Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --with-K -vtc.lhs.unify:50 #-} open import Agda.Primitive using (Setω) open import Agda.Builtin.Equality using (_≡_; refl) -- change `Set` to `Setω` breaks `seq` data RecD (I : Set) : Setω where ι : (i : I) → RecD I data RecO {I J : Set} (e : I → J) : RecD I → RecD J → Setω where ι : (i : I) (j : J) (eq : e i ≡ j) → RecO e (ι i) (ι j) seq : {I J K : Set} {e : I → J} {f : J → K} {D : RecD I} {E : RecD J} {F : RecD K} → RecO f E F → RecO e D E → RecO (λ i → f (e i)) D F seq (ι _ _ refl) (ι _ _ refl) = ι _ _ refl
{ "alphanum_fraction": 0.5218978102, "avg_line_length": 32.2352941176, "ext": "agda", "hexsha": "42e960d20f5c17ff3559bff442880ffa6028344c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Succeed/Issue5730.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Succeed/Issue5730.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/Succeed/Issue5730.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 242, "size": 548 }
{-# OPTIONS --cubical --no-import-sorts --postfix-projections --safe #-} module Cubical.Categories.Presheaf.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Instances.Functors module _ {ℓ ℓ'} where PreShv : Precategory ℓ ℓ' → (ℓS : Level) → Precategory (ℓ-max (ℓ-max ℓ ℓ') (ℓ-suc ℓS)) (ℓ-max (ℓ-max ℓ ℓ') ℓS) PreShv C ℓS = FUNCTOR (C ^op) (SET ℓS) instance isCatPreShv : ∀ {ℓ ℓ'} {C : Precategory ℓ ℓ'} {ℓS} → isCategory (PreShv C ℓS) isCatPreShv {C = C} {ℓS} = isCatFUNCTOR (C ^op) (SET ℓS) private variable ℓ ℓ' : Level module Yoneda (C : Precategory ℓ ℓ') ⦃ C-cat : isCategory C ⦄ where open Functor open NatTrans open Precategory C yo : ob → Functor (C ^op) (SET ℓ') yo x .F-ob y .fst = C [ y , x ] yo x .F-ob y .snd = C-cat .isSetHom yo x .F-hom f g = f ⋆⟨ C ⟩ g yo x .F-id i f = ⋆IdL f i yo x .F-seq f g i h = ⋆Assoc g f h i YO : Functor C (PreShv C ℓ') YO .F-ob = yo YO .F-hom f .N-ob z g = g ⋆⟨ C ⟩ f YO .F-hom f .N-hom g i h = ⋆Assoc g h f i YO .F-id = makeNatTransPath λ i _ → λ f → ⋆IdR f i YO .F-seq f g = makeNatTransPath λ i _ → λ h → ⋆Assoc h f g (~ i) module _ {x} (F : Functor (C ^op) (SET ℓ')) where yo-yo-yo : NatTrans (yo x) F → F .F-ob x .fst yo-yo-yo α = α .N-ob _ (id _) no-no-no : F .F-ob x .fst → NatTrans (yo x) F no-no-no a .N-ob y f = F .F-hom f a no-no-no a .N-hom f = funExt λ g i → F .F-seq g f i a yoIso : Iso (NatTrans (yo x) F) (F .F-ob x .fst) yoIso .Iso.fun = yo-yo-yo yoIso .Iso.inv = no-no-no yoIso .Iso.rightInv b i = F .F-id i b yoIso .Iso.leftInv a = makeNatTransPath (funExt λ _ → funExt rem) where rem : ∀ {z} (x₁ : C [ z , x ]) → F .F-hom x₁ (yo-yo-yo a) ≡ (a .N-ob z) x₁ rem g = F .F-hom g (yo-yo-yo a) ≡[ i ]⟨ a .N-hom g (~ i) (id x) ⟩ a .N-hom g i0 (id x) ≡[ i ]⟨ a .N-ob _ (⋆IdR g i) ⟩ (a .N-ob _) g ∎ yoEquiv : NatTrans (yo x) F ≃ F .F-ob x .fst yoEquiv = isoToEquiv yoIso isFullYO : isFull YO isFullYO x y F[f] = ∣ yo-yo-yo _ F[f] , yoIso {x} (yo y) .Iso.leftInv F[f] ∣ isFaithfulYO : isFaithful YO isFaithfulYO x y f g p i = hcomp (λ j → λ{ (i = i0) → ⋆IdL f j; (i = i1) → ⋆IdL g j}) (yo-yo-yo _ (p i))
{ "alphanum_fraction": 0.5807926829, "avg_line_length": 30.8705882353, "ext": "agda", "hexsha": "da5ba1d2756384bf3f6a8beb7e97645b5ceb7246", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Presheaf/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1109, "size": 2624 }
module UniqueFloatNaN where -- See Issue: Inconsistency: Rounding op differentiates NaNs #3749 -- https://github.com/agda/agda/issues/3749 open import Agda.Builtin.Float renaming ( primRound to round ; primFloor to floor ; primCeiling to ceiling ; primFloatNegate to -_ ; primFloatDiv to _/_) open import Agda.Builtin.Equality PNaN : Float PNaN = 0.0 / 0.0 NNaN : Float NNaN = - (0.0 / 0.0) f : round PNaN ≡ round NNaN f = refl g : floor PNaN ≡ floor NNaN g = refl h : ceiling PNaN ≡ ceiling NNaN h = refl
{ "alphanum_fraction": 0.6589285714, "avg_line_length": 20, "ext": "agda", "hexsha": "83ca05e43b9c4459069326376bae901213e5ffe9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/UniqueFloatNaN.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/UniqueFloatNaN.agda", "max_line_length": 66, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/UniqueFloatNaN.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 180, "size": 560 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties about integers ------------------------------------------------------------------------ module Data.Integer.Properties where open import Algebra import Algebra.FunctionProperties import Algebra.Morphism as Morphism import Algebra.Properties.AbelianGroup open import Algebra.Structures open import Data.Integer hiding (suc; _≤?_) import Data.Integer.Addition.Properties as Add import Data.Integer.Multiplication.Properties as Mul open import Data.Nat using (ℕ; suc; zero; _∸_; _≤?_; _<_; _≥_; _≱_; s≤s; z≤n; ≤-pred) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Nat.Properties as ℕ using (_*-mono_) open import Data.Product using (proj₁; proj₂; _,_) open import Data.Sign as Sign using () renaming (_*_ to _S*_) import Data.Sign.Properties as SignProp open import Function using (_∘_; _$_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) open Algebra.FunctionProperties (_≡_ {A = ℤ}) open CommutativeMonoid Add.commutativeMonoid using () renaming ( assoc to +-assoc; comm to +-comm; identity to +-identity ; isCommutativeMonoid to +-isCommutativeMonoid ; isMonoid to +-isMonoid ) open CommutativeMonoid Mul.commutativeMonoid using () renaming ( assoc to *-assoc; comm to *-comm; identity to *-identity ; isCommutativeMonoid to *-isCommutativeMonoid ; isMonoid to *-isMonoid ) open CommutativeSemiring ℕ.commutativeSemiring using () renaming (zero to *-zero; distrib to *-distrib) open DecTotalOrder Data.Nat.decTotalOrder using () renaming (refl to ≤-refl) open Morphism.Definitions ℤ ℕ _≡_ open ℕ.SemiringSolver open ≡-Reasoning ------------------------------------------------------------------------ -- Miscellaneous properties -- Some properties relating sign and ∣_∣ to _◃_. sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s sign-◃ Sign.- _ = refl sign-◃ Sign.+ _ = refl sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂ sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩ sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩ sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩ s₂ ∎ abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n abs-◃ _ zero = refl abs-◃ Sign.- (suc n) = refl abs-◃ Sign.+ (suc n) = refl abs-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂ abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩ ∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩ n₂ ∎ -- ∣_∣ commutes with multiplication. abs-*-commute : Homomorphic₂ ∣_∣ _*_ _ℕ*_ abs-*-commute i j = abs-◃ _ _ -- If you subtract a natural from itself, then you get zero. n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0 n⊖n≡0 zero = refl n⊖n≡0 (suc n) = n⊖n≡0 n ------------------------------------------------------------------------ -- The integers form a commutative ring private ---------------------------------------------------------------------- -- Additive abelian group. inverseˡ : LeftInverse (+ 0) -_ _+_ inverseˡ -[1+ n ] = n⊖n≡0 n inverseˡ (+ zero) = refl inverseˡ (+ suc n) = n⊖n≡0 n inverseʳ : RightInverse (+ 0) -_ _+_ inverseʳ i = begin i + - i ≡⟨ +-comm i (- i) ⟩ - i + i ≡⟨ inverseˡ i ⟩ + 0 ∎ +-isAbelianGroup : IsAbelianGroup _≡_ _+_ (+ 0) -_ +-isAbelianGroup = record { isGroup = record { isMonoid = +-isMonoid ; inverse = inverseˡ , inverseʳ ; ⁻¹-cong = cong -_ } ; comm = +-comm } open Algebra.Properties.AbelianGroup (record { isAbelianGroup = +-isAbelianGroup }) using () renaming (⁻¹-involutive to -‿involutive) ---------------------------------------------------------------------- -- Distributivity -- Various lemmas used to prove distributivity. sign-⊖-< : ∀ {m n} → m < n → sign (m ⊖ n) ≡ Sign.- sign-⊖-< {zero} (s≤s z≤n) = refl sign-⊖-< {suc n} (s≤s m<n) = sign-⊖-< m<n sign-⊖-≱ : ∀ {m n} → m ≱ n → sign (m ⊖ n) ≡ Sign.- sign-⊖-≱ = sign-⊖-< ∘ ℕ.≰⇒> +-⊖-left-cancel : ∀ a b c → (a ℕ+ b) ⊖ (a ℕ+ c) ≡ b ⊖ c +-⊖-left-cancel zero b c = refl +-⊖-left-cancel (suc a) b c = +-⊖-left-cancel a b c ⊖-swap : ∀ a b → a ⊖ b ≡ - (b ⊖ a) ⊖-swap zero zero = refl ⊖-swap (suc _) zero = refl ⊖-swap zero (suc _) = refl ⊖-swap (suc a) (suc b) = ⊖-swap a b -- Lemmas relating _⊖_ and _∸_. ∣⊖∣-< : ∀ {m n} → m < n → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-< {zero} (s≤s z≤n) = refl ∣⊖∣-< {suc n} (s≤s m<n) = ∣⊖∣-< m<n ∣⊖∣-≱ : ∀ {m n} → m ≱ n → ∣ m ⊖ n ∣ ≡ n ∸ m ∣⊖∣-≱ = ∣⊖∣-< ∘ ℕ.≰⇒> ⊖-≥ : ∀ {m n} → m ≥ n → m ⊖ n ≡ + (m ∸ n) ⊖-≥ z≤n = refl ⊖-≥ (s≤s n≤m) = ⊖-≥ n≤m ⊖-< : ∀ {m n} → m < n → m ⊖ n ≡ - + (n ∸ m) ⊖-< {zero} (s≤s z≤n) = refl ⊖-< {suc m} (s≤s m<n) = ⊖-< m<n ⊖-≱ : ∀ {m n} → m ≱ n → m ⊖ n ≡ - + (n ∸ m) ⊖-≱ = ⊖-< ∘ ℕ.≰⇒> -- Lemmas working around the fact that _◃_ pattern matches on its -- second argument before its first. +‿◃ : ∀ n → Sign.+ ◃ n ≡ + n +‿◃ zero = refl +‿◃ (suc _) = refl -‿◃ : ∀ n → Sign.- ◃ n ≡ - + n -‿◃ zero = refl -‿◃ (suc _) = refl -- The main distributivity proof. distrib-lemma : ∀ a b c → (c ⊖ b) * -[1+ a ] ≡ a ℕ+ b ℕ* suc a ⊖ (a ℕ+ c ℕ* suc a) distrib-lemma a b c rewrite +-⊖-left-cancel a (b ℕ* suc a) (c ℕ* suc a) | ⊖-swap (b ℕ* suc a) (c ℕ* suc a) with b ≤? c ... | yes b≤c rewrite ⊖-≥ b≤c | ⊖-≥ (b≤c *-mono (≤-refl {x = suc a})) | -‿◃ ((c ∸ b) ℕ* suc a) | ℕ.*-distrib-∸ʳ (suc a) c b = refl ... | no b≰c rewrite sign-⊖-≱ b≰c | ∣⊖∣-≱ b≰c | +‿◃ ((b ∸ c) ℕ* suc a) | ⊖-≱ (b≰c ∘ ℕ.cancel-*-right-≤ b c a) | -‿involutive (+ (b ℕ* suc a ∸ c ℕ* suc a)) | ℕ.*-distrib-∸ʳ (suc a) b c = refl distribʳ : _*_ DistributesOverʳ _+_ distribʳ (+ zero) y z rewrite proj₂ *-zero ∣ y ∣ | proj₂ *-zero ∣ z ∣ | proj₂ *-zero ∣ y + z ∣ = refl distribʳ x (+ zero) z rewrite proj₁ +-identity z | proj₁ +-identity (sign z S* sign x ◃ ∣ z ∣ ℕ* ∣ x ∣) = refl distribʳ x y (+ zero) rewrite proj₂ +-identity y | proj₂ +-identity (sign y S* sign x ◃ ∣ y ∣ ℕ* ∣ x ∣) = refl distribʳ -[1+ a ] -[1+ b ] -[1+ c ] = cong +_ $ solve 3 (λ a b c → (con 2 :+ b :+ c) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c distribʳ (+ suc a) (+ suc b) (+ suc c) = cong +_ $ solve 3 (λ a b c → (con 1 :+ b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (con 1 :+ c) :* (con 1 :+ a)) refl a b c distribʳ -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] $ solve 3 (λ a b c → a :+ (b :+ (con 1 :+ c)) :* (con 1 :+ a) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c distribʳ (+ suc a) -[1+ b ] -[1+ c ] = cong -[1+_] $ solve 3 (λ a b c → a :+ (con 1 :+ a :+ (b :+ c) :* (con 1 :+ a)) := (con 1 :+ b) :* (con 1 :+ a) :+ (a :+ c :* (con 1 :+ a))) refl a b c distribʳ -[1+ a ] -[1+ b ] (+ suc c) = distrib-lemma a b c distribʳ -[1+ a ] (+ suc b) -[1+ c ] = distrib-lemma a c b distribʳ (+ suc a) -[1+ b ] (+ suc c) rewrite +-⊖-left-cancel a (c ℕ* suc a) (b ℕ* suc a) with b ≤? c ... | yes b≤c rewrite ⊖-≥ b≤c | +-comm (- (+ (a ℕ+ b ℕ* suc a))) (+ (a ℕ+ c ℕ* suc a)) | ⊖-≥ (b≤c *-mono ≤-refl {x = suc a}) | ℕ.*-distrib-∸ʳ (suc a) c b | +‿◃ (c ℕ* suc a ∸ b ℕ* suc a) = refl ... | no b≰c rewrite sign-⊖-≱ b≰c | ∣⊖∣-≱ b≰c | -‿◃ ((b ∸ c) ℕ* suc a) | ⊖-≱ (b≰c ∘ ℕ.cancel-*-right-≤ b c a) | ℕ.*-distrib-∸ʳ (suc a) b c = refl distribʳ (+ suc c) (+ suc a) -[1+ b ] rewrite +-⊖-left-cancel c (a ℕ* suc c) (b ℕ* suc c) with b ≤? a ... | yes b≤a rewrite ⊖-≥ b≤a | ⊖-≥ (b≤a *-mono ≤-refl {x = suc c}) | +‿◃ ((a ∸ b) ℕ* suc c) | ℕ.*-distrib-∸ʳ (suc c) a b = refl ... | no b≰a rewrite sign-⊖-≱ b≰a | ∣⊖∣-≱ b≰a | ⊖-≱ (b≰a ∘ ℕ.cancel-*-right-≤ b a c) | -‿◃ ((b ∸ a) ℕ* suc c) | ℕ.*-distrib-∸ʳ (suc c) b a = refl -- The IsCommutativeSemiring module contains a proof of -- distributivity which is used below. isCommutativeSemiring : IsCommutativeSemiring _≡_ _+_ _*_ (+ 0) (+ 1) isCommutativeSemiring = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isCommutativeMonoid = *-isCommutativeMonoid ; distribʳ = distribʳ ; zeroˡ = λ _ → refl } commutativeRing : CommutativeRing _ _ commutativeRing = record { Carrier = ℤ ; _≈_ = _≡_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = + 0 ; 1# = + 1 ; isCommutativeRing = record { isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-isMonoid ; distrib = IsCommutativeSemiring.distrib isCommutativeSemiring } ; *-comm = *-comm } } import Algebra.RingSolver.Simple as Solver import Algebra.RingSolver.AlmostCommutativeRing as ACR module RingSolver = Solver (ACR.fromCommutativeRing commutativeRing) _≟_ ------------------------------------------------------------------------ -- More properties -- Multiplication is right cancellative for non-zero integers. cancel-*-right : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j cancel-*-right i j k ≢0 eq with signAbs k cancel-*-right i j .(+ 0) ≢0 eq | s ◂ zero = contradiction refl ≢0 cancel-*-right i j .(s ◃ suc n) ≢0 eq | s ◂ suc n with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n ... | .(suc n) | refl | .s | refl = ◃-cong (sign-i≡sign-j i j eq) $ ℕ.cancel-*-right ∣ i ∣ ∣ j ∣ $ abs-cong eq where sign-i≡sign-j : ∀ i j → sign i S* s ◃ ∣ i ∣ ℕ* suc n ≡ sign j S* s ◃ ∣ j ∣ ℕ* suc n → sign i ≡ sign j sign-i≡sign-j i j eq with signAbs i | signAbs j sign-i≡sign-j .(+ 0) .(+ 0) eq | s₁ ◂ zero | s₂ ◂ zero = refl sign-i≡sign-j .(+ 0) .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂ with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) ... | .(suc n₂) | refl with abs-cong {s₁} {sign (s₂ ◃ suc n₂) S* s} {0} {suc n₂ ℕ* suc n} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .(+ 0) eq | s₁ ◂ suc n₁ | s₂ ◂ zero with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) ... | .(suc n₁) | refl with abs-cong {sign (s₁ ◃ suc n₁) S* s} {s₁} {suc n₁ ℕ* suc n} {0} eq ... | () sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂ with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁) | sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁ | ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂) | sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂ ... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl = SignProp.cancel-*-right s₁ s₂ (sign-cong eq) -- Multiplication with a positive number is right cancellative (for -- _≤_). cancel-*-+-right-≤ : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n cancel-*-+-right-≤ (-[1+ m ]) (-[1+ n ]) o (-≤- n≤m) = -≤- (≤-pred (ℕ.cancel-*-right-≤ (suc n) (suc m) o (s≤s n≤m))) cancel-*-+-right-≤ ℤ.-[1+ _ ] (+ _) _ _ = -≤+ cancel-*-+-right-≤ (+ 0) ℤ.-[1+ _ ] _ () cancel-*-+-right-≤ (+ suc _) ℤ.-[1+ _ ] _ () cancel-*-+-right-≤ (+ 0) (+ 0) _ _ = +≤+ z≤n cancel-*-+-right-≤ (+ 0) (+ suc _) _ _ = +≤+ z≤n cancel-*-+-right-≤ (+ suc _) (+ 0) _ (+≤+ ()) cancel-*-+-right-≤ (+ suc m) (+ suc n) o (+≤+ m≤n) = +≤+ (ℕ.cancel-*-right-≤ (suc m) (suc n) o m≤n) -- Multiplication with a positive number is monotone. *-+-right-mono : ∀ n → (λ x → x * + suc n) Preserves _≤_ ⟶ _≤_ *-+-right-mono _ (-≤+ {n = 0}) = -≤+ *-+-right-mono _ (-≤+ {n = suc _}) = -≤+ *-+-right-mono x (-≤- n≤m) = -≤- (≤-pred (s≤s n≤m *-mono ≤-refl {x = suc x})) *-+-right-mono _ (+≤+ {m = 0} {n = 0} m≤n) = +≤+ m≤n *-+-right-mono _ (+≤+ {m = 0} {n = suc _} m≤n) = +≤+ z≤n *-+-right-mono _ (+≤+ {m = suc _} {n = 0} ()) *-+-right-mono x (+≤+ {m = suc _} {n = suc _} m≤n) = +≤+ (m≤n *-mono ≤-refl {x = suc x})
{ "alphanum_fraction": 0.4528934644, "avg_line_length": 33.390625, "ext": "agda", "hexsha": "19cf2d498547b1ba9b506a5a8e5a4bb9c0dcc7a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Integer/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Integer/Properties.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Integer/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 5374, "size": 12822 }
open import Nat open import Prelude open import List open import contexts open import judgemental-erase open import moveerase open import sensibility open import statics-checks open import statics-core module examples where -- actions must always specify enough names to name all inserted holes. depending on -- the context, not all names are used, and we pass this argument to make that clear. -- an actual implementation could automatically insert hole names as needed no-hole : Nat no-hole = 0 -- the function (λx. x + 1) where x is named "0". add1 : hexp add1 = ·λ 0 (X 0 ·+ N 1) -- this is the derivation that fn has type num ==> num ex1 : ∅ ⊢ add1 <= (num ==> num) ex1 = ALam refl MAArr (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume SNum TCRefl)) TCRefl) -- the derivation that when applied to the numeric argument 10 add1 -- produces a num. ex2 : ∅ ⊢ (add1 ·: (num ==> num)) ∘ (N 10) => num ex2 = SAp (SAsc ex1) MAArr (ASubsume SNum TCRefl) -- the slightly longer derivation that argues that add1 applied to a -- variable that's known to be a num produces a num ex2b : (∅ ,, (1 , num)) ⊢ (add1 ·: (num ==> num)) ∘ (X 1) => num ex2b = SAp (SAsc (ALam refl MAArr (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume SNum TCRefl)) TCRefl))) MAArr (ASubsume (SVar refl) TCRefl) -- eta-expanding addition to curry it gets num → num → num ex3 : ∅ ⊢ ·λ 0 ( (·λ 1 (X 0 ·+ X 1)) ·: (num ==> num)) <= (num ==> (num ==> num)) ex3 = ALam refl MAArr (ASubsume (SAsc (ALam refl MAArr (ASubsume (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume (SVar refl) TCRefl)) TCRefl))) TCRefl) -- applying three to four has type hole -- but there is no action that -- can fill the hole in the type so this term is forever incomplete. ex4 : ∅ ⊢ ((N 3) ·: ⦇-⦈) ∘ (N 4) => ⦇-⦈ ex4 = SAp (SAsc (ASubsume SNum TCHole2)) MAHole (ASubsume SNum TCHole2) -- this module contains small examples that demonstrate the judgements -- and definitions in action. a few of them are directly from the paper, -- to aid in comparision between the on-paper notation and the -- corresponding agda syntax. -- these smaller derivations motivate the need for the zipper rules: you -- have to unzip down to the point of the structure where you want to -- apply an edit, do the local edit rule, and then put it back together -- around you talk0 : ∅ ⊢ (▹ ⦇-⦈[ 0 ] ◃ ·+₁ ⦇-⦈[ 1 ]) => num ~ construct (numlit 7 no-hole) ~> (▹ N 7 ◃ ·+₁ ⦇-⦈[ 1 ]) => num talk0 = SAZipPlus1 (AASubsume EETop SEHole SAConNumlit TCRefl) talk1 : ∅ ⊢ (·λ 0 ⦇-⦈[ 0 ] ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈)) => (⦇-⦈ ==> ⦇-⦈) ~ construct num ~> (·λ 0 ⦇-⦈[ 0 ] ·:₂ (▹ num ◃ ==>₁ ⦇-⦈)) => (num ==> ⦇-⦈) talk1 = SAZipAsc2 (TMArrZip1 TMConNum) (ETArrL ETTop) (ETArrL ETTop) (ALam refl MAArr (ASubsume SEHole TCRefl)) -- this is similar to figure one from the paper, but with a half annotated lambda -- rather than a lambda with a full type ascription fig1-l : List action fig1-l = construct (lam 0 no-hole no-hole) :: construct num :: move parent :: move (child 2) :: construct (var 0 no-hole) :: construct (plus no-hole no-hole) :: construct (numlit 1 no-hole) :: [] figure1 : runsynth ∅ ▹ ⦇-⦈[ 0 ] ◃ ⦇-⦈ fig1-l (·λ 0 ·[ num ]₂ (X 0 ·+₂ ▹ N 1 ◃)) (num ==> num) figure1 = DoSynth (SAConLam refl) (DoSynth (SAZipLam1 refl ETTop ETTop TMConNum SEHole SEHole) (DoSynth (SAMove EMHalfLamParent1) (DoSynth (SAMove EMHalfLamChild2) (DoSynth (SAZipLam2 refl EETop SEHole (SAConVar refl)) (DoSynth (SAZipLam2 refl EETop (SVar refl) (SAConPlus1 TCRefl)) (DoSynth (SAZipLam2 refl (EEPlusR EETop) (SPlus (ASubsume (SVar refl) TCRefl) (ASubsume SEHole TCHole1)) (SAZipPlus2 (AASubsume EETop SEHole SAConNumlit TCRefl))) DoRefl)))))) -- this is figure two from the paper incr : Nat incr = 0 fig2-l : List action fig2-l = construct (var incr no-hole) :: construct (ap no-hole no-hole) :: construct (var incr 0) :: construct (ap no-hole no-hole) :: construct (numlit 3 no-hole) :: move parent :: move parent :: finish :: [] figure2 : runsynth (∅ ,, (incr , num ==> num)) ▹ ⦇-⦈[ 0 ] ◃ ⦇-⦈ fig2-l (X incr ∘₂ ▹ X incr ∘ (N 3) ◃) num figure2 = DoSynth (SAConVar refl) (DoSynth (SAConApArr MAArr) (DoSynth (SAZipApAna MAArr (SVar refl) (AAConVar (λ ()) refl)) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume (EENEHole EETop) (SNEHole (SVar refl)) (SAZipNEHole EETop (SVar refl) (SAConApArr MAArr)) TCHole1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume (EENEHole (EEApR EETop)) (SNEHole (SAp (SVar refl) MAArr (ASubsume SEHole TCHole1))) (SAZipNEHole (EEApR EETop) (SAp (SVar refl) MAArr (ASubsume SEHole TCHole1)) (SAZipApAna MAArr (SVar refl) (AASubsume EETop SEHole SAConNumlit TCRefl))) TCHole1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume (EENEHole (EEApR EETop)) (SNEHole (SAp (SVar refl) MAArr (ASubsume SNum TCRefl))) (SAZipNEHole (EEApR EETop) (SAp (SVar refl) MAArr (ASubsume SNum TCRefl)) (SAMove EMApParent2)) TCHole1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AAMove EMNEHoleParent)) (DoSynth (SAZipApAna MAArr (SVar refl) (AAFinish (ASubsume (SAp (SVar refl) MAArr (ASubsume SNum TCRefl)) TCRefl))) DoRefl))))))) --- this demonstrates that the other ordering discussed is also fine. it --- results in different proof terms and actions but ultimately produces --- the same expression. there are many other lists of actions that would --- also work, these are just two. fig2alt-l : List action fig2alt-l = construct (var incr no-hole) :: construct (ap no-hole 0) :: construct (ap no-hole 1) :: construct (numlit 3 no-hole) :: move parent :: move (child 1) :: construct (var incr no-hole) :: move parent :: [] figure2alt : runsynth (∅ ,, (incr , num ==> num)) ▹ ⦇-⦈[ 0 ] ◃ ⦇-⦈ fig2alt-l (X incr ∘₂ ▹ X incr ∘ (N 3) ◃) num figure2alt = DoSynth (SAConVar refl) (DoSynth (SAConApArr MAArr) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume EETop SEHole (SAConApArr MAHole) TCHole1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume (EEApR EETop) (SAp SEHole MAHole (ASubsume SEHole TCRefl)) (SAZipApAna MAHole SEHole (AASubsume EETop SEHole SAConNumlit TCHole2)) TCHole1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AAMove EMApParent2)) (DoSynth (SAZipApAna MAArr (SVar refl) (AAMove EMApChild1)) (DoSynth (SAZipApAna MAArr (SVar refl) (AASubsume (EEApL EETop) (SAp SEHole MAHole (ASubsume SNum TCHole2)) (SAZipApArr MAArr EETop SEHole (SAConVar refl) (ASubsume SNum TCRefl)) TCRefl)) (DoSynth (SAZipApAna MAArr (SVar refl) (AAMove EMApParent1)) DoRefl))))))) -- these motivate why actions aren't deterministic, and why it's -- reasonable to ban the derivations that we do. the things that differ -- in the term as a result of the appeal to subsumption in the second -- derivation aren't needed -- the ascription is redundant because the -- type is already pinned to num, so that's the only thing that -- could fill the holes produced. notdet1A : ∅ ⊢ ▹ ⦇-⦈[ 0 ] ◃ ~ construct asc ~> ⦇-⦈[ 0 ] ·:₂ ▹ num ◃ ⇐ num notdet1A = AAConAsc notdet1B : ∅ ⊢ ▹ ⦇-⦈[ 0 ] ◃ ~ construct asc ~> ⦇-⦈[ 0 ] ·:₂ ▹ ⦇-⦈ ◃ ⇐ num notdet1B = AASubsume EETop SEHole SAConAsc TCHole1
{ "alphanum_fraction": 0.5833835765, "avg_line_length": 44.1117021277, "ext": "agda", "hexsha": "ae003f66bc106b73cc170468bb8b63fd599bb78f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "examples.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2854, "size": 8293 }
module 050-group where -- We need monoids. open import 040-monoid -- A group is a monoid where every element has an inverse. This is -- equivalent to saying that we have a function mapping every element -- to an inverse of that element: this function is called "invert" -- below. record Group {M : Set} (_==_ : M -> M -> Set) (_*_ : M -> M -> M) (id : M) (invert : M -> M) : Set1 where field monoid : Monoid _==_ _*_ id icong : ∀ {r s} -> (r == s) -> (invert r) == (invert s) r*ir==id : ∀ {r} -> (r * (invert r)) == id ir*r==id : ∀ {r} -> ((invert r) * r) == id open Monoid monoid public -- Trivial but useful equalities. id==r*ir : ∀ {r} -> id == (r * (invert r)) id==r*ir = symm r*ir==id id==ir*r : ∀ {r} -> id == ((invert r) * r) id==ir*r = symm ir*r==id -- Double inverse gets back original. iir==r : ∀ {r} -> (invert (invert r)) == r iir==r {r} = trans3 iir==r*ir*iir r*ir*iir==r*id r*id==r where iir==r*ir*iir : (invert (invert r)) == (r * ((invert r) * (invert (invert r)))) iir==r*ir*iir = trans3 r==id*r (cong id==r*ir refl) assoc -- assoc {r} {ir} {iir} : (r * ir) * iir == r * (ir * iir) -- id==r*ir : id == r * ir -- cong % (refl {iir}) : id * iir == (r * ir) * iir -- id*r==r {iir} : iir == id * iir -- trans3 % %% %%%% : iir == r * (ir * iir) r*ir*iir==r*id : (r * ((invert r) * (invert (invert r)))) == (r * id) r*ir*iir==r*id = cong refl r*ir==id -- Uniqueness of (left and right) inverse. irleftunique : ∀ {r} -> ∀ {s} -> (s * r) == id -> s == (invert r) irleftunique {r} {s} s*r==id = trans (symm s*r*ir==s) (s*r*ir==ir) where s*r*ir==ir : ((s * r) * (invert r)) == (invert r) s*r*ir==ir = trans (cong s*r==id refl) id*r==r s*r*ir==s : ((s * r) * (invert r)) == s s*r*ir==s = trans3 assoc (cong refl r*ir==id) r*id==r irrightunique : ∀ {r} -> ∀ {s} -> (r * s) == id -> s == (invert r) irrightunique {r} {s} r*s==id = trans (symm ir*r*s==s) (ir*r*s==ir) where ir*r*s==ir : ((invert r) * (r * s)) == (invert r) ir*r*s==ir = trans (cong refl r*s==id) r*id==r ir*r*s==s : ((invert r) * (r * s)) == s ir*r*s==s = trans3 (symm assoc) (cong ir*r==id refl) id*r==r
{ "alphanum_fraction": 0.4804804805, "avg_line_length": 38.85, "ext": "agda", "hexsha": "0a3a413faca02b54677ec1754d3fed592e98a988", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "050-group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "050-group.agda", "max_line_length": 79, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "050-group.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 900, "size": 2331 }
------------------------------------------------------------------------------ -- Some properties of the function iter₀ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Iter0.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Base.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.List.Type open import FOTC.Program.Iter0.Iter0 ------------------------------------------------------------------------------ iter₀-0 : ∀ f → iter₀ f zero ≡ [] iter₀-0 f = iter₀ f zero ≡⟨ iter₀-eq f zero ⟩ (if (iszero₁ zero) then [] else (zero ∷ iter₀ f (f · zero))) ≡⟨ ifCong₁ iszero-0 ⟩ (if true then [] else (zero ∷ iter₀ f (f · zero))) ≡⟨ if-true [] ⟩ [] ∎
{ "alphanum_fraction": 0.496124031, "avg_line_length": 31.2727272727, "ext": "agda", "hexsha": "490dcbc9d2ea76160838b3e34295e6d8b4627209", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Iter0/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 253, "size": 1032 }
{-# OPTIONS --without-K #-} {- After a few preliminary lemmata about representing dependent functions, this module will derive the dependent universal property of our truncations (defined later) from the non-dependent one. -} module Universe.Trunc.Universal where open import lib.Basics open import lib.Equivalences2 open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.Unit open import Universe.Utility.General open import Universe.Utility.TruncUniverse -- In the fibration fst : Σ A B → A, the fiber over a is given by B a. trivial-fibers : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) → B a ≃ Σ (Σ A B) (λ s → a == fst s) trivial-fibers {A = A} {B} a = B a ≃⟨ Σ₁-Unit ⁻¹ ⟩ Σ ⊤ (λ _ → B a) ≃⟨ equiv-Σ-fst _ (snd (e ⁻¹)) ⟩ Σ (Σ A (λ s → a == s)) (B ∘ fst) ≃⟨ Σ-comm-snd ⟩ Σ (Σ A B) (λ s → a == fst s) ≃∎ where e : Σ A (λ s → a == s) ≃ ⊤ e = contr-equiv-Unit (pathfrom-is-contr a) {- Liftings of u : Π A B through fst : {a : A} → Σ (B a) (C a) → B a correponds to dependent functions from (a : A) to C a (u a). As mentioned in the article, we will make use only of a special case: liftings of u : A → B through fst : Σ B C → B correponds to dependent functions from (a : A) to C a. -} Π-as-liftings : ∀ {i j k} {A : Type i} {B : A → Type j} (u : Π A B) {C : (a : A) → B a → Type k} → _ Π-as-liftings {A = A} {B} u {C} = Π A (λ a → C a (u a)) ≃⟨ trivial-fibers u ⟩ Σ (Σ (Π A B) (λ r → Π A (λ a → C a (r a)))) (λ {(r , _) → u == r}) ≃⟨ equiv-Σ-fst _ (snd choice) ⁻¹ ⟩ Σ (Π A (λ a → Σ (B a) (C a))) (λ s → u == fst ∘ s) ≃∎ {- Dependent functions from (a : A) to B a are given by sections of fst : Σ A B → A. Noting that sections are non-dependent functions, this folklore insight is a main ingredient in passing from non-dependent universal property to the dependent one. -} Π-as-sections : ∀ {i j} {A : Type i} {B : A → Type j} → Π A B ≃ Σ (A → Σ A B) (λ s → idf _ == fst ∘ s) Π-as-sections = Π-as-liftings (idf _) {- Fix a truncation level n and a Type A. We will examine what it means for an n-type 'type' with constructor cons : A → ⟦ type ⟧ to have the universal property of the n-truncation of A. -} module _ {i} {n : ℕ₋₂} {A : Type i} (type : n -Type i) (cons : A → ⟦ type ⟧) where -- *** Definition 6.2 *** {- The (non-dependent) universal property: λ f → f ∘ cons induces equivalence (type → X) ≃ (A → X) -} univ-Type : ∀ (k : ULevel) → Type (i ⊔ lsucc k) univ-Type k = (X : n -Type k) → is-equiv {A = ⟦ type ⟧ → ⟦ X ⟧} {B = A → ⟦ X ⟧} (λ f → f ∘ cons) {- The dependent universal property: λ f → f ∘ cons induces ((a : type) → X a) ≃ ((a : A) → X (cons a)) -} duniv-Type : ∀ (k : ULevel) → Type (i ⊔ lsucc k) duniv-Type k = (X : ⟦ type ⟧ → n -Type k) → is-equiv {A = Π ⟦ type ⟧ (⟦_⟧ ∘ X )} {B = Π A (⟦_⟧ ∘ X ∘ cons)} (λ f → f ∘ cons) {- If the universal property holds for a certain elimination universe U_j₂, then also for an elimination universe U_j₁ with j₁ ≤ j₂. Agda does not support specifying ordering relations between universe levels directly, but we may simulate j₁ ≤ j₂ by decomposing j₁ = k₁ and j₂ = k₁ ⊔ k₂. -} univ-lower : ∀ {k₁} (k₂ : ULevel) → univ-Type (k₁ ⊔ k₂) → univ-Type k₁ univ-lower {k₁} k₂ univ X = transport (λ z → is-equiv (λ f → z ∘ f ∘ cons)) (λ= (<–-inv-r e)) hup where e : Lift {j = k₁ ⊔ k₂} ⟦ X ⟧ ≃ ⟦ X ⟧ e = lift-equiv hup : is-equiv (λ f → –> e ∘ <– e ∘ f ∘ cons) hup = pre∘-is-equiv (snd e) ∘ise univ (Lift-≤ X) ∘ise pre∘-is-equiv (snd (e ⁻¹)) -- *** Lemma 6.6 *** {- We will now prove the main lemma of this section: The (non-dependent) universal property implies the dependent one. -} module with-univ {j} (univ : univ-Type (i ⊔ j)) (P : ⟦ type ⟧ → n -Type j) where -- abbreviating the underlying types (for readability) T = ⟦ type ⟧ Q = ⟦_⟧ ∘ P {- As is usual for deriving dependent eliminators, the crux for deriving the dependent universal property is to first transform the *dependent* function spaces into *non-dependent* sections/liftings according to the lemmata above. -} eqv : Π T Q ≃ Π A (Q ∘ cons) eqv = Π-as-liftings cons ⁻¹ ∘e eqv-liftings ∘e Π-as-liftings (idf _) where {- Our goal now is an equivalence of Σ-types where the first components fit the template of the *non-dependent* universal property. -} eqv-liftings : Σ (T → Σ T Q) (λ s → idf _ == fst ∘ s) ≃ Σ (A → Σ T Q) (λ t → cons == fst ∘ t) eqv-liftings = equiv-Σ' (_ , univ (Σ-≤ type P)) lem where {- What remains is just the universal property applied to X itself, and then switching to path spaces. In the usual derivation of dependent elimination, this corresponds to application of the η-rule to the identity function. -} lem : (s : T → Σ T Q) → (idf _ == fst ∘ s) ≃ (cons == fst ∘ s ∘ cons) lem s = equiv-ap (_ , univ-lower (i ⊔ j) univ type) (idf _) (fst ∘ s) {- Due to construction of the above equivalence via conjugation of the (non-dependent) universal property (on the first component), its action ends up being precisely composition with the constructor. Because of technical limitations of the Agda type-checker, we encapsulate the result in an abstract block to prevent the type checker from unnecessarily unfolding its value later on. -} abstract duniv : is-equiv (λ (f : ⟦ Π-≤ ⟦ type ⟧ P ⟧) → f ∘ cons) duniv = snd eqv
{ "alphanum_fraction": 0.567008547, "avg_line_length": 43.6567164179, "ext": "agda", "hexsha": "72343d2b0e96c2917e74d8396c4da706d4a6ea9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "Universe/Trunc/Universal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "Universe/Trunc/Universal.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "Universe/Trunc/Universal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1995, "size": 5850 }
-- notes-03-wednesday.agda open import mylib {- Classical vs intuitionistic logic In classical logica, we assume that each proposition is either true or false. Excluded middle, tertium non datur (the third is not given). To prove P, assume not P and derive a contradiction: indirect proof, reduction ad absurdum, reduction to the absurd. -} TND : prop → prop TND P = P ∨ ¬ P deMorgan' : TND P → ¬ (P ∧ Q) ⇔ ¬ P ∨ ¬ Q proj₁ (deMorgan' (inj₁ p)) h = inj₂ (λ q → h (p , q)) proj₁ (deMorgan' (inj₂ np)) h = inj₁ np proj₂ (deMorgan' tnd) (inj₁ np) (p , q) = np p proj₂ (deMorgan' _) (inj₂ nq) (p , q) = nq q RAA : prop → prop RAA P = ¬ ¬ P → P tnd→raa : TND P → RAA P tnd→raa (inj₁ p) nnp = p tnd→raa (inj₂ np) nnp = case⊥ (nnp np) {- raa→tnd : RAA P → TND P is not provable. -} nntnd : ¬ ¬ (P ∨ ¬ P) nntnd h = h (inj₂ (λ p → h (inj₁ p))) raa→tnd : ({P : prop} → RAA P) → {Q : prop} → TND Q raa→tnd raa = raa nntnd {- Datatypes, infinite types ℕ - natural numbers, Peano Every natural number is either 0 or a successor of a number. Peano arithmetic. -} data ℕ : Set where zero : ℕ suc : ℕ → ℕ one : ℕ one = suc zero two : ℕ two = suc one {-# BUILTIN NATURAL ℕ #-} fifteen : ℕ fifteen = 15 infixl 2 _+_ _+_ : ℕ → ℕ → ℕ -- structural recursive definition zero + n = n suc m + n = suc (m + n) infixl 4 _*_ _*_ : ℕ → ℕ → ℕ zero * n = 0 suc m * n = m * n + n data List (A : Set) : Set where [] : List A -- nil _∷_ : A → List A → List A -- cons -- ℕ = List ⊤ _++_ : List A → List A → List A -- append [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) -- _++'_ : List A \to List B \to List (A \vee B)? -- recursive but not inductive {-# NO_POSITIVITY_CHECK #-} data Λ : Set where lam : (Λ → Λ) → Λ app : Λ → Λ → Λ app (lam f) x = f x self-apply : Λ self-apply = lam λ x → app x x Ω : Λ Ω = app self-apply self-apply -- normalisation doesn't terminate data Ord : Set where zero : Ord suc : Ord → Ord lim : (ℕ → Ord) → Ord -- strictly positive {-# NO_POSITIVITY_CHECK #-} data Reynolds : Set where inn : ((Reynolds → Bool) → Bool) → Reynolds {- Inconsistent with classical logic It doesn't adhere to the intuitionistic explanation of inductive datatypes. Hence we reject types like this. - strictly positive = recursive type only appears on the right of an arrow type. - strictly positive = container / polynomial functors. -}
{ "alphanum_fraction": 0.6122022566, "avg_line_length": 20.1092436975, "ext": "agda", "hexsha": "a4bfe0de1281a41609ed6bc52b19445d7482897e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FoxySeta/mgs-2021", "max_forks_repo_path": "Type Theory/notes-03-wednesday.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FoxySeta/mgs-2021", "max_issues_repo_path": "Type Theory/notes-03-wednesday.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FoxySeta/mgs-2021", "max_stars_repo_path": "Type Theory/notes-03-wednesday.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 892, "size": 2393 }
------------------------------------------------------------------------ -- Substitutions ------------------------------------------------------------------------ module RecursiveTypes.Substitution where open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas import Data.Fin.Substitution.List as ListSubst open import Data.Nat open import Data.List open import Data.Vec as Vec open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong₂) open PropEq.≡-Reasoning open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_; _▻_) open import RecursiveTypes.Syntax -- Code for applying substitutions. module TyApp {T : ℕ → Set} (l : Lift T Ty) where open Lift l hiding (var) -- Applies a substitution to a recursive type. infixl 8 _/_ _/_ : ∀ {m n} → Ty m → Sub T m n → Ty n ⊥ / ρ = ⊥ ⊤ / ρ = ⊤ var x / ρ = lift (Vec.lookup ρ x) σ ⟶ τ / ρ = (σ / ρ) ⟶ (τ / ρ) μ σ ⟶ τ / ρ = μ (σ / ρ ↑) ⟶ (τ / ρ ↑) open Application (record { _/_ = _/_ }) using (_/✶_) -- Some lemmas about _/_. ⊥-/✶-↑✶ : ∀ k {m n} (ρs : Subs T m n) → ⊥ /✶ ρs ↑✶ k ≡ ⊥ ⊥-/✶-↑✶ k ε = refl ⊥-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⊥-/✶-↑✶ k ρs) refl ⊤-/✶-↑✶ : ∀ k {m n} (ρs : Subs T m n) → ⊤ /✶ ρs ↑✶ k ≡ ⊤ ⊤-/✶-↑✶ k ε = refl ⊤-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⊤-/✶-↑✶ k ρs) refl ⟶-/✶-↑✶ : ∀ k {m n σ τ} (ρs : Subs T m n) → σ ⟶ τ /✶ ρs ↑✶ k ≡ (σ /✶ ρs ↑✶ k) ⟶ (τ /✶ ρs ↑✶ k) ⟶-/✶-↑✶ k ε = refl ⟶-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⟶-/✶-↑✶ k ρs) refl μ⟶-/✶-↑✶ : ∀ k {m n σ τ} (ρs : Subs T m n) → μ σ ⟶ τ /✶ ρs ↑✶ k ≡ μ (σ /✶ ρs ↑✶ suc k) ⟶ (τ /✶ ρs ↑✶ suc k) μ⟶-/✶-↑✶ k ε = refl μ⟶-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (μ⟶-/✶-↑✶ k ρs) refl tySubst : TermSubst Ty tySubst = record { var = var; app = TyApp._/_ } open TermSubst tySubst hiding (var) -- σ [0≔ τ ] replaces all occurrences of variable 0 in σ with τ. infix 8 _[0≔_] _[0≔_] : ∀ {n} → Ty (suc n) → Ty n → Ty n σ [0≔ τ ] = σ / sub τ -- The unfolding of a fixpoint. unfold[μ_⟶_] : ∀ {n} → Ty (suc n) → Ty (suc n) → Ty n unfold[μ σ ⟶ τ ] = σ ⟶ τ [0≔ μ σ ⟶ τ ] -- Substitution lemmas. tyLemmas : TermLemmas Ty tyLemmas = record { termSubst = tySubst ; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where module Lemma {T₁ T₂} {lift₁ : Lift T₁ Ty} {lift₂ : Lift T₂ Ty} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) → (∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k ⊥ = begin ⊥ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TyApp.⊥-/✶-↑✶ _ k ρs₁ ⟩ ⊥ ≡⟨ sym (TyApp.⊥-/✶-↑✶ _ k ρs₂) ⟩ ⊥ /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k ⊤ = begin ⊤ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TyApp.⊤-/✶-↑✶ _ k ρs₁ ⟩ ⊤ ≡⟨ sym (TyApp.⊤-/✶-↑✶ _ k ρs₂) ⟩ ⊤ /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (var x) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (σ ⟶ τ) = begin σ ⟶ τ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TyApp.⟶-/✶-↑✶ _ k ρs₁ ⟩ (σ /✶₁ ρs₁ ↑✶₁ k) ⟶ (τ /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⟶_ (/✶-↑✶ ρs₁ ρs₂ hyp k σ) (/✶-↑✶ ρs₁ ρs₂ hyp k τ) ⟩ (σ /✶₂ ρs₂ ↑✶₂ k) ⟶ (τ /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (TyApp.⟶-/✶-↑✶ _ k ρs₂) ⟩ σ ⟶ τ /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (μ σ ⟶ τ) = begin μ σ ⟶ τ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TyApp.μ⟶-/✶-↑✶ _ k ρs₁ ⟩ μ (σ /✶₁ ρs₁ ↑✶₁ suc k) ⟶ (τ /✶₁ ρs₁ ↑✶₁ suc k) ≡⟨ cong₂ μ_⟶_ (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) σ) (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) τ) ⟩ μ (σ /✶₂ ρs₂ ↑✶₂ suc k) ⟶ (τ /✶₂ ρs₂ ↑✶₂ suc k) ≡⟨ sym (TyApp.μ⟶-/✶-↑✶ _ k ρs₂) ⟩ μ σ ⟶ τ /✶₂ ρs₂ ↑✶₂ k ∎ open TermLemmas tyLemmas public hiding (var) module // where private open module LS = ListSubst lemmas₄ public hiding (_//_) -- _//_ is redefined in order to make it bind weaker than -- RecursiveTypes.Subterm._∗, which binds weaker than _/_. infixl 6 _//_ _//_ : ∀ {m n} → List (Ty m) → Sub Ty m n → List (Ty n) _//_ = LS._//_
{ "alphanum_fraction": 0.4418228082, "avg_line_length": 33.2538461538, "ext": "agda", "hexsha": "279c86d5c3656f9bac63e0f6c7039786e45734f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "RecursiveTypes/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "RecursiveTypes/Substitution.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "RecursiveTypes/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2148, "size": 4323 }
-- A tactic that applies congruence and symmetry of equality proofs. -- Given a hole and a lemma it tries (in order) -- - refl -- - lemma -- - sym lemma -- - f $≡ X₁ *≡ .. *≡ Xₙ and recurses on Xᵢ -- if the goal is f us ≡ f vs -- Hidden and instance arguments of f are left alone. module Tactic.Cong where open import Prelude open import Container.Traversable open import Tactic.Reflection private refl′ : ∀ {a} {A : Set a} (x : A) → x ≡ x refl′ _ = refl pattern `refl a = def₁ (quote refl′) a parseEq : Term → Maybe (Term × Term) parseEq (def (quote _≡_) (hArg _ ∷ hArg _ ∷ vArg x ∷ vArg y ∷ [])) = just (x , y) parseEq _ = nothing -- build-cong f ps = f $≡ p₁ *≡ .. *≡ pₙ build-cong : Term → List Term → Term build-cong f [] = `refl unknown -- we tried this build-cong f (p ∷ ps) = foldl ap (def₂ (quote cong) f p) ps where ap = λ p q → def₂ (quote _*≡_) p q zipWithM!₃ : {A B C : Set} → (A → B → C → TC ⊤) → List A → List B → List C → TC ⊤ zipWithM!₃ f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z *> zipWithM!₃ f xs ys zs zipWithM!₃ _ _ _ _ = pure _ module _ (lemma : Term) where go go-cong : (d : Nat) (lhs rhs hole : Term) → TC ⊤ go d lhs rhs hole = checkType hole (def₂ (quote _≡_) lhs rhs) *> ( unify hole (`refl lhs) <|> unify hole lemma <|> unify hole (def₁ (quote sym) lemma) <|> go-cong d lhs rhs hole <|> do lhs ← reduce lhs rhs ← reduce rhs go-cong d lhs rhs hole) solve : (d : Nat) (hole : Term) → TC ⊤ solve d hole = caseM parseEq <$> (reduce =<< inferType hole) of λ where nothing → typeErrorS "Goal is not an equality type." (just (lhs , rhs)) → go d lhs rhs hole go-cong′ : ∀ d f us vs hole → TC ⊤ go-cong′ d f us vs hole = do let us₁ = map unArg (filter isVisible us) vs₁ = map unArg (filter isVisible vs) holes ← traverse (const newMeta!) us₁ zipWithM!₃ (go d) us₁ vs₁ holes unify hole (build-cong f holes) go-cong (suc d) (def f us) (def f₁ vs) hole = guard (f == f₁) (go-cong′ d (def₀ f) us vs hole) go-cong (suc d) (con c us) (con c₁ vs) hole = guard (c == c₁) (go-cong′ d (con₀ c) us vs hole) go-cong (suc d) (var x us) (var x₁ vs) hole = guard (x == x₁) (go-cong′ d (var₀ x) us vs hole) go-cong _ lhs rhs _ = empty macro by-cong : ∀ {a} {A : Set a} {x y : A} → x ≡ y → Tactic by-cong {x = x} {y} lemma hole = do `lemma ← quoteTC lemma ensureNoMetas =<< inferType hole lemMeta ← lemProxy `lemma solve lemMeta 100 hole <|> typeErrorS "Congruence failed" unify lemMeta `lemma where -- Create a meta for the lemma to avoid retype-checking it in case -- it's expensive. Don't do this if the lemma is a variable. lemProxy : Term → TC Term lemProxy lemma@(var _ []) = pure lemma lemProxy lemma = newMeta =<< quoteTC (x ≡ y)
{ "alphanum_fraction": 0.5735243944, "avg_line_length": 35.313253012, "ext": "agda", "hexsha": "52e962e1dae80ccc9a38d75c3bc04d689d79daca", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Cong.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Cong.agda", "max_line_length": 98, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Cong.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1039, "size": 2931 }
------------------------------------------------------------------------ -- A definitional interpreter ------------------------------------------------------------------------ {-# OPTIONS --cubical --sized-types #-} module Lambda.Partiality-monad.Inductive.Interpreter where open import Equality.Propositional.Cubical open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) open import Function-universe equality-with-J hiding (id; _∘_) open import Maybe equality-with-J open import Monad equality-with-J open import Vec.Function equality-with-J open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Fixpoints open import Partiality-monad.Inductive.Monad open import Lambda.Syntax hiding ([_]) open Closure Tm ------------------------------------------------------------------------ -- An interpreter monad -- The interpreter monad. M : ∀ {ℓ} → Type ℓ → Type ℓ M = MaybeT _⊥ -- Information ordering. infix 4 _⊑M_ _⊑M_ : ∀ {a} {A : Type a} → M A → M A → Type a x ⊑M y = run x ⊑ run y -- Bind is monotone. _>>=ᵐ-mono_ : ∀ {ℓ} {A B : Type ℓ} {x y : M A} {f g : A → M B} → x ⊑M y → (∀ z → f z ⊑M g z) → x >>= f ⊑M y >>= g _>>=ᵐ-mono_ {x = x} {y} {f} {g} x⊑y f⊑g = run x >>= maybe (MaybeT.run ∘ f) (return nothing) ⊑⟨ x⊑y >>=-mono maybe f⊑g (run fail ■) ⟩■ run y >>= maybe (MaybeT.run ∘ g) (return nothing) ■ -- A variant of bind for sequences. infix 5 _>>=ˢ_ _>>=ˢ_ : {A B : Type} → Increasing-sequence (Maybe A) → (A → Increasing-sequence (Maybe B)) → Increasing-sequence (Maybe B) s >>=ˢ f = (λ n → MaybeT.run (wrap (s [ n ]) >>= λ x → wrap (f x [ n ]))) , (λ n → increasing s n >>=ᵐ-mono λ x → increasing (f x) n) ------------------------------------------------------------------------ -- One interpreter module Interpreter₁ where -- This interpreter is defined as the least upper bound of a -- sequence of increasingly defined interpreters. infix 10 _∙_ mutual ⟦_⟧′ : ∀ {n} → Tm n → Env n → ℕ → M Value ⟦ con i ⟧′ ρ n = return (con i) ⟦ var x ⟧′ ρ n = return (ρ x) ⟦ ƛ t ⟧′ ρ n = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧′ ρ n = ⟦ t₁ ⟧′ ρ n >>= λ v₁ → ⟦ t₂ ⟧′ ρ n >>= λ v₂ → (v₁ ∙ v₂) n _∙_ : Value → Value → ℕ → M Value (con i ∙ v₂) n = fail (ƛ t₁ ρ ∙ v₂) zero = liftʳ never (ƛ t₁ ρ ∙ v₂) (suc n) = ⟦ t₁ ⟧′ (cons v₂ ρ) n mutual ⟦⟧′-increasing : ∀ {n} (t : Tm n) ρ n → ⟦ t ⟧′ ρ n ⊑M ⟦ t ⟧′ ρ (suc n) ⟦⟧′-increasing (con i) ρ n = MaybeT.run (return (con i)) ■ ⟦⟧′-increasing (var x) ρ n = MaybeT.run (return (ρ x)) ■ ⟦⟧′-increasing (ƛ t) ρ n = MaybeT.run (return (ƛ t ρ)) ■ ⟦⟧′-increasing (t₁ · t₂) ρ n = ⟦⟧′-increasing t₁ ρ n >>=ᵐ-mono λ v₁ → ⟦⟧′-increasing t₂ ρ n >>=ᵐ-mono λ v₂ → ∙-increasing v₁ v₂ n ∙-increasing : ∀ v₁ v₂ n → (v₁ ∙ v₂) n ⊑M (v₁ ∙ v₂) (suc n) ∙-increasing (con i) v₂ n = run fail ■ ∙-increasing (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧′-increasing t₁ (cons v₂ ρ) n ∙-increasing (ƛ t₁ ρ) v₂ zero = never >>= return ∘ just ≡⟨ never->>= ⟩⊑ never ⊑⟨ never⊑ _ ⟩■ run (⟦ t₁ ⟧′ (cons v₂ ρ) 0) ■ ⟦_⟧ˢ : ∀ {n} → Tm n → Env n → Increasing-sequence (Maybe Value) ⟦ t ⟧ˢ ρ = MaybeT.run ∘ ⟦ t ⟧′ ρ , ⟦⟧′-increasing t ρ ⟦_⟧ : ∀ {n} → Tm n → Env n → M Value run (⟦ t ⟧ ρ) = ⨆ (⟦ t ⟧ˢ ρ) ------------------------------------------------------------------------ -- Another interpreter module Interpreter₂ where -- This interpreter is defined using a fixpoint combinator. M′ : Type → Type₁ M′ = MaybeT (Partial (∃ λ n → Tm n × Env n) (λ _ → Maybe Value)) infix 10 _∙_ _∙_ : Value → Value → M′ Value con i ∙ v₂ = fail ƛ t₁ ρ ∙ v₂ = wrap (rec (_ , t₁ , cons v₂ ρ)) ⟦_⟧′ : ∀ {n} → Tm n → Env n → M′ Value ⟦ con i ⟧′ ρ = return (con i) ⟦ var x ⟧′ ρ = return (ρ x) ⟦ ƛ t ⟧′ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧′ ρ = ⟦ t₁ ⟧′ ρ >>= λ v₁ → ⟦ t₂ ⟧′ ρ >>= λ v₂ → v₁ ∙ v₂ ⟦_⟧ : ∀ {n} → Tm n → Env n → M Value run (⟦ t ⟧ ρ) = fixP {A = ∃ λ n → Tm n × Env n} (λ { (_ , t , ρ) → run (⟦ t ⟧′ ρ) }) (_ , t , ρ) ------------------------------------------------------------------------ -- The two interpreters are pointwise equal interpreters-equal : ∀ {n} (t : Tm n) ρ → Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ interpreters-equal = λ t ρ → $⟨ ⟦⟧-lemma t ρ ⟩ (∀ n → run (Interpreter₁.⟦ t ⟧′ ρ n) ≡ app→ step₂ (suc n) (_ , t , ρ)) ↝⟨ cong ⨆ ∘ _↔_.to equality-characterisation-increasing ⟩ ⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡ ⨆ (tailˢ (at (fix→-sequence step₂) (_ , t , ρ))) ↝⟨ flip trans (⨆tail≡⨆ _) ⟩ ⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡ ⨆ (at (fix→-sequence step₂) (_ , t , ρ)) ↝⟨ id ⟩ run (Interpreter₁.⟦ t ⟧ ρ) ≡ run (Interpreter₂.⟦ t ⟧ ρ) ↝⟨ cong wrap ⟩□ Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ □ where open Partial open Trans-⊑ step₂ : Trans-⊑ (∃ λ n → Tm n × Env n) (λ _ → Maybe Value) step₂ = transformer λ { (_ , t , ρ) → run (Interpreter₂.⟦ t ⟧′ ρ) } mutual ⟦⟧-lemma : ∀ {n} (t : Tm n) ρ n → run (Interpreter₁.⟦ t ⟧′ ρ n) ≡ function (run (Interpreter₂.⟦ t ⟧′ ρ)) (app→ step₂ n) ⟦⟧-lemma (con i) ρ n = refl ⟦⟧-lemma (var x) ρ n = refl ⟦⟧-lemma (ƛ t) ρ n = refl ⟦⟧-lemma (t₁ · t₂) ρ n = cong₂ _>>=_ (⟦⟧-lemma t₁ ρ n) $ ⟨ext⟩ $ flip maybe refl λ v₁ → cong₂ _>>=_ (⟦⟧-lemma t₂ ρ n) $ ⟨ext⟩ $ flip maybe refl λ v₂ → ∙-lemma v₁ v₂ n ∙-lemma : ∀ v₁ v₂ n → run ((v₁ Interpreter₁.∙ v₂) n) ≡ function (run (v₁ Interpreter₂.∙ v₂)) (app→ step₂ n) ∙-lemma (con i) v₂ n = refl ∙-lemma (ƛ t₁ ρ) v₂ zero = never >>= return ∘ just ≡⟨ never->>= ⟩∎ never ∎ ∙-lemma (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧-lemma t₁ (cons v₂ ρ) n -- Let us use Interpreter₁ as the default interpreter. open Interpreter₁ public ------------------------------------------------------------------------ -- An example -- The semantics of Ω is the non-terminating computation never. Ω-loops : run (⟦ Ω ⟧ nil) ≡ never Ω-loops = antisymmetry (least-upper-bound _ _ lemma) (never⊑ _) where ω-nil = ƛ (var fzero · var fzero) nil reduce-twice : ∀ n → run (⟦ Ω ⟧′ nil n) ≡ run ((ω-nil ∙ ω-nil) n) reduce-twice n = run (⟦ Ω ⟧′ nil n) ≡⟨ now->>= ⟩ run (⟦ ω ⟧′ nil n >>= λ v₂ → (ω-nil ∙ v₂) n) ≡⟨ now->>= ⟩∎ run ((ω-nil ∙ ω-nil) n) ∎ lemma : ∀ n → run (⟦ Ω ⟧′ nil n) ⊑ never lemma zero = run (⟦ Ω ⟧′ nil zero) ≡⟨ reduce-twice zero ⟩⊑ run ((ω-nil ∙ ω-nil) zero) ≡⟨ never->>= ⟩⊑ never ■ lemma (suc n) = run (⟦ Ω ⟧′ nil (suc n)) ≡⟨ reduce-twice (suc n) ⟩⊑ run (⟦ Ω ⟧′ nil n) ⊑⟨ lemma n ⟩■ never ■
