc K) = aux TS K aux (HS.CFST TS) (suc K) = aux TS K aux (HS.CSND TS) (suc K) = aux TS K aux (HS.UNIT TS) (suc K) = aux TS K hs→hnᵀʸ : Ty HS.Tm → Ty HN.Tm hs→hnᵀʸ (α P) = α P hs→hnᵀʸ (A ▻ B) = hs→hnᵀʸ A ▻ hs→hnᵀʸ B hs→hnᵀʸ (T ⦂ A) = hs→hnᵀᵐ T ⦂ hs→hnᵀʸ A hs→hnᵀʸ (A ∧ B) = hs→hnᵀʸ A ∧ hs→hnᵀʸ B hs→hnᵀʸ ⊤ = ⊤ hs→hnᵀʸ⋆ : Cx (Ty HS.Tm) → Cx (Ty HN.Tm) hs→hnᵀʸ⋆ ∅ = ∅ hs→hnᵀʸ⋆ (Γ , A) = hs→hnᵀʸ⋆ Γ , hs→hnᵀʸ A hs→hnᴵˣ : ∀ {A Γ} → A ∈ Γ → hs→hnᵀʸ A ∈ hs→hnᵀʸ⋆ Γ hs→hnᴵˣ top = top hs→hnᴵˣ (pop i) = pop (hs→hnᴵˣ i) hs→hn : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HN⟨ hs→hnᵀʸ⋆ Γ ⊢ hs→hnᵀʸ A ⟩ hs→hn (Ξ , ts) = aux ts top where aux : ∀ {A Γ Ξ} → HS⟨ Γ ⊢× Ξ ⟩ → A ∈ Ξ → HN⟨ hs→hnᵀʸ⋆ Γ ⊢ hs→hnᵀʸ A ⟩ aux (HS.var i ts) top = HN.var (hs→hnᴵˣ i) aux (HS.mp i j ts) top = HN.app (aux ts i) (aux ts j) aux (HS.ci ts) top = HN.ci aux (HS.ck ts) top = HN.ck aux (HS.cs ts) top = HN.cs aux (HS.nec ss ts) top = {!HN.box (aux ss top)!} aux (HS.cdist ts) top = {!HN.cdist!} aux (HS.cup ts) top = {!HN.cup!} aux (HS.cdown ts) top = HN.cdown aux (HS.cpair ts) top = HN.cpair aux (HS.cfst ts) top = HN.cfst aux (HS.csnd ts) top = HN.csnd aux (HS.unit ts) top = HN.unit aux (HS.var i ts) (pop k) = aux ts k aux (HS.mp i j ts) (pop k) = aux ts k aux (HS.ci ts) (pop k) = aux ts k aux (HS.ck ts) (pop k) = aux ts k aux (HS.cs ts) (pop k) = aux ts k aux (HS.nec ss ts) (pop k) = aux ts k aux (HS.cdist ts) (pop k) = aux ts k aux (HS.cup ts) (pop k) = aux ts k aux (HS.cdown ts) (pop k) = aux ts k aux (HS.cpair ts) (pop k) = aux ts k aux (HS.cfst ts) (pop k) = aux ts k aux (HS.csnd ts) (pop k) = aux ts k aux (HS.unit ts) (pop k) = aux ts k -- Translation from nested Hilbert-style to sequential. hn→hsᵀᵐ : HN.Tm → HS.Tm hn→hsᵀᵐ (HN.VAR I) = HS.VAR I HS.NIL hn→hsᵀᵐ (HN.APP T U) = HS.APP (hn→hsᵀᵐ T) (hn→hsᵀᵐ U) hn→hsᵀᵐ HN.CI = HS.CI HS.NIL hn→hsᵀᵐ HN.CK = HS.CK HS.NIL hn→hsᵀᵐ HN.CS = HS.CS HS.NIL hn→hsᵀᵐ (HN.BOX T) = HS.BOX (hn→hsᵀᵐ T) hn→hsᵀᵐ HN.CDIST = HS.CDIST HS.NIL hn→hsᵀᵐ HN.CUP = HS.CUP HS.NIL hn→hsᵀᵐ HN.CDOWN = HS.CDOWN HS.NIL hn→hsᵀᵐ HN.CPAIR = HS.CPAIR HS.NIL hn→hsᵀᵐ HN.CFST = HS.CFST HS.NIL hn→hsᵀᵐ HN.CSND = HS.CSND HS.NIL hn→hsᵀᵐ HN.UNIT = HS.UNIT HS.NIL hn→hsᵀʸ : Ty HN.Tm → Ty HS.Tm hn→hsᵀʸ (α P) = α P hn→hsᵀʸ (A ▻ B) = hn→hsᵀʸ A ▻ hn→hsᵀʸ B hn→hsᵀʸ (T ⦂ A) = hn→hsᵀᵐ T ⦂ hn→hsᵀʸ A hn→hsᵀʸ (A ∧ B) = hn→hsᵀʸ A ∧ hn→hsᵀʸ B hn→hsᵀʸ ⊤ = ⊤ hn→hsᵀʸ⋆ : Cx (Ty HN.Tm) → Cx (Ty HS.Tm) hn→hsᵀʸ⋆ ∅ = ∅ hn→hsᵀʸ⋆ (Γ , A) = hn→hsᵀʸ⋆ Γ , hn→hsᵀʸ A hn→hsᴵˣ : ∀ {A Γ} → A ∈ Γ → hn→hsᵀʸ A ∈ hn→hsᵀʸ⋆ Γ hn→hsᴵˣ top = top hn→hsᴵˣ (pop i) = pop (hn→hsᴵˣ i) hn→hs : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → HS⟨ hn→hsᵀʸ⋆ Γ ⊢ hn→hsᵀʸ A ⟩ hn→hs (HN.var i) = ∅ , HS.var (hn→hsᴵˣ i) HS.nil hn→hs (HN.app t u) = HS.app (hn→hs t) (hn→hs u) hn→hs HN.ci = ∅ , HS.ci HS.nil hn→hs HN.ck = ∅ , HS.ck HS.nil hn→hs HN.cs = ∅ , HS.cs HS.nil hn→hs (HN.box t) = {!HS.box (hn→hs t)!} hn→hs HN.cdist = ∅ , HS.cdist HS.nil hn→hs HN.cup = ∅ , HS.cup HS.nil hn→hs HN.cdown = ∅ , HS.cdown HS.nil hn→hs HN.cpair = ∅ , HS.cpair HS.nil hn→hs HN.cfst = ∅ , HS.cfst HS.nil hn→hs HN.csnd = ∅ , HS.csnd HS.nil hn→hs HN.unit = ∅ , HS.unit HS.nil -- Deduction theorem for sequential Hilbert-style. hs→hn→hsᵀᵐ : ∀ {TS} → hn→hsᵀᵐ (hs→hnᵀᵐ TS) ≡ TS hs→hn→hsᵀᵐ {HS.NIL} = {!refl!} hs→hn→hsᵀᵐ {HS.VAR I TS} = cong² HS.VAR refl {!!} hs→hn→hsᵀᵐ {HS.MP I J TS} = {!!} hs→hn→hsᵀᵐ {HS.CI TS} = {!!} hs→hn→hsᵀᵐ {HS.CK TS} = {!!} hs→hn→hsᵀᵐ {HS.CS TS} = {!!} hs→hn→hsᵀᵐ {HS.NEC SS TS} = {!!} hs→hn→hsᵀᵐ {HS.CDIST TS} = {!!} hs→hn→hsᵀᵐ {HS.CUP TS} = {!!} hs→hn→hsᵀᵐ {HS.CDOWN TS} = {!!} hs→hn→hsᵀᵐ {HS.CPAIR TS} = {!!} hs→hn→hsᵀᵐ {HS.CFST TS} = {!!} hs→hn→hsᵀᵐ {HS.CSND TS} = {!!} hs→hn→hsᵀᵐ {HS.UNIT TS} = {!!} hs→hn→hsᵀʸ : ∀ {A} → hn→hsᵀʸ (hs→hnᵀʸ A) ≡ A hs→hn→hsᵀʸ {α P} = refl hs→hn→hsᵀʸ {A ▻ B} = cong² _▻_ hs→hn→hsᵀʸ hs→hn→hsᵀʸ hs→hn→hsᵀʸ {T ⦂ A} = cong² _⦂_ hs→hn→hsᵀᵐ hs→hn→hsᵀʸ hs→hn→hsᵀʸ {A ∧ B} = cong² _∧_ hs→hn→hsᵀʸ hs→hn→hsᵀʸ hs→hn→hsᵀʸ {⊤} = refl -- hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ -- hs-lam t = {!hn→hs (HN.lam (hs→hn t))!} -- hn→hs ∘ HN.lam ∘ hs→hn -- Translation from nested Hilbert-style to Gentzen-style. hn→gᵀᵐ : HN.Tm → G.Tm hn→gᵀᵐ (HN.VAR I) = G.VAR I hn→gᵀᵐ (HN.APP T U) = G.APP (hn→gᵀᵐ T) (hn→gᵀᵐ U) hn→gᵀᵐ HN.CI = G.CI hn→gᵀᵐ HN.CK = G.CK hn→gᵀᵐ HN.CS = G.CS hn→gᵀᵐ (HN.BOX T) = G.BOX (hn→gᵀᵐ T) hn→gᵀᵐ HN.CDIST = G.CDIST hn→gᵀᵐ HN.CUP = G.CUP hn→gᵀᵐ HN.CDOWN = G.CDOWN hn→gᵀᵐ HN.CPAIR = G.CPAIR hn→gᵀᵐ HN.CFST = G.CFST hn→gᵀᵐ HN.CSND = G.CSND hn→gᵀᵐ HN.UNIT = G.UNIT hn→gᵀʸ : Ty HN.Tm → Ty G.Tm hn→gᵀʸ (α P) = α P hn→gᵀʸ (A ▻ B) = hn→gᵀʸ A ▻ hn→gᵀʸ B hn→gᵀʸ (T ⦂ A) = hn→gᵀᵐ T ⦂ hn→gᵀʸ A hn→gᵀʸ (A ∧ B) = hn→gᵀʸ A ∧ hn→gᵀʸ B hn→gᵀʸ ⊤ = ⊤ hn→gᵀʸ⋆ : Cx (Ty HN.Tm) → Cx (Ty G.Tm) hn→gᵀʸ⋆ ∅ = ∅ hn→gᵀʸ⋆ (Γ , A) = hn→gᵀʸ⋆ Γ , hn→gᵀʸ A hn→gᴵˣ : ∀ {A Γ} → A ∈ Γ → hn→gᵀʸ A ∈ hn→gᵀʸ⋆ Γ hn→gᴵˣ top = top hn→gᴵˣ (pop i) = pop (hn→gᴵˣ i) hn→g : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → G⟨ hn→gᵀʸ⋆ Γ ⊢ hn→gᵀʸ A ⟩ hn→g (HN.var i) = G.var (hn→gᴵˣ i) hn→g (HN.app t u) = G.app (hn→g t) (hn→g u) hn→g HN.ci = G.ci hn→g HN.ck = G.ck hn→g HN.cs = G.cs hn→g (HN.box t) = {!G.box (hn→g t)!} hn→g HN.cdist = {!G.cdist!} hn→g HN.cup = {!G.cup!} hn→g HN.cdown = G.cdown hn→g HN.cpair = G.cpair hn→g HN.cfst = G.cfst hn→g HN.csnd = G.csnd hn→g HN.unit = G.unit -- Translation from sequential Hilbert-style to Gentzen-style. hs→gᵀʸ : Ty HS.Tm → Ty G.Tm hs→gᵀʸ = hn→gᵀʸ ∘ hs→hnᵀʸ hs→gᵀʸ⋆ : Cx (Ty HS.Tm) → Cx (Ty G.Tm) hs→gᵀʸ⋆ = hn→gᵀʸ⋆ ∘ hs→hnᵀʸ⋆ hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ hs→gᵀʸ⋆ Γ ⊢ hs→gᵀʸ A ⟩ hs→g = hn→g ∘ hs→hn -- Translation from Gentzen-style to Hilbert-style. mutual g→hnᵀᵐ : G.Tm → HN.Tm g→hnᵀᵐ (G.VAR I) = HN.VAR I g→hnᵀᵐ (G.LAM T) = HN.LAM (g→hnᵀᵐ T) g→hnᵀᵐ (G.APP T U) = HN.APP (g→hnᵀᵐ T) (g→hnᵀᵐ U) g→hnᵀᵐ (G.MULTIBOX TS U) = HN.MULTIBOX (g→hnᵀᵐ⋆ TS) (g→hnᵀᵐ U) g→hnᵀᵐ (G.DOWN T) = HN.DOWN (g→hnᵀᵐ T) g→hnᵀᵐ (G.PAIR T U) = HN.PAIR (g→hnᵀᵐ T) (g→hnᵀᵐ U) g→hnᵀᵐ (G.FST T) = HN.FST (g→hnᵀᵐ T) g→hnᵀᵐ (G.SND T) = HN.SND (g→hnᵀᵐ T) g→hnᵀᵐ G.UNIT = HN.UNIT g→hnᵀᵐ⋆ : Cx G.Tm → Cx HN.Tm g→hnᵀᵐ⋆ ∅ = ∅ g→hnᵀᵐ⋆ (TS , T) = g→hnᵀᵐ⋆ TS , g→hnᵀᵐ T g→hnᵀʸ : Ty G.Tm → Ty HN.Tm g→hnᵀʸ (α P) = α P g→hnᵀʸ (A ▻ B) = g→hnᵀʸ A ▻ g→hnᵀʸ B g→hnᵀʸ (T ⦂ A) = g→hnᵀᵐ T ⦂ g→hnᵀʸ A g→hnᵀʸ (A ∧ B) = g→hnᵀʸ A ∧ g→hnᵀʸ B g→hnᵀʸ ⊤ = ⊤ g→hnᵀʸ⋆ : Cx (Ty G.Tm) → Cx (Ty HN.Tm) g→hnᵀʸ⋆ ∅ = ∅ g→hnᵀʸ⋆ (Γ , A) = g→hnᵀʸ⋆ Γ , g→hnᵀʸ A g→hnᴵˣ : ∀ {A Γ} → A ∈ Γ → g→hnᵀʸ A ∈ g→hnᵀʸ⋆ Γ g→hnᴵˣ top = top g→hnᴵˣ (pop i) = pop (g→hnᴵˣ i) mutual g→hn : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HN⟨ g→hnᵀʸ⋆ Γ ⊢ g→hnᵀʸ A ⟩ g→hn (G.var i) = HN.var (g→hnᴵˣ i) g→hn (G.lam t) = HN.lam (g→hn t) g→hn (G.app t u) = HN.app (g→hn t) (g→hn u) g→hn (G.multibox ts u) = {!HN.multibox (g→hn⋆ ts) (g→hn u)!} g→hn (G.down t) = HN.down (g→hn t) g→hn (G.pair t u) = HN.pair (g→hn t) (g→hn u) g→hn (G.fst t) = HN.fst (g→hn t) g→hn (G.snd t) = HN.snd (g→hn t) g→hn G.unit = HN.unit g→hn⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → HN⟨ g→hnᵀʸ⋆ Γ ⊢⋆ g→hnᵀʸ⋆ Ξ ⟩ g→hn⋆ {∅} ∙ = ∙ g→hn⋆ {Ξ , A} (ts , t) = g→hn⋆ ts , g→hn t -- Translation from Gentzen-style to sequential Hilbert-style. g→hsᵀʸ : Ty G.Tm → Ty HS.Tm g→hsᵀʸ = hn→hsᵀʸ ∘ g→hnᵀʸ g→hsᵀʸ⋆ : Cx (Ty G.Tm) → Cx (Ty HS.Tm) g→hsᵀʸ⋆ = hn→hsᵀʸ⋆ ∘ g→hnᵀʸ⋆ g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ g→hsᵀʸ⋆ Γ ⊢ g→hsᵀʸ A ⟩ g→hs = hn→hs ∘ g→hn
{ "alphanum_fraction": 0.5150975047, "avg_line_length": 32.4421768707, "ext": "agda", "hexsha": "f635d4179e03a3f722930ca6cb982b75a5951aee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OlderBasicILP/Indirect/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OlderBasicILP/Indirect/Translation.agda", "max_line_length": 73, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OlderBasicILP/Indirect/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 5745, "size": 9538 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality data _≅_ {A : Set} (x : A) : {B : Set} → B → Set where refl : x ≅ x test₁ : (A : Set) (x y : A) (z : Nat) → x ≡ y → x ≅ (suc z) → y ≅ 1 → Nat test₁ A (suc z) (suc zero) .z refl refl refl = {!!} test₂ : (A : Set) (x y : A) (z : Nat) → x ≡ y → x ≅ 1 → y ≅ (suc z) → Nat test₂ A (suc zero) (suc z) .z refl refl refl = {!!}
{ "alphanum_fraction": 0.5257009346, "avg_line_length": 30.5714285714, "ext": "agda", "hexsha": "91d5023b295c8175b462f138fc3403f14f1ccd91", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2856.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2856.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2856.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 189, "size": 428 }
open import Nat open import Prelude open import List open import contexts open import unions module core where -- types data typ : Set where _==>_ : typ → typ → typ ⟨⟩ : typ ⟨_×_⟩ : typ → typ → typ D[_] : Nat → typ -- arrow type constructors bind very tightly infixr 25 _==>_ -- type contexts, hole contexts, and datatype environments tctx = typ ctx hctx = (tctx ∧ typ) ctx denv = Σ[ dctx ∈ tctx ctx ] ∀{d1 d2 cctx1 cctx2 c} → d1 ≠ d2 → (d1 , cctx1) ∈ dctx → (d2 , cctx2) ∈ dctx → c # cctx1 ∨ c # cctx2 -- simple values data val : Set where ⟨⟩ : val ⟨_,_⟩ : val → val → val C[_]_ : Nat → val → val -- examples data ex : Set where ⟨⟩ : ex ⟨_,_⟩ : ex → ex → ex C[_]_ : Nat → ex → ex _↦_ : val → ex → ex ¿¿ : ex -- simple value typing data _⊢_::ⱽ_ : denv → val → typ → Set where VTUnit : ∀{Σ'} → Σ' ⊢ ⟨⟩ ::ⱽ ⟨⟩ VTPair : ∀{Σ' v1 v2 τ1 τ2} → Σ' ⊢ v1 ::ⱽ τ1 → Σ' ⊢ v2 ::ⱽ τ2 → Σ' ⊢ ⟨ v1 , v2 ⟩ ::ⱽ ⟨ τ1 × τ2 ⟩ VTCtor : ∀{Σ' d cctx c v τ} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Σ' ⊢ v ::ⱽ τ → Σ' ⊢ C[ c ] v ::ⱽ D[ d ] -- example typing data _,_⊢_:·_ : hctx → denv → ex → typ → Set where XTUnit : ∀{Δ Σ'} → Δ , Σ' ⊢ ⟨⟩ :· ⟨⟩ XTPair : ∀{Δ Σ' ex1 ex2 τ1 τ2} → Δ , Σ' ⊢ ex1 :· τ1 → Δ , Σ' ⊢ ex2 :· τ2 → Δ , Σ' ⊢ ⟨ ex1 , ex2 ⟩ :· ⟨ τ1 × τ2 ⟩ XTCtor : ∀{Δ Σ' d cctx c ex τ} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Δ , Σ' ⊢ ex :· τ → Δ , Σ' ⊢ C[ c ] ex :· D[ d ] XTTop : ∀{Δ Σ' τ} → Δ , Σ' ⊢ ¿¿ :· τ XTInOut : ∀{Δ Σ' v ex τ1 τ2} → Σ' ⊢ v ::ⱽ τ1 → Δ , Σ' ⊢ ex :· τ2 → Δ , Σ' ⊢ v ↦ ex :· τ1 ==> τ2 -- the two possible prj indices data prj-idx : Set where P1 : prj-idx P2 : prj-idx prj : {A : Set} → prj-idx → A → A → A prj P1 a1 a2 = a1 prj P2 a1 a2 = a2 mutual record rule : Set where inductive constructor |C_=>_ field parm : Nat branch : exp -- Expressions data exp : Set where fix_⦇·λ_=>_·⦈ : Nat → Nat → exp → exp _∘_ : exp → exp → exp X[_] : Nat → exp ⟨⟩ : exp ⟨_,_⟩ : exp → exp → exp prj[_]_ : prj-idx → exp → exp C[_]_ : Nat → exp → exp case_of⦃·_·⦄ : exp → rule ctx → exp ??[_] : Nat → exp PBE:assert : exp → exp → exp -- u is fresh in e data hole-name-new : (e : exp) → (u : Nat) → Set where HNNFix : ∀{x f e u} → hole-name-new e u → hole-name-new (fix f ⦇·λ x => e ·⦈) u HNNVar : ∀{x u} → hole-name-new (X[ x ]) u HNNAp : ∀{e1 e2 u} → hole-name-new e1 u → hole-name-new e2 u → hole-name-new (e1 ∘ e2) u HNNUnit : ∀{u} → hole-name-new ⟨⟩ u HNNPair : ∀{e1 e2 u} → hole-name-new e1 u → hole-name-new e2 u → hole-name-new ⟨ e1 , e2 ⟩ u HNNPrj : ∀{e i u} → hole-name-new e u → hole-name-new (prj[ i ] e) u HNNCtor : ∀{c e u} → hole-name-new e u → hole-name-new (C[ c ] e) u HNNCase : ∀{e rules u} → hole-name-new e u → (∀{c rule} → (c , rule) ∈ rules → hole-name-new (rule.branch rule) u) → hole-name-new (case e of⦃· rules ·⦄) u HNNHole : ∀{u' u} → u' ≠ u → hole-name-new (??[ u' ]) u HNNAsrt : ∀{e1 e2 u} → hole-name-new e1 u → hole-name-new e2 u → hole-name-new (PBE:assert e1 e2) u -- e1 and e2 do not have any hole names in common data holes-disjoint : (e1 : exp) → (e2 : exp) → Set where HDFix : ∀{x f e e'} → holes-disjoint e e' → holes-disjoint (fix f ⦇·λ x => e ·⦈) e' HDVar : ∀{x e'} → holes-disjoint (X[ x ]) e' HDAp : ∀{e1 e2 e'} → holes-disjoint e1 e' → holes-disjoint e2 e' → holes-disjoint (e1 ∘ e2) e' HDUnit : ∀{e'} → holes-disjoint ⟨⟩ e' HDPair : ∀{e1 e2 e'} → holes-disjoint e1 e' → holes-disjoint e2 e' → holes-disjoint ⟨ e1 , e2 ⟩ e' HDPrj : ∀{i e e'} → holes-disjoint e e' → holes-disjoint (prj[ i ] e) e' HDCtor : ∀{c e e'} → holes-disjoint e e' → holes-disjoint (C[ c ] e) e' HDCase : ∀{e rules e'} → holes-disjoint e e' → (∀{c rule} → (c , rule) ∈ rules → holes-disjoint (rule.branch rule) e') → holes-disjoint (case e of⦃· rules ·⦄) e' HDHole : ∀{u e'} → hole-name-new e' u → holes-disjoint (??[ u ]) e' HDAsrt : ∀{e1 e2 e'} → holes-disjoint e1 e' → holes-disjoint e2 e' → holes-disjoint (PBE:assert e1 e2) e' -- e ecomplete iff e contains no holes data _ecomplete : exp → Set where ECFix : ∀{f x e} → e ecomplete → fix f ⦇·λ x => e ·⦈ ecomplete ECVar : ∀{x} → X[ x ] ecomplete ECAp : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (e1 ∘ e2) ecomplete ECUnit : ⟨⟩ ecomplete ECPair : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → ⟨ e1 , e2 ⟩ ecomplete ECPrj : ∀{i e} → e ecomplete → (prj[ i ] e) ecomplete ECCtor : ∀{c e} → e ecomplete → (C[ c ] e) ecomplete ECCase : ∀{e rules} → e ecomplete → (∀{c rule} → (c , rule) ∈ rules → (rule.branch rule) ecomplete) → case e of⦃· rules ·⦄ ecomplete ECAsrt : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (PBE:assert e1 e2) ecomplete -- type assignment for expressions data _,_,_⊢_::_ : hctx → denv → tctx → exp → typ → Set where TFix : ∀{Δ Σ' Γ f x e τ1 τ2} → Δ , Σ' , (Γ ,, (f , τ1 ==> τ2) ,, (x , τ1)) ⊢ e :: τ2 → Δ , Σ' , Γ ⊢ fix f ⦇·λ x => e ·⦈ :: τ1 ==> τ2 TVar : ∀{Δ Σ' Γ x τ} → (x , τ) ∈ Γ → Δ , Σ' , Γ ⊢ X[ x ] :: τ THole : ∀{Δ Σ' Γ u τ} → (u , (Γ , τ)) ∈ Δ → Δ , Σ' , Γ ⊢ ??[ u ] :: τ TUnit : ∀{Δ Σ' Γ} → Δ , Σ' , Γ ⊢ ⟨⟩ :: ⟨⟩ TPair : ∀{Δ Σ' Γ e1 e2 τ1 τ2} → holes-disjoint e1 e2 → Δ , Σ' , Γ ⊢ e1 :: τ1 → Δ , Σ' , Γ ⊢ e2 :: τ2 → Δ , Σ' , Γ ⊢ ⟨ e1 , e2 ⟩ :: ⟨ τ1 × τ2 ⟩ TCtor : ∀{Δ Σ' Γ d cctx c e τ} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Δ , Σ' , Γ ⊢ e :: τ → Δ , Σ' , Γ ⊢ C[ c ] e :: D[ d ] TApp : ∀{Δ Σ' Γ f arg τ1 τ2} → holes-disjoint f arg → Δ , Σ' , Γ ⊢ f :: τ1 ==> τ2 → Δ , Σ' , Γ ⊢ arg :: τ1 → Δ , Σ' , Γ ⊢ f ∘ arg :: τ2 TPrj : ∀{Δ Σ' Γ i e τ1 τ2} → Δ , Σ' , Γ ⊢ e :: ⟨ τ1 × τ2 ⟩ → Δ , Σ' , Γ ⊢ prj[ i ] e :: prj i τ1 τ2 TCase : ∀{Δ Σ' Γ d cctx e rules τ} → (d , cctx) ∈ π1 Σ' → Δ , Σ' , Γ ⊢ e :: D[ d ] → -- There must be a rule for each constructor, i.e. case exhuastiveness (∀{c} → dom cctx c → dom rules c) → (∀{c xc ec} → (c , |C xc => ec) ∈ rules → holes-disjoint ec e ∧ (∀{c' xc' ec'} → (c' , |C xc' => ec') ∈ rules → c ≠ c' → holes-disjoint ec ec') ∧ -- The constructor of each rule must be of the right datatype, and the branch must type-check Σ[ τc ∈ typ ] ( (c , τc) ∈ cctx ∧ Δ , Σ' , (Γ ,, (xc , τc)) ⊢ ec :: τ)) → Δ , Σ' , Γ ⊢ case e of⦃· rules ·⦄ :: τ TAssert : ∀{Δ Σ' Γ e1 e2 τ} → holes-disjoint e1 e2 → Δ , Σ' , Γ ⊢ e1 :: τ → Δ , Σ' , Γ ⊢ e2 :: τ → Δ , Σ' , Γ ⊢ PBE:assert e1 e2 :: ⟨⟩ mutual env : Set env = result ctx -- results - evaluation takes expressions to results, but results aren't necessarily final data result : Set where [_]fix_⦇·λ_=>_·⦈ : env → Nat → Nat → exp → result ⟨⟩ : result ⟨_,_⟩ : result → result → result C[_]_ : Nat → result → result [_]??[_] : env → Nat → result _∘_ : result → result → result prj[_]_ : prj-idx → result → result [_]case_of⦃·_·⦄ : env → result → rule ctx → result C⁻¹[_]_ : Nat → result → result mutual data _env-final : env → Set where EFNone : ∅ env-final EFInd : ∀{E x r} → E env-final → r final → (E ,, (x , r)) env-final -- final results are those that cannot be evaluated further data _final : result → Set where FDet : ∀{r} → r det → r final FIndet : ∀{r} → r indet → r final -- final results that can be eliminated (or in the case of ⟨⟩, that don't need to be) data _det : result → Set where DFix : ∀{E f x e} → E env-final → [ E ]fix f ⦇·λ x => e ·⦈ det DUnit : ⟨⟩ det DPair : ∀{r1 r2} → r1 final → r2 final → ⟨ r1 , r2 ⟩ det DCtor : ∀{c r} → r final → (C[ c ] r) det -- indeterminate results are incomplete and cannot be further reduced except by resumption data _indet : result → Set where IDHole : ∀{E u} → E env-final → [ E ]??[ u ] indet IDApp : ∀{r1 r2} → r1 indet → r2 final → (r1 ∘ r2) indet IDPrj : ∀{i r} → r indet → (prj[ i ] r) indet IDCase : ∀{E r rules} → E env-final → r indet → [ E ]case r of⦃· rules ·⦄ indet mutual -- type assignment for environments data _,_,_⊢_ : hctx → denv → tctx → env → Set where EnvId : ∀{Δ Σ'} → Δ , Σ' , ∅ ⊢ ∅ EnvInd : ∀{Δ Σ' Γ E x τx rx} → Δ , Σ' , Γ ⊢ E → Δ , Σ' ⊢ rx ·: τx → Δ , Σ' , (Γ ,, (x , τx)) ⊢ (E ,, (x , rx)) -- type assignment for results data _,_⊢_·:_ : hctx → denv → result → typ → Set where RTFix : ∀{Δ Σ' Γ E f x e τ} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ fix f ⦇·λ x => e ·⦈ :: τ → Δ , Σ' ⊢ [ E ]fix f ⦇·λ x => e ·⦈ ·: τ RTHole : ∀{Δ Σ' Γ E u τ} → (u , (Γ , τ)) ∈ Δ → Δ , Σ' , Γ ⊢ E → Δ , Σ' ⊢ [ E ]??