Search is not available for this dataset
text
string
meta
dict
module Natural where open import Equality open import Cubical.Data.Nat.Properties public open import Data.Empty open import Data.Nat as ℕ public hiding (_+_; _*_; _^_) open import Data.Nat.Properties public hiding (+-assoc; +-suc) open import Data.Unit open import Function open import Syntax instance ℕ-plus-syntax : plus-syntax-simple ℕ ℕ ℕ ℕ-plus-syntax = record { _+_ = ℕ._+_ } ℕ-times-syntax : times-syntax-simple ℕ ℕ ℕ ℕ-times-syntax = record { _*_ = ℕ._*_ } ℕ-raise-syntax : raise-syntax-simple ℕ ℕ ℕ ℕ-raise-syntax = record { _^_ = ℕ._^_ } +-cross : (a b c d : ℕ) → (a + b) + (c + d) ≡ (a + c) + (b + d) +-cross a b c d = (a + b) + (c + d) ≡⟨ sym (+-assoc a _ _) ⟩ a + (b + (c + d)) ≡⟨ cong (a +_) (+-assoc b _ _) ⟩ a + ((b + c) + d) ≡⟨ cong (a +_) (cong (_+ d) ⟨ +-comm b c ⟩) ⟩ a + ((c + b) + d) ≡⟨ cong (a +_) (sym (+-assoc c _ _)) ⟩ a + (c + (b + d)) ≡⟨ +-assoc a _ _ ⟩ (a + c) + (b + d) ∎ instance ℕ-Number : Number ℕ ℕ-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ x → x }
{ "alphanum_fraction": 0.5494296578, "avg_line_length": 26.3, "ext": "agda", "hexsha": "c0ef3ecc382b2247538959f708d59fea07ca8fc2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/numbers", "max_forks_repo_path": "src/Natural.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/numbers", "max_issues_repo_path": "src/Natural.agda", "max_line_length": 64, "max_stars_count": 9, "max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/numbers", "max_stars_repo_path": "src/Natural.agda", "max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z", "num_tokens": 399, "size": 1052 }
{-# OPTIONS --universe-polymorphism #-} module Issue286 where open import Common.Level data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} data _≡_ {ℓ : Level} {A : Set ℓ} : A → A → Set ℓ where refl : {a : A} → a ≡ a {-# BUILTIN EQUALITY _≡_ #-} primitive primEraseEquality : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y {-# BUILTIN STRING String #-} primitive primStringEquality : String → String → Bool data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A _≟_ : (s₁ s₂ : String) → Maybe (s₁ ≡ s₂) s₁ ≟ s₂ with primStringEquality s₁ s₂ ... | true = just (primEraseEquality trustMe) where postulate trustMe : _ ≡ _ ... | false = nothing _≟′_ : (s₁ s₂ : String) → Maybe (s₁ ≡ s₂) s₁ ≟′ s₂ with s₁ ≟ s₂ s ≟′ .s | just refl = just refl _ ≟′ _ | nothing = nothing test : Maybe ("" ≡ "") test = "" ≟′ "" ok : test ≡ just refl ok = refl
{ "alphanum_fraction": 0.5851619645, "avg_line_length": 20.3617021277, "ext": "agda", "hexsha": "03b5f493d6768cb91346a6c499d81ad58c483516", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "test/Succeed/Issue286.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "test/Succeed/Issue286.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "test/Succeed/Issue286.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 348, "size": 957 }
{-# OPTIONS -v5 #-} module Debug where postulate Foo : Set
{ "alphanum_fraction": 0.6557377049, "avg_line_length": 10.1666666667, "ext": "agda", "hexsha": "6f4c71765fe80e3b655a6c23112ecb3644b2f565", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Debug.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Debug.agda", "max_line_length": 19, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Debug.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 16, "size": 61 }
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.Queue.Base where open import Cubical.Foundations.Everything open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.Data.List open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) module _ (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset -- following Cavallo we can now define 1Lists and 2Lists as Queues on A -- and prove that there is a queue-iso between them, this then gives us a path 1List : Queue 1List = (Q , emp , push , pop) where Q = List A emp = [] push = _∷_ pop : Q → Unit ⊎ (Q × A) pop [] = inl tt pop (x ∷ []) = inr ([] , x) pop (x ∷ x' ∷ xs) = pop-map-forward (push x) (pop (x' ∷ xs)) -- for later convenience Q₁ = typ 1List emp₁ = str 1List .fst push₁ = str 1List .snd .fst pop₁ = str 1List .snd .snd -- Now for 2Lists data Q₂ : Set ℓ where Q₂⟨_,_⟩ : (xs ys : List A) → Q₂ tilt : ∀ xs ys z → Q₂⟨ xs ++ [ z ] , ys ⟩ ≡ Q₂⟨ xs , ys ++ [ z ] ⟩ trunc : (q q' : Q₂) (α β : q ≡ q') → α ≡ β multitilt : (xs ys zs : List A) → Q₂⟨ xs ++ rev zs , ys ⟩ ≡ Q₂⟨ xs , ys ++ zs ⟩ multitilt xs ys [] = cong₂ Q₂⟨_,_⟩ (++-unit-r xs) (sym (++-unit-r ys)) multitilt xs ys (z ∷ zs) = cong (λ ws → Q₂⟨ ws , ys ⟩) (sym (++-assoc xs (rev zs) [ z ])) ∙ tilt (xs ++ rev zs) ys z ∙ multitilt xs (ys ++ [ z ]) zs ∙ cong (λ ws → Q₂⟨ xs , ws ⟩) (++-assoc ys [ z ] zs) -- push into the first list, pop from the second if possible emp₂ : Q₂ emp₂ = Q₂⟨ [] , [] ⟩ push₂ : A → Q₂ → Q₂ push₂ a Q₂⟨ xs , ys ⟩ = Q₂⟨ a ∷ xs , ys ⟩ push₂ a (tilt xs ys z i) = tilt (a ∷ xs) ys z i push₂ a (trunc q q' α β i j) = trunc _ _ (cong (push₂ a) α) (cong (push₂ a) β) i j pop₂Flush : List A → Unit ⊎ (Q₂ × A) pop₂Flush [] = inl tt pop₂Flush (x ∷ xs) = inr (Q₂⟨ [] , xs ⟩ , x) pop₂ : Q₂ → Unit ⊎ (Q₂ × A) pop₂ Q₂⟨ xs , [] ⟩ = pop₂Flush (rev xs) pop₂ Q₂⟨ xs , y ∷ ys ⟩ = inr (Q₂⟨ xs , ys ⟩ , y) pop₂ (tilt xs [] z i) = path i where path : pop₂Flush (rev (xs ++ [ z ])) ≡ inr (Q₂⟨ xs , [] ⟩ , z) path = cong pop₂Flush (rev-++ xs [ z ]) ∙ cong (λ q → inr (q , z)) (sym (multitilt [] [] (rev xs))) ∙ cong (λ ys → inr (Q₂⟨ ys , [] ⟩ , z)) (rev-rev xs) pop₂ (tilt xs (y ∷ ys) z i) = inr (tilt xs ys z i , y) pop₂ (trunc q q' α β i j) = isOfHLevelSum 0 (isProp→isSet isPropUnit) (isOfHLevelΣ 2 trunc λ _ → Aset) (pop₂ q) (pop₂ q') (cong pop₂ α) (cong pop₂ β) i j 2List : Queue 2List = (Q₂ , emp₂ , push₂ , pop₂) -- We construct an equivalence Q₁≃Q₂ and prove that this is a queue-iso quot : Q₁ → Q₂ quot xs = Q₂⟨ xs , [] ⟩ eval : Q₂ → Q₁ eval Q₂⟨ xs , ys ⟩ = xs ++ rev ys eval (tilt xs ys z i) = path i where path : (xs ++ [ z ]) ++ rev ys ≡ xs ++ rev (ys ++ [ z ]) path = ++-assoc xs [ z ] (rev ys) ∙ cong (_++_ xs) (sym (rev-++ ys [ z ])) eval (trunc q q' α β i j) = -- truncated case isOfHLevelList 0 Aset (eval q) (eval q') (cong eval α) (cong eval β) i j quot∘eval : ∀ q → quot (eval q) ≡ q quot∘eval Q₂⟨ xs , ys ⟩ = multitilt xs [] ys quot∘eval (tilt xs ys z i) = -- truncated case isOfHLevelPathP' {A = λ i → quot (eval (tilt xs ys z i)) ≡ tilt xs ys z i} 0 (λ _ → trunc _ _) (multitilt (xs ++ [ z ]) [] ys) (multitilt xs [] (ys ++ [ z ])) .fst i quot∘eval (trunc q q' α β i j) = -- truncated case isOfHLevelPathP' {A = λ i → PathP (λ j → quot (eval (trunc q q' α β i j)) ≡ trunc q q' α β i j) (quot∘eval q) (quot∘eval q')} 0 (λ _ → isOfHLevelPathP' 1 (λ _ → isOfHLevelSuc 2 trunc _ _) _ _) (cong quot∘eval α) (cong quot∘eval β) .fst i j eval∘quot : ∀ xs → eval (quot xs) ≡ xs eval∘quot = ++-unit-r -- We get our desired equivalence quotEquiv : Q₁ ≃ Q₂ quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot) -- Now it only remains to prove that this is a queue-iso quot∘emp : quot emp₁ ≡ emp₂ quot∘emp = refl quot∘push : ∀ x xs → quot (push₁ x xs) ≡ push₂ x (quot xs) quot∘push x xs = refl quot∘pop : ∀ xs → pop-map-forward quot (pop₁ xs) ≡ pop₂ (quot xs) quot∘pop [] = refl quot∘pop (x ∷ []) = refl quot∘pop (x ∷ x' ∷ xs) = pop-map-forward-∘ quot (push₁ x) (pop₁ (x' ∷ xs)) ∙ sym (pop-map-forward-∘ (push₂ x) quot (pop₁ (x' ∷ xs))) ∙ cong (pop-map-forward (push₂ x)) (quot∘pop (x' ∷ xs)) ∙ lemma x x' (rev xs) where lemma : ∀ x x' ys → pop-map-forward (push₂ x) (pop₂Flush (ys ++ [ x' ])) ≡ pop₂Flush ((ys ++ [ x' ]) ++ [ x ]) lemma x x' [] i = inr (tilt [] [] x i , x') lemma x x' (y ∷ ys) i = inr (tilt [] (ys ++ [ x' ]) x i , y) quotEquiv-is-queue-iso : queue-iso 1List 2List quotEquiv quotEquiv-is-queue-iso = quot∘emp , quot∘push , quot∘pop -- And we get the desired Path Path-1List-2List : 1List ≡ 2List Path-1List-2List = SIP queue-structure queue-iso Queue-is-SNS 1List 2List .fst (quotEquiv , quotEquiv-is-queue-iso)
{ "alphanum_fraction": 0.5548271752, "avg_line_length": 29.4385964912, "ext": "agda", "hexsha": "0734a03fa53a37a5a990a76eee837c1eacdaa763", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Data/Queue/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Data/Queue/Base.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Data/Queue/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2040, "size": 5034 }
open import Oscar.Prelude open import Oscar.Class.IsPrecategory open import Oscar.Class.Surjection open import Oscar.Class.Smap open import Oscar.Class.Surjtranscommutativity open import Oscar.Class.Surjextensionality open import Oscar.Class.Transitivity module Oscar.Class.IsPrefunctor where module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {ℓ₁} (_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁) (_↦₁_ : Transitivity.type _∼₁_) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_↦₂_ : Transitivity.type _∼₂_) {surjection : Surjection.type 𝔒₁ 𝔒₂} (smap : Smap.type _∼₁_ _∼₂_ surjection surjection) where record IsPrefunctor : Ø 𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂ where constructor ∁ field overlap ⦃ `IsPrecategory₁ ⦄ : IsPrecategory _∼₁_ _∼̇₁_ _↦₁_ overlap ⦃ `IsPrecategory₂ ⦄ : IsPrecategory _∼₂_ _∼̇₂_ _↦₂_ overlap ⦃ `𝓢urjtranscommutativity ⦄ : Surjtranscommutativity.class _∼₁_ _∼₂_ _∼̇₂_ smap _↦₁_ _↦₂_ ⦃ `𝓢urjextensionality ⦄ : Surjextensionality.class _∼₁_ _∼̇₁_ _∼₂_ _∼̇₂_ surjection smap
{ "alphanum_fraction": 0.6618049225, "avg_line_length": 35.3870967742, "ext": "agda", "hexsha": "480e15d73875f9b89e3db055d8a9114b92344c9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/IsPrefunctor.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/IsPrefunctor.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/IsPrefunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 546, "size": 1097 }
{-# OPTIONS --cubical #-} module README where ------------------------------------------------------------------------ -- Chapter 2: Programming and Proving in Cubical Agda ------------------------------------------------------------------------ -- 2.1: Basic Functional Programming in Agda import Snippets.Bool using ( Bool -- 2.1 ; Boolean ; a-boolean) -- 2.2: Some Functions import Snippets.Bool using ( not ; module LambdaNot) import Function using ( id ) import Snippets.Nat using ( ℕ -- 2.2 ; add ; _-_ -- 2.3 ; module NonCoveringSub ; _+_ -- 2.4 ; module NonTermAdd ) -- 2.3: An Expression Evaluator import Snippets.Expr using ( Op -- 2.5 ; Expr -- 2.6 ; module IncorrectEval -- 2.7 ) -- 2.4: Safe Evaluation with Maybe import Data.Maybe using ( Maybe -- 2.8 ) import Snippets.Maybe using ( maybe-two ; maybe-func ) import Snippets.Expr using ( _-_ -- 2.9 ; ⟦_⟧ ) import Data.Maybe.Sugar using ( pure ; _<*>_ ; _>>=_ -- 2.10 ) -- 2.5: Statically Proving the Evaluation is Safe import Snippets.Expr using ( example-eval ; is-just ) import Data.Bool using ( T ) import Data.Empty using ( ⊥ ) import Snippets.Introduction using ( ⊤ ) import Data.Empty using ( ¬_ ) import Snippets.Expr using ( Pair -- 2.11 ; Valid -- 2.12 ; ⟦_⟧! ; example-static-eval -- 2.13 ) import Snippets.Implicits using ( module Normal ; module ImplicitType -- 2.14 ) -- 2.6: Equalities import Snippets.Equality using ( module MLTTEquality -- 2.15 ; sym ) -- 2.7: Some Proofs of Equality import Snippets.Equality using ( refl -- 2.16 ) import Snippets.Expr using ( example-static-proof ) import Data.Nat.Properties using ( +-assoc ) -- 2.8: Quotients import Cubical.HITs.S1 using ( S¹ -- 2.17 ) -- 2.9: Basic Type Formers import Snippets.Formers using ( ℕ-or-String ; Pair ; fst ; snd ; pair ) import Data.Sigma using ( Σ ; _×_ -- 2.18 ) import Data.Sum using ( _⊎_ -- 2.19 ) -- 2.11: Comparing Classical and Constructive Proofs in Agda import Snippets.Classical using ( Classical -- 2.20 ; lem ; pure ; _>>=_ ) import Relation.Nullary.Stable using ( Stable ) ------------------------------------------------------------------------ -- Chapter 3: Finiteness Predicates ------------------------------------------------------------------------ -- 3.1: Split Enumerability import Cardinality.Finite.SplitEnumerable.Container using ( ℰ! ) import Container.List using ( List -- 3.1 ) import Data.Fin.Base using (module DisplayImpl) import Data.List using (List) import Container using ( ⟦_⟧ -- 3.3 ) import Container.Membership using ( _∈_ -- 3.4 ) import Function.Fiber using ( fiber -- 3.5 ) import Function.Surjective using ( SplitSurjective -- 3.6 ; _↠!_ ) import Cardinality.Finite.SplitEnumerable using ( ℰ!⇔Fin↠! ) import Data.Sigma.Properties using ( reassoc ) import Cardinality.Finite.SplitEnumerable using ( split-enum-is-split-surj ; ℰ!⟨2⟩ -- 3.7 ) import Function.Surjective.Properties using ( ↠!-ident ) import Relation.Nullary.Discrete using ( Discrete ) import Snippets.Dec using ( Dec ) import Function.Injective using ( Injective ; _↣_ ) import Function.Injective.Properties using (Discrete-pull-inj) import Function.Surjective.Properties using ( surj-to-inj ; Discrete-distrib-surj ) import Cardinality.Finite.SplitEnumerable using (ℰ!⇒Discrete) -- 3.2: Manifest Bishop Finiteness import Cardinality.Finite.SplitEnumerable using ( module BoolSlop -- 3.8 ) import HLevels using ( isContr -- 3.9 ) import Container.Membership using ( _∈!_ -- 3.10 ) import Cardinality.Finite.ManifestBishop.Container using ( ℬ ) import Snippets.Equivalence using ( isEquiv -- 3.11 ; _≃_ ) import Cardinality.Finite.ManifestBishop using ( ℬ⇔Fin≃ ) -- 3.3: Cardinal Finiteness import Cardinality.Finite.SplitEnumerable using ( ℰ!⟨2⟩ ; ℰ!⟨2⟩′ ) import HLevels using ( isProp -- 3.12 ) import HITs.PropositionalTruncation using ( ∥_∥ -- 3.13 ; rec -- 3.14 ) import Cardinality.Finite.Cardinal using ( 𝒞 ; 𝒞⇒Discrete ) import Relation.Nullary.Discrete.Properties using ( isPropDiscrete ) import HLevels using ( isSet -- 3.15 ) import Relation.Nullary.Discrete.Properties using ( Discrete→isSet ) import HITs.PropositionalTruncation using ( rec→set -- 3.16 ) import Cardinality.Finite.Cardinal using ( cardinality-is-unique ) import Data.List.Sort using ( insert ; sort ; sort-sorts ; sort-perm ) import Data.List.Relation.Binary.Permutation using ( _↭_ ) import Data.List.Sort using ( sorted-perm-eq ; perm-invar ) import Cardinality.Finite.Cardinal using ( ¬⟨𝒞⋂ℬᶜ⟩ ) import Snippets.Classical using ( classical-impl ) -- 3.4: Manifest Enumerability import Cubical.HITs.S1 using ( S¹ -- 3.19 ) import HLevels using ( isGroupoid -- 3.20 ) import Cardinality.Finite.ManifestEnumerable.Container using ( ℰ ) import Cardinality.Finite.ManifestEnumerable using ( ℰ⟨S¹⟩ ) import Cubical.HITs.S1 using ( isConnectedS¹ ) import Function.Surjective using ( Surjective -- 3.21 ; _↠_ ) import Cardinality.Finite.ManifestEnumerable using ( ℰ⇔Fin↠ ) import HITs.PropositionalTruncation.Properties using ( recompute -- 3.22 ) -- 3.5: Kuratowski Finiteness import Algebra.Construct.Free.Semilattice using ( 𝒦 -- 3.23 ) import Algebra.Construct.Free.Semilattice.Direct using ( 𝒦 ) import Algebra.Construct.Free.Semilattice.Relation.Unary.Membership using ( _∈_ ) import Cardinality.Finite.Kuratowski using ( 𝒦ᶠ ; 𝒞⇔𝒦×Discrete -- 3.24 ) ------------------------------------------------------------------------ -- Chapter 4: Topos ------------------------------------------------------------------------ -- 4.1: Categories in HoTT import Categories using ( PreCategory -- 4.1 ) -- 4.2: The Category of Sets import Categories.HSets using ( Ob ) -- 4.3: Closure import Cardinality.Finite.SplitEnumerable using ( _|Σ|_ ; sup-Σ ) import Cardinality.Finite.ManifestBishop using ( _|Π|_ ) import Data.Tuple.UniverseMonomorphic using ( Tuple ) import Cardinality.Finite.Cardinal using ( _∥×∥_ ; 𝒞⇒Choice ) -- 4.4: The Absence of the Subobject Classifier import Snippets.Topos using ( Prop-univ ; prop-resize ) ------------------------------------------------------------------------ -- Chapter 5: Search ------------------------------------------------------------------------ import Snippets.Bool using ( _∧_ ; ∧-assoc -- 5.1 ; some-assoc ) -- 5.1: How to make the Typechecker do Automation import Snippets.Bool using ( obvious ; True ; toWitness ; extremely-obvious ) -- 5.2: Omniscience import Relation.Nullary.Omniscience using ( Exhaustible ; Omniscient ) import Relation.Nullary.Decidable.Properties using ( Dec→DoubleNegElim ) import Relation.Nullary.Omniscience using ( Omniscient→Exhaustible ) import Cardinality.Finite.Kuratowski using ( 𝒦ᶠ⇒Exhaustible ) import Cardinality.Finite.ManifestEnumerable using ( ℰ⇒Omniscient ) import Relation.Nullary.Omniscience using ( Prop-Omniscient ) import Cardinality.Finite.Kuratowski using ( 𝒦ᶠ⇒Prop-Omniscient ) -- 5.3: An Interface for Proof Automation import Cardinality.Finite.SplitEnumerable.Search using ( ∀? ; ∃? ; module PreInst ) import Snippets.Bool using ( module PreInst′ ) import Cardinality.Finite.SplitEnumerable.Search using ( module WithInst ) import Snippets.Bool using ( ∧-idem -- 5.2 ; module BadCurrying ) import Instance using ( it ) import Data.Product.NAry using ( Levels ; max-level ; Types ; ⦅_⦆⁺ ; ⦅_⦆ ; ArgForm ; _[_]→_ ; [_$] ; Π[_$] ; ⦅_⦆[_]→_ ; pi-arrs-plus ; Π[_^_$] ) import Cardinality.Finite.SplitEnumerable.Search using ( ∃?ⁿ ; ∃↯ⁿ ) import Snippets.Bool using ( ∧-comm ) -- 5.4: Countdown import Countdown using ( ℰ!⟨Vec⟩ ; ℰ!⟨Op⟩ ; module WrongPerm ; module IsoPerm ; Perm ; ℰ!⟨Perm⟩ ) import Dyck using ( Dyck ; module NonParamTree ) import Countdown using ( ExprTree ; Transformation ; ℰ!⟨ExprTree⟩ ; ℰ!⟨Transformation⟩ ; eval ; _!⟨_⟩!_ ; Solution ; exampleSolutions ) ------------------------------------------------------------------------ -- Chapter 6: Countably Infinite Types ------------------------------------------------------------------------ -- 6.1: Countability import Cardinality.Infinite.Split using ( ℵ! ) import Codata.Stream using ( Stream ) import Cardinality.Infinite.Split using ( ℵ!⇔ℕ↠! ) -- 6.2: Closure import Data.List.Kleene using ( _⁺ ; _⋆ ) import Cardinality.Infinite.Split using ( _*⋆_[_] ; _*_ ; _|Σ|_ ; |star| ; cantor-diag )
{ "alphanum_fraction": 0.6128815081, "avg_line_length": 15.3920552677, "ext": "agda", "hexsha": "f3bdc3bfa8ea1970b07f0f9477856dd52b54a2a8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/masters-thesis", "max_forks_repo_path": "agda/README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/masters-thesis", "max_issues_repo_path": "agda/README.agda", "max_line_length": 73, "max_stars_count": 4, "max_stars_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/masters-thesis", "max_stars_repo_path": "agda/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 2871, "size": 8912 }
{-# OPTIONS --copatterns #-} record U : Set where coinductive field out : U u : {A : Set} → U u = {!!} record Wrap (A : Set) : Set where field wrapped : A wrap : ∀{A}{a : A} → Wrap A wrap = {!!}
{ "alphanum_fraction": 0.5238095238, "avg_line_length": 12.3529411765, "ext": "agda", "hexsha": "30e789da2d83487646d351ab3774903f20b53b9c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1516.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1516.agda", "max_line_length": 33, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1516.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 76, "size": 210 }
{- Copyright (c) 2017 Diego Pedraza. This is Free/Libre Open Source Software, released under the MIT License. For the full copyright and license information, please view the LICENSE file that was distributed with this source code. -} module R2 where open import Data.List using (List; _∷_; _++_; [_]; []) open import Data.Nat open import Data.Bool record Pair (A B : Set) : Set where constructor _,_ field fst : A snd : B {- --------------------------------------------------------------- Ejercicio 1.1. Definir la función sumaImpares :: nat ⇒ nat tal que (sumaImpares n) es la suma de los n primeros números impares. Por ejemplo, sumaImpares 5 = 25 ---------------------------------------------------------------- -} sumaImpares : ℕ → ℕ sumaImpares 0 = 0 sumaImpares (suc n) = (2 * n + 1) + sumaImpares n {- --------------------------------------------------------------- Ejercicio 1.2. Demostrar que sumaImpares n = n*n ----------------------------------------------------------------- -} _≡_ : ℕ → ℕ → Bool 0 ≡ 0 = true (suc n) ≡ (suc m) = n ≡ m n ≡ 0 = false 0 ≡ m = false lemaSumaImpares : {n : ℕ} → (sumaImpares n) ≡ (n * n) lemaSumaImpares {zero} = ? lemaSumaImpares {suc n} = ? {- {- --------------------------------------------------------------- Ejercicio 2.1. Definir la función sumaPotenciasDeDosMasUno :: nat ⇒ nat tal que (sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n. Por ejemplo, sumaPotenciasDeDosMasUno 3 = 16 ---------------------------------------------------------------- -} fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where "sumaPotenciasDeDosMasUno n = undefined" {- --------------------------------------------------------------- Ejercicio 2.2. Demostrar que sumaPotenciasDeDosMasUno n = 2^(n+1) ----------------------------------------------------------------- -} lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" oops {- --------------------------------------------------------------- Ejercicio 3.1. Definir la función copia :: nat ⇒ 'a ⇒ 'a list tal que (copia n x) es la lista formado por n copias del elemento x. Por ejemplo, copia 3 x = [x,x,x] ---------------------------------------------------------------- -} fun copia :: "nat ⇒ 'a ⇒ 'a list" where "copia n x = undefined" {- --------------------------------------------------------------- Ejercicio 3.2. Definir la función todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool tal que (todos p xs) se verifica si todos los elementos de xs cumplen la propiedad p. Por ejemplo, todos (λx. x>(1::nat)) [2,6,4] = True todos (λx. x>(2::nat)) [2,6,4] = False Nota: La conjunción se representa por ∧ --------------------------------------------------------------- -} fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where "todos p xs = undefined" {- --------------------------------------------------------------- Ejercicio 3.3. Demostrar que todos los elementos de (copia n x) son iguales a x. ----------------------------------------------------------------- -} lemma "todos (λy. y=x) (copia n x)" oops {- --------------------------------------------------------------- Ejercicio 4.1. Definir, recursivamente y sin usar (@), la función amplia :: 'a list ⇒ 'a ⇒ 'a list tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al final de la lista xs. Por ejemplo, amplia [d,a] t = [d,a,t] ---------------------------------------------------------------- -} fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where "amplia xs y = undefined" {- --------------------------------------------------------------- Ejercicio 4.2. Demostrar que amplia xs y = xs @ [y] ----------------------------------------------------------------- -} lemma "amplia xs y = xs @ [y]" oops -}
{ "alphanum_fraction": 0.4290147401, "avg_line_length": 32.225, "ext": "agda", "hexsha": "5acd9e505de31ab89114175458b6ef1104de696e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "Zegeri/TFG-TeoriaCategorias", "max_forks_repo_path": "Ejercicios/Agda/R2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "Zegeri/TFG-TeoriaCategorias", "max_issues_repo_path": "Ejercicios/Agda/R2.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "Zegeri/TFG-TeoriaCategorias", "max_stars_repo_path": "Ejercicios/Agda/R2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1035, "size": 3867 }
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.Solver where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.NatSolver.NatExpression open import Cubical.Algebra.NatSolver.HornerForms open import Cubical.Algebra.NatSolver.EvalHom private variable ℓ : Level module EqualityToNormalform where open Eval open IteratedHornerOperations open HomomorphismProperties normalize : {n : ℕ} → Expr n → IteratedHornerForms n normalize {n = n} (K r) = Constant n r normalize {n = n} (∣ k) = Variable n k normalize (x +' y) = (normalize x) +ₕ (normalize y) normalize (x ·' y) = (normalize x) ·ₕ (normalize y) isEqualToNormalform : {n : ℕ} (e : Expr n) (xs : Vec ℕ n) → eval (normalize e) xs ≡ ⟦ e ⟧ xs isEqualToNormalform (K r) [] = refl isEqualToNormalform {n = ℕ.suc n} (K r) (x ∷ xs) = eval (Constant (ℕ.suc n) r) (x ∷ xs) ≡⟨ refl ⟩ eval (0ₕ ·X+ Constant n r) (x ∷ xs) ≡⟨ refl ⟩ eval 0ₕ (x ∷ xs) · x + eval (Constant n r) xs ≡⟨ cong (λ u → u · x + eval (Constant n r) xs) (eval0H (x ∷ xs)) ⟩ 0 · x + eval (Constant n r) xs ≡⟨ refl ⟩ eval (Constant n r) xs ≡⟨ isEqualToNormalform (K r) xs ⟩ r ∎ isEqualToNormalform (∣ zero) (x ∷ xs) = eval (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ refl ⟩ eval 1ₕ (x ∷ xs) · x + eval 0ₕ xs ≡⟨ cong (λ u → u · x + eval 0ₕ xs) (eval1ₕ (x ∷ xs)) ⟩ 1 · x + eval 0ₕ xs ≡⟨ cong (λ u → 1 · x + u ) (eval0H xs) ⟩ 1 · x + 0 ≡⟨ +-zero _ ⟩ 1 · x ≡⟨ ·-identityˡ _ ⟩ x ∎ isEqualToNormalform {n = ℕ.suc n} (∣ (suc k)) (x ∷ xs) = eval (0ₕ ·X+ Variable n k) (x ∷ xs) ≡⟨ refl ⟩ eval 0ₕ (x ∷ xs) · x + eval (Variable n k) xs ≡⟨ cong (λ u → u · x + eval (Variable n k) xs) (eval0H (x ∷ xs)) ⟩ 0 · x + eval (Variable n k) xs ≡⟨ refl ⟩ eval (Variable n k) xs ≡⟨ isEqualToNormalform (∣ k) xs ⟩ ⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎ isEqualToNormalform (e +' e₁) [] = eval (normalize e +ₕ normalize e₁) [] ≡⟨ +Homeval (normalize e) _ [] ⟩ eval (normalize e) [] + eval (normalize e₁) [] ≡⟨ cong (λ u → u + eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] + eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e +' e₁) (x ∷ xs) = eval (normalize e +ₕ normalize e₁) (x ∷ xs) ≡⟨ +Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u + eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎ isEqualToNormalform (e ·' e₁) [] = eval (normalize e ·ₕ normalize e₁) [] ≡⟨ ·Homeval (normalize e) _ [] ⟩ eval (normalize e) [] · eval (normalize e₁) [] ≡⟨ cong (λ u → u · eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] · eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e ·' e₁) (x ∷ xs) = eval (normalize e ·ₕ normalize e₁) (x ∷ xs) ≡⟨ ·Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u · eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎ solve : {n : ℕ} (e₁ e₂ : Expr n) (xs : Vec ℕ n) (p : eval (normalize e₁) xs ≡ eval (normalize e₂) xs) → ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs solve e₁ e₂ xs p = ⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform e₁ xs) ⟩ eval (normalize e₁) xs ≡⟨ p ⟩ eval (normalize e₂) xs ≡⟨ isEqualToNormalform e₂ xs ⟩ ⟦ e₂ ⟧ xs ∎
{ "alphanum_fraction": 0.4879910213, "avg_line_length": 35.9274193548, "ext": "agda", "hexsha": "fa15aab9a4ef8f3c82f09891d49bec32af8b079d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/NatSolver/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/NatSolver/Solver.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/NatSolver/Solver.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1739, "size": 4455 }
open import Nat open import Prelude open import Hazelnut-core module Hazelnut-deterministic where -- theorem 2 -- the same action applied to the same type makes the same resultant -- type. actdet1 : {t t' t'' : τ̂} {α : action} → (t + α +> t') → (t + α +> t'') → (t' == t'') actdet1 TMFirstChild TMFirstChild = refl actdet1 TMParent1 TMParent1 = refl actdet1 TMParent1 (TMZip1 ()) actdet1 TMParent2 TMParent2 = refl actdet1 TMParent2 (TMZip2 ()) actdet1 TMNextSib TMNextSib = refl actdet1 TMNextSib (TMZip1 ()) actdet1 TMPrevSib TMPrevSib = refl actdet1 TMPrevSib (TMZip2 ()) actdet1 TMDel TMDel = refl actdet1 TMConArrow TMConArrow = refl actdet1 TMConNum TMConNum = refl actdet1 (TMZip1 ()) TMParent1 actdet1 (TMZip1 ()) TMNextSib actdet1 (TMZip1 p1) (TMZip1 p2) with actdet1 p1 p2 ... | refl = refl actdet1 (TMZip2 ()) TMParent2 actdet1 (TMZip2 ()) TMPrevSib actdet1 (TMZip2 p1) (TMZip2 p2) with actdet1 p1 p2 ... | refl = refl -- all expressions only move to one other expression movedet : {e e' e'' : ê} {δ : direction} → (e + move δ +>e e') → (e + move δ +>e e'') → e' == e'' movedet EMAscFirstChild EMAscFirstChild = refl movedet EMAscParent1 EMAscParent1 = refl movedet EMAscParent2 EMAscParent2 = refl movedet EMAscNextSib EMAscNextSib = refl movedet EMAscPrevSib EMAscPrevSib = refl movedet EMLamFirstChild EMLamFirstChild = refl movedet EMLamParent EMLamParent = refl movedet EMPlusFirstChild EMPlusFirstChild = refl movedet EMPlusParent1 EMPlusParent1 = refl movedet EMPlusParent2 EMPlusParent2 = refl movedet EMPlusNextSib EMPlusNextSib = refl movedet EMPlusPrevSib EMPlusPrevSib = refl movedet EMApFirstChild EMApFirstChild = refl movedet EMApParent1 EMApParent1 = refl movedet EMApParent2 EMApParent2 = refl movedet EMApNextSib EMApNextSib = refl movedet EMApPrevSib EMApPrevSib = refl movedet EMFHoleFirstChild EMFHoleFirstChild = refl movedet EMFHoleParent EMFHoleParent = refl -- if a move action on a synthetic action makes a new form, it's unique synthmovedet : {Γ : ·ctx} {e e' e'' : ê} {t' t'' : τ̇} {δ : direction} → (Γ ⊢ e => t' ~ move δ ~> e'' => t'') → (e + move δ +>e e') → e'' == e' synthmovedet (SAMove EMAscFirstChild) EMAscFirstChild = refl synthmovedet (SAMove EMAscParent1) EMAscParent1 = refl synthmovedet (SAMove EMAscParent2) EMAscParent2 = refl synthmovedet (SAMove EMAscNextSib) EMAscNextSib = refl synthmovedet (SAMove EMAscPrevSib) EMAscPrevSib = refl synthmovedet (SAMove EMLamFirstChild) EMLamFirstChild = refl synthmovedet (SAMove EMLamParent) EMLamParent = refl synthmovedet (SAMove EMPlusFirstChild) EMPlusFirstChild = refl synthmovedet (SAMove EMPlusParent1) EMPlusParent1 = refl synthmovedet (SAMove EMPlusParent2) EMPlusParent2 = refl synthmovedet (SAMove EMPlusNextSib) EMPlusNextSib = refl synthmovedet (SAMove EMPlusPrevSib) EMPlusPrevSib = refl synthmovedet (SAMove EMApFirstChild) EMApFirstChild = refl synthmovedet (SAMove EMApParent1) EMApParent1 = refl synthmovedet (SAMove EMApParent2) EMApParent2 = refl synthmovedet (SAMove EMApNextSib) EMApNextSib = refl synthmovedet (SAMove EMApPrevSib) EMApPrevSib = refl synthmovedet (SAMove EMFHoleFirstChild) EMFHoleFirstChild = refl synthmovedet (SAMove EMFHoleParent) EMFHoleParent = refl -- all these cases lead to absurdities after a few levels synthmovedet (SAZipAsc1 (AASubsume _ (SAMove ()) _)) EMAscParent1 synthmovedet (SAZipAsc1 (AAMove ())) EMAscParent1 synthmovedet (SAZipAsc1 (AASubsume _ (SAMove ()) _)) EMAscNextSib synthmovedet (SAZipAsc1 (AAMove ())) EMAscNextSib synthmovedet (SAZipAsc2 () _) EMAscParent2 synthmovedet (SAZipAsc2 () _) EMAscPrevSib synthmovedet (SAZipAp1 _ (SAMove ()) (ASubsume _ _)) EMApParent1 synthmovedet (SAZipAp1 _ (SAMove ()) (ALam _ _)) EMApParent1 synthmovedet (SAZipAp1 _ (SAMove ()) _) EMApNextSib synthmovedet (SAZipAp2 _ (SAMove ()) _) EMApParent1 synthmovedet (SAZipAp2 _ (SAMove ()) _) EMApNextSib synthmovedet (SAZipAp3 _ (AASubsume _ (SAMove ()) _)) EMApParent2 synthmovedet (SAZipAp3 _ (AAMove ())) EMApParent2 synthmovedet (SAZipAp3 _ (AASubsume _ (SAMove ()) _)) EMApPrevSib synthmovedet (SAZipAp3 _ (AAMove ())) EMApPrevSib synthmovedet (SAZipAp4 _ (AASubsume _ (SAMove ()) _)) EMApParent2 synthmovedet (SAZipAp4 _ (AAMove ())) EMApParent2 synthmovedet (SAZipAp4 _ (AASubsume _ (SAMove ()) _)) EMApPrevSib synthmovedet (SAZipAp4 _ (AAMove ())) EMApPrevSib synthmovedet (SAZipPlus1 (AASubsume _ (SAMove ()) _)) EMPlusParent1 synthmovedet (SAZipPlus1 (AAMove ())) EMPlusParent1 synthmovedet (SAZipPlus1 (AASubsume _ (SAMove ()) _)) EMPlusNextSib synthmovedet (SAZipPlus1 (AAMove ())) EMPlusNextSib synthmovedet (SAZipPlus2 (AASubsume _ (SAMove ()) _)) EMPlusParent2 synthmovedet (SAZipPlus2 (AAMove ())) EMPlusParent2 synthmovedet (SAZipPlus2 (AASubsume _ (SAMove ()) _)) EMPlusPrevSib synthmovedet (SAZipPlus2 (AAMove ())) EMPlusPrevSib synthmovedet (SAZipHole1 _ (SAMove ()) x) EMFHoleParent synthmovedet (SAZipHole2 _ (SAMove ())) EMFHoleParent -- these are all a bunch of small techincal lemmas for the cases below. i -- don't understand why some of them can't be inlined. lem1 : {Γ : ·ctx} {t1 t2 : τ̇} → Γ ⊢ <||> <= (t1 ==> t2) → (t1 ==> t2) ~ (<||> ==> <||>) lem1 (ASubsume SEHole TCHole1) = TCArr TCHole1 TCHole1 lem3 : ∀{ Γ e t } → Γ ⊢ (e ·: t) <= t → Γ ⊢ e <= t lem3 (ASubsume (SAsc x) x₁) = x lem4 : ∀{ Γ e eh t t2 } → Γ ⊢ e ∘ (eh ◆e) => t → Γ ⊢ e => (t2 ==> t) → Γ ⊢ (eh ◆e) <= t2 lem4 (SAp (SAsc x₁) x) (SAsc x₂) = x lem4 {Γ = G} (SAp (SVar x₁) x) (SVar x₂) with ctxunicity {Γ = G} x₁ x₂ ... | refl = x lem4 (SAp (SAp d1 x₁) x) (SAp d2 x₂) with synthunicity d1 d2 ... | refl = x lem4 (SApHole () x) (SAsc x₁) lem4 {Γ = G} (SApHole (SVar x₁) x) (SVar x₂) with ctxunicity {Γ = G} x₁ x₂ ... | () lem4 (SApHole (SAp d1 x₁) x) (SAp d2 x₂) with synthunicity d1 d2 ... | () lem4 (SApHole (SApHole d1 x₁) x) (SAp d2 x₂) with synthunicity d1 d2 ... | () lem5 : ∀ {Γ e eh} → Γ ⊢ e => <||> → Γ ⊢ e ∘ (eh ◆e) => <||> → Γ ⊢ eh ◆e <= <||> lem5 d1 (SAp d2 x) with synthunicity d1 d2 ... | () lem5 d1 (SApHole d2 x) = x lem6 : ∀ {Γ e1 e2} → Γ ⊢ e1 ·+ e2 => num → Γ ⊢ e1 <= num × Γ ⊢ e2 <= num lem6 (SPlus x x₁) = x , x₁ lem7 : ∀{Γ e t e' t'} → Γ ⊢ <| e |> => <||> → Γ ⊢ ▹ e ◃ => t ~ move parent ~> e' => t' → ⊥ lem7 (SFHole _) (SAMove ()) lem8a : ∀ {Γ e e' t} → Γ ⊢ ▹ e ◃ ~ move nextSib ~> e' ⇐ t → ⊥ lem8a (AASubsume x (SAMove ()) x₂) lem8a (AAMove ()) -- expressions in focus don't move to next sib lem8s : ∀ {Γ e e' t t'} → Γ ⊢ ▹ e ◃ => t ~ move nextSib ~> e' => t' → ⊥ lem8s (SAMove ()) -- expressions in focus don't move to prev sib lem9a : ∀ {Γ e e' t} → Γ ⊢ ▹ e ◃ ~ move prevSib ~> e' ⇐ t → ⊥ lem9a (AASubsume x (SAMove ()) x₂) lem9a (AAMove ()) -- expressions in focus don't move to prev sib lem9s : ∀ {Γ e e' t t'} → Γ ⊢ ▹ e ◃ => t ~ move prevSib ~> e' => t' → ⊥ lem9s (SAMove ()) lem10 : ∀{Γ x t1 t2 e} → Γ ⊢ ·λ x (e ◆e) <= (t1 ==> t2) → (Γ ,, (x , t1)) ⊢ e ◆e <= t2 lem10 (ASubsume () x₂) lem10 (ALam x₁ d1) = d1 -- expressions in focus don't move to parent lem11 : ∀ {Γ e e' t} → Γ ⊢ ▹ e ◃ ~ move parent ~> e' ⇐ t → ⊥ lem11 (AASubsume x (SAMove ()) x₂) lem11 (AAMove ()) -- if a type isn't compatible with hole to hole, it isn't compatible with -- any function type at all. lem12 : {t : τ̇} → (t ~̸ (<||> ==> <||>)) → ((t1 t2 : τ̇) → t ~̸ (t1 ==> t2)) lem12 {num} p t1 t2 () lem12 {<||>} p t1 t2 TCHole2 = p TCHole2 lem12 {(t ==> t')} p t1 t2 x = p (TCArr TCHole1 TCHole1) mutual -- an action on an expression in a synthetic position produces one -- resultant expression and type. actdet2 : {Γ : ·ctx} {e e' e'' : ê} {t t' t'' : τ̇} {α : action} → (Γ ⊢ (e ◆e) => t) → (Γ ⊢ e => t ~ α ~> e' => t') → (Γ ⊢ e => t ~ α ~> e'' => t'') → (e' == e'' × t' == t'') actdet2 wt (SAMove x) (SAMove x₁) = movedet x x₁ , refl -- every other case of move in the left is an absurdity after a -- couple of levels actdet2 wt (SAMove EMAscParent1) (SAZipAsc1 (AASubsume _ (SAMove ()) _)) actdet2 wt (SAMove EMAscParent1) (SAZipAsc1 (AAMove ())) actdet2 wt (SAMove EMAscNextSib) (SAZipAsc1 (AASubsume _ (SAMove ()) _)) actdet2 wt (SAMove EMAscNextSib) (SAZipAsc1 (AAMove ())) actdet2 wt (SAMove EMAscParent2) (SAZipAsc2 () x₂) actdet2 wt (SAMove EMAscPrevSib) (SAZipAsc2 () x₂) actdet2 wt (SAMove EMApParent1) (SAZipAp1 x₁ (SAMove ()) x₂) actdet2 wt (SAMove EMApNextSib) (SAZipAp1 x₁ (SAMove ()) x₂) actdet2 wt (SAMove EMApParent1) (SAZipAp2 x₁ (SAMove ()) x₂) actdet2 wt (SAMove EMApNextSib) (SAZipAp2 x₁ (SAMove ()) x₂) actdet2 wt (SAMove EMApParent2) (SAZipAp3 x₁ (AASubsume x (SAMove ()) x₃)) actdet2 wt (SAMove EMApParent2) (SAZipAp3 x₁ (AAMove ())) actdet2 wt (SAMove EMApPrevSib) (SAZipAp3 x₁ (AASubsume x (SAMove ()) x₃)) actdet2 wt (SAMove EMApPrevSib) (SAZipAp3 x₁ (AAMove ())) actdet2 wt (SAMove EMApParent2) (SAZipAp4 x₁ (AASubsume x (SAMove ()) x₃)) actdet2 wt (SAMove EMApParent2) (SAZipAp4 x₁ (AAMove ())) actdet2 wt (SAMove EMApPrevSib) (SAZipAp4 x₁ (AASubsume x (SAMove ()) x₃)) actdet2 wt (SAMove EMApPrevSib) (SAZipAp4 x₁ (AAMove ())) actdet2 wt (SAMove EMPlusParent1) (SAZipPlus1 (AASubsume x (SAMove ()) x₂)) actdet2 wt (SAMove EMPlusParent1) (SAZipPlus1 (AAMove ())) actdet2 wt (SAMove EMPlusNextSib) (SAZipPlus1 (AASubsume x (SAMove ()) x₂)) actdet2 wt (SAMove EMPlusNextSib) (SAZipPlus1 (AAMove ())) actdet2 wt (SAMove EMPlusParent2) (SAZipPlus2 (AASubsume x (SAMove ()) x₂)) actdet2 wt (SAMove EMPlusParent2) (SAZipPlus2 (AAMove ())) actdet2 wt (SAMove EMPlusPrevSib) (SAZipPlus2 (AASubsume x (SAMove ()) x₂)) actdet2 wt (SAMove EMPlusPrevSib) (SAZipPlus2 (AAMove ())) actdet2 wt (SAMove EMFHoleParent) (SAZipHole1 x₁ (SAMove ()) x₂) actdet2 wt (SAMove EMFHoleParent) (SAZipHole2 x₁ (SAMove ())) actdet2 wt SADel SADel = refl , refl actdet2 wt SAConAsc SAConAsc = refl , refl actdet2 {Γ = G} wt (SAConVar p) (SAConVar p₁) with ctxunicity {Γ = G} p p₁ ... | refl = refl , refl actdet2 wt (SAConLam x₁) (SAConLam x₂) = refl , refl actdet2 wt SAConAp1 SAConAp1 = refl , refl actdet2 wt SAConAp1 (SAConAp3 x) = abort (lem12 x _ _ TCRefl) actdet2 wt SAConAp2 SAConAp2 = refl , refl actdet2 wt SAConAp2 (SAConAp3 x) = abort (x TCHole2) actdet2 wt (SAConAp3 x) SAConAp1 = abort (lem12 x _ _ TCRefl) actdet2 wt (SAConAp3 x) SAConAp2 = abort (x TCHole2) actdet2 wt (SAConAp3 x) (SAConAp3 x₁) = refl , refl actdet2 wt SAConArg SAConArg = refl , refl actdet2 wt SAConNumlit SAConNumlit = refl , refl actdet2 wt (SAConPlus1 x) (SAConPlus1 x₁) = refl , refl actdet2 wt (SAConPlus1 x) (SAConPlus2 x₁) = abort (x₁ x) actdet2 wt (SAConPlus2 x) (SAConPlus1 x₁) = abort (x x₁) actdet2 wt (SAConPlus2 x) (SAConPlus2 x₁) = refl , refl actdet2 wt (SAFinish x) (SAFinish x₁) with synthunicity x x₁ ... | refl = refl , refl actdet2 wt (SAZipAsc1 (AASubsume _ (SAMove ()) _)) (SAMove EMAscParent1) actdet2 wt (SAZipAsc1 (AAMove ())) (SAMove EMAscParent1) actdet2 wt (SAZipAsc1 x) (SAMove EMAscNextSib) = abort (lem8a x) actdet2 {t = t} wt (SAZipAsc1 x) (SAZipAsc1 x₁) = ap1 (λ q → q ·:₁ t) (actdet3 (lem3 (ASubsume wt TCRefl)) x x₁) , refl actdet2 wt (SAZipAsc2 () x₁) (SAMove EMAscParent2) actdet2 wt (SAZipAsc2 () x₁) (SAMove EMAscPrevSib) actdet2 wt (SAZipAsc2 x x₁) (SAZipAsc2 x₂ x₃) with actdet1 x x₂ ... | refl = refl , refl actdet2 wt (SAZipAp1 x (SAMove ()) x₁) (SAMove EMApParent1) actdet2 wt (SAZipAp1 x (SAMove ()) x₁) (SAMove EMApNextSib) actdet2 wt (SAZipAp1 x d1 x₁) (SAZipAp1 x₂ d2 x₃) with synthunicity x₂ x ... | refl with actdet2 x d1 d2 -- todo: double-barrelded with here .. ... | p1 , refl = (ap1 (λ q → q ∘₁ _) p1) , refl actdet2 wt (SAZipAp1 x d1 x₁) (SAZipAp2 x₂ d2 x₃) with synthunicity x x₂ ... | refl with actdet2 x d1 d2 -- todo: .. and here actdet2 wt (SAZipAp1 _ _ _ ) (SAZipAp2 _ _ _) | refl | _ , () actdet2 wt (SAZipAp2 x (SAMove ()) x₁) (SAMove EMApParent1) actdet2 wt (SAZipAp2 x (SAMove ()) x₁) (SAMove EMApNextSib) actdet2 wt (SAZipAp2 x d1 x₁) (SAZipAp1 x₂ d2 x₃) with synthunicity x x₂ ... | refl with actdet2 x d1 d2 actdet2 wt (SAZipAp2 x d1 x₁) (SAZipAp1 x₂ d2 x₃) | refl | p1 , () actdet2 wt (SAZipAp2 x d1 _) (SAZipAp2 x₂ d2 _) with synthunicity x x₂ ... | refl = (ap1 (λ q → q ∘₁ _) (π1 (actdet2 x₂ d1 d2))) , refl actdet2 wt (SAZipAp3 x (AASubsume x₁ (SAMove ()) x₃)) (SAMove EMApParent2) actdet2 wt (SAZipAp3 x (AAMove ())) (SAMove EMApParent2) actdet2 wt (SAZipAp3 x x₁) (SAMove EMApPrevSib) = abort (lem9a x₁) actdet2 wt (SAZipAp3 {eh = eh} x x₁) (SAZipAp3 x₂ x₃) with synthunicity x x₂ ... | refl = ap1 (_∘₂_ _) (actdet3 (lem4 {eh = eh} wt x) x₁ x₃) , refl actdet2 wt (SAZipAp3 x x₁) (SAZipAp4 x₂ x₃) with synthunicity x x₂ ... | () actdet2 wt (SAZipAp4 x (AASubsume x₁ (SAMove ()) x₃)) (SAMove EMApParent2) actdet2 wt (SAZipAp4 x (AAMove ())) (SAMove EMApParent2) actdet2 wt (SAZipAp4 x (AASubsume x₁ x₂ x₃)) (SAMove EMApPrevSib) = abort (lem9s x₂) actdet2 wt (SAZipAp4 x (AAMove ())) (SAMove EMApPrevSib) actdet2 wt (SAZipAp4 x x₁) (SAZipAp3 x₂ x₃) with synthunicity x x₂ ... | () actdet2 wt (SAZipAp4 {eh = eh} x x₁ ) (SAZipAp4 x₂ x₃) with actdet3 (lem5 {eh = eh} x₂ wt) x₁ x₃ ... | refl = refl , refl actdet2 wt (SAZipPlus1 (AASubsume x (SAMove ()) x₂)) (SAMove EMPlusParent1) actdet2 wt (SAZipPlus1 (AAMove ())) (SAMove EMPlusParent1) actdet2 wt (SAZipPlus1 (AASubsume x x₁ x₂)) (SAMove EMPlusNextSib) = abort (lem8s x₁) actdet2 wt (SAZipPlus1 (AAMove ())) (SAMove EMPlusNextSib) actdet2 wt (SAZipPlus1 x) (SAZipPlus1 x₁) with actdet3 (π1 (lem6 wt)) x x₁ -- todo: not sure why this needs to be a lemma ... | refl = refl , refl actdet2 wt (SAZipPlus2 (AASubsume x (SAMove ()) x₂)) (SAMove EMPlusParent2) actdet2 wt (SAZipPlus2 (AASubsume x x₁ x₂)) (SAMove EMPlusPrevSib) = abort (lem9s x₁) actdet2 wt (SAZipPlus2 (AAMove ())) (SAMove EMPlusParent2) actdet2 wt (SAZipPlus2 (AAMove ())) (SAMove EMPlusPrevSib) actdet2 wt (SAZipPlus2 x) (SAZipPlus2 x₁) with actdet3 (π2 (lem6 wt)) x x₁ -- .. or this one ... | refl = refl , refl actdet2 wt (SAZipHole1 x d1 x₁) (SAMove EMFHoleParent) = abort (lem7 wt d1) actdet2 wt (SAZipHole1 x d1 x₁) (SAZipHole1 x₂ d2 x₃) with synthunicity x x₂ ... | refl with actdet2 x d1 d2 ... | refl , refl = refl , refl actdet2 wt (SAZipHole1 x d1 x₁) (SAZipHole2 x₂ d2) with synthunicity x x₂ ... | refl with actdet2 x d1 d2 ... | p , _ = abort (x₁ p) actdet2 wt (SAZipHole2 x d1) (SAMove EMFHoleParent) = abort (lem7 wt d1) actdet2 wt (SAZipHole2 x d1) (SAZipHole1 x₁ d2 x₂) with synthunicity x x₁ ... | refl with actdet2 x d1 d2 ... | p , q = abort (x₂ (! p)) actdet2 wt (SAZipHole2 x d1) (SAZipHole2 x₁ d2) with synthunicity x x₁ ... | refl with actdet2 x d1 d2 ... | refl , refl = refl , refl -- an action on an expression in an analytic position produces one -- resultant expression and type. actdet3 : {Γ : ·ctx} {e e' e'' : ê} {t : τ̇} {α : action} → (Γ ⊢ (e ◆e) <= t) → (Γ ⊢ e ~ α ~> e' ⇐ t) → (Γ ⊢ e ~ α ~> e'' ⇐ t) → (e' == e'') actdet3 D1 (AASubsume x x₁ x₂) (AASubsume x₃ x₄ x₅) with synthunicity x x₃ ... | refl = π1 (actdet2 x x₁ x₄) actdet3 D1 (AASubsume _ y _) (AAMove w) = synthmovedet y w actdet3 D1 (AASubsume _ SADel _) AADel = refl actdet3 D1 (AASubsume {p = p} x SAConAsc x₂) AAConAsc = abort (π1 p refl) actdet3 {Γ = G} (ASubsume x x₁) (AASubsume x₂ (SAConVar p) x₄) (AAConVar x₅ p₁) with ctxunicity {Γ = G} p p₁ ... | refl = abort (x₅ x₄) actdet3 D1 (AASubsume {p = p} x₁ (SAConLam x₂) x₃) (AAConLam1 x₄) = abort (π2 p _ refl) actdet3 D1 (AASubsume x₁ (SAConLam x₃) x₂) (AAConLam2 x₄ x₅) = abort (x₅ x₂) actdet3 D1 (AASubsume x SAConNumlit x₂) (AAConNumlit x₃) = abort (x₃ x₂) actdet3 D1 (AASubsume x (SAFinish x₁) x₂) (AAFinish x₃) = refl actdet3 D1 (AASubsume x₁ (SAMove EMLamParent) x₂) (AAZipLam x₄ (AASubsume x₃ (SAMove ()) x₆)) actdet3 D1 (AASubsume x₁ (SAMove EMLamParent) x₂) (AAZipLam x₄ (AAMove ())) actdet3 D1 (AAMove x) (AASubsume x₁ x₂ x₃) = ! (synthmovedet x₂ x) actdet3 D1 (AAMove x) (AAMove x₁) = movedet x x₁ actdet3 D1 (AAMove EMLamParent) (AAZipLam x₃ (AASubsume x₁ (SAMove ()) x₄)) actdet3 D1 (AAMove EMLamParent) (AAZipLam x₃ (AAMove ())) actdet3 D1 AADel (AASubsume _ SADel _) = refl actdet3 D1 AADel AADel = refl actdet3 D1 AAConAsc (AASubsume {p = p} x SAConAsc x₂) = abort (π1 p refl) actdet3 D1 AAConAsc AAConAsc = refl actdet3 {Γ = G} D1 (AAConVar x₁ p) (AASubsume x₂ (SAConVar p₁) x₄) with ctxunicity {Γ = G} p p₁ ... | refl = abort (x₁ x₄) actdet3 D1 (AAConVar x₁ p) (AAConVar x₂ p₁) = refl actdet3 D1 (AAConLam1 x₃) (AASubsume {p = p} SEHole (SAConLam x₅) x₆) = abort (π2 p _ refl) actdet3 D1 (AAConLam1 x₁) (AAConLam1 x₂) = refl actdet3 D1 (AAConLam1 x₃) (AAConLam2 x₄ x₅) = abort (x₅ (lem1 D1)) actdet3 D1 (AAConLam2 x₁ x₂) (AASubsume x₃ (SAConLam x₄) x₅) = abort (x₂ x₅) actdet3 D1 (AAConLam2 x₁ x₂) (AAConLam1 x₃) = abort (x₂ (lem1 D1)) actdet3 D1 (AAConLam2 x₁ x₂) (AAConLam2 x₃ x₄) = refl actdet3 D1 (AAConNumlit x) (AASubsume x₁ SAConNumlit x₃) = abort (x x₃) actdet3 D1 (AAConNumlit x) (AAConNumlit x₁) = refl actdet3 D1 (AAFinish x) (AASubsume x₁ (SAFinish x₂) x₃) = refl actdet3 D1 (AAFinish x) (AAFinish x₁) = refl actdet3 D1 (AAZipLam x₃ D2) (AASubsume x₁ (SAMove EMLamParent) x₄) = abort (lem11 D2) actdet3 D1 (AAZipLam x₃ (AASubsume x₁ (SAMove ()) x₄)) (AAMove EMLamParent) actdet3 D1 (AAZipLam x₃ (AAMove ())) (AAMove EMLamParent) actdet3 D1 (AAZipLam {e = e} x₃ D2) (AAZipLam x₁ D3) with actdet3 (lem10 {e = e} D1) D2 D3 ... | refl = refl
{ "alphanum_fraction": 0.6315000268, "avg_line_length": 43.5268065268, "ext": "agda", "hexsha": "f0a4e4db5235e6fc3be40f1e7a847a10e38e7ac4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Hazelnut-deterministic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Hazelnut-deterministic.agda", "max_line_length": 97, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ivoysey/agda-tfp16", "max_stars_repo_path": "Hazelnut-deterministic.agda", "max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z", "num_tokens": 7802, "size": 18673 }
module Text.Greek.SBLGNT-Query where open import Data.Bool open import Data.Nat hiding (_≟_) open import Data.List open import Data.Maybe open import Data.Product hiding (map) open import Function open import Relation.Binary.PropositionalEquality open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.SBLGNT.1John texts = ΙΩΑΝΝΟΥ-Α ∷ [] wordCount = length ΙΩΑΝΝΟΥ-Α --tokenCount = length (concat ΙΩΑΝΝΟΥ-Α) getLetters : Word → List Token getLetters (word x _) = x tokens = concatMap getLetters ΙΩΑΝΝΟΥ-Α adjacent-accent : (Token → Maybe Accent) → List Token → List (Σ Token (const Token)) adjacent-accent f [] = [] adjacent-accent f (_ ∷ []) = [] adjacent-accent f (t₁ ∷ t₂ ∷ ts) with (f t₁) , (f t₂) , adjacent-accent f (t₂ ∷ ts) … | (just circumflex-mark , just circumflex-mark , ts′) = (t₁ , t₂) ∷ ts′ … | (_ , _ , ts′) = ts′ adj = adjacent-accent get-accent tokens
{ "alphanum_fraction": 0.7116022099, "avg_line_length": 28.28125, "ext": "agda", "hexsha": "de00ecd1cf1786dfc9d1d81caf8d5f59851ab41e", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT-Query.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT-Query.agda", "max_line_length": 84, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT-Query.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 332, "size": 905 }
{-# OPTIONS --without-K #-} open import Type using (Type₀; Type_) open import Type.Identities open import Function.NP using (Π; _∘_; const) open import Function.Extensionality using (FunExt) open import Data.One using (0₁) open import Data.Two.Base using (0₂; 1₂) open import Data.Product.NP using (_,_; fst) open import Data.Sum.NP using (inl; inr) open import Relation.Binary.PropositionalEquality.NP using (_≡_; idp; ap; !_; _∙_; tr) open import HoTT using (ua; UA; module Equivalences) open Equivalences using (_≃_) open import Explore.Core open import Explore.Zero open import Explore.One open import Explore.Two open import Explore.Product open Explore.Product.Operators open import Explore.Sum open import Explore.Properties open import Explore.Explorable open import Explore.Isomorphism import Explore.Universe.Type module Explore.Universe.FromE (X : Type₀) (Xᵉ : ∀ {ℓ} → Explore ℓ X) where open Explore.Universe.Type {X} explore : ∀ {ℓ} u → Explore ℓ (El u) explore 𝟘ᵁ = 𝟘ᵉ explore 𝟙ᵁ = 𝟙ᵉ explore 𝟚ᵁ = 𝟚ᵉ explore (u₀ ×ᵁ u₁) = explore u₀ ×ᵉ explore u₁ explore (u₀ ⊎ᵁ u₁) = explore u₀ ⊎ᵉ explore u₁ explore (Σᵁ u f) = exploreΣ (explore u) λ {x} → explore (f x) explore Xᵁ = Xᵉ explore (≃ᵁ u A e) = explore-iso e (explore u) module FromXⁱ (Xⁱ : ∀ {ℓ p} → ExploreInd p (Xᵉ {ℓ})) where explore-ind : ∀ {ℓ p} u → ExploreInd {ℓ} p (explore u) explore-ind 𝟘ᵁ = 𝟘ⁱ explore-ind 𝟙ᵁ = 𝟙ⁱ explore-ind 𝟚ᵁ = 𝟚ⁱ explore-ind (u₀ ×ᵁ u₁) = explore-ind u₀ ×ⁱ explore-ind u₁ explore-ind (u₀ ⊎ᵁ u₁) = explore-ind u₀ ⊎ⁱ explore-ind u₁ explore-ind (Σᵁ u f) = exploreΣ-ind (explore-ind u) λ {x} → explore-ind (f x) explore-ind Xᵁ = Xⁱ explore-ind (≃ᵁ u A e) = explore-iso-ind e (explore-ind u) module _ (u : U) where private uᵉ : ∀ {ℓ} → Explore ℓ (El u) uᵉ = explore u uⁱ : ∀ {ℓ p} → ExploreInd {ℓ} p uᵉ uⁱ = explore-ind u open FromExploreInd uⁱ public hiding (⟦explore⟧) ΣᵉU : ∀ {ℓ} → (El u → Type ℓ) → Type ℓ ΣᵉU = Σᵉ uᵉ ΠᵉU : ∀ {ℓ} → (El u → Type ℓ) → Type ℓ ΠᵉU = Πᵉ uᵉ module Xᴱ = FromExploreInd Xⁱ ΣᵉX : ∀ {ℓ} → (X → Type ℓ) → Type ℓ ΣᵉX = Σᵉ Xᵉ ΠᵉX : ∀ {ℓ} → (X → Type ℓ) → Type ℓ ΠᵉX = Πᵉ Xᵉ open Adequacy _≡_ module FromXˢ-ok (Xˢ-ok : Adequate-sum Xᴱ.sum){{_ : UA}}{{_ : FunExt}} where adequate-sum : ∀ u → Adequate-sum (sum u) adequate-sum 𝟘ᵁ = 𝟘ˢ-ok adequate-sum 𝟙ᵁ = 𝟙ˢ-ok adequate-sum 𝟚ᵁ = 𝟚ˢ-ok adequate-sum (u₀ ×ᵁ u₁) = adequate-sumΣ (adequate-sum u₀) (adequate-sum u₁) adequate-sum (u₀ ⊎ᵁ u₁) = adequate-sum⊎ (adequate-sum u₀) (adequate-sum u₁) adequate-sum (Σᵁ u f) = adequate-sumΣ (adequate-sum u) (λ {x} → adequate-sum (f x)) adequate-sum Xᵁ = Xˢ-ok adequate-sum (≃ᵁ u A e) = sum-iso-ok e (adequate-sum u) module FromXˡ (Xˡ : ∀ {ℓ} → Lookup {ℓ} Xᵉ) where lookup : ∀ {ℓ} u → Lookup {ℓ} (explore u) lookup 𝟘ᵁ = 𝟘ˡ lookup 𝟙ᵁ = 𝟙ˡ lookup 𝟚ᵁ = 𝟚ˡ lookup (u₀ ×ᵁ u₁) = lookup× {eᴬ = explore u₀} {eᴮ = explore u₁} (lookup u₀) (lookup u₁) lookup (u₀ ⊎ᵁ u₁) = lookup⊎ {eᴬ = explore u₀} {eᴮ = explore u₁} (lookup u₀) (lookup u₁) lookup (Σᵁ u f) = lookupΣ {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (lookup u) (λ {x} → lookup (f x)) lookup Xᵁ = Xˡ lookup (≃ᵁ u A e) = lookup-iso e {Aᵉ = explore u} (lookup u) module FromXᶠ (Xᶠ : ∀ {ℓ} → Focus {ℓ} Xᵉ) where focus : ∀ {ℓ} u → Focus {ℓ} (explore u) focus 𝟘ᵁ = 𝟘ᶠ focus 𝟙ᵁ = 𝟙ᶠ focus 𝟚ᵁ = 𝟚ᶠ focus (u₀ ×ᵁ u₁) = focus× {eᴬ = explore u₀} {eᴮ = explore u₁} (focus u₀) (focus u₁) focus (u₀ ⊎ᵁ u₁) = focus⊎ {eᴬ = explore u₀} {eᴮ = explore u₁} (focus u₀) (focus u₁) focus (Σᵁ u f) = focusΣ {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (focus u) (λ {x} → focus (f x)) focus Xᵁ = Xᶠ focus (≃ᵁ u A e) = focus-iso e {Aᵉ = explore u} (focus u) module FromΣᵉX-ok (ΣᵉX-ok : ∀ {ℓ} → Adequate-Σ {ℓ} ΣᵉX){{_ : UA}}{{_ : FunExt}} where Σᵉ-ok : ∀ {ℓ} u → Adequate-Σ {ℓ} (ΣᵉU u) Σᵉ-ok 𝟘ᵁ = Σᵉ𝟘-ok Σᵉ-ok 𝟙ᵁ = Σᵉ𝟙-ok Σᵉ-ok 𝟚ᵁ = Σᵉ𝟚-ok Σᵉ-ok (u₀ ×ᵁ u) = Σᵉ×-ok {eᴬ = explore u₀} {eᴮ = explore u} (Σᵉ-ok u₀) (Σᵉ-ok u) Σᵉ-ok (u₀ ⊎ᵁ u) = Σᵉ⊎-ok {eᴬ = explore u₀} {eᴮ = explore u} (Σᵉ-ok u₀) (Σᵉ-ok u) Σᵉ-ok (Σᵁ u f) = ΣᵉΣ-ok {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (Σᵉ-ok u) (λ {x} → Σᵉ-ok (f x)) Σᵉ-ok Xᵁ = ΣᵉX-ok Σᵉ-ok (≃ᵁ u A e) = Σ-iso-ok e {Aᵉ = explore u} (Σᵉ-ok u) module FromΠᵉX-ok (ΠᵉX-ok : ∀ {ℓ} → Adequate-Π {ℓ} ΠᵉX){{_ : UA}}{{_ : FunExt}} where Πᵉ-ok : ∀ {ℓ} u → Adequate-Π {ℓ} (ΠᵉU u) Πᵉ-ok 𝟘ᵁ = Πᵉ𝟘-ok Πᵉ-ok 𝟙ᵁ = Πᵉ𝟙-ok Πᵉ-ok 𝟚ᵁ = Πᵉ𝟚-ok Πᵉ-ok (u₀ ×ᵁ u) = Πᵉ×-ok {eᴬ = explore u₀} {eᴮ = explore u} (Πᵉ-ok u₀) (Πᵉ-ok u) Πᵉ-ok (u₀ ⊎ᵁ u) = Πᵉ⊎-ok {eᴬ = explore u₀} {eᴮ = explore u} (Πᵉ-ok u₀) (Πᵉ-ok u) Πᵉ-ok (Σᵁ u f) = ΠᵉΣ-ok {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (Πᵉ-ok u) (λ {x} → Πᵉ-ok (f x)) Πᵉ-ok Xᵁ = ΠᵉX-ok Πᵉ-ok (≃ᵁ u A e) = Π-iso-ok e {Aᵉ = explore u} (Πᵉ-ok u) module From⟦Xᵉ⟧≡ (⟦Xᵉ⟧≡ : ∀ {ℓ₀ ℓ₁} ℓᵣ → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ Xᵉ Xᵉ) {ℓ₀ ℓ₁} ℓᵣ where ⟦explore⟧≡ : ∀ u → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ (explore u) (explore u) ⟦explore⟧≡ 𝟘ᵁ = ⟦𝟘ᵉ⟧ {ℓᵣ = ℓᵣ} ⟦explore⟧≡ 𝟙ᵁ = ⟦𝟙ᵉ⟧ {ℓᵣ = ℓᵣ} {_≡_} {idp} ⟦explore⟧≡ 𝟚ᵁ = ⟦𝟚ᵉ⟧ {ℓᵣ = ℓᵣ} {_≡_} {idp} {idp} ⟦explore⟧≡ (u₀ ×ᵁ u₁) = ⟦explore×⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u₀) (⟦explore⟧≡ u₁) ⟦explore⟧≡ (u₀ ⊎ᵁ u₁) = ⟦explore⊎⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u₀) (⟦explore⟧≡ u₁) ⟦explore⟧≡ (Σᵁ u F) = ⟦exploreΣ⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u) (λ x → ⟦explore⟧≡ (F x)) ⟦explore⟧≡ Xᵁ = ⟦Xᵉ⟧≡ ℓᵣ ⟦explore⟧≡ (≃ᵁ u A e) = ⟦explore-iso⟧ e {ℓᵣ = ℓᵣ} (ap (fst e)) (⟦explore⟧≡ u) module FromΠX (ΠX : (X → U) → U) where Πᵁ : (u : U) (v : El u → U) → U Πᵁ 𝟘ᵁ v = 𝟙ᵁ Πᵁ 𝟙ᵁ v = v _ Πᵁ 𝟚ᵁ v = v 0₂ ×ᵁ v 1₂ Πᵁ (u ×ᵁ u₁) v = Πᵁ u λ x → Πᵁ u₁ λ y → v (x , y) Πᵁ (u ⊎ᵁ u₁) v = (Πᵁ u (v ∘ inl)) ×ᵁ (Πᵁ u₁ (v ∘ inr)) Πᵁ (Σᵁ u f) v = Πᵁ u λ x → Πᵁ (f x) (v ∘ _,_ x) Πᵁ Xᵁ v = ΠX v Πᵁ (≃ᵁ u A e)v = Πᵁ u (v ∘ fst e) _→ᵁ_ : (u : U) (v : U) → U u →ᵁ v = Πᵁ u (const v) module FromΠX≃ (ΠX≃ : ∀ v → El (ΠX v) ≃ Π X (El ∘ v)) where private module ΠX≃ {v} = Equivalences.Equiv (ΠX≃ v) module _ {{_ : FunExt}}{{_ : UA}} where Πᵁ-Π : ∀ u v → El (Πᵁ u v) ≡ Π (El u) (El ∘ v) Πᵁ-Π 𝟘ᵁ v = ! Π𝟘-uniq₀ _ Πᵁ-Π 𝟙ᵁ v = ! Π𝟙-uniq _ Πᵁ-Π 𝟚ᵁ v = ! Π𝟚-× Πᵁ-Π (u ×ᵁ u₁) v = Πᵁ-Π u (λ x → Πᵁ u₁ (v ∘ _,_ x)) ∙ Π=′ _ (λ _ → Πᵁ-Π u₁ _) ∙ ! ΠΣ-curry Πᵁ-Π (u ⊎ᵁ u₁) v = ×= (Πᵁ-Π u (v ∘ inl)) (Πᵁ-Π u₁ (v ∘ inr)) ∙ ! dist-×-Π Πᵁ-Π (Σᵁ u f) v = Πᵁ-Π u (λ x → Πᵁ (f _) (v ∘ _,_ x)) ∙ Π=′ _ (λ _ → Πᵁ-Π (f _) _) ∙ ! ΠΣ-curry Πᵁ-Π Xᵁ v = ua (ΠX≃ v) Πᵁ-Π (≃ᵁ u A e)v = Πᵁ-Π u (v ∘ fst e) ∙ Π≃ e λ _ → idp →ᵁ-→ : ∀ u v → El (u →ᵁ v) ≡ (El u → El v) →ᵁ-→ u v = Πᵁ-Π u (const v) Πᵁ→Π : ∀ u v → El (Πᵁ u v) → Π (El u) (El ∘ v) Πᵁ→Π 𝟘ᵁ v x₂ () Πᵁ→Π 𝟙ᵁ v x₂ x₃ = x₂ Πᵁ→Π 𝟚ᵁ v (x , y) 0₂ = x Πᵁ→Π 𝟚ᵁ v (x , y) 1₂ = y Πᵁ→Π (u ×ᵁ u₁) v x (z , t) = Πᵁ→Π u₁ (v ∘ _,_ z) (Πᵁ→Π u (λ x → Πᵁ u₁ (v ∘ _,_ x)) x z) t Πᵁ→Π (u ⊎ᵁ _) v (x , _) (inl y) = Πᵁ→Π u (v ∘ inl) x y Πᵁ→Π (_ ⊎ᵁ u) v (_ , x) (inr y) = Πᵁ→Π u (v ∘ inr) x y Πᵁ→Π (Σᵁ u f) v x (y , z) = Πᵁ→Π (f _) (v ∘ _,_ y) (Πᵁ→Π u (λ x → Πᵁ (f _) (v ∘ _,_ x)) x y) z Πᵁ→Π Xᵁ v = ΠX≃.·→ Πᵁ→Π (≃ᵁ u A e) v f x = tr (El ∘ v) (·←-inv-r x) (Πᵁ→Π u (v ∘ ·→) f (·← x)) where open Equivalences.Equiv e Π→Πᵁ : ∀ u v → Π (El u) (El ∘ v) → El (Πᵁ u v) Π→Πᵁ 𝟘ᵁ v f = 0₁ Π→Πᵁ 𝟙ᵁ v f = f 0₁ Π→Πᵁ 𝟚ᵁ v f = f 0₂ , f 1₂ Π→Πᵁ (u ×ᵁ u₁) v f = Π→Πᵁ u (λ x → Πᵁ u₁ (v ∘ _,_ x)) (λ x → Π→Πᵁ u₁ (v ∘ _,_ x) (f ∘ _,_ x)) Π→Πᵁ (u ⊎ᵁ u₁) v f = Π→Πᵁ u (v ∘ inl) (f ∘ inl) , Π→Πᵁ u₁ (v ∘ inr) (f ∘ inr) Π→Πᵁ (Σᵁ u F) v f = Π→Πᵁ u (λ x → Πᵁ (F x) (v ∘ _,_ x)) (λ x → Π→Πᵁ (F x) (v ∘ _,_ x) (f ∘ _,_ x)) Π→Πᵁ Xᵁ v = ΠX≃.·← Π→Πᵁ (≃ᵁ u A e) v f = Π→Πᵁ u (v ∘ ·→) (f ∘ ·→) where open Equivalences.Equiv e →ᵁ→→ : ∀ u v → El (u →ᵁ v) → (El u → El v) →ᵁ→→ u v = Πᵁ→Π u (const v) →→→ᵁ : ∀ u v → (El u → El v) → El (u →ᵁ v) →→→ᵁ u v = Π→Πᵁ u (const v)
{ "alphanum_fraction": 0.513221737, "avg_line_length": 40.6108374384, "ext": "agda", "hexsha": "8b6a80e358e539d8c29a3a17d275872bec7707db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Universe/FromE.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Universe/FromE.agda", "max_line_length": 109, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Universe/FromE.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 5151, "size": 8244 }
open import FRP.JS.Bool using ( Bool ; true ; false ; not ; _∨_ ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) open import FRP.JS.Primitive using ( ℤ ; String ) module FRP.JS.Float where infixr 4 _≤_ _<_ _≟_ _≠_ infixl 6 _+_ _-_ infixl 7 _*_ _/_ _/?_ open import FRP.JS.Primitive public using ( ℝ ) primitive primFloatPlus : ℝ -> ℝ -> ℝ primFloatMinus : ℝ -> ℝ -> ℝ primFloatTimes : ℝ -> ℝ -> ℝ primFloatDiv : ℝ -> ℝ -> ℝ primFloatLess : ℝ -> ℝ -> Bool primFloor : ℝ -> ℤ primCeiling : ℝ -> ℤ primExp : ℝ -> ℝ primLog : ℝ -> ℝ primSin : ℝ -> ℝ primShowFloat : ℝ -> String primShowInteger : ℤ → String primIntegerToFloat : ℤ → ℝ _+_ = primFloatPlus _-_ = primFloatMinus _*_ = primFloatTimes _<_ = primFloatLess ⌊_⌋ = primFloor ⌈_⌉ = primCeiling exp = primExp log = primLog sin = primSin {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} {-# COMPILED_JS _-_ function(x) { return function(y) { return x - y; }; } #-} {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} {-# COMPILED_JS _<_ function(x) { return function(y) { return x < y; }; } #-} {-# COMPILED_JS ⌊_⌋ Math.floor #-} {-# COMPILED_JS ⌈_⌉ Math.ceil #-} {-# COMPILED_JS exp Math.exp #-} {-# COMPILED_JS log Math.log #-} {-# COMPILED_JS sin Math.sin #-} -_ : ℝ → ℝ - x = 0.0 - x _≠_ : ℝ → ℝ → Bool (x ≠ y) = (x < y) ∨ (y < x) _≟_ : ℝ → ℝ → Bool (x ≟ y) = not (x ≠ y) _≤_ : ℝ → ℝ → Bool (x ≤ y) = not (y < x) -- Some hoop-jumping to avoid division by zero, so we don't end up with -- Infinity, -Infinity or NaN. _/_ : (x y : ℝ) → {y≠0 : True (y ≠ 0.0)} → ℝ x / y = primFloatDiv x y _/?_ : ℝ → ℝ → Maybe ℝ x /? 0.0 = nothing x /? y = just (primFloatDiv x y) show : ℝ → String show x with (x ≟ primIntegerToFloat ⌊ x ⌋) ... | true = primShowInteger ⌊ x ⌋ ... | false = primShowFloat x {-# COMPILED_JS -_ function(x) { return -x; } #-} {-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-} {-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-} {-# COMPILED_JS _≤_ function(x) { return function(y) { return x <= y; }; } #-} {-# COMPILED_JS _/_ function(x) { return function(y) { return function() { return x / y; }; }; } #-} {-# COMPILED_JS _/?_ function(x) { return function(y) { if (y === 0) { return null; } else { return x / y; } }; } #-} {-# COMPILED_JS show function(x) { return x.toString(); } #-}