{ "alphanum_fraction": 0.461134006, "avg_line_length": 31.5560538117, "ext": "agda", "hexsha": "de6ead6c0baf62068214a99416a05ab1c7517b58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Partiality-monad/Inductive/Interpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Partiality-monad/Inductive/Interpreter.agda", "max_line_length": 116, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Partiality-monad/Inductive/Interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 2835, "size": 7037 }
import Issue953 g : Set₁ g = Issue953.f
{ "alphanum_fraction": 0.6904761905, "avg_line_length": 7, "ext": "agda", "hexsha": "9e3deeb351fe4c4bc0f6ac1ade59db15c75dcc38", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ImportAnonymousModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ImportAnonymousModule.agda", "max_line_length": 15, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ImportAnonymousModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 16, "size": 42 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems open import Agda.Builtin.Equality open import Data.Product open import Data.Sum open import Data.Vec using (Vec; fromList; length) renaming (lookup to get) open import Data.Fin using (Fin) open import Level open import Relation.Unary using (_⊆_) module is-lib.InfSys.Base {𝓁} where record MetaRule {𝓁c 𝓁p : Level} (U : Set 𝓁) : Set (𝓁 ⊔ suc 𝓁c ⊔ suc 𝓁p) where field Ctx : Set 𝓁c Pos : Ctx → Set 𝓁p prems : (c : Ctx) → Pos c → U conclu : Ctx → U addSideCond : ∀{𝓁'} → (U → Set 𝓁') → MetaRule {𝓁c ⊔ 𝓁'} U (addSideCond P) .Ctx = Σ[ c ∈ Ctx ] P (conclu c) (addSideCond P) .Pos (c , _) = Pos c (addSideCond P) .prems (c , _) p = prems c p (addSideCond P) .conclu (c , _) = conclu c RF[_] : ∀{𝓁'} → (U → Set 𝓁') → (U → Set _) RF[_] P u = Σ[ c ∈ Ctx ] (u ≡ conclu c × (∀ p → P (prems c p))) RClosed : ∀{𝓁'} → (U → Set 𝓁') → Set _ RClosed P = ∀ c → (∀ p → P (prems c p)) → P (conclu c) {- Finitary Rule -} record FinMetaRule {𝓁c n} (U : Set 𝓁) : Set (𝓁 ⊔ suc 𝓁c) where field Ctx : Set 𝓁c comp : Ctx → Vec U n × U from : MetaRule {𝓁c} {zero} U from .MetaRule.Ctx = Ctx from .MetaRule.Pos = λ _ → Fin n from .MetaRule.prems c n = get (proj₁ (comp c)) n from .MetaRule.conclu c = proj₂ (comp c) open MetaRule record IS {𝓁c 𝓁p 𝓁n : Level} (U : Set 𝓁) : Set (𝓁 ⊔ suc 𝓁c ⊔ suc 𝓁p ⊔ suc 𝓁n) where field Names : Set 𝓁n rules : Names → MetaRule {𝓁c} {𝓁p} U ISF[_] : ∀{𝓁'} → (U → Set 𝓁') → (U → Set _) ISF[_] P u = Σ[ rn ∈ Names ] RF[ rules rn ] P u ISClosed : ∀{𝓁'} → (U → Set 𝓁') → Set _ ISClosed P = ∀ rn → RClosed (rules rn) P open IS _∪_ : ∀{𝓁c 𝓁p 𝓁n 𝓁n'}{U : Set 𝓁} → IS {𝓁c} {𝓁p} {𝓁n} U → IS {_} {_} {𝓁n'} U → IS {_} {_} {𝓁n ⊔ 𝓁n'} U (is1 ∪ is2) .Names = (is1 .Names) ⊎ (is2 .Names) (is1 ∪ is2) .rules = [ is1 .rules , is2 .rules ] _⊓_ : ∀{𝓁c 𝓁p 𝓁n 𝓁'}{U : Set 𝓁} → IS {𝓁c} {𝓁p} {𝓁n} U → (U → Set 𝓁') → IS {𝓁c ⊔ 𝓁'} {_} {_} U (is ⊓ P) .Names = is .Names (is ⊓ P) .rules rn = addSideCond (is .rules rn) P {- Properties -} -- closed implies prefix closed⇒prefix : ∀{𝓁c 𝓁p}{U : Set 𝓁} → (m : MetaRule {𝓁c} {𝓁p} U) → ∀{𝓁'}{P : U → Set 𝓁'} → RClosed m {𝓁'} P → RF[ m ] P ⊆ P closed⇒prefix _ cl (_ , refl , pr) = cl _ pr -- prefix implies closed prefix⇒closed : ∀{𝓁c 𝓁p}{U : Set 𝓁} → (m : MetaRule {𝓁c} {𝓁p} U) → ∀{𝓁'}{P : U → Set 𝓁'} → (RF[ m ] P ⊆ P) → RClosed m {𝓁'} P prefix⇒closed _ prf c pr = prf (c , refl , pr)
{ "alphanum_fraction": 0.5108323831, "avg_line_length": 34.1688311688, "ext": "agda", "hexsha": "829194f6f7909d89c3c263031a8a85af0214d1ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/is-lib/InfSys/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/is-lib/InfSys/Base.agda", "max_line_length": 127, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/is-lib/InfSys/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1226, "size": 2631 }
open import Functional hiding (Domain) import Structure.Logic.Classical.NaturalDeduction import Structure.Logic.Classical.SetTheory.ZFC module Structure.Logic.Classical.SetTheory.ZFC.Proofs {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) ⦃ signature : _ ⦄ ⦃ axioms : _ ⦄ where open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic) open Structure.Logic.Classical.SetTheory.ZFC.Signature {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ {_∈_} (signature) open Structure.Logic.Classical.SetTheory.ZFC.ZF {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ {_∈_} ⦃ signature ⦄ (axioms) open import Lang.Instance import Lvl open import Structure.Logic.Classical.NaturalDeduction.Proofs ⦃ classicLogic ⦄ open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_) open import Structure.Logic.Classical.SetTheory.Relation ⦃ classicLogic ⦄ (_∈_) open import Structure.Logic.Classical.SetTheory ⦃ classicLogic ⦄ (_∈_) open Structure.Logic.Classical.SetTheory.ZFC ⦃ classicLogic ⦄ (_∈_) open import Structure.Logic.Constructive.Functions(Domain) open import Structure.Logic.Constructive.Functions.Properties ⦃ constructiveLogicSignature ⦄ open SetEquality ⦃ ... ⦄ hiding (extensional) open SingletonSet ⦃ ... ⦄ hiding (singleton) open FilterSet ⦃ ... ⦄ hiding (filter) open PowerSet ⦃ ... ⦄ hiding (℘) open SetUnionSet ⦃ ... ⦄ hiding (⋃) open UnionSet ⦃ ... ⦄ hiding (_∪_) open IntersectionSet ⦃ ... ⦄ hiding (_∩_) open WithoutSet ⦃ ... ⦄ hiding (_∖_) open SetIntersectionSet ⦃ ... ⦄ hiding (⋂) -- All sets are either empty or non-empty. postulate Empty-excluded-middle : ∀{s} → Proof(Empty(s) ∨ NonEmpty(s)) pair-membership : Proof(∀ₗ(a₁ ↦ ∀ₗ(a₂ ↦ (∀ₗ(x ↦ (x ∈ pair(a₁)(a₂)) ⟷ (x ≡ a₁)∨(x ≡ a₂)))))) pair-membership = pairing postulate pair-membership-[≡ₛ] : Proof(∀ₗ(a₁ ↦ ∀ₗ(a₂ ↦ (∀ₗ(x ↦ (x ∈ pair(a₁)(a₂)) ⟷ (x ≡ₛ a₁)∨(x ≡ₛ a₂)))))) -- pair-membership-[≡ₛ] = pairing instance setEqualityInstance : SetEquality setEqualityInstance = SetEquality.intro extensional instance emptySetInstance : EmptySet emptySetInstance = EmptySet.intro ∅ empty instance singletonSetInstance : SingletonSet singletonSetInstance = SingletonSet.intro singleton ([∀].intro (\{a} → ([∀].intro (\{x} → [↔].transitivity ([∀].elim([∀].elim([∀].elim(pair-membership-[≡ₛ]){a}){a}){x}) ([↔].intro ([∨].redundancyₗ) ([∨].redundancyᵣ)) )) )) instance filterSetInstance : FilterSet filterSetInstance = FilterSet.intro filter comprehension instance powerSetInstance : PowerSet powerSetInstance = PowerSet.intro ℘ power instance setUnionSetInstance : SetUnionSet setUnionSetInstance = SetUnionSet.intro ⋃ union instance unionSetInstance : UnionSet unionSetInstance = UnionSet.intro _∪_ ([∀].intro (\{a} → ([∀].intro (\{b} → ([∀].intro (\{x} → ([∀].elim([∀].elim [⋃]-membership{pair(a)(b)}){x}) ⦗ₗ [↔].transitivity ⦘ ([↔]-with-[∃] (\{s} → ([↔]-with-[∧]ₗ ([∀].elim([∀].elim([∀].elim pair-membership{a}){b}){s})) ⦗ₗ [↔].transitivity ⦘ ([∧][∨]-distributivityᵣ) ⦗ₗ [↔].transitivity ⦘ [↔]-with-[∨] ([≡]-substitute-this-is-almost-trivial) ([≡]-substitute-this-is-almost-trivial) )) ⦗ₗ [↔].transitivity ⦘ ([↔].intro ([∃]-redundancyₗ) ([∃]-redundancyᵣ)) )) )) )) instance intersectionSetInstance : IntersectionSet intersectionSetInstance = IntersectionSet.intro _∩_ ([∀].intro (\{a} → ([∀].intro (\{b} → ([∀].elim(filter-membership){a}) )) )) instance withoutSetInstance : WithoutSet withoutSetInstance = WithoutSet.intro _∖_ ([∀].intro (\{a} → ([∀].intro (\{b} → ([∀].elim(filter-membership){a}) )) )) instance setIntersectionSetInstance : SetIntersectionSet setIntersectionSetInstance = SetIntersectionSet.intro ⋂ ([∀].intro (\{ss} → ([∀].intro (\{x} → ([↔].intro -- (⟵)-case (allssinssxins ↦ ([↔].elimₗ ([∀].elim([∀].elim filter-membership{⋃(ss)}){x}) ([∧].intro -- x ∈ ⋃(ss) ([∨].elim -- Empty(ss) ⇒ _ (allyyninss ↦ proof -- TODO: But: Empty(ss) ⇒ (ss ≡ ∅) ⇒ ⋃(ss) ≡ ∅ ⇒ (x ∉ ⋃(ss)) ? Maybe use this argument further up instead to prove something like: (⋂(ss) ≡ ∅) ⇒ (x ∉ ∅) ) -- NonEmpty(ss) ⇒ _ (existsyinss ↦ ([∃].elim (\{y} → yinss ↦ ( ([↔].elimₗ([∀].elim([∀].elim([⋃]-membership){ss}){x})) ([∃].intro{_} {y} ([∧].intro -- y ∈ ss (yinss) -- x ∈ y ([→].elim ([∀].elim(allssinssxins){y}) (yinss) ) ) ) )) (existsyinss) ) ) (Empty-excluded-middle{ss}) ) -- ∀(s∊ss). x∈s (allssinssxins) ) ) ) -- (⟶)-case (xinintersectss ↦ ([∀].intro (\{s} → ([→].intro (sinss ↦ ([→].elim ([∀].elim ([∧].elimᵣ ([↔].elimᵣ ([∀].elim ([∀].elim filter-membership {⋃(ss)} ) {x} ) (xinintersectss) ) ) {s} ) (sinss) ) )) )) ) ) )) )) where postulate proof : ∀{a} → a -- postulate any : ∀{l}{a : Set(l)} → a -- TODO: Just used for reference. Remove these lines later -- ⋂(a) = filter(⋃(ss)) (x ↦ ∀ₗ(a₂ ↦ (a₂ ∈ ss) ⟶ (x ∈ a₂))) -- filter-membership : ∀{φ : Domain → Formula} → Proof(∀ₗ(s ↦ ∀ₗ(x ↦ ((x ∈ filter(s)(φ)) ⟷ ((x ∈ s) ∧ φ(x)))))) -- [⋃]-membership : Proof(∀ₗ(ss ↦ ∀ₗ(x ↦ (x ∈ ⋃(ss)) ⟷ ∃ₗ(s ↦ (s ∈ ss)∧(x ∈ s))))) -- [⨯]-membership : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (x ∈ (a ⨯ b)) ⟷ ∃ₛ(a)(x₁ ↦ ∃ₛ(b)(x₂ ↦ x ≡ (x₁ , x₂))))))) -- [⨯]-membership = -- [⋃][℘]-inverse : Proof(∀ₗ(s ↦ ⋃(℘(s)) ≡ s)) -- TODO: https://planetmath.org/SurjectionAndAxiomOfChoice
{ "alphanum_fraction": 0.4786130453, "avg_line_length": 34.8366336634, "ext": "agda", "hexsha": "98e71337bccc51f7af7c126199df61c107698c78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Proofs.agda", "max_line_length": 190, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2279, "size": 7037 }
open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ; _≟[_]_ ) open import FRP.JS.Float using ( ℝ ; _≟_ ; -_ ; _+_ ; _*_ ; _-_ ; _/_ ; _/?_ ; _≤_ ; _<_ ; show ) open import FRP.JS.String using () renaming ( _≟_ to _≟s_ ) open import FRP.JS.QUnit using ( TestSuite ; ok ; ok! ; test ; _,_ ) module FRP.JS.Test.Float where infixr 2 _≟?_ _≟?_ : Maybe ℝ → Maybe ℝ → Bool x ≟? y = x ≟[ _≟_ ] y tests : TestSuite tests = ( test "≟" ( ok "0 ≟ 0" (0.0 ≟ 0.0) , ok "1 ≟ 1" (1.0 ≟ 1.0) , ok "2 ≟ 2" (2.0 ≟ 2.0) , ok "0 != 1" (not (0.0 ≟ 1.0)) , ok "0 != 2" (not (0.0 ≟ 2.0)) , ok "1 != 2" (not (1.0 ≟ 2.0)) , ok "1 != 0" (not (1.0 ≟ 0.0)) ) , test "+" ( ok "0 + 0" (0.0 + 0.0 ≟ 0.0) , ok "1 + 1" (1.0 + 1.0 ≟ 2.0) , ok "37 + 0" (37.0 + 0.0 ≟ 37.0) , ok "37 + 1" (37.0 + 1.0 ≟ 38.0) , ok "37 + 5" (37.0 + 5.0 ≟ 42.0) ) , test "*" ( ok "0 * 0" (0.0 * 0.0 ≟ 0.0) , ok "1 * 1" (1.0 * 1.0 ≟ 1.0) , ok "37 * 0" (37.0 * 0.0 ≟ 0.0) , ok "37 * 1" (37.0 * 1.0 ≟ 37.0) , ok "37 * 5" (37.0 * 5.0 ≟ 185.0) ) , test "-" ( ok "0 - 0" (0.0 - 0.0 ≟ 0.0) , ok "1 - 1" (1.0 - 1.0 ≟ 0.0) , ok "37 - 0" (37.0 - 0.0 ≟ 37.0) , ok "37 - 1" (37.0 - 1.0 ≟ 36.0) , ok "37 - 5" (37.0 - 5.0 ≟ 32.0) , ok "5 - 37" (5.0 - 37.0 ≟ - 32.0) ) , test "/" ( ok "1 / 1" (1.0 / 1.0 ≟ 1.0) , ok "37 / 1" (37.0 / 1.0 ≟ 37.0) , ok "37 / 5" (37.0 / 5.0 ≟ 7.4) , ok "0 /? 0" (0.0 /? 0.0 ≟? nothing) , ok "1 /? 1" (1.0 /? 1.0 ≟? just 1.0) , ok "37 /? 0" (37.0 /? 0.0 ≟? nothing) , ok "37 /? 1" (37.0 /? 1.0 ≟? just 37.0) , ok "37 /? 5" (37.0 /? 5.0 ≟? just 7.4) ) , test "≤" ( ok "0 ≤ 0" (0.0 ≤ 0.0) , ok "0 ≤ 1" (0.0 ≤ 1.0) , ok "1 ≤ 0" (not (1.0 ≤ 0.0)) , ok "1 ≤ 1" (1.0 ≤ 1.0) , ok "37 ≤ 0" (not (37.0 ≤ 0.0)) , ok "37 ≤ 1" (not (37.0 ≤ 1.0)) , ok "37 ≤ 5" (not (37.0 ≤ 5.0)) , ok "5 ≤ 37" (5.0 ≤ 37.0) ) , test "<" ( ok "0 < 0" (not (0.0 < 0.0)) , ok "0 < 1" (0.0 < 1.0) , ok "1 < 0" (not (1.0 < 0.0)) , ok "1 < 1" (not (1.0 < 1.0)) , ok "37 < 0" (not (37.0 < 0.0)) , ok "37 < 1" (not (37.0 < 1.0)) , ok "37 < 5" (not (37.0 < 5.0)) , ok "5 < 37" (5.0 < 37.0) ) , test "show" ( ok "show 0" (show 0.0 ≟s "0") , ok "show 1" (show 1.0 ≟s "1") , ok "show 5" (show 5.0 ≟s "5") , ok "show 37" (show 37.0 ≟s "37") , ok "show -0" (show (- 0.0) ≟s "0") , ok "show -37" (show (- 37.0) ≟s "-37") , ok "show 3.1415" (show 3.1415 ≟s "3.1415") , ok "show -3.1415" (show (- 3.1415) ≟s "-3.1415") ) )
{ "alphanum_fraction": 0.3854047891, "avg_line_length": 33.3037974684, "ext": "agda", "hexsha": "8d1e19e4de760cf796d34fb3443d80bf2bbee262", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/Float.agda", "max_line_length": 97, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/Float.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 1508, "size": 2631 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import homotopy.PushoutSplit open import homotopy.DisjointlyPointedSet open import cw.CW module cw.cohomology.WedgeOfCells {i} (OT : OrdinaryTheory i) {n} (⊙skel : ⊙Skeleton {i} (S n)) where open OrdinaryTheory OT open import cohomology.Sphere OT Xₙ/Xₙ₋₁ : Ptd i Xₙ/Xₙ₋₁ = ⊙Cofiber (⊙cw-incl-last ⊙skel) module _ (m : ℤ) where CXₙ/Xₙ₋₁ : Group i CXₙ/Xₙ₋₁ = C m Xₙ/Xₙ₋₁ CEl-Xₙ/Xₙ₋₁ : Type i CEl-Xₙ/Xₙ₋₁ = Group.El CXₙ/Xₙ₋₁ abstract CXₙ/Xₙ₋₁-is-abelian : is-abelian CXₙ/Xₙ₋₁ CXₙ/Xₙ₋₁-is-abelian = C-is-abelian m Xₙ/Xₙ₋₁ CXₙ/Xₙ₋₁-abgroup : AbGroup i CXₙ/Xₙ₋₁-abgroup = CXₙ/Xₙ₋₁ , CXₙ/Xₙ₋₁-is-abelian {- the equivalence is in the opposite direction because cohomology functors are contravariant. -} BigWedge-⊙equiv-Xₙ/Xₙ₋₁ : ⊙BigWedge {A = ⊙cells-last ⊙skel} (λ _ → ⊙Sphere (S n)) ⊙≃ Xₙ/Xₙ₋₁ BigWedge-⊙equiv-Xₙ/Xₙ₋₁ = ≃-to-⊙≃ (PS.split-equiv ∘e equiv to from to-from from-to) idp where open AttachedSkeleton (⊙Skeleton.skel ⊙skel) module PS = PushoutLSplit (uncurry attaching) (λ _ → tt) fst module SphereToCofiber (a : fst cells) = SuspRec {A = Sphere n} (cfbase' (fst :> (fst cells × Sphere n → fst cells))) (cfcod a) (λ s → cfglue (a , s)) module To = BigWedgeRec {A = fst cells} {X = λ _ → ⊙Sphere (S n)} cfbase SphereToCofiber.f (λ _ → idp) to = To.f module From = CofiberRec {f = fst :> (fst cells × Sphere n → fst cells)} (bwbase {A = fst cells} {X = λ _ → ⊙Sphere (S n)}) (λ a → bwin a south) (λ{(a , s) → bwglue a ∙ ap (bwin a) (merid s)}) from = From.f abstract from-to : ∀ b → from (to b) == b from-to = BigWedge-elim idp (λ a → Susp-elim (bwglue a) idp (λ s → ↓-='-from-square $ ( ap-∘ from (SphereToCofiber.f a) (merid s) ∙ ap (ap from) (SphereToCofiber.merid-β a s) ∙ From.glue-β (a , s)) ∙v⊡ (tl-square (bwglue a) ⊡h vid-square))) (λ a → ↓-∘=idf-from-square from to $ ap (ap from) (To.glue-β a) ∙v⊡ br-square (bwglue a)) to-from : ∀ c → to (from c) == c to-from = Cofiber-elim idp (λ a → idp) (λ{(a , s) → ↓-∘=idf-in' to from $ ap (ap to) (From.glue-β (a , s)) ∙ ap-∙ to (bwglue a) (ap (bwin a) (merid s)) ∙ ap2 _∙_ (To.glue-β a) ( ∘-ap to (bwin a) (merid s) ∙ SphereToCofiber.merid-β a s)}) CXₙ/Xₙ₋₁-β : ∀ m → ⊙has-cells-with-choice 0 ⊙skel i → C m Xₙ/Xₙ₋₁ ≃ᴳ Πᴳ (⊙cells-last ⊙skel) (λ _ → C m (⊙Lift (⊙Sphere (S n)))) CXₙ/Xₙ₋₁-β m ac = C-additive-iso m (λ _ → ⊙Lift (⊙Sphere (S n))) (⊙cells-last-has-choice ⊙skel ac) ∘eᴳ C-emap m ( BigWedge-⊙equiv-Xₙ/Xₙ₋₁ ⊙∘e ⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)) CXₙ/Xₙ₋₁-β-diag : ⊙has-cells-with-choice 0 ⊙skel i → CXₙ/Xₙ₋₁ (ℕ-to-ℤ (S n)) ≃ᴳ Πᴳ (⊙cells-last ⊙skel) (λ _ → C2 0) CXₙ/Xₙ₋₁-β-diag ac = Πᴳ-emap-r (⊙cells-last ⊙skel) (λ _ → C-Sphere-diag (S n)) ∘eᴳ CXₙ/Xₙ₋₁-β (ℕ-to-ℤ (S n)) ac abstract CXₙ/Xₙ₋₁-≠-is-trivial : ∀ {m} (m≠Sn : m ≠ ℕ-to-ℤ (S n)) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ m) CXₙ/Xₙ₋₁-≠-is-trivial {m} m≠Sn ac = iso-preserves'-trivial (CXₙ/Xₙ₋₁-β m ac) $ Πᴳ-is-trivial (⊙cells-last ⊙skel) (λ _ → C m (⊙Lift (⊙Sphere (S n)))) (λ _ → C-Sphere-≠-is-trivial m (S n) m≠Sn) CXₙ/Xₙ₋₁-<-is-trivial : ∀ {m} (m<Sn : m < S n) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m)) CXₙ/Xₙ₋₁-<-is-trivial m<Sn = CXₙ/Xₙ₋₁-≠-is-trivial (ℕ-to-ℤ-≠ (<-to-≠ m<Sn)) CXₙ/Xₙ₋₁->-is-trivial : ∀ {m} (m>Sn : S n < m) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m)) CXₙ/Xₙ₋₁->-is-trivial m>Sn = CXₙ/Xₙ₋₁-≠-is-trivial (≠-inv (ℕ-to-ℤ-≠ (<-to-≠ m>Sn)))
{ "alphanum_fraction": 0.5540401441, "avg_line_length": 35.9814814815, "ext": "agda", "hexsha": "334505a9146d8967f5e1a391e7315a8fa0d24a62", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1857, "size": 3886 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae module Maybe where data Maybe {a : _} (A : Set a) : Set a where no : Maybe A yes : A → Maybe A joinMaybe : {a : _} → {A : Set a} → Maybe (Maybe A) → Maybe A joinMaybe no = no joinMaybe (yes s) = s bindMaybe : {a b : _} → {A : Set a} → {B : Set b} → Maybe A → (A → Maybe B) → Maybe B bindMaybe no f = no bindMaybe (yes x) f = f x applyMaybe : {a b : _} → {A : Set a} → {B : Set b} → Maybe (A → B) → Maybe A → Maybe B applyMaybe f no = no applyMaybe no (yes x) = no applyMaybe (yes f) (yes x) = yes (f x) yesInjective : {a : _} → {A : Set a} → {x y : A} → (yes x ≡ yes y) → x ≡ y yesInjective {a} {A} {x} {.x} refl = refl mapMaybe : {a b : _} → {A : Set a} → {B : Set b} → (f : A → B) → Maybe A → Maybe B mapMaybe f no = no mapMaybe f (yes x) = yes (f x) defaultValue : {a : _} → {A : Set a} → (default : A) → Maybe A → A defaultValue default no = default defaultValue default (yes x) = x noNotYes : {a : _} {A : Set a} {b : A} → (no ≡ yes b) → False noNotYes () mapMaybePreservesNo : {a b : _} {A : Set a} {B : Set b} {f : A → B} {x : Maybe A} → mapMaybe f x ≡ no → x ≡ no mapMaybePreservesNo {f = f} {no} pr = refl mapMaybePreservesYes : {a b : _} {A : Set a} {B : Set b} {f : A → B} {x : Maybe A} {y : B} → mapMaybe f x ≡ yes y → Sg A (λ z → (x ≡ yes z) && (f z ≡ y)) mapMaybePreservesYes {f = f} {x} {y} map with x mapMaybePreservesYes {f = f} {x} {y} map | yes z = z , (refl ,, yesInjective map)
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 33.9545454545, "ext": "agda", "hexsha": "6f429c268100236db1db9e8ce308736f41492a19", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Maybe.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Maybe.agda", "max_line_length": 153, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 604, "size": 1494 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} {- Implements the monadic interface of propositional truncation, for reasoning in do-syntax. -} module Cubical.HITs.PropositionalTruncation.Monad where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Functions.Logic open import Cubical.HITs.PropositionalTruncation private variable ℓ : Level P Q : Type ℓ infix 1 proof_by_ proof_by_ : (P : hProp ℓ) → ∥ ⟨ P ⟩ ∥ → ⟨ P ⟩ proof P by p = rec (isProp⟨⟩ P) (λ p → p) p return : P → ∥ P ∥ return p = ∣ p ∣ exact_ : ∥ P ∥ → ∥ P ∥ exact p = p _>>=_ : ∥ P ∥ → (P → ∥ Q ∥) → ∥ Q ∥ p >>= f = rec propTruncIsProp f p _>>_ : ∥ P ∥ → ∥ Q ∥ → ∥ Q ∥ _ >> q = q
{ "alphanum_fraction": 0.6472919419, "avg_line_length": 22.2647058824, "ext": "agda", "hexsha": "db769bf4910f51db4e07ca62980ad10a6483dee0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/PropositionalTruncation/Monad.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/PropositionalTruncation/Monad.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/PropositionalTruncation/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 284, "size": 757 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Applicative functors on indexed sets (predicates) ------------------------------------------------------------------------ -- Note that currently the applicative functor laws are not included -- here. {-# OPTIONS --without-K --safe #-} module Category.Applicative.Predicate where open import Category.Functor.Predicate open import Data.Product open import Function open import Level open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) ------------------------------------------------------------------------ record RawPApplicative {i ℓ} {I : Set i} (F : Pt I ℓ) : Set (i ⊔ suc ℓ) where infixl 4 _⊛_ _<⊛_ _⊛>_ infix 4 _⊗_ field pure : ∀ {P} → P ⊆ F P _⊛_ : ∀ {P Q} → F (P ⇒ Q) ⊆ F P ⇒ F Q rawPFunctor : RawPFunctor F rawPFunctor = record { _<$>_ = λ g x → pure g ⊛ x } private open module RF = RawPFunctor rawPFunctor public _<⊛_ : ∀ {P Q} → F P ⊆ const (∀ {j} → F Q j) ⇒ F P x <⊛ y = const <$> x ⊛ y _⊛>_ : ∀ {P Q} → const (∀ {i} → F P i) ⊆ F Q ⇒ F Q x ⊛> y = flip const <$> x ⊛ y _⊗_ : ∀ {P Q} → F P ⊆ F Q ⇒ F (P ∩ Q) x ⊗ y = (_,_) <$> x ⊛ y zipWith : ∀ {P Q R} → (P ⊆ Q ⇒ R) → F P ⊆ F Q ⇒ F R zipWith f x y = f <$> x ⊛ y
{ "alphanum_fraction": 0.4715025907, "avg_line_length": 26.4901960784, "ext": "agda", "hexsha": "545ac4a4a66ece7c0a908c63c7e46bd777332608", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative/Predicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative/Predicate.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative/Predicate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 445, "size": 1351 }
-- Parameter arguments of overloaded projection applications -- should not be skipped! record R A : Set where field f : A → A open R record S A : Set where field f : A → A open S r : ∀{A} → R A f r x = x test : ∀{A : Set} → A → A test a = f r a
{ "alphanum_fraction": 0.6086956522, "avg_line_length": 14.8823529412, "ext": "agda", "hexsha": "33d8b37684675cc965951aae8ce0d05ff65f2a2c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue1944-poly-record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue1944-poly-record.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue1944-poly-record.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 86, "size": 253 }
module Issue4022.Import where open import Agda.Builtin.Nat Binary : Set Binary = Nat → Nat → Nat -- Search should be able to find `plus` if: -- * either we do not normalise the type and look for `Binary` -- * or we do normalise the type and look for `Nat` plus : Binary plus = _+_
{ "alphanum_fraction": 0.701754386, "avg_line_length": 20.3571428571, "ext": "agda", "hexsha": "97f0f2549b01ef413e2ebb923e368d69de2a8209", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4022/Import.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4022/Import.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4022/Import.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 285 }
{- Functions building UARels and DUARels on function types -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Displayed.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Functions.FunExtEquiv open import Cubical.Functions.Implicit open import Cubical.Displayed.Base open import Cubical.Displayed.Constant open import Cubical.Displayed.Morphism open import Cubical.Displayed.Subst open import Cubical.Displayed.Sigma private variable ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C : Level -- UARel on dependent function type -- from UARel on domain and DUARel on codomain module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) where open UARel 𝒮-A open DUARel 𝒮ᴰ-B 𝒮-Π : UARel ((a : A) → B a) (ℓ-max ℓA ℓ≅B) UARel._≅_ 𝒮-Π f f' = ∀ a → f a ≅ᴰ⟨ ρ a ⟩ f' a UARel.ua 𝒮-Π f f' = compEquiv (equivΠCod λ a → uaᴰρ (f a) (f' a)) funExtEquiv -- Parameterize UARel by type _→𝒮_ : (A : Type ℓA) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B) → UARel (A → B) (ℓ-max ℓA ℓ≅B) (A →𝒮 𝒮-B) .UARel._≅_ f f' = ∀ a → 𝒮-B .UARel._≅_ (f a) (f' a) (A →𝒮 𝒮-B) .UARel.ua f f' = compEquiv (equivΠCod λ a → 𝒮-B .UARel.ua (f a) (f' a)) funExtEquiv 𝒮-app : {A : Type ℓA} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} → A → UARelHom (A →𝒮 𝒮-B) 𝒮-B 𝒮-app a .UARelHom.fun f = f a 𝒮-app a .UARelHom.rel h = h a 𝒮-app a .UARelHom.ua h = refl -- DUARel on dependent function type -- from DUARels on domain and codomain module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : (a : A) → B a → Type ℓC} (𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) (uncurry C) ℓ≅C) where open UARel 𝒮-A private module B = DUARel 𝒮ᴰ-B module C = DUARel 𝒮ᴰ-C 𝒮ᴰ-Π : DUARel 𝒮-A (λ a → (b : B a) → C a b) (ℓ-max (ℓ-max ℓB ℓ≅B) ℓ≅C) DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-Π f p f' = ∀ {b b'} (q : b B.≅ᴰ⟨ p ⟩ b') → f b C.≅ᴰ⟨ p , q ⟩ f' b' DUARel.uaᴰ 𝒮ᴰ-Π f p f' = compEquiv (equivImplicitΠCod λ {b} → (equivImplicitΠCod λ {b'} → (equivΠ (B.uaᴰ b p b') (λ q → C.uaᴰ (f b) (p , q) (f' b'))))) funExtDepEquiv _→𝒮ᴰ_ : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) {C : A → Type ℓC} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C) → DUARel 𝒮-A (λ a → B a → C a) (ℓ-max (ℓ-max ℓB ℓ≅B) ℓ≅C) 𝒮ᴰ-B →𝒮ᴰ 𝒮ᴰ-C = 𝒮ᴰ-Π 𝒮ᴰ-B (𝒮ᴰ-Lift _ 𝒮ᴰ-C 𝒮ᴰ-B) -- DUARel on dependent function type -- from a SubstRel on the domain and DUARel on the codomain module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B) {C : (a : A) → B a → Type ℓC} (𝒮ᴰ-C : DUARel (∫ˢ 𝒮ˢ-B) (uncurry C) ℓ≅C) where open UARel 𝒮-A open SubstRel 𝒮ˢ-B open DUARel 𝒮ᴰ-C 𝒮ᴰ-Πˢ : DUARel 𝒮-A (λ a → (b : B a) → C a b) (ℓ-max ℓB ℓ≅C) DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-Πˢ f p f' = (b : B _) → f b ≅ᴰ⟨ p , refl ⟩ f' (act p .fst b) DUARel.uaᴰ 𝒮ᴰ-Πˢ f p f' = compEquiv (compEquiv (equivΠCod λ b → Jequiv (λ b' q → f b ≅ᴰ⟨ p , q ⟩ f' b')) (invEquiv implicit≃Explicit)) (DUARel.uaᴰ (𝒮ᴰ-Π (Subst→DUA 𝒮ˢ-B) 𝒮ᴰ-C) f p f') -- SubstRel on a dependent function type -- from a SubstRel on the domain and SubstRel on the codomain equivΠ' : ∀ {ℓA ℓA' ℓB ℓB'} {A : Type ℓA} {A' : Type ℓA'} {B : A → Type ℓB} {B' : A' → Type ℓB'} (eA : A ≃ A') (eB : {a : A} {a' : A'} → eA .fst a ≡ a' → B a ≃ B' a') → ((a : A) → B a) ≃ ((a' : A') → B' a') equivΠ' {B' = B'} eA eB = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun f a' = eB (retEq eA a') .fst (f (invEq eA a')) isom .inv f' a = invEq (eB refl) (f' (eA .fst a)) isom .rightInv f' = funExt λ a' → J (λ a'' p → eB p .fst (invEq (eB refl) (f' (p i0))) ≡ f' a'') (retEq (eB refl) (f' (eA .fst (invEq eA a')))) (retEq eA a') isom .leftInv f = funExt λ a → subst (λ p → invEq (eB refl) (eB p .fst (f (invEq eA (eA .fst a)))) ≡ f a) (sym (commPathIsEq (eA .snd) a)) (J (λ a'' p → invEq (eB refl) (eB (cong (eA .fst) p) .fst (f (invEq eA (eA .fst a)))) ≡ f a'') (secEq (eB refl) (f (invEq eA (eA .fst a)))) (secEq eA a)) module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B) {C : Σ A B → Type ℓC} (𝒮ˢ-C : SubstRel (∫ˢ 𝒮ˢ-B) C) where open UARel 𝒮-A open SubstRel private module B = SubstRel 𝒮ˢ-B module C = SubstRel 𝒮ˢ-C 𝒮ˢ-Π : SubstRel 𝒮-A (λ a → (b : B a) → C (a , b)) 𝒮ˢ-Π .act p = equivΠ' (B.act p) (λ q → C.act (p , q)) 𝒮ˢ-Π .uaˢ p f = fromPathP (DUARel.uaᴰ (𝒮ᴰ-Π (Subst→DUA 𝒮ˢ-B) (Subst→DUA 𝒮ˢ-C)) f p (equivFun (𝒮ˢ-Π .act p) f) .fst (λ {b} → J (λ b' q → equivFun (C.act (p , q)) (f b) ≡ equivFun (equivΠ' (𝒮ˢ-B .act p) (λ q → C.act (p , q))) f b') (λ i → C.act (p , λ j → commSqIsEq (𝒮ˢ-B .act p .snd) b (~ i) j) .fst (f (secEq (𝒮ˢ-B .act p) b (~ i))))))
{ "alphanum_fraction": 0.5473053892, "avg_line_length": 30.5487804878, "ext": "agda", "hexsha": "501df080b3a93eb2593455383c90633fa5418c90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jespercockx/cubical", "max_forks_repo_path": "Cubical/Displayed/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jespercockx/cubical", "max_issues_repo_path": "Cubical/Displayed/Function.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jespercockx/cubical", "max_stars_repo_path": "Cubical/Displayed/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2629, "size": 5010 }
-- AIM XXXV, 2022-05-06, issue #5891. -- When checking that the sort of a data type admits data definitions -- (checkDataSort), we need to handle the case of PiSort. mutual Univ1 = _ Univ2 = _ Univ3 = _ postulate A1 : Univ1 A2 : Univ2 A : Univ3 A = A1 → A2 -- This demonstrates that the sort of a data types can be a PiSort -- (temporarily, until further information becomes available later): data Empty : Univ3 where _ : Univ1 _ = Set _ : Univ2 _ = Set -- Should succeed.
{ "alphanum_fraction": 0.6556420233, "avg_line_length": 18.3571428571, "ext": "agda", "hexsha": "ff3ed85306ee306425f34d814403c8b01dd2de7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5891DataOfPiSort.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5891DataOfPiSort.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5891DataOfPiSort.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 163, "size": 514 }
module Human.Equality where data _==_ {A : Set} (x : A) : A -> Set where refl : x == x {-# BUILTIN EQUALITY _==_ #-} sym : {A : Set} (x : A) (y : A) -> x == y -> y == x sym x .x refl = refl cong : {A : Set} {B : Set} (x : A) (y : A) (f : A -> B) -> x == y -> f x == f y cong x y f refl = refl
{ "alphanum_fraction": 0.4548494983, "avg_line_length": 23, "ext": "agda", "hexsha": "1a088d46445671efd86022bcd99bd7065dd0f168", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/AgdaCalculator", "max_forks_repo_path": "src/Human/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/AgdaCalculator", "max_issues_repo_path": "src/Human/Equality.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/AgdaCalculator", "max_stars_repo_path": "src/Human/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-29T02:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T02:30:10.000Z", "num_tokens": 126, "size": 299 }
module Issue271 where data D (A : Set) : Set where d : D A → D A f : {A : Set} → D A → D A f x = d {!!}
{ "alphanum_fraction": 0.4907407407, "avg_line_length": 13.5, "ext": "agda", "hexsha": "6f27001ce2635ee77c984e1d2d57bc9ca75d3bc4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue271.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue271.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue271.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 108 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Parallel.Comparable module Examples.Sorting.Parallel.MergeSortPar.Merge (M : Comparable) where open Comparable M open import Examples.Sorting.Parallel.Core M open import Calf costMonoid open import Calf.ParMetalanguage parCostMonoid open import Calf.Types.Bool open import Calf.Types.Nat open import Calf.Types.List open import Calf.Types.Eq open import Calf.Types.Bounded costMonoid open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_; ⌊_/2⌋; ⌈_/2⌉; pred; _⊔_) open import Data.Nat.Properties as N using (module ≤-Reasoning) open import Data.Nat.Log2 open import Data.Nat.PredExp2 open import Examples.Sorting.Parallel.MergeSort.Split M triple = Σ++ (list A) λ _ → Σ++ A λ _ → (list A) splitMid/clocked : cmp (Π nat λ k → Π (list A) λ l → Π (U (meta (k Nat.< length l))) λ _ → F triple) splitMid/clocked zero (x ∷ xs) (s≤s h) = ret ([] , x , xs) splitMid/clocked (suc k) (x ∷ xs) (s≤s h) = bind (F triple) (splitMid/clocked k xs h) λ (l₁ , mid , l₂) → ret ((x ∷ l₁) , mid , l₂) splitMid/clocked/correct : ∀ k k' l h → k + suc k' ≡ length l → ◯ (∃ λ l₁ → ∃ λ mid → ∃ λ l₂ → splitMid/clocked k l h ≡ ret (l₁ , mid , l₂) × length l₁ ≡ k × length l₂ ≡ k' × l ≡ (l₁ ++ [ mid ] ++ l₂)) splitMid/clocked/correct zero k' (x ∷ xs) (s≤s h) refl u = [] , x , xs , refl , refl , refl , refl splitMid/clocked/correct (suc k) k' (x ∷ xs) (s≤s h) h-length u = let (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) = splitMid/clocked/correct k k' xs h (N.suc-injective h-length) u in x ∷ l₁ , mid , l₂ , Eq.cong (λ e → bind (F triple) e _) ≡ , Eq.cong suc h₁ , h₂ , Eq.cong (x ∷_) ≡-↭ splitMid/clocked/cost : cmp (Π nat λ k → Π (list A) λ l → Π (U (meta (k Nat.< length l))) λ _ → cost) splitMid/clocked/cost _ _ _ = 𝟘 splitMid/clocked≤splitMid/clocked/cost : ∀ k l h → IsBounded triple (splitMid/clocked k l h) (splitMid/clocked/cost k l h) splitMid/clocked≤splitMid/clocked/cost zero (x ∷ xs) (s≤s h) = bound/ret splitMid/clocked≤splitMid/clocked/cost (suc k) (x ∷ xs) (s≤s h) = bound/bind/const 𝟘 𝟘 (splitMid/clocked≤splitMid/clocked/cost k xs h) λ _ → bound/ret splitMid : cmp (Π (list A) λ l → Π (U (meta (0 Nat.< length l))) λ _ → F triple) splitMid (x ∷ xs) (s≤s h) = splitMid/clocked ⌊ length (x ∷ xs) /2⌋ (x ∷ xs) (N.⌊n/2⌋<n _) splitMid/correct : ∀ l h → ◯ (∃ λ l₁ → ∃ λ mid → ∃ λ l₂ → splitMid l h ≡ ret (l₁ , mid , l₂) × length l₁ Nat.≤ ⌊ length l /2⌋ × length l₂ Nat.≤ ⌊ length l /2⌋ × l ≡ (l₁ ++ [ mid ] ++ l₂)) splitMid/correct (x ∷ xs) (s≤s h) u = let (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) = splitMid/clocked/correct ⌊ length (x ∷ xs) /2⌋ ⌊ pred (length (x ∷ xs)) /2⌋ (x ∷ xs) (N.⌊n/2⌋<n _) (let open ≡-Reasoning in begin ⌊ length (x ∷ xs) /2⌋ + suc ⌊ pred (length (x ∷ xs)) /2⌋ ≡⟨⟩ ⌊ length (x ∷ xs) /2⌋ + suc ⌊ length xs /2⌋ ≡⟨⟩ ⌈ length xs /2⌉ + suc ⌊ length xs /2⌋ ≡⟨ N.+-suc ⌈ length xs /2⌉ ⌊ length xs /2⌋ ⟩ suc (⌈ length xs /2⌉ + ⌊ length xs /2⌋) ≡⟨ Eq.cong suc (N.+-comm ⌈ length xs /2⌉ ⌊ length xs /2⌋) ⟩ suc (⌊ length xs /2⌋ + ⌈ length xs /2⌉) ≡⟨ Eq.cong suc (N.⌊n/2⌋+⌈n/2⌉≡n (length xs)) ⟩ suc (length xs) ≡⟨⟩ length (x ∷ xs) ∎) u in l₁ , mid , l₂ , ≡ , N.≤-reflexive h₁ , ( let open ≤-Reasoning in begin length l₂ ≡⟨ h₂ ⟩ ⌊ pred (length (x ∷ xs)) /2⌋ ≤⟨ N.⌊n/2⌋-mono N.pred[n]≤n ⟩ ⌊ length (x ∷ xs) /2⌋ ∎ ), ≡-↭ splitMid/cost : cmp (Π (list A) λ l → Π (U (meta (0 Nat.< length l))) λ _ → cost) splitMid/cost (x ∷ xs) (s≤s h) = splitMid/clocked/cost ⌊ length (x ∷ xs) /2⌋ (x ∷ xs) (N.⌊n/2⌋<n _) splitMid≤splitMid/cost : ∀ l h → IsBounded triple (splitMid l h) (splitMid/cost l h) splitMid≤splitMid/cost (x ∷ xs) (s≤s h) = splitMid/clocked≤splitMid/clocked/cost ⌊ length (x ∷ xs) /2⌋ (x ∷ xs) (N.⌊n/2⌋<n _) splitBy/clocked : cmp (Π nat λ _ → Π (list A) λ _ → Π A λ _ → F pair) splitBy/clocked/aux : cmp (Π nat λ _ → Π A λ _ → Π (list A) λ _ → Π A λ _ → Π (list A) λ _ → Π bool λ _ → F pair) splitBy/clocked zero l pivot = ret ([] , l) splitBy/clocked (suc k) [] pivot = ret ([] , []) splitBy/clocked (suc k) (x ∷ xs) pivot = bind (F pair) (splitMid (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → bind (F pair) (mid ≤ᵇ pivot) (splitBy/clocked/aux k pivot l₁ mid l₂) splitBy/clocked/aux k pivot l₁ mid l₂ false = bind (F pair) (splitBy/clocked k l₁ pivot) λ (l₁₁ , l₁₂) → ret (l₁₁ , l₁₂ ++ mid ∷ l₂) splitBy/clocked/aux k pivot l₁ mid l₂ true = bind (F pair) (splitBy/clocked k l₂ pivot) λ (l₂₁ , l₂₂) → ret (l₁ ++ mid ∷ l₂₁ , l₂₂) splitBy/clocked/correct : ∀ k l pivot → ⌈log₂ suc (length l) ⌉ Nat.≤ k → ◯ (∃ λ l₁ → ∃ λ l₂ → splitBy/clocked k l pivot ≡ ret (l₁ , l₂) × (Sorted l → All (_≤ pivot) l₁ × All (pivot ≤_) l₂) × l ≡ (l₁ ++ l₂)) splitBy/clocked/correct zero l pivot h u with ⌈log₂n⌉≡0⇒n≤1 {suc (length l)} (N.n≤0⇒n≡0 h) splitBy/clocked/correct zero [] pivot h u | s≤s z≤n = [] , [] , refl , (λ _ → [] , []) , refl splitBy/clocked/correct (suc k) [] pivot h u = [] , [] , refl , (λ _ → [] , []) , refl splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u with splitMid/correct (x ∷ xs) (s≤s z≤n) u splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) with h-cost mid pivot splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) | ⇓ b withCost q [ _ , h-eq ] with ≤ᵇ-reflects-≤ u (Eq.trans (eq/ref h-eq) (step/ext (F bool) (ret b) q u)) | ≤-total mid pivot splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) | ⇓ b withCost q [ _ , h-eq ] | ofⁿ ¬p | inj₁ mid≤pivot = contradiction mid≤pivot ¬p splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) | ⇓ false withCost q [ _ , h-eq ] | ofⁿ ¬p | inj₂ pivot≤mid = let (l₁₁ , l₁₂ , ≡' , h-sorted , ≡-↭') = splitBy/clocked/correct k l₁ pivot ( let open ≤-Reasoning in begin ⌈log₂ suc (length l₁) ⌉ ≤⟨ log₂-mono (s≤s h₁) ⟩ ⌈log₂ suc ⌊ length (x ∷ xs) /2⌋ ⌉ ≤⟨ h ⟩ k ∎ ) u in l₁₁ , l₁₂ ++ mid ∷ l₂ , ( let open ≡-Reasoning in begin splitBy/clocked (suc k) (x ∷ xs) pivot ≡⟨⟩ (bind (F pair) (splitMid (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → bind (F pair) (mid ≤ᵇ pivot) (splitBy/clocked/aux k pivot l₁ mid l₂)) ≡⟨ Eq.cong (λ e → bind (F pair) e _) (≡) ⟩ bind (F pair) (mid ≤ᵇ pivot) (splitBy/clocked/aux k pivot l₁ mid l₂) ≡⟨ Eq.cong (λ e → bind (F pair) e (splitBy/clocked/aux k pivot l₁ mid l₂)) (eq/ref h-eq) ⟩ step (F pair) q (splitBy/clocked/aux k pivot l₁ mid l₂ false) ≡⟨ step/ext (F pair) (splitBy/clocked/aux k pivot l₁ mid l₂ false) q u ⟩ splitBy/clocked/aux k pivot l₁ mid l₂ false ≡⟨⟩ (bind (F pair) (splitBy/clocked k l₁ pivot) λ (l₁₁ , l₁₂) → ret (l₁₁ , l₁₂ ++ mid ∷ l₂)) ≡⟨ Eq.cong (λ e → bind (F pair) e _) ≡' ⟩ ret (l₁₁ , l₁₂ ++ mid ∷ l₂) ∎ ) , ( λ sorted → let sorted' = Eq.subst Sorted ≡-↭ sorted in let (h₁₁ , h₁₂) = h-sorted (++⁻ˡ l₁ sorted') in h₁₁ , ++⁺-All h₁₂ (pivot≤mid ∷ ≤-≤* pivot≤mid (uncons₁ (++⁻ʳ l₁ sorted'))) ) , ( let open ≡-Reasoning in begin (x ∷ xs) ≡⟨ ≡-↭ ⟩ l₁ ++ mid ∷ l₂ ≡⟨ Eq.cong (_++ (mid ∷ l₂)) ≡-↭' ⟩ (l₁₁ ++ l₁₂) ++ mid ∷ l₂ ≡⟨ ++-assoc l₁₁ l₁₂ (mid ∷ l₂) ⟩ l₁₁ ++ (l₁₂ ++ mid ∷ l₂) ∎ ) splitBy/clocked/correct (suc k) (x ∷ xs) pivot (s≤s h) u | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) | ⇓ true withCost q [ _ , h-eq ] | ofʸ p | _ = let (l₂₁ , l₂₂ , ≡' , h-sorted , ≡-↭') = splitBy/clocked/correct k l₂ pivot ( let open ≤-Reasoning in begin ⌈log₂ suc (length l₂) ⌉ ≤⟨ log₂-mono (s≤s h₂) ⟩ ⌈log₂ suc ⌊ length (x ∷ xs) /2⌋ ⌉ ≤⟨ h ⟩ k ∎ ) u in l₁ ++ mid ∷ l₂₁ , l₂₂ , ( let open ≡-Reasoning in begin splitBy/clocked (suc k) (x ∷ xs) pivot ≡⟨⟩ (bind (F pair) (splitMid (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → bind (F pair) (mid ≤ᵇ pivot) (splitBy/clocked/aux k pivot l₁ mid l₂)) ≡⟨ Eq.cong (λ e → bind (F pair) e _) (≡) ⟩ bind (F pair) (mid ≤ᵇ pivot) (splitBy/clocked/aux k pivot l₁ mid l₂) ≡⟨ Eq.cong (λ e → bind (F pair) e (splitBy/clocked/aux k pivot l₁ mid l₂)) (eq/ref h-eq) ⟩ step (F pair) q (splitBy/clocked/aux k pivot l₁ mid l₂ true) ≡⟨ step/ext (F pair) (splitBy/clocked/aux k pivot l₁ mid l₂ true) q u ⟩ splitBy/clocked/aux k pivot l₁ mid l₂ true ≡⟨⟩ (bind (F pair) (splitBy/clocked k l₂ pivot) λ (l₂₁ , l₂₂) → ret (l₁ ++ mid ∷ l₂₁ , l₂₂)) ≡⟨ Eq.cong (λ e → bind (F pair) e _) ≡' ⟩ ret (l₁ ++ mid ∷ l₂₁ , l₂₂) ∎ ) , ( λ sorted → let sorted' = Eq.subst Sorted ≡-↭ sorted in let (h₂₁ , h₂₂) = h-sorted (uncons₂ (++⁻ʳ l₁ sorted')) in ++⁺-All (map (λ h → ≤-trans h p) (split-sorted₁ l₁ (++⁻ˡ (l₁ ∷ʳ mid) (Eq.subst Sorted (Eq.sym (++-assoc l₁ [ mid ] l₂)) sorted')))) (p ∷ h₂₁) , h₂₂ ) , ( let open ≡-Reasoning in begin (x ∷ xs) ≡⟨ ≡-↭ ⟩ l₁ ++ mid ∷ l₂ ≡⟨ Eq.cong (λ l₂ → l₁ ++ mid ∷ l₂) ≡-↭' ⟩ l₁ ++ mid ∷ (l₂₁ ++ l₂₂) ≡˘⟨ ++-assoc l₁ (mid ∷ l₂₁) l₂₂ ⟩ (l₁ ++ mid ∷ l₂₁) ++ l₂₂ ∎ ) splitBy/clocked/cost : cmp (Π nat λ _ → Π (list A) λ _ → Π A λ _ → cost) splitBy/clocked/cost/aux : cmp (Π nat λ _ → Π A λ _ → Π (list A) λ _ → Π A λ _ → Π (list A) λ _ → Π bool λ _ → cost) splitBy/clocked/cost zero l pivot = 𝟘 splitBy/clocked/cost (suc k) [] pivot = 𝟘 splitBy/clocked/cost (suc k) (x ∷ xs) pivot = bind cost (splitMid (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → splitMid/cost (x ∷ xs) (s≤s z≤n) ⊕ bind cost (mid ≤ᵇ pivot) λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b splitBy/clocked/cost/aux k pivot l₁ mid l₂ false = bind cost (splitBy/clocked k l₁ pivot) λ (l₁₁ , l₁₂) → splitBy/clocked/cost k l₁ pivot ⊕ 𝟘 splitBy/clocked/cost/aux k pivot l₁ mid l₂ true = bind cost (splitBy/clocked k l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/clocked/cost k l₂ pivot ⊕ 𝟘 splitBy/clocked/cost/closed : cmp (Π nat λ _ → Π (list A) λ _ → Π A λ _ → cost) splitBy/clocked/cost/closed k _ _ = k , k splitBy/clocked/cost≤splitBy/clocked/cost/closed : ∀ k l pivot → ⌈log₂ suc (length l) ⌉ Nat.≤ k → ◯ (splitBy/clocked/cost k l pivot ≤ₚ splitBy/clocked/cost/closed k l pivot) splitBy/clocked/cost/aux≤k : ∀ k pivot l₁ mid l₂ b → ⌈log₂ suc (length l₁) ⌉ Nat.≤ k → ⌈log₂ suc (length l₂) ⌉ Nat.≤ k → ◯ (splitBy/clocked/cost/aux k pivot l₁ mid l₂ b ≤ₚ (k , k)) splitBy/clocked/cost≤splitBy/clocked/cost/closed zero l pivot h u = z≤n , z≤n splitBy/clocked/cost≤splitBy/clocked/cost/closed (suc k) [] pivot h u = z≤n , z≤n splitBy/clocked/cost≤splitBy/clocked/cost/closed (suc k) (x ∷ xs) pivot (s≤s h) u with splitMid/correct (x ∷ xs) (s≤s z≤n) u ... | (l₁ , mid , l₂ , ≡ , h₁ , h₂ , ≡-↭) with h-cost mid pivot ... | ⇓ b withCost q [ _ , h-eq ] = begin splitBy/clocked/cost (suc k) (x ∷ xs) pivot ≡⟨⟩ (bind cost (splitMid (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → splitMid/cost (x ∷ xs) (s≤s z≤n) ⊕ bind cost (mid ≤ᵇ pivot) λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) ≡⟨ Eq.cong (λ e → bind cost e _) (≡) ⟩ (splitMid/cost (x ∷ xs) (s≤s z≤n) ⊕ bind cost (mid ≤ᵇ pivot) λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) ≡⟨⟩ (𝟘 ⊕ bind cost (mid ≤ᵇ pivot) λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) ≡⟨ ⊕-identityˡ _ ⟩ (bind cost (mid ≤ᵇ pivot) λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) ≡⟨ Eq.cong (λ e → bind cost e λ b → (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) (eq/ref h-eq) ⟩ step cost q ((1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b) ≡⟨ step/ext cost _ q u ⟩ (1 , 1) ⊕ splitBy/clocked/cost/aux k pivot l₁ mid l₂ b ≤⟨ ⊕-monoʳ-≤ (1 , 1) ( splitBy/clocked/cost/aux≤k k pivot l₁ mid l₂ b (N.≤-trans (log₂-mono (s≤s h₁)) h) (N.≤-trans (log₂-mono (s≤s h₂)) h) u ) ⟩ (1 , 1) ⊕ (k , k) ≡⟨⟩ (suc k , suc k) ≡⟨⟩ splitBy/clocked/cost/closed (suc k) (x ∷ xs) pivot ∎ where open ≤ₚ-Reasoning splitBy/clocked/cost/aux≤k k pivot l₁ mid l₂ false h₁ h₂ u = let (l₁₁ , l₁₂ , ≡' , _ , ≡-↭') = splitBy/clocked/correct k l₁ pivot h₁ u in begin splitBy/clocked/cost/aux k pivot l₁ mid l₂ false ≡⟨⟩ (bind cost (splitBy/clocked k l₁ pivot) λ (l₁₁ , l₁₂) → splitBy/clocked/cost k l₁ pivot ⊕ 𝟘) ≡⟨ Eq.cong (λ e → bind cost e λ (l₁₁ , l₁₂) → splitBy/clocked/cost k l₁ pivot ⊕ 𝟘) ≡' ⟩ splitBy/clocked/cost k l₁ pivot ⊕ 𝟘 ≡⟨ ⊕-identityʳ _ ⟩ splitBy/clocked/cost k l₁ pivot ≤⟨ splitBy/clocked/cost≤splitBy/clocked/cost/closed k l₁ pivot h₁ u ⟩ (k , k) ∎ where open ≤ₚ-Reasoning splitBy/clocked/cost/aux≤k k pivot l₁ mid l₂ true h₁ h₂ u = let (l₂₁ , l₂₂ , ≡' , _ , ≡-↭') = splitBy/clocked/correct k l₂ pivot h₂ u in begin splitBy/clocked/cost/aux k pivot l₁ mid l₂ true ≡⟨⟩ (bind cost (splitBy/clocked k l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/clocked/cost k l₂ pivot ⊕ 𝟘) ≡⟨ Eq.cong (λ e → bind cost e λ (l₂₁ , l₂₂) → splitBy/clocked/cost k l₂ pivot ⊕ 𝟘) ≡' ⟩ splitBy/clocked/cost k l₂ pivot ⊕ 𝟘 ≡⟨ ⊕-identityʳ _ ⟩ splitBy/clocked/cost k l₂ pivot ≤⟨ splitBy/clocked/cost≤splitBy/clocked/cost/closed k l₂ pivot h₂ u ⟩ (k , k) ∎ where open ≤ₚ-Reasoning splitBy/clocked≤splitBy/clocked/cost : ∀ k l pivot → IsBounded pair (splitBy/clocked k l pivot) (splitBy/clocked/cost k l pivot) splitBy/clocked≤splitBy/clocked/cost zero l pivot = bound/ret splitBy/clocked≤splitBy/clocked/cost (suc k) [] pivot = bound/ret splitBy/clocked≤splitBy/clocked/cost (suc k) (x ∷ xs) pivot = bound/bind {e = splitMid (x ∷ xs) (s≤s z≤n)} (splitMid/cost (x ∷ xs) (s≤s z≤n)) _ (splitMid≤splitMid/cost (x ∷ xs) (s≤s z≤n)) λ (l₁ , mid , l₂) → bound/bind (1 , 1) _ (h-cost mid pivot) λ { false → bound/bind (splitBy/clocked/cost k l₁ pivot) (λ _ → 𝟘) (splitBy/clocked≤splitBy/clocked/cost k l₁ pivot) λ _ → bound/ret ; true → bound/bind (splitBy/clocked/cost k l₂ pivot) (λ _ → 𝟘) (splitBy/clocked≤splitBy/clocked/cost k l₂ pivot) λ _ → bound/ret } splitBy/clocked≤splitBy/clocked/cost/closed : ∀ k l pivot → ⌈log₂ suc (length l) ⌉ Nat.≤ k → IsBounded pair (splitBy/clocked k l pivot) (splitBy/clocked/cost/closed k l pivot) splitBy/clocked≤splitBy/clocked/cost/closed k l pivot h = bound/relax (splitBy/clocked/cost≤splitBy/clocked/cost/closed k l pivot h) (splitBy/clocked≤splitBy/clocked/cost k l pivot) splitBy : cmp (Π (list A) λ _ → Π A λ _ → F pair) splitBy l pivot = splitBy/clocked ⌈log₂ suc (length l) ⌉ l pivot splitBy/correct : ∀ l pivot → ◯ (∃ λ l₁ → ∃ λ l₂ → splitBy l pivot ≡ ret (l₁ , l₂) × (Sorted l → All (_≤ pivot) l₁ × All (pivot ≤_) l₂) × l ≡ (l₁ ++ l₂)) splitBy/correct l pivot = splitBy/clocked/correct ⌈log₂ suc (length l) ⌉ l pivot N.≤-refl splitBy/cost : cmp (Π (list A) λ _ → Π A λ _ → cost) splitBy/cost l pivot = splitBy/clocked/cost ⌈log₂ suc (length l) ⌉ l pivot splitBy/cost/closed : cmp (Π (list A) λ _ → Π A λ _ → cost) splitBy/cost/closed l pivot = splitBy/clocked/cost/closed ⌈log₂ suc (length l) ⌉ l pivot splitBy≤splitBy/cost : ∀ l pivot → IsBounded pair (splitBy l pivot) (splitBy/cost l pivot) splitBy≤splitBy/cost l pivot = splitBy/clocked≤splitBy/clocked/cost ⌈log₂ suc (length l) ⌉ l pivot splitBy≤splitBy/cost/closed : ∀ l pivot → IsBounded pair (splitBy l pivot) (splitBy/cost/closed l pivot) splitBy≤splitBy/cost/closed l pivot = splitBy/clocked≤splitBy/clocked/cost/closed ⌈log₂ suc (length l) ⌉ l pivot N.