Search is not available for this dataset
text
string
meta
dict
-- Andreas, 2019-03-27 -- Do not run checkIApplyConfluence unless --cubical -- The following verbosity options triggers a crash -- in case checkIApplyConfluence_ runs. -- {-# OPTIONS --cubical #-} -- Trigges the crash. {-# OPTIONS -v tc.cover.iapply.confluence.crash:666 #-} -- Activate crashing program point. open import Agda.Builtin.Nat -- A harmless definition. id : Nat → Nat id zero = zero id (suc x) = suc (id x) -- Should succeed.
{ "alphanum_fraction": 0.6940133038, "avg_line_length": 22.55, "ext": "agda", "hexsha": "e8a8a078947c70ec4f71e9ae11906fbcbeb2ff3b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CheckIApplyConfluenceOnlyWhenCubical.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CheckIApplyConfluenceOnlyWhenCubical.agda", "max_line_length": 92, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CheckIApplyConfluenceOnlyWhenCubical.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 129, "size": 451 }
{-# OPTIONS --without-K --safe #-} module Util.Data.Product where open import Data.Product public hiding (map₂) map₂ : ∀ {α β γ} {A : Set α} {B : A → Set β} {C : A → Set γ} → (∀ a → B a → C a) → Σ A B → Σ A C map₂ f (a , b) = a , f a b
{ "alphanum_fraction": 0.5267489712, "avg_line_length": 22.0909090909, "ext": "agda", "hexsha": "e4e4ad45b38900a72606824b6099a8ada7f5f569", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/Data/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/Data/Product.agda", "max_line_length": 60, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 94, "size": 243 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Strict2Group.Explicit.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Group.Base open import Cubical.Data.Strict2Group.Explicit.Notation record Strict2GroupExp ℓ : Type (ℓ-suc ℓ) where constructor strict2groupexp field -- a group of objects and a group of morphisms C₀ : Group ℓ C₁ : Group ℓ -- source and target morphisms s : morph C₁ C₀ t : morph C₁ C₀ -- identity morphism i : morph C₀ C₁ -- the composition map C₁×₀C₁→C₁ ∘ : (g f : Group.type C₁) → (s .fst) g ≡ (t .fst f) → Group.type C₁ open S2GBaseNotation C₀ C₁ s t i ∘ field si : (x : TC₀) → src (id x) ≡ x ti : (x : TC₀) → tar (id x) ≡ x s∘ : (g f : TC₁) → (c : CohCond g f) → src (∘ g f c) ≡ src f t∘ : (g f : TC₁) → (c : CohCond g f) → tar (∘ g f c) ≡ tar g -- composition operation defines a homomorphism that is associative and unital w.r.t. i isMorph∘ : ∀ {g f g' f' : TC₁} (c : CohCond g f) (c' : CohCond g' f') → ∘ (g ∙₁ g') (f ∙₁ f') (∙c c c') ≡ (∘ g f c) ∙₁ (∘ g' f' c') assoc∘ : ∀ {h g f : TC₁} → (c1 : CohCond g f) → (c2 : CohCond h g) → ∘ (∘ h g c2) f ((s∘ h g c2) ∙ c1) ≡ ∘ h (∘ g f c1) (c2 ∙ (sym (t∘ g f c1))) lUnit∘ : (f : TC₁) → ∘ (id (tar f)) f (si (tar f)) ≡ f rUnit∘ : (f : TC₁) → ∘ f (id (src f)) (sym (ti (src f))) ≡ f
{ "alphanum_fraction": 0.5478073329, "avg_line_length": 31.6136363636, "ext": "agda", "hexsha": "b4a89a64e4c7d2a9a2d789c3ada0a9f376b1e933", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Data/Strict2Group/Explicit/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Data/Strict2Group/Explicit/Base.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Data/Strict2Group/Explicit/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 590, "size": 1391 }
------------------------------------------------------------------------ -- An example showing that transitivity-like proofs that are not -- size-preserving can sometimes be used in a compositional way ------------------------------------------------------------------------ -- One can use the technique from "Beating the Productivity Checker -- Using Embedded Languages" to make it possible to use -- transitivity-like proofs that are not size-preserving in -- corecursive definitions. However, it is unclear if this is ever -- useful: the example presented below is rather contrived. {-# OPTIONS --sized-types #-} open import Prelude module Delay-monad.Bisimilarity.Transitivity-constructor {a} {A : Type a} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Function-universe equality-with-J hiding (Kind) open import Delay-monad open import Delay-monad.Bisimilarity hiding (never≉now) open import Delay-monad.Bisimilarity.Negative ------------------------------------------------------------------------ -- Proof programs -- There are two kinds of proof "programs", corresponding to strong -- and weak bisimilarity. data Kind : Type where strong weak : Kind mutual -- Proof "programs". data Prog (i : Size) : Kind → Delay A ∞ → Delay A ∞ → Type a where -- Congruences. now : ∀ {k x} → Prog i k (now x) (now x) later : ∀ {k x y} → Prog′ i k (force x) (force y) → Prog i k (later x) (later y) -- Weak bisimilarity. laterʳ : ∀ {x y} → Prog i weak x (force y) → Prog i weak x (later y) laterˡ : ∀ {x y} → Prog i weak (force x) y → Prog i weak (later x) y -- Equational reasoning. -- -- Note that if A is inhabited, then there is no size-preserving -- transitivity-like proof taking strong bisimilarity and weak -- bisimilarity to weak bisimilarity (see -- Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-∼≈ˡ⇔uninhabited). reflP : ∀ {k} x → Prog i k x x symP : ∀ {k x y} → Prog i k x y → Prog i k y x transP : ∀ {k x y z} → Prog i strong x y → Prog i k y z → Prog i k x z record Prog′ (i : Size) (k : Kind) (x y : Delay A ∞) : Type a where coinductive field force : {j : Size< i} → Prog j k x y open Prog′ public ------------------------------------------------------------------------ -- Completeness -- Proof programs are complete with respect to strong and weak -- bisimilarity. Note that these proofs are size-preserving. complete-strong : ∀ {i x y} → [ i ] x ∼ y → Prog i strong x y complete-strong now = now complete-strong (later p) = later λ { .force → complete-strong (force p) } complete-weak : ∀ {i x y} → [ i ] x ≈ y → Prog i weak x y complete-weak now = now complete-weak (laterʳ p) = laterʳ (complete-weak p) complete-weak (laterˡ p) = laterˡ (complete-weak p) complete-weak (later p) = later λ { .force → complete-weak (force p) } ------------------------------------------------------------------------ -- Soundness -- Proof WHNFs. data WHNF (i : Size) : Kind → Delay A ∞ → Delay A ∞ → Type a where now : ∀ {k x} → WHNF i k (now x) (now x) later : ∀ {k x y} → Prog′ i k (force x) (force y) → WHNF i k (later x) (later y) laterʳ : ∀ {x y} → WHNF i weak x (force y) → WHNF i weak x (later y) laterˡ : ∀ {x y} → WHNF i weak (force x) y → WHNF i weak (later x) y -- Reflexivity. reflW : ∀ {i k} x → WHNF i k x x reflW (now x) = now reflW (later x) = later λ { .force → reflP (force x) } -- Symmetry. symW : ∀ {i k x y} → WHNF i k x y → WHNF i k y x symW now = now symW (later p) = later λ { .force → symP (force p) } symW (laterʳ p) = laterˡ (symW p) symW (laterˡ p) = laterʳ (symW p) -- Transitivity for strong WHNFs. trans∼∼W : ∀ {i x y z} → WHNF i strong x y → WHNF i strong y z → WHNF i strong x z trans∼∼W now q = q trans∼∼W (later p) (later q) = later λ { .force → transP (force p) (force q) } -- Strong equality programs can be turned into WHNFs. whnf∼ : ∀ {i x y} → Prog i strong x y → WHNF i strong x y whnf∼ now = now whnf∼ (later p) = later p whnf∼ (reflP x) = reflW x whnf∼ (symP p) = symW (whnf∼ p) whnf∼ (transP p q) = trans∼∼W (whnf∼ p) (whnf∼ q) -- Strong proof programs are sound with respect to strong -- bisimilarity. Note that these proofs are size-preserving. mutual sound-strong : ∀ {i x y} → Prog i strong x y → [ i ] x ∼ y sound-strong p = soundW-strong (whnf∼ p) soundW-strong : ∀ {i x y} → WHNF i strong x y → [ i ] x ∼ y soundW-strong now = now soundW-strong (later p) = later λ { .force → sound-strong (force p) } -- Another transitivity lemma. This lemma cannot, in general, be made -- fully size-preserving (see not-fully-size-preserving below). trans∼-W : ∀ {i k x y z} → WHNF ∞ strong x y → WHNF i k y z → WHNF i k x z trans∼-W now q = q trans∼-W p (laterʳ q) = laterʳ (trans∼-W p q) trans∼-W (later p) (laterˡ q) = laterˡ (trans∼-W (whnf∼ (force p)) q) trans∼-W (later p) (later q) = later λ { .force → transP (force p) (force q) } -- All fully defined programs can be turned into WHNFs. whnf : ∀ {i k x y} → Prog ∞ k x y → WHNF i k x y whnf now = now whnf (later p) = later p whnf (laterʳ p) = laterʳ (whnf p) whnf (laterˡ p) = laterˡ (whnf p) whnf (reflP x) = reflW x whnf (symP p) = symW (whnf p) whnf (transP p q) = trans∼-W (whnf p) (whnf q) -- Weak proof programs are sound with respect to weak bisimilarity. -- Note that these proofs are /not/ guaranteed to be size-preserving. mutual sound-weak : ∀ {i x y} → Prog ∞ weak x y → [ i ] x ≈ y sound-weak p = soundW-weak (whnf p) soundW-weak : ∀ {i x y} → WHNF ∞ weak x y → [ i ] x ≈ y soundW-weak now = now soundW-weak (laterʳ p) = laterʳ (soundW-weak p) soundW-weak (laterˡ p) = laterˡ (soundW-weak p) soundW-weak (later p) = later λ { .force → sound-weak (force p) } ------------------------------------------------------------------------ -- Some negative results -- The soundness proof for weak proof programs can be made -- size-preserving iff A is uninhabited. size-preserving⇔uninhabited : (∀ {i x y} → Prog i weak x y → [ i ] x ≈ y) ⇔ ¬ A size-preserving⇔uninhabited = record { to = (∀ {i x y} → Prog i weak x y → [ i ] x ≈ y) ↝⟨ (λ sound p q → sound (transP (complete-strong p) (complete-weak q))) ⟩ Transitivity-∼≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-∼≈ˡ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□ (∀ {i x y} → Prog i weak x y → [ i ] x ≈ y) □ } -- The lemma trans∼-W cannot be made fully size-preserving (assuming -- that A is inhabited). not-fully-size-preserving : (∀ {i k x y z} → WHNF i strong x y → WHNF i k y z → WHNF i k x z) → ¬ A not-fully-size-preserving trans x = contradiction ∞ where never≉now : ∀ {i} → ¬ WHNF i weak never (now x) never≉now (laterˡ p) = never≉now p mutual never≈now : ∀ {i} → WHNF i weak never (now x) never≈now = trans (later {y = record { force = now x }} never∼now) (laterˡ now) never∼now : ∀ {i} → Prog′ i strong never (now x) force never∼now {j = j} = ⊥-elim (contradiction j) contradiction : Size → ⊥ contradiction i = never≉now (never≈now {i = i}) -- One might wonder why the counterexample above cannot be adapted so -- that it also applies to programs, for which a size-preserving -- transitivity constructor exists. The following lemma documents one -- attempt at adapting the counterexample. Note that the new -- counterexample is based on the assumption that one can convert a -- strong bisimilarity program /of any size/ relating never and x to a -- proof that x is /equal/ to never. partially-adapted-counterexample : (∀ {i x} → Prog i strong never x → x ≡ never) → ¬ A partially-adapted-counterexample convert x = contradiction ∞ where mutual now∼→≡now : ∀ {i x y} → Prog i strong (now x) y → y ≡ now x now∼→≡now now = refl now∼→≡now (reflP _) = refl now∼→≡now (symP p) = ∼now→≡now p now∼→≡now (transP p q) rewrite now∼→≡now p = now∼→≡now q ∼now→≡now : ∀ {i x y} → Prog i strong x (now y) → x ≡ now y ∼now→≡now now = refl ∼now→≡now (reflP _) = refl ∼now→≡now (symP p) = now∼→≡now p ∼now→≡now (transP p q) rewrite ∼now→≡now q = ∼now→≡now p mutual now≉Pnever : ∀ {i} → ¬ Prog i weak (now x) never now≉Pnever (laterʳ p) = now≉Pnever p now≉Pnever (symP p) = never≉Pnow p now≉Pnever (transP p q) rewrite now∼→≡now p = now≉Pnever q never≉Pnow : ∀ {i} → ¬ Prog i weak never (now x) never≉Pnow (laterˡ p) = never≉Pnow p never≉Pnow (symP p) = now≉Pnever p never≉Pnow (transP p q) rewrite convert p = never≉Pnow q mutual never≈Pnow : ∀ {i} → Prog i weak never (now x) never≈Pnow = transP (later {y = record { force = now x }} never∼Pnow) (laterˡ now) never∼Pnow : ∀ {i} → Prog′ i strong never (now x) force never∼Pnow {j = j} = ⊥-elim (contradiction j) contradiction : Size → ⊥ contradiction i = never≉Pnow (never≈Pnow {i = i}) ------------------------------------------------------------------------ -- A contrived example -- Note the use of a strong bisimilarity program of size i as the -- first argument to transitivity in the following example; this is -- not supported by transitive-∼ˡ, which requires the first argument -- to have size ∞. exampleP : ∀ {i} → Prog i weak never never exampleP {i} = transP (reflP {i = i} never) (later λ { .force → exampleP }) example : ∀ {i} → [ i ] never ≈ never example = sound-weak exampleP -- However, note that the first argument could just as well have been -- given the size ∞, in which case transitive-∼ˡ works: counterargument : ∀ {i} → [ i ] never ≈ never {A = A} counterargument = transitive-∼ˡ (reflexive never) (later λ { .force → counterargument }) -- Are there any applications in which strong and weak bisimilarities -- are proved simultaneously? One can observe that, if the first -- argument is never, then weak bisimilarity is contained in strong -- (in a size-preserving way), as witnessed by →∼-neverˡ. Perhaps one -- can find some compelling application of the technique presented -- above if it can be combined with a lemma like →∼-neverˡ. However, -- it is unclear if such a combination is possible: the soundness -- proof above relies on the fact that strong bisimilarity programs -- contain no weak bisimilarity programs (in particular, no -- transitivity proofs with a weak bisimilarity as the second -- argument).
