Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --safe #-}
module Cubical.Data.FinData.Order where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Bool.Base
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Data.FinData.Base
open import Cubical.Data.FinData.Properties
private
variable
ℓ : Level
-- Order relation:
_≤Fin_ : {n : ℕ} → Fin n → Fin n → Type
i ≤Fin j = (toℕ i) ≤ (toℕ j)
_<Fin_ : {n : ℕ} → Fin n → Fin n → Type
i <Fin j = (suc i) ≤Fin (weakenFin j)
open BinaryRelation
≤FinIsPropValued : ∀ {n : ℕ} → isPropValued (_≤Fin_ {n})
≤FinIsPropValued _ _ = isProp≤
-- inductive version
_≤'Fin_ : {n : ℕ} → Fin n → Fin n → Type
i ≤'Fin j = (toℕ i) ≤' (toℕ j)
_<'Fin_ : {n : ℕ} → Fin n → Fin n → Type
i <'Fin j = (suc i) ≤'Fin (weakenFin j)
open BinaryRelation
≤'FinIsPropValued : ∀ {n : ℕ} → isPropValued (_≤'Fin_ {n})
≤'FinIsPropValued _ _ = ≤'IsPropValued _ _
| {
"alphanum_fraction": 0.6796208531,
"avg_line_length": 23.4444444444,
"ext": "agda",
"hexsha": "08aa61c5785ffa475ec997794dd70030c569aad6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/FinData/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/FinData/Order.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/FinData/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 381,
"size": 1055
} |
------------------------------------------------------------------------
-- Equivalence of declarative and canonical kinding of Fω with
-- interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Kinding.Canonical.Equivalence where
open import Data.Fin using (zero)
open import Data.Fin.Substitution using (module VarSubst)
open import Data.Fin.Substitution.Typed
open import Data.Product as Prod using (_,_; proj₁; proj₂)
open import Data.Vec using ([])
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.HereditarySubstitution
open import FOmegaInt.Syntax.Normalization
open import FOmegaInt.Syntax.WeakEquality
import FOmegaInt.Typing as Original
import FOmegaInt.Typing.Validity as OriginalValidity
import FOmegaInt.Kinding.Declarative as Extended
import FOmegaInt.Kinding.Declarative.Validity as ExtendedValidity
import FOmegaInt.Kinding.Declarative.Equivalence as ExtendedEquiv
import FOmegaInt.Kinding.Declarative.Normalization as OriginalNorm
open import FOmegaInt.Kinding.Canonical as Canonical
open import FOmegaInt.Kinding.Canonical.Validity
open import FOmegaInt.Kinding.Canonical.WeakEquality
import FOmegaInt.Kinding.Simple as SimpKind
import FOmegaInt.Kinding.Simple.EtaExpansion as SimpEtaExp
open import FOmegaInt.Kinding.Simple.Normalization
private
-- Original declarative rules and lemmas.
module O where
open Original public
open Typing public
open TermCtx public
open TypedSubstitution public
open OriginalValidity public
open OriginalNorm public
-- Extended declarative rules and lemmas.
module E where
open Extended public
open Extended.Kinding public
open TermCtx public
open KindedSubstitution public
open ExtendedValidity public
open ExtendedEquiv public
-- Canonical rules and lemmas.
module C where
open Canonical public
open Kinding public
open ElimCtx public
open Syntax
open Substitution using (_Kind[_])
open ElimCtx
open SimpleCtx using (kd)
open ContextConversions
open WeakEqNormalization
open Kinding
open KindedRenaming
open ContextNarrowing
open Original.Typing hiding (_ctx; _⊢_wf; _⊢_kd; _⊢_<∷_; _⊢_<:_∈_; _⊢_≅_)
open Extended.Kinding hiding (_ctx; _⊢_wf; _⊢_kd; _⊢_<∷_; _⊢_<:_∈_; _⊢_≅_)
------------------------------------------------------------------------
-- Soundness of canonical (sub)kinding w.r.t. declarative (sub)kinding
mutual
sound-wf : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → ⌞ Γ ⌟Ctx O.⊢ ⌞ a ⌟Asc wf
sound-wf (wf-kd k-kd) = wf-kd (sound-kd k-kd)
sound-wf (wf-tp a⇉a⋯a) = wf-tp (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a))
sound-ctx : ∀ {n} {Γ : Ctx n} → Γ ctx → ⌞ Γ ⌟Ctx O.ctx
sound-ctx C.[] = O.[]
sound-ctx (a-wf C.∷ Γ-ctx) = sound-wf a-wf O.∷ sound-ctx Γ-ctx
sound-kd : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → ⌞ Γ ⌟Ctx O.⊢ ⌞ k ⌟Kd kd
sound-kd (kd-⋯ a⇉a⋯a b⇉b⋯b) =
kd-⋯ (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a)) (O.Tp∈-⋯-* (sound-Nf⇉ b⇉b⋯b))
sound-kd (kd-Π j-kd k-kd) = kd-Π (sound-kd j-kd) (sound-kd k-kd)
sound-Nf⇉ : ∀ {n} {Γ : Ctx n} {a k} →
Γ ⊢Nf a ⇉ k → ⌞ Γ ⌟Ctx O.⊢Tp ⌞ a ⌟ ∈ ⌞ k ⌟Kd
sound-Nf⇉ (⇉-⊥-f Γ-ctx) = ∈-s-i (∈-⊥-f (sound-ctx Γ-ctx))
sound-Nf⇉ (⇉-⊤-f Γ-ctx) = ∈-s-i (∈-⊤-f (sound-ctx Γ-ctx))
sound-Nf⇉ (⇉-∀-f k-kd a⇉a⋯a) =
∈-s-i (∈-∀-f (sound-kd k-kd) (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a)))
sound-Nf⇉ (⇉-→-f a⇉a⋯a b⇉b⋯b) =
∈-s-i (∈-→-f (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a)) (O.Tp∈-⋯-* (sound-Nf⇉ b⇉b⋯b)))
sound-Nf⇉ (⇉-Π-i j-kd a⇉k) =
let ⌞a⌟∈⌞k⌟ = sound-Nf⇉ a⇉k
in ∈-Π-i (sound-kd j-kd) ⌞a⌟∈⌞k⌟
sound-Nf⇉ (⇉-s-i a⇉b⋯c) = ∈-s-i (sound-Ne∈ a⇉b⋯c)
sound-Ne∈ : ∀ {n} {Γ : Ctx n} {a k} →
Γ ⊢Ne a ∈ k → ⌞ Γ ⌟Ctx O.⊢Tp ⌞ a ⌟ ∈ ⌞ k ⌟Kd
sound-Ne∈ (∈-∙ x∈j j⇉as⇉k) = sound-Sp⇉ (sound-Var∈ x∈j) j⇉as⇉k
sound-Sp⇉ : ∀ {n} {Γ : Ctx n} {a bs j k} →
⌞ Γ ⌟Ctx O.⊢Tp a ∈ ⌞ j ⌟Kd → Γ ⊢ j ⇉∙ bs ⇉ k →
⌞ Γ ⌟Ctx O.⊢Tp a ⌞∙⌟ ⌞ bs ⌟Sp ∈ ⌞ k ⌟Kd
sound-Sp⇉ a∈⌞j⌟ ⇉-[] = a∈⌞j⌟
sound-Sp⇉ a∈⌞Πjk⌟ (⇉-∷ b⇇j j-kd k[b]⇉bs⇉l) with O.Tp∈-valid a∈⌞Πjk⌟
... | (kd-Π ⌞j⌟-kd ⌞k⌟-kd) =
let ⌞b⌟∈⌞j⌟ = sound-Nf⇇ b⇇j
in sound-Sp⇉ (∈-⇑ (∈-Π-e a∈⌞Πjk⌟ ⌞b⌟∈⌞j⌟)
(O.≅⇒<∷ (O.kd-⌞⌟-[]-≅ ⌞k⌟-kd ⌞b⌟∈⌞j⌟)))
k[b]⇉bs⇉l
sound-Nf⇇ : ∀ {n} {Γ : Ctx n} {a k} →
Γ ⊢Nf a ⇇ k → ⌞ Γ ⌟Ctx O.⊢Tp ⌞ a ⌟ ∈ ⌞ k ⌟Kd
sound-Nf⇇ (⇇-⇑ a⇉j j<∷k) = ∈-⇑ (sound-Nf⇉ a⇉j) (sound-<∷ j<∷k)
sound-Var∈ : ∀ {n} {Γ : Ctx n} {x k} →
Γ ⊢Var x ∈ k → ⌞ Γ ⌟Ctx O.⊢Tp var x ∈ ⌞ k ⌟Kd
sound-Var∈ {_} {Γ} (⇉-var {k} x Γ-ctx Γ[x]≡kd-k) =
∈-var x (sound-ctx Γ-ctx) (begin
TermCtx.lookup ⌞ Γ ⌟Ctx x ≡⟨ ⌞⌟Asc-lookup Γ x ⟩
⌞ lookup Γ x ⌟Asc ≡⟨ cong ⌞_⌟Asc Γ[x]≡kd-k ⟩
kd ⌞ k ⌟Kd ∎)
where
open ≡-Reasoning
open Substitution using (⌞⌟Asc-weaken)
sound-Var∈ (⇇-⇑ x∈j j<∷k k-kd) = ∈-⇑ (sound-Var∈ x∈j) (sound-<∷ j<∷k)
sound-<∷ : ∀ {n} {Γ : Ctx n} {j k} →
Γ ⊢ j <∷ k → ⌞ Γ ⌟Ctx O.⊢ ⌞ j ⌟Kd <∷ ⌞ k ⌟Kd
sound-<∷ (<∷-⋯ a₂<:a₁ b₁<:b₂) =
<∷-⋯ (sound-<: a₂<:a₁) (sound-<: b₁<:b₂)
sound-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) =
<∷-Π (sound-<∷ j₂<∷j₁) (sound-<∷ k₁<∷k₂) (sound-kd Πj₁k₁-kd)
sound-<: : ∀ {n} {Γ : Ctx n} {a b} →
Γ ⊢ a <: b → ⌞ Γ ⌟Ctx O.⊢ ⌞ a ⌟ <: ⌞ b ⌟ ∈ *
sound-<: (<:-trans a<:b b<:c) =
<:-trans (sound-<: a<:b) (sound-<: b<:c)
sound-<: (<:-⊥ a⇉a⋯a) = <:-⊥ (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a))
sound-<: (<:-⊤ a⇉a⋯a) = <:-⊤ (O.Tp∈-⋯-* (sound-Nf⇉ a⇉a⋯a))
sound-<: (<:-∀ k₂<∷k₁ a₁<:a₂ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁) =
<:-∀ (sound-<∷ k₂<∷k₁) (sound-<: a₁<:a₂)
(O.Tp∈-⋯-* (sound-Nf⇉ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁))
sound-<: (<:-→ a₂<:a₁ b₁<:b₂) =
<:-→ (sound-<: a₂<:a₁) (sound-<: b₁<:b₂)
sound-<: (<:-∙ x∈j j⇉as⇉k) =
O.<:-⋯-* (sound-<:-∙-≃ (<:-refl (sound-Var∈ x∈j)) j⇉as⇉k)
sound-<: (<:-⟨| a∈b⋯c) = <:-⟨| (sound-Ne∈ a∈b⋯c)
sound-<: (<:-|⟩ a∈b⋯c) = <:-|⟩ (sound-Ne∈ a∈b⋯c)
sound-<:⇇ : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a <: b ⇇ k → ⌞ Γ ⌟Ctx O.⊢ ⌞ a ⌟ <: ⌞ b ⌟ ∈ ⌞ k ⌟Kd
sound-<:⇇ (<:-⇇ (⇇-⇑ a₁⇉c₁⋯d₁ (<∷-⋯ c₁<:c d<:d₁))
(⇇-⇑ a₂⇉c₂⋯d₂ (<∷-⋯ c₂<:c d<:d₂)) a<:b)
with Nf⇉-≡ a₁⇉c₁⋯d₁ | Nf⇉-≡ a₂⇉c₂⋯d₂
sound-<:⇇ (<:-⇇ (⇇-⇑ a₁⇉a₁⋯a₁ (<∷-⋯ c<:a₁ _))
(⇇-⇑ a₂⇉a₂⋯a₂ (<∷-⋯ _ a₂<:d)) a<:b)
| refl , refl | refl , refl =
<:-⇑ (<:-⋯-i (sound-<: a<:b)) (<∷-⋯ (sound-<: c<:a₁) (sound-<: a₂<:d))
sound-<:⇇ (<:-λ a₁<:a₂⇇k Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) =
<:-λ (sound-<:⇇ a₁<:a₂⇇k) (sound-Nf⇇ Λj₁a₁⇇Πjk) (sound-Nf⇇ Λj₂a₂⇇Πjk)
sound-≅ : ∀ {n} {Γ : Ctx n} {j k} →
Γ ⊢ j ≅ k → ⌞ Γ ⌟Ctx O.⊢ ⌞ j ⌟Kd ≅ ⌞ k ⌟Kd
sound-≅ (<∷-antisym _ _ j<∷k k<∷j) =
<∷-antisym (sound-<∷ j<∷k) (sound-<∷ k<∷j)
sound-≃ : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a ≃ b ⇇ k → ⌞ Γ ⌟Ctx O.⊢ ⌞ a ⌟ ≃ ⌞ b ⌟ ∈ ⌞ k ⌟Kd
sound-≃ (<:-antisym k-kd a<:b⇇k b<:a⇇k) =
<:-antisym (sound-<:⇇ a<:b⇇k) (sound-<:⇇ b<:a⇇k)
sound-<:-∙-≃ : ∀ {n} {Γ : Ctx n} {a b as bs j k} →
⌞ Γ ⌟Ctx O.⊢ a <: b ∈ ⌞ j ⌟Kd → Γ ⊢ j ⇉∙ as ≃ bs ⇉ k →
⌞ Γ ⌟Ctx O.⊢ a ⌞∙⌟ ⌞ as ⌟Sp <: b ⌞∙⌟ ⌞ bs ⌟Sp ∈ ⌞ k ⌟Kd
sound-<:-∙-≃ a<:b∈⌞j⌟ ≃-[] = a<:b∈⌞j⌟
sound-<:-∙-≃ a<:b∈⌞Πjk⌟ (≃-∷ c≃d⇇j k[c]⇉cs≃ds⇉l) with O.<:-valid-kd a<:b∈⌞Πjk⌟
... | (kd-Π ⌞j⌟-kd ⌞k⌟-kd) =
let ⌞c⌟≃⌞d⌟∈⌞j⌟ = sound-≃ c≃d⇇j
⌞c⌟∈⌞j⌟ , _ = O.≃-valid ⌞c⌟≃⌞d⌟∈⌞j⌟
in sound-<:-∙-≃ (<:-⇑ (<:-· a<:b∈⌞Πjk⌟ ⌞c⌟≃⌞d⌟∈⌞j⌟)
(O.≅⇒<∷ (O.kd-⌞⌟-[]-≅ ⌞k⌟-kd ⌞c⌟∈⌞j⌟)))
k[c]⇉cs≃ds⇉l
------------------------------------------------------------------------
-- Completeness of canonical (sub)kinding w.r.t. declarative
-- (sub)kinding
open Substitution hiding (subst)
module TrackSimpleKindsCanonicalEtaExp where
open RenamingCommutes
open SimpHSubstLemmas
private
module V = VarSubst
module TK = TrackSimpleKindsEtaExp
module TKE = SimpEtaExp.TrackSimpleKindsKindedEtaExp
-- Hereditary substitutions of a variable by its well-kinded
-- η-expansion in well-formed kinds vanish.
--
-- NOTE. We will strengthen this lemma below, once we have proven
-- that η-expansion preserves canonical kinding.
kd-[]-η-var : ∀ {k n} {Γ : Ctx n} {j l} →
Γ ⊢ j kd → kd j ∷ Γ ⊢ l kd →
let j′ = weakenKind′ j in (hyp : ⌊ j′ ⌋≡ k) →
let η-z = TK.η-exp j′ hyp (var∙ zero)
in kd j ∷ Γ ⊢Nf η-z ⇇ j′ →
kd j ∷ Γ ⊢ (l Kind′/Var V.wk V.↑) Kind[ η-z ∈ ⌊ j′ ⌋ ] ≅ l
kd-[]-η-var j-kd l-kd hyp η-z⇇j =
let open TypedVarSubst typedVarSubst
open SimpKind.Kinding using (_⊢_kds)
open SimpleCtx using (kd)
j-wf = wf-kd j-kd
j-kd′ = kd-weaken j-wf j-kd
⌊j⌋≡k = trans (sym (⌊⌋-Kind′/Var _)) (⌊⌋≡⇒⌊⌋-≡ hyp)
η-z = TK.η-exp _ hyp (var∙ zero)
j-kds′ = subst (λ k → kd k ∷ _ ⊢ _ kds) ⌊j⌋≡k (kd-kds j-kd′)
l-kds = subst (λ k → kd k ∷ _ ⊢ _ kds) ⌊j⌋≡k (kd-kds l-kd)
l[z]≋l = TKE.kds-[]-η-var [] hyp j-kds′ l-kds
wk↑∈j∷Γ = ∈-↑′ j-kd′ (∈-wk j-wf)
l[z]-kd = kd-[] (kd-/Var l-kd wk↑∈j∷Γ) η-z⇇j
in ≋-≅ l[z]-kd l-kd (subst (λ l → _ Kind[ η-z ∈ l ] ≋ _)
(sym (⌊⌋≡⇒⌊⌋-≡ hyp)) l[z]≋l)
-- NOTE. The definition of the function η-exp-Ne∈ below is
-- structurally recursive in the *shape* parameter k, but *not* in
-- the kind j because we need to weaken the domain j₁ of the
-- dependent kind (j = Π j₁ j₂) in the arrow case. The additional
-- hypothesis ⌊ j ⌋≡ k ensures that k is indeed the shape of the
-- kind j.
-- η-expansion preserves canonical kinding of neutral types.
η-exp-Ne∈ : ∀ {n} {Γ : Ctx n} {a j k l} (hyp : ⌊ j ⌋≡ k) →
Γ ⊢ j kd → Γ ⊢Ne a ∈ l → Γ ⊢ l <∷ j → Γ ⊢Nf TK.η-exp j hyp a ⇇ j
η-exp-Ne∈ is-★ b₂⋯c₂-kd a∈b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂) =
Nf⇇-⇑ (Nf⇇-ne a∈b₁⋯c₁) (<∷-⋯ b₂<:b₁ c₁<:c₂)
η-exp-Ne∈ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) (kd-Π j₁-kd j₂-kd)
(∈-∙ {x} {_} {_} {as} x∈l l⇉as∈Πl₁l₂)
(<∷-Π j₁<∷l₁ l₂<∷j₂ (kd-Π l₁-kd l₂-kd)) =
Nf⇇-Π-i j₁-kd (η-exp-Ne∈ ⌊j₂⌋≡k₂ j₂-kd x∙as·z∈l₂[z] l₂[z]<∷j₂)
where
open TypedVarSubst typedVarSubst
j₁-wf = wf-kd j₁-kd
j₁∷Γ-ctx = j₁-wf C.∷ Var∈-ctx x∈l
j₁-kd′ = kd-weaken j₁-wf j₁-kd
l₁-kd′ = kd-weaken j₁-wf l₁-kd
⌊j₁′⌋≡k₁ = ⌊⌋≡-weaken ⌊j₁⌋≡k₁
η-z = TK.η-exp _ ⌊j₁′⌋≡k₁ (var∙ zero)
z⇇j₁ = η-exp-Ne∈ ⌊j₁′⌋≡k₁ j₁-kd′
(∈-∙ (⇉-var zero j₁∷Γ-ctx refl) ⇉-[])
(<∷-refl j₁-kd′)
z⇇l₁ = Nf⇇-⇑ z⇇j₁ (<∷-weaken j₁-wf j₁<∷l₁)
wk↑∈j₁∷Γ = ∈-↑′ j₁-kd′ (∈-wk j₁-wf)
j₂[z]<∷j₂ = ≅⇒<∷ (kd-[]-η-var j₁-kd j₂-kd ⌊j₁′⌋≡k₁ z⇇j₁)
l₂[z]<∷j₂[z] = <∷-[≃] (<∷-/Var l₂<∷j₂ wk↑∈j₁∷Γ) (≃-reflNf⇇ z⇇j₁ j₁-kd′)
l₂[z]<∷j₂ = subst (λ l → _ ⊢ _ Kind[ η-z ∈ l ] <∷ _)
(<∷-⌊⌋ (<∷-weaken j₁-wf j₁<∷l₁))
(<∷-trans l₂[z]<∷j₂[z] j₂[z]<∷j₂)
x∙as·z∈l₂[z] = (∈-∙ (Var∈-weaken j₁-wf x∈l)
(⇉-∷ʳ (Sp⇉-weaken j₁-wf l⇉as∈Πl₁l₂) z⇇l₁ l₁-kd′))
private module TK = TrackSimpleKindsCanonicalEtaExp
-- η-expansion preserves canonical kinding of neutral types.
η-exp-Ne∈ : ∀ {n} {Γ : Ctx n} {a k} →
Γ ⊢ k kd → Γ ⊢Ne a ∈ k → Γ ⊢Nf η-exp k a ⇇ k
η-exp-Ne∈ k-kd a∈k = TK.η-exp-Ne∈ (⌊⌋-⌊⌋≡ _) k-kd a∈k (<∷-refl k-kd)
η-exp-Var∈ : ∀ {n} {Γ : Ctx n} {x k} → Γ ⊢ k kd → Γ ⊢Var x ∈ k →
Γ ⊢Nf η-exp k (var∙ x) ⇇ k
η-exp-Var∈ k-kd x∈k = η-exp-Ne∈ k-kd (∈-∙ x∈k ⇉-[])
-- Hereditary substitutions in well-formed kinds of a variable by its
-- η-expansion vanish.
kd-[]-η-var : ∀ {n} {Γ : Ctx n} {j l} → Γ ⊢ j kd → kd j ∷ Γ ⊢ l kd →
let j′ = weakenKind′ j
l′ = l Kind′/Var VarSubst.wk VarSubst.↑
in kd j ∷ Γ ⊢ l′ Kind[ η-exp j′ (var∙ zero) ∈ ⌊ j′ ⌋ ] ≅ l
kd-[]-η-var j-kd l-kd =
let j-kd′ = kd-weaken (wf-kd j-kd) j-kd
in TK.kd-[]-η-var j-kd l-kd (⌊⌋-⌊⌋≡ _)
(η-exp-Var∈ j-kd′ (⇉-var zero (kd-ctx j-kd′) refl))
open RenamingCommutesNorm
-- Completeness of canonical (sub)kinding w.r.t. extended declarative
-- (sub)kinding
module CompletenessExtended where
mutual
complete-wf : ∀ {n} {Γ : E.Ctx n} {a} → Γ E.⊢ a wf →
nfCtx Γ ⊢ nfAsc (nfCtx Γ) a wf
complete-wf (wf-kd k-kd) = wf-kd (complete-kd k-kd)
complete-wf (wf-tp a∈*) = wf-tp (Nf⇇-s-i (complete-Tp∈ a∈*))
complete-ctx : ∀ {n} {Γ : E.Ctx n} → Γ E.ctx → nfCtx Γ ctx
complete-ctx E.[] = C.[]
complete-ctx (a-wf E.∷ Γ-ctx) = complete-wf a-wf C.∷ complete-ctx Γ-ctx
complete-kd : ∀ {n} {Γ : E.Ctx n} {k} → Γ E.⊢ k kd →
nfCtx Γ ⊢ nfKind (nfCtx Γ) k kd
complete-kd (kd-⋯ a∈* b∈*) =
kd-⋯ (Nf⇇-s-i (complete-Tp∈ a∈*)) (Nf⇇-s-i (complete-Tp∈ b∈*))
complete-kd (kd-Π j-kd k-kd) = kd-Π (complete-kd j-kd) (complete-kd k-kd)
complete-Tp∈ : ∀ {n} {Γ : E.Ctx n} {a k} → Γ E.⊢Tp a ∈ k →
nfCtx Γ ⊢Nf nf (nfCtx Γ) a ⇇ nfKind (nfCtx Γ) k
complete-Tp∈ {_} {Γ} (∈-var x Γ-ctx Γ[x]≡kd-k)
with C.lookup (nfCtx Γ) x | nfCtx-lookup-kd x Γ Γ[x]≡kd-k
complete-Tp∈ {_} {Γ} (∈-var x Γ-ctx Γ[x]≡kd-k) | kd ._ | refl =
η-exp-Var∈ (WfCtxOps.lookup-kd x nf-Γ-ctx nf-Γ[x]≡kd-nf-k)
(⇉-var x nf-Γ-ctx nf-Γ[x]≡kd-nf-k)
where
nf-Γ-ctx = complete-ctx Γ-ctx
nf-Γ[x]≡kd-nf-k = nfCtx-lookup-kd x Γ Γ[x]≡kd-k
complete-Tp∈ (∈-⊥-f Γ-ctx) = Nf⇉-⋯-* (⇉-⊥-f (complete-ctx Γ-ctx))
complete-Tp∈ (∈-⊤-f Γ-ctx) = Nf⇉-⋯-* (⇉-⊤-f (complete-ctx Γ-ctx))
complete-Tp∈ (∈-∀-f k-kd a∈*) = Nf⇇-∀-f (complete-kd k-kd) (complete-Tp∈ a∈*)
complete-Tp∈ (∈-→-f a∈* b∈*) = Nf⇇-→-f (complete-Tp∈ a∈*) (complete-Tp∈ b∈*)
complete-Tp∈ (∈-Π-i j-kd a∈k k-kd) =
Nf⇇-Π-i (complete-kd j-kd) (complete-Tp∈ a∈k)
complete-Tp∈ (∈-Π-e {a} {b} a∈Πjk b∈j k-kd k[a]-kd) =
Nf⇇-⇑ (Nf⇇-Π-e′ (complete-Tp∈ a∈Πjk) (complete-Tp∈ b∈j))
(≅⇒<∷ (≅-nfKind-[] k-kd b∈j k[a]-kd))
complete-Tp∈ (∈-s-i a∈b⋯c) =
let nf-a⇉a⋯a = Nf⇇-s-i (complete-Tp∈ a∈b⋯c)
in ⇇-⇑ nf-a⇉a⋯a (<∷-⋯ (<:-reflNf⇉ nf-a⇉a⋯a) (<:-reflNf⇉ nf-a⇉a⋯a))
complete-Tp∈ (∈-⇑ a∈j j<∷k) = Nf⇇-⇑ (complete-Tp∈ a∈j) (complete-<∷ j<∷k)
complete-<∷ : ∀ {n} {Γ : E.Ctx n} {j k} → Γ E.⊢ j <∷ k →
nfCtx Γ ⊢ nfKind (nfCtx Γ) j <∷ nfKind (nfCtx Γ) k
complete-<∷ (<∷-⋯ a₂<:a₁ b₁<:b₂) =
<∷-⋯ (complete-<:-⋯ a₂<:a₁) (complete-<:-⋯ b₁<:b₂)
complete-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) with complete-kd Πj₁k₁-kd
... | kd-Π nf-j₁-kd nf-k₁-kd =
let nf-j₂<∷j₁ = complete-<∷ j₂<∷j₁
nf-k₁′<∷k₂ = complete-<∷ k₁<∷k₂
⌊nf-j₁∷Γ⌋≡⌊nf-j₂∷Γ⌋ = cong (λ k → kd k ∷ _) (sym (<∷-⌊⌋ nf-j₂<∷j₁))
nf-k₁≋k₁′ = ≋-nfKind ⌊nf-j₁∷Γ⌋≡⌊nf-j₂∷Γ⌋ _
nf-j₂-kd = proj₁ (<∷-valid nf-j₂<∷j₁)
nf-k₁′-kd = proj₁ (<∷-valid nf-k₁′<∷k₂)
nf-k₁<∷k₁′ = ≋-<∷ (⇓-kd nf-j₂-kd nf-j₂<∷j₁ nf-k₁-kd)
nf-k₁′-kd nf-k₁≋k₁′
nf-k₁<∷k₂ = <∷-trans nf-k₁<∷k₁′ nf-k₁′<∷k₂
in <∷-Π nf-j₂<∷j₁ nf-k₁<∷k₂ (kd-Π nf-j₁-kd nf-k₁-kd)
complete-<:-⋯ : ∀ {n} {Γ : E.Ctx n} {a b c d} → Γ E.⊢ a <: b ∈ c ⋯ d →
nfCtx Γ ⊢ nf (nfCtx Γ) a <: nf (nfCtx Γ) b
complete-<:-⋯ a<:b∈c⋯d with complete-<: a<:b∈c⋯d
complete-<:-⋯ a<:b∈c⋯d | <:-⇇ _ _ a<:b = a<:b
complete-<: : ∀ {n} {Γ : E.Ctx n} {a b k} → Γ E.⊢ a <: b ∈ k →
nfCtx Γ ⊢ nf (nfCtx Γ) a <:
nf (nfCtx Γ) b ⇇ nfKind (nfCtx Γ) k
complete-<: (<:-refl a∈k) =
let nf-a∈k = complete-Tp∈ a∈k
in <:⇇-reflNf⇇ nf-a∈k (Nf⇇-valid nf-a∈k)
complete-<: (<:-trans a<:b b<:c) =
<:⇇-trans (complete-<: a<:b) (complete-<: b<:c)
complete-<: (<:-β₁ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) =
≃⇒<: (≃-β-nf a∈k b∈j k-kd a[b]∈k[b] k[b]-kd)
complete-<: (<:-β₂ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) =
≃⇒<: (≃-sym (≃-β-nf a∈k b∈j k-kd a[b]∈k[b] k[b]-kd))
complete-<: (<:-η₁ a∈Πjk) = ≃⇒<: (≃-η-nf a∈Πjk)
complete-<: (<:-η₂ a∈Πjk) = ≃⇒<: (≃-sym (≃-η-nf a∈Πjk))
complete-<: (<:-⊥ a∈b⋯c) = <:-⋯-* (<:-⊥ (Nf⇇-s-i (complete-Tp∈ a∈b⋯c)))
complete-<: (<:-⊤ a∈b⋯c) = <:-⋯-* (<:-⊤ (Nf⇇-s-i (complete-Tp∈ a∈b⋯c)))
complete-<: (<:-∀ {a₁ = a₁} k₂<∷k₁ a₁<:a₂ Πk₁a₁∈*) with complete-Tp∈ Πk₁a₁∈*
... | (⇇-⇑ (⇉-∀-f nf-k₁-kd nf-a₁⇉a₁⋯a₁) _) =
let nf-k₂<∷k₁ = complete-<∷ k₂<∷k₁
nf-a₁′<:a₂ = complete-<:-⋯ a₁<:a₂
⌊nf-k₁∷Γ⌋≡⌊nf-k₂∷Γ⌋ = cong (λ k → kd k ∷ _) (sym (<∷-⌊⌋ nf-k₂<∷k₁))
nf-a₁≈a₁′ = ≈-nf ⌊nf-k₁∷Γ⌋≡⌊nf-k₂∷Γ⌋ a₁
nf-k₂-kd = proj₁ (<∷-valid nf-k₂<∷k₁)
nf-a₁⇉a₁⋯a₁′ = proj₁ (<:-valid nf-a₁′<:a₂)
nf-a₁<:a₁′ = ≈-<: (⇓-Nf⇉ nf-k₂-kd nf-k₂<∷k₁ nf-a₁⇉a₁⋯a₁)
nf-a₁⇉a₁⋯a₁′ nf-a₁≈a₁′
nf-a₁<:a₂ = <:-trans nf-a₁<:a₁′ nf-a₁′<:a₂
in <:-⋯-* (<:-∀ nf-k₂<∷k₁ nf-a₁<:a₂ (⇉-∀-f nf-k₁-kd nf-a₁⇉a₁⋯a₁))
... | (⇇-⇑ (⇉-s-i ()) _)
complete-<: (<:-→ a₂<:a₁ b₁<:b₂) =
<:-⋯-* (<:-→ (complete-<:-⋯ a₂<:a₁) (complete-<:-⋯ b₁<:b₂))
complete-<: (<:-λ {a₁ = a₁} {a₂} a₁<:a₂∈k Λj₁a₁∈Πjk Λj₂a₂∈Πjk)
with complete-Tp∈ Λj₁a₁∈Πjk | complete-Tp∈ Λj₂a₂∈Πjk
... | ⇇-⇑ (⇉-Π-i nf-j₁-kd nf-a₁⇉k₁) (<∷-Π nf-j<∷j₁ nf-k₁<∷k Πj₁k₁-kd)
| ⇇-⇑ (⇉-Π-i nf-j₂-kd nf-a₂⇉k₂) (<∷-Π nf-j<∷j₂ nf-k₂<∷k Πj₂k₂-kd) =
let nf-a₁′<:a₂′⇇k = complete-<: a₁<:a₂∈k
nf-a₁′⇇k , nf-a₂′⇇k = <:⇇-valid nf-a₁′<:a₂′⇇k
j-kd = proj₁ (<∷-valid nf-j<∷j₁)
k-kd = proj₂ (<∷-valid nf-k₁<∷k)
⌊nf-j₁∷Γ⌋≡⌊nf-j∷Γ⌋ = cong (λ k → kd k ∷ _) (sym (<∷-⌊⌋ nf-j<∷j₁))
⌊nf-j∷Γ⌋≡⌊nf-j₂∷Γ⌋ = cong (λ k → kd k ∷ _) (<∷-⌊⌋ nf-j<∷j₂)
nf-a₁≈a₁′ = ≈-nf ⌊nf-j₁∷Γ⌋≡⌊nf-j∷Γ⌋ a₁
nf-a₂′≈a₂ = ≈-nf ⌊nf-j∷Γ⌋≡⌊nf-j₂∷Γ⌋ a₂
nf-a₁<:a₁′⇇k = ≈-<:⇇ k-kd
(⇇-⇑ (⇓-Nf⇉ j-kd nf-j<∷j₁ nf-a₁⇉k₁) nf-k₁<∷k)
nf-a₁′⇇k nf-a₁≈a₁′
nf-a₂′<:a₂⇇k = ≈-<:⇇ k-kd nf-a₂′⇇k
(⇇-⇑ (⇓-Nf⇉ j-kd nf-j<∷j₂ nf-a₂⇉k₂) nf-k₂<∷k)
nf-a₂′≈a₂
nf-a₁<:a₂⇇k = <:⇇-trans (<:⇇-trans nf-a₁<:a₁′⇇k nf-a₁′<:a₂′⇇k)
nf-a₂′<:a₂⇇k
in <:-λ nf-a₁<:a₂⇇k
(⇇-⇑ (⇉-Π-i nf-j₁-kd nf-a₁⇉k₁) (<∷-Π nf-j<∷j₁ nf-k₁<∷k Πj₁k₁-kd))
(⇇-⇑ (⇉-Π-i nf-j₂-kd nf-a₂⇉k₂) (<∷-Π nf-j<∷j₂ nf-k₂<∷k Πj₂k₂-kd))
... | ⇇-⇑ (⇉-Π-i _ _) _ | ⇇-⇑ (⇉-s-i ()) _
... | ⇇-⇑ (⇉-s-i ()) _ | _
complete-<: (<:-· {a₁} {a₂} {b₁} {b₂} a₁<:a₂∈Πjk b₁≃b₂∈j
b₁∈j k-kd k[b₁]-kd) =
let nf-a₁<:a₂⇇Πjk = complete-<: a₁<:a₂∈Πjk
nf-a₁⇇Πjk , nf-a₂⇇Πjk = <:⇇-valid nf-a₁<:a₂⇇Πjk
in <:⇇-⇑ (<:-↓⌜·⌝ nf-a₁<:a₂⇇Πjk (complete-≃ b₁≃b₂∈j))
(≅⇒<∷ (≅-nfKind-[] k-kd b₁∈j k[b₁]-kd)) (complete-kd k[b₁]-kd)
complete-<: (<:-⟨| a∈b⋯c) = <:-⋯-* (<:-⟨|-Nf⇇ (complete-Tp∈ a∈b⋯c))
complete-<: (<:-|⟩ a∈b⋯c) = <:-⋯-* (<:-|⟩-Nf⇇ (complete-Tp∈ a∈b⋯c))
complete-<: (<:-⋯-i a<:b) = <:⇇-⋯-i (complete-<: a<:b)
complete-<: (<:-⇑ a<:b∈j j<∷k) =
let nf-j<∷k = complete-<∷ j<∷k
in <:⇇-⇑ (complete-<: a<:b∈j) nf-j<∷k (proj₂ (<∷-valid nf-j<∷k))
complete-≅ : ∀ {n} {Γ : E.Ctx n} {j k} → Γ E.⊢ j ≅ k →
nfCtx Γ ⊢ nfKind (nfCtx Γ) j ≅ nfKind (nfCtx Γ) k
complete-≅ (<∷-antisym j<∷k k<∷j) =
let nf-j<∷k = complete-<∷ j<∷k
nf-j-kd , nf-k-kd = <∷-valid nf-j<∷k
in <∷-antisym nf-j-kd nf-k-kd nf-j<∷k (complete-<∷ k<∷j)
complete-≃ : ∀ {n} {Γ : E.Ctx n} {a b k} → Γ E.⊢ a ≃ b ∈ k →
nfCtx Γ ⊢ nf (nfCtx Γ) a ≃ nf (nfCtx Γ) b ⇇ nfKind (nfCtx Γ) k
complete-≃ (<:-antisym a<:b∈k b<:a∈k) =
let nf-a<:b⇇k = complete-<: a<:b∈k
in <:-antisym (<:⇇-valid-kd nf-a<:b⇇k) nf-a<:b⇇k (complete-<: b<:a∈k)
-- η-expansion of normal forms is admissible in canonical kinding.
≃-η-nf : ∀ {n} {Γ : E.Ctx n} {a j k} → Γ E.⊢Tp a ∈ Π j k →
nfCtx Γ ⊢ nf (nfCtx Γ) (Λ j (weaken a · var zero)) ≃
nf (nfCtx Γ) a ⇇ nfKind (nfCtx Γ) (Π j k)
≃-η-nf a∈Πjk with complete-Tp∈ a∈Πjk
≃-η-nf {_} {Γ} {a} {j} a∈Πjk | nf-a⇇Πjk with Nf⇇-valid nf-a⇇Πjk
... | (kd-Π nf-j-kd nf-k-kd) =
let nf-Γ = nfCtx Γ
nf-j = nfKind nf-Γ j
nf-j-wf = wf-kd nf-j-kd
nf-j-kd′ = kd-weaken nf-j-wf nf-j-kd
nf-a⇇Πjk′ = subst (kd nf-j ∷ nf-Γ ⊢Nf_⇇ _) (nf-weaken (kd nf-j) a)
(Nf⇇-weaken nf-j-wf nf-a⇇Πjk)
η-z⇇j′ = η-exp-Var∈ nf-j-kd′ (⇉-var zero (kd-ctx nf-j-kd′) refl)
nf-a·z⇇k[z] = Nf⇇-Π-e′ nf-a⇇Πjk′ η-z⇇j′
nf-a·z⇇k = Nf⇇-⇑ nf-a·z⇇k[z] (≅⇒<∷ (kd-[]-η-var nf-j-kd nf-k-kd))
in ≈-≃ (kd-Π nf-j-kd nf-k-kd) (Nf⇇-Π-i nf-j-kd nf-a·z⇇k) nf-a⇇Πjk
(≈-η-nf a∈Πjk)
-- Substitution in well-formed kinds commutes with normalization.
≅-nfKind-[] : ∀ {n} {Γ : E.Ctx n} {a j k} →
kd k ∷ Γ E.⊢ j kd → Γ E.⊢Tp a ∈ k → Γ E.⊢ j Kind[ a ] kd →
nfCtx Γ ⊢ (nfKind (nfCtx (kd k ∷ Γ)) j) Kind[
nf (nfCtx Γ) a ∈ ⌊ nfKind (nfCtx Γ) k ⌋ ] ≅
nfKind (nfCtx Γ) (j Kind[ a ])
≅-nfKind-[] {_} {Γ} {a} {j} {k} j-kd a∈k j[a]-kd =
let nf-Γ = nfCtx Γ
nf-k = nfKind nf-Γ k
nf-a = nf nf-Γ a
nf-k∷Γ = kd nf-k ∷ nf-Γ
nf-j = nfKind (nf-k∷Γ) j
⌊k⌋≡⌊nf-k⌋ = sym (⌊⌋-nf {_} {nf-Γ} k)
nf-j-kd = complete-kd j-kd
nf-a⇇k = complete-Tp∈ a∈k
nf-j[a]-kd = complete-kd j[a]-kd
nf-j[a∈⌊k⌋]-kd = kd-[] nf-j-kd nf-a⇇k
nf-j[a∈⌊k⌋]≋j[a] = subst (λ l → nf-j Kind[ nf-a ∈ l ] ≋ _)
⌊k⌋≡⌊nf-k⌋ (≋-sym (nfKind-[] j-kd a∈k))
in ≋-≅ nf-j[a∈⌊k⌋]-kd nf-j[a]-kd nf-j[a∈⌊k⌋]≋j[a]
-- β-reduction of normal forms is admissible in canonical kinding.
≃-β-nf : ∀ {n} {Γ : E.Ctx n} {a b j k} →
kd j ∷ Γ E.⊢Tp a ∈ k → Γ E.⊢Tp b ∈ j → kd j ∷ Γ E.⊢ k kd →
Γ E.⊢Tp a [ b ] ∈ k Kind[ b ] → Γ E.⊢ k Kind[ b ] kd →
nfCtx Γ ⊢ nf (nfCtx Γ) ((Λ j a) · b) ≃
nf (nfCtx Γ) (a [ b ]) ⇇ nfKind (nfCtx Γ) (k Kind[ b ])
≃-β-nf {_} {Γ} {a} {b} {j} {k} a∈k b∈j k-kd a[b]∈k[b] k[b]-kd =
let nf-Γ = nfCtx Γ
nf-j = nfKind nf-Γ j
nf-b = nf nf-Γ b
nf-j∷Γ = kd nf-j ∷ nf-Γ
nf-a = nf (nf-j∷Γ) a
⌊j⌋≡⌊nf-j⌋ = sym (⌊⌋-nf {_} {nf-Γ} j)
nf-a⇇k = complete-Tp∈ a∈k
nf-b⇇j = complete-Tp∈ b∈j
nf-a[b]⇇k[b] = complete-Tp∈ a[b]∈k[b]
nf-k[b]-kd = complete-kd k[b]-kd
nf-a[b∈⌊j⌋]⇇k[b∈⌊j⌋] = Nf⇇-[] nf-a⇇k nf-b⇇j
nf-k[b∈⌊j⌋]<∷k[b] = ≅⇒<∷ (≅-nfKind-[] k-kd b∈j k[b]-kd)
nf-a[b∈⌊j⌋]⇇k[b] = Nf⇇-⇑ nf-a[b∈⌊j⌋]⇇k[b∈⌊j⌋] nf-k[b∈⌊j⌋]<∷k[b]
nf-a[b∈⌊j⌋]≈a[b] = subst (λ l → nf-a [ nf-b ∈ l ] ≈ _) ⌊j⌋≡⌊nf-j⌋
(≈-sym (nf-[] a∈k b∈j))
in ≈-≃ nf-k[b]-kd nf-a[b∈⌊j⌋]⇇k[b] nf-a[b]⇇k[b] nf-a[b∈⌊j⌋]≈a[b]
-- Completeness of canonical subkinding and subtyping
-- w.r.t. declarative subkinding and subtyping
complete-<:-⋯ : ∀ {n} {Γ : E.Ctx n} {a b c d} → Γ O.⊢ a <: b ∈ c ⋯ d →
nfCtx Γ ⊢ nf (nfCtx Γ) a <: nf (nfCtx Γ) b
complete-<:-⋯ = CompletenessExtended.complete-<:-⋯ ∘ E.complete-<:
complete-<: : ∀ {n} {Γ : E.Ctx n} {a b k} → Γ O.⊢ a <: b ∈ k →
nfCtx Γ ⊢ nf (nfCtx Γ) a <: nf (nfCtx Γ) b ⇇ nfKind (nfCtx Γ) k
complete-<: = CompletenessExtended.complete-<: ∘ E.complete-<:
complete-<∷ : ∀ {n} {Γ : E.Ctx n} {j k} → Γ O.⊢ j <∷ k →
nfCtx Γ ⊢ nfKind (nfCtx Γ) j <∷ nfKind (nfCtx Γ) k
complete-<∷ = CompletenessExtended.complete-<∷ ∘ E.complete-<∷
| {
"alphanum_fraction": 0.4527256183,
"avg_line_length": 45.9657794677,
"ext": "agda",
"hexsha": "8b92a9abd738adc9212e8f429c20ede9ff547d08",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical/Equivalence.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical/Equivalence.agda",
"max_line_length": 81,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 13382,
"size": 24178
} |
module Prelude where
open import Data.Unit using (⊤) public
open import Data.Empty using (⊥) public
open import Function using (id; const; flip) public
open import Data.Sum using (_⊎_; inj₁; inj₂) public
open import Data.Product using (Σ; proj₁; proj₂; _,_; _×_) public
open import Data.Maybe using (Maybe; nothing; just) public
open import Data.Nat using (ℕ; _+_; zero; suc) public
open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ) public
open import Data.Vec using (Vec; _∷_; []) public
open import Data.String using (String) public
open import Data.Float using (Float) renaming (show to primShowFloat) public
open import Agda.Builtin.Float
variable S T A B C D S' T' A' B' : Set
-- redefine Bool to avoid COMPILE JS pragma on std-lib's Bool
data Bool : Set where
false true : Bool
not : Bool → Bool
not true = false
not false = true
if_then_else_ : Bool → A → A → A
if true then a else b = a
if false then a else b = b
_==_ : Bool → Bool → Bool
true == false = false
true == true = true
false == false = true
false == true = false
maybe : B → (A → B) → Maybe A → B
maybe b f nothing = b
maybe b f (just x) = f x
mapMaybe : (A → B) → Maybe A → Maybe B
mapMaybe f = maybe nothing λ a → just (f a)
data _⊍_ (A B : Set) : Set where
inj₁ : A → A ⊍ B
inj₂ : B → A ⊍ B
both : A → B → A ⊍ B
variable n : ℕ
postulate
showNat : ℕ → String
primStringAppend : String → String → String
primParseFloat : String → Float
isNaN : Float → Bool
{-# COMPILE JS showNat = a=>JSON.stringify(a) #-}
{-# COMPILE JS primStringAppend = a=>b=>a+b #-}
{-# COMPILE JS primParseFloat = a=>Number(a) #-}
{-# COMPILE JS isNaN = a=>b=>b[isNaN(a)?1:0]() #-}
Iso = λ (S T A B : Set) → (S → A) × (B → T)
Lens = λ (S T A B : Set) → S → A × (B → T)
Prism = λ (S T A B : Set) → (S → A ⊎ T) × (B → T)
plusIso : Float → Iso Float Float Float Float
plusIso x = primFloatPlus x , λ y → primFloatMinus y x
mulIso : Float → Iso Float Float Float Float
mulIso x = primFloatTimes x , λ y → primFloatDiv y x
prismToLens : Prism S T A B → Lens (Maybe S) (Maybe T) (Maybe A) (Maybe B)
prismToLens (p1 , p2) nothing = nothing , mapMaybe p2
prismToLens (p1 , p2) (just s) with p1 s
... | inj₁ a = just a , mapMaybe p2
... | inj₂ t = nothing , const (just t)
floatPrism : Prism String (Maybe String) Float Float
floatPrism = parse , (λ x → just (primShowFloat x))
where
parse : String → _
parse s = if isNaN p then inj₂ nothing else inj₁ p
where
p = primParseFloat s
| {
"alphanum_fraction": 0.6338194718,
"avg_line_length": 29.8470588235,
"ext": "agda",
"hexsha": "fe5041048c58bdbd19c815a0cb88fb6cf9ec36e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "divipp/frp_agda",
"max_forks_repo_path": "Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "divipp/frp_agda",
"max_issues_repo_path": "Prelude.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "divipp/frp_agda",
"max_stars_repo_path": "Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:32:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-08T08:51:59.000Z",
"num_tokens": 837,
"size": 2537
} |
open import AEff
open import EffectAnnotations
open import Types hiding (``)
open import Relation.Binary.PropositionalEquality hiding ([_] ; Extensionality)
module Renamings where
-- SET OF RENAMINGS BETWEEN CONTEXTS
data Ren : Ctx → Ctx → Set where
⟨_,_⟩ : {Γ Γ' : Ctx} {X : VType} →
Ren Γ Γ' →
X ∈ Γ' →
--------------------------
Ren (Γ ∷ X) Γ'
ε : {Γ' : Ctx} →
------------
Ren [] Γ'
π : {Γ Γ' : Ctx} {X : VType} →
Ren Γ Γ' →
--------------------------
Ren Γ (Γ' ∷ X)
φ : {Γ Γ' : Ctx} →
Ren Γ Γ' →
----------------
Ren (Γ ■) (Γ' ■)
-- RENAMING VARIABLES
ren-var : {Γ Γ' : Ctx} {X : VType} →
Ren Γ Γ' →
X ∈ Γ →
--------------------------
X ∈ Γ'
ren-var ⟨ f , x ⟩ Hd =
x
ren-var (π f) Hd =
Tl-v (ren-var f Hd)
ren-var ⟨ f , y ⟩ (Tl-v x) =
ren-var f x
ren-var (π f) (Tl-v x) =
Tl-v (ren-var f (Tl-v x))
ren-var (π f) (Tl-■ p x) =
Tl-v (ren-var f (Tl-■ p x))
ren-var (φ f) (Tl-■ p x) =
Tl-■ p (ren-var f x)
-- IDENTITY RENAMING
ren-id : {Γ : Ctx} →
-----------
Ren Γ Γ
ren-id {[]} =
ε
ren-id {Γ ∷ X} =
⟨ π ren-id , Hd ⟩
ren-id {Γ ■} =
φ ren-id
-- EXCHANGE RENAMING
ren-exch : {Γ : Ctx} {X Y : VType} →
---------------------------
Ren (Γ ∷ X ∷ Y) (Γ ∷ Y ∷ X)
ren-exch {Γ} = ⟨ ⟨ π (π ren-id) , Hd ⟩ , Tl-v Hd ⟩
-- COMPOSITION OF RENAMINGS
ren-comp : {Γ Γ' Γ'' : Ctx} →
Ren Γ' Γ'' →
Ren Γ Γ' →
------------------
Ren Γ Γ''
ren-comp g ⟨ f , x ⟩ =
⟨ ren-comp g f , ren-var g x ⟩
ren-comp g ε =
ε
ren-comp ⟨ g , x ⟩ (π f) =
ren-comp g f
ren-comp (π g) (π f) =
π (ren-comp g (π f))
ren-comp (π g) (φ f) =
π (ren-comp g (φ f))
ren-comp (φ g) (φ f) =
φ (ren-comp g f)
-- WEAKENING OF RENAMINGS
ren-wk : {Γ : Ctx} {X : VType} →
-----------------------
Ren Γ (Γ ∷ X)
ren-wk =
π ren-id
-- CONGRUENCE OF RENAMINGS
ren-cong : {Γ Γ' : Ctx} {X : VType} →
Ren Γ Γ' →
--------------------------
Ren (Γ ∷ X) (Γ' ∷ X)
ren-cong f =
⟨ π f , Hd ⟩
-- ACTION OF RENAMING ON WELL-TYPED VALUES AND COMPUTATIONS
mutual
V-rename : {X : VType} {Γ Γ' : Ctx} →
Ren Γ Γ' →
Γ ⊢V⦂ X →
--------------------------
Γ' ⊢V⦂ X
V-rename f (` x) =
` ren-var f x
V-rename f (´ c) =
´ c
V-rename f ⋆ =
⋆
V-rename f (ƛ M) =
ƛ (C-rename (ren-cong f) M)
V-rename f ⟨ V ⟩ =
⟨ V-rename f V ⟩
V-rename f (□ V) =
□ (V-rename (φ f) V)
C-rename : {C : CType} {Γ Γ' : Ctx} →
Ren Γ Γ' →
Γ ⊢C⦂ C →
--------------------------
Γ' ⊢C⦂ C
C-rename f (return V) =
return (V-rename f V)
C-rename f (let= M `in N) =
let= C-rename f M `in C-rename (ren-cong f) N
C-rename f (V · W) =
V-rename f V · V-rename f W
C-rename f (↑ op p V M) =
↑ op p (V-rename f V) (C-rename f M)
C-rename f (↓ op V M) =
↓ op (V-rename f V) (C-rename f M)
C-rename f (promise op ∣ p ↦ M `in N) =
promise op ∣ p ↦ C-rename (ren-cong (ren-cong f)) M `in C-rename (ren-cong f) N
C-rename f (await V until M) =
await (V-rename f V) until (C-rename (ren-cong f) M)
C-rename f (unbox V `in M) =
unbox (V-rename f V) `in (C-rename (ren-cong f) M)
C-rename f (spawn M N) =
spawn (C-rename (φ f) M) (C-rename f N)
C-rename f (coerce p q M) =
coerce p q (C-rename f M)
-- ACTION OF RENAMING ON WELL-TYPED PROCESSES
P-rename : {o : O} {PP : PType o} {Γ Γ' : Ctx} → Ren Γ Γ' → Γ ⊢P⦂ PP → Γ' ⊢P⦂ PP
P-rename f (run M) =
run (C-rename f M)
P-rename f (P ∥ Q) =
P-rename f P ∥ P-rename f Q
P-rename f (↑ op p V P) =
↑ op p (V-rename f V) (P-rename f P)
P-rename f (↓ op V P) =
↓ op (V-rename f V) (P-rename f P)
| {
"alphanum_fraction": 0.4203007519,
"avg_line_length": 21.6847826087,
"ext": "agda",
"hexsha": "c07cc60140111d67162f82791b5cb797b3da16ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danelahman/modal-aeff-agda",
"max_forks_repo_path": "Renamings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danelahman/modal-aeff-agda",
"max_issues_repo_path": "Renamings.agda",
"max_line_length": 83,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danelahman/higher-order-aeff-agda",
"max_stars_repo_path": "Renamings.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T18:50:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-17T15:00:34.000Z",
"num_tokens": 1565,
"size": 3990
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
open import GSeTT.Syntax
{- Typing Rules and basic syntactic properties for the type theory for globular sets -}
module GSeTT.Rules where
{- Well-formedness statements ≡ inference rules -}
data _⊢C : Pre-Ctx → Set₁
data _⊢T_ : Pre-Ctx → Pre-Ty → Set₁
data _⊢t_#_ : Pre-Ctx → Pre-Tm → Pre-Ty → Set₁
data _⊢S_>_ : Pre-Ctx → Pre-Sub → Pre-Ctx → Set₁
data _⊢C where
ec : nil ⊢C
cc : ∀ {Γ x A} → Γ ⊢C → Γ ⊢T A → x == length Γ → (Γ :: (x , A)) ⊢C
data _⊢T_ where
ob : ∀ {Γ} → Γ ⊢C → Γ ⊢T ∗
ar : ∀ {Γ A t u} → Γ ⊢t t # A → Γ ⊢t u # A → Γ ⊢T ⇒ A t u
data _⊢t_#_ where
var : ∀ {Γ x A} → Γ ⊢C → x # A ∈ Γ → Γ ⊢t (Var x) # A
data _⊢S_>_ where
es : ∀ {Δ} → Δ ⊢C → Δ ⊢S nil > nil
sc : ∀ {Δ Γ γ x y A t} → Δ ⊢S γ > Γ → (Γ :: (x , A)) ⊢C → (Δ ⊢t t # (A [ γ ]Pre-Ty)) → x == y → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A))
{- Weakening admissibility -}
wkT : ∀ {Γ A y B} → Γ ⊢T A → (Γ :: (y , B)) ⊢C → (Γ :: (y , B)) ⊢T A
wkt : ∀ {Γ A t y B} → Γ ⊢t t # A → (Γ :: (y , B)) ⊢C → (Γ :: (y , B)) ⊢t t # A
wkT (ob _) Γ,y:B⊢ = ob Γ,y:B⊢
wkT (ar Γ⊢t:A Γ⊢u:A) Γ,y:B⊢ = ar (wkt Γ⊢t:A Γ,y:B⊢) (wkt Γ⊢u:A Γ,y:B⊢)
wkt (var Γ⊢C x∈Γ) Γ,y:B⊢ = var Γ,y:B⊢ (inl x∈Γ)
wkS : ∀ {Δ Γ γ y B} → Δ ⊢S γ > Γ → (Δ :: (y , B)) ⊢C → (Δ :: (y , B)) ⊢S γ > Γ
wkS (es _) Δ,y:B⊢ = es Δ,y:B⊢
wkS (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) Δ,y:B⊢ = sc (wkS Δ⊢γ:Γ Δ,y:B⊢) Γ,x:A⊢ (wkt Δ⊢t:A[γ] Δ,y:B⊢) idp
{- Consistency : all objects appearing in derivable judgments are derivable -}
Γ⊢A→Γ⊢ : ∀ {Γ A} → Γ ⊢T A → Γ ⊢C
Γ⊢t:A→Γ⊢ : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢C
Γ⊢A→Γ⊢ (ob Γ⊢) = Γ⊢
Γ⊢A→Γ⊢ (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A→Γ⊢ Γ⊢t:A
Γ⊢t:A→Γ⊢ (var Γ⊢ _) = Γ⊢
Δ⊢γ:Γ→Γ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Γ ⊢C
Δ⊢γ:Γ→Γ⊢ (es Δ⊢) = ec
Δ⊢γ:Γ→Γ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Γ,x:A⊢
Δ⊢γ:Γ→Δ⊢ : ∀ {Δ Γ γ} → Δ ⊢S γ > Γ → Δ ⊢C
Δ⊢γ:Γ→Δ⊢ (es Δ⊢) = Δ⊢
Δ⊢γ:Γ→Δ⊢ (sc Δ⊢γ:Γ Γ,x:A⊢ Δ⊢t:A[γ] idp) = Δ⊢γ:Γ→Δ⊢ Δ⊢γ:Γ
Γ,x:A⊢→Γ,x:A⊢A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → (Γ :: (x , A)) ⊢T A
Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) = wkT Γ⊢A Γ,x:A⊢
Γ,x:A⊢→Γ,x:A⊢x:A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → (Γ :: (x , A)) ⊢t (Var x) # A
Γ,x:A⊢→Γ,x:A⊢x:A Γ,x:A⊢ = var Γ,x:A⊢ (inr (idp , idp))
Γ,x:A⊢→Γ⊢ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢C
Γ,x:A⊢→Γ⊢ (cc Γ⊢ _ _) = Γ⊢
Γ⊢t:A→Γ⊢A : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢T A
Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) (inl y∈Γ)) = wkT (Γ⊢t:A→Γ⊢A (var Γ⊢ y∈Γ)) Γ,x:A⊢
Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc _ _ idp) (inr (idp , idp))) = Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢
Γ⊢src : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t t # A
Γ⊢src (ar Γ⊢t Γ⊢u) = Γ⊢t
Γ⊢tgt : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t u # A
Γ⊢tgt (ar Γ⊢t Γ⊢u) = Γ⊢u
{- Cut-admissibility -}
-- notational shortcut : if A = B a term of type A is also of type B
trT : ∀ {Γ A B t} → A == B → Γ ⊢t t # A → Γ ⊢t t # B
trT idp Γ⊢t:A = Γ⊢t:A
n∉Γ : ∀ {Γ A n} → Γ ⊢C → (length Γ ≤ n) → ¬ (n # A ∈ Γ)
n∉Γ (cc Γ⊢ _ _) l+1≤n (inl n∈Γ) = n∉Γ Γ⊢ (Sn≤m→n≤m l+1≤n) n∈Γ
n∉Γ (cc Γ⊢ _ idp) Sn≤n (inr (idp , idp)) = Sn≰n _ Sn≤n
lΓ∉Γ : ∀ {Γ A} → Γ ⊢C → ¬ ((length Γ) # A ∈ Γ)
lΓ∉Γ Γ⊢ = n∉Γ Γ⊢ (n≤n _)
Γ+⊢l : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → x == length Γ
Γ+⊢l (cc _ _ idp) = idp
{- action on weakened types and terms -}
wk[]T : ∀ {Γ Δ γ x u A B} → Γ ⊢T A → Δ ⊢S (γ :: (x , u)) > (Γ :: (x , B)) → (A [ (γ :: (x , u)) ]Pre-Ty) == (A [ γ ]Pre-Ty)
wk[]t : ∀ {Γ Δ γ x u A t B} → Γ ⊢t t # A → Δ ⊢S (γ :: (x , u)) > (Γ :: (x , B)) → (t [ (γ :: (x , u)) ]Pre-Tm) == (t [ γ ]Pre-Tm)
wk[]T (ob Γ⊢) _ = idp
wk[]T (ar Γ⊢t:A Γ⊢u:A) Δ⊢γ+:Γ+ = ⇒= (wk[]T (Γ⊢t:A→Γ⊢A Γ⊢t:A) Δ⊢γ+:Γ+) (wk[]t Γ⊢t:A Δ⊢γ+:Γ+) (wk[]t Γ⊢u:A Δ⊢γ+:Γ+)
wk[]t {x = x} (var {x = y} Γ⊢ y∈Γ) Δ⊢γ+:Γ+ with (eqdecℕ y x)
wk[]t {x = x} (var {x = y} Γ⊢ y∈Γ) Δ⊢γ+:Γ+ | inr _ = idp
wk[]t (var {Γ = Γ} Γ⊢ x∈Γ) Δ⊢γ+:Γ+ | inl idp = ⊥-elim (lΓ∉Γ Γ⊢ (transport {B = λ n → n # _ ∈ Γ} (Γ+⊢l (Δ⊢γ:Γ→Γ⊢ Δ⊢γ+:Γ+)) x∈Γ))
dim[] : ∀ (A : Pre-Ty) (γ : Pre-Sub) → dim (A [ γ ]Pre-Ty) == dim A
dim[] ∗ γ = idp
dim[] (⇒ A x x₁) γ = S= (dim[] A γ)
| {
"alphanum_fraction": 0.4229064039,
"avg_line_length": 37.247706422,
"ext": "agda",
"hexsha": "1dc933b43e2ab6d8fcd7f4f35c22045a194272d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/Rules.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/Rules.agda",
"max_line_length": 136,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/Rules.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2680,
"size": 4060
} |
{-# OPTIONS --without-K #-}
module common-utilities where
open import common
lift-≟-1 : ∀ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} → (f : A → B) → {x : A} → {y : A} → Maybe (x ≡ y) → Maybe (f x ≡ f y)
lift-≟-1 f (just refl) = just refl
lift-≟-1 f nothing = nothing
lift-≟-1-refl : ∀ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} f {x} p → p ≡ just refl → lift-≟-1 {ℓ} {ℓ′} {A} {B} f {x} {x} p ≡ just refl
lift-≟-1-refl f ._ refl = refl
lift-≟-2-helper : ∀ {A : Set} {B : A → Set} {C : Set} {f : (x : A) → B x → C} {x : A} {y y' : B x} → Maybe (y ≡ y') → Maybe (f x y ≡ f x y')
lift-≟-2-helper (just refl) = just refl
lift-≟-2-helper nothing = nothing
lift-≟-2 : ∀ {A} {B : A → Set} {C} → (f : (x : A) → B x → C) → {x x' : A} → {y : B x} → {y' : B x'} → Maybe (x ≡ x') → ((p : x ≡ x') → Maybe (transport B p y ≡ y')) → Maybe (f x y ≡ f x' y')
lift-≟-2 {A} {B} {C} f {x} {.x} {y} {y'} (just refl) p = lift-≟-2-helper {A} {B} {C} {f} {x} {y} {y'} (p refl)
lift-≟-2 f nothing _ = nothing
lift-≟-2-helper-refl : ∀ {A B C f x y p} → p ≡ just refl → lift-≟-2-helper {A} {B} {C} {f} {x} {y} {y} p ≡ just refl
lift-≟-2-helper-refl refl = refl
lift-≟-2-refl : ∀ {A B C} f {x} {y} p q → p ≡ just refl → q refl ≡ just refl → lift-≟-2 {A} {B} {C} f {x} {x} {y} {y} p q ≡ just refl
lift-≟-2-refl {A} {B} {C} f {x} {y} ._ q refl q' = lift-≟-2-helper-refl {A} {B} {C} {f} {x} {y} {q refl} q'
lift-≟-3-helper : ∀ {A : Set} {B : A → Set} {C D} → {f : (x : A) → (y : B x) → C x y → D} → {x : A} → {y y' : B x} → {z : C x y} → {z' : C x y'} → Maybe (y ≡ y') → ((q : y ≡ y') → Maybe (transport2 C refl q z ≡ z')) → Maybe (f x y z ≡ f x y' z')
lift-≟-3-helper {A} {B} {C} {D} {f} {x} {y} {.y} {z} {z'} (just refl) q = lift-≟-2-helper {B x} {C x} {D} {f x} {y} {z} {z'} (q refl)
lift-≟-3-helper nothing q = nothing
lift-≟-3 : ∀ {A B C D} → (f : (x : A) → (y : B x) → C x y → D) → {x x' : A} → {y : B x} → {y' : B x'} → {z : C x y} → {z' : C x' y'} → Maybe (x ≡ x') → ((p : x ≡ x') → Maybe (transport B p y ≡ y')) → ((p : x ≡ x') → (q : transport B p y ≡ y') → Maybe (transport2 C p q z ≡ z')) → Maybe (f x y z ≡ f x' y' z')
lift-≟-3 {A} {B} {C} {D} f {x} {.x} {y} {y'} {z} {z'} (just refl) q r = lift-≟-3-helper {A} {B} {C} {D} {f} {x} {y} {y'} {z} {z'} (q refl) (r refl)
lift-≟-3 f nothing q r = nothing
lift-≟-3-helper-refl : ∀ {A B C D f x y z p q} → p ≡ just refl → q refl ≡ just refl → lift-≟-3-helper {A} {B} {C} {D} {f} {x} {y} {y} {z} {z} p q ≡ just refl
lift-≟-3-helper-refl {A} {B} {C} {D} {f} {x} {y} {z} {._} {q} refl q' = lift-≟-2-helper-refl {B x} {C x} {D} {f x} {y} {z} {q refl} q'
lift-≟-3-refl : ∀ {A B C D} f {x y z} p q r → p ≡ just refl → q refl ≡ just refl → r refl refl ≡ just refl → lift-≟-3 {A} {B} {C} {D} f {x} {x} {y} {y} {z} {z} p q r ≡ just refl
lift-≟-3-refl {A} {B} {C} {D} f {x} {y} {z} ._ q r refl q' r' = lift-≟-3-helper-refl {A} {B} {C} {D} {f} {x} {y} {z} {q refl} {r refl} q' r'
lift-≟-4-helper : ∀ {A : Set} {B : A → Set} {C : (x : A) → B x → Set} {D : (x : A) → (y : B x) → C x y → Set} {E} → {f : (x : A) → (y : B x) → (z : C x y) → (w : D x y z) → E} → {x : A} → {y y' : B x} → {z : C x y} → {z' : C x y'} → {w : D x y z} → {w' : D x y' z'} → Maybe (y ≡ y') → ((q : y ≡ y') → Maybe (transport2 C refl q z ≡ z')) → ((q : y ≡ y') → (r : transport2 C refl q z ≡ z') → Maybe (transport3 D refl q r w ≡ w')) → Maybe (f x y z w ≡ f x y' z' w')
lift-≟-4-helper {A} {B} {C} {D} {E} {f} {x} {y} {.y} {z} {z'} {w} {w'} (just refl) q r = lift-≟-3-helper {B x} {C x} {D x} {E} {f x} {y} {z} {z'} {w} {w'}
(q refl) (r refl)
lift-≟-4-helper nothing q r = nothing
lift-≟-4 : ∀ {A B C D E} → (f : (x : A) → (y : B x) → (z : C x y) → (w : D x y z) → E) → {x x' : A} → {y : B x} → {y' : B x'} → {z : C x y} → {z' : C x' y'} → {w : D x y z} → {w' : D x' y' z'}
→ Maybe (x ≡ x')
→ ((p : x ≡ x') → Maybe (transport B p y ≡ y'))
→ ((p : x ≡ x') → (q : transport B p y ≡ y') → Maybe (transport2 C p q z ≡ z'))
→ ((p : x ≡ x') → (q : transport B p y ≡ y') → (r : transport2 C p q z ≡ z') → Maybe (transport3 D p q r w ≡ w'))
→ Maybe (f x y z w ≡ f x' y' z' w')
lift-≟-4 {A} {B} {C} {D} {E} f {x} {.x} {y} {y'} {z} {z'} {w} {w'} (just refl) q r s = lift-≟-4-helper {A} {B} {C} {D} {E} {f} {x} {y} {y'} {z} {z'} {w} {w'} (q refl) (r refl) (s refl)
lift-≟-4 f nothing q r s = nothing
lift-≟-5-helper : ∀ {A : Set} {B : A → Set} {C : (x : A) → B x → Set} {D : (x : A) → (y : B x) → C x y → Set} {E F} → {f : (x : A) → (y : B x) → (z : C x y) → (w : D x y z) → (v : E x y z w) → F} → {x : A} → {y y' : B x} → {z : C x y} → {z' : C x y'} → {w : D x y z} → {w' : D x y' z'} → {v : E x y z w} → {v' : E x y' z' w'} → Maybe (y ≡ y') → ((q : y ≡ y') → Maybe (transport2 C refl q z ≡ z')) → ((q : y ≡ y') → (r : transport2 C refl q z ≡ z') → Maybe (transport3 D refl q r w ≡ w')) → ((q : y ≡ y') → (r : transport2 C refl q z ≡ z') → (s : transport3 D refl q r w ≡ w') → Maybe (transport4 E refl q r s v ≡ v')) → Maybe (f x y z w v ≡ f x y' z' w' v')
lift-≟-5-helper {A} {B} {C} {D} {E} {F} {f} {x} {y} {.y} {z} {z'} {w} {w'} {v} {v'} (just refl) q r s
= lift-≟-4-helper {B x} {C x} {D x} {E x} {F} {f x} {y} {z} {z'} {w}
{w'} {v} {v'} (q refl) (r refl) (s refl)
lift-≟-5-helper nothing q r s = nothing
lift-≟-5 : ∀ {A B C D E F} → (f : (x : A) → (y : B x) → (z : C x y) → (w : D x y z) → (v : E x y z w) → F) → {x x' : A} → {y : B x} → {y' : B x'} → {z : C x y} → {z' : C x' y'} → {w : D x y z} → {w' : D x' y' z'} → {v : E x y z w} → {v' : E x' y' z' w'} → Maybe (x ≡ x') → ((p : x ≡ x') → Maybe (transport B p y ≡ y')) → ((p : x ≡ x') → (q : transport B p y ≡ y') → Maybe (transport2 C p q z ≡ z')) → ((p : x ≡ x') → (q : transport B p y ≡ y') → (r : transport2 C p q z ≡ z') → Maybe (transport3 D p q r w ≡ w')) → ((p : x ≡ x') → (q : transport B p y ≡ y') → (r : transport2 C p q z ≡ z') → (s : transport3 D p q r w ≡ w') → Maybe (transport4 E p q r s v ≡ v')) → Maybe (f x y z w v ≡ f x' y' z' w' v')
lift-≟-5 {A} {B} {C} {D} {E} {F} f {x} {.x} {y} {y'} {z} {z'} {w} {w'} {v} {v'} (just refl) q r s t = lift-≟-5-helper {A} {B} {C} {D} {E} {F} {f} {x} {y} {y'} {z} {z'} {w} {w'} {v} {v'} (q refl) (r refl) (s refl) (t refl)
lift-≟-5 f nothing q r s t = nothing
lift-≟-4-helper-refl : ∀ {A B C D E f x y z w p q r} → p ≡ just refl → q refl ≡ just refl → r refl refl ≡ just refl → lift-≟-4-helper {A} {B} {C} {D} {E} {f} {x} {y} {y} {z} {z} {w} {w} p q r ≡ just refl
lift-≟-4-helper-refl {A} {B} {C} {D} {E} {f} {x} {y} {z} {w} {._} {q} {r} refl q' r' = lift-≟-3-helper-refl {B x} {C x} {D x} {E} {f x} {y} {z} {w}
{q refl} {r refl} q' r'
lift-≟-4-refl : ∀ {A B C D E} f {x y z w} p q r s → p ≡ just refl → q refl ≡ just refl → r refl refl ≡ just refl → s refl refl refl ≡ just refl → lift-≟-4 {A} {B} {C} {D} {E} f {x} {x} {y} {y} {z} {z} {w} {w} p q r s ≡ just refl
lift-≟-4-refl {A} {B} {C} {D} {E} f {x} {y} {z} {w} ._ q r s refl q' r' s' = lift-≟-4-helper-refl {A} {B} {C} {D} {E} {f} {x} {y} {z} {w} {q refl} {r refl} {s refl} q' r' s'
lift-≟-5-helper-refl : ∀ {A B C D E F f x y z w v p q r s} → p ≡ just refl → q refl ≡ just refl → r refl refl ≡ just refl → s refl refl refl ≡ just refl → lift-≟-5-helper {A} {B} {C} {D} {E} {F} {f} {x} {y} {y} {z} {z} {w} {w} {v} {v} p q r s ≡ just refl
lift-≟-5-helper-refl {A} {B} {C} {D} {E} {F} {f} {x} {y} {z} {w} {v} {._} {q} {r} {s} refl q' r' s'
= lift-≟-4-helper-refl {B x} {C x} {D x} {E x} {F} {f x} {y} {z} {w}
{v} {q refl} {r refl} {s refl} q' r' s'
lift-≟-5-refl : ∀ {A B C D E F} f {x y z w v} p q r s t → p ≡ just refl → q refl ≡ just refl → r refl refl ≡ just refl → s refl refl refl ≡ just refl → t refl refl refl refl ≡ just refl → lift-≟-5 {A} {B} {C} {D} {E} {F} f {x} {x} {y} {y} {z} {z} {w} {w} {v} {v} p q r s t ≡ just refl
lift-≟-5-refl {A} {B} {C} {D} {E} {F} f {x} {y} {z} {w} {v} ._ q r s t refl q' r' s' t' = lift-≟-5-helper-refl {A} {B} {C} {D} {E} {F} {f} {x} {y} {z} {w} {v} {q refl} {r refl} {s refl} {t refl} q' r' s' t'
| {
"alphanum_fraction": 0.4218923933,
"avg_line_length": 103.6538461538,
"ext": "agda",
"hexsha": "e3798c180fdd2f790531275b514d3c2ba80bd6cf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/common-utilities.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/common-utilities.agda",
"max_line_length": 703,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/common-utilities.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 4126,
"size": 8085
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Types and functions which are used to keep track of height
-- invariants in AVL Trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.AVL.Height where
open import Data.Nat.Base
open import Data.Fin using (Fin; zero; suc)
ℕ₂ = Fin 2
pattern 0# = zero
pattern 1# = suc zero
pattern ## = suc (suc ())
-- Addition.