[ u ] ·: τ RTUnit : ∀{Δ Σ'} → Δ , Σ' ⊢ ⟨⟩ ·: ⟨⟩ RTPair : ∀{Δ Σ' r1 r2 τ1 τ2} → Δ , Σ' ⊢ r1 ·: τ1 → Δ , Σ' ⊢ r2 ·: τ2 → Δ , Σ' ⊢ ⟨ r1 , r2 ⟩ ·: ⟨ τ1 × τ2 ⟩ RTCtor : ∀{Δ Σ' d cctx c r τ} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Δ , Σ' ⊢ r ·: τ → Δ , Σ' ⊢ C[ c ] r ·: D[ d ] RTApp : ∀{Δ Σ' f arg τ1 τ2} → Δ , Σ' ⊢ f ·: τ1 ==> τ2 → Δ , Σ' ⊢ arg ·: τ1 → Δ , Σ' ⊢ f ∘ arg ·: τ2 RTPrj : ∀{Δ Σ' i r τ1 τ2} → Δ , Σ' ⊢ r ·: ⟨ τ1 × τ2 ⟩ → Δ , Σ' ⊢ prj[ i ] r ·: prj i τ1 τ2 RTCase : ∀{Δ Σ' Γ E d cctx r rules τ} → (d , cctx) ∈ π1 Σ' → Δ , Σ' , Γ ⊢ E → Δ , Σ' ⊢ r ·: D[ d ] → -- There must be a rule for each constructor, i.e. case exhaustiveness (∀{c} → dom cctx c → dom rules c) → (∀{c xc ec} → (c , |C xc => ec) ∈ rules → -- The constructor of each rule must be of the right datatype, and the branch must type-check Σ[ τc ∈ typ ] ( (c , τc) ∈ cctx ∧ Δ , Σ' , (Γ ,, (xc , τc)) ⊢ ec :: τ)) → Δ , Σ' ⊢ [ E ]case r of⦃· rules ·⦄ ·: τ RTUnwrapCtor : ∀{Δ Σ' d cctx c r τ} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Δ , Σ' ⊢ r ·: D[ d ] → Δ , Σ' ⊢ C⁻¹[ c ] r ·: τ excon = env ∧ ex excons = List excon assertions = List (result ∧ val) hole-fillings = exp ctx constraints = hole-fillings ∧ excons ctx record goal : Set where inductive constructor _⊢??[_]:_⊨_ field g-tctx : tctx g-id : Nat g-typ : typ g-excons : excons goals = List goal -- value-to-example coercion ⌊_⌋ : val → ex ⌊ ⟨⟩ ⌋ = ⟨⟩ ⌊ ⟨ v1 , v2 ⟩ ⌋ = ⟨ ⌊ v1 ⌋ , ⌊ v2 ⌋ ⟩ ⌊ C[ c ] v ⌋ = C[ c ] ⌊ v ⌋ -- result-to-value coercion data ⌈_⌉:=_ : result → val → Set where CoerceUnit : ⌈ ⟨⟩ ⌉:= ⟨⟩ CoercePair : ∀{r1 r2 v1 v2} → ⌈ r1 ⌉:= v1 → ⌈ r2 ⌉:= v2 → ⌈ ⟨ r1 , r2 ⟩ ⌉:= ⟨ v1 , v2 ⟩ CoerceCtor : ∀{c r v} → ⌈ r ⌉:= v → ⌈ C[ c ] r ⌉:= C[ c ] v -- excons typing data _,_⊢_::ˣ_,_ : hctx → denv → excons → tctx → typ → Set where TXNil : ∀{Δ Σ' Γ τ} → Δ , Σ' ⊢ [] ::ˣ Γ , τ TXInd : ∀{Δ Σ' X E ex Γ τ} → Δ , Σ' ⊢ X ::ˣ Γ , τ → Δ , Σ' , Γ ⊢ E → Δ , Σ' ⊢ ex :· τ → Δ , Σ' ⊢ ((E , ex) :: X) ::ˣ Γ , τ -- type assignment for hole fillings data _,_⊢ᴴ_ : hctx → denv → hole-fillings → Set where TFNil : ∀{Δ Σ'} → Δ , Σ' ⊢ᴴ ∅ TFInd : ∀{Δ Σ' F u Γ τ e} → (u , Γ , τ) ∈ Δ → Δ , Σ' ⊢ᴴ F → Δ , Σ' , Γ ⊢ e :: τ → Δ , Σ' ⊢ᴴ (F ,, (u , e)) {- TODO - we have to decide between this version and the one prior _,_⊢ₕ_ : hctx → denv → hole-fillings → Set Δ , Σ' ⊢ₕ F = ∀{u e} → (u , e) ∈ F → Σ[ Γ ∈ tctx ] Σ[ τ ∈ typ ] ( (u , Γ , τ) ∈ Δ ∧ Δ , Σ' , Γ ⊢ e :: τ) -} -- these are used to determine the "order" in which result consistency rules are checked not-both-pair : (r r' : result) → Set not-both-pair r r' = (∀{r1 r2} → r ≠ ⟨ r1 , r2 ⟩) ∨ (∀{r1 r2} → r' ≠ ⟨ r1 , r2 ⟩) not-both-ctor : (r r' : result) → Set not-both-ctor r r' = (∀{c r''} → r ≠ (C[ c ] r'')) ∨ (∀{c r''} → r' ≠ (C[ c ] r'')) -- result consistency data _≡⌊_⌋_ : result → assertions → result → Set where RCRefl : ∀{r} → r ≡⌊ [] ⌋ r RCPair : ∀{r1 r2 r'1 r'2 A1 A2} → (_==_ {A = result} ⟨ r1 , r2 ⟩ ⟨ r'1 , r'2 ⟩ → ⊥) → r1 ≡⌊ A1 ⌋ r'1 → r2 ≡⌊ A2 ⌋ r'2 → ⟨ r1 , r2 ⟩ ≡⌊ A1 ++ A2 ⌋ ⟨ r'1 , r'2 ⟩ RCCtor : ∀{c r r' A} → (_==_ {A = result} (C[ c ] r) (C[ c ] r') → ⊥) → r ≡⌊ A ⌋ r' → (C[ c ] r) ≡⌊ A ⌋ (C[ c ] r') RCAssert1 : ∀{r1 r2 v2 A} → r1 ≠ r2 → not-both-pair r1 r2 → not-both-ctor r1 r2 → ⌈ r2 ⌉:= v2 → A == (r1 , v2) :: [] → r1 ≡⌊ A ⌋ r2 RCAssert2 : ∀{r1 r2 v1 A} → r1 ≠ r2 → not-both-pair r1 r2 → not-both-ctor r1 r2 → ⌈ r1 ⌉:= v1 → A == (r2 , v1) :: [] → r1 ≡⌊ A ⌋ r2 -- Generic result consistency failure - this goes through if results are not consistent data _≢_ : result → result → Set where RCFPair1 : ∀{r1 r2 r'1 r'2} → r1 ≢ r'1 → ⟨ r1 , r2 ⟩ ≢ ⟨ r'1 , r'2 ⟩ RCFPair2 : ∀{r1 r2 r'1 r'2} → r2 ≢ r'2 → ⟨ r1 , r2 ⟩ ≢ ⟨ r'1 , r'2 ⟩ RCFCtorMM : ∀{c c' r r'} → c ≠ c' → (C[ c ] r) ≢ (C[ c' ] r') RCFCtor : ∀{c r r'} → r ≢ r' → (C[ c ] r) ≢ (C[ c ] r') RCFNoCoerce : ∀{r r'} → r ≠ r' → not-both-pair r r' → not-both-ctor r r' → (∀{v} → ⌈ r ⌉:= v → ⊥) → (∀{v} → ⌈ r' ⌉:= v → ⊥) → r ≢ r' -- Various judgments accept "fuel", which defines whether or not they can recurse indefinitely, -- and, if not, then the numerical limit. The limit is not on the recursion depth, but rather -- on the number of "beta reductions", interpreted a bit loosely to include case evaluations. -- - If ⌊ ⛽ ⌋ is ∞, then there is no beta reduction limit, -- but the judgment will not be satisfied unless evaluation eventually terminates. -- - If ⌊ ⛽ ⌋ is ⛽⟨ n ⟩, then the beta reduction limit is at most n, -- but if the limit is reached, then "success" judgments will not go through, -- but "failure" judgments will be satisfied automatically. data Fuel : Set where ∞ : Fuel ⛽⟨_⟩ : Nat → Fuel -- fuel depletion data _⛽⇓_ : Fuel → Fuel → Set where CF∞ : ∞ ⛽⇓ ∞ CF⛽ : ∀{n} → ⛽⟨ 1+ n ⟩ ⛽⇓ ⛽⟨ n ⟩ -- TODO we need a theorem that h-constraints cannot generate spurious hole names. -- generally, all the steps from an exp to an something with holes should not contain hole names -- not in the original exp, and the process as a whole should also not produce spurious names -- this realization probably means there are other important theorems that have been missed -- NOTE the core theorem in completeness.agda will do the trick for evaluation itself -- TODO we should have theorems that constrain where don't cares and such can be found. -- Don't cares should only be generated in backprop and should not appear anywhere else. -- Generic big step evaluation data _⊢_⌊_⌋⇒_⊣_ : env → exp → Fuel → result → assertions → Set where EUnit : ∀{E ⛽} → E ⊢ ⟨⟩ ⌊ ⛽ ⌋⇒ ⟨⟩ ⊣ [] EPair : ∀{E ⛽ e1 e2 r1 r2 A1 A2} → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → E ⊢ ⟨ e1 , e2 ⟩ ⌊ ⛽ ⌋⇒ ⟨ r1 , r2 ⟩ ⊣ A1 ++ A2 ECtor : ∀{E ⛽ c e r A} → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → E ⊢ C[ c ] e ⌊ ⛽ ⌋⇒ (C[ c ] r) ⊣ A EFix : ∀{E ⛽ f x e} → E ⊢ fix f ⦇·λ x => e ·⦈ ⌊ ⛽ ⌋⇒ [ E ]fix f ⦇·λ x => e ·⦈ ⊣ [] EVar : ∀{E ⛽ x r} → (x , r) ∈ E → E ⊢ X[ x ] ⌊ ⛽ ⌋⇒ r ⊣ [] EHole : ∀{E ⛽ u} → E ⊢ ??[ u ] ⌊ ⛽ ⌋⇒ [ E ]??[ u ] ⊣ [] EAppFix : ∀{E ⛽ ⛽↓ e1 e2 Ef f x ef r1 A1 r2 A2 r A} → ⛽ ⛽⇓ ⛽↓ → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → r1 == [ Ef ]fix f ⦇·λ x => ef ·⦈ → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → (Ef ,, (f , r1) ,, (x , r2)) ⊢ ef ⌊ ⛽↓ ⌋⇒ r ⊣ A → E ⊢ e1 ∘ e2 ⌊ ⛽ ⌋⇒ r ⊣ A1 ++ A2 ++ A EAppIndet : ∀{E ⛽ e1 e2 r1 A1 r2 A2} → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → (∀{Ef f x ef} → r1 ≠ [ Ef ]fix f ⦇·λ x => ef ·⦈) → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → E ⊢ e1 ∘ e2 ⌊ ⛽ ⌋⇒ (r1 ∘ r2) ⊣ A1 ++ A2 EPrj : ∀{E ⛽ i e r1 r2 A} → E ⊢ e ⌊ ⛽ ⌋⇒ ⟨ r1 , r2 ⟩ ⊣ A → E ⊢ prj[ i ] e ⌊ ⛽ ⌋⇒ prj i r1 r2 ⊣ A EPrjIndet : ∀{E ⛽ i e r A} → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → (∀{r1 r2} → r ≠ ⟨ r1 , r2 ⟩) → E ⊢ prj[ i ] e ⌊ ⛽ ⌋⇒ prj[ i ] r ⊣ A ECase : ∀{E ⛽ ⛽↓ e rules c xc ec r A' rc A} → ⛽ ⛽⇓ ⛽↓ → (c , |C xc => ec) ∈ rules → E ⊢ e ⌊ ⛽ ⌋⇒ (C[ c ] r) ⊣ A → (E ,, (xc , r)) ⊢ ec ⌊ ⛽↓ ⌋⇒ rc ⊣ A' → E ⊢ case e of⦃· rules ·⦄ ⌊ ⛽ ⌋⇒ rc ⊣ A ++ A' ECaseIndet : ∀{E ⛽ e rules r A} → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → (∀{c rc} → r ≠ (C[ c ] rc)) → E ⊢ case e of⦃· rules ·⦄ ⌊ ⛽ ⌋⇒ [ E ]case r of⦃· rules ·⦄ ⊣ A EAssert : ∀{E ⛽ e1 r1 A1 e2 r2 A2 A3} → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → r1 ≡⌊ A3 ⌋ r2 → E ⊢ PBE:assert e1 e2 ⌊ ⛽ ⌋⇒ ⟨⟩ ⊣ A1 ++ A2 ++ A3 -- Generic evaluation failure - this goes through if evaluation would fail due to failure -- of some assertion that occurs during evaluation, or if the fuel runs out. data _⊢_⌊_⌋⇒∅ : env → exp → Fuel → Set where EFPair1 : ∀{E ⛽ e1 e2} → E ⊢ e1 ⌊ ⛽ ⌋⇒∅ → E ⊢ ⟨ e1 , e2 ⟩ ⌊ ⛽ ⌋⇒∅ EFPair2 : ∀{E ⛽ e1 e2} → E ⊢ e2 ⌊ ⛽ ⌋⇒∅ → E ⊢ ⟨ e1 , e2 ⟩ ⌊ ⛽ ⌋⇒∅ EFCtor : ∀{E ⛽ c e} → E ⊢ e ⌊ ⛽ ⌋⇒∅ → E ⊢ C[ c ] e ⌊ ⛽ ⌋⇒∅ EFAppFun : ∀{E ⛽ e1 e2} → E ⊢ e1 ⌊ ⛽ ⌋⇒∅ → E ⊢ e1 ∘ e2 ⌊ ⛽ ⌋⇒∅ EFAppArg : ∀{E ⛽ e1 e2} → E ⊢ e2 ⌊ ⛽ ⌋⇒∅ → E ⊢ e1 ∘ e2 ⌊ ⛽ ⌋⇒∅ EFAppEval : ∀{E ⛽ ⛽↓ e1 e2 Ef f x ef r1 A1 r2 A2} → ⛽ ⛽⇓ ⛽↓ → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → r1 == [ Ef ]fix f ⦇·λ x => ef ·⦈ → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → (Ef ,, (f , r1) ,, (x , r2)) ⊢ ef ⌊ ⛽↓ ⌋⇒∅ → E ⊢ e1 ∘ e2 ⌊ ⛽ ⌋⇒∅ EFPrj : ∀{E ⛽ i e} → E ⊢ e ⌊ ⛽ ⌋⇒∅ → E ⊢ prj[ i ] e ⌊ ⛽ ⌋⇒∅ EFCaseScrut : ∀{E ⛽ e rules} → E ⊢ e ⌊ ⛽ ⌋⇒∅ → E ⊢ case e of⦃· rules ·⦄ ⌊ ⛽ ⌋⇒∅ EFCaseRule : ∀{E ⛽ ⛽↓ e rules c xc ec r A} → ⛽ ⛽⇓ ⛽↓ → (c , |C xc => ec) ∈ rules → E ⊢ e ⌊ ⛽ ⌋⇒ (C[ c ] r) ⊣ A → (E ,, (xc , r)) ⊢ ec ⌊ ⛽↓ ⌋⇒∅ → E ⊢ case e of⦃· rules ·⦄ ⌊ ⛽ ⌋⇒∅ EFAssert1 : ∀{E ⛽ e1 e2} → E ⊢ e1 ⌊ ⛽ ⌋⇒∅ → E ⊢ PBE:assert e1 e2 ⌊ ⛽ ⌋⇒∅ EFAssert2 : ∀{E ⛽ e1 e2} → E ⊢ e2 ⌊ ⛽ ⌋⇒∅ → E ⊢ PBE:assert e1 e2 ⌊ ⛽ ⌋⇒∅ EFAssert : ∀{E ⛽ e1 r1 A1 e2 r2 A2} → E ⊢ e1 ⌊ ⛽ ⌋⇒ r1 ⊣ A1 → E ⊢ e2 ⌊ ⛽ ⌋⇒ r2 ⊣ A2 → r1 ≢ r2 → E ⊢ PBE:assert e1 e2 ⌊ ⛽ ⌋⇒∅ EFLimit : ∀{E e} → E ⊢ e ⌊ ⛽⟨ 0 ⟩ ⌋⇒∅ -- resumption mutual data _⊢_⌊_⌋:⇨_:=_ : hole-fillings → env → Fuel → env → assertions → Set where RENil : ∀{⛽ F} → F ⊢ ∅ ⌊ ⛽ ⌋:⇨ ∅ := [] REInd : ∀{⛽ F E E' x r r' A A'} → F ⊢ E ⌊ ⛽ ⌋:⇨ E' := A → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A' → F ⊢ E ,, (x , r) ⌊ ⛽ ⌋:⇨ (E' ,, (x , r')) := A ++ A' data _⊢_⌊_⌋⇨_:=_ : hole-fillings → result → Fuel → result → assertions → Set where RHoleResume : ∀{⛽ F E u r r' e A A'} → (u , e) ∈ F → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A' → F ⊢ [ E ]??[ u ] ⌊ ⛽ ⌋⇨ r' := A ++ A' RHoleIndet : ∀{⛽ F E E' u A} → u # F → F ⊢ E ⌊ ⛽ ⌋:⇨ E' := A → F ⊢ [ E ]??[ u ] ⌊ ⛽ ⌋⇨ [ E' ]??[ u ] := A RUnit : ∀{⛽ F} → F ⊢ ⟨⟩ ⌊ ⛽ ⌋⇨ ⟨⟩ := [] RPair : ∀{⛽ F r1 r2 r1' r2' A1 A2} → F ⊢ r1 ⌊ ⛽ ⌋⇨ r1' := A1 → F ⊢ r2 ⌊ ⛽ ⌋⇨ r2' := A2 → F ⊢ ⟨ r1 , r2 ⟩ ⌊ ⛽ ⌋⇨ ⟨ r1' , r2' ⟩ := A1 ++ A2 RCtor : ∀{⛽ F c r r' A} → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A → F ⊢ C[ c ] r ⌊ ⛽ ⌋⇨ (C[ c ] r') := A RApp : ∀{⛽ ⛽↓ F r1 r2 r r' Ef f x ef r1' r2' A1 A2 Af A'} → ⛽ ⛽⇓ ⛽↓ → F ⊢ r1 ⌊ ⛽ ⌋⇨ r1' := A1 → r1' == [ Ef ]fix f ⦇·λ x => ef ·⦈ → F ⊢ r2 ⌊ ⛽ ⌋⇨ r2' := A2 → (Ef ,, (f , r1') ,, (x , r2')) ⊢ ef ⌊ ⛽↓ ⌋⇒ r ⊣ Af → F ⊢ r ⌊ ⛽↓ ⌋⇨ r' := A' → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨ r' := A1 ++ A2 ++ Af ++ A' RAppIndet : ∀{⛽ F r1 r2 r1' r2' A1 A2} → F ⊢ r1 ⌊ ⛽ ⌋⇨ r1' := A1 → (∀{Ef f x ef} → r1' ≠ [ Ef ]fix f ⦇·λ x => ef ·⦈) → F ⊢ r2 ⌊ ⛽ ⌋⇨ r2' := A2 → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨ (r1' ∘ r2') := A1 ++ A2 RFix : ∀{⛽ F E E' f x e A} → F ⊢ E ⌊ ⛽ ⌋:⇨ E' := A → F ⊢ [ E ]fix f ⦇·λ x => e ·⦈ ⌊ ⛽ ⌋⇨ [ E' ]fix f ⦇·λ x => e ·⦈ := A RPrj : ∀{⛽ F i r r1 r2 A} → F ⊢ r ⌊ ⛽ ⌋⇨ ⟨ r1 , r2 ⟩ := A → F ⊢ prj[ i ] r ⌊ ⛽ ⌋⇨ prj i r1 r2 := A RPrjIndet : ∀{⛽ F i r r' A} → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A → (∀{r1 r2} → r' ≠ ⟨ r1 , r2 ⟩) → F ⊢ prj[ i ] r ⌊ ⛽ ⌋⇨ prj[ i ] r' := A RCase : ∀{⛽ F E r rules c xc ec r' rc A A'} → (c , |C xc => ec) ∈ rules → F ⊢ r ⌊ ⛽ ⌋⇨ (C[ c ] r') := A → F ⊢ [ E ]fix xc ⦇·λ xc => ec ·⦈ ∘ (C⁻¹[ c ] r) ⌊ ⛽ ⌋⇨ rc := A' → F ⊢ [ E ]case r of⦃· rules ·⦄ ⌊ ⛽ ⌋⇨ rc := A ++ A' RCaseIndet : ∀{⛽ F E E' r rules r' A A'} → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A → (∀{c rc} → r' ≠ (C[ c ] rc)) → F ⊢ E ⌊ ⛽ ⌋:⇨ E' := A' → F ⊢ [ E ]case r of⦃· rules ·⦄ ⌊ ⛽ ⌋⇨ [ E' ]case r' of⦃· rules ·⦄ := A ++ A' RUnwrapCtor : ∀{⛽ F r c rc A} → F ⊢ r ⌊ ⛽ ⌋⇨ C[ c ] rc := A → F ⊢ C⁻¹[ c ] r ⌊ ⛽ ⌋⇨ rc := A RUnwrapIndet : ∀{⛽ F c r r' A} → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A → (∀{rc} → r' ≠ (C[ c ] rc)) → F ⊢ C⁻¹[ c ] r ⌊ ⛽ ⌋⇨ C⁻¹[ c ] r' := A -- Generic resumption failure - this goes through if resumption would fail due to failure -- of some evaluation that occurs during resumption. mutual data _⊢_⌊_⌋:⇨∅ : hole-fillings → env → Fuel → Set where RFERes : ∀{⛽ F E x r} → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ (E ,, (x , r)) ⌊ ⛽ ⌋:⇨∅ RFEEnv : ∀{⛽ F E x r} → F ⊢ E ⌊ ⛽ ⌋:⇨∅ → F ⊢ (E ,, (x , r)) ⌊ ⛽ ⌋:⇨∅ {- TODO we must choose between this approach and the one prior RFE : ∀{⛽ F E x r} → (x , r) ∈ E → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ E ⌊ ⛽ ⌋:⇨∅ -} data _⊢_⌊_⌋⇨∅ : hole-fillings → result → Fuel → Set where RFHoleEval : ∀{⛽ F E u e} → (u , e) ∈ F → E ⊢ e ⌊ ⛽ ⌋⇒∅ → F ⊢ [ E ]??[ u ] ⌊ ⛽ ⌋⇨∅ RFHoleRes : ∀{⛽ F E u e r A} → (u , e) ∈ F → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ [ E ]??[ u ] ⌊ ⛽ ⌋⇨∅ RFHoleIndet : ∀{⛽ F E u} → u # F → F ⊢ E ⌊ ⛽ ⌋:⇨∅ → F ⊢ [ E ]??[ u ] ⌊ ⛽ ⌋⇨∅ RFPair1 : ∀{⛽ F r1 r2} → F ⊢ r1 ⌊ ⛽ ⌋⇨∅ → F ⊢ ⟨ r1 , r2 ⟩ ⌊ ⛽ ⌋⇨∅ RFPair2 : ∀{⛽ F r1 r2} → F ⊢ r2 ⌊ ⛽ ⌋⇨∅ → F ⊢ ⟨ r1 , r2 ⟩ ⌊ ⛽ ⌋⇨∅ RFCtor : ∀{⛽ F c r} → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ C[ c ] r ⌊ ⛽ ⌋⇨∅ RFAppFun : ∀{⛽ F r1 r2} → F ⊢ r1 ⌊ ⛽ ⌋⇨∅ → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨∅ RFAppArg : ∀{⛽ F r1 r2} → F ⊢ r2 ⌊ ⛽ ⌋⇨∅ → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨∅ RFAppEval : ∀{⛽ ⛽↓ F r1 r2 Ef f x ef r1' r2' A1 A2} → ⛽ ⛽⇓ ⛽↓ → F ⊢ r1 ⌊ ⛽ ⌋⇨ r1' := A1 → r1' == [ Ef ]fix f ⦇·λ x => ef ·⦈ → F ⊢ r2 ⌊ ⛽ ⌋⇨ r2' := A2 → (Ef ,, (f , r1') ,, (x , r2')) ⊢ ef ⌊ ⛽↓ ⌋⇒∅ → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨∅ RFAppRes : ∀{⛽ ⛽↓ F r1 r2 Ef f x ef r1' r2' r A1 A2 Af} → ⛽ ⛽⇓ ⛽↓ → F ⊢ r1 ⌊ ⛽ ⌋⇨ r1' := A1 → r1' == [ Ef ]fix f ⦇·λ x => ef ·⦈ → F ⊢ r2 ⌊ ⛽ ⌋⇨ r2' := A2 → (Ef ,, (f , r1') ,, (x , r2')) ⊢ ef ⌊ ⛽↓ ⌋⇒ r ⊣ Af → F ⊢ r ⌊ ⛽↓ ⌋⇨∅ → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨∅ RFFix : ∀{⛽ F E f x e} → F ⊢ E ⌊ ⛽ ⌋:⇨∅ → F ⊢ [ E ]fix f ⦇·λ x => e ·⦈ ⌊ ⛽ ⌋⇨∅ RFPrj : ∀{⛽ F i r} → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ prj[ i ] r ⌊ ⛽ ⌋⇨∅ RFCaseScrut : ∀{⛽ F E r rules} → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ [ E ]case r of⦃· rules ·⦄ ⌊ ⛽ ⌋⇨∅ RFCase : ∀{⛽ F E r rules c xc ec r' A} → (c , |C xc => ec) ∈ rules → F ⊢ r ⌊ ⛽ ⌋⇨ (C[ c ] r') := A → F ⊢ [ E ]fix xc ⦇·λ xc => ec ·⦈ ∘ (C⁻¹[ c ] r) ⌊ ⛽ ⌋⇨∅ → F ⊢ [ E ]case r of⦃· rules ·⦄ ⌊ ⛽ ⌋⇨∅ RFCaseIndet : ∀{⛽ F E r rules r' A} → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A → (∀{c rc} → r' ≠ (C[ c ] rc)) → F ⊢ E ⌊ ⛽ ⌋:⇨∅ → F ⊢ [ E ]case r of⦃· rules ·⦄ ⌊ ⛽ ⌋⇨∅ RFUnwrapCtor : ∀{⛽ F c r} → F ⊢ r ⌊ ⛽ ⌋⇨∅ → F ⊢ C⁻¹[ c ] r ⌊ ⛽ ⌋⇨∅ RFLimit : ∀{F r} → F ⊢ r ⌊ ⛽⟨ 0 ⟩ ⌋⇨∅ data Filter_:=_ : excons → excons → Set where FilterNil : Filter [] := [] FilterYes : ∀{X X' E ex} → Filter X := X' → ex ≠ ¿¿ → Filter (E , ex) :: X := ((E , ex) :: X') FilterNo : ∀{X X' E} → Filter X := X' → Filter (E , ¿¿) :: X := X' -- Assertion Satisfaction and Simplification data _⌊_⌋⊨ᴬ_ : hole-fillings → Fuel → assertions → Set where SANil : ∀{⛽ F} → F ⌊ ⛽ ⌋⊨ᴬ [] SAInd : ∀{⛽ F r v r' A A'} → F ⌊ ⛽ ⌋⊨ᴬ A → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A' → F ⌊ ⛽ ⌋⊨ᴬ A' → ⌈ r' ⌉:= v → F ⌊ ⛽ ⌋⊨ᴬ ((r , v) :: A) -- Example Satisfaction (of Results) data _⊢_⌊_⌋⊨ᴿ_ : hole-fillings → result → Fuel → ex → Set where XSTop : ∀{⛽ F r} → F ⊢ r ⌊ ⛽ ⌋⊨ᴿ ¿¿ XSUnit : ∀{⛽ F} → F ⊢ ⟨⟩ ⌊ ⛽ ⌋⊨ᴿ ⟨⟩ XSPair : ∀{⛽ F r1 r2 ex1 ex2} → F ⊢ r1 ⌊ ⛽ ⌋⊨ᴿ ex1 → F ⊢ r2 ⌊ ⛽ ⌋⊨ᴿ ex2 → F ⊢ ⟨ r1 , r2 ⟩ ⌊ ⛽ ⌋⊨ᴿ ⟨ ex1 , ex2 ⟩ XSCtor : ∀{⛽ F r c ex} → F ⊢ r ⌊ ⛽ ⌋⊨ᴿ ex → F ⊢ C[ c ] r ⌊ ⛽ ⌋⊨ᴿ (C[ c ] ex) XSInOut : ∀{⛽ F r1 r2 v2 ex r A} → ⌈ r2 ⌉:= v2 → F ⊢ r1 ∘ r2 ⌊ ⛽ ⌋⇨ r := A → F ⊢ r ⌊ ⛽ ⌋⊨ᴿ ex → F ⌊ ⛽ ⌋⊨ᴬ A → F ⊢ r1 ⌊ ⛽ ⌋⊨ᴿ (v2 ↦ ex) -- Example Satisfaction (of Expressions) data _⊢_⌊_⌋⊨ᴱ_ : hole-fillings → exp → Fuel → excons → Set where SatNil : ∀{⛽ F e} → F ⊢ e ⌊ ⛽ ⌋⊨ᴱ [] SatTop : ∀{⛽ F e E X} → F ⊢ e ⌊ ⛽ ⌋⊨ᴱ X → F ⊢ e ⌊ ⛽ ⌋⊨ᴱ ((E , ¿¿) :: X) SatInd : ∀{⛽ F e E ex X r r' A A'} → ex ≠ ¿¿ → F ⊢ e ⌊ ⛽ ⌋⊨ᴱ X → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A' → F ⊢ r' ⌊ ⛽ ⌋⊨ᴿ ex → F ⌊ ⛽ ⌋⊨ᴬ A ++ A' → F ⊢ e ⌊ ⛽ ⌋⊨ᴱ ((E , ex) :: X) data _⌊_⌋⊨ᵁ_ : hole-fillings → Fuel → excons ctx → Set where CSNil : ∀{⛽ F} → F ⌊ ⛽ ⌋⊨ᵁ ∅ CSInd : ∀{⛽ F U u X} → F ⌊ ⛽ ⌋⊨ᵁ U → F ⊢ ??[ u ] ⌊ ⛽ ⌋⊨ᴱ X → F ⌊ ⛽ ⌋⊨ᵁ (U ,, (u , X)) -- Constraint Satisfaction _⌊_⌋⊨ᴷ_ : hole-fillings → Fuel → constraints → Set F ⌊ ⛽ ⌋⊨ᴷ (F0 , U) = (∀{u e} → (u , e) ∈ F0 → (u , e) ∈ F) ∧ F ⌊ ⛽ ⌋⊨ᵁ U -- constraints merge _⊕_:=_ : constraints → constraints → constraints → Set (F1 , U1) ⊕ (F2 , U2) := (F' , U') = F1 ≈ F2 ∧ F1 ∪ F2 == F' ∧ U1 ⊎ U2 == U' mutual -- example unevaluation data _,_,_⊢_⇐⌊_⌋_:=_ : hctx → denv → hole-fillings → result → Fuel → ex → constraints → Set where UTop : ∀{⛽ Δ Σ' F r} → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ ¿¿ := (∅ , ∅) UHole : ∀{⛽ Δ Σ' F E u ex} → ex ≠ ¿¿ → Δ , Σ' , F ⊢ [ E ]??