Search is not available for this dataset
text
string
meta
dict
{- This second-order term syntax was created from the following second-order syntax description: syntax Sub | S type L : 0-ary T : 0-ary term vr : L -> T sb : L.T T -> T theory (C) x y : T |> sb (a. x[], y[]) = x[] (L) x : T |> sb (a. vr(a), x[]) = x[] (R) a : L x : L.T |> sb (b. x[b], vr(a[])) = x[a[]] (A) x : (L,L).T y : L.T z : T |> sb (a. sb (b. x[a,b], y[a]), z[]) = sb (b. sb (a. x[a, b], z[]), sb (a. y[a], z[])) -} module Sub.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Sub.Signature private variable Γ Δ Π : Ctx α : ST 𝔛 : Familyₛ -- Inductive term declaration module S:Terms (𝔛 : Familyₛ) where data S : Familyₛ where var : ℐ ⇾̣ S mvar : 𝔛 α Π → Sub S Π Γ → S α Γ vr : S L Γ → S T Γ sb : S T (L ∙ Γ) → S T Γ → S T Γ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Sᵃ : MetaAlg S Sᵃ = record { 𝑎𝑙𝑔 = λ where (vrₒ ⋮ a) → vr a (sbₒ ⋮ a , b) → sb a b ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Sᵃ = MetaAlg Sᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : S ⇾̣ 𝒜 𝕊 : Sub S Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (vr a) = 𝑎𝑙𝑔 (vrₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (sb a b) = 𝑎𝑙𝑔 (sbₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Sᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ S α Γ) → 𝕤𝕖𝕞 (Sᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (vrₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (sbₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ S ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : S ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Sᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : S α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub S Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (vr a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (sb a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature S:Syn : Syntax S:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = S:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open S:Terms 𝔛 in record { ⊥ = S ⋉ Sᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax S:Syn public open S:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Sᵃ public open import SOAS.Metatheory S:Syn public
{ "alphanum_fraction": 0.5202182285, "avg_line_length": 24.7301587302, "ext": "agda", "hexsha": "fb7b6ee2e28e1fd84140703524de1f167455ca62", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Sub/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Sub/Syntax.agda", "max_line_length": 120, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Sub/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1927, "size": 3116 }
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-} module 16-pushouts where import 15-pullbacks open 15-pullbacks public -- Section 14.1 {- We define the type of cocones with vertex X on a span. Since we will use it later on, we will also characterize the identity type of the type of cocones with a given vertex X. -} cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → UU l4 → UU _ cocone {A = A} {B = B} f g X = Σ (A → X) (λ i → Σ (B → X) (λ j → (i ∘ f) ~ (j ∘ g))) {- We characterize the identity type of the type of cocones with vertex C. -} coherence-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → (K : (pr1 c) ~ (pr1 c')) (L : (pr1 (pr2 c)) ~ (pr1 (pr2 c'))) → UU (l1 ⊔ l4) coherence-htpy-cocone f g c c' K L = ((pr2 (pr2 c)) ∙h (L ·r g)) ~ ((K ·r f) ∙h (pr2 (pr2 c'))) htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} → cocone f g X → cocone f g X → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) htpy-cocone f g c c' = Σ ((pr1 c) ~ (pr1 c')) ( λ K → Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c'))) ( coherence-htpy-cocone f g c c' K)) reflexive-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → htpy-cocone f g c c reflexive-htpy-cocone f g (pair i (pair j H)) = pair htpy-refl (pair htpy-refl htpy-right-unit) htpy-cocone-eq : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → Id c c' → htpy-cocone f g c c' htpy-cocone-eq f g c .c refl = reflexive-htpy-cocone f g c is-contr-total-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → is-contr (Σ (cocone f g X) (htpy-cocone f g c)) is-contr-total-htpy-cocone f g c = is-contr-total-Eq-structure ( λ i' jH' K → Σ ((pr1 (pr2 c)) ~ (pr1 jH')) ( coherence-htpy-cocone f g c (pair i' jH') K)) ( is-contr-total-htpy (pr1 c)) ( pair (pr1 c) htpy-refl) ( is-contr-total-Eq-structure ( λ j' H' → coherence-htpy-cocone f g c ( pair (pr1 c) (pair j' H')) ( htpy-refl)) ( is-contr-total-htpy (pr1 (pr2 c))) ( pair (pr1 (pr2 c)) htpy-refl) ( is-contr-is-equiv' ( Σ (((pr1 c) ∘ f) ~ ((pr1 (pr2 c)) ∘ g)) (λ H' → (pr2 (pr2 c)) ~ H')) ( tot (λ H' M → htpy-right-unit ∙h M)) ( is-equiv-tot-is-fiberwise-equiv (λ H' → is-equiv-htpy-concat _ _)) ( is-contr-total-htpy (pr2 (pr2 c))))) is-equiv-htpy-cocone-eq : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → is-equiv (htpy-cocone-eq f g c c') is-equiv-htpy-cocone-eq f g c = fundamental-theorem-id c ( reflexive-htpy-cocone f g c) ( is-contr-total-htpy-cocone f g c) ( htpy-cocone-eq f g c) eq-htpy-cocone : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) → htpy-cocone f g c c' → Id c c' eq-htpy-cocone f g c c' = inv-is-equiv (is-equiv-htpy-cocone-eq f g c c') {- Given a cocone c on a span S with vertex X, and a type Y, the function cocone-map sends a function X → Y to a new cocone with vertex Y. -} cocone-map : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} {Y : UU l5} → cocone f g X → (X → Y) → cocone f g Y cocone-map f g (pair i (pair j H)) h = pair (h ∘ i) (pair (h ∘ j) (h ·l H)) cocone-map-id : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → Id (cocone-map f g c id) c cocone-map-id f g (pair i (pair j H)) = eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-id (H s)))) cocone-map-comp : {l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) {Y : UU l5} (h : X → Y) {Z : UU l6} (k : Y → Z) → Id (cocone-map f g c (k ∘ h)) ((cocone-map f g (cocone-map f g c h) k)) cocone-map-comp f g (pair i (pair j H)) h k = eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-comp k h (H s)))) {- A cocone c on a span S is said to satisfy the universal property of the pushout of S if the function cocone-map is an equivalence for every type Y. -} universal-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} → cocone f g X → UU _ universal-property-pushout l f g c = (Y : UU l) → is-equiv (cocone-map f g {Y = Y} c) -- Section 14.2 Suspensions suspension-structure : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2) suspension-structure X Y = Σ Y (λ N → Σ Y (λ S → (x : X) → Id N S)) suspension-cocone' : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2) suspension-cocone' X Y = cocone (const X unit star) (const X unit star) Y cocone-suspension-structure : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → suspension-structure X Y → suspension-cocone' X Y cocone-suspension-structure X Y (pair N (pair S merid)) = pair ( const unit Y N) ( pair ( const unit Y S) ( merid)) universal-property-suspension' : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) (susp-str : suspension-structure X Y) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-suspension' l X Y susp-str-Y = universal-property-pushout l ( const X unit star) ( const X unit star) ( cocone-suspension-structure X Y susp-str-Y) is-suspension : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (lsuc l ⊔ l1 ⊔ l2) is-suspension l X Y = Σ (suspension-structure X Y) (universal-property-suspension' l X Y) {- We define the type of suspensions at universe level l, for any type X. Since we would like to define type families over a suspension by the universal property of the suspension, we assume that the universal property of a suspension holds for at least level (lsuc l ⊔ l1). This is the level that contains both X and the suspension itself. -} UU-Suspensions : (l : Level) {l1 : Level} (X : UU l1) → UU (lsuc (lsuc l) ⊔ lsuc l1) UU-Suspensions l {l1} X = Σ (UU l) (is-suspension (lsuc l ⊔ l1) X) {- We now work towards Lemma 17.2.2. -} suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → UU _ suspension-cocone X Z = Σ Z (λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2)) ev-suspension : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (susp-str-Y : suspension-structure X Y) → (Z : UU l3) → (Y → Z) → suspension-cocone X Z ev-suspension (pair N (pair S merid)) Z h = pair (h N) (pair (h S) (h ·l merid)) universal-property-suspension : (l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) → suspension-structure X Y → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-suspension l X Y susp-str-Y = (Z : UU l) → is-equiv (ev-suspension susp-str-Y Z) comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → suspension-cocone' X Z ≃ suspension-cocone X Z comparison-suspension-cocone X Z = equiv-toto ( λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2)) ( equiv-ev-star' Z) ( λ z1 → equiv-toto ( λ z2 → (x : X) → Id (z1 star) z2) ( equiv-ev-star' Z) ( λ z2 → equiv-id ((x : X) → Id (z1 star) (z2 star)))) map-comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → suspension-cocone' X Z → suspension-cocone X Z map-comparison-suspension-cocone X Z = map-equiv (comparison-suspension-cocone X Z) is-equiv-map-comparison-suspension-cocone : {l1 l2 : Level} (X : UU l1) (Z : UU l2) → is-equiv (map-comparison-suspension-cocone X Z) is-equiv-map-comparison-suspension-cocone X Z = is-equiv-map-equiv (comparison-suspension-cocone X Z) triangle-ev-suspension : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (susp-str-Y : suspension-structure X Y) → (Z : UU l3) → ( ( map-comparison-suspension-cocone X Z) ∘ ( cocone-map ( const X unit star) ( const X unit star) ( cocone-suspension-structure X Y susp-str-Y))) ~ ( ev-suspension susp-str-Y Z) triangle-ev-suspension (pair N (pair S merid)) Z h = refl is-equiv-ev-suspension : { l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → ( susp-str-Y : suspension-structure X Y) → ( up-Y : universal-property-suspension' l3 X Y susp-str-Y) → ( Z : UU l3) → is-equiv (ev-suspension susp-str-Y Z) is-equiv-ev-suspension {X = X} susp-str-Y up-Y Z = is-equiv-comp ( ev-suspension susp-str-Y Z) ( map-comparison-suspension-cocone X Z) ( cocone-map ( const X unit star) ( const X unit star) ( cocone-suspension-structure X _ susp-str-Y)) ( htpy-inv (triangle-ev-suspension susp-str-Y Z)) ( up-Y Z) ( is-equiv-map-comparison-suspension-cocone X Z) {- Pointed maps and pointed homotopies. -} pointed-fam : {l1 : Level} (l : Level) (X : UU-pt l1) → UU (lsuc l ⊔ l1) pointed-fam l (pair X x) = Σ (X → UU l) (λ P → P x) pointed-Π : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → UU (l1 ⊔ l2) pointed-Π (pair X x) (pair P p) = Σ ((x' : X) → P x') (λ f → Id (f x) p) pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → UU (l1 ⊔ l2) pointed-htpy (pair X x) (pair P p) (pair f α) g = pointed-Π (pair X x) (pair (λ x' → Id (f x') (pr1 g x')) (α ∙ (inv (pr2 g)))) pointed-htpy-refl : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f : pointed-Π X P) → pointed-htpy X P f f pointed-htpy-refl (pair X x) (pair P p) (pair f α) = pair htpy-refl (inv (right-inv α)) pointed-htpy-eq : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → Id f g → pointed-htpy X P f g pointed-htpy-eq X P f .f refl = pointed-htpy-refl X P f is-contr-total-pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) (f : pointed-Π X P) → is-contr (Σ (pointed-Π X P) (pointed-htpy X P f)) is-contr-total-pointed-htpy (pair X x) (pair P p) (pair f α) = is-contr-total-Eq-structure ( λ g β (H : f ~ g) → Id (H x) (α ∙ (inv β))) ( is-contr-total-htpy f) ( pair f htpy-refl) ( is-contr-equiv' ( Σ (Id (f x) p) (λ β → Id β α)) ( equiv-tot (λ β → equiv-con-inv refl β α)) ( is-contr-total-path' α)) is-equiv-pointed-htpy-eq : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → is-equiv (pointed-htpy-eq X P f g) is-equiv-pointed-htpy-eq X P f = fundamental-theorem-id f ( pointed-htpy-refl X P f) ( is-contr-total-pointed-htpy X P f) ( pointed-htpy-eq X P f) eq-pointed-htpy : {l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → (f g : pointed-Π X P) → (pointed-htpy X P f g) → Id f g eq-pointed-htpy X P f g = inv-is-equiv (is-equiv-pointed-htpy-eq X P f g) -- Section 14.3 Duality of pushouts and pullbacks {- The universal property of the pushout of a span S can also be stated as a pullback-property: a cocone c = (pair i (pair j H)) with vertex X satisfies the universal property of the pushout of S if and only if the square Y^X -----> Y^B | | | | V V Y^A -----> Y^S is a pullback square for every type Y. Below, we first define the cone of this commuting square, and then we introduce the type pullback-property-pushout, which states that the above square is a pullback. -} htpy-precomp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) (C : UU l3) → (precomp f C) ~ (precomp g C) htpy-precomp H C h = eq-htpy (h ·l H) compute-htpy-precomp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : UU l3) → (htpy-precomp (htpy-refl' f) C) ~ htpy-refl compute-htpy-precomp f C h = eq-htpy-htpy-refl (h ∘ f) cone-pullback-property-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (Y : UU l) → cone (λ (h : A → Y) → h ∘ f) (λ (h : B → Y) → h ∘ g) (X → Y) cone-pullback-property-pushout f g {X} c Y = pair ( precomp (pr1 c) Y) ( pair ( precomp (pr1 (pr2 c)) Y) ( htpy-precomp (pr2 (pr2 c)) Y)) pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ lsuc l)))) pullback-property-pushout l {S} {A} {B} f g {X} c = (Y : UU l) → is-pullback ( precomp f Y) ( precomp g Y) ( cone-pullback-property-pushout f g c Y) {- In order to show that the universal property of pushouts is equivalent to the pullback property, we show that the maps cocone-map and the gap map fit in a commuting triangle, where the third map is an equivalence. The claim then follows from the 3-for-2 property of equivalences. -} triangle-pullback-property-pushout-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → {l : Level} (Y : UU l) → ( cocone-map f g c) ~ ( ( tot (λ i' → tot (λ j' p → htpy-eq p))) ∘ ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y))) triangle-pullback-property-pushout-universal-property-pushout {S = S} {A = A} {B = B} f g (pair i (pair j H)) Y h = eq-pair refl (eq-pair refl (inv (issec-eq-htpy (h ·l H)))) pullback-property-pushout-universal-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → universal-property-pushout l f g c → pullback-property-pushout l f g c pullback-property-pushout-universal-property-pushout l f g (pair i (pair j H)) up-c Y = let c = (pair i (pair j H)) in is-equiv-right-factor ( cocone-map f g c) ( tot (λ i' → tot (λ j' p → htpy-eq p))) ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y)) ( triangle-pullback-property-pushout-universal-property-pushout f g c Y) ( is-equiv-tot-is-fiberwise-equiv ( λ i' → is-equiv-tot-is-fiberwise-equiv ( λ j' → funext (i' ∘ f) (j' ∘ g)))) ( up-c Y) universal-property-pushout-pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → pullback-property-pushout l f g c → universal-property-pushout l f g c universal-property-pushout-pullback-property-pushout l f g (pair i (pair j H)) pb-c Y = let c = (pair i (pair j H)) in is-equiv-comp ( cocone-map f g c) ( tot (λ i' → tot (λ j' p → htpy-eq p))) ( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y)) ( triangle-pullback-property-pushout-universal-property-pushout f g c Y) ( pb-c Y) ( is-equiv-tot-is-fiberwise-equiv ( λ i' → is-equiv-tot-is-fiberwise-equiv ( λ j' → funext (i' ∘ f) (j' ∘ g)))) cocone-compose-horizontal : { l1 l2 l3 l4 l5 l6 : Level} { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} ( f : A → X) (i : A → B) (k : B → C) → ( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) → cocone f (k ∘ i) Z cocone-compose-horizontal f i k (pair j (pair g H)) (pair l (pair h K)) = pair ( l ∘ j) ( pair ( h) ( (l ·l H) ∙h (K ·r i))) {- is-pushout-rectangle-is-pushout-right-square : ( l : Level) { l1 l2 l3 l4 l5 l6 : Level} { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} ( f : A → X) (i : A → B) (k : B → C) → ( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) → universal-property-pushout l f i c → universal-property-pushout l (pr1 (pr2 c)) k d → universal-property-pushout l f (k ∘ i) (cocone-compose-horizontal f i k c d) is-pushout-rectangle-is-pushout-right-square l f i k c d up-Y up-Z = universal-property-pushout-pullback-property-pushout l f (k ∘ i) ( cocone-compose-horizontal f i k c d) ( λ T → is-pullback-htpy {!!} {!!} {!!} {!!} {!!} {!!} {!!}) -} -- Exercises -- Exercise 13.1 -- Exercise 13.2 is-equiv-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv f → ((l : Level) → universal-property-pushout l f g c) → is-equiv (pr1 (pr2 c)) is-equiv-universal-property-pushout {A = A} {B} f g (pair i (pair j H)) is-equiv-f up-c = is-equiv-is-equiv-precomp j ( λ l T → is-equiv-is-pullback' ( λ (h : A → T) → h ∘ f) ( λ (h : B → T) → h ∘ g) ( cone-pullback-property-pushout f g (pair i (pair j H)) T) ( is-equiv-precomp-is-equiv f is-equiv-f T) ( pullback-property-pushout-universal-property-pushout l f g (pair i (pair j H)) (up-c l) T)) universal-property-pushout-is-equiv : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (f : S → A) (g : S → B) (c : cocone f g C) → is-equiv f → is-equiv (pr1 (pr2 c)) → ((l : Level) → universal-property-pushout l f g c) universal-property-pushout-is-equiv f g (pair i (pair j H)) is-equiv-f is-equiv-j l = let c = (pair i (pair j H)) in universal-property-pushout-pullback-property-pushout l f g c ( λ T → is-pullback-is-equiv' ( λ h → h ∘ f) ( λ h → h ∘ g) ( cone-pullback-property-pushout f g c T) ( is-equiv-precomp-is-equiv f is-equiv-f T) ( is-equiv-precomp-is-equiv j is-equiv-j T))
{ "alphanum_fraction": 0.571102488, "avg_line_length": 37.9307359307, "ext": "agda", "hexsha": "553e1704f980e02d2c5200529c99216d790f3e3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/16-pushouts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/16-pushouts.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/16-pushouts.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7209, "size": 17524 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of unique lists (setoid equality) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Unique.Setoid.Properties where open import Data.Fin.Base using (Fin) open import Data.List.Base open import Data.List.Relation.Binary.Disjoint.Setoid open import Data.List.Relation.Binary.Disjoint.Setoid.Properties open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs) open import Data.List.Relation.Unary.Unique.Setoid import Data.List.Relation.Unary.AllPairs.Properties as AllPairs open import Data.Nat.Base open import Function using (_∘_) open import Relation.Binary using (Rel; Setoid) open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contraposition) ------------------------------------------------------------------------ -- Introduction (⁺) and elimination (⁻) rules for list operations ------------------------------------------------------------------------ -- map module _ {a b ℓ₁ ℓ₂} (S : Setoid a ℓ₁) (R : Setoid b ℓ₂) where open Setoid S renaming (Carrier to A; _≈_ to _≈₁_) open Setoid R renaming (Carrier to B; _≈_ to _≈₂_) map⁺ : ∀ {f} → (∀ {x y} → f x ≈₂ f y → x ≈₁ y) → ∀ {xs} → Unique S xs → Unique R (map f xs) map⁺ inj xs! = AllPairs.map⁺ (AllPairs.map (contraposition inj) xs!) ------------------------------------------------------------------------ -- ++ module _ {a ℓ} (S : Setoid a ℓ) where ++⁺ : ∀ {xs ys} → Unique S xs → Unique S ys → Disjoint S xs ys → Unique S (xs ++ ys) ++⁺ xs! ys! xs#ys = AllPairs.++⁺ xs! ys! (Disjoint⇒AllAll S xs#ys) ------------------------------------------------------------------------ -- concat module _ {a ℓ} (S : Setoid a ℓ) where concat⁺ : ∀ {xss} → All (Unique S) xss → AllPairs (Disjoint S) xss → Unique S (concat xss) concat⁺ xss! xss# = AllPairs.concat⁺ xss! (AllPairs.map (Disjoint⇒AllAll S) xss#) ------------------------------------------------------------------------ -- take & drop module _ {a ℓ} (S : Setoid a ℓ) where drop⁺ : ∀ {xs} n → Unique S xs → Unique S (drop n xs) drop⁺ = AllPairs.drop⁺ take⁺ : ∀ {xs} n → Unique S xs → Unique S (take n xs) take⁺ = AllPairs.take⁺ ------------------------------------------------------------------------ -- applyUpTo module _ {a ℓ} (S : Setoid a ℓ) where open Setoid S using (_≈_; _≉_) renaming (Carrier to A) applyUpTo⁺₁ : ∀ f n → (∀ {i j} → i < j → j < n → f i ≉ f j) → Unique S (applyUpTo f n) applyUpTo⁺₁ = AllPairs.applyUpTo⁺₁ applyUpTo⁺₂ : ∀ f n → (∀ i j → f i ≉ f j) → Unique S (applyUpTo f n) applyUpTo⁺₂ = AllPairs.applyUpTo⁺₂ ------------------------------------------------------------------------ -- applyDownFrom module _ {a ℓ} (S : Setoid a ℓ) where open Setoid S using (_≈_; _≉_) renaming (Carrier to A) applyDownFrom⁺₁ : ∀ f n → (∀ {i j} → j < i → i < n → f i ≉ f j) → Unique S (applyDownFrom f n) applyDownFrom⁺₁ = AllPairs.applyDownFrom⁺₁ applyDownFrom⁺₂ : ∀ f n → (∀ i j → f i ≉ f j) → Unique S (applyDownFrom f n) applyDownFrom⁺₂ = AllPairs.applyDownFrom⁺₂ ------------------------------------------------------------------------ -- tabulate module _ {a ℓ} (S : Setoid a ℓ) where open Setoid S renaming (Carrier to A) tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ {i j} → f i ≈ f j → i ≡ j) → Unique S (tabulate f) tabulate⁺ f-inj = AllPairs.tabulate⁺ (_∘ f-inj) ------------------------------------------------------------------------ -- filter module _ {a ℓ} (S : Setoid a ℓ) {p} {P : Pred _ p} (P? : Decidable P) where open Setoid S renaming (Carrier to A) filter⁺ : ∀ {xs} → Unique S xs → Unique S (filter P? xs) filter⁺ = AllPairs.filter⁺ P?
{ "alphanum_fraction": 0.5086775849, "avg_line_length": 34.6694915254, "ext": "agda", "hexsha": "ee52f14e66c0f7d020d50968d74b806b5d3418d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Setoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Setoid/Properties.agda", "max_line_length": 92, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Unique/Setoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1188, "size": 4091 }
{-# OPTIONS --no-positivity-check #-} module Section5 where open import Section4b public -- 5. Normal form -- ============== -- -- As we have seen above it is not necessary to know that `nf` actually gives a proof tree in -- η-normal form for the results above. This is however the case. We can mutually inductively -- define when a proof tree is in long η-normal form, `enf`, and in applicative normal form, `anf`. (…) mutual data enf : ∀ {Γ A} → Γ ⊢ A → Set where ƛ : ∀ {Γ A B} (x : Name) {{_ : T (fresh x Γ)}} → {M : [ Γ , x ∷ A ] ⊢ B} → enf M → enf (ƛ x M) α : ∀ {Γ} {M : Γ ⊢ •} → anf M → enf M data anf : ∀ {Γ A} → Γ ⊢ A → Set where ν : ∀ {Γ A} → (x : Name) (i : Γ ∋ x ∷ A) → anf (ν x i) _∙_ : ∀ {Γ A B} {M : Γ ⊢ A ⊃ B} {N : Γ ⊢ A} → anf M → enf N → anf (M ∙ N) -- We prove that `nf M` is in long η-normal form. For this we define a Kripke logical -- predicate, `𝒩`, such that `𝒩 ⟦ M ⟧` and if `𝒩 a`, then `enf (reify a)`. data 𝒩 : ∀ {Γ A} → Γ ⊩ A → Set where 𝓃• : ∀ {Γ} {f : Γ ⊩ •} → (∀ {Δ} → (c : Δ ⊇ Γ) → anf (f ⟦g⟧⟨ c ⟩)) → 𝒩 f 𝓃⊃ : ∀ {Γ A B} {f : Γ ⊩ A ⊃ B} → (∀ {Δ} {a : Δ ⊩ A} → (c : Δ ⊇ Γ) → 𝒩 a → 𝒩 (f ⟦∙⟧⟨ c ⟩ a)) → 𝒩 f -- For base type we intuitively define `𝒩 f` to hold if `anf f`. -- -- If `f : Γ ⊩ A ⊃ B`, then `𝒩 f` is defined to hold if `𝒩 (f ∙ a)` holds for all `a : Γ ⊩ A` -- such that `𝒩 a`. -- -- We also define `𝒩⋆ ρ`, `ρ : Γ ⊩⋆ Δ`, to hold if every value, `a`, in `ρ` has the property `𝒩 a`. data 𝒩⋆ : ∀ {Γ Δ} → Δ ⊩⋆ Γ → Set where 𝓃⋆[] : ∀ {Δ} → 𝒩⋆ ([] {w = Δ}) 𝓃⋆≔ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} {ρ : Δ ⊩⋆ Γ} {a : Δ ⊩ A} → 𝒩⋆ ρ → 𝒩 a → 𝒩⋆ [ ρ , x ≔ a ] -- We prove the following lemmas which are used to prove Lemma 10. cong↑⟨_⟩𝒩 : ∀ {Γ Δ A} → (c : Δ ⊇ Γ) → {a : Γ ⊩ A} → 𝒩 a → 𝒩 (↑⟨ c ⟩ a) cong↑⟨ c ⟩𝒩 (𝓃• h) = 𝓃• (λ c′ → h (c ○ c′)) cong↑⟨ c ⟩𝒩 (𝓃⊃ h) = 𝓃⊃ (λ c′ nₐ → h (c ○ c′) nₐ) conglookup𝒩 : ∀ {Γ Δ A x} {ρ : Δ ⊩⋆ Γ} → 𝒩⋆ ρ → (i : Γ ∋ x ∷ A) → 𝒩 (lookup ρ i) conglookup𝒩 (𝓃⋆≔ n⋆ n) zero = n conglookup𝒩 (𝓃⋆≔ n⋆ n) (suc i) = conglookup𝒩 n⋆ i cong↑⟨_⟩𝒩⋆ : ∀ {Γ Δ Θ} {ρ : Δ ⊩⋆ Γ} → (c : Θ ⊇ Δ) → 𝒩⋆ ρ → 𝒩⋆ (↑⟨ c ⟩ ρ) cong↑⟨ c ⟩𝒩⋆ 𝓃⋆[] = 𝓃⋆[] cong↑⟨ c ⟩𝒩⋆ (𝓃⋆≔ n⋆ n) = 𝓃⋆≔ (cong↑⟨ c ⟩𝒩⋆ n⋆) (cong↑⟨ c ⟩𝒩 n) cong↓⟨_⟩𝒩⋆ : ∀ {Γ Δ Θ} {ρ : Δ ⊩⋆ Γ} → (c : Γ ⊇ Θ) → 𝒩⋆ ρ → 𝒩⋆ (↓⟨ c ⟩ ρ) cong↓⟨ done ⟩𝒩⋆ n⋆ = 𝓃⋆[] cong↓⟨ step c i ⟩𝒩⋆ n⋆ = 𝓃⋆≔ (cong↓⟨ c ⟩𝒩⋆ n⋆) (conglookup𝒩 n⋆ i) -- The lemma is proved together with a corresponding lemma for substitutions: -- Lemma 10. mutual postulate lem₁₀ : ∀ {Γ Δ A} → (M : Γ ⊢ A) → {ρ : Δ ⊩⋆ Γ} → 𝒩⋆ ρ → 𝒩 (⟦ M ⟧ ρ) postulate lem₁₀ₛ : ∀ {Γ Δ Θ} → (γ : Γ ⋙ Θ) → {ρ : Δ ⊩⋆ Γ} → 𝒩⋆ ρ → 𝒩⋆ (⟦ γ ⟧ₛ ρ) -- The main lemma is that for all values, `a`, such that `𝒩 a`, `reify a` returns a proof tree in -- η-normal form, which is intuitively proved together with a proof that for all proof trees in -- applicative normal form we can find a value, `a`, such that `𝒩 a`. (…) -- Lemma 11. mutual postulate lem₁₁ : ∀ {Γ A} → {a : Γ ⊩ A} → 𝒩 a → enf (reify a) postulate lem₁₁ₛ : ∀ {Γ A} → (f : ∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A) → (h : ∀ {Δ} → (c : Δ ⊇ Γ) → anf (f c)) → 𝒩 (val f) -- The proofs are by induction on the types. -- -- It is straightforward to prove that `𝒩⋆ proj⟨ c ⟩⊩⋆` and then by Lemma 11 and Lemma 10 we get -- that `nf M` is in long η-normal form. (…) ⟦ν⟧𝒩 : ∀ {x A Γ} → (i : Γ ∋ x ∷ A) → 𝒩 (⟦ν⟧ i) ⟦ν⟧𝒩 {x} i = lem₁₁ₛ (λ c → ν x (↑⟨ c ⟩ i)) (λ c → ν x (↑⟨ c ⟩ i)) proj⟨_⟩𝒩⋆ : ∀ {Γ Δ} → (c : Δ ⊇ Γ) → 𝒩⋆ proj⟨ c ⟩⊩⋆ proj⟨ done ⟩𝒩⋆ = 𝓃⋆[] proj⟨ step c i ⟩𝒩⋆ = 𝓃⋆≔ proj⟨ c ⟩𝒩⋆ (⟦ν⟧𝒩 i) refl𝒩⋆ : ∀ {Γ} → 𝒩⋆ (refl⊩⋆ {Γ}) refl𝒩⋆ = proj⟨ refl⊇ ⟩𝒩⋆ -- Theorem 7. thm₇ : ∀ {Γ A} → (M : Γ ⊢ A) → enf (nf M) thm₇ M = lem₁₁ (lem₁₀ M refl𝒩⋆) -- Hence a proof tree is convertible with its normal form. -- -- We can also use the results above to prove that if `ƛ(x : A).M ≅ ƛ(y : A).N`, then -- `M(x = z) ≅ N(y = z)` where `z` is a fresh variable. Hence we have that `ƛ` is one-to-one up to -- α-conversion. -- TODO: What to do about the above paragraph?
{ "alphanum_fraction": 0.4403485255, "avg_line_length": 31.0833333333, "ext": "agda", "hexsha": "c27f6a459e1e8e4a361fa8e838a1ed2f0ede1338", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section5.agda", "max_line_length": 104, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section5.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 2290, "size": 4476 }
{-# OPTIONS --no-positivity-check #-} module Section4b where open import Section4a public -- 4.4. The inversion function -- --------------------------- -- -- It is possible to go from the semantics back to the proof trees by an inversion function, `reify` -- that, given a semantic object in a particular Kripke model, returns a proof tree. The particular -- Kripke model that we choose has contexts as possible worlds, the order on contexts as the -- order on worlds, and `_⊢ •` as `𝒢`. (…) instance canon : Model canon = record { 𝒲 = 𝒞 ; _⊒_ = _⊇_ ; refl⊒ = refl⊇ ; _◇_ = _○_ ; uniq⊒ = uniq⊇ ; 𝒢 = _⊢ • } -- In order to define the inversion function we need to be able to choose a unique fresh -- name given a context. We suppose a function `gensym : 𝒞 → Name` and a proof of -- `T (fresh (gensym Γ) Γ)` which proves that `gensym` returns a fresh variable. Note that `gensym` -- is a function taking a context as an argument and it hence always returns the same variable -- for a given context. -- TODO: Can we do better than this? postulate gensym : (Γ : 𝒞) → Σ Name (λ x → T (fresh x Γ)) -- The function `reify` is quite intricate. (…) -- -- The function `reify` is mutually defined with `val`, which given a function from a context -- extension to a proof tree returns a semantic object as result. -- -- We define an abbreviation for the semantic object corresponding to a variable, `⟦ν⟧`. -- -- The functions `reify` and `val` are both defined by induction on the type: mutual reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A reify {•} {Γ} f = f ⟦g⟧⟨ refl⊇ ⟩ reify {A ⊃ B} {Γ} f = let x , φ = gensym Γ in let instance _ = φ in ƛ x (reify (f ⟦∙⟧⟨ weak⊇ ⟩ ⟦ν⟧ zero)) val : ∀ {A Γ} → (∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A) → Γ ⊩ A val {•} f = ⟦𝒢⟧ f val {A ⊃ B} f = ⟦ƛ⟧ (λ c a → val (λ c′ → f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a))) ⟦ν⟧ : ∀ {x Γ A} → Γ ∋ x ∷ A → Γ ⊩ A ⟦ν⟧ {x} i = val (λ c → ν x (↑⟨ c ⟩ i)) -- We also have that if two semantic objects in a Kripke model are extensionally equal, then -- the result of applying the inversion function to them is intensionally equal. To prove this -- we first have to show the following two lemmas: aux₄₄₁ : ∀ {A Γ} → (f f′ : ∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A) → (∀ {Δ} → (c : Δ ⊇ Γ) → f c ≡ f′ c) → Eq (val f) (val f′) aux₄₄₁ {•} f f′ h = eq• (λ c → h c) aux₄₄₁ {A ⊃ B} f f′ h = eq⊃ (λ c {a} uₐ → aux₄₄₁ (λ c′ → f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a)) (λ c′ → f′ (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a)) (λ c′ → cong (_∙ reify (↑⟨ c′ ⟩ a)) (h (c ○ c′)))) aux₄₄₂⟨_⟩ : ∀ {A Γ Δ} → (c : Δ ⊇ Γ) (f : (∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A)) → Eq (↑⟨ c ⟩ (val f)) (val (λ c′ → f (c ○ c′))) aux₄₄₂⟨_⟩ {•} c f = eq• (λ c′ → cong f refl) aux₄₄₂⟨_⟩ {A ⊃ B} c f = eq⊃ (λ c′ {a} uₐ → aux₄₄₁ (λ c″ → f ((c ○ c′) ○ c″) ∙ reify (↑⟨ c″ ⟩ a)) (λ c″ → f (c ○ (c′ ○ c″)) ∙ reify (↑⟨ c″ ⟩ a)) (λ c″ → cong (_∙ reify (↑⟨ c″ ⟩ a)) (cong f (sym (assoc○ c c′ c″))))) -- Both lemmas are proved by induction on the type and they are used in order to prove the -- following theorem, -- which is shown mutually with a lemma -- which states that `val` returns a uniform semantic object. Both the theorem and the lemma -- are proved by induction on the type. -- Theorem 1. mutual thm₁ : ∀ {Γ A} {a a′ : Γ ⊩ A} → Eq a a′ → reify a ≡ reify a′ thm₁ {Γ} (eq• h) = h refl⊇ thm₁ {Γ} (eq⊃ h) = let x , φ = gensym Γ in let instance _ = φ in cong (ƛ x) (thm₁ (h weak⊇ (⟦ν⟧𝒰 zero))) ⟦ν⟧𝒰 : ∀ {x Γ A} → (i : Γ ∋ x ∷ A) → 𝒰 (⟦ν⟧ i) ⟦ν⟧𝒰 {x} i = aux₄₄₃ (λ c → ν x (↑⟨ c ⟩ i)) aux₄₄₃ : ∀ {A Γ} → (f : ∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A) → 𝒰 (val f) aux₄₄₃ {•} f = 𝓊• aux₄₄₃ {A ⊃ B} f = 𝓊⊃ (λ c {a} uₐ → aux₄₄₃ (λ c′ → f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a))) (λ c {a} {a′} eqₐ uₐ uₐ′ → aux₄₄₁ (λ c′ → f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a)) (λ c′ → f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a′)) (λ c′ → cong (f (c ○ c′) ∙_) (thm₁ (cong↑⟨ c′ ⟩Eq eqₐ)))) (λ c c′ c″ {a} uₐ → transEq (aux₄₄₂⟨ c′ ⟩ (λ c‴ → f (c ○ c‴) ∙ reify (↑⟨ c‴ ⟩ a))) (aux₄₄₁ (λ c‴ → f (c ○ (c′ ○ c‴)) ∙ reify (↑⟨ c′ ○ c‴ ⟩ a)) (λ c‴ → f (c″ ○ c‴) ∙ reify (↑⟨ c‴ ⟩ (↑⟨ c′ ⟩ a))) (λ c‴ → cong² _∙_ (cong f (trans (assoc○ c c′ c‴) (comp○ (c ○ c′) c‴ (c″ ○ c‴)))) (thm₁ (symEq (aux₄₁₂ c′ c‴ (c′ ○ c‴) uₐ)))))) -- We are now ready to define the function that given a proof tree computes its normal form. -- For this we define the identity environment `proj⟨_⟩⊩⋆` which to each variable -- in the context `Γ` associates the corresponding value of the variable in `Δ` (`⟦ν⟧` gives the -- value of this variable). The normalisation function, `nf`, is defined as the composition of the -- evaluation function and `reify`. This function is similar to the normalisation algorithm given -- by Berger [3]; one difference is our use of Kripke models to deal with reduction under `λ`. -- One other difference is that, since we use explicit contexts, we can use the context to find -- the fresh names in the `reify` function. proj⟨_⟩⊩⋆ : ∀ {Γ Δ} → Δ ⊇ Γ → Δ ⊩⋆ Γ proj⟨ done ⟩⊩⋆ = [] proj⟨ step {x = x} c i ⟩⊩⋆ = [ proj⟨ c ⟩⊩⋆ , x ≔ ⟦ν⟧ i ] refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = proj⟨ refl⊇ ⟩⊩⋆ -- The computation of the normal form is done by computing the semantics of the proof -- tree in the identity environment and then inverting the result: nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A nf M = reify (⟦ M ⟧ refl⊩⋆) -- We know by Theorem 1 that `nf` returns the same result when applied to two proof trees -- having the same semantics: -- Corollary 1. cor₁ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → Eq (⟦ M ⟧ refl⊩⋆) (⟦ M′ ⟧ refl⊩⋆) → nf M ≡ nf M′ cor₁ M M′ = thm₁ -- 4.5. Soundness and completeness of proof trees -- ---------------------------------------------- -- -- We have in fact already shown soundness and completeness of the calculus of proof trees. -- -- The evaluation function, `⟦_⟧`, for proof trees corresponds via the Curry-Howard isomorphism -- to a proof of the soundness theorem of minimal logic with respect to Kripke models. -- The function is defined by pattern matching which corresponds to a proof by case analysis -- of the proof trees. -- -- The inversion function `reify` is, again via the Curry-Howard isomorphism, a proof of the -- completeness theorem of minimal logic with respect to a particular Kripke model where -- the worlds are contexts. -- 4.6. Completeness of the conversion rules for proof trees -- --------------------------------------------------------- -- -- In order to prove that the set of conversion rules is complete, i.e., -- `Eq (⟦ M ⟧ refl⊩⋆) (⟦ M′ ⟧ refl⊩⋆)` implies `M ≅ M′`, we must first prove Theorem 2: `M ≅ nf M`. -- -- To prove the theorem we define a Kripke logical relation [15, 18] -- which corresponds to Tait’s computability predicate. -- -- A proof tree of base type is intuitively `CV`-related to a semantic object of base type if -- they are convertible with each other. (…) -- -- A proof tree of function type, `A ⊃ B`, is intuitively `CV`-related to a semantic object of the -- same type if they send `CV`-related proof trees and objects of type `A` to `CV`-related proof -- trees and objects of type `B`. (…) data CV : ∀ {Γ A} → Γ ⊢ A → Γ ⊩ A → Set where cv• : ∀ {Γ} {M : Γ ⊢ •} {f : Γ ⊩ •} → (∀ {Δ} → (c : Δ ⊇ Γ) → M ▶ π⟨ c ⟩ ≅ f ⟦g⟧⟨ c ⟩) → CV M f cv⊃ : ∀ {Γ A B} {M : Γ ⊢ A ⊃ B} {f : Γ ⊩ A ⊃ B} → (∀ {Δ N a} → (c : Δ ⊇ Γ) → CV N a → CV ((M ▶ π⟨ c ⟩) ∙ N) (f ⟦∙⟧⟨ c ⟩ a)) → CV M f -- The idea of this predicate is that we can show that if `CV M a` then `M ≅ reify a`, hence -- if we show that `CV M (⟦ M ⟧ refl⊩⋆)`, we have a proof of Theorem 2. -- -- Correspondingly for the environment we define: (…) data CV⋆ : ∀ {Γ Δ} → Δ ⋙ Γ → Δ ⊩⋆ Γ → Set where cv⋆[] : ∀ {Γ} → {γ : Γ ⋙ []} → CV⋆ γ [] cv⋆≔ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} {γ : Δ ⋙ [ Γ , x ∷ A ]} {c : [ Γ , x ∷ A ] ⊇ Γ} {ρ : Δ ⊩⋆ Γ} {a : Δ ⊩ A} → CV⋆ (π⟨ c ⟩ ● γ) ρ → CV (ν x zero ▶ γ) a → CV⋆ γ [ ρ , x ≔ a ] -- In order to prove Lemma 8 below we need to prove the following properties about `CV`: cong≅CV : ∀ {Γ A} {M M′ : Γ ⊢ A} {a : Γ ⊩ A} → M ≅ M′ → CV M′ a → CV M a cong≅CV p (cv• h) = cv• (λ c → trans≅ (cong▶≅ p refl≅ₛ) (h c)) cong≅CV p (cv⊃ h) = cv⊃ (λ c cvₐ → cong≅CV (cong∙≅ (cong▶≅ p refl≅ₛ) refl≅) (h c cvₐ)) cong≅ₛCV⋆ : ∀ {Γ Δ} {γ γ′ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → γ ≅ₛ γ′ → CV⋆ γ′ ρ → CV⋆ γ ρ cong≅ₛCV⋆ p cv⋆[] = cv⋆[] cong≅ₛCV⋆ p (cv⋆≔ cv⋆ cv) = cv⋆≔ (cong≅ₛCV⋆ (cong●≅ₛ refl≅ₛ p) cv⋆) (cong≅CV (cong▶≅ refl≅ p) cv) cong↑⟨_⟩CV : ∀ {Γ Δ A} {M : Γ ⊢ A} {a : Γ ⊩ A} → (c : Δ ⊇ Γ) → CV M a → CV (M ▶ π⟨ c ⟩) (↑⟨ c ⟩ a) cong↑⟨ c ⟩CV (cv• h) = cv• (λ c′ → trans≅ (trans≅ (conv₇≅ _ _ _) (cong▶≅ refl≅ (conv₄≅ₛ _ _ _))) (h (c ○ c′))) cong↑⟨ c ⟩CV (cv⊃ h) = cv⊃ (λ c′ cvₐ → cong≅CV (cong∙≅ (trans≅ (conv₇≅ _ _ _) (cong▶≅ refl≅ (conv₄≅ₛ _ _ _))) refl≅) (h (c ○ c′) cvₐ)) conglookupCV : ∀ {Γ Δ A x} {γ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → CV⋆ γ ρ → (i : Γ ∋ x ∷ A) → CV (ν x i ▶ γ) (lookup ρ i) conglookupCV cv⋆[] () conglookupCV (cv⋆≔ cv⋆ cv) zero = cv conglookupCV (cv⋆≔ cv⋆ cv) (suc i) = cong≅CV (trans≅ (cong▶≅ (sym≅ (conv₄≅ _ _ _)) refl≅ₛ) (conv₇≅ _ _ _)) (conglookupCV cv⋆ i) cong↑⟨_⟩CV⋆ : ∀ {Γ Δ Θ} {γ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → (c : Θ ⊇ Δ) → CV⋆ γ ρ → CV⋆ (γ ● π⟨ c ⟩) (↑⟨ c ⟩ ρ) cong↑⟨ c ⟩CV⋆ cv⋆[] = cv⋆[] cong↑⟨ c ⟩CV⋆ (cv⋆≔ cv⋆ cv) = cv⋆≔ (cong≅ₛCV⋆ (sym≅ₛ (conv₁≅ₛ _ _ _)) (cong↑⟨ c ⟩CV⋆ cv⋆)) (cong≅CV (sym≅ (conv₇≅ _ _ _)) (cong↑⟨ c ⟩CV cv)) cong↓⟨_⟩CV⋆ : ∀ {Γ Δ Θ} {γ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → (c : Γ ⊇ Θ) → CV⋆ γ ρ → CV⋆ (π⟨ c ⟩ ● γ) (↓⟨ c ⟩ ρ) cong↓⟨ done ⟩CV⋆ cv⋆ = cv⋆[] cong↓⟨ step c i ⟩CV⋆ cv⋆ = cv⋆≔ {c = weak⊇} (cong≅ₛCV⋆ (trans≅ₛ (sym≅ₛ (conv₁≅ₛ _ _ _)) (cong●≅ₛ (conv₄≅ₛ _ _ _) refl≅ₛ)) (cong↓⟨ c ⟩CV⋆ cv⋆)) (cong≅CV (trans≅ (sym≅ (conv₇≅ _ _ _)) (cong▶≅ (conv₄≅ _ _ _) refl≅ₛ)) (conglookupCV cv⋆ i)) -- Now we are ready to prove that if `γ` and `ρ` are `CV`-related, then `M ▶ γ` and `⟦ M ⟧ ρ` are -- `CV`-related. This lemma corresponds to Tait’s lemma saying that each term is computable -- under substitution. We prove the lemma -- mutually with a corresponding lemma for substitutions. -- Lemma 8. mutual CV⟦_⟧ : ∀ {Γ Δ A} {γ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → (M : Γ ⊢ A) → CV⋆ γ ρ → CV (M ▶ γ) (⟦ M ⟧ ρ) CV⟦ ν x i ⟧ cv⋆ = conglookupCV cv⋆ i CV⟦ ƛ x M ⟧ cv⋆ = cv⊃ (λ c cvₐ → cong≅CV (trans≅ (cong∙≅ (conv₇≅ _ _ _) refl≅) (conv₁≅ _ _ _)) (CV⟦ M ⟧ (cv⋆≔ {c = weak⊇} (cong≅ₛCV⋆ (conv₃≅ₛ _ _ _) (cong↑⟨ c ⟩CV⋆ cv⋆)) (cong≅CV (conv₃≅ _ _) cvₐ)))) CV⟦ M ∙ N ⟧ cv⋆ with CV⟦ M ⟧ cv⋆ CV⟦ M ∙ N ⟧ cv⋆ | (cv⊃ h) = cong≅CV (trans≅ (conv₆≅ _ _ _) (cong∙≅ (sym≅ (conv₅≅ _ _)) refl≅)) (h refl⊇ (CV⟦ N ⟧ cv⋆)) CV⟦ M ▶ γ ⟧ cv⋆ = cong≅CV (conv₇≅ _ _ _) (CV⟦ M ⟧ (CV⋆⟦ γ ⟧ₛ cv⋆)) CV⋆⟦_⟧ₛ : ∀ {Γ Δ Θ} {δ : Θ ⋙ Δ} {ρ : Θ ⊩⋆ Δ} → (γ : Δ ⋙ Γ) → CV⋆ δ ρ → CV⋆ (γ ● δ) (⟦ γ ⟧ₛ ρ) CV⋆⟦ π⟨ c ⟩ ⟧ₛ cv⋆ = cong↓⟨ c ⟩CV⋆ cv⋆ CV⋆⟦ γ ● γ′ ⟧ₛ cv⋆ = cong≅ₛCV⋆ (conv₁≅ₛ _ _ _) (CV⋆⟦ γ ⟧ₛ (CV⋆⟦ γ′ ⟧ₛ cv⋆)) CV⋆⟦ [ γ , x ≔ M ] ⟧ₛ cv⋆ = cv⋆≔ {c = weak⊇} (cong≅ₛCV⋆ (trans≅ₛ (sym≅ₛ (conv₁≅ₛ _ _ _)) (cong●≅ₛ (conv₃≅ₛ _ _ _) refl≅ₛ)) (CV⋆⟦ γ ⟧ₛ cv⋆)) (cong≅CV (trans≅ (sym≅ (conv₇≅ _ _ _)) (cong▶≅ (conv₃≅ _ _) refl≅ₛ)) (CV⟦ M ⟧ cv⋆)) -- Both lemmas are proved by induction on the proof trees using the lemmas above. -- -- Lemma 9 is shown mutually with a corresponding lemma for `val`: -- Lemma 9. mutual lem₉ : ∀ {Γ A} {M : Γ ⊢ A} {a : Γ ⊩ A} → CV M a → M ≅ reify a lem₉ (cv• h) = trans≅ (sym≅ (conv₅≅ _ _)) (h refl⊇) lem₉ (cv⊃ h) = trans≅ (conv₂≅ _ _) (congƛ≅ (lem₉ (h weak⊇ (aux₄₆₈ (λ c → conv₄≅ _ _ _))))) aux₄₆₈ : ∀ {A Γ} {M : Γ ⊢ A} {f : ∀ {Δ} → Δ ⊇ Γ → Δ ⊢ A} → (∀ {Δ} → (c : Δ ⊇ Γ) → M ▶ π⟨ c ⟩ ≅ f c) → CV M (val f) aux₄₆₈ {•} h = cv• (λ c → h c) aux₄₆₈ {A ⊃ B} {M = M} {f} h = cv⊃ (λ {_} {N} {a} c cvₐ → aux₄₆₈ (λ {Δ′} c′ → begin ((M ▶ π⟨ c ⟩) ∙ N) ▶ π⟨ c′ ⟩ ≅⟨ conv₆≅ _ _ _ ⟩ ((M ▶ π⟨ c ⟩) ▶ π⟨ c′ ⟩) ∙ (N ▶ π⟨ c′ ⟩) ≅⟨ cong∙≅ (conv₇≅ _ _ _) refl≅ ⟩ (M ▶ (π⟨ c ⟩ ● π⟨ c′ ⟩)) ∙ (N ▶ π⟨ c′ ⟩) ≅⟨ cong∙≅ (cong▶≅ refl≅ (conv₄≅ₛ _ _ _)) refl≅ ⟩ (M ▶ π⟨ c ○ c′ ⟩) ∙ (N ▶ π⟨ c′ ⟩) ≅⟨ cong∙≅ (h (c ○ c′)) refl≅ ⟩ f (c ○ c′) ∙ (N ▶ π⟨ c′ ⟩) ≅⟨ cong∙≅ refl≅ (lem₉ (cong↑⟨ c′ ⟩CV cvₐ)) ⟩ f (c ○ c′) ∙ reify (↑⟨ c′ ⟩ a) ∎)) where open ≅-Reasoning -- In order to prove Theorem 2 we also prove that `CV⋆ π⟨ c ⟩ proj⟨ c ⟩⊩⋆`; then by this, Lemma 8 -- and Lemma 9 we get that `M ▶ π⟨ c ⟩ ≅ nf M`, where `c : Γ ⊇ Γ`. Using the conversion rule -- `M ≅ M ▶ π⟨ c ⟩` for `c : Γ ⊇ Γ` we get by transitivity of conversion of `_≅_` that `M ≅ nf M`. proj⟨_⟩CV⋆ : ∀ {Γ Δ} → (c : Δ ⊇ Γ) → CV⋆ π⟨ c ⟩ proj⟨ c ⟩⊩⋆ proj⟨ done ⟩CV⋆ = cv⋆[] proj⟨ step {x = x} c i ⟩CV⋆ = cv⋆≔ {c = weak⊇} (cong≅ₛCV⋆ (conv₄≅ₛ _ _ _) (proj⟨ c ⟩CV⋆)) (aux₄₆₈ (λ c′ → begin (ν x zero ▶ π⟨ step c i ⟩) ▶ π⟨ c′ ⟩ ≅⟨ cong▶≅ (conv₄≅ _ _ _) refl≅ₛ ⟩ ν x i ▶ π⟨ c′ ⟩ ≅⟨ conv₄≅ _ _ _ ⟩ ν x (↑⟨ c′ ⟩ i) ∎)) where open ≅-Reasoning reflCV⋆ : ∀ {Γ} → CV⋆ π⟨ refl⊇ ⟩ (refl⊩⋆ {Γ}) reflCV⋆ = proj⟨ refl⊇ ⟩CV⋆ aux₄₆₉⟨_⟩ : ∀ {Γ A} → (c : Γ ⊇ Γ) (M : Γ ⊢ A) → M ▶ π⟨ c ⟩ ≅ nf M aux₄₆₉⟨ c ⟩ M rewrite uniq⊇ refl⊇ c = lem₉ (CV⟦ M ⟧ proj⟨ c ⟩CV⋆) -- Theorem 2. thm₂ : ∀ {Γ A} → (M : Γ ⊢ A) → M ≅ nf M thm₂ M = trans≅ (sym≅ (conv₅≅ _ _)) (aux₄₆₉⟨ refl⊇ ⟩ M) -- It is now easy to prove the completeness theorem: -- Theorem 3. thm₃ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → Eq (⟦ M ⟧ refl⊩⋆) (⟦ M′ ⟧ refl⊩⋆) → M ≅ M′ thm₃ M M′ eq = begin M ≅⟨ thm₂ M ⟩ nf M ≡⟨ cor₁ M M′ eq ⟩ nf M′ ≅⟨ sym≅ (thm₂ M′) ⟩ M′ ∎ where open ≅-Reasoning -- 4.7. Completeness of the conversion rules for substitutions -- ----------------------------------------------------------- -- -- The proof of completeness above does not imply that the set of conversion rules for substitutions -- is complete. In order to prove the completeness of conversion rules for the substitutions -- we define an inversion function for semantic environments: (…) reify⋆ : ∀ {Γ Δ} → Δ ⊩⋆ Γ → Δ ⋙ Γ reify⋆ [] = π⟨ done ⟩ reify⋆ [ ρ , x ≔ a ] = [ reify⋆ ρ , x ≔ reify a ] -- The normalisation function on substitutions is defined as the inversion of the semantics -- of the substitution in the identity environment. nf⋆ : ∀ {Δ Γ} → Δ ⋙ Γ → Δ ⋙ Γ nf⋆ γ = reify⋆ (⟦ γ ⟧ₛ refl⊩⋆) -- The completeness result for substitutions follows in the same way as for proof trees, i.e., -- we must prove that `γ ≅ₛ nf⋆ γ`. thm₁ₛ : ∀ {Γ Δ} {ρ ρ′ : Δ ⊩⋆ Γ} → Eq⋆ ρ ρ′ → reify⋆ ρ ≡ reify⋆ ρ′ thm₁ₛ eq⋆[] = refl thm₁ₛ (eq⋆≔ eq⋆ eq) = cong² (λ γ M → [ γ , _ ≔ M ]) (thm₁ₛ eq⋆) (thm₁ eq) cor₁ₛ : ∀ {Γ Δ} → (γ γ′ : Δ ⋙ Γ) → Eq⋆ (⟦ γ ⟧ₛ refl⊩⋆) (⟦ γ′ ⟧ₛ refl⊩⋆) → nf⋆ γ ≡ nf⋆ γ′ cor₁ₛ γ γ′ = thm₁ₛ lem₉ₛ : ∀ {Γ Δ} {γ : Δ ⋙ Γ} {ρ : Δ ⊩⋆ Γ} → CV⋆ γ ρ → γ ≅ₛ reify⋆ ρ lem₉ₛ cv⋆[] = conv₆≅ₛ _ _ lem₉ₛ (cv⋆≔ cv⋆ cv) = trans≅ₛ (conv₇≅ₛ _ _ _) (cong≔≅ₛ (lem₉ₛ cv⋆) (lem₉ cv)) aux₄₆₉ₛ⟨_⟩ : ∀ {Γ Δ} → (c : Δ ⊇ Δ) (γ : Δ ⋙ Γ) → γ ● π⟨ c ⟩ ≅ₛ nf⋆ γ aux₄₆₉ₛ⟨ c ⟩ γ rewrite uniq⊇ refl⊇ c = lem₉ₛ (CV⋆⟦ γ ⟧ₛ proj⟨ c ⟩CV⋆) thm₂ₛ : ∀ {Γ Δ} → (γ : Δ ⋙ Γ) → γ ≅ₛ nf⋆ γ thm₂ₛ γ = trans≅ₛ (sym≅ₛ (conv₅≅ₛ _ _)) (aux₄₆₉ₛ⟨ refl⊇ ⟩ γ) thm₃ₛ : ∀ {Γ Δ} → (γ γ′ : Δ ⋙ Γ) → Eq⋆ (⟦ γ ⟧ₛ refl⊩⋆) (⟦ γ′ ⟧ₛ refl⊩⋆) → γ ≅ₛ γ′ thm₃ₛ γ γ′ eq⋆ = begin γ ≅ₛ⟨ thm₂ₛ γ ⟩ nf⋆ γ ≡⟨ cor₁ₛ γ γ′ eq⋆ ⟩ nf⋆ γ′ ≅ₛ⟨ sym≅ₛ (thm₂ₛ γ′) ⟩ γ′ ∎ where open ≅ₛ-Reasoning -- 4.8. Soundness of the conversion rules -- -------------------------------------- -- -- In order to prove the soundness of the conversion rules we first have to show: -- NOTE: Added missing uniformity assumptions. mutual 𝒰⟦_⟧ : ∀ {A Γ Δ} {ρ : Δ ⊩⋆ Γ} → (M : Γ ⊢ A) → 𝒰⋆ ρ → 𝒰 (⟦ M ⟧ ρ) 𝒰⟦ ν x i ⟧ u⋆ = conglookup𝒰 u⋆ i 𝒰⟦ ƛ x M ⟧ u⋆ = 𝓊⊃ (λ c uₐ → 𝒰⟦ M ⟧ (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ)) (λ c eqₐ uₐ uₐ′ → Eq⟦ M ⟧ (eq⋆≔ (cong↑⟨ c ⟩Eq⋆ (reflEq⋆ u⋆)) eqₐ) (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ) (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ′)) (λ c c′ c″ uₐ → transEq (↑⟨ c′ ⟩Eq⟦ M ⟧ (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ)) (Eq⟦ M ⟧ (eq⋆≔ (aux₄₂₇ c c′ c″ u⋆) (reflEq (cong↑⟨ c′ ⟩𝒰 uₐ))) (𝓊⋆≔ (cong↑⟨ c′ ⟩𝒰⋆ (cong↑⟨ c ⟩𝒰⋆ u⋆)) (cong↑⟨ c′ ⟩𝒰 uₐ)) (𝓊⋆≔ (cong↑⟨ c″ ⟩𝒰⋆ u⋆) (cong↑⟨ c′ ⟩𝒰 uₐ)))) 𝒰⟦ M ∙ N ⟧ u⋆ with 𝒰⟦ M ⟧ u⋆ 𝒰⟦ M ∙ N ⟧ u⋆ | (𝓊⊃ h₀ h₁ h₂) = h₀ refl⊇ (𝒰⟦ N ⟧ u⋆) 𝒰⟦ M ▶ γ ⟧ u⋆ = 𝒰⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆) 𝒰⋆⟦_⟧ₛ : ∀ {Γ Δ Θ} {ρ : Θ ⊩⋆ Δ} → (γ : Δ ⋙ Γ) → 𝒰⋆ ρ → 𝒰⋆ (⟦ γ ⟧ₛ ρ) 𝒰⋆⟦ π⟨ c ⟩ ⟧ₛ u⋆ = cong↓⟨ c ⟩𝒰⋆ u⋆ 𝒰⋆⟦ γ ● γ′ ⟧ₛ u⋆ = 𝒰⋆⟦ γ ⟧ₛ (𝒰⋆⟦ γ′ ⟧ₛ u⋆) 𝒰⋆⟦ [ γ , x ≔ M ] ⟧ₛ u⋆ = 𝓊⋆≔ (𝒰⋆⟦ γ ⟧ₛ u⋆) (𝒰⟦ M ⟧ u⋆) Eq⟦_⟧ : ∀ {Γ Δ A} {ρ ρ′ : Δ ⊩⋆ Γ} → (M : Γ ⊢ A) → Eq⋆ ρ ρ′ → 𝒰⋆ ρ → 𝒰⋆ ρ′ → Eq (⟦ M ⟧ ρ) (⟦ M ⟧ ρ′) Eq⟦ ν x i ⟧ eq⋆ u⋆ u⋆′ = conglookupEq eq⋆ i Eq⟦ ƛ x M ⟧ eq⋆ u⋆ u⋆′ = eq⊃ (λ c uₐ → Eq⟦ M ⟧ (eq⋆≔ (cong↑⟨ c ⟩Eq⋆ eq⋆) (reflEq uₐ)) (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ) (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆′) uₐ)) Eq⟦ M ∙ N ⟧ eq⋆ u⋆ u⋆′ = cong⟦∙⟧⟨ refl⊇ ⟩Eq (Eq⟦ M ⟧ eq⋆ u⋆ u⋆′) (𝒰⟦ M ⟧ u⋆) (𝒰⟦ M ⟧ u⋆′) (Eq⟦ N ⟧ eq⋆ u⋆ u⋆′) (𝒰⟦ N ⟧ u⋆) (𝒰⟦ N ⟧ u⋆′) Eq⟦ M ▶ γ ⟧ eq⋆ u⋆ u⋆′ = Eq⟦ M ⟧ (Eq⋆⟦ γ ⟧ₛ eq⋆ u⋆ u⋆′) (𝒰⋆⟦ γ ⟧ₛ u⋆) (𝒰⋆⟦ γ ⟧ₛ u⋆′) Eq⋆⟦_⟧ₛ : ∀ {Γ Δ Θ} {ρ ρ′ : Θ ⊩⋆ Δ} → (γ : Δ ⋙ Γ) → Eq⋆ ρ ρ′ → 𝒰⋆ ρ → 𝒰⋆ ρ′ → Eq⋆ (⟦ γ ⟧ₛ ρ) (⟦ γ ⟧ₛ ρ′) Eq⋆⟦ π⟨ c ⟩ ⟧ₛ eq⋆ u⋆ u⋆′ = cong↓⟨ c ⟩Eq⋆ eq⋆ Eq⋆⟦ γ ● γ′ ⟧ₛ eq⋆ u⋆ u⋆′ = Eq⋆⟦ γ ⟧ₛ (Eq⋆⟦ γ′ ⟧ₛ eq⋆ u⋆ u⋆′) (𝒰⋆⟦ γ′ ⟧ₛ u⋆) (𝒰⋆⟦ γ′ ⟧ₛ u⋆′) Eq⋆⟦ [ γ , x ≔ M ] ⟧ₛ eq⋆ u⋆ u⋆′ = eq⋆≔ (Eq⋆⟦ γ ⟧ₛ eq⋆ u⋆ u⋆′) (Eq⟦ M ⟧ eq⋆ u⋆ u⋆′) ↑⟨_⟩Eq⟦_⟧ : ∀ {Γ Δ Θ A} {ρ : Δ ⊩⋆ Γ} → (c : Θ ⊇ Δ) (M : Γ ⊢ A) → 𝒰⋆ ρ → Eq (↑⟨ c ⟩ (⟦ M ⟧ ρ)) (⟦ M ⟧ (↑⟨ c ⟩ ρ)) ↑⟨ c ⟩Eq⟦ ν x i ⟧ u⋆ = conglookup↑⟨ c ⟩Eq u⋆ i ↑⟨ c ⟩Eq⟦ ƛ x M ⟧ u⋆ = eq⊃ (λ c′ uₐ → Eq⟦ M ⟧ (eq⋆≔ (symEq⋆ (aux₄₂₇ c c′ (c ○ c′) u⋆)) (reflEq uₐ)) (𝓊⋆≔ (cong↑⟨ c ○ c′ ⟩𝒰⋆ u⋆) uₐ) (𝓊⋆≔ (cong↑⟨ c′ ⟩𝒰⋆ (cong↑⟨ c ⟩𝒰⋆ u⋆)) uₐ)) ↑⟨ c ⟩Eq⟦ M ∙ N ⟧ u⋆ with 𝒰⟦ M ⟧ u⋆ ↑⟨ c ⟩Eq⟦ M ∙ N ⟧ u⋆ | (𝓊⊃ h₀ h₁ h₂) = transEq (h₂ refl⊇ c c (𝒰⟦ N ⟧ u⋆)) (transEq (aux₄₁₃ c refl⊇ (𝒰⟦ M ⟧ u⋆) (cong↑⟨ c ⟩𝒰 (𝒰⟦ N ⟧ u⋆))) (cong⟦∙⟧⟨ refl⊇ ⟩Eq (↑⟨ c ⟩Eq⟦ M ⟧ u⋆) (cong↑⟨ c ⟩𝒰 (𝒰⟦ M ⟧ u⋆)) (𝒰⟦ M ⟧ (cong↑⟨ c ⟩𝒰⋆ u⋆)) (↑⟨ c ⟩Eq⟦ N ⟧ u⋆) (cong↑⟨ c ⟩𝒰 (𝒰⟦ N ⟧ u⋆)) (𝒰⟦ N ⟧ (cong↑⟨ c ⟩𝒰⋆ u⋆)))) ↑⟨ c ⟩Eq⟦ M ▶ γ ⟧ u⋆ = transEq (↑⟨ c ⟩Eq⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (Eq⟦ M ⟧ (↑⟨ c ⟩Eq⋆⟦ γ ⟧ₛ u⋆) (cong↑⟨ c ⟩𝒰⋆ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (𝒰⋆⟦ γ ⟧ₛ (cong↑⟨ c ⟩𝒰⋆ u⋆))) ↑⟨_⟩Eq⋆⟦_⟧ₛ : ∀ {Γ Δ Θ Ω} {ρ : Θ ⊩⋆ Δ} → (c : Ω ⊇ Θ) (γ : Δ ⋙ Γ) → 𝒰⋆ ρ → Eq⋆ (↑⟨ c ⟩ (⟦ γ ⟧ₛ ρ)) (⟦ γ ⟧ₛ (↑⟨ c ⟩ ρ)) ↑⟨ c ⟩Eq⋆⟦ π⟨ c′ ⟩ ⟧ₛ u⋆ = aux₄₂₈ c′ c u⋆ ↑⟨ c ⟩Eq⋆⟦ γ ● γ′ ⟧ₛ u⋆ = transEq⋆ (↑⟨ c ⟩Eq⋆⟦ γ ⟧ₛ (𝒰⋆⟦ γ′ ⟧ₛ u⋆)) (Eq⋆⟦ γ ⟧ₛ (↑⟨ c ⟩Eq⋆⟦ γ′ ⟧ₛ u⋆) (cong↑⟨ c ⟩𝒰⋆ (𝒰⋆⟦ γ′ ⟧ₛ u⋆)) (𝒰⋆⟦ γ′ ⟧ₛ (cong↑⟨ c ⟩𝒰⋆ u⋆))) ↑⟨ c ⟩Eq⋆⟦ [ γ , x ≔ M ] ⟧ₛ u⋆ = eq⋆≔ (↑⟨ c ⟩Eq⋆⟦ γ ⟧ₛ u⋆) (↑⟨ c ⟩Eq⟦ M ⟧ u⋆) -- NOTE: Added missing lemmas. module _ where aux₄₈₁⟨_⟩ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} {ρ : Δ ⊩⋆ Γ} {a : Δ ⊩ A} → (c : [ Γ , x ∷ A ] ⊇ Γ) → 𝒰⋆ ρ → Eq⋆ (↓⟨ c ⟩ [ ρ , x ≔ a ]) ρ aux₄₈₁⟨ c ⟩ u⋆ = transEq⋆ (aux₄₂₃ refl⊇ c u⋆) (aux₄₂₄⟨ refl⊇ ⟩ u⋆) aux₄₈₂⟨_⟩ : ∀ {Γ Δ} {ρ : Δ ⊩⋆ Γ} → (c : Γ ⊇ []) → 𝒰⋆ ρ → ↓⟨ c ⟩ ρ ≡ [] aux₄₈₂⟨ done ⟩ u⋆ = refl aux₄₈₃ : ∀ {Γ Δ} {ρ : Δ ⊩⋆ Γ} → (γ : Γ ⋙ []) → 𝒰⋆ ρ → Eq⋆ (⟦ γ ⟧ₛ ρ) [] aux₄₈₃ π⟨ c ⟩ u⋆ rewrite aux₄₈₂⟨ c ⟩ u⋆ = reflEq⋆ 𝓊⋆[] aux₄₈₃ (γ ● γ′) u⋆ = aux₄₈₃ γ (𝒰⋆⟦ γ′ ⟧ₛ u⋆) aux₄₈₄ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} {ρ : Δ ⊩⋆ Γ} {a : Δ ⊩ A} → (i : [ Γ , x ∷ A ] ∋ x ∷ A) → 𝒰 a → Eq (lookup [ ρ , x ≔ a ] i) a aux₄₈₄ i uₐ rewrite uniq∋ i zero = reflEq uₐ conv₆Eq⋆⟨_⟩ : ∀ {Γ Δ} {ρ : Δ ⊩⋆ Γ} → (c : Γ ⊇ []) (γ : Γ ⋙ []) → 𝒰⋆ ρ → Eq⋆ (⟦ γ ⟧ₛ ρ) (↓⟨ c ⟩⊩⋆ ρ) conv₆Eq⋆⟨ c ⟩ γ u⋆ rewrite aux₄₈₂⟨ c ⟩ u⋆ = aux₄₈₃ γ u⋆ conv₇Eq⋆⟨_⟩ : ∀ {Γ Δ Θ A x} {{_ : T (fresh x Γ)}} {ρ : Θ ⊩⋆ Δ} → (c : [ Γ , x ∷ A ] ⊇ Γ) (γ : Δ ⋙ [ Γ , x ∷ A ]) (i : [ Γ , x ∷ A ] ∋ x ∷ A) → 𝒰⋆ ρ → Eq⋆ (⟦ γ ⟧ₛ ρ) [ ↓⟨ c ⟩ (⟦ γ ⟧ₛ ρ) , x ≔ lookup (⟦ γ ⟧ₛ ρ) i ] conv₇Eq⋆⟨_⟩ {x = x} {ρ = ρ} c γ i u⋆ with ⟦ γ ⟧ₛ ρ | 𝒰⋆⟦ γ ⟧ₛ u⋆ conv₇Eq⋆⟨_⟩ {x = x} {ρ = ρ} c γ i u⋆ | [ ρ′ , .x ≔ a ] | 𝓊⋆≔ u⋆′ uₐ = begin [ ρ′ , x ≔ a ] Eq⋆⟨ eq⋆≔ (symEq⋆ (aux₄₈₁⟨ c ⟩ u⋆′)) (symEq (aux₄₈₄ i uₐ)) ⟩ [ ↓⟨ c ⟩⊩⋆ [ ρ′ , x ≔ a ] , x ≔ lookup [ ρ′ , x ≔ a ] i ] ∎⟨ 𝓊⋆≔ (cong↓⟨ c ⟩𝒰⋆ (𝓊⋆≔ u⋆′ uₐ)) (conglookup𝒰 (𝓊⋆≔ u⋆′ uₐ) i) ⟩ where open Eq⋆Reasoning -- The soundness theorem is shown mutually with a corresponding lemma for substitutions: -- Theorem 4. -- NOTE: Added missing uniformity assumptions. module _ {{_ : Model}} where mutual Eq⟦_⟧≅ : ∀ {Γ A w} {M M′ : Γ ⊢ A} {ρ : w ⊩⋆ Γ} → M ≅ M′ → 𝒰⋆ ρ → Eq (⟦ M ⟧ ρ) (⟦ M′ ⟧ ρ) Eq⟦ refl≅ {M = M} ⟧≅ u⋆ = reflEq (𝒰⟦ M ⟧ u⋆) Eq⟦ sym≅ p ⟧≅ u⋆ = symEq (Eq⟦ p ⟧≅ u⋆) Eq⟦ trans≅ p p′ ⟧≅ u⋆ = transEq (Eq⟦ p ⟧≅ u⋆) (Eq⟦ p′ ⟧≅ u⋆) Eq⟦ congƛ≅ {M = M} {M′} p ⟧≅ u⋆ = eq⊃ (λ c uₐ → Eq⟦ p ⟧≅ (𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) uₐ)) Eq⟦ cong∙≅ {M = M} {M′} {N} {N′} p p′ ⟧≅ u⋆ = cong⟦∙⟧⟨ refl⊇ ⟩Eq (Eq⟦ p ⟧≅ u⋆) (𝒰⟦ M ⟧ u⋆) (𝒰⟦ M′ ⟧ u⋆) (Eq⟦ p′ ⟧≅ u⋆) (𝒰⟦ N ⟧ u⋆) (𝒰⟦ N′ ⟧ u⋆) Eq⟦ cong▶≅ {M = M} {M′} {γ} {γ′} p pₛ ⟧≅ u⋆ = transEq (Eq⟦ M ⟧ (Eq⋆⟦ pₛ ⟧≅ₛ u⋆) (𝒰⋆⟦ γ ⟧ₛ u⋆) (𝒰⋆⟦ γ′ ⟧ₛ u⋆)) (transEq (Eq⟦ p ⟧≅ (𝒰⋆⟦ γ′ ⟧ₛ u⋆)) (reflEq (𝒰⟦ M′ ⟧ (𝒰⋆⟦ γ′ ⟧ₛ u⋆)))) Eq⟦ conv₁≅ M N γ ⟧≅ u⋆ = Eq⟦ M ⟧ (eq⋆≔ (aux₄₂₅⟨ refl⊇ ⟩ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (reflEq (𝒰⟦ N ⟧ u⋆))) (𝓊⋆≔ (cong↑⟨ refl⊇ ⟩𝒰⋆ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (𝒰⟦ N ⟧ u⋆)) (𝓊⋆≔ (𝒰⋆⟦ γ ⟧ₛ u⋆) (𝒰⟦ N ⟧ u⋆)) Eq⟦_⟧≅ {ρ = ρ} (conv₂≅ {x = x} c M) u⋆ = eq⊃ (λ c′ {a} uₐ → begin ⟦ M ⟧ ρ ⟦∙⟧⟨ c′ ⟩ a Eq⟨ aux₄₁₃ c′ refl⊇ (𝒰⟦ M ⟧ u⋆) uₐ ⟩ (↑⟨ c′ ⟩ (⟦ M ⟧ ρ) ⟦∙⟧⟨ refl⊇ ⟩ a) Eq⟨ cong⟦∙⟧⟨ refl⊇ ⟩Eq (↑⟨ c′ ⟩Eq⟦ M ⟧ u⋆) (cong↑⟨ c′ ⟩𝒰 (𝒰⟦ M ⟧ u⋆)) (𝒰⟦ M ⟧ (cong↑⟨ c′ ⟩𝒰⋆ u⋆)) (reflEq uₐ) uₐ uₐ ⟩ ⟦ M ⟧ (↑⟨ c′ ⟩ ρ) ⟦∙⟧⟨ refl⊇ ⟩ a Eq⟨ cong⟦∙⟧⟨ refl⊇ ⟩Eq (Eq⟦ M ⟧ (symEq⋆ (aux₄₈₁⟨ c ⟩ (cong↑⟨ c′ ⟩𝒰⋆ u⋆))) (cong↑⟨ c′ ⟩𝒰⋆ u⋆) (cong↓⟨ c ⟩𝒰⋆ (𝓊⋆≔ (cong↑⟨ c′ ⟩𝒰⋆ u⋆) uₐ))) (𝒰⟦ M ⟧ (cong↑⟨ c′ ⟩𝒰⋆ u⋆)) (𝒰⟦ M ⟧ (cong↓⟨ c ⟩𝒰⋆ (𝓊⋆≔ (cong↑⟨ c′ ⟩𝒰⋆ u⋆) uₐ))) (reflEq uₐ) uₐ uₐ ⟩ ⟦ M ⟧ (↓⟨ c ⟩ [ ↑⟨ c′ ⟩ ρ , x ≔ a ]) ⟦∙⟧⟨ refl⊇ ⟩ a ∎⟨ case (𝒰⟦ M ⟧ (cong↓⟨ c ⟩𝒰⋆ (𝓊⋆≔ (cong↑⟨ c′ ⟩𝒰⋆ u⋆) uₐ))) of (λ { (𝓊⊃ h₀ h₁ h₂) → h₀ refl⊇ uₐ }) ⟩) where open EqReasoning Eq⟦ conv₃≅ M γ ⟧≅ u⋆ = reflEq (𝒰⟦ M ⟧ u⋆) Eq⟦ conv₄≅ c i j ⟧≅ u⋆ = symEq (aux₄₂₁⟨ c ⟩ u⋆ j i) Eq⟦ conv₅≅ c M ⟧≅ u⋆ = Eq⟦ M ⟧ (aux₄₂₄⟨ c ⟩ u⋆) (cong↓⟨ c ⟩𝒰⋆ u⋆) u⋆ Eq⟦ conv₆≅ M N γ ⟧≅ u⋆ = cong⟦∙⟧⟨ refl⊇ ⟩Eq (reflEq (𝒰⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆))) (𝒰⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (𝒰⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (reflEq (𝒰⟦ N ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆))) (𝒰⟦ N ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆)) (𝒰⟦ N ⟧ (𝒰⋆⟦ γ ⟧ₛ u⋆)) Eq⟦ conv₇≅ M γ δ ⟧≅ u⋆ = reflEq (𝒰⟦ M ⟧ (𝒰⋆⟦ γ ⟧ₛ (𝒰⋆⟦ δ ⟧ₛ u⋆))) Eq⋆⟦_⟧≅ₛ : ∀ {Γ Δ w} {γ γ′ : Γ ⋙ Δ} {ρ : w ⊩⋆ Γ} → γ ≅ₛ γ′ → 𝒰⋆ ρ → Eq⋆ (⟦ γ ⟧ₛ ρ) (⟦ γ′ ⟧ₛ ρ) Eq⋆⟦ refl≅ₛ {γ = γ} ⟧≅ₛ u⋆ = reflEq⋆ (𝒰⋆⟦ γ ⟧ₛ u⋆) Eq⋆⟦ sym≅ₛ pₛ ⟧≅ₛ u⋆ = symEq⋆ (Eq⋆⟦ pₛ ⟧≅ₛ u⋆) Eq⋆⟦ trans≅ₛ pₛ pₛ′ ⟧≅ₛ u⋆ = transEq⋆ (Eq⋆⟦ pₛ ⟧≅ₛ u⋆) (Eq⋆⟦ pₛ′ ⟧≅ₛ u⋆) Eq⋆⟦ cong●≅ₛ {γ′ = γ′} {δ} {δ′} pₛ pₛ′ ⟧≅ₛ u⋆ = transEq⋆ (Eq⋆⟦ pₛ ⟧≅ₛ (𝒰⋆⟦ δ ⟧ₛ u⋆)) (Eq⋆⟦ γ′ ⟧ₛ (Eq⋆⟦ pₛ′ ⟧≅ₛ u⋆) (𝒰⋆⟦ δ ⟧ₛ u⋆) (𝒰⋆⟦ δ′ ⟧ₛ u⋆)) Eq⋆⟦ cong≔≅ₛ pₛ p ⟧≅ₛ u⋆ = eq⋆≔ (Eq⋆⟦ pₛ ⟧≅ₛ u⋆) (Eq⟦ p ⟧≅ u⋆) Eq⋆⟦ conv₁≅ₛ γ δ θ ⟧≅ₛ u⋆ = reflEq⋆ (𝒰⋆⟦ γ ⟧ₛ (𝒰⋆⟦ δ ⟧ₛ (𝒰⋆⟦ θ ⟧ₛ u⋆))) Eq⋆⟦ conv₂≅ₛ M γ δ ⟧≅ₛ u⋆ = reflEq⋆ (𝓊⋆≔ (𝒰⋆⟦ γ ⟧ₛ (𝒰⋆⟦ δ ⟧ₛ u⋆)) (𝒰⟦ M ⟧ (𝒰⋆⟦ δ ⟧ₛ u⋆))) Eq⋆⟦ conv₃≅ₛ c M γ ⟧≅ₛ u⋆ = transEq⋆ (aux₄₂₃ refl⊇ c (𝒰⋆⟦ γ ⟧ₛ u⋆)) (aux₄₂₄⟨ refl⊇ ⟩ (𝒰⋆⟦ γ ⟧ₛ u⋆)) Eq⋆⟦ conv₄≅ₛ c c′ c″ ⟧≅ₛ u⋆ = aux₄₂₆ c′ c″ c u⋆ Eq⋆⟦ conv₅≅ₛ c γ ⟧≅ₛ u⋆ = Eq⋆⟦ γ ⟧ₛ (aux₄₂₄⟨ c ⟩ u⋆) (cong↓⟨ c ⟩𝒰⋆ u⋆) u⋆ Eq⋆⟦ conv₆≅ₛ c γ ⟧≅ₛ u⋆ = conv₆Eq⋆⟨ c ⟩ γ u⋆ Eq⋆⟦ conv₇≅ₛ c γ i ⟧≅ₛ u⋆ = conv₇Eq⋆⟨ c ⟩ γ i u⋆ -- They are both shown by induction on the rules of conversion. Notice that the soundness -- result holds in any Kripke model. -- 4.9. Decision algorithm for conversion -- -------------------------------------- -- -- We now have a decision algorithm for testing convertibility between proof trees: compute -- the normal form and check if they are exactly the same. This decision algorithm is correct, -- since by Theorem 2 we have `M ≅ nf M` and `M′ ≅ nf M′` and, by hypothesis, `nf M ≡ nf M′`, -- we get by transitivity of `_≅_`, that `M ≅ M′`. -- Theorem 5. thm₅ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → nf M ≡ nf M′ → M ≅ M′ thm₅ M M′ p = begin M ≅⟨ thm₂ M ⟩ nf M ≡⟨ p ⟩ nf M′ ≅⟨ sym≅ (thm₂ M′) ⟩ M′ ∎ where open ≅-Reasoning -- The decision algorithm is also complete since by Theorem 4 and the hypothesis, `M ≅ M′`, we get -- `Eq (⟦ M ⟧ refl⊩⋆) (⟦ N ⟧ refl⊩⋆)` and by Corollary 1 we get `nf M ≡ nf N`. -- NOTE: Added missing lemmas. module _ where proj⟨_⟩𝒰⋆ : ∀ {Γ Δ} → (c : Δ ⊇ Γ) → 𝒰⋆ proj⟨ c ⟩⊩⋆ proj⟨ done ⟩𝒰⋆ = 𝓊⋆[] proj⟨ step c i ⟩𝒰⋆ = 𝓊⋆≔ proj⟨ c ⟩𝒰⋆ (⟦ν⟧𝒰 i) refl𝒰⋆ : ∀ {Γ} → 𝒰⋆ (refl⊩⋆ {Γ}) refl𝒰⋆ = proj⟨ refl⊇ ⟩𝒰⋆ -- Theorem 6. thm₆ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → M ≅ M′ → nf M ≡ nf M′ thm₆ M M′ p = cor₁ M M′ (Eq⟦ p ⟧≅ refl𝒰⋆)
