Search is not available for this dataset
text
string | meta
dict |
---|---|
module _ where
data Bool : Set where
false true : Bool
{-# COMPILED_DATA Bool Bool False True #-}
postulate
IO : Set → Set
return : {A : Set} → A → IO A
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED return \ _ -> return #-}
{-# COMPILED_UHC return \ _ x -> UHC.Agda.Builtins.primReturn x #-}
{-# COMPILED_JS return function(u) { return function(x) { return function(cb) { cb(x); }; }; } #-}
{-# IMPORT Data.Maybe #-}
{-# HASKELL printMaybe = putStrLn . Data.Maybe.fromMaybe "" #-}
returnTrue : IO Bool
returnTrue = return true
{-# COMPILED_EXPORT returnTrue returnTrue #-}
| {
"alphanum_fraction": 0.6421232877,
"avg_line_length": 22.4615384615,
"ext": "agda",
"hexsha": "82f5b6469b76a69c4e940eab92f7ee89cd38e51d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/OldCompilerPragmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/OldCompilerPragmas.agda",
"max_line_length": 98,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/OldCompilerPragmas.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 162,
"size": 584
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
open import lemmas-env
open import lemmas-progress
open import decidability
open import results-checks
-- TODO we're forced to prove this weaker version, since the strong version is
-- unprovable. That said, this weak version is still disappointing, so we
-- should come up with some more thoerems to shore up its deficiencies -
-- in particular, we should do something to mitigate the fact that an e
-- may succeed for every even n and fail for every odd n
-- - also, that evaluation may return different results for different n
-- TODO complete, then delete
-- e => r → ∀{n} e [n]=> r
-- something similar for =>∅ ?
-- (Σ[r] (e => r) ∧ e => ∅) → ⊥
-- ∀{k} → Σ[r] (e [k]=> r) ∨ e [k]=> ∅
module progress where
progress : ∀{Δ Σ' Γ E e τ n} →
Δ , Σ' , Γ ⊢ E →
Δ , Σ' , Γ ⊢ e :: τ →
-- Either there's some properly-typed result that e will eval to ...
Σ[ r ∈ result ] Σ[ k ∈ constraints ] (
(E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒ r ⊣ k) ∧
Δ , Σ' ⊢ r ·: τ)
-- ... or evaluation will have a constraint failure
∨ E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒∅
xc-progress : ∀{Δ Σ' r1 r2 τ n} →
Δ , Σ' ⊢ r1 ·: τ →
Δ , Σ' ⊢ r2 ·: τ →
Σ[ k ∈ constraints ] Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:= k
∨ Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:=∅
xb-progress : ∀{Δ Σ' r ex τ n} →
Δ , Σ' ⊢ r ·: τ →
Δ , Σ' ⊢ ex :· τ →
Σ[ k ∈ constraints ] (r ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:= k)
∨ r ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:=∅
rule-fails : {n↓ : Nat} {E : env} {r : result} {ex : ex} → Set
rule-fails {n↓} {E} {r} {ex} =
Σ[ c-j ∈ Nat ] Σ[ x-j ∈ Nat ] Σ[ e-j ∈ exp ] (
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:=∅
∨ Σ[ k1 ∈ constraints ] (
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒∅)
∨ Σ[ k1 ∈ constraints ] Σ[ k2 ∈ constraints ] Σ[ r-j ∈ result ] (
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒ r-j ⊣ k2 ∧ r-j ⇐ ex ⌊ ⛽⟨ n↓ ⟩ ⌋:=∅))
lemma-xb-progress-case : ∀{Δ Σ' E r rules ex τ n n↓} →
(n == 1+ n↓) →
(len : Nat) →
(unchecked : rule ctx) →
len == ∥ unchecked ∥ →
(failed : (rule-fails {n↓} {E} {r} {ex}) ctx) →
(∀{c rule} → (c , rule) ∈ unchecked → (c , rule) ∈ rules) →
(∀{c c-j x-j e-j p-j} →
(c , c-j , x-j , e-j , p-j) ∈ failed →
c == c-j ∧ (c , |C x-j => e-j) ∈ rules) →
(∀{c} → dom rules c → dom unchecked c ∨ dom failed c) →
Δ , Σ' ⊢ [ E ]case r of⦃· rules ·⦄ ·: τ →
Δ , Σ' ⊢ ex :· τ →
ex ≠ ¿¿ →
Σ[ k ∈ constraints ] ([ E ]case r of⦃· rules ·⦄ ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:= k)
∨ [ E ]case r of⦃· rules ·⦄ ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:=∅
progress {n = Z} Γ⊢E ta
= Inl (_ , _ , ELimit , π2 (typ-inhabitance-pres Γ⊢E ta))
progress {n = 1+ n} Γ⊢E ta'@(TAFix ta) = Inl (_ , _ , EFix , TAFix Γ⊢E ta')
progress {n = 1+ n} Γ⊢E (TAVar x∈Γ)
with env-all-Γ Γ⊢E x∈Γ
... | _ , x∈E , ta = Inl (_ , _ , EVar x∈E , ta)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg)
with progress Γ⊢E ta-arg
... | Inr arg-fails = Inr (EFAppArg arg-fails)
... | Inl (rarg , _ , arg-evals , ta-rarg)
with progress Γ⊢E ta-f
... | Inr f-fails = Inr (EFAppFun f-fails)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]fix f ⦇·λ x => ef ·⦈ , _ , f-evals , ta'@(TAFix Γ'⊢E' (TAFix ta-ef)))
with progress {n = n} (EnvInd (EnvInd Γ'⊢E' ta') ta-rarg) ta-ef
... | Inr ef-fails = Inr (EFAppFixEval CF⛽ refl f-evals arg-evals ef-fails)
... | Inl (ref , _ , ef-evals , ta-ref) = Inl (_ , _ , EAppFix CF⛽ refl f-evals arg-evals ef-evals , ta-ref)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]??[ u ] , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ((rf-f ∘ rf-arg) , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl (fst _ , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl (snd _ , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]case rf of⦃· rules ·⦄ , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ((C⁻[ _ ] _) , _ , f-evals , ta-rf)
= Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg)
progress {n = 1+ n} Γ⊢E TAUnit = Inl (_ , _ , EUnit , TAUnit)
progress {n = 1+ n} Γ⊢E (TAPair _ ta1 ta2)
with progress Γ⊢E ta1
... | Inr fails = Inr (EFPair1 fails)
... | Inl (_ , _ , evals1 , ta-r1)
with progress Γ⊢E ta2
... | Inr fails = Inr (EFPair2 fails)
... | Inl (_ , _ , evals2 , ta-r2) = Inl (_ , _ , EPair evals1 evals2 , TAPair ta-r1 ta-r2)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta)
with progress Γ⊢E ta
... | Inr fails = Inr (EFFst fails)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (⟨ r1 , r2 ⟩ , _ , evals , TAPair ta-r1 ta-r2)
= Inl (_ , _ , EFst evals , ta-r1)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , evals , TAFix _ ())
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ((C⁻[ x ] q) , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]??[ x₁ ] , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ((q ∘ q₁) , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (fst q , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (snd q , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]case q of⦃· x₁ ·⦄ , _ , evals , ta-r)
= Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta)
with progress Γ⊢E ta
... | Inr fails = Inr (EFSnd fails)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (⟨ r1 , r2 ⟩ , _ , evals , TAPair ta-r1 ta-r2)
= Inl (_ , _ , ESnd evals , ta-r2)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , evals , TAFix _ ())
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ((C⁻[ x ] q) , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]??[ x₁ ] , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ((q ∘ q₁) , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (fst q , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (snd q , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]case q of⦃· x₁ ·⦄ , _ , evals , ta-r)
= Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r)
progress {n = 1+ n} Γ⊢E (TACtor d∈Σ' c∈d ta)
with progress Γ⊢E ta
... | Inr e-fails = Inr (EFCtor e-fails)
... | Inl (_ , _ , e-evals , ta-r) = Inl (_ , _ , ECtor e-evals , TACtor d∈Σ' c∈d ta-r)
progress {Σ' = Σ'} {n = 1+ n} Γ⊢E (TACase d∈σ' e-ta cctx⊆rules h-rules)
with progress Γ⊢E e-ta
... | Inr e-fails = Inr (EFMatchScrut e-fails)
... | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , e-evals , TAFix _ ())
... | Inl ([ x ]??[ x₁ ] , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl ((re ∘ re₁) , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl (fst _ , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl (snd _ , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl ([ x ]case re of⦃· x₁ ·⦄ , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl ((C⁻[ _ ] _) , _ , e-evals , ta-re)
= Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form →
let _ , _ , _ , c∈cctx , ec-ta = h-rules form in
_ , c∈cctx , ec-ta))
... | Inl ((C[ c ] re) , _ , e-evals , TACtor d∈'σ' c∈cctx' ta-re)
rewrite ctxunicity d∈'σ' d∈σ'
with π2 (cctx⊆rules (_ , c∈cctx'))
... | form
with h-rules form
... | _ , _ , _ , c∈cctx , ec-ta
rewrite ctxunicity c∈cctx c∈cctx'
with progress {n = n} (EnvInd Γ⊢E ta-re) ec-ta
... | Inr ec-fails = Inr (EFMatchRule CF⛽ form e-evals ec-fails)
... | Inl (_ , _ , ec-evals , ta-rec) = Inl (_ , _ , EMatch CF⛽ form e-evals ec-evals , ta-rec)
progress {n = 1+ n} Γ⊢E (TAHole u∈Δ) = Inl (_ , _ , EHole , TAHole u∈Δ Γ⊢E)
progress {n = 1+ n} Γ⊢E (TAAsrt _ ta1 ta2)
with progress Γ⊢E ta1
... | Inr e1-fails = Inr (EFAsrtL e1-fails)
... | Inl (r1 , _ , e1-evals , ta-r1)
with progress Γ⊢E ta2
... | Inr e2-fails = Inr (EFAsrtR e2-fails)
... | Inl (r2 , _ , e2-evals , ta-r2)
with xc-progress ta-r1 ta-r2
... | Inl (_ , c-succ) = Inl (_ , _ , EAsrt e1-evals e2-evals c-succ , TAUnit)
... | Inr c-fail = Inr (EFAsrt e1-evals e2-evals c-fail)
lemma-xc-no-coerce : ∀{Δ Σ' r1 r2 τ n} →
Δ , Σ' ⊢ r1 ·: τ →
Δ , Σ' ⊢ r2 ·: τ →
r1 ≠ r2 →
(∀{ex} → Coerce r1 := ex → ⊥) →
r1 ≠ ⟨⟩ →
(∀{r'1 r'2} → r1 ≠ ⟨ r'1 , r'2 ⟩) →
(∀{c r} → r1 ≠ (C[ c ] r)) →
Σ[ k ∈ constraints ] Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:= k
∨ Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:=∅
lemma-xc-no-coerce ta1 (TAFix x x₁) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 (TAApp ta2 ta3) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 TAUnit r1≠r2 no-coerce not-unit not-pair not-ctor
with xb-progress ta1 TAUnit
... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) CoerceUnit xb))
... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) CoerceUnit xb-fails)
lemma-xc-no-coerce ta1 ta2@(TAPair _ _) r1≠r2 no-coerce not-unit not-pair not-ctor
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ {c-r2 → nc (_ , c-r2)})
... | Inl (_ , c-r2)
with xb-progress ta1 (Coerce-preservation ta2 c-r2)
... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb))
lemma-xc-no-coerce ta1 (TAFst ta2) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 (TASnd ta2) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 ta2@(TACtor _ _ _) r1≠r2 no-coerce not-unit not-pair not-ctor
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ {c-r2 → nc (_ , c-r2)})
... | Inl (_ , c-r2)
with xb-progress ta1 (Coerce-preservation ta2 c-r2)
... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb))
lemma-xc-no-coerce ta1 (TAUnwrapCtor x x₁ ta2) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 (TACase x x₁ ta2 x₂ x₃) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
lemma-xc-no-coerce ta1 (TAHole x x₁) r1≠r2 no-coerce not-unit not-pair not-ctor
= Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ())
xc-progress {r1 = r1} {r2} ta1 ta2
with result-==-dec r1 r2
... | Inl refl = Inl (_ , XCExRefl)
xc-progress {r1 = _} {_} ta1@(TAFix x x₁) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress {r1 = _} {_} ta1@(TAApp _ _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress {r1 = _} {_} TAUnit ta2 | Inr r1≠r2
with xb-progress ta2 TAUnit
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inl (λ ())) (Inl (λ ())) CoerceUnit xb))
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inl (λ ())) (Inl (λ ())) CoerceUnit xb-fails)
xc-progress (TAPair ta1a ta1b) (TAPair ta2a ta2b) | Inr r1≠r2
with xc-progress ta1a ta2a
... | Inr xca-fails = Inr (XCFPair1 xca-fails)
... | Inl (_ , xca)
with xc-progress ta1b ta2b
... | Inr xcb-fails = Inr (XCFPair2 xcb-fails)
... | Inl (_ , xcb) = Inl (_ , XCPair r1≠r2 xca xcb)
xc-progress ta1@(TAPair _ _) ta2@(TAApp _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAPair _ _) ta2@(TAFst _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAPair _ _) ta2@(TASnd _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAPair _ _) ta2@(TAUnwrapCtor _ _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAPair _ _) ta2@(TACase _ _ _ _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAPair _ _) ta2@(TAHole _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TAFst _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress {r1 = _} {_} ta1@(TASnd _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress (TACtor {c = c1} d∈σ1 c1∈cctx ta1) (TACtor {c = c2} d∈σ2 c2∈cctx ta2) | Inr r1≠r2
with natEQ c1 c2
... | Inr ne = Inr (XCFCtorMM ne)
... | Inl refl
rewrite ctxunicity d∈σ1 d∈σ2 | ctxunicity c1∈cctx c2∈cctx
with xc-progress ta1 ta2
... | Inr xc-fails = Inr (XCFCtor xc-fails)
... | Inl (_ , xc) = Inl (_ , XCCtor (λ where refl → r1≠r2 refl) xc)
xc-progress ta1@(TACtor _ _ _) ta2@(TAApp _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TACtor _ _ _) ta2@(TAFst _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TACtor _ _ _) ta2@(TASnd _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TACtor _ _ _) ta2@(TAUnwrapCtor _ _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TACtor _ _ _) ta2@(TACase _ _ _ _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress ta1@(TACtor _ _ _) ta2@(TAHole _ _) | Inr r1≠r2
with Coerce-dec
... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ())
... | Inl (_ , c-r1)
with xb-progress ta2 (Coerce-preservation ta1 c-r1)
... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails)
... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb))
xc-progress {r1 = _} {_} ta1@(TAUnwrapCtor _ _ _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress {r1 = _} {_} ta1@(TACase _ _ _ _ _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xc-progress {r1 = _} {_} ta1@(TAHole _ _) ta2 | Inr r1≠r2
= lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ ()
xb-progress {n = Z} _ _ = Inl (_ , XBLimit)
xb-progress {ex = ex} {n = 1+ n} ta-r ta-ex
with ex-¿¿-dec {ex}
... | Inl refl = Inl (_ , XBNone)
xb-progress {n = 1+ n} ta-f@(TAFix Γ⊢E (TAFix ta-e)) (TAMap _ ta-v ta-ex) | Inr ne
with progress {n = n} (EnvInd (EnvInd Γ⊢E ta-f) ta-v) ta-e
... | Inr fails = Inr (XBFFixEval CF⛽ refl fails)
... | Inl (_ , _ , evals , ta)
with xb-progress {n = n} ta ta-ex
... | Inr fails = Inr (XBFFix CF⛽ refl evals fails)
... | Inl (_ , xb) = Inl (_ , XBFix CF⛽ refl evals xb)
xb-progress (TAFix x (TAFix _)) TADC | Inr ne = Inl (_ , XBNone)
xb-progress (TAApp {arg = v} ta-rf ta-rarg) ta-ex | Inr ne
with value-dec {v}
... | Inr nv = Inr (XBFAppNonVal ne nv)
... | Inl val
with xb-progress ta-rf (TAMap val ta-rarg ta-ex)
... | Inr fails = Inr (XBFApp ne val fails)
... | Inl (_ , xb) = Inl (_ , XBApp ne val xb)
xb-progress TAUnit TAUnit | Inr ne = Inl (_ , XBUnit)
xb-progress TAUnit TADC | Inr ne = Inl (_ , XBNone)
xb-progress (TAPair ta-r1 ta-r2) (TAPair ta-ex1 ta-ex2) | Inr ne
with xb-progress ta-r1 ta-ex1
... | Inr fails = Inr (XBFPair1 fails)
... | Inl (_ , xb1)
with xb-progress ta-r2 ta-ex2
... | Inr fails = Inr (XBFPair2 fails)
... | Inl (_ , xb2) = Inl (_ , XBPair xb1 xb2)
xb-progress (TAPair ta-r1 ta-r2) TADC | Inr ne = Inl (_ , XBNone)
xb-progress (TAFst ta-r) ta-ex | Inr ne
with xb-progress ta-r (TAPair ta-ex TADC)
... | Inr fails = Inr (XBFFst ne fails)
... | Inl (_ , xb) = Inl (_ , XBFst ne xb)
xb-progress (TASnd ta-r) ta-ex | Inr ne
with xb-progress ta-r (TAPair TADC ta-ex)
... | Inr fails = Inr (XBFSnd ne fails)
... | Inl (_ , xb) = Inl (_ , XBSnd ne xb)
xb-progress (TACtor {c = c1} h1a h1b ta-r) (TACtor {c = c2} h2a h2b ta-ex) | Inr ne
with natEQ c1 c2
... | Inr ne' = Inr (XBFCtorMM ne')
... | Inl refl
rewrite ctxunicity h1a h2a | ctxunicity h1b h2b
with xb-progress ta-r ta-ex
... | Inr fails = Inr (XBFCtor fails)
... | Inl (_ , xb) = Inl (_ , XBCtor xb)
xb-progress (TACtor x x₁ ta-r) TADC | Inr ne = Inl (_ , XBNone)
xb-progress (TAUnwrapCtor h1 h2 ta-r) ta-ex | Inr ne
with xb-progress ta-r (TACtor h1 h2 ta-ex)
... | Inr fails = Inr (XBFUnwrapCtor ne fails)
... | Inl (_ , xb) = Inl (_ , XBUnwrapCtor ne xb)
xb-progress {n = 1+ n} ta-C@(TACase {rules = rules} x x₁ ta-r x₂ x₃) ta-ex | Inr ne
= lemma-xb-progress-case {n = 1+ n} {n} refl ∥ rules ∥ rules refl ∅ (λ y → y) (λ ()) Inl ta-C ta-ex ne
xb-progress (TAHole x x₁) TAUnit | Inr ne
= Inl (_ , XBHole ne λ ())
xb-progress (TAHole x x₁) (TAPair ta-ex ta-ex₁) | Inr ne
= Inl (_ , XBHole ne λ ())
xb-progress (TAHole x x₁) (TACtor x₂ x₃ ta-ex) | Inr ne
= Inl (_ , XBHole ne λ ())
xb-progress (TAHole x x₁) TADC | Inr ne = Inl (_ , XBNone)
xb-progress (TAHole x x₁) (TAMap x₂ x₃ ta-ex) | Inr ne
= Inr XBFHole
lemma-xb-progress-case {E = E} {r} {rules} {ex} {n = n} {n↓} refl Z [] len-unchecked failed unchecked-wf failed-wf exh ta-C ta-ex n¿¿
= Inr (XBFMatch CF⛽ n¿¿ all-failed)
where
all-failed : ∀{c-j x-j : Nat} {e-j : exp} →
(c-j , |C x-j => e-j) ∈ rules →
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:=∅
∨ Σ[ k1 ∈ constraints ] (
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒∅)
∨ Σ[ k1 ∈ constraints ] Σ[ k2 ∈ constraints ] Σ[ r-j ∈ result ] (
r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒ r-j ⊣ k2 ∧ r-j ⇐ ex ⌊ ⛽⟨ n↓ ⟩ ⌋:=∅)
all-failed c-j∈rules
with exh (_ , c-j∈rules)
... | Inl (_ , ())
... | Inr ((c-j , x-j , e-j , p-j) , c-j∈f)
with failed-wf c-j∈f
... | refl , c-j∈'rules
with ctxunicity c-j∈rules c-j∈'rules
... | refl = p-j
lemma-xb-progress-case {n = 1+ n↓} {n↓} refl (1+ len) unchecked len-unchecked failed unchecked-wf failed-wf exh ta-C@(TACase {rules = rules} d∈σ' Γ⊢E ta-r _ ta-rules) ta-ex n¿¿
with ctx-elim {Γ = unchecked}
... | Inl refl = abort (0≠1+n (! len-unchecked))
... | Inr (c , |C x-j => e-j , unchecked' , refl , c#unchecked')
with unchecked-wf (x,a∈Γ,,x,a {Γ = unchecked'})
... | c∈rules
with ta-rules c∈rules
... | _ , c∈cctx , ta-be
with xb-progress ta-r (TACtor d∈σ' c∈cctx TADC)
... | Inr fails
= lemma-xb-progress-case
refl
len
unchecked'
(1+inj (len-unchecked · ctx-decreasing c#unchecked'))
(failed ,, (c , fail))
unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿
where
fail = c , x-j , e-j , (Inl fails)
unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules
unchecked-wf' {c' = c'} c'∈uc'
with natEQ c c'
... | Inl refl = abort (c#unchecked' (_ , c'∈uc'))
... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc')
failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} →
(c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) →
c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules)
failed-wf' {c' = c'} {c-j'} c'∈f+
with natEQ c c'
... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+)
... | Inl refl
with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed})
... | refl = refl , c∈rules
exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c'
exh' {c' = c'} c'∈rules
with natEQ c c'
... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed})
... | Inr cne
with exh c'∈rules
... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc))
... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f)
... | Inl (_ , xb-r)
with progress {n = n↓} (EnvInd Γ⊢E (TAUnwrapCtor d∈σ' c∈cctx ta-r)) ta-be
... | Inr fails
= lemma-xb-progress-case
refl
len
unchecked'
(1+inj (len-unchecked · ctx-decreasing c#unchecked'))
(failed ,, (c , fail))
unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿
where
fail = c , x-j , e-j , (Inr (Inl (_ , xb-r , fails)))
unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules
unchecked-wf' {c' = c'} c'∈uc'
with natEQ c c'
... | Inl refl = abort (c#unchecked' (_ , c'∈uc'))
... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc')
failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} →
(c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) →
c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules)
failed-wf' {c' = c'} {c-j'} c'∈f+
with natEQ c c'
... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+)
... | Inl refl
with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed})
... | refl = refl , c∈rules
exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c'
exh' {c' = c'} c'∈rules
with natEQ c c'
... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed})
... | Inr cne
with exh c'∈rules
... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc))
... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f)
... | Inl (_ , _ , evals , ta-br)
with xb-progress {n = n↓} ta-br ta-ex
... | Inr fails
= lemma-xb-progress-case
refl
len
unchecked'
(1+inj (len-unchecked · ctx-decreasing c#unchecked'))
(failed ,, (c , fail))
unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿
where
fail = c , x-j , e-j , (Inr (Inr (_ , _ , _ , xb-r , evals , fails)))
unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules
unchecked-wf' {c' = c'} c'∈uc'
with natEQ c c'
... | Inl refl = abort (c#unchecked' (_ , c'∈uc'))
... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc')
failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} →
(c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) →
c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules)
failed-wf' {c' = c'} {c-j'} c'∈f+
with natEQ c c'
... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+)
... | Inl refl
with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed})
... | refl = refl , c∈rules
exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c'
exh' {c' = c'} c'∈rules
with natEQ c c'
... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed})
... | Inr cne
with exh c'∈rules
... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc))
... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f)
... | Inl (_ , xb)
= Inl (_ , (XBMatch CF⛽ n¿¿ c∈rules xb-r evals xb))
{- TODO delete - this strong version is unprovable
module progress where
progress : ∀{Δ Σ' Γ E e τ} →
Δ , Σ' , Γ ⊢ E →
Δ , Σ' , Γ ⊢ e :: τ →
-- Either there's some properly-typed result that e will eval to
-- for any beta reduction limit ...
Σ[ r ∈ result ] (
Δ , Σ' ⊢ r ·: τ ∧
∀{n} → Σ[ k ∈ constraints ] (E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒ r ⊣ k))
∨
-- ... or evaluation will have a constraint failure for any
-- beta reduction limit
(∀{n} → E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒∅)
progress Γ⊢E ta'@(TALam _ ta) = Inl (_ , TALam Γ⊢E ta' , (_ , EFun))
progress Γ⊢E ta'@(TAFix _ _ ta) = Inl (_ , TAFix Γ⊢E ta' , (_ , EFix))
progress Γ⊢E (TAVar x∈Γ)
with env-all-Γ Γ⊢E x∈Γ
... | _ , x∈E , ta = Inl (_ , ta , (_ , EVar x∈E))
progress Γ⊢E (TAApp _ ta-f ta-arg)
with progress Γ⊢E ta-arg
... | Inr arg-fails = Inr (EFAppArg arg-fails)
... | Inl (_ , ta-rarg , arg-evals)
with progress Γ⊢E ta-f
... | Inr f-fails = Inr (EFAppFun f-fails)
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl (([ E' ]λ x => ef) , TALam Γ'⊢E' (TALam x#Γ' ta-ef) , f-evals)
with progress (EnvInd Γ'⊢E' ta-rarg) ta-ef
... | q = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ E' ]fix f ⦇·λ x => ef ·⦈ , ta-rf , f-evals) = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ x ]??[ x₁ ] , ta-rf , f-evals) = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ((rf ∘ rf₁) , ta-rf , f-evals) = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ((get[ x th-of x₁ ] rf) , ta-rf , f-evals) = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ x ]case rf of⦃· x₁ ·⦄ , ta-rf , f-evals) = {!!}
progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl (PF x , ta-rf , f-evals) = {!!}
progress Γ⊢E (TATpl ∥es∥==∥τs∥ _ tas) = {!!}
progress {Δ} {Σ'} {E = E} {τ = τ} Γ⊢E (TAGet {i = i} {len} {e} len==∥τs∥ i<∥τs∥ ta)
with progress Γ⊢E ta
... | Inr e-fails = Inr (EFGet e-fails)
... | Inl (⟨ rs ⟩ , TATpl ∥rs∥==∥τs∥ tas , e-evals)
= let i<∥rs∥ = tr (λ y → i < y) (! ∥rs∥==∥τs∥) i<∥τs∥ in
Inl (_ , tas i<∥rs∥ i<∥τs∥ , _ , EGet (len==∥τs∥ · ! ∥rs∥==∥τs∥) i<∥rs∥ (π2 e-evals))
... | Inl (([ x ]λ x₁ => x₂) , TALam _ () , e-evals)
... | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , TAFix _ () , e-evals)
... | Inl ([ x ]??[ x₁ ] , ta-r , e-evals)
rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ())
... | Inl ((r ∘ r₁) , ta-r , e-evals)
rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ())
... | Inl ((get[ x th-of x₁ ] r) , ta-r , e-evals)
rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ())
... | Inl ([ x ]case r of⦃· x₁ ·⦄ , ta-r , e-evals)
rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ())
... | Inl (PF x , TAPF () , e-evals)
progress Γ⊢E (TACtor d∈Σ' c∈d ta)
with progress Γ⊢E ta
... | Inl (_ , ta-r , e-evals) = Inl (_ , TACtor d∈Σ' c∈d ta-r , _ , ECtor (π2 e-evals))
... | Inr e-fails = Inr (EFCtor e-fails)
progress Γ⊢E (TACase x ta x₁ x₂) = {!!}
progress Γ⊢E (TAHole u∈Δ) = Inl (_ , TAHole u∈Δ Γ⊢E , (_ , EHole))
progress Γ⊢E (TAPF ta) = Inl (_ , TAPF ta , (_ , EPF))
progress Γ⊢E (TAAsrt x ta ta₁) = {!!}
-}
| {
"alphanum_fraction": 0.4787115247,
"avg_line_length": 56.6964285714,
"ext": "agda",
"hexsha": "52fb06fae80e92039df97af7fdbb93888573d42d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "progress.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "progress.agda",
"max_line_length": 178,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "progress.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 15241,
"size": 34925
} |
{-# OPTIONS --rewriting --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.Uniqueness-Derivations
open import Sets ℕ eqdecℕ
open import GSeTT.Dec-Type-Checking
open import CaTT.Ps-contexts
{- PS-contexts -}
module CaTT.Relation where
-- The relation ◃ generating cases
data _,_◃₀_ Γ x y : Set₁ where
◃∂⁻ : ∀{A z} → Γ ⊢t (Var y) # (⇒ A (Var x) (Var z)) → Γ , x ◃₀ y
◃∂⁺ : ∀{A z} → Γ ⊢t (Var x) # (⇒ A (Var z) (Var y)) → Γ , x ◃₀ y
-- Transitive closure : we associate on the right
data _,_◃_ Γ x y : Set₁ where
gen : Γ , x ◃₀ y → Γ , x ◃ y
◃T : ∀{z} → Γ , x ◃ z → Γ , z ◃₀ y → Γ , x ◃ y
rel : ∀ Γ x y → Set₁
rel Γ x y = Γ , x ◃ y
W◃₀ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ◃₀ y → (Γ :: (z , A)) , x ◃₀ y
W◃₀ Γ+⊢ (◃∂⁻ Γ⊢x) = ◃∂⁻ (wkt Γ⊢x Γ+⊢)
W◃₀ Γ+⊢ (◃∂⁺ Γ⊢x) = ◃∂⁺ (wkt Γ⊢x Γ+⊢)
W◃ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ◃ y → (Γ :: (z , A)) , x ◃ y
W◃ Γ+⊢ (gen x◃₀y) = gen (W◃₀ Γ+⊢ x◃₀y)
W◃ Γ+⊢ (◃T x◃y y◃₀z) = ◃T (W◃ Γ+⊢ x◃y) (W◃₀ Γ+⊢ y◃₀z)
WW◃ : ∀ {Γ x y z f A B} → ((Γ :: (z , A)) :: (f , B)) ⊢C → Γ , x ◃ y → ((Γ :: (z , A)) :: (f , B)) , x ◃ y
WW◃ Γ+⊢@(cc Γ⊢ _ idp) x◃y = W◃ Γ+⊢ (W◃ Γ⊢ x◃y)
◃-trans : ∀ {Γ x y z} → Γ , x ◃ y → Γ , y ◃ z → Γ , x ◃ z
◃-trans x◃y (gen y◃₀z) = ◃T x◃y y◃₀z
◃-trans x◃y (◃T y◃z z◃₀w) = ◃T (◃-trans x◃y y◃z) z◃₀w
-- TODO : Move at the right place
x#A∈Γ→x∈Γ : ∀ {Γ x A} → x # A ∈ Γ → x ∈ Γ
x#A∈Γ→x∈Γ {Γ :: (y , _)} (inl x#A∈Γ) = inl (x#A∈Γ→x∈Γ x#A∈Γ)
x#A∈Γ→x∈Γ {Γ :: (y , _)} (inr (idp , idp)) = inr idp
Γ⊢x:A→x∈Γ : ∀ {Γ x A} → Γ ⊢t (Var x) # A → x ∈ Γ
Γ⊢x:A→x∈Γ (var _ x#A∈Γ) = x#A∈Γ→x∈Γ x#A∈Γ
data _,_⟿_ : Pre-Ctx → ℕ → ℕ → Set₁ where -- y is an iterated target of x in Γ
∂⁺⟿ : ∀{Γ x a y A} → Γ ⊢t (Var x) # (⇒ A (Var a) (Var y)) → Γ , x ⟿ y
x⟿∂⁺ : ∀{Γ x a y z A} → Γ ⊢t (Var x) # (⇒ A (Var a) (Var y)) → Γ , y ⟿ z → Γ , x ⟿ z
W⟿ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ⟿ y → (Γ :: (z , A)) , x ⟿ y
W⟿ Γ+⊢ (∂⁺⟿ Γ⊢x) = ∂⁺⟿ (wkt Γ⊢x Γ+⊢)
W⟿ Γ+⊢ (x⟿∂⁺ Γ⊢x x⟿y) = x⟿∂⁺ (wkt Γ⊢x Γ+⊢) (W⟿ Γ+⊢ x⟿y)
WW⟿ : ∀ {Γ x y z w A B} → ((Γ :: (z , A)) :: (w , B)) ⊢C → Γ , x ⟿ y → ((Γ :: (z , A)) :: (w , B)) , x ⟿ y
WW⟿ Γ++⊢@(cc Γ+⊢ _ idp) x⟿y = W⟿ Γ++⊢ (W⟿ Γ+⊢ x⟿y)
⟿→◃ : ∀ {Γ x y} → Γ , x ⟿ y → Γ , x ◃ y
⟿→◃ (∂⁺⟿ Γ⊢x) = gen (◃∂⁺ Γ⊢x)
⟿→◃ (x⟿∂⁺ Γ⊢x x⟿y) = ◃-trans (gen (◃∂⁺ Γ⊢x)) (⟿→◃ x⟿y)
Γ++ : ∀ {Γ x A} → Γ ⊢ps x # A → Pre-Ctx
Γ++ {Γ} {x} {A} _ = (Γ :: (length Γ , A)) :: (S (length Γ) , ⇒ A (Var x) (Var (length Γ)))
//⟿ : ∀ {Γ Δ x y A a} → Γ ⊢t (Var x) # A → Δ ⊢t (Var y) # A → Γ , x ⟿ a → Δ , y ⟿ a
//⟿ Γ⊢x Δ⊢y (∂⁺⟿ Γ⊢x') with unique-type Γ⊢x Γ⊢x' idp
... | idp = ∂⁺⟿ Δ⊢y
//⟿ Γ⊢x Δ⊢y (x⟿∂⁺ Γ⊢x' x⟿a) with unique-type Γ⊢x Γ⊢x' idp
... | idp = x⟿∂⁺ Δ⊢y (//⟿ (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢x)) (Γ⊢tgt (Γ⊢t:A→Γ⊢A Δ⊢y)) x⟿a)
T⟿ : ∀ {Γ x y z} → Γ , x ⟿ y → Γ , y ⟿ z → Γ , x ⟿ z
T⟿ (∂⁺⟿ Γ⊢x) y⟿z = x⟿∂⁺ Γ⊢x y⟿z
T⟿ (x⟿∂⁺ Γ⊢x x⟿y) y⟿z = x⟿∂⁺ Γ⊢x (T⟿ x⟿y y⟿z)
⟿dim : ∀ {Γ x y A B} → Γ ⊢t Var x # A → Γ ⊢t Var y # B → Γ , x ⟿ y → dim B < dim A
⟿dim Γ⊢x:A Γ⊢y:B (∂⁺⟿ Γ⊢x) with unique-type Γ⊢x:A Γ⊢x idp | unique-type Γ⊢y:B (Γ⊢tgt(Γ⊢t:A→Γ⊢A Γ⊢x)) idp
... | idp | idp = n≤n _
⟿dim Γ⊢x:A Γ⊢y:B (x⟿∂⁺ Γ⊢x z⟿y) with unique-type Γ⊢x:A Γ⊢x idp
... | idp = n≤m→n≤Sm (⟿dim (Γ⊢tgt(Γ⊢t:A→Γ⊢A Γ⊢x)) Γ⊢y:B z⟿y)
𝔻0-◃ : ∀ z → ¬ ((nil :: (0 , ∗)) , 0 ◃ z)
𝔻0-◃ z (gen (◃∂⁻ (var _ (inl ()))))
𝔻0-◃ z (gen (◃∂⁻ (var _ (inr ()))))
𝔻0-◃ z (gen (◃∂⁺ (var _ (inl ()))))
𝔻0-◃ z (gen (◃∂⁺ (var _ (inr ()))))
𝔻0-◃ z (◃T 0◃x _) = 𝔻0-◃ _ 0◃x
𝔻0-⟿ : ∀ z → ¬ ((nil :: (0 , ∗)) , 0 ⟿ z)
𝔻0-⟿ z (∂⁺⟿ (var _ (inl ())))
𝔻0-⟿ z (∂⁺⟿ (var _ (inr ())))
𝔻0-⟿ z (x⟿∂⁺ (var _ (inl ())) _)
𝔻0-⟿ z (x⟿∂⁺ (var _ (inr ())) _)
n≮n : ∀ n → ¬ (n < n)
n≮n n n<n = Sn≰n _ n<n
⟿-is-tgt : ∀ {Γ x y z A} → Γ ⊢t Var x # ⇒ A (Var y) (Var z) → Γ , x ⟿ y → y == z
⟿-is-tgt Γ⊢x (∂⁺⟿ Γ⊢'x) with unique-type Γ⊢x Γ⊢'x idp
... | idp = idp
⟿-is-tgt Γ⊢x (x⟿∂⁺ Γ⊢'x y'⟿y) with unique-type Γ⊢x Γ⊢'x idp
... | idp = ⊥-elim (Sn≰n _ (⟿dim (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢'x)) (Γ⊢src (Γ⊢t:A→Γ⊢A Γ⊢x)) y'⟿y))
no-loop : ∀{Γ x y z T a A} → Γ ⊢ps a # A → Γ ⊢t (Var x) # ⇒ T (Var y) (Var z) → y ≠ z
no-loop pss (var _ (inl ())) idp
no-loop pss (var _ (inr ())) idp
no-loop (psd Γ⊢psf) Γ⊢x idp = no-loop Γ⊢psf Γ⊢x idp
no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inl (inl x∈Γ))) idp = no-loop Γ⊢psb (var (Γ⊢psx:A→Γ⊢ Γ⊢psb) x∈Γ) idp
no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) idp = no-loop Γ⊢psb (Γ⊢psx:A→Γ⊢x:A Γ⊢psb) idp
no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inr (idp , idp))) idp = x∉ (Γ⊢psx:A→Γ⊢ Γ⊢psb) (n≤n _) (Γ⊢psx:A→Γ⊢x:A Γ⊢psb)
dangling-is-not-a-source : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ f z {B} → ¬ (Γ ⊢t Var f # ⇒ B (Var x) (Var z)))
post-dangling-is-not-a-source : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ {y B} f z → Γ , x ⟿ y → ¬ (Γ ⊢t (Var f) # ⇒ B (Var y) (Var z)))
dangling-is-not-a-source pss _ _ (var _ (inl ()))
dangling-is-not-a-source pss _ _ (var _ (inr ()))
dangling-is-not-a-source {x = x} (psd Γ⊢ps) t u Γ⊢t = post-dangling-is-not-a-source Γ⊢ps t u (∂⁺⟿ (psvar Γ⊢ps)) Γ⊢t
dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inl (inl x∈Γ))) = x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢src (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) x∈Γ)))
dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inl (inr (idp , idp)))) = x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)))
dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inr (idp , idp))) = x∉ (psv Γ⊢ps) (n≤Sn _) (psvar Γ⊢ps)
post-dangling-is-not-a-source pss t u x⟿y Γ⊢t = 𝔻0-⟿ _ x⟿y
post-dangling-is-not-a-source (psd Γ⊢ps) t u x⟿y Γ⊢t = post-dangling-is-not-a-source Γ⊢ps t u (T⟿ (∂⁺⟿ (psvar Γ⊢ps)) x⟿y) Γ⊢t
post-dangling-is-not-a-source Γ+⊢@(pse Γ⊢ps idp idp idp idp idp) t u (∂⁺⟿ Γ⊢Sl) Γ⊢t with unique-type Γ⊢Sl (psvar Γ+⊢) idp
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inl (inl t∈Γ))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢src (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) t∈Γ)))
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inl (inr (idp , idp)))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)))
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inr (idp , idp))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (psvar Γ⊢ps)
post-dangling-is-not-a-source Γ+⊢@(pse Γ⊢ps idp idp idp idp idp) t u (x⟿∂⁺ Γ⊢Sl x⟿y) Γ⊢t with unique-type Γ⊢Sl (psvar Γ+⊢) idp
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ+⊢ (inl (inl t∈Γ))) | idp =
post-dangling-is-not-a-source Γ⊢ps _ _ (//⟿ (var Γ+⊢ (inl (inr (idp , idp)))) (psvar Γ⊢ps) x⟿y) (var (psv Γ⊢ps) t∈Γ)
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ+⊢ (inl (inr (idp , idp)))) | idp with ⟿-is-tgt (var Γ+⊢ (inl (inr (idp , idp)))) x⟿y
... | idp = no-loop Γ⊢ps (psvar Γ⊢ps) idp
post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ++⊢@(cc Γ+⊢ _ p) (inr (idp , idp))) | idp = n≮n _ (⟿dim (var Γ++⊢ (inl (inr (idp , idp)))) (wkt (wkt (psvar Γ⊢ps) Γ+⊢) Γ++⊢) x⟿y)
⊢psx-◃₀→⟿ : ∀ {Γ x a A} → Γ ⊢ps x # A → Γ , x ◃₀ a → Γ , x ⟿ a
⊢psx-◃₀→⟿ Γ⊢psx (◃∂⁻ Γ⊢a) = ⊥-elim (dangling-is-not-a-source Γ⊢psx _ _ Γ⊢a)
⊢psx-◃₀→⟿ Γ⊢psx (◃∂⁺ Γ⊢x) = ∂⁺⟿ Γ⊢x
⊢psx-◃₀→⟿+ : ∀ {Γ x y a A} → Γ ⊢ps x # A → Γ , x ⟿ y → Γ , y ◃₀ a → Γ , y ⟿ a
⊢psx-◃₀→⟿+ Γ⊢psx x⟿y (◃∂⁻ Γ⊢a) = ⊥-elim (post-dangling-is-not-a-source Γ⊢psx _ _ x⟿y Γ⊢a)
⊢psx-◃₀→⟿+ Γ⊢psx x⟿y (◃∂⁺ Γ⊢y) = ∂⁺⟿ Γ⊢y
⊢psx-◃→⟿ : ∀ {Γ x a A} → Γ ⊢ps x # A → Γ , x ◃ a → Γ , x ⟿ a
⊢psx-◃→⟿+ : ∀ {Γ x a b A} → Γ ⊢ps x # A → Γ , x ⟿ a → Γ , a ◃ b → Γ , a ⟿ b
⊢psx-◃→⟿ Γ⊢psx (gen x◃₀a) = ⊢psx-◃₀→⟿ Γ⊢psx x◃₀a
⊢psx-◃→⟿ Γ⊢psx (◃T x◃z z◃₀a) = T⟿ (⊢psx-◃→⟿ Γ⊢psx x◃z) (⊢psx-◃₀→⟿+ Γ⊢psx (⊢psx-◃→⟿ Γ⊢psx x◃z) z◃₀a)
⊢psx-◃→⟿+ Γ⊢psx x⟿y (gen y◃₀a) = ⊢psx-◃₀→⟿+ Γ⊢psx x⟿y y◃₀a
⊢psx-◃→⟿+ Γ⊢psx x⟿y (◃T y◃z z◃₀a) = T⟿ (⊢psx-◃→⟿+ Γ⊢psx x⟿y y◃z) (⊢psx-◃₀→⟿+ Γ⊢psx (T⟿ x⟿y (⊢psx-◃→⟿+ Γ⊢psx x⟿y y◃z)) z◃₀a)
-- easy to finish, and follows the paper proof
psx-◃-linear→ : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ a b → a ∈ Γ → b ∈ Γ → (((Γ , a ◃ b) + (Γ , b ◃ a)) + (a == b)))
psx-◃-linear→ pss .0 .0 (inr idp) (inr idp) = inr idp
psx-◃-linear→ (psd Γ⊢psx) a b a∈Γ b∈Γ = psx-◃-linear→ Γ⊢psx a b a∈Γ b∈Γ
psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) a b (inl (inl a∈Γ)) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx a b a∈Γ b∈Γ
... | inl (inl a◃b) = inl (inl (WW◃ (psv Γ++⊢ps) a◃b))
... | inl (inr b◃a) = inl (inr (WW◃ (psv Γ++⊢ps) b◃a))
... | inr idp = inr idp
psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) a .(length _) (inl (inl a∈Γ)) (inl (inr idp)) with psx-◃-linear→ Γ⊢psx a x a∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a ∈ Γ , b = y
... | inl (inl a◃x) = inl (inl (◃-trans (WW◃ (psv Γ++⊢ps) a◃x) (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) ((◃∂⁺ (psvar Γ++⊢ps)))))) -- a ◃ x
... | inl (inr x◃a) = inl (inr (⟿→◃ (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃a)))) -- x ◃ a
... | inr idp = inl (inl (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps)))) -- a = x
psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) a .(S (length _)) (inl (inl a∈Γ)) (inr idp) with psx-◃-linear→ Γ⊢psx a x a∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a ∈ Γ , b = f (**)
... | inl (inl a◃x) = inl (inl (◃T (WW◃ (psv Γ++⊢ps) a◃x) (◃∂⁻ (psvar Γ++⊢ps)))) -- a ◃ x
... | inl (inr x◃a) = inl (inr (⟿→◃ (x⟿∂⁺ (psvar Γ++⊢ps) (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃a))))) -- x ◃ a
... | inr idp = inl (inl (gen (◃∂⁻ (psvar Γ++⊢ps)))) -- a = x
psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) .(length _) b (inl (inr idp)) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx b x b∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a = y, b ∈ Γ
... | inl (inl b◃x) = inl (inr (◃-trans (WW◃ (psv Γ++⊢ps) b◃x) (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps))))) -- b ◃ x
... | inl (inr x◃b) = inl (inl (⟿→◃ (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃b)))) -- x ◃ b
... | inr idp = inl (inr (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps)))) -- b = x
psx-◃-linear→ (pse Γ⊢psx idp idp idp idp idp) .(length _) .(length _) (inl (inr idp)) (inl (inr idp)) = inr idp
psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) .(length _) .(S (length _)) (inl (inr idp)) (inr idp) = inl (inr (gen (◃∂⁺ (psvar Γ++⊢ps)))) -- a = y, b = f
psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) .(S (length _)) b (inr idp) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx b x b∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a = f b ∈ Γ
... | inl (inl b◃x) = inl (inr (◃T (WW◃ (psv Γ++⊢ps) b◃x) (◃∂⁻ (psvar Γ++⊢ps)))) -- b ◃ x
... | inl (inr x◃b) = inl (inl (⟿→◃ (x⟿∂⁺ (psvar Γ++⊢ps) (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃b))))) -- x ◃ b
... | inr idp = inl (inr (gen (◃∂⁻ (psvar Γ++⊢ps)))) -- b = x
psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) .(S (length _)) .(length _) (inr idp) (inl (inr idp)) = inl (inl (gen (◃∂⁺ (psvar Γ++⊢ps)))) -- a = f, b = y
psx-◃-linear→ (pse Γ⊢psx idp idp idp idp idp) .(S (length _)) .(S (length _)) (inr idp) (inr idp) = inr idp
strengthen : ∀ {Γ x A y B} → (Γ :: (y , B)) ⊢t Var x # A → x ∈ Γ → Γ ⊢t Var x # A
strengthen (var (cc Γ⊢ _ idp) (inl x#A∈Γ)) x∈Γ = var Γ⊢ x#A∈Γ
strengthen (var (cc Γ⊢ _ idp) (inr (idp , idp))) x∈Γ = ⊥-elim (l∉ Γ⊢ (n≤n _) x∈Γ)
strengthen+ : ∀ {Γ x A y B z C} → ((Γ :: (y , B)) :: (z , C)) ⊢t Var x # A → x ∈ Γ → Γ ⊢t Var x # A
strengthen+ Γ++⊢x x∈Γ = strengthen (strengthen Γ++⊢x (inl x∈Γ)) x∈Γ
◃₀∈ : ∀ {Γ x a} → Γ , x ◃₀ a → a ∈ Γ
◃₀∈ (◃∂⁻ Γ⊢a) = Γ⊢x:A→x∈Γ Γ⊢a
◃₀∈ (◃∂⁺ Γ⊢x) = Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢x))
◃∈ : ∀ {Γ x a} → Γ , x ◃ a → a ∈ Γ
◃∈ (gen x◃₀a) = ◃₀∈ x◃₀a
◃∈ (◃T _ z◃₀x) = ◃₀∈ z◃₀x
∈◃₀ : ∀ {Γ x a} → Γ , x ◃₀ a → x ∈ Γ
∈◃₀ (◃∂⁻ Γ⊢a) = Γ⊢x:A→x∈Γ (Γ⊢src (Γ⊢t:A→Γ⊢A Γ⊢a))
∈◃₀ (◃∂⁺ Γ⊢x) = Γ⊢x:A→x∈Γ Γ⊢x
∈◃ : ∀ {Γ x a} → Γ , x ◃ a → x ∈ Γ
∈◃ (gen x◃₀a) = ∈◃₀ x◃₀a
∈◃ (◃T x◃z _) = ∈◃ x◃z
WWpsx : ∀ {Γ x A} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps ⊢t (Var x) # A
WWpsx Γ⊢ps = wkt (wkt (psvar Γ⊢ps) (cc (psv Γ⊢ps) (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)) idp)) (psv (pse Γ⊢ps idp idp idp idp idp))
dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , S (length Γ) ◃₀ a → a == length Γ
dangling-◃₀ Γ⊢ps (◃∂⁻ Γ⊢a) = ⊥-elim (dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ Γ⊢a)
dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inl Sl∈Γ)))) = ⊥-elim (l∉ (psv Γ⊢ps) (n≤Sn _) (x#A∈Γ→x∈Γ Sl∈Γ))
dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inr (Sl=l , idp))))) = ⊥-elim (Sn≠n _ Sl=l)
dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inr (_ , idp)))) = idp
◃₀-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ S (length Γ) → a == x
◃₀-dangling Γ⊢ps (◃∂⁻ Γ+⊢Sl) with unique-type Γ+⊢Sl (psvar (pse Γ⊢ps idp idp idp idp idp)) idp
... | idp = idp
◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inl (inl a∈Γ)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) a∈Γ))))
◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inl (inr (idp , idp))))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))))
◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inr (idp , abs)))) = ⊥-elim (Sn≠n _ (=Var (snd (=⇒ abs))))
◃₀-dangling-tgt : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ length Γ → (a == S (length Γ)) + (Γ++ Γ⊢ps , a ◃₀ x)
◃₀-dangling-tgt Γ⊢ps (◃∂⁻ Γ+⊢l) with unique-type Γ+⊢l (var (psv (pse Γ⊢ps idp idp idp idp idp)) (inl (inr (idp , idp)))) idp
... | idp = inr (◃∂⁻ (WWpsx Γ⊢ps))
◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inl (inl a∈Γ)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) a∈Γ))))
◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inl (inr (idp , idp))))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))))
◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inr (p , _)))) = inl p
◃-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃ S (length Γ) → (a == x) + (Γ++ Γ⊢ps , a ◃ x)
◃-dangling Γ⊢ps (gen x◃₀Sl) with ◃₀-dangling Γ⊢ps x◃₀Sl
... | idp = inl idp
◃-dangling Γ⊢ps (◃T a◃x x◃₀Sl) with ◃₀-dangling Γ⊢ps x◃₀Sl
... | idp = inr a◃x
◃-dangling-tgt : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃ length Γ → (a == S (length Γ) + (a == x)) + (Γ++ Γ⊢ps , a ◃ x)
◃-dangling-tgt Γ⊢ps (gen a◃₀l) with ◃₀-dangling-tgt Γ⊢ps a◃₀l
... | inl idp = inl (inl idp)
... | inr a◃₀x = inr (gen a◃₀x)
◃-dangling-tgt Γ⊢ps (◃T a◃z z◃₀l) with ◃₀-dangling-tgt Γ⊢ps z◃₀l
... | inl idp with ◃-dangling Γ⊢ps a◃z
... | inl idp = inl (inr idp)
... | inr a◃x = inr a◃x
◃-dangling-tgt Γ⊢ps (◃T a◃z z◃₀l) | inr z◃₀x = inr (◃T a◃z z◃₀x)
strengthen-◃₀ : ∀ {Γ x A a b} → (Γ⊢ps : Γ ⊢ps x # A) → a ∈ Γ → b ∈ Γ → Γ++ Γ⊢ps , a ◃₀ b → Γ , a ◃₀ b
strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ (◃∂⁻ Γ⊢b) = ◃∂⁻ (strengthen+ Γ⊢b b∈Γ)
strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ (◃∂⁺ Γ⊢a) = ◃∂⁺ (strengthen+ Γ⊢a a∈Γ)
-- useful particular case
strengthen-◃₀-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , length Γ ◃₀ a → Γ , x ◃₀ a
strengthen-◃₀-dangling Γ⊢ps (◃∂⁻ Γ⊢a) = ⊥-elim (post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ (psvar (pse Γ⊢ps idp idp idp idp idp))) Γ⊢a)
strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inl (inl l∈Γ)))) = ⊥-elim (l∉ (psv Γ⊢ps) (n≤n _) (x#A∈Γ→x∈Γ l∈Γ))
strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inl (inr (_ , idp))))) = ◃∂⁺ (psvar Γ⊢ps)
strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inr (l=Sl , _)))) = ⊥-elim (Sn≠n _ (l=Sl ^))
∈-dangling : ∀ {Γ x A} → Γ ⊢ps x # A → x ∈ Γ
∈-dangling Γ⊢ps = Γ⊢x:A→x∈Γ (psvar Γ⊢ps)
∈-dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ x → a ∈ Γ
∈-dangling-◃₀ Γ⊢ps (◃∂⁻ Γ+⊢x) with unique-type Γ+⊢x (WWpsx Γ⊢ps) idp
... | idp = Γ⊢x:A→x∈Γ (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)))
∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inl a∈Γ)))) = x#A∈Γ→x∈Γ a∈Γ
∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inr (idp , idp))))) with unique-type (psvar Γ⊢ps) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))) idp
... | ()
∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inr (idp , idp)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (psvar Γ⊢ps))
strengthen-dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ x → Γ , a ◃₀ x
strengthen-dangling-◃₀ Γ⊢ps a◃₀x = strengthen-◃₀ Γ⊢ps (∈-dangling-◃₀ Γ⊢ps a◃₀x) (∈-dangling Γ⊢ps) a◃₀x
-- Not easy to find a way to express in a terminating way
pse-◃-elim : ∀ {Γ x A a b} → (Γ⊢ps : Γ ⊢ps x # A) → a ∈ Γ → b ∈ Γ → Γ++ Γ⊢ps , a ◃ b → Γ , a ◃ b
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (gen a◃₀b) = gen (strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ a◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) with ◃∈ a◃z
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) | inl (inl z∈Γ) = ◃T (pse-◃-elim Γ⊢ps a∈Γ z∈Γ a◃z) (strengthen-◃₀ Γ⊢ps z∈Γ b∈Γ z◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (gen a◃₀l) l◃₀b) | inl (inr idp) with ◃₀-dangling-tgt Γ⊢ps a◃₀l
... | inl idp = ⊥-elim (l∉ (psv Γ⊢ps) (n≤Sn _) a∈Γ)
... | inr a◃₀x = ◃T (gen (strengthen-◃₀ Γ⊢ps a∈Γ (∈-dangling Γ⊢ps) a◃₀x)) (strengthen-◃₀-dangling Γ⊢ps l◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T a◃z z◃₀l) l◃₀b) | inl (inr idp) with ◃₀-dangling-tgt Γ⊢ps z◃₀l
... | inr z◃₀x = ◃T (◃T (pse-◃-elim Γ⊢ps a∈Γ (∈-dangling-◃₀ Γ⊢ps z◃₀x) a◃z) (strengthen-dangling-◃₀ Γ⊢ps z◃₀x)) (strengthen-◃₀-dangling Γ⊢ps l◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T (gen a◃₀Sl) Sl◃₀l) l◃₀b) | inl (inr idp) | inl idp with ◃₀-dangling Γ⊢ps a◃₀Sl
... | idp = gen (strengthen-◃₀-dangling Γ⊢ps l◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T (◃T a◃z z◃₀Sl) Sl◃₀l) l◃₀b) | inl (inr idp) | inl idp with ◃₀-dangling Γ⊢ps z◃₀Sl
... | idp = ◃T (pse-◃-elim Γ⊢ps a∈Γ (∈-dangling Γ⊢ps) a◃z) (strengthen-◃₀-dangling Γ⊢ps l◃₀b)
pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) | inr idp with dangling-◃₀ Γ⊢ps z◃₀b
... | idp = ⊥-elim (l∉ (psv Γ⊢ps) (n≤n _) b∈Γ)
psx-◃-linear← : ∀ {Γ z A} → Γ ⊢ps z # A → (∀ x → x ∈ Γ → ¬ (Γ , x ◃ x))
psx-◃-linear← pss .0 (inr idp) x◃x = 𝔻0-◃ 0 x◃x
psx-◃-linear← (psd Γ⊢psz) x x∈Γ x◃x = psx-◃-linear← Γ⊢psz x x∈Γ x◃x
psx-◃-linear← (pse Γ⊢psz idp idp idp idp idp) x (inl (inl x∈Γ)) x◃x = psx-◃-linear← Γ⊢psz x x∈Γ (pse-◃-elim Γ⊢psz x∈Γ x∈Γ x◃x)
psx-◃-linear← Γ+⊢ps@(pse Γ⊢psz idp idp idp idp idp) x (inl (inr idp)) x◃x = ⊥-elim (Sn≰n _ (⟿dim (var (psv Γ+⊢ps) (inl (inr (idp , idp)))) (var (psv Γ+⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿+ Γ+⊢ps (∂⁺⟿ (psvar Γ+⊢ps)) x◃x)))
psx-◃-linear← Γ+⊢ps@(pse Γ⊢psz idp idp idp idp idp) x (inr idp) x◃x = ⊥-elim (Sn≰n _ (⟿dim (psvar Γ+⊢ps) (psvar Γ+⊢ps) (⊢psx-◃→⟿ Γ+⊢ps x◃x)))
◃-linear : Pre-Ctx → Set₁
◃-linear Γ = ∀ x y → x ∈ Γ → y ∈ Γ → (x ≠ y) ↔ ((Γ , x ◃ y) + (Γ , y ◃ x))
ps-◃-linear : ∀ Γ → Γ ⊢ps → ◃-linear Γ
fst (ps-◃-linear Γ (ps Γ⊢psz) x y x∈Γ y∈Γ) x≠y with psx-◃-linear→ Γ⊢psz x y x∈Γ y∈Γ
... | inl H = H
... | inr x=y = ⊥-elim (x≠y x=y)
snd (ps-◃-linear Γ (ps Γ⊢psz) x .x x∈Γ y∈Γ) (inl x◃x) idp = psx-◃-linear← Γ⊢psz x x∈Γ x◃x
snd (ps-◃-linear Γ (ps Γ⊢psz) x .x x∈Γ y∈Γ) (inr x◃x) idp = psx-◃-linear← Γ⊢psz x x∈Γ x◃x
| {
"alphanum_fraction": 0.4744052676,
"avg_line_length": 61.7442622951,
"ext": "agda",
"hexsha": "1414835b4c8d349d318ffbf34d2e4e65286e6a62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "CaTT/Relation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "CaTT/Relation.agda",
"max_line_length": 226,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "CaTT/Relation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12567,
"size": 18832
} |
{-# OPTIONS --rewriting --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.Uniqueness-Derivations
open import Sets ℕ eqdecℕ
open import GSeTT.Dec-Type-Checking
open import CaTT.Ps-contexts
open import CaTT.Relation
{- PS-contexts -}
module CaTT.Uniqueness-Derivations-Ps where
Γ⊢psx-dim≤ : ∀ {Γ x A} → Γ ⊢ps x # A → dim A ≤ dimC Γ
Γ⊢psx-dim≤ pss = n≤n 0
Γ⊢psx-dim≤ (psd Γ⊢psy) = Sn≤m→n≤m (Γ⊢psx-dim≤ Γ⊢psy)
Γ⊢psx-dim≤ {((Γ :: (_ , A)) :: (_ , _))} {_} {_} (pse Γ⊢psx idp idp idp idp idp) with dec-≤ (dimC (Γ :: (length Γ , A))) (S (dim A))
... | inr res = Sn≤m→n≤m (≰ res)
... | inl res = n≤n (S (dim A))
Γ⊢psx-dim : ∀ {Γ x y A B} → Γ ⊢ps x # A → Γ ⊢ps y # B → dim A == dim B → x == y
Γ⊢psx-dim pss pss dimA=dimB = idp
Γ⊢psx-dim {x = x} {y = y} {A = A} {B = B} (psd {x = x₁} Γ⊢psx) (psd {x = x₂} Γ⊢psy) dimA=dimB = =Var (tgt= (unique-type (Γ⊢psx:A→Γ⊢x:A Γ⊢psx) (Γ⊢psx:A→Γ⊢x:A Γ⊢psy) (ap Var (Γ⊢psx-dim Γ⊢psx Γ⊢psy (ap S dimA=dimB)))))
Γ⊢psx-dim {B = ∗} pss (psd Γ⊢psy) dimA=dimB = ⊥-elim (Sn≰n _ ((Γ⊢psx-dim≤ Γ⊢psy)))
Γ⊢psx-dim {A = ∗} (psd Γ⊢psx) pss dimA=dimB = ⊥-elim (Sn≰n _ ((Γ⊢psx-dim≤ Γ⊢psx)))
Γ⊢psx-dim (pse _ _ _ _ idp idp) (pse _ _ _ _ idp idp) dimA==dimB = idp
Γ⊢psx-dim Γ++⊢psx@(psd Γ++⊢_) Γ++⊢psy@(pse _ idp idp idp idp idp) dimA=dimB with psx-◃-linear→ Γ++⊢psx _ _ (Γ⊢x:A→x∈Γ (psvar Γ++⊢psx)) (Γ⊢x:A→x∈Γ (psvar Γ++⊢psy))
... | inl (inl x◃Sl) = ⊥-elim (Sn≰n-t (dimA=dimB ^) (⟿dim (psvar Γ++⊢psx) (psvar Γ++⊢psy) (⊢psx-◃→⟿ Γ++⊢psx x◃Sl)))
... | inl (inr Sl◃x) = ⊥-elim (Sn≰n-t (dimA=dimB) (⟿dim (psvar Γ++⊢psy) (psvar Γ++⊢psx) (⊢psx-◃→⟿ Γ++⊢psy Sl◃x)))
... | inr idp = idp
Γ⊢psx-dim Γ++⊢psx@(pse _ idp idp idp idp idp) Γ++⊢psy@(psd _) dimA=dimB with psx-◃-linear→ Γ++⊢psx _ _ (Γ⊢x:A→x∈Γ (psvar Γ++⊢psx)) (Γ⊢x:A→x∈Γ (psvar Γ++⊢psy))
... | inl (inl Sl◃y) = ⊥-elim (Sn≰n-t (dimA=dimB ^) (⟿dim (psvar Γ++⊢psx) (psvar Γ++⊢psy) (⊢psx-◃→⟿ Γ++⊢psx Sl◃y)))
... | inl (inr y◃Sl) = ⊥-elim (Sn≰n-t (dimA=dimB) (⟿dim (psvar Γ++⊢psy) (psvar Γ++⊢psx) (⊢psx-◃→⟿ Γ++⊢psy y◃Sl)))
... | inr idp = idp
has-all-paths-⊢psx : ∀ {Γ x A} → has-all-paths (Γ ⊢ps x # A)
has-all-paths-⊢psx pss pss = idp
has-all-paths-⊢psx (psd a) (psd b) with (Γ⊢psx-dim a b idp)
... | idp with unique-type (psvar a) (psvar b) idp
... | p = psd↓ a b (=Var (snd (fst (=⇒ p)))) (has-all-paths-⊢psx _ _)
has-all-paths-⊢psx pss (psd b) with (psvar b)
... | var _ (inl ())
... | var _ (inr ())
has-all-paths-⊢psx (psd a) pss with (psvar a)
... | var _ (inl ())
... | var _ (inr ())
has-all-paths-⊢psx (psd a) (pse b idp idp idp idp idp) with (psvar a)
... | var _ (inl (inl contra)) = ⊥-elim (l∉ (psv b) (n≤Sn _) (Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv b) contra)))))
has-all-paths-⊢psx (pse a idp idp idp idp idp) (psd b) with psvar b
... | var _ (inl (inl contra)) = ⊥-elim (l∉ (psv a) (n≤Sn _) (Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv a) contra)))))
has-all-paths-⊢psx (pse a idp idp idp idp idp) (pse b p q r s u) = let eq = =Var (snd (fst (=⇒ r))) in pse↓ a _ _ _ _ _ b _ _ _ _ _ eq (has-all-paths-⊢psx _ _)
has-all-paths-⊢ps : ∀ Γ → has-all-paths (Γ ⊢ps)
has-all-paths-⊢ps Γ (ps Γ⊢psx₁) (ps Γ⊢psx₂) = ps↓ Γ⊢psx₁ Γ⊢psx₂ (Γ⊢psx-dim Γ⊢psx₁ Γ⊢psx₂ idp) (has-all-paths-⊢psx _ _)
is-prop-⊢ps : ∀ Γ → is-prop (Γ ⊢ps)
is-prop-⊢ps Γ = has-all-paths-is-prop (has-all-paths-⊢ps Γ)
eqdec-ps : eqdec ps-ctx
eqdec-ps (Γ , Γ⊢ps) (Δ , Δ⊢ps) with eqdec-PreCtx Γ Δ
... | inl idp = inl (Σ= idp (is-prop-has-all-paths (is-prop-⊢ps Γ) _ _))
... | inr Γ≠Δ = inr λ{idp → Γ≠Δ idp}
| {
"alphanum_fraction": 0.5496225888,
"avg_line_length": 54.196969697,
"ext": "agda",
"hexsha": "9cddd6a2ba6a0500df24d5d04d8c4ca32ce44f9a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "CaTT/Uniqueness-Derivations-Ps.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "CaTT/Uniqueness-Derivations-Ps.agda",
"max_line_length": 218,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "CaTT/Uniqueness-Derivations-Ps.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2086,
"size": 3577
} |
module LateMetaVariableInstantiation where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
postulate
yippie : (A : Set) → A
slow : (A : Set) → ℕ → A
slow A zero = yippie A
slow A (suc n) = slow _ n
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
foo : slow ℕ 1000 ≡ yippie ℕ
foo = refl
-- Consider the function slow. Previously normalisation of slow n
-- seemed to take time proportional to n². The reason was that, even
-- though the meta-variable corresponding to the underscore was
-- solved, the stored code still contained a meta-variable:
-- slow A (suc n) = slow (_173 A n) n
-- (For some value of 173.) The evaluation proceeded as follows:
-- slow A 1000 =
-- slow (_173 A 999) 999 =
-- slow (_173 (_173 A 999) 998) 998 =
-- ...
-- Furthermore, in every iteration the Set argument was traversed, to
-- see if there was any de Bruijn index to raise.
| {
"alphanum_fraction": 0.6247401247,
"avg_line_length": 25.3157894737,
"ext": "agda",
"hexsha": "6ed7c0221bbeab9397ddf657d5c16365636831aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "masondesu/agda",
"max_stars_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 295,
"size": 962
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Monad
module Categories.Category.Construction.EilenbergMoore {o ℓ e} {C : Category o ℓ e} (M : Monad C) where
open import Level
open import Categories.Morphism.Reasoning C
private
module C = Category C
module M = Monad M
open C
open M.F
open HomReasoning
record Module : Set (o ⊔ ℓ ⊔ e) where
field
A : Obj
action : F₀ A ⇒ A
commute : action ∘ F₁ action ≈ action ∘ M.μ.η A
identity : action ∘ M.η.η A ≈ C.id
record Module⇒ (X Y : Module) : Set (ℓ ⊔ e) where
private
module X = Module X
module Y = Module Y
field
arr : X.A ⇒ Y.A
commute : arr ∘ X.action ≈ Y.action ∘ F₁ arr
EilenbergMoore : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
EilenbergMoore = record
{ Obj = Module
; _⇒_ = Module⇒
; _≈_ = λ f g → Module⇒.arr f ≈ Module⇒.arr g
; id = record
{ arr = C.id
; commute = id-comm-sym ○ ∘-resp-≈ʳ (⟺ identity)
}
; _∘_ = compose
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where compose : ∀ {X Y Z} → Module⇒ Y Z → Module⇒ X Y → Module⇒ X Z
compose {X} {Y} {Z} f g = record
{ arr = f.arr ∘ g.arr
; commute = begin
(f.arr ∘ g.arr) ∘ Module.action X ≈⟨ pullʳ g.commute ⟩
f.arr ∘ Module.action Y ∘ F₁ g.arr ≈⟨ pullˡ f.commute ⟩
(Module.action Z ∘ F₁ f.arr) ∘ F₁ g.arr ≈˘⟨ pushʳ homomorphism ⟩
Module.action Z ∘ F₁ (f.arr ∘ g.arr) ∎
}
where module f = Module⇒ f
module g = Module⇒ g
| {
"alphanum_fraction": 0.5397350993,
"avg_line_length": 27.0447761194,
"ext": "agda",
"hexsha": "9208c3e16cc79f7a5758d2f2eb669d23156a0847",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/EilenbergMoore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/EilenbergMoore.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/EilenbergMoore.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 668,
"size": 1812
} |
-- A variant of code reported by Andreas Abel.
{-# OPTIONS --guardedness --sized-types #-}
open import Agda.Builtin.Size
data ⊥ : Set where
mutual
data D : Size → Set where
inn : ∀ i → D' i → D (↑ i)
record D' (i : Size) : Set where
coinductive
constructor ♯
field ♭ : D i
open D'
iter : ∀{i} → D i → ⊥
iter (inn i t) = iter (♭ t)
-- Should be rejected by termination checker
bla : D' ∞
♭ bla = inn ∞ bla
false : ⊥
false = iter (♭ bla)
| {
"alphanum_fraction": 0.5824411135,
"avg_line_length": 16.1034482759,
"ext": "agda",
"hexsha": "b6bd7cef81b9dbca821f03e40b50027f37afcdcf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1209-5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1209-5.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1209-5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 160,
"size": 467
} |
-- data construction, disproving
module Auto-DataConstruction where
open import Auto.Prelude
module Disproving where
h0 : {X : Set} → (xs ys : List X) → (xs ++ ys) ≡ (ys ++ xs)
h0 = {!-d Fin!}
| {
"alphanum_fraction": 0.64,
"avg_line_length": 16.6666666667,
"ext": "agda",
"hexsha": "d212a37dd757f8516b54ef057c05d0988821a330",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Auto-DataConstruction.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Auto-DataConstruction.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Auto-DataConstruction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 200
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Sum.Relation.Binary.LeftOrder directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum.Relation.LeftOrder where
open import Data.Sum.Relation.Binary.LeftOrder public
{-# WARNING_ON_IMPORT
"Data.Sum.Relation.LeftOrder was deprecated in v1.0.
Use Data.Sum.Relation.Binary.LeftOrder instead."
#-}
| {
"alphanum_fraction": 0.5482041588,
"avg_line_length": 29.3888888889,
"ext": "agda",
"hexsha": "e209a3b3c6be4da8c8a9dd43fdccc19547df63ab",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Sum/Relation/LeftOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Sum/Relation/LeftOrder.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Sum/Relation/LeftOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 93,
"size": 529
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.ListedFiniteSet.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Logic
open import Cubical.Foundations.Everything
private
variable
A : Type₀
infixr 20 _∷_
infix 30 _∈_
data LFSet (A : Type₀) : Type₀ where
[] : LFSet A
_∷_ : (x : A) → (xs : LFSet A) → LFSet A
dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs
comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet (LFSet A)
-- Membership.
--
-- Doing some proofs with equational reasoning adds an extra "_∙ refl"
-- at the end.
-- We might want to avoid it, or come up with a more clever equational reasoning.
_∈_ : A → LFSet A → hProp
z ∈ [] = ⊥
z ∈ (y ∷ xs) = (z ≡ₚ y) ⊔ (z ∈ xs)
z ∈ dup x xs i = proof i
where
-- proof : z ∈ (x ∷ x ∷ xs) ≡ z ∈ (x ∷ xs)
proof = z ≡ₚ x ⊔ (z ≡ₚ x ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ x) (z ∈ xs) ⟩
(z ≡ₚ x ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-idem (z ≡ₚ x)) ⟩
z ≡ₚ x ⊔ z ∈ xs ∎
z ∈ comm x y xs i = proof i
where
-- proof : z ∈ (x ∷ y ∷ xs) ≡ z ∈ (y ∷ x ∷ xs)
proof = z ≡ₚ x ⊔ (z ≡ₚ y ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ y) (z ∈ xs) ⟩
(z ≡ₚ x ⊔ z ≡ₚ y) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-comm (z ≡ₚ x) (z ≡ₚ y)) ⟩
(z ≡ₚ y ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ sym (⊔-assoc (z ≡ₚ y) (z ≡ₚ x) (z ∈ xs)) ⟩
z ≡ₚ y ⊔ (z ≡ₚ x ⊔ z ∈ xs) ∎
x ∈ trunc xs ys p q i j = isSetHProp (x ∈ xs) (x ∈ ys) (cong (x ∈_) p) (cong (x ∈_) q) i j
| {
"alphanum_fraction": 0.4658869396,
"avg_line_length": 32.7446808511,
"ext": "agda",
"hexsha": "bf58facf07d747b8e7a9703c20c65ae0f047f2a3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 736,
"size": 1539
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Nat
open import lib.types.Sigma
module lib.types.PathSeq where
{-
This is a library on reified equational reasoning.
When you write the following (with the usual equational reasoning combinators):
t : a == e
t = a =⟨ p ⟩
b =⟨ q ⟩
c =⟨ r ⟩
d =⟨ s ⟩
e ∎
it just creates the concatenation of [p], [q], [r] and [s] and there is no way
to say “remove the last step to get the path from [a] to [d]”.
With the present library you would write:
t : PathSeq a e
t = a =⟪ p ⟫
b =⟪ q ⟫
c =⟪ r ⟫
d =⟪ s ⟫
e ∎∎
Then the actual path from [a] to [e] is [↯ t], and you can strip any number
of steps from the beginning or the end:
↯ t !2
-}
infix 15 _∎∎
infixr 10 _=⟪_⟫_
infixr 10 _=⟪idp⟫_
data PathSeq {i} {A : Type i} : A → A → Type i where
_∎∎ : (a : A) → PathSeq a a
_=⟪_⟫_ : (a : A) {a' a'' : A} (p : a == a') (s : PathSeq a' a'') → PathSeq a a''
infix 30 _=-=_
_=-=_ = PathSeq
_=⟪idp⟫_ : ∀ {i} {A : Type i} (a : A) {a' : A} (s : PathSeq a a') → PathSeq a a'
a =⟪idp⟫ s = s
module _ {i} {A : Type i} where
infix 0 ↯_
↯_ : {a a' : A} (s : PathSeq a a') → a == a'
↯ a ∎∎ = idp
↯ a =⟪ p ⟫ a' ∎∎ = p
↯ a =⟪ p ⟫ s = p ∙ (↯ s)
private
point-from-start : (n : ℕ) {a a' : A} (s : PathSeq a a') → A
point-from-start O {a} s = a
point-from-start (S n) (a ∎∎) = a
point-from-start (S n) (a =⟪ p ⟫ s) = point-from-start n s
_-! : (n : ℕ) {a a' : A} (s : PathSeq a a') → PathSeq (point-from-start n s) a'
(O -!) s = s
(S n -!) (a ∎∎) = a ∎∎
(S n -!) (a =⟪ p ⟫ s) = (n -!) s
private
last1 : {a a' : A} (s : PathSeq a a') → A
last1 (a ∎∎) = a
last1 (a =⟪ p ⟫ a' ∎∎) = a
last1 (a =⟪ p ⟫ s) = last1 s
strip : {a a' : A} (s : PathSeq a a') → PathSeq a (last1 s)
strip (a ∎∎) = a ∎∎
strip (a =⟪ p ⟫ a' ∎∎) = a ∎∎
strip (a =⟪ p ⟫ a' =⟪ p' ⟫ s) = a =⟪ p ⟫ strip (a' =⟪ p' ⟫ s)
point-from-end : (n : ℕ) {a a' : A} (s : PathSeq a a') → A
point-from-end O {a} {a'} s = a'
point-from-end (S n) s = point-from-end n (strip s)
!- : (n : ℕ) {a a' : A} (s : PathSeq a a') → PathSeq a (point-from-end n s)
!- O s = s
!- (S n) s = !- n (strip s)
_-# : (n : ℕ) {a a' : A} (s : PathSeq a a') → PathSeq a (point-from-start n s)
(O -#) s = _ ∎∎
(S n -#) (a ∎∎) = a ∎∎
(S n -#) (a =⟪ p ⟫ s) = a =⟪ p ⟫ (n -#) s
private
split : {a a' : A} (s : PathSeq a a')
→ Σ A (λ a'' → (PathSeq a a'') × (a'' == a'))
split (a ∎∎) = (a , ((a ∎∎) , idp))
split (a =⟪ p ⟫ a' ∎∎) = (a , ((a ∎∎) , p))
split (a =⟪ p ⟫ s) = let (a'' , (t , q)) = split s in (a'' , ((a =⟪ p ⟫ t) , q))
infix 80 _∙∙_
_∙∙_ : {a a' a'' : A} (s : PathSeq a a') (p : a' == a'') → PathSeq a a''
(a ∎∎) ∙∙ p = a =⟪ p ⟫ _ ∎∎
(a =⟪ p ⟫ s) ∙∙ p' = a =⟪ p ⟫ s ∙∙ p'
point-from-end' : (n : ℕ) {a a' : A} (s : PathSeq a a') → A
point-from-end' n (a ∎∎) = a
point-from-end' O (a =⟪ p ⟫ s) = point-from-end' O s
point-from-end' (S n) (a =⟪ p ⟫ s) = point-from-end' n (fst (snd (split (a =⟪ p ⟫ s))))
#- : (n : ℕ) {a a' : A} (s : PathSeq a a') → PathSeq (point-from-end' n s) a'
#- n (a ∎∎) = a ∎∎
#- O (a =⟪ p ⟫ s) = #- O s
#- (S n) (a =⟪ p ⟫ s) = let (a' , (t , q)) = split (a =⟪ p ⟫ s) in #- n t ∙∙ q
infix 120 _!0 _!1 _!2 _!3 _!4 _!5
_!0 = !- 0
_!1 = !- 1
_!2 = !- 2
_!3 = !- 3
_!4 = !- 4
_!5 = !- 5
0! = 0 -!
1! = 1 -!
2! = 2 -!
3! = 3 -!
4! = 4 -!
5! = 5 -!
infix 120 _#0 _#1 _#2 _#3 _#4 _#5
_#0 = #- 0
_#1 = #- 1
_#2 = #- 2
_#3 = #- 3
_#4 = #- 4
_#5 = #- 5
0# = 0 -#
1# = 1 -#
2# = 2 -#
3# = 3 -#
4# = 4 -#
5# = 5 -#
private
postulate -- Demo
a b c d e : A
p : a == b
q : b == c
r : c == d
s : d == e
t : PathSeq a e
t =
a =⟪ p ⟫
b =⟪idp⟫
b =⟪ q ⟫
c =⟪ idp ⟫
c =⟪ r ⟫
d =⟪ s ⟫
e =⟪idp⟫
e ∎∎
t' : a == e
t' = ↯
a =⟪ p ⟫
b =⟪ q ⟫
c =⟪ idp ⟫
c =⟪ r ⟫
d =⟪ s ⟫
e ∎∎
ex0 : t' == (↯ t)
ex0 = idp
ex1 : t' == p ∙ q ∙ r ∙ s
ex1 = idp
ex2 : (↯ t !1) == p ∙ q ∙ r
ex2 = idp
ex3 : (↯ t !3) == p ∙ q -- The [idp] count
ex3 = idp
ex4 : (↯ 2! t) == r ∙ s
ex4 = idp
ex5 : (↯ 4! t) == s
ex5 = idp
ex6 : (↯ t #1) == s
ex6 = idp
ex7 : (↯ t #3) == r ∙ s
ex7 = idp
ex8 : (↯ 2# t) == p ∙ q
ex8 = idp
ex9 : (↯ 4# t) == p ∙ q ∙ r
ex9 = idp
apd= : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
(p : f ∼ g) {a b : A} (q : a == b)
→ apd f q ▹ p b == p a ◃ apd g q
apd= {B = B} p {b} idp = idp▹ {B = B} (p b) ∙ ! (◃idp {B = B} (p b))
apd=-red : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
(p : f ∼ g) {a b : A} (q : a == b)
{u : B b} (s : g b =-= u)
→ apd f q ▹ (↯ _ =⟪ p b ⟫ s) == p a ◃ (apd g q ▹ (↯ s))
apd=-red {B = B} p {b} idp s = coh (p b) s where
coh : ∀ {i} {A : Type i} {u v w : A} (p : u == v) (s : v =-= w)
→ (idp ∙' (↯ _ =⟪ p ⟫ s)) == p ∙ idp ∙' (↯ s)
coh idp (a ∎∎) = idp
coh idp (a =⟪ p₁ ⟫ s₁) = idp
| {
"alphanum_fraction": 0.3887497592,
"avg_line_length": 23.3828828829,
"ext": "agda",
"hexsha": "4c446b70c42b12325201c0d7ebd44173309ab384",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/PathSeq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/PathSeq.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/PathSeq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2696,
"size": 5191
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
open import Categories.Object.Terminal
open import Level
module Categories.Object.Terminal.Exponentials {o ℓ e : Level}
(C : Category o ℓ e)
(T : Terminal C) where
open Category C
open Terminal T
import Categories.Object.Exponential
import Categories.Object.Product
import Categories.Object.Product.Morphisms
import Categories.Object.Terminal.Products
open Categories.Object.Exponential C hiding (repack)
open Categories.Object.Product C
open Categories.Object.Product.Morphisms C
open Categories.Object.Terminal.Products C T
[_↑⊤] : Obj → Obj
[ B ↑⊤] = B
[_↑⊤]-exponential : (B : Obj) → Exponential ⊤ B
[ B ↑⊤]-exponential = record
{ B^A = [ B ↑⊤]
; product = [ B ×⊤]-product
; eval = id
; λg = λ {X} p g → g ∘ repack [ X ×⊤]-product p
; β = λ {X} p {g} →
begin
id ∘ (g ∘ [ p ]⟨ id , ! ⟩) ∘ [ p ]π₁
↓⟨ identityˡ ⟩
(g ∘ [ p ]⟨ id , ! ⟩) ∘ [ p ]π₁
↓⟨ assoc ⟩
g ∘ [ p ]⟨ id , ! ⟩ ∘ [ p ]π₁
↓⟨ refl ⟩∘⟨ Product.⟨⟩∘ p ⟩
g ∘ [ p ]⟨ id ∘ [ p ]π₁ , ! ∘ [ p ]π₁ ⟩
↓⟨ refl ⟩∘⟨ Product.⟨⟩-cong₂ p identityˡ (!-unique₂ (! ∘ [ p ]π₁) [ p ]π₂) ⟩
g ∘ [ p ]⟨ [ p ]π₁ , [ p ]π₂ ⟩
↓⟨ refl ⟩∘⟨ Product.η p ⟩
g ∘ id
↓⟨ identityʳ ⟩
g
∎
; λ-unique = λ{X} p {g}{h} h-commutes →
begin
h
↑⟨ identityʳ ⟩
h ∘ id
↑⟨ refl ⟩∘⟨ Product.commute₁ p ⟩
h ∘ [ p ]π₁ ∘ [ p ]⟨ id , ! ⟩
↑⟨ assoc ⟩
(h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩
↑⟨ identityˡ ⟩∘⟨ refl ⟩
(id ∘ h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩
↓⟨ h-commutes ⟩∘⟨ refl ⟩
g ∘ repack [ X ×⊤]-product p
∎
}
where
open HomReasoning
open Equiv
[⊤↑_] : Obj → Obj
[⊤↑ B ] = ⊤
[⊤↑_]-exponential : (A : Obj) → Exponential A ⊤
[⊤↑ A ]-exponential = record
{ B^A = [⊤↑ A ]
; product = [⊤× A ]-product
; eval = !