[ u ] ⇐⌊ ⛽ ⌋ ex := (∅ , ■ (u , (E , ex) :: [])) UUnit : ∀{⛽ Δ Σ' F} → Δ , Σ' , F ⊢ ⟨⟩ ⇐⌊ ⛽ ⌋ ⟨⟩ := (∅ , ∅) UCtor : ∀{⛽ Δ Σ' F c r ex K} → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ ex := K → Δ , Σ' , F ⊢ C[ c ] r ⇐⌊ ⛽ ⌋ C[ c ] ex := K UPair : ∀{⛽ Δ Σ' F r1 r2 ex1 ex2 K1 K2 K'} → Δ , Σ' , F ⊢ r1 ⇐⌊ ⛽ ⌋ ex1 := K1 → Δ , Σ' , F ⊢ r2 ⇐⌊ ⛽ ⌋ ex2 := K2 → K1 ⊕ K2 := K' → Δ , Σ' , F ⊢ ⟨ r1 , r2 ⟩ ⇐⌊ ⛽ ⌋ ⟨ ex1 , ex2 ⟩ := K' UFix : ∀{⛽ ⛽↓ Δ Σ' F E f x e rf v r ex K} → ⛽ ⛽⇓ ⛽↓ → rf == [ E ]fix f ⦇·λ x => e ·⦈ → ⌈ r ⌉:= v → Δ , Σ' , F ⊢ e ⌊ ⛽ ⌋⇌ ((E ,, (f , rf) ,, (x , r)) , ex) :: [] := K → Δ , Σ' , F ⊢ rf ⇐⌊ ⛽ ⌋ v ↦ ex := K UApp : ∀{⛽ Δ Σ' F r1 r2 ex v2 K} → ex ≠ ¿¿ → ⌈ r2 ⌉:= v2 → Δ , Σ' , F ⊢ r1 ⇐⌊ ⛽ ⌋ v2 ↦ ex := K → Δ , Σ' , F ⊢ r1 ∘ r2 ⇐⌊ ⛽ ⌋ ex := K UPrj1 : ∀{⛽ Δ Σ' F r ex K} → ex ≠ ¿¿ → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ ⟨ ex , ¿¿ ⟩ := K → Δ , Σ' , F ⊢ prj[ P1 ] r ⇐⌊ ⛽ ⌋ ex := K UPrj2 : ∀{⛽ Δ Σ' F r ex K} → ex ≠ ¿¿ → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ ⟨ ¿¿ , ex ⟩ := K → Δ , Σ' , F ⊢ prj[ P2 ] r ⇐⌊ ⛽ ⌋ ex := K UCase : ∀{⛽ ⛽↓ Δ Σ' F E r rules ex c xc ec K1 K2 K'} → ex ≠ ¿¿ → ⛽ ⛽⇓ ⛽↓ → (c , |C xc => ec) ∈ rules → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ C[ c ] ¿¿ := K1 → Δ , Σ' , F ⊢ ec ⌊ ⛽↓ ⌋⇌ ((E ,, (xc , C⁻¹[ c ] r)) , ex) :: [] := K2 → K1 ⊕ K2 := K' → Δ , Σ' , F ⊢ [ E ]case r of⦃· rules ·⦄ ⇐⌊ ⛽ ⌋ ex := K' UCaseGuess : ∀{⛽ ⛽↓ Δ Σ' F F' E r rules ex c xc ec r' A K K' Kₘ₁ Kₘ₂} → ex ≠ ¿¿ → ⛽ ⛽⇓ ⛽↓ → (c , |C xc => ec) ∈ rules → Δ , Σ' ⊢ᴴ F' → F ## F' → F ∪ F' ⊢ r ⌊ ⛽ ⌋⇨ C[ c ] r' := A → Δ , Σ' ⊢Simplify A ⌊ ⛽ ⌋:= K → Δ , Σ' , F ∪ F' ⊢ ec ⌊ ⛽↓ ⌋⇌ ((E ,, (xc , r')) , ex) :: [] := K' → K ⊕ K' := Kₘ₁ → (F' , ∅) ⊕ Kₘ₁ := Kₘ₂ → Δ , Σ' , F ⊢ [ E ]case r of⦃· rules ·⦄ ⇐⌊ ⛽ ⌋ ex := Kₘ₂ UUnwrapCtor : ∀{⛽ Δ Σ' F c r ex K} → ex ≠ ¿¿ → Δ , Σ' , F ⊢ r ⇐⌊ ⛽ ⌋ C[ c ] ex := K → Δ , Σ' , F ⊢ C⁻¹[ c ] r ⇐⌊ ⛽ ⌋ ex := K -- Assertion Simplification data _,_⊢Simplify_⌊_⌋:=_ : hctx → denv → assertions → Fuel → constraints → Set where SNil : ∀{⛽ Δ Σ'} → Δ , Σ' ⊢Simplify [] ⌊ ⛽ ⌋:= (∅ , ∅) SInd : ∀{⛽ Δ Σ' r v A K K' K''} → Δ , Σ' ⊢Simplify A ⌊ ⛽ ⌋:= K → r final → Δ , Σ' , ∅ ⊢ r ⇐⌊ ⛽ ⌋ ⌊ v ⌋ := K' → K ⊕ K' := K'' → Δ , Σ' ⊢Simplify (r , v) :: A ⌊ ⛽ ⌋:= K'' -- Live Bidirectional Example Checking data _,_,_⊢_⌊_⌋⇌_:=_ : hctx → denv → hole-fillings → exp → Fuel → excons → constraints → Set where ChkNil : ∀{⛽ Δ Σ' F e} → Δ , Σ' , F ⊢ e ⌊ ⛽ ⌋⇌ [] := (∅ , ∅) ChkInd : ∀{⛽ Δ Σ' F e E ex X r r' A A' K K' K'' Kₘ₁ Kₘ₂} → Δ , Σ' , F ⊢ e ⌊ ⛽ ⌋⇌ X := K → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ A → F ⊢ r ⌊ ⛽ ⌋⇨ r' := A' → Δ , Σ' , F ⊢ r' ⇐⌊ ⛽ ⌋ ex := K' → Δ , Σ' ⊢Simplify A ++ A' ⌊ ⛽ ⌋:= K'' → K' ⊕ K'' := Kₘ₁ → K ⊕ Kₘ₁ := Kₘ₂ → Δ , Σ' , F ⊢ e ⌊ ⛽ ⌋⇌ ((E , ex) :: X) := Kₘ₂ -- TODO theorems for all the things, including resumption, synthesis, solve, satisfaction, consistency, Group, and Filter -- Type-Directed Guessing data _⊢⦇_⊢●:_⦈:=ᴳ_ : denv → tctx → typ → exp → Set where GUnit : ∀{Σ' Γ} → Σ' ⊢⦇ Γ ⊢●: ⟨⟩ ⦈:=ᴳ ⟨⟩ GPair : ∀{Σ' Γ τ1 τ2 e1 e2} → Σ' ⊢⦇ Γ ⊢●: τ1 ⦈:=ᴳ e1 → Σ' ⊢⦇ Γ ⊢●: τ2 ⦈:=ᴳ e2 → Σ' ⊢⦇ Γ ⊢●: ⟨ τ1 × τ2 ⟩ ⦈:=ᴳ ⟨ e1 , e2 ⟩ GCtor : ∀{Σ' Γ d cctx c τ e} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Σ' ⊢⦇ Γ ⊢●: τ ⦈:=ᴳ e → Σ' ⊢⦇ Γ ⊢●: D[ d ] ⦈:=ᴳ (C[ c ] e) GFix : ∀{Σ' Γ τ1 τ2 f x e} → Σ' ⊢⦇ Γ ,, (f , τ1 ==> τ2) ,, (x , τ1) ⊢●: τ2 ⦈:=ᴳ e → Σ' ⊢⦇ Γ ⊢●: τ1 ==> τ2 ⦈:=ᴳ fix f ⦇·λ x => e ·⦈ GCase : ∀{Σ' Γ τ e rules d cctx} → (d , cctx) ∈ π1 Σ' → (∀{c} → dom cctx c → dom rules c) → (∀{c} → dom rules c → dom cctx c) → Σ' ⊢⦇ Γ ⊢●: D[ d ] ⦈:=ᴳ e → (∀{c x-c e-c τ-c} → (c , |C x-c => e-c) ∈ rules → (c , τ-c) ∈ cctx → Σ' ⊢⦇ Γ ,, (x-c , τ-c) ⊢●: τ ⦈:=ᴳ e-c) → Σ' ⊢⦇ Γ ⊢●: τ ⦈:=ᴳ case e of⦃· rules ·⦄ GVar : ∀{Σ' Γ τ x} → (x , τ) ∈ Γ → Σ' ⊢⦇ Γ ⊢●: τ ⦈:=ᴳ X[ x ] GApp : ∀{Σ' Γ τ e1 e2 τ'} → Σ' ⊢⦇ Γ ⊢●: τ' ==> τ ⦈:=ᴳ e1 → Σ' ⊢⦇ Γ ⊢●: τ' ⦈:=ᴳ e2 → Σ' ⊢⦇ Γ ⊢●: τ ⦈:=ᴳ (e1 ∘ e2) GPrj : ∀{Σ' Γ τ1 τ2 i e} → Σ' ⊢⦇ Γ ⊢●: ⟨ τ1 × τ2 ⟩ ⦈:=ᴳ e → Σ' ⊢⦇ Γ ⊢●: prj i τ1 τ2 ⦈:=ᴳ (prj[ i ] e) -- TODO theorem that if u # Δ , then u is new in a type-checked exp or result -- TODO theorem that any hole in the exp produced by refinement is in the goals -- Type-and-Example-Directed Refinement data _⊢⦇_⊢●:_⊨_⦈:=ᴿ_⊣_ : denv → tctx → typ → excons → exp → goals → Set where RefUnit : ∀{Σ' Γ X Xf} → Filter X := Xf → (∀{i E ex} → Xf ⟦ i ⟧ == Some (E , ex) → ex == ⟨⟩) → Σ' ⊢⦇ Γ ⊢●: ⟨⟩ ⊨ X ⦈:=ᴿ ⟨⟩ ⊣ [] RefPair : ∀{Σ' Γ τ1 τ2 X u1 u2 G1 G2} {E-ex1-ex2s : List (env ∧ ex ∧ ex)} → Filter X := map (λ {(E , ex1 , ex2) → E , ⟨ ex1 , ex2 ⟩}) E-ex1-ex2s → G1 == Γ ⊢??[ u1 ]: τ1 ⊨ map (λ {(E , ex1 , ex2) → E , ex1}) E-ex1-ex2s → G2 == Γ ⊢??[ u2 ]: τ2 ⊨ map (λ {(E , ex1 , ex2) → E , ex2}) E-ex1-ex2s → Σ' ⊢⦇ Γ ⊢●: ⟨ τ1 × τ2 ⟩ ⊨ X ⦈:=ᴿ ⟨ ??[ u1 ] , ??[ u2 ] ⟩ ⊣ (G1 :: (G2 :: [])) RefCtor : ∀{Σ' Γ X X' d cctx c τ u G} → (d , cctx) ∈ π1 Σ' → (c , τ) ∈ cctx → Filter X := map (λ {(E , ex) → E , C[ c ] ex}) X' → G == Γ ⊢??[ u ]: τ ⊨ X' → Σ' ⊢⦇ Γ ⊢●: D[ d ] ⊨ X ⦈:=ᴿ C[ c ] ??[ u ] ⊣ (G :: []) RefFix : ∀{Σ' Γ X τ1 τ2 f x u X' G} {E-in-inᶜ-outs : List (env ∧ val ∧ result ∧ ex)} → (∀{i E-i v-i r-i ex-i} → E-in-inᶜ-outs ⟦ i ⟧ == Some (E-i , v-i , r-i , ex-i) → ⌈ r-i ⌉:= v-i) → Filter X := map (λ {(E , in' , _ , out) → E , in' ↦ out}) E-in-inᶜ-outs → X' == map (λ {(E , _ , in' , out) → (E ,, (f , [ E ]fix f ⦇·λ x => ??[ u ] ·⦈) ,, (x , in')) , out}) E-in-inᶜ-outs → G == (Γ ,, (f , τ1 ==> τ2) ,, (x , τ1)) ⊢??[ u ]: τ2 ⊨ X' → Σ' ⊢⦇ Γ ⊢●: τ1 ==> τ2 ⊨ X ⦈:=ᴿ fix f ⦇·λ x => ??[ u ] ·⦈ ⊣ (G :: []) -- Type-and-Example-Directed Branching data _⊢⦇_⊢●:_⊨_⦈⌊_⌋:=ᴮ_⊣_ : denv → tctx → typ → excons → Fuel → exp → goals → Set where BCase : ∀{⛽ Σ' Γ X Xf τ e rules d cctx x τ+u+X⁺-ctx Gs} → Filter X := Xf → -- choose one fresh variable name that will be used for all cases x # Γ → -- τ+u+X⁺-ctx is just cctx extended with hole names and excons cctx == ctxmap π1 τ+u+X⁺-ctx → -- the rules can be defined from x and the hole names in τ+u+X⁺-ctx rules == ctxmap (λ {(τ-c , u-c , X⁺-c) → |C x => ??[ u-c ]}) τ+u+X⁺-ctx → -- the following premises appear in the paper (d , cctx) ∈ π1 Σ' → Σ' ⊢⦇ Γ ⊢●: D[ d ] ⦈:=ᴳ e → Gs == map (λ {(τ-c , u-c , X⁺-c) → -- this corresponds to the goal definition in the paper (Γ ,, (x , τ-c)) ⊢??[ u-c ]: τ ⊨ -- this corresponds to the definition of each X_i in the paper map (λ {(E , ex , r) → (E ,, (x , r)) , ex}) X⁺-c}) (ctx⇒values τ+u+X⁺-ctx) → -- the following premise checks that every X⁺-c obeys the rules in the paper premise (∀{c τ-c u-c X⁺-c} → (c , τ-c , u-c , X⁺-c) ∈ τ+u+X⁺-ctx → -- for each excon (extended with a result r-j) of X⁺-c, ... (∀{j E-j ex-j r-j} → X⁺-c ⟦ j ⟧ == Some (E-j , ex-j , r-j) → -- the excon is an element of Filter X, and ... Σ[ k ∈ Nat ] (Xf ⟦ k ⟧ == Some (E-j , ex-j)) ∧ -- the scrutinee e will evaluate to constructor c applied to the specified argument r-j E-j ⊢ e ⌊ ⛽ ⌋⇒ C[ c ] r-j ⊣ [])) → -- the last premise in the paper - every excon in Filter X is an element of some X⁺-c for some c (∀{k E-k ex-k} → Xf ⟦ k ⟧ == Some (E-k , ex-k) → Σ[ c ∈ Nat ] Σ[ τ-c ∈ typ ] Σ[ u-c ∈ Nat ] Σ[ X⁺-c ∈ List (env ∧ ex ∧ result)] Σ[ j ∈ Nat ] Σ[ r-j ∈ result ] ( (c , τ-c , u-c , X⁺-c) ∈ τ+u+X⁺-ctx ∧ X⁺-c ⟦ j ⟧ == Some (E-k , ex-k , r-j))) → Σ' ⊢⦇ Γ ⊢●: τ ⊨ X ⦈⌊ ⛽ ⌋:=ᴮ case e of⦃· rules ·⦄ ⊣ Gs -- Hole Filling data _,_,_⊢⦇_⊢??[_]:_⊨_⦈⌊_⌋:=_,_ : hctx → denv → hole-fillings → tctx → Nat → typ → excons → Fuel → constraints → hctx → Set where HFRefBranch : ∀{⛽ Δ Σ' F Γ u τ X e Gs K Δ'} → -- this premise ensures that all holes are fresh (∀{i j g-i g-j} → Gs ⟦ i ⟧ == Some g-i → Gs ⟦ j ⟧ == Some g-j → goal.g-id g-i # Δ ∧ goal.g-id g-i ≠ u ∧ (i ≠ j → goal.g-id g-i ≠ goal.g-id g-j)) → (Σ' ⊢⦇ Γ ⊢●: τ ⊨ X ⦈:=ᴿ e ⊣ Gs ∨ Σ' ⊢⦇ Γ ⊢●: τ ⊨ X ⦈⌊ ⛽ ⌋:=ᴮ e ⊣ Gs) → K == (■ (u , e) , list⇒ctx (map (λ {(_ ⊢??[ u' ]: _ ⊨ X') → u' , X'}) Gs)) → Δ' == list⇒ctx (map (λ {(Γ' ⊢??[ u' ]: τ' ⊨ _) → u' , Γ' , τ'}) Gs) → Δ , Σ' , F ⊢⦇ Γ ⊢??[ u ]: τ ⊨ X ⦈⌊ ⛽ ⌋:= K , Δ' HFGuessChk : ∀{⛽ Δ Σ' F Γ u τ X e K K'} → Σ' ⊢⦇ Γ ⊢●: τ ⦈:=ᴳ e → Δ , Σ' , (F ,, (u , e)) ⊢ e ⌊ ⛽ ⌋⇌ X := K → (■ (u , e) , ∅) ⊕ K := K' → Δ , Σ' , F ⊢⦇ Γ ⊢??[ u ]: τ ⊨ X ⦈⌊ ⛽ ⌋:= K' , ∅ HFDefer : ∀{⛽ Δ Σ' F Γ u τ X} → X ≠ [] → Filter X := [] → Δ , Σ' , F ⊢⦇ Γ ⊢??[ u ]: τ ⊨ X ⦈⌊ ⛽ ⌋:= (■ (u , ??[ u ]) , ∅) , ∅ {- TODO - later, we need to fix this stuff up too data _,_IterSolve_,_⌊_⌋:=_,_ : hctx → denv → hole-fillings → excons ctx → Fuel → hole-fillings → hctx → Set where ISFin : ∀{⛽ Δ Σ' F-0 U F' Δ' u+F+Δs} → (∀{u} → dom U u → dom Δ u) → ∥ u+F+Δs ∥ == 1+ ∥ U ∥ → Σ[ u-0 ∈ Nat ] (u+F+Δs ⟦ 0 ⟧ == Some (u-0 , F-0 , Δ)) → (∀{u W} → (u , W) ∈ U → Σ[ i ∈ Nat ] Σ[ F-i ∈ hole-fillings ] Σ[ Δ-i ∈ hctx ] ( 1+ i < ∥ u+F+Δs ∥ ∧ u+F+Δs ⟦ i ⟧ == Some (u , F-i , Δ-i))) → (∀{i u-i u-i+1 W-i F-i F-i+1 Δ-i Δ-i+1 Γ-i τ-i} → 1+ i < ∥ u+F+Δs ∥ → u+F+Δs ⟦ i ⟧ == Some (u-i , F-i , Δ-i) → u+F+Δs ⟦ 1+ i ⟧ == Some (u-i+1 , F-i+1 , Δ-i+1) → (u-i , W-i) ∈ U → (u-i , Γ-i , τ-i) ∈ Δ → Σ[ F'-i ∈ hole-fillings ] Σ[ Δ'-i ∈ hctx ] ( (Δ-i , Σ' , F-i ⊢⦇ Γ-i ⊢??[ u-i ]: τ-i ⊨ W-i ⦈⌊ ⛽ ⌋:= (F'-i , ∅) , Δ'-i) ∧ F-i+1 == F-i ∪ F'-i ∧ Δ-i+1 == Δ-i ∪ Δ'-i)) → Σ[ u-n ∈ Nat ] (u+F+Δs ⟦ ∥ U ∥ ⟧ == Some (u-n , F' , Δ')) → Δ , Σ' IterSolve F-0 , U ⌊ ⛽ ⌋:= F' , Δ' ISInd : ∀{⛽ Δ Σ' F-0 U F' Δ' u+F+U+Δs U' Δ-n F-n} → (∀{u} → dom U u → dom Δ u) → ∥ u+F+U+Δs ∥ == 1+ ∥ U ∥ → Σ[ u-0 ∈ Nat ] (u+F+U+Δs ⟦ 0 ⟧ == Some (u-0 , F-0 , ∅ , Δ)) → (∀{u W} → (u , W) ∈ U → Σ[ i ∈ Nat ] Σ[ F-i ∈ hole-fillings ] Σ[ U-i ∈ excons ctx ] Σ[ Δ-i ∈ hctx ] ( 1+ i < ∥ u+F+U+Δs ∥ ∧ u+F+U+Δs ⟦ i ⟧ == Some (u , F-i , U-i , Δ-i))) → (∀{i u-i u-i+1 W-i F-i F-i+1 U-i U-i+1 Δ-i Δ-i+1 Γ-i τ-i} → 1+ i < ∥ u+F+U+Δs ∥ → u+F+U+Δs ⟦ i ⟧ == Some (u-i , F-i , U-i , Δ-i) → u+F+U+Δs ⟦ 1+ i ⟧ == Some (u-i+1 , F-i+1 , U-i+1 , Δ-i+1) → (u-i , W-i) ∈ U → (u-i , Γ-i , τ-i) ∈ Δ → Σ[ F'-i ∈ hole-fillings ] Σ[ Δ'-i ∈ hctx ] ( (Δ-i , Σ' , F-i ⊢⦇ Γ-i ⊢??[ u-i ]: τ-i ⊨ W-i ⦈⌊ ⛽ ⌋:= (F'-i , U-i+1) , Δ'-i) ∧ F-i+1 == F-i ∪ F'-i ∧ Δ-i+1 == Δ-i ∪ Δ'-i)) → U' == foldl _∪_ ∅ (map (π1 ⊙ (π2 ⊙ π2)) u+F+U+Δs) → U' ≠ ∅ → Σ[ u-n ∈ Nat ] Σ[ U-n ∈ excons ctx ] (u+F+U+Δs ⟦ ∥ U ∥ ⟧ == Some (u-n , F-n , U-n , Δ-n)) → Δ-n , Σ' IterSolve F-n , U' ⌊ ⛽ ⌋:= F' , Δ' → Δ , Σ' IterSolve F-0 , U ⌊ ⛽ ⌋:= F' , Δ' data _,_Solve_⌊_⌋:=_ : hctx → denv → constraints → Fuel → hole-fillings → Set where Solve : ∀{⛽ Δ Σ' F0 U F Δ'} → Δ , Σ' IterSolve F0 , U ⌊ ⛽ ⌋:= F , Δ' → Δ , Σ' Solve (F0 , U) ⌊ ⛽ ⌋:= F -} {- TODO -- those external expressions without holes data _ecomplete : hexp → Set where ECConst : c ecomplete ECAsc : ∀{τ e} → τ tcomplete → e ecomplete → (e ·: τ) ecomplete ECVar : ∀{x} → (X x) ecomplete ECLam1 : ∀{x e} → e ecomplete → (·λ x e) ecomplete ECLam2 : ∀{x e τ} → e ecomplete → τ tcomplete → (·λ x [ τ ] e) ecomplete ECAp : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (e1 ∘ e2) ecomplete ECFst : ∀{e} → e ecomplete → (fst e) ecomplete ECSnd : ∀{e} → e ecomplete → (snd e) ecomplete ECPair : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → ⟨ e1 , e2 ⟩ ecomplete -- those internal expressions without holes data _dcomplete : ihexp → Set where DCVar : ∀{x} → (X x) dcomplete DCConst : c dcomplete DCLam : ∀{x τ d} → d dcomplete → τ tcomplete → (·λ x [ τ ] d) dcomplete DCAp : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → (d1 ∘ d2) dcomplete DCCast : ∀{d τ1 τ2} → d dcomplete → τ1 tcomplete → τ2 tcomplete → (d ⟨ τ1 ⇒ τ2 ⟩) dcomplete DCFst : ∀{d} → d dcomplete → (fst d) dcomplete DCSnd : ∀{d} → d dcomplete → (snd d) dcomplete DCPair : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → ⟨ d1 , d2 ⟩ dcomplete mutual -- substitution typing data _,_⊢_:s:_ : hctx → tctx → env → tctx → Set where STAId : ∀{Γ Γ' Δ} → ((x : Nat) (τ : htyp) → (x , τ) ∈ Γ' → (x , τ) ∈ Γ) → Δ , Γ ⊢ Id Γ' :s: Γ' STASubst : ∀{Γ Δ σ y Γ' d τ } → Δ , Γ ,, (y , τ) ⊢ σ :s: Γ' → Δ , Γ ⊢ d :: τ → Δ , Γ ⊢ Subst d y σ :s: Γ' -- type assignment data _,_⊢_::_ : (Δ : hctx) (Γ : tctx) (d : ihexp) (τ : htyp) → Set where TAConst : ∀{Δ Γ} → Δ , Γ ⊢ c :: b TAVar : ∀{Δ Γ x τ} → (x , τ) ∈ Γ → Δ , Γ ⊢ X x :: τ TALam : ∀{ Δ Γ x τ1 d τ2} → x # Γ → Δ , (Γ ,, (x , τ1)) ⊢ d :: τ2 → Δ , Γ ⊢ ·λ x [ τ1 ] d :: (τ1 ==> τ2) TAAp : ∀{ Δ Γ d1 d2 τ1 τ} → Δ , Γ ⊢ d1 :: τ1 ==> τ → Δ , Γ ⊢ d2 :: τ1 → Δ , Γ ⊢ d1 ∘ d2 :: τ TAEHole : ∀{ Δ Γ σ u Γ' τ} → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇⦈⟨ u , σ ⟩ :: τ TANEHole : ∀ { Δ Γ d τ' Γ' u σ τ } → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ d :: τ' → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇⌜ d ⌟⦈⟨ u , σ ⟩ :: τ TACast : ∀{ Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ~ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2 TAFailedCast : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ground → τ2 ground → τ1 ≠ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ :: τ2 TAFst : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 ⊗ τ2 → Δ , Γ ⊢ fst d :: τ1 TASnd : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 ⊗ τ2 → Δ , Γ ⊢ snd d :: τ2 TAPair : ∀{Δ Γ d1 d2 τ1 τ2} → Δ , Γ ⊢ d1 :: τ1 → Δ , Γ ⊢ d2 :: τ2 → Δ , Γ ⊢ ⟨ d1 , d2 ⟩ :: τ1 ⊗ τ2 -- substitution [_/_]_ : ihexp → Nat → ihexp → ihexp [ d / y ] c = c [ d / y ] X x with natEQ x y [ d / y ] X .y | Inl refl = d [ d / y ] X x | Inr neq = X x [ d / y ] (·λ x [ x₁ ] d') with natEQ x y [ d / y ] (·λ .y [ τ ] d') | Inl refl = ·λ y [ τ ] d' [ d / y ] (·λ x [ τ ] d') | Inr x₁ = ·λ x [ τ ] ( [ d / y ] d') [ d / y ] ⦇⦈⟨ u , σ ⟩ = ⦇⦈⟨ u , Subst d y σ ⟩ [ d / y ] ⦇⌜ d' ⌟⦈⟨ u , σ ⟩ = ⦇⌜ [ d / y ] d' ⌟⦈⟨ u , Subst d y σ ⟩ [ d / y ] (d1 ∘ d2) = ([ d / y ] d1) ∘ ([ d / y ] d2) [ d / y ] (d' ⟨ τ1 ⇒ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒ τ2 ⟩ [ d / y ] (d' ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩ [ d / y ] ⟨ d1 , d2 ⟩ = ⟨ [ d / y ] d1 , [ d / y ] d2 ⟩ [ d / y ] (fst d') = fst ([ d / y ] d') [ d / y ] (snd d') = snd ([ d / y ] d') -- applying an environment to an expression apply-env : env → ihexp → ihexp apply-env (Id Γ) d = d apply-env (Subst d y σ) d' = [ d / y ] ( apply-env σ d') -- freshness mutual -- ... with respect to a hole context data envfresh : Nat → env → Set where EFId : ∀{x Γ} → x # Γ → envfresh x (Id Γ) EFSubst : ∀{x d σ y} → fresh x d → envfresh x σ → x ≠ y → envfresh x (Subst d y σ) -- ... for inernal expressions data fresh : Nat → ihexp → Set where FConst : ∀{x} → fresh x c FVar : ∀{x y} → x ≠ y → fresh x (X y) FLam : ∀{x y τ d} → x ≠ y → fresh x d → fresh x (·λ y [ τ ] d) FHole : ∀{x u σ} → envfresh x σ → fresh x (⦇⦈⟨ u , σ ⟩) FNEHole : ∀{x d u σ} → envfresh x σ → fresh x d → fresh x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) FAp : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x (d1 ∘ d2) FCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒ τ2 ⟩) FFailedCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) FFst : ∀{x d} → fresh x d → fresh x (fst d) FSnd : ∀{x d} → fresh x d → fresh x (snd d) FPair : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x ⟨ d1 , d2 ⟩ -- ... for external expressions data freshh : Nat → hexp → Set where FRHConst : ∀{x} → freshh x c FRHAsc : ∀{x e τ} → freshh x e → freshh x (e ·: τ) FRHVar : ∀{x y} → x ≠ y → freshh x (X y) FRHLam1 : ∀{x y e} → x ≠ y → freshh x e → freshh x (·λ y e) FRHLam2 : ∀{x τ e y} → x ≠ y → freshh x e → freshh x (·λ y [ τ ] e) FRHEHole : ∀{x u} → freshh x (⦇⦈[ u ]) FRHNEHole : ∀{x u e} → freshh x e → freshh x (⦇⌜ e ⌟⦈[ u ]) FRHAp : ∀{x e1 e2} → freshh x e1 → freshh x e2 → freshh x (e1 ∘ e2) FRHFst : ∀{x e} → freshh x e → freshh x (fst e) FRHSnd : ∀{x e} → freshh x e → freshh x (snd e) FRHPair : ∀{x e1 e2} → freshh x e1 → freshh x e2 → freshh x ⟨ e1 , e2 ⟩ -- with respect to all bindings in a context freshΓ : {A : Set} → (Γ : A ctx) → (e : hexp) → Set freshΓ {A} Γ e = (x : Nat) → dom Γ x → freshh x e -- x is not used in a binding site in d mutual data unbound-in-σ : Nat → env → Set where UBσId : ∀{x Γ} → unbound-in-σ x (Id Γ) UBσSubst : ∀{x d y σ} → unbound-in x d → unbound-in-σ x σ → x ≠ y → unbound-in-σ x (Subst d y σ) data unbound-in : (x : Nat) (d : ihexp) → Set where UBConst : ∀{x} → unbound-in x c UBVar : ∀{x y} → unbound-in x (X y) UBLam2 : ∀{x d y τ} → x ≠ y → unbound-in x d → unbound-in x (·λ_[_]_ y τ d) UBHole : ∀{x u σ} → unbound-in-σ x σ → unbound-in x (⦇⦈⟨ u , σ ⟩) UBNEHole : ∀{x u σ d } → unbound-in-σ x σ → unbound-in x d → unbound-in x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) UBAp : ∀{ x d1 d2 } → unbound-in x d1 → unbound-in x d2 → unbound-in x (d1 ∘ d2) UBCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒ τ2 ⟩) UBFailedCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) UBFst : ∀{x d} → unbound-in x d → unbound-in x (fst d) UBSnd : ∀{x d} → unbound-in x d → unbound-in x (snd d) UBPair : ∀{x d1 d2} → unbound-in x d1 → unbound-in x d2 → unbound-in x ⟨ d1 , d2 ⟩ mutual data binders-disjoint-σ : env → ihexp → Set where BDσId : ∀{Γ d} → binders-disjoint-σ (Id Γ) d BDσSubst : ∀{d1 d2 y σ} → binders-disjoint d1 d2 → binders-disjoint-σ σ d2 → binders-disjoint-σ (Subst d1 y σ) d2 -- two terms that do not share any binders data binders-disjoint : (d1 : ihexp) → (d2 : ihexp) → Set where BDConst : ∀{d} → binders-disjoint c d BDVar : ∀{x d} → binders-disjoint (X x) d BDLam : ∀{x τ d1 d2} → binders-disjoint d1 d2 → unbound-in x d2 → binders-disjoint (·λ_[_]_ x τ d1) d2 BDHole : ∀{u σ d2} → binders-disjoint-σ σ d2 → binders-disjoint (⦇⦈⟨ u , σ ⟩) d2 BDNEHole : ∀{u σ d1 d2} → binders-disjoint-σ σ d2 → binders-disjoint d1 d2 → binders-disjoint (⦇⌜ d1 ⌟⦈⟨ u , σ ⟩) d2 BDAp : ∀{d1 d2 d3} → binders-disjoint d1 d3 → binders-disjoint d2 d3 → binders-disjoint (d1 ∘ d2) d3 BDCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒ τ2 ⟩) d2 BDFailedCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) d2 BDFst : ∀{d1 d2} → binders-disjoint d1 d2 → binders-disjoint (fst d1) d2 BDSnd : ∀{d1 d2} → binders-disjoint d1 d2 → binders-disjoint (snd d1) d2 BDPair : ∀{d1 d2 d3} → binders-disjoint d1 d3 → binders-disjoint d2 d3 → binders-disjoint ⟨ d1 , d2 ⟩ d3 mutual -- each term has to be binders unique, and they have to be pairwise -- disjoint with the collection of bound vars data binders-unique-σ : env → Set where BUσId : ∀{Γ} → binders-unique-σ (Id Γ) BUσSubst : ∀{d y σ} → binders-unique d → binders-unique-σ σ → binders-disjoint-σ σ d → binders-unique-σ (Subst d y σ) -- all the variable names in the term are unique data binders-unique : ihexp → Set where BUHole : binders-unique c BUVar : ∀{x} → binders-unique (X x) BULam : {x : Nat} {τ : htyp} {d : ihexp} → binders-unique d → unbound-in x d → binders-unique (·λ_[_]_ x τ d) BUEHole : ∀{u σ} → binders-unique-σ σ → binders-unique (⦇⦈⟨ u , σ ⟩) BUNEHole : ∀{u σ d} → binders-unique d → binders-unique-σ σ → binders-unique (⦇⌜ d ⌟⦈⟨ u , σ ⟩) BUAp : ∀{d1 d2} → binders-unique d1 → binders-unique d2 → binders-disjoint d1 d2 → binders-unique (d1 ∘ d2) BUCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒ τ2 ⟩) BUFailedCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒⦇⦈⇏ τ2 ⟩) BUFst : ∀{d} → binders-unique d → binders-unique (fst d) BUSnd : ∀{d} → binders-unique d → binders-unique (snd d) BUPair : ∀{d1 d2} → binders-unique d1 → binders-unique d2 → binders-disjoint d1 d2 → binders-unique ⟨ d1 , d2 ⟩ -}