{ "alphanum_fraction": 0.3496977025, "avg_line_length": 47.3247496423, "ext": "agda", "hexsha": "9f7173baedb929096792eb042414f7773e80c5b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section4b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section4b.agda", "max_line_length": 113, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section4b.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 15691, "size": 33080 }
module CombinatoryLogic.Forest where open import Data.Product using (_,_) open import Function using (_$_) open import Mockingbird.Forest using (Forest) open import CombinatoryLogic.Equality as Equality using (isEquivalence; cong) open import CombinatoryLogic.Semantics as ⊢ using (_≈_) open import CombinatoryLogic.Syntax as Syntax using (Combinator) forest : Forest forest = record { Bird = Combinator ; _≈_ = _≈_ ; _∙_ = Syntax._∙_ ; isForest = record { isEquivalence = isEquivalence ; cong = cong } } open Forest forest open import Mockingbird.Forest.Birds forest open import Mockingbird.Forest.Extensionality forest import Mockingbird.Problems.Chapter11 forest as Chapter₁₁ import Mockingbird.Problems.Chapter12 forest as Chapter₁₂ instance hasWarbler : HasWarbler hasWarbler = record { W = Syntax.W ; isWarbler = λ _ _ → ⊢.W } hasKestrel : HasKestrel hasKestrel = record { K = Syntax.K ; isKestrel = λ _ _ → ⊢.K } hasBluebird : HasBluebird hasBluebird = record { B = Syntax.B ; isBluebird = λ _ _ _ → ⊢.B } hasIdentity : HasIdentity hasIdentity = record { I = Syntax.I ; isIdentity = λ _ → Equality.prop₉ } hasMockingbird : HasMockingbird hasMockingbird = Chapter₁₁.problem₁₄ hasLark : HasLark hasLark = Chapter₁₂.problem₃ hasComposition : HasComposition hasComposition = Chapter₁₁.problem₁
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 22.6935483871, "ext": "agda", "hexsha": "6acdd070baa2207c0ab8078ff0e9931248687e94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "CombinatoryLogic/Forest.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "CombinatoryLogic/Forest.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "CombinatoryLogic/Forest.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 433, "size": 1407 }
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.TotalFiber where open import Cubical.Core.Everything open import Cubical.Data.Prod open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Surjection open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation private variable ℓ ℓ' : Level module _ {A : Type ℓ} {B : Type ℓ'} (f : A → B) where private ℓ'' : Level ℓ'' = ℓ-max ℓ ℓ' LiftA : Type ℓ'' LiftA = Lift {j = ℓ'} A Total-fiber : Type ℓ'' Total-fiber = Σ B \ b → fiber f b A→Total-fiber : A → Total-fiber A→Total-fiber a = f a , a , refl Total-fiber→A : Total-fiber → A Total-fiber→A (b , a , p) = a Total-fiber→A→Total-fiber : ∀ t → A→Total-fiber (Total-fiber→A t) ≡ t Total-fiber→A→Total-fiber (b , a , p) i = p i , a , λ j → p (i ∧ j) A→Total-fiber→A : ∀ a → Total-fiber→A (A→Total-fiber a) ≡ a A→Total-fiber→A a = refl LiftA→Total-fiber : LiftA → Total-fiber LiftA→Total-fiber x = A→Total-fiber (lower x) Total-fiber→LiftA : Total-fiber → LiftA Total-fiber→LiftA x = lift (Total-fiber→A x) Total-fiber→LiftA→Total-fiber : ∀ t → LiftA→Total-fiber (Total-fiber→LiftA t) ≡ t Total-fiber→LiftA→Total-fiber (b , a , p) i = p i , a , λ j → p (i ∧ j) LiftA→Total-fiber→LiftA : ∀ a → Total-fiber→LiftA (LiftA→Total-fiber a) ≡ a LiftA→Total-fiber→LiftA a = refl A≡Total : Lift A ≡ Total-fiber A≡Total = isoToPath (iso LiftA→Total-fiber Total-fiber→LiftA Total-fiber→LiftA→Total-fiber LiftA→Total-fiber→LiftA) -- HoTT Lemma 4.8.2 A≃Total : Lift A ≃ Total-fiber A≃Total = isoToEquiv (iso LiftA→Total-fiber Total-fiber→LiftA Total-fiber→LiftA→Total-fiber LiftA→Total-fiber→LiftA)
{ "alphanum_fraction": 0.6621179039, "avg_line_length": 27.7575757576, "ext": "agda", "hexsha": "ef5d768eb2cd9fcfe60d005935789bb126d4e11c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Foundations/TotalFiber.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Foundations/TotalFiber.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Foundations/TotalFiber.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 711, "size": 1832 }
module LC.Simultanuous where open import LC.Base open import LC.Subst open import LC.Reduction open import Data.Nat open import Relation.Binary.Construct.Closure.ReflexiveTransitive -- open import Relation.Binary.PropositionalEquality hiding ([_]; preorder) -- infixl 4 _* -- data _* : Term → Set where -- *-var : (M : Term) → M * -- *-ƛ : ∀ {M} → ƛ M * → M * -- *-∙ : ∀ {M N} → M ∙ N * → M * ∙ N *
{ "alphanum_fraction": 0.623501199, "avg_line_length": 26.0625, "ext": "agda", "hexsha": "d7c824ef135157786c03c387a8aee4f3e2a0c555", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/Simultanuous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/Simultanuous.agda", "max_line_length": 75, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/Simultanuous.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 136, "size": 417 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Sets where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open Precategory module _ ℓ where SET : Precategory (ℓ-suc ℓ) ℓ SET .ob = Σ (Type ℓ) isSet SET .Hom[_,_] (A , _) (B , _) = A → B SET .id _ = λ x → x SET ._⋆_ f g = λ x → g (f x) SET .⋆IdL f = refl SET .⋆IdR f = refl SET .⋆Assoc f g h = refl module _ {ℓ} where isSetExpIdeal : {A B : Type ℓ} → isSet B → isSet (A → B) isSetExpIdeal B/set = isSetΠ λ _ → B/set isSetLift : {A : Type ℓ} → isSet A → isSet (Lift {ℓ} {ℓ-suc ℓ} A) isSetLift = isOfHLevelLift 2 module _ {A B : SET ℓ .ob} where -- monic/surjectiveness open import Cubical.Categories.Morphism isSurjSET : (f : SET ℓ [ A , B ]) → Type _ isSurjSET f = ∀ (b : fst B) → Σ[ a ∈ fst A ] f a ≡ b -- isMonic→isSurjSET : {f : SET ℓ [ A , B ]} -- → isEpic {C = SET ℓ} {x = A} {y = B} f -- → isSurjSET f -- isMonic→isSurjSET ism b = {!!} , {!!} instance SET-category : isCategory (SET ℓ) SET-category .isSetHom {_} {B , B/set} = isSetExpIdeal B/set private variable ℓ ℓ' : Level open Functor -- Hom functors _[-,_] : (C : Precategory ℓ ℓ') → (c : C .ob) → ⦃ isCat : isCategory C ⦄ → Functor (C ^op) (SET _) (C [-, c ]) ⦃ isCat ⦄ .F-ob x = (C [ x , c ]) , isCat .isSetHom (C [-, c ]) .F-hom f k = f ⋆⟨ C ⟩ k (C [-, c ]) .F-id = funExt λ _ → C .⋆IdL _ (C [-, c ]) .F-seq _ _ = funExt λ _ → C .⋆Assoc _ _ _ _[_,-] : (C : Precategory ℓ ℓ') → (c : C .ob) → ⦃ isCat : isCategory C ⦄ → Functor C (SET _) (C [ c ,-]) ⦃ isCat ⦄ .F-ob x = (C [ c , x ]) , isCat .isSetHom (C [ c ,-]) .F-hom f k = k ⋆⟨ C ⟩ f (C [ c ,-]) .F-id = funExt λ _ → C .⋆IdR _ (C [ c ,-]) .F-seq _ _ = funExt λ _ → sym (C .⋆Assoc _ _ _) module _ {C : Precategory ℓ ℓ'} ⦃ _ : isCategory C ⦄ {F : Functor C (SET ℓ')} where open NatTrans -- natural transformations by pre/post composition preComp : {x y : C .ob} → (f : C [ x , y ]) → C [ x ,-] ⇒ F → C [ y ,-] ⇒ F preComp f α .N-ob c k = (α ⟦ c ⟧) (f ⋆⟨ C ⟩ k) preComp f α .N-hom {x = c} {d} k = (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ (l ⋆⟨ C ⟩ k))) ≡[ i ]⟨ (λ l → (α ⟦ d ⟧) (⋆Assoc C f l k (~ i))) ⟩ (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ l ⋆⟨ C ⟩ k)) ≡[ i ]⟨ (λ l → (α .N-hom k) i (f ⋆⟨ C ⟩ l)) ⟩ (λ l → (F ⟪ k ⟫) ((α ⟦ c ⟧) (f ⋆⟨ C ⟩ l))) ∎ -- properties -- TODO: move to own file open CatIso renaming (inv to cInv) open Iso Iso→CatIso : ∀ {A B : (SET ℓ) .ob} → Iso (fst A) (fst B) → CatIso {C = SET ℓ} A B Iso→CatIso is .mor = is .fun Iso→CatIso is .cInv = is .inv Iso→CatIso is .sec = funExt λ b → is .rightInv b -- is .rightInv Iso→CatIso is .ret = funExt λ b → is .leftInv b -- is .rightInv
{ "alphanum_fraction": 0.5158860138, "avg_line_length": 32.4787234043, "ext": "agda", "hexsha": "0007b441a6e07f044c0619a5cc2b12ca486fb40c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Categories/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Categories/Sets.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Categories/Sets.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1295, "size": 3053 }
module Relator.Equals where import Lvl open import Logic open import Logic.Propositional open import Type infixl 15 _≢_ open import Type.Identity public using() renaming(Id to infixl 15 _≡_ ; intro to [≡]-intro) _≢_ : ∀{ℓ}{T} → T → T → Stmt{ℓ} a ≢ b = ¬(a ≡ b)
{ "alphanum_fraction": 0.6642335766, "avg_line_length": 17.125, "ext": "agda", "hexsha": "8e579682f098ff1743a96ff931d5951f84a4032f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Equals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Equals.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Equals.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 99, "size": 274 }
------------------------------------------------------------------------ -- Strictly descending lists ------------------------------------------------------------------------ {-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything module Cubical.Data.DescendingList.Strict (A : Type₀) (_>_ : A → A → Type₀) where open import Cubical.Data.DescendingList.Base A _>_ renaming (_≥ᴴ_ to _>ᴴ_; ≥ᴴ[] to >ᴴ[]; ≥ᴴcons to >ᴴcons; DL to SDL) using ([]; cons) public
{ "alphanum_fraction": 0.4827586207, "avg_line_length": 32.8666666667, "ext": "agda", "hexsha": "5e22508c80d5506148d86b788a80d372bba99d0f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList/Strict.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList/Strict.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 122, "size": 493 }
-- Andreas, 2019-12-08, issue #4267, reported and test case by csattler -- Problem: definitions from files (A1) imported by a module -- (Issue4267) may leak into the handling of an independent module -- (B). -- The root issue here is that having a signature stImports that -- simply accumulates the signatures of all visited modules is -- unhygienic. module Issue4267 where open import Issue4267.A0 open import Issue4267.A1 -- importing A1 here (in main) affects how B is type-checked open import Issue4267.B -- After the fix of #4267, these imports should succeed without unsolved metas.
{ "alphanum_fraction": 0.7626262626, "avg_line_length": 33, "ext": "agda", "hexsha": "75911295e1cfee03ff98c4a0dde8d5254a1dce8d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4267.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4267.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4267.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 594 }
------------------------------------------------------------------------ -- Some results related to the For-iterated-equality predicate -- transformer ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module For-iterated-equality {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq as Bijection using (_↔_) open import Equivalence eq as Eq using (_≃_) open import Equivalence.Erased eq as EEq using (_≃ᴱ_) open import Function-universe eq as F hiding (id; _∘_) open import H-level eq open import List eq open import Nat eq open import Surjection eq as Surj using (_↠_) private variable a b ℓ p q : Level A B : Type a P Q R : Type p → Type p x y : A k : Kind n : ℕ ------------------------------------------------------------------------ -- Some lemmas related to nested occurrences of For-iterated-equality -- Nested uses of For-iterated-equality can be merged. For-iterated-equality-For-iterated-equality′ : {A : Type a} → ∀ m n → For-iterated-equality m (For-iterated-equality n P) A ↝[ a ∣ a ] For-iterated-equality (m + n) P A For-iterated-equality-For-iterated-equality′ zero _ _ = F.id For-iterated-equality-For-iterated-equality′ {P = P} {A = A} (suc m) n ext = ((x y : A) → For-iterated-equality m (For-iterated-equality n P) (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-For-iterated-equality′ m n ext) ⟩□ ((x y : A) → For-iterated-equality (m + n) P (x ≡ y)) □ -- A variant of the previous result. For-iterated-equality-For-iterated-equality : {A : Type a} → ∀ m n → For-iterated-equality m (For-iterated-equality n P) A ↝[ a ∣ a ] For-iterated-equality (n + m) P A For-iterated-equality-For-iterated-equality {P = P} {A = A} m n ext = For-iterated-equality m (For-iterated-equality n P) A ↝⟨ For-iterated-equality-For-iterated-equality′ m n ext ⟩ For-iterated-equality (m + n) P A ↝⟨ ≡⇒↝ _ $ cong (λ n → For-iterated-equality n P A) (+-comm m) ⟩□ For-iterated-equality (n + m) P A □ ------------------------------------------------------------------------ -- Preservation lemmas for For-iterated-equality -- A preservation lemma for the predicate. For-iterated-equality-cong₁ : {P Q : Type ℓ → Type ℓ} → Extensionality? k ℓ ℓ → ∀ n → (∀ {A} → P A ↝[ k ] Q A) → For-iterated-equality n P A ↝[ k ] For-iterated-equality n Q A For-iterated-equality-cong₁ _ zero P↝Q = P↝Q For-iterated-equality-cong₁ {A = A} {P = P} {Q = Q} ext (suc n) P↝Q = ((x y : A) → For-iterated-equality n P (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-cong₁ ext n P↝Q) ⟩□ ((x y : A) → For-iterated-equality n Q (x ≡ y)) □ -- A variant of For-iterated-equality-cong₁. For-iterated-equality-cong₁ᴱ-→ : {@0 A : Type ℓ} {@0 P Q : Type ℓ → Type ℓ} → ∀ n → (∀ {@0 A} → P A → Q A) → For-iterated-equality n P A → For-iterated-equality n Q A For-iterated-equality-cong₁ᴱ-→ zero P→Q = P→Q For-iterated-equality-cong₁ᴱ-→ {A = A} {P = P} {Q = Q} (suc n) P→Q = ((x y : A) → For-iterated-equality n P (x ≡ y)) →⟨ For-iterated-equality-cong₁ᴱ-→ n (λ {A} → P→Q {A = A}) ∘_ ∘_ ⟩□ ((x y : A) → For-iterated-equality n Q (x ≡ y)) □ -- Preservation lemmas for both the predicate and the type. For-iterated-equality-cong-→ : ∀ n → (∀ {A B} → A ↠ B → P A → Q B) → A ↠ B → For-iterated-equality n P A → For-iterated-equality n Q B For-iterated-equality-cong-→ zero P↝Q A↠B = P↝Q A↠B For-iterated-equality-cong-→ {P = P} {Q = Q} {A = A} {B = B} (suc n) P↝Q A↠B = ((x y : A) → For-iterated-equality n P (x ≡ y)) ↝⟨ (Π-cong-contra-→ (_↠_.from A↠B) λ _ → Π-cong-contra-→ (_↠_.from A↠B) λ _ → For-iterated-equality-cong-→ n P↝Q $ Surj.↠-≡ A↠B) ⟩□ ((x y : B) → For-iterated-equality n Q (x ≡ y)) □ For-iterated-equality-cong : {P : Type p → Type p} {Q : Type q → Type q} → Extensionality? k (p ⊔ q) (p ⊔ q) → ∀ n → (∀ {A B} → A ↔ B → P A ↝[ k ] Q B) → A ↔ B → For-iterated-equality n P A ↝[ k ] For-iterated-equality n Q B For-iterated-equality-cong _ zero P↝Q A↔B = P↝Q A↔B For-iterated-equality-cong {A = A} {B = B} {P = P} {Q = Q} ext (suc n) P↝Q A↔B = ((x y : A) → For-iterated-equality n P (x ≡ y)) ↝⟨ (Π-cong ext A↔B λ _ → Π-cong ext A↔B λ _ → For-iterated-equality-cong ext n P↝Q $ inverse $ _≃_.bijection $ Eq.≃-≡ $ from-isomorphism A↔B) ⟩□ ((x y : B) → For-iterated-equality n Q (x ≡ y)) □ ------------------------------------------------------------------------ -- Some "closure properties" for the type private -- A lemma. lift≡lift↔ : lift {ℓ = ℓ} x ≡ lift y ↔ x ≡ y lift≡lift↔ = inverse $ _≃_.bijection $ Eq.≃-≡ $ Eq.↔⇒≃ Bijection.↑↔ -- Closure properties for ⊤. For-iterated-equality-↑-⊤ : Extensionality? k ℓ ℓ → ∀ n → (∀ {A B} → A ↔ B → P A ↝[ k ] P B) → P (↑ ℓ ⊤) ↝[ k ] For-iterated-equality n P (↑ ℓ ⊤) For-iterated-equality-↑-⊤ _ zero _ = F.id For-iterated-equality-↑-⊤ {P = P} ext (suc n) resp = P (↑ _ ⊤) ↝⟨ For-iterated-equality-↑-⊤ ext n resp ⟩ For-iterated-equality n P (↑ _ ⊤) ↝⟨ For-iterated-equality-cong ext n resp $ inverse lift≡lift↔ F.∘ inverse tt≡tt↔⊤ F.∘ Bijection.↑↔ ⟩ For-iterated-equality n P (lift tt ≡ lift tt) ↝⟨ inverse-ext? (λ ext → drop-⊤-left-Π ext Bijection.↑↔) ext ⟩ ((y : ↑ _ ⊤) → For-iterated-equality n P (lift tt ≡ y)) ↝⟨ inverse-ext? (λ ext → drop-⊤-left-Π ext Bijection.↑↔) ext ⟩□ ((x y : ↑ _ ⊤) → For-iterated-equality n P (x ≡ y)) □ For-iterated-equality-⊤ : Extensionality? k lzero lzero → ∀ n → (∀ {A B} → A ↔ B → P A ↝[ k ] P B) → P ⊤ ↝[ k ] For-iterated-equality n P ⊤ For-iterated-equality-⊤ {P = P} ext n resp = P ⊤ ↝⟨ resp (inverse Bijection.↑↔) ⟩ P (↑ _ ⊤) ↝⟨ For-iterated-equality-↑-⊤ ext n resp ⟩ For-iterated-equality n P (↑ _ ⊤) ↝⟨ For-iterated-equality-cong ext n resp Bijection.↑↔ ⟩□ For-iterated-equality n P ⊤ □ -- Closure properties for ⊥. For-iterated-equality-suc-⊥ : {P : Type p → Type p} → ∀ n → ⊤ ↝[ p ∣ p ] For-iterated-equality (suc n) P ⊥ For-iterated-equality-suc-⊥ {P = P} n ext = ⊤ ↝⟨ inverse-ext? Π⊥↔⊤ ext ⟩□ ((x y : ⊥) → For-iterated-equality n P (x ≡ y)) □ For-iterated-equality-⊥ : {P : Type p → Type p} → Extensionality? k p p → ∀ n → ⊤ ↝[ k ] P ⊥ → ⊤ ↝[ k ] For-iterated-equality n P ⊥ For-iterated-equality-⊥ _ zero = id For-iterated-equality-⊥ ext (suc n) _ = For-iterated-equality-suc-⊥ n ext -- A closure property for Π. For-iterated-equality-Π : {A : Type a} {B : A → Type b} → Extensionality a b → ∀ n → (∀ {A B} → A ↔ B → Q A → Q B) → ({A : Type a} {B : A → Type b} → (∀ x → P (B x)) → Q (∀ x → B x)) → (∀ x → For-iterated-equality n P (B x)) → For-iterated-equality n Q (∀ x → B x) For-iterated-equality-Π _ zero _ hyp = hyp For-iterated-equality-Π {Q = Q} {P = P} {B = B} ext (suc n) resp hyp = (∀ x (y z : B x) → For-iterated-equality n P (y ≡ z)) ↝⟨ (λ hyp _ _ _ → hyp _ _ _) ⟩ (∀ (f g : ∀ x → B x) x → For-iterated-equality n P (f x ≡ g x)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → For-iterated-equality-Π ext n resp hyp) ⟩ ((f g : ∀ x → B x) → For-iterated-equality n Q (∀ x → f x ≡ g x)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → For-iterated-equality-cong _ n resp $ from-isomorphism $ Eq.extensionality-isomorphism ext) ⟩□ ((f g : ∀ x → B x) → For-iterated-equality n Q (f ≡ g)) □ -- A closure property for Σ. For-iterated-equality-Σ : {A : Type a} {B : A → Type b} → ∀ n → (∀ {A B} → A ↔ B → R A → R B) → ({A : Type a} {B : A → Type b} → P A → (∀ x → Q (B x)) → R (Σ A B)) → For-iterated-equality n P A → (∀ x → For-iterated-equality n Q (B x)) → For-iterated-equality n R (Σ A B) For-iterated-equality-Σ zero _ hyp = hyp For-iterated-equality-Σ {R = R} {P = P} {Q = Q} {A = A} {B = B} (suc n) resp hyp = curry ( ((x y : A) → For-iterated-equality n P (x ≡ y)) × ((x : A) (y z : B x) → For-iterated-equality n Q (y ≡ z)) ↝⟨ (λ (hyp₁ , hyp₂) _ _ → hyp₁ _ _ , λ _ → hyp₂ _ _ _) ⟩ (((x₁ , x₂) (y₁ , y₂) : Σ A B) → For-iterated-equality n P (x₁ ≡ y₁) × (∀ p → For-iterated-equality n Q (subst B p x₂ ≡ y₂))) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → uncurry $ For-iterated-equality-Σ n resp hyp) ⟩ (((x₁ , x₂) (y₁ , y₂) : Σ A B) → For-iterated-equality n R (∃ λ (p : x₁ ≡ y₁) → subst B p x₂ ≡ y₂)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → For-iterated-equality-cong _ n resp Bijection.Σ-≡,≡↔≡) ⟩□ ((x y : Σ A B) → For-iterated-equality n R (x ≡ y)) □) -- A closure property for _×_. For-iterated-equality-× : {A : Type a} {B : Type b} → ∀ n → (∀ {A B} → A ↔ B → R A → R B) → ({A : Type a} {B : Type b} → P A → Q B → R (A × B)) → For-iterated-equality n P A → For-iterated-equality n Q B → For-iterated-equality n R (A × B) For-iterated-equality-× zero _ hyp = hyp For-iterated-equality-× {R = R} {P = P} {Q = Q} {A = A} {B = B} (suc n) resp hyp = curry ( ((x y : A) → For-iterated-equality n P (x ≡ y)) × ((x y : B) → For-iterated-equality n Q (x ≡ y)) ↝⟨ (λ (hyp₁ , hyp₂) _ _ → hyp₁ _ _ , hyp₂ _ _) ⟩ (((x₁ , x₂) (y₁ , y₂) : A × B) → For-iterated-equality n P (x₁ ≡ y₁) × For-iterated-equality n Q (x₂ ≡ y₂)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → uncurry $ For-iterated-equality-× n resp hyp) ⟩ (((x₁ , x₂) (y₁ , y₂) : A × B) → For-iterated-equality n R (x₁ ≡ y₁ × x₂ ≡ y₂)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → For-iterated-equality-cong _ n resp ≡×≡↔≡) ⟩□ ((x y : A × B) → For-iterated-equality n R (x ≡ y)) □) -- A closure property for ↑. For-iterated-equality-↑ : {A : Type a} {Q : Type (a ⊔ ℓ) → Type (a ⊔ ℓ)} → Extensionality? k (a ⊔ ℓ) (a ⊔ ℓ) → ∀ n → (∀ {A B} → A ↔ B → P A ↝[ k ] Q B) → For-iterated-equality n P A ↝[ k ] For-iterated-equality n Q (↑ ℓ A) For-iterated-equality-↑ ext n resp = For-iterated-equality-cong ext n resp (inverse Bijection.↑↔) -- Closure properties for W. For-iterated-equality-W-suc : {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ n → (∀ {A B} → A ↔ B → Q A → Q B) → ({A : Type b} {B : A → Type (a ⊔ b)} → (∀ x → Q (B x)) → Q (∀ x → B x)) → ({A : Type a} {B : A → Type (a ⊔ b)} → P A → (∀ x → Q (B x)) → Q (Σ A B)) → For-iterated-equality (suc n) P A → For-iterated-equality (suc n) Q (W A B) For-iterated-equality-W-suc {Q = Q} {P = P} {B = B} ext n resp hyp-Π hyp-Σ fie = lemma where lemma : ∀ x y → For-iterated-equality n Q (x ≡ y) lemma (sup x f) (sup y g) = $⟨ (λ p i → lemma (f i) _) ⟩ (∀ p i → For-iterated-equality n Q (f i ≡ g (subst B p i))) ↝⟨ (∀-cong _ λ _ → For-iterated-equality-Π ext n resp hyp-Π) ⟩ (∀ p → For-iterated-equality n Q (∀ i → f i ≡ g (subst B p i))) ↝⟨ fie _ _ ,_ ⟩ For-iterated-equality n P (x ≡ y) × (∀ p → For-iterated-equality n Q (∀ i → f i ≡ g (subst B p i))) ↝⟨ uncurry $ For-iterated-equality-Σ n resp hyp-Σ ⟩ For-iterated-equality n Q (∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ↝⟨ For-iterated-equality-cong _ n resp $ _≃_.bijection $ Eq.W-≡,≡≃≡ ext ⟩□ For-iterated-equality n Q (sup x f ≡ sup y g) □ For-iterated-equality-W : {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ n → (∀ {A B} → A ↔ B → Q A → Q B) → ({A : Type b} {B : A → Type (a ⊔ b)} → (∀ x → Q (B x)) → Q (∀ x → B x)) → ({A : Type a} {B : A → Type (a ⊔ b)} → P A → (∀ x → Q (B x)) → Q (Σ A B)) → (P A → Q (W A B)) → For-iterated-equality n P A → For-iterated-equality n Q (W A B) For-iterated-equality-W _ zero _ _ _ hyp-W = hyp-W For-iterated-equality-W ext (suc n) resp hyp-Π hyp-Σ _ = For-iterated-equality-W-suc ext n resp hyp-Π hyp-Σ -- Closure properties for _⊎_. For-iterated-equality-⊎-suc : {A : Type a} {B : Type b} → ∀ n → (∀ {A B} → A ↔ B → P A → P B) → P ⊥ → For-iterated-equality (suc n) P (↑ b A) → For-iterated-equality (suc n) P (↑ a B) → For-iterated-equality (suc n) P (A ⊎ B) For-iterated-equality-⊎-suc {P = P} n resp hyp-⊥ fie-A fie-B = λ where (inj₁ x) (inj₁ y) → $⟨ fie-A (lift x) (lift y) ⟩ For-iterated-equality n P (lift x ≡ lift y) ↝⟨ For-iterated-equality-cong _ n resp (Bijection.≡↔inj₁≡inj₁ F.∘ lift≡lift↔) ⟩□ For-iterated-equality n P (inj₁ x ≡ inj₁ y) □ (inj₂ x) (inj₂ y) → $⟨ fie-B (lift x) (lift y) ⟩ For-iterated-equality n P (lift x ≡ lift y) ↝⟨ For-iterated-equality-cong _ n resp (Bijection.≡↔inj₂≡inj₂ F.∘ lift≡lift↔) ⟩□ For-iterated-equality n P (inj₂ x ≡ inj₂ y) □ (inj₁ x) (inj₂ y) → $⟨ hyp-⊥ ⟩ P ⊥ ↝⟨ (λ hyp → For-iterated-equality-⊥ _ n (λ _ → hyp) _) ⟩ For-iterated-equality n P ⊥ ↝⟨ For-iterated-equality-cong _ n resp (inverse Bijection.≡↔⊎) ⟩□ For-iterated-equality n P (inj₁ x ≡ inj₂ y) □ (inj₂ x) (inj₁ y) → $⟨ hyp-⊥ ⟩ P ⊥ ↝⟨ (λ hyp → For-iterated-equality-⊥ _ n (λ _ → hyp) _) ⟩ For-iterated-equality n P ⊥ ↝⟨ For-iterated-equality-cong _ n resp (inverse Bijection.≡↔⊎) ⟩□ For-iterated-equality n P (inj₂ x ≡ inj₁ y) □ For-iterated-equality-⊎ : {A : Type a} {B : Type b} → ∀ n → (∀ {A B} → A ↔ B → P A → P B) → P ⊥ → (P (↑ b A) → P (↑ a B) → P (A ⊎ B)) → For-iterated-equality n P (↑ b A) → For-iterated-equality n P (↑ a B) → For-iterated-equality n P (A ⊎ B) For-iterated-equality-⊎ zero _ _ hyp-⊎ = hyp-⊎ For-iterated-equality-⊎ (suc n) resp hyp-⊥ _ = For-iterated-equality-⊎-suc n resp hyp-⊥ -- Closure properties for List. For-iterated-equality-List-suc : {A : Type a} → ∀ n → (∀ {A B} → A ↔ B → P A → P B) → P (↑ a ⊤) → P ⊥ → (∀ {A B} → P A → P B → P (A × B)) → For-iterated-equality (suc n) P A → For-iterated-equality (suc n) P (List A) For-iterated-equality-List-suc {P = P} n resp hyp-⊤ hyp-⊥ hyp-× fie = λ where [] [] → $⟨ hyp-⊤ ⟩ P (↑ _ ⊤) ↝⟨ For-iterated-equality-↑-⊤ _ n resp ⟩ For-iterated-equality n P (↑ _ ⊤) ↝⟨ For-iterated-equality-cong _ n resp (inverse []≡[]↔⊤ F.∘ Bijection.↑↔) ⟩□ For-iterated-equality n P ([] ≡ []) □ (x ∷ xs) (y ∷ ys) → $⟨ For-iterated-equality-List-suc n resp hyp-⊤ hyp-⊥ hyp-× fie xs ys ⟩ For-iterated-equality n P (xs ≡ ys) ↝⟨ fie _ _ ,_ ⟩ For-iterated-equality n P (x ≡ y) × For-iterated-equality n P (xs ≡ ys) ↝⟨ uncurry $ For-iterated-equality-× n resp hyp-× ⟩ For-iterated-equality n P (x ≡ y × xs ≡ ys) ↝⟨ For-iterated-equality-cong _ n resp (inverse ∷≡∷↔≡×≡) ⟩□ For-iterated-equality n P (x ∷ xs ≡ y ∷ ys) □ [] (y ∷ ys) → $⟨ hyp-⊥ ⟩ P ⊥ ↝⟨ (λ hyp → For-iterated-equality-⊥ _ n (λ _ → hyp) _) ⟩ For-iterated-equality n P ⊥ ↝⟨ For-iterated-equality-cong _ n resp (inverse []≡∷↔⊥) ⟩□ For-iterated-equality n P ([] ≡ y ∷ ys) □ (x ∷ xs) [] → $⟨ hyp-⊥ ⟩ P ⊥ ↝⟨ (λ hyp → For-iterated-equality-⊥ _ n (λ _ → hyp) _) ⟩ For-iterated-equality n P ⊥ ↝⟨ For-iterated-equality-cong _ n resp (inverse ∷≡[]↔⊥) ⟩□ For-iterated-equality n P (x ∷ xs ≡ []) □ For-iterated-equality-List : {A : Type a} → ∀ n → (∀ {A B} → A ↔ B → P A → P B) → P (↑ a ⊤) → P ⊥ → (∀ {A B} → P A → P B → P (A × B)) → (P A → P (List A)) → For-iterated-equality n P A → For-iterated-equality n P (List A) For-iterated-equality-List zero _ _ _ _ hyp-List = hyp-List For-iterated-equality-List (suc n) resp hyp-⊤ hyp-⊥ hyp-× _ = For-iterated-equality-List-suc n resp hyp-⊤ hyp-⊥ hyp-× ------------------------------------------------------------------------ -- Some "closure properties" for the predicate -- For-iterated-equality commutes with certain type constructors -- (assuming extensionality). For-iterated-equality-commutes : Extensionality? k ℓ ℓ → (F : Type ℓ → Type ℓ) → ∀ n → ({A : Type ℓ} {P : A → Type ℓ} → F (∀ x → P x) ↝[ k ] ∀ x → F (P x)) → F (For-iterated-equality n P A) ↝[ k ] For-iterated-equality n (F ∘ P) A For-iterated-equality-commutes _ _ zero _ = F.id For-iterated-equality-commutes {P = P} {A = A} ext F (suc n) hyp = F ((x y : A) → For-iterated-equality n P (x ≡ y)) ↝⟨ hyp ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y))) ↝⟨ (∀-cong ext λ _ → hyp) ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-commutes ext F n hyp) ⟩□ ((x y : A) → For-iterated-equality n (F ∘ P) (x ≡ y)) □ -- A variant of For-iterated-equality-commutes. For-iterated-equality-commutesᴱ-→ : {@0 A : Type ℓ} {@0 P : Type ℓ → Type ℓ} (@0 F : Type ℓ → Type ℓ) → ∀ n → ({@0 A : Type ℓ} {@0 P : A → Type ℓ} → F (∀ x → P x) → ∀ x → F (P x)) → F (For-iterated-equality n P A) → For-iterated-equality n (F ∘ P) A For-iterated-equality-commutesᴱ-→ _ zero _ = id For-iterated-equality-commutesᴱ-→ {A = A} {P = P} F (suc n) hyp = F ((x y : A) → For-iterated-equality n P (x ≡ y)) →⟨ hyp ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y))) →⟨ hyp ∘_ ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y))) →⟨ For-iterated-equality-commutesᴱ-→ F n hyp ∘_ ∘_ ⟩□ ((x y : A) → For-iterated-equality n (F ∘ P) (x ≡ y)) □ -- Another variant of For-iterated-equality-commutes. For-iterated-equality-commutes-← : Extensionality? k ℓ ℓ → (F : Type ℓ → Type ℓ) → ∀ n → ({A : Type ℓ} {P : A → Type ℓ} → (∀ x → F (P x)) ↝[ k ] F (∀ x → P x)) → For-iterated-equality n (F ∘ P) A ↝[ k ] F (For-iterated-equality n P A) For-iterated-equality-commutes-← _ _ zero _ = F.id For-iterated-equality-commutes-← {P = P} {A = A} ext F (suc n) hyp = ((x y : A) → For-iterated-equality n (F ∘ P) (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-commutes-← ext F n hyp) ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y))) ↝⟨ (∀-cong ext λ _ → hyp) ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y))) ↝⟨ hyp ⟩□ F ((x y : A) → For-iterated-equality n P (x ≡ y)) □ -- A variant of For-iterated-equality-commutes-←. For-iterated-equality-commutesᴱ-← : {@0 A : Type ℓ} {@0 P : Type ℓ → Type ℓ} (@0 F : Type ℓ → Type ℓ) → ∀ n → ({@0 A : Type ℓ} {@0 P : A → Type ℓ} → (∀ x → F (P x)) → F (∀ x → P x)) → For-iterated-equality n (F ∘ P) A → F (For-iterated-equality n P A) For-iterated-equality-commutesᴱ-← _ zero _ = id For-iterated-equality-commutesᴱ-← {A = A} {P = P} F (suc n) hyp = ((x y : A) → For-iterated-equality n (F ∘ P) (x ≡ y)) →⟨ For-iterated-equality-commutesᴱ-← F n hyp ∘_ ∘_ ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y))) →⟨ hyp ∘_ ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y))) →⟨ hyp ⟩□ F ((x y : A) → For-iterated-equality n P (x ≡ y)) □ -- For-iterated-equality commutes with certain binary type -- constructors (assuming extensionality). For-iterated-equality-commutes₂ : Extensionality? k ℓ ℓ → (F : Type ℓ → Type ℓ → Type ℓ) → ∀ n → ({A : Type ℓ} {P Q : A → Type ℓ} → F (∀ x → P x) (∀ x → Q x) ↝[ k ] ∀ x → F (P x) (Q x)) → F (For-iterated-equality n P A) (For-iterated-equality n Q A) ↝[ k ] For-iterated-equality n (λ A → F (P A) (Q A)) A For-iterated-equality-commutes₂ _ _ zero _ = F.id For-iterated-equality-commutes₂ {P = P} {A = A} {Q = Q} ext F (suc n) hyp = F ((x y : A) → For-iterated-equality n P (x ≡ y)) ((x y : A) → For-iterated-equality n Q (x ≡ y)) ↝⟨ hyp ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y)) ((y : A) → For-iterated-equality n Q (x ≡ y))) ↝⟨ (∀-cong ext λ _ → hyp) ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y)) (For-iterated-equality n Q (x ≡ y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-commutes₂ ext F n hyp) ⟩□ ((x y : A) → For-iterated-equality n (λ A → F (P A) (Q A)) (x ≡ y)) □ -- A variant of For-iterated-equality-commutes₂. For-iterated-equality-commutes₂ᴱ-→ : {@0 A : Type ℓ} {@0 P Q : Type ℓ → Type ℓ} (@0 F : Type ℓ → Type ℓ → Type ℓ) → ∀ n → ({@0 A : Type ℓ} {@0 P Q : A → Type ℓ} → F (∀ x → P x) (∀ x → Q x) → ∀ x → F (P x) (Q x)) → F (For-iterated-equality n P A) (For-iterated-equality n Q A) → For-iterated-equality n (λ A → F (P A) (Q A)) A For-iterated-equality-commutes₂ᴱ-→ _ zero _ = id For-iterated-equality-commutes₂ᴱ-→ {A = A} {P = P} {Q = Q} F (suc n) hyp = F ((x y : A) → For-iterated-equality n P (x ≡ y)) ((x y : A) → For-iterated-equality n Q (x ≡ y)) →⟨ hyp ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y)) ((y : A) → For-iterated-equality n Q (x ≡ y))) →⟨ hyp ∘_ ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y)) (For-iterated-equality n Q (x ≡ y))) →⟨ For-iterated-equality-commutes₂ᴱ-→ F n hyp ∘_ ∘_ ⟩□ ((x y : A) → For-iterated-equality n (λ A → F (P A) (Q A)) (x ≡ y)) □ -- Another variant of For-iterated-equality-commutes₂. For-iterated-equality-commutes₂-← : Extensionality? k ℓ ℓ → (F : Type ℓ → Type ℓ → Type ℓ) → ∀ n → ({A : Type ℓ} {P Q : A → Type ℓ} → (∀ x → F (P x) (Q x)) ↝[ k ] F (∀ x → P x) (∀ x → Q x)) → For-iterated-equality n (λ A → F (P A) (Q A)) A ↝[ k ] F (For-iterated-equality n P A) (For-iterated-equality n Q A) For-iterated-equality-commutes₂-← _ _ zero _ = F.id For-iterated-equality-commutes₂-← {P = P} {Q = Q} {A = A} ext F (suc n) hyp = ((x y : A) → For-iterated-equality n (λ A → F (P A) (Q A)) (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → For-iterated-equality-commutes₂-← ext F n hyp) ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y)) (For-iterated-equality n Q (x ≡ y))) ↝⟨ (∀-cong ext λ _ → hyp) ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y)) ((y : A) → For-iterated-equality n Q (x ≡ y))) ↝⟨ hyp ⟩□ F ((x y : A) → For-iterated-equality n P (x ≡ y)) ((x y : A) → For-iterated-equality n Q (x ≡ y)) □ -- A variant of For-iterated-equality-commutes₂-←. For-iterated-equality-commutes₂ᴱ-← : {@0 A : Type ℓ} {@0 P Q : Type ℓ → Type ℓ} (@0 F : Type ℓ → Type ℓ → Type ℓ) → ∀ n → ({@0 A : Type ℓ} {@0 P Q : A → Type ℓ} → (∀ x → F (P x) (Q x)) → F (∀ x → P x) (∀ x → Q x)) → For-iterated-equality n (λ A → F (P A) (Q A)) A → F (For-iterated-equality n P A) (For-iterated-equality n Q A) For-iterated-equality-commutes₂ᴱ-← _ zero _ = id For-iterated-equality-commutes₂ᴱ-← {A = A} {P = P} {Q = Q} F (suc n) hyp = ((x y : A) → For-iterated-equality n (λ A → F (P A) (Q A)) (x ≡ y)) →⟨ For-iterated-equality-commutes₂ᴱ-← F n hyp ∘_ ∘_ ⟩ ((x y : A) → F (For-iterated-equality n P (x ≡ y)) (For-iterated-equality n Q (x ≡ y))) →⟨ hyp ∘_ ⟩ ((x : A) → F ((y : A) → For-iterated-equality n P (x ≡ y)) ((y : A) → For-iterated-equality n Q (x ≡ y))) →⟨ hyp ⟩□ F ((x y : A) → For-iterated-equality n P (x ≡ y)) ((x y : A) → For-iterated-equality n Q (x ≡ y)) □ -- A corollary of For-iterated-equality-commutes₂. For-iterated-equality-commutes-× : {A : Type a} → ∀ n → For-iterated-equality n P A × For-iterated-equality n Q A ↝[ a ∣ a ] For-iterated-equality n (λ A → P A × Q A) A For-iterated-equality-commutes-× n ext = For-iterated-equality-commutes₂ ext _×_ n (from-isomorphism $ inverse ΠΣ-comm) -- Some corollaries of For-iterated-equality-commutes₂ᴱ-→. For-iterated-equality-commutesᴱ-×-→ : {@0 A : Type ℓ} {@0 P Q : Type ℓ → Type ℓ} → ∀ n → For-iterated-equality n P A × For-iterated-equality n Q A → For-iterated-equality n (λ A → P A × Q A) A For-iterated-equality-commutesᴱ-×-→ n = For-iterated-equality-commutes₂ᴱ-→ _×_ n (λ (f , g) x → f x , g x) For-iterated-equality-commutes-⊎ : {@0 A : Type ℓ} {@0 P Q : Type ℓ → Type ℓ} → ∀ n → For-iterated-equality n P A ⊎ For-iterated-equality n Q A → For-iterated-equality n (λ A → P A ⊎ Q A) A For-iterated-equality-commutes-⊎ n = For-iterated-equality-commutes₂ᴱ-→ _⊎_ n [ (λ f x → inj₁ (f x)) , (λ f x → inj₂ (f x)) ]
{ "alphanum_fraction": 0.495924331, "avg_line_length": 41.9483870968, "ext": "agda", "hexsha": "9c377d872563096bdbb90aa74aaf7d21d349c333", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/For-iterated-equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/For-iterated-equality.agda", "max_line_length": 148, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/For-iterated-equality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 10321, "size": 26008 }
{-# OPTIONS --sized-types --without-K #-} module DepM where open import Level using (Level) open import Data.Product open import Data.Nat open import Data.Fin open import Data.Unit open import Data.Empty open import Data.Vec hiding (_∈_; [_]) open import Relation.Binary.PropositionalEquality open import Function open import Data.Sum open import Size Fam : Set → Set₁ Fam I = I → Set Fam₂ : {I : Set} → (I → Set) → Set₁ Fam₂ {I} J = (i : I) → J i → Set -- | Morphisms between families MorFam : {I : Set} (P₁ P₂ : Fam I) → Set MorFam {I} P₁ P₂ = (x : I) → P₁ x → P₂ x _⇒_ = MorFam compMorFam : {I : Set} {P₁ P₂ P₃ : Fam I} → MorFam P₁ P₂ → MorFam P₂ P₃ → MorFam P₁ P₃ compMorFam f₁ f₂ a = f₂ a ∘ f₁ a _⊚_ = compMorFam -- | Reindexing of families _* : {I J : Set} → (I → J) → Fam J → Fam I (u *) P = P ∘ u -- | Reindexing on morphisms of families _*₁ : {I J : Set} → (u : I → J) → {P₁ P₂ : Fam J} → (P₁ ⇒ P₂) → (u *) P₁ ⇒ (u *) P₂ (u *₁) f i = f (u i) -- | This notation for Π-types is more useful for our purposes here. Π : (A : Set) (P : Fam A) → Set Π A P = (x : A) → P x -- | Fully general Σ-type, which we need to interpret the interpretation -- of families of containers as functors for inductive types. data Σ' {A B : Set} (f : A → B) (P : Fam A) : B → Set where ins : (a : A) → P a → Σ' f P (f a) p₁' : {A B : Set} {u : A → B} {P : Fam A} {b : B} → Σ' u P b → A p₁' (ins a _) = a p₂' : {A B : Set} {u : A → B} {P : Fam A} {b : B} → (x : Σ' u P b) → P (p₁' x) p₂' (ins _ x) = x p₌' : {A B : Set} {u : A → B} {P : Fam A} {b : B} → (x : Σ' u P b) → u (p₁' x) ≡ b p₌' (ins _ _) = refl ins' : {A B : Set} {u : A → B} {P : Fam A} → (a : A) → (b : B) → u a ≡ b → P a → Σ' u P b ins' a ._ refl x = ins a x Σ'-eq : {A B : Set} {f : A → B} {P : Fam A} → (a a' : A) (x : P a) (x' : P a') (a≡a' : a ≡ a') (x≡x' : subst P a≡a' x ≡ x') → subst (Σ' f P) (cong f a≡a') (ins a x) ≡ ins a' x' Σ'-eq a .a x .x refl refl = refl Σ-eq : {a b : Level} {A : Set a} {B : A → Set b} → (a a' : A) (x : B a) (x' : B a') (a≡a' : a ≡ a') (x≡x' : subst B a≡a' x ≡ x') → (a , x) ≡ (a' , x') Σ-eq a .a x .x refl refl = refl ×-eq : {ℓ : Level} {A : Set ℓ} {B : Set ℓ} → (a a' : A) (b b' : B) → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') ×-eq a .a b .b refl refl = refl ×-eqˡ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → a ≡ a' ×-eqˡ refl = refl ×-eqʳ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → b ≡ b' ×-eqʳ refl = refl -- | Comprehension ⟪_⟫ : {I : Set} → Fam I → Set ⟪_⟫ {I} B = Σ I B ⟪_⟫² : {I J : Set} → (J → Fam I) → Fam J ⟪_⟫² {I} B j = Σ I (B j) π : {I : Set} → (B : Fam I) → ⟪ B ⟫ → I π B = proj₁ _⊢₁_ : {I : Set} {A : Fam I} → (i : I) → A i → ⟪ A ⟫ i ⊢₁ a = (i , a) _,_⊢₂_ : {I : Set} {A : Fam I} {B : Fam ⟪ A ⟫} → (i : I) → (a : A i) → B (i , a) → ⟪ B ⟫ i , a ⊢₂ b = ((i , a) , b) -- Not directly definable... -- record Π' {A B : Set} (u : A → B) (P : A → Set) : B → Set where -- field -- app : (a : A) → Π' u P (u a) → P a -- | ... but this does the job. Π' : {I J : Set} (u : I → J) (P : Fam I) → Fam J Π' {I} u P j = Π (∃ λ i → u i ≡ j) (λ { (i , _) → P i}) Π'' : {I J : Set} (u : I → J) (j : J) (P : Fam (∃ λ i → u i ≡ j)) → Set Π'' {I} u j P = Π (∃ λ i → u i ≡ j) P -- | Application for fully general Π-types. app : {I J : Set} {u : I → J} {P : Fam I} → (u *) (Π' u P) ⇒ P app i f = f (i , refl) -- | Abstraction for fully general Π-types. abs : {I J : Set} {u : I → J} {P : Fam I} → ((i : I) → P i) → ((j : J) → Π' u P j) abs {u = u} f .(u i) (i , refl) = f i -- | Abstraction for fully general Π-types. abs' : {I J : Set} {u : I → J} {P : Fam I} {X : Fam J} → ((u *) X ⇒ P) → (X ⇒ Π' u P) abs' {u = u} f .(u i) x (i , refl) = f i x -- | Abstraction for fully general Π-types. abs'' : {I J : Set} {u : I → J} {P : Fam I} → (j : J) → ((i : I) → u i ≡ j → P i) → Π' u P j abs'' j f (i , p) = f i p abs₃ : {I J : Set} {u : I → J} (j : J) {P : Fam (Σ I (λ i → u i ≡ j))} → ((i : I) → (p : u i ≡ j) → P (i , p)) → Π'' u j P abs₃ j f (i , p) = f i p -- | Functorial action of Π' Π'₁ : {I J : Set} {u : I → J} {P Q : Fam I} → (f : P ⇒ Q) → (Π' u P ⇒ Π' u Q) Π'₁ {u = u} f .(u i) g (i , refl) = f i (app i g) -- | Dependent polynomials record DPoly {I : Set} -- ^ Outer index {J : Set} -- ^ Inner index : Set₁ where constructor dpoly field -- J ←t- E -p→ A -s→ I A : Set -- ^ Labels s : A → I E : Set p : E → A t : E → J -- | Interpretation of polynomial as functor ⟦_⟧ : {I : Set} {J : Set} → DPoly {I} {J} → (X : Fam J) → -- ^ Parameter (Fam I) ⟦_⟧ {I} {N} (dpoly A s E p t) X = Σ' s (λ a → Π' p (λ e → X (t e) ) a ) -- | Functorial action of T ⟦_⟧₁ : {I : Set} {J : Set} → (P : DPoly {I} {J}) → {X Y : J → Set} → (f : (j : J) → X j → Y j) (i : I) → ⟦ P ⟧ X i → ⟦ P ⟧ Y i ⟦_⟧₁ {I} {J} (dpoly A s E p t) {X} {Y} f .(s a) (ins a v) = ins a (Π'₁ ((t *₁) f) a v) -- | Final coalgebras for dependent polynomials record M {a : Size} {I} (P : DPoly {I} {I}) (i : I) : Set where coinductive field ξ : ∀ {b : Size< a} → ⟦ P ⟧ (M {b} P) i open M ξ' : ∀ {I P} → {i : I} → M P i → ⟦ P ⟧ (M P) i ξ' x = ξ x Rel₂ : {I : Set} → (X Y : I → Set) → Set₁ Rel₂ {I} X Y = (i : I) → X i → Y i → Set -- | Lifting to relations ⟦_⟧'' : ∀ {I} (P : DPoly {I} {I}) {X Y} → Rel₂ X Y → Rel₂ (⟦ P ⟧ X) (⟦ P ⟧ Y) ⟦ dpoly A s E p t ⟧'' {X} {Y} R i x y = ∃ λ a → ∃ λ α → ∃ λ β → Σ[ q ∈ (i ≡ s a) ] (subst (⟦ dpoly A s E p t ⟧ X) q x ≡ ins a α × (subst (⟦ dpoly A s E p t ⟧ Y) q y) ≡ ins a β × ∀ u → R (t (proj₁ u)) (α u) (β u)) [_]_≡₂_ : ∀{I} {X : I → Set} → Rel₂ X X [ i ] x ≡₂ y = x ≡ y eq-preserving : ∀ {I P X} (i : I) (x y : ⟦ P ⟧ X i) → x ≡ y → ⟦ P ⟧'' (λ i → _≡_) i x y eq-preserving i x y x≡y = {!!} mutual -- | Equality for M types is given by bisimilarity record Bisim {I} {P : DPoly {I} {I}} (i : I) (x y : M P i) : Set where coinductive field ~pr : ⟦ P ⟧'' Bisim i (ξ' x) (ξ' y) open Bisim public
{ "alphanum_fraction": 0.4372244898, "avg_line_length": 27.9680365297, "ext": "agda", "hexsha": "7c1fea9aabf445bcf5a708b5644777a4dd67865f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Container/DepM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Container/DepM.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Container/DepM.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2984, "size": 6125 }
{-# OPTIONS --without-K --safe #-} module Util.Vec where open import Data.Vec public open import Data.Vec.Relation.Unary.All as All public using (All ; [] ; _∷_) open import Data.Vec.Relation.Unary.Any as Any public using (Any ; here ; there) open import Data.Vec.Membership.Propositional public using (_∈_) open import Data.Nat as ℕ using (_≤_) open import Level using (_⊔_) open import Relation.Binary using (Rel) open import Util.Prelude import Data.Nat.Properties as ℕ max : ∀ {n} → Vec ℕ n → ℕ max = foldr _ ℕ._⊔_ 0 max-weaken : ∀ {n} x (xs : Vec ℕ n) → max xs ≤ max (x ∷ xs) max-weaken _ _ = ℕ.n≤m⊔n _ _ max-maximal : ∀ {n} (xs : Vec ℕ n) → All (_≤ max xs) xs max-maximal [] = [] max-maximal (x ∷ xs) = ℕ.m≤m⊔n _ _ ∷ All.map (λ x≤max → ℕ.≤-trans x≤max (max-weaken x xs)) (max-maximal xs) All→∈→P : ∀ {α β} {A : Set α} {P : A → Set β} {n} {xs : Vec A n} → All P xs → ∀ {x} → x ∈ xs → P x All→∈→P (px ∷ allP) (here refl) = px All→∈→P (px ∷ allP) (there x∈xs) = All→∈→P allP x∈xs max-maximal-∈ : ∀ {n x} {xs : Vec ℕ n} → x ∈ xs → x ≤ max xs max-maximal-∈ = All→∈→P (max-maximal _) data All₂ {α} {A : Set α} {ρ} (R : Rel A ρ) : ∀ {n} → Vec A n → Vec A n → Set (α ⊔ ρ) where [] : All₂ R [] [] _∷_ : ∀ {n x y} {xs ys : Vec A n} → R x y → All₂ R xs ys → All₂ R (x ∷ xs) (y ∷ ys) All₂-tabulate⁺ : ∀ {α} {A : Set α} {ρ} {R : Rel A ρ} {n} {f g : Fin n → A} → (∀ x → R (f x) (g x)) → All₂ R (tabulate f) (tabulate g) All₂-tabulate⁺ {n = zero} p = [] All₂-tabulate⁺ {n = suc n} p = p zero ∷ All₂-tabulate⁺ (λ x → p (suc x)) All₂-tabulate⁻ : ∀ {α} {A : Set α} {ρ} {R : Rel A ρ} {n} {f g : Fin n → A} → All₂ R (tabulate f) (tabulate g) → ∀ x → R (f x) (g x) All₂-tabulate⁻ [] () All₂-tabulate⁻ (fzRgz ∷ all) zero = fzRgz All₂-tabulate⁻ (fzRgz ∷ all) (suc x) = All₂-tabulate⁻ all x
{ "alphanum_fraction": 0.5548880393, "avg_line_length": 26.9264705882, "ext": "agda", "hexsha": "21a35f0732321cf595522119889a1247d8086286", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/Vec.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 799, "size": 1831 }
{-# OPTIONS --safe #-} module Cubical.Functions.Implicit where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism implicit≃Explicit : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → ({a : A} → B a) ≃ ((a : A) → B a) implicit≃Explicit = isoToEquiv isom where isom : Iso _ _ Iso.fun isom f a = f Iso.inv isom f = f _ Iso.rightInv isom f = funExt λ _ → refl Iso.leftInv isom f = implicitFunExt refl
{ "alphanum_fraction": 0.6757322176, "avg_line_length": 26.5555555556, "ext": "agda", "hexsha": "a98a2d3a6599ae9865ec5d68cfe5016a214e8421", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Functions/Implicit.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Functions/Implicit.agda", "max_line_length": 59, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Functions/Implicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 164, "size": 478 }
module hello-world-dep where open import Data.Nat using (ℕ; zero; suc) data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) infixr 5 _∷_
{ "alphanum_fraction": 0.5721649485, "avg_line_length": 19.4, "ext": "agda", "hexsha": "d6ab1df4c839fb2531f7a66cd08a2c78b280d4d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "avieor/agda-demos", "max_forks_repo_path": "hello-world-dep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "avieor/agda-demos", "max_issues_repo_path": "hello-world-dep.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "avieor/agda-demos", "max_stars_repo_path": "hello-world-dep.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 81, "size": 194 }
{-# OPTIONS --without-K #-} open import Base module Homotopy.PushoutDef where record pushout-diag (i : Level) : Set (suc i) where constructor diag_,_,_,_,_ field A : Set i B : Set i C : Set i f : C → A g : C → B pushout-diag-raw-eq : ∀ {i} {A A' : Set i} (p : A ≡ A') {B B' : Set i} (q : B ≡ B') {C C' : Set i} (r : C ≡ C') {f : C → A} {f' : C' → A'} (s : f' ◯ transport _ r ≡ transport _ p ◯ f) {g : C → B} {g' : C' → B'} (t : transport _ q ◯ g ≡ g' ◯ transport _ r) → (diag A , B , C , f , g) ≡ (diag A' , B' , C' , f' , g') pushout-diag-raw-eq refl refl refl refl refl = refl pushout-diag-eq : ∀ {i} {A A' : Set i} (p : A ≃ A') {B B' : Set i} (q : B ≃ B') {C C' : Set i} (r : C ≃ C') {f : C → A} {f' : C' → A'} (s : (a : C) → f' (π₁ r a) ≡ (π₁ p) (f a)) {g : C → B} {g' : C' → B'} (t : (b : C) → (π₁ q) (g b) ≡ g' (π₁ r b)) → (diag A , B , C , f , g) ≡ (diag A' , B' , C' , f' , g') pushout-diag-eq p q r {f} {f'} s {g} {g'} t = pushout-diag-raw-eq (eq-to-path p) (eq-to-path q) (eq-to-path r) (funext (λ a → ap f' (trans-id-eq-to-path r a) ∘ (s a ∘ ! (trans-id-eq-to-path p (f a))))) (funext (λ b → trans-id-eq-to-path q (g b) ∘ (t b ∘ ap g' (! (trans-id-eq-to-path r b))))) module Pushout {i} {d : pushout-diag i} where open pushout-diag d private data #pushout : Set i where #left : A → #pushout #right : B → #pushout pushout : Set _ pushout = #pushout left : A → pushout left = #left right : B → pushout right = #right postulate -- HIT glue : (c : C) → left (f c) ≡ right (g c) pushout-rec : ∀ {l} (P : pushout → Set l) (left* : (a : A) → P (left a)) (right* : (b : B) → P (right b)) (glue* : (c : C) → transport P (glue c) (left* (f c)) ≡ right* (g c)) → (x : pushout) → P x pushout-rec P left* right* glue* (#left y) = left* y pushout-rec P left* right* glue* (#right y) = right* y postulate -- HIT pushout-β-glue : ∀ {l} (P : pushout → Set l) (left* : (a : A) → P (left a)) (right* : (b : B) → P (right b)) (glue* : (c : C) → transport P (glue c) (left* (f c)) ≡ right* (g c)) (c : C) → apd (pushout-rec {l} P left* right* glue*) (glue c) ≡ glue* c pushout-rec-nondep : ∀ {l} (D : Set l) (left* : A → D) (right* : B → D) (glue* : (c : C) → left* (f c) ≡ right* (g c)) → (pushout → D) pushout-rec-nondep D left* right* glue* (#left y) = left* y pushout-rec-nondep D left* right* glue* (#right y) = right* y postulate -- HIT pushout-β-glue-nondep : ∀ {l} (D : Set l) (left* : A → D) (right* : B → D) (glue* : (c : C) → left* (f c) ≡ right* (g c)) (c : C) → ap (pushout-rec-nondep D left* right* glue*) (glue c) ≡ glue* c open Pushout public hiding (pushout) pushout : ∀ {i} (d : pushout-diag i) → Set i pushout d = Pushout.pushout {_} {d}