; λg = λ _ _ → !
; β = λ _ → !-unique₂ _ _
; λ-unique = λ _ _ → !-unique₂ _ _
}
| {
"alphanum_fraction": 0.4604118993,
"avg_line_length": 27.3125,
"ext": "agda",
"hexsha": "c8fe885d01ea224f38a58bdfdb7f2c934caef1a5",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Terminal/Exponentials.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Terminal/Exponentials.agda",
"max_line_length": 84,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Terminal/Exponentials.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 869,
"size": 2185
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Groups.Subgroups.Normal.Definition
module Groups.Subgroups.Normal.Examples {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where
open import Groups.Subgroups.Examples G
open Setoid S
open Equivalence eq
open Group G
trivialSubgroupIsNormal : normalSubgroup G trivialSubgroup
trivialSubgroupIsNormal {g} k=0 = transitive (+WellDefined reflexive (transitive (+WellDefined k=0 reflexive) identLeft)) (invRight {g})
improperSubgroupIsNormal : normalSubgroup G improperSubgroup
improperSubgroupIsNormal _ = record {}
| {
"alphanum_fraction": 0.7676056338,
"avg_line_length": 33.8095238095,
"ext": "agda",
"hexsha": "75e62319f40de41a01c3ac989ae48724a52e1b18",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Subgroups/Normal/Examples.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Subgroups/Normal/Examples.agda",
"max_line_length": 136,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Subgroups/Normal/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 197,
"size": 710
} |
module Isomorphism where
import Sets
open Sets
infix 20 _≅_
data _≅_ (A B : Set) : Set where
iso : (i : A -> B)(j : B -> A) ->
(forall x -> j (i x) == x) ->
(forall y -> i (j y) == y) ->
A ≅ B
refl-≅ : (A : Set) -> A ≅ A
refl-≅ A = iso id id (\x -> refl) (\x -> refl)
iso[×] : {A₁ A₂ B₁ B₂ : Set} -> A₁ ≅ A₂ -> B₁ ≅ B₂ -> A₁ [×] B₁ ≅ A₂ [×] B₂
iso[×] (iso a₁₂ a₂₁ p₁₁ p₂₂) (iso b₁₂ b₂₁ q₁₁ q₂₂) =
iso ab₁₂ ab₂₁ pq₁₁ pq₂₂ where
ab₁₂ = a₁₂ <×> b₁₂
ab₂₁ = a₂₁ <×> b₂₁
pq₂₂ : (z : _ [×] _) -> ab₁₂ (ab₂₁ z) == z
pq₂₂ < x , y > =
subst (\ ∙ -> < ∙ , b₁₂ (b₂₁ y) > == < x , y >) (p₂₂ x)
$ cong < x ,∙> (q₂₂ y)
pq₁₁ : (z : _ [×] _) -> ab₂₁ (ab₁₂ z) == z
pq₁₁ < x , y > =
subst (\ ∙ -> < ∙ , b₂₁ (b₁₂ y) > == < x , y >) (p₁₁ x)
$ cong < x ,∙> (q₁₁ y)
iso[+] : {A₁ A₂ B₁ B₂ : Set} -> A₁ ≅ A₂ -> B₁ ≅ B₂ -> A₁ [+] B₁ ≅ A₂ [+] B₂
iso[+] (iso a₁₂ a₂₁ p₁₁ p₂₂) (iso b₁₂ b₂₁ q₁₁ q₂₂) =
iso ab₁₂ ab₂₁ pq₁₁ pq₂₂ where
ab₁₂ = a₁₂ <+> b₁₂
ab₂₁ = a₂₁ <+> b₂₁
pq₂₂ : (z : _ [+] _) -> ab₁₂ (ab₂₁ z) == z
pq₂₂ (inl x) = cong inl (p₂₂ x)
pq₂₂ (inr y) = cong inr (q₂₂ y)
pq₁₁ : (z : _ [+] _) -> ab₂₁ (ab₁₂ z) == z
pq₁₁ (inl x) = cong inl (p₁₁ x)
pq₁₁ (inr y) = cong inr (q₁₁ y)
| {
"alphanum_fraction": 0.4321179209,
"avg_line_length": 25.78,
"ext": "agda",
"hexsha": "91f9fecdf1f6af52dba068e8d287c9e0f622381c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Isomorphism.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 679,
"size": 1289
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module MoreLogic where -- hProp logic
open import MoreLogic.Reasoning public
open import MoreLogic.Definitions public
open import MoreLogic.Properties public
| {
"alphanum_fraction": 0.7941176471,
"avg_line_length": 25.5,
"ext": "agda",
"hexsha": "207f590394c1e603bf5915ea80bfd786ea06f4ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MoreLogic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MoreLogic.agda",
"max_line_length": 43,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MoreLogic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 46,
"size": 204
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reflexivity {{eqrel : EqRelSet}} where
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Tools.Embedding
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Reflexivity of reducible types.
reflEq : ∀ {l Γ A} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ A / [A]
reflEq (Uᵣ′ l′ l< ⊢Γ) = (U₌ PE.refl)
reflEq (ℕᵣ D) = ιx (ℕ₌ (red D))
reflEq (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) =
ιx (ne₌ _ [ ⊢A , ⊢B , D ] neK K≡K)
reflEq (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) =
Π₌ _ _ D A≡A
(λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a]))
reflEq (emb′ 0<1 [A]) = ιx (reflEq [A])
reflNatural-prop : ∀ {Γ n}
→ Natural-prop Γ n
→ [Natural]-prop Γ n n
reflNatural-prop (sucᵣ (ℕₜ n d t≡t prop)) =
sucᵣ (ℕₜ₌ n n d d t≡t
(reflNatural-prop prop))
reflNatural-prop zeroᵣ = zeroᵣ
reflNatural-prop (ne (neNfₜ neK ⊢k k≡k)) = ne (neNfₜ₌ neK neK k≡k)
-- Reflexivity of reducible terms.
reflEqTerm : ∀ {l Γ A t} ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Γ ⊩⟨ l ⟩ t ≡ t ∷ A / [A]
reflEqTerm (Uᵣ′ ⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [A]) =
Uₜ₌ A A d d typeA typeA A≡A [A] [A] (reflEq [A])
reflEqTerm (ℕᵣ D) (ιx (ℕₜ n [ ⊢t , ⊢u , d ] t≡t prop)) =
ιx (ℕₜ₌ n n [ ⊢t , ⊢u , d ] [ ⊢t , ⊢u , d ] t≡t
(reflNatural-prop prop))
reflEqTerm (ne′ K D neK K≡K) (ιx (neₜ k d (neNfₜ neK₁ ⊢k k≡k))) =
ιx (neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k))
reflEqTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ₌ f f d d funcF funcF f≡f
(Πₜ f d funcF f≡f [f] [f]₁)
(Πₜ f d funcF f≡f [f] [f]₁)
(λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm ([F] ρ ⊢Δ) [a]))
reflEqTerm (emb′ 0<1 [A]) (ιx t) = ιx (reflEqTerm [A] t)
| {
"alphanum_fraction": 0.5409663866,
"avg_line_length": 35.2592592593,
"ext": "agda",
"hexsha": "31f5d882f82b053ff07c428cc564542fc86a511e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 997,
"size": 1904
} |
open import Oscar.Prelude
open import Oscar.Class.IsPrecategory
open import Oscar.Class.Transitivity
module Oscar.Class.Precategory where
record Precategory 𝔬 𝔯 ℓ : Ø ↑̂ (𝔬 ∙̂ 𝔯 ∙̂ ℓ) where
constructor ∁
infix 4 _∼̇_
field
{𝔒} : Ø 𝔬
_∼_ : 𝔒 → 𝔒 → Ø 𝔯
_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ
_↦_ : Transitivity.type _∼_
⦃ `IsPrecategory ⦄ : IsPrecategory _∼_ _∼̇_ _↦_
| {
"alphanum_fraction": 0.6183206107,
"avg_line_length": 23.1176470588,
"ext": "agda",
"hexsha": "d0afccfbfa6f68adec2b7f43f1dc521223a90b26",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Precategory.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Precategory.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Precategory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 185,
"size": 393
} |
------------------------------------------------------------------------
-- Fixity and associativity
------------------------------------------------------------------------
module RecursiveDescent.Hybrid.Mixfix.Fixity where
open import Data.Fin using (Fin; zero; suc; #_)
open import Data.Fin.Props using (eq?)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
data Associativity : Set where
left : Associativity
right : Associativity
non : Associativity
-- A combination of fixity and associativity. Only infix operators
-- have associativity.
-- Note that infix is a reserved word.
data Fixity : Set where
prefx : Fixity
infx : (assoc : Associativity) -> Fixity
postfx : Fixity
closed : Fixity
Fixity-is-finite : LeftInverse Fixity (Fin 6)
Fixity-is-finite = record
{ from = from
; to = to
; left-inverse = left-inverse
}
where
to : Fixity -> Fin 6
to prefx = # 0
to (infx left) = # 1
to (infx right) = # 2
to (infx non) = # 3
to postfx = # 4
to closed = # 5
from : Fin 6 -> Fixity
from zero = prefx
from (suc zero) = infx left
from (suc (suc zero)) = infx right
from (suc (suc (suc zero))) = infx non
from (suc (suc (suc (suc zero)))) = postfx
from (suc (suc (suc (suc (suc zero))))) = closed
from (suc (suc (suc (suc (suc (suc ()))))))
left-inverse : from LeftInverseOf to
left-inverse prefx = refl
left-inverse (infx left) = refl
left-inverse (infx right) = refl
left-inverse (infx non) = refl
left-inverse postfx = refl
left-inverse closed = refl
_≟_ : Decidable (_≡_ {Fixity})
_≟_ = eq? injection
where open LeftInverse Fixity-is-finite
| {
"alphanum_fraction": 0.5584763948,
"avg_line_length": 29.125,
"ext": "agda",
"hexsha": "460b5a16cb0d5995c6b52280d2fd69c522b3197d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Fixity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Fixity.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Fixity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 536,
"size": 1864
} |
module logic where
open import Level
open import Relation.Nullary
open import Relation.Binary hiding (_⇔_ )
open import Data.Empty
data Bool : Set where
true : Bool
false : Bool
record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where
constructor ⟪_,_⟫
field
proj1 : A
proj2 : B
data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where
case1 : A → A ∨ B
case2 : B → A ∨ B
_⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m)
_⇔_ A B = ( A → B ) ∧ ( B → A )
∧-exch : {n m : Level} {A : Set n} { B : Set m } → A ∧ B → B ∧ A
∧-exch p = ⟪ _∧_.proj2 p , _∧_.proj1 p ⟫
∨-exch : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → B ∨ A
∨-exch (case1 x) = case2 x
∨-exch (case2 x) = case1 x
contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A
contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a )
double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A
double-neg A notnot = notnot A
double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A
double-neg2 notnot A = notnot ( double-neg A )
de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) )
de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and ))
de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and ))
dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B
dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a )
dont-or {A} {B} (case2 b) ¬A = b
dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A
dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b )
dont-orb {A} {B} (case1 a) ¬B = a
infixr 130 _∧_
infixr 140 _∨_
infixr 150 _⇔_
_/\_ : Bool → Bool → Bool
true /\ true = true
_ /\ _ = false
_\/_ : Bool → Bool → Bool
false \/ false = false
_ \/ _ = true
not_ : Bool → Bool
not true = false
not false = true
_<=>_ : Bool → Bool → Bool
true <=> true = true
false <=> false = true
_ <=> _ = false
open import Relation.Binary.PropositionalEquality
record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where
field
fun← : S → R
fun→ : R → S
fiso← : (x : R) → fun← ( fun→ x ) ≡ x
fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x
injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m)
injection R S f = (x y : R) → f x ≡ f y → x ≡ y
¬t=f : (t : Bool ) → ¬ ( not t ≡ t)
¬t=f true ()
¬t=f false ()
infixr 130 _\/_
infixr 140 _/\_
≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B
≡-Bool-func {true} {true} a→b b→a = refl
≡-Bool-func {false} {true} a→b b→a with b→a refl
... | ()
≡-Bool-func {true} {false} a→b b→a with a→b refl
... | ()
≡-Bool-func {false} {false} a→b b→a = refl
bool-≡-? : (a b : Bool) → Dec ( a ≡ b )
bool-≡-? true true = yes refl
bool-≡-? true false = no (λ ())
bool-≡-? false true = no (λ ())
bool-≡-? false false = yes refl
¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false
¬-bool-t {true} ne = ⊥-elim ( ne refl )
¬-bool-t {false} ne = refl
¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true
¬-bool-f {true} ne = refl
¬-bool-f {false} ne = ⊥-elim ( ne refl )
¬-bool : {a : Bool} → a ≡ false → a ≡ true → ⊥
¬-bool refl ()
lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥
lemma-∧-0 {true} {true} refl ()
lemma-∧-0 {true} {false} ()
lemma-∧-0 {false} {true} ()
lemma-∧-0 {false} {false} ()
lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥
lemma-∧-1 {true} {true} refl ()
lemma-∧-1 {true} {false} ()
lemma-∧-1 {false} {true} ()
lemma-∧-1 {false} {false} ()
bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true
bool-and-tt refl refl = refl
bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true
bool-∧→tt-0 {true} {true} refl = refl
bool-∧→tt-0 {false} {_} ()
bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true
bool-∧→tt-1 {true} {true} refl = refl
bool-∧→tt-1 {true} {false} ()
bool-∧→tt-1 {false} {false} ()
bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b
bool-or-1 {false} {true} refl = refl
bool-or-1 {false} {false} refl = refl
bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a
bool-or-2 {true} {false} refl = refl
bool-or-2 {false} {false} refl = refl
bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true
bool-or-3 {true} = refl
bool-or-3 {false} = refl
bool-or-31 : {a b : Bool} → b ≡ true → ( a \/ b ) ≡ true
bool-or-31 {true} {true} refl = refl
bool-or-31 {false} {true} refl = refl
bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true
bool-or-4 {true} = refl
bool-or-4 {false} = refl
bool-or-41 : {a b : Bool} → a ≡ true → ( a \/ b ) ≡ true
bool-or-41 {true} {b} refl = refl
bool-and-1 : {a b : Bool} → a ≡ false → (a /\ b ) ≡ false
bool-and-1 {false} {b} refl = refl
bool-and-2 : {a b : Bool} → b ≡ false → (a /\ b ) ≡ false
bool-and-2 {true} {false} refl = refl
bool-and-2 {false} {false} refl = refl
| {
"alphanum_fraction": 0.5022643063,
"avg_line_length": 28.0809248555,
"ext": "agda",
"hexsha": "31d19632181f2dc8f0f19464b4439ed34a914000",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/HyperReal-in-agda",
"max_forks_repo_path": "src/logic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/HyperReal-in-agda",
"max_issues_repo_path": "src/logic.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/HyperReal-in-agda",
"max_stars_repo_path": "src/logic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2163,
"size": 4858
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.Semilattice where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Semilattice
open import Cubical.Categories.Category
open import Cubical.Categories.Instances.Poset
open Category
module _ {ℓ} (L : Semilattice ℓ) where
open MeetSemilattice L
SemilatticeCategory : Category ℓ ℓ
SemilatticeCategory = PosetCategory IndPoset
| {
"alphanum_fraction": 0.803874092,
"avg_line_length": 21.7368421053,
"ext": "agda",
"hexsha": "86cdd6418a27903748b76db1172895567e213d4e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mzeuner/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Semilattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mzeuner/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Semilattice.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mzeuner/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Semilattice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 108,
"size": 413
} |
-- Andreas, 2013-03-22
module Issue473a where
data D : Set where
d : D
data P : D → Set where
p : P d
record Rc : Set where
constructor c
field f : D
works : {r : Rc} → P (Rc.f r) → Set
works p = D
works' : (r : Rc) → P (Rc.f r) → Set
works' (c .d) p = D
-- We remove the constructor:
record R : Set where
field f : D
test : {r : R} → P (R.f r) → Set
test p = D
| {
"alphanum_fraction": 0.5605263158,
"avg_line_length": 14.0740740741,
"ext": "agda",
"hexsha": "f2d12f0e443dd7b13dcc32b11c536f62f4e6a5bc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue473a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue473a.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue473a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 151,
"size": 380
} |
-- Ad-hoc monoid typeclass module
module Utils.Monoid where
open import Data.List
open import Data.String
record Monoid {α}(A : Set α) : Set α where
constructor rec
field
append : A → A → A
identity : A
infixr 5 _<>_
_<>_ : ∀ {α}{A : Set α} ⦃ _ : Monoid A ⦄ → A → A → A
_<>_ ⦃ dict ⦄ a b = Monoid.append dict a b
mempty : ∀ {α}{A : Set α} ⦃ _ : Monoid A ⦄ → A
mempty ⦃ dict ⦄ = Monoid.identity dict
instance
MonoidList : ∀ {α A} → Monoid {α} (List A)
MonoidList = rec Data.List._++_ []
MonoidString : Monoid String
MonoidString = rec Data.String._++_ ""
| {
"alphanum_fraction": 0.6095076401,
"avg_line_length": 20.3103448276,
"ext": "agda",
"hexsha": "1198c5b1ba1cee854f6c36f3c35416b9bf5d68dd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Utils/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Utils/Monoid.agda",
"max_line_length": 52,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Utils/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 221,
"size": 589
} |
{-# OPTIONS --without-K #-}
-- Exposes the core of hott
module hott.core where
-- The basic types of hott
open import hott.core.equality public -- Equality type
open import hott.core.sigma public -- Dependent pairs
open import hott.core.universe public -- Universes
open import hott.core.universe.pointed public
-- and the pointed ones.
| {
"alphanum_fraction": 0.6675324675,
"avg_line_length": 29.6153846154,
"ext": "agda",
"hexsha": "ac3d6ace8433cc70e1bdf5b509ebfde66ce90aa0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 79,
"size": 385
} |
-- 2016-01-14 Andreas, issue reported by Martin Stone Davis
open import Common.Equality
module _ {K : Set} where
record Map : Set where
field
unmap : K
record _∉_ (k : K) (m : Map) : Set where
field
un∉ : Map.unmap m ≡ k
pattern ∉∅ = record { un∉ = refl }
not-here : ∀ {k : K} {m : Map} (k∉m : k ∉ m) → Set
not-here ∉∅ = K
-- WAS: internal error due to record pattern not yet treated
-- for pattern synonyms.
| {
"alphanum_fraction": 0.6191588785,
"avg_line_length": 19.4545454545,
"ext": "agda",
"hexsha": "f92d62a8c9007f8b7b63390f570565a8c62e8036",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1774.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1774.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1774.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 153,
"size": 428
} |
open import Theory
open import Categories.Category using (Category)
open import Categories.Category.CartesianClosed
module Soundness {o ℓ e}
(𝒞 : Category o ℓ e)
(CC : CartesianClosed 𝒞)
{ℓ₁ ℓ₂ ℓ₃}
(Th : Theory ℓ₁ ℓ₂ ℓ₃)
where
open Theory.Theory Th
open import Semantics 𝒞 CC Sg
open import Syntax
open Term Sg
open import Categories.Category.Cartesian 𝒞
open import Categories.Category.BinaryProducts 𝒞
open import Categories.Object.Product 𝒞
open import Categories.Object.Terminal 𝒞 using (Terminal)
open Category 𝒞
open CartesianClosed CC
open Cartesian cartesian
open BinaryProducts products
module T = Terminal terminal
open import Data.Product using (Σ; Σ-syntax; proj₁; proj₂)
module _ (M : Model 𝒞 CC Th) where
open Structure (proj₁ M)
open HomReasoning
soundness : forall {Γ A} {e₁ e₂ : Γ ⊢ A}
-> Γ ⊢ e₁ ≡ e₂
-> ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
soundness-sub : forall {Γ Γ′} {γ₁ γ₂ : Γ ⊨ Γ′}
-> Γ ⊨ γ₁ ≡ γ₂
-> ⟦ γ₁ ⟧S ≈ ⟦ γ₂ ⟧S
soundness (ax x) = proj₂ M x
soundness refl = Equiv.refl
soundness (sym D) = Equiv.sym (soundness D)
soundness (trans D D₁) = Equiv.trans (soundness D) (soundness D₁)
soundness sub/id = identityʳ
soundness sub/∙ = sym-assoc
soundness (eta/Unit e) = T.!-unique ⟦ e ⟧
soundness (beta/*₁ _ e₂) = project₁
soundness (beta/*₂ e₁ _) = project₂
soundness (eta/* _) = g-η
soundness (beta/=> e e′) =
begin
⟦ app (abs e) e′ ⟧
≈˘⟨ ∘-resp-≈ʳ (Equiv.trans ⁂∘⟨⟩ (⟨⟩-cong₂ identityʳ identityˡ)) ⟩
eval′ ∘ (λg ⟦ e ⟧ ⁂ Category.id 𝒞) ∘ ⟨ Category.id 𝒞 , ⟦ e′ ⟧ ⟩
≈⟨ Equiv.trans sym-assoc (∘-resp-≈ˡ β′) ⟩
⟦ e [ ext Term.id e′ ] ⟧
∎
soundness (eta/=> e) =
begin
⟦ abs (app (e [ weaken ]) var) ⟧
≈˘⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ Equiv.refl identityˡ)) ⟩
λg (eval′ ∘ ⟨ ⟦ e ⟧ ∘ π₁ , Category.id 𝒞 ∘ π₂ ⟩)
≈˘⟨ λ-cong (∘-resp-≈ʳ ⁂∘⟨⟩) ⟩
λg (eval′ ∘ (⟦ e ⟧ ⁂ Category.id 𝒞) ∘ ⟨ π₁ , π₂ ⟩)
≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ η)) ⟩
λg (eval′ ∘ (⟦ e ⟧ ⁂ Category.id 𝒞) ∘ Category.id 𝒞)
≈⟨ λ-cong (∘-resp-≈ʳ identityʳ) ⟩
λg (eval′ ∘ (⟦ e ⟧ ⁂ Category.id 𝒞))
≈⟨ η-exp′ ⟩
⟦ e ⟧
∎
soundness (comm/func _ Γ′ γ f e) = assoc
soundness (comm/unit _ Γ′ γ) = Equiv.sym (T.!-unique (T.! ∘ ⟦ γ ⟧S))
soundness comm/pair = Product.∘-distribʳ-⟨⟩ product
soundness comm/fst = assoc
soundness comm/snd = assoc
soundness (comm/abs {γ = γ} {e = e}) =
begin
λg ⟦ e ⟧ ∘ ⟦ γ ⟧S
≈⟨ exp.subst product product ⟩
λg (⟦ e ⟧ ∘ (⟦ γ ⟧S ⁂ Category.id 𝒞))
≈˘⟨ λ-cong (∘-resp-≈ʳ (Equiv.trans (∘-resp-≈ʳ η) identityʳ)) ⟩
λg (⟦ e ⟧ ∘ (⟦ γ ⟧S ⁂ Category.id 𝒞) ∘ ⟨ π₁ , π₂ ⟩)
≈⟨ λ-cong (∘-resp-≈ʳ (⁂∘⟨⟩)) ⟩
λg (⟦ e ⟧ ∘ ⟨ ⟦ γ ⟧S ∘ π₁ , Category.id 𝒞 ∘ π₂ ⟩)
≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ Equiv.refl identityˡ)) ⟩
λg (⟦ e ⟧ ∘ ⟨ ⟦ γ ⟧S ∘ π₁ , π₂ ⟩ )
∎
soundness comm/app = Equiv.trans assoc (∘-resp-≈ʳ ⟨⟩∘)
soundness (var/ext γ _) = project₂
soundness (cong/sub D D′) = ∘-resp-≈ (soundness D′) (soundness-sub D)
soundness (cong/pair D D₁) = ⟨⟩-cong₂ (soundness D) (soundness D₁)
soundness (cong/fst D) = ∘-resp-≈ʳ (soundness D)
soundness (cong/snd D) = ∘-resp-≈ʳ (soundness D)
soundness (cong/app D D₁) = ∘-resp-≈ʳ (⟨⟩-cong₂ (soundness D) (soundness D₁))
soundness (cong/abs D) = λ-cong (soundness D)
soundness (cong/func D) = ∘-resp-≈ Equiv.refl (soundness D)
soundness-sub refl = Equiv.refl
soundness-sub (sym D) = Equiv.sym (soundness-sub D)
soundness-sub (trans D D₁) = Equiv.trans (soundness-sub D) (soundness-sub D₁)
soundness-sub (!-unique {γ = γ}) = T.!-unique ⟦ γ ⟧S
soundness-sub η-pair =
begin
⟨ π₁ , π₂ ⟩
≈⟨ Product.η product ⟩
Category.id 𝒞
∎
soundness-sub ext∙ = ⟨⟩∘
soundness-sub (cong/ext D D′) = ⟨⟩-cong₂ (soundness-sub D) (soundness D′)
soundness-sub weaken/ext = project₁
soundness-sub (cong/∙ D D₁) = ∘-resp-≈ (soundness-sub D) (soundness-sub D₁)
soundness-sub id∙ˡ = identityˡ
soundness-sub id∙ʳ = identityʳ
soundness-sub assoc∙ = assoc
| {
"alphanum_fraction": 0.5628272251,
"avg_line_length": 35.9145299145,
"ext": "agda",
"hexsha": "7aa67eff992ab895223b96304fcbc7ed17888fab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Soundness.agda",
"max_line_length": 81,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 1811,
"size": 4202
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.TwoSemiCategory where
module _ {i j} {El : Type i} (Arr : El → El → Type j)
(_ : ∀ x y → has-level 1 (Arr x y)) where
record TwoSemiCategoryStructure : Type (lmax i j) where
field
comp : ∀ {x y z} → Arr x y → Arr y z → Arr x z
assoc : ∀ {x y z w} (a : Arr x y) (b : Arr y z) (c : Arr z w)
→ comp (comp a b) c == comp a (comp b c)
{- coherence -}
pentagon-identity : ∀ {v w x y z} (a : Arr v w) (b : Arr w x) (c : Arr x y) (d : Arr y z)
→ assoc (comp a b) c d ◃∙
assoc a b (comp c d) ◃∎
=ₛ
ap (λ s → comp s d) (assoc a b c) ◃∙
assoc a (comp b c) d ◃∙
ap (comp a) (assoc b c d) ◃∎
record TwoSemiCategory i j : Type (lsucc (lmax i j)) where
constructor two-semi-category
field
El : Type i
Arr : El → El → Type j
Arr-level : ∀ x y → has-level 1 (Arr x y)
two-semi-cat-struct : TwoSemiCategoryStructure Arr Arr-level
open TwoSemiCategoryStructure two-semi-cat-struct public
| {
"alphanum_fraction": 0.551627907,
"avg_line_length": 32.5757575758,
"ext": "agda",
"hexsha": "bc51dbce90abc30cd06e1a5e725fb7a01efac5d9",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/TwoSemiCategory.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/TwoSemiCategory.agda",
"max_line_length": 95,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/TwoSemiCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 383,
"size": 1075
} |
open import Categories
open import Functors
open import RMonads
module RMonads.REM.Adjunction {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
{J : Fun C D}(M : RMonad J) where
open import Library
open import RAdjunctions
open import RMonads.REM M
open import RMonads.REM.Functors J M
open Fun
open RAdj
open RAlg
open RAlgMorph
open RMonad M
open Cat D
REMAdj : RAdj J EM
REMAdj = record {
L = REML;
R = REMR;
left = λ f → comp (amor f) η;
right = λ{_ B} f → record{
amor = astr B f;
ahom = sym (alaw2 B)};
lawa = λ {_ Y} f →
RAlgMorphEq (
proof
astr Y (comp (amor f) η)
≅⟨ sym (ahom f) ⟩
comp (amor f) (bind η)
≅⟨ cong (comp (amor f)) law1 ⟩
comp (amor f) iden
≅⟨ idr ⟩
amor f ∎);
lawb = λ {_ B} f → sym (alaw1 B);
natleft = λ f g h →
proof
comp (amor g) (comp (comp (amor h) η) (HMap J f))
≅⟨ cong (comp (amor g)) ass ⟩
comp (amor g) (comp (amor h) (comp η (HMap J f)))
≅⟨ cong (comp (amor g) ∘ comp (amor h)) (sym law2) ⟩
comp (amor g) (comp (amor h) (comp (bind (comp η (HMap J f))) η))
≅⟨ cong (comp (amor g)) (sym ass) ⟩
comp (amor g) (comp (comp (amor h) (bind (comp η (HMap J f)))) η)
≅⟨ sym ass ⟩
comp (comp (amor g) (comp (amor h) (bind (comp η (HMap J f))))) η
∎;
natright = λ{W}{X}{Y}{Z} f g h →
RAlgMorphEq (
proof
astr Z (comp (amor g) (comp h (HMap J f)))
≅⟨ sym (ahom g) ⟩
comp (amor g) (astr Y (comp h (HMap J f)))
≅⟨ cong (λ h₁ → comp (amor g) (astr Y (comp h₁ (HMap J f)))) (alaw1 Y) ⟩
comp (amor g) (astr Y (comp (comp (astr Y h) η) (HMap J f)))
≅⟨ cong (comp (amor g) ∘ astr Y) ass ⟩
comp (amor g) (astr Y (comp (astr Y h) (comp η (HMap J f))))
≅⟨ cong (comp (amor g)) (alaw2 Y) ⟩
comp (amor g) (comp (astr Y h) (bind (comp η (HMap J f))))
∎)}
| {
"alphanum_fraction": 0.5239096164,
"avg_line_length": 29.734375,
"ext": "agda",
"hexsha": "ab8f30555aaad71053fe58ff2e1d1f928a6f19e6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "RMonads/REM/Adjunction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "RMonads/REM/Adjunction.agda",
"max_line_length": 78,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "RMonads/REM/Adjunction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 804,
"size": 1903
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Rings.Ideals.Definition
module Rings.Homomorphisms.Kernel {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+1_ _*1_ : A → A → A} {_+2_ _*2_ : B → B → B} {R1 : Ring S _+1_ _*1_} {R2 : Ring T _+2_ _*2_} {f : A → B} (fHom : RingHom R1 R2 f) where
open import Groups.Homomorphisms.Kernel (RingHom.groupHom fHom)
ringKernelIsIdeal : Ideal R1 groupKernelPred
Ideal.isSubgroup ringKernelIsIdeal = groupKernelIsSubgroup
Ideal.accumulatesTimes ringKernelIsIdeal {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2)))
where
open Setoid T
open Equivalence eq
| {
"alphanum_fraction": 0.7172949002,
"avg_line_length": 45.1,
"ext": "agda",
"hexsha": "4d4cff1940892bd55677b7e4cd24606e6e76d057",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Homomorphisms/Kernel.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Homomorphisms/Kernel.agda",
"max_line_length": 256,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Homomorphisms/Kernel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 314,
"size": 902
} |
-- Andreas, 2017-07-28, issue #776 reported by p.giarusso on 30 Dec 2012
open import Agda.Primitive
-- Note Set₁ instead of Set (suc l)
data _:=:_ {l : Level} (A : Set l) (B : Set l) : Set₁ where
proof : {F : Set l → Set l} → F A → F B → A :=: B
-- WAS: no error message
-- Expected:
-- The type of the constructor does not fit in the sort of the
-- datatype, since Set (lsuc l) is not less or equal than Set₁
-- when checking the constructor proof in the declaration of _:=:_
| {
"alphanum_fraction": 0.6604554865,
"avg_line_length": 32.2,
"ext": "agda",
"hexsha": "164534fe4b3b52688de88a05dafcb622bc3e5a42",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue776.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue776.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue776.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 156,
"size": 483
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Sn.Base where
open import Cubical.HITs.Susp
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne
open import Cubical.Data.Empty
open import Cubical.Foundations.Prelude
S₊ : ℕ₋₁ → Type₀
S₊ neg1 = ⊥
S₊ (suc n) = Susp (S₊ n)
S : ℕ → Type₀
S n = S₊ (ℕ→ℕ₋₁ n)
| {
"alphanum_fraction": 0.6975308642,
"avg_line_length": 20.25,
"ext": "agda",
"hexsha": "88c3ac66da7d0d0c73fe49c15a5473a5ea137442",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 125,
"size": 324
} |
{-# OPTIONS -v treeless:20 #-}
module _ where
data N : Set where
zero : N
suc : N → N
_+_ : N → N → N
zero + n = n
suc m + n = suc (m + n)
record P A B : Set where
constructor _,_
field fst : A
snd : B
open P
{-# INLINE fst #-}
{-# INLINE snd #-}
-- Without handling repeated cases:
-- g = λ a → case a of b , c → b (case a of d , e → e)
-- Should be
-- g = λ a → case a of b , c → b c
g : P (N → N) N → N
g z = fst z (snd z)
| {
"alphanum_fraction": 0.5111607143,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "7fe391ef18e355b7e1318bebc1f4a7015d83a27a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Succeed/RepeatedCase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Succeed/RepeatedCase.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Succeed/RepeatedCase.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 163,
"size": 448
} |
import Structure.Logic.Classical.NaturalDeduction
-- TODO: MAybe rename to SetBoundedQuantification
module Structure.Logic.Classical.SetTheory.SetBoundedQuantification {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
open import Functional hiding (Domain)
open import Lang.Instance
import Lvl
open import Type.Dependent
open import Structure.Logic.Classical.PredicateBoundedQuantification {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄
-- Bounded universal quantifier
∀ₛ : Domain → (Domain → Formula) → Formula
∀ₛ(S)(P) = ∀ₚ(_∈ S)(P)
[∀ₛ]-intro : ∀{S}{P} → (∀{x} → Proof(x ∈ S) → Proof(P(x))) → Proof(∀ₛ(S)(P))
[∀ₛ]-intro = [∀ₚ]-intro
[∀ₛ]-elim : ∀{S}{P} → Proof(∀ₛ(S)(P)) → ∀{x} → Proof(x ∈ S) → Proof(P(x))
[∀ₛ]-elim = [∀ₚ]-elim
-- Bounded existential quantifier
∃ₛ : Domain → (Domain → Formula) → Formula
∃ₛ(S)(P) = ∃ₚ(_∈ S)(P)
[∃ₛ]-intro : ∀{S}{P}{x} → Proof(x ∈ S) → Proof(P(x)) → Proof(∃ₛ(S)(P))
[∃ₛ]-intro = [∃ₚ]-intro
[∃ₛ]-elim : ∀{S}{P}{Q} → (∀{x} → Proof(x ∈ S) → Proof(P(x)) → Proof(Q)) → Proof(∃ₛ(S)(P)) → Proof(Q)
[∃ₛ]-elim = [∃ₚ]-elim
[∃ₛ]-witness : ∀{S : Domain}{P : Domain → Formula} → ⦃ _ : Proof(∃ₛ S P) ⦄ → Domain
[∃ₛ]-witness = [∃ₚ]-witness
[∃ₛ]-domain : ∀{S : Domain}{P : Domain → Formula} → ⦃ p : Proof(∃ₛ S P) ⦄ → Proof([∃ₛ]-witness{S}{P} ⦃ p ⦄ ∈ S)
[∃ₛ]-domain = [∃ₚ]-bound
[∃ₛ]-proof : ∀{S : Domain}{P : Domain → Formula} → ⦃ p : Proof(∃ₛ S P) ⦄ → Proof(P([∃ₛ]-witness{S}{P} ⦃ p ⦄))
[∃ₛ]-proof = [∃ₚ]-proof
Uniqueₛ : Domain → (Domain → Formula) → Formula
Uniqueₛ(S)(P) = Uniqueₚ(_∈ S)(P)
-- Bounded unique existential quantifier
∃ₛ! : Domain → (Domain → Formula) → Formula
∃ₛ!(S)(P) = ∃ₚ!(_∈ S)(P)
[∃ₛ!]-witness : ∀{S : Domain}{P : Domain → Formula} → ⦃ _ : Proof(∃ₛ! S P) ⦄ → Domain
[∃ₛ!]-witness = [∃ₚ!]-witness
[∃ₛ!]-domain : ∀{S : Domain}{P : Domain → Formula} → ⦃ p : Proof(∃ₛ! S P) ⦄ → Proof([∃ₛ!]-witness{S}{P} ⦃ p ⦄ ∈ S)
[∃ₛ!]-domain = [∃ₚ!]-bound
[∃ₛ!]-proof : ∀{S : Domain}{P : Domain → Formula} → ⦃ p : Proof(∃ₛ! S P) ⦄ → Proof(P([∃ₛ!]-witness{S}{P} ⦃ p ⦄))
[∃ₛ!]-proof = [∃ₚ!]-proof
[∃ₛ!]-unique : ∀{S : Domain}{P : Domain → Formula} → ⦃ p : Proof(∃ₛ! S P) ⦄ → Proof(∀ₗ(x ↦ P(x) ⟶ (x ≡ [∃ₛ!]-witness{S}{P} ⦃ p ⦄)))
[∃ₛ!]-unique = [∃ₚ!]-unique
| {
"alphanum_fraction": 0.5725637808,
"avg_line_length": 39.85,
"ext": "agda",
"hexsha": "b2c94e278dbf6147d40cf5e6422879e6eefc5e03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/SetBoundedQuantification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/SetBoundedQuantification.agda",
"max_line_length": 171,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/SetBoundedQuantification.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1153,
"size": 2391
} |
-- Andreas, AIM XXIII 2016-04-21 Overloaded projections
-- Milestone 1: Check overloaded projections on rhs (without postponing).
module _ (A : Set) (a : A) where
module RecDefs where
record R B : Set where
field f : B
open R public
record S B : Set where
field f : B
open S public
record T B : Set where
field f : B → B
open T public
open RecDefs public
r : R A
R.f r = a
s : S A
S.f s = f r
t : R A → S A
S.f (t r) = f r
u : _
u = f s
v = f s
w : ∀{A} → T A → A → A
w t x = f t x
| {
"alphanum_fraction": 0.5857418112,
"avg_line_length": 13.3076923077,
"ext": "agda",
"hexsha": "342e0dffa82548de24ce8323a588fc656b558816",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Succeed/Issue1944-1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Succeed/Issue1944-1.agda",
"max_line_length": 73,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Succeed/Issue1944-1.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 192,
"size": 519
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-empty lists
------------------------------------------------------------------------
module Data.List.NonEmpty where
open import Category.Monad
open import Data.Bool
open import Data.Bool.Properties
open import Data.List as List using (List; []; _∷_)
open import Data.Maybe using (nothing; just)
open import Data.Nat as Nat
open import Data.Product using (∃; proj₁; proj₂; _,_; ,_)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using () renaming (module Equivalence to Eq)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
open import Relation.Nullary.Decidable using (⌊_⌋)
------------------------------------------------------------------------
-- Non-empty lists
infixr 5 _∷_
record List⁺ {a} (A : Set a) : Set a where
constructor _∷_
field
head : A
tail : List A
open List⁺ public
[_] : ∀ {a} {A : Set a} → A → List⁺ A
[ x ] = x ∷ []
infixr 5 _∷⁺_
_∷⁺_ : ∀ {a} {A : Set a} → A → List⁺ A → List⁺ A
x ∷⁺ y ∷ xs = x ∷ y ∷ xs
length : ∀ {a} {A : Set a} → List⁺ A → ℕ
length (x ∷ xs) = suc (List.length xs)
------------------------------------------------------------------------
-- Conversion
toList : ∀ {a} {A : Set a} → List⁺ A → List A
toList (x ∷ xs) = x ∷ xs
fromVec : ∀ {n a} {A : Set a} → Vec A (suc n) → List⁺ A
fromVec (x ∷ xs) = x ∷ Vec.toList xs
toVec : ∀ {a} {A : Set a} (xs : List⁺ A) → Vec A (length xs)
toVec (x ∷ xs) = x ∷ Vec.fromList xs
lift : ∀ {a b} {A : Set a} {B : Set b} →
(∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) →
List⁺ A → List⁺ B
lift f xs = fromVec (proj₂ (f (toVec xs)))
------------------------------------------------------------------------
-- Other operations
map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List⁺ A → List⁺ B
map f (x ∷ xs) = (f x ∷ List.map f xs)
-- Right fold. Note that s is only applied to the last element (see
-- the examples below).
foldr : ∀ {a b} {A : Set a} {B : Set b} →
(A → B → B) → (A → B) → List⁺ A → B
foldr {A = A} {B} c s (x ∷ xs) = foldr′ x xs
where
foldr′ : A → List A → B
foldr′ x [] = s x
foldr′ x (y ∷ xs) = c x (foldr′ y xs)
-- Left fold. Note that s is only applied to the first element (see
-- the examples below).
foldl : ∀ {a b} {A : Set a} {B : Set b} →
(B → A → B) → (A → B) → List⁺ A → B
foldl c s (x ∷ xs) = List.foldl c (s x) xs
-- Append (several variants).
infixr 5 _⁺++⁺_ _++⁺_ _⁺++_
_⁺++⁺_ : ∀ {a} {A : Set a} → List⁺ A → List⁺ A → List⁺ A
(x ∷ xs) ⁺++⁺ (y ∷ ys) = x ∷ (xs List.++ y ∷ ys)
_⁺++_ : ∀ {a} {A : Set a} → List⁺ A → List A → List⁺ A
(x ∷ xs) ⁺++ ys = x ∷ (xs List.++ ys)
_++⁺_ : ∀ {a} {A : Set a} → List A → List⁺ A → List⁺ A
xs ++⁺ ys = List.foldr _∷⁺_ ys xs
concat : ∀ {a} {A : Set a} → List⁺ (List⁺ A) → List⁺ A
concat (xs ∷ xss) = xs ⁺++ List.concat (List.map toList xss)
monad : ∀ {f} → RawMonad (List⁺ {a = f})
monad = record
{ return = [_]
; _>>=_ = λ xs f → concat (map f xs)
}
reverse : ∀ {a} {A : Set a} → List⁺ A → List⁺ A
reverse = lift (,_ ∘′ Vec.reverse)
-- Snoc.
infixl 5 _∷ʳ_ _⁺∷ʳ_
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List⁺ A
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs List.∷ʳ y)
_⁺∷ʳ_ : ∀ {a} {A : Set a} → List⁺ A → A → List⁺ A
xs ⁺∷ʳ x = toList xs ∷ʳ x
-- A snoc-view of non-empty lists.
infixl 5 _∷ʳ′_
data SnocView {a} {A : Set a} : List⁺ A → Set a where
_∷ʳ′_ : (xs : List A) (x : A) → SnocView (xs ∷ʳ x)
snocView : ∀ {a} {A : Set a} (xs : List⁺ A) → SnocView xs
snocView (x ∷ xs) with List.initLast xs
snocView (x ∷ .[]) | [] = [] ∷ʳ′ x
snocView (x ∷ .(xs List.∷ʳ y)) | xs List.∷ʳ' y = (x ∷ xs) ∷ʳ′ y
-- The last element in the list.
last : ∀ {a} {A : Set a} → List⁺ A → A
last xs with snocView xs
last .(ys ∷ʳ y) | ys ∷ʳ′ y = y
-- Groups all contiguous elements for which the predicate returns the
-- same result into lists.
split : ∀ {a} {A : Set a}
(p : A → Bool) → List A →
List (List⁺ (∃ (T ∘ p)) ⊎ List⁺ (∃ (T ∘ not ∘ p)))
split p [] = []
split p (x ∷ xs) with p x | P.inspect p x | split p xs
... | true | P.[ px≡t ] | inj₁ xs′ ∷ xss = inj₁ ((x , Eq.from T-≡ ⟨$⟩ px≡t) ∷⁺ xs′) ∷ xss
... | true | P.[ px≡t ] | xss = inj₁ [ x , Eq.from T-≡ ⟨$⟩ px≡t ] ∷ xss
... | false | P.[ px≡f ] | inj₂ xs′ ∷ xss = inj₂ ((x , Eq.from T-not-≡ ⟨$⟩ px≡f) ∷⁺ xs′) ∷ xss
... | false | P.[ px≡f ] | xss = inj₂ [ x , Eq.from T-not-≡ ⟨$⟩ px≡f ] ∷ xss
-- If we flatten the list returned by split, then we get the list we
-- started with.
flatten : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} →
List (List⁺ (∃ P) ⊎ List⁺ (∃ Q)) → List A
flatten = List.concat ∘
List.map Sum.[ toList ∘ map proj₁ , toList ∘ map proj₁ ]
flatten-split :
∀ {a} {A : Set a}
(p : A → Bool) (xs : List A) → flatten (split p xs) ≡ xs
flatten-split p [] = refl
flatten-split p (x ∷ xs)
with p x | P.inspect p x | split p xs | flatten-split p xs
... | true | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp
... | true | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | true | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
... | false | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp
-- Groups all contiguous elements /not/ satisfying the predicate into
-- lists. Elements satisfying the predicate are dropped.
wordsBy : ∀ {a} {A : Set a} → (A → Bool) → List A → List (List⁺ A)
wordsBy p =
List.gfilter Sum.[ const nothing , just ∘′ map proj₁ ] ∘ split p
------------------------------------------------------------------------
-- Examples
-- Note that these examples are simple unit tests, because the type
-- checker verifies them.
private
module Examples {A B : Set}
(_⊕_ : A → B → B)
(_⊗_ : B → A → B)
(f : A → B)
(a b c : A)
where
hd : head (a ∷⁺ b ∷⁺ [ c ]) ≡ a
hd = refl
tl : tail (a ∷⁺ b ∷⁺ [ c ]) ≡ b ∷ c ∷ []
tl = refl
mp : map f (a ∷⁺ b ∷⁺ [ c ]) ≡ f a ∷⁺ f b ∷⁺ [ f c ]
mp = refl
right : foldr _⊕_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ a ⊕ (b ⊕ f c)
right = refl
left : foldl _⊗_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ (f a ⊗ b) ⊗ c
left = refl
⁺app⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺++⁺ (b ∷⁺ [ c ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
⁺app⁺ = refl
⁺app : (a ∷⁺ b ∷⁺ [ c ]) ⁺++ (b ∷ c ∷ []) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
⁺app = refl
app⁺ : (a ∷ b ∷ c ∷ []) ++⁺ (b ∷⁺ [ c ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
app⁺ = refl
conc : concat ((a ∷⁺ b ∷⁺ [ c ]) ∷⁺ [ b ∷⁺ [ c ] ]) ≡
a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ]
conc = refl
rev : reverse (a ∷⁺ b ∷⁺ [ c ]) ≡ c ∷⁺ b ∷⁺ [ a ]
rev = refl
snoc : (a ∷ b ∷ c ∷ []) ∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ]
snoc = refl
snoc⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ]
snoc⁺ = refl
split-true : split (const true) (a ∷ b ∷ c ∷ []) ≡
inj₁ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ []
split-true = refl
split-false : split (const false) (a ∷ b ∷ c ∷ []) ≡
inj₂ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ []
split-false = refl
split-≡1 :
split (λ n → ⌊ n Nat.≟ 1 ⌋) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡
inj₁ [ 1 , tt ] ∷ inj₂ ((2 , tt) ∷⁺ [ 3 , tt ]) ∷
inj₁ ((1 , tt) ∷⁺ [ 1 , tt ]) ∷ inj₂ [ 2 , tt ] ∷ inj₁ [ 1 , tt ] ∷
[]
split-≡1 = refl
wordsBy-true : wordsBy (const true) (a ∷ b ∷ c ∷ []) ≡ []
wordsBy-true = refl
wordsBy-false : wordsBy (const false) (a ∷ b ∷ c ∷ []) ≡
(a ∷⁺ b ∷⁺ [ c ]) ∷ []
wordsBy-false = refl
wordsBy-≡1 :
wordsBy (λ n → ⌊ n Nat.≟ 1 ⌋) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡
(2 ∷⁺ [ 3 ]) ∷ [ 2 ] ∷ []
wordsBy-≡1 = refl
| {
"alphanum_fraction": 0.4497936726,
"avg_line_length": 30.0639097744,
"ext": "agda",
"hexsha": "542a04157abf2d0fc707d4347f2cb3495a3a886c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/NonEmpty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/NonEmpty.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/NonEmpty.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 3398,
"size": 7997
} |
open import Relation.Binary using (IsDecEquivalence)
open import Agda.Builtin.Equality
module UnifyWith (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where
open import UnifyTermF FunctionName
open import UnifyMguF FunctionName
open import UnifyMguCorrectF FunctionName
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]])
open import Function using (_∘_; id; case_of_; _$_; flip)
open import Relation.Nullary
open import Data.Product renaming (map to _***_)
open import Data.Empty
open import Data.Maybe
open import Category.Functor
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
open import Data.Sum
open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe)
open import Data.List renaming (_++_ to _++L_)
open ≡-Reasoning
open import Data.Vec using (Vec; []; _∷_) renaming (_++_ to _++V_; map to mapV)
open import Data.Unit
-- moved to UnifyMguCorrectF
| {
"alphanum_fraction": 0.7727272727,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "1c58da252d9a77f4466f73dd7e267d381f423a76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/UnifyWith.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/UnifyWith.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/UnifyWith.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 286,
"size": 1056
} |
{-# OPTIONS --without-K --safe #-}
module Data.Quiver.Morphism where
-- Morphism of Quivers, as well as some useful kit (identity, composition, equivalence)
-- also define map on paths, and that it behaves well wrt morphisms and morphism equivalence.
-- See the further comments around the definition of equivalence, as that is quite the
-- mine field.
open import Level
open import Function using () renaming (id to idFun; _∘_ to _⊚_)
open import Data.Quiver
open import Data.Quiver.Paths using (module Paths)
open import Relation.Binary using (IsEquivalence; Reflexive; Symmetric; Transitive)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; gmap; ε; _◅_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; naturality)
open import Relation.Binary.PropositionalEquality.Properties
using (trans-symʳ; trans-symˡ)
open import Relation.Binary.PropositionalEquality.Subst.Properties
using (module Shorthands; module Transport; module TransportOverQ; module TransportMor; module TransportStar)
infix 4 _≃_
private
variable
o o′ ℓ ℓ′ e e′ : Level
-- A Morphism of Quivers. As this is meant to be used as the underlying part of a
-- Category, the fields should be named the same as for Functor.
record Morphism (G : Quiver o ℓ e) (G′ : Quiver o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module G = Quiver G
module G′ = Quiver G′
field
F₀ : G.Obj → G′.Obj
F₁ : ∀ {A B} → A G.⇒ B → F₀ A G′.⇒ F₀ B
F-resp-≈ : ∀ {A B} {f g : A G.⇒ B} → f G.≈ g → F₁ f G′.≈ F₁ g
id : {G : Quiver o ℓ e} → Morphism G G
id = record { F₀ = idFun ; F₁ = idFun ; F-resp-≈ = idFun }
_∘_ : {G₁ G₂ G₃ : Quiver o ℓ e} (m₁ : Morphism G₂ G₃) (m₂ : Morphism G₁ G₂) → Morphism G₁ G₃
m₁ ∘ m₂ = record
{ F₀ = F₀ m₁ ⊚ F₀ m₂
; F₁ = F₁ m₁ ⊚ F₁ m₂
; F-resp-≈ = F-resp-≈ m₁ ⊚ F-resp-≈ m₂
}
where open Morphism
-- Morphism equivalence. Note how it is mixed, with
-- propositional equivalence mixed with edge-setoid equivalence.
-- Ideally, we'd like something weaker, aking to natural isomorphism here.
-- However, there is no notion of composition (nor identity) for edges, so that
-- doesn't work (no commuting squares in quivers, so the naturality condition cannot
-- be written down). So one choice that works is to be strict. Note that introducing
-- node equality might work too, but that would be even further from the notion of
-- category used here, so that we could not reasonably end up with an adjoint.
record _≃_ {G : Quiver o ℓ e} {G′ : Quiver o′ ℓ′ e′}
(M M′ : Morphism G G′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
open Quiver G using (_⇒_)
open Quiver G′ using (_≈_)
private
module M = Morphism M
module M′ = Morphism M′
open Shorthands (Quiver._⇒_ G′)
-- Pick a presentation of equivalence for graph morphisms that works
-- well with functor equality.
field
F₀≡ : ∀ {X} → M.F₀ X ≡ M′.F₀ X
F₁≡ : ∀ {A B} {f : A ⇒ B} → M.F₁ f ▸ F₀≡ ≈ F₀≡ ◂ M′.F₁ f
-- Prove that ≃ is an equivalence relation
module _ {G : Quiver o ℓ e} {G′ : Quiver o′ ℓ′ e′} where
open Quiver
open Morphism
open _≃_
private
≃-refl : Reflexive {A = Morphism G G′} _≃_
≃-refl = record { F₀≡ = refl ; F₁≡ = Equiv.refl G′}
≃-sym : Symmetric {A = Morphism G G′} _≃_
≃-sym {i} {j} eq = record
{ F₀≡ = sym (F₀≡ eq)
; F₁≡ = λ {_ _ f} →
let open EdgeReasoning G′
open Transport (_⇒_ G′)
open TransportOverQ (_⇒_ G′) (_≈_ G′)
e₁ = F₀≡ eq
in begin
F₁ j f ▸ sym e₁ ≡˘⟨ cong (_◂ (F₁ j f ▸ _)) (trans-symˡ e₁) ⟩
trans (sym e₁) e₁ ◂ (F₁ j f ▸ sym e₁) ≡˘⟨ ◂-assocˡ (sym e₁) (F₁ j f ▸ sym e₁) ⟩
sym e₁ ◂ e₁ ◂ (F₁ j f ▸ sym e₁) ≡⟨ cong (sym e₁ ◂_) (◂-▸-comm e₁ (F₁ j f) (sym e₁)) ⟩
sym e₁ ◂ ((e₁ ◂ F₁ j f) ▸ sym e₁) ≈˘⟨ ◂-resp-≈ (sym e₁) (▸-resp-≈ (F₁≡ eq) (sym e₁)) ⟩
sym e₁ ◂ (F₁ i f ▸ e₁ ▸ sym e₁) ≡⟨ cong (sym e₁ ◂_) (▸-assocʳ (F₁ i f) (sym e₁)) ⟩
sym e₁ ◂ (F₁ i f ▸ trans e₁ (sym e₁)) ≡⟨ cong (λ p → sym e₁ ◂ (F₁ i f ▸ p)) (trans-symʳ e₁) ⟩
sym e₁ ◂ F₁ i f ∎
}
≃-trans : Transitive {A = Morphism G G′} _≃_
≃-trans {i} {j} {k} eq eq′ = record
{ F₀≡ = trans (F₀≡ eq) (F₀≡ eq′)
; F₁≡ = λ {_ _ f} →
let open EdgeReasoning G′
open Transport (_⇒_ G′)
open TransportOverQ (_⇒_ G′) (_≈_ G′)
in begin
F₁ i f ▸ trans (F₀≡ eq) (F₀≡ eq′) ≡˘⟨ ▸-assocʳ (F₁ i f) (F₀≡ eq′) ⟩
(F₁ i f ▸ F₀≡ eq) ▸ F₀≡ eq′ ≈⟨ ▸-resp-≈ (F₁≡ eq) (F₀≡ eq′) ⟩
(F₀≡ eq ◂ F₁ j f) ▸ F₀≡ eq′ ≡˘⟨ ◂-▸-comm (F₀≡ eq) (F₁ j f) (F₀≡ eq′) ⟩
F₀≡ eq ◂ (F₁ j f ▸ F₀≡ eq′) ≈⟨ ◂-resp-≈ (F₀≡ eq) (F₁≡ eq′) ⟩
F₀≡ eq ◂ (F₀≡ eq′ ◂ F₁ k f) ≡⟨ ◂-assocˡ (F₀≡ eq) (F₁ k f) ⟩
trans (F₀≡ eq) (F₀≡ eq′) ◂ F₁ k f ∎
}
≃-Equivalence : IsEquivalence _≃_
≃-Equivalence = record
{ refl = ≃-refl
; sym = ≃-sym
; trans = ≃-trans {- λ {G i j k} eq eq′ → -}
}
-- Furthermore, it respects morphism composition
≃-resp-∘ : {A B C : Quiver o ℓ e} {f g : Morphism B C} {h i : Morphism A B} →
f ≃ g → h ≃ i → (f ∘ h) ≃ (g ∘ i)
≃-resp-∘ {B = G} {H} {f} {g} {h} {i} eq eq′ = record
{ F₀≡ = trans (cong (F₀ f) (F₀≡ eq′)) (F₀≡ eq)
; F₁≡ = λ {_ _ j} →
let open EdgeReasoning H
open Transport (_⇒_ H)
open TransportOverQ (_⇒_ H) (_≈_ H)
open Transport (_⇒_ G) using () renaming (_▸_ to _▹_; _◂_ to _◃_)
open TransportMor (_⇒_ G) (_⇒_ H)
e₁ = F₀≡ eq
e₂ = F₀≡ eq′
in begin
F₁ (f ∘ h) j ▸ trans (cong (F₀ f) e₂) e₁ ≡˘⟨ ▸-assocʳ (F₁ f (F₁ h j)) e₁ ⟩
F₁ f (F₁ h j) ▸ cong (F₀ f) e₂ ▸ e₁ ≡˘⟨ cong (_▸ e₁) ( M-resp-▸ (F₀ f) (F₁ f) (F₁ h j) e₂) ⟩
F₁ f (F₁ h j ▹ e₂) ▸ e₁ ≈⟨ F₁≡ eq ⟩
e₁ ◂ F₁ g (F₁ h j ▹ e₂) ≈⟨ ◂-resp-≈ e₁ (F-resp-≈ g (F₁≡ eq′)) ⟩
e₁ ◂ F₁ g (e₂ ◃ F₁ i j) ≡⟨ cong (e₁ ◂_) (M-resp-◂ (F₀ g) (F₁ g) e₂ (F₁ i j) ) ⟩
e₁ ◂ cong (F₀ g) e₂ ◂ F₁ g (F₁ i j) ≡⟨ ◂-assocˡ e₁ (F₁ g (F₁ i j)) ⟩
trans e₁ (cong (F₀ g) e₂) ◂ F₁ g (F₁ i j) ≡˘⟨ cong (_◂ F₁ g (F₁ i j)) (naturality (λ _ → e₁)) ⟩
trans (cong (F₀ f) e₂) e₁ ◂ F₁ g (F₁ i j) ∎
}
where
open Quiver using (_⇒_; _≈_; module EdgeReasoning)
open Morphism
open _≃_
-- We can induce a map from paths in on quiver to the in the target
module _ {G₁ G₂ : Quiver o ℓ e} (G⇒ : Morphism G₁ G₂) where
open Quiver G₁ renaming (_⇒_ to _⇒₁_; Obj to Obj₁)
open Quiver G₂ renaming (_⇒_ to _⇒₂_; Obj to Obj₂; module Equiv to Equiv₂)
open Morphism G⇒ using (F₀; F₁; F-resp-≈)
open Paths renaming (_≈*_ to [_]_≈*_)
qmap : {A B : Obj₁} → Star _⇒₁_ A B → Star _⇒₂_ (F₀ A) (F₀ B)
qmap = gmap F₀ F₁
-- this is needed, because this uses F-resp-≈ and not ≡
-- unlike gmap-cong
map-resp : {A B : Obj₁} (f : Star _⇒₁_ A B) {g : Star _⇒₁_ A B} →
[ G₁ ] f ≈* g → [ G₂ ] qmap f ≈* qmap g
map-resp ε ε = ε
map-resp (x ◅ f) (f≈* ◅ eq) = F-resp-≈ f≈* ◅ map-resp f eq
module _ {G H : Quiver o ℓ e} {f g : Morphism G H}
(f≈g : f ≃ g) where
open Quiver G
open Paths H using (_≈*_; _◅_)
open Morphism
open _≃_ f≈g
open Transport (Quiver._⇒_ H)
open TransportStar (Quiver._⇒_ H)
map-F₁≡ : {A B : Obj} (hs : Star _⇒_ A B) →
qmap f hs ▸* F₀≡ ≈* F₀≡ ◂* qmap g hs
map-F₁≡ ε = Paths.≡⇒≈* H (◂*-▸*-ε F₀≡)
map-F₁≡ (hs ◅ h) = begin
(F₁ f hs ◅ qmap f h) ▸* F₀≡ ≡⟨ ◅-▸* (F₁ f hs) _ F₀≡ ⟩
F₁ f hs ◅ (qmap f h ▸* F₀≡) ≈⟨ Quiver.Equiv.refl H ◅ map-F₁≡ h ⟩
F₁ f hs ◅ (F₀≡ ◂* qmap g h) ≡⟨ ◅-◂*-▸ (F₁ f hs) F₀≡ _ ⟩
(F₁ f hs ▸ F₀≡) ◅ qmap g h ≈⟨ F₁≡ ◅ (Paths.refl H) ⟩
(F₀≡ ◂ F₁ g hs) ◅ qmap g h ≡˘⟨ ◂*-◅ F₀≡ (F₁ g hs) _ ⟩
F₀≡ ◂* (F₁ g hs ◅ qmap g h) ∎
where open Paths.PathEqualityReasoning H
| {
"alphanum_fraction": 0.5409239267,
"avg_line_length": 40.6428571429,
"ext": "agda",
"hexsha": "f73a66fb0597ec7c91c24f5c8542792b4473af90",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Data/Quiver/Morphism.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Data/Quiver/Morphism.agda",
"max_line_length": 111,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Data/Quiver/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 3563,
"size": 7966
} |
module Highlighting where
Set-one : Set₂
Set-one = Set₁
record R (A : Set) : Set-one where
constructor con
field X : Set
F : Set → Set → Set
F A B = B
field P : F A X → Set
-- Note: we cannot check highlighting of non-termination
-- any more (Andreas, 2014-09-05), since termination failure
-- is a type error now.
{-# NON_TERMINATING #-}
Q : F A X → Set
Q = Q
postulate P : _
open import Highlighting.M
data D (A : Set) : Set-one where
d : let X = D in X A
| {
"alphanum_fraction": 0.6252545825,
"avg_line_length": 16.9310344828,
"ext": "agda",
"hexsha": "ae24905e6c3a556264e8ef57a12641ce74c4f3e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Highlighting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Highlighting.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Highlighting.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 161,
"size": 491
} |
module SecondOrder.MContext {ℓ} (arity : Set ℓ) (sort : Set ℓ) where
data MContext : Set ℓ where
ctx-empty : MContext
ctx-slot : arity → sort → MContext
_,,_ : MContext → MContext → MContext
infixl 5 _,,_
infix 4 [_,_]∈_
-- the meta-variables of a given type in a context
data [_,_]∈_ (Λ : arity) (A : sort) : MContext → Set ℓ where
var-slot : [ Λ , A ]∈ ctx-slot Λ A
var-inl : ∀ {Θ ψ} (x : [ Λ , A ]∈ Θ) → [ Λ , A ]∈ Θ ,, ψ
var-inr : ∀ {Θ ψ} (y : [ Λ , A ]∈ ψ) → [ Λ , A ]∈ Θ ,, ψ
| {
"alphanum_fraction": 0.5297504798,
"avg_line_length": 30.6470588235,
"ext": "agda",
"hexsha": "e2cf4544465a2955a08a0c096bcedd2949783273",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/MContext.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/MContext.agda",
"max_line_length": 69,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/MContext.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 227,
"size": 521
} |
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
open import Common.Equality
module _ (A : Set) where
record R : Set where
`R₀ : Type
`R₀ = def (quote R) []
`R₁ : Term → Type
`R₁ a = def (quote R) (vArg a ∷ [])
`Nat : Type
`Nat = def (quote Nat) []
_`→_ : Type → Type → Type
a `→ b = pi (vArg a) (abs "x" b)
helper-type₀ : Type
helper-type₀ = `R₀ `→ `R₀
helper-type₁ : Type
helper-type₁ = `R₁ `Nat `→ `R₁ `Nat
helper-term : Term
helper-term = var 0 []
helper-patterns : List (Arg Pattern)
helper-patterns = vArg (var "_") ∷
[]
defineHelper : Type → TC ⊤
defineHelper t =
freshName "n" >>= λ n →
declareDef (vArg n) t >>= λ _ →
defineFun n (clause helper-patterns helper-term ∷ [])
noFail : TC ⊤ → TC Bool
noFail m = catchTC (bindTC m λ _ → returnTC true) (returnTC false)
mac : Type → Tactic
mac t hole =
noFail (defineHelper t) >>= λ b →
quoteTC b >>= unify hole
macro
mac₀ : Tactic
mac₀ = mac helper-type₀
mac₁ : Tactic
mac₁ = mac helper-type₁
within-module-succeeds₀ : mac₀ ≡ true
within-module-succeeds₀ = refl
within-module-fails₁ : mac₁ ≡ false
within-module-fails₁ = refl
outside-module-fails₀ : mac₀ Nat ≡ false
outside-module-fails₀ = refl
outside-module-succeeds₁ : mac₁ Nat ≡ true
outside-module-succeeds₁ = refl
| {
"alphanum_fraction": 0.6173725772,
"avg_line_length": 20.7910447761,
"ext": "agda",
"hexsha": "fdb8b2597bb322eea22ed89d3fd849b646aff088",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1890b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1890b.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1890b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 466,
"size": 1393
} |
------------------------------------------------------------------------
-- Well-typed substitutions
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Data.Fin.Substitution.Typed where
open import Data.Context as Ctx hiding (map)
open import Data.Context.WellFormed
open import Data.Context.Properties using (module ContextFormationLemmas)
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Nat using (ℕ; suc)
open import Data.Vec as Vec using (Vec; []; _∷_; map)
open import Data.Vec.Properties using (map-cong; map-∘; lookup-map)
open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW
using (Pointwise; []; _∷_)
open import Function as Fun using (_∘_)
open import Level using (_⊔_) renaming (zero to lzero; suc to lsuc)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Relation.Unary using (Pred)
------------------------------------------------------------------------
-- Abstract typing
--
-- Well-typed substitutions are defined over an abstract "type
-- system", i.e. a pair of formation and typing judgments and
-- substitution lemmas for raw terms and types.
-- An abtract typing judgment _⊢_∈_ : Typing Bnd Term Type is a
-- ternary relation which, in a given Bnd-context, relates Term-terms
-- to their Type-types.
Typing : ∀ {t₁ t₂ t₃} →
Pred ℕ t₁ → Pred ℕ t₂ → Pred ℕ t₃ → ∀ ℓ →
Set (t₁ ⊔ t₂ ⊔ t₃ ⊔ lsuc ℓ)
Typing Bnd Term Type ℓ = ∀ {n} → Ctx Bnd n → Term n → Type n → Set ℓ
------------------------------------------------------------------------
-- Abstract well-typed substitutions (aka context morphisms)
record TypedSub {t}
(Type : Pred ℕ t) -- Type syntax
(Term : Pred ℕ lzero) -- Term syntax
ℓ
: Set (lsuc (t ⊔ ℓ)) where
-- The underlying type assignment system
infix 4 _⊢_∈_ _⊢_wf
field
_⊢_wf : Wf Type Type ℓ -- Type formation judgment
_⊢_∈_ : Typing Type Term Type ℓ -- Typing judgment
-- Weakening and term substitutions in types.
field
typeExtension : Extension Type -- weakening of types
typeTermApplication : Application Type Term -- app. of term subst.
termSimple : Simple Term -- simple term subst.
open ContextFormation _⊢_wf using (_wf)
open Application typeTermApplication using (_/_)
infix 4 _⊢/_∈_
infixr 5 _∷_
-- Typed substitutions.
--
-- A typed substitution Δ ⊢/ σ ∈ Γ is a substitution σ which, when
-- applied to a well-typed term Γ ⊢ t ∈ a in a source context Γ,
-- yields a well-typed term Δ ⊢ t / σ ∈ a / σ in a well-formed
-- target context Δ.
data _⊢/_∈_ {n} (Δ : Ctx Type n) :
∀ {m} → Sub Term m n → Ctx Type m → Set (t ⊔ ℓ) where
[] : Δ wf → Δ ⊢/ [] ∈ []
_∷_ : ∀ {m t} {a : Type m} {σ : Sub Term m n} {Γ} →
Δ ⊢ t ∈ a / σ → Δ ⊢/ σ ∈ Γ → Δ ⊢/ t ∷ σ ∈ a ∷ Γ
-- The domains of well-typed substitutions are well-formed.
/∈-wf : ∀ {m n Δ} {σ : Sub Term m n} {Γ} → Δ ⊢/ σ ∈ Γ → Δ wf
/∈-wf ([] Δ-wf) = Δ-wf
/∈-wf (_ ∷ σ∈Γ) = /∈-wf σ∈Γ
------------------------------------------------------------------------
-- Operations on abstract well-typed substitutions
-- Operations on abstract typed substitutions that require weakening
-- of well-typed terms
record TypedWeakenOps {t ℓ} {Type : Pred ℕ t} {Term : Pred ℕ lzero}
(typedSub : TypedSub Type Term ℓ)
: Set (lsuc (t ⊔ ℓ)) where
open TypedSub typedSub
-- Operations on contexts and raw terms that require weakening
private
termExtension : Extension Term
termExtension = record { weaken = Simple.weaken termSimple }
module E = Extension termExtension
module C = WeakenOps typeExtension
open Simple termSimple using (wk)
open Application typeTermApplication using (_/_; _⊙_)
open ContextFormation _⊢_wf using (_wf; _∷_; wf-∷₁)
field
-- Weakening preserves well-typed terms.
∈-weaken : ∀ {n} {Δ : Ctx Type n} {t a b} → Δ ⊢ a wf → Δ ⊢ t ∈ b →
(a ∷ Δ) ⊢ E.weaken t ∈ C.weaken b
-- Well-typedness implies well-formedness of contexts.
∈-wf : ∀ {n} {Δ : Ctx Type n} {t a} → Δ ⊢ t ∈ a → Δ wf
-- Lemmas relating type weakening to term substitutions
/-wk : ∀ {n} {a : Type n} → a / wk ≡ C.weaken a
/-weaken : ∀ {m n} {σ : Sub Term m n} a →
a / map E.weaken σ ≡ a / σ / wk
weaken-/-∷ : ∀ {n m} {t} {σ : Sub Term m n} (a : Type m) →
C.weaken a / (t ∷ σ) ≡ a / σ
-- Some helper lemmas
/-map-weaken : ∀ {m n} a (ρ : Sub Term m n) →
C.weaken (a / ρ) ≡ a / map E.weaken ρ
/-map-weaken a ρ = begin
C.weaken (a / ρ) ≡⟨ sym /-wk ⟩
a / ρ / wk ≡⟨ sym (/-weaken a) ⟩
a / map E.weaken ρ ∎
map-weaken-⊙-∷ : ∀ {m n} (σ : Sub Type m m) t (ρ : Sub Term m n) →
σ ⊙ ρ ≡ map C.weaken σ ⊙ (t ∷ ρ)
map-weaken-⊙-∷ σ t ρ = sym (begin
map C.weaken σ ⊙ (t ∷ ρ) ≡⟨ sym (map-∘ _ C.weaken σ) ⟩
map ((_/ (t ∷ ρ)) ∘ C.weaken) σ ≡⟨ map-cong weaken-/-∷ σ ⟩
map (_/ ρ) σ ≡⟨⟩
σ ⊙ ρ ∎)
-- Weakening preserves well-typed substitutions.
/∈-weaken : ∀ {m n Δ a} {σ : Sub Term m n} {Γ} →
Δ ⊢ a wf → Δ ⊢/ σ ∈ Γ →
(a ∷ Δ) ⊢/ map E.weaken σ ∈ Γ
/∈-weaken a-wf ([] Δ-wf) = [] (a-wf ∷ Δ-wf)
/∈-weaken {_} {_} {Δ} {a} {t ∷ σ} a-wf (t∈b/σ ∷ σ∈Γ) =
subst (a ∷ Δ ⊢ _ ∈_) (/-map-weaken _ σ) (∈-weaken a-wf t∈b/σ) ∷
(/∈-weaken a-wf σ∈Γ)
-- A typed substitution consists of pointwise-typed terms.
toPointwise : ∀ {m n Δ} {σ : Sub Term m n} {Γ} →
Δ ⊢/ σ ∈ Γ → Pointwise (Δ ⊢_∈_) σ (C.toVec Γ ⊙ σ)
toPointwise ([] Δ-wf) = []
toPointwise {_} {_} {Δ} {t ∷ σ} (t∈a/σ ∷ σ∈Γ) =
subst (Δ ⊢ t ∈_) (sym (weaken-/-∷ _)) t∈a/σ ∷
subst (Pointwise (_⊢_∈_ Δ) σ) (map-weaken-⊙-∷ _ t σ) (toPointwise σ∈Γ)
-- Look up an entry in a typed substitution.
lookup : ∀ {m n Δ} {σ : Sub Term m n} {Γ} →
Δ ⊢/ σ ∈ Γ → (x : Fin m) → Δ ⊢ Vec.lookup σ x ∈ C.lookup Γ x / σ
lookup {_} {_} {Δ} {σ} {Γ} σ∈Γ x =
subst (Δ ⊢ _ ∈_) (lookup-map x _ (C.toVec Γ))
(PW.lookup (toPointwise σ∈Γ) x)
-- Extension by a typed term.
∈-/∷ : ∀ {m n Δ} {σ : Sub Term m n} {Γ t a b} →
(b ∷ Δ) ⊢ t ∈ C.weaken (a / σ) → Δ ⊢/ σ ∈ Γ →
b ∷ Δ ⊢/ t E./∷ σ ∈ a ∷ Γ
∈-/∷ t∈a/σ σ∈Γ =
subst (_⊢_∈_ _ _) (/-map-weaken _ _) t∈a/σ ∷ /∈-weaken b-wf σ∈Γ
where
b∷Δ-wf = ∈-wf t∈a/σ
b-wf = wf-∷₁ b∷Δ-wf
-- Operations on abstract typed substitutions that require simple term
-- substitutions
record TypedSimple {t ℓ} {Type : Pred ℕ t} {Term : Pred ℕ lzero}
(typedSub : TypedSub Type Term ℓ)
: Set (lsuc (t ⊔ ℓ)) where
-- Operations on abstract typed substitutions that require weakening
-- of terms
field typedWeakenOps : TypedWeakenOps typedSub
open TypedWeakenOps typedWeakenOps public
open TypedSub typedSub
open ContextFormation _⊢_wf using (_wf; _⊢_wfExt; []; _∷_; wf-∷₂)
open Application typeTermApplication using (_/_)
private
module S = Simple termSimple
module C = WeakenOps typeExtension
open S using (_↑; _↑⋆_; id; wk; sub)
-- Context operations that require term substitutions in types.
open SubstOps typeTermApplication termSimple using (_E/_)
field
-- Takes variables to well-typed Tms.
∈-var : ∀ {n} {Γ : Ctx Type n} →
∀ x → Γ wf → Γ ⊢ S.var x ∈ C.lookup Γ x
-- Well-formedness of types implies well-formedness of contexts.
wf-wf : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → Γ wf
-- The identity substitution is an identity
id-vanishes : ∀ {n} (a : Type n) → a / id ≡ a
-- Lifting.
∈-↑ : ∀ {m n Δ} {σ : Sub Term m n} {a Γ} →
Δ ⊢ a / σ wf → Δ ⊢/ σ ∈ Γ → a / σ ∷ Δ ⊢/ σ ↑ ∈ a ∷ Γ
∈-↑ a/σ-wf σ∈Γ = ∈-/∷ (∈-var zero (a/σ-wf ∷ (wf-wf a/σ-wf))) σ∈Γ
∈-↑⋆ : ∀ {k m n Δ} {E : CtxExt Type m k} {σ : Sub Term m n} {Γ} →
Δ ⊢ (E E/ σ) wfExt → Δ ⊢/ σ ∈ Γ → (E E/ σ) ++ Δ ⊢/ σ ↑⋆ k ∈ (E ++ Γ)
∈-↑⋆ {E = []} [] σ∈Γ = σ∈Γ
∈-↑⋆ {E = a ∷ E} {Δ} {Γ} (a/σ↑⋆1+k-wf ∷ E/σ-wfExt) σ∈Γ =
∈-↑ {Γ = E ++ Γ} a/σ↑⋆1+k-wf (∈-↑⋆ {E = E} E/σ-wfExt σ∈Γ)
-- The identity substitution.
∈-id : ∀ {n} {Γ : Ctx Type n} → Γ wf → Γ ⊢/ id ∈ Γ
∈-id [] = [] []
∈-id (a-wf ∷ Γ-wf) =
∈-/∷ (subst (_ ⊢ S.var zero ∈_) (sym (cong C.weaken (id-vanishes _)))
(∈-var zero (a-wf ∷ Γ-wf)))
(∈-id Γ-wf)
-- Weakening.
∈-wk : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → a ∷ Γ ⊢/ wk ∈ Γ
∈-wk a-wf = /∈-weaken a-wf (∈-id (wf-wf a-wf))
-- A substitution which only replaces the first variable.
∈-sub : ∀ {n} {Γ : Ctx Type n} {t a} → Γ ⊢ t ∈ a → Γ ⊢/ sub t ∈ a ∷ Γ
∈-sub t∈a =
(subst (_ ⊢ _ ∈_) (sym (id-vanishes _)) t∈a) ∷ (∈-id (∈-wf t∈a))
-- A substitution which only changes the type of the first variable.
∈-tsub : ∀ {n} {Γ : Ctx Type n} {a b} → b ∷ Γ ⊢ S.var zero ∈ C.weaken a →
b ∷ Γ ⊢/ id ∈ a ∷ Γ
∈-tsub z∈a =
∈-/∷ (subst (_ ⊢ _ ∈_) (cong C.weaken (sym (id-vanishes _))) z∈a)
(∈-id (wf-∷₂ (∈-wf z∈a)))
-- Application of typed substitutions to typed terms.
record TypedApplication {t ℓ} {Type : Pred ℕ t} {Term : Pred ℕ lzero}
(typedSub : TypedSub Type Term ℓ)
: Set (lsuc (t ⊔ ℓ)) where
open TypedSub typedSub
open Application typeTermApplication using (_/_)
-- Applications of term substitutions to terms
field termTermApplication : Application Term Term
private
module C = WeakenOps typeExtension
module A = Application termTermApplication
open A using (_⊙_)
field
-- Post-application of substitutions to things.
∈-/ : ∀ {m n Δ} {σ : Sub Term m n} {Γ t a} →
Γ ⊢ t ∈ a → Δ ⊢/ σ ∈ Γ → Δ ⊢ t A./ σ ∈ a / σ
-- Application of composed substitutions is repeated application.
/-⊙ : ∀ {m n k} {σ : Sub Term m n} {ρ : Sub Term n k} a →
a / σ ⊙ ρ ≡ a / σ / ρ
-- Reverse composition. (Fits well with post-application.)
∈-⊙ : ∀ {m n k Δ Γ E} {σ : Sub Term m n} {ρ : Sub Term n k} →
Δ ⊢/ σ ∈ Γ → E ⊢/ ρ ∈ Δ → E ⊢/ σ ⊙ ρ ∈ Γ
∈-⊙ ([] Δ-wf) ρ∈Δ = [] (/∈-wf ρ∈Δ)
∈-⊙ (t∈a/σ ∷ σ∈Γ) ρ∈Δ =
(subst (_ ⊢ _ ∈_) (sym (/-⊙ _)) (∈-/ t∈a/σ ρ∈Δ)) ∷ (∈-⊙ σ∈Γ ρ∈Δ)
------------------------------------------------------------------------
-- Instantiations and code for facilitating instantiations
-- Abstract typed liftings from Term₁ to Term₂ terms
record LiftTyped {t ℓ₁ ℓ₂} {Type : Pred ℕ t} {Term₁ Term₂ : Pred ℕ lzero}
(typeTermSubst : TermLikeSubst Type Term₂)
(_⊢_wf : Wf Type Type ℓ₁)
(_⊢₁_∈_ : Typing Type Term₁ Type ℓ₁)
(_⊢₂_∈_ : Typing Type Term₂ Type ℓ₂)
: Set (lsuc (t ⊔ ℓ₁ ⊔ ℓ₂)) where
field rawLift : Lift Term₁ Term₂ -- Lifting between raw terms
open TermLikeSubst typeTermSubst using (app; weaken; termSubst)
private module S₂ = TermSubst termSubst
typedSub : TypedSub Type Term₁ ℓ₁
typedSub = record
{ _⊢_wf = _⊢_wf
; _⊢_∈_ = _⊢₁_∈_
; typeExtension = record { weaken = weaken }
; typeTermApplication = record { _/_ = app rawLift }
; termSimple = Lift.simple rawLift
}
open TypedSub typedSub public hiding (_⊢_wf; _⊢_∈_; typeExtension)
-- Simple typed Term₁ substitutions.
field typedSimple : TypedSimple typedSub
open Lift rawLift public
open Application typeTermApplication public
open TypedSimple typedSimple public hiding (_⊢_∈_)
field
-- Lifts well-typed Term₁-terms to well-typed Term₂-terms.
∈-lift : ∀ {n} {Γ : Ctx Type n} {t a} → Γ ⊢₁ t ∈ a → Γ ⊢₂ (lift t) ∈ a
-- A usefule lemma: lifting preserves variables.
lift-var : ∀ {n} (x : Fin n) → lift (var x) ≡ S₂.var x
-- Abstract variable typings.
module VarTyping {t ℓ} {Type : Pred ℕ t}
(_⊢_wf : Wf Type Type (t ⊔ ℓ))
(typeExtension : Extension Type) where
open ContextFormation _⊢_wf
open WeakenOps typeExtension
infix 4 _⊢Var_∈_
-- Abstract reflexive variable typings.
data _⊢Var_∈_ {n} (Γ : Ctx Type n) : Fin n → Type n → Set (t ⊔ ℓ) where
∈-var : ∀ x → Γ wf → Γ ⊢Var x ∈ lookup Γ x
-- Variable typing together with type formation forms
-- a type assignment system.