{ "alphanum_fraction": 0.3473978815, "avg_line_length": 44.4169944925, "ext": "agda", "hexsha": "006eaeb2968087ebc7a4f153d5e77a80864a9f6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "core.agda", "max_line_length": 132, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "core.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 25319, "size": 56454 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae module ClassicalLogic.ClassicalFive where em = {A : Set} → (A || (A → False)) dne = {A : Set} → ((A → False) → False) → A peirce = {A B : Set} → ((A → B) → A) → A iad = {A B : Set} → (A → B) → ((A → False) || B) dem = {A B : Set} → (((A → False) && (B → False)) → False) → A || B emToDne : em → dne emToDne em {A} pr with em {A} emToDne em {A} pr | inl x = x emToDne em {A} pr | inr x = exFalso (pr x) dneToPeirce : dne → peirce dneToPeirce dne {A} {B} aba = dne (λ z → z (aba (λ a → dne (λ _ → z a)))) peirceToIad : peirce → iad peirceToIad peirce {A} {B} aToB = peirce (λ z → inl (λ x → z (inr (aToB x)))) iadToDem : iad → dem iadToDem iad {A} {B} x with iad {A} {A} (λ i → i) iadToDem iad {A} {B} x | inl notA with iad {B} {B} (λ i → i) iadToDem iad {A} {B} x | inl notA | inl notB = exFalso (x (notA ,, notB)) iadToDem iad {A} {B} x | inl notA | inr b = inr b iadToDem iad {A} {B} x | inr a = inl a demToEm : dem → em demToEm dem {A} = dem (λ z → _&&_.snd z (_&&_.fst z))
{ "alphanum_fraction": 0.5535714286, "avg_line_length": 31.2941176471, "ext": "agda", "hexsha": "b685a6654909833a632a821c6808a128e6ca6a26", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "ClassicalLogic/ClassicalFive.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "ClassicalLogic/ClassicalFive.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "ClassicalLogic/ClassicalFive.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 486, "size": 1064 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.Records as LCR open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.KVMap open import Util.Lemmas open import Util.PKCS open import Util.Prelude open import Yasm.Base open EpochConfig -- This module contains placeholders for the future analog of the -- corresponding VotesOnce property. Defining the implementation -- obligation and proving that it is an invariant of an implementation -- is a substantial undertaking. We are working first on proving the -- simpler VotesOnce property to settle down the structural aspects -- before tackling the harder semantic issues. module LibraBFT.Concrete.Properties.PreferredRound (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (𝓔 : EpochConfig) where open LibraBFT.ImplShared.Consensus.Types.EpochDep.WithEC import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Abs import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Ext open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) open import LibraBFT.Concrete.Intermediate 𝓔 (ConcreteVoteEvidence 𝓔) open import LibraBFT.Concrete.Obligations.PreferredRound 𝓔 (ConcreteVoteEvidence 𝓔) open SystemTypeParameters ConcSysParms open SystemInitAndHandlers iiah open ParamsWithInitAndHandlers iiah open import LibraBFT.ImplShared.Util.HashCollisions iiah open import LibraBFT.Concrete.Properties.Common iiah 𝓔 open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms iiah PeerCanSignForPK PeerCanSignForPK-stable open PerEpoch 𝓔 open WithAbsVote 𝓔 open LCR.WithEC 𝓔 open PerState open PerReachableState open IntermediateSystemState open All-InSys-props Block-RC-AllInSys : Abs.Vote → SystemState → Set Block-RC-AllInSys vabs st = ∃[ b ] ( Abs.bId b ≡ abs-vBlockUID vabs × Σ (RecordChain (Abs.B b)) (All-InSys (InSys (intSystemState st)))) ImplObligation-RC : Set (ℓ+1 ℓ-RoundManager) ImplObligation-RC = ∀{pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v m} → Meta-Honest-PK pk -- For signed every vote v of every outputted message → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → 0 < v ^∙ vRound → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → let post = StepPeer-post {pre = pre} (step-honest sps) in (pcs4 : PeerCanSignForPK post v pid pk) → ∃[ mbr ] ( getPubKey 𝓔 mbr ≡ pk × Block-RC-AllInSys (α-ValidVote 𝓔 v mbr) post) -- For PreferredRound, we have two implementation obligations, one for when v is sent by the -- step and v' has been sent before, and one for when both are sent by the step. ImplObligation₁ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₁ = ∀{pid pid' s' outs pk}{pre : SystemState} → (r : ReachableSystemState pre) -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → let post = StepPeer-post {pre = pre} (step-honest sps) in ∀{mbr v vabs m v' v'abs m'} → Meta-Honest-PK pk -- For signed every vote v of every outputted message → v' ⊂Msg m' → send m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig')) -- If v is really new and valid → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk -- And if there exists another v' that has been sent before → v ⊂Msg m → (pid' , m) ∈ (msgPool pre) → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig)) -- If v and v' share the same epoch → v ^∙ vEpoch ≡ v' ^∙ vEpoch -- and v is for a smaller round → v ^∙ vRound < v' ^∙ vRound -- and vabs* are the abstract Votes for v and v' → α-ValidVote 𝓔 v mbr ≡ vabs → α-ValidVote 𝓔 v' mbr ≡ v'abs → (c2 : Cand-3-chain-vote (intSystemState post) vabs) -- then the round of the block that v' votes for is at least the round of -- the grandparent of the block that v votes for (i.e., the preferred round rule) → Σ (VoteParentData (intSystemState post) v'abs) (λ vp → Cand-3-chain-head-round (intSystemState post) c2 ≤ Abs.round (vpParent vp)) ⊎ (VoteForRound∈ pk (v' ^∙ vRound) (v' ^∙ vEpoch) (v' ^∙ vProposedId) (msgPool pre)) -- Similarly in case the same step sends both v and v' ImplObligation₂ : Set (ℓ+1 ℓ-RoundManager) ImplObligation₂ = ∀{pid s' outs pk}{pre : SystemState} → (r : ReachableSystemState pre) -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → let post = StepPeer-post {pre = pre} (step-honest sps) in ∀{mbr v vabs m v' v'abs m'} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig)) -- If v is really new and valid → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → PeerCanSignForPK post v pid pk -- And if there exists another v' that is also new and valid → v' ⊂Msg m' → send m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig')) → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → PeerCanSignForPK (StepPeer-post {pre = pre} (step-honest sps)) v' pid pk -- If v and v' share the same epoch and round → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound < v' ^∙ vRound → α-ValidVote 𝓔 v mbr ≡ vabs → α-ValidVote 𝓔 v' mbr ≡ v'abs → (c2 : Cand-3-chain-vote (intSystemState post) vabs) → Σ (VoteParentData (intSystemState post) v'abs) (λ vp → Cand-3-chain-head-round (intSystemState post) c2 ≤ Abs.round (vpParent vp)) module _ where open InSys iiah stepPreservesVoteParentData : ∀ {st0 st1 v} → Step st0 st1 → (vpd : VoteParentData (intSystemState st0) v) → Σ (VoteParentData (intSystemState st1) v) λ vpd' → vpParent vpd' ≡ vpParent vpd stepPreservesVoteParentData {st0} {st1} theStep vpd with vpd ...| (record { vpV4B = vpV4B ; vpBlock∈sys = vpBlock∈sys ; vpParent = vpParent ; vpParent∈sys = vpParent∈sys ; vpExt = vpExt ; vpMaybeBlock = vpMaybeBlock }) = (record { vpV4B = vpV4B ; vpBlock∈sys = stable theStep vpBlock∈sys ; vpParent = vpParent ; vpParent∈sys = stable theStep vpParent∈sys ; vpExt = vpExt ; vpMaybeBlock = transp-vpmb vpMaybeBlock }) , refl where transp-vpmb : ∀ {r} → VoteParentData-BlockExt (intSystemState st0) r → VoteParentData-BlockExt (intSystemState st1) r transp-vpmb vpParent≡I = vpParent≡I transp-vpmb (vpParent≡Q x x₁) = vpParent≡Q x (stable theStep x₁) module Proof (sps-corr : StepPeerState-AllValidParts) -- Bring in newMsg⊎msgSentB4 (Impl-bsvr : ImplObl-bootstrapVotesRound≡0) (Impl-nvr≢0 : ImplObl-NewVoteRound≢0) (Impl-∈BI? : (sig : Signature) → Dec (∈BootstrapInfo bootstrapInfo sig)) (Impl-RC : ImplObligation-RC) (Impl-IRO : IncreasingRoundObligation) (Impl-PR1 : ImplObligation₁) (Impl-PR2 : ImplObligation₂) where module _ {st : SystemState}(r : ReachableSystemState st) (𝓔-∈sys : EpochConfig∈Sys st 𝓔) where open Structural sps-corr open ConcreteCommonProperties st r sps-corr Impl-bsvr Impl-nvr≢0 α-ValidVote-trans : ∀ {pk mbr vabs pool} (v : Vote) → α-ValidVote 𝓔 v mbr ≡ vabs → (vfr : VoteForRound∈ pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) pool) → α-ValidVote 𝓔 (msgVote vfr) mbr ≡ vabs α-ValidVote-trans v₁ refl vfr with msgRound≡ vfr | msgEpoch≡ vfr | msgBId≡ vfr ...| refl | refl | refl = refl 0<rnd⇒¬BootStrap : ∀ {pk rnd bid pool} → (v4r : VoteForRound∈ pk rnd (epoch 𝓔) bid pool) → 0 < rnd → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature $ msgSigned v4r)) 0<rnd⇒¬BootStrap v4r 0<r rewrite sym (msgRound≡ v4r) = ⊥-elim ∘ (<⇒≢ 0<r) ∘ sym ∘ Impl-bsvr (msgSigned v4r) -- To prove this, we observe that cheaters can't introduce a VoteForRound∈ for an honest PK. We -- will also require an additional implementation obligation. It may simply be that Votes sent -- satisy IsValidVote, but the question is where do we maintain evidence that such a RecordChain -- exists for any Block we may vote for? voteForRound-RC : ∀ {pk vabs}{st : SystemState} → Meta-Honest-PK pk → ReachableSystemState st → (v4r : VoteForRound∈ pk (abs-vRound vabs) (epoch 𝓔) (abs-vBlockUID vabs) (msgPool st)) → 0 < abs-vRound vabs → Block-RC-AllInSys vabs st voteForRound-RC-mws : ∀ {pk vabs pre pid st' outs} → Meta-Honest-PK pk → ReachableSystemState pre → (sp : StepPeer pre pid st' outs) → (v4r : VoteForRound∈ pk (abs-vRound vabs) (epoch 𝓔) (abs-vBlockUID vabs) (msgPool $ StepPeer-post sp)) → MsgWithSig∈ pk (ver-signature $ msgSigned v4r) (msgPool pre) → 0 < abs-vRound vabs → Block-RC-AllInSys vabs (StepPeer-post sp) voteForRound-RC-mws {pk} {vabs} {pre} hpk preReach sps v4r mwsb4 0<r with sameSig⇒sameVoteData (msgSigned mwsb4) (msgSigned v4r) (msgSameSig mwsb4) ...| inj₁ hb = ⊥-elim $ meta-no-collision preReach hb -- TODO-2: refine sameSig⇒samevotedata to -- enable tying collision to specific state -- so we can use meta-no-collision-in-sys ...| inj₂ svd with msgSentB4⇒VoteRound∈ (msgSigned v4r) mwsb4' where mwsb4' : _ mwsb4' rewrite trans (cong (_^∙ vdProposed ∙ biEpoch) $ sym svd) (msgEpoch≡ v4r) | msgBId≡ v4r | msgSameSig mwsb4 = mwsb4 ...| v4r' , refl with voteForRound-RC {pk} {vabs} hpk preReach v4r'' 0<r where v4r'' : VoteForRound∈ pk (abs-vRound vabs) (epoch 𝓔) (abs-vBlockUID vabs) (msgPool pre) v4r'' rewrite sym (msgEpoch≡ v4r) | sym (msgRound≡ v4r) | sym (msgBId≡ v4r) = v4r' ...| b , refl , rc , ais = b , refl , rc , InSys.ais-stable iiah (step-peer sps) rc ais voteForRound-RC {pk} {vabs} {st} hpk (step-s preReach (step-peer (step-honest sps))) v4r 0<r with newMsg⊎msgSentB4 {sndr = msgSender v4r} preReach sps hpk (msgSigned v4r) (0<rnd⇒¬BootStrap v4r 0<r) (msg⊆ v4r) (msg∈pool v4r) ...| inj₂ mwsb4 = voteForRound-RC-mws {vabs = vabs} hpk preReach (step-honest sps) v4r mwsb4 0<r ...| inj₁ (send∈outs , pcs4 , ¬sentb4) rewrite sym (msgRound≡ v4r) with Impl-RC preReach sps hpk (msg⊆ v4r) send∈outs (msgSigned v4r) 0<r ¬sentb4 pcs4 ...| mbr , refl , b , bid≡ , rc∈sys = b , (trans bid≡ $ msgBId≡ v4r) , rc∈sys voteForRound-RC {pk} {vabs} {st} hpk (step-s {pre = pre} preReach (step-peer (step-cheat {pid} x))) v4r 0<r with VoteRound∈⇒msgSent v4r ...| msgb4 , refl , refl with ¬cheatForgeNew {st = pre} (step-cheat x) refl unit hpk msgb4 (0<rnd⇒¬BootStrap v4r 0<r) ...| mwsb4 = voteForRound-RC-mws {vabs = vabs} hpk preReach (step-cheat x) v4r mwsb4 0<r open _α-Sent_ open _BlockDataInjectivityProps_ Abs2ImplCollision : ∀ {ab1 ab2 : Abs.Block}{post} → (rPost : ReachableSystemState post) → InSys (intSystemState post) (Abs.B ab1) → InSys (intSystemState post) (Abs.B ab2) → ab1 ≢ ab2 → Abs.bId ab1 ≡ Abs.bId ab2 → HashCollisionFound rPost Abs2ImplCollision rPost (ws ep≡1 m1∈pool (b∈NM {cb1} {pm1} refl refl bidcorr1)) (ws ep≡2 m2∈pool (b∈NM {cb2} {pm2} refl refl bidcorr2)) neq absIds≡ = msgmsgHC {r = rPost} (inP m1∈pool (inPM (inB {b = cb1}))) (inP m2∈pool (inPM (inB {b = cb2}))) hashes≡ bsls≢ where -- TODO-2: Some of the properties should be factored out for reuse, maybe into Common? bIds≡ : _ bIds≡ = trans (trans (α-Block-bid≡ cb1) absIds≡) (sym (α-Block-bid≡ cb2)) hashes≡ : _ hashes≡ = trans (trans bidcorr1 bIds≡) (sym bidcorr2) rnds≡ : ∀ {cb1 cb2} → (cb1 ^∙ bBlockData) BlockDataInjectivityProps (cb2 ^∙ bBlockData) → Abs.bRound (α-Block cb1) ≡ Abs.bRound (α-Block cb2) rnds≡ {cb1} {cb2} injprops = trans (sym (α-Block-rnd≡ cb1)) (trans (bdInjRound injprops) (α-Block-rnd≡ cb2)) propBlock : ∀ {cb pm} → pm ^∙ pmProposal ≡ cb → cb ^∙ bId ≡ pm ^∙ pmProposal ∙ bId propBlock refl = refl prevQCs≡ : ∀ {cb1 cb2} → (cb1 ^∙ bBlockData) BlockDataInjectivityProps (cb2 ^∙ bBlockData) → Abs.bPrevQC (α-Block cb1) ≡ Abs.bPrevQC (α-Block cb2) prevQCs≡ {cb1} {cb2} injprops with cb1 ^∙ bBlockData ∙ bdBlockType | inspect (cb1 ^∙_) (bBlockData ∙ bdBlockType) ...| Genesis | [ R ] rewrite R = sym (α-Block-prevqc≡-Gen {cb2} (bdInjBTGen injprops R)) ...| Proposal _ _ | [ R ] rewrite R | bdInjVD injprops = sym (α-Block-prevqc≡-Prop {cb2} (trans (sym $ bdInjBTProp injprops R) R)) ...| NilBlock | [ R ] rewrite R | bdInjBTNil injprops R | bdInjVD injprops = refl bsls≢ : _ bsls≢ _ with hashBD-inj hashes≡ ...| injprops = neq (Abs.Block-η (rnds≡ {cb1} {cb2} injprops) absIds≡ (prevQCs≡ {cb1} {cb2} injprops)) Cand-3-chain-vote-b4 : ∀ {pk vabs}{pre : SystemState}{pid st' outs sp} → Meta-Honest-PK pk → ReachableSystemState pre → let post = StepPeer-post {pid}{st'}{outs}{pre} sp in (c2 : Cand-3-chain-vote (intSystemState post) vabs) → (v4r : VoteForRound∈ pk (abs-vRound vabs) (epoch 𝓔) (abs-vBlockUID vabs) (msgPool pre)) → Σ (Cand-3-chain-vote (intSystemState pre) vabs) λ c2' → Cand-3-chain-head-round (intSystemState post) c2 ≡ Cand-3-chain-head-round (intSystemState pre ) c2' Cand-3-chain-vote-b4 {pk} {vabs} {pre} {pid} {st'} {outs} {sp} pkH r c3@(mkCand3chainvote (mkVE veBlock refl refl) c3Blk∈sys₁ qc₁ qc←b₁ rc₁ rc∈sys₁ n₁ is-2chain₁) v4r with v-cand-3-chain⇒0<roundv (intSystemState $ StepPeer-post {pid}{st'}{outs}{pre} sp) ...| 0<r with voteForRound-RC {vabs = vabs} pkH r v4r (0<r c3) ...| b , refl , rcb , ais with veBlock Abs.≟Block b ...