≤-refl merge/clocked : cmp (Π nat λ _ → Π pair λ _ → F (list A)) merge/clocked zero (l₁ , l₂) = ret (l₁ ++ l₂) merge/clocked (suc k) ([] , l₂) = ret l₂ merge/clocked (suc k) (x ∷ l₁ , l₂) = bind (F (list A)) (splitMid (x ∷ l₁) (s≤s z≤n)) λ (l₁₁ , pivot , l₁₂) → bind (F (list A)) (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → bind (F (list A)) (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → ret (l₁' ++ pivot ∷ l₂') merge/clocked/correct : ∀ k l₁ l₂ → ⌈log₂ suc (length l₁) ⌉ Nat.≤ k → ◯ (∃ λ l → merge/clocked k (l₁ , l₂) ≡ ret l × (Sorted l₁ → Sorted l₂ → SortedOf (l₁ ++ l₂) l)) merge/clocked/correct zero l₁ l₂ h-clock u with ⌈log₂n⌉≡0⇒n≤1 {suc (length l₁)} (N.n≤0⇒n≡0 h-clock) merge/clocked/correct zero [] l₂ h-clock u | s≤s z≤n = l₂ , refl , (λ sorted₁ sorted₂ → refl , sorted₂) merge/clocked/correct (suc k) [] l₂ h-clock u = l₂ , refl , (λ sorted₁ sorted₂ → refl , sorted₂) merge/clocked/correct (suc k) (x ∷ l₁) l₂ h-clock u = let (l₁₁ , pivot , l₁₂ , ≡ , h₁₁ , h₁₂ , ≡-↭) = splitMid/correct (x ∷ l₁) (s≤s z≤n) u in let (l₂₁ , l₂₂ , ≡' , h-sorted₂ , ≡-↭') = splitBy/correct l₂ pivot u in let (l₁' , ≡₁' , h-sorted₁') = merge/clocked/correct k l₁₁ l₂₁ (let open ≤-Reasoning in begin ⌈log₂ suc (length l₁₁) ⌉ ≤⟨ log₂-mono (s≤s h₁₁) ⟩ ⌈log₂ ⌈ suc (length (x ∷ l₁)) /2⌉ ⌉ ≤⟨ log₂-suc (suc (length (x ∷ l₁))) h-clock ⟩ k ∎) u in let (l₂' , ≡₂' , h-sorted₂') = merge/clocked/correct k l₁₂ l₂₂ (let open ≤-Reasoning in begin ⌈log₂ suc (length l₁₂) ⌉ ≤⟨ log₂-mono (s≤s h₁₂) ⟩ ⌈log₂ ⌈ suc (length (x ∷ l₁)) /2⌉ ⌉ ≤⟨ log₂-suc (suc (length (x ∷ l₁))) h-clock ⟩ k ∎) u in l₁' ++ pivot ∷ l₂' , ( let open ≡-Reasoning in begin merge/clocked (suc k) (x ∷ l₁ , l₂) ≡⟨⟩ (bind (F (list A)) (splitMid (x ∷ l₁) (s≤s z≤n)) λ (l₁₁ , pivot , l₁₂) → bind (F (list A)) (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → bind (F (list A)) (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → ret (l₁' ++ pivot ∷ l₂')) ≡⟨ Eq.cong (λ e → bind (F (list A)) e _) (≡) ⟩ (bind (F (list A)) (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → bind (F (list A)) (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → ret (l₁' ++ pivot ∷ l₂')) ≡⟨ Eq.cong (λ e → bind (F (list A)) e _) (≡') ⟩ (bind (F (list A)) (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → ret (l₁' ++ pivot ∷ l₂')) ≡⟨ Eq.cong (λ e → bind (F (list A)) e _) (Eq.cong₂ _&_ ≡₁' ≡₂') ⟩ ret (l₁' ++ pivot ∷ l₂') ∎ ) , λ sorted₁ sorted₂ → let (h₂₁ , h₂₂) = h-sorted₂ sorted₂ in let sorted₁ = Eq.subst Sorted ≡-↭ sorted₁ sorted₂ = Eq.subst Sorted ≡-↭' sorted₂ in let (↭₁' , sorted₁') = h-sorted₁' (++⁻ˡ l₁₁ sorted₁) (++⁻ˡ l₂₁ sorted₂) (↭₂' , sorted₂') = h-sorted₂' (uncons₂ (++⁻ʳ l₁₁ sorted₁)) (++⁻ʳ l₂₁ sorted₂) in ( let open PermutationReasoning in begin (x ∷ l₁) ++ l₂ ≡⟨ Eq.cong₂ (_++_) ≡-↭ ≡-↭' ⟩ (l₁₁ ++ pivot ∷ l₁₂) ++ (l₂₁ ++ l₂₂) ≡⟨ ++-assoc l₁₁ (pivot ∷ l₁₂) (l₂₁ ++ l₂₂) ⟩ l₁₁ ++ (pivot ∷ l₁₂ ++ (l₂₁ ++ l₂₂)) ↭⟨ ++⁺ˡ-↭ l₁₁ (++⁺ˡ-↭ (pivot ∷ l₁₂) (++-comm-↭ l₂₁ l₂₂)) ⟩ l₁₁ ++ (pivot ∷ l₁₂ ++ (l₂₂ ++ l₂₁)) ≡˘⟨ Eq.cong (l₁₁ ++_) (++-assoc (pivot ∷ l₁₂) l₂₂ l₂₁) ⟩ l₁₁ ++ ((pivot ∷ l₁₂ ++ l₂₂) ++ l₂₁) ↭⟨ ++⁺ˡ-↭ l₁₁ (++-comm-↭ (pivot ∷ l₁₂ ++ l₂₂) l₂₁) ⟩ l₁₁ ++ (l₂₁ ++ (pivot ∷ l₁₂ ++ l₂₂)) ≡˘⟨ ++-assoc l₁₁ l₂₁ (pivot ∷ l₁₂ ++ l₂₂) ⟩ (l₁₁ ++ l₂₁) ++ (pivot ∷ l₁₂ ++ l₂₂) ≡⟨⟩ (l₁₁ ++ l₂₁) ++ pivot ∷ (l₁₂ ++ l₂₂) ↭⟨ ++⁺-↭ ↭₁' (prep pivot ↭₂') ⟩ l₁' ++ pivot ∷ l₂' ∎ ) , join-sorted sorted₁' sorted₂' (All-resp-↭ ↭₁' (++⁺-All (split-sorted₁ l₁₁ (++⁻ˡ (l₁₁ ∷ʳ pivot) (Eq.subst Sorted (Eq.sym (++-assoc l₁₁ [ pivot ] l₁₂)) sorted₁))) h₂₁)) (All-resp-↭ ↭₂' (++⁺-All (uncons₁ (++⁻ʳ l₁₁ sorted₁)) h₂₂)) merge/clocked/cost : cmp (Π nat λ _ → Π pair λ _ → cost) merge/clocked/cost zero (l₁ , l₂) = 𝟘 merge/clocked/cost (suc k) ([] , l₂) = 𝟘 merge/clocked/cost (suc k) (x ∷ l₁ , l₂) = bind cost (splitMid (x ∷ l₁) (s≤s z≤n)) λ (l₁₁ , pivot , l₁₂) → splitMid/cost (x ∷ l₁) (s≤s z≤n) ⊕ bind cost (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘 merge/clocked/cost/closed : cmp (Π nat λ _ → Π pair λ _ → cost) merge/clocked/cost/closed k (l₁ , l₂) = pred[2^ k ] * ⌈log₂ suc (length l₂) ⌉ , k * ⌈log₂ suc (length l₂) ⌉ merge/clocked/cost≤merge/clocked/cost/closed : ∀ k l₁ l₂ → ⌈log₂ suc (length l₁) ⌉ Nat.≤ k → ◯ (merge/clocked/cost k (l₁ , l₂) ≤ₚ merge/clocked/cost/closed k (l₁ , l₂)) merge/clocked/cost≤merge/clocked/cost/closed zero l₁ l₂ h-clock u = z≤n , z≤n merge/clocked/cost≤merge/clocked/cost/closed (suc k) [] l₂ h-clock u = z≤n , z≤n merge/clocked/cost≤merge/clocked/cost/closed (suc k) (x ∷ l₁) l₂ h-clock u = let (l₁₁ , pivot , l₁₂ , ≡-splitMid , h₁₁ , h₁₂ , ≡-↭) = splitMid/correct (x ∷ l₁) (s≤s z≤n) u in let (l₂₁ , l₂₂ , ≡' , _ , ≡-↭') = splitBy/correct l₂ pivot u in let h₁ : ⌈log₂ suc (length l₁₁) ⌉ Nat.≤ k h₁ = let open ≤-Reasoning in begin ⌈log₂ suc (length l₁₁) ⌉ ≤⟨ log₂-mono (s≤s h₁₁) ⟩ ⌈log₂ ⌈ suc (length (x ∷ l₁)) /2⌉ ⌉ ≤⟨ log₂-suc (suc (length (x ∷ l₁))) h-clock ⟩ k ∎ h₂ : ⌈log₂ suc (length l₁₂) ⌉ Nat.≤ k h₂ = let open ≤-Reasoning in begin ⌈log₂ suc (length l₁₂) ⌉ ≤⟨ log₂-mono (s≤s h₁₂) ⟩ ⌈log₂ ⌈ suc (length (x ∷ l₁)) /2⌉ ⌉ ≤⟨ log₂-suc (suc (length (x ∷ l₁))) h-clock ⟩ k ∎ in let (l₁' , ≡₁' , _) = merge/clocked/correct k l₁₁ l₂₁ h₁ u in let (l₂' , ≡₂' , _) = merge/clocked/correct k l₁₂ l₂₂ h₂ u in let open ≤ₚ-Reasoning in begin (bind cost (splitMid (x ∷ l₁) (s≤s z≤n)) λ (l₁₁ , pivot , l₁₂) → splitMid/cost (x ∷ l₁) (s≤s z≤n) ⊕ bind cost (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨ Eq.cong (λ e → bind cost e λ (l₁₁ , pivot , l₁₂) → splitMid/cost (x ∷ l₁) (s≤s z≤n) ⊕ _) ≡-splitMid ⟩ (splitMid/cost (x ∷ l₁) (s≤s z≤n) ⊕ bind cost (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨⟩ (𝟘 ⊕ bind cost (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨ ⊕-identityˡ _ ⟩ (bind cost (splitBy l₂ pivot) λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨ Eq.cong (λ e → bind cost e λ (l₂₁ , l₂₂) → splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡' ⟩ (splitBy/cost/closed l₂ pivot ⊕ bind cost (merge/clocked k (l₁₁ , l₂₁) & merge/clocked k (l₁₂ , l₂₂)) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨ Eq.cong₂ (λ e₁ e₂ → splitBy/cost/closed l₂ pivot ⊕ bind cost (e₁ & e₂) λ (l₁' , l₂') → (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡₁' ≡₂' ⟩ splitBy/cost/closed l₂ pivot ⊕ ((merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ⊕ 𝟘) ≡⟨ Eq.cong (splitBy/cost/closed l₂ pivot ⊕_) (⊕-identityʳ _) ⟩ splitBy/cost/closed l₂ pivot ⊕ (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) ≤⟨ ⊕-monoʳ-≤ (splitBy/cost/closed l₂ pivot) ( ⊗-mono-≤ (merge/clocked/cost≤merge/clocked/cost/closed k l₁₁ l₂₁ h₁ u) (merge/clocked/cost≤merge/clocked/cost/closed k l₁₂ l₂₂ h₂ u) ) ⟩ splitBy/cost/closed l₂ pivot ⊕ (merge/clocked/cost/closed k (l₁₁ , l₂₁) ⊗ merge/clocked/cost/closed k (l₁₂ , l₂₂)) ≡⟨⟩ (⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₂) ⌉) ⊕ ((pred[2^ k ] * ⌈log₂ suc (length l₂₁) ⌉ , k * ⌈log₂ suc (length l₂₁) ⌉) ⊗ (pred[2^ k ] * ⌈log₂ suc (length l₂₂) ⌉ , k * ⌈log₂ suc (length l₂₂) ⌉)) ≤⟨ ⊕-monoʳ-≤ (⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₂) ⌉) ( let h-length : length l₂₁ + length l₂₂ ≡ length l₂ h-length = Eq.sym (Eq.trans (Eq.cong length ≡-↭') (length-++ l₂₁)) h₁ : ⌈log₂ suc (length l₂₁) ⌉ Nat.≤ ⌈log₂ suc (length l₂) ⌉ h₁ = log₂-mono (s≤s (N.m+n≤o⇒m≤o (length l₂₁) (N.≤-reflexive h-length))) h₂ : ⌈log₂ suc (length l₂₂) ⌉ Nat.≤ ⌈log₂ suc (length l₂) ⌉ h₂ = log₂-mono (s≤s (N.m+n≤o⇒n≤o (length l₂₁) (N.≤-reflexive h-length))) in ⊗-mono-≤ (N.*-monoʳ-≤ pred[2^ k ] h₁ , N.*-monoʳ-≤ k h₁) (N.*-monoʳ-≤ pred[2^ k ] h₂ , N.*-monoʳ-≤ k h₂) ) ⟩ (⌈log₂ suc (length l₂) ⌉ , ⌈log₂ suc (length l₂) ⌉) ⊕ ((pred[2^ k ] * ⌈log₂ suc (length l₂) ⌉ , k * ⌈log₂ suc (length l₂) ⌉) ⊗ (pred[2^ k ] * ⌈log₂ suc (length l₂) ⌉ , k * ⌈log₂ suc (length l₂) ⌉)) ≡⟨ Eq.cong₂ _,_ (arithmetic/work ⌈log₂ suc (length l₂) ⌉) (arithmetic/span ⌈log₂ suc (length l₂) ⌉) ⟩ pred[2^ suc k ] * ⌈log₂ suc (length l₂) ⌉ , suc k * ⌈log₂ suc (length l₂) ⌉ ≡⟨⟩ merge/clocked/cost/closed (suc k) (x ∷ l₁ , l₂) ∎ where arithmetic/work : ∀ n → n + (pred[2^ k ] * n + pred[2^ k ] * n) ≡ pred[2^ suc k ] * n arithmetic/work n = begin n + (pred[2^ k ] * n + pred[2^ k ] * n) ≡˘⟨ Eq.cong (n +_) (N.*-distribʳ-+ n (pred[2^ k ]) (pred[2^ k ])) ⟩ n + (pred[2^ k ] + pred[2^ k ]) * n ≡⟨⟩ suc (pred[2^ k ] + pred[2^ k ]) * n ≡⟨ Eq.cong (_* n) (pred[2^suc[n]] k) ⟩ pred[2^ suc k ] * n ∎ where open ≡-Reasoning arithmetic/span : ∀ n → n + (k * n ⊔ k * n) ≡ suc k * n arithmetic/span n = begin n + (k * n ⊔ k * n) ≡⟨ Eq.cong (n +_) (N.⊔-idem (k * n)) ⟩ n + k * n ≡⟨⟩ suc k * n ∎ where open ≡-Reasoning merge/clocked≤merge/clocked/cost : ∀ k l₁ l₂ → IsBounded (list A) (merge/clocked k (l₁ , l₂)) (merge/clocked/cost k (l₁ , l₂)) merge/clocked≤merge/clocked/cost zero l₁ l₂ = bound/ret merge/clocked≤merge/clocked/cost (suc k) [] l₂ = bound/ret merge/clocked≤merge/clocked/cost (suc k) (x ∷ l₁) l₂ = bound/bind (splitMid/cost (x ∷ l₁) (s≤s z≤n)) _ (splitMid≤splitMid/cost (x ∷ l₁) (s≤s z≤n)) λ (l₁₁ , pivot , l₁₂) → bound/bind (splitBy/cost/closed l₂ pivot) _ (splitBy≤splitBy/cost/closed l₂ pivot) λ (l₂₁ , l₂₂) → bound/bind (merge/clocked/cost k (l₁₁ , l₂₁) ⊗ merge/clocked/cost k (l₁₂ , l₂₂)) _ (bound/par (merge/clocked≤merge/clocked/cost k l₁₁ l₂₁) (merge/clocked≤merge/clocked/cost k l₁₂ l₂₂)) λ (l₁' , l₂') → bound/ret merge/clocked≤merge/clocked/cost/closed : ∀ k l₁ l₂ → ⌈log₂ suc (length l₁) ⌉ Nat.≤ k → IsBounded (list A) (merge/clocked k (l₁ , l₂)) (merge/clocked/cost/closed k (l₁ , l₂)) merge/clocked≤merge/clocked/cost/closed k l₁ l₂ h = bound/relax (merge/clocked/cost≤merge/clocked/cost/closed k l₁ l₂ h) (merge/clocked≤merge/clocked/cost k l₁ l₂) merge : cmp (Π pair λ _ → F (list A)) merge (l₁ , l₂) = merge/clocked ⌈log₂ suc (length l₁) ⌉ (l₁ , l₂) merge/correct : ∀ l₁ l₂ → ◯ (∃ λ l → merge (l₁ , l₂) ≡ ret l × (Sorted l₁ → Sorted l₂ → SortedOf (l₁ ++ l₂) l)) merge/correct l₁ l₂ = merge/clocked/correct ⌈log₂ suc (length l₁) ⌉ l₁ l₂ N.≤-refl merge/cost : cmp (Π pair λ _ → cost) merge/cost (l₁ , l₂) = merge/clocked/cost ⌈log₂ suc (length l₁) ⌉ (l₁ , l₂) merge/cost/closed : cmp (Π pair λ _ → cost) merge/cost/closed (l₁ , l₂) = merge/clocked/cost/closed ⌈log₂ suc (length l₁) ⌉ (l₁ , l₂) merge≤merge/cost : ∀ l₁ l₂ → IsBounded (list A) (merge (l₁ , l₂)) (merge/cost (l₁ , l₂)) merge≤merge/cost l₁ l₂ = merge/clocked≤merge/clocked/cost ⌈log₂ suc (length l₁) ⌉ l₁ l₂ merge≤merge/cost/closed : ∀ l₁ l₂ → IsBounded (list A) (merge (l₁ , l₂)) (merge/cost/closed (l₁ , l₂)) merge≤merge/cost/closed l₁ l₂ = merge/clocked≤merge/clocked/cost/closed ⌈log₂ suc (length l₁) ⌉ l₁ l₂ N.≤-refl
{ "alphanum_fraction": 0.5246607727, "avg_line_length": 51.0396694215, "ext": "agda", "hexsha": "b3d9eb49678ba12fd70ccae5505f6f61e3928c66", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar/Merge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar/Merge.agda", "max_line_length": 206, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Parallel/MergeSortPar/Merge.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 13303, "size": 30879 }
module Data.List.Instance where open import Category.FAM open import Data.List open import Data.List.Properties open import Function using (_$_) open import Relation.Binary.PropositionalEquality hiding ([_]) instance ListFunctor : ∀ {ℓ} → Functor {ℓ} List ListFunctor = record { _<$>_ = map ; isFunctor = record { identity = map-id ; homo = λ f g a → map-compose a } } ListApplicative : ∀ {ℓ} → Applicative {ℓ} List ListApplicative {ℓ} = record { pure = [_] ; _⊛_ = λ fs xs → concat (map (flip map xs) fs) ; isApplicative = record { identity = λ xs → begin map id xs ++ [] ≡⟨ ++-identityʳ (map id xs) ⟩ map id xs ≡⟨ map-id xs ⟩ xs ∎ ; compose = compose ; homo = λ _ _ → refl ; interchange = interchange } } where open ≡-Reasoning open import Function concat-∷ : {A : Set ℓ} (xs : List A) (xss : List (List A)) → concat (xs ∷ xss) ≡ xs ++ concat xss concat-∷ [] xss = refl concat-∷ (x ∷ xs) xss = refl concat-++ : {A : Set ℓ} (xs ys : List (List A)) → concat (xs ++ ys) ≡ concat xs ++ concat ys concat-++ [] ys = refl concat-++ (xs ∷ xss) ys = begin concat ((xs ∷ xss) ++ ys) ≡⟨ refl ⟩ concat (xs ∷ xss ++ ys) ≡⟨ concat-∷ xs (xss ++ ys) ⟩ xs ++ concat (xss ++ ys) ≡⟨ cong (λ x → xs ++ x) (concat-++ xss ys) ⟩ xs ++ concat xss ++ concat ys ≡⟨ sym (++-assoc xs (concat xss) (concat ys)) ⟩ (xs ++ concat xss) ++ concat ys ≡⟨ cong (λ x → x ++ concat ys) (sym (concat-∷ xs xss)) ⟩ concat (xs ∷ xss) ++ concat ys ∎ lemma : {A B C : Set ℓ} (f : B → C) (gs : List (A → B)) (xs : List A) → map (flip map xs) (flip map gs (_∘′_ f)) ≡ map (map f) (map (flip map xs) gs) lemma f [] xs = refl lemma f (g ∷ gs) xs = let shit = map (flip map xs) (map (_∘′_ f) gs) in begin flip map xs (f ∘′ g) ∷ shit ≡⟨ refl ⟩ map (f ∘′ g) xs ∷ shit ≡⟨ cong (λ x → x ∷ shit) (map-compose xs) ⟩ map f (map g xs) ∷ shit ≡⟨ refl ⟩ map f (flip map xs g) ∷ shit ≡⟨ cong (λ x → map f (flip map xs g) ∷ x) (lemma f gs xs) ⟩ map f (flip map xs g) ∷ map (map f) (map (flip map xs) gs) ∎ compose : {A B C : Set ℓ} (fs : List (B → C)) (gs : List (A → B)) (xs : List A) → concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡ concat (map (flip map (concat (map (flip map xs) gs))) fs) compose [] gs xs = refl compose (f ∷ fs) gs xs = begin concat (map (flip map xs) (concat (flip map gs (_∘′_ f) ∷ map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ cong (λ x → concat (map (flip map xs) x)) (concat-∷ (flip map gs (_∘′_ f)) (map (flip map gs) (map _∘′_ fs ++ []))) ⟩ concat (map (flip map xs) (flip map gs (_∘′_ f) ++ concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ cong concat (map-++-commute (flip map xs) (flip map gs (_∘′_ f)) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ⟩ concat (map (flip map xs) (flip map gs (_∘′_ f)) ++ map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ concat-++ (map (flip map xs) (flip map gs (_∘′_ f))) (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ⟩ concat (map (flip map xs) (flip map gs (_∘′_ f))) ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ cong (λ x → concat x ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ []))))) (lemma f gs xs) ⟩ concat (map (map f) (map (flip map xs) gs)) ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ cong (λ x → x ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ []))))) (concat-map ((map (flip map xs) gs)))⟩ map f (concat (map (flip map xs) gs)) ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ refl ⟩ flip map (concat (map (flip map xs) gs)) f ++ concat (map (flip map xs) (concat (map (flip map gs) (map _∘′_ fs ++ [])))) ≡⟨ cong (λ x → flip map (concat (map (flip map xs) gs)) f ++ x) (compose fs gs xs) ⟩ flip map (concat (map (flip map xs) gs)) f ++ concat (map (flip map (concat (map (flip map xs) gs))) fs) ≡⟨ sym (concat-∷ (flip map (concat (map (flip map xs) gs)) f) (map (flip map (concat (map (flip map xs) gs))) fs)) ⟩ concat (flip map (concat (map (flip map xs) gs)) f ∷ map (flip map (concat (map (flip map xs) gs))) fs) ≡⟨ refl ⟩ concat (map (flip map (concat (map (flip map xs) gs))) (f ∷ fs)) ∎ interchange : {A B : Set ℓ} (fs : List (A → B)) (x : A) → concat (map (flip map [ x ]) fs) ≡ concat (map (flip map fs) [ (λ g → g x) ]) interchange [] x = refl interchange (f ∷ fs) x = begin concat (flip map [ x ] f ∷ map (flip map [ x ]) fs) ≡⟨ refl ⟩ concat (map f [ x ] ∷ map (flip map [ x ]) fs) ≡⟨ concat-∷ (map f [ x ]) (map (flip map [ x ]) fs) ⟩ map f [ x ] ++ concat (map (flip map [ x ]) fs) ≡⟨ cong (λ w → map f [ x ] ++ w) (interchange fs x) ⟩ map f [ x ] ++ map (λ z → z x) fs ++ [] ≡⟨ refl ⟩ concat (flip map (f ∷ fs) (λ g → g x) ∷ []) ∎
{ "alphanum_fraction": 0.419858156, "avg_line_length": 52.875, "ext": "agda", "hexsha": "b0cf155751aadfdb4d1d509357e3f4767ebb059d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/FAM", "max_forks_repo_path": "src/Data/List/Instance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/FAM", "max_issues_repo_path": "src/Data/List/Instance.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/FAM", "max_stars_repo_path": "src/Data/List/Instance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2002, "size": 6345 }
{-# OPTIONS --cubical --no-import-sorts #-} module NumberFirstAttempt where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Binary.Base -- Rel open import Cubical.Data.Unit.Base -- Unit record PoorField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field Carrier : Type ℓ -- comm ring 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier -- lattice _<_ : Rel Carrier Carrier ℓ' -- stronger than _#_ and _≤_ min : Carrier → Carrier → Carrier max : Carrier → Carrier → Carrier -- other _#_ : Rel Carrier Carrier ℓ' _≤_ : Rel Carrier Carrier ℓ' ∣_∣ᶠ' : Carrier → Σ[ x ∈ Carrier ] 0f ≤ x -- absolute value NOTE: better have `0 ≤ x` as a separate property _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier conj : Carrier → Carrier -- complex conjugation (only for ℂ; this is the identity function on ℝ) -- sqrt⁺ -- positive sqrt -- -- need that on ℝ₀⁺ to define a norm from an inner product -- -- on ℝ₀⁺ we have `∀ x → sqrt (x · x) ≡ x` -- NOTE: squares are nonnegative in an ordered field ∣_∣ᶠ : Carrier → Carrier -- NOTE: well, this should be "into" ℝ₀⁺ ∣ x ∣ᶠ = fst (∣ x ∣ᶠ') _-_ : Carrier → Carrier → Carrier x - y = x + (- y) infix 9 _⁻¹ᶠ infix 8 -_ infixl 7 _·_ infixl 6 _+_ infixl 6 _-_ infixl 4 _#_ infixl 4 _<_ infixl 4 _≤_ record IsℝField (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF record Isℝ₀⁺Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF field isℝField : IsℝField PF isNonnegative : ∀ x → 0f ≤ x open IsℝField isℝField public record Isℝ⁺Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF field isℝField : IsℝField PF -- NOTE: 0f is not an element of ℝ⁺, so we do not have a neutral element for addition -- so the following holds in a different way -- isPositive : ∀ x → 0f < x open IsℝField isℝField public record Is𝕂Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF record ℝField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝField : IsℝField poorField open PoorField poorField public open IsℝField isℝField public record ℝ₀⁺Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝ₀⁺Field : Isℝ₀⁺Field poorField open PoorField poorField public open Isℝ₀⁺Field isℝ₀⁺Field public record ℝ⁺Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝ⁺Field : Isℝ⁺Field poorField open PoorField poorField public open Isℝ⁺Field isℝ⁺Field public record 𝕂Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} is𝕂Field : Is𝕂Field poorField open PoorField poorField public open Is𝕂Field is𝕂Field public postulate ℝℓ ℝℓ' : Level ℝF : ℝField {ℝℓ} {ℝℓ'} -- reals ℝ⁺F : ℝ⁺Field {ℝℓ} {ℝℓ'} -- positive reals without 0 ℝ₀⁺F : ℝ₀⁺Field {ℝℓ} {ℝℓ'} -- positive reals with 0 open ℝField ℝF using () renaming ( Carrier to ℝ ) record PoorSubField-ℝ (φ : ℝ → Type ℓ) : Type (ℓ-max ℝℓ ℓ) where -- module R = ℝField ℝF open ℝField ℝF field ι : Σ ℝ φ _<⁺_ : Σ ℝ φ → Σ ℝ φ → Type ℝℓ' _<⁺_ (x , xp) (y , yp) = x < y module Test where module R = ℝField ℝF φᵢ = λ(x : ℝ) → Unit -- the following "absorbs" different `Σ ℝ φ` ℝ-numbers and falls back to the "raw" operation from ℝ _+_ : {φ₁ φ₂ : ℝ → Type ℓ'} → Σ ℝ φ₁ → Σ ℝ φ₂ → Σ ℝ φᵢ _+_ (x , _) (y , _) = x R.+ y , tt -- we might add an enumeration for different φs and pattern-match on those data ℝ-props (x : ℝ) : Type ℝℓ where φ-id : Unit → ℝ-props x -- more ... -- this works for subsets of ℝ but not for inter-sort-mixing (e.g. ℕ + ℝ) .. which we do want to coerce explicitly? -- we could start with a number, e.g. z₀ ∈ ℕ -- then include it into ℝ and have a Σ ℝ φ-from-nat -- we could track the from-nat'ness and back-coerce this number when needed (as long as from-nat is preserved) {- data ℝ-sub (x : ℝ) : Type ℝℓ where φ-from-ℝ : Unit -- default "fallback" case φ-from-ℕ : Σ[ z ∈ ℕ ] ℕ↪ℝ z ≡ x -- with this we can use the `reflects`-properties of `ℕ↪ℝ` to get corresponding properties on ℕ φ-from-ℤ : Σ[ z ∈ ℤ ] ℤ↪ℝ z ≡ x φ-from-ℚ : Σ[ z ∈ ℚ ] ℚ↪ℝ z ≡ x φ-from-ℝ₀⁺ : 0f ≤ x ¬( x < 0f) φ-from-ℝ⁺ : 0f < x -- ... more -- first projection num : ∀{x} → ℝ-sub x → ℝ num p = ... cases -- target type "table" +-Coerce : (x y : ℝ-sub) → Type ℝℓ +-Coerce x y = ... cases -- implementation _+_ : (x y : ℝ-sub) → +-Coerce x y x + y = ... cases -} record IsPoorFieldInclusion {ℓ ℓ' ℓₚ ℓₚ'} (F : PoorField {ℓ} {ℓₚ}) (G : PoorField {ℓ'} {ℓₚ'}) (f : (PoorField.Carrier F) → (PoorField.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ')) where private module F = PoorField F module G = PoorField G field -- injectivity? might follow from preserves-#? reflects-≡ : ∀ x y → f x ≡ f y → x ≡ y -- lattice preserves-< : ∀ x y → x F.< y → f x G.< f y preserves-≤ : ∀ x y → x F.≤ y → f x G.≤ f y preserves-# : ∀ x y → x F.# y → f x G.# f y reflects-< : ∀ x y → f x G.< f y → x F.< y reflects-≤ : ∀ x y → f x G.≤ f y → x F.≤ y reflects-# : ∀ x y → f x G.# f y → x F.# y preserves-min : ∀ x y → f (F.min x y) ≡ G.min (f x) (f y) preserves-max : ∀ x y → f (F.max x y) ≡ G.max (f x) (f y) preserves-0 : f F.0f ≡ G.0f -- Fin 1 does not preserve preserves-1 : f F.1f ≡ G.1f -- Fin k might not preserve preserves-+ : ∀ x y → f (x F.+ y) ≡ f x G.+ f y preserves-· : ∀ x y → f (x F.· y) ≡ f x G.· f y -- ℕ might not preserve preserves- : ∀ x → f ( F.- x) ≡ G.- (f x) -- ℤ does not preserve -- preserves-⁻¹' : ∀ x → (p : x F.# F.0f) → f (F._⁻¹ᶠ x {{p}}) ≡ G._⁻¹ᶠ (f x) {{ transport (λ i → f x G.# preserves-0 i) (preserves-# x F.0f p) }} -- NOTE: we better let the "user" decide how the proof of `f x # 0` is obtained preserves-⁻¹ : ∀ x → (p : x F.# F.0f) → (q : f x G.# G.0f) → f (F._⁻¹ᶠ x {{p}}) ≡ G._⁻¹ᶠ (f x) {{q}} record PoorFieldInclusion {ℓ ℓ' ℓₚ ℓₚ'} (F : PoorField {ℓ} {ℓₚ}) (G : PoorField {ℓ'} {ℓₚ'}) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ')) where constructor poorfieldmor module F = PoorField F module G = PoorField G field fun : F.Carrier → G.Carrier isPoorFieldInclusion : IsPoorFieldInclusion F G fun open IsPoorFieldInclusion isPoorFieldInclusion public
{ "alphanum_fraction": 0.577324066, "avg_line_length": 33.2019230769, "ext": "agda", "hexsha": "756256d866410bd0744ce7724479246febde92e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/NumberFirstAttempt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/NumberFirstAttempt.agda", "max_line_length": 150, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/NumberFirstAttempt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 2807, "size": 6906 }
module Nat where data Nat : Set where zero : Nat suc : Nat -> Nat one : Nat one = suc zero
{ "alphanum_fraction": 0.5596330275, "avg_line_length": 10.9, "ext": "agda", "hexsha": "d6fd5231615618318dddfb684c8f146647b1e99a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/Nat.agda", "max_line_length": 22, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 36, "size": 109 }
------------------------------------------------------------------------ -- A variant of the propositional truncation operator with an erased -- truncation constructor ------------------------------------------------------------------------ -- Partly following the HoTT book, but adapted for erasure. {-# OPTIONS --erased-cubical --safe #-} -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the propositional truncation -- operator uses path equality, but the supplied notion of equality is -- used for many other things. import Equality.Path as P module H-level.Truncation.Propositional.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude as P open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J as Bijection using (_↔_) import Colimit.Sequential.Very-erased eq as C open import Embedding equality-with-J as Emb using (Is-embedding) open import Equality.Decidable-UIP equality-with-J open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased equality-with-J as EEq using (_≃ᴱ_; Is-equivalenceᴱ) open import Equivalence.Erased.Contractible-preimages equality-with-J as ECP using (Contractibleᴱ; _⁻¹ᴱ_) open import Equivalence-relation equality-with-J open import Erased.Cubical eq as Er using (Erased; [_]; erased; Very-stableᴱ-≡; Erased-singleton) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional.One-step eq as O using (∥_∥¹-out-^) import H-level.Truncation.Propositional.Non-recursive.Erased eq as N open import Monad equality-with-J open import Preimage equality-with-J using (_⁻¹_) open import Surjection equality-with-J as S using (_↠_; Split-surjective) private variable a b ℓ p r : Level A A₁ A₂ B B₁ B₂ C : Type a P Q : A → Type p R : A → A → Type r f g k x y : A ------------------------------------------------------------------------ -- The type former -- A propositional truncation operator with an erased higher -- constructor. data ∥_∥ᴱ (A : Type a) : Type a where ∣_∣ : A → ∥ A ∥ᴱ @0 truncation-is-propositionᴾ : P.Is-proposition ∥ A ∥ᴱ -- The truncation produces propositions (in erased contexts). @0 truncation-is-proposition : Is-proposition ∥ A ∥ᴱ truncation-is-proposition = _↔_.from (H-level↔H-level 1) truncation-is-propositionᴾ ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ′ {A : Type a} (P : ∥ A ∥ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ @0 truncation-is-propositionʳ : (p : P x) (q : P y) → P.[ (λ i → P (truncation-is-propositionᴾ x y i)) ] p ≡ q open Elimᴾ′ public elimᴾ′ : Elimᴾ′ P → (x : ∥ A ∥ᴱ) → P x elimᴾ′ {A = A} {P = P} e = helper where module E = Elimᴾ′ e helper : (x : ∥ A ∥ᴱ) → P x helper ∣ x ∣ = E.∣∣ʳ x helper (truncation-is-propositionᴾ x y i) = E.truncation-is-propositionʳ (helper x) (helper y) i -- A possibly more useful dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : ∥ A ∥ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ @0 truncation-is-propositionʳ : (x : ∥ A ∥ᴱ) → P.Is-proposition (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : ∥ A ∥ᴱ) → P x elimᴾ e = elimᴾ′ λ where .∣∣ʳ → E.∣∣ʳ .truncation-is-propositionʳ _ _ → P.heterogeneous-irrelevance E.truncation-is-propositionʳ where module E = Elimᴾ e -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 truncation-is-propositionʳ : P.Is-proposition B open Recᴾ public recᴾ : Recᴾ A B → ∥ A ∥ᴱ → B recᴾ r = elimᴾ λ where .∣∣ʳ → R.∣∣ʳ .truncation-is-propositionʳ _ → R.truncation-is-propositionʳ where module R = Recᴾ r -- A dependently typed eliminator. record Elim {A : Type a} (P : ∥ A ∥ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : (x : A) → P ∣ x ∣ @0 truncation-is-propositionʳ : (x : ∥ A ∥ᴱ) → Is-proposition (P x) open Elim public elim : Elim P → (x : ∥ A ∥ᴱ) → P x elim e = elimᴾ λ where .∣∣ʳ → E.∣∣ʳ .truncation-is-propositionʳ → _↔_.to (H-level↔H-level 1) ∘ E.truncation-is-propositionʳ where module E = Elim e -- Primitive "recursion". record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 truncation-is-propositionʳ : Is-proposition B open Rec public rec : Rec A B → ∥ A ∥ᴱ → B rec r = recᴾ λ where .∣∣ʳ → R.∣∣ʳ .truncation-is-propositionʳ → _↔_.to (H-level↔H-level 1) R.truncation-is-propositionʳ where module R = Rec r ------------------------------------------------------------------------ -- Conversion functions -- ∥_∥ᴱ is pointwise equivalent to N.∥_∥ᴱ. ∥∥ᴱ≃∥∥ᴱ : ∥ A ∥ᴱ ≃ N.∥ A ∥ᴱ ∥∥ᴱ≃∥∥ᴱ = Eq.↔→≃ (rec λ where .∣∣ʳ → N.∣_∣ .truncation-is-propositionʳ → N.∥∥ᴱ-proposition) (N.elim λ where .N.∣∣ʳ → ∣_∣ .N.is-propositionʳ _ → truncation-is-proposition) (N.elim λ where .N.∣∣ʳ _ → refl _ .N.is-propositionʳ _ → mono₁ 1 N.∥∥ᴱ-proposition) (elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) ------------------------------------------------------------------------ -- Some preservation lemmas and related results -- A map function. ∥∥ᴱ-map : (A → B) → ∥ A ∥ᴱ → ∥ B ∥ᴱ ∥∥ᴱ-map f = rec λ where .∣∣ʳ → ∣_∣ ∘ f .truncation-is-propositionʳ → truncation-is-proposition mutual -- If A and B are logically equivalent, then there is an equivalence -- with erased proofs between ∥ A ∥ᴱ and ∥ B ∥ᴱ. ∥∥ᴱ-cong-⇔ : A ⇔ B → ∥ A ∥ᴱ ≃ᴱ ∥ B ∥ᴱ ∥∥ᴱ-cong-⇔ A⇔B = ∥∥ᴱ-cong-⇔′ (∣_∣ ∘ _⇔_.to A⇔B) (∣_∣ ∘ _⇔_.from A⇔B) -- A variant of the previous result. ∥∥ᴱ-cong-⇔′ : (A → ∥ B ∥ᴱ) → (B → ∥ A ∥ᴱ) → ∥ A ∥ᴱ ≃ᴱ ∥ B ∥ᴱ ∥∥ᴱ-cong-⇔′ A→∥B∥ B→∥A∥ = EEq.⇔→≃ᴱ truncation-is-proposition truncation-is-proposition (rec λ where .∣∣ʳ → A→∥B∥ .truncation-is-propositionʳ → truncation-is-proposition) (rec λ where .∣∣ʳ → B→∥A∥ .truncation-is-propositionʳ → truncation-is-proposition) -- If there is a split surjection from A to B, then there is a split -- surjection from ∥ A ∥ᴱ to ∥ B ∥ᴱ. ∥∥ᴱ-cong-↠ : A ↠ B → ∥ A ∥ᴱ ↠ ∥ B ∥ᴱ ∥∥ᴱ-cong-↠ A↠B = record { logical-equivalence = record { to = ∥∥ᴱ-map (_↠_.to A↠B) ; from = ∥∥ᴱ-map (_↠_.from A↠B) } ; right-inverse-of = elim λ where .∣∣ʳ x → ∣ _↠_.to A↠B (_↠_.from A↠B x) ∣ ≡⟨ cong ∣_∣ (_↠_.right-inverse-of A↠B x) ⟩∎ ∣ x ∣ ∎ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } private ∥∥ᴱ-cong-↔ : A ↔ B → ∥ A ∥ᴱ ↔ ∥ B ∥ᴱ ∥∥ᴱ-cong-↔ A↔B = record { surjection = ∥∥ᴱ-cong-↠ (_↔_.surjection A↔B) ; left-inverse-of = elim λ where .∣∣ʳ x → ∣ _↔_.from A↔B (_↔_.to A↔B x) ∣ ≡⟨ cong ∣_∣ (_↔_.left-inverse-of A↔B x) ⟩∎ ∣ x ∣ ∎ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } -- The truncation operator preserves "symmetric" functions. ∥∥ᴱ-cong : A ↝[ ⌊ k ⌋-sym ] B → ∥ A ∥ᴱ ↝[ ⌊ k ⌋-sym ] ∥ B ∥ᴱ ∥∥ᴱ-cong {k = logical-equivalence} = _≃ᴱ_.logical-equivalence ∘ ∥∥ᴱ-cong-⇔ ∥∥ᴱ-cong {k = bijection} = ∥∥ᴱ-cong-↔ ∥∥ᴱ-cong {k = equivalence} = from-isomorphism ∘ ∥∥ᴱ-cong-↔ ∘ from-isomorphism ∥∥ᴱ-cong {k = equivalenceᴱ} = ∥∥ᴱ-cong-⇔ ∘ _≃ᴱ_.logical-equivalence ------------------------------------------------------------------------ -- Some bijections/erased equivalences -- If the underlying type is a proposition, then truncations of the -- type are isomorphic to the type itself. ∥∥ᴱ↔ : @0 Is-proposition A → ∥ A ∥ᴱ ↔ A ∥∥ᴱ↔ A-prop = record { surjection = record { logical-equivalence = record { to = rec λ where .∣∣ʳ → id .truncation-is-propositionʳ → A-prop ; from = ∣_∣ } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } -- If A is merely inhabited, then the truncation of A is equivalent -- (with erased proofs) to the unit type. inhabited⇒∥∥ᴱ≃ᴱ⊤ : ∥ A ∥ᴱ → ∥ A ∥ᴱ ≃ᴱ ⊤ inhabited⇒∥∥ᴱ≃ᴱ⊤ ∥a∥ = EEq.inhabited→Is-proposition→≃ᴱ⊤ ∥a∥ truncation-is-proposition -- If A is not inhabited, then the propositional truncation of A is -- isomorphic to the empty type. not-inhabited⇒∥∥ᴱ↔⊥ : ¬ A → ∥ A ∥ᴱ ↔ ⊥ {ℓ = ℓ} not-inhabited⇒∥∥ᴱ↔⊥ {A = A} = ¬ A ↝⟨ (λ ¬a → rec λ where .∣∣ʳ → ¬a .truncation-is-propositionʳ → ⊥-propositional) ⟩ ¬ ∥ A ∥ᴱ ↝⟨ inverse ∘ Bijection.⊥↔uninhabited ⟩□ ∥ A ∥ᴱ ↔ ⊥ □ -- The negation of the truncation of A is isomorphic to the negation -- of A. ¬∥∥ᴱ↔¬ : ¬ ∥ A ∥ᴱ ↔ ¬ A ¬∥∥ᴱ↔¬ {A = A} = record { surjection = record { logical-equivalence = record { to = λ f → f ∘ ∣_∣ ; from = λ ¬A → rec λ where .∣∣ʳ → ¬A .truncation-is-propositionʳ → ⊥-propositional } ; right-inverse-of = λ _ → ¬-propositional ext _ _ } ; left-inverse-of = λ _ → ¬-propositional ext _ _ } -- A form of idempotence for binary sums. idempotent : ∥ A ⊎ A ∥ᴱ ≃ᴱ ∥ A ∥ᴱ idempotent = ∥∥ᴱ-cong-⇔ (record { to = P.[ id , id ]; from = inj₁ }) ------------------------------------------------------------------------ -- The universal property, and some related results mutual -- The propositional truncation operator's universal property. -- -- See also Quotient.Erased.Σ→Erased-Constant≃∥∥ᴱ→. universal-property : @0 Is-proposition B → (∥ A ∥ᴱ → B) ≃ (A → B) universal-property B-prop = universal-property-Π (λ _ → B-prop) -- A generalisation of the universal property. universal-property-Π : @0 (∀ x → Is-proposition (P x)) → ((x : ∥ A ∥ᴱ) → P x) ≃ ((x : A) → P ∣ x ∣) universal-property-Π {A = A} {P = P} P-prop = ((x : ∥ A ∥ᴱ) → P x) ↝⟨ Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = λ f → ∣ f ∘ ∣_∣ ∣ ; from = rec λ where .∣∣ʳ f → elim λ where .∣∣ʳ → f .truncation-is-propositionʳ → P-prop .truncation-is-propositionʳ → Π-closure ext 1 λ _ → P-prop _ } ; right-inverse-of = elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } ; left-inverse-of = λ f → ⟨ext⟩ $ elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 (P-prop _) }) ⟩ ∥ ((x : A) → P ∣ x ∣) ∥ᴱ ↔⟨ ∥∥ᴱ↔ (Π-closure ext 1 λ _ → P-prop _) ⟩□ ((x : A) → P ∣ x ∣) □ -- The universal property computes in the "right" way. _ : (@0 B-prop : Is-proposition B) (f : ∥ A ∥ᴱ → B) → _≃_.to (universal-property B-prop) f ≡ f ∘ ∣_∣ _ = λ _ _ → refl _ _ : (@0 B-prop : Is-proposition B) (f : A → B) (x : A) → _≃_.from (universal-property B-prop) f ∣ x ∣ ≡ f x _ = λ _ _ _ → refl _ -- Functions from ∥ A ∥ᴱ can be expressed as functions from A along -- with some erased data. ∥∥ᴱ→≃ : (∥ A ∥ᴱ → B) ≃ (∃ λ (f : A → B) → Erased (∃ λ (g : ∀ n → ∥ A ∥¹-out-^ (suc n) → B) → (∀ x → g zero O.∣ x ∣ ≡ f x) × (∀ n x → g (suc n) O.∣ x ∣ ≡ g n x))) ∥∥ᴱ→≃ {A = A} {B = B} = (∥ A ∥ᴱ → B) ↝⟨ →-cong ext ∥∥ᴱ≃∥∥ᴱ F.id ⟩ (N.∥ A ∥ᴱ → B) ↝⟨ C.universal-property ⟩□ (∃ λ (f : A → B) → Erased (∃ λ (g : ∀ n → ∥ A ∥¹-out-^ (suc n) → B) → (∀ x → g zero O.∣ x ∣ ≡ f x) × (∀ n x → g (suc n) O.∣ x ∣ ≡ g n x))) □ -- A function of type (x : ∥ A ∥ᴱ) → P x, along with an erased proof -- showing that the function is equal to some erased function, is -- equivalent to a function of type (x : A) → P ∣ x ∣, along with an -- erased equality proof. Σ-Π-∥∥ᴱ-Erased-≡-≃ : {@0 g : (x : ∥ A ∥ᴱ) → P x} → (∃ λ (f : (x : ∥ A ∥ᴱ) → P x) → Erased (f ≡ g)) ≃ (∃ λ (f : (x : A) → P ∣ x ∣) → Erased (f ≡ g ∘ ∣_∣)) Σ-Π-∥∥ᴱ-Erased-≡-≃ {A = A} {P = P} {g = g} = (∃ λ (f : (x : ∥ A ∥ᴱ) → P x) → Erased (f ≡ g)) ↝⟨ (Σ-cong lemma λ _ → Er.Erased-cong (inverse $ Eq.≃-≡ lemma)) ⟩ (∃ λ (f : (x : N.∥ A ∥ᴱ) → P (_≃_.from ∥∥ᴱ≃∥∥ᴱ x)) → Erased (f ≡ g ∘ _≃_.from ∥∥ᴱ≃∥∥ᴱ)) ↝⟨ N.Σ-Π-∥∥ᴱ-Erased-≡-≃ ⟩□ (∃ λ (f : (x : A) → P ∣ x ∣) → Erased (f ≡ g ∘ ∣_∣)) □ where lemma = Π-cong-contra ext (inverse ∥∥ᴱ≃∥∥ᴱ) λ _ → Eq.id ------------------------------------------------------------------------ -- Some results based on "Generalizations of Hedberg's Theorem" by -- Kraus, Escardó, Coquand and Altenkirch -- Types with constant endofunctions are "h-stable" (meaning that -- "mere inhabitance" implies inhabitance). constant-endofunction⇒h-stable : {f : A → A} → @0 Constant f → ∥ A ∥ᴱ → A constant-endofunction⇒h-stable {A = A} {f = f} c = ∥ A ∥ᴱ ↝⟨ (rec λ where .∣∣ʳ x → f x , [ c (f x) x ] .truncation-is-propositionʳ → prop) ⟩ (∃ λ (x : A) → Erased (f x ≡ x)) ↝⟨ proj₁ ⟩□ A □ where @0 prop : _ prop = $⟨ fixpoint-lemma f c ⟩ Is-proposition (∃ λ x → f x ≡ x) ↝⟨ H-level-cong _ 1 (∃-cong λ _ → inverse $ Er.erased Er.Erased↔) ⦂ (_ → _) ⟩□ Is-proposition (∃ λ x → Erased (f x ≡ x)) □ -- Having a constant endofunction is logically equivalent to being -- h-stable. constant-endofunction⇔h-stable : (∃ λ (f : A → A) → Erased (Constant f)) ⇔ (∥ A ∥ᴱ → A) constant-endofunction⇔h-stable = record { to = λ (_ , [ c ]) → constant-endofunction⇒h-stable c ; from = λ f → f ∘ ∣_∣ , [ (λ x y → f ∣ x ∣ ≡⟨ cong f $ truncation-is-proposition _ _ ⟩∎ f ∣ y ∣ ∎) ] } ------------------------------------------------------------------------ -- Some results related to _×_ -- The cartesian product of the truncation of A and A is equivalent -- (with erased "proofs") to A. ∥∥ᴱ×≃ᴱ : (∥ A ∥ᴱ × A) ≃ᴱ A ∥∥ᴱ×≃ᴱ = EEq.↔→≃ᴱ proj₂ (λ x → ∣ x ∣ , x) refl (λ _ → cong (_, _) (truncation-is-proposition _ _)) -- The application _≃ᴱ_.right-inverse-of ∥∥ᴱ×≃ᴱ x computes in a -- certain way. _ : _≃ᴱ_.right-inverse-of ∥∥ᴱ×≃ᴱ x ≡ refl _ _ = refl _ -- ∥_∥ᴱ commutes with _×_. ∥∥ᴱ×∥∥ᴱ↔∥×∥ᴱ : (∥ A ∥ᴱ × ∥ B ∥ᴱ) ↔ ∥ A × B ∥ᴱ ∥∥ᴱ×∥∥ᴱ↔∥×∥ᴱ = record { surjection = record { logical-equivalence = record { from = λ p → ∥∥ᴱ-map proj₁ p , ∥∥ᴱ-map proj₂ p ; to = uncurry $ rec λ where .∣∣ʳ x → rec λ where .∣∣ʳ y → ∣ x , y ∣ .truncation-is-propositionʳ → truncation-is-proposition .truncation-is-propositionʳ → Π-closure ext 1 λ _ → truncation-is-proposition } ; right-inverse-of = elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } ; left-inverse-of = uncurry $ elim λ where .∣∣ʳ _ → elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 $ ×-closure 1 truncation-is-proposition truncation-is-proposition .truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → mono₁ 1 $ ×-closure 1 truncation-is-proposition truncation-is-proposition } ------------------------------------------------------------------------ -- Some results related to h-levels -- Variants of proj₁-closure. private H-level-×₁-lemma : (A → ∥ B ∥ᴱ) → ∀ n → H-level (suc n) (A × B) → H-level (suc n) A H-level-×₁-lemma inhabited n h = [inhabited⇒+]⇒+ n λ a → flip rec (inhabited a) λ where .∣∣ʳ b → proj₁-closure (λ _ → b) (suc n) h .truncation-is-propositionʳ → H-level-propositional ext (suc n) H-level-×₁ : (A → ∥ B ∥ᴱ) → ∀ n → H-level n (A × B) → H-level n A H-level-×₁ inhabited zero h = propositional⇒inhabited⇒contractible (H-level-×₁-lemma inhabited 0 (mono₁ 0 h)) (proj₁ (proj₁ h)) H-level-×₁ inhabited (suc n) = H-level-×₁-lemma inhabited n H-level-×₂ : (B → ∥ A ∥ᴱ) → ∀ n → H-level n (A × B) → H-level n B H-level-×₂ {B = B} {A = A} inhabited n = H-level n (A × B) ↝⟨ H-level.respects-surjection (from-bijection ×-comm) n ⟩ H-level n (B × A) ↝⟨ H-level-×₁ inhabited n ⟩□ H-level n B □ ------------------------------------------------------------------------ -- Flattening -- A generalised flattening lemma. flatten′ : (F : (Type ℓ → Type ℓ) → Type f) (map : ∀ {G H} → (∀ {A} → G A → H A) → F G → F H) (f : F ∥_∥ᴱ → ∥ F id ∥ᴱ) → (∀ x → f (map ∣_∣ x) ≡ ∣ x ∣) → (∀ x → ∥∥ᴱ-map (map ∣_∣) (f x) ≡ ∣ x ∣) → ∥ F ∥_∥ᴱ ∥ᴱ ↔ ∥ F id ∥ᴱ flatten′ _ map f f-map map-f = record { surjection = record { logical-equivalence = record { to = rec λ where .∣∣ʳ → f .truncation-is-propositionʳ → truncation-is-proposition ; from = ∥∥ᴱ-map (map ∣_∣) } ; right-inverse-of = elim λ where .∣∣ʳ → f-map .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } ; left-inverse-of = elim λ where .∣∣ʳ → map-f .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition } -- Nested truncations can be flattened. flatten : ∥ ∥ A ∥ᴱ ∥ᴱ ↔ ∥ A ∥ᴱ flatten {A = A} = flatten′ (λ F → F A) (λ f → f) id (λ _ → refl _) (elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) private -- Another flattening lemma, given as an example of how flatten′ can -- be used. ∥∃∥∥ᴱ∥ᴱ↔∥∃∥ᴱ : ∥ ∃ (∥_∥ᴱ ∘ P) ∥ᴱ ↔ ∥ ∃ P ∥ᴱ ∥∃∥∥ᴱ∥ᴱ↔∥∃∥ᴱ {P = P} = flatten′ (λ F → ∃ (F ∘ P)) (λ f → Σ-map id f) (uncurry λ x → ∥∥ᴱ-map (x ,_)) (λ _ → refl _) (uncurry λ _ → elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) -- A variant of flatten′ with _≃ᴱ_ instead of _↔_. flatten-≃ᴱ : (F : (Type ℓ → Type ℓ) → Type f) (map : ∀ {G H} → (∀ {A} → G A → H A) → F G → F H) (f : F ∥_∥ᴱ → ∥ F id ∥ᴱ) → @0 (∀ x → f (map ∣_∣ x) ≡ ∣ x ∣) → @0 (∀ x → ∥∥ᴱ-map (map ∣_∣) (f x) ≡ ∣ x ∣) → ∥ F ∥_∥ᴱ ∥ᴱ ≃ᴱ ∥ F id ∥ᴱ flatten-≃ᴱ _ map f f-map map-f = EEq.↔→≃ᴱ (rec λ where .∣∣ʳ → f .truncation-is-propositionʳ → truncation-is-proposition) (∥∥ᴱ-map (map ∣_∣)) (elim λ @0 where .∣∣ʳ → f-map .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) (elim λ @0 where .∣∣ʳ → map-f .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) ------------------------------------------------------------------------ -- The propositional truncation operator is a monad -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : ∥ A ∥ᴱ → (A → ∥ B ∥ᴱ) → ∥ B ∥ᴱ x >>=′ f = _↔_.to flatten (∥∥ᴱ-map f x) -- The universe-polymorphic variant of bind is associative. >>=′-associative : (x : ∥ A ∥ᴱ) → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g >>=′-associative = elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → ⇒≡ 1 truncation-is-proposition instance -- The propositional truncation operator is a monad. raw-monad : Raw-monad (∥_∥ᴱ {a = a}) Raw-monad.return raw-monad = ∣_∣ Raw-monad._>>=_ raw-monad = _>>=′_ monad : Monad (∥_∥ᴱ {a = a}) Monad.raw-monad monad = raw-monad Monad.left-identity monad _ _ = refl _ Monad.associativity monad x _ _ = >>=′-associative x Monad.right-identity monad = elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → ⇒≡ 1 truncation-is-proposition ------------------------------------------------------------------------ -- Surjectivity -- A variant of surjectivity with "erased proofs". Surjectiveᴱ : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Surjectiveᴱ f = ∀ y → ∥ f ⁻¹ᴱ y ∥ᴱ -- The property Surjectiveᴱ f is a proposition (in erased contexts). @0 Surjectiveᴱ-propositional : Is-proposition (Surjectiveᴱ f) Surjectiveᴱ-propositional = Π-closure ext 1 λ _ → truncation-is-proposition -- The function ∣_∣ is surjective (with erased proofs). ∣∣-surjective : Surjectiveᴱ (∣_∣ {A = A}) ∣∣-surjective = elim λ where .∣∣ʳ x → ∣ x , [ refl _ ] ∣ .truncation-is-propositionʳ _ → truncation-is-proposition -- Split surjective functions are surjective (with erased proofs). Split-surjective→Surjectiveᴱ : Split-surjective f → Surjectiveᴱ f Split-surjective→Surjectiveᴱ s = λ y → ∣ ECP.⁻¹→⁻¹ᴱ (s y) ∣ -- Being both surjective (with erased proofs) and an embedding -- (completely erased) is equivalent to being an equivalence (with -- erased proofs). -- -- This result, without erasure, is Corollary 4.6.4 from the first -- edition of the HoTT book. Surjectiveᴱ×Erased-Is-embedding≃ᴱIs-equivalenceᴱ : (Surjectiveᴱ f × Erased (Is-embedding f)) ≃ᴱ Is-equivalenceᴱ f Surjectiveᴱ×Erased-Is-embedding≃ᴱIs-equivalenceᴱ {f = f} = EEq.⇔→≃ᴱ (×-closure 1 Surjectiveᴱ-propositional (Er.H-level-Erased 1 (Emb.Is-embedding-propositional ext))) (EEq.Is-equivalenceᴱ-propositional ext f) (λ (is-surj , is-emb) → _⇔_.from EEq.Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP $ λ y → $⟨ is-surj y ⟩ ∥ f ⁻¹ᴱ y ∥ᴱ ↝⟨ (rec λ where .∣∣ʳ p → ECP.inhabited→Is-proposition→Contractibleᴱ p (H-level-cong _ 1 ECP.⁻¹≃⁻¹ᴱ (Emb.embedding→⁻¹-propositional (Er.erased is-emb) _)) .truncation-is-propositionʳ → ECP.Contractibleᴱ-propositional ext) ⟩□ Contractibleᴱ (f ⁻¹ᴱ y) □) (λ is-eq@(inv , [ r-inv , _ ]) → (λ y → $⟨ inv y , [ r-inv y ] ⟩ f ⁻¹ᴱ y ↝⟨ ∣_∣ ⟩ ∥ f ⁻¹ᴱ y ∥ᴱ □) , ($⟨ is-eq ⟩ Is-equivalenceᴱ f ↝⟨ Er.[_]→ ⟩ Erased (Is-equivalenceᴱ f) ↝⟨ Er.map EEq.Is-equivalenceᴱ→Is-equivalence ⟩ Erased (Is-equivalence f) ↝⟨ Er.map Emb.Is-equivalence→Is-embedding ⟩□ Erased (Is-embedding f) □)) ------------------------------------------------------------------------ -- Another lemma -- The function λ R x y → ∥ R x y ∥ᴱ preserves Is-equivalence-relation. ∥∥ᴱ-preserves-Is-equivalence-relation : Is-equivalence-relation R → Is-equivalence-relation (λ x y → ∥ R x y ∥ᴱ) ∥∥ᴱ-preserves-Is-equivalence-relation R-equiv = record { reflexive = ∣ reflexive ∣ ; symmetric = symmetric ⟨$⟩_ ; transitive = λ p q → transitive ⟨$⟩ p ⊛ q } where open Is-equivalence-relation R-equiv ------------------------------------------------------------------------ -- Definitions related to truncated binary sums -- Truncated binary sums. infixr 1 _∥⊎∥ᴱ_ _∥⊎∥ᴱ_ : Type a → Type b → Type (a ⊔ b) A ∥⊎∥ᴱ B = ∥ A ⊎ B ∥ᴱ -- Introduction rules. ∣inj₁∣ : A → A ∥⊎∥ᴱ B ∣inj₁∣ = ∣_∣ ∘ inj₁ ∣inj₂∣ : B → A ∥⊎∥ᴱ B ∣inj₂∣ = ∣_∣ ∘ inj₂ -- In erased contexts _∥⊎∥ᴱ_ is pointwise propositional. @0 ∥⊎∥ᴱ-propositional : Is-proposition (A ∥⊎∥ᴱ B) ∥⊎∥ᴱ-propositional = truncation-is-proposition -- The _∥⊎∥ᴱ_ operator preserves "symmetric" functions. infixr 1 _∥⊎∥ᴱ-cong_ _∥⊎∥ᴱ-cong_ : A₁ ↝[ ⌊ k ⌋-sym ] A₂ → B₁ ↝[ ⌊ k ⌋-sym ] B₂ → (A₁ ∥⊎∥ᴱ B₁) ↝[ ⌊ k ⌋-sym ] (A₂ ∥⊎∥ᴱ B₂) A₁↝A₂ ∥⊎∥ᴱ-cong B₁↝B₂ = ∥∥ᴱ-cong (A₁↝A₂ ⊎-cong B₁↝B₂) -- _∥⊎∥ᴱ_ is commutative. ∥⊎∥ᴱ-comm : A ∥⊎∥ᴱ B ↔ B ∥⊎∥ᴱ A ∥⊎∥ᴱ-comm = ∥∥ᴱ-cong ⊎-comm -- If one truncates the types to the left or right of _∥⊎∥ᴱ_, then one -- ends up with an isomorphic type. truncate-left-∥⊎∥ᴱ : A ∥⊎∥ᴱ B ↔ ∥ A ∥ᴱ ∥⊎∥ᴱ B truncate-left-∥⊎∥ᴱ = inverse $ flatten′ (λ F → F _ ⊎ _) (λ f → ⊎-map f id) P.[ ∥∥ᴱ-map inj₁ , ∣inj₂∣ ] P.[ (λ _ → refl _) , (λ _ → refl _) ] P.[ (elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 ∥⊎∥ᴱ-propositional) , (λ _ → refl _) ] truncate-right-∥⊎∥ᴱ : A ∥⊎∥ᴱ B ↔ A ∥⊎∥ᴱ ∥ B ∥ᴱ truncate-right-∥⊎∥ᴱ {A = A} {B = B} = A ∥⊎∥ᴱ B ↝⟨ ∥⊎∥ᴱ-comm ⟩ B ∥⊎∥ᴱ A ↝⟨ truncate-left-∥⊎∥ᴱ ⟩ ∥ B ∥ᴱ ∥⊎∥ᴱ A ↝⟨ ∥⊎∥ᴱ-comm ⟩□ A ∥⊎∥ᴱ ∥ B ∥ᴱ □ -- _∥⊎∥ᴱ_ is associative. ∥⊎∥ᴱ-assoc : A ∥⊎∥ᴱ (B ∥⊎∥ᴱ C) ↔ (A ∥⊎∥ᴱ B) ∥⊎∥ᴱ C ∥⊎∥ᴱ-assoc {A = A} {B = B} {C = C} = ∥ A ⊎ ∥ B ⊎ C ∥ᴱ ∥ᴱ ↝⟨ inverse truncate-right-∥⊎∥ᴱ ⟩ ∥ A ⊎ B ⊎ C ∥ᴱ ↝⟨ ∥∥ᴱ-cong ⊎-assoc ⟩ ∥ (A ⊎ B) ⊎ C ∥ᴱ ↝⟨ truncate-left-∥⊎∥ᴱ ⟩□ ∥ ∥ A ⊎ B ∥ᴱ ⊎ C ∥ᴱ □ -- ⊥ is a left and right identity of _∥⊎∥ᴱ_ if the other argument is a -- proposition. ∥⊎∥ᴱ-left-identity : @0 Is-proposition A → ⊥ {ℓ = ℓ} ∥⊎∥ᴱ A ↔ A ∥⊎∥ᴱ-left-identity {A = A} A-prop = ∥ ⊥ ⊎ A ∥ᴱ ↝⟨ ∥∥ᴱ-cong ⊎-left-identity ⟩ ∥ A ∥ᴱ ↝⟨ ∥∥ᴱ↔ A-prop ⟩□ A □ ∥⊎∥ᴱ-right-identity : @0 Is-proposition A → A ∥⊎∥ᴱ ⊥ {ℓ = ℓ} ↔ A ∥⊎∥ᴱ-right-identity {A = A} A-prop = A ∥⊎∥ᴱ ⊥ ↔⟨ ∥⊎∥ᴱ-comm ⟩ ⊥ ∥⊎∥ᴱ A ↔⟨ ∥⊎∥ᴱ-left-identity A-prop ⟩□ A □ -- _∥⊎∥ᴱ_ is idempotent for propositions (up to equivalences with -- erased proofs). ∥⊎∥ᴱ-idempotent : @0 Is-proposition A → (A ∥⊎∥ᴱ A) ≃ᴱ A ∥⊎∥ᴱ-idempotent {A = A} A-prop = ∥ A ⊎ A ∥ᴱ ↝⟨ idempotent ⟩ ∥ A ∥ᴱ ↔⟨ ∥∥ᴱ↔ A-prop ⟩□ A □ -- Sometimes a truncated binary sum is equivalent (with erased proofs) -- to one of its summands. drop-left-∥⊎∥ᴱ : @0 Is-proposition B → (A → B) → (A ∥⊎∥ᴱ B) ≃ᴱ B drop-left-∥⊎∥ᴱ B-prop A→B = EEq.⇔→≃ᴱ ∥⊎∥ᴱ-propositional B-prop (rec λ where .∣∣ʳ → P.[ A→B , id ] .truncation-is-propositionʳ → B-prop) ∣inj₂∣ drop-right-∥⊎∥ᴱ : @0 Is-proposition A → (B → A) → (A ∥⊎∥ᴱ B) ≃ᴱ A drop-right-∥⊎∥ᴱ {A = A} {B = B} A-prop B→A = A ∥⊎∥ᴱ B ↔⟨ ∥⊎∥ᴱ-comm ⟩ B ∥⊎∥ᴱ A ↝⟨ drop-left-∥⊎∥ᴱ A-prop B→A ⟩□ A □ -- Sometimes a truncated binary sum is isomorphic to one of its -- summands. drop-⊥-right-∥⊎∥ᴱ : @0 Is-proposition A → ¬ B → A ∥⊎∥ᴱ B ↔ A drop-⊥-right-∥⊎∥ᴱ A-prop ¬B = record { surjection = record { logical-equivalence = record { to = rec λ where .∣∣ʳ → P.[ id , ⊥-elim ∘ ¬B ] .truncation-is-propositionʳ → A-prop ; from = ∣inj₁∣ } ; right-inverse-of = refl } ; left-inverse-of = elim λ where .∣∣ʳ → P.[ (λ _ → refl _) , ⊥-elim ∘ ¬B ] .truncation-is-propositionʳ _ → mono₁ 1 ∥⊎∥ᴱ-propositional } drop-⊥-left-∥⊎∥ᴱ : @0 Is-proposition B → ¬ A → A ∥⊎∥ᴱ B ↔ B drop-⊥-left-∥⊎∥ᴱ B-prop ¬A = record { surjection = record { logical-equivalence = record { to = rec λ where .∣∣ʳ → P.[ ⊥-elim ∘ ¬A , id ] .truncation-is-propositionʳ → B-prop ; from = ∣inj₂∣ } ; right-inverse-of = refl } ; left-inverse-of = elim λ where .∣∣ʳ → P.[ ⊥-elim ∘ ¬A , (λ _ → refl _) ] .truncation-is-propositionʳ _ → mono₁ 1 ∥⊎∥ᴱ-propositional } -- A type of functions from a truncated binary sum to a family of -- propositions can be expressed as a binary product of function -- types. Π∥⊎∥ᴱ↔Π×Π : @0 (∀ x → Is-proposition (P x)) → ((x : A ∥⊎∥ᴱ B) → P x) ↔ ((x : A) → P (∣inj₁∣ x)) × ((y : B) → P (∣inj₂∣ y)) Π∥⊎∥ᴱ↔Π×Π {A = A} {B = B} {P = P} P-prop = ((x : A ∥⊎∥ᴱ B) → P x) ↔⟨ universal-property-Π P-prop ⟩ ((x : A ⊎ B) → P ∣ x ∣) ↝⟨ Π⊎↔Π×Π ext ⟩□ ((x : A) → P (∣inj₁∣ x)) × ((y : B) → P (∣inj₂∣ y)) □ -- Two distributivity laws for Σ and _∥⊎∥ᴱ_. Σ-∥⊎∥ᴱ-distrib-left : @0 Is-proposition A → Σ A (λ x → P x ∥⊎∥ᴱ Q x) ↔ Σ A P ∥⊎∥ᴱ Σ A Q Σ-∥⊎∥ᴱ-distrib-left {P = P} {Q = Q} A-prop = (∃ λ x → ∥ P x ⊎ Q x ∥ᴱ) ↝⟨ inverse $ ∥∥ᴱ↔ (Σ-closure 1 A-prop λ _ → ∥⊎∥ᴱ-propositional) ⟩ ∥ (∃ λ x → ∥ P x ⊎ Q x ∥ᴱ) ∥ᴱ ↝⟨ flatten′ (λ F → (∃ λ x → F (P x ⊎ Q x))) (λ f → Σ-map id f) (uncurry λ x → ∥∥ᴱ-map (x ,_)) (λ _ → refl _) (uncurry λ _ → elim λ where .∣∣ʳ _ → refl _ .truncation-is-propositionʳ _ → mono₁ 1 truncation-is-proposition) ⟩ ∥ (∃ λ x → P x ⊎ Q x) ∥ᴱ ↝⟨ ∥∥ᴱ-cong ∃-⊎-distrib-left ⟩□ ∥ ∃ P ⊎ ∃ Q ∥ᴱ □ Σ-∥⊎∥ᴱ-distrib-right : @0 (∀ x → Is-proposition (P x)) → Σ (A ∥⊎∥ᴱ B) P ↔ Σ A (P ∘ ∣inj₁∣) ∥⊎∥ᴱ Σ B (P ∘ ∣inj₂∣) Σ-∥⊎∥ᴱ-distrib-right {A = A} {B = B} {P = P} P-prop = record { surjection = record { logical-equivalence = record { to = uncurry $ elim λ where .∣∣ʳ → curry (∣_∣ ∘ _↔_.to ∃-⊎-distrib-right) .truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → ∥⊎∥ᴱ-propositional ; from = rec λ where .∣∣ʳ → Σ-map ∣_∣ id ∘ _↔_.from ∃-⊎-distrib-right .truncation-is-propositionʳ → prop } ; right-inverse-of = elim λ where .∣∣ʳ → P.[ (λ _ → refl _) , (λ _ → refl _) ] .truncation-is-propositionʳ _ → mono₁ 1 ∥⊎∥ᴱ-propositional } ; left-inverse-of = uncurry $ elim λ where .∣∣ʳ → P.[ (λ _ _ → refl _) , (λ _ _ → refl _) ] .truncation-is-propositionʳ _ → Π-closure ext 1 λ _ → mono₁ 1 prop } where @0 prop : _ prop = Σ-closure 1 ∥⊎∥ᴱ-propositional P-prop -- A variant of one of De Morgan's laws. ¬∥⊎∥ᴱ¬↔¬× : Dec (¬ A) → Dec (¬ B) → (¬ A ∥⊎∥ᴱ ¬ B) ≃ᴱ (¬ (A × B)) ¬∥⊎∥ᴱ¬↔¬× {A = A} {B = B} dec-¬A dec-¬B = EEq.⇔→≃ᴱ ∥⊎∥ᴱ-propositional (¬-propositional ext) (rec λ where .∣∣ʳ → ¬⊎¬→׬ .truncation-is-propositionʳ → ¬-propositional ext) (∣_∣ ∘ _↠_.from (¬⊎¬↠¬× ext dec-¬A dec-¬B)) ------------------------------------------------------------------------ -- Code related to Erased-singleton -- A corollary of erased-singleton-with-erased-center-propositional. ↠→↠Erased-singleton : {@0 y : B} (A↠B : A ↠ B) → ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ᴱ ↠ Erased-singleton y ↠→↠Erased-singleton {A = A} {y = y} A↠B = ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ᴱ ↝⟨ ∥∥ᴱ-cong-↠ (S.Σ-cong A↠B λ _ → F.id) ⟩ ∥ Erased-singleton y ∥ᴱ ↔⟨ ∥∥ᴱ↔ (Er.erased-singleton-with-erased-center-propositional $ Er.Very-stable→Very-stableᴱ 1 $ Er.Very-stable→Very-stable-≡ 0 $ erased Er.Erased-Very-stable) ⟩□ Erased-singleton y □ -- Another corollary of -- erased-singleton-with-erased-center-propositional. ↠→≃ᴱErased-singleton : {@0 y : B} (A↠B : A ↠ B) → ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ᴱ ≃ᴱ Erased-singleton y ↠→≃ᴱErased-singleton {A = A} {y = y} A↠B = ∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ᴱ ↝⟨ ∥∥ᴱ-cong-⇔ (S.Σ-cong-⇔ A↠B λ _ → F.id) ⟩ ∥ Erased-singleton y ∥ᴱ ↔⟨ ∥∥ᴱ↔ (Er.erased-singleton-with-erased-center-propositional $ Er.Very-stable→Very-stableᴱ 1 $ Er.Very-stable→Very-stable-≡ 0 $ erased Er.Erased-Very-stable) ⟩□ Erased-singleton y □ -- A corollary of Σ-Erased-Erased-singleton↔ and ↠→≃ᴱErased-singleton. Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ : (A↠B : A ↠ B) → (∃ λ (x : Erased B) → ∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥ᴱ) ≃ᴱ B Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ {A = A} {B = B} A↠B = (∃ λ (x : Erased B) → ∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥ᴱ) ↝⟨ (∃-cong λ _ → ↠→≃ᴱErased-singleton A↠B) ⟩ (∃ λ (x : Erased B) → Erased-singleton (erased x)) ↔⟨ Er.Σ-Erased-Erased-singleton↔ ⟩□ B □ -- In an erased context the left-to-right direction of -- Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ returns the erased first component. @0 to-Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ≡ : ∀ (A↠B : A ↠ B) x → _≃ᴱ_.to (Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ A↠B) x ≡ erased (proj₁ x) to-Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ≡ A↠B ([ x ] , y) = _≃ᴱ_.to (Σ-Erased-∥-Σ-Erased-≡-∥≃ᴱ A↠B) ([ x ] , y) ≡⟨⟩ proj₁ (_≃ᴱ_.to (↠→≃ᴱErased-singleton A↠B) y) ≡⟨ erased (proj₂ (_≃ᴱ_.to (↠→≃ᴱErased-singleton A↠B) y)) ⟩∎ x ∎