{ "alphanum_fraction": 0.5589485891, "avg_line_length": 30.0813953488, "ext": "agda", "hexsha": "1b54de3c75a99b560f2685b2469e75acf8c92b87", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Float.agda", "max_line_length": 118, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Float.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 929, "size": 2587 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some Vec-related properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Properties where open import Algebra.FunctionProperties open import Data.Empty using (⊥-elim) open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ) open import Data.Fin.Properties using (_+′_) open import Data.List.Base as List using (List) open import Data.Nat open import Data.Nat.Properties using (+-assoc; ≤-step) open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry) open import Data.Vec open import Function open import Function.Inverse using (_↔_; inverse) open import Relation.Binary as B hiding (Decidable) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; _≗_) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (yes; no) ------------------------------------------------------------------------ -- Properties of propositional equality over vectors module _ {a} {A : Set a} {n} {x y : A} {xs ys : Vec A n} where ∷-injectiveˡ : x ∷ xs ≡ y ∷ ys → x ≡ y ∷-injectiveˡ refl = refl ∷-injectiveʳ : x ∷ xs ≡ y ∷ ys → xs ≡ ys ∷-injectiveʳ refl = refl ∷-injective : (x ∷ xs) ≡ (y ∷ ys) → x ≡ y × xs ≡ ys ∷-injective refl = refl , refl module _ {a} {A : Set a} where ≡-dec : B.Decidable _≡_ → ∀ {n} → B.Decidable {A = Vec A n} _≡_ ≡-dec _≟_ [] [] = yes refl ≡-dec _≟_ (x ∷ xs) (y ∷ ys) with x ≟ y | ≡-dec _≟_ xs ys ... | yes refl | yes refl = yes refl ... | no x≢y | _ = no (x≢y ∘ ∷-injectiveˡ) ... | yes _ | no xs≢ys = no (xs≢ys ∘ ∷-injectiveʳ) ------------------------------------------------------------------------ -- _[_]=_ module _ {a} {A : Set a} where []=-injective : ∀ {n} {xs : Vec A n} {i x y} → xs [ i ]= x → xs [ i ]= y → x ≡ y []=-injective here here = refl []=-injective (there xsᵢ≡x) (there xsᵢ≡y) = []=-injective xsᵢ≡x xsᵢ≡y -- See also Data.Vec.Properties.WithK.[]=-irrelevant. ------------------------------------------------------------------------ -- lookup module _ {a} {A : Set a} where []=⇒lookup : ∀ {n} {x : A} {xs} {i : Fin n} → xs [ i ]= x → lookup xs i ≡ x []=⇒lookup here = refl []=⇒lookup (there xs[i]=x) = []=⇒lookup xs[i]=x lookup⇒[]= : ∀ {n} (i : Fin n) {x : A} xs → lookup xs i ≡ x → xs [ i ]= x lookup⇒[]= zero (_ ∷ _) refl = here lookup⇒[]= (suc i) (_ ∷ xs) p = there (lookup⇒[]= i xs p) []=↔lookup : ∀ {n i} {x} {xs : Vec A n} → xs [ i ]= x ↔ lookup xs i ≡ x []=↔lookup {i = i} = inverse []=⇒lookup (lookup⇒[]= _ _) lookup⇒[]=∘[]=⇒lookup ([]=⇒lookup∘lookup⇒[]= _ i) where lookup⇒[]=∘[]=⇒lookup : ∀ {n x xs} {i : Fin n} (p : xs [ i ]= x) → lookup⇒[]= i xs ([]=⇒lookup p) ≡ p lookup⇒[]=∘[]=⇒lookup here = refl lookup⇒[]=∘[]=⇒lookup (there p) = P.cong there (lookup⇒[]=∘[]=⇒lookup p) []=⇒lookup∘lookup⇒[]= : ∀ {n} xs (i : Fin n) {x} (p : lookup xs i ≡ x) → []=⇒lookup (lookup⇒[]= i xs p) ≡ p []=⇒lookup∘lookup⇒[]= (x ∷ xs) zero refl = refl []=⇒lookup∘lookup⇒[]= (x ∷ xs) (suc i) p = []=⇒lookup∘lookup⇒[]= xs i p ------------------------------------------------------------------------ -- updateAt (_[_]%=_) module _ {a} {A : Set a} where -- (+) updateAt i actually updates the element at index i. updateAt-updates : ∀ {n} (i : Fin n) {f : A → A} (xs : Vec A n) {x : A} → xs [ i ]= x → (updateAt i f xs) [ i ]= f x updateAt-updates zero (x ∷ xs) here = here updateAt-updates (suc i) (x ∷ xs) (there loc) = there (updateAt-updates i xs loc) -- (-) updateAt i does not touch the elements at other indices. updateAt-minimal : ∀ {n} (i j : Fin n) {f : A → A} {x : A} (xs : Vec A n) → i ≢ j → xs [ i ]= x → (updateAt j f xs) [ i ]= x updateAt-minimal zero zero (x ∷ xs) 0≢0 here = ⊥-elim (0≢0 refl) updateAt-minimal zero (suc j) (x ∷ xs) _ here = here updateAt-minimal (suc i) zero (x ∷ xs) _ (there loc) = there loc updateAt-minimal (suc i) (suc j) (x ∷ xs) i≢j (there loc) = there (updateAt-minimal i j xs (i≢j ∘ P.cong suc) loc) -- The other properties are consequences of (+) and (-). -- We spell the most natural properties out. -- Direct inductive proofs are in most cases easier than just using -- the defining properties. -- In the explanations, we make use of shorthand f = g ↾ x -- meaning that f and g agree at point x, i.e. f x ≡ g x. -- updateAt i is a morphism from the monoid of endofunctions A → A -- to the monoid of endofunctions Vec A n → Vec A n -- 1a. relative identity: f = id ↾ (lookup xs i) -- implies updateAt i f = id ↾ xs updateAt-id-relative : ∀ {n} (i : Fin n) (xs : Vec A n) {f : A → A} → f (lookup xs i) ≡ lookup xs i → updateAt i f xs ≡ xs updateAt-id-relative zero (x ∷ xs) eq = P.cong (_∷ xs) eq updateAt-id-relative (suc i) (x ∷ xs) eq = P.cong (x ∷_) (updateAt-id-relative i xs eq) -- 1b. identity: updateAt i id ≗ id updateAt-id : ∀ {n} (i : Fin n) (xs : Vec A n) → updateAt i id xs ≡ xs updateAt-id i xs = updateAt-id-relative i xs refl -- 2a. relative composition: f ∘ g = h ↾ (lookup i xs) -- implies updateAt i f ∘ updateAt i g ≗ updateAt i h updateAt-compose-relative : ∀ {n} (i : Fin n) {f g h : A → A} (xs : Vec A n) → f (g (lookup xs i)) ≡ h (lookup xs i) → updateAt i f (updateAt i g xs) ≡ updateAt i h xs updateAt-compose-relative zero (x ∷ xs) fg=h = P.cong (_∷ xs) fg=h updateAt-compose-relative (suc i) (x ∷ xs) fg=h = P.cong (x ∷_) (updateAt-compose-relative i xs fg=h) -- 2b. composition: updateAt i f ∘ updateAt i g ≗ updateAt i (f ∘ g) updateAt-compose : ∀ {n} (i : Fin n) {f g : A → A} → updateAt i f ∘ updateAt i g ≗ updateAt i (f ∘ g) updateAt-compose i xs = updateAt-compose-relative i xs refl -- 3. congruence: updateAt i is a congruence wrt. extensional equality. -- 3a. If f = g ↾ (lookup i xs) -- then updateAt i f = updateAt i g ↾ xs updateAt-cong-relative : ∀ {n} (i : Fin n) {f g : A → A} (xs : Vec A n) → f (lookup xs i) ≡ g (lookup xs i) → updateAt i f xs ≡ updateAt i g xs updateAt-cong-relative zero (x ∷ xs) f=g = P.cong (_∷ xs) f=g updateAt-cong-relative (suc i) (x ∷ xs) f=g = P.cong (x ∷_) (updateAt-cong-relative i xs f=g) -- 3b. congruence: f ≗ g → updateAt i f ≗ updateAt i g updateAt-cong : ∀ {n} (i : Fin n) {f g : A → A} → f ≗ g → updateAt i f ≗ updateAt i g updateAt-cong i f≗g xs = updateAt-cong-relative i xs (f≗g (lookup xs i)) -- The order of updates at different indices i ≢ j does not matter. -- This a consequence of updateAt-updates and updateAt-minimal -- but easier to prove inductively. updateAt-commutes : ∀ {n} (i j : Fin n) {f g : A → A} → i ≢ j → updateAt i f ∘ updateAt j g ≗ updateAt j g ∘ updateAt i f updateAt-commutes zero zero 0≢0 (x ∷ xs) = ⊥-elim (0≢0 refl) updateAt-commutes zero (suc j) i≢j (x ∷ xs) = refl updateAt-commutes (suc i) zero i≢j (x ∷ xs) = refl updateAt-commutes (suc i) (suc j) i≢j (x ∷ xs) = P.cong (x ∷_) (updateAt-commutes i j (i≢j ∘ P.cong suc) xs) -- lookup after updateAt reduces. -- For same index this is an easy consequence of updateAt-updates -- using []=↔lookup. lookup∘updateAt : ∀ {n} (i : Fin n) {f : A → A} → ∀ xs → lookup (updateAt i f xs) i ≡ f (lookup xs i) lookup∘updateAt i xs = []=⇒lookup (updateAt-updates i xs (lookup⇒[]= i _ refl)) -- For different indices it easily follows from updateAt-minimal. lookup∘updateAt′ : ∀ {n} (i j : Fin n) {f : A → A} → i ≢ j → ∀ xs → lookup (updateAt j f xs) i ≡ lookup xs i lookup∘updateAt′ i j xs i≢j = []=⇒lookup (updateAt-minimal i j i≢j xs (lookup⇒[]= i _ refl)) -- Aliases for notation _[_]%=_ []%=-id : ∀ {n} (xs : Vec A n) (i : Fin n) → xs [ i ]%= id ≡ xs []%=-id xs i = updateAt-id i xs []%=-compose : ∀ {n} (xs : Vec A n) (i : Fin n) {f g : A → A} → xs [ i ]%= f [ i ]%= g ≡ xs [ i ]%= g ∘ f []%=-compose xs i = updateAt-compose i xs ------------------------------------------------------------------------ -- _[_]≔_ (update) -- -- _[_]≔_ is defined in terms of updateAt, and all of its properties -- are special cases of the ones for updateAt. module _ {a} {A : Set a} where []≔-idempotent : ∀ {n} (xs : Vec A n) (i : Fin n) {x₁ x₂ : A} → (xs [ i ]≔ x₁) [ i ]≔ x₂ ≡ xs [ i ]≔ x₂ []≔-idempotent xs i = updateAt-compose i xs []≔-commutes : ∀ {n} (xs : Vec A n) (i j : Fin n) {x y : A} → i ≢ j → (xs [ i ]≔ x) [ j ]≔ y ≡ (xs [ j ]≔ y) [ i ]≔ x []≔-commutes xs i j i≢j = updateAt-commutes j i (i≢j ∘ P.sym) xs []≔-updates : ∀ {n} (xs : Vec A n) (i : Fin n) {x : A} → (xs [ i ]≔ x) [ i ]= x []≔-updates xs i = updateAt-updates i xs (lookup⇒[]= i xs refl) []≔-minimal : ∀ {n} (xs : Vec A n) (i j : Fin n) {x y : A} → i ≢ j → xs [ i ]= x → (xs [ j ]≔ y) [ i ]= x []≔-minimal xs i j i≢j loc = updateAt-minimal i j xs i≢j loc []≔-lookup : ∀ {n} (xs : Vec A n) (i : Fin n) → xs [ i ]≔ lookup xs i ≡ xs []≔-lookup xs i = updateAt-id-relative i xs refl lookup∘update : ∀ {n} (i : Fin n) (xs : Vec A n) x → lookup (xs [ i ]≔ x) i ≡ x lookup∘update i xs x = lookup∘updateAt i xs lookup∘update′ : ∀ {n} {i j : Fin n} → i ≢ j → ∀ (xs : Vec A n) y → lookup (xs [ j ]≔ y) i ≡ lookup xs i lookup∘update′ {n} {i} {j} i≢j xs y = lookup∘updateAt′ i j i≢j xs ------------------------------------------------------------------------ -- map map-id : ∀ {a n} {A : Set a} → map {n = n} {A} id ≗ id map-id [] = refl map-id (x ∷ xs) = P.cong (x ∷_) (map-id xs) map-cong : ∀ {a b n} {A : Set a} {B : Set b} {f g : A → B} → f ≗ g → map {n = n} f ≗ map g map-cong f≗g [] = refl map-cong f≗g (x ∷ xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs) map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c} (f : B → C) (g : A → B) → map {n = n} (f ∘ g) ≗ map f ∘ map g map-∘ f g [] = refl map-∘ f g (x ∷ xs) = P.cong (f (g x) ∷_) (map-∘ f g xs) lookup-map : ∀ {a b n} {A : Set a} {B : Set b} (i : Fin n) (f : A → B) (xs : Vec A n) → lookup (map f xs) i ≡ f (lookup xs i) lookup-map zero f (x ∷ xs) = refl lookup-map (suc i) f (x ∷ xs) = lookup-map i f xs map-updateAt : ∀ {n a b} {A : Set a} {B : Set b} → ∀ {f : A → B} {g : A → A} {h : B → B} (xs : Vec A n) (i : Fin n) → f (g (lookup xs i)) ≡ h (f (lookup xs i)) → map f (updateAt i g xs) ≡ updateAt i h (map f xs) map-updateAt (x ∷ xs) zero eq = P.cong (_∷ _) eq map-updateAt (x ∷ xs) (suc i) eq = P.cong (_ ∷_) (map-updateAt xs i eq) map-[]≔ : ∀ {n a b} {A : Set a} {B : Set b} (f : A → B) (xs : Vec A n) (i : Fin n) {x : A} → map f (xs [ i ]≔ x) ≡ map f xs [ i ]≔ f x map-[]≔ f xs i = map-updateAt xs i refl ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} {m} {ys ys' : Vec A m} where -- See also Data.Vec.Properties.WithK.++-assoc. ++-injectiveˡ : ∀ {n} (xs xs' : Vec A n) → xs ++ ys ≡ xs' ++ ys' → xs ≡ xs' ++-injectiveˡ [] [] _ = refl ++-injectiveˡ (x ∷ xs) (x' ∷ xs') eq = P.cong₂ _∷_ (∷-injectiveˡ eq) (++-injectiveˡ _ _ (∷-injectiveʳ eq)) ++-injectiveʳ : ∀ {n} (xs xs' : Vec A n) → xs ++ ys ≡ xs' ++ ys' → ys ≡ ys' ++-injectiveʳ [] [] eq = eq ++-injectiveʳ (x ∷ xs) (x' ∷ xs') eq = ++-injectiveʳ xs xs' (∷-injectiveʳ eq) ++-injective : ∀ {n} (xs xs' : Vec A n) → xs ++ ys ≡ xs' ++ ys' → xs ≡ xs' × ys ≡ ys' ++-injective xs xs' eq = (++-injectiveˡ xs xs' eq , ++-injectiveʳ xs xs' eq) module _ {a} {A : Set a} where lookup-++-< : ∀ {m n} (xs : Vec A m) (ys : Vec A n) → ∀ i (i<m : toℕ i < m) → lookup (xs ++ ys)i ≡ lookup xs (Fin.fromℕ≤ i<m) lookup-++-< [] ys i () lookup-++-< (x ∷ xs) ys zero (s≤s z≤n) = refl lookup-++-< (x ∷ xs) ys (suc i) (s≤s (s≤s i<m)) = lookup-++-< xs ys i (s≤s i<m) lookup-++-≥ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) → ∀ i (i≥m : toℕ i ≥ m) → lookup (xs ++ ys) i ≡ lookup ys (Fin.reduce≥ i i≥m) lookup-++-≥ [] ys i i≥m = refl lookup-++-≥ (x ∷ xs) ys zero () lookup-++-≥ (x ∷ xs) ys (suc i) (s≤s i≥m) = lookup-++-≥ xs ys i i≥m lookup-++-inject+ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) i → lookup (xs ++ ys) (Fin.inject+ n i) ≡ lookup xs i lookup-++-inject+ [] ys () lookup-++-inject+ (x ∷ xs) ys zero = refl lookup-++-inject+ (x ∷ xs) ys (suc i) = lookup-++-inject+ xs ys i lookup-++-+′ : ∀ {m n} (xs : Vec A m) (ys : Vec A n) i → lookup (xs ++ ys) (fromℕ m +′ i) ≡ lookup ys i lookup-++-+′ [] ys zero = refl lookup-++-+′ [] (y ∷ xs) (suc i) = lookup-++-+′ [] xs i lookup-++-+′ (x ∷ xs) ys i = lookup-++-+′ xs ys i []≔-++-inject+ : ∀ {m n x} (xs : Vec A m) (ys : Vec A n) i → (xs ++ ys) [ Fin.inject+ n i ]≔ x ≡ (xs [ i ]≔ x) ++ ys []≔-++-inject+ [] ys () []≔-++-inject+ (x ∷ xs) ys zero = refl []≔-++-inject+ (x ∷ xs) ys (suc i) = P.cong (x ∷_) $ []≔-++-inject+ xs ys i ------------------------------------------------------------------------ -- zipWith module _ {a} {A : Set a} {f : A → A → A} where zipWith-assoc : Associative _≡_ f → ∀ {n} → Associative _≡_ (zipWith {n = n} f) zipWith-assoc assoc [] [] [] = refl zipWith-assoc assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) = P.cong₂ _∷_ (assoc x y z) (zipWith-assoc assoc xs ys zs) zipWith-idem : Idempotent _≡_ f → ∀ {n} → Idempotent _≡_ (zipWith {n = n} f) zipWith-idem idem [] = refl zipWith-idem idem (x ∷ xs) = P.cong₂ _∷_ (idem x) (zipWith-idem idem xs) zipWith-identityˡ : ∀ {1#} → LeftIdentity _≡_ 1# f → ∀ {n} → LeftIdentity _≡_ (replicate 1#) (zipWith {n = n} f) zipWith-identityˡ idˡ [] = refl zipWith-identityˡ idˡ (x ∷ xs) = P.cong₂ _∷_ (idˡ x) (zipWith-identityˡ idˡ xs) zipWith-identityʳ : ∀ {1#} → RightIdentity _≡_ 1# f → ∀ {n} → RightIdentity _≡_ (replicate 1#) (zipWith {n = n} f) zipWith-identityʳ idʳ [] = refl zipWith-identityʳ idʳ (x ∷ xs) = P.cong₂ _∷_ (idʳ x) (zipWith-identityʳ idʳ xs) zipWith-zeroˡ : ∀ {0#} → LeftZero _≡_ 0# f → ∀ {n} → LeftZero _≡_ (replicate 0#) (zipWith {n = n} f) zipWith-zeroˡ zeˡ [] = refl zipWith-zeroˡ zeˡ (x ∷ xs) = P.cong₂ _∷_ (zeˡ x) (zipWith-zeroˡ zeˡ xs) zipWith-zeroʳ : ∀ {0#} → RightZero _≡_ 0# f → ∀ {n} → RightZero _≡_ (replicate 0#) (zipWith {n = n} f) zipWith-zeroʳ zeʳ [] = refl zipWith-zeroʳ zeʳ (x ∷ xs) = P.cong₂ _∷_ (zeʳ x) (zipWith-zeroʳ zeʳ xs) zipWith-inverseˡ : ∀ {⁻¹ 0#} → LeftInverse _≡_ 0# ⁻¹ f → ∀ {n} → LeftInverse _≡_ (replicate {n = n} 0#) (map ⁻¹) (zipWith f) zipWith-inverseˡ invˡ [] = refl zipWith-inverseˡ invˡ (x ∷ xs) = P.cong₂ _∷_ (invˡ x) (zipWith-inverseˡ invˡ xs) zipWith-inverseʳ : ∀ {⁻¹ 0#} → RightInverse _≡_ 0# ⁻¹ f → ∀ {n} → RightInverse _≡_ (replicate {n = n} 0#) (map ⁻¹) (zipWith f) zipWith-inverseʳ invʳ [] = refl zipWith-inverseʳ invʳ (x ∷ xs) = P.cong₂ _∷_ (invʳ x) (zipWith-inverseʳ invʳ xs) zipWith-distribˡ : ∀ {g} → _DistributesOverˡ_ _≡_ f g → ∀ {n} → _DistributesOverˡ_ _≡_ (zipWith {n = n} f) (zipWith g) zipWith-distribˡ distribˡ [] [] [] = refl zipWith-distribˡ distribˡ (x ∷ xs) (y ∷ ys) (z ∷ zs) = P.cong₂ _∷_ (distribˡ x y z) (zipWith-distribˡ distribˡ xs ys zs) zipWith-distribʳ : ∀ {g} → _DistributesOverʳ_ _≡_ f g → ∀ {n} → _DistributesOverʳ_ _≡_ (zipWith {n = n} f) (zipWith g) zipWith-distribʳ distribʳ [] [] [] = refl zipWith-distribʳ distribʳ (x ∷ xs) (y ∷ ys) (z ∷ zs) = P.cong₂ _∷_ (distribʳ x y z) (zipWith-distribʳ distribʳ xs ys zs) zipWith-absorbs : ∀ {g} → _Absorbs_ _≡_ f g → ∀ {n} → _Absorbs_ _≡_ (zipWith {n = n} f) (zipWith g) zipWith-absorbs abs [] [] = refl zipWith-absorbs abs (x ∷ xs) (y ∷ ys) = P.cong₂ _∷_ (abs x y) (zipWith-absorbs abs xs ys) module _ {a b} {A : Set a} {B : Set b} {f : A → A → B} where zipWith-comm : (∀ x y → f x y ≡ f y x) → ∀ {n} (xs ys : Vec A n) → zipWith f xs ys ≡ zipWith f ys xs zipWith-comm comm [] [] = refl zipWith-comm comm (x ∷ xs) (y ∷ ys) = P.cong₂ _∷_ (comm x y) (zipWith-comm comm xs ys) module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where zipWith-map₁ : ∀ {n} (_⊕_ : B → C → D) (f : A → B) (xs : Vec A n) (ys : Vec C n) → zipWith _⊕_ (map f xs) ys ≡ zipWith (λ x y → f x ⊕ y) xs ys zipWith-map₁ _⊕_ f [] [] = refl zipWith-map₁ _⊕_ f (x ∷ xs) (y ∷ ys) = P.cong (f x ⊕ y ∷_) (zipWith-map₁ _⊕_ f xs ys) zipWith-map₂ : ∀ {n} (_⊕_ : A → C → D) (f : B → C) (xs : Vec A n) (ys : Vec B n) → zipWith _⊕_ xs (map f ys) ≡ zipWith (λ x y → x ⊕ f y) xs ys zipWith-map₂ _⊕_ f [] [] = refl zipWith-map₂ _⊕_ f (x ∷ xs) (y ∷ ys) = P.cong (x ⊕ f y ∷_) (zipWith-map₂ _⊕_ f xs ys) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where lookup-zipWith : ∀ (f : A → B → C) {n} (i : Fin n) xs ys → lookup (zipWith f xs ys) i ≡ f (lookup xs i) (lookup ys i) lookup-zipWith _ zero (x ∷ _) (y ∷ _) = refl lookup-zipWith _ (suc i) (_ ∷ xs) (_ ∷ ys) = lookup-zipWith _ i xs ys ------------------------------------------------------------------------ -- zip module _ {a b} {A : Set a} {B : Set b} where lookup-zip : ∀ {n} (i : Fin n) (xs : Vec A n) (ys : Vec B n) → lookup (zip xs ys) i ≡ (lookup xs i , lookup ys i) lookup-zip = lookup-zipWith _,_ -- map lifts projections to vectors of products. map-proj₁-zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) → map proj₁ (zip xs ys) ≡ xs map-proj₁-zip [] [] = refl map-proj₁-zip (x ∷ xs) (y ∷ ys) = P.cong (x ∷_) (map-proj₁-zip xs ys) map-proj₂-zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) → map proj₂ (zip xs ys) ≡ ys map-proj₂-zip [] [] = refl map-proj₂-zip (x ∷ xs) (y ∷ ys) = P.cong (y ∷_) (map-proj₂-zip xs ys) -- map lifts pairing to vectors of products. map-<,>-zip : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c} (f : A → B) (g : A → C) (xs : Vec A n) → map < f , g > xs ≡ zip (map f xs) (map g xs) map-<,>-zip f g [] = P.refl map-<,>-zip f g (x ∷ xs) = P.cong (_ ∷_) (map-<,>-zip f g xs) map-zip : ∀ {a b c d n} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B) (g : C → D) (xs : Vec A n) (ys : Vec C n) → map (Prod.map f g) (zip xs ys) ≡ zip (map f xs) (map g ys) map-zip f g [] [] = refl map-zip f g (x ∷ xs) (y ∷ ys) = P.cong (_ ∷_) (map-zip f g xs ys) ------------------------------------------------------------------------ -- unzip module _ {a b} {A : Set a} {B : Set b} where lookup-unzip : ∀ {n} (i : Fin n) (xys : Vec (A × B) n) → let xs , ys = unzip xys in (lookup xs i , lookup ys i) ≡ lookup xys i lookup-unzip () [] lookup-unzip zero ((x , y) ∷ xys) = refl lookup-unzip (suc i) ((x , y) ∷ xys) = lookup-unzip i xys map-unzip : ∀ {c d n} {C : Set c} {D : Set d} (f : A → B) (g : C → D) (xys : Vec (A × C) n) → let xs , ys = unzip xys in (map f xs , map g ys) ≡ unzip (map (Prod.map f g) xys) map-unzip f g [] = refl map-unzip f g ((x , y) ∷ xys) = P.cong (Prod.map (f x ∷_) (g y ∷_)) (map-unzip f g xys) -- Products of vectors are isomorphic to vectors of products. unzip∘zip : ∀ {n} (xs : Vec A n) (ys : Vec B n) → unzip (zip xs ys) ≡ (xs , ys) unzip∘zip [] [] = refl unzip∘zip (x ∷ xs) (y ∷ ys) = P.cong (Prod.map (x ∷_) (y ∷_)) (unzip∘zip xs ys) zip∘unzip : ∀ {n} (xys : Vec (A × B) n) → uncurry zip (unzip xys) ≡ xys zip∘unzip [] = refl zip∘unzip ((x , y) ∷ xys) = P.cong ((x , y) ∷_) (zip∘unzip xys) ×v↔v× : ∀ {n} → (Vec A n × Vec B n) ↔ Vec (A × B) n ×v↔v× = inverse (uncurry zip) unzip (uncurry unzip∘zip) zip∘unzip ------------------------------------------------------------------------ -- _⊛_ module _ {a b} {A : Set a} {B : Set b} where lookup-⊛ : ∀ {n} i (fs : Vec (A → B) n) (xs : Vec A n) → lookup (fs ⊛ xs) i ≡ (lookup fs i $ lookup xs i) lookup-⊛ zero (f ∷ fs) (x ∷ xs) = refl lookup-⊛ (suc i) (f ∷ fs) (x ∷ xs) = lookup-⊛ i fs xs map-is-⊛ : ∀ {n} (f : A → B) (xs : Vec A n) → map f xs ≡ (replicate f ⊛ xs) map-is-⊛ f [] = refl map-is-⊛ f (x ∷ xs) = P.cong (_ ∷_) (map-is-⊛ f xs) ⊛-is-zipWith : ∀ {n} (fs : Vec (A → B) n) (xs : Vec A n) → (fs ⊛ xs) ≡ zipWith _$_ fs xs ⊛-is-zipWith [] [] = refl ⊛-is-zipWith (f ∷ fs) (x ∷ xs) = P.cong (f x ∷_) (⊛-is-zipWith fs xs) zipWith-is-⊛ : ∀ {c} {C : Set c} {n} (f : A → B → C) → (xs : Vec A n) (ys : Vec B n) → zipWith f xs ys ≡ (replicate f ⊛ xs ⊛ ys) zipWith-is-⊛ f [] [] = refl zipWith-is-⊛ f (x ∷ xs) (y ∷ ys) = P.cong (_ ∷_) (zipWith-is-⊛ f xs ys) ------------------------------------------------------------------------ -- foldr -- See also Data.Vec.Properties.WithK.foldr-cong. -- The (uniqueness part of the) universality property for foldr. foldr-universal : ∀ {a b} {A : Set a} (B : ℕ → Set b) (f : ∀ {n} → A → B n → B (suc n)) {e} (h : ∀ {n} → Vec A n → B n) → h [] ≡ e → (∀ {n} x → h ∘ (x ∷_) ≗ f {n} x ∘ h) → ∀ {n} → h ≗ foldr B {n} f e foldr-universal B f {_} h base step [] = base foldr-universal B f {e} h base step (x ∷ xs) = begin h (x ∷ xs) ≡⟨ step x xs ⟩ f x (h xs) ≡⟨ P.cong (f x) (foldr-universal B f h base step xs) ⟩ f x (foldr B f e xs) ∎ where open P.≡-Reasoning foldr-fusion : ∀ {a b c} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} e {C : ℕ → Set c} {g : ∀ {n} → A → C n → C (suc n)} (h : ∀ {n} → B n → C n) → (∀ {n} x → h ∘ f {n} x ≗ g x ∘ h) → ∀ {n} → h ∘ foldr B {n} f e ≗ foldr C g (h e) foldr-fusion {B = B} {f} e {C} h fuse = foldr-universal C _ _ refl (λ x xs → fuse x (foldr B f e xs)) idIsFold : ∀ {a n} {A : Set a} → id ≗ foldr (Vec A) {n} _∷_ [] idIsFold = foldr-universal _ _ id refl (λ _ _ → refl) ------------------------------------------------------------------------ -- sum sum-++-commute : ∀ {m n} (xs : Vec ℕ m) {ys : Vec ℕ n} → sum (xs ++ ys) ≡ sum xs + sum ys sum-++-commute [] {_} = refl sum-++-commute (x ∷ xs) {ys} = begin x + sum (xs ++ ys) ≡⟨ P.cong (x +_) (sum-++-commute xs) ⟩ x + (sum xs + sum ys) ≡⟨ P.sym (+-assoc x (sum xs) (sum ys)) ⟩ sum (x ∷ xs) + sum ys ∎ where open P.≡-Reasoning ------------------------------------------------------------------------ -- replicate lookup-replicate : ∀ {a n} {A : Set a} (i : Fin n) (x : A) → lookup (replicate x) i ≡ x lookup-replicate zero = λ _ → refl lookup-replicate (suc i) = lookup-replicate i map-replicate : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (x : A) → ∀ n → map f (replicate x) ≡ replicate {n = n} (f x) map-replicate f x zero = refl map-replicate f x (suc n) = P.cong (f x ∷_) (map-replicate f x n) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where zipWith-replicate₁ : ∀ {n} (_⊕_ : A → B → C) (x : A) (ys : Vec B n) → zipWith _⊕_ (replicate x) ys ≡ map (x ⊕_) ys zipWith-replicate₁ _⊕_ x [] = refl zipWith-replicate₁ _⊕_ x (y ∷ ys) = P.cong (x ⊕ y ∷_) (zipWith-replicate₁ _⊕_ x ys) zipWith-replicate₂ : ∀ {n} (_⊕_ : A → B → C) (xs : Vec A n) (y : B) → zipWith _⊕_ xs (replicate y) ≡ map (_⊕ y) xs zipWith-replicate₂ _⊕_ [] y = refl zipWith-replicate₂ _⊕_ (x ∷ xs) y = P.cong (x ⊕ y ∷_) (zipWith-replicate₂ _⊕_ xs y) ------------------------------------------------------------------------ -- tabulate lookup∘tabulate : ∀ {a n} {A : Set a} (f : Fin n → A) (i : Fin n) → lookup (tabulate f) i ≡ f i lookup∘tabulate f zero = refl lookup∘tabulate f (suc i) = lookup∘tabulate (f ∘ suc) i tabulate∘lookup : ∀ {a n} {A : Set a} (xs : Vec A n) → tabulate (lookup xs) ≡ xs tabulate∘lookup [] = refl tabulate∘lookup (x ∷ xs) = P.cong (x ∷_) (tabulate∘lookup xs) tabulate-∘ : ∀ {n a b} {A : Set a} {B : Set b} (f : A → B) (g : Fin n → A) → tabulate (f ∘ g) ≡ map f (tabulate g) tabulate-∘ {zero} f g = refl tabulate-∘ {suc n} f g = P.cong (f (g zero) ∷_) (tabulate-∘ f (g ∘ suc)) tabulate-cong : ∀ {n a} {A : Set a} {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g tabulate-cong {zero} p = refl tabulate-cong {suc n} p = P.cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc)) ------------------------------------------------------------------------ -- allFin lookup-allFin : ∀ {n} (i : Fin n) → lookup (allFin n) i ≡ i lookup-allFin = lookup∘tabulate id allFin-map : ∀ n → allFin (suc n) ≡ zero ∷ map suc (allFin n) allFin-map n = P.cong (zero ∷_) $ tabulate-∘ suc id tabulate-allFin : ∀ {n a} {A : Set a} (f : Fin n → A) → tabulate f ≡ map f (allFin n) tabulate-allFin f = tabulate-∘ f id -- If you look up every possible index, in increasing order, then you -- get back the vector you started with. map-lookup-allFin : ∀ {a} {A : Set a} {n} (xs : Vec A n) → map (lookup xs) (allFin n) ≡ xs map-lookup-allFin {n = n} xs = begin map (lookup xs) (allFin n) ≡˘⟨ tabulate-∘ (lookup xs) id ⟩ tabulate (lookup xs) ≡⟨ tabulate∘lookup xs ⟩ xs ∎ where open P.≡-Reasoning ------------------------------------------------------------------------ -- count module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where count≤n : ∀ {n} (xs : Vec A n) → count P? xs ≤ n count≤n [] = z≤n count≤n (x ∷ xs) with P? x ... | yes _ = s≤s (count≤n xs) ... | no _ = ≤-step (count≤n xs) ------------------------------------------------------------------------ -- insert module _ {a} {A : Set a} where insert-lookup : ∀ {n} (xs : Vec A n) (i : Fin (suc n)) (v : A) → lookup (insert xs i v) i ≡ v insert-lookup xs zero v = refl insert-lookup [] (suc ()) v insert-lookup (x ∷ xs) (suc i) v = insert-lookup xs i v insert-punchIn : ∀ {n} (xs : Vec A n) (i : Fin (suc n)) (v : A) (j : Fin n) → lookup (insert xs i v) (Fin.punchIn i j) ≡ lookup xs j insert-punchIn xs zero v j = refl insert-punchIn [] (suc ()) v j insert-punchIn (x ∷ xs) (suc i) v zero = refl insert-punchIn (x ∷ xs) (suc i) v (suc j) = insert-punchIn xs i v j remove-punchOut : ∀ {n} (xs : Vec A (suc n)) {i : Fin (suc n)} {j : Fin (suc n)} (i≢j : i ≢ j) → lookup (remove xs i) (Fin.punchOut i≢j) ≡ lookup xs j remove-punchOut (x ∷ xs) {zero} {zero} i≢j = ⊥-elim (i≢j refl) remove-punchOut (x ∷ xs) {zero} {suc j} i≢j = refl remove-punchOut (x ∷ []) {suc ()} {j} i≢j remove-punchOut (x ∷ y ∷ xs) {suc i} {zero} i≢j = refl remove-punchOut (x ∷ y ∷ xs) {suc i} {suc j} i≢j = remove-punchOut (y ∷ xs) (i≢j ∘ P.cong suc) ------------------------------------------------------------------------ -- remove remove-insert : ∀ {n} (xs : Vec A n) (i : Fin (suc n)) (v : A) → remove (insert xs i v) i ≡ xs remove-insert xs zero v = refl remove-insert [] (suc ()) v remove-insert (x ∷ xs) (suc zero) v = refl remove-insert (x ∷ []) (suc (suc ())) v remove-insert (x ∷ y ∷ xs) (suc (suc i)) v = P.cong (x ∷_) (remove-insert (y ∷ xs) (suc i) v) insert-remove : ∀ {n} (xs : Vec A (suc n)) (i : Fin (suc n)) → insert (remove xs i) i (lookup xs i) ≡ xs insert-remove (x ∷ xs) zero = refl insert-remove (x ∷ []) (suc ()) insert-remove (x ∷ y ∷ xs) (suc i) = P.cong (x ∷_) (insert-remove (y ∷ xs) i) ------------------------------------------------------------------------ -- Conversion function module _ {a} {A : Set a} where toList∘fromList : (xs : List A) → toList (fromList xs) ≡ xs toList∘fromList List.[] = refl toList∘fromList (x List.∷ xs) = P.cong (x List.∷_) (toList∘fromList xs)
{ "alphanum_fraction": 0.4662379421, "avg_line_length": 39.9256756757, "ext": "agda", "hexsha": "835b7c1e17f0444d424c41b25c4da8eae586d585", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11592, "size": 29545 }
-- ASR (2016-12-23). UHC and GHC have different behaviours. This test -- only is disabled for the UHC backend. -- Issue #1856: UHC prints doubles with lower precision than GHC -- -- For example, printing √2 -- -- GHC (8.0.1): 1.4142135623730951 -- UHC (1.1.9.5): 1.414213562373095 module _ where open import Common.Prelude print : Float → IO Unit print x = putStrLn (primShowFloat x) pi : Float pi = 3.141592653589793 main : IO Unit main = -- See Issue #1856. putStr "√2 = " ,, print (primFloatSqrt 2.0) ,, putStr "√2 = " ,, print (primFloatTimes 2.0 (primSin (primFloatDiv pi 4.0))) ,, return unit
{ "alphanum_fraction": 0.6731707317, "avg_line_length": 22.7777777778, "ext": "agda", "hexsha": "b4200b4b025e00f81906e739e951f3a8e6462c03", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/FloatsUHCFails.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Compiler/simple/FloatsUHCFails.agda", "max_line_length": 81, "max_stars_count": 7, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Compiler/simple/FloatsUHCFails.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 218, "size": 615 }
data A : Set₁ → Set where C : (S : Set₁) → A S
{ "alphanum_fraction": 0.5, "avg_line_length": 12.5, "ext": "agda", "hexsha": "91df63311b8a124a7121aa4e247bc44172c85f11", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3131.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3131.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3131.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 50 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Yasm.Types as LYT import LibraBFT.Yasm.Base as LYB import LibraBFT.Yasm.System as LYS -- This module provides some definitions and properties that facilitate -- proofs of properties about a distributed system modeled by Yasm.System -- paramaterized by some SystemParameters. module LibraBFT.Yasm.Properties (ℓ-PeerState : Level) (ℓ-VSFP : Level) (parms : LYB.SystemParameters ℓ-PeerState) -- In addition to the parameters used by the rest of the system model, this module -- needs to relate Members to PKs and PeerIds, so that StepPeerState-AllValidParts -- can be defined. This enables the application to prove that honest peers sign -- new messages only for their own public key. The system model does not know that -- directly. -- A ValidPartForPK collects the assumptions about what a /part/ in the outputs of an honest verifier -- satisfies: (i) the epoch field is consistent with the existent epochs and (ii) the verifier is -- a member of the associated epoch config, and (iii) has the given PK in that epoch. (ValidSenderForPK : LYS.ValidSenderForPK-type ℓ-PeerState ℓ-VSFP parms) -- A valid part remains valid across state transitions (including cheat steps) (ValidSenderForPK-stable : LYS.ValidSenderForPK-stable-type ℓ-PeerState ℓ-VSFP parms ValidSenderForPK) where open LYB.SystemParameters parms open import LibraBFT.Yasm.Base open import LibraBFT.Yasm.System ℓ-PeerState ℓ-VSFP parms open import Util.FunctionOverride PeerId _≟PeerId_ -- A few handy properties for transporting information about whether a Signature is ∈GenInfo to -- another type containing the same signature transp-∈GenInfo₀ : ∀ {pk p1 p2} → (ver1 : WithVerSig {Part} ⦃ Part-sig ⦄ pk p1) → (ver2 : WithVerSig {Part} ⦃ Part-sig ⦄ pk p2) → ver-signature ver1 ≡ ver-signature ver2 → ∈GenInfo (ver-signature ver1) → ∈GenInfo (ver-signature ver2) transp-∈GenInfo₀ ver1 ver2 sigs≡ init = subst ∈GenInfo sigs≡ init transp-¬∈GenInfo₁ : ∀ {pk pool sig} → ¬ ∈GenInfo sig → (mws : MsgWithSig∈ pk sig pool) → ¬ ∈GenInfo (ver-signature (msgSigned mws)) transp-¬∈GenInfo₁ ¬init mws rewrite sym (msgSameSig mws) = ¬init transp-¬∈GenInfo₂ : ∀ {pk sig1 sig2 pool} → (mws1 : MsgWithSig∈ pk sig1 pool) → ¬ (∈GenInfo (ver-signature (msgSigned mws1))) → (mws2 : MsgWithSig∈ pk sig2 pool) → sig2 ≡ sig1 → ¬ (∈GenInfo (ver-signature (msgSigned mws2))) transp-¬∈GenInfo₂ mws1 ¬init mws2 refl = ¬subst {P = ∈GenInfo} ¬init (trans (msgSameSig mws2) (sym (msgSameSig mws1))) ¬cheatForgeNew : ∀ {pid pk vsig mst outs m}{st : SystemState} → (sp : StepPeer st pid mst outs) → outs ≡ LYT.send m ∷ [] → (ic : isCheat sp) → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk vsig ((pid , m) ∷ msgPool st)) → ¬ (∈GenInfo (ver-signature (msgSigned mws))) → MsgWithSig∈ pk vsig (msgPool st) ¬cheatForgeNew {st = st} sc@(step-cheat isch) refl _ hpk mws ¬init with msg∈pool mws ...| there m∈pool = mkMsgWithSig∈ (msgWhole mws) (msgPart mws) (msg⊆ mws) (msgSender mws) m∈pool (msgSigned mws) (msgSameSig mws) ...| here m∈pool with cong proj₂ m∈pool ...| refl with isch (msg⊆ mws) (msgSigned mws) ¬init ...| inj₁ dis = ⊥-elim (hpk dis) ...| inj₂ mws' rewrite msgSameSig mws = mws' ValidSenderForPK-stable-* : ∀{st : SystemState}{st' : SystemState} → ReachableSystemState st → Step* st st' → ∀{part α pk} → ValidSenderForPK st part α pk → ValidSenderForPK st' part α pk ValidSenderForPK-stable-* _ step-0 v = v ValidSenderForPK-stable-* r (step-s {pre = st''} st''reach x) {part} {α} {pk} v = ValidSenderForPK-stable (Step*-trans r st''reach) x (ValidSenderForPK-stable-* r st''reach v) -- We say that an implementation produces only valid parts iff all parts of every message in the -- output of a 'StepPeerState' are either: (i) a valid new part (i.e., the part is valid and no -- message with the same signature has been sent previously), or (ii) a message has been sent -- with the same signature. StepPeerState-AllValidParts : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) StepPeerState-AllValidParts = ∀{s m part pk outs}{α}{st : SystemState} → (r : ReachableSystemState st) → Meta-Honest-PK pk → (sps : StepPeerState α (msgPool st) (initialised st) (peerStates st α) (s , outs)) → LYT.send m ∈ outs → part ⊂Msg m → (ver : WithVerSig pk part) → ¬ (∈GenInfo (ver-signature ver)) -- Note that we require that α can send for the PK according to the *post* state. This allows -- sufficient generality to ensure that a peer can sign and send a message for an epoch even if -- it changed to the epoch in the same step. If this is too painful, we could require that the -- peer can sign for the PK already in the prestate, which would require, for example, -- initialising a peer to be a separate step from sending its first signed message, which in -- turn could preclude some valid implementations. → (ValidSenderForPK (StepPeer-post {pre = st} (step-honest sps)) part α pk × ¬ (MsgWithSig∈ pk (ver-signature ver) (msgPool st))) ⊎ MsgWithSig∈ pk (ver-signature ver) (msgPool st) -- A /part/ was introduced by a specific step when: IsValidNewPart : ∀{pre : SystemState}{post : SystemState} → Signature → PK → Step pre post → Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) -- said step is a /step-peer/ and IsValidNewPart {pre} {post} sig pk (step-peer {pid = pid} pstep) -- the part has never been seen before = ReachableSystemState pre × ¬ ∈GenInfo sig × ¬ (MsgWithSig∈ pk sig (msgPool pre)) × Σ (MsgWithSig∈ pk sig (msgPool (StepPeer-post pstep))) (λ m → msgSender m ≡ pid × initialised post pid ≡ initd × ValidSenderForPK post (msgPart m) (msgSender m) pk) mwsAndVspk-stable : ∀{st : SystemState}{st' : SystemState} → ReachableSystemState st → Step* st st' → ∀ {pk sig} → (mws : MsgWithSig∈ pk sig (msgPool st)) → initialised st (msgSender mws) ≡ initd → ValidSenderForPK st (msgPart mws) (msgSender mws) pk → Σ (MsgWithSig∈ pk sig (msgPool st')) λ mws' → ValidSenderForPK st' (msgPart mws') (msgSender mws') pk mwsAndVspk-stable {_} {st'} r tr {pk} {sig} mws ini vpk = MsgWithSig∈-Step* tr mws , subst₂ (λ p s → ValidSenderForPK st' p s pk) (MsgWithSig∈-Step*-part tr mws) (MsgWithSig∈-Step*-sender tr mws) (ValidSenderForPK-stable-* r tr vpk) -- When we can prove that the implementation provided by 'parms' at the -- top of this module satisfies 'StepPeerState-AllValidParts', we can -- prove a number of useful structural properties: -- TODO-2: Refactor into a file (LibraBFT.Yasm.Properties.Structural) later on -- if this grows too large. module Structural (sps-avp : StepPeerState-AllValidParts) where -- We can unwind the state and highlight the step where a part was -- originally sent. This 'unwind' function combined with Any-Step-elim -- enables a powerful form of reasoning. The 'honestVoteEpoch' below -- exemplifies this well. unwind : ∀{st : SystemState}(tr : ReachableSystemState st) → ∀{p m σ pk} → Meta-Honest-PK pk → p ⊂Msg m → (σ , m) ∈ msgPool st → (ver : WithVerSig pk p) → ¬ ∈GenInfo (ver-signature ver) → Any-Step (IsValidNewPart (ver-signature ver) pk) tr unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig ¬init with Any-++⁻ (actionsToSentMessages β outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = step-there (unwind tr hpk p⊂m furtherBack sig ¬init) ...| inj₁ thisStep with sp ...| step-cheat isCheat with thisStep ...| here refl with isCheat p⊂m sig ¬init ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) (transp-¬∈GenInfo₁ ¬init sentb4) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig ¬init | inj₁ thisStep | step-honest x with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl with sps-avp tr hpk x m∈outs p⊂m sig ¬init ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) (¬subst {P = ∈GenInfo} ¬init (msgSameSig sentb4)) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) {p} hpk p⊂m m∈sm sig ¬init | inj₁ thisStep | step-honest x | m∈outs , refl | inj₁ (valid-part , notBefore) = step-here tr (tr , ¬init , notBefore , mws∈pool , refl , override-target-≡ , valid-part) where mws∈pool : MsgWithSig∈ _ (WithSig.signature Part-sig _ (isSigned sig)) (actionsToSentMessages β outs ++ msgPool pre) mws∈pool = MsgWithSig∈-++ˡ (mkMsgWithSig∈ _ _ p⊂m β thisStep sig refl) -- Unwind is inconvenient to use by itself because we have to do -- induction on Any-Step-elim. The 'honestPartValid' property below -- provides a fairly general result conveniently: for every part -- verifiable with an honest PK, there is a msg with the same -- signature that is valid for some pid. honestPartValid : ∀ {st} → ReachableSystemState st → ∀ {pk nm v sender} → Meta-Honest-PK pk → v ⊂Msg nm → (sender , nm) ∈ msgPool st → (ver : WithVerSig pk v) → ¬ ∈GenInfo (ver-signature ver) → Σ (MsgWithSig∈ pk (ver-signature ver) (msgPool st)) (λ msg → (ValidSenderForPK st (msgPart msg) (msgSender msg) pk)) honestPartValid {st} r {pk = pk} hpk v⊂m m∈pool ver ¬init -- We extract two pieces of important information from the place where the part 'v' -- was first sent: (a) there is a message with the same signature /in the current pool/ -- and (b) its epoch is less than e. = Any-Step-elim (λ { {st = step-peer {pid = pid} (step-honest sps)} (preReach , ¬init , ¬sentb4 , new , refl , ini , valid) tr → mwsAndVspk-stable (step-s preReach (step-peer (step-honest sps))) tr new ini valid ; {st = step-peer {pid = pid} {pre = pre} (step-cheat {pid} sps)} (preReach , ¬init , ¬sentb4 , new , refl , valid) tr → ⊥-elim (¬sentb4 (¬cheatForgeNew {st = pre} (step-cheat sps) refl unit hpk new (transp-¬∈GenInfo₁ ¬init new))) }) (unwind r hpk v⊂m m∈pool ver ¬init) -- Unforgeability is also an important property stating that every part that is -- verified with an honest public key has either been sent by α or is a replay -- of another message sent before. ext-unforgeability' : ∀{α m part pk}{st : SystemState} → ReachableSystemState st -- If a message m has been sent by α, containing part → (α , m) ∈ msgPool st → part ⊂Msg m -- And the part can be verified with an honest public key, → (sig : WithVerSig pk part) → ¬ ∈GenInfo (ver-signature sig) → Meta-Honest-PK pk -- then either the part is a valid part by α (meaning that α can -- sign the part itself) or a message with the same signature has -- been sent previously. → ValidSenderForPK st part α pk ⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability' {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig ¬init hpk with Any-++⁻ (actionsToSentMessages β outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = MsgWithSig∈-++ʳ <⊎$> ⊎-map (ValidSenderForPK-stable st (step-peer sp)) id (ext-unforgeability' st furtherBack p⊆m sig ¬init hpk) ...| inj₁ thisStep with sp ...| step-cheat isCheat with thisStep ...| here refl with isCheat p⊆m sig ¬init ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 = inj₂ (MsgWithSig∈-++ʳ sentb4) ext-unforgeability' {α = α} {m = m} {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig ¬init hpk | inj₁ thisStep | step-honest x with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl = ⊎-map proj₁ MsgWithSig∈-++ʳ (sps-avp st hpk x m∈outs p⊆m sig ¬init) -- The ext-unforgeability' property can be collapsed in a single clause. -- TODO-2: so far, ext-unforgeability is used only to get a MsgWithSig∈ that is passed to -- msgWithSigSentByAuthor, which duplicates some of the reasoning in the proof of -- ext-unforgeability'; should these properties possibly be combined into one simpler proof? ext-unforgeability : ∀{α₀ m part pk}{st : SystemState} → ReachableSystemState st → (α₀ , m) ∈ msgPool st → part ⊂Msg m → (sig : WithVerSig pk part) → ¬ ∈GenInfo (ver-signature sig) → Meta-Honest-PK pk → MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability {α₀} {m} {st = st} rst m∈sm p⊂m sig ¬init hpk with ext-unforgeability' rst m∈sm p⊂m sig ¬init hpk ...| inj₁ p = mkMsgWithSig∈ _ _ p⊂m α₀ m∈sm sig refl ...| inj₂ sentb4 = sentb4 msgWithSigSentByAuthor : ∀ {pk sig}{st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk sig (msgPool st)) → ¬ (∈GenInfo (ver-signature (msgSigned mws))) → (Σ (MsgWithSig∈ pk sig (msgPool st)) λ mws' → ValidSenderForPK st (msgPart mws') (msgSender mws') pk) msgWithSigSentByAuthor step-0 _ () msgWithSigSentByAuthor {pk} {sig} (step-s {pre = pre} preach (step-peer theStep@(step-cheat cheatCons))) hpk mws ¬init with (¬cheatForgeNew theStep refl unit hpk mws ¬init) ...| mws' with msgWithSigSentByAuthor preach hpk mws' (transp-¬∈GenInfo₂ mws ¬init (MsgWithSig∈-++ʳ mws') refl) ...| (mws'' , vpb'') = MsgWithSig∈-++ʳ mws'' , ValidSenderForPK-stable preach (step-peer theStep) vpb'' msgWithSigSentByAuthor (step-s {pre = pre} preach theStep@(step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws ¬init with Any-++⁻ (actionsToSentMessages pid outs) {msgPool pre} (msg∈pool mws) ...| inj₂ furtherBack with msgWithSigSentByAuthor preach hpk (MsgWithSig∈-transp mws furtherBack) ¬init ...| (mws' , vpb') = MsgWithSig∈-++ʳ mws' , ValidSenderForPK-stable preach theStep vpb' msgWithSigSentByAuthor (step-s {pre = pre} preach theStep@(step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws ¬init | inj₁ thisStep with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl with sps-avp preach hpk sps m∈outs (msg⊆ mws) (msgSigned mws) ¬init ...| inj₁ (vpbα₀ , _) = mws , vpbα₀ ...| inj₂ mws' with msgWithSigSentByAuthor preach hpk mws' (transp-¬∈GenInfo₂ mws ¬init (MsgWithSig∈-++ʳ mws') (msgSameSig mws)) ...| (mws'' , vpb'') rewrite sym (msgSameSig mws) = MsgWithSig∈-++ʳ mws'' , ValidSenderForPK-stable preach theStep vpb'' newMsg⊎msgSentB4 : ∀ {pk v m pid sndr s' outs} {st : SystemState} → (r : ReachableSystemState st) → (stP : StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs)) → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) → v ⊂Msg m → (sndr , m) ∈ msgPool (StepPeer-post {pre = st} (step-honest stP)) → ( LYT.send m ∈ outs × ValidSenderForPK (StepPeer-post {pre = st} (step-honest stP)) v pid pk × ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool st))) ⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st) newMsg⊎msgSentB4 {pk} {v} {m} {pid} {sndr} {s'} {outs} {st} r stP pkH sig ¬init v⊂m m∈post with Any-++⁻ (actionsToSentMessages pid outs) m∈post ...| inj₂ m∈preSt = inj₂ (mkMsgWithSig∈ m v v⊂m sndr m∈preSt sig refl) ...| inj₁ nm∈outs with senderMsgPair∈⇒send∈ outs nm∈outs ...| m∈outs , refl with sps-avp r pkH stP m∈outs v⊂m sig ¬init ...| inj₁ newVote = inj₁ (m∈outs , newVote) ...| inj₂ msb4 = inj₂ msb4 -- This could potentially be more general, for example covering the whole SystemState, rather than -- just one peer's state. However, this would put more burden on the user and is not required so -- far. CarrierProp : Set (1ℓ ℓ⊔ ℓ-PeerState) CarrierProp = Part → PeerState → Set module _ (P : CarrierProp) where record PropCarrier (pk : PK) (sig : Signature) (st : SystemState) : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) where constructor mkCarrier field carrStReach : ReachableSystemState st -- Enables use of invariants when proving that steps preserve carrProp carrSent : MsgWithSig∈ pk sig (msgPool st) carrInitd : initialised st (msgSender carrSent) ≡ initd carrValid : ValidSenderForPK st (msgPart carrSent) (msgSender carrSent) pk carrProp : P (msgPart carrSent) (peerStates st (msgSender carrSent)) open PropCarrier public PeerStepPreserves : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) PeerStepPreserves = ∀ {ps' outs pk sig}{pre : SystemState} → (r : ReachableSystemState pre) → (pc : PropCarrier pk sig pre) → (sps : StepPeerState (msgSender (carrSent pc)) (msgPool pre) (initialised pre) (peerStates pre (msgSender (carrSent pc))) (ps' , outs)) → P (msgPart (carrSent pc)) ps' module _ (PSP : PeerStepPreserves) where Carrier-transp : ∀ {pk sig} {pre : SystemState}{post : SystemState} → (theStep : Step pre post) → PropCarrier pk sig pre → PropCarrier pk sig post Carrier-transp {pk} {pre = pre} {post} theStep@(step-peer {pid = pid} {st'} {pre = .pre} sps) pc@(mkCarrier r mws ini vpk prop) with step-s r theStep ...| postReach with sps ...| cheatStep@(step-cheat isch) = mkCarrier postReach (MsgWithSig∈-++ʳ mws) (trans (cong (λ f → f (msgSender mws)) (cheatStepDNMInitialised cheatStep unit)) ini) -- PeerStates not changed by cheat steps (ValidSenderForPK-stable {pre} r (step-peer cheatStep) vpk) (subst (λ ps → P (msgPart mws) (ps (msgSender mws))) (sym (cheatStepDNMPeerStates {pre = pre} (step-cheat isch) unit)) prop) ...| honStep@(step-honest {st = st} sps') with msgSender mws ≟PeerId pid ...| no neq = mkCarrier postReach (MsgWithSig∈-++ʳ mws) (trans (sym (override-target-≢ neq)) ini) (ValidSenderForPK-stable {pre} r (step-peer (step-honest sps')) vpk) (subst (λ ps → P (msgPart mws) ps) (override-target-≢ {f = peerStates pre} neq) prop) ...| yes refl = mkCarrier postReach (MsgWithSig∈-++ʳ mws) override-target-≡ (ValidSenderForPK-stable {part = msgPart mws} {pk = pk} r (step-peer honStep) vpk) (subst (λ ps → P (msgPart mws) ps) (sym override-target-≡) (PSP r pc sps'))
{ "alphanum_fraction": 0.5969136687, "avg_line_length": 58.7949438202, "ext": "agda", "hexsha": "68a847c3bef2db36b95418745a8d5eadaf1f4e69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/Properties.agda", "max_line_length": 164, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6334, "size": 20931 }
open import Type open import Structure.Relator open import Structure.Setoid renaming (_≡_ to _≡ₑ_) module Structure.Sets.ZFC.Classical {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where open import Data.Either as Either using () open import Functional open import Logic.Classical open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Structure.Operator open import Structure.Relator.Proofs open import Structure.Relator.Properties import Structure.Sets.Names open Structure.Sets.Names.From-[∈] (_∈_) open Structure.Sets.Names.Relations (_∈_) open import Structure.Sets.ZFC(_∈_) ⦃ [∈]-binaryRelator ⦄ open import Syntax.Function open import Syntax.Implication open import Syntax.Transitivity private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} private variable x : S module _ ⦃ zfc : ZFC ⦄ where open ZFC(zfc) -- ZFC implies excluded middle. -- Note that this only requires the following set related axioms: -- • Set extensionality (Not really neccessary if every equality is replaced with set equality instead). -- • Axiom of choice (TODO: Is this really neccessary? The proof only uses the choice function on finite sets? Further investigation on choice functions for finite sets would clear this up). -- • Choice functions are functions. -- • Restricted set comprehension. -- • Existence of at least two different sets (In this proof, ∅ and {∅} (𝑇 and 𝐹) is used). -- • Existence of a set containing the two different sets, and the existence of all subsets of this set. -- Also called: Diaconescu's theorem, Goodman–Myhill theorem. excluded-middle-by-choice : ∀{P : Type{ℓ}} → Classical(P) excluded-middle-by-choice{P = P} = intro $ᵢₙₛₜ let instance pos-rel : UnaryRelator(x ↦ P ∨ (x ≡ 𝑇)) pos-rel = [∨]-unaryRelator ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ instance neg-rel : UnaryRelator(x ↦ P ∨ (x ≡ 𝐹)) neg-rel = [∨]-unaryRelator ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ pos = filter (x ↦ P ∨ (x ≡ 𝑇)) BoolSet neg = filter (x ↦ P ∨ (x ≡ 𝐹)) BoolSet -- The contents of pos by definition. A subset of BoolSet which is equal to BoolSet when P, {𝑇} otherwise. pos-containment : (x ∈ pos) ↔ (x ∈ BoolSet) ∧ (P ∨ (x ≡ 𝑇)) pos-containment = restricted-comprehension -- The contents of neg by definition. A subset of BoolSet which is equal to BoolSet when P, {𝐹} otherwise. neg-containment : (x ∈ neg) ↔ (x ∈ BoolSet) ∧ (P ∨ (x ≡ 𝐹)) neg-containment = restricted-comprehension -- pos is non-empty because it should at least contain 𝑇 from filtering BoolSet. instance ne-pos : NonEmpty(pos) ne-pos = [↔]-to-[←] (nonEmpty-filter) ([∃]-intro 𝑇 ⦃ [∧]-intro 𝑇-in-BoolSet ([∨]-introᵣ (\{_} → [↔]-reflexivity)) ⦄) -- neg is non-empty because it should at least contain 𝐹 from filtering BoolSet. instance ne-neg : NonEmpty(neg) ne-neg = [↔]-to-[←] (nonEmpty-filter) ([∃]-intro 𝐹 ⦃ [∧]-intro 𝐹-in-BoolSet ([∨]-introᵣ (\{_} → [↔]-reflexivity)) ⦄) -- Chooses an element in respective sets pos and neg. pos-choose = choose (pair pos neg) pos neg-choose = choose (pair pos neg) neg -- By definition of pos, either P holds or pos-choose have to be 𝑇. pos-choice : P ∨ (pos-choose ≡ 𝑇) pos-choice = [∧]-elimᵣ ([↔]-to-[→] pos-containment (choice {pair pos neg} {pos} ⦃ ne-pos ⦄ ⦃ pair-contains-left ⦄)) -- By definition of neg, either P holds or neg-choose have to be 𝐹. neg-choice : P ∨ (neg-choose ≡ 𝐹) neg-choice = [∧]-elimᵣ ([↔]-to-[→] neg-containment (choice {pair pos neg} {neg} ⦃ ne-neg ⦄ ⦃ pair-contains-right ⦄)) in • ( -- Contrapositive of the argument below states that if pos-choose and neg-choose is inequal, then (¬ P) (_⇒ -- When P holds, both pos and neg is BoolSet, so they are equal. The pos-choose and neg-choose is the choice function applied to the equal sets pos and neg respectively, and because choose is a function (it respects equality, specifically set equality), pos-choose and neg-choose is also equal. P ⇒-[ (\p {x} → [↔]-transitivity (pos-containment {x}) ([↔]-transitivity ([∧]-mapᵣ-[↔] ([↔]-intro (const([∨]-introₗ p)) (const([∨]-introₗ p)))) ([↔]-symmetry (neg-containment {x})))) ] (pos ≡ neg) ⇒-[ [↔]-to-[←] set-extensionality ] (pos ≡ₑ neg) ⇒-[ congruence₂(choose) (reflexivity(_≡ₑ_)) ] (pos-choose ≡ₑ neg-choose) ⇒-end ) ⇒ (P → (pos-choose ≡ₑ neg-choose)) ⇒-[ contrapositiveᵣ ] ((¬ P) ← (pos-choose ≢ neg-choose)) ⇒-end ) • ( -- The case other than P is that pos and neg only contains 𝑇 and 𝐹 respectively. This forces pos-choose and neg-choose to be 𝑇 and 𝐹 respectively, which means that they are inequal. • pos-choice • neg-choice ⇒₂-[ [∧]-intro ] (P ∨ (pos-choose ≡ 𝑇)) ∧ (P ∨ (neg-choose ≡ 𝐹)) ⇒-[ [↔]-to-[←] [∨][∧]-distributivityₗ ] P ∨ ((pos-choose ≡ 𝑇) ∧ (neg-choose ≡ 𝐹)) ⇒-[ Either.mapRight (\{([∧]-intro p0 n1) → [≡][≢]-semitransitivityᵣ([≡][≢]-semitransitivityₗ ([↔]-to-[←] set-extensionality p0) zero-one-ineq) (symmetry(_≡ₑ_) ([↔]-to-[←] set-extensionality n1))}) ] P ∨ (pos-choose ≢ neg-choose) ⇒-end ) ⇒₂-[ Either.mapRight ] (P ∨ (¬ P)) ⇒-end
{ "alphanum_fraction": 0.6248191027, "avg_line_length": 52.6476190476, "ext": "agda", "hexsha": "1daec78cc4875922e4f3782aed83abc252804464", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Sets/ZFC/Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Sets/ZFC/Classical.agda", "max_line_length": 306, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Sets/ZFC/Classical.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1830, "size": 5528 }
------------------------------------------------------------------------------ -- Division program ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module define a division program using repeated subtraction -- (Dybjer 1985). -- Peter Dybjer. Program verification in a logical theory of -- constructions. In Jean-Pierre Jouannaud, editor. Functional -- Programming Languages and Computer Architecture, volume 201 of -- LNCS, 1985, pages 334-349. Appears in revised form as Programming -- Methodology Group Report 26, June 1986. module FOTC.Program.Division.Division where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities ------------------------------------------------------------------------------ postulate div : D → D → D div-eq : ∀ i j → div i j ≡ (if (lt i j) then zero else succ₁ (div (i ∸ j) j)) {-# ATP axiom div-eq #-}
{ "alphanum_fraction": 0.5279560037, "avg_line_length": 35.1935483871, "ext": "agda", "hexsha": "962d0ef64f2c94e6517f1038790f7b630d9e439d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/Division.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/Division.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/Division.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 232, "size": 1091 }
{-# OPTIONS --without-K #-} module Data.ByteString.Primitive.Lazy where open import Data.Word8.Primitive using (Word8) open import Agda.Builtin.Nat using (Nat) open import Data.Colist using (Colist) open import Agda.Builtin.String using (String) open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.IO using (IO) open import Data.Tuple.Base using (Pair) {-# FOREIGN GHC import qualified Data.Word #-} {-# FOREIGN GHC import qualified Data.Text #-} {-# FOREIGN GHC import qualified Data.ByteString.Lazy #-} open import Foreign.Haskell using (Unit) open import Data.ByteString.Primitive.Int postulate ByteStringLazy : Set readBinaryFileLazy : String → IO ByteStringLazy writeBinaryFileLazy : String → ByteStringLazy → IO Unit Colist←Lazy : ByteStringLazy → Colist Word8 Colist→Lazy : Colist Word8 → ByteStringLazy emptyLazy : ByteStringLazy nullLazy : ByteStringLazy → Bool lengthLazy : ByteStringLazy → Int64 headLazy : ByteStringLazy → Word8 tailLazy : ByteStringLazy → ByteStringLazy indexLazy : ByteStringLazy → Int64 → Word8 splitAtLazy : Int64 → ByteStringLazy → Pair ByteStringLazy ByteStringLazy appendLazy : ByteStringLazy → ByteStringLazy → ByteStringLazy {-# COMPILE GHC ByteStringLazy = type Data.ByteString.Lazy.ByteString #-} {-# COMPILE GHC readBinaryFileLazy = ( Data.ByteString.Lazy.readFile . Data.Text.unpack ) #-} {-# COMPILE GHC writeBinaryFileLazy = ( Data.ByteString.Lazy.writeFile . Data.Text.unpack ) #-} {-# COMPILE GHC Colist←Lazy = ( Data.ByteString.Lazy.unpack ) #-} {-# COMPILE GHC Colist→Lazy = ( Data.ByteString.Lazy.pack ) #-} {-# COMPILE GHC emptyLazy = (Data.ByteString.Lazy.empty) #-} {-# COMPILE GHC nullLazy = (Data.ByteString.Lazy.null) #-} {-# COMPILE GHC lengthLazy = (Data.ByteString.Lazy.length) #-} {-# COMPILE GHC headLazy = (Data.ByteString.Lazy.head) #-} {-# COMPILE GHC tailLazy = (Data.ByteString.Lazy.tail) #-} {-# COMPILE GHC indexLazy = (Data.ByteString.Lazy.index) #-} {-# COMPILE GHC appendLazy = (Data.ByteString.Lazy.append) #-} {-# COMPILE GHC splitAtLazy = (Data.ByteString.Lazy.splitAt) #-}
{ "alphanum_fraction": 0.7233348859, "avg_line_length": 35.1967213115, "ext": "agda", "hexsha": "3f77ec7cd273778aefa036d3c629888da37899a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/ByteString/Primitive/Lazy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/ByteString/Primitive/Lazy.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/ByteString/Primitive/Lazy.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 526, "size": 2147 }
module Oscar.Data.Permutation.Properties where open import Data.Permutation.Properties public open import Data.Nat open import Oscar.Data.Vec renaming (delete to deleteV) open import Oscar.Data.Vec.Properties open import Oscar.Data.Permutation ∈-enum : ∀ {n m} (i : Inj n m) → i ∈ enum n m ∈-enum {zero} [] = here ∈-enum {suc n} (i ∷ is) = ∈-map₂ _∷_ (∈-allFin i) (∈-enum is) open import Data.Fin open import Relation.Binary.PropositionalEquality permute-correct : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → [ v ≡Permutation permute p v ] p permute-correct [] [] = λ () permute-correct (p ∷ ps) (_ ∷ _) zero = here permute-correct (p ∷ ps) v@(_ ∷ _) (suc f) = let bs = permute ps (deleteV p v) delresult = permute-correct ps (deleteV p v) in there ((subst (bs [ f ]=_) (lookup-delete-thin p (< ps > f) v) ((delresult f)))) open import Data.Product open import Relation.Binary.PropositionalEquality enumPermutations-complete : ∀ {a n} {A : Set a} → (xs : Vec A n) → ∀ ys → xs ∃≡Permutation ys → ys ∈ enumPermutations xs enumPermutations-complete [] [] ([] , xs=ys|p) = here enumPermutations-complete (x ∷ xs) (y ∷ ys) (p ∷ ps , xs=ys|p∷ps) = {!!}
{ "alphanum_fraction": 0.645295587, "avg_line_length": 35.3235294118, "ext": "agda", "hexsha": "990b68eb38ae35571a2acea530e242d11477ac21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Permutation/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Permutation/Properties.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Permutation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 408, "size": 1201 }
module SubstTheory where open import Prelude open import T -- I originally used postulated extensional equality to reason about -- identical substitutions. As it turns out, it's actually somewhat -- cleaner to appeal to a proof that using identically performing subst -- functions produce the same outputs. ---- (Lots of theory. *Lots*. Too much. Sigh.) module SubstTheory where Ren≡ : ∀ {Γ Γ'}(f g : TRen Γ Γ') → Set Ren≡ f g = ∀ {A} x → f {A} x ≡ g {A} x -- Some theorems about renamings wkeq : ∀{Γ Γ' A} {f g : TRen Γ Γ'} → Ren≡ f g → Ren≡ (wk {A = A} f) (wk g) wkeq eq Z = Refl wkeq eq (S n) = resp S (eq n) -- Prove that applying equal renamings produces equal outputs reneq : ∀{Γ Γ' A} {f g : TRen Γ Γ'} → Ren≡ f g → (e : TExp Γ A) → ren f e ≡ ren g e reneq eq (var x) = resp var (eq x) reneq eq (Λ e) = resp Λ (reneq (wkeq eq) e) reneq eq (e₁ $ e₂) = resp2 _$_ (reneq eq e₁) (reneq eq e₂) reneq eq zero = Refl reneq eq (suc e) = resp suc (reneq eq e) reneq eq (rec e e₀ es) = resp3 rec (reneq eq e) (reneq eq e₀) (reneq (wkeq eq) es) wkid : ∀{Γ A C} (x : A ∈ C :: Γ) → wk renId x ≡ renId x wkid Z = Refl wkid (S n) = Refl renid : ∀{Γ A} (e : TExp Γ A) → ren renId e ≡ id _ e renid (var x) = Refl renid (Λ e) = resp Λ (reneq wkid e ≡≡ renid e) renid (e₁ $ e₂) = resp2 _$_ (renid e₁) (renid e₂) renid zero = Refl renid (suc e) = resp suc (renid e) renid (rec e e₀ es) = resp3 rec (renid e) (renid e₀) (reneq wkid es ≡≡ renid es) wkcomp : ∀ {B Γ Γ'}(f : TRen Γ Γ')(g : TRen B Γ) {C A} (x : A ∈ (C :: B)) → wk (renComp f g) x ≡ (wk f o wk g) x wkcomp f g Z = Refl wkcomp f g (S n) = Refl rencomp : ∀ {B Γ Γ'}(f : TRen Γ Γ')(g : TRen B Γ) {A} (e : TExp B A) → ren (renComp f g) e ≡ (ren f o ren g) e rencomp f g (var x) = Refl rencomp f g (Λ e) = resp Λ (reneq (wkcomp f g) e ≡≡ (rencomp (wk f) (wk g) e)) rencomp f g (e₁ $ e₂) = resp2 _$_ (rencomp f g e₁) (rencomp f g e₂) rencomp f g zero = Refl rencomp f g (suc e) = resp suc (rencomp f g e) rencomp f g (rec e e₀ es) = resp3 rec (rencomp f g e) (rencomp f g e₀) (reneq (wkcomp f g) es ≡≡ (rencomp (wk f) (wk g) es)) Sub≡ : ∀ {Γ Γ'}(f g : TSubst Γ Γ') → Set Sub≡ f g = ∀ {A} x → f {A} x ≡ g {A} x lifteq : ∀{Γ Γ' A} {f g : TSubst Γ Γ'} → Sub≡ f g → Sub≡ (liftγ {A = A} f) (liftγ g) lifteq eq Z = Refl lifteq eq (S n) = resp (λ x → ren S x) (eq n) -- Prove that applying equal substs produces equal outputs subeq : ∀{Γ Γ' A} {f g : TSubst Γ Γ'} → Sub≡ f g → (e : TExp Γ A) → ssubst f e ≡ ssubst g e subeq eq (var x) = eq x subeq eq (Λ e) = resp Λ (subeq (lifteq eq) e) subeq eq (e₁ $ e₂) = resp2 _$_ (subeq eq e₁) (subeq eq e₂) subeq eq zero = Refl subeq eq (suc e) = resp suc (subeq eq e) subeq eq (rec e e₀ es) = resp3 rec (subeq eq e) (subeq eq e₀) (subeq (lifteq eq) es) -- Theorems about renaming and substitution renwklift : ∀{K Γ Δ C}(f : TRen Γ Δ)(g : TSubst K Γ){A}(x : A ∈ (C :: K)) → (ren (wk f) o (liftγ g)) x ≡ liftγ (ren f o g) x renwklift f g Z = Refl renwklift f g (S n) = symm (rencomp (wk f) S (g n)) ≡≡ rencomp S f (g n) rensub : ∀{B Γ Δ}(f : TRen Γ Δ)(g : TSubst B Γ){A}(e : TExp B A) → (ren f o ssubst g) e ≡ ssubst (ren f o g) e rensub f g (var x) = Refl rensub f g (Λ e) = resp Λ ((rensub (wk f) (liftγ g) e) ≡≡ subeq (renwklift f g) e) rensub f g (e₁ $ e₂) = resp2 _$_ (rensub f g e₁) (rensub f g e₂) rensub f g zero = Refl rensub f g (suc e) = resp suc (rensub f g e) rensub f g (rec e e₀ es) = resp3 rec (rensub f g e) (rensub f g e₀) ((rensub (wk f) (liftγ g) es) ≡≡ subeq (renwklift f g) es) liftwk : ∀{K Γ Δ C}(f : TSubst Γ Δ)(g : TRen K Γ){A}(x : A ∈ (C :: K)) → (liftγ f o wk g) x ≡ liftγ (f o g) x liftwk f g Z = Refl liftwk f g (S n) = Refl subren : ∀{B Γ Δ}(f : TSubst Γ Δ)(g : TRen B Γ){A}(e : TExp B A) → (ssubst f o ren g) e ≡ ssubst (f o g) e subren f g (var x) = Refl subren f g (Λ e) = resp Λ ((subren (liftγ f) (wk g) e) ≡≡ subeq (liftwk f g) e) subren f g (e₁ $ e₂) = resp2 _$_ (subren f g e₁) (subren f g e₂) subren f g zero = Refl subren f g (suc e) = resp suc (subren f g e) subren f g (rec e e₀ es) = resp3 rec (subren f g e) (subren f g e₀) ((subren (liftγ f) (wk g) es) ≡≡ subeq (liftwk f g) es) -- first monad law, the second holds definitionally liftid : ∀{Γ A C} (x : A ∈ C :: Γ) → liftγ emptyγ x ≡ emptyγ x liftid Z = Refl liftid (S n) = Refl subid : ∀{Γ}{A} (e : TExp Γ A) → ssubst emptyγ e ≡ id _ e subid (var x) = Refl subid (Λ e) = resp Λ (subeq liftid e ≡≡ subid e) subid (e₁ $ e₂) = resp2 _$_ (subid e₁) (subid e₂) subid zero = Refl subid (suc e) = resp suc (subid e) subid (rec e e₀ es) = resp3 rec (subid e) (subid e₀) (subeq liftid es ≡≡ subid es) -- third monad law liftcomp : ∀ {B Γ Γ'}(f : TSubst Γ Γ')(g : TSubst B Γ) {C A} (x : A ∈ (C :: B)) → liftγ (subComp f g) x ≡ (ssubst (liftγ f) o liftγ g) x liftcomp f g Z = Refl liftcomp f g (S n) = rensub S f (g n) ≡≡ symm (subren (liftγ f) S (g n)) subcomp : ∀{B Γ Γ'}(f : TSubst Γ Γ')(g : TSubst B Γ){A}(t : TExp B A) → ssubst (subComp f g) t ≡ (ssubst f o ssubst g) t subcomp f g (var x) = Refl subcomp f g (Λ e) = resp Λ (subeq (liftcomp f g) e ≡≡ (subcomp (liftγ f) (liftγ g) e)) subcomp f g (e₁ $ e₂) = resp2 _$_ (subcomp f g e₁) (subcomp f g e₂) subcomp f g zero = Refl subcomp f g (suc e) = resp suc (subcomp f g e) subcomp f g (rec e e₀ es) = resp3 rec (subcomp f g e) (subcomp f g e₀) (subeq (liftcomp f g) es ≡≡ (subcomp (liftγ f) (liftγ g) es)) -- The lemma about combining substitutions that we are actually -- going to need. Being able to prove this lemma was the cause -- of most of the grief during this proof. combine-subst-noob : ∀ {Γ A C} → (γ : TSubst Γ []) → (e : TExp (A :: Γ) C) → (e' : TCExp A) → ssubst (extendγ γ e') e ≡ ssubst (singγ e') (ssubst (liftγ γ) e) combine-subst-noob γ e e' = subcomp (singγ e') (liftγ γ) e -- A lemma we need to define our relations on substs that respect relns extend-nofail-s : ∀{Γ Γ' A B} → (γ : TSubst Γ Γ') → (e : TExp Γ' A) → (n : B ∈ Γ) → γ n ≡ (extendγ γ e) (S n) extend-nofail-s γ e n = symm (subren (singγ e) S (γ n) ≡≡ subid (γ n)) -- A closed subst is the identity closed-is-empty-ren : (γ : TRen [] []) → Ren≡ γ renId closed-is-empty-ren γ () closed-is-empty : (γ : TSubst [] []) → Sub≡ γ emptyγ closed-is-empty γ () -- A substitution made on a closed term is the identity substitution closed-ren : ∀{A} → (γ : TRen [] []) → (e : TCExp A) → ren γ e ≡ e closed-ren γ e = reneq (closed-is-empty-ren γ) e ≡≡ renid e closed-subst : ∀{A} → (γ : TSubst [] []) → (e : TCExp A) → ssubst γ e ≡ e closed-subst γ e = subeq (closed-is-empty γ) e ≡≡ subid e -- lift of a closed subst, also identity - feel like there is a nicer way to do this lift-closed-is-empty : ∀{A} (γ : TSubst [] []) → Sub≡ (liftγ {A = A} γ) emptyγ lift-closed-is-empty γ Z = Refl lift-closed-is-empty γ (S x) = resp (ren _) (closed-is-empty γ x) lift-closed-subst : ∀{A B} → (γ : TSubst [] []) → (e : TExp (B :: []) A) → ssubst (liftγ γ) e ≡ e lift-closed-subst γ e = subeq (lift-closed-is-empty γ) e ≡≡ subid e compose-subst-noob : ∀{Γ} {C} → (γ : TSubst Γ []) → (e : TExp Γ C) → {A : TTp} → (x : A ∈ C :: Γ) → subComp (singγ (ssubst γ e)) (liftγ γ) x ≡ subComp γ (singγ e) x compose-subst-noob γ e Z = Refl compose-subst-noob γ e (S x) = subren (singγ (ssubst γ e)) (λ y → S y) (γ x) ≡≡ subid (γ x) drop-fix : ∀{Γ A} → (γ : TSubst (A :: Γ) []) → Sub≡ γ (subComp (singγ (γ Z)) (liftγ (dropγ γ))) drop-fix γ Z = Refl drop-fix γ (S x) = symm (subren (singγ (γ Z)) S (γ (S x)) ≡≡ subid (γ (S x))) open SubstTheory public
{ "alphanum_fraction": 0.526761235, "avg_line_length": 42.8010204082, "ext": "agda", "hexsha": "636d3ad446ba8f304765d9dd4ea7a197328d3250", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "SubstTheory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "SubstTheory.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "SubstTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 3431, "size": 8389 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Half adjoint equivalences ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.HalfAdjointEquivalence where open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Level open import Relation.Binary.PropositionalEquality -- Half adjoint equivalences (see the HoTT book). record _≃_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where field to : A → B from : B → A left-inverse-of : ∀ x → from (to x) ≡ x right-inverse-of : ∀ x → to (from x) ≡ x left-right : ∀ x → cong to (left-inverse-of x) ≡ right-inverse-of (to x) -- Half adjoint equivalences can be turned into inverses. inverse : A ↔ B inverse = Inv.inverse to from left-inverse-of right-inverse-of -- The forward direction of a half adjoint equivalence is injective. injective : ∀ {x y} → to x ≡ to y → x ≡ y injective {x} {y} to-x≡to-y = x ≡⟨ sym (left-inverse-of _) ⟩ from (to x) ≡⟨ cong from to-x≡to-y ⟩ from (to y) ≡⟨ left-inverse-of _ ⟩ y ∎ where open ≡-Reasoning -- Inverses can be turned into half adjoint equivalences. -- -- (This proof is based on one in the HoTT book.) ↔→≃ : ∀ {a b} {A : Set a} {B : Set b} → A ↔ B → A ≃ B ↔→≃ A↔B = record { to = to ⟨$⟩_ ; from = from ⟨$⟩_ ; left-inverse-of = left-inverse-of ; right-inverse-of = right-inverse-of ; left-right = left-right } where open ≡-Reasoning open module A↔B = Inverse A↔B using (to; from; left-inverse-of) right-inverse-of : ∀ x → to ⟨$⟩ (from ⟨$⟩ x) ≡ x right-inverse-of x = to ⟨$⟩ (from ⟨$⟩ x) ≡⟨ sym (A↔B.right-inverse-of _) ⟩ to ⟨$⟩ (from ⟨$⟩ (to ⟨$⟩ (from ⟨$⟩ x))) ≡⟨ cong (to ⟨$⟩_) (left-inverse-of _) ⟩ to ⟨$⟩ (from ⟨$⟩ x) ≡⟨ A↔B.right-inverse-of _ ⟩ x ∎ left-right : ∀ x → cong (to ⟨$⟩_) (left-inverse-of x) ≡ right-inverse-of (to ⟨$⟩ x) left-right x = cong (to ⟨$⟩_) (left-inverse-of x) ≡⟨⟩ trans refl (cong (to ⟨$⟩_) (left-inverse-of _)) ≡⟨ cong (λ p → trans p (cong (to ⟨$⟩_) _)) (sym (trans-symˡ (A↔B.right-inverse-of _))) ⟩ trans (trans (sym (A↔B.right-inverse-of _)) (A↔B.right-inverse-of _)) (cong (to ⟨$⟩_) (left-inverse-of _)) ≡⟨ trans-assoc (sym (A↔B.right-inverse-of _)) ⟩ trans (sym (A↔B.right-inverse-of _)) (trans (A↔B.right-inverse-of _) (cong (to ⟨$⟩_) (left-inverse-of _))) ≡⟨ cong (trans (sym (A↔B.right-inverse-of _))) lemma ⟩ trans (sym (A↔B.right-inverse-of _)) (trans (cong (to ⟨$⟩_) (left-inverse-of _)) (trans (A↔B.right-inverse-of _) refl)) ≡⟨⟩ right-inverse-of (to ⟨$⟩ x) ∎ where lemma = trans (A↔B.right-inverse-of _) (cong (to ⟨$⟩_) (left-inverse-of _)) ≡⟨ cong (trans (A↔B.right-inverse-of _)) (sym (cong-id _)) ⟩ trans (A↔B.right-inverse-of _) (cong id (cong (to ⟨$⟩_) (left-inverse-of _))) ≡⟨ sym (naturality A↔B.right-inverse-of) ⟩ trans (cong ((to ⟨$⟩_) ∘ (from ⟨$⟩_)) (cong (to ⟨$⟩_) (left-inverse-of _))) (A↔B.right-inverse-of _) ≡⟨ cong (λ p → trans p (A↔B.right-inverse-of _)) (sym (cong-∘ _)) ⟩ trans (cong ((to ⟨$⟩_) ∘ (from ⟨$⟩_) ∘ (to ⟨$⟩_)) (left-inverse-of _)) (A↔B.right-inverse-of _) ≡⟨ cong (λ p → trans p (A↔B.right-inverse-of _)) (cong-∘ _) ⟩ trans (cong (to ⟨$⟩_) (cong ((from ⟨$⟩_) ∘ (to ⟨$⟩_)) (left-inverse-of _))) (A↔B.right-inverse-of _) ≡⟨ cong (λ p → trans (cong (to ⟨$⟩_) p) _) (cong-≡id left-inverse-of) ⟩ trans (cong (to ⟨$⟩_) (left-inverse-of _)) (A↔B.right-inverse-of _) ≡⟨ cong (trans (cong (to ⟨$⟩_) (left-inverse-of _))) (sym (trans-reflʳ _)) ⟩ trans (cong (to ⟨$⟩_) (left-inverse-of _)) (trans (A↔B.right-inverse-of _) refl) ∎