| no neq = ⊥-elim (meta-no-collision-in-sys postR hcf) where post = StepPeer-post sp theStep = step-peer sp postR = step-s r theStep hcf = Abs2ImplCollision postR c3Blk∈sys₁ (InSys.stable iiah theStep (ais here)) neq refl ...| yes refl with RecordChain-irrelevant rcb (step rc₁ qc←b₁) ...| inj₁ (((b1 , b2) , neq , absIds≡) , b1∈rcb , b2∈rc1ext) = ⊥-elim (meta-no-collision-in-sys postR (hcf b2∈rc1ext)) where post = StepPeer-post sp theStep = step-peer sp postR = step-s r theStep inSys1 = InSys.stable iiah theStep $ ais b1∈rcb inSys2 : _ → _ inSys2 here = c3Blk∈sys₁ inSys2 (there .qc←b₁ b2∈rc1ext) = rc∈sys₁ b2∈rc1ext hcf : _ → _ hcf b2∈rc1ext = Abs2ImplCollision postR inSys1 (inSys2 b2∈rc1ext) neq absIds≡ ...| inj₂ (eq-step {r₀ = .(Abs.B b)} {r₁ = .(Abs.B b)} rc0 rc1 b≈b ext0@(Ext.I←B _ prevNothing) ext1@(Ext.Q←B _ prevJust) rcrest≈) = absurd just _ ≡ nothing case trans prevJust prevNothing of λ () ...| inj₂ (eq-step {r₀ = .(Abs.B b)} {r₁ = .(Abs.B b)} rc0 rc1 b≈b ext0@(Ext.Q←B {qc0} {.b} _ _) ext1@(Ext.Q←B {qc1} {.b} _ _) rcrest≈) = newc3 , rnds≡ where newc3 = mkCand3chainvote (mkVE b refl refl) (ais here) qc0 ext0 rc0 (ais ∘ (_∈RC-simple_.there ext0)) n₁ (transp-𝕂-chain (≈RC-sym rcrest≈) is-2chain₁) rnds≡ = cong Abs.bRound $ kchainBlock-≈RC is-2chain₁ (suc zero) (≈RC-sym rcrest≈) PreferredRoundProof : ∀ {pk round₁ round₂ bId₁ bId₂ v₁abs v₂abs mbr} {st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (v₁ : VoteForRound∈ pk round₁ (epoch 𝓔) bId₁ (msgPool st)) → (v₂ : VoteForRound∈ pk round₂ (epoch 𝓔) bId₂ (msgPool st)) → round₁ < round₂ → α-ValidVote 𝓔 (msgVote v₁) mbr ≡ v₁abs → α-ValidVote 𝓔 (msgVote v₂) mbr ≡ v₂abs → (c3 : Cand-3-chain-vote (intSystemState st) v₁abs) → Σ (VoteParentData (intSystemState st) v₂abs) (λ vp → Cand-3-chain-head-round (intSystemState st) c3 ≤ Abs.round (vpParent vp)) PreferredRoundProof {pk}{round₁}{round₂}{bId₁}{bId₂}{v₁abs}{v₂abs}{mbr}{st = post} step@(step-s {pre = pre} r theStep) pkH v₁ v₂ r₁<r₂ refl refl c3 with msgRound≡ v₁ | msgEpoch≡ v₁ | msgBId≡ v₁ | msgRound≡ v₂ | msgEpoch≡ v₂ | msgBId≡ v₂ ...| refl | refl | refl | refl | refl | refl with Impl-∈BI? (_vSignature (msgVote v₁)) | Impl-∈BI? (_vSignature (msgVote v₂)) ...| yes init₁ | yes init₂ = let r₁≡0 = Impl-bsvr (msgSigned v₁) init₁ r₂≡0 = Impl-bsvr (msgSigned v₂) init₂ in ⊥-elim (<⇒≢ r₁<r₂ (trans r₁≡0 (sym r₂≡0))) ...| yes init₁ | no ¬init₂ = let 0≡rv = sym (Impl-bsvr (msgSigned v₁) init₁) 0<rv = v-cand-3-chain⇒0<roundv (intSystemState post) c3 in ⊥-elim (<⇒≢ 0<rv 0≡rv) ...| no ¬init₁ | yes init₂ = let 0≡r₂ = sym (Impl-bsvr (msgSigned v₂) init₂) r₁ = msgVote v₁ ^∙ vRound in ⊥-elim (<⇒≱ r₁<r₂ (subst (r₁ ≥_) 0≡r₂ z≤n)) ...| no ¬init₁ | no ¬init₂ with theStep ...| step-peer {pid} {st'} {outs} cheat@(step-cheat c) = vpdPres where m₁sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned v₁) (msg⊆ v₁) (msg∈pool v₁) ¬init₁ m₂sb4 = ¬cheatForgeNewSig r cheat unit pkH (msgSigned v₂) (msg⊆ v₂) (msg∈pool v₂) ¬init₂ v₁sb4 = msgSentB4⇒VoteRound∈ (msgSigned v₁) m₁sb4 v₂sb4 = msgSentB4⇒VoteRound∈ (msgSigned v₂) m₂sb4 v₁abs' = α-ValidVote-trans {pk} {mbr} {pool = msgPool pre} (msgVote v₁) refl (proj₁ v₁sb4) v₂abs' = α-ValidVote-trans {pk} {mbr} {pool = msgPool pre} (msgVote v₂) refl (proj₁ v₂sb4) vpdPres : Σ (VoteParentData (intSystemState post) v₂abs) (λ vp → Cand-3-chain-head-round (intSystemState post) c3 ≤ Abs.round (vpParent vp)) vpdPres with Cand-3-chain-vote-b4 {sp = step-cheat c} pkH r c3 (proj₁ v₁sb4) ...| c2' , c2'rnd≡ with PreferredRoundProof r pkH (proj₁ v₁sb4) (proj₁ v₂sb4) r₁<r₂ v₁abs' v₂abs' c2' ...| vpd , rnd≤ with stepPreservesVoteParentData theStep vpd ...| res , rnds≡ rewrite sym rnds≡ = res , ≤-trans (≤-reflexive c2'rnd≡) rnd≤ ...| step-peer (step-honest stP) with ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned v₁)) (newMsg⊎msgSentB4 r stP pkH (msgSigned v₁) ¬init₁ (msg⊆ v₁) (msg∈pool v₁)) | ⊎-map₂ (msgSentB4⇒VoteRound∈ (msgSigned v₂)) (newMsg⊎msgSentB4 r stP pkH (msgSigned v₂) ¬init₂ (msg⊆ v₂) (msg∈pool v₂)) ...| inj₂ (v₁sb4 , refl) | inj₂ (v₂sb4 , refl) = vpdPres where v₁abs' = α-ValidVote-trans (msgVote v₁) refl v₁sb4 v₂abs' = α-ValidVote-trans (msgVote v₂) refl v₂sb4 vpdPres : _ vpdPres with Cand-3-chain-vote-b4 {sp = step-honest stP} pkH r c3 v₁sb4 ...| c2' , c2'rnd≡ with PreferredRoundProof r pkH v₁sb4 v₂sb4 r₁<r₂ v₁abs' v₂abs' c2' ...| vpd , rnd≤ with stepPreservesVoteParentData theStep vpd ...| res , pars≡ rewrite sym pars≡ = res , ≤-trans (≤-reflexive c2'rnd≡) rnd≤ ...| inj₁ (m₁∈outs , v₁pk , newV₁) | inj₁ (m₂∈outs , v₂pk , newV₂) = Impl-PR2 r stP pkH (msg⊆ v₁) m₁∈outs (msgSigned v₁) ¬init₁ newV₁ v₁pk (msg⊆ v₂) m₂∈outs (msgSigned v₂) ¬init₂ newV₂ v₂pk refl r₁<r₂ refl refl c3 ...| inj₁ (m₁∈outs , v₁pk , v₁New) | inj₂ (v₂sb4 , refl) = help where round≡ = trans (msgRound≡ v₂sb4) (msgRound≡ v₂) ¬bootstrapV₂ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH v₂ ¬init₂ (msgSigned v₂sb4) round≡ epoch≡ = sym (msgEpoch≡ v₂sb4) implir0 : _ implir0 = Impl-IRO r stP pkH (msg⊆ v₁) m₁∈outs (msgSigned v₁) ¬init₁ v₁New v₁pk (msg⊆ v₂sb4) (msg∈pool v₂sb4) (msgSigned v₂sb4) ¬bootstrapV₂ epoch≡ help : _ help = either (λ r₂<r₁ → ⊥-elim (<⇒≯ r₁<r₂ (<-transʳ (≡⇒≤ (sym round≡)) r₂<r₁))) (λ v₁sb4 → let v₁abs = α-ValidVote-trans (msgVote v₁) refl v₁sb4 v₂abs = α-ValidVote-trans (msgVote v₂) refl v₂sb4 c2'p = Cand-3-chain-vote-b4 {sp = step-honest stP} pkH r c3 v₁sb4 prp = PreferredRoundProof r pkH v₁sb4 v₂sb4 r₁<r₂ v₁abs v₂abs (proj₁ c2'p) vpd' = stepPreservesVoteParentData theStep (proj₁ prp) in (proj₁ vpd') , (≤-trans (≤-reflexive (proj₂ c2'p)) (proj₂ prp))) implir0 ...| inj₂ (v₁sb4 , refl) | inj₁ (m₂∈outs , v₂pk , v₂New) = help where rv₁<r₂ = <-transʳ (≡⇒≤ (msgRound≡ v₁sb4)) r₁<r₂ round≡ = trans (msgRound≡ v₁sb4) (msgRound≡ v₁) ¬bootstrapV₁ = ¬Bootstrap∧Round≡⇒¬Bootstrap step pkH v₁ ¬init₁ (msgSigned v₁sb4) round≡ v₁abs' = α-ValidVote-trans (msgVote v₁) refl v₁sb4 c2'p = Cand-3-chain-vote-b4 {sp = step-honest stP} pkH r c3 v₁sb4 implir1 : _ implir1 = Impl-PR1 r stP pkH (msg⊆ v₂) m₂∈outs (msgSigned v₂) ¬init₂ v₂New v₂pk (msg⊆ v₁sb4) (msg∈pool v₁sb4) (msgSigned v₁sb4) ¬bootstrapV₁ (msgEpoch≡ v₁sb4) rv₁<r₂ v₁abs' refl c3 help : _ help = either id (λ v₂sb4 → let v₂abs' = α-ValidVote-trans (msgVote v₂) refl v₂sb4 prp = PreferredRoundProof r pkH v₁sb4 v₂sb4 r₁<r₂ v₁abs' v₂abs' (proj₁ c2'p) vpd' = stepPreservesVoteParentData theStep (proj₁ prp) in (proj₁ vpd') , (≤-trans (≤-reflexive (proj₂ c2'p)) (proj₂ prp))) implir1 prr : Type (intSystemState st) prr honα refl sv refl sv' c2 round< with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv') ...| refl | refl = let v₁ = mkVoteForRound∈ (nm (vmFor sv)) (cv ((vmFor sv))) (cv∈nm (vmFor sv)) (vmSender sv) (nmSentByAuth sv) (vmsgSigned (vmFor sv)) (vmsgEpoch (vmFor sv)) refl refl v₂ = mkVoteForRound∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv')) (vmSender sv') (nmSentByAuth sv') (vmsgSigned (vmFor sv')) (vmsgEpoch (vmFor sv')) refl refl in PreferredRoundProof r honα v₁ v₂ round< refl refl c2
{ "alphanum_fraction": 0.5693907062, "avg_line_length": 53.5292887029, "ext": "agda", "hexsha": "167782ff7f6674e5333ee98093fc1f28435b5975", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/Properties/PreferredRound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/Properties/PreferredRound.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/Properties/PreferredRound.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8644, "size": 25587 }
module NativeInt where open import Data.Integer.Base hiding (_+_) postulate Int : Set toInt : ℤ -> Int fromInt : Int -> ℤ {-# COMPILE GHC Int = type Int #-} {-# COMPILE GHC toInt fromInteger #-} {-# COMPILE GHC fromInt toInteger #-}
{ "alphanum_fraction": 0.6611570248, "avg_line_length": 18.6153846154, "ext": "agda", "hexsha": "ca1569aef679399f3ab653b54d8a58cf98d87a41", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/NativeInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/NativeInt.agda", "max_line_length": 42, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/NativeInt.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 67, "size": 242 }
module Numeral.Natural.Oper.FlooredDivision.Proofs.DivisibilityWithRemainder where open import Data open import Functional open import Numeral.Finite import Numeral.Finite.Proofs as 𝕟 open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.FlooredDivision.Proofs open import Numeral.Natural.Relation.DivisibilityWithRemainder hiding (base₀ ; base₊ ; step) open import Numeral.Natural.Relation.DivisibilityWithRemainder.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Syntax.Transitivity -- The quotient of the divisibility relation is given by the floored division operation. [⌊/⌋][∣ᵣₑₘ]-quotient-equality : ∀{x y r}{p : (𝐒(y) ∣ᵣₑₘ x)(r)} → ((x ⌊/⌋ 𝐒(y)) ≡ [∣ᵣₑₘ]-quotient p) [⌊/⌋][∣ᵣₑₘ]-quotient-equality {𝟎} {_} {𝟎} {DivRem𝟎} = [≡]-intro [⌊/⌋][∣ᵣₑₘ]-quotient-equality {𝐒 .(𝕟-to-ℕ r)} {𝐒 y} {𝐒 r} {DivRem𝟎} = ([ 0 , 𝐒(y) ] (𝕟-to-ℕ r) div y) 🝖[ _≡_ ]-[ inddiv-smaller(𝕟.bounded{y}{r}) ] 𝟎 🝖-end [⌊/⌋][∣ᵣₑₘ]-quotient-equality {𝐒 x} {𝟎} {𝟎} {DivRem𝐒 p} = [≡]-with(𝐒) $ ([ 0 , 0 ] x div 0) 🝖[ _≡_ ]-[ [⌊/⌋]-of-1ᵣ ] x 🝖[ _≡_ ]-[ [∣ᵣₑₘ]-quotient-of-1 p ]-sym [∣ᵣₑₘ]-quotient p 🝖-end {-# CATCHALL #-} [⌊/⌋][∣ᵣₑₘ]-quotient-equality {𝐒 .(x + y)} {y} {r} {DivRem𝐒 {x = x} p} = ([ 0 , (y) ] (𝐒(x) + y) div y) 🝖[ _≡_ ]-[ inddiv-step-denominator{0}{(y)}{𝐒(x)}{y} ] ([ 0 , (y) ] 𝐒(x) div 𝟎) 🝖[ _≡_ ]-[] 𝐒([ 0 , y ] x div y) 🝖[ _≡_ ]-[ [≡]-with(𝐒) ([⌊/⌋][∣ᵣₑₘ]-quotient-equality {p = p}) ] 𝐒([∣ᵣₑₘ]-quotient p) 🝖-end
{ "alphanum_fraction": 0.59609518, "avg_line_length": 49.6666666667, "ext": "agda", "hexsha": "aa32c5745387c77f61c76ea29cfa556ef1c88ec3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/DivisibilityWithRemainder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/DivisibilityWithRemainder.agda", "max_line_length": 99, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/DivisibilityWithRemainder.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 816, "size": 1639 }
module Miscellaneous.HeterogenousId where import Lvl open import Logic open import Logic.Propositional open import Functional open import Type -- TODO: Will this work for getting function extensionality? Probably not? data IdFn {ℓ} : ∀{T : Type{ℓ}} → T → T → Stmt{Lvl.𝐒(ℓ)} where IdFn-intro : ∀{T}{x : T} → (IdFn x x) IdFn-func : ∀{A B : Type{ℓ}}{f g : A → B} → (∀{x : A} → IdFn(f(x))(g(x))) → (IdFn f g)
{ "alphanum_fraction": 0.6418269231, "avg_line_length": 32, "ext": "agda", "hexsha": "3eb47b7b26b1d7204e6a2c6e5a42115e59cbd2b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/HeterogenousId.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/HeterogenousId.agda", "max_line_length": 88, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/HeterogenousId.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 152, "size": 416 }
-- The part up to "data D" could be replaced by "open import -- Common.Prelude", but at the time of writing that seems to slow down -- the test by something like a factor of two or three (for the GHC -- backend, on one system). open import Agda.Builtin.IO open import Agda.Builtin.String open import Agda.Builtin.Unit postulate putStr : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# COMPILE GHC putStr = Data.Text.IO.putStr #-} {-# COMPILE JS putStr = function (x) { return function(cb) { process.stdout.write(x); cb(0); }; } #-} data D : Set where @0 c : D f : @0 D → String f c = "Success\n" main : IO ⊤ main = putStr (f c)
{ "alphanum_fraction": 0.6568047337, "avg_line_length": 24.1428571429, "ext": "agda", "hexsha": "0f90995e301e7308aa236a46a5f9edd0017b6213", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue4638.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue4638.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue4638.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 676 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Function setoids and related constructions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Equality where import Function as Fun open import Level open import Relation.Binary using (Setoid) open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid; _=[_]⇒_) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial ------------------------------------------------------------------------ -- Functions which preserve equality record Π {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : IndexedSetoid (Setoid.Carrier From) t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where infixl 5 _⟨$⟩_ field _⟨$⟩_ : (x : Setoid.Carrier From) → IndexedSetoid.Carrier To x cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ IndexedSetoid._≈_ To open Π public infixr 0 _⟶_ _⟶_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Set _ From ⟶ To = Π From (Trivial.indexedSetoid To) ------------------------------------------------------------------------ -- Identity and composition. id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A id = record { _⟨$⟩_ = Fun.id; cong = Fun.id } infixr 9 _∘_ _∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → B ⟶ C → A ⟶ B → A ⟶ C f ∘ g = record { _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g) ; cong = Fun._∘_ (cong f) (cong g) } -- Constant equality-preserving function. const : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} → Setoid.Carrier B → A ⟶ B const {B = B} b = record { _⟨$⟩_ = Fun.const b ; cong = Fun.const (Setoid.refl B) } ------------------------------------------------------------------------ -- Function setoids -- Dependent. setoid : ∀ {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) → IndexedSetoid (Setoid.Carrier From) t₁ t₂ → Setoid _ _ setoid From To = record { Carrier = Π From To ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y ; isEquivalence = record { refl = λ {f} → cong f ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y)) ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y) } } where open module From = Setoid From using () renaming (_≈_ to _≈₁_) open module To = IndexedSetoid To using () renaming (_≈_ to _≈₂_) -- Non-dependent. infixr 0 _⇨_ _⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _ From ⇨ To = setoid From (Trivial.indexedSetoid To) -- A variant of setoid which uses the propositional equality setoid -- for the domain, and a more convenient definition of _≈_. ≡-setoid : ∀ {f t₁ t₂} (From : Set f) → IndexedSetoid From t₁ t₂ → Setoid _ _ ≡-setoid From To = record { Carrier = (x : From) → Carrier x ; _≈_ = λ f g → ∀ x → f x ≈ g x ; isEquivalence = record { refl = λ {f} x → refl ; sym = λ f∼g x → sym (f∼g x) ; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x) } } where open IndexedSetoid To -- Parameter swapping function. flip : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → A ⟶ B ⇨ C → B ⟶ A ⇨ C flip {B = B} f = record { _⟨$⟩_ = λ b → record { _⟨$⟩_ = λ a → f ⟨$⟩ a ⟨$⟩ b ; cong = λ a₁≈a₂ → cong f a₁≈a₂ (Setoid.refl B) } ; cong = λ b₁≈b₂ a₁≈a₂ → cong f a₁≈a₂ b₁≈b₂ }
{ "alphanum_fraction": 0.5076215128, "avg_line_length": 28.975, "ext": "agda", "hexsha": "4f6242415d5d83576f4b376f0a833544398dda11", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Equality.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1297, "size": 3477 }