{ "alphanum_fraction": 0.4812963282, "avg_line_length": 33.4673076923, "ext": "agda", "hexsha": "8c18d1781aacb098608ab72694f2ffc67050b8fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/H-level/Truncation/Propositional/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/H-level/Truncation/Propositional/Erased.agda", "max_line_length": 125, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/H-level/Truncation/Propositional/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 14539, "size": 34806 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) module Categories.Diagram.Colimit.Properties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where private module F = Functor F module C = Category C open C open import Categories.Diagram.Limit F.op open import Categories.Diagram.Colimit F open import Categories.Category.Construction.Cocones F open import Categories.Diagram.Duality C module _ (X : Obj) (coapex₁ : Coapex X) (coapex₂ : Coapex X) (L : Colimit) where private module coapex₁ = Coapex coapex₁ module coapex₂ = Coapex coapex₂ module L = Colimit L K₁ : Cocone K₁ = record { coapex = coapex₁ } module K₁ = Cocone K₁ K₂ : Cocone K₂ = record { coapex = coapex₂ } module K₂ = Cocone K₂ coψ-≈⇒rep-≈ : (∀ A → coapex₁.ψ A ≈ coapex₂.ψ A) → L.rep K₁ ≈ L.rep K₂ coψ-≈⇒rep-≈ = ψ-≈⇒rep-≈ X (Coapex⇒coApex X coapex₁) (Coapex⇒coApex X coapex₂) (Colimit⇒coLimit L)
{ "alphanum_fraction": 0.668627451, "avg_line_length": 29.1428571429, "ext": "agda", "hexsha": "36a8494bb9ea1d5f81fbba9dcfb1a4acf566e3d6", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Colimit/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Colimit/Properties.agda", "max_line_length": 99, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Colimit/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 398, "size": 1020 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.HomotopyGroup where open import Cubical.Data.HomotopyGroup.Base public
{ "alphanum_fraction": 0.7692307692, "avg_line_length": 28.6, "ext": "agda", "hexsha": "22829cea626e9d90069058f76001070928b5deda", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/HomotopyGroup.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/HomotopyGroup.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/HomotopyGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 38, "size": 143 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Nat open import lib.types.Group open import lib.types.TLevel module lib.types.Int where data ℤ : Type₀ where O : ℤ pos : (n : ℕ) → ℤ neg : (n : ℕ) → ℤ Int = ℤ succ : ℤ → ℤ succ O = pos O succ (pos n) = pos (S n) succ (neg O) = O succ (neg (S n)) = neg n pred : ℤ → ℤ pred O = neg O pred (pos O) = O pred (pos (S n)) = pos n pred (neg n) = neg (S n) abstract succ-pred : (n : ℤ) → succ (pred n) == n succ-pred O = idp succ-pred (pos O) = idp succ-pred (pos (S n)) = idp succ-pred (neg n) = idp pred-succ : (n : ℤ) → pred (succ n) == n pred-succ O = idp pred-succ (pos n) = idp pred-succ (neg O) = idp pred-succ (neg (S n)) = idp succ-equiv : ℤ ≃ ℤ succ-equiv = equiv succ pred succ-pred pred-succ pred-injective : (z₁ z₂ : ℤ) → pred z₁ == pred z₂ → z₁ == z₂ pred-injective z₁ z₂ p = ! (succ-pred z₁) ∙ ap succ p ∙ succ-pred z₂ succ-injective : (z₁ z₂ : ℤ) → succ z₁ == succ z₂ → z₁ == z₂ succ-injective z₁ z₂ p = ! (pred-succ z₁) ∙ ap pred p ∙ pred-succ z₂ {- Converting between ℤ, ℕ, and ℕ₋₂ -} ℤ-to-ℕ₋₂ : ℤ → ℕ₋₂ ℤ-to-ℕ₋₂ O = ⟨0⟩ ℤ-to-ℕ₋₂ (pos m) = S ⟨ m ⟩ ℤ-to-ℕ₋₂ (neg O) = ⟨-1⟩ ℤ-to-ℕ₋₂ (neg _) = ⟨-2⟩ ℕ-to-ℤ : ℕ → ℤ ℕ-to-ℤ n = pred (pos n) {- Proof that [ℤ] has decidable equality and hence is a set -} private ℤ-get-pos : ℤ → ℕ ℤ-get-pos O = 0 ℤ-get-pos (pos n) = n ℤ-get-pos (neg n) = 0 ℤ-get-neg : ℤ → ℕ ℤ-get-neg O = 0 ℤ-get-neg (pos n) = 0 ℤ-get-neg (neg n) = n ℤ-neg≠O≠pos-type : ℤ → Type₀ ℤ-neg≠O≠pos-type O = Unit ℤ-neg≠O≠pos-type (pos n) = Empty ℤ-neg≠O≠pos-type (neg n) = Empty ℤ-neg≠pos-type : ℤ → Type₀ ℤ-neg≠pos-type O = Unit ℤ-neg≠pos-type (pos n) = Empty ℤ-neg≠pos-type (neg n) = Unit abstract pos-injective : (n m : ℕ) (p : pos n == pos m) → n == m pos-injective n m p = ap ℤ-get-pos p neg-injective : (n m : ℕ) (p : neg n == neg m) → n == m neg-injective n m p = ap ℤ-get-neg p ℤ-O≠pos : (n : ℕ) → O ≠ pos n ℤ-O≠pos n p = transport ℤ-neg≠O≠pos-type p unit ℤ-pos≠O : (n : ℕ) → pos n ≠ O ℤ-pos≠O n p = transport ℤ-neg≠O≠pos-type (! p) unit ℤ-O≠neg : (n : ℕ) → O ≠ neg n ℤ-O≠neg n p = transport ℤ-neg≠O≠pos-type p unit ℤ-neg≠O : (n : ℕ) → neg n ≠ O ℤ-neg≠O n p = transport ℤ-neg≠O≠pos-type (! p) unit ℤ-neg≠pos : (n m : ℕ) → neg n ≠ pos m ℤ-neg≠pos n m p = transport ℤ-neg≠pos-type p unit ℤ-pos≠neg : (n m : ℕ) → pos n ≠ neg m ℤ-pos≠neg n m p = transport ℤ-neg≠pos-type (! p) unit ℤ-has-dec-eq : has-dec-eq ℤ ℤ-has-dec-eq O O = inl idp ℤ-has-dec-eq O (pos n) = inr (ℤ-O≠pos n) ℤ-has-dec-eq O (neg n) = inr (ℤ-O≠neg n) ℤ-has-dec-eq (pos n) O = inr (ℤ-pos≠O n) ℤ-has-dec-eq (pos n) (pos m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (pos n) (pos m) | inl p = inl (ap pos p) ℤ-has-dec-eq (pos n) (pos m) | inr p⊥ = inr (λ p → p⊥ (pos-injective n m p)) ℤ-has-dec-eq (pos n) (neg m) = inr (ℤ-pos≠neg n m) ℤ-has-dec-eq (neg n) O = inr (ℤ-neg≠O n) ℤ-has-dec-eq (neg n) (pos m) = inr (ℤ-neg≠pos n m) ℤ-has-dec-eq (neg n) (neg m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (neg n) (neg m) | inl p = inl (ap neg p) ℤ-has-dec-eq (neg n) (neg m) | inr p⊥ = inr (λ p → p⊥ (neg-injective n m p)) ℤ-is-set : is-set ℤ ℤ-is-set = dec-eq-is-set ℤ-has-dec-eq ℤ-level = ℤ-is-set {- ℤ is also a group! -} -- inv ℤ~ : ℤ → ℤ ℤ~ O = O ℤ~ (pos n) = neg n ℤ~ (neg n) = pos n -- comp _ℤ+_ : ℤ → ℤ → ℤ O ℤ+ z = z pos O ℤ+ z = succ z pos (S n) ℤ+ z = succ (pos n ℤ+ z) neg O ℤ+ z = pred z neg (S n) ℤ+ z = pred (neg n ℤ+ z) -- unit-l ℤ+-unit-l : ∀ z → O ℤ+ z == z ℤ+-unit-l _ = idp -- unit-r private ℤ+-unit-r-pos : ∀ n → pos n ℤ+ O == pos n ℤ+-unit-r-pos O = idp ℤ+-unit-r-pos (S n) = ap succ $ ℤ+-unit-r-pos n ℤ+-unit-r-neg : ∀ n → neg n ℤ+ O == neg n ℤ+-unit-r-neg O = idp ℤ+-unit-r-neg (S n) = ap pred $ ℤ+-unit-r-neg n ℤ+-unit-r : ∀ z → z ℤ+ O == z ℤ+-unit-r O = idp ℤ+-unit-r (pos n) = ℤ+-unit-r-pos n ℤ+-unit-r (neg n) = ℤ+-unit-r-neg n -- assoc succ-ℤ+ : ∀ z₁ z₂ → succ z₁ ℤ+ z₂ == succ (z₁ ℤ+ z₂) succ-ℤ+ O _ = idp succ-ℤ+ (pos n) _ = idp succ-ℤ+ (neg O) _ = ! $ succ-pred _ succ-ℤ+ (neg (S n)) _ = ! $ succ-pred _ pred-ℤ+ : ∀ z₁ z₂ → pred z₁ ℤ+ z₂ == pred (z₁ ℤ+ z₂) pred-ℤ+ O _ = idp pred-ℤ+ (neg n) _ = idp pred-ℤ+ (pos O) _ = ! $ pred-succ _ pred-ℤ+ (pos (S n)) _ = ! $ pred-succ _ private ℤ+-assoc-pos : ∀ n₁ z₂ z₃ → (pos n₁ ℤ+ z₂) ℤ+ z₃ == pos n₁ ℤ+ (z₂ ℤ+ z₃) ℤ+-assoc-pos O z₂ z₃ = succ-ℤ+ z₂ z₃ ℤ+-assoc-pos (S n₁) z₂ z₃ = succ (pos n₁ ℤ+ z₂) ℤ+ z₃ =⟨ succ-ℤ+ (pos n₁ ℤ+ z₂) z₃ ⟩ succ ((pos n₁ ℤ+ z₂) ℤ+ z₃) =⟨ ap succ $ ℤ+-assoc-pos n₁ z₂ z₃ ⟩ succ (pos n₁ ℤ+ (z₂ ℤ+ z₃)) ∎ ℤ+-assoc-neg : ∀ n₁ z₂ z₃ → (neg n₁ ℤ+ z₂) ℤ+ z₃ == neg n₁ ℤ+ (z₂ ℤ+ z₃) ℤ+-assoc-neg O z₂ z₃ = pred-ℤ+ z₂ z₃ ℤ+-assoc-neg (S n₁) z₂ z₃ = pred (neg n₁ ℤ+ z₂) ℤ+ z₃ =⟨ pred-ℤ+ (neg n₁ ℤ+ z₂) z₃ ⟩ pred ((neg n₁ ℤ+ z₂) ℤ+ z₃) =⟨ ap pred $ ℤ+-assoc-neg n₁ z₂ z₃ ⟩ pred (neg n₁ ℤ+ (z₂ ℤ+ z₃)) ∎ ℤ+-assoc : ∀ z₁ z₂ z₃ → (z₁ ℤ+ z₂) ℤ+ z₃ == z₁ ℤ+ (z₂ ℤ+ z₃) ℤ+-assoc O _ _ = idp ℤ+-assoc (pos n₁) _ _ = ℤ+-assoc-pos n₁ _ _ ℤ+-assoc (neg n₁) _ _ = ℤ+-assoc-neg n₁ _ _ private pos-S-ℤ+-neg-S : ∀ n₁ n₂ → pos (S n₁) ℤ+ neg (S n₂) == pos n₁ ℤ+ neg n₂ pos-S-ℤ+-neg-S O n₂ = idp pos-S-ℤ+-neg-S (S n₁) n₂ = ap succ $ pos-S-ℤ+-neg-S n₁ n₂ neg-S-ℤ+-pos-S : ∀ n₁ n₂ → neg (S n₁) ℤ+ pos (S n₂) == neg n₁ ℤ+ pos n₂ neg-S-ℤ+-pos-S O n₂ = idp neg-S-ℤ+-pos-S (S n₁) n₂ = ap pred $ neg-S-ℤ+-pos-S n₁ n₂ ℤ~-inv-r-pos : ∀ n → pos n ℤ+ neg n == O ℤ~-inv-r-pos O = idp ℤ~-inv-r-pos (S n) = pos (S n) ℤ+ neg (S n) =⟨ pos-S-ℤ+-neg-S n n ⟩ pos n ℤ+ neg n =⟨ ℤ~-inv-r-pos n ⟩ O ∎ ℤ~-inv-r-neg : ∀ n → neg n ℤ+ pos n == O ℤ~-inv-r-neg O = idp ℤ~-inv-r-neg (S n) = neg (S n) ℤ+ pos (S n) =⟨ neg-S-ℤ+-pos-S n n ⟩ neg n ℤ+ pos n =⟨ ℤ~-inv-r-neg n ⟩ O ∎ ℤ~-inv-r : ∀ z → z ℤ+ ℤ~ z == O ℤ~-inv-r O = idp ℤ~-inv-r (pos n) = ℤ~-inv-r-pos n ℤ~-inv-r (neg n) = ℤ~-inv-r-neg n ℤ~-inv-l : ∀ z → ℤ~ z ℤ+ z == O ℤ~-inv-l O = idp ℤ~-inv-l (pos n) = ℤ~-inv-r-neg n ℤ~-inv-l (neg n) = ℤ~-inv-r-pos n ℤ-group-structure : GroupStructure ℤ ℤ-group-structure = record { ident = O ; inv = ℤ~ ; comp = _ℤ+_ ; unitl = ℤ+-unit-l ; unitr = ℤ+-unit-r ; assoc = ℤ+-assoc ; invr = ℤ~-inv-r ; invl = ℤ~-inv-l } ℤ-group : Group₀ ℤ-group = group _ ℤ-is-set ℤ-group-structure
{ "alphanum_fraction": 0.5207948244, "avg_line_length": 26.1774193548, "ext": "agda", "hexsha": "e4898826768711adcc3df81fd4bea3d51dae60c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "lib/types/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "lib/types/Int.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "lib/types/Int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3309, "size": 6492 }
module Numeral.Sign.Oper.Proofs where
{ "alphanum_fraction": 0.8421052632, "avg_line_length": 19, "ext": "agda", "hexsha": "a697b20c25b24b68c98115085e960fdc8233f4c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Sign/Oper/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Sign/Oper/Proofs.agda", "max_line_length": 37, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Sign/Oper/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 10, "size": 38 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub open import Agda.Primitive renaming (_⊔_ to ℓ-max) open import Agda.Builtin.Sigma private internalFiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ-max ℓ ℓ') internalFiber {A = A} f y = Σ A \ x → y ≡ f x infix 4 _≃_ postulate _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ-max ℓ ℓ') equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A) → ∀ ψ → (Partial ψ (internalFiber (equivFun w) a)) → internalFiber (equivFun w) a {-# BUILTIN EQUIV _≃_ #-} {-# BUILTIN EQUIVFUN equivFun #-} {-# BUILTIN EQUIVPROOF equivProof #-} -- This is a module so we can easily rename the primitives. module GluePrims where primitive primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ' prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → PartialP φ T → A → primGlue A T e prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- Needed for transp in Glue. primFaceForall : (I → I) → I open GluePrims public renaming ( prim^glue to glue ; prim^unglue to unglue) -- We uncurry Glue to make it a bit more pleasant to use Glue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A)) → Set ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) module _ {ℓ ℓ'} (A : Set ℓ) {φ : I} (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A)) (ψ : I) (u : I → Partial ψ (Glue A Te)) (u0 : Sub (Glue A Te) ψ (u i0) ) where result : Glue A Te result = glue {φ = φ} (\ { (φ = i1) → primHComp {A = Te itIsOne .fst} u (primSubOut u0) }) (primHComp {A = A} (\ i → \ { (ψ = i1) → unglue {φ = φ} (u i itIsOne) ; (φ = i1) → equivFun (Te itIsOne .snd) (primHComp (\ j → \ { (ψ = i1) → u (primIMin i j) itIsOne ; (i = i0) → primSubOut u0 }) (primSubOut u0)) }) (unglue {φ = φ} (primSubOut u0))) test : primHComp {A = Glue A Te} {ψ} u (primSubOut u0) ≡ result test i = primHComp {A = Glue A Te} {ψ} u (primSubOut u0)
{ "alphanum_fraction": 0.4636463281, "avg_line_length": 42.765625, "ext": "agda", "hexsha": "f45a6212e06f2e11847ac48ddd88d31023551522", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "test/Succeed/Issue3399.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "test/Succeed/Issue3399.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "test/Succeed/Issue3399.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1014, "size": 2737 }
open import Structures open import Data.String using (String) open import Data.Nat open import Data.Nat.Show renaming (show to showNat) open import Data.Vec as V using (Vec; []; _∷_) open import Data.List as L using (List; []; _∷_) open import Data.Sum open import Data.Product open import Relation.Nullary open import Function using (_$_) data Nesting : Set where hom : Nesting nes : Nesting data SacTy : Set where unit : SacTy int : SacTy float : SacTy bool : SacTy char : SacTy -- Nested `n`-dimensional array is isomorphic to Listⁿ -- Homogeneous `n`-dimensional array is isomorphic to Vecⁿ -- The first argument does not tell whether the entire array needs -- to be implemented as nested or not (just an annotation), e.g: -- akd hom (akd nest nat 3) -- akd nes nat 2 -- akd nes (akd nes nat 1) -- and so on. In actual sac (with no support for nested arrays) -- it all collapses to three cases, but it is convenient to keep -- this distinction in the model. aud : Nesting → SacTy → (sh : Prog) → SacTy akd : Nesting → SacTy → (sh : Prog) → ℕ → SacTy aks : Nesting → SacTy → (sh : Prog) → (n : ℕ) → Vec ℕ n → SacTy data SacBase : SacTy → Set where unit : SacBase unit int : SacBase int float : SacBase float bool : SacBase bool char : SacBase char data SacArray : SacTy → Set where aud : ∀ {n? τ es} → SacArray (aud n? τ es) akd : ∀ {n? τ es n} → SacArray (akd n? τ es n) aks : ∀ {n? τ es n s} → SacArray (aks n? τ es n s) array-or-base : ∀ τ → SacBase τ ⊎ SacArray τ array-or-base unit = inj₁ unit array-or-base int = inj₁ int array-or-base float = inj₁ float array-or-base bool = inj₁ bool array-or-base char = inj₁ char array-or-base (aud x τ es) = inj₂ aud array-or-base (akd x τ es x₁) = inj₂ akd array-or-base (aks x τ es n x₁) = inj₂ aks is-base : ∀ τ → Dec (SacBase τ) is-base τ with array-or-base τ ... | inj₁ bt = yes bt ... | inj₂ aud = no λ () ... | inj₂ akd = no λ () ... | inj₂ aks = no λ () is-array : ∀ τ → Dec (SacArray τ) is-array τ with array-or-base τ ... | inj₂ ar = yes ar ... | inj₁ unit = no λ () ... | inj₁ int = no λ () ... | inj₁ float = no λ () ... | inj₁ bool = no λ () ... | inj₁ char = no λ () -- Is it the case that the entire array can be implemented -- as a flattened homogeneous (multi-dimensional) array. nested? : SacTy → Nesting nested? unit = hom nested? int = hom nested? float = hom nested? bool = hom nested? char = hom nested? (aud hom τ _) = nested? τ nested? (aud nes _ _) = nes nested? (akd hom τ _ _) = nested? τ nested? (akd nes _ _ _) = nes nested? (aks hom τ _ _ _) = nested? τ nested? (aks nes _ _ _ _) = nes get-base : SacTy → Σ[ τ ∈ SacTy ] SacBase τ get-base unit = unit , unit get-base int = int , int get-base float = float , float get-base bool = bool , bool get-base char = char , char get-base (aud x τ es) = get-base τ get-base (akd x τ es x₁) = get-base τ get-base (aks x τ es n x₁) = get-base τ bt-tostring : ∀ {τ} → SacBase τ → String bt-tostring unit = "unit" bt-tostring int = "int" bt-tostring float = "float" bt-tostring bool = "bool" bt-tostring char = "char" postfix-aud = "[*]" postfix-akd : ℕ → String postfix-akd n = "[" ++ ("," ++/ L.replicate n ".") ++ "]" postfix-aks : (n : ℕ) → Vec ℕ n → String postfix-aks n s = "[" ++ ("," ++/ L.map showNat (V.toList s)) ++ "]" bt : SacTy → String bt τ = bt-tostring (proj₂ $ get-base τ) sacty-to-string : SacTy → String sacty-to-string σ with array-or-base σ sacty-to-string σ | inj₁ bt = bt-tostring bt sacty-to-string σ | inj₂ (aud {nes} {τ}) = sacty-to-string τ ++ postfix-aud sacty-to-string σ | inj₂ (aud {hom} {τ}) with nested? τ ... | hom = bt τ ++ postfix-aud ... | nes = sacty-to-string τ ++ postfix-aud sacty-to-string σ | inj₂ (akd {nes} {τ} {_} {n}) = sacty-to-string τ ++ postfix-akd n sacty-to-string σ | inj₂ (akd {hom} {τ} {_} {n}) with nested? τ ... | nes = sacty-to-string τ ++ postfix-akd n ... | hom with array-or-base τ ... | inj₁ bt = bt-tostring bt ++ postfix-akd n ... | inj₂ aud = --(τ[*])[.,.,.] → τ([.,.,.] ++ [*]) = τ[*] bt τ ++ postfix-aud ... | inj₂ (akd {n = m}) = --(τ[.,.])[.,.,.] → τ([.,.,.] ++ [.,.]) = τ[.,.,., .,.] bt τ ++ postfix-akd (n + m) ... | inj₂ (aks {n = m}) = --(τ[5,6])[.,.,.] → τ([.,.,.] ++ [5,6]) = τ[.,.,., .,.] bt τ ++ postfix-akd (n + m) sacty-to-string σ | inj₂ (aks {nes} {τ} {_} {n} {s}) = sacty-to-string τ ++ postfix-aks n s sacty-to-string σ | inj₂ (aks {hom} {τ} {_} {n} {s}) with nested? τ ... | nes = sacty-to-string τ ++ postfix-aks n s ... | hom with array-or-base τ ... | inj₁ bt = bt-tostring bt ++ postfix-aks n s ... | inj₂ aud = -- (τ[*])[5,6] → τ([5,6] ++ [*]) = τ[*] bt τ ++ postfix-aud ... | inj₂ (akd {n = m}) = --(τ[.,.])[5,6] → τ([5,6] ++ [.,.]) = τ[.,.,.,.] bt τ ++ postfix-akd (n + m) ... | inj₂ (aks {s = s′}) = --(τ[7,8])[5,6] → τ([5,6] ++ [7,8]) = τ[5,6,7,8] bt τ ++ postfix-aks _ (s V.++ s′) -- For some rare cases we can eliminate nesting -- Note that this function does not recurse, as: -- a: List (hom X) ~ Vec (hom X) (length a) -- but -- a: List (List (hom X)) ≁ Vec (Vec X _) _ sacty-normalise : SacTy → SacTy sacty-normalise τ with array-or-base τ sacty-normalise τ | inj₁ bt = τ sacty-normalise τ | inj₂ aud = τ sacty-normalise τ | inj₂ (akd {hom}) = τ sacty-normalise τ | inj₂ (akd {nes} {σ} {es} {0}) = -- There is no need to nest a 0-dimensional array akd hom σ es 0 sacty-normalise τ | inj₂ (akd {nes} {σ} {es} {1}) = -- Nested array of depth 1 of homogeneous elements -- is the same as homogeneous of dimension 1. akd hom σ es 1 sacty-normalise τ | inj₂ (akd {nes} {_} {_}) = τ sacty-normalise τ | inj₂ (aks {hom}) = τ sacty-normalise τ | inj₂ (aks {nes} {σ} {es} {n} {s}) = aks hom σ es n s sacty-shape : SacTy → Prog sacty-shape τ with array-or-base τ ... | inj₁ bt = ok $ "[]" ... | inj₂ (aud {hom} {σ} {s}) = s ⊕ " ++ " ⊕ sacty-shape σ ... | inj₂ (aud {nes} {σ} {s}) = error $ "sacty-shape: nested-array `" ++ sacty-to-string τ ++ "`" ... | inj₂ (akd {hom} {σ} {s}) = s ⊕ " ++ " ⊕ sacty-shape σ ... | inj₂ (akd {nes} {σ} {s}) = error $ "sacty-shape: nested-array `" ++ sacty-to-string τ ++ "`" ... | inj₂ (aks {hom} {σ} {s}) = s ⊕ " ++ " ⊕ sacty-shape σ ... | inj₂ (aks {nes} {σ} {s}) = error $ "sacty-shape: nested-array `" ++ sacty-to-string τ ++ "`"
{ "alphanum_fraction": 0.5533093741, "avg_line_length": 34.78125, "ext": "agda", "hexsha": "251eae0b7cca9b5c702c7169c2b739edb3413a59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "SacTy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "SacTy.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "SacTy.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 2368, "size": 6678 }
------------------------------------------------------------------------ -- The delay monad, defined coinductively, with a sized type parameter ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Sized where open import Equality.Propositional open import Prelude open import Prelude.Size open import Bijection equality-with-J using (_↔_) -- The delay monad. mutual data Delay {a} (A : Size → Type a) (i : Size) : Type a where now : A i → Delay A i later : Delay′ A i → Delay A i record Delay′ {a} (A : Size → Type a) (i : Size) : Type a where coinductive field force : {j : Size< i} → Delay A j open Delay′ public module _ {a} {A : Size → Type a} where mutual -- A non-terminating computation. never : ∀ {i} → Delay A i never = later never′ never′ : ∀ {i} → Delay′ A i force never′ = never -- Removes a later constructor, if possible. drop-later : Delay A ∞ → Delay A ∞ drop-later (now x) = now x drop-later (later x) = force x -- An unfolding lemma for Delay. Delay↔ : ∀ {i} → Delay A i ↔ A i ⊎ Delay′ A i Delay↔ = record { surjection = record { logical-equivalence = record { to = λ { (now x) → inj₁ x; (later x) → inj₂ x } ; from = [ now , later ] } ; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ] } ; left-inverse-of = λ { (now _) → refl; (later _) → refl } }
{ "alphanum_fraction": 0.5195154778, "avg_line_length": 24.3606557377, "ext": "agda", "hexsha": "dcc4fdee8e50180e22f376fc20568534841db841", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Sized.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Sized.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Sized.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 427, "size": 1486 }
{-# OPTIONS -v term.with.inline:20 -v term.with.call:30 #-} data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) data [_] : Nat → Set where ⟨_⟩ : ∀ n → [ n ] f : Nat → Nat g : Nat → Nat h : ∀ n → [ f n ] f zero = zero f (suc n) with f n f (suc n) | zero = zero f (suc n) | suc m = f n + m -- f's with-function should not get inlined into the clauses of g! g zero = zero g (suc n) = _ -- f (suc n) | f n h zero = ⟨ zero ⟩ h (suc n) = ⟨ g (suc n) ⟩
{ "alphanum_fraction": 0.5202312139, "avg_line_length": 17.3, "ext": "agda", "hexsha": "3eb746df4c32c1e8845872be83061e156313d6ca", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue59.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue59.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/interaction/Issue59.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 212, "size": 519 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.SuspAdjointLoopIso open import cohomology.WithCoefficients open import cohomology.Theory open import cohomology.Exactness open import cohomology.Choice module cohomology.SpectrumModel {i} (E : ℤ → Ptd i) (spectrum : (n : ℤ) → ⊙Ω (E (succ n)) == E n) where module SpectrumModel where {- Definition of cohomology group C -} module _ (n : ℤ) (X : Ptd i) where C : Group i C = →Ω-Group X (E (succ n)) {- convenient abbreviations -} CEl = Group.El C ⊙CEl = Group.⊙El C Cid = Group.ident C {- before truncation -} ⊙uCEl : Ptd i ⊙uCEl = X ⊙→ ⊙Ω (E (succ n)) uCEl = fst ⊙uCEl uCid = snd ⊙uCEl {- Cⁿ(X) is an abelian group -} C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X) C-abelian n X = transport (is-abelian ∘ →Ω-Group X) (spectrum (succ n)) C-abelian-lemma where pt-lemma : ∀ {i} {X : Ptd i} {α β : Ω^ 2 X} (γ : α == idp^ 2) (δ : β == idp^ 2) → ap2 _∙_ γ δ == conc^2-comm α β ∙ ap2 _∙_ δ γ pt-lemma idp idp = idp C-abelian-lemma = Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level)) (λ {(f , fpt) → Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ {(g , gpt) → ap [_] $ ⊙λ= (λ x → conc^2-comm (f x) (g x)) (pt-lemma fpt gpt)})}) {- CF, the functorial action of C: - contravariant functor from pointed spaces to abelian groups -} module _ (n : ℤ) {X Y : Ptd i} where {- before truncation - from pointed spaces to pointed spaces -} uCF : fst (X ⊙→ Y) → fst (⊙uCEl n Y ⊙→ ⊙uCEl n X) uCF f = ((λ g → g ⊙∘ f) , pair= idp (∙-unit-r _ ∙ ap-cst idp (snd f))) CF-hom : fst (X ⊙→ Y) → (C n Y →ᴳ C n X) CF-hom f = record { f = Trunc-fmap {n = ⟨0⟩} (fst (uCF f)); pres-comp = Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level)) (λ g → Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ h → ap [_] $ pair= idp (comp-snd _∙_ f g h)))} where comp-snd : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {C : Type k} {c₁ c₂ : C} (_⊕_ : C → C → C) (f : fst (X ⊙→ Y)) (g : fst (Y ⊙→ ⊙[ C , c₁ ])) (h : fst (Y ⊙→ ⊙[ C , c₂ ])) → ap (λ x → fst g x ⊕ fst h x) (snd f) ∙ ap2 _⊕_ (snd g) (snd h) == ap2 _⊕_ (ap (fst g) (snd f) ∙ snd g) (ap (fst h) (snd f) ∙ snd h) comp-snd _⊕_ (_ , idp) (_ , idp) (_ , idp) = idp CF : fst (X ⊙→ Y) → fst (⊙CEl n Y ⊙→ ⊙CEl n X) CF F = GroupHom.⊙f (CF-hom F) {- CF-hom is a functor from pointed spaces to abelian groups -} module _ (n : ℤ) {X : Ptd i} where CF-ident : CF-hom n {X} {X} (⊙idf X) == idhom (C n X) CF-ident = hom= _ _ $ λ= $ Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ _ → idp) CF-comp : {Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g CF-comp g f = hom= _ _ $ λ= $ Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ h → ap [_] (! (⊙∘-assoc h g f))) {- Eilenberg-Steenrod Axioms -} {- Suspension Axiom -} C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) == C n X C-Susp n X = group-ua (SuspAdjointLoopIso.iso X (E (succ (succ n)))) ∙ ap (→Ω-Group X) (spectrum (succ n)) {- Non-truncated Exactness Axiom -} module _ (n : ℤ) {X Y : Ptd i} where {- [uCF n (⊙cfcod f) ∘ uCF n f] is constant -} uC-exact-itok-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n (⊙Cof f)) → fst (uCF n f) (fst (uCF n (⊙cfcod f)) g) == uCid n X uC-exact-itok-lemma (f , fpt) (g , gpt) = ⊙λ= (λ x → ap g (! (cfglue f x)) ∙ gpt) (ap (g ∘ cfcod f) fpt ∙ ap g (ap (cfcod f) (! fpt) ∙ ! (cfglue f (snd X))) ∙ gpt =⟨ lemma (cfcod f) g fpt (! (cfglue f (snd X))) gpt ⟩ ap g (! (cfglue f (snd X))) ∙ gpt =⟨ ! (∙-unit-r _) ⟩ (ap g (! (cfglue f (snd X))) ∙ gpt) ∙ idp ∎) where lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} {b : B} {c : C} (f : A → B) (g : B → C) (p : a₁ == a₂) (q : f a₁ == b) (r : g b == c) → ap (g ∘ f) p ∙ ap g (ap f (! p) ∙ q) ∙ r == ap g q ∙ r lemma f g idp idp idp = idp {- in kernel of [uCF n f] ⇒ in image of [uCF n (⊙cfcod f)] -} uC-exact-ktoi-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n Y) → fst (uCF n f) g == uCid n X → Σ (uCEl n (⊙Cof f)) (λ h → fst (uCF n (⊙cfcod f)) h == g) uC-exact-ktoi-lemma (f , fpt) (h , hpt) p = ((g , ! q ∙ hpt) , pair= idp (! (∙-assoc q (! q) hpt) ∙ ap (λ w → w ∙ hpt) (!-inv-r q))) where g : Cofiber f → Ω (E (succ n)) g = CofiberRec.f f idp h (! ∘ app= (ap fst p)) q : h (snd Y) == g (cfbase f) q = ap g (snd (⊙cfcod (f , fpt))) {- Truncated Exactness Axiom -} module _ (n : ℤ) {X Y : Ptd i} where {- in image of (CF n (⊙cfcod f)) ⇒ in kernel of (CF n f) -} abstract C-exact-itok : (f : fst (X ⊙→ Y)) → is-exact-itok (CF n (⊙cfcod f)) (CF n f) C-exact-itok f = itok-alt-in (CF n (⊙cfcod f)) (CF n f) (Trunc-level {n = ⟨0⟩}) $ Trunc-elim (λ _ → =-preserves-level _ (Trunc-level {n = ⟨0⟩})) (ap [_] ∘ uC-exact-itok-lemma n f) {- in kernel of (CF n f) ⇒ in image of (CF n (⊙cfcod f)) -} abstract C-exact-ktoi : (f : fst (X ⊙→ Y)) → is-exact-ktoi (CF n (⊙cfcod f)) (CF n f) C-exact-ktoi f = Trunc-elim (λ _ → Π-level (λ _ → raise-level _ Trunc-level)) (λ h tp → Trunc-rec Trunc-level (lemma h) (–> (Trunc=-equiv _ _) tp)) where lemma : (h : uCEl n Y) → fst (uCF n f) h == uCid n X → Trunc ⟨-1⟩ (Σ (CEl n (⊙Cof f)) (λ tk → fst (CF n (⊙cfcod f)) tk == [ h ])) lemma h p = [ [ fst wit ] , ap [_] (snd wit) ] where wit : Σ (uCEl n (⊙Cof f)) (λ k → fst (uCF n (⊙cfcod f)) k == h) wit = uC-exact-ktoi-lemma n f h p C-exact : (f : fst (X ⊙→ Y)) → is-exact (CF n (⊙cfcod f)) (CF n f) C-exact f = record {itok = C-exact-itok f; ktoi = C-exact-ktoi f} {- Additivity Axiom -} module _ (n : ℤ) {A : Type i} (X : A → Ptd i) (ac : (W : A → Type i) → has-choice ⟨0⟩ A W) where uie : has-choice ⟨0⟩ A (uCEl n ∘ X) uie = ac (uCEl n ∘ X) R' : CEl n (⊙BigWedge X) → Trunc ⟨0⟩ (Π A (uCEl n ∘ X)) R' = Trunc-rec Trunc-level (λ H → [ (λ a → H ⊙∘ ⊙bwin a) ]) L' : Trunc ⟨0⟩ (Π A (uCEl n ∘ X)) → CEl n (⊙BigWedge X) L' = Trunc-rec Trunc-level (λ k → [ BigWedgeRec.f idp (fst ∘ k) (! ∘ snd ∘ k) , idp ]) R = unchoose ∘ R' L = L' ∘ (is-equiv.g uie) R'-L' : ∀ y → R' (L' y) == y R'-L' = Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ K → ap [_] (λ= (λ a → pair= idp $ ap (BigWedgeRec.f idp (fst ∘ K) (! ∘ snd ∘ K)) (! (bwglue a)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (BigWedgeRec.f idp (fst ∘ K) (! ∘ snd ∘ K)) (! (bwglue a)) =⟨ ap-! (BigWedgeRec.f idp (fst ∘ K) (! ∘ snd ∘ K)) (bwglue a) ⟩ ! (ap (BigWedgeRec.f idp (fst ∘ K) (! ∘ snd ∘ K)) (bwglue a)) =⟨ ap ! (BigWedgeRec.glue-β idp (fst ∘ K) (! ∘ snd ∘ K) a) ⟩ ! (! (snd (K a))) =⟨ !-! (snd (K a)) ⟩ snd (K a) ∎))) L'-R' : ∀ x → L' (R' x) == x L'-R' = Trunc-elim {P = λ tH → L' (R' tH) == tH} (λ _ → =-preserves-level _ Trunc-level) (λ {(h , hpt) → ap [_] (pair= (λ= (L-R-fst (h , hpt))) (↓-app=cst-in $ ! $ ap (λ w → w ∙ hpt) (app=-β (L-R-fst (h , hpt)) bwbase) ∙ !-inv-l hpt))}) where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₁ a₂ : A} {b : B} (p : a₁ == a₂) (q : f a₁ == b) → ! q ∙ ap f p == ! (ap f (! p) ∙ q) lemma f idp idp = idp l∘r : fst (⊙BigWedge X ⊙→ ⊙Ω (E (succ n))) → (BigWedge X → Ω (E (succ n))) l∘r (h , hpt) = BigWedgeRec.f idp (λ a → h ∘ bwin a) (λ a → ! (ap h (! (bwglue a)) ∙ hpt)) L-R-fst : (h : fst (⊙BigWedge X ⊙→ ⊙Ω (E (succ n)))) → ∀ w → (l∘r h) w == fst h w L-R-fst (h , hpt) = BigWedge-elim (! hpt) (λ _ _ → idp) (λ a → ↓-='-in $ ! hpt ∙ ap h (bwglue a) =⟨ lemma h (bwglue a) hpt ⟩ ! (ap h (! (bwglue a)) ∙ hpt) =⟨ ! (BigWedgeRec.glue-β idp (λ a → h ∘ bwin a) (λ a → ! (ap h (! (bwglue a)) ∙ hpt)) a) ⟩ ap (l∘r (h , hpt)) (bwglue a) ∎) R-is-equiv : is-equiv R R-is-equiv = uie ∘ise (is-eq R' L' R'-L' L'-R') pres-comp : (tf tg : CEl n (⊙BigWedge X)) → R (Group.comp (C n (⊙BigWedge X)) tf tg) == Group.comp (Πᴳ A (C n ∘ X)) (R tf) (R tg) pres-comp = Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ (Π-level (λ _ → Trunc-level)))) (λ {(f , fpt) → Trunc-elim (λ _ → =-preserves-level _ (Π-level (λ _ → Trunc-level))) (λ {(g , gpt) → λ= $ λ a → ap [_] $ pair= idp (comp-snd f g (! (bwglue a)) fpt gpt)})}) where comp-snd : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} {b₀ : B} {p q : b₀ == b₀} (f : A → b₀ == b₀) (g : A → b₀ == b₀) (r : a₁ == a₂) (α : f a₂ == p) (β : g a₂ == q) → ap (λ x → f x ∙ g x) r ∙ ap2 _∙_ α β == ap2 _∙_ (ap f r ∙ α) (ap g r ∙ β) comp-snd f g idp idp idp = idp abstract C-additive : C n (⊙BigWedge X) == Πᴳ A (C n ∘ X) C-additive = group-ua (group-hom R pres-comp , R-is-equiv) open SpectrumModel spectrum-cohomology : CohomologyTheory i spectrum-cohomology = record { C = C; CF-hom = CF-hom; CF-ident = CF-ident; CF-comp = CF-comp; C-abelian = C-abelian; C-Susp = C-Susp; C-exact = C-exact; C-additive = C-additive} spectrum-C-S⁰ : (n : ℤ) → C n (⊙Sphere O) == π 1 (ℕ-S≠O _) (E (succ n)) spectrum-C-S⁰ n = Bool⊙→Ω-is-π₁ (E (succ n))
{ "alphanum_fraction": 0.4615073752, "avg_line_length": 36.1240875912, "ext": "agda", "hexsha": "d38c65238cdb0426a261853473eaabd030b491b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/SpectrumModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/SpectrumModel.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/SpectrumModel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4348, "size": 9898 }
{-# OPTIONS --without-K #-} open import Prelude import GSeTT.Syntax import GSeTT.Rules open import CaTT.Ps-contexts open import CaTT.Relation open import CaTT.Uniqueness-Derivations-Ps open import CaTT.Decidability-ps open import CaTT.Fullness import GSeTT.Typed-Syntax module CaTT.CaTT where J : Set₁ J = Σ (ps-ctx × Ty) λ {(Γ , A) → A is-full-in Γ } open import Globular-TT.Syntax J Ty→Pre-Ty : Ty → Pre-Ty Tm→Pre-Tm : Tm → Pre-Tm Sub→Pre-Sub : Sub → Pre-Sub Ty→Pre-Ty ∗ = ∗ Ty→Pre-Ty (⇒ A t u) = ⇒ (Ty→Pre-Ty A) (Tm→Pre-Tm t) (Tm→Pre-Tm u) Tm→Pre-Tm (v x) = Var x Tm→Pre-Tm (coh Γ A Afull γ) = Tm-constructor (((Γ , A)) , Afull) (Sub→Pre-Sub γ) Sub→Pre-Sub <> = <> Sub→Pre-Sub < γ , x ↦ t > = < Sub→Pre-Sub γ , x ↦ Tm→Pre-Tm t > _[_]Ty : Ty → Sub → Ty _[_]Tm : Tm → Sub → Tm _∘ₛ_ : Sub → Sub → Sub ∗ [ σ ]Ty = ∗ ⇒ A t u [ σ ]Ty = ⇒ (A [ σ ]Ty) (t [ σ ]Tm) (u [ σ ]Tm) v x [ <> ]Tm = v x v x [ < σ , y ↦ t > ]Tm = if x ≡ y then t else ((v x) [ σ ]Tm) coh Γ A full γ [ σ ]Tm = coh Γ A full (γ ∘ₛ σ) <> ∘ₛ γ = <> < γ , x ↦ t > ∘ₛ δ = < γ ∘ₛ δ , x ↦ t [ δ ]Tm > GPre-Ty→Ty : GSeTT.Syntax.Pre-Ty → Ty GPre-Ty→Ty GSeTT.Syntax.∗ = ∗ GPre-Ty→Ty (GSeTT.Syntax.⇒ A (GSeTT.Syntax.Var x) (GSeTT.Syntax.Var y)) = ⇒ (GPre-Ty→Ty A) (v x) (v y) Ty→Pre-Ty[] : ∀ {A γ} → ((GPre-Ty A) [ Sub→Pre-Sub γ ]Pre-Ty) == Ty→Pre-Ty ((GPre-Ty→Ty A) [ γ ]Ty) Tm→Pre-Tm[] : ∀ {x γ} → ((Var x) [ Sub→Pre-Sub γ ]Pre-Tm) == Tm→Pre-Tm ((v x) [ γ ]Tm) Ty→Pre-Ty[] {GSeTT.Syntax.∗} {γ} = idp Ty→Pre-Ty[] {GSeTT.Syntax.⇒ A (GSeTT.Syntax.Var x) (GSeTT.Syntax.Var y)} {γ} = ap³ ⇒ Ty→Pre-Ty[] (Tm→Pre-Tm[] {x} {γ}) (Tm→Pre-Tm[] {y} {γ}) Tm→Pre-Tm[] {x} {<>} = idp Tm→Pre-Tm[] {x} {< γ , y ↦ t >} with eqdecℕ x y ... | inl idp = idp ... | inr _ = Tm→Pre-Tm[] {x} {γ} dim-Pre-Ty[] : ∀ {A γ} → dim (Ty→Pre-Ty ((GPre-Ty→Ty A) [ γ ]Ty)) == dim (GPre-Ty A) dim-Pre-Ty[] {GSeTT.Syntax.∗} {γ} = idp dim-Pre-Ty[] {GSeTT.Syntax.⇒ A (GSeTT.Syntax.Var _) (GSeTT.Syntax.Var _)} {γ} = ap S dim-Pre-Ty[] rule : J → GSeTT.Typed-Syntax.Ctx × Pre-Ty rule ((Γ , A) , _) = (fst Γ , Γ⊢ps→Γ⊢ (snd Γ)) , Ty→Pre-Ty A open GSeTT.Typed-Syntax open import Sets ℕ eqdecℕ open import Globular-TT.Rules J rule open import Globular-TT.CwF-Structure J rule eqdecJ : eqdec J eqdecJ ((Γ , A) , Afull) ((Γ' , A') , A'full) with eqdec-ps Γ Γ' | CaTT.Fullness.eqdec-Ty A A' ... | inl idp | inl idp = inl (ap (λ X → ((Γ , A) , X)) (is-prop-has-all-paths (is-prop-full Γ A) Afull A'full)) ... | inr Γ≠Γ' | _ = inr λ{idp → Γ≠Γ' idp} ... | inl idp | inr A≠A' = inr λ{A=A' → A≠A' (snd (=, (fst-is-inj A=A')))} open import Globular-TT.Uniqueness-Derivations J rule eqdecJ open import Globular-TT.Disks J rule eqdecJ dim-tm : ∀ {Γ x A} → Γ ⊢t Var x # A → ℕ dim-tm {Γ} {x} {A} _ = dim A GdimT : ∀ {A} → GSeTT.Syntax.dim A == dim (GPre-Ty A) GdimT {GSeTT.Syntax.∗} = idp GdimT {GSeTT.Syntax.⇒ A _ _} = ap S GdimT GdimC : ∀ {Γ} → GSeTT.Syntax.dimC Γ == dimC (GPre-Ctx Γ) GdimC {nil} = idp GdimC {Γ :: (x , A)} = ap² max (GdimC {Γ}) GdimT G#∈ : ∀ {Γ x A} → x GSeTT.Syntax.# A ∈ Γ → x # (GPre-Ty A) ∈ (GPre-Ctx Γ) G#∈ {Γ :: a} (inl x∈Γ) = inl (G#∈ x∈Γ) G#∈ {Γ :: a} (inr (idp , idp)) = inr (idp , idp) G∈ : ∀ {Γ x} → x GSeTT.Syntax.∈ Γ → x ∈-set (varC Γ) G∈ {Γ :: (a , _)} (inl x∈Γ) = ∈-∪₁ {A = varC Γ} {B = singleton a} (G∈ x∈Γ) G∈ {Γ :: (x , _)} (inr idp) = ∈-∪₂ {A = varC Γ} {B = singleton x} (∈-singleton x) private every-term-has-variables : ∀ {Γ t A} → Γ ⊢t (Tm→Pre-Tm t) # A → Σ ℕ λ x → x ∈-set vart t every-term-has-variables {Γ} {v x} {A} Γ⊢t = x , ∈-singleton x every-term-has-variables {Γ} {coh (nil , (ps Δ⊢ps)) _ _ γ} {A} (tm _ Γ⊢γ idp) = ⊥-elim (∅-is-not-ps _ _ Δ⊢ps) every-term-has-variables {Γ} {coh ((_ :: _) , Δ⊢ps) _ _ <>} {A} (tm _ () idp) every-term-has-variables {Γ} {coh ((_ :: _) , Δ⊢ps) _ _ < γ , _ ↦ u >} {A} (tm _ (sc _ _ Γ⊢u _) idp) with every-term-has-variables Γ⊢u ... | (x , x∈) = x , ∈-∪₂ {A = varS γ} {B = vart u} x∈ side-cond₁-not𝔻0 : ∀ Γ Γ⊢ps A t → (GPre-Ctx Γ) ⊢t (Tm→Pre-Tm t) # (Ty→Pre-Ty A) → ((varT A) ∪-set (vart t)) ⊂ (src-var (Γ , Γ⊢ps)) → Γ ≠ (nil :: (0 , GSeTT.Syntax.∗)) side-cond₁-not𝔻0 .(nil :: (0 , GSeTT.Syntax.∗)) (ps pss) A t Γ⊢t incl idp with every-term-has-variables Γ⊢t | dec-≤ 0 0 ... | x , x∈A | inl _ = incl _ (∈-∪₂ {A = varT A} {B = vart t} x∈A) ... | x , x∈A | inr _ = incl _ (∈-∪₂ {A = varT A} {B = vart t} x∈A) side-cond₁-not𝔻0 .(nil :: (0 , GSeTT.Syntax.∗)) (ps (psd Γ⊢psf)) A t Γ⊢t incl idp = ⇒≠∗ (𝔻0-type _ _ (psvar Γ⊢psf)) max-srcᵢ-var-def : ∀ {Γ x A i} → (Γ⊢psx : Γ ⊢ps x # A) → 0 < i → ℕ × Pre-Ty max-srcᵢ-var-def pss _ = 0 , ∗ max-srcᵢ-var-def (psd Γ⊢psx) 0<i = max-srcᵢ-var-def Γ⊢psx 0<i max-srcᵢ-var-def {_} {x} {A} {i} (pse Γ⊢psx idp idp idp idp idp) 0<i with dec-≤ i (GSeTT.Syntax.dim A) ... | inl i≤dA = max-srcᵢ-var-def Γ⊢psx 0<i ... | inr dA<i with dec-≤ (GSeTT.Syntax.dim A) (dim (snd (max-srcᵢ-var-def Γ⊢psx 0<i))) ... | inl _ = max-srcᵢ-var-def Γ⊢psx 0<i ... | inr _ = x , GPre-Ty A max-srcᵢ-var-∈ : ∀ {Γ x A i} → (Γ⊢psx : Γ ⊢ps x # A) → (0<i : 0 < i) → fst (max-srcᵢ-var-def Γ⊢psx 0<i) ∈-list (srcᵢ-var i Γ⊢psx) max-srcᵢ-var-∈ pss 0<i = transport {B = 0 ∈-list_} (simplify-if 0<i ^) (inr idp) max-srcᵢ-var-∈ (psd Γ⊢psx) 0<i = max-srcᵢ-var-∈ Γ⊢psx 0<i max-srcᵢ-var-∈ {Γ} {x} {A} {i} (pse Γ⊢psx idp idp idp idp idp) 0<i with dec-≤ i (GSeTT.Syntax.dim A) ... | inl _ = max-srcᵢ-var-∈ Γ⊢psx 0<i ... | inr _ with dec-≤ (GSeTT.Syntax.dim A) (dim (snd (max-srcᵢ-var-def Γ⊢psx 0<i))) ... | inl _ = inl (inl (max-srcᵢ-var-∈ Γ⊢psx 0<i)) ... | inr _ = inr idp max-srcᵢ-var-⊢ : ∀ {Γ x A i} → (Γ⊢psx : Γ ⊢ps x # A) → (0<i : 0 < i) → GPre-Ctx Γ ⊢t Var (fst (max-srcᵢ-var-def Γ⊢psx 0<i)) # snd (max-srcᵢ-var-def Γ⊢psx 0<i) max-srcᵢ-var-⊢ pss 0<i = var (cc ec (ob ec) idp) (inr (idp , idp)) max-srcᵢ-var-⊢ (psd Γ⊢psx) 0<i = max-srcᵢ-var-⊢ Γ⊢psx 0<i max-srcᵢ-var-⊢ {Γ} {x} {A} {i} Γ+⊢ps@(pse Γ⊢psx idp idp idp idp idp) 0<i with dec-≤ i (GSeTT.Syntax.dim A) ... | inl _ = wkt (wkt (max-srcᵢ-var-⊢ Γ⊢psx 0<i) ((GCtx _ (GSeTT.Rules.Γ,x:A⊢→Γ⊢ (psv Γ+⊢ps))))) (GCtx _ (psv Γ+⊢ps)) ... | inr _ with dec-≤ (GSeTT.Syntax.dim A) (dim (snd (max-srcᵢ-var-def Γ⊢psx 0<i))) ... | inl _ = wkt (wkt (max-srcᵢ-var-⊢ Γ⊢psx 0<i) ((GCtx _ (GSeTT.Rules.Γ,x:A⊢→Γ⊢ (psv Γ+⊢ps))))) (GCtx _ (psv Γ+⊢ps)) ... | inr _ = var (GCtx _ (psv Γ+⊢ps)) (inr (idp , idp)) max-srcᵢ-var-dim : ∀ {Γ x A i} → (Γ⊢psx : Γ ⊢ps x # A) → (0<i : 0 < i) → min i (S (dimC (GPre-Ctx Γ))) == S (dim (snd (max-srcᵢ-var-def Γ⊢psx 0<i))) max-srcᵢ-var-dim pss 0<i = simplify-min-r 0<i max-srcᵢ-var-dim (psd Γ⊢psx) 0<i = max-srcᵢ-var-dim Γ⊢psx 0<i max-srcᵢ-var-dim {Γ} {x} {A} {i} (pse {Γ = Δ} Γ⊢psx idp idp idp idp idp) 0<i with dec-≤ i (GSeTT.Syntax.dim A) ... | inl i≤dA = simplify-min-l (n≤m→n≤Sm (≤T (≤-= i≤dA (GdimT {A})) (m≤max (max (dimC (GPre-Ctx Δ)) _) (dim (GPre-Ty A))) )) >> (simplify-min-l (≤T i≤dA (≤-= (S≤ (dim-dangling Γ⊢psx)) (ap S (GdimC {Δ})))) ^) >> max-srcᵢ-var-dim Γ⊢psx 0<i max-srcᵢ-var-dim {Γ} {x} {A} {i} (pse {Γ = Δ} Γ⊢psx idp idp idp idp idp) 0<i | inr dA<i with dec-≤ (GSeTT.Syntax.dim A) (dim (snd (max-srcᵢ-var-def Γ⊢psx 0<i))) ... | inl dA≤m = let dA<dΔ = (S≤S (≤T (=-≤-= (ap S (GdimT {A} ^)) (S≤ dA≤m) (max-srcᵢ-var-dim Γ⊢psx 0<i ^)) (min≤m i (S (dimC (GPre-Ctx Δ)))))) in ap (min i) (ap S (simplify-max-l {max (dimC (GPre-Ctx Δ)) _} {dim (GPre-Ty A)} (≤T dA<dΔ (n≤max _ _)) >> simplify-max-l {dimC (GPre-Ctx Δ)} {_} (Sn≤m→n≤m dA<dΔ))) >> max-srcᵢ-var-dim Γ⊢psx 0<i ... | inr m<dA = simplify-min-r {i} {S (max (max (dimC (GPre-Ctx Δ)) _) (dim (GPre-Ty A)))} (up-maxS {max (dimC (GPre-Ctx Δ)) _} {dim (GPre-Ty A)} (up-maxS {dimC (GPre-Ctx Δ)} {_} (min<l (=-≤ (ap S (max-srcᵢ-var-dim Γ⊢psx 0<i)) (≤T (S≤ (≰ m<dA)) (≰ dA<i)))) (=-≤ (GdimT {A} ^) (≤T (n≤Sn _) (≰ dA<i)))) (=-≤ (ap S (GdimT {A}) ^) (≰ dA<i))) >> ap S (simplify-max-r {max (dimC (GPre-Ctx Δ)) _} {dim (GPre-Ty A)} (up-max {dimC (GPre-Ctx Δ)} {_} (≤-= (Sn≤m→n≤m (greater-than-min-r (≰ dA<i) (=-≤ (max-srcᵢ-var-dim Γ⊢psx 0<i) (≰ m<dA)))) (ap S GdimT)) (n≤Sn _))) max-srcᵢ-var : ∀ {Γ x A i} → (Γ⊢psx : Γ ⊢ps x # A) → 0 < i → Σ (Σ (ℕ × Pre-Ty) (λ {(x , B) → GPre-Ctx Γ ⊢t Var x # B})) (λ {((x , B) , Γ⊢x) → (x ∈-list (srcᵢ-var i Γ⊢psx)) × (min i (S (dimC (GPre-Ctx Γ))) == S (dim-tm Γ⊢x))}) max-srcᵢ-var Γ⊢psx 0<i = (max-srcᵢ-var-def Γ⊢psx 0<i , max-srcᵢ-var-⊢ Γ⊢psx 0<i) , (max-srcᵢ-var-∈ Γ⊢psx 0<i , max-srcᵢ-var-dim Γ⊢psx 0<i) max-src-var : ∀ Γ → (Γ⊢ps : Γ ⊢ps) → (Γ ≠ (nil :: (0 , GSeTT.Syntax.∗))) → Σ (Σ (ℕ × Pre-Ty) (λ {(x , B) → GPre-Ctx Γ ⊢t Var x # B})) (λ {((x , B) , Γ⊢x) → (x ∈-set (src-var (Γ , Γ⊢ps))) × (dimC (GPre-Ctx Γ) == S (dim-tm Γ⊢x))}) max-src-var Γ Γ⊢ps@(ps Γ⊢psx) Γ≠𝔻0 with max-srcᵢ-var {i = GSeTT.Syntax.dimC Γ} Γ⊢psx (dim-ps-not-𝔻0 Γ⊢ps Γ≠𝔻0) ... | ((x , B) , (x∈ , p)) = (x , B) , (∈-list-∈-set _ _ x∈ , (ap (λ n → min n (S (dimC (GPre-Ctx Γ)))) (GdimC {Γ}) >> simplify-min-l (n≤Sn _) ^ >> p) ) full-term-have-max-variables : ∀ {Γ A Γ⊢ps} → GPre-Ctx Γ ⊢T (Ty→Pre-Ty A) → A is-full-in ((Γ , Γ⊢ps)) → Σ (Σ (ℕ × Pre-Ty) (λ {(x , B) → GPre-Ctx Γ ⊢t Var x # B})) (λ {((x , B) , Γ⊢x) → (x ∈-set varT A) × (dimC (GPre-Ctx Γ) ≤ S (dim-tm Γ⊢x))}) full-term-have-max-variables {Γ} {_} {Γ⊢ps} Γ⊢A (side-cond₁ .(_ , _) A t u (incl , incl₂) _) with max-src-var Γ Γ⊢ps (side-cond₁-not𝔻0 _ Γ⊢ps A t (Γ⊢src Γ⊢A) incl₂) ... | ((x , B) , Γ⊢x) , (x∈src , dimΓ=Sdimx) = ((x , B) , Γ⊢x) , (A∪B⊂A∪B∪C (varT A) (vart t) (vart u) _ (incl _ x∈src) , transport {B = λ x → (dimC (GPre-Ctx Γ)) ≤ x} dimΓ=Sdimx (n≤n _)) full-term-have-max-variables {Γ} {_} {Γ⊢ps@(ps Γ⊢psx)} _ (side-cond₂ .(_ , _) _ (incl , _)) with max-var {Γ} Γ⊢ps ... | (x , B) , (x∈Γ , dimx) = ((x , (GPre-Ty B)) , var (GCtx Γ (psv Γ⊢psx)) (G#∈ x∈Γ)) , (incl _ (G∈ (x#A∈Γ→x∈Γ x∈Γ)) , ≤-= (=-≤ ((GdimC {Γ} ^) >> dimx) (n≤Sn _)) (ap S GdimT)) dim-∈-var : ∀ {Γ A x B} → Γ ⊢t Var x # B → Γ ⊢T (Ty→Pre-Ty A) → x ∈-set varT A → dim B < dim (Ty→Pre-Ty A) dim-∈-var-t : ∀ {Γ t A x B} → Γ ⊢t Var x # B → Γ ⊢t (Tm→Pre-Tm t) # (Ty→Pre-Ty A) → x ∈-set vart t → dim B ≤ dim (Ty→Pre-Ty A) dim-∈-var-S : ∀ {Δ γ Γ x B} → Δ ⊢t Var x # B → Δ ⊢S (Sub→Pre-Sub γ) > (GPre-Ctx Γ) → x ∈-set varS γ → dim B ≤ dimC (GPre-Ctx Γ) dim-full-ty : ∀ {Γ A} → (Γ⊢ps : Γ ⊢ps) → (GPre-Ctx Γ) ⊢T (Ty→Pre-Ty A) → A is-full-in (Γ , Γ⊢ps) → dimC (GPre-Ctx Γ) ≤ dim (Ty→Pre-Ty A) dim-∈-var {Γ} {A⇒@(⇒ A t u)} {x} {B} Γ⊢x (ar Γ⊢A Γ⊢t Γ⊢u) x∈A⇒ with ∈-∪ {varT A} {vart t ∪-set vart u} x∈A⇒ ... | inl x∈A = n≤m→n≤Sm (dim-∈-var Γ⊢x Γ⊢A x∈A) ... | inr x∈t∪u with ∈-∪ {vart t} {vart u} x∈t∪u ... | inl x∈t = S≤ (dim-∈-var-t Γ⊢x Γ⊢t x∈t) ... | inr x∈u = S≤ (dim-∈-var-t Γ⊢x Γ⊢u x∈u) dim-∈-var-t {t = v x} Γ⊢x Γ⊢t (inr idp) with unique-type Γ⊢x Γ⊢t (ap Var idp) ... | idp = n≤n _ dim-∈-var-t {t = coh Γ A Afull γ} Γ⊢x (tm Γ⊢A Δ⊢γ:Γ p) x∈t = ≤-= (≤T (dim-∈-var-S Γ⊢x Δ⊢γ:Γ x∈t) (dim-full-ty (snd Γ) Γ⊢A Afull) ) ((dim[] _ _ ^) >> ap dim (p ^)) dim-∈-var-S {Δ} {< γ , y ↦ t >} {Γ :: (_ , A)} {x} {B} Δ⊢x (sc Δ⊢γ:Γ Γ+⊢ Δ⊢t idp) x∈γ+ with ∈-∪ {varS γ} {vart t} x∈γ+ ... | inl x∈γ = ≤T (dim-∈-var-S Δ⊢x Δ⊢γ:Γ x∈γ) (n≤max _ _) ... | inr x∈t = ≤T (dim-∈-var-t Δ⊢x (transport {B = Δ ⊢t (Tm→Pre-Tm t) #_} Ty→Pre-Ty[] Δ⊢t) x∈t) (=-≤ (dim-Pre-Ty[]) (m≤max (dimC (GPre-Ctx Γ)) (dim (GPre-Ty A)))) dim-full-ty Γ⊢ps Γ⊢A Afull with full-term-have-max-variables Γ⊢A Afull ... | ((x , B) , Γ⊢x) , (x∈A , dimx) = ≤T dimx (dim-∈-var Γ⊢x Γ⊢A x∈A) well-foundedness : well-founded well-foundedness ((Γ , A) , Afull) Γ⊢A with full-term-have-max-variables Γ⊢A Afull ... |((x , B) , Γ⊢x) , (x∈Γ , dimΓ≤Sdimx) = ≤T dimΓ≤Sdimx (dim-∈-var Γ⊢x Γ⊢A x∈Γ) open import Globular-TT.Dec-Type-Checking J rule well-foundedness eqdecJ
{ "alphanum_fraction": 0.4946873226, "avg_line_length": 61.0346534653, "ext": "agda", "hexsha": "61aa703892d579a579f1290039d7a26212d695c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "CaTT/CaTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "CaTT/CaTT.agda", "max_line_length": 241, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "CaTT/CaTT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6516, "size": 12329 }
module Issue1494 where open import Issue1494.Helper module M (r : Record) where open Module r postulate A : Set a b : A Foo : a ≡ b Foo = {!!}