{ "alphanum_fraction": 0.4577039275, "avg_line_length": 40.649122807, "ext": "agda", "hexsha": "268d03d46acecaac6be6e0f7cdf1688fb687e7c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/HalfAdjointEquivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/HalfAdjointEquivalence.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/HalfAdjointEquivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1450, "size": 4634 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive open import Agda.Primitive.Cubical open import Agda.Builtin.Bool variable a p : Level A : Set a P : A → Set p x y : A refl : x ≡ x refl {x = x} = λ _ → x data Interval : Set where left right : Interval line : left ≡ right h2 : Bool → Interval h2 true = left h2 false = right -- `left` and `right` are distinct canonical forms, -- so `h2 ? = left` imples `? = true`. -- -- Added this test to make sure we do not always give up on -- injectivity when targeting a HIT. _ : h2 _ ≡ left _ = refl
{ "alphanum_fraction": 0.6253968254, "avg_line_length": 18.5294117647, "ext": "agda", "hexsha": "20c425a205cc3557297aa94a7e5871f6f23bb428", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/InjectivityHITs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/InjectivityHITs.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/InjectivityHITs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 200, "size": 630 }
{-# OPTIONS --sized-types #-} module SList.Order {A : Set}(_≤_ : A → A → Set) where open import List.Sorted _≤_ open import Size open import SList data _*≤_ : {ι : Size} → A → SList A {ι} → Set where genx : {ι : Size}{b : A} → (_*≤_) {↑ ι} b snil gecx : {ι : Size}{b x : A}{xs : SList A {ι}} → b ≤ x → b *≤ xs → b *≤ (x ∙ xs) data _≤*_ : {ι : Size} → SList A {ι} → A → Set where lenx : {ι : Size}{t : A} → (_≤*_) {↑ ι} snil t lecx : {ι : Size}{x t : A}{xs : SList A {ι}} → x ≤ t → xs ≤* t → (x ∙ xs) ≤* t
{ "alphanum_fraction": 0.3716814159, "avg_line_length": 27.12, "ext": "agda", "hexsha": "f1aab2fd78ddcd60d189b7079ad13e2aa3dac2f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SList/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SList/Order.agda", "max_line_length": 53, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SList/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 253, "size": 678 }
{-# OPTIONS --copatterns #-} module examplesPaperJFP.IOGraphicsLib where open import Data.Bool.Base open import Data.Char.Base open import Data.Nat.Base hiding (_⊓_; _+_; _*_) open import Data.List.Base hiding (_++_) open import Data.Integer.Base hiding (suc) open import Data.String.Base open import Data.Maybe.Base open import Function open import Size open import SizedIO.Base open import SizedIO.IOGraphicsLib hiding (GraphicsCommands; GraphicsResponses; GraphicsInterface; IOGraphics) renaming (Size to WindowSize) open import NativeInt --PrimTypeHelpers open import NativeIO data GraphicsCommands : Set where getWindowEvent : Window → GraphicsCommands openWindow : String → Maybe Point → ℕ → ℕ → RedrawMode → Maybe Word32 → GraphicsCommands closeWindow : Window → GraphicsCommands drawInWindow : Window → Graphic → GraphicsCommands GraphicsResponses : GraphicsCommands → Set GraphicsResponses (getWindowEvent _) = Event GraphicsResponses (openWindow _ _ _ _ _ _) = Window GraphicsResponses (closeWindow _) = Unit GraphicsResponses (drawInWindow _ _) = Unit GraphicsInterface : IOInterface Command GraphicsInterface = GraphicsCommands Response GraphicsInterface = GraphicsResponses IOGraphics : Size → Set → Set IOGraphics i = IO GraphicsInterface i translateNative : (c : GraphicsCommands) → NativeIO (GraphicsResponses c) translateNative (getWindowEvent w) = nativeGetWindowEvent w translateNative (openWindow str point n1 n2 m w) = nativeOpenWindowExNat str point n1 n2 m w translateNative (closeWindow w) = nativeCloseWindow w translateNative (drawInWindow w g) = nativeDrawInWindow w g
{ "alphanum_fraction": 0.7004883342, "avg_line_length": 33.5090909091, "ext": "agda", "hexsha": "1c148f38a445faa847242d5840150a73f56122d8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/IOGraphicsLib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/IOGraphicsLib.agda", "max_line_length": 139, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/IOGraphicsLib.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 437, "size": 1843 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Modulo.Base where open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Data.Empty open import Cubical.Data.Fin open import Cubical.Data.Nat open import Cubical.Data.Unit renaming (Unit to ⊤) open import Cubical.Relation.Nullary NonZero : ℕ → Type₀ NonZero 0 = ⊥ NonZero _ = ⊤ private variable ℓ : Level k : ℕ -- The Modulo type is similar to the Fin type, but instead of being -- inhabited by canonical values, the inhabitants are all naturals, -- and paths are added between numbers that have the same residue. -- -- This representation makes it easier to do certain arithmetic -- without changing the modulus. For instance, we can just add any -- natural to a Modulo k to get another, whereas with Fin k, we must -- calculate the canonical representative. -- -- The reason the path constructor is guarded is to avoid adding -- non-trivial path structure to the k=0 case. If it were not guarded, -- each `Modulo 0` would become like the circle, and guarding the -- constructor is somewhat easier to work with than truncation. -- -- Note also that unlike `Fin 0`, `Modulo 0` is equivalent to the naturals. data Modulo (k : ℕ) : Type₀ where embed : (n : ℕ) → Modulo k pre-step : NonZero k → (n : ℕ) → embed n ≡ embed (k + n) -- When we are working with k = suc k₀, the `step` alias is much -- we can use this alias. pattern step n i = pre-step _ n i -- Helper to avoid having to case on `k` in certain places. ztep : ∀{k} n → Path (Modulo k) (embed n) (embed (k + n)) ztep {0} n = refl ztep {suc k} n = step n -- The standard eliminator for `Modulo`. elim : (P : ∀ k → Modulo k → Type ℓ) → (e : ∀ k n → P k (embed n)) → (st : ∀ k n → PathP (λ i → P (suc k) (step n i)) (e (suc k) n) (e (suc k) (suc k + n))) → (m : Modulo k) → P k m elim P e st (embed n) = e _ n elim {k = suc k} P e st (step n i) = st k n i
{ "alphanum_fraction": 0.6850665352, "avg_line_length": 32.7258064516, "ext": "agda", "hexsha": "c7005a40756f7e74078344257c0754bdd5a9c75a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/Modulo/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/Modulo/Base.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/Modulo/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 617, "size": 2029 }
------------------------------------------------------------------------ -- The list container ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Container.List {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_; module _⇔_) open import Prelude as P hiding (List; []; _∷_; id; _∘_) open import Bag-equivalence eq using () renaming (_≈-bag_ to _≈-bagL_; _∈_ to _∈L_; Any to AnyL) open import Bijection eq using (_↔_; module _↔_; Σ-≡,≡↔≡) open import Container eq open import Fin eq open import Function-universe eq open import H-level.Closure eq import List eq as L open import Surjection eq using (_↠_) ------------------------------------------------------------------------ -- The type -- Lists. List : Container lzero List = ℕ ▷ Fin ------------------------------------------------------------------------ -- The definitions of lists and bag equivalence for lists given in -- Container/Container.List and in Prelude/Bag-equivalence are closely -- related -- There is a split surjection from ⟦ List ⟧ A to P.List A. List↠List : {A : Type} → ⟦ List ⟧ A ↠ P.List A List↠List {A} = record { logical-equivalence = record { to = uncurry to ; from = from } ; right-inverse-of = to∘from } where to : (n : ℕ) → (Fin n → A) → P.List A to zero f = P.[] to (suc n) f = P._∷_ (f fzero) (to n (f ∘ fsuc)) from = λ xs → (L.length xs , L.index xs) to∘from : ∀ xs → uncurry to (from xs) ≡ xs to∘from P.[] = refl _ to∘from (P._∷_ x xs) = cong (P._∷_ x) (to∘from xs) -- If we assume that equality of functions is extensional, then we can -- also prove that the two definitions are isomorphic. List↔List : Extensionality lzero lzero → {A : Type} → ⟦ List ⟧ A ↔ P.List A List↔List ext {A} = record { surjection = List↠List ; left-inverse-of = uncurry from∘to } where open _↠_ List↠List from∘to : ∀ n f → from (to (n , f)) ≡ (n , f) from∘to zero f = cong (_,_ _) (apply-ext ext λ ()) from∘to (suc n) f = (suc (L.length (to xs)) , L.index (P._∷_ x (to xs))) ≡⟨ elim¹ (λ {ys} _ → _≡_ {A = ⟦ List ⟧ A} (suc (L.length (to xs)) , L.index (P._∷_ x (to xs))) (suc (proj₁ ys) , [ (λ _ → x) , proj₂ ys ])) (cong (suc (L.length (to xs)) ,_) $ apply-ext ext [ (λ _ → refl _) , (λ _ → refl _) ]) (from∘to n (f ∘ inj₂)) ⟩ (suc n , [ (λ _ → x) , f ∘ inj₂ ]) ≡⟨ cong (_,_ _) (apply-ext ext [ (λ _ → refl _) , (λ _ → refl _) ]) ⟩∎ (suc n , f) ∎ where x = f (inj₁ tt) xs = (n , f ∘ inj₂) -- The two definitions of Any are isomorphic (both via "to" and -- "from"). Any↔Any-to : {A : Type} (P : A → Type) (xs : ⟦ List ⟧ A) → Any P xs ↔ AnyL P (_↠_.to List↠List xs) Any↔Any-to {A} P = uncurry Any↔Any-to′ where Any↔Any-to′ : (n : ℕ) (lkup : Fin n → A) → Any {C = List} P (n , lkup) ↔ AnyL P (_↠_.to List↠List (n , lkup)) Any↔Any-to′ zero lkup = (∃ λ (p : Fin zero) → P (lkup p)) ↔⟨ ∃-Fin-zero _ ⟩ ⊥ □ Any↔Any-to′ (suc n) lkup = (∃ λ (p : Fin (suc n)) → P (lkup p)) ↔⟨ ∃-Fin-suc _ ⟩ P (lkup fzero) ⊎ Any {C = List} P (n , lkup ∘ fsuc) ↔⟨ id ⊎-cong Any↔Any-to′ n (lkup ∘ fsuc) ⟩ P (lkup fzero) ⊎ AnyL P (_↠_.to List↠List (n , lkup ∘ fsuc)) □ Any-from↔Any : {A : Type} (P : A → Type) (xs : P.List A) → Any P (_↠_.from List↠List xs) ↔ AnyL P xs Any-from↔Any P P.[] = (∃ λ (p : Fin zero) → P (L.index P.[] p)) ↔⟨ ∃-Fin-zero _ ⟩ ⊥ □ Any-from↔Any P (P._∷_ x xs) = (∃ λ (p : Fin (suc (L.length xs))) → P (L.index (P._∷_ x xs) p)) ↔⟨ ∃-Fin-suc _ ⟩ P x ⊎ Any {C = List} P (_↠_.from List↠List xs) ↔⟨ id ⊎-cong Any-from↔Any P xs ⟩ P x ⊎ AnyL P xs □ -- The definition of bag equivalence in Bag-equivalence and the one in -- Container, instantiated with the List container, are logically -- equivalent (both via "to" and "from"). ≈-⇔-to-≈-to : {A : Type} {xs ys : ⟦ List ⟧ A} → xs ≈-bag ys ⇔ _↠_.to List↠List xs ≈-bagL _↠_.to List↠List ys ≈-⇔-to-≈-to {xs = xs} {ys} = record { to = λ xs≈ys z → z ∈L (_↠_.to List↠List xs) ↔⟨ inverse $ Any↔Any-to _ xs ⟩ z ∈ xs ↔⟨ xs≈ys z ⟩ z ∈ ys ↔⟨ Any↔Any-to _ ys ⟩ z ∈L (_↠_.to List↠List ys) □ ; from = λ xs≈ys z → z ∈ xs ↔⟨ Any↔Any-to _ xs ⟩ z ∈L (_↠_.to List↠List xs) ↔⟨ xs≈ys z ⟩ z ∈L (_↠_.to List↠List ys) ↔⟨ inverse $ Any↔Any-to _ ys ⟩ z ∈ ys □ } ≈-⇔-from-≈-from : {A : Type} {xs ys : P.List A} → xs ≈-bagL ys ⇔ _↠_.from List↠List xs ≈-bag _↠_.from List↠List ys ≈-⇔-from-≈-from {xs = xs} {ys} = record { to = λ xs≈ys z → z ∈ (_↠_.from List↠List xs) ↔⟨ Any-from↔Any _ xs ⟩ z ∈L xs ↔⟨ xs≈ys z ⟩ z ∈L ys ↔⟨ inverse $ Any-from↔Any _ ys ⟩ z ∈ (_↠_.from List↠List ys) □ ; from = λ xs≈ys z → z ∈L xs ↔⟨ inverse $ Any-from↔Any _ xs ⟩ z ∈ (_↠_.from List↠List xs) ↔⟨ xs≈ys z ⟩ z ∈ (_↠_.from List↠List ys) ↔⟨ Any-from↔Any _ ys ⟩ z ∈L ys □ } ------------------------------------------------------------------------ -- Constructors [] : {A : Type} → ⟦ List ⟧ A [] = (zero , λ ()) infixr 5 _∷_ _∷_ : {A : Type} → A → ⟦ List ⟧ A → ⟦ List ⟧ A x ∷ (n , lkup) = (suc n , [ (λ _ → x) , lkup ]) -- Even if we don't assume extensionality we can prove that -- intensionally distinct implementations of the constructors are bag -- equivalent. []≈ : {A : Type} {lkup : _ → A} → _≈-bag_ {C₂ = List} [] (zero , lkup) []≈ _ = record { surjection = record { logical-equivalence = record { to = λ { (() , _) } ; from = λ { (() , _) } } ; right-inverse-of = λ { (() , _) } } ; left-inverse-of = λ { (() , _) } } ∷≈ : ∀ {A : Type} {n} {lkup : _ → A} → _≈-bag_ {C₂ = List} (lkup (inj₁ tt) ∷ (n , lkup ∘ inj₂)) (suc n , lkup) ∷≈ _ = record { surjection = record { logical-equivalence = record { to = λ { (inj₁ tt , eq) → (inj₁ tt , eq) ; (inj₂ s , eq) → (inj₂ s , eq) } ; from = λ { (inj₁ tt , eq) → (inj₁ tt , eq) ; (inj₂ s , eq) → (inj₂ s , eq) } } ; right-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } ; left-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } -- Any lemmas for the constructors. Any-[] : {A : Type} (P : A → Type) → Any P [] ↔ ⊥₀ Any-[] _ = record { surjection = record { logical-equivalence = record { to = λ { (() , _) } ; from = λ () } ; right-inverse-of = λ () } ; left-inverse-of = λ { (() , _) } } Any-∷ : ∀ {A : Type} (P : A → Type) {x xs} → Any P (x ∷ xs) ↔ P x ⊎ Any P xs Any-∷ _ = record { surjection = record { logical-equivalence = record { to = λ { (inj₁ tt , eq) → inj₁ eq ; (inj₂ s , eq) → inj₂ (s , eq) } ; from = λ { (inj₁ eq) → (inj₁ tt , eq) ; (inj₂ (s , eq)) → (inj₂ s , eq) } } ; right-inverse-of = λ { (inj₁ eq) → refl _ ; (inj₂ (s , eq)) → refl _ } } ; left-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } ------------------------------------------------------------------------ -- More functions -- A fold for lists. (Well, this is not a catamorphism, it is a -- paramorphism.) fold : {A B : Type} → B → (A → ⟦ List ⟧ A → B → B) → ⟦ List ⟧ A → B fold {A} {B} nl cns = uncurry fold′ where fold′ : (n : ℕ) → (Fin n → A) → B fold′ zero lkup = nl fold′ (suc n) lkup = cns (lkup fzero) (n , lkup ∘ fsuc) (fold′ n (lkup ∘ fsuc)) -- A lemma which can be used to prove properties about fold. -- -- The "respects bag equivalence" argument could be omitted if -- equality of functions were extensional. fold-lemma : ∀ {A B : Type} {nl : B} {cns : A → ⟦ List ⟧ A → B → B} (P : ⟦ List ⟧ A → B → Type) → (∀ xs ys → xs ≈-bag ys → ∀ b → P xs b → P ys b) → P [] nl → (∀ x xs b → P xs b → P (x ∷ xs) (cns x xs b)) → ∀ xs → P xs (fold nl cns xs) fold-lemma {A} {nl = nl} {cns} P resp P-nl P-cns = uncurry fold′-lemma where fold′-lemma : ∀ n (lkup : Fin n → A) → P (n , lkup) (fold nl cns (n , lkup)) fold′-lemma zero lkup = resp _ _ []≈ _ P-nl fold′-lemma (suc n) lkup = resp _ _ ∷≈ _ $ P-cns _ _ _ $ fold′-lemma n (lkup ∘ fsuc) -- Why have I included both fold and fold-lemma rather than simply a -- dependent eliminator? I tried this, and could easily define the -- functions I wanted to define. However, the functions were defined -- together with (partial) correctness proofs, and were unnecessarily -- hard to read. I wanted to be able to define functions which were -- easy to read, like the _++_ function below, and then have the -- option to prove properties about them, like Any-++. -- -- Unfortunately this turned out to be harder than expected. When -- proving the Any-++ lemma it seemed as if I had to prove that _++_ -- preserves bag equivalence in its first argument in order to -- instantiate the "respects bag equivalence" argument. However, my -- preferred proof of this property uses Any-++… -- -- An alternative could be to assume that equality of functions is -- extensional, in which case the "respects bag equivalence" argument -- could be removed. Another option would be to listen to Conor -- McBride and avoid higher-order representations of first-order data. -- Append. infixr 5 _++_ _++_ : {A : Type} → ⟦ List ⟧ A → ⟦ List ⟧ A → ⟦ List ⟧ A xs ++ ys = fold ys (λ z _ zs → z ∷ zs) xs -- An Any lemma for append. Any-++ : ∀ {A : Type} (P : A → Type) xs ys → Any P (xs ++ ys) ↔ Any P xs ⊎ Any P ys Any-++ P xs ys = fold-lemma (λ xs xs++ys → Any P xs++ys ↔ Any P xs ⊎ Any P ys) (λ us vs us≈vs us++ys hyp → Any P us++ys ↔⟨ hyp ⟩ Any P us ⊎ Any P ys ↔⟨ _⇔_.to (∼⇔∼″ us vs) us≈vs P ⊎-cong id ⟩ Any P vs ⊎ Any P ys □) (Any P ys ↔⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ Any P ys ↔⟨ inverse (Any-[] P) ⊎-cong id ⟩ Any P [] ⊎ Any P ys □) (λ x xs xs++ys ih → Any P (x ∷ xs++ys) ↔⟨ Any-∷ P ⟩ P x ⊎ Any P xs++ys ↔⟨ id ⊎-cong ih ⟩ P x ⊎ Any P xs ⊎ Any P ys ↔⟨ ⊎-assoc ⟩ (P x ⊎ Any P xs) ⊎ Any P ys ↔⟨ inverse (Any-∷ P) ⊎-cong id ⟩ Any P (x ∷ xs) ⊎ Any P ys □) xs
{ "alphanum_fraction": 0.4558823529, "avg_line_length": 35.900621118, "ext": "agda", "hexsha": "1cce8fbcfcd7886656ecbfaeb3542f4d79abdaf8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/List.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 4006, "size": 11560 }
{-# OPTIONS --erased-cubical --safe #-} module Music where open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; _≤?_) open import Data.Integer using (ℤ; +_) open import Data.List using (List; foldr; []; _∷_; reverse; sum; map) open import Data.Product using (_×_; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_; replicate; concat; zipWith; toList; _++_; foldr₁; take; drop) renaming (map to vmap) open import Function using (_∘_) open import Data.Nat.Properties using (<⇒≤) open import Relation.Nullary using (yes; no) open import Relation.Binary.PropositionalEquality using (sym; subst) open import Nat open import Note open import Pitch open import Interval -- A point in the music grid, which can either be a tone, -- a continuation of a previous tone, or a rest. data Point : Set where tone : Pitch → Point hold : Pitch → Point rest : Point data Melody (n : ℕ) : Set where melody : Vec Point n → Melody n unmelody : {n : ℕ} → Melody n → Vec Point n unmelody (melody ps) = ps infixr 5 _m++_ _m++_ : {m n : ℕ} → Melody m → Melody n → Melody (m + n) melody a m++ melody b = melody (a ++ b) note→melody : (n : Note) → Melody (noteDuration n) note→melody (tone zero p) = melody [] note→melody (tone (suc d) p) = melody (tone p ∷ replicate (hold p)) note→melody (rest _) = melody (replicate rest) notes→melody : (ns : List Note) → Melody (sum (map noteDuration ns)) notes→melody [] = melody [] notes→melody (n ∷ ns) = note→melody n m++ notes→melody ns pitches→melody : {n : ℕ} → (d : Duration) → (ps : Vec Pitch n) → Melody (n * d) pitches→melody d ps = melody (concat (vmap (unmelody ∘ note→melody ∘ tone d) ps)) -- Assumes melody is well-formed in that a held note has the -- same pitch as the note before it. -- Does not consolidate rests. melody→notes : {n : ℕ} → Melody n → List Note melody→notes (melody m) = (reverse ∘ mn 0 ∘ reverse ∘ toList) m where mn : ℕ → List Point → List Note -- c is the number of held points mn c [] = [] mn c (tone p ∷ ps) = tone (suc c) p ∷ mn 0 ps mn c (hold _ ∷ ps) = mn (suc c) ps mn c (rest ∷ ps) = rest 1 ∷ mn 0 ps transposePoint : ℤ → Point → Point transposePoint k (tone p) = tone (transposePitch k p) transposePoint k (hold p) = hold (transposePitch k p) transposePoint k rest = rest transposeMelody : {n : ℕ} → ℤ → Melody n → Melody n transposeMelody k = melody ∘ vmap (transposePoint k) ∘ unmelody data Chord (n : ℕ) : Set where chord : Vec Point n → Chord n unchord : {n : ℕ} → Chord n → Vec Point n unchord (chord ps) = ps -- We represent music as a v × d grid where v is the number of voices and d is the duration. -- The primary representation is as parallel melodies (counterpoint). data Counterpoint (v : ℕ) (d : ℕ): Set where cp : Vec (Melody d) v → Counterpoint v d uncp : {v d : ℕ} → Counterpoint v d → Vec (Melody d) v uncp (cp m) = m -- An alternative representation of music is as a series of chords (harmonic progression). data Harmony (v : ℕ) (d : ℕ): Set where harmony : Vec (Chord v) d → Harmony v d unharmony : {v d : ℕ} → Harmony v d → Vec (Chord v) d unharmony (harmony h) = h pitches→harmony : {n : ℕ} (d : Duration) → (ps : Vec Pitch n) → Harmony n d pitches→harmony zero ps = harmony [] pitches→harmony (suc d) ps = harmony (chord (vmap tone ps) ∷ replicate (chord (vmap hold ps))) pitchPair→Harmony : (d : Duration) → PitchPair → Harmony 2 d pitchPair→Harmony d (p , q) = pitches→harmony d (p ∷ q ∷ []) pitchInterval→Harmony : (d : Duration) → PitchInterval → Harmony 2 d pitchInterval→Harmony d = pitchPair→Harmony d ∘ pitchIntervalToPitchPair {- pitchIntervalsToCounterpoint : PitchInterval → Counterpoint pitchIntervalsToCounterpoint = pitchPairToCounterpoint ∘ pitchIntervalToPitchPair -} addEmptyVoice : {v d : ℕ} → Harmony v d → Harmony (suc v) d addEmptyVoice (harmony h) = harmony (vmap (chord ∘ (rest ∷_) ∘ unchord) h) infixl 5 _+H+_ _+H+_ : {v d d' : ℕ} → Harmony v d → Harmony v d' → Harmony v (d + d') h +H+ h' = harmony (unharmony h ++ unharmony h') foldIntoHarmony : {k n : ℕ} (ds : Vec Duration (suc k)) → (pss : Vec (Vec Pitch n) (suc k)) → Harmony n (foldr₁ _+_ ds) foldIntoHarmony (d ∷ []) (ps ∷ []) = pitches→harmony d ps foldIntoHarmony (d ∷ d' ∷ ds) (ps ∷ ps' ∷ pss) = (pitches→harmony d ps) +H+ (foldIntoHarmony (d' ∷ ds) (ps' ∷ pss)) -- matrix transposition mtranspose : {A : Set}{m n : ℕ} → Vec (Vec A n) m → Vec (Vec A m) n mtranspose [] = replicate [] mtranspose (xs ∷ xss) = zipWith _∷_ xs (mtranspose xss) counterpoint→harmony : {v d : ℕ} → Counterpoint v d → Harmony v d counterpoint→harmony = harmony ∘ vmap chord ∘ mtranspose ∘ vmap unmelody ∘ uncp harmony→counterpoint : {v d : ℕ} → Harmony v d → Counterpoint v d harmony→counterpoint = cp ∘ vmap melody ∘ mtranspose ∘ vmap unchord ∘ unharmony -- Fix length of a melody, either truncating or padding with rests fixLength : {m : ℕ} → (n : ℕ) → Melody m → Melody n fixLength {m} n (melody ns) with <-∨-≥ n m ... | inj₁ n<m = melody (take n (subst (Vec Point) (sym (m+n-m=n n m {<⇒≤ n<m})) ns)) ... | inj₂ m≤n = melody (subst (Vec Point) (m+n-m=n m n) (ns ++ replicate {n = n - m ⟨ m≤n ⟩} rest)) holdToTone : Point → Point holdToTone (tone p) = tone p holdToTone (hold p) = tone p holdToTone rest = rest firstHoldToTone : {n : ℕ} → Melody n → Melody n firstHoldToTone (melody []) = melody [] firstHoldToTone (melody (x ∷ xs)) = melody (holdToTone x ∷ xs) -- Drop points, but convert any held tones to tones. dropPoints : {n : ℕ} → (m : ℕ) → Melody (m + n) → Melody n dropPoints m = firstHoldToTone ∘ melody ∘ drop m ∘ unmelody
{ "alphanum_fraction": 0.6486296557, "avg_line_length": 38.7210884354, "ext": "agda", "hexsha": "1bb126fd6ce8091e8c456c512e09f41199cf2a78", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Music.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Music.agda", "max_line_length": 130, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Music.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1953, "size": 5692 }
module tests.String where open import Prelude.IO open import Prelude.List open import Prelude.String open import Prelude.Unit testString : String testString = "To boldly go where no man gone before" printList : forall {A} -> (A -> IO Unit) -> List A -> IO Unit printList p [] = return unit printList p (x :: xs) = p x ,, printList p xs main : IO Unit main = putStrLn testString ,, printList printChar (fromString testString) ,, putStrLn "" ,, putStrLn (fromList (fromString testString)) ,, return unit
{ "alphanum_fraction": 0.6859813084, "avg_line_length": 21.4, "ext": "agda", "hexsha": "a8c28d976605b9e3aaaa0bc23b91e43cdba41c50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/epic/tests/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/epic/tests/String.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/epic/tests/String.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 140, "size": 535 }
{-# OPTIONS --safe --without-K #-} open import Relation.Binary module Data.List.Membership.Setoid.Trans {a p} (S : Setoid a p) where open Setoid S open import Data.List.Membership.Setoid (S) open import Data.List.Any ≈-trans-∈ : ∀ {x y xs} → x ≈ y → y ∈ xs → x ∈ xs ≈-trans-∈ x≈y (here px) = here (trans x≈y px) ≈-trans-∈ x≈y (there p) = there (≈-trans-∈ x≈y p)
{ "alphanum_fraction": 0.6318681319, "avg_line_length": 30.3333333333, "ext": "agda", "hexsha": "de639efbf196032e0098f0d6ce4d50443309115c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-distinct-disjoint", "max_forks_repo_path": "src/Data/List/Membership/Setoid/Trans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-distinct-disjoint", "max_issues_repo_path": "src/Data/List/Membership/Setoid/Trans.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-distinct-disjoint", "max_stars_repo_path": "src/Data/List/Membership/Setoid/Trans.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 141, "size": 364 }
-- {-# OPTIONS --no-coverage-check #-} -- {-# OPTIONS -v tc.lhs:40 #-} module FlexibleFunArity where open import Common.Equality data Bool : Set where true false : Bool data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A Case : {A : Set} → Maybe A → Set → Set → Set Case nothing B C = B Case (just _) B C = C sample : {A : Set} (m : Maybe A) → Case m Bool (Maybe A → Bool) sample (just a) (just b) = true sample (just a) nothing = false sample nothing = true g : Bool -> Bool -> Bool g false true = false g true = \ x -> true g false false = true -- g true false = false -- Unreachable clause testg1 : ∀ {x} → g true x ≡ true testg1 = refl testg2 : g false true ≡ false testg2 = refl testg3 : g false false ≡ true testg3 = refl T : Bool -> Set T true = Bool T false = Bool -> Bool f : (b : Bool) -> T b f false true = false f false false = true f true = true testf1 : f true ≡ true testf1 = refl testf2 : f false true ≡ false testf2 = refl testf3 : f false false ≡ true testf3 = refl {- checking clause f false true starts with f (b : Bool) : T b splits on b f true -- no match, discard f false -- matches instantiate type f false : T false = Bool -> Bool extend clause f false (y : Bool) : Bool split on y f false true -- matches f false false -- no match, discard done -} {- coverage check starts with f (x : Bool) splits on x f true -- finds clause 1 f false NEW: remaing clauses have bigger arity, so expands to f false (y : Bool) splits on y f false true -- finds clause 2 f false false -- finds clause 3 done -}
{ "alphanum_fraction": 0.6249232658, "avg_line_length": 15.2242990654, "ext": "agda", "hexsha": "1bb0ce1b708d94069f5c7cec134dff49c00b7cd8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/FlexibleFunArity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/FlexibleFunArity.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/FlexibleFunArity.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 533, "size": 1629 }
-- Andreas, 2019-02-23, issue #3578. -- Preserve types as much as possible during pattern matching. -- New unifier (from Agda 2.5.1) was normalizing too much. -- {-# OPTIONS -v tc.lhs.unify:45 #-} data Nat : Set where zero : Nat postulate MustNotBeNamed : Set A = MustNotBeNamed data P : Nat → Set where z : A → P zero test : ∀{n} → P n → Set test (z x) = {!x!} -- C-c C-, -- EXPECTED: -- -- Goal: Set -- —————————————— -- x : A
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 17.0769230769, "ext": "agda", "hexsha": "0d534d19fb062533309239df92afd9066cdfbef6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3578.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3578.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3578.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 157, "size": 444 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetTruncation where open import Cubical.HITs.SetTruncation.Base public open import Cubical.HITs.SetTruncation.Properties public
{ "alphanum_fraction": 0.8, "avg_line_length": 33.3333333333, "ext": "agda", "hexsha": "5343e69e67152ec77c2ac5146e86bbd8fcc9dc3c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/SetTruncation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/SetTruncation.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/SetTruncation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 200 }
-- Testing termination using subpatterns module TerminationSubpattern where -- a list with two different conses data EOList (A : Set) : Set where Nil : EOList A ECons : A -> EOList A -> EOList A OCons : A -> EOList A -> EOList A butLastWithDefault : {A : Set} -> A -> EOList A -> A butLastWithDefault a Nil = a butLastWithDefault a (ECons b l) = butLastWithDefault b l butLastWithDefault a (OCons b l) = butLastWithDefault b l -- a very stupid implementation: butLastWithDefault' : {A : Set} -> A -> EOList A -> A butLastWithDefault' a Nil = a butLastWithDefault' a (ECons b Nil) = b butLastWithDefault' a (OCons b Nil) = b butLastWithDefault' a (ECons b (OCons c l)) = butLastWithDefault' b (OCons c l) butLastWithDefault' a (ECons b (ECons c l)) = butLastWithDefault' b (ECons c l) butLastWithDefault' a (OCons b (OCons c l)) = butLastWithDefault' b (OCons c l) butLastWithDefault' a (OCons b (ECons c l)) = butLastWithDefault' b (ECons c l) -- terminates, because, e.g. in the last line -- -- ECons c l is a subpattern of OCons b (ECons c l) -- another justification is with structured orders -- if all constructors are considered equivalent
{ "alphanum_fraction": 0.70794193, "avg_line_length": 34.4411764706, "ext": "agda", "hexsha": "f2821954b56df4317b81baa3cc02395d52646e84", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/TerminationSubpattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/TerminationSubpattern.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/TerminationSubpattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 370, "size": 1171 }
module Lemmachine.Runner where {-# IMPORT Lemmachine.FFI #-} open import Lemmachine.Resource open import Lemmachine.Resource.Configure open import Lemmachine.Request open import Lemmachine.Response open import Lemmachine.Utils open import Lemmachine.Resolve open import Data.Unit open import Data.Nat open import Data.String open import Data.Function open import Foreign.Haskell open import IO.Primitive private data Data-Request : Set where request : Method → Version → IP → LocalPath → Path → RawPath → PathTokens → RequestHeaders → Body → Cookie → QueryString → Port → Data-Request {-# COMPILED_DATA Data-Request Lemmachine.FFI.Request Lemmachine.FFI.Request #-} toRequest : Data-Request → Request toRequest (request method version peer dispPath path rawPath pathTokens headers body cookie queryString port ) = record { method = method ; version = version ; peer = peer ; dispPath = dispPath ; path = path ; rawPath = rawPath ; pathTokens = pathTokens ; headers = headers ; reqBody = body ; cookie = cookie ; queryString = queryString ; port = port } data Data-Response : Set where response : String → ResponseHeaders → String → Data-Response {-# COMPILED_DATA Data-Response Lemmachine.FFI.Response Lemmachine.FFI.Response #-} fromResponse : Response → Data-Response fromResponse resp = response (showStatus $ Response.status resp) (Response.headers resp) (Response.body resp) Data-resolve : Application → Data-Request → Data-Response Data-resolve app req = fromResponse $ app (toRequest req) postulate run : (Data-Request → Data-Response) → IO Unit {-# COMPILED run Lemmachine.FFI.run #-} runResolve : Application → IO Unit runResolve app = run $ Data-resolve app
{ "alphanum_fraction": 0.6678719008, "avg_line_length": 21.7528089888, "ext": "agda", "hexsha": "11503fdaabb83cd141e8a17de7cbc45c924661a2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Runner.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Runner.agda", "max_line_length": 64, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Runner.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 492, "size": 1936 }
module Common.MAlonzo where open import Common.Prelude hiding (putStrLn) open import Common.Coinduction {-# IMPORT Data.Text.IO #-} postulate putStrLn : ∞ String → IO Unit {-# COMPILED putStrLn Data.Text.IO.putStrLn #-} main = putStrLn (♯ "This is a dummy main routine.") mainPrint : String → _ mainPrint s = putStrLn (♯ s) mainPrintNat : Nat → _ mainPrintNat n = putStrLn (♯ (natToString n))
{ "alphanum_fraction": 0.7096774194, "avg_line_length": 19.1904761905, "ext": "agda", "hexsha": "c26b550db68489c7e44fd06ef09e38ebbd485f00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Common/MAlonzo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Common/MAlonzo.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Common/MAlonzo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 107, "size": 403 }
import cedille-options open import general-util open import lib module process-cmd (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} (progress-update : string → 𝔹 → mF ⊤) where --open import cedille-find open import cedille-types open import classify options {mF} open import constants open import conversion open import ctxt open import is-free open import spans options {mF} open import syntax-util open import toplevel-state options {mF} -- open import to-string import cws-types import cws -- generate spans from the given comments-and-whitespace syntax tree process-cwst-etys : cws-types.entities → spanM ⊤ process-cwst-ety : cws-types.entity → spanM ⊤ process-cwst-etys (cws-types.Entity ety etys) = (process-cwst-ety ety) ≫span process-cwst-etys etys process-cwst-etys cws-types.EndEntity = spanMr triv process-cwst-ety cws-types.EntityNonws = spanMr triv process-cwst-ety (cws-types.EntityWs pi pi') = spanMr triv -- spanM-add (whitespace-span pi pi') process-cwst-ety (cws-types.EntityComment pi pi') = spanM-add (comment-span pi pi') process-cwst : toplevel-state → filepath → spanM toplevel-state process-cwst s filename with include-elt.cwst (get-include-elt s filename) process-cwst s filename | nothing = spanMr s process-cwst s filename | just (cws-types.File etys) = process-cwst-etys etys ≫span spanMr s process-t : Set → Set process-t X = toplevel-state → X → (need-to-check : 𝔹) → spanM toplevel-state check-and-add-params : posinfo → params → spanM (𝕃 (string × restore-def)) check-and-add-params pi' (ParamsCons p@(Decl pi1 pi1' me x atk pi2) ps') = check-tk atk ≫span spanM-add (Decl-span param pi1 x atk pi' {- make this span go to the end of the def, so nesting will work properly for computing the context in the frontend -}) ≫span add-tk' (me-erased me) pi1' x atk ≫=span λ mi → check-and-add-params pi' ps' ≫=span λ ms → spanMr ((x , mi) :: ms) check-and-add-params _ ParamsNil = spanMr [] dont-check-and-add-params : posinfo → params → spanM (𝕃 (string × restore-def)) dont-check-and-add-params pi' (ParamsCons p@(Decl pi1 pi1' me x atk pi2) ps') = add-tk' (me-erased me) pi1' x atk ≫=span λ mi → dont-check-and-add-params pi' ps' ≫=span λ ms → spanMr ((x , mi) :: ms) dont-check-and-add-params _ ParamsNil = spanMr [] optAs-posinfo-var : optAs → (posinfo × var) → spanM (posinfo × var) optAs-posinfo-var NoOptAs = spanMr optAs-posinfo-var (SomeOptAs pi x) orig = get-ctxt λ Γ → spanM-add (Import-module-span Γ orig ParamsNil [ not-for-navigation ] nothing) ≫span spanMr (pi , x) add-params-kind : params → kind → kind add-params-kind (ParamsCons (Decl pi pi' m v k' pi'') ps) k = KndPi pi pi' v k' (add-params-kind ps k) add-params-kind ParamsNil k = k {-# TERMINATING #-} process-consts : dataConsts → params → spanM ⊤ process-cmd : process-t cmd process-cmds : process-t cmds process-params : process-t (posinfo × params) process-start : toplevel-state → filepath → (progress-name : string) → start → (need-to-check : 𝔹) → spanM toplevel-state process-file : toplevel-state → filepath → (progress-name : string) → mF (toplevel-state × mod-info) process-cmd (mk-toplevel-state ip fns is Γ) (DefTermOrType op (DefTerm pi x (SomeType tp) t) pi') tt {- check -} = set-ctxt Γ ≫span check-type tp (just star) ≫span let tp' = qualif-type Γ tp in check-term t (just tp') ≫span check-erased-margs t (just tp') ≫span get-ctxt (λ Γ → let Γ' = ctxt-term-def pi globalScope op x t tp' Γ in spanM-add (DefTerm-span Γ' pi x checking (just tp) t pi' []) ≫span check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanM-add (uncurry (Var-span Γ' pi x checking) (compileFail-in Γ t)) ≫span spanMr (mk-toplevel-state ip fns is Γ'))) process-cmd (mk-toplevel-state ip fns is Γ) (DefTermOrType op (DefTerm pi x (SomeType tp) t) pi') ff {- skip checking -} = let tp' = qualif-type Γ tp in check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanMr (mk-toplevel-state ip fns is (ctxt-term-def pi globalScope op x t tp' Γ))) process-cmd (mk-toplevel-state ip fns is Γ) (DefTermOrType op (DefTerm pi x NoType t) pi') _ = set-ctxt Γ ≫span check-term t nothing ≫=span λ mtp → check-erased-margs t nothing ≫span get-ctxt (λ Γ → let Γ' = maybe-else (ctxt-term-udef pi globalScope op x t Γ) (λ tp → ctxt-term-def pi globalScope op x t tp Γ) mtp in spanM-add (DefTerm-span Γ' pi x synthesizing mtp t pi' []) ≫span check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanM-add (uncurry (Var-span Γ' pi x synthesizing) (compileFail-in Γ t)) ≫span spanMr (mk-toplevel-state ip fns is Γ'))) process-cmd (mk-toplevel-state ip fns is Γ) (DefTermOrType op (DefType pi x k tp) pi') tt {- check -} = set-ctxt Γ ≫span check-kind k ≫span let k' = qualif-kind Γ k in check-type tp (just k') ≫span get-ctxt (λ Γ → let Γ' = ctxt-type-def pi globalScope op x tp k' Γ in spanM-add (DefType-span Γ' pi x checking (just k) tp pi' []) ≫span check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanM-add (TpVar-span Γ' pi x checking [] nothing) ≫span spanMr (mk-toplevel-state ip fns is Γ'))) process-cmd (mk-toplevel-state ip fns is Γ) (DefTermOrType op (DefType pi x k tp) pi') ff {- skip checking -} = let k' = qualif-kind Γ k in check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanMr (mk-toplevel-state ip fns is (ctxt-type-def pi globalScope op x tp k' Γ))) process-cmd (mk-toplevel-state ip fns is Γ) (DefKind pi x ps k pi') tt {- check -} = set-ctxt Γ ≫span check-and-add-params pi' ps ≫=span λ ms → check-kind k ≫span get-ctxt (λ Γ → let Γ' = ctxt-kind-def pi x ps k Γ in spanM-add (DefKind-span Γ' pi x k pi') ≫span check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanM-add (KndVar-span Γ' (pi , x) (posinfo-plus-str pi x) ps checking [] nothing) ≫span spanMr (mk-toplevel-state ip fns is (ctxt-restore-info* Γ' ms)))) process-cmd (mk-toplevel-state ip fns is Γ) (DefKind pi x ps k pi') ff {- skip checking -} = set-ctxt Γ ≫span dont-check-and-add-params pi' ps ≫=span λ ms → get-ctxt (λ Γ → let Γ' = ctxt-kind-def pi x ps k Γ in check-redefined pi x (mk-toplevel-state ip fns is Γ) (spanMr (mk-toplevel-state ip fns is (ctxt-restore-info* Γ' ms)))) -- TODO ignore checking but still gen spans if need-to-check false? process-cmd s (ImportCmd (Import pi op pi' x oa as pi'')) _ = let fnₒ = ctxt-get-current-filename (toplevel-state.Γ s) ie = get-include-elt s fnₒ in case trie-lookup (include-elt.import-to-dep ie) x of λ where nothing → spanM-add (Import-span pi "missing" pi'' [] (just ("File not found: " ^ x))) ≫span spanMr (set-include-elt s fnₒ (record ie {err = tt})) (just fnᵢ) Γ ss → process-file s fnᵢ x ≫=monad uncurry λ s _ → (let s-e = scope-file s fnₒ fnᵢ oa (qualif-args (toplevel-state.Γ s) as) in process-import op oa fnₒ fnᵢ (lookup-mod-params (toplevel-state.Γ s) fnᵢ) (maybe-else' (lookup-mod-params (toplevel-state.Γ s) fnₒ) ParamsNil id) ≫=span λ e → spanM-add (Import-span pi fnᵢ pi'' [] (snd s-e maybe-or e)) ≫span spanMr (fst s-e)) Γ ss where -- When importing a file publicly, you may use any number of arguments as long as the -- parameters of the current module are not free in them. -- You may then use any number of single-variable parameters from the current module -- as arguments as long as they retain the same order as before and have no non-parameter -- arguments between them -- (so parameters A, B, C, ..., Z can be used as arguments ∙ C ∙ X, but not ∙ X ∙ C) public-import-params-ok : params → args → err-m public-import-params-ok ps = h nothing where err = just "You can only use parameters for arguments to public imports if the are in order at the end" params-order : params → trie ℕ params-order = h 0 where h : ℕ → params → trie ℕ h n ParamsNil = empty-trie h n (ParamsCons (Decl _ _ me x atk _) ps) = trie-insert (h (suc n) ps) x n arg-var : arg → maybe var arg-var (TermArg me (Var pi x)) = just x arg-var (TypeArg (TpVar pi x)) = just x arg-var _ = nothing pso = params-order ps ps-free : arg → err-m → err-m ps-free a e = if ~ are-free-in-args check-erased pso (ArgsCons a ArgsNil) then e else err h : maybe ℕ → args → err-m h c (ArgsCons a as) = maybe-else' (arg-var a ≫=maybe trie-lookup pso) (maybe-else' c (ps-free a $ h nothing as) λ _ → err) λ aₙ → maybe-else' c (h (just aₙ) as) λ cₙ → if cₙ ≥ aₙ then err else h (just aₙ) as h n ArgsNil = nothing process-import : optPublic → optAs → (cur imp : filepath) → maybe params → params → spanM err-m process-import op oa fnₒ fnᵢ nothing _ = spanMr (just "Undefined module import (this probably shouldn't happen?)") -- process-import op oa fnₒ fnᵢ (just psᵢ) nothing = spanMr (just "Current module undefined (this shouldn't happen!)") process-import IsPublic (SomeOptAs _ _) fnₒ fnᵢ (just psᵢ) {-(just-} psₒ {-)-} = spanMr (just "Public import aren't allowed to be qualified") process-import op oa fnₒ fnᵢ (just psᵢ) {-(just-} psₒ {-)-} = optAs-posinfo-var oa (pi' , x) ≫=span λ pi-v → with-ctxt (toplevel-state.Γ s) (check-args-against-params (just (location-data (fnᵢ , first-position))) pi-v psᵢ as) ≫span spanMr (maybe-if (optPublic-is-public op) ≫maybe public-import-params-ok psₒ (qualif-args (toplevel-state.Γ s) as)) process-cmd (mk-toplevel-state ip fns is Γ) (DefDatatype dd@(Datatype pi pix x ps k cs _) pi') _ = set-ctxt Γ ≫span check-kind (add-params-kind ps k) ≫span -- get-ctxt (λ Γ → let Γ' = ctxt-datatype-def pi x (qualif-params Γ ps) (qualif-kind Γ (add-params-kind ps k)) (Datatype pi pix x ps k cs pi') Γ in set-ctxt Γ' ≫span spanM-add (DefDatatype-span pi pix x pi') ≫span spanM-add (TpVar-span Γ' pix x checking [] nothing) ≫span process-consts cs ps ≫span get-ctxt (λ Γ → spanMr (mk-toplevel-state ip fns is Γ))) --(ctxt-restore-info* Γ ms)))) -- the call to ctxt-update-symbol-occurrences is for cedille-find functionality process-cmds (mk-toplevel-state include-path files is Γ) (CmdsNext c cs) need-to-check = process-cmd (mk-toplevel-state include-path files is Γ) c need-to-check ≫=span λ s → process-cmds s cs need-to-check process-cmds s CmdsStart need-to-check = set-ctxt (toplevel-state.Γ s) ≫span spanMr s -- TODO ignore checking but still qualify if need-to-check false? process-params s (pi , ps) need-to-check = set-ctxt (toplevel-state.Γ s) ≫span check-and-add-params pi ps ≫=span λ _ → spanM-set-params ps ≫span get-ctxt λ Γ → spanMr (record s {Γ = ctxt-add-current-params Γ}) process-start s filename pn (File pi0 is pi1 pi2 mn ps cs pi3) need-to-check = λ Γ ss → progress-update pn need-to-check ≫monad (process-cmds s (imps-to-cmds is) need-to-check ≫=span λ s → process-params s (pi0 , ps) need-to-check ≫=span λ s → process-cmds s cs need-to-check ≫=span λ s → process-cwst s filename ≫=span λ s → spanM-add (File-span (toplevel-state.Γ s) pi0 (posinfo-plus pi3 1) filename) ≫span let pi2' = posinfo-plus-str pi2 mn in spanM-add (Module-span pi2 pi2') ≫span spanM-add (Module-header-span pi1 pi2') ≫span spanMr s) Γ ss {- process (type-check if necessary) the given file. We assume the given top-level state has a syntax tree associated with the file. -} process-file s filename pn with get-include-elt s filename process-file s filename pn | ie = proceed s (include-elt.ast ie) (set-need-to-add-symbols-to-context-include-elt ie ff) ≫=monad λ where (s , ie , ret-mod) → returnM (set-include-elt s filename ie , ret-mod) {- update the include-elt and the toplevel state (but we will push the updated include-elt into the toplevel state just above, after proceed finishes. -} where proceed : toplevel-state → maybe start → include-elt → mF (toplevel-state × include-elt × mod-info) proceed s nothing ie' = progress-update filename tt ≫monad returnM (s , ie' , ctxt-get-current-mod (toplevel-state.Γ s)) {- should not happen -} proceed s (just x) ie' with include-elt.need-to-add-symbols-to-context ie {- this indeed should be ie, not ie' -} proceed (mk-toplevel-state ip fns is Γ) (just x) ie' | tt with include-elt.do-type-check ie | ctxt-get-current-mod Γ proceed (mk-toplevel-state ip fns is Γ) (just x) ie' | tt | do-check | prev-mod = let Γ = ctxt-initiate-file Γ filename (start-modname x) in process-start (mk-toplevel-state ip fns (trie-insert is filename ie') Γ) filename pn x do-check Γ empty-spans ≫=monad cont where cont : toplevel-state × ctxt × spans → mF (toplevel-state × include-elt × mod-info) cont (mk-toplevel-state ip fns is Γ , Γ' @ (mk-ctxt ret-mod _ _ _ _) , ss) = progress-update pn do-check ≫monad returnM (mk-toplevel-state ip (if do-check then (filename :: fns) else fns) is (ctxt-set-current-mod Γ prev-mod) , (if do-check then set-spans-include-elt ie' ss else ie') , ret-mod) proceed s (just x) ie' | _ = returnM (s , ie' , ctxt-get-current-mod (toplevel-state.Γ s)) process-consts DataNull ps = spanMok process-consts (DataCons (DataConst pi c tp) cs) ps = get-ctxt (λ Γ → let t = abs-expand-type' ps tp in -- add-param-type ps (qualif-type Γ tp) check-type t (just star) ≫span set-ctxt (ctxt-const-def pi c (qualif-type Γ t) Γ) ≫span spanM-add (DefDataConst-span pi c) ≫span process-consts cs ps)
{ "alphanum_fraction": 0.6521180084, "avg_line_length": 51.0912408759, "ext": "agda", "hexsha": "8970e99c97a36fed79fe5c68a6b1dd21fa0ff5fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/process-cmd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/process-cmd.agda", "max_line_length": 167, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/process-cmd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4425, "size": 13999 }
------------------------------------------------------------------------------ -- All the distributive laws modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.Everything where open import DistributiveLaws.Base open import DistributiveLaws.Base.Consistency.Axioms open import DistributiveLaws.PropertiesI open import DistributiveLaws.Lemma3-ATP open import DistributiveLaws.Lemma4-ATP open import DistributiveLaws.Lemma5-ATP open import DistributiveLaws.Lemma6-ATP open import DistributiveLaws.TaskB-AllStepsATP open import DistributiveLaws.TaskB-HalvedStepsATP open import DistributiveLaws.TaskB-I open import DistributiveLaws.TaskB-TopDownATP open import DistributiveLaws.TaskB.UnprovedATP
{ "alphanum_fraction": 0.6487068966, "avg_line_length": 35.6923076923, "ext": "agda", "hexsha": "c062d29acf11537288936d399d444f23efd08c46", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/DistributiveLaws/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/DistributiveLaws/Everything.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/DistributiveLaws/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 202, "size": 928 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.McCarthy91.WF-Relation.Induction.NonAcc.TerminationCheckIssue where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} postulate someℕ : ℕ {-# TERMINATING #-} foo : ℕ → ℕ → ℕ foo n zero = 10 foo zero (succ m) = foo zero someℕ foo (succ n) (succ m) = foo n (succ m) {-# TERMINATING #-} bar : ℕ → ℕ → ℕ bar n zero = 10 bar zero (succ m) = bar m someℕ bar (succ n) (succ m) = bar n (succ m) {-# TERMINATING #-} foobar : ℕ → ℕ → ℕ foobar n zero = 10 foobar zero (succ m) with someℕ ... | zero = 10 ... | succ o = foobar m (succ o) foobar (succ n) (succ m) = foobar n (succ m)
{ "alphanum_fraction": 0.5634824667, "avg_line_length": 22.9722222222, "ext": "agda", "hexsha": "41288fc9e1b077fc458a78de43f0972e387be303", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda", "max_line_length": 85, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 263, "size": 827 }
-- Andreas, 2016-12-20, issue #2349 {-# OPTIONS --show-implicit #-} open import Agda.Primitive open import Agda.Builtin.Equality data D {{a}} (A : Set a) : Set a where c : {{a : A}} (b : A) → D A test : ∀ ℓ (A : Set ℓ) (x : D A) (a : A) → x ≡ c {{ℓ}} {{a = a}} a test ℓ A x a = refl -- ERROR: -- x != c {{a}} of type D {{ℓ}} A -- when checking that the expression refl has type -- _≡_ {ℓ} {D {{ℓ}} A} x (c {{a}}) -- Note that (c {{a}}) is ill-typed here.
{ "alphanum_fraction": 0.5291576674, "avg_line_length": 23.15, "ext": "agda", "hexsha": "089fe6c381eb28661e6f9f4bdb46a416a67faa4b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue2349-instance-visible.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue2349-instance-visible.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue2349-instance-visible.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 188, "size": 463 }
-- Andreas, 2012-09-15 -- Positive effects of making Agda recognize constant functions. -- Arguments to constant functions are ignored in definitional equality. {-# OPTIONS --copatterns #-} module NonvariantPolarity where open import Common.Equality data ⊥ : Set where record ⊤ : Set where constructor trivial data Bool : Set where true false : Bool True : Bool → Set True true = ⊤ True false = ⊥ module IgnoreArg where -- A function ignoring its first argument knot : Bool → Bool → Bool knot x true = false knot x false = true test : (y : Bool) → knot true y ≡ knot false y test y = refl module UnusedModulePar where -- An unused module parameter module M (x : Bool) where not : Bool → Bool not true = false not false = true open M true open M false renaming (not to not′) test : (y : Bool) → not y ≡ not′ y test y = refl module CoinductiveUnit where record Unit : Set where coinductive constructor delay field force : Unit open Unit -- The identity on Unit does not match on its argument, so it is constant. id : Unit → Unit force (id x) = id (force x) idConst : (x y : Unit) → id x ≡ id y idConst x y = refl -- That does not imply x ≡ y (needs bisimulation).
{ "alphanum_fraction": 0.6690647482, "avg_line_length": 20.1774193548, "ext": "agda", "hexsha": "1b7c45ea99bb885839a4b038f70dd7df056384ed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/NonvariantPolarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/NonvariantPolarity.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/NonvariantPolarity.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 358, "size": 1251 }
{- This file contains: - Pushout-products of two maps; - The connectivity of pushout-product maps. -} {-# OPTIONS --safe #-} module Cubical.HITs.Pushout.PushoutProduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.HITs.Pushout.Base open import Cubical.HITs.Pushout.Properties open import Cubical.Homotopy.Connected private variable ℓ ℓ' ℓ'' ℓ''' : Level A : Type ℓ B : Type ℓ' X : Type ℓ'' Y : Type ℓ''' -- The definition of pushout-product PushProd : (f : X → A)(g : Y → B) → Type _ PushProd f g = Pushout (map-× (idfun _) g) (map-× f (idfun _)) _×̂_ : (f : X → A)(g : Y → B) → PushProd f g → A × B (f ×̂ g) (inl (x , b)) = f x , b (f ×̂ g) (inr (a , y)) = a , g y (f ×̂ g) (push (x , y) i) = f x , g y infixr 5 _×̂_ module _ (m n : ℕ)(f : X → A)(g : Y → B) (connf : isConnectedFun m f) (conng : isConnectedFun n g) (P : A × B → TypeOfHLevel ℓ (m + n)) where module _ (sec : (x : PushProd f g) → P ((f ×̂ g) x) .fst) where private fam : A → Type _ fam a = Σ[ k ∈ ((b : B) → P (a , b) .fst) ] ((y : Y) → k (g y) ≡ sec (inr (a , y))) open Iso fiberEquiv : (a : A) → fam a ≃ fiber (λ(s : (b : B) → P (a , b) .fst) → s ∘ g) (λ y → sec (inr (a , y))) fiberEquiv a = isoToEquiv (iso (λ (k , p) → k , λ i y → p y i) (λ (k , p) → k , λ y i → p i y) (λ _ → refl) (λ _ → refl)) is-m-trunc-fam : (a : A) → isOfHLevel m (fam a) is-m-trunc-fam a = isOfHLevelRespectEquiv _ (invEquiv (fiberEquiv a)) (isOfHLevelPrecomposeConnected m n (λ b → P (a , b)) g conng _) sec-fam : (x : X) → fam (f x) sec-fam x = (λ b → sec (inl (x , b))) , (λ y i → sec (push (x , y) i)) map-iso = elim.isIsoPrecompose f _ (λ a → fam a , is-m-trunc-fam a) connf k = map-iso .inv sec-fam ϕ = map-iso .rightInv sec-fam ext : (x : A × B) → P x .fst ext (a , b) = k a .fst b ext-path : (x : PushProd f g) → ext ((f ×̂ g) x) ≡ sec x ext-path (inl (x , b)) i = ϕ i x .fst b ext-path (inr (a , y)) i = k a .snd y i ext-path (push (x , y) i) j = hcomp (λ k → λ { (i = i0) → ϕ j x .snd y i0 ; (i = i1) → ϕ i0 x .snd y (j ∨ ~ k) ; (j = i0) → ϕ i0 x .snd y (i ∧ ~ k) ; (j = i1) → ϕ i1 x .snd y i }) (ϕ j x .snd y i) lifting : hasSection (λ(s : (x : A × B) → P x .fst) → s ∘ (f ×̂ g)) lifting .fst sec = ext sec lifting .snd sec i x = ext-path sec x i -- The connectivity of pushout-product isConnected×̂ : {m n : ℕ}{f : A → B}{g : X → Y} → isConnectedFun m f → isConnectedFun n g → isConnectedFun (m + n) (f ×̂ g) isConnected×̂ congf congg = elim.isConnectedPrecompose _ _ (lifting _ _ _ _ congf congg)
{ "alphanum_fraction": 0.5389182058, "avg_line_length": 28.0740740741, "ext": "agda", "hexsha": "edc5db256855f898f1006c5b0061f9ea6abe90a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/Pushout/PushoutProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/Pushout/PushoutProduct.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/Pushout/PushoutProduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1182, "size": 3032 }
module SystemF.SmallStep where open import Prelude open import Data.Sum open import Data.Product open import Data.Vec hiding ([_]) open import SystemF.WellTyped open import SystemF.Substitutions open import SystemF.Substitutions.Lemmas infixl 4 _≻_ -- irreducible System F terms data Value {ν n} : Term ν n → Set where λ' : ∀ τ t → Value (λ' τ t) Λ : ∀ t → Value (Λ t) -- single step reduction of System F terms data _≻_ {ν n} : Term ν n → Term ν n → Set where -- redexes reduce-[] : ∀ t a → (Λ t) [ a ] ≻ t tm[/tp a ] reduce-· : ∀ a t {u} → (λ' a t) · u ≻ t tm[/tm u ] -- contextual closure step-·₁ : ∀ {t t' u} → t ≻ t' → t · u ≻ t' · u step-·₂ : ∀ {t u u'} → u ≻ u' → t · u ≻ t · u' step-λ-body : ∀ {a t t'} → t ≻ t' → λ' a t ≻ λ' a t' step-Λ-body : ∀ {t t'} → t ≻ t' → Λ t ≻ Λ t' step-[] : ∀ {t t' a} → t ≻ t' → t [ a ] ≻ t' [ a ] -- multi-step reductions data _≻⋆_ {ν n} : Term ν n → Term ν n → Set where ≻-step : ∀ {t u} → t ≻ u → t ≻⋆ u ≻-trans : ∀ {t u v} → t ≻⋆ u → u ≻⋆ v → t ≻⋆ v ∀'-value-lemma : ∀ {ν n} {Γ : Ctx ν n} {t a} → Γ ⊢ t ∈ ∀' a → Value t → ∃ λ e → t ≡ Λ e ∀'-value-lemma () (λ' τ t) ∀'-value-lemma (Λ t∈∀a) (Λ t) = t , refl →'-value-lemma : ∀ {ν n} {Γ : Ctx ν n} {t a b} → Γ ⊢ t ∈ (a →' b) → Value t → ∃ λ e → (t ≡ λ' a e) × ((a ∷ Γ) ⊢ e ∈ b) →'-value-lemma () (Λ t) →'-value-lemma (λ' a ⊢t∈a→b) (λ' .a t) = t , refl , ⊢t∈a→b -- progress: welltyped terms are either values or can be reduced progress : ∀ {ν τ} {t : Term ν 0} → [] ⊢ t ∈ τ → Value t ⊎ ∃ (_≻_ t) progress (var ()) progress (Λ {t = t} ⊢t) = inj₁ (Λ t) progress (λ' {t = t} a ⊢t) = inj₁ (λ' a t) progress (_[_] ⊢t a) with progress ⊢t -- we can rule out the possibility that t is both well typed and a value, -- but not a lambda -- leaving only cases that can make progress progress (_[_] ⊢t a ) | inj₁ (λ' τ t') with ∀'-value-lemma ⊢t (λ' τ t') progress (() [ a ]) | inj₁ (λ' τ t') | t≡Λe progress (⊢t [ a ]) | inj₁ (Λ t) = inj₂ (, reduce-[] t a) progress (⊢t [ a ]) | inj₂ (_ , y≻y') = inj₂ (, step-[] y≻y') -- similar to above progress (⊢f · ⊢t) with progress ⊢f | progress ⊢t progress (⊢f · ⊢t) | inj₁ (λ' τ t) | inj₁ y-isval = inj₂ (, reduce-· τ t) progress (⊢f · ⊢t) | inj₁ (Λ t) | inj₁ y-isval with →'-value-lemma ⊢f (Λ t) progress (() · ⊢t) | inj₁ (Λ t) | inj₁ y-isval | f≡a→'b progress (_·_ {f = f} wf-f ⊢t) | _ | inj₂ (_ , y≻y') = inj₂ (, step-·₂ y≻y') progress (_·_ {t = t} ⊢f ⊢t) | inj₂ (_ , f≻f') | _ = inj₂ (, step-·₁ f≻f') -- preservation: reduction preserves well-typedness ≻-preserves : ∀ {ν n} {Γ : Ctx ν n} {t t' τ} → Γ ⊢ t ∈ τ → t ≻ t' → Γ ⊢ t' ∈ τ ≻-preserves (var x) () ≻-preserves (Λ ⊢t) (step-Λ-body t≻t') = Λ (≻-preserves ⊢t t≻t') ≻-preserves (λ' a ⊢t) (step-λ-body t≻t') = λ' a (≻-preserves ⊢t t≻t') -- goal: (Λ t) [ a ] and t tm[/tp a ] have the same type ≻-preserves (⊢t [ a ]) (reduce-[] t .a) = WtTypeLemmas.tm[/tp]-preserves ⊢t a ≻-preserves (⊢t [ a ]) (step-[] t≻t') = (≻-preserves ⊢t t≻t') [ a ] -- goal: (λ' a t) · u and t tm[/tm u ] have the same type ≻-preserves (λ' a ⊢t · ⊢u) (reduce-· .a t₁) = WtTermLemmas.tm[/tm]-preserves ⊢t ⊢u ≻-preserves (⊢t · ⊢u) (step-·₁ t≻t') = (≻-preserves ⊢t t≻t') · ⊢u ≻-preserves (⊢t · ⊢u) (step-·₂ u≻u') = ⊢t · (≻-preserves ⊢u u≻u')
{ "alphanum_fraction": 0.5205057046, "avg_line_length": 39.5487804878, "ext": "agda", "hexsha": "eb682c5d3c3ef78e64fab9845e716ac6f717624e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/SmallStep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/SmallStep.agda", "max_line_length": 87, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/SmallStep.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1537, "size": 3243 }
------------------------------------------------------------------------ -- Properties of non-empty lists ------------------------------------------------------------------------ module Data.List.NonEmpty.Properties where open import Algebra open import Category.Monad open import Data.Function open import Data.Product open import Data.List as List using (List; []; _∷_; _++_) open RawMonad List.monad using () renaming (_>>=_ to _⋆>>=_) private module LM {A} = Monoid (List.monoid A) open import Data.List.NonEmpty as List⁺ open RawMonad List⁺.monad open import Relation.Binary.PropositionalEquality open ≡-Reasoning η : ∀ {A} (xs : List⁺ A) → head xs ∷ tail xs ≡ List⁺.toList xs η [ x ] = refl η (x ∷ xs) = refl toList-fromList : ∀ {A} x (xs : List A) → x ∷ xs ≡ List⁺.toList (List⁺.fromList x xs) toList-fromList x [] = refl toList-fromList x (y ∷ xs) = cong (_∷_ x) (toList-fromList y xs) toList-⁺++ : ∀ {A} (xs : List⁺ A) ys → List⁺.toList xs ++ ys ≡ List⁺.toList (xs ⁺++ ys) toList-⁺++ [ x ] ys = toList-fromList x ys toList-⁺++ (x ∷ xs) ys = cong (_∷_ x) (toList-⁺++ xs ys) toList-⁺++⁺ : ∀ {A} (xs ys : List⁺ A) → List⁺.toList xs ++ List⁺.toList ys ≡ List⁺.toList (xs ⁺++⁺ ys) toList-⁺++⁺ [ x ] ys = refl toList-⁺++⁺ (x ∷ xs) ys = cong (_∷_ x) (toList-⁺++⁺ xs ys) toList->>= : ∀ {A B} (f : A → List⁺ B) (xs : List⁺ A) → (List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡ (List⁺.toList (xs >>= f)) toList->>= f [ x ] = proj₂ LM.identity _ toList->>= f (x ∷ xs) = begin List⁺.toList (f x) ++ (List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡⟨ cong (_++_ (List⁺.toList (f x))) (toList->>= f xs) ⟩ List⁺.toList (f x) ++ List⁺.toList (xs >>= f) ≡⟨ toList-⁺++⁺ (f x) (xs >>= f) ⟩ List⁺.toList (f x ⁺++⁺ (xs >>= f)) ∎
{ "alphanum_fraction": 0.4951974386, "avg_line_length": 39.0416666667, "ext": "agda", "hexsha": "34e71ff7cba8b9fd9c21a994893a0797bd296db7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/List/NonEmpty/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/List/NonEmpty/Properties.agda", "max_line_length": 119, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/List/NonEmpty/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 667, "size": 1874 }
module Thesis.SIRelBigStep.DLang where open import Thesis.SIRelBigStep.DSyntax public open import Thesis.SIRelBigStep.DOpSem public open import Thesis.SIRelBigStep.DLangDerive public
{ "alphanum_fraction": 0.8695652174, "avg_line_length": 30.6666666667, "ext": "agda", "hexsha": "d41baf5638d55995a7bbeeb1b880ef8280de6c91", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/SIRelBigStep/DLang.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/SIRelBigStep/DLang.agda", "max_line_length": 50, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/SIRelBigStep/DLang.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 50, "size": 184 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Universes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Universe where open import Data.Product open import Level ------------------------------------------------------------------------ -- Definition record Universe u e : Set (suc (u ⊔ e)) where field U : Set u -- Codes. El : U → Set e -- Decoding function.