{-# OPTIONS --allow-unsolved-metas #-} open import Prelude hiding (⊤) module Control.Monad.Free.State {ℓ} (S : Type ℓ) (isSetS : isSet S) where open import Control.Monad.Free.Quotiented open import Data.Unit.UniversePolymorphic open import Algebra open import Data.List open import Data.List.Syntax data StateF (A : Type ℓ) : Type ℓ where getF : (k : S → A) → StateF A putF : (s : S) (k : A) → StateF A module Laws where open RawMonadSyntax put : S → Syntax StateF ⊤ put x = lift (putF x _) get : Syntax StateF S get = lift (getF id) law₁ law₂ law₃ law₄ : Law StateF law₁ .Γ = S × S law₁ .ν = ⊤ law₁ .eqn (u , u′) .lhs = do put u put u′ law₁ .eqn (u , u′) .rhs = put u′ law₂ .Γ = S law₂ .ν = S law₂ .eqn u .lhs = do put u u′ ← get return u′ law₂ .eqn u .rhs = do put u return u law₃ .Γ = ⊤ law₃ .ν = S × S law₃ .eqn _ .lhs = do s ← get s′ ← get return (s , s′) law₃ .eqn _ .rhs = do s ← get return (s , s) law₄ .Γ = ⊤ law₄ .ν = ⊤ law₄ .eqn _ .lhs = do s ← get put s law₄ .eqn _ .rhs = return tt StateLaws : Theory StateF StateLaws = [ law₁ , law₂ , law₃ , law₄ ] open Laws using (StateLaws) State : Type ℓ → Type _ State = Free StateF StateLaws get : State S get = lift (getF id) put : S → State ⊤ put x = lift (putF x _) state-alg : Φ[ StateF ⋆ A / StateLaws ] ⇒ (S → A × S) state-alg .fst (liftF (getF k)) s = k s , s state-alg .fst (liftF (putF s₂ k)) s₁ = k , s₂ state-alg .fst (returnF x) s = x , s state-alg .fst (bindF _ P⟨xs⟩ _ P⟨∘k⟩) s = uncurry P⟨∘k⟩ (P⟨xs⟩ s) state-alg .snd .c->>=idˡ f Pf x = refl state-alg .snd .c->>=idʳ x Px = refl state-alg .snd .c->>=assoc xs Pxs f Pf g Pg = refl state-alg .snd .c-quot (0 , p) γ = refl state-alg .snd .c-quot (1 , p) γ = refl state-alg .snd .c-quot (2 , p) γ = refl state-alg .snd .c-quot (3 , p) γ = refl runState : State A → S → A × S runState = ⟦ state-alg ⟧ open FreeMonadSyntax fromState : (S → A × S) → State A fromState k = do s₁ ← get let x , s₂ = k s₁ put s₂ return x open import HITs.PropositionalTruncation open import Relation.Binary.Equivalence.PropHIT open import Path.Reasoning state-state : isSet A → State A ⇔ (S → A × S) state-state _ .fun = runState state-state _ .inv = fromState state-state _ .rightInv _ = refl state-state isSetA .leftInv xs = ⟦ lemma ⟧ xs where dup : S → S × S dup x = x , x lemma : Ψ[ xs ⦂ StateF ⋆ * / StateLaws ] ⇒ (fromState (runState xs) ≡ xs) lemma .snd = prop-coh λ _ → uip _ _ lemma .fst (liftF (getF k)) = fromState (runState (lift (getF k))) ≡⟨ {!!} ⟩ lift (getF k) ∎ lemma .fst (liftF (putF s k)) = fromState (runState (lift (putF s k))) ≡⟨ {!!} ⟩ lift (putF s k) ∎ lemma .fst (returnF x) = fromState (runState (return x)) ≡⟨⟩ fromState (λ s → x , s) ≡⟨⟩ (get >>= λ s → put s >> return x) ≡˘⟨ >>=-assoc get put (const (return x)) ⟩ ((get >>= put) >> return x) ≡⟨ cong (_>> return x) (quot (3 , _) tt) ⟩ (return tt >> return x) ≡⟨ >>=-idˡ (const (return x)) tt ⟩ return x ∎ lemma .fst (bindF xs P⟨xs⟩ k P⟨∘k⟩) = fromState (runState (xs >>= k)) ≡⟨⟩ fromState (λ s → uncurry (runState ∘ k) (runState xs s)) ≡⟨⟩ (get >>= λ s₁ → let x , s₂ = uncurry (runState ∘ k) (runState xs s₁) in put s₂ >> return x) ≡⟨⟩ (get >>= λ s₁ → let x , s₂ = runState xs s₁ ; y , s₃ = runState (k x) s₂ in put s₃ >> return y) ≡⟨ {!!} ⟩ (fromState (runState xs) >>= (fromState ∘ runState ∘ k)) ≡⟨ cong₂ Free._>>=_ P⟨xs⟩ (funExt P⟨∘k⟩) ⟩ (xs >>= k) ∎ functorState : Functor ℓ ℓ functorState .Functor.𝐹 = StateF functorState .Functor.map f (getF k) = getF (f ∘ k) functorState .Functor.map f (putF s k) = putF s (f k) functorState .Functor.map-id i (getF k) = getF k functorState .Functor.map-id i (putF s k) = putF s k functorState .Functor.map-comp f g i (getF k) = getF (f ∘ g ∘ k) functorState .Functor.map-comp f g i (putF s k) = putF s (f (g k)) -- runState′ : isSet A → State A → S → A × S -- runState′ isSetA = cata functorState (isSetState isSetA) _,_ ϕ ℒ -- where -- ϕ : StateF (S → A × S) → S → A × S -- ϕ (getF k) s = k s s -- ϕ (putF s₂ k) s₁ = k s₂ -- ℒ : InTheory functorState {𝒯 = StateLaws} (isSetState isSetA) ϕ -- ℒ (0 , p) f iss e = refl -- ℒ (1 , p) f iss e = refl -- ℒ (2 , p) f iss e = refl -- ℒ (3 , p) f iss e = refl -- -- open import Data.Nat using (_∸_) -- -- example : State ℕ ℕ -- -- example = do -- -- x ← get -- -- put (suc x) -- -- put x -- -- return (x ∸ 1) -- -- res : ℕ × ℕ -- -- res = runState example 5
{ "alphanum_fraction": 0.5536471586, "avg_line_length": 28.0714285714, "ext": "agda", "hexsha": "7085f9895f8a0ff55d13f26a65d1e9c6d8bbd995", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/Free/State.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/Free/State.agda", "max_line_length": 109, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/Free/State.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1915, "size": 4716 }
module my-list where open import level open import bool open import eq open import maybe open import nat open import nat-thms open import product-thms open import product data 𝕃 {ℓ} (A : Set ℓ) : Set ℓ where [] : 𝕃 A _::_ : (x : A) (xs : 𝕃 A) → 𝕃 A {-# BUILTIN LIST 𝕃 #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} length : ∀{ℓ}{A : Set ℓ} → 𝕃 A → ℕ length [] = 0 length (x :: x₁) = suc (length x₁) _++_ : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) map : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A → B) → 𝕃 A → 𝕃 B map f [] = [] map f (x :: xs) = f x :: map f xs filter : ∀{ℓ}{A : Set ℓ} → (A → 𝔹) → 𝕃 A → 𝕃 A filter p [] = [] filter p (x :: xs) = let r = filter p xs in if p x then x :: r else r -- remove all elements equal to the given one remove : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l : 𝕃 A) → 𝕃 A remove eq a l = filter (λ x → ~ (eq a x)) l nth : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → maybe A nth _ [] = nothing nth 0 (x :: xs) = just x nth (suc n) (x :: xs) = nth n xs reverse-helper : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A reverse-helper h [] = h reverse-helper h (x :: xs) = reverse-helper (x :: h) xs reverse : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A reverse l = reverse-helper [] l length-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → length (l1 ++ l2) ≡ (length l1) + (length l2) length-++ [] l2 = refl length-++ (x :: l1) l2 rewrite length-++ l1 l2 = refl ++-assoc : ∀{ℓ}{A : Set ℓ} (l1 l2 l3 : 𝕃 A) → (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = refl ++-assoc (x :: l1) l2 l3 rewrite ++-assoc l1 l2 l3 = refl length-filter : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → length (filter p l) ≤ length l ≡ tt length-filter p [] = refl length-filter p (x :: l) with p x ... | tt = length-filter p l ... | ff = ≤-trans{length (filter p l)} (length-filter p l) (≤-suc (length l)) filter-idem : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → (filter p (filter p l)) ≡ (filter p l) filter-idem p [] = refl filter-idem p (x :: l) with keep (p x) ... | tt , p' rewrite p' | p' | filter-idem p l = refl ... | ff , p' rewrite p' = filter-idem p l length-reverse-helper : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → length (reverse-helper h l) ≡ length h + length l length-reverse-helper h [] = sym (+0 (length h)) length-reverse-helper h (x :: l) rewrite length-reverse-helper (x :: h) l = sym (+suc (length h) (length l))
{ "alphanum_fraction": 0.4854028805, "avg_line_length": 30.2235294118, "ext": "agda", "hexsha": "b46900a9a5bc6f21c5fe3dc7c29d92c88f197c9d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "logicshan/IAL", "max_forks_repo_path": "my-list.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "logicshan/IAL", "max_issues_repo_path": "my-list.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "logicshan/IAL", "max_stars_repo_path": "my-list.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1026, "size": 2569 }
open import Agda.Builtin.Nat open import Agda.Builtin.Sigma open import Agda.Builtin.Equality it : ∀ {a} {A : Set a} {{_ : A}} → A it {{p}} = p f : (a {b} {{c}} : Nat) → Nat f = λ a {b} → it g : (a b@(c , d) (e , f) : Σ Nat (λ _ → Nat)) → Nat g = λ a b@(c , d) x@(e , _) → f (fst a) {d} {{e}} h : ∀ {a} (b@(c , d) : Σ Nat (λ _ → Nat)) → Nat h {a} b = g a b b i : ∀ a b → Nat i a b = h {a} b {- j : ∀ x → let (m , n) = x in m ≡ n j x = {!!} -} data P (a {b} {{v}} c : Σ Nat (λ _ → Nat)) : Set where CON : a ≡ it → P a c uncurry : {A : Set} {B : A → Set} {C : ∀ a → B a → Set} → ((a : A) (b : B a) → C a b) → ((a , b) : Σ A B) → C a b uncurry f = λ (a , b) → f a b equal× : {A B : Set} (p q : Σ A (λ _ → B)) → Set equal× = λ (a , b) (c , d) → Σ (a ≡ c) (λ _ → b ≡ d) record WRAP : Set where constructor TTTTT field wrapped : Nat id : WRAP → WRAP id = λ x (let (TTTTT n) = x) → let (TTTTT n) = x in x id' : WRAP → WRAP id' = λ x@(TTTTT n) → x id'' : WRAP → WRAP id'' = λ (TTTTT n) → TTTTT n shadowing : (p@(m , p) m@(r , s) : Σ Nat (λ _ → Nat)) → Σ (Σ Nat (p ≡_)) (λ _ → Σ _ (m ≡_)) shadowing = λ (_ , p) m → (p , refl) , (m , refl) shadowing' : (x@(m , p) p@(r , s) : Σ Nat (λ _ → Nat)) → x ≡ p → m ≡ r shadowing' _ _ refl = refl
{ "alphanum_fraction": 0.4443561208, "avg_line_length": 22.4642857143, "ext": "agda", "hexsha": "cf4a81d691b26377fa867a107e260416d73f2e5c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/AsInTele.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/AsInTele.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/AsInTele.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 618, "size": 1258 }
{- This module converts between the path types and the inductively defined equality types. -} {-# OPTIONS --safe #-} module Cubical.Data.Equality where open import Cubical.Foundations.Prelude public hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ ; isPropIsContr) renaming ( refl to reflPath ; transport to transportPath ; J to JPath ; JRefl to JPathRefl ; sym to symPath ; _∙_ to compPath ; cong to congPath ; subst to substPath ; funExt to funExtPath ; isContr to isContrPath ; isProp to isPropPath ) open import Cubical.Foundations.Equiv renaming ( fiber to fiberPath ; isEquiv to isEquivPath ; _≃_ to EquivPath ; equivFun to equivFunPath ; isPropIsEquiv to isPropIsEquivPath ) hiding ( equivCtr ; equivIsEquiv ) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence hiding (univalence) open import Cubical.HITs.PropositionalTruncation public renaming (rec to recPropTruncPath ; elim to elimPropTruncPath ) open import Cubical.HITs.S1 as S1 renaming (loop to loopPath) hiding (helix ; winding ; ΩS¹ ; encode ; intLoop ; decode ; decodeEncode) open import Cubical.Data.Nat open import Cubical.Data.Int -- Import the builtin equality type defined as an inductive family open import Agda.Builtin.Equality public private variable ℓ ℓ' : Level A B : Type ℓ x y z : A infix 3 _∎ infixr 2 _≡⟨_⟩_ ap : (f : A → B) {x y : A} → x ≡ y → f x ≡ f y ap f refl = refl _∙_ : {x y z : A} → x ≡ y → y ≡ z → x ≡ z refl ∙ q = q _≡⟨_⟩_ : (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p ⟩ q = p ∙ q _∎ : (x : A) → x ≡ x _ ∎ = refl transport : ∀ (C : A → Type ℓ') {x y : A} → x ≡ y → C x → C y transport C refl b = b sym : {x y : A} → x ≡ y → y ≡ x sym refl = refl apd : {C : A → Type ℓ} (f : (x : A) → C x) {x y : A} (p : x ≡ y) → transport C p (f x) ≡ f y apd f refl = refl congPathd : {C : A → Type ℓ} (f : (x : A) → C x) {x y : A} (p : Path A x y) → Path (C y) (substPath C p (f x)) (f y) congPathd f p = fromPathP (congPath f p) -- Equality between Path and equality eqToPath : {x y : A} → x ≡ y → Path A x y eqToPath refl = reflPath pathToEq : {x y : A} → Path A x y → x ≡ y pathToEq {x = x} = JPath (λ y _ → x ≡ y) refl eqToPath-pathToEq : {x y : A} → (p : Path A x y) → Path _ (eqToPath (pathToEq p)) p eqToPath-pathToEq p = JPath (λ _ h → Path _ (eqToPath (pathToEq h)) h) (congPath eqToPath (transportRefl refl)) p pathToEq-eqToPath : {x y : A} → (p : x ≡ y) → Path _ (pathToEq (eqToPath p)) p pathToEq-eqToPath refl = transportRefl refl PathIsoEq : {x y : A} → Iso (Path A x y) (x ≡ y) PathIsoEq = iso pathToEq eqToPath pathToEq-eqToPath eqToPath-pathToEq PathPathEq : {x y : A} → Path _ (Path A x y) (x ≡ y) PathPathEq = isoToPath PathIsoEq Path≡Eq : {x y : A} → (Path A x y) ≡ (x ≡ y) Path≡Eq = pathToEq PathPathEq -- We get funext by going back and forth between Path and Eq funExt : {B : A → Type ℓ} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p = pathToEq (λ i x → eqToPath (p x) i) -- Some lemmas relating the definitions for Path and ≡ substPath≡transport' : (C : A → Type ℓ) {x y : A} (b : C x) (p : x ≡ y) → substPath C (eqToPath p) b ≡ transport C p b substPath≡transport' C b refl = pathToEq (transportRefl b) substPath≡transport : (C : A → Type ℓ) {x y : A} (b : C x) (p : Path _ x y) → substPath C p b ≡ transport C (pathToEq p) b substPath≡transport C b p = ap (λ x → substPath C x b) (pathToEq (symPath (eqToPath-pathToEq p))) ∙ substPath≡transport' C b (pathToEq p) congPath≡ap : {x y : A} → (f : A → B) (p : x ≡ y) → congPath f (eqToPath p) ≡ eqToPath (ap f p) congPath≡ap f refl = refl ap≡congPath : {x y : A} → (f : A → B) (p : Path A x y) → ap f (pathToEq p) ≡ pathToEq (congPath f p) ap≡congPath {x = x} f p = JPath (λ _ q → ap f (pathToEq q) ≡ pathToEq (congPath f q)) rem p where rem : ap f (transp (λ i → x ≡ x) i0 refl) ≡ transp (λ i → f x ≡ f x) i0 refl rem = pathToEq (compPath (λ i → ap f (transportRefl refl i)) (symPath (transportRefl refl))) -- Equivalences expressed using ≡ everywhere fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y record isEquiv {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ[ f ∈ (A → B) ] (isEquiv f) equivFun : A ≃ B → A → B equivFun e = e .fst equivIsEquiv : (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = e .snd equivCtr : (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .snd .equiv-proof y .fst -- Functions for going between the various definitions. This could -- also be achieved by making lines in the universe and transporting -- back and forth along them. fiberPathToFiber : {f : A → B} {y : B} → fiberPath f y → fiber f y fiberPathToFiber (x , p) = (x , pathToEq p) fiberToFiberPath : {f : A → B} {y : B} → fiber f y → fiberPath f y fiberToFiberPath (x , p) = (x , eqToPath p) fiberToFiber : {f : A → B} {y : B} (p : fiber f y) → Path _ (fiberPathToFiber (fiberToFiberPath p)) p fiberToFiber (x , p) i = x , pathToEq-eqToPath p i fiberPathToFiberPath : {f : A → B} {y : B} (p : fiberPath f y) → Path _ (fiberToFiberPath (fiberPathToFiber p)) p fiberPathToFiberPath (x , p) i = x , eqToPath-pathToEq p i isContrPathToIsContr : isContrPath A → isContr A isContrPathToIsContr (ctr , p) = (ctr , λ y → pathToEq (p y)) isContrToIsContrPath : isContr A → isContrPath A isContrToIsContrPath (ctr , p) = (ctr , λ y → eqToPath (p y)) isPropPathToIsProp : isPropPath A → isProp A isPropPathToIsProp H x y = pathToEq (H x y) isPropToIsPropPath : isProp A → isPropPath A isPropToIsPropPath H x y = eqToPath (H x y) -- Specialized helper lemmas for going back and forth between -- isContrPath and isContr: helper1 : {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (f (g y)) y) → isContrPath A → isContr B helper1 f g h (x , p) = (f x , λ y → pathToEq (λ i → hcomp (λ j → λ { (i = i0) → f x ; (i = i1) → h y j }) (f (p (g y) i)))) helper2 : {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (g (f y)) y) → isContr B → isContrPath A helper2 {A = A} f g h (x , p) = (g x , λ y → eqToPath (ap g (p (f y)) ∙ pathToEq (h y))) -- This proof is essentially the one for proving that isContr with -- Path is a proposition, but as we are working with ≡ we have to -- insert a lof of conversion functions. -- TODO: prove this directly following the HoTT proof? isPropIsContr : (p1 p2 : isContr A) → Path (isContr A) p1 p2 isPropIsContr (a0 , p0) (a1 , p1) j = ( eqToPath (p0 a1) j , hcomp (λ i → λ { (j = i0) → λ x → pathToEq-eqToPath (p0 x) i ; (j = i1) → λ x → pathToEq-eqToPath (p1 x) i }) (λ x → pathToEq (λ i → hcomp (λ k → λ { (i = i0) → eqToPath (p0 a1) j ; (i = i1) → eqToPath (p0 x) (j ∨ k) ; (j = i0) → eqToPath (p0 x) (i ∧ k) ; (j = i1) → eqToPath (p1 x) i }) (eqToPath (p0 (eqToPath (p1 x) i)) j)))) -- We now prove that isEquiv is a proposition isPropIsEquiv : {A B : Type ℓ} {f : A → B} (h1 h2 : isEquiv f) → Path _ h1 h2 equiv-proof (isPropIsEquiv h1 h2 i) y = isPropIsContr (h1 .equiv-proof y) (h2 .equiv-proof y) i equivToEquivPath : A ≃ B → EquivPath A B equivToEquivPath (f , p) = (f , λ { .equiv-proof y → helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y) }) -- Go from a Path equivalence to an ≡ equivalence equivPathToEquiv : EquivPath A B → A ≃ B equivPathToEquiv (f , p) = (f , λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (p .equiv-proof y) }) equivToEquiv : {A B : Type ℓ} (p : A ≃ B) → Path _ (equivPathToEquiv (equivToEquivPath p)) p equivToEquiv (f , p) i = (f , isPropIsEquiv (λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y)) }) p i) equivPathToEquivPath : {A B : Type ℓ} (p : EquivPath A B) → Path _ (equivToEquivPath (equivPathToEquiv p)) p equivPathToEquivPath (f , p) i = ( f , isPropIsEquivPath f (equivToEquivPath (equivPathToEquiv (f , p)) .snd) p i ) equivPath≡Equiv : {A B : Type ℓ} → Path _ (EquivPath A B) (A ≃ B) equivPath≡Equiv {ℓ} = isoToPath (iso (equivPathToEquiv {ℓ}) equivToEquivPath equivToEquiv equivPathToEquivPath) path≡Eq : {A B : Type ℓ} → Path _ (Path _ A B) (A ≡ B) path≡Eq = isoToPath (iso pathToEq eqToPath pathToEq-eqToPath eqToPath-pathToEq) -- Univalence formulated using ≡ everywhere univalenceEq : (A ≡ B) ≃ (A ≃ B) univalenceEq {A = A} {B = B} = equivPathToEquiv rem where rem0 : Path _ (Lift (EquivPath A B)) (Lift (A ≃ B)) rem0 = congPath Lift equivPath≡Equiv rem1 : Path _ (A ≡ B) (Lift (A ≃ B)) rem1 i = hcomp (λ j → λ { (i = i0) → path≡Eq {A = A} {B = B} j ; (i = i1) → rem0 j }) (univalencePath {A = A} {B = B} i) rem : EquivPath (A ≡ B) (A ≃ B) rem = compEquiv (eqweqmap rem1) (invEquiv LiftEquiv) -- Propositional truncation using ≡ with paths under the hood ∥∥-isProp : ∀ (x y : ∥ A ∥₁) → x ≡ y ∥∥-isProp x y = pathToEq (squash₁ x y) ∥∥-recursion : ∀ {A : Type ℓ} {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥₁ → P ∥∥-recursion Pprop = recPropTruncPath (isPropToIsPropPath Pprop) ∥∥-induction : ∀ {A : Type ℓ} {P : ∥ A ∥₁ → Type ℓ} → ((a : ∥ A ∥₁) → isProp (P a)) → ((x : A) → P ∣ x ∣₁) → (a : ∥ A ∥₁) → P a ∥∥-induction Pprop = elimPropTruncPath (λ a → isPropToIsPropPath (Pprop a)) -- The circle using ≡ loop : base ≡ base loop = pathToEq loopPath S¹-rec : {A : Type ℓ} (b : A) (l : b ≡ b) → S¹ → A S¹-rec b l = S1.rec b (eqToPath l) S¹-recβ : (b : A) (l : b ≡ b) → ap (S¹-rec b l) loop ≡ l S¹-recβ b l = ap (S¹-rec b l) loop ≡⟨ ap≡congPath (S¹-rec b l) loopPath ⟩ pathToEq (congPath (S¹-rec b l) loopPath) ≡⟨ refl ⟩ pathToEq (eqToPath l) ≡⟨ pathToEq (pathToEq-eqToPath l) ⟩ l ∎ -- TODO: see https://github.com/agda/cubical/pull/309#discussion_r424664465 -- S¹-elimβ : (C : S¹ → Type ℓ) (b : C base) (l : transport C loop b ≡ b) → apd (S¹-elim C b l) loop ≡ l -- S¹-elimβ C b l = -- apd (S¹-elim C b l) (pathToEq loopPath) ≡⟨ {!!} ⟩ -- {!!} ≡⟨ {!!} ⟩ -- l ∎ -- We now compute some winding numbers to check that everything computes as expected Cover : S¹ → Type₀ Cover = S¹-rec ℤ (pathToEq sucPathℤ) ΩS¹ : Type₀ ΩS¹ = base ≡ base encode : {x : S¹} → base ≡ x → Cover x encode p = transport Cover p (pos zero) winding : ΩS¹ → ℤ winding = encode {base} loop^ : ℤ → ΩS¹ loop^ (pos zero) = refl loop^ (pos (suc n)) = loop^ (pos n) ∙ loop loop^ (negsuc zero) = sym loop loop^ (negsuc (suc n)) = loop^ (negsuc n) ∙ sym loop private test-winding-refl : winding refl ≡ pos 0 test-winding-refl = refl -- These should type check if things would compute: -- test-winding-loop : winding loop ≡ pos 1 -- test-winding-loop = refl -- test-winding-pos5 : winding (loop^ (pos 2)) ≡ pos 2 -- test-winding-pos5 = refl -- test-winding-neg5 : winding (loop^ (negsuc 2)) ≡ negsuc 2 -- test-winding-neg5 = refl