infixl 6 _⊕_
_⊕_ : ℕ₂ → ℕ → ℕ
0# ⊕ n = n
1# ⊕ n = 1 + n
## ⊕ n
-- pred[ i ⊕ n ] = pred (i ⊕ n).
pred[_⊕_] : ℕ₂ → ℕ → ℕ
pred[ i ⊕ zero ] = 0
pred[ i ⊕ suc n ] = i ⊕ n
infix 4 _∼_⊔_
-- If i ∼ j ⊔ m, then the difference between i and j is at most 1,
-- and the maximum of i and j is m. _∼_⊔_ is used to record the
-- balance factor of the AVL trees, and also to ensure that the
-- absolute value of the balance factor is never more than 1.
data _∼_⊔_ : ℕ → ℕ → ℕ → Set where
∼+ : ∀ {n} → n ∼ 1 + n ⊔ 1 + n
∼0 : ∀ {n} → n ∼ n ⊔ n
∼- : ∀ {n} → 1 + n ∼ n ⊔ 1 + n
-- Some lemmas.
max∼ : ∀ {i j m} → i ∼ j ⊔ m → m ∼ i ⊔ m
max∼ ∼+ = ∼-
max∼ ∼0 = ∼0
max∼ ∼- = ∼0
∼max : ∀ {i j m} → i ∼ j ⊔ m → j ∼ m ⊔ m
∼max ∼+ = ∼0
∼max ∼0 = ∼0
∼max ∼- = ∼+
| {
"alphanum_fraction": 0.4667194929,
"avg_line_length": 21.7586206897,
"ext": "agda",
"hexsha": "5e7516e0ac1cea734740ded9386701173ad014bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Height.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Height.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Height.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 506,
"size": 1262
} |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong)
open import Syntax
import Renaming
import Substitution
module Instantiation where
module _ {𝕊 : Signature} where
open Expression 𝕊
open Substitution
open Renaming
open Equality
-- the set of instantiations
infix 5 _→ⁱ_∥_
_→ⁱ_∥_ : MShape → MShape → VShape → Set
𝕄 →ⁱ 𝕂 ∥ γ = ∀ {clᴹ γᴹ} (M : [ clᴹ , γᴹ ]∈ 𝕄) → Arg clᴹ 𝕂 γ γᴹ
-- equality of instantiations
infix 4 _≈ⁱ_
_≈ⁱ_ : ∀ {𝕂 𝕄} {γ} (I J : 𝕂 →ⁱ 𝕄 ∥ γ) → Set
I ≈ⁱ J = ∀ {clᴹ γᴹ} (M : [ clᴹ , γᴹ ]∈ _) → I M ≈ J M
-- equality of instaniations is an equivalence relation
≈ⁱ-refl : ∀ {𝕂 𝕄} {γ} {I : 𝕂 →ⁱ 𝕄 ∥ γ} → I ≈ⁱ I
≈ⁱ-refl M = ≈-refl
≈ⁱ-sym : ∀ {𝕂 𝕄} {γ} {I J : 𝕂 →ⁱ 𝕄 ∥ γ} → I ≈ⁱ J → J ≈ⁱ I
≈ⁱ-sym ξ M = ≈-sym (ξ M)
≈ⁱ-trans : ∀ {𝕂 𝕄} {γ} {I J K : 𝕂 →ⁱ 𝕄 ∥ γ} → I ≈ⁱ J → J ≈ⁱ K → I ≈ⁱ K
≈ⁱ-trans ζ ξ M = ≈-trans (ζ M) (ξ M)
-- identity instantiation
𝟙ⁱ : ∀ {𝕄 γ} → 𝕄 →ⁱ 𝕄 ∥ γ
𝟙ⁱ M = expr-meta-generic M
-- instantiation extension
⇑ⁱ : ∀ {𝕂 𝕄 γ δ} → 𝕂 →ⁱ 𝕄 ∥ γ → 𝕂 →ⁱ 𝕄 ∥ γ ⊕ δ
⇑ⁱ I M = [ ⇑ʳ var-left ]ʳ (I M)
-- extension respects equality
⇑ⁱ-resp-≈ⁱ : ∀ {𝕂 𝕄} {γ δ} → {I J : 𝕂 →ⁱ 𝕄 ∥ γ} → I ≈ⁱ J → ⇑ⁱ {δ = δ} I ≈ⁱ ⇑ⁱ J
⇑ⁱ-resp-≈ⁱ ξ M = []ʳ-resp-≈ (⇑ʳ var-left) (ξ M)
-- the action of an instantiation on an expression
infix 6 [_]ⁱ_
[_]ⁱ_ : ∀ {cl 𝕂 𝕄} {γ} → (𝕂 →ⁱ 𝕄 ∥ γ) → Expr cl 𝕂 γ → Expr cl 𝕄 γ
[ I ]ⁱ (expr-var x) = expr-var x
[ I ]ⁱ (expr-symb S es) = expr-symb S (λ i → [ ⇑ⁱ I ]ⁱ es i)
[ I ]ⁱ (expr-meta M ts) = [ [ 𝟙ˢ , (λ i → [ I ]ⁱ ts i) ]ˢ ]ˢ I M
[ I ]ⁱ expr-eqty = expr-eqty
[ I ]ⁱ expr-eqtm = expr-eqtm
-- instantiations respects equality
[]ⁱ-resp-≈ : ∀ {cl} {𝕂 𝕄} {γ} (I : 𝕂 →ⁱ 𝕄 ∥ γ) {t u : Expr cl 𝕂 γ} → t ≈ u → [ I ]ⁱ t ≈ [ I ]ⁱ u
[]ⁱ-resp-≈ I (≈-≡ ξ) = ≈-≡ (cong [ I ]ⁱ_ ξ)
[]ⁱ-resp-≈ I (≈-symb ξ) = ≈-symb (λ i → []ⁱ-resp-≈ (⇑ⁱ I) (ξ i))
[]ⁱ-resp-≈ I (≈-meta ξ) = []ˢ-resp-≈ˢ ([,]ˢ-resp-≈ˢ ≈ˢ-refl (λ i → []ⁱ-resp-≈ I (ξ i))) (I _)
[]ⁱ-resp-≈ⁱ : ∀ {cl} {𝕂 𝕄} {γ} {I J : 𝕂 →ⁱ 𝕄 ∥ γ} (t : Expr cl 𝕂 γ) → I ≈ⁱ J → [ I ]ⁱ t ≈ [ J ]ⁱ t
[]ⁱ-resp-≈ⁱ (expr-var x) ξ = ≈-refl
[]ⁱ-resp-≈ⁱ (expr-symb S es) ξ = ≈-symb (λ i → []ⁱ-resp-≈ⁱ (es i) (⇑ⁱ-resp-≈ⁱ ξ))
[]ⁱ-resp-≈ⁱ (expr-meta M ts) ξ = []ˢ-resp-≈ˢ-≈ ([,]ˢ-resp-≈ˢ ≈ˢ-refl (λ i → []ⁱ-resp-≈ⁱ (ts i) ξ)) (ξ M)
[]ⁱ-resp-≈ⁱ expr-eqty ξ = ≈-eqty
[]ⁱ-resp-≈ⁱ expr-eqtm ξ = ≈-eqtm
[]ⁱ-resp-≈ⁱ-≈ : ∀ {cl} {𝕂 𝕄} {γ} {I J : 𝕂 →ⁱ 𝕄 ∥ γ} {t u : Expr cl 𝕂 γ} →
I ≈ⁱ J → t ≈ u → [ I ]ⁱ t ≈ [ J ]ⁱ u
[]ⁱ-resp-≈ⁱ-≈ {J = J} {t = t} ζ ξ = ≈-trans ([]ⁱ-resp-≈ⁱ t ζ) ([]ⁱ-resp-≈ J ξ)
-- composition of instantiations
infixl 7 _∘ⁱ_
_∘ⁱ_ : ∀ {𝕂 𝕃 𝕄} {γ} → 𝕃 →ⁱ 𝕄 ∥ γ → 𝕂 →ⁱ 𝕃 ∥ γ → 𝕂 →ⁱ 𝕄 ∥ γ
(J ∘ⁱ I) M = [ ⇑ⁱ J ]ⁱ I M
-- composition of a renaming and instantiation
infixr 7 _ʳ∘ⁱ_
_ʳ∘ⁱ_ : ∀ {𝕂 𝕄} {γ δ} → (ρ : γ →ʳ δ) → (I : 𝕂 →ⁱ 𝕄 ∥ γ) → 𝕂 →ⁱ 𝕄 ∥ δ
(ρ ʳ∘ⁱ I) M = [ ⇑ʳ ρ ]ʳ I M
⇑ⁱ-resp-ʳ∘ⁱ : ∀ {𝕂 𝕄} {γ δ η} {ρ : γ →ʳ δ} → {I : 𝕂 →ⁱ 𝕄 ∥ γ} →
⇑ⁱ {δ = η} (ρ ʳ∘ⁱ I) ≈ⁱ ⇑ʳ ρ ʳ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-ʳ∘ⁱ {I = I} M =
≈-trans
(≈-trans
(≈-sym ([∘ʳ] (I M)))
([]ʳ-resp-≡ʳ (I M) (λ {(var-left x) → refl ; (var-right y) → refl})))
([∘ʳ] (I M))
[ʳ∘ⁱ] : ∀ {cl 𝕂 𝕄} {γ δ} {ρ : γ →ʳ δ} {I : 𝕂 →ⁱ 𝕄 ∥ γ} (t : Expr cl 𝕂 γ) →
[ ρ ]ʳ ([ I ]ⁱ t) ≈ [ ρ ʳ∘ⁱ I ]ⁱ [ ρ ]ʳ t
[ʳ∘ⁱ] (expr-var x) = ≈-refl
[ʳ∘ⁱ] {ρ = ρ} {I = I} (expr-symb S es) =
≈-symb (λ i → ≈-trans
([ʳ∘ⁱ] (es i))
([]ⁱ-resp-≈ⁱ
([ ⇑ʳ ρ ]ʳ es i)
(≈ⁱ-sym (⇑ⁱ-resp-ʳ∘ⁱ {I = I}))))
[ʳ∘ⁱ] {ρ = ρ} {I = I} (expr-meta M ts) =
≈-trans
(≈-sym ([ʳ∘ˢ] (I M)))
(≈-trans
([]ˢ-resp-≈ˢ (λ { (var-left x) → ≈-refl ; (var-right y) → [ʳ∘ⁱ] (ts y)}) (I M))
([ˢ∘ʳ] (I M)))
[ʳ∘ⁱ] expr-eqty = ≈-eqty
[ʳ∘ⁱ] expr-eqtm = ≈-eqtm
-- composition of an instantiation and substitution
infixr 7 _ⁱ∘ˢ_
_ⁱ∘ˢ_ : ∀ {𝕂 𝕄} {γ δ} (I : 𝕂 →ⁱ 𝕄 ∥ δ) (σ : 𝕂 ∥ γ →ˢ δ) → (𝕄 ∥ γ →ˢ δ)
(I ⁱ∘ˢ σ) x = [ I ]ⁱ σ x
-- extension respects identity
⇑ⁱ-resp-𝟙ⁱ : ∀ {𝕄 γ δ} → ⇑ⁱ {δ = δ} 𝟙ⁱ ≈ⁱ 𝟙ⁱ {𝕄 = 𝕄} {γ = γ ⊕ δ}
⇑ⁱ-resp-𝟙ⁱ {clᴹ = obj _} M = ≈-refl
⇑ⁱ-resp-𝟙ⁱ {clᴹ = EqTy} M = ≈-eqty
⇑ⁱ-resp-𝟙ⁱ {clᴹ = EqTm} M = ≈-eqtm
-- extension respects composition
⇑ⁱ-resp-∘ⁱ : ∀ {𝕂 𝕃 𝕄 γ δ} {I : 𝕂 →ⁱ 𝕃 ∥ γ} {J : 𝕃 →ⁱ 𝕄 ∥ γ} → ⇑ⁱ {δ = δ} (J ∘ⁱ I) ≈ⁱ ⇑ⁱ J ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-∘ⁱ {I = I} {J = J} M =
≈-trans
([ʳ∘ⁱ] (I M))
([]ⁱ-resp-≈ⁱ ([ ⇑ʳ var-left ]ʳ I M)
λ N → ≈-trans (≈-sym ([∘ʳ] (J N)))
(≈-trans ([]ʳ-resp-≡ʳ (J N) λ {(var-left x) → refl ; (var-right y) → refl}) ([∘ʳ] (J N))))
⇑ⁱ-resp-ⁱ∘ˢ : ∀ {𝕂 𝕄} {γ δ η} {I : 𝕂 →ⁱ 𝕄 ∥ δ} {σ : 𝕂 ∥ γ →ˢ δ} →
⇑ˢ {η = η} (I ⁱ∘ˢ σ ) ≈ˢ ⇑ⁱ I ⁱ∘ˢ ⇑ˢ σ
⇑ⁱ-resp-ⁱ∘ˢ {σ = σ}(var-left x) = ≈-trans ([ʳ∘ⁱ] (σ x)) ([]ⁱ-resp-≈ⁱ ([ var-left ]ʳ σ x) (λ _ → ≈-refl))
⇑ⁱ-resp-ⁱ∘ˢ (var-right y) = ≈-refl
-- the action of an instantiation on a generic metavariable application
[]ⁱ-meta-generic : ∀ {𝕂 𝕄} {γ} {I : 𝕂 →ⁱ 𝕄 ∥ γ} {clᴹ γᴹ} {M : [ clᴹ , γᴹ ]∈ 𝕂} → [ ⇑ⁱ I ]ⁱ (expr-meta-generic {γ = γ} M) ≈ I M
[]ⁱ-meta-generic {I = I} {clᴹ = obj _} {M = M} =
≈-trans (≈-sym ([ˢ∘ʳ] (I M))) ([]ˢ-id (λ { (var-left _) → ≈-refl ; (var-right _) → ≈-refl}))
[]ⁱ-meta-generic {clᴹ = EqTy} = ≈-eqty
[]ⁱ-meta-generic {clᴹ = EqTm} = ≈-eqtm
-- action of the identity
[𝟙ⁱ] : ∀ {cl 𝕄 γ} (t : Expr cl 𝕄 γ) → [ 𝟙ⁱ ]ⁱ t ≈ t
[𝟙ⁱ] (expr-var x) = ≈-refl
[𝟙ⁱ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ⁱ-resp-≈ⁱ (es i) ⇑ⁱ-resp-𝟙ⁱ) ([𝟙ⁱ] (es i)))
[𝟙ⁱ] (expr-meta M ts) = ≈-meta (λ i → [𝟙ⁱ] (ts i))
[𝟙ⁱ] (expr-eqty) = ≈-eqty
[𝟙ⁱ] (expr-eqtm) = ≈-eqtm
-- interaction of instantiation, substitution and renaming
[]ⁱ-[]ˢ : ∀ {cl 𝕂 𝕄 γ δ} {I : 𝕂 →ⁱ 𝕄 ∥ δ} {σ : 𝕂 ∥ γ →ˢ δ} {ρ : δ →ʳ γ} (t : Expr cl 𝕂 γ) →
σ ˢ∘ʳ ρ ≈ˢ 𝟙ˢ → ([ I ]ⁱ ([ σ ]ˢ t)) ≈ ([ I ⁱ∘ˢ σ ]ˢ [ ρ ʳ∘ⁱ I ]ⁱ t)
[]ⁱ-[]ˢ (expr-var x) ξ = ≈-refl
[]ⁱ-[]ˢ {I = I} {σ = σ} {ρ = ρ} (expr-symb S es) ξ =
≈-symb (λ i →
≈-trans
([]ⁱ-[]ˢ {ρ = ⇑ʳ ρ} (es i)
λ where
(var-left x) → []ʳ-resp-≈ var-left (ξ x)
(var-right x) → ≈-refl)
(≈-sym ([]ˢ-resp-≈ˢ-≈ (⇑ⁱ-resp-ⁱ∘ˢ) (([]ⁱ-resp-≈ⁱ (es i) (⇑ⁱ-resp-ʳ∘ⁱ {I = I}))))))
[]ⁱ-[]ˢ {I = I} {σ = σ} (expr-meta M ts) ξ =
≈-trans
(≈-trans
([]ˢ-resp-≈ˢ (λ where
(var-left x) → ≈-sym ([]ⁱ-resp-≈ I (ξ x))
(var-right x) → []ⁱ-[]ˢ (ts x) ξ)
(I M))
([∘ˢ] (I M)))
(≈-sym ([]ˢ-resp-≈ (I ⁱ∘ˢ σ) (≈-sym ([ˢ∘ʳ] (I M))) ))
[]ⁱ-[]ˢ expr-eqty _ = ≈-eqty
[]ⁱ-[]ˢ expr-eqtm _ = ≈-eqtm
_ˢ∘ⁱ_ : ∀ {𝕂 𝕄 γ δ} → 𝕊 % 𝕄 ∥ γ →ˢ δ → 𝕂 →ⁱ 𝕄 ∥ γ → 𝕂 →ⁱ 𝕄 ∥ δ
(σ ˢ∘ⁱ I) M = [ ⇑ˢ σ ]ˢ I M
⇑ⁱ-resp-ˢ∘ⁱ : ∀ {𝕂 𝕄 γ δ η} {σ : 𝕊 % 𝕄 ∥ γ →ˢ δ} {I : 𝕂 →ⁱ 𝕄 ∥ γ} →
⇑ⁱ {δ = η} (σ ˢ∘ⁱ I) ≈ⁱ ⇑ˢ σ ˢ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-ˢ∘ⁱ {I = I} M =
≈-trans
(≈-sym ([ʳ∘ˢ] (I M)))
(≈-trans
([]ˢ-resp-≈ˢ (≈ˢ-sym ⇑ˢ-resp-ʳ∘ˢ) (I M))
(≈-trans
([]ˢ-resp-≈ˢ
(λ { (var-left x) → ≈-refl ; (var-right y) → ≈-refl})
(I M))
([ˢ∘ʳ] (I M))))
[]ˢ-[]ⁱ : ∀ {cl 𝕂 𝕄 γ δ η} {I : 𝕂 →ⁱ 𝕄 ∥ γ} {σ : 𝕊 % 𝕄 ∥ γ →ˢ δ} {ρ : η →ʳ δ} {τ : η →ʳ γ} (t : Expr cl 𝕂 η) →
(∀ x → σ (τ x) ≈ expr-var (ρ x)) → [ σ ]ˢ ([ I ]ⁱ ([ τ ]ʳ t)) ≈ [ σ ˢ∘ⁱ I ]ⁱ ([ ρ ]ʳ t)
[]ˢ-[]ⁱ (expr-var x) ξ = ξ x
[]ˢ-[]ⁱ {I = I} {σ = σ} {ρ = ρ} (expr-symb S es) ξ =
≈-symb
(λ i →
≈-trans
([]ˢ-[]ⁱ {I = ⇑ⁱ I} {σ = ⇑ˢ σ} {ρ = ⇑ʳ ρ} (es i)
(λ { (var-left x) → []ʳ-resp-≈ var-left (ξ x)
; (var-right x) → ≈-refl}))
([]ⁱ-resp-≈ⁱ ([ ⇑ʳ ρ ]ʳ es i) (≈ⁱ-sym (⇑ⁱ-resp-ˢ∘ⁱ {σ = σ} {I = I}))))
[]ˢ-[]ⁱ {I = I} {σ = σ} (expr-meta M ts) ξ =
≈-trans
(≈-sym ([∘ˢ] (I M)))
(≈-trans
([]ˢ-resp-≈ˢ
(λ { (var-left x) → ≈-trans (≈-sym ([𝟙ˢ] (σ x))) ([ˢ∘ʳ] (σ x))
; (var-right j) → []ˢ-[]ⁱ (ts j) ξ}) (I M))
([∘ˢ] (I M)))
[]ˢ-[]ⁱ expr-eqty ξ = ≈-eqty
[]ˢ-[]ⁱ expr-eqtm ξ = ≈-eqtm
-- action of composition
[∘ⁱ] : ∀ {cl 𝕂 𝕃 𝕄 γ} {I : 𝕂 →ⁱ 𝕃 ∥ γ} {J : 𝕃 →ⁱ 𝕄 ∥ γ} (t : Expr cl 𝕂 γ) → [ J ∘ⁱ I ]ⁱ t ≈ [ J ]ⁱ [ I ]ⁱ t
[∘ⁱ] (expr-var _) = ≈-refl
[∘ⁱ] {I = I} {J = J} (expr-symb S es) =
≈-symb (λ i → ≈-trans ([]ⁱ-resp-≈ⁱ (es i) (⇑ⁱ-resp-∘ⁱ {I = I})) ([∘ⁱ] (es i)))
[∘ⁱ] {I = I} {J = J} (expr-meta M ts) =
≈-sym (≈-trans
([]ⁱ-[]ˢ {I = J} {ρ = var-left} (I M) λ _ → ≈-refl)
([]ˢ-resp-≈ˢ
(λ { (var-left x) → ≈-refl ; (var-right x) → ≈-sym ([∘ⁱ] (ts x))})
([ ⇑ⁱ J ]ⁱ (I M))))
[∘ⁱ] expr-eqty = ≈-eqty
[∘ⁱ] expr-eqtm = ≈-eqtm
-- Notation for working with multiple signatures
infix 5 _%_→ⁱ_∥_
_%_→ⁱ_∥_ : ∀ (𝕊 : Signature) → MShape → MShape → VShape → Set
_%_→ⁱ_∥_ 𝕊 = _→ⁱ_∥_ {𝕊 = 𝕊}
| {
"alphanum_fraction": 0.3972440521,
"avg_line_length": 36.1439688716,
"ext": "agda",
"hexsha": "3b3ec17f5423c024b13824bbf52e6f85576acc54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_forks_repo_path": "src/Instantiation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_issues_repo_path": "src/Instantiation.agda",
"max_line_length": 130,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_stars_repo_path": "src/Instantiation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z",
"num_tokens": 5453,
"size": 9289
} |
-- Construction of the four functions SST, SK, SK⃗, and αₖ from
-- "Extending Homotopy Type Theory with Strict Equality" by Thorsten
-- Altenkirch, Paolo Capriotti, Nicolai Kraus (2016)
-- (https://arxiv.org/abs/1604.03799).
{-# OPTIONS --cubical-compatible --two-level --rewriting #-}
open import Agda.Primitive
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
variable
ℓ ℓ′ ℓ₁ ℓ₂ ℓ₃ : Level
A B C : Set ℓ
x y z : A
infix 4 _≡ₛ_ _≡ₛₛ_
data _≡ₛ_ {A : Set ℓ} (x : A) : A → SSet ℓ where
instance
refl : x ≡ₛ x
data _≡ₛₛ_ {A : SSet ℓ} (x : A) : A → SSet ℓ where
instance
refl : x ≡ₛₛ x
UIPₛ : {A : Set ℓ} {x y : A} {e₁ e₂ : x ≡ₛ y} → e₁ ≡ₛₛ e₂
UIPₛ {e₁ = refl} {e₂ = refl} = refl
{-# BUILTIN REWRITE _≡ₛₛ_ #-}
sym : x ≡ₛ y → y ≡ₛ x
sym refl = refl
trans : x ≡ₛ y → y ≡ₛ z → x ≡ₛ z
trans refl refl = refl
infixr 10 _≡⟨_⟩ₛ_
_≡⟨_⟩ₛ_ : {A : Set ℓ} (x : A) {y z : A} → x ≡ₛ y → y ≡ₛ z → x ≡ₛ z
x ≡⟨ refl ⟩ₛ refl = refl
infix 15 _∎ₛ
_∎ₛ : {A : Set ℓ} (x : A) → x ≡ₛ x
x ∎ₛ = refl
transport : {A : Set ℓ} (P : A → Set ℓ′) {x y : A} → x ≡ₛ y → P x → P y
transport P refl p = p
transport-merge : {A : Set ℓ} {P : A → Set ℓ′} {x y z : A}
{e₁ : x ≡ₛ y} {e₂ : y ≡ₛ z} {p : P x}
→ transport P e₂ (transport P e₁ p) ≡ₛ transport P (trans e₁ e₂) p
transport-merge {e₁ = refl} {e₂ = refl} = refl
transport-pi : {A : Set ℓ₁} {B : Set ℓ₂} {C : A → B → Set ℓ₃}
→ {x₁ x₂ : A} {e : x₁ ≡ₛ x₂} {f : (y : B) → C x₁ y} {y : B}
→ transport (λ x → (y : B) → C x y) e f y ≡ₛ transport (λ x → C x y) e (f y)
transport-pi {e = refl} = refl
cong : (f : A → B) {x₁ x₂ : A} → x₁ ≡ₛ x₂ → f x₁ ≡ₛ f x₂
cong f refl = refl
cong₂ : {A : Set ℓ} {B : A → Set ℓ′} (f : (x : A) → B x → C)
→ {x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂}
→ (p : x₁ ≡ₛ x₂) (q : transport B p y₁ ≡ₛ y₂)
→ f x₁ y₁ ≡ₛ f x₂ y₂
cong₂ f refl refl = refl
transport-cong : {f : A → B} {P : B → Set ℓ} {x₁ x₂ : A} {e : x₁ ≡ₛ x₂} {p : P (f x₁)}
→ transport (λ x → P (f x)) e p ≡ₛ transport P (cong f e) p
transport-cong {e = refl} = refl
cong-transport : {A : Set ℓ} {P : A → Set ℓ′} {x y : A} {e₁ e₂ : x ≡ₛ y} {p : P x}
→ e₁ ≡ₛₛ e₂ → transport P e₁ p ≡ₛ transport P e₂ p
cong-transport refl = refl
postulate
funextₛ : {A : Set ℓ} {B : A → Set ℓ′} {f g : (x : A) → B x}
→ (∀ x → f x ≡ₛ g x) → f ≡ₛ g
data sNat : SSet lzero where
zero : sNat
suc : sNat → sNat
variable
k l m n : sNat
postulate
Nat→sNat : Nat → sNat
zero→szero : Nat→sNat zero ≡ₛₛ zero
suc→ssuc : ∀ n → Nat→sNat (suc n) ≡ₛₛ suc (Nat→sNat n)
{-# REWRITE zero→szero #-}
{-# REWRITE suc→ssuc #-}
data ⊥ {ℓ} : Set ℓ where
record ⊤ {ℓ} : Set ℓ where
constructor ∗
data _⊎_ (A B : Set ℓ) : Set ℓ where
inl : A → A ⊎ B
inr : B → A ⊎ B
{-# NO_UNIVERSE_CHECK #-}
data Fin : sNat → Set where
fzero : Fin (suc n)
fsuc : Fin n → Fin (suc n)
{-# NO_UNIVERSE_CHECK #-}
data _<ⁿ_ : Fin n → Fin n → Set where
z<s : fzero <ⁿ fsuc x
s<s : x <ⁿ y → fsuc x <ⁿ fsuc y
isIncr : (Fin k → Fin l) → Set
isIncr f = ∀ {x} {y} → x <ⁿ y → f x <ⁿ f y
Δ₊ : (i j : sNat) → Set
Δ₊ i j = Σ (Fin i → Fin j) isIncr
_∘_ : Δ₊ l m → Δ₊ k l → Δ₊ k m
(f , f-incr) ∘ (g , g-incr) = (λ x → f (g x)) , λ p → f-incr (g-incr p)
∘-assoc : ∀ {k l m n} {f : Δ₊ k l} {g : Δ₊ l m} {h : Δ₊ m n}
→ (h ∘ g) ∘ f ≡ₛ h ∘ (g ∘ f)
∘-assoc = refl
SST : sNat → Set₁
SK : (k : sNat) → SST k → sNat → Set
SK⃗ : (k : sNat) (X : SST k) {m n : sNat} (f : Δ₊ m n) → SK k X n → SK k X m
α : (k : sNat) {l m n : sNat} (X : SST k) (f : Δ₊ l m) (g : Δ₊ m n)
→ (x : SK k X n) → SK⃗ k X (g ∘ f) x ≡ₛ SK⃗ k X f (SK⃗ k X g x)
SST zero = ⊤
SST (suc k) = Σ (SST k) λ X → (SK k X (suc k) → Set)
SK zero X n = ⊤
SK (suc k) (X , Y) n = Σ (SK k X n) λ x → (f : Δ₊ (suc k) n) → Y (SK⃗ k X f x)
SK⃗ zero X f = λ x → x
SK⃗ (suc k) (X , Y) f (x , h) = SK⃗ k X f x , λ g →
let h[f∘g] : Y (SK⃗ k X (f ∘ g) x)
h[f∘g] = h (f ∘ g)
αₖ : SK⃗ k X (f ∘ g) x ≡ₛ SK⃗ k X g (SK⃗ k X f x)
αₖ = α k X g f x
in transport Y αₖ h[f∘g]
α zero X f g x = refl
α (suc k) {l} {m} {n} (X , Y) f g (x , y) =
cong₂ _,_ (α k X f g x) (funextₛ λ h →
transport (λ z → (f′ : Δ₊ (suc k) l) → Y (SK⃗ k X f′ z)) (α k X f g x)
(λ g′ → transport Y (α k X g′ (g ∘ f) x) (y ((g ∘ f) ∘ g′))) h
≡⟨ transport-pi {B = Δ₊ (suc k) l} {C = λ z f′ → Y (SK⃗ k X f′ z)} {e = α k X f g x} ⟩ₛ
transport (λ z → Y (SK⃗ k X h z)) (α k X f g x)
(transport Y (α k X h (g ∘ f) x) (y ((g ∘ f) ∘ h)))
≡⟨ transport-cong {f = SK⃗ k X h} {P = Y} {e = α k X f g x} ⟩ₛ
transport Y (cong (SK⃗ k X h) (α k X f g x))
(transport Y (α k X h (g ∘ f) x) (y ((g ∘ f) ∘ h)))
≡⟨ transport-merge {P = Y} {e₂ = cong (SK⃗ k X h) (α k X f g x)} {p = y ((g ∘ f) ∘ h)} ⟩ₛ
transport Y (trans (α k X h (g ∘ f) x) (cong (SK⃗ k X h) (α k X f g x))) (y ((g ∘ f) ∘ h))
≡⟨ cong-transport {P = Y}
{e₁ = trans (α k X h (g ∘ f) x) (cong (SK⃗ k X h) (α k X f g x))}
{e₂ = trans (α k X (f ∘ h) g x) (α k X h f (SK⃗ k X g x))}
{p = y (g ∘ (f ∘ h))} UIPₛ ⟩ₛ
transport Y (trans (α k X (f ∘ h) g x) (α k X h f (SK⃗ k X g x))) (y (g ∘ (f ∘ h)))
≡⟨ sym (transport-merge {e₁ = α k X (f ∘ h) g x} {e₂ = α k X h f (SK⃗ k X g x)} {p = y (g ∘ (f ∘ h))}) ⟩ₛ
transport Y (α k X h f (SK⃗ k X g x)) (transport Y (α k X (f ∘ h) g x) (y (g ∘ (f ∘ h))))
∎ₛ
)
| {
"alphanum_fraction": 0.4745327959,
"avg_line_length": 30.1546961326,
"ext": "agda",
"hexsha": "92a627179e5c997e988c03180b241fa27c5ae197",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/SST.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/SST.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/SST.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2792,
"size": 5458
} |
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; subst)
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
import SecondOrder.VRenaming
import SecondOrder.MRenaming
import SecondOrder.Term
import SecondOrder.Substitution
import SecondOrder.RelativeMonadMorphism
module SecondOrder.Instantiation
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.Metavariable Σ
open SecondOrder.Term Σ
open SecondOrder.VRenaming Σ
open SecondOrder.MRenaming Σ
open SecondOrder.Substitution Σ
open import SecondOrder.RelativeMonadMorphism
-- metavariable instantiation
_⇒ⁱ_⊕_ : MContext → MContext → VContext → Set ℓ
Θ ⇒ⁱ Ξ ⊕ Γ = ∀ {Γᴹ Aᴹ} (M : [ Γᴹ , Aᴹ ]∈ Θ) → Term Ξ (Γ ,, Γᴹ) Aᴹ
-- syntactic equality of instantiations
infix 5 _≈ⁱ_
_≈ⁱ_ : ∀ {Θ Ψ Γ} (I J : Θ ⇒ⁱ Ψ ⊕ Γ) → Set ℓ
_≈ⁱ_ {Θ} I J = ∀ {Γᴹ Aᴹ} (M : [ Γᴹ , Aᴹ ]∈ Θ) → I M ≈ J M
-- equality of instantiations is an equivalence relation
≈ⁱ-refl : ∀ {Θ Ψ Γ} {I : Θ ⇒ⁱ Ψ ⊕ Γ} → I ≈ⁱ I
≈ⁱ-refl M = ≈-refl
≈ⁱ-sym : ∀ {Θ Ψ Γ} {I J : Θ ⇒ⁱ Ψ ⊕ Γ} → I ≈ⁱ J → J ≈ⁱ I
≈ⁱ-sym ξ M = ≈-sym (ξ M)
≈ⁱ-trans : ∀ {Θ Ψ Γ} {I J K : Θ ⇒ⁱ Ψ ⊕ Γ} → I ≈ⁱ J → J ≈ⁱ K → I ≈ⁱ K
≈ⁱ-trans ζ ξ M = ≈-trans (ζ M) (ξ M)
-- extension of an instantiation
⇑ⁱ : ∀ {Θ Ψ Γ Δ} → Θ ⇒ⁱ Ψ ⊕ Γ → Θ ⇒ⁱ Ψ ⊕ (Γ ,, Δ)
⇑ⁱ I M = [ ⇑ᵛ var-inl ]ᵛ I M
-- extension of instantiations preserve equality of instantiations
⇑ⁱ-resp-≈ⁱ : ∀ {Θ Ψ Γ Δ} (I J : Θ ⇒ⁱ Ψ ⊕ Γ) → (I ≈ⁱ J) → (⇑ⁱ {Δ = Δ} I ≈ⁱ ⇑ⁱ J)
⇑ⁱ-resp-≈ⁱ I J ξ M = []ᵛ-resp-≈ (ξ M)
-- action of a metavariable instantiation on terms
infixr 6 [_]ⁱ_
[_]ⁱ_ : ∀ {Θ ψ Γ} → ψ ⇒ⁱ Θ ⊕ Γ → ∀ {A} → Term ψ Γ A → Term Θ Γ A
[ I ]ⁱ (tm-var x) = tm-var x
[ I ]ⁱ (tm-meta M ts) = [ [ idˢ , (λ i → [ I ]ⁱ ts i) ]ˢ ]ˢ (I M)
[ I ]ⁱ (tm-oper f es) = tm-oper f λ i → [ ⇑ⁱ I ]ⁱ es i
-- instantiation preserves equality of terms
[]ⁱ-resp-≈ : ∀ {Θ Ξ Γ} (I : Ξ ⇒ⁱ Θ ⊕ Γ) → ∀ {A} {t u : Term Ξ Γ A} →
t ≈ u → [ I ]ⁱ t ≈ [ I ]ⁱ u
[]ⁱ-resp-≈ I (≈-≡ refl) = ≈-refl
[]ⁱ-resp-≈ I (≈-meta {M = M} ξ) = []ˢ-resp-≈ˢ (I M) ([,]ˢ-resp-≈ˢ (λ x → ≈-refl) λ i → []ⁱ-resp-≈ I (ξ i))
[]ⁱ-resp-≈ I (≈-oper ξ) = ≈-oper λ i → []ⁱ-resp-≈ (⇑ⁱ I) (ξ i)
-- action preserves equality of instantiation
[]ⁱ-resp-≈ⁱ : ∀ {Θ Ξ Γ} {I J : Ξ ⇒ⁱ Θ ⊕ Γ} → ∀ {A} (t : Term Ξ Γ A) →
I ≈ⁱ J → [ I ]ⁱ t ≈ [ J ]ⁱ t
[]ⁱ-resp-≈ⁱ (tm-var x) ξ = ≈-refl
[]ⁱ-resp-≈ⁱ (tm-meta M ts) ξ =
[]ˢ-resp-≈ˢ-≈ ([,]ˢ-resp-≈ˢ (λ x → ≈-refl) λ i → []ⁱ-resp-≈ⁱ (ts i) ξ) (ξ M)
[]ⁱ-resp-≈ⁱ {I = I} {J = J} (tm-oper f es) ξ = ≈-oper λ i → []ⁱ-resp-≈ⁱ (es i) (⇑ⁱ-resp-≈ⁱ I J ξ)
-- generically applied metavariable
tm-meta-generic : ∀ {Θ} {Γ} {Γᴹ Aᴹ} (M : [ Γᴹ , Aᴹ ]∈ Θ) → Term Θ (Γ ,, Γᴹ) Aᴹ
tm-meta-generic M = tm-meta M λ i → tm-var (var-inr i)
-- the action of an instantiation on a generically applied metavariable
[]ⁱ-generic : ∀ {Θ Ξ} {Γ} {I : Θ ⇒ⁱ Ξ ⊕ Γ} {Γᴹ Aᴹ} {M : [ Γᴹ , Aᴹ ]∈ Θ} →
[ ⇑ⁱ {Δ = Γᴹ} I ]ⁱ tm-meta-generic M ≈ I M
[]ⁱ-generic {Θ = Θ} {Ξ = Ξ} {Γ = Γ} {I = I} {Γᴹ = Γᴹ} {M = M} =
≈-trans
(≈-sym ([ˢ∘ᵛ] (I M)))
(≈ˢ-idˢ-[]ˢ (λ { (var-inl _) → ≈-refl ; (var-inr _) → ≈-refl}))
-- Interactions involving instantiations
-- the identity metavariable instantiation
idⁱ : ∀ {Θ Γ} → Θ ⇒ⁱ Θ ⊕ Γ
idⁱ M = tm-meta-generic M
-- composition of metavariable instantiations
infixl 6 _∘ⁱ_
_∘ⁱ_ : ∀ {Θ Ξ Ω Γ} → Ξ ⇒ⁱ Ω ⊕ Γ → Θ ⇒ⁱ Ξ ⊕ Γ → (Θ ⇒ⁱ Ω ⊕ Γ)
(I ∘ⁱ J) M = [ ⇑ⁱ I ]ⁱ J M
-- composition of a renaming and an instantiation
_ᵛ∘ⁱ_ : ∀ {Θ ψ Γ Δ} → Γ ⇒ᵛ Δ → Θ ⇒ⁱ ψ ⊕ Γ → Θ ⇒ⁱ ψ ⊕ Δ
(ρ ᵛ∘ⁱ I) M = [ ⇑ᵛ ρ ]ᵛ I M
-- composition of a substitution and an instantiation
_ˢ∘ⁱ_ : ∀ {Θ ψ Γ Δ} → ψ ⊕ Γ ⇒ˢ Δ → Θ ⇒ⁱ ψ ⊕ Γ → Θ ⇒ⁱ ψ ⊕ Δ
(σ ˢ∘ⁱ I) M = [ ⇑ˢ σ ]ˢ I M
-- composition of an instantiation and a substitution
_ⁱ∘ˢ_ : ∀ {Θ ψ Γ Δ} → Θ ⇒ⁱ ψ ⊕ Δ → Θ ⊕ Γ ⇒ˢ Δ → ψ ⊕ Γ ⇒ˢ Δ
(I ⁱ∘ˢ σ) x = [ I ]ⁱ σ x
-- composition of a renaming and an instantiation preerve equality of instantiations
[ᵛ∘ⁱ]-resp-≈ⁱ : ∀ {Θ ψ Γ Δ} (ρ : Γ ⇒ᵛ Δ) (I J : Θ ⇒ⁱ ψ ⊕ Γ) → (I ≈ⁱ J) → (ρ ᵛ∘ⁱ I) ≈ⁱ (ρ ᵛ∘ⁱ J)
[ᵛ∘ⁱ]-resp-≈ⁱ σ I J ξ M = []ᵛ-resp-≈ (ξ M)
-- composition of a renaming and an instantiation preserve equality of instantiations
[ˢ∘ⁱ]-resp-≈ⁱ : ∀ {Θ ψ Γ Δ} (σ : ψ ⊕ Γ ⇒ˢ Δ) (I J : Θ ⇒ⁱ ψ ⊕ Γ) → (I ≈ⁱ J) → (σ ˢ∘ⁱ I) ≈ⁱ (σ ˢ∘ⁱ J)
[ˢ∘ⁱ]-resp-≈ⁱ σ I J ξ M = []ˢ-resp-≈ (⇑ˢ σ) (ξ M)
-- Actions correspondig to the interactions
-- the action of the identity
[idⁱ] : ∀ {Θ Γ A Δ} {t : Term Θ (Γ ,, Δ) A} → [ idⁱ ]ⁱ t ≈ t
[idⁱ] {t = tm-var x} = ≈-refl
[idⁱ] {t = tm-meta M ts} = ≈-meta (λ i → [idⁱ])
[idⁱ] {t = tm-oper f es} = ≈-oper (λ i → [idⁱ])
-- extension commutes with composition of renaming and substitution
⇑ⁱ-resp-ᵛ∘ⁱ : ∀ {Θ ψ} {Γ Δ Ξ} {I : Θ ⇒ⁱ ψ ⊕ Γ} {ρ : Γ ⇒ᵛ Δ}
→ ⇑ⁱ {Δ = Ξ} (ρ ᵛ∘ⁱ I) ≈ⁱ ⇑ᵛ ρ ᵛ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-ᵛ∘ⁱ {ρ = ρ} M = ≈-trans (≈-sym [∘ᵛ]) (≈-trans ([]ᵛ-resp-≡ᵛ λ {(var-inl _) → refl ; (var-inr x) → refl}) [∘ᵛ])
-- the action of the composition of an instantiation and a renaming
[ᵛ∘ⁱ] : ∀ {Θ Ψ Γ Δ A} {ρ : Γ ⇒ᵛ Δ} {I : Θ ⇒ⁱ Ψ ⊕ Γ} (t : Term Θ Γ A) →
[ ρ ]ᵛ [ I ]ⁱ t ≈ [ ρ ᵛ∘ⁱ I ]ⁱ [ ρ ]ᵛ t
[ᵛ∘ⁱ] (tm-var x) = ≈-refl
[ᵛ∘ⁱ] {I = I} (tm-meta M ts) =
≈-trans
(≈-sym ([ᵛ∘ˢ] (I M)))
(≈-trans
([]ˢ-resp-≈ˢ (I M) (λ { (var-inl _) → ≈-refl ; (var-inr j) → [ᵛ∘ⁱ] (ts j)}))
([ˢ∘ᵛ] (I M)))
[ᵛ∘ⁱ] {ρ = ρ} {I = I} (tm-oper f es) =
≈-oper λ i → ≈-trans ([ᵛ∘ⁱ] (es i)) ([]ⁱ-resp-≈ⁱ ([ ⇑ᵛ ρ ]ᵛ es i) (≈ⁱ-sym (⇑ⁱ-resp-ᵛ∘ⁱ {I = I})))
-- extension commutes with composition
⇑ⁱ-resp-∘ⁱ : ∀ {Θ Ξ Ω} {Γ Δ} {I : Θ ⇒ⁱ Ξ ⊕ Γ} {J : Ξ ⇒ⁱ Ω ⊕ Γ} →
⇑ⁱ {Δ = Δ} (J ∘ⁱ I) ≈ⁱ ⇑ⁱ J ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-∘ⁱ {I = I} {J = J} M =
≈-trans
([ᵛ∘ⁱ] (I M))
([]ⁱ-resp-≈ⁱ
([ ⇑ᵛ var-inl ]ᵛ I M)
(λ N → ≈-trans
(≈-sym [∘ᵛ])
(≈-trans
([]ᵛ-resp-≡ᵛ (λ { (var-inl x) → refl ; (var-inr x) → refl }))
[∘ᵛ])))
⇑ˢ-resp-ⁱ∘ˢ : ∀ {Θ ψ Γ Δ Ξ} → {I : Θ ⇒ⁱ ψ ⊕ Δ} → {σ : Θ ⊕ Γ ⇒ˢ Δ} → ⇑ˢ {Ξ = Ξ} (I ⁱ∘ˢ σ) ≈ˢ ⇑ⁱ I ⁱ∘ˢ ⇑ˢ σ
⇑ˢ-resp-ⁱ∘ˢ {σ = σ} (var-inl x) = [ᵛ∘ⁱ] (σ x)
⇑ˢ-resp-ⁱ∘ˢ (var-inr x) = ≈-refl
-- interaction lemma
[]ⁱ-[]ˢ : ∀ {Θ Ψ Γ Δ A} {I : Θ ⇒ⁱ Ψ ⊕ Δ} {σ : Θ ⊕ Γ ⇒ˢ Δ} {ρ : Δ ⇒ᵛ Γ} (t : Term Θ Γ A) →
σ ˢ∘ᵛ ρ ≈ˢ idˢ → ([ I ]ⁱ ([ σ ]ˢ t)) ≈ ([ I ⁱ∘ˢ σ ]ˢ [ ρ ᵛ∘ⁱ I ]ⁱ t)
[]ⁱ-[]ˢ (tm-var x) ξ = ≈-refl
[]ⁱ-[]ˢ {I = I} {σ = σ} {ρ = ρ} (tm-meta M ts) ξ =
≈-trans
([]ˢ-resp-≈ˢ (I M)
(λ { (var-inl i) → []ⁱ-resp-≈ I (≈-sym (ξ i)) ; (var-inr j) → []ⁱ-[]ˢ (ts j) ξ}))
(≈-trans
([ˢ∘ᵛ] (I M))
([∘ˢ] ((ρ ᵛ∘ⁱ I) M)))
[]ⁱ-[]ˢ {I = I} {σ = σ} {ρ = ρ} (tm-oper f es) ξ =
≈-oper λ i →
≈-trans
([]ⁱ-[]ˢ {σ = ⇑ˢ σ} {ρ = ⇑ᵛ ρ} (es i)
(≈ˢ-trans
(≈ˢ-sym (⇑ˢ-resp-ˢ∘ᵛ {ρ = ρ} {σ = σ}))
(≈ˢ-trans (⇑ˢ-resp-≈ˢ ξ) ⇑ˢ-resp-idˢ)))
([]ˢ-resp-≈ˢ-≈
{σ = ⇑ⁱ I ⁱ∘ˢ ⇑ˢ σ }
{τ = ⇑ˢ (I ⁱ∘ˢ σ)}
{t = ([ ⇑ᵛ ρ ᵛ∘ⁱ ⇑ⁱ I ]ⁱ es i)}
{u = ([ ⇑ⁱ (ρ ᵛ∘ⁱ I) ]ⁱ es i)}
(≈ˢ-sym ⇑ˢ-resp-ⁱ∘ˢ)
([]ⁱ-resp-≈ⁱ (es i) (≈ⁱ-sym (⇑ⁱ-resp-ᵛ∘ⁱ {I = I}))))
-- the action of a composition
[∘ⁱ] : ∀ {Θ Ξ Ω Γ} → {I : Θ ⇒ⁱ Ξ ⊕ Γ} → {J : Ξ ⇒ⁱ Ω ⊕ Γ} →
∀ {A} → ∀ (t : Term Θ Γ A) → [ J ∘ⁱ I ]ⁱ t ≈ [ J ]ⁱ [ I ]ⁱ t
[∘ⁱ] (tm-var x) = ≈-refl
[∘ⁱ] {Θ = Θ} {Ξ = Ξ} {Γ = Γ} {I = I} {J = J} (tm-meta {Γᴹ = Γᴹ} M ts) =
≈-trans
([]ˢ-resp-≈ˢ
([ ⇑ⁱ J ]ⁱ (I M))
([,]ˢ-resp-≈ˢ (λ x → ≈-refl) (λ i → [∘ⁱ] {I = I} {J = J} (ts i))))
(≈-trans
([]ˢ-resp-≈ˢ {τ = λ i → [ J ]ⁱ var-or-ts i} ([ ⇑ⁱ J ]ⁱ (I M))
λ {(var-inl x) → ≈-refl ; (var-inr y) → ≈-refl})
(≈-trans
(≈-sym ([]ⁱ-[]ˢ {I = J} {σ = var-or-ts} {ρ = var-inl} (I M) λ x → ≈-refl))
([]ⁱ-resp-≈ J
([]ˢ-resp-≈ˢ (I M) λ { (var-inl x) → ≈-refl ; (var-inr x) → ≈-refl}))))
where
var-or-ts : ∀ {A} → A ∈ (Γ ,, Γᴹ) → Term Ξ Γ A
var-or-ts (var-inl x) = tm-var x
var-or-ts (var-inr y) = [ I ]ⁱ ts y
[∘ⁱ] {I = I} {J = J} (tm-oper f es) =
≈-oper (λ i → ≈-trans ([]ⁱ-resp-≈ⁱ (es i) (⇑ⁱ-resp-∘ⁱ {I = I})) ([∘ⁱ] (es i)))
| {
"alphanum_fraction": 0.4575728846,
"avg_line_length": 35.1583333333,
"ext": "agda",
"hexsha": "b6e90250138fa75343820750302a95e5c74f01ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Instantiation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Instantiation.agda",
"max_line_length": 119,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/formal",
"max_stars_repo_path": "src/SecondOrder/Instantiation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z",
"num_tokens": 4761,
"size": 8438
} |
-- Example by Sandro Stucki on the Agda mailing list.
-- If higher-dimensional unification fails and --without-K is not
-- enabled, we should still apply injectivity.
open import Agda.Builtin.Nat
postulate Fin : Nat → Set
data Indexed : Nat → Nat → Set where
con : ∀ m {n} (i : Fin n) → Indexed (m + n) (m + suc n)
data RelIndexed : ∀ {m n} → Indexed m n → Indexed m n → Set where
relIdx : ∀ {m n} (i : Fin n) (j : Fin n) → RelIndexed (con m i) (con m j)
test1 : ∀ {m n} {a b : Indexed m n} → RelIndexed a b → Indexed m n
test1 (relIdx {m} i _) = con m i
test2 : ∀ {m n} {a : Indexed m n} → RelIndexed a a → Indexed m n
test2 (relIdx {m} i _) = con m i
| {
"alphanum_fraction": 0.622556391,
"avg_line_length": 30.2272727273,
"ext": "agda",
"hexsha": "49bf6833de05ee2fa8efb8f364911b8e2c971bf3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/HDUfallback.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/HDUfallback.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/HDUfallback.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 230,
"size": 665
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A categorical view of Maybe
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Maybe.Categorical where
open import Data.Maybe.Base
open import Category.Functor
open import Category.Applicative
open import Category.Monad
import Function.Identity.Categorical as Id
open import Function
------------------------------------------------------------------------
-- Maybe applicative functor
functor : ∀ {f} → RawFunctor {f} Maybe
functor = record
{ _<$>_ = map
}
applicative : ∀ {f} → RawApplicative {f} Maybe
applicative = record
{ pure = just
; _⊛_ = maybe map (const nothing)
}
applicativeZero : ∀ {f} → RawApplicativeZero {f} Maybe
applicativeZero = record
{ applicative = applicative
; ∅ = nothing
}
alternative : ∀ {f} → RawAlternative {f} Maybe
alternative = record
{ applicativeZero = applicativeZero
; _∣_ = _<∣>_
}
------------------------------------------------------------------------
-- Maybe monad transformer
monadT : ∀ {f} → RawMonadT {f} (_∘′ Maybe)
monadT M = record
{ return = M.return ∘ just
; _>>=_ = λ m f → m M.>>= maybe f (M.return nothing)
}
where module M = RawMonad M
------------------------------------------------------------------------
-- Maybe monad
monad : ∀ {f} → RawMonad {f} Maybe
monad = monadT Id.monad
monadZero : ∀ {f} → RawMonadZero {f} Maybe
monadZero = record
{ monad = monad
; applicativeZero = applicativeZero
}
monadPlus : ∀ {f} → RawMonadPlus {f} Maybe
monadPlus {f} = record
{ monad = monad
; alternative = alternative
}
------------------------------------------------------------------------
-- Get access to other monadic functions
module _ {f F} (App : RawApplicative {f} F) where
open RawApplicative App
sequenceA : ∀ {A} → Maybe (F A) → F (Maybe A)
sequenceA nothing = pure nothing
sequenceA (just x) = just <$> x
mapA : ∀ {a} {A : Set a} {B} → (A → F B) → Maybe A → F (Maybe B)
mapA f = sequenceA ∘ map f
forA : ∀ {a} {A : Set a} {B} → Maybe A → (A → F B) → F (Maybe B)
forA = flip mapA
module _ {m M} (Mon : RawMonad {m} M) where
private App = RawMonad.rawIApplicative Mon
sequenceM = sequenceA App
mapM = mapA App
forM = forA App
| {
"alphanum_fraction": 0.5194479297,
"avg_line_length": 24.90625,
"ext": "agda",
"hexsha": "9e963f58ea364f723528efb6ae9fbf7414eb33ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Categorical.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 656,
"size": 2391
} |
module _ where
record ⊤ : Set where
constructor tt
f : {{u : ⊤}} → ⊤
f = _
foo : (x : ⊤) → ⊤
foo x = f
| {
"alphanum_fraction": 0.4770642202,
"avg_line_length": 9.0833333333,
"ext": "agda",
"hexsha": "ba2ef0796157d196ae919bf23e48e49002e2fb3b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/SingletonInstance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/SingletonInstance.agda",
"max_line_length": 20,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/SingletonInstance.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 48,
"size": 109
} |
postulate
A : Set
P : A → Set
record ΣAP : Set where
no-eta-equality
field
fst : A
snd : P fst
open ΣAP
test : (x : ΣAP) → P (fst x)
test x = snd {!!}
| {
"alphanum_fraction": 0.5411764706,
"avg_line_length": 11.3333333333,
"ext": "agda",
"hexsha": "9607f6c75b60899e27a00c8207bef09c49593206",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3606.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3606.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3606.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 170
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Data.Unit
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open GroupStr
open IsGroupHom
private
variable
ℓ : Level
UnitGroup₀ : Group₀
fst UnitGroup₀ = Unit
1g (snd UnitGroup₀) = tt
_·_ (snd UnitGroup₀) = λ _ _ → tt
inv (snd UnitGroup₀) = λ _ → tt
isGroup (snd UnitGroup₀) =
makeIsGroup isSetUnit (λ _ _ _ → refl) (λ _ → refl) (λ _ → refl)
(λ _ → refl) (λ _ → refl)
UnitGroup : Group ℓ
fst UnitGroup = Unit*
1g (snd UnitGroup) = tt*
_·_ (snd UnitGroup) = λ _ _ → tt*
inv (snd UnitGroup) = λ _ → tt*
isGroup (snd UnitGroup) =
makeIsGroup (isOfHLevelUnit* 2)
(λ _ _ _ → refl) (λ _ → refl) (λ _ → refl)
(λ _ → refl) (λ _ → refl)
open Iso
-- The trivial group is a unit.
lUnitGroupIso : {G : Group ℓ} → GroupIso (DirProd UnitGroup₀ G) G
fun (fst lUnitGroupIso) = snd
inv (fst lUnitGroupIso) g = tt , g
rightInv (fst lUnitGroupIso) _ = refl
leftInv (fst lUnitGroupIso) _ = refl
snd lUnitGroupIso = makeIsGroupHom λ _ _ → refl
rUnitGroupIso : {G : Group ℓ} → GroupIso (DirProd G UnitGroup₀) G
fun (fst rUnitGroupIso) = fst
inv (fst rUnitGroupIso) g = g , tt
rightInv (fst rUnitGroupIso) _ = refl
leftInv (fst rUnitGroupIso) _ = refl
snd rUnitGroupIso = makeIsGroupHom λ _ _ → refl
lUnitGroupEquiv : {G : Group ℓ} → GroupEquiv (DirProd UnitGroup₀ G) G
lUnitGroupEquiv = GroupIso→GroupEquiv lUnitGroupIso
rUnitGroupEquiv : ∀ {ℓ} {G : Group ℓ} → GroupEquiv (DirProd G UnitGroup₀) G
rUnitGroupEquiv = GroupIso→GroupEquiv rUnitGroupIso
contrGroupIsoUnit : {G : Group ℓ} → isContr ⟨ G ⟩ → GroupIso G UnitGroup₀
fun (fst (contrGroupIsoUnit contr)) _ = tt
inv (fst (contrGroupIsoUnit contr)) _ = fst contr
rightInv (fst (contrGroupIsoUnit contr)) _ = refl
leftInv (fst (contrGroupIsoUnit contr)) x = snd contr x
snd (contrGroupIsoUnit contr) = makeIsGroupHom λ _ _ → refl
contrGroupEquivUnit : {G : Group ℓ} → isContr ⟨ G ⟩ → GroupEquiv G UnitGroup₀
contrGroupEquivUnit contr = GroupIso→GroupEquiv (contrGroupIsoUnit contr)
isContr→≡UnitGroup : {G : Group ℓ-zero} → isContr (fst G) → UnitGroup₀ ≡ G
isContr→≡UnitGroup c =
fst (GroupPath _ _)
(invGroupEquiv ((isContr→≃Unit c)
, (makeIsGroupHom (λ _ _ → refl))))
GroupIsoUnitGroup→isContr : {G : Group ℓ-zero}
→ GroupIso UnitGroup₀ G → isContr (fst G)
GroupIsoUnitGroup→isContr is =
isOfHLevelRetractFromIso 0 (invIso (fst is)) isContrUnit
→UnitHom : ∀ {ℓ} (G : Group ℓ) → GroupHom G UnitGroup₀
fst (→UnitHom G) _ = tt
snd (→UnitHom G) = makeIsGroupHom λ _ _ → refl
| {
"alphanum_fraction": 0.7073901465,
"avg_line_length": 33.010989011,
"ext": "agda",
"hexsha": "e0a237cf5abf359524f1482bc8fbac588573c6af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 991,
"size": 3004
} |
-- Reported by matteo.acerbi, AIMXX, 2014-10-21
-- The following is accepted.