{ "alphanum_fraction": 0.4848800834, "avg_line_length": 33.4534883721, "ext": "agda", "hexsha": "f1821c1c21491bf5a630d268d7b35abfb9e072bb", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PushoutDef.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PushoutDef.agda", "max_line_length": 79, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PushoutDef.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1228, "size": 2877 }
-- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 -v tc.with:100 -v tc.mod.apply:100 #-} module Issue778b (Param : Set) where open import Issue778M Param data D : (Nat → Nat) → Set where d : D pred → D pred -- Ulf, 2013-11-11: With the fix to issue 59 that inlines with functions, -- this no longer termination checks. The problem is having a termination -- path going through a with-expression (the variable x in this case). {-# TERMINATING #-} test : (f : Nat → Nat) → D f → Nat test .pred (d x) = bla where bla : Nat bla with (d x) -- Andreas, 2014-11-06 "with x" has been outlawed. ... | (d (d y)) = test pred y
{ "alphanum_fraction": 0.6523031204, "avg_line_length": 37.3888888889, "ext": "agda", "hexsha": "4493bbede19e56f291ef8581e0d553b16ec530de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue778b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue778b.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue778b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 211, "size": 673 }
{-# OPTIONS --exact-split #-} module ExactSplitParity where data Bool : Set where true false : Bool data ℕ : Set where zero : ℕ suc : ℕ → ℕ parity : ℕ → ℕ → Bool parity zero zero = true parity zero (suc zero) = false parity zero (suc (suc n)) = parity zero n parity (suc zero) zero = false parity (suc (suc m)) zero = parity m zero parity (suc m) (suc n) = parity m n
{ "alphanum_fraction": 0.5498891353, "avg_line_length": 23.7368421053, "ext": "agda", "hexsha": "906b4b79abb4f93731d0172ac8acb87ff8b08c14", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/ExactSplitParity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/ExactSplitParity.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/ExactSplitParity.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 134, "size": 451 }
module Data.Fin.Subset.Disjoint.Properties where open import Data.Nat open import Data.Vec as Vec hiding (_++_; _∈_) open import Data.List as List hiding (zipWith; foldr) open import Data.Bool open import Data.Bool.Properties open import Data.Product open import Data.Sum open import Data.Empty hiding (⊥) open import Relation.Binary.PropositionalEquality open import Data.Fin hiding (_-_) open import Data.Fin.Subset open import Data.Fin.Subset.Properties open import Data.Fin.Subset.Disjoint module _ where _-_ : ∀ {n} → (l r : Subset n) → Subset n l - r = zipWith _⊝_ l r module Subtract where _⊝_ = (λ l r → if r then false else l) q-p∪p : ∀ {n}{p q : Subset n} → q ⊆ p → (p - q) ∪ q ≡ p q-p∪p {p = []} {[]} s = refl q-p∪p {p = x ∷ p} {outside ∷ q} s rewrite ∨-identityʳ x = cong₂ _∷_ refl (q-p∪p (drop-∷-⊆ s)) q-p∪p {p = outside ∷ p} {true ∷ q} s with s here ... | () q-p∪p {p = true ∷ p} {true ∷ q} s = cong₂ _∷_ refl (q-p∪p (drop-∷-⊆ s)) ⊆-∪-cong : ∀ {n}{x y x' y' : Subset n} → x ⊆ x' → y ⊆ y' → (x ∪ y) ⊆ (x' ∪ y') ⊆-∪-cong p q t with x∈p∪q⁻ _ _ t ... | inj₁ z = p⊆p∪q _ (p z) ... | inj₂ z = q⊆p∪q _ _ (q z) -- properties of disjoint subsets x ◆ y module _ where ◆-tail : ∀ {n} x y {xs ys : Subset n} → (x ∷ xs) ◆ (y ∷ ys) → xs ◆ ys ◆-tail _ _ p (x , x∈xs) = p (suc x , there x∈xs) ◆-comm : ∀ {n} {x y : Subset n} → x ◆ y → y ◆ x ◆-comm {x = x}{y} = subst Empty (∩-comm x y) ◆-⊆-left : ∀ {n}{x y z : Subset n} → x ⊆ y → y ◆ z → x ◆ z ◆-⊆-left w d (e , e∈x∩z) = let (e∈x , e∈z) = (x∈p∩q⁻ _ _ e∈x∩z) in d (e , x∈p∩q⁺ ((w e∈x) , e∈z)) ◆-⊆-right : ∀ {n}{x y z : Subset n} → x ⊆ z → y ◆ z → y ◆ x ◆-⊆-right w d = ◆-comm (◆-⊆-left w (◆-comm d)) ◆-∉ : ∀ {n}{x y : Subset n}{i} → x ◆ y → i ∈ x → i ∉ y ◆-∉ {y = outside ∷ y} p here = λ () ◆-∉ {y = inside ∷ y} p here = λ _ → p (zero , here) ◆-∉ {y = _ ∷ ys} p (there {y = y} q) (there z) = ◆-∉ (λ where (i , i∈ys) → p (suc i , there i∈ys)) q z ⊆-◆ : ∀ {n}{x y z : Subset n} → x ⊆ y → x ◆ z → x ⊆ y - z ⊆-◆ {x = .(true ∷ _)} {_ ∷ _} {outside ∷ zs} p x◆z here with p here ... | here = here ⊆-◆ {x = .(true ∷ _)} {_ ∷ _} {inside ∷ zs} p x◆z here = ⊥-elim (◆-∉ x◆z here here) ⊆-◆ {x = .(_ ∷ _)} {y ∷ ys} {z ∷ zs} p x◆z (there i∈x) = there (⊆-◆ (drop-∷-⊆ p) (◆-tail _ z x◆z) i∈x) ◆-∪ : ∀ {n}{x y z : Subset n} → x ◆ y → x ◆ z → x ◆ (y ∪ z) ◆-∪ x◆y x◆z (i , i∈x∩y∪z) with x∈p∪q⁻ _ _ (proj₂ (x∈p∩q⁻ _ _ i∈x∩y∪z)) ... | inj₁ i∈y = x◆y (i , (x∈p∩q⁺ (proj₁ (x∈p∩q⁻ _ _ i∈x∩y∪z) , i∈y))) ... | inj₂ i∈z = x◆z (i , (x∈p∩q⁺ (proj₁ (x∈p∩q⁻ _ _ i∈x∩y∪z) , i∈z))) ◆-- : ∀ {n}(x y : Subset n) → x ◆ (y - x) ◆-- xs ys (zero , p) with x∈p∩q⁻ _ _ p ◆-- (.true ∷ _) (outside ∷ _) (zero , p) | here , () ◆-- (.true ∷ _) (true ∷ _) (zero , p) | here , () ◆-- (_ ∷ xs) (_ ∷ ys) (suc e , there p) = ◆-- xs ys (e , p) ◆-⊥ : ∀ {n} {x : Subset n} → x ◆ ⊥ ◆-⊥ (i , snd) = ∉⊥ (subst (λ s → i ∈ s) (proj₂ ∩-zero _) snd) -- properties of disjoint unions z of xs (xs ⨄ z) module _ where -- append for disjoint disjoint-unions of subsets ++-⨄ : ∀ {n}{xs ys}{x y : Subset n} → xs ⨄ x → ys ⨄ y → (x ◆ y) → (xs ++ ys) ⨄ (x ∪ y) ++-⨄ {x = x}{y} [] q d rewrite ∪-identityˡ y = q ++-⨄ {y = y} (_∷_ {x = x}{z} x◆z xs⊎y) ys⊎z x∪z⊎y rewrite ∪-assoc x z y = (◆-∪ x◆z (◆-⊆-left (p⊆p∪q z) x∪z⊎y)) ∷ (++-⨄ xs⊎y ys⊎z (◆-⊆-left (q⊆p∪q x z) x∪z⊎y)) ⨄-trans : ∀ {n}{xs ys}{x y : Subset n} → xs ⨄ x → (x ∷ ys) ⨄ y → (xs ++ ys) ⨄ (x ∪ y) ⨄-trans {x = x}{y} xs▰x (_∷_ {y = z} x◆y ys▰y) rewrite sym (∪-assoc x x z) = subst (λ x → _ ⨄ (x ∪ z)) (sym (∪-idem x)) (++-⨄ xs▰x ys▰y x◆y)
{ "alphanum_fraction": 0.4672742336, "avg_line_length": 39.3586956522, "ext": "agda", "hexsha": "d134a1de2f7df1aba67c1e3b5685f38783562600", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Fin/Subset/Disjoint/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Fin/Subset/Disjoint/Properties.agda", "max_line_length": 99, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Fin/Subset/Disjoint/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 1966, "size": 3621 }
------------------------------------------------------------------------------ -- The FOTC streams of total natural numbers type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B. This module is re-exported by FOTC.Data.Stream. module FOT.FOTC.Data.Nat.Stream.Type where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- The FOTC streams type (co-inductive predicate for total streams). -- Functional for the StreamN predicate. -- StreamNF : (D → Set) → D → Set -- StreamNF P ns = ∃[ n' ] ∃[ ns' ] N n' ∧ P ns' ∧ ns ≡ n' ∷ ns' -- Stream is the greatest fixed-point of StreamF (by Stream-out and -- Stream-coind). postulate StreamN : D → Set postulate -- StreamN is a post-fixed point of StreamNF, i.e. -- -- StreamN ≤ StreamNF StreamN. StreamN-out : ∀ {ns} → StreamN ns → ∃[ n' ] ∃[ ns' ] N n' ∧ StreamN ns' ∧ ns ≡ n' ∷ ns' {-# ATP axiom StreamN-out #-} -- StreamN is the greatest post-fixed point of StreamNF, i.e. -- -- ∀ P. P ≤ StreamNF P ⇒ P ≤ StreamN. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate StreamN-coind : ∀ (A : D → Set) {ns} → -- A is post-fixed point of StreamNF. (A ns → ∃[ n' ] ∃[ ns' ] N n' ∧ A ns' ∧ ns ≡ n' ∷ ns') → -- StreamN is greater than A. A ns → StreamN ns -- Because a greatest post-fixed point is a fixed-point, then the -- StreamN predicate is also a pre-fixed point of the functional -- StreamNF, i.e. -- -- StreamNF StreamN ≤ StreamN. StreamN-in : ∀ {ns} → ∃[ n' ] ∃[ ns' ] N n' ∧ StreamN ns' ∧ ns ≡ n' ∷ ns' → StreamN ns StreamN-in {ns} h = StreamN-coind A h' h where A : D → Set A ns = ∃[ n' ] ∃[ ns' ] N n' ∧ StreamN ns' ∧ ns ≡ n' ∷ ns' h' : A ns → ∃[ n' ] ∃[ ns' ] N n' ∧ A ns' ∧ ns ≡ n' ∷ ns' h' (_ , _ , Nn' , SNns' , prf) = _ , _ , Nn' , (StreamN-out SNns') , prf
{ "alphanum_fraction": 0.514619883, "avg_line_length": 32.6911764706, "ext": "agda", "hexsha": "39b954bb8596d00d37af8282d318962ef7498f20", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Stream/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Stream/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Stream/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 677, "size": 2223 }
{-# OPTIONS --without-K --safe #-} module Data.Bool.Truth where open import Data.Empty open import Data.Unit open import Level open import Data.Bool.Base T : Bool → Type T true = ⊤ T false = ⊥
{ "alphanum_fraction": 0.6954314721, "avg_line_length": 15.1538461538, "ext": "agda", "hexsha": "5e5b881e35232863c05deade2b1283c23ea8acb5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Bool/Truth.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Bool/Truth.agda", "max_line_length": 34, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Bool/Truth.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 54, "size": 197 }
------------------------------------------------------------------------ -- Examples involving simple λ-calculi ------------------------------------------------------------------------ {-# OPTIONS --cubical --sized-types #-} module README.Lambda where ------------------------------------------------------------------------ -- An untyped λ-calculus with constants -- Some developments from "Operational Semantics Using the Partiality -- Monad" by Danielsson, implemented using both the quotient -- inductive-inductive partiality monad, and the delay monad. -- -- These developments to a large extent mirror developments in -- "Coinductive big-step operational semantics" by Leroy and Grall. -- The syntax of, and a type system for, the untyped λ-calculus with -- constants. import Lambda.Syntax -- Most of a virtual machine. import Lambda.Virtual-machine -- A compiler. import Lambda.Compiler -- A definitional interpreter. import Lambda.Partiality-monad.Inductive.Interpreter import Lambda.Delay-monad.Interpreter -- A type soundness result. import Lambda.Partiality-monad.Inductive.Type-soundness import Lambda.Delay-monad.Type-soundness -- A virtual machine. import Lambda.Partiality-monad.Inductive.Virtual-machine import Lambda.Delay-monad.Virtual-machine -- Compiler correctness. import Lambda.Partiality-monad.Inductive.Compiler-correctness import Lambda.Delay-monad.Compiler-correctness ------------------------------------------------------------------------ -- An untyped λ-calculus without constants -- A variant of the development above. The development above uses a -- well-scoped variant of the untyped λ-calculus with constants. This -- development does not use constants. This means that the interpreter -- cannot crash, so the type soundness result has been omitted. import Lambda.Simplified.Syntax import Lambda.Simplified.Virtual-machine import Lambda.Simplified.Compiler import Lambda.Simplified.Partiality-monad.Inductive.Interpreter import Lambda.Simplified.Delay-monad.Interpreter import Lambda.Simplified.Partiality-monad.Inductive.Virtual-machine import Lambda.Simplified.Delay-monad.Virtual-machine import Lambda.Simplified.Partiality-monad.Inductive.Compiler-correctness import Lambda.Simplified.Delay-monad.Compiler-correctness
{ "alphanum_fraction": 0.7067603161, "avg_line_length": 33.0144927536, "ext": "agda", "hexsha": "54c0675472d7b001d0685a0d2e7e7408c20fab68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "README/Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "README/Lambda.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "README/Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 442, "size": 2278 }
module powerset where open import level open import list open import bool open import product open import empty open import unit open import sum open import eq open import functions renaming (id to id-set) public -- Extensionality will be used when proving equivalences of morphisms. postulate ext-set : ∀{l1 l2 : level} → extensionality {l1} {l2} -- These are isomorphisms, but Agda has no way to prove these as -- equivalences. They are consistent to adopt as equivalences by -- univalence: postulate ⊎-unit-r : ∀{X : Set} → (X ⊎ ⊥) ≡ X postulate ⊎-unit-l : ∀{X : Set} → (⊥ ⊎ X) ≡ X postulate ∧-unit : ∀{ℓ}{A : Set ℓ} → A ≡ ((⊤ {ℓ}) ∧ A) postulate ∧-sym : ∀{ℓ}{A B : Set ℓ} → (A ∧ B) ≡ (B ∧ A) postulate ∧-unit-r : ∀{ℓ}{A : Set ℓ} → A ≡ (A ∧ (⊤ {ℓ})) postulate ∧-assoc : ∀{ℓ}{A B C : Set ℓ} → (A ∧ (B ∧ C)) ≡ ((A ∧ B) ∧ C) ℙ : {X : Set} → (X → 𝔹) → Set ℙ {X} S = (X → 𝔹) → 𝔹 _∪_ : {X : Set}{S : X → 𝔹} → ℙ S → ℙ S → ℙ S (s₁ ∪ s₂) x = (s₁ x) || (s₂ x) _∩_ : {X : Set}{S : X → 𝔹} → ℙ S → ℙ S → ℙ S (s₁ ∩ s₂) x = (s₁ x) && (s₂ x) _×S_ : {X Y : Set} → (S₁ : X → 𝔹) → (S₂ : Y → 𝔹) → (X × Y) → 𝔹 _×S_ S₁ S₂ (a , b) = (S₁ a) && (S₂ b) π₁ : ∀{X Y : Set} → ((Σ X (λ x → Y) → 𝔹) → 𝔹) → ((X → 𝔹) → 𝔹) π₁ P S = P (λ x → S (fst x)) π₂ : ∀{X Y : Set} → ((Σ X (λ x → Y) → 𝔹) → 𝔹) → ((Y → 𝔹) → 𝔹) π₂ P S = P (λ x → S (snd x)) i₁ : {X Y : Set}{S₁ : X → 𝔹}{S₂ : Y → 𝔹} → ℙ S₁ → (((X × Y) → 𝔹) → 𝔹) i₁ {X}{Y}{S₁}{S₂} P S = {!!} i₂ : {X Y : Set}{S₁ : X → 𝔹}{S₂ : Y → 𝔹} → ℙ S₂ → ℙ (S₁ ×S S₂) i₂ {X}{Y}{S₁}{S₂} P _ = P S₂ cp-ar : {X Y Z : Set}{S₁ : X → 𝔹}{S₂ : Y → 𝔹}{S₃ : Z → 𝔹} → (ℙ S₁ → ℙ S₃) → (ℙ S₂ → ℙ S₃) → ℙ (S₁ ×S S₂) → ℙ S₃ cp-ar {X}{Y}{Z}{S₁}{S₂}{S₃} f g P S = (f (π₁ P) S) || (g (π₂ P) S) cp-diag₁ : {X Y Z : Set}{S₁ : X → 𝔹}{S₂ : Y → 𝔹}{S₃ : Z → 𝔹}{f : ℙ S₁ → ℙ S₃}{g : ℙ S₂ → ℙ S₃} → cp-ar {X}{Y}{Z}{S₁}{S₂}{S₃ = S₃} f g ∘ (i₁ {X}{Y}{S₁}{S₂}) ≡ f cp-diag₁ {X}{Y}{Z}{S₁}{S₂}{S₃}{f}{g} = ext-set (λ {x} → ext-set (λ {S} → {!!})) -- cp-diag₂ : {X Y Z : Set}{f : Z → X}{g : Z → Y} → cp-ar f g ∘ i₂ ≡ ℙₐ g -- cp-diag₂ {X}{Y}{Z}{f}{g} = refl -- co-curry : {A B C : Set} → ((A × B) → C) → ℙ (B → C) → ℙ A -- co-curry {A}{B}{C} f = ℙₐ {A}{B → C} (curry f) -- co-uncurry : {A B C : Set} → (A → B → C) → ℙ C → ℙ (A × B) -- co-uncurry {A}{B}{C} f = ℙₐ {A × B} {C} (uncurry f) -- liftℙ : {A B : Set} → (A → ℙ B) → ℙ A → ℙ B -- liftℙ {A} f s b = ∀(a : A) → (s a) × (f a b)
{ "alphanum_fraction": 0.45898191, "avg_line_length": 36.0151515152, "ext": "agda", "hexsha": "a3b82bcb99a4341b54781e26331f65237219e9b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "power-set-algebra/powerset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "power-set-algebra/powerset.agda", "max_line_length": 159, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "power-set-algebra/powerset.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1297, "size": 2377 }
module Numeral.Integer.Relation.Order where open import Functional import Lvl import Numeral.Natural.Relation.Order as ℕ open import Numeral.Integer open import Numeral.Integer.Oper open import Relator.Ordering open import Type -- Inequalities/Comparisons data _≤_ : ℤ → ℤ → Type{Lvl.𝟎} where neg-neg : ∀{a b} → (a ℕ.≤ b) → (−𝐒ₙ(b)) ≤ (−𝐒ₙ(a)) neg-pos : ∀{a b} → (−𝐒ₙ(a)) ≤ (+ₙ b) pos-pos : ∀{a b} → (a ℕ.≤ b) → (+ₙ a) ≤ (+ₙ b) _<_ : ℤ → ℤ → Type _<_ = (_≤_) ∘ 𝐒 open From-[≤][<] (_≤_)(_<_) public module _ where open import Structure.Relator.Properties instance [≤][−𝐒ₙ]-sub : (swap(_≤_) on₂ (−𝐒ₙ_)) ⊆₂ (ℕ._≤_) _⊆₂_.proof [≤][−𝐒ₙ]-sub (neg-neg p) = p instance [≤][+ₙ]-sub : ((_≤_) on₂ (+ₙ_)) ⊆₂ (ℕ._≤_) _⊆₂_.proof [≤][+ₙ]-sub (pos-pos p) = p
{ "alphanum_fraction": 0.5759493671, "avg_line_length": 24.6875, "ext": "agda", "hexsha": "69422c66b1f82f49aa0f6ab04f019b3f699af8a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer/Relation/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer/Relation/Order.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer/Relation/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 367, "size": 790 }
module Data.Real.Base where import Prelude import Data.Rational import Data.Nat as Nat import Data.Bits import Data.Bool import Data.Maybe import Data.Integer import Data.List import Data.Real.Gauge open Prelude open Data.Rational hiding (_-_; !_!) open Data.Bits open Data.Bool open Data.List open Data.Integer hiding (-_; _+_; _≥_; _≤_; _>_; _<_; _==_) renaming ( _*_ to _*'_ ) open Nat using (Nat; zero; suc) open Data.Real.Gauge using (Gauge) Base = Rational bitLength : Int -> Int bitLength x = pos (nofBits ! x !) - pos 1 approxBase : Base -> Gauge -> Base approxBase x e = help err where num = numerator e den = denominator e err = bitLength (den - pos 1) - bitLength num help : Int -> Base help (pos (suc n)) = round (x * fromNat k) % pos k where k = shiftL 1 (suc n) help (pos zero) = x help (neg n) = fromInt $ (round $ x / fromInt k) *' k where k = pos (shiftL 1 ! neg n !) powers : Nat -> Base -> List Base powers n x = iterate n (_*_ x) x sumBase : List Base -> Base sumBase xs = foldr _+_ (fromNat 0) xs
{ "alphanum_fraction": 0.630198915, "avg_line_length": 20.8679245283, "ext": "agda", "hexsha": "cabd1742673706b2de24f7fd394732b19c60dabc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/lib/Data/Real/Base.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/lib/Data/Real/Base.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/lib/Data/Real/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 351, "size": 1106 }
module Structure.Topology.Proofs where
{ "alphanum_fraction": 0.8717948718, "avg_line_length": 19.5, "ext": "agda", "hexsha": "59035d50ceec4ed5a208605a7728f901b1a37783", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Topology/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Topology/Proofs.agda", "max_line_length": 38, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Topology/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8, "size": 39 }
------------------------------------------------------------------------ -- Abstract binding trees, based on Harper's "Practical Foundations -- for Programming Languages" ------------------------------------------------------------------------ -- Operators are not indexed by symbolic parameters. -- TODO: Define α-equivalence, prove that key operations respect -- α-equivalence. {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Abstract-binding-tree {e⁺} (equality-with-paths : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties equality-with-paths open import Dec open import Logical-equivalence using (_⇔_) open import Prelude hiding (swap) renaming ([_,_] to [_,_]′) open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms equality-with-paths open import Equivalence equality-with-J as Eq using (_≃_) open import Erased.Cubical equality-with-paths as E open import Finite-subset.Listed equality-with-paths as L hiding (fresh) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc open import List equality-with-J using (H-level-List) private variable p : Level ------------------------------------------------------------------------ -- Signatures private module Dummy where -- Signatures for abstract binding trees. record Signature ℓ : Type (lsuc ℓ) where infix 4 _≟S_ _≟O_ _≟V_ field -- A set of sorts with decidable erased equality. Sort : Type ℓ _≟S_ : Decidable-erased-equality Sort -- Valences. Valence : Type ℓ Valence = List Sort × Sort field -- Codomain-indexed operators with decidable erased equality and -- domains. Op : @0 Sort → Type ℓ _≟O_ : ∀ {@0 s} → Decidable-erased-equality (Op s) domain : ∀ {@0 s} → Op s → List Valence -- A sort-indexed type of variables with decidable erased -- equality. Var : @0 Sort → Type ℓ _≟V_ : ∀ {@0 s} → Decidable-erased-equality (Var s) -- Non-indexed variables. ∃Var : Type ℓ ∃Var = ∃ λ (s : Sort) → Var s -- Finite subsets of variables. -- -- This type is used by the substitution functions, so it might -- make sense to make it possible to switch to a more efficient -- data structure. (For instance, if variables are natural -- numbers, then it should suffice to store an upper bound of the -- variables in the term.) Vars : Type ℓ Vars = Finite-subset-of ∃Var field -- One can always find a fresh variable. fresh : ∀ {s} (xs : Vars) → ∃ λ (x : Var s) → Erased ((_ , x) ∉ xs) -- Arities. Arity : Type ℓ Arity = List Valence × Sort -- An operator's arity. arity : ∀ {s} → Op s → Arity arity {s = s} o = domain o , s open Dummy public using (Signature) hiding (module Signature) -- Definitions depending on a signature. Defined in a separate module -- to avoid problems with record modules. module Signature {ℓ} (sig : Signature ℓ) where open Dummy.Signature sig public private variable @0 A : Type ℓ @0 s s′ s₁ s₂ s₃ wf wf₁ wf₂ : A @0 ss : List Sort @0 v : Valence @0 vs : List Valence @0 o : Op s @0 x y z : Var s @0 dom fs xs ys : Finite-subset-of A ---------------------------------------------------------------------- -- Variants of some functions from the signature -- A variant of fresh that does not return an erased proof. fresh-not-erased : ∀ {s} (xs : Vars) → ∃ λ (x : Var s) → (_ , x) ∉ xs fresh-not-erased = Σ-map id Stable-¬ ∘ fresh -- Erased equality is decidable for ∃Var. infix 4 _≟∃V_ _≟∃V_ : Decidable-erased-equality ∃Var _≟∃V_ = decidable-erased⇒decidable-erased⇒Σ-decidable-erased _≟S_ _≟V_ ---------------------------------------------------------------------- -- Some types are sets -- Sort is a set (in erased contexts). @0 Sort-set : Is-set Sort Sort-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟S_ -- Valence is a set (in erased contexts). @0 Valence-set : Is-set Valence Valence-set = ×-closure 2 (H-level-List 0 Sort-set) Sort-set -- Arity is a set (in erased contexts). @0 Arity-set : Is-set Arity Arity-set = ×-closure 2 (H-level-List 0 Valence-set) Sort-set -- Var s is a set (in erased contexts). @0 Var-set : Is-set (Var s) Var-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟V_ -- ∃Var is a set (in erased contexts). @0 ∃Var-set : Is-set ∃Var ∃Var-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟∃V_ ---------------------------------------------------------------------- -- Some decision procedures -- "Erased mere equality" is decidable for Var s. merely-equal?-Var : (x y : Var s) → Dec-Erased ∥ x ≡ y ∥ merely-equal?-Var x y with x ≟V y … | yes [ x≡y ] = yes [ ∣ x≡y ∣ ] … | no [ x≢y ] = no [ x≢y ∘ Trunc.rec Var-set id ] -- "Erased mere equality" is decidable for ∃Var. merely-equal?-∃Var : (x y : ∃Var) → Dec-Erased ∥ x ≡ y ∥ merely-equal?-∃Var x y with x ≟∃V y … | yes [ x≡y ] = yes [ ∣ x≡y ∣ ] … | no [ x≢y ] = no [ x≢y ∘ Trunc.rec ∃Var-set id ] private -- An instance of delete. del : ∃Var → Vars → Vars del = delete merely-equal?-∃Var -- An instance of minus. infixl 5 _∖_ _∖_ : Finite-subset-of (Var s) → Finite-subset-of (Var s) → Finite-subset-of (Var s) _∖_ = minus merely-equal?-Var ---------------------------------------------------------------------- -- Term skeletons -- Term skeletons are terms without variables. mutual -- Terms. data Tmˢ : @0 Sort → Type ℓ where var : ∀ {s} → Tmˢ s op : (o : Op s) → Argsˢ (domain o) → Tmˢ s -- Sequences of arguments. data Argsˢ : @0 List Valence → Type ℓ where nil : Argsˢ [] cons : Argˢ v → Argsˢ vs → Argsˢ (v ∷ vs) -- Arguments. data Argˢ : @0 Valence → Type ℓ where nil : Tmˢ s → Argˢ ([] , s) cons : ∀ {s} → Argˢ (ss , s′) → Argˢ (s ∷ ss , s′) private variable @0 tˢ : Tmˢ s @0 asˢ : Argsˢ vs @0 aˢ : Argˢ v ---------------------------------------------------------------------- -- Raw terms -- Raw (possibly ill-scoped) terms. mutual Tm : Tmˢ s → Type ℓ Tm {s = s} var = Var s Tm (op o as) = Args as Args : Argsˢ vs → Type ℓ Args nil = ↑ _ ⊤ Args (cons a as) = Arg a × Args as Arg : Argˢ v → Type ℓ Arg (nil t) = Tm t Arg (cons {s = s} a) = Var s × Arg a ---------------------------------------------------------------------- -- Casting variables -- A cast lemma. cast-Var : @0 s ≡ s′ → Var s → Var s′ cast-Var = substᴱ Var -- Attempts to cast a variable to a given sort. maybe-cast-∃Var : ∀ s → ∃Var → Maybe (Var s) maybe-cast-∃Var s (s′ , x) with s′ ≟S s … | yes [ s′≡s ] = just (cast-Var s′≡s x) … | no _ = nothing abstract -- When no arguments are erased one can express cast-Var in a -- different way. cast-Var-not-erased : ∀ {s s′} {s≡s′ : s ≡ s′} {x} → cast-Var s≡s′ x ≡ subst (λ s → Var s) s≡s′ x cast-Var-not-erased {s≡s′ = s≡s′} {x = x} = substᴱ Var s≡s′ x ≡⟨ substᴱ≡subst ⟩∎ subst (λ s → Var s) s≡s′ x ∎ -- If eq has type s₁ ≡ s₂, then s₁ paired up with x (as an element -- of ∃Var) is equal to s₂ paired up with cast-Var eq x (if none -- of these inputs are erased). ≡,cast-Var : ∀ {s₁ s₂ x} {eq : s₁ ≡ s₂} → _≡_ {A = ∃Var} (s₁ , x) (s₂ , cast-Var eq x) ≡,cast-Var {s₁ = s₁} {s₂ = s₂} {x = x} {eq = eq} = Σ-≡,≡→≡ eq (subst (λ s → Var s) eq x ≡⟨ sym cast-Var-not-erased ⟩∎ cast-Var eq x ∎) -- A "computation rule". cast-Var-refl : ∀ {@0 s} {x : Var s} → cast-Var (refl s) x ≡ x cast-Var-refl {x = x} = substᴱ Var (refl _) x ≡⟨ substᴱ-refl ⟩∎ x ∎ -- A fusion lemma for cast-Var. cast-Var-cast-Var : {x : Var s₁} {@0 eq₁ : s₁ ≡ s₂} {@0 eq₂ : s₂ ≡ s₃} → cast-Var eq₂ (cast-Var eq₁ x) ≡ cast-Var (trans eq₁ eq₂) x cast-Var-cast-Var {x = x} {eq₁ = eq₁} {eq₂ = eq₂} = subst (λ ([ s ]) → Var s) ([]-cong [ eq₂ ]) (subst (λ ([ s ]) → Var s) ([]-cong [ eq₁ ]) x) ≡⟨ subst-subst _ _ _ _ ⟩ subst (λ ([ s ]) → Var s) (trans ([]-cong [ eq₁ ]) ([]-cong [ eq₂ ])) x ≡⟨ cong (flip (subst _) _) $ sym []-cong-[trans] ⟩∎ subst (λ ([ s ]) → Var s) ([]-cong [ trans eq₁ eq₂ ]) x ∎ -- The proof given to cast-Var can be replaced. cast-Var-irrelevance : {x : Var s₁} {@0 eq₁ eq₂ : s₁ ≡ s₂} → cast-Var eq₁ x ≡ cast-Var eq₂ x cast-Var-irrelevance = congᴱ (λ eq → cast-Var eq _) (Sort-set _ _) -- If cast-Var's proof argument is constructed (in a certain way) -- from a (non-erased) proof of a kind of equality between -- cast-Var's variable argument and another variable, then the -- result is equal to the other variable. cast-Var-Σ-≡,≡←≡ : ∀ {s₁ s₂} {x₁ : Var s₁} {x₂ : Var s₂} (eq : _≡_ {A = ∃Var} (s₁ , x₁) (s₂ , x₂)) → cast-Var (proj₁ (Σ-≡,≡←≡ eq)) x₁ ≡ x₂ cast-Var-Σ-≡,≡←≡ {x₁ = x₁} {x₂ = x₂} eq = cast-Var (proj₁ (Σ-≡,≡←≡ eq)) x₁ ≡⟨ cast-Var-not-erased ⟩ subst (λ s → Var s) (proj₁ (Σ-≡,≡←≡ eq)) x₁ ≡⟨ proj₂ (Σ-≡,≡←≡ eq) ⟩∎ x₂ ∎ -- An equality between a casted variable and another variable can -- be expressed in terms of an equality between elements of ∃Var. -- (In erased contexts.) @0 ≡cast-Var≃ : {s≡s′ : s ≡ s′} → (cast-Var s≡s′ x ≡ y) ≃ _≡_ {A = ∃Var} (s , x) (s′ , y) ≡cast-Var≃ {s = s} {s′ = s′} {x = x} {y = y} {s≡s′ = s≡s′} = cast-Var s≡s′ x ≡ y ↝⟨ ≡⇒↝ _ $ cong (_≡ _) cast-Var-not-erased ⟩ subst (λ s → Var s) s≡s′ x ≡ y ↔⟨ inverse $ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible Sort-set s≡s′ ⟩ (∃ λ (s≡s′ : s ≡ s′) → subst (λ s → Var s) s≡s′ x ≡ y) ↔⟨ Bijection.Σ-≡,≡↔≡ ⟩□ (s , x) ≡ (s′ , y) □ -- Equality between pairs in ∃Var can be "simplified" when the -- sorts are equal. (In erased contexts.) @0 ≡→,≡,≃ : _≡_ {A = ∃Var} (s , x) (s , y) ≃ (x ≡ y) ≡→,≡,≃ {s = s} {x = x} {y = y} = (s , x) ≡ (s , y) ↝⟨ inverse ≡cast-Var≃ ⟩ cast-Var (refl _) x ≡ y ↝⟨ ≡⇒↝ _ $ cong (_≡ _) cast-Var-refl ⟩□ x ≡ y □ -- Equality between pairs in ∃Var can be "simplified" when the -- sorts are not equal. ≢→,≡,≃ : ∀ {s₁ s₂ x y} → s₁ ≢ s₂ → _≡_ {A = ∃Var} (s₁ , x) (s₂ , y) ≃ ⊥₀ ≢→,≡,≃ {s₁ = s₁} {s₂ = s₂} {x = x} {y = y} s₁≢s₂ = (s₁ , x) ≡ (s₂ , y) ↔⟨ inverse Bijection.Σ-≡,≡↔≡ ⟩ (∃ λ (s₁≡s₂ : s₁ ≡ s₂) → subst (λ s → Var s) s₁≡s₂ x ≡ y) ↝⟨ Σ-cong-contra (Bijection.⊥↔uninhabited s₁≢s₂) (λ _ → F.id) ⟩ (∃ λ (p : ⊥₀) → subst (λ s → Var s) (⊥-elim p) x ≡ y) ↔⟨ Σ-left-zero ⟩□ ⊥ □ ---------------------------------------------------------------------- -- A small universe -- The universe. data Term-kind : Type where var tm args arg : Term-kind private variable k : Term-kind -- A variable skeleton is just an unerased sort. data Varˢ : @0 Sort → Type ℓ where var : ∀ {s} → Varˢ s -- For each kind of term there is a kind of sort, a kind of -- skeleton, and a kind of data. Sort-kind : Term-kind → Type ℓ Sort-kind var = Sort Sort-kind tm = Sort Sort-kind args = List Valence Sort-kind arg = Valence Skeleton : (k : Term-kind) → @0 Sort-kind k → Type ℓ Skeleton var = Varˢ Skeleton tm = Tmˢ Skeleton args = Argsˢ Skeleton arg = Argˢ Data : Skeleton k s → Type ℓ Data {k = var} {s = s} = λ _ → Var s Data {k = tm} = Tm Data {k = args} = Args Data {k = arg} = Arg -- Term-kind is equivalent to Fin 4. Term-kind≃Fin-4 : Term-kind ≃ Fin 4 Term-kind≃Fin-4 = Eq.↔→≃ to from to∘from from∘to where to : Term-kind → Fin 4 to var = fzero to tm = fsuc fzero to args = fsuc (fsuc fzero) to arg = fsuc (fsuc (fsuc fzero)) from : Fin 4 → Term-kind from fzero = var from (fsuc fzero) = tm from (fsuc (fsuc fzero)) = args from (fsuc (fsuc (fsuc fzero))) = arg to∘from : ∀ i → to (from i) ≡ i to∘from fzero = refl _ to∘from (fsuc fzero) = refl _ to∘from (fsuc (fsuc fzero)) = refl _ to∘from (fsuc (fsuc (fsuc fzero))) = refl _ from∘to : ∀ k → from (to k) ≡ k from∘to var = refl _ from∘to tm = refl _ from∘to args = refl _ from∘to arg = refl _ ---------------------------------------------------------------------- -- Computing the set of free variables -- These functions return sets containing exactly the free -- variables. -- -- Note that this code is not intended to be used at run-time. private free-Var : ∀ {s} → Var s → Vars free-Var x = singleton (_ , x) mutual free-Tm : (tˢ : Tmˢ s) → Tm tˢ → Vars free-Tm var x = free-Var x free-Tm (op o asˢ) as = free-Args asˢ as free-Args : (asˢ : Argsˢ vs) → Args asˢ → Vars free-Args nil _ = [] free-Args (cons aˢ asˢ) (a , as) = free-Arg aˢ a ∪ free-Args asˢ as free-Arg : (aˢ : Argˢ v) → Arg aˢ → Vars free-Arg (nil tˢ) t = free-Tm tˢ t free-Arg (cons aˢ) (x , a) = del (_ , x) (free-Arg aˢ a) free : (tˢ : Skeleton k s) → Data tˢ → Vars free {k = var} = λ { var → free-Var } free {k = tm} = free-Tm free {k = args} = free-Args free {k = arg} = free-Arg ---------------------------------------------------------------------- -- Set restriction -- Restricts a set to variables with the given sort. restrict-to-sort : ∀ s → Vars → Finite-subset-of (Var s) restrict-to-sort = map-Maybe ∘ maybe-cast-∃Var abstract -- A lemma characterising restrict-to-sort (in erased contexts). @0 ∈restrict-to-sort≃ : (x ∈ restrict-to-sort s xs) ≃ ((s , x) ∈ xs) ∈restrict-to-sort≃ {s = s} {x = x} {xs = xs} = x ∈ restrict-to-sort s xs ↝⟨ ∈map-Maybe≃ ⟩ ∥ (∃ λ y → y ∈ xs × maybe-cast-∃Var s y ≡ just x) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → ∃-cong λ _ → lemma) ⟩ ∥ (∃ λ y → y ∈ xs × y ≡ (s , x)) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → ×-cong₁ λ eq → ≡⇒↝ _ $ cong (_∈ _) eq) ⟩ ∥ (∃ λ y → (s , x) ∈ xs × y ≡ (s , x)) ∥ ↔⟨ (×-cong₁ λ _ → ∥∥↔ ∈-propositional) F.∘ inverse ∥∥×∥∥↔∥×∥ F.∘ ∥∥-cong ∃-comm ⟩ (s , x) ∈ xs × ∥ (∃ λ y → y ≡ (s , x)) ∥ ↔⟨ (drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition ∣ _ , refl _ ∣) ⟩□ (s , x) ∈ xs □ where lemma : (maybe-cast-∃Var s (s′ , y) ≡ just x) ≃ _≡_ {A = ∃Var} (s′ , y) (s , x) lemma {s′ = s′} {y = y} with s′ ≟S s … | yes [ s′≡s ] = just (cast-Var s′≡s y) ≡ just x ↔⟨ inverse Bijection.≡↔inj₂≡inj₂ ⟩ cast-Var s′≡s y ≡ x ↝⟨ ≡cast-Var≃ ⟩□ (s′ , y) ≡ (s , x) □ … | no [ s′≢s ] = nothing ≡ just x ↔⟨ Bijection.≡↔⊎ ⟩ ⊥ ↔⟨ ⊥↔⊥ ⟩ ⊥ ↝⟨ inverse $ ≢→,≡,≃ s′≢s ⟩ (s′ , y) ≡ (s , x) □ -- A kind of extensionality. @0 ≃∈restrict-to-sort : ((s , x) ∈ xs) ≃ (∀ s′ (s≡s′ : s ≡ s′) → cast-Var s≡s′ x ∈ restrict-to-sort s′ xs) ≃∈restrict-to-sort {s = s} {x = x} {xs = xs} = (s , x) ∈ xs ↝⟨ inverse ∈restrict-to-sort≃ ⟩ x ∈ restrict-to-sort s xs ↝⟨ ≡⇒↝ _ $ cong (_∈ _) $ sym cast-Var-refl ⟩ cast-Var (refl _) x ∈ restrict-to-sort s xs ↝⟨ ∀-intro _ ext ⟩□ (∀ s′ (s≡s′ : s ≡ s′) → cast-Var s≡s′ x ∈ restrict-to-sort s′ xs) □ -- The function restrict-to-sort s is monotone with respect to _⊆_ -- (in erased contexts). @0 restrict-to-sort-cong : xs ⊆ ys → restrict-to-sort s xs ⊆ restrict-to-sort s ys restrict-to-sort-cong {xs = xs} {ys = ys} {s = s} xs⊆ys = λ z → z ∈ restrict-to-sort s xs ↔⟨ ∈restrict-to-sort≃ ⟩ (s , z) ∈ xs ↝⟨ xs⊆ys _ ⟩ (s , z) ∈ ys ↔⟨ inverse ∈restrict-to-sort≃ ⟩□ z ∈ restrict-to-sort s ys □ -- A lemma that allows one to replace the sort with an equal one -- in an expression of the form z ∈ restrict-to-sort s xs. sort-can-be-replaced-in-∈-restrict-to-sort : ∀ {s s′ s≡s′ z} xs → (z ∈ restrict-to-sort s xs) ≃ (cast-Var s≡s′ z ∈ restrict-to-sort s′ xs) sort-can-be-replaced-in-∈-restrict-to-sort {s = s} {s≡s′ = s≡s′} {z = z} xs = elim¹ (λ {s′} s≡s′ → (z ∈ restrict-to-sort s xs) ≃ (cast-Var s≡s′ z ∈ restrict-to-sort s′ xs)) (≡⇒↝ _ $ cong (_∈ _) (sym cast-Var-refl)) s≡s′ -- The function restrict-to-sort commutes with _∪_ (in erased -- contexts). @0 restrict-to-sort-∪ : ∀ xs → restrict-to-sort s (xs ∪ ys) ≡ restrict-to-sort s xs ∪ restrict-to-sort s ys restrict-to-sort-∪ {s = s} {ys = ys} xs = _≃_.from extensionality λ x → x ∈ restrict-to-sort s (xs ∪ ys) ↔⟨ ∈∪≃ F.∘ ∈restrict-to-sort≃ ⟩ (s , x) ∈ xs ∥⊎∥ (s , x) ∈ ys ↔⟨ inverse $ (∈restrict-to-sort≃ ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∪≃ ⟩□ x ∈ restrict-to-sort s xs ∪ restrict-to-sort s ys □ ---------------------------------------------------------------------- -- Renamings -- Renamings. -- -- A renaming for the sort s maps the variables to be renamed to the -- corresponding "new" variables in Var s. -- -- Every new variable must be in the set fs (the idea is that this -- set should be a superset of the set of free variables of the -- resulting term), and dom must be the renaming's domain. -- -- TODO: It may make sense to replace this function type with an -- efficient data structure. Renaming : (@0 dom fs : Finite-subset-of (Var s)) → Type ℓ Renaming {s = s} dom fs = (x : Var s) → (∃ λ (y : Var s) → Erased (x ∈ dom × y ∈ fs)) ⊎ Erased (x ∉ dom) -- An empty renaming. empty-renaming : (@0 fs : Finite-subset-of (Var s)) → Renaming [] fs empty-renaming _ = λ _ → inj₂ [ (λ ()) ] -- Adds the mapping x ↦ y to the renaming. extend-renaming : (x y : Var s) → Renaming dom fs → Renaming (x ∷ dom) (y ∷ fs) extend-renaming {dom = dom} x y ρ z with z ≟V x … | yes ([ z≡x ]) = inj₁ ( y , [ ≡→∈∷ z≡x , ≡→∈∷ (refl _) ] ) … | no [ z≢x ] = ⊎-map (Σ-map id (E.map (Σ-map ∈→∈∷ ∈→∈∷))) (E.map (_∘ (z ∈ x ∷ dom ↔⟨ ∈∷≃ ⟩ z ≡ x ∥⊎∥ z ∈ dom ↔⟨ drop-⊥-left-∥⊎∥ ∈-propositional z≢x ⟩□ z ∈ dom □))) $ ρ z -- A renaming for a single variable. singleton-renaming : (x y : Var s) (@0 fs : Finite-subset-of (Var s)) → Renaming (singleton x) (y ∷ fs) singleton-renaming x y fs = extend-renaming x y (empty-renaming fs) ---------------------------------------------------------------------- -- An implementation of renaming private -- Capture-avoiding renaming for variables. rename-Var : ∀ {s s′} {@0 dom fs} (x : Var s′) (ρ : Renaming dom fs) → @0 restrict-to-sort s (free-Var x) ∖ dom ⊆ fs → ∃ λ (x′ : Var s′) → Erased (restrict-to-sort s (free-Var x′) ⊆ fs × restrict-to-sort s (free-Var x) ⊆ dom ∪ restrict-to-sort s (free-Var x′) × ∀ s′ → s′ ≢ s → restrict-to-sort s′ (free-Var x′) ≡ restrict-to-sort s′ (free-Var x)) rename-Var {s = s} {s′ = s′} {dom = dom} {fs = fs} x ρ ⊆free with s ≟S s′ … | no [ s≢s′ ] = x , [ (λ y → y ∈ restrict-to-sort s (free-Var x) ↔⟨ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃ ⟩ (s , y) ≡ (s′ , x) ↝⟨ cong proj₁ ⟩ s ≡ s′ ↝⟨ s≢s′ ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ y ∈ fs □) , (λ y → y ∈ restrict-to-sort s (free-Var x) ↝⟨ ∈→∈∪ʳ dom ⟩□ y ∈ dom ∪ restrict-to-sort s (free-Var x) □) , (λ _ _ → refl _) ] … | yes [ s≡s′ ] with ρ (cast-Var (sym s≡s′) x) … | inj₂ [ x∉domain ] = x , [ (λ y → y ∈ restrict-to-sort s (free-Var x) ↝⟨ (λ hyp → hyp , _≃_.to (from-isomorphism ≡-comm F.∘ inverse ≡cast-Var≃ F.∘ from-isomorphism ≡-comm F.∘ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃) hyp) ⟩ y ∈ restrict-to-sort s (free-Var x) × y ≡ cast-Var (sym s≡s′) x ↝⟨ Σ-map id (λ y≡x → subst (_∉ _) (sym y≡x) x∉domain) ⟩ y ∈ restrict-to-sort s (free-Var x) × y ∉ dom ↔⟨ inverse ∈minus≃ ⟩ y ∈ restrict-to-sort s (free-Var x) ∖ dom ↝⟨ ⊆free _ ⟩□ y ∈ fs □) , (λ y → y ∈ restrict-to-sort s (free-Var x) ↝⟨ ∈→∈∪ʳ dom ⟩□ y ∈ dom ∪ restrict-to-sort s (free-Var x) □) , (λ _ _ → refl _) ] … | inj₁ (y , [ x∈dom , y∈free ]) = cast-Var s≡s′ y , [ (λ z → z ∈ restrict-to-sort s (free-Var (cast-Var s≡s′ y)) ↔⟨ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃ ⟩ (s , z) ≡ (s′ , cast-Var s≡s′ y) ↝⟨ ≡⇒↝ _ $ cong (_ ≡_) $ sym ≡,cast-Var ⟩ (s , z) ≡ (s , y) ↔⟨ ≡→,≡,≃ ⟩ z ≡ y ↝⟨ (λ z≡y → subst (_∈ _) (sym z≡y) y∈free) ⟩□ z ∈ fs □) , (λ z → z ∈ restrict-to-sort s (free-Var x) ↔⟨ from-isomorphism ≡-comm F.∘ inverse ≡cast-Var≃ F.∘ from-isomorphism ≡-comm F.∘ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃ ⟩ z ≡ cast-Var (sym s≡s′) x ↝⟨ (λ z≡x → subst (_∈ _) (sym z≡x) x∈dom) ⟩ z ∈ dom ↝⟨ ∈→∈∪ˡ ⟩□ z ∈ dom ∪ restrict-to-sort s (free-Var (cast-Var s≡s′ y)) □) , (λ s″ s″≢s → _≃_.from extensionality λ z → z ∈ restrict-to-sort s″ (singleton (s′ , cast-Var s≡s′ y)) ↔⟨ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃ ⟩ (s″ , z) ≡ (s′ , cast-Var s≡s′ y) ↔⟨ ≢→,≡,≃ (subst (_ ≢_) s≡s′ s″≢s) ⟩ ⊥ ↔⟨ inverse $ ≢→,≡,≃ (subst (_ ≢_) s≡s′ s″≢s) ⟩ (s″ , z) ≡ (s′ , x) ↔⟨ inverse $ from-isomorphism (∥∥↔ ∃Var-set) F.∘ ∈singleton≃ F.∘ ∈restrict-to-sort≃ ⟩□ z ∈ restrict-to-sort s″ ((s′ , x) ∷ []) □) ] private mutual -- Capture-avoiding renaming for terms. rename-Tm : ∀ {s} {@0 dom} {fs} (tˢ : Tmˢ s′) (t : Tm tˢ) (ρ : Renaming dom fs) → @0 restrict-to-sort s (free-Tm tˢ t) ∖ dom ⊆ fs → ∃ λ (t′ : Tm tˢ) → Erased (restrict-to-sort s (free-Tm tˢ t′) ⊆ fs × restrict-to-sort s (free-Tm tˢ t) ⊆ dom ∪ restrict-to-sort s (free-Tm tˢ t′) × ∀ s′ → s′ ≢ s → restrict-to-sort s′ (free-Tm tˢ t′) ≡ restrict-to-sort s′ (free-Tm tˢ t)) rename-Tm var = rename-Var rename-Tm (op _ asˢ) = rename-Args asˢ -- Capture-avoiding renaming for sequences of arguments. rename-Args : ∀ {s} {@0 dom} {fs} (asˢ : Argsˢ vs) (as : Args asˢ) (ρ : Renaming dom fs) → @0 restrict-to-sort s (free-Args asˢ as) ∖ dom ⊆ fs → ∃ λ (as′ : Args asˢ) → Erased (restrict-to-sort s (free-Args asˢ as′) ⊆ fs × restrict-to-sort s (free-Args asˢ as) ⊆ dom ∪ restrict-to-sort s (free-Args asˢ as′) × ∀ s′ → s′ ≢ s → restrict-to-sort s′ (free-Args asˢ as′) ≡ restrict-to-sort s′ (free-Args asˢ as)) rename-Args nil _ _ _ = _ , [ (λ _ ()) , (λ _ ()) , (λ _ _ → refl _) ] rename-Args {s = s} {dom = dom} {fs = fs} (cons aˢ asˢ) (a , as) ρ ⊆free = Σ-zip _,_ (λ {a′ as′} ([ ⊆free₁ , ⊆dom₁ , ≡free₁ ]) ([ ⊆free₂ , ⊆dom₂ , ≡free₂ ]) → [ (λ x → x ∈ restrict-to-sort s (free-Arg aˢ a′ ∪ free-Args asˢ as′) ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ restrict-to-sort-∪ (free-Arg aˢ a′) ⟩ x ∈ restrict-to-sort s (free-Arg aˢ a′) ∪ restrict-to-sort s (free-Args asˢ as′) ↝⟨ ∪-cong-⊆ ⊆free₁ ⊆free₂ _ ⟩ x ∈ fs ∪ fs ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ idem _ ⟩□ x ∈ fs □) , (λ x → x ∈ restrict-to-sort s (free-Arg aˢ a ∪ free-Args asˢ as) ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ restrict-to-sort-∪ (free-Arg aˢ a) ⟩ x ∈ restrict-to-sort s (free-Arg aˢ a) ∪ restrict-to-sort s (free-Args asˢ as) ↝⟨ ∪-cong-⊆ ⊆dom₁ ⊆dom₂ _ ⟩ x ∈ (dom ∪ restrict-to-sort s (free-Arg aˢ a′)) ∪ (dom ∪ restrict-to-sort s (free-Args asˢ as′)) ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) ( (dom ∪ restrict-to-sort s (free-Arg aˢ a′)) ∪ (dom ∪ restrict-to-sort s (free-Args asˢ as′)) ≡⟨ sym $ L.assoc dom ⟩ dom ∪ (restrict-to-sort s (free-Arg aˢ a′) ∪ (dom ∪ restrict-to-sort s (free-Args asˢ as′))) ≡⟨ cong (dom ∪_) $ L.assoc (restrict-to-sort s (free-Arg aˢ a′)) ⟩ dom ∪ ((restrict-to-sort s (free-Arg aˢ a′) ∪ dom) ∪ restrict-to-sort s (free-Args asˢ as′)) ≡⟨ cong (λ xs → dom ∪ (xs ∪ _)) $ sym $ L.comm dom ⟩ dom ∪ ((dom ∪ restrict-to-sort s (free-Arg aˢ a′)) ∪ restrict-to-sort s (free-Args asˢ as′)) ≡⟨ cong (dom ∪_) $ sym $ L.assoc dom ⟩ dom ∪ (dom ∪ (restrict-to-sort s (free-Arg aˢ a′) ∪ restrict-to-sort s (free-Args asˢ as′))) ≡⟨ L.assoc dom ⟩ (dom ∪ dom) ∪ (restrict-to-sort s (free-Arg aˢ a′) ∪ restrict-to-sort s (free-Args asˢ as′)) ≡⟨ cong (_∪ _) $ idem dom ⟩ dom ∪ (restrict-to-sort s (free-Arg aˢ a′) ∪ restrict-to-sort s (free-Args asˢ as′)) ≡⟨ cong (dom ∪_) $ sym $ restrict-to-sort-∪ (free-Arg aˢ a′) ⟩∎ dom ∪ restrict-to-sort s (free-Arg aˢ a′ ∪ free-Args asˢ as′) ∎) ⟩□ x ∈ dom ∪ restrict-to-sort s (free-Arg aˢ a′ ∪ free-Args asˢ as′) □) , (λ s′ s′≢s → _≃_.from extensionality λ x → x ∈ restrict-to-sort s′ (free-Arg aˢ a′ ∪ free-Args asˢ as′) ↔⟨ inverse (∈restrict-to-sort≃ ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∪≃ {y = free-Arg aˢ a′} F.∘ ∈restrict-to-sort≃ ⟩ x ∈ restrict-to-sort s′ (free-Arg aˢ a′) ∥⊎∥ x ∈ restrict-to-sort s′ (free-Args asˢ as′) ↝⟨ ≡⇒↝ _ $ cong₂ (λ y z → x ∈ y ∥⊎∥ x ∈ z) (≡free₁ s′ s′≢s) (≡free₂ s′ s′≢s) ⟩ x ∈ restrict-to-sort s′ (free-Arg aˢ a) ∥⊎∥ x ∈ restrict-to-sort s′ (free-Args asˢ as) ↔⟨ inverse $ inverse (∈restrict-to-sort≃ ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∪≃ {y = free-Arg aˢ a} F.∘ ∈restrict-to-sort≃ ⟩□ x ∈ restrict-to-sort s′ (free-Arg aˢ a ∪ free-Args asˢ as) □) ]) (rename-Arg aˢ a ρ (λ x → x ∈ restrict-to-sort s (free-Arg aˢ a) ∖ dom ↝⟨ minus-cong-⊆ (restrict-to-sort-cong λ _ → ∈→∈∪ˡ {y = free-Arg aˢ a}) (⊆-refl {x = dom}) _ ⟩ x ∈ restrict-to-sort s (free-Arg aˢ a ∪ free-Args asˢ as) ∖ dom ↝⟨ ⊆free _ ⟩□ x ∈ fs □)) (rename-Args asˢ as ρ (λ x → x ∈ restrict-to-sort s (free-Args asˢ as) ∖ dom ↝⟨ minus-cong-⊆ (restrict-to-sort-cong λ _ → ∈→∈∪ʳ (free-Arg aˢ a)) (⊆-refl {x = dom}) _ ⟩ x ∈ restrict-to-sort s (free-Arg aˢ a ∪ free-Args asˢ as) ∖ dom ↝⟨ ⊆free _ ⟩□ x ∈ fs □)) -- Capture-avoiding renaming for arguments. rename-Arg : ∀ {s} {@0 dom} {fs} (aˢ : Argˢ v) (a : Arg aˢ) (ρ : Renaming dom fs) → @0 restrict-to-sort s (free-Arg aˢ a) ∖ dom ⊆ fs → ∃ λ (a′ : Arg aˢ) → Erased (restrict-to-sort s (free-Arg aˢ a′) ⊆ fs × restrict-to-sort s (free-Arg aˢ a) ⊆ dom ∪ restrict-to-sort s (free-Arg aˢ a′) × ∀ s′ → s′ ≢ s → restrict-to-sort s′ (free-Arg aˢ a′) ≡ restrict-to-sort s′ (free-Arg aˢ a)) rename-Arg (nil tˢ) = rename-Tm tˢ rename-Arg {s = s} {dom = dom} {fs = fs} (cons {s = s′} aˢ) (x , a) ρ ⊆free with s ≟S s′ … | no [ s≢s′ ] = -- The bound variable does not have the same sort as the -- ones to be renamed. Continue recursively. Σ-map (x ,_) (λ {a′} → E.map (Σ-map (λ ⊆free y → y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a′)) ↔⟨ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s , y) ≢ (s′ , x) × (s , y) ∈ free-Arg aˢ a′ ↝⟨ proj₂ ⟩ (s , y) ∈ free-Arg aˢ a′ ↔⟨ inverse ∈restrict-to-sort≃ ⟩ y ∈ restrict-to-sort s (free-Arg aˢ a′) ↝⟨ ⊆free _ ⟩□ y ∈ fs □) (Σ-map (λ ⊆dom y → y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ↔⟨ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s , y) ≢ (s′ , x) × y ∈ restrict-to-sort s (free-Arg aˢ a) ↝⟨ Σ-map id (⊆dom _) ⟩ (s , y) ≢ (s′ , x) × y ∈ dom ∪ restrict-to-sort s (free-Arg aˢ a′) ↔⟨ (∃-cong λ _ → (F.id ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∪≃) ⟩ (s , y) ≢ (s′ , x) × (y ∈ dom ∥⊎∥ (s , y) ∈ free-Arg aˢ a′) ↝⟨ (uncurry λ y≢x → id ∥⊎∥-cong y≢x ,_) ⟩ y ∈ dom ∥⊎∥ (s , y) ≢ (s′ , x) × (s , y) ∈ free-Arg aˢ a′ ↔⟨ inverse $ (F.id ∥⊎∥-cong (∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃)) F.∘ ∈∪≃ ⟩□ y ∈ dom ∪ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a′)) □) (λ ≡free s″ s″≢s → _≃_.from extensionality λ z → z ∈ restrict-to-sort s″ (del (s′ , x) (free-Arg aˢ a′)) ↔⟨ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a′}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s″ , z) ≢ (s′ , x) × z ∈ restrict-to-sort s″ (free-Arg aˢ a′) ↝⟨ (∃-cong λ _ → ≡⇒↝ _ $ cong (_ ∈_) $ ≡free s″ s″≢s) ⟩ (s″ , z) ≢ (s′ , x) × z ∈ restrict-to-sort s″ (free-Arg aˢ a) ↔⟨ inverse $ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩□ z ∈ restrict-to-sort s″ (del (s′ , x) (free-Arg aˢ a)) □)))) (rename-Arg aˢ a ρ (λ y → y ∈ restrict-to-sort s (free-Arg aˢ a) ∖ dom ↔⟨ (∈restrict-to-sort≃ ×-cong F.id) F.∘ ∈minus≃ ⟩ (s , y) ∈ free-Arg aˢ a × y ∉ dom ↝⟨ Σ-map (s≢s′ ∘ cong proj₁ ,_) id ⟩ ((s , y) ≢ (s′ , x) × (s , y) ∈ free-Arg aˢ a) × y ∉ dom ↔⟨ inverse $ (×-cong₁ λ _ → ∈delete≃ merely-equal?-∃Var) F.∘ (∈restrict-to-sort≃ ×-cong F.id) F.∘ ∈minus≃ ⟩ y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ∖ dom ↝⟨ ⊆free _ ⟩□ y ∈ fs □)) … | yes [ s≡s′ ] = -- The bound variable has the same sort as the ones to be -- renamed. Extend the renaming with a mapping from the bound -- variable to a fresh one, and continue recursively. Σ-map (x′ ,_) (λ {a′} → E.map (Σ-map (λ ⊆x′∷free y → y ∈ restrict-to-sort s (del (s′ , x′) (free-Arg aˢ a′)) ↔⟨ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a′}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s , y) ≢ (s′ , x′) × y ∈ restrict-to-sort s (free-Arg aˢ a′) ↝⟨ Σ-map id (⊆x′∷free _) ⟩ (s , y) ≢ (s′ , x′) × y ∈ cast-Var (sym s≡s′) x′ ∷ fs ↔⟨ (¬-cong ext $ from-isomorphism ≡-comm F.∘ inverse ≡cast-Var≃ F.∘ from-isomorphism ≡-comm) ×-cong ∈∷≃ ⟩ y ≢ cast-Var (sym s≡s′) x′ × (y ≡ cast-Var (sym s≡s′) x′ ∥⊎∥ y ∈ fs) ↔⟨ (∃-cong λ y≢x → drop-⊥-left-∥⊎∥ ∈-propositional y≢x) ⟩ y ≢ cast-Var (sym s≡s′) x′ × y ∈ fs ↝⟨ proj₂ ⟩□ y ∈ fs □) (Σ-map (λ ⊆x∷dom y y∈ → let lemma : y ∉ dom → y ∈ fs lemma = y ∉ dom ↝⟨ _≃_.from ∈minus≃ ∘ (y∈ ,_) ⟩ y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ∖ dom ↝⟨ ⊆free _ ⟩□ y ∈ fs □ in $⟨ y∈ ⟩ y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ↔⟨ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s , y) ≢ (s′ , x) × y ∈ restrict-to-sort s (free-Arg aˢ a) ↝⟨ Σ-map id (⊆x∷dom _) ⟩ (s , y) ≢ (s′ , x) × y ∈ cast-Var (sym s≡s′) x ∷ dom ∪ restrict-to-sort s (free-Arg aˢ a′) ↔⟨ (∃-cong λ _ → (F.id ∥⊎∥-cong ((F.id ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∪≃)) F.∘ ∈∷≃) ⟩ (s , y) ≢ (s′ , x) × (y ≡ cast-Var (sym s≡s′) x ∥⊎∥ y ∈ dom ∥⊎∥ (s , y) ∈ free-Arg aˢ a′) ↔⟨ (∃-cong λ y≢x → drop-⊥-left-∥⊎∥ ∥⊎∥-propositional $ y≢x ∘ sym ∘ _≃_.to ≡cast-Var≃ ∘ sym) ⟩ (s , y) ≢ (s′ , x) × (y ∈ dom ∥⊎∥ (s , y) ∈ free-Arg aˢ a′) ↔⟨ (∃-cong λ _ → ∥⊎∥≃∥⊎∥¬× $ decidable→decidable-∥∥ (member? (decidable→decidable-∥∥ $ Decidable-erased-equality≃Decidable-equality _ _≟V_)) y dom) ⟩ (s , y) ≢ (s′ , x) × (y ∈ dom ∥⊎∥ y ∉ dom × (s , y) ∈ free-Arg aˢ a′) ↝⟨ (uncurry λ y≢x → id ∥⊎∥-cong ×-cong₁ λ _ → y ∉ dom ↝⟨ _≃_.from ∈minus≃ ∘ (y∈ ,_) ⟩ y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ∖ dom ↝⟨ ⊆free _ ⟩ y ∈ fs ↝⟨ ∈→∈map ⟩ (s , y) ∈ L.map (s ,_) fs ↝⟨ (λ y∈ → (s , y) ≡ (s′ , x′) ↝⟨ (λ y≡x′ → subst (_∈ _) y≡x′ y∈) ⟩ (s′ , x′) ∈ L.map (s ,_) fs ↝⟨ erased (proj₂ (fresh (L.map (s ,_) fs))) ⟩□ ⊥ □) ⟩□ (s , y) ≢ (s′ , x′) □) ⟩ y ∈ dom ∥⊎∥ (s , y) ≢ (s′ , x′) × (s , y) ∈ free-Arg aˢ a′ ↔⟨ inverse $ (F.id ∥⊎∥-cong (∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃)) F.∘ ∈∪≃ ⟩□ y ∈ dom ∪ restrict-to-sort s (del (s′ , x′) (free-Arg aˢ a′)) □) (λ ≡free s″ s″≢s → _≃_.from extensionality λ z → z ∈ restrict-to-sort s″ (del (s′ , x′) (free-Arg aˢ a′)) ↔⟨ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a′}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩ (s″ , z) ≢ (s′ , x′) × z ∈ restrict-to-sort s″ (free-Arg aˢ a′) ↔⟨ (×-cong₁ λ _ → ¬-cong ext $ ≢→,≡,≃ $ s″≢s ∘ subst (_ ≡_) (sym s≡s′)) ⟩ ¬ ⊥ × z ∈ restrict-to-sort s″ (free-Arg aˢ a′) ↝⟨ (∃-cong λ _ → ≡⇒↝ _ $ cong (_ ∈_) $ ≡free s″ s″≢s) ⟩ ¬ ⊥ × z ∈ restrict-to-sort s″ (free-Arg aˢ a) ↔⟨ (inverse $ ×-cong₁ λ _ → ¬-cong ext $ ≢→,≡,≃ $ s″≢s ∘ subst (_ ≡_) (sym s≡s′)) ⟩ (s″ , z) ≢ (s′ , x) × z ∈ restrict-to-sort s″ (free-Arg aˢ a) ↔⟨ inverse $ (∃-cong λ _ → inverse $ ∈restrict-to-sort≃ {xs = free-Arg aˢ a}) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃ ⟩□ z ∈ restrict-to-sort s″ (del (s′ , x) (free-Arg aˢ a)) □)))) (rename-Arg aˢ a (extend-renaming (cast-Var (sym s≡s′) x) (cast-Var (sym s≡s′) x′) ρ) (λ y → y ∈ restrict-to-sort s (free-Arg aˢ a) ∖ (cast-Var (sym s≡s′) x ∷ dom) ↔⟨ (∈restrict-to-sort≃ ×-cong ¬⊎↔¬×¬ ext F.