{ "alphanum_fraction": 0.5878050855, "avg_line_length": 35.8506097561, "ext": "agda", "hexsha": "4e8609af5ec0ff9d6dcb3665501729e4c2a6e3df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/Equality.agda", "max_line_length": 136, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 4562, "size": 11759 }
-- Andreas, issue #2482, reported by Guillaume Allais -- Internal error because of wrong value for -- number of parameters for data type. -- {-# OPTIONS -v tc.data.sort:50 #-} -- {-# OPTIONS -v tc.term.con:50 #-} data D {b} (B : Set b) : Set b -- This used to falsely compute the number of parameters to 1 data D B where c : B → D B -- ... leading to a violated invariant when applying the constructor. test : ∀ {B : Set} (b : B) → D B test b = c b -- n = npars = conPars (c) -- n' = npars' = getNumberOfParameters (D) -- should be the same
{ "alphanum_fraction": 0.6358695652, "avg_line_length": 24, "ext": "agda", "hexsha": "90fcdaf104fb0896b825aca08d1ecece74418b02", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2482.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2482.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2482.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 552 }
module UniDB.Morph.Sub where open import UniDB.Spec open import UniDB.Morph.Depth -------------------------------------------------------------------------------- data Single (T : STX) : MOR where single : {γ : Dom} (t : T γ) → Single T (suc γ) γ instance iLkSingle : {T : STX} {{vrT : Vr T}} → Lk T (Single T) lk {{iLkSingle {T}}} (single t) zero = t lk {{iLkSingle {T}}} (single t) (suc i) = vr {T} i iBetaSingle : {T : STX} → Beta T (Single T) beta {{iBetaSingle}} = single -------------------------------------------------------------------------------- data Sub (T : STX) : MOR where sub : {γ₁ γ₂ : Dom} (ξ : Depth (Single T) γ₁ γ₂) → Sub T γ₁ γ₂ module _ {T : STX} where instance iLkSub : {{vrT : Vr T}} {{wkT : Wk T}} → Lk T (Sub T) lk {{iLkSub}} (sub ξ) = lk {T} {Depth (Single T)} ξ iUpSub : Up (Sub T) _↑₁ {{iUpSub}} (sub ζ) = sub (ζ ↑₁) _↑_ {{iUpSub}} ξ 0 = ξ _↑_ {{iUpSub}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpSub}} ξ = refl ↑-suc {{iUpSub}} ξ δ = refl iBetaSub : Beta T (Sub T) beta {{iBetaSub}} t = sub (beta {T} {Depth (Single T)} t) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4250614251, "avg_line_length": 29.7804878049, "ext": "agda", "hexsha": "396b67cf9a8a2d0eacb972062a0c2f3c856a57c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Sub.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Sub.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Sub.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 429, "size": 1221 }
-- Andreas, 2022-06-14, issue #4725 reported by nad -- The termination checker needs to recognize -- dotted variable and record patterns as patterns -- for this example to pass. -- These should be harmless even with --cubical -- (dotted constructor patterns are not, see #4606). -- Keep fingers crossed. {-# OPTIONS --cubical #-} open import Agda.Builtin.Sigma mutual data D : Set where d : S → D S : Set S = Σ D λ x → R x fst′ : S → D fst′ s = fst s data R : D → Set where r : ∀ x → R (fst′ x) → R (d x) module _ (P : D → Set) (Q : ∀ x → P x → R x → Set) (p : ∀ s (p : P (fst s)) → Q (fst s) p (snd s) → P (d s)) (q : ∀ s rs (ps : P (fst s)) (qs : Q (fst s) ps (snd s)) → Q (fst s) ps rs → Q (d s) (p s ps qs) (r s rs)) where mutual f : (x : D) → P x f (d (x , r₁)) = p (x , r₁) (f x) (g x r₁) g : (x : D) (x⊑y : R x) → Q x (f x) x⊑y g (d (x , r₁)) (r .(x , r₁) r₂) = q (x , r₁) r₂ (f x) (g x r₁) (g (fst′ (x , r₁)) r₂) -- Should termination check.
{ "alphanum_fraction": 0.5107421875, "avg_line_length": 22.2608695652, "ext": "agda", "hexsha": "f2309ff6854b1a9c7420045e71780b14fe5ae43a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue4725.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue4725.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue4725.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 417, "size": 1024 }
module examplesPaperJFP.safeFibStackMachineObjectOriented where open import Data.Nat open import Data.List open import Data.Vec open import Data.Sum open import Data.Fin renaming (_+_ to _+f_) open import Data.Product open import examplesPaperJFP.StatefulObject open import examplesPaperJFP.StackBisim open import examplesPaperJFP.triangleRightOperator {- Object based version of safe stack it is essentially the last part of safeFibStackMachine.agda with the names simplified -} {- the state is what we are computing right now: fib n menas we need to compute fib n val k means we have computed the value k -} data FibState : Set where fib : ℕ → FibState val : ℕ → FibState data FibStackEl : Set where _+• : ℕ → FibStackEl •+fib_ : ℕ → FibStackEl FibStack : ℕ → Set FibStack = Objectˢ (StackInterfaceˢ FibStackEl) FibStackmachine : Set FibStackmachine = Σ[ n ∈ ℕ ] (FibState × FibStack n) reduce : FibStackmachine → FibStackmachine ⊎ ℕ reduce (n , fib 0 , stack) = inj₁ (n , val 1 , stack) reduce (n , fib 1 , stack) = inj₁ (n , val 1 , stack) reduce (n , fib (suc (suc m)) , stack) = objectMethod stack (push (•+fib m)) ▹ λ { (_ , stack₁) → inj₁ ( suc n , fib (suc m) , stack₁) } reduce (0 , val k , stack) = inj₂ k reduce (suc n , val k , stack) = objectMethod stack pop ▹ λ { (k′ +• , stack₁) → inj₁ (n , val (k′ + k) , stack₁) ; (•+fib m , stack₁) → objectMethod stack₁ (push (k +•)) ▹ λ { (_ , stack₂) → inj₁ (suc n , fib m , stack₂) }} iter : (m : ℕ) → FibStackmachine → FibStackmachine ⊎ ℕ iter 0 s = inj₁ s iter (suc n) s with reduce s ... | inj₁ s′ = iter n s′ ... | inj₂ m = inj₂ m computeFib : ℕ → ℕ → FibStackmachine ⊎ ℕ computeFib n m = iter n (0 , fib m , stack []) fibO0 : FibStackmachine ⊎ ℕ fibO0 = computeFib 2 0 -- evaluates to inj₂ 1 fibO1 : FibStackmachine ⊎ ℕ fibO1 = computeFib 2 1 -- evaluates to inj₂ 1 fibO2 : FibStackmachine ⊎ ℕ fibO2 = computeFib 10 2 -- evaluates to inj₂ 2 fibO3 : FibStackmachine ⊎ ℕ fibO3 = computeFib 14 3 -- evaluates to inj₂ 3 fibO4 : FibStackmachine ⊎ ℕ fibO4 = computeFib 30 4 -- evaluates to inj₂ 5 fibO5 : FibStackmachine ⊎ ℕ fibO5 = computeFib 30 5 -- evaluates to inj₂ 8 {-# TERMINATING #-} computeFibRec : FibStackmachine → ℕ computeFibRec s with reduce s ... | inj₁ s′ = computeFibRec s′ ... | inj₂ k = k fibUsingStack : ℕ → ℕ fibUsingStack m = computeFibRec (0 , fib m , stack []) test : List ℕ test = fibUsingStack 0 ∷ fibUsingStack 1 ∷ fibUsingStack 2 ∷ fibUsingStack 3 ∷ fibUsingStack 4 ∷ fibUsingStack 5 ∷ fibUsingStack 6 ∷ [] testExpected : List ℕ testExpected = 1 ∷ 1 ∷ 2 ∷ 3 ∷ 5 ∷ 8 ∷ 13 ∷ []
{ "alphanum_fraction": 0.606132879, "avg_line_length": 27.6886792453, "ext": "agda", "hexsha": "16bda22826dd3c8092fa971b018b4bbe11d5a2fd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/safeFibStackMachineObjectOriented.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/safeFibStackMachineObjectOriented.agda", "max_line_length": 136, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/safeFibStackMachineObjectOriented.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1037, "size": 2935 }
-- Andreas, 2021-09-06, issue #5545, -- regression introduced by #5522 (fix for #5291). -- -- Note: this test requires that there is no newline at the end of file. -- So, it violates the whitespace requirement of fix-whitespace, -- and needs to be an exception in the configuration of fix-whitespace. {-# OPTIONS --allow-unsolved-metas #-} -- No newline at end of file triggered "Unterminated {!" error. _ : Set _ = {! !}
{ "alphanum_fraction": 0.7004716981, "avg_line_length": 32.6153846154, "ext": "agda", "hexsha": "d11c1be61f1663ab5c0c9ea69cee3689bec29fed", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5545.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5545.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5545.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 111, "size": 424 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude import Data.Vec.Relation.Unary.All as Vec-All import Data.Fin as Fin -- This module defines the EpochConfigs available in the system, along -- with a function to add a new EpochConfig and some properties that -- facilitate proofs across state transitions that add an EpochConfig. module LibraBFT.Yasm.AvailableEpochs (NodeId : Set) (ℓ-EC : Level) (EpochConfig : Set ℓ-EC) (epochId : EpochConfig → ℕ) (authorsN : EpochConfig → ℕ) where open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN fin-lower-toℕ : ∀{e}(i : Fin (suc e))(prf : e ≢ toℕ i) → toℕ (Fin.lower₁ i prf) ≡ toℕ i fin-lower-toℕ {zero} zero prf = ⊥-elim (prf refl) fin-lower-toℕ {suc e} zero prf = refl fin-lower-toℕ {suc e} (suc i) prf = cong suc (fin-lower-toℕ i (prf ∘ cong suc)) toℕ-correct : ∀{n}(i : Fin n) → toℕ i < n toℕ-correct zero = s≤s z≤n toℕ-correct (suc i) = s≤s (toℕ-correct i) toℕ-inject₁-≡ : ∀{n}(i : Fin n) → toℕ i ≡ toℕ (Fin.inject₁ i) toℕ-inject₁-≡ zero = refl toℕ-inject₁-≡ (suc i) = cong suc (toℕ-inject₁-≡ i) lower₁-inject₁-id : ∀{n}(i : Fin n)(prf : n ≢ toℕ (Fin.inject₁ i)) → Fin.lower₁ (Fin.inject₁ i) prf ≡ i lower₁-inject₁-id zero prf = refl lower₁-inject₁-id (suc i) prf = cong suc (lower₁-inject₁-id i (prf ∘ cong suc)) fromℕ-≤-step-natural : ∀{n m}(prf : n < m) → fromℕ< (≤-step prf) ≡ Fin.inject₁ (fromℕ< prf) fromℕ-≤-step-natural (s≤s z≤n) = refl fromℕ-≤-step-natural (s≤s (s≤s prf)) = cong suc (fromℕ-≤-step-natural (s≤s prf)) Vec-All-lookup∘tabulate : ∀{n}{A : Set}{v : Vec A n}{ℓ : Level}{P : A → Set ℓ} → (f : (x : Fin n) → P (Vec-lookup v x))(i : Fin n) → Vec-All.lookup {P = P} i (Vec-All.tabulate {xs = v} f) ≡ f i Vec-All-lookup∘tabulate {v = v₀ ∷ vs} f zero = refl Vec-All-lookup∘tabulate {v = v₀ ∷ vs} f (suc i) = Vec-All-lookup∘tabulate (f ∘ suc) i subst-elim : {A : Set}{ℓ : Level}(P : A → Set ℓ){a₀ a₁ : A} → (prf : a₀ ≡ a₁)(x : P a₁) → subst P prf (subst P (sym prf) x) ≡ x subst-elim _ refl x = refl -- Available epochs consist of a vector of EpochConfigs with -- the correct epoch ids. AvailableEpochs : ℕ → Set ℓ-EC AvailableEpochs = Vec-All (EpochConfigFor ∘ toℕ) ∘ Vec-allFin lookup : ∀{e} → AvailableEpochs e → (ix : Fin e) → EpochConfigFor (toℕ ix) lookup 𝓔s ix = subst EpochConfigFor (cong toℕ (Vec-lookup∘tabulate id ix)) (Vec-All-lookup ix 𝓔s) lookup' : ∀{e} → AvailableEpochs e → Fin e → EpochConfig lookup' 𝓔s ix = EpochConfigFor.epochConfig (lookup 𝓔s ix) lookup'' : ∀{e m} → AvailableEpochs e → m < e → EpochConfig lookup'' 𝓔s ix = lookup' 𝓔s (fromℕ< ix) lookup-𝓔s-injective : ∀ {e m1 m2} → (𝓔s : AvailableEpochs e) → (p1 : m1 < e) → (p2 : m2 < e) → m1 ≡ m2 → lookup'' 𝓔s p1 ≡ lookup'' 𝓔s p2 lookup-𝓔s-injective {e} 𝓔s p1 p2 refl = cong (lookup'' 𝓔s) (<-irrelevant p1 p2) -- The /transpose/ of append is defined by the semantics of a lookup -- over an append; the /append/ function below is defined by tabulating this -- monster. appendᵀ : ∀{e} → EpochConfigFor e → AvailableEpochs e → (i : Fin (suc e)) → EpochConfigFor (toℕ i) appendᵀ {e} ecf al i with e ≟ℕ toℕ i ...| yes e≡i = subst EpochConfigFor e≡i ecf ...| no prf = subst EpochConfigFor (trans (cong toℕ (Vec-lookup∘tabulate id (Fin.lower₁ i prf))) (fin-lower-toℕ i prf)) (Vec-All-lookup (Fin.lower₁ i prf) al) -- Append is defined by tabulating appendᵀ append : ∀{e} → EpochConfigFor e → AvailableEpochs e → AvailableEpochs (suc e) append {e} ecf al = Vec-All.tabulate (λ i → subst (EpochConfigFor) (sym (cong toℕ (Vec-lookup∘tabulate id i))) (appendᵀ ecf al i)) lookup-append-lemma : ∀{e}(𝓔s : AvailableEpochs e)(𝓔 : EpochConfigFor e)(ix : Fin (suc e)) → lookup (append 𝓔 𝓔s) ix ≡ appendᵀ 𝓔 𝓔s ix lookup-append-lemma al ecf ix rewrite Vec-All-lookup∘tabulate {v = zero ∷ Vec-tabulate suc} {P = EpochConfigFor ∘ toℕ} (λ i → subst EpochConfigFor (sym (cong toℕ (Vec-lookup∘tabulate id i))) (appendᵀ ecf al i)) ix = subst-elim EpochConfigFor (cong toℕ (Vec-lookup∘tabulate id ix)) (appendᵀ ecf al ix) -- Ok, let's bring in the big guns import Relation.Binary.HeterogeneousEquality as HE append-inject₁-lemma : ∀{e}(𝓔s : AvailableEpochs e)(𝓔 : EpochConfigFor e)(ix : Fin e) → appendᵀ 𝓔 𝓔s (Fin.inject₁ ix) ≅ lookup 𝓔s ix append-inject₁-lemma {e} 𝓔s 𝓔 ix with e ≟ℕ (toℕ (Fin.inject₁ ix)) ...| yes abs = ⊥-elim (<⇒≢ (toℕ-correct ix) (trans (toℕ-inject₁-≡ ix) (sym abs))) ...| no prf = HE.trans (HE.≡-subst-removable EpochConfigFor (trans (cong toℕ (Vec-lookup∘tabulate id (Fin.lower₁ (Fin-inject₁ ix) prf))) (fin-lower-toℕ (Fin.inject₁ ix) prf)) (Vec-All-lookup (Fin.lower₁ (Fin.inject₁ ix) prf) 𝓔s)) (HE.trans (≅-cong (λ P → Vec-All-lookup P 𝓔s) (HE.≡-to-≅ (lower₁-inject₁-id ix prf))) (HE.sym (HE.≡-subst-removable EpochConfigFor (cong toℕ (Vec-lookup∘tabulate id ix)) (Vec-All-lookup ix 𝓔s)))) lookup''-≤-step-lemma : ∀{e m}(𝓔s : AvailableEpochs e)(𝓔 : EpochConfigFor e)(prf : m < e) → lookup'' (append 𝓔 𝓔s) (≤-step prf) ≡ lookup'' 𝓔s prf lookup''-≤-step-lemma al ecf prf rewrite fromℕ-≤-step-natural prf | lookup-append-lemma al ecf (Fin.inject₁ (fromℕ< prf)) = ECF-cong (append-inject₁-lemma al ecf (fromℕ< prf)) (sym (toℕ-inject₁-≡ (fromℕ< prf))) where ECF-cong : ∀{e e'}{ef : EpochConfigFor e}{ef' : EpochConfigFor e'} → ef ≅ ef' → e ≡ e' → EpochConfigFor.epochConfig ef ≡ EpochConfigFor.epochConfig ef' ECF-cong {e} {e'} {ef} {ef'} HE.refl refl = refl
{ "alphanum_fraction": 0.6021921341, "avg_line_length": 46.6466165414, "ext": "agda", "hexsha": "22d5661f29f47946a06ebae8bba755c7e0082fb6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/AvailableEpochs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/AvailableEpochs.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/AvailableEpochs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2327, "size": 6204 }
