Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Setoids.Extensive where
open import Level
open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_)
open import Function.Equality using (Π)
open import Relation.Binary using (Setoid; Rel)
open import Categories.Category using (Category; _[_,_])
open import Categories.Category.Instance.Setoids
open import Categories.Category.Extensive
open import Categories.Category.Cocartesian
open import Categories.Diagram.Pullback
open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical
open import Categories.Category.Monoidal.Instance.Setoids
open import Data.Sum.Relation.Binary.Pointwise
open import Data.Unit.Polymorphic using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum.Base using ([_,_]′; _⊎_)
open import Function.Equality as SΠ renaming (id to ⟶-id)
open import Data.Product using (∃)
open import Relation.Binary.PropositionalEquality using (_≡_; [_]; inspect)
open Π
module _ ℓ where
private
S = Setoids ℓ ℓ
module S = Category S
open Pullback
Setoids-Extensive : (ℓ : Level) → Extensive (Setoids ℓ ℓ)
Setoids-Extensive ℓ = record
{ cocartesian = record { initial = initial ; coproducts = coproducts }
; pullback₁ = λ f → pullback ℓ ℓ f i₁
; pullback₂ = λ f → pullback ℓ ℓ f i₂
; pullback-of-cp-is-cp = λ {C A B} f → record
{ [_,_] = λ g h → record
{ _⟨$⟩_ = copair-$ f g h
; cong = λ {z z′} → copair-cong f g h z z′
}
; inject₁ = λ {X g h z} eq →
trans (isEquivalence {ℓ} X) (copair-inject₁ f g h z) (cong g eq)
; inject₂ = λ {X g h z} eq →
trans (isEquivalence {ℓ} X) (copair-inject₂ f g h z) (cong h eq)
; unique = λ {X u g h} feq₁ feq₂ {z z′} eq →
trans (isEquivalence {ℓ} X) (copair-unique f g h u z (λ {z} → feq₁ {z}) (λ {z} → feq₂ {z})) (cong u eq)
}
; pullback₁-is-mono = λ _ _ eq x≈y → drop-inj₁ (eq x≈y)
; pullback₂-is-mono = λ _ _ eq x≈y → drop-inj₂ (eq x≈y)
; disjoint = λ {A B} → record
{ commute = λ { {()} _}
; universal = λ {C f g} eq → record
{ _⟨$⟩_ = λ z → conflict A B (f ⟨$⟩ z) (g ⟨$⟩ z) (eq (refl (isEquivalence {ℓ} C)))
; cong = λ z → tt
}
; unique = λ _ _ _ → tt
; p₁∘universal≈h₁ = λ {C h₁ h₂ eq x y} x≈y → conflict A B (h₁ ⟨$⟩ x) (h₂ ⟨$⟩ y) (eq x≈y)
; p₂∘universal≈h₂ = λ {C h₁ h₂ eq x y} x≈y → conflict A B (h₁ ⟨$⟩ x) (h₂ ⟨$⟩ y) (eq x≈y)
}
}
where
open Cocartesian (Setoids-Cocartesian {ℓ} {ℓ})
open Relation.Binary.IsEquivalence
open import Data.Sum using (inj₁; inj₂)
open Setoid renaming (_≈_ to [_][_≈_]; Carrier to ∣_∣) using (isEquivalence)
-- must be in the standard library. Maybe it is?
conflict : ∀ {ℓ ℓ' ℓ''} (X Y : Setoid ℓ ℓ') {Z : Set ℓ''}
(x : ∣ X ∣) (y : ∣ Y ∣) → [ ⊎-setoid X Y ][ inj₁ x ≈ inj₂ y ] → Z
conflict X Y x y ()
module Diagram {A B C X : Setoid ℓ ℓ} (f : C ⟶ ⊎-setoid A B)
(g : P (pullback ℓ ℓ f i₁) ⟶ X) (h : P (pullback ℓ ℓ f i₂) ⟶ X) where
private
A⊎B = ⊎-setoid A B
A′ = P (pullback ℓ ℓ f i₁)
B′ = P (pullback ℓ ℓ f i₂)
refl-A = refl (isEquivalence A)
refl-B = refl (isEquivalence B)
refl-C = refl (isEquivalence C)
refl-A⊎B = refl (isEquivalence A⊎B)
reflexive-A⊎B = reflexive (isEquivalence A⊎B)
sym-A = sym (isEquivalence A)
sym-B = sym (isEquivalence B)
sym-C = sym (isEquivalence C)
sym-X = sym (isEquivalence X)
sym-A⊎B = sym (isEquivalence A⊎B)
trans-X = trans (isEquivalence X)
trans-A⊎B = trans (isEquivalence A⊎B)
-- copairing of g : A′ → X and h : B′ → X, resulting in C → X
copair-$ : ∣ C ∣ → ∣ X ∣
copair-$ z with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z
... | inj₁ x | [ eq ] = g ⟨$⟩ record { elem₁ = z ; elem₂ = x ; commute = reflexive-A⊎B eq }
... | inj₂ y | [ eq ] = h ⟨$⟩ record { elem₁ = z ; elem₂ = y ; commute = reflexive-A⊎B eq }
-- somewhat roundabout way to expand the definition of copair-$ z if f ⟨$⟩ z ≈ inj₁ x,
-- in order to circumwent the pitfalls of the with-abstraction
copair-$-i₁ : (x : ∣ A ∣) (z : ∣ C ∣) → (eq : [ A⊎B ][ f ⟨$⟩ z ≈ inj₁ x ]) →
∃ (λ v → [ X ][ copair-$ z ≈ g ⟨$⟩ v ] ×
[ C ][ FiberProduct.elem₁ v ≈ z ] ×
[ A ][ FiberProduct.elem₂ v ≈ x ])
copair-$-i₁ x z eq with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z
... | inj₁ x′ | [ eq′ ] =
record { elem₁ = z ; elem₂ = x′ ; commute = reflexive-A⊎B eq′}
, cong g (refl-C , refl-A)
, refl-C
, drop-inj₁ eq
-- same for f ⟨$⟩ z ≈ inj₂ y
copair-$-i₂ : (y : ∣ B ∣) (z : ∣ C ∣) → (eq : [ A⊎B ][ f ⟨$⟩ z ≈ inj₂ y ]) →
∃ (λ v → [ X ][ copair-$ z ≈ h ⟨$⟩ v ] × [ C ][ FiberProduct.elem₁ v ≈ z ] × [ B ][ FiberProduct.elem₂ v ≈ y ])
copair-$-i₂ y z eq with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z
... | inj₂ y′ | [ eq′ ] =
record { elem₁ = z ; elem₂ = y′ ; commute = reflexive-A⊎B eq′}
, cong h (refl-C , refl-B)
, refl-C
, drop-inj₂ eq
case-f⟨$⟩z : (z : ∣ C ∣) → (∃ λ x → [ A⊎B ][ f ⟨$⟩ z ≈ inj₁ x ]) ⊎ (∃ λ y → [ A⊎B ][ f ⟨$⟩ z ≈ inj₂ y ])
case-f⟨$⟩z z with (f ⟨$⟩ z)
... | inj₁ x = inj₁ (x , refl-A⊎B)
... | inj₂ y = inj₂ (y , refl-A⊎B)
copair-cong : (z z′ : ∣ C ∣) → (z≈z′ : [ C ][ z ≈ z′ ]) → [ X ][ copair-$ z ≈ copair-$ z′ ]
copair-cong z z′ z≈z′ with (f ⟨$⟩ z) | inspect (_⟨$⟩_ f) z | (f ⟨$⟩ z′) | inspect (_⟨$⟩_ f) z′
... | inj₁ x | [ eq ] | inj₁ x′ | [ eq′ ] = cong g
(z≈z′ , drop-inj₁ (trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′))))
... | inj₁ x | [ eq ] | inj₂ y | [ eq′ ] = conflict A B x y
(trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′)))
... | inj₂ y | [ eq ] | inj₁ x | [ eq′ ] = conflict A B x y
(trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq′)) (trans-A⊎B (cong f (sym-C z≈z′)) (reflexive-A⊎B eq)))
... | inj₂ y | [ eq ] | inj₂ y′ | [ eq′ ] = cong h (z≈z′ , drop-inj₂
(trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′))))
copair-inject₁ : (z : FiberProduct f i₁) → [ X ][ copair-$ (FiberProduct.elem₁ z) ≈ g ⟨$⟩ z ]
copair-inject₁ record { elem₁ = z ; elem₂ = x ; commute = eq } with case-f⟨$⟩z z
... | inj₁ _ with copair-$-i₁ x z eq
... | _ , eq₁ , eq₂ , eq₃ = trans-X eq₁ (cong g (eq₂ , eq₃))
copair-inject₁ record { elem₁ = z ; elem₂ = x ; commute = eq } | inj₂ (y , eq′) =
conflict A B x y (trans-A⊎B (sym-A⊎B eq) eq′)
copair-inject₂ : (z : FiberProduct f i₂) → [ X ][ copair-$ (FiberProduct.elem₁ z) ≈ h ⟨$⟩ z ]
copair-inject₂ record { elem₁ = z ; elem₂ = y ; commute = eq } with case-f⟨$⟩z z
... | inj₂ _ with copair-$-i₂ y z eq
... | _ , eq₁ , eq₂ , eq₃ = trans-X eq₁ (cong h (eq₂ , eq₃))
copair-inject₂ record { elem₁ = z ; elem₂ = y ; commute = eq } | inj₁ (x , eq′) =
conflict A B x y (trans-A⊎B (sym-A⊎B eq′) eq)
copair-unique : (u : C ⟶ X) (z : ∣ C ∣) →
[ A′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₁) ≈ g ] →
[ B′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₂) ≈ h ] →
[ X ][ copair-$ z ≈ u ⟨$⟩ z ]
copair-unique u z feq₁ feq₂ with case-f⟨$⟩z z
... | inj₁ (x , eq) with copair-$-i₁ x z eq
... | z′ , eq₁ , eq₂ , _ = trans-X eq₁ (trans-X (sym-X (feq₁{z′} (refl-C , refl-A))) (cong u eq₂))
copair-unique u z feq₁ feq₂ | inj₂ (y , eq) with copair-$-i₂ y z eq
... | z′ , eq₁ , eq₂ , _ = trans-X eq₁ (trans-X (sym-X (feq₂{z′} (refl-C , refl-B))) (cong u eq₂))
open Diagram
| {
"alphanum_fraction": 0.4873486029,
"avg_line_length": 49.3431952663,
"ext": "agda",
"hexsha": "526aaadd7f8052db42893b783e583cecb8cb3ad4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sergey-goncharov/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sergey-goncharov/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sergey-goncharov/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3128,
"size": 8339
} |
{-# OPTIONS --safe --erased-cubical #-}
module Erased-cubical where
-- Modules that use --cubical can be imported.
open import Erased-cubical.Cubical-again
-- Code from such modules that was originally defined in modules using
-- --without-K or --erased-cubical can be used without restrictions.
_ : {A : Set} → A → ∥ A ∥
_ = ∣_∣
_ : D
_ = c
-- Matching on an erased constructor that was defined in a module that
-- uses --cubical is fine, and makes it possible to use erased
-- definitions in the right-hand side.
f : D′ → D′
f c′ = c′
| {
"alphanum_fraction": 0.6880733945,
"avg_line_length": 22.7083333333,
"ext": "agda",
"hexsha": "ebb993282328303e0f6384483c0788f585987028",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 160,
"size": 545
} |
module Data.Finitude.Properties where
open import Data.Fin as Fin using (Fin; #_ )
open import Data.Fin.Properties hiding (decSetoid)
open import Relation.Nullary
open import Relation.Unary
open import Relation.Binary renaming (Decidable to Dec₂) hiding (Irrelevant)
open import Relation.Binary.PropositionalEquality as P hiding (decSetoid; isEquivalence)
open import Data.Finitude
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Inverse as Inv using (Inverse)
open import Data.Nat as ℕ hiding (_≟_)
import Level
finitude→≡ : ∀ {n m} → Finitude (P.setoid (Fin n)) m → n ≡ m
finitude→≡ fin = ⇒Fin∼Fin fin
where
open import Data.Fin.PigeonHole
dec-≈ : ∀ {a ℓ n}{S : Setoid a ℓ} → Finitude S n → Dec₂ (Setoid._≈_ S)
dec-≈ {S = S} fin x y with (Inverse.to fin ⟨$⟩ x) ≟ (Inverse.to fin ⟨$⟩ y)
dec-≈ {S = S} fin x y | yes fx≡fy = yes (Inverse.injective fin fx≡fy)
dec-≈ {S = S} fin x y | no fx≢fy = no (λ x≈y → fx≢fy (F.cong (Inverse.to fin) x≈y))
decSetoid : ∀ {a ℓ n}{S : Setoid a ℓ} → Finitude S n → DecSetoid a ℓ
decSetoid {S = S} fin = record {
isDecEquivalence = record {
_≟_ = dec-≈ fin
; isEquivalence = isEquivalence
}
}
where open Setoid S
same-size↔ : ∀ {n a₁ a₂ ℓ₁ ℓ₂}{A₁ : Setoid a₁ ℓ₁}{A₂ : Setoid a₂ ℓ₂} → Finitude A₁ n → Finitude A₂ n → Inverse A₁ A₂
same-size↔ fin₁ fin₂ = Inv.sym fin₂ Inv.∘ fin₁
size-unique : ∀ {a ℓ} {A : Setoid a ℓ} {n m} → Finitude A n → Finitude A m → n ≡ m
size-unique finN finM = finitude→≡ (finM Inv.∘ Inv.sym finN)
{-
open import Data.Empty
open import Data.Unit
Irr : ∀ {a ℓ}(S : Setoid a ℓ) → Set (a Level.⊔ ℓ)
Irr S = ∀ x y → x ≈ y
where
open Setoid S
⊥-Irr : Irrelevant ⊥
⊥-Irr = λ ()
⊤-Irr : Irrelevant ⊤
⊤-Irr = λ _ _ → P.refl
Irr-finitude : ∀ {a ℓ n}{S : Set a} → Irrelevant S → Finitude (P.setoid S) n → n ℕ.≤ 1
Irr-finitude {n = ℕ.zero} irr fin = z≤n
Irr-finitude {n = ℕ.suc ℕ.zero} irr fin = s≤s z≤n
Irr-finitude {n = ℕ.suc (ℕ.suc n)}{S} irr fin = ⊥-elim contra
where
open Setoid S
x₀ = Inverse.from fin ⟨$⟩ # 0
x₁ = Inverse.from fin ⟨$⟩ # 1
contra : ⊥
contra with Inverse.injective (Inv.sym fin) (irr x₀ x₁)
... | ()
-}
| {
"alphanum_fraction": 0.6182144459,
"avg_line_length": 32.7794117647,
"ext": "agda",
"hexsha": "500fdcdef7b5ace5354ce30c3b68a6b93a2c0469",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Finitude/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Finitude/Properties.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Finitude/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 876,
"size": 2229
} |
-- Andreas, 2016-10-03, re issue #2231
-- Testing whether the musical coinduction works fine in abstract blocks
{-# OPTIONS --guardedness #-}
module AbstractCoinduction where
{-# BUILTIN INFINITY ∞_ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
infixr 5 _≺_
abstract
------------------------------------------------------------------------
-- Streams
data Stream (A : Set) : Set where
_≺_ : (x : A) (xs : ∞ (Stream A)) -> Stream A
head : ∀ {A} -> Stream A -> A
head (x ≺ xs) = x
tail : ∀ {A} -> Stream A -> Stream A
tail (x ≺ xs) = ♭ xs
------------------------------------------------------------------------
-- Stream programs
infix 8 _∞
infixr 5 _⋎_
infix 4 ↓_
mutual
data Stream′ (A : Set) : Set1 where
_≺_ : (x : A) (xs : ∞ (StreamProg A)) -> Stream′ A
data StreamProg (A : Set) : Set1 where
↓_ : (xs : Stream′ A) -> StreamProg A
_∞' : (x : A) -> StreamProg A
_⋎'_ : (xs ys : StreamProg A) -> StreamProg A
_∞ : ∀ {A : Set} (x : A) -> StreamProg A
_∞ = _∞'
_⋎_ : ∀ {A : Set} (xs ys : StreamProg A) -> StreamProg A
_⋎_ = _⋎'_
head′ : ∀ {A} → Stream′ A → A
head′ (x ≺ xs) = x
tail′ : ∀ {A} → Stream′ A → StreamProg A
tail′ (x ≺ xs) = ♭ xs
P⇒′ : ∀ {A} -> StreamProg A -> Stream′ A
P⇒′ (↓ xs) = xs
P⇒′ (x ∞') = x ≺ ♯ (x ∞)
P⇒′ (xs ⋎' ys) with P⇒′ xs
P⇒′ (xs ⋎' ys) | xs′ = head′ xs′ ≺ ♯ (ys ⋎ tail′ xs′)
mutual
′⇒ : ∀ {A} -> Stream′ A -> Stream A
′⇒ (x ≺ xs) = x ≺ ♯ P⇒ (♭ xs)
P⇒ : ∀ {A} -> StreamProg A -> Stream A
P⇒ xs = ′⇒ (P⇒′ xs)
------------------------------------------------------------------------
-- Stream equality
infix 4 _≡_ _≈_ _≊_
data _≡_ {a : Set} (x : a) : a -> Set where
≡-refl : x ≡ x
data _≈_ {A} (xs ys : Stream A) : Set where
_≺_ : (x≡ : head xs ≡ head ys) (xs≈ : ∞ (tail xs ≈ tail ys)) ->
xs ≈ ys
_≊_ : ∀ {A} (xs ys : StreamProg A) -> Set
xs ≊ ys = P⇒ xs ≈ P⇒ ys
foo : ∀ {A : Set} (x : A) -> x ∞ ⋎ x ∞ ≊ x ∞
foo x = ≡-refl ≺ ♯ foo x
-- The first goal has goal type
-- head (′⇒ (x ≺ x ∞ ⋎ x ∞)) ≡ head (′⇒ (x ≺ x ∞)).
-- The normal form of the left-hand side is x, and the normal form of
-- the right-hand side is x (both according to Agda), but ≡-refl is
-- not accepted by the type checker:
-- x != head (′⇒ (P⇒′ (x ∞))) of type .A
-- when checking that the expression ≡-refl has type
-- (head (P⇒ (x ∞ ⋎ x ∞)) ≡ head (P⇒ (x ∞)))
| {
"alphanum_fraction": 0.4392900363,
"avg_line_length": 25.2959183673,
"ext": "agda",
"hexsha": "ff20da98867b086ce09b436b3b5996190e8f07e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "caryoscelus/agda",
"max_forks_repo_path": "test/Succeed/AbstractCoinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "caryoscelus/agda",
"max_issues_repo_path": "test/Succeed/AbstractCoinduction.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "caryoscelus/agda",
"max_stars_repo_path": "test/Succeed/AbstractCoinduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1030,
"size": 2479
} |
module HasVacuousDischarge where
open import OscarPrelude
open import HasNegation
open import HasSubstantiveDischarge
record HasVacuousDischarge (A : Set) : Set₁
where
field
⦃ hasNegation ⦄ : HasNegation A
⦃ hasSubstantiveDischarge ⦄ : HasSubstantiveDischarge A A
◁_ : List A → Set
◁ +s = ∃ λ (s : A) → +s ≽ s × +s ≽ ~ s
⋪_ : List A → Set
⋪_ = ¬_ ∘ ◁_
open HasVacuousDischarge ⦃ … ⦄ public
{-# DISPLAY HasVacuousDischarge.◁_ _ = ◁_ #-}
{-# DISPLAY HasVacuousDischarge.⋪_ _ = ⋪_ #-}
| {
"alphanum_fraction": 0.6614173228,
"avg_line_length": 21.1666666667,
"ext": "agda",
"hexsha": "8768b9fe273b357971a416d17fabb522dac40af7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/HasVacuousDischarge.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/HasVacuousDischarge.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/HasVacuousDischarge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 202,
"size": 508
} |
------------------------------------------------------------------------
-- A simplification of Hinze.Section3
------------------------------------------------------------------------
module Hinze.Simplified.Section3 where
open import Stream.Programs
open import Stream.Equality
open import Stream.Pointwise
open import Hinze.Simplified.Section2-4
open import Hinze.Lemmas
open import Codata.Musical.Notation hiding (∞)
open import Data.Product
open import Data.Bool
open import Data.Vec hiding (_⋎_)
open import Data.Nat renaming (suc to 1+)
import Data.Nat.Properties as Nat
import Relation.Binary.PropositionalEquality as P
open import Algebra.Structures
private
module CS = IsCommutativeSemiring Nat.+-*-isCommutativeSemiring
------------------------------------------------------------------------
-- Abbreviations
2^ : ℕ → ℕ
2^ n = 2 ^ n
2*2^ : ℕ → ℕ
2*2^ n = 2 * 2 ^ n
------------------------------------------------------------------------
-- Definitions
pot : Prog Bool
pot = true ≺ ♯ (pot ⋎ false ∞)
msb : Prog ℕ
msb = 1 ≺ ♯ (2* · msb ⋎ 2* · msb)
ones′ : Prog ℕ
ones′ = 1 ≺ ♯ (ones′ ⋎ 1+ · ones′)
ones : Prog ℕ
ones = 0 ≺♯ ones′
carry : Prog ℕ
carry = 0 ≺ ♯ (1+ · carry ⋎ 0 ∞)
carry-folded : carry ≊ 0 ∞ ⋎ 1+ · carry
carry-folded = carry ∎
turn-length : ℕ → ℕ
turn-length 0 = 0
turn-length (1+ n) = ℓ + 1+ ℓ
where ℓ = turn-length n
turn : (n : ℕ) → Vec ℕ (turn-length n)
turn 0 = []
turn (1+ n) = turn n ++ [ n ] ++ turn n
tree : ℕ → Prog ℕ
tree n = n ≺ ♯ (turn n ≺≺ tree (1+ n))
frac : Prog ℕ
frac = 0 ≺ ♯ (frac ⋎ 1+ · nat)
frac-folded : frac ≊ nat ⋎ frac
frac-folded = frac ∎
god : Prog ℕ
god = 1+2* · frac
------------------------------------------------------------------------
-- Laws and properties
carry-god-nat : 2^ · carry ⟨ _*_ ⟩ god ≊ tailP nat
carry-god-nat =
2^ · carry ⟨ _*_ ⟩ god
≊⟨ ⟨ _*_ ⟩-cong (2^ · carry) (1 ∞ ⋎ 2* · 2^ · carry) lemma
god (1+2* · nat ⋎ god) (≅-sym (⋎-map 1+2* nat frac)) ⟩
(1 ∞ ⋎ 2* · 2^ · carry)
⟨ _*_ ⟩
(1+2* · nat ⋎ god)
≊⟨ ≅-sym (abide-law _*_ (1 ∞) (1+2* · nat) (2* · 2^ · carry) god) ⟩
1 ∞ ⟨ _*_ ⟩ 1+2* · nat
⋎
2* · 2^ · carry ⟨ _*_ ⟩ god
≊⟨ ⋎-cong (1 ∞ ⟨ _*_ ⟩ 1+2* · nat) (1+2* · nat)
(pointwise 1 (λ s → 1 ∞ ⟨ _*_ ⟩ s) (λ s → s)
(λ n → proj₁ CS.*-identity n) (1+2* · nat))
(2* · 2^ · carry ⟨ _*_ ⟩ god) (2* · (2^ · carry ⟨ _*_ ⟩ god))
(pointwise 2 (λ s t → 2* · s ⟨ _*_ ⟩ t)
(λ s t → 2* · (s ⟨ _*_ ⟩ t))
(CS.*-assoc 2) (2^ · carry) god) ⟩
1+2* · nat
⋎
2* · (2^ · carry ⟨ _*_ ⟩ god)
≊⟨ P.refl ≺ coih ⟩
1+2* · nat ⋎ 2* · tailP nat
≊⟨ ≅-sym (tailP-cong nat (2* · nat ⋎ 1+2* · nat) nat-lemma₂) ⟩
tailP nat
∎
where
coih = ♯ ⋎-cong (2* · (2^ · carry ⟨ _*_ ⟩ god)) (2* · tailP nat)
(·-cong 2* (2^ · carry ⟨ _*_ ⟩ god) (tailP nat)
carry-god-nat)
(tailP (1+2* · nat)) (tailP (1+2* · nat)) (tailP (1+2* · nat) ∎)
lemma =
2^ · carry
≡⟨ P.refl ⟩
2^ · (0 ∞ ⋎ 1+ · carry)
≊⟨ ≅-sym (⋎-map 2^ (0 ∞) (1+ · carry)) ⟩
2^ · 0 ∞ ⋎ 2^ · 1+ · carry
≊⟨ ⋎-cong (2^ · 0 ∞) (1 ∞)
(pointwise 0 (2^ · 0 ∞) (1 ∞) P.refl)
(2^ · 1+ · carry) (2* · 2^ · carry)
(pointwise 1 (λ s → 2^ · 1+ · s)
(λ s → 2* · 2^ · s)
(λ _ → P.refl) carry) ⟩
(1 ∞ ⋎ 2* · 2^ · carry)
∎
| {
"alphanum_fraction": 0.3566818073,
"avg_line_length": 33.464,
"ext": "agda",
"hexsha": "87661fe778e4fb2c9d6c4687e7978ff85a617a10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Hinze/Simplified/Section3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Hinze/Simplified/Section3.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Hinze/Simplified/Section3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1411,
"size": 4183
} |
module Luau.Syntax.FromJSON where
open import Luau.Syntax using (Block; Stat ; Expr; nil; _$_; var; var_∈_; function_is_end; _⟨_⟩; local_←_; return; done; _∙_; maybe; VarDec; number; binexp; BinaryOperator; +; -; *; /)
open import Luau.Type.FromJSON using (typeFromJSON)
open import Agda.Builtin.List using (List; _∷_; [])
open import FFI.Data.Aeson using (Value; Array; Object; object; array; string; fromString; lookup)
open import FFI.Data.Bool using (true; false)
open import FFI.Data.Either using (Either; Left; Right)
open import FFI.Data.Maybe using (Maybe; nothing; just)
open import FFI.Data.Scientific using (toFloat)
open import FFI.Data.String using (String; _++_)
open import FFI.Data.Vector using (head; tail; null; empty)
args = fromString "args"
body = fromString "body"
func = fromString "func"
lokal = fromString "local"
list = fromString "list"
name = fromString "name"
type = fromString "type"
value = fromString "value"
values = fromString "values"
vars = fromString "vars"
op = fromString "op"
left = fromString "left"
right = fromString "right"
data Lookup : Set where
_,_ : String → Value → Lookup
nil : Lookup
lookupIn : List String → Object → Lookup
lookupIn [] obj = nil
lookupIn (key ∷ keys) obj with lookup (fromString key) obj
lookupIn (key ∷ keys) obj | nothing = lookupIn keys obj
lookupIn (key ∷ keys) obj | just value = (key , value)
binOpFromJSON : Value → Either String BinaryOperator
binOpFromString : String → Either String BinaryOperator
varDecFromJSON : Value → Either String (VarDec maybe)
varDecFromObject : Object → Either String (VarDec maybe)
exprFromJSON : Value → Either String (Expr maybe)
exprFromObject : Object → Either String (Expr maybe)
statFromJSON : Value → Either String (Stat maybe)
statFromObject : Object → Either String (Stat maybe)
blockFromJSON : Value → Either String (Block maybe)
blockFromArray : Array → Either String (Block maybe)
binOpFromJSON (string s) = binOpFromString s
binOpFromJSON val = Left "Binary operator not a string"
binOpFromString "Add" = Right +
binOpFromString "Sub" = Right -
binOpFromString "Mul" = Right *
binOpFromString "Div" = Right /
binOpFromString s = Left ("'" ++ s ++ "' is not a valid operator")
varDecFromJSON (object arg) = varDecFromObject arg
varDecFromJSON val = Left "VarDec not an object"
varDecFromObject obj with lookup name obj | lookup type obj
varDecFromObject obj | just (string name) | nothing = Right (var name)
varDecFromObject obj | just (string name) | just Value.null = Right (var name)
varDecFromObject obj | just (string name) | just tyValue with typeFromJSON tyValue
varDecFromObject obj | just (string name) | just tyValue | Right ty = Right (var name ∈ ty)
varDecFromObject obj | just (string name) | just tyValue | Left err = Left err
varDecFromObject obj | just _ | _ = Left "AstLocal name is not a string"
varDecFromObject obj | nothing | _ = Left "AstLocal missing name"
exprFromJSON (object obj) = exprFromObject obj
exprFromJSON val = Left "AstExpr not an object"
exprFromObject obj with lookup type obj
exprFromObject obj | just (string "AstExprCall") with lookup func obj | lookup args obj
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) with head arr
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 with exprFromJSON value | exprFromJSON value2
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | Right fun | Right arg = Right (fun $ arg)
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | Left err | _ = Left err
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | _ | Left err = Left err
exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | nothing = Left ("AstExprCall empty args")
exprFromObject obj | just (string "AstExprCall") | just value | just _ = Left ("AstExprCall args not an array")
exprFromObject obj | just (string "AstExprCall") | nothing | _ = Left ("AstExprCall missing func")
exprFromObject obj | just (string "AstExprCall") | _ | nothing = Left ("AstExprCall missing args")
exprFromObject obj | just (string "AstExprConstantNil") = Right nil
exprFromObject obj | just (string "AstExprFunction") with lookup args obj | lookup body obj
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue with head arr | blockFromJSON blockValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B with varDecFromJSON argValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B | Right arg = Right (function "" ⟨ arg ⟩ is B end)
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | nothing | Right B = Left "Unsupported AstExprFunction empty args"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | _ | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just _ | just _ = Left "AstExprFunction args not an array"
exprFromObject obj | just (string "AstExprFunction") | nothing | _ = Left "AstExprFunction missing args"
exprFromObject obj | just (string "AstExprFunction") | _ | nothing = Left "AstExprFunction missing body"
exprFromObject obj | just (string "AstExprLocal") with lookup lokal obj
exprFromObject obj | just (string "AstExprLocal") | just x with varDecFromJSON x
exprFromObject obj | just (string "AstExprLocal") | just x | Right x′ = Right (var (Luau.Syntax.name x′))
exprFromObject obj | just (string "AstExprLocal") | just x | Left err = Left err
exprFromObject obj | just (string "AstExprLocal") | nothing = Left "AstExprLocal missing local"
exprFromObject obj | just (string "AstExprConstantNumber") with lookup value obj
exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (number (toFloat x))
exprFromObject obj | just (string "AstExprConstantNumber") | just _ = Left "AstExprConstantNumber value is not a number"
exprFromObject obj | just (string "AstExprConstantNumber") | nothing = Left "AstExprConstantNumber missing value"
exprFromObject obj | just (string "AstExprBinary") with lookup op obj | lookup left obj | lookup right obj
exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r with binOpFromJSON o | exprFromJSON l | exprFromJSON r
exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | Right o′ | Right l′ | Right r′ = Right (binexp l′ o′ r′)
exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | Left err | _ | _ = Left err
exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | _ | Left err | _ = Left err
exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | _ | _ | Left err = Left err
exprFromObject obj | just (string "AstExprBinary") | nothing | _ | _ = Left "Missing 'op' in AstExprBinary"
exprFromObject obj | just (string "AstExprBinary") | _ | nothing | _ = Left "Missing 'left' in AstExprBinary"
exprFromObject obj | just (string "AstExprBinary") | _ | _ | nothing = Left "Missing 'right' in AstExprBinary"
exprFromObject obj | just (string ty) = Left ("TODO: Unsupported AstExpr " ++ ty)
exprFromObject obj | just _ = Left "AstExpr type not a string"
exprFromObject obj | nothing = Left "AstExpr missing type"
{-# NON_TERMINATING #-}
statFromJSON (object obj) = statFromObject obj
statFromJSON _ = Left "AstStat not an object"
statFromObject obj with lookup type obj
statFromObject obj | just(string "AstStatLocal") with lookup vars obj | lookup values obj
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) with head(arr1) | head(arr2)
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) with varDecFromJSON(x) | exprFromJSON(value)
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | Right x′ | Right M = Right (local x′ ← M)
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | Left err | _ = Left err
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | _ | Left err = Left err
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | nothing = Left "AstStatLocal empty values"
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | nothing | _ = Left "AstStatLocal empty vars"
statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(_) = Left "AstStatLocal values not an array"
statFromObject obj | just(string "AstStatLocal") | just(_) | just(_) = Left "AstStatLocal vars not an array"
statFromObject obj | just(string "AstStatLocal") | just(_) | nothing = Left "AstStatLocal missing values"
statFromObject obj | just(string "AstStatLocal") | nothing | _ = Left "AstStatLocal missing vars"
statFromObject obj | just(string "AstStatLocalFunction") with lookup name obj | lookup func obj
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value with varDecFromJSON fnName | exprFromJSON value
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Right fnVar | Right (function "" ⟨ x ⟩ is B end) = Right (function (Luau.Syntax.name fnVar) ⟨ x ⟩ is B end)
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Left err | _ = Left err
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | _ | Left err = Left err
statFromObject obj | just(string "AstStatLocalFunction") | just _ | just _ | Right _ | Right _ = Left "AstStatLocalFunction func is not an AstExprFunction"
statFromObject obj | just(string "AstStatLocalFunction") | nothing | _ = Left "AstStatFunction missing name"
statFromObject obj | just(string "AstStatLocalFunction") | _ | nothing = Left "AstStatFunction missing func"
statFromObject obj | just(string "AstStatReturn") with lookup list obj
statFromObject obj | just(string "AstStatReturn") | just(array arr) with head arr
statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value with exprFromJSON value
statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value | Right M = Right (return M)
statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value | Left err = Left err
statFromObject obj | just(string "AstStatReturn") | just(array arr) | nothing = Left "AstStatReturn empty list"
statFromObject obj | just(string "AstStatReturn") | just(_) = Left "AstStatReturn list not an array"
statFromObject obj | just(string "AstStatReturn") | nothing = Left "AstStatReturn missing list"
statFromObject obj | just (string ty) = Left ("TODO: Unsupported AstStat " ++ ty)
statFromObject obj | just _ = Left "AstStat type not a string"
statFromObject obj | nothing = Left "AstStat missing type"
blockFromJSON (array arr) = blockFromArray arr
blockFromJSON (object obj) with lookup type obj | lookup body obj
blockFromJSON (object obj) | just (string "AstStatBlock") | just value = blockFromJSON value
blockFromJSON (object obj) | just (string "AstStatBlock") | nothing = Left "AstStatBlock missing body"
blockFromJSON (object obj) | just (string ty) | _ = Left ("Unsupported AstBlock " ++ ty)
blockFromJSON (object obj) | just _ | _ = Left "AstStatBlock type not a string"
blockFromJSON (object obj) | nothing | _ = Left "AstStatBlock missing type"
blockFromJSON _ = Left "AstBlock not an array or AstStatBlock object"
blockFromArray arr with head arr
blockFromArray arr | nothing = Right done
blockFromArray arr | just value with statFromJSON value
blockFromArray arr | just value | Left err = Left err
blockFromArray arr | just value | Right S with blockFromArray(tail arr)
blockFromArray arr | just value | Right S | Left err = Left (err)
blockFromArray arr | just value | Right S | Right B = Right (S ∙ B)
| {
"alphanum_fraction": 0.7401817592,
"avg_line_length": 71.6511627907,
"ext": "agda",
"hexsha": "a2c9a42fb588ab0e873c3117f1764f4fc234ab18",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/Syntax/FromJSON.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/Syntax/FromJSON.agda",
"max_line_length": 193,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/Syntax/FromJSON.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3301,
"size": 12324
} |
------------------------------------------------------------------------
-- Some properties imply others
------------------------------------------------------------------------
module Relation.Binary.Consequences where
open import Relation.Binary.Core hiding (refl)
open import Relation.Nullary.Core
open import Relation.Binary.PropositionalEquality.Core
open import Data.Function
open import Data.Sum
open import Data.Product
open import Data.Empty
-- Some of the definitions can be found in the following module:
open import Relation.Binary.Consequences.Core public
trans∧irr⟶asym :
∀ {a} → {≈ < : Rel a} →
Reflexive ≈ →
Transitive < → Irreflexive ≈ < → Asymmetric <
trans∧irr⟶asym refl trans irrefl = λ x<y y<x →
irrefl refl (trans x<y y<x)
irr∧antisym⟶asym :
∀ {a} → {≈ < : Rel a} →
Irreflexive ≈ < → Antisymmetric ≈ < → Asymmetric <
irr∧antisym⟶asym irrefl antisym = λ x<y y<x →
irrefl (antisym x<y y<x) x<y
asym⟶antisym :
∀ {a} → {≈ < : Rel a} →
Asymmetric < → Antisymmetric ≈ <
asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x)
asym⟶irr :
∀ {a} → {≈ < : Rel a} →
< Respects₂ ≈ → Symmetric ≈ →
Asymmetric < → Irreflexive ≈ <
asym⟶irr {< = _<_} resp sym asym {x} {y} x≈y x<y = asym x<y y<x
where
y<y : y < y
y<y = proj₂ resp x≈y x<y
y<x : y < x
y<x = proj₁ resp (sym x≈y) y<y
total⟶refl :
∀ {a} → {≈ ∼ : Rel a} →
∼ Respects₂ ≈ → Symmetric ≈ →
Total ∼ → ≈ ⇒ ∼
total⟶refl {≈ = ≈} {∼ = ∼} resp sym total = refl
where
refl : ≈ ⇒ ∼
refl {x} {y} x≈y with total x y
... | inj₁ x∼y = x∼y
... | inj₂ y∼x =
proj₁ resp x≈y (proj₂ resp (sym x≈y) y∼x)
total+dec⟶dec :
∀ {a} → {≈ ≤ : Rel a} →
≈ ⇒ ≤ → Antisymmetric ≈ ≤ →
Total ≤ → Decidable ≈ → Decidable ≤
total+dec⟶dec {≈ = ≈} {≤ = ≤} refl antisym total _≟_ = dec
where
dec : Decidable ≤
dec x y with total x y
... | inj₁ x≤y = yes x≤y
... | inj₂ y≤x with x ≟ y
... | yes x≈y = yes (refl x≈y)
... | no ¬x≈y = no (λ x≤y → ¬x≈y (antisym x≤y y≤x))
tri⟶asym :
∀ {a} → {≈ < : Rel a} →
Trichotomous ≈ < → Asymmetric <
tri⟶asym tri {x} {y} x<y x>y with tri x y
... | tri< _ _ x≯y = x≯y x>y
... | tri≈ _ _ x≯y = x≯y x>y
... | tri> x≮y _ _ = x≮y x<y
tri⟶irr :
∀ {a} → {≈ < : Rel a} →
< Respects₂ ≈ → Symmetric ≈ →
Trichotomous ≈ < → Irreflexive ≈ <
tri⟶irr resp sym tri = asym⟶irr resp sym (tri⟶asym tri)
tri⟶dec≈ :
∀ {a} → {≈ < : Rel a} →
Trichotomous ≈ < → Decidable ≈
tri⟶dec≈ compare x y with compare x y
... | tri< _ x≉y _ = no x≉y
... | tri≈ _ x≈y _ = yes x≈y
... | tri> _ x≉y _ = no x≉y
tri⟶dec< :
∀ {a} → {≈ < : Rel a} →
Trichotomous ≈ < → Decidable <
tri⟶dec< compare x y with compare x y
... | tri< x<y _ _ = yes x<y
... | tri≈ x≮y _ _ = no x≮y
... | tri> x≮y _ _ = no x≮y
subst⟶cong :
{≈ : ∀ {a} → Rel a} →
(∀ {a} → Reflexive {a} ≈) →
(∀ {a} → Substitutive {a} ≈) →
Congruential ≈
subst⟶cong {≈ = _≈_} refl subst f {x} x≈y =
subst (λ y → f x ≈ f y) x≈y refl
cong+trans⟶cong₂ :
{≈ : ∀ {a} → Rel a} →
Congruential ≈ → (∀ {a} → Transitive {a} ≈) →
Congruential₂ ≈
cong+trans⟶cong₂ cong trans f {x = x} {v = v} x≈y u≈v =
cong (f x) u≈v ⟨ trans ⟩ cong (flip f v) x≈y
map-NonEmpty : ∀ {I} {P Q : Rel I} →
P ⇒ Q → NonEmpty P → NonEmpty Q
map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))
| {
"alphanum_fraction": 0.5203742831,
"avg_line_length": 27.3801652893,
"ext": "agda",
"hexsha": "dc864e727832d05fa81fcda58808b3c5350429c8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Consequences.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Consequences.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1449,
"size": 3313
} |
-- Andreas, 2019-08-07, issue #3966
--
-- Precise error location for unification problem during coverage checking.
{-# OPTIONS --cubical-compatible #-}
module _ {A : Set} where
open import Common.Equality
open import Common.List
data _⊆_ : (xs ys : List A) → Set where
_∷ʳ_ : ∀ {xs ys} → ∀ y → _⊆_ xs ys → _⊆_ xs (y ∷ ys)
_∷_ : ∀ {x xs y ys} → x ≡ y → _⊆_ xs ys → _⊆_ (x ∷ xs) (y ∷ ys)
⊆-trans : ∀{xs ys zs} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs
⊆-trans rs (y ∷ʳ ss) = y ∷ʳ ⊆-trans rs ss
⊆-trans (y ∷ʳ rs) (s ∷ ss) = _ ∷ʳ ⊆-trans rs ss
⊆-trans (r ∷ rs) (s ∷ ss) = trans r s ∷ ⊆-trans rs ss
-- Provoke a unification error during coverage checking:
test : ∀ {x} {xs ys zs : List A} {τ : (x ∷ xs) ⊆ zs} {σ : ys ⊆ zs}
us (ρ : us ⊆ zs) (τ' : (x ∷ xs) ⊆ us) (σ' : ys ⊆ us)
(σ'∘ρ≡σ : ⊆-trans σ' ρ ≡ σ)
→ Set₁
test {τ = z ∷ʳ τ} {σ = z ∷ʳ σ} (y ∷ us) (.z ∷ʳ ρ) (y ∷ʳ τ') (refl ∷ σ') refl = Set
test {σ = z ∷ʳ σ} _ (refl ∷ ρ) _ (refl ∷ σ') ()
test {τ = z ∷ʳ τ} {σ = refl ∷ σ} (y ∷ us) ρ (y ∷ʳ τ') (refl ∷ σ') σ'∘ρ≡σ = Set
test {τ = refl ∷ τ} {σ = z ∷ʳ σ} (y ∷ us) ρ (y ∷ʳ τ') (refl ∷ σ') σ'∘ρ≡σ = Set
test {τ = refl ∷ τ} {σ = refl ∷ σ} (y ∷ us) ρ (y ∷ʳ τ') (refl ∷ σ') σ'∘ρ≡σ = Set
test (x ∷ us) ρ (refl ∷ τ') (x ∷ʳ σ') refl = Set -- ONLY this LHS should be highlighted!
test (x ∷ us) ρ (refl ∷ τ') (refl ∷ σ') σ'∘ρ≡σ = Set
test (y ∷ us) ρ (y ∷ʳ τ') (refl ∷ σ') σ'∘ρ≡σ = Set
-- Expected error location: 34,1-43
-- I'm not sure if there should be a case for the constructor refl,
-- because I get stuck when trying to solve the following unification
-- problems (inferred index ≟ expected index):
-- ⊆-trans (x ∷ʳ σ') ρ ≟ refl ∷ σ
-- when checking the definition of test
| {
"alphanum_fraction": 0.5272088941,
"avg_line_length": 37.9777777778,
"ext": "agda",
"hexsha": "8fb936a1faf2d277694f55fe5f6d1c770cd231a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue3966.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue3966.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue3966.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 822,
"size": 1709
} |
{-# OPTIONS --without-K #-}
module Agda.Builtin.Word where
open import Agda.Builtin.Nat
postulate Word64 : Set
{-# BUILTIN WORD64 Word64 #-}
primitive
primWord64ToNat : Word64 → Nat
primWord64FromNat : Nat → Word64
| {
"alphanum_fraction": 0.7155555556,
"avg_line_length": 17.3076923077,
"ext": "agda",
"hexsha": "124fb8ea7cd27be76f47a7d8a59c4866f6e367de",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Word.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Word.agda",
"max_line_length": 34,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Word.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 65,
"size": 225
} |
{-# OPTIONS --safe #-} -- --without-K #-}
open import Relation.Nullary.Decidable using (toWitness; fromWitness)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_)
import Data.Empty as Empty
import Data.Product as Product
import Data.Product.Properties as Productₚ
import Data.Unit as Unit
import Data.Nat.Base as Nat
import Data.Vec.Base as Vec
import Data.Vec.Properties as Vecₚ
import Data.Fin.Base as Fin
import Data.Vec.Relation.Unary.All as All
open Empty using (⊥-elim)
open Unit using (tt)
open Nat using (ℕ; zero; suc)
open Vec using (Vec; []; _∷_)
open All using (All; []; _∷_)
open Fin using (Fin ; zero ; suc)
open Product using (_×_; _,_; proj₁; proj₂)
import PiCalculus.Syntax
open PiCalculus.Syntax.Scoped
open import PiCalculus.Semantics
open import PiCalculus.LinearTypeSystem.Algebras
module PiCalculus.LinearTypeSystem.Framing (Ω : Algebras) where
open Algebras Ω
open import PiCalculus.LinearTypeSystem Ω
open import PiCalculus.LinearTypeSystem.ContextLemmas Ω
private
variable
n : ℕ
i j : Fin n
idx : Idx
idxs : Idxs n
γ : PreCtx n
t : Type
x y z : Usage idx
Γ Θ Δ Ξ : Ctx idxs
P Q : Scoped n
∋-frame : {idxs : Idxs n} {Γ Θ Δ Ξ Ψ : Ctx idxs} {x : Usage idx ²}
→ Γ ≔ Δ ⊗ Θ → Ξ ≔ Δ ⊗ Ψ
→ Γ ∋[ i ] x ▹ Θ
→ Ξ ∋[ i ] x ▹ Ψ
∋-frame (Γ≔ , x≔) (Ξ≔ , x'≔) (zero xyz)
rewrite ⊗-uniqueˡ Γ≔ ⊗-idˡ | ⊗-unique Ξ≔ ⊗-idˡ
| ∙²-uniqueˡ x≔ xyz = zero x'≔
∋-frame (Γ≔ , x≔) (Ξ≔ , x'≔) (suc x)
rewrite ∙²-uniqueˡ x≔ ∙²-idˡ | ∙²-unique x'≔ ∙²-idˡ
= suc (∋-frame Γ≔ Ξ≔ x)
⊢-frame : {γ : PreCtx n} {idxs : Idxs n} {Γ Δ Θ Ξ Ψ : Ctx idxs}
→ Γ ≔ Δ ⊗ Θ → Ξ ≔ Δ ⊗ Ψ
→ γ ; Γ ⊢ P ▹ Θ
→ γ ; Ξ ⊢ P ▹ Ψ
⊢-frame Γ≔ Ξ≔ 𝟘 rewrite ⊗-uniqueˡ Γ≔ ⊗-idˡ | ⊗-unique Ξ≔ ⊗-idˡ = 𝟘
⊢-frame Γ≔ Ξ≔ (ν t m μ ⊢P)
= ν t m μ (⊢-frame {Δ = _ -, (μ , μ)} (Γ≔ , ∙²-idʳ) (Ξ≔ , ∙²-idʳ) ⊢P)
⊢-frame Γ≔ Ξ≔ ((t , ∋i) ⦅⦆ ⊢P) with ∋-⊗ ∋i | ⊢-⊗ ⊢P
⊢-frame Γ≔ Ξ≔ ((t , ∋i) ⦅⦆ ⊢P) | _ , i≔ , _ | (_ -, _) , (P≔ , x≔) =
let iP≔ = ⊗-comp i≔ P≔ Γ≔
_ , i'≔ , P'≔ = ⊗-assoc Ξ≔ iP≔
in (t , ∋-frame i≔ i'≔ ∋i) ⦅⦆ ⊢-frame (P≔ , x≔) (P'≔ , x≔) ⊢P
⊢-frame Γ≔ Ξ≔ ((ti , ∋i) ⟨ tj , ∋j ⟩ ⊢P) with ∋-⊗ ∋i | ∋-⊗ ∋j | ⊢-⊗ ⊢P
⊢-frame Γ≔ Ξ≔ ((ti , ∋i) ⟨ tj , ∋j ⟩ ⊢P) | _ , i≔ , _ | _ , j≔ , _ | _ , P≔ =
let _ , ij≔ , _ = ⊗-assoc⁻¹ i≔ j≔
[ij]P≔ = ⊗-comp ij≔ P≔ Γ≔
_ , ij'≔ , P'≔ = ⊗-assoc Ξ≔ [ij]P≔
ij≔ = ⊗-comp i≔ j≔ ij≔
_ , i'≔ , j'≔ = ⊗-assoc ij'≔ ij≔
in (ti , ∋-frame i≔ i'≔ ∋i) ⟨ tj , ∋-frame j≔ j'≔ ∋j ⟩ ⊢-frame P≔ P'≔ ⊢P
⊢-frame Γ≔ Ξ≔ (⊢P ∥ ⊢Q) with ⊢-⊗ ⊢P | ⊢-⊗ ⊢Q
⊢-frame Γ≔ Ξ≔ (⊢P ∥ ⊢Q) | _ , P≔ | _ , Q≔ =
let PQ≔ = ⊗-comp P≔ Q≔ Γ≔
_ , P'≔ , Q'≔ = ⊗-assoc Ξ≔ PQ≔
in ⊢-frame P≔ P'≔ ⊢P ∥ ⊢-frame Q≔ Q'≔ ⊢Q
| {
"alphanum_fraction": 0.5161870504,
"avg_line_length": 32.7058823529,
"ext": "agda",
"hexsha": "838a1eee20adac8a5a82e098134b6f691149342f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z",
"max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/typing-linear-pi",
"max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Framing.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/typing-linear-pi",
"max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Framing.agda",
"max_line_length": 77,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/typing-linear-pi",
"max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Framing.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z",
"num_tokens": 1467,
"size": 2780
} |
{-# OPTIONS --without-K #-}
module hott.loop.level where
open import sets.nat.core
open import hott.loop.core
open import hott.level.core
Ω-level : ∀ {i n}{X : Set i}(m : ℕ){x : X}
→ h (m + n) X → h n (Ω m x)
Ω-level zero hX = hX
Ω-level (suc m) hX = Ω-level m (hX _ _)
| {
"alphanum_fraction": 0.6,
"avg_line_length": 23.3333333333,
"ext": "agda",
"hexsha": "16f99f43961ed7f35bfdb92e06d58ee3a7bbb466",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/loop/level.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/loop/level.agda",
"max_line_length": 42,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/loop/level.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 102,
"size": 280
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finite sets
------------------------------------------------------------------------
-- Note that elements of Fin n can be seen as natural numbers in the
-- set {m | m < n}. The notation "m" in comments below refers to this
-- natural number view.
module Data.Fin where
open import Data.Nat as Nat
using (ℕ; zero; suc; z≤n; s≤s)
renaming ( _+_ to _N+_; _∸_ to _N∸_
; _≤_ to _N≤_; _≥_ to _N≥_; _<_ to _N<_; _≤?_ to _N≤?_)
open import Function
import Level
open import Relation.Nullary.Decidable
open import Relation.Binary
------------------------------------------------------------------------
-- Types
-- Fin n is a type with n elements.
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
-- A conversion: toℕ "n" = n.
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = 0
toℕ (suc i) = suc (toℕ i)
-- A Fin-indexed variant of Fin.
Fin′ : ∀ {n} → Fin n → Set
Fin′ i = Fin (toℕ i)
------------------------------------------------------------------------
-- Conversions
-- toℕ is defined above.
-- fromℕ n = "n".
fromℕ : (n : ℕ) → Fin (suc n)
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
-- fromℕ≤ {m} _ = "m".
fromℕ≤ : ∀ {m n} → m N< n → Fin n
fromℕ≤ (Nat.s≤s Nat.z≤n) = zero
fromℕ≤ (Nat.s≤s (Nat.s≤s m≤n)) = suc (fromℕ≤ (Nat.s≤s m≤n))
-- # m = "m".
#_ : ∀ m {n} {m<n : True (suc m N≤? n)} → Fin n
#_ _ {m<n = m<n} = fromℕ≤ (toWitness m<n)
-- raise m "n" = "m + n".
raise : ∀ {m} n → Fin m → Fin (n N+ m)
raise zero i = i
raise (suc n) i = suc (raise n i)
-- reduce≥ "m + n" _ = "n".
reduce≥ : ∀ {m n} (i : Fin (m N+ n)) (i≥m : toℕ i N≥ m) → Fin n
reduce≥ {zero} i i≥m = i
reduce≥ {suc m} zero ()
reduce≥ {suc m} (suc i) (s≤s i≥m) = reduce≥ i i≥m
-- inject⋆ m "n" = "n".
inject : ∀ {n} {i : Fin n} → Fin′ i → Fin n
inject {i = zero} ()
inject {i = suc i} zero = zero
inject {i = suc i} (suc j) = suc (inject j)
inject! : ∀ {n} {i : Fin (suc n)} → Fin′ i → Fin n
inject! {n = zero} {i = suc ()} _
inject! {i = zero} ()
inject! {n = suc _} {i = suc _} zero = zero
inject! {n = suc _} {i = suc _} (suc j) = suc (inject! j)
inject+ : ∀ {m} n → Fin m → Fin (m N+ n)
inject+ n zero = zero
inject+ n (suc i) = suc (inject+ n i)
inject₁ : ∀ {m} → Fin m → Fin (suc m)
inject₁ zero = zero
inject₁ (suc i) = suc (inject₁ i)
inject≤ : ∀ {m n} → Fin m → m N≤ n → Fin n
inject≤ zero (Nat.s≤s le) = zero
inject≤ (suc i) (Nat.s≤s le) = suc (inject≤ i le)
------------------------------------------------------------------------
-- Operations
-- Folds.
fold : ∀ (T : ℕ → Set) {m} →
(∀ {n} → T n → T (suc n)) →
(∀ {n} → T (suc n)) →
Fin m → T m
fold T f x zero = x
fold T f x (suc i) = f (fold T f x i)
fold′ : ∀ {n t} (T : Fin (suc n) → Set t) →
(∀ i → T (inject₁ i) → T (suc i)) →
T zero →
∀ i → T i
fold′ T f x zero = x
fold′ {n = zero} T f x (suc ())
fold′ {n = suc n} T f x (suc i) =
f i (fold′ (T ∘ inject₁) (f ∘ inject₁) x i)
-- Lifts functions.
lift : ∀ {m n} k → (Fin m → Fin n) → Fin (k N+ m) → Fin (k N+ n)
lift zero f i = f i
lift (suc k) f zero = zero
lift (suc k) f (suc i) = suc (lift k f i)
-- "m" + "n" = "m + n".
infixl 6 _+_
_+_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (toℕ i N+ n)
zero + j = j
suc i + j = suc (i + j)
-- "m" - "n" = "m ∸ n".
infixl 6 _-_
_-_ : ∀ {m} (i : Fin m) (j : Fin′ (suc i)) → Fin (m N∸ toℕ j)
i - zero = i
zero - suc ()
suc i - suc j = i - j
-- m ℕ- "n" = "m ∸ n".
infixl 6 _ℕ-_
_ℕ-_ : (n : ℕ) (j : Fin (suc n)) → Fin (suc n N∸ toℕ j)
n ℕ- zero = fromℕ n
zero ℕ- suc ()
suc n ℕ- suc i = n ℕ- i
-- m ℕ-ℕ "n" = m ∸ n.
infixl 6 _ℕ-ℕ_
_ℕ-ℕ_ : (n : ℕ) → Fin (suc n) → ℕ
n ℕ-ℕ zero = n
zero ℕ-ℕ suc ()
suc n ℕ-ℕ suc i = n ℕ-ℕ i
-- pred "n" = "pred n".
pred : ∀ {n} → Fin n → Fin n
pred zero = zero
pred (suc i) = inject₁ i
------------------------------------------------------------------------
-- Order relations
infix 4 _≤_ _<_
_≤_ : ∀ {n} → Rel (Fin n) Level.zero
_≤_ = _N≤_ on toℕ
_<_ : ∀ {n} → Rel (Fin n) Level.zero
_<_ = _N<_ on toℕ
data _≺_ : ℕ → ℕ → Set where
_≻toℕ_ : ∀ n (i : Fin n) → toℕ i ≺ n
-- An ordering view.
data Ordering {n : ℕ} : Fin n → Fin n → Set where
less : ∀ greatest (least : Fin′ greatest) →
Ordering (inject least) greatest
equal : ∀ i → Ordering i i
greater : ∀ greatest (least : Fin′ greatest) →
Ordering greatest (inject least)
compare : ∀ {n} (i j : Fin n) → Ordering i j
compare zero zero = equal zero
compare zero (suc j) = less (suc j) zero
compare (suc i) zero = greater (suc i) zero
compare (suc i) (suc j) with compare i j
compare (suc .(inject least)) (suc .greatest) | less greatest least =
less (suc greatest) (suc least)
compare (suc .greatest) (suc .(inject least)) | greater greatest least =
greater (suc greatest) (suc least)
compare (suc .i) (suc .i) | equal i = equal (suc i)
| {
"alphanum_fraction": 0.4597083653,
"avg_line_length": 25.5490196078,
"ext": "agda",
"hexsha": "1f6be1695510b03ee1ff1dbbfbdd32eda333ef2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Fin.agda",
"max_line_length": 84,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2035,
"size": 5212
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Nat using (Nat; zero; suc)
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
variable
k l m n : Nat
postulate
max : Nat → Nat → Nat
max-0l : max 0 n ≡ n
max-0r : max m 0 ≡ m
max-diag : max m m ≡ m
max-ss : max (suc m) (suc n) ≡ suc (max m n)
max-assoc : max (max k l) m ≡ max k (max l m)
{-# REWRITE max-0l #-}
{-# REWRITE max-0r #-}
{-# REWRITE max-diag #-}
{-# REWRITE max-ss #-}
--{-# REWRITE max-assoc #-} -- not confluent!
postulate
_+_ : Nat → Nat → Nat
plus-0l : 0 + n ≡ n
plus-0r : m + 0 ≡ m
plus-suc-l : (suc m) + n ≡ suc (m + n)
plus-suc-r : m + (suc n) ≡ suc (m + n)
plus-assoc : (k + l) + m ≡ k + (l + m)
{-# REWRITE plus-0l #-}
{-# REWRITE plus-0r #-}
{-# REWRITE plus-suc-l #-}
{-# REWRITE plus-suc-r #-}
{-# REWRITE plus-assoc #-}
postulate
_*_ : Nat → Nat → Nat
mult-0l : 0 * n ≡ 0
mult-0r : m * 0 ≡ 0
mult-suc-l : (suc m) * n ≡ n + (m * n)
mult-suc-r : m * (suc n) ≡ (m * n) + m
plus-mult-distr-l : k * (l + m) ≡ (k * l) + (k * m)
plus-mult-distr-r : (k + l) * m ≡ (k * m) + (l * m)
mult-assoc : (k * l) * m ≡ k * (l * m)
{-# REWRITE mult-0l #-}
{-# REWRITE mult-0r #-}
{-# REWRITE mult-suc-l #-}
{-# REWRITE mult-suc-r #-} -- requires rule plus-assoc!