{ "alphanum_fraction": 0.5963855422, "avg_line_length": 11.0666666667, "ext": "agda", "hexsha": "c7df4364a4b6c05e60b5c8c094f9b099d0dc8521", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1494.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1494.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1494.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 56, "size": 166 }
{-# OPTIONS --without-K #-} open import M-types.Base.Core module M-types.Base.Sum where infixr 4 _,_ record ∑ (X : Ty ℓ₀) (Y : X → Ty ℓ₁) : Ty (ℓ-max ℓ₀ ℓ₁) where constructor _,_ field pr₀ : X pr₁ : Y pr₀ open ∑ public {-# BUILTIN SIGMA ∑ #-} ∑-syntax : (X : Ty ℓ₀) → (Y : X → Ty ℓ₁) → Ty (ℓ-max ℓ₀ ℓ₁) ∑-syntax = ∑ infix 2 ∑-syntax syntax ∑-syntax X (λ x → Y) = ∑[ x ∈ X ] Y infixr 2 _×_ _×_ : (X : Ty ℓ₀) → (Y : Ty ℓ₁) → Ty (ℓ-max ℓ₀ ℓ₁) X × Y = ∑[ x ∈ X ] Y ty = pr₀ fun = pr₀
{ "alphanum_fraction": 0.4562607204, "avg_line_length": 18.8064516129, "ext": "agda", "hexsha": "7bb485c933109d14718ee90351f33df054fedee1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Sum.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Sum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 583 }
module WellTypedTerms where open import Library open import Categories open import Functors open import RMonads open import FunctorCat open import Categories.Sets open import Categories.Families data Ty : Set where ι : Ty _⇒_ : Ty → Ty → Ty data Con : Set where ε : Con _<_ : Con → Ty → Con data Var : Con → Ty → Set where vz : ∀{Γ σ} → Var (Γ < σ) σ vs : ∀{Γ σ τ} → Var Γ σ → Var (Γ < τ) σ data Tm : Con → Ty → Set where var : ∀{Γ σ} → Var Γ σ → Tm Γ σ app : ∀{Γ σ τ} → Tm Γ (σ ⇒ τ) → Tm Γ σ → Tm Γ τ lam : ∀{Γ σ τ} → Tm (Γ < σ) τ → Tm Γ (σ ⇒ τ) Ren : Con → Con → Set Ren Γ Δ = ∀ {σ} → Var Γ σ → Var Δ σ renId : ∀{Γ} → Ren Γ Γ renId = id renComp : ∀{B Γ Δ} → Ren Γ Δ → Ren B Γ → Ren B Δ renComp f g = f ∘ g ConCat : Cat ConCat = record{ Obj = Con; Hom = Ren; iden = renId; comp = renComp; idl = iext λ _ → refl; idr = iext λ _ → refl; ass = iext λ _ → refl} wk : ∀{Γ Δ σ} → Ren Γ Δ → Ren (Γ < σ) (Δ < σ) wk f vz = vz wk f (vs i) = vs (f i) ren : ∀{Γ Δ} → Ren Γ Δ → ∀ {σ} → Tm Γ σ → Tm Δ σ ren f (var x) = var (f x) ren f (app t u) = app (ren f t) (ren f u) ren f (lam t) = lam (ren (wk f) t) wkid : ∀{Γ σ τ}(x : Var (Γ < τ) σ) → wk renId x ≅ renId x wkid vz = refl wkid (vs x) = refl renid : ∀{Γ σ}(t : Tm Γ σ) → ren renId t ≅ id t renid (var x) = refl renid (app t u) = proof app (ren renId t) (ren renId u) ≅⟨ cong₂ app (renid t) (renid u) ⟩ app t u ∎ renid (lam t) = proof lam (ren (wk renId) t) ≅⟨ cong (λ (f : Ren _ _) → lam (ren f t)) (iext λ _ → ext wkid) ⟩ lam (ren renId t) ≅⟨ cong lam (renid t) ⟩ lam t ∎ wkcomp : ∀ {B Γ Δ}(f : Ren Γ Δ)(g : Ren B Γ){σ τ}(x : Var (B < σ) τ) → wk (renComp f g) x ≅ renComp (wk f) (wk g) x wkcomp f g vz = refl wkcomp f g (vs i) = refl rencomp : ∀ {B Γ Δ}(f : Ren Γ Δ)(g : Ren B Γ){σ}(t : Tm B σ) → ren (renComp f g) t ≅ (ren f ∘ ren g) t rencomp f g (var x) = refl rencomp f g (app t u) = proof app (ren (renComp f g) t) (ren (renComp f g) u) ≅⟨ cong₂ app (rencomp f g t) (rencomp f g u) ⟩ app (ren f (ren g t)) (ren f (ren g u)) ∎ rencomp f g (lam t) = proof lam (ren (wk (renComp f g)) t) ≅⟨ cong (λ (f : Ren _ _) → lam (ren f t)) (iext λ _ → ext (wkcomp f g)) ⟩ lam (ren (renComp (wk f) (wk g)) t) ≅⟨ cong lam (rencomp (wk f) (wk g) t) ⟩ lam (ren (wk f) (ren (wk g) t)) ∎ Sub : Con → Con → Set Sub Γ Δ = ∀{σ} → Var Γ σ → Tm Δ σ lift : ∀{Γ Δ σ} → Sub Γ Δ → Sub (Γ < σ) (Δ < σ) lift f vz = var vz lift f (vs x) = ren vs (f x) sub : ∀{Γ Δ} → Sub Γ Δ → ∀{σ} → Tm Γ σ → Tm Δ σ sub f (var x) = f x sub f (app t u) = app (sub f t) (sub f u) sub f (lam t) = lam (sub (lift f) t) subId : ∀{Γ} → Sub Γ Γ subId = var subComp : ∀{B Γ Δ} → Sub Γ Δ → Sub B Γ → Sub B Δ subComp f g = sub f ∘ g liftid : ∀{Γ σ τ}(x : Var (Γ < σ) τ) → lift subId x ≅ subId x liftid vz = refl liftid (vs x) = refl subid : ∀{Γ σ}(t : Tm Γ σ) → sub subId t ≅ id t subid (var x) = refl subid (app t u) = proof app (sub subId t) (sub subId u) ≅⟨ cong₂ app (subid t) (subid u) ⟩ app t u ∎ subid (lam t) = proof lam (sub (lift subId) t) ≅⟨ cong (λ (f : Sub _ _) → lam (sub f t)) (iext λ _ → ext liftid) ⟩ lam (sub subId t) ≅⟨ cong lam (subid t) ⟩ lam t ∎ -- time for the mysterious four lemmas: liftwk : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Ren B Γ){σ τ}(x : Var (B < σ) τ) → (lift f ∘ wk g) x ≅ lift (f ∘ g) x liftwk f g vz = refl liftwk f g (vs x) = refl subren : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Ren B Γ){σ}(t : Tm B σ) → (sub f ∘ ren g) t ≅ sub (f ∘ g) t subren f g (var x) = refl subren f g (app t u) = proof app (sub f (ren g t)) (sub f (ren g u)) ≅⟨ cong₂ app (subren f g t) (subren f g u) ⟩ app (sub (f ∘ g) t) (sub (f ∘ g) u) ∎ subren f g (lam t) = proof lam (sub (lift f) (ren (wk g) t)) ≅⟨ cong lam (subren (lift f) (wk g) t) ⟩ lam (sub (lift f ∘ wk g) t) ≅⟨ cong (λ (f : Sub _ _) → lam (sub f t)) (iext (λ _ → ext (liftwk f g))) ⟩ lam (sub (lift (f ∘ g)) t) ∎ renwklift : ∀{B Γ Δ}(f : Ren Γ Δ)(g : Sub B Γ){σ τ}(x : Var (B < σ) τ) → (ren (wk f) ∘ lift g) x ≅ lift (ren f ∘ g) x renwklift f g vz = refl renwklift f g (vs x) = proof ren (wk f) (ren vs (g x)) ≅⟨ sym (rencomp (wk f) vs (g x)) ⟩ ren (wk f ∘ vs) (g x) ≅⟨ rencomp vs f (g x) ⟩ ren vs (ren f (g x)) ∎ rensub : ∀{B Γ Δ}(f : Ren Γ Δ)(g : Sub B Γ){σ}(t : Tm B σ) → (ren f ∘ sub g) t ≅ sub (ren f ∘ g) t rensub f g (var x) = refl rensub f g (app t u) = proof app (ren f (sub g t)) (ren f (sub g u)) ≅⟨ cong₂ app (rensub f g t) (rensub f g u) ⟩ app (sub (ren f ∘ g) t) (sub (ren f ∘ g) u) ∎ rensub f g (lam t) = proof lam (ren (wk f) (sub (lift g) t)) ≅⟨ cong lam (rensub (wk f) (lift g) t) ⟩ lam (sub (ren (wk f) ∘ lift g) t) ≅⟨ cong (λ (f₁ : Sub _ _) → lam (sub f₁ t)) (iext (λ _ → ext (renwklift f g))) ⟩ lam (sub (lift (ren f ∘ g)) t) ∎ liftcomp : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Sub B Γ){σ τ}(x : Var (B < σ) τ) → lift (subComp f g) x ≅ subComp (lift f) (lift g) x liftcomp f g vz = refl liftcomp f g (vs x) = proof ren vs (sub f (g x)) ≅⟨ rensub vs f (g x) ⟩ sub (ren vs ∘ f) (g x) ≅⟨ sym (subren (lift f) vs (g x)) ⟩ sub (lift f) (ren vs (g x)) ∎ subcomp : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Sub B Γ){σ}(t : Tm B σ) → sub (subComp f g) t ≅ (sub f ∘ sub g) t subcomp f g (var x) = refl subcomp f g (app t u) = proof app (sub (subComp f g) t) (sub (subComp f g) u) ≅⟨ cong₂ app (subcomp f g t) (subcomp f g u) ⟩ app (sub f (sub g t)) (sub f (sub g u)) ∎ subcomp f g (lam t) = proof lam (sub (lift (subComp f g)) t) ≅⟨ cong (λ (f : Sub _ _) → lam (sub f t)) (iext λ _ → ext (liftcomp f g)) ⟩ lam (sub (subComp (lift f) (lift g)) t) ≅⟨ cong lam (subcomp (lift f) (lift g) t) ⟩ lam (sub (lift f) (sub (lift g) t)) ∎ VarF : Fun ConCat (Fam Ty) VarF = record { OMap = Var; HMap = id; fid = refl; fcomp = refl } TmRMonad : RMonad VarF TmRMonad = record { T = Tm; η = var; bind = sub; law1 = iext λ _ → ext subid ; law2 = refl; law3 = λ{_ _ _ f g} → iext λ σ → ext (subcomp g f)} -- not needed here sub<< : ∀{Γ Δ σ}(f : Sub Γ Δ)(t : Tm Δ σ) → Sub (Γ < σ) Δ sub<< f t vz = t sub<< f t (vs x) = f x lem1 : ∀{B Γ Δ σ}{f : Sub Γ Δ}{g : Ren B Γ}{t : Tm Δ σ}{τ}(x : Var (B < σ) τ) → (sub<< f t ∘ wk g) x ≅ (sub<< (f ∘ g) t) x lem1 vz = refl lem1 (vs x) = refl lem2 : ∀{B Γ Δ σ}{f : Sub Γ Δ}{g : Sub B Γ}{t : Tm Δ σ}{τ}(x : Var (B < σ) τ) → (subComp (sub<< f t) (lift g)) x ≅ (sub<< (subComp f g) t) x lem2 vz = refl lem2 {f = f}{g = g}{t = t} (vs x) = subren (sub<< f t) vs (g x)
{ "alphanum_fraction": 0.4931972789, "avg_line_length": 26.8333333333, "ext": "agda", "hexsha": "a98c591d74763c3fa6320f1d975b8846419e15d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "WellTypedTerms.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "WellTypedTerms.agda", "max_line_length": 80, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "WellTypedTerms.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 3149, "size": 6762 }
module Ag04 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x infix 4 _≡_ ≡-sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x ≡-sym refl = refl trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B} → u ≡ x → v ≡ y → f u v ≡ f x y cong₂ f refl refl = refl cong-app : ∀ {A B : Set} {f g : A → B} → f ≡ g → ∀ (x : A) → f x ≡ g x cong-app refl x = refl data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + m = m (suc n) + m = suc (n + m) postulate +-identity : ∀ (m : ℕ) → m + zero ≡ m +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-comm : ∀ (m n : ℕ) → m + n ≡ n + m _≐_ : ∀ {A : Set} (x y : A) → Set₁ _≐_ {A} x y = ∀ (P : A → Set) → P x → P y refl-≐ : ∀ {A : Set} {x : A} → x ≐ x refl-≐ P Px = Px trans-≐ : ∀ {A : Set} {x y z : A} → x ≐ y → y ≐ z → x ≐ z trans-≐ x≐y y≐z P Px = y≐z P (x≐y P Px) sym-≐ : ∀ {A : Set} {x y : A} → x ≐ y → y ≐ x sym-≐ {A} {x} {y} x≐y P = Qy where Q : A → Set Q z = P z → P x Qx : Q x Qx = refl-≐ P Qy : Q y Qy = x≐y Q Qx subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y --------- → P x → P y subst P refl px = px ≡-implies-≐ : ∀ {A : Set} {x y : A} → x ≡ y → x ≐ y ≡-implies-≐ x≡y P = subst P x≡y ≐-implies-≡ : ∀ {A : Set} {x y : A} → x ≐ y → x ≡ y ≐-implies-≡ {A} {x} {y} x≐y = Qy where Q : A → Set Q z = x ≡ z Qx : Q x Qx = refl Qy : Q y Qy = x≐y Q Qx open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) data _≡'_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where refl' : x ≡' x
{ "alphanum_fraction": 0.4139941691, "avg_line_length": 21.1728395062, "ext": "agda", "hexsha": "671283ba42c7038557fc1ec8d9ad35a24adb4aad", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Ag04.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Ag04.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Ag04.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 900, "size": 1715 }
------------------------------------------------------------------------------ -- Definition of FOTC Conat using Agda's co-inductive combinators ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Conat.TypeSL where open import Codata.Musical.Notation open import FOTC.Base ------------------------------------------------------------------------------ data Conat : D → Set where cozero : Conat zero cosucc : ∀ {n} → ∞ (Conat n) → Conat (succ₁ n) Conat-out : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') Conat-out cozero = inj₁ refl Conat-out (cosucc {n} Cn) = inj₂ (n , refl , ♭ Cn) Conat-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') → Conat n Conat-in (inj₁ n≡0) = subst Conat (sym n≡0) cozero Conat-in (inj₂ (n' , prf , Cn')) = subst Conat (sym prf) (cosucc (♯ Cn')) -- TODO (2019-01-04): Agda doesn't accept this definition which was -- accepted by a previous version. {-# TERMINATING #-} Conat-coind : (A : D → Set) → (∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → ∀ {n} → A n → Conat n Conat-coind A h An with h An ... | inj₁ refl = cozero ... | inj₂ (n' , refl , An') = cosucc (♯ (Conat-coind A h An')) -- TODO (07 January 2014): We couldn't prove Conat-stronger-coind. Conat-stronger-coind : ∀ (A : D → Set) {n} → (A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → A n → Conat n Conat-stronger-coind A h An with h An ... | inj₁ n≡0 = subst Conat (sym n≡0) cozero ... | inj₂ (n' , prf , An') = subst Conat (sym prf) (cosucc (♯ (Conat-coind A {!!} An'))) postulate ∞D : D ∞-eq : ∞D ≡ succ₁ ∞D -- TODO (06 January 2014): Agda doesn't accept the proof of Conat ∞D. {-# TERMINATING #-} ∞-Conat : Conat ∞D ∞-Conat = subst Conat (sym ∞-eq) (cosucc (♯ ∞-Conat))
{ "alphanum_fraction": 0.4855072464, "avg_line_length": 34.5, "ext": "agda", "hexsha": "93424e880b9f1c1a3c0a31b35c99eed7b23ac696", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Conat/TypeSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Conat/TypeSL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Conat/TypeSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 704, "size": 2070 }
module DuplicateBuiltinBinding where {-# BUILTIN STRING String #-} {-# BUILTIN STRING String #-}
{ "alphanum_fraction": 0.7272727273, "avg_line_length": 16.5, "ext": "agda", "hexsha": "c17854556ffc704f5bbb17d989f18483e6d6dbeb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/DuplicateBuiltinBinding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/DuplicateBuiltinBinding.agda", "max_line_length": 36, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/DuplicateBuiltinBinding.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 19, "size": 99 }
data Nat : Set where succ : Nat → Nat data Fin : Nat → Set where zero : (n : Nat) → Fin (succ n) data Tm (n : Nat) : Set where var : Fin n → Tm n piv : Fin (succ n) → Tm n data Cx : Nat → Set where succ : (n : Nat) → Tm n → Cx (succ n) data CxChk : ∀ n → Cx n → Set where succ : (n : Nat) (T : Tm n) → CxChk (succ n) (succ n T) data TmChk (n : Nat) : Cx n → Tm n → Set where vtyp : (g : Cx n) (v : Fin n) → CxChk n g → TmChk n g (var v) error : ∀ n g s → TmChk n g s → Set error n g s (vtyp g' (zero x) (succ n' (piv (zero y)))) = Nat -- Internal error here. error _ _ _ (vtyp g' (zero n) (succ n (var x))) = Nat -- This clause added to pass 2.5.3.
{ "alphanum_fraction": 0.5469448584, "avg_line_length": 27.9583333333, "ext": "agda", "hexsha": "0106b41326f39ad5a47b8f6d4322f4ac6c43b424", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "6dd1d63a927442aac42ef299f15054dd944d7fa9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Forty-Bot/agda", "max_forks_repo_path": "test/Succeed/Issue3544.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6dd1d63a927442aac42ef299f15054dd944d7fa9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Forty-Bot/agda", "max_issues_repo_path": "test/Succeed/Issue3544.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "6dd1d63a927442aac42ef299f15054dd944d7fa9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Forty-Bot/agda", "max_stars_repo_path": "test/Succeed/Issue3544.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 285, "size": 671 }
module Common.Coinduction where open import Common.Level infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} private my-♯ : ∀ {a} {A : Set a} → A → ∞ A my-♯ x = ♯ x
{ "alphanum_fraction": 0.4640718563, "avg_line_length": 16.7, "ext": "agda", "hexsha": "36d44bc9addbd662f4bc0d951e44b84078e4fcfc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/Common/Coinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/Common/Coinduction.agda", "max_line_length": 36, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/Common/Coinduction.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 151, "size": 334 }
{-# OPTIONS --without-K #-} open import HoTT module cw.Attached {i j k : ULevel} where -- The type of attaching maps. -- In intended uses, [B] is the type of cells and [C] is the [Sphere]s. Attaching : (A : Type i) (B : Type j) (C : Type k) → Type (lmax i (lmax j k)) Attaching A B C = B → C → A module _ {A : Type i} {B : Type j} {C : Type k} where -- [Attached] is the type with all the cells attached. Attached-span : Attaching A B C → Span {i} {j} {lmax j k} Attached-span attaching = span A B (B × C) (uncurry attaching) fst Attached : Attaching A B C → Type (lmax i (lmax j k)) Attached attaching = Pushout (Attached-span attaching) module _ {A : Type i} {B : Type j} {C : Type k} {attaching : Attaching A B C} where incl : A → Attached attaching incl = left hub : B → Attached attaching hub = right spoke : ∀ b c → incl (attaching b c) == hub b spoke = curry glue module AttachedElim {l} {P : Attached attaching → Type l} (incl* : (a : A) → P (incl a)) (hub* : (b : B) → P (hub b)) (spoke* : (b : B) (c : C) → incl* (attaching b c) == hub* b [ P ↓ spoke b c ]) where module P = PushoutElim {d = Attached-span attaching} {P = P} incl* hub* (uncurry spoke*) f = P.f spoke-β = curry P.glue-β open AttachedElim public using () renaming (f to Attached-elim) module AttachedRec {l} {D : Type l} (incl* : (a : A) → D) (hub* : (b : B) → D) (spoke* : (b : B) (c : C) → incl* (attaching b c) == hub* b) where module P = PushoutRec {d = Attached-span attaching} {D = D} incl* hub* (uncurry spoke*) f = P.f spoke-β = curry P.glue-β open AttachedRec public using () renaming (f to Attached-rec)
{ "alphanum_fraction": 0.5841584158, "avg_line_length": 27.6935483871, "ext": "agda", "hexsha": "474382160fe56d2d606fb5323f84e0c1349a7388", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cw/Attached.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cw/Attached.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cw/Attached.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 578, "size": 1717 }
module Tactic.Nat.Subtract.By where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection.DeBruijn open import Tactic.Reflection.Substitute open import Tactic.Reflection open import Control.Monad.State open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Simpl open import Tactic.Nat.Refute open import Tactic.Nat.Reflect open import Tactic.Nat.Subtract.Exp open import Tactic.Nat.Subtract.Reflect open import Tactic.Nat.Subtract.Lemmas open import Tactic.Nat.Less.Lemmas private NFGoal : (R₁ R₂ : Nat → Nat → Set) (a b c d : SubNF) → Env Var → Set NFGoal _R₁_ _R₂_ a b c d ρ = ⟦ a ⟧ns (atomEnvS ρ) R₁ ⟦ b ⟧ns (atomEnvS ρ) → ⟦ c ⟧ns (atomEnvS ρ) R₂ ⟦ d ⟧ns (atomEnvS ρ) follows-diff-prf : {a b c d : Nat} → a ≤ b → b < c → c ≤ d → d ≡ suc (d - suc a) + a follows-diff-prf {a} (diff! i) (diff! j) (diff! k) = sym $ (λ z → suc z + a) $≡ lem-sub-zero (k + suc (j + (i + a))) (suc a) (i + j + k) auto ʳ⟨≡⟩ auto decide-leq : ∀ u v ρ → Maybe (⟦ u ⟧ns (atomEnvS ρ) ≤ ⟦ v ⟧ns (atomEnvS ρ)) decide-leq u v ρ with cancel u v | λ a b → cancel-sound-s′ a b u v (atomEnvS ρ) ... | [] , d | sound = let eval x = ⟦ x ⟧ns (atomEnvS ρ) in just (diff (eval d) $ sym (sound (suc (eval d)) 1 auto)) ... | _ , _ | _ = nothing by-proof-less-nf : ∀ u u₁ v v₁ ρ → Maybe (NFGoal _<_ _<_ u u₁ v v₁ ρ) by-proof-less-nf u u₁ v v₁ ρ = do v≤u ← decide-leq v u ρ u₁≤v₁ ← decide-leq u₁ v₁ ρ pure λ u<u₁ → diff (⟦ v₁ ⟧ns (atomEnvS ρ) - suc (⟦ v ⟧ns (atomEnvS ρ))) (follows-diff-prf v≤u u<u₁ u₁≤v₁) by-proof-less : ∀ a a₁ b b₁ ρ → Maybe (SubExpLess a a₁ ρ → SubExpLess b b₁ ρ) by-proof-less a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubLess a a₁ ρ | simplifySubLess b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-less-nf u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) lem-plus-zero-r : (a b : Nat) → a + b ≡ 0 → b ≡ 0 lem-plus-zero-r zero b eq = eq lem-plus-zero-r (suc a) b () lem-leq-zero : {a b : Nat} → a ≤ b → b ≡ 0 → a ≡ 0 lem-leq-zero (diff k eq) refl = lem-plus-zero-r k _ (follows-from (sym eq)) ⟨+⟩-sound-ns : ∀ {Atom} {{_ : Ord Atom}} u v (ρ : Env Atom) → ⟦ u +nf v ⟧ns ρ ≡ ⟦ u ⟧ns ρ + ⟦ v ⟧ns ρ ⟨+⟩-sound-ns u v ρ = ns-sound (u +nf v) ρ ⟨≡⟩ ⟨+⟩-sound u v ρ ⟨≡⟩ʳ _+_ $≡ ns-sound u ρ *≡ ns-sound v ρ by-proof-eq-nf : Nat → ∀ u u₁ v v₁ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ v v₁ ρ) by-proof-eq-sub : Nat → ∀ u u₁ v v₁ v₂ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] v₂ ρ) by-proof-eq-sub n u u₁ v v₁ v₂ ρ = do let eval x = ⟦ x ⟧ns (atomEnvS ρ) evals x = ⟦ x ⟧sns ρ prf ← by-proof-eq-nf n u u₁ v (v₁ +nf v₂) ρ pure (λ u=u₁ → sym $ lem-sub-zero (evals v) (evals v₁) (eval v₂) $ sym $ lem-eval-sns-ns v ρ ⟨≡⟩ prf u=u₁ ⟨≡⟩ ⟨+⟩-sound-ns v₁ v₂ (atomEnvS ρ) ⟨≡⟩ʳ (_+ eval v₂) $≡ (lem-eval-sns-ns v₁ ρ)) by-proof-eq-sub₂ : Nat → ∀ u u₁ v v₁ v₂ v₃ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] [ 1 , [ v₂ ⟨-⟩ v₃ ] ] ρ) by-proof-eq-sub₂ n u u₁ v v₁ v₂ v₃ ρ = do let eval x = ⟦ x ⟧ns (atomEnvS ρ) evals x = ⟦ x ⟧sns ρ prf ← by-proof-eq-nf n u u₁ (v₃ +nf v) (v₂ +nf v₁) ρ pure λ u=u₁ → lem-sub (evals v₂) (evals v₃) (evals v) (evals v₁) $ _+_ $≡ lem-eval-sns-ns v₃ ρ *≡ lem-eval-sns-ns v ρ ⟨≡⟩ ⟨+⟩-sound-ns v₃ v (atomEnvS ρ) ʳ⟨≡⟩ prf u=u₁ ⟨≡⟩ ⟨+⟩-sound-ns v₂ v₁ (atomEnvS ρ) ⟨≡⟩ʳ _+_ $≡ lem-eval-sns-ns v₂ ρ *≡ lem-eval-sns-ns v₁ ρ -- More advanced tactics for equalities -- a + b ≡ 0 → a ≡ 0 by-proof-eq-adv : Nat → ∀ u u₁ v v₁ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ v v₁ ρ) by-proof-eq-adv _ u [] v [] ρ = do leq ← decide-leq v u ρ; pure (lem-leq-zero leq) by-proof-eq-adv _ [] u₁ v [] ρ = do leq ← decide-leq v u₁ ρ; pure (lem-leq-zero leq ∘ sym) by-proof-eq-adv _ u [] [] v₁ ρ = do leq ← decide-leq v₁ u ρ; pure (sym ∘ lem-leq-zero leq) by-proof-eq-adv _ [] u₁ [] v₁ ρ = do leq ← decide-leq v₁ u₁ ρ; pure (sym ∘ lem-leq-zero leq ∘ sym) by-proof-eq-adv (suc n) u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] [ 1 , [ v₂ ⟨-⟩ v₃ ] ] ρ = by-proof-eq-sub₂ n u u₁ v v₁ v₂ v₃ ρ by-proof-eq-adv n u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] v₂ ρ = by-proof-eq-sub n u u₁ v v₁ v₂ ρ by-proof-eq-adv (suc n) u u₁ v₂ [ 1 , [ v ⟨-⟩ v₁ ] ] ρ = do prf ← by-proof-eq-sub n u u₁ v v₁ v₂ ρ pure (sym ∘ prf) by-proof-eq-adv _ u u₁ v v₁ ρ = nothing by-proof-eq-nf n u u₁ v v₁ ρ with u == v | u₁ == v₁ by-proof-eq-nf n u u₁ .u .u₁ ρ | yes refl | yes refl = just id ... | _ | _ with u == v₁ | u₁ == v -- try sym by-proof-eq-nf n u u₁ .u₁ .u ρ | _ | _ | yes refl | yes refl = just sym ... | _ | _ = by-proof-eq-adv n u u₁ v v₁ ρ -- try advanced stuff by-proof-eq : ∀ a a₁ b b₁ ρ → Maybe (SubExpEq a a₁ ρ → SubExpEq b b₁ ρ) by-proof-eq a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubEq a a₁ ρ | simplifySubEq b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-eq-nf 10 u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) not-less-zero′ : {n : Nat} → n < 0 → ⊥ not-less-zero′ (diff _ ()) not-less-zero : {A : Set} {n : Nat} → n < 0 → A not-less-zero n<0 = ⊥-elim (erase-⊥ (not-less-zero′ n<0)) less-one-is-zero : {n : Nat} → n < 1 → n ≡ 0 less-one-is-zero {zero} _ = refl less-one-is-zero {suc n} (diff k eq) = refute eq by-proof-less-eq-nf : ∀ u u₁ v v₁ ρ → Maybe (NFGoal _<_ _≡_ u u₁ v v₁ ρ) by-proof-less-eq-nf u [] v v₁ ρ = just not-less-zero -- could've used refute, but we'll take it by-proof-less-eq-nf u [ 1 , [] ] v v₁ ρ = do prf ← by-proof-eq-nf 10 u [] v v₁ ρ pure (prf ∘ less-one-is-zero) by-proof-less-eq-nf u u₁ v v₁ ρ = nothing by-proof-less-eq : ∀ a a₁ b b₁ ρ → Maybe (SubExpLess a a₁ ρ → SubExpEq b b₁ ρ) by-proof-less-eq a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubLess a a₁ ρ | simplifySubEq b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-less-eq-nf u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) by-proof : ∀ hyp goal ρ → Maybe (⟦ hyp ⟧eqn ρ → ⟦ goal ⟧eqn ρ) by-proof (a :≡ a₁) (b :≡ b₁) ρ = by-proof-eq a a₁ b b₁ ρ by-proof (a :< a₁) (b :≡ b₁) ρ = by-proof-less-eq a a₁ b b₁ ρ by-proof (a :< a₁) (b :< b₁) ρ = by-proof-less a a₁ b b₁ ρ by-proof (a :≡ a₁) (b :< b₁) ρ = do prf ← by-proof-less a (lit 1 ⟨+⟩ a₁) b b₁ ρ pure λ eq → prf (diff 0 (cong suc (sym eq))) by-tactic : Term → Type → TC Term by-tactic prf g = do ensureNoMetas prf h ← inferNormalisedType prf let t = pi (vArg h) (abs "_" (weaken 1 g)) just (hyp ∷ goal ∷ [] , Γ) ← termToSubHyps t where _ → typeError $ strErr "Invalid goal:" ∷ termErr t ∷ [] pure $ applyTerm (safe (getProof (quote cantProve) t $ def (quote by-proof) ( vArg (` hyp) ∷ vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ [])) _) (vArg prf ∷ [])
{ "alphanum_fraction": 0.5431057564, "avg_line_length": 41.9662921348, "ext": "agda", "hexsha": "6efb39bd689378de4afbaf089811d92c0ed1ef1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract/By.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract/By.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract/By.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3230, "size": 7470 }
{-# OPTIONS --without-K --safe --erased-cubical --no-import-sorts #-} module Prelude where open import Agda.Primitive renaming (Set to Type) public open import Agda.Builtin.Reflection hiding (Type) renaming (primQNameEquality to _==_) public open import Reflection using (_>>=_) public open import Agda.Builtin.String public open import Agda.Builtin.Sigma public open import Data.Bool using (Bool; not; true; false; if_then_else_) public open import Data.List using (List; []; _∷_; map; concat; concatMap; _++_; foldr; zip; length; take) public open import Data.Maybe using (Maybe; just; nothing) public open import Data.Fin.Base using (Fin; toℕ) renaming (zero to fz) public open import Data.Integer.Base using (ℤ; +_; -[1+_]) public open import Data.Nat.Base using (ℕ; zero; suc; _^_) public open import Data.Nat.DivMod using (_%_; _mod_) public open import Data.Product using (_×_; _,_) public open import Data.Unit using (⊤) public open import Data.Vec using (Vec; []; _∷_; updateAt) public open import Function using (id; _∘_; flip) public open import Definition.Conversion.Soundness public open import Interval public open import Note public open import Pitch using (Pitch; a; b; b♭; c; c♯; d; d♯; e; f; f♯; g; g♯) public open import Transformation public open import MidiEvent using (InstrumentNumber-1; maxChannels; MidiTrack) public open import FarmCanon using () renaming (subject to canonsubject) public open import FarmFugue using (b1; b2; b3; b4; b5; b6; b7; b8; b9; b10; b11; b12; b13; subject; countersubject; extra) public
{ "alphanum_fraction": 0.7454780362, "avg_line_length": 43, "ext": "agda", "hexsha": "f6c2722953bac20a7d895db4dd8c1b6593daa76f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_forks_event_min_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/Music", "max_forks_repo_path": "Soundness/agda/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/Music", "max_issues_repo_path": "Soundness/agda/Prelude.agda", "max_line_length": 123, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/Music", "max_stars_repo_path": "Soundness/agda/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-10T04:05:28.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-10T04:05:28.000Z", "num_tokens": 450, "size": 1548 }
------------------------------------------------------------------------------ -- Totality properties respect to ListN ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.ListN-I where open import FOTC.Base open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.List.PropertiesI open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- The function flatten generates a ListN. flatten-ListN : ∀ {t} → Tree t → ListN (flatten t) flatten-ListN tnil = subst ListN (sym flatten-nil) lnnil flatten-ListN (ttip {i} Ni) = subst ListN (sym (flatten-tip i)) (lncons Ni lnnil) flatten-ListN (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) = subst ListN (sym (flatten-node t₁ i t₂)) (++-ListN (flatten-ListN Tt₁) (flatten-ListN Tt₂))
{ "alphanum_fraction": 0.5046382189, "avg_line_length": 38.5, "ext": "agda", "hexsha": "d7ed6a02bfd23f413a0185f9c7bb21a841924fc9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/ListN-I.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/ListN-I.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/ListN-I.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 250, "size": 1078 }
module FSM where open import Sec4 open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Bool -- open import Data.Rational -- open import Data.Integer -- open import Relation.Nullary.Decidable data Loc : Set where A : Loc DONE : Loc record Values : Set where field x : ℕ δ : ℕ k : ℕ data _Π_ (A B : Set) : Set where <_,_> : (a : Loc) → (b : Values) → A Π B -- The computation of x in the state -- The state machine step function step : (Loc Π Values) → (Loc Π Values) step < A , b > = if (X >= 10) then < DONE , record { x = X; δ = Values.δ b ; k = Values.k b Data.Nat.+ 1 } > else < A , record { x = X; δ = Values.δ b ; k = Values.k b Data.Nat.+ 1 } > where funₓ : ℕ → ℕ → ℕ → ℕ -- slope = 1 here! funₓ x k δ = x Data.Nat.+ δ Data.Nat.* k _>=_ : ℕ → ℕ → Bool zero >= zero = true zero >= suc y = false suc x >= zero = false suc x >= suc y = x >= y _==_ : ℕ → ℕ → Bool zero == zero = true zero == suc y = false suc x == zero = false suc x == suc y = x == y X : ℕ X = funₓ (Values.x b) (Values.k b) (Values.δ b) step < DONE , b > = < DONE , b > -- Just remain in this state forever runFSM : (n : ℕ) → (st : (Loc Π Values)) → (Loc Π Values) runFSM zero st = st runFSM (suc n) st = runFSM n (step st) theorem : runFSM 10 (< A , (record { x = zero ; δ = 1 ; k = zero }) >) ≡ < DONE , record { x = 10 ; δ = 1 ; k = 5 } > theorem = refl -- invariant when in DONE state, X ≥ 10 invariant : (Loc Π Values) → Prop invariant < A , record { x = x ; δ = δ ; k = k } > = ⊥ invariant < DONE , record { x = x ; δ = δ ; k = k } > = x ≥ 10 thm : invariant (runFSM 5 (< A , (record { x = zero ; δ = 1 ; k = zero }) >)) thm = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))) -- Example of state machine as a relation data State : Set where A : ∀ (n : ℕ) → State D : ∀ (n : ℕ) → State private funₓ : ℕ → ℕ → ℕ → ℕ funₓ x δ slope = x Data.Nat.+ δ Data.Nat.* slope data _↓_ : State → State → Prop where S1 : ∀ (n : ℕ) → (n < 10) → (A n) ↓ (A (funₓ n 1 1)) S2 : ∀ (n : ℕ) → (n ≥ 10) → (A n) ↓ (D n) data fState : State → Prop where F : ∀ (n : ℕ) → (n ≥ 10) → fState (D n) data oState : State → Prop where O : oState (A 0) y : ∀ (n : ℕ) → (p : n < 10) → (A n) ↓ (A (ℕ.suc n)) y .0 (s≤s z≤n) = S1 zero (s≤s z≤n) y .1 (s≤s (s≤s z≤n)) = S1 (suc zero) (s≤s (s≤s z≤n)) y .2 (s≤s (s≤s (s≤s z≤n))) = S1 (suc (suc zero)) (s≤s (s≤s (s≤s z≤n))) y .3 (s≤s (s≤s (s≤s (s≤s z≤n)))) = S1 (suc (suc (suc zero))) (s≤s (s≤s (s≤s (s≤s z≤n)))) y .4 (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))) = S1 (suc (suc (suc (suc zero)))) (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))) y .5 (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))) = S1 (suc (suc (suc (suc (suc zero))))) (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))) y .6 (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))) = S1 (suc (suc (suc (suc (suc (suc zero)))))) (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))) y .7 (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))) = S1 (suc (suc (suc (suc (suc (suc (suc zero))))))) (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))) y .8 (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))) = S1 (suc (suc (suc (suc (suc (suc (suc (suc zero)))))))) (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n))))))))) y .9 (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))))) = S1 (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))) (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))))) y1 : ∀ (n : ℕ) → (p : n ≥ 10) → (A n) ↓ (D n) y1 n p = S2 n p -- Example of arithexpr as a relation data aexp : Set where ANum : ∀ (n : ℕ) → aexp APlus : aexp → aexp → aexp AMult : aexp → aexp → aexp aeval : aexp → ℕ aeval (ANum n) = n aeval (APlus a₁ a₂) = (aeval a₁) + (aeval a₂) aeval (AMult n₁ n₂) = (aeval n₁) * (aeval n₂) _==_ : ℕ → ℕ → Bool zero == zero = true zero == suc y = false suc x == zero = false suc x == suc y = x == y -- compiler optimization aexp-opt1 : aexp → aexp aexp-opt1 (ANum n) = ANum n aexp-opt1 (APlus (ANum n) (ANum n₁)) with (n == 0) Data.Bool.∧ (n₁ == n) aexp-opt1 (APlus (ANum n) (ANum n₁)) | false = (APlus (ANum n) (ANum n₁)) aexp-opt1 (APlus (ANum n) (ANum n₁)) | true = (ANum 0) aexp-opt1 (APlus x x₁) = APlus x x₁ aexp-opt1 (AMult (ANum n) (ANum n₁)) with (n == 0) Data.Bool.∨ (n₁ == 0) aexp-opt1 (AMult (ANum n) (ANum n₁)) | true = ANum 0 aexp-opt1 (AMult (ANum n) (ANum n₁)) | false = (AMult (ANum n) (ANum n₁)) aexp-opt1 (AMult x x₁) = (AMult x x₁) -- Theorem that the optimization is correct! thm-opt1 : ∀ (a : aexp) → ∀ (n : ℕ) → (aeval a ≡ n) → aeval (aexp-opt1 a) ≡ n thm-opt1 (ANum n) .n refl = refl thm-opt1 (APlus (ANum zero) (ANum zero)) .0 refl = refl thm-opt1 (APlus (ANum zero) (ANum (suc n))) .(suc n) refl = refl thm-opt1 (APlus (ANum (suc n)) (ANum n₁)) .(suc (n + n₁)) refl = refl thm-opt1 (APlus (ANum n) (APlus b b₁)) .(n + (aeval b + aeval b₁)) refl = refl thm-opt1 (APlus (ANum n) (AMult b b₁)) .(n + aeval b * aeval b₁) refl = refl thm-opt1 (APlus (APlus a a₁) b) .(aeval a + aeval a₁ + aeval b) refl = refl thm-opt1 (APlus (AMult a a₁) b) .(aeval a * aeval a₁ + aeval b) refl = refl thm-opt1 (AMult (ANum zero) (ANum n₁)) .0 refl = refl thm-opt1 (AMult (ANum (suc n)) (ANum zero)) .(n * 0) refl = cc n where cc : ∀ (n : ℕ) → (0 ≡ n * 0) cc zero = refl cc (suc n) = cc n thm-opt1 (AMult (ANum (suc n)) (ANum (suc p))) .(suc (p + n * suc p)) refl = refl thm-opt1 (AMult (ANum n) (APlus b b₁)) .(n * (aeval b + aeval b₁)) refl = refl thm-opt1 (AMult (ANum n) (AMult b b₁)) .(n * (aeval b * aeval b₁)) refl = refl thm-opt1 (AMult (APlus a a₁) b) .((aeval a + aeval a₁) * aeval b) refl = refl thm-opt1 (AMult (AMult a a₁) b) .(aeval a * aeval a₁ * aeval b) refl = refl -- Now as a relation data _⇓_ : aexp → ℕ → Set where ANumR : ∀ (n : ℕ) → ANum n ⇓ n APlusR : ∀ (n₁ n₂ : ℕ) → ∀ (a₁ a₂ : aexp) → (a₁ ⇓ n₁) → (a₂ ⇓ n₂) → (APlus a₁ a₂) ⇓ (n₁ + n₂) AMultR : ∀ (n₁ n₂ : ℕ) → ∀ (a₁ a₂ : aexp) → (a₁ ⇓ n₁) → (a₂ ⇓ n₂) → (AMult a₁ a₂) ⇓ (n₁ * n₂) ∧-Zero : ∀ (x y : ℕ) → ((x ≡ 0) Sec4.∧ (y ≡ 0)) Sec4.∨ ⊤ ∧-Zero zero zero = ora (and refl refl) ∧-Zero zero (suc y) = orb ⋆ ∧-Zero (suc x) y = orb ⋆ ∨-Zero : ∀ (x y : ℕ) → ((x ≡ 0) Sec4.∨ (y ≡ 0)) Sec4.∨ ⊤ ∨-Zero zero _ = ora (ora refl) ∨-Zero (suc x) zero = ora (orb refl) ∨-Zero (suc x) (suc y) = orb ⋆ -- compiler optimization aexp-opt2 : aexp → aexp aexp-opt2 (ANum n) = ANum n aexp-opt2 (APlus (ANum n) (ANum n₁)) with ∧-Zero n n₁ aexp-opt2 (APlus (ANum .0) (ANum .0)) | ora (and refl refl) = ANum zero aexp-opt2 (APlus (ANum n) (ANum n₁)) | orb _ = (APlus (ANum n) (ANum n₁)) aexp-opt2 (APlus x x₁) = APlus x x₁ aexp-opt2 (AMult (ANum n) (ANum n₁)) with ∨-Zero n n₁ aexp-opt2 (AMult (ANum .0) (ANum n₁)) | ora (ora refl) = ANum 0 aexp-opt2 (AMult (ANum n) (ANum .0)) | ora (orb refl) = ANum 0 aexp-opt2 (AMult (ANum n) (ANum n₁)) | orb x = (AMult (ANum n) (ANum n₁)) aexp-opt2 (AMult x x₁) = (AMult x x₁) yy : ∀ (n : ℕ) → (n * 0) ≡ 0 yy zero = refl yy (suc n) = yy n -- Theorem that the optimization is correct in relations thm-rel-opt2 : ∀ (a : aexp) → ∀ (p : ℕ) → (a ⇓ p) → ((aexp-opt2 a) ⇓ p) thm-rel-opt2 (ANum n) p e = e thm-rel-opt2 (APlus (ANum n) (ANum n₁)) p e with ∧-Zero n n₁ thm-rel-opt2 (APlus (ANum .0) (ANum .0)) .0 (APlusR .0 .0 .(ANum 0) .(ANum 0) (ANumR .0) (ANumR .0)) | ora (and refl refl) = ANumR zero thm-rel-opt2 (APlus (ANum n) (ANum n₁)) p e | orb x = e thm-rel-opt2 (APlus (ANum n) (APlus a a₁)) p e = e thm-rel-opt2 (APlus (ANum n) (AMult a a₁)) p e = e thm-rel-opt2 (APlus (APlus a a₁) a₂) p e = e thm-rel-opt2 (APlus (AMult a a₁) a₂) p e = e thm-rel-opt2 (AMult (ANum n) (ANum n₁)) p e with ∨-Zero n n₁ thm-rel-opt2 (AMult (ANum .0) (ANum n₃)) .0 (AMultR .0 .n₃ .(ANum 0) .(ANum n₃) (ANumR .0) (ANumR .n₃)) | ora (ora refl) = ANumR zero -- The below is rewrite thm-rel-opt2 (AMult (ANum n₁) (ANum .0)) .(n₁ * 0) (AMultR .n₁ .0 .(ANum n₁) .(ANum 0) (ANumR .n₁) (ANumR .0)) | ora (orb refl) with (yy n₁) thm-rel-opt2 (AMult (ANum n₁) (ANum .0)) .(n₁ * 0) (AMultR .n₁ .0 .(ANum n₁) .(ANum 0) (ANumR .n₁) (ANumR .0)) | ora (orb refl) | j with n₁ * 0 thm-rel-opt2 (AMult (ANum n₁) (ANum _)) .(n₁ * _) (AMultR .n₁ _ .(ANum n₁) .(ANum _) (ANumR .n₁) (ANumR _)) | ora (orb refl) | refl | .0 = ANumR zero thm-rel-opt2 (AMult (ANum n) (ANum n₁)) p e | orb x = e thm-rel-opt2 (AMult (ANum n) (APlus b b₁)) p e = e thm-rel-opt2 (AMult (ANum n) (AMult b b₁)) p e = e thm-rel-opt2 (AMult (APlus a a₁) b) p e = e thm-rel-opt2 (AMult (AMult a a₁) b) p e = e th : (APlus (ANum 10) (ANum 10)) ⇓ 20 th = APlusR (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero)))))))))) (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero)))))))))) (ANum (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))))) (ANum (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))))) (ANumR (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))))) (ANumR (suc (suc (suc (suc (suc (suc (suc (suc (suc (suc zero))))))))))) t : ∀ (a : aexp) (p : ℕ) → (aeval a ≡ p) → (a ⇓ p) t (ANum n) .n refl = ANumR n t (APlus a a₁) .(aeval a + aeval a₁) refl = APlusR (aeval a) (aeval a₁) a a₁ (t a (aeval a) refl) (t a₁ (aeval a₁) refl) t (AMult a a₁) .(aeval a * aeval a₁) refl = AMultR (aeval a) (aeval a₁) a a₁ (t a (aeval a) refl) (t a₁ (aeval a₁) refl) tt : ∀ (a : aexp) (n : ℕ) → (a ⇓ n) → (aeval a ≡ n) tt (ANum n₁) .n₁ (ANumR .n₁) = refl tt (APlus a a₁) .(n₁ + n₂) (APlusR n₁ n₂ .a .a₁ p p₁) with tt a n₁ p | tt a₁ n₂ p₁ tt (APlus a a₁) .(aeval a + aeval a₁) (APlusR .(aeval a) .(aeval a₁) .a .a₁ p p₁) | refl | refl = refl tt (AMult a a₁) .(n₁ * n₂) (AMultR n₁ n₂ .a .a₁ p p₁) with tt a n₁ p | tt a₁ n₂ p₁ tt (AMult a a₁) .(aeval a * aeval a₁) (AMultR .(aeval a) .(aeval a₁) .a .a₁ p p₁) | refl | refl = refl
{ "alphanum_fraction": 0.5133190745, "avg_line_length": 41.4758064516, "ext": "agda", "hexsha": "56160287700a84be719b9670b410a8660360023b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "FSM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "FSM.agda", "max_line_length": 149, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "FSM.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 4933, "size": 10286 }
module Issue719 where import Common.Size as A module M where private open module A = M -- NOT NICE: -- Duplicate definition of module A. Previous definition of module A -- at /Users/abel/cover/alfa/Agda2-clean/test/Common/Size.agda:7,15-19 -- when scope checking the declaration -- open module A = M
{ "alphanum_fraction": 0.729903537, "avg_line_length": 23.9230769231, "ext": "agda", "hexsha": "33fe303d8112212139c7db8fc13c0beed7a37af7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue719.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue719.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue719.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 86, "size": 311 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Monoidal.Construction.Product where -- The functors associated with the product A × B of -- (braided/symmetric) monoidal categories A and B are again -- (braided/symmetric) monoidal. open import Level using (Level) open import Data.Product using (_,_; <_,_>) open import Categories.Category using (Category) open import Categories.Category.Product open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Construction.Product open import Categories.Category.Monoidal.Symmetric using (Symmetric) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.Functor.Monoidal import Categories.Functor.Monoidal.Braided as BMF import Categories.Functor.Monoidal.Symmetric as SMF import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as MorphismReasoning open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) private variable o ℓ e o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂ : Level module _ {D₁ : MonoidalCategory o₁ ℓ₁ e₁} {D₂ : MonoidalCategory o₂ ℓ₂ e₂} where open MonoidalCategory using (U) private D₁×D₂ = Product-MonoidalCategory D₁ D₂ -- Pairing for monoidal categories is a monoidal functor module _ {C : MonoidalCategory o ℓ e} {F : Functor (U C) (U D₁)} {G : Functor (U C) (U D₂)} where ※-IsMonoidalFunctor : IsMonoidalFunctor C D₁ F → IsMonoidalFunctor C D₂ G → IsMonoidalFunctor C D₁×D₂ (F ※ G) ※-IsMonoidalFunctor FM GM = record { ε = FM.ε , GM.ε ; ⊗-homo = ntHelper (record { η = λ XY → FM.⊗-homo.η XY , GM.⊗-homo.η XY ; commute = λ fg → FM.⊗-homo.commute fg , GM.⊗-homo.commute fg }) ; associativity = FM.associativity , GM.associativity ; unitaryˡ = FM.unitaryˡ , GM.unitaryˡ ; unitaryʳ = FM.unitaryʳ , GM.unitaryʳ } where module FM = IsMonoidalFunctor FM module GM = IsMonoidalFunctor GM ※-IsStrongMonoidalFunctor : IsStrongMonoidalFunctor C D₁ F → IsStrongMonoidalFunctor C D₂ G → IsStrongMonoidalFunctor C D₁×D₂ (F ※ G) ※-IsStrongMonoidalFunctor FM GM = record { ε = record { from = FM.ε.from , GM.ε.from ; to = FM.ε.to , GM.ε.to ; iso = record { isoˡ = FM.ε.isoˡ , GM.ε.isoˡ ; isoʳ = FM.ε.isoʳ , GM.ε.isoʳ } } ; ⊗-homo = niHelper (record { η = < FM.⊗-homo.⇒.η , GM.⊗-homo.⇒.η > ; η⁻¹ = < FM.⊗-homo.⇐.η , GM.⊗-homo.⇐.η > ; commute = < FM.⊗-homo.⇒.commute , GM.⊗-homo.⇒.commute > ; iso = λ XY → record { isoˡ = FM.⊗-homo.iso.isoˡ XY , GM.⊗-homo.iso.isoˡ XY ; isoʳ = FM.⊗-homo.iso.isoʳ XY , GM.⊗-homo.iso.isoʳ XY } }) ; associativity = FM.associativity , GM.associativity ; unitaryˡ = FM.unitaryˡ , GM.unitaryˡ ; unitaryʳ = FM.unitaryʳ , GM.unitaryʳ } where module FM = IsStrongMonoidalFunctor FM module GM = IsStrongMonoidalFunctor GM module _ {C : MonoidalCategory o ℓ e} where ※-MonoidalFunctor : MonoidalFunctor C D₁ → MonoidalFunctor C D₂ → MonoidalFunctor C D₁×D₂ ※-MonoidalFunctor FM GM = record { isMonoidal = ※-IsMonoidalFunctor (isMonoidal FM) (isMonoidal GM) } where open MonoidalFunctor using (isMonoidal) ※-StrongMonoidalFunctor : StrongMonoidalFunctor C D₁ → StrongMonoidalFunctor C D₂ → StrongMonoidalFunctor C D₁×D₂ ※-StrongMonoidalFunctor FM GM = record { isStrongMonoidal = ※-IsStrongMonoidalFunctor (isStrongMonoidal FM) (isStrongMonoidal GM) } where open StrongMonoidalFunctor using (isStrongMonoidal) -- The projections out of a product of monoidal categories are -- monoidal functors πˡ-IsStrongMonoidalFunctor : IsStrongMonoidalFunctor D₁×D₂ D₁ πˡ πˡ-IsStrongMonoidalFunctor = record { ε = ≅.refl ; ⊗-homo = niHelper (record { η = λ _ → id ; η⁻¹ = λ _ → id ; commute = λ _ → id-comm-sym ; iso = λ _ → record { isoˡ = identity² ; isoʳ = identity² } }) ; associativity = begin associator.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ associator.from ∘ id ≈⟨ id-comm ⟩ id ∘ associator.from ≈⟨ pushˡ (introʳ ⊗.identity) ⟩ id ∘ id ⊗₁ id ∘ associator.from ∎ ; unitaryˡ = begin unitorˡ.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ unitorˡ.from ∘ id ≈⟨ identityʳ ⟩ unitorˡ.from ∎ ; unitaryʳ = begin unitorʳ.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ unitorʳ.from ∘ id ≈⟨ identityʳ ⟩ unitorʳ.from ∎ } where open MonoidalCategory D₁ open HomReasoning open Morphism (U D₁) using (module ≅) open MorphismReasoning (U D₁) πˡ-IsMonoidalFunctor : IsMonoidalFunctor D₁×D₂ D₁ πˡ πˡ-IsMonoidalFunctor = IsStrongMonoidalFunctor.isMonoidal πˡ-IsStrongMonoidalFunctor πˡ-StrongMonoidalFunctor : StrongMonoidalFunctor D₁×D₂ D₁ πˡ-StrongMonoidalFunctor = record { isStrongMonoidal = πˡ-IsStrongMonoidalFunctor } πˡ-MonoidalFunctor : MonoidalFunctor D₁×D₂ D₁ πˡ-MonoidalFunctor = StrongMonoidalFunctor.monoidalFunctor πˡ-StrongMonoidalFunctor πʳ-IsStrongMonoidalFunctor : IsStrongMonoidalFunctor D₁×D₂ D₂ πʳ πʳ-IsStrongMonoidalFunctor = record { ε = ≅.refl ; ⊗-homo = niHelper (record { η = λ _ → id ; η⁻¹ = λ _ → id ; commute = λ _ → id-comm-sym ; iso = λ _ → record { isoˡ = identity² ; isoʳ = identity² } }) ; associativity = begin associator.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ associator.from ∘ id ≈⟨ id-comm ⟩ id ∘ associator.from ≈⟨ pushˡ (introʳ ⊗.identity) ⟩ id ∘ id ⊗₁ id ∘ associator.from ∎ ; unitaryˡ = begin unitorˡ.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ unitorˡ.from ∘ id ≈⟨ identityʳ ⟩ unitorˡ.from ∎ ; unitaryʳ = begin unitorʳ.from ∘ id ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ elimʳ ⊗.identity ⟩ unitorʳ.from ∘ id ≈⟨ identityʳ ⟩ unitorʳ.from ∎ } where open MonoidalCategory D₂ open HomReasoning open Morphism (U D₂) using (module ≅) open MorphismReasoning (U D₂) πʳ-IsMonoidalFunctor : IsMonoidalFunctor D₁×D₂ D₂ πʳ πʳ-IsMonoidalFunctor = IsStrongMonoidalFunctor.isMonoidal πʳ-IsStrongMonoidalFunctor πʳ-StrongMonoidalFunctor : StrongMonoidalFunctor D₁×D₂ D₂ πʳ-StrongMonoidalFunctor = record { isStrongMonoidal = πʳ-IsStrongMonoidalFunctor } πʳ-MonoidalFunctor : MonoidalFunctor D₁×D₂ D₂ πʳ-MonoidalFunctor = StrongMonoidalFunctor.monoidalFunctor πʳ-StrongMonoidalFunctor -- The cartesian product of two monoidal functors is again a -- monoidal functor module _ {C₁ : MonoidalCategory o′₁ ℓ′₁ e′₁} {C₂ : MonoidalCategory o′₂ ℓ′₂ e′₂} {F : Functor (U C₁) (U D₁)} {G : Functor (U C₂) (U D₂)} where private C₁×C₂ = Product-MonoidalCategory C₁ C₂ ⁂-IsMonoidalFunctor : IsMonoidalFunctor C₁ D₁ F → IsMonoidalFunctor C₂ D₂ G → IsMonoidalFunctor C₁×C₂ D₁×D₂ (F ⁂ G) ⁂-IsMonoidalFunctor FM GM = record { ε = FM.ε , GM.ε ; ⊗-homo = ntHelper (record { η = λ{ ((X₁ , X₂) , (Y₁ , Y₂)) → FM.⊗-homo.η (X₁ , Y₁) , GM.⊗-homo.η (X₂ , Y₂) } ; commute = λ{ ((f₁ , f₂) , (g₁ , g₂)) → FM.⊗-homo.commute (f₁ , g₁) , GM.⊗-homo.commute (f₂ , g₂) } }) ; associativity = FM.associativity , GM.associativity ; unitaryˡ = FM.unitaryˡ , GM.unitaryˡ ; unitaryʳ = FM.unitaryʳ , GM.unitaryʳ } where module FM = IsMonoidalFunctor FM module GM = IsMonoidalFunctor GM ⁂-IsStrongMonoidalFunctor : IsStrongMonoidalFunctor C₁ D₁ F → IsStrongMonoidalFunctor C₂ D₂ G → IsStrongMonoidalFunctor C₁×C₂ D₁×D₂ (F ⁂ G) ⁂-IsStrongMonoidalFunctor FM GM = record { ε = record { from = FM.ε.from , GM.ε.from ; to = FM.ε.to , GM.ε.to ; iso = record { isoˡ = FM.ε.isoˡ , GM.ε.isoˡ ; isoʳ = FM.ε.isoʳ , GM.ε.isoʳ } } ; ⊗-homo = niHelper (record { η = λ{ ((X₁ , X₂) , (Y₁ , Y₂)) → FM.⊗-homo.⇒.η (X₁ , Y₁) , GM.⊗-homo.⇒.η (X₂ , Y₂) } ; η⁻¹ = λ{ ((X₁ , X₂) , (Y₁ , Y₂)) → FM.⊗-homo.⇐.η (X₁ , Y₁) , GM.⊗-homo.⇐.η (X₂ , Y₂) } ; commute = λ{ ((f₁ , f₂) , (g₁ , g₂)) → FM.⊗-homo.⇒.commute (f₁ , g₁) , GM.⊗-homo.⇒.commute (f₂ , g₂) } ; iso = λ{ ((X₁ , X₂) , (Y₁ , Y₂)) → record { isoˡ = FM.⊗-homo.iso.isoˡ (X₁ , Y₁) , GM.⊗-homo.iso.isoˡ (X₂ , Y₂) ; isoʳ = FM.⊗-homo.iso.isoʳ (X₁ , Y₁) , GM.