-- Abstract typed variable substitutions (renamings).
record TypedVarSubst {t} (Type : Pred ℕ t) ℓ : Set (lsuc (t ⊔ ℓ)) where
infix 4 _⊢_wf
field
_⊢_wf : Wf Type Type (t ⊔ ℓ) -- Type formation judgment
-- Generic application of renamings to raw types
typeExtension : Extension Type
typeVarApplication : Application Type Fin
open VarTyping {t} {t ⊔ ℓ} _⊢_wf typeExtension public
open WeakenOps typeExtension using (weaken; toVec)
open Application typeVarApplication using (_/_)
open ContextFormation _⊢_wf using (_wf; _∷_)
open VarSubst using (id; wk; _⊙_)
field
-- Context validity of type formation.
wf-wf : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → Γ wf
-- Lemmas about renamings in types
/-wk : ∀ {n} {a : Type n} → a / wk ≡ weaken a
id-vanishes : ∀ {n} (a : Type n) → a / id ≡ a
/-⊙ : ∀ {m n k} {ρ₁ : Sub Fin m n} {ρ₂ : Sub Fin n k} a →
a / ρ₁ ⊙ ρ₂ ≡ a / ρ₁ / ρ₂
-- Typed renamings and associated lemmas.
typedRenaming : TypedSub Type Fin (t ⊔ ℓ)
typedRenaming = record
{ _⊢_wf = _⊢_wf
; _⊢_∈_ = _⊢Var_∈_
; typeExtension = typeExtension
; typeTermApplication = typeVarApplication
; termSimple = VarSubst.simple
}
appLemmas : AppLemmas Type Fin
appLemmas = record
{ application = typeVarApplication
; lemmas₄ = VarLemmas.lemmas₄
; id-vanishes = id-vanishes
; /-⊙ = /-⊙
}
weakenLemmas : WeakenLemmas Type Fin
weakenLemmas = record
{ appLemmas = appLemmas
; /-wk = /-wk
}
open AppLemmas appLemmas using (/-weaken)
open WeakenLemmas weakenLemmas using (weaken-/-∷)
-- Simple typed renamings.
typedSimple : TypedSimple typedRenaming
typedSimple = record
{ typedWeakenOps = record
{ ∈-weaken = ∈-weaken
; ∈-wf = ∈-wf
; /-wk = /-wk
; /-weaken = /-weaken
; weaken-/-∷ = weaken-/-∷
}
; ∈-var = ∈-var
; wf-wf = wf-wf
; id-vanishes = id-vanishes
}
where
∈-weaken : ∀ {n} {Γ : Ctx Type n} {x a b} →
Γ ⊢ a wf → Γ ⊢Var x ∈ b →
a ∷ Γ ⊢Var suc x ∈ weaken b
∈-weaken {_} {Γ} a-wf (∈-var x Γ-wf) =
subst (_ ∷ Γ ⊢Var _ ∈_) (lookup-map x weaken (toVec Γ))
(∈-var (suc x) (a-wf ∷ Γ-wf))
∈-wf : ∀ {n} {Γ : Ctx Type n} {x a} → Γ ⊢Var x ∈ a → Γ wf
∈-wf (∈-var x Γ-wf) = Γ-wf
open TypedSub typedRenaming public
renaming (_⊢/_∈_ to _⊢/Var_∈_) hiding (_⊢_wf; _/_)
open TypedSimple typedSimple public
hiding (typeExtension; _/_; _⊢_∈_; ∈-var; _⊢_wf; wf-wf; /-wk; id-vanishes)
-- Applications of typed renamings to typed variables
typedApplication : TypedApplication typedRenaming
typedApplication = record
{ termTermApplication = VarSubst.application
; ∈-/ = ∈-/
; /-⊙ = /-⊙
}
where
∈-/ : ∀ {m n Δ} {ρ : Sub Fin m n} {Γ x a} →
Γ ⊢Var x ∈ a → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var Vec.lookup ρ x ∈ a / ρ
∈-/ (∈-var x Γ-wf) ρ∈Γ = lookup ρ∈Γ x
open TypedApplication typedApplication public
using (_/_; ∈-/; ∈-⊙)
-- Abstract typed term substitutions.
record TypedTermSubst {t h} (Type : Pred ℕ t) (Term : Pred ℕ lzero) ℓ
(Helpers : ∀ {T} → Lift T Term → Set h)
: Set (lsuc (t ⊔ ℓ) ⊔ h) where
infix 4 _⊢_∈_ _⊢_wf
field
_⊢_wf : Wf Type Type (t ⊔ ℓ) -- Type formation judgment
_⊢_∈_ : Typing Type Term Type (t ⊔ ℓ) -- Typing judgment
-- Lemmas about term substitutions in Types
termLikeLemmas : TermLikeLemmas Type Term
private
module Tp = TermLikeLemmas termLikeLemmas
module Tm = TermLemmas Tp.termLemmas
module S = TermSubst Tm.termSubst
typeExtension : Extension Type
typeExtension = record { weaken = Tp.weaken }
private module C = WeakenOps typeExtension
typedSub : TypedSub Type Term (t ⊔ ℓ)
typedSub = record
{ _⊢_wf = _⊢_wf
; _⊢_∈_ = _⊢_∈_
; typeExtension = typeExtension
; termSimple = S.simple
; typeTermApplication = Tp.termApplication
}
open ContextFormation _⊢_wf using (_wf)
field
-- Custom helper lemmas used to implement application of typed
-- substitutions
varHelpers : Helpers S.varLift -- lemmas about renamings
termHelpers : Helpers S.termLift -- lemmas about substitutions
-- Context validity of type formation and typing.
wf-wf : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → Γ wf
∈-wf : ∀ {n} {Γ : Ctx Type n} {t a} → Γ ⊢ t ∈ a → Γ wf
-- Takes variables to well-typed Tms.
∈-var : ∀ {n} {Γ : Ctx Type n} →
∀ x → Γ wf → Γ ⊢ S.var x ∈ C.lookup Γ x
-- Generic application of typed Term′ substitutions to typed Terms.
typedApp : ∀ {Term′ : Pred ℕ lzero}
(_⊢′_∈_ : Typing Type Term′ Type (t ⊔ ℓ))
(liftTyped : LiftTyped Tp.termLikeSubst _⊢_wf _⊢′_∈_ _⊢_∈_) →
let open LiftTyped liftTyped using (rawLift; _⊢/_∈_; _/_)
in (helpers : Helpers rawLift) →
∀ {m n Γ Δ t a} {σ : Sub Term′ m n} →
Γ ⊢ t ∈ a → Δ ⊢/ σ ∈ Γ → Δ ⊢ S.app rawLift t σ ∈ a / σ
typedVarSubst : TypedVarSubst Type (t ⊔ ℓ)
typedVarSubst = record
{ _⊢_wf = _⊢_wf
; typeVarApplication = Tp.varApplication
; typeExtension = typeExtension
; wf-wf = wf-wf
; /-wk = refl
; id-vanishes = id-vanishes
; /-⊙ = /-⊙
}
where
open LiftSubLemmas Tp.varLiftSubLemmas using (liftAppLemmas)
open LiftAppLemmas liftAppLemmas using (id-vanishes; /-⊙)
open TypedVarSubst typedVarSubst public
using (_⊢Var_∈_; _⊢/Var_∈_; typedRenaming)
renaming
( typedSimple to varTypedSimple
; ∈-var to Var∈-var
; ∈-↑ to Var∈-↑
; ∈-id to Var∈-id
; ∈-wk to Var∈-wk
; ∈-sub to Var∈-sub
; ∈-tsub to Var∈-tsub
)
varLiftTyped : LiftTyped Tp.termLikeSubst _⊢_wf _⊢Var_∈_ _⊢_∈_
varLiftTyped = record
{ rawLift = S.varLift
; typedSimple = varTypedSimple
; ∈-lift = ∈-lift
; lift-var = λ _ → refl
}
where
∈-lift : ∀ {n Γ x} {a : Type n} → Γ ⊢Var x ∈ a → Γ ⊢ S.var x ∈ a
∈-lift (Var∈-var x Γ-wf) = ∈-var x Γ-wf
∈-/Var : ∀ {m n} {Γ t a} {ρ : Sub Fin m n} {Δ} →
Δ ⊢ t ∈ a → Γ ⊢/Var ρ ∈ Δ → Γ ⊢ t S./Var ρ ∈ a Tp./Var ρ
∈-/Var = typedApp _⊢Var_∈_ varLiftTyped varHelpers
-- Operations on well-formed contexts that require weakening of
-- well-formedness judgments.
-- Simple typed substitutions.
typedSimple : TypedSimple typedSub
typedSimple = record
{ typedWeakenOps = record
{ ∈-weaken = λ a-wf t∈b → ∈-/Var t∈b (Var∈-wk a-wf)
; ∈-wf = ∈-wf
; /-wk = Tp./-wk
; /-weaken = Tp./-weaken
; weaken-/-∷ = Tp.weaken-/-∷
}
; ∈-var = ∈-var
; wf-wf = wf-wf
; id-vanishes = Tp.id-vanishes
}
termLiftTyped : LiftTyped Tp.termLikeSubst _⊢_wf _⊢_∈_ _⊢_∈_
termLiftTyped = record
{ rawLift = S.termLift
; typedSimple = typedSimple
; ∈-lift = Fun.id
; lift-var = λ _ → refl
}
-- Applications of typed term substitutions to typed terms
typedApplication : TypedApplication typedSub
typedApplication = record
{ termTermApplication = S.application
; ∈-/ = typedApp _⊢_∈_ termLiftTyped termHelpers
; /-⊙ = Tp./-⊙
}
open TypedSub typedSub public hiding (typeExtension)
open TypedSimple typedSimple public hiding
( typeExtension; ∈-weaken; ∈-wf; ∈-var; wf-wf
; /-wk; /-weaken; weaken-/-∷; id-vanishes
)
open TypedApplication typedApplication public hiding (/-⊙)
| {
"alphanum_fraction": 0.5370818024,
"avg_line_length": 32.1180124224,
"ext": "agda",
"hexsha": "45d8c37f0c97be1135d1e6cca438e3c5a2d51057",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/Data/Fin/Substitution/Typed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/Data/Fin/Substitution/Typed.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/Data/Fin/Substitution/Typed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7454,
"size": 20684
} |
-- {-# OPTIONS --verbose tc.records.ifs:15 #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.term.args.ifs:15 #-}
-- {-# OPTIONS --verbose cta.record.ifs:15 #-}
-- {-# OPTIONS --verbose tc.section.apply:25 #-}
-- {-# OPTIONS --verbose tc.mod.apply:100 #-}
-- {-# OPTIONS --verbose scope.rec:15 #-}
-- {-# OPTIONS --verbose tc.rec.def:15 #-}
module 07-subclasses where
module Imports where
module L where
open import Agda.Primitive public
using (Level; _⊔_) renaming (lzero to zero; lsuc to suc)
-- extract from Function
id : ∀ {a} {A : Set a} → A → A
id x = x
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
-- extract from Data.Bool
infixr 5 _∨_
data Bool : Set where
true : Bool
false : Bool
not : Bool → Bool
not true = false
not false = true
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
-- extract from Relation.Nullary.Decidable and friends
infix 3 ¬_
data ⊥ : Set where
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ P = P → ⊥
data Dec {p} (P : Set p) : Set p where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool
⌊ yes _ ⌋ = true
⌊ no _ ⌋ = false
-- extract from Relation.Binary.PropositionalEquality
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
-- extract from Data.Nat
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
_≟_ : (x y : ℕ) → Dec (x ≡ y)
zero ≟ zero = yes refl
suc m ≟ suc n with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n | no prf = no (prf ∘ cong pred)
zero ≟ suc n = no λ()
suc m ≟ zero = no λ()
open Imports
-- Begin of actual example!
record Eq (A : Set) : Set where
field eq : A → A → Bool
primEqBool : Bool → Bool → Bool
primEqBool true = id
primEqBool false = not
eqBool : Eq Bool
eqBool = record { eq = primEqBool }
primEqNat : ℕ → ℕ → Bool
primEqNat a b = ⌊ a ≟ b ⌋
primLtNat : ℕ → ℕ → Bool
primLtNat 0 _ = true
primLtNat (suc a) (suc b) = primLtNat a b
primLtNat _ _ = false
neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool
neq a b = not $ eq a b
where open Eq {{...}}
record Ord₁ (A : Set) : Set where
field _<_ : A → A → Bool
eqA : Eq A
ord₁Nat : Ord₁ ℕ
ord₁Nat = record { _<_ = primLtNat; eqA = eqNat }
where eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
record Ord₂ {A : Set} (eqA : Eq A) : Set where
field _<_ : A → A → Bool
ord₂Nat : Ord₂ (record { eq = primEqNat })
ord₂Nat = record { _<_ = primLtNat }
record Ord₃ (A : Set) : Set where
field _<_ : A → A → Bool
eqA : Eq A
open Eq eqA public
ord₃Nat : Ord₃ ℕ
ord₃Nat = record { _<_ = primLtNat; eqA = eqNat }
where eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
record Ord₄ {A : Set} (eqA : Eq A) : Set where
field _<_ : A → A → Bool
open Eq eqA public
ord₄Nat : Ord₄ (record { eq = primEqNat })
ord₄Nat = record { _<_ = primLtNat }
module test₁ where
open Ord₁ {{...}}
open Eq {{...}}
eqNat : Eq _
eqNat = eqA
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {{ ordA : Ord₁ A }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
where
eqA' : Eq _
eqA' = eqA
module test₂ where
open Ord₂ {{...}}
open Eq {{...}}
eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₂ eqA }} → A → A → Bool
test₄ {eqA = _} a b = a < b ∨ eq a b
module test₃ where
open Ord₃ {{...}}
open Eq {{...}} renaming (eq to eq')
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq' true false
test₄ : {A : Set} → {{ ordA : Ord₃ A }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
module test₄ where
open Ord₄ {{...}}
open Eq {{...}} renaming (eq to eq')
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq' true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool
test₄ a b = a < b ∨ eq a b
module test₄′ where
open Ord₄ {{...}} hiding (eq)
open Eq {{...}}
eqNat : Eq ℕ
eqNat = record { eq = primEqNat }
test₁ = 5 < 3
test₂ = eq 5 3
test₃ = eq true false
test₄ : {A : Set} → {eqA : Eq A} → {{ ordA : Ord₄ eqA }} → A → A → Bool
test₄ {eqA = _} a b = a < b ∨ eq a b
| {
"alphanum_fraction": 0.5217391304,
"avg_line_length": 22.1320754717,
"ext": "agda",
"hexsha": "6474f6c404607a6b2f486a6e58fd8e5ae0722fbf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/instance-arguments/07-subclasses.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/instance-arguments/07-subclasses.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/instance-arguments/07-subclasses.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 1894,
"size": 4692
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Field.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Relation.Nullary
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
hiding (_$_)
open import Cubical.Algebra.CommRing
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsField {R : Type ℓ}
(0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where
constructor isfield
field
isCommRing : IsCommRing 0r 1r _+_ _·_ -_
hasInverse : (x : R) → ¬ x ≡ 0r → Σ[ y ∈ R ] x · y ≡ 1r
0≢1 : ¬ 0r ≡ 1r
open IsCommRing isCommRing public
_[_]⁻¹ : (x : R) → ¬ x ≡ 0r → R
x [ ¬x≡0 ]⁻¹ = hasInverse x ¬x≡0 .fst
·⁻¹≡1 : (x : R) (≢0 : ¬ x ≡ 0r) → x · (x [ ≢0 ]⁻¹) ≡ 1r
·⁻¹≡1 x ¬x≡0 = hasInverse x ¬x≡0 .snd
record FieldStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor fieldstr
field
0r : A
1r : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
isField : IsField 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsField isField public
Field : ∀ ℓ → Type (ℓ-suc ℓ)
Field ℓ = TypeWithStr ℓ FieldStr
isSetField : (R : Field ℓ) → isSet ⟨ R ⟩
isSetField R = R .snd .FieldStr.isField .IsField.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
makeIsField : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R}
{_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R}
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-comm : (x y : R) → x · y ≡ y · x)
(·⁻¹≡1 : (x : R) (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r)
(0≢1 : ¬ (0r ≡ 1r))
→ IsField 0r 1r _+_ _·_ -_
makeIsField {R = R} {0r = 0r} {1r = 1r} {_+_ = _+_} {_·_ = _·_} {_[_]⁻¹ = _[_]⁻¹}
is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1 =
isfield (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) ·-inv 0≢1
where
·-inv : (x : R) → ¬ x ≡ 0r → Σ[ y ∈ R ] x · y ≡ 1r
·-inv x ¬x≡0 = x [ ¬x≡0 ]⁻¹ , ·⁻¹≡1 x ¬x≡0
makeField : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R)
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-comm : (x y : R) → x · y ≡ y · x)
(·⁻¹≡1 : (x : R) (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r)
(0≢1 : ¬ (0r ≡ 1r))
→ Field ℓ
makeField 0r 1r _+_ _·_ -_ _[_]⁻¹ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1 =
_ , fieldstr _ _ _ _ _ (makeIsField is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1)
module _ (R : CommRing ℓ) where
open CommRingStr (R .snd)
makeFieldFromCommRing :
(hasInv : (x : R .fst) → ¬ x ≡ 0r → Σ[ y ∈ R .fst ] x · y ≡ 1r)
(0≢1 : ¬ 0r ≡ 1r)
→ Field ℓ
makeFieldFromCommRing hasInv 0≢1 .fst = R .fst
makeFieldFromCommRing hasInv 0≢1 .snd = fieldstr _ _ _ _ _ (isfield isCommRing hasInv 0≢1)
FieldStr→CommRingStr : {A : Type ℓ} → FieldStr A → CommRingStr A
FieldStr→CommRingStr (fieldstr _ _ _ _ _ H) = commringstr _ _ _ _ _ (IsField.isCommRing H)
Field→CommRing : Field ℓ → CommRing ℓ
Field→CommRing (_ , fieldstr _ _ _ _ _ H) = _ , commringstr _ _ _ _ _ (IsField.isCommRing H)
record IsFieldHom {A : Type ℓ} {B : Type ℓ'} (R : FieldStr A) (f : A → B) (S : FieldStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module R = FieldStr R
module S = FieldStr S
field
pres0 : f R.0r ≡ S.0r
pres1 : f R.1r ≡ S.1r
pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y
pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y
pres- : (x : A) → f (R.- x) ≡ S.- (f x)
unquoteDecl IsFieldHomIsoΣ = declareRecordIsoΣ IsFieldHomIsoΣ (quote IsFieldHom)
FieldHom : (R : Field ℓ) (S : Field ℓ') → Type (ℓ-max ℓ ℓ')
FieldHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsFieldHom (R .snd) f (S .snd)
IsFieldEquiv : {A : Type ℓ} {B : Type ℓ'}
(R : FieldStr A) (e : A ≃ B) (S : FieldStr B) → Type (ℓ-max ℓ ℓ')
IsFieldEquiv R e S = IsFieldHom R (e .fst) S
FieldEquiv : (R : Field ℓ) (S : Field ℓ') → Type (ℓ-max ℓ ℓ')
FieldEquiv R S = Σ[ e ∈ (R .fst ≃ S .fst) ] IsFieldEquiv (R .snd) e (S .snd)
_$_ : {R S : Field ℓ} → (φ : FieldHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩
φ $ x = φ .fst x
FieldEquiv→FieldHom : {A B : Field ℓ} → FieldEquiv A B → FieldHom A B
FieldEquiv→FieldHom (e , eIsHom) = e .fst , eIsHom
isPropIsField : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
→ isProp (IsField 0r 1r _+_ _·_ -_)
isPropIsField {R = R} 0r 1r _+_ _·_ -_ H@(isfield RR RC RD) (isfield SR SC SD) =
λ i → isfield (isPropIsCommRing _ _ _ _ _ RR SR i)
(isPropInv RC SC i) (isProp¬ _ RD SD i)
where
isSetR : isSet _
isSetR = RR .IsCommRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropInv : isProp ((x : _) → ¬ x ≡ 0r → Σ[ y ∈ R ] x · y ≡ 1r)
isPropInv = isPropΠ2 (λ x _ → Units.inverseUniqueness (Field→CommRing (_ , fieldstr _ _ _ _ _ H)) x)
𝒮ᴰ-Field : DUARel (𝒮-Univ ℓ) FieldStr ℓ
𝒮ᴰ-Field =
𝒮ᴰ-Record (𝒮-Univ _) IsFieldEquiv
(fields:
data[ 0r ∣ null ∣ pres0 ]
data[ 1r ∣ null ∣ pres1 ]
data[ _+_ ∣ bin ∣ pres+ ]
data[ _·_ ∣ bin ∣ pres· ]
data[ -_ ∣ autoDUARel _ _ ∣ pres- ]
prop[ isField ∣ (λ _ _ → isPropIsField _ _ _ _ _) ])
where
open FieldStr
open IsFieldHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
FieldPath : (R S : Field ℓ) → FieldEquiv R S ≃ (R ≡ S)
FieldPath = ∫ 𝒮ᴰ-Field .UARel.ua
uaField : {A B : Field ℓ} → FieldEquiv A B → A ≡ B
uaField {A = A} {B = B} = equivFun (FieldPath A B)
| {
"alphanum_fraction": 0.5152327221,
"avg_line_length": 33.2863849765,
"ext": "agda",
"hexsha": "21b9cbeca30d2fbbe6057316928e4c26f5997a39",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Field/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Field/Base.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Field/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3060,
"size": 7090
} |
{-# OPTIONS --without-K --safe #-}
open import Agda.Builtin.Bool
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Relation.Nullary
open import Data.Rational.Unnormalised.Base using (ℚᵘ; 0ℚᵘ; _≃_)
open import Data.Rational.Unnormalised.Properties using (+-*-commutativeRing; _≃?_)
isZero? : ∀ (p : ℚᵘ) -> Maybe (0ℚᵘ ≃ p)
isZero? p with 0ℚᵘ ≃? p
... | .true because ofʸ p₁ = just p₁
... | .false because ofⁿ ¬p = nothing
open import Tactic.RingSolver.Core.AlmostCommutativeRing using (fromCommutativeRing)
open import Tactic.RingSolver.NonReflective (fromCommutativeRing +-*-commutativeRing isZero?) public
| {
"alphanum_fraction": 0.7436305732,
"avg_line_length": 39.25,
"ext": "agda",
"hexsha": "7c7105b9f9dd9d53b6edb027eedcb201d67bc38c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "z-murray/AnalysisAgda",
"max_forks_repo_path": "NonReflectiveQ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "z-murray/AnalysisAgda",
"max_issues_repo_path": "NonReflectiveQ.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "z-murray/AnalysisAgda",
"max_stars_repo_path": "NonReflectiveQ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 208,
"size": 628
} |
------------------------------------------------------------------------
-- Conatural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --sized-types #-}
open import Equality
module Conat {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (_+_; _∸_; _*_)
open import Prelude.Size
open import Function-universe eq hiding (_∘_)
open import Nat eq as Nat using (_≤_)
------------------------------------------------------------------------
-- The type
-- Conats.
mutual
data Conat (i : Size) : Type where
zero : Conat i
suc : Conat′ i → Conat i
record Conat′ (i : Size) : Type where
coinductive
field
force : {j : Size< i} → Conat j
open Conat′ public
------------------------------------------------------------------------
-- Bisimilarity
-- Bisimilarity is only defined for fully defined conatural numbers
-- (of size ∞).
mutual
infix 4 [_]_∼_ [_]_∼′_
data [_]_∼_ (i : Size) : Conat ∞ → Conat ∞ → Type where
zero : [ i ] zero ∼ zero
suc : ∀ {m n} → [ i ] force m ∼′ force n → [ i ] suc m ∼ suc n
record [_]_∼′_ (i : Size) (m n : Conat ∞) : Type where
coinductive
field
force : {j : Size< i} → [ j ] m ∼ n
open [_]_∼′_ public
-- Bisimilarity is an equivalence relation.
reflexive-∼ : ∀ {i} n → [ i ] n ∼ n
reflexive-∼ zero = zero
reflexive-∼ (suc n) = suc λ { .force → reflexive-∼ (force n) }
symmetric-∼ : ∀ {i m n} → [ i ] m ∼ n → [ i ] n ∼ m
symmetric-∼ zero = zero
symmetric-∼ (suc p) = suc λ { .force → symmetric-∼ (force p) }
transitive-∼ : ∀ {i m n o} → [ i ] m ∼ n → [ i ] n ∼ o → [ i ] m ∼ o
transitive-∼ zero zero = zero
transitive-∼ (suc p) (suc q) =
suc λ { .force → transitive-∼ (force p) (force q) }
-- Equational reasoning combinators.
infix -1 finally-∼ _∎∼
infixr -2 step-∼ step-≡∼ _≡⟨⟩∼_
_∎∼ : ∀ {i} n → [ i ] n ∼ n
_∎∼ = reflexive-∼
-- For an explanation of why step-∼ is defined in this way, see
-- Equality.step-≡.
step-∼ : ∀ {i} m {n o} → [ i ] n ∼ o → [ i ] m ∼ n → [ i ] m ∼ o
step-∼ _ n∼o m∼n = transitive-∼ m∼n n∼o
syntax step-∼ m n∼o m∼n = m ∼⟨ m∼n ⟩ n∼o
step-≡∼ : ∀ {i} m {n o} → [ i ] n ∼ o → m ≡ n → [ i ] m ∼ o
step-≡∼ {i} _ n∼o m≡n = subst ([ i ]_∼ _) (sym m≡n) n∼o
syntax step-≡∼ m n∼o m≡n = m ≡⟨ m≡n ⟩∼ n∼o
_≡⟨⟩∼_ : ∀ {i} m {n} → [ i ] m ∼ n → [ i ] m ∼ n
_ ≡⟨⟩∼ m∼n = m∼n
finally-∼ : ∀ {i} m n → [ i ] m ∼ n → [ i ] m ∼ n
finally-∼ _ _ m∼n = m∼n
syntax finally-∼ m n m∼n = m ∼⟨ m∼n ⟩∎ n ∎∼
------------------------------------------------------------------------
-- Some operations
-- The largest conatural number.
infinity : ∀ {i} → Conat i
infinity = suc λ { .force → infinity }
mutual
-- Turns natural numbers into conatural numbers.
⌜_⌝ : ∀ {i} → ℕ → Conat i
⌜ zero ⌝ = zero
⌜ suc n ⌝ = suc ⌜ n ⌝′
⌜_⌝′ : ∀ {i} → ℕ → Conat′ i
force ⌜ n ⌝′ = ⌜ n ⌝
-- ⌜_⌝ maps equal numbers to bisimilar numbers.
⌜⌝-cong : ∀ {i m n} → m ≡ n → [ i ] ⌜ m ⌝ ∼ ⌜ n ⌝
⌜⌝-cong {m = m} {n} m≡n =
⌜ m ⌝ ≡⟨ cong ⌜_⌝ m≡n ⟩∼
⌜ n ⌝ ∎∼
-- Truncated predecessor.
pred : ∀ {i} {j : Size< i} → Conat i → Conat j
pred zero = zero
pred (suc n) = force n
-- The pred function preserves bisimilarity.
pred-cong :
∀ {n₁ n₂ i} {j : Size< i} →
[ i ] n₁ ∼ n₂ → [ j ] pred n₁ ∼ pred n₂
pred-cong zero = zero
pred-cong (suc p) = force p
-- ⌜_⌝ is homomorphic with respect to pred.
⌜⌝-pred : ∀ n {i} → [ i ] ⌜ Nat.pred n ⌝ ∼ pred ⌜ n ⌝
⌜⌝-pred zero = zero ∎∼
⌜⌝-pred (suc n) = ⌜ n ⌝ ∎∼
-- Addition.
infixl 6 _+_
_+_ : ∀ {i} → Conat i → Conat i → Conat i
zero + n = n
suc m + n = suc λ { .force → force m + n }
-- Zero is a left and right identity of addition (up to bisimilarity).
+-left-identity : ∀ {i} n → [ i ] zero + n ∼ n
+-left-identity = reflexive-∼
+-right-identity : ∀ {i} n → [ i ] n + zero ∼ n
+-right-identity zero = zero
+-right-identity (suc n) = suc λ { .force → +-right-identity (force n) }
-- Infinity is a left and right zero of addition (up to bisimilarity).
+-left-zero : ∀ {i n} → [ i ] infinity + n ∼ infinity
+-left-zero = suc λ { .force → +-left-zero }
+-right-zero : ∀ {i} n → [ i ] n + infinity ∼ infinity
+-right-zero zero = reflexive-∼ _
+-right-zero (suc n) = suc λ { .force → +-right-zero (force n) }
-- Addition is associative.
+-assoc : ∀ m {n o i} → [ i ] m + (n + o) ∼ (m + n) + o
+-assoc zero = reflexive-∼ _
+-assoc (suc m) = suc λ { .force → +-assoc (force m) }
mutual
-- The successor constructor can be moved from one side of _+_ to the
-- other.
suc+∼+suc : ∀ {m n i} → [ i ] suc m + force n ∼ force m + suc n
suc+∼+suc {m} {n} =
suc m + force n ∼⟨ (suc λ { .force → reflexive-∼ _ }) ⟩
⌜ 1 ⌝ + force m + force n ∼⟨ 1++∼+suc _ ⟩∎
force m + suc n ∎∼
1++∼+suc : ∀ m {n i} → [ i ] ⌜ 1 ⌝ + m + force n ∼ m + suc n
1++∼+suc zero = suc λ { .force → reflexive-∼ _ }
1++∼+suc (suc _) = suc λ { .force → suc+∼+suc }
-- Addition is commutative.
+-comm : ∀ m {n i} → [ i ] m + n ∼ n + m
+-comm zero {n} =
zero + n ∼⟨ symmetric-∼ (+-right-identity _) ⟩∎
n + zero ∎∼
+-comm (suc m) {n} =
suc m + n ∼⟨ (suc λ { .force → +-comm (force m) }) ⟩
⌜ 1 ⌝ + n + force m ∼⟨ 1++∼+suc _ ⟩∎
n + suc m ∎∼
-- Addition preserves bisimilarity.
infixl 6 _+-cong_
_+-cong_ :
∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ∼ m₂ → [ i ] n₁ ∼ n₂ → [ i ] m₁ + n₁ ∼ m₂ + n₂
zero +-cong q = q
suc p +-cong q = suc λ { .force → force p +-cong q }
-- ⌜_⌝ is homomorphic with respect to addition.
⌜⌝-+ : ∀ m {n i} → [ i ] ⌜ m Prelude.+ n ⌝ ∼ ⌜ m ⌝ + ⌜ n ⌝
⌜⌝-+ zero = reflexive-∼ _
⌜⌝-+ (suc m) = suc λ { .force → ⌜⌝-+ m }
-- Truncated subtraction of a natural number.
infixl 6 _∸_
_∸_ : Conat ∞ → ℕ → Conat ∞
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = force m ∸ n
-- Infinity is a left zero of _∸_ (up to bisimilarity).
∸-left-zero-infinity : ∀ {i} n → [ i ] infinity ∸ n ∼ infinity
∸-left-zero-infinity zero = reflexive-∼ _
∸-left-zero-infinity (suc n) = ∸-left-zero-infinity n
-- Zero is a left zero of _∸_ (up to bisimilarity).
∸-left-zero-zero : ∀ {i} n → [ i ] zero ∸ n ∼ zero
∸-left-zero-zero zero = reflexive-∼ _
∸-left-zero-zero (suc n) = reflexive-∼ _
-- Zero is a right identity of subtraction (up to bisimilarity).
∸-right-identity : ∀ {i} n → [ i ] n ∸ zero ∼ n
∸-right-identity = reflexive-∼
-- Subtraction preserves bisimilarity and equality.
infixl 6 _∸-cong_
_∸-cong_ :
∀ {i m₁ m₂ n₁ n₂} →
[ ∞ ] m₁ ∼ m₂ → n₁ ≡ n₂ → [ i ] m₁ ∸ n₁ ∼ m₂ ∸ n₂
_∸-cong_ {m₁ = m₁} {m₂} {zero} {n₂} p eq =
m₁ ∼⟨ p ⟩
m₂ ≡⟨⟩∼
m₂ ∸ zero ≡⟨ cong (_ ∸_) eq ⟩∼
m₂ ∸ n₂ ∎∼
_∸-cong_ {n₁ = suc n₁} {n₂} zero eq =
zero ≡⟨⟩∼
zero ∸ suc n₁ ≡⟨ cong (_ ∸_) eq ⟩∼
zero ∸ n₂ ∎∼
_∸-cong_ {n₁ = suc n₁} {n₂} (suc {m = m₁} {n = m₂} p) eq =
force m₁ ∸ n₁ ∼⟨ force p ∸-cong refl n₁ ⟩
force m₂ ∸ n₁ ≡⟨⟩∼
suc m₂ ∸ suc n₁ ≡⟨ cong (_ ∸_) eq ⟩∼
suc m₂ ∸ n₂ ∎∼
-- ⌜_⌝ is homomorphic with respect to subtraction.
⌜⌝-∸ : ∀ m n {i} → [ i ] ⌜ m Prelude.∸ n ⌝ ∼ ⌜ m ⌝ ∸ n
⌜⌝-∸ m zero = reflexive-∼ _
⌜⌝-∸ zero (suc n) = reflexive-∼ _
⌜⌝-∸ (suc m) (suc n) = ⌜⌝-∸ m n
-- Multiplication.
infixl 7 _*_
_*_ : ∀ {i} → Conat i → Conat i → Conat i
zero * n = zero
m * zero = zero
suc m * suc n = suc λ { .force → n .force + m .force * suc n }
-- One is a left and right identity of multiplication (up to
-- bisimilarity).
*-left-identity : ∀ {i} n → [ i ] ⌜ 1 ⌝ * n ∼ n
*-left-identity zero = reflexive-∼ _
*-left-identity (suc n) = suc λ { .force →
n .force + zero ∼⟨ +-right-identity _ ⟩
n .force ∎∼ }
*-right-identity : ∀ {i} n → [ i ] n * ⌜ 1 ⌝ ∼ n
*-right-identity zero = reflexive-∼ _
*-right-identity (suc n) = suc λ { .force → *-right-identity _ }
-- Zero is a left and right zero of multiplication (up to
-- bisimilarity).
*-left-zero : ∀ {i n} → [ i ] zero * n ∼ zero
*-left-zero = reflexive-∼ _
*-right-zero : ∀ {i n} → [ i ] n * zero ∼ zero
*-right-zero {n = zero} = reflexive-∼ _
*-right-zero {n = suc n} = reflexive-∼ _
-- An unfolding lemma for multiplication.
suc*∼+* : ∀ {m n i} → [ i ] suc m * n ∼ n + m .force * n
suc*∼+* {m} {zero} =
zero ∼⟨ symmetric-∼ *-right-zero ⟩
m .force * zero ∎∼
suc*∼+* {m} {suc n} = suc λ { .force → reflexive-∼ _ }
-- Multiplication distributes over addition.
*-+-distribˡ : ∀ m {n o i} → [ i ] m * (n + o) ∼ m * n + m * o
*-+-distribˡ zero = reflexive-∼ _
*-+-distribˡ (suc m) {zero} {o} = reflexive-∼ _
*-+-distribˡ (suc m) {suc n} {o} = suc λ { .force →
n .force + o + m .force * (suc n + o) ∼⟨ (_ ∎∼) +-cong *-+-distribˡ (m .force) ⟩
n .force + o + (m .force * suc n + m .force * o) ∼⟨ symmetric-∼ (+-assoc (n .force)) ⟩
n .force + (o + (m .force * suc n + m .force * o)) ∼⟨ (n .force ∎∼) +-cong +-assoc o ⟩
n .force + ((o + m .force * suc n) + m .force * o) ∼⟨ (n .force ∎∼) +-cong (+-comm o +-cong (_ ∎∼)) ⟩
n .force + ((m .force * suc n + o) + m .force * o) ∼⟨ (n .force ∎∼) +-cong symmetric-∼ (+-assoc (m .force * _)) ⟩
n .force + (m .force * suc n + (o + m .force * o)) ∼⟨ +-assoc (n .force) ⟩
n .force + m .force * suc n + (o + m .force * o) ∼⟨ (n .force + _ ∎∼) +-cong symmetric-∼ suc*∼+* ⟩
n .force + m .force * suc n + suc m * o ∎∼ }
*-+-distribʳ : ∀ m {n o i} → [ i ] (m + n) * o ∼ m * o + n * o
*-+-distribʳ zero = reflexive-∼ _
*-+-distribʳ (suc m) {n} {zero} =
zero ∼⟨ symmetric-∼ *-right-zero ⟩
n * zero ∎∼
*-+-distribʳ (suc m) {n} {suc o} = suc λ { .force →
o .force + (m .force + n) * suc o ∼⟨ (_ ∎∼) +-cong *-+-distribʳ (m .force) ⟩
o .force + (m .force * suc o + n * suc o) ∼⟨ +-assoc (o .force) ⟩
o .force + m .force * suc o + n * suc o ∎∼ }
-- Multiplication is associative.
*-assoc : ∀ m {n o i} → [ i ] m * (n * o) ∼ (m * n) * o
*-assoc zero = reflexive-∼ _
*-assoc (suc m) {zero} = reflexive-∼ _
*-assoc (suc m) {suc n} {zero} = reflexive-∼ _
*-assoc (suc m) {suc n} {suc o} = suc λ { .force →
o .force + n .force * suc o + m .force * (suc n * suc o) ∼⟨ symmetric-∼ (+-assoc (o .force)) ⟩
o .force + (n .force * suc o + m .force * (suc n * suc o)) ∼⟨ (o .force ∎∼) +-cong ((_ ∎∼) +-cong *-assoc (m .force)) ⟩
o .force + (n .force * suc o + (m .force * suc n) * suc o) ∼⟨ (o .force ∎∼) +-cong symmetric-∼ (*-+-distribʳ (n .force)) ⟩
o .force + (n .force + m .force * suc n) * suc o ∎∼ }
-- Multiplication is commutative.
*-comm : ∀ m {n i} → [ i ] m * n ∼ n * m
*-comm zero {n} =
zero ∼⟨ symmetric-∼ *-right-zero ⟩
n * zero ∎∼
*-comm (suc m) {zero} = reflexive-∼ _
*-comm (suc m) {suc n} = suc λ { .force →
n .force + m .force * suc n ∼⟨ (_ ∎∼) +-cong *-comm (m .force) ⟩
n .force + suc n * m .force ∼⟨ (n .force ∎∼) +-cong suc*∼+* ⟩
n .force + (m .force + n .force * m .force) ∼⟨ +-assoc (n .force) ⟩
(n .force + m .force) + n .force * m .force ∼⟨ +-comm (n .force) +-cong *-comm _ ⟩
(m .force + n .force) + m .force * n .force ∼⟨ symmetric-∼ (+-assoc (m .force)) ⟩
m .force + (n .force + m .force * n .force) ∼⟨ (m .force ∎∼) +-cong symmetric-∼ suc*∼+* ⟩
m .force + suc m * n .force ∼⟨ (m .force ∎∼) +-cong *-comm (suc m) ⟩
m .force + n .force * suc m ∎∼ }
-- An unfolding lemma for multiplication.
*suc∼+* : ∀ {m n i} → [ i ] m * suc n ∼ m + m * n .force
*suc∼+* {m} {n} =
m * suc n ∼⟨ *-comm _ ⟩
suc n * m ∼⟨ suc*∼+* ⟩
m + n .force * m ∼⟨ (_ ∎∼) +-cong *-comm (n .force) ⟩
m + m * n .force ∎∼
-- Multiplication preserves bisimilarity.
infixl 7 _*-cong_
_*-cong_ :
∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ∼ m₂ → [ i ] n₁ ∼ n₂ → [ i ] m₁ * n₁ ∼ m₂ * n₂
zero *-cong _ = zero
suc p *-cong zero = zero
suc p *-cong suc q = suc λ { .force →
q .force +-cong p .force *-cong suc q }
-- ⌜_⌝ is homomorphic with respect to multiplication.
⌜⌝-* : ∀ m {n i} → [ i ] ⌜ m Prelude.* n ⌝ ∼ ⌜ m ⌝ * ⌜ n ⌝
⌜⌝-* zero = reflexive-∼ _
⌜⌝-* (suc m) {n} =
⌜ n Prelude.+ m Prelude.* n ⌝ ∼⟨ ⌜⌝-+ n ⟩
⌜ n ⌝ + ⌜ m Prelude.* n ⌝ ∼⟨ reflexive-∼ _ +-cong ⌜⌝-* m ⟩
⌜ n ⌝ + ⌜ m ⌝ * ⌜ n ⌝ ∼⟨ symmetric-∼ suc*∼+* ⟩
⌜ suc m ⌝ * ⌜ n ⌝ ∎∼
------------------------------------------------------------------------
-- Ordering
-- [ ∞ ] m ≤ n means that m is less than or equal to n.
mutual
infix 4 [_]_≤_ [_]_≤′_
data [_]_≤_ (i : Size) : Conat ∞ → Conat ∞ → Type where
zero : ∀ {n} → [ i ] zero ≤ n
suc : ∀ {m n} → [ i ] force m ≤′ force n → [ i ] suc m ≤ suc n
record [_]_≤′_ (i : Size) (m n : Conat ∞) : Type where
coinductive
field
force : {j : Size< i} → [ j ] m ≤ n
open [_]_≤′_ public
-- [ ∞ ] m < n means that m is less than n (if n is finite).
infix 4 [_]_<_
[_]_<_ : Size → Conat′ ∞ → Conat ∞ → Type
[ i ] m < n = [ i ] suc m ≤ n
-- Every conatural number is less than or equal to infinity.
infix 4 _≤infinity
_≤infinity : ∀ {i} n → [ i ] n ≤ infinity
zero ≤infinity = zero
suc n ≤infinity = suc λ { .force → force n ≤infinity }
-- No natural number is greater than or equal to infinity.
infinity≰⌜⌝ : ∀ n → ¬ [ ∞ ] infinity ≤ ⌜ n ⌝
infinity≰⌜⌝ zero ()
infinity≰⌜⌝ (suc n) (suc p) = infinity≰⌜⌝ n (force p)
-- No number is less than zero.
≮0 : ∀ {n i} → ¬ [ i ] n < zero
≮0 ()
-- If a number is not bounded from above by any natural number, then
-- it is bisimilar to infinity.
¬≤⌜⌝→∼∞ : ∀ {i} m → (∀ n → ¬ [ ∞ ] m ≤ ⌜ n ⌝) → [ i ] m ∼ infinity
¬≤⌜⌝→∼∞ zero zero≰ = ⊥-elim (zero≰ 0 zero)
¬≤⌜⌝→∼∞ (suc m) hyp =
suc λ { .force →
¬≤⌜⌝→∼∞ (force m) λ n →
[ ∞ ] force m ≤ ⌜ n ⌝ ↝⟨ (λ p → suc λ { .force → p }) ⟩
[ ∞ ] suc m ≤ ⌜ suc n ⌝ ↝⟨ hyp (suc n) ⟩□
⊥ □ }
-- The ordering relation is a partial order (with respect to
-- bisimilarity).
reflexive-≤ : ∀ {i} n → [ i ] n ≤ n
reflexive-≤ zero = zero
reflexive-≤ (suc n) = suc λ { .force → reflexive-≤ (force n) }
transitive-≤ : ∀ {i m n o} → [ i ] m ≤ n → [ i ] n ≤ o → [ i ] m ≤ o
transitive-≤ zero _ = zero
transitive-≤ (suc p) (suc q) =
suc λ { .force → transitive-≤ (force p) (force q) }
antisymmetric-≤ : ∀ {i m n} → [ i ] m ≤ n → [ i ] n ≤ m → [ i ] m ∼ n
antisymmetric-≤ zero zero = zero
antisymmetric-≤ (suc p) (suc q) =
suc λ { .force → antisymmetric-≤ (force p) (force q) }
-- Bisimilarity is contained in the ordering relation.
∼→≤ : ∀ {i m n} → [ i ] m ∼ n → [ i ] m ≤ n
∼→≤ zero = zero
∼→≤ (suc p) = suc λ { .force → ∼→≤ (force p) }
-- "Equational" reasoning combinators.
infix -1 finally-≤ _∎≤
infixr -2 step-≤ step-∼≤ _≡⟨⟩≤_
_∎≤ : ∀ {i} n → [ i ] n ≤ n
_∎≤ = reflexive-≤
step-≤ : ∀ {i} m {n o} → [ i ] n ≤ o → [ i ] m ≤ n → [ i ] m ≤ o
step-≤ _ n≤o m≤n = transitive-≤ m≤n n≤o
syntax step-≤ m n≤o m≤n = m ≤⟨ m≤n ⟩ n≤o
step-∼≤ : ∀ {i} m {n o} → [ i ] n ≤ o → [ i ] m ∼ n → [ i ] m ≤ o
step-∼≤ _ n≤o m∼n = step-≤ _ n≤o (∼→≤ m∼n)
syntax step-∼≤ m n≤o m∼n = m ∼⟨ m∼n ⟩≤ n≤o
_≡⟨⟩≤_ : ∀ {i} m {n} → [ i ] m ≤ n → [ i ] m ≤ n
_ ≡⟨⟩≤ m≤n = m≤n
finally-≤ : ∀ {i} m n → [ i ] m ≤ n → [ i ] m ≤ n
finally-≤ _ _ m≤n = m≤n
syntax finally-≤ m n m≤n = m ≤⟨ m≤n ⟩∎ n ∎≤
-- The ordering relation respects the ordering relation
-- (contravariantly in the first argument).
infix 4 _≤-cong-≤_
_≤-cong-≤_ :
∀ {m m′ n n′ i} →
[ i ] m′ ≤ m → [ i ] n ≤ n′ → [ i ] m ≤ n → [ i ] m′ ≤ n′
_≤-cong-≤_ {m} {m′} {n} {n′} m≥m′ n≤n′ m≤n =
m′ ≤⟨ m≥m′ ⟩
m ≤⟨ m≤n ⟩
n ≤⟨ n≤n′ ⟩
n′ ∎≤
-- A kind of preservation result for bisimilarity, ordering and
-- logical equivalence.
infix 4 _≤-cong-∼_
_≤-cong-∼_ :
∀ {m m′ n n′ i} →
[ i ] m ∼ m′ → [ i ] n ∼ n′ → [ i ] m ≤ n ⇔ [ i ] m′ ≤ n′
m∼m′ ≤-cong-∼ n∼n′ = record
{ to = ∼→≤ (symmetric-∼ m∼m′) ≤-cong-≤ ∼→≤ n∼n′
; from = ∼→≤ m∼m′ ≤-cong-≤ ∼→≤ (symmetric-∼ n∼n′)
}
-- Some inversion lemmas.
cancel-suc-≤ :
∀ {i m n} → [ i ] suc m ≤ suc n → [ i ] force m ≤′ force n
cancel-suc-≤ (suc p) = p
cancel-pred-≤ :
∀ {m n i} →
[ i ] ⌜ 1 ⌝ ≤ n →
[ i ] pred m ≤′ pred n →
[ i ] m ≤ n
cancel-pred-≤ {zero} (suc _) = λ _ → zero
cancel-pred-≤ {suc _} (suc _) = suc
cancel-∸-suc-≤ :
∀ {m n o i} →
[ ∞ ] ⌜ o ⌝′ < n →
[ i ] m ∸ suc o ≤′ n ∸ suc o →
[ i ] m ∸ o ≤ n ∸ o
cancel-∸-suc-≤ {zero} {n} {o} _ _ =
zero ∸ o ∼⟨ ∸-left-zero-zero o ⟩≤
zero ≤⟨ zero ⟩∎
n ∸ o ∎≤
cancel-∸-suc-≤ {suc _} {_} {zero} (suc _) = suc
cancel-∸-suc-≤ {suc m} {suc n} {suc o} (suc o<n) =
cancel-∸-suc-≤ (force o<n)
-- The successor of a number is greater than or equal to the number.
≤suc : ∀ {i n} → [ i ] force n ≤ suc n
≤suc = helper _ (refl _)
where
helper : ∀ {i} m {n} → m ≡ force n → [ i ] m ≤ suc n
helper zero _ = zero
helper (suc m) 1+m≡ = suc λ { .force {j = j} →
subst ([ j ] _ ≤_) 1+m≡ ≤suc }
-- If a number is less than or equal to another, then it is also less
-- than or equal to the other's successor.
≤-step : ∀ {m n i} → [ i ] m ≤′ force n → [ i ] m ≤ suc n
≤-step {zero} _ = zero
≤-step {suc m} {n} p = suc λ { .force →
force m ≤⟨ ≤suc ⟩
suc m ≤⟨ force p ⟩∎
force n ∎≤ }
-- If m is less than n, then m is less than or equal to n.
<→≤ : ∀ {i m n} → [ i ] m < n → [ i ] force m ≤ n
<→≤ (suc p) = ≤-step p
-- If you add something to a number, then you get something that is
-- greater than or equal to what you started with.
m≤n+m : ∀ {i m n} → [ i ] m ≤ n + m
m≤n+m {n = zero} = reflexive-≤ _
m≤n+m {n = suc n} = ≤-step λ { .force → m≤n+m }
m≤m+n : ∀ {m n i} → [ i ] m ≤ m + n
m≤m+n {m} {n} =
m ≤⟨ m≤n+m ⟩
n + m ≤⟨ ∼→≤ (+-comm n) ⟩∎
m + n ∎≤
-- A form of associativity for _∸_.
∸-∸-assoc : ∀ {m} n {k i} → [ i ] (m ∸ n) ∸ k ∼ m ∸ (n Prelude.+ k)
∸-∸-assoc zero = _ ∎∼
∸-∸-assoc {zero} (suc _) {zero} = _ ∎∼
∸-∸-assoc {zero} (suc _) {suc _} = _ ∎∼
∸-∸-assoc {suc _} (suc n) = ∸-∸-assoc n
-- A limited form of associativity for _+_ and _∸_.
+-∸-assoc : ∀ {m n k i} →
[ ∞ ] ⌜ k ⌝ ≤ n → [ i ] (m + n) ∸ k ∼ m + (n ∸ k)
+-∸-assoc {m} {n} {zero} zero =
m + n ∸ 0 ≡⟨⟩∼
m + n ≡⟨⟩∼
m + (n ∸ 0) ∎∼
+-∸-assoc {m} {suc n} {suc k} (suc k≤n) =
m + suc n ∸ suc k ∼⟨ symmetric-∼ (1++∼+suc m) ∸-cong refl (suc k) ⟩
⌜ 1 ⌝ + m + force n ∸ suc k ≡⟨⟩∼
m + force n ∸ k ∼⟨ +-∸-assoc (force k≤n) ⟩
m + (force n ∸ k) ≡⟨⟩∼
m + (suc n ∸ suc k) ∎∼
-- If you subtract a number and then add it again, then you get back
-- what you started with if the number is less than or equal to the
-- number that you started with.
∸+≡ : ∀ {m n i} → [ i ] ⌜ n ⌝ ≤ m → [ i ] (m ∸ n) + ⌜ n ⌝ ∼ m
∸+≡ {m} {zero} zero =
m + zero ∼⟨ +-right-identity _ ⟩∎
m ∎∼
∸+≡ {.suc m} {suc n} (suc p) =
force m ∸ n + ⌜ suc n ⌝ ∼⟨ symmetric-∼ (1++∼+suc _) ⟩
⌜ 1 ⌝ + (force m ∸ n) + ⌜ n ⌝ ∼⟨ symmetric-∼ (+-assoc ⌜ 1 ⌝) ⟩
⌜ 1 ⌝ + (force m ∸ n + ⌜ n ⌝) ∼⟨ (suc λ { .force → ∸+≡ (force p) }) ⟩
⌜ 1 ⌝ + force m ∼⟨ (suc λ { .force → _ ∎∼ }) ⟩∎
suc m ∎∼
-- If you subtract a natural number and then add it again, then you
-- get something that is greater than or equal to what you started
-- with.
≤∸+ : ∀ m n {i} → [ i ] m ≤ (m ∸ n) + ⌜ n ⌝
≤∸+ m zero =
m ∼⟨ symmetric-∼ (+-right-identity _) ⟩≤
m + ⌜ 0 ⌝ ∎≤
≤∸+ zero (suc n) = zero
≤∸+ (suc m) (suc n) =
suc m ≤⟨ (suc λ { .force → ≤∸+ (force m) n }) ⟩
⌜ 1 ⌝ + (force m ∸ n + ⌜ n ⌝) ∼⟨ +-assoc ⌜ 1 ⌝ ⟩≤
⌜ 1 ⌝ + (force m ∸ n) + ⌜ n ⌝ ∼⟨ 1++∼+suc _ ⟩≤
force m ∸ n + ⌜ suc n ⌝ ≡⟨⟩≤
suc m ∸ suc n + ⌜ suc n ⌝ ∎≤
-- If you subtract something from a number you get a number that is
-- less than or equal to the one you started with.
∸≤ : ∀ {m} n {i} → [ i ] m ∸ n ≤ m
∸≤ zero = _ ∎≤
∸≤ {zero} (suc _) = _ ∎≤
∸≤ {suc m} (suc n) = ≤-step λ { .force → ∸≤ n }
-- Lemmas relating the ordering relation, subtraction and the
-- successor function.
∸suc≤→∸≤suc :
∀ {i} m n {o} →
[ i ] m ∸ suc n ≤ force o → [ ssuc i ] m ∸ n ≤ suc o
∸suc≤→∸≤suc zero zero p = zero
∸suc≤→∸≤suc zero (suc n) p = zero
∸suc≤→∸≤suc (suc m) zero p = suc λ { .force → p }
∸suc≤→∸≤suc (suc m) (suc n) p = ∸suc≤→∸≤suc (force m) n p
∸≤suc→∸suc≤ :
∀ {i} {j : Size< i} m n {o} →
[ i ] m ∸ n ≤ suc o → [ j ] m ∸ suc n ≤ force o
∸≤suc→∸suc≤ zero zero p = zero
∸≤suc→∸suc≤ zero (suc n) p = zero
∸≤suc→∸suc≤ (suc m) zero (suc p) = force p
∸≤suc→∸suc≤ (suc m) (suc n) p = ∸≤suc→∸suc≤ (force m) n p
-- One can decide whether a natural number is greater than or equal
-- to, or less than, any number.
≤⌜⌝⊎>⌜⌝ : ∀ {i} m n → [ i ] m ≤ ⌜ n ⌝ ⊎ [ i ] ⌜ n ⌝′ < m
≤⌜⌝⊎>⌜⌝ zero _ = inj₁ zero
≤⌜⌝⊎>⌜⌝ (suc m) zero = inj₂ (suc λ { .force → zero })
≤⌜⌝⊎>⌜⌝ (suc m) (suc n) =
⊎-map (λ (p : [ _ ] _ ≤ _) → suc λ { .force → p })
(λ (p : [ _ ] _ < _) → suc λ { .force → p })
(≤⌜⌝⊎>⌜⌝ (force m) n)
-- One can decide whether a natural number is less than or equal to,
-- or greater than, any number.
⌜⌝≤⊎⌜⌝> : ∀ {i} m n → [ i ] ⌜ m ⌝ ≤ n ⊎ [ i ] ⌜ 1 ⌝ + n ≤ ⌜ m ⌝
⌜⌝≤⊎⌜⌝> zero _ = inj₁ zero
⌜⌝≤⊎⌜⌝> (suc m) zero = inj₂ (suc λ { .force → zero })
⌜⌝≤⊎⌜⌝> (suc m) (suc n) =
⊎-map (λ (p : [ _ ] _ ≤ _) → suc λ { .force → p })
(λ p → suc λ { .force → suc n ≤⟨ (suc λ { .force → _ ∎≤ }) ⟩
⌜ 1 ⌝ + force n ≤⟨ p ⟩∎
⌜ m ⌝ ∎≤ })
(⌜⌝≤⊎⌜⌝> m (force n))
-- ⌜_⌝ is monotone.
⌜⌝-mono : ∀ {m n i} → m ≤ n → [ i ] ⌜ m ⌝ ≤ ⌜ n ⌝
⌜⌝-mono {zero} m≤n = zero
⌜⌝-mono {suc _} {zero} m≤n = ⊥-elim (Nat.≮0 _ m≤n)
⌜⌝-mono {suc _} {suc _} m≤n =
suc λ { .force → ⌜⌝-mono (Nat.suc≤suc⁻¹ m≤n) }
-- If two natural numbers are related by [ ∞ ]_≤_, then they are also
-- related by _≤_.
⌜⌝-mono⁻¹ : ∀ {m n} → [ ∞ ] ⌜ m ⌝ ≤ ⌜ n ⌝ → m ≤ n
⌜⌝-mono⁻¹ {zero} zero = Nat.zero≤ _
⌜⌝-mono⁻¹ {suc _} {zero} ()
⌜⌝-mono⁻¹ {suc _} {suc _} (suc m≤n) =
Nat.suc≤suc (⌜⌝-mono⁻¹ (force m≤n))
-- The pred function is monotone.
pred-mono : ∀ {m n} → [ ∞ ] m ≤ n → [ ∞ ] pred m ≤ pred n
pred-mono zero = zero
pred-mono (suc p) = force p
-- Addition is monotone.
infixl 6 _+-mono_
_+-mono_ : ∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ≤ m₂ → [ i ] n₁ ≤ n₂ → [ i ] m₁ + n₁ ≤ m₂ + n₂
_+-mono_ {m₁ = m₁} {m₂} {n₁} {n₂} zero q =
zero + n₁ ≡⟨⟩≤
n₁ ≤⟨ q ⟩
n₂ ≤⟨ m≤n+m ⟩∎
m₂ + n₂ ∎≤
suc p +-mono q = suc λ { .force → force p +-mono q }
-- Subtraction is monotone in its first argument and antitone in its
-- second argument.
infixl 6 _∸-mono_
_∸-mono_ : ∀ {m₁ m₂ n₁ n₂ i} →
[ ∞ ] m₁ ≤ m₂ → n₂ ≤ n₁ → [ i ] m₁ ∸ n₁ ≤ m₂ ∸ n₂
_∸-mono_ {n₁ = zero} {zero} p _ = p
_∸-mono_ {n₁ = zero} {suc _} _ q = ⊥-elim (Nat.≮0 _ q)
_∸-mono_ {zero} {n₁ = suc n₁} _ _ = zero
_∸-mono_ {suc _} {zero} {suc _} () _
_∸-mono_ {suc m₁} {suc m₂} {suc n₁} {zero} p _ = force m₁ ∸ n₁ ≤⟨ ∸≤ n₁ ⟩
force m₁ ≤⟨ ≤suc ⟩
suc m₁ ≤⟨ p ⟩∎
suc m₂ ∎≤
_∸-mono_ {suc _} {suc _} {suc _} {suc _} p q =
force (cancel-suc-≤ p) ∸-mono Nat.suc≤suc⁻¹ q
-- Multiplication is monotone.
infixl 7 _*-mono_
_*-mono_ : ∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ≤ m₂ → [ i ] n₁ ≤ n₂ → [ i ] m₁ * n₁ ≤ m₂ * n₂
zero *-mono _ = zero
suc _ *-mono zero = zero
suc p *-mono suc q = suc λ { .force →
q .force +-mono p .force *-mono suc q }
------------------------------------------------------------------------
-- Minimum and maximum
-- The smallest number.
min : ∀ {i} → Conat i → Conat i → Conat i
min zero n = zero
min m zero = zero
min (suc m) (suc n) = suc λ { .force → min (force m) (force n) }
-- The largest number.
max : ∀ {i} → Conat i → Conat i → Conat i
max zero n = n
max (suc m) n = suc λ { .force → max (force m) (pred n) }
-- The minimum of two numbers is less than or equal to both of them.
min≤ˡ : ∀ {i} m n → [ i ] min m n ≤ m
min≤ˡ zero _ = zero
min≤ˡ (suc _) zero = zero
min≤ˡ (suc m) (suc n) = suc λ { .force → min≤ˡ (force m) (force n) }
min≤ʳ : ∀ {i} m n → [ i ] min m n ≤ n
min≤ʳ zero _ = zero
min≤ʳ (suc _) zero = zero
min≤ʳ (suc m) (suc n) = suc λ { .force → min≤ʳ (force m) (force n) }
-- The maximum of two numbers is greater than or equal to both of
-- them.
ˡ≤max : ∀ {i} m n → [ i ] m ≤ max m n
ˡ≤max zero _ = zero
ˡ≤max (suc m) n = suc λ { .force → ˡ≤max (force m) (pred n) }
ʳ≤max : ∀ {i} m n → [ i ] n ≤ max m n
ʳ≤max zero _ = reflexive-≤ _
ʳ≤max (suc _) zero = zero
ʳ≤max (suc m) (suc n) = suc λ { .force → ʳ≤max (force m) (force n) }
-- The min and max functions preserve bisimilarity.
min-cong :
∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ∼ m₂ → [ i ] n₁ ∼ n₂ → [ i ] min m₁ n₁ ∼ min m₂ n₂
min-cong zero q = zero
min-cong (suc p) zero = zero
min-cong (suc p) (suc q) =
suc λ { .force → min-cong (force p) (force q) }
max-cong :
∀ {i m₁ m₂ n₁ n₂} →
[ i ] m₁ ∼ m₂ → [ i ] n₁ ∼ n₂ → [ i ] max m₁ n₁ ∼ max m₂ n₂
max-cong zero q = q
max-cong (suc p) q =
suc λ { .force → max-cong (force p) (pred-cong q) }
------------------------------------------------------------------------
-- Finite and infinite numbers
-- A number is finite if it is bisimilar to a natural number.
Finite : Conat ∞ → Type
Finite m = ∃ λ n → [ ∞ ] m ∼ ⌜ n ⌝
-- Numbers that are not finite are infinite.
Infinite : Conat ∞ → Type
Infinite n = ¬ Finite n
-- The value infinity is infinite.
Infinite-infinity : Infinite infinity
Infinite-infinity = uncurry λ n →
[ ∞ ] infinity ∼ ⌜ n ⌝ ↝⟨ ∼→≤ ⟩
[ ∞ ] infinity ≤ ⌜ n ⌝ ↝⟨ infinity≰⌜⌝ _ ⟩
⊥ □
-- Infinite numbers are bisimilar to infinity.
Infinite→∼infinity : ∀ {n i} → Infinite n → [ i ] n ∼ infinity
Infinite→∼infinity {zero} inf = ⊥-elim (inf (_ , zero))
Infinite→∼infinity {suc n} inf =
suc λ { .force → Infinite→∼infinity (inf ∘ Σ-map suc suc′) }
where
suc′ : ∀ {m} → [ ∞ ] force n ∼ ⌜ m ⌝ → [ ∞ ] suc n ∼ ⌜ suc m ⌝
suc′ p = suc λ { .force → p }
-- If m is bounded from above by some natural number, then m is
-- finite.
≤⌜⌝→Finite : ∀ {m n} → [ ∞ ] m ≤ ⌜ n ⌝ → Finite m
≤⌜⌝→Finite {.zero} {zero} zero = zero , zero
≤⌜⌝→Finite {.zero} {suc n} zero = zero , zero
≤⌜⌝→Finite {.suc m} {suc n} (suc m≤n) =
Σ-map suc (λ (hyp : [ _ ] _ ∼ _) → suc λ { .force → hyp })
(≤⌜⌝→Finite (force m≤n))
------------------------------------------------------------------------
-- Functions and proofs related to addition of strictly positive
-- numbers
-- The function _⁺+_ adds two numbers, given that the first one is
-- positive. This fact allows the second number to have type Conat′ i,
-- rather than Conat i. This can be convenient in corecursive
-- definitions.
infixl 6 _⁺+_
_⁺+_ : ∀ {m i} → [ i ] ⌜ 1 ⌝ ≤ m → Conat′ i → Conat i
_⁺+_ {zero} () _
_⁺+_ {suc m} _ n = suc λ { .force → force m + force n }
-- The definition of _⁺+_ is correct.
⁺+∼+ : ∀ {m i} (1≤m : [ ∞ ] ⌜ 1 ⌝ ≤ m) n →
[ i ] 1≤m ⁺+ n ∼ m + force n
⁺+∼+ {zero} () _
⁺+∼+ {suc _} _ _ = suc λ { .force → _ ∎∼ }
-- _⁺+_ preserves bisimilarity.
⁺+-cong :
∀ {m₁ m₂ n₁ n₂ i}
(1≤m₁ : [ ∞ ] ⌜ 1 ⌝ ≤ m₁)
(1≤m₂ : [ ∞ ] ⌜ 1 ⌝ ≤ m₂) →
[ i ] m₁ ∼ m₂ →
[ i ] force n₁ ∼′ force n₂ →
[ i ] 1≤m₁ ⁺+ n₁ ∼ 1≤m₂ ⁺+ n₂
⁺+-cong {zero} () _ _ _
⁺+-cong {suc _} {zero} _ () _ _
⁺+-cong {suc _} {suc _} _ _ (suc m₁∼m₂) n₁∼n₂ =
suc λ { .force → force m₁∼m₂ +-cong force n₁∼n₂ }
-- _⁺+_ is monotone.
⁺+-mono :
∀ {m₁ m₂ n₁ n₂ i}
(1≤m₁ : [ ∞ ] ⌜ 1 ⌝ ≤ m₁)
(1≤m₂ : [ ∞ ] ⌜ 1 ⌝ ≤ m₂) →
[ i ] m₁ ≤ m₂ →
[ i ] force n₁ ≤′ force n₂ →
[ i ] 1≤m₁ ⁺+ n₁ ≤ 1≤m₂ ⁺+ n₂
⁺+-mono {zero} () _ _ _
⁺+-mono {suc _} {zero} _ () _ _
⁺+-mono {suc _} {suc _} _ _ (suc m₁∼m₂) n₁∼n₂ =
suc λ { .force → force m₁∼m₂ +-mono force n₁∼n₂ }
-- Variants of _+-cong_ that can be used when one or more of the
-- numbers are known to be positive. With this information at hand it
-- suffices for some of the proofs to be "primed".
1≤+-cong :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ m₁ →
[ i ] m₁ ∼ m₂ →
[ i ] n₁ ∼′ n₂ →
[ i ] m₁ + n₁ ∼ m₂ + n₂
1≤+-cong {zero} () _ _
1≤+-cong {suc _} {zero} _ () _
1≤+-cong {suc _} {suc _} _ (suc m₁∼m₂) n₁∼n₂ =
suc λ { .force → force m₁∼m₂ +-cong force n₁∼n₂ }
+1≤-cong :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ n₁ →
[ i ] m₁ ∼′ m₂ →
[ i ] n₁ ∼ n₂ →
[ i ] m₁ + n₁ ∼ m₂ + n₂
+1≤-cong {m₁} {m₂} {n₁} {n₂} 1≤n₁ m₁∼m₂ n₁∼n₂ =
m₁ + n₁ ∼⟨ +-comm m₁ ⟩
n₁ + m₁ ∼⟨ 1≤+-cong 1≤n₁ n₁∼n₂ m₁∼m₂ ⟩
n₂ + m₂ ∼⟨ +-comm n₂ ⟩∎
m₂ + n₂ ∎∼
1≤+1≤-cong :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ m₁ →
[ i ] ⌜ 1 ⌝ ≤ n₂ →
[ i ] m₁ ∼′ m₂ →
[ i ] n₁ ∼′ n₂ →
[ i ] m₁ + n₁ ∼ m₂ + n₂
1≤+1≤-cong {m₁} {m₂} {n₁} {n₂} 1≤m₁ 1≤n₂ m₁∼m₂ n₁∼n₂ =
m₁ + n₁ ∼⟨ 1≤+-cong 1≤m₁ (_ ∎∼) n₁∼n₂ ⟩
m₁ + n₂ ∼⟨ +1≤-cong 1≤n₂ m₁∼m₂ (_ ∎∼) ⟩∎
m₂ + n₂ ∎∼
-- Variants of _+-mono_ that can be used when one or more of the
-- numbers are known to be positive. With this information at hand it
-- suffices for some of the proofs to be "primed".
1≤+-mono :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ m₁ →
[ i ] m₁ ≤ m₂ →
[ i ] n₁ ≤′ n₂ →
[ i ] m₁ + n₁ ≤ m₂ + n₂
1≤+-mono {zero} () _ _
1≤+-mono {suc _} {zero} _ () _
1≤+-mono {suc _} {suc _} _ (suc m₁≤m₂) n₁≤n₂ =
suc λ { .force → force m₁≤m₂ +-mono force n₁≤n₂ }
+1≤-mono :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ n₁ →
[ i ] m₁ ≤′ m₂ →
[ i ] n₁ ≤ n₂ →
[ i ] m₁ + n₁ ≤ m₂ + n₂
+1≤-mono {m₁} {m₂} {n₁} {n₂} 1≤n₁ m₁≤m₂ n₁≤n₂ =
m₁ + n₁ ∼⟨ +-comm m₁ ⟩≤
n₁ + m₁ ≤⟨ 1≤+-mono 1≤n₁ n₁≤n₂ m₁≤m₂ ⟩
n₂ + m₂ ∼⟨ +-comm n₂ ⟩≤
m₂ + n₂ ∎≤
1≤+1≤-mono :
∀ {m₁ m₂ n₁ n₂ i} →
[ i ] ⌜ 1 ⌝ ≤ m₁ →
[ i ] ⌜ 1 ⌝ ≤ n₂ →
[ i ] m₁ ≤′ m₂ →
[ i ] n₁ ≤′ n₂ →
[ i ] m₁ + n₁ ≤ m₂ + n₂
1≤+1≤-mono {m₁} {m₂} {n₁} {n₂} 1≤m₁ 1≤n₂ m₁≤m₂ n₁≤n₂ =
m₁ + n₁ ≤⟨ 1≤+-mono 1≤m₁ (_ ∎≤) n₁≤n₂ ⟩
m₁ + n₂ ≤⟨ +1≤-mono 1≤n₂ m₁≤m₂ (_ ∎≤) ⟩∎
m₂ + n₂ ∎≤
------------------------------------------------------------------------
-- Some negative results
-- It is impossible to define a strengthening function that, for any
-- size i, takes strong bisimilarity of size i between 2 and 1 into
-- ordering of size ssuc i between 2 and 1.
no-strengthening-21 :
¬ (∀ {i} → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝)
no-strengthening-21 strengthen = contradiction ∞
where
2≁1 : ∀ i → ¬ [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝
2≁1 i =
[ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ ↝⟨ strengthen ⟩
[ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝ ↝⟨ (λ hyp → cancel-suc-≤ hyp .force) ⟩
[ i ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝ ↝⟨ ≮0 ⟩□
⊥ □
mutual
2∼1 : ∀ i → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝
2∼1 i = suc λ { .force {j} → ⊥-elim (contradiction j) }
contradiction : Size → ⊥
contradiction i = 2≁1 i (2∼1 i)
-- It is impossible to define a strengthening function that, for any
-- size i, takes strong bisimilarity of size i between 2 and 1 into
-- strong bisimilarity of size ssuc i between 2 and 1.
no-strengthening-∼-21 :
¬ (∀ {i} → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝)
no-strengthening-∼-21 =
(∀ {i} → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝) ↝⟨ ∼→≤ ∘_ ⟩
(∀ {i} → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝) ↝⟨ no-strengthening-21 ⟩□
⊥ □
-- It is impossible to define a strengthening function that, for any
-- size i, takes ordering of size i between 2 and 1 into ordering of
-- size ssuc i between 2 and 1.
no-strengthening-≤-21 :
¬ (∀ {i} → [ i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝)
no-strengthening-≤-21 =
(∀ {i} → [ i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝) ↝⟨ _∘ ∼→≤ ⟩
(∀ {i} → [ i ] ⌜ 2 ⌝ ∼ ⌜ 1 ⌝ → [ ssuc i ] ⌜ 2 ⌝ ≤ ⌜ 1 ⌝) ↝⟨ no-strengthening-21 ⟩□
⊥ □
| {
"alphanum_fraction": 0.4647725508,
"avg_line_length": 30.7593123209,
"ext": "agda",
"hexsha": "e0f0dd7b46f28533dbbb085ab40180faee20908c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Conat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Conat.agda",
"max_line_length": 125,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Conat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 15495,
"size": 32205
} |
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.ABox using ( ABox )
open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; _⊨b_ ; ⊨a-resp-≲ ; ⊨b-resp-≲ )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; ⌊_⌋ ; _*_ )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; ≲-refl )
open import Web.Semantic.DL.KB using ( _,_ )
open import Web.Semantic.DL.KB.Model using ( _⊨_ )
open import Web.Semantic.DL.Integrity using ( Initial ; _⊕_⊨_ ; extension ; ext-init ; ext-⊨ ; ext✓ ; init-≲ ; init-⊨ ; init-med ; med-≲ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox ; _,_ )
open import Web.Semantic.DL.TBox.Model using ( _⊨t_ )
open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; iface )
open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ; enode )
module Web.Semantic.DL.Category.Morphism {Σ : Signature} {S T : TBox Σ} where
infixr 4 _,_
-- A morphism A ⇒ B is an abox F such that for every I ⊨ S , T , A
-- there is a J which is the initial extension of I satisfying (S , F),
-- and moreover J satisfies (T , B).
data _⇒_w/_ (A B : Object S T) (V : Set) : Set₁ where
_,_ : (F : ABox Σ (IN A ⊕ V ⊕ IN B)) →
(∀ I → (I ⊨ (S , T) , iface A) → (I ⊕ (S , F) ⊨ (T , iface B))) →
(A ⇒ B w/ V)
data _⇒_ (A B : Object S T) : Set₁ where
_,_ : ∀ V → (A ⇒ B w/ V) → (A ⇒ B)
BN : ∀ {A B} → (F : A ⇒ B) → Set
BN (V , F,F✓) = V
impl : ∀ {A B} → (F : A ⇒ B) → ABox Σ (IN A ⊕ BN F ⊕ IN B)
impl (V , F , F✓) = F
impl✓ : ∀ {A B} → (F : A ⇒ B) → ∀ I → (I ⊨ (S , T) , iface A) → (I ⊕ (S , impl F) ⊨ (T , iface B))
impl✓ (V , F , F✓) = F✓
apply : ∀ {A B} (F : A ⇒ B) I → (I ⊨ (S , T) , iface A) →
Interp Σ (IN A ⊕ BN F ⊕ IN B)
apply F I I⊨STA = extension (impl✓ F I I⊨STA)
apply-init : ∀ {A B} (F : A ⇒ B) I I⊨STA →
(apply F I I⊨STA ∈ Initial I (S , impl F))
apply-init F I I⊨STA = ext-init (impl✓ F I I⊨STA)
apply-⊨ : ∀ {A B} (F : A ⇒ B) I I⊨STA →
(enode * (apply F I I⊨STA) ⊨ (T , iface B))
apply-⊨ F I I⊨STA = ext-⊨ (impl✓ F I I⊨STA)
apply-≲ : ∀ {A B} (F : A ⇒ B) I I⊨STA → (I ⊨a impl F) →
(apply F (inode * I) I⊨STA ≲ I)
apply-≲ F I ((I⊨S , I⊨T) , I⊨A) I⊨F =
med-≲ (init-med
(apply-init F (inode * I) ((I⊨S , I⊨T) , I⊨A))
I
(≲-refl (inode * I))
(I⊨S , I⊨F))
apply✓ : ∀ {A B} (F : A ⇒ B) I I⊨STA →
(enode * apply F I I⊨STA ⊨ (S , T) , iface B)
apply✓ F I I⊨STA = ext✓ (impl✓ F I I⊨STA)
-- Morphisms F and G are equivalent whenever
-- in any interpretation I ⊨ S,T
-- we have I ⊨ F iff I ⊨ G.
infix 2 _⊑_ _⊑′_ _≣_
_⊑_ : ∀ {A B : Object S T} → (A ⇒ B) → (A ⇒ B) → Set₁
_⊑_ {A} F G =
∀ I → (inode * I ⊨ (S , T) , iface A) → (I ⊨a impl F) → (I ⊨b impl G)
data _≣_ {A B : Object S T} (F G : A ⇒ B) : Set₁ where
_,_ : (F ⊑ G) → (G ⊑ F) → (F ≣ G)
-- An alternative characterization, which may be easier
-- to work with.
_⊑′_ : ∀ {A B : Object S T} → (A ⇒ B) → (A ⇒ B) → Set₁
F ⊑′ G = ∀ I I⊨STA → (apply F I I⊨STA) ⊨b (impl G)
⊑′-impl-⊑ : ∀ {A B : Object S T} → (F G : A ⇒ B) → (F ⊑′ G) → (F ⊑ G)
⊑′-impl-⊑ F G F⊑′G I I⊨STA I⊨F =
⊨b-resp-≲ (apply-≲ F I I⊨STA I⊨F) (impl G) (F⊑′G (inode * I) I⊨STA)
⊑-impl-⊑′ : ∀ {A B : Object S T} → (F G : A ⇒ B) → (F ⊑ G) → (F ⊑′ G)
⊑-impl-⊑′ {A} {B} F G F⊑G I (I⊨ST , I⊨A) = J⊨G where
J : Interp Σ (IN A ⊕ BN F ⊕ IN B)
J = apply F I (I⊨ST , I⊨A)
J⊨S : ⌊ J ⌋ ⊨t S
J⊨S = proj₁ (init-⊨ (apply-init F I (I⊨ST , I⊨A)))
J⊨T : ⌊ J ⌋ ⊨t T
J⊨T = proj₁ (apply-⊨ F I (I⊨ST , I⊨A))
J⊨A : inode * J ⊨a iface A
J⊨A = ⊨a-resp-≲ (init-≲ (apply-init F I (I⊨ST , I⊨A))) (iface A) I⊨A
J⊨F : J ⊨a impl F
J⊨F = proj₂ (init-⊨ (apply-init F I (I⊨ST , I⊨A)))
J⊨G : J ⊨b impl G
J⊨G = F⊑G J ((J⊨S , J⊨T) , J⊨A) J⊨F
| {
"alphanum_fraction": 0.5179704017,
"avg_line_length": 34.4,
"ext": "agda",
"hexsha": "0a7809a1d4b0fe2cd701e1484b053c029517c84d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Morphism.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Morphism.agda",
"max_line_length": 138,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1928,
"size": 3784
} |
module x03-842Relations-hc where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym) -- added sym
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm)
-- The less-than-or-equal-to relation.
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
-- Some examples.
_ : 2 ≤ 4 -- can do just by refine
_ = s≤s (s≤s z≤n)
_ : 2 ≤ 4 -- with implicit args
_ = s≤s {1} {3} (s≤s {0} {2} z≤n)
_ : 2 ≤ 4 -- with named implicit args
_ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} z≤n)
_ : 2 ≤ 4 -- with some implicit named args
_ = s≤s {n = 3} (s≤s {m = 0} z≤n)
infix 4 _≤_
-- Inversion.
inv-s≤s : ∀ {m n : ℕ}
→ suc m ≤ suc n
-------------
→ m ≤ n
inv-s≤s (s≤s x) = x
inv-z≤n : ∀ {m : ℕ}
→ m ≤ zero
--------
→ m ≡ zero
inv-z≤n z≤n = refl
-- Properties.
-- Reflexivity.
≤-refl : ∀ {n : ℕ}
-----
→ n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s (≤-refl {n})
-- Transitivity.
≤-trans : ∀ {m n p : ℕ} -- note implicit arguments
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans z≤n n≤p = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
≤-trans′ : ∀ (m n p : ℕ) -- without implicit arguments
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans′ .0 _ _ z≤n n≤p = z≤n
≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p)
-- Antisymmetry.
≤-antisym : ∀ {m n : ℕ}
→ m ≤ n
→ n ≤ m
-----
→ m ≡ n
≤-antisym z≤n z≤n = refl
≤-antisym (s≤s m≤n) (s≤s n≤m) rewrite ≤-antisym m≤n n≤m = refl
-- Total ordering.
-- A definition with parameters.
data Total (m n : ℕ) : Set where
forward :
m ≤ n
---------
→ Total m n
flipped :
n ≤ m
---------
→ Total m n
-- An equivalent definition without parameters.
data Total′ : ℕ → ℕ → Set where
forward′ : ∀ {m n : ℕ}
→ m ≤ n
----------
→ Total′ m n
flipped′ : ∀ {m n : ℕ}
→ n ≤ m
----------
→ Total′ m n
-- Showing that ≤ is a total order.
≤-total : ∀ (m n : ℕ) → Total m n -- introducing with clause
≤-total zero n = forward z≤n
≤-total (suc m) zero = flipped z≤n
≤-total (suc m) (suc n) with ≤-total m n
... | forward x = forward (s≤s x)
... | flipped x = flipped (s≤s x)
≤-total′ : ∀ (m n : ℕ) → Total m n -- with helper function and where
≤-total′ zero n = forward z≤n
≤-total′ (suc m) zero = flipped z≤n
≤-total′ (suc m) (suc n) = helper (≤-total m n)
where
helper : Total m n → Total (suc m) (suc n)
helper (forward x) = forward (s≤s x)
helper (flipped x) = flipped (s≤s x)
-- Splitting on n first gives different code (see PLFA or try it yourself).
-- Monotonicity.
+-monoʳ-≤ : ∀ (m p q : ℕ)
→ p ≤ q
-------------
→ m + p ≤ m + q
+-monoʳ-≤ zero p q p≤q = p≤q -- split on m
+-monoʳ-≤ (suc m) p q p≤q = s≤s (+-monoʳ-≤ m p q p≤q) -- refine, recurse
+-monoˡ-≤ : ∀ (m n p : ℕ)
→ m ≤ n
-------------
→ m + p ≤ n + p
+-monoˡ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoʳ-≤ p m n m≤n -- use commutativity
+-mono-≤ : ∀ (m n p q : ℕ) -- combine above
→ m ≤ n
→ p ≤ q
-------------
→ m + p ≤ n + q
+-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoʳ-≤ m p q p≤q ) (+-monoˡ-≤ m n q m≤n)
-- PLFA exercise: show *-mono-≤.
-- Strict inequality.
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- 842 exercise: LTTrans (1 point)
-- Prove that < is transitive.
-- Order of arguments changed from PLFA, to match ≤-trans.
<-trans : ∀ {m n p : ℕ} → m < n → n < p → m < p -- TODO
<-trans m<n n<p = {!!}
-- 842 exercise: Trichotomy (2 points)
-- Prove that either m < n, m ≡ n, or m > n for all m and n.
data Trichotomy (m n : ℕ) : Set where
is-< : m < n → Trichotomy m n
is-≡ : m ≡ n → Trichotomy m n
is-> : n < m → Trichotomy m n
<-trichotomy : ∀ (m n : ℕ) → Trichotomy m n -- TODO
<-trichotomy m n = {!!}
-- PLFA exercise: show +-mono-<.
-- Prove that suc m ≤ n implies m < n, and conversely,
-- and do the same for (m ≤ n) and (m < suc n).
-- Hint: if you do the proofs in the order below, you can avoid induction
-- for two of the four proofs.
-- 842 exercise: LEtoLTS (1 point)
≤-<-to : ∀ {m n : ℕ} → m ≤ n → m < suc n -- TODO
≤-<-to m≤n = {!!}
-- 842 exercise: LEStoLT (1 point)
≤-<--to′ : ∀ {m n : ℕ} → suc m ≤ n → m < n -- TODO
≤-<--to′ sm≤n = {!!}
-- 842 exercise: LTtoSLE (1 point)
≤-<-from : ∀ {m n : ℕ} → m < n → suc m ≤ n -- TODO
≤-<-from m<n = {!!}
-- 842 exercise: LTStoLE (1 point)
≤-<-from′ : ∀ {m n : ℕ} → m < suc n → m ≤ n -- TODO
≤-<-from′ m<sn = {!!}
-- PLFA exercise: use the above to give a proof of <-trans that uses ≤-trans. -- TODO
-- Mutually recursive datatypes.