module ZTF where infixr 40 _◎_ open import Data.Integer open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- Zero totalized fields data B : Set where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B RECIP : B → B NEG : B → B normalizeB : B → ℤ × ℤ normalizeB ZERO = (+ 0 , + 1) normalizeB ONE = (+ 1 , + 1) normalizeB (PLUS b₁ b₂) with normalizeB b₁ | normalizeB b₂ ... | (n1 , d1) | (n2 , d2) = (n1 * d2 + n2 * d1 , d1 * d2) normalizeB (TIMES b₁ b₂) with normalizeB b₁ | normalizeB b₂ ... | (n1 , d1) | (n2 , d2) = (n1 * n2 , d1 * d2) normalizeB (RECIP b) with normalizeB b ... | (n , d) = (d , n) normalizeB (NEG b) with normalizeB b ... | (n , d) = (- n , d) b1 : ℤ × ℤ b1 = normalizeB ( RECIP (PLUS (TIMES (PLUS ONE ONE) (PLUS ONE (PLUS ONE ONE))) (NEG (TIMES (PLUS ONE ONE) (PLUS ONE (PLUS ONE ONE)))))) helper : ℤ × ℤ → B helper (+ 0 , _) = ZERO helper (_ , + 0) = ZERO helper _ = ONE ztf : B → B ztf b = helper (normalizeB b) rlem : {b : B} → normalizeB b ≡ swap (normalizeB (RECIP b)) rlem = refl {-- helperlem : {z₁ z₂ : ℤ} → helper (z₁ , z₂) ≡ helper (z₂ , z₁) helperlem {+ 0} {_} = refl helperlem {_} {+ 0} = refl helperlem {_} {_} = refl --} data X : Set where P0 : X P1 : X P2 : X helperX : X × X → B helperX (P0 , P0) = ZERO helperX (_ , _) = ZERO --helperX (P0 , _) = ZERO --helperX (_ , P0) = ZERO --helperX _ = ONE helperlemX : {a b : X} → helperX (a , b) ≡ helperX (b , a) helperlemX {P0} {P0} = refl helperlemX {P1} {P0} = refl helperlemX {P2} {P0} = refl helperlemX {_} {P1} = refl helperlemX {_} {P2} = refl blemX : {b : B} → b ≡ b blemX = refl {-- helperlemX : ∀ a b → helperX (a , b) ≡ helperX (b , a) helperlemX {P0} {P0} = refl helperlemX {P0} {P1} = refl helperlemX {P0} {P2} = refl helperlemX {P1} {P0} = refl helperlemX {P1} {P1} = refl helperlemX {P1} {P2} = refl helperlemX {P2} {P0} = refl helperlemX {P2} {P1} = refl helperlemX {P2} {P2} = refl rlem2 : (b : B) → ztf b ≡ ztf (RECIP b) rlem2 b = refl with normalizeB b | normalizeB (RECIP b) ... | (n , + 0) | .(+ 0 , n) = refl ... | (+ 0 , d) | .(d , + 0) = refl ... | (n , d) | .(d , n) = refl --} data _⟷_ : B → B → Set₁ where unite₊ : {b : B} → PLUS ZERO b ⟷ b uniti₊ : {b : B} → b ⟷ PLUS ZERO b swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) unitez⋆ : { b : B } → TIMES (ztf b) b ⟷ b unitiz⋆ : { b : B } → b ⟷ TIMES (ztf b) b -- subsumed by above -- unite⋆ : { b : B } → TIMES ONE b ⟷ b -- uniti⋆ : { b : B } → b ⟷ TIMES ONE b -- distZ : { b : B } → TIMES ZERO b ⟷ ZERO -- factorZ : { b : B } → ZERO ⟷ TIMES ZERO b swap⋆ : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃ id⟷ : {b : B } → b ⟷ b op : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) η⋆ : {b : B} → ztf b ⟷ TIMES (RECIP b) b ε⋆ : {b : B} → TIMES (RECIP b) b ⟷ ztf b η₊ : {b : B} → ZERO ⟷ PLUS (NEG b) b ε₊ : {b : B} → PLUS (NEG b) b ⟷ ZERO ------------------------------------------------------------------------------ -- Examples _⇒⋆_ : B → B → B b₁ ⇒⋆ b₂ = TIMES (RECIP b₁) b₂ _⇒₊_ : B → B → B b₁ ⇒₊ b₂ = PLUS (NEG b₁) b₂ name : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (ztf b₁ ⟷ (b₁ ⇒⋆ b₂)) name c = η⋆ ◎ (id⟷ ⊗ c) {-- doubleDiv : { b : B } → b ⟷ RECIP (RECIP b) doubleDiv = unitiz⋆ ◎ (η⋆ ⊗ id⟷) ◎ assocr⋆ ◎ (id⟷ ⊗ ε⋆) ◎ swap⋆ ◎ unitez⋆ --} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4713463751, "avg_line_length": 27.5, "ext": "agda", "hexsha": "9552c33844166db1fbfebea3a3c10aadfdd2ff0f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/ZTF.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/ZTF.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/ZTF.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1996, "size": 4345 }
------------------------------------------------------------------------ -- The unit type (in Set₁) ------------------------------------------------------------------------ module Data.Unit1 where record ⊤₁ : Set₁ where
{ "alphanum_fraction": 0.2387387387, "avg_line_length": 27.75, "ext": "agda", "hexsha": "dcc3a5f2104d29a2a2174d1569cbdd9d5f17d566", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Unit1.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Unit1.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Unit1.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 28, "size": 222 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Paths open import lib.types.Sigma module lib.types.Flattening {i j k} (A : Type i) (B : Type j) (f g : B → A) (C : A → Type k) (D : (b : B) → C (f b) ≃ C (g b)) where {- The base HIT -} import lib.types.Generic1HIT as Generic1HIT module W = Generic1HIT A B f g open W public using (cc; pp) renaming (T to W) module P = W.RecType C D open P public -- using (↓-pp-in; ↓-pp-out; ↓-pp-β) renaming (f to P) {- The flattened HIT -} At : Type _ At = Σ A C Bt : Type _ Bt = Σ B (C ∘ f) ft : Bt → At ft (b , d) = (f b , d) gt : Bt → At gt (b , d) = (g b , –> (D b) d) module Wt = Generic1HIT At Bt ft gt open Wt public using () renaming (T to Wt) cct = curry Wt.cc ppt = curry Wt.pp private {- Flattening -} module _ where paths-flatten : (b : B) → (cct (f b) == cct (g b) [ (λ w → (P w → Wt)) ↓ pp b ]) paths-flatten b = ↓-app→cst-in (λ q → ppt b _ ∙' ap (cct (g b)) (↓-pp-out q)) module FlattenCurried = W.Elim cct paths-flatten flatten-curried : (w : W) → (P w → Wt) flatten-curried = W.Elim.f cct paths-flatten flatten : Σ W P → Wt flatten (w , x) = flatten-curried w x {- Unflattening -} unflatten-cc : (ac : At) → Σ W P unflatten-cc (a , c) = (cc a , c) unflatten-pp : (bd : Bt) → unflatten-cc (ft bd) == unflatten-cc (gt bd) unflatten-pp (b , d) = pair= (pp b) (↓-pp-in idp) module Unflatten = Wt.Rec unflatten-cc unflatten-pp unflatten : Wt → Σ W P unflatten = Unflatten.f {- First composition -} flatten-unflatten : (w : Wt) → flatten (unflatten w) == w flatten-unflatten = Wt.elim (λ _ → idp) (λ bd → let (b , d) = bd in ↓-∘=idf-in flatten unflatten (ap flatten (ap unflatten (ppt b d)) =⟨ Unflatten.pp-β bd |in-ctx ap flatten ⟩ ap flatten (pair= (pp b) (↓-pp-in idp)) =⟨ split-ap2 flatten (pp b) (↓-pp-in idp) ⟩ ↓-app→cst-out (apd flatten-curried (pp b)) (↓-pp-in idp) =⟨ FlattenCurried.pp-β b |in-ctx (λ u → ↓-app→cst-out u (↓-pp-in idp)) ⟩ ↓-app→cst-out (paths-flatten b) (↓-pp-in idp) =⟨ idp ⟩ ↓-app→cst-out (↓-app→cst-in (λ q → ppt b _ ∙' ap (cct (g b)) (↓-pp-out q))) (↓-pp-in idp) =⟨ ↓-app→cst-β (λ q → ppt b _ ∙' ap (cct (g b)) (↓-pp-out q)) (↓-pp-in idp) ⟩ ppt b d ∙' ap (cct (g b)) (↓-pp-out (↓-pp-in idp)) =⟨ ↓-pp-β idp |in-ctx (λ u → ppt b d ∙' ap (cct (g b)) u) ⟩ ppt b d ∎)) {- Second composition -} unflatten-flatten-curried : (w : W) (x : P w) → unflatten (flatten-curried w x) == (w , x) unflatten-flatten-curried = W.elim (λ a x → idp) (λ b → ↓-Π-in (λ q → ↓-∘=idf-in unflatten flatten (ap unflatten (ap flatten (pair= (pp b) q)) =⟨ split-ap2 flatten (pp b) q |in-ctx ap unflatten ⟩ ap unflatten (↓-app→cst-out (apd flatten-curried (pp b)) q) =⟨ FlattenCurried.pp-β b |in-ctx (λ u → ap unflatten (↓-app→cst-out u q)) ⟩ ap unflatten (↓-app→cst-out (paths-flatten b) q) =⟨ idp ⟩ ap unflatten (↓-app→cst-out (↓-app→cst-in (λ qq → ppt b _ ∙' ap (cct (g b)) (↓-pp-out qq))) q) =⟨ ↓-app→cst-β (λ qq → ppt b _ ∙' ap (cct (g b)) (↓-pp-out qq)) q |in-ctx ap unflatten ⟩ ap unflatten (ppt b _ ∙' ap (cct (g b)) (↓-pp-out q)) =⟨ ap-∙' unflatten (ppt b _) (ap (cct (g b)) (↓-pp-out q)) ⟩ ap unflatten (ppt b _) ∙' ap unflatten (ap (cct (g b)) (↓-pp-out q)) =⟨ Unflatten.pp-β (b , _) |in-ctx (λ u → u ∙' ap unflatten (ap (cct (g b)) (↓-pp-out q))) ⟩ pair= (pp b) (↓-pp-in idp) ∙' ap unflatten (ap (cct (g b)) (↓-pp-out q)) =⟨ ∘-ap unflatten (cct (g b)) (↓-pp-out q) |in-ctx (λ u → (pair= (pp b) (↓-pp-in idp) ∙' u)) ⟩ pair= (pp b) (↓-pp-in idp) ∙' ap (unflatten ∘ cct (g b)) (↓-pp-out q) =⟨ idp ⟩ pair= (pp b) (↓-pp-in idp) ∙' ap (λ x → (cc (g b), x)) (↓-pp-out q) =⟨ ap-cst,id P (↓-pp-out q) |in-ctx (λ u → pair= (pp b) (↓-pp-in idp) ∙' u) ⟩ pair= (pp b) (↓-pp-in idp) ∙' pair= idp (↓-pp-out q) =⟨ Σ-∙' (↓-pp-in idp) (↓-pp-out q) ⟩ pair= (pp b) (↓-pp-in idp ∙'ᵈ ↓-pp-out q) =⟨ to-transp-weird q (coe-pp-β _ _) |in-ctx pair= (pp b) ⟩ pair= (pp b) q ∎))) unflatten-flatten : (wx : Σ W P) → unflatten (flatten wx) == wx unflatten-flatten (w , x) = unflatten-flatten-curried w x {- The equivalence -} abstract flattening-equiv : Σ W P ≃ Wt flattening-equiv = equiv flatten unflatten flatten-unflatten unflatten-flatten
{ "alphanum_fraction": 0.5010416667, "avg_line_length": 34.0425531915, "ext": "agda", "hexsha": "a4db40cef5956e7bb3cc32546f3903afbc423dbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Flattening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Flattening.agda", "max_line_length": 111, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Flattening.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1904, "size": 4800 }
{- Definition of what it means to be a notion of relational structure -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.RelationalStructure where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.HITs.SetQuotients open import Cubical.Relation.Binary.Base open import Cubical.Relation.ZigZag.Base open BinaryRelation private variable ℓ ℓ' ℓ'' ℓ''' : Level -- A notion of structured relation for a structure S assigns a relation on S X and S Y to every relation on X -- and Y. We require the output to be proposition-valued when the input is proposition-valued. StrRel : (S : Type ℓ → Type ℓ') (ℓ'' : Level) → Type (ℓ-max (ℓ-suc (ℓ-max ℓ ℓ'')) ℓ') StrRel {ℓ = ℓ} S ℓ'' = ∀ {A B} (R : Rel A B ℓ) → Rel (S A) (S B) ℓ'' -- Given a type A and relation R, a quotient structure is a structure on the set quotient A/R such that -- the graph of [_] : A → A/R is a structured relation InducedQuotientStr : (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') (A : TypeWithStr ℓ S) (R : Rel (typ A) (typ A) ℓ) → Type (ℓ-max ℓ' ℓ'') InducedQuotientStr S ρ A R = Σ[ s ∈ S (typ A / R) ] ρ (graphRel [_]) (A .snd) s -- A structured equivalence relation R on a structured type A should induce a structure on A/R InducesQuotientStr : (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') → Type _ InducesQuotientStr {ℓ = ℓ} S ρ = (A : TypeWithStr ℓ S) (R : EquivPropRel (typ A) ℓ) → ρ (R .fst .fst) (A .snd) (A .snd) → ∃![ s ∈ S (typ A / R .fst .fst) ] ρ (graphRel [_]) (A .snd) s -- The inverse of a structured relation should be structured isSymmetricStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _ isSymmetricStrRel {ℓ = ℓ} {S = S} ρ = {X Y : Type ℓ} (R : PropRel X Y ℓ) {sx : S X} {sy : S Y} → ρ (R .fst) sx sy → ρ (invPropRel R .fst) sy sx -- The composite of structured relations should be structured isTransitiveStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _ isTransitiveStrRel {ℓ = ℓ} {S = S} ρ = {X Y Z : Type ℓ} (R₀ : PropRel X Y ℓ) (R₁ : PropRel Y Z ℓ) {sx : S X} {sy : S Y} {sz : S Z} → ρ (R₀ .fst) sx sy → ρ (R₁ .fst) sy sz → ρ (compPropRel R₀ R₁ .fst) sx sz -- The type of structures on a prop-valued relation should be a prop preservesPropsStrRel : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') → Type _ preservesPropsStrRel {ℓ = ℓ} {S = S} ρ = {X Y : Type ℓ} {R : Rel X Y ℓ} → (∀ x y → isProp (R x y)) → (sx : S X) (sy : S Y) → isProp (ρ R sx sy) record SuitableStrRel (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') : Type (ℓ-max (ℓ-max (ℓ-suc ℓ) ℓ') ℓ'') where field quo : InducesQuotientStr S ρ symmetric : isSymmetricStrRel ρ transitive : isTransitiveStrRel ρ prop : preservesPropsStrRel ρ open SuitableStrRel -- We can also ask for a notion of structured relations to agree with some notion of structured equivalences. StrRelMatchesEquiv : {S : Type ℓ → Type ℓ'} → StrRel S ℓ'' → StrEquiv S ℓ''' → Type _ StrRelMatchesEquiv {S = S} ρ ι = (A B : TypeWithStr _ S) (e : typ A ≃ typ B) → ρ (graphRel (e .fst)) (A .snd) (B .snd) ≃ ι A B e -- Given a suitable notion of structured relation, if we have a structured quasi equivalence relation R -- between structured types A and B, we get induced structures on the quotients A/(R ∙ R⁻¹) and B/(R⁻¹ ∙ R), -- and the induced equivalence e : A/(R ∙ R⁻¹) ≃ B/(R⁻¹ ∙ R) is structured with respect to those quotient -- structures. quotientPropRel : ∀ {ℓ} {A : Type ℓ} (R : Rel A A ℓ) → PropRel A (A / R) ℓ quotientPropRel R .fst a t = [ a ] ≡ t quotientPropRel R .snd _ _ = squash/ _ _ record QERDescends (S : Type ℓ → Type ℓ') (ρ : StrRel S ℓ'') (A B : TypeWithStr ℓ S) (R : QuasiEquivRel (typ A) (typ B) ℓ) : Type (ℓ-max ℓ' ℓ'') where private module E = QER→Equiv R field quoᴸ : InducedQuotientStr S ρ A E.Rᴸ quoᴿ : InducedQuotientStr S ρ B E.Rᴿ rel : ρ (graphRel (E.Thm .fst)) (quoᴸ .fst) (quoᴿ .fst) open QERDescends open isQuasiEquivRel structuredQER→structuredEquiv : {S : Type ℓ → Type ℓ'} (ρ : StrRel S ℓ'') (θ : SuitableStrRel S ρ) (A B : TypeWithStr ℓ S) (R : QuasiEquivRel (typ A) (typ B) ℓ) → ρ (R .fst .fst) (A .snd) (B .snd) → QERDescends S ρ A B R structuredQER→structuredEquiv ρ θ (X , s) (Y , t) R r .quoᴸ = θ .quo (X , s) (QER→EquivRel R) (subst (λ R' → ρ R' s s) correction (θ .transitive (R .fst) (invPropRel (R .fst)) r (θ .symmetric (R .fst) r))) .fst where correction : compPropRel (R .fst) (invPropRel (R .fst)) .fst ≡ QER→EquivRel R .fst .fst correction = funExt₂ λ x₀ x₁ → (hPropExt squash (R .fst .snd _ _) (Trunc.rec (R .fst .snd _ _) (λ {(y , r , r') → R .snd .zigzag r r' (R .snd .fwdRel _)})) (λ r → ∣ _ , r , R .snd .fwdRel _ ∣)) structuredQER→structuredEquiv ρ θ (X , s) (Y , t) R r .quoᴿ = θ .quo (Y , t) (QER→EquivRel (invQER R)) (subst (λ R' → ρ R' t t) correction (θ .transitive (invPropRel (R .fst)) (R .fst) (θ .symmetric (R .fst) r) r)) .fst where correction : compPropRel (invPropRel (R .fst)) (R .fst) .fst ≡ QER→EquivRel (invQER R) .fst .fst correction = funExt₂ λ y₀ y₁ → (hPropExt squash (R .fst .snd _ _) (Trunc.rec (R .fst .snd _ _) (λ {(x , r , r') → R .snd .zigzag (R .snd .bwdRel _) r' r})) (λ r → ∣ _ , r , R .snd .bwdRel _ ∣)) structuredQER→structuredEquiv ρ θ (X , s) (Y , t) R r .rel = subst (λ R' → ρ R' (quol .fst) (quor .fst)) correction (θ .transitive (compPropRel (invPropRel (quotientPropRel E.Rᴸ)) (R .fst)) (quotientPropRel E.Rᴿ) (θ .transitive (invPropRel (quotientPropRel E.Rᴸ)) (R .fst) (θ .symmetric (quotientPropRel E.Rᴸ) (quol .snd)) r) (quor .snd)) where module E = QER→Equiv R quol = structuredQER→structuredEquiv ρ θ (X , s) (Y , t) R r .quoᴸ quor = structuredQER→structuredEquiv ρ θ (X , s) (Y , t) R r .quoᴿ [R] = compPropRel (compPropRel (invPropRel (quotientPropRel E.Rᴸ)) (R .fst)) (quotientPropRel E.Rᴿ) correction : [R] .fst ≡ graphRel (E.Thm .fst) correction = funExt₂ λ qx qy → (hPropExt squash (squash/ _ _) (Trunc.rec (squash/ _ _) (λ {(y , qr , py) → Trunc.rec (squash/ _ _) (λ {(x , px , r) → cong (E.Thm .fst) (sym px) ∙ eq/ (R .snd .fwd x) y (R .snd .zigzag (R .snd .bwdRel y) r (R .snd .fwdRel x)) ∙ py}) qr})) (elimProp {B = λ qx → E.Thm .fst qx ≡ qy → [R] .fst qx qy} (λ _ → isPropΠ λ _ → squash) (λ x p → ∣ _ , ∣ _ , refl , R .snd .fwdRel x ∣ , p ∣) qx))
{ "alphanum_fraction": 0.6057034774, "avg_line_length": 39.0511363636, "ext": "agda", "hexsha": "938bbce4f453588e6709449ba5ebede73b9490da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Foundations/RelationalStructure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Foundations/RelationalStructure.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Foundations/RelationalStructure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2684, "size": 6873 }
{-# OPTIONS --cubical --safe #-} module Cubical.Relation.Nullary where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty private variable ℓ : Level A : Type ℓ -- Negation infix 3 ¬_ ¬_ : Type ℓ → Type ℓ ¬ A = A → ⊥ isProp¬ : (A : Type ℓ) → isProp (¬ A) isProp¬ A p q i x = isProp⊥ (p x) (q x) i -- Decidable types (inspired by standard library) data Dec (P : Type ℓ) : Type ℓ where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P Stable : Type ℓ → Type ℓ Stable A = ¬ ¬ A → A Discrete : Type ℓ → Type ℓ Discrete A = (x y : A) → Dec (x ≡ y) Stable¬ : Stable (¬ A) Stable¬ ¬¬¬a a = ¬¬¬a ¬¬a where ¬¬a = λ ¬a → ¬a a fromYes : A → Dec A → A fromYes _ (yes a) = a fromYes a (no _) = a discreteDec : (Adis : Discrete A) → Discrete (Dec A) discreteDec Adis (yes p) (yes p') = decideYes (Adis p p') -- TODO: monad would simply stuff where decideYes : Dec (p ≡ p') → Dec (yes p ≡ yes p') decideYes (yes eq) = yes (cong yes eq) decideYes (no ¬eq) = no λ eq → ¬eq (cong (fromYes p) eq) discreteDec Adis (yes p) (no ¬p) = ⊥-elim (¬p p) discreteDec Adis (no ¬p) (yes p) = ⊥-elim (¬p p) discreteDec {A = A} Adis (no ¬p) (no ¬p') = yes (cong no (isProp¬ A ¬p ¬p')) isPropDec : (Aprop : isProp A) → isProp (Dec A) isPropDec Aprop (yes a) (yes a') = cong yes (Aprop a a') isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a) isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a) isPropDec {A = A} Aprop (no ¬a) (no ¬a') = cong no (isProp¬ A ¬a ¬a') mapDec : ∀ {B : Type ℓ} → (A → B) → (¬ A → ¬ B) → Dec A → Dec B mapDec f _ (yes p) = yes (f p) mapDec _ f (no ¬p) = no (f ¬p)
{ "alphanum_fraction": 0.5734138973, "avg_line_length": 26.2698412698, "ext": "agda", "hexsha": "8aa27eb4305a85f3895dd5cadc8e4abadc71cb24", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Relation/Nullary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Relation/Nullary.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Relation/Nullary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 692, "size": 1655 }