--{-# REWRITE plus-mult-distr-l #-}
--{-# REWRITE plus-mult-distr-r #-}
--{-# REWRITE mult-assoc #-}
| {
"alphanum_fraction": 0.532769556,
"avg_line_length": 25.8,
"ext": "agda",
"hexsha": "f2da81c32b999eb10a60abf7269033db0633d45c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/RewritingConfluence.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/RewritingConfluence.agda",
"max_line_length": 55,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/RewritingConfluence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 572,
"size": 1419
} |
{-# OPTIONS --allow-unsolved-metas #-}
module AgdaFeatureInstanceResolutionViaConstraint where
postulate A : Set
postulate y : A
Appy : (A → Set) → Set
Appy H = H y
record Foo (T : Set) : Set where field foo : T
open Foo ⦃ … ⦄ public
postulate
S : A → Set
record Failing : Set where
no-eta-equality
postulate
instance FooInstance : {R : A → Set} → Foo (Appy R)
works1 : Appy S
works1 = foo ⦃ FooInstance {R = S} ⦄
fails2 : Appy S
fails2 = foo ⦃ FooInstance {R = {!!}} ⦄
{-
[21] (_R_11 y) =< (S y) : Set
_12 := λ → Foo.foo FooInstance [blocked by problem 21]
-}
fails3 : Appy S
fails3 = foo
record Succeeds : Set where
no-eta-equality
record Bar (B : A → Set) : Set where
no-eta-equality
postulate
instance BarInstance : Bar S
instance FooInstance : {R : A → Set} ⦃ _ : Bar R ⦄ → Foo (Appy R)
works1 : Appy S
works1 = foo ⦃ FooInstance {R = S} ⦄
works2 : Appy S
works2 = foo ⦃ FooInstance {R = {!!}} ⦄
works3 : Appy S
works3 = foo
| {
"alphanum_fraction": 0.606330366,
"avg_line_length": 18.3818181818,
"ext": "agda",
"hexsha": "41b431be371e2e72a44d4eca5b9531841c267a3b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/AgdaFeatureInstanceResolutionViaConstraint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 1011
} |
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
-- Construction of M-types from
-- https://arxiv.org/pdf/1504.02949.pdf
-- "Non-wellfounded trees in Homotopy Type Theory"
-- Benedikt Ahrens, Paolo Capriotti, Régis Spadotti
module Cubical.Codata.M.AsLimit.M.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv using (_≃_)
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ )
open import Cubical.Data.Sigma hiding (_×_)
open import Cubical.Data.Nat.Algebra
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Path
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sum
open import Cubical.Codata.M.AsLimit.helper
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.Coalg.Base
open Iso
private
limit-collapse : ∀ {ℓ} {S : Container ℓ} (X : ℕ → Type ℓ) (l : (n : ℕ) → X n → X (suc n)) → (x₀ : X 0) → ∀ (n : ℕ) → X n
limit-collapse X l x₀ 0 = x₀
limit-collapse {S = S} X l x₀ (suc n) = l n (limit-collapse {S = S} X l x₀ n)
lemma11-Iso :
∀ {ℓ} {S : Container ℓ} (X : ℕ → Type ℓ) (l : (n : ℕ) → X n → X (suc n))
→ Iso (Σ[ x ∈ ((n : ℕ) → X n)] ((n : ℕ) → x (suc n) ≡ l n (x n)))
(X 0)
fun (lemma11-Iso X l) (x , y) = x 0
inv (lemma11-Iso {S = S} X l) x₀ = limit-collapse {S = S} X l x₀ , (λ n → refl {x = limit-collapse {S = S} X l x₀ (suc n)})
rightInv (lemma11-Iso X l) _ = refl
leftInv (lemma11-Iso {ℓ = ℓ} {S = S} X l) (x , y) i =
let temp = χ-prop (x 0) (fst (inv (lemma11-Iso {S = S} X l) (fun (lemma11-Iso {S = S} X l) (x , y))) , refl , (λ n → refl {x = limit-collapse {S = S} X l (x 0) (suc n)})) (x , refl , y)
in temp i .fst , proj₂ (temp i .snd)
where
open AlgebraPropositionality
open NatSection
X-fiber-over-ℕ : (x₀ : X 0) -> NatFiber NatAlgebraℕ ℓ
X-fiber-over-ℕ x₀ = record { Fiber = X ; fib-zero = x₀ ; fib-suc = λ {n : ℕ} xₙ → l n xₙ }
X-section : (x₀ : X 0) → (z : Σ[ x ∈ ((n : ℕ) → X n)] (x 0 ≡ x₀) × (∀ n → (x (suc n)) ≡ l n (x n))) -> NatSection (X-fiber-over-ℕ x₀)
X-section = λ x₀ z → record { section = fst z ; sec-comm-zero = proj₁ (snd z) ; sec-comm-suc = proj₂ (snd z) }
Z-is-Section : (x₀ : X 0) →
Iso (Σ[ x ∈ ((n : ℕ) → X n)] (x 0 ≡ x₀) × (∀ n → (x (suc n)) ≡ l n (x n)))
(NatSection (X-fiber-over-ℕ x₀))
fun (Z-is-Section x₀) (x , (z , y)) = record { section = x ; sec-comm-zero = z ; sec-comm-suc = y }
inv (Z-is-Section x₀) x = NatSection.section x , (sec-comm-zero x , sec-comm-suc x)
rightInv (Z-is-Section x₀) _ = refl
leftInv (Z-is-Section x₀) (x , (z , y)) = refl
-- S≡T
χ-prop' : (x₀ : X 0) → isProp (NatSection (X-fiber-over-ℕ x₀))
χ-prop' x₀ a b = SectionProp.S≡T isNatInductiveℕ (X-section x₀ (inv (Z-is-Section x₀) a)) (X-section x₀ (inv (Z-is-Section x₀) b))
χ-prop : (x₀ : X 0) → isProp (Σ[ x ∈ ((n : ℕ) → X n) ] (x 0 ≡ x₀) × (∀ n → (x (suc n)) ≡ l n (x n)))
χ-prop x₀ = subst isProp (sym (isoToPath (Z-is-Section x₀))) (χ-prop' x₀)
-----------------------------------------------------
-- Shifting the limit of a chain is an equivalence --
-----------------------------------------------------
-- Shift is equivalence (12) and (13) in the proof of Theorem 7
-- https://arxiv.org/pdf/1504.02949.pdf
-- "Non-wellfounded trees in Homotopy Type Theory"
-- Benedikt Ahrens, Paolo Capriotti, Régis Spadotti
-- TODO: This definition is inefficient, it should be updated to use some cubical features!
shift-iso : ∀ {ℓ} (S : Container ℓ) -> Iso (P₀ S (M S)) (M S)
shift-iso S@(A , B) =
P₀ S (M S)
Iso⟨ Σ-cong-iso-snd
(λ x → iso (λ f → (λ n z → f z .fst n) , λ n i a → f a .snd n i)
(λ (u , q) z → (λ n → u n z) , λ n i → q n i z)
(λ _ → refl)
(λ _ → refl)) ⟩
(Σ[ a ∈ A ] (Σ[ u ∈ ((n : ℕ) → B a → X (sequence S) n) ] ((n : ℕ) → π (sequence S) ∘ (u (suc n)) ≡ u n)))
Iso⟨ invIso α-iso-step-5-Iso ⟩
(Σ[ a ∈ (Σ[ a ∈ ((n : ℕ) → A) ] ((n : ℕ) → a (suc n) ≡ a n)) ]
Σ[ u ∈ ((n : ℕ) → B (a .fst n) → X (sequence S) n) ]
((n : ℕ) → PathP (λ x → B (a .snd n x) → X (sequence S) n)
(π (sequence S) ∘ u (suc n))
(u n)))
Iso⟨ α-iso-step-1-4-Iso-lem-12 ⟩
M S ∎Iso
where
α-iso-step-5-Iso-helper0 :
∀ (a : (ℕ -> A))
→ (p : (n : ℕ) → a (suc n) ≡ a n)
→ (n : ℕ)
→ a n ≡ a 0
α-iso-step-5-Iso-helper0 a p 0 = refl
α-iso-step-5-Iso-helper0 a p (suc n) = p n ∙ α-iso-step-5-Iso-helper0 a p n
α-iso-step-5-Iso-helper1-Iso :
∀ (a : ℕ -> A)
→ (p : (n : ℕ) → a (suc n) ≡ a n)
→ (u : (n : ℕ) → B (a n) → Wₙ S n)
→ (n : ℕ)
→ (PathP (λ x → B (p n x) → Wₙ S n) (πₙ S ∘ u (suc n)) (u n)) ≡
(πₙ S ∘ (subst (\k -> B k → Wₙ S (suc n)) (α-iso-step-5-Iso-helper0 a p (suc n))) (u (suc n))
≡ subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n))
α-iso-step-5-Iso-helper1-Iso a p u n =
PathP (λ x → B (p n x) → Wₙ S n) (πₙ S ∘ u (suc n)) (u n)
≡⟨ PathP≡Path (λ x → B (p n x) → Wₙ S n) (πₙ S ∘ u (suc n)) (u n) ⟩
subst (λ k → B k → Wₙ S n) (p n) (πₙ S ∘ u (suc n)) ≡ (u n)
≡⟨ (λ i → transp (λ j → B (α-iso-step-5-Iso-helper0 a p n (i ∧ j)) → Wₙ S n) (~ i) (subst (λ k → B k → Wₙ S n) (p n) (πₙ S ∘ u (suc n)))
≡ transp (λ j → B (α-iso-step-5-Iso-helper0 a p n (i ∧ j)) → Wₙ S n) (~ i) (u n)) ⟩
subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (subst (λ k → B k → Wₙ S n) (p n) (πₙ S ∘ u (suc n))) ≡
subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n)
≡⟨ (λ i → sym (substComposite (λ k → B k → Wₙ S n) (p n) (α-iso-step-5-Iso-helper0 a p n) (πₙ S ∘ u (suc n))) i
≡ subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n)) ⟩
subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p (suc n)) (πₙ S ∘ u (suc n)) ≡
subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n)
≡⟨ (λ i → substCommSlice (λ k → B k → Wₙ S (suc n)) (λ k → B k → Wₙ S n)
(λ a x x₁ → (πₙ S) (x x₁))
(α-iso-step-5-Iso-helper0 a p (suc n)) (u (suc n)) i
≡ subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n)) ⟩
πₙ S ∘ subst (λ k → B k → Wₙ S (suc n)) (α-iso-step-5-Iso-helper0 a p (suc n)) (u (suc n))
≡
subst (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 a p n) (u n) ∎
α-iso-step-5-Iso :
Iso
(Σ[ a ∈ (Σ[ a ∈ ((n : ℕ) → A) ] ((n : ℕ) → a (suc n) ≡ a n)) ]
Σ[ u ∈ ((n : ℕ) → B (a .fst n) → X (sequence S) n) ]
((n : ℕ) → PathP (λ x → B (a .snd n x) → X (sequence S) n)
(π (sequence S) ∘ u (suc n))
(u n)))
(Σ[ a ∈ A ] (Σ[ u ∈ ((n : ℕ) → B a → X (sequence S) n) ] ((n : ℕ) → π (sequence S) ∘ (u (suc n)) ≡ u n)))
α-iso-step-5-Iso =
Σ-cong-iso (lemma11-Iso {S = S} (λ _ → A) (λ _ x → x)) (λ a,p →
Σ-cong-iso (pathToIso (cong (λ k → (n : ℕ) → k n) (funExt λ n → cong (λ k → B k → Wₙ S n) (α-iso-step-5-Iso-helper0 (a,p .fst) (a,p .snd) n)))) λ u →
pathToIso (cong (λ k → (n : ℕ) → k n) (funExt λ n → α-iso-step-5-Iso-helper1-Iso (a,p .fst) (a,p .snd) u n)))
α-iso-step-1-4-Iso-lem-12 :
Iso (Σ[ a ∈ (Σ[ a ∈ ((n : ℕ) → A)] ((n : ℕ) → a (suc n) ≡ a n)) ]
(Σ[ u ∈ ((n : ℕ) → B (a .fst n) → X (sequence S) n) ]
((n : ℕ) → PathP (λ x → B (a .snd n x) → X (sequence S) n)
(π (sequence S) ∘ u (suc n))
(u n))))
(limit-of-chain (sequence S))
fun α-iso-step-1-4-Iso-lem-12 (a , b) = (λ { 0 → lift tt ; (suc n) → (a .fst n) , (b .fst n)}) , λ { 0 → refl {x = lift tt} ; (suc m) i → a .snd m i , b .snd m i }
inv α-iso-step-1-4-Iso-lem-12 x = ((λ n → (x .fst) (suc n) .fst) , λ n i → (x .snd) (suc n) i .fst) , (λ n → (x .fst) (suc n) .snd) , λ n i → (x .snd) (suc n) i .snd
fst (rightInv α-iso-step-1-4-Iso-lem-12 (b , c) i) 0 = lift tt
fst (rightInv α-iso-step-1-4-Iso-lem-12 (b , c) i) (suc n) = refl i
snd (rightInv α-iso-step-1-4-Iso-lem-12 (b , c) i) 0 = refl
snd (rightInv α-iso-step-1-4-Iso-lem-12 (b , c) i) (suc n) = c (suc n)
leftInv α-iso-step-1-4-Iso-lem-12 (a , b) = refl
shift : ∀ {ℓ} (S : Container ℓ) -> P₀ S (M S) ≡ M S
shift S = isoToPath (shift-iso S) -- lemma 13 & lemma 12
-- Transporting along shift
in-fun : ∀ {ℓ} {S : Container ℓ} -> P₀ S (M S) -> M S
in-fun {S = S} = fun (shift-iso S)
out-fun : ∀ {ℓ} {S : Container ℓ} -> M S -> P₀ S (M S)
out-fun {S = S} = inv (shift-iso S)
-- Property of functions into M-types
lift-to-M : ∀ {ℓ} {A : Type ℓ} {S : Container ℓ}
→ (x : (n : ℕ) -> A → X (sequence S) n)
→ ((n : ℕ) → (a : A) → π (sequence S) (x (suc n) a) ≡ x n a)
---------------
→ (A → M S)
lift-to-M x p a = (λ n → x n a) , λ n i → p n a i
lift-direct-M : ∀ {ℓ} {S : Container ℓ}
→ (x : (n : ℕ) → X (sequence S) n)
→ ((n : ℕ) → π (sequence S) (x (suc n)) ≡ x n)
---------------
→ M S
lift-direct-M x p = x , p
| {
"alphanum_fraction": 0.4840618835,
"avg_line_length": 49.3897435897,
"ext": "agda",
"hexsha": "992810c3ecdb50c614d39c859ae66d27adecde6d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/M/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/M/Base.agda",
"max_line_length": 187,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/M/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4004,
"size": 9631
} |
{-# OPTIONS --without-K #-}
module lob where
open import common
open import well-typed-syntax
open import well-typed-quoted-syntax
open import well-typed-syntax-interpreter-full
module inner (‘X’ : Typ ε) (‘f’ : Term {Γ = ε ▻ (‘□’ ‘’ ⌜ ‘X’ ⌝T)} (W ‘X’)) where
X : Set _
X = Typε⇓ ‘X’
f'' : (x : Typε⇓ (‘□’ ‘’ ⌜ ‘X’ ⌝T)) → Typε▻⇓ {‘□’ ‘’ ⌜ ‘X’ ⌝T} (W ‘X’) x
f'' = Termε▻⇓ ‘f’
{-f : □ ‘X’ → X
f □‘X’ = un▻-Typε▻⇓ (Termε▻⇓ ‘f’ helper)
where helper : {!.well-typed-syntax-interpreter.Typ⇓
(transfer-Typ (‘□’ ‘’ ⌜ ‘X’ ⌝T))
.well-typed-syntax-interpreter-full.Contextε⇓!}
helper = {!!}-}
dummy : Typ ε
dummy = ‘Context’
cast : (Γv : Σ Context Typ) → Typ (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)
cast (Γ , v) = context-pick-if {P = Typ} {Γ} (W dummy) v
Hf : (h : Σ Context Typ) → Typ ε
Hf h = (cast h ‘’ quote-sigma h ‘→'’ ‘X’)
qh : Term {Γ = (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)} (W (‘Typ’ ‘’ ‘ε’))
qh = f' w‘‘’’ x
where
f' : Term (W (‘Typ’ ‘’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c))
f' = w→ ‘cast’ ‘'’ₐ ‘VAR₀’
x : Term (W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ ⌜ ‘Σ’ ‘Context’ ‘Typ’ ⌝T))
x = (w→ ‘quote-sigma’ ‘'’ₐ ‘VAR₀’)
h2 : Typ (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)
h2 = (W1 ‘□’ ‘’ (qh w‘‘→'’’ w ⌜ ‘X’ ⌝T))
h : Σ Context Typ
h = ((ε ▻ ‘Σ’ ‘Context’ ‘Typ’) , h2)
H0 : Typ ε
H0 = Hf h
H : Set
H = Term {Γ = ε} H0
‘H0’ : □ (‘Typ’ ‘’ ⌜ ε ⌝c)
‘H0’ = ⌜ H0 ⌝T
‘H’ : Typ ε
‘H’ = ‘□’ ‘’ ‘H0’
H0' : Typ ε
H0' = ‘H’ ‘→'’ ‘X’
H' : Set
H' = Term {Γ = ε} H0'
‘H0'’ : □ (‘Typ’ ‘’ ⌜ ε ⌝c)
‘H0'’ = ⌜ H0' ⌝T
‘H'’ : Typ ε
‘H'’ = ‘□’ ‘’ ‘H0'’
toH-helper-helper : ∀ {k} → h2 ≡ k
→ □ (h2 ‘’ quote-sigma h ‘→'’ ‘□’ ‘’ ⌜ h2 ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T)
→ □ (k ‘’ quote-sigma h ‘→'’ ‘□’ ‘’ ⌜ k ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T)
toH-helper-helper p x = transport (λ k → □ (k ‘’ quote-sigma h ‘→'’ ‘□’ ‘’ ⌜ k ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T)) p x
toH-helper : □ (cast h ‘’ quote-sigma h ‘→'’ ‘H’)
toH-helper = toH-helper-helper
{k = context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) h2}
(sym (context-pick-if-refl {P = Typ} {W dummy} {h2}))
(S₀₀W1'→ ((‘‘→'’’→w‘‘→'’’ ‘∘’ ‘‘fcomp-nd’’ ‘'’ₐ (‘s←←’ ‘‘∘’’ ‘cast-refl’ ‘‘∘’’ ⌜→'⌝ ‘'’ₐ ⌜ ‘λ∙’ ‘VAR₀’ ⌝t)) ‘∘’ ⌜←'⌝))
‘toH’ : □ (‘H'’ ‘→'’ ‘H’)
‘toH’ = ⌜→'⌝ ‘∘’ ‘‘fcomp-nd’’ ‘'’ₐ (⌜→'⌝ ‘'’ₐ ⌜ toH-helper ⌝t) ‘∘’ ⌜←'⌝
toH : H' → H
toH h' = toH-helper ‘∘’ h'
fromH-helper-helper : ∀ {k} → h2 ≡ k
→ □ (‘□’ ‘’ ⌜ h2 ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T ‘→'’ h2 ‘’ quote-sigma h)
→ □ (‘□’ ‘’ ⌜ k ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T ‘→'’ k ‘’ quote-sigma h)
fromH-helper-helper p x = transport (λ k → □ (‘□’ ‘’ ⌜ k ‘’ quote-sigma h ‘→'’ ‘X’ ⌝T ‘→'’ k ‘’ quote-sigma h)) p x
fromH-helper : □ (‘H’ ‘→'’ cast h ‘’ quote-sigma h)
fromH-helper = fromH-helper-helper
{k = context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) h2}
(sym (context-pick-if-refl {P = Typ} {W dummy} {h2}))
(S₀₀W1'← (⌜→'⌝ ‘∘’ ‘‘fcomp-nd’’ ‘'’ₐ (⌜→'⌝ ‘'’ₐ ⌜ ‘λ∙’ ‘VAR₀’ ⌝t ‘‘∘’’ ‘cast-refl'’ ‘‘∘’’ ‘s→→’) ‘∘’ w‘‘→'’’→‘‘→'’’))
{--}
‘fromH’ : □ (‘H’ ‘→'’ ‘H'’)
‘fromH’ = ⌜→'⌝ ‘∘’ ‘‘fcomp-nd’’ ‘'’ₐ (⌜→'⌝ ‘'’ₐ ⌜ fromH-helper ⌝t) ‘∘’ ⌜←'⌝
fromH : H → H'
fromH h' = fromH-helper ‘∘’ h'
lob : □ ‘X’
lob = fromH h' ‘'’ₐ ⌜ h' ⌝t
where
f' : Term {ε ▻ ‘□’ ‘’ ‘H0’} (W (‘□’ ‘’ (⌜ ‘□’ ‘’ ‘H0’ ⌝T ‘‘→'’’ ⌜ ‘X’ ⌝T)))
f' = Conv0 {‘H0’} {‘X’} (SW1W (w∀ ‘fromH’ ‘’ₐ ‘VAR₀’))
x : Term {ε ▻ ‘□’ ‘’ ‘H0’} (W (‘□’ ‘’ ⌜ ‘H’ ⌝T))
x = w→ ‘quote-term’ ‘'’ₐ ‘VAR₀’
h' : H
h' = toH (‘λ∙’ (w→ (‘λ∙’ ‘f’) ‘'’ₐ (w→→ ‘tApp-nd’ ‘'’ₐ f' ‘'’ₐ x)))
lob : {‘X’ : Typ ε} → □ ((‘□’ ‘’ ⌜ ‘X’ ⌝T) ‘→'’ ‘X’) → □ ‘X’
lob {‘X’} ‘f’ = inner.lob ‘X’ (un‘λ∙’ ‘f’)
| {
"alphanum_fraction": 0.4050429185,
"avg_line_length": 31.593220339,
"ext": "agda",
"hexsha": "552c0ff710f38c2697644474914362a85bf6b912",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/lob.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/lob.agda",
"max_line_length": 122,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/lob.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 2135,
"size": 3728
} |
{-# OPTIONS --without-K #-}
open import Types
module J {a c} {A : Set a} (C : (x y : A) → x ≡ y → Set c) where
open import GroupoidStructure
open import PathOperations
open import PathStructure.Sigma
open import Transport
γ : {x y : A} (p : x ≡ y) →
Id (Σ A λ y → x ≡ y) (x , refl) (y , p)
γ p = merge-path (p , tr-post _ p refl · id·p _)
justification : {x y : A} (p : x ≡ y) → C x x refl → C x y p
justification p = tr (λ z → C _ (π₁ z) (π₂ z)) (γ p)
| {
"alphanum_fraction": 0.5773420479,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "86b7823b39ee6f56a2bfac587bc8e1594ea3a72d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/J.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/J.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/J.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 178,
"size": 459
} |
{-# OPTIONS --without-K #-}
module Model.RGraph where
open import Cats.Category
open import Relation.Binary using (IsEquivalence)
open import Util.HoTT.Equiv
open import Util.HoTT.FunctionalExtensionality
open import Util.HoTT.HLevel
open import Util.Prelude hiding (id) renaming (_∘_ to _∘F_)
open import Util.Relation.Binary.PropositionalEquality
infixr 0 _⇒_
infix 4 _≈_
infixr 9 _∘_
record RGraph : Set₁ where
no-eta-equality
field
ObjHSet : HSet 0ℓ
open HLevel ObjHSet public using () renaming
( type to Obj
; level to Obj-IsSet
)
field
eqHProp : Obj → Obj → HProp 0ℓ
private
module M₀ x y = HLevel (eqHProp x y)
module M₁ {x} {y} = HLevel (eqHProp x y)
open M₀ public using () renaming
( type to eq )
open M₁ public using () renaming
( level to eq-IsProp )
field
eq-refl : ∀ x → eq x x
open RGraph public
private
variable Γ Δ Ψ : RGraph
record _⇒_ (Γ Δ : RGraph) : Set where
no-eta-equality
field
fobj : Γ .Obj → Δ .Obj
feq : ∀ {x y} → Γ .eq x y → Δ .eq (fobj x) (fobj y)
open _⇒_ public
private
variable f g h i : Γ ⇒ Δ
⇒Canon : (Γ Δ : RGraph) → Set
⇒Canon Γ Δ
= Σ[ fobj ∈ (Γ .Obj → Δ .Obj) ]
(∀ {x y} → Γ .eq x y → Δ .eq (fobj x) (fobj y))
⇒≅⇒Canon : (Γ ⇒ Δ) ≅ (⇒Canon Γ Δ)
⇒≅⇒Canon = record
{ forth = λ f → f .fobj , f .feq
; isIso = record
{ back = λ f → record { fobj = proj₁ f ; feq = proj₂ f }
; back∘forth = λ where
record { fobj = fobj ; feq = feq } → refl
; forth∘back = λ f → refl
}
}
⇒Canon-IsSet : ∀ Γ Δ → IsSet (⇒Canon Γ Δ)
⇒Canon-IsSet Γ Δ
= Σ-IsSet
(→-IsSet (Δ .Obj-IsSet))
(λ _ → ∀∙-IsSet (λ _ → ∀∙-IsSet λ _ → →-IsSet (IsProp→IsSet (Δ .eq-IsProp))))
⇒-IsSet : IsSet (Γ ⇒ Δ)
⇒-IsSet {Γ} {Δ} = ≅-pres-IsOfHLevel 2 (≅-sym ⇒≅⇒Canon) (⇒Canon-IsSet Γ Δ)
record _≈_ (f g : Γ ⇒ Δ) : Set where
no-eta-equality
constructor ≈⁺
field
≈⁻ : ∀ x → f .fobj x ≡ g .fobj x
open _≈_ public
≈→≡Canon : ∀ {Γ Δ} {f g : Γ ⇒ Δ}
→ f ≈ g
→ ⇒≅⇒Canon .forth f ≡ ⇒≅⇒Canon .forth g
≈→≡Canon {Δ = Δ} {f} {g} (≈⁺ f≈g) = Σ-≡⁺
( funext f≈g
, funext∙ (funext∙ (funext λ x≈y → Δ .eq-IsProp _ _))
)
≈→≡ : f ≈ g → f ≡ g
≈→≡ f≈g = ≅-Injective ⇒≅⇒Canon (≈→≡Canon f≈g)
≈-isEquivalence : ∀ Γ Δ → IsEquivalence (_≈_ {Γ} {Δ})
≈-isEquivalence Γ Δ = record
{ refl = ≈⁺ (λ x → refl)
; sym = λ f≈g → ≈⁺ (λ x → sym (f≈g .≈⁻ x))
; trans = λ f≈g g≈h → ≈⁺ (λ x → trans (f≈g .≈⁻ x) (g≈h .≈⁻ x))
}
private
open module M₀ {Γ} {Δ}
= IsEquivalence (≈-isEquivalence Γ Δ) public using () renaming
( refl to ≈-refl
; sym to ≈-sym
; trans to ≈-trans
; reflexive to ≈-reflexive )
id : ∀ {Γ} → Γ ⇒ Γ
id = record { fobj = λ x → x ; feq = λ x → x }
_∘_ : ∀ {Γ Δ Ψ} → Δ ⇒ Ψ → Γ ⇒ Δ → Γ ⇒ Ψ
f ∘ g = record
{ fobj = f .fobj ∘F g .fobj
; feq = f .feq ∘F g .feq
}
RGraphs : Category (lsuc 0ℓ) 0ℓ 0ℓ
RGraphs = record
{ Obj = RGraph
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = ≈-isEquivalence _ _
; ∘-resp = λ {Γ Δ Ψ f g h i} f≈g h≈i
→ ≈⁺ (λ x → trans (f≈g .≈⁻ _) (cong (g .fobj) (h≈i .≈⁻ x)))
; id-r = ≈⁺ (λ x → refl)
; id-l = ≈⁺ (λ x → refl)
; assoc = ≈⁺ (λ x → refl)
}
module RGraphs = Category RGraphs
| {
"alphanum_fraction": 0.5403225806,
"avg_line_length": 20.15,
"ext": "agda",
"hexsha": "e90ad119bb8a76eb8828806a8708a2536554e8e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Model/RGraph.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Model/RGraph.agda",
"max_line_length": 83,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Model/RGraph.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 1516,
"size": 3224
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A data structure which keeps track of an upper bound on the number
-- of elements /not/ in a given list
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Level using (0ℓ)
open import Relation.Binary
module Data.List.Countdown (D : DecSetoid 0ℓ 0ℓ) where
open import Data.Empty
open import Data.Fin using (Fin; zero; suc; punchOut)
open import Data.Fin.Properties
using (suc-injective; punchOut-injective)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Injection
using (Injection; module Injection)
open import Data.List hiding (lookup)
open import Data.List.Relation.Unary.Any as Any using (here; there)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Product
open import Data.Sum
open import Data.Sum.Properties
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong)
open PropEq.≡-Reasoning
private
open module D = DecSetoid D
hiding (refl) renaming (Carrier to Elem)
open import Data.List.Membership.Setoid D.setoid
------------------------------------------------------------------------
-- Helper functions
private
-- The /first/ occurrence of x in xs.
first-occurrence : ∀ {xs} x → x ∈ xs → x ∈ xs
first-occurrence x (here x≈y) = here x≈y
first-occurrence x (there {x = y} x∈xs) with x ≟ y
... | yes x≈y = here x≈y
... | no _ = there $ first-occurrence x x∈xs
-- The index of the first occurrence of x in xs.
first-index : ∀ {xs} x → x ∈ xs → Fin (length xs)
first-index x x∈xs = Any.index $ first-occurrence x x∈xs
-- first-index preserves equality of its first argument.
first-index-cong : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
x₁ ≈ x₂ → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs
first-index-cong {x₁} {x₂} x₁∈xs x₂∈xs x₁≈x₂ = helper x₁∈xs x₂∈xs
where
helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs
helper (here x₁≈x) (here x₂≈x) = refl
helper (here x₁≈x) (there {x = x} x₂∈xs) with x₂ ≟ x
... | yes x₂≈x = refl
... | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x))
helper (there {x = x} x₁∈xs) (here x₂≈x) with x₁ ≟ x
... | yes x₁≈x = refl
... | no x₁≉x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x))
helper (there {x = x} x₁∈xs) (there x₂∈xs) with x₁ ≟ x | x₂ ≟ x
... | yes x₁≈x | yes x₂≈x = refl
... | yes x₁≈x | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x))
... | no x₁≉x | yes x₂≈x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x))
... | no x₁≉x | no x₂≉x = cong suc $ helper x₁∈xs x₂∈xs
-- first-index is injective in its first argument.
first-index-injective
: ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂
first-index-injective {x₁} {x₂} = helper
where
helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) →
first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂
helper (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x)
helper (here x₁≈x) (there {x = x} x₂∈xs) _ with x₂ ≟ x
helper (here x₁≈x) (there {x = x} x₂∈xs) _ | yes x₂≈x = trans x₁≈x (sym x₂≈x)
helper (here x₁≈x) (there {x = x} x₂∈xs) () | no x₂≉x
helper (there {x = x} x₁∈xs) (here x₂≈x) _ with x₁ ≟ x
helper (there {x = x} x₁∈xs) (here x₂≈x) _ | yes x₁≈x = trans x₁≈x (sym x₂≈x)
helper (there {x = x} x₁∈xs) (here x₂≈x) () | no x₁≉x
helper (there {x = x} x₁∈xs) (there x₂∈xs) _ with x₁ ≟ x | x₂ ≟ x
helper (there {x = x} x₁∈xs) (there x₂∈xs) _ | yes x₁≈x | yes x₂≈x = trans x₁≈x (sym x₂≈x)
helper (there {x = x} x₁∈xs) (there x₂∈xs) () | yes x₁≈x | no x₂≉x
helper (there {x = x} x₁∈xs) (there x₂∈xs) () | no x₁≉x | yes x₂≈x
helper (there {x = x} x₁∈xs) (there x₂∈xs) eq | no x₁≉x | no x₂≉x =
helper x₁∈xs x₂∈xs (suc-injective eq)
------------------------------------------------------------------------
-- The countdown data structure
-- If counted ⊕ n is inhabited then there are at most n values of type
-- Elem which are not members of counted (up to _≈_). You can read the
-- symbol _⊕_ as partitioning Elem into two parts: counted and
-- uncounted.
infix 4 _⊕_
record _⊕_ (counted : List Elem) (n : ℕ) : Set where
field
-- An element can be of two kinds:
-- ⑴ It is provably in counted.
-- ⑵ It is one of at most n elements which may or may not be in
-- counted. The "at most n" part is guaranteed by the field
-- "injective".
kind : ∀ x → x ∈ counted ⊎ Fin n
injective : ∀ {x y i} → kind x ≡ inj₂ i → kind y ≡ inj₂ i → x ≈ y
-- A countdown can be initialised by proving that Elem is finite.
empty : ∀ {n} → Injection D.setoid (PropEq.setoid (Fin n)) → [] ⊕ n
empty inj =
record { kind = inj₂ ∘ _⟨$⟩_ to
; injective = λ {x} {y} {i} eq₁ eq₂ → injective (begin
to ⟨$⟩ x ≡⟨ inj₂-injective eq₁ ⟩
i ≡⟨ PropEq.sym $ inj₂-injective eq₂ ⟩
to ⟨$⟩ y ∎)
}
where open Injection inj
-- A countdown can also be initialised by proving that Elem is finite.
emptyFromList : (counted : List Elem) → (∀ x → x ∈ counted) →
[] ⊕ length counted
emptyFromList counted complete = empty record
{ to = record
{ _⟨$⟩_ = λ x → first-index x (complete x)
; cong = first-index-cong (complete _) (complete _)
}
; injective = first-index-injective (complete _) (complete _)
}
-- Finds out if an element has been counted yet.
lookup : ∀ {counted n} → counted ⊕ n → ∀ x → Dec (x ∈ counted)
lookup {counted} _ x = Any.any (_≟_ x) counted
-- When no element remains to be counted all elements have been
-- counted.
lookup! : ∀ {counted} → counted ⊕ zero → ∀ x → x ∈ counted
lookup! counted⊕0 x with _⊕_.kind counted⊕0 x
... | inj₁ x∈counted = x∈counted
... | inj₂ ()
private
-- A variant of lookup!.
lookup‼ : ∀ {m counted} →
counted ⊕ m → ∀ x → x ∉ counted → ∃ λ n → m ≡ suc n
lookup‼ {suc m} counted⊕n x x∉counted = (m , refl)
lookup‼ {zero} counted⊕n x x∉counted =
⊥-elim (x∉counted $ lookup! counted⊕n x)
-- Counts a previously uncounted element.
insert : ∀ {counted n} →
counted ⊕ suc n → ∀ x → x ∉ counted → x ∷ counted ⊕ n
insert {counted} {n} counted⊕1+n x x∉counted =
record { kind = kind′; injective = inj }
where
open _⊕_ counted⊕1+n
helper : ∀ x y i {j} →
kind x ≡ inj₂ i → kind y ≡ inj₂ j → i ≡ j → x ≈ y
helper _ _ _ eq₁ eq₂ refl = injective eq₁ eq₂
kind′ : ∀ y → y ∈ x ∷ counted ⊎ Fin n
kind′ y with y ≟ x | kind x | kind y | helper x y
kind′ y | yes y≈x | _ | _ | _ = inj₁ (here y≈x)
kind′ y | _ | inj₁ x∈counted | _ | _ = ⊥-elim (x∉counted x∈counted)
kind′ y | _ | _ | inj₁ y∈counted | _ = inj₁ (there y∈counted)
kind′ y | no y≉x | inj₂ i | inj₂ j | hlp =
inj₂ (punchOut (y≉x ∘ sym ∘ hlp _ refl refl))
inj : ∀ {y z i} → kind′ y ≡ inj₂ i → kind′ z ≡ inj₂ i → y ≈ z
inj {y} {z} eq₁ eq₂ with y ≟ x | z ≟ x | kind x | kind y | kind z
| helper x y | helper x z | helper y z
inj () _ | yes _ | _ | _ | _ | _ | _ | _ | _
inj _ () | _ | yes _ | _ | _ | _ | _ | _ | _
inj _ _ | no _ | no _ | inj₁ x∈counted | _ | _ | _ | _ | _ = ⊥-elim (x∉counted x∈counted)
inj () _ | no _ | no _ | inj₂ _ | inj₁ _ | _ | _ | _ | _
inj _ () | no _ | no _ | inj₂ _ | _ | inj₁ _ | _ | _ | _
inj eq₁ eq₂ | no _ | no _ | inj₂ i | inj₂ _ | inj₂ _ | _ | _ | hlp =
hlp _ refl refl $
punchOut-injective {i = i} _ _ $
(PropEq.trans (inj₂-injective eq₁) (PropEq.sym (inj₂-injective eq₂)))
-- Counts an element if it has not already been counted.
lookupOrInsert : ∀ {counted m} →
counted ⊕ m →
∀ x → x ∈ counted ⊎
∃ λ n → m ≡ suc n × x ∷ counted ⊕ n
lookupOrInsert counted⊕n x with lookup counted⊕n x
... | yes x∈counted = inj₁ x∈counted
... | no x∉counted with lookup‼ counted⊕n x x∉counted
... | (n , refl) = inj₂ (n , refl , insert counted⊕n x x∉counted)
| {
"alphanum_fraction": 0.5439924314,
"avg_line_length": 39.6995305164,
"ext": "agda",
"hexsha": "6568df2b8edea62af2b6584a1ce2989c20b5ca29",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Countdown.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Countdown.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Countdown.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3202,
"size": 8456
} |
{-# OPTIONS --without-K --safe #-}
-- Restriction Functor
module Categories.Functor.Restriction where
open import Level using (Level; _⊔_)
open import Categories.Category using (Category; _[_,_]; _[_≈_])
open import Categories.Category.Restriction using (Restriction)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
C : Category o ℓ e
D : Category o′ ℓ′ e′
E : Category o″ ℓ″ e″
record RestrictionF {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(RC : Restriction C) (RD : Restriction D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = Category C using (Obj)
module RC = Restriction RC
module RD = Restriction RD
field
Func : Functor C D
open Functor Func using (F₁)
field
F-resp-↓ : {A B : C.Obj} → (f : C [ A , B ]) → D [ F₁ (f RC.↓) ≈ (F₁ f) RD.↓ ]
id : {RC : Restriction C} → RestrictionF RC RC
id {C = C} = record { Func = idF ; F-resp-↓ = λ f → Category.Equiv.refl C }
_∘R_ : {RC : Restriction C} {RD : Restriction D} {RE : Restriction E} → RestrictionF RD RE → RestrictionF RC RD → RestrictionF RC RE
_∘R_ {C = C} {E = E} {RC} {RD} {RE} F G = record
{ Func = Func F ∘F Func G
; F-resp-↓ = resp
}
where
open RestrictionF
open Category E using (_≈_; module HomReasoning)
open HomReasoning
module F = Functor (Func F)
module G = Functor (Func G)
module RC = Restriction RC
module RD = Restriction RD
module RE = Restriction RE
resp : ∀ {A B : Category.Obj C} → (f : C [ A , B ]) → F.₁ (G.₁ (f RC.↓)) ≈ F.₁ (G.₁ f) RE.↓
resp f = begin
F.₁ (G.₁ (f RC.↓)) ≈⟨ F.F-resp-≈ (F-resp-↓ G f) ⟩
F.₁ ((G.₁ f) RD.↓) ≈⟨ F-resp-↓ F _ ⟩
F.₁ (G.₁ f) RE.↓ ∎
| {
"alphanum_fraction": 0.5878995434,
"avg_line_length": 33.0566037736,
"ext": "agda",
"hexsha": "e435932ca7ed54f92a99c098e179ea2780b66571",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Restriction.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Restriction.agda",
"max_line_length": 132,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Restriction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 667,
"size": 1752
} |
{-# OPTIONS -v treeless.opt:20 #-}
module _ where
open import Common.Prelude
open import Common.Equality
data Dec {a} (A : Set a) : Set a where
yes : A → Dec A
no : (A → ⊥) → Dec A
decEq₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {f : A → B → C} →
(∀ {x y z w} → f x y ≡ f z w → x ≡ z) →
(∀ {x y z w} → f x y ≡ f z w → y ≡ w) →
∀ {x y z w} → Dec (x ≡ y) → Dec (z ≡ w) → Dec (f x z ≡ f y w)
decEq₂ f-inj₁ f-inj₂ (no neq) _ = no λ eq → neq (f-inj₁ eq)
decEq₂ f-inj₁ f-inj₂ _ (no neq) = no λ eq → neq (f-inj₂ eq)
decEq₂ f-inj₁ f-inj₂ (yes refl) (yes refl) = yes refl
main : IO Unit
main = putStrLn ""
| {
"alphanum_fraction": 0.485799701,
"avg_line_length": 30.4090909091,
"ext": "agda",
"hexsha": "fe8373f43a7ca069dbb9a8294c24f0113f809983",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/EraseRefl.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/EraseRefl.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/EraseRefl.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 290,
"size": 669
} |
-- Andreas, 2020-06-16, issue #4752
-- Disallow @-patterns in pattern synonyms.
--
-- Agda 2.5.2 implemented @-patterns and accidentially
-- allowed them in pattern synonyms.
-- However they just lead to a panic when used.
data Nat : Set where
suc : Nat → Nat
pattern ss x = suc x@(suc _)
-- EXPECTED:
--
-- @-patterns are not allowed in pattern synonyms
-- when scope checking the declaration
-- pattern ss x = suc x@(suc _)
test : Nat → Set
test (ss x) = test x
-- WAS (from 2.5.2):
--
-- Panic: unbound variable x
-- when checking that the expression x has type Nat
| {
"alphanum_fraction": 0.678200692,
"avg_line_length": 22.2307692308,
"ext": "agda",
"hexsha": "291eb77f0946ee9c4be4c39257461d1ad09c4b3b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4752.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4752.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4752.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 169,
"size": 578
} |
{-# OPTIONS --sized-types #-}
module SizedTypesRigidVarClash where
open import Common.Size renaming (↑_ to _^)
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {size ^}
suc : {size : Size} -> Nat {size} -> Nat {size ^}
inc : {i j : Size} -> Nat {i} -> Nat {j ^}
inc x = suc x
| {
"alphanum_fraction": 0.5794701987,
"avg_line_length": 23.2307692308,
"ext": "agda",
"hexsha": "3d5a868e76ab16a47cea9d9463021c089a04dcfd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/SizedTypesRigidVarClash.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/SizedTypesRigidVarClash.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/SizedTypesRigidVarClash.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 100,
"size": 302
} |
module StateSizedIO.GUI.WxGraphicsLib where
open import SizedIO.Base
open import StateSizedIO.GUI.BaseStateDependent
open import Size renaming (Size to AgdaSize)
open import Data.Bool.Base
open import Data.List.Base
open import Data.Nat
open import Function
open import Data.Integer
open import NativeIO
open import StateSizedIO.GUI.WxBindingsFFI
open import StateSizedIO.GUI.VariableList
data GuiLev1Command : Set where
makeFrame : GuiLev1Command
setChildredLayout : Frame → ℕ → ℕ → ℕ → ℕ → GuiLev1Command
makeButton : Frame → GuiLev1Command
setAttribButton : Button → WxColor → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
deleteButton : Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool → GuiLev1Command
repaint : Frame → GuiLev1Command
bitmapGetWidth : Bitmap → GuiLev1Command
putStrLn : String → GuiLev1Command
GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton _) = Button
GuiLev1Response (bitmapGetWidth _) = ℤ
GuiLev1Response _ = Unit
GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
GuiLev2State : Set₁
GuiLev2State = VarList
data GuiLev2Command (s : GuiLev2State) : Set₁ where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button → List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setTimer : Frame → ℤ → List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setKeyHandler : Button
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setOnPaint : Frame
→ List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set
GuiLev2Response _ (level1C c) = GuiLev1Response c
GuiLev2Response _ (createVar {A} a) = Var A
GuiLev2Response _ (setTimer fra x p) = Timer
GuiLev2Response _ _ = Unit
GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State
GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s _ _ = s
GuiLev2Interface : IOInterfaceˢ
Stateˢ GuiLev2Interface = GuiLev2State
Commandˢ GuiLev2Interface = GuiLev2Command
Responseˢ GuiLev2Interface = GuiLev2Response
nextˢ GuiLev2Interface = GuiLev2Next
translateLev1Local : (c : GuiLev1Command) → NativeIO (GuiLev1Response c)
translateLev1Local makeFrame = nativeNewFrame "dummy title"
translateLev1Local (setChildredLayout win a b c d) = nativeSetChildredLayout win a b c d
translateLev1Local (makeButton fra) = nativeMakeButton fra "dummy button label"
translateLev1Local (deleteButton bt) = nativeDeleteButton bt
translateLev1Local (addButton fra bt) = nativeAddButton fra bt
translateLev1Local (setAttribButton bt col) = nativeSetColorButton bt col
translateLev1Local (drawBitmap dc bm p b) = nativeDrawBitmap dc bm p b
translateLev1Local (repaint fra) = nativeRepaint fra
translateLev1Local (bitmapGetWidth b) = nativeBitmapGetWidth b
translateLev1Local (putStrLn s) = nativePutStrLn s
translateLev1 : {A : Set} → IO GuiLev1Interface ∞ A → NativeIO A
translateLev1 = translateIO translateLev1Local
translateLev1List : {A : Set} → List (IO GuiLev1Interface ∞ A) → List (NativeIO A)
translateLev1List l = map translateLev1 l
translateLev2Local : (s : GuiLev2State)
→ (c : GuiLev2Command s)
→ NativeIO (GuiLev2Response s c)
translateLev2Local s (level1C c) = translateLev1Local c
translateLev2Local s (createVar {A} a) = nativeNewVar {A} a
translateLev2Local s (setButtonHandler bt proglist)
= nativeSetButtonHandler bt
(dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist))
translateLev2Local s (setTimer fra interv proglist)
= nativeSetTimer fra interv (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist))
translateLev2Local s (setKeyHandler bt proglistRight proglistLeft proglistUp proglistDown)
= nativeSetKeyHandler bt
(λ key -> case (showKey key) of λ
{ "Right" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistRight))
; "Left" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistLeft))
; "Up" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistUp))
; "Down" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistDown))
; _ → nativeReturn unit
} )
translateLev2Local s (setOnPaint fra proglist)
= nativeSetOnPaint fra (λ dc rect → (dispatchList s
(map (λ prog aa → translateLev1 (prog aa dc rect)) proglist)))
translateLev2 : {s : GuiLev2State} → {A : Set}
→ IOˢ GuiLev2Interface ∞ (λ _ → A) s → NativeIO A
translateLev2 = translateIOˢ {I = GuiLev2Interface} translateLev2Local
| {
"alphanum_fraction": 0.6640766173,
"avg_line_length": 38.9718309859,
"ext": "agda",
"hexsha": "e48677e9610303121a8adfa5fb121b5d0ef4b833",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/StateSizedIO/GUI/WxGraphicsLib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/StateSizedIO/GUI/WxGraphicsLib.agda",
"max_line_length": 98,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/StateSizedIO/GUI/WxGraphicsLib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1660,
"size": 5534
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Instances.Int where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Sigma
open import Cubical.Data.Bool as Bool using (Bool; not; true; false)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ)
open import Function.Base using (it; _∋_; _$_)
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.PropositionalTruncation --.Properties
open import Utils using (!_; !!_)
open import MoreLogic.Reasoning
open import MoreLogic.Definitions
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions hiding (_≤''_)
open import MorePropAlgebra.Structures
open import MorePropAlgebra.Bundles
open import MorePropAlgebra.Consequences
open import Number.Structures2
open import Number.Bundles2
open import Number.Instances.Nat using (lemma10''; lemma12'')
open import Number.Prelude.Nat
import Agda.Builtin.Int as Builtin
import Data.Integer.Base as BuiltinBase
import Data.Integer.Properties as BuiltinProps
open import Cubical.Data.Int renaming
( Int to ℤ
; isSetInt to isSetℤ
; _-_ to infix 7 _-_
; _+_ to infix 5 _+_
)
import Cubical.HITs.Ints.QuoInt as QuoInt
-- Cubical.Data.Int is isomorphic to Agda.Builtin.Int
Int≅Builtin : Iso ℤ Builtin.Int
Int≅Builtin .Iso.fun ( pos n) = Builtin.pos n
Int≅Builtin .Iso.fun ( negsuc n) = Builtin.negsuc n
Int≅Builtin .Iso.inv (Builtin.pos n) = pos n
Int≅Builtin .Iso.inv (Builtin.negsuc n) = negsuc n
Int≅Builtin .Iso.rightInv (Builtin.pos n) = refl
Int≅Builtin .Iso.rightInv (Builtin.negsuc n) = refl
Int≅Builtin .Iso.leftInv ( pos n) = refl
Int≅Builtin .Iso.leftInv ( negsuc n) = refl
Int≡Builtin : ℤ ≡ Builtin.Int
Int≡Builtin = isoToPath Int≅Builtin
Sign : Type₀
Sign = Bool
pattern spos = Bool.false
pattern sneg = Bool.true
_·ˢ_ : Sign → Sign → Sign
_·ˢ_ = Bool._⊕_
sign : ℤ → Sign
sign (pos n) = spos
sign (negsuc n) = sneg
signed : Sign → ℕ → ℤ
signed spos x = pos x
signed sneg zero = 0
signed sneg (suc x) = neg (suc x)
-_ : ℤ → ℤ
- pos zero = pos zero
- pos (suc n) = negsuc n
- negsuc n = pos (suc n)
-involutive : ∀ a → - - a ≡ a
-involutive (pos zero) = refl
-involutive (pos (suc n)) = refl
-involutive (negsuc n) = refl
infix 8 -_
infix 7 _·_
infix 7 _·'_
infix 7 _·''_
infixl 4 _<_
-- multiplication on integers
-- NOTE: this definition leads to a lot cases and a lot of calculations
-- the general advice would be to have as few cases as possible
-- because then at a call site we also need not many cases
-- NOTE: the way that QuoInt._+_ is defined works that it reduces the first argument, e.g. it reduces `a` in `a + b`
-- therefore we also need to split (only) on the first argument `a`
-- _+_ : ℤ → ℤ → ℤ
-- (signed _ zero) + n = n
-- (posneg _) + n = n
-- (pos (suc m)) + n = sucℤ (pos m + n)
-- (neg (suc m)) + n = predℤ (neg m + n)
-- we might apply something similar for _·_
-- although that is not done for QuoInt._*_
-- _*_ : ℤ → ℤ → ℤ
-- m * n = signed (sign m *S sign n) (abs m ℕ.* abs n)
-- but it is done for ℕ._*_
-- _*_ : Nat → Nat → Nat
-- zero * m = zero
-- suc n * m = m + n * m
_·_ : ℤ → ℤ → ℤ
pos a · pos b = pos (a ·ⁿ b)
pos zero · negsuc b = pos 0
pos (suc a) · negsuc b = negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) -- maybe `(a +ⁿ b) +ⁿ a ·ⁿ b` would be a better choice ?
negsuc a · pos zero = pos 0
negsuc a · pos (suc b) = negsuc (a ·ⁿ b +ⁿ (a +ⁿ b))
negsuc a · negsuc b = pos (suc a ·ⁿ suc b)
-- an equivalent multiplication on integers
-- NOTE: this is the way it's defined in the noncubical standard library
-- I used it to proof associativity, which seemed incredibly hard for the previous definition
_·'_ : ℤ → ℤ → ℤ
x ·' y = signed (sign x ·ˢ sign y) (abs x ·ⁿ abs y)
mksigned : Sign → ℕ → ℤ
mksigned s zero = pos 0
mksigned s (suc n) = signed s (suc n)
-- a third multiplication on the integers
-- NOTE: with the use of `mksigned` we need not case-split on the sign, if the absolute value is zero
_·''_ : ℤ → ℤ → ℤ
x ·'' y = mksigned (sign x ·ˢ sign y) (abs x ·ⁿ abs y)
abstract
·''-nullifiesʳ : ∀ x → x ·'' 0 ≡ 0
·''-nullifiesʳ (pos n) i = mksigned spos (·ⁿ-nullifiesʳ n i)
·''-nullifiesʳ (negsuc n) i = mksigned sneg (·ⁿ-nullifiesʳ n i)
-- hProp-valued _<_
_<_ : ∀(x y : ℤ) → hProp ℓ-zero
pos x < pos y = x <ⁿ y
pos x < negsuc y = ⊥
negsuc x < pos y = ⊤
negsuc x < negsuc y = y <ⁿ x
min : ℤ → ℤ → ℤ
min (pos x) (pos y) = pos (minⁿ x y)
min (pos x) (negsuc y) = negsuc y
min (negsuc x) (pos y) = negsuc x
min (negsuc x) (negsuc y) = negsuc (maxⁿ x y)
max : ℤ → ℤ → ℤ
max (pos x) (pos y) = pos (maxⁿ x y)
max (pos x) (negsuc y) = pos x
max (negsuc x) (pos y) = pos y
max (negsuc x) (negsuc y) = negsuc (minⁿ x y)
-- some calculations that arose in the proofs
private
abstract
lemma1 : ∀ a b → a ·ⁿ b +ⁿ (a +ⁿ b) ≡ b +ⁿ a ·ⁿ suc b
lemma1 a b = a ·ⁿ b +ⁿ (a +ⁿ b) ≡⟨ (λ i → +ⁿ-assoc (a ·ⁿ b) a b i) ⟩
(a ·ⁿ b +ⁿ a) +ⁿ b ≡⟨ (λ i → +ⁿ-comm (a ·ⁿ b) a i +ⁿ b) ⟩
(a +ⁿ a ·ⁿ b) +ⁿ b ≡⟨ (λ i → +ⁿ-comm (a +ⁿ a ·ⁿ b) b i) ⟩
b +ⁿ (a +ⁿ a ·ⁿ b) ≡⟨ (λ i → b +ⁿ ·ⁿ-suc a b (~ i)) ⟩
b +ⁿ a ·ⁿ suc b ∎
lemma2 : ∀ a b c → c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c
≡ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c)
lemma2 a b c =
c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → c +ⁿ ·ⁿ-distribʳ b (a ·ⁿ suc b) (suc c) (~ i)) ⟩
c +ⁿ (b ·ⁿ suc c +ⁿ (a ·ⁿ suc b) ·ⁿ suc c) ≡⟨ +ⁿ-assoc c _ _ ⟩
(c +ⁿ b ·ⁿ suc c) +ⁿ (a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → (c +ⁿ b ·ⁿ suc c) +ⁿ ·ⁿ-assoc a (suc b) (suc c) (~ i)) ⟩
(c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ (suc b ·ⁿ suc c) ≡⟨ refl ⟩
(c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c) ∎
lemma3 : ∀ y z → y ·ⁿ z +ⁿ (y +ⁿ z) ≡ y ·ⁿ suc z +ⁿ z
lemma3 y z = y ·ⁿ z +ⁿ (y +ⁿ z) ≡⟨ +ⁿ-assoc (y ·ⁿ z) y z ⟩
(y ·ⁿ z +ⁿ y) +ⁿ z ≡⟨ (λ i → +ⁿ-comm (y ·ⁿ z) y i +ⁿ z) ⟩
(y +ⁿ y ·ⁿ z) +ⁿ z ≡⟨ (λ i → ·ⁿ-suc y z (~ i) +ⁿ z) ⟩
y ·ⁿ suc z +ⁿ z ∎
lemma4 = λ(a b : ℕ) →
a ·ⁿ suc b +ⁿ (a +ⁿ suc b) ≡⟨ (λ i → ·ⁿ-suc a b i +ⁿ (a +ⁿ suc b)) ⟩
(a +ⁿ a ·ⁿ b) +ⁿ (a +ⁿ suc b) ≡⟨ sym $ +ⁿ-assoc a (a ·ⁿ b) (a +ⁿ suc b) ⟩
a +ⁿ (a ·ⁿ b +ⁿ (a +ⁿ suc b)) ≡⟨ (λ i → a +ⁿ +ⁿ-assoc (a ·ⁿ b) a (suc b) i) ⟩
a +ⁿ ((a ·ⁿ b +ⁿ a) +ⁿ suc b) ≡⟨ (λ i → a +ⁿ +ⁿ-suc (a ·ⁿ b +ⁿ a) b i) ⟩
a +ⁿ suc ((a ·ⁿ b +ⁿ a) +ⁿ b) ≡⟨ (λ i → a +ⁿ suc (+ⁿ-assoc (a ·ⁿ b) a b (~ i))) ⟩
a +ⁿ suc (a ·ⁿ b +ⁿ (a +ⁿ b)) ∎
lemma5 = λ(a b : ℕ) →
a +ⁿ (b +ⁿ a ·ⁿ suc b) ≡⟨ +ⁿ-assoc a b (a ·ⁿ suc b) ⟩
(a +ⁿ b) +ⁿ a ·ⁿ suc b ≡⟨ (λ i → +ⁿ-comm a b i +ⁿ a ·ⁿ suc b) ⟩
(b +ⁿ a) +ⁿ a ·ⁿ suc b ≡⟨ sym $ +ⁿ-assoc b a (a ·ⁿ suc b) ⟩
b +ⁿ (a +ⁿ a ·ⁿ suc b) ≡⟨ (λ i → b +ⁿ ·ⁿ-suc a (suc b) (~ i)) ⟩
b +ⁿ a ·ⁿ suc (suc b) ∎
lemma6 : ∀ m n → suc (m +ⁿ n ·ⁿ suc (suc (suc m))) ≡ suc n +ⁿ (m +ⁿ n ·ⁿ suc (suc m))
lemma6 m n = suc (m +ⁿ n ·ⁿ suc (suc (suc m))) ≡⟨ (λ i → suc $ m +ⁿ ·ⁿ-suc n (suc (suc m)) i) ⟩
suc (m +ⁿ (n +ⁿ n ·ⁿ suc (suc m))) ≡⟨ (λ i → suc $ +ⁿ-assoc m n (n ·ⁿ (suc (suc m))) i) ⟩
suc ((m +ⁿ n) +ⁿ n ·ⁿ suc (suc m)) ≡⟨ (λ i → suc $ +ⁿ-comm m n i +ⁿ n ·ⁿ suc (suc m)) ⟩
suc ((n +ⁿ m) +ⁿ n ·ⁿ suc (suc m)) ≡⟨ (λ i → suc $ +ⁿ-assoc n m (n ·ⁿ (suc (suc m))) (~ i)) ⟩
suc (n +ⁿ (m +ⁿ n ·ⁿ suc (suc m))) ≡⟨ refl ⟩
suc n +ⁿ (m +ⁿ n ·ⁿ suc (suc m)) ∎
lemma7 : ∀ a b → b +ⁿ a ·ⁿ suc b ≡ a +ⁿ b ·ⁿ suc a
lemma7 a b =