{ "alphanum_fraction": 0.3618677043, "avg_line_length": 24.4761904762, "ext": "agda", "hexsha": "ff250fdf76dcddd3373a9424db17cdb58293bbba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Universe.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 86, "size": 514 }
------------------------------------------------------------------------------ -- First-order logic theorems ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module contains some examples showing the use of the ATPs for -- proving first-order logic theorems. module FOL.TheoremsATP where open import FOL.Base ------------------------------------------------------------------------------ -- We postulate some formulae and propositional functions. postulate A : Set A¹ B¹ : D → Set A² : D → D → Set -- The introduction and elimination rules for the quantifiers are theorems. {- φ(x) ----------- ∀-intro ∀x.φ(x) ∀x.φ(x) ----------- ∀-elim φ(t) φ(t) ----------- ∃-intro ∃x.φ(x) ∃x.φ(x) φ(x) → ψ ---------------------- ∃-elim ψ -} postulate ∀-intro : ((x : D) → A¹ x) → ∀ x → A¹ x ∀-intro' : ((x : D) → A¹ x) → ⋀ A¹ ∀-elim : (t : D) → (∀ x → A¹ x) → A¹ t ∀-elim' : (t : D) → ⋀ A¹ → A¹ t ∃-intro : (t : D) → A¹ t → ∃ A¹ ∃-elim : ∃ A¹ → ((x : D) → A¹ x → A) → A {-# ATP prove ∀-intro #-} {-# ATP prove ∀-intro' #-} {-# ATP prove ∀-elim #-} {-# ATP prove ∀-elim' #-} {-# ATP prove ∃-intro #-} {-# ATP prove ∃-elim #-} -- Generalization of De Morgan's laws. postulate gDM₁ : ¬ (∀ x → A¹ x) ↔ (∃[ x ] ¬ (A¹ x)) gDM₂ : ¬ (∃ A¹) ↔ (∀ x → ¬ (A¹ x)) gDM₃ : (∀ x → A¹ x) ↔ ¬ (∃[ x ] ¬ (A¹ x)) gDM₄ : ∃ A¹ ↔ ¬ (∀ x → ¬ (A¹ x)) {-# ATP prove gDM₁ #-} {-# ATP prove gDM₂ #-} {-# ATP prove gDM₃ #-} {-# ATP prove gDM₄ #-} -- The order of quantifiers of the same sort is irrelevant. postulate ∀-ord : (∀ x y → A² x y) ↔ (∀ y x → A² x y) ∃-ord : (∃[ x ] ∃[ y ] A² x y) ↔ (∃[ y ] ∃[ x ] A² x y) {-# ATP prove ∀-ord #-} {-# ATP prove ∃-ord #-} -- Quantification over a variable that does not occur can be erased or -- added. postulate ∃-erase-add : (∃[ x ] A ∧ A¹ x) ↔ A ∧ (∃[ x ] A¹ x) {-# ATP prove ∃-erase-add #-} -- Distributes laws for the quantifiers. postulate ∀-dist : (∀ x → A¹ x ∧ B¹ x) ↔ ((∀ x → A¹ x) ∧ (∀ x → B¹ x)) ∃-dist : (∃[ x ] (A¹ x ∨ B¹ x)) ↔ (∃ A¹ ∨ ∃ B¹) {-# ATP prove ∀-dist #-} {-# ATP prove ∃-dist #-} -- Interchange of quantifiers. -- The related theorem ∀x∃y.Axy → ∃y∀x.Axy is not (classically) valid. postulate ∃∀ : ∃[ x ] (∀ y → A² x y) → ∀ y → ∃[ x ] A² x y {-# ATP prove ∃∀ #-} -- ∃ in terms of ∀ and ¬. postulate ∃→¬∀¬ : ∃[ x ] A¹ x → ¬ (∀ {x} → ¬ A¹ x) ∃¬→¬∀ : ∃[ x ] ¬ A¹ x → ¬ (∀ {x} → A¹ x) {-# ATP prove ∃→¬∀¬ #-} {-# ATP prove ∃¬→¬∀ #-} -- ∀ in terms of ∃ and ¬. postulate ∀→¬∃¬ : (∀ {x} → A¹ x) → ¬ (∃[ x ] ¬ A¹ x) ∀¬→¬∃ : (∀ {x} → ¬ A¹ x) → ¬ (∃[ x ] A¹ x) {-# ATP prove ∀→¬∃¬ #-} {-# ATP prove ∀¬→¬∃ #-} -- Distribution of ∃ and ∨. postulate ∃∨ : ∃[ x ](A¹ x ∨ B¹ x) → (∃[ x ] A¹ x) ∨ (∃[ x ] B¹ x) {-# ATP prove ∃∨ #-}
{ "alphanum_fraction": 0.4221256684, "avg_line_length": 27.4495412844, "ext": "agda", "hexsha": "4654c5c0aabb153bb23ffe8f91ea69a59caf2f71", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/TheoremsATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/TheoremsATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/TheoremsATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1137, "size": 2992 }
open import Logic open import Structure.Setoid open import Structure.Operator.Ring open import Structure.OrderedField open import Type module Structure.OrderedField.AbsoluteValue {ℓ ℓₗ ℓₑ} {F : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(F) ⦄ (_+_ _⋅_ : F → F → F) (_≤_ : F → F → Stmt{ℓₗ}) ⦃ ring : Ring(_+_)(_⋅_) ⦄ -- TODO: The definition does not require a ring, only some kind of total order compatible with an operation with an identity and an inverse -- ⦃ identity : Identity(_+_) ⦄ -- ⦃ inverseFunction : InverseFunction(_+_)(−_) ⦄ ⦃ ordered : Ordered(_+_)(_⋅_)(_≤_) ⦄ where open Ring(ring) open Ordered(ordered) import Lvl open import Data.Boolean open import Data.Boolean.Proofs import Data.Either as Either open import Functional open import Logic.IntroInstances open import Logic.Propositional open import Structure.Function.Domain open import Structure.Function.Ordering open import Structure.Function open import Structure.Operator open import Structure.Operator.Proofs open import Structure.Operator.Properties open import Structure.Operator.Ring.Proofs open import Structure.Relator.Properties open import Syntax.Implication open import Syntax.Transitivity ‖_‖ : F → F ‖ x ‖ = if Either.isRight(converseTotal(_≤_){𝟎}{x}) then (− x) else x instance abs-function : Function(‖_‖) Function.congruence abs-function {x}{y} xy with converseTotal(_≤_){𝟎}{x} | converseTotal(_≤_){𝟎}{y} ... | Either.Left p | Either.Left q = xy ... | Either.Left p | Either.Right q = antisymmetry(_≤_)(_≡_) (sub₂(_≡_)(_≤_) xy 🝖 q) p 🝖 antisymmetry(_≤_)(_≡_) ([↔]-to-[→] [≤]-flip-negative q) ([↔]-to-[→] [≤]-flip-positive(p 🝖 sub₂(_≡_)(_≤_) xy)) ... | Either.Right p | Either.Left q = antisymmetry(_≤_)(_≡_) ([↔]-to-[→] [≤]-flip-positive(q 🝖 sub₂(_≡_)(_≤_) (symmetry(_≡_) xy))) ([↔]-to-[→] [≤]-flip-negative p) 🝖 antisymmetry(_≤_)(_≡_) q (sub₂(_≡_)(_≤_) (symmetry(_≡_) xy) 🝖 p) ... | Either.Right p | Either.Right q = congruence₁(−_) xy abs-positive : ∀{x} → (‖ x ‖ ≥ 𝟎) abs-positive{x} = if-either-bool-intro {P = _≥ 𝟎} {x = x} {y = − x} id ([↔]-to-[→] [≤]-flip-negative) (converseTotal(_≤_){𝟎}{x}) abs-values : ∀{x} → (‖ x ‖ ≡ x) ∨ (‖ x ‖ ≡ − x) abs-values{x} with converseTotal(_≤_){𝟎}{x} ... | [∨]-introₗ _ = [∨]-introₗ (reflexivity(_≡_)) ... | [∨]-introᵣ _ = [∨]-introᵣ (reflexivity(_≡_)) abs-of-zero : (‖ 𝟎 ‖ ≡ 𝟎) abs-of-zero with abs-values{𝟎} ... | Either.Left p = p ... | Either.Right p = p 🝖 [−]-of-𝟎 abs-when-zero : ∀{x} → (‖ x ‖ ≡ 𝟎) ↔ (x ≡ 𝟎) abs-when-zero{x} = [↔]-intro (p ↦ congruence₁(‖_‖) p 🝖 abs-of-zero) (p ↦ symmetry(_≡_) ([∨]-elim id (q ↦ p 🝖 symmetry(_≡_) ([↔]-to-[→] [−]-is-𝟎 (symmetry(_≡_) q 🝖 p))) abs-values) 🝖 p) abs-of-negation : ∀{x} → (‖ − x ‖ ≡ ‖ x ‖) abs-of-negation{x} with converseTotal(_≤_){𝟎}{x} | converseTotal(_≤_){𝟎}{− x} ... | [∨]-introₗ _ | [∨]-introᵣ _ = involution(−_) ... | [∨]-introᵣ _ | [∨]-introₗ _ = reflexivity(_≡_) ... | [∨]-introₗ zx | [∨]-introₗ znx = antisymmetry(_≤_)(_≡_) (nxz 🝖 zx) (xz 🝖 znx) where nxz : (− x) ≤ 𝟎 nxz = [↔]-to-[←] [≤]-flip-negative (zx 🝖 (sub₂(_≡_)(_≤_) $ symmetry(_≡_) $ involution(−_))) xz : x ≤ 𝟎 xz = [↔]-to-[←] [≤]-flip-negative znx ... | [∨]-introᵣ xz | [∨]-introᵣ nxz = antisymmetry(_≤_)(_≡_) (involution(−_) 🝖-subₗ (xz 🝖 znx)) (nxz 🝖 zx 🝖-subᵣ symmetry(_≡_) (involution(−_))) where znx : 𝟎 ≤ (− x) znx = [↔]-to-[→] [≤]-flip-negative xz zx : 𝟎 ≤ x zx = [↔]-to-[→] [≤]-flip-negative nxz 🝖 (sub₂(_≡_)(_≤_) $ involution(−_)) instance abs-idempotent : Idempotent(‖_‖) Idempotent.proof abs-idempotent {x} with abs-values{x} ... | Either.Left p = congruence₁(‖_‖) p ... | Either.Right p = congruence₁(‖_‖) p 🝖 abs-of-negation abs-order : ∀{x} → ((− ‖ x ‖) ≤ ‖ x ‖) abs-order{x} = [↔]-to-[→] [≤]-flip-positive(abs-positive{x}) 🝖 abs-positive{x} abs-order-pos : ∀{x} → (x ≤ ‖ x ‖) abs-order-pos {x} with converseTotal(_≤_){𝟎}{x} ... | Either.Left p = reflexivity(_≤_) ... | Either.Right p = p 🝖 [↔]-to-[→] [≤]-flip-negative p abs-order-neg : ∀{x} → ((− x) ≤ ‖ x ‖) abs-order-neg {x} with converseTotal(_≤_){𝟎}{x} ... | Either.Left p = [↔]-to-[→] [≤]-flip-positive p 🝖 p ... | Either.Right p = reflexivity(_≤_) abs-of-positive : ∀{x} → (𝟎 ≤ x) → (‖ x ‖ ≡ x) abs-of-positive {x} ox = antisymmetry(_≤_)(_≡_) p abs-order-pos where p : ‖ x ‖ ≤ x p with converseTotal(_≤_){𝟎}{x} ... | Either.Left _ = reflexivity(_≤_) ... | Either.Right _ = [↔]-to-[→] [≤]-flip-positive ox 🝖 ox -- Alternative 1: -- with abs-values{x} -- ... | Either.Left p = p -- ... | Either.Right p = [↔]-to-[←] abs-when-zero xzero 🝖 symmetry(_≡_) xzero where -- xzero : (x ≡ 𝟎) -- xzero = antisymmetry(_≤_)(_≡_) ([↔]-to-[←] [≤]-flip-negative (abs-positive{x} 🝖 sub₂(_≡_)(_≤_) p)) ox -- Alternative 2: antisymmetry(_≤_)(_≡_) (sub₂(_≡_)(_≤_) p 🝖 [≤]-flip-positive ox 🝖 ox) (sub₂(_≡_)(_≤_) (symmetry(_≡_) (congruence₁(−_) p 🝖 [−−]-elim)) 🝖 abs-order{x}) abs-of-negative : ∀{x} → (x ≤ 𝟎) → (‖ x ‖ ≡ − x) abs-of-negative {x} xo = antisymmetry(_≤_)(_≡_) p abs-order-neg where p : ‖ x ‖ ≤ (− x) p with converseTotal(_≤_){𝟎}{x} ... | Either.Left _ = xo 🝖 [↔]-to-[→] [≤]-flip-negative xo ... | Either.Right _ = reflexivity(_≤_) -- Alternative 1: -- with abs-values{x} -- ... | Either.Right p = p -- ... | Either.Left p = symmetry(_≡_) abs-of-negation 🝖 [↔]-to-[←] abs-when-zero xzero 🝖 symmetry(_≡_) xzero where -- xzero : (− x ≡ 𝟎) -- xzero = antisymmetry(_≤_)(_≡_) ([↔]-to-[←] [≤]-flip-negative (abs-positive{x} 🝖 sub₂(_≡_)(_≤_) p 🝖 sub₂(_≡_)(_≤_) (symmetry(_≡_) [−−]-elim))) ([↔]-to-[→] [≤]-flip-negative xo) abs-triangle-inequality : ∀{x y} → (‖ x + y ‖ ≤ (‖ x ‖ + ‖ y ‖)) abs-triangle-inequality {x}{y} with converseTotal(_≤_){𝟎}{x + y} ... | Either.Left p = (x + y) 🝖[ _≤_ ]-[ [≤][+]-preserve abs-order-pos abs-order-pos ] (‖ x ‖ + ‖ y ‖) 🝖-end ... | Either.Right p = −(x + y) 🝖[ _≡_ ]-[ [+]-negation-distribution ]-sub (− x) + (− y) 🝖[ _≤_ ]-[ [≤][+]-preserve abs-order-neg abs-order-neg ] (‖ x ‖ + ‖ y ‖) 🝖-end -- TODO: True in rings? Only division rings? Maybe ≤ instead of ≡ is better because of zero divisors -- abs-scaling : ∀{a x} → (‖ a ⋅ x ‖ ≡ (‖ a ‖ ⋅ ‖ x ‖)) -- abs-scaling{a}{x} with converseTotal(_≤_){𝟎}{a ⋅ x} | converseTotal(_≤_){𝟎}{a} | converseTotal(_≤_){𝟎}{x} {-... | Either.Left p = (a ⋅ x) 🝖[ _≡_ ]-[ {!!} ] (‖ a ‖ ⋅ ‖ x ‖) 🝖-end ... | Either.Right p = {!!} -} -- Distance _𝄩_ : F → F → F x 𝄩 y = ‖ x − y ‖ open import Structure.Function.Proofs open import Structure.Operator.Proofs.Util instance [𝄩]-binaryOperator : BinaryOperator(_𝄩_) [𝄩]-binaryOperator = [∘₂]-function {f = ‖_‖} ⦃ oper = [−]-binaryOperator ⦄ instance [𝄩]-commutativity : Commutativity(_𝄩_) Commutativity.proof [𝄩]-commutativity {x}{y} = ‖ x − y ‖ 🝖-[ abs-of-negation ]-sym ‖ −(x − y) ‖ 🝖-[ congruence₁(‖_‖) [−]-negation-distribution ] ‖ y − x ‖ 🝖-end [𝄩]-triangle-inequality : ∀{x y z} → ((x 𝄩 z) ≤ ((x 𝄩 y) + (y 𝄩 z))) [𝄩]-triangle-inequality {x}{y}{z} = x 𝄩 z 🝖[ _≤_ ]-[] ‖ x − z ‖ 🝖[ _≡_ ]-[ congruence₁(‖_‖) (congruence₂ₗ(_−_) ⦃ [−]-binaryOperator ⦄ (z) (symmetry(_≡_) (identityᵣ(_+_)(𝟎)))) ]-sub ‖ (x + 𝟎) − z ‖ 🝖[ _≡_ ]-[ congruence₁(‖_‖) (congruence₂ₗ(_−_) ⦃ [−]-binaryOperator ⦄ (z) (congruence₂ᵣ(_+_)(x) (symmetry(_≡_) (inverseFunctionₗ(_+_)(−_))))) ]-sub ‖ (x + ((− y) + y)) − z ‖ 🝖[ _≡_ ]-[ congruence₁(‖_‖) ((One.associate4-213-222 {_▫_ = _+_} {a = x}{− y}{y}{− z})) ]-sub ‖ (x + (− y)) + (y − z) ‖ 🝖[ _≤_ ]-[] ‖ (x − y) + (y − z) ‖ 🝖[ _≤_ ]-[ abs-triangle-inequality ] (‖ x − y ‖) + (‖ y − z ‖) 🝖[ _≤_ ]-[] (x 𝄩 y) + (y 𝄩 z) 🝖-end [𝄩]-self : ∀{x y} → (x 𝄩 y ≡ 𝟎) ↔ (x ≡ y) [𝄩]-self {x}{y} = [↔]-intro l r where l = (x ≡ y) ⇒-[ symmetry(_≡_) ∘ congruence₂ᵣ(_𝄩_)(x) ] (x 𝄩 y ≡ x 𝄩 x) ⇒-[] (_ ≡ ‖ x − x ‖) ⇒-[ _🝖 congruence₁(‖_‖) (inverseFunctionᵣ(_+_)(−_)) ] (_ ≡ ‖ 𝟎 ‖) ⇒-[ _🝖 abs-of-zero ] (_ ≡ 𝟎) ⇒-end r = (x 𝄩 y ≡ 𝟎) ⇒-[ [↔]-to-[→] (abs-when-zero{x − y}) ] (x − y ≡ 𝟎) ⇒-[ [↔]-to-[→] [−]-difference-is-𝟎 ] (x ≡ y) ⇒-end
{ "alphanum_fraction": 0.5411330049, "avg_line_length": 42.7368421053, "ext": "agda", "hexsha": "28b53fbd7c3d06957aa2c695d62fdeccc01d1975", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/OrderedField/AbsoluteValue.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/OrderedField/AbsoluteValue.agda", "max_line_length": 234, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/OrderedField/AbsoluteValue.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3743, "size": 8120 }
open import Data.Product using (∃; ∃-syntax; _×_; _,_) open import DeBruijn open import Parallel open import Beta par-diamond : ∀ {n} {M N N′ : Term n} → M ⇉ N → M ⇉ N′ ----------------------- → ∃[ L ] (N ⇉ L × N′ ⇉ L) par-diamond (⇉-c {x = x}) ⇉-c = # x , ⇉-c , ⇉-c par-diamond (⇉-ƛ p1) (⇉-ƛ p2) with par-diamond p1 p2 ... | L′ , p3 , p4 = ƛ L′ , ⇉-ƛ p3 , ⇉-ƛ p4 par-diamond (⇉-ξ p1 p3) (⇉-ξ p2 p4) with par-diamond p1 p2 ... | L₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = L₃ · M₃ , ⇉-ξ p5 p7 , ⇉-ξ p6 p8 par-diamond (⇉-ξ (⇉-ƛ p1) p3) (⇉-β p2 p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , ⇉-β p5 p7 , sub-par p6 p8 par-diamond (⇉-β p1 p3) (⇉-ξ (⇉-ƛ p2) p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , sub-par p5 p7 , ⇉-β p6 p8 par-diamond (⇉-β p1 p3) (⇉-β p2 p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , sub-par p5 p7 , sub-par p6 p8 strip : ∀ {n} {M A B : Term n} → M ⇉ A → M ⇉* B ------------------------ → ∃[ N ] (A ⇉* N × B ⇉ N) strip {A = A} M⇉A (M ∎) = A , (A ∎) , M⇉A strip {A = A} M⇉A (M ⇉⟨ M⇉M′ ⟩ M′⇉*B) with par-diamond M⇉A M⇉M′ ... | N , A⇉N , M′⇉N with strip M′⇉N M′⇉*B ... | N′ , N⇉*N′ , B⇉N′ = N′ , (A ⇉⟨ A⇉N ⟩ N⇉*N′) , B⇉N′ par-confluence : ∀ {n} {M A B : Term n} → M ⇉* A → M ⇉* B ------------------------ → ∃[ N ] (A ⇉* N × B ⇉* N) par-confluence {B = B} (M ∎) M⇉*B = B , M⇉*B , (B ∎) par-confluence {B = B} (M ⇉⟨ M⇉A ⟩ A⇉*A′) M⇉*B with strip M⇉A M⇉*B ... | N , A⇉*N , B⇉N with par-confluence A⇉*A′ A⇉*N ... | N′ , A′⇉*N′ , N⇉*N′ = N′ , A′⇉*N′ , (B ⇉⟨ B⇉N ⟩ N⇉*N′) confluence : ∀ {n} {M A B : Term n} → M —↠ A → M —↠ B ------------------------ → ∃[ N ] (A —↠ N × B —↠ N) confluence M—↠A M—↠B with par-confluence (betas-pars M—↠A) (betas-pars M—↠B) ... | N , A⇉*N , B⇉*N = N , pars-betas A⇉*N , pars-betas B⇉*N
{ "alphanum_fraction": 0.4041159963, "avg_line_length": 27.7662337662, "ext": "agda", "hexsha": "0bfa2ec4e3695485ad828b1e8527b60af9027404", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/church-rosser", "max_forks_repo_path": "ConfluenceParallel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/church-rosser", "max_issues_repo_path": "ConfluenceParallel.agda", "max_line_length": 59, "max_stars_count": 5, "max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/church-rosser", "max_stars_repo_path": "ConfluenceParallel.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z", "num_tokens": 1183, "size": 2138 }
------------------------------------------------------------------------------ -- Mendelson's substitution ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOL.MendelsonSubstI where -- First-order logic with equality. open import Common.FOL.FOL-Eq public ------------------------------------------------------------------------------ -- Mendelson's [2015] substitution (p. 93). -- (A7) x = y ⇒ (A(x,x) ⇒ B(x,y)) (substitutivity of equality) -- Using pattern matching. mendelsonSubst : (A : D → D → Set) → ∀ {x y} → x ≡ y → A x x → A x y mendelsonSubst A refl Axx = Axx -- From `subst` to Mendelson substitution. subst→mendelsonSubst : (A : D → D → Set) → ∀ {x y} → x ≡ y → A x x → A x y subst→mendelsonSubst A {x} = subst (λ z → A x z) -- From Mendelson substitution to `subst`. mendelsonSubst→subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y mendelsonSubst→subst A = mendelsonSubst (λ _ → A) ------------------------------------------------------------------------------ -- References -- Mendelson, Elliott (2015). Introduction to Mathematical Logic. CRC -- Press, 6th edition.
{ "alphanum_fraction": 0.4640672783, "avg_line_length": 34.4210526316, "ext": "agda", "hexsha": "9c192fd154f9a075b76810416a8de6d9e9600b5c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOL/MendelsonSubstI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOL/MendelsonSubstI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOL/MendelsonSubstI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 329, "size": 1308 }
------------------------------------------------------------------------ -- Code related to the delay monad -- -- Nils Anders Danielsson ------------------------------------------------------------------------ {-# OPTIONS --cubical --sized-types #-} module README where -- The concept referred to as the delay monad here is the monad -- presented by Capretta in "General Recursion via Coinductive Types". ------------------------------------------------------------------------ -- The delay monad -- The delay monad, defined coinductively. import Delay-monad -- A type used to index a combined definition of strong and weak -- bisimilarity and expansion. import Delay-monad.Bisimilarity.Kind -- A combined definition of strong and weak bisimilarity and -- expansion, along with various properties. import Delay-monad.Bisimilarity -- Strong bisimilarity for partially defined values, along with a -- proof showing that this relation is pointwise isomorphic to path -- equality. import Delay-monad.Bisimilarity.For-all-sizes -- A variant of weak bisimilarity that can be used to relate the -- number of steps in two computations. import Delay-monad.Quantitative-weak-bisimilarity -- Termination. import Delay-monad.Termination -- Alternative definitions of weak bisimilarity. import Delay-monad.Bisimilarity.Alternative -- An observation about weak bisimilarity. import Delay-monad.Bisimilarity.Observation -- Some negative results related to weak bisimilarity and expansion. import Delay-monad.Bisimilarity.Negative -- An example showing that transitivity-like proofs that are not -- size-preserving can sometimes be used in a compositional way. import Delay-monad.Bisimilarity.Transitivity-constructor -- A partial order. import Delay-monad.Partial-order -- Least upper bounds. import Delay-monad.Least-upper-bound -- The delay monad is a monad up to strong bisimilarity. import Delay-monad.Monad -- The "always true" predicate, □. import Delay-monad.Always -- A combinator for running two (independent) computations in -- sequence. import Delay-monad.Sequential -- A combinator for running two computations in parallel. import Delay-monad.Parallel ------------------------------------------------------------------------ -- A variant of the delay monad with a sized type parameter -- The delay monad, defined coinductively, with a sized type -- parameter. import Delay-monad.Sized -- A combined definition of strong and weak bisimilarity and -- expansion, along with various properties. import Delay-monad.Sized.Bisimilarity -- Strong bisimilarity for partially defined values, along with a -- proof showing that this relation is pointwise isomorphic to path -- equality. import Delay-monad.Sized.Bisimilarity.For-all-sizes -- Termination. import Delay-monad.Sized.Termination -- Alternative definitions of weak bisimilarity. import Delay-monad.Sized.Bisimilarity.Alternative -- Some negative results related to weak bisimilarity and expansion. import Delay-monad.Sized.Bisimilarity.Negative -- A partial order. import Delay-monad.Sized.Partial-order -- Least upper bounds. import Delay-monad.Sized.Least-upper-bound -- A monad-like structure. import Delay-monad.Sized.Monad -- The "always true" predicate, □. import Delay-monad.Sized.Always
{ "alphanum_fraction": 0.7127272727, "avg_line_length": 24.6268656716, "ext": "agda", "hexsha": "cc399a67a8af104a11aab06d01639b0824491f5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "README.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 713, "size": 3300 }
{- This file contains: - Definition of type quotients (i.e. non-truncated quotients) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.TypeQuotients.Base where open import Cubical.Core.Primitives -- Type quotients as a higher inductive type: data _/ₜ_ {ℓ ℓ'} (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where [_] : (a : A) → A /ₜ R eq/ : (a b : A) → (r : R a b) → [ a ] ≡ [ b ]
{ "alphanum_fraction": 0.6028368794, "avg_line_length": 23.5, "ext": "agda", "hexsha": "9d364f13e04dfae750907c8a3ecc8bab4b220fb9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/TypeQuotients/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/TypeQuotients/Base.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/TypeQuotients/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 156, "size": 423 }
------------------------------------------------------------------------ -- Code related to the abstract "Type Theory with Weak J" by Thorsten -- Altenkirch, Paolo Capriotti, Thierry Coquand, Nils Anders -- Danielsson, Simon Huber and Nicolai Kraus -- -- The code is written by Nils Anders Danielsson ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Weak-J where -- For the equality between the two equalities, see proof₁≡proof₂. -- -- For the main result about contractibility of the type of pairs -- containing J functions and the corresponding β-rule, see -- Equality-with-J-contractible. -- -- Note that there are minor differences between the code and the -- presentation in the abstract. import Equality.Instances-related
{ "alphanum_fraction": 0.6186335404, "avg_line_length": 35, "ext": "agda", "hexsha": "feaf9b5b01bce858a0e7475879325c0244123adc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "README/Weak-J.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "README/Weak-J.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "README/Weak-J.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 162, "size": 805 }
open import Data.Nat open import Data.Fin using (Fin; #_; suc; zero) open import Data.List as List hiding (null) open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Data.Integer hiding (suc) open import Data.Product hiding (map) open import Data.Unit open import Data.Star hiding (return ; _>>=_ ; map) open import Relation.Binary.PropositionalEquality hiding ([_]) open ≡-Reasoning open import Data.Empty -- This file contains the syntax for the definitional interpreter for -- MJ using scopes and frames, described in Section 5 of the paper. -- The definitions are parameterized by a scope graph of size `k`, as -- usual: module MJSF.Syntax (k : ℕ) where private Scope : Set Scope = Fin k -- Return types, method parameters, and field types in MJ are given by -- `VTy`: data VTy : Set where void : VTy int : VTy ref : Scope → VTy -- The scope graph library is parameterized by a single kind of type, -- to be used for all declarations. But there are three different -- kinds of names (declarations) in MJ: value declarations (e.g., for -- fields and method parameters); method declarations; and class -- declarations. -- -- We use the following type to "tag" and distinguish the various -- kinds of declarations. data Ty : Set where vᵗ : VTy → Ty mᵗ : List VTy → VTy → Ty cᵗ : Scope → Scope → Ty -- We specialize the scopes-and-frames library to the size of our -- scope graph, and the tagged type for declarations above: open import ScopesFrames.ScopesFrames k Ty hiding (Scope) ------------- -- HAS TAG -- ------------- -- As summarized above, declarations may be either value-typed, -- method-typed, or class-typed. We introduce some parameterized -- predicates which only hold for a particular tag. This is useful -- for saying that some list of types `ts : List Ty` only contains -- value types, and that a particular property holds for each of those -- value types. For example, the type `All (#v (λ _ → ⊤)) ts` -- guarantees that `ts` contains only value types, and does not -- constrain the value types further (due to the use of `⊤`). data #v : (VTy → Set) → Ty → Set where #v' : ∀ {t p} → p t → #v p (vᵗ t) data #m : (List VTy → VTy → Set) → Ty → Set where #m' : ∀ {ts rt p} → p ts rt → #m p (mᵗ ts rt) data #c (sʳ : Scope) (p : Scope → Set) : Ty → Set where #c' : ∀ {s} → p s → #c sʳ p (cᵗ sʳ s) module SyntaxG (g : Graph) where open UsesGraph g ------------------------------- -- SUBTYPING AND INHERITANCE -- ------------------------------- -- As summarized in the paper, we define sub-typing in terms of -- inheritance edges between class scopes in the scope graph: _<:_ : Scope → Scope → Set _<:_ = _⟶_ -- Scope graphs may be cyclic, and there is (in theory) nothing that -- prevents classes from mutually extending one another, thereby -- creating cyclic inheritance chains. The following `Inherits` -- type witnesses that a given class scope has a finite set of -- inheritance steps. This property is useful for defining object -- initialization in a way that lets Agda prove that object -- initialization takes finite time (i.e., no need for fuel). data Inherits : Scope → Scope → Set where obj : ∀ s {ds sʳ} ⦃ shape : g s ≡ (ds , [ sʳ ]) ⦄ → Inherits s s super : ∀ {s ds sʳ sᵖ s'} ⦃ shape : g s ≡ (ds , sʳ ∷ sᵖ ∷ []) ⦄ → Inherits sᵖ s' → Inherits s s' ------------ -- SYNTAX -- ------------ -- The expressions of MJ where the `s` in `Expr s t` is the lexical -- context scope: data Expr (s : Scope) : VTy → Set where call : ∀ {s' ts t} → Expr s (ref s') → -- receiver (s' ↦ (mᵗ ts t)) → -- path to method declaration All (Expr s) ts → -- argument list Expr s t get : ∀ {s' t} → Expr s (ref s') → (s' ↦ vᵗ t) → Expr s t var : ∀ {t} → (s ↦ vᵗ t) → Expr s t new : ∀ {sʳ s'} → s ↦ cᵗ sʳ s' → Expr s (ref s') -- path to class declaration null : ∀ {s'} → Expr s (ref s') num : ℤ → Expr s int iop : (ℤ → ℤ → ℤ) → (l r : Expr s int) → Expr s int upcast : ∀ {t' t} → t' <: t → Expr s (ref t') → Expr s (ref t) this : ∀ {s' self} → s ⟶ s' → self ∈ edgesOf s' → -- the `self` of objects is given by the lexical parent edge of a method Expr s (ref self) -- The statements of MJ where the `s` in `Stmt s t s'` is the -- lexical context scope before the statement `t` is the return type -- of the statement, and `s'` is the leixcal context scope after the -- statement. mutual data Stmt (s : Scope)(r : VTy) : Scope → Set where run : ∀ {t'} → Expr s t' → Stmt s r s ifz : ∀ {s' s'' : Scope} → Expr s int → Stmt s r s → Stmt s r s → Stmt s r s -- branches are blocks set : ∀ {s' t'} → Expr s (ref s') → (s' ↦ vᵗ t') → Expr s t' → Stmt s r s loc : ∀ (s' : Scope)(t' : VTy)⦃ shape : g s' ≡ ([ vᵗ t' ] , [ s ]) ⦄ → Stmt s r s' -- local variable scope `s'` is connected to lexical context scope `s` asgn : ∀ {t'} → (s ↦ vᵗ t') → Expr s t' → Stmt s r s ret : Expr s r → Stmt s r s block : ∀ {s'} → Stmts s r s' → Stmt s r s -- A block of statements is given by a sequence of statements -- whose scopes are lexically nested (if at all): Stmts : Scope → VTy → Scope → Set Stmts s r s' = Star (λ s s' → Stmt s r s') s s' -- Method bodies have a mandatory return expression, except for -- `void` typed method bodies: data Body (s : Scope) : VTy → Set where body : ∀ {s' t} → Stmts s t s' → Expr s' t → Body s t body-void : ∀ {s'} → Stmts s void s' → Body s void -- A method defines the scope shape mandating that the method type -- parameters are declarations of the method body scope, and that -- the method body scope is connected to the scope of the class -- where they are defined. The `s` in `Meth s ts t` is the scope of -- the surrounding class. data Meth (s : Scope) : List VTy → VTy → Set where meth : ∀ {ts rt}(s' : Scope) ⦃ shape : g s' ≡ (List.map vᵗ ts , [ s ]) ⦄ → Body s' rt → Meth s ts rt -- A class definition has an optional path to a super class; the -- only difference between a `class0` and a `class1` is that a -- `class1` has a path from the root scope `sʳ` to another class -- declaration, i.e., the super class. -- -- The `sʳ` in `Class sʳ s` is the root scope (representing the -- class table), and the `s` is the scope of the defined class. -- -- We distinguish three kinds of class members in MJ: -- -- * Fields, typed by `fs`. -- -- * Methods, typed by `ms`, where for each method type signature -- `mᵗ ts t` in `ms` there is a well-typed method `Meth s ts t`. -- -- * Overriding methods, typed by `oms`, where for each method type -- signature `mᵗ ts t` in `oms` there is a path from the current -- class scope to a method declaration in a parent class scope, -- and a well-typed method `Meth s ts t` which overrides the -- method corresponding to that declaration. data Class (sʳ s : Scope) : Set where class1 : ∀ {ms fs oms sᵖ} → sʳ ↦ (cᵗ sʳ sᵖ) → ⦃ shape : g s ≡ (ms ++ fs , sʳ ∷ sᵖ ∷ []) ⦄ → All (#m (Meth s)) ms → All (#v (λ _ → ⊤)) fs → All (#m (λ ts rt → (s ↦ (mᵗ ts rt)) × Meth s ts rt )) oms → -- overrides Class sʳ s class0 : ∀ {ms fs oms} → ⦃ shape : g s ≡ (ms ++ fs , [ sʳ ]) ⦄ → All (#m (Meth s)) ms → -- only methods All (#v (λ _ → ⊤)) fs → -- only values All (#m (λ ts rt → (s ↦ (mᵗ ts rt)) × Meth s ts rt )) oms → -- overrides Class sʳ s -- A program consists of a sequence of well-typed class definitions -- and a main function to be evaluated in the context of the root -- scope. The root scope has only class-typed declarations, and has -- no parent edges: data Program (sʳ : Scope)(a : VTy) : Set where program : ∀ cs ⦃ shape : g sʳ ≡ (cs , []) ⦄ → -- implementation of all the classes All (#c sʳ (λ s → Class sʳ s × ∃ λ s' → Inherits s s')) cs → -- main function Body sʳ a → Program sʳ a
{ "alphanum_fraction": 0.5875956023, "avg_line_length": 38.5622119816, "ext": "agda", "hexsha": "bf2e092ff3b685ff337a1d183acfcc540971c64e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJSF/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJSF/Syntax.agda", "max_line_length": 161, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJSF/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 2650, "size": 8368 }
module Misc.PosBinary where -- Positive Binary Numbers open import Data.Nat open import Data.List open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Induction.WellFounded open import Induction.Nat using (<-well-founded) data Bin+ : Set where [] : Bin+ 1∷_ : Bin+ → Bin+ 2∷_ : Bin+ → Bin+ decimal : Bin+ → ℕ decimal [] = 0 decimal (1∷ xs) = 1 + 2 * decimal xs decimal (2∷ xs) = 2 + 2 * decimal xs -- A even/odd view. Surprised that we don't have it in StdLib data Div2 : ℕ → Set where even : ∀ n → Div2 (2 * n) odd : ∀ n → Div2 (1 + 2 * n) open import Data.Nat.Properties.Simple using (+-suc) -- +-suc : ∀ m n → m + suc n ≡ suc (m + n) open import Data.Nat.Properties using (m≤′m+n) -- m≤′m+n : ∀ m n → m ≤′ m + n _div2 : ∀ n → Div2 n zero div2 = even 0 suc n div2 with n div2 suc .(n + (n + 0)) div2 | even n = odd n suc .(suc (n + (n + 0))) div2 | odd n rewrite sym (+-suc n (n + zero)) = even (1 + n) bin+' : (n : ℕ) → Acc _<′_ n → Bin+ bin+' n _ with n div2 bin+' .0 _ | even zero = [] bin+' .(suc (m + suc (m + 0))) (acc rs) | even (suc m) = 2∷ bin+' m (rs m (m≤′m+n (suc m) _)) bin+' .(suc (m + (m + 0))) (acc rs) | odd m = 1∷ bin+' m (rs m (m≤′m+n (suc m) _)) bin+ : ℕ → Bin+ bin+ n = bin+' n (<-well-founded n) {- For reference. bin' : (n : ℕ) → Acc _<′_ n → List ℕ bin' n _ with n div2 bin' .0 (acc rs) | even 0 = [] bin' .(suc m + (suc m + 0)) (acc rs) | even (suc m) = 0 ∷ bin' m (rs m (m≤′m+n (suc m) _)) bin' .(suc (m + (m + 0))) (acc rs) | odd m = 1 ∷ bin' m (rs m (m≤′m+n (suc m) _)) bin : ℕ → List ℕ bin n = bin' n (<-well-founded n) -} lInv' : ∀ n → (ac : Acc _<′_ n) → decimal (bin+' n ac) ≡ n lInv' n ac with n div2 lInv' .0 ac | even zero = refl lInv' .(suc (m + suc (m + 0))) (acc rs) | even (suc m) rewrite lInv' m (rs m (m≤′m+n (suc m) (suc (m + zero)))) | +-suc m (m + 0) = refl lInv' .(suc (m + (m + 0))) (acc rs) | odd m rewrite lInv' m (rs m (m≤′m+n (suc m) (m + zero))) = refl lInv : ∀ n → decimal (bin+ n) ≡ n lInv n = lInv' n (<-well-founded n)
{ "alphanum_fraction": 0.5226628895, "avg_line_length": 28.24, "ext": "agda", "hexsha": "ce3ece786399470079de66c00a77ccfc61e0ba85", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/Misc/PosBinary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/Misc/PosBinary.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/Misc/PosBinary.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 901, "size": 2118 }
module Tactic.Nat.Simpl where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas module _ {Atom : Set} {{_ : Eq Atom}} {{_ : Ord Atom}} where ExpEq : Exp Atom × Exp Atom → Env Atom → Set ExpEq (e₁ , e₂) ρ = ⟦ e₁ ⟧e ρ ≡ ⟦ e₂ ⟧e ρ CancelEq : Exp Atom × Exp Atom → Env Atom → Set CancelEq (e₁ , e₂) ρ = NFEqS (cancel (norm e₁) (norm e₂)) ρ ⟦_⟧h : List (Exp Atom × Exp Atom) → Env Atom → Set ⟦ [] ⟧h ρ = ⊥ ⟦ h ∷ [] ⟧h ρ = ExpEq h ρ ⟦ h ∷ g ⟧h ρ = ExpEq h ρ → ⟦ g ⟧h ρ ⟦_⟧hs : List (Exp Atom × Exp Atom) → Env Atom → Set ⟦ [] ⟧hs ρ = ⊥ ⟦ h ∷ [] ⟧hs ρ = CancelEq h ρ ⟦ h ∷ g ⟧hs ρ = CancelEq h ρ → ⟦ g ⟧hs ρ simplifyEq : ∀ eq (ρ : Env Atom) → CancelEq eq ρ → ExpEq eq ρ simplifyEq (e₁ , e₂) ρ H = liftNFEq e₁ e₂ ρ (cancel-sound (norm e₁) (norm e₂) ρ H) complicateEq : ∀ eq ρ → ExpEq eq ρ → CancelEq eq ρ complicateEq (e₁ , e₂) ρ H = cancel-complete (norm e₁) (norm e₂) ρ (unliftNFEq e₁ e₂ ρ H) simplifyH : ∀ goal ρ → ⟦ goal ⟧hs ρ → ⟦ goal ⟧h ρ simplifyH [] ρ () simplifyH (h ∷ []) ρ H = simplifyEq h ρ H simplifyH (h ∷ h₂ ∷ g) ρ H = λ H₁ → simplifyH (h₂ ∷ g) ρ $ H (complicateEq h ρ H₁) simplify-tactic : {x y : Nat} → x ≡ y → Type → TC Term simplify-tactic {x} {y} prf g = do `x ← quoteTC x `y ← quoteTC y `prf ← quoteTC prf let h = def₂ (quote _≡_) `x `y t = pi (vArg h) (abs "_" (weaken 1 g)) just (goal , Γ) ← termToHyps t where nothing → typeError (strErr "Invalid goal" ∷ termErr t ∷ []) pure $ def (quote flip) $ vArg (def (quote simplifyH) ( vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ [] )) ∷ vArg `prf ∷ [] assumed-tactic : {x y : Nat} → x ≡ y → Type → TC Term assumed-tactic {x} {y} prf g = do `x ← withNormalisation true $ quoteTC x `y ← withNormalisation true $ quoteTC y `prf ← quoteTC prf let h = def (quote _≡_) (hArg unknown ∷ hArg (def₀ (quote Nat)) ∷ vArg `x ∷ vArg `y ∷ []) let t = pi (vArg h) (abs "_" (weaken 1 g)) just (goal , Γ) ← termToHyps t where nothing → typeError (strErr "Invalid goal" ∷ termErr t ∷ []) pure $ def (quote simplifyH) ( vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ vArg (def (quote id) []) ∷ vArg `prf ∷ [] ) macro follows-from : {x y : Nat} → x ≡ y → Tactic follows-from prf hole = do goal ← inferNormalisedType hole unify hole =<< assumed-tactic prf goal simplify : {x y : Nat} → x ≡ y → Tactic simplify prf hole = do goal ← inferNormalisedType hole unify hole =<< simplify-tactic prf goal
{ "alphanum_fraction": 0.5691452397, "avg_line_length": 33.4651162791, "ext": "agda", "hexsha": "52bb8cbc2ea2f680d81c432d70a3a430807e28a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Simpl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Simpl.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Simpl.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1119, "size": 2878 }
module Celeste where open import Data.Nat using (ℕ; _⊔_; zero) open import Data.String using (String) open import Data.Vec using (Vec) open import Data.Unsigned using (Unsigned) open import Data.Signed using (Signed) open import Data.Float using (Float) private variable word-size : ℕ mutual data Type : ℕ → Set where string : Type zero int8 : Type zero uint8 : Type zero int16 : Type zero uint16 : Type zero int32 : Type zero uint32 : Type zero int64 : Type zero uint64 : Type zero int128 : Type zero uint128 : Type zero int-word : Type zero uint-word : Type zero float32 : Type zero float64 : Type zero _×_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n) _⟶_ : {m n : ℕ} → Type m → Type n → Type (m ⊔ n) data Expr : {n : ℕ} → Type n → Set where str-lit : String → Expr string int8-lit : Signed 8 → Expr int8 uint8-lit : Unsigned 8 → Expr uint8 int16-lit : Signed 16 → Expr int16 uint16-lit : Unsigned 16 → Expr uint16 int32-lit : Signed 32 → Expr int32 uint32-lit : Unsigned 32 → Expr uint32 int64-lit : Signed 64 → Expr int64 uint64-lit : Unsigned 64 → Expr uint64 int128-lit : Signed 128 → Expr int128 uint128-lit : Unsigned 128 → Expr uint128 int-word-lit : Signed word-size → Expr int-word uint-word-lit : Unsigned word-size → Expr uint-word float32-lit : Float → Expr float32 float64-lit : Float → Expr float64
{ "alphanum_fraction": 0.6437886067, "avg_line_length": 29.14, "ext": "agda", "hexsha": "3131f70ec47ffca1b404a2229fce54616c1a9d7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/Celeste", "max_forks_repo_path": "formalization/Celeste.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/Celeste", "max_issues_repo_path": "formalization/Celeste.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/Celeste", "max_stars_repo_path": "formalization/Celeste.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-16T17:31:57.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-16T17:31:57.000Z", "num_tokens": 461, "size": 1457 }
------------------------------------------------------------------------ -- The parser equivalence proof language is sound ------------------------------------------------------------------------ module TotalParserCombinators.Congruence.Sound where open import Category.Monad open import Codata.Musical.Notation open import Data.List open import Data.List.Membership.Propositional using (_∈_) import Data.List.Categorical as ListMonad open import Data.List.Relation.Binary.BagAndSetEquality renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe hiding (_>>=_) open import Data.Product open import Function import Function.Related as Related open import Level open import Relation.Binary import Relation.Binary.PropositionalEquality as P open Related using (SK-sym) open Related.EquationalReasoning renaming (_∼⟨_⟩_ to _∼⟨_⟩′_; _∎ to _∎′) open RawMonad {f = zero} ListMonad.monad using () renaming (_⊛_ to _⊛′_; _>>=_ to _>>=′_) private module BSOrd {k} {A : Set} = Preorder ([ k ]-Order A) open import TotalParserCombinators.Derivative using (D) open import TotalParserCombinators.CoinductiveEquality as CE using (_∼[_]c_; _∷_) open import TotalParserCombinators.Congruence open import TotalParserCombinators.Laws open import TotalParserCombinators.Lib using (return⋆) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics using (_∼[_]_) ------------------------------------------------------------------------ -- Some lemmas private ⊛flatten-lemma : ∀ {k} {R₁ R₂ : Set} {fs₁ fs₂ : List (R₁ → R₂)} (xs₁ xs₂ : Maybe (List R₁)) → fs₁ List-∼[ k ] fs₂ → flatten xs₁ List-∼[ k ] flatten xs₂ → fs₁ ⊛flatten xs₁ List-∼[ k ] fs₂ ⊛flatten xs₂ ⊛flatten-lemma {k} {fs₁ = fs₁} {fs₂} xs₁ xs₂ fs₁≈fs₂ = helper xs₁ xs₂ where helper : ∀ xs₁ xs₂ → flatten xs₁ List-∼[ k ] flatten xs₂ → fs₁ ⊛flatten xs₁ List-∼[ k ] fs₂ ⊛flatten xs₂ helper nothing nothing []∼[] = BSOrd.refl helper (just xs₁) (just xs₂) xs₁≈xs₂ = ⊛-cong fs₁≈fs₂ xs₁≈xs₂ helper nothing (just xs₂) []≈xs₂ {x} = x ∈ [] ↔⟨ BSOrd.reflexive $ P.sym $ ListMonad.Applicative.right-zero fs₂ ⟩ x ∈ (fs₂ ⊛′ []) ∼⟨ ⊛-cong (BSOrd.refl {x = fs₂}) []≈xs₂ ⟩′ x ∈ (fs₂ ⊛′ xs₂) ∎′ helper (just xs₁) nothing xs₁∼[] {x} = x ∈ (fs₁ ⊛′ xs₁) ∼⟨ ⊛-cong (BSOrd.refl {x = fs₁}) xs₁∼[] ⟩′ x ∈ (fs₁ ⊛′ []) ↔⟨ BSOrd.reflexive $ ListMonad.Applicative.right-zero fs₁ ⟩ x ∈ [] ∎′ []-⊛flatten : ∀ {A B : Set} (xs : Maybe (List A)) → [] ⊛flatten xs List-∼[ bag ] [] {A = B} []-⊛flatten nothing = BSOrd.refl []-⊛flatten (just xs) = BSOrd.refl bind-lemma : ∀ {k} {R₁ R₂ : Set} {xs₁ xs₂ : Maybe (List R₁)} (f₁ f₂ : Maybe (R₁ → List R₂)) → flatten xs₁ List-∼[ k ] flatten xs₂ → (∀ x → apply f₁ x List-∼[ k ] apply f₂ x) → bind xs₁ f₁ List-∼[ k ] bind xs₂ f₂ bind-lemma {k} {xs₁ = xs₁} {xs₂} f₁ f₂ xs₁≈xs₂ = helper f₁ f₂ where helper : ∀ f₁ f₂ → (∀ x → apply f₁ x List-∼[ k ] apply f₂ x) → bind xs₁ f₁ List-∼[ k ] bind xs₂ f₂ helper nothing nothing []∼[] = BSOrd.refl helper (just f₁) (just f₂) f₁≈f₂ = >>=-cong xs₁≈xs₂ f₁≈f₂ helper nothing (just f₂) []≈f₂ {x} = x ∈ [] ∼⟨ BSOrd.reflexive $ P.sym $ ListMonad.MonadProperties.right-zero (flatten xs₂) ⟩′ x ∈ (flatten xs₂ >>=′ λ _ → []) ∼⟨ >>=-cong (BSOrd.refl {x = flatten xs₂}) []≈f₂ ⟩′ x ∈ (flatten xs₂ >>=′ f₂) ∎′ helper (just f₁) nothing f₁∼[] {x} = x ∈ (flatten xs₁ >>=′ f₁) ∼⟨ >>=-cong (BSOrd.refl {x = flatten xs₁}) f₁∼[] ⟩′ x ∈ (flatten xs₁ >>=′ λ _ → []) ∼⟨ BSOrd.reflexive $ ListMonad.MonadProperties.right-zero (flatten xs₁) ⟩′ x ∈ [] ∎′ bind-nothing : ∀ {A B : Set} (f : Maybe (A → List B)) → bind nothing f List-∼[ bag ] [] bind-nothing nothing = BSOrd.refl bind-nothing (just f) = BSOrd.refl ------------------------------------------------------------------------ -- Equality is closed under initial-bag initial-bag-cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → initial-bag p₁ List-∼[ k ] initial-bag p₂ initial-bag-cong (xs₁≈xs₂ ∷ Dp₁≈Dp₂) = xs₁≈xs₂ initial-bag-cong (p ∎) = BSOrd.refl initial-bag-cong (p₁ ∼⟨ p₁≈p₂ ⟩ p₂≈p₃) = _ ∼⟨ initial-bag-cong p₁≈p₂ ⟩′ initial-bag-cong p₂≈p₃ initial-bag-cong (p₁ ≅⟨ p₁≅p₂ ⟩ p₂≈p₃) = _ ↔⟨ initial-bag-cong p₁≅p₂ ⟩ initial-bag-cong p₂≈p₃ initial-bag-cong (sym p₁≈p₂) = SK-sym (initial-bag-cong p₁≈p₂) initial-bag-cong (return x₁≡x₂) = BSOrd.reflexive $ P.cong [_] x₁≡x₂ initial-bag-cong fail = BSOrd.refl initial-bag-cong token = BSOrd.refl initial-bag-cong (p₁≈p₃ ∣ p₂≈p₄) = ++-cong (initial-bag-cong p₁≈p₃) (initial-bag-cong p₂≈p₄) initial-bag-cong (f₁≗f₂ <$> p₁≈p₂) = map-cong f₁≗f₂ $ initial-bag-cong p₁≈p₂ initial-bag-cong (nonempty p₁≈p₂) = BSOrd.refl initial-bag-cong (cast {xs₁ = xs₁} {xs₂ = xs₂} {xs₁′ = xs₁′} {xs₂′ = xs₂′} {xs₁≈xs₁′ = xs₁≈xs₁′} {xs₂≈xs₂′ = xs₂≈xs₂′} p₁≈p₂) {x} = x ∈ xs₁′ ↔⟨ SK-sym xs₁≈xs₁′ ⟩ x ∈ xs₁ ∼⟨ initial-bag-cong p₁≈p₂ ⟩′ x ∈ xs₂ ↔⟨ xs₂≈xs₂′ ⟩ x ∈ xs₂′ ∎′ initial-bag-cong ([ nothing - _ ] p₁≈p₃ ⊛ p₂≈p₄) = BSOrd.refl initial-bag-cong ([ just (xs₁ , xs₂) - just _ ] p₁≈p₃ ⊛ p₂≈p₄) = ⊛flatten-lemma xs₁ xs₂ (initial-bag-cong p₁≈p₃) (initial-bag-cong p₂≈p₄) initial-bag-cong ([ just (xs₁ , xs₂) - nothing ] p₁≈p₃ ⊛ p₂≈p₄) {x} = x ∈ [] ⊛flatten xs₁ ↔⟨ []-⊛flatten xs₁ ⟩ x ∈ [] ↔⟨ SK-sym $ []-⊛flatten xs₂ ⟩ x ∈ [] ⊛flatten xs₂ ∎′ initial-bag-cong ([ nothing - _ ] p₁≈p₃ >>= p₂≈p₄) = BSOrd.refl initial-bag-cong ([ just (f₁ , f₂) - just _ ] p₁≈p₃ >>= p₂≈p₄) = bind-lemma f₁ f₂ (initial-bag-cong p₁≈p₃) (λ x → initial-bag-cong (p₂≈p₄ x)) initial-bag-cong ([ just (f₁ , f₂) - nothing ] p₁≈p₃ >>= p₂≈p₄) {x} = x ∈ bind nothing f₁ ↔⟨ bind-nothing f₁ ⟩ x ∈ [] ↔⟨ SK-sym $ bind-nothing f₂ ⟩ x ∈ bind nothing f₂ ∎′ ------------------------------------------------------------------------ -- Equality is closed under D D-cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → ∀ {t} → D t p₁ ∼[ k ]P D t p₂ D-cong (xs₁≈xs₂ ∷ Dp₁≈Dp₂) {t} = ♭ (Dp₁≈Dp₂ t) D-cong (p ∎) {t} = D t p ∎ D-cong (p₁ ∼⟨ p₁≈p₂ ⟩ p₂≈p₃) {t} = D t p₁ ∼⟨ D-cong p₁≈p₂ ⟩ D-cong p₂≈p₃ D-cong (p₁ ≅⟨ p₁≅p₂ ⟩ p₂≈p₃) {t} = D t p₁ ≅⟨ D-cong p₁≅p₂ ⟩ D-cong p₂≈p₃ D-cong (sym p₁≈p₂) = _∼[_]P_.sym (D-cong p₁≈p₂) D-cong (return x₁≡x₂) = fail ∎ D-cong fail = fail ∎ D-cong token {t} = return t ∎ D-cong (p₁≈p₃ ∣ p₂≈p₄) = D-cong p₁≈p₃ ∣ D-cong p₂≈p₄ D-cong (f₁≗f₂ <$> p₁≈p₂) = f₁≗f₂ <$> D-cong p₁≈p₂ D-cong (nonempty p₁≈p₂) = D-cong p₁≈p₂ D-cong (cast p₁≈p₂) = D-cong p₁≈p₂ D-cong ([_-_]_⊛_ nothing nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) ⊛ ♭ p₂≈p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ nothing (just (fs₁ , fs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭ p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ≅⟨ [ ○ - ◌ - ○ - ○ ] D t (♭ p₁) ∎ ⊛ (♭? p₂ ∎) ∣ (_ ∎) ⟩ ♯ D t (♭ p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) ⊛ p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong (♭ p₁≈p₃)) ⊛ D-cong p₂≈p₄ ⟩ ♯ D t (♭ p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ [ ◌ - ○ - ○ - ○ ] D t (♭ p₃) ∎ ⊛ (♭? p₄ ∎) ∣ (_ ∎) ⟩ D t (♭ p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ (just _) nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭? p₁) ⊛ ♭ p₂ ∣ return⋆ [] ⊛ D t (♭ p₂) ≅⟨ (D t (♭? p₁) ⊛ ♭ p₂ ∎) ∣ [ ○ - ○ - ○ - ◌ ] return⋆ [] ∎ ⊛ (D t (♭ p₂) ∎) ⟩ D t (♭? p₁) ⊛ ♭ p₂ ∣ return⋆ [] ⊛ ♯ D t (♭ p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ ⊛ ♭ p₂≈p₄ ∣ [ just (○ , ○) - nothing ] (return⋆ [] ∎) ⊛ ♯ D-cong (♭ p₂≈p₄) ⟩ D t (♭? p₃) ⊛ ♭ p₄ ∣ return⋆ [] ⊛ ♯ D t (♭ p₄) ≅⟨ (D t (♭? p₃) ⊛ ♭ p₄ ∎) ∣ [ ○ - ○ - ◌ - ○ ] return⋆ [] ∎ ⊛ (D t (♭ p₄) ∎) ⟩ D t (♭? p₃) ⊛ ♭ p₄ ∣ return⋆ [] ⊛ D t (♭ p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_⊛_ (just _) (just (fs₁ , fs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ ⊛ p₂) ≅⟨ D.D-⊛ p₁ p₂ ⟩ D t (♭? p₁) ⊛ ♭? p₂ ∣ return⋆ (flatten fs₁) ⊛ D t (♭? p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ ⊛ p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong p₁≈p₃) ⊛ D-cong p₂≈p₄ ⟩ D t (♭? p₃) ⊛ ♭? p₄ ∣ return⋆ (flatten fs₂) ⊛ D t (♭? p₄) ≅⟨ _∼[_]P_.sym $ D.D-⊛ p₃ p₄ ⟩ D t (p₃ ⊛ p₄) ∎ D-cong ([_-_]_>>=_ nothing nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) >>= (♭ ∘ p₂≈p₄) ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ nothing (just (xs₁ , xs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭ p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ≅⟨ [ ○ - ◌ - ○ - ○ ] D t (♭ p₁) ∎ >>= (λ x → ♭? (p₂ x) ∎) ∣ (_ ∎) ⟩ ♯ D t (♭ p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ∼⟨ [ nothing - just (○ , ○) ] ♯ D-cong (♭ p₁≈p₃) >>= p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong (♭ p₁≈p₃)) >>= (λ x → D-cong (p₂≈p₄ x)) ⟩ ♯ D t (♭ p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ [ ◌ - ○ - ○ - ○ ] D t (♭ p₃) ∎ >>= (λ x → ♭? (p₄ x) ∎) ∣ (_ ∎) ⟩ D t (♭ p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ (just _) nothing {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭? p₁) >>= (♭ ∘ p₂) ∣ return⋆ [] >>= (D t ∘ ♭ ∘ p₂) ≅⟨ (D t (♭? p₁) >>= (♭ ∘ p₂) ∎) ∣ [ ○ - ○ - ○ - ◌ ] return⋆ [] ∎ >>= (λ x → D t (♭ (p₂ x)) ∎) ⟩ D t (♭? p₁) >>= (♭ ∘ p₂) ∣ return⋆ [] >>= (λ x → ♯ D t (♭ (p₂ x))) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ >>= (♭ ∘ p₂≈p₄) ∣ [ just (○ , ○) - nothing ] (return⋆ [] ∎) >>= (λ x → ♯ D-cong (♭ (p₂≈p₄ x))) ⟩ D t (♭? p₃) >>= (♭ ∘ p₄) ∣ return⋆ [] >>= (λ x → ♯ D t (♭ (p₄ x))) ≅⟨ (D t (♭? p₃) >>= (♭ ∘ p₄) ∎) ∣ [ ○ - ○ - ◌ - ○ ] return⋆ [] ∎ >>= (λ x → D t (♭ (p₄ x)) ∎) ⟩ D t (♭? p₃) >>= (♭ ∘ p₄) ∣ return⋆ [] >>= (D t ∘ ♭ ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ D-cong ([_-_]_>>=_ (just _) (just (xs₁ , xs₂)) {p₁} {p₂} {p₃} {p₄} p₁≈p₃ p₂≈p₄) {t} = D t (p₁ >>= p₂) ≅⟨ D.D->>= p₁ p₂ ⟩ D t (♭? p₁) >>= (♭? ∘ p₂) ∣ return⋆ (flatten xs₁) >>= (D t ∘ ♭? ∘ p₂) ∼⟨ [ just (○ , ○) - just (○ , ○) ] D-cong p₁≈p₃ >>= p₂≈p₄ ∣ [ just (○ , ○) - just (○ , ○) ] Return⋆.cong (initial-bag-cong p₁≈p₃) >>= (λ x → D-cong (p₂≈p₄ x)) ⟩ D t (♭? p₃) >>= (♭? ∘ p₄) ∣ return⋆ (flatten xs₂) >>= (D t ∘ ♭? ∘ p₄) ≅⟨ _∼[_]P_.sym $ D.D->>= p₃ p₄ ⟩ D t (p₃ >>= p₄) ∎ ------------------------------------------------------------------------ -- Soundness sound : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → p₁ ∼[ k ] p₂ sound = CE.sound ∘ sound′ where sound′ : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]P p₂ → p₁ ∼[ k ]c p₂ sound′ p₁≈p₂ = initial-bag-cong p₁≈p₂ ∷ λ t → ♯ sound′ (D-cong p₁≈p₂)
{ "alphanum_fraction": 0.3893384441, "avg_line_length": 58.4564315353, "ext": "agda", "hexsha": "c5f61abd5a97d2d055a50889f55cd0d0e0ae41c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Congruence/Sound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Congruence/Sound.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Congruence/Sound.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 6077, "size": 14088 }
module _ where open import Agda.Builtin.Equality open import Agda.Builtin.Nat variable f : Nat → Nat -- Drops the argument to f! foo : (n : Nat) → f n ≡ n → f (f n) ≡ n foo n eq rewrite eq = eq
{ "alphanum_fraction": 0.65, "avg_line_length": 15.3846153846, "ext": "agda", "hexsha": "9819dd62aab248de20f0066925f60ae362273a75", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3290.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3290.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3290.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 200 }
{-# OPTIONS --without-K #-} module algebra.monoid.mset where open import level open import algebra.monoid.core open import algebra.monoid.morphism open import algebra.semigroup open import equality.core open import hott.level module _ {i}(M : Set i) ⦃ mM : IsMonoid M ⦄ where open IsMonoid ⦃ ... ⦄ record IsMSet {j} (X : Set j) : Set (i ⊔ j) where constructor mk-is-mset field _◂_ : M → X → X ◂-hom : (m₁ m₂ : M)(x : X) → (m₁ * m₂) ◂ x ≡ m₁ ◂ (m₂ ◂ x) ◂-id : (x : X) → e ◂ x ≡ x mset-level : h 2 X open IsMSet ⦃ ... ⦄ module _ {j k} {X : Set j} ⦃ xM : IsMSet X ⦄ {Y : Set k} ⦃ yM : IsMSet Y ⦄ where IsMSetMorphism : (X → Y) → Set (i ⊔ j ⊔ k) IsMSetMorphism f = (m : M)(x : X) → f (m ◂ x) ≡ m ◂ f x is-mset-morphism-level : h 2 Y → (f : X → Y) → h 1 (IsMSetMorphism f) is-mset-morphism-level hY f = Π-level λ m → Π-level λ x → hY _ _
{ "alphanum_fraction": 0.5449620802, "avg_line_length": 28.84375, "ext": "agda", "hexsha": "97305d6516481f38aa08516de724071355e9bfd8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/monoid/mset.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/monoid/mset.agda", "max_line_length": 68, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/monoid/mset.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 384, "size": 923 }
-- Andreas, 2013-10-27 {-# OPTIONS --copatterns #-} module Issue907a where import Common.Level open import Common.Prelude open import Common.Product data Vec (A : Set) : Nat → Set where [] : Vec A zero test : ∀ {A} → Σ Nat λ n → Vec A n proj₁ test = zero proj₂ test = []
{ "alphanum_fraction": 0.6582733813, "avg_line_length": 16.3529411765, "ext": "agda", "hexsha": "651b7fd483965f17720f7e593551b9dff879ff98", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue907a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue907a.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue907a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 278 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.SuspAdjointLoop open import cohomology.WithCoefficients module cohomology.SuspAdjointLoopIso where module SuspAdjointLoopIso {i j} (X : Ptd i) (Y : Ptd j) where module ΣAΩ = SuspAdjointLoop X (⊙Ω Y) GSΣ = →Ω-group-structure (⊙Susp X) Y GSΩ = →Ω-group-structure X (⊙Ω Y) open GroupStructure comp-path : (p q : fst (⊙Ω (⊙Ω Y))) → ap2 _∙_ p q == p ∙ q comp-path p q = ap2-out _∙_ p q ∙ ap2 _∙_ (lemma p) (ap-idf q) where lemma : ∀ {i} {A : Type i} {x y : A} {p q : x == y} (α : p == q) → ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α ∙' ! (∙-unit-r q) lemma {p = idp} idp = idp pres-comp-inner : (H₁ H₂ : fst (⊙Susp X ⊙→ ⊙Ω Y)) → ΣAΩ.R (comp GSΣ H₁ H₂) == comp GSΩ (ΣAΩ.R H₁) (ΣAΩ.R H₂) pres-comp-inner H₁ H₂ = transport (λ {(op , op-path) → ΣAΩ.R (comp GSΣ H₁ H₂) == transport (λ b → Σ (fst X → _) (λ h → h (snd X) == b)) op-path (ΣAΩ.comp-lift (snd X) idp idp op (ΣAΩ.R H₁) (ΣAΩ.R H₂))}) (pair= (λ= (λ p → λ= (comp-path p))) {b = idp} {b' = idp} (↓-app=cst-in snd-path)) (ΣAΩ.pres-comp _∙_ H₁ H₂) where snd-path : idp == ap (λ f → f idp idp) (λ= (λ p → λ= (comp-path p))) ∙ idp snd-path = idp =⟨ ! (app=-β (comp-path idp) idp) ⟩ app= (λ= (comp-path idp)) idp =⟨ ap (λ q → app= q idp) (! (app=-β (λ p → λ= (comp-path p)) idp)) ⟩ app= (app= (λ= (λ p → λ= (comp-path p))) idp) idp =⟨ ∘-ap (λ z → z idp) (λ z → z idp) (λ= (λ p → λ= (comp-path p))) ⟩ ap (λ f → f idp idp) (λ= (λ p → λ= (comp-path p))) =⟨ ! (∙-unit-r _) ⟩ ap (λ f → f idp idp) (λ= (λ p → λ= (comp-path p))) ∙ idp ∎ iso : →Ω-Group (⊙Susp X) Y ≃ᴳ →Ω-Group X (⊙Ω Y) iso = Trunc-Group-iso ΣAΩ.R pres-comp-inner (snd (ΣAΩ.eqv))