{-# OPTIONS --guardedness #-}
{-# OPTIONS --cubical-compatible #-}
-- {-# OPTIONS -v term:30 #-}
record X : Set where
coinductive
constructor ↑_
field ↓_ : X
open X
record Y (x1 x2 : X) : Set where
coinductive
field ]_[ : Y (↑ x1) (↑ x2)
open Y
trivial-Y : ∀ {x1 x2} → Y x1 x2
] trivial-Y [ = trivial-Y
-- Should termination check.
| {
"alphanum_fraction": 0.6009070295,
"avg_line_length": 16.9615384615,
"ext": "agda",
"hexsha": "0d24f2c1b67ead5335fe1aac5220d03568dc27ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1320.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1320.agda",
"max_line_length": 47,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1320.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 148,
"size": 441
} |
module _ where
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
record Id (A : Set) : Set where
field id : A → A
open Id {{...}}
postulate
T : {A : Set} → A → Set
cong : ∀ {A B : Set} (f : A → B) {x} → T x → T (f x)
X : Set
lem : (x : X) → T x
instance
IdX : Id X
IdX .id n = n
macro
follows-from : Term → Term → TC ⊤
follows-from prf hole = do
typeError (termErr prf ∷ [])
loops : (x : X) → T x
loops x =
follows-from (cong id (lem x))
| {
"alphanum_fraction": 0.5700575816,
"avg_line_length": 16.28125,
"ext": "agda",
"hexsha": "0031e5b1bcb5acc43b694026414220ca2d462b47",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3461.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3461.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3461.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 194,
"size": 521
} |
{- OPTIONS --without-K -}
module Base where
open import Agda.Primitive public using (lzero)
renaming (Level to ULevel; lsuc to lsucc; _⊔_ to lmax)
Type : (i : ULevel) → Set (lsucc i)
Type i = Set i
Type₀ = Type lzero
Type0 = Type lzero
Type₁ = Type (lsucc lzero)
Type1 = Type (lsucc lzero)
{- Naturals -}
data ℕ : Type₀ where
O : ℕ
S : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
Nat = ℕ
infix 3 _==_
data _==_ {i} {A : Type i} (a : A) : A → Type i where
idp : a == a
Path = _==_
{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REFL idp #-}
{- Free path induction, or as close as I could get, written in Section 1.12.1 as
ind=A : ∏ ∏(x:A)C(x,x,reflx) → ∏ ∏ C(x,y,p) (C:∏(x,y:A)(x=Ay)→U) (x,y:A) (p:x=Ay)
ind=A (C, c, x, x, reflx) :≡ c(x)
-}
ind== : ∀ {i j} {A : Type i} (D : (x y : A) → x == y → Type j) (d : (x : A) → D x x idp)
{x y : A} (p : x == y) → D x y p
ind== D d {x} idp = d x -- slight concern: what rules govern the implicit {x} and {y}
-- converging on the single {x} parameter here? I don't know Agda
-- well enough to answer this yet. Depending upon what
-- they are, this rule may be a duplicate of one of the based
-- path induction rules below.
{- Based path induction, or the J rule in HoTT-Agda lib -}
ind=' : ∀ {i j} {A : Type i} {a : A} (D : (x : A) (p : a == x) → Type j) (d : D a idp)
{x : A} (p : a == x) → D x p
ind=' D d idp = d
{- Right-based path induction, or J' in the HoTT-Agda lib -}
ind'= : ∀ {i j} {A : Type i} {a : A} (D : (x : A) (p : x == a) → Type j) (d : D a idp)
{x : A} (p : x == a) → D x p
ind'= D d idp = d
ind==2 : ∀ {i j} {A : Type i} (D : {x y : A} → x == y → Type j) (d : {x : A} → D {x} {x} idp)
{x y : A} (p : x == y) → D p
ind==2 D d idp = d -- slight concern: what rules govern the implicit {x} and {y}
-- {- Alternative based path induction as a specialized free path induction -}
-- ind='2 : ∀ {i j} {A : Type i} {a : A} (D : {x : A} (p : a == x) → Type j) (d : D idp)
-- {x : A} (p : a == x) → D p
-- ind='2 D d = ind==2 {!!} {!!}
-- Christine Paulin-Mohring’s version of the J rule is based path induction ind='
J : ∀ {i j} {A : Type i} {a : A} (D : {x : A} → a == x → Type j) → D idp →
{x : A} (p : a == x) → D p
J D d idp = d
{- Unit type
The unit type is defined as record so that we also get the η-rule definitionally.
-}
record Unit : Type₀ where
constructor unit
{- Dependent paths
The notion of dependent path is a very important notion.
If you have a dependent type [B] over [A], a path [p : x == y] in [A] and two
points [u : B x] and [v : B y], there is a type [u == v [ B ↓ p ]] of paths from
[u] to [v] lying over the path [p].
By definition, if [p] is a constant path, then [u == v [ B ↓ p ]] is just an
ordinary path in the fiber.
-}
PathOver : ∀ {i j} {A : Type i} (B : A → Type j)
{x y : A} (p : x == y) (u : B x) (v : B y) → Type j
PathOver B idp u v = (u == v)
syntax PathOver B p u v =
u == v [ B ↓ p ]
{- Ap, coe and transport
Given two fibrations over a type [A], a fiberwise map between the two fibrations
can be applied to any dependent path in the first fibration ([ap↓]).
As a special case, when [A] is [Unit], we find the familiar [ap] ([ap] is
defined in terms of [ap↓] because it shouldn’t change anything for the user
and this is helpful in some rare cases)
-}
ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A}
→ (x == y → f x == f y)
ap f idp = idp
ap↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) {x y : A} {p : x == y}
{u : B x} {v : B y}
→ (u == v [ B ↓ p ] → g u == g v [ C ↓ p ])
ap↓ g {p = idp} p = ap g p
{-
[apd↓] is defined in lib.PathOver. Unlike [ap↓] and [ap], [apd] is not
definitionally a special case of [apd↓]
-}
apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A}
→ (p : x == y) → f x == f y [ B ↓ p ]
apd f idp = idp
{-
An equality between types gives two maps back and forth
-}
coe : ∀ {i} {A B : Type i} (p : A == B) → A → B
coe idp x = x
coe! : ∀ {i} {A B : Type i} (p : A == B) → B → A
coe! idp x = x
{-
The operations of transport forward and backward are defined in terms of [ap]
and [coe], because this is more convenient in practice.
-}
transport : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B x → B y)
transport B p = coe (ap B p)
transport! : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B y → B x)
transport! B p = coe! (ap B p)
{- Equational reasoning
Equational reasoning is a way to write readable chains of equalities.
The idea is that you can write the following:
t : a == e
t = a =⟨ p ⟩
b =⟨ q ⟩
c =⟨ r ⟩
d =⟨ s ⟩
e ∎
where [p] is a path from [a] to [b], [q] is a path from [b] to [c], and so on.
You often have to apply some equality in some context, for instance [p] could be
[ap ctx thm] where [thm] is the interesting theorem used to prove that [a] is
equal to [b], and [ctx] is the context.
In such cases, you can use instead [thm |in-ctx ctx]. The advantage is that
[ctx] is usually boring whereas the first word of [thm] is the most interesting
part.
_=⟨_⟩ is not definitionally the same thing as concatenation of paths _∙_ because
we haven’t defined concatenation of paths yet, and also you probably shouldn’t
reason on paths constructed with equational reasoning.
If you do want to reason on paths constructed with equational reasoning, check
out lib.types.PathSeq instead.
-}
infix 2 _∎
infixr 2 _=⟨_⟩_
_=⟨_⟩_ : ∀ {i} {A : Type i} (x : A) {y z : A} → x == y → y == z → x == z
_ =⟨ idp ⟩ idp = idp
_∎ : ∀ {i} {A : Type i} (x : A) → x == x
_ ∎ = idp
syntax ap f p = p |in-ctx f
{- Truncation levels
The type of truncation levels is isomorphic to the type of natural numbers but
"starts at -2".
-}
data TLevel : Type₀ where
⟨-2⟩ : TLevel
succT : (n : TLevel) → TLevel
ℕ₋₂ = TLevel
⟨-1⟩ : TLevel
⟨-1⟩ = succT ⟨-2⟩
⟨0⟩ : TLevel
⟨0⟩ = succT ⟨-1⟩
{- Coproducts and case analysis -}
data Coprod {i j} (A : Type i) (B : Type j) : Type (lmax i j) where
inl : A → Coprod A B
inr : B → Coprod A B
{- Σ-types
Σ-types are defined as a record so that we have definitional η.
-}
infix 1 _,_
record Σ {i j} (A : Type i) (B : A → Type j) : Type (lmax i j) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
pair= : ∀ {i j} {A : Type i} {B : A → Type j}
{a a' : A} (p : a == a') {b : B a} {b' : B a'}
(q : b == b' [ B ↓ p ])
→ (a , b) == (a' , b')
pair= idp q = ap (_,_ _) q
pair×= : ∀ {i j} {A : Type i} {B : Type j}
{a a' : A} (p : a == a') {b b' : B} (q : b == b')
→ (a , b) == (a' , b')
pair×= idp q = pair= idp q
{- Empty type
We define the eliminator of the empty type using an absurd pattern. Given that
absurd patterns are not consistent with HIT, we will not use empty patterns
anymore after that.
-}
data Empty : Type₀ where
Empty-elim : ∀ {i} {A : Empty → Type i} → ((x : Empty) → A x)
Empty-elim ()
{- Negation and disequality -}
¬ : ∀ {i} (A : Type i) → Type i
¬ A = A → Empty
_≠_ : ∀ {i} {A : Type i} → (A → A → Type i)
x ≠ y = ¬ (x == y)
-- Cartesian product
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type _
A × B = Σ A (λ _ → B)
⊥ = Empty
{- Π-types
Shorter notation for Π-types.
-}
Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type _
Π A P = (x : A) → P x
{- Bool type -}
data Bool : Type₀ where
true : Bool
false : Bool
{- Equivalences -}
module _ {i} {j} {A : Type i} {B : Type j} where
record is-equiv (f : A → B) : Type (lmax i j)
where
field
g : B → A
f-g : (b : B) → f (g b) == b
g-f : (a : A) → g (f a) == a
adj : (a : A) → ap f (g-f a) == f-g (f a)
{- Definition of contractible types and truncation levels -}
module _ {i} where
is-contr : Type i → Type i
is-contr A = Σ A (λ a → ((x : A) → a == x))
has-level : ℕ₋₂ → (Type i → Type i)
has-level ⟨-2⟩ A = is-contr A
has-level (succT n) A = (x y : A) → has-level n (x == y)
is-prop = has-level ⟨-1⟩
is-set = has-level ⟨0⟩
| {
"alphanum_fraction": 0.5412459985,
"avg_line_length": 26.5424836601,
"ext": "agda",
"hexsha": "7b66bae95454cba30bb630c8bc0474e45cdffb91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "aerskine/hott-ex",
"max_forks_repo_path": "Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "aerskine/hott-ex",
"max_issues_repo_path": "Base.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "aerskine/hott-ex",
"max_stars_repo_path": "Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3100,
"size": 8122
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary.Raw
module Cubical.Relation.Binary.Reasoning.StrictPartialOrder
{a ℓ} {A : Type a} (S : StrictPartialOrder A ℓ) where
open StrictPartialOrder S
import Cubical.Relation.Binary.Raw.Construct.StrictToNonStrict _<_ as NonStrict
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Cubical.Relation.Binary.Reasoning.Base.Double
(NonStrict.isPreorder transitive)
transitive
NonStrict.<⇒≤
(NonStrict.<-≤-trans transitive)
public
| {
"alphanum_fraction": 0.6882716049,
"avg_line_length": 30.8571428571,
"ext": "agda",
"hexsha": "38d01f8a3d08504ce80b05fa6eaee101a70ec1d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 161,
"size": 648
} |
{-# OPTIONS --allow-exec #-}
module ExecAgda where
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.Sigma
open import Agda.Builtin.String
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Reflection.External
macro
test : Term → TC ⊤
test hole = execTC "agda" ("-v0" ∷ "-i" ∷ "test/Succeed" ∷ "test/Succeed/exec-tc/empty.agda" ∷ []) ""
>>= λ{(exitCode , (stdOut , stdErr)) → unify hole (lit (string stdOut))}
_ : test ≡ ""
_ = refl
| {
"alphanum_fraction": 0.6945392491,
"avg_line_length": 27.9047619048,
"ext": "agda",
"hexsha": "5ba187c9542ac041df1cc93c3f4ff5f04ecc7061",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ExecAgda.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ExecAgda.agda",
"max_line_length": 103,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ExecAgda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 179,
"size": 586
} |
module Issue623.B where
S : Set
S = S
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 7.8,
"ext": "agda",
"hexsha": "b3b5df767fa1b2d5b5bddd745ca37031d329bd60",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue623/B.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue623/B.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue623/B.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 14,
"size": 39
} |
module Options-in-right-order where
data Unit : Set where
unit : Unit
postulate
IO : Set → Set
{-# COMPILED_TYPE IO IO #-}
{-# BUILTIN IO IO #-}
postulate
return : {A : Set} → A → IO A
{-# COMPILED return (\_ -> return) #-}
main = return unit
| {
"alphanum_fraction": 0.6156862745,
"avg_line_length": 14.1666666667,
"ext": "agda",
"hexsha": "3c22218906118f340e2299d5cd9559a7f4d63bd8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Options-in-right-order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Options-in-right-order.agda",
"max_line_length": 38,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Options-in-right-order.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 75,
"size": 255
} |
module Numeral.Natural.Combinatorics.Proofs where
open import Functional
import Lvl
open import Logic
open import Logic.Propositional
open import Numeral.Natural
open import Numeral.Natural.Combinatorics
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Multiplication
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Relator.Equals.Proofs.Equiv
open import Structure.Setoid hiding (_≡_ ; _≢_)
open import Structure.Function.Domain
open import Structure.Function
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open import Type
factorial-non-zero : ∀{n} → ((n !) ≢ 𝟎)
factorial-non-zero {𝟎} ()
factorial-non-zero {𝐒 n} p with [⋅]-product-is-0 {a = 𝐒 n}{b = n !} p
... | [∨]-introᵣ n!0 = factorial-non-zero {n} n!0
instance
factorial-positive : ∀{n} → Positive(n !)
factorial-positive {n} = non-zero-positive(factorial-non-zero {n})
-- Also called: Pascals's identity
𝑐𝐶-step : ∀{n k} → (𝑐𝐶 (𝐒(n)) (𝐒(k)) ≡ 𝑐𝐶 n k + 𝑐𝐶 n (𝐒(k)))
𝑐𝐶-step = [≡]-intro
𝑐𝐶-empty-subsets : ∀{n} → (𝑐𝐶 n 𝟎 ≡ 𝐒(𝟎))
𝑐𝐶-empty-subsets {𝟎} = [≡]-intro
𝑐𝐶-empty-subsets {𝐒 n} = [≡]-intro
𝑐𝐶-singleton-subsets : ∀{n} → (𝑐𝐶 n (𝐒 𝟎) ≡ n)
𝑐𝐶-singleton-subsets {𝟎} = [≡]-intro
𝑐𝐶-singleton-subsets {𝐒 n} = congruence₁(𝐒) (𝑐𝐶-singleton-subsets {n})
{-# REWRITE 𝑐𝐶-singleton-subsets #-}
𝑐𝐶-larger-subsets : ∀{n k} → (n < k) → (𝑐𝐶 n k ≡ 𝟎)
𝑐𝐶-larger-subsets {𝟎} (succ _) = [≡]-intro
𝑐𝐶-larger-subsets {𝐒 n} {𝐒 k} (succ p)
rewrite 𝑐𝐶-larger-subsets {n} {k} p
rewrite 𝑐𝐶-larger-subsets {n} {𝐒 k} ([≤]-successor p)
= [≡]-intro
𝑐𝐶-full-subsets : ∀{n} → (𝑐𝐶 n n ≡ 𝐒(𝟎))
𝑐𝐶-full-subsets {𝟎} = [≡]-intro
𝑐𝐶-full-subsets {𝐒 n}
rewrite 𝑐𝐶-full-subsets {n}
rewrite 𝑐𝐶-larger-subsets {n}{𝐒 n} (reflexivity(_≤_))
= [≡]-intro
𝑐𝐶-excluding-single-subsets : ∀{n} → (𝑐𝐶 (𝐒 n) n ≡ 𝐒(n))
𝑐𝐶-excluding-single-subsets {𝟎} = [≡]-intro
𝑐𝐶-excluding-single-subsets {𝐒 n}
rewrite 𝑐𝐶-excluding-single-subsets {n}
rewrite 𝑐𝐶-full-subsets {n}
rewrite 𝑐𝐶-larger-subsets {n}{𝐒 n} (reflexivity(_≤_))
= [≡]-intro
{-
𝑐𝐶-test2 : ∀{k₁ k₂} → (𝑐𝐶 (𝐒(k₁ + k₂)) k₁ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₁) ≡ 𝑐𝐶 (𝐒(k₁ + k₂)) k₂ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₂))
𝑐𝐶-test2 {𝟎} {𝟎} = [≡]-intro
𝑐𝐶-test2 {𝟎} {𝐒 k₂}
rewrite 𝑐𝐶-full-subsets {k₂}
rewrite 𝑐𝐶-larger-subsets {k₂} (reflexivity(_≤_))
rewrite 𝑐𝐶-larger-subsets {k₂} ([≤]-successor(reflexivity(_≤_)))
rewrite 𝑐𝐶-excluding-single-subsets {k₂}
= [≡]-intro
𝑐𝐶-test2 {𝐒 k₁} {𝟎}
rewrite 𝑐𝐶-full-subsets {k₁}
rewrite 𝑐𝐶-larger-subsets {k₁} (reflexivity(_≤_))
rewrite 𝑐𝐶-larger-subsets {k₁} ([≤]-successor(reflexivity(_≤_)))
rewrite 𝑐𝐶-excluding-single-subsets {k₁}
= [≡]-intro
𝑐𝐶-test2 {𝐒 k₁} {𝐒 k₂}
-- rewrite test2 {k₁ + k₂} {k₁} {k₂} [≡]-intro
-- rewrite test2 {𝐒(k₁ + k₂)} {𝐒 k₁} {k₂} [≡]-intro
-- rewrite test2 {𝐒(k₁ + k₂)} {k₁} {𝐒 k₂} [≡]-intro
= {!!}
𝑐𝐶-symmetric : ∀{n k₁ k₂} → (k₁ + k₂ ≡ n) → (𝑐𝐶 n k₁ ≡ 𝑐𝐶 n k₂)
𝑐𝐶-symmetric {𝟎} {𝟎} {𝟎} x = [≡]-intro
𝑐𝐶-symmetric {𝐒 n} {𝟎} {𝐒 .n} [≡]-intro
rewrite 𝑐𝐶-full-subsets {n}
rewrite 𝑐𝐶-larger-subsets {n} (reflexivity(_≤_))
= [≡]-intro
𝑐𝐶-symmetric {𝐒 n} {𝐒 .n} {𝟎} [≡]-intro
rewrite 𝑐𝐶-full-subsets {n}
rewrite 𝑐𝐶-larger-subsets {n} (reflexivity(_≤_))
= [≡]-intro
𝑐𝐶-symmetric {𝐒 .(𝐒(k₁ + k₂))} {𝐒 k₁} {𝐒 k₂} [≡]-intro
=
𝑐𝐶 (𝐒(𝐒(k₁ + k₂))) (𝐒 k₁) 🝖[ _≡_ ]-[]
𝑐𝐶 (𝐒(k₁ + k₂)) k₁ + 𝑐𝐶 (𝐒(k₁ + k₂)) (𝐒 k₁) 🝖[ _≡_ ]-[]
𝑐𝐶 (𝐒(k₁ + k₂)) k₁ + (𝑐𝐶 (k₁ + k₂) k₁ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₁)) 🝖[ _≡_ ]-[ One.commuteₗ-assocᵣ {_▫_ = _+_}{a = 𝑐𝐶 (𝐒(k₁ + k₂)) k₁}{b = 𝑐𝐶 (k₁ + k₂) k₁}{c = 𝑐𝐶 (k₁ + k₂) (𝐒 k₁)} ]
𝑐𝐶 (k₁ + k₂) k₁ + (𝑐𝐶 (𝐒(k₁ + k₂)) k₁ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₁)) 🝖[ _≡_ ]-[ congruence₂(_+_) (𝑐𝐶-symmetric {k₁ + k₂} {k₁} {k₂} [≡]-intro) (𝑐𝐶-test2 {k₁}{k₂}) ]
𝑐𝐶 (k₁ + k₂) k₂ + (𝑐𝐶 (𝐒(k₁ + k₂)) k₂ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₂)) 🝖[ _≡_ ]-[ One.commuteₗ-assocᵣ {_▫_ = _+_}{a = 𝑐𝐶 (𝐒(k₁ + k₂)) k₂}{b = 𝑐𝐶 (k₁ + k₂) k₂}{c = 𝑐𝐶 (k₁ + k₂) (𝐒 k₂)} ]-sym
𝑐𝐶 (𝐒(k₁ + k₂)) k₂ + (𝑐𝐶 (k₁ + k₂) k₂ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₂)) 🝖[ _≡_ ]-[]
𝑐𝐶 (𝐒(k₁ + k₂)) k₂ + 𝑐𝐶 (𝐒(k₁ + k₂)) (𝐒 k₂) 🝖[ _≡_ ]-[]
𝑐𝐶 (𝐒(𝐒(k₁ + k₂))) (𝐒 k₂) 🝖-end
-}
-- ∀{n k} → 𝑐𝐶 n k ≡ 𝑐𝐶 n (n−k)
-- ∀{n k} → 𝑐𝐶 (𝐒 n) (𝐒 k) ≡ 𝑐𝐶 n k ⋅ (𝐒 n) / (𝐒 k)
-- ∀{n} → (∑(𝟎 ‥ n) (𝑐𝐶 n) ≡ 2 ^ n)
-- ∀{n k} → (𝑐𝐶 (𝐒 n) (𝐒 k) ≡ ∑(0 ‥ n) (i ↦ 𝑐𝐶 i k) = ∑(k ‥ n) (i ↦ 𝑐𝐶 i k))
𝑐𝑃-empty : ∀{n} → (𝑐𝑃 n 𝟎 ≡ 𝐒(𝟎))
𝑐𝑃-empty {𝟎} = [≡]-intro
𝑐𝑃-empty {𝐒 n} = [≡]-intro
𝑐𝑃-singleton : ∀{n} → (𝑐𝑃 n (𝐒 𝟎) ≡ n)
𝑐𝑃-singleton {𝟎} = [≡]-intro
𝑐𝑃-singleton {𝐒 n} = [≡]-intro
{-# REWRITE 𝑐𝑃-singleton #-}
𝑐𝑃-step-diff : ∀{n k} → (𝑐𝑃 n k ⋅ n ≡ 𝑐𝑃 n k ⋅ k + 𝑐𝑃 n (𝐒 k)) -- TODO: Prove this for 𝑐𝐶 by using 𝑐𝐶-permutations-is-𝑐𝑃
𝑐𝑃-step-diff {𝟎} {𝟎} = [≡]-intro
𝑐𝑃-step-diff {𝟎} {𝐒 k} = [≡]-intro
𝑐𝑃-step-diff {𝐒 n} {𝟎} = [≡]-intro
𝑐𝑃-step-diff {𝐒 n} {𝐒 k} =
𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ (𝐒 n) 🝖[ _≡_ ]-[]
(𝑐𝑃 n k ⋅ (𝐒 n)) ⋅ (𝐒 n) 🝖[ _≡_ ]-[]
(𝑐𝑃 n k + 𝑐𝑃 n k ⋅ n) ⋅ (𝐒 n) 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) {x = 𝑐𝑃 n k}{y = 𝑐𝑃 n k ⋅ n}{z = 𝐒 n} ]
(𝑐𝑃 n k ⋅ (𝐒 n)) + ((𝑐𝑃 n k ⋅ n) ⋅ (𝐒 n)) 🝖[ _≡_ ]-[ congruence₂(_+_) (reflexivity(_≡_) {x = 𝑐𝑃 (𝐒 n) (𝐒 k)}) proof1 ]
𝑐𝑃 (𝐒 n) (𝐒 k) + ((𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ k) + 𝑐𝑃 (𝐒 n) (𝐒(𝐒 k))) 🝖[ _≡_ ]-[ associativity(_+_) {x = 𝑐𝑃 (𝐒 n) (𝐒 k)}{y = 𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ k}{z = 𝑐𝑃 (𝐒 n) (𝐒(𝐒 k))} ]-sym
(𝑐𝑃 (𝐒 n) (𝐒 k) + (𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ k)) + 𝑐𝑃 (𝐒 n) (𝐒(𝐒 k)) 🝖[ _≡_ ]-[]
(𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ 𝐒 k) + 𝑐𝑃 (𝐒 n) (𝐒(𝐒 k)) 🝖-end
where
proof2 =
(𝑐𝑃 n k ⋅ k) ⋅ (𝐒 n) 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {_▫_ = _⋅_}{a = 𝑐𝑃 n k}{b = k}{c = 𝐒 n} ]
(𝑐𝑃 n k ⋅ (𝐒 n)) ⋅ k 🝖[ _≡_ ]-[]
𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ k 🝖-end
proof1 =
(𝑐𝑃 n k ⋅ n) ⋅ (𝐒 n) 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(𝐒 n) (𝑐𝑃-step-diff {n}{k}) ]
(𝑐𝑃 n k ⋅ k + 𝑐𝑃 n (𝐒 k)) ⋅ (𝐒 n) 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) {x = 𝑐𝑃 n k ⋅ k}{y = 𝑐𝑃 n (𝐒 k)}{z = 𝐒 n} ]
((𝑐𝑃 n k ⋅ k) ⋅ (𝐒 n)) + (𝑐𝑃 n (𝐒 k) ⋅ (𝐒 n)) 🝖[ _≡_ ]-[ congruence₂(_+_) proof2 (reflexivity(_≡_)) ]
(𝑐𝑃 (𝐒 n) (𝐒 k) ⋅ k) + 𝑐𝑃 (𝐒 n) (𝐒(𝐒 k)) 🝖-end
𝑐𝑃-step-alt : ∀{n k} → (𝑐𝑃 (𝐒 n) (𝐒 k) ≡ (𝑐𝑃 n k ⋅ 𝐒 k) + 𝑐𝑃 n (𝐒 k))
𝑐𝑃-step-alt {n}{k} rewrite 𝑐𝑃-step-diff {n}{k} = symmetry(_≡_) (associativity(_+_) {x = 𝑐𝑃 n k}{y = 𝑐𝑃 n k ⋅ k}{z = 𝑐𝑃 n (𝐒 k)})
𝑐𝐶-permutations-is-𝑐𝑃 : ∀{n k} → (𝑐𝐶 n k ⋅ (k !) ≡ 𝑐𝑃 n k)
𝑐𝐶-permutations-is-𝑐𝑃 {𝟎} {𝟎} = [≡]-intro
𝑐𝐶-permutations-is-𝑐𝑃 {𝟎} {𝐒 k} = [≡]-intro
𝑐𝐶-permutations-is-𝑐𝑃 {𝐒 n} {𝟎} = [≡]-intro
𝑐𝐶-permutations-is-𝑐𝑃 {𝐒 n} {𝐒 k} =
(𝑐𝐶 n k + 𝑐𝐶 n (𝐒 k)) ⋅ (𝐒 k ⋅ (k !)) 🝖-[ distributivityᵣ(_⋅_)(_+_) {x = 𝑐𝐶 n k}{y = 𝑐𝐶 n (𝐒 k)}{z = 𝐒 k ⋅ (k !)} ]
(𝑐𝐶 n k ⋅ (𝐒 k ⋅ (k !))) + (𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k ⋅ (k !))) 🝖-[ congruence₂(_+_) l r ]
(𝑐𝑃 n k ⋅ 𝐒 k) + 𝑐𝑃 n (𝐒 k) 🝖-[ 𝑐𝑃-step-alt {n}{k} ]-sym
𝑐𝑃 n k ⋅ 𝐒 n 🝖-end
where
l =
𝑐𝐶 n k ⋅ (𝐒 k ⋅ (k !)) 🝖-[ congruence₂ᵣ(_⋅_)(𝑐𝐶 n k) (commutativity(_⋅_) {𝐒 k}{k !}) ]
𝑐𝐶 n k ⋅ ((k !) ⋅ 𝐒 k) 🝖-[ associativity(_⋅_) {x = 𝑐𝐶 n k}{y = k !}{z = 𝐒 k} ]-sym
(𝑐𝐶 n k ⋅ (k !)) ⋅ 𝐒 k 🝖-[ congruence₂ₗ(_⋅_)(𝐒 k) (𝑐𝐶-permutations-is-𝑐𝑃 {n} {k}) ]
𝑐𝑃 n k ⋅ 𝐒 k 🝖-end
r =
𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k ⋅ (k !)) 🝖[ _≡_ ]-[]
𝑐𝐶 n (𝐒 k) ⋅ ((𝐒 k)!) 🝖[ _≡_ ]-[ 𝑐𝐶-permutations-is-𝑐𝑃 {n} {𝐒 k} ]
𝑐𝑃 n (𝐒 k) 🝖-end
𝑐𝑃-full : ∀{n} → (𝑐𝑃 n n ≡ n !)
𝑐𝑃-full {n} =
𝑐𝑃 n n 🝖[ _≡_ ]-[ 𝑐𝐶-permutations-is-𝑐𝑃 {n}{n} ]-sym
𝑐𝐶 n n ⋅ (n !) 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(n !) (𝑐𝐶-full-subsets {n}) ]
𝐒(𝟎) ⋅ (n !) 🝖[ _≡_ ]-[]
n ! 🝖-end
𝑐𝐶-step-diff : ∀{n k} → (𝑐𝐶 n k ⋅ n ≡ (𝑐𝐶 n k ⋅ k) + (𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k)))
𝑐𝐶-step-diff {n}{k} = [⋅]-cancellationᵣ {x = k !} ⦃ factorial-positive {k} ⦄ $
(𝑐𝐶 n k ⋅ n) ⋅ (k !) 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {_▫_ = _⋅_}{a = 𝑐𝐶 n k}{b = n}{c = k !} ]
(𝑐𝐶 n k ⋅ (k !)) ⋅ n 🝖[ _≡_ ]-[ congruence₁(_⋅ n) (𝑐𝐶-permutations-is-𝑐𝑃 {n}{k}) ]
𝑐𝑃 n k ⋅ n 🝖[ _≡_ ]-[ 𝑐𝑃-step-diff {n}{k} ]
𝑐𝑃 n k ⋅ k + 𝑐𝑃 n (𝐒 k) 🝖[ _≡_ ]-[ congruence₂(_+_) (congruence₁(_⋅ k) (symmetry(_≡_) (𝑐𝐶-permutations-is-𝑐𝑃 {n}{k}))) (symmetry(_≡_) (𝑐𝐶-permutations-is-𝑐𝑃 {n}{𝐒 k})) ]
(𝑐𝐶 n k ⋅ (k !)) ⋅ k + (𝑐𝐶 n (𝐒 k) ⋅ ((𝐒 k) !)) 🝖[ _≡_ ]-[]
(𝑐𝐶 n k ⋅ (k !)) ⋅ k + (𝑐𝐶 n (𝐒 k) ⋅ ((𝐒 k) ⋅ (k !))) 🝖[ _≡_ ]-[ congruence₂(_+_) (One.commuteᵣ-assocₗ {_▫_ = _⋅_}{a = 𝑐𝐶 n k}{b = k !}{c = k}) (symmetry(_≡_) (associativity(_⋅_) {x = 𝑐𝐶 n (𝐒 k)}{y = 𝐒 k}{z = k !})) ]
(𝑐𝐶 n k ⋅ k) ⋅ (k !) + ((𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k)) ⋅ (k !)) 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) {x = 𝑐𝐶 n k ⋅ k}{y = 𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k)}{z = k !} ]-sym
((𝑐𝐶 n k ⋅ k) + (𝑐𝐶 n (𝐒 k) ⋅ (𝐒 k))) ⋅ (k !) 🝖-end
{-
-- Note: This is a variant of the usual definition of 𝑐𝐶 (The usual one: 𝑐𝐶 n k = (n !) / ((k !) ⋅ (n − k)!)).
factorial-of-[+] : ∀{k₁ k₂} → ((k₁ + k₂)! ≡ (k₁ !) ⋅ (k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁)
factorial-of-[+] {𝟎} {k₂} = [≡]-intro
factorial-of-[+] {𝐒 k₁} {k₂} =
((𝐒(k₁) + k₂) !) 🝖[ _≡_ ]-[]
(𝐒(k₁ + k₂) !) 🝖[ _≡_ ]-[]
𝐒(k₁ + k₂) ⋅ ((k₁ + k₂) !) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅_)(𝐒(k₁ + k₂)) (factorial-of-[+] {k₁} {k₂}) ]
𝐒(k₁ + k₂) ⋅ ((k₁ !) ⋅ (k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁) 🝖[ _≡_ ]-[]
(𝐒(k₁) + k₂) ⋅ ((k₁ !) ⋅ (k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁) 🝖[ _≡_ ]-[ {!!} ]
((𝐒(k₁) + k₂) ⋅ (k₁ !)) ⋅ ((k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁) 🝖[ _≡_ ]-[ {!!} ]
((𝐒(k₁) ⋅ (k₁ !)) + (k₂ ⋅ (k₁ !))) ⋅ ((k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁) 🝖[ _≡_ ]-[ {!!} ]
((𝐒(k₁) !) + (k₂ ⋅ (k₁ !))) ⋅ ((k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁) 🝖[ _≡_ ]-[ {!!} ]
(𝐒(k₁) !) ⋅ (k₂ !) ⋅ 𝑐𝐶(𝐒(k₁) + k₂) (𝐒(k₁)) 🝖-end
𝐒 k₁ ⋅ (k₁ !) ⋅ (k₂ !) ⋅ (𝑐𝐶 (k₁ + k₂) k₁ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₁))
-}
{-factorial-of-[+] {𝟎} {𝟎} = [≡]-intro
factorial-of-[+] {𝟎} {𝐒 k₂} = [≡]-intro
factorial-of-[+] {𝐒 k₁} {𝟎}
rewrite 𝑐𝐶-full-subsets {k₁}
rewrite 𝑐𝐶-larger-subsets {k₁} {𝐒 k₁} (reflexivity(_≤_))
= [≡]-intro
factorial-of-[+] {𝐒 k₁} {𝐒 k₂} = {!!}
𝐒(𝐒(k₁ + k₂)) ⋅ (𝐒(k₁ + k₂) ⋅ ((k₁ + k₂)!))
𝐒(𝐒(k₁ + k₂)) ⋅ (𝐒(k₁ + k₂) ⋅ ((k₁ !) ⋅ (k₂ !) ⋅ 𝑐𝐶 (k₁ + k₂) k₁))
𝐒(k₁) ⋅ (k₁ !) ⋅ (𝐒 k₂ ⋅ (k₂ !)) ⋅ (𝑐𝐶 (𝐒(k₁ + k₂)) k₁ + (𝑐𝐶 (k₁ + k₂) k₁ + 𝑐𝐶 (k₁ + k₂) (𝐒 k₁)))
-}
{-
-- Note: This is a variant of the usual definition of 𝑐𝑃 (The usual one: 𝑐𝑃 n k = (n !) / ((n − k)!)).
factorial-of-[+]-𝑐𝑃 : ∀{k₁ k₂} → ((k₁ + k₂)! ≡ 𝑐𝑃 (k₁ + k₂) k₂ ⋅ (k₁ !))
factorial-of-[+]-𝑐𝑃 {𝟎} {𝟎} = [≡]-intro
factorial-of-[+]-𝑐𝑃 {𝟎} {𝐒 k₂}
rewrite 𝑐𝑃-full {k₂}
=
𝐒 k₂ ⋅ (k₂ !) 🝖[ _≡_ ]-[ commutativity(_⋅_) {𝐒 k₂}{k₂ !} ]
(k₂ !) ⋅ 𝐒 k₂ 🝖[ _≡_ ]-[]
(k₂ !) + (k₂ !) ⋅ k₂ 🝖-end
factorial-of-[+]-𝑐𝑃 {𝐒 k₁} {𝟎} = [≡]-intro
factorial-of-[+]-𝑐𝑃 {𝐒 k₁} {𝐒 k₂} = {!!}
𝐒(𝐒(k₁ + k₂)) ⋅ (𝐒(k₁ + k₂) ⋅ ((k₁ + k₂)!))
𝐒(𝐒(k₁ + k₂)) ⋅ (𝐒(k₁ + k₂) ⋅ (𝑐𝑃 (k₁ + k₂) k₂ ⋅ (k₁ !)))
(𝑐𝑃 (𝐒(k₁ + k₂)) k₂ + (𝑐𝑃 (𝐒(k₁ + k₂)) k₂ + 𝑐𝑃 (𝐒(k₁ + k₂)) k₂ ⋅ (k₁ + k₂))) ⋅ (𝐒 k₁ ⋅ (k₁ !))
-}
| {
"alphanum_fraction": 0.4684929109,
"avg_line_length": 47.2148760331,
"ext": "agda",
"hexsha": "24a1edddf0939af1ea60eedf5985dff0f9aac1ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Combinatorics/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Combinatorics/Proofs.agda",
"max_line_length": 219,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Combinatorics/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 7177,
"size": 11426
} |
------------------------------------------------------------------------
-- Parallel substitutions (defined as functions)
------------------------------------------------------------------------
open import Data.Universe.Indexed
module deBruijn.Substitution.Function.Basics
{i u e} {Uni : IndexedUniverse i u e} where
import Axiom.Extensionality.Propositional as E
import deBruijn.Context; open deBruijn.Context Uni
open import Function using (id; _∘_; _$_)
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open P.≡-Reasoning
-- Substitutions, represented as functions from variables to terms.
Sub : ∀ {t} (T : Term-like t) {Γ Δ : Ctxt} → Γ ⇨̂ Δ → Set _
Sub T = [ Var ⟶ T ]
private
module Dummy {t} {T : Term-like t} where
open Term-like T
-- Interpretation of substitutions: context morphisms.
⟦_⟧⇨ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Γ ⇨̂ Δ
⟦_⟧⇨ {ρ̂ = ρ̂} _ = ρ̂
-- Application of substitutions to types.
infixl 8 _/I_ _/_
_/I_ : ∀ {Γ Δ i} {ρ̂ : Γ ⇨̂ Δ} → IType Γ i → Sub T ρ̂ → IType Δ i
σ /I ρ = σ /̂I ⟦ ρ ⟧⇨
_/_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Type Γ → Sub T ρ̂ → Type Δ
σ / ρ = σ /̂ ⟦ ρ ⟧⇨
-- Application of substitutions to values.
infixl 8 _/Val_
_/Val_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} →
Value Γ σ → Sub T ρ̂ → Value Δ (σ /̂ ρ̂)
v /Val ρ = v /̂Val ⟦ ρ ⟧⇨
-- Application of substitutions to context extensions.
infixl 8 _/⁺_ _/₊_
_/⁺_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt⁺ Γ → Sub T ρ̂ → Ctxt⁺ Δ
Γ⁺ /⁺ ρ = Γ⁺ /̂⁺ ⟦ ρ ⟧⇨
_/₊_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt₊ Γ → Sub T ρ̂ → Ctxt₊ Δ
Γ₊ /₊ ρ = Γ₊ /̂₊ ⟦ ρ ⟧⇨
-- Application of substitutions to variables.
infixl 8 _/∋_ _/∋-lemma_
_/∋_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ∋ σ → (ρ : Sub T ρ̂) → Δ ⊢ σ / ρ
x /∋ ρ = ρ · x
_/∋-lemma_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T ρ̂) →
x /̂∋ ⟦ ρ ⟧⇨ ≅-Value ⟦ x /∋ ρ ⟧
x /∋-lemma ρ = corresponds ρ x
app∋ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → [ Var ⟶ T ] ρ̂
app∋ ρ = record
{ function = λ _ x → x /∋ ρ
; corresponds = λ _ x → x /∋-lemma ρ
}
-- Empty substitution.
ε⇨ : ∀ {Δ} → Sub T ε̂[ Δ ]
ε⇨ = record { function = λ _ (); corresponds = λ _ () }
ε⇨[_] : ∀ Δ → Sub T ε̂[ Δ ]
ε⇨[ _ ] = ε⇨
-- Extends a substitution with another term.
private
-- This function is not local to _▻⇨[_]_ because a proof below
-- fails to type check if the function depends on the proof
-- component of the substitution.
fun : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} →
(∀ {τ} → Γ ∋ τ → Δ ⊢ τ /̂ ρ̂) →
(t : Δ ⊢ σ /̂ ρ̂) →
∀ {τ} → Γ ▻ σ ∋ τ → Δ ⊢ τ /̂ (ρ̂ ▻̂ ⟦ t ⟧)
fun f t zero = t
fun f t (suc x) = f x
infixl 5 _▻⇨_ _▻⇨[_]_
_▻⇨[_]_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ}
(ρ : Sub T ρ̂) σ (t : Δ ⊢ σ / ρ) → Sub T (ρ̂ ▻̂[ σ ] ⟦ t ⟧)
_▻⇨[_]_ {Γ} {Δ} {ρ̂} ρ σ t =
record { function = λ _ → fun (_·_ ρ) t; corresponds = λ _ → corr }
where
abstract
corr : ∀ {τ} (x : Γ ▻ σ ∋ τ) →
x /̂∋ (ρ̂ ▻̂ ⟦ t ⟧) ≅-Value ⟦ fun (_·_ ρ) t x ⟧
corr zero = P.refl
corr (suc x) = x /∋-lemma ρ
_▻⇨_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ}
(ρ : Sub T ρ̂) (t : Δ ⊢ σ / ρ) → Sub T (ρ̂ ▻̂[ σ ] ⟦ t ⟧)
ρ ▻⇨ t = ρ ▻⇨[ _ ] t
-- The tail of a nonempty substitution.
tail : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} → Sub T ρ̂ → Sub T (t̂ail ρ̂)
tail ρ = ρ [∘] weaken∋
-- The head of a nonempty substitution.
head : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) → Δ ⊢ σ / tail ρ
head ρ = zero /∋ ρ
head-lemma : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) →
ĥead ⟦ ρ ⟧⇨ ≅-Value ⟦ head ρ ⟧
head-lemma ρ = zero /∋-lemma ρ
-- Equality of substitutions.
infix 4 _≅-⇨_
_≅-⇨_ : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} (ρ₁ : Sub T ρ̂₁)
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} (ρ₂ : Sub T ρ̂₂) → Set _
_≅-⇨_ = _≅-⟶_
-- Certain uses of substitutivity can be removed.
drop-subst-Sub :
∀ {a} {A : Set a} {x₁ x₂ : A} {Γ Δ}
(f : A → Γ ⇨̂ Δ) {ρ} (eq : x₁ ≡ x₂) →
P.subst (λ x → Sub T (f x)) eq ρ ≅-⇨ ρ
drop-subst-Sub f P.refl = [ P.refl ]
-- Some congruence lemmas.
ε⇨-cong : ∀ {Δ₁ Δ₂} → Δ₁ ≅-Ctxt Δ₂ → ε⇨[ Δ₁ ] ≅-⇨ ε⇨[ Δ₂ ]
ε⇨-cong P.refl = [ P.refl ]
▻⇨-cong :
∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {t₁ : Δ₁ ⊢ σ₁ / ρ₁}
{Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} {t₂ : Δ₂ ⊢ σ₂ / ρ₂} →
σ₁ ≅-Type σ₂ → ρ₁ ≅-⇨ ρ₂ → t₁ ≅-⊢ t₂ →
ρ₁ ▻⇨[ σ₁ ] t₁ ≅-⇨ ρ₂ ▻⇨[ σ₂ ] t₂
▻⇨-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] P.refl =
[ P.refl ]
⟦⟧⇨-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
ρ₁ ≅-⇨ ρ₂ → ⟦ ρ₁ ⟧⇨ ≅-⇨̂ ⟦ ρ₂ ⟧⇨
⟦⟧⇨-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} [ P.refl ] = P.refl
/I-cong :
∀ {i}
{Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {σ₁ : IType Γ₁ i} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {σ₂ : IType Γ₂ i} {ρ₂ : Sub T ρ̂₂} →
σ₁ ≅-IType σ₂ → ρ₁ ≅-⇨ ρ₂ → σ₁ /I ρ₁ ≅-IType σ₂ /I ρ₂
/I-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] = P.refl
/-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
σ₁ ≅-Type σ₂ → ρ₁ ≅-⇨ ρ₂ → σ₁ / ρ₁ ≅-Type σ₂ / ρ₂
/-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] = P.refl
/⁺-cong : ∀ {Γ₁ Δ₁ Γ⁺₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ Γ⁺₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ρ₁ ≅-⇨ ρ₂ → Γ⁺₁ /⁺ ρ₁ ≅-Ctxt⁺ Γ⁺₂ /⁺ ρ₂
/⁺-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] = P.refl
/₊-cong : ∀ {Γ₁ Δ₁ Γ₊₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ Γ₊₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ₁ ≅-⇨ ρ₂ → Γ₊₁ /₊ ρ₁ ≅-Ctxt₊ Γ₊₂ /₊ ρ₂
/₊-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] = P.refl
/∋-cong : ∀ {Γ₁ Δ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
x₁ ≅-∋ x₂ → ρ₁ ≅-⇨ ρ₂ → x₁ /∋ ρ₁ ≅-⊢ x₂ /∋ ρ₂
/∋-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} P.refl [ P.refl ] = P.refl
tail-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
ρ₁ ≅-⇨ ρ₂ → tail ρ₁ ≅-⇨ tail ρ₂
tail-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} [ P.refl ] = [ P.refl ]
head-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
ρ₁ ≅-⇨ ρ₂ → head ρ₁ ≅-⊢ head ρ₂
head-cong {ρ₁ = _ , _} {ρ₂ = ._ , _} [ P.refl ] = P.refl
abstract
-- Some eta-laws, based on the assumption of extensionality.
-- Eta in empty contexts.
ηε : E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t) →
∀ {Δ} {ρ̂ : ε ⇨̂ Δ} (ρ : Sub T ρ̂) → ρ ≅-⇨ ε⇨[ Δ ]
ηε ext ρ = extensional-equality₁ ext P.refl (λ ())
-- Eta in non-empty contexts.
η▻ : E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t) →
∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) →
ρ ≅-⇨ tail ρ ▻⇨[ σ ] head ρ
η▻ ext {Γ} {σ = σ} {ρ̂} ρ = extensional-equality₂ ext lemma₁ lemma₂
where
open Term-like Var using () renaming (_≅-⊢_ to _≅-∋′_)
lemma₁ : ρ̂ ≅-⇨̂ t̂ail ρ̂ ▻̂[ σ ] ⟦ head ρ ⟧
lemma₁ = begin
[ ρ̂ ] ≡⟨ P.refl ⟩
[ t̂ail ρ̂ ▻̂ ĥead ρ̂ ] ≡⟨ ▻̂-cong P.refl P.refl (head-lemma ρ) ⟩
[ t̂ail ρ̂ ▻̂ ⟦ head ρ ⟧ ] ∎
lemma₂′ : ∀ {τ} (x : Γ ▻ σ ∋ τ) →
x /∋ ρ ≅-⊢ x /∋ (tail ρ ▻⇨[ σ ] head ρ)
lemma₂′ zero = P.refl
lemma₂′ (suc x) = P.refl
lemma₂ : ∀ {τ₁} {x₁ : Γ ▻ σ ∋ τ₁}
{τ₂} {x₂ : Γ ▻ σ ∋ τ₂} →
x₁ ≅-∋′ x₂ → x₁ /∋ ρ ≅-⊢ x₂ /∋ (tail ρ ▻⇨[ σ ] head ρ)
lemma₂ {x₁ = x} P.refl = lemma₂′ x
-- Two substitutions are equal if their indices are equal and
-- their projections are pairwise equal (assuming extensionality).
extensionality :
E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t) →
∀ {Γ Δ₁} {ρ̂₁ : Γ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁}
{Δ₂} {ρ̂₂ : Γ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} →
Δ₁ ≅-Ctxt Δ₂ → (∀ {σ} (x : Γ ∋ σ) → x /∋ ρ₁ ≅-⊢ x /∋ ρ₂) →
ρ₁ ≅-⇨ ρ₂
extensionality ext {ε} {ρ₁ = ρ₁} {ρ₂ = ρ₂} P.refl hyp =
ρ₁ ≅-⟶⟨ ηε ext ρ₁ ⟩
ε⇨ ≅-⟶⟨ sym-⟶ $ ηε ext ρ₂ ⟩
ρ₂ ∎-⟶
extensionality ext {Γ ▻ σ} {ρ₁ = ρ₁} {ρ₂ = ρ₂} P.refl hyp =
ρ₁ ≅-⟶⟨ η▻ ext ρ₁ ⟩
tail ρ₁ ▻⇨ head ρ₁ ≅-⟶⟨ ▻⇨-cong P.refl
(extensionality ext P.refl (hyp ∘ suc))
(hyp zero) ⟩
tail ρ₂ ▻⇨ head ρ₂ ≅-⟶⟨ sym-⟶ $ η▻ ext ρ₂ ⟩
ρ₂ ∎-⟶
open Dummy public
| {
"alphanum_fraction": 0.4266357846,
"avg_line_length": 33.2115384615,
"ext": "agda",
"hexsha": "3ff52182765ffc8be9c56c840cb7280ab9a45856",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "deBruijn/Substitution/Function/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "deBruijn/Substitution/Function/Basics.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "deBruijn/Substitution/Function/Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 4694,
"size": 8635
} |
{- Type system of the language. -}
module Syntax.Types where
-- Abstract syntax of types for the language.
data Type : Set where
-- Unit type
Unit : Type
-- Product type
_&_ : Type -> Type -> Type
-- Sum type
_+_ : Type -> Type -> Type
-- Function type
_=>_ : Type -> Type -> Type
-- Event type
Event : Type -> Type
-- Signal type
Signal : Type -> Type
infixr 65 _=>_
infixl 68 _+_
infixl 70 _&_
| {
"alphanum_fraction": 0.5689277899,
"avg_line_length": 20.7727272727,
"ext": "agda",
"hexsha": "624e711fb414a1e4dfaae95b14744fad7f1fd1bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Syntax/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Syntax/Types.agda",
"max_line_length": 45,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Syntax/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 139,
"size": 457
} |
-- Andreas, 2019-10-21, issue #4142, reported and test case by Jason Hu
-- When the record-expression-to-copattern-translation is revisited
-- after positivity checking, the defCopatternLHS flag needs to be
-- updated as well!
-- {-# OPTIONS -v tc.cc.record:20 #-}
-- {-# OPTIONS -v tc.conv:30 #-}
open import Agda.Builtin.Equality
record WrapSet : Set1 where
constructor wrap
-- eta-equality -- WAS: needed for test
field
Wrapped : Set
eta : WrapSet
eta .Wrapped = Wrapped
pack : WrapSet
pack = record { Wrapped = Wrapped }
-- The positivity check makes WrapSet an eta-record after the fact.
-- Thus, the record-expression-to-copattern-translation is run again for pack.
open WrapSet
-- Make sure eta was inferred correctly for WrapSet
hasEta : (w : WrapSet) → w ≡ record{ Wrapped = Wrapped w }
hasEta w = refl
-- When we have a definition by copattern matching it works.
works : (w : WrapSet) → w ≡ eta w
works w = refl
-- Should also work for pack.
test : (w : WrapSet) → w ≡ pack w
test w = refl
| {
"alphanum_fraction": 0.6957364341,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "dc072c78f0fa5072ca7c198acc3a1275acd55486",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4142.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4142.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4142.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 285,
"size": 1032
} |
module Setoid where
open import Logic.Base
record Setoid : Set1 where
field
A : Set
_==_ : A -> A -> Prop
refl : {x : A} -> x == x
sym : {x y : A} -> x == y -> y == x
trans : {x y z : A} -> x == y -> y == z -> x == z
module Set-Ar where
!_! : (S : Setoid) -> Set
! S ! = Setoid.A S
record SetoidArrow (S₁ S₂ : Setoid) : Set where
field
map : ! S₁ ! -> ! S₂ !
stab : {x y : Setoid.A S₁} -> Setoid._==_ S₁ x y -> Setoid._==_ S₂ (map x) (map y)
_∘_ : {S₁ S₂ S₃ : Setoid} -> SetoidArrow S₂ S₃ -> SetoidArrow S₁ S₂ -> SetoidArrow S₁ S₃
_∘_ {S₁} F₁ F₂ = record
{ map = \x -> SetoidArrow.map F₁ (SetoidArrow.map F₂ x)
; stab = \{x y : ! S₁ !}(p : Setoid._==_ S₁ x y) -> SetoidArrow.stab F₁ (SetoidArrow.stab F₂ p)
}
id : {S : Setoid} -> SetoidArrow S S
id = record
{ map = \x -> x
; stab = \p -> p
}
_==→_ : {S₁ S₂ : Setoid} -> SetoidArrow S₁ S₂ -> SetoidArrow S₁ S₂ -> Set
_==→_ {_} {S₂} F₁ F₂ = (forall x -> Setoid._==_ S₂ (SetoidArrow.map F₁ x) (SetoidArrow.map F₂ x)) -> True
module Set-Fam where
open Set-Ar
record SetoidFam (S : Setoid) : Set1 where
field
index : ! S ! -> Setoid
reindex : {x x' : ! S !} -> Setoid._==_ S x x' -> SetoidArrow (index x) (index x')
id-coh : {x : ! S !} -> (reindex (Setoid.refl S)) ==→ id {index x}
sym-coh-l : {x y : ! S !}(p : Setoid._==_ S x y) -> ((reindex (Setoid.sym S p)) ∘ (reindex p)) ==→ id
sym-coh-r : {x y : ! S !}(p : Setoid._==_ S x y) -> ((reindex p) ∘ (reindex (Setoid.sym S p))) ==→ id
trans-coh : {x y z : ! S !}(p : Setoid._==_ S x y)(p' : Setoid._==_ S y z) ->
(reindex (Setoid.trans S p p')) ==→ ((reindex p') ∘ (reindex p))
module Set-Fam-Ar where
open Set-Ar
open Set-Fam
record SetoidFamArrow {S₁ S₂ : Setoid}(F₁ : SetoidFam S₁)(F₂ : SetoidFam S₂) : Set where
field
indexingmap : SetoidArrow S₁ S₂
indexmap : (x : ! S₁ !) -> SetoidArrow (SetoidFam.index F₁ x)
(SetoidFam.index F₂ (SetoidArrow.map indexingmap x))
reindexmap : (x x' : ! S₁ !)(p : Setoid._==_ S₁ x' x) ->
((indexmap x) ∘ (SetoidFam.reindex F₁ p)) ==→
((SetoidFam.reindex F₂ (SetoidArrow.stab indexingmap p)) ∘ (indexmap x'))
| {
"alphanum_fraction": 0.514604811,
"avg_line_length": 32.3333333333,
"ext": "agda",
"hexsha": "f835de72097c1829d74c8bcda7f9fc3257cdf589",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Setoid.agda",
"max_line_length": 107,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 921,
"size": 2328
} |
-- Term matching.
module Tactic.Reflection.Match where
open import Prelude
open import Builtin.Reflection
open import Tactic.Reflection.Equality
open import Control.Monad.Zero
open import Control.Monad.State
open import Container.Traversable
private
M : Nat → Set → Set
M n = StateT (Vec (Maybe Term) n) Maybe
fN : ∀ {n} (i : Nat) → IsTrue (lessNat i n) → Fin n
fN i lt = fromNat i {{lt}}
patVar : ∀ {n} → Nat → Nat → Maybe (Fin n)
patVar {n} zero i with lessNat i n | fN {n} i
... | true | toFin = just (toFin true)
... | false | _ = nothing
patVar (suc k) zero = nothing
patVar (suc k) (suc i) = patVar k i
upd : ∀ {a} {A : Set a} {n} → Fin n → A → Vec A n → Vec A n
upd zero x (_ ∷ xs) = x ∷ xs
upd (suc i) x (y ∷ xs) = y ∷ upd i x xs
matchVar : ∀ {n} → Fin n → Term → M n ⊤
matchVar i v =
caseM flip indexVec i <$> get of λ
{ (just u) → guard (u == v) (pure _)
; nothing → _ <$ modify (upd i (just v)) }
MatchFun : Set → Set
MatchFun A = ∀ {n} → Nat → A → A → M n ⊤
matchTerm matchTerm′ : MatchFun Term
matchArgs : MatchFun (List (Arg Term))
matchArg : MatchFun (Arg Term)
matchAbs : MatchFun (Abs Term)
matchTerm k (var i []) v with patVar k i
... | just x = matchVar x v
... | nothing = matchTerm′ k (var i []) v
matchTerm k p v = matchTerm′ k p v
matchTerm′ {n} k (var i args) (var j args₁) =
guard! (j <? k && isYes (i == j) || j ≥? k && isYes (j + n == i))
(matchArgs k args args₁)
matchTerm′ k (con c args) (con c₁ args₁) = guard (c == c₁) (matchArgs k args args₁)
matchTerm′ k (def f args) (def g args₁) = guard (f == g) (matchArgs k args args₁)
matchTerm′ k (lam h p) (lam h₁ v) = guard (h == h₁) (matchAbs k p v)
matchTerm′ k (pat-lam cs args) v = empty -- todo
matchTerm′ k (pi a b) (pi a₁ b₁) = matchArg k a a₁ >> matchAbs k b b₁
matchTerm′ k (lit l) (lit l₁) = guard (l == l₁) (pure _)
matchTerm′ k (agda-sort _) _ = pure _ -- ignore sorts
matchTerm′ k (meta _ _) _ = pure _
matchTerm′ k unknown _ = pure _
matchTerm′ k p v = empty
matchArgs k (x ∷ xs) (y ∷ ys) = matchArg k x y >> matchArgs k xs ys
matchArgs k [] [] = pure _
matchArgs k _ _ = empty
matchAbs k (abs _ x) (abs _ y) = matchTerm (suc k) x y
matchArg k (arg i x) (arg j y) = guard (i == j) (matchTerm k x y)
-- match |Δ| p v = just σ
-- where Γ, Δ ⊢ p
-- Γ ⊢ v
-- Γ ⊢ σ : Δ
-- p σ ≡ v
match : (n : Nat) → Term → Term → Maybe (Vec Term n)
match n pat v = do
env ← snd <$> runStateT (matchTerm 0 pat v) (pure nothing ofType Vec (Maybe Term) n)
traverse id env
| {
"alphanum_fraction": 0.5770705521,
"avg_line_length": 33.0126582278,
"ext": "agda",
"hexsha": "60ec7600b3a96927ebdce1a20e9ba540a8ace2ca",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Match.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Match.agda",
"max_line_length": 86,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Match.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 963,
"size": 2608
} |
module _ where
open import Common.Bool
private
unused = true
used = true
private
module Private where
not-in-scope = true
in-scope = used
-- History:
--
-- * Ulf, 2015-20-12 c823aa9a0e84816d3e36ea86e04e9f9caa536c4a
-- [ deadcode ] local private things are not in scope at top-level
-- but imported things should be
-- The previous restriction of the top level scope (7f47d51c) was a
-- bit draconian and removed not only local private definitions but
-- all imported things from the scope. This is fixed by this commit.
--
-- * Andreas, 2021-05-18, used as testcase for issue #4647
| {
"alphanum_fraction": 0.7103559871,
"avg_line_length": 23.7692307692,
"ext": "agda",
"hexsha": "b51624dbf5fc733a6ed3efab651dea5e7da14e76",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/TopScope.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/TopScope.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/TopScope.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 183,
"size": 618
} |
module Issue857 where
-- From the Agda mailing list, 2013-05-24, question raised by Martin Escardo.
-- 2013-05-24 reported by Martin Escardo, test case by Andrea Vezzosi
{- The crucial point is that λ() is not equal to λ(), so e.g. the
ones appearing in the body of main-closed-ground' don't match the ones
in its own type.