∘ from-isomorphism ¬∥∥↔¬ F.∘ ¬-cong ext ∈∷≃) F.∘ ∈minus≃ {_≟_ = merely-equal?-Var} ⟩ (s , y) ∈ free-Arg aˢ a × y ≢ cast-Var (sym s≡s′) x × y ∉ dom ↔⟨ inverse $ from-isomorphism (inverse Σ-assoc) F.∘ (×-cong₁ λ _ → ((∃-cong λ _ → ¬-cong ext $ from-isomorphism ≡-comm F.∘ inverse ≡cast-Var≃ F.∘ from-isomorphism ≡-comm) F.∘ from-isomorphism ×-comm) F.∘ ∈delete≃ merely-equal?-∃Var F.∘ ∈restrict-to-sort≃) F.∘ ∈minus≃ ⟩ y ∈ restrict-to-sort s (del (s′ , x) (free-Arg aˢ a)) ∖ dom ↝⟨ ⊆free _ ⟩ y ∈ fs ↝⟨ ∣inj₂∣ ⟩ y ≡ cast-Var (sym s≡s′) x′ ∥⊎∥ y ∈ fs ↔⟨ inverse ∈∷≃ ⟩□ y ∈ cast-Var (sym s≡s′) x′ ∷ fs □)) where -- TODO: Perhaps it would make sense to avoid the use of L.map -- below. x′ = proj₁ (fresh (L.map (s ,_) fs)) -- Capture-avoiding renaming of free variables. -- -- Bound variables are renamed to variables that are fresh with -- respect to the set fs. -- -- Note that this function renames every bound variable of the given -- sort. rename : ∀ {s} {@0 dom} {fs} (tˢ : Skeleton k s′) (t : Data tˢ) (ρ : Renaming dom fs) → @0 restrict-to-sort s (free tˢ t) ∖ dom ⊆ fs → ∃ λ (t′ : Data tˢ) → Erased (restrict-to-sort s (free tˢ t′) ⊆ fs × restrict-to-sort s (free tˢ t) ⊆ dom ∪ restrict-to-sort s (free tˢ t′) × ∀ s′ → s′ ≢ s → restrict-to-sort s′ (free tˢ t′) ≡ restrict-to-sort s′ (free tˢ t)) rename {k = var} = λ { var → rename-Var } rename {k = tm} = rename-Tm rename {k = args} = rename-Args rename {k = arg} = rename-Arg ---------------------------------------------------------------------- -- A special case of the implementation of renaming above -- Capture-avoiding renaming of x to y. -- -- Note that this function is not intended to be used at runtime. It -- uses free to compute the set of free variables. rename₁ : ∀ {s} (x y : Var s) (tˢ : Skeleton k s′) → Data tˢ → Data tˢ rename₁ x y tˢ t = proj₁ $ rename tˢ t (singleton-renaming x y (restrict-to-sort _ (free tˢ t) ∖ singleton x)) (λ _ → ∈→∈∷) -- If x is renamed to y in a, then the free variables of the result -- are a subset of the free variables of a, minus x, plus y. @0 free-rename₁⊆ : {x y : Var s} (tˢ : Skeleton k s′) {t : Data tˢ} → free tˢ (rename₁ x y tˢ t) ⊆ (_ , y) ∷ del (_ , x) (free tˢ t) free-rename₁⊆ {s = s} {x = x} {y = y} tˢ {t = t} (s′ , z) = (s′ , z) ∈ free tˢ (rename₁ x y tˢ t) ↔⟨ ≃∈restrict-to-sort ⟩ (∀ s″ (s′≡s″ : s′ ≡ s″) → cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ (rename₁ x y tˢ t))) ↝⟨ (∀-cong _ λ s″ → ∀-cong _ λ s′≡s″ → lemma s″ s′≡s″ (s″ ≟S s)) ⟩ (∀ s″ (s′≡s″ : s′ ≡ s″) → cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , y) ∷ del (s , x) (free tˢ t))) ↔⟨ inverse ≃∈restrict-to-sort ⟩□ (s′ , z) ∈ (s , y) ∷ del (s , x) (free tˢ t) □ where lemma : ∀ s″ (s′≡s″ : s′ ≡ s″) → Dec-Erased (s″ ≡ s) → _ ∈ _ → _ ∈ _ lemma s″ s′≡s″ (no [ s″≢s ]) = cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ (rename₁ x y tˢ t)) ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ proj₂ (proj₂ $ erased $ proj₂ $ rename tˢ _ _ _) s″ s″≢s ⟩ cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ t) ↔⟨ ∈restrict-to-sort≃ ⟩ z′ ∈ free tˢ t ↝⟨ s″≢s ∘ cong proj₁ ,_ ⟩ z′ ≢ (s , x) × z′ ∈ free tˢ t ↝⟨ ∣inj₂∣ ⟩ z′ ≡ (s , y) ∥⊎∥ z′ ≢ (s , x) × z′ ∈ free tˢ t ↔⟨ inverse $ (F.id ∥⊎∥-cong ∈delete≃ merely-equal?-∃Var) F.∘ ∈∷≃ F.∘ ∈restrict-to-sort≃ ⟩□ cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , y) ∷ del (s , x) (free tˢ t)) □ where z′ = s″ , cast-Var s′≡s″ z lemma s″ s′≡s″ (yes [ s″≡s ]) = cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ (rename₁ x y tˢ t)) ↔⟨ sort-can-be-replaced-in-∈-restrict-to-sort (free tˢ (rename₁ x y tˢ t)) ⟩ z′ ∈ restrict-to-sort s (free tˢ (rename₁ x y tˢ t)) ↝⟨ proj₁ (erased $ proj₂ $ rename tˢ _ _ _) _ ⟩ z′ ∈ y ∷ (restrict-to-sort s (free tˢ t) ∖ singleton x) ↔⟨ (F.id ∥⊎∥-cong ((∈restrict-to-sort≃ ×-cong (from-isomorphism ¬∥∥↔¬ F.∘ ¬-cong ext ∈singleton≃)) F.∘ ∈minus≃ {_≟_ = merely-equal?-Var})) F.∘ ∈∷≃ ⟩ z′ ≡ y ∥⊎∥ (s , z′) ∈ free tˢ t × z′ ≢ x ↔⟨ inverse $ ≡→,≡,≃ ∥⊎∥-cong (∃-cong λ _ → ¬-cong ext ≡→,≡,≃) ⟩ (s , z′) ≡ (s , y) ∥⊎∥ (s , z′) ∈ free tˢ t × (s , z′) ≢ (s , x) ↔⟨ inverse $ (F.id ∥⊎∥-cong (from-isomorphism ×-comm F.∘ ∈delete≃ merely-equal?-∃Var)) F.∘ ∈∷≃ F.∘ ∈restrict-to-sort≃ ⟩ z′ ∈ restrict-to-sort s ((s , y) ∷ del (s , x) (free tˢ t)) ↔⟨ inverse $ sort-can-be-replaced-in-∈-restrict-to-sort ((s , y) ∷ del (s , x) (free tˢ t)) ⟩□ cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , y) ∷ del (s , x) (free tˢ t)) □ where z′ = cast-Var s″≡s $ cast-Var s′≡s″ z -- If x is renamed to y in t, then the free variables of t are a -- subset of the free variables of the result plus x. @0 ⊆free-rename₁ : {x y : Var s} (tˢ : Skeleton k s′) {t : Data tˢ} → free tˢ t ⊆ (_ , x) ∷ free tˢ (rename₁ x y tˢ t) ⊆free-rename₁ {s = s} {x = x} {y = y} tˢ {t = t} (s′ , z) = (s′ , z) ∈ free tˢ t ↔⟨ ≃∈restrict-to-sort ⟩ (∀ s″ (s′≡s″ : s′ ≡ s″) → cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ t)) ↝⟨ (∀-cong _ λ s″ → ∀-cong _ λ s′≡s″ → lemma s″ s′≡s″ (s″ ≟S s)) ⟩ (∀ s″ (s′≡s″ : s′ ≡ s″) → cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , x) ∷ free tˢ (rename₁ x y tˢ t))) ↔⟨ inverse ≃∈restrict-to-sort ⟩□ (s′ , z) ∈ (s , x) ∷ free tˢ (rename₁ x y tˢ t) □ where lemma : ∀ s″ (s′≡s″ : s′ ≡ s″) → Dec-Erased (s″ ≡ s) → _ ∈ _ → _ ∈ _ lemma s″ s′≡s″ (no [ s″≢s ]) = cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ t) ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ sym $ proj₂ (proj₂ $ erased $ proj₂ $ rename tˢ _ _ _) s″ s″≢s ⟩ cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ (rename₁ x y tˢ t)) ↝⟨ restrict-to-sort-cong {xs = free tˢ (rename₁ x y tˢ t)} (λ _ → ∈→∈∷) _ ⟩□ cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , x) ∷ free tˢ (rename₁ x y tˢ t)) □ lemma s″ s′≡s″ (yes [ s″≡s ]) = cast-Var s′≡s″ z ∈ restrict-to-sort s″ (free tˢ t) ↔⟨ sort-can-be-replaced-in-∈-restrict-to-sort (free tˢ t) ⟩ z′ ∈ restrict-to-sort s (free tˢ t) ↝⟨ proj₁ (proj₂ $ erased $ proj₂ $ rename tˢ _ (singleton-renaming x y (restrict-to-sort _ (free tˢ t) ∖ singleton x)) (λ _ → ∈→∈∷)) _ ⟩ z′ ∈ x ∷ restrict-to-sort s (free tˢ (rename₁ x y tˢ t)) ↔⟨ inverse ∈∷≃ F.∘ (inverse ≡→,≡,≃ ∥⊎∥-cong ∈restrict-to-sort≃) F.∘ ∈∷≃ ⟩ (s , z′) ∈ (s , x) ∷ free tˢ (rename₁ x y tˢ t) ↔⟨ inverse ∈restrict-to-sort≃ ⟩ z′ ∈ restrict-to-sort s ((s , x) ∷ free tˢ (rename₁ x y tˢ t)) ↔⟨ inverse $ sort-can-be-replaced-in-∈-restrict-to-sort ((s , x) ∷ free tˢ (rename₁ x y tˢ t)) ⟩□ cast-Var s′≡s″ z ∈ restrict-to-sort s″ ((s , x) ∷ free tˢ (rename₁ x y tˢ t)) □ where z′ = cast-Var s″≡s $ cast-Var s′≡s″ z ---------------------------------------------------------------------- -- Well-formed terms -- Predicates for well-formed variables, terms and arguments. mutual Wf : Vars → (tˢ : Skeleton k s) → Data tˢ → Type ℓ Wf {k = var} = λ { xs var → Wf-var xs } Wf {k = tm} = Wf-tm Wf {k = args} = Wf-args Wf {k = arg} = Wf-arg private Wf-var : ∀ {s} → Vars → Var s → Type ℓ Wf-var xs x = (_ , x) ∈ xs Wf-tm : Vars → (tˢ : Tmˢ s) → Tm tˢ → Type ℓ Wf-tm xs var = Wf-var xs Wf-tm xs (op o asˢ) = Wf-args xs asˢ Wf-args : Vars → (asˢ : Argsˢ vs) → Args asˢ → Type ℓ Wf-args _ nil _ = ↑ _ ⊤ Wf-args xs (cons aˢ asˢ) (a , as) = Wf-arg xs aˢ a × Wf-args xs asˢ as Wf-arg : Vars → (aˢ : Argˢ v) → Arg aˢ → Type ℓ Wf-arg xs (nil tˢ) t = Wf-tm xs tˢ t Wf-arg xs (cons aˢ) (x , a) = ∀ y → (_ , y) ∉ xs → Wf-arg ((_ , y) ∷ xs) aˢ (rename₁ x y aˢ a) -- Well-formed terms. Term[_] : (k : Term-kind) → @0 Vars → @0 Sort-kind k → Type ℓ Term[ k ] xs s = ∃ λ (tˢ : Skeleton k s) → ∃ λ (t : Data tˢ) → Erased (Wf xs tˢ t) Term : @0 Vars → @0 Sort → Type ℓ Term = Term[ tm ] pattern var-wf x wf = var , x , [ wf ] pattern op-wf o asˢ as wfs = op o asˢ , as , [ wfs ] pattern nil-wfs = Argsˢ.nil , lift tt , [ lift tt ] pattern cons-wfs aˢ asˢ a as wf wfs = Argsˢ.cons aˢ asˢ , (a , as) , [ wf , wfs ] pattern nil-wf tˢ t wf = Argˢ.nil tˢ , t , [ wf ] pattern cons-wf aˢ x a wf = Argˢ.cons aˢ , (x , a) , [ wf ] ---------------------------------------------------------------------- -- Some rearrangement lemmas -- A rearrangement lemma for Tmˢ. Tmˢ≃ : Tmˢ s ≃ ((∃ λ s′ → Erased (s′ ≡ s)) ⊎ (∃ λ (o : Op s) → Argsˢ (domain o))) Tmˢ≃ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = λ where (inj₂ _) → refl _ (inj₁ (s′ , [ eq ])) → elim¹ᴱ (λ eq → to (substᴱ Tmˢ eq var) ≡ inj₁ (s′ , [ eq ])) (to (substᴱ Tmˢ (refl _) var) ≡⟨ cong to substᴱ-refl ⟩ to var ≡⟨⟩ inj₁ (s′ , [ refl _ ]) ∎) eq } ; left-inverse-of = λ where (op _ _) → refl _ var → substᴱ-refl }) where RHS : @0 Sort → Type ℓ RHS s = (∃ λ s′ → Erased (s′ ≡ s)) ⊎ (∃ λ (o : Op s) → Argsˢ (domain o)) to : Tmˢ s → RHS s to var = inj₁ (_ , [ refl _ ]) to (op o as) = inj₂ (o , as) from : RHS s → Tmˢ s from (inj₁ (s′ , [ eq ])) = substᴱ Tmˢ eq var from (inj₂ (o , as)) = op o as -- A rearrangement lemma for Argsˢ. Argsˢ≃ : Argsˢ vs ≃ (Erased ([] ≡ vs) ⊎ (∃ λ ((([ v ] , _) , [ vs′ ] , _) : (∃ λ v → Argˢ (erased v)) × (∃ λ vs′ → Argsˢ (erased vs′))) → Erased (v ∷ vs′ ≡ vs))) Argsˢ≃ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where RHS : @0 List Valence → Type ℓ RHS vs = (Erased ([] ≡ vs) ⊎ (∃ λ ((([ v ] , _) , [ vs′ ] , _) : (∃ λ v → Argˢ (erased v)) × (∃ λ vs′ → Argsˢ (erased vs′))) → Erased (v ∷ vs′ ≡ vs))) to : Argsˢ vs → RHS vs to nil = inj₁ [ refl _ ] to (cons a as) = inj₂ (((_ , a) , _ , as) , [ refl _ ]) from : RHS vs → Argsˢ vs from (inj₁ [ eq ]) = substᴱ Argsˢ eq nil from (inj₂ (((_ , a) , _ , as) , [ eq ])) = substᴱ Argsˢ eq (cons a as) to∘from : ∀ x → to (from x) ≡ x to∘from (inj₁ [ eq ]) = elim¹ᴱ (λ eq → to (substᴱ Argsˢ eq nil) ≡ inj₁ [ eq ]) (to (substᴱ Argsˢ (refl _) nil) ≡⟨ cong to substᴱ-refl ⟩ to nil ≡⟨⟩ inj₁ [ refl _ ] ∎) eq to∘from (inj₂ (((_ , a) , _ , as) , [ eq ])) = elim¹ᴱ (λ eq → to (substᴱ Argsˢ eq (cons a as)) ≡ inj₂ (((_ , a) , _ , as) , [ eq ])) (to (substᴱ Argsˢ (refl _) (cons a as)) ≡⟨ cong to substᴱ-refl ⟩ to (cons a as) ≡⟨⟩ inj₂ (((_ , a) , _ , as) , [ refl _ ]) ∎) eq from∘to : ∀ x → from (to x) ≡ x from∘to nil = substᴱ-refl from∘to (cons _ _) = substᴱ-refl -- A rearrangement lemma for Argˢ. Argˢ≃ : Argˢ v ≃ ((∃ λ (([ s ] , _) : ∃ λ s → Tmˢ (erased s)) → Erased (([] , s) ≡ v)) ⊎ (∃ λ ((s , [ ss , s′ ] , _) : Sort × ∃ λ v → Argˢ (erased v)) → Erased ((s ∷ ss , s′) ≡ v))) Argˢ≃ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where RHS : @0 Valence → Type ℓ RHS v = (∃ λ (([ s ] , _) : ∃ λ s → Tmˢ (erased s)) → Erased (([] , s) ≡ v)) ⊎ (∃ λ ((s , [ ss , s′ ] , _) : Sort × ∃ λ v → Argˢ (erased v)) → Erased ((s ∷ ss , s′) ≡ v)) to : Argˢ v → RHS v to (nil t) = inj₁ ((_ , t) , [ refl _ ]) to (cons a) = inj₂ ((_ , _ , a) , [ refl _ ]) from : RHS v → Argˢ v from (inj₁ ((_ , t) , [ eq ])) = substᴱ Argˢ eq (nil t) from (inj₂ ((_ , _ , a) , [ eq ])) = substᴱ Argˢ eq (cons a) to∘from : ∀ x → to (from x) ≡ x to∘from (inj₁ ((_ , t) , [ eq ])) = elim¹ᴱ (λ eq → to (substᴱ Argˢ eq (nil t)) ≡ inj₁ ((_ , t) , [ eq ])) (to (substᴱ Argˢ (refl _) (nil t)) ≡⟨ cong to substᴱ-refl ⟩ to (nil t) ≡⟨⟩ inj₁ ((_ , t) , [ refl _ ]) ∎) eq to∘from (inj₂ ((_ , _ , a) , [ eq ])) = elim¹ᴱ (λ eq → to (substᴱ Argˢ eq (cons a)) ≡ inj₂ ((_ , _ , a) , [ eq ])) (to (substᴱ Argˢ (refl _) (cons a)) ≡⟨ cong to substᴱ-refl ⟩ to (cons a) ≡⟨⟩ inj₂ ((_ , _ , a) , [ refl _ ]) ∎) eq from∘to : ∀ x → from (to x) ≡ x from∘to (nil _) = substᴱ-refl from∘to (cons _) = substᴱ-refl ---------------------------------------------------------------------- -- Alternative definitions of Tm/Args/Arg/Data and Term[_] -- The following four definitions are indexed by /erased/ skeletons. mutual data Tm′ : @0 Tmˢ s → Type ℓ where var : Var s → Tm′ (var {s = s}) op : Args′ asˢ → Tm′ (op o asˢ) data Args′ : @0 Argsˢ vs → Type ℓ where nil : Args′ nil cons : Arg′ aˢ → Args′ asˢ → Args′ (cons aˢ asˢ) data Arg′ : @0 Argˢ v → Type ℓ where nil : Tm′ tˢ → Arg′ (nil tˢ) cons : {@0 aˢ : Argˢ v} → Var s → Arg′ aˢ → Arg′ (cons {s = s} aˢ) Data′ : @0 Skeleton k s → Type ℓ Data′ {k = var} {s = s} = λ _ → Var s Data′ {k = tm} = Tm′ Data′ {k = args} = Args′ Data′ {k = arg} = Arg′ -- Lemmas used by Tm′≃Tm, Args′≃Args and Arg′≃Arg below. private module ′≃ where mutual to-Tm : {tˢ : Tmˢ s} → Tm′ tˢ → Tm tˢ to-Tm {tˢ = var} (var x) = x to-Tm {tˢ = op _ _} (op as) = to-Args as to-Args : {asˢ : Argsˢ vs} → Args′ asˢ → Args asˢ to-Args {asˢ = nil} nil = _ to-Args {asˢ = cons _ _} (cons a as) = to-Arg a , to-Args as to-Arg : {aˢ : Argˢ v} → Arg′ aˢ → Arg aˢ to-Arg {aˢ = nil _} (nil t) = to-Tm t to-Arg {aˢ = cons _} (cons x a) = x , to-Arg a mutual from-Tm : (tˢ : Tmˢ s) → Tm tˢ → Tm′ tˢ from-Tm var x = var x from-Tm (op o asˢ) as = op (from-Args asˢ as) from-Args : (asˢ : Argsˢ vs) → Args asˢ → Args′ asˢ from-Args nil _ = nil from-Args (cons aˢ asˢ) (a , as) = cons (from-Arg aˢ a) (from-Args asˢ as) from-Arg : (aˢ : Argˢ v) → Arg aˢ → Arg′ aˢ from-Arg (nil tˢ) t = nil (from-Tm tˢ t) from-Arg (cons aˢ) (x , a) = cons x (from-Arg aˢ a) mutual to-from-Tm : (tˢ : Tmˢ s) (t : Tm tˢ) → to-Tm (from-Tm tˢ t) ≡ t to-from-Tm var x = refl _ to-from-Tm (op o asˢ) as = to-from-Args asˢ as to-from-Args : (asˢ : Argsˢ vs) (as : Args asˢ) → to-Args (from-Args asˢ as) ≡ as to-from-Args nil _ = refl _ to-from-Args (cons aˢ asˢ) (a , as) = cong₂ _,_ (to-from-Arg aˢ a) (to-from-Args asˢ as) to-from-Arg : (aˢ : Argˢ v) (a : Arg aˢ) → to-Arg (from-Arg aˢ a) ≡ a to-from-Arg (nil tˢ) t = to-from-Tm tˢ t to-from-Arg (cons aˢ) (x , a) = cong (x ,_) (to-from-Arg aˢ a) mutual from-to-Tm : (tˢ : Tmˢ s) (t : Tm′ tˢ) → from-Tm tˢ (to-Tm t) ≡ t from-to-Tm var (var x) = refl _ from-to-Tm (op _ _) (op as) = cong op (from-to-Args as) from-to-Args : {asˢ : Argsˢ vs} (as : Args′ asˢ) → from-Args asˢ (to-Args as) ≡ as from-to-Args {asˢ = nil} nil = refl _ from-to-Args {asˢ = cons _ _} (cons a as) = cong₂ cons (from-to-Arg a) (from-to-Args as) from-to-Arg : {aˢ : Argˢ v} (a : Arg′ aˢ) → from-Arg aˢ (to-Arg a) ≡ a from-to-Arg {aˢ = nil _} (nil t) = cong nil (from-to-Tm _ t) from-to-Arg {aˢ = cons _} (cons x a) = cong (cons x) (from-to-Arg a) -- The alternative definitions of Tm, Args, Arg and Data are -- pointwise equivalent to the original ones. Tm′≃Tm : {tˢ : Tmˢ s} → Tm′ tˢ ≃ Tm tˢ Tm′≃Tm {tˢ = tˢ} = Eq.↔→≃ to-Tm (from-Tm _) (to-from-Tm tˢ) (from-to-Tm _) where open ′≃ Args′≃Args : {asˢ : Argsˢ vs} → Args′ asˢ ≃ Args asˢ Args′≃Args = Eq.↔→≃ to-Args (from-Args _) (to-from-Args _) from-to-Args where open ′≃ Arg′≃Arg : {aˢ : Argˢ v} → Arg′ aˢ ≃ Arg aˢ Arg′≃Arg {aˢ = aˢ} = Eq.↔→≃ to-Arg (from-Arg _) (to-from-Arg aˢ) from-to-Arg where open ′≃ Data′≃Data : ∀ k {@0 s} {tˢ : Skeleton k s} → Data′ tˢ ≃ Data tˢ Data′≃Data var = F.id Data′≃Data tm = Tm′≃Tm Data′≃Data args = Args′≃Args Data′≃Data arg = Arg′≃Arg -- The following alternative definition of Term[_] uses Data′ -- instead of Data. Term[_]′ : (k : Term-kind) → @0 Vars → @0 Sort-kind k → Type ℓ Term[ k ]′ xs s = ∃ λ (tˢ : Skeleton k s) → ∃ λ (t : Data′ tˢ) → Erased (Wf xs tˢ (_≃_.to (Data′≃Data k) t)) -- This alternative definition is also pointwise equivalent to the -- original one. Term′≃Term : Term[ k ]′ xs s ≃ Term[ k ] xs s Term′≃Term {k = k} = ∃-cong λ _ → Σ-cong (Data′≃Data k) λ _ → F.id ---------------------------------------------------------------------- -- Decision procedures for equality -- Erased equality is decidable for Term-kind. -- -- This decision procedure is not optimised. infix 4 _≟Term-kind_ _≟Term-kind_ : Decidable-erased-equality Term-kind _≟Term-kind_ = $⟨ Fin._≟_ ⟩ Decidable-equality (Fin 4) ↝⟨ Decidable-equality→Decidable-erased-equality ⟩ Decidable-erased-equality (Fin 4) ↝⟨ Decidable-erased-equality-map (_≃_.surjection $ inverse Term-kind≃Fin-4) ⟩□ Decidable-erased-equality Term-kind □ -- Erased equality is decidable for Skeleton k s. infix 4 _≟ˢ_ _≟Tmˢ_ _≟Argsˢ_ _≟Argˢ_ mutual _≟ˢ_ : Decidable-erased-equality (Skeleton k s) _≟ˢ_ {k = var} = _≟Varˢ_ _≟ˢ_ {k = tm} = _≟Tmˢ_ _≟ˢ_ {k = args} = _≟Argsˢ_ _≟ˢ_ {k = arg} = _≟Argˢ_ private _≟Varˢ_ : Decidable-erased-equality (Varˢ s) var ≟Varˢ var = yes [ refl _ ] _≟Tmˢ_ : Decidable-erased-equality (Tmˢ s) var ≟Tmˢ var = yes [ refl _ ] var ≟Tmˢ op _ _ = $⟨ no [ (λ ()) ] ⟩ Dec-Erased ⊥ ↝⟨ Dec-Erased-map (from-isomorphism (Eq.≃-≡ Tmˢ≃) F.∘ from-isomorphism (inverse Bijection.≡↔⊎)) ⟩□ Dec-Erased (var ≡ op _ _) □ op _ _ ≟Tmˢ var = $⟨ no [ (λ ()) ] ⟩ Dec-Erased ⊥ ↝⟨ Dec-Erased-map (from-isomorphism (Eq.≃-≡ Tmˢ≃) F.∘ from-isomorphism (inverse Bijection.≡↔⊎)) ⟩□ Dec-Erased (op _ _ ≡ var) □ op o₁ as₁ ≟Tmˢ op o₂ as₂ = $⟨ decidable-erased⇒dec-erased⇒Σ-dec-erased _≟O_ (λ _ → _ ≟Argsˢ as₂) ⟩ Dec-Erased ((o₁ , as₁) ≡ (o₂ , as₂)) ↝⟨ Dec-Erased-map (from-isomorphism (Eq.≃-≡ Tmˢ≃) F.∘ from-isomorphism Bijection.≡↔inj₂≡inj₂) ⟩□ Dec-Erased (op o₁ as₁ ≡ op o₂ as₂) □ _≟Argsˢ_ : Decidable-erased-equality (Argsˢ vs) nil ≟Argsˢ nil = $⟨ yes [ refl _ ] ⟩ Dec-Erased ([ refl _ ] ≡ [ refl _ ]) ↝⟨ Dec-Erased-map (from-isomorphism (Eq.≃-≡ Argsˢ≃) F.∘ from-isomorphism Bijection.≡↔inj₁≡inj₁) ⟩□ Dec-Erased (nil ≡ nil) □ cons a₁ as₁ ≟Argsˢ cons a₂ as₂ = $⟨ dec-erased⇒dec-erased⇒×-dec-erased (set⇒dec-erased⇒dec-erased⇒Σ-dec-erased (H-level-Erased 2 (×-closure 2 (H-level-List 0 Sort-set) Sort-set)) (yes [ refl _ ]) (λ _ → _ ≟Argˢ a₂)) (set⇒dec-erased⇒dec-erased⇒Σ-dec-erased (H-level-Erased 2 (H-level-List 0 Valence-set)) (yes [ refl _ ]) (λ _ → _ ≟Argsˢ as₂)) ⟩ Dec-Erased (((_ , a₁) , _ , as₁) ≡ ((_ , a₂) , _ , as₂)) ↝⟨ Dec-Erased-map (from-isomorphism $ ignore-propositional-component $ H-level-Erased 1 (H-level-List 0 Valence-set)) ⟩ Dec-Erased ((((_ , a₁) , _ , as₁) , [ refl _ ]) ≡ (((_ , a₂) , _ , as₂) , [ refl _ ])) ↝⟨ Dec-Erased-map ( from-isomorphism (Eq.≃-≡ Argsˢ≃) F.∘ from-isomorphism Bijection.≡↔inj₂≡inj₂) ⟩□ Dec-Erased (cons a₁ as₁ ≡ cons a₂ as₂) □ _≟Argˢ_ : Decidable-erased-equality (Argˢ v) nil t₁ ≟Argˢ nil t₂ = $⟨ set⇒dec-erased⇒dec-erased⇒Σ-dec-erased (H-level-Erased 2 Sort-set) (yes [ refl _ ]) (λ _ → _ ≟Tmˢ t₂) ⟩ Dec-Erased ((_ , t₁) ≡ (_ , t₂)) ↝⟨ Dec-Erased-map (from-isomorphism $ ignore-propositional-component $ H-level-Erased 1 Valence-set) ⟩ Dec-Erased (((_ , t₁) , [ refl _ ]) ≡ ((_ , t₂) , [ refl _ ])) ↝⟨ Dec-Erased-map (from-isomorphism (Eq.≃-≡ Argˢ≃) F.∘ from-isomorphism Bijection.≡↔inj₁≡inj₁) ⟩□ Dec-Erased (nil t₁ ≡ nil t₂) □ cons a₁ ≟Argˢ cons a₂ = $⟨ dec-erased⇒dec-erased⇒×-dec-erased (yes [ refl _ ]) (set⇒dec-erased⇒dec-erased⇒Σ-dec-erased (H-level-Erased 2 Valence-set) (yes [ refl _ ]) (λ _ → _ ≟Argˢ a₂)) ⟩ Dec-Erased ((_ , _ , a₁) ≡ (_ , _ , a₂)) ↝⟨ Dec-Erased-map (from-isomorphism $ ignore-propositional-component $ H-level-Erased 1 Valence-set) ⟩ Dec-Erased (((_ , _ , a₁) , [ refl _ ]) ≡ ((_ , _ , a₂) , [ refl _ ])) ↝⟨ Dec-Erased-map ( from-isomorphism (Eq.≃-≡ Argˢ≃) F.∘ from-isomorphism Bijection.≡↔inj₂≡inj₂) ⟩□ Dec-Erased (cons a₁ ≡ cons a₂) □ -- Erased equality is decidable for Data tˢ. mutual equal?-Data : (tˢ : Skeleton k s) → Decidable-erased-equality (Data tˢ) equal?-Data {k = var} = λ _ → _≟V_ equal?-Data {k = tm} = equal?-Tm equal?-Data {k = args} = equal?-Args equal?-Data {k = arg} = equal?-Arg private equal?-Tm : (tˢ : Tmˢ s) → Decidable-erased-equality (Tm tˢ) equal?-Tm var x₁ x₂ = x₁ ≟V x₂ equal?-Tm (op o asˢ) as₁ as₂ = equal?-Args asˢ as₁ as₂ equal?-Args : (asˢ : Argsˢ vs) → Decidable-erased-equality (Args asˢ) equal?-Args nil _ _ = yes [ refl _ ] equal?-Args (cons aˢ asˢ) (a₁ , as₁) (a₂ , as₂) = dec-erased⇒dec-erased⇒×-dec-erased (equal?-Arg aˢ a₁ a₂) (equal?-Args asˢ as₁ as₂) equal?-Arg : (aˢ : Argˢ v) → Decidable-erased-equality (Arg aˢ) equal?-Arg (nil tˢ) t₁ t₂ = equal?-Tm tˢ t₁ t₂ equal?-Arg (cons aˢ) (x₁ , a₁) (x₂ , a₂) = dec-erased⇒dec-erased⇒×-dec-erased (x₁ ≟V x₂) (equal?-Arg aˢ a₁ a₂) -- Erased equality is decidable for Data′ tˢ. -- -- (Presumably it is possible to prove this without converting to -- Data, and in that case the sort and skeleton arguments can -- perhaps be erased.) equal?-Data′ : ∀ k {s} {tˢ : Skeleton k s} → Decidable-erased-equality (Data′ tˢ) equal?-Data′ k {tˢ = tˢ} t₁ t₂ = $⟨ equal?-Data tˢ _ _ ⟩ Dec-Erased (_≃_.to (Data′≃Data k) t₁ ≡ _≃_.to (Data′≃Data k) t₂) ↝⟨ Dec-Erased-map (from-equivalence (Eq.≃-≡ (Data′≃Data k))) ⟩□ Dec-Erased (t₁ ≡ t₂) □ -- The Wf predicate is propositional. mutual @0 Wf-propositional : ∀ {s} (tˢ : Skeleton k s) {t : Data tˢ} → Is-proposition (Wf xs tˢ t) Wf-propositional {k = var} var = ∈-propositional Wf-propositional {k = tm} = Wf-tm-propositional Wf-propositional {k = args} = Wf-args-propositional Wf-propositional {k = arg} = Wf-arg-propositional private @0 Wf-tm-propositional : (tˢ : Tmˢ s) {t : Tm tˢ} → Is-proposition (Wf-tm xs tˢ t) Wf-tm-propositional var = ∈-propositional Wf-tm-propositional (op o asˢ) = Wf-args-propositional asˢ @0 Wf-args-propositional : (asˢ : Argsˢ vs) {as : Args asˢ} → Is-proposition (Wf-args xs asˢ as) Wf-args-propositional nil _ _ = refl _ Wf-args-propositional (cons aˢ asˢ) (wf₁ , wfs₁) (wf₂ , wfs₂) = cong₂ _,_ (Wf-arg-propositional aˢ wf₁ wf₂) (Wf-args-propositional asˢ wfs₁ wfs₂) @0 Wf-arg-propositional : (aˢ : Argˢ v) {a : Arg aˢ} → Is-proposition (Wf-arg xs aˢ a) Wf-arg-propositional (nil tˢ) = Wf-tm-propositional tˢ Wf-arg-propositional (cons aˢ) wf₁ wf₂ = ⟨ext⟩ λ y → ⟨ext⟩ λ y∉xs → Wf-arg-propositional aˢ (wf₁ y y∉xs) (wf₂ y y∉xs) -- Erased equality is decidable for Term[_]′. infix 4 _≟Term′_ _≟Term′_ : ∀ {s} → Decidable-erased-equality (Term[ k ]′ xs s) _≟Term′_ {k = k} = decidable-erased⇒decidable-erased⇒Σ-decidable-erased _≟ˢ_ λ {tˢ} → decidable-erased⇒decidable-erased⇒Σ-decidable-erased (equal?-Data′ k) λ _ _ → yes [ []-cong [ Wf-propositional tˢ _ _ ] ] -- Erased equality is decidable for Term[_]. -- -- TODO: Is it possible to prove this without converting to -- Term[_]′? infix 4 _≟Term_ _≟Term_ : ∀ {s} → Decidable-erased-equality (Term[ k ] xs s) _≟Term_ {k = k} {xs = xs} {s = s} = $⟨ _≟Term′_ ⟩ Decidable-erased-equality (Term[ k ]′ xs s) ↝⟨ Decidable-erased-equality-map (_≃_.surjection Term′≃Term) ⟩□ Decidable-erased-equality (Term[ k ] xs s) □ -- Skeleton, Data, Data′, Term[_] and Term[_]′ are sets (pointwise, -- in erased contexts). @0 Skeleton-set : Is-set (Skeleton k s) Skeleton-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟ˢ_ @0 Data-set : (tˢ : Skeleton k s) → Is-set (Data tˢ) Data-set tˢ = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ (equal?-Data tˢ) @0 Data′-set : ∀ k {s} {tˢ : Skeleton k s} → Is-set (Data′ tˢ) Data′-set k = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ (equal?-Data′ k) @0 Term-set : Is-set (Term[ k ] xs s) Term-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟Term_ @0 Term′-set : Is-set (Term[ k ]′ xs s) Term′-set = decidable⇒set $ Decidable-erased-equality≃Decidable-equality _ _≟Term′_ ---------------------------------------------------------------------- -- A lemma -- Changing the well-formedness proof does not actually change -- anything. @0 Wf-proof-irrelevant : ∀ {tˢ : Skeleton k s} {t : Data tˢ} {wf₁ wf₂} → _≡_ {A = Term[ k ] xs s} (tˢ , t , [ wf₁ ]) (tˢ , t , [ wf₂ ]) Wf-proof-irrelevant {tˢ = tˢ} = cong (λ wf → tˢ , _ , [ wf ]) (Wf-propositional tˢ _ _) ---------------------------------------------------------------------- -- An elimination principle for well-formed terms ("structural -- induction modulo fresh renaming") -- The eliminator's arguments. record Wf-elim (P : ∀ k {@0 xs s} → Term[ k ] xs s → Type p) : Type (ℓ ⊔ p) where no-eta-equality field varʳ : ∀ {s} (x : Var s) (@0 x∈ : (_ , x) ∈ xs) → P var (var-wf x x∈) varʳ′ : ∀ {s} (x : Var s) (@0 wf : Wf xs Varˢ.var x) → P var (var-wf x wf) → P tm (var-wf x wf) opʳ : ∀ (o : Op s) asˢ as (@0 wfs : Wf xs asˢ as) → P args (asˢ , as , [ wfs ]) → P tm (op-wf o asˢ as wfs) nilʳ : P args {xs = xs} nil-wfs consʳ : ∀ aˢ a asˢ as (@0 wf : Wf {s = v} xs aˢ a) (@0 wfs : Wf {s = vs} xs asˢ as) → P arg (aˢ , a , [ wf ]) → P args (asˢ , as , [ wfs ]) → P args (cons-wfs aˢ asˢ a as wf wfs) nilʳ′ : ∀ tˢ t (@0 wf : Wf {s = s} xs tˢ t) → P tm (tˢ , t , [ wf ]) → P arg (nil-wf tˢ t wf) consʳ′ : ∀ {@0 xs : Vars} {s} (aˢ : Argˢ v) (x : Var s) a (@0 wf) → (∀ y (@0 y∉ : (_ , y) ∉ xs) → P arg (aˢ , rename₁ x y aˢ a , [ wf y y∉ ])) → P arg (cons-wf aˢ x a wf) -- The eliminator. -- TODO: Can one implement a more efficient eliminator that does not -- use rename₁, and that merges all the renamings into one? module _ {P : ∀ k {@0 xs s} → Term[ k ] xs s → Type p} (e : Wf-elim P) where open Wf-elim mutual wf-elim : ∀ {xs} (t : Term[ k ] xs s) → P k t wf-elim {k = var} (var , x , [ wf ]) = wf-elim-Var x wf wf-elim {k = tm} (tˢ , t , [ wf ]) = wf-elim-Term tˢ t wf wf-elim {k = args} (asˢ , as , [ wfs ]) = wf-elim-Arguments asˢ as wfs wf-elim {k = arg} (aˢ , a , [ wf ]) = wf-elim-Argument aˢ a wf private wf-elim-Var : ∀ {xs s} (x : Var s) (@0 wf : Wf xs Varˢ.var x) → P var (var , x , [ wf ]) wf-elim-Var x wf = e .varʳ x wf wf-elim-Term : ∀ {xs} (tˢ : Tmˢ s) (t : Tm tˢ) (@0 wf : Wf-tm xs tˢ t) → P tm (tˢ , t , [ wf ]) wf-elim-Term var x wf = e .varʳ′ x wf (wf-elim-Var x wf) wf-elim-Term (op o asˢ) as wfs = e .opʳ o asˢ as wfs (wf-elim-Arguments asˢ as wfs) wf-elim-Arguments : ∀ {xs} (asˢ : Argsˢ vs) (as : Args asˢ) (@0 wfs : Wf-args xs asˢ as) → P args (asˢ , as , [ wfs ]) wf-elim-Arguments nil _ _ = e .nilʳ wf-elim-Arguments (cons aˢ asˢ) (a , as) (wf , wfs) = e .consʳ aˢ a asˢ as wf wfs (wf-elim-Argument aˢ a wf) (wf-elim-Arguments asˢ as wfs) wf-elim-Argument : ∀ {xs} (aˢ : Argˢ v) (a : Arg aˢ) (@0 wf : Wf-arg xs aˢ a) → P arg (aˢ , a , [ wf ]) wf-elim-Argument (nil tˢ) t wf = e .nilʳ′ tˢ t wf (wf-elim-Term tˢ t wf) wf-elim-Argument (cons aˢ) (x , a) wf = e .consʳ′ aˢ x a wf λ y y∉ → wf-elim-Argument aˢ (rename₁ x y aˢ a) (wf y y∉) ---------------------------------------------------------------------- -- Free variables -- An alternative definition of what it means for a variable to be -- free in a term. -- -- This definition is based on Harper's. module _ {s} (x : Var s) where private Free-in-var : ∀ {s′} → Var s′ → ∃ λ (A : Type ℓ) → Erased (Is-proposition A) Free-in-var y = _≡_ {A = ∃Var} (_ , x) (_ , y) , [ ∃Var-set ] mutual Free-in-term : ∀ {xs} (tˢ : Tmˢ s′) t → @0 Wf ((_ , x) ∷ xs) tˢ t → ∃ λ (A : Type ℓ) → Erased (Is-proposition A) Free-in-term var y _ = Free-in-var y Free-in-term (op o asˢ) as wf = Free-in-arguments asˢ as wf Free-in-arguments : ∀ {xs} (asˢ : Argsˢ vs) as → @0 Wf ((_ , x) ∷ xs) asˢ as → ∃ λ (A : Type ℓ) → Erased (Is-proposition A) Free-in-arguments nil _ _ = ⊥ , [ ⊥-propositional ] Free-in-arguments (cons aˢ asˢ) (a , as) (wf , wfs) = (proj₁ (Free-in-argument aˢ a wf) ∥⊎∥ proj₁ (Free-in-arguments asˢ as wfs)) , [ ∥⊎∥-propositional ] Free-in-argument : ∀ {xs} (aˢ : Argˢ v) a → @0 Wf ((_ , x) ∷ xs) aˢ a → ∃ λ (A : Type ℓ) → Erased (Is-proposition A) Free-in-argument (nil tˢ) t wf = Free-in-term tˢ t wf Free-in-argument {xs = xs} (cons aˢ) (y , a) wf = Π _ λ z → Π (Erased ((_ , z) ∉ (_ , x) ∷ xs)) λ ([ z∉ ]) → Free-in-argument aˢ (rename₁ y z aˢ a) (subst (λ xs′ → Wf xs′ aˢ (rename₁ y z aˢ a)) swap (wf z z∉)) where Π : (A : Type ℓ) → (A → ∃ λ (B : Type ℓ) → Erased (Is-proposition B)) → ∃ λ (B : Type ℓ) → Erased (Is-proposition B) Π A B = (∀ x → proj₁ (B x)) , [ (Π-closure ext 1 λ x → erased (proj₂ (B x))) ] -- A predicate that holds if x is free in the term. Free-in : ∀ {xs} → Term[ k ] ((_ , x) ∷ xs) s′ → Type ℓ Free-in {k = var} (var , y , [ wf ]) = proj₁ (Free-in-var y) Free-in {k = tm} (tˢ , t , [ wf ]) = proj₁ (Free-in-term tˢ t wf) Free-in {k = args} (asˢ , as , [ wfs ]) = proj₁ (Free-in-arguments asˢ as wfs) Free-in {k = arg} (aˢ , a , [ wf ]) = proj₁ (Free-in-argument aˢ a wf) abstract -- The alternative definition of what it means for a variable to -- be free is propositional (in erased contexts). @0 Free-in-propositional : (t : Term[ k ] ((_ , x) ∷ xs) s′) → Is-proposition (Free-in t) Free-in-propositional {k = var} (var , y , [ wf ]) = erased (proj₂ (Free-in-var y)) Free-in-propositional {k = tm} (tˢ , t , [ wf ]) = erased (proj₂ (Free-in-term tˢ t wf)) Free-in-propositional {k = args} (asˢ , as , [ wfs ]) = erased (proj₂ (Free-in-arguments asˢ as wfs)) Free-in-propositional {k = arg} (aˢ , a , [ wf ]) = erased (proj₂ (Free-in-argument aˢ a wf)) abstract mutual -- Variables that are free according to the alternative -- definition are in the set of free variables (in erased -- contexts). @0 Free-free : ∀ (tˢ : Skeleton k s′) {t} (wf : Wf ((s , x) ∷ xs) tˢ t) → Free-in x (tˢ , t , [ wf ]) → (s , x) ∈ free tˢ t Free-free {k = var} = λ yˢ wf → Free-free-Var yˢ wf Free-free {k = tm} = Free-free-Tm Free-free {k = args} = Free-free-Args Free-free {k = arg} = Free-free-Arg private @0 Free-free-Var : ∀ {s} {x : Var s} (yˢ : Varˢ s′) {y : Var s′} (@0 wf : Wf ((_ , x) ∷ xs) yˢ y) → Free-in x (yˢ , y , [ wf ]) → (_ , x) ∈ free yˢ y Free-free-Var var _ = ≡→∈singleton @0 Free-free-Tm : ∀ (tˢ : Tmˢ s′) {t} (wf : Wf ((_ , x) ∷ xs) tˢ t) → Free-in x (tˢ , t , [ wf ]) → (_ , x) ∈ free tˢ t Free-free-Tm var wf = Free-free-Var var wf Free-free-Tm (op o asˢ) wfs = Free-free-Args asˢ wfs @0 Free-free-Args : ∀ (asˢ : Argsˢ vs) {as} (wfs : Wf ((_ , x) ∷ xs) asˢ as) → Free-in x (asˢ , as , [ wfs ]) → (_ , x) ∈ free asˢ as Free-free-Args {x = x} (cons aˢ asˢ) {as = a , as} (wf , wfs) = Free-in x (aˢ , a , [ wf ]) ∥⊎∥ Free-in x (asˢ , as , [ wfs ]) ↝⟨ Free-free-Arg aˢ wf ∥⊎∥-cong Free-free-Args asˢ wfs ⟩ (_ , x) ∈ free aˢ a ∥⊎∥ (_ , x) ∈ free asˢ as ↔⟨ inverse ∈∪≃ ⟩□ (_ , x) ∈ free aˢ a ∪ free asˢ as □ @0 Free-free-Arg : ∀ (aˢ : Argˢ v) {a} (wf : Wf ((_ , x) ∷ xs) aˢ a) → Free-in x (aˢ , a , [ wf ]) → (_ , x) ∈ free aˢ a Free-free-Arg (nil tˢ) = Free-free-Tm tˢ Free-free-Arg {x = x} {xs = xs} (cons {s = s} aˢ) {a = y , a} wf = let xxs = (_ , x) ∷ xs x₁ , x₁∉ = fresh-not-erased xxs x₂ , x₂≢x₁ , x₂∉ = $⟨ fresh-not-erased ((_ , x₁) ∷ xxs) ⟩ (∃ λ x₂ → (_ , x₂) ∉ (_ , x₁) ∷ xxs) ↝⟨ (∃-cong λ _ → →-cong₁ ext ∈∷≃) ⟩ (∃ λ x₂ → ¬ ((_ , x₂) ≡ (_ , x₁) ∥⊎∥ (_ , x₂) ∈ xxs)) ↝⟨ (∃-cong λ _ → Π∥⊎∥↔Π×Π λ _ → ⊥-propositional) ⟩□ (∃ λ x₂ → (_ , x₂) ≢ (_ , x₁) × (_ , x₂) ∉ xxs) □ in (∀ z (z∉ : Erased ((_ , z) ∉ (_ , x) ∷ xs)) → Free-in x ( aˢ , rename₁ y z aˢ a , [ subst (λ xs → Wf xs aˢ (rename₁ y z aˢ a)) swap (wf z (erased z∉)) ] )) ↝⟨ (λ hyp z z∉ → Free-free-Arg aˢ (subst (λ xs → Wf xs aˢ (rename₁ y z aˢ a)) swap (wf z z∉)) (hyp z [ z∉ ])) ⟩ (∀ z → (_ , z) ∉ (_ , x) ∷ xs → (_ , x) ∈ free aˢ (rename₁ y z aˢ a)) ↝⟨ (λ hyp z z∉ → free-rename₁⊆ aˢ _ (hyp z z∉)) ⦂ (_ → _) ⟩ (∀ z → (_ , z) ∉ (_ , x) ∷ xs → (_ , x) ∈ (_ , z) ∷ fs′) ↝⟨ (λ hyp → hyp x₁ x₁∉ , hyp x₂ x₂∉) ⟩ (_ , x) ∈ (_ , x₁) ∷ fs′ × (_ , x) ∈ (_ , x₂) ∷ fs′ ↔⟨ ∈∷≃ ×-cong ∈∷≃ ⟩ ((_ , x) ≡ (_ , x₁) ∥⊎∥ (_ , x) ∈ fs′) × ((_ , x) ≡ (_ , x₂) ∥⊎∥ (_ , x) ∈ fs′) ↔⟨ (Σ-∥⊎∥-distrib-right (λ _ → ∃Var-set) ∥⊎∥-cong F.id) F.∘ Σ-∥⊎∥-distrib-left ∥⊎∥-propositional ⟩ ((_ , x) ≡ (_ , x₁) × (_ , x) ≡ (_ , x₂) ∥⊎∥ (_ , x) ∈ fs′ × (_ , x) ≡ (_ , x₂)) ∥⊎∥ ((_ , x) ≡ (_ , x₁) ∥⊎∥ (_ , x) ∈ fs′) × (_ , x) ∈ fs′ ↝⟨ ((λ (y≡x₁ , y≡x₂) → x₂≢x₁ (trans (sym y≡x₂) y≡x₁)) ∥⊎∥-cong proj₁) ∥⊎∥-cong proj₂ ⟩ (⊥ ∥⊎∥ (_ , x) ∈ fs′) ∥⊎∥ (_ , x) ∈ fs′ ↔⟨ ∥⊎∥-idempotent ∈-propositional F.∘ (∥⊎∥-left-identity ∈-propositional ∥⊎∥-cong F.id) ⟩□ (_ , x) ∈ fs′ □ where fs′ : Vars fs′ = del (_ , y) (free aˢ a) mutual -- Every member of the set of free variables is free according -- to the alternative definition (in erased contexts). @0 free-Free : ∀ (tˢ : Skeleton k s) {t} (wf : Wf ((s′ , x) ∷ xs) tˢ t) → (s′ , x) ∈ free tˢ t → Free-in x (tˢ , t , [ wf ]) free-Free {k = var} = free-Free-Var free-Free {k = tm} = free-Free-Tm free-Free {k = args} = free-Free-Args free-Free {k = arg} = free-Free-Arg private @0 free-Free-Var : ∀ (yˢ : Varˢ s) {y} (wf : Wf ((_ , x) ∷ xs) yˢ y) → (_ , x) ∈ free yˢ y → Free-in x (yˢ , y , [ wf ]) free-Free-Var {x = x} var {y = y} _ = (_ , x) ∈ singleton (_ , y) ↔⟨ ∈singleton≃ ⟩ ∥ (_ , x) ≡ (_ , y) ∥ ↔⟨ ∥∥↔ ∃Var-set ⟩□ (_ , x) ≡ (_ , y) □ @0 free-Free-Tm : ∀ (tˢ : Tmˢ s) {t} (wf : Wf-tm ((_ , x) ∷ xs) tˢ t) → (_ , x) ∈ free tˢ t → Free-in x (tˢ , t , [ wf ]) free-Free-Tm var = free-Free-Var var free-Free-Tm (op o asˢ) = free-Free-Args asˢ @0 free-Free-Args : ∀ (asˢ : Argsˢ vs) {as} (wf : Wf ((_ , x) ∷ xs) asˢ as) → (_ , x) ∈ free asˢ as → Free-in x (asˢ , as , [ wf ]) free-Free-Args {x = x} (cons aˢ asˢ) {as = a , as} (wf , wfs) = (_ , x) ∈ free aˢ a ∪ free asˢ as ↔⟨ ∈∪≃ ⟩ (_ , x) ∈ free aˢ a ∥⊎∥ (_ , x) ∈ free asˢ as ↝⟨ free-Free-Arg aˢ wf ∥⊎∥-cong free-Free-Args asˢ wfs ⟩□ Free-in x (aˢ , a , [ wf ]) ∥⊎∥ Free-in x (asˢ , as , [ wfs ]) □ @0 free-Free-Arg : ∀ (aˢ : Argˢ v) {a} (wf : Wf ((_ , x) ∷ xs) aˢ a) → (_ , x) ∈ free aˢ a → Free-in x (aˢ , a , [ wf ]) free-Free-Arg (nil tˢ) = free-Free-Tm tˢ free-Free-Arg {x = x} {xs = xs} (cons aˢ) {a = y , a} wf = (_ , x) ∈ del (_ , y) (free aˢ a) ↔⟨ ∈delete≃ merely-equal?-∃Var ⟩ (_ , x) ≢ (_ , y) × (_ , x) ∈ free aˢ a ↝⟨ Σ-map id (λ x∈ _ → ⊆free-rename₁ aˢ _ x∈) ⟩ (_ , x) ≢ (_ , y) × (∀ z → (_ , x) ∈ (_ , y) ∷ free aˢ (rename₁ y z aˢ a)) ↔⟨ (∃-cong λ x≢y → ∀-cong ext λ z → drop-⊥-left-∥⊎∥ ∈-propositional x≢y F.∘ from-equivalence ∈∷≃) ⟩ (_ , x) ≢ (_ , y) × (∀ z → (_ , x) ∈ free aˢ (rename₁ y z aˢ a)) ↝⟨ proj₂ ⟩ (∀ z → (_ , x) ∈ free aˢ (rename₁ y z aˢ a)) ↝⟨ (λ hyp z _ → hyp z) ⟩ (∀ z → (_ , z) ∉ (_ , x) ∷ xs → (_ , x) ∈ free aˢ (rename₁ y z aˢ a)) ↝⟨ (λ x∈ z z∉ → free-Free-Arg aˢ (subst (λ xs → Wf xs aˢ (rename₁ y z aˢ a)) swap (wf z (erased z∉))) (x∈ z (Stable-¬ z∉))) ⟩□ (∀ z (z∉ : Erased ((_ , z) ∉ (_ , x) ∷ xs)) → Free-in x ( aˢ , rename₁ y z aˢ a , [ subst (λ xs → Wf xs aˢ (rename₁ y z aˢ a)) swap (wf z (erased z∉)) ] )) □ ---------------------------------------------------------------------- -- Lemmas related to the Wf predicate abstract -- Weakening of the Wf predicate. mutual @0 weaken-Wf : xs ⊆ ys → ∀ (tˢ : Skeleton k s) {t} → Wf xs tˢ t → Wf ys tˢ t weaken-Wf {k = var} = weaken-Wf-var weaken-Wf {k = tm} = weaken-Wf-tm weaken-Wf {k = args} = weaken-Wf-args weaken-Wf {k = arg} = weaken-Wf-arg private @0 weaken-Wf-var : xs ⊆ ys → ∀ (xˢ : Varˢ s) {x} → Wf xs xˢ x → Wf ys xˢ x weaken-Wf-var xs⊆ys var = xs⊆ys _ @0 weaken-Wf-tm : xs ⊆ ys → ∀ (tˢ : Tmˢ s) {t} → Wf xs tˢ t → Wf ys tˢ t weaken-Wf-tm xs⊆ys var = weaken-Wf-var xs⊆ys var weaken-Wf-tm xs⊆ys (op o asˢ) = weaken-Wf-args xs⊆ys asˢ @0 weaken-Wf-args : xs ⊆ ys → ∀ (asˢ : Argsˢ vs) {as} → Wf xs asˢ as → Wf ys asˢ as weaken-Wf-args xs⊆ys nil = id weaken-Wf-args xs⊆ys (cons aˢ asˢ) = Σ-map (weaken-Wf-arg xs⊆ys aˢ) (weaken-Wf-args xs⊆ys asˢ) @0 weaken-Wf-arg : xs ⊆ ys → ∀ (aˢ : Argˢ v) {a} → Wf xs aˢ a → Wf ys aˢ a weaken-Wf-arg xs⊆ys (nil tˢ) = weaken-Wf-tm xs⊆ys tˢ weaken-Wf-arg xs⊆ys (cons aˢ) = λ wf y y∉ys → weaken-Wf-arg (∷-cong-⊆ xs⊆ys) aˢ (wf y (y∉ys ∘ xs⊆ys _)) -- A term is well-formed for its set of free variables. mutual @0 wf-free : ∀ (tˢ : Skeleton k s) {t} → Wf (free tˢ t) tˢ t wf-free {k = var} = wf-free-Var wf-free {k = tm} = wf-free-Tm wf-free {k = args} = wf-free-Args wf-free {k = arg} = wf-free-Arg private @0 wf-free-Var : ∀ (xˢ : Varˢ s) {x} → Wf (free xˢ x) xˢ x wf-free-Var var = ≡→∈∷ (refl _) @0 wf-free-Tm : ∀ (tˢ : Tmˢ s) {t} → Wf (free tˢ t) tˢ t wf-free-Tm var = wf-free-Var var wf-free-Tm (op o asˢ) = wf-free-Args asˢ @0 wf-free-Args : ∀ (asˢ : Argsˢ vs) {as} → Wf (free asˢ as) asˢ as wf-free-Args nil = _ wf-free-Args (cons aˢ asˢ) = weaken-Wf-arg (λ _ → ∈→∈∪ˡ) aˢ (wf-free-Arg aˢ) , weaken-Wf-args (λ _ → ∈→∈∪ʳ (free-Arg aˢ _)) asˢ (wf-free-Args asˢ) @0 wf-free-Arg : ∀ (aˢ : Argˢ v) {a : Arg aˢ} → Wf (free aˢ a) aˢ a wf-free-Arg (nil tˢ) = wf-free-Tm tˢ wf-free-Arg (cons aˢ) {a = x , a} = λ y y∉ → $⟨ wf-free-Arg aˢ ⟩ Wf-arg (free aˢ (rename₁ x y aˢ a)) aˢ (rename₁ x y aˢ a) ↝⟨ weaken-Wf (free-rename₁⊆ aˢ) aˢ ⟩□ Wf-arg ((_ , y) ∷ del (_ , x) (free aˢ a)) aˢ (rename₁ x y aˢ a) □ -- If a term is well-formed with respect to a set of variables xs, -- then xs is a superset of the term's set of free variables. mutual @0 free-⊆ : ∀ (tˢ : Skeleton k s) {t} → Wf xs tˢ t → free tˢ t ⊆ xs free-⊆ {k = var} = free-⊆-Var free-⊆ {k = tm} = free-⊆-Tm free-⊆ {k = args} = free-⊆-Args free-⊆ {k = arg} = free-⊆-Arg private @0 free-⊆-Var : ∀ (xˢ : Varˢ s) {x} → Wf xs xˢ x → free xˢ x ⊆ xs free-⊆-Var {xs = xs} var {x = x} wf y = y ∈ singleton (_ , x) ↔⟨ ∈singleton≃ ⟩ ∥ y ≡ (_ , x) ∥ ↔⟨ ∥∥↔ ∃Var-set ⟩ y ≡ (_ , x) ↝⟨ (λ eq → subst (_∈ xs) (sym eq) wf) ⟩□ y ∈ xs □ @0 free-⊆-Tm : ∀ (tˢ : Tmˢ s) {t} → Wf xs tˢ t → free tˢ t ⊆ xs free-⊆-Tm var = free-⊆-Var var free-⊆-Tm (op o asˢ) = free-⊆-Args asˢ @0 free-⊆-Args : ∀ (asˢ : Argsˢ vs) {as} → Wf xs asˢ as → free asˢ as ⊆ xs free-⊆-Args nil _ _ = λ () free-⊆-Args {xs = xs} (cons aˢ asˢ) (wf , wfs) y = y ∈ free aˢ _ ∪ free asˢ _ ↔⟨ ∈∪≃ ⟩ y ∈ free aˢ _ ∥⊎∥ y ∈ free asˢ _ ↝⟨ free-⊆-Arg aˢ wf y ∥⊎∥-cong free-⊆-Args asˢ wfs y ⟩ y ∈ xs ∥⊎∥ y ∈ xs ↔⟨ ∥⊎∥-idempotent ∈-propositional ⟩□ y ∈ xs □ @0 free-⊆-Arg : ∀ (aˢ : Argˢ v) {a} → Wf xs aˢ a → free aˢ a ⊆ xs free-⊆-Arg (nil tˢ) = free-⊆-Tm tˢ free-⊆-Arg {xs = xs} (cons {s = s} aˢ) {a = x , a} wf y = y ∈ del (_ , x) (free aˢ a) ↔⟨ ∈delete≃ merely-equal?-∃Var ⟩ y ≢ (_ , x) × y ∈ free aˢ a ↝⟨ uncurry lemma ⟩□ y ∈ xs □ where lemma : y ≢ (_ , x) → y ∈ free aˢ a → y ∈ xs lemma y≢x = let x₁ , x₁∉ = fresh-not-erased xs x₂ , x₂≢x₁ , x₂∉ = $⟨ fresh-not-erased ((_ , x₁) ∷ xs) ⟩ (∃ λ x₂ → (_ , x₂) ∉ (_ , x₁) ∷ xs) ↝⟨ (∃-cong λ _ → →-cong₁ ext ∈∷≃) ⟩ (∃ λ x₂ → ¬ ((_ , x₂) ≡ (_ , x₁) ∥⊎∥ (_ , x₂) ∈ xs)) ↝⟨ (∃-cong λ _ → Π∥⊎∥↔Π×Π λ _ → ⊥-propositional) ⟩□ (∃ λ x₂ → (_ , x₂) ≢ (_ , x₁) × (_ , x₂) ∉ xs) □ in y ∈ free aˢ a ↝⟨ (λ y∈ _ → ⊆free-rename₁ aˢ _ y∈) ⟩ (∀ z → y ∈ (_ , x) ∷ free aˢ (rename₁ x z aˢ a)) ↝⟨ (∀-cong _ λ _ → to-implication (∈≢∷≃ y≢x)) ⟩ (∀ z → y ∈ free aˢ (rename₁ x z aˢ a)) ↝⟨ (λ hyp → free-⊆-Arg aˢ (wf x₁ x₁∉) y (hyp x₁) , free-⊆-Arg aˢ (wf x₂ x₂∉) y (hyp x₂)) ⟩ y ∈ (_ , x₁) ∷ xs × y ∈ (_ , x₂) ∷ xs ↔⟨ ∈∷≃ ×-cong ∈∷≃ ⟩ (y ≡ (_ , x₁) ∥⊎∥ y ∈ xs) × (y ≡ (_ , x₂) ∥⊎∥ y ∈ xs) ↔⟨ (Σ-∥⊎∥-distrib-right (λ _ → ∃Var-set) ∥⊎∥-cong F.id) F.∘ Σ-∥⊎∥-distrib-left ∥⊎∥-propositional ⟩ (y ≡ (_ , x₁) × y ≡ (_ , x₂) ∥⊎∥ y ∈ xs × y ≡ (_ , x₂)) ∥⊎∥ (y ≡ (_ , x₁) ∥⊎∥ y ∈ xs) × y ∈ xs ↝⟨ ((λ (y≡x₁ , y≡x₂) → x₂≢x₁ (trans (sym y≡x₂) y≡x₁)) ∥⊎∥-cong proj₁) ∥⊎∥-cong proj₂ ⟩ (⊥ ∥⊎∥ y ∈ xs) ∥⊎∥ y ∈ xs ↔⟨ ∥⊎∥-idempotent ∈-propositional F.∘ (∥⊎∥-left-identity ∈-propositional ∥⊎∥-cong F.id) ⟩□ y ∈ xs □ -- Strengthening of the Wf predicate. @0 strengthen-Wf : ∀ (tˢ : Skeleton k s) {t} → (_ , x) ∉ free tˢ t → Wf ((_ , x) ∷ xs) tˢ t → Wf xs tˢ t strengthen-Wf {x = x} {xs = xs} tˢ {t = t} x∉ = Wf ((_ , x) ∷ xs) tˢ t ↝⟨ free-⊆ tˢ ⟩ free tˢ t ⊆ (_ , x) ∷ xs ↝⟨ ∉→⊆∷→⊆ x∉ ⟩ free tˢ t ⊆ xs ↝⟨ _, wf-free tˢ ⟩ free tˢ t ⊆ xs × Wf (free tˢ t) tˢ t ↝⟨ (λ (sub , wf) → weaken-Wf sub tˢ wf) ⟩□ Wf xs tˢ t □ where ∉→⊆∷→⊆ : {x : ∃Var} {xs ys : Vars} → x ∉ xs → xs ⊆ x ∷ ys → xs ⊆ ys ∉→⊆∷→⊆ {x = x} {xs = xs} {ys = ys} x∉ xs⊆x∷ys z = z ∈ xs ↝⟨ (λ z∈ → x∉ ∘ flip (subst (_∈ _)) z∈ , z∈) ⟩ z ≢ x × z ∈ xs ↝⟨ Σ-map id (xs⊆x∷ys _) ⟩ z ≢ x × z ∈ x ∷ ys ↔⟨ ∃-cong ∈≢∷≃ ⟩ z ≢ x × z ∈ ys ↝⟨ proj₂ ⟩□ z ∈ ys □ -- Renaming preserves well-formedness. @0 rename₁-Wf : ∀ (tˢ : Skeleton k s) {t} → Wf ((_ , x) ∷ xs) tˢ t → Wf ((_ , y) ∷ xs) tˢ (rename₁ x y tˢ t) rename₁-Wf {x = x} {xs = xs} {y = y} tˢ {t = t} wf = $⟨ wf-free tˢ ⟩ Wf (free tˢ (rename₁ x y tˢ t)) tˢ (rename₁ x y tˢ t) ↝⟨ weaken-Wf (⊆∷delete→⊆∷→⊆∷ (free-rename₁⊆ tˢ) (free-⊆ tˢ wf)) tˢ ⟩□ Wf ((_ , y) ∷ xs) tˢ (rename₁ x y tˢ t) □ where ⊆∷delete→⊆∷→⊆∷ : ∀ {x y : ∃Var} {xs ys zs} → xs ⊆ x ∷ del y ys → ys ⊆ y ∷ zs → xs ⊆ x ∷ zs ⊆∷delete→⊆∷→⊆∷ {x = x} {y = y} {xs = xs} {ys = ys} {zs = zs} xs⊆ ys⊆ z = z ∈ xs ↝⟨ xs⊆ z ⟩ z ∈ x ∷ del y ys ↔⟨ (F.id ∥⊎∥-cong ∈delete≃ merely-equal?-∃Var) F.∘ ∈∷≃ ⟩ z ≡ x ∥⊎∥ z ≢ y × z ∈ ys ↝⟨ id ∥⊎∥-cong id ×-cong ys⊆ z ⟩ z ≡ x ∥⊎∥ z ≢ y × z ∈ y ∷ zs ↔⟨ (F.id ∥⊎∥-cong ∃-cong λ z≢y → ∈≢∷≃ z≢y) ⟩ z ≡ x ∥⊎∥ z ≢ y × z ∈ zs ↝⟨ id ∥⊎∥-cong proj₂ ⟩ z ≡ x ∥⊎∥ z ∈ zs ↔⟨ inverse ∈∷≃ ⟩□ z ∈ x ∷ zs □ -- If one renames with a fresh variable, and the renamed thing is -- well-formed (with respect to a certain set of variables), then -- the original thing is also well-formed (with respect to a -- certain set of variables). @0 renamee-Wf : ∀ (tˢ : Skeleton k s) {t} → (_ , y) ∉ free tˢ t → Wf ((_ , y) ∷ xs) tˢ (rename₁ x y tˢ t) → Wf ((_ , x) ∷ xs) tˢ t renamee-Wf {y = y} {xs = xs} {x = x} tˢ {t = t} y∉a = Wf ((_ , y) ∷ xs) tˢ (rename₁ x y tˢ t) ↝⟨ free-⊆ tˢ ⟩ free tˢ (rename₁ x y tˢ t) ⊆ (_ , y) ∷ xs ↝⟨ ∉→⊆∷∷→⊆∷→⊆∷ y∉a (⊆free-rename₁ tˢ) ⟩ free tˢ t ⊆ (_ , x) ∷ xs ↝⟨ (λ wf → weaken-Wf wf tˢ (wf-free tˢ)) ⟩□ Wf ((_ , x) ∷ xs) tˢ t □ where ∉→⊆∷∷→⊆∷→⊆∷ : ∀ {x y : ∃Var} {xs ys zs} → y ∉ xs → xs ⊆ x ∷ ys → ys ⊆ y ∷ zs → xs ⊆ x ∷ zs ∉→⊆∷∷→⊆∷→⊆∷ {x = x} {y = y} {xs = xs} {ys = ys} {zs = zs} y∉xs xs⊆x∷y∷ys ys⊆y∷zs = λ z → z ∈ xs ↝⟨ (λ z∈xs → (λ z≡y → y∉xs (subst (_∈ _) z≡y z∈xs)) , xs⊆x∷y∷ys z z∈xs) ⟩ z ≢ y × z ∈ x ∷ ys ↔⟨ (∃-cong λ _ → ∈∷≃) ⟩ z ≢ y × (z ≡ x ∥⊎∥ z ∈ ys) ↝⟨ (∃-cong λ _ → F.id ∥⊎∥-cong ys⊆y∷zs z) ⟩ z ≢ y × (z ≡ x ∥⊎∥ z ∈ y ∷ zs) ↔⟨ (∃-cong λ _ → F.id ∥⊎∥-cong ∈∷≃) ⟩ z ≢ y × (z ≡ x ∥⊎∥ z ≡ y ∥⊎∥ z ∈ zs) ↔⟨ (∃-cong λ z≢y → F.id ∥⊎∥-cong ( drop-⊥-left-∥⊎∥ ∈-propositional z≢y)) ⟩ z ≢ y × (z ≡ x ∥⊎∥ z ∈ zs) ↝⟨ proj₂ ⟩ z ≡ x ∥⊎∥ z ∈ zs ↔⟨ inverse ∈∷≃ ⟩□ z ∈ x ∷ zs □ -- If the "body of a lambda" is well-formed for all fresh -- variables, then it is well-formed for the bound variable. @0 body-Wf : ∀ (tˢ : Skeleton k s′) {t} → (∀ (y : Var s) → (_ , y) ∉ xs → Wf ((_ , y) ∷ xs) tˢ (rename₁ x y tˢ t)) → Wf ((_ , x) ∷ xs) tˢ t body-Wf {xs = xs} tˢ {t = t} wf = let y , [ y-fresh ] = fresh (xs ∪ free tˢ t) y∉xs = y-fresh ∘ ∈→∈∪ˡ y∉t = y-fresh ∘ ∈→∈∪ʳ xs in renamee-Wf tˢ y∉t (wf y y∉xs) ---------------------------------------------------------------------- -- Weakening, casting and strengthening -- Weakening. weaken : @0 xs ⊆ ys → Term[ k ] xs s → Term[ k ] ys s weaken xs⊆ys (tˢ , t , [ wf ]) = tˢ , t , [ weaken-Wf xs⊆ys tˢ wf ] -- Casting. cast : @0 xs ≡ ys → Term[ k ] xs s → Term[ k ] ys s cast eq = weaken (subst (_ ⊆_) eq ⊆-refl) -- Strengthening. strengthen : (t : Term[ k ] ((s′ , x) ∷ xs) s) → @0 ¬ Free-in x t → Term[ k ] xs s strengthen (tˢ , t , [ wf ]) ¬free = tˢ , t , [ strengthen-Wf tˢ (¬free ∘ free-Free tˢ wf) wf ] ---------------------------------------------------------------------- -- Substitution -- The function subst-Term maps variables to terms. Other kinds of -- terms are preserved. var-to-tm : Term-kind → Term-kind var-to-tm var = tm var-to-tm k = k -- The kind of sort corresponding to var-to-tm k is the same as that -- for k. var-to-tm-for-sorts : ∀ k → Sort-kind k → Sort-kind (var-to-tm k) var-to-tm-for-sorts var = id var-to-tm-for-sorts tm = id var-to-tm-for-sorts args = id var-to-tm-for-sorts arg = id -- Capture-avoiding substitution. The term subst-Term x t′ t is the -- result of substituting t′ for x in t. syntax subst-Term x t′ t = t [ x ← t′ ] subst-Term : ∀ {xs s} (x : Var s) → Term xs s → Term[ k ] ((_ , x) ∷ xs) s′ → Term[ var-to-tm k ] xs (var-to-tm-for-sorts k s′) subst-Term {s = s} x t t′ = wf-elim e t′ (refl _) t where e : Wf-elim (λ k {xs = xs′} {s = s′} _ → ∀ {xs} → @0 xs′ ≡ (_ , x) ∷ xs → Term xs s → Term[ var-to-tm k ] xs (var-to-tm-for-sorts k s′)) e .Wf-elim.varʳ {xs = xs′} y y∈xs′ {xs = xs} xs′≡x∷xs t = case (_ , y) ≟∃V (_ , x) of λ where (yes [ y≡x ]) → substᴱ (λ p → Term xs (proj₁ p)) (sym y≡x) t (no [ y≢x ]) → var-wf y ( $⟨ y∈xs′ ⟩ (_ , y) ∈ xs′ ↝⟨ subst (_ ∈_) xs′≡x∷xs ⟩ (_ , y) ∈ (_ , x) ∷ xs ↔⟨ ∈≢∷≃ y≢x ⟩□ (_ , y) ∈ xs □) e .Wf-elim.varʳ′ _ _ hyp eq t = hyp eq t e .Wf-elim.opʳ o _ _ _ hyp eq t = Σ-map (op o) id (hyp eq t) e .Wf-elim.nilʳ = λ _ _ → nil-wfs e .Wf-elim.consʳ _ _ _ _ _ _ hyp hyps eq t = Σ-zip cons (Σ-zip _,_ λ ([ wf ]) ([ wfs ]) → [ (wf , wfs) ]) (hyp eq t) (hyps eq t) e .Wf-elim.nilʳ′ _ _ _ hyp eq t = Σ-map nil id (hyp eq t) e .Wf-elim.consʳ′ {xs = xs′} aˢ y a wf hyp {xs = xs} eq t = case (_ , x) ≟∃V (_ , y) of λ where (inj₁ [ x≡y ]) → -- If the bound variable matches x, keep the original -- term (with a new well-formedness proof). cons-wf aˢ y a ( $⟨ wf ⟩ Wf xs′ (Argˢ.cons aˢ) (y , a) ↝⟨ subst (λ xs → Wf xs (Argˢ.cons aˢ) _) eq ⟩ Wf ((_ , x) ∷ xs) (Argˢ.cons aˢ) (y , a) ↝⟨ strengthen-Wf (Argˢ.cons aˢ) ( (_ , x) ∈ del (_ , y) (free aˢ a) ↔⟨ ∈delete≃ merely-equal?-∃Var ⟩ (_ , x) ≢ (_ , y) × (_ , x) ∈ free aˢ a ↝⟨ (_$ x≡y) ∘ proj₁ ⟩□ ⊥ □) ⟩□ Wf xs (Argˢ.cons aˢ) (y , a) □) (inj₂ [ x≢y ]) → -- Otherwise, rename the bound variable to something fresh -- and keep substituting. let z , [ z∉ ] = fresh ((_ , x) ∷ xs) aˢ′ , a′ , [ wf′ ] = hyp z (z∉ ∘ subst (_ ∈_) eq) ((_ , z) ∷ xs′ ≡⟨ cong (_ ∷_) eq ⟩ (_ , z) ∷ (_ , x) ∷ xs ≡⟨ swap ⟩∎ (_ , x) ∷ (_ , z) ∷ xs ∎) (weaken (λ u → u ∈ xs ↝⟨ ∈→∈∷ ⟩□ u ∈ (_ , z) ∷ xs □) t) in cons-wf aˢ′ z a′ (λ p _ → $⟨ wf′ ⟩ Wf ((_ , z) ∷ xs) aˢ′ a′ ↝⟨ rename₁-Wf aˢ′ ⟩□ Wf ((_ , p) ∷ xs) aˢ′ (rename₁ z p aˢ′ a′) □)
{ "alphanum_fraction": 0.3726008908, "avg_line_length": 41.921916258, "ext": "agda", "hexsha": "9348787e78fdc617e330c6a3b26738c06031cd1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Abstract-binding-tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Abstract-binding-tree.agda", "max_line_length": 146, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Abstract-binding-tree.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 38382, "size": 111135 }
{- This module contains: - constant displayed structures of URG structures - products of URG structures -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.Relation.Binary private variable ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C ℓ≅A×B : Level -- The constant displayed structure of a URG structure 𝒮-B over 𝒮-A 𝒮ᴰ-const : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A) {B : Type ℓB} (𝒮-B : URGStr B ℓ≅B) → URGStrᴰ 𝒮-A (λ _ → B) ℓ≅B 𝒮ᴰ-const {A = A} 𝒮-A {B} 𝒮-B = urgstrᴰ (λ b _ b' → b ≅ b') ρ uni where open URGStr 𝒮-B -- the total structure of the constant structure gives -- nondependent product of URG structures _×𝒮_ : {A : Type ℓA} (StrA : URGStr A ℓ≅A) {B : Type ℓB} (StrB : URGStr B ℓ≅B) → URGStr (A × B) (ℓ-max ℓ≅A ℓ≅B) _×𝒮_ StrA {B} StrB = ∫⟨ StrA ⟩ (𝒮ᴰ-const StrA StrB) -- any displayed structure defined over a -- structure on a product can also be defined -- over the swapped product ×𝒮-swap : {A : Type ℓA} {B : Type ℓB} {C : A × B → Type ℓC} {ℓ≅A×B ℓ≅ᴰ : Level} {StrA×B : URGStr (A × B) ℓ≅A×B} (StrCᴰ : URGStrᴰ StrA×B C ℓ≅ᴰ) → URGStrᴰ (𝒮-transport Σ-swap-≃ StrA×B) (λ (b , a) → C (a , b)) ℓ≅ᴰ ×𝒮-swap {C = C} {ℓ≅ᴰ = ℓ≅ᴰ} {StrA×B = StrA×B} StrCᴰ = make-𝒮ᴰ (λ c p c' → c ≅ᴰ⟨ p ⟩ c') ρᴰ λ (b , a) c → isUnivalent→contrRelSingl (λ c c' → c ≅ᴰ⟨ URGStr.ρ StrA×B (a , b) ⟩ c') ρᴰ uniᴰ c where open URGStrᴰ StrCᴰ