{ "alphanum_fraction": 0.5021786492, "avg_line_length": 37.4693877551, "ext": "agda", "hexsha": "b35fccdbda6307c87512714a3a241170ac2235a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/SuspAdjointLoopIso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/SuspAdjointLoopIso.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/SuspAdjointLoopIso.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 856, "size": 1836 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Unit | U type 𝟙 : 0-ary term unit : 𝟙 theory (𝟙η) u : 𝟙 |> u = unit -} module Unit.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Unit.Signature open import Unit.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution U:Syn open import SOAS.Metatheory.SecondOrder.Equality U:Syn private variable α β γ τ : UT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ U) α Γ → (𝔐 ▷ U) α Γ → Set where 𝟙η : ⁅ 𝟙 ⁆̣ ▹ ∅ ⊢ 𝔞 ≋ₐ unit open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.7105263158, "avg_line_length": 18.1363636364, "ext": "agda", "hexsha": "71c0b94c154a1ac3e17689db096bef9b1534d96a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Unit/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Unit/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Unit/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 313, "size": 798 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.CoHSpace open import cohomology.Theory module cohomology.CoHSpace {i} (CT : CohomologyTheory i) (n : ℤ) {X : Ptd i} (CHSS : CoHSpaceStructure X) where open CohomologyTheory CT open CoHSpaceStructure CHSS open import cohomology.Wedge CT n abstract private lemma-l : CEl-fmap n ⊙coμ ∘ CEl-fmap n ⊙projl ∼ idf _ lemma-l x = ∘-CEl-fmap n ⊙coμ ⊙projl x ∙ ap (λ f → CEl-fmap n f x) (⊙λ= ⊙unit-r) ∙ CEl-fmap-idf n x lemma-r : CEl-fmap n ⊙coμ ∘ CEl-fmap n ⊙projr ∼ idf _ lemma-r x = ∘-CEl-fmap n ⊙coμ ⊙projr x ∙ ap (λ f → CEl-fmap n f x) (⊙λ= ⊙unit-l) ∙ CEl-fmap-idf n x C-fmap-coμ : ∀ x → CEl-fmap n ⊙coμ x == Group.comp (C n X) (CEl-fmap n ⊙winl x) (CEl-fmap n ⊙winr x) C-fmap-coμ x = CEl-fmap n ⊙coμ x =⟨ C-Wedge-out-η-comm-sqr X X (C-fmap n ⊙coμ) □$ᴳ x ⟩ Group.comp (C n X) (CEl-fmap n ⊙coμ (CEl-fmap n ⊙projl (CEl-fmap n ⊙winl x))) (CEl-fmap n ⊙coμ (CEl-fmap n ⊙projr (CEl-fmap n ⊙winr x))) =⟨ ap2 (Group.comp (C n X)) (lemma-l (CEl-fmap n ⊙winl x)) (lemma-r (CEl-fmap n ⊙winr x)) ⟩ Group.comp (C n X) (CEl-fmap n ⊙winl x) (CEl-fmap n ⊙winr x) =∎
{ "alphanum_fraction": 0.588474026, "avg_line_length": 32.4210526316, "ext": "agda", "hexsha": "b11449a91cd799e6c2f9841477a05c14ccf0f950", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CoHSpace.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CoHSpace.agda", "max_line_length": 102, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CoHSpace.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 555, "size": 1232 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.ToFrom {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.ToFromInit d open import homotopy.3x3.ToFrom2 d open import homotopy.3x3.ToFrom3 d to-from-g-g : (c : A₂₂) → (to-from-g-l (f₁₂ c) , ↓-='-out (apd (to-from-r ∘ f∙₃) (glue c)) , ↓-='-out (apd (ap to ∘ ap from ∘ glue) (glue c)) =□□ ↓-='-out (apd glue (glue c)) , ↓-='-out (apd (to-from-l ∘ f∙₁) (glue c)) , to-from-g-r (f₃₂ c)) to-from-g-g c = coh _ lemma1 lemma3 _ _ (↓-='-out (apd glue (glue c))) lemma2 where open M2 c open M3 c to-from-g-g' : (c : A₂₂) → to-from-g-l (f₁₂ c) == to-from-g-r (f₃₂ c) [ (λ c → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c))) ↓ glue c ] to-from-g-g' c = ↓-=□-in (to-from-g-g c) module ToFromG = PushoutElim {d = span _ _ _ f₁₂ f₃₂} {P = λ c → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c))} to-from-g-l to-from-g-r to-from-g-g' to-from-g : (c : A∙₂) → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c)) to-from-g = ToFromG.f to-from-g' : (c : A∙₂) → to-from-l (f∙₁ c) == to-from-r (f∙₃ c) [ (λ z → to (from z) == z) ↓ glue c ] to-from-g' c = ↓-∘=idf-in to from (to-from-g c) to-from : (x : Pushout^2 (transpose d)) → to (from x) == x to-from = Pushout-elim to-from-l to-from-r to-from-g'
{ "alphanum_fraction": 0.5354969574, "avg_line_length": 41.0833333333, "ext": "agda", "hexsha": "37b7ddc91dcd3155516f58f98b67a45444a61ae3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/ToFrom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/ToFrom.agda", "max_line_length": 167, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/ToFrom.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 806, "size": 1972 }
module SubstantiveDischargeIsConsistent where open import HasNegation open import HasSubstantiveDischarge record SubstantiveDischargeIsConsistent (+ : Set) (- : Set) ⦃ _ : HasNegation (-) ⦄ ⦃ _ : HasSubstantiveDischarge (+) (-) ⦄ : Set₁ where field ≽-consistent : {+ : +} → { - : - } → + ≽ - → + ⋡ ~ - open SubstantiveDischargeIsConsistent ⦃ … ⦄ public {-# DISPLAY SubstantiveDischargeIsConsistent.≽-consistent _ = ≽-consistent #-}
{ "alphanum_fraction": 0.6824324324, "avg_line_length": 29.6, "ext": "agda", "hexsha": "f5f9b77f0fbdd85dcab8c00348a2767f98502bad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/SubstantiveDischargeIsConsistent.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/SubstantiveDischargeIsConsistent.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/SubstantiveDischargeIsConsistent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 153, "size": 444 }
------------------------------------------------------------------------ -- Closure properties for h-levels ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Partly based on Voevodsky's work on so-called univalent -- foundations. open import Equality module H-level.Closure {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as Bijection hiding (id; _∘_) open Derived-definitions-and-properties eq import Equality.Decidable-UIP eq as DUIP open import Equality.Decision-procedures eq open import H-level eq open import Logical-equivalence hiding (id; _∘_) open import Nat eq as Nat open import Prelude open import Surjection eq as Surjection hiding (id; _∘_) ------------------------------------------------------------------------ -- The unit type -- The unit type is contractible. ⊤-contractible : Contractible ⊤ ⊤-contractible = (_ , λ _ → refl _) -- A type is contractible iff it is in bijective correspondence with -- the unit type. contractible⇔↔⊤ : ∀ {a} {A : Type a} → Contractible A ⇔ (A ↔ ⊤) contractible⇔↔⊤ = record { to = flip contractible-isomorphic ⊤-contractible ; from = λ A↔⊤ → respects-surjection (_↔_.surjection (Bijection.inverse A↔⊤)) 0 ⊤-contractible } ------------------------------------------------------------------------ -- The empty type abstract -- The empty type is not contractible. ¬-⊥-contractible : ∀ {ℓ} → ¬ Contractible (⊥ {ℓ = ℓ}) ¬-⊥-contractible = ⊥-elim ∘ proj₁ -- The empty type is propositional. ⊥-propositional : ∀ {ℓ} → Is-proposition (⊥ {ℓ = ℓ}) ⊥-propositional x = ⊥-elim x -- Thus any uninhabited type is also propositional. uninhabited-propositional : ∀ {a} {A : Type a} → ¬ A → Is-proposition A uninhabited-propositional ¬A = respects-surjection (_↔_.surjection $ ⊥↔uninhabited {ℓ = # 0} ¬A) 1 ⊥-propositional ------------------------------------------------------------------------ -- Booleans abstract -- The booleans are not propositional. ¬-Bool-propositional : ¬ Is-proposition Bool ¬-Bool-propositional propositional = Bool.true≢false $ propositional true false -- The booleans form a set. Bool-set : Is-set Bool Bool-set = DUIP.decidable⇒set Bool._≟_ ------------------------------------------------------------------------ -- Natural numbers abstract -- ℕ is not propositional. ¬-ℕ-propositional : ¬ Is-proposition ℕ ¬-ℕ-propositional ℕ-prop = 0≢+ $ ℕ-prop 0 1 -- ℕ is a set. ℕ-set : Is-set ℕ ℕ-set = DUIP.decidable⇒set Nat._≟_ -- Nat._≤_ is not a family of contractible types. ¬-≤-contractible : ¬ (∀ {m n} → Contractible (m Nat.≤ n)) ¬-≤-contractible ≤-contr with proj₁ (≤-contr {m = 1} {n = 0}) ... | ≤-refl′ 1≡0 = 0≢+ (sym 1≡0) ... | ≤-step′ _ +≡0 = 0≢+ (sym +≡0) -- Nat._≤_ is a family of propositions. ≤-propositional : ∀ {m n} → Is-proposition (m Nat.≤ n) ≤-propositional = irr where lemma : ∀ {m n k} → m ≡ n → m ≤ k → suc k ≡ n → ⊥₀ lemma {m} {n} {k} m≡n m≤k 1+k≡n = <-irreflexive ( suc n ≡⟨ cong suc $ sym m≡n ⟩≤ suc m ≤⟨ suc≤suc m≤k ⟩ suc k ≡⟨ 1+k≡n ⟩≤ n ∎≤) cong-≤-step′ : ∀ {m n k₁ k₂} {p₁ : m ≤ k₁} {q₁ : suc k₁ ≡ n} {p₂ : m ≤ k₂} {q₂ : suc k₂ ≡ n} → (k₁≡k₂ : k₁ ≡ k₂) → subst (m ≤_) k₁≡k₂ p₁ ≡ p₂ → subst (λ k → suc k ≡ n) k₁≡k₂ q₁ ≡ q₂ → ≤-step′ p₁ q₁ ≡ ≤-step′ p₂ q₂ cong-≤-step′ {p₁ = p₁} {q₁} {p₂} {q₂} k₁≡k₂ p-eq q-eq = cong (λ { (k , p , q) → ≤-step′ {k = k} p q }) (Σ-≡,≡→≡ k₁≡k₂ (subst (λ k → _ ≤ k × suc k ≡ _) k₁≡k₂ (p₁ , q₁) ≡⟨ push-subst-, _ _ ⟩ (subst (_ ≤_) k₁≡k₂ p₁ , subst (λ k → suc k ≡ _) k₁≡k₂ q₁) ≡⟨ cong₂ _,_ p-eq q-eq ⟩∎ (p₂ , q₂) ∎)) irr : ∀ {m n} → Is-proposition (m Nat.≤ n) irr (≤-refl′ q₁) (≤-refl′ q₂) = cong ≤-refl′ $ ℕ-set q₁ q₂ irr (≤-refl′ q₁) (≤-step′ p₂ q₂) = ⊥-elim (lemma q₁ p₂ q₂) irr (≤-step′ p₁ q₁) (≤-refl′ q₂) = ⊥-elim (lemma q₂ p₁ q₁) irr {n = n} (≤-step′ {k = k₁} p₁ q₁) (≤-step′ {k = k₂} p₂ q₂) = cong-≤-step′ (cancel-suc (suc k₁ ≡⟨ q₁ ⟩ n ≡⟨ sym q₂ ⟩∎ suc k₂ ∎)) (irr _ p₂) (ℕ-set _ _) -- Nat.Distinct is not a family of contractible types. ¬-Distinct-contractible : ¬ (∀ m n → Contractible (Nat.Distinct m n)) ¬-Distinct-contractible Distinct-contr = proj₁ (Distinct-contr 0 0) -- Distinct is a family of propositions. Distinct-propositional : ∀ m n → Is-proposition (Distinct m n) Distinct-propositional zero zero = ⊥-propositional Distinct-propositional zero (suc n) = mono₁ 0 ⊤-contractible Distinct-propositional (suc m) zero = mono₁ 0 ⊤-contractible Distinct-propositional (suc m) (suc n) = Distinct-propositional m n ------------------------------------------------------------------------ -- Π-types -- Closure of contractibility under Π A is logically equivalent to -- having extensional equality for functions from A. Π-closure-contractible⇔extensionality : ∀ {a b} {A : Type a} → ({B : A → Type b} → (∀ x → Contractible (B x)) → Contractible ((x : A) → B x)) ⇔ ({B : A → Type b} → Extensionality′ A B) Π-closure-contractible⇔extensionality {b = b} {A} = record { to = ⇒ ; from = λ ext cB → ((λ x → proj₁ (cB x)) , λ f → ext λ x → proj₂ (cB x) (f x)) } where ⇒ : ({B : A → Type b} → (∀ x → Contractible (B x)) → Contractible ((x : A) → B x)) → (∀ {B} → Extensionality′ A B) ⇒ closure {B} {f} {g} f≡g = f ≡⟨ sym (cong (λ c → λ x → proj₁ (c x)) $ proj₂ contractible (λ x → (f x , f≡g x))) ⟩ (λ x → proj₁ (proj₁ contractible x)) ≡⟨ cong (λ c → λ x → proj₁ (c x)) $ proj₂ contractible (λ x → (g x , refl (g x))) ⟩∎ g ∎ where contractible : Contractible ((x : A) → Singleton (g x)) contractible = closure (singleton-contractible ∘ g) abstract -- Given (generalised) extensionality one can define an -- extensionality proof which is well-behaved. extensionality⇒well-behaved-extensionality : ∀ {a b} {A : Type a} → ({B : A → Type b} → Extensionality′ A B) → {B : A → Type b} → Well-behaved-extensionality A B extensionality⇒well-behaved-extensionality {A = A} ext {B} = (λ {_} → ext′) , λ f → ext′ (refl ∘ f) ≡⟨ trans-symˡ _ ⟩∎ refl f ∎ where ext′ : Extensionality′ A B ext′ = to (from ext) where open _⇔_ Π-closure-contractible⇔extensionality -- A potential inverse of extensionality. (See Equivalence for a proof -- which shows that this function has an inverse, assuming -- extensionality.) ext⁻¹ : ∀ {a b} {A : Type a} {B : A → Type b} {f g : (x : A) → B x} → f ≡ g → (∀ x → f x ≡ g x) ext⁻¹ f≡g = λ x → cong (λ h → h x) f≡g abstract -- "Evaluation rule" for ext⁻¹. ext⁻¹-refl : ∀ {a b} {A : Type a} {B : A → Type b} (f : (x : A) → B x) {x} → ext⁻¹ (refl f) x ≡ refl (f x) ext⁻¹-refl f {x} = cong-refl (λ h → h x) -- Given extensionality there is a (split) surjection from -- ∀ x → f x ≡ g x to f ≡ g. ext-surj : ∀ {a b} → Extensionality a b → {A : Type a} {B : A → Type b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) ↠ (f ≡ g) ext-surj {b = b} ext {A} {B} = record { logical-equivalence = record { to = to ; from = ext⁻¹ } ; right-inverse-of = elim (λ {f g} f≡g → to (ext⁻¹ f≡g) ≡ f≡g) λ h → proj₁ ext′ (ext⁻¹ (refl h)) ≡⟨ cong (proj₁ ext′) (proj₁ ext′ λ _ → ext⁻¹-refl h) ⟩ proj₁ ext′ (refl ∘ h) ≡⟨ proj₂ ext′ h ⟩∎ refl h ∎ } where ext′ : {B : A → Type b} → Well-behaved-extensionality A B ext′ = extensionality⇒well-behaved-extensionality (apply-ext ext) to : {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g to = proj₁ ext′ -- H-level′ is closed under Π A (assuming extensionality). Π-closure′ : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality a b → ∀ n → (∀ x → H-level′ n (B x)) → H-level′ n ((x : A) → B x) Π-closure′ ext zero = _⇔_.from Π-closure-contractible⇔extensionality (apply-ext ext) Π-closure′ ext (suc n) = λ h f g → respects-surjection′ (ext-surj ext) n $ Π-closure′ ext n (λ x → h x (f x) (g x)) -- H-level is closed under Π A (assuming extensionality). Π-closure : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality a b → ∀ n → (∀ x → H-level n (B x)) → H-level n ((x : A) → B x) Π-closure ext n h = _⇔_.from H-level⇔H-level′ $ Π-closure′ ext n (λ x → _⇔_.to H-level⇔H-level′ (h x)) -- This also applies to the implicit function space. implicit-Π-closure : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality a b → ∀ n → (∀ x → H-level n (B x)) → H-level n ({x : A} → B x) implicit-Π-closure ext n = respects-surjection (_↔_.surjection $ Bijection.inverse implicit-Π↔Π) n ∘ Π-closure ext n abstract -- Negated types are propositional, assuming extensionality. ¬-propositional : ∀ {a} {A : Type a} → Extensionality a lzero → Is-proposition (¬ A) ¬-propositional ext = Π-closure ext 1 (λ _ → ⊥-propositional) -- The type ∀ y → x ≡ y is a proposition (assuming extensionality). -- -- This is Lemma 4.1 from van Doorn's "Constructing the Propositional -- Truncation using Non-recursive HITs" (perhaps the proof is not -- quite identical to van Doorn's). Π≡-proposition : ∀ {a} {A : Type a} → Extensionality a a → (x : A) → Is-proposition (∀ y → x ≡ y) Π≡-proposition {A = A} ext x = [inhabited⇒+]⇒+ 0 λ f → let prop : Is-proposition A prop u v = u ≡⟨ sym (f u) ⟩ x ≡⟨ f v ⟩∎ v ∎ in Π-closure ext 1 λ _ → mono₁ 1 prop ------------------------------------------------------------------------ -- Σ-types -- H-level′ is closed under Σ. Σ-closure′ : ∀ {a b} {A : Type a} {B : A → Type b} n → H-level′ n A → (∀ x → H-level′ n (B x)) → H-level′ n (Σ A B) Σ-closure′ {A = A} {B} zero (x , irrA) hB = ((x , proj₁ (hB x)) , λ p → (x , proj₁ (hB x)) ≡⟨ elim (λ {x y} _ → _≡_ {A = Σ A B} (x , proj₁ (hB x)) (y , proj₁ (hB y))) (λ _ → refl _) (irrA (proj₁ p)) ⟩ (proj₁ p , proj₁ (hB (proj₁ p))) ≡⟨ cong (_,_ (proj₁ p)) (proj₂ (hB (proj₁ p)) (proj₂ p)) ⟩∎ p ∎) Σ-closure′ {B = B} (suc n) hA hB = λ p₁ p₂ → respects-surjection′ (_↔_.surjection Σ-≡,≡↔≡) n $ Σ-closure′ n (hA (proj₁ p₁) (proj₁ p₂)) (λ pr₁p₁≡pr₁p₂ → hB (proj₁ p₂) (subst B pr₁p₁≡pr₁p₂ (proj₂ p₁)) (proj₂ p₂)) -- H-level is closed under Σ. Σ-closure : ∀ {a b} {A : Type a} {B : A → Type b} n → H-level n A → (∀ x → H-level n (B x)) → H-level n (Σ A B) Σ-closure n hA hB = _⇔_.from H-level⇔H-level′ (Σ-closure′ n (_⇔_.to H-level⇔H-level′ hA) (_⇔_.to H-level⇔H-level′ ∘ hB)) abstract -- In the case of contractibility the codomain only needs to have -- the right h-level (0) for a single index. Σ-closure-contractible : ∀ {a b} {A : Type a} {B : A → Type b} → (c : Contractible A) → Contractible (B (proj₁ c)) → Contractible (Σ A B) Σ-closure-contractible {B = B} cA (b , irrB) = Σ-closure 0 cA cB where cB : ∀ a → Contractible (B a) cB a = subst B (proj₂ cA a) b , λ b′ → subst B (proj₂ cA a) b ≡⟨ cong (subst B (proj₂ cA a)) $ irrB (subst B (sym $ proj₂ cA a) b′) ⟩ subst B (proj₂ cA a) (subst B (sym $ proj₂ cA a) b′) ≡⟨ subst-subst-sym _ _ _ ⟩∎ b′ ∎ -- H-level is closed under _×_. ×-closure : ∀ {a b} {A : Type a} {B : Type b} n → H-level n A → H-level n B → H-level n (A × B) ×-closure n hA hB = Σ-closure n hA (const hB) -- If B a is inhabited for all a, and Σ A B has h-level n, then A -- also has h-level n. -- -- One cannot, in general, replace ∀ a → B a with ∀ a → ∥ B a ∥ (see -- Circle.¬-generalised-proj₁-closure). However, this is possible if -- B is constant (see H-level.Truncation.Propositional.H-level-×₁). proj₁-closure : ∀ {a b} {A : Type a} {B : A → Type b} → (∀ a → B a) → ∀ n → H-level n (Σ A B) → H-level n A proj₁-closure {A = A} {B} inhabited = respects-surjection surj where surj : Σ A B ↠ A surj = record { logical-equivalence = record { to = proj₁ ; from = λ x → x , inhabited x } ; right-inverse-of = refl } -- If A is inhabited and A × B has h-level n, then B also has -- h-level n. proj₂-closure : ∀ {a b} {A : Type a} {B : Type b} → A → ∀ n → H-level n (A × B) → H-level n B proj₂-closure {A = A} {B} inhabited = respects-surjection surj where surj : A × B ↠ B surj = record { logical-equivalence = record { to = proj₂ ; from = λ x → inhabited , x } ; right-inverse-of = refl } ------------------------------------------------------------------------ -- Logical equivalences, split surjections and bijections -- H-level n is closed under the type formers _⇔_, _↠_ and _↔_ -- (assuming extensionality). ⇔-closure : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ n → H-level n A → H-level n B → H-level n (A ⇔ B) ⇔-closure {a} {b} ext n hA hB = respects-surjection (record { logical-equivalence = record { to = _ ; from = λ A⇔B → _⇔_.to A⇔B , _⇔_.from A⇔B } ; right-inverse-of = λ _ → refl _ }) n (×-closure n (Π-closure (lower-extensionality b a ext) n (λ _ → hB)) (Π-closure (lower-extensionality a b ext) n (λ _ → hA))) ↠-closure : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ n → H-level n A → H-level n B → H-level n (A ↠ B) ↠-closure {a} {b} ext n hA hB = respects-surjection (record { logical-equivalence = record { to = _ ; from = λ A↠B → _↠_.logical-equivalence A↠B , _↠_.right-inverse-of A↠B } ; right-inverse-of = λ _ → refl _ }) n (Σ-closure n (⇔-closure ext n hA hB) λ _ → Π-closure (lower-extensionality a a ext) n λ _ → ⇒≡ _ hB) ↔-closure : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → ∀ n → H-level n A → H-level n B → H-level n (A ↔ B) ↔-closure {a} {b} ext n hA hB = respects-surjection (record { logical-equivalence = record { to = _ ; from = λ A↔B → _↔_.surjection A↔B , _↔_.left-inverse-of A↔B } ; right-inverse-of = λ _ → refl _ }) n (Σ-closure n (↠-closure ext n hA hB) λ _ → Π-closure (lower-extensionality b b ext) n λ _ → ⇒≡ _ hA) ------------------------------------------------------------------------ -- Lifted types -- All H-levels are closed under lifting. ↑-closure : ∀ {a b} {A : Type a} n → H-level n A → H-level n (↑ b A) ↑-closure = respects-surjection (_↔_.surjection (Bijection.inverse ↑↔)) -- All H-levels are also closed under removal of lifting. ↑⁻¹-closure : ∀ {a b} {A : Type a} n → H-level n (↑ b A) → H-level n A ↑⁻¹-closure = respects-surjection (_↔_.surjection ↑↔) ------------------------------------------------------------------------ -- W-types -- W-types are isomorphic to Σ-types containing W-types. W-unfolding : ∀ {a b} {A : Type a} {B : A → Type b} → W A B ↔ ∃ λ (x : A) → B x → W A B W-unfolding = record { surjection = record { logical-equivalence = record { to = λ w → headᵂ w , tailᵂ w ; from = uncurry sup } ; right-inverse-of = refl } ; left-inverse-of = left-inverse-of } where left-inverse-of : (w : W _ _) → sup (headᵂ w) (tailᵂ w) ≡ w left-inverse-of (sup x f) = refl (sup x f) abstract -- Equality between elements of a W-type can be proved using a pair -- of equalities (assuming extensionality). W-≡,≡↠≡ : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ {x y} {f : B x → W A B} {g : B y → W A B} → (∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ↠ (sup x f ≡ sup y g) W-≡,≡↠≡ {a} {A = A} {B} ext {x} {y} {f} {g} = (∃ λ (p : x ≡ y) → ∀ i → f i ≡ g (subst B p i)) ↠⟨ Surjection.∃-cong lemma ⟩ (∃ λ (p : x ≡ y) → subst (λ x → B x → W A B) p f ≡ g) ↠⟨ _↔_.surjection Σ-≡,≡↔≡ ⟩ (_≡_ {A = ∃ λ (x : A) → B x → W A B} (x , f) (y , g)) ↠⟨ ↠-≡ (_↔_.surjection (Bijection.inverse (W-unfolding {A = A} {B = B}))) ⟩□ (sup x f ≡ sup y g) □ where lemma : (p : x ≡ y) → (∀ i → f i ≡ g (subst B p i)) ↠ (subst (λ x → B x → W A B) p f ≡ g) lemma p = elim (λ {x y} p → (f : B x → W A B) (g : B y → W A B) → (∀ i → f i ≡ g (subst B p i)) ↠ (subst (λ x → B x → W A B) p f ≡ g)) (λ x f g → (∀ i → f i ≡ g (subst B (refl x) i)) ↠⟨ subst (λ h → (∀ i → f i ≡ g (h i)) ↠ (∀ i → f i ≡ g i)) (sym (apply-ext (lower-extensionality lzero a ext) (subst-refl B))) Surjection.id ⟩ (∀ i → f i ≡ g i) ↠⟨ ext-surj ext ⟩ (f ≡ g) ↠⟨ subst (λ h → (f ≡ g) ↠ (h ≡ g)) (sym $ subst-refl (λ x' → B x' → W A B) f) Surjection.id ⟩□ (subst (λ x → B x → W A B) (refl x) f ≡ g) □) p f g -- H-level is not closed under W. ¬-W-closure-contractible : ∀ {a b} → ¬ (∀ {A : Type a} {B : A → Type b} → Contractible A → (∀ x → Contractible (B x)) → Contractible (W A B)) ¬-W-closure-contractible closure = inhabited⇒W-empty (const (lift tt)) $ proj₁ $ closure (↑-closure 0 ⊤-contractible) (const (↑-closure 0 ⊤-contractible)) ¬-W-closure : ∀ {a b} → ¬ (∀ {A : Type a} {B : A → Type b} n → H-level n A → (∀ x → H-level n (B x)) → H-level n (W A B)) ¬-W-closure closure = ¬-W-closure-contractible (closure 0) -- However, all positive h-levels are closed under W (assuming -- extensionality). W-closure′ : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ n → H-level′ (1 + n) A → H-level′ (1 + n) (W A B) W-closure′ {A = A} {B} ext n h = closure where closure : (x y : W A B) → H-level′ n (x ≡ y) closure (sup x f) (sup y g) = respects-surjection′ (W-≡,≡↠≡ ext) n $ Σ-closure′ n (h x y) (λ _ → Π-closure′ ext n (λ i → closure (f _) (g _))) W-closure : ∀ {a b} {A : Type a} {B : A → Type b} → Extensionality b (a ⊔ b) → ∀ n → H-level (1 + n) A → H-level (1 + n) (W A B) W-closure ext n h = _⇔_.from H-level⇔H-level′ (W-closure′ ext n (_⇔_.to H-level⇔H-level′ h)) ------------------------------------------------------------------------ -- H-levels abstract -- Contractible is /not/ a comonad in the category of types and -- functions, because map cannot be defined, but we can at least -- define the following functions. counit : ∀ {a} {A : Type a} → Contractible A → A counit = proj₁ cojoin : ∀ {a} {A : Type a} → Extensionality a a → Contractible A → Contractible (Contractible A) cojoin {A = A} ext contr = contr₃ where x : A x = proj₁ contr contr₁ : Contractible (∀ y → x ≡ y) contr₁ = Π-closure′ ext 0 (mono₁′ 0 contr x) contr₂ : (x : A) → Contractible (∀ y → x ≡ y) contr₂ x = subst (λ x → Contractible (∀ y → x ≡ y)) (proj₂ contr x) contr₁ contr₃ : Contractible (∃ λ (x : A) → ∀ y → x ≡ y) contr₃ = Σ-closure 0 contr contr₂ -- Contractible is not necessarily contractible. ¬-Contractible-contractible : ¬ ({A : Type} → Contractible (Contractible A)) ¬-Contractible-contractible contr = proj₁ $ proj₁ $ contr {A = ⊥} -- Contractible is propositional (assuming extensionality). Contractible-propositional : ∀ {a} {A : Type a} → Extensionality a a → Is-proposition (Contractible A) Contractible-propositional ext = [inhabited⇒contractible]⇒propositional (cojoin ext) -- H-level′ is closed under λ P → For-iterated-equality n P A. H-level′-For-iterated-equality : ∀ {p A} {P : Type p → Type p} → Extensionality p p → ∀ m n → (∀ {A} → H-level′ m (P A)) → H-level′ m (For-iterated-equality n P A) H-level′-For-iterated-equality ext m zero hyp = hyp H-level′-For-iterated-equality ext m (suc n) hyp = Π-closure′ ext m λ _ → Π-closure′ ext m λ _ → H-level′-For-iterated-equality ext m n hyp -- A variant of the previous result. H-level′-For-iterated-equality′ : ∀ {p A} {P : Type p → Type p} → Extensionality p p → ∀ m n {o} → H-level′ (n + o) A → (∀ {A} → H-level′ o A → H-level′ m (P A)) → H-level′ m (For-iterated-equality n P A) H-level′-For-iterated-equality′ ext m zero hyp₁ hyp₂ = hyp₂ hyp₁ H-level′-For-iterated-equality′ ext m (suc n) hyp₁ hyp₂ = Π-closure′ ext m λ _ → Π-closure′ ext m λ _ → H-level′-For-iterated-equality′ ext m n (hyp₁ _ _) hyp₂ -- H-level is closed under λ P → For-iterated-equality n P A. H-level-For-iterated-equality : ∀ {p A} {P : Type p → Type p} → Extensionality p p → ∀ m n → (∀ {A} → H-level m (P A)) → H-level m (For-iterated-equality n P A) H-level-For-iterated-equality ext m n hyp = _⇔_.from H-level⇔H-level′ $ H-level′-For-iterated-equality ext m n $ _⇔_.to H-level⇔H-level′ hyp -- A variant of the previous result. H-level-For-iterated-equality′ : ∀ {p A} {P : Type p → Type p} → Extensionality p p → ∀ m n {o} → H-level (n + o) A → (∀ {A} → H-level o A → H-level m (P A)) → H-level m (For-iterated-equality n P A) H-level-For-iterated-equality′ ext m n hyp₁ hyp₂ = _⇔_.from (H-level⇔H-level′ {n = m}) $ H-level′-For-iterated-equality′ ext m n (_⇔_.to H-level⇔H-level′ hyp₁) (_⇔_.to H-level⇔H-level′ ∘ hyp₂ ∘ _⇔_.from H-level⇔H-level′) -- H-level′ is pointwise propositional (assuming extensionality). H-level′-propositional : ∀ {a} → Extensionality a a → ∀ {A : Type a} n → Is-proposition (H-level′ n A) H-level′-propositional ext n = _⇔_.from (H-level⇔H-level′ {n = 1}) $ H-level′-For-iterated-equality ext 1 n $ _⇔_.to (H-level⇔H-level′ {n = 1}) $ Contractible-propositional ext -- The property Is-proposition A is a proposition (assuming -- extensionality). -- -- This result is proved in the HoTT book (first edition, -- Lemma 3.3.5). Is-proposition-propositional : ∀ {a} {A : Type a} → Extensionality a a → Is-proposition (Is-proposition A) Is-proposition-propositional ext = [inhabited⇒+]⇒+ 0 λ p → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ⇒≡ 1 p -- All h-levels are propositional (assuming extensionality). H-level-propositional : ∀ {a} → Extensionality a a → ∀ {A : Type a} n → Is-proposition (H-level n A) H-level-propositional ext zero = Contractible-propositional ext H-level-propositional ext (suc zero) = Is-proposition-propositional ext H-level-propositional {A} ext (suc (suc n)) = implicit-Π-closure ext 1 λ x → implicit-Π-closure ext 1 λ y → H-level-propositional ext {A = x ≡ y} (suc n) -- Uniqueness-of-identity-proofs is pointwise propositional -- (assuming extensionality). UIP-propositional : ∀ {ℓ} → Extensionality (lsuc ℓ) ℓ → Is-proposition (Uniqueness-of-identity-proofs ℓ) UIP-propositional ext = implicit-Π-closure ext 1 λ A → H-level-propositional (lower-extensionality _ lzero ext) 2 ------------------------------------------------------------------------ -- Binary sums abstract -- Binary sums can be expressed using Σ and Bool (with large -- elimination). sum-as-pair : ∀ {a b} {A : Type a} {B : Type b} → (A ⊎ B) ↔ (∃ λ (x : Bool) → if x then ↑ b A else ↑ a B) sum-as-pair {a} {b} {A} {B} = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = [ refl ∘ inj₁ {B = B} , refl ∘ inj₂ {A = A} ] } where to : A ⊎ B → (∃ λ (x : Bool) → if x then ↑ b A else ↑ a B) to = [ _,_ true ∘ lift , _,_ false ∘ lift ] from : (∃ λ (x : Bool) → if x then ↑ b A else ↑ a B) → A ⊎ B from (true , x) = inj₁ $ lower x from (false , y) = inj₂ $ lower y to∘from : (y : ∃ λ x → if x then ↑ b A else ↑ a B) → to (from y) ≡ y to∘from (true , x) = refl _ to∘from (false , y) = refl _ -- H-level is not closed under _⊎_. ¬-⊎-propositional : ∀ {a b} {A : Type a} {B : Type b} → A → B → ¬ Is-proposition (A ⊎ B) ¬-⊎-propositional x y hA⊎B = ⊎.inj₁≢inj₂ $ hA⊎B (inj₁ x) (inj₂ y) ¬-⊎-closure : ∀ {a b} → ¬ (∀ {A : Type a} {B : Type b} n → H-level n A → H-level n B → H-level n (A ⊎ B)) ¬-⊎-closure ⊎-closure = ¬-⊎-propositional (lift tt) (lift tt) $ mono₁ 0 $ ⊎-closure 0 (↑-closure 0 ⊤-contractible) (↑-closure 0 ⊤-contractible) -- However, all levels greater than or equal to 2 are closed under -- _⊎_. ⊎-closure : ∀ {a b} {A : Type a} {B : Type b} n → H-level (2 + n) A → H-level (2 + n) B → H-level (2 + n) (A ⊎ B) ⊎-closure {a} {b} {A} {B} n hA hB = respects-surjection (_↔_.surjection $ Bijection.inverse sum-as-pair) (2 + n) (Σ-closure (2 + n) Bool-2+n if-2+n) where Bool-2+n : H-level (2 + n) Bool Bool-2+n = mono (m≤m+n 2 n) Bool-set if-2+n : (x : Bool) → H-level (2 + n) (if x then ↑ b A else ↑ a B) if-2+n true = respects-surjection (_↔_.surjection $ Bijection.inverse ↑↔) (2 + n) hA if-2+n false = respects-surjection (_↔_.surjection $ Bijection.inverse ↑↔) (2 + n) hB -- Furthermore, if A and B are propositions and mutually exclusive, -- then A ⊎ B is a proposition. ⊎-closure-propositional : ∀ {a b} {A : Type a} {B : Type b} → (A → B → ⊥₀) → Is-proposition A → Is-proposition B → Is-proposition (A ⊎ B) ⊎-closure-propositional A→B→⊥ A-prop B-prop = λ where (inj₁ a₁) (inj₁ a₂) → cong inj₁ (A-prop a₁ a₂) (inj₁ a₁) (inj₂ b₂) → ⊥-elim (A→B→⊥ a₁ b₂) (inj₂ b₁) (inj₁ a₂) → ⊥-elim (A→B→⊥ a₂ b₁) (inj₂ b₁) (inj₂ b₂) → cong inj₂ (B-prop b₁ b₂) -- All levels greater than or equal to 2 are also closed under -- Maybe. Maybe-closure : ∀ {a} {A : Type a} n → H-level (2 + n) A → H-level (2 + n) (Maybe A) Maybe-closure n h = ⊎-closure n (mono (zero≤ (2 + n)) ⊤-contractible) h -- T is pointwise propositional. T-propositional : ∀ {a b} {A : Type a} {B : Type b} → (x : A ⊎ B) → Is-proposition (T x) T-propositional (inj₁ _) = mono₁ 0 ⊤-contractible T-propositional (inj₂ _) = ⊥-propositional -- Furthermore Is-proposition is closed under Dec (assuming -- extensionality). Dec-closure-propositional : ∀ {a} {A : Type a} → Extensionality a lzero → Is-proposition A → Is-proposition (Dec A) Dec-closure-propositional {A = A} ext p = λ where (yes a) (yes a′) → cong yes $ p a a′ (yes a) (no ¬a) → ⊥-elim (¬a a) (no ¬a) (yes a) → ⊥-elim (¬a a) (no ¬a) (no ¬a′) → cong no $ ¬-propositional ext ¬a ¬a′ -- Is-proposition is also closed under _Xor_ (assuming -- extensionality). Xor-closure-propositional : ∀ {a b} {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (# 0) → Is-proposition A → Is-proposition B → Is-proposition (A Xor B) Xor-closure-propositional {ℓa} {ℓb} {A} {B} ext pA pB = λ where (inj₁ (a , ¬b)) (inj₂ (¬a , b)) → ⊥-elim (¬a a) (inj₂ (¬a , b)) (inj₁ (a , ¬b)) → ⊥-elim (¬b b) (inj₁ (a , ¬b)) (inj₁ (a′ , ¬b′)) → cong₂ (λ x y → inj₁ (x , y)) (pA a a′) (apply-ext (lower-extensionality ℓa _ ext) λ b → ⊥-elim (¬b b)) (inj₂ (¬a , b)) (inj₂ (¬a′ , b′)) → cong₂ (λ x y → inj₂ (x , y)) (apply-ext (lower-extensionality ℓb _ ext) λ a → ⊥-elim (¬a a)) (pB b b′) -- However, H-level is not closed under _Xor_. ¬-Xor-closure-contractible : ∀ {a b} → ¬ ({A : Type a} {B : Type b} → Contractible A → Contractible B → Contractible (A Xor B)) ¬-Xor-closure-contractible closure with proj₁ $ closure (↑-closure 0 ⊤-contractible) (↑-closure 0 ⊤-contractible) ... | inj₁ (_ , ¬⊤) = ¬⊤ _ ... | inj₂ (¬⊤ , _) = ¬⊤ _ -- Alternative definition of ⊎-closure (for Type₀). module Alternative-proof where -- Is-set is closed under _⊎_, by an argument similar to the one -- Hedberg used to prove that decidable equality implies -- uniqueness of identity proofs. ⊎-closure-set : {A B : Type} → Is-set A → Is-set B → Is-set (A ⊎ B) ⊎-closure-set {A} {B} A-set B-set = DUIP.constant⇒set c where c : (x y : A ⊎ B) → ∃ λ (f : x ≡ y → x ≡ y) → DUIP.Constant f c (inj₁ x) (inj₁ y) = (cong inj₁ ∘ ⊎.cancel-inj₁ , λ p q → cong (cong inj₁) $ A-set (⊎.cancel-inj₁ p) (⊎.cancel-inj₁ q)) c (inj₂ x) (inj₂ y) = (cong inj₂ ∘ ⊎.cancel-inj₂ , λ p q → cong (cong inj₂) $ B-set (⊎.cancel-inj₂ p) (⊎.cancel-inj₂ q)) c (inj₁ x) (inj₂ y) = (⊥-elim ∘ ⊎.inj₁≢inj₂ , λ _ → ⊥-elim ∘ ⊎.inj₁≢inj₂) c (inj₂ x) (inj₁ y) = (⊥-elim ∘ ⊎.inj₁≢inj₂ ∘ sym , λ _ → ⊥-elim ∘ ⊎.inj₁≢inj₂ ∘ sym) -- H-level is closed under _⊎_ for other levels greater than or equal -- to 2 too. ⊎-closure′ : ∀ {A B : Type} n → H-level (2 + n) A → H-level (2 + n) B → H-level (2 + n) (A ⊎ B) ⊎-closure′ zero = ⊎-closure-set ⊎-closure′ {A} {B} (suc n) = clos where clos : H-level (3 + n) A → H-level (3 + n) B → H-level (3 + n) (A ⊎ B) clos hA hB {x = inj₁ x} {y = inj₁ y} = respects-surjection (_↔_.surjection ≡↔inj₁≡inj₁) (2 + n) hA clos hA hB {x = inj₂ x} {y = inj₂ y} = respects-surjection (_↔_.surjection ≡↔inj₂≡inj₂) (2 + n) hB clos hA hB {x = inj₁ x} {y = inj₂ y} {x = p} = ⊥-elim (⊎.inj₁≢inj₂ p) clos hA hB {x = inj₂ x} {y = inj₁ y} {x = p} = ⊥-elim (⊎.inj₁≢inj₂ (sym p))
{ "alphanum_fraction": 0.5049990386, "avg_line_length": 34.1422319475, "ext": "agda", "hexsha": "bdc3ce21717fa026124c87240070d5afdeebdf69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/H-level/Closure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/H-level/Closure.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/H-level/Closure.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 11584, "size": 31206 }
open import Coinduction using ( ∞ ; ♭ ; ♯_ ) open import Data.Bool using ( Bool ; true ; false ) open import Data.Empty using ( ⊥ ; ⊥-elim ) open import Data.Unit using ( ⊤ ; tt ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; choice ) renaming ( ⟦_⟧ to ⟦_⟧' ; _⟫_ to _⟫'_ ; _[&]_ to _[&]'_ ; _⟨&⟩_ to _⟨&⟩'_ ; assoc to assoc' ) open import System.IO.Transducers.Session using ( Session ; I ; Σ ; Γ ; _/_ ; IsΣ ; ⟨_⟩ ; _&_ ; ¿ ; _⊕_ ) open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ) module System.IO.Transducers.Strict where infixr 4 _⇛_ infixr 6 _⟫_ infixr 8 _[&]_ _⟨&⟩_ -- Strict tranducers are ones which perform input before any output data Strict : ∀ {S T} → (S ⇒ T) → Set₁ where inp : ∀ {A V F T} P → (Strict (inp {A} {V} {F} {T} P)) done : ∀ {S} → (Strict (done {S})) -- Slightly annoyingly, _≡_ has different cardinalities -- in different versions of the standard library. -- Until 1.4 of agda-stdlib is more widely distributed, -- we define a specialized version of _≡_ here. data _≡_ (S : Session) : Session → Set₁ where refl : S ≡ S -- S ⇛ T is the type of strict transducers regarded as functions _⇛_ : Session → Session → Set₁ I ⇛ T = I ≡ T Σ V F ⇛ T = ∀ a → (♭ F a) ⇒ T -- Identity transducer id : ∀ {S} → S ⇛ S id {I} = refl id {Σ V F} = λ a → out a done -- Inclusion of strict in lazy transducers ι : ∀ {S T} → (S ⇛ T) → (S ⇒ T) ι {I} refl = done ι {Σ V F} P = inp (♯ P) -- Composition _⟫_ : ∀ {S T U} → (S ⇛ T) → (T ⇛ U) → (S ⇛ U) _⟫_ {I} refl refl = refl _⟫_ {Σ V F} {I} P refl = P _⟫_ {Σ V F} {Σ W G} P Q = λ a → (P a ⟫' ι Q) -- & on transducers _[&]_ : ∀ {S T U V} → (S ⇛ T) → (U ⇛ V) → ((S & U) ⇛ (T & V)) _[&]_ {I} refl Q = Q _[&]_ {Σ V F} P Q = λ a → (P a [&]' ι Q) -- Associativity of & assoc : ∀ {S T U} → ((S & (T & U)) ⇛ ((S & T) & U)) assoc {I} {T} {U} = id {T & U} assoc {Σ V F} {T} {U} = λ a → out a (assoc' {♭ F a}) -- Mediating morphism for & _⟨&⟩_ : ∀ {S T U} → (S ⇛ T) → (S ⇛ U) → (S ⇛ T & U) _⟨&⟩_ {I} refl refl = refl _⟨&⟩_ {Σ V F} P Q = λ a → (P a ⟨&⟩' Q a)
{ "alphanum_fraction": 0.5262417994, "avg_line_length": 28.8378378378, "ext": "agda", "hexsha": "aca561faa819f1b2986bcad84c7acd125bb341b4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Strict.agda", "max_line_length": 105, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 907, "size": 2134 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.gbm.GbmUtil module stash.modalities.gbm.PullbackSplit where -- L --> B K = A ×_D C / (f,h) d₁ = A -> D <- C -- | |g L = B ×_A K / (g,left) d₂ = B -> A <- K -- v v d = B -> D <- C -- K --> A -- | |f -- v v -- C --> D -- h module PullbackLSplit {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : A → D) (g : B → A) (h : C → D) where private d₁ : Cospan d₁ = cospan C A D h f d₂ : Cospan d₂ = cospan (Pullback d₁) B A Pullback.b g d : Cospan d = cospan C B D h (f ∘ g) split-equiv : Pullback d ≃ Pullback d₂ split-equiv = equiv to from to-from from-to where to : Pullback d → Pullback d₂ to (pullback c b p) = pullback (pullback c (g b) p) b idp from : Pullback d₂ → Pullback d from (pullback (pullback c a p) b idp) = pullback c b p to-from : (x : Pullback d₂) → to (from x) == x to-from (pullback _ b idp) = idp from-to : (x : Pullback d) → from (to x) == x from-to _ = idp record CospanMap {i₀ j₀ k₀ i₁ j₁ k₁} (cospan₀ : Cospan {i₀} {j₀} {k₀}) (cospan₁ : Cospan {i₁} {j₁} {k₁}) : Type (lmax (lmax (lmax i₀ j₀) k₀) (lmax (lmax i₁ j₁) k₁)) where constructor cospan-map module cospan₀ = Cospan cospan₀ module cospan₁ = Cospan cospan₁ field hA : cospan₀.A → cospan₁.A hB : cospan₀.B → cospan₁.B hC : cospan₀.C → cospan₁.C f-commutes : CommSquare cospan₀.f cospan₁.f hA hC g-commutes : CommSquare cospan₀.g cospan₁.g hB hC CospanEquiv : ∀ {i₀ j₀ k₀ i₁ j₁ k₁} (cospan₀ : Cospan {i₀} {j₀} {k₀}) (cospan₁ : Cospan {i₁} {j₁} {k₁}) → Type (lmax (lmax (lmax i₀ j₀) k₀) (lmax (lmax i₁ j₁) k₁)) CospanEquiv cospan₀ cospan₁ = Σ (CospanMap cospan₀ cospan₁) (λ cospan-map → is-equiv (CospanMap.hA cospan-map) × is-equiv (CospanMap.hB cospan-map) × is-equiv (CospanMap.hC cospan-map)) CospanEquiv-inverse : ∀ {i₀ j₀ k₀ i₁ j₁ k₁} {cospan₀ : Cospan {i₀} {j₀} {k₀}} {cospan₁ : Cospan {i₁} {j₁} {k₁}} → CospanEquiv cospan₀ cospan₁ → CospanEquiv cospan₁ cospan₀ CospanEquiv-inverse (cospan-map hA hB hC f-commutes g-commutes , hA-ise , hB-ise , hC-ise) = (cospan-map hA.g hB.g hC.g (CommSquare-inverse-v f-commutes hA-ise hC-ise) (CommSquare-inverse-v g-commutes hB-ise hC-ise)) , ( is-equiv-inverse hA-ise , is-equiv-inverse hB-ise , is-equiv-inverse hC-ise) where module hA = is-equiv hA-ise module hB = is-equiv hB-ise module hC = is-equiv hC-ise module PullbackFmap {i₀ j₀ k₀ i₁ j₁ k₁} {cospan₀ : Cospan {i₀} {j₀} {k₀}} {cospan₁ : Cospan {i₁} {j₁} {k₁}} (cospan-map : CospanMap cospan₀ cospan₁) where f : Pullback cospan₀ → Pullback cospan₁ f (pullback a b h) = pullback (CospanMap.hA cospan-map a) (CospanMap.hB cospan-map b) (! (commutes (CospanMap.f-commutes cospan-map) a) ∙ ap (λ x → CospanMap.hC cospan-map x) h ∙ (commutes (CospanMap.g-commutes cospan-map) b)) Pullback-fmap = PullbackFmap.f module _ {i₀ j₀ k₀ i₁ j₁ k₁} {cospan₀ : Cospan {i₀} {j₀} {k₀}} {cospan₁ : Cospan {i₁} {j₁} {k₁}} (cospan-equiv : CospanEquiv cospan₀ cospan₁) where private module cospan₀ = Cospan cospan₀ module cospan₁ = Cospan cospan₁ cospan-to = fst cospan-equiv cospan-from = fst (CospanEquiv-inverse cospan-equiv) module cospan-to = CospanMap cospan-to module cospan-from = CospanMap cospan-from module To = PullbackFmap cospan-to module From = PullbackFmap cospan-from cospan-ise = snd cospan-equiv hA-ise = fst cospan-ise hB-ise = fst (snd cospan-ise) hC-ise = snd (snd cospan-ise) module hA-ise = is-equiv hA-ise module hB-ise = is-equiv hB-ise module hC-ise = is-equiv hC-ise f = cospan₀.f g = cospan₀.g f' = cospan₁.f g' = cospan₁.g α = commutes cospan-to.f-commutes β = commutes cospan-to.g-commutes α' = commutes cospan-from.f-commutes β' = commutes cospan-from.g-commutes hA = cospan-to.hA hB = cospan-to.hB hC = cospan-to.hC kA = cospan-from.hA kB = cospan-from.hB kC = cospan-from.hC module kA-ise = is-equiv (is-equiv-inverse hA-ise) module kB-ise = is-equiv (is-equiv-inverse hB-ise) module kC-ise = is-equiv (is-equiv-inverse hC-ise) kA-ise = is-equiv-inverse hA-ise kB-ise = is-equiv-inverse hB-ise kC-ise = is-equiv-inverse hC-ise to = To.f from = From.f from-to : ∀ x → from (to x) == x from-to (pullback a b h) = pullback= _ (hA-ise.g-f a) (hB-ise.g-f b) goal where eq₀ = hC-ise.g-f (f a) ∙ h ∙ ! (hC-ise.g-f (g b)) =⟨ ! (ap-idf h) |in-ctx (λ x → hC-ise.g-f (f a) ∙ x ∙ ! (hC-ise.g-f (g b))) ⟩ hC-ise.g-f (f a) ∙ ap (idf _) h ∙ ! (hC-ise.g-f (g b)) =⟨ ! (∙-assoc (hC-ise.g-f (f a)) _ _) ⟩ (hC-ise.g-f (f a) ∙ ap (idf _) h) ∙ ! (hC-ise.g-f (g b)) =⟨ ↓-==-out (apd hC-ise.g-f h) |in-ctx (λ x → x ∙ ! (hC-ise.g-f (g b))) ⟩ (ap (kC ∘ hC) h ∙ hC-ise.g-f (g b)) ∙ ! (hC-ise.g-f (g b)) =⟨ ∙-assoc (ap (kC ∘ hC) h) _ _ ⟩ ap (kC ∘ hC) h ∙ hC-ise.g-f (g b) ∙ ! (hC-ise.g-f (g b)) =⟨ !-inv-r (hC-ise.g-f (g b)) |in-ctx (λ x → ap (kC ∘ hC) h ∙ x) ⟩ ap (kC ∘ hC) h ∙ idp =⟨ ∙-unit-r (ap (kC ∘ hC) h) ⟩ ap (kC ∘ hC) h ∎ eq₁ = β' (hB b) =⟨ ! (hB-ise.adj b) |in-ctx (λ x → ap kC (! (β (kB (hB b)) ∙ ap g' x)) ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ap kC (! (β (kB (hB b)) ∙ ap g' (ap hB (hB-ise.g-f b)))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ∘-ap g' hB (hB-ise.g-f b) |in-ctx (λ x → ap kC (! (β (kB (hB b)) ∙ x)) ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ap kC (! (β (kB (hB b)) ∙ ap (g' ∘ hB) (hB-ise.g-f b))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ↓-==-out (apd β (hB-ise.g-f b)) |in-ctx (λ x → ap kC (! x) ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ap kC (! (ap (hC ∘ g) (hB-ise.g-f b) ∙ β b)) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ap-! kC (ap (hC ∘ g) (hB-ise.g-f b) ∙ β b) |in-ctx (λ x → x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (ap (hC ∘ g) (hB-ise.g-f b) ∙ β b)) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ap-∙ kC (ap (hC ∘ g) (hB-ise.g-f b)) (β b) |in-ctx (λ x → ! x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (ap (hC ∘ g) (hB-ise.g-f b)) ∙ ap kC (β b)) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ !-∙ (ap kC (ap (hC ∘ g) (hB-ise.g-f b))) (ap kC (β b)) |in-ctx (λ x → x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ (! (ap kC (β b)) ∙ ! (ap kC (ap (hC ∘ g) (hB-ise.g-f b)))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ∙-assoc (! (ap kC (β b))) _ _ ⟩ ! (ap kC (β b)) ∙ ! (ap kC (ap (hC ∘ g) (hB-ise.g-f b))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ∘-ap kC (hC ∘ g) (hB-ise.g-f b) |in-ctx (λ x → ! (ap kC (β b)) ∙ ! x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (β b)) ∙ ! (ap (kC ∘ hC ∘ g) (hB-ise.g-f b)) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ! (∘-ap (kC ∘ hC) g (hB-ise.g-f b)) |in-ctx (λ x → ! (ap kC (β b)) ∙ ! x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (β b)) ∙ ! (ap (kC ∘ hC) (ap g (hB-ise.g-f b))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ eqv-square' (hC , hC-ise) (ap g (hB-ise.g-f b)) |in-ctx (λ x → ! (ap kC (β b)) ∙ ! x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (β b)) ∙ ! (hC-ise.g-f (g (kB (hB b))) ∙ (ap g (hB-ise.g-f b)) ∙ ! (hC-ise.g-f (g b))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ !-∙ (hC-ise.g-f (g (kB (hB b)))) ((ap g (hB-ise.g-f b)) ∙ ! (hC-ise.g-f (g b))) |in-ctx (λ x → ! (ap kC (β b)) ∙ x ∙ hC-ise.g-f (g (kB (hB b)))) ⟩ ! (ap kC (β b)) ∙ (! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b))) ∙ ! (hC-ise.g-f (g (kB (hB b))))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ ∙-assoc (! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b)))) _ _ |in-ctx (λ x → ! (ap kC (β b)) ∙ x) ⟩ ! (ap kC (β b)) ∙ ! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b))) ∙ ! (hC-ise.g-f (g (kB (hB b)))) ∙ hC-ise.g-f (g (kB (hB b))) =⟨ !-inv-l (hC-ise.g-f (g (kB (hB b)))) |in-ctx (λ x → ! (ap kC (β b)) ∙ ! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b))) ∙ x) ⟩ ! (ap kC (β b)) ∙ ! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b))) ∙ idp =⟨ ∙-unit-r (! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b)))) |in-ctx (λ x → ! (ap kC (β b)) ∙ x) ⟩ ! (ap kC (β b)) ∙ ! (ap g (hB-ise.g-f b) ∙ ! (hC-ise.g-f (g b))) =⟨ !-∙ (ap g (hB-ise.g-f b)) (! (hC-ise.g-f (g b))) |in-ctx (λ x → ! (ap kC (β b)) ∙ x) ⟩ ! (ap kC (β b)) ∙ ! (! (hC-ise.g-f (g b))) ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-! (hC-ise.g-f (g b)) |in-ctx (λ x → ! (ap kC (β b)) ∙ x ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (ap kC (β b)) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) ∎ eq₂ = α' (hA a) =⟨ ! (hA-ise.adj a) |in-ctx (λ x → ap kC (! (α (kA (hA a)) ∙ ap f' x)) ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ap kC (! (α (kA (hA a)) ∙ ap f' (ap hA (hA-ise.g-f a)))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ∘-ap f' hA (hA-ise.g-f a) |in-ctx (λ x → ap kC (! (α (kA (hA a)) ∙ x)) ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ap kC (! (α (kA (hA a)) ∙ ap (f' ∘ hA) (hA-ise.g-f a))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ↓-==-out (apd α (hA-ise.g-f a)) |in-ctx (λ x → ap kC (! x) ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ap kC (! (ap (hC ∘ f) (hA-ise.g-f a) ∙ α a)) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ap-! kC (ap (hC ∘ f) (hA-ise.g-f a) ∙ α a) |in-ctx (λ x → x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (ap (hC ∘ f) (hA-ise.g-f a) ∙ α a)) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ap-∙ kC (ap (hC ∘ f) (hA-ise.g-f a)) (α a) |in-ctx (λ x → ! x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (ap (hC ∘ f) (hA-ise.g-f a)) ∙ ap kC (α a)) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ !-∙ (ap kC (ap (hC ∘ f) (hA-ise.g-f a))) (ap kC (α a)) |in-ctx (λ x → x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ (! (ap kC (α a)) ∙ ! (ap kC (ap (hC ∘ f) (hA-ise.g-f a)))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ∙-assoc (! (ap kC (α a))) _ _ ⟩ ! (ap kC (α a)) ∙ ! (ap kC (ap (hC ∘ f) (hA-ise.g-f a))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ∘-ap kC (hC ∘ f) (hA-ise.g-f a) |in-ctx (λ x → ! (ap kC (α a)) ∙ ! x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (α a)) ∙ ! (ap (kC ∘ hC ∘ f) (hA-ise.g-f a)) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ! (∘-ap (kC ∘ hC) f (hA-ise.g-f a)) |in-ctx (λ x → ! (ap kC (α a)) ∙ ! x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (α a)) ∙ ! (ap (kC ∘ hC) (ap f (hA-ise.g-f a))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ eqv-square' (hC , hC-ise) (ap f (hA-ise.g-f a)) |in-ctx (λ x → ! (ap kC (α a)) ∙ ! x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (α a)) ∙ ! (hC-ise.g-f (f (kA (hA a))) ∙ (ap f (hA-ise.g-f a)) ∙ ! (hC-ise.g-f (f a))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ !-∙ (hC-ise.g-f (f (kA (hA a)))) ((ap f (hA-ise.g-f a)) ∙ ! (hC-ise.g-f (f a))) |in-ctx (λ x → ! (ap kC (α a)) ∙ x ∙ hC-ise.g-f (f (kA (hA a)))) ⟩ ! (ap kC (α a)) ∙ (! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a))) ∙ ! (hC-ise.g-f (f (kA (hA a))))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ ∙-assoc (! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a)))) _ _ |in-ctx (λ x → ! (ap kC (α a)) ∙ x) ⟩ ! (ap kC (α a)) ∙ ! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a))) ∙ ! (hC-ise.g-f (f (kA (hA a)))) ∙ hC-ise.g-f (f (kA (hA a))) =⟨ !-inv-l (hC-ise.g-f (f (kA (hA a)))) |in-ctx (λ x → ! (ap kC (α a)) ∙ ! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a))) ∙ x) ⟩ ! (ap kC (α a)) ∙ ! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a))) ∙ idp =⟨ ∙-unit-r (! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a)))) |in-ctx (λ x → ! (ap kC (α a)) ∙ x) ⟩ ! (ap kC (α a)) ∙ ! (ap f (hA-ise.g-f a) ∙ ! (hC-ise.g-f (f a))) =⟨ !-∙ (ap f (hA-ise.g-f a)) (! (hC-ise.g-f (f a))) |in-ctx (λ x → ! (ap kC (α a)) ∙ x) ⟩ ! (ap kC (α a)) ∙ ! (! (hC-ise.g-f (f a))) ∙ ! (ap f (hA-ise.g-f a)) =⟨ !-! (hC-ise.g-f (f a)) |in-ctx (λ x → ! (ap kC (α a)) ∙ x ∙ ! (ap f (hA-ise.g-f a))) ⟩ ! (ap kC (α a)) ∙ hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a)) ∎ lem = ! (α' (hA a)) ∙ ap kC (! (α a) ∙ ap hC h ∙ β b) ∙ β' (hB b) =⟨ ap-∙ kC (! (α a)) (ap hC h ∙ β b) |in-ctx (λ x → ! (α' (hA a)) ∙ x ∙ β' (hB b)) ⟩ ! (α' (hA a)) ∙ (ap kC (! (α a)) ∙ ap kC (ap hC h ∙ β b)) ∙ β' (hB b) =⟨ ∙-assoc (ap kC (! (α a))) (ap kC (ap hC h ∙ β b)) (β' (hB b)) |in-ctx (λ x → ! (α' (hA a)) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap kC (ap hC h ∙ β b) ∙ β' (hB b) =⟨ ap-∙ kC (ap hC h) (β b) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x ∙ β' (hB b)) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (ap kC (ap hC h) ∙ ap kC (β b)) ∙ β' (hB b) =⟨ ∙-assoc (ap kC (ap hC h)) (ap kC (β b)) (β' (hB b)) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap kC (ap hC h) ∙ ap kC (β b) ∙ β' (hB b) =⟨ ∘-ap kC hC h |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x ∙ ap kC (β b) ∙ β' (hB b)) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ ap kC (β b) ∙ β' (hB b) =⟨ eq₁ |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ ap kC (β b) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ ap kC (β b) ∙ ! (ap kC (β b)) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! (∙-assoc (ap kC (β b)) _ _) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ (ap kC (β b) ∙ ! (ap kC (β b))) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-inv-r (ap kC (β b)) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ x ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ap (kC ∘ hC) h ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! eq₀ |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h ∙ ! (hC-ise.g-f (g b))) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! (∙-assoc (hC-ise.g-f (f a)) _ _) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ ((hC-ise.g-f (f a) ∙ h) ∙ ! (hC-ise.g-f (g b))) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ∙-assoc (hC-ise.g-f (f a) ∙ h) _ _ |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h) ∙ ! (hC-ise.g-f (g b)) ∙ hC-ise.g-f (g b) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! (∙-assoc (! (hC-ise.g-f (g b))) _ _) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h) ∙ (! (hC-ise.g-f (g b)) ∙ hC-ise.g-f (g b)) ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-inv-l (hC-ise.g-f (g b)) |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h) ∙ x ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ (hC-ise.g-f (f a) ∙ h) ∙ ! (ap g (hB-ise.g-f b)) =⟨ ∙-assoc (hC-ise.g-f (f a)) _ _ |in-ctx (λ x → ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ x) ⟩ ! (α' (hA a)) ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ eq₂ |in-ctx (λ x → ! x ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (! (ap kC (α a)) ∙ hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-∙ (! (ap kC (α a))) _ |in-ctx (λ x → x ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ (! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ ! (! (ap kC (α a)))) ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ ∙-assoc (! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a)))) _ _ ⟩ ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ ! (! (ap kC (α a))) ∙ ap kC (! (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ ap-! kC (α a) |in-ctx (λ x → ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ ! (! (ap kC (α a))) ∙ x ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ ! (! (ap kC (α a))) ∙ ! (ap kC (α a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! (∙-assoc (! (! (ap kC (α a)))) _ _) |in-ctx (λ x → ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ x) ⟩ ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ (! (! (ap kC (α a))) ∙ ! (ap kC (α a))) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-inv-l (! (ap kC (α a))) |in-ctx (λ x → ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ x ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (hC-ise.g-f (f a) ∙ ! (ap f (hA-ise.g-f a))) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-∙ (hC-ise.g-f (f a)) _ |in-ctx (λ x → x ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ (! (! (ap f (hA-ise.g-f a))) ∙ ! (hC-ise.g-f (f a))) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ ∙-assoc (! (! (ap f (hA-ise.g-f a)))) _ _ ⟩ ! (! (ap f (hA-ise.g-f a))) ∙ ! (hC-ise.g-f (f a)) ∙ hC-ise.g-f (f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ ! (∙-assoc (! (hC-ise.g-f (f a))) _ _) |in-ctx (λ x → ! (! (ap f (hA-ise.g-f a))) ∙ x) ⟩ ! (! (ap f (hA-ise.g-f a))) ∙ (! (hC-ise.g-f (f a)) ∙ hC-ise.g-f (f a)) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-inv-l (hC-ise.g-f (f a)) |in-ctx (λ x → ! (! (ap f (hA-ise.g-f a))) ∙ x ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ ! (! (ap f (hA-ise.g-f a))) ∙ h ∙ ! (ap g (hB-ise.g-f b)) =⟨ !-! (ap f (hA-ise.g-f a)) |in-ctx (λ x → x ∙ h ∙ ! (ap g (hB-ise.g-f b))) ⟩ ap f (hA-ise.g-f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) ∎ goal = (! (α' (hA a)) ∙ ap kC (! (α a) ∙ ap hC h ∙ β b) ∙ β' (hB b)) ∙ ap g (hB-ise.g-f b) =⟨ lem |in-ctx (λ x → x ∙ ap g (hB-ise.g-f b)) ⟩ (ap f (hA-ise.g-f a) ∙ h ∙ ! (ap g (hB-ise.g-f b))) ∙ ap g (hB-ise.g-f b) =⟨ ∙-assoc (ap f (hA-ise.g-f a)) (h ∙ ! (ap g (hB-ise.g-f b))) _ ⟩ ap f (hA-ise.g-f a) ∙ (h ∙ ! (ap g (hB-ise.g-f b))) ∙ ap g (hB-ise.g-f b) =⟨ ∙-assoc h _ _ |in-ctx (λ x → ap f (hA-ise.g-f a) ∙ x) ⟩ ap f (hA-ise.g-f a) ∙ h ∙ ! (ap g (hB-ise.g-f b)) ∙ ap g (hB-ise.g-f b) =⟨ !-inv-l (ap g (hB-ise.g-f b)) |in-ctx (λ x → ap f (hA-ise.g-f a) ∙ h ∙ x) ⟩ ap f (hA-ise.g-f a) ∙ h ∙ idp =⟨ ∙-unit-r h |in-ctx (λ x → ap f (hA-ise.g-f a) ∙ x) ⟩ ap f (hA-ise.g-f a) ∙ h ∎ postulate to-from : ∀ y → to (from y) == y -- to-from (pullback a b h) = pullback= _ (hA-ise.f-g a) (hB-ise.f-g b) {!!} Pullback-emap : Pullback cospan₀ ≃ Pullback cospan₁ Pullback-emap = equiv to from to-from from-to