-- Specify the types first, then give the definitions.
data even : ℕ → Set
data odd : ℕ → Set
data even where
zero :
---------
even zero
suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
-- Theorems about these datatypes.
-- The proofs are also mutually recursive.
-- So we give the types first, then the implementations.
e+e≡e : ∀ {m n : ℕ}
→ even m
→ even n
------------
→ even (m + n)
o+e≡o : ∀ {m n : ℕ}
→ odd m
→ even n
-----------
→ odd (m + n)
e+e≡e zero en = en
e+e≡e (suc x) en = suc (o+e≡o x en)
o+e≡o (suc x) en = suc (e+e≡e x en)
-- 842 exercise: OPOE (2 points)
-- Prove that the sum of two odds is even.
-- Hint: You will need to define another theorem and prove both
-- by mutual induction, as with the theorems above.
o+o≡e : ∀ {m n : ℕ} → odd m → odd n → even (m + n) -- TODO
o+o≡e om on = {!!}
-- For remarks on which of these definitions are in the standard library, see PLFA.
-- Here is the new Unicode used in this file.
{-
≤ U+2264 LESS-THAN OR EQUAL TO (\<=, \le)
≥ U+2265 GREATER-THAN OR EQUAL TO (\>=, \ge)
ˡ U+02E1 MODIFIER LETTER SMALL L (\^l)
ʳ U+02B3 MODIFIER LETTER SMALL R (\^r)
-}
| {
"alphanum_fraction": 0.5066187286,
"avg_line_length": 20.3289036545,
"ext": "agda",
"hexsha": "a31d4d9a19ccd032e707c92b769a353b16ed4d31",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc.agda",
"max_line_length": 94,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2510,
"size": 6119
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Test4 where
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Foundations.Logic
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
record !_ {ℓ} (X : Type ℓ) : Type ℓ where
inductive
constructor !!_
field x : X
open !_ hiding (x)
infix 1 !!_
infix 1 !_
!-iso : ∀{ℓ} {X : Type ℓ} → Iso (! X) X
Iso.fun !-iso = !_.x
Iso.inv !-iso = !!_
Iso.rightInv !-iso = λ x → refl
Iso.leftInv !-iso = λ{ (!! x) → refl }
!-≡ : ∀{ℓ} {X : Type ℓ} → (! X) ≡ X
!-≡ {X = X} = isoToPath !-iso
!-equiv : ∀{ℓ} {X : Type ℓ} → (! X) ≃ X
!-equiv = !_.x , λ where .equiv-proof x → ((!! x) , refl) , λ{ ((!! y) , p) → λ i → (!! p (~ i)) , (λ j → p (~ i ∨ j)) }
hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
hPropRel A B ℓ' = A → B → hProp ℓ'
module TestB {ℓ ℓ'} (X : Type ℓ)
(0ˣ : X) (_+_ _·_ : X → X → X) (_<_ : hPropRel X X ℓ')
(let infixl 5 _+_; _+_ = _+_) where
_≤_ : hPropRel X X ℓ'
x ≤ y = ¬(y < x)
postulate
sqrt : (x : X) → {{ ! [ 0ˣ ≤ x ] }} → X
0≤x² : ∀ x → [ 0ˣ ≤ (x · x) ]
instance -- module-scope instances
_ = λ {x} → !! 0≤x² x
test4 : (x y z : X) → [ 0ˣ ≤ x ] → [ 0ˣ ≤ y ] → X
test4 x y z 0≤x 0≤y =
let instance -- let-scope instances
_ = !! 0≤x
_ = !! 0≤y
_ = !! 0≤x² x -- preferred over the instance from module-scope
in ( (sqrt x) -- works
+ (sqrt y) -- also works
+ (sqrt (z · z)) -- uses instance from module scope
+ (sqrt (x · x)) -- uses instance from let-scope (?) -- NOTE: see https://github.com/agda/agda/issues/4688
)
| {
"alphanum_fraction": 0.5022962113,
"avg_line_length": 29.5254237288,
"ext": "agda",
"hexsha": "15d3f911ece8e7e1f421bc81e63552e22c5077e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "test/Test4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "test/Test4.agda",
"max_line_length": 120,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "test/Test4.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 718,
"size": 1742
} |
----------------------------------------------------------------
-- This file contains the definition of categories. --
----------------------------------------------------------------
module Category.Category where
open import Level public renaming (suc to lsuc)
open import Data.Product
open import Setoid.Total public
open import Relation.Relation
open Setoid public
record Cat {l : Level} : Set (lsuc l) where
field
Obj : Set l
Hom : Obj → Obj → Setoid {l}
comp : {A B C : Obj} → BinSetoidFun (Hom A B) (Hom B C) (Hom A C)
id : {A : Obj} → el (Hom A A)
assocPf : ∀{A B C D}{f : el (Hom A B)}{g : el (Hom B C)}{h : el (Hom C D)}
→ ⟨ Hom A D ⟩[ f ○[ comp ] (g ○[ comp ] h) ≡ (f ○[ comp ] g) ○[ comp ] h ]
idPfCom : ∀{A B}{f : el (Hom A B)} → ⟨ Hom A B ⟩[ id ○[ comp ] f ≡ f ○[ comp ] id ]
idPf : ∀{A B}{f : el (Hom A B)} → ⟨ Hom A B ⟩[ id ○[ comp ] f ≡ f ]
open Cat public
objectSetoid : {l : Level} → (ℂ : Cat {l}) → Setoid {l}
objectSetoid {l} ℂ = record { el = Obj ℂ;
eq = λ a b → _≅_ a b;
eqRpf = record { parEqPf = record { symPf = λ x₁ → sym x₁ ; transPf = λ x₁ x₂ → trans x₁ x₂ } ; refPf = refl }
}
-- Identities composed on the left cancel.
idPf-left : ∀{l}{ℂ : Cat {l}}{A B : Obj ℂ}{f : el (Hom ℂ A B)} → ⟨ Hom ℂ A B ⟩[ f ○[ comp ℂ ] id ℂ ≡ f ]
idPf-left {_}{ℂ}{A}{B}{f} =
transPf (parEqPf (eqRpf (Hom ℂ A B)))
(symPf (parEqPf (eqRpf (Hom ℂ A B))) (idPfCom ℂ {A} {B} {f}))
(idPf ℂ)
-- Congruence results for composition.
eq-comp-right : ∀{l}
{ℂ : Cat {l}}
{A B C : Obj ℂ}
{f : el (Hom ℂ A B)}
{g₁ g₂ : el (Hom ℂ B C)}
→ ⟨ Hom ℂ B C ⟩[ g₁ ≡ g₂ ]
→ ⟨ Hom ℂ A C ⟩[ f ○[ comp ℂ ] g₁ ≡ f ○[ comp ℂ ] g₂ ]
eq-comp-right {_}{ℂ}{A}{B}{C}{f}{g₁}{g₂} eq =
extT (appT {_}{_}{Hom ℂ A B}{SetoidFunSpace (Hom ℂ B C) (Hom ℂ A C)} (comp ℂ) f) eq
eq-comp-left : ∀{l}
{ℂ : Cat {l}}
{A B C : Obj ℂ}
{f₁ f₂ : el (Hom ℂ A B)}
{g : el (Hom ℂ B C)}
→ ⟨ Hom ℂ A B ⟩[ f₁ ≡ f₂ ]
→ ⟨ Hom ℂ A C ⟩[ f₁ ○[ comp ℂ ] g ≡ f₂ ○[ comp ℂ ] g ]
eq-comp-left {_}{ℂ}{A}{B}{C}{f₁}{f₂}{g} eq = extT (comp ℂ) {f₁}{f₂} eq g
eq-comp-all : ∀{l}
{ℂ : Cat {l}}
{A B C : Obj ℂ}
{f₁ f₂ : el (Hom ℂ A B)}
{g₁ g₂ : el (Hom ℂ B C)}
→ ⟨ Hom ℂ A B ⟩[ f₁ ≡ f₂ ]
→ ⟨ Hom ℂ B C ⟩[ g₁ ≡ g₂ ]
→ ⟨ Hom ℂ A C ⟩[ f₁ ○[ comp ℂ ] g₁ ≡ f₂ ○[ comp ℂ ] g₂ ]
eq-comp-all {_}{ℂ}{A}{B}{C}{f₁}{f₂}{g₁}{g₂} eq₁ eq₂
with eq-comp-left {_}{ℂ}{A}{B}{C}{f₁}{f₂}{g₁} eq₁ |
eq-comp-right {_}{ℂ}{A}{B}{C}{f₂}{g₁}{g₂} eq₂
... | eq₃ | eq₄ = transPf (parEqPf (eqRpf (Hom ℂ A C))) eq₃ eq₄
| {
"alphanum_fraction": 0.4579300074,
"avg_line_length": 37.3055555556,
"ext": "agda",
"hexsha": "d8af836aabce80d245af183a43bdcc5a3078f406",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/Category.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1157,
"size": 2686
} |
------------------------------------------------------------------------
-- The "circle"
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- Partly following the HoTT book.
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining the circle uses path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Circle {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as Bijection using (_↔_)
import Bijection P.equality-with-J as PB
open import Equality.Groupoid equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equality.Path.Isomorphisms.Univalence eq
import Equality.Path.Isomorphisms P.equality-with-paths as PI
open import Equality.Tactic equality-with-J hiding (module Eq)
open import Equivalence equality-with-J as Eq using (_≃_)
import Equivalence P.equality-with-J as PE
import Erased.Cubical eq as E
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import Group equality-with-J as G using (_≃ᴳ_)
import Group.Cyclic eq as C
open import Groupoid equality-with-J
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation eq as T using (∥_∥[1+_])
open import H-level.Truncation.Propositional eq as Trunc
using (∥_∥; ∣_∣)
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹)
open import Integer equality-with-J as Int
using (ℤ; +_; -[1+_]; ℤ-group)
open import Nat equality-with-J
open import Pointed-type equality-with-J as PT using (_≃ᴮ_)
open import Pointed-type.Homotopy-group eq
open import Sphere eq as Sphere using (𝕊)
open import Suspension eq as Suspension
using (Susp; north; south; meridian)
open import Univalence-axiom equality-with-J as Univ using (Univalence)
private
variable
a p : Level
A : Type p
P : A → Type p
f : (x : A) → P x
b ℓ x : A
------------------------------------------------------------------------
-- The type and some eliminators
-- The circle.
data 𝕊¹ : Type where
base : 𝕊¹
loopᴾ : base P.≡ base
loop : base ≡ base
loop = _↔_.from ≡↔≡ loopᴾ
-- A dependent eliminator, expressed using paths.
elimᴾ :
(P : 𝕊¹ → Type p)
(b : P base) →
P.[ (λ i → P (loopᴾ i)) ] b ≡ b →
(x : 𝕊¹) → P x
elimᴾ P b ℓ base = b
elimᴾ P b ℓ (loopᴾ i) = ℓ i
-- A non-dependent eliminator, expressed using paths.
recᴾ : (b : A) → b P.≡ b → 𝕊¹ → A
recᴾ = elimᴾ _
-- A dependent eliminator.
elim :
(P : 𝕊¹ → Type p)
(b : P base) →
subst P loop b ≡ b →
(x : 𝕊¹) → P x
elim P b ℓ = elimᴾ P b (subst≡→[]≡ ℓ)
-- A "computation" rule.
elim-loop : dcong (elim P b ℓ) loop ≡ ℓ
elim-loop = dcong-subst≡→[]≡ (refl _)
-- Every dependent function of type (x : 𝕊¹) → P x can be expressed
-- using elim.
η-elim :
{f : (x : 𝕊¹) → P x} →
f ≡ elim P (f base) (dcong f loop)
η-elim {P = P} {f = f} =
⟨ext⟩ $ elim _ (refl _)
(subst (λ x → f x ≡ elim P (f base) (dcong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong f loop))
(trans (cong (subst P loop) (refl _))
(dcong (elim P (f base) (dcong f loop)) loop)) ≡⟨ cong (trans (sym (dcong f loop))) $
trans (cong (flip trans _) $ cong-refl _) $
trans-reflˡ _ ⟩
trans (sym (dcong f loop))
(dcong (elim P (f base) (dcong f loop)) loop) ≡⟨ cong (trans (sym (dcong f loop))) elim-loop ⟩
trans (sym (dcong f loop)) (dcong f loop) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- A non-dependent eliminator.
rec : (b : A) → b ≡ b → 𝕊¹ → A
rec b ℓ = recᴾ b (_↔_.to ≡↔≡ ℓ)
-- A "computation" rule.
rec-loop : cong (rec b ℓ) loop ≡ ℓ
rec-loop = cong-≡↔≡ (refl _)
-- Every function from 𝕊¹ to A can be expressed using rec.
η-rec : {f : 𝕊¹ → A} → f ≡ rec (f base) (cong f loop)
η-rec {f = f} =
⟨ext⟩ $ elim _ (refl _)
(subst (λ x → f x ≡ rec (f base) (cong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong f loop))
(trans (refl _) (cong (rec (f base) (cong f loop)) loop)) ≡⟨ cong (trans (sym (cong f loop))) $ trans-reflˡ _ ⟩
trans (sym (cong f loop)) (cong (rec (f base) (cong f loop)) loop) ≡⟨ cong (trans (sym (cong f loop))) rec-loop ⟩
trans (sym (cong f loop)) (cong f loop) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- An alternative non-dependent eliminator.
rec′ : (b : A) → b ≡ b → 𝕊¹ → A
rec′ {A = A} b ℓ = elim
(const A)
b
(subst (const A) loop b ≡⟨ subst-const _ ⟩
b ≡⟨ ℓ ⟩∎
b ∎)
-- A "computation" rule.
rec′-loop : cong (rec′ b ℓ) loop ≡ ℓ
rec′-loop = dcong≡→cong≡ elim-loop
------------------------------------------------------------------------
-- Some equivalences
-- The circle can be expressed as a suspension.
𝕊¹≃Susp-Bool : 𝕊¹ ≃ Susp Bool
𝕊¹≃Susp-Bool = Eq.↔→≃ to from to∘from from∘to
where
north≡north =
north ≡⟨ meridian false ⟩
south ≡⟨ sym $ meridian true ⟩∎
north ∎
to : 𝕊¹ → Susp Bool
to = rec north north≡north
module From = Suspension.Rec base base (if_then refl base else loop)
from : Susp Bool → 𝕊¹
from = From.rec
to∘from : ∀ x → to (from x) ≡ x
to∘from = Suspension.elim _
(to (from north) ≡⟨⟩
north ∎)
(to (from south) ≡⟨⟩
north ≡⟨ meridian true ⟩∎
south ∎)
(λ b →
subst (λ x → to (from x) ≡ x) (meridian b) (refl north) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (to ∘ from) (meridian b)))
(trans (refl _) (cong id (meridian b))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
cong (cong to) From.rec-meridian)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (cong to (if b then refl base else loop)))
(meridian b) ≡⟨ lemma b ⟩∎
meridian true ∎)
where
lemma : (b : Bool) → _ ≡ _
lemma true =
trans (sym (cong to (if true ⦂ Bool then refl base else loop)))
(meridian true) ≡⟨⟩
trans (sym (cong to (refl base))) (meridian true) ≡⟨ prove (Trans (Sym (Cong _ Refl)) (Lift _)) (Lift _) (refl _) ⟩∎
meridian true ∎
lemma false =
trans (sym (cong to (if false ⦂ Bool then refl base else loop)))
(meridian false) ≡⟨⟩
trans (sym (cong to loop)) (meridian false) ≡⟨ cong (λ p → trans (sym p) (meridian false)) rec-loop ⟩
trans (sym north≡north) (meridian false) ≡⟨ prove (Trans (Sym (Trans (Lift _) (Sym (Lift _)))) (Lift _))
(Trans (Trans (Lift _) (Sym (Lift _))) (Lift _))
(refl _) ⟩
trans (trans (meridian true) (sym $ meridian false))
(meridian false) ≡⟨ trans-[trans-sym]- _ _ ⟩∎
meridian true ∎
from∘to : ∀ x → from (to x) ≡ x
from∘to = elim _
(from (to base) ≡⟨⟩
base ∎)
(subst (λ x → from (to x) ≡ x) loop (refl base) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (from ∘ to) loop))
(trans (refl base) (cong id loop)) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ to _) $
cong (cong from) rec-loop)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (cong from north≡north)) loop ≡⟨ prove (Trans (Sym (Cong _ (Trans (Lift _) (Sym (Lift _))))) (Lift _))
(Trans (Trans (Cong from (Lift (meridian true)))
(Sym (Cong from (Lift (meridian false)))))
(Lift _))
(refl _) ⟩
trans (trans (cong from (meridian true))
(sym $ cong from (meridian false)))
loop ≡⟨ cong₂ (λ p q → trans (trans p (sym q)) loop)
From.rec-meridian
From.rec-meridian ⟩
trans (trans (if true ⦂ Bool then refl base else loop)
(sym $ if false ⦂ Bool then refl base else loop))
loop ≡⟨⟩
trans (trans (refl base) (sym loop)) loop ≡⟨ trans-[trans-sym]- _ _ ⟩∎
refl base ∎)
-- The circle is equivalent to the 1-dimensional sphere.
𝕊¹≃𝕊¹ : 𝕊¹ ≃ 𝕊 1
𝕊¹≃𝕊¹ =
𝕊¹ ↝⟨ 𝕊¹≃Susp-Bool ⟩
Susp Bool ↔⟨ Suspension.cong-↔ Sphere.Bool↔𝕊⁰ ⟩
Susp (𝕊 0) ↔⟨⟩
𝕊 1 □
------------------------------------------------------------------------
-- The loop space of the circle
-- The function trans is commutative for the loop space of the circle.
trans-commutative : (p q : base ≡ base) → trans p q ≡ trans q p
trans-commutative =
flip $ Transitivity-commutative.commutative base _∙_ ∙-base base-∙
where
_∙_ : 𝕊¹ → 𝕊¹ → 𝕊¹
x ∙ y = rec x (elim (λ x → x ≡ x) loop lemma x) y
where
lemma : subst (λ x → x ≡ x) loop loop ≡ loop
lemma = ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (refl _)
base-∙ : ∀ x → x ∙ base ≡ x
base-∙ _ = refl _
∙-base : ∀ y → base ∙ y ≡ y
∙-base =
elim _ (refl _)
(subst (λ x → rec base loop x ≡ x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (rec base loop) loop))
(trans (refl _) (cong id loop)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (sym (cong (rec base loop) loop)) (cong id loop) ≡⟨ cong₂ (trans ∘ sym)
rec-loop
(sym $ cong-id _) ⟩
trans (sym loop) loop ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- The loop space is equivalent to x ≡ x, for any x : 𝕊¹.
base≡base≃≡ : {x : 𝕊¹} → (base ≡ base) ≃ (x ≡ x)
base≡base≃≡ = elim
(λ x → (base ≡ base) ≃ (x ≡ x))
Eq.id
(Eq.lift-equality ext $ ⟨ext⟩ λ eq →
_≃_.to (subst (λ x → (base ≡ base) ≃ (x ≡ x)) loop Eq.id) eq ≡⟨ cong (_$ eq) Eq.to-subst ⟩
subst (λ x → base ≡ base → x ≡ x) loop id eq ≡⟨ subst-→ ⟩
subst (λ x → x ≡ x) loop (subst (λ _ → base ≡ base) (sym loop) eq) ≡⟨ cong (subst (λ x → x ≡ x) loop) $ subst-const _ ⟩
subst (λ x → x ≡ x) loop eq ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (
trans eq loop ≡⟨ trans-commutative _ _ ⟩∎
trans loop eq ∎) ⟩∎
eq ∎)
_
private
-- Definitions used to define base≡base≃ℤ and Fundamental-group≃ℤ.
module base≡base≃ℤ (univ : Univalence lzero) where
-- The universal cover of the circle.
Cover : 𝕊¹ → Type
Cover = rec ℤ (Univ.≃⇒≡ univ Int.successor)
to : base ≡ x → Cover x
to = flip (subst Cover) (+ 0)
≡⇒≃-cong-Cover-loop : Univ.≡⇒≃ (cong Cover loop) ≡ Int.successor
≡⇒≃-cong-Cover-loop =
Univ.≡⇒≃ (cong Cover loop) ≡⟨ cong Univ.≡⇒≃ rec-loop ⟩
Univ.≡⇒≃ (Univ.≃⇒≡ univ Int.successor) ≡⟨ _≃_.right-inverse-of (Univ.≡≃≃ univ) _ ⟩∎
Int.successor ∎
subst-Cover-loop :
∀ i → subst Cover loop i ≡ Int.suc i
subst-Cover-loop i =
subst Cover loop i ≡⟨ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
Univ.≡⇒→ (cong Cover loop) i ≡⟨ cong (λ eq → _≃_.to eq _) ≡⇒≃-cong-Cover-loop ⟩∎
_≃_.to Int.successor i ∎
subst-Cover-sym-loop :
∀ i → subst Cover (sym loop) i ≡ Int.pred i
subst-Cover-sym-loop i =
subst Cover (sym loop) i ≡⟨ subst-in-terms-of-inverse∘≡⇒↝ equivalence _ _ _ ⟩
_≃_.from (Univ.≡⇒≃ (cong Cover loop)) i ≡⟨ cong (λ eq → _≃_.from eq _) ≡⇒≃-cong-Cover-loop ⟩∎
_≃_.from Int.successor i ∎
module 𝕊¹-G = Groupoid (groupoid 𝕊¹)
loops : ℤ → base ≡ base
loops = loop 𝕊¹-G.^_
to-loops : ∀ i → to (loops i) ≡ i
to-loops (+ zero) =
subst Cover (refl _) (+ 0) ≡⟨ subst-refl _ _ ⟩∎
+ zero ∎
to-loops (+ suc n) =
subst Cover (trans (loops (+ n)) loop) (+ 0) ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst Cover loop (subst Cover (loops (+ n)) (+ 0)) ≡⟨⟩
subst Cover loop (to (loops (+ n))) ≡⟨ cong (subst Cover loop) $ to-loops (+ n) ⟩
subst Cover loop (+ n) ≡⟨ subst-Cover-loop _ ⟩∎
+ suc n ∎
to-loops -[1+ zero ] =
subst Cover (trans (refl _) (sym loop)) (+ 0) ≡⟨ cong (flip (subst Cover) _) $ trans-reflˡ _ ⟩
subst Cover (sym loop) (+ 0) ≡⟨ subst-Cover-sym-loop _ ⟩∎
-[1+ zero ] ∎
to-loops -[1+ suc n ] =
subst Cover (trans (loops -[1+ n ]) (sym loop)) (+ 0) ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst Cover (sym loop) (subst Cover (loops -[1+ n ]) (+ 0)) ≡⟨⟩
subst Cover (sym loop) (to (loops -[1+ n ])) ≡⟨ cong (subst Cover (sym loop)) $ to-loops -[1+ n ] ⟩
subst Cover (sym loop) -[1+ n ] ≡⟨ subst-Cover-sym-loop _ ⟩∎
-[1+ suc n ] ∎
loops-pred-loop :
∀ i → trans (loops (Int.pred i)) loop ≡ loops i
loops-pred-loop i =
trans (loops (Int.pred i)) loop ≡⟨ cong (flip trans _ ∘ loops) $ Int.pred≡-1+ i ⟩
trans (loops (Int.-[ 1 ] Int.+ i)) loop ≡⟨ cong (flip trans _) $ sym $ 𝕊¹-G.^∘^ {j = i} Int.-[ 1 ] ⟩
trans (trans (loops i) (loops (Int.-[ 1 ]))) loop ≡⟨⟩
trans (trans (loops i) (trans (refl _) (sym loop))) loop ≡⟨ cong (flip trans _) $ cong (trans _) $ trans-reflˡ _ ⟩
trans (trans (loops i) (sym loop)) loop ≡⟨ trans-[trans-sym]- _ _ ⟩∎
loops i ∎
from : ∀ x → Cover x → base ≡ x
from = elim _
loops
(⟨ext⟩ λ i →
subst (λ x → Cover x → base ≡ x) loop loops i ≡⟨ subst-→ ⟩
subst (base ≡_) loop (loops (subst Cover (sym loop) i)) ≡⟨ sym trans-subst ⟩
trans (loops (subst Cover (sym loop) i)) loop ≡⟨ cong (flip trans _ ∘ loops) $ subst-Cover-sym-loop _ ⟩
trans (loops (Int.pred i)) loop ≡⟨ loops-pred-loop i ⟩∎
loops i ∎)
from-to : (eq : base ≡ x) → from x (to eq) ≡ eq
from-to = elim¹
(λ {x} eq → from x (to eq) ≡ eq)
(from base (to (refl base)) ≡⟨⟩
loops (subst Cover (refl base) (+ 0)) ≡⟨ cong loops $ subst-refl _ _ ⟩
loops (+ 0) ≡⟨⟩
refl base ∎)
loops-+ : ∀ i j → loops (i Int.+ j) ≡ trans (loops i) (loops j)
loops-+ i j =
loops (i Int.+ j) ≡⟨ cong loops $ Int.+-comm i ⟩
loops (j Int.+ i) ≡⟨ sym $ 𝕊¹-G.^∘^ j ⟩∎
trans (loops i) (loops j) ∎
-- The loop space of the circle is equivalent to the type of integers
-- (assuming univalence).
--
-- The proof is based on the one presented by Licata and Shulman in
-- "Calculating the Fundamental Group of the Circle in Homotopy Type
-- Theory".
base≡base≃ℤ :
Univalence lzero →
(base ≡ base) ≃ ℤ
base≡base≃ℤ univ = Eq.↔→≃ to loops to-loops from-to
where
open base≡base≃ℤ univ
-- The circle's fundamental group is equivalent to the group of
-- integers (assuming univalence).
Fundamental-group≃ℤ :
Univalence lzero →
Fundamental-group (𝕊¹ , base) ≃ᴳ ℤ-group
Fundamental-group≃ℤ univ = G.≃ᴳ-sym λ where
.G.Homomorphic.related → inverse
(∥ base ≡ base ∥[1+ 1 ] ↝⟨ T.∥∥-cong $ base≡base≃ℤ univ ⟩
∥ ℤ ∥[1+ 1 ] ↔⟨ _⇔_.to (T.+⇔∥∥↔ {n = 1}) Int.ℤ-set ⟩□
ℤ □)
.G.Homomorphic.homomorphic i j → cong T.∣_∣ (loops-+ i j)
where
open base≡base≃ℤ univ
-- The circle is a groupoid (assuming univalence).
𝕊¹-groupoid :
Univalence lzero →
H-level 3 𝕊¹
𝕊¹-groupoid univ {x = x} {y = y} =
$⟨ (λ {_ _} → Int.ℤ-set) ⟩
Is-set ℤ ↝⟨ H-level-cong _ 2 (inverse $ base≡base≃ℤ univ) ⦂ (_ → _) ⟩
Is-set (base ≡ base) ↝⟨ (λ s →
elim
(λ x → ∀ y → Is-set (x ≡ y))
(elim _ s (H-level-propositional ext 2 _ _))
((Π-closure ext 1 λ _ →
H-level-propositional ext 2)
_ _)
x y) ⟩□
Is-set (x ≡ y) □
-- The type of endofunctions on 𝕊¹ is equivalent to
-- ∃ λ (x : 𝕊¹) → x ≡ x.
𝕊¹→𝕊¹≃Σ𝕊¹≡ : (𝕊¹ → 𝕊¹) ≃ ∃ λ (x : 𝕊¹) → x ≡ x
𝕊¹→𝕊¹≃Σ𝕊¹≡ = Eq.↔→≃ to from to-from from-to
where
to : (𝕊¹ → 𝕊¹) → ∃ λ (x : 𝕊¹) → x ≡ x
to f = f base , cong f loop
from : (∃ λ (x : 𝕊¹) → x ≡ x) → (𝕊¹ → 𝕊¹)
from = uncurry rec
to-from : ∀ p → to (from p) ≡ p
to-from (x , eq) = cong (x ,_)
(cong (rec x eq) loop ≡⟨ rec-loop ⟩∎
eq ∎)
from-to : ∀ f → from (to f) ≡ f
from-to f =
rec (f base) (cong f loop) ≡⟨ sym η-rec ⟩∎
f ∎
-- The type of endofunctions on 𝕊¹ is equivalent to 𝕊¹ × ℤ (assuming
-- univalence).
--
-- This result was pointed out to me by Paolo Capriotti.
𝕊¹→𝕊¹≃𝕊¹×ℤ :
Univalence lzero →
(𝕊¹ → 𝕊¹) ≃ (𝕊¹ × ℤ)
𝕊¹→𝕊¹≃𝕊¹×ℤ univ =
(𝕊¹ → 𝕊¹) ↝⟨ 𝕊¹→𝕊¹≃Σ𝕊¹≡ ⟩
(∃ λ (x : 𝕊¹) → x ≡ x) ↝⟨ (∃-cong λ _ → inverse base≡base≃≡) ⟩
𝕊¹ × base ≡ base ↝⟨ (∃-cong λ _ → base≡base≃ℤ univ) ⟩□
𝕊¹ × ℤ □
-- The forward direction of 𝕊¹→𝕊¹≃𝕊¹×ℤ maps the identity function to
-- base , + 1.
𝕊¹→𝕊¹≃𝕊¹×ℤ-id :
(univ : Univalence lzero) →
_≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) id ≡ (base , + 1)
𝕊¹→𝕊¹≃𝕊¹×ℤ-id univ = _≃_.from-to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ)
(rec base (trans (refl base) loop) ≡⟨ cong (rec base) $ trans-reflˡ _ ⟩
rec base loop ≡⟨ cong (rec base) $ cong-id _ ⟩
rec base (cong id loop) ≡⟨ sym η-rec ⟩∎
id ∎)
-- The forward direction of 𝕊¹→𝕊¹≃𝕊¹×ℤ maps the constant function
-- returning base to base , + 0.
𝕊¹→𝕊¹≃𝕊¹×ℤ-const :
(univ : Univalence lzero) →
_≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) (const base) ≡ (base , + 0)
𝕊¹→𝕊¹≃𝕊¹×ℤ-const univ = _≃_.from-to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ)
(rec base (refl base) ≡⟨ cong (rec base) $ sym $ cong-const _ ⟩
rec base (cong (const base) loop) ≡⟨ sym η-rec ⟩∎
const base ∎)
------------------------------------------------------------------------
-- A conversion function
-- The one-step truncation of the unit type is equivalent to the
-- circle.
--
-- Paolo Capriotti informed me about this result.
∥⊤∥¹≃𝕊¹ : ∥ ⊤ ∥¹ ≃ 𝕊¹
∥⊤∥¹≃𝕊¹ = _↔_.from ≃↔≃ $ PE.↔→≃
(O.recᴾ λ where
.O.∣∣ʳ _ → base
.O.∣∣-constantʳ _ _ → loopᴾ)
(recᴾ O.∣ _ ∣ (O.∣∣-constantᴾ _ _))
(elimᴾ _ P.refl (λ _ → P.refl))
(O.elimᴾ λ where
.O.∣∣ʳ _ → P.refl
.O.∣∣-constantʳ _ _ _ → P.refl)
------------------------------------------------------------------------
-- Some negative results
-- The equality loop is not equal to refl base.
loop≢refl : loop ≢ refl base
loop≢refl =
E.Stable-¬
E.[ loop ≡ refl base →⟨ Type-set ⟩
Is-set Type →⟨ Univ.¬-Type-set univ ⟩□
⊥ □
]
where
module _ (loop≡refl : loop ≡ refl base) where
refl≡ : (A : Type) (A≡A : A ≡ A) → refl A ≡ A≡A
refl≡ A A≡A =
refl A ≡⟨⟩
refl (rec A A≡A base) ≡⟨ sym $ cong-refl _ ⟩
cong (rec A A≡A) (refl base) ≡⟨ cong (cong (rec A A≡A)) $ sym loop≡refl ⟩
cong (rec A A≡A) loop ≡⟨ rec-loop ⟩∎
A≡A ∎
Type-set : Is-set Type
Type-set {x = A} {y = B} =
elim¹ (λ p → ∀ q → p ≡ q)
(refl≡ A)
-- Thus the circle is not a set.
¬-𝕊¹-set : ¬ Is-set 𝕊¹
¬-𝕊¹-set =
Is-set 𝕊¹ ↝⟨ (λ h → h) ⟩
Is-proposition (base ≡ base) ↝⟨ (λ h → h _ _) ⟩
loop ≡ refl base ↝⟨ loop≢refl ⟩□
⊥ □
-- It is not necessarily the case that the one-step truncation of a
-- proposition is a proposition.
¬-Is-proposition-∥∥¹ :
¬ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹)
¬-Is-proposition-∥∥¹ {a = a} =
({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹) ↝⟨ _$ H-level.mono₁ 0 (↑-closure 0 ⊤-contractible) ⟩
Is-proposition ∥ ↑ a ⊤ ∥¹ ↝⟨ H-level-cong _ 1 (O.∥∥¹-cong-↔ Bijection.↑↔) ⟩
Is-proposition ∥ ⊤ ∥¹ ↝⟨ H-level-cong _ 1 ∥⊤∥¹≃𝕊¹ ⟩
Is-proposition 𝕊¹ ↝⟨ ¬-𝕊¹-set ∘ H-level.mono₁ 1 ⟩□
⊥ □
-- A function with the type of refl (for 𝕊¹) that is not equal to
-- refl.
not-refl : (x : 𝕊¹) → x ≡ x
not-refl = elim _
loop
(subst (λ z → z ≡ z) loop loop ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (refl _) ⟩∎
loop ∎)
-- The function not-refl is not equal to refl.
not-refl≢refl : not-refl ≢ refl
not-refl≢refl =
not-refl ≡ refl ↝⟨ cong (_$ _) ⟩
loop ≡ refl base ↝⟨ loop≢refl ⟩□
⊥ □
-- There is a value with the type of refl that is not equal to refl.
∃≢refl : ∃ λ (f : (x : 𝕊¹) → x ≡ x) → f ≢ refl
∃≢refl = not-refl , not-refl≢refl
-- For every universe level there is a type A such that
-- (x : A) → x ≡ x is not a proposition.
¬-type-of-refl-propositional :
∃ λ (A : Type a) → ¬ Is-proposition ((x : A) → x ≡ x)
¬-type-of-refl-propositional {a = a} =
↑ _ 𝕊¹
, (Is-proposition (∀ x → x ≡ x) ↝⟨ (λ prop → prop _ _) ⟩
cong lift ∘ proj₁ ∃≢refl ∘ lower ≡ cong lift ∘ refl ∘ lower ↝⟨ cong (_∘ lift) ⟩
cong lift ∘ proj₁ ∃≢refl ≡ cong lift ∘ refl ↝⟨ cong (cong lower ∘_) ⟩
cong lower ∘ cong lift ∘ proj₁ ∃≢refl ≡
cong lower ∘ cong lift ∘ refl ↝⟨ ≡⇒↝ _ (cong₂ _≡_ (⟨ext⟩ λ _ → cong-∘ _ _ _) (⟨ext⟩ λ _ → cong-∘ _ _ _)) ⟩
cong id ∘ proj₁ ∃≢refl ≡ cong id ∘ refl ↝⟨ ≡⇒↝ _ (sym $ cong₂ _≡_ (⟨ext⟩ λ _ → cong-id _) (⟨ext⟩ λ _ → cong-id _)) ⟩
proj₁ ∃≢refl ≡ refl ↝⟨ proj₂ ∃≢refl ⟩□
⊥ □)
-- Every element of the circle is /merely/ equal to the base point.
--
-- This lemma was mentioned by Mike Shulman in a blog post
-- (http://homotopytypetheory.org/2013/07/24/cohomology/).
all-points-on-the-circle-are-merely-equal :
(x : 𝕊¹) → ∥ x ≡ base ∥
all-points-on-the-circle-are-merely-equal =
elim _
∣ refl base ∣
(Trunc.truncation-is-proposition _ _)
-- Thus every element of the circle is not not equal to the base
-- point.
all-points-on-the-circle-are-¬¬-equal :
(x : 𝕊¹) → ¬ ¬ x ≡ base
all-points-on-the-circle-are-¬¬-equal x =
x ≢ base ↝⟨ Trunc.rec ⊥-propositional ⟩
¬ ∥ x ≡ base ∥ ↝⟨ _$ all-points-on-the-circle-are-merely-equal x ⟩□
⊥ □
-- It is not the case that every point on the circle is equal to the
-- base point.
¬-all-points-on-the-circle-are-equal :
¬ ((x : 𝕊¹) → x ≡ base)
¬-all-points-on-the-circle-are-equal =
((x : 𝕊¹) → x ≡ base) ↝⟨ (λ hyp x y → x ≡⟨ hyp x ⟩
base ≡⟨ sym (hyp y) ⟩∎
y ∎) ⟩
Is-proposition 𝕊¹ ↝⟨ mono₁ 1 ⟩
Is-set 𝕊¹ ↝⟨ ¬-𝕊¹-set ⟩□
⊥ □
-- Thus double-negation shift for Type-valued predicates over 𝕊¹ does
-- not hold in general.
¬-double-negation-shift :
¬ ({P : 𝕊¹ → Type} → ((x : 𝕊¹) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹) → P x))
¬-double-negation-shift =
({P : 𝕊¹ → Type} → ((x : 𝕊¹) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹) → P x)) ↝⟨ _$ all-points-on-the-circle-are-¬¬-equal ⟩
¬ ¬ ((x : 𝕊¹) → x ≡ base) ↝⟨ _$ ¬-all-points-on-the-circle-are-equal ⟩□
⊥ □
-- Furthermore excluded middle for arbitrary types (in Type) does not
-- hold.
¬-excluded-middle : ¬ ({A : Type} → Dec A)
¬-excluded-middle =
({A : Type} → Dec A) ↝⟨ (λ em ¬¬a → [ id , ⊥-elim ∘ ¬¬a ] em) ⟩
({A : Type} → ¬ ¬ A → A) ↝⟨ (λ dne → flip _$_ ∘ (dne ∘_)) ⟩
({P : 𝕊¹ → Type} → ((x : 𝕊¹) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹) → P x)) ↝⟨ ¬-double-negation-shift ⟩□
⊥ □
-- H-level.Closure.proj₁-closure cannot be generalised by replacing
-- the assumption ∀ a → B a with ∀ a → ∥ B a ∥.
--
-- This observation is due to Andrea Vezzosi.
¬-generalised-proj₁-closure :
¬ ({A : Type} {B : A → Type} →
(∀ a → ∥ B a ∥) →
∀ n → H-level n (Σ A B) → H-level n A)
¬-generalised-proj₁-closure generalised-proj₁-closure =
$⟨ singleton-contractible _ ⟩
Contractible (Σ 𝕊¹ (_≡ base)) ↝⟨ generalised-proj₁-closure
all-points-on-the-circle-are-merely-equal
0 ⟩
Contractible 𝕊¹ ↝⟨ mono (zero≤ 2) ⟩
Is-set 𝕊¹ ↝⟨ ¬-𝕊¹-set ⟩□
⊥ □
-- There is no based equivalence between the circle and the product of
-- the circle with itself.
--
-- This result was pointed out to me by Paolo Capriotti.
𝕊¹≄ᴮ𝕊¹×𝕊¹ : ¬ (𝕊¹ , base) ≃ᴮ ((𝕊¹ , base) PT.× (𝕊¹ , base))
𝕊¹≄ᴮ𝕊¹×𝕊¹ =
E.Stable-¬
E.[ (𝕊¹ , base) ≃ᴮ ((𝕊¹ , base) PT.× (𝕊¹ , base)) ↝⟨ ≃ᴮ→≃ᴳ (𝕊¹ , base) ((𝕊¹ , base) PT.× (𝕊¹ , base)) 0 ⟩
Fundamental-group (𝕊¹ , base) ≃ᴳ
Fundamental-group ((𝕊¹ , base) PT.× (𝕊¹ , base)) ↝⟨ flip G.↝ᴳ-trans (Homotopy-group-[1+ 0 ]-× (𝕊¹ , base) (𝕊¹ , base)) ⟩
Fundamental-group (𝕊¹ , base) ≃ᴳ
(Fundamental-group (𝕊¹ , base) G.× Fundamental-group (𝕊¹ , base)) ↝⟨ flip G.↝ᴳ-trans
(G.↝-× (Fundamental-group≃ℤ univ) (Fundamental-group≃ℤ univ)) ∘
G.↝ᴳ-trans (G.≃ᴳ-sym (Fundamental-group≃ℤ univ)) ⟩
ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ↝⟨ C.ℤ≄ᴳℤ×ℤ ⟩□
⊥ □
]
-- 𝕊¹ is not equivalent to 𝕊¹ × 𝕊¹.
--
-- This result was pointed out to me by Paolo Capriotti.
𝕊¹≄𝕊¹×𝕊¹ : ¬ 𝕊¹ ≃ (𝕊¹ × 𝕊¹)
𝕊¹≄𝕊¹×𝕊¹ hyp =
let x , y = _≃_.to hyp base in
all-points-on-the-circle-are-¬¬-equal x λ x≡base →
all-points-on-the-circle-are-¬¬-equal y λ y≡base →
𝕊¹≄ᴮ𝕊¹×𝕊¹ (hyp , cong₂ _,_ x≡base y≡base)
------------------------------------------------------------------------
-- An alternative approach to defining eliminators and proving
-- computation rules for arbitrary notions of equality, based on an
-- anonymous reviewer's suggestion
-- Circle eq p is an axiomatisation of the circle, for the given
-- notion of equality eq, eliminating into Type p.
--
-- Note that the statement of the computation rule for "loop" is more
-- complicated than above (elim-loop). The reason is that the
-- computation rule for "base" does not hold definitionally.
Circle :
∀ {e⁺} →
(∀ {a p} → P.Equality-with-paths a p e⁺) →
(p : Level) → Type (lsuc p)
Circle eq p =
∃ λ (𝕊¹ : Type) →
∃ λ (base : 𝕊¹) →
∃ λ (loop : base ≡.≡ base) →
(P : 𝕊¹ → Type p)
(b : P base)
(ℓ : ≡.subst P loop b ≡.≡ b) →
∃ λ (elim : (x : 𝕊¹) → P x) →
∃ λ (elim-base : elim base ≡.≡ b) →
≡.subst (λ b → ≡.subst P loop b ≡.≡ b)
elim-base
(≡.dcong elim loop)
≡.≡
ℓ
where
module ≡ = P.Derived-definitions-and-properties eq
-- A circle defined for paths (P.equality-with-J) is equivalent to one
-- defined for eq.
Circle≃Circle : Circle P.equality-with-paths p ≃ Circle eq p
Circle≃Circle =
∃-cong λ _ →
∃-cong λ _ →
Σ-cong (inverse ≡↔≡) λ loop →
∀-cong ext λ P →
∀-cong ext λ b →
Π-cong-contra ext subst≡↔subst≡ λ ℓ →
∃-cong λ f →
Σ-cong (inverse ≡↔≡) λ f-base →
let lemma = P.elim¹
(λ eq → _↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
eq
(P.dcong f loop)) ≡
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
eq
(_↔_.from subst≡↔subst≡ (P.dcong f loop)))
(_↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
P.refl
(P.dcong f loop)) ≡⟨ cong (_↔_.from subst≡↔subst≡) $ _↔_.from ≡↔≡ $
P.subst-refl (λ b → P.subst P loop b P.≡ b) _ ⟩
_↔_.from subst≡↔subst≡ (P.dcong f loop) ≡⟨ sym $ _↔_.from ≡↔≡ $
P.subst-refl (λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b) _ ⟩∎
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
P.refl
(_↔_.from subst≡↔subst≡ (P.dcong f loop)) ∎)
_
in
P.subst
(λ b → P.subst P loop b P.≡ b)
f-base
(P.dcong f loop) P.≡
_↔_.to subst≡↔subst≡ ℓ ↔⟨ ≡↔≡ F.∘ inverse (from≡↔≡to (Eq.↔⇒≃ subst≡↔subst≡)) F.∘ inverse ≡↔≡ ⟩
_↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
f-base
(P.dcong f loop)) P.≡
ℓ ↝⟨ ≡⇒↝ _ (cong (P._≡ _) lemma) ⟩
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
f-base
(_↔_.from subst≡↔subst≡ (P.dcong f loop)) P.≡
ℓ ↝⟨ ≡⇒↝ _ $ cong (λ eq → P.subst (λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b) f-base eq P.≡ ℓ) $
_↔_.from-to (inverse subst≡↔subst≡) dcong≡dcong ⟩
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
f-base
(dcong f (_↔_.from ≡↔≡ loop)) P.≡
ℓ ↔⟨ inverse subst≡↔subst≡ ⟩□
subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
(_↔_.from ≡↔≡ f-base)
(dcong f (_↔_.from ≡↔≡ loop)) ≡
ℓ □
-- An implemention of the circle for paths (P.equality-with-paths).
circleᴾ : Circle P.equality-with-paths p
circleᴾ =
𝕊¹
, base
, loopᴾ
, λ P b ℓ →
let elim = elimᴾ P b (PI.subst≡→[]≡ {B = P} ℓ)
in
elim
, P.refl
, (P.subst (λ b → P.subst P loopᴾ b P.≡ b) P.refl
(P.dcong elim loopᴾ) P.≡⟨ P.subst-refl (λ b → P.subst P loopᴾ b P.≡ b) _ ⟩
P.dcong elim loopᴾ P.≡⟨ PI.dcong-subst≡→[]≡ {f = elim} {eq₂ = ℓ} P.refl ⟩∎
ℓ ∎)
-- An implementation of the circle for eq.
circle : Circle eq p
circle = _≃_.to Circle≃Circle circleᴾ
-- The latter implementation computes in the right way for "base".
_ :
let _ , base′ , _ , elim′ = circle {p = p} in
∀ {P b ℓ} →
proj₁ (elim′ P b ℓ) base′ ≡ b
_ = refl _
-- The usual computation rule for "loop" can be derived.
elim-loop-circle :
let _ , _ , loop′ , elim′ = circle {p = p} in
∀ {P b ℓ} →
dcong (proj₁ (elim′ P b ℓ)) loop′ ≡ ℓ
elim-loop-circle {P = P} {b = b} {ℓ = ℓ} =
let _ , _ , loop′ , elim′ = circle
elim″ , elim″-base , elim″-loop = elim′ P b ℓ
lemma =
refl _ ≡⟨ sym from-≡↔≡-refl ⟩
_↔_.from ≡↔≡ P.refl ≡⟨⟩
elim″-base ∎
in
dcong elim″ loop′ ≡⟨ sym $ subst-refl _ _ ⟩
subst (λ b → subst P loop′ b ≡ b) (refl _) (dcong elim″ loop′) ≡⟨ cong (λ eq → subst (λ b → subst P loop′ b ≡ b) eq (dcong elim″ loop′)) lemma ⟩
subst (λ b → subst P loop′ b ≡ b) elim″-base (dcong elim″ loop′) ≡⟨ elim″-loop ⟩∎
ℓ ∎
-- An alternative to Circle≃Circle that does not give the "right"
-- computational behaviour for circle′ below.
Circle≃Circle′ : Circle P.equality-with-paths p ≃ Circle eq p
Circle≃Circle′ =
∃-cong λ _ →
∃-cong λ _ →
Σ-cong (inverse ≡↔≡) λ loop →
∀-cong ext λ P →
∀-cong ext λ b →
Π-cong ext (inverse subst≡↔subst≡) λ ℓ →
∃-cong λ f →
Σ-cong (inverse ≡↔≡) λ f-base →
let lemma = P.elim¹
(λ eq → _↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
eq
(P.dcong f loop)) ≡
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
eq
(_↔_.from subst≡↔subst≡ (P.dcong f loop)))
(_↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
P.refl
(P.dcong f loop)) ≡⟨ cong (_↔_.from subst≡↔subst≡) $ _↔_.from ≡↔≡ $
P.subst-refl (λ b → P.subst P loop b P.≡ b) _ ⟩
_↔_.from subst≡↔subst≡ (P.dcong f loop) ≡⟨ sym $ _↔_.from ≡↔≡ $
P.subst-refl (λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b) _ ⟩∎
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
P.refl
(_↔_.from subst≡↔subst≡ (P.dcong f loop)) ∎)
_
in
P.subst
(λ b → P.subst P loop b P.≡ b)
f-base
(P.dcong f loop) P.≡
ℓ ↔⟨ ≡↔≡ F.∘ from-isomorphism (inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse subst≡↔subst≡) F.∘ inverse ≡↔≡ ⟩
_↔_.from subst≡↔subst≡
(P.subst
(λ b → P.subst P loop b P.≡ b)
f-base
(P.dcong f loop)) P.≡
_↔_.from subst≡↔subst≡ ℓ ↝⟨ ≡⇒↝ _ (cong (P._≡ _↔_.from subst≡↔subst≡ ℓ) lemma) ⟩
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
f-base
(_↔_.from subst≡↔subst≡ (P.dcong f loop)) P.≡
_↔_.from subst≡↔subst≡ ℓ ↝⟨ ≡⇒↝ _ $ cong (λ eq → P.subst (λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b) f-base eq P.≡ _↔_.from subst≡↔subst≡ ℓ) $
_↔_.from-to (inverse subst≡↔subst≡) dcong≡dcong ⟩
P.subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
f-base
(dcong f (_↔_.from ≡↔≡ loop)) P.≡
_↔_.from subst≡↔subst≡ ℓ ↔⟨ inverse subst≡↔subst≡ ⟩□
subst
(λ b → subst P (_↔_.from ≡↔≡ loop) b ≡ b)
(_↔_.from ≡↔≡ f-base)
(dcong f (_↔_.from ≡↔≡ loop)) ≡
_↔_.from subst≡↔subst≡ ℓ □
-- An alternative implementation of the circle for eq.
circle′ : Circle eq p
circle′ = _≃_.to Circle≃Circle′ circleᴾ
-- This implementation does not compute in the right way for "base".
-- The following code is (at the time of writing) rejected by Agda.
-- _ :
-- let _ , base′ , _ , elim′ = circle′ {p = p} in
-- ∀ {P b ℓ} →
-- proj₁ (elim′ P b ℓ) base′ ≡ b
-- _ = refl _
| {
"alphanum_fraction": 0.4536781455,
"avg_line_length": 38.1934493347,
"ext": "agda",
"hexsha": "da10986f4dd94fc15ac1bedc512bee610b289fa0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Circle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Circle.agda",
"max_line_length": 166,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Circle.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 13443,
"size": 37315
} |
------------------------------------------------------------------------
-- Properties related to stability for Erased
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Erased.Stability
{c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq
hiding (module Extensionality)
open import Logical-equivalence as LE using (_⇔_)
open import Prelude
open import Bijection eq as Bijection using (_↔_)
open import Double-negation eq as DN
open import Embedding eq using (Embedding; Is-embedding)
open import Embedding.Erased eq as EEmb using (Is-embeddingᴱ)
open import Equality.Decidable-UIP eq
open import Equality.Decision-procedures eq
open import Equivalence eq as Eq using (_≃_; Is-equivalence)
open import Equivalence.Erased eq as EEq using (_≃ᴱ_; Is-equivalenceᴱ)
open import Equivalence.Erased.Contractible-preimages eq as ECP
using (Contractibleᴱ)
import Equivalence.Half-adjoint eq as HA
open import Equivalence.Path-split eq as PS
using (Is-∞-extendable-along-[_]; Is-[_]-extendable-along-[_];
_-Null_; _-Nullᴱ_)
open import For-iterated-equality eq
open import Function-universe eq as F hiding (id; _∘_)
open import H-level eq as H-level
open import H-level.Closure eq
open import Injection eq using (_↣_; Injective)
import List eq as L
import Nat eq as Nat
open import Surjection eq using (_↠_; Split-surjective)
open import Univalence-axiom eq
open import Erased.Level-1 eq as E₁
hiding (module []-cong; module []-cong₁; module []-cong₂;
module Extensionality)
import Erased.Level-2
private
module E₂ = Erased.Level-2 eq
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ p : Level
A B : Type a
P : A → Type p
ext f k k′ s x y : A
n : ℕ
------------------------------------------------------------------------
-- Some lemmas related to stability
-- If A is very stable, then [_]→ {A = A} is an embedding.
Very-stable→Is-embedding-[] :
Very-stable A → Is-embedding [ A ∣_]→
Very-stable→Is-embedding-[] {A = A} s x y =
_≃_.is-equivalence ≡≃[]≡[]
where
A≃Erased-A : A ≃ Erased A
A≃Erased-A = Eq.⟨ _ , s ⟩
≡≃[]≡[] : (x ≡ y) ≃ ([ x ] ≡ [ y ])
≡≃[]≡[] = inverse $ Eq.≃-≡ A≃Erased-A
-- If A is very stable, then [_]→ {A = A} is split surjective.
Very-stable→Split-surjective-[] :
Very-stable A → Split-surjective [ A ∣_]→
Very-stable→Split-surjective-[] {A = A} =
Very-stable A ↔⟨⟩
Is-equivalence [_]→ ↝⟨ (λ hyp → _↠_.split-surjective $ _≃_.surjection $ Eq.⟨ _ , hyp ⟩) ⟩
Split-surjective [_]→ □
-- Very-stable is propositional (assuming extensionality).
Very-stable-propositional :
{A : Type a} →
Extensionality a a →
Is-proposition (Very-stable A)
Very-stable-propositional ext = Eq.propositional ext _
private
-- The previous result can be generalised.
For-iterated-equality-Very-stable-propositional :
{A : Type a} →
Extensionality a a →
∀ n → Is-proposition (For-iterated-equality n Very-stable A)
For-iterated-equality-Very-stable-propositional ext n =
H-level-For-iterated-equality ext 1 n
(Very-stable-propositional ext)
-- Very-stableᴱ is propositional (in erased contexts, assuming
-- extensionality).
@0 Very-stableᴱ-propositional :
{A : Type a} →
Extensionality a a →
Is-proposition (Very-stableᴱ A)
Very-stableᴱ-propositional ext =
EEq.Is-equivalenceᴱ-propositional ext _
-- Very stable types are stable.
Very-stable→Stable :
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality n Stable-[ k ] A
Very-stable→Stable {k = k} n =
For-iterated-equality-cong₁ _ n λ {A} →
Very-stable A ↝⟨ Eq.⟨ _ ,_⟩ ⟩
A ≃ Erased A ↝⟨ inverse ⟩
Erased A ≃ A ↔⟨⟩
Stable-[ equivalence ] A ↝⟨ from-equivalence ⟩□
Stable-[ k ] A □
-- The function obtained from Very-stable→Stable {k = implication} 0
-- maps [ x ] to x.
--
-- This seems to imply that (say) the booleans can not be proved to be
-- very stable (assuming that Agda is consistent), because
-- implementing a function that resurrects a boolean, given no
-- information about what the boolean was, is impossible. However, the
-- booleans are stable: this follows from Dec→Stable below. Thus it
-- seems as if one can not prove that all stable types are very
-- stable.
Very-stable→Stable-[]≡id :
(s : Very-stable A) →
Very-stable→Stable 0 s [ x ] ≡ x
Very-stable→Stable-[]≡id {x = x} s =
Very-stable→Stable 0 s [ x ] ≡⟨⟩
_≃_.from Eq.⟨ _ , s ⟩ [ x ] ≡⟨ _≃_.left-inverse-of Eq.⟨ _ , s ⟩ x ⟩∎
x ∎
-- Very stable types are very stable with erased proofs.
Very-stable→Very-stableᴱ :
{@0 A : Type a} →
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality n Very-stableᴱ A
Very-stable→Very-stableᴱ n =
For-iterated-equality-cong₁ᴱ-→ n EEq.Is-equivalence→Is-equivalenceᴱ
-- In erased contexts types that are very stable with erased proofs
-- are very stable.
@0 Very-stableᴱ→Very-stable :
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Very-stable A
Very-stableᴱ→Very-stable n =
For-iterated-equality-cong₁ _ n EEq.Is-equivalenceᴱ→Is-equivalence
-- If A is very stable with erased proofs, then
-- Stable-[ equivalenceᴱ ] A holds.
Very-stableᴱ→Stable-≃ᴱ :
{@0 A : Type a} →
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Stable-[ equivalenceᴱ ] A
Very-stableᴱ→Stable-≃ᴱ {A = A} n =
For-iterated-equality-cong₁ᴱ-→ n λ {A} →
Very-stableᴱ A →⟨ EEq.⟨ _ ,_⟩₀ ⟩
A ≃ᴱ Erased A →⟨ EEq.inverse ⟩
Erased A ≃ᴱ A →⟨ id ⟩□
Stable-[ equivalenceᴱ ] A □
-- If A is very stable with erased proofs, then A is stable.
Very-stableᴱ→Stable :
{@0 A : Type a} →
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Stable A
Very-stableᴱ→Stable {A = A} n =
For-iterated-equality n Very-stableᴱ A →⟨ Very-stableᴱ→Stable-≃ᴱ n ⟩
For-iterated-equality n Stable-[ equivalenceᴱ ] A →⟨ For-iterated-equality-cong₁ᴱ-→ n _≃ᴱ_.to ⟩□
For-iterated-equality n Stable A □
-- The function obtained from Very-stableᴱ→Stable 0 maps [ x ] to x
-- (in erased contexts).
@0 Very-stableᴱ→Stable-[]≡id :
(s : Very-stableᴱ A) →
Very-stableᴱ→Stable 0 s [ x ] ≡ x
Very-stableᴱ→Stable-[]≡id {x = x} s =
Very-stableᴱ→Stable 0 s [ x ] ≡⟨⟩
_≃ᴱ_.from EEq.⟨ _ , s ⟩ [ x ] ≡⟨ _≃ᴱ_.left-inverse-of EEq.⟨ _ , s ⟩ x ⟩∎
x ∎
-- If one can prove that A is very stable given that Erased A is
-- inhabited, then A is very stable.
[Erased→Very-stable]→Very-stable :
(Erased A → Very-stable A) → Very-stable A
[Erased→Very-stable]→Very-stable =
HA.[inhabited→Is-equivalence]→Is-equivalence
-- If one can prove that A is very stable (with erased proofs) given
-- that Erased A is inhabited, then A is very stable (with erased
-- proofs).
[Erased→Very-stableᴱ]→Very-stableᴱ :
{@0 A : Type a} →
(Erased A → Very-stableᴱ A) → Very-stableᴱ A
[Erased→Very-stableᴱ]→Very-stableᴱ =
EEq.[inhabited→Is-equivalenceᴱ]→Is-equivalenceᴱ
-- Erased A is very stable.
Very-stable-Erased :
{@0 A : Type a} → Very-stable (Erased A)
Very-stable-Erased =
_≃_.is-equivalence (Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = λ ([ x ]) → [ erased x ]
}
; right-inverse-of = refl
}
; left-inverse-of = λ x → refl [ erased x ]
}))
-- In an erased context every type is very stable.
--
-- Presumably "not in an erased context" is not expressible
-- internally, so it seems as if it should not be possible to prove
-- that any type is /not/ very stable (in an empty, non-erased
-- context, assuming that Agda is consistent).
Erased-Very-stable :
{@0 A : Type a} → Erased (Very-stable A)
Erased-Very-stable {A = A} =
[ _≃_.is-equivalence ( $⟨ Erased↔ ⟩
Erased (Erased A ↔ A) ↝⟨ erased ⟩
Erased A ↔ A ↝⟨ Eq.↔⇒≃ ∘ inverse ⟩□
A ≃ Erased A □)
]
-- If Very-stable A is very stable, then A is very stable.
--
-- See also Very-stable-Very-stable≃Very-stable below.
Very-stable-Very-stable→Very-stable :
Very-stable (Very-stable A) →
Very-stable A
Very-stable-Very-stable→Very-stable s =
Very-stable→Stable 0 s Erased-Very-stable
-- If Very-stableᴱ A is very stable with erased proofs, then A is very
-- stable with erased proofs.
--
-- See also Very-stableᴱ-Very-stableᴱ≃ᴱVery-stableᴱ below.
Very-stableᴱ-Very-stableᴱ→Very-stableᴱ :
{@0 A : Type a} →
Very-stableᴱ (Very-stableᴱ A) →
Very-stableᴱ A
Very-stableᴱ-Very-stableᴱ→Very-stableᴱ {A = A} s =
$⟨ Erased-Very-stable ⟩
Erased (Very-stable A) →⟨ map (Very-stable→Very-stableᴱ 0) ⟩
Erased (Very-stableᴱ A) →⟨ Very-stableᴱ→Stable 0 s ⟩□
Very-stableᴱ A □
-- It is not the case that every very stable type is a proposition.
¬-Very-stable→Is-proposition :
¬ ({A : Type a} → Very-stable A → Is-proposition A)
¬-Very-stable→Is-proposition {a = a} hyp =
not-proposition (hyp very-stable)
where
very-stable : Very-stable (Erased (↑ a Bool))
very-stable = Very-stable-Erased
not-proposition : ¬ Is-proposition (Erased (↑ a Bool))
not-proposition =
Is-proposition (Erased (↑ a Bool)) ↝⟨ (λ prop → prop _ _) ⟩
[ lift true ] ≡ [ lift false ] ↝⟨ (λ hyp → [ cong (lower ∘ erased) hyp ]) ⟩
Erased (true ≡ false) ↝⟨ map Bool.true≢false ⟩
Erased ⊥ ↔⟨ Erased-⊥↔⊥ ⟩□
⊥ □
-- Erased A implies ¬ ¬ A.
Erased→¬¬ : {@0 A : Type a} → Erased A → ¬ ¬ A
Erased→¬¬ [ x ] f = _↔_.to Erased-⊥↔⊥ [ f x ]
-- Types that are stable for double negation are stable for Erased.
¬¬-stable→Stable : {@0 A : Type a} → (¬ ¬ A → A) → Stable A
¬¬-stable→Stable ¬¬-Stable x = ¬¬-Stable (Erased→¬¬ x)
-- Types for which it is known whether or not they are inhabited are
-- stable.
Dec→Stable : {@0 A : Type a} → Dec A → Stable A
Dec→Stable (yes x) _ = x
Dec→Stable (no ¬x) x with () ← Erased→¬¬ x ¬x
-- Every type is stable in the double negation monad.
¬¬-Stable : {@0 A : Type a} → ¬¬ Stable A
¬¬-Stable = DN.map′ Dec→Stable excluded-middle
-- If equality is stable for A and B, then A ≃ᴱ B implies A ≃ B.
Stable-≡→≃ᴱ→≃ : Stable-≡ A → Stable-≡ B → A ≃ᴱ B → A ≃ B
Stable-≡→≃ᴱ→≃ sA sB A≃ᴱB = Eq.↔→≃
(_≃ᴱ_.to A≃ᴱB)
(_≃ᴱ_.from A≃ᴱB)
(λ x → sB _ _ [ _≃ᴱ_.right-inverse-of A≃ᴱB x ])
(λ x → sA _ _ [ _≃ᴱ_.left-inverse-of A≃ᴱB x ])
-- If A is stable, with an erased proof showing that [_]→ is a right
-- inverse of the proof of stability, then A is very stable with
-- erased proofs.
Stable→Left-inverse→Very-stableᴱ :
{@0 A : Type a} →
(s : Stable A) → @0 (∀ x → s [ x ] ≡ x) → Very-stableᴱ A
Stable→Left-inverse→Very-stableᴱ s inv =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ
_
s
(λ ([ x ]) → cong [_]→ (inv x))
inv
private
-- A lemma used below.
H-level-suc→For-iterated-equality-Is-proposition :
H-level (1 + n) A →
For-iterated-equality n Is-proposition A
H-level-suc→For-iterated-equality-Is-proposition {n = n} {A = A} =
H-level (1 + n) A ↝⟨ _⇔_.to H-level⇔H-level′ ⟩
H-level′ (1 + n) A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) _ ⟩
For-iterated-equality n (H-level′ 1) A ↝⟨ For-iterated-equality-cong₁ _ n $
_⇔_.from (H-level⇔H-level′ {n = 1}) ⟩□
For-iterated-equality n Is-proposition A □
-- If A is stable, and there is an erased proof showing that A is a
-- proposition, then A is very stable with erased proofs.
Stable-proposition→Very-stableᴱ :
{@0 A : Type a} →
Stable A → @0 Is-proposition A → Very-stableᴱ A
Stable-proposition→Very-stableᴱ {A = A} s prop =
_≃ᴱ_.is-equivalence $
EEq.⇔→≃ᴱ
prop
( $⟨ prop ⟩
Is-proposition A ↝⟨ H-level-cong _ 1 (inverse $ Erased↔ .erased) ⦂ (_ → _) ⟩□
Is-proposition (Erased A) □)
[_]→
s
-- The previous result can be generalised.
Stable→H-level-suc→Very-stableᴱ :
{@0 A : Type a} →
∀ n →
For-iterated-equality n Stable A →
@0 H-level (1 + n) A →
For-iterated-equality n Very-stableᴱ A
Stable→H-level-suc→Very-stableᴱ {A = A} n s h = $⟨ s ,′ [ H-level-suc→For-iterated-equality-Is-proposition h ] ⟩
For-iterated-equality n Stable A ×
Erased (For-iterated-equality n Is-proposition A) →⟨ Σ-map id $
For-iterated-equality-commutesᴱ-→ (λ A → Erased A) n (λ ([ f ]) x → [ f x ]) ⟩
For-iterated-equality n Stable A ×
For-iterated-equality n (λ A → Erased (Is-proposition A)) A →⟨ For-iterated-equality-commutesᴱ-×-→ n ⟩
For-iterated-equality n
(λ A → Stable A × Erased (Is-proposition A)) A →⟨ (For-iterated-equality-cong₁ᴱ-→ n λ (s , [ prop ]) →
Stable-proposition→Very-stableᴱ s prop) ⟩□
For-iterated-equality n Very-stableᴱ A □
-- Types that are contractible with erased proofs (n levels up) are
-- very stable with erased proofs (n levels up).
H-level→Very-stableᴱ :
{@0 A : Type a} →
∀ n →
For-iterated-equality n Contractibleᴱ A →
For-iterated-equality n Very-stableᴱ A
H-level→Very-stableᴱ {A = A} n =
For-iterated-equality n Contractibleᴱ A →⟨ For-iterated-equality-cong₁ᴱ-→ n Contractibleᴱ→Very-stableᴱ ⟩□
For-iterated-equality n Very-stableᴱ A □
where
Contractibleᴱ→Very-stableᴱ :
∀ {@0 A} → Contractibleᴱ A → Very-stableᴱ A
Contractibleᴱ→Very-stableᴱ c =
Stable-proposition→Very-stableᴱ
(λ _ → proj₁₀ c)
(mono₁ 0 $ ECP.Contractibleᴱ→Contractible c)
------------------------------------------------------------------------
-- Preservation lemmas
-- A kind of map function for Stable.
Stable-map :
{@0 A : Type a} {@0 B : Type b} →
(A → B) → @0 (B → A) → Stable A → Stable B
Stable-map A→B B→A s x = A→B (s (map B→A x))
-- A variant of Stable-map.
Stable-map-⇔ :
{@0 A : Type a} {@0 B : Type b} →
A ⇔ B → Stable A → Stable B
Stable-map-⇔ A⇔B =
Stable-map (to-implication A⇔B) (_⇔_.from A⇔B)
-- Stable-[ equivalenceᴱ ] preserves equivalences with erased proofs
-- (assuming extensionality).
Stable-≃ᴱ-cong :
{A : Type ℓ₁} {B : Type ℓ₂} →
@0 Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
A ≃ᴱ B → Stable-[ equivalenceᴱ ] A ≃ᴱ Stable-[ equivalenceᴱ ] B
Stable-≃ᴱ-cong {A = A} {B = B} ext A≃B =
Stable-[ equivalenceᴱ ] A ↔⟨⟩
Erased A ≃ᴱ A ↝⟨ EEq.≃ᴱ-cong ext (Erased-cong-≃ᴱ A≃B) A≃B ⟩
Erased B ≃ᴱ B ↔⟨⟩
Stable-[ equivalenceᴱ ] B □
-- If there is an injective function from A to B, and equality is
-- stable for B, then equality is stable for A.
Injective→Stable-≡→Stable-≡ :
{@0 A : Type a} {@0 B : Type b} →
(f : A → B) → Injective f → Stable-≡ B → Stable-≡ A
Injective→Stable-≡→Stable-≡ f inj s x y =
Stable-map inj (cong f) (s (f x) (f y))
-- If there is a function from A to B, with an erased proof showing
-- that the function is an equivalence, and A is very stable with
-- erased proofs, then B is very stable with erased proofs.
→→Is-equivalence→Very-stableᴱ→Very-stableᴱ :
{@0 A : Type a} {@0 B : Type b}
(f : A → B) → @0 Is-equivalence f → Very-stableᴱ A → Very-stableᴱ B
→→Is-equivalence→Very-stableᴱ→Very-stableᴱ {A = A} {B = B} f eq s =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ
[_]→
(Erased B →⟨ map (_≃_.from Eq.⟨ _ , eq ⟩) ⟩
Erased A →⟨ _≃ᴱ_.from EEq.⟨ _ , s ⟩₀ ⟩
A →⟨ f ⟩□
B □)
(λ ([ x ]) → cong [_]→ (lemma x))
lemma
where
@0 lemma : _
lemma = λ x →
f (_≃ᴱ_.from EEq.⟨ _ , s ⟩ [ _≃_.from Eq.⟨ _ , eq ⟩ x ]) ≡⟨ cong f $ _≃ᴱ_.left-inverse-of EEq.⟨ _ , s ⟩ _ ⟩
f (_≃_.from Eq.⟨ _ , eq ⟩ x) ≡⟨ _≃_.right-inverse-of Eq.⟨ _ , eq ⟩ _ ⟩∎
x ∎
-- If A is equivalent (with erased proofs) to B, and A is very stable
-- with erased proofs, then B is very stable with erased proofs.
≃ᴱ→Very-stableᴱ→Very-stableᴱ :
{@0 A : Type a} {@0 B : Type b} →
A ≃ᴱ B → Very-stableᴱ A → Very-stableᴱ B
≃ᴱ→Very-stableᴱ→Very-stableᴱ A≃ᴱB =
→→Is-equivalence→Very-stableᴱ→Very-stableᴱ
_ (_≃_.is-equivalence $ EEq.≃ᴱ→≃ A≃ᴱB)
-- Very-stableᴱ preserves equivalences with erased proofs (assuming
-- extensionality).
Very-stableᴱ-cong :
{@0 A : Type a} {@0 B : Type b} →
@0 Extensionality (a ⊔ b) (a ⊔ b) →
A ≃ᴱ B → Very-stableᴱ A ≃ᴱ Very-stableᴱ B
Very-stableᴱ-cong {a = a} {b = b} ext A≃ᴱB =
EEq.⇔→≃ᴱ
(Very-stableᴱ-propositional (lower-extensionality b b ext))
(Very-stableᴱ-propositional (lower-extensionality a a ext))
(≃ᴱ→Very-stableᴱ→Very-stableᴱ A≃ᴱB)
(≃ᴱ→Very-stableᴱ→Very-stableᴱ (EEq.inverse A≃ᴱB))
-- A variant of Very-stableᴱ-cong.
Very-stableᴱ-congⁿ :
{A : Type a} {B : Type b} →
@0 Extensionality (a ⊔ b) (a ⊔ b) →
∀ n →
A ↔[ k ] B →
For-iterated-equality n Very-stableᴱ A ≃ᴱ
For-iterated-equality n Very-stableᴱ B
Very-stableᴱ-congⁿ ext n A↔B =
For-iterated-equality-cong
[ ext ]
n
(Very-stableᴱ-cong ext ∘ from-isomorphism)
(from-isomorphism A↔B)
------------------------------------------------------------------------
-- Closure properties
-- ⊤ is very stable.
Very-stable-⊤ : Very-stable ⊤
Very-stable-⊤ = _≃_.is-equivalence $ Eq.↔⇒≃ $ inverse Erased-⊤↔⊤
-- ⊥ is very stable.
Very-stable-⊥ : Very-stable (⊥ {ℓ = ℓ})
Very-stable-⊥ = _≃_.is-equivalence $ Eq.↔⇒≃ $ inverse Erased-⊥↔⊥
-- Stable is closed under Π A.
Stable-Π :
{@0 A : Type a} {@0 P : A → Type p} →
(∀ x → Stable (P x)) → Stable ((x : A) → P x)
Stable-Π s [ f ] x = s x [ f x ]
-- A variant of Stable-Π.
Stable-[]-Π :
{A : Type a} {P : A → Type p} →
Extensionality? k a p →
(∀ x → Stable-[ k ] (P x)) → Stable-[ k ] ((x : A) → P x)
Stable-[]-Π {P = P} ext s =
Erased (∀ x → P x) ↔⟨ Erased-Π↔Π ⟩
(∀ x → Erased (P x)) ↝⟨ ∀-cong ext s ⟩□
(∀ x → P x) □
-- Very-stable is closed under Π A (assuming extensionality).
Very-stable-Π :
{A : Type a} {P : A → Type p} →
Extensionality a p →
(∀ x → Very-stable (P x)) →
Very-stable ((x : A) → P x)
Very-stable-Π ext s = _≃_.is-equivalence $
inverse $ Stable-[]-Π ext $ λ x → inverse Eq.⟨ _ , s x ⟩
-- Very-stableᴱ is closed under Π A (assuming extensionality).
Very-stableᴱ-Π :
{@0 A : Type a} {@0 P : A → Type p} →
@0 Extensionality a p →
(∀ x → Very-stableᴱ (P x)) →
Very-stableᴱ ((x : A) → P x)
Very-stableᴱ-Π {P = P} ext s =
_≃ᴱ_.is-equivalence
((∀ x → P x) EEq.≃ᴱ⟨ (EEq.∀-cong-≃ᴱ ext λ x → EEq.⟨ _ , s x ⟩₀) ⟩
(∀ x → Erased (P x)) EEq.≃ᴱ⟨ EEq.inverse Erased-Π≃ᴱΠ ⟩□
Erased (∀ x → P x) □)
-- A variant of Very-stableᴱ-Π.
Very-stableᴱ-Πⁿ :
{A : Type a} {P : A → Type p} →
Extensionality a p →
∀ n →
(∀ x → For-iterated-equality n Very-stableᴱ (P x)) →
For-iterated-equality n Very-stableᴱ ((x : A) → P x)
Very-stableᴱ-Πⁿ ext n =
For-iterated-equality-Π
ext
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
(Very-stableᴱ-Π ext)
-- One can sometimes drop Erased from the domain of a Π-type.
Π-Erased≃Π :
{A : Type a} {P : @0 A → Type p} →
Extensionality? ⌊ k ⌋-sym a p →
(∀ (@0 x) → Stable-[ ⌊ k ⌋-sym ] (P x)) →
((x : Erased A) → P (erased x)) ↝[ ⌊ k ⌋-sym ] ((x : A) → P x)
Π-Erased≃Π {a = a} {p = p} {A = A} {P = P} = lemma₂
where
lemma₁ lemma₂ :
Extensionality? ⌊ k ⌋-sym a p →
(∀ (@0 x) → Stable-[ ⌊ k ⌋-sym ] (P x)) →
((x : Erased A) → P (erased x)) ↝[ ⌊ k ⌋-sym ] ((x : A) → P x)
lemma₁ ext s =
((x : Erased A) → P (erased x)) ↝⟨ (∀-cong ext λ x → inverse $ s (erased x)) ⟩
((x : Erased A) → Erased (P (erased x))) ↔⟨ inverse Erased-Π↔Π-Erased ⟩
Erased ((x : A) → P x) ↝⟨ Stable-[]-Π ext (λ x → s x) ⟩□
((x : A) → P x) □
lemma₂ {k = equivalence} ext s =
Eq.with-other-function
(lemma₁ ext s)
(_∘ [_]→)
(λ f → apply-ext ext λ x →
_≃_.to (s x) (_≃_.from (s x) (f [ x ])) ≡⟨ _≃_.right-inverse-of (s x) _ ⟩∎
f [ x ] ∎)
lemma₂ {k = equivalenceᴱ} ext s =
EEq.with-other-function
(lemma₁ ext s)
(_∘ [_]→)
(λ f → apply-ext (erased ext) λ x →
_≃ᴱ_.to (s x) (_≃ᴱ_.from (s x) (f [ x ])) ≡⟨ _≃ᴱ_.right-inverse-of (s x) _ ⟩∎
f [ x ] ∎)
lemma₂ {k = bijection} ext s =
Bijection.with-other-function
(lemma₁ ext s)
(_∘ [_]→)
(λ f → apply-ext ext λ x →
_↔_.to (s x) (_↔_.from (s x) (f [ x ])) ≡⟨ _↔_.right-inverse-of (s x) _ ⟩∎
f [ x ] ∎)
lemma₂ {k = logical-equivalence} ext s =
record (lemma₁ ext s) { to = _∘ [_]→ }
_ : _≃_.to (Π-Erased≃Π ext s) f x ≡ f [ x ]
_ = refl _
_ : _≃ᴱ_.to (Π-Erased≃Π ext s) f x ≡ f [ x ]
_ = refl _
_ : _↔_.to (Π-Erased≃Π ext s) f x ≡ f [ x ]
_ = refl _
_ : _⇔_.to (Π-Erased≃Π ext s) f x ≡ f [ x ]
_ = refl _
-- Stable is closed under Σ A if A is very stable.
Very-stable-Stable-Σ :
Very-stable A →
(∀ x → Stable-[ k ] (P x)) →
Stable-[ k ] (Σ A P)
Very-stable-Stable-Σ {A = A} {P = P} s s′ =
Erased (Σ A P) ↔⟨ Erased-Σ↔Σ ⟩
Σ (Erased A) (λ x → Erased (P (erased x))) ↝⟨ Σ-cong-contra Eq.⟨ _ , s ⟩ s′ ⟩□
Σ A P □
-- If A is stable with a stability proof that is a right inverse of
-- [_]→, and P is pointwise stable, then Σ A P is stable.
Stable-Σ :
(s : Stable A) →
(∀ x → [ s x ] ≡ x) →
(∀ x → Stable (P x)) →
Stable (Σ A P)
Stable-Σ {A = A} {P = P} s₁ hyp s₂ =
Erased (Σ A P) ↔⟨ Erased-Σ↔Σ ⟩
Σ (Erased A) (λ x → Erased (P (erased x))) ↝⟨ Σ-cong-contra-→ surj s₂ ⟩□
Σ A P □
where
surj : A ↠ Erased A
surj = record
{ logical-equivalence = record
{ to = [_]→
; from = s₁
}
; right-inverse-of = hyp
}
-- Very-stable is closed under Σ.
--
-- See also Very-stableᴱ-Σ below.
Very-stable-Σ :
Very-stable A →
(∀ x → Very-stable (P x)) →
Very-stable (Σ A P)
Very-stable-Σ {A = A} {P = P} s s′ = _≃_.is-equivalence (
Σ A P ↝⟨ Σ-cong Eq.⟨ _ , s ⟩ (λ x → Eq.⟨ _ , s′ x ⟩) ⟩
Σ (Erased A) (λ x → Erased (P (erased x))) ↔⟨ inverse Erased-Σ↔Σ ⟩□
Erased (Σ A P) □)
-- Stable is closed under _×_.
Stable-× :
{@0 A : Type a} {@0 B : Type b} →
Stable A → Stable B → Stable (A × B)
Stable-× s s′ [ x , y ] = s [ x ] , s′ [ y ]
-- Stable-[ k ] is closed under _×_.
Stable-[]-× : Stable-[ k ] A → Stable-[ k ] B → Stable-[ k ] (A × B)
Stable-[]-× {A = A} {B = B} s s′ =
Erased (A × B) ↔⟨ Erased-Σ↔Σ ⟩
Erased A × Erased B ↝⟨ s ×-cong s′ ⟩□
A × B □
-- Very-stable is closed under _×_.
Very-stable-× : Very-stable A → Very-stable B → Very-stable (A × B)
Very-stable-× s s′ = _≃_.is-equivalence $
inverse $ Stable-[]-× (inverse Eq.⟨ _ , s ⟩) (inverse Eq.⟨ _ , s′ ⟩)
-- Very-stableᴱ is closed under _×_.
Very-stableᴱ-× :
{@0 A : Type a} {@0 B : Type b} →
Very-stableᴱ A → Very-stableᴱ B → Very-stableᴱ (A × B)
Very-stableᴱ-× {A = A} {B = B} s s′ =
_≃ᴱ_.is-equivalence
(A × B EEq.≃ᴱ⟨ EEq.⟨ _ , s ⟩₀ EEq.×-cong-≃ᴱ EEq.⟨ _ , s′ ⟩₀ ⟩
Erased A × Erased B EEq.↔⟨ inverse Erased-Σ↔Σ ⟩□
Erased (A × B) □)
-- A generalisation of Very-stableᴱ-×.
Very-stableᴱ-×ⁿ :
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Very-stableᴱ B →
For-iterated-equality n Very-stableᴱ (A × B)
Very-stableᴱ-×ⁿ n =
For-iterated-equality-×
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
Very-stableᴱ-×
-- Stable-[ k ] is closed under ↑ ℓ.
Stable-↑ : Stable-[ k ] A → Stable-[ k ] (↑ ℓ A)
Stable-↑ {A = A} s =
Erased (↑ _ A) ↔⟨ Erased-↑↔↑ ⟩
↑ _ (Erased A) ↝⟨ ↑-cong s ⟩□
↑ _ A □
-- Very-stable is closed under ↑ ℓ.
Very-stable-↑ : Very-stable A → Very-stable (↑ ℓ A)
Very-stable-↑ s = _≃_.is-equivalence $
inverse $ Stable-↑ $ inverse Eq.⟨ _ , s ⟩
-- Very-stableᴱ is closed under ↑ ℓ.
Very-stableᴱ-↑ :
{@0 A : Type a} →
Very-stableᴱ A → Very-stableᴱ (↑ ℓ A)
Very-stableᴱ-↑ {A = A} s =
_≃ᴱ_.is-equivalence
(↑ _ A EEq.≃ᴱ⟨ EEq.↑-cong-≃ᴱ EEq.⟨ _ , s ⟩₀ ⟩
↑ _ (Erased A) EEq.↔⟨ inverse Erased-↑↔↑ ⟩□
Erased (↑ _ A) □)
-- A generalisation of Very-stableᴱ-↑.
Very-stableᴱ-↑ⁿ :
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Very-stableᴱ (↑ ℓ A)
Very-stableᴱ-↑ⁿ n =
For-iterated-equality-↑
_
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
-- ¬ A is stable.
Stable-¬ :
{@0 A : Type a} →
Stable (¬ A)
Stable-¬ =
Stable-Π λ _ →
Very-stable→Stable 0 Very-stable-⊥
-- A variant of the previous result.