b +ⁿ a ·ⁿ suc b ≡⟨ (λ i → b +ⁿ ·ⁿ-suc a b i) ⟩
b +ⁿ (a +ⁿ a ·ⁿ b) ≡⟨ (λ i → +ⁿ-assoc b a (a ·ⁿ b) i) ⟩
(b +ⁿ a) +ⁿ a ·ⁿ b ≡⟨ (λ i → +ⁿ-comm b a i +ⁿ a ·ⁿ b) ⟩
(a +ⁿ b) +ⁿ a ·ⁿ b ≡⟨ (λ i → +ⁿ-assoc a b (a ·ⁿ b) (~ i)) ⟩
a +ⁿ (b +ⁿ a ·ⁿ b) ≡⟨ (λ i → a +ⁿ (b +ⁿ ·ⁿ-comm a b i)) ⟩
a +ⁿ (b +ⁿ b ·ⁿ a) ≡⟨ (λ i → a +ⁿ ·ⁿ-suc b a (~ i)) ⟩
a +ⁿ b ·ⁿ suc a ∎
abstract
<-irrefl : (a : ℤ) → [ ¬ (a < a) ]
<-irrefl (pos zero ) = <ⁿ-irrefl 0
<-irrefl (pos (suc n)) = <ⁿ-irrefl (suc n)
<-irrefl (negsuc n ) = <ⁿ-irrefl n
<-trans : (a b c : ℤ) → [ a < b ] → [ b < c ] → [ a < c ]
<-trans (pos a) (pos b) (pos c) a<b b<c = <ⁿ-trans a<b b<c
<-trans (negsuc a) (pos b) (pos c) a<b b<c = tt
<-trans (negsuc a) (negsuc b) (pos c) a<b b<c = tt
<-trans (negsuc a) (negsuc b) (negsuc c) a<b b<c = <ⁿ-trans b<c a<b
<-asym : (a b : ℤ) → [ a < b ] → [ ¬(b < a) ]
<-asym = irrefl+trans⇒asym _<_ <-irrefl <-trans
<-cotrans : (a b : ℤ) → [ a < b ] → (x : ℤ) → [ (a < x) ⊔ (x < b) ]
<-cotrans (pos a) (pos b) a<b (pos x) = <ⁿ-cotrans _ _ a<b x
<-cotrans (pos a) (pos b) a<b (negsuc x) = inrᵖ tt
<-cotrans (negsuc a) (pos b) a<b (pos x) = inlᵖ tt
<-cotrans (negsuc a) (pos b) a<b (negsuc x) = inrᵖ tt
<-cotrans (negsuc a) (negsuc b) a<b (pos x) = inlᵖ tt
<-cotrans (negsuc a) (negsuc b) a<b (negsuc x) = pathTo⇒ (⊔-comm (b <ⁿ x) (x <ⁿ a)) (<ⁿ-cotrans _ _ a<b x)
-- some properties about `pos`, `negsuc`, `+pos` and `+negsuc`
abstract
+-identityʳ : ∀ x → x + 0 ≡ x
+-identityʳ x = refl
+-identityˡ : ∀ x → 0 + x ≡ x
+-identityˡ x = +-comm 0 x ∙ +-identityʳ x
-- usage count: 3
-1·≡- : ∀ a → negsuc 0 · a ≡ - a
-1·≡- (pos zero) = refl
-1·≡- (pos (suc n)) = refl
-1·≡- (negsuc n) = λ i → pos $ suc $ +ⁿ-comm n 0 i
-- usage count: 0
negsuc≡-pos : ∀ a → negsuc a ≡ - pos (suc a)
negsuc≡-pos a = refl
-- usage count: 2
negsuc-reflects-≡ : ∀ x y → negsuc x ≡ negsuc y → x ≡ y
negsuc-reflects-≡ x y p i = predⁿ (abs (p i))
-- usage count: 2
pos-reflects-≡ : ∀ x y → pos x ≡ pos y → x ≡ y
pos-reflects-≡ x y p i = abs (p i)
-- usage count: 1 - 2
possuc+negsuc≡0 : ∀ n → (pos (suc n) +negsuc n) ≡ pos 0
possuc+negsuc≡0 zero = refl
possuc+negsuc≡0 (suc n) = let r = possuc+negsuc≡0 n in sym ind ∙ r where
ind = pos (suc n) +negsuc n ≡⟨ refl ⟩
predInt (pos (suc (suc n))) +negsuc n ≡⟨ sym $ predInt+negsuc n (pos (suc (suc n))) ⟩
predInt (pos (suc (suc n)) +negsuc n) ∎
-- usage count: 0 - 1
sucInt[negsuc+pos]≡0 : ∀ n → sucInt (negsuc n +pos n) ≡ pos 0
sucInt[negsuc+pos]≡0 zero = refl
sucInt[negsuc+pos]≡0 (suc n) = let r = sucInt[negsuc+pos]≡0 n in sym ind ∙ r where
ind = sucInt ( negsuc n +pos n ) ≡⟨ refl ⟩
sucInt (sucInt (negsuc (suc n)) +pos n ) ≡⟨ (λ i → sucInt $ sucInt+pos n (negsuc (suc n)) (~ i)) ⟩
sucInt (sucInt (negsuc (suc n) +pos n)) ∎
+-inverseʳ : ∀ a → a + (- a) ≡ 0
+-inverseʳ (pos zero ) = refl
+-inverseʳ (pos (suc n)) = possuc+negsuc≡0 n
+-inverseʳ (negsuc n ) = sucInt[negsuc+pos]≡0 n
+-inverseˡ : ∀ a → (- a) + a ≡ 0
+-inverseˡ a = +-comm (- a) a ∙ +-inverseʳ a
+-inverse : (x : ℤ) → (x + (- x) ≡ pos 0) × ((- x) + x ≡ pos 0)
+-inverse x .fst = +-inverseʳ x
+-inverse x .snd = +-inverseˡ x
-- usage count: 11 - 14
pos+pos≡+ⁿ : ∀ a x → (pos a +pos x) ≡ pos (a +ⁿ x)
pos+pos≡+ⁿ a zero = λ i → pos $ +ⁿ-comm 0 a i
pos+pos≡+ⁿ a (suc x) = let r = pos+pos≡+ⁿ a x in
sucInt (pos a +pos x) ≡⟨ (λ i → sucInt $ r i) ⟩
sucInt (pos (a +ⁿ x)) ≡⟨ refl ⟩
pos (suc (a +ⁿ x)) ≡⟨ (λ i → pos $ +ⁿ-suc a x (~ i)) ⟩
pos (a +ⁿ suc x) ∎
-- usage count: 7 - 8
negsuc+negsuc≡+ⁿ : ∀ a x → (negsuc a +negsuc x) ≡ negsuc (suc (a +ⁿ x))
negsuc+negsuc≡+ⁿ a zero = λ i → negsuc $ suc $ +ⁿ-comm 0 a i
negsuc+negsuc≡+ⁿ a (suc x) = let r = negsuc+negsuc≡+ⁿ a x in
predInt (negsuc a +negsuc x) ≡⟨ (λ i → predInt (r i)) ⟩
predInt (negsuc (suc (a +ⁿ x))) ≡⟨ refl ⟩
negsuc (suc (suc (a +ⁿ x))) ≡⟨ (λ i → negsuc $ suc $ +ⁿ-suc a x (~ i)) ⟩
negsuc (suc (a +ⁿ suc x)) ∎
-- usage count: 6 - 7
+negsuc-identityˡ : ∀ x → 0 +negsuc x ≡ negsuc x
+negsuc-identityˡ zero = refl
+negsuc-identityˡ (suc x) = λ i → predInt $ +negsuc-identityˡ x i
-- usage count: 0
pos+negsuc≡⊎ : ∀ a b → (Σ[ y ∈ ℕ ] pos a +negsuc b ≡ pos y) ⊎ (Σ[ y ∈ ℕ ] pos a +negsuc b ≡ negsuc y)
pos+negsuc≡⊎ zero zero = inr (0 , refl)
pos+negsuc≡⊎ (suc a) zero = inl (a , refl)
pos+negsuc≡⊎ zero (suc b) = inr (suc b , λ i → predInt $ +negsuc-identityˡ b i)
pos+negsuc≡⊎ (suc a) (suc b) with pos+negsuc≡⊎ a b
... | inl (y , p) = inl (y , predInt+negsuc b (pos (suc a)) ∙ p)
... | inr (y , p) = inr (y , predInt+negsuc b (pos (suc a)) ∙ p)
-- usage count: 0
negsuc+pos≡⊎ : ∀ a b → (Σ[ y ∈ ℕ ] negsuc a +pos b ≡ pos y) ⊎ (Σ[ y ∈ ℕ ] negsuc a +pos b ≡ negsuc y)
negsuc+pos≡⊎ zero zero = inr (0 , refl)
negsuc+pos≡⊎ (suc a) zero = inr (suc a , refl)
negsuc+pos≡⊎ zero (suc b) = inl (b , sucInt+pos b (negsuc 0) ∙ +-identityˡ (pos b))
negsuc+pos≡⊎ (suc a) (suc b) with negsuc+pos≡⊎ a b
... | inl (y , p) = inl (y , sucInt+pos b (negsuc (suc a)) ∙ p)
... | inr (y , p) = inr (y , sucInt+pos b (negsuc (suc a)) ∙ p)
-- usage count: 4 - 6
pos+negsuc≡negsuc+pos : ∀ a b → pos a +negsuc b ≡ negsuc b +pos a
pos+negsuc≡negsuc+pos a zero = (λ i → predInt $ pos+pos≡+ⁿ 0 a (~ i)) ∙ predInt+pos a 0
pos+negsuc≡negsuc+pos a (suc b) = (λ i → predInt $ pos+negsuc≡negsuc+pos a b i) ∙ predInt+ (negsuc b) (pos a)
-- usage count: 0 - 1
predInt- : ∀ a → predInt (- a) ≡ - (sucInt a)
predInt- (pos zero) = refl
predInt- (pos (suc n)) = refl
predInt- (negsuc zero) = refl
predInt- (negsuc (suc n)) = refl
-- usage count: 2 - 3
pos+negsuc-swap : ∀ a b → pos (suc a) +negsuc b ≡ -(pos (suc b) + negsuc a)
pos+negsuc-swap zero zero = refl
pos+negsuc-swap (suc a) zero = λ i → - (predInt+negsuc a 1 ∙ +negsuc-identityˡ a) (~ i)
pos+negsuc-swap a (suc b) =
predInt (pos (suc a) +negsuc b) ≡⟨ (λ i → predInt $ pos+negsuc-swap a b i) ⟩
predInt (- (pos (suc b) +negsuc a)) ≡⟨ predInt- (pos (suc b) +negsuc a) ⟩
- sucInt (pos (suc b) +negsuc a) ≡⟨ (λ i → - sucInt+negsuc a (pos (suc b)) i) ⟩
- (pos (suc (suc b)) +negsuc a) ∎
-- usage count: 2
negsuc+pos-swap : ∀ a b → negsuc a +pos (suc b) ≡ -(negsuc b + pos (suc a))
negsuc+pos-swap a b = sym (pos+negsuc≡negsuc+pos (suc b) a) ∙ pos+negsuc-swap b a ∙ (λ i → - pos+negsuc≡negsuc+pos (suc a) b i)
-- usage count: 1
+negsuc-assoc : ∀ a b c → a +negsuc (b +ⁿ suc c) ≡ (a +negsuc b) +negsuc c
+negsuc-assoc a b c = (λ i → a + (negsuc+negsuc≡+ⁿ b c ∙ (λ j → negsuc (+ⁿ-suc b c (~ j)))) (~ i)) ∙ +-assoc a (negsuc b) (negsuc c)
-- usage count: 1
sucInt[negsuc+pos]≡pos : ∀ a → sucInt (negsuc 0 +pos a) ≡ pos a
sucInt[negsuc+pos]≡pos a = sucInt+pos a (negsuc 0) ∙ pos+pos≡+ⁿ 0 a
-- usage count: 1
+pos-inverse : ∀ a → negsuc a +pos a ≡ negsuc 0
+pos-inverse zero = refl
+pos-inverse (suc a) = sucInt+pos a (negsuc (suc a)) ∙ +pos-inverse a
-- usage count: 1
+pos-assoc : ∀ a b c → (a +pos b) +pos c ≡ a +pos (b +ⁿ c)
+pos-assoc a b c = sym (+-assoc a (pos b) (pos c)) ∙ (λ i → a + pos+pos≡+ⁿ b c i)
data Trichotomy (m n : ℤ) : Type₀ where
lt : [ m < n ] → Trichotomy m n
eq : m ≡ n → Trichotomy m n
gt : [ n < m ] → Trichotomy m n
_≟_ : ∀ m n → Trichotomy m n
pos a ≟ pos b with a ≟ⁿ b
... | ltⁿ p = lt p
... | eqⁿ p = eq λ i → pos (p i)
... | gtⁿ p = gt p
pos a ≟ negsuc b = gt tt
negsuc a ≟ pos b = lt tt
negsuc a ≟ negsuc b with a ≟ⁿ b
... | ltⁿ p = gt p
... | eqⁿ p = eq λ i → negsuc (p i)
... | gtⁿ p = lt p
data MinTrichtotomy (x y : ℤ) : Type where
min-lt : min x y ≡ x → [ x < y ] → MinTrichtotomy x y
min-gt : min x y ≡ y → [ y < x ] → MinTrichtotomy x y
min-eq : min x y ≡ x → min x y ≡ y → MinTrichtotomy x y
data MaxTrichtotomy (x y : ℤ) : Type where
max-lt : max x y ≡ y → [ x < y ] → MaxTrichtotomy x y
max-gt : max x y ≡ x → [ y < x ] → MaxTrichtotomy x y
max-eq : max x y ≡ x → max x y ≡ y → MaxTrichtotomy x y
min-trichotomy : ∀ x y → MinTrichtotomy x y
min-trichotomy (pos x) (pos y) with (pos x) ≟ (pos y)
... | lt p = min-lt (λ i → pos $ minⁿ-tightˡ x y p i) p
... | eq p = let minxy≡x = (λ i → minⁿ x (pos-reflects-≡ x y p (~ i))) ∙ minⁿ-identity x
in min-eq (λ j → pos $ minxy≡x j) ((λ i → pos $ minxy≡x i) ∙ p)
... | gt p = min-gt (λ i → pos $ minⁿ-tightʳ x y p i) p
min-trichotomy (pos x) (negsuc y) = min-gt refl tt
min-trichotomy (negsuc x) (pos y) = min-lt refl tt
min-trichotomy (negsuc x) (negsuc y) with (negsuc x) ≟ (negsuc y)
... | lt p = min-lt (λ i → negsuc $ maxⁿ-tightˡ x y p i) p
... | eq p = let maxxy≡x = (λ i → maxⁿ x (negsuc-reflects-≡ x y p (~ i))) ∙ maxⁿ-identity x
in min-eq (λ j → negsuc $ maxxy≡x j) ((λ i → negsuc $ maxxy≡x i) ∙ p)
... | gt p = min-gt (λ i → negsuc $ maxⁿ-tightʳ x y p i) p
max-trichotomy : ∀ x y → MaxTrichtotomy x y
max-trichotomy (pos x) (pos y) with (pos x) ≟ (pos y)
... | lt p = max-lt ((λ i → pos $ maxⁿ-tightʳ x y p i)) p
... | eq p = let maxxy≡x = (λ i → maxⁿ x (pos-reflects-≡ x y p (~ i))) ∙ maxⁿ-identity x
in max-eq (λ j → pos $ maxxy≡x j) ((λ i → pos $ maxxy≡x i) ∙ p)
... | gt p = max-gt (λ i → pos $ maxⁿ-tightˡ x y p i) p
max-trichotomy (pos x) (negsuc y) = max-gt refl tt
max-trichotomy (negsuc x) (pos y) = max-lt refl tt
max-trichotomy (negsuc x) (negsuc y) with (negsuc x) ≟ (negsuc y)
... | lt p = max-lt (λ i → negsuc $ minⁿ-tightʳ x y p i) p
... | eq p = let minxy≡x = (λ i → minⁿ x (negsuc-reflects-≡ x y p (~ i))) ∙ minⁿ-identity x
in max-eq (λ j → negsuc $ minxy≡x j) ((λ i → negsuc $ minxy≡x i) ∙ p)
... | gt p = max-gt (λ i → negsuc $ minⁿ-tightˡ x y p i) p
abstract
-- NOTE: same proof as in `Number.Instances.Nat`
is-min : (x y z : ℤ) → [ ¬ᵖ (min x y < z) ⇔ ¬ᵖ (x < z) ⊓ ¬ᵖ (y < z) ]
is-min x y z .fst z≤minxy with min-trichotomy x y
... | min-lt p x<y = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) x<z)
, (λ y<z → z≤minxy $ pathTo⇐ (λ i → p i < z) $ <-trans x y z x<y y<z)
... | min-gt p y<x = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) $ <-trans y x z y<x x<z)
, (λ y<z → z≤minxy $ pathTo⇐ (λ i → p i < z) y<z)
... | min-eq p q = (λ x<z → z≤minxy $ pathTo⇐ (λ i → p i < z) x<z)
, (λ y<z → z≤minxy $ pathTo⇐ (λ i → q i < z) y<z)
is-min x y z .snd (z≤x , z≤y) minxy<z with min-trichotomy x y
... | min-lt p _ = z≤x $ pathTo⇒ (λ i → p i < z) minxy<z
... | min-gt p _ = z≤y $ pathTo⇒ (λ i → p i < z) minxy<z
... | min-eq p q = z≤x $ pathTo⇒ (λ i → p i < z) minxy<z
-- NOTE: same proof as in `Number.Instances.Nat`
is-max : (x y z : ℤ) → [ ¬ᵖ (z < max x y) ⇔ ¬ᵖ (z < x) ⊓ ¬ᵖ (z < y) ]
is-max x y z .fst maxxy≤z with max-trichotomy x y
... | max-gt p y<x = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<x )
, (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < p i) $ <-trans z y x z<y y<x )
... | max-lt p x<y = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) $ <-trans z x y z<x x<y )
, (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<y )
... | max-eq p q = (λ z<x → maxxy≤z $ pathTo⇐ (λ i → z < p i) z<x )
, (λ z<y → maxxy≤z $ pathTo⇐ (λ i → z < q i) z<y )
is-max x y z .snd (z≤x , z≤y) maxxy<z with max-trichotomy x y
... | max-gt p _ = z≤x $ pathTo⇒ (λ i → z < p i) maxxy<z
... | max-lt p _ = z≤y $ pathTo⇒ (λ i → z < p i) maxxy<z
... | max-eq p q = z≤x $ pathTo⇒ (λ i → z < p i) maxxy<z
abstract
sucInt-reflects-< : ∀ x y → [ sucInt x < sucInt y ] → [ x < y ]
sucInt-reflects-< (pos x ) (pos y ) p = sucⁿ-creates-<ⁿ x y .snd p
sucInt-reflects-< (pos x ) (negsuc zero ) p = ¬-<ⁿ-zero p
sucInt-reflects-< (negsuc x ) (pos y ) p = tt
sucInt-reflects-< (negsuc zero ) (negsuc zero ) p = p
sucInt-reflects-< (negsuc (suc x)) (negsuc zero ) p = 0<ⁿsuc x
sucInt-reflects-< (negsuc (suc x)) (negsuc (suc y)) p = sucⁿ-creates-<ⁿ y x .fst p
predInt-reflects-< : ∀ x y → [ predInt x < predInt y ] → [ x < y ]
predInt-reflects-< (pos zero ) (pos zero ) p = p
predInt-reflects-< (pos zero ) (pos (suc y)) p = 0<ⁿsuc y
predInt-reflects-< (pos (suc x)) (pos (suc y)) p = sucⁿ-creates-<ⁿ x y .fst p
predInt-reflects-< (pos zero ) (negsuc y ) p = ¬-<ⁿ-zero p
predInt-reflects-< (negsuc x ) (pos y ) p = tt
predInt-reflects-< (negsuc x ) (negsuc y ) p = sucⁿ-creates-<ⁿ y x .snd p
sucInt-preserves-< : ∀ x y → [ x < y ] → [ sucInt x < sucInt y ]
sucInt-preserves-< (pos x ) (pos y ) p = sucⁿ-creates-<ⁿ x y .fst p
sucInt-preserves-< (negsuc zero ) (pos y ) p = 0<ⁿsuc y
sucInt-preserves-< (negsuc (suc x)) (pos y ) p = tt
sucInt-preserves-< (negsuc zero ) (negsuc zero ) p = p
sucInt-preserves-< (negsuc zero ) (negsuc (suc y)) p = ¬-<ⁿ-zero p
sucInt-preserves-< (negsuc (suc x)) (negsuc zero ) p = tt
sucInt-preserves-< (negsuc (suc x)) (negsuc (suc y)) p = sucⁿ-creates-<ⁿ y x .snd p
predInt-preserves-< : ∀ x y → [ x < y ] → [ predInt x < predInt y ]
predInt-preserves-< (pos zero ) (pos zero ) p = p
predInt-preserves-< (pos zero ) (pos (suc y)) p = tt
predInt-preserves-< (pos (suc x)) (pos zero ) p = ¬-<ⁿ-zero p
predInt-preserves-< (pos (suc x)) (pos (suc y)) p = sucⁿ-creates-<ⁿ x y .snd p
predInt-preserves-< (negsuc x ) (pos zero ) p = 0<ⁿsuc x
predInt-preserves-< (negsuc x ) (pos (suc y)) p = tt
predInt-preserves-< (negsuc x ) (negsuc y ) p = sucⁿ-creates-<ⁿ y x .fst p
abstract
+-preserves-< : ∀ a b x → [ a < b ] → [ (a + x) < (b + x) ]
+-preserves-< a b (pos zero) a<b = a<b
+-preserves-< a b (pos (suc n)) a<b = let r = +-preserves-< a b (pos n) a<b
in sucInt-preserves-< (a +pos n) (b +pos n) r
+-preserves-< a b (negsuc zero) a<b = predInt-preserves-< a b a<b
+-preserves-< a b (negsuc (suc n)) a<b = let r = +-preserves-< a b (negsuc n) a<b
in predInt-preserves-< (a +negsuc n) (b +negsuc n) r
+-reflects-< : ∀ a b x → [ (a + x) < (b + x) ] → [ a < b ]
+-reflects-< a b x = snd (
(a + x) < (b + x) ⇒ᵖ⟨ +-preserves-< (a + x) (b + x) (- x) ⟩
((a + x) + (- x)) < ((b + x) + (- x)) ⇒ᵖ⟨ (pathTo⇐ λ i → +-assoc a x (- x) i < +-assoc b x (- x) i) ⟩
(a + (x + (- x))) < (b + (x + (- x))) ⇒ᵖ⟨ (pathTo⇒ λ i → (a + +-inverseʳ x i) < (b + +-inverseʳ x i)) ⟩
(a + 0) < (b + 0) ⇒ᵖ⟨ (λ x → x) ⟩
a < b ◼ᵖ)
+-reflects-<ˡ : ∀ a b x → [ (x + a) < (x + b) ] → [ a < b ]
+-reflects-<ˡ a b x p = +-reflects-< a b x (transport (λ i → [ +-comm x a i < +-comm x b i ]) p)
abstract
-- + is <-extentional
+-<-ext : (w x y z : ℤ) → [ (w + x) < (y + z) ] → [ (w < y) ⊔ (x < z) ]
+-<-ext w x y z r with w ≟ y | x ≟ z
... | lt w<y | q = inlᵖ w<y
... | eq w≡y | q = inrᵖ (+-reflects-<ˡ x z y (transport (λ i → [ (w≡y i + x) < (y + z) ]) r))
... | gt y<w | q = inrᵖ $ case (<-cotrans (w + x) (y + z) r (y + x)) as ((w + x) < (y + x)) ⊔ ((y + x) < (y + z)) ⇒ x < z of λ
{ (inl p) → ⊥-elim {A = λ _ → [ x < z ]} (<-asym y w y<w (+-reflects-< w y x p))
; (inr p) → +-reflects-<ˡ x z y p
}
-- properties about multiplication
abstract
-- equality of _·_ and _·'_
·≡·' : ∀ x y → x · y ≡ x ·' y
·≡·' (pos a) (pos b) = refl
·≡·' (pos zero) (negsuc b) = refl
·≡·' (pos (suc a)) (negsuc b) =
negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) ≡⟨ (λ i → negsuc $ lemma1 a b i) ⟩
negsuc (b +ⁿ a ·ⁿ suc b) ≡⟨ refl ⟩
neg (suc (b +ⁿ a ·ⁿ suc b)) ∎
·≡·' (negsuc a) (pos zero) = λ i → signed sneg $ ·ⁿ-nullifiesʳ a (~ i)
·≡·' (negsuc a) (pos (suc b)) = λ i → negsuc $ lemma1 a b i
·≡·' (negsuc a) (negsuc b) = refl
·'-nullifiesʳ : ∀ x → x ·' 0 ≡ 0
·'-nullifiesʳ (pos n) i = signed spos (·ⁿ-nullifiesʳ n i)
·'-nullifiesʳ (negsuc n) i = signed sneg (·ⁿ-nullifiesʳ n i)
·'-nullifiesˡ : ∀ x → 0 ·' x ≡ 0
·'-nullifiesˡ (pos n) i = pos (·ⁿ-nullifiesˡ n i)
·'-nullifiesˡ (negsuc n) = refl
abstract
-distrˡ : ∀ a b → -(a · b) ≡ (- a) · b
-distrˡ (pos zero ) (pos zero ) = refl
-distrˡ (pos zero ) (pos (suc b)) = refl
-distrˡ (pos (suc a)) (pos zero ) = λ i → - pos (·ⁿ-nullifiesʳ a i)
-distrˡ (pos (suc a)) (pos (suc b)) = λ i → negsuc $ lemma1 a b (~ i)
-distrˡ (pos zero ) (negsuc b ) = refl
-distrˡ (pos (suc a)) (negsuc b ) = λ i → pos $ suc $ lemma1 a b i
-distrˡ (negsuc a ) (pos zero ) = λ i → pos (·ⁿ-nullifiesʳ a (~ i))
-distrˡ (negsuc a ) (pos (suc b)) = λ i → pos $ suc $ lemma1 a b i
-distrˡ (negsuc a ) (negsuc b ) = λ i → negsuc $ lemma1 a b (~ i)
abstract
·-comm : ∀ a b → a · b ≡ b · a
·-comm (pos a ) (pos b ) = λ i → pos $ ·ⁿ-comm a b i
·-comm (pos zero ) (negsuc b ) = refl
·-comm (pos (suc a)) (negsuc b ) = λ i → negsuc $ ·ⁿ-comm a b i +ⁿ +ⁿ-comm a b i
·-comm (negsuc a ) (pos zero ) = refl
·-comm (negsuc a ) (pos (suc b)) = λ i → negsuc $ ·ⁿ-comm a b i +ⁿ +ⁿ-comm a b i
·-comm (negsuc a ) (negsuc b ) i = pos (suc (lemma7 a b i))
-distrʳ : ∀ a b → -(a · b) ≡ a · (- b)
-distrʳ a b = (λ i → - ·-comm a b i) ∙ -distrˡ b a ∙ ·-comm (- b) a
abstract
-- this proof of associativity is ported from `Data.Integer.Properties` which works on
-- _·_ : ℤ → ℤ → ℤ
-- i · j = sign i S· sign j ◃ ∣ i ∣ ℕ· ∣ j ∣
·'-assoc : ∀ x y z → (x ·' y) ·' z ≡ x ·' (y ·' z)
·'-assoc (pos 0) y z = (λ i → ·'-nullifiesˡ y i ·' z) ∙ ·'-nullifiesˡ z ∙ sym (·'-nullifiesˡ (y ·' z))
·'-assoc x (pos 0) z = (λ i → ·'-nullifiesʳ x i ·' z) ∙ ·'-nullifiesˡ z ∙ sym (·'-nullifiesʳ x) ∙ (λ i → x ·' ·'-nullifiesˡ z (~ i))
·'-assoc x y (pos 0) = ·'-nullifiesʳ (x ·' y) ∙ sym (·'-nullifiesʳ x) ∙ (λ i → x ·' ·'-nullifiesʳ y (~ i))
·'-assoc (negsuc a ) (negsuc b ) (pos (suc c)) = λ i → (pos (suc (lemma2 a b c i)))
·'-assoc (negsuc a ) (pos (suc b)) (negsuc c ) = λ i → (pos (suc (lemma2 a b c i)))
·'-assoc (pos (suc a)) (pos (suc b)) (pos (suc c)) = λ i → (pos (suc (lemma2 a b c i)))
·'-assoc (pos (suc a)) (negsuc b ) (negsuc c ) = λ i → (pos (suc (lemma2 a b c i)))
·'-assoc (negsuc a ) (negsuc b ) (negsuc c ) = λ i → (negsuc (lemma2 a b c i) )
·'-assoc (negsuc a ) (pos (suc b)) (pos (suc c)) = λ i → (negsuc (lemma2 a b c i) )
·'-assoc (pos (suc a)) (negsuc b ) (pos (suc c)) = λ i → (negsuc (lemma2 a b c i) )
·'-assoc (pos (suc a)) (pos (suc b)) (negsuc c ) = λ i → (negsuc (lemma2 a b c i) )
abstract
-- equality of associativity on _·_ and _·'_
·'-assoc≡ : ∀ x y z
→ ((x · y) · z ≡ x · (y · z))
≡ ((x ·' y) ·' z ≡ x ·' (y ·' z))
·'-assoc≡ x y z i = ·≡·' (·≡·' x y i) z i ≡ ·≡·' x (·≡·' y z i) i
-- associativity of _·_ from associativiy of _·'_
·-assoc : ∀ x y z → (x · y) · z ≡ x · (y · z)
·-assoc x y z = transport (sym (·'-assoc≡ x y z)) (·'-assoc x y z)
abstract
·-nullifiesˡ : ∀ x → 0 · x ≡ 0
·-nullifiesˡ (pos n) = refl
·-nullifiesˡ (negsuc n) = refl
·-nullifiesʳ : ∀ x → x · 0 ≡ 0
·-nullifiesʳ x = ·-comm x 0 ∙ ·-nullifiesˡ x
·-identityˡ : ∀ x → 1 · x ≡ x
·-identityˡ (pos n) = λ i → pos $ +ⁿ-comm n 0 i
·-identityˡ (negsuc n) = refl
·-identityʳ : ∀ x → x · 1 ≡ x
·-identityʳ x = ·-comm x 1 ∙ ·-identityˡ x
abstract
·-preserves-< : (x y z : ℤ) → [ 0 < z ] → [ x < y ] → [ (x · z) < (y · z) ]
·-preserves-< (pos x) (pos y) (pos z ) p q = ·ⁿ-preserves-<ⁿ x y z p q
·-preserves-< (negsuc x) (pos y) (pos zero ) p q = subst (λ p → [ 0 <ⁿ p ]) (sym $ ·ⁿ-nullifiesʳ y) p
·-preserves-< (negsuc x) (pos y) (pos (suc z)) p q = tt
·-preserves-< (negsuc x) (negsuc y) (pos zero ) p q = p
·-preserves-< (negsuc x) (negsuc y) (pos (suc z)) p q = (
y <ⁿ x ⇒ᵖ⟨ ·ⁿ-preserves-<ⁿ y x (suc z) (0<ⁿsuc z) ⟩
(y ·ⁿ suc z ) <ⁿ (x ·ⁿ suc z ) ⇒ᵖ⟨ +ⁿ-createsʳ-<ⁿ (y ·ⁿ suc z) (x ·ⁿ suc z) z .fst ⟩
(y ·ⁿ suc z +ⁿ z ) <ⁿ (x ·ⁿ suc z +ⁿ z ) ⇒ᵖ⟨ pathTo⇐ (λ i → lemma3 y z i <ⁿ lemma3 x z i) ⟩
(y ·ⁿ z +ⁿ (y +ⁿ z)) <ⁿ (x ·ⁿ z +ⁿ (x +ⁿ z)) ◼ᵖ) .snd q
·-reflects-< : (x y z : ℤ) → [ 0 < z ] → [ (x · z) < (y · z) ] → [ x < y ]
·-reflects-< (pos x) (pos y) (pos z ) p q = ·ⁿ-reflects-<ⁿ x y z p q
·-reflects-< (pos x) (negsuc y) (pos zero ) p q = <ⁿ-irrefl 0 p
·-reflects-< (negsuc x) (pos y) (pos zero ) p q = tt
·-reflects-< (negsuc x) (pos y) (pos (suc z)) p q = tt
·-reflects-< (negsuc x) (negsuc y) (pos zero ) p (k , q) = ⊥-elim {A = λ _ → [ y <ⁿ x ]} $ snotzⁿ (sym (+ⁿ-suc k 0) ∙ q)
·-reflects-< (negsuc x) (negsuc y) (pos (suc z)) p q = (
(y ·ⁿ z +ⁿ (y +ⁿ z)) <ⁿ (x ·ⁿ z +ⁿ (x +ⁿ z)) ⇒ᵖ⟨ pathTo⇒ (λ i → +ⁿ-assoc (y ·ⁿ z) y z i <ⁿ +ⁿ-assoc (x ·ⁿ z) x z i) ⟩
((y ·ⁿ z +ⁿ y) +ⁿ z) <ⁿ ((x ·ⁿ z +ⁿ x) +ⁿ z) ⇒ᵖ⟨ +ⁿ-createsʳ-<ⁿ (y ·ⁿ z +ⁿ y) (x ·ⁿ z +ⁿ x) z .snd ⟩
(y ·ⁿ z +ⁿ y ) <ⁿ (x ·ⁿ z +ⁿ x ) ⇒ᵖ⟨ pathTo⇒ (λ i → γ y i <ⁿ γ x i) ⟩
(y ·ⁿ suc z ) <ⁿ (x ·ⁿ suc z ) ⇒ᵖ⟨ ·ⁿ-reflects-<ⁿ y x (suc z) (0<ⁿsuc z) ⟩
y <ⁿ x ◼ᵖ) .snd q where
γ : ∀ x → x ·ⁿ z +ⁿ x ≡ x ·ⁿ suc z
γ x = sym $ ·ⁿ-comm x (suc z) ∙ +ⁿ-comm x (z ·ⁿ x) ∙ (λ i → ·ⁿ-comm z x i +ⁿ x)
abstract
·-sucInt : ∀ m n → (m · sucInt n) ≡ (m + (m · n))
·-sucInt (pos a ) (pos b ) = (λ i → pos (·ⁿ-suc a b i)) ∙ sym (pos+pos≡+ⁿ a (a ·ⁿ b))
·-sucInt (pos zero ) (negsuc b ) = ·-nullifiesˡ _
·-sucInt (pos (suc a)) (negsuc zero) =
pos (a ·ⁿ zero) ≡⟨ (λ i → pos $ ·ⁿ-nullifiesʳ a i) ⟩
pos 0 ≡⟨ sym $ +-inverse (pos (suc a)) .fst ⟩
(pos (suc a) +negsuc a ) ≡⟨ refl ⟩
(pos (suc a) +negsuc ( zero +ⁿ a )) ≡⟨ (λ i → pos (suc a) +negsuc (sym (·ⁿ-nullifiesʳ a) i +ⁿ +ⁿ-comm 0 a i)) ⟩
(pos (suc a) +negsuc (a ·ⁿ zero +ⁿ (a +ⁿ zero))) ∎
·-sucInt (pos (suc a)) (negsuc (suc b)) =
negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) ≡⟨ sym $ +negsuc-identityˡ (a ·ⁿ b +ⁿ (a +ⁿ b)) ⟩
0 +negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) ≡⟨ (λ i → possuc+negsuc≡0 a (~ i) +negsuc (a ·ⁿ b +ⁿ (a +ⁿ b))) ⟩
(pos (suc a) +negsuc a) +negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) ≡⟨ sym $ +negsuc-assoc (pos (suc a)) a (a ·ⁿ b +ⁿ (a +ⁿ b)) ⟩
pos (suc a) +negsuc (a +ⁿ suc (a ·ⁿ b +ⁿ (a +ⁿ b))) ≡⟨ (λ i → pos (suc a) +negsuc (lemma4 a b (~ i))) ⟩
pos (suc a) +negsuc (a ·ⁿ suc b +ⁿ (a +ⁿ suc b)) ∎
·-sucInt (negsuc a ) (pos zero ) = λ i → negsuc $ ·ⁿ-nullifiesʳ a i +ⁿ +ⁿ-comm a 0 i
·-sucInt (negsuc a ) (pos (suc b)) =
negsuc (a ·ⁿ suc b +ⁿ (a +ⁿ suc b)) ≡⟨ (λ i → negsuc $ lemma4 a b i) ⟩
negsuc (a +ⁿ suc (a ·ⁿ b +ⁿ (a +ⁿ b))) ≡⟨ (λ i → negsuc $ +ⁿ-suc a (a ·ⁿ b +ⁿ (a +ⁿ b)) i) ∙ sym (negsuc+negsuc≡+ⁿ a (a ·ⁿ b +ⁿ (a +ⁿ b))) ⟩
negsuc a +negsuc (a ·ⁿ b +ⁿ (a +ⁿ b)) ∎
·-sucInt (negsuc a) (negsuc zero) = sym (+-inverse (pos (suc a)) .snd) ∙ (λ i → sucInt (negsuc a +pos (·ⁿ-identityʳ a (~ i))))
·-sucInt (negsuc a) (negsuc (suc b)) =
pos (suc (b +ⁿ a ·ⁿ suc b)) ≡⟨ refl ⟩
sucInt (pos (b +ⁿ a ·ⁿ suc b)) ≡⟨ (λ i → sucInt $ sucInt[negsuc+pos]≡pos (b +ⁿ a ·ⁿ suc b) (~ i)) ⟩
sucInt (sucInt (negsuc 0 +pos (b +ⁿ a ·ⁿ suc b))) ≡⟨ (λ i → sucInt (sucInt (+pos-inverse a (~ i) +pos (b +ⁿ a ·ⁿ suc b)))) ⟩
sucInt (sucInt ((negsuc a +pos a) +pos (b +ⁿ a ·ⁿ suc b))) ≡⟨ (λ i → sucInt $ sucInt $ +pos-assoc (negsuc a) a (b +ⁿ a ·ⁿ suc b) i) ⟩
sucInt (sucInt (negsuc a +pos (a +ⁿ (b +ⁿ a ·ⁿ suc b)))) ≡⟨ (λ i → sucInt (sucInt (negsuc a +pos lemma5 a b i))) ⟩
sucInt (sucInt (negsuc a +pos (b +ⁿ a ·ⁿ suc (suc b)))) ∎
abstract
·-sucIntˡ : ∀ m n → (sucInt m · n) ≡ (n + (m · n))
·-sucIntˡ m n = ·-comm (sucInt m) n ∙ ·-sucInt n m ∙ λ i → n + ·-comm n m i
·-predInt : ∀ m n → (m · predInt n) ≡ ((- m) + (m · n))
·-predInt m (pos zero) = ·-comm m (negsuc 0) ∙ -1·≡- m ∙ λ i → (- m) + ·-nullifiesʳ m (~ i)
·-predInt m (pos (suc n)) =
m · pos n ≡⟨ +-comm (m · pos n) 0 ⟩
0 + m · pos n ≡⟨ (λ i → +-inverseˡ m (~ i) + (m · pos n)) ⟩
((- m) + m) + (m · pos n) ≡⟨ sym $ +-assoc (- m) m (m · pos n) ⟩
(- m) + (m + (m · pos n)) ≡⟨ (λ i → (- m) + ·-sucInt m (pos n) (~ i)) ⟩
(- m) + (m · pos (suc n)) ∎
·-predInt (pos zero) (negsuc zero) = refl
·-predInt (pos (suc n)) (negsuc zero) = (λ i → negsuc $ ·ⁿ-identityʳ n i +ⁿ +ⁿ-comm n 1 i) ∙ (λ i → negsuc $ +ⁿ-comm n (suc n) i) ∙ sym (negsuc+negsuc≡+ⁿ n n) ∙ (λ i → negsuc n +negsuc (·ⁿ-nullifiesʳ n (~ i) +ⁿ +ⁿ-comm 0 n i))
·-predInt (pos zero) (negsuc (suc m)) = refl
·-predInt (pos (suc n)) (negsuc (suc m)) =
negsuc (n ·ⁿ suc (suc m) +ⁿ (n +ⁿ suc (suc m))) ≡⟨ (λ i → negsuc $ ·ⁿ-suc n (suc m) i +ⁿ +ⁿ-suc n (suc m) i) ⟩
negsuc ((n +ⁿ n ·ⁿ suc m) +ⁿ suc (n +ⁿ suc m)) ≡⟨ (λ i → negsuc $ +ⁿ-assoc n (n ·ⁿ suc m) (suc n +ⁿ suc m) (~ i)) ⟩
negsuc (n +ⁿ (n ·ⁿ suc m +ⁿ suc (n +ⁿ suc m))) ≡⟨ (λ i → negsuc $ n +ⁿ +ⁿ-suc (n ·ⁿ suc m) (n +ⁿ suc m) i) ⟩
negsuc (n +ⁿ suc (n ·ⁿ suc m +ⁿ (n +ⁿ suc m))) ≡⟨ (λ i → negsuc $ +ⁿ-suc n (n ·ⁿ suc m +ⁿ (n +ⁿ suc m)) i) ⟩
negsuc (suc (n +ⁿ (n ·ⁿ suc m +ⁿ (n +ⁿ suc m)))) ≡⟨ sym $ negsuc+negsuc≡+ⁿ n (n ·ⁿ suc m +ⁿ (n +ⁿ suc m)) ⟩
(negsuc n +negsuc (n ·ⁿ suc m +ⁿ (n +ⁿ suc m))) ∎
·-predInt (negsuc n) (negsuc zero) = cong sucInt ((λ i → pos $ suc $ ·ⁿ-suc n 1 i) ∙ sym (pos+pos≡+ⁿ (suc n) (n ·ⁿ 1)))
·-predInt (negsuc n) (negsuc (suc m)) =
pos (suc (suc (suc (m +ⁿ n ·ⁿ suc (suc (suc m)))))) ≡⟨ refl ⟩
sucInt (sucInt (pos (suc (m +ⁿ n ·ⁿ suc (suc (suc m)))))) ≡⟨ (λ i → sucInt $ sucInt $ pos $ lemma6 m n i) ⟩
sucInt (sucInt (pos (suc n +ⁿ (m +ⁿ n ·ⁿ suc (suc m))))) ≡⟨ (λ i → sucInt $ sucInt $ pos+pos≡+ⁿ (suc n) (m +ⁿ n ·ⁿ suc (suc m)) (~ i)) ⟩
sucInt (sucInt (pos (suc n) +pos (m +ⁿ n ·ⁿ suc (suc m)))) ∎
abstract
·-predIntˡ : ∀ m n → (predInt m · n) ≡ ((- n) + (m · n))
·-predIntˡ m n = ·-comm (predInt m) n ∙ ·-predInt n m ∙ λ i → (- n) + (·-comm n m i)
-distrib : ∀ m n → -(m + n) ≡ (- m) + (- n)
-distrib (pos zero) (pos zero) = refl
-distrib (pos (suc n)) (pos zero) = refl
-distrib (pos zero) (pos (suc m)) =
- sucInt (pos zero +pos m) ≡⟨ (λ i → - sucInt (pos+pos≡+ⁿ 0 m i)) ⟩
negsuc m ≡⟨ sym $ +negsuc-identityˡ m ⟩
(pos zero +negsuc m) ∎
-distrib (pos (suc n)) (pos (suc m)) = (λ i → - sucInt (pos+pos≡+ⁿ (suc n) m i)) ∙ sym (negsuc+negsuc≡+ⁿ n m)
-distrib (pos zero) (negsuc m) = (λ i → - +negsuc-identityˡ m i) ∙ sym (pos+pos≡+ⁿ 0 (suc m))
-distrib (pos (suc n)) (negsuc m) = sym (pos+negsuc-swap m n) ∙ pos+negsuc≡negsuc+pos (suc m) n
-distrib (negsuc n) (pos zero) = refl
-distrib (negsuc n) (pos (suc m)) = (λ i → - pos+negsuc≡negsuc+pos (suc m) n (~ i)) ∙ sym (pos+negsuc-swap n m)
-distrib (negsuc n) (negsuc m) = (λ i → - negsuc+negsuc≡+ⁿ n m i) ∙ (λ i → sucInt $ pos+pos≡+ⁿ (suc n) m (~ i))
abstract
·-distribˡ : ∀ o m n → (o · m) + (o · n) ≡ o · (m + n)
·-distribˡ (pos zero) m n = (λ i → ·-nullifiesˡ m i + ·-nullifiesˡ n i) ∙ (sym $ ·-nullifiesˡ (m + n))
·-distribˡ (pos (suc o)) m n = let
ind = ·-distribˡ (pos o) m n
lhs = (pos (suc o) · m) + (pos (suc o) · n) ≡⟨ (λ i → ·-sucIntˡ (pos o) m i + ·-sucIntˡ (pos o) n i) ⟩
(m + (pos o · m)) + (n + (pos o · n)) ≡⟨ sym $ +-assoc m (pos o · m) (n + (pos o · n)) ⟩
m + ((pos o · m) + (n + (pos o · n))) ≡⟨ (λ i → m + +-comm (pos o · m) (n + (pos o · n)) i) ⟩
m + ((n + (pos o · n)) + (pos o · m)) ≡⟨ (λ i → m + +-assoc n (pos o · n) (pos o · m) (~ i)) ⟩
m + (n + ((pos o · n) + (pos o · m))) ≡⟨ (λ i → +-assoc m n (+-comm (pos o · n) (pos o · m) i) i) ⟩
(m + n) + ((pos o · m) + (pos o · n)) ≡⟨ (λ i → (m + n) + ind i) ⟩
(m + n) + (pos o · (m + n)) ∎
rhs = (pos (suc o) · (m + n)) ≡⟨ refl ⟩
(sucInt (pos o) · (m + n)) ≡⟨ ·-sucIntˡ (pos o) (m + n) ⟩
((m + n) + (pos o · (m + n))) ∎
in lhs ∙ sym rhs
·-distribˡ (negsuc zero) (pos zero) (pos zero) = refl
·-distribˡ (negsuc zero) (pos zero) (pos (suc n)) = +negsuc-identityˡ n ∙ λ i → negsuc 0 · sucInt (pos+pos≡+ⁿ 0 n (~ i))
·-distribˡ (negsuc zero) (pos (suc m)) (pos zero) = refl
·-distribˡ (negsuc zero) (pos (suc m)) (pos (suc n)) = negsuc+negsuc≡+ⁿ m n ∙ λ i → negsuc 0 · sucInt (pos+pos≡+ⁿ (suc m) n (~ i))
·-distribˡ (negsuc zero) (pos zero) (negsuc n) = (λ i → sucInt $ pos+pos≡+ⁿ 0 (n +ⁿ 0) i) ∙ (λ i → negsuc 0 · +negsuc-identityˡ n (~ i))
·-distribˡ (negsuc zero) (pos (suc m)) (negsuc n) =
sucInt (negsuc m +pos (n +ⁿ zero)) ≡⟨ (λ i → sucInt $ negsuc m +pos +ⁿ-comm n 0 i) ⟩
sucInt (negsuc m +pos n) ≡⟨ refl ⟩
negsuc m +pos (suc n) ≡⟨ negsuc+pos-swap m n ⟩
- (negsuc n +pos (suc m)) ≡⟨ (λ i → - pos+negsuc≡negsuc+pos (suc m) n (~ i)) ⟩
- (pos (suc m) +negsuc n) ≡⟨ sym $ -1·≡- (pos (suc m) +negsuc n) ⟩
negsuc zero · (pos (suc m) +negsuc n) ∎
·-distribˡ (negsuc zero) (negsuc m) (pos zero) = refl
·-distribˡ (negsuc zero) (negsuc m) (pos (suc n)) =
pos (suc (m +ⁿ zero)) +negsuc n ≡⟨ (λ i → pos (suc (+ⁿ-comm m 0 i)) +negsuc n) ⟩
pos (suc m) +negsuc n ≡⟨ pos+negsuc≡negsuc+pos (suc m) n ⟩
sucInt (negsuc n +pos m) ≡⟨ negsuc+pos-swap n m ⟩
- negsuc m +pos (suc n) ≡⟨ refl ⟩
- sucInt (negsuc m +pos n) ≡⟨ sym $ -1·≡- (sucInt (negsuc m +pos n)) ⟩
negsuc zero · sucInt (negsuc m +pos n) ∎
·-distribˡ (negsuc zero) (negsuc m) (negsuc n) =
sucInt (pos (suc (m +ⁿ zero)) +pos (n +ⁿ zero)) ≡⟨ (λ i → sucInt (pos (suc (+ⁿ-comm m 0 i)) +pos (+ⁿ-comm n 0 i))) ⟩
sucInt (pos (suc m) +pos (n)) ≡⟨ (λ i → sucInt $ pos+pos≡+ⁿ (suc m) n i) ⟩
sucInt (pos (suc m +ⁿ n)) ≡⟨ refl ⟩
pos (suc (suc (m +ⁿ n))) ≡⟨ (λ i → pos $ suc $ suc $ +ⁿ-comm 0 (m +ⁿ n) i) ⟩
negsuc zero · (negsuc (suc (m +ⁿ n))) ≡⟨ (λ i → negsuc zero · negsuc+negsuc≡+ⁿ m n (~ i)) ⟩
negsuc zero · (negsuc m +negsuc n) ∎
·-distribˡ (negsuc (suc o)) m n = let
r = ·-distribˡ (negsuc o) m n
lhs = (negsuc (suc o) · m) + (negsuc (suc o) · n) ≡⟨ (λ i → ·-predIntˡ (negsuc o) m i + ·-predIntˡ (negsuc o) n i) ⟩
((- m) + (negsuc o · m)) + ((- n) + (negsuc o · n)) ≡⟨ sym $ +-assoc (- m) (negsuc o · m) ((- n) + (negsuc o · n)) ⟩
(- m) + ((negsuc o · m) + ((- n) + (negsuc o · n))) ≡⟨ (λ i → (- m) + +-comm (negsuc o · m) ((- n) + (negsuc o · n)) i) ⟩
(- m) + (((- n) + (negsuc o · n)) + (negsuc o · m)) ≡⟨ (λ i → (- m) + +-assoc (- n) (negsuc o · n) (negsuc o · m) (~ i)) ⟩
(- m) + ((- n) + ((negsuc o · n) + (negsuc o · m))) ≡⟨ (λ i → +-assoc (- m) (- n) (+-comm (negsuc o · n) (negsuc o · m) i) i) ⟩
((- m) + (- n)) + ((negsuc o · m) + (negsuc o · n)) ≡⟨ (λ i → ((- m) + (- n)) + r i) ⟩
((- m) + (- n)) + (negsuc o · (m + n)) ∎
rhs = negsuc (suc o) · (m + n) ≡⟨ ·-predIntˡ (negsuc o) (m + n) ⟩
(- (m + n)) + negsuc (o) · (m + n) ≡⟨ (λ i → -distrib m n i + negsuc (o) · (m + n)) ⟩
((- m) + (- n)) + (negsuc (o) · (m + n)) ∎
in lhs ∙ sym rhs
abstract
·-distribʳ : ∀ m n o → (m · o) + (n · o) ≡ (m + n) · o
·-distribʳ m n o = transport (sym λ i → ·-comm m o i + ·-comm n o i ≡ ·-comm (m + n) o i) $ ·-distribˡ o m n
+-Semigroup : [ isSemigroup _+_ ]
+-Semigroup .IsSemigroup.is-set = isSetℤ
+-Semigroup .IsSemigroup.is-assoc = +-assoc
·-Semigroup : [ isSemigroup _·_ ]
·-Semigroup .IsSemigroup.is-set = isSetℤ
·-Semigroup .IsSemigroup.is-assoc x y z = sym (·-assoc x y z)
+-Monoid : [ isMonoid 0 _+_ ]
+-Monoid .IsMonoid.is-Semigroup = +-Semigroup
+-Monoid .IsMonoid.is-identity x = +-identityʳ x , +-identityˡ x
·-Monoid : [ isMonoid 1 _·_ ]
·-Monoid .IsMonoid.is-Semigroup = ·-Semigroup
·-Monoid .IsMonoid.is-identity x = ·-identityʳ x , ·-identityˡ x
is-Semiring : [ isSemiring 0 1 _+_ _·_ ]
is-Semiring .IsSemiring.+-Monoid = +-Monoid
is-Semiring .IsSemiring.·-Monoid = ·-Monoid
is-Semiring .IsSemiring.+-comm = +-comm
is-Semiring .IsSemiring.is-dist x y z = sym (·-distribˡ x y z) , sym (·-distribʳ x y z)
is-CommSemiring : [ isCommSemiring 0 1 _+_ _·_ ]
is-CommSemiring .IsCommSemiring.is-Semiring = is-Semiring
is-CommSemiring .IsCommSemiring.·-comm = ·-comm
<-StrictLinearOrder : [ isStrictLinearOrder _<_ ]
<-StrictLinearOrder .IsStrictLinearOrder.is-irrefl = <-irrefl
<-StrictLinearOrder .IsStrictLinearOrder.is-trans a b c = <-trans a b c
<-StrictLinearOrder .IsStrictLinearOrder.is-tricho a b with a ≟ b
... | lt a<b = inl (inl a<b)
... | eq a≡b = inr ∣ a≡b ∣
... | gt b<a = inl (inr b<a)
≤-Lattice : [ isLattice (λ x y → ¬ᵖ (y < x)) min max ]
≤-Lattice .IsLattice.≤-PartialOrder = linearorder⇒partialorder _ (≤'-isLinearOrder <-StrictLinearOrder)
≤-Lattice .IsLattice.is-min = is-min
≤-Lattice .IsLattice.is-max = is-max
is-LinearlyOrderedCommSemiring : [ isLinearlyOrderedCommSemiring 0 1 _+_ _·_ _<_ min max ]
is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.is-CommSemiring = is-CommSemiring
is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.<-StrictLinearOrder = <-StrictLinearOrder
is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.≤-Lattice = ≤-Lattice
is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.+-<-ext = +-<-ext
is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.·-preserves-< = ·-preserves-<
is-LinearlyOrderedCommRing : [ isLinearlyOrderedCommRing 0 1 _+_ _·_ -_ _<_ min max ]
is-LinearlyOrderedCommRing .IsLinearlyOrderedCommRing.is-LinearlyOrderedCommSemiring = is-LinearlyOrderedCommSemiring
is-LinearlyOrderedCommRing .IsLinearlyOrderedCommRing.+-inverse = +-inverse
ℤbundle : LinearlyOrderedCommRing {ℓ-zero} {ℓ-zero}
ℤbundle .LinearlyOrderedCommRing.Carrier = ℤ
ℤbundle .LinearlyOrderedCommRing.0f = 0
ℤbundle .LinearlyOrderedCommRing.1f = 1
ℤbundle .LinearlyOrderedCommRing._+_ = _+_
ℤbundle .LinearlyOrderedCommRing._·_ = _·_
ℤbundle .LinearlyOrderedCommRing.-_ = -_
ℤbundle .LinearlyOrderedCommRing.min = min
ℤbundle .LinearlyOrderedCommRing.max = max
ℤbundle .LinearlyOrderedCommRing._<_ = _<_
ℤbundle .LinearlyOrderedCommRing.is-LinearlyOrderedCommRing = is-LinearlyOrderedCommRing
-- ·-reflects-≡ˡ : ∀ a b x → (pos (suc x)) ·' a ≡ (pos (suc x)) ·' b → a ≡ b
-- ·-reflects-≡ˡ a b x p = {! !}
-- private
-- ¬0≡suc
-- ¬0≡possuc
-- ¬0≡negsuc
-- ¬pos≡negsuc
--
-- ·-reflects-≡ʳ : ∀ a b x → a · (pos (suc x)) ≡ b · (pos (suc x)) → a ≡ b
-- ·-reflects-≡ʳ (pos 0 ) (pos 0 ) x q = refl
-- ·-reflects-≡ʳ (pos 0 ) (pos (suc b)) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (pos (suc a)) (pos 0 ) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (pos (suc a)) (pos (suc b)) x q i = sucInt $ ·-reflects-≡ʳ (pos a) (pos b) x {! !} i
-- ·-reflects-≡ʳ (pos 0 ) (negsuc b ) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (pos (suc a)) (negsuc b ) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (negsuc a ) (pos 0 ) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (negsuc a ) (pos (suc b)) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (negsuc zero) (negsuc zero) x q = refl
-- ·-reflects-≡ʳ (negsuc zero) (negsuc (suc b)) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (negsuc (suc a)) (negsuc zero) x q = {! ⊥ !}
-- ·-reflects-≡ʳ (negsuc (suc a)) (negsuc (suc b)) x q i = predInt $ ·-reflects-≡ʳ (negsuc a) (negsuc b) x {! !} i
| {
"alphanum_fraction": 0.5031090885,
"avg_line_length": 50.9598163031,
"ext": "agda",
"hexsha": "9e36858e5b867bff3dc478d87e6eafae50a11b3c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Instances/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Instances/Int.agda",
"max_line_length": 228,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Instances/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 21131,
"size": 44386
} |
{-# OPTIONS --without-K #-}
module higher.circle where
open import higher.circle.core public
open import higher.circle.properties public
| {
"alphanum_fraction": 0.7826086957,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "52424fd906612fc38f54e7623ef6b9b4cce06ad7",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/higher/circle.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/higher/circle.agda",
"max_line_length": 43,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/higher/circle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 25,
"size": 138
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Data.Unit
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommRing.Instances.Unit
open import Cubical.Algebra.Algebra.Base using (IsAlgebraHom)
open import Cubical.Algebra.CommRingSolver.Reflection
private
variable
ℓ ℓ' : Level
module _ (R : CommRing ℓ) where
UnitCommAlgebra : CommAlgebra R ℓ'
UnitCommAlgebra =
commAlgebraFromCommRing
UnitCommRing
(λ _ _ → tt*) (λ _ _ _ → refl) (λ _ _ _ → refl)
(λ _ _ _ → refl) (λ _ → refl) (λ _ _ _ → refl)
module _ (A : CommAlgebra R ℓ) where
terminalMap : CommAlgebraHom A (UnitCommAlgebra {ℓ' = ℓ})
terminalMap = (λ _ → tt*) , isHom
where open IsAlgebraHom
isHom : IsCommAlgebraHom (snd A) _ (snd UnitCommAlgebra)
pres0 isHom = isPropUnit* _ _
pres1 isHom = isPropUnit* _ _
pres+ isHom = λ _ _ → isPropUnit* _ _
pres· isHom = λ _ _ → isPropUnit* _ _
pres- isHom = λ _ → isPropUnit* _ _
pres⋆ isHom = λ _ _ → isPropUnit* _ _
terminalityContr : isContr (CommAlgebraHom A UnitCommAlgebra)
terminalityContr = terminalMap , path
where path : (ϕ : CommAlgebraHom A UnitCommAlgebra) → terminalMap ≡ ϕ
path ϕ = Σ≡Prop (isPropIsCommAlgebraHom {M = A} {N = UnitCommAlgebra})
λ i _ → isPropUnit* _ _ i
open CommAlgebraStr (snd A)
module _ (1≡0 : 1a ≡ 0a) where
1≡0→isContr : isContr ⟨ A ⟩
1≡0→isContr = 0a , λ a →
0a ≡⟨ step1 a ⟩
a · 0a ≡⟨ cong (λ b → a · b) (sym 1≡0) ⟩
a · 1a ≡⟨ step2 a ⟩
a ∎
where S = CommAlgebra→CommRing A
open CommRingStr (snd S) renaming (_·_ to _·s_)
step1 : (x : ⟨ A ⟩) → 0r ≡ x ·s 0r
step1 = solve S
step2 : (x : ⟨ A ⟩) → x ·s 1r ≡ x
step2 = solve S
equivFrom1≡0 : CommAlgebraEquiv A UnitCommAlgebra
equivFrom1≡0 = isContr→Equiv 1≡0→isContr isContrUnit* ,
snd terminalMap
| {
"alphanum_fraction": 0.6050170068,
"avg_line_length": 35.6363636364,
"ext": "agda",
"hexsha": "8e6a396ac4906d1254a1f180bf6c41f8bf156c26",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 779,
"size": 2352
} |
-- Qualified mixfix operators
module Issue597 where
open import Common.Prelude as Prel hiding (if_then_else_)
open import Common.Level using (lzero)
lz = lzero Common.Level.⊔ lzero
module A where
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
if_then_else_ : ∀ {A : Set} → Bool → A → A → A
if true then x else y = x
if false then x else y = y
pattern _+2 n = suc (suc n)
module B where
_₁ : ∀ {A B} → A × B → A
(x , y)₁ = x
_₂ : ∀ {A B} → A × B → B
(x , y)₂ = y
syntax Exist (λ x → p) = ∃ x ∶ p
data Exist {A : Set}(P : A → Set) : Set where
_,_ : (x : A) → P x → Exist P
pp : Nat → Nat
pp 0 = 0
pp 1 = 0
pp (n A.+2) = n
infix 5 add_
add_ : Nat A.× Nat → Nat
add_ p = p A.B.₁ Prel.+ p A.B.₂
six : Nat
six = add 1 A., 5
two : Nat
two = A.if true then 2 else 4
data Even : Nat → Set where
ez : Even 0
ess : ∀ n → Even n → Even (suc (suc n))
pair : A.B.∃ n ∶ Even n
pair = 2 A.B., ess zero ez
| {
"alphanum_fraction": 0.544132918,
"avg_line_length": 18.1698113208,
"ext": "agda",
"hexsha": "892035accea5efcb48632a38c5054d0d67995dbb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue597.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue597.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue597.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 392,
"size": 963
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Group.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Structures.Monoid hiding (⟨_⟩)
private
variable
ℓ : Level
record IsGroup {G : Type ℓ}
(0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where
constructor isgroup
field
isMonoid : IsMonoid 0g _+_
inverse : (x : G) → (x + (- x) ≡ 0g) × ((- x) + x ≡ 0g)
open IsMonoid isMonoid public
infixl 6 _-_
_-_ : G → G → G
x - y = x + (- y)
invl : (x : G) → (- x) + x ≡ 0g
invl x = inverse x .snd
invr : (x : G) → x + (- x) ≡ 0g
invr x = inverse x .fst
record Group : Type (ℓ-suc ℓ) where
constructor group
field
Carrier : Type ℓ
0g : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
isGroup : IsGroup 0g _+_ -_
infix 8 -_
infixr 7 _+_
open IsGroup isGroup public
-- Extractor for the carrier type
⟨_⟩ : Group → Type ℓ
⟨_⟩ = Group.Carrier
makeIsGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G}
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(lid : (x : G) → 0g + x ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(linv : (x : G) → (- x) + x ≡ 0g)
→ IsGroup 0g _+_ -_
makeIsGroup is-setG assoc rid lid rinv linv =
isgroup (makeIsMonoid is-setG assoc rid lid) λ x → rinv x , linv x
makeGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G)
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(lid : (x : G) → 0g + x ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(linv : (x : G) → (- x) + x ≡ 0g)
→ Group
makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv =
group _ 0g _+_ -_ (makeIsGroup is-setG assoc rid lid rinv linv)
makeGroup-right : ∀ {ℓ} {A : Type ℓ}
→ (id : A)
→ (comp : A → A → A)
→ (inv : A → A)
→ (set : isSet A)
→ (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c)
→ (rUnit : ∀ a → comp a id ≡ a)
→ (rCancel : ∀ a → comp a (inv a) ≡ id)
→ Group
makeGroup-right {A = A} id comp inv set assoc rUnit rCancel =
makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel
where
_⨀_ = comp
abstract
lCancel : ∀ a → comp (inv a) a ≡ id
lCancel a =
inv a ⨀ a
≡⟨ sym (rUnit (comp (inv a) a)) ⟩
(inv a ⨀ a) ⨀ id
≡⟨ cong (comp (comp (inv a) a)) (sym (rCancel (inv a))) ⟩
(inv a ⨀ a) ⨀ (inv a ⨀ (inv (inv a)))
≡⟨ assoc _ _ _ ⟩
((inv a ⨀ a) ⨀ (inv a)) ⨀ (inv (inv a))
≡⟨ cong (λ □ → □ ⨀ _) (sym (assoc _ _ _)) ⟩
(inv a ⨀ (a ⨀ inv a)) ⨀ (inv (inv a))
≡⟨ cong (λ □ → (inv a ⨀ □) ⨀ (inv (inv a))) (rCancel a) ⟩
(inv a ⨀ id) ⨀ (inv (inv a))
≡⟨ cong (λ □ → □ ⨀ (inv (inv a))) (rUnit (inv a)) ⟩
inv a ⨀ (inv (inv a))
≡⟨ rCancel (inv a) ⟩
id
∎
lUnit : ∀ a → comp id a ≡ a
lUnit a =
id ⨀ a
≡⟨ cong (λ b → comp b a) (sym (rCancel a)) ⟩
(a ⨀ inv a) ⨀ a
≡⟨ sym (assoc _ _ _) ⟩
a ⨀ (inv a ⨀ a)
≡⟨ cong (comp a) (lCancel a) ⟩
a ⨀ id
≡⟨ rUnit a ⟩
a
∎
makeGroup-left : ∀ {ℓ} {A : Type ℓ}
→ (id : A)
→ (comp : A → A → A)
→ (inv : A → A)
→ (set : isSet A)
→ (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c)
→ (lUnit : ∀ a → comp id a ≡ a)
→ (lCancel : ∀ a → comp (inv a) a ≡ id)
→ Group
makeGroup-left {A = A} id comp inv set assoc lUnit lCancel =
makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel
where
abstract
rCancel : ∀ a → comp a (inv a) ≡ id
rCancel a =
comp a (inv a)
≡⟨ sym (lUnit (comp a (inv a))) ⟩
comp id (comp a (inv a))
≡⟨ cong (λ b → comp b (comp a (inv a))) (sym (lCancel (inv a))) ⟩
comp (comp (inv (inv a)) (inv a)) (comp a (inv a))
≡⟨ sym (assoc (inv (inv a)) (inv a) (comp a (inv a))) ⟩
comp (inv (inv a)) (comp (inv a) (comp a (inv a)))
≡⟨ cong (comp (inv (inv a))) (assoc (inv a) a (inv a)) ⟩
comp (inv (inv a)) (comp (comp (inv a) a) (inv a))
≡⟨ cong (λ b → comp (inv (inv a)) (comp b (inv a))) (lCancel a) ⟩
comp (inv (inv a)) (comp id (inv a))
≡⟨ cong (comp (inv (inv a))) (lUnit (inv a)) ⟩
comp (inv (inv a)) (inv a)
≡⟨ lCancel (inv a) ⟩
id
∎
rUnit : ∀ a → comp a id ≡ a
rUnit a =
comp a id
≡⟨ cong (comp a) (sym (lCancel a)) ⟩
comp a (comp (inv a) a)
≡⟨ assoc a (inv a) a ⟩
comp (comp a (inv a)) a
≡⟨ cong (λ b → comp b a) (rCancel a) ⟩
comp id a
≡⟨ lUnit a ⟩
a
∎
| {
"alphanum_fraction": 0.4484982866,
"avg_line_length": 29.8855421687,
"ext": "agda",
"hexsha": "e996e9b35833411d5e92c42d8669c30d9788140f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Group/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Group/Base.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Group/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2019,
"size": 4961
} |
module Data.Maybe where
data Maybe (a : Set) : Set where
nothing : Maybe a
just : a -> Maybe a
fmap : {A B : Set} -> (A -> B) -> Maybe A -> Maybe B
fmap f nothing = nothing
fmap f (just a) = just (f a )
| {
"alphanum_fraction": 0.5720930233,
"avg_line_length": 17.9166666667,
"ext": "agda",
"hexsha": "112f1e11017eb55cef4a4fa14893565c8ac31e9d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/lib/Data/Maybe.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/lib/Data/Maybe.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/lib/Data/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 75,
"size": 215
} |
module imper-repeat where
open import lib
open import eq-reasoning
data Singleton {a} {A : Set a} (x : A) : Set a where
_with≡_ : (y : A) → x ≡ y → Singleton x
inspect : ∀ {a} {A : Set a} (x : A) → Singleton x
inspect x = x with≡ refl
-- Unicode notes. I use:
-- \Mix, \Mie, \MiF etc for meta-variables 𝑥, 𝑒, 𝐹 etc.
-- \mapsto for variable frame bindings and update.
-- \| for the frame update operation.
-- \|- turnstile ⊢ is used for the semantics relations.
-- (\|-n for its negation ⊬)
-- \d= for code literal values e.g. ⇓ 42 and ⇓true
-- The down arrow is also used for the eval relation.
-- \u= for code variable lookups like ⇑ "x" and ⇑ "y"
-- superscripts of items with \^e as ᵉ, \c^c as ᶜ
-- ↩ for sequencing. This is \lefthookarrow.