{ "alphanum_fraction": 0.3967332481, "avg_line_length": 68.2080536913, "ext": "agda", "hexsha": "b1a4068d69c5ae46db6b7164fd08ee8fa5b5e5e3", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/gbm/PullbackSplit.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/gbm/PullbackSplit.agda", "max_line_length": 177, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/gbm/PullbackSplit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 9685, "size": 20326 }
{- Closure properties of FinSet under several type constructors. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Constructors where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation renaming (rec to TruncRec) open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Empty renaming (rec to EmptyRec) open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Fin open import Cubical.Data.SumFin renaming (Fin to SumFin) hiding (discreteFin) open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Data.FinSet.FiniteChoice open import Cubical.Relation.Nullary open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection private variable ℓ ℓ' ℓ'' ℓ''' : Level module _ (X : Type ℓ)(p : ≃Fin X) where ≃Fin∥∥ : ≃Fin ∥ X ∥ ≃Fin∥∥ = ≃SumFin→Fin (_ , compEquiv (propTrunc≃ (≃Fin→SumFin p .snd)) (SumFin∥∥≃ _)) module _ (X : Type ℓ )(p : ≃Fin X) (Y : Type ℓ')(q : ≃Fin Y) where ≃Fin⊎ : ≃Fin (X ⊎ Y) ≃Fin⊎ = ≃SumFin→Fin (_ , compEquiv (⊎-equiv (≃Fin→SumFin p .snd) (≃Fin→SumFin q .snd)) (SumFin⊎≃ _ _)) ≃Fin× : ≃Fin (X × Y) ≃Fin× = ≃SumFin→Fin (_ , compEquiv (Σ-cong-equiv (≃Fin→SumFin p .snd) (λ _ → ≃Fin→SumFin q .snd)) (SumFin×≃ _ _)) module _ (X : Type ℓ )(p : ≃Fin X) (Y : X → Type ℓ')(q : (x : X) → ≃Fin (Y x)) where private p' = ≃Fin→SumFin p m = p' .fst e = p' .snd q' : (x : X) → ≃SumFin (Y x) q' x = ≃Fin→SumFin (q x) f : (x : X) → ℕ f x = q' x .fst ≃SumFinΣ : ≃SumFin (Σ X Y) ≃SumFinΣ = _ , Σ-cong-equiv {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p') ⋆ Σ-cong-equiv-snd (λ x → q' (invEq e x) .snd) ⋆ SumFinΣ≃ _ _ ≃SumFinΠ : ≃SumFin ((x : X) → Y x) ≃SumFinΠ = _ , equivΠ {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p') ⋆ equivΠCod (λ x → q' (invEq e x) .snd) ⋆ SumFinΠ≃ _ _ ≃FinΣ : ≃Fin (Σ X Y) ≃FinΣ = ≃SumFin→Fin ≃SumFinΣ ≃FinΠ : ≃Fin ((x : X) → Y x) ≃FinΠ = ≃SumFin→Fin ≃SumFinΠ module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') where isFinSetΣ : isFinSet (Σ (X .fst) (λ x → Y x .fst)) isFinSetΣ = elim2 (λ _ _ → isPropIsFinSet {A = Σ (X .fst) (λ x → Y x .fst)}) (λ p q → ∣ ≃FinΣ (X .fst) p (λ x → Y x .fst) q ∣) (X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd)) isFinSetΠ : isFinSet ((x : X .fst) → Y x .fst) isFinSetΠ = elim2 (λ _ _ → isPropIsFinSet {A = ((x : X .fst) → Y x .fst)}) (λ p q → ∣ ≃FinΠ (X .fst) p (λ x → Y x .fst) q ∣) (X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd)) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → FinSet ℓ'') where isFinSetΠ2 : isFinSet ((x : X .fst) → (y : Y x .fst) → Z x y .fst) isFinSetΠ2 = isFinSetΠ X (λ x → _ , isFinSetΠ (Y x) (Z x)) module _ (X : FinSet ℓ) (Y : X .fst → FinSet ℓ') (Z : (x : X .fst) → Y x .fst → FinSet ℓ'') (W : (x : X .fst) → (y : Y x .fst) → Z x y .fst → FinSet ℓ''') where isFinSetΠ3 : isFinSet ((x : X .fst) → (y : Y x .fst) → (z : Z x y .fst) → W x y z .fst) isFinSetΠ3 = isFinSetΠ X (λ x → _ , isFinSetΠ2 (Y x) (Z x) (W x)) module _ (X : FinSet ℓ) where isFinSet≡ : (a b : X .fst) → isFinSet (a ≡ b) isFinSet≡ a b = isDecProp→isFinSet (isFinSet→isSet (X .snd) a b) (isFinSet→Discrete (X .snd) a b) isFinSetIsContr : isFinSet (isContr (X .fst)) isFinSetIsContr = isFinSetΣ X (λ x → _ , (isFinSetΠ X (λ y → _ , isFinSet≡ x y))) isFinSet∥∥ : isFinSet ∥ X .fst ∥ isFinSet∥∥ = TruncRec isPropIsFinSet (λ p → ∣ ≃Fin∥∥ (X .fst) p ∣) (X .snd) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where isFinSetFiber : (y : Y .fst) → isFinSet (fiber f y) isFinSetFiber y = isFinSetΣ X (λ x → _ , isFinSet≡ Y (f x) y) isFinSetIsEquiv : isFinSet (isEquiv f) isFinSetIsEquiv = EquivPresIsFinSet (invEquiv (isEquiv≃isEquiv' f)) (isFinSetΠ Y (λ y → _ , isFinSetIsContr (_ , isFinSetFiber y))) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet⊎ : isFinSet (X .fst ⊎ Y .fst) isFinSet⊎ = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin⊎ (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd) isFinSet× : isFinSet (X .fst × Y .fst) isFinSet× = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin× (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd) isFinSet→ : isFinSet (X .fst → Y .fst) isFinSet→ = isFinSetΠ X (λ _ → Y) isFinSet≃ : isFinSet (X .fst ≃ Y .fst) isFinSet≃ = isFinSetΣ (_ , isFinSet→) (λ f → _ , isFinSetIsEquiv X Y f) module _ (X : FinSet ℓ) where isFinSet¬ : isFinSet (¬ (X .fst)) isFinSet¬ = isFinSet→ X (⊥ , ∣ 0 , uninhabEquiv (λ x → x) ¬Fin0 ∣) module _ (X : FinSet ℓ) where isFinSetNonEmpty : isFinSet (NonEmpty (X .fst)) isFinSetNonEmpty = isFinSet¬ (_ , isFinSet¬ X) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where isFinSetIsEmbedding : isFinSet (isEmbedding f) isFinSetIsEmbedding = isFinSetΠ2 X (λ _ → X) (λ a b → _ , isFinSetIsEquiv (_ , isFinSet≡ X a b) (_ , isFinSet≡ Y (f a) (f b)) (cong f)) isFinSetIsSurjection : isFinSet (isSurjection f) isFinSetIsSurjection = isFinSetΠ Y (λ y → _ , isFinSet∥∥ (_ , isFinSetFiber X Y f y)) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet↪ : isFinSet (X .fst ↪ Y .fst) isFinSet↪ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsEmbedding X Y f) isFinSet↠ : isFinSet (X .fst ↠ Y .fst) isFinSet↠ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsSurjection X Y f)
{ "alphanum_fraction": 0.5826439007, "avg_line_length": 28.8375634518, "ext": "agda", "hexsha": "7221a9b014332cdf3c83b634b1595168480b2e3a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Constructors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 2530, "size": 5681 }
{-# OPTIONS --cubical --safe #-} module Data.Sigma.Unique where open import Data.Sigma.Base open import Level open import Path ∃! : ∀ {a b} {A : Type a} → (A → Type b) → Type (a ℓ⊔ b) ∃! B = ∃ x × B x × (∀ {y} → B y → x ≡ y) infixr 4.5 ∃!-syntax ∃!-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃!-syntax = ∃! syntax ∃!-syntax (λ x → e) = ∃ x ! × e
{ "alphanum_fraction": 0.5148247978, "avg_line_length": 21.8235294118, "ext": "agda", "hexsha": "9b19d398f147fb29b1912945bb88bcc9334e149d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Sigma/Unique.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Sigma/Unique.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Sigma/Unique.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 168, "size": 371 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the heterogeneous prefix relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Prefix.Heterogeneous where open import Level open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.Product using (∃; _×_; _,_; uncurry) open import Relation.Binary using (REL; _⇒_) module _ {a b r} {A : Set a} {B : Set b} (R : REL A B r) where data Prefix : REL (List A) (List B) (a ⊔ b ⊔ r) where [] : ∀ {bs} → Prefix [] bs _∷_ : ∀ {a b as bs} → R a b → Prefix as bs → Prefix (a ∷ as) (b ∷ bs) data PrefixView (as : List A) : List B → Set (a ⊔ b ⊔ r) where _++_ : ∀ {cs} → Pointwise R as cs → ∀ ds → PrefixView as (cs List.++ ds) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} {a b as bs} where head : Prefix R (a ∷ as) (b ∷ bs) → R a b head (r ∷ rs) = r tail : Prefix R (a ∷ as) (b ∷ bs) → Prefix R as bs tail (r ∷ rs) = rs uncons : Prefix R (a ∷ as) (b ∷ bs) → R a b × Prefix R as bs uncons (r ∷ rs) = r , rs module _ {a b r s} {A : Set a} {B : Set b} {R : REL A B r} {S : REL A B s} where map : R ⇒ S → Prefix R ⇒ Prefix S map R⇒S [] = [] map R⇒S (r ∷ rs) = R⇒S r ∷ map R⇒S rs module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where toView : ∀ {as bs} → Prefix R as bs → PrefixView R as bs toView [] = [] ++ _ toView (r ∷ rs) with toView rs ... | rs′ ++ ds = (r ∷ rs′) ++ ds fromView : ∀ {as bs} → PrefixView R as bs → Prefix R as bs fromView ([] ++ ds) = [] fromView ((r ∷ rs) ++ ds) = r ∷ fromView (rs ++ ds)
{ "alphanum_fraction": 0.5052169138, "avg_line_length": 33.7222222222, "ext": "agda", "hexsha": "ba86166a74245cb13c2ea1ee43d398bb89ee698e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 653, "size": 1821 }
module Structure.Category.Action where open import Structure.Category.Functor
{ "alphanum_fraction": 0.85, "avg_line_length": 16, "ext": "agda", "hexsha": "42709e97b0683ca0e53ebb4b2234ebdb87b0e673", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Action.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Action.agda", "max_line_length": 38, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Action.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 14, "size": 80 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Sigma open import lib.types.Pi open import lib.types.Fin open import lib.types.Nat open import lib.types.Empty open import lib.NType2 open import lib.Equivalence2 open import Util.Misc open import Util.Coproducts {- Some useful lemmas about working with finite sets. E.g. An injection from a finite set to itself is an equivalence, an injection from a finite set to a large finite set has at least one element not in its image. -} module Util.Finite where ℕ=-to-Fin= : {n : ℕ} {x y : Fin n} → (fst x == fst y) → x == y ℕ=-to-Fin= p = pair= p prop-has-all-paths-↓ finite-lpo : {i : ULevel} {n : ℕ} (P : Fin n → Type i) (dec : (x : Fin n) → Dec (P x)) → (Σ (Fin n) P ⊔ ((x : Fin n) → ¬ (P x))) finite-lpo {n = 0} P dec = inr (λ x _ → –> Fin-equiv-Empty x) finite-lpo {i} {n = S n} P dec = ⊔-fmap (–> el) (–> er) lemma where P' : Fin n ⊔ ⊤ → Type i P' z = P (<– Fin-equiv-Coprod z) el : Σ (Fin n ⊔ ⊤) P' ≃ Σ (Fin (S n)) P el = Σ-emap-l P (Fin-equiv-Coprod ⁻¹) er : ((x : Fin n ⊔ ⊤) → ¬ (P' x)) ≃ ((x : Fin (S n)) → ¬ (P x)) er = Π-emap-l (¬ ∘ P) (Fin-equiv-Coprod ⁻¹) lemma : Σ (Fin n ⊔ ⊤) P' ⊔ ((x : Fin n ⊔ ⊤) → ¬ (P' x)) lemma = ⊔-rec (λ np → inl ((inl (fst np)) , (snd np))) (λ f → ⊔-rec (λ p → inl ((inr unit) , p)) (λ np → inr (λ { (inl k) → f k ; (inr _) → np})) (dec (n , ltS))) (finite-lpo {n = n} (P' ∘ inl) λ x → dec (<– Fin-equiv-Coprod (inl x))) fin-img-dec : {i : ULevel} {A : Type i} (dec : has-dec-eq A) {n : ℕ} (inc : Fin n → A) → (a : A) → ((hfiber inc a) ⊔ ¬ (hfiber inc a)) fin-img-dec dec inc a = ⊔-rec (λ np → inl np) (λ f → inr (λ np → f (fst np) (snd np))) (finite-lpo (λ k → inc k == a) λ k → dec (inc k) a) Fin-eq : {n : ℕ} {x y : Fin n} → (fst x == fst y) → x == y Fin-eq p = pair= p prop-has-all-paths-↓ <-or-≥ : (n m : ℕ) → ((n < m) ⊔ (m ≤ n)) <-or-≥ n m = ⊔-rec (λ p → inr (inl (! p))) (⊔-rec inl (λ l → inr (inr l))) (ℕ-trichotomy n m) ≤-or-> : (n m : ℕ) → ((n ≤ m) ⊔ (m < n)) ≤-or-> m n = ⊔-rec (inl ∘ inl) (⊔-fmap inr (idf _)) (ℕ-trichotomy m n) <-≤-trans : {l m n : ℕ} → (l < m) → (m ≤ n) → (l < n) <-≤-trans p (inl q) = transport _ q p <-≤-trans p (inr q) = <-trans p q ≤-<-trans : {l m n : ℕ} → (l ≤ m) → (m < n) → (l < n) ≤-<-trans (inl p) q = transport _ (! p) q ≤-<-trans (inr p) q = <-trans p q <S≠-to-< : {a b : ℕ} → (a < S b) → (a ≠ b) → (a < b) <S≠-to-< ltS ne = ⊥-elim (ne idp) <S≠-to-< (ltSR lt) ne = lt module _ {n : ℕ} (k : Fin n) where private degeneracy-aux : (x : Fin (S n)) → ((fst x ≤ fst k) ⊔ (fst k < fst x)) → Fin n degeneracy-aux x (inl z) = (fst x) , ≤-<-trans z (snd k) degeneracy-aux (.(S (fst k)) , snd) (inr ltS) = k degeneracy-aux (.(S _) , snd) (inr (ltSR z)) = _ , (<-cancel-S snd) degeneracy-almost-inj-aux : {x y : Fin (S n)} → (fst x ≠ fst k) → (fst y ≠ fst k) → (z : ((fst x) ≤ (fst k)) ⊔ ((fst k) < (fst x))) → (w : ((fst y) ≤ (fst k)) ⊔ ((fst k) < (fst y))) → (degeneracy-aux x z == degeneracy-aux y w) → x == y degeneracy-almost-inj-aux f g (inl z) (inl w) p = ℕ=-to-Fin= (ap fst p) degeneracy-almost-inj-aux f g (inl z) (inr ltS) p = ⊥-rec (f (ap fst p)) degeneracy-almost-inj-aux f g (inl z) (inr (ltSR w)) p = ⊥-rec (<-to-≠ (≤-<-trans z w) (ap fst p)) degeneracy-almost-inj-aux f g (inr ltS) (inl w) p = ⊥-rec (g (ap fst (! p))) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inl w) p = ⊥-rec (<-to-≠ (≤-<-trans w z) (ap fst (! p))) degeneracy-almost-inj-aux f g (inr ltS) (inr ltS) p = ℕ=-to-Fin= idp degeneracy-almost-inj-aux f g (inr ltS) (inr (ltSR w)) p = ℕ=-to-Fin= (ap S (ap fst p)) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inr ltS) p = ℕ=-to-Fin= (ap S (ap fst p)) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inr (ltSR w)) p = ℕ=-to-Fin= (ap S (ap fst p)) abstract degeneracy : (x : Fin (S n)) → Fin n degeneracy x = degeneracy-aux x (≤-or-> _ _) degeneracy-almost-inj : {x y : Fin (S n)} → (fst x ≠ fst k) → (fst y ≠ fst k) → (degeneracy x == degeneracy y) → x == y degeneracy-almost-inj f g = degeneracy-almost-inj-aux f g (≤-or-> _ _) (≤-or-> _ _) Fin-hfiber-dec : {i : ULevel} {X : Type i} {n : ℕ} (dec : has-dec-eq X) → (f : Fin n → X) → (x : X) → Dec (hfiber f x) Fin-hfiber-dec dec f x = ⊔-fmap (idf _) (λ g p → g (fst p) (snd p)) (finite-lpo (λ z → f z == x) (λ z → dec (f z) x)) Fin-inj-to-surj : (n : ℕ) → (inc : Fin n → Fin n) → (inc-inj : is-inj inc) → (y : Fin n) → hfiber inc y Fin-inj-to-surj O inc inc-inj y = ⊥-rec (–> Fin-equiv-Empty y) Fin-inj-to-surj (S n) inc inc-inj y = ⊔-rec (λ p → n<Sn , (! p)) (λ f → ⊔-rec (λ p → case1 p f) (λ g → case2 g f) (Fin-has-dec-eq k n<Sn)) (Fin-has-dec-eq y k) where n<Sn = (n , ltS) k = inc n<Sn case1 : k == n<Sn → (y ≠ k) → hfiber inc y case1 p f = Fin-S (fst x') , ℕ=-to-Fin= (ap fst (snd x')) where inc' : Fin n → Fin n inc' x = (fst (inc (Fin-S x))) , <S≠-to-< (snd (inc (Fin-S x))) λ q → <-to-≠ (snd x) (ap fst (inc-inj _ _ (ℕ=-to-Fin= q ∙ ! p))) inc-inj' : is-inj inc' inc-inj' x x' p = Fin-S-is-inj _ _ (inc-inj _ _ (ℕ=-to-Fin= (ap fst p))) y' : Fin n y' = (fst y) , (<S≠-to-< (snd y) (λ q → f (ℕ=-to-Fin= q ∙ ! p))) x' : hfiber inc' y' x' = Fin-inj-to-surj n inc' inc-inj' y' case2 : k ≠ n<Sn → (y ≠ k) → hfiber inc y case2 f g = Fin-S (fst x') , degeneracy-almost-inj k' (λ q → <-to-≠ (snd (fst x')) (ap fst (inc-inj (Fin-S (fst x')) n<Sn (ℕ=-to-Fin= q)))) (λ q → g (ℕ=-to-Fin= q)) (snd x') where k' = (fst k) , (<S≠-to-< (snd k) (λ q → f (ℕ=-to-Fin= q))) inc' : Fin n → Fin n inc' x = degeneracy k' (inc (Fin-S x)) inc-inj' : is-inj inc' inc-inj' x x' p = Fin-S-is-inj _ _ (inc-inj _ _ (degeneracy-almost-inj k' (λ q → <-to-≠ (snd x) (ap fst (inc-inj _ _ (ℕ=-to-Fin= q)))) (λ q → <-to-≠ (snd x') (ap fst (inc-inj _ _ (ℕ=-to-Fin= q)))) p)) x' : hfiber inc' (degeneracy k' y) x' = Fin-inj-to-surj n inc' inc-inj' ((degeneracy k' y)) Fin-inj-to-equiv : {n : ℕ} → (inc : Fin (S n) → Fin (S n)) → (inc-inj : is-inj inc) → (is-equiv inc) Fin-inj-to-equiv inc inc-inj = contr-map-is-equiv λ x → inhab-prop-is-contr (Fin-inj-to-surj _ inc inc-inj x) ⦃ inj-to-embed ⦃ Fin-is-set ⦄ inc inc-inj x ⦄ Fin-smaller-is-smaller : {m n : ℕ} (l : m < n) (f : Fin m → Fin n) → Σ (Fin n) (λ k → ¬ (hfiber f k)) Fin-smaller-is-smaller {m} {n} l f = ⊔-cancel-r (finite-lpo _ (λ k → ⊔-rec (λ x → inr (λ g → g x)) inl (Fin-hfiber-dec Fin-has-dec-eq f k))) lemma where lemma : ((k : Fin n) → ¬ (¬ (hfiber f k))) → ⊥ lemma g = <-to-≠ (snd (g'' (fst k))) (ap fst (snd k)) where g' : (k : Fin n) → (hfiber f k) g' k = ⊔-cancel-r (Fin-hfiber-dec Fin-has-dec-eq f k) (g k) g'' : Fin n → Fin m g'' = fst ∘ g' g''-is-inj : is-inj g'' g''-is-inj y y' p = ! (snd (g' y)) ∙ ap f p ∙ snd (g' y') h : Fin n → Fin n h k = (fst (g'' k)) , (<-trans (snd (g'' k)) l) h-is-inj : is-inj h h-is-inj x y p = g''-is-inj _ _ (ℕ=-to-Fin= (ap fst p)) k : hfiber h (m , l) k = Fin-inj-to-surj n h h-is-inj ((m , l))
{ "alphanum_fraction": 0.485025955, "avg_line_length": 42.6875, "ext": "agda", "hexsha": "37d6df2051c5d675f298cca96fd7566d0a2fc91e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Util/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Util/Finite.agda", "max_line_length": 185, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Util/Finite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3225, "size": 7513 }
{-# OPTIONS --without-K --type-in-type #-} module UnbiasedCategory where open import Agda.Builtin.Equality module TypedLists where data TypedList (index : Set) (type : index -> index -> Set) : index -> index -> Set where empty : {a : index} -> TypedList index type a a fby : {a b c : index} -> type a b -> TypedList index type b c -> TypedList index type a c open TypedList public append : forall {index : Set} {type : index -> index -> Set} {a b c : index} -> TypedList index type a b -> TypedList index type b c -> TypedList index type a c append empty s = s append (fby x l) s = fby x (append l s) concat : forall {index : Set} {type : index -> index -> Set} {a b : index} -> TypedList index (TypedList index type) a b -> TypedList index type a b concat empty = empty concat (fby l s) = append l (concat s) map : forall {index : Set} {p : index -> index -> Set} {q : index -> index -> Set} {a b : index} -> (forall {a b : index} -> p a b -> q a b) -> TypedList index p a b -> TypedList index q a b map transform empty = empty map transform (fby x l) = fby (transform x) (map transform l) fold : forall {index : Set} {type : index -> index -> Set} {p : index -> index -> Set} {a b : index} -> (f : forall {a} {b} {c} -> type a b -> p b c -> p a c) -> (z : forall {a} -> p a a) -> TypedList index type a b -> p a b fold f z empty = z fold f z (fby x l) = f x (fold f z l) open TypedLists public module Equality where cong : {A B : Set} {x y : A} -> (f : A -> B) -> (x ≡ y) -> f x ≡ f y cong f refl = refl app : {A B : Set} {f g : A -> B} -> (f ≡ g) -> (a : A) -> f a ≡ g a app {A} {B} {f} {g} refl a = refl symm : {A : Set} {x y : A} -> (x ≡ y) -> (y ≡ x) symm refl = refl infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ refl ⟩ p2 = p2 infix 3 _∎ _∎ : {A : Set} (x : A) → x ≡ x x ∎ = refl postulate funext : {A B : Set} {f g : A -> B} -> ({a : A} -> f a ≡ g a) -> (f ≡ g) open Equality public record Category : Set where field object : Set hom : object -> object -> Set compose : {a b : object} -> TypedList object hom a b -> hom a b associativity : {a b : object} -> (l : TypedList object (TypedList object hom) a b) -> compose (concat l) ≡ compose (map compose l) open Category {{...}} public record CategoryConstructor : Set where field object : Set hom : object -> object -> Set _>>_ : {a b c : object} -> hom a b -> hom b c -> hom a c id : {a : object} -> hom a a left-unital : {a b : object} {f : hom a b} -> (id >> f) ≡ f right-unital : {a b : object} {f : hom a b} -> (id >> f) ≡ f associative : {a b c d : object} {f : hom a b} {g : hom b c} {h : hom c d} -> (f >> g) >> h ≡ f >> (g >> h) open CategoryConstructor public mkCategory : CategoryConstructor -> Category mkCategory record { object = object ; hom = hom ; _>>_ = _>>_ ; id = id ; left-unital = left-unital ; right-unital = right-unital ; associative = associative } = record { object = object ; hom = hom ; compose = byFolding ; associativity = associativityTotal } where byFolding : {a b : object} -> TypedList object hom a b -> hom a b byFolding = fold _>>_ id lemma-fold-append : forall {a b c : object} -> (p : TypedList object hom a b) -> (q : TypedList object hom b c) -> byFolding (append p q) ≡ byFolding (fby (byFolding p) q) lemma-fold-append empty q = symm left-unital lemma-fold-append (fby f p) q = byFolding (fby f (append p q)) ≡⟨ refl ⟩ f >> byFolding (append p q) ≡⟨ cong (_>>_ f) (lemma-fold-append p q) ⟩ f >> byFolding (fby (byFolding p) q) ≡⟨ refl ⟩ f >> (byFolding p >> byFolding q) ≡⟨ symm associative ⟩ byFolding (fby f p) >> byFolding q ≡⟨ refl ⟩ byFolding (fby (byFolding (fby f p)) q) ∎ associativityTotal : {a b : object} (l : TypedList object (TypedList object hom) a b) → byFolding (concat l) ≡ byFolding (map byFolding l) associativityTotal {a} {a} empty = refl associativityTotal {a} {b} (fby l s) = byFolding (append l (concat s)) ≡⟨ lemma-fold-append l (concat s) ⟩ byFolding (fby (byFolding l) (concat s)) ≡⟨ refl ⟩ byFolding l >> byFolding (concat s) ≡⟨ cong (_>>_ (byFolding l)) (associativityTotal s) ⟩ byFolding l >> byFolding (map byFolding s) ≡⟨ refl ⟩ byFolding (fby (byFolding l) (map byFolding s)) ∎ categoryOfSets : Category categoryOfSets = mkCategory ( record { object = Set ; hom = λ A B -> (A -> B) ; _>>_ = λ f g a -> g (f a) ; id = λ x -> x ; left-unital = refl ; right-unital = refl ; associative = refl })
{ "alphanum_fraction": 0.5623549272, "avg_line_length": 33.609929078, "ext": "agda", "hexsha": "f32da00eaceddce85b12a126ed5cffcb4ee12166", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4d1c0f305639b6569ba71563e6262adbed3b65cc", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "mroman42/unbiased-category-agda", "max_forks_repo_path": "UnbiasedCategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4d1c0f305639b6569ba71563e6262adbed3b65cc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "mroman42/unbiased-category-agda", "max_issues_repo_path": "UnbiasedCategory.agda", "max_line_length": 124, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4d1c0f305639b6569ba71563e6262adbed3b65cc", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "mroman42/unbiased-category-agda", "max_stars_repo_path": "UnbiasedCategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-20T17:54:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-20T17:54:39.000Z", "num_tokens": 1701, "size": 4739 }
module L.Data.Bool.Properties where open import L.Data.Bool.Core open import L.Base.Id.Core open import L.Base.Coproduct.Core !∃tt∧!∃ff : (x : Bool) → (x ≡ ff) + (x ≡ tt) !∃tt∧!∃ff = if (λ b → (b ≡ ff) + (b ≡ tt)) (inr refl) (inl refl)
{ "alphanum_fraction": 0.6092436975, "avg_line_length": 26.4444444444, "ext": "agda", "hexsha": "83a761ee76bd8660d8fc72399a8852a8f4d7b539", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Data/Bool/Properties.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Data/Bool/Properties.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 99, "size": 238 }
{-# OPTIONS --without-K --safe #-} module Tools.Fin where open import Tools.Nat open import Tools.Nullary open import Tools.PropositionalEquality open import Data.Fin.Properties using (suc-injective) open import Data.Fin public using (Fin) renaming (zero to x0 ; suc to _+1) -- Decidability of equality _≟ⱽ_ : {n : Nat} → (x y : Fin n) → Dec (x ≡ y) x0 ≟ⱽ x0 = yes refl x0 ≟ⱽ (y +1) = no (λ ()) (x +1) ≟ⱽ x0 = no (λ ()) (x +1) ≟ⱽ (y +1) = map (cong _+1) suc-injective (x ≟ⱽ y)
{ "alphanum_fraction": 0.6384297521, "avg_line_length": 23.0476190476, "ext": "agda", "hexsha": "5dd499f7481c8b25ddec89886babd5341e1f15fb", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Tools/Fin.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Tools/Fin.agda", "max_line_length": 74, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Tools/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 187, "size": 484 }
{- - Automatically generate UARel and DUARel instances -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Displayed.Auto where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Displayed.Base open import Cubical.Displayed.Subst open import Cubical.Displayed.Morphism open import Cubical.Displayed.Constant open import Cubical.Displayed.Function open import Cubical.Displayed.Generic open import Cubical.Displayed.Sigma open import Cubical.Displayed.Unit open import Cubical.Displayed.Universe open import Cubical.Data.List.Base open import Cubical.Data.Nat.Base open import Cubical.Data.Sigma.Base open import Cubical.Data.Unit.Base import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base -- Descriptor language mutual data UARelDesc : ∀ {ℓA ℓ≅A} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) → Typeω where generic : ∀ {ℓA} {A : Type ℓA} → UARelDesc (𝒮-generic A) univ : ∀ ℓU → UARelDesc (𝒮-Univ ℓU) -- Having a special descriptor for non-dependent × helps to avoid -- combinatorial explosion. Automation will try to apply this first. prod : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} (dA : UARelDesc 𝒮-A) {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} (dB : UARelDesc 𝒮-B) → UARelDesc (𝒮-A ×𝒮 𝒮-B) sigma : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} (dA : UARelDesc 𝒮-A) {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} (dB : DUARelDesc 𝒮-A 𝒮ᴰ-B) → UARelDesc (∫ 𝒮ᴰ-B) param : ∀ {ℓA ℓB ℓ≅B} (A : Type ℓA) {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} (dB : UARelDesc 𝒮-B) → UARelDesc (A →𝒮 𝒮-B) pi : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} (dA : UARelDesc 𝒮-A) {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} (dB : DUARelDesc 𝒮-A 𝒮ᴰ-B) → UARelDesc (𝒮-Π 𝒮-A 𝒮ᴰ-B) unit : UARelDesc 𝒮-Unit -- Projections from one UARel to another data UARelReindex : ∀ {ℓA ℓ≅A ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {C : Type ℓC} {𝒮-C : UARel C ℓ≅C} (f : UARelHom 𝒮-A 𝒮-C) → Typeω where id : ∀ {ℓA ℓ≅A} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} → UARelReindex (𝒮-id 𝒮-A) ∘fst : ∀ {ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} {C : Type ℓC} {𝒮-C : UARel C ℓ≅C} {f : UARelHom 𝒮-A 𝒮-C} → UARelReindex f → UARelReindex (𝒮-∘ f (𝒮-fst {𝒮ᴰ-B = 𝒮ᴰ-B})) ∘snd : ∀ {ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} {C : Type ℓC} {𝒮-C : UARel C ℓ≅C} {f : UARelHom 𝒮-B 𝒮-C} → UARelReindex f → UARelReindex (𝒮-∘ f (𝒮-snd {𝒮-A = 𝒮-A})) ∘app : ∀ {ℓA ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} {C : Type ℓC} {𝒮-C : UARel C ℓ≅C} {f : UARelHom 𝒮-B 𝒮-C} → UARelReindex f → (a : A) → UARelReindex (𝒮-∘ f (𝒮-app a)) data SubstRelDesc : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B) → Typeω where generic : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} → SubstRelDesc 𝒮-A (𝒮ˢ-generic 𝒮-A B) constant : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} → SubstRelDesc 𝒮-A (𝒮ˢ-const 𝒮-A B) -- We have an element DUARel over any 𝒮-A with a proejction to a universe -- that can be described with UARelReindex el : ∀ {ℓA ℓ≅A ℓU} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {f : UARelHom 𝒮-A (𝒮-Univ ℓU)} → UARelReindex f → SubstRelDesc 𝒮-A (𝒮ˢ-reindex f (𝒮ˢ-El ℓU)) prod : ∀ {ℓA ℓ≅A ℓB ℓC} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ˢ-B : SubstRel 𝒮-A B} (dB : SubstRelDesc 𝒮-A 𝒮ˢ-B) {C : A → Type ℓC} {𝒮ˢ-C : SubstRel 𝒮-A C} (dC : SubstRelDesc 𝒮-A 𝒮ˢ-C) → SubstRelDesc 𝒮-A (𝒮ˢ-B ×𝒮ˢ 𝒮ˢ-C) sigma : ∀ {ℓA ℓ≅A ℓB ℓC} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ˢ-B : SubstRel 𝒮-A B} (dB : SubstRelDesc 𝒮-A 𝒮ˢ-B) {C : Σ A B → Type ℓC} {𝒮ˢ-C : SubstRel (∫ˢ 𝒮ˢ-B) C} (dC : SubstRelDesc (∫ˢ 𝒮ˢ-B) 𝒮ˢ-C) → SubstRelDesc 𝒮-A (𝒮ˢ-Σ 𝒮ˢ-B 𝒮ˢ-C) pi : ∀ {ℓA ℓ≅A ℓB ℓC} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ˢ-B : SubstRel 𝒮-A B} (dB : SubstRelDesc 𝒮-A 𝒮ˢ-B) {C : Σ A B → Type ℓC} {𝒮ˢ-C : SubstRel (∫ˢ 𝒮ˢ-B) C} (dC : SubstRelDesc (∫ˢ 𝒮ˢ-B) 𝒮ˢ-C) → SubstRelDesc 𝒮-A (𝒮ˢ-Π 𝒮ˢ-B 𝒮ˢ-C) data DUARelDesc : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) → Typeω where generic : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} → DUARelDesc 𝒮-A (𝒮ᴰ-generic 𝒮-A B) constant : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} → UARelDesc 𝒮-B → DUARelDesc 𝒮-A (𝒮ᴰ-const 𝒮-A 𝒮-B) el : ∀ {ℓA ℓ≅A ℓU} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {f : UARelHom 𝒮-A (𝒮-Univ ℓU)} → UARelReindex f → DUARelDesc 𝒮-A (𝒮ᴰ-reindex f (𝒮ᴰ-El ℓU)) prod : ∀ {ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} (dB : DUARelDesc 𝒮-A 𝒮ᴰ-B) {C : A → Type ℓC} {𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C} (dC : DUARelDesc 𝒮-A 𝒮ᴰ-C) → DUARelDesc 𝒮-A (𝒮ᴰ-B ×𝒮ᴰ 𝒮ᴰ-C) sigma : ∀ {ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} (dB : DUARelDesc 𝒮-A 𝒮ᴰ-B) {C : Σ A B → Type ℓC} {𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) C ℓ≅C} (dC : DUARelDesc (∫ 𝒮ᴰ-B) 𝒮ᴰ-C) → DUARelDesc 𝒮-A (𝒮ᴰ-Σ 𝒮ᴰ-B 𝒮ᴰ-C) pi : ∀ {ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} (dB : DUARelDesc 𝒮-A 𝒮ᴰ-B) {C : Σ A B → Type ℓC} {𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) C ℓ≅C} (dC : DUARelDesc (∫ 𝒮ᴰ-B) 𝒮ᴰ-C) → DUARelDesc 𝒮-A (𝒮ᴰ-Π 𝒮ᴰ-B 𝒮ᴰ-C) piˢ : ∀ {ℓA ℓ≅A ℓB ℓC ℓ≅C} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ˢ-B : SubstRel 𝒮-A B} (dB : SubstRelDesc 𝒮-A 𝒮ˢ-B) {C : Σ A B → Type ℓC} {𝒮ᴰ-C : DUARel (∫ˢ 𝒮ˢ-B) C ℓ≅C} (dC : DUARelDesc (∫ˢ 𝒮ˢ-B) 𝒮ᴰ-C) → DUARelDesc 𝒮-A (𝒮ᴰ-Πˢ 𝒮ˢ-B 𝒮ᴰ-C) private getUARel : ∀ {ℓA ℓ≅A} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} → UARelDesc 𝒮-A → UARel A ℓ≅A getUARel {𝒮-A = 𝒮-A} _ = 𝒮-A getDUARel : ∀ {ℓA ℓ≅A ℓB ℓ≅B} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B} → DUARelDesc 𝒮-A 𝒮ᴰ-B → DUARel 𝒮-A B ℓ≅B getDUARel {𝒮ᴰ-B = 𝒮ᴰ-B} _ = 𝒮ᴰ-B -- Magic number private FUEL = 10000 mutual autoUARelDesc : ℕ → R.Term → R.TC Unit autoUARelDesc zero hole = R.typeError [ R.strErr "Out of fuel" ] autoUARelDesc (suc n) hole = tryUniv <|> tryProd <|> trySigma <|> tryParam <|> tryPi <|> tryUnit <|> useGeneric where tryUniv : R.TC Unit tryUniv = R.unify (R.con (quote UARelDesc.univ) [ varg R.unknown ]) hole tryBinary : R.Name → R.TC Unit tryBinary name = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → R.unify (R.con name (hole₁ v∷ hole₂ v∷ [])) hole >> autoUARelDesc n hole₁ >> autoDUARelDesc n hole₂ tryParam : R.TC Unit tryParam = newMeta R.unknown >>= λ paramTy → newMeta R.unknown >>= λ hole₁ → R.unify (R.con (quote UARelDesc.param) (paramTy v∷ hole₁ v∷ [])) hole >> autoUARelDesc n hole₁ tryProd = tryBinary (quote UARelDesc.prod) trySigma = tryBinary (quote UARelDesc.sigma) tryPi = tryBinary (quote UARelDesc.pi) tryUnit : R.TC Unit tryUnit = R.unify (R.con (quote UARelDesc.unit) []) hole useGeneric : R.TC Unit useGeneric = R.unify (R.con (quote UARelDesc.generic) []) hole autoUARelReindex : ℕ → R.Term → R.TC Unit autoUARelReindex zero hole = R.typeError [ R.strErr "Out of fuel" ] autoUARelReindex (suc n) hole = tryId <|> tryFst <|> trySnd <|> tryApp where tryId : R.TC Unit tryId = R.unify (R.con (quote UARelReindex.id) []) hole tryUnary : R.Name → R.TC Unit tryUnary name = newMeta R.unknown >>= λ hole₁ → R.unify (R.con name [ varg hole₁ ]) hole >> autoUARelReindex n hole₁ tryFst = tryUnary (quote UARelReindex.∘fst) trySnd = tryUnary (quote UARelReindex.∘snd) tryApp : R.TC Unit tryApp = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ param → R.unify (R.con (quote UARelReindex.∘app) (hole₁ v∷ param v∷ [])) hole >> autoUARelReindex n hole₁ autoSubstRelDesc : ℕ → R.Term → R.TC Unit autoSubstRelDesc zero hole = R.typeError [ R.strErr "Out of fuel" ] autoSubstRelDesc (suc n) hole = tryConstant <|> tryEl <|> tryProd <|> trySigma <|> tryPi <|> useGeneric where tryConstant : R.TC Unit tryConstant = R.unify (R.con (quote SubstRelDesc.constant) []) hole tryEl : R.TC Unit tryEl = newMeta R.unknown >>= λ hole₁ → R.unify (R.con (quote SubstRelDesc.el) [ varg hole₁ ]) hole >> autoUARelReindex n hole₁ tryBinary : R.Name → R.TC Unit tryBinary name = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → R.unify (R.con name (hole₁ v∷ hole₂ v∷ [])) hole >> autoSubstRelDesc n hole₁ >> autoSubstRelDesc n hole₂ tryProd = tryBinary (quote SubstRelDesc.prod) trySigma = tryBinary (quote SubstRelDesc.sigma) tryPi = tryBinary (quote SubstRelDesc.pi) useGeneric : R.TC Unit useGeneric = R.unify (R.con (quote SubstRelDesc.generic) []) hole autoDUARelDesc : ℕ → R.Term → R.TC Unit autoDUARelDesc zero hole = R.typeError [ R.strErr "Out of fuel" ] autoDUARelDesc (suc n) hole = tryConstant <|> tryEl <|> tryProd <|> trySigma <|> tryPiˢ <|> tryPi <|> useGeneric where tryConstant : R.TC Unit tryConstant = newMeta R.unknown >>= λ hole₁ → R.unify (R.con (quote DUARelDesc.constant) [ varg hole₁ ]) hole >> autoUARelDesc n hole₁ tryEl : R.TC Unit tryEl = newMeta R.unknown >>= λ hole₁ → R.unify (R.con (quote DUARelDesc.el) [ varg hole₁ ]) hole >> autoUARelReindex n hole₁ tryBinary : R.Name → R.TC Unit tryBinary name = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → R.unify (R.con name (hole₁ v∷ hole₂ v∷ [])) hole >> autoDUARelDesc n hole₁ >> autoDUARelDesc n hole₂ tryProd = tryBinary (quote DUARelDesc.prod) trySigma = tryBinary (quote DUARelDesc.sigma) tryPi = tryBinary (quote DUARelDesc.pi) tryPiˢ : R.TC Unit tryPiˢ = newMeta R.unknown >>= λ hole₁ → newMeta R.unknown >>= λ hole₂ → R.unify (R.con (quote DUARelDesc.piˢ) (hole₁ v∷ hole₂ v∷ [])) hole >> autoSubstRelDesc n hole₁ >> autoDUARelDesc n hole₂ useGeneric : R.TC Unit useGeneric = R.unify (R.con (quote DUARelDesc.generic) []) hole module DisplayedAutoMacro where autoUARel : ∀ {ℓA} (A : Type ℓA) → ℕ → R.Term → R.TC Unit autoUARel A n hole = R.quoteTC A >>= λ `A` → newMeta R.unknown >>= λ desc → makeAuxiliaryDef "autoUA" (R.def (quote UARel) (`A` v∷ R.unknown v∷ [])) (R.def (quote getUARel) [ varg desc ]) >>= λ uaTerm → R.unify hole uaTerm >> autoUARelDesc n desc autoDUARel : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB) → ℕ → R.Term → R.TC Unit autoDUARel 𝒮-A B n hole = R.quoteTC 𝒮-A >>= λ `𝒮-A` → R.quoteTC B >>= λ `B` → newMeta R.unknown >>= λ desc → makeAuxiliaryDef "autoDUA" (R.def (quote DUARel) (`𝒮-A` v∷ `B` v∷ R.unknown v∷ [])) (R.def (quote getDUARel) [ varg desc ]) >>= λ duaTerm → R.unify hole duaTerm >> autoDUARelDesc n desc macro autoUARel : ∀ {ℓA} (A : Type ℓA) → R.Term → R.TC Unit autoUARel A = DisplayedAutoMacro.autoUARel A FUEL autoDUARel : ∀ {ℓA ℓ≅A ℓB} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB) → R.Term → R.TC Unit autoDUARel 𝒮-A B = DisplayedAutoMacro.autoDUARel 𝒮-A B FUEL private module Example (A : Type) (a₀ : A) where example0 : DUARel (autoUARel Type) (λ X → X → A × X) ℓ-zero example0 = autoDUARel _ _ example0' : {X Y : Type} (e : X ≃ Y) (f : X → A × X) (g : Y → A × Y) → (∀ x → (f x .fst ≡ g (e .fst x) .fst) × (e .fst (f x .snd) ≡ g (e .fst x) .snd)) → PathP (λ i → ua e i → A × ua e i) f g example0' e f g = example0 .DUARel.uaᴰ f e g .fst -- An example where a DUARel is parameterized over a pair of types example1 : DUARel (autoUARel (Type × Type)) (λ (X , Z) → X → Z) ℓ-zero example1 = autoDUARel _ _ example1' : {X Y : Type} (e : X ≃ Y) {Z W : Type} (h : Z ≃ W) (f : X → Z) (g : Y → W) → (∀ x → h .fst (f x) ≡ g (e .fst x)) → PathP (λ i → ua e i → ua h i) f g example1' e h f g = example1 .DUARel.uaᴰ f (e , h) g .fst -- An example where a DUARel is parameterized over a family of types example2 : DUARel (autoUARel (A → Type)) (λ B → B a₀) ℓ-zero example2 = autoDUARel _ _ example2' : {B C : A → Type} (e : (a : A) → B a ≃ C a) (b : B a₀) (c : C a₀) → e a₀ .fst b ≡ c → PathP (λ i → ua (e a₀) i) b c example2' e b c = example2 .DUARel.uaᴰ b e c .fst
{ "alphanum_fraction": 0.5698778833, "avg_line_length": 34.0153846154, "ext": "agda", "hexsha": "37e648d84cbeb35a844257e856739eb9f113640d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Displayed/Auto.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Displayed/Auto.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Displayed/Auto.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6291, "size": 13266 }
{-# OPTIONS --cubical --safe #-} module Diatonic where open import Data.Bool using (Bool; false; true; if_then_else_; _∧_) open import Data.Empty using (⊥) open import Data.Fin using (Fin; toℕ; #_; _≟_) renaming (zero to fz; suc to fs) open import Data.Integer using (ℤ; +_; -[1+_]; _+_) open import Data.Integer.DivMod using (_modℕ_) open import Data.Nat using (ℕ; zero; suc; _∸_) renaming (_+_ to _+ℕ_; _≡ᵇ_ to _==_) open import Data.Nat.DivMod using (_mod_) open import Data.Unit using (⊤) open import Data.Vec using (Vec; []; _∷_; head; foldl; take; reverse; lookup; updateAt) open import Function using (_∘_) open import Interval using (Upi; maj3; min3) open import Pitch using (Pitch; s7; PC; pitchToClass) data Mode : Set where major : Mode minor : Mode DiatonicDegree : Set DiatonicDegree = Fin s7 infix 4 _≡ᵈ_ _≡ᵈ_ : DiatonicDegree → DiatonicDegree → Bool d ≡ᵈ e = toℕ d == toℕ e -- round down pitchClass→Degree : Mode → PC → DiatonicDegree pitchClass→Degree major (fz) = # 0 pitchClass→Degree major ((fs fz)) = # 0 pitchClass→Degree major ((fs (fs fz))) = # 1 pitchClass→Degree major ((fs (fs (fs fz)))) = # 1 pitchClass→Degree major ((fs (fs (fs (fs fz))))) = # 2 pitchClass→Degree major ((fs (fs (fs (fs (fs fz)))))) = # 3 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs fz))))))) = # 3 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs (fs fz)))))))) = # 4 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs (fs (fs fz))))))))) = # 4 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))) = # 5 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))))) = # 5 pitchClass→Degree major ((fs (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))))) = # 6 pitchClass→Degree minor (fz) = # 0 pitchClass→Degree minor ((fs fz)) = # 0 pitchClass→Degree minor ((fs (fs fz))) = # 1 pitchClass→Degree minor ((fs (fs (fs fz)))) = # 2 pitchClass→Degree minor ((fs (fs (fs (fs fz))))) = # 2 pitchClass→Degree minor ((fs (fs (fs (fs (fs fz)))))) = # 3 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs fz))))))) = # 3 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs (fs fz)))))))) = # 4 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs (fs (fs fz))))))))) = # 5 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))) = # 5 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))))) = # 6 pitchClass→Degree minor ((fs (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))))) = # 6 degree→PC : Mode → DiatonicDegree → PC degree→PC major fz = (# 0) degree→PC major (fs fz) = (# 2) degree→PC major (fs (fs fz)) = (# 4) degree→PC major (fs (fs (fs fz))) = (# 5) degree→PC major (fs (fs (fs (fs fz)))) = (# 7) degree→PC major (fs (fs (fs (fs (fs fz))))) = (# 9) degree→PC major (fs (fs (fs (fs (fs (fs fz)))))) = (# 11) degree→PC minor fz = (# 0) degree→PC minor (fs fz) = (# 2) degree→PC minor (fs (fs fz)) = (# 3) degree→PC minor (fs (fs (fs fz))) = (# 5) degree→PC minor (fs (fs (fs (fs fz)))) = (# 7) degree→PC minor (fs (fs (fs (fs (fs fz))))) = (# 8) degree→PC minor (fs (fs (fs (fs (fs (fs fz)))))) = (# 10) pitch→DegreeCMajor : Pitch → DiatonicDegree pitch→DegreeCMajor = pitchClass→Degree major ∘ pitchToClass d1 d2 d3 d4 d5 d6 d7 : DiatonicDegree d1 = # 0 d2 = # 1 d3 = # 2 d4 = # 3 d5 = # 4 d6 = # 5 d7 = # 6 data Accidental : Set where ♭3 : ℕ → Accidental -- 3+n flats 𝄫 : Accidental ♭ : Accidental ♮ : Accidental ♯ : Accidental 𝄪 : Accidental ♯3 : ℕ → Accidental -- 3+n sharps -- pitch class letter name with accidental data PCL : Set where A : Accidental → PCL B : Accidental → PCL C : Accidental → PCL D : Accidental → PCL E : Accidental → PCL F : Accidental → PCL G : Accidental → PCL -- Accidental modifier. accMod : Accidental → ℤ accMod (♭3 n) = -[1+ (n +ℕ 2) ] accMod 𝄫 = -[1+ 1 ] accMod ♭ = -[1+ 0 ] accMod ♮ = + 0 accMod ♯ = + 1 accMod 𝄪 = + 2 accMod (♯3 n) = + (n +ℕ 3) flatten : (a : Accidental) → Accidental flatten (♭3 n) = ♭3 (suc n) flatten 𝄫 = ♭3 zero flatten ♭ = 𝄫 flatten ♮ = ♭ flatten ♯ = ♮ flatten 𝄪 = ♯ flatten (♯3 zero) = 𝄪 flatten (♯3 (suc n)) = ♯3 n sharpen : Accidental → Accidental sharpen (♭3 (suc n)) = ♭3 n sharpen (♭3 zero) = 𝄫 sharpen 𝄫 = ♭ sharpen ♭ = ♮ sharpen ♮ = ♯ sharpen ♯ = 𝄪 sharpen 𝄪 = ♯3 zero sharpen (♯3 n) = ♯3 (suc n) -- Convert raw PCL letter to ℕ (in range [0,11]); C normalized to 0 letter→ℕ : PCL → ℕ letter→ℕ (A _) = 9 letter→ℕ (B _) = 11 letter→ℕ (C _) = 0 letter→ℕ (D _) = 2 letter→ℕ (E _) = 4 letter→ℕ (F _) = 5 letter→ℕ (G _) = 7 accidental : PCL → Accidental accidental (A x) = x accidental (B x) = x accidental (C x) = x accidental (D x) = x accidental (E x) = x accidental (F x) = x accidental (G x) = x modifyAccidental : (Accidental → Accidental) → PCL → PCL modifyAccidental f (A x) = A (f x) modifyAccidental f (B x) = B (f x) modifyAccidental f (C x) = C (f x) modifyAccidental f (D x) = D (f x) modifyAccidental f (E x) = E (f x) modifyAccidental f (F x) = F (f x) modifyAccidental f (G x) = G (f x) -- Convert PCL to PC with C♮ normalized to 0. pclToC : PCL → PC pclToC pc = ((((+ (letter→ℕ pc)) + accMod (accidental pc)) modℕ 12) mod 12) data Key : Set where key : PCL → Mode → Key keyMode : Key → Mode keyMode (key _ mode) = mode data Step : Set where half : Step whole : Step stepUp : Step → PCL → PCL stepUp half (A x) = B (flatten x) stepUp half (B x) = C x stepUp half (C x) = D (flatten x) stepUp half (D x) = E (flatten x) stepUp half (E x) = F x stepUp half (F x) = G (flatten x) stepUp half (G x) = A (flatten x) stepUp whole (A x) = B x stepUp whole (B x) = C (sharpen x) stepUp whole (C x) = D x stepUp whole (D x) = E x stepUp whole (E x) = F (sharpen x) stepUp whole (F x) = G x stepUp whole (G x) = A x scaleSteps : Mode → Vec Step s7 scaleSteps major = whole ∷ whole ∷ half ∷ whole ∷ whole ∷ whole ∷ half ∷ [] scaleSteps minor = whole ∷ half ∷ whole ∷ whole ∷ half ∷ whole ∷ whole ∷ [] scaleNotes : Key → Vec PCL s7 scaleNotes (key pc m) = let f : {n : ℕ} → Vec PCL (suc n) → Step → Vec PCL (suc (suc n)) f pcs step = stepUp step (head pcs) ∷ pcs in reverse (foldl (Vec PCL ∘ suc) f (pc ∷ []) (take 6 (scaleSteps m))) data Root : Set where I : Root II : Root III : Root IV : Root V : Root VI : Root VII : Root data Quality : Set where maj : Quality min : Quality aug : Quality dim : Quality _dd+_ : DiatonicDegree → ℕ → DiatonicDegree d dd+ n = (toℕ d +ℕ n) mod s7 thirdUp : DiatonicDegree → DiatonicDegree thirdUp d = d dd+ 2 data Triad : Set where triad : Root → Quality → Triad root→DiatonicDegree : Root → DiatonicDegree root→DiatonicDegree I = d1 root→DiatonicDegree II = d2 root→DiatonicDegree III = d3 root→DiatonicDegree IV = d4 root→DiatonicDegree V = d5 root→DiatonicDegree VI = d6 root→DiatonicDegree VII = d7 diatonicDegree→Root : DiatonicDegree → Root diatonicDegree→Root fz = I diatonicDegree→Root (fs fz) = II diatonicDegree→Root (fs (fs fz)) = III diatonicDegree→Root (fs (fs (fs fz))) = IV diatonicDegree→Root (fs (fs (fs (fs fz)))) = V diatonicDegree→Root (fs (fs (fs (fs (fs fz))))) = VI diatonicDegree→Root (fs (fs (fs (fs (fs (fs fz)))))) = VII rootQuality : Mode → Root → Quality rootQuality major I = maj rootQuality major II = min rootQuality major III = min rootQuality major IV = maj rootQuality major V = maj rootQuality major VI = min rootQuality major VII = dim rootQuality minor I = min rootQuality minor II = dim rootQuality minor III = maj rootQuality minor IV = min rootQuality minor V = min rootQuality minor VI = maj rootQuality minor VII = maj root→PC : Key → Root → PC root→PC (key _ mode) = degree→PC mode ∘ root→DiatonicDegree diatonicDegree→PCL : Key → DiatonicDegree → PCL diatonicDegree→PCL k dd = lookup (scaleNotes k) dd root→PCL : Key → Root → PCL root→PCL k = diatonicDegree→PCL k ∘ root→DiatonicDegree -- Lower interval is first. triadQuality : Upi → Upi → Quality triadQuality i1 i2 = if (i1 == maj3) ∧ (i2 == min3) then maj else if (i1 == min3) ∧ (i2 == maj3) then min else if (i1 == min3) ∧ (i2 == min3) then dim else if (i1 == maj3) ∧ (i2 == maj3) then aug else maj -- should not happen makeTriad : Mode → Root → Triad makeTriad m r = let d1 = root→DiatonicDegree r d2 = thirdUp d1 d3 = thirdUp d2 p1 = degree→PC m d1 p2 = degree→PC m d2 p3 = degree→PC m d3 i1 = toℕ p2 ∸ toℕ p1 -- TODO: See if want to use ℤ i2 = toℕ p3 ∸ toℕ p2 in triad r (triadQuality i1 i2) diatonic7thNotes : Key → Root → Vec PCL 4 diatonic7thNotes k root = let d1 = root→DiatonicDegree root d2 = thirdUp d1 d3 = thirdUp d2 d4 = thirdUp d3 ns = scaleNotes k in lookup ns d1 ∷ lookup ns d2 ∷ lookup ns d3 ∷ lookup ns d4 ∷ [] triadNotes : Key → Root → Vec PCL 3 triadNotes k = take 3 ∘ diatonic7thNotes k _V/_ : Key → Root → Vec PCL 3 k V/ r = triadNotes (key (root→PCL k r) major) V _V⁷/_ : Key → Root → Vec PCL 4 k V⁷/ r = diatonic7thNotes (key (root→PCL k r) major) V _viiᵒ⁷/_ : Key → Root → Vec PCL 4 k viiᵒ⁷/ r = updateAt (# 3) (modifyAccidental flatten) (diatonic7thNotes (key (root→PCL k r) major) VII) ---------- a1 = triadNotes (key (G ♭) major) III a2 = diatonic7thNotes (key (G ♯) major) V a3 = diatonic7thNotes (key (E ♮) major) V a4 = diatonic7thNotes (key (B ♭) major) VI a5 = scaleNotes (key (G ♯) major) a6 = scaleNotes (key (G ♭) major) a7 = scaleNotes (key (B ♮) minor) a8 = (key (G ♮) major) V/ V a9 = (key (B ♭) major) V⁷/ II a10 = (key (F ♯) minor) viiᵒ⁷/ III
{ "alphanum_fraction": 0.548828125, "avg_line_length": 32.3855421687, "ext": "agda", "hexsha": "9fbc27d28ae4fdc540d078da56f509932c16c4a2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Diatonic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Diatonic.agda", "max_line_length": 104, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Diatonic.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 3857, "size": 10752 }
module MJSF.Examples.DynamicDispatch where open import Prelude open import Data.Star open import Data.Bool open import Data.List open import Data.Integer open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All hiding (lookup) open import Data.Product hiding (Σ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable k : ℕ k = 10 open import MJSF.Syntax k open import ScopesFrames.ScopesFrames k Ty {- class Int { public int x; public int get() { System.out.println("never"); return x; } public int set(Int y) { x = y.x; return this.get(); } } class IntInc extends Int { public int get() { return x + 1; } public int inc(Int y) { Int x = new Int(); x.x = y.x + 1; return set(x); } } class Main { public static void main(String[] args) { Int y = new Int(); y.x = 18; IntInc x = new IntInc(); x.x = 0; // should print 20 because we use the get() of IntInc System.out.println(x.inc(y)); } } -} Root : Scope Root = # 0 Int : Scope Int = # 1 IntInc : Scope IntInc = # 2 -- Main class omitted; main() function is given below, as child scope -- of the root scope. classes : List Ty classes = (cᵗ Root Int ∷ cᵗ Root IntInc ∷ []) Int-methods Int-fields : List Ty Int-fields = {- x -} vᵗ int ∷ [] Int-methods = {- Int.get -} mᵗ [] int ∷ {- Int.set -} mᵗ (ref Int ∷ []) int ∷ [] IntInc-methods IntInc-fields : List Ty IntInc-methods = -- {- IntInc.get -} mᵗ [] int ∷ {- IntInc.inc -} mᵗ (ref Int ∷ []) int ∷ [] IntInc-fields = [] g : Graph -- root scope g zero = classes , [] -- class scope of Int class g (suc zero) = (Int-methods ++ Int-fields) , zero ∷ [] -- class scope of IntInc class g (suc (suc zero)) = (IntInc-methods ++ IntInc-fields) , zero ∷ # 1 ∷ [] -- scope of Int.get method; 3 g (suc (suc (suc zero))) = [] , Int ∷ [] -- scope of Int.set method; 4 g (suc (suc (suc (suc zero)))) = vᵗ (ref Int) ∷ [] , Int ∷ [] -- scope of IntInc.get method; 5 g (suc (suc (suc (suc (suc zero))))) = [] , IntInc ∷ [] -- scope of IntInc.inc method; 6 g (suc (suc (suc (suc (suc (suc zero)))))) = vᵗ (ref Int) ∷ [] , IntInc ∷ [] -- local variable scope of Int.inc method; 7 g (suc (suc (suc (suc (suc (suc (suc zero))))))) = vᵗ (ref Int) ∷ [] , # 6 ∷ [] -- x local variable scope of Main.main method; 8 g (suc (suc (suc (suc (suc (suc (suc (suc zero)))))))) = vᵗ (ref Int) ∷ [] , Root ∷ [] -- y local variable scope of Main.main method; 9 g (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))) = vᵗ (ref IntInc) ∷ [] , # 8 ∷ [] g (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc ())))))))))) open SyntaxG g open UsesGraph g IntImpl : Class Root Int IntImpl = class0 {ms = Int-methods} {fs = Int-fields} -- methods (#m' (meth (# 3) (body ε (var (path ((here refl) ∷ []) (there (there (here refl))))))) ∷ (#m' (meth (# 4) (body ( asgn (path ((here refl) ∷ []) (there (there (here refl)))) (get (var (path [] (here refl))) (path [] (there (there (here refl))))) ◅ ε) (call (this [] (here refl)) (path [] (here refl)) [])))) ∷ []) -- fields ((#v' tt) ∷ []) -- overrides [] IntIncImpl : Class Root IntInc IntIncImpl = class1 {ms = IntInc-methods} {fs = IntInc-fields} -- path to parent (path [] (here refl)) -- methods (#m' (meth (# 6) (body ( loc (# 7) (ref Int) ◅ asgn (path [] (here refl)) (new (path ((here refl) ∷ ((here refl) ∷ ((here refl) ∷ []))) (here refl))) ◅ set (var (path [] (here refl))) (path [] (there (there (here refl)))) (iop Data.Integer._+_ (get (var (path ((here refl) ∷ []) (here refl))) (path [] (there (there (here refl))))) (num (+ 1))) ◅ ε) (call (this (here refl ∷ []) (here refl)) (path (there (here refl) ∷ []) (there (here refl))) ((var (path [] (here refl))) ∷ [])))) ∷ []) -- fields [] -- overrides (#m' (path ((there (here refl)) ∷ []) (here refl) , (meth (# 5) (body ε (iop Data.Integer._+_ (var (path ((here refl) ∷ ((there (here refl)) ∷ [])) (there (there (here refl))))) (num (+ 1)))))) ∷ []) main : Body Root int main = body ( (loc (# 8) (ref Int)) ◅ asgn (path [] (here refl)) (new (path (here refl ∷ []) (here refl))) ◅ set (var (path [] (here refl))) (path [] (there (there (here refl)))) (num (+ 18)) ◅ loc (# 9) (ref IntInc) ◅ asgn (path [] (here refl)) (new (path (here refl ∷ here refl ∷ []) (there (here refl)))) ◅ set (var (path [] (here refl))) (path (there (here refl) ∷ []) (there (there (here refl)))) (num (+ 0)) ◅ ε) (call (var (path [] (here refl))) (path [] (here refl)) (var (path ((here refl) ∷ []) (here refl)) ∷ [])) p : Program Root int p = program classes (#c' (IntImpl , Int , obj Int ⦃ refl ⦄) ∷ (#c' (IntIncImpl , Int , (super ⦃ refl ⦄ (obj Int ⦃ refl ⦄)))) ∷ []) main open import MJSF.Semantics open Semantics _ g open import MJSF.Values open ValuesG _ g test : p ⇓⟨ 100 ⟩ (λ v → v ≡ num (+ 20) ) test = refl
{ "alphanum_fraction": 0.4830335935, "avg_line_length": 25.188034188, "ext": "agda", "hexsha": "4949fa5ce1426383069fe3b5b9d5b6370d164fad", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJSF/Examples/DynamicDispatch.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJSF/Examples/DynamicDispatch.agda", "max_line_length": 84, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJSF/Examples/DynamicDispatch.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 1851, "size": 5894 }
-- Andreas, 2016-12-31, issue #2374 -- Use hiding info to disambiguate overloaded projections. -- {-# OPTIONS -v tc.lhs.split:40 #-} postulate A B : Set module M where record R : Set₂ where field F : Set₁ module Order1 where open M.R open M.R {{...}} test : M.R F test = Set inst : M.R F {{inst}} = Set module Order2 where open M.R {{...}} open M.R test : M.R F test = Set inst : M.R F {{inst}} = Set module N (A : Set) where record R : Set₂ where field F : Set₁ module Par1 where open N.R {A = A} module RB = N.R {A = B}; open RB {{...}} test : N.R A F test = Set inst : N.R B F {{inst}} = Set module Par2 where module RA = N.R {A = A}; open RA {{...}} open N.R {A = B} test : N.R B F test = Set inst : N.R A F {{inst}} = Set -- All should be accepted.