{ "alphanum_fraction": 0.5436548223, "avg_line_length": 31.2698412698, "ext": "agda", "hexsha": "d088c9bb77a3126ac1f372d3fe26182d0fbb0f04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Constant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Constant.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Constant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 791, "size": 1970 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Some basic facts about Spans in some category 𝒞. -- -- For the Category instances for these, you can look at the following modules -- Categories.Category.Construction.Spans -- Categories.Bicategory.Construction.Spans module Categories.Category.Diagram.Span {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (_$_) open import Categories.Diagram.Pullback 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open HomReasoning open Equiv open Pullback private variable A B C D E : Obj -------------------------------------------------------------------------------- -- Spans, and Span morphisms infixr 9 _∘ₛ_ record Span (X Y : Obj) : Set (o ⊔ ℓ) where field M : Obj dom : M ⇒ X cod : M ⇒ Y open Span id-span : Span A A id-span {A} = record { M = A ; dom = id ; cod = id } record Span⇒ {X Y} (f g : Span X Y) : Set (o ⊔ ℓ ⊔ e) where field arr : M f ⇒ M g commute-dom : dom g ∘ arr ≈ dom f commute-cod : cod g ∘ arr ≈ cod f open Span⇒ id-span⇒ : ∀ {f : Span A B} → Span⇒ f f id-span⇒ = record { arr = id ; commute-dom = identityʳ ; commute-cod = identityʳ } _∘ₛ_ : ∀ {f g h : Span A B} → (α : Span⇒ g h) → (β : Span⇒ f g) → Span⇒ f h _∘ₛ_ {f = f} {g = g} {h = h} α β = record { arr = arr α ∘ arr β ; commute-dom = begin dom h ∘ arr α ∘ arr β ≈⟨ pullˡ (commute-dom α) ⟩ dom g ∘ arr β ≈⟨ commute-dom β ⟩ dom f ∎ ; commute-cod = begin cod h ∘ arr α ∘ arr β ≈⟨ pullˡ (commute-cod α) ⟩ cod g ∘ arr β ≈⟨ commute-cod β ⟩ cod f ∎ } -------------------------------------------------------------------------------- -- Span Compositions module Compositions (_×ₚ_ : ∀ {X Y Z} (f : X ⇒ Z) → (g : Y ⇒ Z) → Pullback f g) where _⊚₀_ : Span B C → Span A B → Span A C f ⊚₀ g = let g×ₚf = (cod g) ×ₚ (dom f) in record { M = P g×ₚf ; dom = dom g ∘ p₁ g×ₚf ; cod = cod f ∘ p₂ g×ₚf } _⊚₁_ : {f f′ : Span B C} {g g′ : Span A B} → Span⇒ f f′ → Span⇒ g g′ → Span⇒ (f ⊚₀ g) (f′ ⊚₀ g′) _⊚₁_ {f = f} {f′ = f′} {g = g} {g′ = g′} α β = let pullback = (cod g) ×ₚ (dom f) pullback′ = (cod g′) ×ₚ (dom f′) in record { arr = universal pullback′ {h₁ = arr β ∘ p₁ pullback} {h₂ = arr α ∘ p₂ pullback} $ begin cod g′ ∘ arr β ∘ p₁ pullback ≈⟨ pullˡ (commute-cod β) ⟩ cod g ∘ p₁ pullback ≈⟨ commute pullback ⟩ dom f ∘ p₂ pullback ≈⟨ pushˡ (⟺ (commute-dom α)) ⟩ dom f′ ∘ arr α ∘ p₂ pullback ∎ ; commute-dom = begin (dom g′ ∘ p₁ pullback′) ∘ universal pullback′ _ ≈⟨ pullʳ (p₁∘universal≈h₁ pullback′) ⟩ dom g′ ∘ arr β ∘ p₁ pullback ≈⟨ pullˡ (commute-dom β) ⟩ dom g ∘ p₁ pullback ∎ ; commute-cod = begin (cod f′ ∘ p₂ pullback′) ∘ universal pullback′ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback′) ⟩ cod f′ ∘ arr α ∘ p₂ pullback ≈⟨ pullˡ (commute-cod α) ⟩ cod f ∘ p₂ pullback ∎ }
{ "alphanum_fraction": 0.504931594, "avg_line_length": 28.8348623853, "ext": "agda", "hexsha": "0573208c7a2252bd2070d9da27dd06e3b3131806", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Diagram/Span.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Diagram/Span.agda", "max_line_length": 98, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Diagram/Span.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1199, "size": 3143 }
------------------------------------------------------------------------------ -- Issue in the translation of definitions using λ-terms. ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Issue2b where postulate D : Set _≡_ : D → D → Set -- The translations of foo₁ and foo₂ should be the same. foo₁ : D → D → D foo₁ d _ = d {-# ATP definition foo₁ #-} foo₂ : D → D → D foo₂ = λ d _ → d {-# ATP definition foo₂ #-} postulate bar₁ : ∀ d e → d ≡ foo₁ d e {-# ATP prove bar₁ #-} postulate bar₂ : ∀ d e → d ≡ foo₂ d e {-# ATP prove bar₂ #-}
{ "alphanum_fraction": 0.4451783355, "avg_line_length": 25.2333333333, "ext": "agda", "hexsha": "4754b46622514063fed6795f0b2fe031ad7808ea", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "issues/Issue2/Issue2b.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "issues/Issue2/Issue2b.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "issues/Issue2/Issue2b.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 181, "size": 757 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.Ring {r₁ r₂} (R : Ring r₁ r₂) where import Algebra.Properties.AbelianGroup as AGP open import Function import Relation.Binary.Reasoning.Setoid as EqR open Ring R open EqR setoid open AGP +-abelianGroup public renaming ( ⁻¹-involutive to -‿involutive ; left-identity-unique to +-left-identity-unique ; right-identity-unique to +-right-identity-unique ; identity-unique to +-identity-unique ; left-inverse-unique to +-left-inverse-unique ; right-inverse-unique to +-right-inverse-unique ; ⁻¹-∙-comm to -‿+-comm ) -‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y) -‿*-distribˡ x y = begin - x * y ≈⟨ sym $ +-identityʳ _ ⟩ - x * y + 0# ≈⟨ +-congˡ $ sym (-‿inverseʳ _) ⟩ - x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩ - x * y + x * y + - (x * y) ≈⟨ +-congʳ $ sym (distribʳ _ _ _) ⟩ (- x + x) * y + - (x * y) ≈⟨ +-congʳ $ *-congʳ $ -‿inverseˡ _ ⟩ 0# * y + - (x * y) ≈⟨ +-congʳ $ zeroˡ _ ⟩ 0# + - (x * y) ≈⟨ +-identityˡ _ ⟩ - (x * y) ∎ -‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y) -‿*-distribʳ x y = begin x * - y ≈⟨ sym $ +-identityˡ _ ⟩ 0# + x * - y ≈⟨ +-congʳ $ sym (-‿inverseˡ _) ⟩ - (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩ - (x * y) + (x * y + x * - y) ≈⟨ +-congˡ $ sym (distribˡ _ _ _) ⟩ - (x * y) + x * (y + - y) ≈⟨ +-congˡ $ *-congˡ $ -‿inverseʳ _ ⟩ - (x * y) + x * 0# ≈⟨ +-congˡ $ zeroʳ _ ⟩ - (x * y) + 0# ≈⟨ +-identityʳ _ ⟩ - (x * y) ∎
{ "alphanum_fraction": 0.4161968221, "avg_line_length": 38.2549019608, "ext": "agda", "hexsha": "5ba6b3b505e41168156aa3592c5dd07ac506118c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Ring.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Ring.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 742, "size": 1951 }
open import FRP.JS.Bool using ( Bool ) open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; ⟨_⟩ ; _⇒_ ) open import FRP.JS.Behaviour using ( Beh ; map2 ) open import FRP.JS.Event using ( Evt ; ∅ ; _∪_ ; map ) open import FRP.JS.Product using ( _∧_ ; _,_ ) open import FRP.JS.String using ( String ) module FRP.JS.DOM where infixr 2 _≟*_ infixr 4 _++_ _+++_ postulate Mouse Keyboard : RSet EventType : RSet → Set click : EventType Mouse press : EventType Keyboard {-# COMPILED_JS click "click" #-} {-# COMPILED_JS press "press" #-} postulate DOW : Set unattached : DOW left right : DOW → DOW child : String → DOW → DOW events : ∀ {A} → EventType A → DOW → ⟦ Evt A ⟧ {-# COMPILED_JS unattached require("agda.frp").unattached() #-} {-# COMPILED_JS left function(w) { return w.left(); } #-} {-# COMPILED_JS right function(w) { return w.right(); } #-} {-# COMPILED_JS child function(a) { return function(w) { return w.child(a); }; } #-} {-# COMPILED_JS events function(A) { return function(t) { return function(w) { return function(s) { return w.events(t); }; }; }; } #-} postulate DOM : DOW → RSet text : ∀ {w} → ⟦ Beh ⟨ String ⟩ ⇒ Beh (DOM w) ⟧ attr : ∀ {w} → String → ⟦ Beh ⟨ String ⟩ ⇒ Beh (DOM w) ⟧ element : ∀ a {w} → ⟦ Beh (DOM (child a w)) ⇒ Beh (DOM w) ⟧ [] : ∀ {w} → ⟦ Beh (DOM w) ⟧ _++_ : ∀ {w} → ⟦ Beh (DOM (left w)) ⇒ Beh (DOM (right w)) ⇒ Beh (DOM w) ⟧ {-# COMPILED_JS attr function(w) { return function(k) { return function(s) { return function(b) { return b.attribute(k); }; }; }; } #-} {-# COMPILED_JS text function(w) { return function(s) { return function(b) { return b.text(); }; }; } #-} {-# COMPILED_JS element function(a) { return function(w) { return function(s) { return function(b) { return w.element(a,b); }; }; }; } #-} {-# COMPILED_JS [] function(w) { return require("agda.frp").empty; } #-} {-# COMPILED_JS _++_ function(w) { return function(s) { return function(a) { return function(b) { return a.concat(b); }; }; }; } #-} listen : ∀ {A w} → EventType A → ⟦ Beh (DOM w) ⇒ Evt A ⟧ listen {A} {w} t b = events t w {-# COMPILED_JS listen function(A) { return function(w) { return function(t) { return function(s) { return function(b) { return w.events(t); }; }; }; }; } #-} private postulate _≟_ : ∀ {w} → ⟦ DOM w ⇒ DOM w ⇒ ⟨ Bool ⟩ ⟧ {-# COMPILED_JS _≟_ function(w) { return function(s) { return function(a) { return function(b) { return a.equals(b); }; }; }; } #-} _≟*_ : ∀ {w} → ⟦ Beh (DOM w) ⇒ Beh (DOM w) ⇒ Beh ⟨ Bool ⟩ ⟧ _≟*_ = map2 _≟_ [+] : ∀ {A w} → ⟦ Beh (DOM w) ∧ Evt A ⟧ [+] = ([] , ∅) _+++_ : ∀ {A w} → ⟦ (Beh (DOM (left w)) ∧ Evt A) ⇒ (Beh (DOM (right w)) ∧ Evt A) ⇒ (Beh (DOM w) ∧ Evt A) ⟧ (dom₁ , evt₁) +++ (dom₂ , evt₂) = ((dom₁ ++ dom₂) , (evt₁ ∪ evt₂)) text+ : ∀ {A w} → ⟦ Beh ⟨ String ⟩ ⇒ (Beh (DOM w) ∧ Evt A) ⟧ text+ msg = (text msg , ∅) attr+ : ∀ {A w} → String → ⟦ Beh ⟨ String ⟩ ⇒ (Beh (DOM w) ∧ Evt A) ⟧ attr+ key val = (attr key val , ∅) element+ : ∀ a {A w} → ⟦ (Beh (DOM (child a w)) ∧ Evt A) ⇒ (Beh (DOM w) ∧ Evt A) ⟧ element+ a (dom , evt) = (element a dom , evt) listen+ : ∀ {A B w} → EventType A → ⟦ A ⇒ B ⟧ → ⟦ (Beh (DOM w) ∧ Evt B) ⇒ (Beh (DOM w) ∧ Evt B) ⟧ listen+ t f (dom , evt) = (dom , map f (listen t dom) ∪ evt)
{ "alphanum_fraction": 0.5619578686, "avg_line_length": 40.35, "ext": "agda", "hexsha": "5661625be5b4b83dd470abc54d66ecec08d67f47", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/DOM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/DOM.agda", "max_line_length": 158, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/DOM.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 1185, "size": 3228 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Homomorphisms.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Isomorphisms.Definition {a b c d : _} {A : Set a} {S : Setoid {a} {b} A} {_+1_ _*1_ : A → A → A} (R1 : Ring S _+1_ _*1_) {B : Set c} {T : Setoid {c} {d} B} {_+2_ _*2_ : B → B → B} (R2 : Ring T _+2_ _*2_) where record RingIso (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where field ringHom : RingHom R1 R2 f bijective : SetoidBijection S T f record RingsIsomorphic : Set (a ⊔ b ⊔ c ⊔ d) where field f : A → B iso : RingIso f
{ "alphanum_fraction": 0.6193353474, "avg_line_length": 33.1, "ext": "agda", "hexsha": "8f0e02ffed98ea0b063f21628967b5842b464127", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Isomorphisms/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Isomorphisms/Definition.agda", "max_line_length": 222, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Isomorphisms/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 263, "size": 662 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.SymmetricGroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ ; suc ; zero) open import Cubical.Data.Fin using (Fin ; isSetFin) open import Cubical.Data.Empty open import Cubical.Relation.Nullary using (¬_) open import Cubical.Algebra.Group private variable ℓ : Level Symmetric-Group : (X : Type ℓ) → isSet X → Group {ℓ} Symmetric-Group X isSetX = makeGroup (idEquiv X) compEquiv invEquiv (isOfHLevel≃ 2 isSetX isSetX) compEquiv-assoc compEquivEquivId compEquivIdEquiv invEquiv-is-rinv invEquiv-is-linv -- Finite symmetrics groups Sym : ℕ → Group Sym n = Symmetric-Group (Fin n) isSetFin
{ "alphanum_fraction": 0.7725060827, "avg_line_length": 30.4444444444, "ext": "agda", "hexsha": "70cfc37f3bee72336a2fa54a9d9d16343749cad0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 251, "size": 822 }
module Issue258 where data D (A : Set) : Set where d : D A foo : Set → Set foo A with d {A} foo A | p = A
{ "alphanum_fraction": 0.5765765766, "avg_line_length": 11.1, "ext": "agda", "hexsha": "2a18ffc122b0e1f187ca7a3ef8e70e00f8498886", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue258.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue258.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue258.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 111 }
module Structure.Operator.Properties where import Lvl open import Functional open import Lang.Instance open import Logic open import Logic.Predicate open import Logic.Propositional import Structure.Operator.Names as Names open import Structure.Setoid open import Syntax.Function open import Type private variable ℓ ℓₑ ℓ₁ ℓ₂ ℓ₃ ℓₑ₁ ℓₑ₂ ℓₑ₃ : Lvl.Level module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₁ → T₂) where record Commutativity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Commutativity(_▫_) commutativity = inst-fn Commutativity.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (id : T₁) where record Identityₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Identityₗ(_▫_)(id) identityₗ = inst-fn Identityₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (null : T₂) where record Absorberᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Absorberᵣ(_▫_)(null) absorberᵣ = inst-fn Absorberᵣ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} (_▫_ : T₁ → T₂ → T₁) (id : T₂) where record Identityᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Identityᵣ(_▫_)(id) identityᵣ = inst-fn Identityᵣ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} (_▫_ : T₁ → T₂ → T₁) (null : T₁) where record Absorberₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Absorberₗ(_▫_)(null) absorberₗ = inst-fn Absorberₗ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) (id : T) where record Identity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : Identityₗ(_▫_)(id) instance ⦃ right ⦄ : Identityᵣ(_▫_)(id) identity-left = inst-fn (Identityₗ.proof ∘ Identity.left) identity-right = inst-fn (Identityᵣ.proof ∘ Identity.right) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where record Idempotence : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Idempotence(_▫_) idempotence = inst-fn Idempotence.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) (id : T) where record Absorber : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : Absorberₗ(_▫_)(id) instance ⦃ right ⦄ : Absorberᵣ(_▫_)(id) absorber-left = inst-fn (Absorberₗ.proof ∘ Absorber.left) absorber-right = inst-fn (Absorberᵣ.proof ∘ Absorber.right) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identityₗ : ∃(Identityₗ(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where record InverseElementₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseElementₗ(_▫_)([∃]-witness identityₗ)(x)(inv) inverseElementₗ = inst-fn InverseElementₗ.proof InvertibleElementₗ = ∃(InverseElementₗ) module _ (inv : T → T) where record InverseFunctionₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionₗ(_▫_)([∃]-witness identityₗ)(inv) inverseFunctionₗ = inst-fn InverseFunctionₗ.proof Invertibleₗ = ∃(InverseFunctionₗ) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identityᵣ : ∃(Identityᵣ(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where record InverseElementᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseElementᵣ(_▫_)([∃]-witness identityᵣ)(x)(inv) inverseElementᵣ = inst-fn InverseElementᵣ.proof InvertibleElementᵣ = ∃(InverseElementᵣ) module _ (inv : T → T) where record InverseFunctionᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionᵣ(_▫_)([∃]-witness identityᵣ)(inv) inverseFunctionᵣ = inst-fn InverseFunctionᵣ.proof Invertibleᵣ = ∃(InverseFunctionᵣ) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identity : ∃(Identity(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where InverseElement : Stmt InverseElement = InverseElementₗ(_▫_) ⦃ [∃]-map-proof Identity.left identity ⦄ (x)(inv) ∧ InverseElementᵣ(_▫_) ⦃ [∃]-map-proof Identity.right identity ⦄ (x)(inv) InvertibleElement = ∃(InverseElement) module _ (inv : T → T) where import Logic.IntroInstances record InverseFunction : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : InverseFunctionₗ(_▫_) ⦃ [∃]-map-proof Identity.left identity ⦄ (inv) instance ⦃ right ⦄ : InverseFunctionᵣ(_▫_) ⦃ [∃]-map-proof Identity.right identity ⦄ (inv) inverseFunction-left = inst-fn (InverseFunctionₗ.proof ∘ InverseFunction.left) inverseFunction-right = inst-fn (InverseFunctionᵣ.proof ∘ InverseFunction.right) Invertible = ∃(InverseFunction) -- TODO: Add some kind of inverse function module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorberₗ : ∃(Absorberₗ(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunctionₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionₗ(_▫_)([∃]-witness absorberₗ)(opp) oppositeFunctionₗ = inst-fn ComplementFunctionₗ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorberᵣ : ∃(Absorberᵣ(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunctionᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionᵣ(_▫_)([∃]-witness absorberᵣ)(opp) oppositeFunctionᵣ = inst-fn ComplementFunctionᵣ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorber : ∃(Absorber(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunction : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : ComplementFunctionₗ(_▫_) ⦃ [∃]-map-proof Absorber.left absorber ⦄ (opp) instance ⦃ right ⦄ : ComplementFunctionᵣ(_▫_) ⦃ [∃]-map-proof Absorber.right absorber ⦄ (opp) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where record Associativity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Associativity(_▫_) associativity = inst-fn Associativity.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₁ → T₂ → T₂) (_▫₂_ : T₂ → T₂ → T₂) where record Distributivityₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Distributivityₗ(_▫₁_)(_▫₂_) distributivityₗ = inst-fn Distributivityₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₂ → T₁ → T₂) (_▫₂_ : T₂ → T₂ → T₂) where record Distributivityᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Distributivityᵣ(_▫₁_)(_▫₂_) distributivityᵣ = inst-fn Distributivityᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ (_▫_ : T₁ → T₂ → T₃) where record Cancellationₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₑ₃} where constructor intro field proof : Names.Cancellationₗ(_▫_) cancellationₗ = inst-fn Cancellationₗ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ (_▫_ : T₁ → T₂ → T₃) where record Cancellationᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₃} where constructor intro field proof : Names.Cancellationᵣ(_▫_) cancellationᵣ = inst-fn Cancellationᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ (_▫₁_ : T₁ → T₃ → T₁) (_▫₂_ : T₁ → T₂ → T₃) where record Absorptionₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Absorptionₗ(_▫₁_)(_▫₂_) absorptionₗ = inst-fn Absorptionₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₃ → T₂ → T₂) (_▫₂_ : T₁ → T₂ → T₃) where record Absorptionᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Absorptionᵣ(_▫₁_)(_▫₂_) absorptionᵣ = inst-fn Absorptionᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₁ → T₂ → T₃) (_▫₂_ : T₁ → T₃ → T₂) where record InverseOperatorₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.InverseOperatorₗ(_▫₁_)(_▫₂_) inverseOperₗ = inst-fn InverseOperatorₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ (_▫₁_ : T₁ → T₂ → T₃) (_▫₂_ : T₃ → T₂ → T₁) where record InverseOperatorᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.InverseOperatorᵣ(_▫₁_)(_▫₂_) inverseOperᵣ = inst-fn InverseOperatorᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (inv : T₁ → T₁) where InversePropertyₗ = InverseOperatorₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b) module InversePropertyₗ = InverseOperatorₗ{_▫₁_ = _▫_}{_▫₂_ = a ↦ b ↦ inv(a) ▫ b} inversePropₗ = inverseOperₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₂ → T₁ → T₂) (inv : T₁ → T₁) where InversePropertyᵣ = InverseOperatorᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b)) module InversePropertyᵣ = InverseOperatorᵣ{_▫₁_ = _▫_}{_▫₂_ = a ↦ b ↦ a ▫ inv(b)} inversePropᵣ = inverseOperᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b)) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₁ → T₂) where record Central(x : T₁) : Stmt{ℓ₁ Lvl.⊔ ℓₑ₂} where constructor intro field proof : ∀{y : T₁} → (x ▫ y ≡ y ▫ x)
{ "alphanum_fraction": 0.6374729384, "avg_line_length": 47.4859813084, "ext": "agda", "hexsha": "19a1cd2898cf8da43aba6107e1fb956cd7d97f1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Properties.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4639, "size": 10162 }
open import Common.Prelude open import TestHarness module TestBool where not : Bool → Bool not true = false not false = true {-# COMPILED_JS not function (x) { return !x; } #-} _∧_ : Bool → Bool → Bool true ∧ x = x false ∧ x = false {-# COMPILED_JS _∧_ function (x) { return function (y) { return x && y; }; } #-} _∨_ : Bool → Bool → Bool true ∨ x = true false ∨ x = x {-# COMPILED_JS _∨_ function (x) { return function (y) { return x || y; }; } #-} _↔_ : Bool → Bool → Bool true ↔ true = true false ↔ false = true _ ↔ _ = false {-# COMPILED_JS _↔_ function (x) { return function (y) { return x === y; }; } #-} tests : Tests tests _ = ( assert true "tt" , assert (not false) "!ff" , assert (true ∧ true) "tt∧tt" , assert (not (true ∧ false)) "!(tt∧ff)" , assert (not (false ∧ false)) "!(ff∧ff)" , assert (not (false ∧ true)) "!(ff∧tt)" , assert (true ∨ true) "tt∨tt" , assert (true ∨ false) "tt∨ff" , assert (false ∨ true) "ff∨tt" , assert (not (false ∨ false)) "!(ff∧ff)" , assert (true ↔ true) "tt=tt" , assert (not (true ↔ false)) "tt≠ff" , assert (not (false ↔ true)) "ff≠tt" , assert (false ↔ false) "ff=ff" )
{ "alphanum_fraction": 0.5549958018, "avg_line_length": 27.0681818182, "ext": "agda", "hexsha": "35bf861a11eef20e0b78f7f464aa1e5300f88156", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/js/TestBool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/js/TestBool.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/js/TestBool.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 428, "size": 1191 }
module AllStdLib where -- Ensure that the entire standard library is compiled. import README open import Data.Unit.Polymorphic using (⊤) open import Data.String open import IO using (putStrLn; run) open import IO.Primitive using (IO; _>>=_) import DivMod import HelloWorld import HelloWorldPrim import ShowNat import TrustMe import Vec import dimensions infixr 1 _>>_ _>>_ : ∀ {A B : Set} → IO A → IO B → IO B m >> m₁ = m >>= λ _ → m₁ main : IO ⊤ main = do run (putStrLn "Hello World!") DivMod.main HelloWorld.main HelloWorldPrim.main ShowNat.main TrustMe.main Vec.main dimensions.main
{ "alphanum_fraction": 0.7203947368, "avg_line_length": 17.8823529412, "ext": "agda", "hexsha": "92f5e8d2ef197db79b19b6224155c8a5b42fc84d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/AllStdLib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/AllStdLib.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/AllStdLib.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 180, "size": 608 }
module rummy where open import Data.Nat -- The suit type data Suit : Set where ♣ : Suit ♢ : Suit ♥ : Suit ♠ : Suit -- A card consists of a value and a suite. data Card : ℕ → Suit → Set where _of_ : (n : ℕ) (s : Suit) → Card n s -- Common names for cards A : ℕ; A = 1 K : ℕ; K = 13 Q : ℕ; Q = 12 J : ℕ; J = 11 -- -- The clubs suit -- A♣ : Card A ♣; A♣ = A of ♣ 2♣ : Card 2 ♣; 2♣ = 2 of ♣ 3♣ : Card 3 ♣; 3♣ = 3 of ♣ 4♣ : Card 4 ♣; 4♣ = 4 of ♣ 5♣ : Card 5 ♣; 5♣ = 5 of ♣ 6♣ : Card 6 ♣; 6♣ = 6 of ♣ 7♣ : Card 7 ♣; 7♣ = 7 of ♣ 8♣ : Card 8 ♣; 8♣ = 8 of ♣ 9♣ : Card 9 ♣; 9♣ = 9 of ♣ 10♣ : Card 10 ♣; 10♣ = 10 of ♣ J♣ : Card J ♣; J♣ = J of ♣ Q♣ : Card Q ♣; Q♣ = Q of ♣ K♣ : Card K ♣; K♣ = K of ♣ -- -- The diamond suit -- A♢ : Card A ♢; A♢ = A of ♢ 2♢ : Card 2 ♢; 2♢ = 2 of ♢ 3♢ : Card 3 ♢; 3♢ = 3 of ♢ 4♢ : Card 4 ♢; 4♢ = 4 of ♢ 5♢ : Card 5 ♢; 5♢ = 5 of ♢ 6♢ : Card 6 ♢; 6♢ = 6 of ♢ 7♢ : Card 7 ♢; 7♢ = 7 of ♢ 8♢ : Card 8 ♢; 8♢ = 8 of ♢ 9♢ : Card 9 ♢; 9♢ = 9 of ♢ 10♢ : Card 10 ♢; 10♢ = 10 of ♢ J♢ : Card J ♢; J♢ = J of ♢ Q♢ : Card Q ♢; Q♢ = Q of ♢ K♢ : Card K ♢; K♢ = K of ♢ -- -- The heart suit -- A♥ : Card A ♥; A♥ = A of ♥ 2♥ : Card 2 ♥; 2♥ = 2 of ♥ 3♥ : Card 3 ♥; 3♥ = 3 of ♥ 4♥ : Card 4 ♥; 4♥ = 4 of ♥ 5♥ : Card 5 ♥; 5♥ = 5 of ♥ 6♥ : Card 6 ♥; 6♥ = 6 of ♥ 7♥ : Card 7 ♥; 7♥ = 7 of ♥ 8♥ : Card 8 ♥; 8♥ = 8 of ♥ 9♥ : Card 9 ♥; 9♥ = 9 of ♥ 10♥ : Card 10 ♥; 10♥ = 10 of ♥ J♥ : Card J ♥; J♥ = J of ♥ Q♥ : Card Q ♥; Q♥ = Q of ♥ K♥ : Card K ♥; K♥ = K of ♥ -- -- The spade suit -- A♠ : Card A ♠; A♠ = A of ♠ 2♠ : Card 2 ♠; 2♠ = 2 of ♠ 3♠ : Card 3 ♠; 3♠ = 3 of ♠ 4♠ : Card 4 ♠; 4♠ = 4 of ♠ 5♠ : Card 5 ♠; 5♠ = 5 of ♠ 6♠ : Card 6 ♠; 6♠ = 6 of ♠ 7♠ : Card 7 ♠; 7♠ = 7 of ♠ 8♠ : Card 8 ♠; 8♠ = 8 of ♠ 9♠ : Card 9 ♠; 9♠ = 9 of ♠ 10♠ : Card 10 ♠; 10♠ = 10 of ♠ J♠ : Card J ♠; J♠ = J of ♠ Q♠ : Card Q ♠; Q♠ = Q of ♠ K♠ : Card K ♠; K♠ = K of ♠ -- A run of length ℓ. data Run (suit : Suit) : (start ℓ : ℕ) → Set where [] : {start : ℕ} → Run suit start 0 _,_ : {n ℓ : ℕ} → Card n suit → Run suit (1 + n) ℓ → Run suit n (1 + ℓ) -- A group of length ℓ. data Group : (value ℓ : ℕ) → Set where [] : {value : ℕ} → Group value 0 _,_ : {suit : Suit} {value ℓ : ℕ} → Card value suit → Group value ℓ → Group value (1 + ℓ) -- Some pretty functions for creating runs. You can create a run as -- follows: -- -- myrun = ⟨ A♣ , 2♣ , 3♣ ⟩ -- ⟨_ : {suit : Suit} {n ℓ : ℕ} → Run suit n ℓ → Run suit n ℓ ⟨ r = r _⟩ : {suit : Suit} {n : ℕ} → Card n suit → Run suit n 1 c ⟩ = c , [] -- Some pretty functions for creating groups. You can create a group -- group as follows: -- -- mygroup = ⟦ A♣ , A♥ , A♢ ⟧ -- ⟦_ : {value ℓ : ℕ} → Group value ℓ → Group value ℓ ⟦ g = g _⟧ : {suit : Suit} {n : ℕ} → Card n suit → Group n 1 c ⟧ = c , [] infixr 2 _⟩ _⟧ _,_ infixl 1 ⟨_ ⟦_ mygroup = ⟦ A♣ , A♣ , A♠ ⟧ myrun = ⟨ A♣ , 2♣ , 3♣ ⟩
{ "alphanum_fraction": 0.4134366925, "avg_line_length": 21.0612244898, "ext": "agda", "hexsha": "432adc982b5390270532742d10cb4fdea0751494", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "piyush-kurur/sample-code", "max_forks_repo_path": "agda/rummy.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "piyush-kurur/sample-code", "max_issues_repo_path": "agda/rummy.agda", "max_line_length": 68, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "piyush-kurur/sample-code", "max_stars_repo_path": "agda/rummy.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z", "num_tokens": 1781, "size": 3096 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Standard.Data.These where open import Light.Library.Data.These using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where open import Data.These using (These ; this ; that ; these) public
{ "alphanum_fraction": 0.7435897436, "avg_line_length": 31.2, "ext": "agda", "hexsha": "d41f58bdc1f4765c6c804a373250f655cf1e1e19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/These.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/These.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/These.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 88, "size": 468 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids module Setoids.Subset {a b : _} {A : Set a} (S : Setoid {a} {b} A) where open Setoid S open Equivalence eq subset : {c : _} (pred : A → Set c) → Set (a ⊔ b ⊔ c) subset pred = ({x y : A} → x ∼ y → pred x → pred y) subsetSetoid : {c : _} {pred : A → Set c} → (subs : subset pred) → Setoid (Sg A pred) Setoid._∼_ (subsetSetoid subs) (x , predX) (y , predY) = Setoid._∼_ S x y Equivalence.reflexive (Setoid.eq (subsetSetoid subs)) {a , b} = reflexive Equivalence.symmetric (Setoid.eq (subsetSetoid subs)) {a , prA} {b , prB} x = symmetric x Equivalence.transitive (Setoid.eq (subsetSetoid subs)) {a , prA} {b , prB} {c , prC} x y = transitive x y
{ "alphanum_fraction": 0.6596244131, "avg_line_length": 40.5714285714, "ext": "agda", "hexsha": "20b11bf6c3192be0fbbf5256593cad4815ac6fd5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Subset.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Subset.agda", "max_line_length": 105, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Subset.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 305, "size": 852 }
------------------------------------------------------------------------------ -- Equality reasoning on FOL ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module only re-export the preorder reasoning instanced on the -- propositional equality. module Common.FOL.Relation.Binary.EqReasoning where open import Common.FOL.FOL-Eq using ( _≡_ ; refl ; trans ) import Common.Relation.Binary.PreorderReasoning open module ≡-Reasoning = Common.Relation.Binary.PreorderReasoning _≡_ refl trans public renaming ( _∼⟨_⟩_ to _≡⟨_⟩_ )
{ "alphanum_fraction": 0.5315436242, "avg_line_length": 35.4761904762, "ext": "agda", "hexsha": "8f96203944d48ec1feadad55c7d2f708a3baf637", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Common/FOL/Relation/Binary/EqReasoning.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Common/FOL/Relation/Binary/EqReasoning.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Common/FOL/Relation/Binary/EqReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 151, "size": 745 }
module slots where open import slots.defs open import slots.bruteforce
{ "alphanum_fraction": 0.8219178082, "avg_line_length": 12.1666666667, "ext": "agda", "hexsha": "b470ec313df23f4ab770fd974daca238598bd82e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/slots-agda", "max_forks_repo_path": "src/slots.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/slots-agda", "max_issues_repo_path": "src/slots.agda", "max_line_length": 28, "max_stars_count": null, "max_stars_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/slots-agda", "max_stars_repo_path": "src/slots.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 18, "size": 73 }
{- Definition of the circle as a HIT with a proof that Ω(S¹) ≡ ℤ -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.S1.Base where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (_+_ ; _*_ ; +-assoc ; +-comm) open import Cubical.Data.Int data S¹ : Type₀ where base : S¹ loop : base ≡ base -- Check that transp is the identity function for S¹ module _ where transpS¹ : ∀ (φ : I) (u0 : S¹) → transp (λ _ → S¹) φ u0 ≡ u0 transpS¹ φ u0 = refl compS1 : ∀ (φ : I) (u : ∀ i → Partial φ S¹) (u0 : S¹ [ φ ↦ u i0 ]) → comp (λ _ → S¹) u (outS u0) ≡ hcomp u (outS u0) compS1 φ u u0 = refl helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type₀ ΩS¹ = base ≡ base encode : ∀ x → base ≡ x → helix x encode x p = subst helix p (pos zero) winding : ΩS¹ → Int winding = encode base intLoop : Int → ΩS¹ intLoop (pos zero) = refl intLoop (pos (suc n)) = intLoop (pos n) ∙ loop intLoop (negsuc zero) = sym loop intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop decodeSquare : (n : Int) → PathP (λ i → base ≡ loop i) (intLoop (predInt n)) (intLoop n) decodeSquare (pos zero) i j = loop (i ∨ ~ j) decodeSquare (pos (suc n)) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop k } ) (inS (intLoop (pos n) j)) i decodeSquare (negsuc n) i j = hcomp (λ k → λ { (i = i1) → intLoop (negsuc n) j ; (j = i0) → base ; (j = i1) → loop (i ∨ ~ k) }) (intLoop (negsuc n) j) decode : (x : S¹) → helix x → base ≡ x decode base = intLoop decode (loop i) y j = let n : Int n = unglue (i ∨ ~ i) y in hcomp (λ k → λ { (i = i0) → intLoop (predSuc y k) j ; (i = i1) → intLoop y j ; (j = i0) → base ; (j = i1) → loop i }) (decodeSquare n i j) decodeEncode : (x : S¹) (p : base ≡ x) → decode x (encode x p) ≡ p decodeEncode x p = J (λ y q → decode y (encode y q) ≡ q) (λ _ → refl) p isSetΩS¹ : isSet ΩS¹ isSetΩS¹ p q r s j i = hcomp (λ k → λ { (i = i0) → decodeEncode base p k ; (i = i1) → decodeEncode base q k ; (j = i0) → decodeEncode base (r i) k ; (j = i1) → decodeEncode base (s i) k }) (decode base (isSetInt (winding p) (winding q) (cong winding r) (cong winding s) j i)) -- This proof does not rely on rewriting hcomp with empty systems in -- Int as ghcomp has been implemented! windingIntLoop : (n : Int) → winding (intLoop n) ≡ n windingIntLoop (pos zero) = refl windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n)) windingIntLoop (negsuc zero) = refl windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n)) ΩS¹≡Int : ΩS¹ ≡ Int ΩS¹≡Int = isoToPath (iso winding intLoop windingIntLoop (decodeEncode base)) -- intLoop and winding are group homomorphisms private intLoop-sucInt : (z : Int) → intLoop (sucInt z) ≡ intLoop z ∙ loop intLoop-sucInt (pos n) = refl intLoop-sucInt (negsuc zero) = sym (lCancel loop) intLoop-sucInt (negsuc (suc n)) = rUnit (intLoop (negsuc n)) ∙ (λ i → intLoop (negsuc n) ∙ lCancel loop (~ i)) ∙ assoc (intLoop (negsuc n)) (sym loop) loop intLoop-predInt : (z : Int) → intLoop (predInt z) ≡ intLoop z ∙ sym loop intLoop-predInt (pos zero) = lUnit (sym loop) intLoop-predInt (pos (suc n)) = rUnit (intLoop (pos n)) ∙ (λ i → intLoop (pos n) ∙ (rCancel loop (~ i))) ∙ assoc (intLoop (pos n)) loop (sym loop) intLoop-predInt (negsuc n) = refl intLoop-hom : (a b : Int) → (intLoop a) ∙ (intLoop b) ≡ intLoop (a + b) intLoop-hom a (pos zero) = sym (rUnit (intLoop a)) intLoop-hom a (pos (suc n)) = assoc (intLoop a) (intLoop (pos n)) loop ∙ (λ i → (intLoop-hom a (pos n) i) ∙ loop) ∙ sym (intLoop-sucInt (a + pos n)) intLoop-hom a (negsuc zero) = sym (intLoop-predInt a) intLoop-hom a (negsuc (suc n)) = assoc (intLoop a) (intLoop (negsuc n)) (sym loop) ∙ (λ i → (intLoop-hom a (negsuc n) i) ∙ (sym loop)) ∙ sym (intLoop-predInt (a + negsuc n)) winding-hom : (a b : ΩS¹) → winding (a ∙ b) ≡ (winding a) + (winding b) winding-hom a b i = hcomp (λ t → λ { (i = i0) → winding (decodeEncode base a t ∙ decodeEncode base b t) ; (i = i1) → windingIntLoop (winding a + winding b) t }) (winding (intLoop-hom (winding a) (winding b) i)) -- Based homotopy group basedΩS¹ : (x : S¹) → Type₀ basedΩS¹ x = x ≡ x -- Proof that the homotopy group is actually independent on the basepoint -- first, give a quasi-inverse to the basechange basedΩS¹→ΩS¹ for any loop i -- (which does *not* match at endpoints) private ΩS¹→basedΩS¹-filler : I → I → ΩS¹ → I → S¹ ΩS¹→basedΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ t) ; (j = i1) → loop (i ∧ t) }) (inS (x j)) l basedΩS¹→ΩS¹-filler : (_ i : I) → basedΩS¹ (loop i) → I → S¹ basedΩS¹→ΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ (~ t)) ; (j = i1) → loop (i ∧ (~ t)) }) (inS (x j)) l ΩS¹→basedΩS¹ : (i : I) → ΩS¹ → basedΩS¹ (loop i) ΩS¹→basedΩS¹ i x j = ΩS¹→basedΩS¹-filler i1 i x j basedΩS¹→ΩS¹ : (i : I) → basedΩS¹ (loop i) → ΩS¹ basedΩS¹→ΩS¹ i x j = basedΩS¹→ΩS¹-filler i1 i x j basedΩS¹→ΩS¹→basedΩS¹ : (i : I) → (x : basedΩS¹ (loop i)) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) ≡ x basedΩS¹→ΩS¹→basedΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → basedΩS¹→ΩS¹-filler (~ t) i x k ; (j = i0) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) k ; (k = i0) → loop (i ∧ (t ∨ (~ j))) ; (k = i1) → loop (i ∧ (t ∨ (~ j))) }) (ΩS¹→basedΩS¹-filler (~ j) i (basedΩS¹→ΩS¹ i x) k) ΩS¹→basedΩS¹→ΩS¹ : (i : I) → (x : ΩS¹) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) ≡ x ΩS¹→basedΩS¹→ΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → ΩS¹→basedΩS¹-filler (~ t) i x k ; (j = i0) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) k ; (k = i0) → loop (i ∧ ((~ t) ∧ j)) ; (k = i1) → loop (i ∧ ((~ t) ∧ j)) }) (basedΩS¹→ΩS¹-filler (~ j) i (ΩS¹→basedΩS¹ i x) k) -- from the existence of our quasi-inverse, we deduce that the basechange is an equivalence -- for all loop i basedΩS¹→ΩS¹-isequiv : (i : I) → isEquiv (basedΩS¹→ΩS¹ i) basedΩS¹→ΩS¹-isequiv i = isoToIsEquiv (iso (basedΩS¹→ΩS¹ i) (ΩS¹→basedΩS¹ i) (ΩS¹→basedΩS¹→ΩS¹ i) (basedΩS¹→ΩS¹→basedΩS¹ i)) -- now extend the basechange so that both ends match -- (and therefore we get a basechange for any x : S¹) private loop-conjugation : basedΩS¹→ΩS¹ i1 ≡ λ x → x loop-conjugation i x = let p = (doubleCompPath-elim loop x (sym loop)) ∙ (λ i → (lUnit loop i ∙ x) ∙ sym loop) in ((sym (decodeEncode base (basedΩS¹→ΩS¹ i1 x))) ∙ (λ t → intLoop (winding (p t))) ∙ (λ t → intLoop (winding-hom (intLoop (pos (suc zero)) ∙ x) (intLoop (negsuc zero)) t)) ∙ (λ t → intLoop ((winding-hom (intLoop (pos (suc zero))) x t) + (windingIntLoop (negsuc zero) t))) ∙ (λ t → intLoop (((windingIntLoop (pos (suc zero)) t) + (winding x)) + (negsuc zero))) ∙ (λ t → intLoop ((+-comm (pos (suc zero)) (winding x) t) + (negsuc zero))) ∙ (λ t → intLoop (+-assoc (winding x) (pos (suc zero)) (negsuc zero) (~ t))) ∙ (decodeEncode base x)) i refl-conjugation : basedΩS¹→ΩS¹ i0 ≡ λ x → x refl-conjugation i x j = hfill (λ t → λ { (j = i0) → base ; (j = i1) → base }) (inS (x j)) (~ i) basechange : (x : S¹) → basedΩS¹ x → ΩS¹ basechange base y = y basechange (loop i) y = hcomp (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (basedΩS¹→ΩS¹ i y) -- for any loop i, the old basechange is equal to the new one basedΩS¹→ΩS¹≡basechange : (i : I) → basedΩS¹→ΩS¹ i ≡ basechange (loop i) basedΩS¹→ΩS¹≡basechange i j y = hfill (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (inS (basedΩS¹→ΩS¹ i y)) j -- so for any loop i, the extended basechange is an equivalence basechange-isequiv-aux : (i : I) → isEquiv (basechange (loop i)) basechange-isequiv-aux i = transport (λ j → isEquiv (basedΩS¹→ΩS¹≡basechange i j)) (basedΩS¹→ΩS¹-isequiv i) -- as being an equivalence is contractible, basechange is an equivalence for all x : S¹ basechange-isequiv : (x : S¹) → isEquiv (basechange x) basechange-isequiv base = basechange-isequiv-aux i0 basechange-isequiv (loop i) = hcomp (λ t → λ { (i = i0) → basechange-isequiv-aux i0 ; (i = i1) → isPropIsEquiv (basechange base) (basechange-isequiv-aux i1) (basechange-isequiv-aux i0) t }) (basechange-isequiv-aux i) basedΩS¹≡ΩS¹ : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹ x = ua (basechange x , basechange-isequiv x) basedΩS¹≡Int : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int x = (basedΩS¹≡ΩS¹ x) ∙ ΩS¹≡Int -- Some tests module _ where private test-winding-pos : winding (intLoop (pos 5)) ≡ pos 5 test-winding-pos = refl test-winding-neg : winding (intLoop (negsuc 5)) ≡ negsuc 5 test-winding-neg = refl -- the inverse when S¹ is seen as a group inv : S¹ → S¹ inv base = base inv (loop i) = loop (~ i) -- rot, used in the Hopf fibration rotLoop : (a : S¹) → a ≡ a rotLoop base = loop rotLoop (loop i) j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k)}) base rot : S¹ → S¹ → S¹ rot base x = x rot (loop i) x = rotLoop x i _*_ : S¹ → S¹ → S¹ a * b = rot a b infixl 30 _*_ -- rot i j = filler-rot i j i1 filler-rot : I → I → I → S¹ filler-rot i j = hfill (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) (inS base) isPropFamS¹ : ∀ {ℓ} (P : S¹ → Type ℓ) (pP : (x : S¹) → isProp (P x)) (b0 : P base) → PathP (λ i → P (loop i)) b0 b0 isPropFamS¹ P pP b0 i = pP (loop i) (transp (λ j → P (loop (i ∧ j))) (~ i) b0) (transp (λ j → P (loop (i ∨ ~ j))) i b0) i rotIsEquiv : (a : S¹) → isEquiv (rot a) rotIsEquiv base = idIsEquiv S¹ rotIsEquiv (loop i) = isPropFamS¹ (λ x → isEquiv (rot x)) (λ x → isPropIsEquiv (rot x)) (idIsEquiv _) i -- more direct definition of the rot (loop i) equivalence rotLoopInv : (a : S¹) → PathP (λ i → rotLoop (rotLoop a (~ i)) i ≡ a) refl refl rotLoopInv a i j = hcomp (λ k → λ { (i = i0) → a; (i = i1) → rotLoop a (j ∧ ~ k); (j = i0) → rotLoop (rotLoop a (~ i)) i; (j = i1) → rotLoop a (i ∧ ~ k)}) (rotLoop (rotLoop a (~ i ∨ j)) i) rotLoopEquiv : (i : I) → S¹ ≃ S¹ rotLoopEquiv i = isoToEquiv (iso (λ a → rotLoop a i) (λ a → rotLoop a (~ i)) (λ a → rotLoopInv a i) (λ a → rotLoopInv a (~ i))) -- some cancellation laws, used in the Hopf fibration private rotInv-aux-1 : I → I → I → I → S¹ rotInv-aux-1 j k i = hfill (λ l → λ { (k = i0) → (loop (i ∧ ~ l)) * loop j ; (k = i1) → loop j ; (i = i0) → (loop k * loop j) * loop (~ k) ; (i = i1) → loop (~ k ∧ ~ l) * loop j }) (inS ((loop (k ∨ i) * loop j) * loop (~ k))) rotInv-aux-2 : I → I → I → S¹ rotInv-aux-2 i j k = hcomp (λ l → λ { (k = i0) → inv (filler-rot (~ i) (~ j) l) ; (k = i1) → loop (j ∧ l) ; (i = i0) → filler-rot k j l ; (i = i1) → loop (j ∧ l) ; (j = i0) → loop (i ∨ k ∨ (~ l)) ; (j = i1) → loop ((i ∨ k) ∧ l) }) (base) rotInv-aux-3 : I → I → I → I → S¹ rotInv-aux-3 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop (k ∨ l) * loop j ; (i = i1) → loop k * (inv (loop (~ j) * loop k)) }) (inS (loop k * (inv (loop (~ j) * loop (k ∨ ~ i))))) rotInv-aux-4 : I → I → I → I → S¹ rotInv-aux-4 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop j * loop (k ∨ l) ; (i = i1) → (inv (loop (~ j) * loop k)) * loop k }) (inS ((inv (loop (~ j) * loop (k ∨ ~ i))) * loop k)) rotInv-1 : (a b : S¹) → b * a * inv b ≡ a rotInv-1 base base i = base rotInv-1 base (loop k) i = rotInv-aux-1 i0 k i i1 rotInv-1 (loop j) base i = loop j rotInv-1 (loop j) (loop k) i = rotInv-aux-1 j k i i1 rotInv-2 : (a b : S¹) → inv b * a * b ≡ a rotInv-2 base base i = base rotInv-2 base (loop k) i = rotInv-aux-1 i0 (~ k) i i1 rotInv-2 (loop j) base i = loop j rotInv-2 (loop j) (loop k) i = rotInv-aux-1 j (~ k) i i1 rotInv-3 : (a b : S¹) → b * (inv (inv a * b)) ≡ a rotInv-3 base base i = base rotInv-3 base (loop k) i = rotInv-aux-3 i0 k (~ i) i1 rotInv-3 (loop j) base i = loop j rotInv-3 (loop j) (loop k) i = rotInv-aux-3 j k (~ i) i1 rotInv-4 : (a b : S¹) → inv (b * inv a) * b ≡ a rotInv-4 base base i = base rotInv-4 base (loop k) i = rotInv-aux-4 i0 k (~ i) i1 rotInv-4 (loop j) base i = loop j rotInv-4 (loop j) (loop k) i = rotInv-aux-4 j k (~ i) i1
{ "alphanum_fraction": 0.5263954998, "avg_line_length": 36.5857519789, "ext": "agda", "hexsha": "eb3464c325c56c9ff0766c2eba57058ebb9b3084", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/S1/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/S1/Base.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/S1/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5576, "size": 13866 }
{-# OPTIONS --no-pattern-matching #-} id : {A : Set} (x : A) → A id x = x data Unit : Set where unit : Unit fail : Unit → Set fail unit = Unit -- Expected error: Pattern matching is disabled
{ "alphanum_fraction": 0.6224489796, "avg_line_length": 16.3333333333, "ext": "agda", "hexsha": "4e2b53e79b54e4b67a584870e53e4913bffa662b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NoPatternMatching.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NoPatternMatching.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NoPatternMatching.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 196 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed module lib.types.Cospan where record Cospan {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor cospan field A : Type i B : Type j C : Type k f : A → C g : B → C record ⊙Cospan {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor ⊙cospan field X : Ptd i Y : Ptd j Z : Ptd k f : fst (X ⊙→ Z) g : fst (Y ⊙→ Z) ⊙cospan-out : ∀ {i j k} → ⊙Cospan {i} {j} {k} → Cospan {i} {j} {k} ⊙cospan-out (⊙cospan X Y Z f g) = cospan (fst X) (fst Y) (fst Z) (fst f) (fst g)
{ "alphanum_fraction": 0.5628834356, "avg_line_length": 21.7333333333, "ext": "agda", "hexsha": "1cd2503d54812e846cd707042cfba5a9e4a48222", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Cospan.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Cospan.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Cospan.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 267, "size": 652 }
{- Constant structure: _ ↦ A -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP private variable ℓ ℓ' : Level -- Structured isomorphisms module _ (A : Type ℓ') where ConstantStructure : Type ℓ → Type ℓ' ConstantStructure _ = A ConstantEquivStr : StrEquiv {ℓ} ConstantStructure ℓ' ConstantEquivStr (_ , a) (_ , a') _ = a ≡ a' constantUnivalentStr : UnivalentStr {ℓ} ConstantStructure ConstantEquivStr constantUnivalentStr e = idEquiv _ constantEquivAction : EquivAction {ℓ} ConstantStructure constantEquivAction e = idEquiv _ constantTransportStr : TransportStr {ℓ} constantEquivAction constantTransportStr e _ = sym (transportRefl _)
{ "alphanum_fraction": 0.7481927711, "avg_line_length": 23.0555555556, "ext": "agda", "hexsha": "7564392224c64a19de331b62f61ebb115811a011", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Constant.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Constant.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Constant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 242, "size": 830 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for standard evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value module Parametric.Denotation.MValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) module Structure where ⟦_⟧ValType : (τ : ValType) → Set ⟦_⟧CompType : (τ : CompType) → Set ⟦ U c ⟧ValType = ⟦ c ⟧CompType ⟦ B ι ⟧ValType = ⟦ base ι ⟧ ⟦ vUnit ⟧ValType = ⊤ ⟦ τ₁ v× τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType × ⟦ τ₂ ⟧ValType ⟦ τ₁ v+ τ₂ ⟧ValType = ⟦ τ₁ ⟧ValType ⊎ ⟦ τ₂ ⟧ValType ⟦ F τ ⟧CompType = ⟦ τ ⟧ValType ⟦ σ ⇛ τ ⟧CompType = ⟦ σ ⟧ValType → ⟦ τ ⟧CompType instance -- This means: Overload ⟦_⟧ to mean ⟦_⟧ValType. meaningOfValType : Meaning ValType meaningOfValType = meaning ⟦_⟧ValType meaningOfCompType : Meaning CompType meaningOfCompType = meaning ⟦_⟧CompType -- We also provide: Environments of values (but not of computations). open import Base.Denotation.Environment ValType ⟦_⟧ValType public using () renaming ( ⟦_⟧Var to ⟦_⟧ValVar ; ⟦_⟧Context to ⟦_⟧ValContext ; meaningOfContext to meaningOfValContext )
{ "alphanum_fraction": 0.6268382353, "avg_line_length": 29.6727272727, "ext": "agda", "hexsha": "23a2adde7eeb41123fcb8ecc31d928009d4a8a29", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Denotation/MValue.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Denotation/MValue.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Denotation/MValue.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 515, "size": 1632 }
-- Logical consistency of IPL open import Library module Consistency (Base : Set) where import Formulas ; open module Form = Formulas Base import Derivations ; open module Der = Derivations Base import NfModelMonad; open module NfM = NfModelMonad Base open Normalization caseTreeMonad using (norm) -- No variable in the empty context. noVar : ∀{A} → Hyp A ε → ⊥ noVar () -- No neutral in the empty context. noNe : ∀{A} → Ne ε A → ⊥ noNe (hyp ()) noNe (impE t u) = noNe t noNe (andE₁ t) = noNe t noNe (andE₂ t) = noNe t -- No normal proof of False in the empty context. noNf : Nf ε False → ⊥ noNf (orE t t₁ t₂) = noNe t noNf (falseE t) = noNe t -- No proof of False in the empty context. consistency : ε ⊢ False → ⊥ consistency = noNf ∘ norm
{ "alphanum_fraction": 0.67578125, "avg_line_length": 21.9428571429, "ext": "agda", "hexsha": "c8920c17001c167a55471698cc15c95504d0dfa0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/Consistency.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/Consistency.agda", "max_line_length": 57, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/Consistency.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 260, "size": 768 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Definition module Sets.FinSet.Definition where data FinSet : (n : ℕ) → Set where fzero : {n : ℕ} → FinSet (succ n) fsucc : {n : ℕ} → FinSet n → FinSet (succ n) fsuccInjective : {n : ℕ} → {a b : FinSet n} → fsucc a ≡ fsucc b → a ≡ b fsuccInjective refl = refl data FinNotEquals : {n : ℕ} → (a b : FinSet (succ n)) → Set where fne2 : (a b : FinSet 2) → ((a ≡ fzero) && (b ≡ fsucc (fzero))) || ((b ≡ fzero) && (a ≡ fsucc (fzero))) → FinNotEquals {1} a b fneN : {n : ℕ} → (a b : FinSet (succ (succ (succ n)))) → (((a ≡ fzero) && (Sg (FinSet (succ (succ n))) (λ c → b ≡ fsucc c))) || ((Sg (FinSet (succ (succ n))) (λ c → a ≡ fsucc c)) && (b ≡ fzero))) || (Sg (FinSet (succ (succ n)) && FinSet (succ (succ n))) (λ t → (a ≡ fsucc (_&&_.fst t)) & (b ≡ fsucc (_&&_.snd t)) & FinNotEquals (_&&_.fst t) (_&&_.snd t))) → FinNotEquals {succ (succ n)} a b
{ "alphanum_fraction": 0.5638629283, "avg_line_length": 53.5, "ext": "agda", "hexsha": "9b50ce0673dcf432cee8b06b9be630da54a0991c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Sets/FinSet/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Sets/FinSet/Definition.agda", "max_line_length": 392, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Sets/FinSet/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 383, "size": 963 }
-- Andreas, 2017-07-28, issue #1126 reported by Saizan is fixed data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} data Unit : Set where unit : Unit slow : ℕ → Unit slow zero = unit slow (suc n) = slow n postulate IO : Set → Set {-# COMPILE GHC IO = type IO #-} {-# BUILTIN IO IO #-} postulate return : ∀ {A} → A → IO A {-# COMPILE GHC return = (\ _ -> return) #-} {-# COMPILE JS return = function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-} {-# FOREIGN OCaml let return _ x world = Lwt.return x #-} {-# COMPILE OCaml return = return #-} force : Unit → IO Unit force unit = return unit n = 3000000000 main : IO Unit main = force (slow n) -- Should terminate instantaneously.