-- ∷= which is \:: followed by =
--
-- variable identifiers
--
Id : Set
Id = string
_=Id_ : Id → Id → 𝔹
_=Id_ = _=string_
--
-- values (just natural numbers here)
--
Val : Set
Val = ℕ
--
-- value and variable expressions
--
data Expn : Set where
⇓_ : Val → Expn
⇑_ : Id → Expn
_+ᵉ_ : Expn → Expn → Expn
_-ᵉ_ : Expn → Expn → Expn
_*ᵉ⇓_ : Expn → Val → Expn
--
-- conditions on values and variables
--
data Cond : Set where
⇓true : Cond
⇓false : Cond
_∧ᶜ_ : Cond → Cond → Cond
_∨ᶜ_ : Cond → Cond → Cond
¬ᶜ_ : Cond → Cond
[_<ᶜ_] : Expn → Expn → Cond
[_=ᶜ_] : Expn → Expn → Cond
--
-- stack frames containing variable bindings
--
Frm : Set
Frm = 𝕃 (Id × Val)
[_↦_] : Id → Val → Frm
[ 𝑥 ↦ 𝑣 ] = [(𝑥 , 𝑣)]
[-↦0] : Frm
[-↦0] = []
--
-- program statements that transform a frame
--
data Stmt : Set where
skip : Stmt
_∷=_ : Id → Expn → Stmt
_↩_ : Stmt → Stmt → Stmt
if_then_else_end : Cond → Stmt → Stmt → Stmt
by_repeat_end : Id → Stmt → Stmt
returns_ : Expn → Stmt
infix 10 ⇑_ ⇓_
infix 9 _*ᵉ⇓_
infixl 8 _+ᵉ_ _-ᵉ_
infix 7 ¬ᶜ_
infixl 6 _∨ᶜ_
infixl 5 _∧ᶜ_
infix 4 _∷=_
infix 3 returns_
infixl 2 _↩_
--
-- functional SEMANTICS of frames
--
_∥_ : Frm → Id → Val
[] ∥ 𝑥 = 0
((𝑦 , 𝑤) :: 𝐹) ∥ 𝑥 = if (𝑥 =Id 𝑦) then 𝑤 else (𝐹 ∥ 𝑥)
_∣_↦_ : Frm → Id → Val → Frm
[] ∣ 𝑥 ↦ 𝑣 = [ 𝑥 ↦ 𝑣 ]
((𝑦 , 𝑤) :: 𝐹) ∣ 𝑥 ↦ 𝑣
= if (𝑥 =Id 𝑦)
then (𝑦 , 𝑣) :: 𝐹
else (𝑦 , 𝑤) :: (𝐹 ∣ 𝑥 ↦ 𝑣)
--
-- functional SEMANTICS of expressions
--
⟦_⟧ᵉ_ : Expn → Frm → Val
⟦ ⇓ 𝑣 ⟧ᵉ _ = 𝑣
⟦ ⇑ 𝑥 ⟧ᵉ 𝐹 = 𝐹 ∥ 𝑥
⟦ 𝑒₁ +ᵉ 𝑒₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) + (⟦ 𝑒₂ ⟧ᵉ 𝐹)
⟦ 𝑒₁ -ᵉ 𝑒₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) ∸ (⟦ 𝑒₂ ⟧ᵉ 𝐹)
⟦ 𝑒₁ *ᵉ⇓ 𝑣₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) * 𝑣₂
--
-- functional SEMANTICS of conditions
--
⟦_⟧ᶜ_ : Cond → Frm → 𝔹
⟦ ⇓true ⟧ᶜ _ = tt
⟦ ⇓false ⟧ᶜ _ = ff
⟦ 𝒸₁ ∧ᶜ 𝒸₂ ⟧ᶜ 𝐹 = (⟦ 𝒸₁ ⟧ᶜ 𝐹) && (⟦ 𝒸₂ ⟧ᶜ 𝐹)
⟦ 𝒸₁ ∨ᶜ 𝒸₂ ⟧ᶜ 𝐹 = (⟦ 𝒸₁ ⟧ᶜ 𝐹) || (⟦ 𝒸₂ ⟧ᶜ 𝐹)
⟦ ¬ᶜ 𝒸 ⟧ᶜ 𝐹 = ~ (⟦ 𝒸 ⟧ᶜ 𝐹)
⟦ [ 𝑒₁ <ᶜ 𝑒₂ ] ⟧ᶜ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) < (⟦ 𝑒₂ ⟧ᵉ 𝐹)
⟦ [ 𝑒₁ =ᶜ 𝑒₂ ] ⟧ᶜ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) =ℕ (⟦ 𝑒₂ ⟧ᵉ 𝐹)
--
-- functional SEMANTICS of program execution
--
⟦_∣_∷=_…0⟧ˢ_ : Stmt → Id → ℕ → Frm → Frm
⟦_⟧ˢ_ : Stmt → Frm → Frm
⟦ 𝑠 ∣ 𝑥 ∷= 0 …0⟧ˢ 𝐹 = 𝐹
⟦ 𝑠 ∣ 𝑥 ∷= (suc 𝑛) …0⟧ˢ 𝐹
= ⟦ 𝑠 ∣ 𝑥 ∷= 𝑛 …0⟧ˢ ((⟦ 𝑠 ⟧ˢ 𝐹) ∣ 𝑥 ↦ 𝑛)
⟦ skip ⟧ˢ 𝐹 = 𝐹
⟦ 𝑥 ∷= 𝑒 ⟧ˢ 𝐹 = (𝐹 ∣ 𝑥 ↦ (⟦ 𝑒 ⟧ᵉ 𝐹))
⟦ 𝑠₁ ↩ 𝑠₂ ⟧ˢ 𝐹 = (⟦ 𝑠₂ ⟧ˢ (⟦ 𝑠₁ ⟧ˢ 𝐹))
⟦ if 𝒸 then 𝑠₁ else 𝑠₂ end ⟧ˢ 𝐹 = if (⟦ 𝒸 ⟧ᶜ 𝐹) then (⟦ 𝑠₁ ⟧ˢ 𝐹) else (⟦ 𝑠₂ ⟧ˢ 𝐹)
⟦ by 𝑥 repeat 𝑠 end ⟧ˢ 𝐹 = ⟦ 𝑠 ∣ 𝑥 ∷= (⟦ ⇑ 𝑥 ⟧ᵉ 𝐹) …0⟧ˢ 𝐹
⟦ returns 𝑒 ⟧ˢ 𝐹 = 𝐹 ∣ "retval" ↦ (⟦ 𝑒 ⟧ᵉ 𝐹)
--
-- SEMANTICS of stack bindings as a relation
--
infixl 7 _⊢ᶠ_↦_
infixl 5 _∣_↦_
infixl 4 _⊢ᵉ_⇓_
infixl 3 _⊢ᶜ_ _⊬ᶜ_ -- _↦_
data _⊢ᶠ_↦_ : Frm → Id → Val → Set where
var-undef : ∀ {𝑥 : Id}
----------------
→ [] ⊢ᶠ 𝑥 ↦ 0
var-match : ∀ {𝑥 𝑦 : Id} {𝐹 : Frm} {𝑤 : Val}
→ (𝑥 =string 𝑦) ≡ tt
---------------------------
→ ((𝑦 , 𝑤) :: 𝐹) ⊢ᶠ 𝑥 ↦ 𝑤
var-mismatch : ∀ {𝑥 𝑦 : Id} {𝐹 : Frm} {𝑣 𝑤 : Val}
→ (𝑥 =string 𝑦) ≡ ff
→ 𝐹 ⊢ᶠ 𝑥 ↦ 𝑣
-------------------------
→ ((𝑦 , 𝑤) :: 𝐹) ⊢ᶠ 𝑥 ↦ 𝑣
if-tt-then : ∀{A : Set} {b : 𝔹} {a1 a2 : A}
→ b ≡ tt → if b then a1 else a2 ≡ a1
if-tt-then{A}{b}{a1}{a2} b≡tt =
begin
if b then a1 else a2
≡⟨ cong3 if_then_else_ b≡tt refl refl ⟩
if tt then a1 else a2
≡⟨ refl ⟩
a1
∎
postulate
if-ff-then : ∀{A : Set}{b : 𝔹}{a1 a2 : A}
→ b ≡ ff → if b then a1 else a2 ≡ a2
var-thm-fwd : ∀{x : Id}{F : Frm}{v : Val}
→ F ⊢ᶠ x ↦ v → F ∥ x ≡ v
var-thm-fwd{x}{[]}{0} var-undef =
begin
[] ∥ x
≡⟨ refl ⟩
0
∎
var-thm-fwd (var-match{x}{y}{F}{w} x≡y) =
begin
((y , w) :: F) ∥ x
≡⟨ refl ⟩
if (x =Id y) then w else (F ∥ x)
≡⟨ if-tt-then x≡y ⟩
w
∎
var-thm-fwd (var-mismatch{x}{y}{F}{v}{w} x≢y x↦v) =
let
F∥x≡v : F ∥ x ≡ v
F∥x≡v = var-thm-fwd x↦v
in begin
((y , w) :: F) ∥ x
≡⟨ refl ⟩
if (x =Id y) then w else (F ∥ x)
≡⟨ if-ff-then x≢y ⟩
F ∥ x
≡⟨ F∥x≡v ⟩
v
∎
var-thm-rev : ∀{x : Id}{F : Frm}{v : Val}
→ F ∥ x ≡ v → F ⊢ᶠ x ↦ v
var-thm-rev{x}{[]}{v} []∥x≡v =
let v≡0 : v ≡ 0
v≡0 = begin
v
≡⟨ sym []∥x≡v ⟩
[] ∥ x
≡⟨ refl ⟩
0
∎
in cong-pred (λ xxx → [] ⊢ᶠ x ↦ xxx) (sym v≡0) var-undef
var-thm-rev{x}{(y , w) :: F}{v} y,w::F∥x≡v
with inspect (x =string y)
... | tt with≡ same =
let v≡w : v ≡ w
v≡w = begin
v
≡⟨ sym y,w::F∥x≡v ⟩
((y , w) :: F) ∥ x
≡⟨ refl ⟩
if x =string y then w else F ∥ x
≡⟨ cong3 if_then_else_ same refl refl ⟩
if tt then w else F ∥ x
≡⟨ refl ⟩
w
∎
in cong-pred (λ xxx → ((y , w) :: F) ⊢ᶠ x ↦ xxx) (sym v≡w) (var-match same)
... | ff with≡ diff =
let v≡F∥x : v ≡ F ∥ x
v≡F∥x = begin
v
≡⟨ sym y,w::F∥x≡v ⟩
((y , w) :: F) ∥ x
≡⟨ refl ⟩
if x =string y then w else F ∥ x
≡⟨ cong3 if_then_else_ diff refl refl ⟩
if ff then w else F ∥ x
≡⟨ refl ⟩
F ∥ x
∎
in (var-mismatch diff (var-thm-rev (sym v≡F∥x)))
--
-- SEMANTICS of expression evaluation as a relation
--
data _⊢ᵉ_⇓_ : Frm → Expn → Val → Set where
e-val : ∀ {𝑣 : Val} {𝐹 : Frm}
----------------
→ 𝐹 ⊢ᵉ (⇓ 𝑣) ⇓ 𝑣
e-var : ∀ {𝑥 : Id} {𝐹 : Frm} {𝑣 : Val}
→ 𝐹 ⊢ᶠ 𝑥 ↦ 𝑣
---------------
→ 𝐹 ⊢ᵉ (⇑ 𝑥) ⇓ 𝑣
e-add : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
---------------------------
→ 𝐹 ⊢ᵉ (𝑒₁ +ᵉ 𝑒₂) ⇓ (𝑣₁ + 𝑣₂)
e-sub : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
---------------------------
→ 𝐹 ⊢ᵉ (𝑒₁ -ᵉ 𝑒₂) ⇓ (𝑣₁ ∸ 𝑣₂)
e-scale : ∀ {𝑒₁ : Expn} {𝑣₁ 𝑣₂ : Val} {𝐹 : Frm}
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
---------------------------
→ 𝐹 ⊢ᵉ ( 𝑒₁ *ᵉ⇓ 𝑣₂) ⇓ (𝑣₁ * 𝑣₂)
e-thm-fwd : ∀{𝑒 : Expn}{𝐹 : Frm}{𝑣 : Val}
→ (𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣) → ((⟦ 𝑒 ⟧ᵉ 𝐹) ≡ 𝑣)
e-thm-fwd (e-val{v}{F}) =
begin
⟦ ⇓ v ⟧ᵉ F
≡⟨ refl ⟩
v
∎
e-thm-fwd (e-var{x}{F}{v} x↦v) =
begin
⟦ ⇑ x ⟧ᵉ F
≡⟨ var-thm-fwd x↦v ⟩
v
∎
e-thm-fwd (e-add{e1}{e2}{F}{v1}{v2} e1⇓v1 e2⇓v2) =
let
⟦e1⟧≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧≡v2 = e-thm-fwd e2⇓v2
in begin
⟦ e1 +ᵉ e2 ⟧ᵉ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F + ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _+_ ⟦e1⟧≡v1 ⟦e2⟧≡v2 ⟩
v1 + v2
∎
e-thm-fwd (e-sub{e1}{e2}{F}{v1}{v2} e1⇓v1 e2⇓v2) =
let
⟦e1⟧≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧≡v2 = e-thm-fwd e2⇓v2
in begin
⟦ e1 -ᵉ e2 ⟧ᵉ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F ∸ ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _∸_ ⟦e1⟧≡v1 ⟦e2⟧≡v2 ⟩
v1 ∸ v2
∎
e-thm-fwd (e-scale{e1}{v1}{v2}{F} e1⇓v1) =
let
⟦e1⟧≡v1 = e-thm-fwd e1⇓v1
in begin
⟦ e1 *ᵉ⇓ v2 ⟧ᵉ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F * v2
≡⟨ cong2 _*_ ⟦e1⟧≡v1 refl ⟩
v1 * v2
∎
e-thm-rev : ∀{𝑒 : Expn}{𝐹 : Frm}{𝑣 : Val}
→ ((⟦ 𝑒 ⟧ᵉ 𝐹) ≡ 𝑣) → (𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣)
e-thm-rev{e}{F}{v} ⟦e⟧F≡v
with e
... | ⇓ w = cong-pred (λ xxx → F ⊢ᵉ (⇓ w) ⇓ xxx) ⟦e⟧F≡v e-val
... | ⇑ x = let v≡F∥x : v ≡ F ∥ x
v≡F∥x = begin
v
≡⟨ sym ⟦e⟧F≡v ⟩
⟦ ⇑ x ⟧ᵉ F
≡⟨ refl ⟩
F ∥ x
∎
in e-var (var-thm-rev (sym v≡F∥x))
... | e1 +ᵉ e2 = {!!}
... | e1 -ᵉ e2 = {!!}
... | e1 *ᵉ⇓ v2 = {!!}
--
-- SEMANTICS of conditions as a decidable relation
--
data _⊢ᶜ_ : Frm → Cond → Set
data _⊬ᶜ_ : Frm → Cond → Set
data _⊢ᶜ_ where
c-tt : ∀ {𝐹 : Frm}
-----------
→ 𝐹 ⊢ᶜ ⇓true
c-and : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊢ᶜ 𝒸₁
→ 𝐹 ⊢ᶜ 𝒸₂
-----------------
→ 𝐹 ⊢ᶜ (𝒸₁ ∧ᶜ 𝒸₂)
c-or₁ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊢ᶜ 𝒸₁
---------------
→ 𝐹 ⊢ᶜ (𝒸₁ ∨ᶜ 𝒸₂)
c-or₂ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊢ᶜ 𝒸₂
----------------
→ 𝐹 ⊢ᶜ (𝒸₁ ∨ᶜ 𝒸₂)
c-less : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝑣₁ < 𝑣₂ ≡ tt
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
-------------------
→ 𝐹 ⊢ᶜ [ 𝑒₁ <ᶜ 𝑒₂ ]
c-eq : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝑣₁ =ℕ 𝑣₂ ≡ tt
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
-------------------
→ 𝐹 ⊢ᶜ [ 𝑒₁ =ᶜ 𝑒₂ ]
c-not : ∀ {𝒸 : Cond} {𝐹 : Frm}
→ 𝐹 ⊬ᶜ 𝒸
-------------
→ 𝐹 ⊢ᶜ (¬ᶜ 𝒸)
data _⊬ᶜ_ where
~c-ff : ∀ {𝐹 : Frm}
--------------
→ 𝐹 ⊬ᶜ ⇓false
~c-or : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊬ᶜ 𝒸₁
→ 𝐹 ⊬ᶜ 𝒸₂
----------------
→ 𝐹 ⊬ᶜ (𝒸₁ ∨ᶜ 𝒸₂)
~c-and₁ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊬ᶜ 𝒸₁
-----------------
→ 𝐹 ⊬ᶜ (𝒸₁ ∧ᶜ 𝒸₂)
~c-and₂ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm}
→ 𝐹 ⊬ᶜ 𝒸₂
-----------------
→ 𝐹 ⊬ᶜ (𝒸₁ ∧ᶜ 𝒸₂)
~c-eq : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝑣₁ =ℕ 𝑣₂ ≡ ff
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
-------------------
→ 𝐹 ⊬ᶜ [ 𝑒₁ =ᶜ 𝑒₂ ]
~c-less : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val}
→ 𝑣₁ < 𝑣₂ ≡ ff
→ 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁
→ 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂
-------------------
→ 𝐹 ⊬ᶜ [ 𝑒₁ <ᶜ 𝑒₂ ]
~c-not : ∀ {𝒸 : Cond} {𝐹 : Frm}
→ 𝐹 ⊢ᶜ 𝒸
-------------
→ 𝐹 ⊬ᶜ (¬ᶜ 𝒸)
test3 : [] ⊢ᶜ (⇓true ∧ᶜ (¬ᶜ ⇓false))
test3 = c-and c-tt (c-not ~c-ff)
c-thm-fwd : ∀{𝒸 : Cond}{𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸 → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ tt)
~c-thm-fwd : ∀{𝒸 : Cond}{𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸 → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ ff)
c-thm-fwd (c-tt{F}) =
begin
⟦ ⇓true ⟧ᶜ F
≡⟨ refl ⟩
tt
∎
c-thm-fwd (c-and{c1}{c2}{F} dat1 dat2) =
let
⟦c1⟧F≡tt : ⟦ c1 ⟧ᶜ F ≡ tt
⟦c1⟧F≡tt = c-thm-fwd dat1
⟦c2⟧F≡tt : ⟦ c2 ⟧ᶜ F ≡ tt
⟦c2⟧F≡tt = c-thm-fwd dat2
in begin
⟦ c1 ∧ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _&&_ ⟦c1⟧F≡tt ⟦c2⟧F≡tt ⟩
tt && tt
≡⟨ refl ⟩
tt
∎
c-thm-fwd (c-or₁{c1}{c2}{F} dat1) =
let
⟦c1⟧F≡tt : ⟦ c1 ⟧ᶜ F ≡ tt
⟦c1⟧F≡tt = c-thm-fwd dat1
in begin
⟦ c1 ∨ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _||_ ⟦c1⟧F≡tt refl ⟩
tt || (⟦ c2 ⟧ᶜ F)
≡⟨ refl ⟩
tt
∎
c-thm-fwd (c-or₂{c1}{c2}{F} dat2) =
let
⟦c2⟧F≡tt : ⟦ c2 ⟧ᶜ F ≡ tt
⟦c2⟧F≡tt = c-thm-fwd dat2
in begin
⟦ c1 ∨ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _||_ refl ⟦c2⟧F≡tt ⟩
(⟦ c1 ⟧ᶜ F) || tt
≡⟨ ||-tt (⟦ c1 ⟧ᶜ F) ⟩
tt
∎
c-thm-fwd (c-less{e1}{e2}{F}{v1}{v2} v1<v2 e1⇓v1 e2⇓v2) =
let
⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1
⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2
⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2
in
begin
⟦ [ e1 <ᶜ e2 ] ⟧ᶜ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F < ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _<_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩
v1 < v2
≡⟨ v1<v2 ⟩
tt
∎
c-thm-fwd (c-eq{e1}{e2}{F}{v1}{v2} v1≡v2 e1⇓v1 e2⇓v2) =
let
⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1
⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2
⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2
in begin
⟦ [ e1 =ᶜ e2 ] ⟧ᶜ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F =ℕ ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _=ℕ_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩
v1 =ℕ v2
≡⟨ v1≡v2 ⟩
tt
∎
c-thm-fwd (c-not{c}{F} dat) =
let
⟦c⟧F≡ff : ⟦ c ⟧ᶜ F ≡ ff
⟦c⟧F≡ff = ~c-thm-fwd dat
in begin
begin
⟦ ¬ᶜ c ⟧ᶜ F
≡⟨ refl ⟩
~ ⟦ c ⟧ᶜ F
≡⟨ cong ~_ ⟦c⟧F≡ff ⟩
~ ff
≡⟨ refl ⟩
tt
∎
~c-thm-fwd (~c-ff{F}) =
begin
⟦ ⇓false ⟧ᶜ F
≡⟨ refl ⟩
ff
∎
~c-thm-fwd (~c-or{c1}{c2}{F} dat1 dat2) =
let
⟦c1⟧F≡ff : ⟦ c1 ⟧ᶜ F ≡ ff
⟦c1⟧F≡ff = ~c-thm-fwd dat1
⟦c2⟧F≡ff : ⟦ c2 ⟧ᶜ F ≡ ff
⟦c2⟧F≡ff = ~c-thm-fwd dat2
in begin
⟦ c1 ∨ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _||_ ⟦c1⟧F≡ff ⟦c2⟧F≡ff ⟩
ff || ff
≡⟨ refl ⟩
ff
∎
~c-thm-fwd (~c-and₁{c1}{c2}{F} dat1) =
let
⟦c1⟧F≡ff : ⟦ c1 ⟧ᶜ F ≡ ff
⟦c1⟧F≡ff = ~c-thm-fwd dat1
in begin
⟦ c1 ∧ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _&&_ ⟦c1⟧F≡ff refl ⟩
ff && (⟦ c2 ⟧ᶜ F)
≡⟨ refl ⟩
ff
∎
~c-thm-fwd (~c-and₂{c1}{c2}{F} dat2) =
let
⟦c2⟧F≡ff : ⟦ c2 ⟧ᶜ F ≡ ff
⟦c2⟧F≡ff = ~c-thm-fwd dat2
in begin
begin
⟦ c1 ∧ᶜ c2 ⟧ᶜ F
≡⟨ refl ⟩
(⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F)
≡⟨ cong2 _&&_ refl ⟦c2⟧F≡ff ⟩
(⟦ c1 ⟧ᶜ F) && ff
≡⟨ &&-ff (⟦ c1 ⟧ᶜ F) ⟩
ff
∎
~c-thm-fwd (~c-less{e1}{e2}{F}{v1}{v2} v1≮v2 e1⇓v1 e2⇓v2) =
let
⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1
⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2
⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2
in
begin
⟦ [ e1 <ᶜ e2 ] ⟧ᶜ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F < ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _<_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩
v1 < v2
≡⟨ v1≮v2 ⟩
ff
∎
~c-thm-fwd (~c-eq{e1}{e2}{F}{v1}{v2} v1≢v2 e1⇓v1 e2⇓v2) =
let
⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1
⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1
⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2
⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2
in begin
⟦ [ e1 =ᶜ e2 ] ⟧ᶜ F
≡⟨ refl ⟩
⟦ e1 ⟧ᵉ F =ℕ ⟦ e2 ⟧ᵉ F
≡⟨ cong2 _=ℕ_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩
v1 =ℕ v2
≡⟨ v1≢v2 ⟩
ff
∎
~c-thm-fwd (~c-not{c}{F} ⊢c) =
begin
⟦ ¬ᶜ c ⟧ᶜ F
≡⟨ refl ⟩
~ ⟦ c ⟧ᶜ F
≡⟨ cong ~_ (c-thm-fwd ⊢c) ⟩
~ tt
≡⟨ refl ⟩
ff
∎
-- These can probably be shown just by using
-- the contrapositives of c-thm-fwd and ~c-thm-fwd
postulate
c-thm-rev : ∀{𝒸 : Cond}{𝐹 : Frm} → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ tt) → 𝐹 ⊢ᶜ 𝒸
~c-thm-rev : ∀{𝒸 : Cond}{𝐹 : Frm} → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ ff) → 𝐹 ⊬ᶜ 𝒸
--
-- SEMANTICS of program statements
-- as a state transformation relation
--
data _=[_]⇒_ : Frm → Stmt → Frm → Set where
s-skip : ∀ {𝐹 : Frm}
--------------
→ 𝐹 =[ skip ]⇒ 𝐹
s-assign : ∀ {𝑥 : Id} {𝑒 : Expn} {𝐹 : Frm} {𝑣 : Val}
→ 𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣
---------------------------
→ 𝐹 =[ 𝑥 ∷= 𝑒 ]⇒ (𝐹 ∣ 𝑥 ↦ 𝑣)
s-seq : ∀ {𝑠₁ 𝑠₂ : Stmt} {𝐹₀ 𝐹₁ 𝐹₂ : Frm}
→ 𝐹₀ =[ 𝑠₁ ]⇒ 𝐹₁
→ 𝐹₁ =[ 𝑠₂ ]⇒ 𝐹₂
-------------------
→ 𝐹₀ =[ 𝑠₁ ↩ 𝑠₂ ]⇒ 𝐹₂
s-if-then : ∀ {𝒸 : Cond} {𝑠₁ 𝑠₂ : Stmt} {𝐹 𝐹' : Frm}
→ 𝐹 ⊢ᶜ 𝒸
→ 𝐹 =[ 𝑠₁ ]⇒ 𝐹'
→ 𝐹 =[ 𝑠₂ ]⇒ 𝐹'
------------------------------------
→ 𝐹 =[ if 𝒸 then 𝑠₁ else 𝑠₂ end ]⇒ 𝐹'
s-if-else : ∀ {𝒸 : Cond} {𝑠₁ 𝑠₂ : Stmt} {𝐹 𝐹' : Frm}
→ 𝐹 ⊬ᶜ 𝒸
→ 𝐹 =[ 𝑠₂ ]⇒ 𝐹'
------------------------------------
→ 𝐹 =[ if 𝒸 then 𝑠₁ else 𝑠₂ end ]⇒ 𝐹'
s-repeat-0 : ∀ {𝑠 : Stmt} {𝑥 : Id} {𝐹 : Frm}
→ 𝐹 ⊢ᶠ 𝑥 ↦ 0
-----------------------------
→ 𝐹 =[ by 𝑥 repeat 𝑠 end ]⇒ 𝐹
s-repeat-suc : ∀ {𝑛 : ℕ} {𝑠 : Stmt} {𝑥 : Id} {𝐹 𝐹' : Frm}
→ 𝐹 ⊢ᶠ 𝑥 ↦ suc 𝑛
→ 𝐹 =[ 𝑠 ↩ 𝑥 ∷= (⇓ 𝑛) ↩ by 𝑥 repeat 𝑠 end ]⇒ 𝐹'
----------------------------------------------
→ 𝐹 =[ by 𝑥 repeat 𝑠 end ]⇒ 𝐹'
--
-- A lil cheat: "returns" is just assign; doesn't exit
s-return : ∀ {𝑒 : Expn} {𝐹 : Frm} {𝑣 : Val}
→ 𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣
-------------------------------------
→ 𝐹 =[ returns 𝑒 ]⇒ (𝐹 ∣ "retval" ↦ 𝑣)
arg1 : Id
arg1 = "arg1"
arg2 : Id
arg2 = "arg2"
retval : Id
retval = "retval"
W : Id
W = "w"
X : Id
X = "x"
Y : Id
Y = "y"
Z : Id
Z = "z"
pgm0 : Stmt
pgm0 = X ∷= ⇓ 3 ↩
Y ∷= ⇓ 1 ↩
Y ∷= ⇑ Y *ᵉ⇓ 2
pgm1 : Stmt
pgm1 = X ∷= ⇓ 3 ↩
Y ∷= ⇓ 1 ↩
by X repeat
Y ∷= ⇑ Y *ᵉ⇓ 2
end
Z∷=X*Y = W ∷= ⇑ X ↩
Z ∷= ⇓ 0 ↩
by W repeat
Z ∷= ⇑ Z +ᵉ ⇑ Y
end
pgm2 = X ∷= ⇓ 3 ↩
Y ∷= ⇓ 1 ↩
by X repeat
Z∷=X*Y ↩
Y ∷= ⇑ Z
end
fact-pgm : Stmt
fact-pgm =
X ∷= ⇑ arg1 ↩
Y ∷= ⇓ 1 ↩
by X repeat
Z∷=X*Y ↩
Y ∷= ⇑ Z
end ↩
returns ⇑ Y
min-pgm : Stmt
min-pgm = if [ ⇑ arg2 <ᶜ ⇑ arg1 ] then
X ∷= ⇑ arg1 ↩
arg1 ∷= ⇑ arg2 ↩
arg2 ∷= ⇑ X
else
skip
end
result1 = ⟦ pgm1 ⟧ˢ [-↦0]
result2 = ⟦ pgm2 ⟧ˢ [-↦0]
[➊↦_] : Val → Frm
[➊↦ 𝑣 ] = [-↦0] ∣ arg1 ↦ 𝑣
[➊↦_,➋↦_] : Val → Val → Frm
[➊↦ 𝑣₁ ,➋↦ 𝑣₂ ] = (([-↦0] ∣ arg1 ↦ 𝑣₁) ∣ arg2 ↦ 𝑣₂ )
frame6 = ((((( [➊↦ 3 ] ∣ X ↦ 0) ∣ Y ↦ 6) ∣ W ↦ 0) ∣ Z ↦ 6) ∣ retval ↦ 6)
postulate
test6 : [➊↦ 3 ] =[ fact-pgm ]⇒ frame6
exec : Stmt → Frm
exec 𝑠 = ⟦ 𝑠 ⟧ˢ [-↦0]
exec1 : Stmt → Val → Frm
exec1 𝑠 𝑣₁ = ⟦ 𝑠 ⟧ˢ [➊↦ 𝑣₁ ]
exec2 : Stmt → Val → Val → Frm
exec2 𝑠 𝑣₁ 𝑣₂ = ⟦ 𝑠 ⟧ˢ [➊↦ 𝑣₁ ,➋↦ 𝑣₂ ]
test7 = exec2 min-pgm 7 5
test7a : (test7 ∥ arg1) ≡ 5
test7a = refl
test7b : (test7 ∥ arg2) ≡ 7
test7b = refl
postulate
s-thm : ∀ {𝑠 : Stmt } {𝐹 : Frm} → 𝐹 =[ 𝑠 ]⇒ (⟦ 𝑠 ⟧ˢ 𝐹)
postulate
fact-thm : ∀ {n : ℕ} {𝐹 : Frm} → [➊↦ n ] =[ fact-pgm ]⇒ 𝐹 → 𝐹 ⊢ᶠ retval ↦ (factorial n)
| {
"alphanum_fraction": 0.3871188763,
"avg_line_length": 21.8379052369,
"ext": "agda",
"hexsha": "a18feb3bfc3e2f6b7410ed8b97baf02286935875",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JimFixGroupResearch/imper-ial",
"max_forks_repo_path": "imper-repeat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JimFixGroupResearch/imper-ial",
"max_issues_repo_path": "imper-repeat.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JimFixGroupResearch/imper-ial",
"max_stars_repo_path": "imper-repeat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10628,
"size": 17514
} |
{- Name: Bowornmet (Ben) Hudson
--Progress and Preservation in Godel's T--
Progress: if e:τ, then either e val or ∃e' such that e=>e'.
Preservation: if e:τ and e=>e', then e':τ.
-}
open import Preliminaries
module Godel where
-- nat and =>
data Typ : Set where
nat : Typ
_⇒_ : Typ → Typ → Typ
------------------------------------------
-- represent a context as a list of types
Ctx = List Typ
-- de Bruijn indices (for free variables)
data _∈_ : Typ → Ctx → Set where
i0 : ∀ {Γ τ}
→ τ ∈ (τ :: Γ)
iS : ∀ {Γ τ τ1}
→ τ ∈ Γ
→ τ ∈ (τ1 :: Γ)
------------------------------------------
-- static semantics
data _|-_ : Ctx → Typ → Set where
var : ∀ {Γ τ}
→ (x : τ ∈ Γ) → Γ |- τ
z : ∀ {Γ}
→ Γ |- nat
suc : ∀ {Γ}
→ (e : Γ |- nat)
→ Γ |- nat
rec : ∀ {Γ τ}
→ (e : Γ |- nat)
→ (e0 : Γ |- τ)
→ (e1 : (nat :: (τ :: Γ)) |- τ)
→ Γ |- τ
lam : ∀ {Γ τ ρ}
→ (x : (ρ :: Γ) |- τ)
→ Γ |- (ρ ⇒ τ)
app : ∀ {Γ τ1 τ2}
→ (e1 : Γ |- (τ2 ⇒ τ1)) → (e2 : Γ |- τ2)
→ Γ |- τ1
------------------------------------------
-- renaming function
rctx : Ctx → Ctx → Set
rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ
-- re: transferring variables in contexts
lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
lem1 d i0 = i0
lem1 d (iS x) = iS (d x)
-- renaming lemma
ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ
ren (var x) d = var (d x)
ren z d = z
ren (suc e) d = suc (ren e d)
ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1(lem1 d)))
ren (lam e) d = lam (ren e (lem1 d))
ren (app e1 e2) d = app (ren e1 d) (ren e2 d)
------------------------------------------
-- substitution
sctx : Ctx → Ctx → Set
sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ
-- weakening a context
wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2
wkn e = ren e iS
-- weakening also works with substitution
wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ'
wkn-s d = λ f → wkn (d f)
wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ'
wkn-r d = λ x → iS (d x)
-- lem2 (need a lemma for subst like we did for renaming)
lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ')
lem2 d i0 = var i0
lem2 d (iS i) = wkn (d i)
-- another substitution lemma
lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ)
lem3 e i0 = e
lem3 e (iS i) = var i
-- one final lemma needed for the last stepping rule. Thank you Professor Licata!
lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ))
lem4 e1 e2 i0 = e1
lem4 e1 e2 (iS i0) = e2
lem4 e1 e2 (iS (iS i)) = var i
-- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ)
subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ
subst d (var x) = d x
subst d z = z
subst d (suc e) = suc (subst d e)
subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1)
subst d (lam e) = lam (subst (lem2 d) e)
subst d (app e1 e2) = app (subst d e1) (subst d e2)
------------------------------------------
-- closed values of L{nat,⇒} (when something is a value)
-- recall that we use empty contexts when we work with dynamic semantics
data val : ∀ {τ} → [] |- τ → Set where
z-isval : val z
suc-isval : (e : [] |- nat) → (val e)
→ val (suc e)
lam-isval : ∀ {ρ τ} (e : (ρ :: []) |- τ)
→ val (lam e)
------------------------------------------
-- stepping rules (preservation is folded into this)
-- Preservation: if e:τ and e=>e', then e':τ
data _>>_ : ∀ {τ} → [] |- τ → [] |- τ → Set where
suc-steps : (e e' : [] |- nat)
→ e >> e'
→ (suc e) >> (suc e')
app-steps : ∀ {τ1 τ2}
→ (e1 e1' : [] |- (τ2 ⇒ τ1)) → (e2 : [] |- τ2)
→ e1 >> e1'
→ (app e1 e2) >> (app e1' e2)
app-steps-2 : ∀ {τ1 τ2}
→ (e1 : [] |- (τ2 ⇒ τ1)) → (e2 e2' : [] |- τ2)
→ val e1 → e2 >> e2'
→ (app e1 e2) >> (app e1 e2')
app-steps-3 : ∀ {τ1 τ2}
→ (e1 : (τ1 :: []) |- τ2)
→ (e2 : [] |- τ1)
→ (app (lam e1) e2) >> subst (lem3 e2) e1
rec-steps : ∀ {τ}
→ (e e' : [] |- nat)
→ (e0 : [] |- τ)
→ (e1 : (nat :: (τ :: [])) |- τ)
→ e >> e'
→ (rec e e0 e1) >> (rec e' e0 e1)
rec-steps-z : ∀ {τ}
→ (e : val z)
→ (e0 : [] |- τ)
→ (e1 : (nat :: (τ :: [])) |- τ)
→ (rec z e0 e1) >> e0
rec-steps-suc : ∀ {τ}
→ (e : [] |- nat)
→ (e0 : [] |- τ)
→ (e1 : (nat :: (τ :: [])) |- τ)
→ val e
→ (rec (suc e) e0 e1) >> subst (lem4 e (rec e e0 e1)) e1
------------------------------------------
-- Proof of progress!
-- Progress: if e:τ, then either e val or ∃e' such that e=>e'
progress : ∀ {τ} (e : [] |- τ) → Either (val e) (Σ (λ e' → (e >> e')))
progress (var ())
progress z = Inl z-isval
progress (suc e) with progress e
progress (suc e) | Inl d = Inl (suc-isval e d)
progress (suc e) | Inr (e' , d) = Inr (suc e' , suc-steps e e' d)
progress (rec e e1 e2) with progress e
progress (rec .z e1 e2) | Inl z-isval = Inr (e1 , rec-steps-z z-isval e1 e2)
progress (rec .(suc e) e1 e2) | Inl (suc-isval e d) = Inr (subst (lem4 e (rec e e1 e2)) e2 , rec-steps-suc e e1 e2 d)
progress (rec e e1 e2) | Inr (e' , d) = Inr (rec e' e1 e2 , rec-steps e e' e1 e2 d)
progress (lam e) = Inl (lam-isval e)
progress (app e1 e2) with progress e1
progress (app .(lam e) e2) | Inl (lam-isval e) = Inr (subst (lem3 e2) e , app-steps-3 e e2)
progress (app e1 e2) | Inr (e1' , d) = Inr (app e1' e2 , app-steps e1 e1' e2 d)
------------------------------------------
-- Denotational semantics
-- interpreting a T type in Agda
interp : Typ → Set
interp nat = Nat
interp (A ⇒ B) = interp A → interp B
-- interpreting contexts
interpC : Ctx → Set
interpC [] = Unit
interpC (A :: Γ) = interpC Γ × interp A
-- helper function to look a variable up in an interpC gamma
lookupC : ∀{Γ A} → (x : A ∈ Γ) → interpC Γ → interp A
lookupC i0 (recur , return) = return
lookupC (iS i) (recur , return) = lookupC i recur
-- primitive recursion function corresponding to rec
natrec : ∀{C : Set} → C → (Nat → C → C) → Nat → C
natrec base step Z = base
natrec base step (S n) = step n (natrec base step n)
-- interpreting expressions in Godel's T as a function from the interpretation of the context to the interpretation of its corresponding type
interpE : ∀{Γ τ} → Γ |- τ → (interpC Γ → interp τ)
interpE (var x) d = lookupC x d
interpE z d = Z
interpE (suc e) d = S (interpE e d)
interpE (rec e e0 e1) d = natrec (interpE e0 d) (λ n k → interpE e1 ((d , k) , n)) (interpE e d)
interpE (lam e) d = λ x → interpE e (d , x)
interpE (app e1 e2) d = interpE e1 d (interpE e2 d)
helper : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ'
helper d = λ x → d (iS x)
helper-r : ∀ {Γ Γ' τ} → rctx Γ (τ :: Γ') → rctx Γ Γ'
helper-r d = λ x → d (iS x)
-- compositionality of functions
interpS : ∀ {Γ Γ'} → sctx Γ Γ' → interpC Γ → interpC Γ'
interpS {Γ} {[]} a b = <>
interpS {Γ} {A :: Γ'} a b = interpS (helper a) b , interpE (a i0) b
interpR : ∀ {Γ Γ'} → rctx Γ Γ' → interpC Γ → interpC Γ'
interpR {Γ} {[]} a b = <>
interpR {Γ} {A :: Γ'} a b = interpR (helper-r a) b , lookupC (a i0) b
--lemmas for lambda case of interpR-lemma
interpR-lemma-lemma-lemma : ∀ {Γ Γ' τ} → (x : interp τ) → (Θ : rctx Γ Γ') → (Θ' : interpC Γ) → (interpR Θ Θ') == interpR (wkn-r Θ) (Θ' , x)
interpR-lemma-lemma-lemma {Γ} {[]} x Θ Θ' = Refl
interpR-lemma-lemma-lemma {Γ} {A :: Γ'} x Θ Θ' = ap (λ h → h , lookupC (Θ i0) Θ') (interpR-lemma-lemma-lemma x (helper-r Θ) Θ')
interpR-lemma-lemma : ∀ {Γ Γ' τ} → (x : interp τ) → (Θ : rctx Γ Γ') → (Θ' : interpC Γ) → (interpR Θ Θ' , x) == (interpR (lem1 Θ) (Θ' , x))
interpR-lemma-lemma {Γ} {[]} x Θ Θ' = Refl
interpR-lemma-lemma {Γ} {A :: Γ'} x Θ Θ' = ap (λ h → h , x) (interpR-lemma-lemma-lemma x Θ Θ')
interpR-lemma-lemma-rec : ∀ {Γ Γ' τ} → (x : interp nat) → (y : interp τ) → (Θ : rctx Γ Γ') → (Θ' : interpC Γ)
→ ((interpR Θ Θ' , y) , x) == interpR (lem1 (lem1 Θ)) ((Θ' , y) , x)
interpR-lemma-lemma-rec x y Θ Θ' = interpR-lemma-lemma x (lem1 Θ) (Θ' , y) ∘ ap (λ h → h , x) (interpR-lemma-lemma y Θ Θ')
interpR-lemma : ∀ {Γ Γ' τ} (e : Γ' |- τ) → (Θ : rctx Γ Γ') → (Θ' : interpC Γ) → (interpE e) (interpR Θ Θ') == (interpE (ren e Θ)) Θ'
interpR-lemma (var i0) Θ Θ' = Refl
interpR-lemma (var (iS x)) Θ Θ' = interpR-lemma (var x) (helper-r Θ) Θ'
interpR-lemma z Θ Θ' = Refl
interpR-lemma (suc e) Θ Θ' = ap S (interpR-lemma e Θ Θ')
interpR-lemma {Γ} {Γ'} {τ} (rec e e1 e2) Θ Θ' = natrec (interpE e1 (interpR Θ Θ'))
(λ n k → interpE e2 ((interpR Θ Θ' , k) , n))
(interpE e (interpR Θ Θ')) =⟨ ap
(λ h →
natrec h (λ n k → interpE e2 ((interpR Θ Θ' , k) , n))
(interpE e (interpR Θ Θ')))
(interpR-lemma e1 Θ Θ') ⟩
natrec (interpE (ren e1 Θ) Θ')
(λ n k → interpE e2 ((interpR Θ Θ' , k) , n))
(interpE e (interpR Θ Θ')) =⟨ ap
(λ h →
natrec (interpE (ren e1 Θ) Θ')
(λ n k → interpE e2 ((interpR Θ Θ' , k) , n)) h)
(interpR-lemma e Θ Θ') ⟩
natrec (interpE (ren e1 Θ) Θ')
(λ n k → interpE e2 ((interpR Θ Θ' , k) , n))
(interpE (ren e Θ) Θ') =⟨ ap
(λ h →
natrec (interpE (ren e1 Θ) Θ') h (interpE (ren e Θ) Θ'))
(λ=
(λ x →
λ=
(λ y →
ap (λ h → interpE e2 h) (interpR-lemma-lemma-rec x y Θ Θ')))) ⟩
natrec (interpE (ren e1 Θ) Θ')
(λ n k → interpE e2 (interpR (lem1 (lem1 Θ)) ((Θ' , k) , n)))
(interpE (ren e Θ) Θ') =⟨ ap
(λ h →
natrec (interpE (ren e1 Θ) Θ') h (interpE (ren e Θ) Θ'))
(λ=
(λ x →
λ=
(λ y →
interpR-lemma {nat :: τ :: Γ} {nat :: τ :: Γ'} e2 (lem1 (lem1 Θ))
((Θ' , y) , x)))) ⟩
natrec (interpE (ren e1 Θ) Θ')
(λ n k → interpE (ren e2 (lem1 (lem1 Θ))) ((Θ' , k) , n))
(interpE (ren e Θ) Θ') ∎
interpR-lemma {Γ} {Γ'} {ρ ⇒ τ} (lam e) Θ Θ' = interpE (lam e) (interpR Θ Θ') =⟨ Refl ⟩
(λ x → interpE e (interpR Θ Θ' , x)) =⟨ λ= (λ x → ap (λ h → interpE e h) (interpR-lemma-lemma x Θ Θ')) ⟩
(λ x → interpE e (interpR (lem1 Θ) (Θ' , x))) =⟨ λ= (λ x → interpR-lemma {ρ :: Γ} {ρ :: Γ'} e (lem1 Θ) (Θ' , x)) ⟩
((λ x → interpE (ren e (lem1 Θ)) (Θ' , x)) ∎)
interpR-lemma (app e1 e2) Θ Θ' = interpE (app e1 e2) (interpR Θ Θ') =⟨ Refl ⟩
interpE e1 (interpR Θ Θ') (interpE e2 (interpR Θ Θ')) =⟨ ap (λ x → x (interpE e2 (interpR Θ Θ'))) (interpR-lemma e1 Θ Θ') ⟩
interpE (ren e1 Θ) Θ' (interpE e2 (interpR Θ Θ')) =⟨ ap (λ x → interpE (ren e1 Θ) Θ' x) (interpR-lemma e2 Θ Θ') ⟩
interpE (ren e1 Θ) Θ' (interpE (ren e2 Θ) Θ') ∎
-- no proof is possible without the genius of Dan Licata
mutual
wkn-lemma : ∀ {Γ τ} (a : interp τ) → (Θ' : interpC Γ) → Θ' == interpR iS (Θ' , a)
wkn-lemma a Θ' = interpR-lemma-lemma-lemma a (λ x → x) Θ' ∘ ! (mutual-lemma Θ')
mutual-lemma : ∀ {Γ} (Θ' : interpC Γ) → interpR (λ x → x) Θ' == Θ'
mutual-lemma {[]} Θ' = Refl
mutual-lemma {A :: Γ} (Θ' , a) = ! (ap (λ h → h , a) (wkn-lemma a Θ'))
interp-lemma2 : ∀ {Γ τ' Θ' τ} (a : interp τ) → (e : Γ |- τ') → interpE e Θ' == interpE (wkn e) (Θ' , a)
interp-lemma2 {Γ} {τ'} {Θ'} a e = interpE e Θ' =⟨ ap (λ x → interpE e x) (wkn-lemma a Θ') ⟩
interpE e (interpR iS (Θ' , a)) =⟨ interpR-lemma e iS (Θ' , a) ⟩
interpE (ren e iS) (Θ' , a) ∎
interp-lemma : ∀ {Γ Γ' Θ' τ} (a : interp τ) → (Θ : sctx Γ Γ') → interpS Θ Θ' == interpS (wkn-s Θ) (Θ' , a)
interp-lemma {Γ} {[]} a Θ = Refl
interp-lemma {Γ} {A :: Γ'} a Θ = ap2 (λ x y → x , y) (interp-lemma a (helper Θ)) (interp-lemma2 a (Θ i0))
lemma : ∀ {Γ Γ' Θ' τ} (x : interp τ) → (Θ : sctx Γ Γ') → ((interpS Θ Θ') , x) == (interpS (lem2 Θ) (Θ' , x))
lemma x Θ = ap (λ y → y , x) (interp-lemma x Θ)
lemma-c-lemma-lemma : ∀ {Γ Γ' τ} → (x : interp τ) → (Θ : sctx Γ Γ') → (Θ' : interpC Γ) → (interpS Θ Θ') == (interpS (wkn-s Θ) (Θ' , x))
lemma-c-lemma-lemma {Γ} {[]} x Θ Θ' = Refl
lemma-c-lemma-lemma {Γ} {A :: Γ'} x Θ Θ' = ap2 (λ x₁ y → x₁ , y) (lemma-c-lemma-lemma x (helper Θ) Θ') (interp-lemma2 x (Θ i0))
lemma-c-lemma : ∀ {Γ Γ' τ} → (x : interp τ) → (Θ : sctx Γ Γ') → (Θ' : interpC Γ) → (interpS Θ Θ' , x) == (interpS (lem2 Θ) (Θ' , x))
lemma-c-lemma {Γ} {[]} x Θ Θ' = Refl
lemma-c-lemma {Γ} {A :: Γ'} x Θ Θ' = ap (λ h → h , x) (lemma-c-lemma-lemma x Θ Θ')
lemma-c-lemma-rec : ∀ {Γ Γ' τ} → (x : interp nat) → (y : interp τ) → (Θ : sctx Γ Γ') → (Θ' : interpC Γ)
→ ((interpS Θ Θ' , y) , x) == interpS (lem2 (lem2 Θ)) ((Θ' , y) , x)
lemma-c-lemma-rec {Γ} {[]} x y Θ Θ' = Refl
lemma-c-lemma-rec {Γ} {A :: Γ'} x y Θ Θ' = lemma-c-lemma x (lem2 Θ) (Θ' , y) ∘ ap (λ h → h , x) (lemma-c-lemma y Θ Θ')
lemma-c : ∀ {Γ Γ' τ} (e : Γ' |- τ) → (Θ : sctx Γ Γ') → (Θ' : interpC Γ) → (interpE e) (interpS Θ Θ') == (interpE (subst Θ e)) Θ'
lemma-c (var i0) b c = Refl
lemma-c (var (iS x)) b c = lemma-c (var x) (helper b) c
lemma-c z b c = Refl
lemma-c (suc e) b c = ap S (lemma-c e b c)
lemma-c {Γ} {Γ'} {τ} (rec e e0 e1) b c = natrec (interpE e0 (interpS b c))
(λ n k → interpE e1 ((interpS b c , k) , n))
(interpE e (interpS b c))
=⟨ ap
(λ h →
natrec h (λ n k → interpE e1 ((interpS b c , k) , n))
(interpE e (interpS b c)))
(lemma-c e0 b c) ⟩
natrec (interpE (subst b e0) c)
(λ n k → interpE e1 ((interpS b c , k) , n))
(interpE e (interpS b c))
=⟨ ap
(λ h →
natrec (interpE (subst b e0) c)
(λ n k → interpE e1 ((interpS b c , k) , n)) h)
(lemma-c e b c) ⟩
natrec (interpE (subst b e0) c)
(λ n k → interpE e1 ((interpS b c , k) , n))
(interpE (subst b e) c) =⟨ ap
(λ h → natrec (interpE (subst b e0) c) h (interpE (subst b e) c))
(λ= (λ x →
λ= (λ y →
ap (λ h → interpE e1 h) (lemma-c-lemma-rec x y b c)))) ⟩
natrec (interpE (subst b e0) c)
(λ n k → interpE e1 (interpS (lem2 (lem2 b)) ((c , k) , n)))
(interpE (subst b e) c) =⟨ ap
(λ h → natrec (interpE (subst b e0) c) h (interpE (subst b e) c))
(λ= (λ x →
λ= (λ y → lemma-c {nat :: τ :: Γ} {nat :: τ :: Γ'} e1 (lem2 (lem2 b)) ((c , y) , x)))) ⟩
natrec (interpE (subst b e0) c)
(λ n k → interpE (subst (lem2 (lem2 b)) e1) ((c , k) , n))
(interpE (subst b e) c)
∎
lemma-c {Γ} {Γ'} {ρ ⇒ τ} (lam e) b c = interpE (lam e) (interpS b c) =⟨ Refl ⟩
(λ x → interpE e (interpS b c , x)) =⟨ λ= (λ x → ap (λ h → interpE e h) (lemma-c-lemma x b c)) ⟩
(λ x → interpE e (interpS (lem2 b) (c , x))) =⟨ λ= (λ x → lemma-c {ρ :: Γ} {ρ :: Γ'} e (lem2 b) (c , x)) ⟩
(λ x → interpE (subst (lem2 b) e) (c , x)) ∎
lemma-c (app e1 e2) b c = interpE (app e1 e2) (interpS b c) =⟨ Refl ⟩
interpE e1 (interpS b c) (interpE e2 (interpS b c)) =⟨ ap (λ f → f (interpE e2 (interpS b c))) (lemma-c e1 b c) ⟩
interpE (subst b e1) c (interpE e2 (interpS b c)) =⟨ ap (λ f → interpE (subst b e1) c f) (lemma-c e2 b c) ⟩
interpE (subst b e1) c (interpE (subst b e2) c) ∎
-- Soundness: if e >> e' then interp e == interp e'
sound : ∀ {τ} (e e' : [] |- τ) → e >> e' → (interpE e <>) == (interpE e' <>)
sound (var x) d ()
sound z d ()
sound (suc e) .(suc e') (suc-steps .e e' p) = ap S (sound e e' p)
sound (rec e e0 e1) .(rec e' e0 e1) (rec-steps .e e' .e0 .e1 p) = ap (natrec (interpE e0 <>) (λ n k → interpE e1 ((<> , k) , n))) (sound e e' p)
sound (rec .z .d e1) d (rec-steps-z e .d .e1) = Refl
sound (rec .(suc e) e0 e1) .(subst (lem4 e (rec e e0 e1)) e1) (rec-steps-suc e .e0 .e1 x) = lemma-c e1 (lem4 e (rec e e0 e1)) <>
sound (lam x) d ()
sound (app e1 e2) .(app e1' e2) (app-steps .e1 e1' .e2 p) = ap (λ d → d (interpE e2 <>)) (sound e1 e1' p)
sound (app e1 e2) .(app e1 e2') (app-steps-2 .e1 .e2 e2' x p) = ap (λ d → interpE e1 <> d) (sound e2 e2' p)
sound (app .(lam e1) e2) .(subst (lem3 e2) e1) (app-steps-3 e1 .e2) = lemma-c e1 (lem3 e2) <>
| {
"alphanum_fraction": 0.3663058824,
"avg_line_length": 53.9340101523,
"ext": "agda",
"hexsha": "9904a90c1f2f61a8c52818232ab70dbba1b373d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "ug/Godel.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "ug/Godel.agda",
"max_line_length": 175,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "old/Godel.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 7079,
"size": 21250
} |
{-# OPTIONS --safe #-}
open import Generics.Prelude hiding (lookup)
open import Generics.Telescope
open import Generics.Desc
open import Generics.All
open import Generics.HasDesc
import Generics.Helpers as Helpers
module Generics.Constructions.Recursion
{P I ℓ} {A : Indexed P I ℓ}
(H : HasDesc A) (open HasDesc H)
{p c} (Pr : Pred′ I (λ i → A′ (p , i) → Set c))
where
private
variable
V : ExTele P
i : ⟦ I ⟧tel p
v : ⟦ V ⟧tel p
Pr′ : A′ (p , i) → Set c
Pr′ {i} = unpred′ I _ Pr i
Below : (x : A′ (p , i)) → Acc x → Setω
BelowIndArg : (C : ConDesc P V I)
(x : ⟦ C ⟧IndArg A′ (p , v))
→ AllIndArgω Acc C x
→ Setω
BelowIndArg (var _) x = Below x
BelowIndArg (π ai S C) x a = ∀ s → BelowIndArg C (app< ai > x s) (a s)
BelowIndArg (A ⊗ B) (x , y) (ax , ay)
= BelowIndArg A x ax ×ω BelowIndArg B y ay
BelowCon : (C : ConDesc P V I)
(x : ⟦ C ⟧Con A′ (p , v , i))
→ AllConω Acc C x
→ Setω
BelowCon (var _) x _ = ⊤ω
BelowCon (π ai S C) (s , x) = BelowCon C x
BelowCon (A ⊗ B) (f , x) (af , ax)
= BelowIndArg A f af
×ω BelowCon B x ax
Below x (acc a) with split x
... | (k , x) = BelowCon _ x a
module _ (f : ∀ {i} (x : A′ (p , i)) (a : Acc x) → Below x a → Pr′ x) where
below : (x : A′ (p , i)) (a : Acc x) → Below x a
below x (acc a) with split x
... | (k , x) = belowCon _ x a
where
belowIndArg : (C : ConDesc P V I)
(x : ⟦ C ⟧IndArg A′ (p , v))
(a : AllIndArgω Acc C x)
→ BelowIndArg C x a
belowIndArg (var _) x a = below x a
belowIndArg (π ai _ C) x a s =
belowIndArg C (app< ai > x s) (a s)
belowIndArg (A ⊗ B) (x , y) (ax , ay)
= belowIndArg A x ax
, belowIndArg B y ay
belowCon : (C : ConDesc P V I)
(x : ⟦ C ⟧Con A′ (p , v , i))
(a : AllConω Acc C x)
→ BelowCon C x a
belowCon (var _) _ _ = tt
belowCon (π _ _ C) (_ , x) a = belowCon C x a
belowCon (A ⊗ B) (f , x) (af , ax)
= belowIndArg A f af
, belowCon B x ax
rec : (x : A′ (p , i)) → Pr′ x
rec x = f x (wf x) (below x (wf x))
| {
"alphanum_fraction": 0.5,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "dda8867a10e57d458827418e642c1343e034e9c0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Constructions/Recursion.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Constructions/Recursion.agda",
"max_line_length": 75,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Constructions/Recursion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 836,
"size": 2200
} |
module Type.WellOrdering where
import Lvl
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Type
open import Type.Dependent
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
-- Types with terms that are well-founded trees.
-- Constructs types that are similar to some kind of tree.
-- The first parameter is the index for a constructor.
-- The second parameter is the arity for each constructor.
--
-- A type able to describe all non-dependent inductively defined data types assuming there are some previously defined types.
-- When described like this, the parameters should be interpreted as the following:
-- • The first parameter `A` indicates the "number" of branches based on another type's "cardinality" and should also contain the data for every branch.
-- • The second parameter `B` is used when the type to be defined refers to itself.
-- Examples:
-- open import Data
-- open import Data.Boolean
--
-- module _ (L R : Type{Lvl.𝟎}) where
-- E : Type{Lvl.𝟎}
-- E = W{A = Σ(Bool)(if_then R else L)}(const Empty) -- Either type using W.
-- l : L → E -- Left branch introduction.
-- l x = sup (intro 𝐹 x) empty
-- r : R → E -- Rght branch introduction.
-- r x = sup (intro 𝑇 x) empty
--
-- N = W{A = Bool}(if_then Unit{Lvl.𝟎} else Empty{Lvl.𝟎}) -- Natural numbers using W.
-- z : N -- Zero branch introduction.
-- z = sup 𝐹 empty
-- z' : _ → N -- Zero branch introduction (defined like this because empty functions are not unique (from no function extensionality) resulting in more than one zero for this definition of the natural numbers).
-- z' empty = sup 𝐹 empty
-- s : N → N -- Successor branch introduction.
-- s n = sup 𝑇 (\{<> → n})
-- e : ∀{P : N → Type{Lvl.𝟎}} → (∀{empty} → P(z empty)) → (∀{n} → P(n) → P(s n)) → (∀{n} → P(n)) -- TODO: Is this a correct eliminator? Note: It does not pass the termination checker
-- e pz ps {sup 𝐹 b} = pz
-- e pz ps {sup 𝑇 b} = ps (e pz (\{n} → ps{n}) {b <>})
record W {A : Type{ℓ₁}} (B : A → Type{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where
inductive
eta-equality
constructor sup
field
a : A
b : B(a) → W(B)
-- TODO: Is the type of this eliminator correct?
-- W-elim : ∀{A : Type{ℓ₁}}{B : A → Type{ℓ₂}}{P : W(B) → Type{ℓ}} → (∀{a : A}{b : B(a) → W(B)} → (∀{ba : B(a)} → P(b(ba))) → P(sup a b)) → (∀{w : W(B)} → P(w))
-- TODO: Note that this is essentially Sets.IterativeSet
V : ∀{ℓ₁} → Type{Lvl.𝐒(ℓ₁)}
V {ℓ₁} = W {A = Type{ℓ₁}} id
| {
"alphanum_fraction": 0.5858511422,
"avg_line_length": 46.7931034483,
"ext": "agda",
"hexsha": "cb80acc682c4d5b3e2c5659c3042b44f5751e989",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/WellOrdering.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/WellOrdering.agda",
"max_line_length": 256,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/WellOrdering.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 821,
"size": 2714
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
-- Defines the following properties of a Category:
-- Cartesian -- a Cartesian category is a category with all products
-- (for the induced Monoidal structure, see Cartesian.Monoidal)
module Categories.Category.Cartesian {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level using (levelOfTerm)
open import Data.Nat using (ℕ; zero; suc)
open Category 𝒞
open HomReasoning
open import Categories.Category.BinaryProducts 𝒞 using (BinaryProducts; module BinaryProducts)
open import Categories.Object.Terminal 𝒞 using (Terminal)
private
variable
A B C D W X Y Z : Obj
f f′ g g′ h i : A ⇒ B
-- Cartesian monoidal category
record Cartesian : Set (levelOfTerm 𝒞) where
field
terminal : Terminal
products : BinaryProducts
open BinaryProducts products using (_×_)
power : Obj → ℕ → Obj
power A 0 = Terminal.⊤ terminal
power A 1 = A
power A (suc (suc n)) = A × power A (suc n)
| {
"alphanum_fraction": 0.7202020202,
"avg_line_length": 26.7567567568,
"ext": "agda",
"hexsha": "c99a177ea6469c1c1c6f718da730806a03b9f6f9",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Cartesian.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Cartesian.agda",
"max_line_length": 94,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 268,
"size": 990
} |
-- Andreas, 2014-11-25, variant of Issue 1366
{-# OPTIONS --copatterns #-}
open import Common.Prelude using (Nat; zero; suc; Unit; unit)
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
-- Singleton type
data Sg {A : Set} (x : A) : Set where
sg : Sg x
-- Generalizing Unit → Nat
record DNat : Set₁ where
field
D : Set
force : D → Nat
open DNat
nonNil : ∀ {n} → Vec Unit n → Nat
nonNil [] = zero
nonNil (i ∷ is) = suc (force f i) where
f : DNat
D f = Unit
force f unit = zero
g : ∀ {n} {v : Vec Unit n} → Sg (nonNil v) → Sg v
g sg = sg
one : Sg (suc zero)
one = sg
test : Sg (unit ∷ [])
test = g one
| {
"alphanum_fraction": 0.55,
"avg_line_length": 17.9487179487,
"ext": "agda",
"hexsha": "298bad9e4988aa3d4cdf4f8174a8417e3eb7e987",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1366a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1366a.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1366a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 267,
"size": 700
} |
module Ints where
open import Nats public
using (ℕ; zero; _∸_)
renaming (suc to nsuc; _+_ to _:+:_; _*_ to _:*:_)
open import Agda.Builtin.Int public
renaming (Int to ℤ; negsuc to -[1+_]; pos to +_)
infix 8 -_
-- infixl 7 _*_ _⊓_
infixl 6 _+_ _-_ _⊖_
∣_∣ : ℤ → ℕ
∣ + n ∣ = n
∣ -[1+ n ] ∣ = nsuc n
-_ : ℤ → ℤ
- (+ nsuc n) = -[1+ n ]
- (+ zero) = + zero
- -[1+ n ] = + nsuc n
_⊖_ : ℕ → ℕ → ℤ
m ⊖ zero = + m
zero ⊖ nsuc n = -[1+ n ]
nsuc m ⊖ nsuc n = m ⊖ n
_+_ : ℤ → ℤ → ℤ
-[1+ m ] + -[1+ n ] = -[1+ nsuc (m :+: n) ]
-[1+ m ] + + n = n ⊖ nsuc m
+ m + -[1+ n ] = m ⊖ nsuc n
+ m + + n = + (m :+: n)
_-_ : ℤ → ℤ → ℤ
i - j = i + - j
suc : ℤ → ℤ
suc i = + 1 + i
| {
"alphanum_fraction": 0.418079096,
"avg_line_length": 18.1538461538,
"ext": "agda",
"hexsha": "fb7e84152b2edac030360c7a2f2abdca512ed45b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Ints.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Ints.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Ints.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 370,
"size": 708
} |
module IlltypedPattern where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
f : (A : Set) -> A -> A
f A zero = zero
| {
"alphanum_fraction": 0.5826771654,
"avg_line_length": 11.5454545455,
"ext": "agda",
"hexsha": "93c7c6fc082bce8385bb07a92c45f0d35c0efb59",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/IlltypedPattern.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/IlltypedPattern.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/IlltypedPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 127
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.SigmaQ where
open import Cubical.HITs.Rationals.SigmaQ.Base public
open import Cubical.HITs.Rationals.SigmaQ.Properties public
| {
"alphanum_fraction": 0.7904761905,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "ff0be3b64228a13275767218de8b348ed003de4c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Rationals/SigmaQ.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Rationals/SigmaQ.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Rationals/SigmaQ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 60,
"size": 210
} |
--
-- Created by Dependently-Typed Lambda Calculus on 2019-05-15
-- private-primitive-variable
-- Author: ice1000
--
{-# OPTIONS --without-K --safe #-}
private
variable
A : Set
a : A
primitive
primInterval : Set
| {
"alphanum_fraction": 0.6787330317,
"avg_line_length": 13.8125,
"ext": "agda",
"hexsha": "cc1e9a0cc9641a1e9de93e4b98d77a2623b44e59",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z",
"max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dubinsky/intellij-dtlc",
"max_forks_repo_path": "testData/parse/agda/private-primitive-variable.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dubinsky/intellij-dtlc",
"max_issues_repo_path": "testData/parse/agda/private-primitive-variable.agda",
"max_line_length": 61,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dubinsky/intellij-dtlc",
"max_stars_repo_path": "testData/parse/agda/private-primitive-variable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z",
"num_tokens": 64,
"size": 221
} |
-- Andreas, 2014-05-17
open import Common.Prelude
open import Common.Equality
test : Nat
test rewrite refl = zero
| {
"alphanum_fraction": 0.7586206897,
"avg_line_length": 14.5,
"ext": "agda",
"hexsha": "1804b500385fe2204f3a067f494b348f28225094",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue1110a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue1110a.agda",
"max_line_length": 27,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue1110a.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 33,
"size": 116
} |
{-# OPTIONS --postfix-projections #-}
module StateSized.StackStateDependent where
open import Data.Product
open import Function
open import Data.String.Base as Str
open import Data.Nat.Base as N
open import Data.Vec as Vec using (Vec; []; _∷_; head; tail)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Product.Pointwise
open import NativeIO
open import SizedIO.Base
open import SizedIO.Console hiding (main)
open import StateSizedIO.GUI.BaseStateDependent
open import StateSizedIO.Object
open import StateSizedIO.IOObject
open import Size
StackStateˢ = ℕ
data StackMethodˢ (A : Set) : StackStateˢ → Set where
push : {n : StackStateˢ} → A → StackMethodˢ A n
pop : {n : StackStateˢ} → StackMethodˢ A (suc n)
StackResultˢ : (A : Set) → (s : StackStateˢ) → StackMethodˢ A s → Set
StackResultˢ A .n (push { n } x₁) = Unit
StackResultˢ A (suc .n) (pop {n} ) = A
nˢ : (A : Set) → (s : StackStateˢ) → (m : StackMethodˢ A s) → (r : StackResultˢ A s m) → StackStateˢ
nˢ A .n (push { n } x) r = suc n
nˢ A (suc .n) (pop { n }) r = n
StackInterfaceˢ : (A : Set) → Interfaceˢ
StackInterfaceˢ A .Stateˢ = StackStateˢ
StackInterfaceˢ A .Methodˢ = StackMethodˢ A
StackInterfaceˢ A .Resultˢ = StackResultˢ A
StackInterfaceˢ A .nextˢ = nˢ A
stackP : ∀{n : ℕ} → (i : Size) → (v : Vec String n) → IOObjectˢ consoleI (StackInterfaceˢ String) i n
method (stackP { n } i es) {j} (push e) = return (_ , stackP j (e ∷ es))
method (stackP {suc n} i (x ∷ xs)){j} pop = return (x , stackP j xs)
-- UNSIZED Version, without IO
stackP' : ∀{n : ℕ} → (v : Vec String n) → Objectˢ (StackInterfaceˢ String) n
stackP' es .objectMethod (push e) = (_ , stackP' (e ∷ es))
stackP' (x ∷ xs) .objectMethod pop = x , stackP' xs
stackO : ∀{E : Set} {n : ℕ} (v : Vec E n) → Objectˢ (StackInterfaceˢ E) n
objectMethod (stackO es) (push e) = _ , stackO (e ∷ es)
objectMethod (stackO (e ∷ es)) pop = e , stackO es
stackF : ∀{E : Set} (n : ℕ) (f : ℕ → E) → Objectˢ (StackInterfaceˢ E) n
objectMethod (stackF n f) (push x) = _ , stackF (suc n)
\{ zero → x
; (suc m) → f m
}
objectMethod (stackF (suc n) f) pop = (f zero) , stackF n (f ∘ suc)
tabulate : ∀{E : Set} (n : ℕ) (f : ℕ → E) → Vec E n
tabulate zero f = []
tabulate (suc n) f = f zero ∷ tabulate n λ m → f (suc m)
module _ {E : Set} where
private
I = StackInterfaceˢ E
S = Stateˢ I
O = Objectˢ I
open Bisim I
_≡×≅'_ : ∀{s} → (o o' : E × O s) → Set
_≡×≅'_ = _≡_ ×-Rel _≅_
Eq×Bisim : ∀ (s : S) → (o o' : E × O s) → Set
Eq×Bisim s = _≡_ ×-Rel _≅_
pop-after-push : ∀{n}{v : Vec E n} (e : E) (let stack = stackO v) →
(objectMethod stack (push e) ▹ λ { (_ , stack₁) →
objectMethod stack₁ pop ▹ λ { (e₁ , stack₂) →
( e₁ , stack₂ ) }})
≡×≅' (e , stack)
pop-after-push e = refl , refl≅ _
push-after-pop : ∀{n}{v : Vec E n} (e : E) (let stack = stackO (e ∷ v)) →
(objectMethod stack pop ▹ λ { (e₁ , stack₁) →
objectMethod stack₁ (push e₁) ▹ λ { (_ , stack₂) →
stack₂ }})
≅ stack
push-after-pop e = refl≅ _
-- The implementations of stacks with either vectors or functions are bisimilar.
impl-bisim : ∀{n : ℕ} {f : ℕ → E} (v : Vec E n) (p : tabulate n f ≡ v)
→ stackF n f ≅ stackO v
bisimMethod (impl-bisim v p) (push e) =
bisim (impl-bisim (e ∷ v) (cong (_∷_ e) p))
bisimMethod (impl-bisim (x ∷ v) p) pop rewrite cong head p =
bisim (impl-bisim v (cong tail p))
program : IOConsole ∞ Unit
program =
exec getLine λ str₀ →
method s₀ (push str₀) >>= λ{ (_ , s₁) → -- empty
exec getLine λ str₁ →
method s₁ (push str₁) >>= λ{ (_ , s₂) → -- full
method s₂ pop >>= λ{ (str₂ , s₃) →
exec (putStrLn ("first pop: " Str.++ str₂) ) λ _ →
exec getLine λ str₃ →
method s₃ (push str₃) >>= λ{ (_ , s₄) →
method s₄ pop >>= λ{ (str₄ , s₅) →
exec (putStrLn ("second pop: " Str.++ str₄) ) λ _ →
method s₅ pop >>= λ{ (str₅ , s₅) →
exec (putStrLn ("third pop: " Str.++ str₅) ) λ _ →
return unit
}}}}}}
where
s₀ = stackP ∞ []
main : NativeIO Unit
main = translateIOConsole program
| {
"alphanum_fraction": 0.5866510539,
"avg_line_length": 30.7194244604,
"ext": "agda",
"hexsha": "107369c48245284a2df888f218e9a191640e8ed7",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/StateSized/StackStateDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/StateSized/StackStateDependent.agda",
"max_line_length": 101,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/StateSized/StackStateDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1633,
"size": 4270
} |
{-# OPTIONS --safe --cubical #-}
module Lens.Operators where
open import Prelude
open import Lens.Definition
infixl 4 getter setter
getter : Lens A B → A → B
getter l xs = get (fst l xs)
syntax getter l xs = xs [ l ]
setter : Lens A B → A → B → A
setter l xs = set (fst l xs)
syntax setter l xs x = xs [ l ]≔ x
| {
"alphanum_fraction": 0.6446540881,
"avg_line_length": 16.7368421053,
"ext": "agda",
"hexsha": "e5a6881385373a26f28e4d064c67d4d45194d8fe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Lens/Operators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Lens/Operators.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Lens/Operators.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 98,
"size": 318
} |
module Properties.Product where
infixr 5 _×_ _,_
record Σ {A : Set} (B : A → Set) : Set where
constructor _,_
field fst : A
field snd : B fst
open Σ public
_×_ : Set → Set → Set
A × B = Σ (λ (a : A) → B)
| {
"alphanum_fraction": 0.5860465116,
"avg_line_length": 14.3333333333,
"ext": "agda",
"hexsha": "0d41c817c6dd01f37c037d8d912c8399f58bfb70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Properties/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Properties/Product.agda",
"max_line_length": 44,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Properties/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 82,
"size": 215
} |
{-# OPTIONS --without-K #-}
{-
Truncated higher inductive types look like higher inductive types except that
they are truncated down to some fixed truncation level.
This allow to define truncations (obviously) but also free algebras for
algebraic theories, Eilenberg-MacLane spaces, etc.
The idea is that to get an n-truncated higher inductive type, you just have to
add the following two constructors, where [I] is the HIT you are defining.
top : (f : Sⁿ n → I) → I
rays : (f : Sⁿ n → I) (x : Sⁿ n) → top f ≡ f x
In this file, I prove whatever is needed to go from the usual elimination rules
generated by the previous constructors to the elimination rules that we expect
from truncated higher inductive types.
We have to note that the previous definition does not work for [n = 0], because
this only adds a point to I instead of turning it into a contractible space.
0-truncated higher inductive types are not really interesting but handling
truncations is easier when 0 is not special
Hence I’m adding the following path constructor
hack-prop : (p : n ≡ 0) (x y : τ) → (x ≡ y)
This will force [I] to be a prop (hence contractible because [top] of the empty
function is of type [I]) and does not change anything when [n] is not 0.
I may use the following syntax for [n]-truncated higher inductive types:
(n)data I : Set i where
…
-}
module Homotopy.TruncatedHIT where
open import Base
open import Spaces.Spheres public
open import Spaces.Suspension public
_+1 : ℕ₋₂ → ℕ
⟨-2⟩ +1 = 0
(S ⟨-2⟩) +1 = 0
(S n) +1 = S (n +1)
-- [hSⁿ n] is what is supposed to be filled to get something n-truncated
hSⁿ : ℕ₋₂ → Set
hSⁿ ⟨-2⟩ = ⊥
hSⁿ n = Sⁿ (n +1)
-- Type of fillings of a sphere
filling : ∀ {i} (n : ℕ₋₂) {A : Set i} (f : hSⁿ n → A) → Set i
filling {i} n {A} f = Σ A (λ t → ((x : hSⁿ n) → t ≡ f x))
-- Type of dependent fillings of a sphere above a ball
filling-dep : ∀ {i j} (n : ℕ₋₂) {A : Set i} (P : A → Set j) (f : hSⁿ n → A)
(fill : filling n f) (p : (x : hSⁿ n) → P (f x)) → Set j
filling-dep {i} {j} n {A} P f fill p =
Σ (P (π₁ fill)) (λ t → ((x : hSⁿ n) → transport P (π₂ fill x) t ≡ p x))
-- [has-n-spheres-filled n A] is inhabited iff every n-sphere in [A] can be
-- filled with an (n+1)-ball.