{ "alphanum_fraction": 0.5845274805, "avg_line_length": 34.3489096573, "ext": "agda", "hexsha": "cd1b21c0dd61332b3efe5ee686ae116fca62b6e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Bisimilarity/Transitivity-constructor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Bisimilarity/Transitivity-constructor.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Bisimilarity/Transitivity-constructor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3594, "size": 11026 }
{-# OPTIONS --without-K --exact-split #-} module 10-truncation-levels where import 09-fundamental-theorem open 09-fundamental-theorem public -- Section 8.1 Propositions is-prop : {i : Level} (A : UU i) → UU i is-prop A = (x y : A) → is-contr (Id x y) {- We introduce the universe of all propositions. -} UU-Prop : (l : Level) → UU (lsuc l) UU-Prop l = Σ (UU l) is-prop type-Prop : {l : Level} → UU-Prop l → UU l type-Prop P = pr1 P is-prop-type-Prop : {l : Level} (P : UU-Prop l) → is-prop (type-Prop P) is-prop-type-Prop P = pr2 P {- The empty type is a proposition. -} abstract is-prop-empty : is-prop empty is-prop-empty () abstract is-prop-unit : is-prop unit is-prop-unit = is-prop-is-contr is-contr-unit unit-Prop : UU-Prop lzero unit-Prop = pair unit is-prop-unit is-prop' : {i : Level} (A : UU i) → UU i is-prop' A = (x y : A) → Id x y abstract is-prop-is-prop' : {i : Level} {A : UU i} → is-prop' A → is-prop A is-prop-is-prop' {i} {A} H x y = pair ( (inv (H x x)) ∙ (H x y)) ( ind-Id x ( λ z p → Id ((inv (H x x)) ∙ (H x z)) p) ( left-inv (H x x)) y) abstract is-prop'-is-prop : {i : Level} {A : UU i} → is-prop A → is-prop' A is-prop'-is-prop H x y = pr1 (H x y) abstract is-contr-is-prop-inh : {i : Level} {A : UU i} → is-prop A → A → is-contr A is-contr-is-prop-inh H a = pair a (is-prop'-is-prop H a) abstract is-prop-is-contr-if-inh : {i : Level} {A : UU i} → (A → is-contr A) → is-prop A is-prop-is-contr-if-inh H x y = is-prop-is-contr (H x) x y is-subtype : {i j : Level} {A : UU i} (B : A → UU j) → UU (i ⊔ j) is-subtype B = (x : _) → is-prop (B x) double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → Σ (Σ A B) (λ t → C (pr1 t)) → Σ (Σ A C) (λ t → B (pr1 t)) double-structure-swap A B C (pair (pair a b) c) = (pair (pair a c) b) htpy-double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → ((double-structure-swap A C B) ∘ (double-structure-swap A B C)) ~ id htpy-double-structure-swap A B C (pair (pair a b) c) = eq-pair (eq-pair refl refl) refl is-equiv-double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → is-equiv (double-structure-swap A B C) is-equiv-double-structure-swap A B C = is-equiv-has-inverse ( double-structure-swap A C B) ( htpy-double-structure-swap A C B) ( htpy-double-structure-swap A B C) {- The following is a general construction that will help us show that the identity type of a subtype agrees with the identity type of the original type. We already know that the first projection of a family of propositions is an embedding, but the following lemma still has its uses. -} abstract is-contr-total-Eq-substructure : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {P : A → UU l3} → is-contr (Σ A B) → (is-subtype P) → (a : A) (b : B a) (p : P a) → is-contr (Σ (Σ A P) (λ t → B (pr1 t))) is-contr-total-Eq-substructure {A = A} {B} {P} is-contr-AB is-subtype-P a b p = is-contr-is-equiv ( Σ (Σ A B) (λ t → P (pr1 t))) ( double-structure-swap A P B) ( is-equiv-double-structure-swap A P B) ( is-contr-is-equiv' ( P a) ( left-unit-law-Σ-map-gen (λ t → P (pr1 t)) is-contr-AB (pair a b)) ( is-equiv-left-unit-law-Σ-map-gen _ is-contr-AB (pair a b)) ( is-contr-is-prop-inh (is-subtype-P a) p)) Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-subtype B → (Σ A B) → (Σ A B) → UU l1 Eq-total-subtype is-subtype-B p p' = Id (pr1 p) (pr1 p') reflexive-Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p : Σ A B) → Eq-total-subtype is-subtype-B p p reflexive-Eq-total-subtype is-subtype-B (pair x y) = refl Eq-total-subtype-eq : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p p' : Σ A B) → Id p p' → Eq-total-subtype is-subtype-B p p' Eq-total-subtype-eq is-subtype-B p .p refl = reflexive-Eq-total-subtype is-subtype-B p is-contr-total-Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p : Σ A B) → is-contr (Σ (Σ A B) (Eq-total-subtype is-subtype-B p)) is-contr-total-Eq-total-subtype is-subtype-B (pair x y) = is-contr-total-Eq-substructure ( is-contr-total-path x) ( is-subtype-B) x refl y is-equiv-Eq-total-subtype-eq : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p p' : Σ A B) → is-equiv (Eq-total-subtype-eq is-subtype-B p p') is-equiv-Eq-total-subtype-eq is-subtype-B p = fundamental-theorem-id p ( reflexive-Eq-total-subtype is-subtype-B p) ( is-contr-total-Eq-total-subtype is-subtype-B p) ( Eq-total-subtype-eq is-subtype-B p) eq-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → {p p' : Σ A B} → Eq-total-subtype is-subtype-B p p' → Id p p' eq-subtype is-subtype-B {p} {p'} = inv-is-equiv (is-equiv-Eq-total-subtype-eq is-subtype-B p p') -- Section 8.2 Sets is-set : {i : Level} → UU i → UU i is-set A = (x y : A) → is-prop (Id x y) UU-Set : (i : Level) → UU (lsuc i) UU-Set i = Σ (UU i) is-set type-Set : {l : Level} → UU-Set l → UU l type-Set X = pr1 X is-set-type-Set : {l : Level} (X : UU-Set l) → is-set (type-Set X) is-set-type-Set X = pr2 X axiom-K : {i : Level} → UU i → UU i axiom-K A = (x : A) (p : Id x x) → Id refl p abstract is-set-axiom-K : {i : Level} (A : UU i) → axiom-K A → is-set A is-set-axiom-K A H x y = is-prop-is-prop' (ind-Id x (λ z p → (q : Id x z) → Id p q) (H x) y) abstract axiom-K-is-set : {i : Level} (A : UU i) → is-set A → axiom-K A axiom-K-is-set A H x p = ( inv (contraction (is-contr-is-prop-inh (H x x) refl) refl)) ∙ ( contraction (is-contr-is-prop-inh (H x x) refl) p) abstract is-equiv-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → (x y : A) → is-equiv (i x y) is-equiv-prop-in-id R p ρ i x = fundamental-theorem-id-retr x (i x) (λ y → pair (ind-Id x (λ z p → R x z) (ρ x) y) ((λ r → is-prop'-is-prop (p x y) _ r))) abstract is-prop-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) (E : is-equiv f) → is-prop B → is-prop A is-prop-is-equiv B f E H x y = is-contr-is-equiv _ (ap f {x} {y}) (is-emb-is-equiv f E x y) (H (f x) (f y)) abstract is-prop-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) (E : is-equiv f) → is-prop A → is-prop B is-prop-is-equiv' A f E H = is-prop-is-equiv _ (inv-is-equiv E) (is-equiv-inv-is-equiv E) H abstract is-set-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → is-set A is-set-prop-in-id R p ρ i x y = is-prop-is-equiv' ( R x y) ( i x y) ( is-equiv-prop-in-id R p ρ i x y) (p x y) abstract is-prop-Eq-ℕ : (n m : ℕ) → is-prop (Eq-ℕ n m) is-prop-Eq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-Eq-ℕ zero-ℕ (succ-ℕ m) = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) zero-ℕ = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) (succ-ℕ m) = is-prop-Eq-ℕ n m abstract eq-Eq-ℕ : (n m : ℕ) → Eq-ℕ n m → Id n m eq-Eq-ℕ = least-reflexive-Eq-ℕ Id (λ n → refl) abstract is-set-ℕ : is-set ℕ is-set-ℕ = is-set-prop-in-id Eq-ℕ is-prop-Eq-ℕ refl-Eq-ℕ eq-Eq-ℕ set-ℕ : UU-Set lzero set-ℕ = pair ℕ is-set-ℕ -- Section 8.3 General truncation levels data 𝕋 : UU lzero where neg-two-𝕋 : 𝕋 succ-𝕋 : 𝕋 → 𝕋 neg-one-𝕋 : 𝕋 neg-one-𝕋 = succ-𝕋 (neg-two-𝕋) zero-𝕋 : 𝕋 zero-𝕋 = succ-𝕋 (neg-one-𝕋) one-𝕋 : 𝕋 one-𝕋 = succ-𝕋 (zero-𝕋) ℕ-in-𝕋 : ℕ → 𝕋 ℕ-in-𝕋 zero-ℕ = zero-𝕋 ℕ-in-𝕋 (succ-ℕ n) = succ-𝕋 (ℕ-in-𝕋 n) -- Probably it is better to define this where we first need it. add-𝕋 : 𝕋 → 𝕋 → 𝕋 add-𝕋 neg-two-𝕋 neg-two-𝕋 = neg-two-𝕋 add-𝕋 neg-two-𝕋 (succ-𝕋 neg-two-𝕋) = neg-two-𝕋 add-𝕋 neg-two-𝕋 (succ-𝕋 (succ-𝕋 y)) = y add-𝕋 (succ-𝕋 neg-two-𝕋) neg-two-𝕋 = neg-two-𝕋 add-𝕋 (succ-𝕋 neg-two-𝕋) (succ-𝕋 y) = y add-𝕋 (succ-𝕋 (succ-𝕋 neg-two-𝕋)) y = y add-𝕋 (succ-𝕋 (succ-𝕋 (succ-𝕋 x))) y = succ-𝕋 (add-𝕋 (succ-𝕋 (succ-𝕋 x)) y) is-trunc : {i : Level} (k : 𝕋) → UU i → UU i is-trunc neg-two-𝕋 A = is-contr A is-trunc (succ-𝕋 k) A = (x y : A) → is-trunc k (Id x y) 1-type : (l : Level) → UU (lsuc l) 1-type l = Σ (UU l) (is-trunc one-𝕋) _Truncated-Type_ : 𝕋 → (l : Level) → UU (lsuc l) k Truncated-Type l = Σ (UU l) (is-trunc k) abstract is-trunc-succ-is-trunc : {i : Level} (k : 𝕋) (A : UU i) → is-trunc k A → is-trunc (succ-𝕋 k) A is-trunc-succ-is-trunc neg-two-𝕋 A H = is-prop-is-contr H is-trunc-succ-is-trunc (succ-𝕋 k) A H x y = is-trunc-succ-is-trunc k (Id x y) (H x y) truncated-type-succ-𝕋 : (l : Level) (k : 𝕋) → k Truncated-Type l → (succ-𝕋 k) Truncated-Type l truncated-type-succ-𝕋 l k (pair A is-trunc-A) = pair A (is-trunc-succ-is-trunc k A is-trunc-A) abstract is-trunc-is-equiv : {i j : Level} (k : 𝕋) {A : UU i} (B : UU j) (f : A → B) → is-equiv f → is-trunc k B → is-trunc k A is-trunc-is-equiv neg-two-𝕋 B f is-equiv-f H = is-contr-is-equiv B f is-equiv-f H is-trunc-is-equiv (succ-𝕋 k) B f is-equiv-f H x y = is-trunc-is-equiv k (Id (f x) (f y)) (ap f {x} {y}) (is-emb-is-equiv f is-equiv-f x y) (H (f x) (f y)) abstract is-set-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) → is-equiv f → is-set B → is-set A is-set-is-equiv = is-trunc-is-equiv zero-𝕋 abstract is-trunc-equiv : {i j : Level} (k : 𝕋) {A : UU i} (B : UU j) (e : A ≃ B) → is-trunc k B → is-trunc k A is-trunc-equiv k B (pair f is-equiv-f) = is-trunc-is-equiv k B f is-equiv-f abstract is-set-equiv : {i j : Level} {A : UU i} (B : UU j) (e : A ≃ B) → is-set B → is-set A is-set-equiv = is-trunc-equiv zero-𝕋 abstract is-trunc-is-equiv' : {i j : Level} (k : 𝕋) (A : UU i) {B : UU j} (f : A → B) → is-equiv f → is-trunc k A → is-trunc k B is-trunc-is-equiv' k A f is-equiv-f is-trunc-A = is-trunc-is-equiv k A ( inv-is-equiv is-equiv-f) ( is-equiv-inv-is-equiv is-equiv-f) ( is-trunc-A) abstract is-set-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) → is-equiv f → is-set A → is-set B is-set-is-equiv' = is-trunc-is-equiv' zero-𝕋 abstract is-trunc-equiv' : {i j : Level} (k : 𝕋) (A : UU i) {B : UU j} (e : A ≃ B) → is-trunc k A → is-trunc k B is-trunc-equiv' k A (pair f is-equiv-f) = is-trunc-is-equiv' k A f is-equiv-f abstract is-set-equiv' : {i j : Level} (A : UU i) {B : UU j} (e : A ≃ B) → is-set A → is-set B is-set-equiv' = is-trunc-equiv' zero-𝕋 abstract is-trunc-succ-is-emb : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → is-emb f → is-trunc (succ-𝕋 k) B → is-trunc (succ-𝕋 k) A is-trunc-succ-is-emb k f Ef H x y = is-trunc-is-equiv k (Id (f x) (f y)) (ap f {x} {y}) (Ef x y) (H (f x) (f y)) is-trunc-map : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} → (A → B) → UU (i ⊔ j) is-trunc-map k f = (y : _) → is-trunc k (fib f y) trunc-map : {i j : Level} (k : 𝕋) (A : UU i) (B : UU j) → UU (i ⊔ j) trunc-map k A B = Σ (A → B) (is-trunc-map k) abstract is-trunc-pr1-is-trunc-fam : {i j : Level} (k : 𝕋) {A : UU i} (B : A → UU j) → ((x : A) → is-trunc k (B x)) → is-trunc-map k (pr1 {i} {j} {A} {B}) is-trunc-pr1-is-trunc-fam