{ "alphanum_fraction": 0.6059431525, "avg_line_length": 19.35, "ext": "agda", "hexsha": "baec1dea216368b39e3d21fea394b7b7618e815f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "test/Compiler/simple/Issue1126.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "test/Compiler/simple/Issue1126.agda", "max_line_length": 105, "max_stars_count": 7, "max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "xekoukou/agda-ocaml", "max_stars_repo_path": "test/Compiler/simple/Issue1126.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 243, "size": 774 }
module Base.Prelude.Pair where open import Base.Free using (Free; pure) data Pair (Shape : Set) (Pos : Shape → Set) (A B : Set) : Set where pair : Free Shape Pos A → Free Shape Pos B → Pair Shape Pos A B pattern Pair′ ma mb = pure (pair ma mb)
{ "alphanum_fraction": 0.6746987952, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "d2d8216ff762111a77715af8c1d423c8f71e1d91", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Prelude/Pair.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Prelude/Pair.agda", "max_line_length": 67, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Prelude/Pair.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 73, "size": 249 }
-- Quicksort {-# OPTIONS --without-K --safe #-} module Algorithms.List.Sort.Quick where -- agda-stdlib open import Level open import Data.List import Data.List.Properties as Listₚ open import Data.Product import Data.Nat as ℕ open import Data.Nat.Induction as Ind open import Relation.Binary as B open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Unary as U import Relation.Unary.Properties as Uₚ open import Function.Base open import Induction.WellFounded private variable a p r : Level module _ {A : Set a} {P : U.Pred A p} (P? : U.Decidable P) where partition₁-defn : ∀ xs → proj₁ (partition P? xs) ≡ filter P? xs partition₁-defn xs = P.cong proj₁ (Listₚ.partition-defn P? xs) partition₂-defn : ∀ xs → proj₂ (partition P? xs) ≡ filter (Uₚ.∁? P?) xs partition₂-defn xs = P.cong proj₂ (Listₚ.partition-defn P? xs) length-partition₁ : ∀ xs → length (proj₁ (partition P? xs)) ℕ.≤ length xs length-partition₁ xs = P.subst (ℕ._≤ length xs) (P.sym $ P.cong length $ partition₁-defn xs) (Listₚ.length-filter P? xs) length-partition₂ : ∀ xs → length (proj₂ (partition P? xs)) ℕ.≤ length xs length-partition₂ xs = P.subst (ℕ._≤ length xs) (P.sym $ P.cong length $ partition₂-defn xs) (Listₚ.length-filter (Uₚ.∁? P?) xs) module Quicksort {A : Set a} {_≤_ : Rel A r} (_≤?_ : B.Decidable _≤_) where split : A → List A → List A × List A split x xs = partition (λ y → y ≤? x) xs _L<_ : Rel (List A) _ _L<_ = ℕ._<_ on length sort-acc : ∀ xs → Acc _L<_ xs → List A sort-acc [] _ = [] sort-acc (x ∷ xs) (acc rs) = sort-acc ys (rs _ (ℕ.s≤s $ length-partition₁ (_≤? x) xs)) ++ [ x ] ++ sort-acc zs (rs _ (ℕ.s≤s $ length-partition₂ (_≤? x) xs)) where splitted = split x xs ys = proj₁ splitted zs = proj₂ splitted L<-wf : WellFounded _L<_ L<-wf = InverseImage.wellFounded length Ind.<-wellFounded -- Quicksort sort : List A → List A sort xs = sort-acc xs (L<-wf xs)
{ "alphanum_fraction": 0.6310160428, "avg_line_length": 29.8115942029, "ext": "agda", "hexsha": "ec4438e7dd443dfb02004d26824668e0fc939c14", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Algorithms/List/Sort/Quick.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Algorithms/List/Sort/Quick.agda", "max_line_length": 75, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Algorithms/List/Sort/Quick.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 693, "size": 2057 }
module F2 where open import Data.Empty open import Data.Unit open import Data.Sum hiding (map; [_,_]) open import Data.Product hiding (map; ,_) open import Function using (flip) open import Relation.Binary.Core using (IsEquivalence; Reflexive; Symmetric; Transitive) open import Relation.Binary open import Groupoid infix 2 _∎ -- equational reasoning infixr 2 _≡⟨_⟩_ -- equational reasoning --------------------------------------------------------------------------- -- Paths -- these are individual paths so to speak -- should we represent a path like swap+ as a family explicitly: -- swap+ : (x : A) -> x ⇛ swapF x -- I guess we can: swap+ : (x : A) -> case x of inj1 -> swap1 x else swap2 x {-- Use pointed types instead of singletons If A={x0,x1,x2}, 1/A has three values: (x0<-x0, x0<-x1, x0<-x2) (x1<-x0, x1<-x1, x1<-x2) (x2<-x0, x2<-x1, x2<-x2) It is a fake choice between x0, x1, and x2 (some negative information). You base yourself at x0 for example and enforce that any other value can be mapped to x0. So think of a value of type 1/A as an uncertainty about which value of A we have. It could be x0, x1, or x2 but at the end it makes no difference. There is no choice. You can manipulate a value of type 1/A (x0<-x0, x0<-x1, x0<-x2) by with a path to some arbitrary path to b0 for example: (b0<-x0<-x0, b0<-x0<-x1, b0<-x0<-x2) eta_3 will give (x0<-x0, x0<-x1, x0<-x2, x0) for example but any other combination is equivalent. epsilon_3 will take (x0<-x0, x0<-x1, x0<-x2) and one actual xi which is now certain; we can resolve our previous uncertainty by following the path from xi to x0 thus eliminating the fake choice we seemed to have. Explain connection to negative information. Knowing head or tails is 1 bits. Giving you a choice between heads and tails and then cooking this so that heads=tails takes away your choice. --} data _⇛_ : {A B : Set} → (x : A) → (y : B) → Set₁ where -- + unite₊⇛ : {A : Set} {x : A} → _⇛_ {⊥ ⊎ A} {A} (inj₂ x) x uniti₊⇛ : {A : Set} {x : A} → _⇛_ {A} {⊥ ⊎ A} x (inj₂ x) swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x) swap₂₊⇛ : {A B : Set} {y : B} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₂ y) (inj₁ y) assocl₁₊⇛ : {A B C : Set} {x : A} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₁ x) (inj₁ (inj₁ x)) assocl₂₁₊⇛ : {A B C : Set} {y : B} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₂ (inj₁ y)) (inj₁ (inj₂ y)) assocl₂₂₊⇛ : {A B C : Set} {z : C} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₂ (inj₂ z)) (inj₂ z) assocr₁₁₊⇛ : {A B C : Set} {x : A} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₁ (inj₁ x)) (inj₁ x) assocr₁₂₊⇛ : {A B C : Set} {y : B} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₁ (inj₂ y)) (inj₂ (inj₁ y)) assocr₂₊⇛ : {A B C : Set} {z : C} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₂ z) (inj₂ (inj₂ z)) -- * unite⋆⇛ : {A : Set} {x : A} → _⇛_ {⊤ × A} {A} (tt , x) x uniti⋆⇛ : {A : Set} {x : A} → _⇛_ {A} {⊤ × A} x (tt , x) swap⋆⇛ : {A B : Set} {x : A} {y : B} → _⇛_ {A × B} {B × A} (x , y) (y , x) assocl⋆⇛ : {A B C : Set} {x : A} {y : B} {z : C} → _⇛_ {A × (B × C)} {(A × B) × C} (x , (y , z)) ((x , y) , z) assocr⋆⇛ : {A B C : Set} {x : A} {y : B} {z : C} → _⇛_ {(A × B) × C} {A × (B × C)} ((x , y) , z) (x , (y , z)) -- distributivity dist₁⇛ : {A B C : Set} {x : A} {z : C} → _⇛_ {(A ⊎ B) × C} {(A × C) ⊎ (B × C)} (inj₁ x , z) (inj₁ (x , z)) dist₂⇛ : {A B C : Set} {y : B} {z : C} → _⇛_ {(A ⊎ B) × C} {(A × C) ⊎ (B × C)} (inj₂ y , z) (inj₂ (y , z)) factor₁⇛ : {A B C : Set} {x : A} {z : C} → _⇛_ {(A × C) ⊎ (B × C)} {(A ⊎ B) × C} (inj₁ (x , z)) (inj₁ x , z) factor₂⇛ : {A B C : Set} {y : B} {z : C} → _⇛_ {(A × C) ⊎ (B × C)} {(A ⊎ B) × C} (inj₂ (y , z)) (inj₂ y , z) dist0⇛ : {A : Set} {• : ⊥} {x : A} → _⇛_ {⊥ × A} {⊥} (• , x) • factor0⇛ : {A : Set} {• : ⊥} {x : A} → _⇛_ {⊥} {⊥ × A} • (• , x) -- congruence id⇛ : {A : Set} → (x : A) → x ⇛ x sym⇛ : {A B : Set} {x : A} {y : B} → x ⇛ y → y ⇛ x trans⇛ : {A B C : Set} {x : A} {y : B} {z : C} → x ⇛ y → y ⇛ z → x ⇛ z plus₁⇛ : {A B C D : Set} {x : A} {z : C} → x ⇛ z → _⇛_ {A ⊎ B} {C ⊎ D} (inj₁ x) (inj₁ z) plus₂⇛ : {A B C D : Set} {y : B} {w : D} → y ⇛ w → _⇛_ {A ⊎ B} {C ⊎ D} (inj₂ y) (inj₂ w) times⇛ : {A B C D : Set} {x : A} {y : B} {z : C} {w : D} → x ⇛ z → y ⇛ w → _⇛_ {A × B} {C × D} (x , y) (z , w) -- permute -- for any given type, we should be able to generate permutations mapping any -- point to any other type -- Introduce equational reasoning syntax to simplify proofs _≡⟨_⟩_ : {A B C : Set} (x : A) {y : B} {z : C} → (x ⇛ y) → (y ⇛ z) → (x ⇛ z) _ ≡⟨ p ⟩ q = trans⇛ p q bydef : {A : Set} {x : A} → (x ⇛ x) bydef {A} {x} = id⇛ x _∎ : {A : Set} (x : A) → x ⇛ x _∎ x = id⇛ x data Singleton {A : Set} : A → Set where singleton : (x : A) → Singleton x mutual ap : {A B : Set} {x : A} {y : B} → x ⇛ y → Singleton x → Singleton y ap {.(⊥ ⊎ A)} {A} {.(inj₂ x)} {x} unite₊⇛ (singleton .(inj₂ x)) = singleton x ap uniti₊⇛ (singleton x) = singleton (inj₂ x) ap (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₁ x)) = singleton (inj₂ x) ap (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₂ y)) = singleton (inj₁ y) ap (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) ap (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) ap (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) ap (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) ap (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) ap (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) ap {.(⊤ × A)} {A} {.(tt , x)} {x} unite⋆⇛ (singleton .(tt , x)) = singleton x ap uniti⋆⇛ (singleton x) = singleton (tt , x) ap (swap⋆⇛ {A} {B} {x} {y}) (singleton .(x , y)) = singleton (y , x) ap (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) ap (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) ap (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) ap (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) ap (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) ap (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) ap {.(⊥ × A)} {.⊥} {.(• , x)} {•} (dist0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • ap factor0⇛ (singleton ()) ap (id⇛ .x) (singleton x) = singleton x ap (sym⇛ c) (singleton x) = apI c (singleton x) ap (trans⇛ c₁ c₂) (singleton x) = ap c₂ (ap c₁ (singleton x)) ap (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ x)) with ap c (singleton x) ... | singleton .z = singleton (inj₁ z) ap (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ y)) with ap c (singleton y) ... | singleton .w = singleton (inj₂ w) ap (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(x , y)) with ap c₁ (singleton x) | ap c₂ (singleton y) ... | singleton .z | singleton .w = singleton (z , w) apI : {A B : Set} {x : A} {y : B} → x ⇛ y → Singleton y → Singleton x apI unite₊⇛ (singleton x) = singleton (inj₂ x) apI {A} {.(⊥ ⊎ A)} {x} uniti₊⇛ (singleton .(inj₂ x)) = singleton x apI (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₂ x)) = singleton (inj₁ x) apI (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₁ y)) = singleton (inj₂ y) apI (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) apI (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) apI (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) apI (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) apI (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) apI (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) apI unite⋆⇛ (singleton x) = singleton (tt , x) apI {A} {.(⊤ × A)} {x} uniti⋆⇛ (singleton .(tt , x)) = singleton x apI (swap⋆⇛ {A} {B} {x} {y}) (singleton .(y , x)) = singleton (x , y) apI (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) apI (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) apI (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) apI (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) apI (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) apI (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) apI dist0⇛ (singleton ()) apI {.⊥} {.(⊥ × A)} {•} (factor0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • apI (id⇛ .x) (singleton x) = singleton x apI (sym⇛ c) (singleton x) = ap c (singleton x) apI {A} {B} {x} {y} (trans⇛ c₁ c₂) (singleton .y) = apI c₁ (apI c₂ (singleton y)) apI (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ z)) with apI c (singleton z) ... | singleton .x = singleton (inj₁ x) apI (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ w)) with apI c (singleton w) ... | singleton .y = singleton (inj₂ y) apI (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(z , w)) with apI c₁ (singleton z) | apI c₂ (singleton w) ... | singleton .x | singleton .y = singleton (x , y) -- Path induction pathInd : (C : (A : Set) → (B : Set) → (x : A) → (y : B) → x ⇛ y → Set) → (c : (A : Set) → (x : A) → C A A x x (id⇛ x)) → -- add more cases, one for each constructor (A : Set) → (B : Set) → (x : A) → (y : B) → (p : x ⇛ y) → C A B x y p pathInd C c .(⊥ ⊎ B) B .(inj₂ y) y unite₊⇛ = {!!} pathInd C c A .(⊥ ⊎ A) x .(inj₂ x) uniti₊⇛ = {!!} pathInd C c .(A ⊎ B) .(B ⊎ A) .(inj₁ x) .(inj₂ x) (swap₁₊⇛ {A} {B} {x}) = {!!} pathInd C c .(A ⊎ B) .(B ⊎ A) .(inj₂ y) .(inj₁ y) (swap₂₊⇛ {A} {B} {y}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₁ x) .(inj₁ (inj₁ x)) (assocl₁₊⇛ {A} {B} {C₁} {x}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₂ (inj₁ y)) .(inj₁ (inj₂ y)) (assocl₂₁₊⇛ {A} {B} {C₁} {y}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₂ (inj₂ z)) .(inj₂ z) (assocl₂₂₊⇛ {A} {B} {C₁} {z}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₁ (inj₁ x)) .(inj₁ x) (assocr₁₁₊⇛ {A} {B} {C₁} {x}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₁ (inj₂ y)) .(inj₂ (inj₁ y)) (assocr₁₂₊⇛ {A} {B} {C₁} {y}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₂ z) .(inj₂ (inj₂ z)) (assocr₂₊⇛ {A} {B} {C₁} {z}) = {!!} pathInd C c .(Σ ⊤ (λ x₁ → B)) B .(tt , y) y unite⋆⇛ = {!!} pathInd C c A .(Σ ⊤ (λ x₁ → A)) x .(tt , x) uniti⋆⇛ = {!!} pathInd C c .(Σ A (λ x₁ → B)) .(Σ B (λ x₁ → A)) .(x , y) .(y , x) (swap⋆⇛ {A} {B} {x} {y}) = {!!} pathInd C c .(Σ A (λ x₁ → Σ B (λ x₂ → C₁))) .(Σ (Σ A (λ x₁ → B)) (λ x₁ → C₁)) .(x , y , z) .((x , y) , z) (assocl⋆⇛ {A} {B} {C₁} {x} {y} {z}) = {!!} pathInd C c .(Σ (Σ A (λ x₁ → B)) (λ x₁ → C₁)) .(Σ A (λ x₁ → Σ B (λ x₂ → C₁))) .((x , y) , z) .(x , y , z) (assocr⋆⇛ {A} {B} {C₁} {x} {y} {z}) = {!!} pathInd C c .(Σ (A ⊎ B) (λ x₁ → C₁)) .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(inj₁ x , z) .(inj₁ (x , z)) (dist₁⇛ {A} {B} {C₁} {x} {z}) = {!!} pathInd C c .(Σ (A ⊎ B) (λ x₁ → C₁)) .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(inj₂ y , z) .(inj₂ (y , z)) (dist₂⇛ {A} {B} {C₁} {y} {z}) = {!!} pathInd C c .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(Σ (A ⊎ B) (λ x₁ → C₁)) .(inj₁ (x , z)) .(inj₁ x , z) (factor₁⇛ {A} {B} {C₁} {x} {z}) = {!!} pathInd C c .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(Σ (A ⊎ B) (λ x₁ → C₁)) .(inj₂ (y , z)) .(inj₂ y , z) (factor₂⇛ {A} {B} {C₁} {y} {z}) = {!!} pathInd C c .(Σ ⊥ (λ x₁ → A)) .⊥ .(y , x) y (dist0⇛ {A} {.y} {x}) = {!!} pathInd C c .⊥ .(Σ ⊥ (λ x₁ → A)) x .(x , x₁) (factor0⇛ {A} {.x} {x₁}) = {!!} pathInd C c A .A x .x (id⇛ .x) = c A x pathInd C c A B x y (sym⇛ p) = {!!} pathInd C c A B x y (trans⇛ p p₁) = {!!} pathInd C c .(A ⊎ B) .(C₁ ⊎ D) .(inj₁ x) .(inj₁ z) (plus₁⇛ {A} {B} {C₁} {D} {x} {z} p) = {!!} pathInd C c .(A ⊎ B) .(C₁ ⊎ D) .(inj₂ y) .(inj₂ w) (plus₂⇛ {A} {B} {C₁} {D} {y} {w} p) = {!!} pathInd C c .(Σ A (λ x₁ → B)) .(Σ C₁ (λ x₁ → D)) .(x , y) .(z , w) (times⇛ {A} {B} {C₁} {D} {x} {y} {z} {w} p p₁) = {!!} ------------------------------------------------------------------------------ -- Now interpret a path (x ⇛ y) as a value of type (1/x , y) Recip : {A : Set} → (base : A) → (x : A) → Set₁ Recip {A} base = λ x → (x ⇛ base) η : {A : Set} {base : A} → ⊤ → Recip base × Singleton base η {A} {base} tt = (λ x → ? , singleton base) {-- If A={x0,x1,x2}, 1/A has three values: (x0<-x0, x0<-x1, x0<-x2) η : {A : Set} {x : A} → ⊤ → Recip x × Singleton x η {A} {x} tt = (id⇛ x , singleton x) ε : {A : Set} {x : A} → Recip x × Singleton x → ⊤ ε {A} {x} (rx , singleton .x) = tt -- makes no sense apr : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip y → Recip x apr {A} {B} {x} {y} p ry = x ≡⟨ p ⟩ y ≡⟨ ry ⟩ y ≡⟨ sym⇛ p ⟩ x ∎ ε : {A B : Set} {x : A} {y : B} → Recip x → Singleton y → x ⇛ y ε rx (singleton y) = rx y pathV : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip x × Singleton y pathV unite₊⇛ = {!!} pathV uniti₊⇛ = {!!} -- swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x) pathV (swap₁₊⇛ {A} {B} {x}) = ((λ x' → {!!}) , singleton (inj₂ x)) pathV swap₂₊⇛ = {!!} pathV assocl₁₊⇛ = {!!} pathV assocl₂₁₊⇛ = {!!} pathV assocl₂₂₊⇛ = {!!} pathV assocr₁₁₊⇛ = {!!} pathV assocr₁₂₊⇛ = {!!} pathV assocr₂₊⇛ = {!!} pathV unite⋆⇛ = {!!} pathV uniti⋆⇛ = {!!} pathV swap⋆⇛ = {!!} pathV assocl⋆⇛ = {!!} pathV assocr⋆⇛ = {!!} pathV dist₁⇛ = {!!} pathV dist₂⇛ = {!!} pathV factor₁⇛ = {!!} pathV factor₂⇛ = {!!} pathV dist0⇛ = {!!} pathV factor0⇛ = {!!} pathV {A} {.A} {x} (id⇛ .x) = {!!} pathV (sym⇛ p) = {!!} pathV (trans⇛ p p₁) = {!!} pathV (plus₁⇛ p) = {!!} pathV (plus₂⇛ p) = {!!} pathV (times⇛ p p₁) = {!!} data _⇛_ : {A B : Set} → (x : A) → (y : B) → Set₁ where ------------------------------------------------------------------------------ -- pi types with exactly one level of reciprocals -- interpretation of B1 types as 1-groupoids data B0 : Set where ZERO : B0 ONE : B0 PLUS0 : B0 → B0 → B0 TIMES0 : B0 → B0 → B0 ⟦_⟧₀ : B0 → Set ⟦ ZERO ⟧₀ = ⊥ ⟦ ONE ⟧₀ = ⊤ ⟦ PLUS0 b₁ b₂ ⟧₀ = ⟦ b₁ ⟧₀ ⊎ ⟦ b₂ ⟧₀ ⟦ TIMES0 b₁ b₂ ⟧₀ = ⟦ b₁ ⟧₀ × ⟦ b₂ ⟧₀ data B1 : Set where LIFT0 : B0 → B1 PLUS1 : B1 → B1 → B1 TIMES1 : B1 → B1 → B1 RECIP1 : B0 → B1 open 1Groupoid ⟦_⟧₁ : B1 → 1Groupoid ⟦ LIFT0 b0 ⟧₁ = discrete ⟦ b0 ⟧₀ ⟦ PLUS1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ ⟦ TIMES1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ×G ⟦ b₂ ⟧₁ ⟦ RECIP1 b0 ⟧₁ = {!!} -- allPaths (ı₀ b0) ı₁ : B1 → Set ı₁ b = set ⟦ b ⟧₁ test10 = ⟦ LIFT0 ONE ⟧₁ test11 = ⟦ LIFT0 (PLUS0 ONE ONE) ⟧₁ test12 = ⟦ RECIP1 (PLUS0 ONE ONE) ⟧₁ -- interpret isos as functors data _⟷₁_ : B1 → B1 → Set where -- + swap₊ : { b₁ b₂ : B1 } → PLUS1 b₁ b₂ ⟷₁ PLUS1 b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B1 } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B1 } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) -- * unite⋆ : { b : B1 } → TIMES1 (LIFT0 ONE) b ⟷₁ b uniti⋆ : { b : B1 } → b ⟷₁ TIMES1 (LIFT0 ONE) b swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ -- congruence id⟷₁ : { b : B } → b ⟷₁ b sym : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) _∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) η⋆ : (b : B0) → LIFT0 ONE ⟷₁ TIMES1 (LIFT0 b) (RECIP1 b) ε⋆ : (b : B0) → TIMES1 (LIFT0 b) (RECIP1 b) ⟷₁ LIFT0 ONE record 1-functor (A B : 1Groupoid) : Set where constructor 1F private module A = 1Groupoid A private module B = 1Groupoid B field F₀ : set A → set B F₁ : ∀ {X Y : set A} → A [ X , Y ] → B [ F₀ X , F₀ Y ] -- identity : ∀ {X} → B._≈_ (F₁ (A.id {X})) B.id -- F-resp-≈ : ∀ {X Y} {F G : A [ X , Y ]} → A._≈_ F G → B._≈_ (F₁ F) (F₁ G) open 1-functor public ipath : (b : B1) → ı₁ b → ı₁ b → Set ipath b x y = Path {ı₁ b} x y swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A swap⊎ (inj₁ a) = inj₂ a swap⊎ (inj₂ b) = inj₁ b intro1⋆ : {b : B1} {x y : ı₁ b} → ipath b x y → ipath (TIMES1 (LIFT0 ONE) b) (tt , x) (tt , y) intro1⋆ (y ⇛ z) = (tt , y) ⇛ (tt , z) objη⋆ : (b : B0) → ı₁ (LIFT0 ONE) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) objη⋆ b tt = point b , point b objε⋆ : (b : B0) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) → ı₁ (LIFT0 ONE) objε⋆ b (x , y) = tt elim1∣₁ : (b : B1) → ı₁ (TIMES1 (LIFT0 ONE) b) → ı₁ b elim1∣₁ b (tt , x) = x intro1∣₁ : (b : B1) → ı₁ b → ı₁ (TIMES1 (LIFT0 ONE) b) intro1∣₁ b x = (tt , x) swapF : {b₁ b₂ : B1} → let G = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ G' = ⟦ b₂ ⟧₁ ⊎G ⟦ b₁ ⟧₁ in {X Y : set G} → G [ X , Y ] → G' [ swap⊎ X , swap⊎ Y ] swapF {X = inj₁ _} {inj₁ _} f = f swapF {X = inj₁ _} {inj₂ _} () swapF {X = inj₂ _} {inj₁ _} () swapF {X = inj₂ _} {inj₂ _} f = f eta : (b : B0) → List (ipath (LIFT0 ONE)) → List (ipath (TIMES1 (LIFT0 b) (RECIP1 b))) -- note how the input list is not used at all! eta b _ = prod (λ a a' → _↝_ (a , tt) (a' , tt)) (elems0 b) (elems0 b) eps : (b : B0) → ipath (TIMES1 (LIFT0 b) (RECIP1 b)) → ipath (LIFT0 ONE) eps b0 (a ⇛ b) = tt ⇛ tt Funite⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) Funite⋆ {b₁} {tt , _} {tt , _} (reflD , y) = y Funiti⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) Funiti⋆ y = reflD , y mutual eval : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₁ ⟧₁ ⟦ b₂ ⟧₁ eval (swap₊ {b₁} {b₂}) = 1F swap⊎ (λ {X Y} → swapF {b₁} {b₂} {X} {Y}) eval (unite⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) eval (uniti⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) -- eval (η⋆ b) = F₁ (objη⋆ b) (eta b ) -- eval (ε⋆ b) = F₁ (objε⋆ b) (map (eps b)) evalB : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₂ ⟧₁ ⟦ b₁ ⟧₁ evalB (swap₊ {b₁} {b₂}) = 1F swap⊎ ((λ {X Y} → swapF {b₂} {b₁} {X} {Y})) evalB (unite⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) evalB (uniti⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) -- evalB (η⋆ b) = F₁ (objε⋆ b) (map (eps b)) -- evalB (ε⋆ b) = F₁ (objη⋆ b) (eta b) eval assocl₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ eval assocr₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) eval uniti⋆ = ? -- : { b : B } → b ⟷₁ TIMES ONE b eval swap⋆ = ? -- : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ eval assocl⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ eval assocr⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) eval dist = ? -- : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) eval factor = ? -- : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ eval id⟷₁ = ? -- : { b : B } → b ⟷₁ b eval (sym c) = ? -- : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) eval (c₁ ∘ c₂) = ? -- : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) eval (c₁ ⊕ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) eval (c₁ ⊗ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) -- lid⇛ : {A B : Set} {x : A} {y : B} → (trans⇛ (id⇛ x) (x ⇛ y)) ⇛ (x ⇛ y) -- lid⇛ {A} {B} {x} {y} = -- pathInd ? ap : {A B : Set} → (f : A → B) → {a a' : A} → Path a a' → Path (f a) (f a') ap f (a ⇛ a') = (f a) ⇛ (f a') _∙⇛_ : {A : Set} {a b c : A} → Path b c → Path a b → Path a c (b ⇛ c) ∙⇛ (a ⇛ .b) = a ⇛ c _⇚ : {A : Set} {a b : A} → Path a b → Path b a (x ⇛ y) ⇚ = y ⇛ x lid⇛ : {A : Set} {x y : A} (α : Path x y) → (id⇛ y ∙⇛ α) ≣⇛ α lid⇛ (x ⇛ y) = refl⇛ rid⇛ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ id⇛ x) ≣⇛ α rid⇛ (x ⇛ y) = refl⇛ assoc⇛ : {A : Set} {w x y z : A} (α : Path y z) (β : Path x y) (δ : Path w x) → ((α ∙⇛ β) ∙⇛ δ) ≣⇛ (α ∙⇛ (β ∙⇛ δ)) assoc⇛ (y ⇛ z) (x ⇛ .y) (w ⇛ .x) = refl⇛ l⇚ : {A : Set} {x y : A} (α : Path x y) → ((α ⇚) ∙⇛ α) ≣⇛ id⇛ x l⇚ (x ⇛ y) = refl⇛ r⇚ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ (α ⇚)) ≣⇛ id⇛ y r⇚ (x ⇛ y) = refl⇛ sym⇛ : {A : Set} {x y : A} {α β : Path x y} → α ≣⇛ β → β ≣⇛ α sym⇛ refl⇛ = refl⇛ trans⇛ : {A : Set} {x y : A} {α β δ : Path x y} → α ≣⇛ β → β ≣⇛ δ → α ≣⇛ δ trans⇛ refl⇛ refl⇛ = refl⇛ equiv≣⇛ : {A : Set} {x y : A} → IsEquivalence {_} {_} {Path x y} (_≣⇛_) equiv≣⇛ = record { refl = refl⇛; sym = sym⇛; trans = trans⇛ } resp≣⇛ : {A : Set} {x y z : A} {f h : Path y z} {g i : Path x y} → f ≣⇛ h → g ≣⇛ i → (f ∙⇛ g) ≣⇛ (h ∙⇛ i) resp≣⇛ refl⇛ refl⇛ = refl⇛ record 0-type : Set₁ where constructor G₀ field ∣_∣₀ : Set open 0-type public plus : 0-type → 0-type → 0-type plus t₁ t₂ = G₀ (∣ t₁ ∣₀ ⊎ ∣ t₂ ∣₀) times : 0-type → 0-type → 0-type times t₁ t₂ = G₀ (∣ t₁ ∣₀ × ∣ t₂ ∣₀) ⟦_⟧₀ : B0 → 0-type ⟦ ONE ⟧₀ = G₀ ⊤ ⟦ PLUS0 b₁ b₂ ⟧₀ = plus ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ⟦ TIMES0 b₁ b₂ ⟧₀ = times ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ı₀ : B0 → Set ı₀ b = ∣ ⟦ b ⟧₀ ∣₀ point : (b : B0) → ı₀ b point ONE = tt point (PLUS0 b _) = inj₁ (point b) point (TIMES0 b₀ b₁) = point b₀ , point b₁ allPaths : Set → 1Groupoid allPaths a = record { set = a ; _↝_ = Path ; _≈_ = _≣⇛_ ; id = λ {x} → id⇛ x ; _∘_ = _∙⇛_ ; _⁻¹ = _⇚ ; lneutr = lid⇛ ; rneutr = rid⇛ ; assoc = assoc⇛ ; linv = l⇚ ; rinv = r⇚ ; equiv = equiv≣⇛ ; ∘-resp-≈ = resp≣⇛} --}
{ "alphanum_fraction": 0.4633092884, "avg_line_length": 38.8546712803, "ext": "agda", "hexsha": "526ea83158572f2e7d450e5df71f5d17ee1797a4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "F2.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "F2.agda", "max_line_length": 168, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "F2.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 12007, "size": 22458 }
open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat open import Data.Nat.Properties open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) open import Data.Fin using (Fin; zero; suc; #_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import Function test-13f : ∀ {n} → Vec ℕ n → Vec ℕ (n + n * n) → ℕ test-13f [] _ = 0 test-13f (x ∷ a) b = x test₁₃ : kompile test-13f [] [] ≡ ok _ test₁₃ = refl test-14f : ∀ {n} → Vec ℕ n → Vec ℕ (n) → Vec ℕ n test-14f [] _ = [] test-14f (x ∷ a) (y ∷ b) = x + y ∷ test-14f a b test₁₄ : kompile test-14f [] [] ≡ ok _ test₁₄ = refl -- Note that rewrite helper function would generate -- the equality type amongst its arguments. test-15f : ∀ {a b} → Fin (a + b) → Fin (b + a) test-15f {a}{b} x rewrite (+-comm a b) = x test₁₅ : let fs = L.[ quote +-comm ] in kompile test-15f fs fs ≡ ok _ test₁₅ = refl module absurd-patterns where test-16f : ∀ {n} → Fin n → Fin n test-16f {0} () test-16f {suc n} i = i test₁₆ : kompile test-16f [] [] ≡ ok _ test₁₆ = refl -- Ugh, when we found an absurd pattern, the rest of the -- patterns may or may not be present (which seem to make no sense). -- If they are present, then other (missing) constructors are inserted -- automatically. Therefore, extracted code for the function below -- would look rather scary. test-17f : ∀ {n} → Fin (n ∸ 1) → ℕ → ℕ → Fin n test-17f {0} () (suc (suc k)) test-17f {1} () test-17f {suc (suc n)} i m mm = zero test₁₇ : kompile test-17f [] [] ≡ ok _ test₁₇ = refl -- Dot patterns test-18f : ∀ m n → m ≡ n → Fin (suc m) test-18f zero .zero refl = zero test-18f (suc m) .(suc m) refl = suc (test-18f m m refl) test₁₈ : kompile test-18f [] [] ≡ ok _ test₁₈ = refl -- Increment the first column of the 2-d array expressed in vectors test-19f : ∀ {m n} → Vec (Vec ℕ n) m → Vec (Vec ℕ n) m test-19f [] = [] test-19f ([] ∷ xss) = [] ∷ test-19f xss test-19f ((x ∷ xs) ∷ xss) = (x + 1 ∷ xs) ∷ test-19f xss test₁₉ : kompile test-19f [] [] ≡ ok _ test₁₉ = refl
{ "alphanum_fraction": 0.6040816327, "avg_line_length": 27.2222222222, "ext": "agda", "hexsha": "495d7e6ded1cf70394d77d938b1efe022c6cccde", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Example-01.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Example-01.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Example-01.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 825, "size": 2205 }
{-# OPTIONS --without-K #-} -- Specific constructions on top of summation functions module Explore.Summable where open import Type open import Function.NP import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_ ; _≗_ ; _≗₂_) open import Explore.Core open import Explore.Properties open import Explore.Product open import Data.Product open import Data.Nat.NP open import Data.Nat.Properties open import Data.Two open Data.Two.Indexed module FromSum {a} {A : ★_ a} (sum : Sum A) where Card : ℕ Card = sum (const 1) count : Count A count f = sum (𝟚▹ℕ ∘ f) sum-lin⇒sum-zero : SumLin sum → SumZero sum sum-lin⇒sum-zero sum-lin = sum-lin (λ _ → 0) 0 sum-mono⇒sum-ext : SumMono sum → SumExt sum sum-mono⇒sum-ext sum-mono f≗g = ℕ≤.antisym (sum-mono (ℕ≤.reflexive ∘ f≗g)) (sum-mono (ℕ≤.reflexive ∘ ≡.sym ∘ f≗g)) sum-ext+sum-hom⇒sum-mono : SumExt sum → SumHom sum → SumMono sum sum-ext+sum-hom⇒sum-mono sum-ext sum-hom {f} {g} f≤°g = sum f ≤⟨ m≤m+n _ _ ⟩ sum f + sum (λ x → g x ∸ f x) ≡⟨ ≡.sym (sum-hom _ _) ⟩ sum (λ x → f x + (g x ∸ f x)) ≡⟨ sum-ext (m+n∸m≡n ∘ f≤°g) ⟩ sum g ∎ where open ≤-Reasoning module FromSumInd {a} {A : ★_ a} {sum : Sum A} (sum-ind : SumInd sum) where open FromSum sum public sum-ext : SumExt sum sum-ext = sum-ind (λ s → s _ ≡ s _) ≡.refl (≡.ap₂ _+_) sum-zero : SumZero sum sum-zero = sum-ind (λ s → s (const 0) ≡ 0) ≡.refl (≡.ap₂ _+_) (λ _ → ≡.refl) sum-hom : SumHom sum sum-hom f g = sum-ind (λ s → s (f +° g) ≡ s f + s g) ≡.refl (λ {s₀} {s₁} p₀ p₁ → ≡.trans (≡.ap₂ _+_ p₀ p₁) (+-interchange (s₀ _) (s₀ _) _ _)) (λ _ → ≡.refl) sum-mono : SumMono sum sum-mono = sum-ind (λ s → s _ ≤ s _) z≤n _+-mono_ sum-lin : SumLin sum sum-lin f zero = sum-zero sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.ap₂ _+_ (≡.refl {x = sum f}) (sum-lin f k)) module _ (f g : A → ℕ) where open ≡.≡-Reasoning sum-⊓-∸ : sum f ≡ sum (f ⊓° g) + sum (f ∸° g) sum-⊓-∸ = sum f ≡⟨ sum-ext (f ⟨ a≡a⊓b+a∸b ⟩° g) ⟩ sum ((f ⊓° g) +° (f ∸° g)) ≡⟨ sum-hom (f ⊓° g) (f ∸° g) ⟩ sum (f ⊓° g) + sum (f ∸° g) ∎ sum-⊔-⊓ : sum f + sum g ≡ sum (f ⊔° g) + sum (f ⊓° g) sum-⊔-⊓ = sum f + sum g ≡⟨ ≡.sym (sum-hom f g) ⟩ sum (f +° g) ≡⟨ sum-ext (f ⟨ a+b≡a⊔b+a⊓b ⟩° g) ⟩ sum (f ⊔° g +° f ⊓° g) ≡⟨ sum-hom (f ⊔° g) (f ⊓° g) ⟩ sum (f ⊔° g) + sum (f ⊓° g) ∎ sum-⊔ : sum (f ⊔° g) ≤ sum f + sum g sum-⊔ = ℕ≤.trans (sum-mono (f ⟨ ⊔≤+ ⟩° g)) (ℕ≤.reflexive (sum-hom f g)) count-ext : CountExt count count-ext f≗g = sum-ext (≡.cong 𝟚▹ℕ ∘ f≗g) sum-const : ∀ k → sum (const k) ≡ Card * k sum-const k rewrite ℕ°.*-comm Card k | ≡.sym (sum-lin (const 1) k) | proj₂ ℕ°.*-identity k = ≡.refl module _ f g where count-∧-not : count f ≡ count (f ∧° g) + count (f ∧° not° g) count-∧-not rewrite sum-⊓-∸ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g) | sum-ext (f ⟨ 𝟚▹ℕ-⊓ ⟩° g) | sum-ext (f ⟨ 𝟚▹ℕ-∸ ⟩° g) = ≡.refl count-∨-∧ : count f + count g ≡ count (f ∨° g) + count (f ∧° g) count-∨-∧ rewrite sum-⊔-⊓ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g) | sum-ext (f ⟨ 𝟚▹ℕ-⊔ ⟩° g) | sum-ext (f ⟨ 𝟚▹ℕ-⊓ ⟩° g) = ≡.refl count-∨≤+ : count (f ∨° g) ≤ count f + count g count-∨≤+ = ℕ≤.trans (ℕ≤.reflexive (sum-ext (≡.sym ∘ (f ⟨ 𝟚▹ℕ-⊔ ⟩° g)))) (sum-⊔ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g)) module FromSum× {a} {A : Set a} {b} {B : Set b} {sumᴬ : Sum A} (sum-indᴬ : SumInd sumᴬ) {sumᴮ : Sum B} (sum-indᴮ : SumInd sumᴮ) where module |A| = FromSumInd sum-indᴬ module |B| = FromSumInd sum-indᴮ open Operators sumᴬᴮ = sumᴬ ×ˢ sumᴮ sum-∘proj₁≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₁) ≡ |B|.Card * sumᴬ f sum-∘proj₁≡Card* f rewrite |A|.sum-ext (|B|.sum-const ∘ f) = |A|.sum-lin f |B|.Card sum-∘proj₂≡Card* : ∀ f → sumᴬᴮ (f ∘ proj₂) ≡ |A|.Card * sumᴮ f sum-∘proj₂≡Card* = |A|.sum-const ∘ sumᴮ sum-∘proj₁ : ∀ {f} {g} → sumᴬ f ≡ sumᴬ g → sumᴬᴮ (f ∘ proj₁) ≡ sumᴬᴮ (g ∘ proj₁) sum-∘proj₁ {f} {g} sumf≡sumg rewrite sum-∘proj₁≡Card* f | sum-∘proj₁≡Card* g | sumf≡sumg = ≡.refl sum-∘proj₂ : ∀ {f} {g} → sumᴮ f ≡ sumᴮ g → sumᴬᴮ (f ∘ proj₂) ≡ sumᴬᴮ (g ∘ proj₂) sum-∘proj₂ sumf≡sumg = |A|.sum-ext (const sumf≡sumg) -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.475177305, "avg_line_length": 33, "ext": "agda", "hexsha": "99196d164ca9c647ca2a2d4fce35ff4784f84f75", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Summable.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Summable.agda", "max_line_length": 116, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Summable.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 2191, "size": 4653 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The lifting of a non-strict order to incorporate new extrema ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Extrema open import Relation.Binary module Relation.Binary.Construct.Add.Extrema.NonStrict {a ℓ} {A : Set a} (_≤_ : Rel A ℓ) where open import Function open import Relation.Nullary.Construct.Add.Extrema import Relation.Nullary.Construct.Add.Infimum as I import Relation.Binary.Construct.Add.Infimum.NonStrict as AddInfimum import Relation.Binary.Construct.Add.Supremum.NonStrict as AddSupremum import Relation.Binary.Construct.Add.Extrema.Equality as Equality ------------------------------------------------------------------------- -- Definition private module Inf = AddInfimum _≤_ module Sup = AddSupremum Inf._≤₋_ open Sup using () renaming (_≤⁺_ to _≤±_) public ------------------------------------------------------------------------- -- Useful pattern synonyms pattern ⊥±≤⊥± = Sup.[ Inf.⊥₋≤ I.⊥₋ ] pattern ⊥±≤[_] l = Sup.[ Inf.⊥₋≤ I.[ l ] ] pattern [_] p = Sup.[ Inf.[ p ] ] pattern ⊥±≤⊤± = ⊥± Sup.≤⊤⁺ pattern [_]≤⊤± k = [ k ] Sup.≤⊤⁺ pattern ⊤±≤⊤± = ⊤± Sup.≤⊤⁺ ⊥±≤_ : ∀ k → ⊥± ≤± k ⊥±≤ ⊥± = ⊥±≤⊥± ⊥±≤ [ k ] = ⊥±≤[ k ] ⊥±≤ ⊤± = ⊥±≤⊤± _≤⊤± : ∀ k → k ≤± ⊤± ⊥± ≤⊤± = ⊥±≤⊤± [ k ] ≤⊤± = [ k ]≤⊤± ⊤± ≤⊤± = ⊤±≤⊤± ------------------------------------------------------------------------- -- Relational properties [≤]-injective : ∀ {k l} → [ k ] ≤± [ l ] → k ≤ l [≤]-injective = Inf.[≤]-injective ∘′ Sup.[≤]-injective module _ {e} {_≈_ : Rel A e} where open Equality _≈_ ≤±-reflexive : (_≈_ ⇒ _≤_) → (_≈±_ ⇒ _≤±_) ≤±-reflexive = Sup.≤⁺-reflexive ∘′ Inf.≤₋-reflexive ≤±-antisym : Antisymmetric _≈_ _≤_ → Antisymmetric _≈±_ _≤±_ ≤±-antisym = Sup.≤⁺-antisym ∘′ Inf.≤₋-antisym ≤±-trans : Transitive _≤_ → Transitive _≤±_ ≤±-trans = Sup.≤⁺-trans ∘′ Inf.≤₋-trans ≤±-minimum : Minimum _≤±_ ⊥± ≤±-minimum = ⊥±≤_ ≤±-maximum : Maximum _≤±_ ⊤± ≤±-maximum = _≤⊤± ≤±-dec : Decidable _≤_ → Decidable _≤±_ ≤±-dec = Sup.≤⁺-dec ∘′ Inf.≤₋-dec ≤±-total : Total _≤_ → Total _≤±_ ≤±-total = Sup.≤⁺-total ∘′ Inf.≤₋-total ≤±-irrelevant : Irrelevant _≤_ → Irrelevant _≤±_ ≤±-irrelevant = Sup.≤⁺-irrelevant ∘′ Inf.≤₋-irrelevant ------------------------------------------------------------------------- -- Structures module _ {e} {_≈_ : Rel A e} where open Equality _≈_ ≤±-isPreorder : IsPreorder _≈_ _≤_ → IsPreorder _≈±_ _≤±_ ≤±-isPreorder = Sup.≤⁺-isPreorder ∘′ Inf.≤₋-isPreorder ≤±-isPartialOrder : IsPartialOrder _≈_ _≤_ → IsPartialOrder _≈±_ _≤±_ ≤±-isPartialOrder = Sup.≤⁺-isPartialOrder ∘′ Inf.≤₋-isPartialOrder ≤±-isDecPartialOrder : IsDecPartialOrder _≈_ _≤_ → IsDecPartialOrder _≈±_ _≤±_ ≤±-isDecPartialOrder = Sup.≤⁺-isDecPartialOrder ∘′ Inf.≤₋-isDecPartialOrder ≤±-isTotalOrder : IsTotalOrder _≈_ _≤_ → IsTotalOrder _≈±_ _≤±_ ≤±-isTotalOrder = Sup.≤⁺-isTotalOrder ∘′ Inf.≤₋-isTotalOrder ≤±-isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ → IsDecTotalOrder _≈±_ _≤±_ ≤±-isDecTotalOrder = Sup.≤⁺-isDecTotalOrder ∘′ Inf.≤₋-isDecTotalOrder
{ "alphanum_fraction": 0.528602019, "avg_line_length": 30.2685185185, "ext": "agda", "hexsha": "57a2666df3bfcb6603e155c3eeabf2489f01d84f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/NonStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/NonStrict.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/NonStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1345, "size": 3269 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Construction.SubCategory.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open Equiv open import Level open import Function.Base using () renaming (id to id→) open import Function.Surjection using (Surjection) renaming (id to id↠) open import Categories.Category.SubCategory C open import Categories.Functor.Construction.SubCategory C open import Categories.Functor.Properties private variable ℓ′ i : Level I : Set i U : I → Obj SubFaithful : ∀ (sub : SubCat {i} {ℓ′} I) → Faithful (Sub sub) SubFaithful _ _ _ = id→ FullSubFaithful : Faithful (FullSub {U = U}) FullSubFaithful _ _ = id→ FullSubFull : Full (FullSub {U = U}) FullSubFull = Surjection.surjective id↠
{ "alphanum_fraction": 0.7246558198, "avg_line_length": 24.96875, "ext": "agda", "hexsha": "2a1f292cc0db489a47685893fbeaba7501d4b1cb", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Construction/SubCategory/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Construction/SubCategory/Properties.agda", "max_line_length": 96, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Construction/SubCategory/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 231, "size": 799 }
-- The simpler case of index inductive definitions. (no induction-recursion) module IID where open import LF -- A code for an IID -- I - index set -- E = I for general IIDs -- E = One for restricted IIDs data OP (I : Set)(E : Set) : Set1 where ι : E -> OP I E σ : (A : Set)(γ : A -> OP I E) -> OP I E δ : (A : Set)(i : A -> I)(γ : OP I E) -> OP I E -- The type of constructor arguments. Parameterised over -- U - the inductive type -- This is the F of the simple polynomial type μF Args : {I : Set}{E : Set} -> OP I E -> (U : I -> Set) -> Set Args (ι e) U = One Args (σ A γ) U = A × \a -> Args (γ a) U Args (δ A i γ) U = ((a : A) -> U (i a)) × \_ -> Args γ U -- Computing the index index : {I : Set}{E : Set}(γ : OP I E)(U : I -> Set) -> Args γ U -> E index (ι e) U _ = e index (σ A γ) U a = index (γ (π₀ a)) U (π₁ a) index (δ A i γ) U a = index γ U (π₁ a) -- The assumptions of a particular inductive occurrence in a value. IndArg : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> Args γ U -> Set IndArg (ι e) U _ = Zero IndArg (σ A γ) U a = IndArg (γ (π₀ a)) U (π₁ a) IndArg (δ A i γ) U a = A + IndArg γ U (π₁ a) -- Given the assumptions of an inductive occurence in a value we can compute -- its index. IndIndex : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (a : Args γ U) -> IndArg γ U a -> I IndIndex (ι e) U _ () IndIndex (σ A γ) U arg c = IndIndex (γ (π₀ arg)) U (π₁ arg) c IndIndex (δ A i γ) U arg (inl a) = i a IndIndex (δ A i γ) U arg (inr a) = IndIndex γ U (π₁ arg) a -- Given the assumptions of an inductive occurrence in a value we can compute -- its value. Ind : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (a : Args γ U)(v : IndArg γ U a) -> U (IndIndex γ U a v) Ind (ι e) U _ () Ind (σ A γ) U arg c = Ind (γ (π₀ arg)) U (π₁ arg) c Ind (δ A i γ) U arg (inl a) = (π₀ arg) a Ind (δ A i γ) U arg (inr a) = Ind γ U (π₁ arg) a -- The type of induction hypotheses. Basically -- forall assumptions, the predicate holds for an inductive occurrence with -- those assumptions IndHyp : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (F : (i : I) -> U i -> Set)(a : Args γ U) -> Set IndHyp γ U F a = (v : IndArg γ U a) -> F (IndIndex γ U a v) (Ind γ U a v) IndHyp₁ : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) -> (F : (i : I) -> U i -> Set1)(a : Args γ U) -> Set1 IndHyp₁ γ U F a = (v : IndArg γ U a) -> F (IndIndex γ U a v) (Ind γ U a v) -- If we can prove a predicate F for any values, we can construct the inductive -- hypotheses for a given value. -- Termination note: g will only be applied to values smaller than a induction : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) (F : (i : I) -> U i -> Set) (g : (i : I)(u : U i) -> F i u) (a : Args γ U) -> IndHyp γ U F a induction γ U F g a = \hyp -> g (IndIndex γ U a hyp) (Ind γ U a hyp) induction₁ : {I : Set}{E : Set} (γ : OP I E)(U : I -> Set) (F : (i : I) -> U i -> Set1) (g : (i : I)(u : U i) -> F i u) (a : Args γ U) -> IndHyp₁ γ U F a induction₁ γ U F g a = \hyp -> g (IndIndex γ U a hyp) (Ind γ U a hyp)
{ "alphanum_fraction": 0.5324881141, "avg_line_length": 34.6703296703, "ext": "agda", "hexsha": "0e11ca6abdd9f2076214feeb5e3c88ae1064f8a9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IID.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IID.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IID.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1212, "size": 3155 }
module start where open import Relation.Binary.PropositionalEquality open import Data.Product open import Function hiding (id) injective : {A B : Set} → (f : A → B) → Set injective f = ∀ a₁ a₂ → f a₁ ≡ f a₂ → a₁ ≡ a₂ surjective : {A B : Set} → (f : A → B) → Set surjective f = ∀ b → ∃ (λ a → f a ≡ b) bijective : {A B : Set} → (f : A → B) → Set bijective f = injective f × surjective f data ℕ : Set where zero : ℕ suc : ℕ → ℕ lemma-suc-inj : ∀ {a₁ a₂} → suc a₁ ≡ suc a₂ → a₁ ≡ a₂ lemma-suc-inj refl = refl suc-injective : injective suc suc-injective a₁ a₂ = lemma-suc-inj id : {A : Set} → A → A id x = x lemma-id-inj : ∀ {A} {a₁ a₂ : A} → id a₁ ≡ id a₂ → a₁ ≡ a₂ lemma-id-inj refl = refl id-injective : ∀ {A} → injective (id {A}) id-injective a₁ a₂ = lemma-id-inj lemma-id-surj : ∀ {A} (b : A) → ∃ (λ a → id a ≡ b) lemma-id-surj b = b , refl id-surjective : ∀ {A} → surjective (id {A}) id-surjective = lemma-id-surj bijective→injective : ∀ {A B} {f : A → B} → bijective f → injective f bijective→injective b = proj₁ b bijective→surjective : ∀ {A B} {f : A → B} → bijective f → surjective f bijective→surjective b = proj₂ b left-inverse : ∀ {A B} → (f : A → B) → Set left-inverse f = ∃ (λ g → g ∘ f ≡ id) right-inverse : ∀ {A B} → (f : A → B) → Set right-inverse f = ∃ (λ g → f ∘ g ≡ id) infix 5 _s~_ _s~_ : {A : Set} {a b c : A} → a ≡ b → a ≡ c → c ≡ b _s~_ refl refl = refl infix 5 _~_ _~_ : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c _~_ = trans lemma-left-id₁ : ∀ {A B : Set} (g : B → A) (f : A → B) → g ∘ f ≡ id → (∀ a → g (f a) ≡ a) lemma-left-id₁ g f idcomp a = cong (λ f₁ → f₁ a) idcomp lemma-left-id : ∀ {A B : Set} (a₁ a₂ : A) (g : B → A) (f : A → B) → g ∘ f ≡ id → g (f a₁) ≡ g (f a₂) → a₁ ≡ a₂ lemma-left-id a₁ a₂ g f idcomp comp = (comp ~ lemma-left-id₁ g f idcomp a₂) s~ lemma-left-id₁ g f idcomp a₁ lemma-left-inj : ∀ {A B : Set} (a₁ a₂ : A) → (f : A → B) → ∃ (λ g → g ∘ f ≡ id) → f a₁ ≡ f a₂ → a₁ ≡ a₂ lemma-left-inj a₁ a₂ f (g , idcomp) eq = lemma-left-id a₁ a₂ g f idcomp (cong (λ x → g x) eq) left-inverse→injective : ∀ {A B} (f : A → B) → left-inverse f → injective f left-inverse→injective f left-inv a₁ a₂ fas = lemma-left-inj a₁ a₂ f left-inv fas right-inverse→surjective : ∀ {A B} (f : A → B) → right-inverse f → surjective f right-inverse→surjective f (g , right) b = g b , cong (λ f₁ → f₁ b) right postulate extensionality : {A : Set} {B : Set} {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g id-unique : ∀ {A : Set} → (f : A → A) → (∀ a → f a ≡ a) → f ≡ id id-unique f fa-prop = extensionality {f = f} {g = id} fa-prop surjective→right-inverse : ∀ {A B} (f : A → B) → surjective f → right-inverse f surjective→right-inverse f right = g , id-unique (f ∘ g) (λ b → proj₂ (right b)) where g = λ b → proj₁ (right b)
{ "alphanum_fraction": 0.5636036036, "avg_line_length": 30.1630434783, "ext": "agda", "hexsha": "c271b13ce3f16eb560ab939047f32cd8ab78ed67", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5f046cd37c7c2abb5d287c7d7572f3e84dceb96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Chobbes/AbstractAgdabra", "max_forks_repo_path": "start.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5f046cd37c7c2abb5d287c7d7572f3e84dceb96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Chobbes/AbstractAgdabra", "max_issues_repo_path": "start.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5f046cd37c7c2abb5d287c7d7572f3e84dceb96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Chobbes/AbstractAgdabra", "max_stars_repo_path": "start.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1167, "size": 2775 }
module DataDef where data ⊤ : Set where tt : ⊤ data ⊤' (x : ⊤) : Set where tt : ⊤' x data D {y : ⊤} (y' : ⊤' y) : Set data D {z} _ where postulate d : D {tt} tt
{ "alphanum_fraction": 0.4215686275, "avg_line_length": 6.8, "ext": "agda", "hexsha": "3c0b4066df819a749f52fd4de51a293867d176ae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/DataDef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/DataDef.agda", "max_line_length": 20, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/DataDef.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 98, "size": 204 }
{-# OPTIONS --without-K --safe #-} module Dodo.Unary.Unique where -- Stdlib imports open import Level using (Level) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) -- Local imports open import Dodo.Nullary.Unique -- # Definitions # -- | At most one element satisfies the predicate Unique₁ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} → Rel A ℓ₁ → Pred A ℓ₂ → Set _ Unique₁ _≈_ P = ∀ {x y} → P x → P y → x ≈ y -- | For every `x`, there exists at most one inhabitant of `P x`. UniquePred : ∀ {a ℓ : Level} {A : Set a} → Pred A ℓ → Set _ UniquePred P = ∀ x → Unique (P x)
{ "alphanum_fraction": 0.6433333333, "avg_line_length": 25, "ext": "agda", "hexsha": "21416802f97d42f092e6f877fc67ea78d96c19af", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Unary/Unique.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Unary/Unique.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Unary/Unique.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 190, "size": 600 }
-- Minimal implicational modal logic, de Bruijn approach, initial encoding module Bi.BoxMp where open import Lib using (List; []; _,_; LMem; lzero; lsuc) -- Types infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty BOX : Ty -> Ty -- Context and truth/validity judgements Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc isValid : Ty -> Cx -> Set isValid a vc = LMem a vc -- Terms module BoxMp where infixl 1 _$_ infixr 0 lam=>_ data Tm (vc tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm vc tc a lam=>_ : forall {a b} -> Tm vc (tc , a) b -> Tm vc tc (a => b) _$_ : forall {a b} -> Tm vc tc (a => b) -> Tm vc tc a -> Tm vc tc b var# : forall {a} -> isValid a vc -> Tm vc tc a box : forall {a} -> Tm vc [] a -> Tm vc tc (BOX a) unbox' : forall {a b} -> Tm vc tc (BOX a) -> Tm (vc , a) tc b -> Tm vc tc b syntax unbox' x' x = unbox x' => x v0 : forall {vc tc a} -> Tm vc (tc , a) a v0 = var lzero v1 : forall {vc tc a b} -> Tm vc (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {vc tc a b c} -> Tm vc (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) v0# : forall {vc tc a} -> Tm (vc , a) tc a v0# = var# lzero v1# : forall {vc tc a b} -> Tm (vc , a , b) tc a v1# = var# (lsuc lzero) v2# : forall {vc tc a b c} -> Tm (vc , a , b , c) tc a v2# = var# (lsuc (lsuc lzero)) Thm : Ty -> Set Thm a = forall {vc tc} -> Tm vc tc a open BoxMp public -- Example theorems rNec : forall {a} -> Thm a -> Thm (BOX a) rNec x = box x aK : forall {a b} -> Thm (BOX (a => b) => BOX a => BOX b) aK = lam=> lam=> (unbox v1 => unbox v0 => box (v1# $ v0#)) aT : forall {a} -> Thm (BOX a => a) aT = lam=> (unbox v0 => v0#) a4 : forall {a} -> Thm (BOX a => BOX (BOX a)) a4 = lam=> (unbox v0 => box (box v0#)) t1 : forall {a} -> Thm (a => BOX (a => a)) t1 = lam=> box (lam=> v0)
{ "alphanum_fraction": 0.4875912409, "avg_line_length": 21.8617021277, "ext": "agda", "hexsha": "dc2928fee3f2c57256a46b24f9eb4fc51a369d01", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Bi/BoxMp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Bi/BoxMp.agda", "max_line_length": 81, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Bi/BoxMp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 817, "size": 2055 }
{-# OPTIONS --without-K #-} module PiU where open import Data.Nat using (ℕ; _+_; _*_) ------------------------------------------------------------------------------ -- Define the ``universe'' for Pi. All versions of Pi share the same -- universe. Where they differ is in what combinators exist between -- members of the universe. -- -- ZERO is a type with no elements -- ONE is a type with one element 'tt' -- PLUS ONE ONE is a type with elements 'false' and 'true' -- and so on for all finite types built from ZERO, ONE, PLUS, and TIMES -- -- We also have that U is a type with elements ZERO, ONE, PLUS ONE ONE, -- TIMES BOOL BOOL, etc. data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U -- defines the size of a finite type toℕ : U → ℕ toℕ ZERO = 0 toℕ ONE = 1 toℕ (PLUS t₁ t₂) = toℕ t₁ + toℕ t₂ toℕ (TIMES t₁ t₂) = toℕ t₁ * toℕ t₂ ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5385416667, "avg_line_length": 27.4285714286, "ext": "agda", "hexsha": "be9347e352f0e8fbdd5cb8e12a514008ccbd3e76", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiU.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiU.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiU.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 275, "size": 960 }
module Using where module Dummy where data DummySet1 : Set where ds1 : DummySet1 data DummySet2 : Set where ds2 : DummySet2 open Dummy using (DummySet1) open Dummy -- checking that newline + comment is allowed before "using" using (DummySet2) -- Andreas, 2020-06-06, issue #4704 -- Allow repetions in `using` directives, but emit warning. open Dummy using (DummySet1; DummySet1) using (DummySet1) -- EXPECTED: dead code highlighting for 2nd and 3rd occurrence and warning: -- Duplicates in using directive: DummySet1 DummySet1 -- when scope checking the declaration -- open Dummy using (DummySet1; DummySet1; DummySet1)