-- We will show that this is equivalent to being n-truncated, *for n > 0*
-- (for n = 0, having 0-spheres filled only means that A is inhabited)
has-spheres-filled : ∀ {i} (n : ℕ₋₂) (A : Set i) → Set i
has-spheres-filled n A = (f : hSⁿ n → A) → filling n f
-- [has-n-spheres-filled] satisfy the same inductive property
-- than [is-truncated]
fill-paths : ∀ {i} (n : ℕ₋₂) (A : Set i) (t : has-spheres-filled (S n) A)
→ (n ≡ ⟨-2⟩ → is-contr A) → ((x y : A) → has-spheres-filled n (x ≡ y))
fill-paths ⟨-2⟩ A t contr x y f =
(contr-has-all-paths (contr refl) x y , abort)
fill-paths (S n) A t _ x y f =
((! (π₂ u (north _)) ∘ π₂ u (south _))
, (λ z → ! (lemma (paths _ z)) ∘ suspension-β-paths-nondep _ _ _ _ f _)) where
-- [f] is a map from [hSⁿ (S n)] to [x ≡ y], we can build from it a map
-- from [hSⁿ (S n)] to [A]
newf : hSⁿ (S (S n)) → A
newf = suspension-rec-nondep _ _ x y f
u : filling (S (S n)) newf
u = t newf
-- I’ve got a filling
-- Every path in the sphere is equal (in A) to the canonical path going
-- through the center of the filled sphere
lemma : {p q : hSⁿ (S (S n))} (l : p ≡ q)
→ ap newf l ≡ ! (π₂ u p) ∘ π₂ u q
lemma {p = a} refl = ! (opposite-left-inverse (π₂ u a))
-- We first prove that if n-spheres are filled, then the type is n-truncated,
-- we have to prove it for n = -1, and then use the previous lemma
abstract
spheres-filled-is-truncated : ∀ {i} (n : ℕ₋₂) (A : Set i)
→ ((n ≡ ⟨-2⟩ → is-contr A) → has-spheres-filled n A → is-truncated n A)
spheres-filled-is-truncated ⟨-2⟩ A contr t = contr refl
spheres-filled-is-truncated (S ⟨-2⟩) A _ t =
all-paths-is-prop (λ x y → ! (π₂ (t (f x y)) true) ∘ π₂ (t (f x y)) false)
where
f : (x y : A) → bool {zero} → A
f x y true = x
f x y false = y
spheres-filled-is-truncated (S (S n)) A _ t = λ x y →
spheres-filled-is-truncated (S n) (x ≡ y) (λ ())
(fill-paths (S n) A t (λ ()) x y)
-- We now prove the converse
abstract
truncated-has-spheres-filled : ∀ {i} (n : ℕ₋₂) (A : Set i)
(t : is-truncated n A) → has-spheres-filled n A
truncated-has-spheres-filled ⟨-2⟩ A t f = (π₁ t , abort)
truncated-has-spheres-filled (S ⟨-2⟩) A t f =
(f true , (λ {true → refl ; false → π₁ (t (f true) (f false))}))
truncated-has-spheres-filled (S (S n)) A t f =
(f (north _)
, (suspension-rec _ _ refl (ap f (paths _ (⋆Sⁿ _)))
(λ x → trans-cst≡app (f (north _)) f (paths _ _) _
∘ (! (π₂ filled-newf x) ∘ π₂ filled-newf (⋆Sⁿ _))))) where
newf : hSⁿ (S n) → (f (north _) ≡ f (south _))
newf x = ap f (paths _ x)
filled-newf : filling (S n) newf
filled-newf = truncated-has-spheres-filled (S n) _ (t _ _) newf
-- I prove that if [A] has [S n]-spheres filled, then the type of fillings
-- of [n]-spheres is a proposition. The idea is that two fillings of
-- an [n]-sphere define an [S n]-sphere, which is then filled.
filling-has-all-paths : ∀ {i} (n : ℕ₋₂) (A : Set i)
⦃ fill : has-spheres-filled (S n) A ⦄ (f : hSⁿ n → A)
→ has-all-paths (filling n f)
filling-has-all-paths ⟨-2⟩ A ⦃ fill ⦄ f fill₁ fill₂ =
Σ-eq (! (π₂ big-map-filled true) ∘ π₂ big-map-filled false) (funext abort)
where
big-map : hSⁿ ⟨-1⟩ → A
big-map true = π₁ fill₁
big-map false = π₁ fill₂
big-map-filled : filling ⟨-1⟩ big-map
big-map-filled = fill big-map
filling-has-all-paths (S n) A ⦃ fill ⦄ f fill₁ fill₂ =
Σ-eq (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _))
(funext (λ x →
trans-Π2 _ (λ t x₁ → t ≡ f x₁)
(! (π₂ big-map-filled (north _)) ∘
π₂ big-map-filled (south _))
(π₂ fill₁) x
∘ (trans-id≡cst
(! (π₂ big-map-filled (north _)) ∘
π₂ big-map-filled (south _))
(π₂ fill₁ x)
∘ move!-right-on-left
(! (π₂ big-map-filled (north _)) ∘
π₂ big-map-filled (south _))
_ _
(move-left-on-right _
(! (π₂ big-map-filled (north _)) ∘
π₂ big-map-filled (south _))
_
(! (suspension-β-paths-nondep _ _ _ _ g x)
∘ lemma (paths _ x)))))) where
g : hSⁿ (S n) → (π₁ fill₁ ≡ π₁ fill₂)
g x = π₂ fill₁ x ∘ ! (π₂ fill₂ x)
big-map : hSⁿ (S (S n)) → A
big-map = suspension-rec-nondep _ _ (π₁ fill₁) (π₁ fill₂) g
big-map-filled : filling (S (S n)) big-map
big-map-filled = fill big-map
lemma : {u v : hSⁿ (S (S n))} (p : u ≡ v)
→ ap big-map p ≡ (! (π₂ big-map-filled u) ∘ π₂ big-map-filled v)
lemma {u = a} refl = ! (opposite-left-inverse (π₂ big-map-filled a))
abstract
truncated-has-filling-dep : ∀ {i j} (A : Set i) (P : A → Set j) (n : ℕ₋₂)
⦃ trunc : (x : A) → is-truncated n (P x) ⦄
(contr : n ≡ ⟨-2⟩ → is-contr A)
(fill : has-spheres-filled n A) (f : hSⁿ n → A) (p : (x : hSⁿ n) → P (f x))
→ filling-dep n P f (fill f) p
truncated-has-filling-dep A P ⟨-2⟩ ⦃ trunc ⦄ contr fill f p =
(π₁ (trunc (π₁ (fill f))) , abort)
truncated-has-filling-dep A P (S n) ⦃ trunc ⦄ contr fill f p =
transport (λ t → filling-dep (S n) P f t p) eq fill-dep where
-- Combining [f] and [p] we have a sphere in the total space of [P]
newf : hSⁿ (S n) → Σ A P
newf x = (f x , p x)
-- But this total space is (S n)-truncated
ΣAP-truncated : is-truncated (S n) (Σ A P)
ΣAP-truncated =
Σ-is-truncated (S n) (spheres-filled-is-truncated (S n) A contr fill)
trunc
-- Hence the sphere is filled
tot-fill : filling (S n) newf
tot-fill = truncated-has-spheres-filled (S n) (Σ A P) ΣAP-truncated newf
-- We can split this filling as a filling of [f] in [A] …
new-fill : filling (S n) f
new-fill = (π₁ (π₁ tot-fill) , (λ x → base-path (π₂ tot-fill x)))
-- and a dependent filling above the previous filling of [f], along [p]
fill-dep : filling-dep (S n) P f new-fill p
fill-dep = (π₂ (π₁ tot-fill) , (λ x → fiber-path (π₂ tot-fill x)))
A-has-spheres-filled-S : has-spheres-filled (S (S n)) A
A-has-spheres-filled-S =
truncated-has-spheres-filled (S (S n)) A
(truncated-is-truncated-S (S n)
(spheres-filled-is-truncated (S n) A contr fill))
-- But both the new and the old fillings of [f] are equal, hence we will
-- have a dependent filling above the old one
eq : new-fill ≡ fill f
eq = filling-has-all-paths (S n) A f new-fill (fill f)
| {
"alphanum_fraction": 0.5799184967,
"avg_line_length": 38.9162995595,
"ext": "agda",
"hexsha": "58077c8bb8215218aae3538fcfd38bb4a9bae40d",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/TruncatedHIT.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/TruncatedHIT.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/TruncatedHIT.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 3123,
"size": 8834
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Adjoints where
open import Level
open import Data.Product using (_×_ ; _,_)
open import Categories.Category
open import Categories.Category.Helper
open import Categories.Adjoint
open import Categories.Adjoint.Compose
open import Categories.Adjoint.Mate
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation.Equivalence renaming (_≃_ to _≊_)
import Categories.Morphism.Reasoning as MR
private
variable
o o′ ℓ ℓ′ e e′ : Level
-- category of adjunctions between two fixed categories
module _ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where
private
module C = Category C
module D = Category D
record AdjointObj : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
L : Functor C D
R : Functor D C
L⊣R : L ⊣ R
module L = Functor L
module R = Functor R
module L⊣R = Adjoint L⊣R
record Adjoint⇒ (X Y : AdjointObj) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module X = AdjointObj X
module Y = AdjointObj Y
field
mate : HaveMate X.L⊣R Y.L⊣R
open HaveMate mate public
private
_≈_ : ∀ {A B} → Adjoint⇒ A B → Adjoint⇒ A B → Set (o ⊔ e ⊔ o′ ⊔ e′)
f ≈ g = Adjoint⇒.α f ≊ Adjoint⇒.α g × Adjoint⇒.β f ≊ Adjoint⇒.β g
id : {X : AdjointObj} → Adjoint⇒ X X
id {X} = record
{ mate = record
{ α = idN
; β = idN
; mate = record
{ commute₁ = C.∘-resp-≈ˡ R.identity
; commute₂ = D.∘-resp-≈ʳ L.identity
}
}
}
where open AdjointObj X
_∘_ : ∀ {X Y Z} → Adjoint⇒ Y Z → Adjoint⇒ X Y → Adjoint⇒ X Z
_∘_ {X} {Y} {Z} f g = record
{ mate = record
{ α = f.α ∘ᵥ g.α
; β = g.β ∘ᵥ f.β
; mate = record
{ commute₁ = λ {W} →
let open C.HomReasoning
open MR C
in begin
X.R.F₁ (f.α.η W D.∘ g.α.η W) C.∘ X.L⊣R.unit.η W ≈⟨ X.R.homomorphism ⟩∘⟨refl ⟩
(X.R.F₁ (f.α.η W) C.∘ X.R.F₁ (g.α.η W)) C.∘ X.L⊣R.unit.η W ≈⟨ pullʳ g.commute₁ ⟩
X.R.F₁ (f.α.η W) C.∘ g.β.η (Y.L.F₀ W) C.∘ Y.L⊣R.unit.η W ≈⟨ pullˡ (g.β.sym-commute _) ⟩
(g.β.η (Z.L.F₀ W) C.∘ Y.R.F₁ (f.α.η W)) C.∘ Y.L⊣R.unit.η W ≈⟨ pullʳ f.commute₁ ⟩
g.β.η (Z.L.F₀ W) C.∘ f.β.η (Z.L.F₀ W) C.∘ Z.L⊣R.unit.η W ≈⟨ C.sym-assoc ⟩
(g.β.η (Z.L.F₀ W) C.∘ f.β.η (Z.L.F₀ W)) C.∘ Z.L⊣R.unit.η W ∎
; commute₂ = λ {W} →
let open D.HomReasoning
open MR D
in begin
X.L⊣R.counit.η W D.∘ X.L.F₁ (g.β.η W C.∘ f.β.η W) ≈⟨ refl⟩∘⟨ X.L.homomorphism ⟩
X.L⊣R.counit.η W D.∘ X.L.F₁ (g.β.η W) D.∘ X.L.F₁ (f.β.η W) ≈⟨ pullˡ g.commute₂ ⟩
(Y.L⊣R.counit.η W D.∘ g.α.η (Y.R.F₀ W)) D.∘ X.L.F₁ (f.β.η W) ≈⟨ pullʳ (g.α.commute _) ⟩
Y.L⊣R.counit.η W D.∘ Y.L.F₁ (f.β.η W) D.∘ g.α.η (Z.R.F₀ W) ≈⟨ pullˡ f.commute₂ ⟩
(Z.L⊣R.counit.η W D.∘ f.α.η (Z.R.F₀ W)) D.∘ g.α.η (Z.R.F₀ W) ≈⟨ D.assoc ⟩
Z.L⊣R.counit.η W D.∘ f.α.η (Z.R.F₀ W) D.∘ g.α.η (Z.R.F₀ W) ∎
}
}
}
where module X = AdjointObj X
module Y = AdjointObj Y
module Z = AdjointObj Z
module f = Adjoint⇒ f
module g = Adjoint⇒ g
Adjoints : Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ e ⊔ o′ ⊔ e′)
Adjoints = categoryHelper record
{ Obj = AdjointObj
; _⇒_ = Adjoint⇒
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; assoc = D.assoc , C.sym-assoc
; identityˡ = D.identityˡ , C.identityʳ
; identityʳ = D.identityʳ , C.identityˡ
; equiv = record
{ refl = D.Equiv.refl , C.Equiv.refl
; sym = λ { (eq₁ , eq₂) → D.Equiv.sym eq₁ , C.Equiv.sym eq₂ }
; trans = λ { (eq₁ , eq₂) (eq₃ , eq₄) → D.Equiv.trans eq₁ eq₃ , C.Equiv.trans eq₂ eq₄ }
}
; ∘-resp-≈ = λ { (eq₁ , eq₂) (eq₃ , eq₄) → D.∘-resp-≈ eq₁ eq₃ , C.∘-resp-≈ eq₄ eq₂ }
}
module _ o ℓ e where
private
_≈_ : ∀ {A B : Category o ℓ e} → AdjointObj A B → AdjointObj A B → Set (o ⊔ ℓ ⊔ e)
f ≈ g = f.L ≃ g.L × f.R ≃ g.R
where module f = AdjointObj f
module g = AdjointObj g
id : {A : Category o ℓ e} → AdjointObj A A
id = record
{ L = idF
; R = idF
; L⊣R = ⊣-id
}
_∘_ : {A B C : Category o ℓ e} → AdjointObj B C → AdjointObj A B → AdjointObj A C
f ∘ g = record
{ L = f.L ∘F g.L
; R = g.R ∘F f.R
; L⊣R = g.L⊣R ∘⊣ f.L⊣R
}
where module f = AdjointObj f
module g = AdjointObj g
Adjunctions : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Adjunctions = categoryHelper record
{ Obj = Category o ℓ e
; _⇒_ = AdjointObj
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; assoc = λ {_ _ _ _ f g h} → associator (AdjointObj.L f) (AdjointObj.L g) (AdjointObj.L h)
, sym-associator (AdjointObj.R h) (AdjointObj.R g) (AdjointObj.R f)
; identityˡ = unitorˡ , unitorʳ
; identityʳ = unitorʳ , unitorˡ
; equiv = record
{ refl = ≃.refl , ≃.refl
; sym = λ { (α , β) → ≃.sym α , ≃.sym β }
; trans = λ { (α₁ , β₁) (α₂ , β₂) → ≃.trans α₁ α₂ , ≃.trans β₁ β₂ }
}
; ∘-resp-≈ = λ { (α₁ , β₁) (α₂ , β₂) → α₁ ⓘₕ α₂ , β₂ ⓘₕ β₁ }
}
| {
"alphanum_fraction": 0.4959132907,
"avg_line_length": 34.7407407407,
"ext": "agda",
"hexsha": "51c9f5637baf0cc3338c4164fbec44058b889ded",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Adjoints.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Adjoints.agda",
"max_line_length": 104,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Adjoints.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2421,
"size": 5628
} |
-- Some basic structures and operation for dealing with non-deterministic values
module nondet where
open import bool
open import nat
open import list
infixr 8 _??_
----------------------------------------------------------------------
-- A tree datatype to represent non-deterministic value of some type.
-- It is either a value, a failure, or a choice between
-- non-deterministic values.
----------------------------------------------------------------------
data ND (A : Set) : Set where
Val : A → ND A
_??_ : ND A → ND A → ND A
----------------------------------------------------------------------
-- Some operation to define functions working this the ND datatype:
-- Map a function on non-deterministic values:
mapND : {A B : Set} → (A → B) → ND A → ND B
mapND f (Val xs) = Val (f xs)
mapND f (t1 ?? t2) = mapND f t1 ?? mapND f t2
-- Extend the first argument to ND:
with-nd-arg : {A B : Set} → (A → ND B) → ND A → ND B
with-nd-arg f (Val x) = f x
with-nd-arg f (t1 ?? t2) = with-nd-arg f t1 ?? with-nd-arg f t2
-- Extend the first argument of a binary function to ND:
with-nd-arg2 : {A B C : Set} → (A → B → ND C) → ND A → B → ND C
with-nd-arg2 f (Val x) y = f x y
with-nd-arg2 f (t1 ?? t2) y = with-nd-arg2 f t1 y ?? with-nd-arg2 f t2 y
-- Extend the first argument of a ternary function to ND:
with-nd-arg3 : {A B C D : Set} → (A → B → C → ND D)
→ ND A → B → C → ND D
with-nd-arg3 f (Val x) y z = f x y z
with-nd-arg3 f (t1 ?? t2) y z = with-nd-arg3 f t1 y z ?? with-nd-arg3 f t2 y z
-- Apply a non-deterministic functional value to a non-determistic argument:
apply-nd : {A B : Set} → ND (A → B) → ND A → ND B
apply-nd (Val f) xs = mapND f xs
apply-nd (t1 ?? t2) xs = apply-nd t1 xs ?? apply-nd t2 xs
-- Extend a deterministic function to one with non-deterministic result:
toND : {A B : Set} → (A → B) → A → ND B
toND f x = Val (f x)
-- Extend a deterministic function to a non-deterministic one:
det-to-nd : {A B : Set} → (A → B) → ND A → ND B
det-to-nd f = with-nd-arg (toND f)
----------------------------------------------------------------------
-- Some operations to define properties of non-deterministic values:
-- Count the number of values:
#vals : {A : Set} → ND A → ℕ
#vals (Val _) = 1
#vals (t1 ?? t2) = #vals t1 + #vals t2
-- Extract the list of all values:
vals-of : {A : Set} → ND A → 𝕃 A
vals-of (Val v) = v :: []
vals-of (t1 ?? t2) = vals-of t1 ++ vals-of t2
-- All values in a Boolean tree are true:
always : ND 𝔹 → 𝔹
always (Val b) = b
always (t1 ?? t2) = always t1 && always t2
-- There exists some true value in a Boolean tree:
eventually : ND 𝔹 → 𝔹
eventually (Val b) = b
eventually (t1 ?? t2) = eventually t1 || eventually t2
-- There is not value:
failing : {A : Set} → ND A → 𝔹
failing (Val _) = ff
failing (t1 ?? t2) = failing t1 && failing t2
-- All non-deterministic values satisfy a given predicate:
_satisfy_ : {A : Set} → ND A → (A → 𝔹) → 𝔹
(Val n) satisfy p = p n
(t1 ?? t2) satisfy p = t1 satisfy p && t2 satisfy p
-- Every value in a tree is equal to the second argument w.r.t. a
-- comparison function provided as the first argument:
every : {A : Set} → (eq : A → A → 𝔹) → A → ND A → 𝔹
every eq x xs = xs satisfy (eq x)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.5503759398,
"avg_line_length": 34.2783505155,
"ext": "agda",
"hexsha": "7a02301e042051433cbe8193379e1bf18e80e7bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phlummox/curry-tools",
"max_forks_repo_path": "currypp/.cpm/packages/verify/imports/nondet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phlummox/curry-tools",
"max_issues_repo_path": "currypp/.cpm/packages/verify/imports/nondet.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phlummox/curry-tools",
"max_stars_repo_path": "currypp/.cpm/packages/verify/imports/nondet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1073,
"size": 3325
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions.Definition
module Functions.Lemmas where
invertibleImpliesBijection : {a b : _} {A : Set a} {B : Set b} {f : A → B} → Invertible f → Bijection f
Bijection.inj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) {x} {y} fx=fy = ans
where
bl : inverse (f x) ≡ inverse (f y)
bl = applyEquality inverse fx=fy
ans : x ≡ y
ans rewrite equalityCommutative (isRight x) | equalityCommutative (isRight y) = bl
Bijection.surj (invertibleImpliesBijection {a} {b} {A} {B} {f} record { inverse = inverse ; isLeft = isLeft ; isRight = isRight }) y = (inverse y , isLeft y)
bijectionImpliesInvertible : {a b : _} {A : Set a} {B : Set b} {f : A → B} → Bijection f → Invertible f
Invertible.inverse (bijectionImpliesInvertible record { inj = inj ; surj = surj }) b = underlying (surj b)
Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b with surj b
Invertible.isLeft (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) b | a , prop = prop
Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = inj ; surj = surj }) a with surj (f a)
Invertible.isRight (bijectionImpliesInvertible {f = f} record { inj = property ; surj = surj }) a | a₁ , b = property b
injComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Injection f → Injection g → Injection (g ∘ f)
injComp {f = f} {g} propF propG pr = propF (propG pr)
surjComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Surjection f → Surjection g → Surjection (g ∘ f)
surjComp {f = f} {g} propF propG c with propG c
surjComp {f = f} {g} propF propG c | b , pr with propF b
surjComp {f = f} {g} propF propG c | b , pr | a , pr2 = a , pr'
where
pr' : g (f a) ≡ c
pr' rewrite pr2 = pr
bijectionComp : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Bijection f → Bijection g → Bijection (g ∘ f)
Bijection.inj (bijectionComp bijF bijG) = injComp (Bijection.inj bijF) (Bijection.inj bijG)
Bijection.surj (bijectionComp bijF bijG) = surjComp (Bijection.surj bijF) (Bijection.surj bijG)
compInjRightInj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Injection (g ∘ f) → Injection f
compInjRightInj {f = f} {g} property {x} {y} fx=fy = property (applyEquality g fx=fy)
compSurjLeftSurj : {a b c : _} {A : Set a} {B : Set b} {C : Set c} {f : A → B} {g : B → C} → Surjection (g ∘ f) → Surjection g
compSurjLeftSurj {f = f} {g} property b with property b
compSurjLeftSurj {f = f} {g} property b | a , b1 = f a , b1
injectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Injection f → ({x : A} → f x ≡ g x) → Injection g
injectionPreservedUnderExtensionalEq {A = A} {B} {f} {g} property prop {x} {y} gx=gy = property (transitivity (prop {x}) (transitivity gx=gy (equalityCommutative (prop {y}))))
surjectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Surjection f → ({x : A} → f x ≡ g x) → Surjection g
surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b with surj b
surjectionPreservedUnderExtensionalEq {f = f} {g} surj ext b | a , pr = a , transitivity (equalityCommutative ext) pr
bijectionPreservedUnderExtensionalEq : {a b : _} {A : Set a} {B : Set b} {f g : A → B} → Bijection f → ({x : A} → f x ≡ g x) → Bijection g
Bijection.inj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = injectionPreservedUnderExtensionalEq inj ext
Bijection.surj (bijectionPreservedUnderExtensionalEq record { inj = inj ; surj = surj } ext) = surjectionPreservedUnderExtensionalEq surj ext
inverseIsInvertible : {a b : _} {A : Set a} {B : Set b} {f : A → B} → (inv : Invertible f) → Invertible (Invertible.inverse inv)
Invertible.inverse (inverseIsInvertible {f = f} inv) = f
Invertible.isLeft (inverseIsInvertible {f = f} inv) b = Invertible.isRight inv b
Invertible.isRight (inverseIsInvertible {f = f} inv) a = Invertible.isLeft inv a
idIsBijective : {a : _} {A : Set a} → Bijection (id {a} {A})
Bijection.inj idIsBijective pr = pr
Bijection.surj idIsBijective b = b , refl
functionCompositionExtensionallyAssociative : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (f : A → B) → (g : B → C) → (h : C → D) → (x : A) → (h ∘ (g ∘ f)) x ≡ ((h ∘ g) ∘ f) x
functionCompositionExtensionallyAssociative f g h x = refl
| {
"alphanum_fraction": 0.6462274407,
"avg_line_length": 65.7,
"ext": "agda",
"hexsha": "1e83559beba85c7dcd839d11e1c84127d2140792",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Functions/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Functions/Lemmas.agda",
"max_line_length": 195,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Functions/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1742,
"size": 4599
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Groups.Definition
module Groups.DirectSum.Definition {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) where
open import Setoids.Product S T
directSumGroup : Group productSetoid (λ x1 y1 → (((_&&_.fst x1) ·A (_&&_.fst y1)) ,, ((_&&_.snd x1) ·B (_&&_.snd y1))))
Group.+WellDefined directSumGroup (s ,, t) (u ,, v) = Group.+WellDefined G s u ,, Group.+WellDefined H t v
Group.0G directSumGroup = (Group.0G G ,, Group.0G H)
Group.inverse directSumGroup (g1 ,, H1) = (Group.inverse G g1) ,, (Group.inverse H H1)
Group.+Associative directSumGroup = Group.+Associative G ,, Group.+Associative H
Group.identRight directSumGroup = Group.identRight G ,, Group.identRight H
Group.identLeft directSumGroup = Group.identLeft G ,, Group.identLeft H
Group.invLeft directSumGroup = Group.invLeft G ,, Group.invLeft H
Group.invRight directSumGroup = Group.invRight G ,, Group.invRight H
| {
"alphanum_fraction": 0.6893115942,
"avg_line_length": 55.2,
"ext": "agda",
"hexsha": "8cea052927a84da1adbd298d851301d515b24ae2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/DirectSum/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/DirectSum/Definition.agda",
"max_line_length": 200,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/DirectSum/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 353,
"size": 1104
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.MaybeEmb {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
-- Any level can be embedded into the highest level.
maybeEmb : ∀ {l A Γ}
→ Γ ⊩⟨ l ⟩ A
→ Γ ⊩⟨ ¹ ⟩ A
maybeEmb {⁰} [A] = emb′ 0<1 [A]
maybeEmb {¹} [A] = [A]
-- The lowest level can be embedded in any level.
maybeEmb′ : ∀ {l A Γ}
→ Γ ⊩⟨ ⁰ ⟩ A
→ Γ ⊩⟨ l ⟩ A
maybeEmb′ {⁰} [A] = [A]
maybeEmb′ {¹} [A] = emb′ 0<1 [A]
| {
"alphanum_fraction": 0.6138147567,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "0fa791ff244c48aca606fcf74458d956b1f67855",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 216,
"size": 637
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Cubical.Codata.Conat where
open import Cubical.Codata.Conat.Base public
open import Cubical.Codata.Conat.Properties public
| {
"alphanum_fraction": 0.7840909091,
"avg_line_length": 25.1428571429,
"ext": "agda",
"hexsha": "35d140c2d46ef02080f6ddecc2111f2fd40ade36",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/Conat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/Conat.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/Conat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 43,
"size": 176
} |
-- Andreas, 2015-07-16 issue reported by G.Allais
-- This ought to pass, ideally, but the lack of positivity polymorphism
-- does not allow for a precise analysis of the composition operator.
--
-- Subsequently, the positivity analysis for tabulate returns no
-- positivity info for all arguments, leading to a rejection of
-- Command₃.
-- {-# OPTIONS -v tc.pos:10 #-}
open import Common.Product
open import Common.List
record ⊤ {a} : Set a where
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
postulate
String : Set
USL = List String
data _∈_ a : USL → Set where
z : ∀ {xs} → a ∈ (a ∷ xs)
s : ∀ {b xs} → a ∈ xs → a ∈ (b ∷ xs)
[Fields] : (args : USL) → Set₁
[Fields] [] = ⊤
[Fields] (_ ∷ args) = Set × [Fields] args
[tabulate] : (args : USL) (ρ : {arg : _} (pr : arg ∈ args) → Set) → [Fields] args
[tabulate] [] ρ = _
[tabulate] (arg ∷ args) ρ = ρ z , [tabulate] args (λ x → ρ (s x))
[Record] : (args : USL) (f : [Fields] args) → Set
[Record] [] _ = ⊤
[Record] (hd ∷ args) (f , fs) = f × [Record] args fs
record Fields (args : USL) : Set₁ where
constructor mkFields
field
fields : [Fields] args
open Fields public
record Record (args : USL) (f : Fields args) : Set where
constructor mkRecord
field
content : [Record] args (fields f)
open Record public
module WORKS where
tabulate : {args : USL} (ρ : {arg : _} (pr : arg ∈ args) → Set) → Fields args
tabulate {args = args} ρ = mkFields ([tabulate] args ρ) -- WORKS
-- tabulate {args = args} = mkFields ∘ [tabulate] args -- FAILS
mutual
data Command₁ : Set where
mkCommand : (modifierNames : USL) →
Record modifierNames (tabulate (λ {s} _ → Modifier s)) → Command₁
record Command₂ : Set where
inductive
field
modifierNames : USL
modifiers : [Record] modifierNames ([tabulate] _ (λ {s} _ → Modifier s))
record Command₃ : Set where
inductive
field
modifierNames : USL
modifiers : Record modifierNames (tabulate (λ {s} _ → Modifier s))
data Modifier (name : String) : Set where
command₁ : Command₁ → Modifier name
command₂ : Command₂ → Modifier name
command₃ : Command₃ → Modifier name
module FAILS where
tabulate : {args : USL} (ρ : {arg : _} (pr : arg ∈ args) → Set) → Fields args
-- tabulate {args = args} ρ = mkFields ([tabulate] args ρ) -- WORKS
tabulate {args = args} = mkFields ∘ [tabulate] args -- FAILS
mutual
data Command₁ : Set where
mkCommand : (modifierNames : USL) →
Record modifierNames (tabulate (λ {s} _ → Modifier s)) → Command₁
record Command₂ : Set where
inductive
field
modifierNames : USL
modifiers : [Record] modifierNames ([tabulate] _ (λ {s} _ → Modifier s))
record Command₃ : Set where
inductive
field
modifierNames : USL
modifiers : Record modifierNames (tabulate (λ {s} _ → Modifier s))
data Modifier (name : String) : Set where
command₁ : Command₁ → Modifier name
command₂ : Command₂ → Modifier name
command₃ : Command₃ → Modifier name
| {
"alphanum_fraction": 0.586102719,
"avg_line_length": 28.7826086957,
"ext": "agda",
"hexsha": "527339568a03fa0663812b7fb47dfd35f000bbea",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1544.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1544.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1544.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1048,
"size": 3310
} |
module ReCaseSplit where
data Bool : Set where
true : Bool
false : Bool
maybe : Bool
_func : Bool -> Bool
maybe func = ?
false func = false
(true) func = true
func2 : Bool -> Bool
func2 = λ{false → false ; (true) → true}
open import IO.Primitive
func3 : IO Bool
func3 = return false
func4 : IO Bool
func4 = do
false <- func3
where true -> return true
return false
module SubModule where
func5 : Bool -> Bool
func5 maybe = ?
func5 false = false
func5 true = func6 true
where func6 : Bool -> Bool
func6 maybe = ?
func6 false = false
func6 true = true
| {
"alphanum_fraction": 0.6313213703,
"avg_line_length": 16.1315789474,
"ext": "agda",
"hexsha": "f6ebca664f4f84f72b12ebe5319c00d08ad6d34f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/ReCaseSplit.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/ReCaseSplit.agda",
"max_line_length": 40,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/ReCaseSplit.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 179,
"size": 613
} |
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.Model.Base (Θ : Theory) where
open import Fragment.Equational.Model.Satisfaction {Σ Θ}
open import Fragment.Algebra.Algebra (Σ Θ) hiding (∥_∥/≈)
open import Fragment.Algebra.Free (Σ Θ)
open import Level using (Level; _⊔_; suc)
open import Function using (_∘_)
open import Data.Fin using (Fin)
open import Data.Nat using (ℕ)
open import Relation.Binary using (Setoid)
private
variable
a ℓ : Level
Models : Algebra {a} {ℓ} → Set (a ⊔ ℓ)
Models S = ∀ {n} → (eq : eqs Θ n) → S ⊨ (Θ ⟦ eq ⟧ₑ)
module _ (S : Setoid a ℓ) where
record IsModel : Set (a ⊔ ℓ) where
field
isAlgebra : IsAlgebra S
models : Models (algebra S isAlgebra)
open IsAlgebra isAlgebra public
record Model : Set (suc a ⊔ suc ℓ) where
field
∥_∥/≈ : Setoid a ℓ
isModel : IsModel ∥_∥/≈
∥_∥ₐ : Algebra
∥_∥ₐ = algebra ∥_∥/≈ (IsModel.isAlgebra isModel)
∥_∥ₐ-models : Models ∥_∥ₐ
∥_∥ₐ-models = IsModel.models isModel
open Algebra (algebra ∥_∥/≈ (IsModel.isAlgebra isModel))
hiding (∥_∥/≈) public
open Model public
| {
"alphanum_fraction": 0.6620450607,
"avg_line_length": 24.0416666667,
"ext": "agda",
"hexsha": "07f8022555ab0dc7198a7ba5bc34de2255de072a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/Model/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/Model/Base.agda",
"max_line_length": 58,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/Model/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 428,
"size": 1154
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for Colists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Colist.Bisimilarity where
open import Level using (_⊔_)
open import Size
open import Codata.Thunk
open import Codata.Colist
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
data Bisim {a b r} {A : Set a} {B : Set b} (R : A → B → Set r) (i : Size) :
(xs : Colist A ∞) (ys : Colist B ∞) → Set (r ⊔ a ⊔ b) where
[] : Bisim R i [] []
_∷_ : ∀ {x y xs ys} → R x y → Thunk^R (Bisim R) i xs ys → Bisim R i (x ∷ xs) (y ∷ ys)
module _ {a r} {A : Set a} {R : A → A → Set r} where
reflexive : Reflexive R → ∀ {i} → Reflexive (Bisim R i)
reflexive refl^R {i} {[]} = []
reflexive refl^R {i} {r ∷ rs} = refl^R ∷ λ where .force → reflexive refl^R
module _ {a b} {A : Set a} {B : Set b}
{r} {P : A → B → Set r} {Q : B → A → Set r} where
symmetric : Sym P Q → ∀ {i} → Sym (Bisim P i) (Bisim Q i)
symmetric sym^PQ [] = []
symmetric sym^PQ (p ∷ ps) = sym^PQ p ∷ λ where .force → symmetric sym^PQ (ps .force)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
{r} {P : A → B → Set r} {Q : B → C → Set r} {R : A → C → Set r} where
transitive : Trans P Q R → ∀ {i} → Trans (Bisim P i) (Bisim Q i) (Bisim R i)
transitive trans^PQR [] [] = []
transitive trans^PQR (p ∷ ps) (q ∷ qs) =
trans^PQR p q ∷ λ where .force → transitive trans^PQR (ps .force) (qs .force)
-- Pointwise Equality as a Bisimilarity
------------------------------------------------------------------------
module _ {ℓ} {A : Set ℓ} where
infix 1 _⊢_≈_
_⊢_≈_ : ∀ i → Colist A ∞ → Colist A ∞ → Set ℓ
_⊢_≈_ = Bisim _≡_
refl : ∀ {i} → Reflexive (i ⊢_≈_)
refl = reflexive Eq.refl
sym : ∀ {i} → Symmetric (i ⊢_≈_)
sym = symmetric Eq.sym
trans : ∀ {i} → Transitive (i ⊢_≈_)
trans = transitive Eq.trans
| {
"alphanum_fraction": 0.5053658537,
"avg_line_length": 33.064516129,
"ext": "agda",
"hexsha": "5506f1102f04f4047da401bf24e5b2c215c92136",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Bisimilarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Bisimilarity.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 729,
"size": 2050
} |
{-# OPTIONS --without-K --rewriting #-}
module cw.examples.Examples where
open import cw.examples.Empty public
open import cw.examples.Sphere public
open import cw.examples.Unit public
| {
"alphanum_fraction": 0.7807486631,
"avg_line_length": 23.375,
"ext": "agda",
"hexsha": "fc0279e069a4fe36a651e019b101079012460cfd",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/examples/Examples.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/examples/Examples.agda",
"max_line_length": 39,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/examples/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 38,
"size": 187
} |
-- Andreas, 2017-01-13, issue #2402
-- Error message: incomplete pattern matching
-- {-# OPTIONS -v tc.cover:20 #-}
open import Common.Bool
module _ (A B C D E F G H I J K L M O P Q R S T U V W X Y Z : Set) where
test : Bool → Bool
test true = false
-- Reports:
-- Incomplete pattern matching for test. Missing cases:
-- test _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ false
-- Expected:
-- Incomplete pattern matching for test. Missing cases:
-- test false
| {
"alphanum_fraction": 0.6491596639,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "9694e9f15d6ea74caab19c065107030f14498d6f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2402-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2402-1.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2402-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 147,
"size": 476
} |
{-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Discrete.Properties where
open import Relation.Nullary.Discrete
open import Relation.Nullary.Stable.Properties using (Stable≡→isSet)
open import Relation.Nullary.Decidable.Properties using (Dec→Stable; isPropDec)
open import HLevels
open import Level
open import Path
Discrete→isSet :
Discrete A → isSet A
Discrete→isSet d = Stable≡→isSet (λ x y → Dec→Stable (x ≡ y) (d x y))
isPropDiscrete :
isProp (Discrete A)
isPropDiscrete f g i x y = isPropDec (Discrete→isSet f x y) (f x y) (g x y) i
| {
"alphanum_fraction": 0.7450628366,
"avg_line_length": 27.85,
"ext": "agda",
"hexsha": "7d8ef3e75de78e620cba322d9c1a87b412a8f069",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Nullary/Discrete/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Nullary/Discrete/Properties.agda",
"max_line_length": 79,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Nullary/Discrete/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 172,
"size": 557
} |
-- Andreas, 2014-05-20 Triggered by Andrea Vezzosi & NAD
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v tc.conv.coerce:10 #-}
open import Common.Size
-- Andreas, 2015-03-16: currently forbidden
-- Size≤ : Size → SizeUniv
-- Size≤ i = Size< ↑ i
postulate
Dom : Size → Set
mapDom : ∀ i (j : Size< (↑ i)) → Dom i → Dom j
record ∞Dom i : Set where
field
force : ∀ (j : Size< i) → Dom j
∞mapDom : ∀ i (j : Size< (↑ i)) → ∞Dom i → ∞Dom j
∞Dom.force (∞mapDom i j x) k = mapDom k k (∞Dom.force x k)
-- The second k on the rhs has type
-- k : Size< j
-- and should have type
-- k : Size≤ k = Size< ↑ k
-- Since j <= ↑ k does not hold (we have only k < j),
-- we cannot do the usual subtyping Size< j <= Size≤ k,
-- but we have to use the "singleton type property"
-- k : Size< ↑ k
| {
"alphanum_fraction": 0.5827067669,
"avg_line_length": 26.6,
"ext": "agda",
"hexsha": "1236419d33305dd973f66dc1ae7acf805f0eb748",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1136.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1136.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1136.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 289,
"size": 798
} |
{-# OPTIONS --without-K --rewriting #-}
open import PathInduction
module Pushout {i} {j} {k} where
{-<Pushout>-}
record Span : Type (lsucc (lmax (lmax i j) k)) where
constructor span
field
A : Type i
B : Type j
C : Type k
f : C → A
g : C → B
postulate
Pushout : Span → Type (lmax (lmax i j) k)
module _ {d : Span} where
open Span d
postulate
inl : A → Pushout d
inr : B → Pushout d
push : (c : C) → inl (f c) == inr (g c)
module _ {l} {P : Pushout d → Type l}
(inl* : (a : A) → P (inl a))
(inr* : (b : B) → P (inr b))
(push* : (c : C) → inl* (f c) == inr* (g c) [ P ↓ push c ]) where
postulate
Pushout-elim : (x : Pushout d) → P x
inl-β : (a : A) → (Pushout-elim (inl a) ↦ inl* a)
inr-β : (b : B) → (Pushout-elim (inr b) ↦ inr* b)
{-# REWRITE inl-β #-}
{-# REWRITE inr-β #-}
push-βd' : (c : C) → (apd Pushout-elim (push c) == push* c)
{-</>-}
-- Makes the arguments of [push-βd] implicit
push-βd : ∀ {l} {P : Pushout d → Type l}
{inl* : (a : A) → P (inl a)}
{inr* : (b : B) → P (inr b)}
{push* : (c : C) → inl* (f c) == inr* (g c) [ P ↓ push c ]}
→ (c : C) → apd (Pushout-elim inl* inr* push*) (push c) == push* c
push-βd = push-βd' _ _ _
-- Non-dependent elimination rule and corresponding reduction rule
{-<PushoutRec>-}
Pushout-rec : ∀ {l} {D : Type l}
(inl* : A → D)
(inr* : B → D)
(push* : (c : C) → inl* (f c) == inr* (g c))
→ Pushout d → D
Pushout-rec inl* inr* push* = Pushout-elim inl* inr* (λ c → ↓-cst-in (push* c))
push-β : ∀ {l} {D : Type l}
{inl* : A → D}
{inr* : B → D}
{push* : (c : C) → inl* (f c) == inr* (g c)}
→ (c : C) → ap (Pushout-rec inl* inr* push*) (push c) == push* c
push-β c = apd=cst-in (push-βd c)
{-</>-}
| {
"alphanum_fraction": 0.4679144385,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "77e38d2a91b600340c72122f1dcb9bdeef1f85f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/JamesConstruction",
"max_forks_repo_path": "Pushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/JamesConstruction",
"max_issues_repo_path": "Pushout.agda",
"max_line_length": 81,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/JamesConstruction",
"max_stars_repo_path": "Pushout.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z",
"num_tokens": 800,
"size": 1870
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Reduction where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Conversion
-- Weak head expansion of algorithmic equality of types.
reductionConv↑ : ∀ {A A′ B B′ Γ}
→ Γ ⊢ A ⇒* A′
→ Γ ⊢ B ⇒* B′
→ Γ ⊢ A′ [conv↑] B′
→ Γ ⊢ A [conv↑] B
reductionConv↑ A⇒* B⇒* ([↑] A″ B″ D D′ whnfA″ whnfB″ A″<>B″) =
[↑] A″ B″ (A⇒* ⇨* D) (B⇒* ⇨* D′) whnfA″ whnfB″ A″<>B″
-- Weak head expansion of algorithmic equality of terms.
reductionConv↑Term : ∀ {t t′ u u′ A B Γ}
→ Γ ⊢ A ⇒* B
→ Γ ⊢ t ⇒* t′ ∷ B
→ Γ ⊢ u ⇒* u′ ∷ B
→ Γ ⊢ t′ [conv↑] u′ ∷ B
→ Γ ⊢ t [conv↑] u ∷ A
reductionConv↑Term A⇒* t⇒* u⇒* ([↑]ₜ B′ t″ u″ D d d′ whnfB′ whnft″ whnfu″ t″<>u″) =
[↑]ₜ B′ t″ u″
(A⇒* ⇨* D)
((conv* t⇒* (subset* D)) ⇨∷* d)
((conv* u⇒* (subset* D)) ⇨∷* d′)
whnfB′ whnft″ whnfu″ t″<>u″
| {
"alphanum_fraction": 0.4753363229,
"avg_line_length": 32.7941176471,
"ext": "agda",
"hexsha": "51c3d0bf86d322c1e3e28d750c73251810e3b8d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Reduction.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 448,
"size": 1115
} |
-- 2011-09-15 posted by Nisse, variant of Issue292e
-- {-# OPTIONS --show-implicit -v tc.lhs.unify:15 #-}
module Issue292-16b where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
postulate
A : Set
f : A → A
data C (A : Set)(f : A → A) : A → Set where
c : ∀ x → C A f (f x)
record Box : Set where
constructor box
field
a : A
b : C A f a
test : ∀ {x₁ x₂} → box (f x₁) (c x₁) ≡ box (f x₂) (c x₂) → x₁ ≡ x₂
test refl = refl
-- We recover from the heteogenerous
--
-- c x₁ : C A f (f x₁) =?= c₂ x₂ : C A f (f x₂)
--
-- to the homogeneous
--
-- x₁ =?= x₂ : A
--
-- since the parameters to C are syntactically equal on lhs and rhs
| {
"alphanum_fraction": 0.5595776772,
"avg_line_length": 20.0909090909,
"ext": "agda",
"hexsha": "e69316f9802d05cd983aac485fa0b8a3d4aaec2f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue292-16b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue292-16b.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue292-16b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 269,
"size": 663
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
module Fields.CauchyCompletion.Definition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open TotallyOrderedRing order
open Ring R
open Group additiveGroup
open Field F
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
open import Rings.Orders.Total.Cauchy order
open import Groups.Lemmas additiveGroup
cauchyWellDefined : {s1 s2 : Sequence A} → ((m : ℕ) → index s1 m ∼ index s2 m) → cauchy s1 → cauchy s2
cauchyWellDefined {s1} {s2} prop c e 0<e with c e 0<e
... | N , pr = N , λ {m} {n} N<m N<n → <WellDefined (absWellDefined _ _ (+WellDefined (prop m) (inverseWellDefined (prop n)))) reflexive (pr N<m N<n)
record CauchyCompletion : Set (m ⊔ o) where
field
elts : Sequence A
converges : (cauchy elts)
injection : A → CauchyCompletion
CauchyCompletion.elts (injection a) = constSequence a
CauchyCompletion.converges (injection a) = (λ ε 0<e → 0 , λ {m} {n} _ _ → <WellDefined (symmetric (identityOfIndiscernablesRight _∼_ (absWellDefined (index (constSequence a) m + inverse (index (constSequence a) n)) 0R (t m n)) absZero)) reflexive 0<e)
where
t : (m n : ℕ) → index (constSequence a) m + inverse (index (constSequence a) n) ∼ 0R
t m n = identityOfIndiscernablesLeft _∼_ (identityOfIndiscernablesLeft _∼_ invRight (equalityCommutative (applyEquality (λ i → a + inverse i) (indexAndConst a n)))) (applyEquality (_+ inverse (index (constSequence a) n)) (equalityCommutative (indexAndConst a m)))
-- Some slightly odd things here relating to equality rather than equivalence. Ultimately this is here so we can say Q → R is a genuine injection, not just a setoid one.
private
lemma : {x y : CauchyCompletion} → x ≡ y → CauchyCompletion.elts x ≡ CauchyCompletion.elts y
lemma {x} {.x} refl = refl
CInjection' : Injection injection
CInjection' pr = headInjective (lemma pr)
| {
"alphanum_fraction": 0.742375314,
"avg_line_length": 48.0517241379,
"ext": "agda",
"hexsha": "e0a6a6587b8bc1f61754309f889ee569ceab7a4e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/Definition.agda",
"max_line_length": 298,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 849,
"size": 2787
} |
--2010-09-28
module AbsurdIrrelevance where
data Empty : Set where
absurd : {A : Set} -> .Empty -> A
absurd ()
| {
"alphanum_fraction": 0.652173913,
"avg_line_length": 12.7777777778,
"ext": "agda",
"hexsha": "24773826aada8d914225a4b6249d572d7ddb7023",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/AbsurdIrrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/AbsurdIrrelevance.agda",
"max_line_length": 33,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/AbsurdIrrelevance.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 40,
"size": 115
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Int.Base where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
data ℤ : Type₀ where
pos : (n : ℕ) → ℤ
negsuc : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
neg zero = pos zero
neg (suc n) = negsuc n
infix 100 -_
-_ : ℕ → ℤ
-_ = neg
{-# DISPLAY pos n = n #-}
{-# DISPLAY negsuc n = - (suc n) #-}
sucInt : ℤ → ℤ
sucInt (pos n) = pos (suc n)
sucInt (negsuc zero) = pos zero
sucInt (negsuc (suc n)) = negsuc n
predInt : ℤ → ℤ
predInt (pos zero) = negsuc zero
predInt (pos (suc n)) = pos n
predInt (negsuc n) = negsuc (suc n)
-- Natural number and negative integer literals for ℤ
open import Cubical.Data.Nat.Literals public
instance
fromNatℤ : FromNat ℤ
fromNatℤ = record { Constraint = λ _ → ⊤ ; fromNat = λ n → pos n }
instance
negativeℤ : Negative ℤ
negativeℤ = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → neg n }
| {
"alphanum_fraction": 0.6213903743,
"avg_line_length": 21.25,
"ext": "agda",
"hexsha": "435c035a5a9f25557d808476ee64c45a557de8d3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Data/Int/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Data/Int/Base.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Data/Int/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 346,
"size": 935
} |
open import Oscar.Prelude
module Oscar.Class.[IsExtensionB] where
record [IsExtensionB]
{a} {A : Ø a}
{b} (B : A → Ø b)
: Ø₀ where
constructor ∁
no-eta-equality
| {
"alphanum_fraction": 0.6494252874,
"avg_line_length": 14.5,
"ext": "agda",
"hexsha": "e429c4037dce0fa1bc947bfc80a9f8490524b402",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/[IsExtensionB].agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/[IsExtensionB].agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/[IsExtensionB].agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 63,
"size": 174
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import stash.modalities.gbm.GbmUtil
module stash.modalities.gbm.PushoutMono where
--
-- The goal of this file is to prove the following:
-- Suppose we have a pushout
--
-- g
-- C ------> B
-- v |
-- | |
-- f | |
-- v v
-- A ------> D
--
-- and the map f is a monomorphism. Then the square
-- is also a pullback.
--
is-mono : ∀ {i j} {A : Type i} {B : Type j} → (A → B) → Type _
is-mono {B = B} f = (b : B) → has-level (S ⟨-2⟩) (hfiber f b)
mono-eq : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀ a₁ : A}
(p : f a₀ == f a₁) → is-mono f → a₀ == a₁
mono-eq f {a₀} {a₁} p ism = ! (fst= (fst (ism (f a₁) (a₁ , idp) (a₀ , p))))
mono-eq-idp : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a : A}
→ (is-m : is-mono f) → mono-eq f {a₀ = a} idp is-m == idp
mono-eq-idp f {a} ism = ap (λ x → ! (fst= x)) (snd (ism (f a) (a , idp) (a , idp)) idp)
mono-eq-ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀ a₁ : A}
(p : f a₀ == f a₁) → (is-m : is-mono f) → ap f (mono-eq f p is-m) == p
mono-eq-ap f {a₀} {a₁} p ism =
ap f (! (fst= α)) =⟨ ! (!-ap f (fst= α)) ⟩
! (ap f (fst= α)) =⟨ ! (∙-unit-r (! (ap f (fst= α)))) ⟩
! (ap f (fst= α)) ∙ idp =⟨ ↓-app=cst-out (snd= α) |in-ctx (λ x → ! (ap f (fst= α)) ∙ x) ⟩
! (ap f (fst= α)) ∙ ap f (fst= α) ∙ p =⟨ ! (∙-assoc (! (ap f (fst= α))) (ap f (fst= α)) p) ⟩
(! (ap f (fst= α)) ∙ ap f (fst= α)) ∙ p =⟨ !-inv-l (ap f (fst= α)) |in-ctx (λ x → x ∙ p) ⟩
p ∎
where α = fst (ism (f a₁) (a₁ , idp) (a₀ , p))
ap-lem : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C)
{a₀ a₁ : A} {p : a₀ == a₁} {b₀ : B a₀} {b₁ : B a₁}
(q : b₀ == b₁ [ B ↓ p ]) → ap f (pair= p q) == ↓-cst-out (↓-Π-out (apd (curry f) p) q)
ap-lem f {p = idp} idp = idp
Lift-Unit-is-contr : ∀ {i} → is-contr (Lift {j = i} ⊤)
Lift-Unit-is-contr = equiv-preserves-level (lower-equiv ⁻¹) Unit-is-contr
Lift-Unit-is-prop : ∀ {i} → is-prop (Lift {j = i} ⊤)
Lift-Unit-is-prop = contr-is-prop Lift-Unit-is-contr
module MonoLemma {i} (s : Span {i} {i} {i}) (m : is-mono (Span.f s)) where
open Span s
private
D = Pushout s
mleft : A → D
mleft = left
mright : B → D
mright = right
mglue : (c : C) → mleft (f c) == mright (g c)
mglue c = glue c
-- Construct a fibration over the pushout
-- whose total space is equivalent to B
glue-equiv : (c : C) → hfiber f (f c) ≃ Lift {j = i} ⊤
glue-equiv c = contr-equiv-LiftUnit (inhab-prop-is-contr (c , idp) (m (f c)))
-- Now, I claim that the values of this fibration are props.
-- How do you prove this?
module B' = PushoutRec {d = s} (hfiber f) (cst (Lift ⊤)) (ua ∘ glue-equiv)
B' : (d : D) → Type i
B' = B'.f
B'-β : (c : C) → ap B' (glue c) == ua (glue-equiv c)
B'-β c = B'.glue-β c
B'-is-prop : (d : D) → is-prop (B' d)
B'-is-prop = Pushout-elim (λ a → m a) (λ b → Lift-Unit-is-prop)
(λ c → prop-lemma (λ z → is-prop (B' z) , is-prop-is-prop) (mglue c) (m (f c))
Lift-Unit-is-prop)
B'-prop : (d : D) → hProp i
B'-prop d = B' d , B'-is-prop d
B'-pth-in : ∀ {a b} (p : mleft a == mright b) (x : B' (mleft a)) (y : B' (mright b))
→ x == y [ B' ↓ p ]
B'-pth-in p x y = prop-lemma B'-prop p x y
B'-pth-in' : ∀ {a b} (p : mright b == mleft a) (x : B' (mleft a)) (y : B' (mright b))
→ y == x [ B' ↓ p ]
B'-pth-in' p x y = prop-lemma B'-prop p y x
cpth : (c : C) → (c , idp) == (lift unit) [ B' ↓ glue c ]
cpth c = fst (pths-ovr-contr B'-prop (glue c) (c , idp) (lift unit))
-- Yeah, these triples of data seem to come up a bunch
-- the point is, such data is contractible...
data-contr : (c : C) → is-contr (Σ (B' (left (f c))) (λ l → Σ (B' (right (g c))) (λ r → l == r [ B' ↓ glue c ])))
data-contr c = Σ-level (inhab-prop-is-contr (c , idp) (m (f c)))
(λ l → Σ-level Lift-Unit-is-contr (λ r → pths-ovr-contr B'-prop (glue c) l r))
data-elim : (c : C) (P : (l : B' (left (f c))) (r : B' (right (g c))) → (l == r [ B' ↓ glue c ]) → Type i)
→ (t : Σ (B' (left (f c))) (λ l → Σ (B' (right (g c))) (λ r → l == r [ B' ↓ glue c ])))
→ P (fst t) (fst (snd t)) (snd (snd t))
→ (l : B' (left (f c))) → (r : B' (right (g c))) → (q : l == r [ B' ↓ glue c ]) → P l r q
data-elim c P t x l r q = transport (λ { (l₀ , r₀ , q₀) → P l₀ r₀ q₀ })
(contr-has-all-paths (data-contr c) _ _) x
module _ where
private
to : B → Σ D B'
to b = mright b , lift unit
module From = PushoutElim {d = s} {P = λ d → B' d → B}
(λ a e → g (fst e))
(λ b _ → b)
(λ c → ↓-Π-in (λ {l} {r} q → ↓-cst-in (ap g (mono-eq f (snd l) m))))
from : Σ D B' → B
from = uncurry $ From.f
to-from : (db : Σ D B') → to (from db) == db
to-from = uncurry $ Pushout-elim lem₀ (λ b _ → idp)
(λ c → ↓-Π-in (λ {l} {r} q → ↓-app=idf-in (lem₁ c l r q)))
where lem₀ : (a : A) (l : B' (left a)) → to (from (left a , l)) == left a , l
lem₀ .(f c) (c , idp) = ! (pair= (mglue c) (cpth c))
P : (c : C) (l : B' (left (f c))) (r : B' (right (g c))) (q : l == r [ B' ↓ glue c ]) → Type i
P c l r q = lem₀ (f c) l ∙' pair= (glue c) q ==
ap (λ v → to (from v)) (pair= (glue c) q) ∙ idp
lem₂ : (c : C) → P c (c , idp) (lift unit) (cpth c)
lem₂ c = ! (pair= (glue c) (cpth c)) ∙' pair= (glue c) (cpth c)
=⟨ !-inv'-l (pair= (glue c) (cpth c)) ⟩
idp =⟨ ! (mono-eq-idp f m) |in-ctx (λ x → ap to (ap g x)) ⟩
ap to (ap g (mono-eq f idp m))
=⟨ ! (↓-cst-β (pair= (glue c) (cpth c)) (ap g (mono-eq f idp m))) |in-ctx (λ x → ap to x) ⟩
ap to (↓-cst-out (↓-cst-in {p = (pair= (glue c) (cpth c))} (ap g (mono-eq f idp m))))
=⟨ ! (↓-Π-β (λ {l} {r} q → ↓-cst-in (ap g (mono-eq f (snd l) m))) (cpth c)) |in-ctx (λ x → ap to (↓-cst-out x)) ⟩
ap to (↓-cst-out (↓-Π-out (↓-Π-in (λ {l} {r} q → ↓-cst-in (ap g (mono-eq f (snd l) m)))) (cpth c)))
=⟨ ! (From.glue-β c) |in-ctx (λ x → ap to (↓-cst-out (↓-Π-out x (cpth c)))) ⟩
ap to (↓-cst-out (↓-Π-out (apd (curry from) (glue c)) (cpth c)))
=⟨ ! (ap-lem from (cpth c)) |in-ctx (λ x → ap to x) ⟩
ap to (ap from (pair= (glue c) (cpth c)))
=⟨ ∘-ap to from (pair= (glue c) (cpth c)) ⟩
ap (to ∘ from) (pair= (glue c) (cpth c))
=⟨ ! (∙-unit-r _) ⟩
ap (to ∘ from) (pair= (glue c) (cpth c)) ∙ idp ∎
lem₁ : (c : C) (l : B' (left (f c))) (r : B' (right (g c))) (q : l == r [ B' ↓ glue c ])
→ lem₀ (f c) l ∙' pair= (glue c) q ==
ap (λ v → to (from v)) (pair= (glue c) q) ∙ idp
lem₁ c l r q = data-elim c (P c) ((c , idp) , (lift unit , cpth c)) (lem₂ c) l r q
B≃B' : B ≃ Σ D B'
B≃B' = equiv to from to-from (λ b → idp)
-- From the above equivalence, we can prove that
-- mright is also a mono
mright-is-mono : is-mono mright
mright-is-mono d = equiv-preserves-level (lem ⁻¹ ∘e (hfiber-fst d) ⁻¹) (B'-is-prop d)
where lem : hfiber mright d ≃ hfiber fst d
lem = hfiber-sq-eqv mright fst (fst B≃B') (idf D) (comm-sqr (λ b → idp)) (snd B≃B') (idf-is-equiv D) d
-- Pulling back over A, we should have a space
-- equivalent to C as well as the path spaces
-- we are interested in.
C' : Type i
C' = Σ A (B' ∘ mleft)
-- Given (b : B) and an element it is equal to in the
-- the pushout, we can find an element in the fiber which
-- witnesses that equaltiy
witness-for : ∀ {a b} (p : mleft a == mright b) → hfiber f a
witness-for p = transport! B' p (lift unit)
-- Using the fact that mright is a mono, we can
-- find a proof of the following
witness-for-coh₀ : ∀ {a b} (p : mleft a == mright b) → g (fst (witness-for p)) == b
witness-for-coh₀ {a} {b} p = mono-eq mright lem mright-is-mono
where c : C
c = fst (witness-for p)
lem : mright (g c) == mright b
lem = ! (mglue c) ∙ ap mleft (snd (witness-for p)) ∙ p
witness-for-coh₁ : ∀ {a b} (p : mleft a == mright b)
→ (! (ap mleft (snd (witness-for p))) ∙ mglue (fst (witness-for p))) == p
[ (λ ab → mleft (fst ab) == mright (snd ab)) ↓ (ap (λ x → (a , x)) (witness-for-coh₀ p)) ]
witness-for-coh₁ {a} p = ↓-ap-in _ (λ b₀ → (a , b₀)) (↓-cst=app-in calc)
where α = ap mleft (snd (witness-for p))
β = mglue (fst (witness-for p))
calc = (! α ∙ β) ∙' ap mright (witness-for-coh₀ p)
=⟨ mono-eq-ap mright (! β ∙ α ∙ p) mright-is-mono |in-ctx (λ x → (! α ∙ β) ∙' x) ⟩
(! α ∙ β) ∙' ! β ∙ α ∙ p =⟨ ∙'=∙ (! α ∙ β) (! β ∙ α ∙ p) ⟩
(! α ∙ β) ∙ ! β ∙ α ∙ p =⟨ ∙-assoc (! α) β (! β ∙ α ∙ p) ⟩
! α ∙ β ∙ ! β ∙ α ∙ p =⟨ ! (∙-assoc β (! β) (α ∙ p)) |in-ctx (λ x → ! α ∙ x) ⟩
! α ∙ (β ∙ ! β) ∙ α ∙ p =⟨ !-inv-r β |in-ctx (λ x → ! α ∙ x ∙ α ∙ p) ⟩
! α ∙ α ∙ p =⟨ ! (∙-assoc (! α) α p) ⟩
(! α ∙ α) ∙ p =⟨ !-inv-l α |in-ctx (λ x → x ∙ p) ⟩
p ∎
C'-equiv-pths : C' ≃ Σ (A × B) (λ ab → mleft (fst ab) == mright (snd ab))
C'-equiv-pths = equiv to from to-from from-to
where to : C' → Σ (A × B) (λ ab → mleft (fst ab) == mright (snd ab))
to (a , c , p) = (a , g c) , ! (ap mleft p) ∙ mglue c
from : Σ (A × B) (λ ab → mleft (fst ab) == mright (snd ab)) → C'
from ((a , b) , p) = a , witness-for p
to-from : (x : Σ (A × B) (λ ab → mleft (fst ab) == mright (snd ab))) → to (from x) == x
to-from ((a , b) , p) = pair= (pair= idp (witness-for-coh₀ p)) (witness-for-coh₁ p)
from-to : (c' : C') → from (to c') == c'
from-to (a , c , p) = pair= idp (fst (m _ _ (c , p)))
C-equiv-C' : C ≃ C'
C-equiv-C' = equiv to from to-from from-to
where to : C → C'
to c = f c , (c , idp)
from : C' → C
from (a , c , p) = c
to-from : (c' : C') → to (from c') == c'
to-from (a , c , p) = pair= p (fst (pths-ovr-contr (λ a → hfiber f a , m a) p (c , idp) (c , p)))
from-to : (c : C) → from (to c) == c
from-to c = idp
-- Combining the two equivalences from above
-- gives us the result we want.
pushout-mono-is-pullback : C ≃ Σ (A × B) (λ ab → mleft (fst ab) == mright (snd ab))
pushout-mono-is-pullback = C'-equiv-pths ∘e C-equiv-C'
| {
"alphanum_fraction": 0.4292687256,
"avg_line_length": 43.0076335878,
"ext": "agda",
"hexsha": "efe7025ec123b7e1f381c97d1820f5c7793e7adb",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/stash/modalities/gbm/PushoutMono.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/stash/modalities/gbm/PushoutMono.agda",
"max_line_length": 141,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/stash/modalities/gbm/PushoutMono.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4521,
"size": 11268
} |
module Examples.Syntax where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Syntax using (var; _$_; return; nil; function_is_end; local_←_; done; _∙_; _⟨_⟩)
open import Luau.Syntax.ToString using (exprToString; blockToString)
ex1 : exprToString(function "" ⟨ var "x" ⟩ is return (var "f" $ var "x") ∙ done end) ≡
"function(x)\n" ++
" return f(x)\n" ++
"end"
ex1 = refl
ex2 : blockToString(local var "x" ← nil ∙ return (var "x") ∙ done) ≡
"local x = nil\n" ++
"return x"
ex2 = refl
ex3 : blockToString(function "f" ⟨ var "x" ⟩ is return (var "x") ∙ done end ∙ return (var "f") ∙ done) ≡
"local function f(x)\n" ++
" return x\n" ++
"end\n" ++
"return f"
ex3 = refl
| {
"alphanum_fraction": 0.628,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "4ffcf4c504c4c87cf88305ef22b2f293817e678b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Examples/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Examples/Syntax.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Examples/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 263,
"size": 750
} |
module general-exercises.RunningHaskellCode where
-- To compile code: stack exec -- agda general-exercises/RunningHaskellCode.agda -c
open import Data.String using (String)
open import Agda.Builtin.Unit using (⊤)
-- Working directly with Haskell code, kinda dangerous stuff
--
-- This didn't actually work because all Agda stuff is wrapped around colists
-- and there is even more wrapping around printError to make it work. It is not
-- that it is impossible, it is just a matter of copying the code from
-- `IO.Primitive`, which I don't want to do right now
--
--open import Agda.Builtin.IO using (IO)
--
--{-# FOREIGN GHC import qualified System.IO as SIO #-}
--{-# FOREIGN GHC import qualified Data.Text #-}
--
--postulate printError : String → IO ⊤
--
--{-# COMPILE GHC printError = SIO.hPutStrLn SIO.stderr $ Data.Text.unpack #-}
--
--main = printError "Printing to stderr!"
-- Using the Standard Library
open import IO using (run; putStrLn)
main = run (putStrLn "Hello freaking World!")
-- Exporting Agda binaries to use in Haskell code
--open import Data.Nat using (ℕ; suc; zero)
--
--double : ℕ → ℕ
--double zero = zero
--double (suc n) = suc (suc (double n))
--{-# COMPILE GHC double as doubleNat #-}
| {
"alphanum_fraction": 0.7156943303,
"avg_line_length": 32.0263157895,
"ext": "agda",
"hexsha": "16eced5423021fb83b67b3dfc0404cb55b4428fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/general-exercises/RunningHaskellCode.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/general-exercises/RunningHaskellCode.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/general-exercises/RunningHaskellCode.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 310,
"size": 1217
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some algebraic structures (not packed up with sets, operations,
-- etc.)
------------------------------------------------------------------------
open import Relation.Binary
module Algebra.Structures where
import Algebra.FunctionProperties as FunctionProperties
open import Data.Product
open import Function
open import Level using (_⊔_)
import Relation.Binary.EqReasoning as EqR
open FunctionProperties using (Op₁; Op₂)
------------------------------------------------------------------------
-- One binary operation
record IsSemigroup {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∙ : Op₂ A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isEquivalence : IsEquivalence ≈
assoc : Associative ∙
∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
open IsEquivalence isEquivalence public
record IsMonoid {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isSemigroup : IsSemigroup ≈ ∙
identity : Identity ε ∙
open IsSemigroup isSemigroup public
record IsCommutativeMonoid {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isSemigroup : IsSemigroup ≈ _∙_
identityˡ : LeftIdentity ε _∙_
comm : Commutative _∙_
open IsSemigroup isSemigroup public
identity : Identity ε _∙_
identity = (identityˡ , identityʳ)
where
open EqR (record { isEquivalence = isEquivalence })
identityʳ : RightIdentity ε _∙_
identityʳ = λ x → begin
(x ∙ ε) ≈⟨ comm x ε ⟩
(ε ∙ x) ≈⟨ identityˡ x ⟩
x ∎
isMonoid : IsMonoid ≈ _∙_ ε
isMonoid = record
{ isSemigroup = isSemigroup
; identity = identity
}
record IsGroup {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
infixl 7 _-_
field
isMonoid : IsMonoid ≈ _∙_ ε
inverse : Inverse ε _⁻¹ _∙_
⁻¹-cong : _⁻¹ Preserves ≈ ⟶ ≈
open IsMonoid isMonoid public
_-_ : FunctionProperties.Op₂ A
x - y = x ∙ (y ⁻¹)
record IsAbelianGroup
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isGroup : IsGroup ≈ ∙ ε ⁻¹
comm : Commutative ∙
open IsGroup isGroup public
isCommutativeMonoid : IsCommutativeMonoid ≈ ∙ ε
isCommutativeMonoid = record
{ isSemigroup = isSemigroup
; identityˡ = proj₁ identity
; comm = comm
}
------------------------------------------------------------------------
-- Two binary operations
record IsNearSemiring {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isMonoid : IsMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distribʳ : * DistributesOverʳ +
zeroˡ : LeftZero 0# *
open IsMonoid +-isMonoid public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
)
open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
)
record IsSemiringWithoutOne {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distrib : * DistributesOver +
zero : Zero 0# *
open IsCommutativeMonoid +-isCommutativeMonoid public
hiding (identityˡ)
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)
open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
)
isNearSemiring : IsNearSemiring ≈ + * 0#
isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-isSemigroup = *-isSemigroup
; distribʳ = proj₂ distrib
; zeroˡ = proj₁ zero
}
record IsSemiringWithoutAnnihilatingZero
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
-- Note that these structures do have an additive unit, but this
-- unit does not necessarily annihilate multiplication.