k B H x = is-trunc-is-equiv k ( B x) ( fib-fam-fib-pr1 B x) ( is-equiv-fib-fam-fib-pr1 B x) ( H x) trunc-pr1 : {i j : Level} (k : 𝕋) {A : UU i} (B : A → k Truncated-Type j) → trunc-map k (Σ A (λ x → pr1 (B x))) A trunc-pr1 k B = pair pr1 (is-trunc-pr1-is-trunc-fam k (λ x → pr1 (B x)) (λ x → pr2 (B x))) abstract is-trunc-fam-is-trunc-pr1 : {i j : Level} (k : 𝕋) {A : UU i} (B : A → UU j) → is-trunc-map k (pr1 {i} {j} {A} {B}) → ((x : A) → is-trunc k (B x)) is-trunc-fam-is-trunc-pr1 k B is-trunc-pr1 x = is-trunc-is-equiv k ( fib pr1 x) ( fib-pr1-fib-fam B x) ( is-equiv-fib-pr1-fib-fam B x) ( is-trunc-pr1 x) abstract is-trunc-map-is-trunc-ap : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → is-trunc-map k (ap f {x = x} {y = y})) → is-trunc-map (succ-𝕋 k) f is-trunc-map-is-trunc-ap k f is-trunc-ap-f b (pair x p) (pair x' p') = is-trunc-is-equiv k ( fib (ap f) (p ∙ (inv p'))) ( fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-equiv-fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-trunc-ap-f x x' (p ∙ (inv p'))) abstract is-trunc-ap-is-trunc-map : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → is-trunc-map (succ-𝕋 k) f → (x y : A) → is-trunc-map k (ap f {x = x} {y = y}) is-trunc-ap-is-trunc-map k f is-trunc-map-f x y p = is-trunc-is-equiv' k ( Id (pair x p) (pair y refl)) ( eq-fib-fib-ap f x y p) ( is-equiv-eq-fib-fib-ap f x y p) ( is-trunc-map-f (f y) (pair x p) (pair y refl)) is-prop-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-prop-map f = (b : _) → is-trunc neg-one-𝕋 (fib f b) abstract is-emb-is-prop-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-prop-map f → is-emb f is-emb-is-prop-map f is-prop-map-f x y = is-equiv-is-contr-map ( is-trunc-ap-is-trunc-map neg-two-𝕋 f is-prop-map-f x y) abstract is-prop-map-is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-emb f → is-prop-map f is-prop-map-is-emb f is-emb-f = is-trunc-map-is-trunc-ap neg-two-𝕋 f ( λ x y → is-contr-map-is-equiv (is-emb-f x y)) abstract is-emb-pr1-is-subtype : {i j : Level} {A : UU i} {B : A → UU j} → is-subtype B → is-emb (pr1 {B = B}) is-emb-pr1-is-subtype {B = B} is-subtype-B = is-emb-is-prop-map pr1 ( λ x → is-trunc-is-equiv neg-one-𝕋 ( B x) ( fib-fam-fib-pr1 _ x) ( is-equiv-fib-fam-fib-pr1 _ x) ( is-subtype-B x)) equiv-ap-pr1-is-subtype : {i j : Level} {A : UU i} {B : A → UU j} → is-subtype B → {s t : Σ A B} → Id s t ≃ Id (pr1 s) (pr1 t) equiv-ap-pr1-is-subtype is-subtype-B {s} {t} = pair ( ap pr1) ( is-emb-pr1-is-subtype is-subtype-B s t) abstract is-subtype-is-emb-pr1 : {i j : Level} {A : UU i} {B : A → UU j} → is-emb (pr1 {B = B}) → is-subtype B is-subtype-is-emb-pr1 is-emb-pr1-B x = is-trunc-is-equiv neg-one-𝕋 ( fib pr1 x) ( fib-pr1-fib-fam _ x) ( is-equiv-fib-pr1-fib-fam _ x) ( is-prop-map-is-emb pr1 is-emb-pr1-B x) is-fiberwise-trunc : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → UU (l1 ⊔ (l2 ⊔ l3)) is-fiberwise-trunc k f = (x : _) → is-trunc-map k (f x) abstract is-trunc-tot-is-fiberwise-trunc : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → is-fiberwise-trunc k f → is-trunc-map k (tot f) is-trunc-tot-is-fiberwise-trunc k f is-fiberwise-trunc-f (pair x z) = is-trunc-is-equiv k ( fib (f x) z) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-fiberwise-trunc-f x z) abstract is-fiberwise-trunc-is-trunc-tot : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → is-trunc-map k (tot f) → is-fiberwise-trunc k f is-fiberwise-trunc-is-trunc-tot k f is-trunc-tot-f x z = is-trunc-is-equiv k ( fib (tot f) (pair x z)) ( fib-tot-fib-ftr f (pair x z)) ( is-equiv-fib-tot-fib-ftr f (pair x z)) ( is-trunc-tot-f (pair x z)) -- Exercises -- Exercise 8.1 -- Exercise 8.1 diagonal : {l : Level} (A : UU l) → A → A × A diagonal A x = pair x x abstract is-prop-is-equiv-diagonal : {l : Level} (A : UU l) → is-equiv (diagonal A) → is-prop A is-prop-is-equiv-diagonal A is-equiv-d = is-prop-is-prop' ( λ x y → let α = issec-inv-is-equiv is-equiv-d (pair x y) in ( inv (ap pr1 α)) ∙ (ap pr2 α)) eq-fib-diagonal : {l : Level} (A : UU l) (t : A × A) → fib (diagonal A) t → Id (pr1 t) (pr2 t) eq-fib-diagonal A (pair x y) (pair z α) = (inv (ap pr1 α)) ∙ (ap pr2 α) fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → Id (pr1 t) (pr2 t) → fib (diagonal A) t fib-diagonal-eq A (pair x y) β = pair x (eq-pair-triv (pair refl β)) issec-fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → ((eq-fib-diagonal A t) ∘ (fib-diagonal-eq A t)) ~ id issec-fib-diagonal-eq A (pair x .x) refl = refl isretr-fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → ((fib-diagonal-eq A t) ∘ (eq-fib-diagonal A t)) ~ id isretr-fib-diagonal-eq A .(pair z z) (pair z refl) = refl abstract is-equiv-eq-fib-diagonal : {l : Level} (A : UU l) (t : A × A) → is-equiv (eq-fib-diagonal A t) is-equiv-eq-fib-diagonal A t = is-equiv-has-inverse ( fib-diagonal-eq A t) ( issec-fib-diagonal-eq A t) ( isretr-fib-diagonal-eq A t) abstract is-trunc-is-trunc-diagonal : {l : Level} (k : 𝕋) (A : UU l) → is-trunc-map k (diagonal A) → is-trunc (succ-𝕋 k) A is-trunc-is-trunc-diagonal k A is-trunc-d x y = is-trunc-is-equiv' k ( fib (diagonal A) (pair x y)) ( eq-fib-diagonal A (pair x y)) ( is-equiv-eq-fib-diagonal A (pair x y)) ( is-trunc-d (pair x y)) abstract is-trunc-diagonal-is-trunc : {l : Level} (k : 𝕋) (A : UU l) → is-trunc (succ-𝕋 k) A → is-trunc-map k (diagonal A) is-trunc-diagonal-is-trunc k A is-trunc-A t = is-trunc-is-equiv k ( Id (pr1 t) (pr2 t)) ( eq-fib-diagonal A t) ( is-equiv-eq-fib-diagonal A t) ( is-trunc-A (pr1 t) (pr2 t)) -- Exercise 8.2 -- Exercise 8.2(a) abstract is-trunc-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-trunc k A → ((x : A) → is-trunc k (B x)) → is-trunc k (Σ A B) is-trunc-Σ neg-two-𝕋 is-trunc-A is-trunc-B = is-contr-Σ is-trunc-A is-trunc-B is-trunc-Σ (succ-𝕋 k) {B = B} is-trunc-A is-trunc-B s t = is-trunc-is-equiv k ( Σ (Id (pr1 s) (pr1 t)) (λ p → Id (tr B p (pr2 s)) (pr2 t))) ( pair-eq) ( is-equiv-pair-eq s t) ( is-trunc-Σ k ( is-trunc-A (pr1 s) (pr1 t)) ( λ p → is-trunc-B (pr1 t) (tr B p (pr2 s)) (pr2 t))) abstract is-trunc-prod : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k A → is-trunc k B → is-trunc k (A × B) is-trunc-prod k is-trunc-A is-trunc-B = is-trunc-Σ k is-trunc-A (λ x → is-trunc-B) abstract is-prop-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-prop A → is-subtype B → is-prop (Σ A B) is-prop-Σ = is-trunc-Σ neg-one-𝕋 Σ-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : type-Prop P → UU-Prop l2) → UU-Prop (l1 ⊔ l2) Σ-Prop P Q = pair ( Σ (type-Prop P) (λ p → type-Prop (Q p))) ( is-prop-Σ ( is-prop-type-Prop P) ( λ p → is-prop-type-Prop (Q p))) abstract is-prop-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → is-prop (A × B) is-prop-prod = is-trunc-prod neg-one-𝕋 prod-Prop : {l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) prod-Prop P Q = pair ( type-Prop P × type-Prop Q) ( is-prop-prod (is-prop-type-Prop P) (is-prop-type-Prop Q)) abstract is-set-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-set A → ((x : A) → is-set (B x)) → is-set (Σ A B) is-set-Σ = is-trunc-Σ zero-𝕋 set-Σ : {l1 l2 : Level} (A : UU-Set l1) (B : pr1 A → UU-Set l2) → UU-Set (l1 ⊔ l2) set-Σ (pair A is-set-A) B = pair ( Σ A (λ x → (pr1 (B x)))) ( is-set-Σ is-set-A (λ x → pr2 (B x))) abstract is-set-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-set A → is-set B → is-set (A × B) is-set-prod = is-trunc-prod zero-𝕋 set-prod : {l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) → UU-Set (l1 ⊔ l2) set-prod (pair A is-set-A) (pair B is-set-B) = pair (A × B) (is-set-prod is-set-A is-set-B) -- Exercise 8.2 (b) abstract is-trunc-Id : {l : Level} (k : 𝕋) {A : UU l} → is-trunc k A → (x y : A) → is-trunc k (Id x y) is-trunc-Id neg-two-𝕋 is-trunc-A = is-prop-is-contr is-trunc-A is-trunc-Id (succ-𝕋 k) is-trunc-A x y = is-trunc-succ-is-trunc k (Id x y) (is-trunc-A x y) -- Exercise 8.2 (c) abstract is-trunc-map-is-trunc-domain-codomain : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-trunc k A → is-trunc k B → is-trunc-map k f is-trunc-map-is-trunc-domain-codomain k {f = f} is-trunc-A is-trunc-B b = is-trunc-Σ k is-trunc-A (λ x → is-trunc-Id k is-trunc-B (f x) b) -- Exercise 8.2 (d) abstract is-trunc-fam-is-trunc-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-trunc k A → is-trunc k (Σ A B) → (x : A) → is-trunc k (B x) is-trunc-fam-is-trunc-Σ k {B = B} is-trunc-A is-trunc-ΣAB x = is-trunc-is-equiv' k ( fib pr1 x) ( fib-fam-fib-pr1 B x) ( is-equiv-fib-fam-fib-pr1 B x) ( is-trunc-map-is-trunc-domain-codomain k is-trunc-ΣAB is-trunc-A x) -- Exercise 8.3 abstract is-prop-Eq-𝟚 : (x y : bool) → is-prop (Eq-𝟚 x y) is-prop-Eq-𝟚 true true = is-prop-unit is-prop-Eq-𝟚 true false = is-prop-empty is-prop-Eq-𝟚 false true = is-prop-empty is-prop-Eq-𝟚 false false = is-prop-unit abstract eq-Eq-𝟚 : (x y : bool) → Eq-𝟚 x y → Id x y eq-Eq-𝟚 true true star = refl eq-Eq-𝟚 true false () eq-Eq-𝟚 false true () eq-Eq-𝟚 false false star = refl abstract is-set-bool : is-set bool is-set-bool = is-set-prop-in-id Eq-𝟚 is-prop-Eq-𝟚 reflexive-Eq-𝟚 eq-Eq-𝟚 set-bool : UU-Set lzero set-bool = pair bool is-set-bool -- Exercise 8.4 abstract is-trunc-succ-empty : (k : 𝕋) → is-trunc (succ-𝕋 k) empty is-trunc-succ-empty k = ind-empty abstract is-trunc-coprod : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc (succ-𝕋 (succ-𝕋 k)) A → is-trunc (succ-𝕋 (succ-𝕋 k)) B → is-trunc (succ-𝕋 (succ-𝕋 k)) (coprod A B) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inl x) (inl y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inl x) (inl y)) ( Eq-coprod-eq A B (inl x) (inl y)) ( is-equiv-Eq-coprod-eq A B (inl x) (inl y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( Id x y) ( map-raise _ (Id x y)) ( is-equiv-map-raise _ (Id x y)) ( is-trunc-A x y)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inl x) (inr y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inl x) (inr y)) ( Eq-coprod-eq A B (inl x) (inr y)) ( is-equiv-Eq-coprod-eq A B (inl x) (inr y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( empty) ( map-raise _ empty) ( is-equiv-map-raise _ empty) ( is-trunc-succ-empty k)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inr x) (inl y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inr x) (inl y)) ( Eq-coprod-eq A B (inr x) (inl y)) ( is-equiv-Eq-coprod-eq A B (inr x) (inl y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( empty) ( map-raise _ empty) ( is-equiv-map-raise _ empty) ( is-trunc-succ-empty k)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inr x) (inr y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inr x) (inr y)) ( Eq-coprod-eq A B (inr x) (inr y)) ( is-equiv-Eq-coprod-eq A B (inr x) (inr y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( Id x y) ( map-raise _ (Id x y)) ( is-equiv-map-raise _ (Id x y)) ( is-trunc-B x y)) abstract is-set-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-set A → is-set B → is-set (coprod A B) is-set-coprod = is-trunc-coprod neg-two-𝕋 set-coprod : {l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) → UU-Set (l1 ⊔ l2) set-coprod (pair A is-set-A) (pair B is-set-B) = pair (coprod A B) (is-set-coprod is-set-A is-set-B) abstract is-set-unit : is-set unit is-set-unit = is-trunc-succ-is-trunc neg-one-𝕋 unit is-prop-unit set-unit : UU-Set lzero set-unit = pair unit is-set-unit abstract is-set-ℤ : is-set ℤ is-set-ℤ = is-set-coprod is-set-ℕ (is-set-coprod is-set-unit is-set-ℕ) set-ℤ : UU-Set lzero set-ℤ = pair ℤ is-set-ℤ is-set-empty : is-set empty is-set-empty () abstract is-set-Fin : (n : ℕ) → is-set (Fin n) is-set-Fin zero-ℕ = is-set-empty is-set-Fin (succ-ℕ n) = is-set-coprod (is-set-Fin n) is-set-unit set-Fin : (n : ℕ) → UU-Set lzero set-Fin n = pair (Fin n) (is-set-Fin n) -- Exercise 8.7 abstract is-trunc-retract-of : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → A retract-of B → is-trunc k B → is-trunc k A is-trunc-retract-of neg-two-𝕋 (pair i (pair r H)) is-trunc-B = is-contr-retract-of _ (pair i (pair r H)) is-trunc-B is-trunc-retract-of (succ-𝕋 k) (pair i retr-i) is-trunc-B x y = is-trunc-retract-of k ( pair (ap i) (retr-ap i retr-i x y)) ( is-trunc-B (i x) (i y)) -- Exercise 8.8 is-injective : {l1 l2 : Level} {A : UU l1} (is-set-A : is-set A) {B : UU l2} (is-set-B : is-set B) (f : A → B) → UU (l1 ⊔ l2) is-injective {A = A} is-set-A is-set-B f = (x y : A) → Id (f x) (f y) → Id x y is-injective-const-true : is-injective is-set-unit is-set-bool (const unit bool true) is-injective-const-true x y p = center (is-prop-unit x y) is-injective-const-false : is-injective is-set-unit is-set-bool (const unit bool false) is-injective-const-false x y p = center (is-prop-unit x y) abstract is-equiv-is-prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → {f : A → B} → (B → A) → is-equiv f is-equiv-is-prop is-prop-A is-prop-B {f} g = is-equiv-has-inverse ( g) ( λ y → center (is-prop-B (f (g y)) y)) ( λ x → center (is-prop-A (g (f x)) x)) equiv-prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → ( A → B) → (B → A) → A ≃ B equiv-prop is-prop-A is-prop-B f g = pair f (is-equiv-is-prop is-prop-A is-prop-B g) equiv-total-subtype : { l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} {Q : A → UU l3} → ( is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) → ( f : (x : A) → P x → Q x) → ( g : (x : A) → Q x → P x) → ( Σ A P) ≃ (Σ A Q) equiv-total-subtype is-subtype-P is-subtype-Q f g = pair ( tot f) ( is-equiv-tot-is-fiberwise-equiv {f = f} ( λ x → is-equiv-is-prop (is-subtype-P x) (is-subtype-Q x) (g x))) abstract is-emb-is-injective : {l1 l2 : Level} {A : UU l1} (is-set-A : is-set A) {B : UU l2} (is-set-B : is-set B) (f : A → B) → is-injective is-set-A is-set-B f → is-emb f is-emb-is-injective is-set-A is-set-B f is-injective-f x y = is-equiv-is-prop ( is-set-A x y) ( is-set-B (f x) (f y)) ( is-injective-f x y) abstract is-injective-is-emb : {l1 l2 : Level} {A : UU l1} {is-set-A : is-set A} {B : UU l2} {is-set-B : is-set B} {f : A → B} → is-emb f → is-injective is-set-A is-set-B f is-injective-is-emb is-emb-f x y = inv-is-equiv (is-emb-f x y) -- Exercise 8.9 abstract is-trunc-const-is-trunc : {l : Level} (k : 𝕋) {A : UU l} → is-trunc (succ-𝕋 k) A → (x : A) → is-trunc-map k (const unit A x) is-trunc-const-is-trunc k is-trunc-A x y = is-trunc-is-equiv' k ( Id x y) ( left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-equiv-left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-trunc-A x y) abstract is-trunc-is-trunc-const : {l : Level} (k : 𝕋) {A : UU l} → ((x : A) → is-trunc-map k (const unit A x)) → is-trunc (succ-𝕋 k) A is-trunc-is-trunc-const k is-trunc-const x y = is-trunc-is-equiv k ( Σ unit (λ t → Id x y)) ( left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-equiv-left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-trunc-const x y) -- Exercise 8.10 map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → fib (g ∘ h) x → Σ (fib g x) (λ t → fib h (pr1 t)) map-fib-comp g h x (pair a p) = pair ( pair (h a) p) ( pair a refl) inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → Σ (fib g x) (λ t → fib h (pr1 t)) → fib (g ∘ h) x inv-map-fib-comp g h c t = pair (pr1 (pr2 t)) ((ap g (pr2 (pr2 t))) ∙ (pr2 (pr1 t))) issec-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → ((map-fib-comp g h x) ∘ (inv-map-fib-comp g h x)) ~ id issec-inv-map-fib-comp g h x (pair (pair .(h a) refl) (pair a refl)) = refl isretr-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → ((inv-map-fib-comp g h x) ∘ (map-fib-comp g h x)) ~ id isretr-inv-map-fib-comp g h .(g (h a)) (pair a refl) = refl abstract is-equiv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → is-equiv (map-fib-comp g h x) is-equiv-map-fib-comp g h x = is-equiv-has-inverse ( inv-map-fib-comp g h x) ( issec-inv-map-fib-comp g h x) ( isretr-inv-map-fib-comp g h x) abstract is-equiv-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → is-equiv (inv-map-fib-comp g h x) is-equiv-inv-map-fib-comp g h x = is-equiv-has-inverse ( map-fib-comp g h x) ( isretr-inv-map-fib-comp g h x) ( issec-inv-map-fib-comp g h x) abstract is-trunc-map-htpy : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f g : A → B) → f ~ g → is-trunc-map k g → is-trunc-map k f is-trunc-map-htpy k {A} f g H is-trunc-g b = is-trunc-is-equiv k ( Σ A (λ z → Id (g z) b)) ( fib-triangle f g id H b) ( is-fiberwise-equiv-is-equiv-triangle f g id H (is-equiv-id _) b) ( is-trunc-g b) abstract is-trunc-map-comp : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k h → is-trunc-map k f is-trunc-map-comp k f g h H is-trunc-g is-trunc-h = is-trunc-map-htpy k f (g ∘ h) H ( λ x → is-trunc-is-equiv k ( Σ (fib g x) (λ t → fib h (pr1 t))) ( map-fib-comp g h x) ( is-equiv-map-fib-comp g h x) ( is-trunc-Σ k ( is-trunc-g x) ( λ t → is-trunc-h (pr1 t)))) abstract is-trunc-map-right-factor : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k f → is-trunc-map k h is-trunc-map-right-factor k {A} f g h H is-trunc-g is-trunc-f b = is-trunc-fam-is-trunc-Σ k ( is-trunc-g (g b)) ( is-trunc-is-equiv' k ( Σ A (λ z → Id (g (h z)) (g b))) ( map-fib-comp g h (g b)) ( is-equiv-map-fib-comp g h (g b)) ( is-trunc-map-htpy k (g ∘ h) f (htpy-inv H) is-trunc-f (g b))) ( pair b refl) abstract is-trunc-map-succ-is-trunc-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map k f → is-trunc-map (succ-𝕋 k) f is-trunc-map-succ-is-trunc-map k f is-trunc-f b = is-trunc-succ-is-trunc k (fib f b) (is-trunc-f b)
{ "alphanum_fraction": 0.5455098837, "avg_line_length": 32.5474452555, "ext": "agda", "hexsha": "7a03e6f97aefa184d3cdffccdf817a4275c373e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/10-truncation-levels.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/10-truncation-levels.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/10-truncation-levels.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13474, "size": 31213 }
module RevMachine where open import Level open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Product record RevMachine {ℓ} : Set (suc ℓ) where field State : Set ℓ _↦_ : Rel State ℓ deterministic : ∀ {st st₁ st₂} → st ↦ st₁ → st ↦ st₂ → st₁ ≡ st₂ deterministicᵣₑᵥ : ∀ {st st₁ st₂} → st₁ ↦ st → st₂ ↦ st → st₁ ≡ st₂ record PartialRevMachine {ℓ} : Set (suc ℓ) where field State : Set ℓ _↦_ : Rel State ℓ is-fail : State → Set ℓ is-fail? : (st : State) → Dec (is-fail st) fail-is-stuck : ∀ {st} → is-fail st → ∄[ st' ] (st ↦ st') deterministic : ∀ {st st₁ st₂} → st ↦ st₁ → st ↦ st₂ → st₁ ≡ st₂ deterministicᵣₑᵥ : ∀ {st st₁ st₂} → st₁ ↦ st → st₂ ↦ st → ¬ (is-fail st) → st₁ ≡ st₂
{ "alphanum_fraction": 0.6129032258, "avg_line_length": 29.8518518519, "ext": "agda", "hexsha": "b173e702095b009f19c1b3ab939bd513657368a8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "RevMachine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "RevMachine.agda", "max_line_length": 88, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "RevMachine.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 318, "size": 806 }
module Structure.Numeral.Natural where open import Lang.Instance import Lvl open import Logic.Predicate open import Logic.Propositional open import Structure.Setoid open import Structure.Function.Domain open import Structure.Function open import Structure.Operator open import Structure.Relator open import Structure.Setoid open import Syntax.Function open import Type private variable ℓₒ ℓₗ ℓₑ ℓₗ₁ ℓₗ₂ : Lvl.Level private variable N : Type{ℓₒ} module _ ⦃ equiv : Equiv{ℓₑ}(N) ⦄ where private variable 𝟎 : N private variable 𝐒 : N → N private variable _+_ _⋅_ _^_ : N → N → N module _ {ℓ} (𝟎 : N) (𝐒 : N → N) where record Induction : Type{ℓₑ Lvl.⊔ Lvl.of(N) Lvl.⊔ Lvl.𝐒(ℓ)} where constructor intro field proof : (P : N → Type{ℓ}) ⦃ rel : UnaryRelator(P) ⦄ → P(𝟎) → ((n : N) → P(n) → P(𝐒(n))) → ((n : N) → P(n)) induction = inst-fn Induction.proof record Elemental (𝟎 : N) (𝐒 : N → N) : Type{ℓₑ Lvl.⊔ Lvl.of(N)} where constructor intro field ⦃ 𝐒-function ⦄ : Function(𝐒) ⦃ 𝐒-injectivity ⦄ : Injective(𝐒) 𝐒-positivity : ∀{x} → (𝐒(x) ≢ 𝟎) record Addition ⦃ elemn : Elemental(𝟎)(𝐒) ⦄ (_+_ : N → N → N) : Type{ℓₑ Lvl.⊔ Lvl.of(N)} where constructor intro field ⦃ operator ⦄ : BinaryOperator(_+_) base : ∀{a} → (a + 𝟎 ≡ a) step : ∀{a b} → (a + 𝐒(b) ≡ 𝐒(a + b)) record Multiplication ⦃ elemn : Elemental(𝟎)(𝐒) ⦄ ⦃ addi : Addition(_+_) ⦄ (_⋅_ : N → N → N) : Type{ℓₑ Lvl.⊔ Lvl.of(N)} where constructor intro field ⦃ operator ⦄ : BinaryOperator(_⋅_) base : ∀{a} → (a ⋅ 𝟎 ≡ 𝟎) step : ∀{a b} → (a ⋅ 𝐒(b) ≡ a + (a ⋅ b)) record Exponentiation ⦃ elemn : Elemental(𝟎)(𝐒) ⦄ ⦃ addi : Addition(_+_) ⦄ ⦃ multi : Multiplication(_⋅_) ⦄ (_^_ : N → N → N) : Type{ℓₑ Lvl.⊔ Lvl.of(N)} where constructor intro field ⦃ operator ⦄ : BinaryOperator(_^_) base : ∀{a} → (a ^ 𝟎 ≡ 𝐒(𝟎)) step : ∀{a b} → (a ^ 𝐒(b) ≡ a ⋅ (a ^ b)) record WeakOrdering ⦃ elemn : Elemental(𝟎)(𝐒) ⦄ {_+_ : N → N → N} ⦃ addi : Addition(_+_) ⦄ (_≤_ : N → N → Type{ℓₗ}) : Type{ℓₑ Lvl.⊔ Lvl.of(N) Lvl.⊔ ℓₗ} where constructor intro field ⦃ relator ⦄ : BinaryRelator(_≤_) proof : ∀{a b} → (a ≤ b) ↔ ∃(c ↦ a + c ≡ b) module _ ⦃ ind : Induction(𝟎)(𝐒) ⦄ ⦃ elem : Elemental(𝟎)(𝐒) ⦄ where open import Structure.Relator.Proofs open import Structure.Relator.Properties open Elemental(elem) open Induction(ind) 𝟎-or-𝐒 : ∀{x} → (x ≡ 𝟎) ∨ ∃(y ↦ x ≡ 𝐒(y)) 𝟎-or-𝐒 {x} = induction(𝟎)(𝐒) (x ↦ (x ≡ 𝟎) ∨ ∃(y ↦ x ≡ 𝐒(y))) ⦃ [∨]-unaryRelator ⦃ rel-P = BinaryRelator.left [≡]-binaryRelator ⦄ ⦃ rel-Q = [∃]-unaryRelator ⦃ rel-P = BinaryRelator.left [≡]-binaryRelator ⦄ ⦄ ⦄ ([∨]-introₗ (reflexivity(_≡_))) (x ↦ [∨]-elim (p ↦ [∨]-introᵣ([∃]-intro 𝟎 ⦃ congruence₁(𝐒) p ⦄)) (\{([∃]-intro y ⦃ p ⦄) → [∨]-introᵣ([∃]-intro (𝐒(y)) ⦃ congruence₁(𝐒) p ⦄)}) ) x {- module _ ⦃ ind : Induction(𝟎)(𝐒) ⦄ where import Data.Either as Either open import Functional open import Numeral.Natural as ℕ using (ℕ) open import Relator.Equals renaming (_≡_ to _≡ₑ_) open import Structure.Relator.Proofs open import Syntax.Number from-ℕ : ℕ → N from-ℕ (ℕ.𝟎) = 𝟎 from-ℕ (ℕ.𝐒(n)) = 𝐒(from-ℕ n) -} -- TODO: Also include the definition of a "naturally ordered semigroup" here {- module _ (_<_ : T → T → Stmt{ℓₗ}) where record Minimal : Type{Lvl.of(T) Lvl.⊔ ℓₗ} where open From-[<][≡] (_<_) (_≡_) field ⦃ elemental ⦄ : Elemental [<]ₗ-𝟎 : ∀{x} → (𝟎 < x) ↔ (x ≢ 𝟎) [<]ᵣ-𝟎 : ∀{x} → (𝟎 ≤ x) -- Minimum in the order (TODO: Is (∀x. x≥0) neccessary? Which means (0<x)∨(0=x)) [<]ₗ-𝐒 : ∀{x y} → (𝐒(x) < y) ↔ ((x < y)∧(𝐒(x) ≢ y)) -- TODO: Also the definition of (_≤_)? [<]ᵣ-𝐒 : ∀{x y} → (x < 𝐒(y)) ↔ (x ≤ y) -}