To be concrete we can use a simplified version of what happens in
main-closed-ground': -}
data ⊥ : Set where
postulate
X : Set
P : (⊥ → X) → Set
lemma : (f : ⊥ → X) → P f
-- Given the context above we attempt to feed agda code using λ():
main : P λ()
main = lemma λ()
{- Before we can check the type of main we have to translate λ()
away into toplevel definitions, because internally only those are
allowed pattern-matching. But each use of λ() is translated
separately, so we get:
absurd1 : ⊥ → X
absurd1 ()
absurd2 : ⊥ → X
absurd2 ()
main : P absurd1
main = lemma absurd2
Now we can proceed typechecking and find that (lemma absurd2 : P
absurd2), i.e. applications of lemma only care about the type of its
argument, but for main to typecheck we need the type of the body (P
absurd2) to equal the declared type (P absurd1), and so we'd need
absurd2 = absurd1 which unfortunately we can't deduce because those
are different definitions. -}
-- 2013-05-24 example by Martin Escardo
open import Common.Equality
absurd-equality : _≡_ {A = ⊥ → ⊥} (λ()) λ()
absurd-equality = refl
-- λ() is not translated as λ() → () (identity with variable name ())
-- thus, these examples should type check now.
| {
"alphanum_fraction": 0.7069857697,
"avg_line_length": 27.6071428571,
"ext": "agda",
"hexsha": "9d29d0baaaddeb6a4bc5a8047223490440acc17c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue857.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue857.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue857.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 441,
"size": 1546
} |
------------------------------------------------------------------------
-- The stream container
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Container.Stream
{c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (id; List; []; _∷_)
open import Bijection eq using (_↔_; module _↔_)
open import Container eq
open import Container.List eq as L hiding (_∷_; _++_; Any-∷; Any-++)
open import Function-universe eq hiding (_∘_)
------------------------------------------------------------------------
-- Streams
Stream : Container lzero
Stream = ⊤ ▷ const ℕ
------------------------------------------------------------------------
-- Operations
-- Cons.
infixr 5 _∷_
_∷_ : {A : Type} → A → ⟦ Stream ⟧ A → ⟦ Stream ⟧ A
x ∷ (tt , lkup) = tt , λ { zero → x; (suc n) → lkup n }
-- The head of a stream.
head : {A : Type} → ⟦ Stream ⟧ A → A
head (tt , lkup) = lkup 0
-- The tail of a stream.
tail : {A : Type} → ⟦ Stream ⟧ A → ⟦ Stream ⟧ A
tail (tt , lkup) = (tt , lkup ∘ suc)
-- Appending a stream to a list.
infixr 5 _++_
_++_ : {A : Type} → ⟦ List ⟧ A → ⟦ Stream ⟧ A → ⟦ Stream ⟧ A
xs ++ ys = fold ys (λ z _ zs → z ∷ zs) xs
-- Taking the first n elements from a stream.
take : {A : Type} → ℕ → ⟦ Stream ⟧ A → ⟦ List ⟧ A
take zero xs = []
take (suc n) xs = L._∷_ (head xs) (take n (tail xs))
-- Dropping the first n elements from a stream.
drop : {A : Type} → ℕ → ⟦ Stream ⟧ A → ⟦ Stream ⟧ A
drop zero xs = xs
drop (suc n) xs = drop n (tail xs)
------------------------------------------------------------------------
-- Any lemmas
-- Any lemma for head/tail.
Any-head-tail : ∀ {A : Type} (P : A → Type) {xs} →
Any P xs ↔ P (head xs) ⊎ Any P (tail xs)
Any-head-tail P = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { (zero , p) → inj₁ p
; (suc n , p) → inj₂ (n , p)
}
; from = λ { (inj₁ p) → (zero , p)
; (inj₂ (n , p)) → (suc n , p)
}
}
; right-inverse-of = λ { (inj₁ p) → refl _
; (inj₂ (n , p)) → refl _
}
}
; left-inverse-of = λ { (zero , p) → refl _
; (suc n , p) → refl _
}
}
-- Any lemma for cons.
Any-∷ : ∀ {A : Type} (P : A → Type) {x xs} →
Any P (x ∷ xs) ↔ P x ⊎ Any P xs
Any-∷ P = Any-head-tail P
-- Any lemma for append.
--
-- (TODO: Generalise. The definitions of _++_ and Any-++ in this
-- module are almost identical to those in Container.List.)
Any-++ : ∀ {A : Type} (P : A → Type) (xs : ⟦ List ⟧ A) ys →
Any P (xs ++ ys) ↔ Any P xs ⊎ Any P ys
Any-++ P xs ys = fold-lemma
(λ xs xs++ys → Any P xs++ys ↔ Any P xs ⊎ Any P ys)
(λ us vs us≈vs us++ys hyp →
Any P us++ys ↔⟨ hyp ⟩
Any P us ⊎ Any P ys ↔⟨ _⇔_.to (∼⇔∼″ us vs) us≈vs P ⊎-cong id ⟩
Any P vs ⊎ Any P ys □)
(Any P ys ↔⟨ inverse ⊎-left-identity ⟩
⊥ ⊎ Any P ys ↔⟨ inverse (Any-[] P) ⊎-cong id ⟩
Any P [] ⊎ Any P ys □)
(λ x xs xs++ys ih →
Any P (x ∷ xs++ys) ↔⟨ Any-∷ P ⟩
P x ⊎ Any P xs++ys ↔⟨ id ⊎-cong ih ⟩
P x ⊎ Any P xs ⊎ Any P ys ↔⟨ ⊎-assoc ⟩
(P x ⊎ Any P xs) ⊎ Any P ys ↔⟨ inverse $ L.Any-∷ P ⊎-cong id ⟩
Any P (L._∷_ x xs) ⊎ Any P ys □)
xs
-- Any lemma for take/drop.
Any-take-drop : ∀ {A : Type} (P : A → Type) n {xs} →
Any P xs ↔ Any P (take n xs) ⊎ Any P (drop n xs)
Any-take-drop P zero {xs} =
Any P xs ↔⟨ inverse ⊎-left-identity ⟩
⊥ ⊎ Any P xs ↔⟨ inverse (Any-[] P) ⊎-cong id ⟩
Any P [] ⊎ Any P xs □
Any-take-drop P (suc n) {xs} =
Any P xs ↔⟨ Any-head-tail P ⟩
P (head xs) ⊎ Any P (tail xs) ↔⟨ id ⊎-cong Any-take-drop P n ⟩
P (head xs) ⊎
(Any P (take n (tail xs)) ⊎ Any P (drop n (tail xs))) ↔⟨ ⊎-assoc ⟩
(P (head xs) ⊎ Any P (take n (tail xs))) ⊎
Any P (drop n (tail xs)) ↔⟨ inverse $ L.Any-∷ P ⊎-cong id ⟩
Any P (L._∷_ (head xs) (take n (tail xs))) ⊎
Any P (drop n (tail xs)) □
| {
"alphanum_fraction": 0.438952164,
"avg_line_length": 30.4861111111,
"ext": "agda",
"hexsha": "de144c4c3054409f2f898fc06609d6ec9b141bbc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Container/Stream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Container/Stream.agda",
"max_line_length": 93,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Container/Stream.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1514,
"size": 4390
} |
----------------------------------------------------------------------------------
-- Types for parse trees
----------------------------------------------------------------------------------
module huffman-types where
open import lib
open import parse-tree
posinfo = string
character = string
character-bar-3 = string
character-bar-4 = string
character-bar-5 = string
character-bar-6 = string
character-bar-7 = string
character-range-1 = string
character-range-2 = string
word = string
mutual
data bvlit : Set where
BvlitCons : digit → bvlit → bvlit
BvlitStart : digit → bvlit
data cmd : Set where
Decode : codes → bvlit → cmd
Encode : words → cmd
data code : Set where
Code : word → bvlit → code
data codes : Set where
CodesNext : code → codes → codes
CodesStart : code → codes
data digit : Set where
One : digit
Zero : digit
data start : Set where
File : cmd → start
data words : Set where
WordsNext : word → words → words
WordsStart : word → words
-- embedded types:
data ParseTreeT : Set where
parsed-bvlit : bvlit → ParseTreeT
parsed-cmd : cmd → ParseTreeT
parsed-code : code → ParseTreeT
parsed-codes : codes → ParseTreeT
parsed-digit : digit → ParseTreeT
parsed-start : start → ParseTreeT
parsed-words : words → ParseTreeT
parsed-posinfo : posinfo → ParseTreeT
parsed-character : character → ParseTreeT
parsed-character-bar-3 : character-bar-3 → ParseTreeT
parsed-character-bar-4 : character-bar-4 → ParseTreeT
parsed-character-bar-5 : character-bar-5 → ParseTreeT
parsed-character-bar-6 : character-bar-6 → ParseTreeT
parsed-character-bar-7 : character-bar-7 → ParseTreeT
parsed-character-range-1 : character-range-1 → ParseTreeT
parsed-character-range-2 : character-range-2 → ParseTreeT
parsed-word : word → ParseTreeT
parsed-aws : ParseTreeT
parsed-aws-bar-8 : ParseTreeT
parsed-aws-bar-9 : ParseTreeT
parsed-ows : ParseTreeT
parsed-ows-star-11 : ParseTreeT
parsed-ws : ParseTreeT
parsed-ws-plus-10 : ParseTreeT
------------------------------------------
-- Parse tree printing functions
------------------------------------------
posinfoToString : posinfo → string
posinfoToString x = "(posinfo " ^ x ^ ")"
characterToString : character → string
characterToString x = "(character " ^ x ^ ")"
character-bar-3ToString : character-bar-3 → string
character-bar-3ToString x = "(character-bar-3 " ^ x ^ ")"
character-bar-4ToString : character-bar-4 → string
character-bar-4ToString x = "(character-bar-4 " ^ x ^ ")"
character-bar-5ToString : character-bar-5 → string
character-bar-5ToString x = "(character-bar-5 " ^ x ^ ")"
character-bar-6ToString : character-bar-6 → string
character-bar-6ToString x = "(character-bar-6 " ^ x ^ ")"
character-bar-7ToString : character-bar-7 → string
character-bar-7ToString x = "(character-bar-7 " ^ x ^ ")"
character-range-1ToString : character-range-1 → string
character-range-1ToString x = "(character-range-1 " ^ x ^ ")"
character-range-2ToString : character-range-2 → string
character-range-2ToString x = "(character-range-2 " ^ x ^ ")"
wordToString : word → string
wordToString x = "(word " ^ x ^ ")"
mutual
bvlitToString : bvlit → string
bvlitToString (BvlitCons x0 x1) = "(BvlitCons" ^ " " ^ (digitToString x0) ^ " " ^ (bvlitToString x1) ^ ")"
bvlitToString (BvlitStart x0) = "(BvlitStart" ^ " " ^ (digitToString x0) ^ ")"
cmdToString : cmd → string
cmdToString (Decode x0 x1) = "(Decode" ^ " " ^ (codesToString x0) ^ " " ^ (bvlitToString x1) ^ ")"
cmdToString (Encode x0) = "(Encode" ^ " " ^ (wordsToString x0) ^ ")"
codeToString : code → string
codeToString (Code x0 x1) = "(Code" ^ " " ^ (wordToString x0) ^ " " ^ (bvlitToString x1) ^ ")"
codesToString : codes → string
codesToString (CodesNext x0 x1) = "(CodesNext" ^ " " ^ (codeToString x0) ^ " " ^ (codesToString x1) ^ ")"
codesToString (CodesStart x0) = "(CodesStart" ^ " " ^ (codeToString x0) ^ ")"
digitToString : digit → string
digitToString (One) = "One" ^ ""
digitToString (Zero) = "Zero" ^ ""
startToString : start → string
startToString (File x0) = "(File" ^ " " ^ (cmdToString x0) ^ ")"
wordsToString : words → string
wordsToString (WordsNext x0 x1) = "(WordsNext" ^ " " ^ (wordToString x0) ^ " " ^ (wordsToString x1) ^ ")"
wordsToString (WordsStart x0) = "(WordsStart" ^ " " ^ (wordToString x0) ^ ")"
ParseTreeToString : ParseTreeT → string
ParseTreeToString (parsed-bvlit t) = bvlitToString t
ParseTreeToString (parsed-cmd t) = cmdToString t
ParseTreeToString (parsed-code t) = codeToString t
ParseTreeToString (parsed-codes t) = codesToString t
ParseTreeToString (parsed-digit t) = digitToString t
ParseTreeToString (parsed-start t) = startToString t
ParseTreeToString (parsed-words t) = wordsToString t
ParseTreeToString (parsed-posinfo t) = posinfoToString t
ParseTreeToString (parsed-character t) = characterToString t
ParseTreeToString (parsed-character-bar-3 t) = character-bar-3ToString t
ParseTreeToString (parsed-character-bar-4 t) = character-bar-4ToString t
ParseTreeToString (parsed-character-bar-5 t) = character-bar-5ToString t
ParseTreeToString (parsed-character-bar-6 t) = character-bar-6ToString t
ParseTreeToString (parsed-character-bar-7 t) = character-bar-7ToString t
ParseTreeToString (parsed-character-range-1 t) = character-range-1ToString t
ParseTreeToString (parsed-character-range-2 t) = character-range-2ToString t
ParseTreeToString (parsed-word t) = wordToString t
ParseTreeToString parsed-aws = "[aws]"
ParseTreeToString parsed-aws-bar-8 = "[aws-bar-8]"
ParseTreeToString parsed-aws-bar-9 = "[aws-bar-9]"
ParseTreeToString parsed-ows = "[ows]"
ParseTreeToString parsed-ows-star-11 = "[ows-star-11]"
ParseTreeToString parsed-ws = "[ws]"
ParseTreeToString parsed-ws-plus-10 = "[ws-plus-10]"
------------------------------------------
-- Reorganizing rules
------------------------------------------
mutual
{-# NO_TERMINATION_CHECK #-}
norm-words : (x : words) → words
norm-words x = x
{-# NO_TERMINATION_CHECK #-}
norm-start : (x : start) → start
norm-start x = x
{-# NO_TERMINATION_CHECK #-}
norm-posinfo : (x : posinfo) → posinfo
norm-posinfo x = x
{-# NO_TERMINATION_CHECK #-}
norm-digit : (x : digit) → digit
norm-digit x = x
{-# NO_TERMINATION_CHECK #-}
norm-codes : (x : codes) → codes
norm-codes x = x
{-# NO_TERMINATION_CHECK #-}
norm-code : (x : code) → code
norm-code x = x
{-# NO_TERMINATION_CHECK #-}
norm-cmd : (x : cmd) → cmd
norm-cmd x = x
{-# NO_TERMINATION_CHECK #-}
norm-bvlit : (x : bvlit) → bvlit
norm-bvlit x = x
isParseTree : ParseTreeT → 𝕃 char → string → Set
isParseTree p l s = ⊤ {- this will be ignored since we are using simply typed runs -}
ptr : ParseTreeRec
ptr = record { ParseTreeT = ParseTreeT ; isParseTree = isParseTree ; ParseTreeToString = ParseTreeToString }
| {
"alphanum_fraction": 0.6600756034,
"avg_line_length": 34.5628140704,
"ext": "agda",
"hexsha": "1577bfdc15e147f8b561c7fb8544f9ea0902e8f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "huffman/huffman-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "huffman/huffman-types.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "huffman/huffman-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1959,
"size": 6878
} |
{-
Functions building UARels and DUARels on propositions / propositional families
-}
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Displayed.Prop where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Displayed.Base
private
variable
ℓA ℓ≅A ℓB ℓ≅B ℓP : Level
𝒮-prop : (P : hProp ℓP) → UARel (P .fst) ℓ-zero
𝒮-prop P .UARel._≅_ _ _ = Unit
𝒮-prop P .UARel.ua _ _ =
invEquiv (isContr→≃Unit (isOfHLevelPath' 0 (P .snd) _ _))
𝒮ᴰ-prop : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (P : A → hProp ℓP)
→ DUARel 𝒮-A (λ a → P a .fst) ℓ-zero
𝒮ᴰ-prop 𝒮-A P .DUARel._≅ᴰ⟨_⟩_ _ _ _ = Unit
𝒮ᴰ-prop 𝒮-A P .DUARel.uaᴰ _ _ _ =
invEquiv (isContr→≃Unit (isOfHLevelPathP' 0 (P _ .snd) _ _))
𝒮-subtype : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {P : A → Type ℓP}
→ (∀ a → isProp (P a))
→ UARel (Σ A P) ℓ≅A
𝒮-subtype 𝒮-A propP .UARel._≅_ (a , _) (a' , _) = 𝒮-A .UARel._≅_ a a'
𝒮-subtype 𝒮-A propP .UARel.ua (a , _) (a' , _) =
compEquiv (𝒮-A .UARel.ua a a') (Σ≡PropEquiv propP)
𝒮ᴰ-subtype : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{P : (a : A) → B a → Type ℓP}
→ (∀ a b → isProp (P a b))
→ DUARel 𝒮-A (λ a → Σ[ b ∈ B a ] (P a b)) ℓ≅B
𝒮ᴰ-subtype 𝒮ᴰ-B propP .DUARel._≅ᴰ⟨_⟩_ (b , _) p (b' , _) = 𝒮ᴰ-B .DUARel._≅ᴰ⟨_⟩_ b p b'
𝒮ᴰ-subtype 𝒮ᴰ-B propP .DUARel.uaᴰ (b , _) p (b' , _) =
compEquiv
(𝒮ᴰ-B .DUARel.uaᴰ b p b')
(compEquiv
(invEquiv (Σ-contractSnd λ _ → isOfHLevelPathP' 0 (propP _ b') _ _))
ΣPath≃PathΣ)
| {
"alphanum_fraction": 0.6156626506,
"avg_line_length": 31.320754717,
"ext": "agda",
"hexsha": "d57a0d5e2a2c41c5d261b253951b29800140847b",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Displayed/Prop.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Displayed/Prop.agda",
"max_line_length": 86,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Displayed/Prop.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 845,
"size": 1660
} |
open import Relation.Binary using (Setoid)
module Data.Vec.Any.Membership {a ℓ} (S : Setoid a ℓ) where
open import Level using (_⊔_)
open Setoid S renaming (Carrier to A; refl to ≈-refl; trans to ≈-trans )
open import Relation.Nullary
open import Relation.Binary
open import Data.Fin
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Product as Prod hiding (map)
open import Data.Vec as Vec hiding (map)
open import Data.Vec.Equality
open import Data.Vec.Any as Any
open import Function using (_∘_; id; flip)
open Equality S renaming (_≈_ to _≋_; trans to ≋-trans)
infix 4 _∈′_ _∉′_
_∈′_ : ∀ {n} → A → Vec A n → Set (a ⊔ ℓ)
x ∈′ xs = Any (x ≈_) xs
_∉′_ : ∀ {n} → A → Vec A n → Set (a ⊔ ℓ)
x ∉′ xs = ¬ (x ∈′ xs)
infix 4 _⊆_ _⊈_
_⊆_ : ∀ {n m} → Vec A n → Vec A m → Set _
xs ⊆ ys = ∀ {x} → x ∈′ xs → x ∈′ ys
_⊈_ : ∀ {n m} → Vec A n → Vec A m → Set _
xs ⊈ ys = ¬ (xs ⊆ ys)
-- A variant of Vec.map.
map-with-∈′ : ∀ {n b} {B : Set b}
(xs : Vec A n) → (∀ {x} → x ∈′ xs → B) → Vec B n
map-with-∈′ [] f = []
map-with-∈′ (x ∷ xs) f = f (here ≈-refl) ∷ map-with-∈′ xs (f ∘ there)
-- Finds an element satisfying the predicate.
find′ : ∀ {p n} {P : A → Set p} {xs : Vec A n} →
Any P xs → ∃ λ x → x ∈′ xs × P x
find′ (here px) = , here ≈-refl , px
find′ (there pxs) = Prod.map id (Prod.map there id) (find′ pxs)
lose′ : ∀ {p n} {P : A → Set p} {x}{xs : Vec A n} →
P Respects _≈_ → x ∈′ xs → P x → Any P xs
lose′ resp x∈′xs px = map (flip resp px) x∈′xs
| {
"alphanum_fraction": 0.534647171,
"avg_line_length": 30.25,
"ext": "agda",
"hexsha": "c0079c6d30d8a29a4d8ca3df8be94de33aa3f3d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-vector-any",
"max_forks_repo_path": "src/Data/Vec/Any/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-vector-any",
"max_issues_repo_path": "src/Data/Vec/Any/Membership.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-vector-any",
"max_stars_repo_path": "src/Data/Vec/Any/Membership.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 647,
"size": 1573
} |
module CTL.Modalities.AU where
open import CTL.Modalities.AN
open import FStream.Core
open import Library
data _AU'_ {ℓ₁ ℓ₂} {C : Container ℓ₁}
(props₁ props₂ : FStream' C (Set ℓ₂)) : Set (ℓ₁ ⊔ ℓ₂) where
finallyA : head props₁ → props₁ AU' props₂
_untilA_ : head props₂ → AN'ₛ props₁ AU' AN'ₛ props₂ → props₁ AU' props₂
-- TODO Implement with Applicative
AU : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂)
→ FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
AU s₁ s₂ = {! !}
mutual
AUₛ' : ∀ {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂)
→ FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂))
AUₛ' = {! !}
AUₛ : ∀ {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂)
→ FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂))
AUₛ = {! !}
| {
"alphanum_fraction": 0.5898089172,
"avg_line_length": 30.1923076923,
"ext": "agda",
"hexsha": "0762d37c54f0319af70c4e784686105972fc2dfe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Modalities/AU.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Modalities/AU.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Modalities/AU.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 355,
"size": 785
} |
{-# OPTIONS --cubical-compatible #-}
module Common.List where
open import Agda.Builtin.List public
open import Common.Nat
infixr 5 _++_
_++_ : ∀ {a} {A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B
map _ [] = []
map f (x ∷ xs) = f x ∷ map f xs
length : ∀ {a} {A : Set a} → List A → Nat
length [] = 0
length (x ∷ xs) = 1 + length xs
| {
"alphanum_fraction": 0.5076586433,
"avg_line_length": 22.85,
"ext": "agda",
"hexsha": "66b402208f3b1cb52be52550a6831598c50acaa4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/List.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/List.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 177,
"size": 457
} |
{-# OPTIONS --without-K --exact-split --cubical #-}
-- This is unfortunate, but Arch doesn't have the cubical stuff
-- in the stdlib package it comes with (and cabal on Arch is
-- significantly worse).
open import Agda.Builtin.Cubical.Id
open import Agda.Builtin.Cubical.Path
-- Other builtins
open import Agda.Builtin.List
open import Agda.Builtin.Bool
open import Axiom.Extensionality.Propositional
-- I understand it better calling stuff "UU" from Egbert's notes.
open import 00-preamble
-- Same for + types -- too lazy to find the builtin
open import 04-inductive-types
-- https://dl.acm.org/doi/pdf/10.1145/3341691 page 11
-- set quotient (truncate the quotient)
-- ≡ is from Agda.Builtin.Id
data Quot {i : Level} (A : UU i) (R : A → A → UU i): UU i where
cls : A → Quot A R
eq : (a b : A) → (r : R a b) → (cls a) ≡ (cls b)
trunc : (x y : Quot A R) → (p q : x ≡ y) → p ≡ q
-- First definition of a group: List(A + A) / R. Some oddity:
-- 1) f : A → A → Bool is an equality predicate (Eq in Haskell), but I'm not sure how to
-- insist that (f a₁ a₂ = true) ≅ (a₁ = a₂) or just say "if the identity type is
-- inhabited." Also encode-decode seems to use information from the type, so defining
-- f should be a reasonable requirement (it's just code, but using true for 𝟙 and false
-- for 𝟘).
-- 2) I promise it terminates. Otherwise it insists that the first recursive call is
-- uncertain but the list is clearly one element shorter.
-- 3) I think the warning isn't all that important (but I'm a programmer, don't trust me).
-- My understanding is that the warning means "the definitional equalities Agda has can
-- be surprising" but I don't see how it's bad yet.
{-# TERMINATING #-}
cancelList : {i : Level} {A : UU i} (eq : A → A → Bool) (l : List (coprod A A)) → List (coprod A A)
cancelList e [] = []
cancelList e ((inl a₁) ∷ (inr a₂) ∷ xs) with e a₁ a₂
... | true = cancelList e xs
... | false = (inl a₁) ∷ (cancelList e ((inr a₂) ∷ xs))
cancelList e ((inr a₁) ∷ (inl a₂) ∷ xs) with e a₁ a₂
... | true = cancelList e xs
... | false = (inr a₁) ∷ (cancelList e ((inl a₂) ∷ xs))
cancelList e (x ∷ xs) = x ∷ (cancelList e xs)
-- Proof that cancel list is idempotent (done on sets bc why the #$%^ does the built-in
-- funext need a #$%^ing level as an explicit param?)
-- Note that oddity 1 from above is relevant -- I'm just going to be lazy and prove for all
-- equality-like things.
cancelList-idempotent : {A : UU (lsuc lzero)} (e : A → A → Bool)
→ ((λ x → cancelList e (cancelList e x)) ≡ (cancelList e))
cancelList-idempotent e =
| {
"alphanum_fraction": 0.6219068413,
"avg_line_length": 48.2105263158,
"ext": "agda",
"hexsha": "6b5a0aae2ee2790fe585cc2e07b6659390ae7232",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/univalent-hott/6-higher-inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/univalent-hott/6-higher-inductive.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/univalent-hott/6-higher-inductive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 832,
"size": 2748
} |
-- Andreas, 2012-09-13 respect irrelevance at meta-var creation
-- {-# OPTIONS -v tc.conv.irr:20 #-}
module Issue168-irrelevant where
data Nat : Set where
zero : Nat
suc : Nat → Nat
module Id .(A : Set) where
id : Nat → Nat
id zero = zero
id (suc xs) = suc (id xs)
open Id Nat
postulate
P : Nat → Set
lemma : ∀ n → P (id n)
foo : P zero
foo = lemma _
| {
"alphanum_fraction": 0.614973262,
"avg_line_length": 17.8095238095,
"ext": "agda",
"hexsha": "40fe307803443ca25c3eaa1de90af6ec19a0e27b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue168-irrelevant.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue168-irrelevant.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue168-irrelevant.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 374
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- We can use a propositional equality parametrized on Set instead of
-- using two "different" equalities on D and M.
module LogicalFramework.SetEquality where
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Relation/Binary/Core.agda).
infix 7 _≡D_ _≡M_
------------------------------------------------------------------------------
-- Domain universe D
postulate
D : Set
-- Propositional equality on D.
data _≡D_ (x : D) : D → Set where
refl : x ≡D x
≡D-thm : ∀ {d e} → d ≡D e → e ≡D d
≡D-thm refl = refl
------------------------------------------------------------------------------
-- Domain universe M
data M : Set where
zero : M
succ : M → M
-- Propositional equality on M.
data _≡M_ (n : M) : M → Set where
refl : n ≡M n
≡M-thm : ∀ {m n} → m ≡M n → n ≡M m
≡M-thm refl = refl
------------------------------------------------------------------------------
-- Propositional equality on Set.
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
≡-thm₁ : ∀ {d e : D} → d ≡ e → e ≡ d
≡-thm₁ refl = refl
≡-thm₂ : ∀ {m n : M} → m ≡ n → n ≡ m
≡-thm₂ refl = refl
| {
"alphanum_fraction": 0.4688958009,
"avg_line_length": 24.7307692308,
"ext": "agda",
"hexsha": "1126e2c20fa17217dfd892fb5ad2bdb5037a2d7b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/LogicalFramework/SetEquality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/LogicalFramework/SetEquality.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/LogicalFramework/SetEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 394,
"size": 1286
} |
module L.Base.Coproduct.Properties where
-- There are no properties yet.
| {
"alphanum_fraction": 0.7837837838,
"avg_line_length": 18.5,
"ext": "agda",
"hexsha": "eedb29dc3a3996588516ef960b84933026a09ff6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Coproduct/Properties.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Coproduct/Properties.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Coproduct/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 16,
"size": 74
} |
postulate
I : Set
U : I → Set
El : ∀ {i} → U i → Set
infixr 4 _,_
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
∃ : ∀ {A : Set} → (A → Set) → Set
∃ = Σ _
mutual
infixl 5 _▻_
data Ctxt : Set where
_▻_ : (Γ : Ctxt) → Type Γ → Ctxt
Type : Ctxt → Set
Type Γ = ∃ λ i → Env Γ → U i
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (proj₂ σ γ)
mutual
data Ctxt⁺ (Γ : Ctxt) : Set where
_▻_ : (Γ⁺ : Ctxt⁺ Γ) → Type (Γ ++ Γ⁺) → Ctxt⁺ Γ
infixl 5 _++_
_++_ : (Γ : Ctxt) → Ctxt⁺ Γ → Ctxt
Γ ++ (Γ⁺ ▻ σ) = (Γ ++ Γ⁺) ▻ σ
data P : (Γ : Ctxt) → Type Γ → Set where
c : ∀ {Γ σ τ} → P (Γ ▻ σ) τ
f : ∀ {Γ} → Ctxt⁺ Γ → Set₁
f {Γ} (Γ⁺ ▻ σ) = Set
where
g : ∀ τ → P (Γ ++ Γ⁺ ▻ σ) τ → Set₁
g _ c = Set
| {
"alphanum_fraction": 0.4513715711,
"avg_line_length": 15.7254901961,
"ext": "agda",
"hexsha": "eedd92e6e2602dca7130495e9e8ca912aef72c5e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3063.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3063.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3063.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 418,
"size": 802
} |
{-
FP Lunch, Nottingham
July 27, 2007
Conor McBride
-}
module Binary where
data Bit : Set where
O : Bit
I : Bit
infixl 80 _<<_
data Pos : Set where
<<I : Pos
_<<_ : Pos -> Bit -> Pos
bsuc : Pos -> Pos
bsuc <<I = <<I << O
bsuc (n << O) = n << I
bsuc (n << I) = bsuc n << O
data Peano : Pos -> Set where
pI : Peano <<I
psuc : {n : Pos} -> Peano n -> Peano (bsuc n)
pdouble : {n : Pos} -> Peano n -> Peano (n << O)
pdouble pI = psuc pI
pdouble (psuc p) = psuc (psuc (pdouble p))
peano : (n : Pos) -> Peano n
peano <<I = pI
peano (n << O) = pdouble (peano n)
peano (n << I) = psuc (pdouble (peano n))
-- Slow addition (yay!)
_+_ : Pos -> Pos -> Pos
_+_ n m = peano n <+> m
where
_<+>_ : {n : Pos} -> Peano n -> Pos -> Pos
pI <+> m = bsuc m
psuc p <+> m = bsuc (p <+> m)
infixl 60 _+_
infix 40 _==_
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
{-
test : (<<I << I << O << O << O) == (<<I << I << O << I) + (<<I << O << I << I)
test = refl
-}
{-
simple : (<<I << O) == (<<I) + (<<I)
simple = refl
-}
{-
t : Peano _
t = peano (<<I)
-}
{-
t : Pos
t = bsuc (<<I)
-}
{-
t : Pos
t = peano (<<I << O) <+> (<<I << I)
-- t = psuc pI <+> (<<I)
where
_<+>_ : {n : Pos} -> Peano n -> Pos -> Pos
pI <+> m = bsuc m
psuc p <+> m = bsuc (p <+> m)
-}
t1 : Pos
t1 = (<<I << O) + (<<I << O)
t2 : (<<I) + (<<I) == (<<I) + (<<I)
t2 = refl
| {
"alphanum_fraction": 0.4389044944,
"avg_line_length": 16.367816092,
"ext": "agda",
"hexsha": "91f279aca8a193febe6f9c30042dd91ac92acbb8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/beyond/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/beyond/Binary.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/beyond/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 627,
"size": 1424
} |
-- Sets represented by unary predicates (Like restricted comprehension)
-- Similiar to BoolSet, but instead using the builtin constructive logic with levels.
module Sets.PredicateSet where
import Lvl
open import Data hiding (Empty)
open import Data.Boolean
open import Data.Boolean.Stmt
open import Functional
open import Function.Proofs
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
-- open import Relator.Equals.Proofs.Equiv
open import Structure.Setoid using (Equiv) renaming (_≡_ to _≡ₛ_)
open import Data.Any
open import Structure.Function.Domain
open import Type
module _ where
-- A set of objects of a certain type.
-- This is represented by a predicate.
-- Note: This is only a "set" within a certain type, so everything PredSet(T) is actually a subset of T (if T were a set (the set of all objects with type T)). Or in other words: PredSet(T) is supposed to represent the set {x. x: T}, and then (S ∈ PredSet(T)) essentially means that S when interpreted as a set of objects is a subset of {x. x: T}.
PredSet : ∀{ℓ ℓₒ} → Type{ℓₒ} → Type{Lvl.𝐒(ℓ) Lvl.⊔ ℓₒ}
PredSet{ℓ}{ℓₒ} (T) = (T → Stmt{ℓ})
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓₒ ℓₑ : Lvl.Level
private variable T A B : Type{ℓₒ}
-- The statement of whether an element is in a set
-- TODO: Maybe define this using a equivalence relation instead? (Alternatively a Setoid: x ∈ S = ∃(y ↦ (x ≡_T y) ∧ S(y)))
_∈_ : T → PredSet{ℓ}(T) → Stmt
_∈_ = apply -- (x ∈ S) = S(x)
_∉_ : T → PredSet{ℓ}(T) → Stmt
_∉_ = (¬_) ∘₂ (_∈_) -- (x ∉ S) = ¬(x ∈ S)
_∋_ : PredSet{ℓ}(T) → T → Stmt
_∋_ = swap(_∈_) -- (S ∋ x) = (x ∈ S)
_∌_ : PredSet{ℓ}(T) → T → Stmt
_∌_ = (¬_) ∘₂ (_∋_) -- (S ∌ x) = ¬(S ∋ x)
module BoundedQuantifiers {T : Type{ℓₒ}} where
∀ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ}
∀ₛ(S) P = ∀{elem : T} → (elem ∈ S) → P(elem)
∃ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ}
∃ₛ(S) P = ∃(elem ↦ (elem ∈ S) ∧ P(elem))
-- An empty set
∅ : PredSet{ℓ}(T)
∅ = const(Data.Empty)
-- An universal set
-- Note: It is only within a certain type, so 𝐔{T} is not actually a subset of everything. It is the greatest subset of subsets of T.
𝐔 : PredSet{ℓ}(T)
𝐔 = const(Unit)
-- A singleton set (a set with only one element)
•_ : ⦃ Equiv{ℓₑ}(T) ⦄ → T → PredSet(T)
•_ = (_≡ₛ_)
-- An union of two sets
_∪_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
_∪_ S₁ S₂ x = (S₁(x) ∨ S₂(x))
-- An union of a set and a singleton set
_∪•_ : ∀{ℓ}{T : Type{ℓ}} → PredSet{ℓ₁}(T) → Type{ℓ} → PredSet(T)
_∪•_ S P x = (S(x) ∨ P)
-- An intersection of two sets
_∩_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
_∩_ S₁ S₂ x = (S₁(x) ∧ S₂(x))
-- A complement of a set
∁_ : PredSet{ℓ}(T) → PredSet(T)
∁_ = (¬_) ∘_ -- ∁_ S x = (¬ S(x))
_∖_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
_∖_ S₁ S₂ = (S₁ ∩ (∁ S₂))
filter : (T → Bool) → PredSet{ℓ}(T) → PredSet(T)
filter f S x = (S(x) ∧ IsTrue(f(x)))
-- TODO: Maybe move these to a separate "Relations" file?
-- A statement of whether a set is a subset of a set
_⊆_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → Stmt
_⊆_ S₁ S₂ = (∀{x} → (x ∈ S₁) → (x ∈ S₂))
-- A statement of whether a set is a superset of a set
_⊇_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → Stmt
_⊇_ S₁ S₂ = (∀{x} → (x ∈ S₁) ← (x ∈ S₂))
-- A statement of whether a set is equivalent to a set
_≡_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → Stmt
_≡_ S₁ S₂ = (∀{x} → (x ∈ S₁) ↔ (x ∈ S₂))
Empty : PredSet{ℓ}(T) → Stmt
Empty(S) = ∀{x} → ¬(x ∈ S)
NonEmpty : PredSet{ℓ}(T) → Stmt
NonEmpty(S) = ∃(_∈ S)
Disjoint : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → Stmt
Disjoint S₁ S₂ = ((S₁ ∩ S₂) ⊆ (∅ {Lvl.𝟎}))
Overlapping : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → Stmt
Overlapping S₁ S₂ = ∃(S₁ ∩ S₂)
⋃_ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T)
⋃_ S x = ∃(s ↦ (s ∈ S) ∧ (x ∈ s))
⋂_ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T)
⋂_ S x = ∀{s} → (s ∈ S) → (x ∈ s)
℘ : PredSet{ℓ₁}(T) → PredSet(PredSet{ℓ₁}(T))
℘ S x = x ⊆ S
unapply : ⦃ Equiv{ℓₑ}(B) ⦄ → (f : A → B) → B → PredSet(A)
unapply f(y) x = f(x) ≡ₛ y
map : ⦃ Equiv{ℓₑ}(B) ⦄ → (f : A → B) → PredSet{ℓ}(A) → PredSet(B)
map f(S) y = Overlapping(S)(unapply f(y))
unmap : (f : A → B) → PredSet{ℓ}(B) → PredSet(A)
unmap f(y) x = f(x) ∈ y
⊶ : ⦃ Equiv{ℓₑ}(B) ⦄ → (f : A → B) → PredSet(B)
⊶ f y = ∃(unapply f(y))
module _ where -- TODO: These proofs should be generalized somewhere else?
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
private variable S a b c a₁ a₂ b₁ b₂ : PredSet{ℓ}(T)
private variable S₁ : PredSet{ℓ₁}(T)
private variable S₂ : PredSet{ℓ₂}(T)
instance
[≡]-reflexivity : Reflexivity(_≡_ {ℓ₁}{ℓ₂}{T})
Reflexivity.proof [≡]-reflexivity = [↔]-reflexivity
instance
[≡]-symmetry : Symmetry(_≡_ {ℓ₁}{ℓ₂}{T})
Symmetry.proof [≡]-symmetry {x} {y} xy = [↔]-symmetry xy
instance
[≡]-transitivity : Transitivity(_≡_ {ℓ₁}{ℓ₂}{T})
Transitivity.proof [≡]-transitivity {x} {y} {z} xy yz = [↔]-transitivity xy yz
instance
[≡]-equivalence : Equivalence(_≡_ {ℓ₁}{ℓ₂}{T})
[≡]-equivalence = intro
{- TODO: Cannot be an instance of Equiv because of level issues, but see a solution in ExtensionalPredicateSet
instance
[≡]-equiv : Equiv(PredSet{ℓ}(T))
Equiv._≡_ [≡]-equiv = {!_≡_!}
Equiv.equivalence [≡]-equiv = {![≡]-equivalence!}
-}
[≡]-to-[⊆] : (S₁ ≡ S₂) → (S₁ ⊆ S₂)
[≡]-to-[⊆] S₁S₂ {x} = [↔]-to-[→] (S₁S₂{x})
[≡]-to-[⊇] : (S₁ ≡ S₂) → (S₁ ⊇ S₂)
[≡]-to-[⊇] S₁S₂ {x} = [↔]-to-[←] (S₁S₂{x})
[⊆]-of-[∪]ₗ : (S₁ ⊆ (S₁ ∪ S₂))
[⊆]-of-[∪]ₗ = [∨]-introₗ
[⊆]-of-[∪]ᵣ : (S₂ ⊆ (S₁ ∪ S₂))
[⊆]-of-[∪]ᵣ = [∨]-introᵣ
[∪]-of-subset : (S₁ ⊆ S₂) → ((S₁ ∪ S₂) ≡ S₂)
[∪]-of-subset S₁S₂ = [↔]-intro [∨]-introᵣ ([∨]-elim S₁S₂ id)
[⊆]-min : (∅ {ℓ} ⊆ S)
[⊆]-min = empty
[⊆]-max : (S ⊆ 𝐔 {ℓ})
[⊆]-max = const <>
[∅]-containment : ∀{x : T} → ¬(x ∈ ∅ {ℓ})
[∅]-containment = empty
[𝐔]-containment : ∀{x : T} → (x ∈ 𝐔 {ℓ})
[𝐔]-containment = <>
map-containmentₗ : ⦃ equiv-B : Equiv{ℓₑ}(B) ⦄ → ∀{x : A}{f : A → B} → (f(x) ∈ map ⦃ equiv-B ⦄ f(S)) ← (x ∈ S)
map-containmentₗ {x = x} = (xS ↦ [∃]-intro x ⦃ [↔]-intro xS (reflexivity(_≡ₛ_)) ⦄)
-- map-containmentᵣ : ⦃ _ : Relation(S) ⦄ → ∀{f : A → B} → ⦃ _ : Injective(f) ⦄ → ∀{x : A} → (f(x) ∈ map f(S)) → (x ∈ S)
-- map-containmentᵣ {x = x} = ([∃]-intro a ⦃ [∧]-intro p q ⦄) ↦ {!!}
[⋂]-of-[∅] : ((⋂_ {ℓ₁}{ℓ₂} ∅) ≡ 𝐔 {ℓ₃}{ℓ₄}{T})
[⋂]-of-[∅] = [↔]-intro (const empty) (const <>)
[⋂]-of-[𝐔] : ((⋂_ {ℓ₁}{ℓ₂} 𝐔) ≡ ∅ {ℓ₂}{ℓ₃}{T})
[⋂]-of-[𝐔] {ℓ₁}{ℓ₂}{ℓ₃}{T} = [↔]-intro empty (inters ↦ inters([𝐔]-containment{x = ∅ {ℓ₂}{ℓ₃}{T}}))
[⋃]-of-[∅] : ((⋃_ {ℓ₁}{ℓ₂} ∅) ≡ ∅ {ℓ₁}{ℓ₃}{T})
[⋃]-of-[∅] = [↔]-intro empty (([∃]-intro s ⦃ [∧]-intro p _ ⦄) ↦ p)
[⋃]-of-[𝐔] : ((⋃_ {ℓ₁}{ℓ₂} 𝐔) ≡ 𝐔 {ℓ₃}{ℓ₄}{T})
[⋃]-of-[𝐔] {ℓ₁}{ℓ₂}{ℓ₃}{T} = [↔]-intro (const ([∃]-intro 𝐔 ⦃ [↔]-intro <> <> ⦄)) (const <>)
LvlUp-set-equality : (Lvl.Up{ℓ} ∘ S ≡ S)
LvlUp-set-equality = [↔]-intro Lvl.up Lvl.Up.obj
-- Disjoint-irreflexivity : ⦃ _ : NonEmpty(_) ⦄ → Irreflexivity(Disjoint{ℓ₁}{ℓ₂}{T})
-- Irreflexivity.proof Disjoint-irreflexivity p = {!!}
-- TODO: Duplicated in SetLike
-- SetType : PredSet{ℓ}(T) → Stmt
-- SetType(s) = ∃(_∈ s)
{-
choice : ∀{S : PredSet{ℓ₁}(PredSet{ℓ₂}(T))} → ∃{Obj = SetType(S) → SetType(⋃ S)}(f ↦ ∀{([∃]-intro x) : SetType(S)} → ([∃]-witness(f([∃]-intro x)) ∈ x))
∃.witness (∃.witness (choice {S = S}) ([∃]-intro f ⦃ proof ⦄)) = {!!}
∃.proof (∃.witness (choice {S = S}) ([∃]-intro f ⦃ proof ⦄)) = {!!}
∃.proof (choice {S = S}) {[∃]-intro f ⦃ proof ⦄} = {!!}
-}
[∪]-subset : (a ⊆ c) → (b ⊆ c) → ((a ∪ b) ⊆ c)
[∪]-subset ac bc = [∨]-elim ac bc
[∪]-subset2 : (a₁ ⊆ a₂) → (b₁ ⊆ b₂) → ((a₁ ∪ b₁) ⊆ (a₂ ∪ b₂))
[∪]-subset2 aa bb = [∨]-elim2 aa bb
[∖][∪]-is-[∪]ᵣ : (((a ∖ b) ∪ b) ⊆ (a ∪ b))
[∖][∪]-is-[∪]ᵣ {a = A}{b = B}{x = x} = [∨]-elim ([∨]-introₗ ∘ [∧]-elimₗ) [∨]-introᵣ
open import Logic.Classical
[∖][∪]-is-[∪] : ⦃ ∀{x} → Classical(b(x)) ⦄ → (((a ∖ b) ∪ b) ≡ (a ∪ b))
[∖][∪]-is-[∪] {b = B}{a = A}{x = x} = [↔]-intro
([∨]-elim (Ax ↦ [∨]-elim2 ([∧]-intro Ax) id ([∨]-symmetry(excluded-middle(B(x))))) [∨]-introᵣ)
([∖][∪]-is-[∪]ᵣ {a = A}{b = B})
[∪][∖]-invertᵣ-[⊆] : (a ⊆ (b ∪ c)) → ((a ∖ c) ⊆ b)
[∪][∖]-invertᵣ-[⊆] abc ([∧]-intro a nc) = [∨]-elim id ([⊥]-elim ∘ nc) (abc a)
| {
"alphanum_fraction": 0.5178530026,
"avg_line_length": 35.3524590164,
"ext": "agda",
"hexsha": "0f8cf1e8dacd16565ef2b813df68d96d06b215a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/PredicateSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/PredicateSet.agda",
"max_line_length": 349,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/PredicateSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4149,
"size": 8626
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
module Number.Structures where
private
variable
ℓ ℓ' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base -- Rel
-- open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_)
open import Cubical.Data.Nat using (ℕ; zero; suc) renaming (_+_ to _+ₙ_)
open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s; _≤_ to _≤ₙ_; _<_ to _<ₙ_)
open import Cubical.Data.Unit.Base -- Unit
open import Cubical.Data.Empty -- ⊥
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Cubical.Data.Maybe.Base
import MoreAlgebra
open MoreAlgebra.Definitions
import Algebra.Structures
-- ℕ ℤ ℚ ℝ ℂ and ℚ₀⁺ ℝ₀⁺ ...
-- ring without additive inverse
-- see Algebra.Structures.IsCommutativeSemiring
record IsRCommSemiring {F : Type ℓ} (_#_ : Rel F F ℓ') (0f 1f : F) (_+_ _·_ : F → F → F) : Type (ℓ-max ℓ ℓ') where
field
isApartnessRel : IsApartnessRel _#_
-- TODO: properties
open IsApartnessRel isApartnessRel public
renaming
( isIrrefl to #-irrefl
; isSym to #-sym
; isCotrans to #-cotrans )
-- ℤ ℚ ℝ ℂ
-- see Algebra.Structures.IsCommutativeRing
record IsRCommRing {F : Type ℓ} (_#_ : Rel F F ℓ') (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) : Type (ℓ-max ℓ ℓ') where
field
isRCommSemiring : IsRCommSemiring _#_ 0f 1f _+_ _·_
open IsRCommSemiring isRCommSemiring public
-- ℚ ℝ ℂ
record IsRField {F : Type ℓ} (_#_ : Rel F F ℓ') (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_⁻¹ : (x : F) → {{ x # 0f }} → F) : Type (ℓ-max ℓ ℓ') where
field
isRCommRing : IsRCommRing _#_ 0f 1f _+_ _·_ -_
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x
distrib : ∀ x y z → (x + y) · z ≡ (x · z) + (y · z)
⁻¹-preserves-#0 : ∀ x → (p : x # 0f) → _⁻¹ x {{p}} # 0f
-preserves-# : ∀ x y → x # y → (- x) # (- y)
-preserves-#0 : ∀ x → x # 0f → (- x) # 0f
·-#0-#0-implies-#0 : ∀ a b → a # 0f → b # 0f → (a · b) # 0f
1#0 : 1f # 0f
-- TODO: properties
open IsRCommRing isRCommRing public
-- Finₖ ℕ ℤ ℚ ℝ and ℚ₀⁺ ℚ⁺ ℝ₀⁺ ℝ⁺ ...
record IsRLattice {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) : Type (ℓ-max ℓ ℓ') where
field
isPartialOrder : IsPartialOrder _≤_
glb : ∀ x y z → z ≤ min x y → z ≤ x × z ≤ y
glb-back : ∀ x y z → z ≤ x × z ≤ y → z ≤ min x y
lub : ∀ x y z → max x y ≤ z → x ≤ z × y ≤ z
lub-back : ∀ x y z → x ≤ z × y ≤ z → max x y ≤ z
-- TODO: derived properties
<-implies-# : ∀ x y → x < y → x # y
≤-#-implies-< : ∀ x y → x ≤ y → x # y → x < y
#-sym : ∀ x y → x # y → y # x
max-sym : ∀ x y → max x y ≡ max y x
max-id : ∀ x → max x x ≡ x
open IsPartialOrder isPartialOrder public
-- ℕ ℤ ℚ ℝ and ℚ₀⁺ ℚ⁺ ℝ₀⁺ ℝ⁺ ...
-- ring without additive inverse
record IsROrderedCommSemiring {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) : Type (ℓ-max ℓ ℓ') where
field
isRLattice : IsRLattice _<_ _≤_ _#_ min max
isRCommSemiring : IsRCommSemiring _#_ 0f 1f _+_ _·_
-- TODO: properties
-- TODO: the following can be derived
0<1 : 0f < 1f
+-0<-0<-implies-0< : ∀ a b → 0f < a → 0f < b → 0f < (a + b)
+-0<-0≤-implies-0< : ∀ a b → 0f < a → 0f ≤ b → 0f < (a + b)
+-0≤-0<-implies-0< : ∀ a b → 0f ≤ a → 0f < b → 0f < (a + b)
+-0≤-0≤-implies-0≤ : ∀ a b → 0f ≤ a → 0f ≤ b → 0f ≤ (a + b)
+-<0-<0-implies-<0 : ∀ a b → a < 0f → b < 0f → (a + b) < 0f
+-<0-≤0-implies-<0 : ∀ a b → a < 0f → b ≤ 0f → (a + b) < 0f
+-≤0-<0-implies-<0 : ∀ a b → a ≤ 0f → b < 0f → (a + b) < 0f
+-≤0-≤0-implies-≤0 : ∀ a b → a ≤ 0f → b ≤ 0f → (a + b) ≤ 0f
·-#0-#0-implies-#0 : ∀ a b → a # 0f → b # 0f → (a · b) # 0f
·-#0-0<-implies-#0 : ∀ a b → a # 0f → 0f < b → (a · b) # 0f
·-#0-<0-implies-#0 : ∀ a b → a # 0f → b < 0f → (a · b) # 0f
·-0≤-0≤-implies-0≤ : ∀ a b → 0f ≤ a → 0f ≤ b → 0f ≤ (a · b)
·-0≤-0<-implies-0≤ : ∀ a b → 0f ≤ a → 0f < b → 0f ≤ (a · b)
·-0≤-<0-implies-≤0 : ∀ a b → 0f ≤ a → b < 0f → (a · b) ≤ 0f
·-0≤-≤0-implies-≤0 : ∀ a b → 0f ≤ a → b ≤ 0f → (a · b) ≤ 0f
·-0<-#0-implies-#0 : ∀ a b → 0f < a → b # 0f → (a · b) # 0f
·-0<-0≤-implies-0≤ : ∀ a b → 0f < a → 0f ≤ b → 0f ≤ (a · b)
·-0<-0<-implies-0< : ∀ a b → 0f < a → 0f < b → 0f < (a · b)
·-0<-<0-implies-<0 : ∀ a b → 0f < a → b < 0f → (a · b) < 0f
·-0<-≤0-implies-≤0 : ∀ a b → 0f < a → b ≤ 0f → (a · b) ≤ 0f
·-<0-#0-implies-#0 : ∀ a b → a < 0f → b # 0f → (a · b) # 0f
·-<0-0≤-implies-≤0 : ∀ a b → a < 0f → 0f ≤ b → (a · b) ≤ 0f
·-<0-0<-implies-<0 : ∀ a b → a < 0f → 0f < b → (a · b) < 0f
·-<0-<0-implies-0< : ∀ a b → a < 0f → b < 0f → 0f < (a · b)
·-<0-≤0-implies-0≤ : ∀ a b → a < 0f → b ≤ 0f → 0f ≤ (a · b)
·-≤0-0≤-implies-≤0 : ∀ a b → a ≤ 0f → 0f ≤ b → (a · b) ≤ 0f
·-≤0-0<-implies-≤0 : ∀ a b → a ≤ 0f → 0f < b → (a · b) ≤ 0f
·-≤0-<0-implies-0≤ : ∀ a b → a ≤ 0f → b < 0f → 0f ≤ (a · b)
·-≤0-≤0-implies-0≤ : ∀ a b → a ≤ 0f → b ≤ 0f → 0f ≤ (a · b)
0≤-#0-implies-0< : ∀ x → 0f ≤ x → x # 0f → 0f < x
{-
·-#0-#0-implies-#0 : ∀ a b → a # 0f → b # 0f → (a · b) # 0f
·-#0-0<-implies-#0 : ∀ a b → a # 0f → 0f < b → (a · b) # 0f
·-0≤-0≤-implies-0≤ : ∀ a b → 0f ≤ a → 0f ≤ b → 0f ≤ (a · b)
·-0≤-0<-implies-0≤ : ∀ a b → 0f ≤ a → 0f < b → 0f ≤ (a · b)
·-0≤-≤0-implies-≤0 : ∀ a b → 0f ≤ a → b ≤ 0f → (a · b) ≤ 0f
·-0<-#0-implies-#0 : ∀ a b → 0f < a → b # 0f → (a · b) # 0f
·-0<-0≤-implies-0≤ : ∀ a b → 0f < a → 0f ≤ b → 0f ≤ (a · b)
·-0<-0<-implies-0< : ∀ a b → 0f < a → 0f < b → 0f < (a · b)
·-0<-≤0-implies-≤0 : ∀ a b → 0f < a → b ≤ 0f → (a · b) ≤ 0f
·-≤0-0≤-implies-≤0 : ∀ a b → a ≤ 0f → 0f ≤ b → (a · b) ≤ 0f
·-≤0-0<-implies-≤0 : ∀ a b → a ≤ 0f → 0f < b → (a · b) ≤ 0f
·-≤0-≤0-implies-0≤ : ∀ a b → a ≤ 0f → b ≤ 0f → 0f ≤ (a · b)
-}
open IsRLattice isRLattice public
-- ℤ ℚ ℝ
record IsROrderedCommRing {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) : Type (ℓ-max ℓ ℓ') where
field
isROrderedCommSemiring : IsROrderedCommSemiring _<_ _≤_ _#_ min max 0f 1f _+_ _·_
isRCommRing : IsRCommRing _#_ 0f 1f _+_ _·_ -_
0≡-0 : 0f ≡ - 0f
-flips-< : ∀ x y → x < y → (- y) < (- x)
-flips-<0 : ∀ x → x < 0f → 0f < (- x)
-flips-0< : ∀ x → 0f < x → (- x) < 0f
-flips-≤ : ∀ x y → x ≤ y → (- y) ≤ (- x)
-flips-≤0 : ∀ x → x ≤ 0f → 0f ≤ (- x)
-flips-0≤ : ∀ x → 0f ≤ x → (- x) ≤ 0f
-preserves-# : ∀ x y → x # y → (- x) # (- y)
-preserves-#0 : ∀ x → x # 0f → (- x) # 0f
-- TODO: properties
open IsROrderedCommSemiring isROrderedCommSemiring public
-- Remark 6.7.7. As we define absolute values by | x | = max(x, -x), as is common in constructive analysis,
-- if x has a locator, then so does | x |, and we use this fact in the proof of the above theorem.
-- Remark 4.1.9.
--
-- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that
-- for every x and y,
--
-- max(x, y) = x ∨ max(x, y) = y,
--
-- which would hold in a linear order.
-- However, in Lemma 6.7.1 we characterize max as
--
-- z < max(x, y) ⇔ z < x ∨ z < y,
--
-- and similarly for min.
{- from: https://isabelle.in.tum.de/doc/tutorial.pdf "8.4.5 The Numeric Type Classes"
Absolute Value.
The absolute value function `abs` is available for all ordered rings, including types int, rat and real.
It satisfies many properties, such as the following:
| x * y | ≡ | x | * | y | (abs_mult)
| a | ≤ b ⇔ (a ≤ b) ∧ (- a) ≤ b (abs_le_iff)
| a + b | ≤ | a | + | b | (abs_triangle_ineq)
-}
-- also see https://en.wikipedia.org/wiki/Ordered_ring#Basic_properties
record IsAbsOrderedCommRing {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (abs : F → F) : Type (ℓ-max ℓ ℓ') where
field
abs0≡0 : abs 0f ≡ 0f
abs-preserves-· : ∀ x y → abs (x · y) ≡ abs x · abs y
triangle-ineq : ∀ x y → abs (x + y) ≤ (abs x + abs y)
-- -trichotomy : ∀ x → (x ≡ 0f) ⊎ (0f < x) ⊎ (0f < (- x))
abs-≤ : ∀ x y → abs x ≤ y → (x ≤ y) × ((- x) ≤ y)
abs-≤-back : ∀ x y → (x ≤ y) × ((- x) ≤ y) → abs x ≤ y
0≤abs : ∀ x → 0f ≤ abs x
-- ℚ ℝ
record IsROrderedField {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_⁻¹ : (x : F) → {{ x # 0f }} → F) : Type (ℓ-max ℓ ℓ') where
field
isROrderedCommRing : IsROrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_
isRField : IsRField _#_ 0f 1f _+_ _·_ -_ _⁻¹
-- TODO: properties
open IsROrderedCommRing isROrderedCommRing hiding
( -preserves-#
; -preserves-#0
) public
open IsRField isRField hiding
( ·-#0-#0-implies-#0
) public
field
⁻¹-preserves-<0 : ∀ x → (x < 0f) → (p : x # 0f) → _⁻¹ x {{p}} < 0f
⁻¹-preserves-0< : ∀ x → (0f < x) → (p : x # 0f) → 0f < _⁻¹ x {{p}}
-- ℚ₀⁺ ℚ₀⁻ ℝ₀⁺ ℝ₀⁻
{-
record IsROrderedSemifield {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) (_⁻¹ : (x : F) → {{ x < 0f }} → F) : Type (ℓ-max ℓ ℓ') where
field
isROrderedCommSemiring : IsROrderedCommSemiring _<_ _≤_ _#_ min max 0f 1f _+_ _·_
-- TODO: properties
#0-implies-0< : ∀ x → 0f # x → 0f < x
positivity : ∀ x → 0f ≤ x
open IsROrderedCommSemiring isROrderedCommSemiring public
-}
-- ℚ⁺ ℚ⁻ ℝ⁺ ℝ⁻
{-
record IsROrderedSemifieldWithoutZero {F : Type ℓ} (_<_ _≤_ _#_ : Rel F F ℓ') (min max : F → F → F) (0f 1f : F) (_+_ _·_ : F → F → F) (_⁻¹ : (x : F) → F) : Type (ℓ-max ℓ ℓ') where
field
isRLattice : IsRLattice _<_ _≤_ _#_ min max
-- isGroup : IsGroup 1f _·_ _⁻¹
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x
distrib : ∀ x y z → (x + y) · z ≡ (x · z) + (y · z)
-- TODO: properties
open IsRLattice isRLattice public
-}
| {
"alphanum_fraction": 0.4782731643,
"avg_line_length": 42.2669322709,
"ext": "agda",
"hexsha": "226a9c8a8579c9ddab26adf4cff388bc0a4ee083",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Structures.agda",
"max_line_length": 192,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 5179,
"size": 10609
} |
{-# OPTIONS --without-K #-}
module Chapter3.Formalization where
-- Sets and n-types
-- ----------------
open import Data.Unit
open import Data.Empty
open import Data.Nat
open import Data.Sum
open import Relation.Nullary using (¬_)
open import Data.Bool
open import Data.Product
open import Basics
open import Relation.Equivalence.Univalence
open import Relation.Equality
open import Relation.Equality.Extensionality
open import Relation.Path.Operation
isSet : ∀ {a} → Set a → Set a
isSet A = (x y : A) (p q : x ≡ y) → p ≡ q
-- The only possible inhabitants of ⊤ is tt which means everything
-- is reflexivity.
is-1-set : isSet ⊤
is-1-set tt tt refl refl = refl
-- Ex falso quodlibet strikes again
is-0-set : isSet ⊥
is-0-set ()
hasDecEq : ∀ {i} → Set i → Set i
hasDecEq A = (x y : A) → (x ≡ y) ⊎ ¬ (x ≡ y)
decEqIsSet : ∀ {i}{A : Set i} → hasDecEq A → isSet A
decEqIsSet {A} d x y = {! !} -- TBD: Hedberg's Theorem
-- Natural numbers are also a set because every equality type is decidable.
-- Boy, it's a pain in the ass proving that, though.
is-ℕ-set : isSet ℕ
is-ℕ-set = decEqIsSet hasDecEq-ℕ where
hasDecEq-ℕ : hasDecEq ℕ
hasDecEq-ℕ zero zero = inj₁ refl
hasDecEq-ℕ zero (suc y) = inj₂ (λ ())
hasDecEq-ℕ (suc x) zero = inj₂ (λ ())
hasDecEq-ℕ (suc x) (suc y) with hasDecEq-ℕ x y
hasDecEq-ℕ (suc x) (suc y) | inj₁ x₁ = inj₁ (ap {f = suc} x₁)
hasDecEq-ℕ (suc x) (suc y) | inj₂ pnot = inj₂ (λ p → pnot (ap {f = remark} p)) where
remark : ℕ → ℕ
remark zero = 42
remark (suc n) = n
is-×-set : ∀ {a b}{A : Set a}{B : Set b} → isSet A → isSet B → isSet (A × B)
is-×-set SA SB x y p q = {! !}
is-1-type : ∀ {a} → Set a → Set a
is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s
3-1-8 : ∀ {a}{A : Set a} → isSet A → is-1-type A
3-1-8 f x y p q r s = {! apd r !}
where
g : (q : x ≡ y) → (p ≡ q)
g q = f x y p q
3-1-9 : ¬ (isSet Set)
3-1-9 x = {! !} where
f : Bool → Bool
f false = true
f true = false
contra : ¬ (false ≡ true)
contra ()
lem : IsEquiv f
lem = record
{ from = f
; iso₁ = λ x → mlem {x}
; iso₂ = λ x → mlem {x}
} where
mlem : ∀ {x : Bool} → f (f x) ≡ x
mlem {false} = refl
mlem {true} = refl
not-double-neg : ∀ {A : Set} → (¬ (¬ A) → A) → ⊥
not-double-neg f = {! !} where
e : Bool ≃ Bool
e = e-equiv , record { from = e-equiv ; iso₁ = λ x → helper {x} ; iso₂ = λ x → helper {x} } where
e-equiv : Bool → Bool
e-equiv true = false
e-equiv false = true
helper : ∀ {x : Bool} → e-equiv (e-equiv x) ≡ x
helper {true} = refl
helper {false} = refl
-- 3-2-4 : (x : Bool) → ¬ (e x ≡ x)
-- 3-2-4 = ?
p : Bool ≡ Bool
p = {! ua e !}
not-lem : ∀ {A : Set} → ¬ (A ⊎ (¬ A))
not-lem {A} (inj₁ x) = not-double-neg (λ _ → x)
not-lem {A} (inj₂ w) = not-double-neg (λ x → ⊥-elim (x w))
-- This defines "mere propositions"
-- If all elements of P are connected by a path, then p contains no
-- higher homotopy.