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isMonoid : IsMonoid ≈ * 1#
distrib : * DistributesOver +
open IsCommutativeMonoid +-isCommutativeMonoid public
hiding (identityˡ)
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)
open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)
record IsSemiring {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero ≈ + * 0# 1#
zero : Zero 0# *
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0#
isSemiringWithoutOne = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isSemigroup = *-isSemigroup
; distrib = distrib
; zero = zero
}
open IsSemiringWithoutOne isSemiringWithoutOne public
using (isNearSemiring)
record IsCommutativeSemiringWithoutOne
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0#
*-comm : Commutative *
open IsSemiringWithoutOne isSemiringWithoutOne public
record IsCommutativeSemiring
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(_+_ _*_ : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ _+_ 0#
*-isCommutativeMonoid : IsCommutativeMonoid ≈ _*_ 1#
distribʳ : _*_ DistributesOverʳ _+_
zeroˡ : LeftZero 0# _*_
private
module +-CM = IsCommutativeMonoid +-isCommutativeMonoid
open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public
using () renaming (comm to *-comm)
open EqR (record { isEquivalence = +-CM.isEquivalence })
distrib : _*_ DistributesOver _+_
distrib = (distribˡ , distribʳ)
where
distribˡ : _*_ DistributesOverˡ _+_
distribˡ x y z = begin
(x * (y + z)) ≈⟨ *-comm x (y + z) ⟩
((y + z) * x) ≈⟨ distribʳ x y z ⟩
((y * x) + (z * x)) ≈⟨ *-comm y x ⟨ +-CM.∙-cong ⟩ *-comm z x ⟩
((x * y) + (x * z)) ∎
zero : Zero 0# _*_
zero = (zeroˡ , zeroʳ)
where
zeroʳ : RightZero 0# _*_
zeroʳ x = begin
(x * 0#) ≈⟨ *-comm x 0# ⟩
(0# * x) ≈⟨ zeroˡ x ⟩
0# ∎
isSemiring : IsSemiring ≈ _+_ _*_ 0# 1#
isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-CM.isMonoid
; distrib = distrib
}
; zero = zero
}
open IsSemiring isSemiring public
hiding (distrib; zero; +-isCommutativeMonoid)
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne ≈ _+_ _*_ 0#
isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = isSemiringWithoutOne
; *-comm = *-CM.comm
}
record IsRing
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
+-isAbelianGroup : IsAbelianGroup ≈ _+_ 0# -_
*-isMonoid : IsMonoid ≈ _*_ 1#
distrib : _*_ DistributesOver _+_
open IsAbelianGroup +-isAbelianGroup public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; inverse to -‿inverse
; ⁻¹-cong to -‿cong
; isGroup to +-isGroup
; comm to +-comm
; isCommutativeMonoid to +-isCommutativeMonoid
)
open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)
zero : Zero 0# _*_
zero = (zeroˡ , zeroʳ)
where
open EqR (record { isEquivalence = isEquivalence })
zeroˡ : LeftZero 0# _*_
zeroˡ x = begin
0# * x ≈⟨ sym $ proj₂ +-identity _ ⟩
(0# * x) + 0# ≈⟨ refl ⟨ +-cong ⟩ sym (proj₂ -‿inverse _) ⟩
(0# * x) + ((0# * x) + - (0# * x)) ≈⟨ sym $ +-assoc _ _ _ ⟩
((0# * x) + (0# * x)) + - (0# * x) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-cong ⟩ refl ⟩
((0# + 0#) * x) + - (0# * x) ≈⟨ (proj₂ +-identity _ ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
refl ⟩
(0# * x) + - (0# * x) ≈⟨ proj₂ -‿inverse _ ⟩
0# ∎
zeroʳ : RightZero 0# _*_
zeroʳ x = begin
x * 0# ≈⟨ sym $ proj₂ +-identity _ ⟩
(x * 0#) + 0# ≈⟨ refl ⟨ +-cong ⟩ sym (proj₂ -‿inverse _) ⟩
(x * 0#) + ((x * 0#) + - (x * 0#)) ≈⟨ sym $ +-assoc _ _ _ ⟩
((x * 0#) + (x * 0#)) + - (x * 0#) ≈⟨ sym (proj₁ distrib _ _ _) ⟨ +-cong ⟩ refl ⟩
(x * (0# + 0#)) + - (x * 0#) ≈⟨ (refl ⟨ *-cong ⟩ proj₂ +-identity _)
⟨ +-cong ⟩
refl ⟩
(x * 0#) + - (x * 0#) ≈⟨ proj₂ -‿inverse _ ⟩
0# ∎
isSemiringWithoutAnnihilatingZero
: IsSemiringWithoutAnnihilatingZero ≈ _+_ _*_ 0# 1#
isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-isMonoid
; distrib = distrib
}
isSemiring : IsSemiring ≈ _+_ _*_ 0# 1#
isSemiring = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
; zero = zero
}
open IsSemiring isSemiring public
using (isNearSemiring; isSemiringWithoutOne)
record IsCommutativeRing
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isRing : IsRing ≈ + * - 0# 1#
*-comm : Commutative *
open IsRing isRing public
isCommutativeSemiring : IsCommutativeSemiring ≈ + * 0# 1#
isCommutativeSemiring = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isCommutativeMonoid = record
{ isSemigroup = *-isSemigroup
; identityˡ = proj₁ *-identity
; comm = *-comm
}
; distribʳ = proj₂ distrib
; zeroˡ = proj₁ zero
}
open IsCommutativeSemiring isCommutativeSemiring public
using ( *-isCommutativeMonoid
; isCommutativeSemiringWithoutOne
)
record IsLattice {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isEquivalence : IsEquivalence ≈
∨-comm : Commutative ∨
∨-assoc : Associative ∨
∨-cong : ∨ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
∧-comm : Commutative ∧
∧-assoc : Associative ∧
∧-cong : ∧ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
absorptive : Absorptive ∨ ∧
open IsEquivalence isEquivalence public
record IsDistributiveLattice {a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isLattice : IsLattice ≈ ∨ ∧
∨-∧-distribʳ : ∨ DistributesOverʳ ∧
open IsLattice isLattice public
record IsBooleanAlgebra
{a ℓ} {A : Set a} (≈ : Rel A ℓ)
(∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set (a ⊔ ℓ) where
open FunctionProperties ≈
field
isDistributiveLattice : IsDistributiveLattice ≈ ∨ ∧
∨-complementʳ : RightInverse ⊤ ¬ ∨
∧-complementʳ : RightInverse ⊥ ¬ ∧
¬-cong : ¬ Preserves ≈ ⟶ ≈
open IsDistributiveLattice isDistributiveLattice public
| {
"alphanum_fraction": 0.5035304501,
"avg_line_length": 32.9200968523,
"ext": "agda",
"hexsha": "6c1d8dd4bd9a655d37e6e0754f6238e886d1703f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Structures.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 4432,
"size": 13596
} |
------------------------------------------------------------------------
-- A combination of the delay monad (with the possibility of crashing)
-- and a kind of writer monad yielding colists
------------------------------------------------------------------------
module Lambda.Delay-crash-trace where
open import Equality.Propositional as E using (_≡_; refl)
open import Prelude
open import Prelude.Size
open import Colist E.equality-with-J as C
using (Colist; []; _∷_; force)
open import Monad E.equality-with-J
using (Raw-monad; return; _>>=_; _⟨$⟩_)
open import Delay-monad using (now; later; force)
open import Delay-monad.Bisimilarity as D using (now; later; force)
open import Lambda.Delay-crash using (Delay-crash)
------------------------------------------------------------------------
-- The monad
mutual
-- A kind of delay monad with the possibility of crashing that also
-- yields a trace (colist) of values.
data Delay-crash-trace (A B : Type) (i : Size) : Type where
-- A result is returned now.
now : B → Delay-crash-trace A B i
-- The computation crashes now.
crash : Delay-crash-trace A B i
-- A result is possibly returned later. This constructor also
-- functions as a coinductive cons constructor for the resulting
-- trace.
later : A → Delay-crash-trace′ A B i → Delay-crash-trace A B i
-- An inductive cons constructor for the resulting trace.
tell : A → Delay-crash-trace A B i → Delay-crash-trace A B i
record Delay-crash-trace′ (A B : Type) (i : Size) : Type where
coinductive
field
force : {j : Size< i} → Delay-crash-trace A B j
open Delay-crash-trace′ public
------------------------------------------------------------------------
-- Extracting or deleting the trace
-- Returns the trace.
trace : ∀ {A B i} → Delay-crash-trace A B i → Colist A i
trace (now x) = []
trace crash = []
trace (later x m) = x ∷ λ { .force → trace (m .force) }
trace (tell x m) = x ∷ λ { .force → trace m }
-- Erases the trace.
delay-crash :
∀ {A B i} → Delay-crash-trace A B i → Delay-crash B i
delay-crash (now x) = now (just x)
delay-crash crash = now nothing
delay-crash (later x m) = later λ { .force → delay-crash (m .force) }
delay-crash (tell x m) = delay-crash m
------------------------------------------------------------------------
-- Delay-crash-trace is a raw monad
-- Bind.
bind : ∀ {i A B C} →
Delay-crash-trace A B i →
(B → Delay-crash-trace A C i) →
Delay-crash-trace A C i
bind (now x) f = f x
bind crash f = crash
bind (later x m) f = later x λ { .force → bind (force m) f }
bind (tell x m) f = tell x (bind m f)
-- Delay-crash-trace is a raw monad.
instance
raw-monad : ∀ {A i} → Raw-monad (λ B → Delay-crash-trace A B i)
Raw-monad.return raw-monad = now
Raw-monad._>>=_ raw-monad = bind
------------------------------------------------------------------------
-- Strong bisimilarity for Delay-crash-trace
module _ {A B : Type} where
mutual
-- Strong bisimilarity.
infix 4 [_]_∼_ [_]_∼′_
data [_]_∼_ (i : Size) :
Delay-crash-trace A B ∞ →
Delay-crash-trace A B ∞ → Type where
now : ∀ {x} → [ i ] now x ∼ now x
crash : [ i ] crash ∼ crash
later : ∀ {v x y} →
[ i ] force x ∼′ force y →
[ i ] later v x ∼ later v y
tell : ∀ {v x y} →
[ i ] x ∼ y →
[ i ] tell v x ∼ tell v y
record [_]_∼′_ (i : Size)
(x : Delay-crash-trace A B ∞)
(y : Delay-crash-trace A B ∞) : Type where
coinductive
field
force : {j : Size< i} → [ j ] x ∼ y
open [_]_∼′_ public
-- Reflexivity.
reflexive : ∀ {i} x → [ i ] x ∼ x
reflexive (now _) = now
reflexive crash = crash
reflexive (later v x) = later λ { .force → reflexive (force x) }
reflexive (tell v x) = tell (reflexive x)
-- Symmetry.
symmetric : ∀ {i x y} → [ i ] x ∼ y → [ i ] y ∼ x
symmetric now = now
symmetric crash = crash
symmetric (later p) = later λ { .force → symmetric (force p) }
symmetric (tell p) = tell (symmetric p)
-- Transitivity.
transitive : ∀ {i x y z} → [ i ] x ∼ y → [ i ] y ∼ z → [ i ] x ∼ z
transitive now now = now
transitive crash crash = crash
transitive (later p) (later q) = later λ { .force →
transitive (force p) (force q) }
transitive (tell p) (tell q) = tell (transitive p q)
-- Equational reasoning combinators.
infix -1 _∎
infixr -2 step-∼ step-≡ _∼⟨⟩_
_∎ : ∀ {i} x → [ i ] x ∼ x
_∎ = reflexive
step-∼ : ∀ {i} x {y z} → [ i ] y ∼ z → [ i ] x ∼ y → [ i ] x ∼ z
step-∼ _ y∼z x∼y = transitive x∼y y∼z
syntax step-∼ x y∼z x∼y = x ∼⟨ x∼y ⟩ y∼z
step-≡ : ∀ {i} x {y z} → [ i ] y ∼ z → x ≡ y → [ i ] x ∼ z
step-≡ _ y∼z refl = y∼z
syntax step-≡ x y∼z x≡y = x ≡⟨ x≡y ⟩ y∼z
_∼⟨⟩_ : ∀ {i} x {y} → [ i ] x ∼ y → [ i ] x ∼ y
_ ∼⟨⟩ x∼y = x∼y
----------------------------------------------------------------------
-- Monad laws
left-identity :
∀ {A B C : Type} x (f : B → Delay-crash-trace A C ∞) →
[ ∞ ] return x >>= f ∼ f x
left-identity x f = reflexive (f x)
right-identity :
∀ {i} {A B : Type} (x : Delay-crash-trace A B ∞) →
[ i ] x >>= return ∼ x
right-identity (now x) = now
right-identity crash = crash
right-identity (later v x) = later λ { .force →
right-identity (force x) }
right-identity (tell v x) = tell (right-identity x)
associativity :
∀ {i} {A B C D : Type} →
(x : Delay-crash-trace A B ∞)
(f : B → Delay-crash-trace A C ∞)
(g : C → Delay-crash-trace A D ∞) →
[ i ] x >>= (λ x → f x >>= g) ∼ x >>= f >>= g
associativity (now x) f g = reflexive (f x >>= g)
associativity crash f g = crash
associativity (later v x) f g = later λ { .force →
associativity (force x) f g }
associativity (tell v x) f g = tell (associativity x f g)
----------------------------------------------------------------------
-- Some preservation lemmas
infixl 5 _>>=-cong_
_>>=-cong_ :
∀ {i} {A B C : Type}
{x y : Delay-crash-trace A B ∞}
{f g : B → Delay-crash-trace A C ∞} →
[ i ] x ∼ y → (∀ z → [ i ] f z ∼ g z) →
[ i ] x >>= f ∼ y >>= g
now >>=-cong q = q _
crash >>=-cong q = crash
later p >>=-cong q = later λ { .force → force p >>=-cong q }
tell p >>=-cong q = tell (p >>=-cong q)
trace-cong :
∀ {i} {A B : Type} {x y : Delay-crash-trace A B ∞} →
[ i ] x ∼ y → C.[ i ] trace x ∼ trace y
trace-cong now = []
trace-cong crash = []
trace-cong (later p) = refl ∷ λ { .force → trace-cong (force p) }
trace-cong (tell p) = refl ∷ λ { .force → trace-cong p }
delay-crash-cong :
∀ {i} {A B : Type} {x y : Delay-crash-trace A B ∞} →
[ i ] x ∼ y → D.[ i ] delay-crash x ∼ delay-crash y
delay-crash-cong now = now
delay-crash-cong crash = now
delay-crash-cong (later p) = later λ { .force →
delay-crash-cong (force p) }
delay-crash-cong (tell p) = delay-crash-cong p
------------------------------------------------------------------------
-- More lemmas
-- The delay-crash function commutes with _>>=_ (in a certain sense).
delay-crash->>= :
∀ {i A B C} (x : Delay-crash-trace A B ∞)
{f : B → Delay-crash-trace A C ∞} →
D.[ i ] delay-crash (x >>= f) ∼
delay-crash x >>= delay-crash ∘ f
delay-crash->>= (now x) = D.reflexive _
delay-crash->>= crash = D.reflexive _
delay-crash->>= (later x m) = later λ { .force →
delay-crash->>= (force m) }
delay-crash->>= (tell x m) = delay-crash->>= m
-- Use of _⟨$⟩_ does not affect the trace.
trace-⟨$⟩ :
∀ {i} {A B C : Type} {f : B → C}
(x : Delay-crash-trace A B ∞) →
C.[ i ] trace (f ⟨$⟩ x) ∼ trace x
trace-⟨$⟩ (now x) = []
trace-⟨$⟩ crash = []
trace-⟨$⟩ (later _ x) = refl ∷ λ { .force → trace-⟨$⟩ (force x) }
trace-⟨$⟩ (tell _ x) = refl ∷ λ { .force → trace-⟨$⟩ x }
| {
"alphanum_fraction": 0.5017391304,
"avg_line_length": 30.3773584906,
"ext": "agda",
"hexsha": "c11f49dd096bb0d211db066ee4ab835580fb3ceb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "src/Lambda/Delay-crash-trace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "src/Lambda/Delay-crash-trace.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "src/Lambda/Delay-crash-trace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2697,
"size": 8050
} |
module Examples.TestCall where
open import Prelude
open import Libraries.SelectiveReceive
open import Libraries.Call
open SelRec
AddReplyMessage : MessageType
AddReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ
AddReply : InboxShape
AddReply = [ AddReplyMessage ]ˡ
AddMessage : MessageType
AddMessage = ValueType UniqueTag ∷ ReferenceType AddReply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ
Calculator : InboxShape
Calculator = [ AddMessage ]ˡ
calculatorActor : ∀ {i} → ∞ActorM (↑ i) Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → [])
calculatorActor = loop
where
loop : ∀ {i} → ∞ActorM i Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → [])
loop .force = receive ∞>>= λ {
(Msg Z (tag ∷ _ ∷ n ∷ m ∷ [])) → do
Z ![t: Z ] ((lift tag) ∷ [ lift (n + m) ]ᵃ )
strengthen []
loop
; (Msg (S ()) _) }
TestBox : InboxShape
TestBox = AddReply
calltestActor : ∀ {i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → [])
calltestActor .force = spawn∞ calculatorActor ∞>> do
x ← call [] Z Z 0
((lift 10) ∷ [ lift 32 ]ᵃ)
⊆-refl Z
strengthen []
return-result x
where
return-result : SelRec TestBox (call-select 0 ⊆-refl Z) →
∀ {i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → [])
return-result record { msg = (Msg Z (tag ∷ n ∷ [])) } = return n
return-result record { msg = (Msg (S x) x₁) ; msg-ok = () }
| {
"alphanum_fraction": 0.5998573466,
"avg_line_length": 29.829787234,
"ext": "agda",
"hexsha": "51839c35ecf381ca0fabe00df3be2a78d4c67984",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Examples/TestCall.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Examples/TestCall.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Examples/TestCall.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 463,
"size": 1402
} |
module Tactic.Nat.Coprime.Problem where
open import Prelude
open import Prelude.List.Relations.All
open import Numeric.Nat.GCD
Atom = Nat
infixl 7 _⊗_
infix 3 _⋈_
infix 2 _⊨_
data Exp : Set where
atom : (x : Atom) → Exp
_⊗_ : (a b : Exp) → Exp
data Formula : Set where
_⋈_ : (a b : Exp) → Formula
data Problem : Set where
_⊨_ : (Γ : List Formula) (φ : Formula) → Problem
Env = Atom → Nat
⟦_⟧e_ : Exp → Env → Nat
⟦ atom x ⟧e ρ = ρ x
⟦ e ⊗ e₁ ⟧e ρ = ⟦ e ⟧e ρ * ⟦ e₁ ⟧e ρ
⟦_⟧f_ : Formula → Env → Set
⟦ a ⋈ b ⟧f ρ = Coprime (⟦ a ⟧e ρ) (⟦ b ⟧e ρ)
⟦_⟧p'_ : Problem → Env → Set
⟦ Γ ⊨ φ ⟧p' ρ = All (⟦_⟧f ρ) Γ → ⟦ φ ⟧f ρ
⟦_⟧p_ : Problem → Env → Set
⟦ Γ ⊨ φ ⟧p ρ = foldr (λ ψ A → ⟦ ψ ⟧f ρ → A) (⟦ φ ⟧f ρ) Γ
curryProblem : ∀ Q ρ → ⟦ Q ⟧p' ρ → ⟦ Q ⟧p ρ
curryProblem ([] ⊨ φ) ρ H = H []
curryProblem (x ∷ Γ ⊨ φ) ρ H = λ x → curryProblem (Γ ⊨ φ) ρ (H ∘ (x ∷_))
| {
"alphanum_fraction": 0.5406643757,
"avg_line_length": 21.2926829268,
"ext": "agda",
"hexsha": "f52fd7b4de1c5a98dc0246b5be0155cb7dc44957",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Coprime/Problem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Coprime/Problem.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Coprime/Problem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 455,
"size": 873
} |
------------------------------------------------------------------------------
-- Testing the erasing of the duplicate definitions required by a conjecture
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DuplicateAgdaDefinitions2 where
-- We add 4 to the fixities of the standard library.
infix 8 _<_ _≤_
infix 7 _≡_
------------------------------------------------------------------------------
postulate
D : Set
zero true false : D
succ : D → D
data _≡_ (x : D) : D → Set where
refl : x ≡ x
data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)
data Bool : D → Set where
tB : Bool true
fB : Bool false
{-# ATP axioms tB fB #-}
postulate
_<_ : D → D → D
<-00 : zero < zero ≡ false
<-0S : ∀ n → zero < succ n ≡ true
<-S0 : ∀ n → succ n < zero ≡ false
<-SS : ∀ m n → succ m < succ n ≡ m < n
_≤_ : D → D → D
m ≤ n = m < succ n
{-# ATP definition _≤_ #-}
NLE : D → D → Set
NLE m n = m ≤ n ≡ false
{-# ATP definition NLE #-}
postulate Sx≰0 : ∀ {n} → N n → NLE (succ n) zero
≤-Bool : ∀ {m n} → N m → N n → Bool (m ≤ n)
≤-Bool {n = n} zN Nn = prf
where postulate prf : Bool (zero ≤ n)
≤-Bool (sN {m} Nm) zN = prf
where postulate prf : Bool (succ m ≤ zero)
{-# ATP prove prf Sx≰0 #-}
≤-Bool (sN {m} Nm) (sN {n} Nn) = prf (≤-Bool Nm Nn)
where postulate prf : Bool (m ≤ n) → Bool (succ m ≤ succ n)
| {
"alphanum_fraction": 0.4430067776,
"avg_line_length": 27.05,
"ext": "agda",
"hexsha": "01cdb4a258db7d7ccb0a1495fba329c333e33e09",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/DuplicateAgdaDefinitions2.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/DuplicateAgdaDefinitions2.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/DuplicateAgdaDefinitions2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 519,
"size": 1623
} |
{-# OPTIONS --safe --without-K #-}
module Data.List.Membership.Propositional.Disjoint {ℓ} {A : Set ℓ} where
import Relation.Binary.PropositionalEquality as P
open import Data.List.Membership.Setoid.Disjoint (P.setoid A) public
| {
"alphanum_fraction": 0.7709251101,
"avg_line_length": 45.4,
"ext": "agda",
"hexsha": "a303cfed49689b4c11c7e6da1f74177eb604bc46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-distinct-disjoint",
"max_forks_repo_path": "src/Data/List/Membership/Propositional/Disjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-distinct-disjoint",
"max_issues_repo_path": "src/Data/List/Membership/Propositional/Disjoint.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-distinct-disjoint",
"max_stars_repo_path": "src/Data/List/Membership/Propositional/Disjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 59,
"size": 227
} |
{-# OPTIONS --type-in-type --no-pattern-matching #-}
open import Spire.DarkwingDuck.Primitive
module Spire.DarkwingDuck.Derived where
----------------------------------------------------------------------
subst : (A : Set) (x : A) (y : A) (P : A → Set) → P x → x ≡ y → P y
subst A x y P p = elimEq A x (λ y _ → P y) p y
ISet : Set → Set
ISet I = I → Set
Scope : Tel → Set
Scope = elimTel (λ _ → Set) ⊤ (λ A B ih → Σ A ih)
----------------------------------------------------------------------
UncurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set)
→ Set
UncurriedBranches E P X = Branches E P → X
CurriedBranchesM : Enum → Set
CurriedBranchesM E = (P : Tag E → Set) (X : Set) → Set
CurriedBranches : (E : Enum) → CurriedBranchesM E
CurriedBranches = elimEnum CurriedBranchesM
(λ P X → X)
(λ l E ih P X → P here → ih (λ t → P (there t)) X)
CurryBranches : Enum → Set
CurryBranches E = (P : Tag E → Set) (X : Set) → UncurriedBranches E P X → CurriedBranches E P X
curryBranches : (E : Enum) → CurryBranches E
curryBranches = elimEnum CurryBranches
(λ P X f → f tt)
(λ l E ih P X f c → ih (λ t → P (there t)) X (λ cs → f (c , cs)))
----------------------------------------------------------------------
UncurriedScope : (T : Tel) (X : Scope T → Set) → Set
UncurriedScope T X = (xs : Scope T) → X xs
CurriedScope : (T : Tel) (X : Scope T → Set) → Set
CurriedScope = elimTel
(λ T → (X : Scope T → Set) → Set)
(λ X → X tt)
(λ A B ih X → (a : A) → ih a (λ b → X (a , b)))
CurryScope : Tel → Set
CurryScope T = (X : Scope T → Set) → UncurriedScope T X → CurriedScope T X
curryScope : (T : Tel) → CurryScope T
curryScope = elimTel CurryScope
(λ X f → f tt)
(λ A B ih X f a → ih a (λ b → X (a , b)) (λ b → f (a , b)))
UncurryScope : Tel → Set
UncurryScope T = (X : Scope T → Set) → CurriedScope T X → UncurriedScope T X
uncurryScope : (T : Tel) → UncurryScope T
uncurryScope = elimTel UncurryScope
(λ X x → elimUnit X x)
(λ A B ih X f → elimPair A (λ a → Scope (B a)) X (λ a b → ih a (λ b → X (a , b)) (f a) b))
----------------------------------------------------------------------
UncurriedFunc : (I : Set) (D : Desc I) (X : ISet I) → Set
UncurriedFunc I D X = (i : I) → Func I D X i → X i
CurriedFuncM : (I : Set) → Desc I → Set
CurriedFuncM I _ = (X : ISet I) → Set
CurriedFunc : (I : Set) (D : Desc I) (X : ISet I) → Set
CurriedFunc I = elimDesc I (CurriedFuncM I)
(λ i X → X i)
(λ i D ih X → (x : X i) → ih X)
(λ A B ih X → (a : A) → ih a X)
CurryFunc : (I : Set) → Desc I → Set
CurryFunc I D = (X : ISet I) → UncurriedFunc I D X → CurriedFunc I D X
curryFunc : (I : Set) (D : Desc I) → CurryFunc I D
curryFunc I = elimDesc I (CurryFunc I)
(λ i X cn → cn i refl)
(λ i D ih X cn x → ih X (λ j xs → cn j (x , xs)))
(λ A B ih X cn a → ih a X (λ j xs → cn j (a , xs)))
----------------------------------------------------------------------
UncurriedHyps : (I : Set) (D : Desc I) (X : ISet I)
(P : (i : I) → X i → Set)
(cn : UncurriedFunc I D X)
→ Set
UncurriedHyps I D X P cn =
(i : I) (xs : Func I D X i) (ihs : Hyps I D X P i xs) → P i (cn i xs)
CurriedHypsM : (I : Set) (D : Desc I) → Set
CurriedHypsM I D = (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedFunc I D X) → Set
CurriedHyps : (I : Set) (D : Desc I) → CurriedHypsM I D
CurriedHyps I = elimDesc I (CurriedHypsM I)
(λ i X P cn → P i (cn i refl))
(λ i D ih X P cn → (x : X i) → P i x → ih X P (λ j xs → cn j (x , xs)))
(λ A B ih X P cn → (a : A) → ih a X P (λ j xs → cn j (a , xs)))
UncurryHyps : (I : Set) (D : Desc I) → Set
UncurryHyps I D = (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedFunc I D X)
→ CurriedHyps I D X P cn → UncurriedHyps I D X P cn
uncurryHyps : (I : Set) (D : Desc I) → UncurryHyps I D
uncurryHyps I = elimDesc I (UncurryHyps I)
(λ j X P cn pf i q u → elimEq I j
(λ k r → P k (cn k r))
pf i q
)
(λ j D ih X P cn pf i → elimPair (X j)
(λ _ → Func I D X i)
(λ xs → Hyps I (Rec j D) X P i xs → P i (cn i xs))
(λ x xs → elimPair (P j x)
(λ _ → Hyps I D X P i xs)
(λ _ → P i (cn i (x , xs)))
(λ p ps → ih X P (λ j ys → cn j (x , ys))
(pf x p) i xs ps
)
)
)
(λ A B ih X P cn pf i → elimPair A
(λ a → Func I (B a) X i)
(λ xs → Hyps I (Arg A (λ a → B a)) X P i xs → P i (cn i xs))
(λ a xs → ih a X P (λ j ys → cn j (a , ys))
(pf a) i xs
)
)
----------------------------------------------------------------------
BranchesD : Enum → Tel → Set
BranchesD E T = Branches E (λ _ → Desc (Scope T))
caseD : (E : Enum) (T : Tel) (cs : BranchesD E T) (t : Tag E) → Desc (Scope T)
caseD E T = case E (λ _ → Desc (Scope T))
sumD : (E : Enum) (T : Tel) (cs : BranchesD E T) → Desc (Scope T)
sumD E T cs = Arg (Tag E) (λ t → caseD E T cs t)
Indices : Tel → Set
Indices P = Scope P → Tel
indices : (P : Tel) → CurriedScope P (λ _ → Tel) → Indices P
indices P I = uncurryScope P (λ p → Tel) I
Constrs : (E : Enum) (P : Tel) (I : Indices P) → Set
Constrs E P I = (p : Scope P) → BranchesD E (I p)
constrs : (E : Enum) (P : Tel) (I : Indices P) → CurriedScope P (λ p → BranchesD E (I p)) → Constrs E P I
constrs E P I C = uncurryScope P (λ p → BranchesD E (I p)) C
Data : (X : (N : String) (E : Enum) (P : Tel) (I : Indices P) (C : Constrs E P I) → Set)
→ Set
Data X = (N : String) (E : Enum) (P : Tel) (I : Indices P) (C : Constrs E P I)
→ X N E P I C
----------------------------------------------------------------------
FormUncurried : Data λ N E P I C
→ UncurriedScope P λ p
→ UncurriedScope (I p) λ i
→ Set
FormUncurried N E P I C p =
μ N (Scope P) (Scope (I p)) (sumD E (I p) (C p)) p
Former : (P : Tel) → Indices P → Set
Former P I = CurriedScope P λ p → CurriedScope (I p) λ i → Set
Form : Data λ N E P I C → Former P I
Form N E P I C =
curryScope P (λ p → CurriedScope (I p) λ i → Set) λ p →
curryScope (I p) (λ i → Set) λ i →
FormUncurried N E P I C p i
----------------------------------------------------------------------
injUncurried : Data λ N E P I C
→ (t : Tag E)
→ UncurriedScope P λ p
→ CurriedFunc (Scope (I p)) (caseD E (I p) (C p) t) (FormUncurried N E P I C p)
injUncurried N E P I C t p = curryFunc (Scope (I p)) (caseD E (I p) (C p) t)
(FormUncurried N E P I C p)
(λ i xs → init (t , xs))
Inj : Data λ N E P I C → (t : Tag E) → Set
Inj N E P I C t = CurriedScope P λ p
→ CurriedFunc (Scope (I p)) (caseD E (I p) (C p) t) (FormUncurried N E P I C p)
inj : Data λ N E P I C → (t : Tag E) → Inj N E P I C t
inj N E P I C t = curryScope P
(λ p → CurriedFunc (Scope (I p)) (caseD E (I p) (C p) t) (FormUncurried N E P I C p))
(injUncurried N E P I C t)
----------------------------------------------------------------------
indCurried : (ℓ : String) (P I : Set) (D : Desc I) (p : P)
(M : (i : I) → μ ℓ P I D p i → Set)
(f : CurriedHyps I D (μ ℓ P I D p) M (λ _ xs → init xs))
(i : I) (x : μ ℓ P I D p i) → M i x
indCurried ℓ P I D p M f i x =
ind ℓ P I D p M (uncurryHyps I D (μ ℓ P I D p) M (λ _ xs → init xs) f) i x
SumCurriedHyps : Data λ N E P I C
→ UncurriedScope P λ p
→ (M : CurriedScope (I p) (λ i → FormUncurried N E P I C p i → Set))
→ Tag E → Set
SumCurriedHyps N E P I C p M t =
let unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M in
CurriedHyps (Scope (I p)) (caseD E (I p) (C p) t)
(FormUncurried N E P I C p) unM (λ i xs → init (t , xs))
elimUncurried : Data λ N E P I C
→ UncurriedScope P λ p
→ (M : CurriedScope (I p) (λ i → FormUncurried N E P I C p i → Set))
→ let unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M
in UncurriedBranches E
(SumCurriedHyps N E P I C p M)
(CurriedScope (I p) (λ i → (x : FormUncurried N E P I C p i) → unM i x))
elimUncurried N E P I C p M cs = let
unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M
in
curryScope (I p) (λ i → (x : FormUncurried N E P I C p i) → unM i x)
(indCurried N (Scope P) (Scope (I p)) (sumD E (I p) (C p)) p unM
(case E (SumCurriedHyps N E P I C p M) cs))
Elim : Data λ N E P I C → Set
Elim N E P I C = CurriedScope P λ p
→ (M : CurriedScope (I p) (λ i → FormUncurried N E P I C p i → Set))
→ let unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M
in CurriedBranches E
(SumCurriedHyps N E P I C p M)
(CurriedScope (I p) (λ i → (x : FormUncurried N E P I C p i) → unM i x))
elim : Data λ N E P I C → Elim N E P I C
elim N E P I C = curryScope P
(λ p → (M : CurriedScope (I p) (λ i → FormUncurried N E P I C p i → Set))
→ let unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M
in CurriedBranches E
(SumCurriedHyps N E P I C p M)
(CurriedScope (I p) (λ i → (x : FormUncurried N E P I C p i) → unM i x)))
(λ p M → let unM = uncurryScope (I p) (λ i → FormUncurried N E P I C p i → Set) M
in curryBranches E
(SumCurriedHyps N E P I C p M)
(CurriedScope (I p) (λ i → (x : FormUncurried N E P I C p i) → unM i x))
(elimUncurried N E P I C p M))
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.5169686985,
"avg_line_length": 35.8464566929,
"ext": "agda",
"hexsha": "6cbf60151b5ee1c74c638a97f277d5d25f9bd9ce",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/spire/spire/3d67f137ee9423b7e6f8593634583998cd692353/formalization/agda/Spire/DarkwingDuck/Derived.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/spire/spire/3d67f137ee9423b7e6f8593634583998cd692353/formalization/agda/Spire/DarkwingDuck/Derived.agda",
"max_line_length": 105,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/spire/spire/3d67f137ee9423b7e6f8593634583998cd692353/formalization/agda/Spire/DarkwingDuck/Derived.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 3587,
"size": 9105
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.Int where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing
open import Cubical.Data.Int as Int
renaming ( ℤ to ℤ ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_)
open CommRingStr using (0r ; 1r ; _+_ ; _·_ ; -_ ; isCommRing)
ℤCommRing : CommRing ℓ-zero
fst ℤCommRing = ℤ
0r (snd ℤCommRing) = 0
1r (snd ℤCommRing) = 1
_+_ (snd ℤCommRing) = _+ℤ_
_·_ (snd ℤCommRing) = _·ℤ_
- snd ℤCommRing = -ℤ_
isCommRing (snd ℤCommRing) = isCommRingℤ
where
abstract
isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_
isCommRingℤ = makeIsCommRing isSetℤ Int.+Assoc (λ _ → refl)
-Cancel Int.+Comm Int.·Assoc
Int.·Rid ·DistR+ Int.·Comm
| {
"alphanum_fraction": 0.64,
"avg_line_length": 29.8076923077,
"ext": "agda",
"hexsha": "c20c263cb10b5e7cee9b0502525e673a1971d726",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 295,
"size": 775
} |
-- Andreas, 2016-10-14, issue #2257, reported by m0davis
-- Bisected by Nisse.
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.ip:20 #-}
-- {-# OPTIONS -v tc:20 #-}
record R (A : Set) : Set₁ where
field
a : A
F : ∀ {f} → Set
foo : Set
foo = ∀ {f} → {!!}
field
bar : Set
| {
"alphanum_fraction": 0.5211726384,
"avg_line_length": 16.1578947368,
"ext": "agda",
"hexsha": "54e55df7bac01c1d173ed3e75a6158a298591c72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2257b.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2257b.agda",
"max_line_length": 56,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2257b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 114,
"size": 307
} |
{-# OPTIONS --without-K #-}
module sets.finite.level where
open import sum
open import function.isomorphism.core
open import hott.level.core
open import hott.level.closure
open import hott.level.sets
open import sets.finite.core
finite-h2 : ∀ {i}{A : Set i} → IsFinite A → h 2 A
finite-h2 (n , fA) = iso-level (sym≅ fA) (fin-set n)
| {
"alphanum_fraction": 0.7185628743,
"avg_line_length": 25.6923076923,
"ext": "agda",
"hexsha": "4a0dd0759916ab5c4b63cbc9edd250183f6fee43",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/finite/hlevel.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/finite/hlevel.agda",
"max_line_length": 52,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/finite/hlevel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 99,
"size": 334
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert
import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate
open import LibraBFT.Impl.OBM.Logging.Logging
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.LBFT
open import Optics.All
open import Util.Hash
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.ConsensusTypes.SyncInfo where
highestRound : SyncInfo → Round
highestRound self = max (self ^∙ siHighestCertifiedRound) (self ^∙ siHighestTimeoutRound)
verify : SyncInfo → ValidatorVerifier → Either ErrLog Unit
verifyM : SyncInfo → ValidatorVerifier → LBFT (Either ErrLog Unit)
verifyM self validator = pure (verify self validator)
module verify (self : SyncInfo) (validator : ValidatorVerifier) where
step₀ step₁ step₂ step₃ step₄ step₅ step₆ : Either ErrLog Unit
here' : List String → List String
epoch = self ^∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biEpoch
step₀ = do
lcheck (epoch == self ^∙ siHighestCommitCert ∙ qcCertifiedBlock ∙ biEpoch)
(here' ("Multi epoch in SyncInfo - HCC and HQC" ∷ []))
step₁
step₁ = do
lcheck (maybeS (self ^∙ siHighestTimeoutCert) true (λ tc -> epoch == tc ^∙ tcEpoch))
(here' ("Multi epoch in SyncInfo - TC and HQC" ∷ []))
step₂
step₂ = do
lcheck ( self ^∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound
≥? self ^∙ siHighestCommitCert ∙ qcCertifiedBlock ∙ biRound)
(here' ("HQC has lower round than HCC" ∷ []))
step₃
step₃ = do
lcheck (self ^∙ siHighestCommitCert ∙ qcCommitInfo /= BlockInfo.empty)
(here' ("HCC has no committed block" ∷ []))
step₄
step₄ = do
QuorumCert.verify (self ^∙ siHighestQuorumCert) validator
step₅
step₅ = do
-- Note: do not use (self ^∙ siHighestCommitCert) because it might be
-- same as siHighestQuorumCert -- so no need to check again
maybeS (self ^∙ sixxxHighestCommitCert) (pure unit) (` QuorumCert.verify ` validator)
step₆
step₆ = do
maybeS (self ^∙ siHighestTimeoutCert) (pure unit) (` TimeoutCertificate.verify ` validator)
here' t = "SyncInfo" ∷ "verify" ∷ t
verify = verify.step₀
hasNewerCertificates : SyncInfo → SyncInfo → Bool
hasNewerCertificates self other
= ⌊ self ^∙ siHighestCertifiedRound >? other ^∙ siHighestCertifiedRound ⌋
∨ ⌊ self ^∙ siHighestTimeoutRound >? other ^∙ siHighestTimeoutRound ⌋
∨ ⌊ self ^∙ siHighestCommitRound >? other ^∙ siHighestCommitRound ⌋
| {
"alphanum_fraction": 0.6798690671,
"avg_line_length": 38.6708860759,
"ext": "agda",
"hexsha": "4cde76ac70ac530e9730ab4b028a6250b70398c1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/SyncInfo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/SyncInfo.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/SyncInfo.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 874,
"size": 3055
} |
-- Andrease, 2016-12-31, issue #1975 reported by nad.
-- {-# OPTIONS -v tc.lhs.split:40 #-}
data ⊥ : Set where
record ⊤ : Set where
data Bool : Set where
true false : Bool
T : Bool → Set
T false = ⊥
T true = ⊤
module M (b : Bool) where
data D : Set where
c : T b → D
open M true
-- The following definition is rejected:
-- rejected : M.D false → ⊥
-- rejected (c x) = x
data D₂ : Set where
c : D₂
-- WAS: However, the following definition is accepted:
test : M.D false → ⊥
test (c x) = x
-- I think both definitions should be rejected.
-- NOW: Both are rejected.
| {
"alphanum_fraction": 0.6207482993,
"avg_line_length": 15.4736842105,
"ext": "agda",
"hexsha": "9ddb39c8f317b282026422c08673d10db74b3427",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1975.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1975.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1975.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 189,
"size": 588
} |
{-
This file contains:
- Equivalence with the pushout definition
Written by: Loïc Pujet, September 2019
- Associativity of the join
Written by: Loïc Pujet, September 2019
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Join.Properties where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Prod
open import Cubical.HITs.Join.Base
open import Cubical.HITs.Pushout
private
variable
ℓ ℓ' : Level
-- Alternative definition of the join using a pushout
joinPushout : (A : Type ℓ) → (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
joinPushout A B = Pushout {A = A × B} proj₁ proj₂
-- Proof that it is equal
joinPushout-iso-join : (A : Type ℓ) → (B : Type ℓ') → Iso (joinPushout A B) (join A B)
joinPushout-iso-join A B = iso joinPushout→join join→joinPushout join→joinPushout→join joinPushout→join→joinPushout
where
joinPushout→join : joinPushout A B → join A B
joinPushout→join (inl x) = inl x
joinPushout→join (inr x) = inr x
joinPushout→join (push y i) = push (proj₁ y) (proj₂ y) i
join→joinPushout : join A B → joinPushout A B
join→joinPushout (inl x) = inl x
join→joinPushout (inr x) = inr x
join→joinPushout (push a b i) = push (a , b) i
joinPushout→join→joinPushout : ∀ x → join→joinPushout (joinPushout→join x) ≡ x
joinPushout→join→joinPushout (inl x) = refl
joinPushout→join→joinPushout (inr x) = refl
joinPushout→join→joinPushout (push (a , b) j) = refl
join→joinPushout→join : ∀ x → joinPushout→join (join→joinPushout x) ≡ x
join→joinPushout→join (inl x) = refl
join→joinPushout→join (inr x) = refl
join→joinPushout→join (push a b j) = refl
-- We will need both the equivalence and path version
joinPushout≃join : (A : Type ℓ) → (B : Type ℓ') → joinPushout A B ≃ join A B
joinPushout≃join A B = isoToEquiv (joinPushout-iso-join A B)
joinPushout≡join : (A : Type ℓ) → (B : Type ℓ') → joinPushout A B ≡ join A B
joinPushout≡join A B = isoToPath (joinPushout-iso-join A B)
{-
Proof of associativity of the join
-}
join-assoc : (A B C : Type₀) → join (join A B) C ≡ join A (join B C)
join-assoc A B C = (joinPushout≡join (join A B) C) ⁻¹
∙ (spanEquivToPushoutPath sp3≃sp4) ⁻¹
∙ (3x3-span.3x3-lemma span) ⁻¹
∙ (spanEquivToPushoutPath sp1≃sp2)
∙ (joinPushout≡join A (join B C))
where
-- the meat of the proof is handled by the 3x3 lemma applied to this diagram
span : 3x3-span
span = record {
A00 = A; A02 = A × B; A04 = B;
A20 = A × C; A22 = A × B × C; A24 = B × C;
A40 = A × C; A42 = A × C; A44 = C;
f10 = proj₁; f12 = proj₁₂; f14 = proj₁;
f30 = λ x → x; f32 = proj₁₃; f34 = proj₂;
f01 = proj₁; f21 = proj₁₃; f41 = λ x → x;
f03 = proj₂; f23 = proj₂; f43 = proj₂;
H11 = H11; H13 = H13; H31 = H31; H33 = H33 }
where
proj₁₃ : A × B × C → A × C
proj₁₃ (a , (b , c)) = a , c
proj₁₂ : A × B × C → A × B
proj₁₂ (a , (b , c)) = a , b
H11 : (x : A × B × C) → proj₁ (proj₁₂ x) ≡ proj₁ (proj₁₃ x)
H11 (a , (b , c)) = refl
H13 : (x : A × B × C) → proj₂ (proj₁₂ x) ≡ proj₁ (proj₂ x)
H13 (a , (b , c)) = refl
H31 : (x : A × B × C) → proj₁₃ x ≡ proj₁₃ x
H31 (a , (b , c)) = refl
H33 : (x : A × B × C) → proj₂ (proj₁₃ x) ≡ proj₂ (proj₂ x)
H33 (a , (b , c)) = refl
-- the first pushout span appearing in the 3x3 lemma
sp1 : 3-span
sp1 = record {
A0 = 3x3-span.A□0 span;
A2 = 3x3-span.A□2 span;
A4 = 3x3-span.A□4 span;
f1 = 3x3-span.f□1 span;
f3 = 3x3-span.f□3 span }
-- the first span we are interested in
sp2 : 3-span
sp2 = record {
A0 = A ;
A2 = A × (join B C) ;
A4 = join B C ;
f1 = proj₁ ;
f3 = proj₂ }
-- proof that they are in fact equivalent
sp1≃sp2 : 3-span-equiv sp1 sp2
sp1≃sp2 = record {
e0 = A□0≃A;
e2 = A□2≃A×join;
e4 = joinPushout≃join B C;
H1 = H1;
H3 = H2 }
where
A×join : Type₀
A×join = A × (join B C)
A□2→A×join : 3x3-span.A□2 span → A×join
A□2→A×join (inl (a , b)) = a , inl b
A□2→A×join (inr (a , c)) = a , inr c
A□2→A×join (push (a , (b , c)) i) = a , push b c i
A×join→A□2 : A×join → 3x3-span.A□2 span
A×join→A□2 (a , inl b) = inl (a , b)
A×join→A□2 (a , inr c) = inr (a , c)
A×join→A□2 (a , push b c i) = push (a , (b , c)) i
A×join→A□2→A×join : ∀ x → A×join→A□2 (A□2→A×join x) ≡ x
A×join→A□2→A×join (inl (a , b)) = refl
A×join→A□2→A×join (inr (a , c)) = refl
A×join→A□2→A×join (push (a , (b , c)) i) = refl
A□2→A×join→A□2 : ∀ x → A□2→A×join (A×join→A□2 x) ≡ x
A□2→A×join→A□2 (a , inl b) = refl
A□2→A×join→A□2 (a , inr c) = refl
A□2→A×join→A□2 (a , push b c i) = refl
A□2≃A×join : 3x3-span.A□2 span ≃ A×join
A□2≃A×join = isoToEquiv (iso A□2→A×join A×join→A□2 A□2→A×join→A□2 A×join→A□2→A×join)
A→A□0 : A → 3x3-span.A□0 span
A→A□0 b = inl b
A□0→A : 3x3-span.A□0 span → A
A□0→A (inl b) = b
A□0→A (inr a) = proj₁ a
A□0→A (push a i) = proj₁ a
A→A□0→A : ∀ x → A□0→A (A→A□0 x) ≡ x
A→A□0→A x = refl
A□0→A→A□0 : ∀ x → A→A□0 (A□0→A x) ≡ x
A□0→A→A□0 (inl b) = refl
A□0→A→A□0 (inr a) j = push a j
A□0→A→A□0 (push a i) j = push a (j ∧ i)
A□0≃A : 3x3-span.A□0 span ≃ A
A□0≃A = isoToEquiv (iso A□0→A A→A□0 A→A□0→A A□0→A→A□0)
H1 : (x : 3x3-span.A□2 span) → proj₁ (A□2→A×join x) ≡ A□0→A (3x3-span.f□1 span x)
H1 (inl (a , b)) = refl
H1 (inr (a , c)) = refl
H1 (push (a , (b , c)) i) j = A□0→A (doubleCompPath-filler refl (λ i → push (a , c) i) refl i j)
H2 : (x : 3x3-span.A□2 span) → proj₂ (A□2→A×join x) ≡ fst (joinPushout≃join _ _) (3x3-span.f□3 span x)
H2 (inl (a , b)) = refl
H2 (inr (a , c)) = refl
H2 (push (a , (b , c)) i) j = fst (joinPushout≃join _ _) (doubleCompPath-filler refl (λ i → push (b , c) i) refl i j)
-- the second span appearing in 3x3 lemma
sp3 : 3-span
sp3 = record {
A0 = 3x3-span.A0□ span;
A2 = 3x3-span.A2□ span;
A4 = 3x3-span.A4□ span;
f1 = 3x3-span.f1□ span;
f3 = 3x3-span.f3□ span }
-- the second span we are interested in
sp4 : 3-span
sp4 = record {
A0 = join A B ;
A2 = (join A B) × C ;
A4 = C ;
f1 = proj₁ ;
f3 = proj₂ }
-- proof that they are in fact equivalent
sp3≃sp4 : 3-span-equiv sp3 sp4
sp3≃sp4 = record {
e0 = joinPushout≃join A B;
e2 = A2□≃join×C;
e4 = A4□≃C;
H1 = H4;
H3 = H3 }
where
join×C : Type₀
join×C = (join A B) × C
A2□→join×C : 3x3-span.A2□ span → join×C
A2□→join×C (inl (a , c)) = (inl a) , c
A2□→join×C (inr (b , c)) = (inr b) , c
A2□→join×C (push (a , (b , c)) i) = push a b i , c
join×C→A2□ : join×C → 3x3-span.A2□ span
join×C→A2□ (inl a , c) = inl (a , c)
join×C→A2□ (inr b , c) = inr (b , c)
join×C→A2□ (push a b i , c) = push (a , (b , c)) i
join×C→A2□→join×C : ∀ x → join×C→A2□ (A2□→join×C x) ≡ x
join×C→A2□→join×C (inl (a , c)) = refl
join×C→A2□→join×C (inr (b , c)) = refl
join×C→A2□→join×C (push (a , (b , c)) j) = refl
A2□→join×C→A2□ : ∀ x → A2□→join×C (join×C→A2□ x) ≡ x
A2□→join×C→A2□ (inl a , c) = refl
A2□→join×C→A2□ (inr b , c) = refl
A2□→join×C→A2□ (push a b i , c) = refl
A2□≃join×C : 3x3-span.A2□ span ≃ join×C
A2□≃join×C = isoToEquiv (iso A2□→join×C join×C→A2□ A2□→join×C→A2□ join×C→A2□→join×C)
C→A4□ : C → 3x3-span.A4□ span
C→A4□ b = inr b
A4□→C : 3x3-span.A4□ span → C
A4□→C (inl x) = proj₂ x
A4□→C (inr c) = c
A4□→C (push x i) = proj₂ x
C→A4□→C : ∀ x → A4□→C (C→A4□ x) ≡ x
C→A4□→C x = refl
A4□→C→A4□ : ∀ x → C→A4□ (A4□→C x) ≡ x
A4□→C→A4□ (inl x) j = push x (~ j)
A4□→C→A4□ (inr c) = refl
A4□→C→A4□ (push x i) j = push x (~ j ∨ i)
A4□≃C : 3x3-span.A4□ span ≃ C
A4□≃C = isoToEquiv (iso A4□→C C→A4□ C→A4□→C A4□→C→A4□)
H3 : (x : 3x3-span.A2□ span) → proj₂ (A2□→join×C x) ≡ A4□→C (3x3-span.f3□ span x)
H3 (inl (a , c)) = refl
H3 (inr (b , c)) = refl
H3 (push (a , (b , c)) i) j = A4□→C (doubleCompPath-filler refl (λ i → push (a , c) i) refl i j)
H4 : (x : 3x3-span.A2□ span) → proj₁ (A2□→join×C x) ≡ fst (joinPushout≃join _ _) (3x3-span.f1□ span x)
H4 (inl (a , c)) = refl
H4 (inr (b , c)) = refl
H4 (push (a , (b , c)) i) j = fst (joinPushout≃join _ _) (doubleCompPath-filler refl (λ i → push (a , b) i) refl i j)
| {
"alphanum_fraction": 0.5119375069,
"avg_line_length": 33.4154411765,
"ext": "agda",
"hexsha": "86076564bbae6454cbeaae1e633f705d787284d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/Join/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/Join/Properties.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/Join/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4141,
"size": 9089
} |
module plantsigma where
data Tree : Set where
oak : Tree
pine : Tree
spruce : Tree
data Flower : Set where
rose : Flower
lily : Flower
data PlantGroup : Set where
tree : PlantGroup
flower : PlantGroup
PlantsInGroup : PlantGroup -> Set
PlantsInGroup tree = Tree
PlantsInGroup flower = Flower
data Plant : Set where
plant : (g : PlantGroup) -> PlantsInGroup g -> Plant
f : Plant -> PlantGroup
f (plant g pg) = g
| {
"alphanum_fraction": 0.6741071429,
"avg_line_length": 15.4482758621,
"ext": "agda",
"hexsha": "df5abf9f90815fa57da1b8a9b3e4985afb379440",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/plantsigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/plantsigma.agda",
"max_line_length": 54,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/plantsigma.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 133,
"size": 448
} |
{-# OPTIONS --without-K #-}
module TNT.Base where
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Nat.Divisibility
open import Data.Nat.Properties
open import Agda.Builtin.Equality
open import Relation.Nullary.Decidable
open import Data.Empty
-- defination of congruence modulo
_≡_⟨mod_⟩ : ℕ → ℕ → (n : ℕ) → {≢0 : False (n ≟ 0)} → Set
(a ≡ b ⟨mod 0 ⟩){}
a ≡ b ⟨mod suc n ⟩ = a % suc n ≡ b % suc n
-- commutative
≡-comm : ∀ {ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a
≡-comm refl = refl
≡-mod-comm : ∀ {a b n : ℕ} → a ≡ b ⟨mod suc n ⟩ → b ≡ a ⟨mod suc n ⟩
≡-mod-comm refl₁ = ≡-comm refl₁
-- divisibility
a≡b⟨modn⟩⇒a%n-b%n≡0 : ∀ {a b n : ℕ} → a ≡ b ⟨mod suc n ⟩ → ∣ a % suc n - b % suc n ∣ ≡ 0
a≡b⟨modn⟩⇒a%n-b%n≡0 refl₁ = n≡m⇒∣n-m∣≡0 refl₁
a%n-b%n≡0⇒⟨a-b⟩%n≡0 : ∀ {a b n : ℕ} → ∣ a % suc n - b % suc n ∣ ≡ 0 → ∣ a - b ∣ % suc n ≡ 0
a%n-b%n≡0⇒⟨a-b⟩%n≡0 = {!!}
≡-mod-div : ∀ {a b n : ℕ} → a ≡ b ⟨mod suc n ⟩ → suc n ∣ ∣ a - b ∣
≡-mod-div {a} {b} {n} refl₁ = m%n≡0⇒n∣m ∣ a - b ∣ n (a%n-b%n≡0⇒⟨a-b⟩%n≡0 {a} {b} {n} (a≡b⟨modn⟩⇒a%n-b%n≡0 {a} {b} {n} refl₁))
-- transitivity
≡-trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
≡-trans refl refl = refl
≡-mod-trans : ∀ {a b c n : ℕ} → a ≡ b ⟨mod suc n ⟩ → b ≡ c ⟨mod suc n ⟩ → a ≡ c ⟨mod suc n ⟩
≡-mod-trans refl₁ refl₂ = ≡-trans refl₁ refl₂
| {
"alphanum_fraction": 0.52,
"avg_line_length": 28.8043478261,
"ext": "agda",
"hexsha": "2d87c486705056577593c06c89e1ab39648f2394",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "38976a5b58af67b004c387260cd07636c2a7567a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "PragmaTwice/TNT",
"max_forks_repo_path": "src/TNT/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "38976a5b58af67b004c387260cd07636c2a7567a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "PragmaTwice/TNT",
"max_issues_repo_path": "src/TNT/Base.agda",
"max_line_length": 125,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "38976a5b58af67b004c387260cd07636c2a7567a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "PragmaTwice/TNT",
"max_stars_repo_path": "src/TNT/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-17T05:52:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-16T14:33:09.000Z",
"num_tokens": 687,
"size": 1325
} |
module x01-842Naturals-hc where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
one : ℕ
one = suc zero
two : ℕ
two = suc (suc zero)
seven : ℕ
seven = suc (suc (suc (suc (suc (suc (suc zero))))))
{-# BUILTIN NATURAL ℕ #-}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
_ : 2 + 3 ≡ 5
_ = refl
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3 ≡⟨⟩ -- is shorthand for
(suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- many steps condensed
5
∎
_*_ : ℕ → ℕ → ℕ
zero * n = 0
suc m * n = n + (m * n)
_ =
begin
2 * 3 ≡⟨⟩ -- many steps condensed
6
∎
_^_ : ℕ → ℕ → ℕ
m ^ zero = 1
m ^ suc n = m * (m ^ n)
_ : 2 ^ 3 ≡ 8
_ = refl
_ : 2 ^ 4 ≡ 16
_ = refl
_ : 3 ^ 3 ≡ 27
_ = refl
_ : 3 ^ 10 ≡ 59049
_ = refl
-- Monus (subtraction for naturals, bottoms out at zero).
_∸_ : ℕ → ℕ → ℕ
zero ∸ n = zero
m ∸ zero = m
suc m ∸ suc n = m ∸ n
_ =
begin
3 ∸ 2
≡⟨⟩ -- many steps condensed
1
∎
_ =
begin
2 ∸ 3
≡⟨⟩ -- many steps condensed
0
∎
_ = begin 5 ∸ 3 ≡⟨⟩ 2 ∎
_ = begin 3 ∸ 5 ≡⟨⟩ 0 ∎
infixl 6 _+_ _∸_
infixl 7 _*_
-- {-# BUILTIN NATPLUS _+_ #-}
-- {-# BUILTIN NATTIMES _*_ #-}
-- {-# BUILTIN NATMINUS _∸_ #-}
-- Binary representation.
-- Modified from PLFA exercise (thanks to David Darais).
data Bin-ℕ : Set where
bits : Bin-ℕ
_x0 : Bin-ℕ → Bin-ℕ
_x1 : Bin-ℕ → Bin-ℕ
-- Our representation of zero is different from PLFA.
-- We use the empty sequence of bits (more consistent).
bin-zero : Bin-ℕ
bin-zero = bits
bin-one : Bin-ℕ
bin-one = bits x1 -- 1 in binary
bin-two : Bin-ℕ
bin-two = bits x1 x0 -- 10 in binary
-- 842 exercise: Increment (1 point)
inc : Bin-ℕ → Bin-ℕ
inc bits = bits x1
inc (m x0) = m x1
inc (m x1) = inc m x0
_ : inc (bits x1 x0 x1 x0) ≡ bits x1 x0 x1 x1
_ = refl
_ : inc (bits x1 x0 x1 x1) ≡ bits x1 x1 x0 x0
_ = refl
_ : inc (bits x1 x1 x1 x1) ≡ bits x1 x0 x0 x0 x0
_ = refl
-- 842 exercise: To/From (2 points)
-- Hint: avoid addition and multiplication. Use the provided dbl.
dbl : ℕ → ℕ
dbl zero = zero
dbl (suc m) = suc (suc (dbl m))
tob : ℕ → Bin-ℕ
tob zero = bits
tob (suc m) = inc (tob m)
fromb : Bin-ℕ → ℕ
fromb bits = 0
fromb (n x0) = dbl (fromb n)
fromb (n x1) = suc (dbl (fromb n))
_ : tob 6 ≡ bits x1 x1 x0
_ = refl
_ : tob 7 ≡ bits x1 x1 x1
_ = refl
_ : tob 8 ≡ bits x1 x0 x0 x0
_ = refl
_ : fromb (bits x1 x1 x0) ≡ 6
_ = refl
_ : fromb (bits x1 x1 x1) ≡ 7
_ = refl
_ : fromb (bits x1 x0 x0 x0) ≡ 8
_ = refl
-- 842 exercise: BinAdd (2 points)
-- Write the addition function for binary notation.
-- Do NOT use 'to' and 'from'. Work with Bin-ℕ as if ℕ did not exist.
-- Hint: use recursion on both m and n.
_bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ
m bin-+ bits = m
bits bin-+ n = n
(m x0) bin-+ (n x0) = (m bin-+ n) x0
(m x0) bin-+ (n x1) = (m bin-+ n) x1
(m x1) bin-+ (n x0) = (m bin-+ n) x1
(m x1) bin-+ (n x1) = inc ((m bin-+ n) x1)
-- Tests can use to/from, or write out binary constants as below.
-- Again: write more tests!
_ : (bits x1 x0) bin-+ (bits x1 x1) ≡ (bits x1 x0 x1)
_ = refl
_ : tob 0 bin-+ tob 0 ≡ tob 0
_ = refl
_ : tob 7 bin-+ tob 7 ≡ tob 14
_ = refl
_ : tob 3 bin-+ tob 4 ≡ tob 7
_ = refl
{-
-- Many definitions from above are also in the standard library.
-- open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_)
-- Unicode used in this chapter:
ℕ U+2115 DOUBLE-STRUCK CAPITAL N (\bN)
→ U+2192 RIGHTWARDS ARROW (\to, \r, \->)
∸ U+2238 DOT MINUS (\.-)
≡ U+2261 IDENTICAL TO (\==)
⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<)
⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>)
∎ U+220E END OF PROOF (\qed)
-}
| {
"alphanum_fraction": 0.5461378953,
"avg_line_length": 19.5837563452,
"ext": "agda",
"hexsha": "8a6199f41ab99b17e04f4076249896699f5eead2",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc.agda",
"max_line_length": 76,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x01-842Naturals-hc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 1668,
"size": 3858
} |
import cedille-options
open import general-util
module spans (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where
open import lib
open import functions
open import cedille-types
open import constants
open import conversion
open import ctxt
open import is-free
open import syntax-util
open import to-string options
open import subst
--------------------------------------------------
-- span datatype
--------------------------------------------------
err-m : Set
err-m = maybe string
data span : Set where
mk-span : string → posinfo → posinfo → 𝕃 tagged-val {- extra information for the span -} → err-m → span
span-to-rope : span → rope
span-to-rope (mk-span name start end extra nothing) =
[[ "[\"" ^ name ^ "\"," ^ start ^ "," ^ end ^ ",{" ]] ⊹⊹ tagged-vals-to-rope 0 extra ⊹⊹ [[ "}]" ]]
span-to-rope (mk-span name start end extra (just err)) =
[[ "[\"" ^ name ^ "\"," ^ start ^ "," ^ end ^ ",{" ]] ⊹⊹ tagged-vals-to-rope 0 (("error" , [[ err ]] , []) :: extra) ⊹⊹ [[ "}]" ]]
data error-span : Set where
mk-error-span : string → posinfo → posinfo → 𝕃 tagged-val → string → error-span
data spans : Set where
regular-spans : maybe error-span → 𝕃 span → spans
global-error : string {- error message -} → maybe span → spans
is-error-span : span → 𝔹
is-error-span (mk-span _ _ _ _ err) = isJust err
get-span-error : span → err-m
get-span-error (mk-span _ _ _ _ err) = err
get-tagged-vals : span → 𝕃 tagged-val
get-tagged-vals (mk-span _ _ _ tvs _) = tvs
spans-have-error : spans → 𝔹
spans-have-error (regular-spans es ss) = isJust es
spans-have-error (global-error _ _) = tt
empty-spans : spans
empty-spans = regular-spans nothing []
𝕃span-to-rope : 𝕃 span → rope
𝕃span-to-rope (s :: []) = span-to-rope s
𝕃span-to-rope (s :: ss) = span-to-rope s ⊹⊹ [[ "," ]] ⊹⊹ 𝕃span-to-rope ss
𝕃span-to-rope [] = [[]]
spans-to-rope : spans → rope
spans-to-rope (regular-spans _ ss) = [[ "{\"spans\":["]] ⊹⊹ 𝕃span-to-rope ss ⊹⊹ [[ "]}" ]] where
spans-to-rope (global-error e s) =
[[ global-error-string e ]] ⊹⊹ maybe-else [[]] (λ s → [[", \"global-error\":"]] ⊹⊹ span-to-rope s) s
print-file-id-table : ctxt → 𝕃 tagged-val
print-file-id-table (mk-ctxt mod (syms , mn-fn , mn-ps , fn-ids , id , id-fns) is os _) =
h [] id-fns where
h : ∀ {i} → 𝕃 tagged-val → 𝕍 string i → 𝕃 tagged-val
h ts [] = ts
h {i} ts (fn :: fns) = h (("fileid" , [[ fn ]] , []) :: ts) fns
add-span : span → spans → spans
add-span s@(mk-span dsc pi pi' tv nothing) (regular-spans es ss) =
regular-spans es (s :: ss)
add-span s@(mk-span dsc pi pi' tv (just err)) (regular-spans es ss) =
regular-spans (just (mk-error-span dsc pi pi' tv err)) (s :: ss)
add-span s (global-error e e') =
global-error e e'
--------------------------------------------------
-- spanM, a state monad for spans
--------------------------------------------------
spanM : Set → Set
spanM A = ctxt → spans → mF (A × ctxt × spans)
-- return for the spanM monad
spanMr : ∀{A : Set} → A → spanM A
spanMr a Γ ss = returnM (a , Γ , ss)
spanMok : spanM ⊤
spanMok = spanMr triv
get-ctxt : ∀{A : Set} → (ctxt → spanM A) → spanM A
get-ctxt m Γ ss = m Γ Γ ss
set-ctxt : ctxt → spanM ⊤
set-ctxt Γ _ ss = returnM (triv , Γ , ss)
get-error : ∀ {A : Set} → (maybe error-span → spanM A) → spanM A
get-error m Γ ss@(global-error _ _) = m nothing Γ ss
get-error m Γ ss@(regular-spans nothing _) = m nothing Γ ss
get-error m Γ ss@(regular-spans (just es) _) = m (just es) Γ ss
set-error : maybe (error-span) → spanM ⊤
set-error es Γ ss@(global-error _ _) = returnM (triv , Γ , ss)
set-error es Γ (regular-spans _ ss) = returnM (triv , Γ , regular-spans es ss)
restore-def : Set
restore-def = maybe qualif-info × maybe sym-info
spanM-set-params : params → spanM ⊤
spanM-set-params ps Γ ss = returnM (triv , (ctxt-params-def ps Γ) , ss)
-- this returns the previous ctxt-info, if any, for the given variable
spanM-push-term-decl : posinfo → var → type → spanM restore-def
spanM-push-term-decl pi x t Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-decl pi x t Γ , ss)
-- let bindings currently cannot be made opaque, so this is OpacTrans. -tony
spanM-push-term-def : posinfo → var → term → type → spanM restore-def
spanM-push-term-def pi x t T Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-def pi localScope OpacTrans x t T Γ , ss)
spanM-push-term-udef : posinfo → var → term → spanM restore-def
spanM-push-term-udef pi x t Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-term-udef pi localScope OpacTrans x t Γ , ss)
-- return previous ctxt-info, if any
spanM-push-type-decl : posinfo → var → kind → spanM restore-def
spanM-push-type-decl pi x k Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-type-decl pi x k Γ , ss)
spanM-push-type-def : posinfo → var → type → kind → spanM restore-def
spanM-push-type-def pi x t T Γ ss = let qi = ctxt-get-qi Γ x in returnM ((qi , qi ≫=maybe λ qi → ctxt-get-info (fst qi) Γ) , ctxt-type-def pi localScope OpacTrans x t T Γ , ss)
-- returns the original sym-info.
-- clarification is idempotent: if the definition was already clarified,
-- then the operation succeeds, and returns (just sym-info).
-- this only returns nothing in the case that the opening didnt make sense:
-- you tried to open a term def, you tried to open an unknown def, etc...