{ "alphanum_fraction": 0.5506198347, "avg_line_length": 35.2, "ext": "agda", "hexsha": "bfb60caf3665cf19aa2a0c9d425bb7dc50b63ba1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Numeral/Natural.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Numeral/Natural.agda", "max_line_length": 185, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Numeral/Natural.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1778, "size": 3872 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} ------------------------------------------------------------------------------ import LibraBFT.Impl.OBM.Crypto as TODO open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) ------------------------------------------------------------------------------ module LibraBFT.Impl.Consensus.SafetyRules.PersistentSafetyStorage where new : Author → Waypoint → SK → PersistentSafetyStorage new author waypoint sk = mkPersistentSafetyStorage {- _pssSafetyData =-} (SafetyData∙new {- _sdEpoch = Epoch-} 1 {-, _sdLastVotedRound = Round-} 0 {-, _sdPreferredRound = Round-} 0 {-, _sdLastVote =-} nothing) {-, _pssAuthor =-} author {-, _pssWaypoint =-} waypoint {-, _pssObmSK =-} (just sk) consensusKeyForVersion : PersistentSafetyStorage → PK → Either ErrLog SK consensusKeyForVersion self pk = -- LBFT-OBM-DIFF maybeS (self ^∙ pssObmSK) (Left fakeErr {-"pssObmSK Nothing"-}) $ λ sk → if TODO.makePK sk /= pk then Left fakeErr -- ["sk /= pk"] else pure sk where here' : List String → List String here' t = "PersistentSafetyStorage" ∷ "consensusKeyForVersion" ∷ t
{ "alphanum_fraction": 0.5560022975, "avg_line_length": 42.4634146341, "ext": "agda", "hexsha": "e1d73006e070988d80797349abe642633636b8d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/PersistentSafetyStorage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/PersistentSafetyStorage.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/PersistentSafetyStorage.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 425, "size": 1741 }
module UniDB.Subst.Reg where open import UniDB.Spec open import UniDB.Subst.Core open import UniDB.Morph.Reg open import UniDB.Morph.WeakenPrime module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} where instance iCompReg : Comp (Reg T) _⊙_ {{iCompReg}} (baseR ξ) ζ = ξ ⊡ ζ _⊙_ {{iCompReg}} (snocR {γ₁} {γ₂} ξ t) ζ = snocR (ξ ⊙ ζ) (ap {T} ζ t) iWkmHomReg : WkmHom (Reg T) wkm-zero {{iWkmHomReg}} = refl wkm-suc {{iWkmHomReg}} δ = refl iWkmBetaReg : WkmBeta T (Reg T) wkm-beta {{iWkmBetaReg}} t = refl reg-zero : (γ : Dom) → Reg T zero γ reg-zero zero = baseR baseW reg-zero (suc γ) = reg-zero γ ⊙ wkm {Reg T} 1 complete : (γ₁ γ₂ : Dom) (f : Ix γ₁ → T γ₂) → Reg T γ₁ γ₂ complete zero γ₂ f = reg-zero γ₂ complete (suc γ₁) γ₂ f = snocR (complete γ₁ γ₂ (f ∘ suc)) (f zero) ⊡-⊙-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Reg T γ₂ γ₃) (ξ₃ : Reg T γ₃ γ₄) → ξ₁ ⊡ (ξ₂ ⊙ ξ₃) ≡ (ξ₁ ⊡ ξ₂) ⊙ ξ₃ ⊡-⊙-assoc ξ₁ (baseR ξ₂) ξ₃ = ⊡-⊡-assoc ξ₁ ξ₂ ξ₃ ⊡-⊙-assoc baseW ξ₂ ξ₃ rewrite idm-⊡ {Weaken`} {Reg T} (ξ₂ ⊙ ξ₃) | idm-⊡ {Weaken`} {Reg T} ξ₂ = refl ⊡-⊙-assoc (stepW ξ₁) (snocR ξ₂ t) ξ₃ = ⊡-⊙-assoc ξ₁ ξ₂ ξ₃ wk₁-⊡ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Reg T γ₂ γ₃) → wk₁ (_⊡_ {Weaken`} {Reg T} {Reg T} ξ₁ ξ₂) ≡ ξ₁ ⊡ wk₁ ξ₂ wk₁-⊡ ξ₁ (baseR ξ) = refl wk₁-⊡ baseW (snocR ξ₂ t) = refl wk₁-⊡ (stepW ξ₁) (snocR ξ₂ t) = wk₁-⊡ ξ₁ ξ₂ module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{wkVrT : WkVr T}} where instance iCompIdmReg : {{apRelTT : ApRel T T}} {{apIdmTT : ApIdm T T}} → CompIdm (Reg T) ⊙-idm {{iCompIdmReg}} (baseR ξ) = refl ⊙-idm {{iCompIdmReg}} (snocR ξ t) = cong₂ snocR (⊙-idm {Reg T} ξ) (ap-idm` {T} t) idm-⊙ {{iCompIdmReg}} ξ = idm-⊡ {Weaken`} {Reg T} ξ lk-⊡ : {{apVr : ApVr T}} {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Reg T γ₂ γ₃) → (i : Ix γ₁) → lk {T} {Reg T} (ξ₁ ⊡ ξ₂) i ≡ ap {T} ξ₂ (lk {T} ξ₁ i) lk-⊡ ξ₁ (baseR ξ₂) i = begin lk (ξ₁ ⊙ ξ₂) i ≡⟨ lk-ren-comp {T} ξ₁ ξ₂ i ⟩ lk ξ₂ (lk ξ₁ i) ≡⟨ sym (ap-vr {T} (baseR ξ₂) (lk ξ₁ i)) ⟩ ap {T} (baseR ξ₂) (vr (lk ξ₁ i)) ≡⟨ cong (ap {T} (baseR ξ₂)) (sym (lk-ren {T} ξ₁ i)) ⟩ ap {T} (baseR ξ₂) (lk ξ₁ i) ∎ lk-⊡ baseW ξ₂ i = begin lk {T} {Reg T} (baseW ⊡ ξ₂) i ≡⟨ cong₂ lk (idm-⊡ {Weaken`} ξ₂) refl ⟩ lk {T} {Reg T} ξ₂ i ≡⟨ sym (ap-vr {T} ξ₂ i) ⟩ ap {T} ξ₂ (vr i) ∎ lk-⊡ (stepW ξ₁) (snocR ξ₂ t) i = begin lk {T} {Reg T} (ξ₁ ⊡ ξ₂) i ≡⟨ lk-⊡ ξ₁ ξ₂ i ⟩ ap {T} ξ₂ (vr (lk ξ₁ i)) ≡⟨ ap-vr {T} ξ₂ (lk ξ₁ i) ⟩ lk ξ₂ (lk ξ₁ i) ≡⟨ refl ⟩ lk (snocR ξ₂ t) (suc (lk ξ₁ i)) ≡⟨ sym (ap-vr {T} (snocR ξ₂ t) (suc (lk ξ₁ i))) ⟩ ap {T} (snocR ξ₂ t) (vr (suc (lk ξ₁ i))) ∎ instance iLkCompApReg : {{apVr : ApVr T}} → LkCompAp T (Reg T) lk-⊙-ap {{iLkCompApReg}} (baseR ξ₁) ξ₂ i = lk-⊡ ξ₁ ξ₂ i lk-⊙-ap {{iLkCompApReg}} (snocR ξ₁ t) ξ₂ zero = refl lk-⊙-ap {{iLkCompApReg}} (snocR ξ₁ t) ξ₂ (suc i) = lk-⊙-ap {T} ξ₁ ξ₂ i wk₁-⊙ : {{apWkTT : ApWk T T}} {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Reg T γ₁ γ₂) (ξ₂ : Reg T γ₂ γ₃) → wk₁ (ξ₁ ⊙ ξ₂) ≡ wk₁ ξ₁ ⊙ snocR (wk₁ ξ₂) (Vr.vr vrT zero) wk₁-⊙ (baseR ξ) ξ₂ = wk₁-⊡ ξ ξ₂ wk₁-⊙ (snocR ξ₁ t) ξ₂ = cong₂ snocR (wk₁-⊙ ξ₁ ξ₂) (sym (ap-wk₁ {T} ξ₂ t)) instance iUpCompReg : {{apVrT : ApVr T}} {{apWkTT : ApWk T T}} → UpComp (Reg T) ⊙-↑₁ {{iUpCompReg}} ξ₁ ξ₂ = cong₂ snocR (wk₁-⊙ ξ₁ ξ₂) (sym (ap-vr {T} (snocR (wk₁ ξ₂) (vr zero)) zero)) iCompAssocReg : {{apVrT : ApVr T}} {{apCompT : ApComp T T}} {{apWkTT : ApWk T T}} → CompAssoc (Reg T) ⊙-assoc {{iCompAssocReg}} (baseR ξ₁) ξ₂ ξ₃ = ⊡-⊙-assoc ξ₁ ξ₂ ξ₃ ⊙-assoc {{iCompAssocReg}} (snocR ξ₁ t) ξ₂ ξ₃ = cong₂ snocR (⊙-assoc {Reg T} ξ₁ ξ₂ ξ₃) (ap-⊙ {T} ξ₂ ξ₃ t) ⊙-wkm₁-reg : {{apWkmWkTT : ApWkmWk T T}} {γ₁ γ₂ : Dom} (ξ : Reg T γ₁ γ₂) → ξ ⊙ wkm {Reg T} 1 ≡ wk₁ ξ ⊙-wkm₁-reg (baseR ξ) = refl ⊙-wkm₁-reg (snocR ξ t) rewrite sym (wk1-wk₁ t) = cong₂ snocR (⊙-wkm₁-reg ξ) (ap-wkm-wk {T} 1 t) instance iWkmCommReg : {{apVr : ApVr T}} {{apCompT : ApComp T T}} {{apWkTT : ApWk T T}} {{apWkmWkTT : ApWkmWk T T}} {{apRelTT : ApRel T T}} {{apIdmTT : ApIdm T T}} → WkmComm (Reg T) wkm₁-comm {{iWkmCommReg}} (baseR baseW) = refl wkm₁-comm {{iWkmCommReg}} (baseR (stepW ξ)) rewrite idm-⊙ {Weaken`} ξ = refl wkm₁-comm {{iWkmCommReg}} (snocR ξ t) = ⊙-wkm₁-reg (snocR ξ t)
{ "alphanum_fraction": 0.5060111636, "avg_line_length": 42.3454545455, "ext": "agda", "hexsha": "973864fbff95ea472b70207233501d698d205201", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Subst/Reg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Subst/Reg.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Subst/Reg.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2538, "size": 4658 }
{-# OPTIONS --safe --without-K #-} module JVM.Builtins where open import Data.List open import JVM.Types Object = "java/lang/Object" Str = "java/lang/String" jre : Constantpool jre = staticref ("java/lang/System" / "out" ∶ ref "java/io/PrintStream") ∷ virtual ("java/io/PrintStream" / "println" :⟨ [ int ] ⟩ void) ∷ class (Object) ∷ virtual (Object / "<init>" :⟨ [] ⟩ void) ∷ []
{ "alphanum_fraction": 0.5947242206, "avg_line_length": 24.5294117647, "ext": "agda", "hexsha": "557068bd7f4e2d22d41193489f0c11675efabb4d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Builtins.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Builtins.agda", "max_line_length": 79, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Builtins.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 129, "size": 417 }
------------------------------------------------------------------------ -- Paolo Capriotti's variant of higher lenses ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent.Higher.Capriotti {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as B using (_↔_) open import Equality.Path.Isomorphisms eq hiding (univ) open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (_∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq open import Preimage equality-with-J open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq import Lens.Non-dependent.Higher eq as Higher import Lens.Non-dependent.Traditional eq as Traditional private variable a b : Level A B : Set a ------------------------------------------------------------------------ -- The lens type family -- Higher lenses, as presented by Paolo Capriotti, who seems to have -- been first to describe a notion of higher lens -- (http://homotopytypetheory.org/2014/04/29/higher-lenses/). Lens : Set a → Set b → Set (lsuc (a ⊔ b)) Lens {a = a} A B = ∃ λ (g : A → B) → ∃ λ (H : Pow a ∥ B ∥) → (g ⁻¹_) ≡ H ∘ ∣_∣ -- Some derived definitions. module Lens {A : Set a} {B : Set b} (l : Lens A B) where -- A getter. get : A → B get = proj₁ l -- A predicate. H : Pow a ∥ B ∥ H = proj₁ (proj₂ l) -- An equality. get⁻¹-≡ : (get ⁻¹_) ≡ H ∘ ∣_∣ get⁻¹-≡ = proj₂ (proj₂ l) -- A setter. -- -- This definition is based on Paolo Capriotti's. set : A → B → A set a b = $⟨ truncation-is-proposition ∣ get a ∣ ∣ b ∣ ⟩ ∣ get a ∣ ≡ ∣ b ∣ ↝⟨ cong H ⟩ H ∣ get a ∣ ≡ H ∣ b ∣ ↝⟨ subst (λ f → f (get a) ≡ f b) (sym get⁻¹-≡) ⟩ get ⁻¹ get a ≡ get ⁻¹ b ↝⟨ ≡⇒≃ ⟩ get ⁻¹ get a ≃ get ⁻¹ b ↝⟨ flip _≃_.to (a , refl _) ⟩ get ⁻¹ b ↝⟨ proj₁ ⟩□ A □ instance -- The lenses defined above have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } ------------------------------------------------------------------------ -- Equality characterisation lemmas -- An equality characterisation lemma. equality-characterisation₁ : {l₁ l₂ : Lens A B} → let open Lens in (l₁ ≡ l₂) ≃ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (⟨ext⟩ (h ∘ ∣_∣))) ≡ get⁻¹-≡ l₂) equality-characterisation₁ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Σ-assoc ⟩ ((get l₁ , H l₁) , get⁻¹-≡ l₁) ≡ ((get l₂ , H l₂) , get⁻¹-≡ l₂) ↔⟨ inverse B.