Stable-[]-¬ :
{A : Type a} →
Extensionality? k a lzero →
Stable-[ k ] (¬ A)
Stable-[]-¬ ext =
Stable-[]-Π ext λ _ →
Very-stable→Stable 0 Very-stable-⊥
-- ¬ A is very stable (assuming extensionality).
Very-stable-¬ :
{A : Type a} →
Extensionality a lzero →
Very-stable (¬ A)
Very-stable-¬ {A = A} ext =
Very-stable-Π ext λ _ →
Very-stable-⊥
-- If A is very stable with erased proofs, then W A P is very stable
-- with erased proofs (assuming extensionality).
Very-stableᴱ-W :
{@0 A : Type a} {@0 P : A → Type p} →
@0 Extensionality p (a ⊔ p) →
Very-stableᴱ A →
Very-stableᴱ (W A P)
Very-stableᴱ-W {A = A} {P = P} ext s =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ [_]→ from []∘from from∘[]
where
A≃ᴱE-A : A ≃ᴱ Erased A
A≃ᴱE-A = EEq.⟨ _ , s ⟩₀
from : Erased (W A P) → W A P
from [ sup x f ] = sup
(_≃ᴱ_.from A≃ᴱE-A [ x ])
(λ y → from [ f (subst P (_≃ᴱ_.left-inverse-of A≃ᴱE-A x) y) ])
@0 from∘[] : ∀ x → from [ x ] ≡ x
from∘[] (sup x f) = curry (_↠_.to (W-≡,≡↠≡ ext))
(_≃ᴱ_.left-inverse-of A≃ᴱE-A x)
(λ y → from∘[] (f (subst P (_≃ᴱ_.left-inverse-of A≃ᴱE-A x) y)))
@0 []∘from : ∀ x → [ from x ] ≡ x
[]∘from [ x ] = cong [_]→ (from∘[] x)
-- ∃ λ (A : Set a) → Very-stable A is stable.
--
-- This result is based on Theorem 3.11 in "Modalities in Homotopy
-- Type Theory" by Rijke, Shulman and Spitters.
Stable-∃-Very-stable : Stable (∃ λ (A : Type a) → Very-stable A)
Stable-∃-Very-stable [ A ] = Erased (proj₁ A) , Very-stable-Erased
-- ∃ λ (A : Set a) → Very-stable A is stable with erased proofs.
--
-- This result is based on Theorem 3.11 in "Modalities in Homotopy
-- Type Theory" by Rijke, Shulman and Spitters.
Stable-∃-Very-stableᴱ : Stable (∃ λ (A : Type a) → Very-stableᴱ A)
Stable-∃-Very-stableᴱ [ A ] =
Erased (proj₁ A) , Very-stable→Very-stableᴱ 0 Very-stable-Erased
-- ∃ λ (A : Set a) → Very-stableᴱ A is very stable (with erased
-- proofs), assuming extensionality and univalence.
--
-- This result is based on Theorem 3.11 in "Modalities in Homotopy
-- Type Theory" by Rijke, Shulman and Spitters.
Very-stableᴱ-∃-Very-stableᴱ :
@0 Extensionality a a →
@0 Univalence a →
Very-stableᴱ (∃ λ (A : Type a) → Very-stableᴱ A)
Very-stableᴱ-∃-Very-stableᴱ ext univ =
Stable→Left-inverse→Very-stableᴱ Stable-∃-Very-stableᴱ inv
where
@0 inv : ∀ p → Stable-∃-Very-stableᴱ [ p ] ≡ p
inv (A , s) = Σ-≡,≡→≡
(Erased A ≡⟨ ≃⇒≡ univ (Very-stable→Stable 0 (Very-stableᴱ→Very-stable 0 s)) ⟩∎
A ∎)
(Very-stableᴱ-propositional ext _ _)
-- If A is "stable 1 + n levels up", then H-level′ (1 + n) A is
-- stable.
Stable-H-level′ :
∀ n →
For-iterated-equality (1 + n) Stable A →
Stable (H-level′ (1 + n) A)
Stable-H-level′ {A = A} n =
For-iterated-equality (1 + n) Stable A ↝⟨ inverse-ext? (λ ext → For-iterated-equality-For-iterated-equality n 1 ext) _ ⟩
For-iterated-equality n Stable-≡ A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩
For-iterated-equality n (Stable ∘ H-level′ 1) A ↝⟨ For-iterated-equality-commutes-← _ Stable n Stable-Π ⟩
Stable (For-iterated-equality n (H-level′ 1) A) ↝⟨ Stable-map-⇔ (For-iterated-equality-For-iterated-equality n 1 _) ⟩□
Stable (H-level′ (1 + n) A) □
where
lemma : ∀ {A} → Stable-≡ A → Stable (H-level′ 1 A)
lemma s =
Stable-map-⇔
(H-level↔H-level′ {n = 1} _)
(Stable-Π λ _ →
Stable-Π λ _ →
s _ _)
-- If A is "stable 1 + n levels up", then H-level (1 + n) A is
-- stable.
Stable-H-level :
∀ n →
For-iterated-equality (1 + n) Stable A →
Stable (H-level (1 + n) A)
Stable-H-level {A = A} n =
For-iterated-equality (1 + n) Stable A ↝⟨ Stable-H-level′ n ⟩
Stable (H-level′ (1 + n) A) ↝⟨ Stable-map-⇔ (inverse-ext? H-level↔H-level′ _) ⟩□
Stable (H-level (1 + n) A) □
-- If equality is stable for A and B, then it is stable for A ⊎ B.
Stable-≡-⊎ :
∀ n →
For-iterated-equality (1 + n) Stable A →
For-iterated-equality (1 + n) Stable B →
For-iterated-equality (1 + n) Stable (A ⊎ B)
Stable-≡-⊎ n sA sB =
For-iterated-equality-⊎-suc
n
lemma
(Very-stable→Stable 0 Very-stable-⊥)
(For-iterated-equality-↑ _ (1 + n) lemma sA)
(For-iterated-equality-↑ _ (1 + n) lemma sB)
where
lemma : A ↔ B → Stable A → Stable B
lemma = Stable-map-⇔ ∘ from-isomorphism
private
-- An alternative, more direct proof of the "base case" of the
-- previous result.
Stable-≡-⊎₀ : Stable-≡ A → Stable-≡ B → Stable-≡ (A ⊎ B)
Stable-≡-⊎₀ sA sB = λ where
(inj₁ x) (inj₁ y) →
Erased (inj₁ x ≡ inj₁ y) ↝⟨ map (_↔_.from Bijection.≡↔inj₁≡inj₁) ⟩
Erased (x ≡ y) ↝⟨ sA _ _ ⟩
x ≡ y ↔⟨ Bijection.≡↔inj₁≡inj₁ ⟩□
inj₁ x ≡ inj₁ y □
(inj₁ x) (inj₂ y) →
Erased (inj₁ x ≡ inj₂ y) ↝⟨ map (_↔_.to Bijection.≡↔⊎) ⟩
Erased ⊥ ↝⟨ Very-stable→Stable 0 Very-stable-⊥ ⟩
⊥ ↔⟨ inverse Bijection.≡↔⊎ ⟩□
inj₁ x ≡ inj₂ y □
(inj₂ x) (inj₁ y) →
Erased (inj₂ x ≡ inj₁ y) ↝⟨ map (_↔_.to Bijection.≡↔⊎) ⟩
Erased ⊥ ↝⟨ Very-stable→Stable 0 Very-stable-⊥ ⟩
⊥ ↔⟨ inverse Bijection.≡↔⊎ ⟩□
inj₂ x ≡ inj₁ y □
(inj₂ x) (inj₂ y) →
Erased (inj₂ x ≡ inj₂ y) ↝⟨ map (_↔_.from Bijection.≡↔inj₂≡inj₂) ⟩
Erased (x ≡ y) ↝⟨ sB _ _ ⟩
x ≡ y ↔⟨ Bijection.≡↔inj₂≡inj₂ ⟩□
inj₂ x ≡ inj₂ y □
-- If equality is very stable (with erased proofs) for A and B, then
-- it is very stable (with erased proofs) for A ⊎ B.
Very-stableᴱ-≡-⊎ :
∀ n →
For-iterated-equality (1 + n) Very-stableᴱ A →
For-iterated-equality (1 + n) Very-stableᴱ B →
For-iterated-equality (1 + n) Very-stableᴱ (A ⊎ B)
Very-stableᴱ-≡-⊎ n sA sB =
For-iterated-equality-⊎-suc
n
lemma
(Very-stable→Very-stableᴱ 0 Very-stable-⊥)
(For-iterated-equality-↑ _ (1 + n) lemma sA)
(For-iterated-equality-↑ _ (1 + n) lemma sB)
where
lemma : A ↔ B → Very-stableᴱ A → Very-stableᴱ B
lemma = ≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism
-- If equality is stable for A, then it is stable for List A.
Stable-≡-List :
∀ n →
For-iterated-equality (1 + n) Stable A →
For-iterated-equality (1 + n) Stable (List A)
Stable-≡-List n =
For-iterated-equality-List-suc
n
(Stable-map-⇔ ∘ from-isomorphism)
(Very-stable→Stable 0 $ Very-stable-↑ Very-stable-⊤)
(Very-stable→Stable 0 Very-stable-⊥)
Stable-[]-×
-- If equality is very stable (with erased proofs) for A, then it is
-- very stable (with erased proofs) for List A.
Very-stableᴱ-≡-List :
∀ n →
For-iterated-equality (1 + n) Very-stableᴱ A →
For-iterated-equality (1 + n) Very-stableᴱ (List A)
Very-stableᴱ-≡-List n =
For-iterated-equality-List-suc
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
(Very-stable→Very-stableᴱ 0 $
Very-stable-↑ Very-stable-⊤)
(Very-stable→Very-stableᴱ 0 Very-stable-⊥)
Very-stableᴱ-×
------------------------------------------------------------------------
-- Some properties related to "Modalities in Homotopy Type Theory"
-- by Rijke, Shulman and Spitters
-- If we assume that equality is extensional for functions, then
-- λ A → Erased A is the modal operator of a Σ-closed reflective
-- subuniverse with [_]→ as the modal unit and Very-stable as the
-- modality predicate:
--
-- * Very-stable is propositional (assuming extensionality), see
-- Very-stable-propositional.
-- * Erased A is very stable, see Very-stable-Erased.
-- * Very-stable is Σ-closed, see Very-stable-Σ.
-- * Finally precomposition with [_]→ is an equivalence for functions
-- with very stable codomains (assuming extensionality):
∘-[]-equivalence :
{A : Type a} {B : Type b} →
Extensionality a b →
Very-stable B →
Is-equivalence (λ (f : Erased A → B) → f ∘ [_]→)
∘-[]-equivalence ext s =
_≃_.is-equivalence (Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = λ f x → _≃_.from Eq.⟨ _ , s ⟩ (map f x)
}
; right-inverse-of = λ f → apply-ext ext λ x →
_≃_.left-inverse-of Eq.⟨ _ , s ⟩ (f x)
}
; left-inverse-of = λ f → apply-ext ext λ x →
_≃_.left-inverse-of Eq.⟨ _ , s ⟩ (f x)
}))
-- A variant of ∘-[]-equivalence.
Is-equivalenceᴱ-∘[] :
{@0 A : Type a} {@0 B : Type b} →
@0 Extensionality a b →
Very-stableᴱ B →
Is-equivalenceᴱ (λ (f : Erased A → B) → f ∘ [_]→)
Is-equivalenceᴱ-∘[] ext s =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ
_
(λ f x → _≃ᴱ_.from EEq.⟨ _ , s ⟩₀ (map f x))
(λ f → apply-ext ext λ x →
_≃ᴱ_.left-inverse-of EEq.⟨ _ , s ⟩ (f x))
(λ f → apply-ext ext λ x →
_≃ᴱ_.left-inverse-of EEq.⟨ _ , s ⟩ (f x))
-- The Coq code accompanying "Modalities in Homotopy Type Theory" uses
-- a somewhat different definition of reflective subuniverses than the
-- paper:
-- * The definition has been adapted to Coq's notion of universe
-- polymorphism.
-- * The proof showing that the modality predicate is propositional is
-- allowed to make use of function extensionality for arbitrary
-- universe levels.
-- * One extra property is assumed: if A and B are equivalent and A is
-- modal, then B is modal. Such a property is proved below, assuming
-- that the []-cong axioms can be instantiated (Very-stable-cong).
-- * The property corresponding to ∘-[]-equivalence is replaced by a
-- property that is intended to avoid uses of extensionality. This
-- property is stated using Is-∞-extendable-along-[_]. Such a
-- property is proved below, assuming that the []-cong axioms can be
-- instantiated (const-extendable).
-- (This refers to one version of the code, which seems to have
-- changed since I first looked at it.)
--
-- Here is a definition of Σ-closed reflective subuniverses that is
-- based on the definition of reflective subuniverses in (one version
-- of) the Coq code of Rijke et al. Note that Is-modal-propositional
-- is only given access to function extensionality for a given
-- universe level. Below (Erased-Σ-closed-reflective-subuniverse) it
-- is proved that λ A → Erased A, [_]→ and Very-stable form a Σ-closed
-- reflective subuniverse of this kind (assuming that the []-cong
-- axioms can be instantiated).
record Σ-closed-reflective-subuniverse a : Type (lsuc a) where
field
◯ : Type a → Type a
η : A → ◯ A
Is-modal : Type a → Type a
Is-modal-propositional :
Extensionality a a →
Is-proposition (Is-modal A)
Is-modal-◯ : Is-modal (◯ A)
Is-modal-respects-≃ : A ≃ B → Is-modal A → Is-modal B
extendable-along-η :
Is-modal B → Is-∞-extendable-along-[ η ] (λ (_ : ◯ A) → B)
Σ-closed : Is-modal A → (∀ x → Is-modal (P x)) → Is-modal (Σ A P)
------------------------------------------------------------------------
-- Erased is accessible and topological (assuming extensionality)
-- A definition of what it means for a Σ-closed reflective subuniverse
-- to be accessible (for a certain universe level).
--
-- This definition is based on (one version of) the Coq code
-- accompanying "Modalities in Homotopy Type Theory" by Rijke, Shulman
-- and Spitters.
Accessible :
(ℓ : Level) → Σ-closed-reflective-subuniverse a → Type (lsuc (a ⊔ ℓ))
Accessible {a = a} ℓ U =
∃ λ (I : Type ℓ) →
∃ λ (P : I → Type ℓ) →
(A : Type a) →
Is-modal A ⇔
∀ i →
Is-∞-extendable-along-[ (λ (_ : P i) → lift tt) ]
(λ (_ : ↑ ℓ ⊤) → A)
where
open Σ-closed-reflective-subuniverse U
-- A definition of what it means for a Σ-closed reflective subuniverse
-- to be topological (for a certain universe level).
--
-- This definition is based on (one version of) the Coq code
-- accompanying "Modalities in Homotopy Type Theory" by Rijke, Shulman
-- and Spitters.
--
-- Below it is proved that Erased-Σ-closed-reflective-subuniverse is
-- topological (assuming extensionality and that the []-cong axioms
-- can be instantiated).
Topological :
(ℓ : Level) → Σ-closed-reflective-subuniverse a → Type (lsuc (a ⊔ ℓ))
Topological {a = a} ℓ U =
∃ λ (I : Type ℓ) →
∃ λ (P : I → Type ℓ) →
(∀ i → Is-proposition (P i)) ×
((A : Type a) →
Is-modal A ⇔
∀ i →
Is-∞-extendable-along-[ (λ (_ : P i) → lift tt) ]
(λ (_ : ↑ ℓ ⊤) → A))
where
open Σ-closed-reflective-subuniverse U
-- A definition of what it means for Erased to be accessible and
-- topological (for certain universe levels).
--
-- This definition is based on (one version of) the Coq code
-- accompanying "Modalities in Homotopy Type Theory" by Rijke, Shulman
-- and Spitters.
Erased-is-accessible-and-topological′ :
(ℓ a : Level) → Type (lsuc (a ⊔ ℓ))
Erased-is-accessible-and-topological′ ℓ a =
∃ λ (I : Type ℓ) →
∃ λ (P : I → Type ℓ) →
(∀ i → Is-proposition (P i)) ×
((A : Type a) →
Very-stable A ⇔
∀ i →
Is-∞-extendable-along-[ (λ (_ : P i) → lift tt) ]
(λ (_ : ↑ ℓ ⊤) → A))
-- A variant of Erased-is-accessible-and-topological′ that does not
-- use Is-∞-extendable-along-[_].
Erased-is-accessible-and-topological :
(ℓ a : Level) → Type (lsuc (a ⊔ ℓ))
Erased-is-accessible-and-topological ℓ a =
∃ λ (I : Type ℓ) →
∃ λ (P : I → Type ℓ) →
(∀ i → Is-proposition (P i)) ×
((A : Type a) → Very-stable A ⇔ P -Null A)
-- Erased-is-accessible-and-topological′ and
-- Erased-is-accessible-and-topological are pointwise equivalent
-- (assuming extensionality).
≃Erased-is-accessible-and-topological :
Extensionality (lsuc a ⊔ ℓ) (a ⊔ ℓ) →
Erased-is-accessible-and-topological′ ℓ a ≃
Erased-is-accessible-and-topological ℓ a
≃Erased-is-accessible-and-topological {a = a} {ℓ = ℓ} ext =
∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∀-cong (lower-extensionality ℓ lzero ext) λ _ →
⇔-cong (lower-extensionality (lsuc a) lzero ext) Eq.id $
PS.Π-Is-∞-extendable-along≃Null
(lower-extensionality (lsuc a) lzero ext)
-- A variant of Erased-is-accessible-and-topological that uses
-- Very-stableᴱ instead of Very-stable and _-Nullᴱ_ instead of
-- _-Null_, and for which Is-proposition is replaced by
-- Erased ∘ Is-proposition.
Erased-is-accessible-and-topologicalᴱ : (ℓ a : Level) → Type (lsuc (a ⊔ ℓ))
Erased-is-accessible-and-topologicalᴱ ℓ a =
∃ λ (I : Type ℓ) →
∃ λ (P : I → Type ℓ) →
(∀ i → Erased (Is-proposition (P i))) ×
((A : Type a) → Very-stableᴱ A ⇔ P -Nullᴱ A)
-- In erased contexts Erased is accessible and topological (assuming
-- extensionality).
@0 erased-is-accessible-and-topological-in-erased-contexts :
Extensionality (a ⊔ ℓ) (a ⊔ ℓ) →
Erased-is-accessible-and-topological ℓ a
erased-is-accessible-and-topological-in-erased-contexts
{a = a} {ℓ = ℓ} ext =
↑ ℓ ⊤
, (λ _ → ↑ ℓ ⊤)
, (λ _ → H-level.mono₁ 0 $ ↑-closure 0 ⊤-contractible)
, λ A →
Very-stable A ↔⟨ _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Very-stable-propositional (lower-extensionality ℓ ℓ ext))
(Erased-Very-stable .erased) ⟩
⊤ ↝⟨ record { to = λ _ _ → _≃_.is-equivalence $ Eq.↔→≃ _ (_$ _) refl refl } ⟩□
(λ _ → ↑ ℓ ⊤) -Null A □
-- Very-stable {a = a} is pointwise equivalent to
-- (λ (A : Type a) → Very-stable A) -Null_ (assuming extensionality).
Very-stable≃Very-stable-Null :
{A : Type a} →
Extensionality a a →
Very-stable A ↝[ lsuc a ∣ a ] (λ (A : Type a) → Very-stable A) -Null A
Very-stable≃Very-stable-Null {A = A} ext =
generalise-ext?-prop
(record { to = to; from = from })
(λ _ → Very-stable-propositional ext)
(λ ext′ →
Π-closure ext′ 1 λ _ →
Eq.propositional ext _)
where
open []-cong-axiomatisation
(Extensionality→[]-cong-axiomatisation ext)
to : Very-stable A → Very-stable -Null A
to sA _ =
_≃_.is-equivalence $
Eq.↔→≃
const
(λ f → Very-stable→Stable 0 sA [ f sB ])
(λ f → apply-ext ext λ x →
const (Very-stable→Stable 0 sA [ f sB ]) x ≡⟨⟩
Very-stable→Stable 0 sA [ f sB ] ≡⟨ cong (Very-stable→Stable 0 sA) $
[]-cong [ cong f $ Very-stable-propositional ext _ _ ] ⟩
Very-stable→Stable 0 sA [ f x ] ≡⟨ Very-stable→Stable-[]≡id sA ⟩∎
f x ∎)
(λ x →
Very-stable→Stable 0 sA [ x ] ≡⟨ Very-stable→Stable-[]≡id sA ⟩∎
x ∎)
where
@0 sB : Very-stable B
sB = Erased-Very-stable .erased
from : Very-stable -Null A → Very-stable A
from hyp =
_≃_.is-equivalence $
Eq.↔→≃
[_]→
(Erased A →⟨ flip (Very-stable→Stable 0) ⟩
(Very-stable A → A) ↔⟨ inverse A≃ ⟩□
A □)
(λ ([ x ]) → []-cong [ lemma x ])
lemma
where
A≃ : A ≃ (Very-stable A → A)
A≃ = Eq.⟨ const , hyp A ⟩
lemma :
∀ x →
_≃_.from A≃ (λ s → Very-stable→Stable 0 s [ x ]) ≡ x
lemma x =
_≃_.from A≃ (λ s → Very-stable→Stable 0 s [ x ]) ≡⟨ (cong (_≃_.from A≃) $
apply-ext ext λ s →
Very-stable→Stable-[]≡id s) ⟩
_≃_.from A≃ (const x) ≡⟨⟩
_≃_.from A≃ (_≃_.to A≃ x) ≡⟨ _≃_.left-inverse-of A≃ _ ⟩∎
x ∎
-- Very-stableᴱ {a = a} is pointwise equivalent to
-- (λ (A : Type a) → Very-stableᴱ A) -Nullᴱ_ (assuming
-- extensionality).
Very-stableᴱ≃Very-stableᴱ-Nullᴱ :
{A : Type a} →
@0 Extensionality (lsuc a) a →
Very-stableᴱ A ≃ᴱ (λ (A : Type a) → Very-stableᴱ A) -Nullᴱ A
Very-stableᴱ≃Very-stableᴱ-Nullᴱ {A = A} ext =
EEq.⇔→≃ᴱ
(Very-stableᴱ-propositional ext′)
(Π-closure ext 1 λ _ →
EEq.Is-equivalenceᴱ-propositional ext′ _)
to
from
where
@0 ext′ : _
ext′ = lower-extensionality _ lzero ext
to : Very-stableᴱ A → Very-stableᴱ -Nullᴱ A
to sA _ =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ
const
(λ f → Very-stableᴱ→Stable 0 sA [ f sB ])
(λ f → apply-ext ext′ λ x →
const (Very-stableᴱ→Stable 0 sA [ f sB ]) x ≡⟨⟩
Very-stableᴱ→Stable 0 sA [ f sB ] ≡⟨ cong (Very-stableᴱ→Stable 0 sA ∘ [_]→ ∘ f) $
Very-stableᴱ-propositional ext′ _ _ ⟩
Very-stableᴱ→Stable 0 sA [ f x ] ≡⟨ Very-stableᴱ→Stable-[]≡id sA ⟩∎
f x ∎)
(λ x →
Very-stableᴱ→Stable 0 sA [ x ] ≡⟨ Very-stableᴱ→Stable-[]≡id sA ⟩∎
x ∎)
where
@0 sB : Very-stableᴱ B
sB = Very-stable→Very-stableᴱ 0 (Erased-Very-stable .erased)
from : Very-stableᴱ -Nullᴱ A → Very-stableᴱ A
from hyp =
_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ
[_]→
(Erased A →⟨ flip (Very-stableᴱ→Stable 0) ⟩
(Very-stableᴱ A → A) →⟨ _≃ᴱ_.from A≃ ⟩□
A □)
(cong [_]→ ∘ lemma ∘ erased)
lemma
where
A≃ : A ≃ᴱ (Very-stableᴱ A → A)
A≃ = EEq.⟨ const , hyp A ⟩
@0 lemma :
∀ x →
_≃ᴱ_.from A≃ (λ s → Very-stableᴱ→Stable 0 s [ x ]) ≡ x
lemma x =
_≃ᴱ_.from A≃ (λ s → Very-stableᴱ→Stable 0 s [ x ]) ≡⟨ (cong (_≃ᴱ_.from A≃) $
apply-ext ext′ λ s →
Very-stableᴱ→Stable-[]≡id s) ⟩
_≃ᴱ_.from A≃ (const x) ≡⟨⟩
_≃ᴱ_.from A≃ (_≃ᴱ_.to A≃ x) ≡⟨ _≃ᴱ_.left-inverse-of A≃ _ ⟩∎
x ∎
-- Erased is accessible and topological (for certain universe levels,
-- assuming extensionality).
erased-is-accessible-and-topological :
∀ ℓ → Extensionality (lsuc a ⊔ ℓ) (lsuc a ⊔ ℓ) →
Erased-is-accessible-and-topological (lsuc a ⊔ ℓ) a
erased-is-accessible-and-topological {a = a} ℓ ext =
↑ ℓ (Type a)
, ↑ _ ∘ Very-stable ∘ lower
, (λ _ → ↑-closure 1 $ Very-stable-propositional ext′)
, (λ A →
Very-stable A ↝⟨ Very-stable≃Very-stable-Null ext′ _ ⟩
Very-stable -Null A ↝⟨ (inverse $
Π-cong _ Bijection.↑↔ λ B →
Is-equivalence≃Is-equivalence-∘ˡ
(_≃_.is-equivalence $
Eq.↔→≃ (_∘ lift) (_∘ lower) refl refl)
_) ⟩□
(↑ _ ∘ Very-stable ∘ lower) -Null A □)
where
ext′ = lower-extensionality _ _ ext
-- The property Erased-is-accessible-and-topologicalᴱ holds for
-- certain universe levels (assuming extensionality).
erased-is-accessible-and-topologicalᴱ :
∀ ℓ → @0 Extensionality (lsuc a) a →
Erased-is-accessible-and-topologicalᴱ (lsuc a ⊔ ℓ) a
erased-is-accessible-and-topologicalᴱ {a = a} ℓ ext =
↑ ℓ (Type a)
, ↑ _ ∘ Very-stableᴱ ∘ lower
, (λ _ →
[ ↑-closure 1 $
Very-stableᴱ-propositional
(lower-extensionality _ lzero ext)
])
, (λ A →
Very-stableᴱ A ↝⟨ _≃ᴱ_.logical-equivalence $
Very-stableᴱ≃Very-stableᴱ-Nullᴱ ext ⟩
Very-stableᴱ -Nullᴱ A ↝⟨ (inverse $
Π-cong _ Bijection.↑↔ λ B →
EEq.Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ˡ
(_≃ᴱ_.is-equivalence $
EEq.↔→≃ᴱ (_∘ lift) (_∘ lower) refl refl)) ⟩□
(↑ _ ∘ Very-stableᴱ ∘ lower) -Nullᴱ A □)
------------------------------------------------------------------------
-- Erased singletons
-- A variant of the Singleton type family with erased equality proofs.
Erased-singleton : {A : Type a} → @0 A → Type a
Erased-singleton x = ∃ λ y → Erased (y ≡ x)
-- A variant of Other-singleton.
Erased-other-singleton : {A : Type a} → @0 A → Type a
Erased-other-singleton x = ∃ λ y → Erased (x ≡ y)
-- "Inspection" with erased proofs.
inspectᴱ :
{@0 A : Type a}
(x : A) → Erased-other-singleton x
inspectᴱ x = x , [ refl x ]
-- The type of triples consisting of two values of type A, one erased,
-- and an erased proof of equality of the two values is logically
-- equivalent to A.
Σ-Erased-Erased-singleton⇔ :
{A : Type ℓ} →
(∃ λ (x : Erased A) → Erased-singleton (erased x)) ⇔ A
Σ-Erased-Erased-singleton⇔ {A = A} =
(∃ λ (x : Erased A) → ∃ λ y → Erased (y ≡ erased x)) ↔⟨ ∃-comm ⟩
(∃ λ y → ∃ λ (x : Erased A) → Erased (y ≡ erased x)) ↔⟨ (∃-cong λ _ → inverse Erased-Σ↔Σ) ⟩
(∃ λ y → Erased (∃ λ (x : A) → y ≡ x)) ↝⟨ (∃-cong λ _ → Erased-cong-⇔ (from-isomorphism $ _⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _)) ⟩
A × Erased ⊤ ↔⟨ drop-⊤-right (λ _ → Erased-⊤↔⊤) ⟩□
A □
-- If equality is very stable for A, then Erased-singleton x is
-- contractible for x : A.
--
-- See also Very-stableᴱ-≡→Contractible-Erased-singleton,
-- erased-singleton-with-erased-center-propositional and
-- erased-singleton-with-erased-center-contractible below.
erased-singleton-contractible :
{x : A} →
Very-stable-≡ A →
Contractible (Erased-singleton x)
erased-singleton-contractible {x = x} s =
$⟨ singleton-contractible x ⟩
Contractible (Singleton x) ↝⟨ H-level-cong _ 0 (∃-cong λ _ → Eq.⟨ _ , s _ _ ⟩) ⦂ (_ → _) ⟩□
Contractible (Erased-singleton x) □
-- If equality is very stable for A, then Erased-other-singleton x is
-- contractible for x : A.
erased-other-singleton-contractible :
{x : A} →
Very-stable-≡ A →
Contractible (Erased-other-singleton x)
erased-other-singleton-contractible {x = x} s =
$⟨ other-singleton-contractible x ⟩
Contractible (Other-singleton x) ↝⟨ H-level-cong _ 0 (∃-cong λ _ → Eq.⟨ _ , s _ _ ⟩) ⦂ (_ → _) ⟩□
Contractible (Erased-other-singleton x) □
-- Erased-singleton x is contractible with an erased proof.
Contractibleᴱ-Erased-singleton :
{@0 A : Type a} {x : A} →
Contractibleᴱ (Erased-singleton x)
Contractibleᴱ-Erased-singleton {x = x} =
(x , [ proj₂₀ (proj₁₀ contr) .erased ])
, [ proj₂ contr ]
where
@0 contr : Contractible (Erased-singleton x)
contr =
erased-singleton-contractible
(λ _ _ → Erased-Very-stable .erased)
-- Erased-other-singleton x is contractible with an erased proof.
Contractibleᴱ-Erased-other-singleton :
{@0 A : Type a} {x : A} →
Contractibleᴱ (Erased-other-singleton x)
Contractibleᴱ-Erased-other-singleton {x = x} =
(x , [ proj₂ (proj₁ contr) .erased ])
, [ proj₂ contr ]
where
@0 contr : Contractible (Erased-other-singleton x)
contr =
erased-other-singleton-contractible
(λ _ _ → Erased-Very-stable .erased)
-- Erased-singleton x is equivalent, with erased proofs, to ⊤.
Erased-singleton≃ᴱ⊤ :
{@0 A : Type a} {x : A} →
Erased-singleton x ≃ᴱ ⊤
Erased-singleton≃ᴱ⊤ =
let record { to = to } = EEq.Contractibleᴱ⇔≃ᴱ⊤ in
to Contractibleᴱ-Erased-singleton
-- Erased-other-singleton x is equivalent, with erased proofs, to ⊤.
Erased-other-singleton≃ᴱ⊤ :
{@0 A : Type a} {x : A} →
Erased-other-singleton x ≃ᴱ ⊤
Erased-other-singleton≃ᴱ⊤ =
let record { to = to } = EEq.Contractibleᴱ⇔≃ᴱ⊤ in
to Contractibleᴱ-Erased-other-singleton
------------------------------------------------------------------------
-- Results that depend on an instantiation of the []-cong axioms (for
-- two universe levels)
module []-cong₂
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
where
open Erased-cong ax₁ ax₂
----------------------------------------------------------------------
-- Preservation lemmas
-- Stable-[ equivalence ] preserves equivalences (assuming
-- extensionality).
Stable-≃-cong :
{A : Type ℓ₁} {B : Type ℓ₂} →
Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
A ≃ B → Stable-[ equivalence ] A ↝[ k ] Stable-[ equivalence ] B
Stable-≃-cong {A = A} {B = B} ext A≃B =
Stable-[ equivalence ] A ↔⟨⟩
Erased A ≃ A ↝⟨ generalise-ext?
(Eq.≃-preserves-⇔ (Erased-cong-≃ A≃B) A≃B)
(λ ext →
let eq = Eq.≃-preserves ext (Erased-cong-≃ A≃B) A≃B in
_≃_.right-inverse-of eq , _≃_.left-inverse-of eq)
ext ⟩
Erased B ≃ B ↔⟨⟩
Stable-[ equivalence ] B □
-- Very-stable preserves equivalences (assuming extensionality).
Very-stable-cong :
{A : Type ℓ₁} {B : Type ℓ₂} →
Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
A ≃ B → Very-stable A ↝[ k ] Very-stable B
Very-stable-cong ext A≃B =
generalise-ext?-prop
(record
{ to = lemma A≃B (Erased-cong-≃ A≃B)
(λ x → cong [_]→ (_≃_.right-inverse-of A≃B x))
; from = lemma (inverse A≃B) (inverse $ Erased-cong-≃ A≃B)
(λ x → cong [_]→ (_≃_.left-inverse-of A≃B x))
})
(Very-stable-propositional ∘ lower-extensionality ℓ₂ ℓ₂)
(Very-stable-propositional ∘ lower-extensionality ℓ₁ ℓ₁)
ext
where
lemma :
(A≃B : A ≃ B) (E-A≃E-B : Erased A ≃ Erased B) →
(∀ x → _≃_.to E-A≃E-B [ _≃_.from A≃B x ] ≡ [ x ]) →
Very-stable A → Very-stable B
lemma {A = A} {B = B} A≃B E-A≃E-B hyp s = _≃_.is-equivalence $
Eq.with-other-function
(B ↝⟨ inverse A≃B ⟩
A ↝⟨ Eq.⟨ [_]→ , s ⟩ ⟩
Erased A ↝⟨ E-A≃E-B ⟩□
Erased B □)
[_]→
(λ x →
_≃_.to E-A≃E-B [ _≃_.from A≃B x ] ≡⟨ hyp x ⟩∎
[ x ] ∎)
-- A generalisation of Very-stable-cong.
Very-stable-congⁿ :
{A : Type ℓ₁} {B : Type ℓ₂} →
Extensionality? k′ (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
∀ n →
A ↔[ k ] B →
For-iterated-equality n Very-stable A ↝[ k′ ]
For-iterated-equality n Very-stable B
Very-stable-congⁿ ext n A↔B =
For-iterated-equality-cong
ext
n
(Very-stable-cong ext ∘ from-isomorphism)
(from-isomorphism A↔B)
------------------------------------------------------------------------
-- Results that depend on an instantiation of the []-cong axioms (for
-- two universe levels as well as their maximum)
module []-cong₂-⊔₁
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
(ax : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
where
open []-cong-axiomatisation ax
open E₂.[]-cong₂-⊔ ax₁ ax₂ ax
----------------------------------------------------------------------
-- Preservation lemmas
-- A kind of map function for Stable-[_].
Stable-[]-map :
{A : Type ℓ₂} {B : Type ℓ₁} →
A ↝[ k ] B → @0 B ↝[ k ] A → Stable-[ k ] A → Stable-[ k ] B
Stable-[]-map {A = A} {B = B} A↝B B↝A s =
Erased B ↝⟨ Erased-cong B↝A ⟩
Erased A ↝⟨ s ⟩
A ↝⟨ A↝B ⟩□
B □
-- Variants of Stable-[]-map.
Stable-[]-map-↔ :
{A : Type ℓ₂} {B : Type ℓ₁} →
A ↔ B → Stable-[ k ] A → Stable-[ k ] B
Stable-[]-map-↔ A↔B =
Stable-[]-map
(from-isomorphism A↔B)
(from-isomorphism $ inverse A↔B)
Stable-[]-map-↝ :
{A : Type ℓ₂} {B : Type ℓ₁} →
A ↝[ ℓ₂ ∣ ℓ₁ ] B →
Extensionality? k ℓ₂ ℓ₁ → Stable-[ k ] A → Stable-[ k ] B
Stable-[]-map-↝ A↝B ext =
Stable-[]-map (A↝B ext) (inverse-ext? A↝B ext)
-- Stable preserves some kinds of functions (those that are
-- "symmetric"), possibly assuming extensionality.
Stable-cong :
{A : Type ℓ₁} {B : Type ℓ₂} →
Extensionality? ⌊ k ⌋-sym (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
A ↝[ ⌊ k ⌋-sym ] B → Stable A ↝[ ⌊ k ⌋-sym ] Stable B
Stable-cong {k = k} {A = A} {B = B} ext A↝B =
Stable A ↔⟨⟩
(Erased A → A) ↝⟨ →-cong ext (Erased-cong A↝B) A↝B ⟩
(Erased B → B) ↔⟨⟩
Stable B □
----------------------------------------------------------------------
-- More lemmas
-- All kinds of functions between erased types are stable.
Stable-Erased↝Erased :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Stable (Erased A ↝[ k ] Erased B)
Stable-Erased↝Erased {k = k} {A = A} {B = B} =
$⟨ Very-stable-Erased ⟩
Very-stable (Erased (A ↝[ k ] B)) ↝⟨ Very-stable→Stable 0 ⟩
Stable (Erased (A ↝[ k ] B)) ↝⟨ Stable-map-⇔ (Erased-↝↝↝ _) ⟩□
Stable (Erased A ↝[ k ] Erased B) □
-- If A is very stable, then W A P is very stable (assuming
-- extensionality).
Very-stable-W :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
Extensionality ℓ₂ (ℓ₁ ⊔ ℓ₂) →
Very-stable A →
Very-stable (W A P)
Very-stable-W {A = A} {P = P} ext s =
_≃_.is-equivalence $
Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = [_]→
; from = from
}
; right-inverse-of = []∘from
}
; left-inverse-of = from∘[]
})
where
module E = _≃_ Eq.⟨ _ , s ⟩
from : Erased (W A P) → W A P
from [ sup x f ] = sup
(E.from [ x ])
(λ y → from [ f (subst P (E.left-inverse-of x) y) ])
from∘[] : ∀ x → from [ x ] ≡ x
from∘[] (sup x f) = curry (_↠_.to (W-≡,≡↠≡ ext))
(E.left-inverse-of x)
(λ y → from∘[] (f (subst P (E.left-inverse-of x) y)))
[]∘from : ∀ x → [ from x ] ≡ x
[]∘from [ x ] = []-cong [ from∘[] x ]
------------------------------------------------------------------------
-- Results that depend on an instantiation of the []-cong axioms (for
-- a single universe level)
module []-cong₁ (ax : []-cong-axiomatisation ℓ) where
open E₁.[]-cong₁ ax
open []-cong₂ ax ax
open []-cong₂-⊔₁ ax ax ax
----------------------------------------------------------------------
-- Some lemmas related to stability
-- If A is stable, with [_]→ as a right inverse of the proof of
-- stability, then A is very stable.
Stable→Left-inverse→Very-stable :
{A : Type ℓ}
(s : Stable A) → (∀ x → s [ x ] ≡ x) → Very-stable A
Stable→Left-inverse→Very-stable s inv =
_≃_.is-equivalence (Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = s
}
; right-inverse-of = λ ([ x ]) → []-cong [ inv x ]
}
; left-inverse-of = inv
}))
-- If A is a stable proposition, then A is very stable.
--
-- Note that it is not the case that every very stable type is a
-- proposition, see ¬-Very-stable→Is-proposition.
Stable-proposition→Very-stable :
{A : Type ℓ} →
Stable A → Is-proposition A → Very-stable A
Stable-proposition→Very-stable s prop =
_≃_.is-equivalence $
Eq.⇔→≃
prop
(H-level-Erased 1 prop)
[_]→
s
-- The previous result can be generalised.
Stable→H-level-suc→Very-stable :
{A : Type ℓ} →
∀ n →
For-iterated-equality n Stable A → H-level (1 + n) A →
For-iterated-equality n Very-stable A
Stable→H-level-suc→Very-stable {A = A} n = curry (
For-iterated-equality n Stable A × H-level (1 + n) A ↝⟨ (∃-cong λ _ → H-level-suc→For-iterated-equality-Is-proposition) ⟩
For-iterated-equality n Stable A ×
For-iterated-equality n Is-proposition A ↝⟨ For-iterated-equality-commutes-× n _ ⟩
For-iterated-equality n (λ A → Stable A × Is-proposition A) A ↝⟨ For-iterated-equality-cong₁ _ n $
uncurry Stable-proposition→Very-stable ⟩
For-iterated-equality n Very-stable A □)
-- If equality is decidable for A, then equality is very stable for
-- A.
Decidable-equality→Very-stable-≡ :
{A : Type ℓ} →
Decidable-equality A → Very-stable-≡ A
Decidable-equality→Very-stable-≡ dec =
Stable→H-level-suc→Very-stable
1
(λ x y → Dec→Stable (dec x y))
(decidable⇒set dec)
-- Types with h-level n are very stable "n levels up".
H-level→Very-stable :
{A : Type ℓ} →
∀ n → H-level n A → For-iterated-equality n Very-stable A
H-level→Very-stable {A = A} n =
H-level n A ↝⟨ _⇔_.to H-level⇔H-level′ ⟩
H-level′ n A ↝⟨ For-iterated-equality-cong₁ _ n Contractible→Very-stable ⟩□
For-iterated-equality n Very-stable A □
where
Contractible→Very-stable :
∀ {A} → Contractible A → Very-stable A
Contractible→Very-stable c =
Stable-proposition→Very-stable
(λ _ → proj₁ c)
(mono₁ 0 c)
-- Equality is stable for A if and only if [_]→ is injective for A.
Stable-≡↔Injective-[] :
{A : Type ℓ} →
Stable-≡ A ↝[ ℓ ∣ ℓ ] Injective [ A ∣_]→
Stable-≡↔Injective-[] ext =
(∀ x y → Erased (x ≡ y) → x ≡ y) ↝⟨ (∀-cong ext λ _ → from-isomorphism $ inverse Bijection.implicit-Π↔Π) ⟩
(∀ x {y} → Erased (x ≡ y) → x ≡ y) ↔⟨ inverse Bijection.implicit-Π↔Π ⟩
(∀ {x y} → Erased (x ≡ y) → x ≡ y) ↝⟨ (implicit-∀-cong ext $ implicit-∀-cong ext $
Π-cong ext Erased-≡↔[]≡[] λ _ → F.id) ⟩□
(∀ {x y} → [ x ] ≡ [ y ] → x ≡ y) □
-- Equality is very stable for A if and only if [_]→ is an embedding
-- for A.
Very-stable-≡↔Is-embedding-[] :
{A : Type ℓ} →
Very-stable-≡ A ↝[ ℓ ∣ ℓ ] Is-embedding [ A ∣_]→
Very-stable-≡↔Is-embedding-[] ext =
(∀ x y → Is-equivalence [ x ≡ y ∣_]→) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
Is-equivalence≃Is-equivalence-∘ˡ []-cong-equivalence ext) ⟩
(∀ x y → Is-equivalence ([]-cong ∘ [ x ≡ y ∣_]→)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → Is-equivalence-cong ext λ _ → []-cong-[]≡cong-[]) ⟩□
(∀ x y → Is-equivalence (cong {x = x} {y = y} [_]→)) □
private
-- The previous result can be generalised.
Very-stable-≡↔Is-embedding-[]→ :
{A : Type ℓ} →
∀ n →
For-iterated-equality (1 + n) Very-stable A ↝[ ℓ ∣ ℓ ]
For-iterated-equality n (λ A → Is-embedding [ A ∣_]→) A
Very-stable-≡↔Is-embedding-[]→ {A = A} n ext =
For-iterated-equality (1 + n) Very-stable A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) ext ⟩
For-iterated-equality n Very-stable-≡ A ↝⟨ For-iterated-equality-cong₁ ext n (Very-stable-≡↔Is-embedding-[] ext) ⟩□
For-iterated-equality n (λ A → Is-embedding [ A ∣_]→) A □
-- There is a logical equivalence between "equality for A is very
-- stable with erased proofs" and "[_]→ for A is an embedding with
-- erased proofs".
Very-stableᴱ-≡⇔Is-embeddingᴱ-[] :
{@0 A : Type ℓ} →
Very-stableᴱ-≡ A ⇔ Is-embeddingᴱ [ A ∣_]→
Very-stableᴱ-≡⇔Is-embeddingᴱ-[] =
(∀ x y → Is-equivalenceᴱ [ x ≡ y ∣_]→) LE.⇔⟨ (LE.∀-cong λ _ → LE.∀-cong λ _ →
EEq.Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ˡ
(EEq.Is-equivalence→Is-equivalenceᴱ []-cong-equivalence)) ⟩
(∀ x y → Is-equivalenceᴱ ([]-cong ∘ [ x ≡ y ∣_]→)) LE.⇔⟨ (LE.∀-cong λ _ → LE.∀-cong λ _ →
EEq.Is-equivalenceᴱ-cong-⇔ λ _ →
[]-cong-[]≡cong-[]) ⟩□
(∀ x y → Is-equivalenceᴱ (cong {x = x} {y = y} [_]→)) □
-- There is an equivalence with erased proofs between "equality for
-- A is very stable with erased proofs" and "[_]→ for A is an
-- embedding with erased proofs" (assuming extensionality).
Very-stableᴱ-≡≃ᴱIs-embeddingᴱ-[] :
{@0 A : Type ℓ} →
@0 Extensionality ℓ ℓ →
Very-stableᴱ-≡ A ≃ᴱ Is-embeddingᴱ [ A ∣_]→
Very-stableᴱ-≡≃ᴱIs-embeddingᴱ-[] ext =
let record { to = to; from = from } =
Very-stableᴱ-≡⇔Is-embeddingᴱ-[]
in
EEq.⇔→≃ᴱ
(H-level-For-iterated-equality ext 1 1 λ {A} →
Very-stableᴱ-propositional {A = A} ext)
(EEmb.Is-embeddingᴱ-propositional ext)
to
from
----------------------------------------------------------------------
-- Closure properties
-- Very-stableᴱ is closed under Σ.
Very-stableᴱ-Σ :
{@0 A : Type ℓ} {@0 P : A → Type p} →
Very-stableᴱ A →
(∀ x → Very-stableᴱ (P x)) →
Very-stableᴱ (Σ A P)
Very-stableᴱ-Σ {A = A} {P = P} s s′ = _≃ᴱ_.is-equivalence (
Σ A P EEq.≃ᴱ⟨ EEq.[]-cong₁.Σ-cong-≃ᴱ-Erased ax EEq.⟨ _ , s ⟩₀ (λ x → EEq.⟨ _ , s′ x ⟩₀) ⟩
Σ (Erased A) (λ x → Erased (P (erased x))) EEq.↔⟨ inverse Erased-Σ↔Σ ⟩□
Erased (Σ A P) □)
-- A generalisation of Very-stableᴱ-Σ.
Very-stableᴱ-Σⁿ :
{A : Type ℓ} {P : A → Type p} →
∀ n →
For-iterated-equality n Very-stableᴱ A →
(∀ x → For-iterated-equality n Very-stableᴱ (P x)) →
For-iterated-equality n Very-stableᴱ (Σ A P)
Very-stableᴱ-Σⁿ n =
For-iterated-equality-Σ
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
Very-stableᴱ-Σ
-- A generalisation of Very-stableᴱ-W.
Very-stableᴱ-Wⁿ :
{A : Type ℓ} {P : A → Type p} →
Extensionality p (ℓ ⊔ p) →
∀ n →
For-iterated-equality n Very-stableᴱ A →
For-iterated-equality n Very-stableᴱ (W A P)
Very-stableᴱ-Wⁿ {A = A} {P = P} ext n =
For-iterated-equality-W
ext
n
(≃ᴱ→Very-stableᴱ→Very-stableᴱ ∘ from-isomorphism)
(Very-stableᴱ-Π ext)
Very-stableᴱ-Σ
(Very-stableᴱ-W ext)
----------------------------------------------------------------------
-- Closure properties related to equality
-- If A is very stable, then equality is very stable for A.
Very-stable→Very-stable-≡ :
{A : Type ℓ} →
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality (1 + n) Very-stable A
Very-stable→Very-stable-≡ {A = A} n =
For-iterated-equality n Very-stable A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩
For-iterated-equality n Very-stable-≡ A ↝⟨ For-iterated-equality-For-iterated-equality n 1 _ ⟩□
For-iterated-equality (1 + n) Very-stable A □
where
lemma : ∀ {A} → Very-stable A → Very-stable-≡ A
lemma {A = A} =
Very-stable A ↝⟨ Very-stable→Is-embedding-[] ⟩
Is-embedding [ A ∣_]→ ↝⟨ inverse-ext? Very-stable-≡↔Is-embedding-[] _ ⟩□
Very-stable-≡ A □
private
-- Some examples showing how Very-stable→Very-stable-≡ can be
-- used.
-- Equalities between erased values are very stable.
Very-stable-≡₀ :
{@0 A : Type ℓ} →
Very-stable-≡ (Erased A)
Very-stable-≡₀ = Very-stable→Very-stable-≡ 0 Very-stable-Erased
-- Equalities between equalities between erased values are very
-- stable.
Very-stable-≡₁ :
{@0 A : Type ℓ} →
For-iterated-equality 2 Very-stable (Erased A)
Very-stable-≡₁ = Very-stable→Very-stable-≡ 1 Very-stable-≡₀
-- And so on…
-- A generalisation of Very-stable→Very-stable-≡.
Very-stable→Very-stable⁺ :
{A : Type ℓ} →
∀ m →
For-iterated-equality n Very-stable A →
For-iterated-equality (m + n) Very-stable A
Very-stable→Very-stable⁺ zero = id
Very-stable→Very-stable⁺ {n = n} (suc m) =
Very-stable→Very-stable-≡ (m + n) ∘
Very-stable→Very-stable⁺ m
-- A variant of Very-stable→Very-stable-≡.
Very-stable→Very-stableⁿ :
{A : Type ℓ} →
∀ n →
Very-stable A →
For-iterated-equality n Very-stable A
Very-stable→Very-stableⁿ n =
subst (λ n → For-iterated-equality n Very-stable _)
(Nat.+-right-identity {n = n}) ∘
Very-stable→Very-stable⁺ n
-- A generalisation of Stable-H-level′.
Stable-[]-H-level′ :
{A : Type ℓ} →
Extensionality? k ℓ ℓ →
∀ n →
For-iterated-equality (1 + n) Stable-[ k ] A →
Stable-[ k ] (H-level′ (1 + n) A)
Stable-[]-H-level′ {k = k} {A = A} ext n =
For-iterated-equality (1 + n) Stable-[ k ] A ↝⟨ inverse-ext? (For-iterated-equality-For-iterated-equality n 1) _ ⟩
For-iterated-equality n Stable-≡-[ k ] A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩
For-iterated-equality n (Stable-[ k ] ∘ H-level′ 1) A ↝⟨ For-iterated-equality-commutes-← _ Stable-[ k ] n (Stable-[]-Π ext) ⟩
Stable-[ k ] (For-iterated-equality n (H-level′ 1) A) ↝⟨ Stable-[]-map-↝ (For-iterated-equality-For-iterated-equality n 1) ext ⟩□
Stable-[ k ] (H-level′ (1 + n) A) □
where
lemma : ∀ {A} → Stable-≡-[ k ] A → Stable-[ k ] (H-level′ 1 A)
lemma s =
Stable-[]-map-↝
(H-level↔H-level′ {n = 1})
ext
(Stable-[]-Π ext λ _ →
Stable-[]-Π ext λ _ →
s _ _)
-- A generalisation of Stable-H-level.
Stable-[]-H-level :
{A : Type ℓ} →
Extensionality? k ℓ ℓ →
∀ n →
For-iterated-equality (1 + n) Stable-[ k ] A →
Stable-[ k ] (H-level (1 + n) A)
Stable-[]-H-level {k = k} {A = A} ext n =
For-iterated-equality (1 + n) Stable-[ k ] A ↝⟨ Stable-[]-H-level′ ext n ⟩
Stable-[ k ] (H-level′ (1 + n) A) ↝⟨ Stable-[]-map-↝ (inverse-ext? H-level↔H-level′) ext ⟩□
Stable-[ k ] (H-level (1 + n) A) □
-- If A is "very stable n levels up", then H-level′ n A is very
-- stable (assuming extensionality).
Very-stable-H-level′ :
{A : Type ℓ} →
Extensionality ℓ ℓ →
∀ n →
For-iterated-equality n Very-stable A →
Very-stable (H-level′ n A)
Very-stable-H-level′ {A = A} ext n =
For-iterated-equality n Very-stable A ↝⟨ For-iterated-equality-cong₁ _ n lemma ⟩
For-iterated-equality n (Very-stable ∘ Contractible) A ↝⟨ For-iterated-equality-commutes-← _ Very-stable n (Very-stable-Π ext) ⟩□
Very-stable (H-level′ n A) □
where
lemma : ∀ {A} → Very-stable A → Very-stable (Contractible A)
lemma s =
Very-stable-Σ s λ _ →
Very-stable-Π ext λ _ →
Very-stable→Very-stable-≡ 0 s _ _
-- If A is "very stable with erased proofs n levels up", then
-- For-iterated-equality n Contractibleᴱ A is very stable with
-- erased proofs (assuming extensionality).
Very-stableᴱ-H-levelᴱ :
{@0 A : Type ℓ} →
@0 Extensionality ℓ ℓ →
∀ n →
For-iterated-equality n Very-stableᴱ A →
Very-stableᴱ (For-iterated-equality n Contractibleᴱ A)
Very-stableᴱ-H-levelᴱ {A = A} ext n =
For-iterated-equality n Very-stableᴱ A →⟨ For-iterated-equality-cong₁ᴱ-→ n lemma ⟩
For-iterated-equality n (Very-stableᴱ ∘ Contractibleᴱ) A →⟨ For-iterated-equality-commutesᴱ-← Very-stableᴱ n (Very-stableᴱ-Π ext) ⟩□
Very-stableᴱ (For-iterated-equality n Contractibleᴱ A) □
where
lemma : ∀ {@0 A} → Very-stableᴱ A → Very-stableᴱ (Contractibleᴱ A)
lemma s =
Very-stableᴱ-Σ s λ _ →
Very-stable→Very-stableᴱ 0
Very-stable-Erased
-- If A is "very stable n levels up", then H-level n A is very
-- stable (assuming extensionality).
Very-stable-H-level :
{A : Type ℓ} →
Extensionality ℓ ℓ →
∀ n →
For-iterated-equality n Very-stable A →
Very-stable (H-level n A)
Very-stable-H-level {A = A} ext n =
For-iterated-equality n Very-stable A ↝⟨ Very-stable-H-level′ ext n ⟩
Very-stable (H-level′ n A) ↝⟨ Very-stable-cong _ (inverse $ H-level↔H-level′ ext) ⟩□
Very-stable (H-level n A) □
-- There is an equivalence between Very-stable (Very-stable A) and
-- Very-stable A (assuming extensionality).
Very-stable-Very-stable≃Very-stable :
{A : Type ℓ} →
Extensionality ℓ ℓ →
Very-stable (Very-stable A) ≃ Very-stable A
Very-stable-Very-stable≃Very-stable ext =
_↠_.from (Eq.≃↠⇔ (Very-stable-propositional ext)
(Very-stable-propositional ext))
(record
{ to = Very-stable-Very-stable→Very-stable
; from = λ s →
Very-stable-cong _
(inverse $ Is-equivalence≃Is-equivalence-CP ext) $
Very-stable-Π ext λ _ →
Very-stable-H-level ext 0 $
Very-stable-Σ s (λ _ → Very-stable-≡₀ _ _)
})
-- There is an equivalence with erased proofs between
-- Very-stableᴱ (Very-stableᴱ A) and Very-stableᴱ A (assuming
-- extensionality).
Very-stableᴱ-Very-stableᴱ≃ᴱVery-stableᴱ :
{@0 A : Type ℓ} →
@0 Extensionality ℓ ℓ →
Very-stableᴱ (Very-stableᴱ A) ≃ᴱ Very-stableᴱ A
Very-stableᴱ-Very-stableᴱ≃ᴱVery-stableᴱ ext =
EEq.⇔→≃ᴱ
(Very-stableᴱ-propositional ext)
(Very-stableᴱ-propositional ext)
Very-stableᴱ-Very-stableᴱ→Very-stableᴱ
(λ s →
≃ᴱ→Very-stableᴱ→Very-stableᴱ
(EEq.inverse $ EEq.Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-CP ext) $
Very-stableᴱ-Π ext λ _ →
Very-stableᴱ-H-levelᴱ ext 0 $
Very-stableᴱ-Σ s λ _ →
Very-stable→Very-stableᴱ 0 $
Very-stable-Erased)
-- A generalisation of Stable-≡-List.
Stable-[]-≡-List :
{A : Type ℓ} →
∀ n →
For-iterated-equality (1 + n) Stable-[ k ] A →
For-iterated-equality (1 + n) Stable-[ k ] (List A)
Stable-[]-≡-List n =
For-iterated-equality-List-suc
n
Stable-[]-map-↔
(Very-stable→Stable 0 $ Very-stable-↑ Very-stable-⊤)
(Very-stable→Stable 0 Very-stable-⊥)
Stable-[]-×
-- If equality is very stable for A, then it is very stable for
-- List A.
Very-stable-≡-List :
{A : Type ℓ} →
∀ n →
For-iterated-equality (1 + n) Very-stable A →
For-iterated-equality (1 + n) Very-stable (List A)
Very-stable-≡-List n =
For-iterated-equality-List-suc
n
(Very-stable-cong _ ∘ from-isomorphism)
(Very-stable-↑ Very-stable-⊤)
Very-stable-⊥
Very-stable-×
----------------------------------------------------------------------
-- The function λ A → Erased A, [_]→ and Very-stable form a Σ-closed
-- reflective subuniverse
-- As a consequence of Very-stable→Very-stable-≡ we get that every
-- family of very stable types, indexed by Erased A, is ∞-extendable
-- along [_]→.
extendable :
{@0 A : Type a} {P : Erased A → Type ℓ} →
(∀ x → Very-stable (P x)) →
Is-∞-extendable-along-[ [_]→ ] P
extendable s zero = _
extendable s (suc n) =
(λ f →
(λ x → _≃_.from Eq.⟨ _ , s x ⟩ (map f x))
, λ x →
_≃_.from Eq.⟨ _ , s [ x ] ⟩ (map f [ x ]) ≡⟨⟩
_≃_.from Eq.⟨ _ , s [ x ] ⟩ [ f x ] ≡⟨ _≃_.left-inverse-of Eq.⟨ _ , s [ x ] ⟩ _ ⟩∎
f x ∎)
, λ g h →
extendable (λ x → Very-stable→Very-stable-≡ 0 (s x) _ _) n
-- As a special case we get the following property, which is based
-- on one part of the definition of a reflective subuniverse used in
-- (one version of) the Coq code accompanying "Modalities in
-- Homotopy Type Theory" by Rijke, Shulman and Spitters.
const-extendable :
{@0 A : Type a} {B : Type ℓ} →
Very-stable B →
Is-∞-extendable-along-[ [_]→ ] (λ (_ : Erased A) → B)
const-extendable s = extendable (λ _ → s)
-- The function λ A → Erased A, [_]→ and Very-stable form a Σ-closed
-- reflective subuniverse.
Erased-Σ-closed-reflective-subuniverse :
Σ-closed-reflective-subuniverse ℓ
Erased-Σ-closed-reflective-subuniverse = λ where
.◯ → λ A → Erased A
.η → [_]→
.Is-modal → Very-stable
.Is-modal-propositional → Very-stable-propositional
.Is-modal-◯ → Very-stable-Erased
.Is-modal-respects-≃ → Very-stable-cong _
.extendable-along-η → const-extendable
.Σ-closed → Very-stable-Σ
where
open Σ-closed-reflective-subuniverse
-- This Σ-closed reflective subuniverse is topological (for certain
-- universe levels, assuming extensionality).
Erased-topological :
∀ ℓ′ →
Extensionality (lsuc ℓ ⊔ ℓ′) (lsuc ℓ ⊔ ℓ′) →
Topological (lsuc ℓ ⊔ ℓ′) Erased-Σ-closed-reflective-subuniverse
Erased-topological ℓ′ ext = $⟨ erased-is-accessible-and-topological ℓ′ ext ⟩
Erased-is-accessible-and-topological (lsuc ℓ ⊔ ℓ′) ℓ ↝⟨ inverse $ ≃Erased-is-accessible-and-topological ext ⟩□
Erased-is-accessible-and-topological′ (lsuc ℓ ⊔ ℓ′) ℓ □
----------------------------------------------------------------------
-- Erased singletons
-- The type of triples consisting of two values of type A, one erased,
-- and an erased proof of equality of the two values is isomorphic to
-- A.
Σ-Erased-Erased-singleton↔ :
{A : Type ℓ} →
(∃ λ (x : Erased A) → Erased-singleton (erased x)) ↔ A
Σ-Erased-Erased-singleton↔ {A = A} =
(∃ λ (x : Erased A) → ∃ λ y → Erased (y ≡ erased x)) ↝⟨ ∃-comm ⟩
(∃ λ y → ∃ λ (x : Erased A) → Erased (y ≡ erased x)) ↝⟨ (∃-cong λ _ → inverse Erased-Σ↔Σ) ⟩
(∃ λ y → Erased (∃ λ (x : A) → y ≡ x)) ↝⟨ (∃-cong λ _ →
Erased-cong.Erased-cong-↔ ax (lower-[]-cong-axiomatisation _ ax)
(_⇔_.to contractible⇔↔⊤ (other-singleton-contractible _))) ⟩
A × Erased ⊤ ↝⟨ drop-⊤-right (λ _ → Erased-⊤↔⊤) ⟩□
A □
-- The logical equivalence underlying
-- Σ-Erased-Erased-singleton↔ {A = A} is definitionally equal to
-- Σ-Erased-Erased-singleton⇔.
_ :
_↔_.logical-equivalence (Σ-Erased-Erased-singleton↔ {A = A}) ≡
Σ-Erased-Erased-singleton⇔
_ = refl _
-- A variant of erased-singleton-contractible.
Very-stableᴱ-≡→Contractible-Erased-singleton :
{A : Type ℓ} {x : A} →
Very-stableᴱ-≡ A →
Contractible (Erased-singleton x)
Very-stableᴱ-≡→Contractible-Erased-singleton {x = x} s =
(x , [ refl x ])
, λ (y , [ y≡x ]) →
Σ-≡,≡→≡
(_≃ᴱ_.from EEq.⟨ _ , s _ _ ⟩₀ [ sym y≡x ])
(subst (λ y → Erased (y ≡ x))
(_≃ᴱ_.from EEq.⟨ _ , s _ _ ⟩₀ [ sym y≡x ])
[ refl x ] ≡⟨ push-subst-[] ⟩
[ subst (_≡ x)
(_≃ᴱ_.from EEq.⟨ _ , s _ _ ⟩₀ [ sym y≡x ])
(refl x)
] ≡⟨ []-cong [ cong (flip (subst _) _) $
_≃ᴱ_.left-inverse-of EEq.⟨ _ , s _ _ ⟩₀ _ ] ⟩
[ subst (_≡ x) (sym y≡x) (refl x) ] ≡⟨ []-cong [ subst-trans _ ] ⟩
[ trans y≡x (refl x) ] ≡⟨ []-cong [ trans-reflʳ _ ] ⟩∎
[ y≡x ] ∎)
-- If equality is very stable (with erased proofs) for A, and x : A
-- is erased, then Erased-singleton x is a proposition.
erased-singleton-with-erased-center-propositional :
{A : Type ℓ} {@0 x : A} →
Very-stableᴱ-≡ A →
Is-proposition (Erased-singleton x)
erased-singleton-with-erased-center-propositional {x = x} s =
$⟨ [ erased-singleton-contractible (λ _ _ → erased Erased-Very-stable) ] ⟩
Erased (Contractible (Erased-singleton x)) ↝⟨ map (mono₁ 0) ⟩
Erased (Is-proposition (Erased-singleton x)) ↝⟨ (Stable-H-level 0 $
Very-stableᴱ→Stable 1 $
Very-stableᴱ-Σⁿ 1 s λ _ →
Very-stable→Very-stableᴱ 1 $
Very-stable→Very-stable-≡ 0
Very-stable-Erased) ⟩□
Is-proposition (Erased-singleton x) □
-- If A is very stable, and x : A is erased, then Erased-singleton x
-- is contractible.
erased-singleton-with-erased-center-contractible :
{A : Type ℓ} {@0 x : A} →
Very-stable A →
Contractible (Erased-singleton x)
erased-singleton-with-erased-center-contractible {x = x} s =
$⟨ [ (x , [ refl _ ]) ] ⟩
Erased (Erased-singleton x) ↝⟨ Very-stable→Stable 0 (Very-stable-Σ s λ _ → Very-stable-Erased) ⟩
Erased-singleton x ↝⟨ propositional⇒inhabited⇒contractible $
erased-singleton-with-erased-center-propositional $
Very-stable→Very-stableᴱ 1 $
Very-stable→Very-stable-≡ 0 s ⟩□
Contractible (Erased-singleton x) □
------------------------------------------------------------------------
-- Results that depend on an axiomatisation of []-cong (for the
-- successor of a universe level)
module []-cong₁-lsuc (ax : []-cong-axiomatisation (lsuc ℓ)) where
open []-cong₁ ax
-- ∃ λ (A : Set a) → Very-stable A is very stable, assuming
-- extensionality and univalence.
--
-- This result is based on Theorem 3.11 in "Modalities in Homotopy
-- Type Theory" by Rijke, Shulman and Spitters.
Very-stable-∃-Very-stable :
Extensionality ℓ ℓ →
Univalence ℓ →
Very-stable (∃ λ (A : Type ℓ) → Very-stable A)
Very-stable-∃-Very-stable ext univ =
Stable→Left-inverse→Very-stable Stable-∃-Very-stable inv
where
inv : ∀ p → Stable-∃-Very-stable [ p ] ≡ p
inv (A , s) = Σ-≡,≡→≡
(Erased A ≡⟨ ≃⇒≡ univ (Very-stable→Stable 0 s) ⟩∎
A ∎)
(Very-stable-propositional ext _ _)
------------------------------------------------------------------------
-- More results that depend on an instantiation of the []-cong axioms
-- (for two universe levels as well as their maximum)
module []-cong₂-⊔₂
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
(ax : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
where
----------------------------------------------------------------------
-- Some lemmas related to Very-stable
-- All kinds of functions between erased types are very stable (in
-- some cases assuming extensionality).
Very-stable-Erased↝Erased :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
Very-stable (Erased A ↝[ k ] Erased B)
Very-stable-Erased↝Erased {k = k} {A = A} {B = B} ext =
$⟨ Very-stable-Erased ⟩
Very-stable (Erased (A ↝[ k ] B)) ↝⟨ []-cong₂.Very-stable-cong ax ax _ (from-isomorphism $ E₂.[]-cong₂-⊔.Erased-↝↔↝ ax₁ ax₂ ax ext)
⦂ (_ → _) ⟩□
Very-stable (Erased A ↝[ k ] Erased B) □
-- A generalisation of Very-stable-Σ.
--
-- Based on a lemma called inO_unsigma, implemented by Mike Shulman
-- in the file ReflectiveSubuniverse.v in (one version of) the Coq
-- HoTT library.
Very-stable-Σ↔Π :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
Very-stable A →
Very-stable (Σ A P) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] (∀ x → Very-stable (P x))
Very-stable-Σ↔Π {A = A} {P = P} s =
generalise-ext?-prop
(record
{ from = Very-stable-Σ s
; to = flip λ x →
Very-stable (Σ A P) ↝⟨ flip Very-stable-Σ (λ _ → []-cong₁.Very-stable→Very-stable-≡ ax₁ 0 s _ _) ⟩
Very-stable (∃ λ ((y , _) : Σ A P) → y ≡ x) ↝⟨ []-cong₂.Very-stable-cong ax ax _ $ from-bijection $ inverse Σ-assoc ⟩
Very-stable (∃ λ (y : A) → P y × y ≡ x) ↝⟨ []-cong₂.Very-stable-cong ax ax₂ _ $ from-bijection $ inverse $ ∃-intro _ _ ⟩□
Very-stable (P x) □
})
Very-stable-propositional
(λ ext →
Π-closure (lower-extensionality ℓ₂ ℓ₁ ext) 1 λ _ →
Very-stable-propositional (lower-extensionality ℓ₁ ℓ₁ ext))
-- A variant of Very-stableᴱ-Σ.
--
-- Based on a lemma called inO_unsigma, implemented by Mike Shulman
-- in the file ReflectiveSubuniverse.v in (one version of) the Coq
-- HoTT library.
Very-stableᴱ-Σ≃ᴱΠ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
@0 Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
Very-stableᴱ A →
Very-stableᴱ-≡ A →
Very-stableᴱ (Σ A P) ≃ᴱ (∀ x → Very-stableᴱ (P x))
Very-stableᴱ-Σ≃ᴱΠ {A = A} {P = P} ext s s-≡ =
EEq.⇔→≃ᴱ
(Very-stableᴱ-propositional ext)
(Π-closure (lower-extensionality ℓ₂ ℓ₁ ext) 1 λ _ →
Very-stableᴱ-propositional (lower-extensionality ℓ₁ ℓ₁ ext))
(flip λ x →
Very-stableᴱ (Σ A P) ↝⟨ flip ([]-cong₁.Very-stableᴱ-Σ ax) (λ _ → s-≡ _ _) ⟩
Very-stableᴱ (∃ λ ((y , _) : Σ A P) → y ≡ x) ↝⟨ ≃ᴱ→Very-stableᴱ→Very-stableᴱ $ from-bijection $ inverse Σ-assoc ⟩
Very-stableᴱ (∃ λ (y : A) → P y × y ≡ x) ↝⟨ ≃ᴱ→Very-stableᴱ→Very-stableᴱ $ from-bijection $ inverse $ ∃-intro _ _ ⟩□
Very-stableᴱ (P x) □)
([]-cong₁.Very-stableᴱ-Σ ax₁ s)
----------------------------------------------------------------------
-- Closure properties related to equality
-- A generalisation of Stable-≡-⊎.
Stable-[]-≡-⊎ :
{A : Type ℓ₁} {B : Type ℓ₂} →
∀ n →
For-iterated-equality (1 + n) Stable-[ k ] A →
For-iterated-equality (1 + n) Stable-[ k ] B →
For-iterated-equality (1 + n) Stable-[ k ] (A ⊎ B)
Stable-[]-≡-⊎ n sA sB =
For-iterated-equality-⊎-suc
n
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax ax)
(Very-stable→Stable 0 Very-stable-⊥)
(For-iterated-equality-↑ _ (1 + n)
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax₁ ax) sA)
(For-iterated-equality-↑ _ (1 + n)
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax₂ ax) sB)
-- If equality is very stable for A and B, then it is very stable
-- for A ⊎ B.
Very-stable-≡-⊎ :
{A : Type ℓ₁} {B : Type ℓ₂} →
∀ n →
For-iterated-equality (1 + n) Very-stable A →
For-iterated-equality (1 + n) Very-stable B →
For-iterated-equality (1 + n) Very-stable (A ⊎ B)
Very-stable-≡-⊎ n sA sB =
For-iterated-equality-⊎-suc
n
(lemma ax ax)
Very-stable-⊥
(For-iterated-equality-↑ _ (1 + n) (lemma ax₁ ax) sA)
(For-iterated-equality-↑ _ (1 + n) (lemma ax₂ ax) sB)
where
lemma :
∀ {ℓ₁ ℓ₂} {A : Type ℓ₁} {B : Type ℓ₂} →
[]-cong-axiomatisation ℓ₁ →
[]-cong-axiomatisation ℓ₂ →
A ↔ B → Very-stable A → Very-stable B
lemma ax₁ ax₂ =
[]-cong₂.Very-stable-cong ax₁ ax₂ _ ∘
from-isomorphism
----------------------------------------------------------------------
-- Simple corollaries or variants of results above
-- A generalisation of Stable-Π.
Stable-Πⁿ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
Extensionality ℓ₁ ℓ₂ →
∀ n →
(∀ x → For-iterated-equality n Stable-[ k ] (P x)) →
For-iterated-equality n Stable-[ k ] ((x : A) → P x)
Stable-Πⁿ {k = k} ext n =
For-iterated-equality-Π
ext
n
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax ax)
(Stable-[]-Π (forget-ext? k ext))
-- A generalisation of Very-stable-Π.
Very-stable-Πⁿ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
Extensionality ℓ₁ ℓ₂ →
∀ n →
(∀ x → For-iterated-equality n Very-stable (P x)) →
For-iterated-equality n Very-stable ((x : A) → P x)
Very-stable-Πⁿ ext n =
For-iterated-equality-Π
ext
n
([]-cong₂.Very-stable-cong ax ax _ ∘ from-isomorphism)
(Very-stable-Π ext)
-- A generalisation of Very-stable-Stable-Σ.
Very-stable-Stable-Σⁿ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
∀ n →
For-iterated-equality n Very-stable A →
(∀ x → For-iterated-equality n Stable-[ k ] (P x)) →
For-iterated-equality n Stable-[ k ] (Σ A P)
Very-stable-Stable-Σⁿ {k = k} n =
For-iterated-equality-Σ
n
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax ax)
Very-stable-Stable-Σ
-- A variant of Stable-Σ for equality.
Stable-≡-Σ :
{A : Type ℓ₁} {P : A → Type ℓ₂} {p q : Σ A P} →
(s : Stable (proj₁ p ≡ proj₁ q)) →
(∀ eq → [ s eq ] ≡ eq) →
(∀ eq → Stable (subst P eq (proj₂ p) ≡ proj₂ q)) →
Stable (p ≡ q)
Stable-≡-Σ {P = P} {p = p} {q = q} s₁ hyp s₂ = $⟨ Stable-Σ s₁ hyp s₂ ⟩
Stable (∃ λ (eq : proj₁ p ≡ proj₁ q) →
subst P eq (proj₂ p) ≡ proj₂ q) ↝⟨ []-cong₂-⊔₁.Stable-[]-map-↔ ax ax ax Bijection.Σ-≡,≡↔≡ ⟩□
Stable (p ≡ q) □
-- A generalisation of Very-stable-Σ.
Very-stable-Σⁿ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
∀ n →
For-iterated-equality n Very-stable A →
(∀ x → For-iterated-equality n Very-stable (P x)) →
For-iterated-equality n Very-stable (Σ A P)
Very-stable-Σⁿ n =
For-iterated-equality-Σ
n
([]-cong₂.Very-stable-cong ax ax _ ∘ from-isomorphism)
Very-stable-Σ
-- A generalisation of Stable-[]-×.
Stable-[]-×ⁿ :
{A : Type ℓ₁} {B : Type ℓ₂} →
∀ n →
For-iterated-equality n Stable-[ k ] A →
For-iterated-equality n Stable-[ k ] B →
For-iterated-equality n Stable-[ k ] (A × B)
Stable-[]-×ⁿ n =
For-iterated-equality-×
n
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax ax)
Stable-[]-×
-- A generalisation of Very-stable-×.
Very-stable-×ⁿ :
{A : Type ℓ₁} {B : Type ℓ₂} →
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality n Very-stable B →
For-iterated-equality n Very-stable (A × B)
Very-stable-×ⁿ n =
For-iterated-equality-×
n
([]-cong₂.Very-stable-cong ax ax _ ∘ from-isomorphism)
Very-stable-×
-- A generalisation of Stable-↑.
Stable-↑ⁿ :
{A : Type ℓ₂} →
∀ n →
For-iterated-equality n Stable-[ k ] A →
For-iterated-equality n Stable-[ k ] (↑ ℓ₁ A)
Stable-↑ⁿ n =
For-iterated-equality-↑ _ n
([]-cong₂-⊔₁.Stable-[]-map-↔ ax ax₂ ax)
-- A generalisation of Very-stable-↑.
Very-stable-↑ⁿ :
{A : Type ℓ₂} →
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality n Very-stable (↑ ℓ₁ A)
Very-stable-↑ⁿ n =
For-iterated-equality-↑
_
n
([]-cong₂.Very-stable-cong ax₂ ax _ ∘ from-isomorphism)
-- A generalisation of Very-stable-W.
Very-stable-Wⁿ :
{A : Type ℓ₁} {P : A → Type ℓ₂} →
Extensionality ℓ₂ (ℓ₁ ⊔ ℓ₂) →
∀ n →
For-iterated-equality n Very-stable A →
For-iterated-equality n Very-stable (W A P)
Very-stable-Wⁿ {A = A} {P = P} ext n =
For-iterated-equality-W
ext
n
([]-cong₂.Very-stable-cong ax ax _ ∘ from-isomorphism)
(Very-stable-Π ext)
Very-stable-Σ
([]-cong₂-⊔₁.Very-stable-W ax₁ ax₂ ax ext)
------------------------------------------------------------------------
-- Results that depend on instances of the axiomatisation of []-cong
-- for all universe levels
module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where
private
open module BC₂ {ℓ₁ ℓ₂} =
[]-cong₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂})
public
open module BC₂₁ {ℓ₁ ℓ₂} =
[]-cong₂-⊔₁ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) ax
public
open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ})
public
open module BC₁-lsuc {ℓ} = []-cong₁-lsuc (ax {ℓ = lsuc ℓ})
public
open module BC₂₂ {ℓ₁ ℓ₂} =
[]-cong₂-⊔₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) ax
public
------------------------------------------------------------------------
-- Some results that were proved assuming extensionality and also that
-- one or more instances of the []-cong axioms can be implemented,
-- reproved without the latter assumptions
module Extensionality where
-- If A is "very stable n levels up", then H-level′ n A is very
-- stable (assuming extensionality).
Very-stable-H-level′ :
{A : Type a} →
Extensionality a a →
∀ n →
For-iterated-equality n Very-stable A →
Very-stable (H-level′ n A)
Very-stable-H-level′ ext =
[]-cong₁.Very-stable-H-level′
(Extensionality→[]-cong-axiomatisation ext) ext
-- If A is "very stable n levels up", then H-level n A is very
-- stable (assuming extensionality).
Very-stable-H-level :
{A : Type a} →
Extensionality a a →
∀ n →
For-iterated-equality n Very-stable A →
Very-stable (H-level n A)
Very-stable-H-level ext =
[]-cong₁.Very-stable-H-level
(Extensionality→[]-cong-axiomatisation ext) ext
-- There is an equivalence between Very-stable (Very-stable A) and
-- Very-stable A (assuming extensionality).
Very-stable-Very-stable≃Very-stable :
{A : Type a} →
Extensionality a a →
Very-stable (Very-stable A) ≃ Very-stable A
Very-stable-Very-stable≃Very-stable ext =
[]-cong₁.Very-stable-Very-stable≃Very-stable
(Extensionality→[]-cong-axiomatisation ext) ext
-- The function λ A → Erased A, [_]→ and Very-stable form a Σ-closed
-- reflective subuniverse (assuming extensionality).
Erased-Σ-closed-reflective-subuniverse :
Extensionality ℓ ℓ →
Σ-closed-reflective-subuniverse ℓ
Erased-Σ-closed-reflective-subuniverse ext =
[]-cong₁.Erased-Σ-closed-reflective-subuniverse
(Extensionality→[]-cong-axiomatisation ext)
-- This Σ-closed reflective subuniverse is topological (for certain
-- universe levels, assuming extensionality).
Erased-topological :
∀ ℓ′ (ext : Extensionality (lsuc ℓ ⊔ ℓ′) (lsuc ℓ ⊔ ℓ′)) →
Topological (lsuc ℓ ⊔ ℓ′)
(Erased-Σ-closed-reflective-subuniverse {ℓ = ℓ}
(lower-extensionality _ _ ext))
Erased-topological ℓ′ ext =
[]-cong₁.Erased-topological
(Extensionality→[]-cong-axiomatisation
(lower-extensionality _ _ ext))
ℓ′
ext
------------------------------------------------------------------------
-- Some lemmas related to Stable-≡-Erased-axiomatisation
private
-- The type []-cong-axiomatisation ℓ is logically equivalent to
-- Stable-≡-Erased-axiomatisation ℓ.
[]-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation :
[]-cong-axiomatisation ℓ ⇔ Stable-≡-Erased-axiomatisation ℓ
[]-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation {ℓ = ℓ} = record
{ to = λ ax →
let open []-cong₁ ax
s : {@0 A : Type ℓ} → Very-stable-≡ (Erased A)
s = Very-stable→Very-stable-≡ 0 Very-stable-Erased
in
Very-stable→Stable 1 s
, (λ {_ x} →
Very-stable→Stable 1 s x x [ refl x ] ≡⟨ _≃_.left-inverse-of Eq.⟨ _ , s x x ⟩ _ ⟩∎
refl x ∎)
; from = S→B.instance-of-[]-cong-axiomatisation
}
where
module S→B = Stable-≡-Erased-axiomatisation→[]-cong-axiomatisation
-- The type Stable-≡-Erased-axiomatisation ℓ is propositional
-- (assuming extensionality).
--
-- The proof is based on a proof due to Nicolai Kraus that shows that
-- "J + its computation rule" is contractible, see
-- Equality.Instances-related.Equality-with-J-contractible.