-- basically any situation where the def wasnt a "proper" type def
spanM-clarify-def : var → spanM (maybe sym-info)
spanM-clarify-def x Γ ss = returnM (result (ctxt-clarify-def Γ x))
where
result : maybe (sym-info × ctxt) → (maybe sym-info × ctxt × spans)
result (just (si , Γ')) = ( just si , Γ' , ss )
result nothing = ( nothing , Γ , ss )
spanM-restore-clarified-def : var → sym-info → spanM ⊤
spanM-restore-clarified-def x si Γ ss = returnM (triv , ctxt-set-sym-info Γ x si , ss)
-- restore ctxt-info for the variable with given posinfo
spanM-restore-info : var → restore-def → spanM ⊤
spanM-restore-info v rd Γ ss = returnM (triv , ctxt-restore-info Γ v (fst rd) (snd rd) , ss)
_≫=span_ : ∀{A B : Set} → spanM A → (A → spanM B) → spanM B
(m₁ ≫=span m₂) ss Γ = m₁ ss Γ ≫=monad λ where (v , Γ , ss) → m₂ v Γ ss
_≫span_ : ∀{A B : Set} → spanM A → spanM B → spanM B
(m₁ ≫span m₂) = m₁ ≫=span (λ _ → m₂)
spanM-restore-info* : 𝕃 (var × restore-def) → spanM ⊤
spanM-restore-info* [] = spanMok
spanM-restore-info* ((v , qi , m) :: s) = spanM-restore-info v (qi , m) ≫span spanM-restore-info* s
infixl 2 _≫span_ _≫=span_ _≫=spanj_ _≫=spanm_ _≫=spanm'_ _≫=spanc_ _≫=spanc'_ _≫spanc_ _≫spanc'_
_≫=spanj_ : ∀{A : Set} → spanM (maybe A) → (A → spanM ⊤) → spanM ⊤
_≫=spanj_{A} m m' = m ≫=span cont
where cont : maybe A → spanM ⊤
cont nothing = spanMok
cont (just x) = m' x
-- discard changes made by the first computation
_≫=spand_ : ∀{A B : Set} → spanM A → (A → spanM B) → spanM B
_≫=spand_{A} m m' Γ ss = m Γ ss ≫=monad λ where (v , _ , _) → m' v Γ ss
-- discard *spans* generated by first computation
_≫=spands_ : ∀ {A B : Set} → spanM A → (A → spanM B) → spanM B
_≫=spands_ m f Γ ss = m Γ ss ≫=monad λ where (v , Γ , _ ) → f v Γ ss
_≫=spanm_ : ∀{A : Set} → spanM (maybe A) → (A → spanM (maybe A)) → spanM (maybe A)
_≫=spanm_{A} m m' = m ≫=span cont
where cont : maybe A → spanM (maybe A)
cont nothing = spanMr nothing
cont (just a) = m' a
_≫=spans'_ : ∀ {A B E : Set} → spanM (E ∨ A) → (A → spanM (E ∨ B)) → spanM (E ∨ B)
_≫=spans'_ m f = m ≫=span λ where
(inj₁ e) → spanMr (inj₁ e)
(inj₂ a) → f a
_≫=spanm'_ : ∀{A B : Set} → spanM (maybe A) → (A → spanM (maybe B)) → spanM (maybe B)
_≫=spanm'_{A}{B} m m' = m ≫=span cont
where cont : maybe A → spanM (maybe B)
cont nothing = spanMr nothing
cont (just a) = m' a
-- Currying/uncurry span binding
_≫=spanc_ : ∀{A B C} → spanM (A × B) → (A → B → spanM C) → spanM C
(m ≫=spanc m') Γ ss = m Γ ss ≫=monad λ where
((a , b) , Γ' , ss') → m' a b Γ' ss'
_≫=spanc'_ : ∀{A B C} → spanM (A × B) → (B → spanM C) → spanM C
(m ≫=spanc' m') Γ ss = m Γ ss ≫=monad λ where
((a , b) , Γ' , ss') → m' b Γ' ss'
_≫spanc'_ : ∀{A B} → spanM A → B → spanM (A × B)
(m ≫spanc' b) = m ≫=span λ a → spanMr (a , b)
_≫spanc_ : ∀{A B} → spanM A → spanM B → spanM (A × B)
(ma ≫spanc mb) = ma ≫=span λ a → mb ≫=span λ b → spanMr (a , b)
spanMok' : ∀{A} → A → spanM (⊤ × A)
spanMok' a = spanMr (triv , a)
_on-fail_≫=spanm'_ : ∀ {A B} → spanM (maybe A) → spanM B
→ (A → spanM B) → spanM B
_on-fail_≫=spanm'_ {A}{B} m fail f = m ≫=span cont
where cont : maybe A → spanM B
cont nothing = fail
cont (just x) = f x
_on-fail_≫=spans'_ : ∀ {A B E} → spanM (E ∨ A) → (E → spanM B) → (A → spanM B) → spanM B
_on-fail_≫=spans'_ {A}{B}{E} m fail f = m ≫=span cont
where cont : E ∨ A → spanM B
cont (inj₁ err) = fail err
cont (inj₂ a) = f a
_exit-early_≫=spans'_ = _on-fail_≫=spans'_
with-ctxt : ∀ {A} → ctxt → spanM A → spanM A
with-ctxt Γ sm
= get-ctxt λ Γ' → set-ctxt Γ
≫span sm
≫=span λ a → set-ctxt Γ'
≫span spanMr a
sequence-spanM : ∀ {A} → 𝕃 (spanM A) → spanM (𝕃 A)
sequence-spanM [] = spanMr []
sequence-spanM (sp :: sps)
= sp
≫=span λ x → sequence-spanM sps
≫=span λ xs → spanMr (x :: xs)
foldr-spanM : ∀ {A B} → (A → spanM B → spanM B) → spanM B → 𝕃 (spanM A) → spanM B
foldr-spanM f n [] = n
foldr-spanM f n (m :: ms)
= m ≫=span λ a → f a (foldr-spanM f n ms)
foldl-spanM : ∀ {A B} → (spanM B → A → spanM B) → spanM B → 𝕃 (spanM A) → spanM B
foldl-spanM f m [] = m
foldl-spanM f m (m' :: ms) =
m' ≫=span λ a → foldl-spanM f (f m a) ms
spanM-for_init_use_ : ∀ {A B} → 𝕃 (spanM A) → spanM B → (A → spanM B → spanM B) → spanM B
spanM-for xs init acc use f = foldr-spanM f acc xs
spanM-add : span → spanM ⊤
spanM-add s Γ ss = returnM (triv , Γ , add-span s ss)
spanM-addl : 𝕃 span → spanM ⊤
spanM-addl [] = spanMok
spanM-addl (s :: ss) = spanM-add s ≫span spanM-addl ss
debug-span : posinfo → posinfo → 𝕃 tagged-val → span
debug-span pi pi' tvs = mk-span "Debug" pi pi' tvs nothing
spanM-debug : posinfo → posinfo → 𝕃 tagged-val → spanM ⊤
--spanM-debug pi pi' tvs = spanM-add (debug-span pi pi' tvs)
spanM-debug pi pi' tvs = spanMok
to-string-tag-tk : (tag : string) → ctxt → tk → tagged-val
to-string-tag-tk t Γ (Tkt T) = to-string-tag t Γ T
to-string-tag-tk t Γ (Tkk k) = to-string-tag t Γ k
--------------------------------------------------
-- tagged-val constants
--------------------------------------------------
location-data : location → tagged-val
location-data (file-name , pi) = "location" , [[ file-name ]] ⊹⊹ [[ " - " ]] ⊹⊹ [[ pi ]] , []
var-location-data : ctxt → var → tagged-val
var-location-data Γ @ (mk-ctxt _ _ i _ _) x =
location-data (maybe-else ("missing" , "missing") snd
(trie-lookup i x maybe-or trie-lookup i (qualif-var Γ x)))
{-
{-# TERMINATING #-}
var-location-data : ctxt → var → maybe language-level → tagged-val
var-location-data Γ x (just ll-term) with ctxt-var-location Γ x | qualif-term Γ (Var posinfo-gen x)
...| ("missing" , "missing") | (Var pi x') = location-data (ctxt-var-location Γ x')
...| loc | _ = location-data loc
var-location-data Γ x (just ll-type) with ctxt-var-location Γ x | qualif-type Γ (TpVar posinfo-gen x)
...| ("missing" , "missing") | (TpVar pi x') = location-data (ctxt-var-location Γ x')
...| loc | _ = location-data loc
var-location-data Γ x (just ll-kind) with ctxt-var-location Γ x | qualif-kind Γ (KndVar posinfo-gen x ArgsNil)
...| ("missing" , "missing") | (KndVar pi x' as) = location-data (ctxt-var-location Γ x')
...| loc | _ = location-data loc
var-location-data Γ x nothing with ctxt-lookup-term-var Γ x | ctxt-lookup-type-var Γ x | ctxt-lookup-kind-var-def Γ x
...| just _ | _ | _ = var-location-data Γ x (just ll-term)
...| _ | just _ | _ = var-location-data Γ x (just ll-type)
...| _ | _ | just _ = var-location-data Γ x (just ll-kind)
...| _ | _ | _ = location-data ("missing" , "missing")
-}
explain : string → tagged-val
explain s = "explanation" , [[ s ]] , []
reason : string → tagged-val
reason s = "reason" , [[ s ]] , []
expected-type : ctxt → type → tagged-val
expected-type = to-string-tag "expected-type"
expected-type-subterm : ctxt → type → tagged-val
expected-type-subterm = to-string-tag "expected-type of the subterm"
missing-expected-type : tagged-val
missing-expected-type = "expected-type" , [[ "[missing]" ]] , []
-- hnf-type : ctxt → type → tagged-val
-- hnf-type Γ tp = to-string-tag "hnf of type" Γ (hnf-term-type Γ ff tp)
-- hnf-expected-type : ctxt → type → tagged-val
-- hnf-expected-type Γ tp = to-string-tag "hnf of expected type" Γ (hnf-term-type Γ ff tp)
expected-kind : ctxt → kind → tagged-val
expected-kind = to-string-tag "expected kind"
expected-kind-if : ctxt → maybe kind → 𝕃 tagged-val
expected-kind-if _ nothing = []
expected-kind-if Γ (just k) = [ expected-kind Γ k ]
expected-type-if : ctxt → maybe type → 𝕃 tagged-val
expected-type-if _ nothing = []
expected-type-if Γ (just tp) = [ expected-type Γ tp ]
-- hnf-expected-type-if : ctxt → maybe type → 𝕃 tagged-val
-- hnf-expected-type-if Γ nothing = []
-- hnf-expected-type-if Γ (just tp) = [ hnf-expected-type Γ tp ]
type-data : ctxt → type → tagged-val
type-data = to-string-tag "type"
missing-type : tagged-val
missing-type = "type" , [[ "[undeclared]" ]] , []
warning-data : string → tagged-val
warning-data s = "warning" , [[ s ]] , []
check-for-type-mismatch : ctxt → string → type → type → 𝕃 tagged-val × err-m
check-for-type-mismatch Γ s tp tp' =
let tp'' = hnf Γ unfold-head tp' tt in
expected-type Γ tp :: [ type-data Γ tp' ] ,
if conv-type Γ tp tp'' then nothing else just ("The expected type does not match the " ^ s ^ " type.")
check-for-type-mismatch-if : ctxt → string → maybe type → type → 𝕃 tagged-val × err-m
check-for-type-mismatch-if Γ s (just tp) = check-for-type-mismatch Γ s tp
check-for-type-mismatch-if Γ s nothing tp = [ type-data Γ tp ] , nothing
summary-data : {ed : exprd} → (name : string) → ctxt → ⟦ ed ⟧ → tagged-val
summary-data name Γ t = strRunTag "summary" Γ (strVar name ≫str strAdd " : " ≫str to-stringh t)
missing-kind : tagged-val
missing-kind = "kind" , [[ "[undeclared]" ]] , []
head-kind : ctxt → kind → tagged-val
head-kind = to-string-tag "the kind of the head"
head-type : ctxt → type → tagged-val
head-type = to-string-tag "the type of the head"
arg-type : ctxt → type → tagged-val
arg-type = to-string-tag "computed arg type"
arg-exp-type : ctxt → type → tagged-val
arg-exp-type = to-string-tag "expected arg type"
type-app-head : ctxt → type → tagged-val
type-app-head = to-string-tag "the head"
term-app-head : ctxt → term → tagged-val
term-app-head = to-string-tag "the head"
term-argument : ctxt → term → tagged-val
term-argument = to-string-tag "the argument"
type-argument : ctxt → type → tagged-val
type-argument = to-string-tag "the argument"
contextual-type-argument : ctxt → type → tagged-val
contextual-type-argument = to-string-tag "contextual type arg"
arg-argument : ctxt → arg → tagged-val
arg-argument Γ (TermArg me x) = term-argument Γ x
arg-argument Γ (TypeArg x) = type-argument Γ x
kind-data : ctxt → kind → tagged-val
kind-data = to-string-tag "kind"
liftingType-data : ctxt → liftingType → tagged-val
liftingType-data = to-string-tag "lifting type"
kind-data-if : ctxt → maybe kind → 𝕃 tagged-val
kind-data-if Γ (just k) = [ kind-data Γ k ]
kind-data-if _ nothing = []
super-kind-data : tagged-val
super-kind-data = "superkind" , [[ "□" ]] , []
symbol-data : string → tagged-val
symbol-data x = "symbol" , [[ x ]] , []
tk-data : ctxt → tk → tagged-val
tk-data Γ (Tkk k) = kind-data Γ k
tk-data Γ (Tkt t) = type-data Γ t
checking-to-string : checking-mode → string
checking-to-string checking = "checking"
checking-to-string synthesizing = "synthesizing"
checking-to-string untyped = "untyped"
checking-data : checking-mode → tagged-val
checking-data cm = "checking-mode" , [[ checking-to-string cm ]] , []
checked-meta-var : var → tagged-val
checked-meta-var x = "checked meta-var" , [[ x ]] , []
ll-data : language-level → tagged-val
ll-data x = "language-level" , [[ ll-to-string x ]] , []
ll-data-term = ll-data ll-term
ll-data-type = ll-data ll-type
ll-data-kind = ll-data ll-kind
binder-data : ℕ → tagged-val
binder-data n = "binder" , [[ ℕ-to-string n ]] , []
-- this is the subterm position in the parse tree (as determined by
-- spans) for the bound variable of a binder
binder-data-const : tagged-val
binder-data-const = binder-data 0
bound-data : defTermOrType → ctxt → tagged-val
bound-data (DefTerm pi v mtp t) Γ = to-string-tag "bound-value" Γ t
bound-data (DefType pi v k tp) Γ = to-string-tag "bound-value" Γ tp
punctuation-data : tagged-val
punctuation-data = "punctuation" , [[ "true" ]] , []
not-for-navigation : tagged-val
not-for-navigation = "not-for-navigation" , [[ "true" ]] , []
is-erased : type → 𝔹
is-erased (TpVar _ _ ) = tt
is-erased _ = ff
erased? = 𝔹
keywords = "keywords"
keyword-erased = "erased"
keyword-noterased = "noterased"
keyword-application = "application"
keyword-locale = "meta-var-locale"
noterased : tagged-val
noterased = keywords , [[ keyword-noterased ]] , []
keywords-data : 𝕃 string → tagged-val
keywords-data kws = keywords , h kws , [] where
h : 𝕃 string → rope
h [] = [[]]
h (k :: []) = [[ k ]]
h (k :: ks) = [[ k ]] ⊹⊹ [[ " " ]] ⊹⊹ h ks
keywords-data-var : erased? → tagged-val
keywords-data-var e =
keywords , [[ if e then keyword-erased else keyword-noterased ]] , []
keywords-app : (is-locale : 𝔹) → tagged-val
keywords-app l = keywords-data ([ keyword-application ] ++ (if l then [ keyword-locale ] else []))
keywords-app-if-typed : checking-mode → (is-locale : 𝔹) → 𝕃 tagged-val
keywords-app-if-typed untyped l = []
keywords-app-if-typed _ l = [ keywords-app l ]
error-if-not-eq : ctxt → type → 𝕃 tagged-val → 𝕃 tagged-val × err-m
error-if-not-eq Γ (TpEq pi t1 t2 pi') tvs = expected-type Γ (TpEq pi t1 t2 pi') :: tvs , nothing
error-if-not-eq Γ tp tvs = expected-type Γ tp :: tvs , just "This term is being checked against the following type, but an equality type was expected"
error-if-not-eq-maybe : ctxt → maybe type → 𝕃 tagged-val → 𝕃 tagged-val × err-m
error-if-not-eq-maybe Γ (just tp) = error-if-not-eq Γ tp
error-if-not-eq-maybe _ _ tvs = tvs , nothing
params-data : ctxt → params → 𝕃 tagged-val
params-data _ ParamsNil = []
params-data Γ ps = [ params-to-string-tag "parameters" Γ ps ]
--------------------------------------------------
-- span-creating functions
--------------------------------------------------
Star-name : string
Star-name = "Star"
parens-span : posinfo → posinfo → span
parens-span pi pi' = mk-span "parentheses" pi pi' [] nothing
data decl-class : Set where
param : decl-class
index : decl-class
decl-class-name : decl-class → string
decl-class-name param = "parameter"
decl-class-name index = "index"
Decl-span : decl-class → posinfo → var → tk → posinfo → span
Decl-span dc pi v atk pi' = mk-span ((if tk-is-type atk then "Term " else "Type ") ^ (decl-class-name dc))
pi pi' [ binder-data-const ] nothing
TpVar-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span
TpVar-span Γ pi v check tvs = mk-span "Type variable" pi (posinfo-plus-str pi (unqual-local v)) (checking-data check :: ll-data-type :: var-location-data Γ v :: symbol-data (unqual-local v) :: tvs)
Var-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span
Var-span Γ pi v check tvs = mk-span "Term variable" pi (posinfo-plus-str pi (unqual-local v)) (checking-data check :: ll-data-term :: var-location-data Γ v :: symbol-data (unqual-local v) :: tvs)
KndVar-span : ctxt → (posinfo × var) → (end-pi : posinfo) → params → checking-mode → 𝕃 tagged-val → err-m → span
KndVar-span Γ (pi , v) pi' ps check tvs =
mk-span "Kind variable" pi pi'
(checking-data check :: ll-data-kind :: var-location-data Γ v :: symbol-data (unqual-local v) :: super-kind-data :: (params-data Γ ps ++ tvs))
var-span : erased? → ctxt → posinfo → string → checking-mode → tk → err-m → span
var-span _ Γ pi x check (Tkk k) = TpVar-span Γ pi x check (keywords-data-var ff :: [ kind-data Γ k ])
var-span e Γ pi x check (Tkt t) = Var-span Γ pi x check (keywords-data-var e :: [ type-data Γ t ])
redefined-var-span : ctxt → posinfo → var → span
redefined-var-span Γ pi x = mk-span "Variable definition" pi (posinfo-plus-str pi x)
[ var-location-data Γ x ] (just "This symbol was defined already.")
TpAppt-span : type → term → checking-mode → 𝕃 tagged-val → err-m → span
TpAppt-span tp t check tvs = mk-span "Application of a type to a term" (type-start-pos tp) (term-end-pos t) (checking-data check :: ll-data-type :: tvs)
TpApp-span : type → type → checking-mode → 𝕃 tagged-val → err-m → span
TpApp-span tp tp' check tvs = mk-span "Application of a type to a type" (type-start-pos tp) (type-end-pos tp') (checking-data check :: ll-data-type :: tvs)
App-span : (is-locale : 𝔹) → term → term → checking-mode → 𝕃 tagged-val → err-m → span
App-span l t t' check tvs = mk-span "Application of a term to a term" (term-start-pos t) (term-end-pos t') (checking-data check :: ll-data-term :: keywords-app-if-typed check l ++ tvs)
AppTp-span : term → type → checking-mode → 𝕃 tagged-val → err-m → span
AppTp-span t tp check tvs = mk-span "Application of a term to a type" (term-start-pos t) (type-end-pos tp) (checking-data check :: ll-data-term :: keywords-app-if-typed check ff ++ tvs)
TpQuant-e = 𝔹
is-pi : TpQuant-e
is-pi = tt
TpQuant-span : TpQuant-e → posinfo → var → tk → type → checking-mode → 𝕃 tagged-val → err-m → span
TpQuant-span is-pi pi x atk body check tvs err =
let err-if-type-pi = if ~ tk-is-type atk && is-pi then just "Π-types must bind a term, not a type (use ∀ instead)" else nothing in
mk-span (if is-pi then "Dependent function type" else "Implicit dependent function type")
pi (type-end-pos body) (checking-data check :: ll-data-type :: binder-data-const :: tvs) (if isJust err-if-type-pi then err-if-type-pi else err)
TpLambda-span : posinfo → var → tk → type → checking-mode → 𝕃 tagged-val → err-m → span
TpLambda-span pi x atk body check tvs =
mk-span "Type-level lambda abstraction" pi (type-end-pos body)
(checking-data check :: ll-data-type :: binder-data-const :: tvs)
Iota-span : posinfo → type → checking-mode → 𝕃 tagged-val → err-m → span
Iota-span pi t2 check tvs = mk-span "Iota-abstraction" pi (type-end-pos t2) (explain "A dependent intersection type" :: checking-data check :: binder-data-const :: ll-data-type :: tvs)
TpArrow-span : type → type → checking-mode → 𝕃 tagged-val → err-m → span
TpArrow-span t1 t2 check tvs = mk-span "Arrow type" (type-start-pos t1) (type-end-pos t2) (checking-data check :: ll-data-type :: tvs)
TpEq-span : posinfo → term → term → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
TpEq-span pi t1 t2 pi' check tvs = mk-span "Equation" pi pi'
(explain "Equation between terms" :: checking-data check :: ll-data-type :: tvs)
Star-span : posinfo → checking-mode → err-m → span
Star-span pi check = mk-span Star-name pi (posinfo-plus pi 1) (checking-data check :: [ ll-data-kind ])
KndPi-span : posinfo → var → tk → kind → checking-mode → err-m → span
KndPi-span pi x atk k check =
mk-span "Pi kind" pi (kind-end-pos k)
(checking-data check :: ll-data-kind :: binder-data-const :: [ super-kind-data ])
KndArrow-span : kind → kind → checking-mode → err-m → span
KndArrow-span k k' check = mk-span "Arrow kind" (kind-start-pos k) (kind-end-pos k') (checking-data check :: ll-data-kind :: [ super-kind-data ])
KndTpArrow-span : type → kind → checking-mode → err-m → span
KndTpArrow-span t k check = mk-span "Arrow kind" (type-start-pos t) (kind-end-pos k) (checking-data check :: ll-data-kind :: [ super-kind-data ])
{- [[file:../cedille-mode.el::(defun%20cedille-mode-filter-out-special(data)][Frontend]] -}
special-tags : 𝕃 string
special-tags =
"symbol" :: "location" :: "language-level" :: "checking-mode" :: "summary"
:: "binder" :: "bound-value" :: "keywords" :: "erasure" :: []
error-span-filter-special : error-span → error-span
error-span-filter-special (mk-error-span dsc pi pi' tvs msg) =
mk-error-span dsc pi pi' tvs' msg
where tvs' = (flip filter) tvs λ tag → list-any (_=string (fst tag)) special-tags
erasure : ctxt → term → tagged-val
erasure Γ t = to-string-tag "erasure" Γ (erase-term t)
erased-marg-span : ctxt → term → maybe type → span
erased-marg-span Γ t mtp = mk-span "Erased module parameter" (term-start-pos t) (term-end-pos t)
(maybe-else [] (λ tp → [ type-data Γ tp ]) mtp)
(just "An implicit module parameter variable occurs free in the erasure of the term.")
Lam-span-erased : maybeErased → string
Lam-span-erased Erased = "Erased lambda abstraction (term-level)"
Lam-span-erased NotErased = "Lambda abstraction (term-level)"
Lam-span : ctxt → checking-mode → posinfo → maybeErased → var → optClass → term → 𝕃 tagged-val → err-m → span
Lam-span Γ c pi NotErased x (SomeClass (Tkk k)) t tvs e =
mk-span (Lam-span-erased NotErased) pi (term-end-pos t) (ll-data-term :: binder-data-const :: checking-data c :: tvs) (e maybe-or just "λ-terms must bind a term, not a type (use Λ instead)")
Lam-span _ c pi l x NoClass t tvs = mk-span (Lam-span-erased l) pi (term-end-pos t) (ll-data-term :: binder-data-const :: checking-data c :: tvs)
Lam-span Γ c pi l x (SomeClass atk) t tvs = mk-span (Lam-span-erased l) pi (term-end-pos t)
((ll-data-term :: binder-data-const :: checking-data c :: tvs)
++ [ to-string-tag-tk "type of bound variable" Γ atk ])
compileFail-in : ctxt → term → 𝕃 tagged-val × err-m
compileFail-in Γ t with is-free-in check-erased compileFail-qual | qualif-term Γ t
...| is-free | tₒ with erase-term tₒ | hnf Γ unfold-all tₒ ff
...| tₑ | tₙ with is-free tₒ
...| ff = [] , nothing
...| tt with is-free tₙ | is-free tₑ
...| tt | _ = [ to-string-tag "normalized term" Γ tₙ ] , just "compileFail occurs in the normalized term"
...| ff | ff = [ to-string-tag "the term" Γ tₒ ] , just "compileFail occurs in an erased position"
...| ff | tt = [] , nothing
DefTerm-span : ctxt → posinfo → var → (checked : checking-mode) → maybe type → term → posinfo → 𝕃 tagged-val → span
DefTerm-span Γ pi x checked tp t pi' tvs =
h ((h-summary tp) ++ (erasure Γ t :: tvs)) pi x checked tp pi'
where h : 𝕃 tagged-val → posinfo → var → (checked : checking-mode) → maybe type → posinfo → span
h tvs pi x checking _ pi' =
mk-span "Term-level definition (checking)" pi pi' tvs nothing
h tvs pi x _ (just tp) pi' =
mk-span "Term-level definition (synthesizing)" pi pi' (to-string-tag "synthesized type" Γ tp :: tvs) nothing
h tvs pi x _ nothing pi' =
mk-span "Term-level definition (synthesizing)" pi pi' (("synthesized type" , [[ "[nothing]" ]] , []) :: tvs) nothing
h-summary : maybe type → 𝕃 tagged-val
h-summary nothing = [(checking-data synthesizing)]
h-summary (just tp) = (checking-data checking :: [ summary-data x Γ tp ])
CheckTerm-span : ctxt → (checked : checking-mode) → maybe type → term → posinfo → 𝕃 tagged-val → span
CheckTerm-span Γ checked tp t pi' tvs =
h (erasure Γ t :: tvs) checked tp (term-start-pos t) pi'
where h : 𝕃 tagged-val → (checked : checking-mode) → maybe type → posinfo → posinfo → span
h tvs checking _ pi pi' =
mk-span "Checking a term" pi pi' (checking-data checking :: tvs) nothing
h tvs _ (just tp) pi pi' =
mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: to-string-tag "synthesized type" Γ tp :: tvs) nothing
h tvs _ nothing pi pi' =
mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: ("synthesized type" , [[ "[nothing]" ]] , []) :: tvs) nothing
normalized-type : ctxt → type → tagged-val
normalized-type = to-string-tag "normalized type"
DefType-span : ctxt → posinfo → var → (checked : checking-mode) → maybe kind → type → posinfo → 𝕃 tagged-val → span
DefType-span Γ pi x checked mk tp pi' tvs =
h ((h-summary mk) ++ tvs) checked mk
where h : 𝕃 tagged-val → checking-mode → maybe kind → span
h tvs checking _ = mk-span "Type-level definition (checking)" pi pi' tvs nothing
h tvs _ (just k) =
mk-span "Type-level definition (synthesizing)" pi pi' (to-string-tag "synthesized kind" Γ k :: tvs) nothing
h tvs _ nothing =
mk-span "Type-level definition (synthesizing)" pi pi' ( ("synthesized kind" , [[ "[nothing]" ]] , []) :: tvs) nothing
h-summary : maybe kind → 𝕃 tagged-val
h-summary nothing = [(checking-data synthesizing)]
h-summary (just k) = (checking-data checking :: [ summary-data x Γ k ])
DefKind-span : ctxt → posinfo → var → kind → posinfo → span
DefKind-span Γ pi x k pi' = mk-span "Kind-level definition" pi pi' (kind-data Γ k :: [ summary-data x Γ (Var pi "□") ]) nothing
{-unchecked-term-span : term → span
unchecked-term-span t = mk-span "Unchecked term" (term-start-pos t) (term-end-pos t)
(ll-data-term :: not-for-navigation :: [ explain "This term has not been type-checked."]) nothing-}
Beta-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
Beta-span pi pi' check tvs = mk-span "Beta axiom" pi pi'
(checking-data check :: ll-data-term :: explain "A term constant whose type states that β-equal terms are provably equal" :: tvs)
hole-span : ctxt → posinfo → maybe type → 𝕃 tagged-val → span
hole-span Γ pi tp tvs =
mk-span "Hole" pi (posinfo-plus pi 1)
(ll-data-term :: expected-type-if Γ tp ++ tvs)
(just "This hole remains to be filled in")
tp-hole-span : ctxt → posinfo → maybe kind → 𝕃 tagged-val → span
tp-hole-span Γ pi k tvs =
mk-span "Hole" pi (posinfo-plus pi 1)
(ll-data-term :: expected-kind-if Γ k ++ tvs)
(just "This hole remains to be filled in")
expected-to-string : checking-mode → string
expected-to-string checking = "expected"
expected-to-string synthesizing = "synthesized"
expected-to-string untyped = "untyped"
Epsilon-span : posinfo → leftRight → maybeMinus → term → checking-mode → 𝕃 tagged-val → err-m → span
Epsilon-span pi lr m t check tvs = mk-span "Epsilon" pi (term-end-pos t)
(checking-data check :: ll-data-term :: tvs ++
[ explain ("Normalize " ^ side lr ^ " of the "
^ expected-to-string check ^ " equation, using " ^ maybeMinus-description m
^ " reduction." ) ])
where side : leftRight → string
side Left = "the left-hand side"
side Right = "the right-hand side"
side Both = "both sides"
maybeMinus-description : maybeMinus → string
maybeMinus-description EpsHnf = "head"
maybeMinus-description EpsHanf = "head-applicative"
optGuide-spans : optGuide → checking-mode → spanM ⊤
optGuide-spans NoGuide _ = spanMok
optGuide-spans (Guide pi x tp) expected =
get-ctxt λ Γ → spanM-add (Var-span Γ pi x expected [] nothing)
Rho-span : posinfo → term → term → checking-mode → optPlus → ℕ ⊎ var → 𝕃 tagged-val → err-m → span
Rho-span pi t t' expected r (inj₂ x) tvs =
mk-span "Rho" pi (term-end-pos t')
(checking-data expected :: ll-data-term :: explain ("Rewrite all places where " ^ x ^ " occurs in the " ^ expected-to-string expected ^ " type, using an equation. ") :: tvs)
Rho-span pi t t' expected r (inj₁ numrewrites) tvs err =
mk-span "Rho" pi (term-end-pos t')
(checking-data expected :: ll-data-term :: tvs ++
(explain ("Rewrite terms in the "
^ expected-to-string expected ^ " type, using an equation. "
^ (if (is-rho-plus r) then "" else "Do not ") ^ "Beta-reduce the type as we look for matches.") :: fst h)) (snd h)
where h : 𝕃 tagged-val × err-m
h = if isJust err
then [] , err
else if numrewrites =ℕ 0
then [] , just "No rewrites could be performed."
else [ "Number of rewrites", [[ ℕ-to-string numrewrites ]] , [] ] , err
Phi-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
Phi-span pi pi' expected tvs = mk-span "Phi" pi pi' (checking-data expected :: ll-data-term :: tvs)
Chi-span : ctxt → posinfo → optType → term → checking-mode → 𝕃 tagged-val → err-m → span
Chi-span Γ pi m t' check tvs = mk-span "Chi" pi (term-end-pos t') (ll-data-term :: checking-data check :: tvs ++ helper m)
where helper : optType → 𝕃 tagged-val
helper (SomeType T) = explain ("Check a term against an asserted type") :: [ to-string-tag "the asserted type" Γ T ]
helper NoType = [ explain ("Change from checking mode (outside the term) to synthesizing (inside)") ]
Sigma-span : posinfo → term → checking-mode → 𝕃 tagged-val → err-m → span
Sigma-span pi t check tvs =
mk-span "Sigma" pi (term-end-pos t)
(ll-data-term :: checking-data check :: explain "Swap the sides of the equation synthesized for the body of this term" :: tvs)
Delta-span : ctxt → posinfo → optType → term → checking-mode → 𝕃 tagged-val → err-m → span
Delta-span Γ pi T t check tvs =
mk-span "Delta" pi (term-end-pos t)
(ll-data-term :: explain "Prove anything you want from a contradiction" :: checking-data check :: tvs)
motive-label : string
motive-label = "the motive"
the-motive : ctxt → type → tagged-val
the-motive = to-string-tag motive-label
Theta-span : ctxt → posinfo → theta → term → lterms → checking-mode → 𝕃 tagged-val → err-m → span
Theta-span Γ pi u t ls check tvs = mk-span "Theta" pi (lterms-end-pos ls) (ll-data-term :: checking-data check :: tvs ++ do-explain u)
where do-explain : theta → 𝕃 tagged-val
do-explain Abstract = [ explain ("Perform an elimination with the first term, after abstracting it from the expected type.") ]
do-explain (AbstractVars vs) = [ strRunTag "explanation" Γ (strAdd "Perform an elimination with the first term, after abstracting the listed variables (" ≫str vars-to-string vs ≫str strAdd ") from the expected type.") ]
do-explain AbstractEq = [ explain ("Perform an elimination with the first term, after abstracting it with an equation "
^ "from the expected type.") ]
Lft-span : posinfo → var → term → checking-mode → 𝕃 tagged-val → err-m → span
Lft-span pi X t check tvs = mk-span "Lift type" pi (term-end-pos t) (checking-data check :: ll-data-type :: binder-data-const :: tvs)
File-span : ctxt → posinfo → posinfo → string → span
File-span Γ pi pi' filename = mk-span ("Cedille source file (" ^ filename ^ ")") pi pi' (print-file-id-table Γ) nothing
Module-span : posinfo → posinfo → span
Module-span pi pi' = mk-span "Module declaration" pi pi' [ not-for-navigation ] nothing
Module-header-span : posinfo → posinfo → span
Module-header-span pi pi' = mk-span "Module header" pi pi' [ not-for-navigation ] nothing
Import-span : posinfo → string → posinfo → 𝕃 tagged-val → err-m → span
Import-span pi file pi' tvs = mk-span ("Import of another source file") pi pi' (location-data (file , first-position) :: tvs)
Import-module-span : ctxt → (posinfo × var) → params → 𝕃 tagged-val → err-m → span
Import-module-span Γ (pi , mn) ps tvs = mk-span "Imported module" pi (posinfo-plus-str pi mn) (params-data Γ ps ++ tvs)
punctuation-span : string → posinfo → posinfo → span
punctuation-span name pi pi' = mk-span name pi pi' ( punctuation-data :: not-for-navigation :: [] ) nothing
whitespace-span : posinfo → posinfo → span
whitespace-span pi pi' = mk-span "Whitespace" pi pi' [ not-for-navigation ] nothing
comment-span : posinfo → posinfo → span
comment-span pi pi' = mk-span "Comment" pi pi' [ not-for-navigation ] nothing
IotaPair-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
IotaPair-span pi pi' c tvs =
mk-span "Iota pair" pi pi' (explain "Inhabit a iota-type (dependent intersection type)." :: checking-data c :: ll-data-term :: tvs)
IotaProj-span : term → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
IotaProj-span t pi' c tvs = mk-span "Iota projection" (term-start-pos t) pi' (checking-data c :: ll-data-term :: tvs)
Let-span : ctxt → checking-mode → posinfo → defTermOrType → term → 𝕃 tagged-val → err-m → span
Let-span Γ c pi d t' tvs = mk-span "Term Let" pi (term-end-pos t') (binder-data-const :: bound-data d Γ :: ll-data-term :: checking-data c :: tvs)
TpLet-span : ctxt → checking-mode → posinfo → defTermOrType → type → 𝕃 tagged-val → err-m → span
TpLet-span Γ c pi d t' tvs = mk-span "Type Let" pi (type-end-pos t') (binder-data-const :: bound-data d Γ :: ll-data-type :: checking-data c :: tvs)
Mu'-span : term → 𝕃 tagged-val → err-m → span
Mu'-span t tvs = mk-span "Mu' cases" (term-start-pos t) (term-end-pos t) tvs
Mu-span : term → 𝕃 tagged-val → err-m → span
Mu-span t tvs = mk-span "Mu fixpoint" (term-start-pos t) (term-end-pos t) tvs
DefDatatype-span : posinfo → posinfo → var → posinfo → span
DefDatatype-span pi _ x pi' = mk-span "Datatype definition" pi pi' [] nothing
DefDataConst-span : posinfo → var → span
DefDataConst-span pi c = mk-span "Datatype constructor" pi (posinfo-plus-str pi c) [] nothing
| {
"alphanum_fraction": 0.634634821,
"avg_line_length": 45.4082125604,
"ext": "agda",
"hexsha": "de4ec4d6dbce498d6a879586fbfc9be805a2749b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/spans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/spans.agda",
"max_line_length": 227,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/spans.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11597,
"size": 37598
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
open import Sets.CantorBijection.Order
open import Orders.Total.Definition
open import Orders.WellFounded.Induction
module Sets.CantorBijection.Proofs where
open Sets.CantorBijection.Order using (order ; totalOrder ; orderWellfounded)
cantorInverseLemma : (ℕ && ℕ) → (ℕ && ℕ)
cantorInverseLemma (0 ,, s) = (succ s) ,, 0
cantorInverseLemma (succ r ,, 0) = r ,, 1
cantorInverseLemma (succ r ,, succ s) = (r ,, succ (succ s))
cantorInverse : ℕ → (ℕ && ℕ)
cantorInverse zero = (0 ,, 0)
cantorInverse (succ z) = cantorInverseLemma (cantorInverse z)
cantorInverseLemmaInjective : (a b : ℕ && ℕ) → cantorInverseLemma a ≡ cantorInverseLemma b → a ≡ b
cantorInverseLemmaInjective (zero ,, b) (zero ,, .b) refl = refl
cantorInverseLemmaInjective (zero ,, b) (succ c ,, zero) ()
cantorInverseLemmaInjective (zero ,, b) (succ c ,, succ d) ()
cantorInverseLemmaInjective (succ a ,, zero) (zero ,, d) ()
cantorInverseLemmaInjective (succ a ,, succ b) (zero ,, d) ()
cantorInverseLemmaInjective (succ a ,, zero) (succ .a ,, zero) refl = refl
cantorInverseLemmaInjective (succ a ,, succ b) (succ .a ,, succ .b) refl = refl
cantorInverseLemmaSurjective : (a : ℕ && ℕ) → (a ≡ (0 ,, 0)) || (Sg (ℕ && ℕ) (λ b → cantorInverseLemma b ≡ a))
cantorInverseLemmaSurjective (zero ,, zero) = inl refl
cantorInverseLemmaSurjective (zero ,, succ zero) = inr ((1 ,, 0) , refl)
cantorInverseLemmaSurjective (zero ,, succ (succ b)) = inr ((1 ,, succ b) , refl)
cantorInverseLemmaSurjective (succ a ,, zero) = inr ((0 ,, a) , refl)
cantorInverseLemmaSurjective (succ a ,, succ zero) = inr ((succ (succ a) ,, 0) , refl)
cantorInverseLemmaSurjective (succ a ,, succ (succ b)) = inr ((succ (succ a) ,, succ b) , refl)
cantorInverseLemmaNotZero : (a : ℕ && ℕ) → (cantorInverseLemma a ≡ (0 ,, 0)) → False
cantorInverseLemmaNotZero (succ a ,, zero) ()
cantorInverseLemmaNotZero (succ a ,, succ b) ()
cantorInverseLemmaIncreases : (x : ℕ && ℕ) → order x (cantorInverseLemma x)
cantorInverseLemmaIncreases (zero ,, b) = inl (identityOfIndiscernablesRight _<N_ (a<SuccA b) (applyEquality succ (equalityCommutative (Semiring.sumZeroRight ℕSemiring b))))
cantorInverseLemmaIncreases (succ a ,, zero) = inr (transitivity (applyEquality succ (Semiring.sumZeroRight ℕSemiring a)) (Semiring.commutative ℕSemiring 1 a) ,, (le 0 refl))
cantorInverseLemmaIncreases (succ a ,, succ b) = inr (transitivity (applyEquality succ (Semiring.commutative ℕSemiring a (succ b))) (Semiring.commutative ℕSemiring (succ (succ b)) a) ,, (le 0 refl))
cantorInverseOrderPreserving : (x y : ℕ) → (x <N y) → order (cantorInverse x) (cantorInverse y)
cantorInverseOrderPreserving zero (succ y) x<y with TotalOrder.totality totalOrder (0 ,, 0) (cantorInverseLemma (cantorInverse y))
cantorInverseOrderPreserving zero (succ y) x<y | inl (inl bl) = bl
cantorInverseOrderPreserving zero (succ y) x<y | inl (inr bl) = exFalso (leastElement bl)
cantorInverseOrderPreserving zero (succ y) x<y | inr x = exFalso (leastElement {cantorInverse y} (identityOfIndiscernablesRight order (cantorInverseLemmaIncreases (cantorInverse y)) (equalityCommutative x)))
cantorInverseOrderPreserving (succ x) (succ y) x<y with cantorInverseOrderPreserving x y (canRemoveSuccFrom<N x<y)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr with cantorInverse x
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | x1 ,, x2 with cantorInverse y
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | zero ,, succ y2 = inl (succPreservesInequality (succIsPositive (y2 +N 0)))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | succ y1 ,, zero with TotalOrder.totality ℕTotalOrder 1 (y1 +N 1)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | succ y1 ,, zero | inl (inl pr1) = inl pr1
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | succ y1 ,, zero | inl (inr pr1) rewrite Semiring.commutative ℕSemiring y1 1 = exFalso (zeroNeverGreater (canRemoveSuccFrom<N pr1))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | succ y1 ,, zero | inr pr1 = inr (pr1 ,, le 0 refl)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, zero | succ y1 ,, succ y2 rewrite Semiring.commutative ℕSemiring y1 (succ (succ y2)) = inl (succPreservesInequality (succIsPositive (y2 +N y1)))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, zero | zero ,, succ y2 rewrite Semiring.commutative ℕSemiring x1 1 | Semiring.sumZeroRight ℕSemiring y2 | Semiring.sumZeroRight ℕSemiring x1 = inl (TotalOrder.<Transitive ℕTotalOrder pr (a<SuccA _))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, zero | succ y1 ,, zero rewrite Semiring.commutative ℕSemiring x1 1 | Semiring.commutative ℕSemiring y1 1 | Semiring.sumZeroRight ℕSemiring x1 | Semiring.sumZeroRight ℕSemiring y1 = inl pr
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, zero | succ y1 ,, succ y2 rewrite Semiring.commutative ℕSemiring x1 1 | Semiring.sumZeroRight ℕSemiring x1 = inl (identityOfIndiscernablesRight _<N_ pr (transitivity (applyEquality succ (Semiring.commutative ℕSemiring y1 (succ y2))) (Semiring.commutative ℕSemiring (succ (succ y2)) y1)))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, succ x2 | zero ,, succ y2 rewrite Semiring.sumZeroRight ℕSemiring x2 | Semiring.sumZeroRight ℕSemiring y2 = inl (succPreservesInequality pr)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, succ x2 | succ y1 ,, zero rewrite Semiring.commutative ℕSemiring y1 1 | Semiring.sumZeroRight ℕSemiring y1 | Semiring.sumZeroRight ℕSemiring x2 = ans
where
ans : (succ (succ x2) <N succ y1) || (succ (succ x2) ≡ succ y1) && (zero <N 1)
ans with TotalOrder.totality ℕTotalOrder (succ (succ x2)) (succ y1)
ans | inl (inl x) = inl x
ans | inl (inr x) = exFalso (noIntegersBetweenXAndSuccX (succ x2) pr x)
ans | inr x = inr (x ,, le zero refl)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | zero ,, succ x2 | succ y1 ,, succ y2 rewrite Semiring.commutative ℕSemiring y1 1 | Semiring.sumZeroRight ℕSemiring y1 | Semiring.sumZeroRight ℕSemiring x2 = ans
where
ans : (succ (succ x2) <N y1 +N succ (succ y2)) || (succ (succ x2) ≡ y1 +N succ (succ y2)) && (zero <N succ (succ y2))
ans with TotalOrder.totality ℕTotalOrder (succ (succ x2)) (y1 +N succ (succ y2))
ans | inl (inl x) = inl x
ans | inl (inr x) = exFalso (noIntegersBetweenXAndSuccX (succ x2) pr (identityOfIndiscernablesLeft _<N_ x (transitivity (Semiring.commutative ℕSemiring y1 (succ (succ y2))) (applyEquality succ (Semiring.commutative ℕSemiring (succ y2) y1)))))
ans | inr x = inr (x ,, succIsPositive (succ y2))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, succ x2 | zero ,, succ y2 rewrite Semiring.sumZeroRight ℕSemiring y2 = inl (TotalOrder.<Transitive ℕTotalOrder (identityOfIndiscernablesLeft _<N_ pr (transitivity (applyEquality succ (Semiring.commutative ℕSemiring x1 (succ x2))) (Semiring.commutative ℕSemiring (succ (succ x2)) x1))) (a<SuccA (succ y2)))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, succ x2 | succ y1 ,, zero rewrite Semiring.commutative ℕSemiring y1 1 | Semiring.sumZeroRight ℕSemiring y1 | Semiring.commutative ℕSemiring x1 (succ x2) | Semiring.commutative ℕSemiring x1 (succ (succ x2)) = inl pr
cantorInverseOrderPreserving (succ x) (succ y) x<y | inl pr | succ x1 ,, succ x2 | succ y1 ,, succ y2 rewrite Semiring.commutative ℕSemiring x1 (succ x2) | Semiring.commutative ℕSemiring y1 (succ y2) | Semiring.commutative ℕSemiring x1 (succ (succ x2)) | Semiring.commutative ℕSemiring y1 (succ (succ y2)) = inl pr
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) with cantorInverse x
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) | x1 ,, x2 with cantorInverse y
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, ()) | zero ,, zero | zero ,, zero
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (() ,, snd) | zero ,, zero | zero ,, succ y2
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (refl ,, snd) | zero ,, succ .y2 | zero ,, succ y2 = exFalso (TotalOrder.irreflexive ℕTotalOrder snd)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (refl ,, snd) | zero ,, succ .(y1 +N succ y2) | succ y1 ,, succ y2 = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder snd (identityOfIndiscernablesRight _<N_ (addingIncreases (succ y2) y1) (Semiring.commutative ℕSemiring (succ y2) (succ y1)))))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) | succ x1 ,, zero | zero ,, succ y2 rewrite Semiring.sumZeroRight ℕSemiring x1 | succInjective fst | Semiring.commutative ℕSemiring y2 1 | Semiring.sumZeroRight ℕSemiring y2 = inl (le zero refl)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) | succ x1 ,, zero | succ y1 ,, succ y2 rewrite Semiring.commutative ℕSemiring x1 1 | Semiring.sumZeroRight ℕSemiring x1 = inr (transitivity fst (transitivity (applyEquality succ (Semiring.commutative ℕSemiring y1 (succ y2))) (Semiring.commutative ℕSemiring (succ (succ y2)) y1)) ,, succPreservesInequality snd)
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) | succ x1 ,, succ x2 | zero ,, succ y2 rewrite Semiring.sumZeroRight ℕSemiring y2 | Semiring.commutative ℕSemiring x1 (succ x2) | Semiring.commutative ℕSemiring (succ (succ x2)) x1 | fst = inl (succPreservesInequality (le zero refl))
cantorInverseOrderPreserving (succ x) (succ y) x<y | inr (fst ,, snd) | succ x1 ,, succ x2 | succ y1 ,, succ y2 = inr (transitivity (transitivity (Semiring.commutative ℕSemiring x1 (succ (succ x2))) (applyEquality succ (Semiring.commutative ℕSemiring (succ x2) x1))) (transitivity fst (transitivity (applyEquality succ (Semiring.commutative ℕSemiring y1 (succ y2))) (Semiring.commutative ℕSemiring (succ (succ y2)) y1))) ,, succPreservesInequality snd)
cantorInverseInjective : (a b : ℕ) → cantorInverse a ≡ cantorInverse b → a ≡ b
cantorInverseInjective zero zero pr = refl
cantorInverseInjective zero (succ b) pr = exFalso (cantorInverseLemmaNotZero _ (equalityCommutative pr))
cantorInverseInjective (succ a) zero pr = exFalso (cantorInverseLemmaNotZero _ pr)
cantorInverseInjective (succ a) (succ b) pr = applyEquality succ (cantorInverseInjective a b (cantorInverseLemmaInjective (cantorInverse a) (cantorInverse b) pr))
-- Some unnecessary things on the way to the final proof
cantorInverseDiscrete : (a : ℕ) → (c : ℕ && ℕ) → order (cantorInverse a) c → order c (cantorInverse (succ a)) → False
cantorInverseDiscrete zero (zero ,, zero) (inl ()) c<sa
cantorInverseDiscrete zero (zero ,, zero) (inr ()) c<sa
cantorInverseDiscrete zero (zero ,, succ c) a<c (inl x) = zeroNeverGreater (canRemoveSuccFrom<N x)
cantorInverseDiscrete zero (succ b ,, zero) a<c (inl x) = zeroNeverGreater (canRemoveSuccFrom<N x)
cantorInverseDiscrete zero (succ b ,, succ c) a<c (inl x) = zeroNeverGreater (canRemoveSuccFrom<N x)
cantorInverseDiscrete (succ a) (b ,, c) a<c c<sa with cantorInverse a
cantorInverseDiscrete (succ a) (zero ,, zero) (inl ()) (inl x) | zero ,, zero
cantorInverseDiscrete (succ a) (zero ,, zero) (inr ()) (inl x) | zero ,, zero
cantorInverseDiscrete (succ a) (zero ,, succ zero) a<c (inl x) | zero ,, zero = TotalOrder.irreflexive ℕTotalOrder x
cantorInverseDiscrete (succ a) (zero ,, succ (succ c)) a<c (inl x) | zero ,, zero = zeroNeverGreater (canRemoveSuccFrom<N x)
cantorInverseDiscrete (succ a) (succ b ,, c) a<c (inl x) | zero ,, zero = zeroNeverGreater (canRemoveSuccFrom<N x)
cantorInverseDiscrete (succ a) (b ,, zero) (inl x) (inr (fst ,, snd)) | zero ,, zero = TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesRight _<N_ x fst)
cantorInverseDiscrete (succ a) (b ,, succ c) a<c (inr (fst ,, snd)) | zero ,, zero = zeroNeverGreater (canRemoveSuccFrom<N snd)
cantorInverseDiscrete (succ a) (b ,, c) (inl y) (inl x) | zero ,, succ snd rewrite Semiring.commutative ℕSemiring snd 1 | Semiring.sumZeroRight ℕSemiring snd = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder x y)
cantorInverseDiscrete (succ a) (b ,, succ c) (inr (fst ,, _)) (inl x) | zero ,, succ snd rewrite Semiring.commutative ℕSemiring snd 1 | Semiring.sumZeroRight ℕSemiring snd | fst = TotalOrder.irreflexive ℕTotalOrder x
cantorInverseDiscrete (succ a) (b ,, zero) (inl x) (inr (fst ,, snd₁)) | zero ,, succ snd rewrite fst | Semiring.commutative ℕSemiring snd 1 | Semiring.sumZeroRight ℕSemiring snd = TotalOrder.irreflexive ℕTotalOrder x
cantorInverseDiscrete (succ a) (b ,, succ c) (inl x) (inr (fst ,, snd1)) | zero ,, succ snd = zeroNeverGreater (canRemoveSuccFrom<N snd1)
cantorInverseDiscrete (succ a) (b ,, succ zero) (inr (fst ,, _)) (inr (fst₁ ,, bad)) | zero ,, succ snd = TotalOrder.irreflexive ℕTotalOrder bad
cantorInverseDiscrete (succ a) (b ,, succ (succ c)) (inr (fst ,, _)) (inr (fst₁ ,, bad)) | zero ,, succ snd = zeroNeverGreater (canRemoveSuccFrom<N bad)
cantorInverseDiscrete (succ a) (b ,, c) (inl x1) (inl x) | succ zero ,, zero = noIntegersBetweenXAndSuccX 1 x1 x
cantorInverseDiscrete (succ a) (zero ,, succ zero) (inr (fst ,, snd)) (inl x) | succ zero ,, zero = TotalOrder.irreflexive ℕTotalOrder snd
cantorInverseDiscrete (succ a) (succ b ,, succ c) (inr (fst ,, snd)) (inl x) | succ zero ,, zero rewrite Semiring.commutative ℕSemiring b (succ c) = bad fst
where
bad : {a : ℕ} → 1 ≡ succ (succ a) → False
bad ()
cantorInverseDiscrete (succ a) (b ,, c) (inl y) (inl x) | succ (succ fst) ,, zero rewrite Semiring.commutative ℕSemiring fst 2 | Semiring.commutative ℕSemiring fst 1 = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder y x)
cantorInverseDiscrete (succ a) (b ,, c) (inr (bad ,, _)) (inl x) | succ (succ fst) ,, zero rewrite Semiring.commutative ℕSemiring fst 2 | Semiring.commutative ℕSemiring fst 1 = TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesRight _<N_ x bad)
cantorInverseDiscrete (succ a) (b ,, c) (inl x) (inr (bad ,, snd)) | succ (succ fst) ,, zero rewrite Semiring.commutative ℕSemiring fst 2 | Semiring.commutative ℕSemiring fst 1 = TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesRight _<N_ x bad)
cantorInverseDiscrete (succ a) (b ,, c) (inr (_ ,, bad)) (inr (fst₁ ,, snd)) | succ (succ fst) ,, zero rewrite Semiring.commutative ℕSemiring fst 2 | Semiring.commutative ℕSemiring fst 1 = noIntegersBetweenXAndSuccX 1 bad snd
cantorInverseDiscrete (succ a) (b ,, c) (inl x) (inl y) | succ zero ,, succ snd rewrite Semiring.sumZeroRight ℕSemiring snd = noIntegersBetweenXAndSuccX (succ (succ snd)) x y
cantorInverseDiscrete (succ a) (zero ,, c) (inr (fst ,, snd1)) (inl y) | succ zero ,, succ snd rewrite Semiring.sumZeroRight ℕSemiring snd = noIntegersBetweenXAndSuccX (succ (succ snd)) snd1 y
cantorInverseDiscrete (succ a) (succ b ,, c) (inr (fst ,, bad)) (inl y) | succ zero ,, succ snd rewrite Semiring.sumZeroRight ℕSemiring snd | fst = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder bad (identityOfIndiscernablesRight _<N_ (addingIncreases c b) (Semiring.commutative ℕSemiring c (succ b))))
cantorInverseDiscrete (succ a) (b ,, c) (inl x) (inl y) | succ (succ fst) ,, succ snd rewrite Semiring.commutative ℕSemiring fst (succ (succ (succ snd))) | Semiring.commutative ℕSemiring (succ (succ snd)) fst = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder y x)
cantorInverseDiscrete (succ a) (b ,, c) (inl x) (inr (y ,, z)) | succ (succ fst) ,, succ snd rewrite y | Semiring.commutative ℕSemiring fst (succ (succ (succ snd))) | Semiring.commutative ℕSemiring (succ (succ snd)) fst = TotalOrder.irreflexive ℕTotalOrder x
cantorInverseDiscrete (succ a) (b ,, c) (inr (x ,, y)) (inl z) | succ (succ fst) ,, succ snd rewrite equalityCommutative x | Semiring.commutative ℕSemiring fst (succ (succ (succ snd))) | Semiring.commutative ℕSemiring (succ (succ snd)) fst = TotalOrder.irreflexive ℕTotalOrder z
cantorInverseDiscrete (succ a) (b ,, c) (inr (x ,, y)) (inr (m ,, n)) | succ (succ fst) ,, succ snd = noIntegersBetweenXAndSuccX (succ (succ snd)) y n
boundedInversesExist : (a : ℕ && ℕ) (s : ℕ) → order a (cantorInverse s) → Sg ℕ (λ i → cantorInverse i ≡ a)
boundedInversesExist a zero a<s = exFalso (leastElement a<s)
boundedInversesExist a (succ s) a<s with TotalOrder.totality totalOrder a (cantorInverse s)
boundedInversesExist a (succ s) _ | inl (inl a<s) = boundedInversesExist a s a<s
boundedInversesExist a (succ s) a<s | inl (inr s<a) = exFalso (cantorInverseDiscrete s a s<a a<s)
boundedInversesExist a (succ s) a<s | inr a=s = s , equalityCommutative a=s
cantorInverseSurjective : (x : ℕ && ℕ) → Sg ℕ (λ i → (cantorInverse i) ≡ x)
cantorInverseSurjective = rec orderWellfounded (λ z → Sg ℕ (λ z₁ → (cantorInverse z₁) ≡ z)) go
where
go : (a : ℕ && ℕ) → (pr : (x : ℕ && ℕ) (x₁ : order x a) → Sg ℕ (λ z → (cantorInverse z) ≡ x)) → Sg ℕ (λ i → (cantorInverse i) ≡ a)
go a pr with cantorInverseLemmaSurjective a
go .(0 ,, 0) pr | inl refl = 0 , refl
go a ind | inr (decr , proof) with ind decr (identityOfIndiscernablesRight order (cantorInverseLemmaIncreases decr) proof)
go a ind | inr (decr , proof) | boundForDecr , boundIsBound = succ boundForDecr , transitivity (applyEquality cantorInverseLemma boundIsBound) proof
| {
"alphanum_fraction": 0.7241634418,
"avg_line_length": 111.923566879,
"ext": "agda",
"hexsha": "611f2e4b3c8154c457e24f1ff5c05ff4aef09ed3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/CantorBijection/Proofs.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/CantorBijection/Proofs.agda",
"max_line_length": 452,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/CantorBijection/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 5796,
"size": 17572
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Decidable semi-heterogeneous vector equality over setoids
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.Vec.Relation.Binary.Equality.DecSetoid
{a ℓ} (DS : DecSetoid a ℓ) where
open import Data.Nat using (ℕ)
import Data.Vec.Relation.Binary.Equality.Setoid as Equality
import Data.Vec.Relation.Binary.Pointwise.Inductive as PW
open import Level using (_⊔_)
open import Relation.Binary using (Decidable)
open DecSetoid DS
------------------------------------------------------------------------
-- Make all definitions from equality available
open Equality setoid public
------------------------------------------------------------------------
-- Additional properties
infix 4 _≋?_
_≋?_ : ∀ {m n} → Decidable (_≋_ {m} {n})
_≋?_ = PW.decidable _≟_
≋-isDecEquivalence : ∀ n → IsDecEquivalence (_≋_ {n})
≋-isDecEquivalence = PW.isDecEquivalence isDecEquivalence
≋-decSetoid : ℕ → DecSetoid a (a ⊔ ℓ)
≋-decSetoid = PW.decSetoid DS
| {
"alphanum_fraction": 0.5496515679,
"avg_line_length": 28.7,
"ext": "agda",
"hexsha": "ea630b979b2a408e24e472443a79e6f8b0a4a5f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecSetoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecSetoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecSetoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 274,
"size": 1148
} |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
open import Data.Nat
open import Data.Fin
module Examples.Lambda.Lambda where
{- Terms & Values -}
data Term (n : ℕ) : Set where
var : Fin n → Term n
lambda : Term (suc n) → Term n
app : Term n → Term n → Term n
data Value : Set where
lambda : Term 1 → Value
term : Value → Term 0
term (lambda x) = lambda x
{- Substitution -}
ext : ∀{n m} → (Fin n → Fin m) → (Fin (suc n) → Fin (suc m))
ext f zero = zero
ext f (suc n) = suc (f n)
rename : ∀{n m} → (Fin n → Fin m) → (Term n → Term m)
rename f (var x) = var (f x)
rename f (lambda t) = lambda (rename (ext f) t)
rename f (app t t₁) = app (rename f t) (rename f t₁)
exts : ∀{n m} → (Fin n → Term m) → (Fin (suc n) → Term (suc m))
exts _ zero = var zero
exts f (suc n) = rename suc (f n)
subst : ∀{n m} → (Fin n → Term m) → (Term n → Term m)
subst f (var x) = f x
subst f (lambda t) = lambda (subst (exts f) t)
subst f (app t t₁) = app (subst f t) (subst f t₁)
subst-0 : ∀{n} → Term (suc n) → Term n → Term n
subst-0 {n} t t₁ = subst {suc n}{n} f t where
f : Fin (suc n) → Term n
f zero = t₁
f (suc n) = var n | {
"alphanum_fraction": 0.5186064925,
"avg_line_length": 28.7045454545,
"ext": "agda",
"hexsha": "5ebdb4891aeba5ea2d542daf61544891a560bb7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LcicC/inference-systems-agda",
"max_forks_repo_path": "Examples/Lambda/Lambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LcicC/inference-systems-agda",
"max_issues_repo_path": "Examples/Lambda/Lambda.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LcicC/inference-systems-agda",
"max_stars_repo_path": "Examples/Lambda/Lambda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z",
"num_tokens": 463,
"size": 1263
} |
module Spire.Type where
----------------------------------------------------------------------
data ⊥ : Set where
record ⊤ : Set where constructor tt
data Bool : Set where true false : Bool
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
----------------------------------------------------------------------
const : {A : Set₁} {B : Set} → A → B → A
const a _ = a
uncurry : {A : Set} {B : A → Set} {C : Σ A B → Set} →
((a : A) → (b : B a) → C (a , b)) →
((p : Σ A B) → C p)
uncurry f (a , b) = f a b
_∘_ : {A B C : Set₁} → (B → C) → (A → B) → A → C
_∘_ g f x = g (f x)
----------------------------------------------------------------------
elim⊥ : {A : Set} → ⊥ → A
elim⊥ ()
elimBool : (P : Bool → Set)
(pt : P true)
(pf : P false)
(b : Bool) → P b
elimBool P pt pf true = pt
elimBool P pt pf false = pf
if_then_else_ : {C : Set} → Bool → C → C → C
if b then c₁ else c₂ = elimBool _ c₁ c₂ b
elimℕ : (P : ℕ → Set)
(pz : P zero)
(ps : (n : ℕ) → P n → P (suc n))
(n : ℕ) → P n
elimℕ P pz ps zero = pz
elimℕ P pz ps (suc n) = ps n (elimℕ P pz ps n)
----------------------------------------------------------------------
record Universe : Set₁ where
field
Codes : Set
Meaning : Codes → Set
----------------------------------------------------------------------
data DescForm (U : Universe) : Set where
`⊤ `X : DescForm U
`Π `Σ : (A : Universe.Codes U)
(D : Universe.Meaning U A → DescForm U)
→ DescForm U
⟦_/_⟧ᵈ : (U : Universe) → DescForm U → Set → Set
⟦ U / `⊤ ⟧ᵈ X = ⊤
⟦ U / `X ⟧ᵈ X = X
⟦ U / `Π A D ⟧ᵈ X =
(a : Universe.Meaning U A) → ⟦ U / D a ⟧ᵈ X
⟦ U / `Σ A D ⟧ᵈ X =
Σ (Universe.Meaning U A) (λ a → ⟦ U / D a ⟧ᵈ X)
data μ {U : Universe} (D : DescForm U) : Set where
con : ⟦ U / D ⟧ᵈ (μ D) → μ D
----------------------------------------------------------------------
data TypeForm (U : Universe) : Set
⟦_/_⟧ : (U : Universe) → TypeForm U → Set
data TypeForm U where
`⊥ `⊤ `Bool `ℕ `Desc `Type : TypeForm U
`Π `Σ : (A : TypeForm U)
(B : ⟦ U / A ⟧ → TypeForm U)
→ TypeForm U
`⟦_⟧ : Universe.Codes U → TypeForm U
`⟦_⟧ᵈ : DescForm U → TypeForm U → TypeForm U
`μ : DescForm U → TypeForm U
⟦ U / `⊥ ⟧ = ⊥
⟦ U / `⊤ ⟧ = ⊤
⟦ U / `Bool ⟧ = Bool
⟦ U / `ℕ ⟧ = ℕ
⟦ U / `Π A B ⟧ = (a : ⟦ U / A ⟧) → ⟦ U / B a ⟧
⟦ U / `Σ A B ⟧ = Σ ⟦ U / A ⟧ (λ a → ⟦ U / B a ⟧)
⟦ U / `Type ⟧ = Universe.Codes U
⟦ U / `⟦ A ⟧ ⟧ = Universe.Meaning U A
⟦ U / `Desc ⟧ = DescForm U
⟦ U / `⟦ D ⟧ᵈ X ⟧ = ⟦ U / D ⟧ᵈ ⟦ U / X ⟧
⟦ U / `μ D ⟧ = μ D
----------------------------------------------------------------------
_`→_ : ∀{U} (A B : TypeForm U) → TypeForm U
A `→ B = `Π A (λ _ → B)
Level : (ℓ : ℕ) → Universe
Level zero = record { Codes = ⊥ ; Meaning = λ() }
Level (suc ℓ) = record { Codes = TypeForm (Level ℓ)
; Meaning = ⟦_/_⟧ (Level ℓ) }
Type : ℕ → Set
Type ℓ = TypeForm (Level ℓ)
Desc : ℕ → Set
Desc ℓ = DescForm (Level ℓ)
infix 0 ⟦_∣_⟧
⟦_∣_⟧ : (ℓ : ℕ) → Type ℓ → Set
⟦ ℓ ∣ A ⟧ = ⟦ Level ℓ / A ⟧
⟦_∣_⟧ᵈ : (ℓ : ℕ) → Desc ℓ → Set → Set
⟦ ℓ ∣ D ⟧ᵈ X = ⟦ Level ℓ / D ⟧ᵈ X
----------------------------------------------------------------------
elimDesc : (P : (ℓ : ℕ) → Desc ℓ → Set)
→ ((ℓ : ℕ) → P ℓ `⊤)
→ ((ℓ : ℕ) → P ℓ `X)
→ ((ℓ : ℕ) (A : Type ℓ) (D : ⟦ ℓ ∣ A ⟧ → Desc (suc ℓ))
(rec : (a : ⟦ ℓ ∣ A ⟧) → P (suc ℓ) (D a))
→ P (suc ℓ) (`Π A D))
→ ((ℓ : ℕ) (A : Type ℓ) (D : ⟦ ℓ ∣ A ⟧ → Desc (suc ℓ))
(rec : (a : ⟦ ℓ ∣ A ⟧) → P (suc ℓ) (D a))
→ P (suc ℓ) (`Σ A D))
→ (ℓ : ℕ) (D : Desc ℓ) → P ℓ D
elimDesc P p⊤ pX pΠ pΣ ℓ `⊤ = p⊤ ℓ
elimDesc P p⊤ pX pΠ pΣ ℓ `X = pX ℓ
elimDesc P p⊤ pX pΠ pΣ zero (`Π () D)
elimDesc P p⊤ pX pΠ pΣ (suc ℓ) (`Π A D) =
let f = elimDesc P p⊤ pX pΠ pΣ (suc ℓ)
in pΠ ℓ A D (λ a → f (D a))
elimDesc P p⊤ pX pΠ pΣ zero (`Σ () D)
elimDesc P p⊤ pX pΠ pΣ (suc ℓ) (`Σ A D) =
let f = elimDesc P p⊤ pX pΠ pΣ (suc ℓ)
in pΣ ℓ A D (λ a → f (D a))
des : ∀{ℓ} {D : Desc ℓ} → μ D → ⟦ ℓ ∣ D ⟧ᵈ (μ D)
des (con x) = x
----------------------------------------------------------------------
elimType : (P : (ℓ : ℕ) → Type ℓ → Set)
→ ((ℓ : ℕ) → P ℓ `⊥)
→ ((ℓ : ℕ) → P ℓ `⊤)
→ ((ℓ : ℕ) → P ℓ `Bool)
→ ((ℓ : ℕ) → P ℓ `ℕ)
→ ((ℓ : ℕ) (A : Type ℓ) (B : ⟦ ℓ ∣ A ⟧ → Type ℓ)
(rec₁ : P ℓ A)
(rec₂ : (a : ⟦ ℓ ∣ A ⟧) → P ℓ (B a))
→ P ℓ (`Π A B))
→ ((ℓ : ℕ) (A : Type ℓ) (B : ⟦ ℓ ∣ A ⟧ → Type ℓ)
(rec₁ : P ℓ A)
(rec₂ : (a : ⟦ ℓ ∣ A ⟧) → P ℓ (B a))
→ P ℓ (`Σ A B))
→ ((ℓ : ℕ) → P ℓ `Desc)
→ ((ℓ : ℕ) (D : Desc ℓ) (X : Type ℓ) (rec : P ℓ X) → P ℓ (`⟦ D ⟧ᵈ X))
→ ((ℓ : ℕ) (D : Desc ℓ) → P ℓ (`μ D))
→ ((ℓ : ℕ) → P ℓ `Type)
→ ((ℓ : ℕ) (A : Type ℓ) (rec : P ℓ A) → P (suc ℓ) `⟦ A ⟧)
→ (ℓ : ℕ) (A : Type ℓ) → P ℓ A
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `⊥ = p⊥ ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `⊤ = p⊤ ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `Bool = pBool ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `ℕ = pℕ ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ (`Π A B) =
let f = elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ ℓ
in pΠ ℓ A B (f A) (λ a → f (B a))
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ (`Σ A B) =
let f = elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ ℓ
in pΣ ℓ A B (f A) (λ a → f (B a))
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `Type = pType ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ `Desc = pDesc ℓ
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ (`⟦ D ⟧ᵈ X) =
let f = elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ ℓ
in p⟦D⟧ᵈ ℓ D X (f X)
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
ℓ (`μ D) = pμ ℓ D
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
zero `⟦ () ⟧
elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧
(suc ℓ) `⟦ A ⟧ =
let f = elimType P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ ℓ
in p⟦A⟧ ℓ A (f A)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.4259349199,
"avg_line_length": 28.8644859813,
"ext": "agda",
"hexsha": "6afb4a5f88f8c88f8ff8dbc3e0d3de0a876e8b74",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/Type.agda",
"max_line_length": 71,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 3189,
"size": 6177
} |
module Thesis.Changes where
open import Data.Product
open import Data.Sum
open import Data.Unit
open import Relation.Binary.PropositionalEquality
record IsChangeStructure (A : Set) (ChA : Set) (ch_from_to_ : (dv : ChA) → (v1 v2 : A) → Set) : Set₁ where
infixl 6 _⊕_ _⊝_
field
_⊕_ : A → ChA → A
fromto→⊕ : ∀ dv v1 v2 →
ch dv from v1 to v2 →
v1 ⊕ dv ≡ v2
_⊝_ : A → A → ChA
⊝-fromto : ∀ (a b : A) → ch (b ⊝ a) from a to b
update-diff : (b a : A) → a ⊕ (b ⊝ a) ≡ b
update-diff b a = fromto→⊕ (b ⊝ a) a b (⊝-fromto a b)
nil : A → ChA
nil a = a ⊝ a
nil-fromto : (a : A) → ch (nil a) from a to a
nil-fromto a = ⊝-fromto a a
update-nil : (a : A) → a ⊕ nil a ≡ a
update-nil a = update-diff a a
valid : ∀ (a : A) (da : ChA) → Set
valid a da = ch da from a to (a ⊕ da)
Δ₁ : (a : A) → Set
Δ₁ a = Σ[ da ∈ ChA ] valid a da
Δ₂ : (a1 : A) (a2 : A) → Set
Δ₂ a1 a2 = Σ[ da ∈ ChA ] ch da from a1 to a2
_⊕'_ : (a1 : A) -> {a2 : A} -> (da : Δ₂ a1 a2) -> A
a1 ⊕' (da , daa) = a1 ⊕ da
record IsCompChangeStructure (A : Set) (ChA : Set) (ch_from_to_ : (dv : ChA) → (v1 v2 : A) → Set) : Set₁ where
field
isChangeStructure : IsChangeStructure A ChA ch_from_to_
_⊚_ : ChA → ChA → ChA
⊚-fromto : ∀ (a1 a2 a3 : A) (da1 da2 : ChA) →
ch da1 from a1 to a2 → ch da2 from a2 to a3 → ch da1 ⊚ da2 from a1 to a3
open IsChangeStructure isChangeStructure public
⊚-correct : ∀ (a1 a2 a3 : A) (da1 da2 : ChA) →
ch da1 from a1 to a2 → ch da2 from a2 to a3 →
a1 ⊕ (da1 ⊚ da2) ≡ a3
⊚-correct a1 a2 a3 da1 da2 daa1 daa2 = fromto→⊕ _ _ _ (⊚-fromto _ _ _ da1 da2 daa1 daa2)
record ChangeStructure (A : Set) : Set₁ where
field
Ch : Set
ch_from_to_ : (dv : Ch) → (v1 v2 : A) → Set
isCompChangeStructure : IsCompChangeStructure A Ch ch_from_to_
open IsCompChangeStructure isCompChangeStructure public
open ChangeStructure {{...}} public hiding (Ch)
Ch : ∀ (A : Set) → {{CA : ChangeStructure A}} → Set
Ch A {{CA}} = ChangeStructure.Ch CA
-- infix 2 Σ-syntax
-- Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b)
-- Σ-syntax = Σ
-- syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
⊚-syntax : ∀ (A : Set) → {{CA : ChangeStructure A}} → Ch A → Ch A → Ch A
⊚-syntax A {{CA}} da1 da2 = _⊚_ {{CA}} da1 da2
syntax ⊚-syntax A da1 da2 = da1 ⊚[ A ] da2
{-# DISPLAY IsChangeStructure._⊕_ x = _⊕_ #-}
{-# DISPLAY ChangeStructure._⊕_ x = _⊕_ #-}
{-# DISPLAY IsChangeStructure._⊝_ x = _⊝_ #-}
{-# DISPLAY ChangeStructure._⊝_ x = _⊝_ #-}
{-# DISPLAY IsChangeStructure.nil x = nil #-}
{-# DISPLAY ChangeStructure.nil x = nil #-}
{-# DISPLAY IsCompChangeStructure._⊚_ x = _⊚_ #-}
{-# DISPLAY ChangeStructure._⊚_ x = _⊚_ #-}
{-# DISPLAY ChangeStructure.ch_from_to_ x = ch_from_to_ #-}
module _ {A B : Set} {{CA : ChangeStructure A}} {{CB : ChangeStructure B}} where
-- In this module, given change structures CA and CB for A and B, we define
-- change structures for A → B, A × B and A ⊎ B.