{ "alphanum_fraction": 0.5455621302, "avg_line_length": 13.8524590164, "ext": "agda", "hexsha": "4caf8c7d3f2a1f2f825f8fe0ee137c3cf4d8d6ae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2374.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2374.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2374.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 303, "size": 845 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Equality.Setoid directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.Vec.Relation.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.Vec.Relation.Binary.Equality.Setoid S public {-# WARNING_ON_IMPORT "Data.Vec.Relation.Equality.Setoid was deprecated in v1.0. Use Data.Vec.Relation.Binary.Equality.Setoid instead." #-}
{ "alphanum_fraction": 0.5707317073, "avg_line_length": 29.2857142857, "ext": "agda", "hexsha": "56d85f6de78180ae4c96abb7f0daf1175e674d62", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Setoid.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Equality/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 130, "size": 615 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.ToFrom3 {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.ToFromInit d open import homotopy.3x3.ToFrom2 d module M3 (c : A₂₂) where open M2 c lemma2-3 = ap□ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /) =⟨ ap□-∙□-i/ to _ (E∙₂Red.lhs-o c) (E∙₂Red.rhs-o c) ⟩ ap□ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /)) ∙□-i/ ap (ap to) (E∙₂Red.lhs-o c) / ap (ap to) (E∙₂Red.rhs-o c) / =⟨ lemma2-4 |in-ctx (λ u → u ∙□-i/ ap (ap to) (E∙₂Red.lhs-o c) / ap (ap to) (E∙₂Red.rhs-o c) /) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c / ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ (To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)) / ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-o c to / E∙₂Red.ap-ap-coh!-rhs-o c to / ∙□-i/ ap (ap to) (E∙₂Red.lhs-o c) / ap (ap to) (E∙₂Red.rhs-o c) / ∎ lemma2'-3 = ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (E∙₂Red.lhs-o c) ∙ E∙₂Red.ap-ap-coh!-lhs-o c to ∙ ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ E₂∙Red.lhs-i c =⟨ coh2 (ap to) (ap-∘ to (i∙₄ ∘ f∙₃) (glue c)) (ap-∘ i∙₄ f∙₃ (glue c)) _ _ _ (ap-∙∙!'`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c)) ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) (ap-! (ap right) (F∙₃.glue-β c)) _ ⟩ (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ (ap (ap to) (ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ ap (ap to) (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ ap-∙∙!'`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c)) ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ ! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ ap-∘-ap-∙∙!'2`∘`∘-coh to i∙₄ left right (H₁₃ c) (I∙₄.glue-β (f₂₃ c)) (H₃₃ c) |in-ctx (λ u → (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ u ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ ! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c))) ⟩ (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ (ap (ap to) (ap-∙∙`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ap (ap to) (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ap-∙∙!`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c)) ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ ! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ coh5 (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) (ap (ap to) (ap-∙∙`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)))) (ap (ap to) (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) (ap-∙∙!`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c)) ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) (! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) (ap-∙∙`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (! (H₃₃ c))) ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) (! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)))) (ap-! (right ∘ right) (H₃₃ c) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ ap right (glue (f₂₃ c)) ∙ u)) (ap-∙∙!`∘`∘-coh1 to (left ∘ right) (right ∘ right) (H₁₃ c) (To.glue-β (right (f₂₃ c))) (H₃₃ c)) (ap-∙∙!`∘`∘-coh2 right left right (H₁₃ c) {glue (f₂₃ c)} (H₃₃ c)) ⟩ (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ (ap (ap to) (ap-∙∙`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ap (ap to) (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ap-∙∙`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (! (H₃₃ c))) ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ ap-∘-ap-∙∙`∘`∘-coh to i∙₄ left right (H₁₃ c) (I∙₄.glue-β (f₂₃ c)) (! (H₃₃ c)) |in-ctx (λ u → (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ u ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c))) ⟩ (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ (∘-ap to i∙₄ (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) ∙ ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ (((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ coh3 (ap-∘ to (i∙₄ ∘ f∙₃) (glue c)) (ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c))) (ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄))) (∘-ap to i∙₄ (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c)))) _ _ ⟩ (ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (ap-∘ i∙₄ f∙₃ (glue c)) ∙ ap (ap to) (F∙₃.glue-β c |in-ctx (ap i∙₄)) ∙ ∘-ap to i∙₄ (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c)))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ ap-∘-coh to i∙₄ f∙₃ (glue c) (F∙₃.glue-β c) |in-ctx (λ u → u ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c))) ⟩ (ap-∘ (to ∘ i∙₄) f∙₃ (glue c) ∙ (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ∘-ap right f∙₃ (glue c)) =⟨ !-ap-∘-inv right f∙₃ (glue c) |in-ctx (λ u → (ap-∘ (to ∘ i∙₄) f∙₃ (glue c) ∙ (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ u)) ⟩ (ap-∘ (to ∘ i∙₄) f∙₃ (glue c) ∙ (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ! (ap-∘ right f∙₃ (glue c))) =⟨ !-∘-ap-inv (to ∘ i∙₄) f∙₃ (glue c) |in-ctx (λ u → (u ∙ (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ! (ap-∘ right f∙₃ (glue c)))) ⟩ (! (∘-ap (to ∘ i∙₄) f∙₃ (glue c)) ∙ (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c))) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ∙ (ap-∘ to i∙₄ (glue (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ (ap (ap to) (I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))))) ∙ ((To.glue-β (right (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙ ! (ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ∙ ! (ap (ap right) (F∙₃.glue-β c)) ∙ ! (ap-∘ right f∙₃ (glue c))) =⟨ coh4 (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))) (∘-ap (to ∘ i∙₄) f∙₃ (glue c)) _ _ _ _ _ _ _ _ ⟩ ! end-lemma1 ∎ where coh2 : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c d e : A} {g h k l m n : B} (p : g == f a) (q : a == b) (r : b == c) (s : c == d) (t : d == e) (u : f e == h) (v : h == k) (w : k == l) {x x' : l == m} (eq-x : x == x') (y : m == n) → p ∙ ap f (_ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ =⟨ t ⟩ _ ∎) ∙ u ∙ v ∙ (_ =⟨ w ⟩ _ =⟨ x ⟩ _ =⟨ y ⟩ _ ∎) == (p ∙ ap f q ∙ ap f r) ∙ (ap f s ∙ ap f t ∙ u) ∙ (v ∙ w ∙ x' ∙ y) coh2 f p idp idp idp idp idp idp idp {x = idp} idp idp = ! (∙-unit-r (p ∙ idp)) coh3 : ∀ {i} {A : Type i} {a b c d e f g : A} (p : a == b) (q : b == c) (r : c == d) (s : d == e) (t : e == f) (u : f == g) → (p ∙ q ∙ r) ∙ (s ∙ t) ∙ u == (p ∙ q ∙ r ∙ s) ∙ t ∙ u coh3 idp idp idp idp idp idp = idp coh4 : ∀ {i j} {A : Type i} {B : Type j} (h : A → B) {a b c d : A} {e f g k l m : B} (p : f == e) (q : f == g) (r : g == h a) (s : a == b) (t : b == c) (u : c == d) (v : k == h d) (w : l == k) (x : m == l) → (! p ∙ q) ∙ (r ∙ (s |in-ctx h) ∙ (t |in-ctx h)) ∙ ((u |in-ctx h) ∙ (! v) ∙ (! w) ∙ ! x) == ! (_ =⟨ x ⟩ _ =⟨ w ⟩ _ =⟨ v ⟩ _ =⟨ ! (_ =⟨ s ⟩ _ =⟨ t ⟩ _ =⟨ u ⟩ _ ∎) |in-ctx h ⟩ _ =⟨ ! r ⟩ _ =⟨ ! q ⟩ _ =⟨ p ⟩ _ ∎) coh4 h idp idp r idp idp idp v idp idp = ch r v where ch : ∀ {i} {B : Type i} {a b c : B} (r : a == b) (v : c == b) → (r ∙ idp) ∙ ! v ∙ idp == ! (_ =⟨ idp ⟩ _ =⟨ idp ⟩ _ =⟨ v ⟩ _ =⟨ idp ⟩ _ =⟨ ! r ⟩ _ ∎) ch idp idp = idp coh5 : ∀ {i} {A : Type i} {a b c d e e' f f' g h : A} (p : a == b) (q : b == c) (r : c == d) (s : d == e) (t : e == f) (u : f == g) (v : g == h) (s' : d == e') (t' : e' == f') (u' : f' == g) (w : f' == f) (α : s ∙ t == s' ∙ t' ∙ w) (β : w ∙ u == u') → p ∙ (q ∙ r ∙ s) ∙ (t ∙ u ∙ v) == p ∙ (q ∙ r ∙ s') ∙ (t' ∙ u' ∙ v) coh5 idp idp idp idp idp idp idp idp idp ._ ._ idp idp = idp lemma2'-4 = E₂∙Red.rhs-i c ∙ ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ E∙₂Red.ap-ap-coh!-rhs-o c to ∙ ap (ap to) (E∙₂Red.rhs-o c) ∙ ∘-ap to (i∙₀ ∘ f∙₁) (glue c) =⟨ coh2 (ap to) (ap-∘ left f∙₁ (glue c)) (F∙₁.glue-β c |in-ctx (ap left)) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) (ap-∘ to (i∙₀ ∘ f∙₁) (glue c)) (ap-∘ i∙₀ f∙₁ (glue c)) ((F∙₁.glue-β c) |in-ctx ap i∙₀) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) (ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) (!-ap (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)) (I∙₀.glue-β (f₂₁ c))) (!-ap (ap i∙₀) (F∙₁.glue-β c)) (!-ap-∘ i∙₀ f∙₁ (glue c)) (!-∘-ap to (i∙₀ ∘ f∙₁) (glue c)) ⟩ ap-∘ left f∙₁ (glue c) ∙ (F∙₁.glue-β c |in-ctx (ap left)) ∙ (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ ! ((ap-∘ to (i∙₀ ∘ f∙₁) (glue c) ∙ ap (ap to) (ap-∘ i∙₀ f∙₁ (glue c)) ∙ ap (ap to) ((F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u))) ∙ (ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∙ ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c))) =⟨ lm |in-ctx (λ u → ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) ∙ ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c) ∙ ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ ! u) ⟩ ap-∘ left f∙₁ (glue c) ∙ (F∙₁.glue-β c |in-ctx (ap left)) ∙ ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c) ∙ ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ ! ((ap-∘ (to ∘ i∙₀) f∙₁ (glue c) ∙ ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) ∙ (ap-∘ to i∙₀ (glue (f₂₁ c)) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ ((I∙₀.glue-β (f₂₁ c) |in-ctx ap to) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ (ap-! (left ∘ left) (H₁₁ c) |in-ctx (λ u → u ∙ ap to (glue (left (f₂₁ c))) ∙ ap (left ∘ right) (H₃₁ c))))) =⟨ coh3 {f = λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)} {p = ap-∘ left f∙₁ (glue c)} {ap (ap left) (F∙₁.glue-β c)} {ap-∙∙`∘`∘ left left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)} {ap-∘ to i∙₀ (glue (f₂₁ c))} {I∙₀.glue-β (f₂₁ c) |in-ctx ap to} {To.glue-β (left (f₂₁ c))} {ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)} {ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)} {ap-∘ (to ∘ i∙₀) f∙₁ (glue c)} (!-ap-∘ (to ∘ i∙₀) f∙₁ (glue c)) {ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)} {(! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))} {ap-! (left ∘ left) (H₁₁ c) |in-ctx (λ u → u ∙ ap to (glue (left (f₂₁ c))) ∙ ap (left ∘ right) (H₃₁ c))} (ap-!∙∙`∘`∘-coh left left right (H₁₁ c) (! (To.glue-β (left (f₂₁ c)))) (H₃₁ c)) ⟩ end-lemma3 ∎ where coh2 : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c d e o : B} (p : a == b) (q : b == c) (r : c == d) (s : d == e) {g h l m n : A} (y : o == f g) (x : g == h) (w : h == l) (v : l == m) (u : m == n) (t : f n == e) {u' : n == m} (γ : ! u == u') {w' : l == h} (δ : ! w == w') {x' : h == g} (α : ! x == x') {y' : f g == o} (β : ! y' == y) → (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ ∎) ∙ s ∙ ! t ∙ ap f (_ =⟨ u' ⟩ _ =⟨ ! v ⟩ _ =⟨ w' ⟩ _ =⟨ x' ⟩ _ ∎) ∙ y' == p ∙ q ∙ r ∙ s ∙ ! ((y ∙ ap f x ∙ ap f w) ∙ (ap f v ∙ ap f u ∙ t)) coh2 f idp idp idp idp .idp idp idp idp idp idp idp idp idp {y' = idp} idp = idp coh3 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d e g o o' : B} {h k l m : A} {p : a == b} {q : b == c} {r : c == f m} {v : h == k} {w : k == l} {x : l == m} {s : d == f h} {t : e == d} {u : g == e} {u' : e == g} (α : ! u == u') {r' : c == o} {x' : o == o'} {y : f l == o'} (β : (r' ∙ x' ∙ ! y) == (r ∙' (! x |in-ctx f))) → p ∙ q ∙ r' ∙ x' ∙ ! ((u ∙ t) ∙ (s ∙ (v |in-ctx f) ∙ (w |in-ctx f) ∙ y)) == (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ ! (_ =⟨ v ⟩ _ =⟨ w ⟩ _ =⟨ x ⟩ _ ∎) |in-ctx f ⟩ _ =⟨ ! s ⟩ _ =⟨ ! t ⟩ _ =⟨ u' ⟩ _ ∎) coh3 {p = idp} {idp} {._} {idp} {idp} {idp} {s} {idp} {idp} idp {idp} {idp} {y} idp = coh' s y where coh' : ∀ {i} {B : Type i} {a b c : B} (s : a == b) (y : b == c) → ! (s ∙ y) == (_ =⟨ idp ⟩ _ =⟨ idp ⟩ _ =⟨ ! y ⟩ _ =⟨ idp ⟩ _ =⟨ ! s ⟩ _ ∎) coh' idp idp = idp lm = (ap-∘ to (i∙₀ ∘ f∙₁) (glue c) ∙ ap (ap to) (ap-∘ i∙₀ f∙₁ (glue c)) ∙ ap (ap to) ((F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u))) ∙ (ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∙ ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) =⟨ ap-∘-coh2 to i∙₀ f∙₁ (glue c) (F∙₁.glue-β c) |in-ctx (λ u → u ∙ (ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∙ ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c))) ⟩ (ap-∘ (to ∘ i∙₀) f∙₁ (glue c) ∙ ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c) ∙ ap-∘ to i∙₀ (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c))) ∙ (ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∙ ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) =⟨ assoc (ap-∘ (to ∘ i∙₀) f∙₁ (glue c)) (ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) (ap-∘ to i∙₀ (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c))) (ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) (ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) (ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) ⟩ (ap-∘ (to ∘ i∙₀) f∙₁ (glue c) ∙ ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) ∙ (ap-∘ to i∙₀ (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) ∙ ap (ap to) (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap (ap to) ((I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∙ ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) =⟨ ap-∘-ap-∙∙5`∘`∘-coh to i∙₀ left right (H₁₁ c) (I∙₀.glue-β (f₂₁ c)) (H₃₁ c) |in-ctx (λ u → (ap-∘ (to ∘ i∙₀) f∙₁ (glue c) ∙ ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) ∙ u) ⟩ (ap-∘ (to ∘ i∙₀) f∙₁ (glue c) ∙ ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) ∙ (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) ∙ (ap-∘ to i∙₀ (glue (f₂₁ c)) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ ((I∙₀.glue-β (f₂₁ c) |in-ctx ap to) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ (ap-! (left ∘ left) (H₁₁ c) |in-ctx (λ u → u ∙ ap to (glue (left (f₂₁ c))) ∙ ap (left ∘ right) (H₃₁ c)))) ∎ where assoc : ∀ {i} {A : Type i} {a b c d e f g : A} (p : a == b) (q : b == c) (r : c == d) (s : d == e) (t : e == f) (u : f == g) → (p ∙ q ∙ r) ∙ (s ∙ t ∙ u) == (p ∙ q) ∙ (r ∙ s ∙ t ∙ u) assoc idp idp idp idp idp idp = idp lemma2-2' = ap□ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /) ∙□-i/ ap-∘ to (i∙₄ ∘ f∙₃) (glue c) / ∘-ap to (i∙₀ ∘ f∙₁) (glue c) / =⟨ lemma2-3 |in-ctx (λ u → u ∙□-i/ ap-∘ to (i∙₄ ∘ f∙₃) (glue c) / ∘-ap to (i∙₀ ∘ f∙₁) (glue c) /) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c / ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ (To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)) / ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-o c to / E∙₂Red.ap-ap-coh!-rhs-o c to / ∙□-i/ ap (ap to) (E∙₂Red.lhs-o c) / ap (ap to) (E∙₂Red.rhs-o c) / ∙□-i/ ap-∘ to (i∙₄ ∘ f∙₃) (glue c) / ∘-ap to (i∙₀ ∘ f∙₁) (glue c) / =⟨ assoc (↓-='-out (apd (glue {d = h-v-span}) (glue c))) (E₂∙Red.lhs-i c) ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) (E∙₂Red.ap-ap-coh!-lhs-o c to) (ap (ap to) (E∙₂Red.lhs-o c)) (ap-∘ to (i∙₄ ∘ f∙₃) (glue c)) _ _ _ _ _ (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c)) _ ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ap-∘ to (i∙₄ ∘ f∙₃) (glue c) ∙ ap (ap to) (E∙₂Red.lhs-o c) ∙ E∙₂Red.ap-ap-coh!-lhs-o c to ∙ ((To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c ∙ ((! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙ E∙₂Red.ap-ap-coh!-rhs-o c to ∙ ap (ap to) (E∙₂Red.rhs-o c) ∙ ∘-ap to (i∙₀ ∘ f∙₁) (glue c) / =⟨ ∙□-i/-rewrite (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) /) lemma2'-3 lemma2'-4 ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 / ∎ where assoc : ∀ {i} {A : Type i} {a b b' c : A} {u u' : a == b} {v v1 v2 v3 v4 v5 : b == c} {w w1 w2 w3 w4 w5 : a == b'} {x x' : b' == c} (α : (u , v =□ w , x)) (p1 : v1 == v) (p2 : v2 == v1) (p3 : v3 == v2) (p4 : v4 == v3) (p5 : v5 == v4) (q1 : w == w1) (q2 : w1 == w2) (q3 : w2 == w3) (q4 : w3 == w4) (q5 : w4 == w5) (r : u' == u) (s : x == x') → α ∙□-i/ p1 / q1 / ∙□-o/ r / s / ∙□-i/ p2 / q2 / ∙□-i/ p3 / q3 / ∙□-i/ p4 / q4 / ∙□-i/ p5 / q5 / == α ∙□-o/ r / s / ∙□-i/ p5 ∙ p4 ∙ p3 ∙ p2 ∙ p1 / q1 ∙ q2 ∙ q3 ∙ q4 ∙ q5 / assoc α idp idp idp idp idp idp idp idp idp idp idp idp = idp lemma2-2 = ap↓ (ap to) (↓-='-in (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /)) =⟨ ap↓-↓-='-in-β _ _ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /) ⟩ ↓-='-in ((ap□ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /)) ∙□-i/ ap-∘ to (i∙₄ ∘ f∙₃) (glue c) / ∘-ap to (i∙₀ ∘ f∙₁) (glue c) /) =⟨ lemma2-2' |in-ctx ↓-='-in ⟩ ↓-='-in (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ∎ lemma2-1 = apd (ap to ∘ ap from ∘ glue) (glue c) =⟨ apd-∘' (ap to ∘ ap from) glue (glue c) ⟩ ap↓ (ap to ∘ ap from) (apd (glue {d = h-v-span}) (glue c)) =⟨ ap↓-∘ (ap to) (ap from) (apd glue (glue c)) ⟩ ap↓ (ap to) (ap↓ (ap from) (apd glue (glue c))) =⟨ from-glue-glue-β c |in-ctx (ap↓ (ap to)) ⟩ ap↓ (ap to) ((↓-='-in (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /)) ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) /) =⟨ ap↓-◃/ (ap to) _ (From.glue-β (left (f₁₂ c))) _ ⟩ ap↓ (ap to) (↓-='-in (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /)) ◃/ ap (ap to) (From.glue-β (left (f₁₂ c))) / ap (ap to) (! (From.glue-β (right (f₃₂ c)))) / =⟨ lemma2-2 |in-ctx (λ u → u ◃/ ap (ap to) (From.glue-β (left (f₁₂ c))) / ap (ap to) (! (From.glue-β (right (f₃₂ c)))) /) ⟩ ↓-='-in (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ◃/ ap (ap to) (From.glue-β (left (f₁₂ c))) / ap (ap to) (! (From.glue-β (right (f₃₂ c)))) / ∎ lemma2 = ↓-='-out (apd (ap to ∘ ap from ∘ glue) (glue c)) =⟨ lemma2-1 |in-ctx ↓-='-out ⟩ ↓-='-out (↓-='-in (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ◃/ ap (ap to) (From.glue-β (left (f₁₂ c))) / ap (ap to) (! (From.glue-β (right (f₃₂ c)))) /) =⟨ thing (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) (ap (ap to) (From.glue-β (left (f₁₂ c)))) (ap (ap to) (! (From.glue-β (right (f₃₂ c))))) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 / ∙□-o/ ap (ap to) (From.glue-β (left (f₁₂ c))) / ap (ap to) (! (From.glue-β (right (f₃₂ c)))) / =⟨ ch (↓-='-out (apd (glue {d = h-v-span}) (glue c))) (∘-ap to left (glue (f₁₂ c))) (ap-∘ to left (glue (f₁₂ c))) (!-∘-ap to left (glue (f₁₂ c))) (I₀∙.glue-β (f₁₂ c)) (∘-ap to right (glue (f₃₂ c))) (ap-∘ to right (glue (f₃₂ c))) (!-∘-ap to right (glue (f₃₂ c))) (I₄∙.glue-β (f₃₂ c)) (! end-lemma1) end-lemma3 (ap (ap to) (From.glue-β (left (f₁₂ c)))) (! (From.glue-β (left (f₁₂ c))) |in-ctx ap to) (!-ap (ap to) (From.glue-β (left (f₁₂ c)))) (ap (ap to) (! (From.glue-β (right (f₃₂ c))))) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ ! end-lemma1 / end-lemma3 / ∙□-o/ ! (to-from-g-l (f₁₂ c)) / to-from-g-r (f₃₂ c) / ∎ where ch : ∀ {i} {A : Type i} {a b b' c : A} {p₁ p₂ p₃ p₄ : a == b} {q₁ q₂ : b == c} {r₁ r₂ : a == b'} {s₁ s₂ s₃ s₄ : b' == c} (α : (p₁ , q₁ =□ r₁ , s₁)) (β₁ : p₃ == p₂) (β₁-inv : p₂ == p₃) (eq : ! β₁ == β₁-inv) (β₂ : p₂ == p₁) (β'₁ : s₃ == s₂) (β'₁-inv : s₂ == s₃) (eq' : ! β'₁ == β'₁-inv) (β'₂ : s₂ == s₁) (γ : q₂ == q₁) (γ' : r₁ == r₂) (β₃ : p₄ == p₃) (β₃-inv : p₃ == p₄) (eq₃ : ! β₃ == β₃-inv) (β'₃ : s₃ == s₄) → α ∙□-o/ β₁ ∙ β₂ / ! (β'₁ ∙ β'₂) / ∙□-i/ γ / γ' / ∙□-o/ β₃ / β'₃ / == α ∙□-i/ γ / γ' / ∙□-o/ ! (_ =⟨ ! β₂ ⟩ _ =⟨ β₁-inv ⟩ _ =⟨ β₃-inv ⟩ _ ∎) / (_ =⟨ ! β'₂ ⟩ _ =⟨ β'₁-inv ⟩ _ =⟨ β'₃ ⟩ _ ∎) / ch α idp .idp idp idp idp .idp idp idp idp idp idp .idp idp idp = idp
{ "alphanum_fraction": 0.4012542034, "avg_line_length": 58.8395721925, "ext": "agda", "hexsha": "f52aefb7f696051ca2ec0272071a2cba8f5f5e56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/ToFrom3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/ToFrom3.agda", "max_line_length": 348, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/ToFrom3.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 17770, "size": 33009 }
module calculus.properties where open import utility open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction using (Canθₛ ; Canθₛₕ ; [S]-env) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; sig ; []env ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c ; dchole) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Esterel.Context.Properties open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Data.Empty using (⊥ ; ⊥-elim) import Data.FiniteMap open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.All as All using (All ; _∷_ ; []) open import Data.Nat using (ℕ ; zero ; suc ; _+_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Relation.Binary.PropositionalEquality open import sn-calculus open import calculus open import par-swap open import par-swap.union-properties using (∥R∪sn≡ₑ-consistent) open import binding-preserve using (CB-preservation*) ⟶*-concat : ∀ {p q r} -> p ⟶* q -> q ⟶* r -> p ⟶* r ⟶*-concat [refl] q⟶*r = q⟶*r ⟶*-concat ([step] p⟶q p⟶*q) q⟶*r = [step] p⟶q (⟶*-concat p⟶*q q⟶*r) ⟶*->∥R*∪sn⟶* : ∀ {p q} -> p ⟶* q -> p ∥R*∪sn⟶* q ⟶*->∥R*∪sn⟶* = thm where thm : ∀ {p q} -> p ⟶* q -> p ∥R*∪sn⟶* q thm [refl] = ∪refl thm ([step] ([context] C dc p⟶₁p') p'⟶*q) with thm p'⟶*q thm ([step] ([context] C dc [par-swap]) p'⟶*q) | R = ∪∥R* (∥Rn (∥Rstep{C} dc) ∥R0) R thm ([step] ([context] C dc ([par-nothing] doneq)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rpar-done-right hnothin doneq)) rrefl) R thm ([step] ([context] C dc ([par-1exit] n pausedq)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rpar-done-right (hexit n) (dpaused pausedq))) rrefl) R thm ([step] ([context] C dc ([par-2exit] n m)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rpar-done-right (hexit n) (dhalted (hexit m)))) rrefl) R thm ([step] ([context] C dc ([is-present] S S∈ θ[S]≡present de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (ris-present{S = S} S∈ θ[S]≡present de)) rrefl) R thm ([step] ([context] C dc ([is-absent] S S∈ θ[S]≡absent de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (ris-absent{S = S} S∈ θ[S]≡absent de)) rrefl) R thm ([step] ([context] C dc ([emit] S∈ ¬S≡a de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (remit S∈ ¬S≡a de)) rrefl) R thm ([step] ([context] C dc [loop-unroll]) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc rloop-unroll) rrefl) R thm ([step] ([context] C dc [seq-done]) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc rseq-done) rrefl) R thm ([step] ([context] C dc [seq-exit]) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc rseq-exit) rrefl) R thm ([step] ([context] C dc [loopˢ-exit]) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc rloopˢ-exit) rrefl) R thm ([step] ([context] C dc ([suspend-done] haltedp)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rsuspend-done haltedp)) rrefl) R thm ([step] ([context] C dc ([trap-done] haltedp)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rtrap-done haltedp)) rrefl) R thm ([step] ([context] C dc [raise-signal]) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc rraise-signal) rrefl) R thm ([step] ([context] C dc ([raise-shared] all-readyeθ de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rraise-shared all-readyeθ de)) rrefl) R thm ([step] ([context] C dc ([set-shared-value-old] e' s∈ θ[s]≡old de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rset-shared-value-old e' s∈ θ[s]≡old de)) rrefl) R thm ([step] ([context] C dc ([set-shared-value-new] e' s∈ θ[s]≡n de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rset-shared-value-new e' s∈ θ[s]≡n de)) rrefl) R thm ([step] ([context] C dc ([raise-var] all-readyeθ de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rraise-var all-readyeθ de)) rrefl) R thm ([step] ([context] C dc ([set-var] x∈ all-readyeθ de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rset-var x∈ all-readyeθ de)) rrefl) R thm ([step] ([context] C dc ([if-false] x∈ θ[x]≡z de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rif-false x∈ θ[x]≡z de)) rrefl) R thm ([step] ([context] C dc ([if-true] x∈ θ[x]≡s de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rif-true x∈ θ[x]≡s de)) rrefl) R thm ([step] ([context] C dc ([absence] S S∈ θ[S]≡unknown S∉Canθₛ)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rabsence{S = S} S∈ θ[S]≡unknown S∉Canθₛ)) rrefl) R thm ([step] ([context] C dc ([readyness] s s∈ θ[s]≡old⊎θ[s]≡new s∉Canθₛₕ)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rreadyness{s = s} s∈ θ[s]≡old⊎θ[s]≡new s∉Canθₛₕ)) rrefl) R thm ([step] ([context] C dc ([merge] de)) p'⟶*q) | R = ∪sn⟶* (rstep (rcontext C dc (rmerge de)) rrefl) R ∥R*∪sn⟶*->⟶* : ∀ {p q} -> p ∥R*∪sn⟶* q -> p ⟶* q ∥R*∪sn⟶*->⟶* = thm where p∥R*q->p⟶*q : ∀ {p q} -> p ∥R* q -> p ⟶* q p∥R*q->p⟶*q ∥R0 = [refl] p∥R*q->p⟶*q (∥Rn (∥Rstep d≐C⟦p∥q⟧c) p∥R*q) = [step] ([context] _ d≐C⟦p∥q⟧c [par-swap]) (p∥R*q->p⟶*q p∥R*q) sn* : ∀ {p q} -> p sn⟶* q -> p ⟶* q sn* rrefl = [refl] sn* (rstep (rcontext C dc step) more) with sn* more sn* (rstep (rcontext C dc (rpar-done-right hnothin q')) _) | R = [step] ([context] C dc ([par-nothing] q')) R sn* (rstep (rcontext C dc (rpar-done-right (hexit n) (dhalted hnothin))) _) | R = [step] ([context] C dc [par-swap]) ([step] ([context] C Crefl ([par-nothing] (dhalted (hexit n)))) R) sn* (rstep (rcontext C dc (rpar-done-right (hexit n) (dhalted (hexit m)))) _) | R = [step] ([context] C dc ([par-2exit] n m)) R sn* (rstep (rcontext C dc (rpar-done-right (hexit n) (dpaused p/paused))) _) | R = [step] ([context] C dc ([par-1exit] n p/paused)) R sn* (rstep (rcontext C dc (rpar-done-left (dhalted hnothin) q')) more) | R = [step] ([context] C dc ([par-nothing] (dhalted q'))) R sn* (rstep (rcontext C dc (rpar-done-left (dhalted (hexit n)) hnothin)) more) | R = [step] ([context] C dc [par-swap]) ([step] ([context] C Crefl ([par-nothing] (dhalted (hexit n)))) R) sn* (rstep (rcontext C dc (rpar-done-left (dhalted (hexit n)) (hexit m))) more) | R = [step] ([context] C dc ([par-2exit] n m)) R sn* (rstep (rcontext C dc (rpar-done-left (dpaused p/paused) hnothin)) more) | R = [step] ([context] C dc [par-swap]) ([step] ([context] C Crefl ([par-nothing] (dpaused p/paused))) R) sn* (rstep (rcontext C dc (rpar-done-left (dpaused p/paused) (hexit n))) more) | R = [step] ([context] C dc [par-swap]) ([step] ([context] C Crefl ([par-1exit] n p/paused)) R) sn* (rstep (rcontext C dc (ris-present{S = S} S∈ x x₁)) _) | R = [step] ([context] C dc ([is-present] S S∈ x x₁)) R sn* (rstep (rcontext C dc (ris-absent{S = S} S∈ x x₁)) _) | R = [step] ([context] C dc ([is-absent] S S∈ x x₁)) R sn* (rstep (rcontext C dc (remit S∈ ¬S≡a x)) _) | R = [step] ([context] C dc ([emit] S∈ ¬S≡a x)) R sn* (rstep (rcontext C dc rloop-unroll) _) | R = [step] ([context] C dc [loop-unroll]) R sn* (rstep (rcontext C dc rseq-done) _) | R = [step] ([context] C dc [seq-done]) R sn* (rstep (rcontext C dc rseq-exit) _) | R = [step] ([context] C dc [seq-exit]) R sn* (rstep (rcontext C dc rloopˢ-exit) _) | R = [step] ([context] C dc [loopˢ-exit]) R sn* (rstep (rcontext C dc (rsuspend-done x)) _) | R = [step] ([context] C dc ([suspend-done] x)) R sn* (rstep (rcontext C dc (rtrap-done p')) _) | R = [step] ([context] C dc ([trap-done] p')) R sn* (rstep (rcontext C dc rraise-signal) _) | R = [step] ([context] C dc [raise-signal]) R sn* (rstep (rcontext C dc (rraise-shared e' x)) _) | R = [step] ([context] C dc ([raise-shared] e' x)) R sn* (rstep (rcontext C dc (rset-shared-value-old e' s∈ x x₁)) _) | R = [step] ([context] C dc ([set-shared-value-old] e' s∈ x x₁)) R sn* (rstep (rcontext C dc (rset-shared-value-new e' s∈ x x₁)) _) | R = [step] ([context] C dc ([set-shared-value-new] e' s∈ x x₁)) R sn* (rstep (rcontext C dc (rraise-var e' x₁)) _) | R = [step] ([context] C dc ([raise-var] e' x₁)) R sn* (rstep (rcontext C dc (rset-var x∈ e' x₁)) _) | R = [step] ([context] C dc ([set-var] x∈ e' x₁)) R sn* (rstep (rcontext C dc (rif-false x∈ x₁ x₂)) _) | R = [step] ([context] C dc ([if-false] x∈ x₁ x₂)) R sn* (rstep (rcontext C dc (rif-true x∈ x₁ x₂)) _) | R = [step] ([context] C dc ([if-true] x∈ x₁ x₂)) R sn* (rstep (rcontext C dc (rabsence{S = S} S∈ x x₁)) _) | R = [step] ([context] C dc ([absence] S S∈ x x₁)) R sn* (rstep (rcontext C dc (rreadyness{s = s} s∈ x x₁)) _) | R = [step] ([context] C dc ([readyness] s s∈ x x₁)) R sn* (rstep (rcontext C dc (rmerge x)) _) | R = [step] ([context] C dc ([merge] x)) R thm : ∀ {p q} -> p ∥R*∪sn⟶* q -> p ⟶* q thm (∪∥R* p∥R*q p∥R*∪sn⟶*q) = ⟶*-concat (p∥R*q->p⟶*q p∥R*q) (thm p∥R*∪sn⟶*q) thm (∪sn⟶* psn⟶*q p∥R*∪sn⟶*q) = ⟶*-concat (sn* psn⟶*q) (thm p∥R*∪sn⟶*q) thm ∪refl = [refl] ≡ₑ-to-∥R∪sn≡ₑ : ∀ {p q} -> p ≡ₑ q # [] -> p ∥R∪sn≡ₑ q ≡ₑ-to-∥R∪sn≡ₑ = λ p≡ₑq#[] → thm Crefl Crefl p≡ₑq#[] where lift-∥R* : ∀ {p q} -> p ∥R* q -> p ∥R∪sn≡ₑ q lift-∥R* ∥R0 = ∪ref lift-∥R* (∥Rn p∥Rr r⟶q) = ∪trn (∪stp∥ p∥Rr) (lift-∥R* r⟶q) lift-sn⟶* : ∀ {p q} -> p sn⟶* q -> p ∥R∪sn≡ₑ q lift-sn⟶* rrefl = ∪ref lift-sn⟶* (rstep psn⟶r r⟶q) = ∪trn (∪stpsn psn⟶r) (lift-sn⟶* r⟶q) lift-∪ : ∀ {p q} -> p ∥R*∪sn⟶* q -> p ∥R∪sn≡ₑ q lift-∪ (∪∥R* p∥R*r r⟶*q) = ∪trn (lift-∥R* p∥R*r) (lift-∪ r⟶*q) lift-∪ (∪sn⟶* psn⟶*r r⟶*q) = ∪trn (lift-sn⟶* psn⟶*r) (lift-∪ r⟶*q) lift-∪ ∪refl = ∪ref thm : ∀ {p′ p q′ q C} -> (p′C : p′ ≐ C ⟦ p ⟧c) -> (q′C : q′ ≐ C ⟦ q ⟧c) -> p ≡ₑ q # C -> p′ ∥R∪sn≡ₑ q′ thm p′C q′C ≡ₑrefl rewrite sym (unplugc p′C) | sym (unplugc q′C) = ∪ref thm p′C q′C (≡ₑtran p≡ₑr r≡ₑq) with thm p′C Crefl p≡ₑr ... | p′∪≡r′ with thm Crefl q′C r≡ₑq ... | r′∪≡q′ = ∪trn p′∪≡r′ r′∪≡q′ thm p′C q′C (≡ₑsymm CBq p≡ₑq) with thm q′C p′C p≡ₑq ... | q∪≡p rewrite sym (unplugc q′C) = ∪sym q∪≡p CBq thm p′C q′C (≡ₑctxt pC′ qC′ C′⟦p₂⟧≡ₑC′⟦q₂⟧) = thm (C++ p′C pC′) (C++ q′C qC′) C′⟦p₂⟧≡ₑC′⟦q₂⟧ thm p′C q′C (≡ₑstep p⟶₁q) with ⟶*->∥R*∪sn⟶* ([step] ([context] _ p′C p⟶₁q) [refl]) ... | p′∥R*∪sn⟶*q′ rewrite sym (unplugc q′C) = lift-∪ p′∥R*∪sn⟶*q′ ∥R∪sn≡-to-≡ₑ : ∀ {p q} -> p ∥R∪sn≡ₑ q -> p ≡ₑ q # [] ∥R∪sn≡-to-≡ₑ = thm where lift⟶* : ∀ {p q} -> p ⟶* q -> p ≡ₑ q # [] lift⟶* [refl] = ≡ₑrefl lift⟶* ([step] ([context] C dc p⟶₁p') r⟶*q) = ≡ₑtran (≡ₑctxt dc Crefl (≡ₑstep p⟶₁p')) (lift⟶* r⟶*q) thm : ∀ {p q} -> p ∥R∪sn≡ₑ q -> p ≡ₑ q # [] thm (∪stpsn psn⟶q) = lift⟶* (∥R*∪sn⟶*->⟶* (∪sn⟶* (rstep psn⟶q rrefl) ∪refl)) thm (∪stp∥ (∥Rstep d≐C⟦p∥q⟧c)) = ≡ₑctxt d≐C⟦p∥q⟧c Crefl (≡ₑstep [par-swap]) thm (∪sym q∪≡p CBq) with thm q∪≡p ... | q≡ₑp = ≡ₑsymm CBq q≡ₑp thm ∪ref = ≡ₑrefl thm (∪trn p∪≡r r∪≡q) with thm p∪≡r ... | p≡ₑr with thm r∪≡q ... | r≡ₑq = ≡ₑtran p≡ₑr r≡ₑq ≡ₑ-consistent : ∀{p q BV FV} → CorrectBinding p BV FV → p ≡ₑ q # [] → Σ[ r ∈ Term ] p ⟶* r × q ⟶* r ≡ₑ-consistent CB eq with ∥R∪sn≡ₑ-consistent CB (≡ₑ-to-∥R∪sn≡ₑ eq) ≡ₑ-consistent CB₁ eq | r , p∥⟶*r , q∥⟶*r = r , (∥R*∪sn⟶*->⟶* p∥⟶*r) , (∥R*∪sn⟶*->⟶* q∥⟶*r) ∥R*-preserve-CB : ∀ p q → (⊢C⟦p⟧ : CB p) → (p∥R*q : p ∥R* q) → CB q ∥R*-preserve-CB p .p ⊢C⟦p⟧ ∥R0 = ⊢C⟦p⟧ ∥R*-preserve-CB p q₁ ⊢C⟦p⟧ (∥Rn (∥Rstep d≐C⟦p∥q⟧c) p∥R*q) with binding-extractc' ⊢C⟦p⟧ d≐C⟦p∥q⟧c ... | (FV' , BV') , CB2 with CB2 ... | (CBpar{BVp = BVp}{FVp = FVp} y y₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) with n where n = binding-substc' ⊢C⟦p⟧ d≐C⟦p∥q⟧c CB2 (∪-comm-⊆-left BVp ⊆-refl) ((∪-comm-⊆-left FVp ⊆-refl)) ((CBpar y₁ y (distinct-sym BVp≠BVq) (distinct-sym BVp≠FVq) (distinct-sym FVp≠BVq) (distinct'-sym Xp≠Xq))) ... | (_ , _ , cb) with BVFVcorrect _ _ _ cb ... | refl , refl = ∥R*-preserve-CB _ _ cb p∥R*q ∥R*∪sn⟶*-preserve-CB : ∀ p q → (⊢C⟦p⟧ : CB p) → (p∥R*∪sn⟶*q : p ∥R*∪sn⟶* q) → CB q ∥R*∪sn⟶*-preserve-CB p q ⊢C⟦p⟧ (∪∥R* p∥R*q p∥R*∪sn⟶*q) = ∥R*∪sn⟶*-preserve-CB _ _ (∥R*-preserve-CB _ _ ⊢C⟦p⟧ p∥R*q) p∥R*∪sn⟶*q ∥R*∪sn⟶*-preserve-CB p q ⊢C⟦p⟧ (∪sn⟶* psn⟶*q p∥R*∪sn⟶*q) = ∥R*∪sn⟶*-preserve-CB _ _ next p∥R*∪sn⟶*q where next = CB-preservation* p _ ⊢C⟦p⟧ psn⟶*q ∥R*∪sn⟶*-preserve-CB p .p ⊢C⟦p⟧ ∪refl = ⊢C⟦p⟧ ⟶₁-preserve-CB : ∀ p q C → (⊢C⟦p⟧ : CB (C ⟦ p ⟧c)) → (p⟶₁q : p ⟶₁ q) → CB (C ⟦ q ⟧c) ⟶₁-preserve-CB p q C ⊢C⟦p⟧ p⟶₁q with (⟶*->∥R*∪sn⟶* ([step] ([context] C Crefl p⟶₁q) [refl])) ... | p∥R*∪sn⟶*q = ∥R*∪sn⟶*-preserve-CB (C ⟦ p ⟧c) (C ⟦ q ⟧c) ⊢C⟦p⟧ p∥R*∪sn⟶*q
{ "alphanum_fraction": 0.5442192717, "avg_line_length": 40.246875, "ext": "agda", "hexsha": "430a8b1e1ba17530fd658d47bb058d9e5e96723f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/calculus/properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/calculus/properties.agda", "max_line_length": 206, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/calculus/properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 6655, "size": 12879 }
------------------------------------------------------------------------ -- Groupoids ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Groupoid {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude hiding (id; _∘_; _^_) open import Bijection eq hiding (id; _∘_) open Derived-definitions-and-properties eq open import Integer.Basics eq as Int using (ℤ; +_; -[1+_]) import Nat eq as Nat private variable a : Level A : Type a w x y z : A n : ℕ j : ℤ -- Groupoids using _≡_ as the underlying equality. record Groupoid o ℓ : Type (lsuc (o ⊔ ℓ)) where infix 8 _⁻¹ infixr 7 _∘_ infix 4 _∼_ field Object : Type o _∼_ : Object → Object → Type ℓ id : x ∼ x _∘_ : y ∼ z → x ∼ y → x ∼ z _⁻¹ : x ∼ y → y ∼ x left-identity : (p : x ∼ y) → id ∘ p ≡ p right-identity : (p : x ∼ y) → p ∘ id ≡ p assoc : (p : y ∼ z) (q : x ∼ y) (r : w ∼ x) → p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r left-inverse : (p : x ∼ y) → p ⁻¹ ∘ p ≡ id right-inverse : (p : x ∼ y) → p ∘ p ⁻¹ ≡ id -- Note that this definition should perhaps contain more coherence -- properties: we have not assumed that _≡_ is proof-irrelevant. private variable p p₁ p₂ q q₁ q₂ r : x ∼ y -- Some derived properties. abstract -- The identity is an identity for the inverse operator as well. identity : id {x = x} ⁻¹ ≡ id identity = id ⁻¹ ≡⟨ sym $ right-identity (id ⁻¹) ⟩ id ⁻¹ ∘ id ≡⟨ left-inverse id ⟩∎ id ∎ -- If p is idempotent with respect to _∘_, then p is equal to the -- identity element. idempotent⇒≡id : p ∘ p ≡ p → p ≡ id idempotent⇒≡id {p = p} p∘p≡p = p ≡⟨ sym $ left-identity _ ⟩ id ∘ p ≡⟨ cong (_∘ _) $ sym $ left-inverse _ ⟩ (p ⁻¹ ∘ p) ∘ p ≡⟨ sym $ assoc _ _ _ ⟩ p ⁻¹ ∘ (p ∘ p) ≡⟨ cong (p ⁻¹ ∘_) p∘p≡p ⟩ p ⁻¹ ∘ p ≡⟨ left-inverse _ ⟩∎ id ∎ -- Groupoids are left-cancellative and right-cancellative. left-cancellative : p ∘ q₁ ≡ p ∘ q₂ → q₁ ≡ q₂ left-cancellative {p = p} {q₁ = q₁} {q₂ = q₂} p∘q₁≡p∘q₂ = q₁ ≡⟨ sym $ left-identity _ ⟩ id ∘ q₁ ≡⟨ cong (_∘ _) $ sym $ left-inverse _ ⟩ (p ⁻¹ ∘ p) ∘ q₁ ≡⟨ sym $ assoc _ _ _ ⟩ p ⁻¹ ∘ (p ∘ q₁) ≡⟨ cong (p ⁻¹ ∘_) p∘q₁≡p∘q₂ ⟩ p ⁻¹ ∘ (p ∘ q₂) ≡⟨ assoc _ _ _ ⟩ (p ⁻¹ ∘ p) ∘ q₂ ≡⟨ cong (_∘ _) $ left-inverse _ ⟩ id ∘ q₂ ≡⟨ left-identity _ ⟩∎ q₂ ∎ right-cancellative : p₁ ∘ q ≡ p₂ ∘ q → p₁ ≡ p₂ right-cancellative {p₁ = p₁} {q = q} {p₂ = p₂} p₁∘q≡p₂∘q = p₁ ≡⟨ sym $ right-identity _ ⟩ p₁ ∘ id ≡⟨ cong (_ ∘_) $ sym $ right-inverse _ ⟩ p₁ ∘ (q ∘ q ⁻¹) ≡⟨ assoc _ _ _ ⟩ (p₁ ∘ q) ∘ q ⁻¹ ≡⟨ cong (_∘ q ⁻¹) p₁∘q≡p₂∘q ⟩ (p₂ ∘ q) ∘ q ⁻¹ ≡⟨ sym $ assoc _ _ _ ⟩ p₂ ∘ (q ∘ q ⁻¹) ≡⟨ cong (_ ∘_) $ right-inverse _ ⟩ p₂ ∘ id ≡⟨ right-identity _ ⟩∎ p₂ ∎ -- The inverse operator is involutive. involutive : (p : x ∼ y) → p ⁻¹ ⁻¹ ≡ p involutive p = p ⁻¹ ⁻¹ ≡⟨ sym $ right-identity (p ⁻¹ ⁻¹) ⟩ p ⁻¹ ⁻¹ ∘ id ≡⟨ sym $ cong (_∘_ (p ⁻¹ ⁻¹)) (left-inverse p) ⟩ p ⁻¹ ⁻¹ ∘ (p ⁻¹ ∘ p) ≡⟨ assoc _ _ _ ⟩ (p ⁻¹ ⁻¹ ∘ p ⁻¹) ∘ p ≡⟨ cong (λ q → q ∘ p) (left-inverse (p ⁻¹)) ⟩ id ∘ p ≡⟨ left-identity p ⟩∎ p ∎ -- A lemma that can be used to move something from one side of an -- equality to the other. ⁻¹∘≡→≡∘ : p ⁻¹ ∘ q ≡ r → q ≡ p ∘ r ⁻¹∘≡→≡∘ {p = p} {q = q} {r = r} hyp = q ≡⟨ sym $ left-identity _ ⟩ id ∘ q ≡⟨ cong (_∘ _) $ sym $ right-inverse _ ⟩ (p ∘ p ⁻¹) ∘ q ≡⟨ sym $ assoc _ _ _ ⟩ p ∘ (p ⁻¹ ∘ q) ≡⟨ cong (_ ∘_) hyp ⟩∎ p ∘ r ∎ -- A corollary. ⁻¹∘≡id→≡ : p ⁻¹ ∘ q ≡ id → q ≡ p ⁻¹∘≡id→≡ {p = p} {q = q} hyp = q ≡⟨ ⁻¹∘≡→≡∘ hyp ⟩ p ∘ id ≡⟨ right-identity _ ⟩∎ p ∎ -- Another lemma that can be used to move something from one side -- of an equality to the other. ∘⁻¹≡→≡∘ : p ∘ q ⁻¹ ≡ r → p ≡ r ∘ q ∘⁻¹≡→≡∘ {p = p} {q = q} {r = r} hyp = p ≡⟨ sym $ right-identity _ ⟩ p ∘ id ≡⟨ cong (_ ∘_) $ sym $ left-inverse _ ⟩ p ∘ (q ⁻¹ ∘ q) ≡⟨ assoc _ _ _ ⟩ (p ∘ q ⁻¹) ∘ q ≡⟨ cong (_∘ _) hyp ⟩∎ r ∘ q ∎ -- A corollary. ∘⁻¹≡id→≡ : p ∘ q ⁻¹ ≡ id → p ≡ q ∘⁻¹≡id→≡ {p = p} {q = q} hyp = p ≡⟨ ∘⁻¹≡→≡∘ hyp ⟩ id ∘ q ≡⟨ left-identity _ ⟩∎ q ∎ -- A lemma relating _∘_ and _⁻¹. ∘⁻¹ : (p ∘ q) ⁻¹ ≡ q ⁻¹ ∘ p ⁻¹ ∘⁻¹ {p = p} {q = q} = right-cancellative ((p ∘ q) ⁻¹ ∘ (p ∘ q) ≡⟨ left-inverse _ ⟩ id ≡⟨ sym $ left-inverse _ ⟩ q ⁻¹ ∘ q ≡⟨ cong (q ⁻¹ ∘_) $ sym $ left-identity _ ⟩ q ⁻¹ ∘ (id ∘ q) ≡⟨ cong (q ⁻¹ ∘_) $ cong (_∘ _) $ sym $ left-inverse _ ⟩ q ⁻¹ ∘ ((p ⁻¹ ∘ p) ∘ q) ≡⟨ cong (q ⁻¹ ∘_) $ sym $ assoc _ _ _ ⟩ q ⁻¹ ∘ (p ⁻¹ ∘ (p ∘ q)) ≡⟨ assoc _ _ _ ⟩∎ (q ⁻¹ ∘ p ⁻¹) ∘ (p ∘ q) ∎) -- If p ∘ q is equal to id, then q is equal to p ⁻¹. ⁻¹-unique-right : p ∘ q ≡ id → q ≡ p ⁻¹ ⁻¹-unique-right {p = p} {q = q} ∘≡id = ⁻¹∘≡id→≡ (p ⁻¹ ⁻¹ ∘ q ≡⟨ cong (_∘ _) $ involutive _ ⟩ p ∘ q ≡⟨ ∘≡id ⟩∎ id ∎) -- If p ∘ q is equal to id, then p is equal to q ⁻¹. ⁻¹-unique-left : p ∘ q ≡ id → p ≡ q ⁻¹ ⁻¹-unique-left {p = p} {q = q} ∘≡id = ∘⁻¹≡id→≡ (p ∘ q ⁻¹ ⁻¹ ≡⟨ cong (_ ∘_) $ involutive _ ⟩ p ∘ q ≡⟨ ∘≡id ⟩∎ id ∎) -- The inverse operator is a bijection. ⁻¹-bijection : x ∼ y ↔ y ∼ x ⁻¹-bijection = record { surjection = record { logical-equivalence = record { to = _⁻¹ ; from = _⁻¹ } ; right-inverse-of = involutive } ; left-inverse-of = involutive } -- Exponentiation. infixl 8 _^+_ infixr 8 _^_ _^+_ : x ∼ x → ℕ → x ∼ x p ^+ 0 = id p ^+ suc n = p ∘ p ^+ n _^_ : x ∼ x → ℤ → x ∼ x p ^ + n = p ^+ n p ^ -[1+ n ] = (p ⁻¹) ^+ suc n -- _^+_ is homomorphic with respect to _∘_/_+_. ^+∘^+ : ∀ m → p ^+ m ∘ p ^+ n ≡ p ^+ (m + n) ^+∘^+ {p = p} {n = n} zero = id ∘ p ^+ n ≡⟨ left-identity _ ⟩∎ p ^+ n ∎ ^+∘^+ {p = p} {n = n} (suc m) = (p ∘ p ^+ m) ∘ p ^+ n ≡⟨ sym $ assoc _ _ _ ⟩ p ∘ (p ^+ m ∘ p ^+ n) ≡⟨ cong (_ ∘_) $ ^+∘^+ m ⟩∎ p ∘ p ^+ (m + n) ∎ -- Some rearrangement lemmas for _^+_. ∘^+≡^+∘ : p ∘ q ≡ q ∘ p → ∀ n → p ∘ q ^+ n ≡ q ^+ n ∘ p ∘^+≡^+∘ {p = p} _ zero = p ∘ id ≡⟨ right-identity _ ⟩ p ≡⟨ sym $ left-identity _ ⟩∎ id ∘ p ∎ ∘^+≡^+∘ {p = p} {q = q} comm (suc n) = p ∘ (q ∘ q ^+ n) ≡⟨ assoc _ _ _ ⟩ (p ∘ q) ∘ q ^+ n ≡⟨ cong (_∘ q ^+ n) comm ⟩ (q ∘ p) ∘ q ^+ n ≡⟨ sym $ assoc _ _ _ ⟩ q ∘ (p ∘ q ^+ n) ≡⟨ cong (q ∘_) $ ∘^+≡^+∘ comm n ⟩ q ∘ (q ^+ n ∘ p) ≡⟨ assoc _ _ _ ⟩∎ (q ∘ q ^+ n) ∘ p ∎ ^+∘^+≡^+∘^+ : ∀ m n → p ^+ m ∘ p ^+ n ≡ p ^+ n ∘ p ^+ m ^+∘^+≡^+∘^+ {p = p} m n = p ^+ m ∘ p ^+ n ≡⟨ ^+∘^+ m ⟩ p ^+ (m + n) ≡⟨ cong (p ^+_) $ Nat.+-comm m ⟩ p ^+ (n + m) ≡⟨ sym $ ^+∘^+ n ⟩∎ p ^+ n ∘ p ^+ m ∎ private -- Some lemmas which are used to define ^∘^ below. lemma₁ : ∀ n → (p ∘ p ^+ n) ∘ (p ⁻¹ ∘ q) ≡ p ^+ n ∘ q lemma₁ {p = p} {q = q} n = (p ∘ p ^+ n) ∘ (p ⁻¹ ∘ q) ≡⟨ cong (_∘ (p ⁻¹ ∘ q)) $ ∘^+≡^+∘ (refl _) n ⟩ (p ^+ n ∘ p) ∘ (p ⁻¹ ∘ q) ≡⟨ sym $ assoc _ _ _ ⟩ p ^+ n ∘ (p ∘ (p ⁻¹ ∘ q)) ≡⟨ cong (p ^+ n ∘_) $ assoc _ _ _ ⟩ p ^+ n ∘ ((p ∘ p ⁻¹) ∘ q) ≡⟨ cong (p ^+ n ∘_) $ cong (_∘ q) $ right-inverse _ ⟩ p ^+ n ∘ (id ∘ q) ≡⟨ cong (p ^+ n ∘_) $ left-identity _ ⟩∎ p ^+ n ∘ q ∎ lemma₂ : ∀ n → (p ⁻¹ ∘ (p ⁻¹) ^+ n) ∘ (p ∘ q) ≡ (p ⁻¹) ^+ n ∘ q lemma₂ {p = p} {q = q} n = (p ⁻¹ ∘ (p ⁻¹) ^+ n) ∘ (p ∘ q) ≡⟨ cong (λ r → (p ⁻¹ ∘ (p ⁻¹) ^+ n) ∘ (r ∘ q)) $ sym $ involutive _ ⟩ (p ⁻¹ ∘ (p ⁻¹) ^+ n) ∘ (p ⁻¹ ⁻¹ ∘ q) ≡⟨ lemma₁ n ⟩∎ (p ⁻¹) ^+ n ∘ q ∎ lemma₃ : ∀ m n → p ^+ m ∘ (p ⁻¹) ^+ suc n ≡ p ^ Int.+ m +-[1+ n ] lemma₃ {p = p} zero n = id ∘ (p ⁻¹) ^+ suc n ≡⟨ left-identity _ ⟩∎ (p ⁻¹) ^+ suc n ∎ lemma₃ {p = p} (suc m) zero = (p ∘ p ^+ m) ∘ p ⁻¹ ∘ id ≡⟨ lemma₁ m ⟩ p ^+ m ∘ id ≡⟨ right-identity _ ⟩∎ p ^+ m ∎ lemma₃ {p = p} (suc m) (suc n) = (p ∘ p ^+ m) ∘ (p ⁻¹ ∘ (p ⁻¹) ^+ suc n) ≡⟨ lemma₁ m ⟩ p ^+ m ∘ (p ⁻¹) ^+ suc n ≡⟨ lemma₃ m n ⟩∎ p ^ Int.+ m +-[1+ n ] ∎ lemma₄ : ∀ m n → (p ⁻¹) ^+ suc m ∘ p ^+ n ≡ p ^ Int.+ n +-[1+ m ] lemma₄ {p = p} m zero = (p ⁻¹) ^+ suc m ∘ id ≡⟨ right-identity _ ⟩∎ (p ⁻¹) ^+ suc m ∎ lemma₄ {p = p} zero (suc n) = (p ⁻¹ ∘ id) ∘ p ∘ p ^+ n ≡⟨ lemma₂ zero ⟩ id ∘ p ^+ n ≡⟨ left-identity _ ⟩∎ p ^+ n ∎ lemma₄ {p = p} (suc m) (suc n) = (p ⁻¹ ∘ (p ⁻¹) ^+ suc m) ∘ (p ∘ p ^+ n) ≡⟨ lemma₂ (suc m) ⟩ (p ⁻¹) ^+ suc m ∘ p ^+ n ≡⟨ lemma₄ m n ⟩∎ p ^ Int.+ n +-[1+ m ] ∎ -- _^_ is homomorphic with respect to _∘_/Int._+_. ^∘^ : ∀ i → p ^ i ∘ p ^ j ≡ p ^ (i Int.+ j) ^∘^ {j = + _} (+ m) = ^+∘^+ m ^∘^ {j = -[1+ n ]} (+ m) = lemma₃ m n ^∘^ {j = + n} -[1+ m ] = lemma₄ m n ^∘^ {p = p} {j = -[1+ n ]} -[1+ m ] = (p ⁻¹) ^+ suc m ∘ (p ⁻¹) ^+ suc n ≡⟨ ^+∘^+ (suc m) ⟩ (p ⁻¹) ^+ (suc m + suc n) ≡⟨ cong ((p ⁻¹) ^+_) $ cong suc $ sym $ Nat.suc+≡+suc m ⟩∎ (p ⁻¹) ^+ (2 + m + n) ∎ -- _^+ n commutes with _⁻¹. ^+⁻¹ : ∀ n → (p ^+ n) ⁻¹ ≡ (p ⁻¹) ^+ n ^+⁻¹ zero = identity ^+⁻¹ {p = p} (suc n) = (p ∘ p ^+ n) ⁻¹ ≡⟨ ∘⁻¹ ⟩ (p ^+ n) ⁻¹ ∘ p ⁻¹ ≡⟨ cong (_∘ p ⁻¹) $ ^+⁻¹ n ⟩ (p ⁻¹) ^+ n ∘ p ⁻¹ ≡⟨ sym $ ∘^+≡^+∘ (refl _) n ⟩∎ p ⁻¹ ∘ (p ⁻¹) ^+ n ∎ -- _^ i commutes with _⁻¹. ^⁻¹ : ∀ i → (p ^ i) ⁻¹ ≡ (p ⁻¹) ^ i ^⁻¹ (+ n) = ^+⁻¹ n ^⁻¹ -[1+ n ] = ^+⁻¹ (suc n) -- Any power of id is equal to id. id^+ : ∀ n → id ^+ n ≡ id {x = x} id^+ zero = refl _ id^+ (suc n) = id ∘ id ^+ n ≡⟨ left-identity _ ⟩ id ^+ n ≡⟨ id^+ n ⟩∎ id ∎ id^ : ∀ i → id ^ i ≡ id {x = x} id^ (+ n) = id^+ n id^ -[1+ n ] = (id ⁻¹) ^+ suc n ≡⟨ sym $ ^+⁻¹ (suc n) ⟩ (id ^+ suc n) ⁻¹ ≡⟨ cong _⁻¹ $ id^+ (suc n) ⟩ id ⁻¹ ≡⟨ identity ⟩∎ id ∎ private lemma₅ : ∀ m n → p ^+ suc m ^+ n ≡ p ^+ n ∘ p ^+ m ^+ n lemma₅ _ zero = id ≡⟨ sym $ left-identity _ ⟩∎ id ∘ id ∎ lemma₅ {p = p} m (suc n) = p ^+ suc m ∘ p ^+ suc m ^+ n ≡⟨ cong (p ^+ suc m ∘_) $ lemma₅ m n ⟩ p ^+ suc m ∘ (p ^+ n ∘ p ^+ m ^+ n) ≡⟨ assoc _ _ _ ⟩ (p ^+ suc m ∘ p ^+ n) ∘ p ^+ m ^+ n ≡⟨⟩ ((p ∘ p ^+ m) ∘ p ^+ n) ∘ p ^+ m ^+ n ≡⟨ cong (_∘ p ^+ m ^+ n) $ sym $ assoc _ _ _ ⟩ (p ∘ p ^+ m ∘ p ^+ n) ∘ p ^+ m ^+ n ≡⟨ cong (_∘ p ^+ m ^+ n) $ cong (p ∘_) $ ^+∘^+≡^+∘^+ m n ⟩ (p ∘ p ^+ n ∘ p ^+ m) ∘ p ^+ m ^+ n ≡⟨ cong (_∘ p ^+ m ^+ n) $ assoc _ _ _ ⟩ ((p ∘ p ^+ n) ∘ p ^+ m) ∘ p ^+ m ^+ n ≡⟨ sym $ assoc _ _ _ ⟩∎ (p ∘ p ^+ n) ∘ p ^+ m ∘ p ^+ m ^+ n ∎ -- More rearrangement lemmas for _^+_. ^+^+≡^+* : ∀ m → p ^+ m ^+ n ≡ p ^+ (m * n) ^+^+≡^+* {n = n} zero = id ^+ n ≡⟨ id^+ n ⟩∎ id ∎ ^+^+≡^+* {p = p} {n = n} (suc m) = p ^+ suc m ^+ n ≡⟨ lemma₅ m n ⟩ p ^+ n ∘ p ^+ m ^+ n ≡⟨ cong (p ^+ n ∘_) $ ^+^+≡^+* m ⟩ p ^+ n ∘ p ^+ (m * n) ≡⟨ ^+∘^+ n ⟩ p ^+ (n + m * n) ≡⟨⟩ p ^+ (suc m * n) ∎ ∘^+≡^+∘^+ : p ∘ q ≡ q ∘ p → ∀ n → (p ∘ q) ^+ n ≡ p ^+ n ∘ q ^+ n ∘^+≡^+∘^+ _ zero = id ≡⟨ sym $ left-identity _ ⟩∎ id ∘ id ∎ ∘^+≡^+∘^+ {p = p} {q = q} comm (suc n) = (p ∘ q) ^+ suc n ≡⟨⟩ (p ∘ q) ∘ (p ∘ q) ^+ n ≡⟨ cong ((p ∘ q) ∘_) $ ∘^+≡^+∘^+ comm n ⟩ (p ∘ q) ∘ (p ^+ n ∘ q ^+ n) ≡⟨ sym $ assoc _ _ _ ⟩ p ∘ (q ∘ p ^+ n ∘ q ^+ n) ≡⟨ cong (p ∘_) $ assoc _ _ _ ⟩ p ∘ ((q ∘ p ^+ n) ∘ q ^+ n) ≡⟨ cong (p ∘_) $ cong (_∘ (q ^+ n)) $ ∘^+≡^+∘ (sym comm) n ⟩ p ∘ ((p ^+ n ∘ q) ∘ q ^+ n) ≡⟨ cong (p ∘_) $ sym $ assoc _ _ _ ⟩ p ∘ (p ^+ n ∘ q ∘ q ^+ n) ≡⟨ assoc _ _ _ ⟩ (p ∘ p ^+ n) ∘ q ∘ q ^+ n ≡⟨⟩ p ^+ suc n ∘ q ^+ suc n ∎
{ "alphanum_fraction": 0.3525208104, "avg_line_length": 33.598944591, "ext": "agda", "hexsha": "e3c81f6477a5f6ab533722f713d64db7dbf3e0ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Groupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Groupoid.agda", "max_line_length": 113, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6538, "size": 12734 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties connecting left-scaling and right-scaling ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary -- The properties are parameterised by the three carriers and -- the result equality. module Algebra.Module.Definitions.Bi {a a′ b ℓb} (A : Set a) (A′ : Set a′) {B : Set b} (_≈_ : Rel B ℓb) where open import Algebra.Core Associative : Opₗ A B → Opᵣ A′ B → Set _ Associative _∙ₗ_ _∙ᵣ_ = ∀ x m y → ((x ∙ₗ m) ∙ᵣ y) ≈ (x ∙ₗ (m ∙ᵣ y))
{ "alphanum_fraction": 0.4961119751, "avg_line_length": 29.2272727273, "ext": "agda", "hexsha": "23b812dc48ae78297e7bf67af06a6317079c5277", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Bi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Bi.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Definitions/Bi.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 186, "size": 643 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Complete where open import Level open import Categories.Category open import Categories.Category.Construction.Cones open import Categories.Functor open import Categories.Diagram.Cone.Properties open import Categories.Diagram.Limit using (Limit) Complete : (o ℓ e : Level) {o′ ℓ′ e′ : Level} (C : Category o′ ℓ′ e′) → Set _ Complete o ℓ e C = ∀ {J : Category o ℓ e} (F : Functor J C) → Limit F -- a functor between diagrams corresponds to a morphism between limits module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} (Com : Complete o ℓ e C) {J J′ : Category o ℓ e} (F : Functor J′ J) (G : Functor J C) where private module C = Category C module J = Category J module J′ = Category J′ module F = Functor F module G = Functor G F⇒arr : Cones (G ∘F F) [ F-map-Coneʳ F (Limit.limit (Com G)) , Limit.limit (Com (G ∘F F)) ] F⇒arr = Limit.rep-cone (Com (G ∘F F)) (F-map-Coneʳ F (Limit.limit (Com G)))
{ "alphanum_fraction": 0.6576032226, "avg_line_length": 34.2413793103, "ext": "agda", "hexsha": "dd23aafc715b8a0021b7e73a419fa446b745314c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete.agda", "max_line_length": 93, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 325, "size": 993 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane open import homotopy.EilenbergMacLane1 open import homotopy.EilenbergMacLaneFunctor open import homotopy.SmashFmapConn open import homotopy.IterSuspSmash open import cohomology.CupProduct.OnEM.InLowDegrees2 module cohomology.CupProduct.OnEM.InAllDegrees where module _ {i} (A : AbGroup i) where private module A = AbGroup A open EMExplicit inv-path : A == A inv-path = uaᴬᴳ A A (inv-iso A) ⊙cond-neg : ∀ (k : ℕ) → Bool → ⊙EM A k ⊙→ ⊙EM A k ⊙cond-neg k b = ⊙transport (λ G → ⊙EM G k) {x = A} {y = A} (Bool-elim inv-path idp b) ⊙cond-neg-∘ : ∀ (k : ℕ) (b c : Bool) → ⊙cond-neg k b ◃⊙∘ ⊙cond-neg k c ◃⊙idf =⊙∘ ⊙cond-neg k (xor b c) ◃⊙idf ⊙cond-neg-∘ k true true = ⊙transport (λ G → ⊙EM G k) {x = A} {y = A} inv-path ◃⊙∘ ⊙transport (λ G → ⊙EM G k) {x = A} {y = A} inv-path ◃⊙idf =⊙∘₁⟨ 0 & 1 & ⊙transport-⊙EM-uaᴬᴳ A A (inv-iso A) k ⟩ ⊙EM-fmap A A (–>ᴳ (inv-iso A)) k ◃⊙∘ ⊙transport (λ G → ⊙EM G k) {x = A} {y = A} inv-path ◃⊙idf =⊙∘₁⟨ 1 & 1 & ⊙transport-⊙EM-uaᴬᴳ A A (inv-iso A) k ⟩ ⊙EM-fmap A A (–>ᴳ (inv-iso A)) k ◃⊙∘ ⊙EM-fmap A A (–>ᴳ (inv-iso A)) k ◃⊙idf =⊙∘₁⟨ ! $ ⊙EM-fmap-∘ A A A (–>ᴳ (inv-iso A)) (–>ᴳ (inv-iso A)) k ⟩ ⊙EM-fmap A A (–>ᴳ (inv-iso A) ∘ᴳ –>ᴳ (inv-iso A)) k ◃⊙idf =⊙∘₁⟨ ap (λ φ → ⊙EM-fmap A A φ k) $ group-hom= {ψ = idhom _} (λ= A.inv-inv) ⟩ ⊙EM-fmap A A (idhom _) k ◃⊙idf =⊙∘₁⟨ ⊙EM-fmap-idhom A k ⟩ ⊙idf _ ◃⊙idf ∎⊙∘ ⊙cond-neg-∘ k true false = =⊙∘-in idp ⊙cond-neg-∘ k false true = =⊙∘-in (⊙λ= (⊙∘-unit-l (⊙cond-neg k true))) ⊙cond-neg-∘ k false false = =⊙∘-in idp ⊙maybe-Susp^-flip-⊙cond-neg : ∀ (k : ℕ) (b : Bool) → (k == 0 → b == false) → ⊙Trunc-fmap (⊙maybe-Susp^-flip k b) == ⊙cond-neg (S k) b ⊙maybe-Susp^-flip-⊙cond-neg O b h = ⊙Trunc-fmap (⊙idf (⊙EM₁ A.grp)) =⟨ ⊙λ= ⊙Trunc-fmap-⊙idf ⟩ ⊙idf (⊙EM A 1) =⟨ ap (⊙cond-neg 1) (! (h idp)) ⟩ ⊙cond-neg 1 b =∎ ⊙maybe-Susp^-flip-⊙cond-neg (S k) true h = ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ k (⊙EM₁ A.grp))) =⟨ ! (⊙EM-neg=⊙Trunc-fmap-⊙Susp-flip A k) ⟩ ⊙EM-neg A (S (S k)) =⟨ ! (⊙transport-⊙EM-uaᴬᴳ A A (inv-iso A) (S (S k))) ⟩ ⊙transport (λ G → ⊙EM G (S (S k))) {x = A} {y = A} inv-path =∎ ⊙maybe-Susp^-flip-⊙cond-neg (S k) false h = ⊙λ= (⊙Trunc-fmap-⊙idf) ⊙EM2-Susp-seq : ∀ (k : ℕ) → ⊙Susp^ k (⊙EM A 2) ⊙–→ ⊙EM A (S (S k)) ⊙EM2-Susp-seq k = ⊙transport (λ l → ⊙Trunc l (⊙Susp^ (S k) (⊙EM₁ A.grp))) (+2+-comm ⟨ k ⟩₋₂ 2) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-swap k 1 {⊙EM₁ A.grp}) ◃⊙∘ ⊙Susp^-Trunc-swap (⊙Susp (EM₁ A.grp)) 2 k ◃⊙idf ⊙EM2-Susp : ∀ (k : ℕ) → ⊙Susp^ k (⊙EM A 2) ⊙→ ⊙EM A (S (S k)) ⊙EM2-Susp k = ⊙compose (⊙EM2-Susp-seq k) ⊙EM2-Susp-⊙maybe-Susp^-flip : ∀ (k : ℕ) (b : Bool) → (k == 0 → b == false) → ⊙EM2-Susp k ◃⊙∘ ⊙maybe-Susp^-flip k b ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙maybe-Susp^-flip {X = ⊙EM₁ A.grp} (S k) b) ◃⊙∘ ⊙EM2-Susp k ◃⊙idf ⊙EM2-Susp-⊙maybe-Susp^-flip k b h = ⊙EM2-Susp k ◃⊙∘ ⊙maybe-Susp^-flip k b ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙expand (⊙EM2-Susp-seq k) ⟩ ⊙transport (λ l → ⊙Trunc l (⊙Susp^ (S k) (⊙EM₁ A.grp))) (+2+-comm ⟨ k ⟩₋₂ 2) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-swap k 1 {⊙EM₁ A.grp}) ◃⊙∘ ⊙Susp^-Trunc-swap (⊙Susp (EM₁ A.grp)) 2 k ◃⊙∘ ⊙maybe-Susp^-flip k b ◃⊙idf =⊙∘⟨ 2 & 2 & ⊙Susp^-Trunc-swap-⊙maybe-Susp^-flip (⊙Susp (EM₁ A.grp)) 2 k b ⟩ ⊙transport (λ l → ⊙Trunc l (⊙Susp^ (S k) (⊙EM₁ A.grp))) (+2+-comm ⟨ k ⟩₋₂ 2) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-swap k 1 {⊙EM₁ A.grp}) ◃⊙∘ ⊙Trunc-fmap (⊙maybe-Susp^-flip k b) ◃⊙∘ ⊙Susp^-Trunc-swap (⊙Susp (EM₁ A.grp)) 2 k ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙Trunc-fmap-seq-=⊙∘ p ⟩ ⊙transport (λ l → ⊙Trunc l (⊙Susp^ (S k) (⊙EM₁ A.grp))) (+2+-comm ⟨ k ⟩₋₂ 2) ◃⊙∘ ⊙Trunc-fmap (⊙maybe-Susp-flip (⊙Susp^ k (⊙EM₁ A.grp)) b) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-swap k 1 {⊙EM₁ A.grp}) ◃⊙∘ ⊙Susp^-Trunc-swap (⊙Susp (EM₁ A.grp)) 2 k ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+2+-comm ⟨ k ⟩₋₂ 2) (λ l → ⊙Trunc-fmap {n = l} (⊙maybe-Susp^-flip (S k) b)) ⟩ ⊙Trunc-fmap (⊙maybe-Susp-flip (⊙Susp^ k (⊙EM₁ A.grp)) b) ◃⊙∘ ⊙transport (λ l → ⊙Trunc l (⊙Susp^ (S k) (⊙EM₁ A.grp))) (+2+-comm ⟨ k ⟩₋₂ 2) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-swap k 1 {⊙EM₁ A.grp}) ◃⊙∘ ⊙Susp^-Trunc-swap (⊙Susp (EM₁ A.grp)) 2 k ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙contract ⟩ ⊙Trunc-fmap (⊙maybe-Susp-flip (⊙Susp^ k (⊙EM₁ A.grp)) b) ◃⊙∘ ⊙EM2-Susp k ◃⊙idf ∎⊙∘ where p : ⊙Susp^-swap k 1 {⊙EM₁ A.grp} ◃⊙∘ ⊙maybe-Susp^-flip k b ◃⊙idf =⊙∘ ⊙maybe-Susp^-flip {X = ⊙EM₁ A.grp} (S k) b ◃⊙∘ ⊙Susp^-swap k 1 {⊙EM₁ A.grp} ◃⊙idf p = ⊙Susp^-swap k 1 {⊙EM₁ A.grp} ◃⊙∘ ⊙maybe-Susp^-flip k b ◃⊙idf =⊙∘⟨ !⊙∘ $ ⊙maybe-Susp^-flip-⊙Susp^-comm (⊙EM₁ A.grp) k 1 b ⟩ ⊙Susp-fmap (fst (⊙maybe-Susp^-flip k b)) ◃⊙∘ ⊙coe (⊙Susp^-comm k 1) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap ⊙Susp-fmap (de⊙-⊙maybe-Susp^-flip k b) ∙ ⊙Susp-fmap-maybe-Susp^-flip k b h ⟩ ⊙maybe-Susp-flip (⊙Susp^ k (⊙EM₁ A.grp)) b ◃⊙∘ ⊙Susp^-swap k 1 ◃⊙idf ∎⊙∘ ⊙cpₕₕ''-seq : ∀ (m n : ℕ) → ⊙Susp^ (m + n) (⊙EM A 2) ⊙–→ ⊙EM A (S m + S n) ⊙cpₕₕ''-seq m n = ⊙cond-neg (S m + S n) (odd n) ◃⊙∘ ⊙transport (⊙EM A) (! (+-βr (S m) n)) ◃⊙∘ ⊙EM2-Susp (m + n) ◃⊙idf ⊙cpₕₕ'' : ∀ (m n : ℕ) → ⊙Susp^ (m + n) (⊙EM A 2) ⊙→ ⊙EM A (S m + S n) ⊙cpₕₕ'' m n = ⊙compose (⊙cpₕₕ''-seq m n) module _ {i j} {X : Ptd i} {Y : Ptd j} where →-⊙→-uncurry : ∀ {k} {Z : Ptd k} → (de⊙ X → Y ⊙→ Z) → X ⊙× Y ⊙→ Z →-⊙→-uncurry f = uncurry (λ x y → fst (f x) y) , snd (f (pt X)) module _ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H open EMExplicit ⊙∧-cpₕₕ'-seq : ∀ (m n : ℕ) → (⊙Susp^ m (⊙EM₁ G.grp) ⊙∧ ⊙Susp^ n (⊙EM₁ H.grp)) ⊙–→ ⊙EM G⊗H.abgroup (S m + S n) ⊙∧-cpₕₕ'-seq m n = ⊙cpₕₕ'' G⊗H.abgroup m n ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf ⊙∧-cpₕₕ' : ∀ (m n : ℕ) → ⊙Susp^ m (⊙EM₁ G.grp) ⊙∧ ⊙Susp^ n (⊙EM₁ H.grp) ⊙→ ⊙EM G⊗H.abgroup (S m + S n) ⊙∧-cpₕₕ' m n = ⊙compose (⊙∧-cpₕₕ'-seq m n) ∧-cpₕₕ' : ∀ (m n : ℕ) → ⊙Susp^ m (⊙EM₁ G.grp) ∧ ⊙Susp^ n (⊙EM₁ H.grp) → EM G⊗H.abgroup (S m + S n) ∧-cpₕₕ' m n = fst (⊙∧-cpₕₕ' m n) ⊙smash-truncate : ∀ (m n : ℕ) → ⊙Susp^ m (⊙EM₁ G.grp) ⊙∧ ⊙Susp^ n (⊙EM₁ H.grp) ⊙→ ⊙EM G (S m) ⊙∧ ⊙EM H (S n) ⊙smash-truncate m n = ⊙∧-fmap ([_] {n = ⟨ S m ⟩} {A = Susp^ m (EM₁ G.grp)} , idp) ([_] {n = ⟨ S n ⟩} {A = Susp^ n (EM₁ H.grp)} , idp) smash-truncate : ∀ (m n : ℕ) → ⊙Susp^ m (⊙EM₁ G.grp) ∧ ⊙Susp^ n (⊙EM₁ H.grp) → ⊙EM G (S m) ∧ ⊙EM H (S n) smash-truncate m n = fst (⊙smash-truncate m n) smash-truncate-conn : ∀ (m n : ℕ) → has-conn-fibers ⟨ S m + S n ⟩ (smash-truncate m n) smash-truncate-conn m n = transport (λ k → has-conn-fibers k (smash-truncate m n)) p $ ∧-fmap-conn ([_] {n = ⟨ S m ⟩} {A = Susp^ m (EM₁ G.grp)} , idp) ([_] {n = ⟨ S n ⟩} {A = Susp^ n (EM₁ H.grp)} , idp) (EM-conn G m) (⊙Susp^-conn' n {{EM₁-conn}}) (trunc-proj-conn (Susp^ m (EM₁ G.grp)) ⟨ S m ⟩) (trunc-proj-conn (Susp^ n (EM₁ H.grp)) ⟨ S n ⟩) where p₁ : ⟨ n ⟩₋₁ +2+ ⟨ S m ⟩ == ⟨ S m + S n ⟩ p₁ = ⟨ n ⟩₋₁ +2+ ⟨ S m ⟩ =⟨ ! (+-+2+ (S n) (S (S (S m)))) ⟩ ⟨ n + S (S (S m)) ⟩₋₁ =⟨ ap ⟨_⟩₋₁ (+-βr n (S (S m))) ⟩ ⟨ n + S (S m) ⟩ =⟨ ap ⟨_⟩ (+-βr n (S m)) ⟩ ⟨ S n + S m ⟩ =⟨ ap ⟨_⟩ (+-comm (S n) (S m)) ⟩ ⟨ S m + S n ⟩ =∎ p₂ : ⟨ m ⟩₋₁ +2+ ⟨ S n ⟩ == ⟨ S m + S n ⟩ p₂ = ⟨ m ⟩₋₁ +2+ ⟨ S n ⟩ =⟨ ! (+-+2+ (S m) (S (S (S n)))) ⟩ ⟨ m + S (S (S n)) ⟩₋₁ =⟨ ap ⟨_⟩₋₁ (+-βr m (S (S n))) ⟩ ⟨ m + S (S n) ⟩ =⟨ ap ⟨_⟩ (+-βr m (S n)) ⟩ ⟨ S m + S n ⟩ =∎ p : minT (⟨ n ⟩₋₁ +2+ ⟨ S m ⟩) (⟨ m ⟩₋₁ +2+ ⟨ S n ⟩) == ⟨ S m + S n ⟩ p = minT (⟨ n ⟩₋₁ +2+ ⟨ S m ⟩) (⟨ m ⟩₋₁ +2+ ⟨ S n ⟩) =⟨ ap2 minT p₁ p₂ ⟩ minT ⟨ S m + S n ⟩ ⟨ S m + S n ⟩ =⟨ minT-out-l ≤T-refl ⟩ ⟨ S m + S n ⟩ =∎ module SmashCPₕₕ (m n : ℕ) = ⊙ConnExtend {Z = ⊙EM G⊗H.abgroup (S m + S n)} {n = ⟨ S m + S n ⟩} (⊙smash-truncate m n) (smash-truncate-conn m n) (EM-level G⊗H.abgroup (S m + S n)) ⊙∧-cpₕₕ : ∀ (m n : ℕ) → ⊙EM G (S m) ⊙∧ ⊙EM H (S n) ⊙→ ⊙EM G⊗H.abgroup (S m + S n) ⊙∧-cpₕₕ m n = SmashCPₕₕ.⊙ext m n (⊙∧-cpₕₕ' m n) ∧-cpₕₕ : ∀ (m n : ℕ) → ⊙EM G (S m) ∧ ⊙EM H (S n) → EM G⊗H.abgroup (S m + S n) ∧-cpₕₕ m n = fst (⊙∧-cpₕₕ m n) ⊙×-cpₕₕ-seq : ∀ (m n : ℕ) → ⊙EM G (S m) ⊙× ⊙EM H (S n) ⊙–→ ⊙EM G⊗H.abgroup (S m + S n) ⊙×-cpₕₕ-seq m n = ⊙∧-cpₕₕ m n ◃⊙∘ ×-⊙to-∧ ◃⊙idf ⊙×-cpₕₕ : ∀ (m n : ℕ) → ⊙EM G (S m) ⊙× ⊙EM H (S n) ⊙→ ⊙EM G⊗H.abgroup (S m + S n) ⊙×-cpₕₕ m n = ⊙compose (⊙×-cpₕₕ-seq m n) {- cp₀ₕ' : ∀ (n : ℕ) → G.El → EM H (S n) → EM G⊗H.abgroup (S n) cp₀ₕ' n g y = EM-fmap H G⊗H.abgroup (G⊗H.ins-r-hom g) (S n) y ×-cp₀ₕ' : ∀ (n : ℕ) → G.El × EM H (S n) → EM G⊗H.abgroup (S n) ×-cp₀ₕ' n = uncurry (cp₀ₕ' n) -} ⊙×-cp₀ₕ' : ∀ (n : ℕ) → G.⊙El ⊙× ⊙EM H (S n) ⊙→ ⊙EM G⊗H.abgroup (S n) ⊙×-cp₀ₕ' n = →-⊙→-uncurry (λ g → ⊙EM-fmap H G⊗H.abgroup (G⊗H.ins-r-hom g) (S n)) -- ×-cp₀ₕ' n , snd (⊙EM-fmap H G⊗H.abgroup (G⊗H.ins-r-hom G.ident) (S n)) ⊙×-cp₀ₕ-seq : ∀ (n : ℕ) → ⊙EM G 0 ⊙× ⊙EM H (S n) ⊙–→ ⊙EM G⊗H.abgroup (S n) ⊙×-cp₀ₕ-seq n = ⊙×-cp₀ₕ' n ◃⊙∘ ⊙×-fmap (⊙<– (⊙emloop-equiv G.grp)) (⊙idf (⊙EM H (S n))) ◃⊙idf ⊙×-cp₀ₕ : ∀ (n : ℕ) → ⊙EM G 0 ⊙× ⊙EM H (S n) ⊙→ ⊙EM G⊗H.abgroup (S n) ⊙×-cp₀ₕ n = ⊙compose (⊙×-cp₀ₕ-seq n) ×-cp₀ₕ : ∀ (n : ℕ) → EM G 0 × EM H (S n) → EM G⊗H.abgroup (S n) ×-cp₀ₕ n = fst (⊙×-cp₀ₕ n) {- cpₕ₀' : ∀ (m : ℕ) → EM G (S m) → H.El → EM G⊗H.abgroup (S m) cpₕ₀' m x h = EM-fmap G G⊗H.abgroup (G⊗H.ins-l-hom h) (S m) x ×-cpₕ₀' : ∀ (m : ℕ) → EM G (S m) × H.El → EM G⊗H.abgroup (S m) ×-cpₕ₀' m = uncurry (cpₕ₀' m) -} ⊙×-cpₕ₀' : ∀ (m : ℕ) → ⊙EM G (S m) ⊙× H.⊙El ⊙→ ⊙EM G⊗H.abgroup (S m) ⊙×-cpₕ₀' m = →-⊙→-uncurry (λ h → ⊙EM-fmap G G⊗H.abgroup (G⊗H.ins-l-hom h) (S m)) ⊙∘ ⊙×-swap -- ×-cpₕ₀' m , snd (⊙EM-fmap G G⊗H.abgroup (G⊗H.ins-l-hom H.ident) (S m)) ⊙×-cpₕ₀-seq : ∀ (m : ℕ) → ⊙EM G (S m) ⊙× ⊙EM H 0 ⊙–→ ⊙EM G⊗H.abgroup (S m + 0) ⊙×-cpₕ₀-seq m = ⊙transport (⊙EM G⊗H.abgroup) (! (+-unit-r (S m))) ◃⊙∘ ⊙×-cpₕ₀' m ◃⊙∘ ⊙×-fmap (⊙idf (⊙EM G (S m))) (⊙<– (⊙emloop-equiv H.grp)) ◃⊙idf ⊙×-cpₕ₀ : ∀ (m : ℕ) → ⊙EM G (S m) ⊙× ⊙EM H 0 ⊙→ ⊙EM G⊗H.abgroup (S m + 0) ⊙×-cpₕ₀ m = ⊙compose (⊙×-cpₕ₀-seq m) ×-cpₕ₀ : ∀ (m : ℕ) → EM G (S m) × EM H 0 → EM G⊗H.abgroup (S m + 0) ×-cpₕ₀ m = fst (⊙×-cpₕ₀ m) ⊙×-cp : ∀ (m n : ℕ) → ⊙EM G m ⊙× ⊙EM H n ⊙→ ⊙EM G⊗H.abgroup (m + n) ⊙×-cp 0 0 = ⊙×-cp₀₀ G H ⊙×-cp 0 (S n) = ⊙×-cp₀ₕ n ⊙×-cp (S m) 0 = ⊙×-cpₕ₀ m ⊙×-cp (S m) (S n) = ⊙×-cpₕₕ m n
{ "alphanum_fraction": 0.4459716068, "avg_line_length": 34.3447204969, "ext": "agda", "hexsha": "2402f7b85e7b784e737f6d522d063e786acbf8e0", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/InAllDegrees.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/InAllDegrees.agda", "max_line_length": 84, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/InAllDegrees.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 6535, "size": 11059 }
open import Level using (_⊔_) open import Function using (_$_) open import Algebra using (CommutativeRing) module AKS.Modular.Equivalence {c ℓ} (R : CommutativeRing c ℓ) where open CommutativeRing R using (0#; 1#; _+_; _*_; -_; _-_) renaming (Carrier to C) open CommutativeRing R using (+-cong; +-congˡ; +-congʳ; +-identityʳ; +-assoc; +-comm) open CommutativeRing R using (-‿inverseʳ; -‿inverseˡ; -‿cong) open CommutativeRing R using (zeroˡ; distribʳ; distribˡ; *-congˡ; *-assoc; *-comm) open CommutativeRing R using (_≈_; isEquivalence; setoid; ring) renaming (refl to ≈-refl; sym to ≈-sym) open import Relation.Binary.Reasoning.Setoid setoid open import Algebra.Properties.Ring ring using (-‿distribˡ-*; -‿+-comm; -‿involutive; -0#≈0#) infix 4 _≈_[mod_] record _≈_[mod_] (x : C) (y : C) (n : C) : Set (c ⊔ ℓ) where constructor modulo field k : C x-y≈k*n : x - y ≈ k * n refl : ∀ {x} {y} {n} → x ≈ y → x ≈ y [mod n ] refl {x} {y} {n} x≈y = modulo 0# $ begin x - y ≈⟨ +-congˡ (-‿cong (≈-sym x≈y)) ⟩ x - x ≈⟨ -‿inverseʳ x ⟩ 0# ≈⟨ ≈-sym (zeroˡ n) ⟩ 0# * n ∎ sym : ∀ {x y} {n} → x ≈ y [mod n ] → y ≈ x [mod n ] sym {x} {y} {n} (modulo k x-y≈k*n) = modulo (- k) $ begin y - x ≈⟨ +-congʳ (≈-sym (-‿involutive y)) ⟩ - (- y) - x ≈⟨ -‿+-comm (- y) x ⟩ - (- y + x) ≈⟨ -‿cong (+-comm (- y) x) ⟩ - (x - y) ≈⟨ -‿cong x-y≈k*n ⟩ - (k * n) ≈⟨ -‿distribˡ-* k n ⟩ - k * n ∎ trans : ∀ {x y z} {n} → x ≈ y [mod n ] → y ≈ z [mod n ] → x ≈ z [mod n ] trans {x} {y} {z} {n} (modulo k₁ x-y≈k₁*n) (modulo k₂ y-z≈k₂*n) = modulo (k₁ + k₂) $ begin x - z ≈⟨ +-congʳ (≈-sym (+-identityʳ x)) ⟩ x + 0# - z ≈⟨ +-congʳ (+-congˡ (≈-sym (-‿inverseˡ y))) ⟩ x + (- y + y) - z ≈⟨ +-congʳ (≈-sym (+-assoc x (- y) y)) ⟩ (x - y) + y - z ≈⟨ +-assoc (x - y) y (- z) ⟩ (x - y) + (y - z) ≈⟨ +-cong x-y≈k₁*n y-z≈k₂*n ⟩ (k₁ * n) + (k₂ * n) ≈⟨ ≈-sym (distribʳ n k₁ k₂) ⟩ (k₁ + k₂) * n ∎ +-compat : ∀ {a₁ a₂ b₁ b₂} {n} → a₁ ≈ b₁ [mod n ] → a₂ ≈ b₂ [mod n ] → a₁ + a₂ ≈ b₁ + b₂ [mod n ] +-compat {a₁} {a₂} {b₁} {b₂} {n} (modulo k₁ a₁-b₁≈k₁*n) (modulo k₂ a₂-b₂≈k₂*n) = modulo (k₁ + k₂) $ begin a₁ + a₂ - (b₁ + b₂) ≈⟨ +-assoc a₁ a₂ (- (b₁ + b₂)) ⟩ a₁ + (a₂ - (b₁ + b₂)) ≈⟨ +-congˡ (+-congˡ (≈-sym (-‿+-comm b₁ b₂))) ⟩ a₁ + (a₂ + (- b₁ - b₂)) ≈⟨ +-congˡ (≈-sym (+-assoc a₂ (- b₁) (- b₂))) ⟩ a₁ + (a₂ - b₁ - b₂) ≈⟨ +-congˡ (+-congʳ (+-comm a₂ (- b₁))) ⟩ a₁ + (- b₁ + a₂ - b₂) ≈⟨ +-congˡ (+-assoc (- b₁) a₂ (- b₂)) ⟩ a₁ + (- b₁ + (a₂ - b₂)) ≈⟨ ≈-sym (+-assoc a₁ (- b₁) (a₂ - b₂)) ⟩ (a₁ - b₁) + (a₂ - b₂) ≈⟨ +-cong a₁-b₁≈k₁*n a₂-b₂≈k₂*n ⟩ (k₁ * n) + (k₂ * n) ≈⟨ ≈-sym (distribʳ n k₁ k₂) ⟩ (k₁ + k₂) * n ∎ *-compat : ∀ {a₁ a₂ b₁ b₂} {n} → a₁ ≈ b₁ [mod n ] → a₂ ≈ b₂ [mod n ] → a₁ * a₂ ≈ b₁ * b₂ [mod n ] *-compat {a₁} {a₂} {b₁} {b₂} {n} (modulo k₁ a₁-b₁≈k₁*n) (modulo k₂ a₂-b₂≈k₂*n) = modulo (a₂ * k₁ + b₁ * k₂) $ begin a₁ * a₂ - b₁ * b₂ ≈⟨ +-congˡ (-‿cong (*-comm b₁ b₂)) ⟩ a₁ * a₂ - b₂ * b₁ ≈⟨ +-congʳ (≈-sym (+-identityʳ (a₁ * a₂))) ⟩ a₁ * a₂ + 0# - b₂ * b₁ ≈⟨ +-congʳ (+-congˡ lemma) ⟩ a₁ * a₂ + (- (b₁ * a₂) + a₂ * b₁) - b₂ * b₁ ≈⟨ +-congʳ (≈-sym (+-assoc (a₁ * a₂) (- (b₁ * a₂)) (a₂ * b₁))) ⟩ a₁ * a₂ - b₁ * a₂ + a₂ * b₁ - b₂ * b₁ ≈⟨ +-assoc (a₁ * a₂ - b₁ * a₂) (a₂ * b₁) (- (b₂ * b₁)) ⟩ (a₁ * a₂ - b₁ * a₂) + (a₂ * b₁ - b₂ * b₁) ≈⟨ +-cong (+-congˡ (-‿distribˡ-* b₁ a₂)) (+-congˡ (-‿distribˡ-* b₂ b₁)) ⟩ (a₁ * a₂ + (- b₁) * a₂) + (a₂ * b₁ + (- b₂) * b₁) ≈⟨ +-cong (≈-sym (distribʳ a₂ a₁ (- b₁))) (≈-sym (distribʳ b₁ a₂ (- b₂))) ⟩ (a₁ - b₁) * a₂ + (a₂ - b₂) * b₁ ≈⟨ +-cong (*-comm (a₁ - b₁) a₂) (*-comm (a₂ - b₂) b₁) ⟩ a₂ * (a₁ - b₁) + b₁ * (a₂ - b₂) ≈⟨ +-cong (*-congˡ a₁-b₁≈k₁*n) (*-congˡ a₂-b₂≈k₂*n) ⟩ a₂ * (k₁ * n) + b₁ * (k₂ * n) ≈⟨ +-cong (≈-sym (*-assoc a₂ k₁ n)) (≈-sym (*-assoc b₁ k₂ n)) ⟩ a₂ * k₁ * n + b₁ * k₂ * n ≈⟨ ≈-sym (distribʳ n (a₂ * k₁) (b₁ * k₂)) ⟩ (a₂ * k₁ + b₁ * k₂) * n ∎ where lemma : 0# ≈ - (b₁ * a₂) + a₂ * b₁ lemma = begin 0# ≈⟨ ≈-sym (-‿inverseˡ (b₁ * a₂)) ⟩ - (b₁ * a₂) + b₁ * a₂ ≈⟨ +-congˡ (*-comm b₁ a₂) ⟩ - (b₁ * a₂) + a₂ * b₁ ∎ n*x≈0 : ∀ {x} {n} → n * x ≈ 0# [mod n ] n*x≈0 {x} {n} = modulo x $ begin n * x - 0# ≈⟨ +-congˡ -0#≈0# ⟩ n * x + 0# ≈⟨ +-identityʳ (n * x) ⟩ n * x ≈⟨ *-comm n x ⟩ x * n ∎