Stable-≡-Erased-axiomatisation-propositional :
Extensionality (lsuc ℓ) ℓ →
Is-proposition (Stable-≡-Erased-axiomatisation ℓ)
Stable-≡-Erased-axiomatisation-propositional {ℓ = ℓ} ext =
[inhabited⇒contractible]⇒propositional λ ax →
let ax′ = _⇔_.from
[]-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation
ax
module BC = []-cong-axiomatisation ax′
module EC = Erased-cong ax′ ax′
in
_⇔_.from contractible⇔↔⊤
(Stable-≡-Erased-axiomatisation ℓ ↔⟨ Eq.↔→≃
(λ (Stable-≡-Erased , Stable-≡-Erased-[refl]) _ →
(λ ([ x , y , x≡y ]) →
Stable-≡-Erased [ x ] [ y ] [ x≡y ])
, (λ _ → Stable-≡-Erased-[refl]))
(λ hyp →
(λ ([ x ]) ([ y ]) ([ x≡y ]) →
hyp _ .proj₁ [ (x , y , x≡y) ])
, hyp _ .proj₂ _)
refl
refl ⟩
((([ A ]) : Erased (Type ℓ)) →
∃ λ (s : (([ x , y , _ ]) :
Erased (∃ λ x → ∃ λ y → [ x ] ≡ [ y ])) →
[ x ] ≡ [ y ]) →
((([ x ]) : Erased A) →
s [ (x , x , refl [ x ]) ] ≡ refl [ x ])) ↝⟨ (∀-cong ext λ _ → inverse $
Σ-cong
(inverse $
Π-cong
ext′
(EC.Erased-cong-≃ (∃-cong λ _ → ∃-cong λ _ → []≡[]≃≡))
(λ _ → Eq.id)) λ s →
∀-cong ext′ λ ([ x ]) →
s [ (x , x , refl x) ] ≡ refl [ x ] ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $
cong (λ (([ eq ]) : Erased (x ≡ x)) → s [ (x , x , eq) ]) $
BC.[]-cong [ sym $ cong-refl _ ] ⟩□
s [ (x , x , cong erased (refl [ x ])) ] ≡ refl [ x ] □) ⟩
((([ A ]) : Erased (Type ℓ)) →
∃ λ (s : (([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ]) →
((([ x ]) : Erased A) → s [ (x , x , refl x) ] ≡ refl [ x ])) ↝⟨ (∀-cong ext λ _ →
Σ-cong
(inverse $
Π-cong ext′ (inverse $ EC.Erased-cong-↔ -²/≡↔-) (λ _ → Eq.id)) λ _ →
F.id) ⟩
((([ A ]) : Erased (Type ℓ)) →
∃ λ (r : (x : Erased A) → x ≡ x) →
(x : Erased A) → r x ≡ refl x) ↝⟨ (∀-cong ext λ _ → inverse
ΠΣ-comm) ⟩
((([ A ]) : Erased (Type ℓ))
(x : Erased A) →
∃ λ (x≡x : x ≡ x) → x≡x ≡ refl x) ↝⟨ (_⇔_.to contractible⇔↔⊤ $
Π-closure ext 0 λ _ →
Π-closure ext′ 0 λ _ →
singleton-contractible _) ⟩□
⊤ □)
where
ext′ : Extensionality ℓ ℓ
ext′ = lower-extensionality _ lzero ext
-- The type []-cong-axiomatisation ℓ is equivalent to
-- Stable-≡-Erased-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃Stable-≡-Erased-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ ℓ ]
Stable-≡-Erased-axiomatisation ℓ
[]-cong-axiomatisation≃Stable-≡-Erased-axiomatisation {ℓ = ℓ} =
generalise-ext?-prop
[]-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation
[]-cong-axiomatisation-propositional
Stable-≡-Erased-axiomatisation-propositional
------------------------------------------------------------------------
-- Another alternative to []-cong-axiomatisation
-- This axiomatisation states that equality is very stable for
-- Erased A, for every (erased) type A in a certain universe.
Very-stable-≡-Erased-axiomatisation : (ℓ : Level) → Type (lsuc ℓ)
Very-stable-≡-Erased-axiomatisation ℓ =
{@0 A : Type ℓ} → Very-stable-≡ (Erased A)
-- The type Very-stable-≡-Erased-axiomatisation ℓ is propositional
-- (assuming extensionality).
Very-stable-≡-Erased-axiomatisation-propositional :
Extensionality (lsuc ℓ) ℓ →
Is-proposition (Very-stable-≡-Erased-axiomatisation ℓ)
Very-stable-≡-Erased-axiomatisation-propositional ext =
implicit-Πᴱ-closure ext 1 λ _ →
For-iterated-equality-Very-stable-propositional
(lower-extensionality _ lzero ext)
1
-- The type Stable-≡-Erased-axiomatisation ℓ is equivalent to
-- Very-stable-≡-Erased-axiomatisation ℓ (assuming extensionality).
Stable-≡-Erased-axiomatisation≃Very-stable-≡-Erased-axiomatisation :
Stable-≡-Erased-axiomatisation ℓ ↝[ lsuc ℓ ∣ ℓ ]
Very-stable-≡-Erased-axiomatisation ℓ
Stable-≡-Erased-axiomatisation≃Very-stable-≡-Erased-axiomatisation
{ℓ = ℓ} =
generalise-ext?-prop
(record { to = to; from = from })
Stable-≡-Erased-axiomatisation-propositional
Very-stable-≡-Erased-axiomatisation-propositional
where
to :
Stable-≡-Erased-axiomatisation ℓ →
Very-stable-≡-Erased-axiomatisation ℓ
to ax = Very-stable→Very-stable-≡ 0 Very-stable-Erased
where
open []-cong₁
(_⇔_.from
[]-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation
ax)
from :
Very-stable-≡-Erased-axiomatisation ℓ →
Stable-≡-Erased-axiomatisation ℓ
from Very-stable-≡-Erased =
Very-stable→Stable 1 Very-stable-≡-Erased
, (λ {_ x} →
Very-stable→Stable 1 Very-stable-≡-Erased x x [ refl x ] ≡⟨ _≃_.left-inverse-of Eq.⟨ _ , Very-stable-≡-Erased x x ⟩ _ ⟩∎
refl x ∎)
-- The type []-cong-axiomatisation ℓ is equivalent to
-- Very-stable-≡-Erased-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃Very-stable-≡-Erased-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ ℓ ]
Very-stable-≡-Erased-axiomatisation ℓ
[]-cong-axiomatisation≃Very-stable-≡-Erased-axiomatisation {ℓ = ℓ} =
generalise-ext?-prop
([]-cong-axiomatisation ℓ ↝⟨ []-cong-axiomatisation⇔Stable-≡-Erased-axiomatisation ⟩
Stable-≡-Erased-axiomatisation ℓ ↝⟨ Stable-≡-Erased-axiomatisation≃Very-stable-≡-Erased-axiomatisation _ ⟩□
Very-stable-≡-Erased-axiomatisation ℓ □)
[]-cong-axiomatisation-propositional
Very-stable-≡-Erased-axiomatisation-propositional
------------------------------------------------------------------------
-- Yet another alternative to []-cong-axiomatisation
-- This axiomatisation states that, for types A and B in a given
-- universe, if B is very stable, then the constant function from
-- Erased A that returns B is 2-extendable along [_]→.
2-extendable-along-[]→-axiomatisation : (ℓ : Level) → Type (lsuc ℓ)
2-extendable-along-[]→-axiomatisation ℓ =
{A B : Type ℓ} →
Very-stable B →
Is-[ 2 ]-extendable-along-[ [_]→ ] (λ (_ : Erased A) → B)
-- The type 2-extendable-along-[]→-axiomatisation ℓ is propositional
-- (assuming extensionality).
2-extendable-along-[]→-axiomatisation-propositional :
Extensionality (lsuc ℓ) (lsuc ℓ) →
Is-proposition (2-extendable-along-[]→-axiomatisation ℓ)
2-extendable-along-[]→-axiomatisation-propositional ext =
implicit-Π-closure ext 1 λ _ →
implicit-Π-closure ext′ 1 λ _ →
Π-closure ext″ 1 λ _ →
PS.Is-extendable-along-propositional ext″
where
ext′ = lower-extensionality lzero _ ext
ext″ = lower-extensionality _ _ ext
-- The type []-cong-axiomatisation ℓ is equivalent to
-- 2-extendable-along-[]→-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃2-extendable-along-[]→-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ]
2-extendable-along-[]→-axiomatisation ℓ
[]-cong-axiomatisation≃2-extendable-along-[]→-axiomatisation {ℓ = ℓ} =
generalise-ext?-prop
{B = 2-extendable-along-[]→-axiomatisation ℓ}
(record
{ to = λ ax s → []-cong₁.extendable ax (λ _ → s) 2
; from =
2-extendable-along-[]→-axiomatisation ℓ ↝⟨ (λ ext → Stable-≡-Erased ext , Stable-≡-Erased-[refl] ext) ⟩
Stable-≡-Erased-axiomatisation ℓ ↝⟨ _⇔_.from $ []-cong-axiomatisation≃Stable-≡-Erased-axiomatisation _ ⟩□
[]-cong-axiomatisation ℓ □
})
([]-cong-axiomatisation-propositional ∘
lower-extensionality lzero _)
2-extendable-along-[]→-axiomatisation-propositional
where
module _ (ext : 2-extendable-along-[]→-axiomatisation ℓ) where
Stable-≡-Erased : {@0 A : Type ℓ} → Stable-≡ (Erased A)
Stable-≡-Erased x y =
ext Very-stable-Erased
.proj₂ (λ _ → x) (λ _ → y)
.proj₁ id
.proj₁
Stable-≡-Erased-[refl] :
{@0 A : Type ℓ} {x : Erased A} →
Stable-≡-Erased x x [ refl x ] ≡ refl x
Stable-≡-Erased-[refl] {x = x} =
ext Very-stable-Erased
.proj₂ (λ _ → x) (λ _ → x)
.proj₁ id
.proj₂ (refl x)
------------------------------------------------------------------------
-- And another alternative to []-cong-axiomatisation
-- This axiomatisation states that, for types A and B in a given
-- universe, if B is very stable, then the constant function from
-- Erased A that returns B is ∞-extendable along [_]→.
∞-extendable-along-[]→-axiomatisation : (ℓ : Level) → Type (lsuc ℓ)
∞-extendable-along-[]→-axiomatisation ℓ =
{A B : Type ℓ} →
Very-stable B → Is-∞-extendable-along-[ [_]→ ] (λ (_ : Erased A) → B)
-- The type ∞-extendable-along-[]→-axiomatisation ℓ is propositional
-- (assuming extensionality).
∞-extendable-along-[]→-axiomatisation-propositional :
Extensionality (lsuc ℓ) (lsuc ℓ) →
Is-proposition (∞-extendable-along-[]→-axiomatisation ℓ)
∞-extendable-along-[]→-axiomatisation-propositional ext =
implicit-Π-closure ext 1 λ _ →
implicit-Π-closure ext′ 1 λ _ →
Π-closure ext″ 1 λ _ →
PS.Is-∞-extendable-along-propositional ext″
where
ext′ = lower-extensionality lzero _ ext
ext″ = lower-extensionality _ _ ext
-- The type []-cong-axiomatisation ℓ is equivalent to
-- ∞-extendable-along-[]→-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃∞-extendable-along-[]→-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ]
∞-extendable-along-[]→-axiomatisation ℓ
[]-cong-axiomatisation≃∞-extendable-along-[]→-axiomatisation {ℓ = ℓ} =
generalise-ext?-prop
{B = ∞-extendable-along-[]→-axiomatisation ℓ}
(record
{ to = λ ax s → []-cong₁.extendable ax (λ _ → s)
; from =
∞-extendable-along-[]→-axiomatisation ℓ ↝⟨ (λ ext s → ext s 2) ⟩
2-extendable-along-[]→-axiomatisation ℓ ↝⟨ _⇔_.from ([]-cong-axiomatisation≃2-extendable-along-[]→-axiomatisation _) ⟩□
[]-cong-axiomatisation ℓ □
})
([]-cong-axiomatisation-propositional ∘
lower-extensionality lzero _)
∞-extendable-along-[]→-axiomatisation-propositional
------------------------------------------------------------------------
-- A lemma related to []-cong-axiomatisation′
-- The type []-cong-axiomatisation′ a is propositional (assuming
-- extensionality).
[]-cong-axiomatisation′-propositional :
Extensionality (lsuc a) a →
Is-proposition ([]-cong-axiomatisation′ a)
[]-cong-axiomatisation′-propositional {a = a} ext =
[inhabited⇒contractible]⇒propositional λ ax →
let ax′ = []-cong-axiomatisation′→[]-cong-axiomatisation ax
module BC = []-cong₁ ax′
s₁ : {@0 A : Type a} → Very-stable-≡ (Erased A)
s₁ = BC.Very-stable→Very-stable-≡ 0 Very-stable-Erased
s₂ : {@0 A : Type a} →
For-iterated-equality 2 Very-stable (Erased A)
s₂ = BC.Very-stable→Very-stable-≡ 1 s₁
s₃ : {@0 A : Type a} {@0 x y : A}
{f : Erased (x ≡ y) → [ x ] ≡ [ y ]} →
Very-stable (Is-equivalence f)
s₃ =
Very-stable-Σ
(Very-stable-Π ext′ λ _ →
Very-stable-Erased) λ _ →
Very-stable-Σ
(Very-stable-Π ext′ λ _ →
BC.Very-stable→Very-stable-≡ 0 (s₁ _ _) _ _) λ _ →
Very-stable-Σ
(Very-stable-Π ext′ λ _ → s₁ _ _) λ _ →
Very-stable-Π ext′ λ _ →
BC.Very-stable→Very-stable-≡ 0
(BC.Very-stable→Very-stable-≡ 0 (s₁ _ _) _ _)
_ _
in
_⇔_.from contractible⇔↔⊤
([]-cong-axiomatisation′ a ↔⟨ Eq.↔→≃
(λ (record { []-cong = c
; []-cong-equivalence = e
; []-cong-[refl] = r
})
_ →
(λ _ _ ([ x≡y ]) → c [ x≡y ])
, (λ _ → r)
, (λ _ _ → e))
(λ f → record
{ []-cong = λ ([ x≡y ]) →
f _ .proj₁ _ _ [ x≡y ]
; []-cong-equivalence = f _ .proj₂ .proj₂ _ _
; []-cong-[refl] = f _ .proj₂ .proj₁ _
})
refl
refl ⟩
((A : Type a) →
∃ λ (c : ((x y : A) → Erased (x ≡ y) → [ x ] ≡ [ y ])) →
((x : A) → c x x [ refl x ] ≡ refl [ x ]) ×
((x y : A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c x y [ x≡y ]))) ↝⟨ (∀-cong ext λ _ → inverse $
Σ-cong
((Π-Erased≃Π ext′ λ _ →
Very-stable→Stable 0 $
Very-stable-Π ext′ λ _ →
Very-stable-Π ext′ λ _ →
s₁ _ _) Eq.∘
(∀-cong ext′ λ _ →
Π-Erased≃Π ext′ λ _ →
Very-stable→Stable 0 $
Very-stable-Π ext′ λ _ →
s₁ _ _)) λ _ →
F.id) ⟩
((A : Type a) →
∃ λ (c : ((([ x ]) ([ y ]) : Erased A) →
Erased (x ≡ y) → [ x ] ≡ [ y ])) →
((x : A) → c [ x ] [ x ] [ refl x ] ≡ refl [ x ]) ×
((x y : A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c [ x ] [ y ] [ x≡y ]))) ↝⟨ (∀-cong ext λ _ →
Σ-cong
(inverse $
(∀-cong ext′ λ _ → currying) F.∘
currying F.∘
(Π-cong ext′ (∃-cong λ _ → Erased-Σ↔Σ) λ _ → F.id) F.∘
(Π-cong ext′ Erased-Σ↔Σ λ _ → F.id)) λ _ →
F.id) ⟩
((A : Type a) →
∃ λ (c : ((([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ])) →
((x : A) → c [ (x , x , refl x) ] ≡ refl [ x ]) ×
((x y : A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c [ (x , y , x≡y) ]))) ↝⟨ (∀-cong ext λ _ → ∃-cong λ _ →
(inverse $ Π-Erased≃Π ext′ λ _ →
Very-stable→Stable 2 s₂ _ _ _ _)
×-cong
(inverse $
(∀-cong ext′ λ _ →
Π-Erased≃Π ext′ λ _ →
Very-stable→Stable 0 s₃) F.∘
Π-Erased≃Π ext′ λ _ →
Very-stable→Stable 0 $
Very-stable-Π ext′ λ _ →
s₃)) ⟩
((A : Type a) →
∃ λ (c : ((([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ])) →
((([ x ]) : Erased A) → c [ (x , x , refl x) ] ≡ refl [ x ]) ×
((([ x ]) ([ y ]) : Erased A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c [ (x , y , x≡y) ]))) ↝⟨ (inverse $ Π-Erased≃Π ext λ A →
Very-stable→Stable 0 $
Very-stable-Σ
(Very-stable-Π ext′ λ _ →
s₁ _ _) λ _ →
Very-stable-×
(Very-stable-Π ext′ λ _ →
s₂ _ _ _ _)
(Very-stable-Π ext′ λ _ →
Very-stable-Π ext′ λ _ →
s₃)) ⟩
((([ A ]) : Erased (Type a)) →
∃ λ (c : ((([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ])) →
((([ x ]) : Erased A) → c [ (x , x , refl x) ] ≡ refl [ x ]) ×
((([ x ]) ([ y ]) : Erased A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c [ (x , y , x≡y) ]))) ↔⟨ Eq.↔→≃
(λ f → record
{ []-cong = λ ([ x≡y ]) →
f _ .proj₁ [ (_ , _ , x≡y) ]
; []-cong-equivalence = f _ .proj₂ .proj₂ _ _
; []-cong-[refl] = f _ .proj₂ .proj₁ _
})
(λ (record { []-cong = c
; []-cong-equivalence = e
; []-cong-[refl] = r
})
_ →
(λ ([ _ , _ , x≡y ]) → c [ x≡y ])
, (λ _ → r)
, (λ _ _ → e))
refl
refl ⟩
[]-cong-axiomatisation a ↝⟨ _⇔_.to contractible⇔↔⊤ $
[]-cong-axiomatisation-contractible ext ⟩□
⊤ □)
where
ext′ : Extensionality a a
ext′ = lower-extensionality _ lzero ext
-- The type []-cong-axiomatisation ℓ is equivalent to
-- []-cong-axiomatisation′ ℓ (assuming extensionality).
[]-cong-axiomatisation≃[]-cong-axiomatisation′ :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ ℓ ]
[]-cong-axiomatisation′ ℓ
[]-cong-axiomatisation≃[]-cong-axiomatisation′ {ℓ = ℓ} =
generalise-ext?-prop
(record
{ from = []-cong-axiomatisation′→[]-cong-axiomatisation
; to = λ ax → let open []-cong-axiomatisation ax in record
{ []-cong = []-cong
; []-cong-equivalence = []-cong-equivalence
; []-cong-[refl] = []-cong-[refl]
}
})
[]-cong-axiomatisation-propositional
[]-cong-axiomatisation′-propositional
| {
"alphanum_fraction": 0.5089105226,
"avg_line_length": 37.8945512821,
"ext": "agda",
"hexsha": "803c8bb4a75c0a753fb3b2f988950c8bf6855757",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/Stability.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/Stability.agda",
"max_line_length": 148,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/Stability.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 41436,
"size": 118231
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
record Eq (A : Set) : Set₁ where
field
_≈_ : A → A → Set
open Eq {{...}} public
record Setoid : Set₁ where
field
∣_∣ : Set
{{eq}} : Eq ∣_∣
open Setoid public
instance
EqNat : Eq Nat
_≈_ {{EqNat}} = _≡_
NatSetoid : Setoid
∣ NatSetoid ∣ = Nat
thm : (x : ∣ NatSetoid ∣) → x ≈ x
thm x = refl
| {
"alphanum_fraction": 0.5916230366,
"avg_line_length": 14.1481481481,
"ext": "agda",
"hexsha": "61038f9b28f64be1a6cecce47cf919caa7239286",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2288.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2288.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2288.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 157,
"size": 382
} |
module Numeral.Integer.Function where
open import Numeral.Integer
open import Numeral.Integer.Oper
open import Numeral.Natural as ℕ using (ℕ)
| {
"alphanum_fraction": 0.8251748252,
"avg_line_length": 23.8333333333,
"ext": "agda",
"hexsha": "6e660b2e25a42fe27b9f6513e32fff60140ab865",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Integer/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Integer/Function.agda",
"max_line_length": 42,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Integer/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 34,
"size": 143
} |
{-# OPTIONS --allow-unsolved-metas #-}
module AgdaIssue2557 where
record Superclass : Set₁ where field super : Set
open Superclass ⦃ … ⦄ public
record Subclass : Set₁ where
field
⦃ iSuperclass ⦄ : Superclass
sub : super
open Subclass
postulate A : Set
instance
SuperclassA : Superclass
Superclass.super SuperclassA = A → A
postulate function-A : A → A
test-1 : Subclass
Subclass.sub test-1 = {!!} -- Goal: A → A
test-2 : Subclass
test-2 = record { sub = function-A } -- works
test-3 : Subclass
Subclass.iSuperclass test-3 = SuperclassA -- (could also put "it" here)
Subclass.sub test-3 = function-A -- works
test-4 : Subclass
Subclass.sub test-4 = {!function-A!} -- fails
-- test-5 : Subclass
-- Subclass.sub test-5 x = {!!} -- fails
test-6 : Subclass
Subclass.sub test-6 = {!λ x → {!!}!} -- fails
| {
"alphanum_fraction": 0.6674727932,
"avg_line_length": 19.2325581395,
"ext": "agda",
"hexsha": "d3497ac7ceead1dc93bf2bb60ddbed881de07920",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/AgdaIssue2557.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/AgdaIssue2557.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/AgdaIssue2557.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 267,
"size": 827
} |
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module Test.Number where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base -- Rel
open import Cubical.Data.Unit.Base -- Unit
open import Cubical.Data.Empty -- ⊥
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Function.Base using (it; _∋_; _$_)
-- open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_)
-- open import Cubical.Data.Nat using (ℕ; zero; suc) renaming (_+_ to _+ₙ_)
-- open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s; _≤_ to _≤ₙ_; _<_ to _<ₙ_)
-- open import Cubical.Data.Fin.Base
-- import Cubical.Data.Fin.Properties
-- open import Cubical.Data.Nat using (ℕ; zero; suc) renaming (_+_ to _+ₙ_)
-- open import Cubical.Data.Nat.Properties using (+-suc; injSuc; snotz; +-comm; +-assoc; +-zero; inj-m+)
-- open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s; _≤_ to _≤ₙ_; _<_ to _<ₙ_; _≟_ to _≟ₙ_)
-- open import Data.Nat.Base using (ℕ; z≤n; s≤s; zero; suc) renaming (_≤_ to _≤ₙ_; _<_ to _<ₙ_; _+_ to _+ₙ_)
-- open import Agda.Builtin.Bool renaming (true to TT; false to FF)
-- import Cubical.Data.Fin.Properties
-- open import Data.Nat.Properties using (+-mono-<)
-- open import Bundles
open import Number.Postulates
open import Number.Structures
open import Number.Bundles
open import Number.Inclusions
open import Number.Base
open import Number.Coercions
open import Number.Operations
open ℕⁿ
open ℤᶻ
open ℚᶠ
open ℝʳ
open ℂᶜ
import Data.Nat.Properties
-- NOTE: well, for 15 allowed coercions, we might just enumerate them
-- unfortunately with overlapping patterns a style as in `Cl` is not possible
-- we need to explicitly write out all the 5×5 combinations
-- or, we implement a min operator which might work even with overlapping patterns
-- num {isNat ,, p} (x ,, q) = x
-- num {isInt ,, p} (x ,, q) = x
-- num {isRat ,, p} (x ,, q) = x
-- num {isReal ,, p} (x ,, q) = x
-- num {isComplex ,, p} (x ,, q) = x
-- TODO: name this "inject" instead of "coerce"
-- TODO: make the module ℤ and the Carrier ℤ.ℤ
-- TODO: for a binary relation `a # b` it would be nice to have a way to compose ≡-pathes to the left and the right
-- similar to how ∙ can be used for pathes
-- this reasoning might extend to transitive relations
-- `cong₂ _#_ refl x` and `cong₂ _#_ x refl` to this (together with `transport`)
-- NOTE: maybe ℕ↪ℤ should be a postfix operation
-- module _ where
-- module ℕ' = ROrderedCommSemiring ℕ.Bundle
-- module ℤ' = ROrderedCommRing ℤ.Bundle
-- module ℚ' = ROrderedField ℚ.Bundle
-- module ℝ' = ROrderedField ℝ.Bundle
-- module ℂ' = RField ℂ.Bundle--
-- coerce-OCSR : ∀{l p} {ll : NumberKind} {𝕏OCSR 𝕐OCSR : ROrderedCommSemiring {ℝℓ} {ℝℓ'}}
-- → (x : Number (l ,, p))
-- → {f : Il l → Il ll}
-- → IsROrderedCommSemiringInclusion 𝕏OCSR 𝕐OCSR f
-- → Ip ll p (f (num x))
-- coerce-OCSR {l} {ll} {p} {𝕏OCSR} {𝕐OCSR} {f} (x ,, q) = ?
{-
private
instance
z≤n' : ∀ {n} → zero ≤ₙ n
z≤n' {n} = z≤n
s≤s' : ∀ {m n} {{m≤n : m ≤ₙ n}} → suc m ≤ₙ suc n
s≤s' {m} {n} {{m≤n}} = s≤s m≤n
-}
{-
-- TODO: why does `it` not work here?
⁻¹-Levels : (a : NumberKind) → Σ[ b ∈ NumberKind ] a ≤ₙₗ b
⁻¹-Levels isNat = isRat , z≤n -- it
⁻¹-Levels isInt = isRat , s≤s z≤n -- s≤s' {{z≤n'}}
⁻¹-Levels isRat = isRat , s≤s (s≤s z≤n)
⁻¹-Levels isReal = isReal , s≤s (s≤s (s≤s z≤n)) -- it
⁻¹-Levels isComplex = isComplex , s≤s (s≤s (s≤s (s≤s z≤n)))
⁻¹-Levels' : (a : NumberKind) → NumberKind
⁻¹-Levels' x = maxₙₗ x isRat
-}
open PatternsType
{-
private
pattern X = anyPositivity
pattern X⁺⁻ = isNonzero
pattern X₀⁺ = isNonnegative
pattern X⁺ = isPositive
pattern X⁻ = isNegative
pattern X₀⁻ = isNonpositive
-}
{-
⁻¹-Types : NumberProp → Maybe NumberProp
⁻¹-Types (level ,, X ) = nothing
⁻¹-Types (level ,, X₀⁺) = nothing
⁻¹-Types (level ,, X₀⁻) = nothing
⁻¹-Types (level ,, p ) = just (fst (⁻¹-Levels level) ,, p)
-}
-- ∀{{ q : Unit }} → Number (level ,, X⁺⁻)
-- ∀{{ q : Unit }} → Number (level ,, X⁺ )
-- ∀{{ q : Unit }} → Number (level ,, X⁻ )
-- pattern [ℝ₀⁺] = (isReal , X₀⁺)
-- [ℝ₀⁺] = Number (isReal , isNonnegativeᵒʳ)
-- [ℝ⁺] = Number (isReal , isPositiveᵒʳ)
-- [ℕ⁺] = Number (isNat , isPositiveᵒʳ)
-- [ℝ] = Number (isReal , anyPositivityᵒʳ)
open import Number.Prettyprint
-- {-# DISPLAY maxₙₗ' isReal isReal = isReal #-}
-- {-# DISPLAY Number (isReal , isNonnegative) = [ℝ₀⁺] #-}
-- {-# DISPLAY Number (isReal , isPositive) = [ℝ⁺] #-}
[1ʳ] : [ℝ⁺]
[1ʳ] = 1ʳ ,, ℝ.0<1
[1]-Type : (l : NumberKind) → Type (NumberLevel l)
[1]-Type isNat = [ℕ⁺]
[1]-Type isInt = [ℤ⁺]
[1]-Type isRat = [ℚ⁺]
[1]-Type isReal = [ℝ⁺]
[1]-Type isComplex = [ℂ⁺⁻]
-- NOTE: this is ambiguous with generic operations such as _+_
[1] : ∀{l} → [1]-Type l
[1] {isNat} = 1ⁿ ,, ℕ.0<1
[1] {isInt} = 1ᶻ ,, ℤ.0<1
[1] {isRat} = 1ᶠ ,, ℚ.0<1
[1] {isReal} = 1ʳ ,, ℝ.0<1
[1] {isComplex} = 1ᶜ ,, ℂ.1#0
-- test101 : Number (isNat , isPositiveᵒʳ) → Number (isReal , isNonnegativeᵒʳ) → {!!}
open import Function.Base using (typeOf)
test201 : [ℕ⁺] → [ℝ₀⁺] → [ℝ]
-- As-patterns (or @-patterns) go well with resolving things in our approach
test201 n@(nn ,, np) r@(rn ,, rp) = let
-- generic operations are provided
-- q : [ℕ⁺]
-- z : [ℝ₀⁺]
q = n + n
z = r + r
-- we can project-out the underlying number of a `Number` with `num`
-- zʳ : ℝ
zʳ = num z
-- and we can project-out the property of a `Number` with `prp`
-- zp : 0ʳ ≤ʳ (rn +ʳ rn)
zp = prp z
-- since the generic `_+_` makes use of `_+ʳ_` on ℝ, we get definitional equality
_ : zʳ ≡ rn +ʳ rn
_ = refl
-- we can turn a generic number into a Σ pair with `pop`
-- qʳ : ℕ₀
-- qʳ = nn +ⁿ nn
-- qp : 0ⁿ <ⁿ (nn +ⁿ nn)
-- qp = +-<-<-implies-<ʳ nn nn np np
(qʳ , qp) = pop q
-- and we can create a number with `_,,_`
-- this needs some type annotation for help
q' : typeOf q
q' = qʳ ,, qp
-- if the two parts of q and q' are in scope, then we get definitional equality
_ : q ≡ q'
_ = refl
-- r is nonnegative from [ℝ₀⁺], [1ʳ] is positive from [ℝ⁺]
-- and _+_ makes use of the fact that "positive + nonnegative = positive"
-- y : [ℝ⁺]
-- y = (rn +ʳ 1ʳ) ,, +-≤-<-implies-<ʳ rn 1ʳ rp 0<1
y = r + [1ʳ]
-- _+_ automatically coerces n from ℕ⁺ to ℝ⁺
-- and uses the fact that "positive + nonnegative = positive"
-- n+r : [ℝ⁺]
-- n+r = (ℕ↪ℝ nn +ʳ rn) ,, +-<-≤-implies-<ʳ (ℕ↪ℝ nn) rn (coerce-ℕ↪ℝ (nn ,, np)) rp
n+r = n + r
-- generic relations like _<_ also make use of their underlying relations
-- and therefore we also get definitional equality, no matter how the relation is stated
pp : [1ʳ] < (r + [1ʳ])
pp = {!!}
pp' : 1ʳ <ʳ num (r + [1ʳ])
pp' = {!!}
pp'' : 1ʳ <ʳ (rn +ʳ 1ʳ )
pp'' = {!!}
_ : (pp ≡ pp') × (pp ≡ pp'')
_ = refl , refl
in {! - [1ʳ]!}
_ = {! ℕ!}
{-
distance : ∀(x y : [ℝ]) → [ℝ]
distance x y = max (x + (- y)) (- (x + (- y)))
IsCauchy : (x : ℕ → ℝ) → Type (ℓ-max ℓ' ℚℓ)
IsCauchy x = ∀(ε : [ℚ⁺]) → ∃[ N ∈ ℕ ] ∀(m n : ℕ) → N ≤ⁿ m → N ≤ⁿ n → distance (x m) (x n) < ε
-}
test : [ℕ⁺] → [ℝ₀⁺] → [ℝ]
test n@(nn ,, np) r@(rn ,, rp) = let
q : [ℕ⁺]
q = n + n
z : [ℝ₀⁺]
z = r + r
k : [ℝ⁺]
k = n + r
in {!!}
| {
"alphanum_fraction": 0.5869144406,
"avg_line_length": 30.26953125,
"ext": "agda",
"hexsha": "461a9ffca51e2d2b722fc0ed21ccc04cd53aac49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Test/Number.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Test/Number.agda",
"max_line_length": 119,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Test/Number.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 3141,
"size": 7749
} |
open import Prelude
open import core
open import contexts
open import lemmas-matching
module synth-unicity where
-- synthesis only produces equal types. note that there is no need for an
-- analagous theorem for analytic positions because we think of
-- the type as an input
synthunicity : {Γ : tctx} {e : hexp} {t t' : htyp} →
Γ ⊢ e => t →
Γ ⊢ e => t' →
t == t'
synthunicity (SAsc _) (SAsc _) = refl
synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2
synthunicity (SAp D1 MAHole _) (SAp D2 MAHole y) = refl
synthunicity (SAp D1 MAHole _) (SAp D2 MAArr y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr _) (SAp D2 MAHole y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr _) (SAp D2 MAArr y) with synthunicity D1 D2
... | refl = refl
synthunicity SEHole SEHole = refl
synthunicity (SNEHole _) (SNEHole _) = refl
synthunicity SNum SNum = refl
synthunicity (SPlus _ _) (SPlus _ _) = refl
synthunicity (SLam _ D1) (SLam _ D2) with synthunicity D1 D2
synthunicity (SLam x₁ D1) (SLam x₂ D2) | refl = refl
synthunicity (SPair D1 D2) (SPair D3 D4)
with synthunicity D1 D3 | synthunicity D2 D4
... | refl | refl = refl
synthunicity (SFst D1 x) (SFst D2 x₁) with synthunicity D1 D2
... | refl with ▸prod-unicity x x₁
... | refl = refl
synthunicity (SSnd D1 x) (SSnd D2 x₁) with synthunicity D1 D2
... | refl with ▸prod-unicity x x₁
... | refl = refl
| {
"alphanum_fraction": 0.6468624833,
"avg_line_length": 39.4210526316,
"ext": "agda",
"hexsha": "6612f4ed8fdb07ff1abec271e878527be3e8ea02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "synth-unicity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "synth-unicity.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "synth-unicity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 566,
"size": 1498
} |
-- Minimal logic, PHOAS approach, initial encoding
module Pi.M (Indiv : Set) where
-- Types
data Ty : Set
Pred : Set
Pred = Indiv -> Ty
infixl 2 _&&_
infixl 1 _||_
infixr 0 _=>_
data Ty where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
_&&_ : Ty -> Ty -> Ty
_||_ : Ty -> Ty -> Ty
FALSE : Ty
FORALL : Pred -> Ty
EXISTS : Pred -> Ty
infixr 0 _<=>_
_<=>_ : Ty -> Ty -> Ty
a <=> b = (a => b) && (b => a)
NOT : Ty -> Ty
NOT a = a => FALSE
TRUE : Ty
TRUE = FALSE => FALSE
-- Context and truth/individual judgement
data El : Set where
mkTrue : Ty -> El
mkIndiv : Indiv -> El
Cx : Set1
Cx = El -> Set
isTrue : Ty -> Cx -> Set
isTrue a tc = tc (mkTrue a)
isIndiv : Indiv -> Cx -> Set
isIndiv x tc = tc (mkIndiv x)
-- Terms
module M where
infixl 2 _$$_
infixl 1 _$_
data Tm (tc : Cx) : Ty -> Set where
var : forall {a} -> isTrue a tc -> Tm tc a
lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b)
_$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b
pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b)
fst : forall {a b} -> Tm tc (a && b) -> Tm tc a
snd : forall {a b} -> Tm tc (a && b) -> Tm tc b
left : forall {a b} -> Tm tc a -> Tm tc (a || b)
right : forall {a b} -> Tm tc b -> Tm tc (a || b)
case' : forall {a b c} -> Tm tc (a || b) -> (isTrue a tc -> Tm tc c) -> (isTrue b tc -> Tm tc c) -> Tm tc c
pi' : forall {p} -> (forall {x} -> isIndiv x tc -> Tm tc (p x)) -> Tm tc (FORALL p)
_$$_ : forall {p x} -> Tm tc (FORALL p) -> isIndiv x tc -> Tm tc (p x)
sig' : forall {p x} -> isIndiv x tc -> Tm tc (p x) -> Tm tc (EXISTS p)
split' : forall {p x a} -> Tm tc (EXISTS p) -> (isTrue (p x) tc -> Tm tc a) -> Tm tc a
lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b)
lam'' f = lam' \x -> f (var x)
case'' : forall {tc a b c} -> Tm tc (a || b) -> (Tm tc a -> Tm tc c) -> (Tm tc b -> Tm tc c) -> Tm tc c
case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y))
split'' : forall {tc p x a} -> Tm tc (EXISTS p) -> (Tm tc (p x) -> Tm tc a) -> Tm tc a
split'' x f = split' x \y -> f (var y)
syntax lam'' (\a -> b) = lam a => b
syntax pair' x y = [ x , y ]
syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2
syntax pi' (\x -> px) = pi x => px
syntax sig' x px = [ x ,, px ]
syntax split'' x (\y -> z) = split x as y => z
Thm : Ty -> Set1
Thm a = forall {tc} -> Tm tc a
open M public
| {
"alphanum_fraction": 0.4439544285,
"avg_line_length": 29.9010989011,
"ext": "agda",
"hexsha": "8ac00b2f15ac5896dcd97539b9587111dd0b17eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Pi/M.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Pi/M.agda",
"max_line_length": 114,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Pi/M.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 1065,
"size": 2721
} |
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
record R : Set₁ where
field
_≡_ : {A : Set} → A → A → Set
refl : {A : Set} (x : A) → x ≡ x
record R′ (_ : Set) : Set where
module _ (r : R) (_ : {A : Set} → R′ A) where
open R r
macro
m : Term → TC ⊤
m goal =
bindTC (unify (def (quote refl)
(arg (arg-info visible relevant) unknown ∷ []))
goal) λ _ →
bindTC solveConstraints λ _ →
bindTC (reduce goal) λ where
(meta m _) → typeError (strErr "Meta" ∷ [])
_ → returnTC _
test : true ≡ true
test = m
macro
m′ : Term → TC ⊤
m′ goal =
bindTC (unify (def (quote refl)
(arg (arg-info visible relevant) unknown ∷ []))
goal) λ _ →
bindTC (reduce goal) λ where
goal@(meta m _) →
bindTC (solveConstraintsMentioning (m ∷ [])) λ _ →
bindTC (reduce goal) λ where
(meta _ _) → typeError (strErr "Meta" ∷ [])
_ → returnTC _
_ → returnTC _
test′ : true ≡ true
test′ = m′
| {
"alphanum_fraction": 0.5061932287,
"avg_line_length": 23.7450980392,
"ext": "agda",
"hexsha": "14df2b2f099cc1a4ffc4d57f4cb590d8fd2d896e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Succeed/SolveConstraints.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/SolveConstraints.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/SolveConstraints.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 370,
"size": 1211
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.Relation
open import lib.NType2
open import lib.types.Pi
module lib.types.SetQuotient {i} {A : Type i} {j} where
postulate -- HIT
SetQuot : (R : Rel A j) → Type (lmax i j)
module _ {R : Rel A j} where
postulate -- HIT
q[_] : (a : A) → SetQuot R
quot-rel : {a₁ a₂ : A} → R a₁ a₂ → q[ a₁ ] == q[ a₂ ]
SetQuot-level : is-set (SetQuot R)
SetQuot-is-set = SetQuot-level
module SetQuotElim {k} {P : SetQuot R → Type k}
(p : (x : SetQuot R) → is-set (P x)) (q[_]* : (a : A) → P q[ a ])
(rel* : ∀ {a₁ a₂} (r : R a₁ a₂) → q[ a₁ ]* == q[ a₂ ]* [ P ↓ quot-rel r ]) where
postulate -- HIT
f : Π (SetQuot R) P
q[_]-β : (a : A) → f q[ a ] ↦ q[ a ]*
{-# REWRITE q[_]-β #-}
postulate -- HIT
quot-rel-β : ∀ {a₁ a₂} (r : R a₁ a₂) → apd f (quot-rel r) == rel* r
open SetQuotElim public using () renaming (f to SetQuot-elim)
module SetQuotRec {k} {B : Type k} (p : is-set B)
(q[_]* : A → B) (rel* : ∀ {a₁ a₂} (r : R a₁ a₂) → q[ a₁ ]* == q[ a₂ ]*) where
private
module M = SetQuotElim (λ x → p) q[_]* (λ {a₁ a₂} r → ↓-cst-in (rel* r))
f : SetQuot R → B
f = M.f
open SetQuotRec public using () renaming (f to SetQuot-rec)
-- If [R] is an equivalence relation, then [quot-rel] is an equivalence.
module _ {R : Rel A j}
(R-is-prop : ∀ {a b} → is-prop (R a b))
(R-is-refl : is-refl R) (R-is-sym : is-sym R)
(R-is-trans : is-trans R) where
private
Q : Type (lmax i j)
Q = SetQuot R
R'-over-quot : Q → Q → hProp j
R'-over-quot = SetQuot-rec (→-is-set $ hProp-is-set j)
(λ a → SetQuot-rec (hProp-is-set j)
(λ b → R a b , R-is-prop)
(nType=-out ∘ lemma-a))
(λ ra₁a₂ → λ= $ SetQuot-elim
(λ _ → raise-level -1 $ hProp-is-set j _ _)
(λ _ → nType=-out $ lemma-b ra₁a₂)
(λ _ → prop-has-all-paths-↓ $ hProp-is-set j _ _))
where
abstract
lemma-a : ∀ {a b₁ b₂} → R b₁ b₂ → R a b₁ == R a b₂
lemma-a rb₁b₂ = ua $ equiv
(λ rab₁ → R-is-trans rab₁ rb₁b₂)
(λ rab₂ → R-is-trans rab₂ (R-is-sym rb₁b₂))
(λ _ → prop-has-all-paths R-is-prop _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
lemma-b : ∀ {a₁ a₂ b} → R a₁ a₂ → R a₁ b == R a₂ b
lemma-b ra₁a₂ = ua $ equiv
(λ ra₁b → R-is-trans (R-is-sym ra₁a₂) ra₁b)
(λ ra₂b → R-is-trans ra₁a₂ ra₂b)
(λ _ → prop-has-all-paths R-is-prop _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
R-over-quot : Q → Q → Type j
R-over-quot q₁ q₂ = fst (R'-over-quot q₁ q₂)
abstract
R-over-quot-is-prop : {q₁ q₂ : Q} → is-prop (R-over-quot q₁ q₂)
R-over-quot-is-prop {q₁} {q₂} = snd (R'-over-quot q₁ q₂)
R-over-quot-is-refl : (q : Q) → R-over-quot q q
R-over-quot-is-refl = SetQuot-elim
(λ q → raise-level -1 (R-over-quot-is-prop {q} {q}))
(λ a → R-is-refl a)
(λ _ → prop-has-all-paths-↓ R-is-prop)
path-to-R-over-quot : {q₁ q₂ : Q} → q₁ == q₂ → R-over-quot q₁ q₂
path-to-R-over-quot {q} idp = R-over-quot-is-refl q
quot-rel-equiv : ∀ {a₁ a₂ : A} → R a₁ a₂ ≃ (q[ a₁ ] == q[ a₂ ])
quot-rel-equiv {a₁} {a₂} = equiv
quot-rel (path-to-R-over-quot {q[ a₁ ]} {q[ a₂ ]})
(λ _ → prop-has-all-paths (SetQuot-is-set _ _) _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
| {
"alphanum_fraction": 0.5185938408,
"avg_line_length": 33.0961538462,
"ext": "agda",
"hexsha": "501a36ee8612845a30f0dc1f5596a957046d874c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/SetQuotient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/SetQuotient.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/SetQuotient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1360,
"size": 3442
} |
module Issue4022 where
open import Common.Prelude
open import Agda.Builtin.Equality
open import Agda.Builtin.Char.Properties
open import Agda.Builtin.String.Properties
open import Agda.Builtin.Float.Properties
open import Issue4022.Import
| {
"alphanum_fraction": 0.8506224066,
"avg_line_length": 24.1,
"ext": "agda",
"hexsha": "8ad4ca18ce657990c7d3d1f276f57b84fb302ec5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue4022.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue4022.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue4022.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 55,
"size": 241
} |
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.M where
open import Cubical.Codata.M.AsLimit.M.Base public
open import Cubical.Codata.M.AsLimit.M.Properties public
| {
"alphanum_fraction": 0.7674418605,
"avg_line_length": 30.7142857143,
"ext": "agda",
"hexsha": "09247e9d2912f53c00238b2786a143ed715ccf36",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/AsLimit/M.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/AsLimit/M.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/AsLimit/M.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 54,
"size": 215
} |
module Main where
import Proof
| {
"alphanum_fraction": 0.7647058824,
"avg_line_length": 5.6666666667,
"ext": "agda",
"hexsha": "8495ec9816f1cee94702004f3968fe35ff0849ce",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/Main.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/Main.agda",
"max_line_length": 17,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 34
} |
{-# OPTIONS --copatterns --sized-types #-}
-- {-# OPTIONS -v tc.size.solve:30 #-}
-- {-# OPTIONS -v term:40 -v term.proj:60 --show-implicit #-}
-- Andreas, 2013-10-01 Make sure trailing implicit insertion
-- works with copatterns
module CopatternTrailingImplicit where
import Common.Level
open import Common.Size
open import Common.Prelude
-- Sized streams
record Stream (A : Set) {i : Size} : Set where
coinductive
field
head : A
tail : {j : Size< i} → Stream A {j}
open Stream
-- Mapping over streams
map : {A B : Set} (f : A → B) {i : Size} → Stream A {i} → Stream B {i}
tail (map f {i} s) {j} = map f (tail s)
head (map f s) = f (head s)
-- Nats defined using map
nats : {i : Size} → Stream Nat {i}
head nats = 0
tail nats = map suc nats
-- Before this patch, Agda would insert a {_} also in the `head' clause
-- leading to a type error.
-- 2013-10-12 works now also without manual {_} insertion
-- (See TermCheck.introHiddenLambdas.)
nats' : {i : Size} → Stream Nat {i}
head nats' = 0
tail nats' = map suc nats'
-- Before this latest patch, the termination checker would complain
-- since it would not see the type of the hidden {j : Size< i}
-- which is the argument to the recursive call.
-- All this would not be an issue if Agda still eagerly introduced
-- trailing hidden arguments on the LHS, but this has other
-- drawbacks (Q: even with varying arity?): cannot have
-- hidden lambdas on rhs (used to name trailing hiddens in with-clauses).
| {
"alphanum_fraction": 0.6806779661,
"avg_line_length": 30.1020408163,
"ext": "agda",
"hexsha": "581c08721086347bb37307741f459acaf9d6e06e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/succeed/CopatternTrailingImplicit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/succeed/CopatternTrailingImplicit.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/CopatternTrailingImplicit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 435,
"size": 1475
} |
{-# OPTIONS --without-K #-}
-- The universe of all types
module hott.core.universe where
open import Agda.Primitive public using (Level; lzero; lsuc; _⊔_)
-- We give an new name for Set
Type : (ℓ : Level) → Set (lsuc ℓ)
Type ℓ = Set ℓ
lone : Level; lone = lsuc lzero
ltwo : Level; ltwo = lsuc lone
lthree : Level; lthree = lsuc ltwo
lfour : Level; lfour = lsuc lthree
lfive : Level; lfive = lsuc lfour
lsix : Level; lsix = lsuc lfive
lseven : Level; lseven = lsuc lsix
leight : Level; leight = lsuc lseven
lnine : Level; lnine = lsuc leight
Type₀ = Type lzero
Type₁ = Type lone
Type₂ = Type ltwo
Type₃ = Type lthree
Type₄ = Type lfour
Type₅ = Type lfive
Type₆ = Type lsix
Type₇ = Type lseven
Type₈ = Type leight
Type₉ = Type lnine
| {
"alphanum_fraction": 0.6856763926,
"avg_line_length": 23.5625,
"ext": "agda",
"hexsha": "31c6a4af94679326887fcff9e5658eee607981bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/universe.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/universe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 279,
"size": 754
} |
{-# OPTIONS --no-positivity-check #-}
module STLC.Coquand.Normalisation where
open import STLC.Coquand.Substitution public
--------------------------------------------------------------------------------
record 𝔐 : Set₁ where
field
𝒲 : Set
𝒢 : 𝒲 → Set
_⊒_ : 𝒲 → 𝒲 → Set
idₐ : ∀ {w} → w ⊒ w
_◇_ : ∀ {w w′ w″} → w″ ⊒ w′ → w′ ⊒ w → w″ ⊒ w
lid◇ : ∀ {w w′} → (ξ : w′ ⊒ w)
→ idₐ ◇ ξ ≡ ξ
rid◇ : ∀ {w w′} → (ξ : w′ ⊒ w)
→ ξ ◇ idₐ ≡ ξ
assoc◇ : ∀ {w w′ w″ w‴} → (ξ₁ : w‴ ⊒ w″) (ξ₂ : w″ ⊒ w′) (ξ₃ : w′ ⊒ w)
→ ξ₁ ◇ (ξ₂ ◇ ξ₃) ≡ (ξ₁ ◇ ξ₂) ◇ ξ₃
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
infix 3 _⊩_
data _⊩_ : 𝒲 → 𝒯 → Set
where
⟦G⟧ : ∀ {w} → (h : ∀ {w′} → (ξ : w′ ⊒ w)
→ 𝒢 w′)
→ w ⊩ ⎵
⟦ƛ⟧ : ∀ {A B w} → (h : ∀ {w′} → (ξ : w′ ⊒ w) (a : w′ ⊩ A)
→ w′ ⊩ B)
→ w ⊩ A ⇒ B
⟦g⟧⟨_⟩ : ∀ {w w′} → w′ ⊒ w → w ⊩ ⎵ → 𝒢 w′
⟦g⟧⟨ ξ ⟩ (⟦G⟧ f) = f ξ
_⟦∙⟧⟨_⟩_ : ∀ {A B w w′} → w ⊩ A ⇒ B → w′ ⊒ w → w′ ⊩ A → w′ ⊩ B
(⟦ƛ⟧ f) ⟦∙⟧⟨ ξ ⟩ a = f ξ a
-- ⟦putᵣ⟧ can’t be stated here
-- ⟦getᵣ⟧ can’t be stated here
-- ⟦wkᵣ⟧ can’t be stated here
-- ⟦liftᵣ⟧ can’t be stated here
-- idₐ = ⟦idᵣ⟧
-- acc = ⟦ren⟧
acc : ∀ {A w w′} → w′ ⊒ w → w ⊩ A → w′ ⊩ A
acc {⎵} ξ f = ⟦G⟧ (λ ξ′ → ⟦g⟧⟨ ξ′ ◇ ξ ⟩ f)
acc {A ⇒ B} ξ f = ⟦ƛ⟧ (λ ξ′ a → f ⟦∙⟧⟨ ξ′ ◇ ξ ⟩ a)
-- ⟦wk⟧ can’t be stated here
-- _◇_ = _⟦○⟧_
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
mutual
data Eq : ∀ {A w} → w ⊩ A → w ⊩ A → Set
where
eq⎵ : ∀ {w} → {f₁ f₂ : w ⊩ ⎵}
→ (h : ∀ {w′} → (ξ : w′ ⊒ w)
→ ⟦g⟧⟨ ξ ⟩ f₁ ≡ ⟦g⟧⟨ ξ ⟩ f₂)
→ Eq f₁ f₂
eq⊃ : ∀ {A B w} → {f₁ f₂ : w ⊩ A ⇒ B}
→ (h : ∀ {w′} → (ξ : w′ ⊒ w) {a : w′ ⊩ A} (u : Un a)
→ Eq (f₁ ⟦∙⟧⟨ ξ ⟩ a) (f₂ ⟦∙⟧⟨ ξ ⟩ a))
→ Eq f₁ f₂
data Un : ∀ {A w} → w ⊩ A → Set
where
un⎵ : ∀ {w} → {f : w ⊩ ⎵}
→ Un f
un⊃ : ∀ {A B w} → {f : w ⊩ A ⇒ B}
→ (h₁ : ∀ {w′} → (ξ : w′ ⊒ w)
{a : w′ ⊩ A}
(u : Un a)
→ Un (f ⟦∙⟧⟨ ξ ⟩ a))
→ (h₂ : ∀ {w′} → (ξ : w′ ⊒ w)
{a₁ a₂ : w′ ⊩ A}
(p : Eq a₁ a₂)
(u₁ : Un a₁)
(u₂ : Un a₂)
→ Eq (f ⟦∙⟧⟨ ξ ⟩ a₁) (f ⟦∙⟧⟨ ξ ⟩ a₂))
→ (h₃ : ∀ {w′ w″} → (ξ₁ : w″ ⊒ w′)
(ξ₂ : w′ ⊒ w)
{a : w′ ⊩ A}
(u : Un a)
→ Eq (acc ξ₁ (f ⟦∙⟧⟨ ξ₂ ⟩ a))
(f ⟦∙⟧⟨ ξ₁ ◇ ξ₂ ⟩ (acc ξ₁ a)))
→ Un f
reflEq : ∀ {A w} → {a : w ⊩ A}
→ Un a
→ Eq a a
reflEq un⎵ = eq⎵ (λ ξ → refl)
reflEq (un⊃ h₁ h₂ h₃) = eq⊃ (λ ξ u → reflEq (h₁ ξ u))
_⁻¹Eq : ∀ {A w} → {a₁ a₂ : w ⊩ A}
→ Eq a₁ a₂
→ Eq a₂ a₁
_⁻¹Eq {⎵} (eq⎵ h) = eq⎵ (λ ξ → h ξ ⁻¹)
_⁻¹Eq {A ⇒ B} (eq⊃ h) = eq⊃ (λ ξ u → h ξ u ⁻¹Eq)
_⦙Eq_ : ∀ {A w} → {a₁ a₂ a₃ : w ⊩ A}
→ Eq a₁ a₂ → Eq a₂ a₃
→ Eq a₁ a₃
_⦙Eq_ {⎵} (eq⎵ h₁) (eq⎵ h₂) = eq⎵ (λ ξ → h₁ ξ ⦙ h₂ ξ)
_⦙Eq_ {A ⇒ B} (eq⊃ h₁) (eq⊃ h₂) = eq⊃ (λ ξ u → h₁ ξ u ⦙Eq h₂ ξ u)
≡→Eq : ∀ {A w} → {a₁ a₂ : w ⊩ A}
→ a₁ ≡ a₂ → Un a₁
→ Eq a₁ a₂
≡→Eq refl u = reflEq u
instance
perEq : ∀ {A w} → PER (w ⊩ A) Eq
perEq =
record
{ _⁻¹ = _⁻¹Eq
; _⦙_ = _⦙Eq_
}
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
-- (cong⟦∙⟧⟨_⟩Eq)
postulate
cong⟦∙⟧Eq : ∀ {A B w w′} → {f₁ f₂ : w ⊩ A ⇒ B} {a₁ a₂ : w′ ⊩ A}
→ (ξ : w′ ⊒ w)
→ Eq f₁ f₂ → Un f₁ → Un f₂
→ Eq a₁ a₂ → Un a₁ → Un a₂
→ Eq (f₁ ⟦∙⟧⟨ ξ ⟩ a₁)
(f₂ ⟦∙⟧⟨ ξ ⟩ a₂)
cong⟦∙⟧Un : ∀ {A B w w′} → {f : w ⊩ A ⇒ B} {a : w′ ⊩ A}
→ (ξ : w′ ⊒ w) → Un f → Un a
→ Un (f ⟦∙⟧⟨ ξ ⟩ a)
cong⟦∙⟧Un ξ (un⊃ h₁ h₂ h₃) u = h₁ ξ u
-- (cong↑⟨_⟩Eq)
postulate
congaccEq : ∀ {A w w′} → {a₁ a₂ : w ⊩ A}
→ (ξ : w′ ⊒ w) → Eq a₁ a₂
→ Eq (acc ξ a₁) (acc ξ a₂)
-- (cong↑⟨_⟩𝒰)
postulate
congaccUn : ∀ {A w w′} → {a : w ⊩ A}
→ (ξ : w′ ⊒ w) → Un a
→ Un (acc ξ a)
-- (aux₄₁₁)
postulate
lidaccEq : ∀ {A w} → {a : w ⊩ A}
→ Un a
→ Eq (acc idₐ a) a
-- (aux₄₁₂)
postulate
acc◇Eq : ∀ {A w w′ w″} → {a : w ⊩ A}
→ (ξ₁ : w″ ⊒ w′) (ξ₂ : w′ ⊒ w) → Un a
→ Eq (acc (ξ₁ ◇ ξ₂) a)
((acc ξ₁ ∘ acc ξ₂) a)
-- (aux₄₁₃)
postulate
acc⟦∙⟧idEq : ∀ {A B w w′} → {f : w ⊩ A ⇒ B} {a : w′ ⊩ A}
→ (ξ : w′ ⊒ w) → Un f → Un a
→ Eq (acc ξ f ⟦∙⟧⟨ idₐ ⟩ a)
(f ⟦∙⟧⟨ ξ ⟩ a)
acc⟦∙⟧Eq : ∀ {A B w w′ w″} → {f : w ⊩ A ⇒ B} {a : w′ ⊩ A}
→ (ξ₁ : w′ ⊒ w) (ξ₂ : w″ ⊒ w′) → Un f → Un a
→ Eq (acc ξ₁ f ⟦∙⟧⟨ ξ₂ ⟩ acc ξ₂ a)
(acc ξ₂ (f ⟦∙⟧⟨ ξ₁ ⟩ a))
acc⟦∙⟧Eq ξ₁ ξ₂ (un⊃ h₁ h₂ h₃) u = h₃ ξ₂ ξ₁ u ⁻¹
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
infix 3 _⊩⋆_
data _⊩⋆_ : 𝒲 → 𝒞 → Set
where
∅ : ∀ {w} → w ⊩⋆ ∅
_,_ : ∀ {Ξ A w} → (ρ : w ⊩⋆ Ξ) (a : w ⊩ A) →
w ⊩⋆ Ξ , A
-- ⟦putₛ⟧ can’t be stated here
-- getᵥ = ⟦getₛ⟧ (lookup)
getᵥ : ∀ {Ξ A w} → w ⊩⋆ Ξ → Ξ ∋ A → w ⊩ A
getᵥ (ρ , a) zero = a
getᵥ (ρ , a) (suc i) = getᵥ ρ i
-- unwkᵥ ≡ ⟦unwkₛ⟧
unwkᵥ : ∀ {Ξ A w} → w ⊩⋆ Ξ , A → w ⊩⋆ Ξ
unwkᵥ (ρ , a) = ρ
-- ⟦wkₛ⟧ can’t be stated here
-- ⟦liftₛ⟧ can’t be stated here
-- ⟦idₛ⟧ can’t be stated here
-- ⟦sub⟧ can’t be stated here
-- ⟦cut⟧ can’t be stated here
-- _◆_ can’t be stated here
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
-- (⟦_◑_⟧ / ↑⟨_⟩⊩⋆)
_⬗_ : ∀ {Ξ w w′} → w′ ⊒ w → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ
ξ ⬗ ∅ = ∅
ξ ⬗ (ρ , a) = ξ ⬗ ρ , acc ξ a
-- (⟦_◐_⟧ / ↓⟨_⟩⊩⋆)
_⬖_ : ∀ {Ξ Ξ′ w} → w ⊩⋆ Ξ′ → Ξ′ ∋⋆ Ξ → w ⊩⋆ Ξ
ρ ⬖ ∅ = ∅
ρ ⬖ (η , i) = ρ ⬖ η , getᵥ ρ i
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
zap⬖ : ∀ {Ξ Ξ′ A w} → (ρ : w ⊩⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (a : w ⊩ A)
→ (ρ , a) ⬖ wkᵣ η ≡ ρ ⬖ η
zap⬖ ρ ∅ a = refl
zap⬖ ρ (η , i) a = (_, getᵥ ρ i) & zap⬖ ρ η a
rid⬖ : ∀ {Ξ w} → (ρ : w ⊩⋆ Ξ)
→ ρ ⬖ idᵣ ≡ ρ
rid⬖ ∅ = refl
rid⬖ (ρ , a) = (_, a) & ( zap⬖ ρ idᵣ a
⦙ rid⬖ ρ
)
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
get⬖ : ∀ {Ξ Ξ′ A w} → (ρ : w ⊩⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (i : Ξ ∋ A)
→ getᵥ (ρ ⬖ η) i ≡ (getᵥ ρ ∘ getᵣ η) i
get⬖ ρ (η , j) zero = refl
get⬖ ρ (η , j) (suc i) = get⬖ ρ η i
comp⬖○ : ∀ {Ξ Ξ′ Ξ″ w} → (ρ : w ⊩⋆ Ξ″) (η₁ : Ξ″ ∋⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ)
→ ρ ⬖ (η₁ ○ η₂) ≡ (ρ ⬖ η₁) ⬖ η₂
comp⬖○ σ η₁ ∅ = refl
comp⬖○ σ η₁ (η₂ , i) = _,_ & comp⬖○ σ η₁ η₂
⊗ (get⬖ σ η₁ i ⁻¹)
-- wk⬖ can’t be stated here
-- lift⬖ can’t be stated here
-- wkrid⬖ can’t be stated here
-- liftwkrid⬖ can’t be stated here
-- sub⬖ can’t be stated here
-- subwk⬖ can’t be stated here
-- sublift⬖ can’t be stated here
-- subliftwk⬖ can’t be stated here
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
data Eq⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → w ⊩⋆ Ξ → Set
where
∅ : ∀ {w} → Eq⋆ (∅ {w}) ∅
_,_ : ∀ {Ξ A w} → {ρ₁ ρ₂ : w ⊩⋆ Ξ} {a₁ a₂ : w ⊩ A}
→ (χ : Eq⋆ ρ₁ ρ₂) (p : Eq a₁ a₂)
→ Eq⋆ (ρ₁ , a₁) (ρ₂ , a₂)
data Un⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → Set
where
∅ : ∀ {w} → Un⋆ (∅ {w})
_,_ : ∀ {Ξ A w} → {ρ : w ⊩⋆ Ξ} {a : w ⊩ A}
→ (υ : Un⋆ ρ) (u : Un a)
→ Un⋆ (ρ , a)
reflEq⋆ : ∀ {Ξ w} → {ρ : w ⊩⋆ Ξ}
→ Un⋆ ρ
→ Eq⋆ ρ ρ
reflEq⋆ ∅ = ∅
reflEq⋆ (υ , u) = reflEq⋆ υ , reflEq u
_⁻¹Eq⋆ : ∀ {Ξ w} → {ρ₁ ρ₂ : w ⊩⋆ Ξ}
→ Eq⋆ ρ₁ ρ₂
→ Eq⋆ ρ₂ ρ₁
∅ ⁻¹Eq⋆ = ∅
(χ , p) ⁻¹Eq⋆ = χ ⁻¹Eq⋆ , p ⁻¹Eq
_⦙Eq⋆_ : ∀ {Ξ w} → {ρ₁ ρ₂ ρ₃ : w ⊩⋆ Ξ}
→ Eq⋆ ρ₁ ρ₂ → Eq⋆ ρ₂ ρ₃
→ Eq⋆ ρ₁ ρ₃
∅ ⦙Eq⋆ ∅ = ∅
(χ₁ , p) ⦙Eq⋆ (χ₂ , q) = χ₁ ⦙Eq⋆ χ₂ , p ⦙Eq q
≡→Eq⋆ : ∀ {Ξ w} → {ρ₁ ρ₂ : w ⊩⋆ Ξ}
→ ρ₁ ≡ ρ₂ → Un⋆ ρ₁
→ Eq⋆ ρ₁ ρ₂
≡→Eq⋆ refl υ = reflEq⋆ υ
instance
perEq⋆ : ∀ {Ξ w} → PER (w ⊩⋆ Ξ) Eq⋆
perEq⋆ =
record
{ _⁻¹ = _⁻¹Eq⋆
; _⦙_ = _⦙Eq⋆_
}
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
-- (conglookupEq)
postulate
conggetEq : ∀ {Ξ A w} → {ρ₁ ρ₂ : w ⊩⋆ Ξ}
→ (i : Ξ ∋ A) → Eq⋆ ρ₁ ρ₂
→ Eq (getᵥ ρ₁ i) (getᵥ ρ₂ i)
-- (cong↑⟨_⟩Eq⋆)
postulate
cong⬗Eq⋆ : ∀ {Ξ w w′} → {ρ₁ ρ₂ : w ⊩⋆ Ξ}
→ (ξ : w′ ⊒ w) → Eq⋆ ρ₁ ρ₂
→ Eq⋆ (ξ ⬗ ρ₁) (ξ ⬗ ρ₂)
-- (cong↓⟨_⟩Eq⋆)
postulate
cong⬖Eq⋆ : ∀ {Ξ Ξ′ w} → {ρ₁ ρ₂ : w ⊩⋆ Ξ′}
→ Eq⋆ ρ₁ ρ₂ → (η : Ξ′ ∋⋆ Ξ)
→ Eq⋆ (ρ₁ ⬖ η) (ρ₂ ⬖ η)
-- (conglookup𝒰)
postulate
conggetUn : ∀ {Ξ A w} → {ρ : w ⊩⋆ Ξ}
→ (i : Ξ ∋ A) → Un⋆ ρ
→ Un (getᵥ ρ i)
-- (cong↑⟨_⟩𝒰⋆)
postulate
cong⬗Un⋆ : ∀ {Ξ w w′} → {ρ : w ⊩⋆ Ξ}
→ (ξ : w′ ⊒ w) → Un⋆ ρ
→ Un⋆ (ξ ⬗ ρ)
-- (cong↓⟨_⟩𝒰⋆)
postulate
cong⬖Un⋆ : ∀ {Ξ Ξ′ w} → {ρ : w ⊩⋆ Ξ′}
→ (η : Ξ′ ∋⋆ Ξ) → Un⋆ ρ
→ Un⋆ (ρ ⬖ η)
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
-- (aux₄₂₁)
postulate
get⬖Eq : ∀ {Ξ Ξ′ A w} → {ρ : w ⊩⋆ Ξ′}
→ (η : Ξ′ ∋⋆ Ξ) (i : Ξ′ ∋ A) (j : Ξ ∋ A) → Un⋆ ρ
→ Eq (getᵥ (ρ ⬖ η) j)
(getᵥ ρ i)
-- (conglookup↑⟨_⟩Eq)
postulate
get⬗Eq : ∀ {Ξ A w w′} → {ρ : w ⊩⋆ Ξ}
→ (ξ : w′ ⊒ w) (i : Ξ ∋ A) → Un⋆ ρ
→ Eq (getᵥ (ξ ⬗ ρ) i)
(acc ξ (getᵥ ρ i))
-- (aux₄₂₃)
postulate
zap⬖Eq⋆ : ∀ {Ξ Ξ′ A w} → {ρ : w ⊩⋆ Ξ′} {a : w ⊩ A}
→ (η₁ : Ξ′ , A ∋⋆ Ξ) (η₂ : Ξ′ ∋⋆ Ξ) → Un⋆ ρ
→ Eq⋆ ((ρ , a) ⬖ η₁)
(ρ ⬖ η₂)
-- (aux₄₂₄)
postulate
rid⬖Eq⋆ : ∀ {Ξ w} → {ρ : w ⊩⋆ Ξ}
→ Un⋆ ρ
→ Eq⋆ (ρ ⬖ idᵣ) ρ
-- (aux₄₂₅)
postulate
lid⬗Eq⋆ : ∀ {Ξ w} → {ρ : w ⊩⋆ Ξ}
→ Un⋆ ρ
→ Eq⋆ (idₐ ⬗ ρ) ρ
-- (aux₄₂₆)
postulate
comp⬖○Eq⋆ : ∀ {Ξ Ξ′ Ξ″ w} → {ρ : w ⊩⋆ Ξ″}
→ (η₁ : Ξ″ ∋⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ) → Un⋆ ρ
→ Eq⋆ (ρ ⬖ (η₁ ○ η₂))
((ρ ⬖ η₁) ⬖ η₂)
-- (aux₄₂₇)
postulate
comp⬗◇Eq⋆ : ∀ {Ξ w w′ w″} → {ρ : w ⊩⋆ Ξ}
→ (ξ₁ : w″ ⊒ w′) (ξ₂ : w′ ⊒ w) → Un⋆ ρ
→ Eq⋆ (ξ₁ ⬗ (ξ₂ ⬗ ρ))
((ξ₁ ◇ ξ₂) ⬗ ρ)
-- (aux₄₂₈)
postulate
comp⬗⬖Eq⋆ : ∀ {Ξ Ξ′ w w′} → {ρ : w ⊩⋆ Ξ′}
→ (ξ : w′ ⊒ w) (η : Ξ′ ∋⋆ Ξ) → Un⋆ ρ
→ Eq⋆ (ξ ⬗ (ρ ⬖ η))
((ξ ⬗ ρ) ⬖ η)
--------------------------------------------------------------------------------
module _ {{𝔪 : 𝔐}} where
open 𝔐 𝔪
⟦_⟧ : ∀ {Ξ A w} → Ξ ⊢ A → w ⊩⋆ Ξ → w ⊩ A
⟦ 𝓋 i ⟧ ρ = getᵥ ρ i
⟦ ƛ M ⟧ ρ = ⟦ƛ⟧ (λ ξ a → ⟦ M ⟧ (ξ ⬗ ρ , a))
⟦ M ∙ N ⟧ ρ = ⟦ M ⟧ ρ ⟦∙⟧⟨ idₐ ⟩ ⟦ N ⟧ ρ
⟦_⟧⋆ : ∀ {Ξ Φ w} → Ξ ⊢⋆ Φ → w ⊩⋆ Ξ → w ⊩⋆ Φ
⟦ ∅ ⟧⋆ ρ = ∅
⟦ σ , M ⟧⋆ ρ = ⟦ σ ⟧⋆ ρ , ⟦ M ⟧ ρ
--------------------------------------------------------------------------------
instance
canon : 𝔐
canon = record
{ 𝒲 = 𝒞
; 𝒢 = _⊢ ⎵
; _⊒_ = _∋⋆_
; idₐ = idᵣ
; _◇_ = _○_
; lid◇ = lid○
; rid◇ = rid○
; assoc◇ = assoc○
}
mutual
reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reify {⎵} f = ⟦g⟧⟨ idᵣ ⟩ f
reify {A ⇒ B} f = ƛ (reify (f ⟦∙⟧⟨ wkᵣ idᵣ ⟩ ⟪𝓋 0 ⟫))
⟪_⟫ : ∀ {A Γ} → (∀ {Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢ A) → Γ ⊩ A
⟪_⟫ {⎵} f = ⟦G⟧ (λ η → f η)
⟪_⟫ {A ⇒ B} f = ⟦ƛ⟧ (λ η a → ⟪ (λ η′ → f (η′ ○ η) ∙ reify (acc η′ a)) ⟫)
⟪𝓋_⟫ : ∀ {Γ A} → Γ ∋ A → Γ ⊩ A
⟪𝓋 i ⟫ = ⟪ (λ η → ren η (𝓋 i)) ⟫
aux₄₄₁ : ∀ {A Γ} → (f₁ f₂ : ∀ {Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢ A)
→ (∀ {Γ′} → (η : Γ′ ∋⋆ Γ) → f₁ η ≡ f₂ η)
→ Eq (⟪ f₁ ⟫) (⟪ f₂ ⟫)
aux₄₄₁ {⎵} f₁ f₂ h = eq⎵ (λ η → h η)
aux₄₄₁ {A ⇒ B} f₁ f₂ h =
eq⊃ (λ η′ {a} u →
aux₄₄₁ (λ η″ → f₁ (η″ ○ η′) ∙ reify (acc η″ a))
(λ η″ → f₂ (η″ ○ η′) ∙ reify (acc η″ a))
(λ η″ → (_∙ reify (acc η″ a)) & h (η″ ○ η′)))
aux₄₄₂ : ∀ {A Γ Γ′} → (η : Γ′ ∋⋆ Γ) (f : (∀ {Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢ A))
→ Eq (acc η ⟪ f ⟫) (⟪ (λ η′ → f (η′ ○ η)) ⟫)
aux₄₄₂ {⎵} η f = eq⎵ (λ η′ → f & refl)
aux₄₄₂ {A ⇒ B} η f =
eq⊃ (λ η′ {a} u →
aux₄₄₁ (λ η″ → f (η″ ○ (η′ ○ η)) ∙ reify (acc η″ a))
(λ η″ → f ((η″ ○ η′) ○ η) ∙ reify (acc η″ a))
(λ η″ → (_∙ reify (acc η″ a)) & (f & assoc○ η″ η′ η)))
--------------------------------------------------------------------------------
-- Theorem 1.
mutual
thm₁ : ∀ {Γ A} → {a₁ a₂ : Γ ⊩ A}
→ Eq a₁ a₂
→ reify a₁ ≡ reify a₂
thm₁ (eq⎵ h) = h idᵣ
thm₁ (eq⊃ h) = ƛ & thm₁ (h (wkᵣ idᵣ) ⟪𝓋 0 ⟫ᵤ)
⟪𝓋_⟫ᵤ : ∀ {Γ A} → (i : Γ ∋ A)
→ Un (⟪𝓋 i ⟫)
⟪𝓋 i ⟫ᵤ = aux₄₄₃ (λ η → 𝓋 (getᵣ η i))
aux₄₄₃ : ∀ {A Γ} → (f : ∀ {Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢ A)
→ Un (⟪ f ⟫)
aux₄₄₃ {⎵} f = un⎵
aux₄₄₃ {A ⇒ B} f =
un⊃ (λ η {a} u →
aux₄₄₃ (λ η′ → f (η′ ○ η) ∙ reify (acc η′ a)))
(λ η {a₁} {a₂} p u₁ u₂ →
aux₄₄₁ (λ η′ → f (η′ ○ η) ∙ reify (acc η′ a₁))
(λ η′ → f (η′ ○ η) ∙ reify (acc η′ a₂))
(λ η′ → (f (η′ ○ η) ∙_) & thm₁ (congaccEq η′ p)))
(λ η₁ η₂ {a} u →
aux₄₄₂ η₁ (λ η′ → f (η′ ○ η₂) ∙ reify (acc η′ a))
⦙ aux₄₄₁ (λ η′ → f ((η′ ○ η₁) ○ η₂) ∙ reify (acc (η′ ○ η₁) a))
(λ η′ → f (η′ ○ (η₁ ○ η₂)) ∙ reify (acc η′ (acc η₁ a)))
(λ η′ → _∙_ & (f & assoc○ η′ η₁ η₂ ⁻¹)
⊗ thm₁ (acc◇Eq η′ η₁ u)))
--------------------------------------------------------------------------------
⌊_⌋ᵥ : ∀ {Γ Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊩⋆ Γ
⌊ ∅ ⌋ᵥ = ∅
⌊ η , i ⌋ᵥ = ⌊ η ⌋ᵥ , ⟪𝓋 i ⟫
idᵥ : ∀ {Γ} → Γ ⊩⋆ Γ
idᵥ = ⌊ idᵣ ⌋ᵥ
nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A
nf M = reify (⟦ M ⟧ idᵥ)
-- Corollary 1.