Σ-≡,≡↔≡ ⟩ (∃ λ (eq : (get l₁ , H l₁) ≡ (get l₂ , H l₂)) → subst (λ (g , H) → g ⁻¹_ ≡ H ∘ ∣_∣) eq (get⁻¹-≡ l₁) ≡ get⁻¹-≡ l₂) ↝⟨ (Σ-cong-contra ≡×≡↔≡ λ _ → F.id) ⟩ (∃ λ ((g , h) : get l₁ ≡ get l₂ × H l₁ ≡ H l₂) → subst (λ (g , H) → g ⁻¹_ ≡ H ∘ ∣_∣) (cong₂ _,_ g h) (get⁻¹-≡ l₁) ≡ get⁻¹-≡ l₂) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → subst (λ (g , H) → g ⁻¹_ ≡ H ∘ ∣_∣) (cong₂ _,_ g h) (get⁻¹-≡ l₁) ≡ get⁻¹-≡ l₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ≡⇒↝ _ $ cong (_≡ _) $ lemma _ _) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → trans (sym (cong _⁻¹_ g)) (trans (get⁻¹-≡ l₁) (cong (_∘ ∣_∣) h)) ≡ get⁻¹-≡ l₂) ↝⟨ (Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ → Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ → F.id) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (cong (_∘ ∣_∣) (⟨ext⟩ h))) ≡ get⁻¹-≡ l₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ≡⇒↝ _ $ cong (λ eq → trans _ (trans _ eq) ≡ _) $ cong-pre-∘-ext _) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (⟨ext⟩ (h ∘ ∣_∣))) ≡ get⁻¹-≡ l₂) □ where open Lens lemma : ∀ _ _ → _ lemma g h = subst (λ (g , H) → g ⁻¹_ ≡ H ∘ ∣_∣) (cong₂ _,_ g h) (get⁻¹-≡ l₁) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (λ (g , _) → g ⁻¹_) (cong₂ _,_ g h))) (trans (get⁻¹-≡ l₁) (cong (λ (_ , H) → H ∘ ∣_∣) (cong₂ _,_ g h))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (get⁻¹-≡ l₁) q)) (trans (sym $ cong-∘ _ _ _) $ cong (cong _⁻¹_) $ cong-proj₁-cong₂-, _ _) (trans (sym $ cong-∘ _ _ _) $ cong (cong (_∘ ∣_∣)) $ cong-proj₂-cong₂-, _ _) ⟩∎ trans (sym (cong _⁻¹_ g)) (trans (get⁻¹-≡ l₁) (cong (_∘ ∣_∣) h)) ∎ -- Another equality characterisation lemma. equality-characterisation₂ : {A : Set a} {B : Set b} {l₁ l₂ : Lens A B} (univ : Univalence (a ⊔ b)) → let open Lens in (l₁ ≡ l₂) ≃ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (⟨ext⟩ (≃⇒≡ univ ∘ h ∘ ∣_∣))) ≡ get⁻¹-≡ l₂) equality-characterisation₂ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (⟨ext⟩ (h ∘ ∣_∣))) ≡ get⁻¹-≡ l₂) ↝⟨ (∃-cong λ _ → Σ-cong-contra (∀-cong ext λ _ → inverse $ ≡≃≃ univ) λ _ → F.id) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) → trans (sym (cong _⁻¹_ (⟨ext⟩ g))) (trans (get⁻¹-≡ l₁) (⟨ext⟩ (≃⇒≡ univ ∘ h ∘ ∣_∣))) ≡ get⁻¹-≡ l₂) □ where open Lens ------------------------------------------------------------------------ -- Conversions between different kinds of lenses -- The lenses defined above can be converted to the lenses defined in -- Higher. Lens→Higher-lens : Lens A B → Higher.Lens A B Lens→Higher-lens {A = A} {B = B} (g , H , eq) = record { R = Σ ∥ B ∥ H ; equiv = A ↔⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩ (∃ λ (a : A) → ∃ λ (b : B) → g a ≡ b) ↔⟨ ∃-comm ⟩ (∃ λ (b : B) → ∃ λ (a : A) → g a ≡ b) ↔⟨⟩ (∃ λ (b : B) → g ⁻¹ b) ↝⟨ (∃-cong λ b → ≡⇒↝ _ $ cong (_$ b) eq) ⟩ (∃ λ (b : B) → H ∣ b ∣) ↝⟨ (Σ-cong (inverse ∥∥×≃) λ _ → ≡⇒↝ _ $ cong H $ truncation-is-proposition _ _) ⟩ (∃ λ ((b , _) : ∥ B ∥ × B) → H b) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (b : ∥ B ∥) → B × H b) ↔⟨ (∃-cong λ _ → ×-comm) ⟩ (∃ λ (b : ∥ B ∥) → H b × B) ↔⟨ Σ-assoc ⟩□ Σ ∥ B ∥ H × B □ ; inhabited = proj₁ } -- The conversion preserves getters and setters. Lens→Higher-lens-preserves-getters-and-setters : Preserves-getters-and-setters-→ A B Lens→Higher-lens Lens→Higher-lens-preserves-getters-and-setters l@(g , H , eq) = refl _ , ⟨ext⟩ λ a → ⟨ext⟩ λ b → let h₁ = ≡⇒→ (cong (_$ g a) eq) (a , refl _) h₂ = _≃_.from (≡⇒↝ _ (cong H _)) (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of ∥∥×≃ _)) (≡⇒→ (cong H _) h₁)) lemma = h₂ ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of ∥∥×≃ _)) (≡⇒→ (cong H _) h₁)) ≡⟨ cong (λ x → subst H (sym $ truncation-is-proposition _ _) (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of ∥∥×≃ (∣ g a ∣ , b))) x)) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of ∥∥×≃ _)) (subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ truncation-is-proposition _ _) x) $ subst-∘ _ _ _ ⟩ subst H _ (subst H _ (subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ truncation-is-proposition _ _) x) $ subst-subst _ _ _ _ ⟩ subst H _ (subst H _ h₁) ≡⟨ subst-subst _ _ _ _ ⟩ subst H _ h₁ ≡⟨ cong (λ eq → subst H eq h₁) $ mono₁ 1 truncation-is-proposition _ _ ⟩ subst H _ h₁ ≡⟨ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩∎ ≡⇒→ (cong H _) h₁ ∎ in (Higher.Lens.set (Lens→Higher-lens l) a b ≡⟨⟩ proj₁ (_≃_.from (≡⇒↝ _ (cong (_$ b) eq)) h₂) ≡⟨ cong (λ f → proj₁ (f h₂)) $ sym $ ≡⇒↝-sym equivalence ⟩ proj₁ (≡⇒→ (sym (cong (_$ b) eq)) h₂) ≡⟨ cong (λ eq → proj₁ (≡⇒→ eq h₂)) $ sym $ cong-sym _ _ ⟩ proj₁ (≡⇒→ (cong (_$ b) (sym eq)) h₂) ≡⟨ cong (proj₁ ∘ ≡⇒→ (cong (_$ b) (sym eq))) lemma ⟩ proj₁ (≡⇒→ (cong (_$ b) (sym eq)) (≡⇒→ (cong H _) h₁)) ≡⟨ cong (λ f → proj₁ (f h₁)) $ sym $ ≡⇒↝-trans equivalence ⟩ proj₁ (≡⇒→ (trans (cong H _) (cong (_$ b) (sym eq))) h₁) ≡⟨⟩ proj₁ (≡⇒→ (trans (cong H _) (cong (_$ b) (sym eq))) (≡⇒→ (cong (_$ g a) eq) (a , refl _))) ≡⟨ cong (λ f → proj₁ (f (a , refl _))) $ sym $ ≡⇒↝-trans equivalence ⟩ proj₁ (≡⇒→ (trans (cong (_$ g a) eq) (trans (cong H _) (cong (_$ b) (sym eq)))) (a , refl _)) ≡⟨ cong (λ p → proj₁ (≡⇒→ (trans p (trans (cong H (truncation-is-proposition _ _)) (cong (_$ b) (sym eq)))) (a , refl _))) $ trans (cong (cong (_$ g a)) $ sym $ sym-sym _) $ cong-sym _ _ ⟩ proj₁ (≡⇒→ (trans (sym (cong (_$ g a) (sym eq))) (trans (cong H _) (cong (_$ b) (sym eq)))) (a , refl _)) ≡⟨ cong (λ eq → proj₁ (≡⇒→ eq (a , refl _))) $ sym $ subst-in-terms-of-trans-and-cong ⟩ proj₁ (≡⇒→ (subst (λ f → f (g a) ≡ f b) (sym eq) (cong H _)) (a , refl _)) ≡⟨⟩ Lens.set l a b ∎) -- Lens A B is equivalent to Higher.Lens A B (assuming univalence). Lens≃Higher-lens : {A : Set a} {B : Set b} → Block "conversion" → Univalence (a ⊔ b) → Lens A B ≃ Higher.Lens A B Lens≃Higher-lens {A = A} {B = B} ⊠ univ = Eq.↔→≃ to from to∘from from∘to where to = Lens→Higher-lens from : Higher.Lens A B → Lens A B from l = get , (λ _ → R) , ( $⟨ (λ b → inverse (Higher.remainder≃get⁻¹ l b)) ⟩ (∀ b → get ⁻¹ b ≃ R) ↝⟨ (∀-cong _ λ _ → ≃⇒≡ univ) ⟩ (∀ b → get ⁻¹ b ≡ R) ↝⟨ ⟨ext⟩ ⟩□ get ⁻¹_ ≡ const R □) where open Higher.Lens l to∘from : ∀ l → to (from l) ≡ l to∘from l = _↔_.from (Higher.equality-characterisation₃ univ) ( (∥ B ∥ × R ↔⟨ (drop-⊤-left-× λ r → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition (inhabited r)) ⟩□ R □) , (λ a → ≡⇒→ (cong (λ _ → R) (truncation-is-proposition _ _)) (≡⇒→ (cong (_$ get a) (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ l))) (a , refl _)) ≡⟨ cong (λ eq → ≡⇒→ eq (≡⇒→ (cong (_$ get a) (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ l))) (a , refl _))) $ cong-const _ ⟩ ≡⇒→ (refl _) (≡⇒→ (cong (_$ get a) (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ l))) (a , refl _)) ≡⟨ cong (_$ ≡⇒→ (cong (_$ get a) (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ l))) (a , refl _)) ≡⇒→-refl ⟩ ≡⇒→ (cong (_$ get a) (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ l))) (a , refl _) ≡⟨ cong (λ eq → ≡⇒→ eq (a , refl _)) $ cong-ext _ ⟩ ≡⇒→ (≃⇒≡ univ (inverse (Higher.remainder≃get⁻¹ l (get a)))) (a , refl _) ≡⟨ cong (_$ a , refl _) $ ≡⇒→-≃⇒≡ equivalence univ ⟩ _≃_.from (Higher.remainder≃get⁻¹ l (get a)) (a , refl _) ≡⟨⟩ remainder a ∎) , (λ _ → refl _) ) where open Higher.Lens l from∘to : ∀ l → from (to l) ≡ l from∘to l = _≃_.from (equality-characterisation₂ univ) ( (λ _ → refl _) , Σ∥B∥H≃H , (trans (sym (cong _⁻¹_ (⟨ext⟩ λ _ → refl _))) (trans (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ (to l))) (⟨ext⟩ (≃⇒≡ univ ∘ Σ∥B∥H≃H ∘ ∣_∣))) ≡⟨ cong (flip trans _) $ trans (cong (sym ∘ cong _⁻¹_) ext-refl) $ trans (cong sym $ cong-refl _) $ sym-refl ⟩ trans (refl _) (trans (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ (to l))) (⟨ext⟩ (≃⇒≡ univ ∘ Σ∥B∥H≃H ∘ ∣_∣))) ≡⟨ trans-reflˡ _ ⟩ trans (⟨ext⟩ (≃⇒≡ univ ∘ inverse ∘ Higher.remainder≃get⁻¹ (to l))) (⟨ext⟩ (≃⇒≡ univ ∘ Σ∥B∥H≃H ∘ ∣_∣)) ≡⟨ sym $ ext-trans _ _ ⟩ (⟨ext⟩ λ b → trans (≃⇒≡ univ (inverse (Higher.remainder≃get⁻¹ (to l) b))) (≃⇒≡ univ (Σ∥B∥H≃H ∣ b ∣))) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → sym $ ≃⇒≡-∘ univ ext _ _) ⟩ (⟨ext⟩ λ b → ≃⇒≡ univ (Σ∥B∥H≃H ∣ b ∣ F.∘ inverse (Higher.remainder≃get⁻¹ (to l) b))) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → cong (≃⇒≡ univ) $ Eq.lift-equality ext $ ⟨ext⟩ (lemma _)) ⟩ (⟨ext⟩ λ b → ≃⇒≡ univ (≡⇒≃ (ext⁻¹ get⁻¹-≡ b))) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → _≃_.left-inverse-of (≡≃≃ univ) _) ⟩ (⟨ext⟩ λ b → ext⁻¹ get⁻¹-≡ b) ≡⟨ _≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩∎ get⁻¹-≡ ∎) ) where open Lens l Σ∥B∥H≃H = λ b → Σ ∥ B ∥ H ↔⟨ (drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition b) ⟩□ H b □ lemma : ∀ b (p : get ⁻¹ b) → _ lemma b p@(a , get-a≡b) = _≃_.to (Σ∥B∥H≃H ∣ b ∣) (_≃_.from (Higher.remainder≃get⁻¹ (to l) b) p) ≡⟨⟩ subst H _ (≡⇒→ (cong H _) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _))) ≡⟨ cong (subst H _) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst H _ (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _))) ≡⟨ subst-subst _ _ _ _ ⟩ subst H _ (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _)) ≡⟨ cong (λ eq → subst H eq (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _))) $ mono₁ 1 truncation-is-proposition _ _ ⟩ subst H (cong ∣_∣ get-a≡b) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _)) ≡⟨ elim¹ (λ {b} eq → subst H (cong ∣_∣ eq) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _)) ≡ ≡⇒→ (cong (_$ b) get⁻¹-≡) (a , eq)) ( subst H (cong ∣_∣ (refl _)) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _)) ≡⟨ cong (λ eq → subst H eq (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _))) $ cong-refl _ ⟩ subst H (refl _) (≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _)) ≡⟨ subst-refl _ _ ⟩∎ ≡⇒→ (cong (_$ get a) get⁻¹-≡) (a , refl _) ∎) get-a≡b ⟩ ≡⇒→ (cong (_$ b) get⁻¹-≡) p ≡⟨⟩ ≡⇒→ (ext⁻¹ get⁻¹-≡ b) p ∎ -- The equivalence preserves getters and setters. Lens≃Higher-lens-preserves-getters-and-setters : {A : Set a} {B : Set b} (bc : Block "conversion") (univ : Univalence (a ⊔ b)) → Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence (Lens≃Higher-lens bc univ)) Lens≃Higher-lens-preserves-getters-and-setters ⊠ univ = Preserves-getters-and-setters-→-↠-⇔ (_≃_.surjection (Lens≃Higher-lens ⊠ univ)) Lens→Higher-lens-preserves-getters-and-setters -- An alternative proof showing that Lens A B is equivalent to -- Higher.Lens A B (assuming univalence). -- -- This proof was simplified following a suggestion by Paolo -- Capriotti. -- -- I have not proved that this equivalence preserves getters and -- setters. Lens≃Higher-lens′ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Lens A B ≃ Higher.Lens A B Lens≃Higher-lens′ {a = a} {b = b} {A = A} {B = B} univ = (∃ λ (g : A → B) → ∃ λ (H : Pow a ∥ B ∥) → (g ⁻¹_) ≡ H ∘ ∣_∣) ↔⟨ Σ-cong lemma₂ (λ _ → ∃-cong (lemma₃ _)) ⟩ (∃ λ (p : ∃ λ (P : Pow a B) → A ≃ ∃ P) → ∃ λ (H : Pow a ∥ B ∥) → proj₁ p ≡ H ∘ ∣_∣) ↔⟨ ∃-comm ⟩ (∃ λ (H : Pow a ∥ B ∥) → ∃ λ (p : ∃ λ (P : Pow a B) → A ≃ ∃ P) → proj₁ p ≡ H ∘ ∣_∣) ↔⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ (H : Pow a ∥ B ∥) → ∃ λ (P : Pow a B) → A ≃ ∃ P × P ≡ H ∘ ∣_∣) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ×-comm) ⟩ (∃ λ (H : Pow a ∥ B ∥) → ∃ λ (P : Pow a B) → P ≡ H ∘ ∣_∣ × A ≃ ∃ P) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ eq → Eq.≃-preserves ext F.id (∃-cong λ x → ≡⇒↝ _ (cong (_$ x) eq))) ⟩ (∃ λ (H : Pow a ∥ B ∥) → ∃ λ (P : Pow a B) → P ≡ H ∘ ∣_∣ × A ≃ ∃ (H ∘ ∣_∣)) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩ (∃ λ (H : Pow a ∥ B ∥) → (∃ λ (P : Pow a B) → P ≡ H ∘ ∣_∣) × A ≃ ∃ (H ∘ ∣_∣)) ↔⟨ (∃-cong λ _ → drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩ (∃ λ (H : Pow a ∥ B ∥) → A ≃ ∃ (H ∘ ∣_∣)) ↔⟨ inverse $ Σ-cong (inverse $ Pow↔Fam a ext univ) (λ _ → Eq.