open import Postulate.Extensionality
-- Functions
instance
funCS : ChangeStructure (A → B)
infixl 6 _f⊕_ _f⊝_
private
fCh = A → Ch A → Ch B
fCh_from_to_ : (df : fCh) → (f1 f2 : A → B) → Set
fCh_from_to_ =
λ df f1 f2 → ∀ da (a1 a2 : A) (daa : ch da from a1 to a2) →
ch df a1 da from f1 a1 to f2 a2
_f⊕_ : (A → B) → fCh → A → B
_f⊕_ = λ f df a → f a ⊕ df a (nil a)
_f⊝_ : (g f : A → B) → fCh
_f⊝_ = λ g f a da → g (a ⊕ da) ⊝ f a
f⊝-fromto : ∀ (f1 f2 : A → B) → fCh (f2 f⊝ f1) from f1 to f2
f⊝-fromto f1 f2 da a1 a2 daa
rewrite sym (fromto→⊕ da a1 a2 daa) = ⊝-fromto (f1 a1) (f2 (a1 ⊕ da))
_f⊚_ : fCh → fCh → fCh
_f⊚_ df1 df2 = λ a da → df1 a (nil a) ⊚[ B ] df2 a da
_f2⊚_ : fCh → fCh → fCh
_f2⊚_ df1 df2 = λ a da → df1 a da ⊚[ B ] df2 (a ⊕ da) (nil (a ⊕ da))
f⊚-fromto : ∀ (f1 f2 f3 : A → B) (df1 df2 : fCh) → fCh df1 from f1 to f2 → fCh df2 from f2 to f3 →
fCh df1 f⊚ df2 from f1 to f3
f⊚-fromto f1 f2 f3 df1 df2 dff1 dff2 da a1 a2 daa =
⊚-fromto (f1 a1) (f2 a1) (f3 a2)
(df1 a1 (nil a1))
(df2 a1 da)
(dff1 (nil a1) a1 a1 (nil-fromto a1))
(dff2 da a1 a2 daa)
f⊚2-fromto : ∀ (f1 f2 f3 : A → B) (df1 df2 : fCh) → fCh df1 from f1 to f2 → fCh df2 from f2 to f3 →
fCh df1 f2⊚ df2 from f1 to f3
f⊚2-fromto f1 f2 f3 df1 df2 dff1 dff2 da a1 a2 daa rewrite fromto→⊕ da a1 a2 daa =
⊚-fromto (f1 a1) (f2 a2) (f3 a2)
(df1 a1 da)
(df2 a2 (nil a2))
(dff1 da a1 a2 daa)
(dff2 (nil a2) a2 a2 (nil-fromto a2))
funCS = record
{ Ch = fCh
; ch_from_to_ =
λ df f1 f2 → ∀ da (a1 a2 : A) (daa : ch da from a1 to a2) →
ch df a1 da from f1 a1 to f2 a2
; isCompChangeStructure = record
{ isChangeStructure = record
{ _⊕_ = _f⊕_
; fromto→⊕ = λ df f1 f2 dff →
ext (λ v →
fromto→⊕ (df v (nil v)) (f1 v) (f2 v) (dff (nil v) v v (nil-fromto v)))
; _⊝_ = _f⊝_
; ⊝-fromto = f⊝-fromto
}
; _⊚_ = _f⊚_
; ⊚-fromto = f⊚-fromto
}
}
-- Products
private
pCh = Ch A × Ch B
_p⊕_ : A × B → Ch A × Ch B → A × B
_p⊕_ (a , b) (da , db) = a ⊕ da , b ⊕ db
_p⊝_ : A × B → A × B → pCh
_p⊝_ (a2 , b2) (a1 , b1) = a2 ⊝ a1 , b2 ⊝ b1
pch_from_to_ : pCh → A × B → A × B → Set
pch (da , db) from (a1 , b1) to (a2 , b2) = ch da from a1 to a2 × ch db from b1 to b2
_p⊚_ : pCh → pCh → pCh
(da1 , db1) p⊚ (da2 , db2) = da1 ⊚[ A ] da2 , db1 ⊚[ B ] db2
pfromto→⊕ : ∀ dp p1 p2 →
pch dp from p1 to p2 → p1 p⊕ dp ≡ p2
pfromto→⊕ (da , db) (a1 , b1) (a2 , b2) (daa , dbb) =
cong₂ _,_ (fromto→⊕ _ _ _ daa) (fromto→⊕ _ _ _ dbb)
p⊝-fromto : ∀ (p1 p2 : A × B) → pch p2 p⊝ p1 from p1 to p2
p⊝-fromto (a1 , b1) (a2 , b2) = ⊝-fromto a1 a2 , ⊝-fromto b1 b2
p⊚-fromto : ∀ p1 p2 p3 dp1 dp2 →
pch dp1 from p1 to p2 → (pch dp2 from p2 to p3) → pch dp1 p⊚ dp2 from p1 to p3
p⊚-fromto (a1 , b1) (a2 , b2) (a3 , b3) (da1 , db1) (da2 , db2)
(daa1 , dbb1) (daa2 , dbb2) =
⊚-fromto a1 a2 a3 da1 da2 daa1 daa2 , ⊚-fromto b1 b2 b3 db1 db2 dbb1 dbb2
instance
pairCS : ChangeStructure (A × B)
pairCS = record
{ Ch = pCh
; ch_from_to_ = pch_from_to_
; isCompChangeStructure = record
{ isChangeStructure = record
{ _⊕_ = _p⊕_
; fromto→⊕ = pfromto→⊕
; _⊝_ = _p⊝_
; ⊝-fromto = p⊝-fromto
}
; _⊚_ = _p⊚_
; ⊚-fromto = p⊚-fromto
}
}
-- Sums
private
SumChange = (Ch A ⊎ Ch B) ⊎ (A ⊎ B)
data SumChange2 : Set where
ch₁ : (da : Ch A) → SumChange2
ch₂ : (db : Ch B) → SumChange2
rp : (s : A ⊎ B) → SumChange2
convert : SumChange → SumChange2
convert (inj₁ (inj₁ da)) = ch₁ da
convert (inj₁ (inj₂ db)) = ch₂ db
convert (inj₂ s) = rp s
convert₁ : SumChange2 → SumChange
convert₁ (ch₁ da) = inj₁ (inj₁ da)
convert₁ (ch₂ db) = inj₁ (inj₂ db)
convert₁ (rp s) = inj₂ s
inv1 : ∀ ds → convert₁ (convert ds) ≡ ds
inv1 (inj₁ (inj₁ da)) = refl
inv1 (inj₁ (inj₂ db)) = refl
inv1 (inj₂ s) = refl
inv2 : ∀ ds → convert (convert₁ ds) ≡ ds
inv2 (ch₁ da) = refl
inv2 (ch₂ db) = refl
inv2 (rp s) = refl
private
_s⊕2_ : A ⊎ B → SumChange2 → A ⊎ B
_s⊕2_ s (rp s₁) = s₁
_s⊕2_ (inj₁ a) (ch₁ da) = inj₁ (a ⊕ da)
_s⊕2_ (inj₂ b) (ch₂ db) = inj₂ (b ⊕ db)
_s⊕2_ (inj₂ b) (ch₁ da) = inj₂ b -- invalid
_s⊕2_ (inj₁ a) (ch₂ db) = inj₁ a -- invalid
_s⊕_ : A ⊎ B → SumChange → A ⊎ B
s s⊕ ds = s s⊕2 (convert ds)
_s⊝2_ : A ⊎ B → A ⊎ B → SumChange2
_s⊝2_ (inj₁ x2) (inj₁ x1) = ch₁ (x2 ⊝ x1)
_s⊝2_ (inj₂ y2) (inj₂ y1) = ch₂ (y2 ⊝ y1)
_s⊝2_ s2 s1 = rp s2
_s⊝_ : A ⊎ B → A ⊎ B → SumChange
s2 s⊝ s1 = convert₁ (s2 s⊝2 s1)
data sch_from_to_ : SumChange → A ⊎ B → A ⊎ B → Set where
-- sft = Sum From To
sft₁ : ∀ {da a1 a2} (daa : ch da from a1 to a2) → sch (convert₁ (ch₁ da)) from (inj₁ a1) to (inj₁ a2)
sft₂ : ∀ {db b1 b2} (dbb : ch db from b1 to b2) → sch (convert₁ (ch₂ db)) from (inj₂ b1) to (inj₂ b2)
sftrp : ∀ s1 s2 → sch (convert₁ (rp s2)) from s1 to s2
sfromto→⊕2 : (ds : SumChange2) (s1 s2 : A ⊎ B) →
sch convert₁ ds from s1 to s2 → s1 s⊕2 ds ≡ s2
sfromto→⊕2 (ch₁ da) (inj₁ a1) (inj₁ a2) (sft₁ daa) = cong inj₁ (fromto→⊕ _ _ _ daa)
sfromto→⊕2 (ch₂ db) (inj₂ b1) (inj₂ b2) (sft₂ dbb) = cong inj₂ (fromto→⊕ _ _ _ dbb)
sfromto→⊕2 (rp .s2) .s1 .s2 (sftrp s1 s2) = refl
sfromto→⊕ : (ds : SumChange) (s1 s2 : A ⊎ B) →
sch ds from s1 to s2 → s1 s⊕ ds ≡ s2
sfromto→⊕ ds s1 s2 dss =
sfromto→⊕2 (convert ds) s1 s2
(subst (sch_from s1 to s2) (sym (inv1 ds))
dss)
s⊝-fromto : (s1 s2 : A ⊎ B) → sch s2 s⊝ s1 from s1 to s2
s⊝-fromto (inj₁ a1) (inj₁ a2) = sft₁ (⊝-fromto a1 a2)
s⊝-fromto (inj₂ b1) (inj₂ b2) = sft₂ (⊝-fromto b1 b2)
s⊝-fromto s1@(inj₁ a1) s2@(inj₂ b2) = sftrp s1 s2
s⊝-fromto s1@(inj₂ b1) s2@(inj₁ a2) = sftrp s1 s2
_s⊚2_ : SumChange2 → SumChange2 → SumChange2
ds1 s⊚2 rp s3 = rp s3
ch₁ da1 s⊚2 ch₁ da2 = ch₁ (da1 ⊚[ A ] da2)
rp (inj₁ a2) s⊚2 ch₁ da2 = rp (inj₁ (a2 ⊕ da2))
ch₂ db1 s⊚2 ch₂ db2 = ch₂ (db1 ⊚[ B ] db2)
rp (inj₂ b2) s⊚2 ch₂ db2 = rp (inj₂ (b2 ⊕ db2))
-- Cases for invalid combinations of input changes.
--
-- That is, whenever ds2 is a non-replacement change for outputs that ds1
-- can't produce.
--
-- We can prove validity preservation *without* filling this in.
ds1 s⊚2 ds2 = ds1
_s⊚_ : SumChange → SumChange → SumChange
ds1 s⊚ ds2 = convert₁ (convert ds1 s⊚2 convert ds2)
s⊚-fromto : (s1 s2 s3 : A ⊎ B) (ds1 ds2 : SumChange) →
sch ds1 from s1 to s2 →
sch ds2 from s2 to s3 → sch ds1 s⊚ ds2 from s1 to s3
s⊚-fromto (inj₁ a1) (inj₁ a2) (inj₁ a3) (inj₁ (inj₁ da1)) (inj₁ (inj₁ da2)) (sft₁ daa1) (sft₁ daa2) = sft₁ (⊚-fromto a1 a2 a3 _ _ daa1 daa2)
s⊚-fromto (inj₂ b1) (inj₂ b2) (inj₂ b3) (inj₁ (inj₂ db1)) (inj₁ (inj₂ db2)) (sft₂ dbb1) (sft₂ dbb2) = sft₂ (⊚-fromto b1 b2 b3 _ _ dbb1 dbb2)
s⊚-fromto s1 (inj₁ a2) (inj₁ a3) .(inj₂ (inj₁ _)) .(inj₁ (inj₁ _)) (sftrp .s1 .(inj₁ _)) (sft₁ daa) rewrite fromto→⊕ _ a2 a3 daa = sftrp _ _
s⊚-fromto s1 (inj₂ b2) (inj₂ b3) .(inj₂ (inj₂ _)) .(inj₁ (inj₂ _)) (sftrp .s1 .(inj₂ _)) (sft₂ dbb) rewrite fromto→⊕ _ b2 b3 dbb = sftrp _ _
s⊚-fromto s1 s2 s3 _ _ _ (sftrp .s2 .s3) = sftrp s1 s3
-- s⊚-fromto .(inj₂ b1) .(inj₁ a2) (inj₁ a3) .(inj₂ (inj₁ a2)) (inj₁ (inj₁ da2)) (sftrp (inj₂ b1) (inj₁ a2)) (sft₁ daa2) with sfromto→⊕ (inj₁ (inj₁ da2)) _ _ (sft₁ daa2)
-- s⊚-fromto .(inj₂ b1) .(inj₁ a2) (inj₁ .(a2 ⊕ da2)) .(inj₂ (inj₁ a2)) (inj₁ (inj₁ da2)) (sftrp (inj₂ b1) (inj₁ a2)) (sft₁ daa2) | refl = sftrp (inj₂ b1) (inj₁ (a2 ⊕ da2))
-- s⊚-fromto .(inj₁ a1) .(inj₂ b2) (inj₂ b3) .(inj₂ (inj₂ b2)) (inj₁ (inj₂ db2)) (sftrp (inj₁ a1) (inj₂ b2)) (sft₂ dbb2) with sfromto→⊕ (inj₁ (inj₂ db2)) _ _ (sft₂ dbb2)
-- s⊚-fromto .(inj₁ a1) .(inj₂ b2) (inj₂ .(b2 ⊕ db2)) .(inj₂ (inj₂ b2)) (inj₁ (inj₂ db2)) (sftrp (inj₁ a1) (inj₂ b2)) (sft₂ dbb2) | refl = sftrp (inj₁ a1) (inj₂ (b2 ⊕ db2))
instance
sumCS : ChangeStructure (A ⊎ B)
sumCS = record
{ Ch = SumChange
; ch_from_to_ = sch_from_to_
; isCompChangeStructure = record
{ isChangeStructure = record
{ _⊕_ = _s⊕_
; fromto→⊕ = sfromto→⊕
; _⊝_ = _s⊝_
; ⊝-fromto = s⊝-fromto
}
; _⊚_ = _s⊚_
; ⊚-fromto = s⊚-fromto
}
}
instance
unitCS : ChangeStructure ⊤
unitCS = record
{ Ch = ⊤
; ch_from_to_ = λ dv v1 v2 → ⊤
; isCompChangeStructure = record
{ isChangeStructure = record
{ _⊕_ = λ _ _ → tt
; fromto→⊕ = λ { _ _ tt _ → refl }
; _⊝_ = λ _ _ → tt
; ⊝-fromto = λ a b → tt
}
; _⊚_ = λ da1 da2 → tt
; ⊚-fromto = λ a1 a2 a3 da1 da2 daa1 daa2 → tt
}
}
| {
"alphanum_fraction": 0.5484035326,
"avg_line_length": 35.5770392749,
"ext": "agda",
"hexsha": "c663828ade6d2c56cce057ec4a534aaeb9ac603a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/Changes.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/Changes.agda",
"max_line_length": 174,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/Changes.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 5812,
"size": 11776
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
module Monoids.Definition where
record Monoid {a : _} {A : Set a} (Zero : A) (_+_ : A → A → A) : Set a where
field
associative : (a b c : A) → a + (b + c) ≡ (a + b) + c
idLeft : (a : A) → Zero + a ≡ a
idRight : (a : A) → a + Zero ≡ a
| {
"alphanum_fraction": 0.5363636364,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "f6f71aef9a3d4f0bced11863892a5a6e3e79235c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Monoids/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Monoids/Definition.agda",
"max_line_length": 76,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Monoids/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 123,
"size": 330
} |
import Lvl
open import Type
module Structure.Logic.Classical.NaturalDeduction {ℓₗ} {Formula : Type{ℓₗ}} {ℓₘₗ} (Proof : Formula → Type{ℓₘₗ}) where
open import Functional hiding (Domain)
import Structure.Logic.Constructive.NaturalDeduction
private module Constructive = Structure.Logic.Constructive.NaturalDeduction(Proof)
-- TODO: Maybe it is worth to try and take a more minimal approach? (Less axioms? Is this more practical/impractical?)
module Propositional where
open Constructive.Propositional hiding (Theory) public
-- A theory of classical propositional logic expressed using natural deduction rules
record Theory ⦃ sign : Signature ⦄ : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
open Signature(sign)
field
instance ⦃ constructive ⦄ : Constructive.Propositional.Theory ⦃ sign ⦄
open Constructive.Propositional.Theory (constructive) public
field
excluded-middle : ∀{P} → Proof(P ∨ (¬ P))
module Domained = Constructive.Domained
module MultiSorted = Constructive.MultiSorted
{-
Propositional-from-[∧][∨][⊥] : ∀{ℓₗ} → (_∧_ _∨_ : Formula → Formula → Formula) → (⊥ : Formula) →
([∧]-intro : ∀{X Y} → X → Y → (X ∧ Y)) →
([∧]-elimₗ : ∀{X Y} → (X ∧ Y) → X) →
([∧]-elimᵣ : ∀{X Y} → (X ∧ Y) → Y) →
([∨]-introₗ : ∀{X Y} → X → (X ∨ Y)) →
([∨]-introᵣ : ∀{X Y} → Y → (X ∨ Y)) →
([∨]-elim : ∀{X Y Z : Formula} → (X → Z) → (Y → Z) → (X ∨ Y) → Z) →
([⊥]-intro : ∀{X : Formula} → X → (X → ⊥) → ⊥) →
([⊥]-elim : ∀{X : Formula} → ⊥ → X) →
Propositional{ℓₗ}
Propositional-from-[∧][∨][⊥]
(_∧_) (_∨_) (⊥)
([∧]-intro)
([∧]-elimₗ)
([∧]-elimᵣ)
([∨]-introₗ)
([∨]-introᵣ)
([∨]-elim)
([⊥]-intro)
([⊥]-elim)
= record{
_∧_ = _∧_ ;
_∨_ = _∨_ ;
_⟶_ = (x ↦ y ↦ (x ∨ (¬ y))) ;
_⟵_ = swap _⟶_ ;
_⟷_ = (x ↦ y ↦ ((x ⟵ y)∧(x ⟶ y))) ;
¬_ = (x ↦ (x ⟶ ⊥)) ;
⊥ = ⊥ ;
⊤ = ¬ ⊥
}
-}
module _ {ℓₒ} (Domain : Type{ℓₒ}) where
record ClassicalLogicSignature : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Domained(Domain)
field
instance ⦃ propositionalSignature ⦄ : Propositional.Signature
instance ⦃ predicateSignature ⦄ : Predicate.Signature
instance ⦃ equalitySignature ⦄ : Equality.Signature
constructiveLogicSignature : Constructive.ConstructiveLogicSignature(Domain)
constructiveLogicSignature =
record{
propositionalSignature = propositionalSignature ;
predicateSignature = predicateSignature ;
equalitySignature = equalitySignature
}
open Propositional.Signature(propositionalSignature) public
open Predicate.Signature(predicateSignature) public
open Equality.Signature(equalitySignature) public
open Equality.PropositionallyDerivedSignature ⦃ propositionalSignature ⦄ ⦃ equalitySignature ⦄ public
open Uniqueness.Signature ⦃ propositionalSignature ⦄ ⦃ predicateSignature ⦄ ⦃ equalitySignature ⦄ public
-- A theory of classical predicate/(first-order) logic expressed using natural deduction rules
record ClassicalLogic : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Domained(Domain)
field
instance ⦃ classicalLogicSignature ⦄ : ClassicalLogicSignature
open ClassicalLogicSignature(classicalLogicSignature) public
field
instance ⦃ propositionalTheory ⦄ : Propositional.Theory ⦃ propositionalSignature ⦄
instance ⦃ predicateTheory ⦄ : Predicate.Theory
instance ⦃ equalityTheory ⦄ : Equality.Theory
instance ⦃ existentialWitness ⦄ : Predicate.ExistentialWitness(∃ₗ)
⦃ nonEmptyDomain ⦄ : NonEmptyDomain
constructivePropositionalTheory = Propositional.Theory.constructive(propositionalTheory)
constructiveLogic : Constructive.ConstructiveLogic(Domain)
constructiveLogic =
record{
constructiveLogicSignature = constructiveLogicSignature ;
propositionalTheory = constructivePropositionalTheory ;
predicateTheory = predicateTheory ;
equalityTheory = equalityTheory
}
open Propositional.Theory(propositionalTheory) public
open Predicate.Theory(predicateTheory) public
open Equality.Theory(equalityTheory) public
open Predicate.ExistentialWitness(existentialWitness) public
open Uniqueness.WitnessTheory ⦃ propositionalSignature ⦄ ⦃ predicateSignature ⦄ ⦃ equalitySignature ⦄ ⦃ constructivePropositionalTheory ⦄ ⦃ predicateTheory ⦄ ⦃ equalityTheory ⦄ ⦃ existentialWitness ⦄ public
open NonEmptyDomain ⦃ nonEmptyDomain ⦄ public
| {
"alphanum_fraction": 0.6541994751,
"avg_line_length": 38.4201680672,
"ext": "agda",
"hexsha": "b981723bcf85ecb056f7903f6af45bed37ed1444",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/NaturalDeduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/NaturalDeduction.agda",
"max_line_length": 210,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/NaturalDeduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1452,
"size": 4572
} |
------------------------------------------------------------------------
-- Internal coding
------------------------------------------------------------------------
module Internal-coding where
open import Equality.Propositional
open import Prelude hiding (const)
open import Tactic.By.Propositional
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Constants χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
import Coding.Instances.Nat
abstract
-- Some auxiliary definitions.
private
cd : Var → Exp
cd x = apply (var v-internal-code) (var x)
nullary-branch : Const → Br
nullary-branch c =
branch c [] (
const c-const (⌜ c ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []))
unary-branch : Const → Br
unary-branch c =
branch c (v-x ∷ []) (
const c-const (⌜ c ⌝ ∷
const c-cons (cd v-x ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []))
binary-branch : Const → Br
binary-branch c =
branch c (v-x ∷ v-y ∷ []) (
const c-const (⌜ c ⌝ ∷
const c-cons (cd v-x ∷
const c-cons (cd v-y ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []))
trinary-branch : Const → Br
trinary-branch c =
branch c (v-x ∷ v-y ∷ v-z ∷ []) (
const c-const (⌜ c ⌝ ∷
const c-cons (cd v-x ∷
const c-cons (cd v-y ∷
const c-cons (cd v-z ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ∷ []))
branches : List Br
branches =
nullary-branch c-zero ∷
unary-branch c-suc ∷
nullary-branch c-nil ∷
binary-branch c-cons ∷
binary-branch c-apply ∷
binary-branch c-lambda ∷
binary-branch c-case ∷
binary-branch c-rec ∷
unary-branch c-var ∷
binary-branch c-const ∷
trinary-branch c-branch ∷
[]
-- Internal coding.
internal-code : Exp
internal-code =
rec v-internal-code (lambda v-p (case (var v-p) branches))
internal-code-closed : Closed internal-code
internal-code-closed = from-⊎ (closed? internal-code)
-- The internal coder encodes natural numbers correctly.
internal-code-correct-ℕ :
(n : ℕ) → apply internal-code ⌜ n ⌝ ⇓ ⌜ ⌜ n ⌝ ⦂ Exp ⌝
internal-code-correct-ℕ n =
apply internal-code ⌜ n ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep n) ⟩
case ⌜ n ⌝ branches′ ⇓⟨ lemma n ⟩■
⌜ ⌜ n ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
lemma : (n : ℕ) → case ⌜ n ⌝ branches′ ⇓ ⌜ ⌜ n ⌝ ⦂ Exp ⌝
lemma zero =
case ⌜ zero ⌝ branches′ ⇓⟨ case (rep⇓rep zero) here [] (rep⇓rep (⌜ zero ⌝ ⦂ Exp)) ⟩■
⌜ ⌜ zero ⌝ ⦂ Exp ⌝
lemma (suc n) =
case ⌜ suc n ⌝ branches′ ⟶⟨ case (rep⇓rep (suc n)) (there (λ ()) here) (∷ []) ⟩
const c-const (⌜ c-suc ⌝ ∷
const c-cons (apply internal-code ⌜ n ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-suc ∷
const (internal-code-correct-ℕ n ∷ rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ⟩■
⌜ ⌜ suc n ⌝ ⦂ Exp ⌝
-- The internal coder encodes lists of variables correctly.
internal-code-correct-Var⋆ :
(xs : List Var) →
apply internal-code ⌜ xs ⌝ ⇓ ⌜ ⌜ xs ⌝ ⦂ Exp ⌝
internal-code-correct-Var⋆ xs =
apply internal-code ⌜ xs ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep xs) ⟩
case ⌜ xs ⌝ branches′ ⇓⟨ lemma xs ⟩■
⌜ ⌜ xs ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
lemma : (xs : List Var) →
case ⌜ xs ⌝ branches′ ⇓ ⌜ ⌜ xs ⌝ ⦂ Exp ⌝
lemma [] =
case ⌜ [] ⦂ List Var ⌝ branches′ ⇓⟨ case (rep⇓rep ([] ⦂ List Var)) (there (λ ()) (there (λ ()) here)) []
(rep⇓rep (⌜ [] ⦂ List Var ⌝ ⦂ Exp)) ⟩■
⌜ ⌜ [] ⦂ List Var ⌝ ⦂ Exp ⌝
lemma (x ∷ xs) =
case ⌜ x List.∷ xs ⌝ branches′ ⟶⟨ case (rep⇓rep (x List.∷ xs))
(there (λ ()) (there (λ ()) (there (λ ()) here))) (∷ ∷ []) ⟩
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ xs ⌝ [ v-x ← ⌜ x ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep xs) ⟩⟶
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⌜ xs ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-cons ∷
const (internal-code-correct-ℕ x ∷
const (internal-code-correct-Var⋆ xs ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ x List.∷ xs ⌝ ⦂ Exp ⌝
mutual
-- The internal coder encodes expressions correctly.
internal-code-correct :
(p : Exp) → apply internal-code ⌜ p ⌝ ⇓ ⌜ ⌜ p ⌝ ⦂ Exp ⌝
internal-code-correct p =
apply internal-code ⌜ p ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep p) ⟩
case ⌜ p ⌝ branches′ ⇓⟨ lemma p ⟩■
⌜ ⌜ p ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
lemma : (p : Exp) → case ⌜ p ⌝ branches′ ⇓ ⌜ ⌜ p ⌝ ⦂ Exp ⌝
lemma (apply p₁ p₂) =
case ⌜ Exp.apply p₁ p₂ ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.apply p₁ p₂))
(there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) here))))
(∷ ∷ []) ⟩
const c-const (⌜ c-apply ⌝ ∷
const c-cons (apply internal-code ⌜ p₁ ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ p₂ ⌝ [ v-x ← ⌜ p₁ ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep p₂) ⟩⟶
const c-const (⌜ c-apply ⌝ ∷
const c-cons (apply internal-code ⌜ p₁ ⌝ ∷
const c-cons (apply internal-code ⌜ p₂ ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-apply ∷
const (internal-code-correct p₁ ∷
const (internal-code-correct p₂ ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.apply p₁ p₂ ⌝ ⦂ Exp ⌝
lemma (lambda x p) =
case ⌜ Exp.lambda x p ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.lambda x p))
(there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) here)))))
(∷ ∷ []) ⟩
const c-const (⌜ c-lambda ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ p ⌝ [ v-x ← ⌜ x ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep p) ⟩⟶
const c-const (⌜ c-lambda ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-lambda ∷
const (internal-code-correct-ℕ x ∷
const (internal-code-correct p ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.lambda x p ⌝ ⦂ Exp ⌝
lemma (case p bs) =
case ⌜ Exp.case p bs ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.case p bs))
(there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) (there (λ ()) here))))))
(∷ ∷ []) ⟩
const c-const (⌜ c-case ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ bs ⌝ [ v-x ← ⌜ p ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep bs) ⟩⟶
const c-const (⌜ c-case ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
const c-cons (apply internal-code ⌜ bs ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-case ∷
const (internal-code-correct p ∷
const (internal-code-correct-B⋆ bs ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.case p bs ⌝ ⦂ Exp ⌝
lemma (rec x p) =
case ⌜ Exp.rec x p ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.rec x p))
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) (there (λ ()) here)))))))
(∷ ∷ []) ⟩
const c-const (⌜ c-rec ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ p ⌝ [ v-x ← ⌜ x ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep p) ⟩⟶
const c-const (⌜ c-rec ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-rec ∷
const (internal-code-correct-ℕ x ∷
const (internal-code-correct p ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.rec x p ⌝ ⦂ Exp ⌝
lemma (var x) =
case ⌜ Exp.var x ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.var x))
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) (there (λ ()) here))))))))
(∷ []) ⟩
const c-const (⌜ c-var ⌝ ∷
const c-cons (apply internal-code ⌜ x ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-var ∷
const (internal-code-correct-ℕ x ∷ rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.var x ⌝ ⦂ Exp ⌝
lemma (const c ps) =
case ⌜ Exp.const c ps ⌝ branches′ ⟶⟨ case (rep⇓rep (Exp.const c ps))
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) here)))))))))
(∷ ∷ []) ⟩
const c-const (⌜ c-const ⌝ ∷
const c-cons (apply internal-code ⌜ c ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ ps ⌝ [ v-x ← ⌜ c ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep ps) ⟩⟶
const c-const (⌜ c-const ⌝ ∷
const c-cons (apply internal-code ⌜ c ⌝ ∷
const c-cons (apply internal-code ⌜ ps ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-const ∷
const (internal-code-correct-ℕ c ∷
const (internal-code-correct-⋆ ps ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ Exp.const c ps ⌝ ⦂ Exp ⌝
-- The internal coder encodes branches correctly.
internal-code-correct-B :
(b : Br) → apply internal-code ⌜ b ⌝ ⇓ ⌜ ⌜ b ⌝ ⦂ Exp ⌝
internal-code-correct-B (branch c xs e) =
apply internal-code ⌜ branch c xs e ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep (branch c xs e)) ⟩
case ⌜ branch c xs e ⌝ branches′ ⟶⟨ case (rep⇓rep (branch c xs e))
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) (there (λ ()) (there (λ ())
(there (λ ()) (there (λ ()) here))))))))))
(∷ ∷ ∷ []) ⟩
const c-const (⌜ c-branch ⌝ ∷
const c-cons (apply internal-code ⌜ c ⌝ ∷
const c-cons (apply internal-code ⌜ xs ⌝ [ v-x ← ⌜ c ⌝ ] ∷
const c-cons (apply internal-code ⟨ ⌜ e ⌝ [ v-y ← ⌜ xs ⌝ ]
[ v-x ← ⌜ c ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (substs-rep e ((v-x , ⌜ c ⌝) ∷ (v-y , ⌜ xs ⌝) ∷ [])) ⟩⟶
const c-const (⌜ c-branch ⌝ ∷
const c-cons (apply internal-code ⌜ c ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ xs ⌝ [ v-x ← ⌜ c ⌝ ] ⟩ ∷
const c-cons (apply internal-code ⌜ e ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep xs) ⟩⟶
const c-const (⌜ c-branch ⌝ ∷
const c-cons (apply internal-code ⌜ c ⌝ ∷
const c-cons (apply internal-code ⌜ xs ⌝ ∷
const c-cons (apply internal-code ⌜ e ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-branch ∷
const (internal-code-correct-ℕ c ∷
const (internal-code-correct-Var⋆ xs ∷
const (internal-code-correct e ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ branch c xs e ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
-- The internal coder encodes lists of expressions correctly.
internal-code-correct-⋆ :
(ps : List Exp) →
apply internal-code ⌜ ps ⌝ ⇓ ⌜ ⌜ ps ⌝ ⦂ Exp ⌝
internal-code-correct-⋆ ps =
apply internal-code ⌜ ps ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep ps) ⟩
case ⌜ ps ⌝ branches′ ⇓⟨ lemma ps ⟩■
⌜ ⌜ ps ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
lemma : (ps : List Exp) →
case ⌜ ps ⌝ branches′ ⇓ ⌜ ⌜ ps ⌝ ⦂ Exp ⌝
lemma [] =
case ⌜ [] ⦂ List Exp ⌝ branches′ ⇓⟨ case (rep⇓rep ([] ⦂ List Exp)) (there (λ ()) (there (λ ()) here)) []
(rep⇓rep (⌜ [] ⦂ List Exp ⌝ ⦂ Exp)) ⟩■
⌜ ⌜ [] ⦂ List Exp ⌝ ⦂ Exp ⌝
lemma (p ∷ ps) =
case ⌜ p List.∷ ps ⌝ branches′ ⟶⟨ case (rep⇓rep (p List.∷ ps))
(there (λ ()) (there (λ ()) (there (λ ()) here))) (∷ ∷ []) ⟩
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ ps ⌝ [ v-x ← ⌜ p ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep ps) ⟩⟶
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ p ⌝ ∷
const c-cons (apply internal-code ⌜ ps ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-cons ∷
const (internal-code-correct p ∷
const (internal-code-correct-⋆ ps ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ p List.∷ ps ⌝ ⦂ Exp ⌝
-- The internal coder encodes lists of branches correctly.
internal-code-correct-B⋆ :
(bs : List Br) →
apply internal-code ⌜ bs ⌝ ⇓ ⌜ ⌜ bs ⌝ ⦂ Exp ⌝
internal-code-correct-B⋆ bs =
apply internal-code ⌜ bs ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep bs) ⟩
case ⌜ bs ⌝ branches′ ⇓⟨ lemma bs ⟩■
⌜ ⌜ bs ⌝ ⦂ Exp ⌝
where
branches′ : List Br
branches′ = branches [ v-internal-code ← internal-code ]B⋆
lemma : (bs : List Br) →
case ⌜ bs ⌝ branches′ ⇓ ⌜ ⌜ bs ⌝ ⦂ Exp ⌝
lemma [] =
case ⌜ [] ⦂ List Br ⌝ branches′ ⇓⟨ case (rep⇓rep ([] ⦂ List Br)) (there (λ ()) (there (λ ()) here)) []
(rep⇓rep (⌜ [] ⦂ List Br ⌝ ⦂ Exp)) ⟩■
⌜ ⌜ [] ⦂ List Br ⌝ ⦂ Exp ⌝
lemma (b ∷ bs) =
case ⌜ b List.∷ bs ⌝ branches′ ⟶⟨ case (rep⇓rep (b List.∷ bs))
(there (λ ()) (there (λ ()) (there (λ ()) here))) (∷ ∷ []) ⟩
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ b ⌝ ∷
const c-cons (apply internal-code ⟨ ⌜ bs ⌝ [ v-x ← ⌜ b ⌝ ] ⟩ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep bs) ⟩⟶
const c-const (⌜ c-cons ⌝ ∷
const c-cons (apply internal-code ⌜ b ⌝ ∷
const c-cons (apply internal-code ⌜ bs ⌝ ∷
⌜ [] ⦂ List Exp ⌝ ∷ []) ∷ []) ∷ []) ⇓⟨ const (rep⇓rep c-cons ∷
const (internal-code-correct-B b ∷
const (internal-code-correct-B⋆ bs ∷
rep⇓rep ([] ⦂ List Exp) ∷ []) ∷ []) ∷ []) ⟩■
⌜ ⌜ b List.∷ bs ⌝ ⦂ Exp ⌝
| {
"alphanum_fraction": 0.3418415206,
"avg_line_length": 52.7473958333,
"ext": "agda",
"hexsha": "a891e27d58ceccb68bf9a26617dc884038e29194",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Internal-coding.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Internal-coding.agda",
"max_line_length": 144,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Internal-coding.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 6121,
"size": 20255
} |
module Everything where
import Control.Category
import Control.Category.Functor
import Control.Category.Product
import Control.Category.SetsAndFunctions
import Control.Category.Slice
import Control.Decoration
import Control.Functor
import Control.Functor.NaturalTransformation
import Control.Functor.Product
import Control.Kleisli
import Control.Lens
import Control.Monad
import Control.Monad.Error
import Control.Monad.KleisliTriple
import Control.Comonad
import Control.Comonad.Store
import Dimension.PartialWeakening
import Dimension.PartialWeakening.Model
-- import Dimension.PartialWeakening.Soundness -- still broken
| {
"alphanum_fraction": 0.8690095847,
"avg_line_length": 26.0833333333,
"ext": "agda",
"hexsha": "ccf9e29db028a772de42469ac1dbc79839102017",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Everything.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 131,
"size": 626
} |
------------------------------------------------------------------------
-- The lens type in Lens.Non-dependent.Higher.Capriotti.Variant, but
-- with erased "proofs"
------------------------------------------------------------------------
{-# OPTIONS --cubical #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Capriotti.Variant.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_)
open import Equivalence.Erased.Contractible-preimages.Cubical eq as ECP
using (_⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣)
open import Preimage equality-with-J using (_⁻¹_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher.Erased eq as Higher
import Lens.Non-dependent.Higher.Capriotti.Variant eq as V
private
variable
a b p : Level
A B : Type a
------------------------------------------------------------------------
-- The lens type family
-- Coherently constant type-valued functions.
Coherently-constant :
{A : Type a} → (A → Type p) → Type (a ⊔ lsuc p)
Coherently-constant {p = p} {A = A} P =
∃ λ (Q : ∥ A ∥ → Type p) → ∀ x → P x ≃ᴱ Q ∣ x ∣
-- Higher lenses with erased "proofs".
Lens : Type a → Type b → Type (lsuc (a ⊔ b))
Lens A B = ∃ λ (get : A → B) → Coherently-constant (get ⁻¹ᴱ_)
-- In erased contexts Lens A B is equivalent to V.Lens A B.
@0 Lens≃Variant-lens : Lens A B ≃ V.Lens A B
Lens≃Variant-lens =
(∃ λ get → ∃ λ Q → ∀ x → get ⁻¹ᴱ x ≃ᴱ Q ∣ x ∣) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → inverse
EEq.≃≃≃ᴱ) ⟩
(∃ λ get → ∃ λ Q → ∀ x → get ⁻¹ᴱ x ≃ Q ∣ x ∣) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ →
Eq.≃-preserves ext (inverse ECP.⁻¹≃⁻¹ᴱ) F.id) ⟩□
(∃ λ get → ∃ λ Q → ∀ x → get ⁻¹ x ≃ Q ∣ x ∣) □
-- Some derived definitions.
module Lens {A : Type a} {B : Type b} (l : Lens A B) where
-- A getter.
get : A → B
get = proj₁ l
-- A predicate.
H : Pow a ∥ B ∥
H = proj₁ (proj₂ l)
-- An equivalence (with erased proofs).
get⁻¹ᴱ-≃ᴱ : ∀ b → get ⁻¹ᴱ b ≃ᴱ H ∣ b ∣
get⁻¹ᴱ-≃ᴱ = proj₂ (proj₂ l)
-- All the getter's "preimages" are equivalent (with erased proofs).
get⁻¹ᴱ-constant : (b₁ b₂ : B) → get ⁻¹ᴱ b₁ ≃ᴱ get ⁻¹ᴱ b₂
get⁻¹ᴱ-constant b₁ b₂ =
get ⁻¹ᴱ b₁ ↝⟨ get⁻¹ᴱ-≃ᴱ b₁ ⟩
H ∣ b₁ ∣ ↔⟨ ≡⇒≃ $ cong H $ T.truncation-is-proposition _ _ ⟩
H ∣ b₂ ∣ ↝⟨ inverse $ get⁻¹ᴱ-≃ᴱ b₂ ⟩□
get ⁻¹ᴱ b₂ □
-- The two directions of get⁻¹ᴱ-constant.
get⁻¹ᴱ-const : (b₁ b₂ : B) → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂
get⁻¹ᴱ-const b₁ b₂ = _≃ᴱ_.to (get⁻¹ᴱ-constant b₁ b₂)
get⁻¹ᴱ-const⁻¹ᴱ : (b₁ b₂ : B) → get ⁻¹ᴱ b₂ → get ⁻¹ᴱ b₁
get⁻¹ᴱ-const⁻¹ᴱ b₁ b₂ = _≃ᴱ_.from (get⁻¹ᴱ-constant b₁ b₂)
-- Some coherence properties.
@0 get⁻¹ᴱ-const-∘ :
(b₁ b₂ b₃ : B) (p : get ⁻¹ᴱ b₁) →
get⁻¹ᴱ-const b₂ b₃ (get⁻¹ᴱ-const b₁ b₂ p) ≡ get⁻¹ᴱ-const b₁ b₃ p
get⁻¹ᴱ-const-∘ b₁ b₂ b₃ p =
_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₃)
(≡⇒→ (cong H $ T.truncation-is-proposition _ _)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b₂)
(_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₂)
(≡⇒→ (cong H $ T.truncation-is-proposition _ _)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b₁) p))))) ≡⟨ cong (_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ _) ∘ ≡⇒→ _) $
_≃ᴱ_.right-inverse-of (get⁻¹ᴱ-≃ᴱ _) _ ⟩
_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₃)
(≡⇒→ (cong H $ T.truncation-is-proposition _ _)
(≡⇒→ (cong H $ T.truncation-is-proposition _ _)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b₁) p))) ≡⟨ cong (λ eq → _≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ _) (_≃_.to eq (_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ _) _))) $ sym $
≡⇒≃-trans ext _ _ ⟩
_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₃)
(≡⇒→ (trans (cong H $ T.truncation-is-proposition _ _)
(cong H $ T.truncation-is-proposition _ _))
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b₁) p)) ≡⟨ cong (λ eq → _≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₃) (≡⇒→ eq _)) $
trans (sym $ cong-trans _ _ _) $
cong (cong H) $ mono₁ 1 T.truncation-is-proposition _ _ ⟩∎
_≃ᴱ_.from (get⁻¹ᴱ-≃ᴱ b₃)
(≡⇒→ (cong H $ T.truncation-is-proposition _ _)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b₁) p)) ∎
@0 get⁻¹ᴱ-const-id :
(b : B) (p : get ⁻¹ᴱ b) → get⁻¹ᴱ-const b b p ≡ p
get⁻¹ᴱ-const-id b p =
get⁻¹ᴱ-const b b p ≡⟨ sym $ _≃ᴱ_.left-inverse-of (get⁻¹ᴱ-constant _ _) _ ⟩
get⁻¹ᴱ-const⁻¹ᴱ b b (get⁻¹ᴱ-const b b (get⁻¹ᴱ-const b b p)) ≡⟨ cong (get⁻¹ᴱ-const⁻¹ᴱ b b) $ get⁻¹ᴱ-const-∘ _ _ _ _ ⟩
get⁻¹ᴱ-const⁻¹ᴱ b b (get⁻¹ᴱ-const b b p) ≡⟨ _≃ᴱ_.left-inverse-of (get⁻¹ᴱ-constant _ _) _ ⟩∎
p ∎
@0 get⁻¹ᴱ-const-inverse :
(b₁ b₂ : B) (p : get ⁻¹ᴱ b₁) →
get⁻¹ᴱ-const b₁ b₂ p ≡ get⁻¹ᴱ-const⁻¹ᴱ b₂ b₁ p
get⁻¹ᴱ-const-inverse b₁ b₂ p =
sym $ _≃_.to-from (EEq.≃ᴱ→≃ (get⁻¹ᴱ-constant _ _)) (
get⁻¹ᴱ-const b₂ b₁ (get⁻¹ᴱ-const b₁ b₂ p) ≡⟨ get⁻¹ᴱ-const-∘ _ _ _ _ ⟩
get⁻¹ᴱ-const b₁ b₁ p ≡⟨ get⁻¹ᴱ-const-id _ _ ⟩∎
p ∎)
-- A setter.
set : A → B → A
set a b = $⟨ get⁻¹ᴱ-const _ _ ⟩
(get ⁻¹ᴱ get a → get ⁻¹ᴱ b) ↝⟨ _$ (a , [ refl _ ]) ⟩
get ⁻¹ᴱ b ↝⟨ proj₁ ⟩□
A □
-- Lens laws.
@0 get-set : ∀ a b → get (set a b) ≡ b
get-set a b =
get (proj₁ (get⁻¹ᴱ-const (get a) b (a , [ refl _ ]))) ≡⟨ erased (proj₂ (get⁻¹ᴱ-const (get a) b (a , [ refl _ ]))) ⟩∎
b ∎
@0 set-get : ∀ a → set a (get a) ≡ a
set-get a =
proj₁ (get⁻¹ᴱ-const (get a) (get a) (a , [ refl _ ])) ≡⟨ cong proj₁ $ get⁻¹ᴱ-const-id _ _ ⟩∎
a ∎
@0 set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂
set-set a b₁ b₂ =
proj₁ (get⁻¹ᴱ-const (get (set a b₁)) b₂ (set a b₁ , [ refl _ ])) ≡⟨ elim¹
(λ {b} eq →
proj₁ (get⁻¹ᴱ-const (get (set a b₁)) b₂ (set a b₁ , [ refl _ ])) ≡
proj₁ (get⁻¹ᴱ-const b b₂ (set a b₁ , [ eq ])))
(refl _)
(get-set a b₁) ⟩
proj₁ (get⁻¹ᴱ-const b₁ b₂ (set a b₁ , [ get-set a b₁ ])) ≡⟨⟩
proj₁ (get⁻¹ᴱ-const b₁ b₂
(get⁻¹ᴱ-const (get a) b₁ (a , [ refl _ ]))) ≡⟨ cong proj₁ $ get⁻¹ᴱ-const-∘ _ _ _ _ ⟩∎
proj₁ (get⁻¹ᴱ-const (get a) b₂ (a , [ refl _ ])) ∎
-- TODO: Can get-set-get and get-set-set be proved for the lens laws
-- given above?
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
------------------------------------------------------------------------
-- Equality characterisation lemmas
-- An equality characterisation lemma.
@0 equality-characterisation₁ :
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
let open Lens in
(l₁ ≡ l₂)
≃
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (h : H l₁ ≡ H l₂) →
∀ b p →
subst (_$ ∣ b ∣) h
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym g) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p)
equality-characterisation₁ {a = a} {l₁ = l₁} {l₂ = l₂} ⊠ =
l₁ ≡ l₂ ↝⟨ inverse $ Eq.≃-≡ Lens≃Variant-lens ⟩
l₁′ ≡ l₂′ ↝⟨ V.equality-characterisation₁ ⊠ ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (h : H l₁ ≡ H l₂) →
∀ b p →
subst (_$ ∣ b ∣) h
(_≃_.to (V.Lens.get⁻¹-≃ l₁′ b) (subst (_⁻¹ b) (sym g) p)) ≡
_≃_.to (V.Lens.get⁻¹-≃ l₂′ b) p) ↝⟨ (∃-cong λ g → ∃-cong λ h → ∀-cong ext λ b →
Π-cong ext ECP.⁻¹≃⁻¹ᴱ λ p →
≡⇒↝ _ $ cong (λ p′ → subst (_$ _) h (_≃_.to (V.Lens.get⁻¹-≃ l₁′ _) p′) ≡
_≃_.to (V.Lens.get⁻¹-≃ l₂′ _) p)
(
subst (_⁻¹ b) (sym g) p ≡⟨ elim₁
(λ g → subst (_⁻¹ b) (sym g) p ≡
Σ-map id erased (subst (_⁻¹ᴱ b) (sym g) (Σ-map id [_]→ p)))
(
subst (_⁻¹ b) (sym (refl _)) p ≡⟨ trans (cong (flip (subst (_⁻¹ b)) _) sym-refl) $
subst-refl _ _ ⟩
p ≡⟨ cong (Σ-map id erased) $ sym $
trans (cong (flip (subst (_⁻¹ᴱ b)) _) sym-refl) $
subst-refl _ _ ⟩∎
Σ-map id erased
(subst (_⁻¹ᴱ b) (sym (refl _)) (Σ-map id [_]→ p)) ∎)
_ ⟩
Σ-map id erased (subst (_⁻¹ᴱ b) (sym g) (Σ-map id [_]→ p)) ≡⟨⟩
_≃_.from ECP.⁻¹≃⁻¹ᴱ
(subst (_⁻¹ᴱ b) (sym g) (_≃_.to ECP.⁻¹≃⁻¹ᴱ p)) ∎)) ⟩□
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (h : H l₁ ≡ H l₂) →
∀ b p →
subst (_$ ∣ b ∣) h
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym g) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) □
where
open Lens
l₁′ = _≃_.to Lens≃Variant-lens l₁
l₂′ = _≃_.to Lens≃Variant-lens l₂
-- Another equality characterisation lemma.
@0 equality-characterisation₂ :
{l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
let open Lens in
(l₁ ≡ l₂)
≃
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) →
∀ b p →
subst id (h ∣ b ∣)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p)
equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} ⊠ =
l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⊠ ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (h : H l₁ ≡ H l₂) →
∀ b p →
subst (_$ ∣ b ∣) h
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym g) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) ↝⟨ (Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ →
Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ →
F.id) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) →
∀ b p →
subst (_$ ∣ b ∣) (⟨ext⟩ h)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_≡ _) $
subst-ext _ _) ⟩□
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) →
∀ b p →
subst id (h ∣ b ∣)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) □
where
open Lens
-- Yet another equality characterisation lemma.
@0 equality-characterisation₃ :
{A : Type a} {B : Type b}
{l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
Univalence (a ⊔ b) →
let open Lens in
(l₁ ≡ l₂)
≃
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) →
∀ b p →
_≃_.to (h ∣ b ∣)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p)
equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} ⊠ univ =
l₁ ≡ l₂ ↝⟨ equality-characterisation₂ ⊠ ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) →
∀ b p →
subst id (h ∣ b ∣)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) ↝⟨ (∃-cong λ _ →
Σ-cong-contra (∀-cong ext λ _ → inverse $ ≡≃≃ univ) λ _ → F.id) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) →
∀ b p →
subst id (≃⇒≡ univ (h ∣ b ∣))
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_≡ _) $
trans (subst-id-in-terms-of-≡⇒↝ equivalence) $
cong (λ eq → _≃_.to eq _) $
_≃_.right-inverse-of (≡≃≃ univ) _) ⟩□
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) →
∀ b p →
_≃_.to (h ∣ b ∣)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₁ b) (subst (_⁻¹ᴱ b) (sym (⟨ext⟩ g)) p)) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ l₂ b) p) □
where
open Lens
------------------------------------------------------------------------
-- Conversion functions
-- The lenses defined above can be converted to and from the lenses
-- defined in Higher.
Lens⇔Higher-lens :
Block "conversion" →
Lens A B ⇔ Higher.Lens A B
Lens⇔Higher-lens {A = A} {B = B} ⊠ = record
{ to = λ (g , H , eq) → record
{ R = Σ ∥ B ∥ H
; equiv =
A ↝⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤
Contractibleᴱ-Erased-other-singleton) ⟩
(∃ λ (a : A) → ∃ λ (b : B) → Erased (g a ≡ b)) ↔⟨ ∃-comm ⟩
(∃ λ (b : B) → g ⁻¹ᴱ b) ↝⟨ ∃-cong eq ⟩
(∃ λ (b : B) → H ∣ b ∣) ↔⟨ (Σ-cong (inverse T.∥∥×≃) λ _ → ≡⇒≃ $ cong H $ T.truncation-is-proposition _ _) ⟩
(∃ λ ((b , _) : ∥ B ∥ × B) → H b) ↔⟨ Σ-assoc F.∘
(∃-cong λ _ → ×-comm) F.∘
inverse Σ-assoc ⟩□
Σ ∥ B ∥ H × B □
; inhabited = proj₁
}
; from = λ l →
Higher.Lens.get l
, (λ _ → Higher.Lens.R l)
, (λ b → inverse (Higher.remainder≃ᴱget⁻¹ᴱ l b))
}
-- The conversion preserves getters and setters.
Lens⇔Higher-lens-preserves-getters-and-setters :
(bl : Block "conversion") →
Preserves-getters-and-setters-⇔ A B (Lens⇔Higher-lens bl)
Lens⇔Higher-lens-preserves-getters-and-setters bl@⊠ =
(λ l@(g , H , eq) →
refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
let h₁ = _≃ᴱ_.to (eq (g a)) (a , [ refl _ ])
h₂ =
_≃_.from (≡⇒≃ (cong H _))
(subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _))
(≡⇒→ (cong H _) h₁))
h₃ = ≡⇒→ (cong H _) h₁
lemma =
h₂ ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence _ _ _ ⟩
subst H _
(subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _))
(≡⇒→ (cong H _) h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _)
(subst (H ∘ proj₁)
(sym (_≃_.left-inverse-of T.∥∥×≃ (∣ g a ∣ , b)))
x)) $ sym $
subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
subst H _
(subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _))
(subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _) x) $
subst-∘ _ _ _ ⟩
subst H _ (subst H _ (subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _) x) $
subst-subst _ _ _ _ ⟩
subst H _ (subst H _ h₁) ≡⟨ subst-subst _ _ _ _ ⟩
subst H _ h₁ ≡⟨ cong (λ eq → subst H eq h₁) $
mono₁ 1 T.truncation-is-proposition _ _ ⟩
subst H _ h₁ ≡⟨ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩∎
≡⇒→ (cong H _) h₁ ∎
in
proj₁ (_≃ᴱ_.from (eq b) h₂) ≡⟨ cong (λ h → proj₁ (_≃ᴱ_.from (eq b) h)) lemma ⟩∎
proj₁ (_≃ᴱ_.from (eq b) h₃) ∎)
, (λ l →
refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
Lens.set (_⇔_.from (Lens⇔Higher-lens bl) l) a b ≡⟨⟩
_≃ᴱ_.from (Higher.Lens.equiv l)
( ≡⇒→ (cong (λ _ → Higher.Lens.R l) _)
(Higher.Lens.remainder l a)
, b
) ≡⟨ cong (λ eq → _≃ᴱ_.from (Higher.Lens.equiv l) (≡⇒→ eq _ , b)) $
cong-const _ ⟩
_≃ᴱ_.from (Higher.Lens.equiv l)
(≡⇒→ (refl _) (Higher.Lens.remainder l a) , b) ≡⟨ cong (λ f → _≃ᴱ_.from (Higher.Lens.equiv l) (f _ , b)) $
≡⇒→-refl ⟩
_≃ᴱ_.from (Higher.Lens.equiv l)
(Higher.Lens.remainder l a , b) ≡⟨⟩
Higher.Lens.set l a b ∎)
-- Lens A B is equivalent to Higher.Lens A B (with erased proofs,
-- assuming univalence).
Lens≃ᴱHigher-lens :
{A : Type a} {B : Type b} →
Block "conversion" →
@0 Univalence (a ⊔ b) →
Lens A B ≃ᴱ Higher.Lens A B
Lens≃ᴱHigher-lens {A = A} {B = B} bl univ =
EEq.↔→≃ᴱ
(_⇔_.to (Lens⇔Higher-lens bl))
(_⇔_.from (Lens⇔Higher-lens bl))
(to∘from bl)
(from∘to bl)
where
@0 to∘from :
(bl : Block "conversion") →
∀ l →
_⇔_.to (Lens⇔Higher-lens bl) (_⇔_.from (Lens⇔Higher-lens bl) l) ≡ l
to∘from ⊠ l = _↔_.from (Higher.equality-characterisation₂ univ)
( (∥ B ∥ × R ↔⟨ (drop-⊤-left-× λ r → _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
T.truncation-is-proposition
(inhabited r)) ⟩□
R □)
, (λ a →
≡⇒→ (cong (λ _ → R) (T.truncation-is-proposition _ _))
(remainder a) ≡⟨ cong (λ eq → ≡⇒→ eq _) $ cong-const _ ⟩
≡⇒→ (refl _) (remainder a) ≡⟨ cong (_$ _) ≡⇒→-refl ⟩∎
remainder a ∎)
, (λ _ → refl _)
)
where
open Higher.Lens l
@0 from∘to :
(bl : Block "conversion") →
∀ l →
_⇔_.from (Lens⇔Higher-lens bl) (_⇔_.to (Lens⇔Higher-lens bl) l) ≡ l
from∘to bl@⊠ l = _≃_.from (equality-characterisation₃ ⊠ univ)
( (λ _ → refl _)
, Σ∥B∥H≃H
, (λ b p@(a , [ get-a≡b ]) →
_≃_.to (Σ∥B∥H≃H ∣ b ∣)
(_≃ᴱ_.from (Higher.remainder≃ᴱget⁻¹ᴱ
(_⇔_.to (Lens⇔Higher-lens bl) l) b)
(subst (_⁻¹ᴱ b) (sym (⟨ext⟩ λ _ → refl _)) p)) ≡⟨ cong (_≃_.to (Σ∥B∥H≃H ∣ b ∣) ∘
_≃ᴱ_.from (Higher.remainder≃ᴱget⁻¹ᴱ
(_⇔_.to (Lens⇔Higher-lens bl) l) b)) $
trans (cong (flip (subst (_⁻¹ᴱ b)) p) $
trans (cong sym ext-refl) $
sym-refl) $
subst-refl _ _ ⟩
_≃_.to (Σ∥B∥H≃H ∣ b ∣)
(_≃ᴱ_.from (Higher.remainder≃ᴱget⁻¹ᴱ
(_⇔_.to (Lens⇔Higher-lens bl) l) b)
p) ≡⟨⟩
_≃_.to (Σ∥B∥H≃H ∣ b ∣)
(Higher.Lens.remainder
(_⇔_.to (Lens⇔Higher-lens bl) l) a) ≡⟨⟩
subst H _
(≡⇒→ (cong H _) (_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a))
(a , [ refl _ ]))) ≡⟨ cong (subst H _) $ sym $
subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
subst H _ (subst H _ (_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a))
(a , [ refl _ ]))) ≡⟨ subst-subst _ _ _ _ ⟩
subst H _ (_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ])) ≡⟨ cong (λ eq → subst H eq (_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ]))) $
mono₁ 1 T.truncation-is-proposition _ _ ⟩
subst H (cong ∣_∣ get-a≡b)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ])) ≡⟨ elim¹
(λ {b} eq →
subst H (cong ∣_∣ eq)
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ])) ≡
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b) (a , [ eq ]))
(
subst H (cong ∣_∣ (refl _))
(_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ])) ≡⟨ trans (cong (flip (subst H) _) $ cong-refl _) $
subst-refl _ _ ⟩
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ (get a)) (a , [ refl _ ]) ∎)
_ ⟩∎
_≃ᴱ_.to (get⁻¹ᴱ-≃ᴱ b) p ∎)
)
where
open Lens l
Σ∥B∥H≃H = λ b →
Σ ∥ B ∥ H ↔⟨ (drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
T.truncation-is-proposition b) ⟩□
H b □
-- The equivalence preserves getters and setters.
Lens≃ᴱHigher-lens-preserves-getters-and-setters :
{A : Type a} {B : Type b}
(bl : Block "conversion")
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱHigher-lens bl univ))
Lens≃ᴱHigher-lens-preserves-getters-and-setters bl univ =
Lens⇔Higher-lens-preserves-getters-and-setters bl
| {
"alphanum_fraction": 0.3737036596,
"avg_line_length": 45.5099457505,
"ext": "agda",
"hexsha": "d63953b699d8cc76850109506560e95ea2365d18",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant/Erased.agda",
"max_line_length": 150,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 9229,
"size": 25167
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Fiberwise where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
private
variable
ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓ≅B ℓ≅B' ℓB' : Level
-- given a type A, this is the type of relational families on A
RelFamily : (A : Type ℓA) (ℓB ℓ≅B : Level) → Type (ℓ-max (ℓ-max ℓA (ℓ-suc ℓB)) (ℓ-suc ℓ≅B))
RelFamily A ℓB ℓ≅B = Σ[ B ∈ (A → Type ℓB) ] ({a : A} → Rel (B a) (B a) ℓ≅B)
-- property for a relational family to be fiberwise reflexive
isFiberwiseReflexive : {A : Type ℓA} {ℓB ℓ≅B : Level}
(B : RelFamily A ℓB ℓ≅B)
→ Type (ℓ-max (ℓ-max ℓA ℓB) ℓ≅B)
isFiberwiseReflexive {A = A} (B , _≅_) = {a : A} → isRefl (_≅_ {a = a})
-- property for a relational fiberwise reflexive family to be fiberwise univalent:
isFiberwiseUnivalent : {A : Type ℓA} {ℓB ℓ≅B : Level}
(B : RelFamily A ℓB ℓ≅B)
(ρ : isFiberwiseReflexive B)
→ Type (ℓ-max (ℓ-max ℓA ℓB) ℓ≅B)
isFiberwiseUnivalent {A = A} (B , _≅_) ρ = {a : A} → isUnivalent (_≅_ {a = a}) (ρ {a = a})
-- pulling back a relational family along a map
♭RelFamily : {A : Type ℓA} {A' : Type ℓA'}
{ℓB ℓ≅B : Level} (B : RelFamily A' ℓB ℓ≅B)
(f : A → A')
→ RelFamily A ℓB ℓ≅B
♭RelFamily (B , _) f .fst a = B (f a)
♭RelFamily (_ , _≅_) f .snd = _≅_
-- the type of relational isomorphisms over f
♭RelFiberIsoOver : {A : Type ℓA} {A' : Type ℓA'}
(f : A → A')
(B : RelFamily A ℓB ℓ≅B)
(B' : RelFamily A' ℓB' ℓ≅B')
→ Type (ℓ-max ℓA (ℓ-max (ℓ-max ℓB ℓB') (ℓ-max ℓ≅B ℓ≅B')))
♭RelFiberIsoOver {A = A} f B B' = (a : A) → RelIso (B .snd {a = a}) (♭B' .snd {a = a})
where
♭B' = ♭RelFamily B' f
module _ {A : Type ℓA} {A' : Type ℓA'} (F : Iso A A')
(ℬ : RelFamily A ℓB ℓ≅B) {ρ : isFiberwiseReflexive ℬ} (uni : isFiberwiseUnivalent ℬ ρ)
(ℬ' : RelFamily A' ℓB' ℓ≅B') {ρ' : isFiberwiseReflexive ℬ'} (uni' : isFiberwiseUnivalent ℬ' ρ') where
private
f = Iso.fun F
B = ℬ .fst
B' = ℬ' .fst
♭B' = ♭RelFamily ℬ' f .fst
♭ℬ' = ♭RelFamily ℬ' f
private
RelFiberIsoOver→♭FiberIso : (e≅♭ : (a : A) → RelIso (ℬ .snd {a = a}) (♭ℬ' .snd {a = a}))
→ (a : A)
→ Iso (B a) (B' (f a))
RelFiberIsoOver→♭FiberIso e≅♭ a = RelIso→Iso (ℬ .snd {a = a}) (ℬ' .snd {a = f a}) uni uni' (e≅♭ a)
RelFiberIsoOver→Iso : (e≅♭ : (a : A) → RelIso (ℬ .snd {a = a}) (♭ℬ' .snd {a = a}))
→ Iso (Σ A B) (Σ A' B')
RelFiberIsoOver→Iso e≅♭ = Σ-cong-iso F (RelFiberIsoOver→♭FiberIso e≅♭)
| {
"alphanum_fraction": 0.5175827928,
"avg_line_length": 39.0533333333,
"ext": "agda",
"hexsha": "6e23858f31e9fb4269d1f81c1ab5df48c9f6b736",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary/Fiberwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary/Fiberwise.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary/Fiberwise.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1217,
"size": 2929
} |
------------------------------------------------------------------------------
-- Type theory: The identity type
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- We can prove the properties of equality used in the formalization
-- of FOTC, from refl and J.
module FOT.Common.FOL.Relation.Binary.PropositionalEquality.TypeTheory where
infix 7 _≡_
postulate
D : Set
_≡_ : D → D → Set
refl : ∀ {x} → x ≡ x
module TypeTheory where
-- Using the type-theoretic eliminator for equality.
postulate J : (C : ∀ x y → x ≡ y → Set) →
(∀ x → (C x x refl)) →
∀ x y → (c : x ≡ y) → C x y c
-- From Thorsten's slides: A short history of equality.
sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} {y} = J (λ x' y' _ → y' ≡ x') (λ x' → refl) x y
-- From Thorsten's slides: A short history of equality.
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans {x} {y} {z} = J (λ x' y' _ → y' ≡ z → x' ≡ z) (λ x' pr → pr) x y
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A {x} {y} x≡y = J (λ x' y' _ → A x' → A y') (λ x' pr → pr) x y x≡y
module FOL where
-- Using the usual elimination schema for predicate logic.
postulate J : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} {y} x≡y = J (λ y' → y' ≡ x) x≡y refl
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans {x} {y} {z} x≡y = J (λ y' → y' ≡ z → x ≡ z) x≡y (λ pr → pr)
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst = J
module ML where
-- Using Martin-Löf elimination ("Hauptsatz ...", 1971).
postulate J : (C : D → D → Set) →
(∀ x → (C x x)) →
∀ x y → x ≡ y → C x y
sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} {y} = J (λ x' y' → y' ≡ x') (λ x' → refl) x y
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans {x} {y} {z} = J (λ x' y' → y' ≡ z → x' ≡ z) (λ x' pr → pr) x y
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A {x} {y} x≡y = J (λ x' y' → A x' → A y') (λ x' pr → pr) x y x≡y
| {
"alphanum_fraction": 0.4259846084,
"avg_line_length": 30.6805555556,
"ext": "agda",
"hexsha": "c510fd50ecd34a8c867377889594335c9ed23f95",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 877,
"size": 2209
} |
module Crash where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Bool : Set where
true : Bool
false : Bool
F : Bool -> Set
F true = Nat
F false = Bool
not : Bool -> Bool
not true = false
not false = true
h : ((x : F ?) -> F (not x)) -> Nat
h g = g zero
| {
"alphanum_fraction": 0.5698924731,
"avg_line_length": 12.1304347826,
"ext": "agda",
"hexsha": "990d7bc99b4b71e29c9f3bacbfbf952fe32d0108",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "notes/talks/MetaVars/Crash.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "notes/talks/MetaVars/Crash.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "notes/talks/MetaVars/Crash.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 279
} |
Subsets and Splits