cor₁ : ∀ {Γ A} → (M₁ M₂ : Γ ⊢ A) → Eq (⟦ M₁ ⟧ idᵥ) (⟦ M₂ ⟧ idᵥ)
→ nf M₁ ≡ nf M₂
cor₁ M₁ M₂ = thm₁
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.2619105642,
"avg_line_length": 28.1061643836,
"ext": "agda",
"hexsha": "bd2839c9a01aebbf4da266ca90d4abb3ed998735",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Coquand/Normalisation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Coquand/Normalisation.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Coquand/Normalisation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8276,
"size": 16414
} |
module Haskell.RangedSets.Boundaries where
open import Agda.Builtin.Nat as Nat hiding (_==_; _<_; _+_; _-_)
open import Agda.Builtin.Char
open import Agda.Builtin.Int using (pos; negsuc)
open import Haskell.Prim
open import Haskell.Prim.Ord
open import Haskell.Prim.Bool
open import Haskell.Prim.Char
open import Haskell.Prim.Maybe
open import Haskell.Prim.Enum
open import Haskell.Prim.Num
open import Haskell.Prim.Eq
open import Haskell.Prim.Functor
open import Haskell.Prim.Monoid
open import Haskell.Prim.Monad
open import Haskell.Prim.Applicative
open import Haskell.Prim.Int
open import Haskell.Prim.List
open import Haskell.Prim.Integer
open import Haskell.Prim.Real
open import Haskell.Prim.Tuple
open import Haskell.Prim.Double
open import Haskell.Prim.Bounded
open import Agda.Builtin.Char
{-# FOREIGN AGDA2HS
import Data.Ratio
#-}
record DiscreteOrdered (a : Set) ⦃ _ : Ord a ⦄ : Set where
field
adjacent : a → a → Bool
adjacentBelow : a → Maybe a
open DiscreteOrdered ⦃ ... ⦄ public
{-# COMPILE AGDA2HS DiscreteOrdered class #-}
orderingFromInt : Int → Ordering
orderingFromInt n = if_then_else_ (n == 0) LT (if_then_else_ (n == 1) EQ GT)
{-# COMPILE AGDA2HS orderingFromInt #-}
boundedAdjacentBool : (x y : Bool) → Bool
boundedAdjacentBool x y = if_then_else_ (x < y) true false
{-# COMPILE AGDA2HS boundedAdjacentBool #-}
boundedBelowBool : (x : Bool) → Maybe Bool
boundedBelowBool x = if_then_else_ (x == false) Nothing (Just false)
{-# COMPILE AGDA2HS boundedBelowBool #-}
boundedAdjacentOrdering : (x y : Ordering) → Bool
boundedAdjacentOrdering x y = if_then_else_ (x < y && x < GT) ((fromEnum x) + 1 == (fromEnum y)) false
{-# COMPILE AGDA2HS boundedAdjacentOrdering #-}
boundedBelowOrdering : (x : Ordering) → Maybe Ordering
boundedBelowOrdering x = if_then_else_ (x == LT) Nothing (Just (orderingFromInt ((fromEnum x) - 1)))
{-# COMPILE AGDA2HS boundedBelowOrdering #-}
boundedAdjacentChar : (x y : Char) → Bool
boundedAdjacentChar x y = if_then_else_ (x < y && x /= '\1114111') (((fromEnum x) + 1) == fromEnum y) false
{-# COMPILE AGDA2HS boundedAdjacentChar #-}
boundedBelowChar : (x : Char) → Maybe Char
boundedBelowChar x = if_then_else_ (x == '\0') Nothing (Just (chr ((ord x) - 1)))
{-# COMPILE AGDA2HS boundedBelowChar #-}
boundedAdjacentInt : (x y : Int) → Bool
boundedAdjacentInt x y = if_then_else_ (x < y && x /= 9223372036854775807) (x + 1 == y) false
{-# COMPILE AGDA2HS boundedAdjacentInt #-}
boundedBelowInt : (x : Int) → Maybe Int
boundedBelowInt x = if_then_else_ (x == -9223372036854775808) Nothing (Just (x - 1))
{-# COMPILE AGDA2HS boundedBelowInt #-}
boundedAdjacentInteger : (x y : Integer) → Bool
boundedAdjacentInteger x y = ((fromEnum x) + 1 == (fromEnum y))
{-# COMPILE AGDA2HS boundedAdjacentInteger #-}
boundedBelowInteger : (x : Integer) → Maybe Integer
boundedBelowInteger x = Just (x - (toInteger 1))
{-# COMPILE AGDA2HS boundedBelowInteger #-}
constructTuple : ⦃ o : Ord a ⦄ → ⦃ o2 : Ord b ⦄ → ⦃ DiscreteOrdered b ⦃ o2 ⦄ ⦄ → a → Maybe b → Maybe (a × b)
constructTuple _ Nothing = Nothing
constructTuple a (Just value) = Just (a , value)
{-# COMPILE AGDA2HS constructTuple #-}
constructTriple : ⦃ Ord a ⦄ → ⦃ Ord b ⦄ → ⦃ o : Ord c ⦄ → ⦃ DiscreteOrdered c ⦃ o ⦄ ⦄ → a → b → Maybe c → Maybe (a × b × c)
constructTriple _ _ Nothing = Nothing
constructTriple a b (Just value) = Just (a , b , value)
{-# COMPILE AGDA2HS constructTriple #-}
constructQuadtruple : ⦃ Ord a ⦄ → ⦃ Ord b ⦄ → ⦃ Ord c ⦄ → ⦃ o : Ord d ⦄ → ⦃ DiscreteOrdered d ⦃ o ⦄ ⦄
→ a → b → c → Maybe d → Maybe (Tuple (a ∷ b ∷ c ∷ d ∷ []))
constructQuadtruple _ _ _ Nothing = Nothing
constructQuadtruple a b c (Just value) = Just (a ∷ b ∷ c ∷ value ∷ [])
{-# COMPILE AGDA2HS constructQuadtruple #-}
instance
isDiscreteOrderedBool : DiscreteOrdered Bool
isDiscreteOrderedBool . adjacent = boundedAdjacentBool
isDiscreteOrderedBool . adjacentBelow = boundedBelowBool
{-# COMPILE AGDA2HS isDiscreteOrderedBool #-}
instance
isDiscreteOrderedOrdering : DiscreteOrdered Ordering
isDiscreteOrderedOrdering . adjacent = boundedAdjacentOrdering
isDiscreteOrderedOrdering . adjacentBelow = boundedBelowOrdering
{-# COMPILE AGDA2HS isDiscreteOrderedOrdering #-}
instance
isDiscreteOrderedChar : DiscreteOrdered Char
isDiscreteOrderedChar . adjacent = boundedAdjacentChar
isDiscreteOrderedChar . adjacentBelow = boundedBelowChar
{-# COMPILE AGDA2HS isDiscreteOrderedChar #-}
instance
isDiscreteOrderedInt : DiscreteOrdered Int
isDiscreteOrderedInt . adjacent = boundedAdjacentInt
isDiscreteOrderedInt . adjacentBelow = boundedBelowInt
{-# COMPILE AGDA2HS isDiscreteOrderedInt #-}
instance
isDiscreteOrderedInteger : DiscreteOrdered Integer
isDiscreteOrderedInteger . adjacent = boundedAdjacentInteger
isDiscreteOrderedInteger . adjacentBelow = boundedBelowInteger
{-# COMPILE AGDA2HS isDiscreteOrderedInteger #-}
instance
isDiscreteOrderedDouble : DiscreteOrdered Double
isDiscreteOrderedDouble . adjacent x y = false
isDiscreteOrderedDouble . adjacentBelow x = Nothing
{-# COMPILE AGDA2HS isDiscreteOrderedDouble #-}
instance
isDiscreteOrderedList : ⦃ o : Ord a ⦄ → ⦃ ol : Ord (List a) ⦄ → DiscreteOrdered (List a) ⦃ ol ⦄
isDiscreteOrderedList . adjacent x y = false
isDiscreteOrderedList . adjacentBelow x = Nothing
{-# COMPILE AGDA2HS isDiscreteOrderedList #-}
instance
isDiscreteOrderedRatio : ⦃ o : Ord a ⦄ → ⦃ Integral a ⦄ → ⦃ or : Ord (Ratio a )⦄ → DiscreteOrdered (Ratio a) ⦃ or ⦄
isDiscreteOrderedRatio . adjacent x y = false
isDiscreteOrderedRatio . adjacentBelow x = Nothing
{-# COMPILE AGDA2HS isDiscreteOrderedRatio #-}
instance
isDiscreteOrderedTuple : ⦃ Ord a ⦄ → ⦃ o : Ord b ⦄ → ⦃ DiscreteOrdered b ⦃ o ⦄ ⦄
→ ⦃ ot : Ord (a × b) ⦄ → DiscreteOrdered (a × b) ⦃ ot ⦄
isDiscreteOrderedTuple . adjacent (x1 , x2) (y1 , y2) = (x1 == y1) && (adjacent x2 y2)
isDiscreteOrderedTuple . adjacentBelow (x1 , x2) = constructTuple x1 (adjacentBelow x2)
{-# COMPILE AGDA2HS isDiscreteOrderedTuple #-}
instance
isDiscreteOrderedTriple : ⦃ Ord a ⦄ → ⦃ Ord b ⦄ → ⦃ o : Ord c ⦄ → ⦃ DiscreteOrdered c ⦃ o ⦄ ⦄
→ ⦃ ot : Ord (a × b × c) ⦄ → DiscreteOrdered (a × b × c) ⦃ ot ⦄
isDiscreteOrderedTriple . adjacent (x1 , x2 , x3) (y1 , y2 , y3) = (x1 == y1) && (x2 == y2) && (adjacent x3 y3)
isDiscreteOrderedTriple . adjacentBelow (x1 , x2 , x3) = constructTriple x1 x2 (adjacentBelow x3)
{-# COMPILE AGDA2HS isDiscreteOrderedTriple #-}
instance
isDiscreteOrderedQuadtruple : ⦃ Ord a ⦄ → ⦃ Ord b ⦄ → ⦃ Ord c ⦄
→ ⦃ o : Ord d ⦄ → ⦃ DiscreteOrdered d ⦃ o ⦄ ⦄
→ ⦃ ot : Ord (Tuple (a ∷ b ∷ c ∷ d ∷ [])) ⦄ → DiscreteOrdered (Tuple (a ∷ b ∷ c ∷ d ∷ [])) ⦃ ot ⦄
isDiscreteOrderedQuadtruple . adjacent (x1 ∷ x2 ∷ x3 ∷ x4 ∷ []) (y1 ∷ y2 ∷ y3 ∷ y4 ∷ []) = (x1 == y1) && (x2 == y2) && (x3 == y3) && (adjacent x4 y4)
isDiscreteOrderedQuadtruple . adjacentBelow (x1 ∷ x2 ∷ x3 ∷ x4 ∷ []) = constructQuadtruple x1 x2 x3 (adjacentBelow x4)
{-# COMPILE AGDA2HS isDiscreteOrderedQuadtruple #-}
data Boundary (a : Set) ⦃ b : Ord a ⦄ ⦃ _ : DiscreteOrdered a ⦃ b ⦄ ⦄ : Set where
BoundaryAbove : a → Boundary a
BoundaryBelow : a → Boundary a
BoundaryAboveAll : Boundary a
BoundaryBelowAll : Boundary a
{-# COMPILE AGDA2HS Boundary #-}
above : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ Boundary a ⦃ o ⦄ → a → Bool
above (BoundaryAbove b) a = a > b
above (BoundaryBelow b) a = a >= b
above BoundaryAboveAll _ = false
above BoundaryBelowAll _ = true
{-# COMPILE AGDA2HS above #-}
infixr 4 _/>/_
_/>/_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ a → Boundary a ⦃ o ⦄ → Bool
_/>/_ x (BoundaryAbove b) = x > b
_/>/_ x (BoundaryBelow b) = x >= b
_/>/_ _ BoundaryAboveAll = false
_/>/_ _ BoundaryBelowAll = true
{-# COMPILE AGDA2HS _/>/_ #-}
instance
isBoundaryEq : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Eq (Boundary a)
isBoundaryEq . _==_ (BoundaryAbove b1) (BoundaryAbove b2) = (b1 == b2)
isBoundaryEq . _==_ (BoundaryAbove b1) (BoundaryBelow b2) = if_then_else_ (b1 < b2 && (adjacent b1 b2)) true false
isBoundaryEq . _==_ (BoundaryBelow b1) (BoundaryBelow b2) = (b1 == b2)
isBoundaryEq . _==_ (BoundaryBelow b1) (BoundaryAbove b2) = if_then_else_ (b1 > b2 && (adjacent b2 b1)) true false
isBoundaryEq . _==_ BoundaryAboveAll BoundaryAboveAll = true
isBoundaryEq . _==_ BoundaryBelowAll BoundaryBelowAll = true
isBoundaryEq . _==_ _ _ = false
{-# COMPILE AGDA2HS isBoundaryEq #-}
instance
isBoundaryOrd : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Ord (Boundary a)
isBoundaryOrd . compare (BoundaryAbove b1) (BoundaryAbove b2) = compare b1 b2
isBoundaryOrd . compare (BoundaryAbove b1) (BoundaryBelow b2) = if_then_else_ (b1 < b2) (if_then_else_ (adjacent b1 b2) EQ LT) GT
isBoundaryOrd . compare (BoundaryAbove b1) BoundaryAboveAll = LT
isBoundaryOrd . compare (BoundaryAbove b1) BoundaryBelowAll = GT
isBoundaryOrd . compare (BoundaryBelow b1) (BoundaryBelow b2) = compare b1 b2
isBoundaryOrd . compare (BoundaryBelow b1) (BoundaryAbove b2) = if_then_else_ (b1 > b2) (if_then_else_ (adjacent b2 b1) EQ GT) LT
isBoundaryOrd . compare (BoundaryBelow b1) BoundaryAboveAll = LT
isBoundaryOrd . compare (BoundaryBelow b1) BoundaryBelowAll = GT
isBoundaryOrd . compare BoundaryAboveAll BoundaryAboveAll = EQ
isBoundaryOrd . compare BoundaryAboveAll _ = GT
isBoundaryOrd . compare BoundaryBelowAll BoundaryBelowAll = EQ
isBoundaryOrd . compare BoundaryBelowAll _ = LT
isBoundaryOrd ._<_ x y = compare x y == LT
isBoundaryOrd ._>_ x y = compare x y == GT
isBoundaryOrd ._<=_ x BoundaryAboveAll = true
isBoundaryOrd ._<=_ BoundaryBelowAll y = true
isBoundaryOrd ._<=_ x y = (compare x y == LT) || (compare x y == EQ)
isBoundaryOrd ._>=_ x y = (compare x y == GT) || (compare x y == EQ)
isBoundaryOrd .max x y = if (compare x y == GT) then x else y
isBoundaryOrd .min x y = if (compare x y == LT) then x else y
{-# COMPILE AGDA2HS isBoundaryOrd #-}
| {
"alphanum_fraction": 0.6820583056,
"avg_line_length": 44.2510822511,
"ext": "agda",
"hexsha": "6036eb6e5b430181d5c18728cb15924e3a40ca79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ioanasv/agda2hs",
"max_forks_repo_path": "lib/Haskell/RangedSets/Boundaries.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ioanasv/agda2hs",
"max_issues_repo_path": "lib/Haskell/RangedSets/Boundaries.agda",
"max_line_length": 153,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ioanasv/agda2hs",
"max_stars_repo_path": "lib/Haskell/RangedSets/Boundaries.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z",
"num_tokens": 3315,
"size": 10222
} |
open import Prelude
module Implicits.Resolution.Termination.Lemmas.Stack
where
open import Induction.WellFounded
open import Induction.Nat
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Data.Nat hiding (_<_)
open import Data.Nat.Properties
open import Implicits.Resolution.Termination.SizeMeasures
open import Implicits.Resolution.Termination.Stack
open import Data.Nat.Base
+k<+k : ∀ {n m} k → n N< m → k N+ n N< k N+ m
+k<+k zero p = p
+k<+k (suc k) p = s≤s (+k<+k k p)
+k<+k' : ∀ {n m} k → n N< m → n N+ k N< m N+ k
+k<+k' {n} {m} k p = subst₂ (λ u v → u N< v) (+-comm k n) (+-comm k m) (+k<+k k p)
where open import Data.Nat.Properties.Simple
-k<-k : ∀ {n m} k → k N+ n N< k N+ m → n < m
-k<-k zero x = x
-k<-k (suc k) (s≤s x) = -k<-k k x
-k<-k' : ∀ {n m} k → n N+ k N< m N+ k → n < m
-k<-k' {n} {m} k p = -k<-k k (subst₂ _N<_ (+-comm n k) (+-comm m k) p)
where open import Data.Nat.Properties.Simple
----------------------------------------------------------------
-- stack properties
push< : ∀ {ν r a} {Δ : ICtx ν} (s : Stack Δ) (r∈Δ : r List.∈ Δ) →
(, a) ρ< (, s get r∈Δ) → (s push a for r∈Δ) s< s
push< (b All.∷ s) (here _) a<b = +k<+k' (ssum s) a<b
push< (b All.∷ s) (there r∈Δ) p = +k<+k h|| b || (push< s r∈Δ p)
push≮ : ∀ {ν r a} {Δ : ICtx ν} (s : Stack Δ) (r∈Δ : r List.∈ Δ) →
¬ ((, a) ρ< (, s get r∈Δ)) → ¬ (s push a for r∈Δ) s< s
push≮ (b All.∷ s) (here _) ¬a<b = λ x → ¬a<b (-k<-k' (ssum s) x)
push≮ (b All.∷ s) (there r∈Δ) ¬a<b = λ x → push≮ s r∈Δ ¬a<b (-k<-k h|| b || x)
----------------------------------------------------------------
-- a type dominates a stack if pushing it to the stack makes the stack bigger
_for_?⊬dom_ : ∀ {ν r} {Δ : ICtx ν} → (a : Type ν) → (r∈Δ : r List.∈ Δ) → (s : Stack Δ) →
Dec (a for r∈Δ ⊬dom s)
a for r∈Δ ?⊬dom s with (, a) ρ<? (, s get r∈Δ)
a for r∈Δ ?⊬dom s | yes p = yes (push< s r∈Δ p)
a for r∈Δ ?⊬dom s | no ¬p = no (push≮ s r∈Δ ¬p)
-- we also show that the ordering on stacks is well founded
s<-well-founded : ∀ {ν} {Δ : ICtx ν} → Well-founded (_s<_ {ν} {Δ})
s<-well-founded = sub.well-founded (image.well-founded <-well-founded)
where
open import Data.Nat.Base
open import Data.Nat.Properties
module sub = Inverse-image (λ{ s → ssum s})
module image = Subrelation {A = ℕ} {_N<_} {_<′_} ≤⇒≤′
{-}
-- we can show that our strict size measure a ρ< b is well founded
-- by relating it to the well-foundedness proof of _<'_
sρ<-well-founded : Well-founded _sρ<_
sρ<-well-founded = sub.well-founded (image.well-founded <-well-founded)
where
module sub = Inverse-image (λ{ (_ , a) → || a ||})
module image = Subrelation {A = ℕ} {_N<_} {_<′_} ≤⇒≤′
-}
| {
"alphanum_fraction": 0.5531227566,
"avg_line_length": 36.1818181818,
"ext": "agda",
"hexsha": "6d06724d58f150c69175c85c9e676146f730be2f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Termination/Lemmas/Stack.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Termination/Lemmas/Stack.agda",
"max_line_length": 88,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Termination/Lemmas/Stack.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 1127,
"size": 2786
} |
module Issue555c where
import Common.Level
record R {a} (A : Set a) : Set
record R A where
field f : A | {
"alphanum_fraction": 0.6822429907,
"avg_line_length": 13.375,
"ext": "agda",
"hexsha": "a50ef31a6e398e74ae66af5dba5d5b00538a0f75",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue555c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue555c.agda",
"max_line_length": 30,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue555c.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 34,
"size": 107
} |
------------------------------------------------------------------------------
-- Inductive PA properties using the induction principle
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.PropertiesByInductionATP where
open import PA.Inductive.Base
open import PA.Inductive.PropertiesByInduction
------------------------------------------------------------------------------
+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m
where
A : ℕ → Set
A i = i + n ≡ n + i
{-# ATP definition A #-}
A0 : A zero
A0 = sym (+-rightIdentity n)
postulate is : ∀ i → A i → A (succ i)
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove is x+Sy≡S[x+y] #-}
| {
"alphanum_fraction": 0.4318936877,
"avg_line_length": 30.1,
"ext": "agda",
"hexsha": "06c7fadd3ef81d1470777d01096fc58874fb5d8b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/PropertiesByInductionATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/PropertiesByInductionATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/PropertiesByInductionATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 207,
"size": 903
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise sum
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum.Relation.Binary.Pointwise where
open import Data.Product using (_,_)
open import Data.Sum as Sum
open import Data.Sum.Properties
open import Level using (_⊔_)
open import Function using (_∘_; id)
open import Function.Inverse using (Inverse)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
----------------------------------------------------------------------
-- Definition
data Pointwise {a b c d r s}
{A : Set a} {B : Set b} {C : Set c} {D : Set d}
(R : REL A C r) (S : REL B D s)
: REL (A ⊎ B) (C ⊎ D) (a ⊔ b ⊔ c ⊔ d ⊔ r ⊔ s) where
inj₁ : ∀ {a c} → R a c → Pointwise R S (inj₁ a) (inj₁ c)
inj₂ : ∀ {b d} → S b d → Pointwise R S (inj₂ b) (inj₂ d)
----------------------------------------------------------------------
-- Relational properties
module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂}
{∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂}
where
drop-inj₁ : ∀ {x y} → Pointwise ∼₁ ∼₂ (inj₁ x) (inj₁ y) → ∼₁ x y
drop-inj₁ (inj₁ x) = x
drop-inj₂ : ∀ {x y} → Pointwise ∼₁ ∼₂ (inj₂ x) (inj₂ y) → ∼₂ x y
drop-inj₂ (inj₂ x) = x
⊎-refl : Reflexive ∼₁ → Reflexive ∼₂ →
Reflexive (Pointwise ∼₁ ∼₂)
⊎-refl refl₁ refl₂ {inj₁ x} = inj₁ refl₁
⊎-refl refl₁ refl₂ {inj₂ y} = inj₂ refl₂
⊎-symmetric : Symmetric ∼₁ → Symmetric ∼₂ →
Symmetric (Pointwise ∼₁ ∼₂)
⊎-symmetric sym₁ sym₂ (inj₁ x) = inj₁ (sym₁ x)
⊎-symmetric sym₁ sym₂ (inj₂ x) = inj₂ (sym₂ x)
⊎-transitive : Transitive ∼₁ → Transitive ∼₂ →
Transitive (Pointwise ∼₁ ∼₂)
⊎-transitive trans₁ trans₂ (inj₁ x) (inj₁ y) = inj₁ (trans₁ x y)
⊎-transitive trans₁ trans₂ (inj₂ x) (inj₂ y) = inj₂ (trans₂ x y)
⊎-asymmetric : Asymmetric ∼₁ → Asymmetric ∼₂ →
Asymmetric (Pointwise ∼₁ ∼₂)
⊎-asymmetric asym₁ asym₂ (inj₁ x) = λ { (inj₁ y) → asym₁ x y }
⊎-asymmetric asym₁ asym₂ (inj₂ x) = λ { (inj₂ y) → asym₂ x y }
⊎-substitutive : ∀ {ℓ₃} → Substitutive ∼₁ ℓ₃ → Substitutive ∼₂ ℓ₃ →
Substitutive (Pointwise ∼₁ ∼₂) ℓ₃
⊎-substitutive subst₁ subst₂ P (inj₁ x) = subst₁ (P ∘ inj₁) x
⊎-substitutive subst₁ subst₂ P (inj₂ x) = subst₂ (P ∘ inj₂) x
⊎-decidable : Decidable ∼₁ → Decidable ∼₂ →
Decidable (Pointwise ∼₁ ∼₂)
⊎-decidable _≟₁_ _≟₂_ (inj₁ x) (inj₁ y) = Dec.map′ inj₁ drop-inj₁ (x ≟₁ y)
⊎-decidable _≟₁_ _≟₂_ (inj₁ x) (inj₂ y) = no λ()
⊎-decidable _≟₁_ _≟₂_ (inj₂ x) (inj₁ y) = no λ()
⊎-decidable _≟₁_ _≟₂_ (inj₂ x) (inj₂ y) = Dec.map′ inj₂ drop-inj₂ (x ≟₂ y)
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂}
{ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {≈₁ : Rel A₁ ℓ₂}
{ℓ₃ ℓ₄} {∼₂ : Rel A₂ ℓ₃} {≈₂ : Rel A₂ ℓ₄} where
⊎-reflexive : ≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ →
(Pointwise ≈₁ ≈₂) ⇒ (Pointwise ∼₁ ∼₂)
⊎-reflexive refl₁ refl₂ (inj₁ x) = inj₁ (refl₁ x)
⊎-reflexive refl₁ refl₂ (inj₂ x) = inj₂ (refl₂ x)
⊎-irreflexive : Irreflexive ≈₁ ∼₁ → Irreflexive ≈₂ ∼₂ →
Irreflexive (Pointwise ≈₁ ≈₂) (Pointwise ∼₁ ∼₂)
⊎-irreflexive irrefl₁ irrefl₂ (inj₁ x) (inj₁ y) = irrefl₁ x y
⊎-irreflexive irrefl₁ irrefl₂ (inj₂ x) (inj₂ y) = irrefl₂ x y
⊎-antisymmetric : Antisymmetric ≈₁ ∼₁ → Antisymmetric ≈₂ ∼₂ →
Antisymmetric (Pointwise ≈₁ ≈₂) (Pointwise ∼₁ ∼₂)
⊎-antisymmetric antisym₁ antisym₂ (inj₁ x) (inj₁ y) = inj₁ (antisym₁ x y)
⊎-antisymmetric antisym₁ antisym₂ (inj₂ x) (inj₂ y) = inj₂ (antisym₂ x y)
⊎-respectsˡ : ∼₁ Respectsˡ ≈₁ → ∼₂ Respectsˡ ≈₂ →
(Pointwise ∼₁ ∼₂) Respectsˡ (Pointwise ≈₁ ≈₂)
⊎-respectsˡ resp₁ resp₂ (inj₁ x) (inj₁ y) = inj₁ (resp₁ x y)
⊎-respectsˡ resp₁ resp₂ (inj₂ x) (inj₂ y) = inj₂ (resp₂ x y)
⊎-respectsʳ : ∼₁ Respectsʳ ≈₁ → ∼₂ Respectsʳ ≈₂ →
(Pointwise ∼₁ ∼₂) Respectsʳ (Pointwise ≈₁ ≈₂)
⊎-respectsʳ resp₁ resp₂ (inj₁ x) (inj₁ y) = inj₁ (resp₁ x y)
⊎-respectsʳ resp₁ resp₂ (inj₂ x) (inj₂ y) = inj₂ (resp₂ x y)
⊎-respects₂ : ∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ →
(Pointwise ∼₁ ∼₂) Respects₂ (Pointwise ≈₁ ≈₂)
⊎-respects₂ (r₁ , l₁) (r₂ , l₂) = ⊎-respectsʳ r₁ r₂ , ⊎-respectsˡ l₁ l₂
----------------------------------------------------------------------
-- Structures
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂}
{ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂}
where
⊎-isEquivalence : IsEquivalence ≈₁ → IsEquivalence ≈₂ →
IsEquivalence (Pointwise ≈₁ ≈₂)
⊎-isEquivalence eq₁ eq₂ = record
{ refl = ⊎-refl (refl eq₁) (refl eq₂)
; sym = ⊎-symmetric (sym eq₁) (sym eq₂)
; trans = ⊎-transitive (trans eq₁) (trans eq₂)
}
where open IsEquivalence
⊎-isDecEquivalence : IsDecEquivalence ≈₁ → IsDecEquivalence ≈₂ →
IsDecEquivalence (Pointwise ≈₁ ≈₂)
⊎-isDecEquivalence eq₁ eq₂ = record
{ isEquivalence =
⊎-isEquivalence (isEquivalence eq₁) (isEquivalence eq₂)
; _≟_ = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂)
}
where open IsDecEquivalence
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂}
{ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₂}
{ℓ₃ ℓ₄} {≈₂ : Rel A₂ ℓ₃} {∼₂ : Rel A₂ ℓ₄} where
⊎-isPreorder : IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ →
IsPreorder (Pointwise ≈₁ ≈₂) (Pointwise ∼₁ ∼₂)
⊎-isPreorder pre₁ pre₂ = record
{ isEquivalence =
⊎-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂)
; reflexive = ⊎-reflexive (reflexive pre₁) (reflexive pre₂)
; trans = ⊎-transitive (trans pre₁) (trans pre₂)
}
where open IsPreorder
⊎-isPartialOrder : IsPartialOrder ≈₁ ∼₁ →
IsPartialOrder ≈₂ ∼₂ →
IsPartialOrder
(Pointwise ≈₁ ≈₂) (Pointwise ∼₁ ∼₂)
⊎-isPartialOrder po₁ po₂ = record
{ isPreorder = ⊎-isPreorder (isPreorder po₁) (isPreorder po₂)
; antisym = ⊎-antisymmetric (antisym po₁) (antisym po₂)
}
where open IsPartialOrder
⊎-isStrictPartialOrder : IsStrictPartialOrder ≈₁ ∼₁ →
IsStrictPartialOrder ≈₂ ∼₂ →
IsStrictPartialOrder
(Pointwise ≈₁ ≈₂) (Pointwise ∼₁ ∼₂)
⊎-isStrictPartialOrder spo₁ spo₂ = record
{ isEquivalence =
⊎-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂)
; irrefl = ⊎-irreflexive (irrefl spo₁) (irrefl spo₂)
; trans = ⊎-transitive (trans spo₁) (trans spo₂)
; <-resp-≈ = ⊎-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂)
}
where open IsStrictPartialOrder
------------------------------------------------------------------------
-- Packages
module _ {a b c d} where
⊎-setoid : Setoid a b → Setoid c d → Setoid _ _
⊎-setoid s₁ s₂ = record
{ isEquivalence =
⊎-isEquivalence (isEquivalence s₁) (isEquivalence s₂)
} where open Setoid
⊎-decSetoid : DecSetoid a b → DecSetoid c d → DecSetoid _ _
⊎-decSetoid ds₁ ds₂ = record
{ isDecEquivalence =
⊎-isDecEquivalence (isDecEquivalence ds₁) (isDecEquivalence ds₂)
} where open DecSetoid
-- Some additional notation for combining setoids
infix 4 _⊎ₛ_
_⊎ₛ_ : Setoid a b → Setoid c d → Setoid _ _
_⊎ₛ_ = ⊎-setoid
module _ {a b c d e f} where
⊎-preorder : Preorder a b c → Preorder d e f → Preorder _ _ _
⊎-preorder p₁ p₂ = record
{ isPreorder =
⊎-isPreorder (isPreorder p₁) (isPreorder p₂)
} where open Preorder
⊎-poset : Poset a b c → Poset a b c → Poset _ _ _
⊎-poset po₁ po₂ = record
{ isPartialOrder =
⊎-isPartialOrder (isPartialOrder po₁) (isPartialOrder po₂)
} where open Poset
------------------------------------------------------------------------
-- The propositional equality setoid over products can be
-- decomposed using Pointwise
module _ {a b} {A : Set a} {B : Set b} where
Pointwise-≡⇒≡ : (Pointwise _≡_ _≡_) ⇒ _≡_ {A = A ⊎ B}
Pointwise-≡⇒≡ (inj₁ x) = P.cong inj₁ x
Pointwise-≡⇒≡ (inj₂ x) = P.cong inj₂ x
≡⇒Pointwise-≡ : _≡_ {A = A ⊎ B} ⇒ (Pointwise _≡_ _≡_)
≡⇒Pointwise-≡ P.refl = ⊎-refl P.refl P.refl
Pointwise-≡↔≡ : ∀ {a b} (A : Set a) (B : Set b) →
Inverse (P.setoid A ⊎ₛ P.setoid B)
(P.setoid (A ⊎ B))
Pointwise-≡↔≡ _ _ = record
{ to = record { _⟨$⟩_ = id; cong = Pointwise-≡⇒≡ }
; from = record { _⟨$⟩_ = id; cong = ≡⇒Pointwise-≡ }
; inverse-of = record
{ left-inverse-of = λ _ → ⊎-refl P.refl P.refl
; right-inverse-of = λ _ → P.refl
}
}
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.0
module _ {a b c d r s}
{A : Set a} {B : Set b} {C : Set c} {D : Set d}
{R : REL A C r} {S : REL B D s}
where
₁∼₁ : ∀ {a c} → R a c → Pointwise R S (inj₁ a) (inj₁ c)
₁∼₁ = inj₁
{-# WARNING_ON_USAGE ₁∼₁
"Warning: ₁∼₁ was deprecated in v1.0.
Please use inj₁ in `Data.Sum.Properties` instead."
#-}
₂∼₂ : ∀ {b d} → S b d → Pointwise R S (inj₂ b) (inj₂ d)
₂∼₂ = inj₂
{-# WARNING_ON_USAGE ₂∼₂
"Warning: ₂∼₂ was deprecated in v1.0.
Please use inj₂ in `Data.Sum.Properties` instead."
#-}
_⊎-≟_ : ∀ {a b} {A : Set a} {B : Set b} →
Decidable {A = A} _≡_ → Decidable {A = B} _≡_ →
Decidable {A = A ⊎ B} _≡_
(dec₁ ⊎-≟ dec₂) s₁ s₂ = Dec.map′ Pointwise-≡⇒≡ ≡⇒Pointwise-≡ (s₁ ≟ s₂)
where
open DecSetoid (⊎-decSetoid (P.decSetoid dec₁) (P.decSetoid dec₂))
{-# WARNING_ON_USAGE _⊎-≟_
"Warning: _⊎-≟_ was deprecated in v1.0.
Please use ≡-dec in `Data.Sum.Properties` instead."
#-}
| {
"alphanum_fraction": 0.5422711356,
"avg_line_length": 37.0185185185,
"ext": "agda",
"hexsha": "ace2bf50b585066bfb71d91944b00601255726b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/Pointwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/Pointwise.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Relation/Binary/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3969,
"size": 9995
} |
module Human.IO where
postulate IO : ∀ {a} → Set a → Set a
{-# BUILTIN IO IO #-}
| {
"alphanum_fraction": 0.5975609756,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "551c6b3edd4a665219d11c10c4c5774bc7911dcb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/IO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/IO.agda",
"max_line_length": 36,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/IO.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 26,
"size": 82
} |
module Data.Fin.Subset.Disjoint where
open import Data.Nat
open import Data.Vec hiding (_∈_)
open import Data.Fin
open import Data.List as List hiding (zipWith)
open import Data.Fin.Subset
-- disjointness and relational specifiation of disjoint union
module _ {n} where
_◆_ : Subset n → Subset n → Set
l ◆ r = Empty (l ∩ r)
data _⨄_ : List (Subset n) → Subset n → Set where
[] : [] ⨄ ⊥
_∷_ : ∀ {xs x y} → x ◆ y → xs ⨄ y → (x ∷ xs) ⨄ (x ∪ y)
-- picking from support
module _ {n} where
_⊇⟨_⟩_ : Subset n → (l : ℕ) → Vec (Fin n) l → Set
xs ⊇⟨ l ⟩ ys = All (λ y → y ∈ xs) ys
where open import Data.Vec.All
-- removing from support
module _ {n} where
_\\_ : ∀ {l} → Subset n → Vec (Fin n) l → Subset n
xs \\ [] = xs
xs \\ (x ∷ ys) = (xs [ x ]≔ outside) \\ ys
| {
"alphanum_fraction": 0.588086185,
"avg_line_length": 26.3,
"ext": "agda",
"hexsha": "6d9ce80003261e0262d15c4f9afe61ea99f67d98",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Data/Fin/Subset/Disjoint.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Data/Fin/Subset/Disjoint.agda",
"max_line_length": 61,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Data/Fin/Subset/Disjoint.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 303,
"size": 789
} |
module natThms where
open import lib
-- this function divides a natural number by 2, dropping any remainder
div2 : ℕ → ℕ
div2 0 = 0
div2 1 = 0
div2 (suc (suc x)) = suc (div2 x)
div2-double : ∀(x : ℕ) → (div2 (x * 2)) ≡ x
div2-double zero = refl
div2-double (suc x) rewrite div2-double (x) = refl
{- Hint: consider the same cases as in the definition of div2: 0, 1, (suc (suc x)).
The case for 1 is impossible, so you can just drop that case or use the
absurd pattern for the proof of is-even 1 ≡ tt. -}
div2-even : ∀(x : ℕ) → is-even x ≡ tt → div2 x ≡ div2 (suc x)
div2-even zero x = refl
div2-even (suc (suc x))y rewrite div2-even x y = refl
-- same hint as for div2-even, except now the 0 case is impossible
div2-odd : ∀(x : ℕ) → is-odd x ≡ tt → div2 (suc x) ≡ suc (div2 x)
div2-odd (suc(suc x))y rewrite div2-odd x y = refl
div2-odd (suc zero) y = refl
{- hint: do *not* do induction on x. Look at the definitions of square and pow.
There are lemmas about multiplication in the IAL that will help you (nat-thms.agda). -}
square-square : ∀(x : ℕ) → square (square x) ≡ x pow 4
square-square x rewrite *1{x} | *assoc x x ( x * x ) = refl
| {
"alphanum_fraction": 0.6361344538,
"avg_line_length": 38.3870967742,
"ext": "agda",
"hexsha": "b20cc2db270bf8c39040895da8d67a33b3a3c6df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_forks_repo_path": "natThms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_issues_repo_path": "natThms.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_stars_repo_path": "natThms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 421,
"size": 1190
} |
-- Reported by nad 2018-01-23
{-# OPTIONS --sized-types #-}
module Issue3517 where
import Issue3517.S
import Issue3517.M
| {
"alphanum_fraction": 0.7317073171,
"avg_line_length": 15.375,
"ext": "agda",
"hexsha": "ee12df6f7e161e231bf3ffddc5667ecbb8debc2d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3517.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3517.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3517.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 37,
"size": 123
} |
module Lang.Vars.Structure.Operator where
import Lvl
open import Data
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Function.Domain
open import Structure.Operator.Properties
open import Structure.Operator
open import Type
-- TODO: These are to make the generalized variables work when they depend on each other. Are there any better ways?
module Select where
module _ {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
select-invol : ∀(f : T → T) → Involution(f) → Type{Lvl.𝟎}
select-invol _ _ = Data.Unit
module _ {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_▫_ : T → T → T} where
select-id : ∀(id) → Identity(_▫_)(id) → Type{Lvl.𝟎}
select-id _ _ = Data.Unit
select-idₗ : ∀(id) → Identityₗ(_▫_)(id) → Type{Lvl.𝟎}
select-idₗ _ _ = Data.Unit
select-idᵣ : ∀(id) → Identityᵣ(_▫_)(id) → Type{Lvl.𝟎}
select-idᵣ _ _ = Data.Unit
select-inv : ∀(id)(ident)(inv) → InverseFunction(_▫_) ⦃ [∃]-intro(id) ⦃ ident ⦄ ⦄ (inv) → Type{Lvl.𝟎}
select-inv _ _ _ _ = Data.Unit
select-invₗ : ∀(id)(ident)(inv) → InverseFunctionₗ(_▫_) ⦃ [∃]-intro(id) ⦃ ident ⦄ ⦄ (inv) → Type{Lvl.𝟎}
select-invₗ _ _ _ _ = Data.Unit
select-invᵣ : ∀(id)(ident)(inv) → InverseFunctionᵣ(_▫_) ⦃ [∃]-intro(id) ⦃ ident ⦄ ⦄ (inv) → Type{Lvl.𝟎}
select-invᵣ _ _ _ _ = Data.Unit
select-invPropₗ : ∀(inv) → InversePropertyₗ(_▫_)(inv) → Type{Lvl.𝟎}
select-invPropₗ _ _ = Data.Unit
select-invPropᵣ : ∀(inv) → InversePropertyᵣ(_▫_)(inv) → Type{Lvl.𝟎}
select-invPropᵣ _ _ = Data.Unit
select-abs : ∀(id) → Absorber(_▫_)(id) → Type{Lvl.𝟎}
select-abs _ _ = Data.Unit
select-absₗ : ∀(id) → Absorberₗ(_▫_)(id) → Type{Lvl.𝟎}
select-absₗ _ _ = Data.Unit
select-absᵣ : ∀(id) → Absorberᵣ(_▫_)(id) → Type{Lvl.𝟎}
select-absᵣ _ _ = Data.Unit
module One {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_▫_ : T → T → T} where
variable {id idₗ idᵣ ab abₗ abᵣ} : T
variable {inv invₗ invᵣ} : T → T
variable ⦃ op ⦄ : BinaryOperator ⦃ equiv ⦄ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫_)
variable ⦃ comm ⦄ : Commutativity ⦃ equiv ⦄ (_▫_)
variable ⦃ cancₗ ⦄ : Cancellationₗ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫_)
variable ⦃ cancᵣ ⦄ : Cancellationᵣ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫_)
variable ⦃ assoc ⦄ : Associativity ⦃ equiv ⦄ (_▫_)
variable ⦃ ident ⦄ : Identity ⦃ equiv ⦄ (_▫_)(id)
variable ⦃ identₗ ⦄ : Identityₗ ⦃ equiv ⦄ (_▫_)(id)
variable ⦃ identᵣ ⦄ : Identityᵣ ⦃ equiv ⦄ (_▫_)(id)
variable ⦃ inver ⦄ : InverseFunction ⦃ equiv ⦄ (_▫_) ⦃ [∃]-intro(id) ⦃ ident ⦄ ⦄ (inv)
variable ⦃ inverₗ ⦄ : InverseFunctionₗ ⦃ equiv ⦄ (_▫_) ⦃ [∃]-intro(idₗ) ⦃ identₗ ⦄ ⦄ (invₗ)
variable ⦃ inverᵣ ⦄ : InverseFunctionᵣ ⦃ equiv ⦄ (_▫_) ⦃ [∃]-intro(idᵣ) ⦃ identᵣ ⦄ ⦄ (invᵣ)
variable ⦃ inverPropₗ ⦄ : InversePropertyₗ ⦃ equiv ⦄ (_▫_) (invₗ)
variable ⦃ inverPropᵣ ⦄ : InversePropertyᵣ ⦃ equiv ⦄ (_▫_) (invᵣ)
variable ⦃ invol ⦄ : Involution ⦃ equiv ⦄ (inv)
variable ⦃ absorb ⦄ : Absorber ⦃ equiv ⦄ (_▫_)(ab)
variable ⦃ absorbₗ ⦄ : Absorberₗ ⦃ equiv ⦄ (_▫_)(ab)
variable ⦃ absorbᵣ ⦄ : Absorberᵣ ⦃ equiv ⦄ (_▫_)(ab)
module OneTypeTwoOp {ℓ ℓₑ} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_▫₁_ _▫₂_ : T → T → T} where
variable {id} : T
variable {inv} : T → T
variable ⦃ op₁ ⦄ : BinaryOperator ⦃ equiv ⦄ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₁_)
variable ⦃ comm₁ ⦄ : Commutativity ⦃ equiv ⦄ (_▫₁_)
variable ⦃ cancₗ₁ ⦄ : Cancellationₗ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₁_)
variable ⦃ cancᵣ₁ ⦄ : Cancellationᵣ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₁_)
variable ⦃ assoc₁ ⦄ : Associativity ⦃ equiv ⦄ (_▫₁_)
variable ⦃ ident₁ ⦄ : Identity ⦃ equiv ⦄ (_▫₁_)(id)
variable ⦃ identₗ₁ ⦄ : Identityₗ ⦃ equiv ⦄ (_▫₁_)(id)
variable ⦃ identᵣ₁ ⦄ : Identityᵣ ⦃ equiv ⦄ (_▫₁_)(id)
variable ⦃ inver₁ ⦄ : InverseFunction ⦃ equiv ⦄ (_▫₁_) ⦃ [∃]-intro(id) ⦃ ident₁ ⦄ ⦄ (inv)
variable ⦃ inverₗ₁ ⦄ : InverseFunctionₗ ⦃ equiv ⦄ (_▫₁_) ⦃ [∃]-intro(id) ⦃ identₗ₁ ⦄ ⦄ (inv)
variable ⦃ inverᵣ₁ ⦄ : InverseFunctionᵣ ⦃ equiv ⦄ (_▫₁_) ⦃ [∃]-intro(id) ⦃ identᵣ₁ ⦄ ⦄ (inv)
variable ⦃ absorbₗ₁ ⦄ : Absorberₗ ⦃ equiv ⦄ (_▫₁_)(id)
variable ⦃ absorbᵣ₁ ⦄ : Absorberᵣ ⦃ equiv ⦄ (_▫₁_)(id)
variable ⦃ op₂ ⦄ : BinaryOperator ⦃ equiv ⦄ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₂_)
variable ⦃ comm₂ ⦄ : Commutativity ⦃ equiv ⦄ (_▫₂_)
variable ⦃ cancₗ₂ ⦄ : Cancellationₗ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₂_)
variable ⦃ cancᵣ₂ ⦄ : Cancellationᵣ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₂_)
variable ⦃ assoc₂ ⦄ : Associativity ⦃ equiv ⦄ (_▫₂_)
variable ⦃ ident₂ ⦄ : Identity ⦃ equiv ⦄ (_▫₂_)(id)
variable ⦃ identₗ₂ ⦄ : Identityₗ ⦃ equiv ⦄ (_▫₂_)(id)
variable ⦃ identᵣ₂ ⦄ : Identityᵣ ⦃ equiv ⦄ (_▫₂_)(id)
variable ⦃ inver₂ ⦄ : InverseFunction ⦃ equiv ⦄ (_▫₂_) ⦃ [∃]-intro(id) ⦃ ident₂ ⦄ ⦄ (inv)
variable ⦃ inverₗ₂ ⦄ : InverseFunctionₗ ⦃ equiv ⦄ (_▫₂_) ⦃ [∃]-intro(id) ⦃ identₗ₂ ⦄ ⦄ (inv)
variable ⦃ inverᵣ₂ ⦄ : InverseFunctionᵣ ⦃ equiv ⦄ (_▫₂_) ⦃ [∃]-intro(id) ⦃ identᵣ₂ ⦄ ⦄ (inv)
variable ⦃ absorbₗ₂ ⦄ : Absorberₗ ⦃ equiv ⦄ (_▫₂_)(id)
variable ⦃ absorbᵣ₂ ⦄ : Absorberᵣ ⦃ equiv ⦄ (_▫₂_)(id)
variable ⦃ distriₗ ⦄ : Distributivityₗ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
variable ⦃ distriᵣ ⦄ : Distributivityᵣ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
variable ⦃ absorpₗ ⦄ : Absorptionₗ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
variable ⦃ absorpᵣ ⦄ : Absorptionᵣ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
variable ⦃ inverOpₗ ⦄ : InverseOperatorₗ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
variable ⦃ inverOpᵣ ⦄ : InverseOperatorᵣ ⦃ equiv ⦄ (_▫₁_)(_▫₂_)
module Two {ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂} {A : Type{ℓ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {_▫₁_ : A → A → A} {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {_▫₂_ : B → B → B} where
variable {id₁} : A
variable {inv₁} : A → A
variable {id₂} : B
variable {inv₂} : B → B
variable ⦃ op₁ ⦄ : BinaryOperator ⦃ equiv-A ⦄ ⦃ equiv-A ⦄ ⦃ equiv-A ⦄ (_▫₁_)
variable ⦃ comm₁ ⦄ : Commutativity ⦃ equiv-A ⦄ (_▫₁_)
variable ⦃ cancₗ₁ ⦄ : Cancellationₗ ⦃ equiv-A ⦄ ⦃ equiv-A ⦄ (_▫₁_)
variable ⦃ cancᵣ₁ ⦄ : Cancellationᵣ ⦃ equiv-A ⦄ ⦃ equiv-A ⦄ (_▫₁_)
variable ⦃ assoc₁ ⦄ : Associativity ⦃ equiv-A ⦄ (_▫₁_)
variable ⦃ ident₁ ⦄ : Identity ⦃ equiv-A ⦄ (_▫₁_)(id₁)
variable ⦃ identₗ₁ ⦄ : Identityₗ ⦃ equiv-A ⦄ (_▫₁_)(id₁)
variable ⦃ identᵣ₁ ⦄ : Identityᵣ ⦃ equiv-A ⦄ (_▫₁_)(id₁)
variable ⦃ inver₁ ⦄ : InverseFunction ⦃ equiv-A ⦄ (_▫₁_) ⦃ [∃]-intro(id₁) ⦃ ident₁ ⦄ ⦄ (inv₁)
variable ⦃ inverₗ₁ ⦄ : InverseFunctionₗ ⦃ equiv-A ⦄ (_▫₁_) ⦃ [∃]-intro(id₁) ⦃ identₗ₁ ⦄ ⦄ (inv₁)
variable ⦃ inverᵣ₁ ⦄ : InverseFunctionᵣ ⦃ equiv-A ⦄ (_▫₁_) ⦃ [∃]-intro(id₁) ⦃ identᵣ₁ ⦄ ⦄ (inv₁)
variable ⦃ op₂ ⦄ : BinaryOperator ⦃ equiv-B ⦄ ⦃ equiv-B ⦄ ⦃ equiv-B ⦄ (_▫₂_)
variable ⦃ comm₂ ⦄ : Commutativity ⦃ equiv-B ⦄ (_▫₂_)
variable ⦃ cancₗ₂ ⦄ : Cancellationₗ ⦃ equiv-B ⦄ ⦃ equiv-B ⦄ (_▫₂_)
variable ⦃ cancᵣ₂ ⦄ : Cancellationᵣ ⦃ equiv-B ⦄ ⦃ equiv-B ⦄ (_▫₂_)
variable ⦃ assoc₂ ⦄ : Associativity ⦃ equiv-B ⦄ (_▫₂_)
variable ⦃ ident₂ ⦄ : Identity ⦃ equiv-B ⦄ (_▫₂_)(id₂)
variable ⦃ identₗ₂ ⦄ : Identityₗ ⦃ equiv-B ⦄ (_▫₂_)(id₂)
variable ⦃ identᵣ₂ ⦄ : Identityᵣ ⦃ equiv-B ⦄ (_▫₂_)(id₂)
variable ⦃ inver₂ ⦄ : InverseFunction ⦃ equiv-B ⦄ (_▫₂_) ⦃ [∃]-intro(id₂) ⦃ ident₂ ⦄ ⦄ (inv₂)
variable ⦃ inverₗ₂ ⦄ : InverseFunctionₗ ⦃ equiv-B ⦄ (_▫₂_) ⦃ [∃]-intro(id₂) ⦃ identₗ₂ ⦄ ⦄ (inv₂)
variable ⦃ inverᵣ₂ ⦄ : InverseFunctionᵣ ⦃ equiv-B ⦄ (_▫₂_) ⦃ [∃]-intro(id₂) ⦃ identᵣ₂ ⦄ ⦄ (inv₂)
| {
"alphanum_fraction": 0.6046091906,
"avg_line_length": 51.085106383,
"ext": "agda",
"hexsha": "e62ec0709c03d0f2c5410d35baeaf52148e6c359",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Lang/Vars/Structure/Operator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Lang/Vars/Structure/Operator.agda",
"max_line_length": 156,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Lang/Vars/Structure/Operator.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3765,
"size": 7203
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.elims.Lemmas
{- Given a span [A ←f– C –g→ B] and a map [h : A ⊔_C B → D] where
- [g] has a left inverse:
- To define a fundction [Π (Cof h) P], one can give only the [cfbase],
- [cfcod], [cfglue∘left], and [cfglue∘right] cases, and construct a map
- which has the right behavior on [cfbase], [cfcod], [cfglue∘left],
- with [cfglue∘right] edited to achieve the highest coherence.
- This is useful for for proving equivalences where (at least) one side
- involves one of these iterated pushouts. It could be generalized
- further by loosening from cofiber to some more general class of pushouts,
- but this is sufficient for the current applications. -}
module homotopy.elims.CofPushoutSection where
module _ {i j k l} {s : Span {i} {j} {k}} {D : Type l}
{h : Pushout s → D} where
open Span s
module CofPushoutSection (r : B → C) (inv : ∀ c → r (g c) == c) where
elim : ∀ {m} {P : Cofiber h → Type m}
(cfbase* : P cfbase) (cfcod* : (d : D) → P (cfcod d))
(cfglue-left* : (a : A) →
cfbase* == cfcod* (h (left a)) [ P ↓ cfglue (left a) ])
(cfglue-right* : (b : B) →
cfbase* == cfcod* (h (right b)) [ P ↓ cfglue (right b) ])
→ Π (Cofiber h) P
elim {P = P} cfbase* cfcod* cfglue-left* cfglue-right* =
Cofiber-elim
cfbase*
cfcod*
(Pushout-elim
cfglue-left*
(λ b → (fst (fill (r b))) ◃ cfglue-right* b)
(λ c → ↓↓-from-squareover $
transport
(λ c' → SquareOver P (natural-square cfglue (glue c))
(cfglue-left* (f c))
(↓-ap-in P (λ _ → cfbase) (apd (λ _ → cfbase*) (glue c)))
(↓-ap-in P (cfcod ∘ h) (apd (cfcod* ∘ h) (glue c)))
(fst (fill c') ◃ cfglue-right* (g c)))
(! (inv c))
(snd (fill c))))
where
fill : (c : C)
→ Σ (cfbase* == cfbase*)
(λ q → SquareOver P (natural-square cfglue (glue c))
(cfglue-left* (f c)) _ _ (q ◃ cfglue-right* (g c)))
fill c = fill-upper-right _ _ _ _ _
rec : ∀ {m} {E : Type m}
(cfbase* : E) (cfcod* : D → E)
(cfglue-left* : (a : A) → cfbase* == cfcod* (h (left a)))
(cfglue-right* : (b : B) → cfbase* == cfcod* (h (right b)))
→ (Cofiber h → E)
rec cfbase* cfcod* cfglue-left* cfglue-right* =
elim cfbase* cfcod* (↓-cst-in ∘ cfglue-left*) (↓-cst-in ∘ cfglue-right*)
| {
"alphanum_fraction": 0.5326693227,
"avg_line_length": 38.0303030303,
"ext": "agda",
"hexsha": "5dd1143c475944e68156d7c18c6bd111b0b88ee4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/elims/CofPushoutSection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/elims/CofPushoutSection.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/elims/CofPushoutSection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 896,
"size": 2510
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Universe {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Validity of the universe type.
Uᵛ : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ¹ ⟩ U / [Γ]
Uᵛ [Γ] ⊢Δ [σ] = Uᵣ′ ⁰ 0<1 ⊢Δ , λ _ x₂ → U₌ PE.refl
-- Valid terms of type U are valid types.
univᵛ : ∀ {A Γ l l′} ([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ l ⟩ U / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A ∷ U / [Γ] / [U]
→ Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]
univᵛ {l′ = l′} [Γ] [U] [A] ⊢Δ [σ] =
let [A]₁ = maybeEmb′ {l′} (univEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])))
in [A]₁ , (λ [σ′] [σ≡σ′] → univEqEq (proj₁ ([U] ⊢Δ [σ])) [A]₁
((proj₂ ([A] ⊢Δ [σ])) [σ′] [σ≡σ′]))
-- Valid term equality of type U is valid type equality.
univEqᵛ : ∀ {A B Γ l l′} ([Γ] : ⊩ᵛ Γ)
([U] : Γ ⊩ᵛ⟨ l′ ⟩ U / [Γ])
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l′ ⟩ A ≡ B ∷ U / [Γ] / [U]
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A]
univEqᵛ {A} [Γ] [U] [A] [t≡u] ⊢Δ [σ] =
univEqEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])
| {
"alphanum_fraction": 0.5121234386,
"avg_line_length": 34.8974358974,
"ext": "agda",
"hexsha": "0c7819695ca3a6e573360591609d332191dc1077",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Universe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 649,
"size": 1361
} |
-- Andreas, 2018-06-09, issue #2513, parsing attributes
postulate
@0 @ω A : Set
-- Should fail with error:
-- Conflicting attributes: 0 ω
| {
"alphanum_fraction": 0.6901408451,
"avg_line_length": 17.75,
"ext": "agda",
"hexsha": "f25434352b4acd68bbd84cf2f43ca49850e4ed9e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/AttributeConflict.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/AttributeConflict.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/AttributeConflict.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 142
} |
module Data.FixedTree where
import Lvl
open import Data hiding (empty)
open import Data.List
open import Data.Tuple using (_⨯_ ; _,_)
open import Data.Tuple.Raise
open import Functional as Fn
open import Numeral.Natural
open import Type
private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level
private variable n : ℕ
private variable N N₁ N₂ L T A B : Type{ℓ}
module _ {I : Type{ℓᵢ}} (children : I → ℕ) (step : I → I) (L : Type{ℓₗ}) (N : Type{ℓₙ}) where
data Tree₊ : I → Type{ℓₗ Lvl.⊔ ℓₙ Lvl.⊔ ℓᵢ} where
Leaf : ∀{i} → L → Tree₊(i)
Node : ∀{i} → N → (Tree₊(step i) ^ children(step i)) → Tree₊(i)
data Tree₋ : I → Type{ℓₗ Lvl.⊔ ℓₙ Lvl.⊔ ℓᵢ} where
Leaf : ∀{i} → L → Tree₋(i)
Node : ∀{i} → N → (Tree₋(i) ^ children(i)) → Tree₋(step i)
-- Alternative definition:
-- data FixedTree (n : ℕ) (L : Type{ℓₗ}) (N : Type{ℓₙ}) : Type{ℓₗ Lvl.⊔ ℓₙ} where
-- Leaf : L → FixedTree(n) L N
-- Node : N → ((FixedTree(n) L N) ^ n) → FixedTree(n) L N
FixedTree : ℕ → Type{ℓₗ} → Type{ℓₙ} → Type{ℓₗ Lvl.⊔ ℓₙ}
FixedTree(n) L N = Tree₊ id id L N n
open import Data using (Unit ; <>)
open import Data.Boolean
open import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.Option
import Data.Tuple.Raiseᵣ.Functions as Raise
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Finite
open import Numeral.Finite.Oper.Comparisons
open import Numeral.Natural.Function
open import Numeral.Natural.Oper hiding (_^_)
emptyTree : FixedTree{ℓₗ}(n) Unit N
emptyTree{n = n} = Leaf <>
singleton : N → FixedTree{ℓₗ}(n) Unit N
singleton{n = n} a = Node a (Raise.repeat n emptyTree)
isLeaf : FixedTree(n) L N → Bool
isLeaf (Leaf _) = 𝑇
isLeaf (Node _ _) = 𝐹
isNode : FixedTree(n) L N → Bool
isNode (Leaf _) = 𝐹
isNode (Node _ _) = 𝑇
root : FixedTree(n) L N → Option(N)
root (Leaf _) = None
root (Node a _) = Some a
foldChildNodesᵣ : (((FixedTree(n) L N) ^ n) → N → T → T) → T → FixedTree(n) L N → T
foldChildNodesᵣ join id (Leaf _) = id
foldChildNodesᵣ{n = n} join id (Node _ c) = Raise.foldᵣ{n} (\{(Leaf _) → Fn.id ; (Node a c) → join c a}) id c
-- TODO: Is it correct? Also termination checker
{-
testfoldᵣ : ∀{n : ℕ}{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B → B) → B → (FixedTree(n)(A) ^ n) → B
testfoldᵣ {0} (_▫_) id _ = id
testfoldᵣ {1} (_▫_) id Leaf = id
testfoldᵣ {1} (_▫_) id (Node a c) = a ▫ testfoldᵣ {1} (_▫_) id c
-- x ▫ def
testfoldᵣ {𝐒(𝐒(n))} (_▫_) def (x , xs) = {!!}
-- x ▫ testfoldᵣ {𝐒(n)} (_▫_) def xs
fold : (A → B → B) → B → FixedTree(n)(A) → B
fold (_▫_) id Leaf = id
fold{n = n} (_▫_) id (Node a c) = a ▫ Raise.foldᵣ{n} (\{Leaf -> Fn.id ; node@(Node _ _) acc → fold{n = n} (_▫_) acc node}) id c
fold : (A → B → B) → B → FixedTree(n)(A) → B
fold{A = A}{B = B}{n = n} (_▫_) id tree = foldChildNodesᵣ ({!swap(fold{n = n} (_▫_))!}) id tree where
f : ∀{n₁ n₂} → FixedTree(n₁)(A) ^ n₂ → A → B → B
f {n₂ = 0} <> a acc = a ▫ acc
f {n₂ = 1} Leaf a acc = a ▫ acc
f {n₂ = 1} (Node ca cc) a acc = f cc a (ca ▫ acc)
-- ca ▫ (a ▫ acc)
f {n₂ = 𝐒(𝐒(n₂))} c a acc = {!!}
testfoldDepthFirst : (A → B → B) → B → FixedTree(n)(A) → B
testfoldᵣ : ∀{n₁ n₂ : ℕ}{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B → B) → B → (FixedTree(n₁)(A) ^ n₂) → B
testfoldDepthFirst (_▫_) id Leaf = id
testfoldDepthFirst{n = n} (_▫_) id (Node a c) = a ▫ testfoldᵣ{n} (_▫_) id c
testfoldᵣ {n₂ = 0} (_▫_) def _ = def
testfoldᵣ {n₁ = n₁}{n₂ = 1} (_▫_) def x = testfoldDepthFirst{n = n₁} (_▫_) def x
-- testfoldᵣ {n₂ = 𝐒(𝐒(n₂))} (_▫_) def (x , xs) = swap(testfoldDepthFirst{n = _} (_▫_)) x (testfoldᵣ {n₂ = 𝐒(n₂)} (_▫_) def xs)
testfoldᵣ : ∀{n₁ n₂ : ℕ}{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B → B) → B → (FixedTree(n₁)(A) ^ n₂) → B
testfoldᵣ {n₂ = 0} (_▫_) id <> = id
testfoldᵣ {n₂ = 1} (_▫_) id Leaf = id
testfoldᵣ {n₂ = 1} (_▫_) id (Node a c) = a ▫ testfoldᵣ(_▫_) id c
testfoldᵣ {n₂ = 𝐒(𝐒(n))} (_▫_) id (Leaf , xs) = testfoldᵣ(_▫_) id xs
testfoldᵣ {n₂ = 𝐒(𝐒(n))} (_▫_) id (Node a c , xs) = testfoldᵣ(_▫_) (a ▫ testfoldᵣ(_▫_) id xs) c
-}
{-# TERMINATING #-}
foldDepthFirst : (N → T → T) → T → FixedTree(n) L N → T
foldDepthFirst (_▫_) id (Leaf _) = id
foldDepthFirst{n = n} (_▫_) id (Node a c) = a ▫ Raise.foldᵣ{n} (swap(foldDepthFirst{n = n} (_▫_))) id c
import Data.Tuple.RaiseTypeᵣ.Functions as RaiseType
open import Function.Multi
import Function.Multi.Functions as Multi
{-# TERMINATING #-}
FixedTree-induction : ∀{P : FixedTree{ℓₗ}{ℓₙ}(n) L N → Type{ℓ}} → (∀{l} → P(Leaf l)) → ((a : N) → (c : (FixedTree(n) L N) ^ n) → (RaiseType.from-[^] (Raise.map P(c)) ⇉ P(Node a c))) → ((tree : FixedTree(n) L N) → P(tree))
FixedTree-induction base _ (Leaf l) = base{l}
FixedTree-induction {n = 0} _ step (Node a c) = step a c
FixedTree-induction {n = 1} base step (Node a c) = step a c (FixedTree-induction{n = 1} base step c)
FixedTree-induction {n = 𝐒(𝐒(n))} {P = P} base step (Node a c) = recurseChildren{𝐒(𝐒(n))}(step a c) where
recurseChildren : ∀{L}{l : _ ^ L} → (RaiseType.from-[^] (Raise.map P(l)) ⇉ P(Node a c)) → P(Node a c)
recurseChildren {0} = id
recurseChildren {1} {l} p = p(FixedTree-induction{n = 𝐒(𝐒(n))} base step l)
recurseChildren {𝐒(𝐒(L))} {x , l} p = recurseChildren{𝐒(L)}{l} (p(FixedTree-induction{n = 𝐒(𝐒(n))} base step x))
-- The size is the number of nodes in the tree.
-- Alternative implementation:
-- size{n = n}{L = L}{N = N} = FixedTree-induction 𝟎 (rec{w = n}) where
-- rec : ∀{w} → (a : N) → (c : (FixedTree(n) L N) ^ w) → RaiseType.from-[^] (Raise.map{w} (const ℕ)(c)) ⇉ ℕ
-- rec {w = 0} _ _ = 1
-- rec {w = 1} _ _ n = 𝐒(n)
-- rec {w = 𝐒(𝐒(w))} a (_ , c) n = Multi.compose(𝐒(w)) (n +_) (rec{w = 𝐒(w)} a c)
{-# TERMINATING #-}
size : FixedTree(n) L N → ℕ
size (Leaf _) = 𝟎
size (Node _ c) = 𝐒(Raise.foldᵣ((_+_) ∘ size) 𝟎 c)
-- The height is the length of the longest path from the root node.
-- Alternative implementation:
-- height{n = n}{L = L}{N = N} = FixedTree-induction 𝟎 (rec{w = n}) where
-- -- Note: The return type is equal to `RaiseType.repeat(L) ℕ ⇉ ℕ`
-- rec : ∀{w} → (a : N) → (c : (FixedTree(n) L N) ^ w) → RaiseType.from-[^] (Raise.map{w} (const ℕ)(c)) ⇉ ℕ
-- rec {w = 0} _ _ = 1
-- rec {w = 1} _ _ n = 𝐒(n)
-- rec {w = 𝐒(𝐒(w))} a (_ , c) n = Multi.compose(𝐒(w)) (max n) (rec{w = 𝐒(w)} a c)
{-# TERMINATING #-}
height : FixedTree(n) L N → ℕ
height (Leaf _) = 𝟎
height (Node _ c) = 𝐒(Raise.foldᵣ(max ∘ height) 𝟎 c)
import Data.Tuple.Raiseᵣ.Functions as TupleRaiseᵣ
import Data.List.Functions as List
treesOfDepth : ℕ → FixedTree(n) L N → List(FixedTree(n) L N)
treesOfDepth 𝟎 tree = tree ⊰ ∅
treesOfDepth (𝐒(_)) (Leaf _) = ∅
treesOfDepth (𝐒(n)) (Node _ c) = TupleRaiseᵣ.foldᵣ((List._++_) ∘ treesOfDepth n) ∅ c
| {
"alphanum_fraction": 0.5570032573,
"avg_line_length": 44.13125,
"ext": "agda",
"hexsha": "b9b9fa0633dfa3597b622fdefad7c502fda181ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/FixedTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/FixedTree.agda",
"max_line_length": 221,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/FixedTree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2975,
"size": 7061
} |
{-# OPTIONS --cubical --safe #-}
module HITs.PropositionalTruncation.Sugar where
open import Cubical.HITs.PropositionalTruncation
open import Level
_=<<_ : ∀ {a} {A : Type a} {b} {B : ∥ A ∥ → Type b}
→ ((x : A) → ∥ B ∣ x ∣ ∥) → (xs : ∥ A ∥) → ∥ B xs ∥
_=<<_ = elimPropTrunc (λ _ → squash)
_>>=_ : ∀ {a} {A : Type a} {b} {B : Type b}
→ (xs : ∥ A ∥) → (A → ∥ B ∥) → ∥ B ∥
_>>=_ {a} {A} {b} {B} xs f = elimPropTrunc (λ _ → squash) f xs
_>>_ : ∥ A ∥ → ∥ B ∥ → ∥ B ∥
_ >> ys = ys
pure : A → ∥ A ∥
pure = ∣_∣
_<*>_ : ∥ (A → B) ∥ → ∥ A ∥ → ∥ B ∥
fs <*> xs = do
f ← fs
x ← xs
∣ f x ∣
infixr 1 _∥$∥_
_∥$∥_ : (A → B)→ ∥ A ∥ → ∥ B ∥
f ∥$∥ xs = recPropTrunc squash (λ x → ∣ f x ∣) xs
| {
"alphanum_fraction": 0.441260745,
"avg_line_length": 22.5161290323,
"ext": "agda",
"hexsha": "4d300b0c6b16567f044c75fc20d7e34bee09630b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/HITs/PropositionalTruncation/Sugar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/HITs/PropositionalTruncation/Sugar.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/HITs/PropositionalTruncation/Sugar.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 362,
"size": 698
} |
{-
Part 3: Univalence and the SIP
• Univalence from ua and uaβ
• Transporting with ua
• The SIP as a consequence of ua
-}
{-# OPTIONS --cubical #-}
module Part3 where
open import Cubical.Core.Glue public
using ( Glue ; glue ; unglue ; lineToEquiv )
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Part1
open import Part2
-- A key concept in HoTT/UF is univalence. As we have seen earlier in
-- the week this is assumed as an axiom in HoTT. In Cubical Agda it is
-- instead provable and has computational content. This means that
-- transporting with paths constructed using univalence reduces as
-- opposed to HoTT where they would be stuck. This simplifies some
-- proofs and make it possible to actually do concrete computations
-- using univalence.
-- The part of univalence which is most useful for our applications is
-- to be able to turn equivalences (written _≃_ and defined as a Σ-type
-- of a function and a proof that it has contractible fibers) into
-- paths:
ua : {A B : Type ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)
; (i = i1) → (B , idEquiv B) })
-- This term is defined using "Glue types" which were introduced in
-- the CCHM paper. We won't have time to go into details about them
-- today, but for practical applications one can usually forget about
-- them and use ua as a black box. There are multiple useful lemmas in
-- Cubical.Foundations.Univalence and Cubical.Foundations.Transport
-- which are helpful when reasoning about ua which don't require
-- knowing what Glue types are.
-- The important point is that transporting along the path constructed
-- using ua applies the function underlying the equivalence. This is
-- easily proved using transportRefl:
uaβ : (e : A ≃ B) (x : A) → transport (ua e) x ≡ fst e x
uaβ e x = transportRefl (equivFun e x)
-- Note that for concrete types this typically hold definitionally,
-- but for an arbitrary equivalence e we have to prove it.
-- The fact that we have both ua and uaβ suffices to be able to prove
-- the standard formulation of univalence. For details see:
--
-- Cubical.Foundations.Univalence
-- The standard way of constructing equivalences is to start with an
-- isomorphism and then improve it into an equivalence. The lemma in
-- the library which does this is
--
-- isoToEquiv : {A B : Type ℓ} → Iso A B → A ≃ B
-- Composing this with ua lets us directly turn isomorphisms into paths:
--
-- isoToPath : {A B : Type ℓ} → Iso A B → A ≡ B
-- Time for an example!
-- Booleans
data Bool : Type₀ where
false true : Bool
not : Bool → Bool
not false = true
not true = false
notPath : Bool ≡ Bool
notPath = isoToPath (iso not not rem rem)
where
rem : (b : Bool) → not (not b) ≡ b
rem false = refl
rem true = refl
_ : transport notPath true ≡ false
_ = refl
-- Another example, integers:
open import Cubical.Data.Int hiding (_+_ ; +-assoc)
sucPath : Int ≡ Int
sucPath = isoToPath (iso sucInt predInt sucPred predSuc)
_ : transport sucPath (pos 0) ≡ pos 1
_ = refl
_ : transport (sucPath ∙ sucPath) (pos 0) ≡ pos 2
_ = refl
_ : transport (sym sucPath) (pos 0) ≡ negsuc 0
_ = refl
-------------------------------------------------------------------------
-- The structure identity principle
-- Combining subst and ua lets us transport any structure on A to get
-- a structure on an equivalent type B
substEquiv : (S : Type ℓ → Type ℓ') (e : A ≃ B) → S A → S B
substEquiv S e = subst S (ua e)
-- Example with binary numbers:
open import Cubical.Data.BinNat.BinNat renaming (ℕ≃binnat to ℕ≃Bin ; binnat to Bin)
open import Cubical.Data.Nat
T : Set → Set
T X = Σ[ _+_ ∈ (X → X → X) ] ((x y z : X) → x + (y + z) ≡ (x + y) + z)
TBin : T Bin
TBin = substEquiv T ℕ≃Bin (_+_ , +-assoc)
_+Bin_ : Bin → Bin → Bin
_+Bin_ = fst TBin
+Bin-assoc : (m n o : Bin) → m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o
+Bin-assoc = snd TBin
-- This is however not always what we want as _+Bin_ will translate
-- its input to unary numbers, add, and then translate back. Instead
-- we want to use efficient addition on binary numbers, but get the
-- associativity proof for free. So what we really want is to
-- characterize the equality of T-structured types, i.e. we want a
-- proof that two types equipped with T-structures are equal if there
-- is a T-structure preserving equivalence between them. This is the
-- usual meaning of the *structure identity principle* (SIP). This
-- implies in particular that the type of paths of
-- monoids/groups/rings/R-modules/... is equivalent to the type of
-- monoid/group/ring/R-module/... preserving equivalences.
-- We formalize this and much more using a cubical version of the SIP in:
--
-- Internalizing Representation Independence with Univalence
-- Carlo Angiuli, Evan Cavallo, Anders Mörtberg, Max Zeuner
-- https://arxiv.org/abs/2009.05547
--
-- The binary numbers example with efficient addition is spelled out
-- in detail in Section 2.1.1 of:
--
-- https://www.doi.org/10.1017/S0956796821000034
-- (Can be downloaded from: https://staff.math.su.se/anders.mortberg/papers/cubicalagda2.pdf)
| {
"alphanum_fraction": 0.6937984496,
"avg_line_length": 32.4528301887,
"ext": "agda",
"hexsha": "9b012f2cf8cbc62ca4bbc58888e7740945650000",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "EgbertRijke/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/Part3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "EgbertRijke/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/Part3.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "williamdemeo/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/Part3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-03T16:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-03T16:28:06.000Z",
"num_tokens": 1474,
"size": 5160
} |
{-# OPTIONS --copatterns #-}
open import Common.Prelude
record R : Set where
field
f1 : Nat
f2 : String
r : R
R.f1 r = 5
R.f2 r = "yes"
main = putStrLn (R.f2 r)
| {
"alphanum_fraction": 0.5885714286,
"avg_line_length": 11.6666666667,
"ext": "agda",
"hexsha": "bc5cc8a884dda92f14b9db841fa63faf8530dc77",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue1632.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue1632.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue1632.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 63,
"size": 175
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-0 as ECP-LBFT-OBM-Diff-0
open import Util.Prelude
module LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-2 where
-- This is a separate file to avoid a cyclic dependency.
------------------------------------------------------------------------------
e_DiemDB_getEpochEndingLedgerInfosImpl_limit : Epoch → Epoch → Epoch → (Epoch × Bool)
e_DiemDB_getEpochEndingLedgerInfosImpl_limit startEpoch endEpoch limit =
if not ECP-LBFT-OBM-Diff-0.enabled
then
if-dec endEpoch >? startEpoch + limit
then (startEpoch + limit , true)
else (endEpoch , false)
else (endEpoch , false)
| {
"alphanum_fraction": 0.6774530271,
"avg_line_length": 38.32,
"ext": "agda",
"hexsha": "d5efc3151a36700d2d0f442d35faca3af67548e0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-2.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 274,
"size": 958
} |
-- Andreas, 2012-10-18 wish granted
module Issue481 where
-- Use case:
open import Common.Issue481ParametrizedModule Set using () renaming (id to idSet)
open import Common.Issue481ParametrizedModule (Set → Set) using () renaming (id to idSetToSet)
open import Common.Issue481ParametrizedModule
-- With 'as' clause:
open import Common.Issue481ParametrizedModule Set as PSet using (id)
{- MEANS:
import Common.Issue481ParametrizedModule
private open module PSet = Common.Issue481ParametrizedModule Set using (id)
-}
-- Abuse case:
as = Set
open import Common.Issue481ParametrizedModule as as as
module M = as
-- Test case:
module Test where
-- should succeed:
open import Issue481Record as Rec
open Issue481Record
{- Note: this is NOT equivalent to the following, failing sequence
import Issue481Record
open module Rec = Issue481Record
open Issue481Record
-- Ambiguous module name Issue481Record. It could refer to any one of
-- Rec.Issue481Record
-- Issue481Record
It is equivalent to:
-}
module Test2 where
import Issue481Record
private
open module Rec = Issue481Record
| {
"alphanum_fraction": 0.7709648332,
"avg_line_length": 19.8035714286,
"ext": "agda",
"hexsha": "30cf057702c1d8239569a07dbf440c53eb4336da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue481.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue481.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue481.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 287,
"size": 1109
} |
module Haskell.Prim.Word where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.Char
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Agda.Builtin.Int using (pos; negsuc)
import Agda.Builtin.Word renaming (Word64 to Word; primWord64ToNat to w2n; primWord64FromNat to n2w)
open Agda.Builtin.Word
open Agda.Builtin.Word public using (Word)
open import Haskell.Prim
open import Haskell.Prim.Integer
--------------------------------------------------
-- Literals
private
2⁶⁴ : Nat
2⁶⁴ = 18446744073709551616
instance
iNumberWord : Number Word
iNumberWord .Number.Constraint n = IsTrue (n < 2⁶⁴)
iNumberWord .fromNat n = n2w n
--------------------------------------------------
-- Arithmetic
negateWord : Word → Word
negateWord a = n2w (2⁶⁴ - w2n a)
addWord : Word → Word → Word
addWord a b = n2w (w2n a + w2n b)
subWord : Word → Word → Word
subWord a b = addWord a (negateWord b)
mulWord : Word → Word → Word
mulWord a b = n2w (w2n a * w2n b)
eqWord : Word → Word → Bool
eqWord a b = w2n a == w2n b
ltWord : Word → Word → Bool
ltWord a b = w2n a < w2n b
showWord : Word → List Char
showWord a = primStringToList (primShowNat (w2n a))
integerToWord : Integer → Word
integerToWord (pos n) = n2w n
integerToWord (negsuc n) = negateWord (n2w (suc n))
wordToInteger : Word → Integer
wordToInteger n = pos (w2n n)
| {
"alphanum_fraction": 0.675315568,
"avg_line_length": 22.6349206349,
"ext": "agda",
"hexsha": "4dcaf0c3519f6020f7229765d7bb2e7c78caa340",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Word.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Word.agda",
"max_line_length": 100,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Word.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 464,
"size": 1426
} |
{-# OPTIONS --universe-polymorphism #-}
module Issue232 where
open import Common.Level
data T {ℓ} : {α : Set ℓ} → α → Set (lsuc ℓ) where
c : {α : Set ℓ} {x : α} → T x
| {
"alphanum_fraction": 0.5930232558,
"avg_line_length": 19.1111111111,
"ext": "agda",
"hexsha": "a551c1df10212be0dc481fca0f316161ffff744b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue232.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue232.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue232.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 172
} |
{-# OPTIONS --without-K --safe #-}
module Reader where
-- The reader monad (mainly used for nice syntax with idiom brackets)
open import Level
Reader : ∀ {r a} → Set r → Set a → Set (a ⊔ r)
Reader R A = R → A
module _ {r} {R′ : Set r} where
R : ∀ {a} → Set a → Set (a ⊔ r)
R = Reader R′
pure : ∀ {a} {A : Set a} → A → R A
pure x = λ _ → x
{-# INLINE pure #-}
_<*>_ : ∀ {a b} {A : Set a} {B : Set b}
→ R (A → B) → R A → R B
f <*> g = λ x → f x (g x)
{-# INLINE _<*>_ #-}
_>>=_ : ∀ {a b} {A : Set a} {B : Set b}
→ R A → (A → R B) → R B
f >>= k = λ x → k (f x) x
{-# INLINE _>>=_ #-}
| {
"alphanum_fraction": 0.4426751592,
"avg_line_length": 20.9333333333,
"ext": "agda",
"hexsha": "72992f35bd4623011562ae06bdd2a969d6380e61",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Reader.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Reader.agda",
"max_line_length": 69,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Reader.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 256,
"size": 628
} |
module AbstractTermination where
data Nat : Set where
zero : Nat
suc : Nat → Nat
mutual
f : Nat → Nat
f n = g n
where
abstract
g : Nat → Nat
g n = f n
-- Andreas, 2016-10-03 re issue #2231.
-- Should give termination error.
-- Wrong behavior with Agda-2.3.2.
-- Correct behavior from at least Agda-2.4.2.2.
| {
"alphanum_fraction": 0.6144927536,
"avg_line_length": 17.25,
"ext": "agda",
"hexsha": "da1a2a39317115415fb17eea14abfea21ae2b44b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/AbstractTermination.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/AbstractTermination.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/AbstractTermination.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 113,
"size": 345
} |
module TypesMore where
open import Basics
open import Types4
module DESC (I : Set) where
data Desc : Set1 where
inx : I -> Desc
sg : (A : Set)(D : A -> Desc) -> Desc
_!_ : I -> Desc -> Desc
Node : Desc -> (I -> Set) -> I -> Set
Node (inx x) R i = x == i
Node (sg A D) R i = Sg A \ a -> Node (D a) R i
Node (x ! D) R i = R x * Node D R i
data Mu (D : Desc)(i : I) : Set where
[_] : Node D (Mu D) i -> Mu D i
cata : forall D {X} -> ({i : I} -> Node D X i -> X i) ->
forall {i} -> Mu D i -> X i
mapCata : forall {D} E {X} -> ({i : I} -> Node D X i -> X i) ->
forall {i} -> Node E (Mu D) i -> Node E X i
cata D f [ x ] = f (mapCata D f x)
mapCata (inx x) f q = q
mapCata (sg A E) f (a , e) = a , mapCata (E a) f e
mapCata (i ! E) f (x , e) = cata _ f x , mapCata E f e
module ORN (J : Set)(ji : J -> I) where
Hits : I -> Set
Hits i = Sg J \ j -> ji j == i
data Orn : Desc -> Set1 where
inx : forall {i} -> Hits i -> Orn (inx i)
sg : forall A {D} -> ((a : A) -> Orn (D a)) -> Orn (sg A D)
_!_ : forall {i D} -> Hits i -> Orn D -> Orn (i ! D)
ins : forall (X : Set) {D} -> (X -> Orn D) -> Orn D
del : forall {A D} a -> Orn (D a) -> Orn (sg A D)
open DESC
NatDesc : Desc One
NatDesc = sg Two \ { tt -> inx <> ; ff -> <> ! inx <> }
NAT : Set
NAT = Mu One NatDesc <>
pattern ZE = [ tt , refl ]
pattern SU n = [ ff , n , refl ]
PLUS : NAT -> NAT -> NAT
PLUS ZE y = y
PLUS (SU x) y = SU (PLUS x y)
open ORN
orned : forall {I D J ji} -> Orn I J ji D -> Desc J
orned (inx (j , q)) = inx j
orned (sg A D) = sg A \ a -> orned (D a)
orned ((j , q) ! O) = j ! orned O
orned (ins X O) = sg X \ x -> orned (O x)
orned (del a O) = orned O
ListOrn : Set -> Orn One One _ NatDesc
ListOrn X = sg Two \
{ tt -> inx (<> , refl)
; ff -> ins X \ _ -> (<> , refl) ! (inx (<> , refl))
}
forget : forall {I D J ji} (O : Orn I J ji D) {P : I -> Set} ->
{j : J} -> Node J (orned O) (\ j -> P (ji j)) j ->
Node I D P (ji j)
forget (inx (j , refl)) refl = refl
forget (sg A O) (a , o) = a , forget (O a) o
forget ((j , refl) ! O) (p , o) = p , forget O o
forget (ins X O) (x , o) = forget (O x) o
forget (del a O) o = a , forget O o
plain : forall {I D J ji} (O : Orn I J ji D)
{j : J} -> Mu J (orned O) j -> Mu I D (ji j)
plain O = cata _ (orned O) (\ x -> [ forget O {Mu _ _} x ])
| {
"alphanum_fraction": 0.4737277617,
"avg_line_length": 29.4756097561,
"ext": "agda",
"hexsha": "f1dad5e2831fac5398d125f190494cf44e73bdbe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "pigworker/WhatRTypes4",
"max_forks_repo_path": "TypesMore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "pigworker/WhatRTypes4",
"max_issues_repo_path": "TypesMore.agda",
"max_line_length": 66,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "pigworker/WhatRTypes4",
"max_stars_repo_path": "TypesMore.agda",
"max_stars_repo_stars_event_max_datetime": "2019-06-09T05:38:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-11T09:12:25.000Z",
"num_tokens": 965,
"size": 2417
} |
-- Andreas, 2016-07-17 issue 2101
-- It should be possible to place a single function with a where block
-- inside `abstract`.
-- This will work if type signatures inside a where-block
-- are considered private, since in private type signatures,
-- abstract definitions are transparent.
-- (Unlike in public type signatures.)
record Wrap (A : Set) : Set where
field unwrap : A
postulate
P : ∀{A : Set} → A → Set
module AbstractPrivate (A : Set) where
abstract
B : Set
B = Wrap A
postulate
b : B
private -- this no longer (since #418) make abstract defs transparent in type signatures
postulate
test : P (Wrap.unwrap b) -- should no longer succeed
| {
"alphanum_fraction": 0.6810344828,
"avg_line_length": 24.8571428571,
"ext": "agda",
"hexsha": "6f4428fa9cdaed5fa6c3c998f6061419fda49839",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2101.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2101.agda",
"max_line_length": 92,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2101.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 696
} |
-- Andreas, 2015-03-10, issue reported by Andrea Vezzosi
postulate
X : Set
data D p : X → Set p where
c : ∀ i → D _ i
-- WAS: internal error in Substitute.hs due to negative De Bruijn index
-- should work now
| {
"alphanum_fraction": 0.6728110599,
"avg_line_length": 18.0833333333,
"ext": "agda",
"hexsha": "ff0a1ab890bb5606a58d5bc931684717b895d9e2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1454.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1454.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1454.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 217
} |
{- Name: Bowornmet (Ben) Hudson
--Preorders 2: Electric Boogaloo--
-}
open import Preliminaries
module Preorder-withmax where
{- Doing the same thing as we did in Preorder.agda but this
time we want to keep our end goal in mind and extend the
notion of preorders to include information about maximums
as well. This will make it easier to 'ensure' that functions
on nats are monotone (because they sometimes aren't - e.g.
sine, cosine, etc.) so we can give them a reasonable upper bound.
If we don't monotonize functions on nats then that makes bounding
more complicated. This also means we have to extend the idea of
maximums to all our other types...
-}
record Preorder-max-str (A : Set) : Set1 where
constructor preorder-max
field
≤ : A → A → Set
refl : ∀ x → ≤ x x
trans : ∀ x y z → ≤ x y → ≤ y z → ≤ x z
max : A → A → A
max-l : ∀ l r → ≤ l (max l r)
max-r : ∀ l r → ≤ r (max l r)
max-lub : ∀ k l r → ≤ l k → ≤ r k → ≤ (max l r) k
------------------------------------------
-- order on nats
≤nat : Nat → Nat → Set
≤nat Z Z = Unit
≤nat Z (S y) = Unit
≤nat (S x) Z = Void
≤nat (S x) (S y) = ≤nat x y
-- proof that Nat is reflexive under ≤
nat-refl : ∀ (x : Nat) → ≤nat x x
nat-refl Z = <>
nat-refl (S x) = nat-refl x
-- proof that Nat is transitive under ≤
nat-trans : ∀ (x y z : Nat) → ≤nat x y → ≤nat y z → ≤nat x z
nat-trans Z Z Z p q = <>
nat-trans Z Z (S z) p q = <>
nat-trans Z (S y) Z p q = <>
nat-trans Z (S y) (S z) p q = <>
nat-trans (S x) Z Z p q = p
nat-trans (S x) Z (S z) () q
nat-trans (S x) (S y) Z p ()
nat-trans (S x) (S y) (S z) p q = nat-trans x y z p q
-- nat max
nat-max : Nat → Nat → Nat
nat-max Z n = n
nat-max (S m) Z = S m
nat-max (S m) (S n) = S (nat-max m n)
-- left max
nat-max-l : ∀ (l r : Nat) → ≤nat l (nat-max l r)
nat-max-l Z Z = <>
nat-max-l Z (S n) = <>
nat-max-l (S m) Z = nat-refl m
nat-max-l (S m) (S n) = nat-max-l m n
-- right max
nat-max-r : ∀ (l r : Nat) → ≤nat r (nat-max l r)
nat-max-r Z Z = <>
nat-max-r Z (S n) = nat-refl n
nat-max-r (S m) Z = <>
nat-max-r (S m) (S n) = nat-max-r m n
-- rub a dub dub, Nats have a lub
nat-max-lub : ∀ (k l r : Nat) → ≤nat l k → ≤nat r k → ≤nat (nat-max l r) k
nat-max-lub Z Z Z p q = <>
nat-max-lub Z Z (S r) p ()
nat-max-lub Z (S l) Z () q
nat-max-lub Z (S l) (S r) () q
nat-max-lub (S k) Z Z p q = <>
nat-max-lub (S k) Z (S r) p q = q
nat-max-lub (S k) (S l) Z p q = p
nat-max-lub (S k) (S l) (S r) p q = nat-max-lub k l r p q
-- Nat is preorder with max
nat-p : Preorder-max-str Nat
nat-p = preorder-max ≤nat nat-refl nat-trans nat-max nat-max-l nat-max-r nat-max-lub
------------------------------------------
--same thing for products
-- relation for products
≤axb : ∀ {A B : Set} → Preorder-max-str A → Preorder-max-str B → (A × B) → (A × B) → Set
≤axb PA PB (a1 , b1) (a2 , b2) = Preorder-max-str.≤ PA a1 a2 × Preorder-max-str.≤ PB b1 b2
axb-refl : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (x : (A × B)) → ≤axb PA PB x x
axb-refl PA PB (a , b) = Preorder-max-str.refl PA a , Preorder-max-str.refl PB b
axb-trans : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (x y z : (A × B)) → ≤axb PA PB x y → ≤axb PA PB y z → ≤axb PA PB x z
axb-trans PA PB (a1 , b1) (a2 , b2) (a3 , b3) (a1<a2 , b1<b2) (a2<a3 , b2<b3) =
Preorder-max-str.trans PA a1 a2 a3 a1<a2 a2<a3 , Preorder-max-str.trans PB b1 b2 b3 b1<b2 b2<b3
axb-max : ∀ {A B : Set} → Preorder-max-str A → Preorder-max-str B → (A × B) → (A × B) → (A × B)
axb-max PA PB (a1 , b1) (a2 , b2) = Preorder-max-str.max PA a1 a2 , Preorder-max-str.max PB b1 b2
axb-max-l : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (l r : (A × B)) → ≤axb PA PB l (axb-max PA PB l r)
axb-max-l PA PB (a1 , b1) (a2 , b2) = Preorder-max-str.max-l PA a1 a2 , Preorder-max-str.max-l PB b1 b2
axb-max-r : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (l r : (A × B)) → ≤axb PA PB r (axb-max PA PB l r)
axb-max-r PA PB (a1 , b1) (a2 , b2) = Preorder-max-str.max-r PA a1 a2 , Preorder-max-str.max-r PB b1 b2
axb-max-lub : ∀ {A B : Set}
→ (PA : Preorder-max-str A)
→ (PB : Preorder-max-str B)
→ (k l r : (A × B))
→ ≤axb PA PB l k → ≤axb PA PB r k → ≤axb PA PB (axb-max PA PB l r) k
axb-max-lub PA PB (k1 , k2) (l1 , l2) (r1 , r2) (l1<k1 , l2<k2) (r1<k1 , r2<k2) =
Preorder-max-str.max-lub PA k1 l1 r1 l1<k1 r1<k1 , Preorder-max-str.max-lub PB k2 l2 r2 l2<k2 r2<k2
axb-p : ∀ (A B : Set) → Preorder-max-str A → Preorder-max-str B → Preorder-max-str (A × B)
axb-p A B PA PB = preorder-max (≤axb PA PB) (axb-refl PA PB) (axb-trans PA PB) (axb-max PA PB) (axb-max-l PA PB) (axb-max-r PA PB) (axb-max-lub PA PB)
------------------------------------------
-- the type of monotone functions from A to B
record Monotone (A : Set) (B : Set) (PA : Preorder-max-str A) (PB : Preorder-max-str B) : Set where
constructor monotone
field
f : A → B
is-monotone : ∀ (x y : A) → Preorder-max-str.≤ PA x y → Preorder-max-str.≤ PB (f x) (f y)
≤mono : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (Monotone A B PA PB) → (Monotone A B PA PB) → Set
≤mono {A} PA PB f g = (x : A) → Preorder-max-str.≤ PB (Monotone.f f x) (Monotone.f g x)
mono-refl : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (x : (Monotone A B PA PB)) → ≤mono PA PB x x
mono-refl PA PB f = λ x → Preorder-max-str.refl PB (Monotone.f f x)
mono-trans : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (x y z : (Monotone A B PA PB)) → ≤mono PA PB x y → ≤mono PA PB y z → ≤mono PA PB x z
mono-trans PA PB f g h p q = λ x → Preorder-max-str.trans PB (Monotone.f f x) (Monotone.f g x) (Monotone.f h x) (p x) (q x)
mono-max : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (Monotone A B PA PB) → (Monotone A B PA PB) → (Monotone A B PA PB)
mono-max PA PB (monotone f f-ismono) (monotone g g-ismono) =
monotone (λ x → Preorder-max-str.max PB (f x) (g x)) (λ x y x₁ → Preorder-max-str.max-lub PB (Preorder-max-str.max PB (f y) (g y)) (f x) (g x)
(Preorder-max-str.trans PB (f x) (f y) (Preorder-max-str.max PB (f y) (g y)) (f-ismono x y x₁) (Preorder-max-str.max-l PB (f y) (g y)))
(Preorder-max-str.trans PB (g x) (g y) (Preorder-max-str.max PB (f y) (g y)) (g-ismono x y x₁) (Preorder-max-str.max-r PB (f y) (g y))))
mono-max-l : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (l r : Monotone A B PA PB) → ≤mono PA PB l (mono-max PA PB l r)
mono-max-l PA PB f g = λ x → Preorder-max-str.max-l PB (Monotone.f f x) (Monotone.f g x)
mono-max-r : ∀ {A B : Set} → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → (l r : Monotone A B PA PB) → ≤mono PA PB r (mono-max PA PB l r)
mono-max-r PA PB f g = λ x → Preorder-max-str.max-r PB (Monotone.f f x) (Monotone.f g x)
mono-max-lub : ∀ {A B : Set}
→ (PA : Preorder-max-str A)
→ (PB : Preorder-max-str B)
→ (k l r : Monotone A B PA PB)
→ ≤mono PA PB l k → ≤mono PA PB r k → ≤mono PA PB (mono-max PA PB l r) k
mono-max-lub PA PB f g h p q = λ x → Preorder-max-str.max-lub PB (Monotone.f f x) (Monotone.f g x) (Monotone.f h x) (p x) (q x)
mono-p : ∀ (A B : Set) → (PA : Preorder-max-str A) → (PB : Preorder-max-str B) → Preorder-max-str (Monotone A B PA PB)
mono-p A B PA PB = preorder-max (≤mono PA PB) (mono-refl PA PB) (mono-trans PA PB) (mono-max PA PB) (mono-max-l PA PB) (mono-max-r PA PB) (mono-max-lub PA PB)
------------------------------------------
--"Hey, let's make things monotone!"