--
-- "The adjective “mere” emphasizes that although any type may be regarded as a
-- proposition (which we prove by giving an inhabitant of it), a type that is a
-- mere proposition cannot usefully be regarded as any more than a proposition:
-- there is no additional information contained in a witness of its truth."
isProp : ∀ {a} → Set a → Set a
isProp P = (x y : P) → (x ≡ y)
top-is-prop : isProp ⊤
top-is-prop tt tt = refl
3-3-3 : ∀ {a b}{P : Set a}{Q : Set b} → (p : isProp P)(q : isProp Q) → (f : P → Q) → (g : Q → P) → P ≃ Q
3-3-3 p q f g = f , record
{ from = g
; iso₁ = λ x → p (g (f x)) x
; iso₂ = λ y → q (f (g y)) y
}
3-3-2 : ∀ {a}{P : Set a} → (p : isProp P) → (x₀ : P) → P ≃ ⊤
3-3-2 {_}{P} p x₀ = 3-3-3 p (top-is-prop) f g where
f : P → ⊤
f x = tt
g : ⊤ → P
g u = x₀
isProp-isSet : ∀ {a}{A : Set a} → isProp A → isSet A
isProp-isSet {_}{A} f x y p q = lem p ∙ lem q ⁻¹ where
g : (y : A) → x ≡ y
g y = f x y
-- Read bottom-to-top
lem : (p : x ≡ y) → p ≡ (g x ⁻¹ ∙ g y)
lem p = (ap {f = (λ z → z ∙ p)} (back-and-there-again {p = (g x)}) ⁻¹) -- we have p = g(x)−1 g(y) = q.
∙ (assoc (g x ⁻¹) (g x) p ⁻¹) -- and after a little convincing
∙ ap {f = (λ z → (g x ⁻¹) ∙ z)} -- which is to say that p = g(y)⁻¹ ∙ g(z)
( (2-11-2 x p (g x) ⁻¹) -- Hence by Lemma 2.11.2, we have g(y) ∙ p = g(z)
∙ (apd {f = g} p) -- we have apd(p) : p(g(y)) = g(z).
) -- Then for any y,z : A and p : y = z
isProp-is-prop : ∀ {a}{A : Set a} → isProp (isProp A)
isProp-is-prop f g = funext λ x →
funext λ y → isProp-isSet f _ _ (f x y) (g x y)
isSet-is-prop : ∀ {a}{A : Set a} → isProp (isSet A)
isSet-is-prop f g = funext λ x →
funext λ y →
funext λ p →
funext λ q → isProp-isSet (f x y) _ _ (f x y p q) (g x y p q)
3-5-1 : ∀ {a}{A : Set a} → (P : A → Set) → ({x : A} → isProp (P x)) → (u v : Σ[ x ∈ A ] P x) → (proj₁ u ≡ proj₁ v) → u ≡ v
3-5-1 P x u v p = {! !}
3-6-1 : ∀ {a b}{A : Set a}{B : Set b} → (isProp A) → (isProp B) → isProp (A × B)
3-6-1 PA PB px py = {! !}
3-6-2 : ∀ {a b}{A : Set a}{B : A → Set b}{x : A} → (isProp (B x)) → isProp ((x : A) → B x)
3-6-2 PPI f g = funext λ x → {! f x ≡ g x !}
| {
"alphanum_fraction": 0.5192598187,
"avg_line_length": 31.3372781065,
"ext": "agda",
"hexsha": "39115d30831d7d1ea9dba4096d9dd27b3937a031",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter3/Formalization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter3/Formalization.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter3/Formalization.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2146,
"size": 5296
} |
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
data D (A : Set) : Set where
c c' : D A
postulate rew : c {Bool} ≡ c' {Bool}
{-# REWRITE rew #-}
| {
"alphanum_fraction": 0.6233183857,
"avg_line_length": 17.1538461538,
"ext": "agda",
"hexsha": "39aa050e2aee60fa568df23914c3818d193f3bae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RewriteConstructorParsNotGeneral.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RewriteConstructorParsNotGeneral.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RewriteConstructorParsNotGeneral.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 223
} |
open import Relation.Binary.PropositionalEquality
record Group : Set₁ where
field
X : Set
_·_ : X → X → X
e : X
i : X → X
assoc : (x y z : X) → (x · y) · z ≡ x · (y · z)
unit-l : (x : X) → e · x ≡ x
unit-r : (x : X) → x · e ≡ x
inv-l : (x : X) → i x · x ≡ e
inv-r : (x : X) → x · i x ≡ e
inv-u-l : {G : Group} → (x x' y : Group.X) → (x Group.· y) ≡ Group.e → (x' Group.· y) ≡ Group.e → x ≡ x'
inv-u-l x x' y p q = ?
| {
"alphanum_fraction": 0.4291938998,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "f3a80c6c1581d4108374eceeb3b08536c9096c49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "erwinkn/program-eq-proof",
"max_forks_repo_path": "TD6/Group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "erwinkn/program-eq-proof",
"max_issues_repo_path": "TD6/Group.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "erwinkn/program-eq-proof",
"max_stars_repo_path": "TD6/Group.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 208,
"size": 459
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Direct-Sum.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Direct-Sum.Base
private variable
ℓ ℓ' : Level
module _ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where
inv : ⊕ Idx P AGP → ⊕ Idx P AGP
inv = DS-Rec-Set.f Idx P AGP (⊕ Idx P AGP) trunc
-- elements
neutral
(λ r a → base r (AbGroupStr.-_ (AGP r) a))
(λ xs ys → xs add ys)
-- eq group
(λ xs ys zs → addAssoc xs ys zs)
(λ xs → addRid xs)
(λ xs ys → addComm xs ys)
-- eq base
(λ r → let open AbGroupStr (AGP r) in
let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in
(cong (base r) inv1g) ∙ (base-neutral r))
(λ r a b → let open AbGroupStr (AGP r) in
let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in
((base r (- a) add base r (- b)) ≡⟨ (base-add r (- a) (- b)) ⟩
base r ((- a) + (- b)) ≡⟨ (cong (base r) (sym (invDistr b a))) ⟩
base r (- (b + a)) ≡⟨ cong (base r) (cong (-_) (comm b a)) ⟩
base r (- (a + b)) ∎))
rinv : (z : ⊕ Idx P AGP) → z add (inv z) ≡ neutral
rinv = DS-Ind-Prop.f Idx P AGP (λ z → z add (inv z) ≡ neutral) (λ _ → trunc _ _)
-- elements
(addRid neutral)
(λ r a → let open AbGroupStr (AGP r) in
((base r a add base r (- a)) ≡⟨ base-add r a (- a) ⟩
base r (a + - a) ≡⟨ cong (base r) (invr a) ⟩
base r 0g ≡⟨ base-neutral r ⟩
neutral ∎))
(λ {x} {y} p q →
(((x add y) add ((inv x) add (inv y))) ≡⟨ cong (λ X → X add ((inv x) add (inv y))) (addComm x y) ⟩
((y add x) add (inv x add inv y)) ≡⟨ sym (addAssoc y x (inv x add inv y)) ⟩
(y add (x add (inv x add inv y))) ≡⟨ cong (λ X → y add X) (addAssoc x (inv x) (inv y)) ⟩
(y add ((x add inv x) add inv y)) ≡⟨ cong (λ X → y add (X add (inv y))) (p) ⟩
(y add (neutral add inv y)) ≡⟨ cong (λ X → y add X) (addComm neutral (inv y)) ⟩
(y add (inv y add neutral)) ≡⟨ cong (λ X → y add X) (addRid (inv y)) ⟩
(y add inv y) ≡⟨ q ⟩
neutral ∎))
| {
"alphanum_fraction": 0.424556213,
"avg_line_length": 47.4385964912,
"ext": "agda",
"hexsha": "68beece6538f4db7a118a959f54728fe86281000",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Direct-Sum/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Direct-Sum/Properties.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Direct-Sum/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 875,
"size": 2704
} |
module Structure.Setoid.Uniqueness.Proofs where
import Lvl
open import Functional
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid.Uniqueness
open import Structure.Setoid
open import Structure.Function.Domain
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable A B : Type{ℓ}
private variable P : A → Type{ℓ}
module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} where
Uniqueness-Injectivity : (∀{y : B} → Unique(x ↦ y ≡ f(x))) ↔ Injective(f)
Uniqueness-Injectivity = [↔]-intro l r where
l : (∀{y : B} → Unique(x ↦ y ≡ f(x))) ← Injective(f)
l inj {y} {x₁}{x₂} (y≡fx₁) (y≡fx₂) = injective _ ⦃ inj ⦄ {x₁}{x₂} (symmetry(_≡_) (y≡fx₁) 🝖 (y≡fx₂))
r : (∀{y : B} → Unique(x ↦ y ≡ f(x))) → Injective(f)
Injective.proof(r unique) {x₁}{x₂} (fx₁≡fx₂) = unique {f(x₁)}{x₁}{x₂} (reflexivity(_≡_)) (fx₁≡fx₂)
| {
"alphanum_fraction": 0.6646216769,
"avg_line_length": 37.6153846154,
"ext": "agda",
"hexsha": "333061a284c9ae9b32f4cbc4a5cac4ca9c75ba50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Setoid/Uniqueness/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Setoid/Uniqueness/Proofs.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Setoid/Uniqueness/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 384,
"size": 978
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Coproduct
open import lib.types.Pointed
open import lib.types.Pushout
open import lib.types.PushoutFlattening
open import lib.types.Span
open import lib.types.Unit
-- Wedge of two pointed types is defined as a particular case of pushout
module lib.types.Wedge where
module _ {i j} (X : Ptd i) (Y : Ptd j) where
wedge-span : Span
wedge-span = span (fst X) (fst Y) Unit (λ _ → snd X) (λ _ → snd Y)
Wedge : Type (lmax i j)
Wedge = Pushout wedge-span
_∨_ = Wedge
module _ {i j} {X : Ptd i} {Y : Ptd j} where
winl : fst X → X ∨ Y
winl x = left x
winr : fst Y → X ∨ Y
winr y = right y
wglue : winl (snd X) == winr (snd Y)
wglue = glue tt
module _ {i j} (X : Ptd i) (Y : Ptd j) where
⊙Wedge : Ptd (lmax i j)
⊙Wedge = ⊙[ Wedge X Y , winl (snd X) ]
_⊙∨_ = ⊙Wedge
module _ {i j} {X : Ptd i} {Y : Ptd j} where
⊙winl : fst (X ⊙→ X ⊙∨ Y)
⊙winl = (winl , idp)
⊙winr : fst (Y ⊙→ X ⊙∨ Y)
⊙winr = (winr , ! wglue)
module _ {i j} {X : Ptd i} {Y : Ptd j} where
module WedgeElim {k} {P : X ∨ Y → Type k}
(winl* : (x : fst X) → P (winl x)) (winr* : (y : fst Y) → P (winr y))
(wglue* : winl* (snd X) == winr* (snd Y) [ P ↓ wglue ]) where
private
module M = PushoutElim winl* winr* (λ _ → wglue*)
f = M.f
glue-β = M.glue-β unit
open WedgeElim public using () renaming (f to Wedge-elim)
module WedgeRec {k} {C : Type k} (winl* : fst X → C) (winr* : fst Y → C)
(wglue* : winl* (snd X) == winr* (snd Y)) where
private
module M = PushoutRec {d = wedge-span X Y} winl* winr* (λ _ → wglue*)
f = M.f
glue-β = M.glue-β unit
add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ fst (X ⊙⊔ Y) → X ∨ Y
add-wglue (inl x) = winl x
add-wglue (inr y) = winr y
⊙add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ fst (X ⊙⊔ Y ⊙→ X ⊙∨ Y)
⊙add-wglue = (add-wglue , idp)
module Fold {i} {X : Ptd i} =
WedgeRec {X = X} {Y = X} (λ x → x) (λ x → x) idp
fold = Fold.f
⊙fold : ∀ {i} {X : Ptd i} → fst (X ⊙∨ X ⊙→ X)
⊙fold = (fold , idp)
| {
"alphanum_fraction": 0.550794415,
"avg_line_length": 22.3333333333,
"ext": "agda",
"hexsha": "4981d6c47a71a96d6f4ee3438cc1249f5e14da1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/types/Wedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/types/Wedge.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/types/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 911,
"size": 2077
} |
-- {-# OPTIONS -v impossible:100 -v tc.lhs.imp:100 #-}
-- {-# OPTIONS -v impossible:100 -v tc.cover:20 #-}
-- {-# OPTIONS --copatterns #-} -- Andreas, 2015-08-26 on by default.
module Issue957 where
open import Common.Equality
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_
pair : {A B : Set} → A → B → A × B
fst (pair a b) = ?
snd (pair a b) = ?
swap : {A B : Set} → A × B → B × A
fst (swap p) = ?
snd (swap p) = ?
swap3 : {A B C : Set} → A × (B × C) → C × (B × A)
fst (swap3 t) = ?
fst (snd (swap3 t)) = ?
snd (snd (swap3 t)) = ?
-- should also work if we shuffle the clauses
swap4 : {A B C D : Set} → A × (B × (C × D)) → D × (C × (B × A))
fst (snd (swap4 t)) = ?
snd (snd (snd (swap4 t))) = ?
fst (swap4 t) = ?
fst (snd (snd (swap4 t))) = ?
-- multiple clauses with abstractions
fswap3 : {A B C X : Set} → (X → A) × ((X → B) × C) → (X → C) × (X → (B × A))
fst (fswap3 t) x = ?
fst (snd (fswap3 t) y) = ?
snd (snd (fswap3 t) z) = ?
-- State monad example
-- The State newtype
record State (S A : Set) : Set where
constructor state
field
runState : S → A × S
open State
-- The Monad type class
record Monad (M : Set → Set) : Set1 where
constructor monad
field
return : {A : Set} → A → M A
_>>=_ : {A B : Set} → M A → (A → M B) → M B
module InstanceArgument where
open Monad {{...}}
-- State is an instance of Monad
instance
stateMonad : {S : Set} → Monad (State S)
runState (return {{stateMonad}} a ) s = ?
runState (_>>=_ {{stateMonad}} m k) s₀ = ?
| {
"alphanum_fraction": 0.5308176101,
"avg_line_length": 22.3943661972,
"ext": "agda",
"hexsha": "2b4486b0ee5db533fce371beb611accc42720f71",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/interaction/Issue957.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/interaction/Issue957.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/interaction/Issue957.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 582,
"size": 1590
} |
module Logic where
open import Type renaming (Type to Stmt ; Typeω to Stmtω) public
| {
"alphanum_fraction": 0.7764705882,
"avg_line_length": 21.25,
"ext": "agda",
"hexsha": "9e4a4b88a7d64d12ca6c1c3fd67f837cd0c3a9f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Logic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Logic.agda",
"max_line_length": 64,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Logic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 21,
"size": 85
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Equality.Setoid directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Data.List.Relation.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where
open import Data.List.Relation.Binary.Equality.Setoid S public
| {
"alphanum_fraction": 0.5224489796,
"avg_line_length": 32.6666666667,
"ext": "agda",
"hexsha": "a9cce71633d7335d590d936a7ee7239877c47999",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/Setoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 90,
"size": 490
} |
------------------------------------------------------------------------
-- A variant of Coherently with an erased field
------------------------------------------------------------------------
{-# OPTIONS --cubical --guardedness #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Coherently.Coinductive.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
import Equality.Path.Univalence as EPU
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as B using (_↔_)
import Bijection P.equality-with-J as PB
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
import Equivalence P.equality-with-J as PEq
open import Equivalence.Erased equality-with-J as EEq using (_≃ᴱ_)
open import Function-universe equality-with-J hiding (_∘_)
import Function-universe P.equality-with-J as PF
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹; ∥∥¹ᴱ→∥∥¹)
open import H-level.Truncation.Propositional.One-step.Erased eq as OE
using (∥_∥¹ᴱ)
open import Univalence-axiom equality-with-J
import Univalence-axiom P.equality-with-J as PU
open import Lens.Non-dependent.Higher.Coherently.Coinductive eq as C
using (Coherently)
private
variable
a b ℓ p p₁ p₂ : Level
A A₁ A₂ B C : Type a
x y : A
f : A → B
-- A variant of
-- Lens.Non-dependent.Higher.Coherently.Coinductive.Coherently with an
-- erased "coherent" field.
record Coherentlyᴱ
{A : Type a} {B : Type b}
(P : {A : Type a} → (A → B) → Type p)
(@0 step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ᴱ → B)
(f : A → B) : Type p where
coinductive
field
property : P f
@0 coherent : Coherentlyᴱ P step (step f property)
open Coherentlyᴱ public
-- A preservation lemma for Coherentlyᴱ. (See also Coherentlyᴱ-cong
-- below.)
@0 Coherentlyᴱ-cong′ :
{P : {A : Type a} → (A → B) → Type p}
{step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ᴱ → B} →
Univalence a →
(A₁≃A₂ : A₁ ≃ A₂) →
Coherentlyᴱ P step (f ∘ _≃_.to A₁≃A₂) ≃ Coherentlyᴱ P step f
Coherentlyᴱ-cong′ {f = f} {P = P} {step = step} univ A₁≃A₂ =
≃-elim₁ univ
(λ A₁≃A₂ →
Coherentlyᴱ P step (f ∘ _≃_.to A₁≃A₂) ≃
Coherentlyᴱ P step f)
Eq.id
A₁≃A₂
-- Coherently can be converted to Coherentlyᴱ in a certain way
-- (assuming univalence).
Coherently→Coherentlyᴱ :
{P : {A : Type a} → (A → B) → Type p}
{step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} →
@0 Univalence a →
Coherently P step f → Coherentlyᴱ P (λ f p → step f p ∘ ∥∥¹ᴱ→∥∥¹) f
Coherently→Coherentlyᴱ _ c .property = c .C.property
Coherently→Coherentlyᴱ univ c .coherent =
Coherently→Coherentlyᴱ univ
(_≃_.from (C.Coherently-cong′ univ O.∥∥¹ᴱ≃∥∥¹)
(c .C.coherent))
-- In erased contexts Coherently and Coherentlyᴱ are, in a certain
-- sense, logically equivalent (assuming univalence).
@0 Coherentlyᴱ⇔Coherently :
{P : {A : Type a} → (A → B) → Type p}
{step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} →
Univalence a →
Coherentlyᴱ P (λ f p → step f p ∘ ∥∥¹ᴱ→∥∥¹) f ⇔ Coherently P step f
Coherentlyᴱ⇔Coherently univ ._⇔_.from = Coherently→Coherentlyᴱ univ
Coherentlyᴱ⇔Coherently univ ._⇔_.to c .C.property = c .property
Coherentlyᴱ⇔Coherently univ ._⇔_.to c .C.coherent =
Coherentlyᴱ⇔Coherently univ ._⇔_.to
(_≃_.to (Coherentlyᴱ-cong′ univ O.∥∥¹ᴱ≃∥∥¹)
(c .coherent))
private
-- A preservation lemma for Coherentlyᴱ.
--
-- The lemma does not use the univalence argument, instead it uses
-- EPU.univ (and EPU.≃⇒≡) directly.
Coherentlyᴱ-cong-≡ :
Block "Coherentlyᴱ-cong-≡" →
{A : Type a}
{P₁ P₂ : {A : Type a} → (A → B) → Type p}
{step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B} →
Univalence p →
(P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) →
({A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) →
Coherentlyᴱ P₁ step₁ f P.≡ Coherentlyᴱ P₂ step₂ f
Coherentlyᴱ-cong-≡
{a = a} {B = B} {p = p} ⊠ {P₁ = P₁} {P₂ = P₂}
{step₁ = step₁} {step₂ = step₂} {f = f} _ P₁≃P₂′ step₁≡step₂ =
P.cong (λ ((P , step) :
∃ λ (P : (A : Type a) → (A → B) → Type p) →
{A : Type a} (f : A → B) → P A f → ∥ A ∥¹ᴱ → B) →
Coherentlyᴱ (P _) step f) $
Σ-≡,≡→≡′
(P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) →
EPU.≃⇒≡ (P₁≃P₂ f))
(P.implicit-extensionality P.ext λ A → P.⟨ext⟩ λ f →
P.subst (λ P → {A : Type a} (f : A → B) → P A f → ∥ A ∥¹ᴱ → B)
(P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) →
EPU.≃⇒≡ (P₁≃P₂ f))
step₁ f P.≡⟨ P.trans (P.cong (_$ f) $ P.sym $
P.push-subst-implicit-application
(P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f))
(λ P A → (f : A → B) → P A f → ∥ A ∥¹ᴱ → B)
{f = const _} {g = step₁}) $
P.sym $ P.push-subst-application
(P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f))
(λ P f → P A f → ∥ A ∥¹ᴱ → B)
{f = const f} {g = step₁} ⟩
P.subst (λ P → P A f → ∥ A ∥¹ᴱ → B)
(P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) →
EPU.≃⇒≡ (P₁≃P₂ f))
(step₁ f) P.≡⟨⟩
P.subst (λ P → P → ∥ A ∥¹ᴱ → B)
(EPU.≃⇒≡ (P₁≃P₂ f))
(step₁ f) P.≡⟨ P.sym $
PU.transport-theorem
(λ P → P → ∥ A ∥¹ᴱ → B)
(PF.→-cong₁ _)
(λ _ → P.refl)
EPU.univ
(P₁≃P₂ f)
(step₁ f) ⟩
PF.→-cong₁ _ (P₁≃P₂ f) (step₁ f) P.≡⟨⟩
step₁ f ∘ PEq._≃_.from (P₁≃P₂ f) P.≡⟨ P.⟨ext⟩ (_↔_.to ≡↔≡ ∘ step₁≡step₂ f) ⟩∎
step₂ f ∎)
where
P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f PEq.≃ P₂ f
P₁≃P₂ f = _↔_.to ≃↔≃ (P₁≃P₂′ f)
Σ-≡,≡→≡′ :
{P : A → Type b} {p₁ p₂ : Σ A P} →
(p : proj₁ p₁ P.≡ proj₁ p₂) →
P.subst P p (proj₂ p₁) P.≡ proj₂ p₂ →
p₁ P.≡ p₂
Σ-≡,≡→≡′ {P = P} {p₁ = _ , y₁} {p₂ = _ , y₂} p q i =
p i , lemma i
where
lemma : P.[ (λ i → P (p i)) ] y₁ ≡ y₂
lemma = PB._↔_.from (P.heterogeneous↔homogeneous _) q
-- A "computation rule".
to-Coherentlyᴱ-cong-≡-property :
(bl : Block "Coherentlyᴱ-cong-≡")
{A : Type a} {B : Type b}
{P₁ P₂ : {A : Type a} → (A → B) → Type p}
{step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B}
(univ : Univalence p)
(P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f)
(step₁≡step₂ :
{A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x)
(c : Coherentlyᴱ P₁ step₁ f) →
PU.≡⇒→ (Coherentlyᴱ-cong-≡ bl univ P₁≃P₂ step₁≡step₂) c .property
P.≡
_≃_.to (P₁≃P₂ f) (c .property)
to-Coherentlyᴱ-cong-≡-property
⊠ {P₁ = P₁} {P₂ = P₂} {f = f} _ P₁≃P₂ step₁≡step₂ c =
P.transport (λ _ → P₂ f) P.0̲
(_≃_.to (P₁≃P₂ f) (P.transport (λ _ → P₁ f) P.0̲ (c .property))) P.≡⟨ P.cong (_$ _≃_.to (P₁≃P₂ f)
(P.transport (λ _ → P₁ f) P.0̲ (c .property))) $
P.transport-refl P.0̲ ⟩
_≃_.to (P₁≃P₂ f) (P.transport (λ _ → P₁ f) P.0̲ (c .property)) P.≡⟨ P.cong (λ g → _≃_.to (P₁≃P₂ f) (g (c .property))) $
P.transport-refl P.0̲ ⟩∎
_≃_.to (P₁≃P₂ f) (c .property) ∎
-- Another "computation rule".
from-Coherentlyᴱ-cong-≡-property :
(bl : Block "Coherentlyᴱ-cong-≡")
{A : Type a} {B : Type b}
{P₁ P₂ : {A : Type a} → (A → B) → Type p}
{step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B}
(univ : Univalence p)
(P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f)
(step₁≡step₂ :
{A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x)
(c : Coherentlyᴱ P₂ step₂ f) →
PEq._≃_.from
(PU.≡⇒≃ (Coherentlyᴱ-cong-≡ bl {step₁ = step₁} univ
P₁≃P₂ step₁≡step₂))
c .property P.≡
_≃_.from (P₁≃P₂ f) (c .property)
from-Coherentlyᴱ-cong-≡-property
⊠ {P₁ = P₁} {P₂ = P₂} {f = f} _ P₁≃P₂ step₁≡step₂ c =
P.transport (λ _ → P₁ f) P.0̲
(_≃_.from (P₁≃P₂ f) (P.transport (λ _ → P₂ f) P.0̲ (c .property))) P.≡⟨ P.cong (_$ _≃_.from (P₁≃P₂ f)
(P.transport (λ _ → P₂ f) P.0̲ (c .property))) $
P.transport-refl P.0̲ ⟩
_≃_.from (P₁≃P₂ f) (P.transport (λ _ → P₂ f) P.0̲ (c .property)) P.≡⟨ P.cong (λ g → _≃_.from (P₁≃P₂ f) (g (c .property))) $
P.transport-refl P.0̲ ⟩∎
_≃_.from (P₁≃P₂ f) (c .property) ∎
-- A preservation lemma for Coherentlyᴱ.
--
-- The two directions of this equivalence compute the property
-- fields in certain ways, see the "unit tests" below.
--
-- Note that P₁ and P₂ have to target the same universe. A more
-- general result is given below (Coherentlyᴱ-cong).
Coherentlyᴱ-cong-≃ᴱ :
{A : Type a}
{P₁ P₂ : {A : Type a} → (A → B) → Type p}
{@0 step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{@0 step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B} →
@0 Univalence p →
(P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ᴱ P₂ f) →
@0 ({A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃ᴱ_.from (P₁≃P₂ f) x) ≡ step₂ f x) →
Coherentlyᴱ P₁ step₁ f ≃ᴱ Coherentlyᴱ P₂ step₂ f
Coherentlyᴱ-cong-≃ᴱ
{P₁ = P₁} {P₂ = P₂} {step₁ = step₁} {step₂ = step₂} {f = f}
univ P₁≃P₂ step₁≡step₂ =
block λ bl →
EEq.[≃]→≃ᴱ
(EEq.[proofs]
(Eq.with-other-inverse
(Eq.with-other-function
(equiv bl)
(to bl)
(_↔_.from ≡↔≡ ∘ ≡to bl))
(from bl)
(_↔_.from ≡↔≡ ∘ ≡from bl)))
where
@0 equiv :
Block "Coherentlyᴱ-cong-≡" →
Coherentlyᴱ P₁ step₁ f ≃ Coherentlyᴱ P₂ step₂ f
equiv bl =
_↔_.from ≃↔≃ $ PU.≡⇒≃ $
Coherentlyᴱ-cong-≡ bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂
to :
Block "Coherentlyᴱ-cong-≡" →
Coherentlyᴱ P₁ step₁ f → Coherentlyᴱ P₂ step₂ f
to _ c .property = _≃ᴱ_.to (P₁≃P₂ f) (c .property)
to bl c .coherent =
P.subst
(Coherentlyᴱ P₂ step₂)
(P.cong (step₂ f) $
to-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂ c) $
_≃_.to (equiv bl) c .coherent
@0 ≡to : ∀ bl c → _≃_.to (equiv bl) c P.≡ to bl c
≡to bl c i .property = to-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂ c i
≡to bl c i .coherent = lemma i
where
lemma :
P.[ (λ i → Coherentlyᴱ P₂ step₂
(step₂ f (to-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂)
step₁≡step₂ c i))) ]
_≃_.to (equiv bl) c .coherent ≡
P.subst
(Coherentlyᴱ P₂ step₂)
(P.cong (step₂ f) $
to-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂ c)
(_≃_.to (equiv bl) c .coherent)
lemma =
PB._↔_.from (P.heterogeneous↔homogeneous _) P.refl
from :
Block "Coherentlyᴱ-cong-≡" →
Coherentlyᴱ P₂ step₂ f → Coherentlyᴱ P₁ step₁ f
from _ c .property = _≃ᴱ_.from (P₁≃P₂ f) (c .property)
from bl c .coherent =
P.subst
(Coherentlyᴱ P₁ step₁)
(P.cong (step₁ f) $
from-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂ c) $
_≃_.from (equiv bl) c .coherent
@0 ≡from : ∀ bl c → _≃_.from (equiv bl) c P.≡ from bl c
≡from bl c i .property = from-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂)
step₁≡step₂ c i
≡from bl c i .coherent = lemma i
where
lemma :
P.[ (λ i → Coherentlyᴱ P₁ step₁
(step₁ f (from-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂)
step₁≡step₂ c i))) ]
_≃_.from (equiv bl) c .coherent ≡
P.subst
(Coherentlyᴱ P₁ step₁)
(P.cong (step₁ f) $
from-Coherentlyᴱ-cong-≡-property
bl univ (EEq.≃ᴱ→≃ ∘ P₁≃P₂) step₁≡step₂ c)
(_≃_.from (equiv bl) c .coherent)
lemma =
PB._↔_.from (P.heterogeneous↔homogeneous _) P.refl
-- Unit tests that ensure that Coherentlyᴱ-cong-≃ᴱ computes the
-- property fields in certain ways.
module _
{A : Type a}
{P₁ P₂ : {A : Type a} → (A → B) → Type p}
{@0 step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{@0 step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B}
{@0 univ : Univalence p}
{P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ᴱ P₂ f}
{@0 step₁≡step₂ :
{A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃ᴱ_.from (P₁≃P₂ f) x) ≡ step₂ f x}
where
_ :
{c : Coherentlyᴱ P₁ step₁ f} →
_≃ᴱ_.to (Coherentlyᴱ-cong-≃ᴱ univ P₁≃P₂ step₁≡step₂) c .property ≡
_≃ᴱ_.to (P₁≃P₂ f) (c .property)
_ = refl _
_ :
{c : Coherentlyᴱ P₂ step₂ f} →
_≃ᴱ_.from (Coherentlyᴱ-cong-≃ᴱ {step₁ = step₁} univ
P₁≃P₂ step₁≡step₂)
c .property ≡
_≃ᴱ_.from (P₁≃P₂ f) (c .property)
_ = refl _
-- A lemma involving Coherentlyᴱ and ↑.
Coherentlyᴱ-↑ :
{A : Type a}
{P : {A : Type a} → (A → B) → Type p}
{@0 step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ᴱ → B}
{f : A → B} →
Coherentlyᴱ (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f ≃
Coherentlyᴱ P step f
Coherentlyᴱ-↑ {ℓ = ℓ} {P = P} {step = step} =
Eq.↔→≃
to
from
(_↔_.from ≡↔≡ ∘ to-from)
(_↔_.from ≡↔≡ ∘ from-to)
where
to :
Coherentlyᴱ (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f →
Coherentlyᴱ P step f
to c .property = lower (c .property)
to c .coherent = to (c .coherent)
from :
Coherentlyᴱ P step f →
Coherentlyᴱ (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f
from c .property = lift (c .property)
from c .coherent = from (c .coherent)
to-from :
(c : Coherentlyᴱ P step f) →
to (from c) P.≡ c
to-from c i .property = c .property
to-from c i .coherent = to-from (c .coherent) i
from-to :
(c : Coherentlyᴱ (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f) →
from (to c) P.≡ c
from-to c i .property = c .property
from-to c i .coherent = from-to (c .coherent) i
-- A preservation lemma for Coherentlyᴱ.
--
-- The two directions of this equivalence compute the property
-- fields in certain ways, see the "unit tests" below.
Coherentlyᴱ-cong :
{A : Type a}
{P₁ : {A : Type a} → (A → B) → Type p₁}
{P₂ : {A : Type a} → (A → B) → Type p₂}
{@0 step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{@0 step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B} →
@0 Univalence (p₁ ⊔ p₂) →
(P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ᴱ P₂ f) →
@0 ({A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃ᴱ_.from (P₁≃P₂ f) x) ≡ step₂ f x) →
Coherentlyᴱ P₁ step₁ f ≃ᴱ Coherentlyᴱ P₂ step₂ f
Coherentlyᴱ-cong
{p₁ = p₁} {p₂ = p₂}
{P₁ = P₁} {P₂ = P₂} {step₁ = step₁} {step₂ = step₂} {f = f}
univ P₁≃P₂ step₁≡step₂ =
Coherentlyᴱ P₁ step₁ f ↔⟨ inverse Coherentlyᴱ-↑ ⟩
Coherentlyᴱ (↑ p₂ ∘ P₁) ((_∘ lower) ∘ step₁) f ↝⟨ Coherentlyᴱ-cong-≃ᴱ
univ
(λ f →
↑ p₂ (P₁ f) ↔⟨ B.↑↔ ⟩
P₁ f ↝⟨ P₁≃P₂ f ⟩
P₂ f ↔⟨ inverse B.↑↔ ⟩□
↑ p₁ (P₂ f) □)
((_∘ lower) ∘ step₁≡step₂) ⟩
Coherentlyᴱ (↑ p₁ ∘ P₂) ((_∘ lower) ∘ step₂) f ↔⟨ Coherentlyᴱ-↑ ⟩□
Coherentlyᴱ P₂ step₂ f □
-- Unit tests that ensure that Coherentlyᴱ-cong computes the property
-- fields in certain ways.
module _
{A : Type a}
{P₁ : {A : Type a} → (A → B) → Type p₁}
{P₂ : {A : Type a} → (A → B) → Type p₂}
{@0 step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ᴱ → B}
{@0 step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ᴱ → B}
{f : A → B}
{@0 univ : Univalence (p₁ ⊔ p₂)}
{P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ᴱ P₂ f}
{@0 step₁≡step₂ :
{A : Type a} (f : A → B) (x : P₂ f) →
step₁ f (_≃ᴱ_.from (P₁≃P₂ f) x) ≡ step₂ f x}
where
_ :
{c : Coherentlyᴱ P₁ step₁ f} →
_≃ᴱ_.to (Coherentlyᴱ-cong univ P₁≃P₂ step₁≡step₂) c .property ≡
_≃ᴱ_.to (P₁≃P₂ f) (c .property)
_ = refl _
_ :
{c : Coherentlyᴱ P₂ step₂ f} →
_≃ᴱ_.from (Coherentlyᴱ-cong {step₁ = step₁} univ P₁≃P₂ step₁≡step₂)
c .property ≡
_≃ᴱ_.from (P₁≃P₂ f) (c .property)
_ = refl _
-- A "computation rule".
subst-Coherentlyᴱ-property :
∀ {B : Type b} {P : C → {A : Type a} → (A → B) → Type p}
{@0 step : (c : C) {A : Type a} (f : A → B) → P c f → ∥ A ∥¹ᴱ → B}
{f : C → A → B} {eq : x ≡ y} {c} →
subst (λ x → Coherentlyᴱ (P x) (step x) (f x)) eq c .property ≡
subst (λ x → P x (f x)) eq (c .property)
subst-Coherentlyᴱ-property
{P = P} {step = step} {f = f} {eq = eq} {c = c} =
elim¹
(λ eq →
subst (λ x → Coherentlyᴱ (P x) (step x) (f x)) eq c .property ≡
subst (λ x → P x (f x)) eq (c .property))
(subst (λ x → Coherentlyᴱ (P x) (step x) (f x)) (refl _) c .property ≡⟨ cong property $ subst-refl _ _ ⟩
c .property ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → P x (f x)) (refl _) (c .property) ∎)
eq
| {
"alphanum_fraction": 0.4442417794,
"avg_line_length": 38.548828125,
"ext": "agda",
"hexsha": "79c6cd1d34b3fb56e47c3f12ed2ddd58e30c992d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive/Erased.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 8013,
"size": 19737
} |
postulate
F : (Set → Set) → Set
!_ : Set → Set
!_,_ : Set → Set → Set
X : Set
syntax F (λ X → A) = X , A
infix 1 F
infix 2 !_
Foo : Set
Foo = ! X , X
-- This expression can be parsed in exactly one way. However, Agda
-- rejects it:
--
-- Expected variable name in binding position
--
-- The error is thrown from pure code in rebuildBinding, and this
-- action circumvents the parser logic.
--
-- The error was introduced in the fix for Issue 1129, and the problem
-- raised in Issue 1129 was introduced in a fix for Issue 1108
-- ("Operator parser performance").
| {
"alphanum_fraction": 0.6564102564,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "319696614f10c369f4d3a87d64609b941dc95686",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1450.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1450.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1450.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 173,
"size": 585
} |
{-# OPTIONS --cubical --safe #-}
open import Algebra
open import Prelude
open import HITs.PropositionalTruncation
open import HITs.PropositionalTruncation.Sugar
module Algebra.Construct.Cayley {a} (mon : Monoid a) where
open Monoid mon
𝒞 : Type a
𝒞 = Σ[ f ⦂ (𝑆 → 𝑆) ] × ∀ x → ∥ f ε ∙ x ≡ f x ∥
⟦_⇓⟧ : 𝒞 → 𝑆
⟦ x ⇓⟧ = x .fst ε
⟦_⇑⟧ : 𝑆 → 𝒞
⟦ x ⇑⟧ .fst y = x ∙ y
⟦ x ⇑⟧ .snd y = ∣ cong (_∙ y) (∙ε x) ∣
ⓔ : 𝒞
ⓔ .fst x = x
ⓔ .snd x = ∣ ε∙ x ∣
open import Relation.Binary
open import HITs.PropositionalTruncation.Equivalence
open import Relation.Binary.Equivalence.Reasoning (trunc-equivalence (≡-equivalence {A = 𝑆}))
_⊙_ : 𝒞 → 𝒞 → 𝒞
(x ⊙ y) .fst z = x .fst (y .fst z)
(x ⊙ y) .snd z =
x .fst (y .fst ε) ∙ z ≋˘⟨ cong (_∙ z) ∥$∥ (x .snd (y .fst ε)) ⟩
x .fst ε ∙ y .fst ε ∙ z ≡⟨ assoc (x .fst ε) (y .fst ε) z ⟩
x .fst ε ∙ (y .fst ε ∙ z) ≋⟨ cong (x .fst ε ∙_) ∥$∥ (y .snd z) ⟩
x .fst ε ∙ y .fst z ≋⟨ x .snd (y .fst z) ⟩
x .fst (y .fst z) ∎
⊙-assoc : Associative _⊙_
⊙-assoc x y z i .fst k = x .fst (y .fst (z .fst k))
⊙-assoc x y z i .snd k = squash (((x ⊙ y) ⊙ z) .snd k) ((x ⊙ (y ⊙ z)) .snd k) i
ⓔ⊙ : ∀ x → ⓔ ⊙ x ≡ x
ⓔ⊙ x i .fst y = x .fst y
ⓔ⊙ x i .snd y = squash ((ⓔ ⊙ x) .snd y) (x .snd y) i
⊙ⓔ : ∀ x → x ⊙ ⓔ ≡ x
⊙ⓔ x i .fst y = x .fst y
⊙ⓔ x i .snd y = squash ((x ⊙ ⓔ) .snd y) (x .snd y) i
cayleyMonoid : Monoid a
Monoid.𝑆 cayleyMonoid = 𝒞
Monoid._∙_ cayleyMonoid = _⊙_
Monoid.ε cayleyMonoid = ⓔ
Monoid.assoc cayleyMonoid = ⊙-assoc
Monoid.ε∙ cayleyMonoid = ⓔ⊙
Monoid.∙ε cayleyMonoid = ⊙ⓔ
open import Data.Sigma.Properties
module _ (sIsSet : isSet 𝑆) where
𝒞-leftInv-fst : ∀ x y → ⟦ ⟦ x ⇓⟧ ⇑⟧ .fst y ≡ x .fst y
𝒞-leftInv-fst x y = rec (sIsSet (x .fst ε ∙ y) (x .fst y)) id (x .snd y)
𝒞-leftInv : ∀ x → ⟦ ⟦ x ⇓⟧ ⇑⟧ ≡ x
𝒞-leftInv x = Σ≡Prop (λ f xs ys → funExt λ x → squash (xs x) (ys x)) (funExt (𝒞-leftInv-fst x))
𝒞-iso : 𝒞 ⇔ 𝑆
fun 𝒞-iso = ⟦_⇓⟧
inv 𝒞-iso = ⟦_⇑⟧
rightInv 𝒞-iso = ∙ε
leftInv 𝒞-iso = 𝒞-leftInv
| {
"alphanum_fraction": 0.5412423625,
"avg_line_length": 26.5405405405,
"ext": "agda",
"hexsha": "a05a7848e29db3363ead95e9f1210553e3a2163c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Algebra/Construct/Cayley.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Algebra/Construct/Cayley.agda",
"max_line_length": 97,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Algebra/Construct/Cayley.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1069,
"size": 1964
} |
-- Agda program using the Iowa Agda library
{-# OPTIONS --termination-depth=2 #-}
module PROOF-gamelength
where
open import eq
open import bool
open import nat
open import nat-thms
open import list
open import nondet
open import nondet-thms
---------------------------------------------------------------------------
-- Translated Curry operations:
data Move : Set where
L : Move
R : Move
solve2 : ℕ → ℕ → ND (𝕃 Move)
solve2 zero zero = Val []
solve2 (suc x) zero = mapND (_::_ L) (solve2 x zero)
solve2 zero (suc y) = mapND (_::_ R) (solve2 zero y)
solve2 (suc z) (suc u) = (mapND (_::_ L) (solve2 z (suc u)))
?? (mapND (_::_ R) (solve2 (suc z) u))
len : {a : Set} → 𝕃 a → ℕ
len [] = zero
len (x :: y) = suc (len y)
---------------------------------------------------------------------------
-- Theorem: the length of every solution is the sum of the input arguments
gamelength : (x : ℕ) → (y : ℕ)
→ (solve2 x y) satisfy (λ xs → length xs =ℕ x + y) ≡ tt
gamelength zero zero = refl
gamelength zero (suc y)
rewrite
satisfy-mapND (_::_ R) (solve2 zero y) (λ xs → length xs =ℕ zero + suc y)
| gamelength zero y = refl
gamelength (suc x) zero
rewrite
satisfy-mapND (_::_ L) (solve2 x zero) (λ xs → length xs =ℕ suc x + zero)
| gamelength x zero = refl
gamelength (suc x) (suc y)
rewrite
satisfy-mapND (_::_ L) (solve2 x (suc y)) (λ xs → length xs =ℕ suc x + suc y)
| satisfy-mapND (_::_ R) (solve2 (suc x) y) (λ xs → length xs =ℕ suc x + suc y)
| gamelength x (suc y)
| +suc x y
| gamelength (suc x) y
= refl
---------------------------------------------------------------------------
| {
"alphanum_fraction": 0.528177458,
"avg_line_length": 29.2631578947,
"ext": "agda",
"hexsha": "4bca6e9f711b6b7980bf55d4e6a01c95f84f26fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phlummox/curry-tools",
"max_forks_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-gamelength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phlummox/curry-tools",
"max_issues_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-gamelength.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phlummox/curry-tools",
"max_stars_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-gamelength.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 513,
"size": 1668
} |
module Equality where
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Product using (_×_; _,_; ∃-syntax; proj₁; proj₂)
open import Data.Bool using (Bool; true; false)
open import Data.Nat using (ℕ)
--
-- Relation
--
record Relation (R : Set → Set) (A : Set) : Set where
field
relate : A × A → Bool
to-witness : ∀ x → relate x ≡ true → R A
from-witness : R A → ∃[ x ] (relate x ≡ true)
to-from-witness : ∀ x d → x ≡ (proj₁ ∘ from-witness) (to-witness x d)
Related : A × A → Set
Related (x , y) = R A × relate (x , y) ≡ true
-- Properties
IsReflexive : ∀ R A (rel : Relation R A) → Set
IsReflexive R A rel = ∀ x → Related (x , x)
where open Relation rel
IsSymmetric : ∀ R A (rel : Relation R A) → Set
IsSymmetric R A rel = ∀ x y → Related (x , y) → Related (y , x)
where open Relation rel
IsTransitive : ∀ R A (rel : Relation R A) → Set
IsTransitive R A rel = ∀ x y z → Related (x , y) → Related (y , z) → Related (x , z)
where open Relation rel
--
-- Equality
--
record Equality (E : Set → Set) (A : Set) : Set where
field
rel : Relation E A
isReflexive : IsReflexive E A rel
isSymmetric : IsSymmetric E A rel
isTransitive : IsTransitive E A rel
--
-- SMT Equality
--
postulate
-- datatype
EqualitySMT : ∀ A → A → A → Set
-- instances
equalitySMT-Bool : Equality EqualitySMT Bool
equalitySMT-ℕ : Equality EqualitySMT ℕ
-- eq-smt : (A : Set) (x y : A) → Bool
--
-- Propositional Equality
--
postulate
eq-prop : ∀ (A : Set) (x y : A) → Bool
data EqualityProp : ∀ A → A → A → Set where
injection-SMT :
∀ (A : Set) (equ : Equality EqualitySMT A) x y →
Relation.Related EqualitySMT (x , y) →
Relation.Related EqualityProp (x , y)
-- extensional :
-- ∀ (A B : Set) f g →
-- (∀ x → EqualityProp
| {
"alphanum_fraction": 0.6038236856,
"avg_line_length": 22.4166666667,
"ext": "agda",
"hexsha": "4d173c6ca7f5eee294dcaf24d565acc211b0d0e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "525a3d42431bf5dc6837939441f389ea5cead937",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Riib11/monadic-equality",
"max_forks_repo_path": "proto/agda/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "525a3d42431bf5dc6837939441f389ea5cead937",
"max_issues_repo_issues_event_max_datetime": "2021-02-25T15:49:12.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-25T15:49:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Riib11/monadic-equality",
"max_issues_repo_path": "proto/agda/Equality.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "525a3d42431bf5dc6837939441f389ea5cead937",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Riib11/monadic-equality",
"max_stars_repo_path": "proto/agda/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 624,
"size": 1883
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for Characters
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Char.Base where
------------------------------------------------------------------------
-- Re-export the type, and renamed primitives
open import Agda.Builtin.Char public using ( Char )
renaming
-- testing
( primIsLower to isLower
; primIsDigit to isDigit
; primIsAlpha to isAlpha
; primIsSpace to isSpace
; primIsAscii to isAscii
; primIsLatin1 to isLatin1
; primIsPrint to isPrint
; primIsHexDigit to isHexDigit
-- transforming
; primToUpper to toUpper
; primToLower to toLower
-- converting
; primCharToNat to toNat
; primNatToChar to fromNat
)
open import Agda.Builtin.String public using ()
renaming ( primShowChar to show )
| {
"alphanum_fraction": 0.5445960126,
"avg_line_length": 27.2285714286,
"ext": "agda",
"hexsha": "8cc4035ce4799e6f1cb1179ee82ee805bb9cb222",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Base.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Char/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 211,
"size": 953
} |
open import Nat
open import Prelude
open import List
open import core
open import contexts
module lemmas-freevars where
mutual
-- if e successfully type-checks via analysis, under a context which
-- can only bind x in the final position, then the free vars of e, with
-- the context's last binder removed, cannot contain x.
rff-lemma-ana : ∀{Γ x x' e τ₁ τ₂} → x # Γ → (Γ ,, (x' , τ₁)) ⊢ e <= τ₂ → x inList remove-from-free' x' e → ⊥
rff-lemma-ana {_} {x} {x'} {e} h₁ h₂ h₃ with natEQ x x'
rff-lemma-ana {Γ} {x} {x'} {e} h₁ h₂ h₃ | Inl x==x' = remove-all-not-in natEQ (free-vars e) x' (tr ( λ y → y inList remove-all natEQ (free-vars e) x') x==x' h₃)
rff-lemma-ana {Γ} {x} {x'} {e} {τ₁} h₁ h₂ h₃ | Inr x≠x' = a∉l→a∉remove-all-l-a' natEQ (fv-lemma-ana (lem-none-union {Γ = Γ} {τ₁} (flip x≠x') h₁) h₂) h₃
-- as above
rff-lemma-syn : ∀{Γ x x' e τ₁ τ₂} → x # Γ → (Γ ,, (x' , τ₁)) ⊢ e => τ₂ → x inList remove-from-free' x' e → ⊥
rff-lemma-syn {Γ} {x} {x'} {e} h₁ h₂ h₃ with natEQ x x'
rff-lemma-syn {Γ} {x} {x'} {e} h₁ h₂ h₃ | Inl x==x' = remove-all-not-in natEQ (free-vars e) x' (tr ( λ y → y inList remove-all natEQ (free-vars e) x') x==x' h₃)
rff-lemma-syn {Γ} {x} {x'} {e} {τ₁} h₁ h₂ h₃ | Inr x≠x' = a∉l→a∉remove-all-l-a' natEQ (fv-lemma-syn (lem-none-union {Γ = Γ} {τ₁} (flip x≠x') h₁) h₂) h₃
-- if e analysizes against type under a context that doesn't mention x,
-- x is not in free vars of e
fv-lemma-ana : ∀{Γ x e τ} → x # Γ → Γ ⊢ e <= τ → x inList (free-vars e) → ⊥
fv-lemma-ana h₁ (ASubsume x₁ x₂) = fv-lemma-syn h₁ x₁
fv-lemma-ana {Γ} h₁ (ALam x₂ x₃ h₂) = rff-lemma-ana {Γ} h₁ h₂
-- if e synthesizes a type under a context that doesn't mention x, x is
-- not in free vars of e
fv-lemma-syn : ∀{Γ x e τ} → x # Γ → Γ ⊢ e => τ → x inList (free-vars e) → ⊥
fv-lemma-syn apt SConst ()
fv-lemma-syn apt (SAsc x₁) = fv-lemma-ana apt x₁
fv-lemma-syn apt (SVar x₂) InH = somenotnone (! x₂ · apt)
fv-lemma-syn apt (SVar x₂) (InT ())
fv-lemma-syn apt (SAp {e1 = e1} x₁ wt x₂ x₃) xin
with inList++ {l1 = free-vars e1} natEQ xin
... | Inl x₄ = fv-lemma-syn apt wt x₄
... | Inr x₄ = fv-lemma-ana apt x₃ x₄
fv-lemma-syn apt SEHole ()
fv-lemma-syn apt (SNEHole x₁ wt) = fv-lemma-syn apt wt
fv-lemma-syn {Γ} apt (SLam x₂ wt) xin = rff-lemma-syn {Γ} apt wt xin
fv-lemma-syn apt (SFst wt x₁) = fv-lemma-syn apt wt
fv-lemma-syn apt (SSnd wt x₁) = fv-lemma-syn apt wt
fv-lemma-syn apt (SPair {e1 = e1} x₁ wt wt₁) xin
with inList++ {l1 = free-vars e1} natEQ xin
... | Inl y = fv-lemma-syn apt wt y
... | Inr y = fv-lemma-syn apt wt₁ y
| {
"alphanum_fraction": 0.5826538176,
"avg_line_length": 53.96,
"ext": "agda",
"hexsha": "6dc9e4b0be8648d93c324316e4172ba428f3a6ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "lemmas-freevars.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "lemmas-freevars.agda",
"max_line_length": 170,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "lemmas-freevars.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z",
"num_tokens": 1174,
"size": 2698
} |
------------------------------------------------------------------------
-- A definitional interpreter that is instrumented with information
-- about the stack size of the compiled program
------------------------------------------------------------------------
open import Prelude
import Lambda.Syntax
module Lambda.Interpreter.Stack-sizes
{Name : Type}
(open Lambda.Syntax Name)
(def : Name → Tm 1)
where
import Equality.Propositional as E
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Colist E.equality-with-J as C
open import Conat E.equality-with-J as Conat using (infinity)
open import Function-universe E.equality-with-J hiding (id; _∘_)
open import Monad E.equality-with-J
open import Nat E.equality-with-J
open import Vec.Data E.equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity as D using (later; force)
open import Upper-bounds
open import Lambda.Compiler def
open import Lambda.Delay-crash as DC hiding (crash)
open import Lambda.Delay-crash-trace as DCT hiding (tell)
import Lambda.Interpreter def as I
open Closure Tm
open Delay-crash-trace using (tell)
------------------------------------------------------------------------
-- The interpreter
-- A stack size change function used in the interpreter's call case.
δ : In-tail-context → ℕ → ℕ
δ tc = if tc then pred else id
infix 10 [_,_]_∙_
mutual
-- The semantics instrumented with stack size changes (functions of
-- type ℕ → ℕ). The semantics takes an argument of type
-- In-tail-context, so that it can produce annotations matching
-- those produced by the compiler + virtual machine.
⟦_⟧ :
∀ {i n} →
Tm n → Env n → In-tail-context →
Delay-crash-trace (ℕ → ℕ) Value i
⟦ var x ⟧ ρ _ = tell suc (return (index ρ x))
⟦ lam t ⟧ ρ _ = tell suc (return (lam t ρ))
⟦ t₁ · t₂ ⟧ ρ _ = do v₁ ← ⟦ t₁ ⟧ ρ false
v₂ ← ⟦ t₂ ⟧ ρ false
[ pred , pred ] v₁ ∙ v₂
⟦ call f t ⟧ ρ tc = do v ← ⟦ t ⟧ ρ false
[ δ tc , δ (not tc) ] lam (def f) [] ∙ v
⟦ con b ⟧ ρ _ = tell suc (return (con b))
⟦ if t₁ t₂ t₃ ⟧ ρ tc = do v₁ ← ⟦ t₁ ⟧ ρ false
⟦if⟧ v₁ t₂ t₃ ρ tc
[_,_]_∙_ :
∀ {i} →
(ℕ → ℕ) → (ℕ → ℕ) →
Value → Value → Delay-crash-trace (ℕ → ℕ) Value i
[ f₁ , f₂ ] lam t₁ ρ ∙ v₂ = later f₁ λ { .force → do
v ← ⟦ t₁ ⟧ (v₂ ∷ ρ) true
tell f₂ (return v) }
[ _ , _ ] con _ ∙ _ = crash
⟦if⟧ :
∀ {i n} →
Value → Tm n → Tm n → Env n → In-tail-context →
Delay-crash-trace (ℕ → ℕ) Value i
⟦if⟧ (lam _ _) _ _ _ _ = crash
⟦if⟧ (con true) t₂ t₃ ρ tc = tell pred (⟦ t₂ ⟧ ρ tc)
⟦if⟧ (con false) t₂ t₃ ρ tc = tell pred (⟦ t₃ ⟧ ρ tc)
-- The numbers produced by a given computation, for a given initial
-- number. The initial number is the first element in the output.
numbers : ∀ {A i} → Delay-crash-trace (ℕ → ℕ) A i → ℕ → Colist ℕ i
numbers x n = scanl (λ m f → f m) n (trace x)
-- The stack sizes, for an empty initial stack, with false as the
-- In-tail-context argument.
--
-- Note that this colist is not guaranteed to match the one generated
-- by the virtual machine exactly. However, they are guaranteed to
-- have the same least upper bound.
stack-sizes : ∀ {i} → Tm 0 → Colist ℕ i
stack-sizes t = numbers (⟦ t ⟧ [] false) 0
------------------------------------------------------------------------
-- The semantics given above gives the same (uninstrumented) result as
-- the one in Lambda.Interpreter
mutual
-- The instrumented and the uninstrumented semantics yield strongly
-- bisimilar results.
⟦⟧∼⟦⟧ :
∀ {i n} (t : Tm n) {ρ : Env n} tc →
D.[ i ] delay-crash (⟦ t ⟧ ρ tc) ∼ I.⟦ t ⟧ ρ
⟦⟧∼⟦⟧ (var x) _ = D.reflexive _
⟦⟧∼⟦⟧ (lam t) _ = D.reflexive _
⟦⟧∼⟦⟧ (t₁ · t₂) {ρ} _ =
delay-crash
(⟦ t₁ ⟧ ρ false >>= λ v₁ → ⟦ t₂ ⟧ ρ false >>= λ v₂ →
[ pred , pred ] v₁ ∙ v₂) D.∼⟨ delay-crash->>= (⟦ t₁ ⟧ _ _) ⟩
(delay-crash (⟦ t₁ ⟧ ρ false) >>= λ v₁ →
delay-crash (⟦ t₂ ⟧ ρ false >>= λ v₂ →
[ pred , pred ] v₁ ∙ v₂)) D.∼⟨ ((delay-crash (⟦ t₁ ⟧ _ _) D.∎) DC.>>=-cong λ _ →
delay-crash->>= (⟦ t₂ ⟧ _ _)) ⟩
(delay-crash (⟦ t₁ ⟧ ρ false) >>= λ v₁ →
delay-crash (⟦ t₂ ⟧ ρ false) >>= λ v₂ →
delay-crash ([ pred , pred ] v₁ ∙ v₂)) D.∼⟨ (⟦⟧∼⟦⟧ t₁ _ DC.>>=-cong λ v₁ → ⟦⟧∼⟦⟧ t₂ _ DC.>>=-cong λ _ → ∙∼∙ pred v₁) ⟩∼
(I.⟦ t₁ ⟧ ρ >>= λ v₁ → I.⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ I.∙ v₂) D.∎
⟦⟧∼⟦⟧ (call f t) {ρ} tc =
delay-crash (⟦ t ⟧ ρ false >>= λ v →
[ _ , _ ] lam (def f) [] ∙ v) D.∼⟨ delay-crash->>= (⟦ t ⟧ _ _) ⟩
(delay-crash (⟦ t ⟧ ρ false) >>= λ v →
delay-crash ([ δ tc , _ ] lam (def f) [] ∙ v)) D.∼⟨ (⟦⟧∼⟦⟧ t _ DC.>>=-cong λ _ → ∙∼∙ (δ tc) (lam (def f) [])) ⟩∼
(I.⟦ t ⟧ ρ >>= λ v → lam (def f) [] I.∙ v) D.∎
⟦⟧∼⟦⟧ (con b) _ = D.reflexive _
⟦⟧∼⟦⟧ (if t₁ t₂ t₃) {ρ} tc =
(delay-crash (⟦ t₁ ⟧ ρ false >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ tc)) D.∼⟨ delay-crash->>= (⟦ t₁ ⟧ _ _) ⟩
(delay-crash (⟦ t₁ ⟧ ρ false) >>= λ v₁ →
delay-crash (⟦if⟧ v₁ t₂ t₃ ρ tc)) D.∼⟨ (⟦⟧∼⟦⟧ t₁ _ DC.>>=-cong λ v₁ → ⟦if⟧∼⟦if⟧ v₁ t₂ t₃ _) ⟩∼
(I.⟦ t₁ ⟧ ρ >>= λ v₁ → I.⟦if⟧ v₁ t₂ t₃ ρ) D.∎
∙∼∙ :
∀ {i} f₁ {f₂} (v₁ {v₂} : Value) →
D.[ i ] delay-crash ([ f₁ , f₂ ] v₁ ∙ v₂) ∼ v₁ I.∙ v₂
∙∼∙ f₁ {f₂} (lam t₁ ρ) {v₂} = later λ { .force →
delay-crash (⟦ t₁ ⟧ (v₂ ∷ ρ) true >>= tell f₂ ∘ return) D.∼⟨ delay-crash->>= (⟦ t₁ ⟧ _ _) ⟩
delay-crash (⟦ t₁ ⟧ (v₂ ∷ ρ) true) >>=
delay-crash ∘ tell f₂ ∘ return D.∼⟨ ((delay-crash (⟦ t₁ ⟧ _ _) D.∎) DC.>>=-cong λ _ → D.reflexive _) ⟩
delay-crash (⟦ t₁ ⟧ (v₂ ∷ ρ) true) >>= return D.∼⟨ DC.right-identity _ ⟩
delay-crash (⟦ t₁ ⟧ (v₂ ∷ ρ) true) D.∼⟨ ⟦⟧∼⟦⟧ t₁ _ ⟩∼
I.⟦ t₁ ⟧ (v₂ ∷ ρ) D.∎ }
∙∼∙ _ (con _) = D.reflexive _
⟦if⟧∼⟦if⟧ :
∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ} tc →
D.[ i ] delay-crash (⟦if⟧ v₁ t₂ t₃ ρ tc) ∼ I.⟦if⟧ v₁ t₂ t₃ ρ
⟦if⟧∼⟦if⟧ (lam _ _) _ _ _ = D.reflexive _
⟦if⟧∼⟦if⟧ (con true) t₂ t₃ _ = ⟦⟧∼⟦⟧ t₂ _
⟦if⟧∼⟦if⟧ (con false) t₂ t₃ _ = ⟦⟧∼⟦⟧ t₃ _
------------------------------------------------------------------------
-- A lemma
-- The function numbers preserves strong bisimilarity.
numbers-cong :
∀ {i A} {x y : Delay-crash-trace (ℕ → ℕ) A ∞} {n} →
DCT.[ i ] x ∼ y → C.[ i ] numbers x n ∼ numbers y n
numbers-cong = scanl-cong ∘ trace-cong
------------------------------------------------------------------------
-- An example: An analysis of the semantics of Ω
-- The semantics of Ω is the non-terminating computation never.
Ω-loops : ∀ {i} → D.[ i ] delay-crash (⟦ Ω ⟧ [] false) ∼ never
Ω-loops =
delay-crash (⟦ Ω ⟧ [] false) D.∼⟨ ⟦⟧∼⟦⟧ Ω false ⟩
I.⟦ Ω ⟧ [] D.∼⟨ I.Ω-loops ⟩
never D.∎
-- A colist used in an analysis of the stack space usage of Ω.
Ω-sizes : ∀ {i} → ℕ → Colist ℕ i
Ω-sizes n =
n ∷′ 1 + n ∷′ 2 + n ∷ λ { .force → Ω-sizes (1 + n) }
private
-- An abbreviation.
cong₃ :
∀ {i x y z} {xs ys : Colist′ ℕ ∞} →
C.[ i ] force xs ∼′ force ys →
C.[ i ] x ∷′ y ∷′ z ∷ xs ∼ x ∷′ y ∷′ z ∷ ys
cong₃ p = E.refl ∷ λ { .force → E.refl ∷ λ { .force → E.refl ∷ p }}
-- The colist Ω-sizes n has the same upper bounds as nats-from n.
Ω-sizes≂nats-from : ∀ {i} n → [ i ] Ω-sizes n ≂ nats-from n
Ω-sizes≂nats-from n =
Ω-sizes n ∼⟨ (cong₃ λ { .force → C.reflexive-∼ _ }) ⟩≂
n ∷′ 1 + n ∷′ 2 + n ∷′ Ω-sizes (suc n) ≂⟨ cons′-≂ (_⇔_.from ≂′⇔≂″ λ { .force →
consˡ-≂ (inj₁ (here ≤-refl)) (
consˡ-≂ (inj₁ (there (here ≤-refl))) (
Ω-sizes≂nats-from (suc n))) }) ⟩∼
n ∷′ nats-from (suc n) C.∼⟨ C.symmetric-∼ ∷∼∷′ ⟩
nats-from n C.∎
-- The least upper bound of Ω-sizes 0 is infinity.
lub-Ω-sizes-0-infinity :
LUB (Ω-sizes 0) infinity
lub-Ω-sizes-0-infinity = $⟨ lub-nats-infinity ⟩
LUB nats infinity ↝⟨ LUB-∼ nats∼nats-from-0 (Conat.reflexive-∼ _) ⟩
LUB (nats-from 0) infinity ↝⟨ LUB-≂ (symmetric-≂ (Ω-sizes≂nats-from 0)) ⟩□
LUB (Ω-sizes 0) infinity □
-- When Ω is interpreted (starting with an empty stack) the stack
-- sizes that are encountered match the sizes in the colist Ω-sizes 0.
stack-sizes-Ω∼Ω-sizes-0 :
∀ {i} → C.[ i ] stack-sizes Ω ∼ Ω-sizes 0
stack-sizes-Ω∼Ω-sizes-0 =
stack-sizes Ω C.∼⟨⟩
numbers (⟦ Ω ⟧ [] false) 0 C.∼⟨ (E.refl ∷ λ { .force → E.refl ∷ λ { .force → E.refl ∷ λ { .force →
C.reflexive-∼ _ }}}) ⟩
0 ∷′ 1 ∷′ 2 ∷′ numbers (⟦ ω-body ⟧ (lam ω-body [] ∷ []) true >>=
tell pred ∘ return) 1 C.∼⟨ (cong₃ λ { .force → lemma 1 }) ⟩
0 ∷′ 1 ∷′ 2 ∷′ Ω-sizes 1 C.∼⟨ (cong₃ λ { .force → C.reflexive-∼ _ }) ⟩
Ω-sizes 0 C.∎
where
lemma :
∀ {i} n {k : Value → Delay-crash-trace (ℕ → ℕ) Value ∞} →
C.[ i ] numbers (⟦ ω-body ⟧ (lam ω-body [] ∷ []) true >>= k) n ∼
Ω-sizes n
lemma n {k} =
numbers (⟦ ω-body ⟧ (lam ω-body [] ∷ []) true >>= k) n C.∼⟨⟩
numbers (tell suc (tell suc
([ pred , pred ] lam ω-body [] ∙ lam ω-body []) >>= k)) n C.∼⟨ (E.refl ∷ λ { .force → E.refl ∷ λ { .force → E.refl ∷ λ { .force →
C.reflexive-∼ _ }}}) ⟩
n ∷′ 1 + n ∷′ 2 + n ∷′
numbers (⟦ ω-body ⟧ (lam ω-body [] ∷ []) true >>=
tell pred ∘ return >>= k) (1 + n) C.∼⟨ (cong₃ λ { .force → C.symmetric-∼ $ numbers-cong $
DCT.associativity (⟦ ω-body ⟧ (lam _ _ ∷ []) true) _ _ }) ⟩
n ∷′ 1 + n ∷′ 2 + n ∷′
numbers (⟦ ω-body ⟧ (lam ω-body [] ∷ []) true >>= λ v →
tell pred (return v) >>= k) (1 + n) C.∼⟨ (cong₃ λ { .force → lemma (1 + n) }) ⟩
n ∷′ 1 + n ∷′ 2 + n ∷′ Ω-sizes (1 + n) C.∼⟨ (cong₃ λ { .force → C.reflexive-∼ _ }) ⟩
Ω-sizes n C.∎
-- The computation Ω requires unbounded space.