{ "alphanum_fraction": 0.7527386541, "avg_line_length": 27.7826086957, "ext": "agda", "hexsha": "0d65a7dff4b5863c262174378cbdf2afeaf1ae5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Using.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Using.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Using.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 178, "size": 639 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Conversion where open import Data.Binary.Definition open import Data.Binary.Increment import Data.Nat as ℕ open import Data.Nat using (ℕ; suc; zero) ⟦_⇑⟧ : ℕ → 𝔹 ⟦ zero ⇑⟧ = 0ᵇ ⟦ suc n ⇑⟧ = inc ⟦ n ⇑⟧ ⟦_⇓⟧ : 𝔹 → ℕ ⟦ 0ᵇ ⇓⟧ = 0 ⟦ 1ᵇ xs ⇓⟧ = 1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ⟦ 2ᵇ xs ⇓⟧ = 2 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2
{ "alphanum_fraction": 0.5641025641, "avg_line_length": 19.5, "ext": "agda", "hexsha": "dd1983c8831af6b6588eaef5132b36dff108c419", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Conversion.agda", "max_line_length": 41, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 186, "size": 351 }
{-# OPTIONS --warning=error #-} module AbstractModuleMacro where import Common.Issue481ParametrizedModule as P abstract module M = P Set
{ "alphanum_fraction": 0.7676056338, "avg_line_length": 15.7777777778, "ext": "agda", "hexsha": "88e03a2cd754afccd50004418994ef05a2fba969", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/AbstractModuleMacro.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/AbstractModuleMacro.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/AbstractModuleMacro.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 142 }
{-# OPTIONS --postfix-projections #-} {-# OPTIONS --allow-unsolved-metas #-} module StateSizedIO.writingOOsUsingIOVers4ReaderMethods where open import StateSizedIO.RObject open import StateSizedIO.Object open import StateSizedIO.Base open import Data.Product open import Data.Nat open import Data.Fin open import Data.Bool open import Function open import Data.Unit open import Data.String open import Unit open import Data.Bool.Base open import Relation.Binary.PropositionalEquality open import SizedIO.Console open import Size open import SizedIO.Base open import Data.Sum open import Data.Empty -- ### new imports -- open import StateSizedIO.cellStateDependent using (CellInterfaceˢ; empty; cellPempty') open import NativeIO objectInterfToIOInterfˢ : RInterfaceˢ → IOInterfaceˢ objectInterfToIOInterfˢ I .IOStateˢ = I .Stateˢ objectInterfToIOInterfˢ I .Commandˢ s = I .Methodˢ s ⊎ I .RMethodˢ s objectInterfToIOInterfˢ I .Responseˢ s (inj₁ c) = I .Resultˢ s c objectInterfToIOInterfˢ I .Responseˢ s (inj₂ c) = I .RResultˢ s c -- I .Resultˢ objectInterfToIOInterfˢ I .IOnextˢ s (inj₁ c) r = I .nextˢ s c r objectInterfToIOInterfˢ I .IOnextˢ s (inj₂ c) r = s -- I .nextˢ ioInterfToObjectInterfˢ : IOInterfaceˢ → RInterfaceˢ ioInterfToObjectInterfˢ I .Stateˢ = I .IOStateˢ ioInterfToObjectInterfˢ I .Methodˢ = I .Commandˢ ioInterfToObjectInterfˢ I .Resultˢ = I .Responseˢ -- ioInterfToObjectInterfˢ I .nextˢ = I .IOnextˢ ioInterfToObjectInterfˢ I .RMethodˢ s = ⊥ ioInterfToObjectInterfˢ I .RResultˢ s () data DecSets : Set where fin : ℕ → DecSets TDecSets : DecSets → Set TDecSets (fin n) = Fin n toDecSets : ∀{n} → (x : Fin n) → DecSets toDecSets x = fin (toℕ x) _==fin_ : {n : ℕ} → Fin n → Fin n → Bool _==fin_ {zero} () t _==fin_ {suc _} zero zero = true _==fin_ {suc _} zero (suc _) = false _==fin_ {suc _} (suc _) zero = false _==fin_ {suc _} (suc s) (suc t) = s ==fin t transferFin : {n : ℕ} → (P : Fin n → Set) → (i j : Fin n) → T (i ==fin j) → P i → P j transferFin {zero} P () j q p transferFin {suc n} P zero zero q p = p transferFin {suc n} P zero (suc j) () p transferFin {suc n} P (suc i) zero () p transferFin {suc n} P (suc i) (suc j) q p = transferFin {n} (P ∘ suc) i j q p _==DecSets_ : {d : DecSets} → TDecSets d → TDecSets d → Bool _==DecSets_ {fin n} = _==fin_ transferFin' : {n : ℕ} → (P : Fin n → Set) → (i j : Fin n) → ((i ==fin j) ≡ true) → P i → P j transferFin' {zero} P () j q p transferFin' {suc n} P zero zero q p = p transferFin' {suc n} P zero (suc j) () p transferFin' {suc n} P (suc i) zero () p transferFin' {suc n} P (suc i) (suc j) q p = transferFin' {n} (P ∘ suc) i j q p transferDecSets : {J : DecSets} → (P : TDecSets J → Set) → (i j : TDecSets J) → ((i ==DecSets j) ≡ true) → P i → P j transferDecSets {(fin n)} P i j q p = transferFin' {n} P i j q p {- transferDec : {J : DecSets} → (P : TDecSets J → Set) → (i j : TDecSets) → ((i ==DecSets j) ≡ true) → P i → P j -} --with {!!} inspect {!!} --(_==DecSets_ j j') --... | x = {!!} {- ... | true = {!!} -- {!(I j).nextˢ (f j) m ?!} ... | false = {!!} -} {- = if (j ==DecSets j') then else {!!} -} module _ (I : IOInterfaceˢ ) (let S = IOStateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = IOnextˢ I) where mutual -- \writingOOsUsingIOVersFourReaderMethodsIOind data IOˢind (A : S → Set) (s : S) : Set where doˢ'' : (c : C s) (f : (r : R s c) → IOˢind A (n s c r)) → IOˢind A s returnˢ'' : (a : A s) → IOˢind A s IOˢindₚ : (A : Set)(s s' : S) → Set IOˢindₚ A s s' = IOˢind (λ s'' → (s'' ≡ s) × A) s module _ {I : RInterfaceˢ } (let S = Stateˢ I) (let n = nextˢ I) where -- \writingOOsUsingIOVersFourReaderMethodstranslateIOind translateˢ : {A : S → Set} (s : S) (obj : RObjectˢ I s) (p : IOˢind (objectInterfToIOInterfˢ I) A s) → Σ[ s′ ∈ S ] (A s′ × RObjectˢ I s′) translateˢ s obj (returnˢ'' x) = s , (x , obj) translateˢ s obj (doˢ'' (inj₁ c) p) = obj .objectMethod c ▹ λ {(x , o′) → translateˢ (n s c x) o′ (p x) } translateˢ s obj (doˢ'' (inj₂ c) p) = obj .readerMethod c ▹ λ x → translateˢ s obj (p x) -- obj .objectMethod c ▹ λ {(x , o′) -- → translateˢ {A} {n s c x} o′ (p x) } module _ {I : RInterfaceˢ } (let S = Stateˢ I) where getAˢ : ∀{A : S → Set} (s : S) → RObjectˢ I s → IOˢind (objectInterfToIOInterfˢ I) A s → Σ[ s′ ∈ S ] A s′ getAˢ s obj (returnˢ'' x) = s , x getAˢ s obj p = let res = translateˢ s obj p in proj₁ res , proj₁ (proj₂ res) module _ (I : IOInterfaceˢ ) (let S = IOStateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = IOnextˢ I) where mutual -- IOˢind' A sbegin send -- are programs which start in state sbegin and end in state send data IOˢind' (A : S → Set) (sbegin : S) : (send : S) → Set where doˢ''' : {send : S} → (c : C sbegin) → (f : (r : R sbegin c) → IOˢind' A (n sbegin c r) send) → IOˢind' A sbegin send returnˢ''' : (a : A sbegin) → IOˢind' A sbegin sbegin module _ {I : RInterfaceˢ } (let S = Stateˢ I) (let n = nextˢ I) where translateˢ' : ∀{A : S → Set}{sbegin : S}{send : S} → RObjectˢ I sbegin → IOˢind' (objectInterfToIOInterfˢ I) A sbegin send → (A send × RObjectˢ I send) translateˢ' {A} {sbegin} {send} obj (returnˢ''' x) = x , obj translateˢ' {A} {sbegin} {send} obj (doˢ''' (inj₁ c) p) = obj .objectMethod c ▹ λ {(x , o') → translateˢ' {A} {n sbegin c x} {send} o' (p x) } translateˢ' {A} {sbegin} {send} obj (doˢ''' (inj₂ c) p) = obj .readerMethod c ▹ λ x → translateˢ' {A} {sbegin} {send} obj (p x) -- obj .objectMethod c ▹ λ {(x , o') -- → translateˢ' {A} {n sbegin c x} {send} o' (p x) } module _ {I : RInterfaceˢ } (let S = Stateˢ I) where getAˢ' : ∀{A : S → Set}{sbegin : S}{send : S} → RObjectˢ I sbegin → IOˢind' (objectInterfToIOInterfˢ I) A sbegin send → A send getAˢ' {A} {sbegin} {send} obj (returnˢ''' x) = x getAˢ' {A} {sbegin} {send} obj p = let res = translateˢ' {I} {A} {sbegin} {send} obj p in proj₁ res updateFinFunction : {n : ℕ} → (P : Fin n → Set) → (f : (k : Fin n) → P k) → (l : Fin n) → (b : P l) → (k : Fin n) → P k updateFinFunction {zero} P f () b k updateFinFunction {suc n} P f zero b zero = b updateFinFunction {suc n} P f zero b (suc k) = f (suc k) updateFinFunction {suc n} P f (suc l) b zero = f zero updateFinFunction {suc n} P f (suc l) b (suc k) = updateFinFunction {n} (P ∘ suc) (f ∘ suc) l b k updateDecSetsFunction : {J : DecSets} → (P : TDecSets J → Set) → (f : (k : TDecSets J) → P k) → (l : TDecSets J) → (b : P l) → (k : TDecSets J) → P k updateDecSetsFunction {fin n} P f l b k = updateFinFunction {n} P f l b k updateFinFunctionStateChange : {n : ℕ} → (P : Fin n → Set) → (f : (k : Fin n) → P k) → (Q : (k : Fin n) → P k → Set) → (g : (k : Fin n) → Q k (f k) ) → (l : Fin n) → (newP : P l) → (newQ : Q l newP) → (k : Fin n) → Q k (updateFinFunction {n} P f l newP k) updateFinFunctionStateChange {zero} P f Q g () newP newQ k updateFinFunctionStateChange {suc n} P f Q g zero newP newQ zero = newQ updateFinFunctionStateChange {suc n} P f Q g zero newP newQ (suc k) = g (suc k) updateFinFunctionStateChange {suc n} P f Q g (suc l) newP newQ zero = g zero updateFinFunctionStateChange {suc n} P f Q g (suc l) newP newQ (suc k) = updateFinFunctionStateChange {n} (P ∘ suc) (f ∘ suc) (λ k p → Q (suc k) p) (g ∘ suc) l newP newQ k updateDecSetsFunctionStateChange : {J : DecSets} → (P : TDecSets J → Set) → (f : (k : TDecSets J) → P k) → (Q : (k : TDecSets J) → P k → Set) → (g : (k : TDecSets J) → Q k (f k) ) → (l : TDecSets J) → (newP : P l) → (newQ : Q l newP) → (k : TDecSets J) → Q k (updateDecSetsFunction {J} P f l newP k) updateDecSetsFunctionStateChange {fin n} P f Q g l newP newQ k = updateFinFunctionStateChange {n} P f Q g l newP newQ k objectInterfMultiToIOInterfˢ : (J : DecSets) → (TDecSets J → Interfaceˢ) → IOInterfaceˢ objectInterfMultiToIOInterfˢ J I .IOStateˢ = (j : TDecSets J) → (I j).Stateˢ objectInterfMultiToIOInterfˢ J I .Commandˢ f = Σ[ j ∈ TDecSets J ] (I j).Methodˢ (f j) objectInterfMultiToIOInterfˢ J I .Responseˢ f (j , m) = (I j).Resultˢ (f j) m objectInterfMultiToIOInterfˢ J I .IOnextˢ f (j , m) r = updateDecSetsFunction {J} (λ j₁ → I j₁ .Stateˢ) f j (I j .nextˢ (f j) m r) {- objectInterfMultiToIOInterfˢ J I .IOnextˢ f (j , m) r j' with (_==DecSets_ j j') | inspect (_==DecSets_ j) j' ... | true | [ eq ] = transferDecSets {J} (λ j'' → I j'' .Stateˢ) j j' eq ((I j).nextˢ (f j) m r) ... | false | [ eq ] = f j' -} translateMultiˢ : (J : DecSets) → (I : TDecSets J → Interfaceˢ) → (A : ((j : TDecSets J) → (I j).Stateˢ) → Set) (f : (j : TDecSets J) → (I j).Stateˢ) (obj : (j : TDecSets J) → Objectˢ (I j) (f j)) → IOˢind (objectInterfMultiToIOInterfˢ J I) A f → Σ[ s' ∈ ((j : TDecSets J) → (I j).Stateˢ) ] (A s' × ( (j : TDecSets J) → Objectˢ (I j) (s' j))) translateMultiˢ J I A f obj (doˢ'' (j , m) p) = (obj j) .objectMethod m ▹ λ {(r , o') → translateMultiˢ J I A (IOnextˢ (objectInterfMultiToIOInterfˢ J I) f (j , m) r) (updateDecSetsFunctionStateChange {J} (λ j₁ → I j₁ .Stateˢ) f (λ j₁ state → Objectˢ (I j₁) state) obj j (I j .nextˢ (f j) m r) o') (p r)} translateMultiˢ J I A f obj (returnˢ'' a) = f , a , obj module _ (I₁ : IOInterfaceˢ ) (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) (I₂ : IOInterfaceˢ ) (let S₂ = IOStateˢ I₂) (let C₂ = Commandˢ I₂) (let R₂ = Responseˢ I₂) (let n₂ = IOnextˢ I₂) where mutual record IOˢindcoind (i : Size)(A : S₁ → S₂ → Set) (s₁ : S₁)(s₂ : S₂) : Set where coinductive field forceIC : {j : Size< i} → IOˢindcoind+ j A s₁ s₂ data IOˢindcoind+ (i : Size)(A : S₁ → S₂ → Set) (s₁ : S₁)(s₂ : S₂) : Set where doˢIO : (c₁ : C₁ s₁) (f : (r₁ : R₁ s₁ c₁) → IOˢindcoind i A (n₁ s₁ c₁ r₁) s₂) → IOˢindcoind+ i A s₁ s₂ doˢobj : (c₂ : C₂ s₂)(f : (r₂ : R₂ s₂ c₂) → IOˢindcoind+ i A s₁ (n₂ s₂ c₂ r₂)) → IOˢindcoind+ i A s₁ s₂ returnˢic : A s₁ s₂ → IOˢindcoind+ i A s₁ s₂ open IOˢindcoind public module _ (I₁ : IOInterfaceˢ ) (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) (I₂ : IOInterfaceˢ ) (let S₂ = IOStateˢ I₂) (let C₂ = Commandˢ I₂) (let R₂ = Responseˢ I₂) (let n₂ = IOnextˢ I₂) where ioˢind2IOˢindcoind+ : (A : S₁ → S₂ → Set) (s₁ : S₁)(s₂ : S₂) (p : IOˢind I₂ (λ s₂' → A s₁ s₂') s₂) → IOˢindcoind+ I₁ I₂ ∞ A s₁ s₂ ioˢind2IOˢindcoind+ A s₁ s₂ (doˢ'' c f) = doˢobj c λ r → ioˢind2IOˢindcoind+ A s₁ (IOnextˢ I₂ s₂ c r) (f r) ioˢind2IOˢindcoind+ A s₁ s₂ (returnˢ'' a) = returnˢic a ioˢind2IOˢindcoind : (A : S₁ → S₂ → Set) (s₁ : S₁)(s₂ : S₂) (p : IOˢind I₂ (λ s₂' → A s₁ s₂') s₂) → IOˢindcoind I₁ I₂ ∞ A s₁ s₂ ioˢind2IOˢindcoind A s₁ s₂ p .forceIC = ioˢind2IOˢindcoind+ A s₁ s₂ p {- translateˢ : ∀{A : S → Set}{s : S} → Objectˢ I s → IOˢindcoind+ (objectInterfToIOInterfˢ I) A s → Σ[ s' ∈ S ] (A s' × Objectˢ I s') translateˢ {A} {s} obj (returnˢ'' x) = s , (x , obj) translateˢ {A} {s} obj (doˢobj c p) = obj .objectMethod c ▹ λ {(x , o') → translateˢ {A} {n s c x} o' (p x) } -} {- delayˢic : {i : Size}{A : S₁ → S₂ → Set}{s₁ : S₁}{s₂ : S₂} → IOˢindcoindShape i A s₁ s₂ → IOˢindcoind (↑ i) A s₁ s₂ delayˢic {i} {A} {s₁} {s₂} P .IOˢindcoind.forceIC {j} = P -} module _ {I : IOInterfaceˢ } (let S = IOStateˢ I) where _>>=ind_ : {A : S → Set}{B : S → Set}{s : S} (m : IOˢind I A s) (f : (s' : S) (a : A s') → IOˢind I B s') → IOˢind I B s _>>=ind_ (doˢ'' c f₁) f = doˢ'' c (λ r → f₁ r >>=ind f) _>>=ind_ {s = s} (returnˢ'' a) f = f s a module _ {I₁ : IOInterfaceˢ } (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) {I₂ : IOInterfaceˢ } (let S₂ = IOStateˢ I₂) (let C₂ = Commandˢ I₂) (let R₂ = Responseˢ I₂) (let n₂ = IOnextˢ I₂) where mutual _>>=indcoind+_ : {i : Size}{A : S₁ → S₂ → Set} {B : S₁ → S₂ → Set} {s₁ : S₁}{s₂ : S₂} (p : IOˢindcoind+ I₁ I₂ i A s₁ s₂) (f : {s₁' : S₁}{s₂' : S₂}(a : A s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁ s₂ doˢobj c f₁ >>=indcoind+ f = doˢobj c (λ r → f₁ r >>=indcoind+ f) doˢIO c f₁ >>=indcoind+ f = doˢIO c (λ r → f₁ r >>=indcoind f) returnˢic x >>=indcoind+ f = f x {- _>>=indcoindShape_ : {i : Size}{A : S₁ → S₂ → Set} {B : S₁ → S₂ → Set} {s₁ : S₁}{s₂ : S₂} (p : IOˢindcoindShape I₁ I₂ i A s₁ s₂) (f : (s₁' : S₁)(s₂' : S₂)(a : A s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁ s₂ doˢIO c₁ f₁ >>=indcoindShape f = returnˢ'' (doˢIO c₁ (λ r → f₁ r >>=indcoind f)) _>>=indcoindShape_ {s₁ = s₁} {s₂ = s₂} (returnˢic x) f = x >>=indcoindaux' f -} _>>=indcoind_ : {i : Size}{A : S₁ → S₂ → Set} {B : S₁ → S₂ → Set} {s₁ : S₁}{s₂ : S₂} (p : IOˢindcoind I₁ I₂ i A s₁ s₂) (f : {s₁' : S₁}{s₂' : S₂}(a : A s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁' s₂') → IOˢindcoind I₁ I₂ i B s₁ s₂ (p >>=indcoind f) .forceIC {j} = p .forceIC >>=indcoind+ f {- _>>=indcoindaux'_ : {i : Size}{A : S₁ → S₂ → Set} {B : S₁ → S₂ → Set} {s₁ : S₁}{s₂ : S₂} (p : IOˢ' I₁ i (λ s₁' → A s₁' s₂) s₁) (f : {s₁' : S₁}{s₂' : S₂}(a : A s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁ s₂ doˢ' c f₁ >>=indcoindaux' f = {!!} -- returnˢ'' (returnˢic (doˢ' c λ r → {!returnˢic!})) -- doˢ' c λ r → f₁ r >>=indcoindaux f _>>=indcoindaux'_ {s₁ = s₁}{s₂ = s₂} (returnˢ' a) f = f {s₁} {s₂} a -- doˢobj {!inj₂ c!} {!!} -} {- _>>=indcoindaux_ : {i : Size}{A : S₁ → S₂ → Set} {B : S₁ → S₂ → Set} {s₁ : S₁}{s₂ : S₂} (p : IOˢ I₁ i (λ s₁' → A s₁' s₂) s₁) (f : (s₁' : S₁)(s₂' : S₂)(a : A s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁' s₂') → IOˢindcoind+ I₁ I₂ i B s₁ s₂ p >>=indcoindaux f = {!!} -} module _ {I₁ : IOInterfaceˢ } (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) {I₂ : IOInterfaceˢ } (let S₂ = IOStateˢ I₂) where open IOˢindcoind delayˢic : {i : Size}{A : S₁ → S₂ → Set}{s₁ : S₁}{s₂ : S₂} → IOˢindcoind+ I₁ I₂ i A s₁ s₂ → IOˢindcoind I₁ I₂ (↑ i) A s₁ s₂ delayˢic {i} {A} {s₁} {s₂} P .forceIC {j} = P --Σ (Stateˢ I₂) (λ s₄ → Σ (A s₃ s₄) (λ x → Objectˢ I₂ s₄))) s₁ --→ IOˢind I₂ (λ s₂ → A s₁ s₂) s₂ open IOˢindcoind public module _ (I₁ : IOInterfaceˢ ) (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) (I₂ : RInterfaceˢ ) (let I₂′ = objectInterfToIOInterfˢ I₂) (let S₂ = Stateˢ I₂)(let n₂ = IOnextˢ I₂′) where mutual translateˢIndCoind : ∀ {i A s₁ s₂} (obj : RObjectˢ I₂ s₂) (p : IOˢindcoind I₁ I₂′ i A s₁ s₂) → IOˢ I₁ i (λ s₁ → Σ[ s₂ ∈ S₂ ] (A s₁ s₂ × RObjectˢ I₂ s₂)) s₁ translateˢIndCoind obj p .forceˢ = translateˢIndCoind+ obj (p .forceIC) translateˢIndCoind+ : ∀{i A s₁ s₂} (obj : RObjectˢ I₂ s₂) (p : IOˢindcoind+ I₁ I₂′ i A s₁ s₂) → IOˢ' I₁ i (λ s₁ → Σ[ s₂ ∈ S₂ ] (A s₁ s₂ × RObjectˢ I₂ s₂)) s₁ translateˢIndCoind+ obj (doˢobj (inj₁ c) f) = obj .objectMethod c ▹ λ { (x , obj′) → translateˢIndCoind+ obj′ (f x)} translateˢIndCoind+ obj (doˢobj (inj₂ c) f) = obj .readerMethod c ▹ λ x → translateˢIndCoind+ obj (f x) translateˢIndCoind+ obj (doˢIO c₁ f) = doˢ' c₁ λ r₁ → translateˢIndCoind obj (f r₁) translateˢIndCoind+ {i} {A} {s₁} {s₂} obj (returnˢic a) = returnˢ' (s₂ , a , obj) {- translateˢIndCoindShape : ∀{i} → {A : S₁ → S₂ → Set}{s₁ : S₁}{s₂ : S₂} → RObjectˢ I₂ s₂ → IOˢindcoindShape I₁ I₂′ i A s₁ s₂ → IOˢ' I₁ i ((λ s₁ → Σ[ s₂ ∈ S₂ ] (A s₁ s₂ × RObjectˢ I₂ s₂))) s₁ translateˢIndCoindShape {i} {A} {.s₁} {.s₂} obj (doˢIO {s₁} {s₂} c₁ p) = doˢ' c₁ (λ r₁ → translateˢIndCoind {i} {A} {n₁ s₁ c₁ r₁} {s₂} obj (p r₁)) translateˢIndCoindShape {i} {A} {.s₁} {.s₂} obj (returnˢic {s₁} {s₂} p) = fmapˢ' i (λ s a → ( s₂ , a , obj)) s₁ p -} --- --- ### file content of writingOOsUsingIO --- {- objectInterfMultiToIOInterfˢ J I .IOnextˢ f (j , m) r j' with (_==DecSets_ j j') | inspect (_==DecSets_ j) j' ... | true | [ eq ] = transferDecSets {J} (λ j'' → I j'' .Stateˢ) j j' eq ((I j).nextˢ (f j) m r) ... | false | [ eq ] = f j' -} module _ (I₁ : IOInterfaceˢ ) (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) (I₂ : IOInterfaceˢ ) (let S₂ = IOStateˢ I₂) where unsizedIOInterfToIOInterfˢ : IOInterface → IOInterfaceˢ unsizedIOInterfToIOInterfˢ x .IOStateˢ = Unit unsizedIOInterfToIOInterfˢ x .Commandˢ = λ _ → x .Command unsizedIOInterfToIOInterfˢ x .Responseˢ = λ _ → x .Response unsizedIOInterfToIOInterfˢ x .IOnextˢ _ _ _ = unit ConsoleInterfaceˢ : IOInterfaceˢ ConsoleInterfaceˢ = unsizedIOInterfToIOInterfˢ consoleI data RCellStateˢ : Set where empty full : RCellStateˢ data RCellMethodEmpty (A : Set) : Set where put : A → RCellMethodEmpty A data RCellMethodFull (A : Set) : Set where put : A → RCellMethodFull A data RRCellMethodEmpty (A : Set) : Set where data RRCellMethodFull (A : Set) : Set where get : RRCellMethodFull A RCellMethodˢ : (A : Set) → RCellStateˢ → Set RCellMethodˢ A empty = RCellMethodEmpty A RCellMethodˢ A full = RCellMethodFull A RRCellMethodˢ : (A : Set) → RCellStateˢ → Set RRCellMethodˢ A empty = RRCellMethodEmpty A RRCellMethodˢ A full = RRCellMethodFull A putGen : {A : Set} → {i : RCellStateˢ} → A → RCellMethodˢ A i putGen {A} {empty} = put putGen {A} {full} = put RCellResultFull : ∀{A} → RCellMethodFull A → Set RCellResultFull (put _) = Unit RCellResultEmpty : ∀{A} → RCellMethodEmpty A → Set RCellResultEmpty (put _) = Unit RRCellResultFull : ∀{A} → RRCellMethodFull A → Set RRCellResultFull {A} get = A RRCellResultEmpty : ∀{A} → RRCellMethodEmpty A → Set RRCellResultEmpty () RCellResultˢ : (A : Set) → (s : RCellStateˢ) → RCellMethodˢ A s → Set RCellResultˢ A empty = RCellResultEmpty{A} RCellResultˢ A full = RCellResultFull{A} RRCellResultˢ : (A : Set) → (s : RCellStateˢ) → RRCellMethodˢ A s → Set RRCellResultˢ A empty = RRCellResultEmpty{A} RRCellResultˢ A full = RRCellResultFull{A} nˢ : ∀{A} → (s : RCellStateˢ) → (c : RCellMethodˢ A s) → (RCellResultˢ A s c) → RCellStateˢ nˢ _ _ _ = full RCellInterfaceˢ : (A : Set) → RInterfaceˢ Stateˢ (RCellInterfaceˢ A) = RCellStateˢ Methodˢ (RCellInterfaceˢ A) = RCellMethodˢ A Resultˢ (RCellInterfaceˢ A) = RCellResultˢ A RMethodˢ (RCellInterfaceˢ A) = RRCellMethodˢ A RResultˢ (RCellInterfaceˢ A) = RRCellResultˢ A nextˢ (RCellInterfaceˢ A) = nˢ {- mutual RcellPempty : (i : Size) → IOObject consoleI (RCellInterfaceˢ String) i empty method (cellPempty i) {j} (put str) = do (putStrLn ("put (" ++ str ++ ")")) λ _ → return (unit , cellPfull j str) cellPfull : (i : Size) → (str : String) → IOObject consoleI (CellInterfaceˢ String) i full method (cellPfull i str) {j} get = do (putStrLn ("get (" ++ str ++ ")")) λ _ → return (str , cellPfull j str) method (cellPfull i str) {j} (put str') = do (putStrLn ("put (" ++ str' ++ ")")) λ _ → return (unit , cellPfull j str') -} -- UNSIZED Version, without IO mutual RcellPempty' : ∀{A} → RObjectˢ (RCellInterfaceˢ A) empty RcellPempty' .objectMethod (put a) = (_ , RcellPfull' a) RcellPempty' .readerMethod () RcellPfull' : ∀{A} → A → RObjectˢ (RCellInterfaceˢ A) full RcellPfull' a .readerMethod get = a RcellPfull' a .objectMethod (put a') = (_ , RcellPfull' a') RCellInterfaceˢIO : IOInterfaceˢ RCellInterfaceˢIO = objectInterfToIOInterfˢ (RCellInterfaceˢ String) module _ (I : IOInterface) (let C = I .Command) (let R = I .Response) (let I' = unsizedIOInterfToIOInterfˢ I) (let C' = I' .Commandˢ) (let R' = I' .Responseˢ) (convertC : C' _ → C) (convertR : ∀{c : C} → Response I (convertC c) → I .Response c) where mutual flatternIOˢ : ∀ {A : Set} → IOˢ (unsizedIOInterfToIOInterfˢ I) ∞ (λ _ → A) unit → IO I ∞ A flatternIOˢ {A} p .force = flatternIOˢ' (forceˢ p) flatternIOˢ' : {A : Set} → IOˢ' (unsizedIOInterfToIOInterfˢ I) ∞ (λ _ → A) unit → IO' I ∞ A flatternIOˢ' {A} (doˢ' cˢ f) = do' (convertC cˢ) (λ rˢ → flatternIOˢ (f (convertR {cˢ} rˢ))) flatternIOˢ' {A} (returnˢ' a) = return' a {- doIOShape : {i : Size} {I₁ : IOInterfaceˢ} {I₂ : IOInterfaceˢ} {A : I₁ .IOStateˢ → I₂ .IOStateˢ → Set} {s₁ : I₁ .IOStateˢ} {s₂ : I₂ .IOStateˢ} (c₁ : I₁ .Commandˢ s₁) → ((r₁ : I₁ .Responseˢ s₁ c₁) → IOˢindcoind I₁ I₂ i A (IOnextˢ I₁ s₁ c₁ r₁) s₂) → IOˢindcoindShape I₁ I₂ i A s₁ s₂ doIOShape = doˢIO -} {- callMethod'' : {I₂ : IOInterfaceˢ} {A : I₂ .IOStateˢ → Set} {s₂ : I₂ .IOStateˢ} (c : Commandˢ I₂ s₂) → ((r : Responseˢ I₂ s₂ c) → IOˢind I₂ A (IOnextˢ I₂ s₂ c r)) → IOˢind I₂ A s₂ callMethod'' = doˢobj -} doˢobj∞ : {I₁ : IOInterfaceˢ }{I₂ : IOInterfaceˢ} {A : IOStateˢ I₁ → I₂ .IOStateˢ → Set} {s₁ : IOStateˢ I₁} {s₂ : I₂ .IOStateˢ} (c : Commandˢ I₂ s₂) → ((r : Responseˢ I₂ s₂ c) → IOˢindcoind+ I₁ I₂ ∞ A s₁ (IOnextˢ I₂ s₂ c r) ) → IOˢindcoind I₁ I₂ ∞ A s₁ s₂ doˢobj∞ {I₁} {I₂} {A} {s₁} {s₂} c f .forceIC {j} = doˢobj c f {- callMethod+ : {I₁ : IOInterfaceˢ }{I₂ : IOInterfaceˢ} {A : IOStateˢ I₁ → I₂ .IOStateˢ → Set} {s₁ : IOStateˢ I₁} {s₂ : I₂ .IOStateˢ} (c : Commandˢ I₂ s₂) → ((r : Responseˢ I₂ s₂ c) → IOˢindcoind+ I₁ I₂ ∞ A s₁ (IOnextˢ I₂ s₂ c r) ) → IOˢindcoind+ I₁ I₂ ∞ A s₁ s₂ callMethod+ {I₁} {I₂} {A} {s₁} {s₂} = doˢobj -} {- we think not needed anymore endIO : {I₁ : IOInterfaceˢ} {I₂ : IOInterfaceˢ} -- {A : I₁ .IOStateˢ → I₂ .IOStateˢ → Set} {s₁ : I₁ .IOStateˢ} {s₂ : I₂ .IOStateˢ} → IOˢind I₂ (λ s → IOˢindcoind I₁ I₂ ∞ (λ _ _ → Unit) s₁ s) s₂ endIO {I₁} {I₂} {s₁} {s₂} = returnˢ'' (delayˢic (returnˢ'' (returnˢic (returnˢ' unit)))) -- (delayˢic (returnˢic (returnˢ' unit))) -- returnˢ'' {I₂} -- {!!} -- (delayˢic {!returnˢ''!} ) -- (returnˢ'' (returnˢic (returnˢ' unit)))) --(returnˢic (returnˢ' unit))) -} endIO+ : {I₁ : IOInterfaceˢ} {I₂ : IOInterfaceˢ} {s₁ : I₁ .IOStateˢ} {s₂ : I₂ .IOStateˢ} → IOˢindcoind+ I₁ I₂ ∞ (λ _ _ → Unit) s₁ s₂ endIO+ = returnˢic unit endIO∞ : {I₁ : IOInterfaceˢ} {I₂ : IOInterfaceˢ} {s₁ : I₁ .IOStateˢ} {s₂ : I₂ .IOStateˢ} → IOˢindcoind I₁ I₂ ∞ (λ _ _ → Unit) s₁ s₂ endIO∞ .forceIC {j} = endIO+ doˢIO∞ : {i : Size} {I₁ : IOInterfaceˢ} {I₂ : IOInterfaceˢ} {s₁ : I₁ .IOStateˢ} {s₂ : I₂ .IOStateˢ} (c₁ : I₁ .Commandˢ s₁) → ((r₁ : I₁ .Responseˢ s₁ c₁) → IOˢindcoind I₁ I₂ i (λ _ _ → Unit) (IOnextˢ I₁ s₁ c₁ r₁) s₂) → IOˢindcoind I₁ I₂ i (λ _ _ → Unit) s₁ s₂ doˢIO∞ {i} c p .forceIC {j} = doˢIO c p callProg : {I : IOInterfaceˢ }{A : I .IOStateˢ → Set}{s : I .IOStateˢ} (a : A s) → IOˢind I A s callProg = returnˢ'' run' : IOˢindcoind ConsoleInterfaceˢ RCellInterfaceˢIO ∞ (λ x y → Unit) unit empty → NativeIO Unit run' prog = translateIOConsole (flatternIOˢ consoleI (λ c → c) (λ r → r) (fmapˢ ∞ (λ x y → unit) unit (translateˢIndCoind ConsoleInterfaceˢ (RCellInterfaceˢ String) RcellPempty' (prog)))) module _ {objInf : RInterfaceˢ} (let objIOInf = objectInterfToIOInterfˢ objInf) {objState : objIOInf .IOStateˢ } where run_startingWith_ : IOˢindcoind ConsoleInterfaceˢ objIOInf ∞ (λ x y → Unit) unit objState → RObjectˢ objInf objState → NativeIO Unit run prog startingWith obj = translateIOConsole (flatternIOˢ consoleI (λ c → c) (λ r → r) (fmapˢ ∞ (λ x y → unit) unit (translateˢIndCoind ConsoleInterfaceˢ objInf obj prog))) run+_startingWith_ : IOˢindcoind+ ConsoleInterfaceˢ objIOInf ∞ (λ _ _ → Unit) unit objState → RObjectˢ objInf objState → NativeIO Unit run+ prog startingWith obj = translateIOConsole (flatternIOˢ consoleI id id (fmapˢ ∞ (λ _ _ → unit) unit (delayˢ (translateˢIndCoind+ ConsoleInterfaceˢ objInf obj prog)))) -- (ioInterfToObjectInterfˢ objIOInf) --- ### END of file content of writingOOsUsingIO --- {- obj .objectMethod c ▹ λ {(x , o') → translateˢ {A} {n s c x} o' (p x) } let q : Σ[ s' ∈ S₂ ] (IOˢindcoindShape I₁ I₂′ i A s₁ s' × Objectˢ I₂ s') q = translateˢ obj p in translateˢIndCoindShape (proj₂ (proj₂ q)) (proj₁ (proj₂ q)) -} module _ (I₁ : IOInterfaceˢ ) (let S₁ = IOStateˢ I₁) (let C₁ = Commandˢ I₁) (let R₁ = Responseˢ I₁) (let n₁ = IOnextˢ I₁) (I₂ : IOInterfaceˢ ) (let S₂ = IOStateˢ I₂) (let C₂ = Commandˢ I₂) (let R₂ = Responseˢ I₂) (let n₂ = IOnextˢ I₂) (I₂' : IOInterface) (let C₂' = I₂' .Command) (let R₂' = I₂' .Response) (let I₂'' = unsizedIOInterfToIOInterfˢ I₂') (let C₂'' = I₂'' .Commandˢ) (let R₂'' = I₂'' .Responseˢ) (convertC : (s₂ : S₂)(c₂ : C₂ s₂) → C₂') (convertR : (s₂ : S₂)(c₂ : C₂ s₂)(r₂ : R₂' (convertC s₂ c₂)) → R₂ s₂ c₂) (A : Set) where mutual translateIndCoindFlatteningObj : ∀{i} (s₁ : S₁) (s₂ : S₂) → IOˢindcoind I₁ I₂ i (λ _ _ → A) s₁ s₂ → IOˢindcoind I₁ I₂'' i (λ _ _ → A) s₁ _ translateIndCoindFlatteningObj {i} s₁ s₂ p .forceIC {j} = translateIndCoindFlatteningObj+ {j} s₁ s₂ (p .forceIC {j}) translateIndCoindFlatteningObj+ : ∀{i} (s₁ : S₁) (s₂ : S₂) → IOˢindcoind+ I₁ I₂ i (λ _ _ → A) s₁ s₂ → IOˢindcoind+ I₁ I₂'' i (λ _ _ → A) s₁ _ translateIndCoindFlatteningObj+ {i} s₁ s₂ (doˢIO c₁ f) = doˢIO c₁ λ r₁ → translateIndCoindFlatteningObj (n₁ s₁ c₁ r₁) s₂ (f r₁) translateIndCoindFlatteningObj+ {i} s₁ s₂ (doˢobj c₂ f) = doˢobj (convertC s₂ c₂) λ r₂ → translateIndCoindFlatteningObj+ s₁ (n₂ s₂ c₂ (convertR s₂ c₂ r₂)) (f (convertR s₂ c₂ r₂)) translateIndCoindFlatteningObj+ {i} s₁ s₂ (returnˢic x) = returnˢic x
{ "alphanum_fraction": 0.5277269338, "avg_line_length": 35.5445783133, "ext": "agda", "hexsha": "91c5151191546bbc4fe71245f2a465df483fca32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/StateSizedIO/writingOOsUsingIOVers4ReaderMethods.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/StateSizedIO/writingOOsUsingIOVers4ReaderMethods.agda", "max_line_length": 151, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/StateSizedIO/writingOOsUsingIOVers4ReaderMethods.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 11714, "size": 29502 }
module Issue1436-1 where module A where infixl 20 _↑_ infixl 1 _↓_ data D : Set where ● : D _↓_ _↑_ : D → D → D module B where infix -1000000 _↓_ data D : Set where _↓_ : D → D → D open A open B -- The expression below is not parsed. If the number 20 above is -- replaced by 19, then it is parsed… rejected = ● ↑ ● ↓ ● ↑ ● ↓ ● ↑ ●
{ "alphanum_fraction": 0.5691056911, "avg_line_length": 14.1923076923, "ext": "agda", "hexsha": "dc5df4dc5d146f15159dec83f8b822af75fcbd04", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1436-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1436-1.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1436-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 134, "size": 369 }
-- Andreas, 2016-07-29, issue #717 -- reported by LarryTheLiquid on 2012-10-28 data Foo (A : Set) : Set where foo : Foo A data Bar : Set where bar baz : Foo {!Bar!} → Bar -- previously, this IP got duplicated internally fun : (x : Bar) → Foo Bar fun (bar y) = {!y!} -- WAS: goal is "Set" (incorrect, should be "Foo Bar") fun (baz z) = {!z!} -- goal is "Foo Bar" (correct) -- Works now, after fix for #1720!
{ "alphanum_fraction": 0.6201923077, "avg_line_length": 27.7333333333, "ext": "agda", "hexsha": "6b8f1c30bcc435c22df4a5ebe40d93e5bb44d045", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue717.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue717.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue717.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 416 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Complete module Categories.Category.Complete.Properties.SolutionSet where open import Level open import Categories.Functor open import Categories.Object.Initial open import Categories.Object.Product.Indexed open import Categories.Object.Product.Indexed.Properties open import Categories.Diagram.Equalizer open import Categories.Diagram.Equalizer.Limit open import Categories.Diagram.Equalizer.Properties import Categories.Diagram.Limit as Lim import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level o′ ℓ′ e′ : Level J : Category o ℓ e module _ (C : Category o ℓ e) where open Category C record SolutionSet : Set (o ⊔ ℓ) where field D : Obj → Obj arr : ∀ X → D X ⇒ X module _ {C : Category o ℓ e} (Com : Complete (o ⊔ ℓ ⊔ o′) (o ⊔ ℓ ⊔ ℓ′) (o ⊔ ℓ ⊔ e′) C) (S : SolutionSet C) where private module S = SolutionSet S module C = Category C open S open Category C open HomReasoning open MR C W : IndexedProductOf C D W = Complete⇒IndexedProductOf C {o′ = ℓ ⊔ o′} {ℓ′ = ℓ ⊔ ℓ′} {e′ = ℓ ⊔ e′} Com D module W = IndexedProductOf W W⇒W : Set ℓ W⇒W = W.X ⇒ W.X Warr : IndexedProductOf C {I = W⇒W} λ _ → W.X Warr = Complete⇒IndexedProductOf C {o′ = o ⊔ o′} {ℓ′ = o ⊔ ℓ′} {e′ = o ⊔ e′} Com _ module Warr = IndexedProductOf Warr Δ : W.X ⇒ Warr.X Δ = Warr.⟨ (λ _ → C.id) ⟩ Γ : W.X ⇒ Warr.X Γ = Warr.⟨ (λ f → f) ⟩ equalizer : Equalizer C Δ Γ equalizer = complete⇒equalizer C Com Δ Γ module equalizer = Equalizer equalizer prop : (f : W.X ⇒ W.X) → f ∘ equalizer.arr ≈ equalizer.arr prop f = begin f ∘ equalizer.arr ≈˘⟨ pullˡ (Warr.commute _ f) ⟩ Warr.π f ∘ Γ ∘ equalizer.arr ≈˘⟨ refl⟩∘⟨ equalizer.equality ⟩ Warr.π f ∘ Δ ∘ equalizer.arr ≈⟨ cancelˡ (Warr.commute _ f) ⟩ equalizer.arr ∎ ! : ∀ A → equalizer.obj ⇒ A ! A = arr A ∘ W.π A ∘ equalizer.arr module _ {A} (f : equalizer.obj ⇒ A) where equalizer′ : Equalizer C (! A) f equalizer′ = complete⇒equalizer C Com (! A) f module equalizer′ = Equalizer equalizer′ s : W.X ⇒ equalizer′.obj s = arr _ ∘ W.π (equalizer′.obj) t : W.X ⇒ W.X t = equalizer.arr ∘ equalizer′.arr ∘ s t′ : equalizer.obj ⇒ equalizer.obj t′ = equalizer′.arr ∘ s ∘ equalizer.arr t∘eq≈eq∘1 : equalizer.arr ∘ t′ ≈ equalizer.arr ∘ C.id t∘eq≈eq∘1 = begin equalizer.arr ∘ t′ ≈⟨ refl⟩∘⟨ sym-assoc ⟩ equalizer.arr ∘ (equalizer′.arr ∘ s) ∘ equalizer.arr ≈⟨ sym-assoc ⟩ t ∘ equalizer.arr ≈⟨ prop _ ⟩ equalizer.arr ≈˘⟨ identityʳ ⟩ equalizer.arr ∘ C.id ∎ t′≈id : t′ ≈ C.id t′≈id = Equalizer⇒Mono C equalizer _ _ t∘eq≈eq∘1 !-unique : ! A ≈ f !-unique = equalizer-≈⇒≈ C equalizer′ t′≈id SolutionSet⇒Initial : Initial C SolutionSet⇒Initial = record { ⊥ = equalizer.obj ; ⊥-is-initial = record { ! = ! _ ; !-unique = !-unique } }
{ "alphanum_fraction": 0.5638753056, "avg_line_length": 28.9557522124, "ext": "agda", "hexsha": "f5629ad811d9638ff745377774cf460bc1d4e74a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete/Properties/SolutionSet.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete/Properties/SolutionSet.agda", "max_line_length": 113, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete/Properties/SolutionSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1148, "size": 3272 }
-- examples for termination with tupled arguments module Tuple where data Nat : Set where zero : Nat succ : Nat -> Nat data Pair (A : Set) (B : Set) : Set where pair : A -> B -> Pair A B -- uncurried addition add : Pair Nat Nat -> Nat add (pair x (succ y)) = succ (add (pair x y)) add (pair x zero) = x data T (A : Set) (B : Set) : Set where c1 : A -> B -> T A B c2 : A -> B -> T A B {- -- constructor names do not matter add' : T Nat Nat -> Nat add' (c1 x (succ y)) = succ (add' (c2 x y)) add' (c2 x (succ y)) = succ (add' (c1 x y)) add' (c1 x zero) = x add' (c2 x zero) = x -- additionally: permutation of arguments add'' : T Nat Nat -> Nat add'' (c1 x (succ y)) = succ (add'' (c2 y x)) add'' (c2 (succ y) x) = succ (add'' (c1 x y)) add'' (c1 x zero) = x add'' (c2 zero x) = x -}
{ "alphanum_fraction": 0.5595533499, "avg_line_length": 21.7837837838, "ext": "agda", "hexsha": "e10eb6db6f9abbd0f5b90e5a2382639439f6f22a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/Termination/Tuple.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/Termination/Tuple.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/Termination/Tuple.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 304, "size": 806 }
-- Andreas, 2016-08-01, issue #2125, qualified names in pragmas {-# OPTIONS --rewriting #-} import Common.Equality as Eq {-# BUILTIN REWRITE Eq._≡_ #-} -- qualified name, should be accepted postulate A : Set a b : A module M where open Eq postulate rule : a ≡ b {-# REWRITE M.rule #-} -- qualified name, should be accepted -- ERROR WAS: in the name M.rule, the part M.rule is not valid -- NOW: works
{ "alphanum_fraction": 0.6571428571, "avg_line_length": 19.0909090909, "ext": "agda", "hexsha": "e8a2dd888a66e8b5964bc1ad475f7c2c3f6351b0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/RewriteQualified.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/RewriteQualified.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/RewriteQualified.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 128, "size": 420 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.Products module Categories.Object.Products.N-ary {o ℓ e} (C : Category o ℓ e) (P : Products C) where open Category C open Products P open Equiv import Categories.Object.Product open Categories.Object.Product C import Categories.Object.BinaryProducts open Categories.Object.BinaryProducts C import Categories.Object.BinaryProducts.N-ary import Categories.Object.Terminal open Categories.Object.Terminal C open import Data.Nat open import Data.Vec open import Data.Vec.Properties open import Data.Product.N-ary hiding ([]) import Level open import Relation.Binary.PropositionalEquality as PropEq using () renaming (_≡_ to _≣_ ; refl to ≣-refl ; sym to ≣-sym ; cong to ≣-cong ) open BinaryProducts binary module NonEmpty = Categories.Object.BinaryProducts.N-ary C binary open Terminal terminal Prod : {n : ℕ} → Vec Obj n → Obj Prod { zero} [] = ⊤ Prod {suc n} As = NonEmpty.Prod As -- This whole module is made a great deal more heinous than it should be -- by the fact that "xs ++ [] ≣ xs" is ill-typed, so I have to repeatedly -- prove trivial corrolaries of that fact without using it directly. -- I don't really know how to deal with that in a sane way. πˡ : {n m : ℕ} → (As : Vec Obj n) → (Bs : Vec Obj m) → Prod (As ++ Bs) ⇒ Prod As πˡ { zero} [] Bs = ! πˡ { suc n} (A ∷ As) (B ∷ Bs) = NonEmpty.πˡ (A ∷ As) (B ∷ Bs) πˡ { suc zero} (A ∷ []) [] = id πˡ {suc (suc n)} (A ∷ As) [] = ⟨ π₁ , πˡ As [] ∘ π₂ ⟩ πʳ : {n m : ℕ} → (As : Vec Obj n) → (Bs : Vec Obj m) → Prod (As ++ Bs) ⇒ Prod Bs πʳ [] Bs = id πʳ (A ∷ As) (B ∷ Bs) = NonEmpty.πʳ (A ∷ As) (B ∷ Bs) πʳ As [] = ! glue : {n m : ℕ}{X : Obj} → (As : Vec Obj n) → (Bs : Vec Obj m) → (f : X ⇒ Prod As) → (g : X ⇒ Prod Bs) → X ⇒ Prod (As ++ Bs) glue { zero} [] Bs f g = g glue { suc n} (A ∷ As) (B ∷ Bs) f g = NonEmpty.glue (A ∷ As) (B ∷ Bs) f g glue { suc zero} (A ∷ []) [] f g = f glue {suc (suc n)} (A ∷ As) [] f g = ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ open HomReasoning .commuteˡ : {n m : ℕ}{X : Obj} → (As : Vec Obj n) → (Bs : Vec Obj m) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → πˡ As Bs ∘ glue As Bs f g ≡ f commuteˡ { zero} [] Bs {f}{g} = !-unique₂ (! ∘ g) f commuteˡ { suc n} (A ∷ As) (B ∷ Bs) {f}{g} = NonEmpty.commuteˡ (A ∷ As) (B ∷ Bs) commuteˡ { suc zero} (A ∷ []) [] {f}{g} = identityˡ commuteˡ {suc (suc n)} (A ∷ As) [] {f}{g} = begin ⟨ π₁ , πˡ As [] ∘ π₂ ⟩ ∘ ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩∘ ⟩ ⟨ π₁ ∘ ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ , (πˡ As [] ∘ π₂) ∘ ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ ⟩ ↓⟨ ⟨⟩-congʳ assoc ⟩ ⟨ π₁ ∘ ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ , πˡ As [] ∘ π₂ ∘ ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ ⟩ ↓⟨ ⟨⟩-cong₂ commute₁ (∘-resp-≡ʳ commute₂) ⟩ ⟨ π₁ ∘ f , πˡ As [] ∘ glue As [] (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩-congʳ (commuteˡ As []) ⟩ ⟨ π₁ ∘ f , π₂ ∘ f ⟩ ↓⟨ g-η ⟩ f ∎ .commuteʳ : {n m : ℕ}{X : Obj} → (As : Vec Obj n) → (Bs : Vec Obj m) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → πʳ As Bs ∘ glue As Bs f g ≡ g commuteʳ { zero} [] Bs {f}{g} = identityˡ commuteʳ { suc n} (A ∷ As) (B ∷ Bs) {f}{g} = NonEmpty.commuteʳ (A ∷ As) (B ∷ Bs) commuteʳ { suc zero} (A ∷ []) [] {f}{g} = !-unique₂ (! ∘ f) g commuteʳ {suc (suc n)} (A ∷ As) [] {f}{g} = !-unique₂ (! ∘ glue (A ∷ As) [] f g) g .N-universal : {n m : ℕ}{X : Obj} → (As : Vec Obj n) → (Bs : Vec Obj m) → {f : X ⇒ Prod As} → {g : X ⇒ Prod Bs} → {h : X ⇒ Prod (As ++ Bs) } → πˡ As Bs ∘ h ≡ f → πʳ As Bs ∘ h ≡ g → glue As Bs f g ≡ h N-universal { zero} [] Bs {f}{g}{h} h-commuteˡ h-commuteʳ = trans (sym h-commuteʳ) identityˡ N-universal { suc n} (A ∷ As) (B ∷ Bs) {f}{g}{h} h-commuteˡ h-commuteʳ = NonEmpty.N-universal (A ∷ As) (B ∷ Bs) h-commuteˡ h-commuteʳ N-universal { suc zero} (A ∷ []) [] {f}{g}{h} h-commuteˡ h-commuteʳ = trans (sym h-commuteˡ) identityˡ N-universal {suc (suc n)} (A ∷ As) [] {f}{g}{h} h-commuteˡ h-commuteʳ = begin ⟨ π₁ ∘ f , glue As [] (π₂ ∘ f) g ⟩ ↓⟨ ⟨⟩-congʳ (N-universal As [] π₂∘h-commuteˡ π₂∘h-commuteʳ) ⟩ ⟨ π₁ ∘ f , π₂ ∘ h ⟩ ↑⟨ ⟨⟩-congˡ π₁∘h-commuteˡ ⟩ ⟨ π₁ ∘ h , π₂ ∘ h ⟩ ↓⟨ g-η ⟩ h ∎ where -- h-commuteˡ : ⟨ π₁ , πˡ As [] ∘ π₂ ⟩ ∘ h ≡ f -- h-commuteʳ : (πʳ As [] ∘ π₂) ∘ h ≡ g π₁∘h-commuteˡ : π₁ ∘ h ≡ π₁ ∘ f π₁∘h-commuteˡ = begin π₁ ∘ h ↑⟨ commute₁ ⟩∘⟨ refl ⟩ (π₁ ∘ ⟨ π₁ , πˡ As [] ∘ π₂ ⟩) ∘ h ↓⟨ assoc ⟩ π₁ ∘ ⟨ π₁ , πˡ As [] ∘ π₂ ⟩ ∘ h ↓⟨ refl ⟩∘⟨ h-commuteˡ ⟩ π₁ ∘ f ∎ π₂∘h-commuteˡ : πˡ As [] ∘ π₂ ∘ h ≡ π₂ ∘ f π₂∘h-commuteˡ = begin πˡ As [] ∘ π₂ ∘ h ↑⟨ assoc ⟩ (πˡ As [] ∘ π₂) ∘ h ↑⟨ commute₂ ⟩∘⟨ refl ⟩ (π₂ ∘ ⟨ π₁ , πˡ As [] ∘ π₂ ⟩) ∘ h ↓⟨ assoc ⟩ π₂ ∘ ⟨ π₁ , πˡ As [] ∘ π₂ ⟩ ∘ h ↓⟨ refl ⟩∘⟨ h-commuteˡ ⟩ π₂ ∘ f ∎ π₂∘h-commuteʳ : πʳ As [] ∘ π₂ ∘ h ≡ g π₂∘h-commuteʳ = !-unique₂ (πʳ As [] ∘ π₂ ∘ h) g isProduct : {n m : ℕ} → (As : Vec Obj n) → (Bs : Vec Obj m) → Product (Prod As) (Prod Bs) isProduct {n}{m} As Bs = record { A×B = Prod (As ++ Bs) ; π₁ = πˡ As Bs ; π₂ = πʳ As Bs ; ⟨_,_⟩ = glue As Bs ; commute₁ = commuteˡ As Bs ; commute₂ = commuteʳ As Bs ; universal = N-universal As Bs }
{ "alphanum_fraction": 0.4885714286, "avg_line_length": 29.3193717277, "ext": "agda", "hexsha": "add755fff0317b85e5f7caef69daf38297e8f4f2", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Products/N-ary.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Products/N-ary.agda", "max_line_length": 138, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Products/N-ary.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2515, "size": 5600 }
-- {-# OPTIONS -v tc.term.args:30 -v tc.meta:50 #-} module Issue795 where data Q (A : Set) : Set where F : (N : Set → Set) → Set₁ F N = (A : Set) → N (Q A) → N A postulate N : Set → Set f : F N R : (N : Set → Set) → Set funny-term : ∀ N → (f : F N) → R N -- This should work now: WAS: "Refuse to construct infinite term". thing : R N thing = funny-term _ (λ A → f _) -- funny-term ?N : F ?N -> R ?N -- funny-term ?N : ((A : Set) -> ?N (Q A) -> ?N A) -> R ?N -- A : F ?N |- f (?A A) :=> ?N (Q (?A A)) -> ?N (?A A) -- |- λ A → f (?A A) <=: (A : Set) -> N (Q A) -> N A {- What is happening here? Agda first creates a (closed) meta variable ?N : Set -> Set Then it checks λ A → f ? against type F ?N = (A : Set) -> ?N (Q A) -> ?N A (After what it does now, it still needs to check that R ?N is a subtype of R N It would be smart if that was done first.) In context A : Set, continues to check f ? against type ?N (Q A) -> ?N A Since the type of f is F N = (A : Set) -> N (Q A) -> N A, the created meta, dependent on A : Set is ?A : Set -> Set and we are left with checking that the inferred type of f (?A A), N (Q (?A A)) -> N (?A A) is a subtype of ?N (Q A) -> ?N A This yields two equations ?N (Q A) = N (Q (?A A)) ?N A = N (?A A) The second one is solved as ?N = λ z → N (?A z) simpliying the remaining equation to N (?A (Q A)) = N (Q (?A A)) and further to ?A (Q A) = Q (?A A) The expected solution is, of course, the identity, but it cannot be found mechanically from this equation. At this point, another solution is ?A = Q. In general, any power of Q is a solution. If Agda postponed here, it would come to the problem R ?N = R N simplified to ?N = N and instantiated to λ z → N (?A z) = N This would solve ?A to be the identity. -}
{ "alphanum_fraction": 0.5554951034, "avg_line_length": 20.1978021978, "ext": "agda", "hexsha": "1caea53527969f970c7ce4a1da2e1164ca814a02", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue795.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue795.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue795.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 659, "size": 1838 }
module Examples where open import Prelude open import Sessions.Syntax module _ where open import Relation.Ternary.Separation.Construct.List Type lets : ∀[ Exp a ⇒ (a ∷_) ⊢ Exp b ─✴ Exp b ] app (lets e₁) e₂ σ = ap (lam _ e₂ ×⟨ ⊎-comm σ ⟩ e₁) -- The example from section 2.1 of the paper ex₁ : Exp unit ε ex₁ = letpair (mkchan (unit ! end) ×⟨ ⊎-idʳ ⟩ ( lets (fork (lam unit (letpair (recv (var refl) ×⟨ consʳ (consˡ []) ⟩ letunit (letunit (var refl ×⟨ ⊎-∙ ⟩ var refl) ×⟨ consʳ ⊎-idʳ ⟩ (terminate (var refl))))))) $⟨ consʳ (consˡ []) ⟩ (lets (send (unit ×⟨ ⊎-idˡ ⟩ var refl)) $⟨ ⊎-comm ⊎-∙ ⟩ letunit (var refl ×⟨ consʳ ⊎-∙ ⟩ terminate (var refl))))) module _ where open import Sessions.Semantics.Expr open import Sessions.Semantics.Process as P hiding (main) open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Monad.Error pool₁ : ∃ λ Φ → Except Exc (● St) Φ pool₁ = start 1000 (P.main comp) where comp = app (runReader nil) (eval 1000 ex₁) ⊎-idˡ open import IO open import Data.String.Base using (_++_) open import Codata.Musical.Notation open import Debug.Trace open import Data.Sum open import Relation.Ternary.Separation.Monad.Error -- to run the main and see the program trace, -- run 'make examples' main = run $ ♯ (putStrLn "Hello, World!") >> ♯ (♯ putStrLn result >> ♯ putStrLn "done") where result = case pool₁ of λ where (ty , ExceptT.partial (inj₁ e)) → "fail" (ty , ExceptT.partial (inj₂ v)) → "ok"
{ "alphanum_fraction": 0.6307498425, "avg_line_length": 31.1176470588, "ext": "agda", "hexsha": "d4d4c3df29653fb13c9b4df039fd0129d4da4b39", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Examples.agda", "max_line_length": 72, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 546, "size": 1587 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Categories.Category.Monoidal.Core using (Monoidal) -- The tensor product of certain monoidal categories is a monoidal functor. module Categories.Functor.Monoidal.Tensor {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} where open import Data.Product using (_,_) open import Categories.Category.Product using (Product) open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Symmetric using (Symmetric) open import Categories.Category.Monoidal.Construction.Product hiding (⊗) open import Categories.Category.Monoidal.Interchange open import Categories.Category.Monoidal.Structure open import Categories.Morphism using (module ≅) open import Categories.Functor.Monoidal import Categories.Functor.Monoidal.Braided as BMF import Categories.Functor.Monoidal.Symmetric as SMF open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open NaturalIsomorphism private C-monoidal : MonoidalCategory o ℓ e C-monoidal = record { U = C; monoidal = M } C×C = Product C C C×C-monoidal = Product-MonoidalCategory C-monoidal C-monoidal open MonoidalCategory C-monoidal -- By definition, the tensor product ⊗ of a monoidal category C is a -- binary functor ⊗ : C × C → C. The product category C × C of a -- monoidal category C is again monoidal. Thus we may ask: -- -- Is the functor ⊗ a monoidal functor, i.e. does it preserve the -- monoidal structure in a suitable way (lax or strong)? -- -- The answer is "yes", provided ⊗ comes equipped with a (coherent) -- interchange map, aka a "four-middle interchange", which is the case -- e.g. when C is braided. module Lax (hasInterchange : HasInterchange M) where private module interchange = HasInterchange hasInterchange ⊗-isMonoidalFunctor : IsMonoidalFunctor C×C-monoidal C-monoidal ⊗ ⊗-isMonoidalFunctor = record { ε = unitorˡ.to ; ⊗-homo = F⇒G interchange.naturalIso ; associativity = interchange.assoc ; unitaryˡ = interchange.unitˡ ; unitaryʳ = interchange.unitʳ } ⊗-MonoidalFunctor : MonoidalFunctor C×C-monoidal C-monoidal ⊗-MonoidalFunctor = record { F = ⊗ ; isMonoidal = ⊗-isMonoidalFunctor } module LaxBraided (B : Braided M) where open Lax (BraidedInterchange.hasInterchange B) public module LaxSymmetric (S : Symmetric M) where open SymmetricInterchange S open Lax hasInterchange public open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to bmc) private C-symmetric : SymmetricMonoidalCategory o ℓ e C-symmetric = record { symmetric = S } C×C-symmetric = Product-SymmetricMonoidalCategory C-symmetric C-symmetric open BMF.Lax (bmc C×C-symmetric) (bmc C-symmetric) open SMF.Lax C×C-symmetric C-symmetric ⊗-isBraidedMonoidalFunctor : IsBraidedMonoidalFunctor ⊗ ⊗-isBraidedMonoidalFunctor = record { isMonoidal = ⊗-isMonoidalFunctor ; braiding-compat = swapInner-braiding′ } ⊗-SymmetricMonoidalFunctor : SymmetricMonoidalFunctor ⊗-SymmetricMonoidalFunctor = record { isBraidedMonoidal = ⊗-isBraidedMonoidalFunctor } module Strong (hasInterchange : HasInterchange M) where private module interchange = HasInterchange hasInterchange ⊗-isMonoidalFunctor : IsStrongMonoidalFunctor C×C-monoidal C-monoidal ⊗ ⊗-isMonoidalFunctor = record { ε = ≅.sym C unitorˡ ; ⊗-homo = interchange.naturalIso ; associativity = interchange.assoc ; unitaryˡ = interchange.unitˡ ; unitaryʳ = interchange.unitʳ } ⊗-MonoidalFunctor : StrongMonoidalFunctor C×C-monoidal C-monoidal ⊗-MonoidalFunctor = record { isStrongMonoidal = ⊗-isMonoidalFunctor } -- TODO: implement the missing bits in Categories.Category.Monoidal.Interchange. module StrongBraided (B : Braided M) where open Strong (BraidedInterchange.hasInterchange B) public module StrongSymmetric (S : Symmetric M) where open SymmetricInterchange S open Strong hasInterchange public open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to bmc) private C-symmetric : SymmetricMonoidalCategory o ℓ e C-symmetric = record { symmetric = S } C×C-symmetric = Product-SymmetricMonoidalCategory C-symmetric C-symmetric open BMF.Strong (bmc C×C-symmetric) (bmc C-symmetric) open SMF.Strong C×C-symmetric C-symmetric ⊗-isBraidedMonoidalFunctor : IsBraidedMonoidalFunctor ⊗ ⊗-isBraidedMonoidalFunctor = record { isStrongMonoidal = ⊗-isMonoidalFunctor ; braiding-compat = swapInner-braiding′ } ⊗-SymmetricMonoidalFunctor : SymmetricMonoidalFunctor ⊗-SymmetricMonoidalFunctor = record { isBraidedMonoidal = ⊗-isBraidedMonoidalFunctor }
{ "alphanum_fraction": 0.7472458948, "avg_line_length": 36.446969697, "ext": "agda", "hexsha": "e99dc8cb02ee64d274ba01169d56b3326df09ac9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TOTBWF/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Monoidal/Tensor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TOTBWF/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Monoidal/Tensor.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TOTBWF/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Monoidal/Tensor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1392, "size": 4811 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path data PushOut {A B C : Set} (f : C → A) (g : C → B) : Set where inl : A → PushOut f g inr : B → PushOut f g push : ∀ c → inl (f c) ≡ inr (g c) squash : ∀ a b → a ≡ b data ∥_∥₀ (A : Set) : Set where ∣_∣ : A → ∥ A ∥₀ squash : ∀ (x y : ∥ A ∥₀) → (p q : x ≡ y) → p ≡ q data Segment : Set where start end : Segment line : start ≡ end -- prop truncation data ∥_∥ (A : Set) : Set where ∣_∣ : A → ∥ A ∥ squash : ∀ (x y : ∥ A ∥) → x ≡ y elim : ∀ {A : Set} (P : Set) → ((x y : P) → x ≡ y) → (A → P) → ∥ A ∥ → P elim P Pprop f ∣ x ∣ = f x elim P Pprop f (squash x y i) = Pprop (elim P Pprop f x) (elim P Pprop f y) i
{ "alphanum_fraction": 0.4810126582, "avg_line_length": 27.3461538462, "ext": "agda", "hexsha": "4ded3fd061f5569bbdbf29406a245efb5d3eb371", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/HITs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/HITs.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/HITs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 329, "size": 711 }
-- Andreas, 2014-05-17 open import Common.Prelude open import Common.Equality postulate bla : ∀ x → x ≡ zero P : Nat → Set p : P zero K : ∀{A B : Set} → A → B → A f : ∀ x → P x f x rewrite K {x ≡ x} {Nat} refl {!!} = {!!} -- Expected: two interaction points!