-- another way to define the ≤ relation on Nat
data _≤'_ : Nat → Nat → Set where
x≤'x : {x : Nat} → x ≤' x
x≤'y : {x y : Nat} → x ≤' y → x ≤' (S y)
-- silly lemmas about silly nats
nat-lemma : (x : Nat) → Z ≤' x
nat-lemma Z = x≤'x
nat-lemma (S x) = x≤'y (nat-lemma x)
nat-lemma2 : (x y : Nat) → x ≤' y → (S x) ≤' (S y)
nat-lemma2 .y y x≤'x = x≤'x
nat-lemma2 x .(S y) (x≤'y {.x} {y} p) = x≤'y (nat-lemma2 x y p)
nat-lemma3 : (x : Nat) → ≤nat x (S x)
nat-lemma3 Z = <>
nat-lemma3 (S x) = nat-lemma3 x
-- maps to and from the old and new definitions of the ≤ relation
≤-map : (x y : Nat) → ≤nat x y → x ≤' y
≤-map Z Z f = x≤'x
≤-map Z (S y) f = nat-lemma (S y)
≤-map (S x) Z ()
≤-map (S x) (S y) f = nat-lemma2 x y (≤-map x y f)
≤-map2 : (x y : Nat) → x ≤' y → ≤nat x y
≤-map2 .y y x≤'x = nat-refl y
≤-map2 x .(S y) (x≤'y {.x} {y} f) = nat-trans x y (S y) (≤-map2 x y f) (nat-lemma3 y)
-- a function to find the maximum of a whole set and not just a pair of values
max' : ∀ {A : Set} → (PA : Preorder-max-str A) → Nat → (Nat → A) → A
max' PA Z f = f Z
max' PA (S n) f = Preorder-max-str.max PA (f (S n)) (max' PA n f)
-- primitive recursion function corresponding to rec
natrec : ∀{C : Set} → C → (Nat → C → C) → Nat → C
natrec base step Z = base
natrec base step (S n) = step n (natrec base step n)
-- another lemma
mono-f-lemma : ∀ {A : Set} → (x y : Nat) → x ≤' y → (PA : Preorder-max-str A) → (f : Nat → A) → Preorder-max-str.≤ PA (max' PA x f) (max' PA y f)
mono-f-lemma .y y x≤'x PA f = Preorder-max-str.refl PA (max' PA y f)
mono-f-lemma x .(S y) (x≤'y {.x} {y} p) PA f = Preorder-max-str.trans PA (max' PA x f) (max' PA y f) (max' PA (S y) f)
(mono-f-lemma x y p PA f) (Preorder-max-str.max-r PA (f (S y)) (max' PA y f))
-- make a function monotone by taking the max at every point
mono-f : ∀ {A : Set} → (PA : Preorder-max-str A) → (f : Nat → A) → Monotone Nat A nat-p PA
mono-f PA f = monotone (λ x → max' PA x f) (λ x y x₁ → mono-f-lemma x y (≤-map x y x₁) PA f)
-- f ≤ (monotonization of f)
mono-f-is-monotone : ∀ {A : Set} → (PA : Preorder-max-str A) → (x : Nat) → (f : Nat → A) → Preorder-max-str.≤ PA (f x) (Monotone.f (mono-f PA f) x)
mono-f-is-monotone PA Z f = Preorder-max-str.refl PA (f Z)
mono-f-is-monotone PA (S x) f = Preorder-max-str.max-l PA (f (S x)) (max' PA x f)
-- if f is already monotone, then its monotonization is less than or equal to itself
mono-f-≤-itself : ∀ {A : Set}
→ (PA : Preorder-max-str A)
→ (x : Nat)
→ (f : Monotone Nat A nat-p PA)
→ Preorder-max-str.≤ PA (Monotone.f (mono-f PA (Monotone.f f)) x) (Monotone.f f x)
mono-f-≤-itself PA Z f = Preorder-max-str.refl PA (Monotone.f (mono-f PA (Monotone.f f)) Z)
mono-f-≤-itself PA (S x) f = Preorder-max-str.max-lub PA (Monotone.f f (S x)) (Monotone.f f (S x)) (max' PA x (Monotone.f f))
(Preorder-max-str.refl PA (Monotone.f f (S x)))
(Preorder-max-str.trans PA (max' PA x (Monotone.f f))
(Monotone.f f x) (Monotone.f f (S x)) (mono-f-≤-itself PA x f)
(Monotone.is-monotone f x (S x) (≤-map2 x (S x) (x≤'y x≤'x))))
-- monotonize at the end
mnatrec : ∀ {A : Set} → (PA : Preorder-max-str A) → A → (Nat → A → A) → Nat → A
mnatrec PA zc sc e = max' PA e (natrec zc sc)
-- still incorrect
mono-natrec : ∀ {A : Set} → (PA : Preorder-max-str A) → A → (Nat → A → A) → Nat → A
mono-natrec PA zc sc Z = zc
mono-natrec PA zc sc (S y') = Preorder-max-str.max PA zc (sc y' (mono-natrec PA zc sc y'))
data N' : Set where
Z1 : N'
Sa : N' → N'
Sb : N' → N'
------------------------------------------
-- same thing as Preorder.agda but for this module
PREORDER = Σ (λ (A : Set) → Preorder-max-str A)
MONOTONE : (PΓ PA : PREORDER) → Set
MONOTONE (Γ , PΓ) (A , PA) = Monotone Γ A PΓ PA
-- some operations
_×p_ : PREORDER → PREORDER → PREORDER
(A , PA) ×p (B , PB) = A × B , axb-p A B PA PB
_->p_ : PREORDER → PREORDER → PREORDER
(A , PA) ->p (B , PB) = Monotone A B PA PB , mono-p A B PA PB
-- Unit is a preorder
unit-p : PREORDER
unit-p = Unit , preorder-max (λ x x₁ → Unit) (λ x → <>) (λ x y z _ _ → <>) (λ _ _ → <>) (λ l r → <>) (λ l r → <>) (λ k l r _ _ → <>)
-- identity preserves monotonicity
id : ∀ {Γ} → MONOTONE Γ Γ
id = λ {Γ} → monotone (λ x → x) (λ x y x₁ → x₁)
-- composition preserves monotonicity
comp : ∀ {PA PB PC} → MONOTONE PA PB → MONOTONE PB PC → MONOTONE PA PC
comp (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → g (f x)) (λ x y x₁ → g-ismono (f x) (f y) (f-ismono x y x₁))
-- proofs that types like pairs etc. with preorders are monotone
pair' : ∀ {PΓ PA PB} → MONOTONE PΓ PA → MONOTONE PΓ PB → MONOTONE PΓ (PA ×p PB)
pair' (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → (f x) , (g x)) (λ x y x₁ → f-ismono x y x₁ , g-ismono x y x₁)
fst' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ×p PB) → MONOTONE PΓ PA
fst' (monotone f f-ismono) =
monotone (λ x → fst (f x)) (λ x y z → fst (f-ismono x y z))
snd' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ×p PB) → MONOTONE PΓ PB
snd' (monotone f f-ismono) =
monotone (λ x → snd (f x)) (λ x y z → snd (f-ismono x y z))
lam' : ∀ {PΓ PA PB} → MONOTONE (PΓ ×p PA) PB → MONOTONE PΓ (PA ->p PB)
lam' {Γ , preorder-max _ reflΓ _ _ _ _ _} {A , preorder-max _ refla _ _ _ _ _} (monotone f f-ismono) =
monotone (λ x → monotone (λ p → f (x , p)) (λ a b c → f-ismono (x , a) (x , b) ((reflΓ x) , c))) (λ x y z w → f-ismono (x , w) (y , w) (z , (refla w)))
app' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ->p PB) → MONOTONE PΓ PA → MONOTONE PΓ PB
app' {_} {_} {b , preorder-max _ _ transb _ _ _ _} (monotone f f-ismono) (monotone g g-ismono) =
monotone (λ x → Monotone.f (f x) (g x)) (λ x y z → transb (Monotone.f (f x) (g x)) (Monotone.f (f y) (g x)) (Monotone.f (f y) (g y))
(f-ismono x y z (g x)) (Monotone.is-monotone (f y) (g x) (g y) (g-ismono x y z)))
| {
"alphanum_fraction": 0.5311757305,
"avg_line_length": 47.3708609272,
"ext": "agda",
"hexsha": "e9b9c778158f2286af78aff460d9303d8acffe9e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity-drafts/Preorder-withmax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity-drafts/Preorder-withmax.agda",
"max_line_length": 171,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity-drafts/Preorder-withmax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 5593,
"size": 14306
} |
module Text.Greek.SBLGNT.Jude where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΙΟΥΔΑ : List (Word)
ΙΟΥΔΑ =
word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Jude.1.1"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Jude.1.1"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Jude.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.1"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.1"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Jude.1.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Jude.1.1"
∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Jude.1.1"
∷ word (τ ∷ ε ∷ τ ∷ η ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.1"
∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Jude.1.2"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Jude.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.2"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Jude.1.2"
∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "Jude.1.2"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.3"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.3"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.3"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Jude.1.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.3"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Jude.1.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.3"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.3"
∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "Jude.1.3"
∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Jude.1.3"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Jude.1.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Jude.1.3"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ ω ∷ ν ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Jude.1.3"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.3"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ ῃ ∷ []) "Jude.1.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.3"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.3"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ σ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.4"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Jude.1.4"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Jude.1.4"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.4"
∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Jude.1.4"
∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Jude.1.4"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.4"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Jude.1.4"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Jude.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Jude.1.4"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.4"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ α ∷ []) "Jude.1.4"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.4"
∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Jude.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.4"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Jude.1.4"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ν ∷ []) "Jude.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.4"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.4"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Jude.1.4"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Jude.1.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (Ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.5"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.5"
∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Jude.1.5"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.5"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Jude.1.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Jude.1.5"
∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Jude.1.5"
∷ word (ἐ ∷ κ ∷ []) "Jude.1.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Jude.1.5"
∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ο ∷ υ ∷ []) "Jude.1.5"
∷ word (σ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.5"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Jude.1.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.5"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ε ∷ []) "Jude.1.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.6"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.6"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Jude.1.6"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ι ∷ π ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.6"
∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (ο ∷ ἰ ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.6"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.6"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Jude.1.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ϊ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.6"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.6"
∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Jude.1.6"
∷ word (ὡ ∷ ς ∷ []) "Jude.1.7"
∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (Γ ∷ ό ∷ μ ∷ ο ∷ ρ ∷ ρ ∷ α ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (α ∷ ἱ ∷ []) "Jude.1.7"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Jude.1.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Jude.1.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.7"
∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Jude.1.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.7"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Jude.1.7"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Jude.1.7"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Jude.1.7"
∷ word (π ∷ ρ ∷ ό ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (δ ∷ ε ∷ ῖ ∷ γ ∷ μ ∷ α ∷ []) "Jude.1.7"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Jude.1.7"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.7"
∷ word (δ ∷ ί ∷ κ ∷ η ∷ ν ∷ []) "Jude.1.7"
∷ word (ὑ ∷ π ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (Ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Jude.1.8"
∷ word (μ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.8"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (ἐ ∷ ν ∷ υ ∷ π ∷ ν ∷ ι ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Jude.1.8"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.8"
∷ word (μ ∷ ι ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Jude.1.8"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.8"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ς ∷ []) "Jude.1.8"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.8"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (ὁ ∷ []) "Jude.1.9"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.9"
∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Jude.1.9"
∷ word (ὁ ∷ []) "Jude.1.9"
∷ word (ἀ ∷ ρ ∷ χ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Jude.1.9"
∷ word (τ ∷ ῷ ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ο ∷ []) "Jude.1.9"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.9"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Jude.1.9"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Jude.1.9"
∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.9"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.9"
∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Jude.1.9"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Jude.1.9"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Jude.1.9"
∷ word (Ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ή ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Jude.1.9"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.10"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.10"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Jude.1.10"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.10"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Jude.1.10"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.10"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.10"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Jude.1.10"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.10"
∷ word (φ ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Jude.1.10"
∷ word (ὡ ∷ ς ∷ []) "Jude.1.10"
∷ word (τ ∷ ὰ ∷ []) "Jude.1.10"
∷ word (ἄ ∷ ∙λ ∷ ο ∷ γ ∷ α ∷ []) "Jude.1.10"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Jude.1.10"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.10"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.10"
∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.10"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Κ ∷ ά ∷ ϊ ∷ ν ∷ []) "Jude.1.11"
∷ word (ἐ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ῃ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ὰ ∷ μ ∷ []) "Jude.1.11"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (ἐ ∷ ξ ∷ ε ∷ χ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ᾳ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Κ ∷ ό ∷ ρ ∷ ε ∷ []) "Jude.1.11"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Jude.1.11"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.12"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.12"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.12"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.12"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Jude.1.12"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ α ∷ ι ∷ ς ∷ []) "Jude.1.12"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.12"
∷ word (σ ∷ π ∷ ι ∷ ∙λ ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Jude.1.12"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.12"
∷ word (ἀ ∷ φ ∷ ό ∷ β ∷ ω ∷ ς ∷ []) "Jude.1.12"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.12"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.12"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ []) "Jude.1.12"
∷ word (ἄ ∷ ν ∷ υ ∷ δ ∷ ρ ∷ ο ∷ ι ∷ []) "Jude.1.12"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.12"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Jude.1.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ φ ∷ ε ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Jude.1.12"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Jude.1.12"
∷ word (φ ∷ θ ∷ ι ∷ ν ∷ ο ∷ π ∷ ω ∷ ρ ∷ ι ∷ ν ∷ ὰ ∷ []) "Jude.1.12"
∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ α ∷ []) "Jude.1.12"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Jude.1.12"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.12"
∷ word (ἐ ∷ κ ∷ ρ ∷ ι ∷ ζ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.12"
∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Jude.1.13"
∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ α ∷ []) "Jude.1.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Jude.1.13"
∷ word (ἐ ∷ π ∷ α ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.13"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.13"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ α ∷ ς ∷ []) "Jude.1.13"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Jude.1.13"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.13"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Jude.1.13"
∷ word (ὁ ∷ []) "Jude.1.13"
∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ ς ∷ []) "Jude.1.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.13"
∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.13"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Jude.1.13"
∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.13"
∷ word (Π ∷ ρ ∷ ο ∷ ε ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.14"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.14"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.14"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Jude.1.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Jude.1.14"
∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "Jude.1.14"
∷ word (Ἑ ∷ ν ∷ ὼ ∷ χ ∷ []) "Jude.1.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Jude.1.14"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Jude.1.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Jude.1.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Jude.1.14"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.14"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Jude.1.14"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.15"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.15"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ ξ ∷ α ∷ ι ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.15"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ὧ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἠ ∷ σ ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ὧ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ τ ∷ []) "Jude.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.15"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.15"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.16"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.16"
∷ word (γ ∷ ο ∷ γ ∷ γ ∷ υ ∷ σ ∷ τ ∷ α ∷ ί ∷ []) "Jude.1.16"
∷ word (μ ∷ ε ∷ μ ∷ ψ ∷ ί ∷ μ ∷ ο ∷ ι ∷ ρ ∷ ο ∷ ι ∷ []) "Jude.1.16"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.16"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.16"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.16"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Jude.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.16"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Jude.1.16"
∷ word (ὑ ∷ π ∷ έ ∷ ρ ∷ ο ∷ γ ∷ κ ∷ α ∷ []) "Jude.1.16"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.16"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Jude.1.16"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.16"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Jude.1.16"
∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.17"
∷ word (δ ∷ έ ∷ []) "Jude.1.17"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.17"
∷ word (μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (ῥ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ι ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.17"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.18"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Jude.1.18"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.18"
∷ word (Ἐ ∷ π ∷ []) "Jude.1.18"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Jude.1.18"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Jude.1.18"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.18"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ῖ ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.18"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.18"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.18"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ι ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.19"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.19"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.19"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ ο ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.19"
∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "Jude.1.19"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Jude.1.19"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.19"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.19"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.20"
∷ word (δ ∷ έ ∷ []) "Jude.1.20"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.20"
∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.20"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.20"
∷ word (ἁ ∷ γ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῃ ∷ []) "Jude.1.20"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.20"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Jude.1.20"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.20"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Jude.1.20"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Jude.1.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.21"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.21"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Jude.1.21"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Jude.1.21"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.21"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Jude.1.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.21"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.21"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Jude.1.21"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.22"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.22"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.22"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ᾶ ∷ τ ∷ ε ∷ []) "Jude.1.22"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.22"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.23"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.23"
∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Jude.1.23"
∷ word (ἐ ∷ κ ∷ []) "Jude.1.23"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Jude.1.23"
∷ word (ἁ ∷ ρ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.23"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.23"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.23"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ᾶ ∷ τ ∷ ε ∷ []) "Jude.1.23"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.23"
∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "Jude.1.23"
∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.23"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.23"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Jude.1.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.23"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Jude.1.23"
∷ word (ἐ ∷ σ ∷ π ∷ ι ∷ ∙λ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Jude.1.23"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ []) "Jude.1.23"
∷ word (Τ ∷ ῷ ∷ []) "Jude.1.24"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.24"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Jude.1.24"
∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Jude.1.24"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.24"
∷ word (ἀ ∷ π ∷ τ ∷ α ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.24"
∷ word (σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.24"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.24"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Jude.1.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.24"
∷ word (ἀ ∷ μ ∷ ώ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.24"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.24"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Jude.1.24"
∷ word (μ ∷ ό ∷ ν ∷ ῳ ∷ []) "Jude.1.25"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Jude.1.25"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ι ∷ []) "Jude.1.25"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.25"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Jude.1.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.25"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.25"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Jude.1.25"
∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Jude.1.25"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Jude.1.25"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "Jude.1.25"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.25"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.25"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Jude.1.25"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Jude.1.25"
∷ []
| {
"alphanum_fraction": 0.3402528694,
"avg_line_length": 47.4553191489,
"ext": "agda",
"hexsha": "41176879bb4b10b5327567b1c07effdff9df1c80",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/Jude.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/Jude.agda",
"max_line_length": 85,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/Jude.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 16076,
"size": 22304
} |
open import Level
import Categories.Category
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong)
open import Syntax
open import Renaming
open import Substitution
open import Instantiation
module SyntaxMap where
open Signature
open Expression
open Equality
infix 5 _→ᵐ_
-- syntax map
_→ᵐ_ : Signature → Signature → Set
𝕊 →ᵐ 𝕋 = ∀ {cl} (S : symb 𝕊 cl) → Expr 𝕋 (obj cl) (symb-arg 𝕊 S) 𝟘
-- equality of syntax maps
infix 4 _≈ᵐ_
_≈ᵐ_ : ∀ {𝕊 𝕋} (f g : 𝕊 →ᵐ 𝕋) → Set
_≈ᵐ_ {𝕊 = 𝕊} {𝕋 = 𝕋} f g =
∀ {cl} (S : symb 𝕊 cl) → f S ≈ g S
-- equality is an equivalence relation
≈ᵐ-refl : ∀ {𝕊 𝕋} {f : 𝕊 →ᵐ 𝕋} → f ≈ᵐ f
≈ᵐ-refl {𝕋 = 𝕋} S = ≈-refl
≈ᵐ-sym : ∀ {𝕊 𝕋} {f g : 𝕊 →ᵐ 𝕋} → f ≈ᵐ g → g ≈ᵐ f
≈ᵐ-sym {𝕋 = 𝕋} ξ S = ≈-sym (ξ S)
≈ᵐ-trans : ∀ {𝕊 𝕋} {f g h : 𝕊 →ᵐ 𝕋} → f ≈ᵐ g → g ≈ᵐ h → f ≈ᵐ h
≈ᵐ-trans {𝕋 = 𝕋} ζ ξ S = ≈-trans (ζ S) (ξ S)
-- The identity raw syntax map
𝟙ᵐ : ∀ {𝕊} → (𝕊 →ᵐ 𝕊)
𝟙ᵐ {𝕊} S = expr-symb S (expr-meta-generic 𝕊)
-- Action of a raw syntax map
infixr 10 [_]ᵐ_
[_]ᵐ_ : ∀ {𝕊 𝕋} → (𝕊 →ᵐ 𝕋) → ∀ {cl 𝕄 γ} → Expr 𝕊 𝕄 cl γ → Expr 𝕋 𝕄 cl γ
[ f ]ᵐ (expr-var x) = expr-var x
[_]ᵐ_ {𝕋 = 𝕋} f {𝕄 = 𝕄} (expr-symb S es) =
[ (λ M → [ f ]ᵐ es M) ]ⁱ ([ 𝟘-initial ]ʳ f S)
[ f ]ᵐ (expr-meta M ts) = expr-meta M (λ i → [ f ]ᵐ (ts i))
[ f ]ᵐ expr-eqty = expr-eqty
[ f ]ᵐ expr-eqtm = expr-eqtm
-- Action preserves equality
[]ᵐ-resp-≈ : ∀ {𝕊 𝕋} {cl 𝕄 γ} (f : 𝕊 →ᵐ 𝕋) {t u : Expr 𝕊 𝕄 cl γ} →
t ≈ u → [ f ]ᵐ t ≈ [ f ]ᵐ u
[]ᵐ-resp-≈ f (≈-≡ ξ) = ≈-≡ (cong ([ f ]ᵐ_) ξ)
[]ᵐ-resp-≈ {𝕋 = 𝕋} f (≈-symb {S = S} ξ) =
[]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) λ M → []ᵐ-resp-≈ f (ξ M)
[]ᵐ-resp-≈ f (≈-meta ξ) = ≈-meta (λ i → []ᵐ-resp-≈ f (ξ i))
[]ᵐ-resp-≈ᵐ : ∀ {𝕊 𝕋} {cl 𝕄 γ} {f g : 𝕊 →ᵐ 𝕋} (t : Expr 𝕊 𝕄 cl γ) →
f ≈ᵐ g → [ f ]ᵐ t ≈ [ g ]ᵐ t
[]ᵐ-resp-≈ᵐ (expr-var x) ξ = ≈-refl
[]ᵐ-resp-≈ᵐ {f = f} {g = g} (expr-symb S es) ξ =
[]ⁱ-resp-≈ⁱ-≈ {I = λ M → [ f ]ᵐ es M} {J = λ M → [ g ]ᵐ es M}
(λ M → []ᵐ-resp-≈ᵐ (es M) ξ)
([]ʳ-resp-≈ 𝟘-initial (ξ S))
[]ᵐ-resp-≈ᵐ (expr-meta M ts) ξ = ≈-meta (λ i → []ᵐ-resp-≈ᵐ (ts i) ξ)
[]ᵐ-resp-≈ᵐ expr-eqty ξ = ≈-eqty
[]ᵐ-resp-≈ᵐ expr-eqtm ξ = ≈-eqtm
[]ᵐ-resp-≈ᵐ-≈ : ∀ {𝕊 𝕋} {cl 𝕄 γ} {f g : 𝕊 →ᵐ 𝕋} {t u : Expr 𝕊 𝕄 cl γ} →
f ≈ᵐ g → t ≈ u → [ f ]ᵐ t ≈ [ g ]ᵐ u
[]ᵐ-resp-≈ᵐ-≈ {g = g} {t = t} ζ ξ = ≈-trans ([]ᵐ-resp-≈ᵐ t ζ) ([]ᵐ-resp-≈ g ξ)
-- Composition of raw syntax maps
infixl 7 _∘ᵐ_
_∘ᵐ_ : ∀ {𝕊 𝕋 𝕌} → (𝕋 →ᵐ 𝕌) → (𝕊 →ᵐ 𝕋) → (𝕊 →ᵐ 𝕌)
(g ∘ᵐ f) S = [ g ]ᵐ (f S)
-- Action preserves identity
module _ {𝕊} where
open Equality
open Renaming
open Substitution
[𝟙ᵐ] : ∀ {cl 𝕄 γ} (t : Expr 𝕊 cl 𝕄 γ) → [ 𝟙ᵐ ]ᵐ t ≈ t
[𝟙ᵐ] (expr-var x) = ≈-refl
[𝟙ᵐ] (expr-symb S es) =
≈-symb (λ {cⁱ γⁱ} i → [𝟙ᵐ]-arg cⁱ γⁱ i)
where [𝟙ᵐ]-arg : ∀ cⁱ γⁱ (i : [ cⁱ , γⁱ ]∈ symb-arg 𝕊 S) → _
[𝟙ᵐ]-arg (obj x) γⁱ i =
≈-trans
([]ˢ-resp-≈ _ ([]ʳ-resp-≈ _ ([𝟙ᵐ] (es i))))
(≈-trans (≈-sym ([ˢ∘ʳ] (es i))) ([]ˢ-id (λ { (var-left _) → ≈-refl ; (var-right _) → ≈-refl })))
[𝟙ᵐ]-arg EqTy γⁱ i = ≈-eqty
[𝟙ᵐ]-arg EqTm γⁱ i = ≈-eqtm
[𝟙ᵐ] (expr-meta M ts) = ≈-meta λ i → [𝟙ᵐ] (ts i)
[𝟙ᵐ] expr-eqty = ≈-eqty
[𝟙ᵐ] expr-eqtm = ≈-eqtm
-- interaction of maps with instantiation and substitution
module _ {𝕊 𝕋} where
open Substitution
infixl 7 _ᵐ∘ˢ_
_ᵐ∘ˢ_ : ∀ {𝕊 𝕋} {𝕄 γ δ} (f : 𝕊 →ᵐ 𝕋) (σ : 𝕊 % 𝕄 ∥ γ →ˢ δ) → (𝕋 % 𝕄 ∥ γ →ˢ δ)
(f ᵐ∘ˢ σ) x = [ f ]ᵐ σ x
[]ᵐ-[]ʳ : ∀ {f : 𝕊 →ᵐ 𝕋} {cl 𝕄 γ δ} {ρ : γ →ʳ δ} (t : Expr 𝕊 cl 𝕄 γ) →
([ f ]ᵐ ([ ρ ]ʳ t)) ≈ ([ ρ ]ʳ [ f ]ᵐ t)
[]ᵐ-[]ʳ (expr-var x) = ≈-refl
[]ᵐ-[]ʳ {f = f} {ρ = ρ} (expr-symb S es) =
≈-trans
([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) λ M → []ᵐ-[]ʳ (es M))
(≈-trans
([]ⁱ-resp-≈ⁱ-≈
{t = [ 𝟘-initial ]ʳ f S}
{u = [ ρ ]ʳ ([ 𝟘-initial ]ʳ f S)}
(λ M → ≈-refl)
(≈-trans ([]ʳ-resp-≡ʳ (f S) (λ {()})) ([∘ʳ] (f S))))
(≈-sym ([ʳ∘ⁱ] ([ 𝟘-initial ]ʳ f S))))
[]ᵐ-[]ʳ (expr-meta M ts) = ≈-meta (λ i → []ᵐ-[]ʳ (ts i))
[]ᵐ-[]ʳ expr-eqty = ≈-eqty
[]ᵐ-[]ʳ expr-eqtm = ≈-eqtm
[]ᵐ-[]ˢ : ∀ {cl 𝕄 γ δ} {f : 𝕊 →ᵐ 𝕋} {σ : 𝕊 % 𝕄 ∥ γ →ˢ δ} (t : Expr 𝕊 cl 𝕄 γ) →
[ f ]ᵐ ([ σ ]ˢ t) ≈ [ f ᵐ∘ˢ σ ]ˢ [ f ]ᵐ t
[]ᵐ-[]ˢ (expr-var x) = ≈-refl
[]ᵐ-[]ˢ {f = f} {σ = σ} (expr-symb S es) =
≈-trans
([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) (λ M → []ᵐ-[]ˢ (es M)))
(≈-trans
([]ⁱ-resp-≈ⁱ
([ 𝟘-initial ]ʳ f S)
(λ M → []ˢ-resp-≈ˢ
(λ { (var-left x) → []ᵐ-[]ʳ (σ x)
; (var-right _) → ≈-refl})
([ f ]ᵐ es M)))
(≈-sym ([]ˢ-[]ⁱ {ρ = 𝟘-initial} (f S) λ {()})))
[]ᵐ-[]ˢ (expr-meta M ts) = ≈-meta (λ i → []ᵐ-[]ˢ (ts i))
[]ᵐ-[]ˢ expr-eqty = ≈-eqty
[]ᵐ-[]ˢ expr-eqtm = ≈-eqtm
infixl 7 _ᵐ∘ⁱ_
_ᵐ∘ⁱ_ : ∀ {𝕂 𝕄 γ} (f : 𝕊 →ᵐ 𝕋) (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → 𝕋 % 𝕂 →ⁱ 𝕄 ∥ γ
(f ᵐ∘ⁱ I) M = [ f ]ᵐ I M
⇑ⁱ-resp-ᵐ∘ⁱ : ∀ {𝕂 𝕄 γ δ} {f : 𝕊 →ᵐ 𝕋} {I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ} →
⇑ⁱ {δ = δ} (f ᵐ∘ⁱ I) ≈ⁱ f ᵐ∘ⁱ ⇑ⁱ I
⇑ⁱ-resp-ᵐ∘ⁱ {I = I} M = ≈-sym ([]ᵐ-[]ʳ (I M))
[]ᵐ-[]ⁱ : ∀ {cl 𝕂 𝕄 γ} {f : 𝕊 →ᵐ 𝕋} {I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ} (t : Expr 𝕊 cl 𝕂 γ) →
[ f ]ᵐ ([ I ]ⁱ t) ≈ [ f ᵐ∘ⁱ I ]ⁱ [ f ]ᵐ t
[]ᵐ-[]ⁱ (expr-var x) = ≈-refl
[]ᵐ-[]ⁱ {f = f} {I = I} (expr-symb S es) =
≈-trans
([]ⁱ-resp-≈ⁱ
([ 𝟘-initial ]ʳ f S)
λ M → ≈-trans
([]ᵐ-[]ⁱ (es M))
([]ⁱ-resp-≈ⁱ ([ f ]ᵐ es M) (≈ⁱ-sym (⇑ⁱ-resp-ᵐ∘ⁱ {I = I}))))
([∘ⁱ] ([ 𝟘-initial ]ʳ f S))
[]ᵐ-[]ⁱ {f = f} {I = I} (expr-meta M ts) =
≈-trans
([]ᵐ-[]ˢ (I M))
([]ˢ-resp-≈ˢ (λ { (var-left _) → ≈-refl ; (var-right x) → []ᵐ-[]ⁱ (ts x)}) ([ f ]ᵐ I M))
[]ᵐ-[]ⁱ expr-eqty = ≈-eqty
[]ᵐ-[]ⁱ expr-eqtm = ≈-eqtm
-- idenity is right-neutral
[]ᵐ-meta-generic : ∀ {𝕊 𝕋} {𝕄 γ} {f : 𝕊 →ᵐ 𝕋} {clᴹ γᴹ} {M : [ clᴹ , γᴹ ]∈ 𝕄} →
[ f ]ᵐ (expr-meta-generic 𝕊 {γ = γ} M) ≈ expr-meta-generic 𝕋 M
[]ᵐ-meta-generic {clᴹ = obj _} = ≈-refl
[]ᵐ-meta-generic {clᴹ = EqTy} = ≈-eqty
[]ᵐ-meta-generic {clᴹ = EqTm} = ≈-eqtm
𝟙ᵐ-right : ∀ {𝕊 𝕋} {f : 𝕊 →ᵐ 𝕋} → f ∘ᵐ 𝟙ᵐ ≈ᵐ f
𝟙ᵐ-right {f = f} S =
≈-trans
([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ (f S)) λ M → []ᵐ-meta-generic {M = M})
(≈-trans ([𝟙ⁱ] ([ 𝟘-initial ]ʳ f S)) ([]ʳ-id (λ { ()})))
-- Action preserves composition
module _ {𝕊 𝕋 𝕌} where
[∘ᵐ] : ∀ {f : 𝕊 →ᵐ 𝕋} {g : 𝕋 →ᵐ 𝕌} {cl 𝕄 γ} (t : Expr 𝕊 cl 𝕄 γ) → [ g ∘ᵐ f ]ᵐ t ≈ [ g ]ᵐ [ f ]ᵐ t
[∘ᵐ] (expr-var x) = ≈-refl
[∘ᵐ] {f = f} {g = g} (expr-symb S es) =
≈-trans
([]ⁱ-resp-≈ⁱ-≈ (λ M → [∘ᵐ] (es M)) (≈-sym ([]ᵐ-[]ʳ (f S))))
(≈-sym ([]ᵐ-[]ⁱ ([ 𝟘-initial ]ʳ f S)))
[∘ᵐ] (expr-meta M ts) = ≈-meta (λ i → [∘ᵐ] (ts i))
[∘ᵐ] expr-eqty = ≈-eqty
[∘ᵐ] expr-eqtm = ≈-eqtm
-- Associativity of composition
assocᵐ : ∀ {𝕊 𝕋 𝕌 𝕍} {f : 𝕊 →ᵐ 𝕋} {g : 𝕋 →ᵐ 𝕌} {h : 𝕌 →ᵐ 𝕍} →
(h ∘ᵐ g) ∘ᵐ f ≈ᵐ h ∘ᵐ (g ∘ᵐ f)
assocᵐ {f = f} S = [∘ᵐ] (f S)
-- The category of signatures and syntax maps
module _ where
open Categories.Category
SyntaxMaps : Category (suc zero) zero zero
SyntaxMaps =
record
{ Obj = Signature
; _⇒_ = _→ᵐ_
; _≈_ = _≈ᵐ_
; id = 𝟙ᵐ
; _∘_ = _∘ᵐ_
; assoc = λ {_} {_} {_} {_} {f} {_} {_} {_} S → [∘ᵐ] (f S)
; sym-assoc = λ {_} {_} {_} {𝕍} {f} {_} {_} {_} S → ≈-sym ([∘ᵐ] (f S))
; identityˡ = λ S → [𝟙ᵐ] _
; identityʳ = λ {_} {_} {f} {_} → 𝟙ᵐ-right {f = f}
; identity² = λ _ → [𝟙ᵐ] _
; equiv = record { refl = λ _ → ≈-refl ; sym = ≈ᵐ-sym ; trans = ≈ᵐ-trans }
; ∘-resp-≈ = λ ζ ξ S → []ᵐ-resp-≈ᵐ-≈ ζ (ξ S)
}
| {
"alphanum_fraction": 0.4133400707,
"avg_line_length": 33.685106383,
"ext": "agda",
"hexsha": "1c0974f1d7a7fa7fd5eeb236a9de6a99743f92d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_forks_repo_path": "src/SyntaxMap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_issues_repo_path": "src/SyntaxMap.agda",
"max_line_length": 114,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_stars_repo_path": "src/SyntaxMap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z",
"num_tokens": 4711,
"size": 7916
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Object.BinaryCoproducts {o ℓ e} (C : Category o ℓ e) where
open Category C
open Equiv
open import Level
import Categories.Object.Coproduct as Coproduct
open import Categories.Morphisms C
open module CP = Coproduct C hiding (module BinCoproducts)
open CP public using (BinCoproducts)
record BinaryCoproducts : Set (o ⊔ ℓ ⊔ e) where
infix 10 _⧻_
field
coproduct : ∀ {A B} → Coproduct A B
_∐_ : Obj → Obj → Obj
A ∐ B = Coproduct.A+B (coproduct {A} {B})
∐-comm : ∀ {A B} → _≅_ (A ∐ B) (B ∐ A)
∐-comm = Commutative coproduct coproduct
∐-assoc : ∀ {X Y Z} → _≅_ (X ∐ (Y ∐ Z)) ((X ∐ Y) ∐ Z)
∐-assoc = Associative coproduct coproduct coproduct coproduct
-- Convenience!
i₁ : {A B : Obj} → (A ⇒ (A ∐ B))
i₁ = Coproduct.i₁ coproduct
i₂ : {A B : Obj} → (B ⇒ (A ∐ B))
i₂ = Coproduct.i₂ coproduct
[_,_] : ∀ {A B Q} → (A ⇒ Q) → (B ⇒ Q) → ((A ∐ B) ⇒ Q)
[_,_] = Coproduct.[_,_] coproduct
.commute₁ : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₁ ≡ f
commute₁ = Coproduct.commute₁ coproduct
.commute₂ : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₂ ≡ g
commute₂ = Coproduct.commute₂ coproduct
.universal : ∀ {A B C} {f : A ⇒ C} {g : B ⇒ C} {i : (A ∐ B) ⇒ C}
→ i ∘ i₁ ≡ f → i ∘ i₂ ≡ g → [ f , g ] ≡ i
universal = Coproduct.universal coproduct
assocˡ : ∀ {A B C} → (((A ∐ B) ∐ C) ⇒ (A ∐ (B ∐ C)))
assocˡ = _≅_.g ∐-assoc
assocʳ : ∀ {A B C} → ((A ∐ (B ∐ C)) ⇒ ((A ∐ B) ∐ C))
assocʳ = _≅_.f ∐-assoc
.g-η : ∀ {A B C} {f : (A ∐ B) ⇒ C} → [ f ∘ i₁ , f ∘ i₂ ] ≡ f
g-η = Coproduct.g-η coproduct
.η : ∀ {A B} → [ i₁ , i₂ ] ≡ id {A ∐ B}
η = Coproduct.η coproduct
.[]-cong₂ : ∀ {A B C} → {f f′ : A ⇒ C} {g g′ : B ⇒ C} → f ≡ f′ → g ≡ g′ → [ f , g ] ≡ [ f′ , g′ ]
[]-cong₂ = Coproduct.[]-cong₂ coproduct
-- If I _really_ wanted to, I could do this for a specific pair of coproducts like the rest above, but I'll write that one
-- when I need it.
_⧻_ : ∀ {A B C D} → (A ⇒ B) → (C ⇒ D) → ((A ∐ C) ⇒ (B ∐ D))
f ⧻ g = [ i₁ ∘ f , i₂ ∘ g ]
-- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version
-- that doesn't have an explicit id in it, too?
left : ∀ {A B C} → (A ⇒ B) → ((A ∐ C) ⇒ (B ∐ C))
left f = f ⧻ id
right : ∀ {A C D} → (C ⇒ D) → ((A ∐ C) ⇒ (A ∐ D))
right g = id ⧻ g
-- Just to make this more obvious
.⧻∘i₁ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → (f ⧻ g) ∘ i₁ ≡ i₁ ∘ f
⧻∘i₁ {f = f} {g} = commute₁
.⧻∘i₂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → (f ⧻ g) ∘ i₂ ≡ i₂ ∘ g
⧻∘i₂ {f = f} {g} = commute₂
.[]∘⧻ : ∀ {A B C D E} → {f : B ⇒ E} {f′ : A ⇒ B} {g : D ⇒ E} {g′ : C ⇒ D} → [ f , g ] ∘ ( f′ ⧻ g′ ) ≡ [ f ∘ f′ , g ∘ g′ ]
[]∘⧻ {f = f} {f′} {g} {g′} = sym (universal helper₁ helper₂)
where
helper₁ : ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₁ ≡ f ∘ f′
helper₁ =
begin
([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₁
↓⟨ assoc ⟩
[ f , g ] ∘ ((f′ ⧻ g′) ∘ i₁)
↓⟨ ∘-resp-≡ʳ ⧻∘i₁ ⟩
[ f , g ] ∘ (i₁ ∘ f′)
↑⟨ assoc ⟩
([ f , g ] ∘ i₁) ∘ f′
↓⟨ ∘-resp-≡ˡ commute₁ ⟩
f ∘ f′
∎
where
open HomReasoning
helper₂ : ([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₂ ≡ g ∘ g′
helper₂ =
begin
([ f , g ] ∘ (f′ ⧻ g′)) ∘ i₂
↓⟨ assoc ⟩
[ f , g ] ∘ ((f′ ⧻ g′) ∘ i₂)
↓⟨ ∘-resp-≡ʳ ⧻∘i₂ ⟩
[ f , g ] ∘ (i₂ ∘ g′)
↑⟨ assoc ⟩
([ f , g ] ∘ i₂) ∘ g′
↓⟨ ∘-resp-≡ˡ commute₂ ⟩
g ∘ g′
∎
where
open HomReasoning
.[]∘left : ∀ {A B C D} → {f : C ⇒ B} {f′ : B ⇒ A} {g′ : D ⇒ A} → [ f′ , g′ ] ∘ left f ≡ [ f′ ∘ f , g′ ]
[]∘left {f = f} {f′} {g′} =
begin
[ f′ , g′ ] ∘ left f
↓⟨ []∘⧻ ⟩
[ f′ ∘ f , g′ ∘ id ]
↓⟨ []-cong₂ refl identityʳ ⟩
[ f′ ∘ f , g′ ]
∎
where
open HomReasoning
.[]∘right : ∀ {A B D E} → {f′ : B ⇒ A} {g : E ⇒ D} {g′ : D ⇒ A} → [ f′ , g′ ] ∘ right g ≡ [ f′ , g′ ∘ g ]
[]∘right {f′ = f′} {g} {g′} =
begin
[ f′ , g′ ] ∘ right g
↓⟨ []∘⧻ ⟩
[ f′ ∘ id , g′ ∘ g ]
↓⟨ []-cong₂ identityʳ refl ⟩
[ f′ , g′ ∘ g ]
∎
where
open HomReasoning
.⧻∘⧻ : ∀ {A B C D E F} → {f : B ⇒ C} → {f′ : A ⇒ B} {g : E ⇒ F} {g′ : D ⇒ E} → (f ⧻ g) ∘ (f′ ⧻ g′) ≡ (f ∘ f′) ⧻ (g ∘ g′)
⧻∘⧻ {B = B} {E = E} {f = f} {f′} {g} {g′} =
begin
(f ⧻ g) ∘ (f′ ⧻ g′)
↓⟨ []∘⧻ ⟩
[ (i₁ ∘ f) ∘ f′ , (i₂ ∘ g) ∘ g′ ]
↓⟨ []-cong₂ assoc assoc ⟩
(f ∘ f′) ⧻ (g ∘ g′)
∎
where
open HomReasoning
.∘[] : ∀ {A B C D} {f : B ⇒ A} {g : C ⇒ A} {q : A ⇒ D} → q ∘ [ f , g ] ≡ [ q ∘ f , q ∘ g ]
∘[] = sym (universal (trans assoc (∘-resp-≡ʳ commute₁)) (trans assoc (∘-resp-≡ʳ commute₂)))
Bin→Binary : BinCoproducts -> BinaryCoproducts
Bin→Binary bc = record { coproduct = λ {A} {B} → record {
A+B = A + B;
i₁ = i₁;
i₂ = i₂;
[_,_] = [_,_];
commute₁ = commute₁;
commute₂ = commute₂;
universal = universal } }
where
open CP.BinCoproducts bc
| {
"alphanum_fraction": 0.4029599101,
"avg_line_length": 30.6781609195,
"ext": "agda",
"hexsha": "dc07affd2ce5a2a5562a1597212d1b1e9968c81d",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/BinaryCoproducts.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/BinaryCoproducts.agda",
"max_line_length": 124,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/BinaryCoproducts.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2493,
"size": 5338
} |
-- Andreas, 2014-12-02, issue reported by Jesper Cockx
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
subst : ∀ (A : Set)(P : A → Set)(x y : A) → x ≡ y → P x → P y
subst A P x .x refl t = t
mutual
Type : Set
postulate
type : Type
Term : Type → Set
Type = Term type
mutual
weakenType : Type → Type → Type
weaken : (ty ty' : Type) → Term ty → Term (weakenType ty' ty)
weakenType ty ty' =
let X : Type
X = {!!}
in subst Type Term (weakenType X type) type {!!} (weaken type X ty)
weaken ty ty' t = {!!}
data Test : Type → Set where
test : Test (weakenType type type)
-- Checking the constructor declaration was looping
-- should work now.
| {
"alphanum_fraction": 0.5870503597,
"avg_line_length": 21.71875,
"ext": "agda",
"hexsha": "fc5a6df6a022258c12ef64595f48c280cdf8de2a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue1375-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue1375-2.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue1375-2.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 238,
"size": 695
} |
------------------------------------------------------------------------
-- Half adjoint equivalences
------------------------------------------------------------------------
-- This development is partly based on the presentation of half
-- adjoint equivalences in the HoTT book, and partly based on
-- Voevodsky's work on univalent foundations.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Equivalence.Half-adjoint
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection eq as B using (_↔_)
import Equivalence.Contractible-preimages eq as CP
open import H-level eq as H-level
open import H-level.Closure eq
open import Preimage eq as Preimage using (_⁻¹_)
open import Surjection eq as S hiding (id; _∘_)
private
variable
a b p q : Level
A B C : Type a
P : A → Type p
Q : (x : A) → P x → Type q
f g : A → B
A↔B : A ↔ B
------------------------------------------------------------------------
-- The definition of Is-equivalence
mutual
-- Is-equivalence f means that f is a half adjoint equivalence.
Is-equivalence :
{A : Type a} {B : Type b} →
(A → B) → Type (a ⊔ b)
Is-equivalence {A = A} {B = B} f =
∃ λ (f⁻¹ : B → A) → Proofs f f⁻¹
-- The "proofs" contained in Is-equivalence f.
Proofs :
{A : Type a} {B : Type b} →
(A → B) → (B → A) → Type (a ⊔ b)
Proofs f f⁻¹ =
∃ λ (f-f⁻¹ : ∀ x → f (f⁻¹ x) ≡ x) →
∃ λ (f⁻¹-f : ∀ x → f⁻¹ (f x) ≡ x) →
∀ x → cong f (f⁻¹-f x) ≡ f-f⁻¹ (f x)
-- Some projections.
inverse :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Is-equivalence f → B → A
inverse = proj₁
right-inverse-of :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
(eq : Is-equivalence f) →
∀ x → f (inverse eq x) ≡ x
right-inverse-of = proj₁ ∘ proj₂
left-inverse-of :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
(eq : Is-equivalence f) →
∀ x → inverse eq (f x) ≡ x
left-inverse-of = proj₁ ∘ proj₂ ∘ proj₂
------------------------------------------------------------------------
-- Identity, inverse, composition
-- The identity function is an equivalence.
id-equivalence : Is-equivalence (id {A = A})
id-equivalence =
id
, refl
, refl
, (λ x →
cong id (refl x) ≡⟨ sym $ cong-id _ ⟩∎
refl x ∎)
-- If f is an equivalence, then its inverse is also an equivalence.
inverse-equivalence :
(eq : Is-equivalence f) → Is-equivalence (inverse eq)
inverse-equivalence {f = f} (f⁻¹ , f-f⁻¹ , f⁻¹-f , f-f⁻¹-f) =
f , f⁻¹-f , f-f⁻¹ , f⁻¹-f-f⁻¹
where
abstract
f⁻¹-f-f⁻¹ : ∀ x → cong f⁻¹ (f-f⁻¹ x) ≡ f⁻¹-f (f⁻¹ x)
f⁻¹-f-f⁻¹ x = subst
(λ x → cong f⁻¹ (f-f⁻¹ x) ≡ f⁻¹-f (f⁻¹ x))
(f-f⁻¹ x)
(cong f⁻¹ (f-f⁻¹ (f (f⁻¹ x))) ≡⟨ cong (cong f⁻¹) $ sym $ f-f⁻¹-f _ ⟩
cong f⁻¹ (cong f (f⁻¹-f (f⁻¹ x))) ≡⟨ cong-∘ f⁻¹ f _ ⟩
cong (f⁻¹ ∘ f) (f⁻¹-f (f⁻¹ x)) ≡⟨ cong-≡id-≡-≡id f⁻¹-f ⟩∎
f⁻¹-f (f⁻¹ (f (f⁻¹ x))) ∎)
-- If f and g are inverses, then f ∘ g is an equivalence.
composition-equivalence :
Is-equivalence f → Is-equivalence g → Is-equivalence (f ∘ g)
composition-equivalence
{f = f} {g = g}
(f⁻¹ , f-f⁻¹ , f⁻¹-f , f-f⁻¹-f)
(g⁻¹ , g-g⁻¹ , g⁻¹-g , g-g⁻¹-g) =
[f-g]⁻¹
, [f-g]-[f-g]⁻¹
, [f-g]⁻¹-[f-g]
, [f-g]-[f-g]⁻¹-[f-g]
where
[f-g] = f ∘ g
[f-g]⁻¹ = g⁻¹ ∘ f⁻¹
[f-g]-[f-g]⁻¹ = λ x →
f (g (g⁻¹ (f⁻¹ x))) ≡⟨ cong f $ g-g⁻¹ _ ⟩
f (f⁻¹ x) ≡⟨ f-f⁻¹ _ ⟩∎
x ∎
[f-g]⁻¹-[f-g] = λ x →
g⁻¹ (f⁻¹ (f (g x))) ≡⟨ cong g⁻¹ $ f⁻¹-f _ ⟩
g⁻¹ (g x) ≡⟨ g⁻¹-g _ ⟩∎
x ∎
abstract
[f-g]-[f-g]⁻¹-[f-g] :
∀ x → cong [f-g] ([f-g]⁻¹-[f-g] x) ≡ [f-g]-[f-g]⁻¹ ([f-g] x)
[f-g]-[f-g]⁻¹-[f-g] x =
cong (f ∘ g) (trans (cong g⁻¹ (f⁻¹-f (g x))) (g⁻¹-g x)) ≡⟨ trans (sym $ cong-∘ _ _ _) $
cong (cong _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _ ⟩
cong f (trans (cong (g ∘ g⁻¹) (f⁻¹-f (g x))) (cong g (g⁻¹-g x))) ≡⟨ cong (cong _) $ cong (trans _) $ g-g⁻¹-g _ ⟩
cong f (trans (cong (g ∘ g⁻¹) (f⁻¹-f (g x))) (g-g⁻¹ (g x))) ≡⟨ cong (cong f) $ naturality g-g⁻¹ ⟩
cong f (trans (g-g⁻¹ (f⁻¹ (f (g x)))) (cong id (f⁻¹-f (g x)))) ≡⟨ cong (cong _) $ cong (trans _) $ sym $ cong-id _ ⟩
cong f (trans (g-g⁻¹ (f⁻¹ (f (g x)))) (f⁻¹-f (g x))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong f (g-g⁻¹ (f⁻¹ (f (g x))))) (cong f (f⁻¹-f (g x))) ≡⟨ cong (trans _) $ f-f⁻¹-f _ ⟩∎
trans (cong f (g-g⁻¹ (f⁻¹ (f (g x))))) (f-f⁻¹ (f (g x))) ∎
------------------------------------------------------------------------
-- Conversions to and from bijections
-- Equivalences are bijections (functions with quasi-inverses).
Is-equivalence→↔ :
{@0 A : Type a} {@0 B : Type b} {f : A → B} →
Is-equivalence f → A ↔ B
Is-equivalence→↔ {f = f} (f⁻¹ , f-f⁻¹ , f⁻¹-f , _) = record
{ surjection = record
{ logical-equivalence = record
{ to = f
; from = f⁻¹
}
; right-inverse-of = f-f⁻¹
}
; left-inverse-of = f⁻¹-f
}
-- Functions with quasi-inverses are equivalences.
--
-- Note that the left inverse proof is preserved unchanged.
↔→Is-equivalenceˡ :
(A↔B : A ↔ B) → Is-equivalence (_↔_.to A↔B)
↔→Is-equivalenceˡ A↔B =
from
, right-inverse-of′
, A↔B.left-inverse-of
, left-right
where
open module A↔B = _↔_ A↔B using (to; from)
abstract
right-inverse-of′ : ∀ x → to (from x) ≡ x
right-inverse-of′ x =
to (from x) ≡⟨ sym (A↔B.right-inverse-of _) ⟩
to (from (to (from x))) ≡⟨ cong to (A↔B.left-inverse-of _) ⟩
to (from x) ≡⟨ A↔B.right-inverse-of _ ⟩∎
x ∎
left-right :
∀ x → cong to (A↔B.left-inverse-of x) ≡ right-inverse-of′ (to x)
left-right x =
let lemma =
trans (A↔B.right-inverse-of _)
(cong to (A↔B.left-inverse-of _)) ≡⟨ cong (trans _) $
cong-id _ ⟩
trans (A↔B.right-inverse-of _)
(cong id (cong to (A↔B.left-inverse-of _))) ≡⟨ sym $ naturality A↔B.right-inverse-of ⟩
trans (cong (to ∘ from) (cong to (A↔B.left-inverse-of _)))
(A↔B.right-inverse-of _) ≡⟨ cong (flip trans _) $
cong-∘ _ _ _ ⟩
trans (cong (to ∘ from ∘ to) (A↔B.left-inverse-of _))
(A↔B.right-inverse-of _) ≡⟨ cong (flip trans _) $ sym $
cong-∘ _ _ _ ⟩
trans (cong to (cong (from ∘ to) (A↔B.left-inverse-of _)))
(A↔B.right-inverse-of _) ≡⟨ cong (flip trans _ ∘ cong to) $
cong-≡id-≡-≡id A↔B.left-inverse-of ⟩∎
trans (cong to (A↔B.left-inverse-of _))
(A↔B.right-inverse-of _) ∎
in
cong to (A↔B.left-inverse-of x) ≡⟨ sym $ trans-sym-[trans] _ _ ⟩
trans (sym (A↔B.right-inverse-of _))
(trans (A↔B.right-inverse-of _)
(cong to (A↔B.left-inverse-of _))) ≡⟨ cong (trans _) lemma ⟩∎
trans (sym (A↔B.right-inverse-of _))
(trans (cong to (A↔B.left-inverse-of _))
(A↔B.right-inverse-of _)) ∎
_ : proj₁ (↔→Is-equivalenceˡ A↔B) ≡ _↔_.from A↔B
_ = refl _
_ :
proj₁ (proj₂ (proj₂ (↔→Is-equivalenceˡ A↔B))) ≡
_↔_.left-inverse-of A↔B
_ = refl _
-- Functions with quasi-inverses are equivalences.
--
-- Note that the right inverse proof is preserved unchanged.
↔→Is-equivalenceʳ :
(A↔B : A ↔ B) → Is-equivalence (_↔_.to A↔B)
↔→Is-equivalenceʳ =
inverse-equivalence ∘
↔→Is-equivalenceˡ ∘
B.inverse
_ : proj₁ (↔→Is-equivalenceʳ A↔B) ≡ _↔_.from A↔B
_ = refl _
_ : proj₁ (proj₂ (↔→Is-equivalenceʳ A↔B)) ≡ _↔_.right-inverse-of A↔B
_ = refl _
------------------------------------------------------------------------
-- Is-equivalence is related to CP.Is-equivalence (part one)
-- Is-equivalence f and CP.Is-equivalence f are logically equivalent.
Is-equivalence⇔Is-equivalence-CP :
Is-equivalence f ⇔ CP.Is-equivalence f
Is-equivalence⇔Is-equivalence-CP = record
{ to = to
; from = from
}
where
to : Is-equivalence f → CP.Is-equivalence f
to {f = f} (f⁻¹ , f-f⁻¹ , f⁻¹-f , f-f⁻¹-f) y =
(f⁻¹ y , f-f⁻¹ y)
, λ (x , f-f⁻¹′) →
Σ-≡,≡→≡
(f⁻¹ y ≡⟨ sym $ cong f⁻¹ f-f⁻¹′ ⟩
f⁻¹ (f x) ≡⟨ f⁻¹-f x ⟩∎
x ∎)
(elim¹
(λ {y} f-f⁻¹′ →
subst (λ x → f x ≡ y)
(trans (sym (cong f⁻¹ f-f⁻¹′)) (f⁻¹-f x))
(f-f⁻¹ y) ≡
f-f⁻¹′)
(subst (λ x′ → f x′ ≡ f x)
(trans (sym (cong f⁻¹ (refl _))) (f⁻¹-f x))
(f-f⁻¹ (f x)) ≡⟨ cong (flip (subst _) _) $
trans (cong (flip trans _) $
trans (cong sym $ cong-refl _) $
sym-refl) $
trans-reflˡ _ ⟩
subst (λ x′ → f x′ ≡ f x) (f⁻¹-f x) (f-f⁻¹ (f x)) ≡⟨ subst-∘ _ _ _ ⟩
subst (_≡ f x) (cong f (f⁻¹-f x)) (f-f⁻¹ (f x)) ≡⟨ subst-trans-sym ⟩
trans (sym (cong f (f⁻¹-f x))) (f-f⁻¹ (f x)) ≡⟨ cong (flip trans _ ∘ sym) $
f-f⁻¹-f _ ⟩
trans (sym (f-f⁻¹ (f x))) (f-f⁻¹ (f x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
f-f⁻¹′)
from : CP.Is-equivalence f → Is-equivalence f
from eq =
CP.inverse eq
, CP.right-inverse-of eq
, CP.left-inverse-of eq
, CP.left-right-lemma eq
-- All fibres of an equivalence over a given point are equal to a
-- given fibre.
irrelevance :
(eq : Is-equivalence f) →
∀ y (p : f ⁻¹ y) → (inverse eq y , right-inverse-of eq y) ≡ p
irrelevance =
CP.irrelevance ∘
_⇔_.to Is-equivalence⇔Is-equivalence-CP
-- When proving that a function is an equivalence one can assume that
-- the codomain is inhabited.
[inhabited→Is-equivalence]→Is-equivalence :
{f : A → B} →
(B → Is-equivalence f) → Is-equivalence f
[inhabited→Is-equivalence]→Is-equivalence hyp =
_⇔_.from Is-equivalence⇔Is-equivalence-CP $ λ x →
_⇔_.to Is-equivalence⇔Is-equivalence-CP (hyp x) x
------------------------------------------------------------------------
-- The "inverse of extensionality" is an equivalence (assuming
-- extensionality)
-- Is-equivalence respects extensional equality.
respects-extensional-equality :
(∀ x → f x ≡ g x) →
Is-equivalence f → Is-equivalence g
respects-extensional-equality
{f = f} {g = g} f≡g (f⁻¹ , f-f⁻¹ , f⁻¹-f , f-f⁻¹-f) =
↔→Is-equivalenceʳ (record
{ surjection = record
{ logical-equivalence = record
{ to = g
; from = f⁻¹
}
; right-inverse-of = λ x →
g (f⁻¹ x) ≡⟨ sym $ f≡g _ ⟩
f (f⁻¹ x) ≡⟨ f-f⁻¹ _ ⟩∎
x ∎
}
; left-inverse-of = λ x →
f⁻¹ (g x) ≡⟨ cong f⁻¹ $ sym $ f≡g _ ⟩
f⁻¹ (f x) ≡⟨ f⁻¹-f _ ⟩∎
x ∎
})
-- Functions between contractible types are equivalences.
function-between-contractible-types-is-equivalence :
∀ {a b} {A : Type a} {B : Type b} (f : A → B) →
Contractible A → Contractible B → Is-equivalence f
function-between-contractible-types-is-equivalence f A-contr B-contr =
↔→Is-equivalenceˡ (record
{ surjection = record
{ logical-equivalence = record
{ from = λ _ → proj₁ A-contr
}
; right-inverse-of = λ x →
f (proj₁ A-contr) ≡⟨ sym $ proj₂ B-contr _ ⟩
proj₁ B-contr ≡⟨ proj₂ B-contr _ ⟩∎
x ∎
}
; left-inverse-of = proj₂ A-contr
})
abstract
-- If Σ-map id f is an equivalence, then f is also an equivalence.
drop-Σ-map-id :
{A : Type a} {P : A → Type p} {Q : A → Type q}
(f : ∀ {x} → P x → Q x) →
Is-equivalence {A = Σ A P} {B = Σ A Q} (Σ-map id f) →
∀ x → Is-equivalence (f {x = x})
drop-Σ-map-id f eq x =
_⇔_.from Is-equivalence⇔Is-equivalence-CP $
CP.drop-Σ-map-id f
(_⇔_.to Is-equivalence⇔Is-equivalence-CP eq)
x
-- A "computation" rule for drop-Σ-map-id.
inverse-drop-Σ-map-id :
{A : Type a} {P : A → Type p} {Q : A → Type q}
{f : ∀ {x} → P x → Q x} {x : A} {y : Q x}
{eq : Is-equivalence {A = Σ A P} {B = Σ A Q} (Σ-map id f)} →
inverse (drop-Σ-map-id f eq x) y ≡
subst P (cong proj₁ (right-inverse-of eq (x , y)))
(proj₂ (inverse eq (x , y)))
inverse-drop-Σ-map-id = CP.inverse-drop-Σ-map-id
-- The function ext⁻¹ is an equivalence (assuming extensionality).
ext⁻¹-is-equivalence :
({P : A → Type b} → Extensionality′ A P) →
{P : A → Type b} {f g : (x : A) → P x} →
Is-equivalence (ext⁻¹ {f = f} {g = g})
ext⁻¹-is-equivalence {A = A} ext {P = P} {f = f} {g = g} =
drop-Σ-map-id ext⁻¹ lemma₂ f
where
surj :
(∀ x → Singleton (g x)) ↠
(∃ λ (f : (x : A) → P x) → ∀ x → f x ≡ g x)
surj = record
{ logical-equivalence = record
{ to = λ f → proj₁ ∘ f , proj₂ ∘ f
; from = λ p x → proj₁ p x , proj₂ p x
}
; right-inverse-of = refl
}
lemma₁ : Contractible (∃ λ (f : (x : A) → P x) → ∀ x → f x ≡ g x)
lemma₁ =
H-level.respects-surjection surj 0 $
_⇔_.from Π-closure-contractible⇔extensionality
ext (singleton-contractible ∘ g)
lemma₂ :
Is-equivalence
{A = ∃ λ f → f ≡ g}
{B = ∃ λ f → ∀ x → f x ≡ g x}
(Σ-map id ext⁻¹)
lemma₂ = function-between-contractible-types-is-equivalence
_ (singleton-contractible g) lemma₁
------------------------------------------------------------------------
-- Results related to h-levels
abstract
-- Is-equivalence f is a proposition (assuming extensionality).
propositional :
{A : Type a} {B : Type b} →
Extensionality (a ⊔ b) (a ⊔ b) →
(f : A → B) → Is-proposition (Is-equivalence f)
propositional {a = a} {b = b} {A = A} {B = B} ext f =
[inhabited⇒+]⇒+ 0 λ eq →
mono₁ 0 $
H-level.respects-surjection
((∃ λ ((f⁻¹ , f-f⁻¹) : ∃ λ f⁻¹ → ∀ x → f (f⁻¹ x) ≡ x) →
∃ λ (f⁻¹-f : ∀ x → f⁻¹ (f x) ≡ x) →
∀ x → cong f (f⁻¹-f x) ≡ f-f⁻¹ (f x)) ↠⟨ _↔_.surjection $ B.inverse B.Σ-assoc ⟩□
Is-equivalence f □)
0 $
Σ-closure 0 (lemma₁ eq) (uncurry $ lemma₂ eq)
where
ext₁ : Extensionality b b
ext₁ = lower-extensionality a a ext
ext₁′ : Extensionality b a
ext₁′ = lower-extensionality a b ext
ext-↠ :
{A B : Type b} {f g : A → B} →
f ≡ g ↠ (∀ x → f x ≡ g x)
ext-↠ =
_↔_.surjection $
Is-equivalence→↔ $
ext⁻¹-is-equivalence (apply-ext ext₁)
lemma₁ :
Is-equivalence f →
Contractible (∃ λ (f⁻¹ : B → A) → ∀ x → f (f⁻¹ x) ≡ x)
lemma₁ (f⁻¹ , f-f⁻¹ , f⁻¹-f , f-f⁻¹-f) =
H-level.respects-surjection
((∃ λ f⁻¹ → f ∘ f⁻¹ ≡ id) ↠⟨ (∃-cong λ _ → ext-↠) ⟩□
(∃ λ f⁻¹ → ∀ x → f (f⁻¹ x) ≡ x) □)
0 $
Preimage.bijection⁻¹-contractible
(record
{ surjection = record
{ logical-equivalence = record
{ to = f ∘_
; from = f⁻¹ ∘_
}
; right-inverse-of = λ g → apply-ext ext₁ λ x →
f (f⁻¹ (g x)) ≡⟨ f-f⁻¹ (g x) ⟩∎
g x ∎
}
; left-inverse-of = λ g → apply-ext ext₁′ λ x →
f⁻¹ (f (g x)) ≡⟨ f⁻¹-f (g x) ⟩∎
g x ∎
})
id
ext₂ : Extensionality a (a ⊔ b)
ext₂ = lower-extensionality b lzero ext
lemma₂ :
Is-equivalence f →
(f⁻¹ : B → A) (f-f⁻¹ : ∀ x → f (f⁻¹ x) ≡ x) →
Contractible
(∃ λ (f⁻¹-f : ∀ x → f⁻¹ (f x) ≡ x) →
∀ x → cong f (f⁻¹-f x) ≡ f-f⁻¹ (f x))
lemma₂ eq f⁻¹ f-f⁻¹ =
H-level.respects-surjection
((∀ x → (f⁻¹ (f x) , f-f⁻¹ (f x)) ≡ (x , refl (f x))) ↠⟨ (∀-cong ext₂ λ _ → _↔_.surjection $ B.inverse B.Σ-≡,≡↔≡) ⟩
(∀ x → ∃ λ f⁻¹-f →
subst (λ y → f y ≡ f x) f⁻¹-f (f-f⁻¹ (f x)) ≡
refl (f x)) ↠⟨ (∀-cong ext₂ λ x → ∃-cong λ f⁻¹-f →
elim (λ {A B} _ → A ↠ B) (λ _ → S.id) (
subst (λ y → f y ≡ f x) f⁻¹-f (f-f⁻¹ (f x)) ≡ refl (f x) ≡⟨ cong (_≡ _) $ subst-∘ _ _ _ ⟩
subst (_≡ f x) (cong f f⁻¹-f) (f-f⁻¹ (f x)) ≡ refl (f x) ≡⟨ cong (_≡ _) subst-trans-sym ⟩
trans (sym (cong f f⁻¹-f)) (f-f⁻¹ (f x)) ≡ refl (f x) ≡⟨ [trans≡]≡[≡trans-symˡ] _ _ _ ⟩
f-f⁻¹ (f x) ≡ trans (sym (sym (cong f f⁻¹-f))) (refl (f x)) ≡⟨ cong (_ ≡_) $ trans-reflʳ _ ⟩
f-f⁻¹ (f x) ≡ sym (sym (cong f f⁻¹-f)) ≡⟨ cong (_ ≡_) $ sym-sym _ ⟩∎
f-f⁻¹ (f x) ≡ cong f f⁻¹-f ∎)) ⟩
(∀ x → ∃ λ f⁻¹-f → f-f⁻¹ (f x) ≡ cong f f⁻¹-f) ↠⟨ (∀-cong ext₂ λ _ → ∃-cong λ _ →
_↔_.surjection B.≡-comm) ⟩
(∀ x → ∃ λ f⁻¹-f → cong f f⁻¹-f ≡ f-f⁻¹ (f x)) ↠⟨ _↔_.surjection B.ΠΣ-comm ⟩□
(∃ λ f⁻¹-f → ∀ x → cong f (f⁻¹-f x) ≡ f-f⁻¹ (f x)) □)
0 $
Π-closure ext₂ 0 λ x →
H-level.⇒≡ 0 $
_⇔_.to Is-equivalence⇔Is-equivalence-CP eq (f x)
-- If the domain of f is contractible and the codomain is
-- propositional, then Is-equivalence f is contractible (assuming
-- extensionality).
sometimes-contractible :
Extensionality (a ⊔ b) (a ⊔ b) →
{A : Type a} {B : Type b} {f : A → B} →
Contractible A → Is-proposition B →
Contractible (Is-equivalence f)
sometimes-contractible {a = a} {b = b} ext A-contr B-prop =
Σ-closure 0 (Π-closure ext-b-a 0 λ _ → A-contr) λ _ →
Σ-closure 0 (Π-closure ext-b-b 0 λ _ → H-level.+⇒≡ B-prop) λ _ →
Σ-closure 0 (Π-closure ext-a-a 0 λ _ → H-level.⇒≡ 0 A-contr) λ _ →
Π-closure ext-a-b 0 λ _ → H-level.⇒≡ 0 $ H-level.+⇒≡ B-prop
where
ext-a-a : Extensionality a a
ext-a-a = lower-extensionality b b ext
ext-a-b : Extensionality a b
ext-a-b = lower-extensionality b a ext
ext-b-a : Extensionality b a
ext-b-a = lower-extensionality a b ext
ext-b-b : Extensionality b b
ext-b-b = lower-extensionality a a ext
------------------------------------------------------------------------
-- Is-equivalence is related to CP.Is-equivalence (part two)
-- Is-equivalence f and CP.Is-equivalence f are isomorphic (assuming
-- extensionality).
Is-equivalence↔Is-equivalence-CP :
{A : Type a} {B : Type b} {f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
Is-equivalence f ↔ CP.Is-equivalence f
Is-equivalence↔Is-equivalence-CP ext = record
{ surjection = record
{ logical-equivalence = Is-equivalence⇔Is-equivalence-CP
; right-inverse-of = λ _ → CP.propositional ext _ _ _
}
; left-inverse-of = λ _ → propositional ext _ _ _
}
| {
"alphanum_fraction": 0.4537631199,
"avg_line_length": 34.6603448276,
"ext": "agda",
"hexsha": "af51a4cdbba4205d7bbd4483eb56528a5d2b0613",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equivalence/Half-adjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equivalence/Half-adjoint.agda",
"max_line_length": 135,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equivalence/Half-adjoint.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 7344,
"size": 20103
} |
module Prelude where
open import Agda.Primitive public
open import Prelude.Unit public
open import Prelude.Empty public
open import Prelude.Function public
open import Prelude.Char public
open import Prelude.String public
open import Prelude.Bool public
open import Prelude.Nat public
open import Prelude.Word public
open import Prelude.Int public
open import Prelude.Bytes public
open import Prelude.Product public
open import Prelude.Sum public
open import Prelude.List public
open import Prelude.Maybe public
open import Prelude.Fin public
open import Prelude.Vec public
open import Prelude.Semiring public
open import Prelude.Number public
open import Prelude.Fractional public
open import Prelude.Erased public
open import Prelude.Strict public
open import Prelude.Monoid public
open import Prelude.Equality public
open import Prelude.Decidable public
open import Prelude.Functor public
open import Prelude.Applicative public
open import Prelude.Alternative public
open import Prelude.Monad public
open import Prelude.Show public
open import Prelude.Ord public
open import Prelude.Ord.Reasoning public
open import Prelude.Smashed public
open import Prelude.IO public
open import Prelude.Equality.Unsafe public using (eraseEquality)
open import Prelude.Equality.Inspect public
| {
"alphanum_fraction": 0.7447098976,
"avg_line_length": 33.2954545455,
"ext": "agda",
"hexsha": "6e4ee992a2bc87fe27d7a45cd12f0ed79a33f740",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Prelude.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 288,
"size": 1465
} |
module MUniverse where
-- This is universe polymorphism and extensional equality module
open import Sec2
-- import Data.List
data _≃₀_ {A : Set} (a : A) (b : A) : Set where
a≃b : (a ≡ b) → a ≃₀ b
data _≃₁_ {A : Set} (f : A → A) (g : A → A) : Set where
f≃g : ((x y : A) → (x ≃₀ y) → (f x ≃₀ g y)) → f ≃₁ g
B==B : 1 ≃₀ 1
B==B = a≃b refl
B==B1 : T ≃₀ T
B==B1 = a≃b refl
-- This is the same as + for natural numbers
_⋆_ : (x y : ℕ) → ℕ
Z ⋆ y = y
(S x) ⋆ y = S (x ⋆ y)
-- Proof that + and ⋆ are equivalent functions!
+==⋆ : (x : ℕ) → ((_+_) x) ≃₁ ((_⋆_) x)
+==⋆ x = f≃g (λ x₁ y x₂ → a≃b (prove x x₁ y x₂))
where
fcong : (x y : ℕ) → (p : (x + y) ≡ (x ⋆ y)) → S (x + y) ≡ S (x ⋆ y)
fcong x y p with (x + y) | (x ⋆ y)
fcong x y refl | m | .m = refl
prove' : (x y : ℕ) → (x + y) ≡ (x ⋆ y)
prove' Z y = refl
prove' (S x) y with (prove' x y)
prove' (S x) y | p = fcong x y p
prove : (x y z : ℕ) → (p : y ≃₀ z) → (x + y) ≡ (x ⋆ z)
prove x y .y (a≃b refl) = prove' x y
elim≃₁ : {A : Set} → (f g : A → A) (a : f ≃₁ g)
→ (x y : A) → (p : x ≃₀ y)
→ (f x ≃₀ g y)
elim≃₁ f g (f≃g a) x .x (a≃b refl) = a x x (a≃b refl)
-- Theorem that ≃₁ is a partial equivalence relation
≃₁-symmetric : {A : Set} → {f g : A → A} → (f ≃₁ g) → (g ≃₁ f)
≃₁-symmetric {A} {f} {g} (f≃g x) = f≃g (λ x₁ y x₂ → a≃b (prove x₁ y x₂ (f≃g x)))
where
prove : (z y : A) → (p : z ≃₀ y) → (f ≃₁ g) → (g z ≡ f y)
prove z .z (a≃b refl) (f≃g x) with (x z z (a≃b refl) )
prove z .z (a≃b refl) (f≃g x₁) | a≃b p with (f z) | (g z)
prove z .z (a≃b refl) (f≃g x₁) | a≃b refl | m | .m = refl
≃₁-transitive : {A : Set} → {f g h : A → A}
→ (f ≃₁ g) → (g ≃₁ h) → (f ≃₁ h)
≃₁-transitive {A} {f} {g} {h} (f≃g x) (f≃g y) = f≃g (λ x₁ y₁ x₂ → a≃b (prove x₁ y₁ x₂ (f≃g x) (f≃g y)))
where
prove : (x y : A) (p : x ≃₀ y)
→ (f ≃₁ g)
→ (g ≃₁ h)
→ (f x ≡ h y)
prove x₁ .x₁ (a≃b refl) (f≃g x₂) (f≃g x₃) with (x₂ x₁ x₁ (a≃b refl)) | (x₃ x₁ x₁ (a≃b refl))
prove x₁ .x₁ (a≃b refl) (f≃g x₂) (f≃g x₃) | a≃b x₄ | a≃b x₅ with (f x₁) | (g x₁) | (h x₁)
prove x₁ .x₁ (a≃b refl) (f≃g x₂) (f≃g x₃) | a≃b refl | a≃b refl | p1 | .p1 | .p1 = refl
| {
"alphanum_fraction": 0.4385886556,
"avg_line_length": 33.4179104478,
"ext": "agda",
"hexsha": "38439f46cc834f4870346b0a99e38543303c0a5b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/agda-tutorial-dybjer",
"max_forks_repo_path": "MUniverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/agda-tutorial-dybjer",
"max_issues_repo_path": "MUniverse.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/agda-tutorial-dybjer",
"max_stars_repo_path": "MUniverse.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z",
"num_tokens": 1194,
"size": 2239
} |
-- Andreas, 2014-05-21, reported and test case by Fabien Renaud
module Issue1138 where
open import Common.Equality
postulate
Var : Set
Varset : Set
_∖_ : Varset -> Var -> Varset
_⊆_ : Varset -> Varset -> Set
data Expression : Set where
abs : Var -> Expression -> Expression
FV : Expression -> Varset
FV (abs x M) = FV M ∖ x
data Env (A : Set) : Set where
<> : Env A
_,_:=_ : Env A -> Var -> A -> Env A
postulate
dom : ∀ {A} -> Env A -> Varset
extend-dom : ∀ {A : Set} {a : A} {x xs ρ}
-> (xs ∖ x) ⊆ dom ρ
-> xs ⊆ dom (ρ , x := a)
record Model (D : Set) : Set where
field
eval : (e : Expression) (ρ : Env D) -> FV e ⊆ dom ρ -> D
d : D
law : ∀ {M N ρ ν x y}
-> eval M (ρ , x := d) (extend-dom {!!}) ≡
eval N (ν , y := d) (extend-dom {!!})
-> eval (abs x M) ρ {!!} ≡
eval (abs y N) ν {!!}
-- Expected: For holes numbered 0,1,2,3 above and four goals below:
-- ?0 : (FV M ∖ x) ⊆ dom ρ
-- ?1 : (FV N ∖ y) ⊆ dom ν
-- ?2 : FV (abs x M) ⊆ dom ρ
-- ?3 : FV (abs y N) ⊆ dom ν
-- There was a problem that two interaction points were created
-- per ? in record fields, thus, they were off in emacs.
-- (Introduced by fix for issue 1083).
| {
"alphanum_fraction": 0.5117739403,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "29afc43a8ff6e4af733d97802c820d7782ad76e4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1138.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1138.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1138.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 463,
"size": 1274
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the polymorphic unit type
-- Defines Decidable Equality and Decidable Ordering as well
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Unit.Polymorphic.Properties where
open import Level
open import Data.Sum.Base using (inj₁)
open import Data.Unit.Polymorphic.Base using (⊤; tt)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
private
variable
ℓ : Level
------------------------------------------------------------------------
-- Equality
------------------------------------------------------------------------
infix 4 _≟_
_≟_ : Decidable {A = ⊤ {ℓ}} _≡_
_ ≟ _ = yes refl
≡-setoid : ∀ ℓ → Setoid ℓ ℓ
≡-setoid _ = setoid ⊤
≡-decSetoid : ∀ ℓ → DecSetoid ℓ ℓ
≡-decSetoid _ = decSetoid _≟_
------------------------------------------------------------------------
-- Ordering
------------------------------------------------------------------------
≡-total : Total {A = ⊤ {ℓ}} _≡_
≡-total _ _ = inj₁ refl
≡-antisym : Antisymmetric {A = ⊤ {ℓ}} _≡_ _≡_
≡-antisym p _ = p
------------------------------------------------------------------------
-- Structures
≡-isPreorder : ∀ ℓ → IsPreorder {ℓ} {_} {⊤} _≡_ _≡_
≡-isPreorder ℓ = record
{ isEquivalence = isEquivalence
; reflexive = λ x → x
; trans = trans
}
≡-isPartialOrder : ∀ ℓ → IsPartialOrder {ℓ} _≡_ _≡_
≡-isPartialOrder ℓ = record
{ isPreorder = ≡-isPreorder ℓ
; antisym = ≡-antisym
}
≡-isTotalOrder : ∀ ℓ → IsTotalOrder {ℓ} _≡_ _≡_
≡-isTotalOrder ℓ = record
{ isPartialOrder = ≡-isPartialOrder ℓ
; total = ≡-total
}
≡-isDecTotalOrder : ∀ ℓ → IsDecTotalOrder {ℓ} _≡_ _≡_
≡-isDecTotalOrder ℓ = record
{ isTotalOrder = ≡-isTotalOrder ℓ
; _≟_ = _≟_
; _≤?_ = _≟_
}
------------------------------------------------------------------------
-- Bundles
≡-preorder : ∀ ℓ → Preorder ℓ ℓ ℓ
≡-preorder ℓ = record
{ isPreorder = ≡-isPreorder ℓ
}
≡-poset : ∀ ℓ → Poset ℓ ℓ ℓ
≡-poset ℓ = record
{ isPartialOrder = ≡-isPartialOrder ℓ
}
≡-totalOrder : ∀ ℓ → TotalOrder ℓ ℓ ℓ
≡-totalOrder ℓ = record
{ isTotalOrder = ≡-isTotalOrder ℓ
}
≡-decTotalOrder : ∀ ℓ → DecTotalOrder ℓ ℓ ℓ
≡-decTotalOrder ℓ = record
{ isDecTotalOrder = ≡-isDecTotalOrder ℓ
}
| {
"alphanum_fraction": 0.484055601,
"avg_line_length": 24.7070707071,
"ext": "agda",
"hexsha": "c0ddf92e095adca471404c2e68fa04543e85ac32",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Unit/Polymorphic/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Unit/Polymorphic/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Unit/Polymorphic/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 779,
"size": 2446
} |
Subsets and Splits