Ω-requires-unbounded-space : LUB (stack-sizes Ω) infinity
Ω-requires-unbounded-space =
LUB-∼ (C.symmetric-∼ stack-sizes-Ω∼Ω-sizes-0)
(Conat.reflexive-∼ _)
lub-Ω-sizes-0-infinity
| {
"alphanum_fraction": 0.4553125851,
"avg_line_length": 38.9434628975,
"ext": "agda",
"hexsha": "af6b0dc218cbec9d15d5a3fc6a2832dacdf6dbc0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "src/Lambda/Interpreter/Stack-sizes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "src/Lambda/Interpreter/Stack-sizes.agda",
"max_line_length": 145,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "src/Lambda/Interpreter/Stack-sizes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4284,
"size": 11021
} |
------------------------------------------------------------------------------
-- The FOTC natural numbers type
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- N.B. This module is re-exported by FOTC.Data.Nat.
module FOTC.Data.Nat.Type where
open import FOTC.Base
------------------------------------------------------------------------------
-- The FOTC natural numbers type (inductive predicate for the total
-- natural numbers).
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)
{-# ATP axioms nzero nsucc #-}
-- Induction principle.
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n
N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
| {
"alphanum_fraction": 0.4188481675,
"avg_line_length": 30.8064516129,
"ext": "agda",
"hexsha": "9c8575c597263f92baab50cf0ab40596026af6aa",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Type.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Type.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 233,
"size": 955
} |
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture
module Lec3Start where
open import Lec1Done
open import Lec2Done
postulate
extensionality : {S : Set}{T : S -> Set}
(f g : (x : S) -> T x) ->
((x : S) -> f x == g x) ->
f == g
record Category : Set where
field
-- two types of thing
Obj : Set -- "objects"
_~>_ : Obj -> Obj -> Set -- "arrows" or "morphisms"
-- or "homomorphisms"
-- two operations
id~> : {T : Obj} -> T ~> T
_>~>_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T
-- three laws
law-id~>>~> : {S T : Obj} (f : S ~> T) ->
(id~> >~> f) == f
law->~>id~> : {S T : Obj} (f : S ~> T) ->
(f >~> id~>) == f
law->~>>~> : {Q R S T : Obj} (f : Q ~> R)(g : R ~> S)(h : S ~> T) ->
((f >~> g) >~> h) == (f >~> (g >~> h))
-- Sets and functions are the classic example of a category.
{-+}
SET : Category
SET = {!!}
{+-}
-- A PREORDER is a category where there is at most one arrow between
-- any two objects. (So arrows are unique.)
{-+}
NAT->= : Category
NAT->= = {!!} where
unique : (m n : Nat)(p q : m >= n) -> p == q
unique m n p q = {!!}
{+-}
-- A MONOID is a category with Obj = One.
-- The values in the monoid are the *arrows*.
{-+}
ONE-Nat : Category
ONE-Nat = {!!}
{+-}
{-+}
eqUnique : {X : Set}{x y : X}(p q : x == y) -> p == q
eqUnique p q = {!!}
-- A DISCRETE category is one where the only arrows are the identities.
DISCRETE : (X : Set) -> Category
DISCRETE X = {!!}
{+-}
module FUNCTOR where
open Category
record _=>_ (C D : Category) : Set where -- "Functor from C to D"
field
-- two actions
F-Obj : Obj C -> Obj D
F-map : {S T : Obj C} -> _~>_ C S T -> _~>_ D (F-Obj S) (F-Obj T)
-- two laws
F-map-id~> : {T : Obj C} -> F-map (id~> C {T}) == id~> D {F-Obj T}
F-map->~> : {R S T : Obj C}(f : _~>_ C R S)(g : _~>_ C S T) ->
F-map (_>~>_ C f g) == _>~>_ D (F-map f) (F-map g)
open FUNCTOR
{-+}
VEC : Nat -> SET => SET
VEC n = {!!}
{+-}
{-+}
VTAKE : Set -> NAT->= => SET
VTAKE X = {!!}
{+-}
{-+}
ADD : Nat -> NAT->= => NAT->=
ADD d = {!!}
{+-}
{-+}
CATEGORY : Category
CATEGORY = {!!}
{+-}
| {
"alphanum_fraction": 0.4338912134,
"avg_line_length": 23.431372549,
"ext": "agda",
"hexsha": "07a8247a654bd67e776ca366e83f206d9784a17d",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec3Start.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/nowyoutry/Lec3Start.agda",
"max_line_length": 83,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Start.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 840,
"size": 2390
} |
module Stack where
open import Data.Bool using (Bool; true; false)
open import Data.Nat using (ℕ; zero; suc)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎; step-≡)
module V1 where
{-
This first version introduces the Stack abstract data type.
-}
data Stack (A : Set) : Set where
∅ : Stack A
_>>_ : A → Stack A → Stack A
infixr 50 _>>_
push : ∀ {A} → A → Stack A → Stack A
push a s = a >> s
peek : ∀ {A} → (S : Stack A) → A
-- May be absurd can be used here but how?
peek (a >> _) = a
pop : ∀ {A} → (S : Stack A) → Stack A
-- May be absurd can be used here but how?
pop (a >> s) = s
module Example where
_ : Stack Bool
_ = true >> false >> ∅
module Laws where
law1 : ∀ {A} (a : A) (s : Stack A) -> peek (push a s) ≡ a
law1 a s =
begin
peek (push a s)
≡⟨⟩
peek (a >> s)
≡⟨⟩
a
∎
law2 : ∀ {A} {a : A} {s : Stack A} → pop (push a s) ≡ s
law2 = refl
module V2 where
{-
This second version introduces the expression as constraint in the type definition.
This prevents incomplete pattern matching for peek and pop.
For this purpose we first design empty? predicate and then we use it in the type definition
of peek and pop.
-}
data Stack (A : Set) : Set where
∅ : Stack A
_>>_ : A → Stack A → Stack A
infixr 50 _>>_
empty? : ∀ {A} → Stack A → Bool
empty? ∅ = true
empty? _ = false
push : ∀ {A} → A → Stack A → Stack A
push a s = a >> s
peek : ∀ {A} → (S : Stack A) -> {empty? S ≡ false} → A
peek (a >> _) = a
pop : ∀ {A} → (S : Stack A) -> {empty? S ≡ false} → Stack A
pop (a >> s) = s
module Example where
_ : Stack Bool
_ = pop (push true ∅) {refl}
module Laws where
law1 : ∀ {A} {a : A} {s : Stack A} → peek (push a s) {refl} ≡ a
law1 = refl
law2 : ∀ {A} {a : A} {s : Stack A} → pop (push a s) {refl} ≡ s
law2 = refl
module V3 where
{-
In this third version we use a GADT for the Stack data representation.
A Kind then is design on purpose and a phantom type is used for the
association between the stack and the kind.
-}
data Kind : Set where
Empty : Kind
NotEmpty : Kind
data Stack (A : Set) : Kind → Set where
∅ : Stack A Empty
_>>_ : ∀ {B} → A → Stack A B → Stack A NotEmpty
infixr 50 _>>_
push : ∀ {A B} → A → Stack A B → Stack A NotEmpty
push a s = a >> s
peek : ∀ {A} → Stack A NotEmpty → A
peek (a >> _) = a
{-
B is in the ouput only! => No constraint with the input.
Writing such pop function is impossible as is.
pop : ∀ {A B} → Stack A NotEmpty → Stack A B
pop (_ >> s) = s
-}
module Example where
_ : Stack Bool NotEmpty
_ = push true ∅
module Laws where
law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a
law1 = refl
-- law2 cannot be expressed ...
module V4 where
{-
In this fourth version we slightly review the NotEmpty construction.
This opens the opportunity to express the pop function since a
dependency can by modeled in the corresponding type definition.
-}
data Kind : Set where
Empty : Kind
NotEmpty : Kind → Kind
data Stack (A : Set) : Kind → Set where
∅ : Stack A Empty
_>>_ : ∀ {B} → A → Stack A B → Stack A (NotEmpty B)
infixr 50 _>>_
push : ∀ {A B} → A → Stack A B → Stack A (NotEmpty B)
push a s = a >> s
peek : ∀ {A B} → Stack A (NotEmpty B) → A
peek (a >> _) = a
pop : ∀ {A B} → Stack A (NotEmpty B) → Stack A B
pop (_ >> s) = s
module Example where
_ : Stack Bool (NotEmpty Empty)
_ = push true ∅
module Laws where
law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a
law1 = refl
law2 : ∀ {A B} {a : A} {s : Stack A B} → pop (push a s) ≡ s
law2 = refl
module V5 where
{-
In this last version we show that previous Kind definiton is isomorphic
with the Natural.
-}
data Stack (A : Set) : ℕ → Set where
∅ : Stack A 0
_>>_ : ∀ {B} → A → Stack A B → Stack A (suc B)
infixr 50 _>>_
push : ∀ {A B} → A → Stack A B → Stack A (suc B)
push a s = a >> s
peek : ∀ {A B} → Stack A (suc B) → A
peek (a >> _) = a
pop : ∀ {A B} → Stack A (suc B) → Stack A B
pop (_ >> s) = s
module Example where
_ : Stack Bool 1
_ = push true ∅
module Laws where
law1 : ∀ {A B} {a : A} {s : Stack A B} → peek (push a s) ≡ a
law1 = refl
law2 : ∀ {A B} {a : A} {s : Stack A B} → pop (push a s) ≡ s
law2 = refl
| {
"alphanum_fraction": 0.5102988691,
"avg_line_length": 25.1370558376,
"ext": "agda",
"hexsha": "500c028baa3002d38b1cd69b3b8c22e8010a6675",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "d-plaindoux/colca",
"max_forks_repo_path": "src/exercices/stack.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "d-plaindoux/colca",
"max_issues_repo_path": "src/exercices/stack.agda",
"max_line_length": 95,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "d-plaindoux/colca",
"max_stars_repo_path": "src/exercices/stack.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z",
"num_tokens": 1618,
"size": 4952
} |
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.M.Properties where
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ )
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv using (_≃_)
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Functions.Embedding
open import Cubical.Codata.M.AsLimit.helper
open import Cubical.Codata.M.AsLimit.M.Base
open import Cubical.Codata.M.AsLimit.Container
-- in-fun and out-fun are inverse
open Iso
in-inverse-out : ∀ {ℓ} {S : Container ℓ} → (in-fun {S = S} ∘ out-fun {S = S}) ≡ idfun (M S)
in-inverse-out {S = S} = subst (λ inv → in-fun {S = S} ∘ inv ≡ idfun (M S)) idpath def where
-- substituting refl makes type-checking work a lot faster, but introduces a transport
-- TODO (2020-05-23): revisit this at some point to see if it's still needed in future versions of agda
def : (in-fun {S = S} ∘ inv (shift-iso S)) ≡ idfun (M S)
def = funExt (rightInv (shift-iso S))
idpath : inv (shift-iso S) ≡ out-fun {S = S}
idpath = refl
out-inverse-in : ∀ {ℓ} {S : Container ℓ} → (out-fun {S = S} ∘ in-fun {S = S}) ≡ idfun (P₀ S (M S))
out-inverse-in {S = S} = subst (λ fun → out-fun {S = S} ∘ fun ≡ idfun (P₀ S (M S))) idpath def where
def : (out-fun {S = S} ∘ fun (shift-iso S)) ≡ idfun (P₀ S (M S))
def = funExt (leftInv (shift-iso S))
idpath : fun (shift-iso S) ≡ in-fun {S = S}
idpath = refl
in-out-id : ∀ {ℓ} {S : Container ℓ} -> ∀ {x y : M S} → (in-fun (out-fun x) ≡ in-fun (out-fun y)) ≡ (x ≡ y)
in-out-id {x = x} {y} i = (in-inverse-out i x) ≡ (in-inverse-out i y)
-- constructor properties
in-inj : ∀ {ℓ} {S : Container ℓ} {Z : Type ℓ} → ∀ {f g : Z → P₀ S (M S)} → (in-fun ∘ f ≡ in-fun ∘ g) ≡ (f ≡ g)
in-inj {ℓ} {S = S} {Z = Z} {f = f} {g = g} = iso→fun-Injection-Path {ℓ = ℓ} {A = P₀ S (M S)} {B = M S} {C = Z} (shift-iso S) {f = f} {g = g}
out-inj : ∀ {ℓ} {S : Container ℓ} {Z : Type ℓ} → ∀ {f g : Z → M S} → (out-fun ∘ f ≡ out-fun ∘ g) ≡ (f ≡ g)
out-inj {ℓ} {S = S} {Z = Z} {f = f} {g = g} = iso→inv-Injection-Path {ℓ = ℓ} {A = P₀ S (M S)} {B = M S} {C = Z} (shift-iso S) {f = f} {g = g}
in-inj-x : ∀ {ℓ} {S : Container ℓ} → ∀ {x y : P₀ S (M S)} → (in-fun x ≡ in-fun y) ≡ (x ≡ y)
in-inj-x {ℓ} {S = S} {x = x} {y} = iso→fun-Injection-Path-x (shift-iso S) {x} {y}
out-inj-x : ∀ {ℓ} {S : Container ℓ} → ∀ {x y : M S} → (out-fun x ≡ out-fun y) ≡ (x ≡ y)
out-inj-x {ℓ} {S = S} {x = x} {y} = iso→inv-Injection-Path-x (shift-iso S) {x} {y}
| {
"alphanum_fraction": 0.6078984485,
"avg_line_length": 45.7419354839,
"ext": "agda",
"hexsha": "1cc3ce4f061a7fd8f8a810e2926b49111a7037a2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/M/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/M/Properties.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/M/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1136,
"size": 2836
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring.Base
private
variable
ℓ : Level
{-
some basic calculations (used for example in QuotientRing.agda),
that should become obsolete or subject to change once we have a
ring solver (see https://github.com/agda/cubical/issues/297)
-}
module RingTheory (R' : Ring ℓ) where
open RingStr (snd R')
private R = ⟨ R' ⟩
implicitInverse : (x y : R)
→ x + y ≡ 0r
→ y ≡ - x
implicitInverse x y p =
y ≡⟨ sym (+Lid y) ⟩
0r + y ≡⟨ cong (λ u → u + y) (sym (+Linv x)) ⟩
(- x + x) + y ≡⟨ sym (+Assoc _ _ _) ⟩
(- x) + (x + y) ≡⟨ cong (λ u → (- x) + u) p ⟩
(- x) + 0r ≡⟨ +Rid _ ⟩
- x ∎
equalByDifference : (x y : R)
→ x - y ≡ 0r
→ x ≡ y
equalByDifference x y p =
x ≡⟨ sym (+Rid _) ⟩
x + 0r ≡⟨ cong (λ u → x + u) (sym (+Linv y)) ⟩
x + ((- y) + y) ≡⟨ +Assoc _ _ _ ⟩
(x - y) + y ≡⟨ cong (λ u → u + y) p ⟩
0r + y ≡⟨ +Lid _ ⟩
y ∎
0Selfinverse : - 0r ≡ 0r
0Selfinverse = sym (implicitInverse _ _ (+Rid 0r))
0Idempotent : 0r + 0r ≡ 0r
0Idempotent = +Lid 0r
+Idempotency→0 : (x : R) → x ≡ x + x → x ≡ 0r
+Idempotency→0 x p =
x ≡⟨ sym (+Rid x) ⟩
x + 0r ≡⟨ cong (λ u → x + u) (sym (+Rinv _)) ⟩
x + (x + (- x)) ≡⟨ +Assoc _ _ _ ⟩
(x + x) + (- x) ≡⟨ cong (λ u → u + (- x)) (sym p) ⟩
x + (- x) ≡⟨ +Rinv _ ⟩
0r ∎
-Idempotent : (x : R) → -(- x) ≡ x
-Idempotent x = - (- x) ≡⟨ sym (implicitInverse (- x) x (+Linv _)) ⟩
x ∎
0RightAnnihilates : (x : R) → x · 0r ≡ 0r
0RightAnnihilates x =
let x·0-is-idempotent : x · 0r ≡ x · 0r + x · 0r
x·0-is-idempotent =
x · 0r ≡⟨ cong (λ u → x · u) (sym 0Idempotent) ⟩
x · (0r + 0r) ≡⟨ ·Rdist+ _ _ _ ⟩
(x · 0r) + (x · 0r) ∎
in (+Idempotency→0 _ x·0-is-idempotent)
0LeftAnnihilates : (x : R) → 0r · x ≡ 0r
0LeftAnnihilates x =
let 0·x-is-idempotent : 0r · x ≡ 0r · x + 0r · x
0·x-is-idempotent =
0r · x ≡⟨ cong (λ u → u · x) (sym 0Idempotent) ⟩
(0r + 0r) · x ≡⟨ ·Ldist+ _ _ _ ⟩
(0r · x) + (0r · x) ∎
in +Idempotency→0 _ 0·x-is-idempotent
-DistR· : (x y : R) → x · (- y) ≡ - (x · y)
-DistR· x y = implicitInverse (x · y) (x · (- y))
(x · y + x · (- y) ≡⟨ sym (·Rdist+ _ _ _) ⟩
x · (y + (- y)) ≡⟨ cong (λ u → x · u) (+Rinv y) ⟩
x · 0r ≡⟨ 0RightAnnihilates x ⟩
0r ∎)
-DistL· : (x y : R) → (- x) · y ≡ - (x · y)
-DistL· x y = implicitInverse (x · y) ((- x) · y)
(x · y + (- x) · y ≡⟨ sym (·Ldist+ _ _ _) ⟩
(x - x) · y ≡⟨ cong (λ u → u · y) (+Rinv x) ⟩
0r · y ≡⟨ 0LeftAnnihilates y ⟩
0r ∎)
-Swap· : (x y : R) → (- x) · y ≡ x · (- y)
-Swap· _ _ = -DistL· _ _ ∙ sym (-DistR· _ _)
-IsMult-1 : (x : R) → - x ≡ (- 1r) · x
-IsMult-1 _ = sym (·Lid _) ∙ sym (-Swap· _ _)
-Dist : (x y : R) → (- x) + (- y) ≡ - (x + y)
-Dist x y =
implicitInverse _ _
((x + y) + ((- x) + (- y)) ≡⟨ sym (+Assoc _ _ _) ⟩
x + (y + ((- x) + (- y))) ≡⟨ cong
(λ u → x + (y + u))
(+Comm _ _) ⟩
x + (y + ((- y) + (- x))) ≡⟨ cong (λ u → x + u) (+Assoc _ _ _) ⟩
x + ((y + (- y)) + (- x)) ≡⟨ cong (λ u → x + (u + (- x)))
(+Rinv _) ⟩
x + (0r + (- x)) ≡⟨ cong (λ u → x + u) (+Lid _) ⟩
x + (- x) ≡⟨ +Rinv _ ⟩
0r ∎)
translatedDifference : (x a b : R) → a - b ≡ (x + a) - (x + b)
translatedDifference x a b =
a - b ≡⟨ cong (λ u → a + u)
(sym (+Lid _)) ⟩
(a + (0r + (- b))) ≡⟨ cong (λ u → a + (u + (- b)))
(sym (+Rinv _)) ⟩
(a + ((x + (- x)) + (- b))) ≡⟨ cong (λ u → a + u)
(sym (+Assoc _ _ _)) ⟩
(a + (x + ((- x) + (- b)))) ≡⟨ (+Assoc _ _ _) ⟩
((a + x) + ((- x) + (- b))) ≡⟨ cong (λ u → u + ((- x) + (- b)))
(+Comm _ _) ⟩
((x + a) + ((- x) + (- b))) ≡⟨ cong (λ u → (x + a) + u)
(-Dist _ _) ⟩
((x + a) - (x + b)) ∎
+Assoc-comm1 : (x y z : R) → x + (y + z) ≡ y + (x + z)
+Assoc-comm1 x y z = +Assoc x y z ∙∙ cong (λ x → x + z) (+Comm x y) ∙∙ sym (+Assoc y x z)
+Assoc-comm2 : (x y z : R) → x + (y + z) ≡ z + (y + x)
+Assoc-comm2 x y z = +Assoc-comm1 x y z ∙∙ cong (λ x → y + x) (+Comm x z) ∙∙ +Assoc-comm1 y z x
+ShufflePairs : (a b c d : R)
→ (a + b) + (c + d) ≡ (a + c) + (b + d)
+ShufflePairs a b c d =
(a + b) + (c + d) ≡⟨ +Assoc _ _ _ ⟩
((a + b) + c) + d ≡⟨ cong (λ u → u + d) (sym (+Assoc _ _ _)) ⟩
(a + (b + c)) + d ≡⟨ cong (λ u → (a + u) + d) (+Comm _ _) ⟩
(a + (c + b)) + d ≡⟨ cong (λ u → u + d) (+Assoc _ _ _) ⟩
((a + c) + b) + d ≡⟨ sym (+Assoc _ _ _) ⟩
(a + c) + (b + d) ∎
·-assoc2 : (x y z w : R) → (x · y) · (z · w) ≡ x · (y · z) · w
·-assoc2 x y z w = ·Assoc (x · y) z w ∙ cong (_· w) (sym (·Assoc x y z))
module RingHoms where
open IsRingHom
idRingHom : (R : Ring ℓ) → RingHom R R
fst (idRingHom R) = idfun (fst R)
snd (idRingHom R) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl)
compRingHom : {R S T : Ring ℓ} → RingHom R S → RingHom S T → RingHom R T
fst (compRingHom f g) x = g .fst (f .fst x)
snd (compRingHom f g) = makeIsRingHom (cong (g .fst) (pres1 (snd f)) ∙ pres1 (snd g))
(λ x y → cong (g .fst) (pres+ (snd f) _ _) ∙ pres+ (snd g) _ _)
(λ x y → cong (g .fst) (pres· (snd f) _ _) ∙ pres· (snd g) _ _)
compIdRingHom : {R S : Ring ℓ} (φ : RingHom R S) → compRingHom (idRingHom R) φ ≡ φ
compIdRingHom φ = RingHom≡ refl
idCompRingHom : {R S : Ring ℓ} (φ : RingHom R S) → compRingHom φ (idRingHom S) ≡ φ
idCompRingHom φ = RingHom≡ refl
compAssocRingHom : {R S T U : Ring ℓ} (φ : RingHom R S) (ψ : RingHom S T) (χ : RingHom T U) →
compRingHom (compRingHom φ ψ) χ ≡ compRingHom φ (compRingHom ψ χ)
compAssocRingHom _ _ _ = RingHom≡ refl
module RingHomTheory {R S : Ring ℓ} (φ : RingHom R S) where
open RingTheory ⦃...⦄
open RingStr ⦃...⦄
open IsRingHom (φ .snd)
private
instance
_ = R
_ = S
_ = snd R
_ = snd S
f = fst φ
ker≡0→inj : ({x : ⟨ R ⟩} → f x ≡ 0r → x ≡ 0r)
→ ({x y : ⟨ R ⟩} → f x ≡ f y → x ≡ y)
ker≡0→inj ker≡0 {x} {y} p = equalByDifference _ _ (ker≡0 path)
where
path : f (x - y) ≡ 0r
path = f (x - y) ≡⟨ pres+ _ _ ⟩
f x + f (- y) ≡⟨ cong (f x +_) (pres- _) ⟩
f x - f y ≡⟨ cong (_- f y) p ⟩
f y - f y ≡⟨ +Rinv _ ⟩
0r ∎
| {
"alphanum_fraction": 0.4057247259,
"avg_line_length": 38.544600939,
"ext": "agda",
"hexsha": "5fffe6744ad97a548f2ef4a00b16ec19afb9367c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3219,
"size": 8210
} |
module Issue3295.Incomplete2 where
open import Agda.Builtin.Nat
{-# NON_COVERING #-}
g : Nat → Nat
g zero = zero
| {
"alphanum_fraction": 0.7217391304,
"avg_line_length": 14.375,
"ext": "agda",
"hexsha": "ff27c1ce3a61ef845d7e6dce9a64c180bfcfaaf0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3295/Incomplete2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3295/Incomplete2.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3295/Incomplete2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 35,
"size": 115
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Vehicle.Data.Tensor
open import Data.Product
open import Data.Sum
open import Data.Integer as ℤ using (ℤ)
open import Data.Rational as ℝ using () renaming (ℚ to ℝ)
open import Data.Fin as Fin using (#_)
open import Data.List
module property6-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
pi : ℝ
pi = ℤ.+ 392699 ℝ./ 125000
InputVector : Set
InputVector = Tensor ℝ (5 ∷ [])
OutputVector : Set
OutputVector = Tensor ℝ (5 ∷ [])
acasXu : InputVector → OutputVector
acasXu = evaluate record
{ projectFile = VEHICLE_PROJECT_FILE
; networkUUID = "TODO_networkUUID"
}
distanceToIntruder : InputVector → ℝ
distanceToIntruder x = x (# 0)
angleToIntruder : InputVector → ℝ
angleToIntruder x = x (# 1)
intruderHeading : InputVector → ℝ
intruderHeading x = x (# 2)
speed : InputVector → ℝ
speed x = x (# 3)
intruderSpeed : InputVector → ℝ
intruderSpeed x = x (# 4)
clearOfConflictScore : InputVector → ℝ
clearOfConflictScore x = acasXu x (# 0)
IntruderFarAway : InputVector → Set
IntruderFarAway x = (ℝ.- pi ℝ.≤ angleToIntruder x × angleToIntruder x ℝ.≤ ℝ.- (ℤ.+ 7 ℝ./ 10) ⊎ ℤ.+ 7 ℝ./ 10 ℝ.≤ angleToIntruder x × angleToIntruder x ℝ.≤ pi) × ((ℤ.+ 12000 ℝ./ 1 ℝ.≤ distanceToIntruder x × distanceToIntruder x ℝ.≤ ℤ.+ 62000 ℝ./ 1) × ((ℝ.- pi ℝ.≤ intruderHeading x × intruderHeading x ℝ.≤ ℝ.- pi ℝ.+ ℤ.+ 1 ℝ./ 200) × ((ℤ.+ 100 ℝ./ 1 ℝ.≤ speed x × speed x ℝ.≤ ℤ.+ 1200 ℝ./ 1) × (ℤ.+ 0 ℝ./ 1 ℝ.≤ intruderSpeed x × intruderSpeed x ℝ.≤ ℤ.+ 1200 ℝ./ 1))))
AdvisesClearOfConflict : InputVector → Set
AdvisesClearOfConflict x = let y = acasXu x in y (# 0) ℝ.> y (# 1) × (y (# 0) ℝ.> y (# 2) × (y (# 0) ℝ.> y (# 3) × y (# 0) ℝ.> y (# 4)))
abstract
property6 : ∀ (x : Tensor ℝ (5 ∷ [])) → IntruderFarAway x → AdvisesClearOfConflict x
property6 = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
} | {
"alphanum_fraction": 0.6682330827,
"avg_line_length": 31.2941176471,
"ext": "agda",
"hexsha": "630e97d1d75729c5a8b30b4697dc9240f16c14c2",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "examples/network/acasXu/property6/property6-output.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "examples/network/acasXu/property6/property6-output.agda",
"max_line_length": 465,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "examples/network/acasXu/property6/property6-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 756,
"size": 2128
} |
module JamesChapman where
infixr 50 _⟶_
data Ty : Set where
ι : Ty
_⟶_ : Ty -> Ty -> Ty
data Tm : Ty -> Set where
_$_ : {σ τ : Ty} -> Tm (σ ⟶ τ) -> Tm σ -> Tm τ
data Nf : Ty -> Set where
data _↓_ : {σ : Ty} -> Tm σ -> Nf σ -> Set where
r$ : {σ τ : Ty} -> {t : Tm (σ ⟶ τ)} -> {f : Nf (σ ⟶ τ)} -> t ↓ f ->
{u : Tm σ} -> {a : Nf σ} -> u ↓ a -> {v : Nf τ} ->
t $ u ↓ v
nf* : {σ : Ty} -> (t : Tm σ) -> {n : Nf σ} -> t ↓ n -> Set
nf* .{τ} (_$_ {σ} {τ} t u) {v} (r$ {f = f} p q) with nf* {σ ⟶ τ} t {f} p
nf* (t $ u) (r$ p q) | _ = Ty
| {
"alphanum_fraction": 0.3888888889,
"avg_line_length": 25.3636363636,
"ext": "agda",
"hexsha": "663d2e08e28bd651fc58c2ad1df223be6a5ed54a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/Termination/simplified-comb.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/Termination/simplified-comb.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/Termination/simplified-comb.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 280,
"size": 558
} |
{-# OPTIONS --without-K #-}
module sets.vec where
open import sets.vec.core public
open import sets.vec.properties public
open import sets.vec.dependent public
| {
"alphanum_fraction": 0.7763975155,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "731cd42bbf5a87686bd4e0af93a394183d6d01fc",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/vec.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/vec.agda",
"max_line_length": 38,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/vec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 33,
"size": 161
} |
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-}
module 06-universes where
import 05-identity-types
open 05-identity-types public
-- Section 4.1 Type theoretic universes
{- Because of Agda's design we already had to introduce universes in the very
first file. What is left to do here is to formalize the examples of
structured types. -}
-- Pointed types
UU-pt : (i : Level) → UU (lsuc i)
UU-pt i = Σ (UU i) (λ X → X)
-- Graphs
Gph : (i : Level) → UU (lsuc i)
Gph i = Σ (UU i) (λ X → (X → X → (UU i)))
-- Reflexive graphs
rGph : (i : Level) → UU (lsuc i)
rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x))
-- Section 4.2 Defining families and relations using a universe
-- Finite sets
Fin : ℕ → UU lzero
Fin zero-ℕ = empty
Fin (succ-ℕ n) = coprod (Fin n) unit
-- Observational equality on the natural numbers
Eq-ℕ : ℕ → (ℕ → UU lzero)
Eq-ℕ zero-ℕ zero-ℕ = 𝟙
Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘
Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘
Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n
-- Exercises
-- Exercise 3.1
{- In this exercise we were asked to show that (A + ¬A) implies (¬¬A → A). In
other words, we get double negation elimination for the types that are
decidable. -}
is-decidable : {l : Level} (A : UU l) → UU l
is-decidable A = coprod A (¬ A)
double-negation-elim-is-decidable :
{i : Level} (A : UU i) → is-decidable A → (¬ (¬ A) → A)
double-negation-elim-is-decidable A (inl x) p = x
double-negation-elim-is-decidable A (inr x) p = ind-empty (p x)
-- Exercise 3.3
{- In this exercise we were asked to show that the observational equality on ℕ
is an equivalence relation. -}
refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n
refl-Eq-ℕ zero-ℕ = star
refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n
symmetric-Eq-ℕ : (m n : ℕ) → Eq-ℕ m n → Eq-ℕ n m
symmetric-Eq-ℕ zero-ℕ zero-ℕ t = t
symmetric-Eq-ℕ zero-ℕ (succ-ℕ n) t = t
symmetric-Eq-ℕ (succ-ℕ n) zero-ℕ t = t
symmetric-Eq-ℕ (succ-ℕ m) (succ-ℕ n) t = symmetric-Eq-ℕ m n t
transitive-Eq-ℕ : (l m n : ℕ) → Eq-ℕ l m → Eq-ℕ m n → Eq-ℕ l n
transitive-Eq-ℕ zero-ℕ zero-ℕ zero-ℕ s t = star
transitive-Eq-ℕ (succ-ℕ n) zero-ℕ zero-ℕ s t = ind-empty s
transitive-Eq-ℕ zero-ℕ (succ-ℕ n) zero-ℕ s t = ind-empty s
transitive-Eq-ℕ zero-ℕ zero-ℕ (succ-ℕ n) s t = ind-empty t
transitive-Eq-ℕ (succ-ℕ l) (succ-ℕ m) zero-ℕ s t = ind-empty t
transitive-Eq-ℕ (succ-ℕ l) zero-ℕ (succ-ℕ n) s t = ind-empty s
transitive-Eq-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) s t = ind-empty s
transitive-Eq-ℕ (succ-ℕ l) (succ-ℕ m) (succ-ℕ n) s t = transitive-Eq-ℕ l m n s t
-- Exercise 3.4
{- In this exercise we were asked to show that observational equality on the
natural numbers is the least reflexive relation, in the sense that it
implies all other reflexive relation. As we will see once we introduce the
identity type, it follows that observationally equal natural numbers can be
identified. -}
succ-relation-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i
succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n)
succ-reflexivity-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) →
(n : ℕ) → succ-relation-ℕ R n n
succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n)
{- In the book we suggest that first the order of the variables should be
swapped, in order to make the inductive hypothesis stronger. Agda's pattern
matching mechanism allows us to bypass this step and give a more direct
construction. -}
least-reflexive-Eq-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) →
(m n : ℕ) → Eq-ℕ m n → R m n
least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ
least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) ()
least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ ()
least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e =
least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e
-- Exercise 3.5
{- In this exercise we were asked to show that any function on the natural
numbers preserves observational equality. The quick solution uses the fact
that observational equality is the least reflexive relation. -}
preserve_Eq-ℕ : (f : ℕ → ℕ) (n m : ℕ) → (Eq-ℕ n m) → (Eq-ℕ (f n) (f m))
preserve_Eq-ℕ f =
least-reflexive-Eq-ℕ
( λ x y → Eq-ℕ (f x) (f y))
( λ x → refl-Eq-ℕ (f x))
-- Exercise 3.6
{- In this exercise we were asked to construct the relations ≤ and < on the
natural numbers, and show basic properties about them. -}
-- The definition of ≤
leq-ℕ : ℕ → ℕ → UU lzero
leq-ℕ zero-ℕ m = unit
leq-ℕ (succ-ℕ n) zero-ℕ = empty
leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m
_≤_ = leq-ℕ
leq-zero-ℕ :
(n : ℕ) → leq-ℕ zero-ℕ n
leq-zero-ℕ zero-ℕ = star
leq-zero-ℕ (succ-ℕ n) = star
-- The definition of <
le-ℕ : ℕ → ℕ → UU lzero
le-ℕ m zero-ℕ = empty
le-ℕ zero-ℕ (succ-ℕ m) = unit
le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m
_<_ = le-ℕ
reflexive-leq-ℕ : (n : ℕ) → n ≤ n
reflexive-leq-ℕ zero-ℕ = star
reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n
anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n)
anti-reflexive-le-ℕ zero-ℕ = ind-empty
anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n
transitive-leq-ℕ :
(n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l)
transitive-leq-ℕ zero-ℕ m l p q = star
transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q =
transitive-leq-ℕ n m l p q
transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l)
transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star
transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q =
transitive-le-ℕ n m l p q
succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n)
succ-le-ℕ zero-ℕ = star
succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n
-- Exercise 3.7
{- With the construction of the divisibility relation we open the door to basic
number theory. -}
divides : (d n : ℕ) → UU lzero
divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n)
-- Exercise 3.8
{- In this exercise we were asked to construct observational equality on the
booleans. This construction is analogous to, but simpler than, the
construction of observational equality on the natural numbers. -}
Eq-𝟚 : bool → bool → UU lzero
Eq-𝟚 true true = unit
Eq-𝟚 true false = empty
Eq-𝟚 false true = empty
Eq-𝟚 false false = unit
reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x
reflexive-Eq-𝟚 true = star
reflexive-Eq-𝟚 false = star
least-reflexive-Eq-𝟚 : {i : Level}
(R : bool → bool → UU i) (ρ : (x : bool) → R x x)
(x y : bool) → Eq-𝟚 x y → R x y
least-reflexive-Eq-𝟚 R ρ true true p = ρ true
least-reflexive-Eq-𝟚 R ρ true false p = ind-empty p
least-reflexive-Eq-𝟚 R ρ false true p = ind-empty p
least-reflexive-Eq-𝟚 R ρ false false p = ρ false
-- Exercise 3.10
{- In this exercise we were asked to define the relations ≤ and < on the
integers. As a criterion of correctness, we were then also asked to show
that the type of all integers l satisfying k ≤ l satisfy the induction
principle of the natural numbers. -}
is-non-negative-ℤ : ℤ → UU lzero
is-non-negative-ℤ (inl x) = empty
is-non-negative-ℤ (inr k) = unit
diff-ℤ : ℤ → ℤ → ℤ
diff-ℤ k l = add-ℤ (neg-ℤ k) l
leq-ℤ : ℤ → ℤ → UU lzero
leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l)
reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k
reflexive-leq-ℤ k =
tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star
is-non-negative-succ-ℤ :
(k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k)
is-non-negative-succ-ℤ (inr (inl star)) p = star
is-non-negative-succ-ℤ (inr (inr x)) p = star
is-non-negative-add-ℤ :
(k l : ℤ) →
is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l)
is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star
is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star
is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star
is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star =
is-non-negative-succ-ℤ
( add-ℤ (inr (inr n)) (inr (inl star)))
( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star)
is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star
is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star =
is-non-negative-succ-ℤ
( add-ℤ (inr (inr n)) (inr (inr m)))
( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star)
triangle-diff-ℤ :
(k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m)
triangle-diff-ℤ k l m =
( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙
( ap
( add-ℤ (neg-ℤ k))
( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙
( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙
( left-unit-law-add-ℤ m))))
transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m
transitive-leq-ℤ k l m p q =
tr is-non-negative-ℤ
( triangle-diff-ℤ k l m)
( is-non-negative-add-ℤ
( add-ℤ (neg-ℤ k) l)
( add-ℤ (neg-ℤ l) m)
( p)
( q))
succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k)
succ-leq-ℤ k =
tr is-non-negative-ℤ
( inv
( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙
( ap succ-ℤ (left-inverse-law-add-ℤ k))))
( star)
leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l)
leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l)
is-positive-ℤ : ℤ → UU lzero
is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k)
le-ℤ : ℤ → ℤ → UU lzero
le-ℤ (inl zero-ℕ) (inl x) = empty
le-ℤ (inl zero-ℕ) (inr y) = unit
le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit
le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y)
le-ℤ (inl (succ-ℕ x)) (inr y) = unit
le-ℤ (inr x) (inl y) = empty
le-ℤ (inr (inl star)) (inr (inl star)) = empty
le-ℤ (inr (inl star)) (inr (inr x)) = unit
le-ℤ (inr (inr x)) (inr (inl star)) = empty
le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty
le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit
le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty
le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) =
le-ℤ (inr (inr x)) (inr (inr y))
-- We prove that the induction principle for ℕ implies strong induction.
zero-ℕ-leq-ℕ :
(n : ℕ) → leq-ℕ zero-ℕ n
zero-ℕ-leq-ℕ n = star
fam-strong-ind-ℕ :
{ l : Level} → (ℕ → UU l) → ℕ → UU l
fam-strong-ind-ℕ P n = (m : ℕ) → (leq-ℕ m n) → P m
zero-strong-ind-ℕ :
{ l : Level} (P : ℕ → UU l) → P zero-ℕ → fam-strong-ind-ℕ P zero-ℕ
zero-strong-ind-ℕ P p0 zero-ℕ t = p0
zero-strong-ind-ℕ P p0 (succ-ℕ m) ()
succ-strong-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) →
( k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))
succ-strong-ind-ℕ P pS k f zero-ℕ t = f zero-ℕ (zero-ℕ-leq-ℕ k)
succ-strong-ind-ℕ P pS k f (succ-ℕ m) t =
pS m (λ m' t' → f m' (transitive-leq-ℕ m' m k t' t))
conclusion-strong-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( ( n : ℕ) → fam-strong-ind-ℕ P n) → (n : ℕ) → P n
conclusion-strong-ind-ℕ P f n = f n n (reflexive-leq-ℕ n)
induction-strong-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( fam-strong-ind-ℕ P zero-ℕ) →
( (k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))) →
( n : ℕ) → fam-strong-ind-ℕ P n
induction-strong-ind-ℕ P q0 qS zero-ℕ = q0
induction-strong-ind-ℕ P q0 qS (succ-ℕ n) = qS n
( induction-strong-ind-ℕ P q0 qS n)
strong-ind-ℕ :
{ l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) →
( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) →
( n : ℕ) → P n
strong-ind-ℕ P p0 pS =
conclusion-strong-ind-ℕ P
( induction-strong-ind-ℕ P
( zero-strong-ind-ℕ P p0)
( succ-strong-ind-ℕ P pS))
-- We show that induction on ℕ implies ordinal induction.
fam-ordinal-ind-ℕ :
{ l : Level} → (ℕ → UU l) → ℕ → UU l
fam-ordinal-ind-ℕ P n = (m : ℕ) → (le-ℕ m n) → P m
le-zero-ℕ :
(m : ℕ) → (le-ℕ m zero-ℕ) → empty
le-zero-ℕ zero-ℕ ()
le-zero-ℕ (succ-ℕ m) ()
zero-ordinal-ind-ℕ :
{ l : Level} (P : ℕ → UU l) → fam-ordinal-ind-ℕ P zero-ℕ
zero-ordinal-ind-ℕ P m t = ind-empty (le-zero-ℕ m t)
le-one-ℕ :
(n : ℕ) → le-ℕ (succ-ℕ n) one-ℕ → empty
le-one-ℕ zero-ℕ ()
le-one-ℕ (succ-ℕ n) ()
transitive-le-ℕ' :
(k l m : ℕ) → (le-ℕ k l) → (le-ℕ l (succ-ℕ m)) → le-ℕ k m
transitive-le-ℕ' zero-ℕ zero-ℕ m () s
transitive-le-ℕ' (succ-ℕ k) zero-ℕ m () s
transitive-le-ℕ' zero-ℕ (succ-ℕ l) zero-ℕ star s = ind-empty (le-one-ℕ l s)
transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) zero-ℕ t s = ind-empty (le-one-ℕ l s)
transitive-le-ℕ' zero-ℕ (succ-ℕ l) (succ-ℕ m) star s = star
transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) (succ-ℕ m) t s =
transitive-le-ℕ' k l m t s
succ-ordinal-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) →
( k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k)
succ-ordinal-ind-ℕ P f k g m t =
f m (λ m' t' → g m' (transitive-le-ℕ' m' m k t' t))
induction-ordinal-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( qS : (k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k))
( n : ℕ) → fam-ordinal-ind-ℕ P n
induction-ordinal-ind-ℕ P qS zero-ℕ = zero-ordinal-ind-ℕ P
induction-ordinal-ind-ℕ P qS (succ-ℕ n) =
qS n (induction-ordinal-ind-ℕ P qS n)
conclusion-ordinal-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
(( n : ℕ) → fam-ordinal-ind-ℕ P n) → (n : ℕ) → P n
conclusion-ordinal-ind-ℕ P f n = f (succ-ℕ n) n (succ-le-ℕ n)
ordinal-ind-ℕ :
{ l : Level} (P : ℕ → UU l) →
( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) →
( n : ℕ) → P n
ordinal-ind-ℕ P f =
conclusion-ordinal-ind-ℕ P
( induction-ordinal-ind-ℕ P (succ-ordinal-ind-ℕ P f))
-- Extra material
-- We show that ℕ is an ordered semi-ring
leq-eq-ℕ : {m m' n n' : ℕ} → Id m m' → Id n n' → leq-ℕ m n → leq-ℕ m' n'
leq-eq-ℕ refl refl = id
right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n)
right-law-leq-add-ℕ zero-ℕ m n = id
right-law-leq-add-ℕ (succ-ℕ k) m n H = right-law-leq-add-ℕ k m n H
left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k)
left-law-leq-add-ℕ k m n H =
leq-eq-ℕ
( commutative-add-ℕ k m)
( commutative-add-ℕ k n)
( right-law-leq-add-ℕ k m n H)
preserves-leq-add-ℕ :
{m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n')
preserves-leq-add-ℕ {m} {m'} {n} {n'} H K =
transitive-leq-ℕ
( add-ℕ m n)
( add-ℕ m' n)
( add-ℕ m' n')
( left-law-leq-add-ℕ n m m' H)
( right-law-leq-add-ℕ m' n n' K)
right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n)
right-law-leq-mul-ℕ zero-ℕ m n H = star
right-law-leq-mul-ℕ (succ-ℕ k) m n H =
preserves-leq-add-ℕ
{ m = mul-ℕ k m}
{ m' = mul-ℕ k n}
( right-law-leq-mul-ℕ k m n H) H
left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k)
left-law-leq-mul-ℕ k m n H =
leq-eq-ℕ
( commutative-mul-ℕ k m)
( commutative-mul-ℕ k n)
( right-law-leq-mul-ℕ k m n H)
-- We show that ℤ is an ordered ring
{-
leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l)
leq-add-ℤ (inl zero-ℕ) k l H = {!!}
leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!}
leq-add-ℤ (inr m) k l H = {!!}
-}
-- Section 5.5 Identity systems
succ-fam-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) →
(m n : ℕ) → Eq-ℕ m n → UU i
succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e
succ-refl-fam-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
(ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
(n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n))
succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n)
path-ind-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
( m n : ℕ) (e : Eq-ℕ m n) → R m n e
path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ
path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) ()
path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ ()
path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e =
path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) m n e
comp-path-ind-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n)
comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl
comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) =
comp-path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) n
| {
"alphanum_fraction": 0.5914019403,
"avg_line_length": 32.450617284,
"ext": "agda",
"hexsha": "24501bb5ff866ae1c44e3ca9e768720b9607c188",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tadejpetric/HoTT-Intro",
"max_forks_repo_path": "Agda/06-universes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tadejpetric/HoTT-Intro",
"max_issues_repo_path": "Agda/06-universes.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tadejpetric/HoTT-Intro",
"max_stars_repo_path": "Agda/06-universes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7292,
"size": 15771
} |
{-# OPTIONS --cubical #-}
module Cubical.Categories.NaturalTransformation where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
private
variable
ℓ𝒞 ℓ𝒞' ℓ𝒟 ℓ𝒟' : Level
module _ {𝒞 : Precategory ℓ𝒞 ℓ𝒞'} {𝒟 : Precategory ℓ𝒟 ℓ𝒟'} where
record NatTrans (F G : Functor 𝒞 𝒟) : Type (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟')) where
open Precategory
open Functor
field
N-ob : (x : 𝒞 .ob) → 𝒟 .hom (F .F-ob x) (G .F-ob x)
N-hom : {x y : 𝒞 .ob} (f : 𝒞 .hom x y) → 𝒟 .seq (F .F-hom f) (N-ob y) ≡ 𝒟 .seq (N-ob x) (G .F-hom f)
open Precategory
open Functor
open NatTrans
id-trans : (F : Functor 𝒞 𝒟) → NatTrans F F
id-trans F .N-ob x = 𝒟 .idn (F .F-ob x)
id-trans F .N-hom f =
𝒟 .seq (F .F-hom f) (id-trans F .N-ob _)
≡⟨ 𝒟 .seq-ρ _ ⟩
F .F-hom f
≡⟨ sym (𝒟 .seq-λ _) ⟩
𝒟 .seq (𝒟 .idn (F .F-ob _)) (F .F-hom f)
∎
seq-trans : {F G H : Functor 𝒞 𝒟} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H
seq-trans α β .N-ob x = 𝒟 .seq (α .N-ob x) (β .N-ob x)
seq-trans {F} {G} {H} α β .N-hom f =
𝒟 .seq (F .F-hom f) (𝒟 .seq (α .N-ob _) (β .N-ob _))
≡⟨ sym (𝒟 .seq-α _ _ _) ⟩
𝒟 .seq (𝒟 .seq (F .F-hom f) (α .N-ob _)) (β .N-ob _)
≡[ i ]⟨ 𝒟 .seq (α .N-hom f i) (β .N-ob _) ⟩
𝒟 .seq (𝒟 .seq (α .N-ob _) (G .F-hom f)) (β .N-ob _)
≡⟨ 𝒟 .seq-α _ _ _ ⟩
𝒟 .seq (α .N-ob _) (𝒟 .seq (G .F-hom f) (β .N-ob _))
≡[ i ]⟨ 𝒟 .seq (α .N-ob _) (β .N-hom f i) ⟩
𝒟 .seq (α .N-ob _) (𝒟 .seq (β .N-ob _) (H .F-hom f))
≡⟨ sym (𝒟 .seq-α _ _ _) ⟩
𝒟 .seq (𝒟 .seq (α .N-ob _) (β .N-ob _)) (H .F-hom f)
∎
module _ ⦃ 𝒟-category : isCategory 𝒟 ⦄ {F G : Functor 𝒞 𝒟} {α β : NatTrans F G} where
open Precategory
open Functor
open NatTrans
make-nat-trans-path : α .N-ob ≡ β .N-ob → α ≡ β
make-nat-trans-path p i .N-ob = p i
make-nat-trans-path p i .N-hom f = rem i
where
rem : PathP (λ i → 𝒟 .seq (F .F-hom f) (p i _) ≡ 𝒟 .seq (p i _) (G .F-hom f)) (α .N-hom f) (β .N-hom f)
rem = toPathP (𝒟-category .homIsSet _ _ _ _)
module _ (𝒞 : Precategory ℓ𝒞 ℓ𝒞') (𝒟 : Precategory ℓ𝒟 ℓ𝒟') ⦃ _ : isCategory 𝒟 ⦄ where
open Precategory
open NatTrans
open Functor
FUNCTOR : Precategory (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟')) (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟'))
FUNCTOR .ob = Functor 𝒞 𝒟
FUNCTOR .hom = NatTrans
FUNCTOR .idn = id-trans
FUNCTOR .seq = seq-trans
FUNCTOR .seq-λ α = make-nat-trans-path λ i x → 𝒟 .seq-λ (α .N-ob x) i
FUNCTOR .seq-ρ α = make-nat-trans-path λ i x → 𝒟 .seq-ρ (α .N-ob x) i
FUNCTOR .seq-α α β γ = make-nat-trans-path λ i x → 𝒟 .seq-α (α .N-ob x) (β .N-ob x) (γ .N-ob x) i
| {
"alphanum_fraction": 0.538856305,
"avg_line_length": 34.1,
"ext": "agda",
"hexsha": "ada608a85b5fe4e6ab027665dedb75fab42f9b32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Categories/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1348,
"size": 2728
} |
-- {-# OPTIONS -v tc.with:40 #-}
id : (A : Set) → A → A
id A = {!id′!}
-- C-c C-h produces: id′ : ∀ {A} → A
-- when it should produce: id′ : ∀ {A} → A → A
| {
"alphanum_fraction": 0.4207317073,
"avg_line_length": 23.4285714286,
"ext": "agda",
"hexsha": "150032ea26ab1c138095f8f6156c5cfc96ed0625",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/Issue1130.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/Issue1130.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/interaction/Issue1130.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 67,
"size": 164
} |
-- Andreas, 2016-01-23, issue 1796
-- Need to run size constraint solver before with-abstraction
open import Common.Size
postulate
anything : ∀{A : Set} → A
mutual
record IO i : Set where
coinductive
field force : ∀{j : Size< i} → IO' j
data IO' i : Set where
cons : IO i → IO' i
mutual
record All i (s : IO ∞) : Set where
field force : ∀{j : Size< i} → All' j (IO.force s)
data All' i : (s : IO' ∞) → Set where
always : ∀ e → All' i (cons e)
runIO : ∀{i} (s : IO ∞) → IO i
IO.force (runIO s) with IO.force s
... | cons e = cons e
-- With abstraction fails when _ in IO.force s {_}
-- has not been solved to ∞.
test : ∀ i s → All i (runIO s)
All.force (test i s) with IO.force s -- works with {∞} added
All.force (test i s) | cons e = always e
-- cons e != IO.force (runIO {∞} s) {∞} | IO.force s of type IO' ∞
-- when checking that the expression always e has type
-- All' .j (IO.force (runIO {∞} s) {∞} | IO.force s)
| {
"alphanum_fraction": 0.5908618899,
"avg_line_length": 24.075,
"ext": "agda",
"hexsha": "06ce802cafd4077083cef06084dd7c463ea48fd2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1796.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1796.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1796.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 345,
"size": 963
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
module Sets.EquivalenceRelations where
Reflexive : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
Reflexive {A = A} r = {x : A} → r x x
Symmetric : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
Symmetric {A = A} r = {x y : A} → r x y → r y x
Transitive : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
Transitive {A = A} r = {x y z : A} → r x y → r y z → r x z
record Equivalence {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
field
reflexive : Reflexive r
symmetric : Symmetric r
transitive : Transitive r
-- See https://lists.chalmers.se/pipermail/agda/2016/009090.html
transitive' : {x y z : A} → r y z → r x y → r x z
transitive' p2 p1 = transitive p1 p2
| {
"alphanum_fraction": 0.5711035267,
"avg_line_length": 33.8076923077,
"ext": "agda",
"hexsha": "ff2cc44ae29a6f282d8915139697aa90660c5a92",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/EquivalenceRelations.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/EquivalenceRelations.agda",
"max_line_length": 85,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/EquivalenceRelations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 356,
"size": 879
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Lists.Lists
open import Numbers.Primes.PrimeNumbers
open import Decidable.Relations
open import Numbers.BinaryNaturals.Definition
open import Numbers.BinaryNaturals.Addition
module ProjectEuler.Problem1 where
numbers<N : (N : ℕ) → List ℕ
numbers<N zero = []
numbers<N (succ N) = N :: numbers<N N
filtered : (N : ℕ) → List ℕ
filtered N = filter' (orDecidable (divisionDecidable 3) (divisionDecidable 5)) (numbers<N N)
ans : ℕ → ℕ
ans n = binNatToN (fold _+B_ (NToBinNat 0) (map NToBinNat (filtered n)))
t : ans 10 ≡ 23
t = refl
--q : ans 1000 ≡ {!233168!} -- takes about 15secs for me to reduce the term that fills this hole
--q = refl
| {
"alphanum_fraction": 0.7329479769,
"avg_line_length": 28.8333333333,
"ext": "agda",
"hexsha": "7bbf63104bbb1f0c8e6d1c6ff58105400e3c3c4c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "ProjectEuler/Problem1.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "ProjectEuler/Problem1.agda",
"max_line_length": 96,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "ProjectEuler/Problem1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 264,
"size": 865
} |
{-# OPTIONS --without-K #-}
module equality.inspect where
open import level
open import equality.core
data _of_is_ {i j}{A : Set i}{B : A → Set j}
(f : (x : A) → B x)(x : A)(y : B x) : Set (i ⊔ j) where
[_] : f x ≡ y → f of x is y
inspect : ∀ {i j}{A : Set i}{B : A → Set j}
→ (f : (x : A)→ B x)(x : A)
→ f of x is f x
inspect f x = [ refl ]
| {
"alphanum_fraction": 0.4813829787,
"avg_line_length": 25.0666666667,
"ext": "agda",
"hexsha": "14517928f33c3d436b351866e494723d2a77165f",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "equality/inspect.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "equality/inspect.agda",
"max_line_length": 67,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "equality/inspect.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 143,
"size": 376
} |
------------------------------------------------------------------------
-- Equivalence relations
------------------------------------------------------------------------
module Eq where
infix 4 _≡_
------------------------------------------------------------------------
-- Definition
record Equiv {a : Set} (_≈_ : a -> a -> Set) : Set where
field
refl : forall x -> x ≈ x
sym : forall {x y} -> x ≈ y -> y ≈ x
_`trans`_ : forall {x y z} -> x ≈ y -> y ≈ z -> x ≈ z
------------------------------------------------------------------------
-- Propositional equality
data _≡_ {a : Set} (x : a) : a -> Set where
refl : x ≡ x
subst : forall {a x y} ->
(P : a -> Set) -> x ≡ y -> P x -> P y
subst _ refl p = p
cong : forall {a b x y} ->
(f : a -> b) -> x ≡ y -> f x ≡ f y
cong _ refl = refl
Equiv-≡ : forall {a} -> Equiv {a} _≡_
Equiv-≡ {a} =
record { refl = \_ -> refl
; sym = sym
; _`trans`_ = _`trans`_
}
where
sym : {x y : a} -> x ≡ y -> y ≡ x
sym refl = refl
_`trans`_ : {x y z : a} -> x ≡ y -> y ≡ z -> x ≡ z
refl `trans` refl = refl
| {
"alphanum_fraction": 0.3336275375,
"avg_line_length": 25.75,
"ext": "agda",
"hexsha": "a4783ca3829bc756767ffacc0c256562a56d3671",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/Eq.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/Eq.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/Eq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 356,
"size": 1133
} |
{-# OPTIONS --without-K #-}
module Explore.Examples where
open import Type
open import Level.NP
open import Data.Maybe.NP
open import Data.List
open import Data.Zero
open import Data.One
open import Data.Two
open import Data.Product
open import Data.Sum.NP
open import HoTT using (UA)
open import Function.NP
open import Function.Extensionality using (FunExt)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Explore.Core
open import Explore.Explorable
open import Explore.Universe.Type {𝟘}
open import Explore.Universe.Base
open import Explore.Monad {₀} ₀ public renaming (map to map-explore)
open import Explore.Two
open import Explore.Product
open Explore.Product.Operators
module E where
open FromExplore public
module M {Msg Digest : ★}
(_==_ : Digest → Digest → 𝟚)
(H : Msg → Digest)
(exploreMsg : ∀ {ℓ} → Explore ℓ Msg)
(d : Digest) where
module V1 where
list-H⁻¹ : List Msg
list-H⁻¹ = exploreMsg [] _++_ (λ m → [0: [] 1: [ m ] ] (H m == d))
module ExploreMsg = FromExplore {A = Msg} exploreMsg
module V2 where
first-H⁻¹ : Maybe Msg
first-H⁻¹ = ExploreMsg.findKey (λ m → H m == d)
module V3 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ ε _⊕_ f = exploreMsg ε _⊕_ (λ m → [0: ε 1: f m ] (H m == d))
module V4 where
explore-H⁻¹ : Explore ₀ Msg
explore-H⁻¹ = exploreMsg >>= λ m → [0: empty-explore 1: point-explore m ] (H m == d)
module V5 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = filter-explore (λ m → H m == d) exploreMsg
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
module V6 where
explore-H⁻¹ : ∀ {ℓ} → Explore ℓ Msg
explore-H⁻¹ = explore-endo (filter-explore (λ m → H m == d) exploreMsg)
list-H⁻¹ : List Msg
list-H⁻¹ = E.list explore-H⁻¹
first-H⁻¹ : Maybe Msg
first-H⁻¹ = E.first explore-H⁻¹
last-H⁻¹ : Maybe Msg
last-H⁻¹ = E.last explore-H⁻¹
Msg = 𝟚 × 𝟚
Digest = 𝟚
-- _==_ : Digest → Digest → 𝟚
H : Msg → Digest
H (x , y) = x xor y
Msgᵉ : ∀ {ℓ} → Explore ℓ Msg
Msgᵉ = 𝟚ᵉ ×ᵉ 𝟚ᵉ
module N5 = M.V5 _==_ H Msgᵉ
module N6 = M.V6 _==_ H Msgᵉ
test5 = N5.list-H⁻¹
test6-list : N6.list-H⁻¹ 0₂ ≡ (0₂ , 0₂) ∷ (1₂ , 1₂) ∷ []
test6-list = refl
test6-rev-list : E.list (E.backward (N6.explore-H⁻¹ 0₂)) ≡ (1₂ , 1₂) ∷ (0₂ , 0₂) ∷ []
test6-rev-list = refl
test6-first : N6.first-H⁻¹ 0₂ ≡ just (0₂ , 0₂)
test6-first = refl
test6-last : N6.last-H⁻¹ 0₂ ≡ just (1₂ , 1₂)
test6-last = refl
-- -}
𝟛ᵁ : U
𝟛ᵁ = 𝟙ᵁ ⊎ᵁ 𝟚ᵁ
prop-∧-comm : 𝟚 × 𝟚 → 𝟚
prop-∧-comm (x , y) = x ∧ y == y ∧ x
module _ {{_ : UA}}{{_ : FunExt}} where
check-∧-comm : ∀ x y → ✓ (x ∧ y == y ∧ x)
check-∧-comm x y = check! (𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-comm (x , y)
prop-∧-∨-distr : 𝟚 × 𝟚 × 𝟚 → 𝟚
prop-∧-∨-distr (x , y , z) = x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z
module _ {{_ : UA}}{{_ : FunExt}} where
check-∧-∨-distr : ∀ x y z → ✓ (x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z)
check-∧-∨-distr x y z =
check! (𝟚ᵁ ×ᵁ 𝟚ᵁ ×ᵁ 𝟚ᵁ) prop-∧-∨-distr (x , y , z)
list22 = list (𝟚ᵁ →ᵁ 𝟚ᵁ)
list33 = list (𝟛ᵁ →ᵁ 𝟛ᵁ)
{-
module _ {{_ : UA}}{{_ : FunExt}} where
module _ (fᵁ : El (𝟚ᵁ →ᵁ 𝟚ᵁ)) x where
f = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ fᵁ
check22 : ✓ (f x == f (f (f x)))
check22 = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x)
{-
check22 : ∀ (f : 𝟚 → 𝟚) x → ✓ (f x == f (f (f x)))
check22 f x = let k = check! ((𝟚ᵁ →ᵁ 𝟚ᵁ) ×ᵁ 𝟚ᵁ) (λ { (f , x) → let f' = →ᵁ→→ 𝟚ᵁ 𝟚ᵁ f in f' x == f' (f' (f' x)) }) {{!!}} ((f 0₂ , f 1₂) , x) in {!k!}
-- -}
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.5672676838,
"avg_line_length": 27.3106060606,
"ext": "agda",
"hexsha": "5a7ea1b35c03dac349d4f041f492ab22484a1155",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Examples.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Examples.agda",
"max_line_length": 151,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 1699,
"size": 3605
} |
module Esterel.Context.Properties where
open import Esterel.Lang
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.Variable.Signal as Signal
using (Signal)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Data.List
using (List ; _∷_ ; [] ; map ; _++_)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; cong ; subst ; trans)
open _≐_⟦_⟧e
open _≐_⟦_⟧c
open EvaluationContext1
open Context1
plug : ∀{p E q} → E ⟦ q ⟧e ≡ p → p ≐ E ⟦ q ⟧e
plug {E = []} refl = dehole
plug {E = epar₁ q ∷ E} refl = depar₁ (plug {E = E} refl)
plug {E = epar₂ p₁ ∷ E} refl = depar₂ (plug {E = E} refl)
plug {E = eseq q ∷ E} refl = deseq (plug {E = E} refl)
plug {E = eloopˢ q ∷ E} refl = deloopˢ (plug {E = E} refl)
plug {E = esuspend S ∷ E} refl = desuspend (plug {E = E} refl)
plug {E = etrap ∷ E} refl = detrap (plug {E = E} refl)
unplug : ∀{p E q} → p ≐ E ⟦ q ⟧e → E ⟦ q ⟧e ≡ p
unplug dehole = refl
unplug (depar₁ eq) rewrite unplug eq = refl
unplug (depar₂ eq) rewrite unplug eq = refl
unplug (deseq eq) rewrite unplug eq = refl
unplug (deloopˢ eq) rewrite unplug eq = refl
unplug (desuspend eq) rewrite unplug eq = refl
unplug (detrap eq) rewrite unplug eq = refl
plugc : ∀ {C q p} → C ⟦ q ⟧c ≡ p → p ≐ C ⟦ q ⟧c
plugc {[]} refl = dchole
plugc {ceval (epar₁ q) ∷ C} refl = dcpar₁ (plugc {C} refl)
plugc {ceval (epar₂ p) ∷ C} refl = dcpar₂ (plugc {C} refl)
plugc {ceval (eseq q) ∷ C} refl = dcseq₁ (plugc {C} refl)
plugc {ceval (eloopˢ q) ∷ C} refl = dcloopˢ₁ (plugc {C} refl)
plugc {ceval (esuspend S) ∷ C} refl = dcsuspend (plugc {C} refl)
plugc {ceval etrap ∷ C} refl = dctrap (plugc {C} refl)
plugc {csignl S ∷ C} refl = dcsignl (plugc {C} refl)
plugc {cpresent₁ S q ∷ C} refl = dcpresent₁ (plugc {C} refl)
plugc {cpresent₂ S p ∷ C} refl = dcpresent₂ (plugc {C} refl)
plugc {cloop ∷ C} refl = dcloop (plugc {C} refl)
plugc {cloopˢ₂ p ∷ C} refl = dcloopˢ₂ (plugc {C} refl)
plugc {cseq₂ p ∷ C} refl = dcseq₂ (plugc {C} refl)
plugc {cshared s e ∷ C} refl = dcshared (plugc {C} refl)
plugc {cvar x e ∷ C} refl = dcvar (plugc {C} refl)
plugc {cif₁ x q ∷ C} refl = dcif₁ (plugc {C} refl)
plugc {cif₂ x p ∷ C} refl = dcif₂ (plugc {C} refl)
plugc {cenv θ A ∷ C} refl = dcenv (plugc {C} refl)
unplugc : ∀{p C q} → p ≐ C ⟦ q ⟧c → C ⟦ q ⟧c ≡ p
unplugc dchole = refl
unplugc (dcpar₁ eq) rewrite unplugc eq = refl
unplugc (dcpar₂ eq) rewrite unplugc eq = refl
unplugc (dcseq₁ eq) rewrite unplugc eq = refl
unplugc (dcseq₂ eq) rewrite unplugc eq = refl
unplugc (dcsuspend eq) rewrite unplugc eq = refl
unplugc (dctrap eq) rewrite unplugc eq = refl
unplugc (dcsignl eq) rewrite unplugc eq = refl
unplugc (dcpresent₁ eq) rewrite unplugc eq = refl
unplugc (dcpresent₂ eq) rewrite unplugc eq = refl
unplugc (dcloop eq) rewrite unplugc eq = refl
unplugc (dcloopˢ₁ eq) rewrite unplugc eq = refl
unplugc (dcloopˢ₂ eq) rewrite unplugc eq = refl
unplugc (dcshared eq) rewrite unplugc eq = refl
unplugc (dcvar eq) rewrite unplugc eq = refl
unplugc (dcif₁ eq) rewrite unplugc eq = refl
unplugc (dcif₂ eq) rewrite unplugc eq = refl
unplugc (dcenv eq) rewrite unplugc eq = refl
plug-sym : ∀{E E' p q} → E ⟦ p ⟧e ≐ E' ⟦ q ⟧e → E' ⟦ q ⟧e ≐ E ⟦ p ⟧e
plug-sym eq = plug (sym (unplug eq))
unplug-eq : ∀{p q r E} → p ≐ E ⟦ q ⟧e → p ≐ E ⟦ r ⟧e → q ≡ r
unplug-eq dehole dehole = refl
unplug-eq (depar₁ qeq) (depar₁ req) = unplug-eq qeq req
unplug-eq (depar₂ qeq) (depar₂ req) = unplug-eq qeq req
unplug-eq (deseq qeq) (deseq req) = unplug-eq qeq req
unplug-eq (deloopˢ qeq) (deloopˢ req) = unplug-eq qeq req
unplug-eq (desuspend qeq) (desuspend req) = unplug-eq qeq req
unplug-eq (detrap qeq) (detrap req) = unplug-eq qeq req
plug-eq : ∀{p q r E} → p ≐ E ⟦ r ⟧e → q ≐ E ⟦ r ⟧e → p ≡ q
plug-eq peq qeq = trans (sym (unplug peq)) (unplug qeq)
Erefl : ∀{E p} → E ⟦ p ⟧e ≐ E ⟦ p ⟧e
Erefl = plug refl
Crefl : ∀{C p} → C ⟦ p ⟧c ≐ C ⟦ p ⟧c
Crefl = plugc refl
⟦⟧e-to-⟦⟧c : ∀ {E p q} -> p ≐ E ⟦ q ⟧e -> p ≐ (map ceval E) ⟦ q ⟧c
⟦⟧e-to-⟦⟧c dehole = dchole
⟦⟧e-to-⟦⟧c (depar₁ decomp) = dcpar₁ (⟦⟧e-to-⟦⟧c decomp)
⟦⟧e-to-⟦⟧c (depar₂ decomp) = dcpar₂ (⟦⟧e-to-⟦⟧c decomp)
⟦⟧e-to-⟦⟧c (deseq decomp) = dcseq₁ (⟦⟧e-to-⟦⟧c decomp)
⟦⟧e-to-⟦⟧c (deloopˢ decomp) = dcloopˢ₁ (⟦⟧e-to-⟦⟧c decomp)
⟦⟧e-to-⟦⟧c (desuspend decomp) = dcsuspend (⟦⟧e-to-⟦⟧c decomp)
⟦⟧e-to-⟦⟧c (detrap decomp) = dctrap (⟦⟧e-to-⟦⟧c decomp)
⟦⟧c-to-⟦⟧e : ∀ {E p q} → p ≐ (map ceval E) ⟦ q ⟧c → p ≐ E ⟦ q ⟧e
⟦⟧c-to-⟦⟧e {[]} dchole = dehole
⟦⟧c-to-⟦⟧e {_ ∷ _} (dcpar₁ p≐E⟦q⟧) = depar₁ (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
⟦⟧c-to-⟦⟧e {_ ∷ _} (dcpar₂ p≐E⟦q⟧) = depar₂ (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
⟦⟧c-to-⟦⟧e {_ ∷ _} (dcseq₁ p≐E⟦q⟧) = deseq (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
⟦⟧c-to-⟦⟧e {_ ∷ _} (dcloopˢ₁ p≐E⟦q⟧) = deloopˢ (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
⟦⟧c-to-⟦⟧e {_ ∷ _} (dcsuspend p≐E⟦q⟧) = desuspend (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
⟦⟧c-to-⟦⟧e {_ ∷ _} (dctrap p≐E⟦q⟧) = detrap (⟦⟧c-to-⟦⟧e p≐E⟦q⟧)
C++ : ∀ {C1 C2 p1 p2 p3} ->
p1 ≐ C1 ⟦ p2 ⟧c ->
p2 ≐ C2 ⟦ p3 ⟧c ->
p1 ≐ C1 ++ C2 ⟦ p3 ⟧c
C++ dchole p2C = p2C
C++ (dcpar₁ p1C) p2C = dcpar₁ (C++ p1C p2C)
C++ (dcpar₂ p1C) p2C = dcpar₂ (C++ p1C p2C)
C++ (dcseq₁ p1C) p2C = dcseq₁ (C++ p1C p2C)
C++ (dcseq₂ p1C) p2C = dcseq₂ (C++ p1C p2C)
C++ (dcsuspend p1C) p2C = dcsuspend (C++ p1C p2C)
C++ (dctrap p1C) p2C = dctrap (C++ p1C p2C)
C++ (dcsignl p1C) p2C = dcsignl (C++ p1C p2C)
C++ (dcpresent₁ p1C) p2C = dcpresent₁ (C++ p1C p2C)
C++ (dcpresent₂ p1C) p2C = dcpresent₂ (C++ p1C p2C)
C++ (dcloop p1C) p2C = dcloop (C++ p1C p2C)
C++ (dcloopˢ₁ p1C) p2C = dcloopˢ₁ (C++ p1C p2C)
C++ (dcloopˢ₂ p1C) p2C = dcloopˢ₂ (C++ p1C p2C)
C++ (dcshared p1C) p2C = dcshared (C++ p1C p2C)
C++ (dcvar p1C) p2C = dcvar (C++ p1C p2C)
C++ (dcif₁ p1C) p2C = dcif₁ (C++ p1C p2C)
C++ (dcif₂ p1C) p2C = dcif₂ (C++ p1C p2C)
C++ (dcenv p1C) p2C = dcenv (C++ p1C p2C)
++-is-nesting : ∀ C′ C q ->
(C′ ++ C) ⟦ q ⟧c ≐ C′ ⟦ C ⟦ q ⟧c ⟧c
++-is-nesting [] C q = dchole
++-is-nesting (ceval (epar₁ q) ∷ C′) C q₁ = dcpar₁ (++-is-nesting C′ C q₁)
++-is-nesting (ceval (epar₂ p) ∷ C′) C q = dcpar₂ (++-is-nesting C′ C q)
++-is-nesting (ceval (eseq q) ∷ C′) C q₁ = dcseq₁ (++-is-nesting C′ C q₁)
++-is-nesting (ceval (eloopˢ q) ∷ C′) C q₁ = dcloopˢ₁ (++-is-nesting C′ C q₁)
++-is-nesting (ceval (esuspend S) ∷ C′) C q = dcsuspend (++-is-nesting C′ C q)
++-is-nesting (ceval etrap ∷ C′) C q = dctrap (++-is-nesting C′ C q)
++-is-nesting (csignl S ∷ C′) C q = dcsignl (++-is-nesting C′ C q)
++-is-nesting (cpresent₁ S q ∷ C′) C q₁ = dcpresent₁ (++-is-nesting C′ C q₁)
++-is-nesting (cpresent₂ S p ∷ C′) C q = dcpresent₂ (++-is-nesting C′ C q)
++-is-nesting (cloop ∷ C′) C q = dcloop (++-is-nesting C′ C q)
++-is-nesting (cloopˢ₂ p ∷ C′) C q = dcloopˢ₂ (++-is-nesting C′ C q)
++-is-nesting (cseq₂ p ∷ C′) C q = dcseq₂ (++-is-nesting C′ C q)
++-is-nesting (cshared s e ∷ C′) C q = dcshared (++-is-nesting C′ C q)
++-is-nesting (cvar x e ∷ C′) C q = dcvar (++-is-nesting C′ C q)
++-is-nesting (cif₁ x q ∷ C′) C q₁ = dcif₁ (++-is-nesting C′ C q₁)
++-is-nesting (cif₂ x p ∷ C′) C q = dcif₂ (++-is-nesting C′ C q)
++-is-nesting (cenv θ A ∷ C′) C q = dcenv (++-is-nesting C′ C q)
| {
"alphanum_fraction": 0.5704171934,
"avg_line_length": 46.2573099415,
"ext": "agda",
"hexsha": "9700a25c1ca4891be7dd93545b3bcb71344dc6c2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Context/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Context/Properties.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Context/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 3794,
"size": 7910
} |
module RMonads.Modules where
open import Library
open import Categories
open import Functors
open import RMonads
record Mod {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D}
(RM : RMonad J) : Set (a ⊔ c ⊔ d) where
constructor mod
open Cat
open Fun
open RMonad RM
field M : Obj C → Obj D
mbind : ∀ {X Y} → Hom D (OMap J X) (T Y) → Hom D (M X) (M Y)
laweta : ∀{X} → mbind (η {X}) ≅ iden D {M X}
lawbind : ∀{X Y Z}
{f : Hom D (OMap J X) (T Y)}{g : Hom D (OMap J Y) (T Z)} →
mbind (comp D (bind g) f) ≅ comp D (mbind g) (mbind f)
-- any rel. monad is trivially a module over its J.