{ "alphanum_fraction": 0.5503597122, "avg_line_length": 16.3529411765, "ext": "agda", "hexsha": "c86de705e646b98c4bc0d6a71c4046326ab82427", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1110c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1110c.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1110c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 278 }
------------------------------------------------------------------------ -- Equivalences with erased "proofs", defined in terms of partly -- erased contractible fibres ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Erased.Contractible-preimages {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Prelude open import Bijection eq using (_↔_) open import Equivalence eq as Eq using (_≃_; Is-equivalence) import Equivalence.Contractible-preimages eq as CP open import Erased.Level-1 eq as Erased hiding (module []-cong; module []-cong₁; module []-cong₂) open import Function-universe eq hiding (id; _∘_) open import H-level eq as H-level open import H-level.Closure eq open import Preimage eq as Preimage using (_⁻¹_) open import Surjection eq using (_↠_; Split-surjective) private variable a b ℓ ℓ₁ ℓ₂ : Level A B : Type a c ext k k′ p x y : A P : A → Type p f : (x : A) → P x ------------------------------------------------------------------------ -- Some basic types -- "Preimages" with erased proofs. infix 5 _⁻¹ᴱ_ _⁻¹ᴱ_ : {A : Type a} {@0 B : Type b} → @0 (A → B) → @0 B → Type (a ⊔ b) f ⁻¹ᴱ y = ∃ λ x → Erased (f x ≡ y) -- Contractibility with an erased proof. Contractibleᴱ : Type ℓ → Type ℓ Contractibleᴱ A = ∃ λ (x : A) → Erased (∀ y → x ≡ y) -- The property of being an equivalence (with erased proofs). Is-equivalenceᴱ : {A : Type a} {B : Type b} → @0 (A → B) → Type (a ⊔ b) Is-equivalenceᴱ f = ∀ y → Contractibleᴱ (f ⁻¹ᴱ y) -- Equivalences with erased proofs. _≃ᴱ_ : Type a → Type b → Type (a ⊔ b) A ≃ᴱ B = ∃ λ (f : A → B) → Is-equivalenceᴱ f ------------------------------------------------------------------------ -- Some conversion lemmas -- Conversions between _⁻¹_ and _⁻¹ᴱ_. ⁻¹→⁻¹ᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} {@0 y : B} → f ⁻¹ y → f ⁻¹ᴱ y ⁻¹→⁻¹ᴱ = Σ-map id [_]→ @0 ⁻¹ᴱ→⁻¹ : f ⁻¹ᴱ x → f ⁻¹ x ⁻¹ᴱ→⁻¹ = Σ-map id erased @0 ⁻¹≃⁻¹ᴱ : f ⁻¹ y ≃ f ⁻¹ᴱ y ⁻¹≃⁻¹ᴱ {f = f} {y = y} = (∃ λ x → f x ≡ y) ↝⟨ (∃-cong λ _ → Eq.inverse $ Eq.↔⇒≃ $ erased Erased↔) ⟩□ (∃ λ x → Erased (f x ≡ y)) □ _ : _≃_.to ⁻¹≃⁻¹ᴱ p ≡ ⁻¹→⁻¹ᴱ p _ = refl _ @0 _ : _≃_.from ⁻¹≃⁻¹ᴱ p ≡ ⁻¹ᴱ→⁻¹ p _ = refl _ -- Conversions between Contractible and Contractibleᴱ. Contractible→Contractibleᴱ : {@0 A : Type a} → Contractible A → Contractibleᴱ A Contractible→Contractibleᴱ = Σ-map id [_]→ @0 Contractibleᴱ→Contractible : Contractibleᴱ A → Contractible A Contractibleᴱ→Contractible = Σ-map id erased @0 Contractible≃Contractibleᴱ : Contractible A ≃ Contractibleᴱ A Contractible≃Contractibleᴱ = (∃ λ x → ∀ y → x ≡ y) ↝⟨ (∃-cong λ _ → Eq.inverse $ Eq.↔⇒≃ $ erased Erased↔) ⟩□ (∃ λ x → Erased (∀ y → x ≡ y)) □ _ : _≃_.to Contractible≃Contractibleᴱ c ≡ Contractible→Contractibleᴱ c _ = refl _ @0 _ : _≃_.from Contractible≃Contractibleᴱ c ≡ Contractibleᴱ→Contractible c _ = refl _ -- Conversions between CP.Is-equivalence and Is-equivalenceᴱ. Is-equivalence→Is-equivalenceᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → CP.Is-equivalence f → Is-equivalenceᴱ f Is-equivalence→Is-equivalenceᴱ eq y = ⁻¹→⁻¹ᴱ (proj₁₀ (eq y)) , [ cong ⁻¹→⁻¹ᴱ ∘ proj₂ (eq y) ∘ ⁻¹ᴱ→⁻¹ ] @0 Is-equivalenceᴱ→Is-equivalence : Is-equivalenceᴱ f → CP.Is-equivalence f Is-equivalenceᴱ→Is-equivalence eq y = ⁻¹ᴱ→⁻¹ (proj₁ (eq y)) , cong ⁻¹ᴱ→⁻¹ ∘ erased (proj₂ (eq y)) ∘ ⁻¹→⁻¹ᴱ private -- In an erased context CP.Is-equivalence and Is-equivalenceᴱ are -- pointwise equivalent (assuming extensionality). -- -- This lemma is not exported. See Is-equivalence≃Is-equivalenceᴱ -- below, which computes in a different way. @0 Is-equivalence≃Is-equivalenceᴱ′ : {A : Type a} {B : Type b} {f : A → B} → CP.Is-equivalence f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalenceᴱ f Is-equivalence≃Is-equivalenceᴱ′ {a = a} {f = f} {k = k} ext = (∀ y → Contractible (f ⁻¹ y)) ↝⟨ (∀-cong ext′ λ _ → H-level-cong ext 0 ⁻¹≃⁻¹ᴱ) ⟩ (∀ y → Contractible (f ⁻¹ᴱ y)) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Contractible≃Contractibleᴱ) ⟩□ (∀ y → Contractibleᴱ (f ⁻¹ᴱ y)) □ where ext′ = lower-extensionality? k a lzero ext ------------------------------------------------------------------------ -- Some type formers are propositional in erased contexts -- In an erased context Contractibleᴱ is propositional (assuming -- extensionality). @0 Contractibleᴱ-propositional : {A : Type a} → Extensionality a a → Is-proposition (Contractibleᴱ A) Contractibleᴱ-propositional ext = H-level.respects-surjection (_≃_.surjection Contractible≃Contractibleᴱ) 1 (Contractible-propositional ext) -- In an erased context Is-equivalenceᴱ f is a proposition (assuming -- extensionality). -- -- See also Is-equivalenceᴱ-propositional-for-Erased below. @0 Is-equivalenceᴱ-propositional : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (f : A → B) → Is-proposition (Is-equivalenceᴱ f) Is-equivalenceᴱ-propositional ext f = H-level.respects-surjection (_≃_.surjection $ Is-equivalence≃Is-equivalenceᴱ′ ext) 1 (CP.propositional ext f) ------------------------------------------------------------------------ -- More conversion lemmas -- In an erased context CP.Is-equivalence and Is-equivalenceᴱ are -- pointwise equivalent (assuming extensionality). @0 Is-equivalence≃Is-equivalenceᴱ : {A : Type a} {B : Type b} {f : A → B} → CP.Is-equivalence f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalenceᴱ f Is-equivalence≃Is-equivalenceᴱ {k = equivalence} ext = Eq.with-other-function (Eq.with-other-inverse (Is-equivalence≃Is-equivalenceᴱ′ ext) Is-equivalenceᴱ→Is-equivalence (λ _ → CP.propositional ext _ _ _)) Is-equivalence→Is-equivalenceᴱ (λ _ → Is-equivalenceᴱ-propositional ext _ _ _) Is-equivalence≃Is-equivalenceᴱ = Is-equivalence≃Is-equivalenceᴱ′ _ : _≃_.to (Is-equivalence≃Is-equivalenceᴱ ext) p ≡ Is-equivalence→Is-equivalenceᴱ p _ = refl _ @0 _ : _≃_.from (Is-equivalence≃Is-equivalenceᴱ ext) p ≡ Is-equivalenceᴱ→Is-equivalence p _ = refl _ -- Conversions between CP._≃_ and _≃ᴱ_. ≃→≃ᴱ : {@0 A : Type a} {@0 B : Type b} → A CP.≃ B → A ≃ᴱ B ≃→≃ᴱ = Σ-map id Is-equivalence→Is-equivalenceᴱ @0 ≃ᴱ→≃ : A ≃ᴱ B → A CP.≃ B ≃ᴱ→≃ = Σ-map id Is-equivalenceᴱ→Is-equivalence -- In an erased context CP._≃_ and _≃ᴱ_ are pointwise equivalent -- (assuming extensionality). @0 ≃≃≃ᴱ : {A : Type a} {B : Type b} → (A CP.≃ B) ↝[ a ⊔ b ∣ a ⊔ b ] (A ≃ᴱ B) ≃≃≃ᴱ {A = A} {B = B} ext = A CP.≃ B ↔⟨⟩ (∃ λ f → CP.Is-equivalence f) ↝⟨ (∃-cong λ _ → Is-equivalence≃Is-equivalenceᴱ ext) ⟩ (∃ λ f → Is-equivalenceᴱ f) ↔⟨⟩ A ≃ᴱ B □ _ : _≃_.to (≃≃≃ᴱ ext) p ≡ ≃→≃ᴱ p _ = refl _ @0 _ : _≃_.from (≃≃≃ᴱ ext) p ≡ ≃ᴱ→≃ p _ = refl _ -- An isomorphism relating _⁻¹ᴱ_ to _⁻¹_. Erased-⁻¹ᴱ↔Erased-⁻¹ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} {@0 y : B} → Erased (f ⁻¹ᴱ y) ↔ Erased (f ⁻¹ y) Erased-⁻¹ᴱ↔Erased-⁻¹ {f = f} {y = y} = Erased (∃ λ x → Erased (f x ≡ y)) ↝⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased (Erased (f (erased x) ≡ y))) ↝⟨ (∃-cong λ _ → Erased-Erased↔Erased) ⟩ (∃ λ x → Erased (f (erased x) ≡ y)) ↝⟨ inverse Erased-Σ↔Σ ⟩□ Erased (∃ λ x → f x ≡ y) □ -- An isomorphism relating Contractibleᴱ to Contractible. Erased-Contractibleᴱ↔Erased-Contractible : {@0 A : Type a} → Erased (Contractibleᴱ A) ↔ Erased (Contractible A) Erased-Contractibleᴱ↔Erased-Contractible = Erased (∃ λ x → Erased (∀ y → x ≡ y)) ↝⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased (Erased (∀ y → erased x ≡ y))) ↝⟨ (∃-cong λ _ → Erased-Erased↔Erased) ⟩ (∃ λ x → Erased (∀ y → erased x ≡ y)) ↝⟨ inverse Erased-Σ↔Σ ⟩□ Erased (∃ λ x → ∀ y → x ≡ y) □ ------------------------------------------------------------------------ -- Some results related to Contractibleᴱ -- Contractibleᴱ respects split surjections with erased proofs. Contractibleᴱ-respects-surjection : {@0 A : Type a} {@0 B : Type b} (f : A → B) → @0 Split-surjective f → Contractibleᴱ A → Contractibleᴱ B Contractibleᴱ-respects-surjection {A = A} {B = B} f s h@(x , _) = f x , [ proj₂ (H-level.respects-surjection surj 0 (Contractibleᴱ→Contractible h)) ] where @0 surj : A ↠ B surj = record { logical-equivalence = record { to = f ; from = proj₁ ∘ s } ; right-inverse-of = proj₂ ∘ s } -- "Preimages" (with erased proofs) of an erased function with a -- quasi-inverse with erased proofs are contractible. Contractibleᴱ-⁻¹ᴱ : {@0 A : Type a} {@0 B : Type b} (@0 f : A → B) (g : B → A) (@0 f∘g : ∀ x → f (g x) ≡ x) (@0 g∘f : ∀ x → g (f x) ≡ x) → ∀ y → Contractibleᴱ (f ⁻¹ᴱ y) Contractibleᴱ-⁻¹ᴱ {A = A} {B = B} f g f∘g g∘f y = (g y , [ proj₂ (proj₁ c′) ]) , [ cong ⁻¹→⁻¹ᴱ ∘ proj₂ c′ ∘ ⁻¹ᴱ→⁻¹ ] where @0 A↔B : A ↔ B A↔B = record { surjection = record { logical-equivalence = record { to = f ; from = g } ; right-inverse-of = f∘g } ; left-inverse-of = g∘f } @0 c′ : Contractible (f ⁻¹ y) c′ = Preimage.bijection⁻¹-contractible A↔B y -- If an inhabited type comes with an erased proof of -- propositionality, then it is contractible (with erased proofs). inhabited→Is-proposition→Contractibleᴱ : {@0 A : Type a} → A → @0 Is-proposition A → Contractibleᴱ A inhabited→Is-proposition→Contractibleᴱ x prop = (x , [ prop x ]) -- Some closure properties. Contractibleᴱ-Σ : {@0 A : Type a} {@0 P : A → Type p} → Contractibleᴱ A → (∀ x → Contractibleᴱ (P x)) → Contractibleᴱ (Σ A P) Contractibleᴱ-Σ cA@(a , _) cP = (a , proj₁₀ (cP a)) , [ proj₂ $ Σ-closure 0 (Contractibleᴱ→Contractible cA) (Contractibleᴱ→Contractible ∘ cP) ] Contractibleᴱ-× : {@0 A : Type a} {@0 B : Type b} → Contractibleᴱ A → Contractibleᴱ B → Contractibleᴱ (A × B) Contractibleᴱ-× cA cB = Contractibleᴱ-Σ cA (λ _ → cB) Contractibleᴱ-Π : {@0 A : Type a} {@0 P : A → Type p} → @0 Extensionality a p → (∀ x → Contractibleᴱ (P x)) → Contractibleᴱ ((x : A) → P x) Contractibleᴱ-Π ext c = proj₁₀ ∘ c , [ proj₂ $ Π-closure ext 0 (Contractibleᴱ→Contractible ∘ c) ] Contractibleᴱ-↑ : {@0 A : Type a} → Contractibleᴱ A → Contractibleᴱ (↑ ℓ A) Contractibleᴱ-↑ c@(a , _) = lift a , [ proj₂ $ ↑-closure 0 (Contractibleᴱ→Contractible c) ] ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for one universe -- level module []-cong₁ (ax : []-cong-axiomatisation ℓ) where open Erased-cong ax ax open Erased.[]-cong₁ ax ---------------------------------------------------------------------- -- Some results related to _⁻¹ᴱ_ -- The function _⁻¹ᴱ y respects erased extensional equality. ⁻¹ᴱ-respects-extensional-equality : {@0 B : Type ℓ} {@0 f g : A → B} {@0 y : B} → @0 (∀ x → f x ≡ g x) → f ⁻¹ᴱ y ≃ g ⁻¹ᴱ y ⁻¹ᴱ-respects-extensional-equality {f = f} {g = g} {y = y} f≡g = (∃ λ x → Erased (f x ≡ y)) ↝⟨ (∃-cong λ _ → Erased-cong-≃ (≡⇒↝ _ (cong (_≡ _) $ f≡g _))) ⟩□ (∃ λ x → Erased (g x ≡ y)) □ -- An isomorphism relating _⁻¹ᴱ_ to _⁻¹_. ⁻¹ᴱ[]↔⁻¹[] : {@0 B : Type ℓ} {f : A → Erased B} {@0 y : B} → f ⁻¹ᴱ [ y ] ↔ f ⁻¹ [ y ] ⁻¹ᴱ[]↔⁻¹[] {f = f} {y = y} = (∃ λ x → Erased (f x ≡ [ y ])) ↔⟨ (∃-cong λ _ → Erased-cong-≃ (Eq.≃-≡ $ Eq.↔⇒≃ $ inverse $ erased Erased↔)) ⟩ (∃ λ x → Erased (erased (f x) ≡ y)) ↝⟨ (∃-cong λ _ → Erased-≡↔[]≡[]) ⟩□ (∃ λ x → f x ≡ [ y ]) □ -- Erased "commutes" with _⁻¹ᴱ_. Erased-⁻¹ᴱ : {@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} {@0 y : B} → Erased (f ⁻¹ᴱ y) ↔ map f ⁻¹ᴱ [ y ] Erased-⁻¹ᴱ {f = f} {y = y} = Erased (f ⁻¹ᴱ y) ↝⟨ Erased-⁻¹ᴱ↔Erased-⁻¹ ⟩ Erased (f ⁻¹ y) ↝⟨ Erased-⁻¹ ⟩ map f ⁻¹ [ y ] ↝⟨ inverse ⁻¹ᴱ[]↔⁻¹[] ⟩□ map f ⁻¹ᴱ [ y ] □ ---------------------------------------------------------------------- -- Some results related to Contractibleᴱ -- Erased commutes with Contractibleᴱ. Erased-Contractibleᴱ↔Contractibleᴱ-Erased : {@0 A : Type ℓ} → Erased (Contractibleᴱ A) ↝[ ℓ ∣ ℓ ]ᴱ Contractibleᴱ (Erased A) Erased-Contractibleᴱ↔Contractibleᴱ-Erased {A = A} ext = Erased (∃ λ x → Erased ((y : A) → x ≡ y)) ↔⟨ Erased-cong-↔ (∃-cong λ _ → erased Erased↔) ⟩ Erased (∃ λ x → (y : A) → x ≡ y) ↔⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased ((y : A) → erased x ≡ y)) ↝⟨ (∃-cong λ _ → Erased-cong? (λ ext → ∀-cong ext λ _ → from-isomorphism (inverse $ erased Erased↔)) ext) ⟩ (∃ λ x → Erased ((y : A) → Erased (erased x ≡ y))) ↝⟨ (∃-cong λ _ → Erased-cong? (λ ext → Π-cong ext (inverse $ erased Erased↔) λ _ → from-isomorphism Erased-≡↔[]≡[]) ext) ⟩□ (∃ λ x → Erased ((y : Erased A) → x ≡ y)) □ -- An isomorphism relating Contractibleᴱ to Contractible. Contractibleᴱ-Erased↔Contractible-Erased : {@0 A : Type ℓ} → Contractibleᴱ (Erased A) ↝[ ℓ ∣ ℓ ] Contractible (Erased A) Contractibleᴱ-Erased↔Contractible-Erased {A = A} ext = Contractibleᴱ (Erased A) ↝⟨ inverse-erased-ext? Erased-Contractibleᴱ↔Contractibleᴱ-Erased ext ⟩ Erased (Contractibleᴱ A) ↔⟨ Erased-Contractibleᴱ↔Erased-Contractible ⟩ Erased (Contractible A) ↝⟨ Erased-H-level↔H-level 0 ext ⟩□ Contractible (Erased A) □ ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for two universe -- levels module []-cong₂ (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) where open Erased-cong ax₁ ax₂ ---------------------------------------------------------------------- -- A result related to Contractibleᴱ -- Contractibleᴱ preserves isomorphisms (assuming extensionality). Contractibleᴱ-cong : {A : Type ℓ₁} {B : Type ℓ₂} → @0 Extensionality? k′ (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → A ↔[ k ] B → Contractibleᴱ A ↝[ k′ ] Contractibleᴱ B Contractibleᴱ-cong {A = A} {B = B} ext A↔B = (∃ λ (x : A) → Erased ((y : A) → x ≡ y)) ↝⟨ (Σ-cong A≃B′ λ _ → Erased-cong? (λ ext → Π-cong ext A≃B′ λ _ → from-isomorphism $ inverse $ Eq.≃-≡ A≃B′) ext) ⟩□ (∃ λ (x : B) → Erased ((y : B) → x ≡ y)) □ where A≃B′ = from-isomorphism A↔B ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for all universe -- levels module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where private open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ}) public open module BC₂ {ℓ₁ ℓ₂} = []-cong₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) public
{ "alphanum_fraction": 0.5240236382, "avg_line_length": 33.5517241379, "ext": "agda", "hexsha": "38e92b837bb6cf873f0298596d98230f974f932a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equivalence/Erased/Contractible-preimages.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equivalence/Erased/Contractible-preimages.agda", "max_line_length": 119, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equivalence/Erased/Contractible-preimages.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6048, "size": 15568 }
------------------------------------------------------------------------------ -- Testing the translation of the propositional functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PropositionalFunction4 where ------------------------------------------------------------------------------ postulate D : Set f : D → D a : D _≡_ : D → D → Set A : D → Set A x = f x ≡ f x {-# ATP definition A #-} -- In this case the propositional function uses functions. postulate foo : A a → A a {-# ATP prove foo #-}
{ "alphanum_fraction": 0.387755102, "avg_line_length": 27.2222222222, "ext": "agda", "hexsha": "72de5a4e541b619cc319655502776a7b233da300", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/PropositionalFunction4.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/PropositionalFunction4.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/PropositionalFunction4.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 137, "size": 735 }
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-} module Cubical.DStructures.Experiments where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Data.Maybe open import Cubical.Relation.Binary open import Cubical.Structures.Subtype open import Cubical.Structures.LeftAction open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Semidirect -- this file also serves as Everything.agda open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Meta.Isomorphism open import Cubical.DStructures.Structures.Action open import Cubical.DStructures.Structures.Category open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Group -- open import Cubical.DStructures.Structures.Higher open import Cubical.DStructures.Structures.Nat open import Cubical.DStructures.Structures.PeifferGraph open import Cubical.DStructures.Structures.ReflGraph open import Cubical.DStructures.Structures.SplitEpi open import Cubical.DStructures.Structures.Strict2Group open import Cubical.DStructures.Structures.Type -- open import Cubical.DStructures.Structures.Universe open import Cubical.DStructures.Structures.VertComp open import Cubical.DStructures.Structures.XModule open import Cubical.DStructures.Equivalences.GroupSplitEpiAction open import Cubical.DStructures.Equivalences.PreXModReflGraph open import Cubical.DStructures.Equivalences.XModPeifferGraph open import Cubical.DStructures.Equivalences.PeifferGraphS2G private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level open Kernel open GroupHom -- such .fun! open GroupLemmas open MorphismLemmas {- record Hom-𝒮 {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : URGStr A ℓ≅A) {B : Type ℓB} {ℓ≅B : Level} (𝒮-B : URGStr B ℓ≅B) : Type (ℓ-max (ℓ-max ℓA ℓB) (ℓ-max ℓ≅A ℓ≅B)) where constructor hom-𝒮 open URGStr field fun : A → B fun-≅ : {a a' : A} → (p : _≅_ 𝒮-A a a') → _≅_ 𝒮-B (fun a) (fun a') fun-ρ : {a : A} → fun-≅ (ρ 𝒮-A a) ≡ ρ 𝒮-B (fun a) ∫𝒮ᴰ-π₁ : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B) → Hom-𝒮 (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) 𝒮-A Hom-𝒮.fun (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = fst Hom-𝒮.fun-≅ (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = fst Hom-𝒮.fun-ρ (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = refl module _ {ℓ : Level} {A : Type ℓ} (𝒮-A : URGStr A ℓ) where 𝒮ᴰ-toHom : Iso (Σ[ B ∈ (A → Type ℓ) ] (URGStrᴰ 𝒮-A B ℓ)) (Σ[ B ∈ (Type ℓ) ] Σ[ 𝒮-B ∈ (URGStr B ℓ) ] (Hom-𝒮 𝒮-B 𝒮-A)) Iso.fun 𝒮ᴰ-toHom (B , 𝒮ᴰ-B) = (Σ[ a ∈ A ] B a) , {!!} , {!!} Iso.inv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B , F) = (λ a → Σ[ b ∈ B ] F .fun b ≡ a) , {!!} where open Hom-𝒮 Iso.leftInv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B) = ΣPathP ((funExt (λ a → {!!})) , {!!}) Iso.rightInv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B , F) = {!!} -} -- Older Experiments -- -- needs --guardedness flag module _ where record Hierarchy {A : Type ℓ} (𝒮-A : URGStr A ℓ) : Type (ℓ-suc ℓ) where coinductive field B : A → Type ℓ 𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ ℋ : Maybe (Hierarchy {A = Σ A B} (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B))
{ "alphanum_fraction": 0.6952965235, "avg_line_length": 30.8378378378, "ext": "agda", "hexsha": "1139e52a1edf95efa105f3fcf0b7e2d5189a58c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Experiments.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Experiments.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Experiments.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1385, "size": 3423 }
module Issue357 where module M (X : Set) where data R : Set where r : X → R postulate P Q : Set q : Q open M P open M.R works : M.R Q works = M.R.r q fails : M.R Q fails = r q
{ "alphanum_fraction": 0.5692307692, "avg_line_length": 9.2857142857, "ext": "agda", "hexsha": "c4d4874d4f3f534abf528e725021019d5465b9bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue357.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue357.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue357.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 195 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.PushoutFmap open import lib.types.Span open import lib.types.Unit -- Wedge of two pointed types is defined as a particular case of pushout module lib.types.Wedge where module _ {i j} (X : Ptd i) (Y : Ptd j) where wedge-span : Span wedge-span = span (de⊙ X) (de⊙ Y) Unit (λ _ → pt X) (λ _ → pt Y) Wedge : Type (lmax i j) Wedge = Pushout wedge-span infix 80 _∨_ _∨_ = Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where winl : de⊙ X → X ∨ Y winl x = left x winr : de⊙ Y → X ∨ Y winr y = right y wglue : winl (pt X) == winr (pt Y) wglue = glue tt module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙Wedge : Ptd (lmax i j) ⊙Wedge = ⊙[ Wedge X Y , winl (pt X) ] infix 80 _⊙∨_ _⊙∨_ = ⊙Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙winl : X ⊙→ X ⊙∨ Y ⊙winl = (winl , idp) ⊙winr : Y ⊙→ X ⊙∨ Y ⊙winr = (winr , ! wglue) module _ {i j} {X : Ptd i} {Y : Ptd j} where module WedgeElim {k} {P : X ∨ Y → Type k} (inl* : (x : de⊙ X) → P (winl x)) (inr* : (y : de⊙ Y) → P (winr y)) (glue* : inl* (pt X) == inr* (pt Y) [ P ↓ wglue ]) where private module M = PushoutElim inl* inr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit open WedgeElim public using () renaming (f to Wedge-elim) module WedgeRec {k} {C : Type k} (inl* : de⊙ X → C) (inr* : de⊙ Y → C) (glue* : inl* (pt X) == inr* (pt Y)) where private module M = PushoutRec {d = wedge-span X Y} inl* inr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit open WedgeRec public using () renaming (f to Wedge-rec) module ⊙WedgeRec {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : X ⊙→ Z) (h : Y ⊙→ Z) where open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public ⊙f : X ⊙∨ Y ⊙→ Z ⊙f = (f , snd g) ⊙winl-β : ⊙f ⊙∘ ⊙winl == g ⊙winl-β = idp ⊙winr-β : ⊙f ⊙∘ ⊙winr == h ⊙winr-β = ⊙λ= (λ _ → idp) $ ap (_∙ snd g) (ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h))) ∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g) ∙ ap (! (! (snd h)) ∙_) (!-inv-l (snd g)) ∙ ∙-unit-r (! (! (snd h))) ∙ !-! (snd h) ⊙Wedge-rec = ⊙WedgeRec.⊙f ⊙Wedge-rec-post∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (k : Z ⊙→ W) (g : X ⊙→ Z) (h : Y ⊙→ Z) → k ⊙∘ ⊙Wedge-rec g h == ⊙Wedge-rec (k ⊙∘ g) (k ⊙∘ h) ⊙Wedge-rec-post∘ k g h = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h) ∙ lemma (fst k) (snd g) (snd h) (snd k) ∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h)) ∙ ∘-ap (fst k) (fst (⊙Wedge-rec g h)) wglue)) idp where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B} (p : x == z) (q : y == z) (r : f z == w) → (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q) lemma f idp idp idp = idp ⊙Wedge-rec-η : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙Wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y) ⊙Wedge-rec-η = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ap-idf wglue ∙ ! (!-! wglue) ∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr))) idp module _ {i j} {X : Ptd i} {Y : Ptd j} where add-wglue : de⊙ (X ⊙⊔ Y) → X ∨ Y add-wglue (inl x) = winl x add-wglue (inr y) = winr y ⊙add-wglue : X ⊙⊔ Y ⊙→ X ⊙∨ Y ⊙add-wglue = add-wglue , idp module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X) fold = Fold.f ⊙fold = Fold.⊙f module _ {i j} (X : Ptd i) (Y : Ptd j) where module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y}) module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y) projl = Projl.f projr = Projr.f ⊙projl = Projl.⊙f ⊙projr = Projr.⊙f module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (eqX : X ⊙≃ X') (eqY : Y ⊙≃ Y') where wedge-span-emap : SpanEquiv (wedge-span X Y) (wedge-span X' Y') wedge-span-emap = ( span-map (fst (fst eqX)) (fst (fst eqY)) (idf _) (comm-sqr λ _ → snd (fst eqX)) (comm-sqr λ _ → snd (fst eqY)) , snd eqX , snd eqY , idf-is-equiv _) ∨-emap : X ∨ Y ≃ X' ∨ Y' ∨-emap = Pushout-emap wedge-span-emap ⊙∨-emap : X ⊙∨ Y ⊙≃ X' ⊙∨ Y' ⊙∨-emap = ≃-to-⊙≃ ∨-emap (ap winl (snd (fst eqX)))
{ "alphanum_fraction": 0.4954627949, "avg_line_length": 26.8780487805, "ext": "agda", "hexsha": "416becf895a38ad44c9d7aa9c062750a6f2ae9e5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Wedge.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2106, "size": 4408 }
module _ where infix -1 _■ infixr -2 step-∼ postulate Transitive : {A : Set} (P Q : A → A → Set) → Set step-∼ : ∀ {A} {P Q : A → A → Set} ⦃ t : Transitive P Q ⦄ x {y z} → Q y z → P x y → Q x z syntax step-∼ x Qyz Pxy = x ∼⟨ Pxy ⟩ Qyz infix 4 _≈_ postulate Proc : Set _≈_ : Proc → Proc → Set _■ : ∀ x → x ≈ x instance trans : Transitive _≈_ _≈_ module DummyInstances where postulate R₁ R₂ R₃ R₄ R₅ : Proc → Proc → Set postulate instance transitive₁₁ : Transitive R₁ R₁ transitive₁₂ : Transitive R₁ R₂ transitive₁₃ : Transitive R₁ R₃ transitive₁₄ : Transitive R₁ R₄ transitive₁₅ : Transitive R₁ R₅ transitive₂₁ : Transitive R₂ R₁ transitive₂₂ : Transitive R₂ R₂ transitive₂₃ : Transitive R₂ R₃ transitive₂₄ : Transitive R₂ R₄ transitive₂₅ : Transitive R₂ R₅ transitive₃₁ : Transitive R₃ R₁ transitive₃₂ : Transitive R₃ R₂ transitive₃₃ : Transitive R₃ R₃ transitive₃₄ : Transitive R₃ R₄ transitive₃₅ : Transitive R₃ R₅ transitive₄₁ : Transitive R₄ R₁ transitive₄₂ : Transitive R₄ R₂ transitive₄₃ : Transitive R₄ R₃ transitive₄₄ : Transitive R₄ R₄ transitive₄₅ : Transitive R₄ R₅ transitive₅₁ : Transitive R₅ R₁ transitive₅₂ : Transitive R₅ R₂ transitive₅₃ : Transitive R₅ R₃ transitive₅₄ : Transitive R₅ R₄ transitive₅₅ : Transitive R₅ R₅ postulate comm : ∀ {P} → P ≈ P P : Proc cong : P ≈ P cong = P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ■
{ "alphanum_fraction": 0.5768386389, "avg_line_length": 21.6904761905, "ext": "agda", "hexsha": "4e50e3e14843875b4a09b6d3b022ceaafb4e6cdc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3435.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3435.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3435.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 851, "size": 1822 }
{-# OPTIONS --rewriting #-} -- Syntax open import Library module Derivations (Base : Set) where import Formulas; private open module Form = Formulas Base -- open import Formulas Base public -- Derivations infix 2 _⊢_ data _⊢_ (Γ : Cxt) : (A : Form) → Set where hyp : ∀{A} (x : Hyp A Γ) → Γ ⊢ A impI : ∀{A B} (t : Γ ∙ A ⊢ B) → Γ ⊢ A ⇒ B impE : ∀{A B} (t : Γ ⊢ A ⇒ B) (u : Γ ⊢ A) → Γ ⊢ B andI : ∀{A B} (t : Γ ⊢ A) (u : Γ ⊢ B) → Γ ⊢ A ∧ B andE₁ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ A andE₂ : ∀{A B} (t : Γ ⊢ A ∧ B) → Γ ⊢ B orI₁ : ∀{A B} (t : Γ ⊢ A) → Γ ⊢ A ∨ B orI₂ : ∀{A B} (t : Γ ⊢ B) → Γ ⊢ A ∨ B orE : ∀{A B C} (t : Γ ⊢ A ∨ B) (u : Γ ∙ A ⊢ C) (v : Γ ∙ B ⊢ C) → Γ ⊢ C falseE : ∀{C} (t : Γ ⊢ False) → Γ ⊢ C trueI : Γ ⊢ True -- Example derivation andComm : ∀{A B} → ε ⊢ A ∧ B ⇒ B ∧ A andComm = impI (andI (andE₂ (hyp top)) (andE₁ (hyp top))) -- Weakening Tm = λ A Γ → Γ ⊢ A monD : ∀{A} → Mon (Tm A) monD τ (hyp x) = hyp (monH τ x) monD τ (impI t) = impI (monD (lift τ) t) monD τ (impE t u) = impE (monD τ t) (monD τ u) monD τ (andI t u) = andI (monD τ t) (monD τ u) monD τ (andE₁ t) = andE₁ (monD τ t) monD τ (andE₂ t) = andE₂ (monD τ t) monD τ (orI₁ t) = orI₁ (monD τ t) monD τ (orI₂ t) = orI₂ (monD τ t) monD τ (orE t u v) = orE (monD τ t) (monD (lift τ) u) (monD (lift τ) v) monD τ (falseE t) = falseE (monD τ t) monD τ trueI = trueI monD-id : ∀{Γ A} (t : Γ ⊢ A) → monD id≤ t ≡ t monD-id (hyp x) = refl monD-id (impI t) = cong impI (monD-id t) -- REWRITE lift-id≤ monD-id (impE t u) = cong₂ impE (monD-id t) (monD-id u) monD-id (andI t u) = cong₂ andI (monD-id t) (monD-id u) monD-id (andE₁ t) = cong andE₁ (monD-id t) monD-id (andE₂ t) = cong andE₂ (monD-id t) monD-id (orI₁ t) = cong orI₁ (monD-id t) monD-id (orI₂ t) = cong orI₂ (monD-id t) monD-id (orE t u v) = cong₃ orE (monD-id t) (monD-id u) (monD-id v) monD-id (falseE t) = cong falseE (monD-id t) monD-id trueI = refl -- For normal forms, we use the standard presentation. -- Normal forms are not unique. -- Normality as predicate mutual data Neutral {Γ} {A} : (t : Γ ⊢ A) → Set where hyp : (x : Hyp A Γ) → Neutral (hyp x) impE : ∀{B} {t : Γ ⊢ B ⇒ A} {u : Γ ⊢ B} (ne : Neutral t) (nf : Normal u) → Neutral (impE t u) andE₁ : ∀{B} {t : Γ ⊢ A ∧ B} (ne : Neutral t) → Neutral (andE₁ t) andE₂ : ∀{B} {t : Γ ⊢ B ∧ A} (ne : Neutral t) → Neutral (andE₂ t) data Normal {Γ} : ∀{A} (t : Γ ⊢ A) → Set where ne : ∀{A} {t : Γ ⊢ A} (ne : Neutral t) → Normal t impI : ∀{A B} (t : Γ ∙ A ⊢ B) (nf : Normal t) → Normal (impI t) andI : ∀{A B} (t : Γ ⊢ A) (u : Γ ⊢ B) (nf₁ : Normal t) (nf₂ : Normal u) → Normal (andI t u) orI₁ : ∀{A B} {t : Γ ⊢ A} (nf : Normal t) → Normal (orI₁ {Γ} {A} {B} t) orI₂ : ∀{A B} {t : Γ ⊢ B} (nf : Normal t) → Normal (orI₂ {Γ} {A} {B} t) orE : ∀{A B C} {t : Γ ⊢ A ∨ B} {u : Γ ∙ A ⊢ C} {v : Γ ∙ B ⊢ C} (ne : Neutral t) (nf₁ : Normal u) (nf₂ : Normal v) → Normal (orE t u v) falseE : ∀{A} {t : Γ ⊢ False} (ne : Neutral t) → Normal (falseE {Γ} {A} t) trueI : Normal trueI -- Intrinsic normality mutual data Ne (Γ : Cxt) (A : Form) : Set where hyp : ∀ (x : Hyp A Γ) → Ne Γ A impE : ∀{B} (t : Ne Γ (B ⇒ A)) (u : Nf Γ B) → Ne Γ A andE₁ : ∀{B} (t : Ne Γ (A ∧ B)) → Ne Γ A andE₂ : ∀{B} (t : Ne Γ (B ∧ A)) → Ne Γ A data Nf (Γ : Cxt) : (A : Form) → Set where -- ne : ∀{A} (t : Ne Γ A) → Nf Γ A -- allows η-short nfs ne : ∀{P} (t : Ne Γ (Atom P)) → Nf Γ (Atom P) impI : ∀{A B} (t : Nf (Γ ∙ A) B) → Nf Γ (A ⇒ B) andI : ∀{A B} (t : Nf Γ A) (u : Nf Γ B) → Nf Γ (A ∧ B) orI₁ : ∀{A B} (t : Nf Γ A) → Nf Γ (A ∨ B) orI₂ : ∀{A B} (t : Nf Γ B) → Nf Γ (A ∨ B) orE : ∀{A B C} (t : Ne Γ (A ∨ B)) (u : Nf (Γ ∙ A) C) (v : Nf (Γ ∙ B) C) → Nf Γ C falseE : ∀{A} (t : Ne Γ False) → Nf Γ A trueI : Nf Γ True -- Presheaf-friendly argument order Ne' = λ A Γ → Ne Γ A Nf' = λ A Γ → Nf Γ A -- Admissible false-Elimination from a normal proof of false (using case splits) falseE! : ∀{A} → Nf' False →̇ Nf' A -- falseE! (ne t) = falseE t -- only for η-short falseE! (orE t t₁ t₂) = orE t (falseE! t₁) (falseE! t₂) falseE! (falseE t) = falseE t -- Ne' and Nf' are presheaves over (Cxt, ≤) mutual monNe : ∀{A} → Mon (Ne' A) monNe τ (hyp x) = hyp (monH τ x) monNe τ (impE t u) = impE (monNe τ t) (monNf τ u) monNe τ (andE₁ t) = andE₁ (monNe τ t) monNe τ (andE₂ t) = andE₂ (monNe τ t) monNf : ∀{A} → Mon (Nf' A) monNf τ (ne t) = ne (monNe τ t) monNf τ (impI t) = impI (monNf (lift τ) t) monNf τ (andI t u) = andI (monNf τ t) (monNf τ u) monNf τ (orI₁ t) = orI₁ (monNf τ t) monNf τ (orI₂ t) = orI₂ (monNf τ t) monNf τ (orE t u v) = orE (monNe τ t) (monNf (lift τ) u) (monNf (lift τ) v) monNf τ (falseE t) = falseE (monNe τ t) monNf τ trueI = trueI -- Forgetting normality mutual ne[_] : ∀{Γ A} (t : Ne Γ A) → Γ ⊢ A ne[ hyp x ] = hyp x ne[ impE t u ] = impE ne[ t ] nf[ u ] ne[ andE₁ t ] = andE₁ ne[ t ] ne[ andE₂ t ] = andE₂ ne[ t ] nf[_] : ∀{Γ A} (t : Nf Γ A) → Γ ⊢ A nf[ ne t ] = ne[ t ] nf[ impI t ] = impI nf[ t ] nf[ andI t u ] = andI nf[ t ] nf[ u ] nf[ orI₁ t ] = orI₁ nf[ t ] nf[ orI₂ t ] = orI₂ nf[ t ] nf[ orE t u v ] = orE ne[ t ] nf[ u ] nf[ v ] nf[ falseE t ] = falseE ne[ t ] nf[ trueI ] = trueI mutual monD-ne : ∀{Γ Δ A} (τ : Δ ≤ Γ) (t : Ne Γ A) → ne[ monNe τ t ] ≡ monD τ ne[ t ] monD-ne τ (hyp x) = refl monD-ne τ (impE t u) = cong₂ impE (monD-ne τ t) (monD-nf τ u) monD-ne τ (andE₁ t) = cong andE₁ (monD-ne τ t) monD-ne τ (andE₂ t) = cong andE₂ (monD-ne τ t) monD-nf : ∀{Γ Δ A} (τ : Δ ≤ Γ) (t : Nf Γ A) → nf[ monNf τ t ] ≡ monD τ nf[ t ] monD-nf τ (ne t) = monD-ne τ t monD-nf τ (impI t) = cong impI (monD-nf (lift τ) t) monD-nf τ (andI t u) = cong₂ andI (monD-nf τ t) (monD-nf τ u) monD-nf τ (orI₁ t) = cong orI₁ (monD-nf τ t) monD-nf τ (orI₂ t) = cong orI₂ (monD-nf τ t) monD-nf τ (orE t u v) = cong₃ orE (monD-ne τ t) (monD-nf (lift τ) u) (monD-nf (lift τ) v) monD-nf τ (falseE t) = cong falseE (monD-ne τ t) monD-nf τ trueI = refl -- monD-ne : ∀{Γ Δ A} (τ : Δ ≤ Γ) (t : Ne Γ A) → monD τ ne[ t ] ≡ ne[ monNe τ t ] -- monD-ne τ (hyp x) = refl -- monD-ne τ (impE t u) = cong₂ impE (monD-ne τ t) (monD-nf τ u) -- monD-ne τ (andE₁ t) = cong andE₁ (monD-ne τ t) -- monD-ne τ (andE₂ t) = cong andE₂ (monD-ne τ t) -- monD-nf : ∀{Γ Δ A} (τ : Δ ≤ Γ) (t : Nf Γ A) → monD τ nf[ t ] ≡ nf[ monNf τ t ] -- monD-nf τ (ne t) = monD-ne τ t -- monD-nf τ (impI t) = cong impI (monD-nf (lift τ) t) -- monD-nf τ (andI t u) = cong₂ andI (monD-nf τ t) (monD-nf τ u) -- monD-nf τ (orI₁ t) = cong orI₁ (monD-nf τ t) -- monD-nf τ (orI₂ t) = cong orI₂ (monD-nf τ t) -- monD-nf τ (orE t u v) = cong₃ orE (monD-ne τ t) (monD-nf (lift τ) u) (monD-nf (lift τ) v) -- monD-nf τ (falseE t) = cong falseE (monD-ne τ t) -- monD-nf τ trueI = refl {-# REWRITE monD-ne monD-nf #-}
{ "alphanum_fraction": 0.5007042254, "avg_line_length": 36.7875647668, "ext": "agda", "hexsha": "b132ff794810466b4d97399d6481a14ffef5553a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/Derivations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/Derivations.agda", "max_line_length": 97, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/Derivations.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 3430, "size": 7100 }
{-# OPTIONS --without-K #-} open import Library -------------------------------------------------------------------------------- -- Universes for a Category -------------------------------------------------------------------------------- record CatLevel : Set where field Obj : Level Hom : Level Obj-Hom : Level Obj-Hom = ℓ-max Obj Hom Cat : Level Cat = ℓ-suc (ℓ-max Obj Hom) -------------------------------------------------------------------------------- -- Definition of a Category -------------------------------------------------------------------------------- module _ (ℓ : CatLevel) (let module ℓ = CatLevel ℓ) where record Category : Set ℓ.Cat where field Obj : Set ℓ.Obj _⇒_ : Obj → Obj → Set ℓ.Hom id : (X : Obj) → X ⇒ X _∘_ : ∀{X Y Z} → Y ⇒ Z → X ⇒ Y → X ⇒ Z infix 4 _⇒_ infix 6 _∘_ field idl : ∀{X Y}{f : X ⇒ Y} → (id Y) ∘ f ≡ f idr : ∀{X Y}{f : X ⇒ Y} → f ∘ (id X) ≡ f assoc : ∀{W X Y Z}{f : W ⇒ X}{g : X ⇒ Y}{h : Y ⇒ Z} → (h ∘ g) ∘ f ≡ h ∘ (g ∘ f) -------------------------------------------------------------------------------- -- Dual Category -------------------------------------------------------------------------------- op : Category op = record { Obj = Obj ; _⇒_ = λ-flip _⇒_ ; id = id ; _∘_ = λ-flip _∘_ ; idl = idr ; idr = idl ; assoc = ≡-sym assoc } -------------------------------------------------------------------------------- -- Properties of Spacial Morphisms -------------------------------------------------------------------------------- record _≅_ (X Y : Obj) : Set ℓ.Cat where field f : X ⇒ Y g : Y ⇒ X g∘f : g ∘ f ≡ id X f∘g : f ∘ g ≡ id Y record _≾_ (X Y : Obj) : Set ℓ.Cat where field s : X ⇒ Y r : Y ⇒ X r∘s : r ∘ s ≡ id X module _ {X Y : Obj} (f : X ⇒ Y) where is-isomorphism : Set ℓ.Hom is-isomorphism = Σ[ g ∈ Y ⇒ X ] (g ∘ f ≡ id X) × (f ∘ g ≡ id Y) is-section : Set ℓ.Hom is-section = Σ[ g ∈ Y ⇒ X ] g ∘ f ≡ id X is-retraction : Set ℓ.Hom is-retraction = Σ[ g ∈ Y ⇒ X ] f ∘ g ≡ id Y is-monomorphism : Set ℓ.Obj-Hom is-monomorphism = ∀{Z}{g h : Z ⇒ X} → f ∘ g ≡ f ∘ h → g ≡ h is-epimorphism : Set ℓ.Obj-Hom is-epimorphism = ∀{Z}{g h : Y ⇒ Z} → g ∘ f ≡ h ∘ f → g ≡ h is-bimorphism : Set ℓ.Obj-Hom is-bimorphism = is-monomorphism × is-epimorphism module _ (X Y : Obj) where _iso⇒_ : Set ℓ.Hom _iso⇒_ = Σ (X ⇒ Y) is-isomorphism _mono⇒_ : Set ℓ.Obj-Hom _mono⇒_ = Σ (X ⇒ Y) is-monomorphism _epi⇒_ : Set ℓ.Obj-Hom _epi⇒_ = Σ (X ⇒ Y) is-epimorphism -------------------------------------------------------------------------------- -- Category of Sets i.e. Types that has no non-trival equality -------------------------------------------------------------------------------- SetCat : (ℓ : Level) → Category (record { Obj = ℓ-suc ℓ ; Hom = ℓ }) SetCat ℓ = record { Obj = Object ; _⇒_ = λ (X Y : Object) → (X → Y) ; id = λ (X : Object) → (λ x → x) ; _∘_ = λ {X Y Z : Object} (g : Y → Z) (f : X → Y) → (λ x → g (f x)) ; idl = ≡-refl ; idr = ≡-refl ; assoc = ≡-refl } where Object = Set ℓ SetCat₀ = SetCat ℓ-zero
{ "alphanum_fraction": 0.345386173, "avg_line_length": 30.0608695652, "ext": "agda", "hexsha": "d7b3c4f24b52f040221160d3e8b8304131f75322", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "gunpinyo/agda-cat", "max_forks_repo_path": "src/Basic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "gunpinyo/agda-cat", "max_issues_repo_path": "src/Basic.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "gunpinyo/agda-cat", "max_stars_repo_path": "src/Basic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1130, "size": 3457 }
module Luau.Value.ToString where open import Agda.Builtin.String using (String) open import Agda.Builtin.Float using (primShowFloat) open import Luau.Value using (Value; nil; addr; number) open import Luau.Addr.ToString using (addrToString) valueToString : Value → String valueToString nil = "nil" valueToString (addr a) = addrToString a valueToString (number x) = primShowFloat x
{ "alphanum_fraction": 0.7911227154, "avg_line_length": 31.9166666667, "ext": "agda", "hexsha": "51c3fa78c6642762b927c96f69eff75943c43f4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Tr4shh/Roblox-Luau", "max_forks_repo_path": "prototyping/Luau/Value/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Tr4shh/Roblox-Luau", "max_issues_repo_path": "prototyping/Luau/Value/ToString.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/Luau/Value/ToString.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 94, "size": 383 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by lattices ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Lattice module Relation.Binary.Properties.Lattice {c ℓ₁ ℓ₂} (L : Lattice c ℓ₁ ℓ₂) where open Lattice L import Algebra as Alg import Algebra.Structures as Alg open import Algebra.FunctionProperties _≈_ open import Data.Product using (_,_) open import Function using (flip) open import Relation.Binary open import Relation.Binary.Properties.Poset poset import Relation.Binary.Properties.JoinSemilattice joinSemilattice as J import Relation.Binary.Properties.MeetSemilattice meetSemilattice as M import Relation.Binary.Reasoning.Setoid as EqReasoning import Relation.Binary.Reasoning.PartialOrder as POR ∨-absorbs-∧ : _∨_ Absorbs _∧_ ∨-absorbs-∧ x y = let x≤x∨[x∧y] , _ , least = supremum x (x ∧ y) x∧y≤x , _ , _ = infimum x y in antisym (least x refl x∧y≤x) x≤x∨[x∧y] ∧-absorbs-∨ : _∧_ Absorbs _∨_ ∧-absorbs-∨ x y = let x∧[x∨y]≤x , _ , greatest = infimum x (x ∨ y) x≤x∨y , _ , _ = supremum x y in antisym x∧[x∨y]≤x (greatest x refl x≤x∨y) absorptive : Absorptive _∨_ _∧_ absorptive = ∨-absorbs-∧ , ∧-absorbs-∨ ∧≤∨ : ∀ {x y} → x ∧ y ≤ x ∨ y ∧≤∨ {x} {y} = begin x ∧ y ≤⟨ x∧y≤x x y ⟩ x ≤⟨ x≤x∨y x y ⟩ x ∨ y ∎ where open POR poset -- two quadrilateral arguments quadrilateral₁ : ∀ {x y} → x ∨ y ≈ x → x ∧ y ≈ y quadrilateral₁ {x} {y} x∨y≈x = begin x ∧ y ≈⟨ M.∧-cong (Eq.sym x∨y≈x) Eq.refl ⟩ (x ∨ y) ∧ y ≈⟨ M.∧-comm _ _ ⟩ y ∧ (x ∨ y) ≈⟨ M.∧-cong Eq.refl (J.∨-comm _ _) ⟩ y ∧ (y ∨ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩ y ∎ where open EqReasoning setoid quadrilateral₂ : ∀ {x y} → x ∧ y ≈ y → x ∨ y ≈ x quadrilateral₂ {x} {y} x∧y≈y = begin x ∨ y ≈⟨ J.∨-cong Eq.refl (Eq.sym x∧y≈y) ⟩ x ∨ (x ∧ y) ≈⟨ ∨-absorbs-∧ _ _ ⟩ x ∎ where open EqReasoning setoid -- collapsing sublattice collapse₁ : ∀ {x y} → x ≈ y → x ∧ y ≈ x ∨ y collapse₁ {x} {y} x≈y = begin x ∧ y ≈⟨ M.y≤x⇒x∧y≈y y≤x ⟩ y ≈⟨ Eq.sym x≈y ⟩ x ≈⟨ Eq.sym (J.x≤y⇒x∨y≈y y≤x) ⟩ y ∨ x ≈⟨ J.∨-comm _ _ ⟩ x ∨ y ∎ where y≤x = reflexive (Eq.sym x≈y) open EqReasoning setoid -- this can also be proved by quadrilateral argument, but it's much less symmetric. collapse₂ : ∀ {x y} → x ∨ y ≤ x ∧ y → x ≈ y collapse₂ {x} {y} ∨≤∧ = antisym (begin x ≤⟨ x≤x∨y _ _ ⟩ x ∨ y ≤⟨ ∨≤∧ ⟩ x ∧ y ≤⟨ x∧y≤y _ _ ⟩ y ∎) (begin y ≤⟨ y≤x∨y _ _ ⟩ x ∨ y ≤⟨ ∨≤∧ ⟩ x ∧ y ≤⟨ x∧y≤x _ _ ⟩ x ∎) where open POR poset ------------------------------------------------------------------------ -- The dual construction is also a lattice. ∧-∨-isLattice : IsLattice _≈_ (flip _≤_) _∧_ _∨_ ∧-∨-isLattice = record { isPartialOrder = invIsPartialOrder ; supremum = infimum ; infimum = supremum } ∧-∨-lattice : Lattice c ℓ₁ ℓ₂ ∧-∨-lattice = record { _∧_ = _∨_ ; _∨_ = _∧_ ; isLattice = ∧-∨-isLattice } ------------------------------------------------------------------------ -- Every order-theoretic lattice can be turned into an algebraic one. isAlgLattice : Alg.IsLattice _≈_ _∨_ _∧_ isAlgLattice = record { isEquivalence = isEquivalence ; ∨-comm = J.∨-comm ; ∨-assoc = J.∨-assoc ; ∨-cong = J.∨-cong ; ∧-comm = M.∧-comm ; ∧-assoc = M.∧-assoc ; ∧-cong = M.∧-cong ; absorptive = absorptive } algLattice : Alg.Lattice c ℓ₁ algLattice = record { isLattice = isAlgLattice }
{ "alphanum_fraction": 0.523249453, "avg_line_length": 28.5625, "ext": "agda", "hexsha": "3e6ad770f06d603f7de20f2025f690278e26243e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Lattice.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Lattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1543, "size": 3656 }
data Unit : Set where unit : Unit data Builtin : Set where addInteger : Builtin data SizedTermCon : Set where integer : (s : Unit) → SizedTermCon data ScopedTm : Set where con : SizedTermCon → ScopedTm data Value : ScopedTm → Set where V-con : (tcn : SizedTermCon) → Value (con tcn) BUILTIN : Builtin → (t : ScopedTm) → Value t → Unit BUILTIN addInteger _ (V-con (integer s)) = s
{ "alphanum_fraction": 0.6818181818, "avg_line_length": 20.8421052632, "ext": "agda", "hexsha": "4774415b4180b71bf5966fd57f31e833779c0c33", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3651.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3651.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3651.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 396 }
-- The Berry majority function. module Berry where data Bool : Set where F : Bool T : Bool maj : Bool -> Bool -> Bool -> Bool maj T T T = T maj T F x = x maj F x T = x maj x T F = x -- doesn't hold definitionally maj F F F = F postulate z : Bool
{ "alphanum_fraction": 0.5602836879, "avg_line_length": 14.1, "ext": "agda", "hexsha": "25b3ec6cd685db85ea2e207dd0b987e2156df376", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Berry.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Berry.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Berry.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 282 }
module Inductive.Examples.Nat where open import Inductive open import Tuple import Data.Fin as Fin open import Data.Product open import Data.List open import Data.Vec hiding (lookup) Nat : Set Nat = Inductive ( ([] , []) ∷ (([] , ([] ∷ [])) ∷ [])) zero : Nat zero = construct Fin.zero [] [] suc : Nat → Nat suc n = construct (Fin.suc Fin.zero) [] ((λ _ → n) ∷ []) _+_ : Nat → Nat → Nat n + m = rec (m ∷ ((λ x x₁ → suc x₁) ∷ [])) n
{ "alphanum_fraction": 0.5972540046, "avg_line_length": 19.8636363636, "ext": "agda", "hexsha": "9453d3cd4808e3e07049bf9b13d03cd389bac275", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/general-induction", "max_forks_repo_path": "Inductive/Examples/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/general-induction", "max_issues_repo_path": "Inductive/Examples/Nat.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/general-induction", "max_stars_repo_path": "Inductive/Examples/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 144, "size": 437 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Proofs.Multiplication where open import Relation.Binary.PropositionalEquality open import Data.Binary.Operations.Unary open import Data.Binary.Operations.Addition open import Data.Binary.Operations.Multiplication open import Data.Binary.Proofs.Unary open import Data.Binary.Proofs.Addition open import Data.Binary.Definitions open import Data.Binary.Operations.Semantics open import Data.Nat as ℕ using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality.FasterReasoning import Data.Nat.Properties as ℕ open import Function open import Data.Nat.Reasoning mul-homo : ∀ xs ys → ⟦ mul xs ys ⇓⟧⁺ ≡ ⟦ xs ⇓⟧⁺ ℕ.* ⟦ ys ⇓⟧⁺ mul-homo 1ᵇ ys = sym (ℕ.+-identityʳ _) mul-homo (O ∷ xs) ys = cong 2* (mul-homo xs ys) ⟨ trans ⟩ sym (ℕ.*-distribʳ-+ ⟦ ys ⇓⟧⁺ ⟦ xs ⇓⟧⁺ _) mul-homo (I ∷ xs) ys = begin ⟦ add O (O ∷ mul ys xs) ys ⇓⟧⁺ ≡⟨ add₀-homo (O ∷ mul ys xs) ys ⟩ 2* ⟦ mul ys xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺ ≡⟨ ⟦ ys ⇓⟧⁺ ≪+ cong 2* (mul-homo ys xs) ⟩ 2* (⟦ ys ⇓⟧⁺ ℕ.* ⟦ xs ⇓⟧⁺) ℕ.+ ⟦ ys ⇓⟧⁺ ≡⟨ ℕ.+-comm _ ⟦ ys ⇓⟧⁺ ⟩ ⟦ ys ⇓⟧⁺ ℕ.+ 2* (⟦ ys ⇓⟧⁺ ℕ.* ⟦ xs ⇓⟧⁺) ≡˘⟨ ⟦ ys ⇓⟧⁺ +≫ ℕ.*-distribˡ-+ ⟦ ys ⇓⟧⁺ _ _ ⟩ ⟦ ys ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺ ℕ.* (2* ⟦ xs ⇓⟧⁺) ≡⟨ ⟦ ys ⇓⟧⁺ +≫ ℕ.*-comm ⟦ ys ⇓⟧⁺ _ ⟩ ⟦ ys ⇓⟧⁺ ℕ.+ (2* ⟦ xs ⇓⟧⁺) ℕ.* ⟦ ys ⇓⟧⁺ ∎ *-homo : ∀ xs ys → ⟦ xs * ys ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.* ⟦ ys ⇓⟧ *-homo 0ᵇ ys = refl *-homo (0< x) 0ᵇ = sym (ℕ.*-zeroʳ ⟦ x ⇓⟧⁺) *-homo (0< xs) (0< ys) = mul-homo xs ys
{ "alphanum_fraction": 0.5713305898, "avg_line_length": 35.5609756098, "ext": "agda", "hexsha": "054e7bb1a243b5e8f6795ea01de3e891c6fb07ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Proofs/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Proofs/Multiplication.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Proofs/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 727, "size": 1458 }
-- Copatterns disabled! {-# OPTIONS --no-copatterns #-} open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} -- Should give error when attempting to split.
{ "alphanum_fraction": 0.612565445, "avg_line_length": 21.2222222222, "ext": "agda", "hexsha": "db8d90ae82094644ebb5757d15210e1f61d234ab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/SplitOnResultCopatternsDisabled.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/SplitOnResultCopatternsDisabled.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/SplitOnResultCopatternsDisabled.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 58, "size": 191 }
module bstd.belt where open import Agda.Builtin.Nat using () renaming (Nat to ℕ) -- open import Agda.Builtin.Word using (Word64) record traits : Set₁ where infixl 5 _⊕_ infixl 6 _⊞_ _⊟_ field w : Set _⊟_ : w → w → w _⊞_ : w → w → w _⊕_ : w → w → w G_ : ℕ → w → w _⋘_ : w → ℕ → w module prim (t : traits) where open traits t record block : Set where constructor _∶_∶_∶_ field a b c d : w record key : Set where G₅ = G 5 G₁₃ = G 13 G₂₁ = G 21 encᵢ : w → (ℕ → w) → block → block encᵢ i k (a ∶ b ∶ c ∶ d) = b‴ ∶ d′ ∶ a′ ∶ c‴ where b′ = b ⊕ G₅ (a ⊞ k 0) c′ = c ⊕ G₂₁ (d ⊞ k 1) a′ = a ⊟ G₁₃ (b ⊞ k 2) e = G₂₁ (b ⊞ c ⊞ k 3) ⊕ i b″ = b′ ⊞ e c″ = c′ ⊟ e d′ = d ⊞ G₁₃ (c ⊞ k 4) b‴ = b″ ⊕ G₂₁ (a ⊞ k 5) c‴ = c″ ⊕ G₅ (d ⊞ k 6) 𝔼 : key → block → block 𝔼 k b = {!encᵢ 2 k (encᵢ 1 k x))!} {- 0 B1 94 BA C8 0A 08 F5 3B 36 6D 00 8E 58 4A 5D E4 1 85 04 FA 9D 1B B6 C7 AC 25 2E 72 C2 02 FD CE 0D 2 5B E3 D6 12 17 B9 61 81 FE 67 86 AD 71 6B 89 0B 3 5C B0 C0 FF 33 C3 56 B8 35 C4 05 AE D8 E0 7F 99 4 E1 2B DC 1A E2 82 57 EC 70 3F CC F0 95 EE 8D F1 5 C1 AB 76 38 9F E6 78 CA F7 C6 F8 60 D5 BB 9C 4F 6 F3 3C 65 7B 63 7C 30 6A DD 4E A7 79 9E B2 3D 31 7 3E 98 B5 6E 27 D3 BC CF 59 1E 18 1F 4C 5A B7 93 8 E9 DE E7 2C 8F 0C 0F A6 2D DB 49 F4 6F 73 96 47 9 06 07 53 16 ED 24 7A 37 39 CB A3 83 03 A9 8B F6 A 92 BD 9B 1C E5 D1 41 01 54 45 FB C9 5E 4D 0E F2 B 68 20 80 AA 22 7D 64 2F 26 87 F9 34 90 40 55 11 C BE 32 97 13 43 FC 9A 48 A0 2A 88 5F 19 4B 09 A1 D 7E CD A4 D0 15 44 AF 8C A5 84 50 BF 66 D2 E8 8A E A2 D7 46 52 42 A8 DF B3 69 74 C5 51 EB 23 29 21 F D4 EF D9 B4 3A 62 28 75 91 14 10 EA 77 6C DA 1D -}
{ "alphanum_fraction": 0.5553582001, "avg_line_length": 26.390625, "ext": "agda", "hexsha": "1fb2e27a81ad36478de8631b6becba8952621e61", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bstd", "max_forks_repo_path": "src/bstd/belt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bstd", "max_issues_repo_path": "src/bstd/belt.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bstd", "max_stars_repo_path": "src/bstd/belt.agda", "max_stars_repo_stars_event_max_datetime": "2019-06-29T10:40:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-29T10:40:15.000Z", "num_tokens": 1039, "size": 1689 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some simple binary relations ------------------------------------------------------------------------ module Relation.Binary.Simple where open import Relation.Binary open import Data.Unit open import Data.Empty open import Level -- Constant relations. Const : ∀ {a b c} {A : Set a} {B : Set b} → Set c → REL A B c Const I = λ _ _ → I -- The universally true relation. Always : ∀ {a ℓ} {A : Set a} → Rel A ℓ Always = Const (Lift ⊤) Always-setoid : ∀ {a ℓ} (A : Set a) → Setoid a ℓ Always-setoid A = record { Carrier = A ; _≈_ = Always ; isEquivalence = record {} } -- The universally false relation. Never : ∀ {a ℓ} {A : Set a} → Rel A ℓ Never = Const (Lift ⊥)
{ "alphanum_fraction": 0.5081148564, "avg_line_length": 22.8857142857, "ext": "agda", "hexsha": "dc4d8f40032e3a363df0c7238b208f642eb93d73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Simple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Simple.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 212, "size": 801 }
module RandomAccessList.Redundant.Core where open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf) open import Data.Num.Redundant open import Data.Nat using (ℕ; zero; suc) open import Data.Nat.Etc infixr 2 0∷ _1∷_ _,_2∷_ data 0-2-RAL (A : Set) : ℕ → Set where [] : ∀ {n} → 0-2-RAL A n 0∷ : ∀ {n} → 0-2-RAL A (suc n) → 0-2-RAL A n _1∷_ : ∀ {n} → BinaryLeafTree A n → 0-2-RAL A (suc n) → 0-2-RAL A n _,_2∷_ : ∀ {n} → BinaryLeafTree A n → BinaryLeafTree A n → 0-2-RAL A (suc n) → 0-2-RAL A n -------------------------------------------------------------------------------- -- to Redundant Binary Numeral System -------------------------------------------------------------------------------- ⟦_⟧ₙ : ∀ {n A} → 0-2-RAL A n → Redundant ⟦ [] ⟧ₙ = [] ⟦ 0∷ xs ⟧ₙ = zero ∷ ⟦ xs ⟧ₙ ⟦ x 1∷ xs ⟧ₙ = one ∷ ⟦ xs ⟧ₙ ⟦ x , y 2∷ xs ⟧ₙ = two ∷ ⟦ xs ⟧ₙ ⟦_⟧ : ∀ {n A} → 0-2-RAL A n → Redundant ⟦_⟧ {n} xs = n <<< ⟦ xs ⟧ₙ -------------------------------------------------------------------------------- -- to ℕ -------------------------------------------------------------------------------- {- [_]ₙ : ∀ {A n} → 0-2-RAL A n → ℕ [ [] ]ₙ = 0 [ 0∷ xs ]ₙ = 0 + 2 * [ xs ]ₙ [ x 1∷ xs ]ₙ = 1 + 2 * [ xs ]ₙ [ x , y 2∷ xs ]ₙ = 2 + 2 * [ xs ]ₙ [_] : ∀ {n A} → 0-2-RAL A n → ℕ [_] {n} xs = 2 ^ n * [ xs ]ₙ -}
{ "alphanum_fraction": 0.3426666667, "avg_line_length": 34.0909090909, "ext": "agda", "hexsha": "25a82acf702b09cfb7d684eaf7ecf9263dc710d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/Redundant/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/Redundant/Core.agda", "max_line_length": 94, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/Redundant/Core.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 565, "size": 1500 }
module prelude.list where open import Data.Nat renaming (zero to z; suc to s) open import Data.Fin as Fin using (Fin) import Data.Fin as Fin renaming (zero to z; suc to s) open import Agda.Builtin.Sigma open import Data.Product open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong) open import Data.Empty open import Function Vect : ∀ {ℓ} → ℕ → Set ℓ → Set ℓ Vect n t = Fin n → t List : ∀ {ℓ} → Set ℓ → Set ℓ List t = Σ[ n ∈ ℕ ] Vect n t len : ∀ {ℓ} {a : Set ℓ} → List a → ℕ len = fst head : ∀ {ℓ} {a : Set ℓ} → (as : List a) → (len as ≢ z) → a head (z , as) n≢0 = ⊥-elim (n≢0 refl) head (s n , as) _ = as Fin.z tail : ∀ {ℓ} {a : Set ℓ} → (as : List a) → (len as ≢ z) → List a tail (z , as) n≢0 = ⊥-elim (n≢0 refl) tail (s n , as) _ = n , (as ∘ Fin.inject₁)
{ "alphanum_fraction": 0.6070975919, "avg_line_length": 34.3043478261, "ext": "agda", "hexsha": "3b2407f9882bced8d9067f71b37d5787054db06a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/prelude/list.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/prelude/list.agda", "max_line_length": 83, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/prelude/list.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 315, "size": 789 }