≃-preserves ext F.id F.id) ⟩ (∃ λ (H : Fam a ∥ B ∥) → A ≃ ∃ ((proj₂ H ⁻¹_) ∘ ∣_∣)) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (R : Set ℓ) → ∃ λ (f : R → ∥ B ∥) → A ≃ ∃ ((f ⁻¹_) ∘ ∣_∣)) ↔⟨ (∃-cong λ R → ∃-cong λ f → Eq.≃-preserves ext F.id (∃ ((f ⁻¹_) ∘ ∣_∣) ↔⟨ (∃-cong λ b → drop-⊤-right λ r → _⇔_.to contractible⇔↔⊤ $ +⇒≡ truncation-is-proposition) ⟩ B × R ↔⟨ ×-comm ⟩□ R × B □)) ⟩ (∃ λ (R : Set ℓ) → (R → ∥ B ∥) × (A ≃ (R × B))) ↔⟨ (∃-cong λ _ → ×-comm) ⟩ (∃ λ (R : Set ℓ) → (A ≃ (R × B)) × (R → ∥ B ∥)) ↔⟨ inverse Higher.Lens-as-Σ ⟩□ Higher.Lens A B □ where ℓ = a ⊔ b lemma₁ : ∀ (g : A → B) b → g ⁻¹ b ↔ (g ∘ lower {ℓ = ℓ}) ⁻¹ b lemma₁ g b = record { surjection = record { logical-equivalence = record { to = λ { (a , ga≡b) → lift a , ga≡b } ; from = λ { (lift a , ga≡b) → a , ga≡b } } ; right-inverse-of = refl } ; left-inverse-of = refl } abstract lemma₂ : (A → B) ↔ ∃ λ (P : Pow a B) → A ≃ ∃ P lemma₂ = →↔Σ≃Σ ℓ ext univ lemma₃ : (g : A → B) (H : Pow a ∥ B ∥) → ((g ⁻¹_) ≡ H ∘ ∣_∣) ≃ (proj₁ (_↔_.to lemma₂ g) ≡ H ∘ ∣_∣) lemma₃ g H = (g ⁻¹_) ≡ H ∘ ∣_∣ ↝⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (∀ b → g ⁻¹ b ≡ H ∣ b ∣) ↝⟨ ∀-cong ext (λ _ → ≡-preserves-≃ ext univ univ (Eq.↔⇒≃ $ lemma₁ _ _) F.id) ⟩ (∀ b → (g ∘ lower) ⁻¹ b ≡ H ∣ b ∣) ↝⟨ Eq.extensionality-isomorphism ext ⟩ ((g ∘ lower) ⁻¹_) ≡ H ∘ ∣_∣ ↝⟨ ≡⇒↝ _ $ cong (λ eq → (g ∘ lower ∘ _≃_.from eq ⁻¹_) ≡ H ∘ ∣_∣) lemma ⟩ (g ∘ lower ∘ _≃_.from (≡⇒↝ _ (sym (refl _))) ⁻¹_) ≡ H ∘ ∣_∣ ↔⟨⟩ proj₁ (_↔_.to lemma₂ g) ≡ H ∘ ∣_∣ □ where lemma = F.id ≡⟨ sym ≡⇒↝-refl ⟩ ≡⇒↝ _ (refl _) ≡⟨ cong (≡⇒↝ _) $ sym sym-refl ⟩∎ ≡⇒↝ _ (sym (refl _)) ∎ -- If the domain A is a set, then Traditional.Lens A B and Lens A B -- are isomorphic (assuming univalence). Lens↔Traditional-lens : {A : Set a} {B : Set b} → Block "conversion" → Univalence (a ⊔ b) → Is-set A → Lens A B ↔ Traditional.Lens A B Lens↔Traditional-lens {A = A} {B} bc univ A-set = Lens A B ↔⟨ Lens≃Higher-lens bc univ ⟩ Higher.Lens A B ↝⟨ Higher.Lens↔Traditional-lens bc univ A-set ⟩□ Traditional.Lens A B □ -- The isomorphism preserves getters and setters. Lens↔Traditional-lens-preserves-getters-and-setters : {A : Set a} {B : Set b} (bc : Block "conversion") (univ : Univalence (a ⊔ b)) (s : Is-set A) → Preserves-getters-and-setters-⇔ A B (_↔_.logical-equivalence (Lens↔Traditional-lens bc univ s)) Lens↔Traditional-lens-preserves-getters-and-setters bc univ s = Preserves-getters-and-setters-⇔-∘ {f = _↔_.logical-equivalence $ Higher.Lens↔Traditional-lens bc univ s} {g = _≃_.logical-equivalence $ Lens≃Higher-lens bc univ} (Higher.Lens↔Traditional-lens-preserves-getters-and-setters bc univ s) (Lens≃Higher-lens-preserves-getters-and-setters bc univ)
{ "alphanum_fraction": 0.3429414766, "avg_line_length": 46.5118644068, "ext": "agda", "hexsha": "6ef19029658652f76f385c70b7b7f6593b04c607", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Capriotti.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Capriotti.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Capriotti.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9301, "size": 27442 }
module parse-test where import parse open import lib open import cedille-types import cedille module parsem = parse cedille.gratr2-nt ptr open parsem open parsem.pnoderiv cedille.rrs cedille.cedille-rtn open import run ptr open noderiv {- from run.agda -} process-start : start → string process-start s = "" process : Run → string process (ParseTree (parsed-start p) :: []) = process-start p process r = "Parsing failure (run with -" ^ "-showParsed).\n" putStrRunIf : 𝔹 → Run → IO ⊤ putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n" putStrRunIf ff r = return triv parse-specific-nt : cedille.gratr2-nt → ℕ → (lc : 𝕃 char) → 𝕃 char ⊎ Run parse-specific-nt nt starting-char-position lc with parse-filter lc lc [] [] (cedille.cedille-start nt) inj₁ ...| inj₁ left = inj₁ left ...| inj₂ run = inj₂ (re-to-run starting-char-position (reverse run)) processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤ processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText where processText : string → IO ⊤ processText x with parse-specific-nt cedille._type 10 (string-to-𝕃char x) processText x | s with s processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n" processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r' processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> putStr (process r') processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n") processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n" main : IO ⊤ main = getArgs >>= processArgs ff ff
{ "alphanum_fraction": 0.6753117207, "avg_line_length": 41.7708333333, "ext": "agda", "hexsha": "29455105466e2c0710751d67a7c71130f1da17c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/parse-test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/parse-test.agda", "max_line_length": 154, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/parse-test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 602, "size": 2005 }
-- Andreas, 2019-03-18, issue #3122, AIM XXIX -- Also pick up hidden record fields from a module. record R : Set₂ where field {f} : Set₁ module M where f : Set₁ f = Set r : R r = record { M } -- WAS: yellow -- Should check.
{ "alphanum_fraction": 0.6282051282, "avg_line_length": 14.625, "ext": "agda", "hexsha": "326541abe6a49f2f28c52812a37a22e16e8f3d65", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3122.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3122.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3122.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 81, "size": 234 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Semirings.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Semiring open import Orders.Total.Definition open import Orders.Partial.Definition module Numbers.Naturals.Order where open Semiring ℕSemiring open import Decidable.Lemmas ℕDecideEquality private infix 5 _<NLogical_ _<NLogical_ : ℕ → ℕ → Set zero <NLogical zero = False zero <NLogical (succ n) = True (succ n) <NLogical zero = False (succ n) <NLogical (succ m) = n <NLogical m infix 5 _<N_ record _<N_ (a : ℕ) (b : ℕ) : Set where constructor le field x : ℕ proof : (succ x) +N a ≡ b infix 5 _<N'_ record _<N'_ (a : ℕ) (b : ℕ) : Set where constructor le' field x : ℕ .proof : (succ x) +N a ≡ b infix 5 _≤N_ _≤N_ : ℕ → ℕ → Set a ≤N b = (a <N b) || (a ≡ b) succIsPositive : (a : ℕ) → zero <N succ a succIsPositive a = le a (applyEquality succ (Semiring.commutative ℕSemiring a 0)) aLessSucc : (a : ℕ) → (a <NLogical succ a) aLessSucc zero = record {} aLessSucc (succ a) = aLessSucc a private succPreservesInequalityLogical : {a b : ℕ} → (a <NLogical b) → (succ a <NLogical succ b) succPreservesInequalityLogical {a} {b} prAB = prAB lessTransitiveLogical : {a b c : ℕ} → (a <NLogical b) → (b <NLogical c) → (a <NLogical c) lessTransitiveLogical {a} {zero} {zero} prAB prBC = prAB lessTransitiveLogical {a} {(succ b)} {zero} prAB () lessTransitiveLogical {zero} {zero} {(succ c)} prAB prBC = record {} lessTransitiveLogical {(succ a)} {zero} {(succ c)} () prBC lessTransitiveLogical {zero} {(succ b)} {(succ c)} prAB prBC = record {} lessTransitiveLogical {(succ a)} {(succ b)} {(succ c)} prAB prBC = lessTransitiveLogical {a} {b} {c} prAB prBC aLessXPlusSuccA : (a x : ℕ) → (a <NLogical x +N succ a) aLessXPlusSuccA a zero = aLessSucc a aLessXPlusSuccA zero (succ x) = record {} aLessXPlusSuccA (succ a) (succ x) = lessTransitiveLogical {a} {succ a} {x +N succ (succ a)} (aLessXPlusSuccA a zero) (aLessXPlusSuccA (succ a) x) leImpliesLogical<N : {a b : ℕ} → (a <N b) → (a <NLogical b) leImpliesLogical<N {zero} {zero} (le x ()) leImpliesLogical<N {zero} {(succ b)} (le x proof) = record {} leImpliesLogical<N {(succ a)} {zero} (le x ()) leImpliesLogical<N {(succ a)} {(succ .(succ a))} (le zero refl) = aLessSucc a leImpliesLogical<N {(succ a)} {(succ .(succ (x +N succ a)))} (le (succ x) refl) = succPreservesInequalityLogical {a} {succ (x +N succ a)} (lessTransitiveLogical {a} {succ a} {succ (x +N succ a)} (aLessSucc a) (aLessXPlusSuccA a x)) logical<NImpliesLe : {a b : ℕ} → (a <NLogical b) → (a <N b) logical<NImpliesLe {zero} {zero} () _<N_.x (logical<NImpliesLe {zero} {succ b} prAB) = b _<N_.proof (logical<NImpliesLe {zero} {succ b} prAB) = applyEquality succ (sumZeroRight b) logical<NImpliesLe {(succ a)} {zero} () logical<NImpliesLe {(succ a)} {(succ b)} prAB with logical<NImpliesLe {a} prAB logical<NImpliesLe {(succ a)} {(succ .(succ (x +N a)))} prAB | le x refl = le x (applyEquality succ (transitivity (commutative x _) (applyEquality succ (commutative a _)))) lessTransitive : {a b c : ℕ} → (a <N b) → (b <N c) → (a <N c) lessTransitive {a} {b} {c} prab prbc = logical<NImpliesLe (lessTransitiveLogical {a} {b} {c} (leImpliesLogical<N prab) (leImpliesLogical<N prbc)) lessIrreflexive : {a : ℕ} → (a <N a) → False lessIrreflexive {zero} pr = leImpliesLogical<N pr lessIrreflexive {succ a} pr = lessIrreflexive {a} (logical<NImpliesLe {a} {a} (leImpliesLogical<N {succ a} {succ a} pr)) succPreservesInequality : {a b : ℕ} → (a <N b) → (succ a <N succ b) succPreservesInequality {a} {b} prAB = logical<NImpliesLe (succPreservesInequalityLogical {a} {b} (leImpliesLogical<N prAB)) canRemoveSuccFrom<N : {a b : ℕ} → (succ a <N succ b) → (a <N b) canRemoveSuccFrom<N {a} {b} (le x proof) rewrite commutative x (succ a) | commutative a x = le x (succInjective proof) a<SuccA : (a : ℕ) → a <N succ a a<SuccA a = le zero refl <NWellDefined : {a b : ℕ} → (p1 : a <N b) → (p2 : a <N b) → _<N_.x p1 ≡ _<N_.x p2 <NWellDefined {a} {b} (le x proof) (le y proof1) = equalityCommutative r where q : y +N a ≡ x +N a q = succInjective {y +N a} {x +N a} (transitivity proof1 (equalityCommutative proof)) r : y ≡ x r = canSubtractFromEqualityRight q canAddToOneSideOfInequality : {a b : ℕ} (c : ℕ) → a <N b → a <N (b +N c) canAddToOneSideOfInequality {a} {b} c (le x proof) = le (x +N c) (transitivity (applyEquality succ (equalityCommutative (+Associative x c a))) (transitivity (applyEquality (λ i → (succ x) +N i) (commutative c a)) (transitivity (applyEquality succ (+Associative x a c)) (applyEquality (_+N c) proof)))) canAddToOneSideOfInequality' : {a b : ℕ} (c : ℕ) → a <N b → a <N (c +N b) canAddToOneSideOfInequality' {a} {b} c (le x proof) = le (x +N c) ans where ans : succ ((x +N c) +N a) ≡ c +N b ans rewrite (equalityCommutative (+Associative x c a)) | commutative c a | (+Associative x a c) = transitivity (applyEquality (_+N c) proof) (commutative b c) addingIncreases : (a b : ℕ) → a <N a +N succ b addingIncreases zero b = succIsPositive b addingIncreases (succ a) b = succPreservesInequality (addingIncreases a b) zeroNeverGreater : {a : ℕ} → (a <N zero) → False zeroNeverGreater {a} (le x ()) noIntegersBetweenXAndSuccX : {a : ℕ} (x : ℕ) → (x <N a) → (a <N succ x) → False noIntegersBetweenXAndSuccX {zero} x x<a a<sx = zeroNeverGreater x<a noIntegersBetweenXAndSuccX {succ a} x (le y proof) (le z proof1) with succInjective proof1 ... | ah rewrite (equalityCommutative proof) | (succExtracts z (y +N x)) | +Associative (succ z) y x | commutative (succ (z +N y)) x = lessIrreflexive {x} (le (z +N y) (transitivity (commutative _ x) ah)) private orderIsTotal : (a b : ℕ) → ((a <N b) || (b <N a)) || (a ≡ b) orderIsTotal zero zero = inr refl orderIsTotal zero (succ b) = inl (inl (logical<NImpliesLe (record {}))) orderIsTotal (succ a) zero = inl (inr (logical<NImpliesLe (record {}))) orderIsTotal (succ a) (succ b) with orderIsTotal a b orderIsTotal (succ a) (succ b) | inl (inl x) = inl (inl (logical<NImpliesLe (leImpliesLogical<N x))) orderIsTotal (succ a) (succ b) | inl (inr x) = inl (inr (logical<NImpliesLe (leImpliesLogical<N x))) orderIsTotal (succ a) (succ b) | inr x = inr (applyEquality succ x) orderIsIrreflexive : {a b : ℕ} → (a <N b) → (b <N a) → False orderIsIrreflexive {zero} {b} prAB (le x ()) orderIsIrreflexive {(succ a)} {zero} (le x ()) prBA orderIsIrreflexive {(succ a)} {(succ b)} prAB prBA = orderIsIrreflexive {a} {b} (logical<NImpliesLe (leImpliesLogical<N prAB)) (logical<NImpliesLe (leImpliesLogical<N prBA)) orderIsTransitive : {a b c : ℕ} → (a <N b) → (b <N c) → (a <N c) orderIsTransitive {a} {.