⊗-homo.iso.isoʳ (X₂ , Y₂) } } }) ; associativity = FM.associativity , GM.associativity ; unitaryˡ = FM.unitaryˡ , GM.unitaryˡ ; unitaryʳ = FM.unitaryʳ , GM.unitaryʳ } where module FM = IsStrongMonoidalFunctor FM module GM = IsStrongMonoidalFunctor GM module _ {C₁ : MonoidalCategory o′₁ ℓ′₁ e′₁} {C₂ : MonoidalCategory o′₂ ℓ′₂ e′₂} where private C₁×C₂ = Product-MonoidalCategory C₁ C₂ ⁂-MonoidalFunctor : MonoidalFunctor C₁ D₁ → MonoidalFunctor C₂ D₂ → MonoidalFunctor C₁×C₂ D₁×D₂ ⁂-MonoidalFunctor FM GM = record { isMonoidal = ⁂-IsMonoidalFunctor (isMonoidal FM) (isMonoidal GM) } where open MonoidalFunctor using (isMonoidal) ⁂-StrongMonoidalFunctor : StrongMonoidalFunctor C₁ D₁ → StrongMonoidalFunctor C₂ D₂ → StrongMonoidalFunctor C₁×C₂ D₁×D₂ ⁂-StrongMonoidalFunctor FM GM = record { isStrongMonoidal = ⁂-IsStrongMonoidalFunctor (isStrongMonoidal FM) (isStrongMonoidal GM) } where open StrongMonoidalFunctor using (isStrongMonoidal) module _ {D₁ : BraidedMonoidalCategory o₁ ℓ₁ e₁} {D₂ : BraidedMonoidalCategory o₂ ℓ₂ e₂} where open BMF open BraidedMonoidalCategory using (U) private D₁×D₂ = Product-BraidedMonoidalCategory D₁ D₂ -- Pairing for braided monoidal categories is a braided monoidal -- functor module _ {C : BraidedMonoidalCategory o ℓ e} {F : Functor (U C) (U D₁)} {G : Functor (U C) (U D₂)} where ※-IsBraidedMonoidalFunctor : Lax.IsBraidedMonoidalFunctor C D₁ F → Lax.IsBraidedMonoidalFunctor C D₂ G → Lax.IsBraidedMonoidalFunctor C D₁×D₂ (F ※ G) ※-IsBraidedMonoidalFunctor FB GB = record { isMonoidal = ※-IsMonoidalFunctor (isMonoidal FB) (isMonoidal GB) ; braiding-compat = (braiding-compat FB) , (braiding-compat GB) } where open Lax.IsBraidedMonoidalFunctor ※-IsStrongBraidedMonoidalFunctor : Strong.IsBraidedMonoidalFunctor C D₁ F → Strong.IsBraidedMonoidalFunctor C D₂ G → Strong.IsBraidedMonoidalFunctor C D₁×D₂ (F ※ G) ※-IsStrongBraidedMonoidalFunctor FB GB = record { isStrongMonoidal = ※-IsStrongMonoidalFunctor (isStrongMonoidal FB) (isStrongMonoidal GB) ; braiding-compat = (braiding-compat FB) , (braiding-compat GB) } where open Strong.IsBraidedMonoidalFunctor module _ {C : BraidedMonoidalCategory o ℓ e} where ※-BraidedMonoidalFunctor : Lax.BraidedMonoidalFunctor C D₁ → Lax.BraidedMonoidalFunctor C D₂ → Lax.BraidedMonoidalFunctor C D₁×D₂ ※-BraidedMonoidalFunctor FB GB = record { isBraidedMonoidal = ※-IsBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Lax.BraidedMonoidalFunctor ※-StrongBraidedMonoidalFunctor : Strong.BraidedMonoidalFunctor C D₁ → Strong.BraidedMonoidalFunctor C D₂ → Strong.BraidedMonoidalFunctor C D₁×D₂ ※-StrongBraidedMonoidalFunctor FB GB = record { isBraidedMonoidal = ※-IsStrongBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Strong.BraidedMonoidalFunctor -- The projections out of a product of braided monoidal categories are -- braided monoidal functors πˡ-IsStrongBraidedMonoidalFunctor : Strong.IsBraidedMonoidalFunctor D₁×D₂ D₁ πˡ πˡ-IsStrongBraidedMonoidalFunctor = record { isStrongMonoidal = πˡ-IsStrongMonoidalFunctor ; braiding-compat = MorphismReasoning.id-comm (U D₁) } πˡ-IsBraidedMonoidalFunctor : Lax.IsBraidedMonoidalFunctor D₁×D₂ D₁ πˡ πˡ-IsBraidedMonoidalFunctor = Strong.IsBraidedMonoidalFunctor.isLaxBraidedMonoidal πˡ-IsStrongBraidedMonoidalFunctor πˡ-StrongBraidedMonoidalFunctor : Strong.BraidedMonoidalFunctor D₁×D₂ D₁ πˡ-StrongBraidedMonoidalFunctor = record { isBraidedMonoidal = πˡ-IsStrongBraidedMonoidalFunctor } πˡ-BraidedMonoidalFunctor : Lax.BraidedMonoidalFunctor D₁×D₂ D₁ πˡ-BraidedMonoidalFunctor = Strong.BraidedMonoidalFunctor.laxBraidedMonoidalFunctor πˡ-StrongBraidedMonoidalFunctor πʳ-IsStrongBraidedMonoidalFunctor : Strong.IsBraidedMonoidalFunctor D₁×D₂ D₂ πʳ πʳ-IsStrongBraidedMonoidalFunctor = record { isStrongMonoidal = πʳ-IsStrongMonoidalFunctor ; braiding-compat = MorphismReasoning.id-comm (U D₂) } πʳ-IsBraidedMonoidalFunctor : Lax.IsBraidedMonoidalFunctor D₁×D₂ D₂ πʳ πʳ-IsBraidedMonoidalFunctor = Strong.IsBraidedMonoidalFunctor.isLaxBraidedMonoidal πʳ-IsStrongBraidedMonoidalFunctor πʳ-StrongBraidedMonoidalFunctor : Strong.BraidedMonoidalFunctor D₁×D₂ D₂ πʳ-StrongBraidedMonoidalFunctor = record { isBraidedMonoidal = πʳ-IsStrongBraidedMonoidalFunctor } πʳ-BraidedMonoidalFunctor : Lax.BraidedMonoidalFunctor D₁×D₂ D₂ πʳ-BraidedMonoidalFunctor = Strong.BraidedMonoidalFunctor.laxBraidedMonoidalFunctor πʳ-StrongBraidedMonoidalFunctor -- The cartesian product of two braided monoidal functors is again a -- braided monoidal functor module _ {C₁ : BraidedMonoidalCategory o′₁ ℓ′₁ e′₁} {C₂ : BraidedMonoidalCategory o′₂ ℓ′₂ e′₂} {F : Functor (U C₁) (U D₁)} {G : Functor (U C₂) (U D₂)} where private C₁×C₂ = Product-BraidedMonoidalCategory C₁ C₂ ⁂-IsBraidedMonoidalFunctor : Lax.IsBraidedMonoidalFunctor C₁ D₁ F → Lax.IsBraidedMonoidalFunctor C₂ D₂ G → Lax.IsBraidedMonoidalFunctor C₁×C₂ D₁×D₂ (F ⁂ G) ⁂-IsBraidedMonoidalFunctor FB GB = record { isMonoidal = ⁂-IsMonoidalFunctor (isMonoidal FB) (isMonoidal GB) ; braiding-compat = braiding-compat FB , braiding-compat GB } where open Lax.IsBraidedMonoidalFunctor ⁂-IsStrongBraidedMonoidalFunctor : Strong.IsBraidedMonoidalFunctor C₁ D₁ F → Strong.IsBraidedMonoidalFunctor C₂ D₂ G → Strong.IsBraidedMonoidalFunctor C₁×C₂ D₁×D₂ (F ⁂ G) ⁂-IsStrongBraidedMonoidalFunctor FB GB = record { isStrongMonoidal = ⁂-IsStrongMonoidalFunctor (isStrongMonoidal FB) (isStrongMonoidal GB) ; braiding-compat = braiding-compat FB , braiding-compat GB } where open Strong.IsBraidedMonoidalFunctor module _ {C₁ : BraidedMonoidalCategory o′₁ ℓ′₁ e′₁} {C₂ : BraidedMonoidalCategory o′₂ ℓ′₂ e′₂} where private C₁×C₂ = Product-BraidedMonoidalCategory C₁ C₂ ⁂-BraidedMonoidalFunctor : Lax.BraidedMonoidalFunctor C₁ D₁ → Lax.BraidedMonoidalFunctor C₂ D₂ → Lax.BraidedMonoidalFunctor C₁×C₂ D₁×D₂ ⁂-BraidedMonoidalFunctor FB GB = record { isBraidedMonoidal = ⁂-IsBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Lax.BraidedMonoidalFunctor ⁂-StrongBraidedMonoidalFunctor : Strong.BraidedMonoidalFunctor C₁ D₁ → Strong.BraidedMonoidalFunctor C₂ D₂ → Strong.BraidedMonoidalFunctor C₁×C₂ D₁×D₂ ⁂-StrongBraidedMonoidalFunctor FB GB = record { isBraidedMonoidal = ⁂-IsStrongBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Strong.BraidedMonoidalFunctor module _ {D₁ : SymmetricMonoidalCategory o₁ ℓ₁ e₁} {D₂ : SymmetricMonoidalCategory o₂ ℓ₂ e₂} where open SMF open SymmetricMonoidalCategory using (U) renaming (braidedMonoidalCategory to B) private D₁×D₂ = Product-SymmetricMonoidalCategory D₁ D₂ -- Pairing for symmetric monoidal categories is a symmetric monoidal -- functor module _ {C : SymmetricMonoidalCategory o ℓ e} where ※-SymmetricMonoidalFunctor : Lax.SymmetricMonoidalFunctor C D₁ → Lax.SymmetricMonoidalFunctor C D₂ → Lax.SymmetricMonoidalFunctor C D₁×D₂ ※-SymmetricMonoidalFunctor FB GB = record { isBraidedMonoidal = ※-IsBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Lax.SymmetricMonoidalFunctor ※-StrongSymmetricMonoidalFunctor : Strong.SymmetricMonoidalFunctor C D₁ → Strong.SymmetricMonoidalFunctor C D₂ → Strong.SymmetricMonoidalFunctor C D₁×D₂ ※-StrongSymmetricMonoidalFunctor FB GB = record { isBraidedMonoidal = ※-IsStrongBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Strong.SymmetricMonoidalFunctor -- The projections out of a product of symmetric monoidal categories are -- symmetric monoidal functors πˡ-StrongSymmetricMonoidalFunctor : Strong.SymmetricMonoidalFunctor D₁×D₂ D₁ πˡ-StrongSymmetricMonoidalFunctor = record { isBraidedMonoidal = πˡ-IsStrongBraidedMonoidalFunctor {D₂ = B D₂} } πˡ-SymmetricMonoidalFunctor : Lax.SymmetricMonoidalFunctor D₁×D₂ D₁ πˡ-SymmetricMonoidalFunctor = Strong.SymmetricMonoidalFunctor.laxSymmetricMonoidalFunctor πˡ-StrongSymmetricMonoidalFunctor πʳ-StrongSymmetricMonoidalFunctor : Strong.SymmetricMonoidalFunctor D₁×D₂ D₂ πʳ-StrongSymmetricMonoidalFunctor = record { isBraidedMonoidal = πʳ-IsStrongBraidedMonoidalFunctor {D₁ = B D₁} } πʳ-SymmetricMonoidalFunctor : Lax.SymmetricMonoidalFunctor D₁×D₂ D₂ πʳ-SymmetricMonoidalFunctor = Strong.SymmetricMonoidalFunctor.laxSymmetricMonoidalFunctor πʳ-StrongSymmetricMonoidalFunctor -- The cartesian product of two symmetric monoidal functors is again a -- symmetric monoidal functor module _ {C₁ : SymmetricMonoidalCategory o′₁ ℓ′₁ e′₁} {C₂ : SymmetricMonoidalCategory o′₂ ℓ′₂ e′₂} where private C₁×C₂ = Product-SymmetricMonoidalCategory C₁ C₂ ⁂-SymmetricMonoidalFunctor : Lax.SymmetricMonoidalFunctor C₁ D₁ → Lax.SymmetricMonoidalFunctor C₂ D₂ → Lax.SymmetricMonoidalFunctor C₁×C₂ D₁×D₂ ⁂-SymmetricMonoidalFunctor FB GB = record { isBraidedMonoidal = ⁂-IsBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Lax.SymmetricMonoidalFunctor ⁂-StrongSymmetricMonoidalFunctor : Strong.SymmetricMonoidalFunctor C₁ D₁ → Strong.SymmetricMonoidalFunctor C₂ D₂ → Strong.SymmetricMonoidalFunctor C₁×C₂ D₁×D₂ ⁂-StrongSymmetricMonoidalFunctor FB GB = record { isBraidedMonoidal = ⁂-IsStrongBraidedMonoidalFunctor (isBraidedMonoidal FB) (isBraidedMonoidal GB) } where open Strong.SymmetricMonoidalFunctor
{ "alphanum_fraction": 0.6310168181, "avg_line_length": 41.7177419355, "ext": "agda", "hexsha": "b8e2e5c59219d256a654e9305c1ccdad156218d4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Monoidal/Construction/Product.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Monoidal/Construction/Product.agda", "max_line_length": 82, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Monoidal/Construction/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 6964, "size": 20692 }
module Tuple where import Level import Data.List as List open import Data.List hiding (_++_; [_]; _∷ʳ_) open import Data.Fin open import Relation.Binary.PropositionalEquality hiding ([_]) infixr 5 _∷_ data Tuple {a} : List (Set a) → Set a where [] : Tuple [] _∷_ : ∀ {A As} → A → Tuple As → Tuple (A ∷ As) [_] : ∀ {a} {A : Set a} → A → Tuple (A ∷ []) [ x ] = x ∷ [] _++_ : ∀ {a} {xs ys : List (Set a)} → Tuple xs → Tuple ys → Tuple (xs List.++ ys) _++_ {xs = []} [] ys = ys _++_ {xs = _ ∷ _} (x ∷ xs) ys = x ∷ (xs ++ ys) _∷ʳ_ : ∀ {a} {x : Set a} {xs : List (Set a)} → Tuple xs → x → Tuple (xs List.∷ʳ x) _∷ʳ_ xs x = xs ++ [ x ] private listLookup : ∀ {a} {A : Set a} (xs : List A) → (n : Fin (length xs)) → A listLookup [] () listLookup (x ∷ xs) zero = x listLookup (x ∷ xs) (suc n) = listLookup xs n lookup : ∀ {a} {xs : List (Set a)} → (n : Fin (length xs)) → Tuple xs → listLookup xs n lookup {xs = []} () [] lookup {xs = _ ∷ _} zero (x ∷ xs) = x lookup {xs = _ ∷ _} (suc n) (x ∷ xs) = lookup n xs unfoldToFunc : ∀ {a} → List (Set a) → Set a → Set a unfoldToFunc [] B = B unfoldToFunc (A ∷ As) B = A → unfoldToFunc As B apply : {Xs : List Set} {A : Set} → unfoldToFunc Xs A → Tuple Xs → A apply {[]} f [] = f apply {_ ∷ _} f (x ∷ xs) = apply (f x) xs list-proof : ∀ {a} {A : Set a} (xs : List A) → xs ≡ (xs List.++ []) list-proof [] = refl list-proof (x ∷ xs) = cong (_∷_ x) (list-proof xs) list-proof₁ : ∀ {a} {A : Set a} (xs ys zs : List A) → (xs List.++ ys) List.++ zs ≡ xs List.++ (ys List.++ zs) list-proof₁ [] ys zs = refl list-proof₁ (x ∷ xs) ys zs = cong (_∷_ x) (list-proof₁ xs ys zs) curry : ∀ {a} (xs : List (Set a)) → unfoldToFunc xs (Tuple xs) curry xs = curry' [] xs [] where curry' : ∀ {a} (xs ys : List (Set a)) → Tuple xs → unfoldToFunc ys (Tuple (xs List.++ ys)) curry' xs [] tpl = subst Tuple (list-proof xs) tpl curry' xs (y ∷ ys) tpl x₁ = subst (λ x → unfoldToFunc ys (Tuple x)) (list-proof₁ xs List.[ y ] ys) (curry' (xs List.∷ʳ y) ys (tpl ∷ʳ x₁)) proof₁ : ∀ {a} (As : List (Set a)) {B : Set a} → (Tuple As → B) → unfoldToFunc As B proof₁ [] f = f [] proof₁ (A ∷ As) f x = proof₁ As (λ xs → f (x ∷ xs)) proof₂ : ∀ {a} (As : List (Set a)) {B : Set a} → unfoldToFunc As B → Tuple As → B proof₂ [] f [] = f proof₂ (A ∷ As) f (x ∷ xs) = proof₂ As (f x) xs
{ "alphanum_fraction": 0.5163021048, "avg_line_length": 31.8815789474, "ext": "agda", "hexsha": "7e92f6c22a8bec2f76bed1c28ac2658677585187", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/general-induction", "max_forks_repo_path": "Tuple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/general-induction", "max_issues_repo_path": "Tuple.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/general-induction", "max_stars_repo_path": "Tuple.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 949, "size": 2423 }
module builtinInModule where module Str where postulate S : Set {-# BUILTIN STRING S #-} primitive primStringAppend : S → S → S
{ "alphanum_fraction": 0.6884057971, "avg_line_length": 13.8, "ext": "agda", "hexsha": "7938d89c161dd54cbb2fa965e5e28c86db3999f4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/builtinInModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/builtinInModule.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/builtinInModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 138 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) -- Also defines the category of cocones "over a Functor F" module Categories.Category.Construction.Cocones {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where open Category C private variable X : Obj open HomReasoning open Functor F open import Data.Product open import Relation.Binary using (Rel; IsEquivalence; Setoid) import Categories.Morphism as Mor import Categories.Morphism.IsoEquiv as IsoEquiv open import Categories.Diagram.Cocone F public open Mor C open IsoEquiv C open import Categories.Morphism.Reasoning C open Cocone open Coapex open Cocone⇒ Cocones : Category _ _ _ Cocones = record { Obj = Cocone ; _⇒_ = Cocone⇒ ; _≈_ = λ f g → arr f ≈ arr g ; id = record { arr = id ; commute = identityˡ } ; _∘_ = λ {A B C} f g → record { arr = arr f ∘ arr g ; commute = λ {X} → begin (arr f ∘ arr g) ∘ ψ A X ≈⟨ pullʳ (commute g) ⟩ arr f ∘ ψ B X ≈⟨ commute f ⟩ ψ C X ∎ } ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } module Cocones = Category Cocones private variable K K′ : Cocone module CM = Mor Cocones module CI = IsoEquiv Cocones open CM using () renaming (_≅_ to _⇔_) open CI using () renaming (_≃_ to _↮_) cocone-resp-iso : ∀ (κ : Cocone) → Cocone.N κ ≅ X → Σ[ κ′ ∈ Cocone ] κ ⇔ κ′ cocone-resp-iso {X = X} κ κ≅X = record { coapex = record { ψ = λ Y → from ∘ Cocone.ψ κ Y ; commute = λ f → pullʳ (Cocone.commute κ f) } } , record { from = record { arr = from ; commute = refl } ; to = record { arr = to ; commute = cancelˡ isoˡ } ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open _≅_ κ≅X open Cocone open Coapex iso-cocone⇒iso-coapex : K ⇔ K′ → N K ≅ N K′ iso-cocone⇒iso-coapex K⇔K′ = record { from = arr from ; to = arr to ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open _⇔_ K⇔K′
{ "alphanum_fraction": 0.5764400173, "avg_line_length": 22.637254902, "ext": "agda", "hexsha": "bb046fdd8db7270996c11ab6a050de451aa74c86", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Cocones.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Cocones.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Cocones.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 864, "size": 2309 }
-- Andreas, 2015-08-26 {-# OPTIONS --rewriting #-} -- Should give error open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE refl #-}
{ "alphanum_fraction": 0.642384106, "avg_line_length": 18.875, "ext": "agda", "hexsha": "d5ed402fa938aebe6a36ae1a502f1cd73cac9b35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/RewritingNotSafe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/RewritingNotSafe.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/RewritingNotSafe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 151 }
{-# OPTIONS --without-K #-} open import M-types.Base.Core open import M-types.Base.Sum open import M-types.Base.Prod module M-types.Base.Eq where infix 4 _≡_ data _≡_ {X : Ty ℓ} : X → X → Ty ℓ where refl : {x : X} → x ≡ x open _≡_ public infix 10 _⁻¹ _⁻¹ : {X : Ty ℓ} {x₀ x₁ : X} → x₀ ≡ x₁ → x₁ ≡ x₀ refl ⁻¹ = refl infixr 9 _·_ _·_ : {X : Ty ℓ} {x₀ x₁ x₂ : X} → x₀ ≡ x₁ → x₁ ≡ x₂ → x₀ ≡ x₂ refl · refl = refl ·-neutr₀ : {X : Ty ℓ} {x₀ x₁ : X} → ∏[ p ∈ x₀ ≡ x₁ ] refl · p ≡ p ·-neutr₀ refl = refl ·-neutr₁ : {X : Ty ℓ} {x₀ x₁ : X} → ∏[ p ∈ x₀ ≡ x₁ ] p · refl ≡ p ·-neutr₁ refl = refl infix 1 begin_ begin_ : {X : Ty ℓ} {x₀ x₁ : X} → (x₀ ≡ x₁) → (x₀ ≡ x₁) begin p = p infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : {X : Ty ℓ₀} {x₁ x₂ : X} → ∏[ x₀ ∈ X ] ((x₀ ≡ x₁) → (x₁ ≡ x₂) → (x₀ ≡ x₂)) x₀ ≡⟨ p₀ ⟩ p₁ = p₀ · p₁ infix 3 _∎ _∎ : {X : Ty ℓ} → ∏[ x ∈ X ] x ≡ x x ∎ = refl tra : {X : Ty ℓ} {x₀ x₁ : X} → ∏[ Y ∈ (X → Ty ℓ₁) ] (x₀ ≡ x₁ → (Y x₀ → Y x₁)) tra f refl = id tra-con : {X : Ty ℓ₀} {x₀ x₁ x₂ : X} → ∏[ Y ∈ (X → Ty ℓ₁) ] ∏[ p₀ ∈ x₀ ≡ x₁ ] ∏[ p₁ ∈ x₁ ≡ x₂ ] (tra Y p₁) ∘ (tra Y p₀) ≡ tra Y (p₀ · p₁) tra-con Y refl refl = refl ap : {X : Ty ℓ₀} {Y : Ty ℓ₁} {x₀ x₁ : X} → ∏[ f ∈ (X → Y) ] ((x₀ ≡ x₁) → (f x₀ ≡ f x₁)) ap f refl = refl ap-inv : {X : Ty ℓ₀} {Y : Ty ℓ₁} {x₀ x₁ : X} → ∏[ f ∈ (X → Y) ] ∏[ p ∈ x₀ ≡ x₁ ] (ap f p)⁻¹ ≡ ap f (p ⁻¹) ap-inv f refl = refl apd : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {x₀ x₁ : X} → ∏[ f ∈ (∏ X Y) ] ∏[ p ∈ x₀ ≡ x₁ ] tra Y p (f x₀) ≡ f x₁ apd f refl = refl ≡-pair : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {w₀ w₁ : ∑ X Y} → (∑[ p ∈ pr₀ w₀ ≡ pr₀ w₁ ] (tra Y p (pr₁ w₀) ≡ pr₁ w₁)) → (w₀ ≡ w₁) ≡-pair {ℓ₀} {ℓ₁} {X} {Y} {w} {w} (refl , refl) = refl ≡-apply : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {f₀ f₁ : ∏ X Y} → (f₀ ≡ f₁) → (∏[ x ∈ X ] (f₀ x ≡ f₁ x)) ≡-apply refl = λ x → refl
{ "alphanum_fraction": 0.3952241715, "avg_line_length": 25.0243902439, "ext": "agda", "hexsha": "ef7617f60bfd1bda8edff1b6c741fc5494b8667c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Eq.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1079, "size": 2052 }
module Issue3545 where open import Agda.Builtin.Nat open import Agda.Builtin.List open import Common.IO createElem : Nat → Set createElem n = Nat {-# NOINLINE createElem #-} {-# COMPILE JS createElem = function (x0) { return x0; } #-} -- WAS: silently accepted -- WANT: `createElem` is going to be erased; don't do that! map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs {-# COMPILE GHC map = \ _ _ _ _ -> Prelude.map #-} -- `map` however is not erased so this should not raise a warning. value : List Set value = map (λ n → createElem n) (1 ∷ 1 ∷ [])
{ "alphanum_fraction": 0.620414673, "avg_line_length": 21.6206896552, "ext": "agda", "hexsha": "7ac5124afca6d2be66e0352235bb6f98a43e1401", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3545.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3545.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3545.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 201, "size": 627 }
open import Prelude hiding (id; Bool; _∷_; []) module Examples.CompleteResolution where data TC : Set where tc-int : TC tc-bool : TC _tc≟_ : (a b : TC) → Dec (a ≡ b) tc-int tc≟ tc-int = yes refl tc-int tc≟ tc-bool = no (λ ()) tc-bool tc≟ tc-int = no (λ ()) tc-bool tc≟ tc-bool = yes refl open import Implicits.Syntax TC _tc≟_ open import Implicits.WellTyped TC _tc≟_ open import Implicits.Substitutions TC _tc≟_ open import Implicits.Syntax.Type.Unification TC _tc≟_ open import Implicits.Resolution.Finite.Resolution TC _tc≟_ open import Implicits.Resolution.Finite.Algorithm TC _tc≟_ open import Data.Maybe open import Data.List open import Category.Monad.Partiality Bool : ∀ {n} → Type n Bool = simpl (tc tc-bool) Int : ∀ {n} → Type n Int = simpl (tc tc-int) module Ex₁ where Δ : ICtx zero Δ = Bool ∷ Int ∷ [] -- resolves directly using a value from the implicit context r = resolve Δ Int p : is-just r ≡ true p = refl module Ex₂ where Δ : ICtx zero Δ = Bool ∷ (Bool ⇒ Int) ∷ [] -- resolves using implicit application r = resolve Δ Int p : is-just r ≡ true p = refl module Ex₃ where Δ : ICtx zero Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ [] -- resolves using polymorphic implicit application r = resolve Δ Int p : is-just r ≡ true p = refl module Ex₅ where -- The following context would not resolved Int in Oliveira's deterministic calculus. -- Demonstratint that partial resolution is more powerful for terminating contexts. Δ : ICtx zero Δ = (Bool ⇒ Int) ∷ Int ∷ [] r = resolve Δ Int p : is-just r ≡ true p = refl module Ex₆ where Δ : ICtx zero Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ [] -- resolves rule types r = resolve Δ (Bool ⇒ Int) p : is-just r ≡ true p = refl module Ex₇ where Δ : ICtx zero Δ = Bool ∷ (∀' (Bool ⇒ (simpl (tvar zero)))) ∷ [] q : Type zero q = (∀' (Bool ⇒ (simpl (tvar zero)))) -- Resolves polymorphic types. -- Note that it doesn't resolve to the rule in the context directly. -- Instead, it will apply r-tabs and r-iabs, to obtain resolve Δ' ⊢ᵣ (∀' (tvar zero)) r = resolve Δ q p : is-just r ≡ true p = refl module Ex₈ where Δ : ICtx zero Δ = Bool ∷ (∀' ((simpl (tvar zero)) ⇒ (simpl (tvar zero)))) ∷ [] -- infinite derivation exists: fails divergence checking r = resolve Δ Int p : is-just r ≡ false p = refl module Ex₉ where a⇒consta : Type zero a⇒consta = (∀' ((simpl (tvar zero)) ⇒ (∀' (simpl (simpl (tvar zero) →' (simpl (tvar (suc zero)))))))) Δ : ICtx zero Δ = Bool ∷ a⇒consta ∷ [] const-bool : Type zero const-bool = (∀' (simpl ((simpl (tvar zero)) →' Bool))) r = resolve Δ const-bool p : is-just r ≡ true p = refl module Ex₁₀ where -- similar to Ex₉ but for this particular example we have that for the rule part -- || ρ₁ || ≮ || ρ₂ || such that Oliveira's ⊢term predicate on ρ₁ ⇒ ρ₂ fails a⇒∀a : Type zero a⇒∀a = (∀' ((simpl (tvar zero)) ⇒ (∀' (simpl (tvar (suc zero)))))) Δ : ICtx zero Δ = Bool ∷ a⇒∀a ∷ [] r = resolve Δ (∀' Bool) p : is-just r ≡ true p = refl
{ "alphanum_fraction": 0.6240310078, "avg_line_length": 21.5, "ext": "agda", "hexsha": "d267558898bd3fb777d9ae6ec76cfbc181f209ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Examples/CompleteResolution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Examples/CompleteResolution.agda", "max_line_length": 103, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Examples/CompleteResolution.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1091, "size": 3096 }
module Section1 where -- 1. Introduction -- =============== -- -- 1.1. Outline of the formalisation -- --------------------------------- -- -- - We formalize terms-in-context, `Γ ⊢ t ∷ A`, as a calculus of proof trees, `Γ ⊢ A`, for -- implicational logic, i.e., term `t` is seen as a proof tree that derives `A` from the assumptions -- contained in `Γ`. A notion of equivalence of terms-in-context (including, e.g., β-reduction -- and η-conversion) is then defined with a conversion relation `_≅_` on these proof trees. -- -- - We give a Kripke model with an ordered set of worlds and define when a proposition `A` is -- true for a world `w` in the model, `w ⊩ A`. We also define an extensional equality between -- objects in the model. -- -- - We define an interpreter `⟦_⟧` that maps a proof tree in the theory to its semantics in the -- Kripke model. According to the Curry-Howard correspondence of programs to proofs -- and types to propositions, the type of the interpreter expresses soundness of the theory of -- proof trees with respect to the Kripke model. Consequently, the interpreter can be seen -- as a constructive soundness proof. -- -- - We also define an inversion function, `reify`, which returns a proof tre corresponding to -- a given semantic object, yielding—again by the Curry-Howard isomorphism—a -- completeness proof. -- -- The inversion function is based on the principle of normalization by evaluation [3]. -- Obviously, for proof trees `M` and `N` with the same semantics, inversion yields the same proof -- tree `reify ⟦ M ⟧ = reify ⟦ N ⟧`. Consequently, we define a normalization function, `nf`, as -- the composition of the interpreter and the inversion function. We prove that if `M` is a proof -- tree, then `M ≅ nf M`; together with the soundness result, this yields a decision algorithm -- for convertibility. We further show that `nf` returns a proof term in long η-normal form. -- -- - We prove that the convertibility relation on proof trees is sound and complete. The proof -- of soundness, i.e., convertible proof trees have the same semantics, is straightforward by -- induction on the structure of the trees. The completeness proof, i.e., if `⟦ M ⟧` and `⟦ N ⟧` are -- equal, then `M` and `N` are convertible, uses the fact that `reify ⟦ M ⟧` is exactly the same as -- `reify ⟦ N ⟧`, and since `M ≅ nf M ≡ reify ⟦ M ⟧` and vice versa for `N`, we get that `M ≅ N`. -- -- - We define a calculus of simply typed ƛterms, a typed convertibility relation on the terms, -- and a deterministic reduction, `_⇓_`. We also define an erasure function on proof trees that -- maps a proof tree `M` into a well-typed term `M ⁻`. For every well-typed term there is at -- least one proof tree that erases to this term; for defining the semantics of well-typed terms -- through that of proof trees, it suffices to show that all proof trees that erase to the same -- well-typed term have the same semantics. -- -- - Because we know that convertible proof trees have the same semantics, it remains to -- show that all proof trees that erase to a given well-typed term are convertible. We use an -- argument due to Streicher [19]: we first prove that if `nf M ⁻` and `nf N ⁻` are the same, -- then `M ≅ N`. Secondly, we prove that if a proof tree `M` erases to a well-typed term `t`, -- then `t ⇓ nf M ⁻`. Now, if two proof trees `M` and `N` erase to the same well-typed term -- `t`, then `t ⇓ nf M ⁻` and `t ⇓ nf N ⁻`. Since the reduction is deterministic we have that -- `nf M ⁻` and `nf N ⁻` are the same, and hence `M ≅ N`. -- -- - We prove that the convertibility relation on proof trees is sound and complete, and give -- a decision algorithm for checking convertibility of two well-typed terms. -- -- (…) open import Agda.Builtin.FromString public using (IsString ; fromString) open import Data.Bool public using (Bool ; T ; true ; false ; not) renaming (_∧_ to and) open import Data.Empty public using (⊥) renaming (⊥-elim to elim⊥) open import Data.Product public using (Σ ; _,_ ; _×_ ; proj₁ ; proj₂) open import Data.Unit public using (⊤ ; tt) import Data.String as Str open Str using (String) open import Function public using (_∘_ ; case_of_ ; flip ; id) open import Relation.Binary.PropositionalEquality public using (_≡_ ; _≢_ ; refl ; cong ; subst ; sym ; trans) renaming (cong₂ to cong²) open import Relation.Nullary public using (¬_ ; Dec ; yes ; no) import Relation.Nullary.Decidable as Decidable open Decidable using (⌊_⌋) public open import Relation.Nullary.Negation public renaming (contradiction to _↯_) module _ where data Name : Set where name : String → Name module _ where inj-name : ∀ {s s′} → name s ≡ name s′ → s ≡ s′ inj-name refl = refl _≟_ : (x x′ : Name) → Dec (x ≡ x′) name s ≟ name s′ = Decidable.map′ (cong name) inj-name (s Str.≟ s′) _≠_ : Name → Name → Bool x ≠ x′ = not ⌊ x ≟ x′ ⌋ instance str-Name : IsString Name str-Name = record { Constraint = λ s → ⊤ ; fromString = λ s → name s } module _ where record Raiseable {World : Set} (_⊩◌ : World → Set) {_⊒_ : World → World → Set} : Set₁ where field ↑⟨_⟩ : ∀ {w w′} → w′ ⊒ w → w ⊩◌ → w′ ⊩◌ open Raiseable {{…}} public record Lowerable {World : Set} (◌⊩_ : World → Set) {_⊒_ : World → World → Set} : Set₁ where field ↓⟨_⟩ : ∀ {w w′} → w′ ⊒ w → ◌⊩ w′ → ◌⊩ w open Lowerable {{…}} public
{ "alphanum_fraction": 0.6489890032, "avg_line_length": 40.5611510791, "ext": "agda", "hexsha": "8e255aabbfda1e2f1b52392ed56ef8120c4d411a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section1.agda", "max_line_length": 105, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section1.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 1676, "size": 5638 }
module Dissect where import Functor import Sets import Isomorphism open Sets open Functor open Functor.Semantics open Functor.Recursive infixr 40 _+₂_ infixr 60 _×₂_ ∇ : U -> U₂ ∇ (K A) = K₂ [0] ∇ Id = K₂ [1] ∇ (F + G) = ∇ F +₂ ∇ G ∇ (F × G) = ∇ F ×₂ ↗ G +₂ ↖ F ×₂ ∇ G diagonal : U₂ -> U diagonal (K₂ A) = K A diagonal (↖ F) = F diagonal (↗ F) = F diagonal (F +₂ G) = diagonal F + diagonal G diagonal (F ×₂ G) = diagonal F × diagonal G module Derivative where import Derivative as D ∂ : U -> U ∂ F = diagonal (∇ F) open Isomorphism same : (F : U)(X : Set) -> ⟦ ∂ F ⟧ X ≅ ⟦ D.∂ F ⟧ X same (K A) X = refl-≅ [0] same Id X = refl-≅ [1] same (F + G) X = iso[+] (same F X) (same G X) same (F × G) X = iso[+] (iso[×] (same F X) (refl-≅ _)) (iso[×] (refl-≅ _) (same G X)) Stack : (F : U) -> Set -> Set -> Set Stack F C J = List (⟦ ∇ F ⟧₂ C J) NextJoker : U -> Set -> Set -> Set NextJoker F C J = J [×] ⟦ ∇ F ⟧₂ C J [+] ⟦ F ⟧ C mutual into : (F : U){C J : Set} -> ⟦ F ⟧ J -> NextJoker F C J into (K A) a = inr a into Id x = inl < x , <> > into (F + G) (inl f) = (id <×> inl <+> inl) (into F f) into (F + G) (inr g) = (id <×> inr <+> inr) (into G g) into (F × G) < fj , gj > = tryL F G (into F fj) gj next : (F : U){C J : Set} -> ⟦ ∇ F ⟧₂ C J -> C -> NextJoker F C J next (K A) () _ next Id <> c = inr c next (F + G) (inl f') c = (id <×> inl <+> inl) (next F f' c) next (F + G) (inr g') c = (id <×> inr <+> inr) (next G g' c) next (F × G) (inl < f' , gj >) c = tryL F G (next F f' c) gj next (F × G) (inr < fc , g' >) c = tryR F G fc (next G g' c) tryL : (F G : U){C J : Set} -> NextJoker F C J -> ⟦ G ⟧ J -> NextJoker (F × G) C J tryL F G (inl < j , f' >) gj = inl < j , inl < f' , gj > > tryL F G (inr fc) gj = tryR F G fc (into G gj) tryR : (F G : U){C J : Set} -> ⟦ F ⟧ C -> NextJoker G C J -> NextJoker (F × G) C J tryR F G fc (inl < j , g' >) = inl < j , inr < fc , g' > > tryR F G fc (inr gc) = inr < fc , gc > map : (F : U){C J : Set} -> (J -> C) -> ⟦ F ⟧ J -> ⟦ F ⟧ C map F φ f = iter (into F f) where iter : NextJoker F _ _ -> ⟦ F ⟧ _ iter (inl < j , d >) = iter (next F d (φ j)) iter (inr f) = f fold : (F : U){T : Set} -> (⟦ F ⟧ T -> T) -> μ F -> T fold F {T} φ r = inward r [] where mutual inward : μ F -> Stack F T (μ F) -> T inward (inn f) γ = onward (into F f) γ outward : T -> Stack F T (μ F) -> T outward t [] = t outward t (f' :: γ) = onward (next F f' t) γ onward : NextJoker F T (μ F) -> Stack F T (μ F) -> T onward (inl < r , f' >) γ = inward r (f' :: γ) onward (inr t) γ = outward (φ t) γ -- can we make a non-tail recursive fold? -- of course, nothing could be simpler: (not structurally recursive though) fold' : (F : U){T : Set} -> (⟦ F ⟧ T -> T) -> μ F -> T fold' F φ = φ ∘ map F (fold' F φ) ∘ out -- Fold operators Φ : (F : U) -> Set -> Set Φ (K A) T = A -> T Φ Id T = T -> T Φ (F + G) T = Φ F T [×] Φ G T Φ (F × G) T = (T -> T -> T) [×] (Φ F T [×] Φ G T) mkφ : (F : U){T : Set} -> Φ F T -> ⟦ F ⟧ T -> T mkφ (K A) f a = f a mkφ Id f t = f t mkφ (F + G) < φf , φg > (inl f) = mkφ F φf f mkφ (F + G) < φf , φg > (inr g) = mkφ G φg g mkφ (F × G) < _○_ , < φf , φg > > < f , g > = mkφ F φf f ○ mkφ G φg g
{ "alphanum_fraction": 0.4314334086, "avg_line_length": 30.5517241379, "ext": "agda", "hexsha": "dbb75b732cb828076625bf3c2a789c6adaf451aa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Dissect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Dissect.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Dissect.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 1602, "size": 3544 }
{-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Summation.Nat where -- agda-stdlib open import Algebra open import Data.Nat.Properties -- agda-misc open import Math.NumberTheory.Summation.Generic -- DO NOT change this line open MonoidSummation (Semiring.+-monoid *-+-semiring) public
{ "alphanum_fraction": 0.76, "avg_line_length": 21.4285714286, "ext": "agda", "hexsha": "35584f1bff6b91bbec0dd0e9afb8b94c92cbcd69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Math/NumberTheory/Summation/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Math/NumberTheory/Summation/Nat.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Math/NumberTheory/Summation/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 80, "size": 300 }
{- Theory about path split equivalences. They are convenient to construct localization HITs as in (the "modalities paper") https://arxiv.org/abs/1706.07526 - there are construction from and to equivalences ([pathSplitToEquiv] , [equivToPathSplit]) - the structure of a path split equivalence is actually a proposition ([isPropIsPathSplitEquiv]) The module starts with a couple of general facts about equivalences: - if f is an equivalence then (cong f) is an equivalence ([equivCong]) - if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv]) (those are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda)) -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.PathSplitEquiv where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.Properties record isPathSplitEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field s : B → A sec : section f s secCong : (x y : A) → Σ[ s' ∈ (f(x) ≡ f(y) → x ≡ y) ] section (cong f) s' PathSplitEquiv : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') PathSplitEquiv A B = Σ[ f ∈ (A → B) ] isPathSplitEquiv f open isPathSplitEquiv idIsPathSplitEquiv : ∀ {ℓ} {A : Type ℓ} → isPathSplitEquiv (λ (x : A) → x) s idIsPathSplitEquiv x = x sec idIsPathSplitEquiv x = refl secCong idIsPathSplitEquiv = λ x y → (λ p → p) , λ p _ → p module _ {ℓ} {A B : Type ℓ} where toIsEquiv : (f : A → B) → isPathSplitEquiv f → isEquiv f toIsEquiv f record { s = s ; sec = sec ; secCong = secCong } = (isoToEquiv (iso f s sec (λ x → (secCong (s (f x)) x).fst (sec (f x))))) .snd sectionOfEquiv' : (f : A → B) → isEquiv f → B → A sectionOfEquiv' f record { equiv-proof = all-fibers-contractible } x = all-fibers-contractible x .fst .fst isSec : (f : A → B) → (pf : isEquiv f) → section f (sectionOfEquiv' f pf) isSec f record { equiv-proof = all-fibers-contractible } x = all-fibers-contractible x .fst .snd sectionOfEquiv : (f : A → B) → isEquiv f → Σ (B → A) (section f) sectionOfEquiv f e = sectionOfEquiv' f e , isSec f e module _ {ℓ} {A B : Type ℓ} where abstract fromIsEquiv : (f : A → B) → isEquiv f → isPathSplitEquiv f s (fromIsEquiv f pf) = sectionOfEquiv' f pf sec (fromIsEquiv f pf) = isSec f pf secCong (fromIsEquiv f pf) x y = sectionOfEquiv cong-f eq-cong where cong-f : x ≡ y → f x ≡ f y cong-f = λ (p : x ≡ y) → cong f p eq-cong : isEquiv cong-f eq-cong = isEquivCong (f , pf) pathSplitToEquiv : PathSplitEquiv A B → A ≃ B fst (pathSplitToEquiv (f , _)) = f snd (pathSplitToEquiv (_ , e)) = toIsEquiv _ e equivToPathSplit : A ≃ B → PathSplitEquiv A B fst (equivToPathSplit (f , _)) = f snd (equivToPathSplit (_ , e)) = fromIsEquiv _ e equivHasUniqueSection : (f : A → B) → isEquiv f → isContr (Σ (B → A) (section f)) equivHasUniqueSection f eq = helper' where idB = λ (x : B) → x abstract helper : isContr (fiber (λ (φ : B → A) → f ∘ φ) idB) helper = (equiv-proof (snd (postCompEquiv (f , eq)))) idB helper' : isContr (Σ[ φ ∈ (B → A) ] ((x : B) → f (φ x) ≡ x)) fst helper' = (φ , λ x i → η i x) where φ = fst (fst helper) η : f ∘ φ ≡ idB η = snd (fst helper) (snd helper') y i = (fst (η i) , λ b j → snd (η i) j b) where η = (snd helper) (fst y , λ i b → snd y b i) {- PathSplitEquiv is a proposition and the type of path split equivs is equivalent to the type of equivalences -} isPropIsPathSplitEquiv : ∀ {ℓ} {A B : Type ℓ} (f : A → B) → isProp (isPathSplitEquiv f) isPropIsPathSplitEquiv {_} {A} {B} f record { s = φ ; sec = sec-φ ; secCong = secCong-φ } record { s = ψ ; sec = sec-ψ ; secCong = secCong-ψ } i = record { s = fst (sectionsAreEqual i) ; sec = snd (sectionsAreEqual i) ; secCong = λ x y → congSectionsAreEqual x y (secCong-φ x y) (secCong-ψ x y) i } where φ' = record { s = φ ; sec = sec-φ ; secCong = secCong-φ } ψ' = record { s = ψ ; sec = sec-ψ ; secCong = secCong-ψ } sectionsAreEqual : (φ , sec-φ) ≡ (ψ , sec-ψ) sectionsAreEqual = (sym (contraction (φ , sec-φ))) ∙ (contraction (ψ , sec-ψ)) where contraction = snd (equivHasUniqueSection f (toIsEquiv f φ')) congSectionsAreEqual : (x y : A) (l u : Σ (f(x) ≡ f(y) → x ≡ y) (section (cong f))) → l ≡ u congSectionsAreEqual x y l u = (sym (contraction l)) ∙ (contraction u) where contraction = snd (equivHasUniqueSection (λ (p : x ≡ y) → cong f p) (isEquivCong (pathSplitToEquiv (f , φ')))) module _ {ℓ} {A B : Type ℓ} where isEquivIsPathSplitToIsEquiv : (f : A → B) → isEquiv (fromIsEquiv f) isEquivIsPathSplitToIsEquiv f = isoToIsEquiv (iso (fromIsEquiv f) (toIsEquiv f) (λ b → isPropIsPathSplitEquiv f _ _) (λ a → isPropIsEquiv f _ _ )) isEquivPathSplitToEquiv : isEquiv (pathSplitToEquiv {A = A} {B = B}) isEquivPathSplitToEquiv = isoToIsEquiv (iso pathSplitToEquiv equivToPathSplit (λ {(f , e) i → (f , isPropIsEquiv f (toIsEquiv f (fromIsEquiv f e)) e i)}) (λ {(f , e) i → (f , isPropIsPathSplitEquiv f (fromIsEquiv f (toIsEquiv f e)) e i)})) equivPathSplitToEquiv : (PathSplitEquiv A B) ≃ (A ≃ B) equivPathSplitToEquiv = (pathSplitToEquiv , isEquivPathSplitToEquiv)
{ "alphanum_fraction": 0.6239858907, "avg_line_length": 40.2127659574, "ext": "agda", "hexsha": "4907841979bddfbb27d14ada1ded097ffb67f7c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/PathSplitEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/PathSplitEquiv.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/PathSplitEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2045, "size": 5670 }
module Type.Size.Countable where import Data.Either as Type import Data.Either.Equiv as Either import Data.Tuple as Type import Data.Tuple.Equiv as Tuple import Lvl open import Logic open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Sequence open import Numeral.Natural.Sequence.Proofs open import Relator.Equals.Proofs.Equivalence open import Structure.Setoid open import Type open import Type.Size open import Type.Size.Proofs private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level -- Definition of a countable type Countable : (T : Type{ℓ}) → ⦃ _ : Equiv{ℓₑ}(T) ⦄ → Stmt Countable(T) = (ℕ ≽ T) -- Definition of a countably infinite type CountablyInfinite : (T : Type{ℓ}) → ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Stmt CountablyInfinite(T) ⦃ equiv ⦄ = _≍_ ℕ ⦃ [≡]-equiv ⦄ T private variable A : Type{ℓ₁} private variable B : Type{ℓ₂} private variable ⦃ equiv-A ⦄ : Equiv{ℓₑ}(A) private variable ⦃ equiv-B ⦄ : Equiv{ℓₑ}(B) private variable ⦃ equiv-A‖B ⦄ : Equiv{ℓₑ}(A Type.‖ B) private variable ⦃ equiv-A⨯B ⦄ : Equiv{ℓₑ}(A Type.⨯ B) module Countable where -- TODO: Do something similar to CountablyInfinite here -- _+_ : Countable (A) ⦃ equiv-A ⦄ → Countable(B) ⦃ equiv-B ⦄ → Countable(A ‖ B) ⦃ equiv-A‖B ⦄ -- [∃]-intro a ⦃ intro pa ⦄ + [∃]-intro b ⦃ intro pb ⦄ = [∃]-intro (Left ∘ a) ⦃ intro (\{y} → [∃]-intro ([∃]-witness pa) ⦃ {!!} ⦄) ⦄ -- [∃]-intro (Left ∘ a) ⦃ intro (\{y} → [∃]-intro ([∃]-witness pa) ⦃ {!!} ⦄) ⦄ -- _⋅_ : Countable (A) ⦃ equiv-A ⦄ → Countable(B) ⦃ equiv-B ⦄ → Countable(A ⨯ B) ⦃ equiv-A⨯B ⦄ module CountablyInfinite where index : ∀{ℓ} → (T : Type{ℓ}) → ⦃ equiv-T : Equiv{ℓₑ}(T) ⦄ → ⦃ size : CountablyInfinite(T) ⦄ → (ℕ → T) index(_) ⦃ size = size ⦄ = [∃]-witness size indexing : ∀{ℓ} → (T : Type{ℓ}) → ⦃ equiv-T : Equiv{ℓₑ}(T) ⦄ → ⦃ size : CountablyInfinite(T) ⦄ → (T → ℕ) indexing(T) ⦃ size = size ⦄ = [∃]-witness([≍]-symmetry-raw ⦃ [≡]-equiv ⦄ size ⦃ [≡]-to-function ⦄) _+_ : ⦃ ext : Either.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-A‖B) ⦄ → CountablyInfinite(A) ⦃ equiv-A ⦄ → CountablyInfinite(B) ⦃ equiv-B ⦄ → CountablyInfinite(A Type.‖ B) ⦃ equiv-A‖B ⦄ [∃]-intro a + [∃]-intro b = [∃]-intro (interleave a b) _⨯_ : ⦃ ext : Tuple.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-A⨯B) ⦄ → CountablyInfinite(A) ⦃ equiv-A ⦄ → CountablyInfinite(B) ⦃ equiv-B ⦄ → CountablyInfinite(A Type.⨯ B) ⦃ equiv-A⨯B ⦄ [∃]-intro a ⨯ [∃]-intro b = [∃]-intro (pair a b)
{ "alphanum_fraction": 0.6225490196, "avg_line_length": 42.9473684211, "ext": "agda", "hexsha": "b66df4cb6868f8fa23271b130541ea878ff35c5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Size/Countable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Size/Countable.agda", "max_line_length": 191, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Size/Countable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1078, "size": 2448 }
module regular-concat where open import Level renaming ( suc to Suc ; zero to Zero ) open import Data.List open import Data.Nat hiding ( _≟_ ) open import Data.Fin hiding ( _+_ ) open import Data.Empty open import Data.Unit open import Data.Product -- open import Data.Maybe open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import nat open import automaton open import regular-language open import nfa open import sbconst2 open import finiteSet open import finiteSetUtil open Automaton open FiniteSet open RegularLanguage Concat-NFA : {Σ : Set} → (A B : RegularLanguage Σ ) → NAutomaton (states A ∨ states B) Σ Concat-NFA {Σ} A B = record { Nδ = δnfa ; Nend = nend } module Concat-NFA where δnfa : states A ∨ states B → Σ → states A ∨ states B → Bool δnfa (case1 q) i (case1 q₁) = equal? (afin A) (δ (automaton A) q i) q₁ δnfa (case1 qa) i (case2 qb) = (aend (automaton A) qa ) /\ (equal? (afin B) qb (δ (automaton B) (astart B) i) ) δnfa (case2 q) i (case2 q₁) = equal? (afin B) (δ (automaton B) q i) q₁ δnfa _ i _ = false nend : states A ∨ states B → Bool nend (case2 q) = aend (automaton B) q nend (case1 q) = aend (automaton A) q /\ aend (automaton B) (astart B) -- empty B case Concat-NFA-start : {Σ : Set} → (A B : RegularLanguage Σ ) → states A ∨ states B → Bool Concat-NFA-start A B q = equal? (fin-∨ (afin A) (afin B)) (case1 (astart A)) q CNFA-exist : {Σ : Set} → (A B : RegularLanguage Σ ) → (states A ∨ states B → Bool) → Bool CNFA-exist A B qs = exists (fin-∨ (afin A) (afin B)) qs M-Concat : {Σ : Set} → (A B : RegularLanguage Σ ) → RegularLanguage Σ M-Concat {Σ} A B = record { states = states A ∨ states B → Bool ; astart = Concat-NFA-start A B ; afin = finf ; automaton = subset-construction (CNFA-exist A B) (Concat-NFA A B) } where fin : FiniteSet (states A ∨ states B ) fin = fin-∨ (afin A) (afin B) finf : FiniteSet (states A ∨ states B → Bool ) finf = fin→ fin -- closed-in-concat' : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Concat (contain A) (contain B)) x ( M-Concat A B ) -- closed-in-concat' {Σ} A B x = ≡-Bool-func closed-in-concat→ closed-in-concat← where -- closed-in-concat→ : Concat (contain A) (contain B) x ≡ true → contain (M-Concat A B) x ≡ true -- closed-in-concat→ = {!!} -- closed-in-concat← : contain (M-Concat A B) x ≡ true → Concat (contain A) (contain B) x ≡ true -- closed-in-concat← = {!!} record Split {Σ : Set} (A : List Σ → Bool ) ( B : List Σ → Bool ) (x : List Σ ) : Set where field sp0 : List Σ sp1 : List Σ sp-concat : sp0 ++ sp1 ≡ x prop0 : A sp0 ≡ true prop1 : B sp1 ≡ true open Split list-empty++ : {Σ : Set} → (x y : List Σ) → x ++ y ≡ [] → (x ≡ [] ) ∧ (y ≡ [] ) list-empty++ [] [] refl = record { proj1 = refl ; proj2 = refl } list-empty++ [] (x ∷ y) () list-empty++ (x ∷ x₁) y () open _∧_ open import Relation.Binary.PropositionalEquality hiding ( [_] ) c-split-lemma : {Σ : Set} → (A B : List Σ → Bool ) → (h : Σ) → ( t : List Σ ) → split A B (h ∷ t ) ≡ true → ( ¬ (A [] ≡ true )) ∨ ( ¬ (B ( h ∷ t ) ≡ true) ) → split (λ t1 → A (h ∷ t1)) B t ≡ true c-split-lemma {Σ} A B h t eq p = sym ( begin true ≡⟨ sym eq ⟩ split A B (h ∷ t ) ≡⟨⟩ A [] /\ B (h ∷ t) \/ split (λ t1 → A (h ∷ t1)) B t ≡⟨ cong ( λ k → k \/ split (λ t1 → A (h ∷ t1)) B t ) (lemma-p p ) ⟩ false \/ split (λ t1 → A (h ∷ t1)) B t ≡⟨ bool-or-1 refl ⟩ split (λ t1 → A (h ∷ t1)) B t ∎ ) where open ≡-Reasoning lemma-p : ( ¬ (A [] ≡ true )) ∨ ( ¬ (B ( h ∷ t ) ≡ true) ) → A [] /\ B (h ∷ t) ≡ false lemma-p (case1 ¬A ) = bool-and-1 ( ¬-bool-t ¬A ) lemma-p (case2 ¬B ) = bool-and-2 ( ¬-bool-t ¬B ) split→AB : {Σ : Set} → (A B : List Σ → Bool ) → ( x : List Σ ) → split A B x ≡ true → Split A B x split→AB {Σ} A B [] eq with bool-≡-? (A []) true | bool-≡-? (B []) true split→AB {Σ} A B [] eq | yes eqa | yes eqb = record { sp0 = [] ; sp1 = [] ; sp-concat = refl ; prop0 = eqa ; prop1 = eqb } split→AB {Σ} A B [] eq | yes p | no ¬p = ⊥-elim (lemma-∧-1 eq (¬-bool-t ¬p )) split→AB {Σ} A B [] eq | no ¬p | t = ⊥-elim (lemma-∧-0 eq (¬-bool-t ¬p )) split→AB {Σ} A B (h ∷ t ) eq with bool-≡-? (A []) true | bool-≡-? (B (h ∷ t )) true ... | yes px | yes py = record { sp0 = [] ; sp1 = h ∷ t ; sp-concat = refl ; prop0 = px ; prop1 = py } ... | no px | _ with split→AB (λ t1 → A ( h ∷ t1 )) B t (c-split-lemma A B h t eq (case1 px) ) ... | S = record { sp0 = h ∷ sp0 S ; sp1 = sp1 S ; sp-concat = cong ( λ k → h ∷ k) (sp-concat S) ; prop0 = prop0 S ; prop1 = prop1 S } split→AB {Σ} A B (h ∷ t ) eq | _ | no px with split→AB (λ t1 → A ( h ∷ t1 )) B t (c-split-lemma A B h t eq (case2 px) ) ... | S = record { sp0 = h ∷ sp0 S ; sp1 = sp1 S ; sp-concat = cong ( λ k → h ∷ k) (sp-concat S) ; prop0 = prop0 S ; prop1 = prop1 S } AB→split : {Σ : Set} → (A B : List Σ → Bool ) → ( x y : List Σ ) → A x ≡ true → B y ≡ true → split A B (x ++ y ) ≡ true AB→split {Σ} A B [] [] eqa eqb = begin split A B [] ≡⟨⟩ A [] /\ B [] ≡⟨ cong₂ (λ j k → j /\ k ) eqa eqb ⟩ true ∎ where open ≡-Reasoning AB→split {Σ} A B [] (h ∷ y ) eqa eqb = begin split A B (h ∷ y ) ≡⟨⟩ A [] /\ B (h ∷ y) \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨ cong₂ (λ j k → j /\ k \/ split (λ t1 → A (h ∷ t1)) B y ) eqa eqb ⟩ true /\ true \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨⟩ true \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨⟩ true ∎ where open ≡-Reasoning AB→split {Σ} A B (h ∷ t) y eqa eqb = begin split A B ((h ∷ t) ++ y) ≡⟨⟩ A [] /\ B (h ∷ t ++ y) \/ split (λ t1 → A (h ∷ t1)) B (t ++ y) ≡⟨ cong ( λ k → A [] /\ B (h ∷ t ++ y) \/ k ) (AB→split {Σ} (λ t1 → A (h ∷ t1)) B t y eqa eqb ) ⟩ A [] /\ B (h ∷ t ++ y) \/ true ≡⟨ bool-or-3 ⟩ true ∎ where open ≡-Reasoning open NAutomaton open import Data.List.Properties closed-in-concat : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Concat (contain A) (contain B)) x ( M-Concat A B ) closed-in-concat {Σ} A B x = ≡-Bool-func closed-in-concat→ closed-in-concat← where finab = (fin-∨ (afin A) (afin B)) NFA = (Concat-NFA A B) abmove : (q : states A ∨ states B) → (h : Σ ) → states A ∨ states B abmove (case1 q) h = case1 (δ (automaton A) q h) abmove (case2 q) h = case2 (δ (automaton B) q h) lemma-nmove-ab : (q : states A ∨ states B) → (h : Σ ) → Nδ NFA q h (abmove q h) ≡ true lemma-nmove-ab (case1 q) h = equal?-refl (afin A) lemma-nmove-ab (case2 q) h = equal?-refl (afin B) nmove : (q : states A ∨ states B) (nq : states A ∨ states B → Bool ) → (nq q ≡ true) → ( h : Σ ) → exists finab (λ qn → nq qn /\ Nδ NFA qn h (abmove q h)) ≡ true nmove (case1 q) nq nqt h = found finab (case1 q) ( bool-and-tt nqt (lemma-nmove-ab (case1 q) h) ) nmove (case2 q) nq nqt h = found finab (case2 q) ( bool-and-tt nqt (lemma-nmove-ab (case2 q) h) ) acceptB : (z : List Σ) → (q : states B) → (nq : states A ∨ states B → Bool ) → (nq (case2 q) ≡ true) → ( accept (automaton B) q z ≡ true ) → Naccept NFA (CNFA-exist A B) nq z ≡ true acceptB [] q nq nqt fb = lemma8 where lemma8 : exists finab ( λ q → nq q /\ Nend NFA q ) ≡ true lemma8 = found finab (case2 q) ( bool-and-tt nqt fb ) acceptB (h ∷ t ) q nq nq=q fb = acceptB t (δ (automaton B) q h) (Nmoves NFA (CNFA-exist A B) nq h) (nmove (case2 q) nq nq=q h) fb acceptA : (y z : List Σ) → (q : states A) → (nq : states A ∨ states B → Bool ) → (nq (case1 q) ≡ true) → ( accept (automaton A) q y ≡ true ) → ( accept (automaton B) (astart B) z ≡ true ) → Naccept NFA (CNFA-exist A B) nq (y ++ z) ≡ true acceptA [] [] q nq nqt fa fb = found finab (case1 q) (bool-and-tt nqt (bool-and-tt fa fb )) acceptA [] (h ∷ z) q nq nq=q fa fb = acceptB z nextb (Nmoves NFA (CNFA-exist A B) nq h) lemma70 fb where nextb : states B nextb = δ (automaton B) (astart B) h lemma70 : exists finab (λ qn → nq qn /\ Nδ NFA qn h (case2 nextb)) ≡ true lemma70 = found finab (case1 q) ( bool-and-tt nq=q (bool-and-tt fa (lemma-nmove-ab (case2 (astart B)) h) )) acceptA (h ∷ t) z q nq nq=q fa fb = acceptA t z (δ (automaton A) q h) (Nmoves NFA (CNFA-exist A B) nq h) (nmove (case1 q) nq nq=q h) fa fb acceptAB : Split (contain A) (contain B) x → Naccept NFA (CNFA-exist A B) (equal? finab (case1 (astart A))) x ≡ true acceptAB S = subst ( λ k → Naccept NFA (CNFA-exist A B) (equal? finab (case1 (astart A))) k ≡ true ) ( sp-concat S ) (acceptA (sp0 S) (sp1 S) (astart A) (equal? finab (case1 (astart A))) (equal?-refl finab) (prop0 S) (prop1 S) ) closed-in-concat→ : Concat (contain A) (contain B) x ≡ true → contain (M-Concat A B) x ≡ true closed-in-concat→ concat with split→AB (contain A) (contain B) x concat ... | S = begin accept (subset-construction (CNFA-exist A B) (Concat-NFA A B) ) (Concat-NFA-start A B ) x ≡⟨ ≡-Bool-func (subset-construction-lemma← (CNFA-exist A B) NFA (equal? finab (case1 (astart A))) x ) (subset-construction-lemma→ (CNFA-exist A B) NFA (equal? finab (case1 (astart A))) x ) ⟩ Naccept NFA (CNFA-exist A B) (equal? finab (case1 (astart A))) x ≡⟨ acceptAB S ⟩ true ∎ where open ≡-Reasoning open Found ab-case : (q : states A ∨ states B ) → (qa : states A ) → (x : List Σ ) → Set ab-case (case1 qa') qa x = qa' ≡ qa ab-case (case2 qb) qa x = ¬ ( accept (automaton B) qb x ≡ true ) contain-A : (x : List Σ) → (nq : states A ∨ states B → Bool ) → (fn : Naccept NFA (CNFA-exist A B) nq x ≡ true ) → (qa : states A ) → ( (q : states A ∨ states B) → nq q ≡ true → ab-case q qa x ) → split (accept (automaton A) qa ) (contain B) x ≡ true contain-A [] nq fn qa cond with found← finab fn -- at this stage, A and B must be satisfied with [] (ab-case cond forces it) ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S)) ... | case1 qa' | record { eq = refl } | refl = bool-∧→tt-1 (found-p S) ... | case2 qb | record { eq = refl } | ab = ⊥-elim ( ab (bool-∧→tt-1 (found-p S))) contain-A (h ∷ t) nq fn qa cond with bool-≡-? ((aend (automaton A) qa) /\ accept (automaton B) (δ (automaton B) (astart B) h) t ) true ... | yes eq = bool-or-41 eq -- found A ++ B all end ... | no ne = bool-or-31 (contain-A t (Nmoves NFA (CNFA-exist A B) nq h) fn (δ (automaton A) qa h) lemma11 ) where -- B failed continue with ab-base condtion --- prove ab-case condition (we haven't checked but case2 b may happen) lemma11 : (q : states A ∨ states B) → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true → ab-case q (δ (automaton A) qa h) t lemma11 (case1 qa') ex with found← finab ex ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S)) ... | case1 qa | record { eq = refl } | refl = sym ( equal→refl (afin A) ( bool-∧→tt-1 (found-p S) )) -- continued A case ... | case2 qb | record { eq = refl } | nb with bool-∧→tt-1 (found-p S) -- δnfa (case2 q) i (case1 q₁) is false ... | () lemma11 (case2 qb) ex with found← finab ex ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S)) lemma11 (case2 qb) ex | S | case2 qb' | record { eq = refl } | nb = contra-position lemma13 nb where -- continued B case should fail lemma13 : accept (automaton B) qb t ≡ true → accept (automaton B) qb' (h ∷ t) ≡ true lemma13 fb = subst (λ k → accept (automaton B) k t ≡ true ) (sym (equal→refl (afin B) (bool-∧→tt-1 (found-p S)))) fb lemma11 (case2 qb) ex | S | case1 qa | record { eq = refl } | refl with bool-∧→tt-1 (found-p S) ... | eee = contra-position lemma12 ne where -- starting B case should fail lemma12 : accept (automaton B) qb t ≡ true → aend (automaton A) qa /\ accept (automaton B) (δ (automaton B) (astart B) h) t ≡ true lemma12 fb = bool-and-tt (bool-∧→tt-0 eee) (subst ( λ k → accept (automaton B) k t ≡ true ) (equal→refl (afin B) (bool-∧→tt-1 eee) ) fb ) lemma10 : Naccept NFA (CNFA-exist A B) (equal? finab (case1 (astart A))) x ≡ true → split (contain A) (contain B) x ≡ true lemma10 CC = contain-A x (Concat-NFA-start A B ) CC (astart A) lemma15 where lemma15 : (q : states A ∨ states B) → Concat-NFA-start A B q ≡ true → ab-case q (astart A) x lemma15 q nq=t with equal→refl finab nq=t ... | refl = refl closed-in-concat← : contain (M-Concat A B) x ≡ true → Concat (contain A) (contain B) x ≡ true closed-in-concat← C with subset-construction-lemma← (CNFA-exist A B) NFA (equal? finab (case1 (astart A))) x C ... | CC = lemma10 CC