ModJ : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}}
{J : Fun C D} (RM : RMonad J) -> Mod (trivRM J)
ModJ {D = D}{J = J} RM =
mod T
(\ f -> bind (comp η f))
(trans (cong bind idr) law1)
(trans (cong bind (trans (trans (sym ass)
(cong (\ g -> comp g _) (sym law2)))
ass))
law3)
where open Fun J; open RMonad RM; open Cat D
open import Functors.FullyFaithful
open import Isomorphism
-- if J is fully faithful then any suitably typed functor is a module for trivial rel monad given by J
ModF : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}}
{J : Fun C D} → Full J → Faithful J → (F : Fun C D) -> Mod (trivRM J)
ModF {C = C}{D = D}{J = J} P Q F = mod
(OMap F)
(λ f → HMap F (fst (P f)))
(trans (cong (HMap F) (Q (trans (snd (P (Cat.iden D))) (sym $ fid J)))) (fid F))
(trans (cong (HMap F)
(Q (trans (snd (P _))
(trans (cong₂ (Cat.comp D)
(sym $ snd (P _))
(sym $ snd (P _)))
(sym $ fcomp J)))))
(fcomp F)) where open Fun
-- any rel. monad is trivially a module over itself, 'tautalogical module'
ModRM : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}}
{J : Fun C D} (RM : RMonad J) -> Mod RM
ModRM RM = mod T bind law1 law3 where open RMonad RM
| {
"alphanum_fraction": 0.4830311483,
"avg_line_length": 36.4576271186,
"ext": "agda",
"hexsha": "4b7dc773e29b02dcc1d1738a7d123474c51097e7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "RMonads/Modules.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "RMonads/Modules.agda",
"max_line_length": 102,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "RMonads/Modules.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 749,
"size": 2151
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
open import results-checks
open import preservation
module finality where
finality : ∀{Δ Σ' Γ E e r k τ} →
E env-final →
Δ , Σ' , Γ ⊢ E →
Δ , Σ' , Γ ⊢ e :: τ →
E ⊢ e ⇒ r ⊣ k →
r final
finality E-final ctxcons (TAFix _) EFix = FFix E-final
finality (EF E-fin) ctxcons (TAVar _) (EVar h) = E-fin h
finality E-final ctxcons (TAApp _ ta-f ta-arg) (EAppFix {Ef = Ef} {f} {x} {ef} {r2 = r2} CF∞ h2 eval-f eval-arg eval-ef)
rewrite h2 with preservation ctxcons ta-f eval-f
... | TAFix ctxcons-Ef (TAFix ta-ef) =
finality (EF new-Ef+-final) new-ctxcons ta-ef eval-ef
where
new-ctxcons =
EnvInd (EnvInd ctxcons-Ef (preservation ctxcons ta-f eval-f)) (preservation ctxcons ta-arg eval-arg)
new-Ef-final : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)) → rx' final
new-Ef-final {x'} {rx'} h with ctx-split {Γ = Ef} h
new-Ef-final {x'} {rx'} h | Inl (_ , x'∈Ef) with finality E-final ctxcons ta-f eval-f
... | FFix (EF Ef-fin) = Ef-fin x'∈Ef
new-Ef-final {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = finality E-final ctxcons ta-f eval-f
new-Ef+-final : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈) ,, (x , r2)) → rx' final
new-Ef+-final {x'} {rx'} h with ctx-split {Γ = Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)} h
new-Ef+-final {x'} {rx'} h | Inl (_ , x'∈Ef+) = new-Ef-final x'∈Ef+
new-Ef+-final {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = finality E-final ctxcons ta-arg eval-arg
finality E-final ctxcons (TAApp h ta-f ta-arg) (EAppUnfinished eval-f h2 eval-arg) =
FAp (finality E-final ctxcons ta-f eval-f) (finality E-final ctxcons ta-arg eval-arg) h2
finality E-final ctxcons TAUnit EUnit = FUnit
finality E-final ctxcons (TAPair _ ta1 ta2) (EPair eval1 eval2)
= FPair (finality E-final ctxcons ta1 eval1) (finality E-final ctxcons ta2 eval2)
finality E-final ctxcons (TAFst ta) (EFst eval)
with finality E-final ctxcons ta eval
... | FPair fin _ = fin
finality E-final ctxcons (TAFst ta) (EFstUnfinished eval ne)
= FFst (finality E-final ctxcons ta eval) ne
finality E-final ctxcons (TASnd ta) (ESnd eval)
with finality E-final ctxcons ta eval
... | FPair _ fin = fin
finality E-final ctxcons (TASnd ta) (ESndUnfinished eval ne)
= FSnd (finality E-final ctxcons ta eval) ne
finality E-final ctxcons (TACtor h h2 ta) (ECtor eval) = FCon (finality E-final ctxcons ta eval)
finality {Σ' = Σ'} (EF E-fin) ctxcons (TACase d∈Σ'1 ta h1 h2) (EMatch {E = E} {xc = xc} {r' = r'} CF∞ form eval eval-ec)
with h2 form
... | _ , _ , _ , c∈cctx1 , ta-ec
with preservation ctxcons ta eval
... | TACtor {cctx = cctx} d∈Σ' c∈cctx ta-r'
rewrite ctxunicity {Γ = π1 Σ'} d∈Σ'1 d∈Σ' | ctxunicity {Γ = cctx} c∈cctx1 c∈cctx =
finality (EF new-E-final) (EnvInd ctxcons ta-r') ta-ec eval-ec
where
new-E-final : ∀{x' rx'} → (x' , rx') ∈ (E ,, (xc , r')) → rx' final
new-E-final {x'} {rx'} x'∈E+ with ctx-split {Γ = E} x'∈E+
... | Inl (_ , x'∈E) = E-fin x'∈E
... | Inr (_ , rx'==r') rewrite rx'==r' with finality (EF E-fin) ctxcons ta eval
... | FCon r'-fin = r'-fin
finality E-final ctxcons (TACase h ta h2 h3) (EMatchUnfinished eval h4) = FCase (finality E-final ctxcons ta eval) h4 E-final
finality E-final ctxcons (TAHole _) EHole = FHole E-final
finality E-final ctxcons (TAAsrt _ _ _) (EAsrt _ _ _) = FUnit
| {
"alphanum_fraction": 0.5935769657,
"avg_line_length": 53.1176470588,
"ext": "agda",
"hexsha": "9e5b6d4e5b2ccbbdfc3a4f0a899c6c4acf2e0b21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "finality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "finality.agda",
"max_line_length": 127,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "finality.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 1391,
"size": 3612
} |
{-# OPTIONS --no-positivity-check #-}
-- Formalization of OPLSS: Computational Type Theory (Robert Harper), 2018.
module CTT where
open import Function using (_$_)
open import Level using (Level)
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Product renaming (_×_ to _∧_)
private
variable
ℓ : Level
Deterministic : {A B : Set} (_⇒_ : REL A B ℓ) → Set ℓ
Deterministic {A = A} {B = B} _⇒_ = {M : A} {M'₁ M'₂ : B} → M ⇒ M'₁ → M ⇒ M'₂ → M'₁ ≡ M'₂
record Language : Set₁ where
field
exp : Set
_val : exp → Set
_↦_ : exp → exp → Set
val-↦-exclusive : {M : exp} → ¬ (M val ∧ ∃ λ M' → M ↦ M')
↦-deterministic : Deterministic _↦_
per-refl : {A : Set} {_≈_ : Rel A ℓ} {M M' : A} → IsPartialEquivalence _≈_ → M ≈ M' → M ≈ M
per-refl record { sym = sym ; trans = trans } h = trans h (sym h)
module MultiStep (L : Language) where
open Language L
data _↦*_ : exp → exp → Set where
here : {M : exp} → M ↦* M
step : {M M' M'' : exp} → M ↦ M' → M' ↦* M'' → M ↦* M''
↦*-append : {M M' M'' : exp} → M ↦* M' → M' ↦* M'' → M ↦* M''
↦*-append here M↦*M'' = M↦*M''
↦*-append (step M↦M''' M'''↦*M') M'↦*M'' = step M↦M''' (↦*-append M'''↦*M' M'↦*M'')
stepʳ : {M M' M'' : exp} → M ↦* M' → M' ↦ M'' → M ↦* M''
stepʳ M↦*M' M'↦M'' = ↦*-append M↦*M' (step M'↦M'' here)
lift-principal : (f : exp → exp) → ({M M' : exp} → M ↦ M' → f M ↦ f M') → {M M' : exp} → M ↦* M' → f M ↦* f M'
lift-principal f h here = here
lift-principal f h (step M↦M'' M''↦*M') = step (h M↦M'') (lift-principal f h M''↦*M')
record _⇓_ (M M' : exp) : Set where
constructor _and_
field
M↦*M' : M ↦* M'
M'val : M' val
step⇓ : {M M' M'' : exp} → M ↦ M' → M' ⇓ M'' → M ⇓ M''
step⇓ M↦*M' (M'↦*M'' and M''val) = step M↦*M' M'↦*M'' and M''val
step*⇓ : {M M' M'' : exp} → M ↦* M' → M' ⇓ M'' → M ⇓ M''
step*⇓ M↦*M' (M'↦*M'' and M''val) = ↦*-append M↦*M' M'↦*M'' and M''val
val⇓ : {M : exp} → M val → M ⇓ M
val⇓ Mval = here and Mval
⇓-deterministic : Deterministic _⇓_
⇓-deterministic (M↦*M'₁ and M'₁val) (M↦*M'₂ and M'val₂) = aux M↦*M'₁ M↦*M'₂ M'₁val M'val₂
where
aux : {M : exp} {M'₁ M'₂ : exp} → M ↦* M'₁ → M ↦* M'₂ → M'₁ val → M'₂ val → M'₁ ≡ M'₂
aux here here _ _ = refl
aux here (step M↦M' _) Mval _ = contradiction (Mval , -, M↦M') val-↦-exclusive
aux (step M↦M' _) here _ Mval = contradiction (Mval , -, M↦M') val-↦-exclusive
aux (step M↦M'₁ M'₁↦*M''₁) (step M↦M'₂ M'₂↦*M'') M''₁val M''₂val with ↦-deterministic M↦M'₁ M↦M'₂
... | refl = aux M'₁↦*M''₁ M'₂↦*M'' M''₁val M''₂val
val⇓val : {M M' : exp} → M val → M ⇓ M' → M' ≡ M
val⇓val Mval M⇓M' with ⇓-deterministic (val⇓ Mval) M⇓M'
... | refl = refl
module Example1 where
-- Language
data exp : Set where
Bool : exp
tt ff : exp
if : exp → exp → exp → exp
Nat : exp
zero : exp
succ : exp → exp
rec : exp → (exp → exp → exp) → exp → exp
_×_ : exp → exp → exp
⟨_,_⟩ : exp → exp → exp
_·1 : exp → exp
_·2 : exp → exp
Eq : exp → exp → exp → exp
refl : exp
data _val : exp → Set where
Bool : Bool val
tt : tt val
ff : ff val
Nat : Nat val
zero : zero val
succ : {M : exp} → succ M val
_×_ : {A₁ A₂ : exp} → A₁ val → A₂ val → (A₁ × A₂) val
⟨_,_⟩ : {M₁ M₂ : exp} → ⟨ M₁ , M₂ ⟩ val
Eq : {A M₁ M₂ : exp} → Eq A M₁ M₂ val
refl : refl val
infix 3 _↦_
data _↦_ : exp → exp → Set where
if/principal : {M M' M₁ M₀ : exp} → M ↦ M' → if M M₁ M₀ ↦ if M' M₁ M₀
if/tt : {M₁ M₀ : exp} → if tt M₁ M₀ ↦ M₁
if/ff : {M₁ M₀ : exp} → if ff M₁ M₀ ↦ M₀
rec/principal : ∀ {M M' M₀ M₁} → M ↦ M' → rec M₀ M₁ M ↦ rec M₀ M₁ M'
rec/zero : ∀ {M₀ M₁} → rec M₀ M₁ zero ↦ M₀
rec/succ : ∀ {M M₀ M₁} → rec M₀ M₁ (succ M) ↦ M₁ M (rec M₀ M₁ M)
_·1/principal : {M M' : exp} → M ↦ M' → M ·1 ↦ M' ·1
_·1 : {M₁ M₂ : exp} → ⟨ M₁ , M₂ ⟩ ·1 ↦ M₁
_·2/principal : {M M' : exp} → M ↦ M' → M ·2 ↦ M' ·2
_·2 : {M₁ M₂ : exp} → ⟨ M₁ , M₂ ⟩ ·2 ↦ M₂
↦-deterministic : Deterministic _↦_
↦-deterministic (if/principal h) (if/principal h') with ↦-deterministic h h'
... | refl = refl
↦-deterministic if/tt if/tt = refl
↦-deterministic if/ff if/ff = refl
↦-deterministic (rec/principal h) (rec/principal h') with ↦-deterministic h h'
... | refl = refl
↦-deterministic rec/zero rec/zero = refl
↦-deterministic rec/succ rec/succ = refl
↦-deterministic (h ·1/principal) (h' ·1/principal) with ↦-deterministic h h'
... | refl = refl
↦-deterministic _·1 _·1 = refl
↦-deterministic (h ·2/principal) (h' ·2/principal) with ↦-deterministic h h'
... | refl = refl
↦-deterministic _·2 _·2 = refl
val-↦-exclusive : {M : exp} → ¬ ((M val) ∧ ∃ (_↦_ M))
val-↦-exclusive (Bool , _ , ())
val-↦-exclusive (tt , _ , ())
val-↦-exclusive (ff , _ , ())
val-↦-exclusive (_ × _ , _ , ())
val-↦-exclusive (⟨_,_⟩ , _ , ())
open MultiStep
record
{ exp = exp
; _val = _val
; _↦_ = _↦_
; val-↦-exclusive = val-↦-exclusive
; ↦-deterministic = ↦-deterministic
}
-- Type Signatures
data _≐_typeᵒ : exp → exp → Set
record _≐_type (A A' : exp) : Set
≐typeᵒ-sym : Symmetric _≐_typeᵒ
≐typeᵒ-trans : Transitive _≐_typeᵒ
≐typeᵒ-isPartialEquivalence : IsPartialEquivalence (_≐_typeᵒ)
≐type-sym : Symmetric _≐_type
≐type-trans : Transitive _≐_type
≐type-isPartialEquivalence : IsPartialEquivalence (_≐_type)
data _∋ᵒ_≐_ : (A : exp) → exp → exp → Set
record _∋_≐_ (A : exp) (M M' : exp) : Set
A∋ᵒ≐-sym : {A : exp} → Symmetric (A ∋ᵒ_≐_)
A∋ᵒ≐-trans : {A : exp} → Transitive (A ∋ᵒ_≐_)
A∋ᵒ≐-isPartialEquivalence : (A : exp) → IsPartialEquivalence (A ∋ᵒ_≐_)
A∋≐-sym : {A : exp} → Symmetric (A ∋_≐_)
A∋≐-trans : {A : exp} → Transitive (A ∋_≐_)
A∋≐-isPartialEquivalence : (A : exp) → IsPartialEquivalence (A ∋_≐_)
lemma/moveᵒ : {A A' M₁ M₂ : exp} → A ≐ A' typeᵒ → A' ∋ᵒ M₁ ≐ M₂ → A ∋ᵒ M₁ ≐ M₂
lemma/move : {A A' M₁ M₂ : exp} → A ≐ A' type → A' ∋ M₁ ≐ M₂ → A ∋ M₁ ≐ M₂
-- Implementations
data _≐_typeᵒ where
Bool : Bool ≐ Bool typeᵒ
Nat : Nat ≐ Nat typeᵒ
_×_ : {A₁ A₁' A₂ A₂' : exp} →
A₁ ≐ A₁' typeᵒ →
A₂ ≐ A₂' typeᵒ →
(A₁ × A₂) ≐ (A₁' × A₂') typeᵒ
Eq : {A A' M₁ M₁' M₂ M₂' : exp} →
A ≐ A' type →
A ∋ M₁ ≐ M₁' →
A ∋ M₂ ≐ M₂' →
Eq A M₁ M₂ ≐ Eq A' M₁' M₂' typeᵒ
_typeᵒ : exp → Set
A typeᵒ = A ≐ A typeᵒ
record _≐_type A A' where
constructor ⇓_,⇓_,_
pattern
inductive
field
{Aᵒ} : exp
A⇓Aᵒ : A ⇓ Aᵒ
{A'ᵒ} : exp
A'⇓A'ᵒ : A' ⇓ A'ᵒ
Aᵒ≐A'ᵒtypeᵒ : Aᵒ ≐ A'ᵒ typeᵒ
_type : exp → Set
A type = A ≐ A type
⇓_,⇓-,_ : {A Aᵒ : exp} (A⇓Aᵒ : A ⇓ Aᵒ) (Aᵒtypeᵒ : Aᵒ typeᵒ) → A type
⇓ A⇓Aᵒ ,⇓-, Aᵒtypeᵒ = ⇓ A⇓Aᵒ ,⇓ A⇓Aᵒ , Aᵒtypeᵒ
≐typeᵒ-sym Bool = Bool
≐typeᵒ-sym Nat = Nat
≐typeᵒ-sym (h₁ × h₂) = ≐typeᵒ-sym h₁ × ≐typeᵒ-sym h₂
≐typeᵒ-sym (Eq h h₁ h₂) = Eq (≐type-sym h) (A∋≐-sym (lemma/move (≐type-sym h) h₁)) (A∋≐-sym (lemma/move (≐type-sym h) h₂))
≐typeᵒ-trans Bool Bool = Bool
≐typeᵒ-trans Nat Nat = Nat
≐typeᵒ-trans (h₁ × h₂) (h₁' × h₂') = ≐typeᵒ-trans h₁ h₁' × ≐typeᵒ-trans h₂ h₂'
≐typeᵒ-trans (Eq h h₁ h₂) (Eq h' h₁' h₂') = Eq (≐type-trans h h') (A∋≐-trans h₁ (lemma/move h h₁')) (A∋≐-trans h₂ (lemma/move h h₂'))
≐typeᵒ-isPartialEquivalence = record { sym = ≐typeᵒ-sym ; trans = ≐typeᵒ-trans }
≐type-sym (⇓ A⇓Aᵒ ,⇓ A'⇓A'ᵒ , Aᵒ≐A'ᵒtypeᵒ) = ⇓ A'⇓A'ᵒ ,⇓ A⇓Aᵒ , (≐typeᵒ-sym Aᵒ≐A'ᵒtypeᵒ)
≐type-trans {A₀} {A₁} {A₂} (⇓ A₀⇓ ,⇓ A₁⇓ , Aᵒ≐A'ᵒtypeᵒ) (⇓ A₁⇓' ,⇓ A₂⇓ , Aᵒ₁≐A'ᵒ₁typeᵒ) with ⇓-deterministic A₁⇓ A₁⇓'
... | refl = ⇓ A₀⇓ ,⇓ A₂⇓ , ≐typeᵒ-trans Aᵒ≐A'ᵒtypeᵒ Aᵒ₁≐A'ᵒ₁typeᵒ
≐type-isPartialEquivalence = record { sym = ≐type-sym ; trans = ≐type-trans }
typeᵒ-val : {A A' : exp} → A ≐ A' typeᵒ → A val
typeᵒ-val Bool = Bool
typeᵒ-val Nat = Nat
typeᵒ-val (h₁ × h₂) = typeᵒ-val h₁ × typeᵒ-val h₂
typeᵒ-val (Eq h h₁ h₂) = Eq
typeᵒ-val' : {A A' : exp} → A ≐ A' typeᵒ → A' val
typeᵒ-val' Bool = Bool
typeᵒ-val' Nat = Nat
typeᵒ-val' (h₁ × h₂) = typeᵒ-val' h₁ × typeᵒ-val' h₂
typeᵒ-val' (Eq h h₁ h₂) = Eq
typeᵒ-type : {A A' : exp} → A ≐ A' typeᵒ → A ≐ A' type
typeᵒ-type A≐A'typeᵒ = ⇓ (val⇓ (typeᵒ-val A≐A'typeᵒ)) ,⇓ (val⇓ (typeᵒ-val' A≐A'typeᵒ)) , A≐A'typeᵒ
data R/Bool : exp → exp → Set where
tt : {M M' : exp} → M ⇓ tt → M' ⇓ tt → R/Bool M M'
ff : {M M' : exp} → M ⇓ ff → M' ⇓ ff → R/Bool M M'
R/Bool-sym : Symmetric R/Bool
R/Bool-sym (tt h h') = tt h' h
R/Bool-sym (ff h h') = ff h' h
R/Bool-trans : Transitive R/Bool
R/Bool-trans (tt h _) (tt _ h') = tt h h'
R/Bool-trans (tt _ h) (ff h' _) with ⇓-deterministic h h'
... | ()
R/Bool-trans (ff _ h) (tt h' _) with ⇓-deterministic h h'
... | ()
R/Bool-trans (ff h _) (ff _ h') = ff h h'
R/Bool-isPartialEquivalence : IsPartialEquivalence R/Bool
R/Bool-isPartialEquivalence = record { sym = R/Bool-sym ; trans = R/Bool-trans }
data R/Nat : exp → exp → Set where
zero : {M M' : exp} → M ⇓ zero → M' ⇓ zero → R/Nat M M'
succ : {M M' N N' : exp} → M ⇓ succ N → M' ⇓ succ N' → R/Nat N N' → R/Nat M M'
R/Nat-sym : Symmetric R/Nat
R/Nat-sym (zero h h') = zero h' h
R/Nat-sym (succ h h' r) = succ h' h (R/Nat-sym r)
R/Nat-trans : Transitive R/Nat
R/Nat-trans (zero h _) (zero _ h') = zero h h'
R/Nat-trans (zero _ h₁) (succ h₁' _ _) with ⇓-deterministic h₁ h₁'
... | ()
R/Nat-trans (succ _ h₁ _) (zero h₁' _) with ⇓-deterministic h₁ h₁'
... | ()
R/Nat-trans (succ h h₁ r) (succ h₁' h' r') with ⇓-deterministic h₁ h₁'
... | refl = succ h h' (R/Nat-trans r r')
R/Nat-isPartialEquivalence : IsPartialEquivalence R/Nat
R/Nat-isPartialEquivalence = record { sym = R/Nat-sym ; trans = R/Nat-trans }
data R/Eq : exp → exp → Set where
refl : {M M' : exp} → M ⇓ refl → M' ⇓ refl → R/Eq M M'
R/Eq-sym : Symmetric R/Eq
R/Eq-sym (refl h h') = refl h' h
R/Eq-trans : Transitive R/Eq
R/Eq-trans (refl h₁ h₁') (refl h₂ h₂') = refl h₁ h₂'
R/Eq-isPartialEquivalence : IsPartialEquivalence R/Eq
R/Eq-isPartialEquivalence = record { sym = R/Eq-sym ; trans = R/Eq-trans }
data _∋ᵒ_≐_ where
Bool : {M M' : exp} → R/Bool M M' → Bool ∋ᵒ M ≐ M'
Nat : {M M' : exp} → R/Nat M M' → Nat ∋ᵒ M ≐ M'
_×_ : {A₁ A₂ M₁ M₂ M₁' M₂' : exp} →
A₁ ∋ M₁ ≐ M₁' →
A₂ ∋ M₂ ≐ M₂' →
(A₁ × A₂) ∋ᵒ ⟨ M₁ , M₂ ⟩ ≐ ⟨ M₁' , M₂' ⟩
Eq : {A M₁ M₂ M M' : exp} →
R/Eq M M' →
A ∋ M₁ ≐ M₂ →
Eq A M₁ M₂ ∋ᵒ M ≐ M'
_∋ᵒ_ : (A : exp) → exp → Set
A ∋ᵒ M = A ∋ᵒ M ≐ M
A∋ᵒ≐-sym (Bool h) = Bool (R/Bool-sym h)
A∋ᵒ≐-sym (Nat h) = Nat (R/Nat-sym h)
A∋ᵒ≐-sym (h₁ × h₂) = A∋≐-sym h₁ × A∋≐-sym h₂
A∋ᵒ≐-sym (Eq h h≐) = Eq (R/Eq-sym h) h≐
A∋ᵒ≐-trans (Bool h) (Bool h') = Bool (R/Bool-trans h h')
A∋ᵒ≐-trans (Nat h) (Nat h') = Nat (R/Nat-trans h h')
A∋ᵒ≐-trans (h₁ × h₂) (h₁' × h₂') = A∋≐-trans h₁ h₁' × A∋≐-trans h₂ h₂'
A∋ᵒ≐-trans (Eq h h≐) (Eq h' h≐') = Eq (R/Eq-trans h h') h≐
A∋ᵒ≐-isPartialEquivalence A = record { sym = A∋ᵒ≐-sym ; trans = A∋ᵒ≐-trans }
record _∋_≐_ A M M' where
constructor ⇓_,⇓_,⇓_,_
pattern
inductive
field
{Aᵒ} : exp
A⇓Aᵒ : A ⇓ Aᵒ
{Mᵒ} : exp
M⇓Mᵒ : M ⇓ Mᵒ
{M'ᵒ} : exp
M'⇓M'ᵒ : M' ⇓ M'ᵒ
Aᵒ∋ᵒMᵒ≐M'ᵒ : Aᵒ ∋ᵒ Mᵒ ≐ M'ᵒ
_∋_ : (A : exp) → exp → Set
A ∋ M = A ∋ M ≐ M
⇓_,⇓_,⇓-,_ : {A Aᵒ M Mᵒ : exp} (A⇓Aᵒ : A ⇓ Aᵒ) (M⇓Mᵒ : M ⇓ Mᵒ) (Aᵒ∋ᵒMᵒ : Aᵒ ∋ᵒ Mᵒ) → A ∋ M
⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓-, Aᵒ∋ᵒMᵒ = ⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M⇓Mᵒ , Aᵒ∋ᵒMᵒ
A∋≐-sym {A} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , A∋ᵒMᵒ≐M'ᵒ) = ⇓ A⇓Aᵒ ,⇓ M'⇓M'ᵒ ,⇓ M⇓Mᵒ , A∋ᵒ≐-sym A∋ᵒMᵒ≐M'ᵒ
A∋≐-trans {A} {M₀} {M₁} {M₂} (⇓ A⇓ ,⇓ M₀⇓ ,⇓ M₁⇓ , A∋ᵒMᵒ≐M'ᵒ₁) (⇓ A⇓' ,⇓ M₁⇓' ,⇓ M₂⇓ , A∋ᵒM'ᵒ₁≐M'ᵒ) with ⇓-deterministic A⇓ A⇓' | ⇓-deterministic M₁⇓ M₁⇓'
... | refl | refl = ⇓ A⇓ ,⇓ M₀⇓ ,⇓ M₂⇓ , A∋ᵒ≐-trans A∋ᵒMᵒ≐M'ᵒ₁ A∋ᵒM'ᵒ₁≐M'ᵒ
A∋≐-isPartialEquivalence A = record { sym = A∋≐-sym ; trans = A∋≐-trans }
-- Lemmas
lemma/moveᵒ Bool A'∋ᵒM₁≐M₂ = A'∋ᵒM₁≐M₂
lemma/moveᵒ Nat A'∋ᵒM₁≐M₂ = A'∋ᵒM₁≐M₂
lemma/moveᵒ (A₁≐A₁'typeᵒ × A₂≐A₂'typeᵒ) (A₁'∋ᵒM₁≐M₁' × A₂'∋ᵒM₂≐M₂') = lemma/move (typeᵒ-type A₁≐A₁'typeᵒ) A₁'∋ᵒM₁≐M₁' × lemma/move (typeᵒ-type A₂≐A₂'typeᵒ) A₂'∋ᵒM₂≐M₂'
lemma/moveᵒ (Eq A≐A'type A∋M₁≐M₁' A∋M₂≐M₂') (Eq h h≐) = Eq h (A∋≐-trans A∋M₁≐M₁' (A∋≐-trans (lemma/move A≐A'type h≐) (A∋≐-sym A∋M₂≐M₂')))
lemma/move (⇓ A⇓Aᵒ ,⇓ A'⇓A'ᵒ₁ , Aᵒ≐A'ᵒtypeᵒ) (⇓ A'⇓A'ᵒ ,⇓ M₁⇓M₁ᵒ ,⇓ M₂⇓M₂ᵒ , A'ᵒ∋ᵒM₁ᵒ≐M₂ᵒ) with ⇓-deterministic A'⇓A'ᵒ₁ A'⇓A'ᵒ
... | refl = ⇓ A⇓Aᵒ ,⇓ M₁⇓M₁ᵒ ,⇓ M₂⇓M₂ᵒ , lemma/moveᵒ Aᵒ≐A'ᵒtypeᵒ A'ᵒ∋ᵒM₁ᵒ≐M₂ᵒ
rev-closure-A : {A A' M₁ M₂ : exp} → A ↦ A' → A' ∋ M₁ ≐ M₂ → A ∋ M₁ ≐ M₂
rev-closure-A A↦A' (⇓ A⇓Aᵒ ,⇓ M₁⇓M₁ᵒ ,⇓ M₂⇓M₂ᵒ , Aᵒ∋ᵒM₁ᵒ≐M₂ᵒ) = ⇓ step⇓ A↦A' A⇓Aᵒ ,⇓ M₁⇓M₁ᵒ ,⇓ M₂⇓M₂ᵒ , Aᵒ∋ᵒM₁ᵒ≐M₂ᵒ
rev-closure-A* : {A A' M₁ M₂ : exp} → A ↦* A' → A' ∋ M₁ ≐ M₂ → A ∋ M₁ ≐ M₂
rev-closure-A* here A'∋M₁≐M₂ = A'∋M₁≐M₂
rev-closure-A* (step A↦A'' A''↦*A') A'∋M₁≐M₂ = rev-closure-A A↦A'' (rev-closure-A* A''↦*A' A'∋M₁≐M₂)
rev-closure-M : {A M M' : exp} → M ↦ M' → A ∋ M' → A ∋ M
rev-closure-M M↦M' (⇓ A⇓Aᵒ ,⇓ M'⇓Mᵒ ,⇓ M'⇓M'ᵒ , A∋ᵒMᵒ≐M'ᵒ) = ⇓ A⇓Aᵒ ,⇓ step⇓ M↦M' M'⇓Mᵒ ,⇓ step⇓ M↦M' M'⇓M'ᵒ , A∋ᵒMᵒ≐M'ᵒ
rev-closure-M* : {A M M' : exp} → M ↦* M' → A ∋ M' → A ∋ M
rev-closure-M* here A∋M' = A∋M'
rev-closure-M* (step M↦M'' M''↦*M') A∋M' = rev-closure-M M↦M'' (rev-closure-M* M''↦*M' A∋M')
rev-closure-M*₂ : {A M₁ M₁' M₂ M₂' : exp} → M₁ ↦* M₁' → M₂ ↦* M₂' → A ∋ M₁' ≐ M₂' → A ∋ M₁ ≐ M₂
rev-closure-M*₂ M₁↦*M₁' M₂↦*M₂' (⇓ A⇓Aᵒ ,⇓ M₁'⇓M₁'ᵒ ,⇓ M₂'⇓M₂'ᵒ , Aᵒ∋ᵒMᵒ≐M'ᵒ) =
⇓ A⇓Aᵒ ,⇓ ((↦*-append M₁↦*M₁' (_⇓_.M↦*M' M₁'⇓M₁'ᵒ)) and _⇓_.M'val M₁'⇓M₁'ᵒ) ,⇓ ((↦*-append M₂↦*M₂' (_⇓_.M↦*M' M₂'⇓M₂'ᵒ)) and _⇓_.M'val M₂'⇓M₂'ᵒ) , Aᵒ∋ᵒMᵒ≐M'ᵒ
-- Hypotheticals
_>>_ : (A : exp) → (exp → exp → Set) → Set
A >> J = {a a' : exp} → A ∋ a ≐ a' → J a a'
_>>_≐_type : (A : exp) (B B' : exp → exp) → Set
A >> B ≐ B' type = A >> λ a a' → B a ≐ B' a' type
_>>_type : (A : exp) (B : exp → exp) → Set
A >> B type = A >> B ≐ B type
_>>_∋_≐_ : (A : exp) (B N N' : exp → exp) → Set
A >> B ∋ N ≐ N' = A >> λ a a' → B a ∋ N a ≐ N' a'
_>>_∋_ : (A : exp) (B N : exp → exp) → Set
A >> B ∋ N = A >> B ∋ N ≐ N
-- Facts
fact/if : {A M M₁ M₀ M₁' M₀' : exp} → Bool ∋ M → A ∋ M₁ → A ∋ M₀ → A ∋ if M M₁ M₀
fact/if {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Aᵒ∋ᵒMᵒ≐M'ᵒ) h₁ h₀ with val⇓val Bool A⇓Aᵒ
fact/if {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Bool (tt Mᵒ⇓tt _)) h₁ h₀ | refl =
let step-principal M₁ M₀ = lift-principal (λ M → if M M₁ M₀) if/principal (↦*-append (_⇓_.M↦*M' M⇓Mᵒ) (_⇓_.M↦*M' Mᵒ⇓tt)) in
rev-closure-M* (stepʳ (step-principal M₁ M₀) if/tt) h₁
fact/if {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Bool (ff Mᵒ⇓ff _)) h₁ h₀ | refl =
let step-principal M₁ M₀ = lift-principal (λ M → if M M₁ M₀) if/principal (↦*-append (_⇓_.M↦*M' M⇓Mᵒ) (_⇓_.M↦*M' Mᵒ⇓ff)) in
rev-closure-M* (stepʳ (step-principal M₁ M₀) if/ff) h₀
fact/if' : {M A₁ A₀ M₁ M₀ : exp} → Bool ∋ M → A₁ ∋ M₁ → A₀ ∋ M₀ → if M A₁ A₀ ∋ if M M₁ M₀
fact/if' {A₁ = A₁} {A₀ = A₀} {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Aᵒ∋ᵒMᵒ≐M'ᵒ) h₁ h₀ with val⇓val Bool A⇓Aᵒ
fact/if' {A₁ = A₁} {A₀ = A₀} {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Bool (tt Mᵒ⇓tt _)) h₁ h₀ | refl =
let step-principal M₁ M₀ = lift-principal (λ M → if M M₁ M₀) if/principal (↦*-append (_⇓_.M↦*M' M⇓Mᵒ) (_⇓_.M↦*M' Mᵒ⇓tt)) in
rev-closure-A* (stepʳ (step-principal A₁ A₀) if/tt) $
rev-closure-M* (stepʳ (step-principal M₁ M₀) if/tt) $
h₁
fact/if' {A₁ = A₁} {A₀ = A₀} {M₁ = M₁} {M₀ = M₀} (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M'⇓M'ᵒ , Bool (ff Mᵒ⇓ff _)) h₁ h₀ | refl =
let step-principal M₁ M₀ = lift-principal (λ M → if M M₁ M₀) if/principal (↦*-append (_⇓_.M↦*M' M⇓Mᵒ) (_⇓_.M↦*M' Mᵒ⇓ff)) in
rev-closure-A* (stepʳ (step-principal A₁ A₀) if/ff) $
rev-closure-M* (stepʳ (step-principal M₁ M₀) if/ff) $
h₀
R/Nat⇒Nat∋≐ : {N N' : exp} → R/Nat N N' → Nat ∋ N ≐ N'
R/Nat⇒Nat∋≐ (zero h h') = ⇓ here and Nat ,⇓ h ,⇓ h' , Nat (zero (here and _⇓_.M'val h) (here and _⇓_.M'val h'))
R/Nat⇒Nat∋≐ (succ h h' r) = ⇓ here and Nat ,⇓ h ,⇓ h' , Nat (succ (here and _⇓_.M'val h) (here and _⇓_.M'val h') r)
fact/rec : ∀ {B M₀ M₁ M} →
Nat >> B type →
B zero ∋ M₀ →
Nat >> (λ a a' → B a >> λ b b' → B (succ a) ∋ M₁ a b ≐ M₁ a' b') →
Nat ∋ M → B M ∋ rec M₀ M₁ M
fact/rec Nat>>Btype h₀ h₁ (⇓ A⇓Aᵒ ,⇓ M⇓Mᵒ ,⇓ M⇓M'ᵒ , Aᵒ∋ᵒMᵒ≐M'ᵒ) with val⇓val Nat A⇓Aᵒ
fact/rec {B} {M₀} {M₁} Nat>>Btype h₀ h₁ (⇓ A⇓Nat ,⇓ M⇓Mᵒ ,⇓ M⇓M'ᵒ , Nat r) | refl = induction (_⇓_.M↦*M' M⇓Mᵒ) r
where
induction : {M Mᵒ M'ᵒ : exp} → M ↦* Mᵒ → R/Nat Mᵒ M'ᵒ → B M ∋ rec M₀ M₁ M
induction M↦*Mᵒ (zero Mᵒ⇓zero Mᵒ⇓zero') =
let step-principal = lift-principal (rec M₀ M₁) rec/principal (↦*-append M↦*Mᵒ (_⇓_.M↦*M' Mᵒ⇓zero)) in
rev-closure-M* (stepʳ step-principal rec/zero) $
lemma/move (Nat>>Btype (⇓ A⇓Nat ,⇓ step*⇓ M↦*Mᵒ Mᵒ⇓zero ,⇓ val⇓ zero , Nat (zero (val⇓ zero) (val⇓ zero)))) $
h₀
induction M↦*Mᵒ (succ Mᵒ⇓succN Mᵒ⇓succN' r) =
let step-principal = lift-principal (rec M₀ M₁) rec/principal (↦*-append M↦*Mᵒ (_⇓_.M↦*M' Mᵒ⇓succN)) in
rev-closure-M* (stepʳ step-principal rec/succ) $
lemma/move (Nat>>Btype (⇓ A⇓Nat ,⇓ step*⇓ M↦*Mᵒ Mᵒ⇓succN ,⇓ val⇓ succ , Nat (succ (val⇓ succ) (val⇓ succ) (per-refl R/Nat-isPartialEquivalence r)))) $
h₁ (per-refl (A∋≐-isPartialEquivalence Nat) (R/Nat⇒Nat∋≐ r)) (induction here r)
fact/·1 : {A₁ A₂ M : exp} → A₁ val → A₂ val → (A₁ × A₂) ∋ M → A₁ ∋ (M ·1)
fact/·1 {A₁ = A₁} A₁val A₂val (⇓ A⇓Aᵒ ,⇓ M⇓⟨M₁,M₂⟩ ,⇓ M⇓⟨M₁',M₂'⟩ , Aᵒ∋ᵒMᵒ≐M'ᵒ) with val⇓val (A₁val × A₂val) A⇓Aᵒ
fact/·1 {A₁ = A₁} A₁val A₂val (⇓ A⇓Aᵒ ,⇓ M⇓⟨M₁,M₂⟩ ,⇓ M⇓⟨M₁',M₂'⟩ , (A₁∋M₁≐M₁' × A₂∋M₂≐M₂')) | refl =
rev-closure-M* (stepʳ (lift-principal _·1 _·1/principal (_⇓_.M↦*M' M⇓⟨M₁,M₂⟩)) _·1) (per-refl (A∋≐-isPartialEquivalence A₁) A₁∋M₁≐M₁')
fact/⟨,⟩·1 : {A₁ M₁ M₂ : exp} → A₁ ∋ M₁ → A₁ ∋ ⟨ M₁ , M₂ ⟩ ·1 ≐ M₁
fact/⟨,⟩·1 (⇓ A⇓Aᵒ ,⇓ M₁⇓Mᵒ ,⇓ M₁⇓M'ᵒ , A₁∋ᵒMᵒ≐M'ᵒ) = ⇓ A⇓Aᵒ ,⇓ step⇓ _·1 M₁⇓Mᵒ ,⇓ M₁⇓M'ᵒ , A₁∋ᵒMᵒ≐M'ᵒ
fact/eq/inhabited : Eq Nat (succ zero) (succ zero) ∋ refl
fact/eq/inhabited =
⇓ val⇓ Eq ,⇓ val⇓ refl ,⇓-,
Eq (refl (val⇓ refl) (val⇓ refl)) (
⇓ val⇓ Nat ,⇓ val⇓ succ ,⇓-, (
Nat (succ (val⇓ succ) (val⇓ succ) (zero (val⇓ zero) (val⇓ zero)))
)
)
fact/eq/reflexive : {A M : exp} → A ∋ M → Eq A M M ∋ refl
fact/eq/reflexive A∋M = ⇓ val⇓ Eq ,⇓ val⇓ refl ,⇓-, Eq (refl (val⇓ refl) (val⇓ refl)) A∋M
| {
"alphanum_fraction": 0.5210020516,
"avg_line_length": 39.4925373134,
"ext": "agda",
"hexsha": "d5f4f1635d6b842d12b3957d8851a547c8cb8c1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_forks_repo_path": "ctt/CTT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_issues_repo_path": "ctt/CTT.agda",
"max_line_length": 169,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_stars_repo_path": "ctt/CTT.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-03T18:24:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-08T12:27:39.000Z",
"num_tokens": 10769,
"size": 18522
} |
-- There was a bug where f (suc n) didn't reduce for neutral n.
module Issue26 where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
f : Nat -> Nat
f 0 = 0
f (suc n) = f n
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
lem : (n : Nat) -> f (suc n) == f n
lem n = refl
| {
"alphanum_fraction": 0.5284974093,
"avg_line_length": 17.5454545455,
"ext": "agda",
"hexsha": "e3ae17a782ee8f889e9dc6a08f5d4582a74f999e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue26.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue26.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue26.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 140,
"size": 386
} |
data D : _ where
D : _
| {
"alphanum_fraction": 0.5652173913,
"avg_line_length": 7.6666666667,
"ext": "agda",
"hexsha": "0b73e4b7836da7cc0aca3b16bb39b2dafcce8b17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/Fail/Issue3448.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/Fail/Issue3448.agda",
"max_line_length": 16,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/Fail/Issue3448.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9,
"size": 23
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Automatic solvers for equations over integers
------------------------------------------------------------------------
-- See README.Integer for examples of how to use this solver
{-# OPTIONS --without-K --safe #-}
module Data.Integer.Solver where
import Algebra.Solver.Ring.Simple as Solver
import Algebra.Solver.Ring.AlmostCommutativeRing as ACR
open import Data.Integer using (_≟_)
open import Data.Integer.Properties using (+-*-commutativeRing)
------------------------------------------------------------------------
-- A module for automatically solving propositional equivalences
-- containing _+_ and _*_
-- A module for automatically solving propositional equivalences
module +-*-Solver =
Solver (ACR.fromCommutativeRing +-*-commutativeRing) _≟_
| {
"alphanum_fraction": 0.579793341,
"avg_line_length": 34.84,
"ext": "agda",
"hexsha": "476d98af73533e73a56a0561bb2c7c14cff3cc1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Solver.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Solver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 155,
"size": 871
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Issue107 where
data Bool : Set where
true : Bool
false : Bool
data False : Set where
record True : Set where
T : Bool -> Set
T false = False
T _ = True
foo : ((a : Bool) -> T a) -> True
foo f = f _
| {
"alphanum_fraction": 0.6205533597,
"avg_line_length": 14.8823529412,
"ext": "agda",
"hexsha": "37c70cc119766e8b9438f40d442643d409ab5927",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue107.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue107.agda",
"max_line_length": 38,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue107.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 79,
"size": 253
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Properties where
open import Cubical.ZCohomology.Base
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Univalence
open import Cubical.Data.Empty
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.HITs.Susp
open import Cubical.HITs.Wedge
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; setTruncIsSet to §)
open import Cubical.Data.Int renaming (_+_ to _ℤ+_)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3)
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.Freudenthal
open import Cubical.Algebra.Group
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Data.NatMinusOne
open import Cubical.HITs.Pushout
open import Cubical.Data.Sum.Base
open import Cubical.Data.HomotopyGroup
open import Cubical.ZCohomology.KcompPrelims
open Iso renaming (inv to inv')
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
A' : Pointed ℓ
infixr 34 _+ₖ_
infixr 34 _+ₕ_
is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n))
is2ConnectedKn zero = ∣ ∣ base ∣ ∣
, trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _)
(trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _)
(toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl))
is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣
, trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _)
(trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _))
(suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl))
isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n))
isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n))
-- Induction principles for cohomology groups
-- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the
-- assumption that x = ∣f∣₂ and that f is pointed
coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'}
→ ((x : coHom (suc n) A) → isProp (B x))
→ ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂)
→ (x : coHom (suc n) A) → B x
coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp =
sElim (λ _ → isOfHLevelSuc 1 (isprop _))
λ f → helper n isprop indp f (f a) refl
where
helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'}
→ ((x : coHom (suc n) A) → isProp (B x))
→ ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂)
→ (f : A → coHomK (suc n))
→ (x : coHomK (suc n))
→ f a ≡ x → B ∣ f ∣₂
-- pattern matching a bit extra to avoid isOfHLevelPlus'
helper zero isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _))
(toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc zero) isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _))
(suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc (suc zero)) isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _))
(suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc (suc (suc n))) isprop ind f =
trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _))
(suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f))
coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'}
→ ((x y : coHom (suc n) A) → isProp (B x y))
→ ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂)
→ (x y : coHom (suc n) A) → B x y
coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _))
λ f g → helper n a isprop indp f g (f a) (g a) refl refl
where
helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'}
→ ((x y : coHom (suc n) A) → isProp (B x y))
→ ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂)
→ (f g : A → coHomK (suc n))
→ (x y : coHomK (suc n))
→ f a ≡ x → g a ≡ y
→ B ∣ f ∣₂ ∣ g ∣₂
helper zero a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _))
(toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc zero) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc (suc zero)) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc (suc (suc n))) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
{- Equivalence between cohomology of A and reduced cohomology of (A + 1) -}
coHomRed+1Equiv : (n : ℕ) →
(A : Type ℓ) →
(coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt))))
coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂
module coHomRed+1 where
helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C)))
helpLemma {C = C} = isoToPath (iso map1
map2
(λ b → linvPf b)
(λ _ → refl))
where
map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C))
map1 f = map1' , refl
module helpmap where
map1' : A ⊎ Unit → fst C
map1' (inl x) = f x
map1' (inr x) = pt C
map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C)
map2 (g , pf) x = g (inl x)
linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b
linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j)
where
helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x
helper (inl x) = refl
helper (inr tt) = sym snd
coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂
coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂
-----------
Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n)))
Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n)
ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n
ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n)
Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n)))
Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n)
---------- Algebra/Group stuff --------
0ₖ : (n : ℕ) → coHomK n
0ₖ = coHom-pt
_+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n
_+ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)
-ₖ_ : {n : ℕ} → coHomK n → coHomK n
-ₖ_ {n = n} x = ΩKn+1→Kn n (sym (Kn→ΩKn+1 n x))
-- subtraction as a binary operator
_-ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n
_-ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y))
+ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n
+ₖ-syntax n = _+ₖ_ {n = n}
-ₖ-syntax : (n : ℕ) → coHomK n → coHomK n
-ₖ-syntax n = -ₖ_ {n = n}
-'ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n
-'ₖ-syntax n = _-ₖ_ {n = n}
syntax +ₖ-syntax n x y = x +[ n ]ₖ y
syntax -ₖ-syntax n x = -[ n ]ₖ x
syntax -'ₖ-syntax n x y = x -[ n ]ₖ y
Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl
Kn→ΩKn+10ₖ zero = sym (rUnit refl)
Kn→ΩKn+10ₖ (suc zero) i j = ∣ (rCancel (merid base) i j) ∣
Kn→ΩKn+10ₖ (suc (suc n)) i j = ∣ (rCancel (merid north) i j) ∣
ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n
ΩKn+1→Kn-refl zero = refl
ΩKn+1→Kn-refl (suc zero) = refl
ΩKn+1→Kn-refl (suc (suc zero)) = refl
ΩKn+1→Kn-refl (suc (suc (suc zero))) = refl
ΩKn+1→Kn-refl (suc (suc (suc (suc zero)))) = refl
ΩKn+1→Kn-refl (suc (suc (suc (suc (suc n))))) = refl
-0ₖ : {n : ℕ} → -[ n ]ₖ (0ₖ n) ≡ (0ₖ n)
-0ₖ {n = n} = (λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+10ₖ n i)))
∙∙ (λ i → ΩKn+1→Kn n (Kn→ΩKn+10ₖ n (~ i)))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) (0ₖ n)
+ₖ→∙ : (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (a +[ n ]ₖ b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b
+ₖ→∙ n a b = Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b)
lUnitₖ : (n : ℕ) (x : coHomK n) → (0ₖ n) +[ n ]ₖ x ≡ x
lUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x
lUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣
lUnitₖ (suc (suc n)) x =
(λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+10ₖ (2 + n) i ∙ Kn→ΩKn+1 (2 + n) x)) ∙∙
(cong (ΩKn+1→Kn (2 + n)) (sym (lUnit (Kn→ΩKn+1 (2 + n) x)))) ∙∙
Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x
rUnitₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x
rUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x
rUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣
rUnitₖ (suc (suc n)) x =
(λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+1 (2 + n) x ∙ Kn→ΩKn+10ₖ (2 + n) i))
∙∙ (cong (ΩKn+1→Kn (2 + n)) (sym (rUnit (Kn→ΩKn+1 (2 + n) x))))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x
rCancelₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (-[ n ]ₖ x) ≡ (0ₖ n)
rCancelₖ zero x = (λ i → ΩKn+1→Kn 0 (Kn→ΩKn+1 zero x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i)) ∙
cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x))
rCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (1 + n) x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i)) ∙
cong (ΩKn+1→Kn (suc n)) (rCancel (Kn→ΩKn+1 (1 + n) x)) ∙
(λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙
Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n))
lCancelₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ x) +[ n ]ₖ x ≡ (0ₖ n)
lCancelₖ 0 x = (λ i → ΩKn+1→Kn 0 (Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i ∙ Kn→ΩKn+1 zero x)) ∙
cong (ΩKn+1→Kn 0) (lCancel (Kn→ΩKn+1 zero x))
lCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i ∙ Kn→ΩKn+1 (1 + n) x)) ∙
cong (ΩKn+1→Kn (suc n)) (lCancel (Kn→ΩKn+1 (1 + n) x)) ∙
(λ i → (ΩKn+1→Kn (suc n)) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙
Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n))
assocₖ : (n : ℕ) (x y z : coHomK n) → ((x +[ n ]ₖ y) +[ n ]ₖ z) ≡ (x +[ n ]ₖ (y +[ n ]ₖ z))
assocₖ n x y z = ((λ i → ΩKn+1→Kn n (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)) ∙ Kn→ΩKn+1 n z)) ∙∙
(λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i ∙ Kn→ΩKn+1 n z)) ∙∙
(λ i → ΩKn+1→Kn n (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) (Kn→ΩKn+1 n z) (~ i)))) ∙
(λ i → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) ((Kn→ΩKn+1 n y ∙ Kn→ΩKn+1 n z)) (~ i)))
cancelₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ x ≡ (0ₖ n)
cancelₖ zero x = cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x))
cancelₖ (suc zero) x = cong (ΩKn+1→Kn 1) (rCancel (Kn→ΩKn+1 1 x))
cancelₖ (suc (suc zero)) x = cong (ΩKn+1→Kn 2) (rCancel (Kn→ΩKn+1 2 x))
cancelₖ (suc (suc (suc zero))) x = cong (ΩKn+1→Kn 3) (rCancel (Kn→ΩKn+1 3 x))
cancelₖ (suc (suc (suc (suc zero)))) x = cong (ΩKn+1→Kn 4) (rCancel (Kn→ΩKn+1 4 x))
cancelₖ (suc (suc (suc (suc (suc n))))) x = cong (ΩKn+1→Kn (5 + n)) (rCancel (Kn→ΩKn+1 (5 + n) x))
-rUnitₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ 0ₖ n ≡ x
-rUnitₖ zero x = rUnitₖ zero x
-rUnitₖ (suc n) x = cong (λ y → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (suc n) x ∙ sym y)) (Kn→ΩKn+10ₖ (suc n))
∙∙ cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x)))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) x
isComm∙ : ∀ {ℓ} (A : Pointed ℓ) → Type ℓ
isComm∙ A = (p q : typ (Ω A)) → p ∙ q ≡ q ∙ p
abstract
isCommA→isCommTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ A → isOfHLevel (suc n) (typ A) → isComm∙ (∥ typ A ∥ (suc n) , ∣ pt A ∣)
isCommA→isCommTrunc {A = (A , a)} n comm hlev p q =
((λ i j → (Iso.leftInv (truncIdempotentIso (suc n) hlev) ((p ∙ q) j) (~ i)))
∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (cong (trRec hlev (λ x → x)) (p ∙ q)))
∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) p q i)))
∙ ((λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (comm (cong (trRec hlev (λ x → x)) p) (cong (trRec hlev (λ x → x)) q) i))
∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) q p (~ i)))
∙∙ (λ i j → (Iso.leftInv (truncIdempotentIso (suc n) hlev) ((q ∙ p) j) i)))
isCommΩK1 : (n : ℕ) → isComm∙ ((Ω^ n) (coHomK-ptd 1))
isCommΩK1 zero = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹
isCommΩK1 (suc n) = Eckmann-Hilton n
open Iso renaming (inv to inv')
ptdIso→comm : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Type ℓ'} (e : Iso (typ A) B) → isComm∙ A → isComm∙ (B , Iso.fun e (pt A))
ptdIso→comm {A = (A , a)} {B = B} e comm p q =
sym (rightInv (congIso e) (p ∙ q))
∙∙ (cong (fun (congIso e)) ((invCongFunct e p q)
∙∙ (comm (inv' (congIso e) p) (inv' (congIso e) q))
∙∙ (sym (invCongFunct e q p))))
∙∙ rightInv (congIso e) (q ∙ p)
isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n)
isCommΩK zero p q = isSetInt _ _ (p ∙ q) (q ∙ p)
isCommΩK (suc zero) = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹
isCommΩK (suc (suc n)) = subst isComm∙ (λ i → coHomK (2 + n) , ΩKn+1→Kn-refl (2 + n) i) (ptdIso→comm {A = (_ , _)} (invIso (Iso-Kn-ΩKn+1 (2 + n))) (Eckmann-Hilton 0))
commₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) ≡ (y +[ n ]ₖ x)
commₖ 0 x y i = ΩKn+1→Kn 0 (isCommΩK1 0 (Kn→ΩKn+1 0 x) (Kn→ΩKn+1 0 y) i)
commₖ 1 x y i = ΩKn+1→Kn 1 (ptdIso→comm {A = ((∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 3 , ∣ north ∣)))}
{B = coHomK 2}
(invIso (Iso-Kn-ΩKn+1 2)) (Eckmann-Hilton 0) (Kn→ΩKn+1 1 x) (Kn→ΩKn+1 1 y) i)
commₖ 2 x y i = ΩKn+1→Kn 2 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 4 , ∣ north ∣))}
{B = coHomK 3}
(invIso (Iso-Kn-ΩKn+1 3)) (Eckmann-Hilton 0) (Kn→ΩKn+1 2 x) (Kn→ΩKn+1 2 y) i)
commₖ 3 x y i = ΩKn+1→Kn 3 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 5 , ∣ north ∣))}
{B = coHomK 4}
(invIso (Iso-Kn-ΩKn+1 4)) (Eckmann-Hilton 0) (Kn→ΩKn+1 3 x) (Kn→ΩKn+1 3 y) i)
commₖ (suc (suc (suc (suc n)))) x y i =
ΩKn+1→Kn (4 + n) (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK (6 + n) , ∣ north ∣))}
{B = coHomK (5 + n)}
(invIso (Iso-Kn-ΩKn+1 (5 + n))) (Eckmann-Hilton 0) (Kn→ΩKn+1 (4 + n) x) (Kn→ΩKn+1 (4 + n) y) i)
rUnitₖ' : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x
rUnitₖ' n x = commₖ n x (0ₖ n) ∙ lUnitₖ n x
-distrₖ : (n : ℕ) (x y : coHomK n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y)
-distrₖ n x y = ((λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y))))) ∙∙
(λ i → ΩKn+1→Kn n (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i))) ∙∙
(λ i → ΩKn+1→Kn n (symDistr (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i))) ∙∙
(λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n y)) (~ i) ∙ (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x)) (~ i)))) ∙∙
commₖ n (-[ n ]ₖ y) (-[ n ]ₖ x)
private
rCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ refl) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x)
rCancelLem zero x = refl
rCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x)))
lCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n (refl ∙ (Kn→ΩKn+1 n x)) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x)
lCancelLem zero x = refl
lCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (lUnit (Kn→ΩKn+1 (suc n) x)))
-cancelRₖ : (n : ℕ) (x y : coHomK n) → (y +[ n ]ₖ x) -[ n ]ₖ x ≡ y
-cancelRₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ sym (Kn→ΩKn+1 n x)) (+ₖ→∙ n y x))
∙∙ sym (assoc _ _ _)
∙∙ cong (Kn→ΩKn+1 n y ∙_) (rCancel _)))
∙∙ rCancelLem n y
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) y
-cancelLₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ x ≡ y
-cancelLₖ n x y = cong (λ z → z -[ n ]ₖ x) (commₖ n x y) ∙ -cancelRₖ n x y
-+cancelₖ : (n : ℕ) (x y : coHomK n) → (x -[ n ]ₖ y) +[ n ]ₖ y ≡ x
-+cancelₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ (Kn→ΩKn+1 n y)) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y))))
∙∙ sym (assoc _ _ _)
∙∙ cong (Kn→ΩKn+1 n x ∙_) (lCancel _)))
∙∙ rCancelLem n x
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x
---- Group structure of cohomology groups ---
_+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A
_+ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x +[ n ]ₖ b x) ∣₂
-ₕ_ : {n : ℕ} → coHom n A → coHom n A
-ₕ_ {n = n} = sRec § λ a → ∣ (λ x → -[ n ]ₖ a x) ∣₂
_-ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A
_-ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x -[ n ]ₖ b x) ∣₂
+ₕ-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A
+ₕ-syntax n = _+ₕ_ {n = n}
-ₕ-syntax : (n : ℕ) → coHom n A → coHom n A
-ₕ-syntax n = -ₕ_ {n = n}
-ₕ'-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A
-ₕ'-syntax n = _-ₕ_ {n = n}
syntax +ₕ-syntax n x y = x +[ n ]ₕ y
syntax -ₕ-syntax n x = -[ n ]ₕ x
syntax -ₕ'-syntax n x y = x -[ n ]ₕ y
0ₕ : (n : ℕ) → coHom n A
0ₕ n = ∣ (λ _ → (0ₖ n)) ∣₂
rUnitₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (0ₕ n) ≡ x
rUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rUnitₖ n (a x)) i ∣₂
lUnitₕ : (n : ℕ) (x : coHom n A) → (0ₕ n) +[ n ]ₕ x ≡ x
lUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lUnitₖ n (a x)) i ∣₂
rCancelₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (-[ n ]ₕ x) ≡ 0ₕ n
rCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rCancelₖ n (a x)) i ∣₂
lCancelₕ : (n : ℕ) (x : coHom n A) → (-[ n ]ₕ x) +[ n ]ₕ x ≡ 0ₕ n
lCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lCancelₖ n (a x)) i ∣₂
assocₕ : (n : ℕ) (x y z : coHom n A) → ((x +[ n ]ₕ y) +[ n ]ₕ z) ≡ (x +[ n ]ₕ (y +[ n ]ₕ z))
assocₕ n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b c i → ∣ funExt (λ x → assocₖ n (a x) (b x) (c x)) i ∣₂
commₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) ≡ (y +[ n ]ₕ x)
commₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ funExt (λ x → commₖ n (a x) (b x)) i ∣₂
cancelₕ : (n : ℕ) (x : coHom n A) → x -[ n ]ₕ x ≡ 0ₕ n
cancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → cancelₖ n (a x)) i ∣₂
-ₖ-ₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ (-[ n ]ₖ x)) ≡ x
-ₖ-ₖ n x = cong ((ΩKn+1→Kn n) ∘ sym) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x
-- Proof that rUnitₖ and lUnitₖ agree on 0ₖ. Needed for Mayer-Vietoris.