{ "alphanum_fraction": 0.4345132743, "avg_line_length": 50.7865168539, "ext": "agda", "hexsha": "37f9ba530bd3701fc2bc101df3843a8e2cb411fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Modular/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Modular/Equivalence.agda", "max_line_length": 127, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Modular/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 2458, "size": 4520 }
{-# OPTIONS --prop --rewriting --confluence-check #-} open import Agda.Primitive open import Agda.Builtin.Equality open import Agda.Builtin.Nat renaming (Nat to ℕ; _+_ to _+ℕ_) infix 4 _≐_ data _≐_ {ℓ} {A : Set ℓ} (x : A) : A → Prop ℓ where refl : x ≐ x {-# BUILTIN REWRITE _≐_ #-} variable ℓ : Level A B C : Set ℓ x y z : A cong : (f : A → B) → x ≐ y → f x ≐ f y cong f refl = refl data ℤ : Set where zero : ℤ pred suc : ℤ → ℤ postulate pred-suc : (x : ℤ) → pred (suc x) ≐ x suc-pred : (x : ℤ) → suc (pred x) ≐ x {-# REWRITE pred-suc suc-pred #-} _+_ : ℤ → ℤ → ℤ zero + y = y pred x + y = pred (x + y) suc x + y = suc (x + y) -_ : ℤ → ℤ - zero = zero - pred x = suc (- x) - suc x = pred (- x) data ℤ′ : Set where +[_] : ℕ → ℤ′ -[1+_] : ℕ → ℤ′ suc′ : ℤ′ → ℤ′ suc′ +[ x ] = +[ suc x ] suc′ -[1+ zero ] = +[ zero ] suc′ -[1+ suc x ] = -[1+ x ] pred′ : ℤ′ → ℤ′ pred′ +[ zero ] = -[1+ zero ] pred′ +[ suc x ] = +[ x ] pred′ -[1+ x ] = -[1+ suc x ] suc-pred′ : suc′ (pred′ x) ≐ x suc-pred′ {+[ zero ]} = refl suc-pred′ {+[ suc x ]} = refl suc-pred′ { -[1+ x ]} = refl pred-suc′ : pred′ (suc′ x) ≐ x pred-suc′ {+[ x ]} = refl pred-suc′ { -[1+ zero ]} = refl pred-suc′ { -[1+ suc x ]} = refl {-# REWRITE suc-pred′ pred-suc′ #-} norm : ℤ → ℤ′ norm zero = +[ 0 ] norm (pred x) = pred′ (norm x) norm (suc x) = suc′ (norm x) free : ℤ′ → ℤ free +[ zero ] = zero free +[ suc x ] = suc (free +[ x ]) free -[1+ zero ] = pred zero free -[1+ suc x ] = pred (free -[1+ x ])
{ "alphanum_fraction": 0.4976651101, "avg_line_length": 19.4675324675, "ext": "agda", "hexsha": "f4b10aea4e908f0d7ed45bb493f4f8e3d4b5cc1b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ConstructorRewriteConfluence.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/ConstructorRewriteConfluence.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/ConstructorRewriteConfluence.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 686, "size": 1499 }
open import Nat open import Prelude open import core module judgemental-inconsistency where data incon : τ̇ → τ̇ → Set where ICNumArr1 : {t1 t2 : τ̇} → incon num (t1 ==> t2) ICNumArr2 : {t1 t2 : τ̇} → incon (t1 ==> t2) num ICArr1 : {t1 t2 t3 t4 : τ̇} → incon t1 t3 → incon (t1 ==> t2) (t3 ==> t4) ICArr2 : {t1 t2 t3 t4 : τ̇} → incon t2 t4 → incon (t1 ==> t2) (t3 ==> t4) -- inconsistency is symmetric inconsym : ∀ {t1 t2} → incon t1 t2 → incon t2 t1 inconsym ICNumArr1 = ICNumArr2 inconsym ICNumArr2 = ICNumArr1 inconsym (ICArr1 x) = ICArr1 (inconsym x) inconsym (ICArr2 x) = ICArr2 (inconsym x) --inconsistency isn't reflexive incon-nrefl : ∀{t} → incon t t → ⊥ incon-nrefl (ICArr1 x) = incon-nrefl x incon-nrefl (ICArr2 x) = incon-nrefl x -- first half of iso to~̸ : (t1 t2 : τ̇) → incon t1 t2 → t1 ~̸ t2 to~̸ .num ._ ICNumArr1 () to~̸ ._ .num ICNumArr2 () to~̸ ._ ._ (ICArr1 incon) TCRefl = abort (incon-nrefl incon) to~̸ ._ ._ (ICArr1 incon) (TCArr x x₁) = to~̸ _ _ incon x to~̸ ._ ._ (ICArr2 incon) TCRefl = abort (incon-nrefl incon) to~̸ ._ ._ (ICArr2 incon) (TCArr x x₁) = (to~̸ _ _ incon x₁) -- second half of iso from~̸ : (t1 t2 : τ̇) → t1 ~̸ t2 → incon t1 t2 from~̸ num (t2 ==> t3) ncon = ICNumArr1 from~̸ (t1 ==> t2) num ncon = ICNumArr2 from~̸ (t1 ==> t2) (t3 ==> t4) ncon with ~dec t1 t3 ... | Inl qq = ICArr2 (from~̸ t2 t4 (λ x → ncon (TCArr qq x))) ... | Inr qq = ICArr1 (from~̸ _ _ qq) -- the remaining consistent types all lead to absurdities from~̸ num num ncon = abort (ncon TCRefl) from~̸ num ⦇-⦈ ncon = abort (ncon TCHole1) from~̸ ⦇-⦈ num ncon = abort (ncon TCHole2) from~̸ ⦇-⦈ ⦇-⦈ ncon = abort (ncon TCRefl) from~̸ ⦇-⦈ (t2 ==> t3) ncon = abort (ncon TCHole2) from~̸ (t1 ==> t2) ⦇-⦈ ncon = abort (ncon TCHole1) -- need to display that at least one of the round-trips above is stable -- for this to be structure preserving and really an iso. rt1 : (t1 t2 : τ̇) → (x : t1 ~̸ t2) → (to~̸ t1 t2 (from~̸ t1 t2 x)) == x rt1 num (t2 ==> t3) x = funext (λ x₁ → abort (x x₁)) rt1 (t1 ==> t2) num x = funext (λ x₁ → abort (x x₁)) rt1 (t1 ==> t2) (t3 ==> t4) x = funext (λ x₁ → abort (x x₁)) rt1 num num x = abort (x TCRefl) rt1 num ⦇-⦈ x = abort (x TCHole1) rt1 ⦇-⦈ num x = abort (x TCHole2) rt1 ⦇-⦈ ⦇-⦈ x = abort (x TCRefl) rt1 ⦇-⦈ (t2 ==> t3) x = abort (x TCHole2) rt1 (t1 ==> t2) ⦇-⦈ x = abort (x TCHole1) -- if inconsistency at arrows is proof-irrelevant, then all of -- inconsistency is proof-irrelevant incon-irrelev : (arr-incon-irrelev : {t1 t2 t3 t4 : τ̇} (x y : incon (t1 ==> t2) (t3 ==> t4)) → x == y) → (t1 t2 : τ̇) (x y : incon t1 t2) → x == y incon-irrelev arr-incon-irrelev .num _ ICNumArr1 ICNumArr1 = refl incon-irrelev arr-incon-irrelev _ .num ICNumArr2 ICNumArr2 = refl incon-irrelev arr-incon-irrelev _ _ (ICArr1 x) (ICArr1 y) = ap1 ICArr1 (incon-irrelev arr-incon-irrelev _ _ x y) incon-irrelev arr-incon-irrelev _ _ (ICArr1 x) (ICArr2 y) = arr-incon-irrelev (ICArr1 x) (ICArr2 y) incon-irrelev arr-incon-irrelev _ _ (ICArr2 x) (ICArr1 y) = arr-incon-irrelev (ICArr2 x) (ICArr1 y) incon-irrelev arr-incon-irrelev _ _ (ICArr2 x) (ICArr2 y) = ap1 ICArr2 (incon-irrelev arr-incon-irrelev _ _ x y ) -- if inconsistency at arrows is proof-irrelevant, then the round trip is -- stable up to equality rt2 : (arr-incon-irrelev : {t1 t2 t3 t4 : τ̇} (x y : incon (t1 ==> t2) (t3 ==> t4)) → x == y) → (t1 t2 : τ̇) → (x : incon t1 t2) → (from~̸ t1 t2 (to~̸ t1 t2 x)) == x rt2 arr-incon-irrelev .num _ ICNumArr1 = refl rt2 arr-incon-irrelev _ .num ICNumArr2 = refl rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr1 x) with ~dec t1 t3 rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr1 x₁) | Inl x = abort (to~̸ t1 t3 x₁ x) rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr1 x₁) | Inr x = ap1 ICArr1 (incon-irrelev arr-incon-irrelev t1 t3 (from~̸ t1 t3 x) x₁) rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr2 x) with ~dec t1 t3 rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr2 x₁) | Inl x = ap1 ICArr2 (incon-irrelev arr-incon-irrelev t2 t4 (from~̸ t2 t4 (to~̸ t2 t4 x₁)) x₁) rt2 arr-incon-irrelev (t1 ==> t2) (t3 ==> t4) (ICArr2 x₁) | Inr x = arr-incon-irrelev (ICArr1 (from~̸ t1 t3 x)) (ICArr2 x₁) -- if inconsistency at arrows is proof-irrelevant, then the two -- defintions of inconsistency are isomorphic incon-iso : (arr-incon-irrelev : {t1 t2 t3 t4 : τ̇} (x y : incon (t1 ==> t2) (t3 ==> t4)) → x == y) → (t1 t2 : τ̇) → (incon t1 t2) ≃ (t1 ~̸ t2) incon-iso arr-incon-irrelev t1 t2 = (to~̸ t1 t2) , (from~̸ t1 t2) , (rt2 arr-incon-irrelev t1 t2) , (rt1 t1 t2)
{ "alphanum_fraction": 0.5773322422, "avg_line_length": 52, "ext": "agda", "hexsha": "ba4b6c5221a88d0dae69a700aa1fd4621b2014a8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/agda-popl17", "max_forks_repo_path": "judgemental-inconsistency.agda", "max_issues_count": 37, "max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z", "max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/agda-popl17", "max_issues_repo_path": "judgemental-inconsistency.agda", "max_line_length": 154, "max_stars_count": 14, "max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/agda-popl17", "max_stars_repo_path": "judgemental-inconsistency.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z", "num_tokens": 2209, "size": 4888 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.Orthogonality module stash.modalities.NullifyFamily where module _ {ℓ} {I : Type ℓ} (X : I → Type ℓ) (A : Type ℓ) where private data #NullifyAll : Type ℓ where #inj : A → #NullifyAll #apex : (i : I) → (X i → #NullifyAll) → #NullifyAll NullifyAll : Type ℓ NullifyAll = #NullifyAll inj : A → NullifyAll inj = #inj apex : (i : I) → (X i → #NullifyAll) → #NullifyAll apex = #apex postulate apex-path : (i : I) (α : X i → NullifyAll) (x : X i) → apex i α == α x apex-cst : (i : I) (n : NullifyAll) → apex i (λ _ → n) == n apex-adj : (i : I) (n : NullifyAll) → ap (Δ NullifyAll (X i)) (apex-cst i n) == λ= (apex-path i (Δ NullifyAll (X i) n)) module NullifyAllElim (Q : NullifyAll → Type ℓ) (is-null : ⟦ X ⊥ Q ⟧) (φ : Π A (Q ∘ inj)) where f : Π NullifyAll Q f (#inj a) = φ a f (#apex i α) = is-equiv.g (is-null i (#apex i α)) α' where α' : X i → Q (#apex i α) α' x = transport! Q (apex-path i α x) (f (α x)) module _ {ℓ} {I : Type ℓ} (X : I → Type ℓ) where nullify-is-null : (A : Type ℓ) → ⟦ X ⊥ NullifyAll X A ⟧ₗ is-equiv.g (nullify-is-null A i) = apex X A i is-equiv.f-g (nullify-is-null A i) α = λ= (λ x → apex-path X A i α x) is-equiv.g-f (nullify-is-null A i) = apex-cst X A i is-equiv.adj (nullify-is-null A i) = apex-adj X A i open Modality NullifyAllModality : Modality ℓ is-local NullifyAllModality A = ⟦ X ⊥ A ⟧ₗ is-local-is-prop NullifyAllModality {A} = Π-level (λ i → is-equiv-is-prop) ◯ NullifyAllModality A = NullifyAll X A ◯-is-local NullifyAllModality {A} = nullify-is-null A η NullifyAllModality {A} = inj X A ◯-elim NullifyAllModality Q Q-is-null φ = NullifyAllElim.f X _ Q (λ i n → Q-is-null n i) φ ◯-elim-β NullifyAllModality Q Q-is-null φ a = idp ◯-== NullifyAllModality {A} a₀ a₁ i = is-eq _ squash inv-l inv-r where a₀' : NullifyAll X A a₀' = apex X A i (λ _ → a₀) a₁' : NullifyAll X A a₁' = apex X A i (λ _ → a₁) squash : (X i → a₀ == a₁) → a₀ == a₁ squash φ = ! (apex-cst X A i a₀) ∙ cyl ∙ apex-cst X A i a₁ where cyl : a₀' == a₁' cyl = ap (apex X A i) (λ= φ) inv-l : (φ : X i → a₀ == a₁) → (λ _ → squash φ) == φ inv-l φ = {!!} inv-r : (p : a₀ == a₁) → squash (λ _ → p) == p inv-r p = {!!} -- Main idea is to use this coherence ... (and possibly the other adjoint as well) -- apex-adj : (i : I) (n : NullifyAll) → ap (Δ NullifyAll (X i)) (apex-cst i n) == λ= (apex-path i (Δ NullifyAll (X i) n))
{ "alphanum_fraction": 0.5220640569, "avg_line_length": 35.125, "ext": "agda", "hexsha": "a85415252cc2284c367bccdc0ce8cdad41d5ba85", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/NullifyFamily.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/NullifyFamily.agda", "max_line_length": 134, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/NullifyFamily.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1059, "size": 2810 }
open import Data.Bool using ( Bool ; true ; false ; if_then_else_ ) open import Data.Empty using ( ⊥-elim ) open import Data.Product using ( _×_ ; _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Unary using ( _∈_ ; _∉_ ) open import Web.Semantic.DL.Concept using ( neg ) open import Web.Semantic.DL.Concept.Model using ( _⟦_⟧₁ ; neg-sound ) open import Web.Semantic.DL.Concept.Skolemization using ( CSkolems ; cskolem ; cskolem-sound ) open import Web.Semantic.DL.FOL using ( Formula ; true ; false ; _∧_ ; _∈₁_ ; _∈₂_ ; _∼_ ; ∀₁ ) open import Web.Semantic.DL.FOL.Model using ( _⊨f_ ) open import Web.Semantic.DL.Role.Skolemization using ( rskolem ; rskolem⇒ ; rskolem-sound ; rskolem⇒-sound ) open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ) open import Web.Semantic.Util using ( True ; tt ) module Web.Semantic.DL.TBox.Skolemization {Σ : Signature} where TSkolems : Set → TBox Σ → Set TSkolems Δ ε = True TSkolems Δ (T , U) = (TSkolems Δ T) × (TSkolems Δ U) TSkolems Δ (C ⊑₁ D) = (Δ → Bool) × (CSkolems Δ (neg C)) × (CSkolems Δ D) TSkolems Δ (Q ⊑₂ R) = True TSkolems Δ (Dis Q R) = True TSkolems Δ (Ref R) = True TSkolems Δ (Irr R) = True TSkolems Δ (Tra R) = True tskolem : ∀ {Δ} T → (TSkolems Δ T) → Formula Σ Δ tskolem ε Φ = true tskolem (T , U) (Φ , Ψ) = (tskolem T Φ) ∧ (tskolem U Ψ) tskolem (C ⊑₁ D) (φ , Φ , Ψ) = ∀₁ λ x → if (φ x) then (cskolem (neg C) Φ x) else (cskolem D Ψ x) tskolem (Q ⊑₂ R) Φ = ∀₁ λ x → ∀₁ λ y → rskolem⇒ Q x y (rskolem R x y) tskolem (Dis Q R) Φ = ∀₁ λ x → ∀₁ λ y → rskolem⇒ Q x y (rskolem⇒ R x y false) tskolem (Ref R) Φ = ∀₁ λ x → rskolem R x x tskolem (Irr R) Φ = ∀₁ λ x → rskolem⇒ R x x false tskolem (Tra R) Φ = ∀₁ λ x → ∀₁ λ y → ∀₁ λ z → rskolem⇒ R x y (rskolem⇒ R y z (rskolem R x z)) tskolem-sound : ∀ I T Φ → (I ⊨f tskolem T Φ) → (I ⊨t T) tskolem-sound I ε Φ _ = tt tskolem-sound I (T , U) (Φ , Ψ) (I⊨T , I⊨U) = (tskolem-sound I T Φ I⊨T , tskolem-sound I U Ψ I⊨U) tskolem-sound I (C ⊑₁ D) (φ , Φ , Ψ) I⊨C⊑D = lemma where lemma : ∀ {x} → (x ∈ I ⟦ C ⟧₁) → (x ∈ I ⟦ D ⟧₁) lemma {x} x∈⟦C⟧ with φ x | I⊨C⊑D x lemma {x} x∈⟦C⟧ | true | x∈⟦¬C⟧ = ⊥-elim (neg-sound I C (cskolem-sound I (neg C) Φ x x∈⟦¬C⟧) x∈⟦C⟧) lemma {x} x∈⟦C⟧ | false | x∈⟦D⟧ = cskolem-sound I D Ψ x x∈⟦D⟧ tskolem-sound I (Q ⊑₂ R) Φ I⊨Q⊑R = lemma where lemma : ∀ {xy} → (xy ∈ I ⟦ Q ⟧₂) → (xy ∈ I ⟦ R ⟧₂) lemma {x , y} xy∈⟦Q⟧ = rskolem-sound I R x y (rskolem⇒-sound I Q x y _ (I⊨Q⊑R x y) xy∈⟦Q⟧) tskolem-sound I (Dis Q R) Φ I⊨DisQR = lemma where lemma : ∀ {xy} → (xy ∈ I ⟦ Q ⟧₂) → (xy ∉ I ⟦ R ⟧₂) lemma {x , y} xy∈⟦Q⟧ = rskolem⇒-sound I R x y _ (rskolem⇒-sound I Q x y _ (I⊨DisQR x y) xy∈⟦Q⟧) tskolem-sound I (Ref R) Φ I⊨RefR = λ x → rskolem-sound I R x x (I⊨RefR x) tskolem-sound I (Irr R) Φ I⊨IrrR = λ x → rskolem⇒-sound I R x x _ (I⊨IrrR x) tskolem-sound I (Tra R) Φ I⊨TraR = λ {x} {y} {z} xy∈⟦R⟧ yz∈⟦R⟧ → rskolem-sound I R x z (rskolem⇒-sound I R y z _ (rskolem⇒-sound I R x y _ (I⊨TraR x y z) xy∈⟦R⟧) yz∈⟦R⟧)
{ "alphanum_fraction": 0.5978901644, "avg_line_length": 44.1506849315, "ext": "agda", "hexsha": "eb8b9b160385c818871b89890f895d9d22805127", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/TBox/Skolemization.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/TBox/Skolemization.agda", "max_line_length": 86, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/TBox/Skolemization.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1621, "size": 3223 }
module examplesPaperJFP.CatTerm where open import examplesPaperJFP.BasicIO hiding (main) open import examplesPaperJFP.Console hiding (main) open import examplesPaperJFP.NativeIOSafe cat : IO ConsoleInterface Unit force cat = exec′ getLine λ{ nothing → return unit ; (just line) → delay ( exec′ (putStrLn line) λ _ → cat )}
{ "alphanum_fraction": 0.7016574586, "avg_line_length": 30.1666666667, "ext": "agda", "hexsha": "6748914ae783edfa4fa13228a41fc7bd06c7d8ce", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/CatTerm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/CatTerm.agda", "max_line_length": 73, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/CatTerm.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 91, "size": 362 }
open import Prelude open import Nat open import core open import contexts open import disjointness -- this module contains lemmas and properties about the holes-disjoint -- judgement that double check that it acts as we would expect module holes-disjoint-checks where -- these lemmas are all structurally recursive and quite -- mechanical. morally, they establish the properties about reduction -- that would be obvious / baked into Agda if holes-disjoint was defined -- as a function rather than a judgement (datatype), or if we had defined -- all the O(n^2) cases rather than relying on a little indirection to -- only have O(n) cases. that work has to go somewhwere, and we prefer -- that it goes here. ds-lem-asc : ∀{e1 e2 τ} → holes-disjoint e2 e1 → holes-disjoint e2 (e1 ·: τ) ds-lem-asc HDConst = HDConst ds-lem-asc (HDAsc hd) = HDAsc (ds-lem-asc hd) ds-lem-asc HDVar = HDVar ds-lem-asc (HDLam1 hd) = HDLam1 (ds-lem-asc hd) ds-lem-asc (HDLam2 hd) = HDLam2 (ds-lem-asc hd) ds-lem-asc (HDHole x) = HDHole (HNAsc x) ds-lem-asc (HDNEHole x hd) = HDNEHole (HNAsc x) (ds-lem-asc hd) ds-lem-asc (HDAp hd hd₁) = HDAp (ds-lem-asc hd) (ds-lem-asc hd₁) ds-lem-asc (HDFst hd) = HDFst (ds-lem-asc hd) ds-lem-asc (HDSnd hd) = HDSnd (ds-lem-asc hd) ds-lem-asc (HDPair hd hd₁) = HDPair (ds-lem-asc hd) (ds-lem-asc hd₁) ds-lem-lam1 : ∀{e1 e2 x} → holes-disjoint e2 e1 → holes-disjoint e2 (·λ x e1) ds-lem-lam1 HDConst = HDConst ds-lem-lam1 (HDAsc hd) = HDAsc (ds-lem-lam1 hd) ds-lem-lam1 HDVar = HDVar ds-lem-lam1 (HDLam1 hd) = HDLam1 (ds-lem-lam1 hd) ds-lem-lam1 (HDLam2 hd) = HDLam2 (ds-lem-lam1 hd) ds-lem-lam1 (HDHole x₁) = HDHole (HNLam1 x₁) ds-lem-lam1 (HDNEHole x₁ hd) = HDNEHole (HNLam1 x₁) (ds-lem-lam1 hd) ds-lem-lam1 (HDAp hd hd₁) = HDAp (ds-lem-lam1 hd) (ds-lem-lam1 hd₁) ds-lem-lam1 (HDFst hd) = HDFst (ds-lem-lam1 hd) ds-lem-lam1 (HDSnd hd) = HDSnd (ds-lem-lam1 hd) ds-lem-lam1 (HDPair hd hd₁) = HDPair (ds-lem-lam1 hd) (ds-lem-lam1 hd₁) ds-lem-lam2 : ∀{e1 e2 x τ} → holes-disjoint e2 e1 → holes-disjoint e2 (·λ x [ τ ] e1) ds-lem-lam2 HDConst = HDConst ds-lem-lam2 (HDAsc hd) = HDAsc (ds-lem-lam2 hd) ds-lem-lam2 HDVar = HDVar ds-lem-lam2 (HDLam1 hd) = HDLam1 (ds-lem-lam2 hd) ds-lem-lam2 (HDLam2 hd) = HDLam2 (ds-lem-lam2 hd) ds-lem-lam2 (HDHole x₁) = HDHole (HNLam2 x₁) ds-lem-lam2 (HDNEHole x₁ hd) = HDNEHole (HNLam2 x₁) (ds-lem-lam2 hd) ds-lem-lam2 (HDAp hd hd₁) = HDAp (ds-lem-lam2 hd) (ds-lem-lam2 hd₁) ds-lem-lam2 (HDFst hd) = HDFst (ds-lem-lam2 hd) ds-lem-lam2 (HDSnd hd) = HDSnd (ds-lem-lam2 hd) ds-lem-lam2 (HDPair hd hd₁) = HDPair (ds-lem-lam2 hd) (ds-lem-lam2 hd₁) ds-lem-nehole : ∀{e e1 u} → holes-disjoint e e1 → hole-name-new e u → holes-disjoint e ⦇⌜ e1 ⌟⦈[ u ] ds-lem-nehole HDConst ν = HDConst ds-lem-nehole (HDAsc hd) (HNAsc ν) = HDAsc (ds-lem-nehole hd ν) ds-lem-nehole HDVar ν = HDVar ds-lem-nehole (HDLam1 hd) (HNLam1 ν) = HDLam1 (ds-lem-nehole hd ν) ds-lem-nehole (HDLam2 hd) (HNLam2 ν) = HDLam2 (ds-lem-nehole hd ν) ds-lem-nehole (HDHole x) (HNHole x₁) = HDHole (HNNEHole (flip x₁) x) ds-lem-nehole (HDNEHole x hd) (HNNEHole x₁ ν) = HDNEHole (HNNEHole (flip x₁) x) (ds-lem-nehole hd ν) ds-lem-nehole (HDAp hd hd₁) (HNAp ν ν₁) = HDAp (ds-lem-nehole hd ν) (ds-lem-nehole hd₁ ν₁) ds-lem-nehole (HDFst hd) (HNFst v) = HDFst (ds-lem-nehole hd v) ds-lem-nehole (HDSnd hd) (HNSnd v) = HDSnd (ds-lem-nehole hd v) ds-lem-nehole (HDPair hd hd₁) (HNPair v v₁) = HDPair (ds-lem-nehole hd v) (ds-lem-nehole hd₁ v₁) ds-lem-ap : ∀{e1 e2 e3} → holes-disjoint e3 e1 → holes-disjoint e3 e2 → holes-disjoint e3 (e1 ∘ e2) ds-lem-ap HDConst hd2 = HDConst ds-lem-ap (HDAsc hd1) (HDAsc hd2) = HDAsc (ds-lem-ap hd1 hd2) ds-lem-ap HDVar hd2 = HDVar ds-lem-ap (HDLam1 hd1) (HDLam1 hd2) = HDLam1 (ds-lem-ap hd1 hd2) ds-lem-ap (HDLam2 hd1) (HDLam2 hd2) = HDLam2 (ds-lem-ap hd1 hd2) ds-lem-ap (HDHole x) (HDHole x₁) = HDHole (HNAp x x₁) ds-lem-ap (HDNEHole x hd1) (HDNEHole x₁ hd2) = HDNEHole (HNAp x x₁) (ds-lem-ap hd1 hd2) ds-lem-ap (HDAp hd1 hd2) (HDAp hd3 hd4) = HDAp (ds-lem-ap hd1 hd3) (ds-lem-ap hd2 hd4) ds-lem-ap (HDFst hd) (HDFst hd2) = HDFst (ds-lem-ap hd hd2) ds-lem-ap (HDSnd hd) (HDSnd hd2) = HDSnd (ds-lem-ap hd hd2) ds-lem-ap (HDPair hd1 hd2) (HDPair hd3 hd4) = HDPair (ds-lem-ap hd1 hd3) (ds-lem-ap hd2 hd4) ds-lem-pair : ∀{e1 e2 e3} → holes-disjoint e3 e1 → holes-disjoint e3 e2 → holes-disjoint e3 ⟨ e1 , e2 ⟩ ds-lem-pair HDConst HDConst = HDConst ds-lem-pair (HDAsc hd1) (HDAsc hd2) = HDAsc (ds-lem-pair hd1 hd2) ds-lem-pair HDVar HDVar = HDVar ds-lem-pair (HDLam1 hd1) (HDLam1 hd2) = HDLam1 (ds-lem-pair hd1 hd2) ds-lem-pair (HDLam2 hd1) (HDLam2 hd2) = HDLam2 (ds-lem-pair hd1 hd2) ds-lem-pair (HDHole x) (HDHole x₁) = HDHole (HNPair x x₁) ds-lem-pair (HDNEHole x hd1) (HDNEHole x₁ hd2) = HDNEHole (HNPair x x₁) (ds-lem-pair hd1 hd2) ds-lem-pair (HDAp hd1 hd2) (HDAp hd3 hd4) = HDAp (ds-lem-pair hd1 hd3) (ds-lem-pair hd2 hd4) ds-lem-pair (HDFst hd1) (HDFst hd2) = HDFst (ds-lem-pair hd1 hd2) ds-lem-pair (HDSnd hd1) (HDSnd hd2) = HDSnd (ds-lem-pair hd1 hd2) ds-lem-pair (HDPair hd1 hd2) (HDPair hd3 hd4) = HDPair (ds-lem-pair hd1 hd3) (ds-lem-pair hd2 hd4) ds-lem-fst : ∀{e e'} → holes-disjoint e' e → holes-disjoint e' (fst e) ds-lem-fst HDConst = HDConst ds-lem-fst (HDAsc hd) = HDAsc (ds-lem-fst hd) ds-lem-fst HDVar = HDVar ds-lem-fst (HDLam1 hd) = HDLam1 (ds-lem-fst hd) ds-lem-fst (HDLam2 hd) = HDLam2 (ds-lem-fst hd) ds-lem-fst (HDHole x) = HDHole (HNFst x) ds-lem-fst (HDNEHole x hd) = HDNEHole (HNFst x) (ds-lem-fst hd) ds-lem-fst (HDAp hd hd₁) = HDAp (ds-lem-fst hd) (ds-lem-fst hd₁) ds-lem-fst (HDFst hd) = HDFst (ds-lem-fst hd) ds-lem-fst (HDSnd hd) = HDSnd (ds-lem-fst hd) ds-lem-fst (HDPair hd hd₁) = HDPair (ds-lem-fst hd) (ds-lem-fst hd₁) ds-lem-snd : ∀{e e'} → holes-disjoint e' e → holes-disjoint e' (snd e) ds-lem-snd HDConst = HDConst ds-lem-snd (HDAsc hd) = HDAsc (ds-lem-snd hd) ds-lem-snd HDVar = HDVar ds-lem-snd (HDLam1 hd) = HDLam1 (ds-lem-snd hd) ds-lem-snd (HDLam2 hd) = HDLam2 (ds-lem-snd hd) ds-lem-snd (HDHole x) = HDHole (HNSnd x) ds-lem-snd (HDNEHole x hd) = HDNEHole (HNSnd x) (ds-lem-snd hd) ds-lem-snd (HDAp hd hd₁) = HDAp (ds-lem-snd hd) (ds-lem-snd hd₁) ds-lem-snd (HDFst hd) = HDFst (ds-lem-snd hd) ds-lem-snd (HDSnd hd) = HDSnd (ds-lem-snd hd) ds-lem-snd (HDPair hd hd₁) = HDPair (ds-lem-snd hd) (ds-lem-snd hd₁) -- holes-disjoint is symmetric disjoint-sym : (e1 e2 : eexp) → holes-disjoint e1 e2 → holes-disjoint e2 e1 disjoint-sym .c c HDConst = HDConst disjoint-sym .c (e2 ·: x) HDConst = HDAsc (disjoint-sym _ _ HDConst) disjoint-sym .c (X x) HDConst = HDVar disjoint-sym .c (·λ x e2) HDConst = HDLam1 (disjoint-sym c e2 HDConst) disjoint-sym .c (·λ x [ x₁ ] e2) HDConst = HDLam2 (disjoint-sym c e2 HDConst) disjoint-sym .c ⦇⦈[ x ] HDConst = HDHole HNConst disjoint-sym .c ⦇⌜ e2 ⌟⦈[ x ] HDConst = HDNEHole HNConst (disjoint-sym c e2 HDConst) disjoint-sym .c (e2 ∘ e3) HDConst = HDAp (disjoint-sym c e2 HDConst) (disjoint-sym c e3 HDConst) disjoint-sym .c ⟨ e2 , e3 ⟩ HDConst = HDPair (disjoint-sym c e2 HDConst) (disjoint-sym c e3 HDConst) disjoint-sym .c (fst e2) HDConst = HDFst (disjoint-sym c e2 HDConst) disjoint-sym .c (snd e2) HDConst = HDSnd (disjoint-sym c e2 HDConst) disjoint-sym _ c (HDAsc hd) = HDConst disjoint-sym _ (e2 ·: x) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x) (HDAsc hd) | HDAsc ih = HDAsc (ds-lem-asc ih) disjoint-sym _ (X x) (HDAsc hd) = HDVar disjoint-sym _ (·λ x e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDAsc hd) | HDLam1 ih = HDLam1 (ds-lem-asc ih) disjoint-sym _ (·λ x [ x₁ ] e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDAsc hd) | HDLam2 ih = HDLam2 (ds-lem-asc ih) disjoint-sym _ ⦇⦈[ x ] (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x ] (HDAsc hd) | HDHole x₁ = HDHole (HNAsc x₁) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDAsc hd) | HDNEHole x₁ ih = HDNEHole (HNAsc x₁) (ds-lem-asc ih) disjoint-sym _ (e2 ∘ e3) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDAsc hd) | HDAp ih ih₁ = HDAp (ds-lem-asc ih) (ds-lem-asc ih₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym .(_ ·: _) ⟨ e2 , e3 ⟩ (HDAsc hd) | HDPair ih ih₁ = HDPair (ds-lem-asc ih) (ds-lem-asc ih₁) disjoint-sym _ (fst e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym .(_ ·: _) (fst e2) (HDAsc hd) | HDFst ih = HDFst (ds-lem-asc ih) disjoint-sym _ (snd e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym .(_ ·: _) (snd e2) (HDAsc hd) | HDSnd ih = HDSnd (ds-lem-asc ih) disjoint-sym _ c HDVar = HDConst disjoint-sym _ (e2 ·: x₁) HDVar = HDAsc (disjoint-sym _ e2 HDVar) disjoint-sym _ (X x₁) HDVar = HDVar disjoint-sym _ (·λ x₁ e2) HDVar = HDLam1 (disjoint-sym _ e2 HDVar) disjoint-sym _ (·λ x₁ [ x₂ ] e2) HDVar = HDLam2 (disjoint-sym _ e2 HDVar) disjoint-sym _ ⦇⦈[ x₁ ] HDVar = HDHole HNVar disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] HDVar = HDNEHole HNVar (disjoint-sym _ e2 HDVar) disjoint-sym _ (e2 ∘ e3) HDVar = HDAp (disjoint-sym _ e2 HDVar) (disjoint-sym _ e3 HDVar) disjoint-sym _ ⟨ e2 , e3 ⟩ HDVar = HDPair (disjoint-sym (X _) e2 HDVar) (disjoint-sym (X _) e3 HDVar) disjoint-sym _ (fst e2) HDVar = HDFst (disjoint-sym (X _) e2 HDVar) disjoint-sym _ (snd e2) HDVar = HDSnd (disjoint-sym (X _) e2 HDVar) disjoint-sym _ c (HDLam1 hd) = HDConst disjoint-sym _ (e2 ·: x₁) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x₁) (HDLam1 hd) | HDAsc ih = HDAsc (ds-lem-lam1 ih) disjoint-sym _ (X x₁) (HDLam1 hd) = HDVar disjoint-sym _ (·λ x₁ e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ e2) (HDLam1 hd) | HDLam1 ih = HDLam1 (ds-lem-lam1 ih) disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam1 hd) | HDLam2 ih = HDLam2 (ds-lem-lam1 ih) disjoint-sym _ ⦇⦈[ x₁ ] (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x₁ ] (HDLam1 hd) | HDHole x = HDHole (HNLam1 x) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam1 hd) | HDNEHole x ih = HDNEHole (HNLam1 x) (ds-lem-lam1 ih) disjoint-sym _ (e2 ∘ e3) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDLam1 hd) | HDAp ih ih₁ = HDAp (ds-lem-lam1 ih) (ds-lem-lam1 ih₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ ⟨ e2 , e3 ⟩ (HDLam1 hd) | HDPair ih ih₁ = HDPair (ds-lem-lam1 ih) (ds-lem-lam1 ih₁) disjoint-sym _ (fst e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (fst e2) (HDLam1 hd) | HDFst ih = HDFst (ds-lem-lam1 ih) disjoint-sym _ (snd e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (snd e2) (HDLam1 hd) | HDSnd ih = HDSnd (ds-lem-lam1 ih) disjoint-sym _ c (HDLam2 hd) = HDConst disjoint-sym _ (e2 ·: x₁) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x₁) (HDLam2 hd) | HDAsc ih = HDAsc (ds-lem-lam2 ih) disjoint-sym _ (X x₁) (HDLam2 hd) = HDVar disjoint-sym _ (·λ x₁ e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ e2) (HDLam2 hd) | HDLam1 ih = HDLam1 (ds-lem-lam2 ih) disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam2 hd) | HDLam2 ih = HDLam2 (ds-lem-lam2 ih) disjoint-sym _ ⦇⦈[ x₁ ] (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x₁ ] (HDLam2 hd) | HDHole x = HDHole (HNLam2 x) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam2 hd) | HDNEHole x ih = HDNEHole (HNLam2 x) (ds-lem-lam2 ih) disjoint-sym _ (e2 ∘ e3) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDLam2 hd) | HDAp ih ih₁ = HDAp (ds-lem-lam2 ih) (ds-lem-lam2 ih₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ ⟨ e2 , e3 ⟩ (HDLam2 hd) | HDPair ih ih₁ = HDPair (ds-lem-lam2 ih) (ds-lem-lam2 ih₁) disjoint-sym _ (fst e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (fst e2) (HDLam2 hd) | HDFst ih = HDFst (ds-lem-lam2 ih) disjoint-sym _ (snd e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (snd e2) (HDLam2 hd) | HDSnd ih = HDSnd (ds-lem-lam2 ih) disjoint-sym _ c (HDHole x) = HDConst disjoint-sym _ (e2 ·: x) (HDHole (HNAsc x₁)) = HDAsc (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (X x) (HDHole x₁) = HDVar disjoint-sym _ (·λ x e2) (HDHole (HNLam1 x₁)) = HDLam1 (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (·λ x [ x₁ ] e2) (HDHole (HNLam2 x₂)) = HDLam2 (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x₂)) disjoint-sym _ ⦇⦈[ x ] (HDHole (HNHole x₁)) = HDHole (HNHole (flip x₁)) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ u' ] (HDHole (HNNEHole x x₁)) = HDNEHole (HNHole (flip x)) (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (e2 ∘ e3) (HDHole (HNAp x x₁)) = HDAp (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x)) (disjoint-sym ⦇⦈[ _ ] e3 (HDHole x₁)) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDHole (HNPair x1 x2)) = HDPair (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x1)) (disjoint-sym ⦇⦈[ _ ] e3 (HDHole x2)) disjoint-sym _ (fst e2) (HDHole (HNFst x)) = HDFst (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x)) disjoint-sym _ (snd e2) (HDHole (HNSnd x)) = HDSnd (disjoint-sym ⦇⦈[ _ ] e2 (HDHole x)) disjoint-sym _ c (HDNEHole x hd) = HDConst disjoint-sym _ (e2 ·: x) (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ (e ·: x) (HDNEHole (HNAsc x₁) hd) | HDAsc ih = HDAsc (ds-lem-nehole ih x₁) disjoint-sym _ (X x) (HDNEHole x₁ hd) = HDVar disjoint-sym _ (·λ x e2) (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDNEHole (HNLam1 x₁) hd) | HDLam1 ih = HDLam1 (ds-lem-nehole ih x₁) disjoint-sym _ (·λ x [ x₁ ] e2) (HDNEHole x₂ hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDNEHole (HNLam2 x₂) hd) | HDLam2 ih = HDLam2 (ds-lem-nehole ih x₂) disjoint-sym _ ⦇⦈[ x ] (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x ] (HDNEHole (HNHole x₂) hd) | HDHole x₁ = HDHole (HNNEHole (flip x₂) x₁) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDNEHole (HNNEHole x₂ x₃) hd) | HDNEHole x₁ ih = HDNEHole (HNNEHole (flip x₂) x₁) (ds-lem-nehole ih x₃) disjoint-sym _ (e2 ∘ e3) (HDNEHole x hd) with disjoint-sym _ _ hd disjoint-sym _ (e1 ∘ e3) (HDNEHole (HNAp x x₁) hd) | HDAp ih ih₁ = HDAp (ds-lem-nehole ih x) (ds-lem-nehole ih₁ x₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDNEHole x hd) with disjoint-sym _ _ hd disjoint-sym _ ⟨ e2 , e3 ⟩ (HDNEHole (HNPair x x₁) hd) | HDPair ih ih₁ = HDPair (ds-lem-nehole ih x) (ds-lem-nehole ih₁ x₁) disjoint-sym _ (fst e2) (HDNEHole x hd) with disjoint-sym _ _ hd disjoint-sym _ (fst e2) (HDNEHole (HNFst x1) hd) | HDFst ih = HDFst (ds-lem-nehole ih x1) disjoint-sym _ (snd e2) (HDNEHole x hd) with disjoint-sym _ _ hd disjoint-sym _ (snd e2) (HDNEHole (HNSnd x1) hd) | HDSnd ih = HDSnd (ds-lem-nehole ih x1) disjoint-sym _ c (HDAp hd hd₁) = HDConst disjoint-sym _ (e3 ·: x) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ·: x) (HDAp hd hd₁) | HDAsc ih | HDAsc ih1 = HDAsc (ds-lem-ap ih ih1) disjoint-sym _ (X x) (HDAp hd hd₁) = HDVar disjoint-sym _ (·λ x e3) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x e3) (HDAp hd hd₁) | HDLam1 ih | HDLam1 ih1 = HDLam1 (ds-lem-ap ih ih1) disjoint-sym _ (·λ x [ x₁ ] e3) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x [ x₁ ] e3) (HDAp hd hd₁) | HDLam2 ih | HDLam2 ih1 = HDLam2 (ds-lem-ap ih ih1) disjoint-sym _ ⦇⦈[ x ] (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇⦈[ x ] (HDAp hd hd₁) | HDHole x₁ | HDHole x₂ = HDHole (HNAp x₁ x₂) disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDAp hd hd₁) | HDNEHole x₁ ih | HDNEHole x₂ ih1 = HDNEHole (HNAp x₁ x₂) (ds-lem-ap ih ih1) disjoint-sym _ (e3 ∘ e4) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ∘ e4) (HDAp hd hd₁) | HDAp ih ih₁ | HDAp ih1 ih2 = HDAp (ds-lem-ap ih ih1) (ds-lem-ap ih₁ ih2) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⟨ e2 , e3 ⟩ (HDAp hd hd₁) | HDPair ih ih₁ | HDPair ih1 ih2 = HDPair (ds-lem-ap ih ih1) (ds-lem-ap ih₁ ih2) disjoint-sym _ (fst e2) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (fst e2) (HDAp hd hd₁) | HDFst ih | HDFst ih1 = HDFst (ds-lem-ap ih ih1) disjoint-sym _ (snd e2) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (snd e2) (HDAp hd hd₁) | HDSnd ih | HDSnd ih1 = HDSnd (ds-lem-ap ih ih1) disjoint-sym _ c (HDFst hd) = HDConst disjoint-sym _ (e2 ·: x) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x) (HDFst hd) | HDAsc ih = HDAsc (ds-lem-fst ih) disjoint-sym _ (X x) (HDFst hd) = HDVar disjoint-sym _ (·λ x e2) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDFst hd) | HDLam1 ih = HDLam1 (ds-lem-fst ih) disjoint-sym _ (·λ x [ x₁ ] e2) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDFst hd) | HDLam2 ih = HDLam2 (ds-lem-fst ih) disjoint-sym _ ⦇⦈[ x ] (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x ] (HDFst hd) | HDHole ih = HDHole (HNFst ih) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDFst hd) | HDNEHole x₁ ih = HDNEHole (HNFst x₁) (ds-lem-fst ih) disjoint-sym _ (e2 ∘ e3) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDFst hd) | HDAp ih ih₁ = HDAp (ds-lem-fst ih) (ds-lem-fst ih₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ ⟨ e2 , e3 ⟩ (HDFst hd) | HDPair ih ih₁ = HDPair (ds-lem-fst ih) (ds-lem-fst ih₁) disjoint-sym _ (fst e2) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (fst e2) (HDFst hd) | HDFst ih = HDFst (ds-lem-fst ih) disjoint-sym _ (snd e2) (HDFst hd) with disjoint-sym _ _ hd disjoint-sym _ (snd e2) (HDFst hd) | HDSnd ih = HDSnd (ds-lem-fst ih) disjoint-sym _ c (HDSnd hd) = HDConst disjoint-sym _ (e2 ·: x) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x) (HDSnd hd) | HDAsc ih = HDAsc (ds-lem-snd ih) disjoint-sym _ (X x) (HDSnd hd) = HDVar disjoint-sym _ (·λ x e2) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDSnd hd) | HDLam1 ih = HDLam1 (ds-lem-snd ih) disjoint-sym _ (·λ x [ x₁ ] e2) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDSnd hd) | HDLam2 ih = HDLam2 (ds-lem-snd ih) disjoint-sym _ ⦇⦈[ x ] (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⦈[ x ] (HDSnd hd) | HDHole ih = HDHole (HNSnd ih) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDSnd hd) | HDNEHole x₁ ih = HDNEHole (HNSnd x₁) (ds-lem-snd ih) disjoint-sym _ (e2 ∘ e3) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDSnd hd) | HDAp ih ih₁ = HDAp (ds-lem-snd ih) (ds-lem-snd ih₁) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ ⟨ e2 , e3 ⟩ (HDSnd hd) | HDPair ih ih₁ = HDPair (ds-lem-snd ih) (ds-lem-snd ih₁) disjoint-sym _ (fst e2) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (fst e2) (HDSnd hd) | HDFst ih = HDFst (ds-lem-snd ih) disjoint-sym _ (snd e2) (HDSnd hd) with disjoint-sym _ _ hd disjoint-sym _ (snd e2) (HDSnd hd) | HDSnd ih = HDSnd (ds-lem-snd ih) disjoint-sym _ c (HDPair hd hd₁) = HDConst disjoint-sym _ (e3 ·: x) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ·: x) (HDPair hd hd₁) | HDAsc ih | HDAsc ih1 = HDAsc (ds-lem-pair ih ih1) disjoint-sym _ (X x) (HDPair hd hd₁) = HDVar disjoint-sym _ (·λ x e3) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x e3) (HDPair hd hd₁) | HDLam1 ih | HDLam1 ih1 = HDLam1 (ds-lem-pair ih ih1) disjoint-sym _ (·λ x [ x₁ ] e3) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x [ x₁ ] e3) (HDPair hd hd₁) | HDLam2 ih | HDLam2 ih1 = HDLam2 (ds-lem-pair ih ih1) disjoint-sym _ ⦇⦈[ x ] (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇⦈[ x ] (HDPair hd hd₁) | HDHole x₁ | HDHole x₂ = HDHole (HNPair x₁ x₂) disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDPair hd hd₁) | HDNEHole x₁ ih | HDNEHole x₂ ih1 = HDNEHole (HNPair x₁ x₂) (ds-lem-pair ih ih1) disjoint-sym _ (e3 ∘ e4) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ∘ e4) (HDPair hd hd₁) | HDAp ih ih₁ | HDAp ih1 ih2 = HDAp (ds-lem-pair ih ih1) (ds-lem-pair ih₁ ih2) disjoint-sym _ ⟨ e2 , e3 ⟩ (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⟨ e2 , e3 ⟩ (HDPair hd hd₁) | HDPair ih ih₁ | HDPair ih1 ih2 = HDPair (ds-lem-pair ih ih1) (ds-lem-pair ih₁ ih2) disjoint-sym _ (fst e2) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (fst e2) (HDPair hd hd₁) | HDFst ih | HDFst ih1 = HDFst (ds-lem-pair ih ih1) disjoint-sym _ (snd e2) (HDPair hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (snd e2) (HDPair hd hd₁) | HDSnd ih | HDSnd ih1 = HDSnd (ds-lem-pair ih ih1) -- note that this is false, so holes-disjoint isn't transitive -- disjoint-new : ∀{e1 e2 u} → holes-disjoint e1 e2 → hole-name-new e1 u → hole-name-new e2 u -- it's also not reflexive, because ⦇⦈[ u ] isn't hole-disjoint with -- itself since refl : u == u; it's also not anti-reflexive, because the -- expression c *is* hole-disjoint with itself (albeit vacuously)
{ "alphanum_fraction": 0.6472537449, "avg_line_length": 65.3709198813, "ext": "agda", "hexsha": "e9453934af922fdd6f54af6ad23e49496b1c7ac4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "holes-disjoint-checks.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "holes-disjoint-checks.agda", "max_line_length": 137, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "holes-disjoint-checks.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 10126, "size": 22030 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Agda.ISetoids.Cocomplete.Helpers where open import Level open import Relation.Binary using (Setoid; module Setoid; Preorder; module Preorder; Rel; _=[_]⇒_) open import Data.Product using (Σ; _,_; Σ-syntax) -- import Relation.Binary.EqReasoning as EqReasoning open import Categories.Support.Equivalence using (module I→R-Wrapper; setoid-i→r; squash) renaming (Setoid to ISetoid; module Setoid to ISetoid) open import Categories.Support.SetoidFunctions using (module _⟶_) open import Categories.Support.PropositionalEquality import Categories.Support.ZigZag as ZigZag open import Categories.Category open import Categories.Functor open import Categories.Agda open import Categories.Colimit open import Categories.Object.Initial open import Categories.Cocones open import Categories.Cocone open I→R-Wrapper ding : Level → Level ding ℓ = ℓ module ColimitCocone {o ℓ e c ℓ′} {J : Category o ℓ e} (F : Functor J (ISetoids (c ⊔ ding (o ⊔ ℓ ⊔ e)) (c ⊔ ℓ′ ⊔ ding (o ⊔ ℓ ⊔ e)))) where c′ = c ⊔ ding (o ⊔ ℓ ⊔ e) ℓ″ = c ⊔ ℓ′ ⊔ ding (o ⊔ ℓ ⊔ e) C = ISetoids c′ ℓ″ D = Cocones F module J = Category J open Functor F open ISetoid open _⟶_ vertex-carrier = Σ[ x ∈ J.Obj ] Carrier (F₀ x) -- this lets us build a preorder out of an irrelevant setoid, since there -- are no irrelevant preorders dot-setoid : (j : J.Obj) → Setoid c′ ℓ″ dot-setoid j = setoid-i→r (F₀ j) module DotSetoid (j : J.Obj) = Setoid (dot-setoid j) open DotSetoid using () renaming (_≈_ to _[_≈_]) -- _↝_ means that an arrow in the diagram directly constrains the two -- objects of vertex-carrier to be equal. completing this to an -- equivalence relation gives us the setoid we need _↝_ : (x y : vertex-carrier) → Set ℓ″ (X , x) ↝ (Y , y) = Σ[ f ∈ J [ X , Y ] ] (Y [ (F₁ f ⟨$⟩ x) ≈ y ]) ↝-preorder : Preorder c′ c′ ℓ″ ↝-preorder = record { Carrier = vertex-carrier ; _≈_ = _≣_ ; _∼_ = _↝_ ; isPreorder = record { isEquivalence = ≣-isEquivalence ; reflexive = ↝-reflexive ; trans = ↝-trans } } where ↝-refl : ∀ {i} → (i ↝ i) ↝-refl {X , x} = J.id , squash (identity (refl (F₀ X))) ↝-reflexive : ∀ {i j} → (i ≣ j) → (i ↝ j) ↝-reflexive ≣-refl = ↝-refl -- the nice proof. pretty proof! {- ↝-trans : ∀ {i j k} → (i ↝ j) → (j ↝ k) → (i ↝ k) ↝-trans {_ , i} {_ , j} {k₁ , k} (f , squash fi≈j) (g , gj≈k) = J [ g ∘ f ] , ( begin F₁ (J [ g ∘ f ]) ⟨$⟩ i ≈⟨ squash homomorphism ⟩ F₁ g ⟨$⟩ (F₁ f ⟨$⟩ i) ≈⟨ squash (cong (F₁ g) fi≈j) ⟩ F₁ g ⟨$⟩ j ≈⟨ gj≈k ⟩ k ∎ ) where open EqReasoning (dot-setoid k₁) -} -- the ugly proof that loads before the sun burns out. ↝-trans : ∀ {i j k} → (i ↝ j) → (j ↝ k) → (i ↝ k) ↝-trans {X , _} {k = Z , _} (f , squash fx≈y) (g , gy≈z) = J [ g ∘ f ] , DotSetoid.trans Z (squash (trans (F₀ Z) (homomorphism (refl (F₀ X))) (cong (F₁ g) fx≈y))) gy≈z vertex = ZigZag.isetoid ↝-preorder ⊥ : Cocone F ⊥ = record { N = vertex ; ψ = λ X → record { _⟨$⟩_ = _,_ X ; cong = λ pf → ZigZag.disorient (ZigZag.slish (J.id , squash (identity pf))) -- cong would be easier if i'd used the proper dotwise equality for -- ↝-preorder above ... since this is basically the proof ↝ respects it } ; commute = λ {X Y} f {x : _} {y : _} (x≈y : _) → ZigZag.disorient (ZigZag.slish (f , (squash (cong (F₁ f) x≈y)))) } ! : {A : Cocone F} → CoconeMorphism {F = F} ⊥ A ! {A} = record { f = record { _⟨$⟩_ = my-f ; cong = ZigZag.iminimal ↝-preorder A.N my-f my-precong } ; commute = λ {X x y} x≈y → cong (A.ψ X) x≈y } where module A = Cocone A my-f : vertex-carrier → Carrier A.N my-f (X , x) = A.ψ X ⟨$⟩ x .my-precong : _↝_ =[ my-f ]⇒ (_≈_ A.N) my-precong {X , x} {Y , y} (f , squash fx≈y) = trans A.N (A.commute f (refl (F₀ X))) (cong (A.ψ Y) (irr fx≈y))
{ "alphanum_fraction": 0.5730616302, "avg_line_length": 32.9836065574, "ext": "agda", "hexsha": "2ca32b5c7cadb09db79b3ee8f4135fc94b1d9053", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Agda/ISetoids/Cocomplete/Helpers.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Agda/ISetoids/Cocomplete/Helpers.agda", "max_line_length": 144, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Agda/ISetoids/Cocomplete/Helpers.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1563, "size": 4024 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.JoinComm open import homotopy.JoinAssocCubical module homotopy.JoinSusp where module _ {i} {A : Type i} where private module Into = JoinRec {A = Bool} {B = A} {D = Suspension A} (if_then north else south) (λ _ → south) (λ {(true , a) → merid a; (false , a) → idp}) into = Into.f module Out = SuspensionRec {C = Bool * A} (left true) (left false) (λ a → glue (true , a) ∙ ! (glue (false , a))) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim idp idp (↓-∘=idf-from-square into out ∘ λ a → vert-degen-square $ ap (ap into) (Out.merid-β a) ∙ ap-∙ into (glue (true , a)) (! (glue (false , a))) ∙ (Into.glue-β (true , a) ∙2 (ap-! into (glue (false , a)) ∙ ap ! (Into.glue-β (false , a)))) ∙ ∙-unit-r _) out-into : ∀ j → out (into j) == j out-into = Join-elim (λ{true → idp ; false → idp}) (λ a → glue (false , a)) (↓-∘=idf-from-square out into ∘ λ {(true , a) → (ap (ap out) (Into.glue-β (true , a)) ∙ Out.merid-β a) ∙v⊡ (vid-square {p = glue (true , a)} ⊡h rt-square (glue (false , a))) ⊡v∙ ∙-unit-r _; (false , a) → ap (ap out) (Into.glue-β (false , a)) ∙v⊡ connection}) *-Bool-equiv-Suspension : Bool * A ≃ Suspension A *-Bool-equiv-Suspension = equiv into out into-out out-into *-Lift-Bool-equiv-Suspension : Lift {j = i} Bool * A ≃ Suspension A *-Lift-Bool-equiv-Suspension = *-Bool-equiv-Suspension ∘e equiv-* lower-equiv (ide A) *-Bool = ua *-Bool-equiv-Suspension module _ {i} (X : Ptd i) where ⊙*-⊙Bool : ⊙Bool ⊙* X == ⊙Susp X ⊙*-⊙Bool = ⊙ua (⊙≃-in *-Bool-equiv-Suspension idp) ⊙*-⊙Lift-⊙Bool : ⊙Lift {j = i} ⊙Bool ⊙* X == ⊙Susp X ⊙*-⊙Lift-⊙Bool = ⊙ua (⊙≃-in *-Lift-Bool-equiv-Suspension idp) module _ {i j} {A : Type i} {B : Type j} where *-Suspension : Suspension A * B == Suspension (A * B) *-Suspension = ap (_* B) (! *-Bool) ∙ join-rearrange-path ∙ ua swap-equiv ∙ *-Bool ∙ ap Suspension (ua swap-equiv) module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙*-⊙Susp : ⊙Susp X ⊙* Y == ⊙Susp (X ⊙* Y) ⊙*-⊙Susp = ap (_⊙* Y) (! (⊙*-⊙Bool X)) ∙ join-rearrange-⊙path (⊙Sphere 0) X Y ∙ ⊙ua (⊙≃-in swap-equiv (! (glue _))) ∙ ⊙*-⊙Bool (Y ⊙* X) ∙ ap (λ A → (Suspension A , north)) (ua swap-equiv) module _ {i} where ⊙*-⊙Sphere : (m : ℕ) (X : Ptd i) → ⊙Sphere m ⊙* X == ⊙Susp^ (S m) X ⊙*-⊙Sphere O X = ⊙*-⊙Bool X ⊙*-⊙Sphere (S m) X = ⊙*-⊙Susp (⊙Sphere m) X ∙ ap ⊙Susp (⊙*-⊙Sphere m X) ⊙*-⊙Lift-⊙Sphere : (m : ℕ) (X : Ptd i) → ⊙Lift {j = i} (⊙Sphere m) ⊙* X == ⊙Susp^ (S m) X ⊙*-⊙Lift-⊙Sphere O X = ⊙*-⊙Lift-⊙Bool X ⊙*-⊙Lift-⊙Sphere (S m) X = ap (_⊙* X) (! $ ⊙Susp-⊙Lift (⊙Sphere m)) ∙ ⊙*-⊙Susp (⊙Lift (⊙Sphere m)) X ∙ ap ⊙Susp (⊙*-⊙Lift-⊙Sphere m X)
{ "alphanum_fraction": 0.47703516, "avg_line_length": 30.9509803922, "ext": "agda", "hexsha": "8e3bfb0f7e3aeb2f64445ff8b15663532df04c4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/JoinSusp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/JoinSusp.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/JoinSusp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1303, "size": 3157 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition module Fields.CauchyCompletion.Comparison {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Orders.Lemmas {F = F} {pRing} (record { oRing = order }) open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Fields.Lemmas F open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Group order F open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) -- "<C rational", where the r indicates where the rational number goes record _<Cr_ (a : CauchyCompletion) (b : A) : Set (m ⊔ o) where field e : A 0<e : 0G < e N : ℕ property : ((m : ℕ) → (N<m : N <N m) → (e + index (CauchyCompletion.elts a) m) < b) <CrWellDefinedRight : (a : CauchyCompletion) (b c : A) → b ∼ c → a <Cr b → a <Cr c <CrWellDefinedRight a b c b=c record { e = ε ; 0<e = 0<e ; N = N ; property = pr } = record { e = ε ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (Equivalence.reflexive eq) b=c (pr m N<m) } private <CrWellDefinedLemma : (a b e/2 e : A) (0<e : 0G < e) (pr : e/2 + e/2 ∼ e) → abs (a + inverse b) < e/2 → (e/2 + b) < (e + a) <CrWellDefinedLemma a b e/2 e 0<e pr a-b<e with totality 0G (a + inverse b) <CrWellDefinedLemma a b e/2 e 0<e pr a-b<e | inl (inl 0<a-b) = ringAddInequalities (halfLess e/2 e 0<e pr) (<WellDefined identLeft (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) invLeft) identRight)) (orderRespectsAddition 0<a-b b)) <CrWellDefinedLemma a b e/2 e 0<e pr a-b<e | inl (inr a-b<0) = <WellDefined (Equivalence.transitive eq (+WellDefined (invContravariant (Ring.additiveGroup R)) groupIsAbelian) (Equivalence.transitive eq (Equivalence.transitive eq +Associative (+WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (Equivalence.transitive eq (+WellDefined (invTwice additiveGroup b) invLeft) identRight)) (Equivalence.reflexive eq))) groupIsAbelian)) (Equivalence.transitive eq +Associative (+WellDefined pr (Equivalence.reflexive eq))) (orderRespectsAddition a-b<e (e/2 + a)) <CrWellDefinedLemma a b e/2 e 0<e pr a-b<e | inr 0=a-b = <WellDefined (Equivalence.reflexive eq) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (transferToRight (Ring.additiveGroup R) (Equivalence.symmetric eq 0=a-b)))) (orderRespectsAddition (halfLess e/2 e 0<e pr) b) <CrWellDefinedLeft : (a b : CauchyCompletion) (c : A) → Setoid._∼_ cauchyCompletionSetoid a b → a <Cr c → b <Cr c <CrWellDefinedLeft a b c a=b record { e = ε ; 0<e = 0<e ; N = N ; property = pr } with halve charNot2 ε ... | e/2 , prE/2 with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e) ... | 0<e/2 with a=b e/2 0<e/2 ... | N2 , prN2 = record { e = e/2 ; 0<e = 0<e/2 ; N = N +N N2 ; property = ans } where ans : (m : ℕ) → (N<m : (N +N N2) <N m) → (e/2 + index (CauchyCompletion.elts b) m) < c ans m N<m with prN2 {m} (inequalityShrinkRight N<m) ... | bl rewrite indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts b) inverse m) = SetoidPartialOrder.<Transitive pOrder (<CrWellDefinedLemma (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) e/2 ε 0<e prE/2 bl) (pr m (inequalityShrinkLeft N<m)) <CrWellDefined : (a b : CauchyCompletion) (c d : A) → Setoid._∼_ cauchyCompletionSetoid a b → c ∼ d → a <Cr c → b <Cr d <CrWellDefined a b c d a=b c=d a<c = <CrWellDefinedLeft a b d a=b (<CrWellDefinedRight a c d c=d a<c) record _r<C_ (a : A) (b : CauchyCompletion) : Set (m ⊔ o) where field e : A 0<e : 0G < e N : ℕ pr : (m : ℕ) → (N<m : N <N m) → (a + e) < index (CauchyCompletion.elts b) m r<CWellDefinedLeft : (a b : A) (c : CauchyCompletion) → (a ∼ b) → (a r<C c) → b r<C c r<CWellDefinedLeft a b c a=b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (+WellDefined a=b (Equivalence.reflexive eq)) (Equivalence.reflexive eq) (pr m N<m) } private r<CWellDefinedLemma : (a b c e e/2 : A) (_ : e/2 + e/2 ∼ e) (0<e : 0G < e) (_ : abs (a + inverse b) < e/2) (_ : (c + e) < a) → (c + e/2) < b r<CWellDefinedLemma a b c e e/2 prE/2 0<e pr c+e<a with totality 0G (a + inverse b) r<CWellDefinedLemma a b c e e/2 prE/2 0<e pr c+e<a | inl (inl 0<a-b) = SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq prE/2) (Equivalence.reflexive eq)) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) invRight)) identRight)))) (Equivalence.reflexive eq) (orderRespectsAddition c+e<a (inverse e/2))) (<WellDefined (Equivalence.transitive eq +Associative (+WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) invLeft) identRight)) (Equivalence.reflexive eq))) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (invLeft)) identRight))) (orderRespectsAddition pr (b + inverse e/2))) r<CWellDefinedLemma a b c e e/2 prE/2 0<e pr c+e<a | inl (inr a-b<0) = SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (halfLess e/2 e 0<e prE/2) c)) c+e<a) (<WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) invLeft)) identRight) identLeft (orderRespectsAddition a-b<0 b)) r<CWellDefinedLemma a b c e e/2 prE/2 0<e pr c+e<a | inr 0=a-b = SetoidPartialOrder.<Transitive pOrder (<WellDefined groupIsAbelian (Equivalence.reflexive eq) (orderRespectsAddition (halfLess e/2 e 0<e prE/2) c)) (<WellDefined (groupIsAbelian {c} {e}) (transferToRight additiveGroup (Equivalence.symmetric eq 0=a-b)) c+e<a) r<CWellDefinedRight : (a b : CauchyCompletion) (c : A) → Setoid._∼_ cauchyCompletionSetoid a b → c r<C a → c r<C b r<CWellDefinedRight a b c a=b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } with halve charNot2 e ... | e/2 , prE/2 with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e) ... | 0<e/2 with a=b e/2 0<e/2 ... | N2 , prN2 = record { e = e/2 ; 0<e = 0<e/2 ; N = N +N N2 ; pr = ans } where ans : (m : ℕ) → (N<m : (N +N N2) <N m) → (c + e/2) < index (CauchyCompletion.elts b) m ans m N<m with prN2 {m} (inequalityShrinkRight N<m) ... | bl rewrite indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts b) inverse m) = r<CWellDefinedLemma (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) c e e/2 prE/2 0<e bl (pr m (inequalityShrinkLeft N<m)) record _<C_ (a : CauchyCompletion) (b : CauchyCompletion) : Set (m ⊔ o) where field i : A a<i : a <Cr i i<b : i r<C b <CWellDefined : {a b c d : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid c d → a <C c → b <C d <CWellDefined {a} {b} {c} {d} a=b c=d record { i = bound ; a<i = a<bound ; i<b = bound<b } = record { i = bound ; a<i = <CrWellDefinedLeft a b bound a=b a<bound ; i<b = r<CWellDefinedRight c d bound c=d bound<b } <CInheritedL : {a b : A} → a < b → injection a <Cr b <CInheritedL {a} {b} a<b with dense charNot2 a<b ... | between , (a<between ,, between<b) = record { e = between + inverse a ; 0<e = <WellDefined invRight (Equivalence.reflexive eq) (orderRespectsAddition a<between (inverse a)) ; N = 0 ; property = λ m _ → <WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (ans a m)) +Associative)) (Equivalence.reflexive eq) between<b } where ans : (x : A) (m : ℕ) → 0G ∼ inverse x + index (constSequence x) m ans x m rewrite indexAndConst x m = Equivalence.symmetric eq invLeft <CInheritedR : {a b : A} → a < b → a r<C injection b <CInheritedR {a} {b} a<b with dense charNot2 a<b ... | between , (a<between ,, between<b) = record { e = between + inverse a ; 0<e = <WellDefined invRight (Equivalence.reflexive eq) (orderRespectsAddition a<between (inverse a)) ; N = 0 ; pr = λ m _ → <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq invLeft))) +Associative) groupIsAbelian) (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (indexAndConst b m)) between<b } <CInherited : {a b : A} → a < b → (injection a) <C (injection b) <CInherited {a} {b} a<b with dense charNot2 a<b ... | between , (a<between ,, between<b) = record { i = between ; a<i = <CInheritedL a<between ; i<b = <CInheritedR between<b } <CCollapsesL : (a b : A) → (injection a) <Cr b → a < b <CCollapsesL a b record { e = e ; 0<e = 0<i ; N = N ; property = pr } with pr (succ N) (le 0 refl) ... | bl rewrite indexAndConst a N = <Transitive (<WellDefined identLeft reflexive (orderRespectsAddition 0<i a)) bl <CCollapsesR : (a b : A) → a r<C injection b → a < b <CCollapsesR a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } with pr (succ N) (le 0 refl) ... | bl rewrite indexAndConst b N = <Transitive (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<e a)) bl <CCollapses : {a b : A} → (injection a) <C (injection b) → a < b <CCollapses {a} {b} record { i = inter ; a<i = pr1 ; i<b = pr2 } = <Transitive (<CCollapsesL a inter pr1) (<CCollapsesR inter b pr2) <CRelaxL : {a : A} {b : CauchyCompletion} → a r<C b → injection a <C b <CRelaxL {a} {b} record { e = e ; 0<e = 0<e ; N = N ; pr = pr } with halve charNot2 e ... | e/2 , e/2pr = record { i = a + e/2 ; a<i = <CInheritedL (<WellDefined identLeft groupIsAbelian (orderRespectsAddition (halvePositive' e/2pr 0<e) a)) ; i<b = record { e = e/2 ; 0<e = halvePositive' e/2pr 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (+WellDefined reflexive (symmetric e/2pr)) +Associative) reflexive (pr m N<m) } } <CRelaxL' : {a : A} {b : CauchyCompletion} → injection a <C b → a r<C b <CRelaxL' {a} {b} record { i = i ; a<i = a<i ; i<b = record { e = e ; 0<e = 0<e ; N = N ; pr = pr } } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <Transitive (orderRespectsAddition (<CCollapsesL _ _ a<i) e) (pr m N<m) } <CRelaxR : {a : CauchyCompletion} {b : A} → a <Cr b → a <C injection b <CRelaxR {a} {b} record { e = ε ; 0<e = 0<ε ; N = N ; property = property } with halve charNot2 ε ... | e/2 , e/2+e/2=e = record { i = b + inverse e/2 ; a<i = record { e = e/2 ; 0<e = halvePositive' e/2+e/2=e 0<ε ; N = N ; property = λ m N<m → <WellDefined (transitive groupIsAbelian (transitive +Associative (+WellDefined (transitive (+WellDefined reflexive (symmetric e/2+e/2=e)) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft))) reflexive))) reflexive (orderRespectsAddition (property m N<m) (inverse e/2)) } ; i<b = <CInheritedR (<WellDefined groupIsAbelian identLeft (orderRespectsAddition (<WellDefined reflexive (invIdent additiveGroup) (ringSwapNegatives (<WellDefined (symmetric (invTwice additiveGroup 0R)) (symmetric (invTwice additiveGroup e/2)) (halvePositive' e/2+e/2=e 0<ε)))) b)) } <CRelaxR' : {a : CauchyCompletion} {b : A} → a <C injection b → a <Cr b <CRelaxR' {a} {b} record { i = i ; a<i = record { e = ε ; 0<e = 0<ε ; N = N ; property = property } ; i<b = i<b } = record { e = ε ; 0<e = 0<ε ; N = N ; property = λ m N<m → <Transitive (property m N<m) (<CCollapsesR _ _ i<b) } flip<CR : {a : CauchyCompletion} {b : A} → a <Cr b → inverse b r<C Group.inverse CGroup a _r<C_.e (flip<CR {a} {b} record { e = e ; 0<e = 0<e ; N = N ; property = property }) = e _r<C_.0<e (flip<CR {a} {b} record { e = e ; 0<e = 0<e ; N = N ; property = property }) = 0<e _r<C_.N (flip<CR {a} {b} record { e = e ; 0<e = 0<e ; N = N ; property = property }) = N _r<C_.pr (flip<CR {a} {b} record { e = e ; 0<e = 0<e ; N = N ; property = property }) m N<m with property m N<m ... | bl = <WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive (transitive groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight))))) groupIsAbelian) (transitive +Associative (transitive (+WellDefined invRight reflexive) (transitive identLeft (identityOfIndiscernablesRight _∼_ reflexive (mapAndIndex (CauchyCompletion.elts a) inverse m))))) (orderRespectsAddition bl (inverse b + inverse (index (CauchyCompletion.elts a) m))) flipR<C : {a : A} {b : CauchyCompletion} → a r<C b → Group.inverse CGroup b <Cr inverse a _<Cr_.e (flipR<C record { e = e ; 0<e = 0<e ; N = N ; pr = pr }) = e _<Cr_.0<e (flipR<C record { e = e ; 0<e = 0<e ; N = N ; pr = pr }) = 0<e _<Cr_.N (flipR<C record { e = e ; 0<e = 0<e ; N = N ; pr = pr }) = N _<Cr_.property (flipR<C {a} {b} record { e = e ; 0<e = 0<e ; N = N ; pr = pr }) m N<m with pr m N<m ... | t = <WellDefined (transitive (+WellDefined groupIsAbelian (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (mapAndIndex (CauchyCompletion.elts b) inverse m)))) (transitive (symmetric +Associative) (+WellDefined reflexive (transitive +Associative (transitive (+WellDefined invRight reflexive) identLeft))))) (transitive groupIsAbelian (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight))) (orderRespectsAddition t (inverse a + inverse (index (CauchyCompletion.elts b) m))) flip<C : {a b : CauchyCompletion} → a <C b → Group.inverse CGroup b <C Group.inverse CGroup a flip<C {a} {b} record { i = i ; a<i = a<i ; i<b = i<b } = record { i = inverse i ; a<i = flipR<C i<b ; i<b = flip<CR a<i } flip<C' : {a b : CauchyCompletion} → Group.inverse CGroup b <C Group.inverse CGroup a → a <C b flip<C' {a} {b} a<b = <CWellDefined (invTwice CGroup a) (invTwice CGroup b) (flip<C a<b) <CIrreflexive : {a : CauchyCompletion} → a <C a → False <CIrreflexive {a} record { i = bound ; a<i = record { e = bA ; 0<e = 0<bA ; N = Na ; property = prA } ; i<b = record { e = bB ; 0<e = 0<bB ; N = Nb ; pr = prB } } with prA (succ Na +N Nb) (le Nb (applyEquality succ (Semiring.commutative ℕSemiring Nb Na))) ... | bl with prB (succ Na +N Nb) (le Na refl) ... | bl2 with <WellDefined (Equivalence.transitive eq +Associative (+WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) groupIsAbelian) (Equivalence.reflexive eq))) groupIsAbelian (ringAddInequalities bl bl2) ... | bad = irreflexive (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft +Associative (<WellDefined (Equivalence.reflexive eq) groupIsAbelian (orderRespectsAddition (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities 0<bA 0<bB)) (index (CauchyCompletion.elts a) (succ Na +N Nb) + bound)))) bad) <CTransitive : {a b c : CauchyCompletion} → a <C b → b <C c → a <C c <CTransitive {a} {b} {c} record { i = boundA ; a<i = record { e = eL ; 0<e = 0<eL ; N = NL ; property = prL } ; i<b = record { e = eR ; 0<e = 0<eR ; N = Nr ; pr = prR } } record { i = boundB ; a<i = record { e = fL ; 0<e = 0<fL ; N = Nfl ; property = prFl } ; i<b = record { e = fR ; 0<e = 0<fR ; N = N ; pr = prFR } } = record { i = boundA ; a<i = record { e = eL ; 0<e = 0<eL ; N = NL ; property = prL } ; i<b = record { e = eR ; 0<e = 0<eR ; N = (Nr +N Nfl) +N N ; pr = λ m N<m → SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (prR m (inequalityShrinkLeft {Nr} (inequalityShrinkLeft N<m))) (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<fL (index (CauchyCompletion.elts b) m)))) (prFl m (inequalityShrinkRight {Nr} (inequalityShrinkLeft N<m)))) (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<fR boundB))) (prFR m (inequalityShrinkRight N<m)) } } <COrder : SetoidPartialOrder cauchyCompletionSetoid _<C_ SetoidPartialOrder.<WellDefined <COrder {a} {b} {c} {d} a=b c=d a<c = <CWellDefined {a} {b} {c} {d} a=b c=d a<c SetoidPartialOrder.irreflexive <COrder {a} a<a = <CIrreflexive {a} a<a SetoidPartialOrder.<Transitive <COrder {a} {b} {c} a<b b<c = <CTransitive {a} {b} {c} a<b b<c
{ "alphanum_fraction": 0.6799215906, "avg_line_length": 97.5683060109, "ext": "agda", "hexsha": "153cd5ac28a3b1f5b83bf39fb2f2064318d59dbe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Comparison.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Comparison.agda", "max_line_length": 1069, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Comparison.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 6358, "size": 17855 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Morphism.Duality {o ℓ e} (C : Category o ℓ e) where open Category C import Categories.Morphism as M private module Op = M op open M C open import Categories.Morphism.Properties C private variable A B X Y : Obj f g h : A ⇒ B Mono⇒op-Epi : Mono f → Op.Epi f Mono⇒op-Epi mono = mono Epi⇒op-Mono : Epi f → Op.Mono f Epi⇒op-Mono epi = epi Iso⇒op-Iso : Iso f g → Op.Iso g f Iso⇒op-Iso iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } where open Iso iso op-Iso⇒Iso : Op.Iso g f → Iso f g op-Iso⇒Iso iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } where open Op.Iso iso ≅⇒op-≅ : A ≅ B → A Op.≅ B ≅⇒op-≅ A≅B = record { from = to ; to = from ; iso = record -- I don't understand why Agda doesn't allow me to apply Iso⇒op-Iso { isoˡ = isoˡ ; isoʳ = isoʳ } } where open _≅_ A≅B op-≅⇒≅ : A Op.≅ B → A ≅ B op-≅⇒≅ A≅B = record { from = to ; to = from ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open Op._≅_ A≅B
{ "alphanum_fraction": 0.5855940131, "avg_line_length": 17.2419354839, "ext": "agda", "hexsha": "ec9d0fad5f5945cd013aa422160d252919a9ccb3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/Duality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/Duality.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/Duality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 475, "size": 1069 }