{ "alphanum_fraction": 0.5486637568, "avg_line_length": 53.7407407407, "ext": "agda", "hexsha": "3b4ae7eef2f35ca6c5a763b540724eb72cd0f434", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/regular-concat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/regular-concat.agda", "max_line_length": 161, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/regular-concat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5102, "size": 13059 }
open import Categories open import Monads module Monads.CatofAdj.InitAdj {a b}{C : Cat {a}{b} }(M : Monad C) where open import Library open import Functors open import Naturals hiding (Iso; module Iso) open import Adjunctions open import Monads.CatofAdj M open import Categories.Initial open import Monads.Kleisli M open import Monads.Kleisli.Functors M open import Monads.Kleisli.Adjunction M open import Adjunctions.Adj2Mon open Cat open Fun open Monad M open NatT open Adj lemX : R KlAdj ○ L KlAdj ≅ TFun M lemX = FunctorEq _ _ refl refl KlObj : Obj CatofAdj KlObj = record { D = Kl; adj = KlAdj; law = lemX; ηlaw = refl; bindlaw = λ{X}{Y}{f} → cong bind (stripsubst (Hom C X) f (fcong Y (cong OMap (sym lemX))))} open ObjAdj open import Isomorphism open Iso lemZ : {D : Cat {a}{b}}{F G G' : Fun C D} → G ≅ G' → {α : NatT F G}{β : NatT F G'} → α ≅ β → ∀ {X} → cmp α {X} ≅ cmp β {X} lemZ refl refl = refl lemZ' : {D : Cat {a}{b}}{F F' G G' : Fun C D} → F ≅ F' → G ≅ G' → {α : NatT F G}{β : NatT F' G'} → α ≅ β → ∀ {X} → cmp α {X} ≅ cmp β {X} lemZ' refl refl refl = refl lemfid : {D : Cat {a}{b}}(L : Fun C D)(R : Fun D C)(T : Fun C C) (p : T ≅ R ○ L) (η : ∀ {X} → Hom C X (OMap T X)) (right : {X : Obj C}{Y : Obj D} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (left : {X : Obj C}{Y : Obj D} → Hom D (OMap L X) Y → Hom C X (OMap R Y)) → (q : {X : Obj C}{Y : Obj D}(f : Hom D (OMap L X) Y) → right (left f) ≅ f) → (r : {X : Obj C} → left (iden D {OMap L X}) ≅ η {X}) → {X : Obj C} → right (subst (Hom C X) (fcong X (cong OMap p)) η) ≅ iden D {OMap L X} lemfid {D = D} L R .(R ○ L) refl η right left q r {X} = trans (cong right (sym r)) (q (iden D)) lemfcomp : {D : Cat {a}{b}}(L : Fun C D)(R : Fun D C)(T : Fun C C) (p : T ≅ R ○ L) (bind : ∀{X Y} → Hom C X (OMap T Y) → Hom C (OMap T X) (OMap T Y)) → (right : {X : Obj C} {Y : Obj D} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (q : {X Y : Obj C} {f : Hom C X (OMap T Y)} → HMap R (right (subst (Hom C X) (fcong Y (cong OMap p)) f)) ≅ bind f) → (r : {X X' : Obj C}{Y Y' : Obj D} (f : Hom C X' X)(g : Hom D Y Y') (h : Hom C X (OMap R Y)) → right (comp C (HMap R g) (comp C h f)) ≅ comp D g (comp D (right h) (HMap L f))) → ∀{X Y Z : Obj C} {f : Hom C Y (OMap T Z)} {g : Hom C X (OMap T Y)} → right (subst (Hom C X) (fcong Z (cong OMap p)) (comp C (bind f) g)) ≅ comp D (right (subst (Hom C Y) (fcong Z (cong OMap p)) f)) (right (subst (Hom C X) (fcong Y (cong OMap p)) g)) lemfcomp {D = D} L R .(R ○ L) refl bind right q r {X}{Y}{Z}{f}{g} = trans (cong₂ (λ f g → right (comp C f g)) (sym (q {f = f})) (sym (idr C))) (trans (r (iden C) (right f) g) (cong (comp D (right f)) (trans (cong (comp D (right g)) (fid L)) (idr D)))) lemLlaw : {D : Cat {a}{b}}(L : Fun C D)(R : Fun D C)(T : Fun C C) (p : T ≅ R ○ L) (η : ∀ {X} → Hom C X (OMap T X)) → (right : {X : Obj C} {Y : Obj D} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (left : {X : Obj C} {Y : Obj D} → Hom D (OMap L X) Y → Hom C X (OMap R Y)) → (q : {X : Obj C} {Y : Obj D} (f : Hom D (OMap L X) Y) → right (left f) ≅ f) → (r : {X : Obj C} → left (iden D {OMap L X}) ≅ η {X}) → (t : {X X' : Obj C}{Y Y' : Obj D} (f : Hom C X' X)(g : Hom D Y Y') (h : Hom C X (OMap R Y)) → right (comp C (HMap R g) (comp C h f)) ≅ comp D g (comp D (right h) (HMap L f)) ) → {X Y : Obj C} (f : Hom C X Y) → right (subst (Hom C X) (fcong Y (cong OMap p)) (comp C η f)) ≅ HMap L f lemLlaw {D = D} L R .(R ○ L) refl η right left q r t {X}{Y} f = trans (cong (λ g → right (comp C g f)) (sym r)) (trans (trans (trans (cong right (trans (sym (idl C)) (cong (λ g → comp C g (comp C (left (iden D)) f)) (sym (fid R))))) (t f (iden D) (left (iden D)))) (cong (comp D (iden D)) (trans (cong (λ g → comp D g (HMap L f)) (q (iden D))) (idl D)))) (idl D)) K' : (A : Obj CatofAdj) → Fun (D KlObj) (D A) K' A = record { OMap = OMap (L (adj A)); HMap = λ {X} {Y} f → right (adj A) (subst (Hom C X) (fcong Y (cong OMap (sym (law A)))) f); fid = lemfid (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) η (right (adj A)) (left (adj A)) (lawa (adj A)) (ηlaw A); fcomp = lemfcomp (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) bind (right (adj A)) (bindlaw A) (natright (adj A)) } Llaw' : (A : Obj CatofAdj) → K' A ○ L (adj KlObj) ≅ L (adj A) Llaw' A = FunctorEq _ _ refl (iext λ _ → iext λ _ → ext $ lemLlaw (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) η (right (adj A)) (left (adj A)) (lawa (adj A)) (ηlaw A) (natright (adj A))) Rlaw' : (A : Obj CatofAdj) → R (adj KlObj) ≅ R (adj A) ○ K' A Rlaw' A = FunctorEq _ _ (cong OMap (sym (law A))) (iext λ _ → iext λ _ → ext λ _ → sym (bindlaw A)) rightlaw' : (A : Obj CatofAdj) → {X : Obj C} {Y : Obj (D KlObj)} {f : Hom C X (OMap (R (adj KlObj)) Y)} → HMap (K' A) (right (adj KlObj) f) ≅ right (adj A) (subst (Hom C X) (fcong Y (cong OMap (Rlaw' A))) f) rightlaw' A {X}{Y}{f} = cong (right (adj A)) (trans (stripsubst (Hom C X) f (fcong Y (cong OMap (sym (law A))))) (sym (stripsubst (Hom C X) f (fcong Y (cong OMap (Rlaw' A)))))) KlHom : {A : Obj CatofAdj} → Hom CatofAdj KlObj A KlHom {A} = record { K = K' A; Llaw = Llaw' A; Rlaw = Rlaw' A; rightlaw = rightlaw' A } uniq : {X : Obj CatofAdj}{f : Hom CatofAdj KlObj X} → KlHom ≅ f uniq {X}{V} = HomAdjEq _ _ (FunctorEq _ _ (cong OMap (sym (HomAdj.Llaw V))) (iext λ A → iext λ B → ext λ f → trans (cong₂ (λ B₁ → right (adj X) {A} {B₁}) (sym (fcong B (cong OMap (HomAdj.Llaw V)))) (trans (stripsubst (Hom C A) f (fcong B (cong OMap (sym (law X))))) (sym (stripsubst (Hom C A) f (fcong B (cong OMap (HomAdj.Rlaw V))))))) (sym (HomAdj.rightlaw V)))) KlIsInit : Init CatofAdj KlObj KlIsInit = record { i = KlHom; law = uniq} -- -}
{ "alphanum_fraction": 0.4080664294, "avg_line_length": 35.9573459716, "ext": "agda", "hexsha": "cdb70496286120f0203b7a3d0f2a79440a83bdea", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/CatofAdj/InitAdj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/CatofAdj/InitAdj.agda", "max_line_length": 80, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/CatofAdj/InitAdj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 2727, "size": 7587 }
{-# OPTIONS --cubical --no-sized-types --no-guardedness #-} module Issue2487.c where postulate admit : {A : Set} -> A
{ "alphanum_fraction": 0.6638655462, "avg_line_length": 23.8, "ext": "agda", "hexsha": "9ef8ed45e9dee9a6865823106099eabb6d276ea9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2487/c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2487/c.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2487/c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 119 }
------------------------------------------------------------------------ -- Tactics for proving instances of Σ-cong (and Surjection.Σ-cong) -- with "better" computational behaviour ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Tactic.Sigma-cong {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence as L using (_⇔_) open import Prelude open import Bijection eq as B using (_↔_) open import Equivalence eq as Eq using (_≃_) open import Function-universe eq as F hiding (id; _∘_) open import Monad eq open import Surjection eq as S using (_↠_) open import TC-monad eq hiding (Type) private variable a b : Level A B : Type a f g k k₁ k₂ p q x y : A P Q : A → Type p ------------------------------------------------------------------------ -- Σ-cong-refl -- Building blocks used to construct the proofs in Σ-cong-refl. record Σ-cong-refl-proofs (k : Kind) (A : Type a) (B : Type b) (P : A → Type p) (Q : B → Type q) : Type (lsuc (a ⊔ b ⊔ p ⊔ q)) where field refl₁ : (x : Σ B Q) → x ≡ x refl₂ : (x : Σ A P) → x ≡ x cong-refl₃ : (f : Σ A P → Σ B Q) (p : Σ A P) → cong f (refl p) ≡ refl (f p) →↝ : (A⇔B : A ⇔ B) (P→Q : ∀ x → P x → Q (_⇔_.to A⇔B x)) (Q→P : ∀ x → Q x → P (_⇔_.from A⇔B x)) → (eq₁ : (p : Σ B Q) → Σ-map (_⇔_.to A⇔B) (P→Q _) (Σ-map (_⇔_.from A⇔B) (Q→P _) p) ≡ p) → (eq₂ : (p : Σ A P) → Σ-map (_⇔_.from A⇔B) (Q→P _) (Σ-map (_⇔_.to A⇔B) (P→Q _) p) ≡ p) → ((p : Σ A P) → cong (Σ-map (_⇔_.to A⇔B) (P→Q _)) (eq₂ p) ≡ eq₁ (Σ-map (_⇔_.to A⇔B) (P→Q _) p)) → Σ A P ↝[ k ] Σ B Q instance -- The building blocks can be proved. instance-of-Σ-cong-refl-proofs : Σ-cong-refl-proofs k A B P Q instance-of-Σ-cong-refl-proofs = λ where .refl₁ _ → refl _ .refl₂ _ → refl _ .cong-refl₃ _ _ → cong-refl _ .→↝ A⇔B P→Q Q→P p q r → from-equivalence $ Eq.⟨ Σ-map (_⇔_.to A⇔B) (P→Q _) , ( Σ-map (_⇔_.from A⇔B) (Q→P _) , p , q , r ) ⟩ where open Σ-cong-refl-proofs private -- Used to implement Σ-cong-refl. -- -- The constructed term is returned. Σ-cong-refl-tactic : Σ-cong-refl-proofs k A B P Q → (A⇔B : A ⇔ B) → (∀ x → P x ⇔ Q (_⇔_.to A⇔B x)) → Term → TC Term Σ-cong-refl-tactic proofs A⇔B P⇔Q goal = do refl₁ ← quoteTC (Σ-cong-refl-proofs.refl₁ proofs) refl₂ ← quoteTC (Σ-cong-refl-proofs.refl₂ proofs) cong-refl₃ ← quoteTC (Σ-cong-refl-proofs.cong-refl₃ proofs (Σ-map (_⇔_.to A⇔B) (_⇔_.to (P⇔Q _)))) proofs ← quoteTC proofs P→Q ← quoteTC (_⇔_.to ∘ P⇔Q) Q→P ← quoteTC (_⇔_.from ∘ P⇔Q ∘ _⇔_.from A⇔B) A⇔B ← quoteTC A⇔B let t = def (quote Σ-cong-refl-proofs.→↝) (varg proofs ∷ varg A⇔B ∷ varg P→Q ∷ varg Q→P ∷ varg refl₁ ∷ varg refl₂ ∷ varg cong-refl₃ ∷ []) unify goal t return t macro -- A macro that tries to prove Σ A P ↝[ k₃ ] Σ B Q. -- -- If k₃ is symmetric, then the two directions of the proof are -- constructed in the following way: -- -- * The forward direction is a function from Σ A P to Σ B Q, -- constructed in the "obvious" way using the forward directions -- of the two supplied proofs. -- -- * The other direction is a function from Σ B (Q ∘ f ∘ g) to -- Σ A P, where f and g are the two directions of the first proof. -- This function is also constructed in the "obvious" way, using -- the right-to-left directions of the two supplied proofs. It is -- assumed that Q ∘ f ∘ g is definitionally equal to Q. -- -- The two functions are assumed to be definitionally equal, so that -- they can be proved to be inverses of each other (pointwise) using -- reflexivity. Σ-cong-refl : {k₁ k₂ : Symmetric-kind} {k₃ : Kind} ⦃ proofs : Σ-cong-refl-proofs k₃ A B P Q ⦄ → (A↝B : A ↝[ ⌊ k₁ ⌋-sym ] B) → (∀ x → P x ↝[ ⌊ k₂ ⌋-sym ] Q (_⇔_.to (sym→⇔ A↝B) x)) → Term → TC ⊤ Σ-cong-refl ⦃ proofs = proofs ⦄ A↝B P↝Q goal = do Σ-cong-refl-tactic proofs (sym→⇔ A↝B) (sym→⇔ ∘ P↝Q) goal return _ private -- Some unit tests. t₁ : (A × A) ≃ (A × A) t₁ = Σ-cong-refl L.id λ _ → B.id _ : _≃_.to t₁ p ≡ p _ = refl _ _ : _≃_.from t₁ p ≡ p _ = refl _ _ : {p : A × A} → _≃_.right-inverse-of t₁ p ≡ refl _ _ = refl _ _ : {p : A × A} → _≃_.left-inverse-of t₁ p ≡ refl _ _ = refl _ t₂ : (A × A) ↔ (A × A) t₂ = Σ-cong-refl Eq.id λ _ → L.id _ : _↔_.to t₂ p ≡ p _ = refl _ _ : _↔_.from t₂ p ≡ p _ = refl _ _ : {p : A × A} → _↔_.right-inverse-of t₂ p ≡ refl _ _ = refl _ _ : {p : A × A} → _↔_.left-inverse-of t₂ p ≡ refl _ _ = refl _ t₃ : {P : A → B → Type p} {Q : A → B → (∀ x y → P x y) → Type q} → (∃ λ (f : ∀ x y → P x y) → ∀ x y → Q x y f) ≃ (∃ λ (f : ∀ y x → P x y) → ∀ y x → Q x y (flip f)) t₃ = Σ-cong-refl Π-comm λ _ → Π-comm _ : _≃_.to t₃ p ≡ Σ-map flip flip p _ = refl _ _ : _≃_.from t₃ p ≡ Σ-map flip flip p _ = refl _ _ : {P : A → B → Type p} {Q : A → B → (∀ x y → P x y) → Type q} {p : ∃ λ (f : ∀ y x → P x y) → ∀ y x → Q x y (flip f)} → _≃_.right-inverse-of (t₃ {Q = Q}) p ≡ refl _ _ = refl _ _ : {P : A → B → Type p} {Q : A → B → (∀ x y → P x y) → Type q} {p : ∃ λ (f : ∀ x y → P x y) → ∀ x y → Q x y f} → _≃_.left-inverse-of (t₃ {Q = Q}) p ≡ refl _ _ = refl _ -- The following proof—implemented using Σ-cong—is, at the time of -- writing, "worse". t₃′ : {P : A → B → Type p} {Q : A → B → (∀ x y → P x y) → Type q} → (∃ λ (f : ∀ x y → P x y) → ∀ x y → Q x y f) ≃ (∃ λ (f : ∀ y x → P x y) → ∀ y x → Q x y (flip f)) t₃′ = Eq.↔⇒≃ $ Σ-cong Π-comm λ _ → Π-comm _ : _≃_.to t₃′ p ≡ Σ-map flip flip p _ = refl _ _ : ∀ {P : A → B → Type p} {Q : A → B → (∀ x y → P x y) → Type q} {p} → _≃_.from (t₃′ {Q = Q}) p ≡ Σ-map flip (flip ∘ subst (λ f → ∀ y x → Q x y (flip f)) (sym (refl _))) p _ = refl _ ------------------------------------------------------------------------ -- Σ-cong-id -- Building blocks used to construct the proofs in Σ-cong-id. record Σ-cong-id-proofs (k : Kind) (A : Type a) (B : Type b) (P : B → Type p) : Type (lsuc (a ⊔ b ⊔ p)) where field refl₁ : (x : Σ B P) → x ≡ x subst-refl₂ : (A≃B : A ≃ B) ((x , y) : Σ A (P ∘ _≃_.to A≃B)) → subst P (refl (_≃_.to A≃B x)) y ≡ y →↝ : (A≃B : A ≃ B) (g : ∀ x → P x → P (_≃_.to A≃B (_≃_.from A≃B x))) → ((p : Σ B P) → Σ-map (_≃_.to A≃B) id (Σ-map (_≃_.from A≃B) (g _) p) ≡ p) → (((x , y) : Σ A (P ∘ _≃_.to A≃B)) → subst P (_≃_.right-inverse-of A≃B (_≃_.to A≃B x)) (g _ y) ≡ y) → Σ A (P ∘ _≃_.to A≃B) ↝[ k ] Σ B P instance -- The building blocks can be proved. instance-of-Σ-cong-id-proofs : Σ-cong-id-proofs k A B P instance-of-Σ-cong-id-proofs {P = P} = λ where .refl₁ → refl .subst-refl₂ _ _ → subst-refl _ _ .→↝ A≃B g p q → let open _≃_ A≃B in from-equivalence $ Eq.↔→≃ (Σ-map to id) (Σ-map from (g _)) p (λ (x , y) → Σ-≡,≡→≡ (left-inverse-of _) (subst (P ∘ to) (left-inverse-of x) (g _ y) ≡⟨ subst-∘ _ _ _ ⟩ subst P (cong to (left-inverse-of x)) (g _ y) ≡⟨ cong (λ eq → subst P eq _) (left-right-lemma x) ⟩ subst P (right-inverse-of (to x)) (g _ y) ≡⟨ q _ ⟩∎ y ∎)) where open Σ-cong-id-proofs private -- Used to implement Σ-cong-id. -- -- The constructed term is returned. Σ-cong-id-tactic : Σ-cong-id-proofs k A B P → A ≃ B → Term → TC Term Σ-cong-id-tactic proofs A≃B goal = do refl₁ ← quoteTC (Σ-cong-id-proofs.refl₁ proofs) subst-refl₂ ← quoteTC (Σ-cong-id-proofs.subst-refl₂ proofs A≃B) proofs ← quoteTC proofs A≃B ← quoteTC A≃B let t = def (quote Σ-cong-id-proofs.→↝) (varg proofs ∷ varg A≃B ∷ varg (lam visible $ abs "_" $ lam visible $ abs "x" $ var 0 []) ∷ varg refl₁ ∷ varg subst-refl₂ ∷ []) unify goal t return t macro -- A macro that tries to prove -- Σ A (P ∘ from-isomorphism eq) ↝[ k₂ ] Σ B P, given that there is -- a proof eq : A ↔[ k₁ ] B for which the "right inverse of" proof -- is definitionally equal to reflexivity. If k₂ is surjection, -- bijection or equivalence, then the "right inverse of" component -- of the resulting proof is reflexivity. Σ-cong-id : ⦃ proofs : Σ-cong-id-proofs k₂ A B P ⦄ → A ↔[ k₁ ] B → Term → TC ⊤ Σ-cong-id ⦃ proofs = proofs ⦄ A↝B goal = do Σ-cong-id-tactic proofs (from-isomorphism A↝B) goal return _ private -- Some unit tests. t₄ : (A × A) ↔ (A × A) t₄ = Σ-cong-id B.id _ : _↔_.to t₄ p ≡ p _ = refl _ _ : _↔_.from t₄ p ≡ p _ = refl _ _ : {p : A × A} → _↔_.right-inverse-of t₄ p ≡ refl _ _ = refl _ t₅ : (∃ λ (x : ⊥₀ ⊎ A) → _↔_.to ⊎-left-identity x ≡ y) ≃ (∃ λ (x : A) → x ≡ y) t₅ = Σ-cong-id ⊎-left-identity _ : _≃_.to t₅ (inj₂ x , p) ≡ (x , p) _ = refl _ _ : _≃_.from t₅ p ≡ Σ-map inj₂ id p _ = refl _ _ : {p : ∃ λ (x : A) → x ≡ y} → _≃_.right-inverse-of t₅ p ≡ refl _ _ = refl _ -- The following proof—implemented using Σ-cong—is, at the time of -- writing, "worse". t₅′ : (∃ λ (x : ⊥₀ ⊎ A) → _↔_.to ⊎-left-identity x ≡ y) ≃ (∃ λ (x : A) → x ≡ y) t₅′ = Eq.↔⇒≃ $ Σ-cong ⊎-left-identity λ _ → F.id _ : _≃_.to t₅′ (inj₂ x , p) ≡ (x , p) _ = refl _ _ : _≃_.from t₅′ p ≡ Σ-map inj₂ (subst (_≡ y) (sym (refl _))) p _ = refl _ ------------------------------------------------------------------------ -- Σ-cong-id-↠ -- Building blocks used to construct the proofs in Σ-cong-id-↠. record Σ-cong-id-↠-proofs (A : Type a) (B : Type b) (P : B → Type p) : Type (lsuc (a ⊔ b ⊔ p)) where field refl₁ : (x : Σ B P) → x ≡ x →↠ : (A↠B : A ↠ B) (g : ∀ x → P x → P (_↠_.to A↠B (_↠_.from A↠B x))) → ((p : Σ B P) → Σ-map (_↠_.to A↠B) id (Σ-map (_↠_.from A↠B) (g _) p) ≡ p) → Σ A (P ∘ _↠_.to A↠B) ↠ Σ B P instance -- The building blocks can be proved. instance-of-Σ-cong-id-↠-proofs : Σ-cong-id-↠-proofs A B P instance-of-Σ-cong-id-↠-proofs {P = P} = λ where .refl₁ → refl .→↠ A↠B g p → record { logical-equivalence = record { to = Σ-map (_↠_.to A↠B) id ; from = Σ-map (_↠_.from A↠B) (g _) } ; right-inverse-of = p } where open Σ-cong-id-↠-proofs private -- Used to implement Σ-cong-id-↠. -- -- The constructed term is returned. Σ-cong-id-↠-tactic : Σ-cong-id-↠-proofs A B P → A ↠ B → Term → TC Term Σ-cong-id-↠-tactic proofs A↠B goal = do refl₁ ← quoteTC (Σ-cong-id-↠-proofs.refl₁ proofs) proofs ← quoteTC proofs A↠B ← quoteTC A↠B let t = def (quote Σ-cong-id-↠-proofs.→↠) (varg proofs ∷ varg A↠B ∷ varg (lam visible $ abs "_" $ lam visible $ abs "x" $ var 0 []) ∷ varg refl₁ ∷ []) unify goal t return t macro -- A macro that tries to prove Σ A (P ∘ _↠_.to eq) ↠ Σ B P, given a -- proof eq for which _↠_.to eq ∘ _↠_.from eq is definitionally -- equal to the identity function. The right-inverse-of component of -- the resulting proof is reflexivity. Σ-cong-id-↠ : ⦃ proofs : Σ-cong-id-↠-proofs A B P ⦄ → A ↠ B → Term → TC ⊤ Σ-cong-id-↠ ⦃ proofs = proofs ⦄ A↠B goal = do Σ-cong-id-↠-tactic proofs A↠B goal return _ private -- Some unit tests. t₆ : (A × A) ↠ (A × A) t₆ = Σ-cong-id-↠ S.id _ : _↠_.to t₆ p ≡ p _ = refl _ _ : _↠_.from t₆ p ≡ p _ = refl _ _ : {p : A × A} → _↠_.right-inverse-of t₆ p ≡ refl _ _ = refl _ t₇ : (∃ λ (f : (x : A ⊎ B) → P x) → (f ∘ inj₁ , f ∘ inj₂) ≡ q) ↠ (∃ λ (p : ((x : A) → P (inj₁ x)) × ((y : B) → P (inj₂ y))) → p ≡ q) t₇ = Σ-cong-id-↠ Π⊎↠Π×Π _ : _↠_.to t₇ (f , p) ≡ ((f ∘ inj₁ , f ∘ inj₂) , p) _ = refl _ _ : _↠_.from t₇ ((f , g) , p) ≡ ([ f , g ] , p) _ = refl _ _ : ∀ {P : A ⊎ B → Type p} {q} {p : ∃ λ (p : ((x : A) → P (inj₁ x)) × ((y : B) → P (inj₂ y))) → p ≡ q} → _↠_.right-inverse-of (t₇ {P = P}) p ≡ refl p _ = refl _ -- The following proof—implemented using S.Σ-cong—is, at the time of -- writing, "worse". t₇′ : (∃ λ (f : (x : A ⊎ B) → P x) → (f ∘ inj₁ , f ∘ inj₂) ≡ q) ↠ (∃ λ (p : ((x : A) → P (inj₁ x)) × ((y : B) → P (inj₂ y))) → p ≡ q) t₇′ = S.Σ-cong Π⊎↠Π×Π λ _ → F.id _ : _↠_.to t₇′ (f , p) ≡ ((f ∘ inj₁ , f ∘ inj₂) , p) _ = refl _ _ : _↠_.from t₇′ ((f , g) , p) ≡ ([ f , g ] , subst (_≡ q) (sym (refl _)) p) _ = refl _
{ "alphanum_fraction": 0.4577227433, "avg_line_length": 27.0793650794, "ext": "agda", "hexsha": "e98d4d56901d3a57008fb01800c805f54cc7f92f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Tactic/Sigma-cong.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Tactic/Sigma-cong.agda", "max_line_length": 115, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Tactic/Sigma-cong.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 5679, "size": 13648 }
module #3 where open import Relation.Binary.PropositionalEquality {- Exercise 2.3 Give a fourth, different, proof of Lemma 2.1.2, and prove that it is equal to the others. -} based-ind₌ : ∀ {i} {A : Set i}{a : A} → (C : (x : A) → (a ≡ x) → Set i) → C a refl → {x : A} → (p : a ≡ x) → C x p based-ind₌ C c p rewrite p = c -- Uses based path induction composite''' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) composite''' {i} {A} {x}{y}{_} p = based-ind₌ D d where D : (z : A) → (q : y ≡ z) → Set i D z _ = x ≡ z d : D _ refl d = p
{ "alphanum_fraction": 0.5222024867, "avg_line_length": 28.15, "ext": "agda", "hexsha": "7e675a719523c15dfca7d24c77ec5c65280b77bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter2/#3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter2/#3.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter2/#3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 563 }
module plfa-code.Isomorphism where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm) _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) x = g (f x) _∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) g ∘′ f = λ x → g (f x) postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g _+′_ : ℕ → ℕ → ℕ m +′ zero = m m +′ suc n = suc (m +′ n) same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n same-app m n rewrite +-comm m n = helper m n where helper : ∀ (m n : ℕ) → m +′ n ≡ n + m helper m zero = refl helper m (suc n) = cong suc (helper m n) same : _+′_ ≡ _+_ same = extensionality (λ m → extensionality (λ n → same-app m n)) infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ -- equal to data _≃′_ (A B : Set): Set where mk-≃′ : ∀ (to : A → B) → ∀ (from : B → A) → ∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) → ∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) → A ≃′ B to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B) to′ (mk-≃′ f g g∘f f∘g) = f from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A) from′ (mk-≃′ f g g∘f f∘g) = g from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (x : A) → from′ A≃B (to′ A≃B x) ≡ x) from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (y : B) → to′ A≃B (from′ A≃B y) ≡ y) to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g -- which means `field record` will take the field ≃-refl : ∀ {A : Set} ----- → A ≃ A ≃-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} ; to∘from = λ{y → refl} } ≃-sym : ∀ {A B : Set} → A ≃ B ----- → B ≃ A ≃-sym A≃B = record { to = from A≃B ; from = to A≃B ; from∘to = to∘from A≃B ; to∘from = from∘to A≃B } ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin (from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x) ≡⟨⟩ from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎ } ; to∘from = λ{y → begin (to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y) ≡⟨⟩ to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎} } module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≲-refl : ∀ {A : Set} → A ≲ A ≲-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} } ≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C ≲-trans A≲B B≲C = record { to = λ{x → to B≲C (to A≲B x)} ; from = λ{y → from A≲B (from B≲C y)} ; from∘to = λ{x → begin from A≲B (from B≲C (to B≲C (to A≲B x))) ≡⟨ cong (from A≲B) (from∘to B≲C (to A≲B x)) ⟩ from A≲B (to A≲B x) ≡⟨ from∘to A≲B x ⟩ x ∎} } ≲-antisym : ∀ {A B : Set} → (A≲B : A ≲ B) → (B≲A : B ≲ A) → (to A≲B ≡ from B≲A) → (from A≲B ≡ to B≲A) ------------------- → A ≃ B ≲-antisym A≲B B≲A to≡from from≡to = record { to = to A≲B ; from = from A≲B ; from∘to = from∘to A≲B ; to∘from = λ{y → begin to A≲B (from A≲B y) ≡⟨ cong (to A≲B) (cong-app from≡to y) ⟩ to A≲B (to B≲A y) ≡⟨ cong-app to≡from (to B≲A y) ⟩ from B≲A (to B≲A y) ≡⟨ from∘to B≲A y ⟩ y ∎ } } module ≲-Reasoning where infix 1 ≲-begin_ infixr 2 _≲⟨_⟩_ infix 3 _≲-∎ ≲-begin_ : ∀ {A B : Set} → A ≲ B ----- → A ≲ B ≲-begin A≲B = A≲B _≲⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≲ B → B ≲ C ----- → A ≲ C A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C _≲-∎ : ∀ (A : Set) ----- → A ≲ A A ≲-∎ = ≲-refl open ≲-Reasoning ---------- practice ---------- ≃-implies-≲ : ∀ {A B : Set} → A ≃ B ----- → A ≲ B ≃-implies-≲ A≃B = record { to = to A≃B ; from = from A≃B ; from∘to = from∘to A≃B } record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ ⇔-refl : ∀ {A : Set} → A ⇔ A ⇔-refl = record { to = λ z → z ; from = λ z → z } ⇔-sym : ∀ {A B : Set} → A ⇔ B → B ⇔ A ⇔-sym A⇔B = record { to = from A⇔B ; from = to A⇔B } ⇔-trans : ∀ {A B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C ⇔-trans A⇔B B⇔C = record { to = to B⇔C ∘ to A⇔B ; from = from A⇔B ∘ from B⇔C } data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin postulate toB : ℕ → Bin fromB : Bin → ℕ from-to-const : ∀ (n : ℕ) → fromB (toB n) ≡ n ℕ-embedding-Bin : ℕ ≲ Bin ℕ-embedding-Bin = record { to = toB ; from = fromB ; from∘to = from-to-const }
{ "alphanum_fraction": 0.4023932845, "avg_line_length": 20.0681003584, "ext": "agda", "hexsha": "c23c3d3d881197bd7693ea7073d60d43b49e492b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Isomorphism.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2852, "size": 5599 }
module Base where open import Relation.Binary.PropositionalEquality is-prop : Set → Set is-prop X = (x y : X) → x ≡ y _∼_ : {A B : Set} → (f g : A → B) → Set f ∼ g = ∀ a → f a ≡ g a
{ "alphanum_fraction": 0.5675675676, "avg_line_length": 18.5, "ext": "agda", "hexsha": "4ee65ad59a3f73839779077a66fc5d4ab86bdcee", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Base.agda", "max_line_length": 49, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 74, "size": 185 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Free (Σ : Signature) where open import Fragment.Algebra.Free.Base Σ public open import Fragment.Algebra.Free.Properties Σ public open import Fragment.Algebra.Free.Monad Σ public open import Fragment.Algebra.Free.Evaluation Σ public
{ "alphanum_fraction": 0.795389049, "avg_line_length": 31.5454545455, "ext": "agda", "hexsha": "fea262977a22d293e17c7dd1d8fc80c7d2781892", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Free.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Free.agda", "max_line_length": 53, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Free.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 77, "size": 347 }
{- Half adjoint equivalences ([HAEquiv]) - Iso to HAEquiv ([iso→HAEquiv]) - Equiv to HAEquiv ([equiv→HAEquiv]) - Cong is an equivalence ([congEquiv]) -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.HAEquiv where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Nat record isHAEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field g : B → A sec : ∀ a → g (f a) ≡ a ret : ∀ b → f (g b) ≡ b com : ∀ a → cong f (sec a) ≡ ret (f a) -- from redtt's ha-equiv/symm com-op : ∀ b → cong g (ret b) ≡ sec (g b) com-op b j i = hcomp (λ k → λ { (i = i0) → sec (g b) (j ∧ (~ k)) ; (j = i0) → g (ret b i) ; (j = i1) → sec (g b) (i ∨ (~ k)) ; (i = i1) → g b }) (cap1 j i) where cap0 : Square {- (i = i0) -} (λ j → f (sec (g b) j)) {- (j = i0) -} (λ i → f (g (ret b i))) {- (j = i1) -} (λ i → ret b i) {- (i = i1) -} (λ j → ret b j) cap0 j i = hcomp (λ k → λ { (i = i0) → com (g b) (~ k) j ; (j = i0) → f (g (ret b i)) ; (j = i1) → ret b i ; (i = i1) → ret b j }) (ret (ret b i) j) filler : I → I → A filler j i = hfill (λ k → λ { (i = i0) → g (ret b k) ; (i = i1) → g b }) (inS (sec (g b) i)) j cap1 : Square {- (i = i0) -} (λ j → sec (g b) j) {- (j = i0) -} (λ i → g (ret b i)) {- (j = i1) -} (λ i → g b) {- (i = i1) -} (λ j → g b) cap1 j i = hcomp (λ k → λ { (i = i0) → sec (sec (g b) j) k ; (j = i0) → sec (g (ret b i)) k ; (j = i1) → filler i k ; (i = i1) → filler j k }) (g (cap0 j i)) HAEquiv : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') HAEquiv A B = Σ (A → B) λ f → isHAEquiv f private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' iso→HAEquiv : Iso A B → HAEquiv A B iso→HAEquiv {A = A} {B = B} (iso f g ε η) = f , (record { g = g ; sec = η ; ret = ret ; com = com }) where sides : ∀ b i j → Partial (~ i ∨ i) B sides b i j = λ { (i = i0) → ε (f (g b)) j ; (i = i1) → ε b j } bot : ∀ b i → B bot b i = cong f (η (g b)) i ret : (b : B) → f (g b) ≡ b ret b i = hcomp (sides b i) (bot b i) com : (a : A) → cong f (η a) ≡ ret (f a) com a i j = hcomp (λ k → λ { (i = i0) → ε (f (η a j)) k ; (i = i1) → hfill (sides (f a) j) (inS (bot (f a) j)) k ; (j = i0) → ε (f (g (f a))) k ; (j = i1) → ε (f a) k}) (cong (cong f) (sym (Hfa≡fHa (λ x → g (f x)) η a)) i j) equiv→HAEquiv : A ≃ B → HAEquiv A B equiv→HAEquiv e = iso→HAEquiv (equivToIso e) congEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (e .fst x ≡ e .fst y) congEquiv {A = A} {B} {x} {y} e = isoToEquiv (iso intro elim intro-elim elim-intro) where e' : HAEquiv A B e' = equiv→HAEquiv e f : A → B f = e' .fst g : B → A g = isHAEquiv.g (e' .snd) sec : ∀ a → g (f a) ≡ a sec = isHAEquiv.sec (e' .snd) ret : ∀ b → f (g b) ≡ b ret = isHAEquiv.ret (e' .snd) com : ∀ a → cong f (sec a) ≡ ret (f a) com = isHAEquiv.com (e' .snd) intro : x ≡ y → f x ≡ f y intro = cong f elim-sides : ∀ p i j → Partial (~ i ∨ i) A elim-sides p i j = λ { (i = i0) → sec x j ; (i = i1) → sec y j } elim-bot : ∀ p i → A elim-bot p i = cong g p i elim : f x ≡ f y → x ≡ y elim p i = hcomp (elim-sides p i) (elim-bot p i) intro-elim : ∀ p → intro (elim p) ≡ p intro-elim p i j = hcomp (λ k → λ { (i = i0) → f (hfill (elim-sides p j) (inS (elim-bot p j)) k) ; (i = i1) → ret (p j) k ; (j = i0) → com x i k ; (j = i1) → com y i k }) (f (g (p j))) elim-intro : ∀ p → elim (intro p) ≡ p elim-intro p i j = hcomp (λ k → λ { (i = i0) → hfill (λ l → λ { (j = i0) → secEq e x l ; (j = i1) → secEq e y l }) (inS (cong (λ z → g (f z)) p j)) k ; (i = i1) → p j ; (j = i0) → secEq e x (i ∨ k) ; (j = i1) → secEq e y (i ∨ k) }) (secEq e (p j) i)
{ "alphanum_fraction": 0.3763100653, "avg_line_length": 33.7133333333, "ext": "agda", "hexsha": "e9555f3853213a5814e76f716a15eceae116d51e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/HAEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/HAEquiv.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/HAEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1871, "size": 5057 }
module monad-instances where open import lib open import general-util instance IO-monad : monad IO IO-monad = record {returnM = return; bindM = _>>=_} instance id-monad : monad id id-monad = record {returnM = id; bindM = λ a f → f a}
{ "alphanum_fraction": 0.6885245902, "avg_line_length": 20.3333333333, "ext": "agda", "hexsha": "95532d3073165a88970c33c97def8dd13e309a89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/monad-instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/monad-instances.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/monad-instances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 79, "size": 244 }
{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Discrete where open import Relation.Nullary.Discrete.Base public
{ "alphanum_fraction": 0.7661290323, "avg_line_length": 20.6666666667, "ext": "agda", "hexsha": "f0d86ea92880de6c6339e8054eed08d2113dceb7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Relation/Nullary/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Relation/Nullary/Discrete.agda", "max_line_length": 49, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Relation/Nullary/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 27, "size": 124 }
{-# OPTIONS --cubical-compatible #-} module Issue712 where data _≡_ {A : Set} : A → A → Set where refl : (x : A) → x ≡ x record _×_ (A B : Set) : Set where field p1 : A p2 : B open _×_ lemma : {A B : Set} {u v : A × B} (p : u ≡ v) → p1 u ≡ p1 v lemma (refl _) = refl _
{ "alphanum_fraction": 0.5157894737, "avg_line_length": 17.8125, "ext": "agda", "hexsha": "6ea8be7ebbca341097ccedf5a39d827777c50f65", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue712.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue712.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue712.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 120, "size": 285 }
data ⊥ : Set where _ : @0 ⊥ → Set _ = λ @0 { () }
{ "alphanum_fraction": 0.3921568627, "avg_line_length": 10.2, "ext": "agda", "hexsha": "25ec6ce79d8298f2791553e41e73655552a187a6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4525b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4525b.agda", "max_line_length": 18, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4525b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 51 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Zero-cost coercion to cross the FFI boundary ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module Foreign.Haskell.Coerce where ------------------------------------------------------------------------ -- Motivation -- Problem: No COMPILE directives for common inductive types -- In order to guarantee that the vast majority of the libary is -- considered safe by Agda, we had to remove the COMPILE pragmas -- associated to common inductive types. -- These directives cannot possibly be checked by the compiler and -- the user could define unsound mappings (e.g. swapping Bool's -- true and false). -- Solution: Essentially identical definitions + zero-cost coercions -- To solve this problem, we have introduced a number of essentially -- identical definitions in the Foreign.Haskell.* modules. However -- converting back and forth between the FFI-friendly type and its -- safe counterpart would take linear time. -- This module defines zero cost coercions between these types. ------------------------------------------------------------------------ -- Definition open import Level using (Level; _⊔_) open import Agda.Builtin.Nat open import Agda.Builtin.Int import IO.Primitive as STD import Data.List.Base as STD import Data.Maybe.Base as STD import Data.Product as STD import Data.Sum as STD import Foreign.Haskell.Maybe as FFI import Foreign.Haskell.Pair as FFI import Foreign.Haskell.Either as FFI private variable a b c d e f : Level A : Set a B : Set b C : Set c D : Set d -- We define a simple indexed datatype `Coercible`. A value of `Coercible A B` -- is a proof that ̀A` and `B` have the same underlying runtime representation. -- The only possible proof is an incantation from the implementer begging to -- be trusted. -- We need this type to be concrete so that overlapping instances can be checked -- for equality: we do not care what proof we get as long as we get one. -- We need for it to be a data type rather than a record type so that Agda does -- not mistakenly build arbitrary instances by η-expansion. data Coercible (A : Set a) (B : Set b) : Set where TrustMe : Coercible A B {-# FOREIGN GHC data AgdaCoercible l1 l2 a b = TrustMe #-} {-# COMPILE GHC Coercible = data AgdaCoercible (TrustMe) #-} -- Once we get our hands on a proof that `Coercible A B` we postulate that it -- is safe to convert an `A` into a `B`. This is done under the hood by using -- `unsafeCoerce`. postulate coerce : {{_ : Coercible A B}} → A → B {-# FOREIGN GHC import Unsafe.Coerce #-} {-# COMPILE GHC coerce = \ _ _ _ _ _ -> unsafeCoerce #-} ------------------------------------------------------------------------ -- Unary and binary variants for covariant type constructors Coercible₁ : ∀ a c → (T : Set a → Set b) (U : Set c → Set d) → Set _ Coercible₁ _ _ T U = ∀ {A B} → {{_ : Coercible A B}} → Coercible (T A) (U B) Coercible₂ : ∀ a b d e → (T : Set a → Set b → Set c) (U : Set d → Set e → Set f) → Set _ Coercible₂ _ _ _ _ T U = ∀ {A B} → {{_ : Coercible A B}} → Coercible₁ _ _ (T A) (U B) ------------------------------------------------------------------------ -- Instances -- Nat -- Our first instance reveals one of Agda's secrets: natural numbers are -- represented by (arbitrary precision) integers at runtime! Note that we -- may only coerce in one direction: arbitrary integers may actually be -- negative and will not do as mere natural numbers. instance nat-toInt : Coercible Nat Int nat-toInt = TrustMe -- We then proceed to state that data types from the standard library -- can be converted to their FFI equivalents which are bound to actual -- Haskell types. -- Maybe maybe-toFFI : Coercible₁ a b STD.Maybe FFI.Maybe maybe-toFFI = TrustMe maybe-fromFFI : Coercible₁ a b FFI.Maybe STD.Maybe maybe-fromFFI = TrustMe -- Product pair-toFFI : Coercible₂ a b c d STD._×_ FFI.Pair pair-toFFI = TrustMe pair-fromFFI : Coercible₂ a b c d FFI.Pair STD._×_ pair-fromFFI = TrustMe -- Sum either-toFFI : Coercible₂ a b c d STD._⊎_ FFI.Either either-toFFI = TrustMe either-fromFFI : Coercible₂ a b c d FFI.Either STD._⊎_ either-fromFFI = TrustMe -- We follow up with purely structural rules for builtin data types which -- already have known low-level representations. -- List coerce-list : Coercible₁ a b STD.List STD.List coerce-list = TrustMe -- IO coerce-IO : Coercible₁ a b STD.IO STD.IO coerce-IO = TrustMe -- Function -- Note that functions are contravariant in their domain. coerce-fun : {{_ : Coercible A B}} → Coercible₁ c d (λ C → B → C) (λ D → A → D) coerce-fun = TrustMe -- Finally we add a reflexivity proof to discharge all the dangling constraints -- involving type variables and concrete builtin types such as `Bool`. -- This rule overlaps with the purely structural ones: when attempting to prove -- `Coercible (List A) (List A)`, should Agda use the proof obtained by `coerce-refl` -- or the one obtained by `coerce-list coerce-refl`? Because we are using a -- datatype with a single constructor these distinctions do not matter: both proofs -- are definitionally equal. coerce-refl : Coercible A A coerce-refl = TrustMe
{ "alphanum_fraction": 0.6546883773, "avg_line_length": 32.5792682927, "ext": "agda", "hexsha": "a2d883eb8fe1820b8b18e0a2fca1b395a6c0c3c2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Foreign/Haskell/Coerce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Foreign/Haskell/Coerce.agda", "max_line_length": 88, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Foreign/Haskell/Coerce.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1372, "size": 5343 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. module FOTC.Program.GCD.Total.CorrectnessProofI where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Program.GCD.Total.CommonDivisorI using ( gcdCD ) open import FOTC.Program.GCD.Total.Definitions using ( gcdSpec ) open import FOTC.Program.GCD.Total.DivisibleI using ( gcdDivisible ) open import FOTC.Program.GCD.Total.GCD using ( gcd ) ------------------------------------------------------------------------------ -- The gcd is correct. gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n) gcdCorrect Nm Nn = gcdCD Nm Nn , gcdDivisible Nm Nn
{ "alphanum_fraction": 0.5321637427, "avg_line_length": 39.4615384615, "ext": "agda", "hexsha": "2ba5a26d610bd45dc4ebd24080e6adf1546e31ea", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Total/CorrectnessProofI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 216, "size": 1026 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic types related to coinduction ------------------------------------------------------------------------ module Coinduction where import Level ------------------------------------------------------------------------ -- A type used to make recursive arguments coinductive infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} ------------------------------------------------------------------------ -- Rec, a type which is analogous to the Rec type constructor used in -- ΠΣ (see Altenkirch, Danielsson, Löh and Oury. ΠΣ: Dependent Types -- without the Sugar. FLOPS 2010, LNCS 6009.) data Rec {a} (A : ∞ (Set a)) : Set a where fold : (x : ♭ A) → Rec A unfold : ∀ {a} {A : ∞ (Set a)} → Rec A → ♭ A unfold (fold x) = x {- -- If --guardedness-preserving-type-constructors is enabled one can -- define types like ℕ by recursion: open import Data.Sum open import Data.Unit ℕ : Set ℕ = ⊤ ⊎ Rec (♯ ℕ) zero : ℕ zero = inj₁ _ suc : ℕ → ℕ suc n = inj₂ (fold n) ℕ-rec : (P : ℕ → Set) → P zero → (∀ n → P n → P (suc n)) → ∀ n → P n ℕ-rec P z s (inj₁ _) = z ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n) -- This feature is very experimental, though: it may lead to -- inconsistencies. -}
{ "alphanum_fraction": 0.4520547945, "avg_line_length": 23.953125, "ext": "agda", "hexsha": "9587fbbb2ebef6203543a028ae70429f0a47f54b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Coinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Coinduction.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Coinduction.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 466, "size": 1533 }
module tree-test where open import tree open import nat open import bool open import bool-to-string open import list test-tree = node 2 ( (leaf 3) :: (node 4 ( (leaf 5) :: (leaf 7) :: [] )) :: (leaf 6) :: (leaf 7) :: []) perfect3 = perfect-binary-tree 3 tt perfect3-string = 𝕋-to-string 𝔹-to-string perfect3
{ "alphanum_fraction": 0.6655948553, "avg_line_length": 23.9230769231, "ext": "agda", "hexsha": "31580d2c0771090906e797c1d5b353bebdf0d44a", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "tree-test.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "tree-test.agda", "max_line_length": 103, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "tree-test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 99, "size": 311 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Span open import lib.types.Pushout open import lib.types.Cofiber open import lib.types.Sigma open import lib.types.Wedge module lib.types.Smash {i j} where module _ (X : Ptd i) (Y : Ptd j) where ⊙∧-span : ⊙Span ⊙∧-span = ⊙span (X ⊙× Y) ⊙Bool (X ⊙⊔ Y) (⊔-rec (_, pt Y) (pt X ,_) , idp) (⊙⊔-fmap {Y = Y} ⊙cst ⊙cst) ∧-span : Span ∧-span = ⊙Span-to-Span ⊙∧-span _∧_ = Pushout ∧-span _⊙∧_ = ⊙Pushout ⊙∧-span Smash = _∧_ ⊙Smash = _⊙∧_ module _ {X : Ptd i} {Y : Ptd j} where smin : de⊙ X → de⊙ Y → Smash X Y smin x y = left (x , y) smbasel : Smash X Y smbasel = right true smbaser : Smash X Y smbaser = right false smgluel : (x : de⊙ X) → smin x (pt Y) == smbasel smgluel x = glue (inl x) smgluer : (y : de⊙ Y) → smin (pt X) y == smbaser smgluer y = glue (inr y) module SmashElim {k} {P : Smash X Y → Type k} (smin* : (x : de⊙ X) (y : de⊙ Y) → P (smin x y)) (smbasel* : P smbasel) (smbaser* : P smbaser) (smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel* [ P ↓ smgluel x ]) (smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser* [ P ↓ smgluer y ]) where private module M = PushoutElim (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) f = M.f smgluel-β = M.glue-β ∘ inl smgluer-β = M.glue-β ∘ inr Smash-elim = SmashElim.f module SmashRec {k} {C : Type k} (smin* : (x : de⊙ X) (y : de⊙ Y) → C) (smbasel* smbaser* : C) (smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel*) (smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser*) where private module M = PushoutRec {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) f = M.f smgluel-β = M.glue-β ∘ inl smgluer-β = M.glue-β ∘ inr Smash-rec = SmashRec.f