private
rUnitlUnitGen : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {b : B} (e : Iso A (b ≡ b))
(0A : A)
(0fun : fun e 0A ≡ refl)
→ Path (inv' e (fun e 0A ∙ fun e 0A) ≡ 0A)
(cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ cong (inv' e) (sym (lUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A)
(cong (inv' e) (cong (fun e 0A ∙_) 0fun) ∙∙ cong (inv' e) (sym (rUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A)
rUnitlUnitGen e 0A 0fun =
(λ i → cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ rUnit (cong (inv' e) (sym (lUnit (fun e 0A)))) i ∙∙ Iso.leftInv e 0A)
∙ ((λ i → (λ j → inv' e (0fun (~ i ∧ j) ∙ 0fun (j ∧ i)))
∙∙ ((λ j → inv' e (0fun (~ i ∨ j) ∙ 0fun i))
∙∙ cong (inv' e) (sym (lUnit (0fun i)))
∙∙ λ j → inv' e (0fun (i ∧ (~ j))))
∙∙ Iso.leftInv e 0A)
∙∙ (λ i → (λ j → inv' e (fun e 0A ∙ 0fun j))
∙∙ (λ j → inv' e (0fun (j ∧ ~ i) ∙ refl))
∙∙ cong (inv' e) (sym (rUnit (0fun (~ i))))
∙∙ (λ j → inv' e (0fun (~ i ∧ ~ j)))
∙∙ Iso.leftInv e 0A)
∙∙ λ i → cong (inv' e) (cong (fun e 0A ∙_) 0fun)
∙∙ rUnit (cong (inv' e) (sym (rUnit (fun e 0A)))) (~ i)
∙∙ Iso.leftInv e 0A)
rUnitlUnit0 : (n : ℕ) → rUnitₖ n (0ₖ n) ≡ lUnitₖ n (0ₖ n)
rUnitlUnit0 0 = refl
rUnitlUnit0 (suc zero) = refl
rUnitlUnit0 (suc (suc n)) = sym (rUnitlUnitGen (Iso-Kn-ΩKn+1 (2 + n)) (0ₖ (2 + n)) (Kn→ΩKn+10ₖ (2 + n)))
-cancelLₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) -[ n ]ₕ x ≡ y
-cancelLₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelLₖ n (a x) (b x) i) ∣₂
-cancelRₕ : (n : ℕ) (x y : coHom n A) → (y +[ n ]ₕ x) -[ n ]ₕ x ≡ y
-cancelRₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelRₖ n (a x) (b x) i) ∣₂
-+cancelₕ : (n : ℕ) (x y : coHom n A) → (x -[ n ]ₕ y) +[ n ]ₕ y ≡ x
-+cancelₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -+cancelₖ n (a x) (b x) i) ∣₂
-- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) ---
+ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A
+ₕ∙ zero = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ zero ]ₖ b x) , (λ i → (pa i +[ zero ]ₖ pb i)) ∣₂ }
+ₕ∙ (suc zero) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ 1 ]ₖ b x) , (λ i → pa i +[ 1 ]ₖ pb i) ∙ lUnitₖ 1 (0ₖ 1) ∣₂ }
+ₕ∙ (suc (suc n)) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ (2 + n) ]ₖ b x) , (λ i → pa i +[ (2 + n) ]ₖ pb i) ∙ lUnitₖ (2 + n) (0ₖ (2 + n)) ∣₂ }
open IsSemigroup
open IsMonoid
open GroupStr
open GroupHom
coHomGr : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group {ℓ}
coHomGr n A = coHom n A , coHomGrnA
where
coHomGrnA : GroupStr (coHom n A)
0g coHomGrnA = 0ₕ n
GroupStr._+_ coHomGrnA = λ x y → x +[ n ]ₕ y
- coHomGrnA = λ x → -[ n ]ₕ x
isGroup coHomGrnA = helper
where
abstract
helper : IsGroup (0ₕ n) (λ x y → x +[ n ]ₕ y) (λ x → -[ n ]ₕ x)
helper = makeIsGroup § (λ x y z → sym (assocₕ n x y z)) (rUnitₕ n) (lUnitₕ n) (rCancelₕ n) (lCancelₕ n)
×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group
×coHomGr n A B = dirProd (coHomGr n A) (coHomGr n B)
coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A
coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂
-distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B))
(x y : coHom n A)
→ fun f (x -[ n ]ₕ y) ≡ fun f x -[ m ]ₕ fun f y
-distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y)))
∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (isHom f' (x -[ n ]ₕ y) y))
∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _))
where
f = fun f'
--- the loopspace of Kₙ is commutative regardless of base
addIso : (n : ℕ) (x : coHomK n) → Iso (coHomK n) (coHomK n)
fun (addIso n x) y = y +[ n ]ₖ x
inv' (addIso n x) y = y -[ n ]ₖ x
rightInv (addIso n x) y = -+cancelₖ n y x
leftInv (addIso n x) y = -cancelRₖ n x y
isCommΩK-based : (n : ℕ) (x : coHomK n) → isComm∙ (coHomK n , x)
isCommΩK-based zero x p q = isSetInt _ _ (p ∙ q) (q ∙ p)
isCommΩK-based (suc zero) x =
subst isComm∙ (λ i → coHomK 1 , lUnitₖ 1 x i)
(ptdIso→comm {A = (_ , 0ₖ 1)} (addIso 1 x)
(isCommΩK 1))
isCommΩK-based (suc (suc n)) x =
subst isComm∙ (λ i → coHomK (suc (suc n)) , lUnitₖ (suc (suc n)) x i)
(ptdIso→comm {A = (_ , 0ₖ (suc (suc n)))} (addIso (suc (suc n)) x)
(isCommΩK (suc (suc n))))
addLemma : (a b : Int) → a +[ 0 ]ₖ b ≡ (a ℤ+ b)
addLemma a b = (cong (ΩKn+1→Kn 0) (sym (congFunct ∣_∣ (intLoop a) (intLoop b))))
∙∙ (λ i → ΩKn+1→Kn 0 (cong ∣_∣ (intLoop-hom a b i)))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 0) (a ℤ+ b)
---
-- hidden versions of cohom stuff using the "lock" hack. The locked versions can be used when proving things.
-- Swapping "key" for "tt*" will then give computing functions.
Unit' : Type₀
Unit' = lockUnit {ℓ-zero}
lock : ∀ {ℓ} {A : Type ℓ} → Unit' → A → A
lock unlock = λ x → x
module lockedCohom (key : Unit') where
+K : (n : ℕ) → coHomK n → coHomK n → coHomK n
+K n = lock key (_+ₖ_ {n = n})
-K : (n : ℕ) → coHomK n → coHomK n
-K n = lock key (-ₖ_ {n = n})
-Kbin : (n : ℕ) → coHomK n → coHomK n → coHomK n
-Kbin n = lock key (_-ₖ_ {n = n})
rUnitK : (n : ℕ) (x : coHomK n) → +K n x (0ₖ n) ≡ x
rUnitK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (0ₖ n) ≡ x
pm unlock = rUnitₖ n x
lUnitK : (n : ℕ) (x : coHomK n) → +K n (0ₖ n) x ≡ x
lUnitK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (0ₖ n) x ≡ x
pm unlock = lUnitₖ n x
rCancelK : (n : ℕ) (x : coHomK n) → +K n x (-K n x) ≡ 0ₖ n
rCancelK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) x) ≡ 0ₖ n
pm unlock = rCancelₖ n x
lCancelK : (n : ℕ) (x : coHomK n) → +K n (-K n x) x ≡ 0ₖ n
lCancelK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (-ₖ_ {n = n}) x) x ≡ 0ₖ n
pm unlock = lCancelₖ n x
-cancelRK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n y x) x ≡ y
-cancelRK n x y = pm key
where
pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) y x) x ≡ y
pm unlock = -cancelRₖ n x y
-cancelLK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n x y) x ≡ y
-cancelLK n x y = pm key
where
pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) x ≡ y
pm unlock = -cancelLₖ n x y
-+cancelK : (n : ℕ) (x y : coHomK n) → +K n (-Kbin n x y) y ≡ x
-+cancelK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_-ₖ_ {n = n}) x y) y ≡ x
pm unlock = -+cancelₖ n x y
cancelK : (n : ℕ) (x : coHomK n) → -Kbin n x x ≡ 0ₖ n
cancelK n x = pm key
where
pm : (t : Unit') → (lock t (_-ₖ_ {n = n}) x x) ≡ 0ₖ n
pm unlock = cancelₖ n x
assocK : (n : ℕ) (x y z : coHomK n) → +K n (+K n x y) z ≡ +K n x (+K n y z)
assocK n x y z = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) z
≡ lock t (_+ₖ_ {n = n}) x (lock t (_+ₖ_ {n = n}) y z)
pm unlock = assocₖ n x y z
commK : (n : ℕ) (x y : coHomK n) → +K n x y ≡ +K n y x
commK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x y ≡ lock t (_+ₖ_ {n = n}) y x
pm unlock = commₖ n x y
-- cohom
+H : (n : ℕ) (x y : coHom n A) → coHom n A
+H n = sRec2 § λ a b → ∣ (λ x → +K n (a x) (b x)) ∣₂
-H : (n : ℕ) (x : coHom n A) → coHom n A
-H n = sRec § λ a → ∣ (λ x → -K n (a x)) ∣₂
-Hbin : (n : ℕ) → coHom n A → coHom n A → coHom n A
-Hbin n = sRec2 § λ a b → ∣ (λ x → -Kbin n (a x) (b x)) ∣₂
rUnitH : (n : ℕ) (x : coHom n A) → +H n x (0ₕ n) ≡ x
rUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rUnitK n (a x)) i ∣₂
lUnitH : (n : ℕ) (x : coHom n A) → +H n (0ₕ n) x ≡ x
lUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lUnitK n (a x)) i ∣₂
rCancelH : (n : ℕ) (x : coHom n A) → +H n x (-H n x) ≡ 0ₕ n
rCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rCancelK n (a x)) i ∣₂
lCancelH : (n : ℕ) (x : coHom n A) → +H n (-H n x) x ≡ 0ₕ n
lCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lCancelK n (a x)) i ∣₂
assocH : (n : ℕ) (x y z : coHom n A) → (+H n (+H n x y) z) ≡ (+H n x (+H n y z))
assocH n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b c i → ∣ funExt (λ x → assocK n (a x) (b x) (c x)) i ∣₂
commH : (n : ℕ) (x y : coHom n A) → (+H n x y) ≡ (+H n y x)
commH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ funExt (λ x → commK n (a x) (b x)) i ∣₂
-cancelRH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n y x) x ≡ y
-cancelRH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelRK n (a x) (b x) i) ∣₂
-cancelLH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n x y) x ≡ y
-cancelLH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelLK n (a x) (b x) i) ∣₂
-+cancelH : (n : ℕ) (x y : coHom n A) → +H n (-Hbin n x y) y ≡ x
-+cancelH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -+cancelK n (a x) (b x) i) ∣₂
+K→∙ : (key : Unit') (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (lockedCohom.+K key n a b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b
+K→∙ unlock = +ₖ→∙
+H≡+ₕ : (key : Unit') (n : ℕ) → lockedCohom.+H key {A = A} n ≡ _+ₕ_ {n = n}
+H≡+ₕ unlock _ = refl
rUnitlUnit0K : (key : Unit') (n : ℕ) → lockedCohom.rUnitK key n (0ₖ n) ≡ lockedCohom.lUnitK key n (0ₖ n)
rUnitlUnit0K unlock = rUnitlUnit0
| {
"alphanum_fraction": 0.4939441811,
"avg_line_length": 46.6012269939,
"ext": "agda",
"hexsha": "22953af969acc076bd6e4659d2e37795bd4f98dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_line_length": 168,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 14445,
"size": 30384
} |
module FunctorComposition where
open import Functor as F
compose : {F₁ F₂ : Setoid → Setoid} →
Functor F₁ → Functor F₂ → Functor (λ A → F₁ (F₂ A))
compose {F₁} {F₂} FF₁ FF₂ = record
{ map = map FF₁ ∘ map FF₂
; identity = λ {A} →
trans (F₁ (F₂ A) ⇨ F₁ (F₂ A))
{i = map FF₁ ⟨$⟩ (map FF₂ ⟨$⟩ id)}
{j = map FF₁ ⟨$⟩ id}
{k = id}
(cong (map FF₁) (identity FF₂))
(identity FF₁)
; composition = λ {A B C} f g →
trans (F₁ (F₂ A) ⇨ F₁ (F₂ C))
{i = map FF₁ ⟨$⟩ (map FF₂ ⟨$⟩ (f ∘ g))}
{j = map FF₁ ⟨$⟩ ((map FF₂ ⟨$⟩ f) ∘ (map FF₂ ⟨$⟩ g))}
{k = (map FF₁ ⟨$⟩ (map FF₂ ⟨$⟩ f)) ∘
(map FF₁ ⟨$⟩ (map FF₂ ⟨$⟩ g))}
(cong (map FF₁) (composition FF₂ f g))
(composition FF₁ (map FF₂ ⟨$⟩ f) (map FF₂ ⟨$⟩ g))
}
where
open Setoid
open F.Functor
| {
"alphanum_fraction": 0.447163515,
"avg_line_length": 32.1071428571,
"ext": "agda",
"hexsha": "857ca2f31d7d46dfd6622ead7e21399607d6cb1e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/misc/FunctorComposition.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/misc/FunctorComposition.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/misc/FunctorComposition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 346,
"size": 899
} |
module Pi.Properties where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Pi.Syntax
open import Pi.Opsem
open import Pi.NoRepeat
open import Pi.Invariants
open import Pi.Eval
open import Pi.Interp
-- Forward evaluation is deterministic
deterministic-eval : ∀ {A B} → (c : A ↔ B) (v : ⟦ A ⟧) (v₁ v₂ : ⟦ B ⟧)
→ ⟨ c ∣ v ∣ ☐ ⟩ ↦* [ c ∣ v₁ ∣ ☐ ]
→ ⟨ c ∣ v ∣ ☐ ⟩ ↦* [ c ∣ v₂ ∣ ☐ ]
→ v₁ ≡ v₂
deterministic-eval c v v₁ v₂ ↦*₁ ↦*₂ with deterministic* ↦*₁ ↦*₂ (λ ()) (λ ())
... | refl = refl
-- Backward evaluation is deterministic
deterministic-evalᵣₑᵥ : ∀ {A B} → (c : A ↔ B) (v : ⟦ B ⟧) (v₁ v₂ : ⟦ A ⟧)
→ [ c ∣ v ∣ ☐ ] ↦ᵣₑᵥ* ⟨ c ∣ v₁ ∣ ☐ ⟩
→ [ c ∣ v ∣ ☐ ] ↦ᵣₑᵥ* ⟨ c ∣ v₂ ∣ ☐ ⟩
→ v₁ ≡ v₂
deterministic-evalᵣₑᵥ c v v₁ v₂ ↦ᵣₑᵥ*₁ ↦ᵣₑᵥ*₂ with deterministicᵣₑᵥ* ↦ᵣₑᵥ*₁ ↦ᵣₑᵥ*₂ (λ ()) (λ ())
... | refl = refl
-- Forward evaluator is reversible
evalIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : ⟦ A ⟧) (v₂ : ⟦ B ⟧)
→ eval c v₁ ≡ v₂ → evalᵣₑᵥ c v₂ ≡ v₁
evalIsRev c v₁ v₂ eq with ev {κ = ☐} c v₁
... | v₂' , c↦* with eq
... | refl with evᵣₑᵥ {κ = ☐} c v₂
... | v₁' , c↦*ᵣₑᵥ with deterministicᵣₑᵥ* c↦*ᵣₑᵥ (Rev↦ c↦*) (λ ()) (λ ())
... | refl = refl
-- Backward evaluator is reversible
evalᵣₑᵥIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : ⟦ B ⟧) (v₂ : ⟦ A ⟧)
→ evalᵣₑᵥ c v₁ ≡ v₂ → eval c v₂ ≡ v₁
evalᵣₑᵥIsRev c v₁ v₂ eq with evᵣₑᵥ {κ = ☐} c v₁
... | v₂' , c↦ᵣₑᵥ* with eq
... | refl with ev {κ = ☐} c v₂
... | v₁' , c↦* with deterministic* c↦* (Rev↦ᵣₑᵥ c↦ᵣₑᵥ*) (λ ()) (λ ())
... | refl = refl
-- The abstract machine semantics is equivalent to the big-step semantics
eval≡interp : ∀ {A B} → (c : A ↔ B) → (v : ⟦ A ⟧) → eval c v ≡ interp c v
eval≡interp unite₊l (inj₂ y) = refl
eval≡interp uniti₊l v = refl
eval≡interp swap₊ (inj₁ x) = refl
eval≡interp swap₊ (inj₂ y) = refl
eval≡interp assocl₊ (inj₁ x) = refl
eval≡interp assocl₊ (inj₂ (inj₁ y)) = refl
eval≡interp assocl₊ (inj₂ (inj₂ z)) = refl
eval≡interp assocr₊ (inj₁ (inj₁ x)) = refl
eval≡interp assocr₊ (inj₁ (inj₂ y)) = refl
eval≡interp assocr₊ (inj₂ z) = refl
eval≡interp unite⋆l (tt , v) = refl
eval≡interp uniti⋆l v = refl
eval≡interp swap⋆ (x , y) = refl
eval≡interp assocl⋆ (x , (y , z)) = refl
eval≡interp assocr⋆ ((x , y) , z) = refl
eval≡interp dist (inj₁ x , z) = refl
eval≡interp dist (inj₂ y , z) = refl
eval≡interp factor (inj₁ (x , z)) = refl
eval≡interp factor (inj₂ (y , z)) = refl
eval≡interp id↔ v = refl
eval≡interp (c₁ ⨾ c₂) v with ev {κ = ☐} c₁ v | inspect (ev {κ = ☐} c₁) v
... | (v' , rs) | [ eq ] with ev {κ = ☐} c₂ v' | inspect (ev {κ = ☐} c₂) v'
... | (v'' , rs') | [ eq' ] with ev {κ = ☐} (c₁ ⨾ c₂) v | inspect (ev {κ = ☐} (c₁ ⨾ c₂)) v
... | (u , rs'') | [ refl ] rewrite (sym (eval≡interp c₁ v)) | eq | (sym (eval≡interp c₂ v')) | eq' with deterministic* ((↦₃ ∷ ◾) ++↦ appendκ↦* rs refl (☐⨾ c₂ • ☐) ++↦ (↦₇ ∷ ◾) ++↦ appendκ↦* rs' refl (c₁ ⨾☐• ☐) ++↦ (↦₁₀ ∷ ◾)) rs'' (λ ()) (λ ())
... | refl = refl
eval≡interp (c₁ ⊕ c₂) (inj₁ x) with ev {κ = ☐} c₁ x | inspect (ev {κ = ☐} c₁) x
... | (x' , rs) | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₁ x) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₁ x)
... | (v , rs') | [ refl ] rewrite (sym (eval≡interp c₁ x)) | eq with deterministic* ((↦₄ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊕ c₂ • ☐) ++↦ (↦₁₁ ∷ ◾)) rs' (λ ()) (λ ())
... | refl = refl
eval≡interp (c₁ ⊕ c₂) (inj₂ y) with ev {κ = ☐} c₂ y | inspect (ev {κ = ☐} c₂) y
... | (x' , rs) | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₂ y) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₂ y)
... | (v , rs') | [ refl ] rewrite (sym (eval≡interp c₂ y)) | eq with deterministic* ((↦₅ ∷ ◾) ++↦ appendκ↦* rs refl (c₁ ⊕☐• ☐) ++↦ (↦₁₂ ∷ ◾)) rs' (λ ()) (λ ())
... | refl = refl
eval≡interp (c₁ ⊗ c₂) (x , y) with ev {κ = ☐} c₁ x | inspect (ev {κ = ☐} c₁) x
... | (x' , rs) | [ eq ] with ev {κ = ☐} c₂ y | inspect (ev {κ = ☐} c₂) y
... | (y' , rs') | [ eq' ] with ev {κ = ☐} (c₁ ⊗ c₂) (x , y) | inspect (ev {κ = ☐} (c₁ ⊗ c₂)) (x , y)
... | (_ , rs'') | [ refl ] rewrite (sym (eval≡interp c₁ x)) | eq | (sym (eval≡interp c₂ y)) | eq' with deterministic* (((↦₆ ∷ ◾) ++↦ appendκ↦* rs refl (☐⊗[ c₂ , y ]• ☐)) ++↦ (↦₈ ∷ ◾) ++↦ appendκ↦* rs' refl ([ c₁ , x' ]⊗☐• ☐) ++↦ (↦₉ ∷ ◾)) rs'' (λ ()) (λ ())
... | refl = refl
c⨾!c≡id↔ : ∀ {A B} (c : A ↔ B) → (x : ⟦ A ⟧) → interp (c ⨾ ! c) x ≡ interp id↔ x
c⨾!c≡id↔ unite₊l (inj₂ y) = refl
c⨾!c≡id↔ uniti₊l x = refl
c⨾!c≡id↔ swap₊ (inj₁ x) = refl
c⨾!c≡id↔ swap₊ (inj₂ y) = refl
c⨾!c≡id↔ assocl₊ (inj₁ x) = refl
c⨾!c≡id↔ assocl₊ (inj₂ (inj₁ y)) = refl
c⨾!c≡id↔ assocl₊ (inj₂ (inj₂ z)) = refl
c⨾!c≡id↔ assocr₊ (inj₁ (inj₁ x)) = refl
c⨾!c≡id↔ assocr₊ (inj₁ (inj₂ y)) = refl
c⨾!c≡id↔ assocr₊ (inj₂ z) = refl
c⨾!c≡id↔ unite⋆l (tt , x) = refl
c⨾!c≡id↔ uniti⋆l x = refl
c⨾!c≡id↔ swap⋆ (x , y) = refl
c⨾!c≡id↔ assocl⋆ (x , (y , z)) = refl
c⨾!c≡id↔ assocr⋆ ((x , y) , z) = refl
c⨾!c≡id↔ dist (inj₁ x , z) = refl
c⨾!c≡id↔ dist (inj₂ y , z) = refl
c⨾!c≡id↔ factor (inj₁ (x , z)) = refl
c⨾!c≡id↔ factor (inj₂ (y , z)) = refl
c⨾!c≡id↔ id↔ x = refl
c⨾!c≡id↔ (c₁ ⨾ c₂) x rewrite c⨾!c≡id↔ c₂ (interp c₁ x) = c⨾!c≡id↔ c₁ x
c⨾!c≡id↔ (c₁ ⊕ c₂) (inj₁ x) rewrite c⨾!c≡id↔ c₁ x = refl
c⨾!c≡id↔ (c₁ ⊕ c₂) (inj₂ y) rewrite c⨾!c≡id↔ c₂ y = refl
c⨾!c≡id↔ (c₁ ⊗ c₂) (x , y) rewrite c⨾!c≡id↔ c₁ x | c⨾!c≡id↔ c₂ y = refl
!!c≡c : ∀ {A B} (c : A ↔ B) → ! (! c) ≡ c
!!c≡c unite₊l = refl
!!c≡c uniti₊l = refl
!!c≡c swap₊ = refl
!!c≡c assocl₊ = refl
!!c≡c assocr₊ = refl
!!c≡c unite⋆l = refl
!!c≡c uniti⋆l = refl
!!c≡c swap⋆ = refl
!!c≡c assocl⋆ = refl
!!c≡c assocr⋆ = refl
!!c≡c absorbr = refl
!!c≡c factorzl = refl
!!c≡c dist = refl
!!c≡c factor = refl
!!c≡c id↔ = refl
!!c≡c (c₁ ⨾ c₂) rewrite !!c≡c c₁ | !!c≡c c₂ = refl
!!c≡c (c₁ ⊕ c₂) rewrite !!c≡c c₁ | !!c≡c c₂ = refl
!!c≡c (c₁ ⊗ c₂) rewrite !!c≡c c₁ | !!c≡c c₂ = refl
!c⨾c≡id↔ : ∀ {A B} (c : A ↔ B) → (x : ⟦ B ⟧) → interp (! c ⨾ c) x ≡ interp id↔ x
!c⨾c≡id↔ c x = trans (cong (λ c' → interp c' (interp (! c) x)) (sym (!!c≡c c)))
(c⨾!c≡id↔ (! c) x)
| {
"alphanum_fraction": 0.5037866315,
"avg_line_length": 44.0144927536,
"ext": "agda",
"hexsha": "eb99044491c69e510b481f2a40981cf3e480b132",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/Properties.agda",
"max_line_length": 258,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3326,
"size": 6074
} |
module Propositional where
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
open ≡-Reasoning
--------------------------------------------------------------------------------
-- Some easy lemmas
--------------------------------------------------------------------------------
+-zero : ∀ a → a + zero ≡ a
+-zero zero = refl
+-zero (suc a) rewrite +-zero a = refl
+-suc : ∀ a b → a + suc b ≡ suc (a + b)
+-suc zero b = refl
+-suc (suc a) b rewrite +-suc a b = refl
+-assoc : ∀ a b c → a + b + c ≡ a + (b + c)
+-assoc zero b c = refl
+-assoc (suc a) b c rewrite +-assoc a b c = refl
--------------------------------------------------------------------------------
-- Proofs by equational reasoning
--------------------------------------------------------------------------------
-- commutativity of addition proved traditionally
+-comm₁ : ∀ a b → a + b ≡ b + a
+-comm₁ zero b = sym (+-zero b)
+-comm₁ (suc a) b =
suc ⌞ a + b ⌟ ≡⟨ cong suc (+-comm₁ a b) ⟩
suc (b + a) ≡⟨ sym (+-suc b a) ⟩
b + suc a ∎
-- commutativity of addition proved with holes
+-comm : ∀ a b → a + b ≡ b + a
+-comm zero b = sym (+-zero b)
+-comm (suc a) b =
suc ⌞ a + b ⌟ ≡⟨ cong! (+-comm a b) ⟩
suc (b + a) ≡⟨ cong! (+-suc b a) ⟩
b + suc a ∎
-- distributivity of multiplication over addition proved traditionally
*-distrib-+₁ : ∀ a b c → a * (b + c) ≡ a * b + a * c
*-distrib-+₁ zero b c = refl
*-distrib-+₁ (suc a) b c =
b + c + a * (b + c) ≡⟨ cong (λ h → b + c + h) (*-distrib-+₁ a b c) ⟩
(b + c) + (a * b + a * c) ≡⟨ sym (+-assoc (b + c) (a * b) (a * c)) ⟩
((b + c) + a * b) + a * c ≡⟨ cong (λ h → h + a * c) (+-assoc b c (a * b)) ⟩
(b + (c + a * b)) + a * c ≡⟨ cong (λ h → (b + h) + a * c) (+-comm c (a * b)) ⟩
(b + (a * b + c)) + a * c ≡⟨ cong (λ h → h + a * c) (sym (+-assoc b (a * b) c)) ⟩
((b + a * b) + c) + a * c ≡⟨ +-assoc (b + a * b) c (a * c) ⟩
(b + a * b) + (c + a * c)
∎
-- distributivity of multiplication over addition proved with holes
*-distrib-+ : ∀ a b c → a * (b + c) ≡ a * b + a * c
*-distrib-+ zero b c = refl
*-distrib-+ (suc a) b c =
b + c + ⌞ a * (b + c) ⌟ ≡⟨ cong! (*-distrib-+ a b c) ⟩
⌞ (b + c) + (a * b + a * c) ⌟ ≡⟨ cong! (+-assoc (b + c) (a * b) (a * c)) ⟩
⌞ (b + c) + a * b ⌟ + a * c ≡⟨ cong! (+-assoc b c (a * b)) ⟩
(b + ⌞ c + a * b ⌟) + a * c ≡⟨ cong! (+-comm c (a * b)) ⟩
⌞ b + (a * b + c) ⌟ + a * c ≡⟨ cong! (+-assoc b (a * b) c) ⟩
⌞ ((b + a * b) + c) + a * c ⌟ ≡⟨ cong! (+-assoc (b + a * b) c (a * c)) ⟩
(b + a * b) + (c + a * c)
∎
| {
"alphanum_fraction": 0.3951492537,
"avg_line_length": 35.2631578947,
"ext": "agda",
"hexsha": "7a55279f54c33240e607a76205f40cc61845bf9f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z",
"max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-holes",
"max_forks_repo_path": "examples/Propositional.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-holes",
"max_issues_repo_path": "examples/Propositional.agda",
"max_line_length": 88,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-holes",
"max_stars_repo_path": "examples/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z",
"num_tokens": 1103,
"size": 2680
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Printf
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Text.Printf where
open import Level using (0ℓ; Lift)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.Nat.Base using (ℕ)
open import Data.Product
open import Data.Product.Nary.NonDependent
open import Data.String.Base
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.Unit using (⊤)
open import Function.Nary.NonDependent
open import Function
open import Strict
import Data.Char.Base as Cₛ
import Data.Integer as ℤₛ
import Data.Float as Fₛ
import Data.Nat.Show as ℕₛ
open import Text.Format as Format hiding (Error)
assemble : ∀ fmt → Product⊤ _ ⟦ fmt ⟧ → List String
assemble [] vs = []
assemble (`ℕ ∷ fmt) (n , vs) = ℕₛ.show n ∷ assemble fmt vs
assemble (`ℤ ∷ fmt) (z , vs) = ℤₛ.show z ∷ assemble fmt vs
assemble (`Float ∷ fmt) (f , vs) = Fₛ.show f ∷ assemble fmt vs
assemble (`Char ∷ fmt) (c , vs) = fromChar c ∷ assemble fmt vs
assemble (`String ∷ fmt) (s , vs) = s ∷ assemble fmt vs
assemble (Raw str ∷ fmt) vs = str ∷ assemble fmt vs
record Error (e : Format.Error) : Set where
private
Size : Format.Error ⊎ Format → ℕ
Size (inj₁ err) = 0
Size (inj₂ fmt) = size fmt
Printf : ∀ pr → Set (⨆ (Size pr) 0ℓs)
Printf (inj₁ err) = Error err
Printf (inj₂ fmt) = Arrows _ ⟦ fmt ⟧ String
printf' : ∀ pr → Printf pr
printf' (inj₁ err) = _
printf' (inj₂ fmt) = curry⊤ₙ _ (concat ∘′ assemble fmt)
printf : (input : String) → Printf (lexer input)
printf input = printf' (lexer input)
| {
"alphanum_fraction": 0.5982708934,
"avg_line_length": 30.4385964912,
"ext": "agda",
"hexsha": "f2a628614ad3685b6877a3bc68ec8c90ef547063",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Text/Printf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Text/Printf.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Text/Printf.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 518,
"size": 1735
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Strict2Group.Categorical where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.InternalCategory
open import Cubical.Categories.Groups
{-- Formalization of strict 2-groups as
internal categories of the 1-category Grp
of Groups. --}
Strict2GroupInternalCat : (ℓ : Level) → Type (ℓ-suc ℓ)
Strict2GroupInternalCat ℓ = InternalCategory (1BGROUP ℓ)
| {
"alphanum_fraction": 0.7872340426,
"avg_line_length": 28.2,
"ext": "agda",
"hexsha": "1cfb7ccbfcb8f79b823114f1abeddfcf04a31be9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Data/Strict2Group/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Data/Strict2Group/Categorical.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Data/Strict2Group/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 110,
"size": 423
} |
{-# OPTIONS --cumulativity #-}
open import Agda.Primitive
-- Defaulting of level metas does not apply to interaction metas, so
-- the type of test₁ should be `Set ?0`, not `Set`.
test₁ : Set {!!}
test₁ = {!!}
postulate
F : ∀ a (A : Set a) → A → Set
-- In this example, t first argument of F should not default to lzero
-- because it occurs in the type of another meta.
test₂ : F _ _ _
test₂ = {!!}
| {
"alphanum_fraction": 0.6559405941,
"avg_line_length": 23.7647058824,
"ext": "agda",
"hexsha": "d4838904d87e6dc840634fa0e3765a0bc915936b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/CumulDontDefaultInteraction.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/CumulDontDefaultInteraction.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/CumulDontDefaultInteraction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 404
} |
module examplesPaperJFP.loadAllOOAgdaPart1 where
-- This file loads the files containing the code examples in the ooAgda paper
-- ordered by sections
-- The code is divided into files
-- loadAllOOAgdaPart1.agda and loadAllOOAgdaPart2.agda
-- loadAllOOAgdaPart1.agda loads code from Sect. 1 - 7
-- loadAllOOAgdaPart2.agda loads code from Sect. 8 - 12
--
-- The reason for splitting it into two files is that because of some
-- Builtin the code from the first file cannot be loaded at the same
-- time as the code from the second one.
-- The difference is loading NativeIOSafe.agda vs NativeIO.agda
--
-- Important changes due to updating it to current agda
-- ####################################################
-- * do is now a keyword and therefore replaced by exec
-- * some other small changes mainly because of changes in the
-- standard library have been made
--
-- Files from the Library
-- #########################
-- loadAllOOAgdaFilesAsInLibrary.agda
-- loads corresponding code from the library which is slightly different
-- from how it is represented in the paper
-- Source of paper, presentations, slides
-- #######################################
-- Andreas Abel, Stephan Adelsberger, Anton Setzer:
-- Interactive Programming in Agda - Objects and Graphical User Interfaces
-- Journal of Functional Programming, 27, 2017
-- doi: http://dx.doi.org/10.1145/2976022.2976032
-- authors copy: http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.pdf
-- bibtex: http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.bib
-- 1. Introdution
-- 2. Introduction to Agda
import examplesPaperJFP.finn
import examplesPaperJFP.exampleFinFun
import examplesPaperJFP.Equality
-- 3. Coalgebras in Agda
-- 3.1. Coalgebra by example: Colists
import examplesPaperJFP.Colists
import examplesPaperJFP.Collatz
-- 3.2. Coalgebras in General
import examplesPaperJFP.Coalgebra
-- 4. Interactive Programs in Agda
-- 4.1. Interaction interfaces
import examplesPaperJFP.NativeIOSafe
import examplesPaperJFP.BasicIO
import examplesPaperJFP.triangleRightOperator
import examplesPaperJFP.ConsoleInterface
-- 4.2. Interaction trees
import examplesPaperJFP.Console
import examplesPaperJFP.CatNonTerm
import examplesPaperJFP.CatTerm
-- 4.3. Running interactive programs
import examplesPaperJFP.IOExampleConsole
-- 5. Objects in Agda
-- code as in paper adapted to new Agda
import examplesPaperJFP.Object
-- code as in library see loadAllOOAgdaFilesAsInLibrary.agda
-- open import SizedIO.Object
-- 6. Sized Coinductive Types
import examplesPaperJFP.Sized
-- 7. Interface Extension and Delegation
-- code as in paper adapted to new Agda
import examplesPaperJFP.CounterCell
-- code as in library see loadAllOOAgdaFilesAsInLibrary.agda
-- open import Sized.CounterCell
-- *** Code from Sect 8 - 12 can be found in loadAllOOAgdaPart2.agda ***
| {
"alphanum_fraction": 0.7394170715,
"avg_line_length": 30.9892473118,
"ext": "agda",
"hexsha": "8d101359271e38e3de550076bcdda16acf8e595e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart1.agda",
"max_line_length": 77,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart1.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 759,
"size": 2882
} |
{-# OPTIONS --without-K --safe #-}
-- verbatim dual of Categories.Category.Construction.Properties.EilenbergMoore
module Categories.Category.Construction.Properties.CoEilenbergMoore where
open import Level
import Relation.Binary.PropositionalEquality.Core as ≡
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Equivalence
open import Categories.Comonad
open import Categories.NaturalTransformation.Core renaming (id to idN)
open import Categories.Morphism.HeterogeneousIdentity
open import Categories.Morphism.Reasoning
open import Categories.Adjoint.Construction.CoEilenbergMoore
open import Categories.Category.Construction.CoEilenbergMoore
private
variable
o ℓ e : Level
𝒞 𝒟 : Category o ℓ e
module _ {F : Functor 𝒟 𝒞} {G : Functor 𝒞 𝒟} (F⊣G : Adjoint F G) where
private
T : Comonad 𝒞
T = adjoint⇒comonad F⊣G
coEM𝒞 : Category _ _ _
coEM𝒞 = CoEilenbergMoore T
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module coEM𝒞 = Category coEM𝒞
open 𝒞.HomReasoning
module T = Comonad T
module F = Functor F
module G = Functor G
module FG = Functor (F ∘F G)
open Adjoint F⊣G
open NaturalTransformation
open Category.Equiv
-- Maclane's Comparison Functor
ComparisonF : Functor 𝒟 coEM𝒞
ComparisonF = record
{ F₀ = λ X → record
{ A = F.F₀ X
; coaction = F.F₁ (unit.η X)
; commute = commute-obj
; identity = zig
}
; F₁ = λ {A} {B} f → record
{ arr = F.F₁ f
; commute = commute-mor
}
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = F.F-resp-≈
}
where
commute-obj : {X : Category.Obj 𝒟} → T.F.F₁ (F.F₁ (unit.η X)) 𝒞.∘ F.F₁ (unit.η X) 𝒞.≈ T.δ.η (F.F₀ X) 𝒞.∘ F.F₁ (unit.η X)
commute-obj {X} = begin
F.F₁ (G.F₁ (F.F₁ (unit.η X))) 𝒞.∘ F.F₁ (unit.η X) ≈⟨ sym 𝒞 (F.homomorphism) ⟩
F.F₁ (G.F₁ (F.F₁ (unit.η X)) 𝒟.∘ unit.η X) ≈⟨ Functor.F-resp-≈ F (unit.sym-commute (unit.η X)) ⟩
F.F₁ (unit.η (G.F₀ (F.F₀ X)) 𝒟.∘ unit.η X) ≈⟨ F.homomorphism ⟩
T.δ.η (F.F₀ X) 𝒞.∘ F.F₁ (unit.η X) ∎
commute-mor : {A B : Category.Obj 𝒟} {f : 𝒟 [ A , B ]} → F.F₁ (unit.η B) 𝒞.∘ F.F₁ f 𝒞.≈ T.F.F₁ (F.F₁ f) 𝒞.∘ F.F₁ (unit.η A)
commute-mor {A} {B} {f} = begin
F.F₁ (unit.η B) 𝒞.∘ F.F₁ f ≈⟨ sym 𝒞 (F.homomorphism) ⟩
F.F₁ (unit.η B 𝒟.∘ f) ≈⟨ Functor.F-resp-≈ F (unit.commute f) ⟩
F.F₁ (G.F₁ (F.F₁ f) 𝒟.∘ unit.η A) ≈⟨ F.homomorphism ⟩
T.F.F₁ (F.F₁ f) 𝒞.∘ F.F₁ (unit.η A) ∎
Comparison∘F≡Free : (ComparisonF ∘F G) ≡F Cofree T
Comparison∘F≡Free = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ f → id-comm-sym 𝒞
}
Forgetful∘ComparisonF≡G : (Forgetful T ∘F ComparisonF) ≡F F
Forgetful∘ComparisonF≡G = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ f → id-comm-sym 𝒞
} | {
"alphanum_fraction": 0.6234693878,
"avg_line_length": 32.3076923077,
"ext": "agda",
"hexsha": "512231851f960e360819d8798ffdc2529238d5b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/CoEilenbergMoore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/CoEilenbergMoore.agda",
"max_line_length": 127,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/CoEilenbergMoore.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 1182,
"size": 2940
} |
open import Prelude
open import Data.Nat.Properties.Simple
using (+-comm; +-right-identity; +-assoc)
open import RW.Language.RTerm
open import Relation.Binary.PropositionalEquality
open import RW.Strategy.PropEq
open import RW.RW (≡-strat ∷ [])
module PropEqTransitivityTest where
open ≡-Reasoning
-- This is pretty slow...
test2 : (x y : ℕ) → (x + y) + 0 ≡ y + (x + 0)
test2 x y
= begin
(x + y) + 0
≡⟨ (tactic (by*-≡ (quote +-comm ∷ quote +-assoc ∷ []))) ⟩
y + (x + 0)
∎
{-
Using a max height of 2 in the goal guesser.
Finished RWTestingTrans.
46,981,963,256 bytes allocated in the heap
7,318,699,728 bytes copied during GC
387,537,960 bytes maximum residency (20 sample(s))
8,253,392 bytes maximum slop
1042 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 90092 colls, 0 par 17.25s 17.25s 0.0002s 0.0030s
Gen 1 20 colls, 0 par 5.15s 5.17s 0.2587s 0.6522s
INIT time 0.00s ( 0.00s elapsed)
MUT time 241.64s (241.88s elapsed)
GC time 22.40s ( 22.42s elapsed)
EXIT time 0.09s ( 0.09s elapsed)
Total time 264.12s (264.40s elapsed)
%GC time 8.5% (8.5% elapsed)
Alloc rate 194,432,035 bytes per MUT second
Productivity 91.5% of total user, 91.4% of total elapsed
-}
{-
Using a height of 1
Finished RWTestingTrans.
31,222,657,544 bytes allocated in the heap
5,109,928,984 bytes copied during GC
355,162,768 bytes maximum residency (18 sample(s))
7,579,240 bytes maximum slop
952 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 59723 colls, 0 par 12.21s 12.22s 0.0002s 0.0036s
Gen 1 18 colls, 0 par 3.91s 3.92s 0.2179s 0.6516s
INIT time 0.00s ( 0.00s elapsed)
MUT time 154.42s (154.57s elapsed)
GC time 16.12s ( 16.14s elapsed)
EXIT time 0.09s ( 0.09s elapsed)
Total time 170.63s (170.80s elapsed)
%GC time 9.5% (9.5% elapsed)
Alloc rate 202,197,812 bytes per MUT second
Productivity 90.5% of total user, 90.5% of total elapsed
-}
| {
"alphanum_fraction": 0.5891047297,
"avg_line_length": 29.2345679012,
"ext": "agda",
"hexsha": "fe26cc83ca2be13fe8868ab6e1d234005df8f90a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "Testing/PropEqTransitivityTest.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "Testing/PropEqTransitivityTest.agda",
"max_line_length": 76,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "Testing/PropEqTransitivityTest.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 867,
"size": 2368
} |
{-# OPTIONS --type-in-type --no-termination-check
#-}
module Data where
_-_ : {A : Set}{B : A -> Set}{C : (a : A) -> B a -> Set} ->
({a : A}(b : B a) -> C a b) -> (f : (a : A) -> B a) ->
(a : A) -> C a (f a)
f - g = \ x -> f (g x)
id : {X : Set} -> X -> X
id x = x
konst : {S : Set}{T : S -> Set} -> ({x : S} -> T x) -> (x : S) -> T x
konst c x = c
data Zero : Set where
record One : Set where
record Sig (S : Set)(T : S -> Set) : Set where
field
fst : S
snd : T fst
open module Sig' {S : Set}{T : S -> Set} = Sig {S}{T}
_,_ : forall {S T}(s : S) -> T s -> Sig S T
s , t = record {fst = s; snd = t}
infixr 40 _,_
_*_ : Set -> Set -> Set
S * T = Sig S \ _ -> T
sig : forall {S T}{P : Sig S T -> Set} ->
((s : S)(t : T s) -> P (s , t)) -> (st : Sig S T) -> P st
sig f st = f (fst st) (snd st)
data Two : Set where
tt : Two
ff : Two
cond : {S : Two -> Set} -> S tt -> S ff -> (b : Two) -> S b
cond t f tt = t
cond t f ff = f
_+_ : Set -> Set -> Set
S + T = Sig Two (cond S T)
[_,_] : {S T : Set}{P : S + T -> Set} ->
((s : S) -> P (tt , s)) -> ((t : T) -> P (ff , t)) ->
(x : S + T) -> P x
[ f , g ] = sig (cond f g)
data PROP : Set where
Absu : PROP
Triv : PROP
_/\_ : PROP -> PROP -> PROP
All : (S : Set) -> (S -> PROP) -> PROP
Prf : PROP -> Set
Prf Absu = Zero
Prf Triv = One
Prf (P /\ Q) = Prf P * Prf Q
Prf (All S P) = (x : S) -> Prf (P x)
data CON (I : Set) : Set where
?? : I -> CON I
PrfC : PROP -> CON I
_*C_ : CON I -> CON I -> CON I
PiC : (S : Set) -> (S -> CON I) -> CON I
SiC : (S : Set) -> (S -> CON I) -> CON I
MuC : (O : Set) -> (O -> CON (I + O)) -> O -> CON I
NuC : (O : Set) -> (O -> CON (I + O)) -> O -> CON I
mutual
[|_|] : {I : Set} -> CON I -> (I -> Set) -> Set
[| ?? i |] X = X i
[| PrfC P |] X = Prf P
[| C *C D |] X = [| C |] X * [| D |] X
[| PiC S C |] X = (s : S) -> [| C s |] X
[| SiC S C |] X = Sig S \ s -> [| C s |] X
[| MuC O C o |] X = Mu C X o
[| NuC O C o |] X = Nu C X o
data Mu {I O : Set}(C : O -> CON (I + O))(X : I -> Set)(o : O) : Set where
con : [| C o |] [ X , Mu C X ] -> Mu C X o
codata Nu {I O : Set}(C : O -> CON (I + O))(X : I -> Set)(o : O) : Set where
con : [| C o |] [ X , Nu C X ] -> Nu C X o
noc : {I O : Set}{C : O -> CON (I + O)}{X : I -> Set}{o : O} ->
Nu C X o -> [| C o |] [ X , Nu C X ]
noc (con xs) = xs
mutual
map : {I : Set}{X Y : I -> Set} -> (C : CON I) -> ((i : I) -> X i -> Y i) ->
[| C |] X -> [| C |] Y
map (?? i) f = f i
map (PrfC P) f = id
map (C *C D) f = sig \ c d -> map C f c , map D f d
map (PiC S C) f = \ c s -> map (C s) f (c s)
map (SiC S C) f = sig \ s c -> s , map (C s) f c
map (MuC O C o) f = fold C (Mu C _) (\ o xs -> con (map (C o) [ f , konst id ] xs)) o
map (NuC O C o) f = unfold C (Nu C _) (\ o ss -> map (C o) [ f , konst id ] (noc ss)) o
fold : {I O : Set}(C : O -> CON (I + O)){X : I -> Set}(Y : O -> Set) ->
((o : O) -> [| C o |] [ X , Y ] -> Y o) ->
(o : O) -> Mu C X o -> Y o
fold C Y f o (con xs) = f o (map (C o) [ konst id , fold C Y f ] xs)
unfold : {I O : Set}(C : O -> CON (I + O)){X : I -> Set}(Y : O -> Set) ->
((o : O) -> Y o -> [| C o |] [ X , Y ]) ->
(o : O) -> Y o -> Nu C X o
unfold C Y f o y = con (map (C o) [ konst id , unfold C Y f ] (f o y))
induction : {I O : Set}(C : O -> CON (I + O)){X : I -> Set}
(P : (o : O) -> Mu C X o -> Set) ->
((o : O)(xyps : [| C o |] [ X , (\ o -> Sig (Mu C X o) (P o)) ]) ->
P o (con (map (C o) [ konst id , konst fst ] xyps))) ->
(o : O)(y : Mu C X o) -> P o y
induction C P p o (con xys) =
p o (map (C o) [ konst id , (\ o y -> (y , induction C P p o y)) ] xys)
moo : {I O : Set}(C : O -> CON (I + O)){X : I -> Set}(o : O)
(W : (o : O) -> Mu C X o -> Set)(w : (o : O)(y : Mu C X o) -> W o y)
(P : (io : I + O) -> [| ?? io |] [ X , Mu C X ] -> Set)
(io : I + O)(xy : [| ?? io |] [ X , Mu C X ]) -> P io xy ->
let g : (io : I + O) ->
[| ?? io |] [ X , Mu C X ] -> [| ?? io |] [ X , (\ o -> Sig (Mu C X o) (W o)) ]
g = [ konst id , (\ o y -> (y , w o y)) ]
f : (io : I + O) ->
[| ?? io |] [ X , (\ o -> Sig (Mu C X o) (W o)) ] -> [| ?? io |] [ X , Mu C X ]
f = [ konst id , konst fst ]
in P io (f io (g io xy))
moo C o W w P io xy p = {!p!}
| {
"alphanum_fraction": 0.3720982143,
"avg_line_length": 32.4637681159,
"ext": "agda",
"hexsha": "c90ca72a7a60408bf15cfdf525465509e27ff17b",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/Data.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/Data.agda",
"max_line_length": 93,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/Data.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 1918,
"size": 4480
} |
{- small library for MGS 2021 -}
{- products and sums -}
infix 10 _×_
record _×_ (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
open _×_ public
variable
A B C M : Set
curry : (A × B → C) → (A → B → C)
curry f a b = f (a , b) -- C-c C-,
uncurry : (A → B → C) → (A × B → C)
uncurry f (a , b) = f a b
infix 5 _⊎_
data _⊎_(A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
case : (A → C) → (B → C) → (A ⊎ B → C)
case f g (inj₁ a) = f a
case f g (inj₂ b) = g b
uncase : (A ⊎ B → C) → (A → C) × (B → C)
uncase f = (λ a → f (inj₁ a)) , λ b → f (inj₂ b)
--case' : (A → C) × (B → C) → (A ⊎ B → C)
--case' = uncurry case
record ⊤ : Set where
constructor tt
open ⊤ public
data ⊥ : Set where
case⊥ : ⊥ → A
case⊥ ()
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : Bool → A → A → A
if true then x else y = x
if false then x else y = y
{- bool logic -}
_&_ : Bool → Bool → Bool
true & y = y
false & y = false
{- ∣ = \mid -}
_∣_ : Bool → Bool → Bool
true ∣ y = true
false ∣ y = y
!_ : Bool → Bool
! true = false
! false = true
_⇒b_ : Bool → Bool → Bool
true ⇒b y = y
false ⇒b y = true
{- prop logic -}
prop = Set
variable
P Q R : prop
infix 3 _∧_
_∧_ : prop → prop → prop
P ∧ Q = P × Q
infix 2 _∨_
_∨_ : prop → prop → prop
P ∨ Q = P ⊎ Q
infixr 1 _⇒_
_⇒_ : prop → prop → prop
P ⇒ Q = P → Q
False : prop
False = ⊥
True : prop
True = ⊤
¬_ : prop → prop
¬ P = P ⇒ False
infix 0 _⇔_
_⇔_ : prop → prop → prop
P ⇔ Q = (P ⇒ Q) ∧ (Q ⇒ P)
efq : False ⇒ P
efq = case⊥
{- classical principles -}
TND : prop → prop
TND P = P ∨ ¬ P
RAA : prop → prop
RAA P = ¬ ¬ P ⇒ P
tnd⇒raa : TND P ⇒ RAA P
tnd⇒raa (inj₁ p) nnp = p
tnd⇒raa (inj₂ np) nnp = efq (nnp np)
nnpnp : ¬ ¬ (P ∨ ¬ P)
nnpnp h = h (inj₂ (λ p → h (inj₁ p)))
raa⇒tnd : RAA (P ∨ ¬ P) ⇒ TND P
raa⇒tnd raa = raa nnpnp
{- natural numbers -}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
infixl 6 _+_
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
infixl 7 _*_
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + m * n
{- Lists -}
infixr 5 _∷_
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A -- \::
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
{- Streams -}
record Stream (A : Set) : Set where
constructor _∷_
coinductive
field
head : A
tail : Stream A
open Stream public
mapS : (A → B) → Stream A → Stream B
head (mapS f as) = f (head as)
tail (mapS f as) = mapS f (tail as)
{- conatural numbers -}
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
record ℕ∞ : Set where
coinductive
field
pred∞ : Maybe ℕ∞
open ℕ∞ public
zero∞ : ℕ∞
pred∞ zero∞ = nothing
suc∞ : ℕ∞ → ℕ∞
pred∞ (suc∞ n) = just n
∞ : ℕ∞
pred∞ ∞ = just ∞
_+∞_ : ℕ∞ → ℕ∞ → ℕ∞
pred∞ (m +∞ n) with pred∞ m
... | nothing = pred∞ n
... | just m' = just (m' +∞ n)
{- Vectors and Fin -}
variable i j k m n : ℕ
data Vec (A : Set) : ℕ → Set where
[] : Vec A 0
_∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n)
_++v_ : Vec A m → Vec A n → Vec A (m + n)
[] ++v ys = ys
(x ∷ xs) ++v ys = x ∷ (xs ++v ys)
data Fin : ℕ → Set where
zero : Fin (suc n)
suc : Fin n → Fin (suc n)
_!!v_ : Vec A n → Fin n → A
(x ∷ xs) !!v zero = x
(x ∷ xs) !!v suc i = xs !!v i
| {
"alphanum_fraction": 0.5115361263,
"avg_line_length": 14.9049773756,
"ext": "agda",
"hexsha": "b61f6d7895659303a226e46cc7d9e7865e165b0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FoxySeta/mgs-2021",
"max_forks_repo_path": "Type Theory/mylib.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FoxySeta/mgs-2021",
"max_issues_repo_path": "Type Theory/mylib.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FoxySeta/mgs-2021",
"max_stars_repo_path": "Type Theory/mylib.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1486,
"size": 3294
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Prelude.Nat where
open import Cubical.Data.Nat.Order public using () renaming
( _<_ to _<ⁿᵗ_
; <-trans to <ⁿ-trans -- TODO: use different version
; _≟_ to _≟ⁿ_
; lt to ltⁿ
; gt to gtⁿ
; eq to eqⁿ
; ¬-<-zero to ¬-<ⁿ-zero
)
open import Data.Nat public using () renaming
( _⊔_ to maxⁿ
; _⊓_ to minⁿ
; _+_ to _+ⁿ_
; _*_ to _·ⁿ_
; pred to predⁿ
)
open import Cubical.Data.Nat public using (suc; zero; ℕ; HasFromNat) renaming
( +-comm to +ⁿ-comm
; +-assoc to +ⁿ-assoc
; *-comm to ·ⁿ-comm
; *-suc to ·ⁿ-suc
; *-assoc to ·ⁿ-assoc
; +-suc to +ⁿ-suc
; *-distribˡ to ·ⁿ-distribˡ
; *-distribʳ to ·ⁿ-distribʳ
; *-identityʳ to ·ⁿ-identityʳ
; *-identityˡ to ·ⁿ-identityˡ
; snotz to snotzⁿ
; injSuc to injSucⁿ
; isSetℕ to is-setⁿ
; inj-m+ to +ⁿ-preserves-≡ˡ
; inj-+m to +ⁿ-preserves-≡ʳ
; inj-sm* to ·ⁿ-reflects-≡ˡ'
; inj-*sm to ·ⁿ-reflects-≡ʳ'
)
open import Number.Instances.Nat as Nat public using () renaming
( bundle to ℕbundle
; _<_ to _<ⁿ_
; 0<suc to 0<ⁿsuc
; ·-nullifiesˡ to ·ⁿ-nullifiesˡ
; ·-nullifiesʳ to ·ⁿ-nullifiesʳ
; <-irrefl to <ⁿ-irrefl
; suc-creates-< to sucⁿ-creates-<ⁿ
; <-cotrans to <ⁿ-cotrans
; ¬suc<0 to ¬suc<ⁿ0
; ·-reflects-< to ·ⁿ-reflects-<ⁿ
; ·-preserves-< to ·ⁿ-preserves-<ⁿ
; +-createsʳ-< to +ⁿ-createsʳ-<ⁿ
; +-createsˡ-< to +ⁿ-createsˡ-<ⁿ
; min-comm to minⁿ-comm
; min-tightˡ to minⁿ-tightˡ
; min-tightʳ to minⁿ-tightʳ
; min-identity to minⁿ-identity
; max-comm to maxⁿ-comm
; max-tightˡ to maxⁿ-tightˡ
; max-tightʳ to maxⁿ-tightʳ
; max-identity to maxⁿ-identity
; MinTrichtotomy to MinTrichtotomyⁿ
; MaxTrichtotomy to MaxTrichtotomyⁿ
; min-trichotomy to minⁿ-trichotomy
; max-trichotomy to maxⁿ-trichotomy
; is-min to is-minⁿ
; is-max to is-maxⁿ
; +-<-ext to +ⁿ-<ⁿ-ext
; ·-reflects-≡ʳ to ·ⁿ-reflects-≡ʳ
; ·-reflects-≡ˡ to ·ⁿ-reflects-≡ˡ
)
open import MorePropAlgebra.Definitions
open import MorePropAlgebra.Structures
open import Number.Structures2
open IsMonoid Nat.+-Monoid public using () renaming (is-identity to +ⁿ-identity)
open IsMonoid Nat.·-Monoid public using () renaming (is-identity to ·ⁿ-identity)
open IsSemiring Nat.is-Semiring public using () renaming (is-dist to is-distⁿ)
open IsStrictLinearOrder Nat.<-StrictLinearOrder public using () renaming (is-tricho to is-trichoⁿ)
-- <-StrictLinearOrder .IsStrictLinearOrder.is-trans a b c = <-trans {a} {b} {c}
| {
"alphanum_fraction": 0.5937047757,
"avg_line_length": 33.7073170732,
"ext": "agda",
"hexsha": "9a43f9819c2756b83cd32fed7fae0743b6e69748",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Prelude/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Prelude/Nat.agda",
"max_line_length": 102,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Prelude/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1127,
"size": 2764
} |
Subsets and Splits