{ "alphanum_fraction": 0.5540475036, "avg_line_length": 25.7875, "ext": "agda", "hexsha": "e62d598161bb7f06ed57438669f10c28b76958fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Smash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Smash.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Smash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 895, "size": 2063 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Structure where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude private variable ℓ ℓ' ℓ'' : Level S : Type ℓ → Type ℓ' -- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, -- the pair (X , s) : TypeWithStr ℓ S means that X is equipped with a S-structure, witnessed by s. TypeWithStr : (ℓ : Level) (S : Type ℓ → Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') TypeWithStr ℓ S = Σ[ X ∈ Type ℓ ] S X typ : TypeWithStr ℓ S → Type ℓ typ = fst str : (A : TypeWithStr ℓ S) → S (typ A) str = snd -- Alternative notation for typ ⟨_⟩ : TypeWithStr ℓ S → Type ℓ ⟨_⟩ = typ -- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. -- This will be implemented by a function ι : StrEquiv S ℓ' -- that gives us for any two types with S-structure (X , s) and (Y , t) a family: -- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' StrEquiv : (S : Type ℓ → Type ℓ'') (ℓ' : Level) → Type (ℓ-max (ℓ-suc (ℓ-max ℓ ℓ')) ℓ'') StrEquiv {ℓ} S ℓ' = (A B : TypeWithStr ℓ S) → typ A ≃ typ B → Type ℓ' -- An S-structure may instead be equipped with an action on equivalences, which will -- induce a notion of S-homomorphism EquivAction : (S : Type ℓ → Type ℓ'') → Type (ℓ-max (ℓ-suc ℓ) ℓ'') EquivAction {ℓ} S = {X Y : Type ℓ} → X ≃ Y → S X ≃ S Y EquivAction→StrEquiv : {S : Type ℓ → Type ℓ''} → EquivAction S → StrEquiv S ℓ'' EquivAction→StrEquiv α (X , s) (Y , t) e = equivFun (α e) s ≡ t
{ "alphanum_fraction": 0.6254901961, "avg_line_length": 34, "ext": "agda", "hexsha": "a770fba97034125fd41b0e29e8925117bd98f6eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Foundations/Structure.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Foundations/Structure.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Foundations/Structure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 592, "size": 1530 }
{-# OPTIONS --type-in-type #-} open import Agda.Primitive test : Set test = Setω
{ "alphanum_fraction": 0.6626506024, "avg_line_length": 11.8571428571, "ext": "agda", "hexsha": "a13a7276b51490574be95051b83fdaba23d70c9e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3439.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3439.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3439.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 83 }
open import Oscar.Prelude open import Oscar.Class module Oscar.Class.Transitivity where module Transitivity' {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) x y z = ℭLASS (x ,, y ,, z ,, _∼_) (x ∼ y → y ∼ z → x ∼ z) module Transitivity {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) where class = ∀ {x y z} → Transitivity'.class _∼_ x y z type = ∀ {x y z} → Transitivity'.type _∼_ x y z method : ⦃ _ : class ⦄ → type method {x = x} {y} {z} = Transitivity'.method _∼_ x y z module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} where transitivity = Transitivity.method _∼_ module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) ⦃ _ : Transitivity.class _∼_ ⦄ where transitivity[_] = λ {x y z} (x∼y : x ∼ y) (y∼z : y ∼ z) → Transitivity.method _∼_ x∼y y∼z infixr 9 ∙[]-syntax ∙[]-syntax = transitivity[_] syntax ∙[]-syntax _⊸_ f g = g ∙[ _⊸_ ] f module FlipTransitivity {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) where class = Transitivity.class _∼_ type = ∀ {x y z} → y ∼ z → x ∼ y → x ∼ z method : ⦃ _ : class ⦄ → type method = flip transitivity module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Transitivity.class _∼_ ⦄ where infixr 9 _∙_ _∙_ : ∀ {x y z} (y∼z : y ∼ z) (x∼y : x ∼ y) → x ∼ z g ∙ f = transitivity f g module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} where open import Oscar.Data.Proposequality ≡̇-transitivity = transitivity[ Proposextensequality⟦ 𝔓 ⟧ ] infixr 9 ≡̇-transitivity syntax ≡̇-transitivity f g = g ≡̇-∙ f infixr 9 ≡̇-transitivity-syntax ≡̇-transitivity-syntax = ≡̇-transitivity syntax ≡̇-transitivity-syntax f g = g ⟨≡̇⟩ f
{ "alphanum_fraction": 0.5464684015, "avg_line_length": 22.7323943662, "ext": "agda", "hexsha": "9eac85757e1eb579a6b2a2ff2456e1ddbe5113e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 842, "size": 1614 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Machine words ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Word where ------------------------------------------------------------------------ -- Re-export base definitions and decidability of equality open import Data.Word.Base public open import Data.Word.Properties using (_≈?_; _<?_; _≟_; _==_) public
{ "alphanum_fraction": 0.3955375254, "avg_line_length": 30.8125, "ext": "agda", "hexsha": "4a55ddc35cfdb4c0755b77f9e95eb38eafcc20b7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Word.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Word.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Word.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 72, "size": 493 }
{-# OPTIONS --safe --without-K #-} module Level where open import Agda.Primitive using (Level) renaming ( _⊔_ to _ℓ⊔_ ; lzero to ℓzero ; lsuc to ℓsuc ; Set to Type ) public variable a b c : Level A : Type a B : Type b C : Type c
{ "alphanum_fraction": 0.5238095238, "avg_line_length": 15.4736842105, "ext": "agda", "hexsha": "751fc1428a2bdab88fc983bca6df004049e04dab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Level.agda", "max_line_length": 34, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Level.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 101, "size": 294 }
module negation where open import level open import empty ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 7 ¬ ---------------------------------------------------------------------- -- defined types ---------------------------------------------------------------------- ¬ : ∀{ℓ}(x : Set ℓ) → Set ℓ ¬ {ℓ} x = x → (⊥ {ℓ})
{ "alphanum_fraction": 0.2, "avg_line_length": 22.8947368421, "ext": "agda", "hexsha": "524ffe052e9c73a3e79c828dd1131a61d78b350f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "negation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "negation.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "negation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 67, "size": 435 }
{-# OPTIONS --without-K #-} module hott.loop.properties where open import sum open import equality open import function.core open import function.extensionality open import function.isomorphism.core open import function.overloading open import pointed open import sets.nat.core open import hott.loop.core mapΩ₁-const : ∀ {i j}{𝓧 : PSet i}{𝓨 : PSet j} → mapΩ₁ (constP 𝓧 𝓨) ≡ constP _ _ mapΩ₁-const = apply≅ pmap-eq (ap-const _ , refl) where ap-const : ∀ {i j}{X : Set i}{Y : Set j}(y : Y) → {x x' : X}(p : x ≡ x') → ap (λ _ → y) p ≡ refl ap-const y refl = refl mapΩP-const : ∀ {i j} n → {𝓧 : PSet i}{𝓨 : PSet j} → mapΩP n (constP 𝓧 𝓨) ≡ constP _ _ mapΩP-const zero = refl mapΩP-const (suc n) = ap (mapΩP n) mapΩ₁-const · mapΩP-const n mapΩ-const : ∀ {i j} n → {X : Set i}{Y : Set j}(y : Y) → (x : X) (p : Ω n x) → mapΩ n (λ _ → y) p ≡ refl' n y mapΩ-const n y x p = funext-inv (ap proj₁ (mapΩP-const n)) p mapΩ₁-hom : ∀ {i j k}{𝓧 : PSet i}{𝓨 : PSet j}{𝓩 : PSet k} → (f : PMap 𝓧 𝓨)(g : PMap 𝓨 𝓩) → mapΩ₁ g ∘ mapΩ₁ f ≡ mapΩ₁ (g ∘ f) mapΩ₁-hom (f , refl) (g , refl) = apply≅ pmap-eq (ap-hom f g , refl) mapΩP-hom : ∀ {i j k} n → {𝓧 : PSet i}{𝓨 : PSet j}{𝓩 : PSet k} → (f : PMap 𝓧 𝓨)(g : PMap 𝓨 𝓩) → mapΩP n g ∘ mapΩP n f ≡ mapΩP n (g ∘ f) mapΩP-hom zero f g = refl mapΩP-hom (suc n) f g = mapΩP-hom n (mapΩ₁ f) (mapΩ₁ g) · ap (mapΩP n) (mapΩ₁-hom f g) mapΩ-hom : ∀ {i j k} n {X : Set i}{Y : Set j}{Z : Set k} → (f : X → Y)(g : Y → Z){x : X}(p : Ω n x) → mapΩ n g (mapΩ n f p) ≡ mapΩ n (g ∘ f) p mapΩ-hom n f g = proj₁ (invert≅ pmap-eq (mapΩP-hom n (f , refl) (g , refl))) mapΩ-refl : ∀ {i j} n {X : Set i}{Y : Set j} → (f : X → Y){x : X} → mapΩ n f (refl' n x) ≡ refl' n (f x) mapΩ-refl n f = proj₂ (mapΩP n (f , refl))
{ "alphanum_fraction": 0.5261489699, "avg_line_length": 35.7169811321, "ext": "agda", "hexsha": "b85f8fb45d6267fe0a6fd4c0ff373119435faa9d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/loop/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/loop/properties.agda", "max_line_length": 76, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/loop/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 872, "size": 1893 }
------------------------------------------------------------------------ -- Containers, including a definition of bag equivalence ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Container {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude hiding (id; List) open import Bag-equivalence eq using (Kind); open Kind open import Bijection eq as Bijection using (_↔_; module _↔_) open import Equivalence eq as Eq using (Is-equivalence; _≃_; ⟨_,_⟩; module _≃_) open import Function-universe eq as Function-universe hiding (inverse; Kind) renaming (_∘_ to _⟨∘⟩_) open import H-level eq open import H-level.Closure eq open import Surjection eq using (module _↠_) ------------------------------------------------------------------------ -- Containers record Container c : Type (lsuc c) where constructor _▷_ field Shape : Type c Position : Shape → Type c open Container public -- Interpretation of containers. ⟦_⟧ : ∀ {c ℓ} → Container c → Type ℓ → Type _ ⟦ S ▷ P ⟧ A = ∃ λ (s : S) → (P s → A) ------------------------------------------------------------------------ -- Some projections -- The shape of something. shape : ∀ {a c} {A : Type a} {C : Container c} → ⟦ C ⟧ A → Shape C shape = proj₁ -- Finds the value at the given position. index : ∀ {a c} {A : Type a} {C : Container c} (xs : ⟦ C ⟧ A) → Position C (shape xs) → A index = proj₂ ------------------------------------------------------------------------ -- Map -- Containers are functors. map : ∀ {c x y} {C : Container c} {X : Type x} {Y : Type y} → (X → Y) → ⟦ C ⟧ X → ⟦ C ⟧ Y map f = Σ-map id (f ∘_) module Map where identity : ∀ {c x} {C : Container c} {X : Type x} (xs : ⟦ C ⟧ X) → map id xs ≡ xs identity xs = refl _ composition : ∀ {c x y z} {C : Container c} {X : Type x} {Y : Type y} {Z : Type z} (f : Y → Z) (g : X → Y) (xs : ⟦ C ⟧ X) → map f (map g xs) ≡ map (f ∘ g) xs composition f g xs = refl _ -- Naturality. Natural : ∀ {c₁ c₂ a} {C₁ : Container c₁} {C₂ : Container c₂} → ({A : Type a} → ⟦ C₁ ⟧ A → ⟦ C₂ ⟧ A) → Type (c₁ ⊔ c₂ ⊔ lsuc a) Natural function = ∀ {A B} (f : A → B) xs → map f (function xs) ≡ function (map f xs) -- Natural transformations. infixr 4 _[_]⟶_ record _[_]⟶_ {c₁ c₂} (C₁ : Container c₁) ℓ (C₂ : Container c₂) : Type (c₁ ⊔ c₂ ⊔ lsuc ℓ) where field function : {A : Type ℓ} → ⟦ C₁ ⟧ A → ⟦ C₂ ⟧ A natural : Natural function -- Natural isomorphisms. record _[_]↔_ {c₁ c₂} (C₁ : Container c₁) ℓ (C₂ : Container c₂) : Type (c₁ ⊔ c₂ ⊔ lsuc ℓ) where field isomorphism : {A : Type ℓ} → ⟦ C₁ ⟧ A ↔ ⟦ C₂ ⟧ A natural : Natural (_↔_.to isomorphism) -- Natural isomorphisms are natural transformations. natural-transformation : C₁ [ ℓ ]⟶ C₂ natural-transformation = record { function = _↔_.to isomorphism ; natural = natural } -- Natural isomorphisms can be inverted. inverse : C₂ [ ℓ ]↔ C₁ inverse = record { isomorphism = Function-universe.inverse isomorphism ; natural = λ f xs → map f (from xs) ≡⟨ sym $ left-inverse-of _ ⟩ from (to (map f (from xs))) ≡⟨ sym $ cong from $ natural f (from xs) ⟩ from (map f (to (from xs))) ≡⟨ cong (from ∘ map f) $ right-inverse-of _ ⟩∎ from (map f xs) ∎ } where open module I {A : Type ℓ} = _↔_ (isomorphism {A = A}) open Function-universe using (inverse) ------------------------------------------------------------------------ -- Any, _∈_, bag equivalence and similar relations -- Definition of Any for containers. Any : ∀ {a c p} {A : Type a} {C : Container c} → (A → Type p) → (⟦ C ⟧ A → Type (c ⊔ p)) Any {C = S ▷ P} Q (s , f) = ∃ λ (p : P s) → Q (f p) -- Membership predicate. infix 4 _∈_ _∈_ : ∀ {a c} {A : Type a} {C : Container c} → A → ⟦ C ⟧ A → Type _ x ∈ xs = Any (λ y → x ≡ y) xs -- Bag equivalence etc. Note that the containers can be different as -- long as the elements they contain have equal types. infix 4 _∼[_]_ _∼[_]_ : ∀ {a c₁ c₂} {A : Type a} {C₁ : Container c₁} {C₂ : Container c₂} → ⟦ C₁ ⟧ A → Kind → ⟦ C₂ ⟧ A → Type _ xs ∼[ k ] ys = ∀ z → z ∈ xs ↝[ k ] z ∈ ys -- Bag equivalence. infix 4 _≈-bag_ _≈-bag_ : ∀ {a c₁ c₂} {A : Type a} {C₁ : Container c₁} {C₂ : Container c₂} → ⟦ C₁ ⟧ A → ⟦ C₂ ⟧ A → Type _ xs ≈-bag ys = xs ∼[ bag ] ys ------------------------------------------------------------------------ -- Various properties related to Any, _∈_ and _∼[_]_ -- Lemma relating Any to map. Any-map : ∀ {a b c p} {A : Type a} {B : Type b} {C : Container c} (P : B → Type p) (f : A → B) (xs : ⟦ C ⟧ A) → Any P (map f xs) ↔ Any (P ∘ f) xs Any-map P f xs = Any P (map f xs) □ -- Any can be expressed using _∈_. Any-∈ : ∀ {a c p} {A : Type a} {C : Container c} (P : A → Type p) (xs : ⟦ C ⟧ A) → Any P xs ↔ ∃ λ x → P x × x ∈ xs Any-∈ P (s , f) = (∃ λ p → P (f p)) ↔⟨ ∃-cong (λ p → ∃-intro P (f p)) ⟩ (∃ λ p → ∃ λ x → P x × x ≡ f p) ↔⟨ ∃-comm ⟩ (∃ λ x → ∃ λ p → P x × x ≡ f p) ↔⟨ ∃-cong (λ _ → ∃-comm) ⟩ (∃ λ x → P x × ∃ λ p → x ≡ f p) □ -- Using this property we can prove that Any and _⊎_ commute. Any-⊎ : ∀ {a c p q} {A : Type a} {C : Container c} (P : A → Type p) (Q : A → Type q) (xs : ⟦ C ⟧ A) → Any (λ x → P x ⊎ Q x) xs ↔ Any P xs ⊎ Any Q xs Any-⊎ P Q xs = Any (λ x → P x ⊎ Q x) xs ↔⟨ Any-∈ (λ x → P x ⊎ Q x) xs ⟩ (∃ λ x → (P x ⊎ Q x) × x ∈ xs) ↔⟨ ∃-cong (λ x → ×-⊎-distrib-right) ⟩ (∃ λ x → P x × x ∈ xs ⊎ Q x × x ∈ xs) ↔⟨ ∃-⊎-distrib-left ⟩ (∃ λ x → P x × x ∈ xs) ⊎ (∃ λ x → Q x × x ∈ xs) ↔⟨ inverse $ Any-∈ P xs ⊎-cong Any-∈ Q xs ⟩ Any P xs ⊎ Any Q xs □ -- Any preserves functions of various kinds and respects bag -- equivalence and similar relations. Any-cong : ∀ {k a c d p q} {A : Type a} {C : Container c} {D : Container d} (P : A → Type p) (Q : A → Type q) (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → (∀ x → P x ↝[ k ] Q x) → xs ∼[ k ] ys → Any P xs ↝[ k ] Any Q ys Any-cong P Q xs ys P↔Q xs∼ys = Any P xs ↔⟨ Any-∈ P xs ⟩ (∃ λ z → P z × z ∈ xs) ↝⟨ ∃-cong (λ z → P↔Q z ×-cong xs∼ys z) ⟩ (∃ λ z → Q z × z ∈ ys) ↔⟨ inverse (Any-∈ Q ys) ⟩ Any Q ys □ -- Map preserves the relations. map-cong : ∀ {k a b c d} {A : Type a} {B : Type b} {C : Container c} {D : Container d} (f : A → B) (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ∼[ k ] ys → map f xs ∼[ k ] map f ys map-cong f xs ys xs∼ys = λ z → z ∈ map f xs ↔⟨ Any-map (_≡_ z) f xs ⟩ Any (λ x → z ≡ f x) xs ↝⟨ Any-cong _ _ xs ys (λ x → z ≡ f x □) xs∼ys ⟩ Any (λ x → z ≡ f x) ys ↔⟨ inverse (Any-map (_≡_ z) f ys) ⟩ z ∈ map f ys □ -- Lemma relating Any to if_then_else_. Any-if : ∀ {a c p} {A : Type a} {C : Container c} (P : A → Type p) (xs ys : ⟦ C ⟧ A) b → Any P (if b then xs else ys) ↔ T b × Any P xs ⊎ T (not b) × Any P ys Any-if P xs ys = inverse ∘ if-lemma (λ b → Any P (if b then xs else ys)) id id -- One can reconstruct (up to natural isomorphism) the shape set and -- the position predicate from the interpretation and the Any -- predicate transformer. -- -- (The following lemmas were suggested by an anonymous reviewer.) Shape′ : ∀ {c} → (Type → Type c) → Type c Shape′ F = F ⊤ Shape-⟦⟧ : ∀ {c} (C : Container c) → Shape C ↔ Shape′ ⟦ C ⟧ Shape-⟦⟧ C = Shape C ↔⟨ inverse ×-right-identity ⟩ Shape C × ⊤ ↔⟨ ∃-cong (λ _ → inverse →-right-zero) ⟩ (∃ λ (s : Shape C) → Position C s → ⊤) □ Position′ : ∀ {c} (F : Type → Type c) → ({A : Type} → (A → Type) → (F A → Type c)) → Shape′ F → Type c Position′ _ Any = Any (λ (_ : ⊤) → ⊤) Position-Any : ∀ {c} {C : Container c} (s : Shape C) → Position C s ↔ Position′ ⟦ C ⟧ Any (_↔_.to (Shape-⟦⟧ C) s) Position-Any {C = C} s = Position C s ↔⟨ inverse ×-right-identity ⟩ Position C s × ⊤ □ expressed-in-terms-of-interpretation-and-Any : ∀ {c ℓ} (C : Container c) → C [ ℓ ]↔ (⟦ C ⟧ ⊤ ▷ Any (λ _ → ⊤)) expressed-in-terms-of-interpretation-and-Any C = record { isomorphism = λ {A} → (∃ λ (s : Shape C) → Position C s → A) ↔⟨ Σ-cong (Shape-⟦⟧ C) (λ _ → lemma) ⟩ (∃ λ (s : Shape′ ⟦ C ⟧) → Position′ ⟦ C ⟧ Any s → A) □ ; natural = λ _ _ → refl _ } where -- If equality of functions had been extensional, then the following -- lemma could have been replaced by a congruence lemma applied to -- Position-Any. lemma : ∀ {a b} {A : Type a} {B : Type b} → (B → A) ↔ (B × ⊤ → A) lemma = record { surjection = record { logical-equivalence = record { to = λ { f (p , tt) → f p } ; from = λ f p → f (p , tt) } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = λ _ → refl _ } ------------------------------------------------------------------------ -- Alternative definition of bag equivalence -- Two things are bag equivalent if there is a bijection (or -- equivalence) between their positions that relates equal things. infix 4 _≈[_]′_ _≈[_]′_ : ∀ {a c d} {A : Type a} {C : Container c} {D : Container d} → ⟦ C ⟧ A → Isomorphism-kind → ⟦ D ⟧ A → Type _ _≈[_]′_ {C = C} {D} (s , f) k (s′ , f′) = ∃ λ (P↔P : Position C s ↔[ k ] Position D s′) → (∀ p → f p ≡ f′ (to-implication P↔P p)) -- If the position sets are sets (have H-level two), then the two -- instantiations of _≈[_]′_ are isomorphic (assuming extensionality). ≈′↔≈′ : ∀ {a c d} {A : Type a} {C : Container c} {D : Container d} → Extensionality (c ⊔ d) (c ⊔ d) → (∀ s → Is-set (Position C s)) → (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ≈[ bag ]′ ys ↔ xs ≈[ bag-with-equivalence ]′ ys ≈′↔≈′ ext P-set (s , f) (s′ , f′) = (∃ λ P↔P → ∀ p → f p ≡ f′ (to-implication P↔P p)) ↔⟨ Σ-cong (Eq.↔↔≃ ext (P-set s)) (λ _ → Bijection.id) ⟩ (∃ λ P↔P → ∀ p → f p ≡ f′ (to-implication P↔P p)) □ -- The definition _≈[_]′_ is also logically equivalent to the one -- given above. The proof is very similar to the one given in -- Bag-equivalence. -- Membership can be expressed as "there is an index which points to -- the element". In fact, membership /is/ expressed in this way, so -- this proof is unnecessary. ∈-index : ∀ {a c} {A : Type a} {C : Container c} {z} (xs : ⟦ C ⟧ A) → z ∈ xs ↔ ∃ λ p → z ≡ index xs p ∈-index {z = z} xs = z ∈ xs □ -- The index which points to the element (not used below). index-of : ∀ {a c} {A : Type a} {C : Container c} {z} (xs : ⟦ C ⟧ A) → z ∈ xs → Position C (shape xs) index-of xs = proj₁ ∘ to-implication (∈-index xs) -- The positions for a given shape can be expressed in terms of the -- membership predicate. Position-shape : ∀ {a c} {A : Type a} {C : Container c} (xs : ⟦ C ⟧ A) → (∃ λ z → z ∈ xs) ↔ Position C (shape xs) Position-shape {C = C} (s , f) = (∃ λ z → ∃ λ p → z ≡ f p) ↔⟨ ∃-comm ⟩ (∃ λ p → ∃ λ z → z ≡ f p) ↔⟨⟩ (∃ λ p → Singleton (f p)) ↔⟨ ∃-cong (λ _ → _⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩ Position C s × ⊤ ↔⟨ ×-right-identity ⟩ Position C s □ -- Position _ ∘ shape respects the various relations. Position-shape-cong : ∀ {k a c d} {A : Type a} {C : Container c} {D : Container d} (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ∼[ k ] ys → Position C (shape xs) ↝[ k ] Position D (shape ys) Position-shape-cong {C = C} {D} xs ys xs∼ys = Position C (shape xs) ↔⟨ inverse $ Position-shape xs ⟩ ∃ (λ z → z ∈ xs) ↝⟨ ∃-cong xs∼ys ⟩ ∃ (λ z → z ∈ ys) ↔⟨ Position-shape ys ⟩ Position D (shape ys) □ -- Furthermore Position-shape-cong relates equal elements. Position-shape-cong-relates : ∀ {k a c d} {A : Type a} {C : Container c} {D : Container d} (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) (xs≈ys : xs ∼[ k ] ys) p → index xs p ≡ index ys (to-implication (Position-shape-cong xs ys xs≈ys) p) Position-shape-cong-relates {bag} xs ys xs≈ys p = index xs p ≡⟨ proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) ⟩ index ys (proj₁ $ to-implication (xs≈ys (index xs p)) (p , refl _)) ≡⟨⟩ index ys (_↔_.to (Position-shape ys) $ Σ-map id (λ {z} → to-implication (xs≈ys z)) $ _↔_.from (Position-shape xs) $ p) ≡⟨⟩ index ys (_↔_.to (Position-shape ys) $ to-implication (∃-cong xs≈ys) $ _↔_.from (Position-shape xs) $ p) ≡⟨⟩ index ys (to-implication ((from-bijection (Position-shape ys) ⟨∘⟩ ∃-cong xs≈ys) ⟨∘⟩ from-bijection (inverse $ Position-shape xs)) p) ≡⟨⟩ index ys (to-implication (Position-shape-cong xs ys xs≈ys) p) ∎ Position-shape-cong-relates {bag-with-equivalence} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {bag-with-equivalenceᴱ} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {subbag} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {set} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {subset} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {embedding} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) Position-shape-cong-relates {surjection} xs ys xs≈ys p = proj₂ $ to-implication (xs≈ys (index xs p)) (p , refl _) -- We get that the two definitions of bag equivalence are logically -- equivalent. ≈⇔≈′ : ∀ {k a c d} {A : Type a} {C : Container c} {D : Container d} (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ∼[ ⌊ k ⌋-iso ] ys ⇔ xs ≈[ k ]′ ys ≈⇔≈′ {k} xs ys = record { to = λ xs≈ys → ( Position-shape-cong xs ys xs≈ys , Position-shape-cong-relates xs ys xs≈ys ) ; from = from } where from : xs ≈[ k ]′ ys → xs ∼[ ⌊ k ⌋-iso ] ys from (P↔P , related) = λ z → z ∈ xs ↔⟨⟩ ∃ (λ p → z ≡ index xs p) ↔⟨ Σ-cong P↔P (λ p → _↠_.from (Π≡↔≡-↠-≡ k _ _) (related p) z) ⟩ ∃ (λ p → z ≡ index ys p) ↔⟨⟩ z ∈ ys □ -- If equivalences are used, then the definitions are isomorphic -- (assuming extensionality). -- -- Thierry Coquand helped me with this proof: At first I wasn't sure -- if it was true or not, but then I managed to prove it for singleton -- lists, Thierry found a proof for lists of length two, I found one -- for streams, and finally I could complete a proof of the statement -- below. ≈↔≈′ : ∀ {a c d} {A : Type a} {C : Container c} {D : Container d} → Extensionality (a ⊔ c ⊔ d) (a ⊔ c ⊔ d) → (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ∼[ bag-with-equivalence ] ys ↔ xs ≈[ bag-with-equivalence ]′ ys ≈↔≈′ {a} {c} {d} {C = C} {D} ext xs ys = record { surjection = record { logical-equivalence = equiv ; right-inverse-of = λ { (⟨ f , f-eq ⟩ , related) → let P : (Position C (shape xs) → Position D (shape ys)) → Type (a ⊔ c) P f = ∀ p → index xs p ≡ index ys (f p) f-eq′ : Is-equivalence f f-eq′ = _ irr : f-eq′ ≡ f-eq irr = proj₁ $ +⇒≡ $ Eq.propositional (lower-extensionality a a ext) f f≡f : ⟨ f , f-eq′ ⟩ ≡ ⟨ f , f-eq ⟩ f≡f = cong (⟨_,_⟩ f) irr cong-to-f≡f : cong _≃_.to f≡f ≡ refl f cong-to-f≡f = cong _≃_.to f≡f ≡⟨ cong-∘ _≃_.to (⟨_,_⟩ f) irr ⟩ cong (_≃_.to ∘ ⟨_,_⟩ f) irr ≡⟨ cong-const irr ⟩∎ refl _ ∎ in Σ-≡,≡→≡ f≡f (subst (P ∘ _≃_.to) f≡f (trans (refl _) ∘ related) ≡⟨ cong (subst (P ∘ _≃_.to) f≡f) (apply-ext (lower-extensionality (a ⊔ d) (c ⊔ d) ext) λ _ → trans-reflˡ _) ⟩ subst (P ∘ _≃_.to) f≡f related ≡⟨ subst-∘ P _≃_.to f≡f ⟩ subst P (cong _≃_.to f≡f) related ≡⟨ cong (λ eq → subst P eq related) cong-to-f≡f ⟩ subst P (refl _) related ≡⟨ subst-refl P related ⟩∎ related ∎) } } ; left-inverse-of = λ xs≈ys → apply-ext (lower-extensionality (c ⊔ d) a ext) λ z → Eq.lift-equality ext $ apply-ext (lower-extensionality d c ext) λ { (p , z≡xs[p]) → let xs[p]≡ys[-] : ∃ λ p′ → index xs p ≡ index ys p′ xs[p]≡ys[-] = _≃_.to (xs≈ys (index xs p)) (p , refl _) in Σ-map id (trans z≡xs[p]) xs[p]≡ys[-] ≡⟨ elim₁ (λ {z} z≡xs[p] → Σ-map id (trans z≡xs[p]) xs[p]≡ys[-] ≡ _≃_.to (xs≈ys z) (p , z≡xs[p])) (Σ-map id (trans (refl _)) xs[p]≡ys[-] ≡⟨ cong (_,_ _) (trans-reflˡ _) ⟩∎ xs[p]≡ys[-] ∎) z≡xs[p] ⟩∎ _≃_.to (xs≈ys z) (p , z≡xs[p]) ∎ } } where equiv = ≈⇔≈′ {k = equivalence} xs ys open _⇔_ equiv ------------------------------------------------------------------------ -- Another alternative definition of bag equivalence -- A higher-order variant of _∼[_]_. Note that this definition is -- large (due to the quantification over predicates). infix 4 _∼[_]″_ _∼[_]″_ : ∀ {a c d} {A : Type a} {C : Container c} {D : Container d} → ⟦ C ⟧ A → Kind → ⟦ D ⟧ A → Type (lsuc a ⊔ c ⊔ d) _∼[_]″_ {a} {A = A} xs k ys = (P : A → Type a) → Any P xs ↝[ k ] Any P ys -- This definition is logically equivalent to _∼[_]_. ∼⇔∼″ : ∀ {k a c d} {A : Type a} {C : Container c} {D : Container d} (xs : ⟦ C ⟧ A) (ys : ⟦ D ⟧ A) → xs ∼[ k ] ys ⇔ xs ∼[ k ]″ ys ∼⇔∼″ xs ys = record { to = λ xs∼ys P → Any-cong P P xs ys (λ _ → id) xs∼ys ; from = λ Any-xs↝Any-ys z → Any-xs↝Any-ys (λ x → z ≡ x) } ------------------------------------------------------------------------ -- The ⟦_⟧₂ operator -- Lifts a family of binary relations from A to ⟦ C ⟧ A. ⟦_⟧₂ : ∀ {a c r} {A : Type a} (C : Container c) → (A → A → Type r) → ⟦ C ⟧ A → ⟦ C ⟧ A → Type (c ⊔ r) ⟦ C ⟧₂ R (s , f) (t , g) = ∃ λ (eq : s ≡ t) → (p : Position C s) → R (f p) (g (subst (Position C) eq p)) where open Container -- A map function for ⟦_⟧₂. ⟦⟧₂-map : ∀ {a b c r s} {A : Type a} {B : Type b} {C : Container c} (R : A → A → Type r) (S : B → B → Type s) (f : A → B) → (∀ x y → R x y → S (f x) (f y)) → (∀ x y → ⟦ C ⟧₂ R x y → ⟦ C ⟧₂ S (map f x) (map f y)) ⟦⟧₂-map _ _ _ f _ _ = Σ-map id (f _ _ ∘_) -- ⟦_⟧₂ preserves reflexivity. ⟦⟧₂-reflexive : ∀ {a c r} {A : Type a} {C : Container c} (R : A → A → Type r) → (∀ x → R x x) → (∀ x → ⟦ C ⟧₂ R x x) ⟦⟧₂-reflexive {C = C} R r (xs , f) = refl _ , λ p → $⟨ r _ ⟩ R (f p) (f p) ↝⟨ subst (R _ ∘ f) (sym $ subst-refl _ _) ⟩□ R (f p) (f (subst (Position C) (refl xs) p)) □ -- ⟦_⟧₂ preserves symmetry. ⟦⟧₂-symmetric : ∀ {a c r} {A : Type a} {C : Container c} (R : A → A → Type r) → (∀ {x y} → R x y → R y x) → (∀ {x y} → ⟦ C ⟧₂ R x y → ⟦ C ⟧₂ R y x) ⟦⟧₂-symmetric {C = C} R r {_ , f} {_ , g} (eq , h) = sym eq , λ p → $⟨ h (subst (Position C) (sym eq) p) ⟩ R (f (subst (Position C) (sym eq) p)) (g (subst (Position C) eq (subst (Position C) (sym eq) p))) ↝⟨ subst (R (f (subst (Position C) (sym eq) p)) ∘ g) $ subst-subst-sym _ _ _ ⟩ R (f (subst (Position C) (sym eq) p)) (g p) ↝⟨ r ⟩□ R (g p) (f (subst (Position C) (sym eq) p)) □ -- ⟦_⟧₂ preserves transitivity. ⟦⟧₂-transitive : ∀ {a c r} {A : Type a} {C : Container c} (R : A → A → Type r) → (∀ {x y z} → R x y → R y z → R x z) → (∀ {x y z} → ⟦ C ⟧₂ R x y → ⟦ C ⟧₂ R y z → ⟦ C ⟧₂ R x z) ⟦⟧₂-transitive {C = C} R r {_ , f} {_ , g} {_ , h} (eq₁ , f₁) (eq₂ , f₂) = trans eq₁ eq₂ , λ p → $⟨ f₂ _ ⟩ R (g (subst (Position C) eq₁ p)) (h (subst (Position C) eq₂ (subst (Position C) eq₁ p))) ↝⟨ subst (R (g (subst (Position C) _ _)) ∘ h) $ subst-subst _ _ _ _ ⟩ R (g (subst (Position C) eq₁ p)) (h (subst (Position C) (trans eq₁ eq₂) p)) ↝⟨ f₁ _ ,_ ⟩ R (f p) (g (subst (Position C) eq₁ p)) × R (g (subst (Position C) eq₁ p)) (h (subst (Position C) (trans eq₁ eq₂) p)) ↝⟨ uncurry r ⟩□ R (f p) (h (subst (Position C) (trans eq₁ eq₂) p)) □
{ "alphanum_fraction": 0.4727699531, "avg_line_length": 36.5979381443, "ext": "agda", "hexsha": "285e1d40166bd131d5449b85ca62f4f5a74f9a69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container.agda", "max_line_length": 147, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 8035, "size": 21300 }
{- Descriptor language for easily defining structures -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Macro where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Data.Maybe open import Cubical.Structures.Constant open import Cubical.Structures.Maybe open import Cubical.Structures.NAryOp open import Cubical.Structures.Parameterized open import Cubical.Structures.Pointed open import Cubical.Structures.Product open import Cubical.Structures.Functorial data FuncDesc (ℓ : Level) : Typeω where -- constant structure: X ↦ A constant : ∀ {ℓ'} → Type ℓ' → FuncDesc ℓ -- pointed structure: X ↦ X var : FuncDesc ℓ -- join of structures S,T : X ↦ (S X × T X) _,_ : FuncDesc ℓ → FuncDesc ℓ → FuncDesc ℓ -- structure S parameterized by constant A : X ↦ (A → S X) param : ∀ {ℓ'} → (A : Type ℓ') → FuncDesc ℓ → FuncDesc ℓ -- structure S parameterized by variable argument: X ↦ (X → S X) maybe : FuncDesc ℓ → FuncDesc ℓ data Desc (ℓ : Level) : Typeω where -- constant structure: X ↦ A constant : ∀ {ℓ'} → Type ℓ' → Desc ℓ -- pointed structure: X ↦ X var : Desc ℓ -- join of structures S,T : X ↦ (S X × T X) _,_ : Desc ℓ → Desc ℓ → Desc ℓ -- structure S parameterized by constant A : X ↦ (A → S X) param : ∀ {ℓ'} → (A : Type ℓ') → Desc ℓ → Desc ℓ -- structure S parameterized by variable argument: X ↦ (X → S X) recvar : Desc ℓ → Desc ℓ -- Maybe on a structure S: X ↦ Maybe (S X) maybe : Desc ℓ → Desc ℓ -- SNS from functorial action functorial : FuncDesc ℓ → Desc ℓ -- arbitrary standard notion of structure foreign : ∀ {ℓ' ℓ''} {S : Type ℓ → Type ℓ'} (ι : StrEquiv S ℓ'') → UnivalentStr S ι → Desc ℓ infixr 4 _,_ {- Functorial structures -} funcMacroLevel : ∀ {ℓ} → FuncDesc ℓ → Level funcMacroLevel (constant {ℓ'} x) = ℓ' funcMacroLevel {ℓ} var = ℓ funcMacroLevel {ℓ} (d₀ , d₁) = ℓ-max (funcMacroLevel d₀) (funcMacroLevel d₁) funcMacroLevel (param {ℓ'} A d) = ℓ-max ℓ' (funcMacroLevel d) funcMacroLevel (maybe d) = funcMacroLevel d -- Structure defined by a functorial descriptor FuncMacroStructure : ∀ {ℓ} (d : FuncDesc ℓ) → Type ℓ → Type (funcMacroLevel d) FuncMacroStructure (constant A) X = A FuncMacroStructure var X = X FuncMacroStructure (d₀ , d₁) X = FuncMacroStructure d₀ X × FuncMacroStructure d₁ X FuncMacroStructure (param A d) X = A → FuncMacroStructure d X FuncMacroStructure (maybe d) = MaybeStructure (FuncMacroStructure d) -- Action defined by a functorial descriptor funcMacroAction : ∀ {ℓ} (d : FuncDesc ℓ) {X Y : Type ℓ} → (X → Y) → FuncMacroStructure d X → FuncMacroStructure d Y funcMacroAction (constant A) _ = idfun A funcMacroAction var f = f funcMacroAction (d₀ , d₁) f (s₀ , s₁) = funcMacroAction d₀ f s₀ , funcMacroAction d₁ f s₁ funcMacroAction (param A d) f s a = funcMacroAction d f (s a) funcMacroAction (maybe d) f = map-Maybe (funcMacroAction d f) -- Proof that the action preserves the identity funcMacroId : ∀ {ℓ} (d : FuncDesc ℓ) {X : Type ℓ} → ∀ s → funcMacroAction d (idfun X) s ≡ s funcMacroId (constant A) _ = refl funcMacroId var _ = refl funcMacroId (d₀ , d₁) (s₀ , s₁) = ΣPath≃PathΣ .fst (funcMacroId d₀ s₀ , funcMacroId d₁ s₁) funcMacroId (param A d) s = funExt λ a → funcMacroId d (s a) funcMacroId (maybe d) s = cong₂ map-Maybe (funExt (funcMacroId d)) refl ∙ map-Maybe-id s {- General structures -} macroStrLevel : ∀ {ℓ} → Desc ℓ → Level macroStrLevel (constant {ℓ'} x) = ℓ' macroStrLevel {ℓ} var = ℓ macroStrLevel {ℓ} (d₀ , d₁) = ℓ-max (macroStrLevel d₀) (macroStrLevel d₁) macroStrLevel (param {ℓ'} A d) = ℓ-max ℓ' (macroStrLevel d) macroStrLevel {ℓ} (recvar d) = ℓ-max ℓ (macroStrLevel d) macroStrLevel (maybe d) = macroStrLevel d macroStrLevel (functorial d) = funcMacroLevel d macroStrLevel (foreign {ℓ'} _ _) = ℓ' macroEquivLevel : ∀ {ℓ} → Desc ℓ → Level macroEquivLevel (constant {ℓ'} x) = ℓ' macroEquivLevel {ℓ} var = ℓ macroEquivLevel {ℓ} (d₀ , d₁) = ℓ-max (macroEquivLevel d₀) (macroEquivLevel d₁) macroEquivLevel (param {ℓ'} A d) = ℓ-max ℓ' (macroEquivLevel d) macroEquivLevel {ℓ} (recvar d) = ℓ-max ℓ (macroEquivLevel d) macroEquivLevel (maybe d) = macroEquivLevel d macroEquivLevel (functorial d) = funcMacroLevel d macroEquivLevel (foreign {ℓ'' = ℓ''} _ _) = ℓ'' -- Structure defined by a descriptor MacroStructure : ∀ {ℓ} (d : Desc ℓ) → Type ℓ → Type (macroStrLevel d) MacroStructure (constant A) X = A MacroStructure var X = X MacroStructure (d₀ , d₁) X = MacroStructure d₀ X × MacroStructure d₁ X MacroStructure (param A d) X = A → MacroStructure d X MacroStructure (recvar d) X = X → MacroStructure d X MacroStructure (maybe d) = MaybeStructure (MacroStructure d) MacroStructure (functorial d) = FuncMacroStructure d MacroStructure (foreign {S = S} _ _) = S -- Notion of structured equivalence defined by a descriptor MacroEquivStr : ∀ {ℓ} → (d : Desc ℓ) → StrEquiv {ℓ} (MacroStructure d) (macroEquivLevel d) MacroEquivStr (constant A) = ConstantEquivStr A MacroEquivStr var = PointedEquivStr MacroEquivStr (d₀ , d₁) = ProductEquivStr (MacroEquivStr d₀) (MacroEquivStr d₁) MacroEquivStr (param A d) = ParamEquivStr A λ _ → MacroEquivStr d MacroEquivStr (recvar d) = UnaryFunEquivStr (MacroEquivStr d) MacroEquivStr (maybe d) = MaybeEquivStr (MacroEquivStr d) MacroEquivStr (functorial d) = FunctorialEquivStr (funcMacroAction d) MacroEquivStr (foreign ι _) = ι -- Proof that structure induced by descriptor is univalent MacroUnivalentStr : ∀ {ℓ} → (d : Desc ℓ) → UnivalentStr (MacroStructure d) (MacroEquivStr d) MacroUnivalentStr (constant A) = constantUnivalentStr A MacroUnivalentStr var = pointedUnivalentStr MacroUnivalentStr (d₀ , d₁) = ProductUnivalentStr (MacroEquivStr d₀) (MacroUnivalentStr d₀) (MacroEquivStr d₁) (MacroUnivalentStr d₁) MacroUnivalentStr (param A d) = ParamUnivalentStr A (λ _ → MacroEquivStr d) (λ _ → MacroUnivalentStr d) MacroUnivalentStr (recvar d) = unaryFunUnivalentStr (MacroEquivStr d) (MacroUnivalentStr d) MacroUnivalentStr (maybe d) = maybeUnivalentStr (MacroEquivStr d) (MacroUnivalentStr d) MacroUnivalentStr (functorial d) = functorialUnivalentStr (funcMacroAction d) (funcMacroId d) MacroUnivalentStr (foreign _ θ) = θ -- Module for easy importing module Macro ℓ (d : Desc ℓ) where structure = MacroStructure d equiv = MacroEquivStr d univalent = MacroUnivalentStr d
{ "alphanum_fraction": 0.7214667685, "avg_line_length": 42.2258064516, "ext": "agda", "hexsha": "98695c81057006811476a25861bc1a6ddb43d7c4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Macro.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Macro.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Macro.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2213, "size": 6545 }
{-# OPTIONS --sized-types #-} module SNat.Order where open import Size open import SNat data _≤_ : {ι ι' : Size} → SNat {ι} → SNat {ι'} → Set where z≤n : {ι ι' : Size} → (n : SNat {ι'}) → _≤_ (zero {ι}) n s≤s : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤ n → (succ m) ≤ (succ n) data _≅_ : {ι ι' : Size} → SNat {ι} → SNat {ι'} → Set where z≅z : {ι ι' : Size} → zero {ι} ≅ zero {ι'} s≅s : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → succ m ≅ succ n data _≤′_ : {ι ι' : Size} → SNat {ι} → SNat {ι'} → Set where ≤′-eq : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → m ≤′ n ≤′-step : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → m ≤′ succ n
{ "alphanum_fraction": 0.3462389381, "avg_line_length": 31.1724137931, "ext": "agda", "hexsha": "653609f43a358946ac44370a671ba888eb9cb663", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SNat/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SNat/Order.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SNat/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 362, "size": 904 }
module Oscar.Data.List where open import Agda.Builtin.List public using (List; []; _∷_)
{ "alphanum_fraction": 0.7333333333, "avg_line_length": 18, "ext": "agda", "hexsha": "6440fe6a3c8ddcd9b69e8fcc6b5f1724f929e9c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/List.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/List.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 24, "size": 90 }
module FinMap where open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ ; zero ; suc) open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Properties using (_≟_) open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip ; toList) renaming (lookup to lookupVec ; map to mapV) open import Data.Vec.Equality using () open import Data.Product using (_×_ ; _,_) open import Data.List.All as All using (All) import Data.List.All.Properties as AllP import Data.List.Any as Any open import Function using (id ; _∘_ ; flip ; const) open import Function.Equality using (module Π) open import Function.Surjection using (module Surjection) open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.Core using (_≡_ ; refl ; _≢_ ; Decidable) open import Relation.Binary.PropositionalEquality as P using (cong ; sym ; _≗_ ; trans ; cong₂) open P.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import Generic using (just-injective) _∈_ : {A : Set} {n : ℕ} → A → Vec A n → Set _∈_ {A} x xs = Any.Membership._∈_ (P.setoid A) x (toList xs) _∉_ : {A : Set} {n : ℕ} → A → Vec A n → Set _∉_ {A} x xs = All (_≢_ x) (toList xs) data Dec∈ {A : Set} {n : ℕ} (x : A) (xs : Vec A n) : Set where yes-∈ : x ∈ xs → Dec∈ x xs no-∉ : x ∉ xs → Dec∈ x xs is-∈ : {A : Set} {n : ℕ} → Decidable (_≡_ {A = A}) → (x : A) → (xs : Vec A n) → Dec∈ x xs is-∈ eq? x xs with Any.any (eq? x) (toList xs) ... | yes x∈xs = yes-∈ x∈xs ... | no x∉xs = no-∉ (Π._⟨$⟩_ (Surjection.to AllP.¬Any↠All¬) x∉xs) FinMapMaybe : ℕ → Set → Set FinMapMaybe n A = Vec (Maybe A) n lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A lookupM = lookupVec insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A insert f a m = m [ f ]≔ (just a) empty : {A : Set} {n : ℕ} → FinMapMaybe n A empty = replicate nothing fromAscList : {A : Set} {n m : ℕ} → Vec (Fin n × A) m → FinMapMaybe n A fromAscList [] = empty fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMapMaybe n A fromFunc = tabulate ∘ _∘_ Maybe.just reshape : {n : ℕ} {A : Set} → FinMapMaybe n A → (l : ℕ) → FinMapMaybe l A reshape m zero = [] reshape [] (suc l) = nothing ∷ (reshape [] l) reshape (x ∷ xs) (suc l) = x ∷ (reshape xs l) union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMapMaybe n A → FinMapMaybe n A union m1 m2 = tabulate (λ f → maybe′ just (lookupM f m2) (lookupM f m1)) restrict : {A : Set} {n m : ℕ} → (Fin n → A) → Vec (Fin n) m → FinMapMaybe n A restrict f is = fromAscList (zip is (mapV f is)) delete : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → FinMapMaybe n A delete i m = m [ i ]≔ nothing delete-many : {A : Set} {n m : ℕ} → Vec (Fin n) m → FinMapMaybe n A → FinMapMaybe n A delete-many = flip (foldr (const _) delete) lemma-insert-same : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → (f : Fin n) → {a : A} → lookupM f m ≡ just a → m ≡ insert f a m lemma-insert-same [] () p lemma-insert-same {suc n} (x ∷ xs) zero p = cong (flip _∷_ xs) p lemma-insert-same (x ∷ xs) (suc i) p = cong (_∷_ x) (lemma-insert-same xs i p) lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing lemma-lookupM-empty zero = refl lemma-lookupM-empty (suc i) = lemma-lookupM-empty i lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a lemma-lookupM-insert zero a (x ∷ xs) = refl lemma-lookupM-insert (suc i) a (x ∷ xs) = lemma-lookupM-insert i a xs lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → i ≢ j → lookupM i (insert j a m) ≡ lookupM i m lemma-lookupM-insert-other zero zero a m p = contradiction refl p lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (p ∘ cong suc) lemma-lookupM-restrict : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : Vec (Fin n) m) → {a : A} → lookupM i (restrict f is) ≡ just a → f i ≡ a lemma-lookupM-restrict i f [] p = contradiction (trans (sym p) (lemma-lookupM-empty i)) (λ ()) lemma-lookupM-restrict i f (i' ∷ is) p with i ≟ i' lemma-lookupM-restrict i f (.i ∷ is) {a} p | yes refl = just-injective (begin just (f i) ≡⟨ sym (lemma-lookupM-insert i (f i) (restrict f is)) ⟩ lookupM i (insert i (f i) (restrict f is)) ≡⟨ p ⟩ just a ∎) lemma-lookupM-restrict i f (i' ∷ is) {a} p | no i≢i' = lemma-lookupM-restrict i f is (begin lookupM i (restrict f is) ≡⟨ sym (lemma-lookupM-insert-other i i' (f i') (restrict f is) i≢i') ⟩ lookupM i (insert i' (f i') (restrict f is)) ≡⟨ p ⟩ just a ∎) lemma-lookupM-restrict-∈ : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (js : Vec (Fin n) m) → i ∈ js → lookupM i (restrict f js) ≡ just (f i) lemma-lookupM-restrict-∈ i f [] () lemma-lookupM-restrict-∈ i f (j ∷ js) p with i ≟ j lemma-lookupM-restrict-∈ i f (.i ∷ js) p | yes refl = lemma-lookupM-insert i (f i) (restrict f js) lemma-lookupM-restrict-∈ i f (j ∷ js) (Any.here i≡j) | no i≢j = contradiction i≡j i≢j lemma-lookupM-restrict-∈ i f (j ∷ js) (Any.there p) | no i≢j = trans (lemma-lookupM-insert-other i j (f j) (restrict f js) i≢j) (lemma-lookupM-restrict-∈ i f js p) lemma-lookupM-restrict-∉ : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (js : Vec (Fin n) m) → i ∉ js → lookupM i (restrict f js) ≡ nothing lemma-lookupM-restrict-∉ i f [] i∉[] = lemma-lookupM-empty i lemma-lookupM-restrict-∉ i f (j ∷ js) i∉jjs = trans (lemma-lookupM-insert-other i j (f j) (restrict f js) (All.head i∉jjs)) (lemma-lookupM-restrict-∉ i f js (All.tail i∉jjs)) lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g lemma-tabulate-∘ {zero} {_} {f} {g} f≗g = refl lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = cong₂ _∷_ (f≗g zero) (lemma-tabulate-∘ (f≗g ∘ suc)) lemma-lookupM-fromFunc : {n : ℕ} {A : Set} → (f : Fin n → A) → flip lookupM (fromFunc f) ≗ Maybe.just ∘ f lemma-lookupM-fromFunc f zero = refl lemma-lookupM-fromFunc f (suc i) = lemma-lookupM-fromFunc (f ∘ suc) i lemma-lookupM-delete : {n : ℕ} {A : Set} {i j : Fin n} → (f : FinMapMaybe n A) → i ≢ j → lookupM i (delete j f) ≡ lookupM i f lemma-lookupM-delete {i = zero} {j = zero} (_ ∷ _) p = contradiction refl p lemma-lookupM-delete {i = zero} {j = suc j} (_ ∷ _) p = refl lemma-lookupM-delete {i = suc i} {j = zero} (x ∷ xs) p = refl lemma-lookupM-delete {i = suc i} {j = suc j} (x ∷ xs) p = lemma-lookupM-delete xs (p ∘ cong suc) lemma-lookupM-delete-many : {n m : ℕ} {A : Set} (h : FinMapMaybe n A) → (i : Fin n) → (js : Vec (Fin n) m) → i ∉ js → lookupM i (delete-many js h) ≡ lookupM i h lemma-lookupM-delete-many {n} h i [] i∉[] = refl lemma-lookupM-delete-many {n} h i (j ∷ js) i∉jjs = trans (lemma-lookupM-delete (delete-many js h) (All.head i∉jjs)) (lemma-lookupM-delete-many h i js (All.tail i∉jjs)) lemma-reshape-id : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → reshape m n ≡ m lemma-reshape-id [] = refl lemma-reshape-id (x ∷ xs) = cong (_∷_ x) (lemma-reshape-id xs) lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f t) (delete-many t (fromFunc f)) ≡ fromFunc f lemma-disjoint-union {n} f t = lemma-tabulate-∘ inner where inner : (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡ just (f x) inner x with is-∈ _≟_ x t inner x | yes-∈ x∈t = cong (maybe′ just (lookupM x (delete-many t (fromFunc f)))) (lemma-lookupM-restrict-∈ x f t x∈t) inner x | no-∉ x∉t = begin maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡⟨ cong₂ (maybe′ just) (lemma-lookupM-delete-many (fromFunc f) x t x∉t) (lemma-lookupM-restrict-∉ x f t x∉t) ⟩ maybe′ just (lookupM x (fromFunc f)) nothing ≡⟨ lemma-lookupM-fromFunc f x ⟩ just (f x) ∎ lemma-exchange-maps : {n m : ℕ} → {A : Set} → {h h′ : FinMapMaybe n A} → {P : Fin n → Set} → (∀ j → P j → lookupM j h ≡ lookupM j h′) → {is : Vec (Fin n) m} → All P (toList is) → mapV (flip lookupM h) is ≡ mapV (flip lookupM h′) is lemma-exchange-maps h≈h′ {[]} All.[] = refl lemma-exchange-maps h≈h′ {i ∷ is} (pi All.∷ pis) = cong₂ _∷_ (h≈h′ i pi) (lemma-exchange-maps h≈h′ pis)
{ "alphanum_fraction": 0.5938394595, "avg_line_length": 53.25, "ext": "agda", "hexsha": "ca7e73b5c04cd8d5e1c15b79102aa5ce3e8106c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "FinMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "FinMap.agda", "max_line_length": 231, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "FinMap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3403, "size": 8733 }
module HasDecidableValidation where open import OscarPrelude open import 𝓐ssertion open import HasSatisfaction open import Validation record HasDecidableValidation (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁ where field ⊨?_ : (x : A) → Dec $ ⊨ x open HasDecidableValidation ⦃ … ⦄ public
{ "alphanum_fraction": 0.7441077441, "avg_line_length": 19.8, "ext": "agda", "hexsha": "fc0af738cc1351f8ec8f710844c6e9985fc0c9e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasDecidableValidation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasDecidableValidation.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasDecidableValidation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 96, "size": 297 }
-- Andreas, 2015-06-29, issue reported by Nisse -- {-# OPTIONS -v tc.polarity:20 -v tc.pos:10 #-} -- {-# OPTIONS -v tc.conv.elim:25 --show-implicit #-} data ⊥ : Set where data _≡_ {a} {A : Set a} : A → A → Set a where refl : ∀ x → x ≡ x subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A} → x ≡ y → P x → P y subst P (refl x) p = p record _∼_ (A B : Set₁) : Set₁ where field to : A → B from : B → A right-inverse-of : ∀ x → x ≡ to (from x) mutual record R (c : ⊥) : Set₂ where field P : F c → Set₁ Q : {I J : F c} → S c I J → P I → P J → Set₁ Q′ : ∀ {I J} → S c I J → P I → P J → Set₁ Q′ s x y = subst P (_∼_.to (S∼≡ c) s) x ≡ y field Q∼Q′ : ∀ {I J} (s : S c I J) {x y} → Q s x y ∼ Q′ s x y F : ⊥ → Set₁ F () S : (c : ⊥) → F c → F c → Set₁ S () S∼≡ : (c : ⊥) {I J : F c} → S c I J ∼ (I ≡ J) S∼≡ () s : ∀ c I → S c I I s c I = _∼_.from (S∼≡ c) (refl I) q : ∀ c e I x → R.Q e (s c I) x x q c e I x = _∼_.from (R.Q∼Q′ e (s c I)) (subst (λ eq → subst (R.P e) eq x ≡ x) (_∼_.right-inverse-of (S∼≡ c) (refl I)) (refl x)) -- ERROR WAS (due to faulty positivity analysis for projections): -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:770
{ "alphanum_fraction": 0.4598117306, "avg_line_length": 24.2280701754, "ext": "agda", "hexsha": "6f6b89aba6b18fde7859139bac580771bd9ae869", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1592.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1592.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1592.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 587, "size": 1381 }