(succ (x +N a))} {.(succ (y +N succ (x +N a)))} (le x refl) (le y refl) = le (y +N succ x) (applyEquality succ (equalityCommutative (+Associative y (succ x) a))) ℕTotalOrder : TotalOrder ℕ PartialOrder._<_ (TotalOrder.order ℕTotalOrder) = _<N_ PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) = lessIrreflexive PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) = orderIsTransitive TotalOrder.totality ℕTotalOrder = orderIsTotal cannotAddAndEnlarge : (a b : ℕ) → a <N succ (a +N b) cannotAddAndEnlarge a b = le b (applyEquality succ (commutative b a)) cannotAddAndEnlarge' : {a b : ℕ} → a +N b <N a → False cannotAddAndEnlarge' {a} {zero} pr rewrite sumZeroRight a = lessIrreflexive pr cannotAddAndEnlarge' {a} {succ b} pr rewrite (succExtracts a b) = lessIrreflexive {a} (lessTransitive {a} {succ (a +N b)} {a} (cannotAddAndEnlarge a b) pr) cannotAddAndEnlarge'' : {a b : ℕ} → a +N succ b ≡ a → False cannotAddAndEnlarge'' {a} {b} pr = naughtE (equalityCommutative inter) where inter : succ b ≡ 0 inter rewrite commutative a (succ b) = canSubtractFromEqualityRight pr naturalsAreNonnegative : (a : ℕ) → (a <N zero) → False naturalsAreNonnegative zero () naturalsAreNonnegative (succ x) () lessRespectsAddition : {a b : ℕ} (c : ℕ) → (a <N b) → ((a +N c) <N (b +N c)) lessRespectsAddition {a} {b} zero prAB rewrite commutative a 0 | commutative b 0 = prAB lessRespectsAddition {a} {b} (succ c) prAB rewrite commutative a (succ c) | commutative b (succ c) | commutative c a | commutative c b = succPreservesInequality (lessRespectsAddition c prAB) lessRespectsMultiplicationLeft : (a b c : ℕ) → (a <N b) → (zero <N c) → (c *N a <N c *N b) lessRespectsMultiplicationLeft zero zero c (le x ()) cPos lessRespectsMultiplicationLeft zero (succ b) zero prAB (le x ()) lessRespectsMultiplicationLeft zero (succ b) (succ c) prAB cPos = i where productNonzeroIsNonzero : {a b : ℕ} → zero <N a → zero <N b → zero <N a *N b productNonzeroIsNonzero {zero} {b} prA prB = prA productNonzeroIsNonzero {succ a} {zero} prA () productNonzeroIsNonzero {succ a} {succ b} prA prB = le (b +N a *N succ b) (applyEquality succ (Semiring.sumZeroRight ℕSemiring _)) j : zero <N succ c *N succ b j = productNonzeroIsNonzero cPos prAB i : succ c *N zero <N succ c *N succ b i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (productZeroRight c)) lessRespectsMultiplicationLeft (succ a) zero c (le x ()) cPos lessRespectsMultiplicationLeft (succ a) (succ b) c prAB cPos = m where h : c *N a <N c *N b h = lessRespectsMultiplicationLeft a b c (canRemoveSuccFrom<N prAB) cPos j : c *N a +N c <N c *N b +N c j = lessRespectsAddition c h i : c *N succ a <N c *N b +N c i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (applyEquality (c +N_) (multiplicationNIsCommutative a _)) (commutative c _)))) m : c *N succ a <N c *N succ b m = identityOfIndiscernablesRight _<N_ i (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (commutative c _) (applyEquality (_+N c) (multiplicationNIsCommutative b _))))) canFlipMultiplicationsInIneq : {a b c d : ℕ} → (a *N b <N c *N d) → b *N a <N d *N c canFlipMultiplicationsInIneq {a} {b} {c} {d} pr = identityOfIndiscernablesRight _<N_ (identityOfIndiscernablesLeft _<N_ pr (multiplicationNIsCommutative a b)) (multiplicationNIsCommutative c d) lessRespectsMultiplication : (a b c : ℕ) → (a <N b) → (zero <N c) → (a *N c <N b *N c) lessRespectsMultiplication a b c prAB cPos = canFlipMultiplicationsInIneq {c} {a} {c} {b} (lessRespectsMultiplicationLeft a b c prAB cPos) squash<N : {a b : ℕ} → .(a <N b) → a <N b squash<N {a} {b} a<b with orderIsTotal a b ... | inl (inl x) = x ... | inl (inr x) = exFalso (lessIrreflexive (orderIsTransitive x a<b)) squash<N {a} {b} a<b | inr refl = exFalso (lessIrreflexive a<b) <NTo<N' : {a b : ℕ} → a <N b → a <N' b <NTo<N' (le x proof) = le' x proof <N'To<N : {a b : ℕ} → a <N' b → a <N b <N'To<N {a} {b} (le' x proof) = le x (squash proof) <N'Refl : {a b : ℕ} → (p1 p2 : a <N' b) → p1 ≡ p2 <N'Refl p1 p2 with <NWellDefined (<N'To<N p1) (<N'To<N p2) ... | refl = refl
{ "alphanum_fraction": 0.6692670537, "avg_line_length": 51.037037037, "ext": "agda", "hexsha": "120fa9396e7562912731a14c1bf4f3535500c7b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/Order.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/Order.agda", "max_line_length": 301, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 4090, "size": 11024 }
open import Common.List open import Common.Equality map-append : ∀{A B : Set}(f : A → B) (xs {ys} : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-append f [] = refl map-append f (x ∷ xs) = {!cong (f x ∷_)!} -- Keep section on C-c C-r map-append₂ : ∀{A B : Set}(f : A → B) (xs {ys} : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-append₂ f [] = refl map-append₂ f (x ∷ xs) = {!cong (λ section → f x ∷ section)!} -- Keep lambda on C-c C-r -- Check that we print sections in goals postulate _+_ : Set → Set → Set μ : (Set → Set) → Set foo : (A : Set) → μ (_+ A) foo A = {!!} bar : (A : Set) → μ (λ section → section + A) bar A = {!!}
{ "alphanum_fraction": 0.5211678832, "avg_line_length": 27.4, "ext": "agda", "hexsha": "d6c47952be7b159f179e37e7af02960cb40af586", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2270.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2270.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2270.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 256, "size": 685 }
-- Normalization by Evaluation for Intuitionistic Predicate Logic (IPL) module Everything where -- Imports from the standard library and simple definitions import Library -- Types and terms of IPL import Formulas import Derivations -- Beth model import TermModel import NfModel -- A variant where Cover : PSh → PSh import NfModelCaseTree -- Presented at ITC 2018-07-19 import NfModelCaseTreeConv -- A generalization to any CoverMonad which includes the -- continuation monad used in Danvy's algorithm import NfModelMonad import Consistency -- A monadic interpreter using shift/reset and an optimization import DanvyShiftReset import DanvyShiftResetLiftable -- SET-interpretation and soundness of NbE import Interpretation import NbeModel -- A general theory of sheaves over preorders import PresheavesAndSheaves
{ "alphanum_fraction": 0.8014354067, "avg_line_length": 19.4418604651, "ext": "agda", "hexsha": "3ddb12ebc6aa8b5b43b0ce8fba6c7ab4085700f9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/Everything.agda", "max_line_length": 71, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 201, "size": 836 }
module HasNeitherNor where record HasNeitherNor (A : Set) : Set where field _⊗_ : A → A → A open HasNeitherNor ⦃ … ⦄ public
{ "alphanum_fraction": 0.6567164179, "avg_line_length": 13.4, "ext": "agda", "hexsha": "0be2bf4cbaae8e6e9858d063887dba29c1fdd228", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasNeitherNor.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasNeitherNor.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasNeitherNor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 50, "size": 134 }
{-# OPTIONS --guardedness #-} module ky where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; _≢_; refl; cong; cong₂; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Rational using (ℚ; _+_; _*_; _-_) open import Data.Bool open import Data.Bool.Properties open import Data.Rational open import Data.Nat as ℕ using (ℕ; zero; suc) open import Relation.Nullary open import Relation.Nullary.Negation open import Agda.Builtin.Size open import Data.Product open import Data.Unit open import Data.Maybe data QRE : Set → Set → Set₁ where ⊥ : ∀{D C} → QRE D C ε : ∀{D C} → C → QRE D C α : ∀{D C} → (D → Bool) --φ → (D → C) --op → QRE D C split : ∀{D C B A} → QRE D A --f → QRE D B --g → (A → B → C) --op → QRE D C iter : ∀{D B A} → QRE D B --init → QRE D A --body → (B → A → B) --op → QRE D B or : ∀{D C} → QRE D C → QRE D C → QRE D C Event : Set Event = ℕ data Val : Set → Set where VBool : Bool → Val Bool VNat : ℕ → Val ℕ data Exp : Set → Set where EVal : ∀{t : Set} → Val t → Exp t data Com : Set → Set where CFlip : ∀{t} → Com t → Com t → Com t CUpd : Exp Event → Com ⊤ CIte : ∀{t} → Exp Bool → Com t → Com t → Com t CSeq : ∀{t} → Com ⊤ → Com t → Com t is-true : Bool → Bool is-true = λ{x → x} data CoList (i : Size) (A : Set) : Set where nil : CoList i A cons : A → ∀{j : Size< i} → CoList j A → CoList i A _++_ : ∀{A} → CoList ∞ A → CoList ∞ A → CoList ∞ A nil ++ s₂ = s₂ (cons a s₁) ++ s₂ = cons a (s₁ ++ s₂) interp : Com ⊤ → QRE Bool (CoList ∞ Event) interp (CFlip c₁ c₂) = or (split (α is-true λ{_ → nil}) (interp c₁) (_++_)) (split (α not λ{_ → nil}) (interp c₂) (_++_))
{ "alphanum_fraction": 0.5455568054, "avg_line_length": 23.3947368421, "ext": "agda", "hexsha": "c5afe5cb5f75f064c0d625fb2fc66b6684a3e147", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "OUPL/Zar", "max_forks_repo_path": "theory/ky-qre.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_issues_repo_issues_event_max_datetime": "2019-10-06T16:32:25.000Z", "max_issues_repo_issues_event_min_datetime": "2019-09-13T15:40:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "OUPL/Zar", "max_issues_repo_path": "theory/ky-qre.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "9243f9d77d0c8af99afa4f536156a3e23b1c40e1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "OUPL/Zar", "max_stars_repo_path": "theory/ky-qre.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 702, "size": 1778 }
{-# OPTIONS --without-K --safe #-} module Tools.Bool where open import Data.Bool using (Bool; true; false; _∧_; if_then_else_) public
{ "alphanum_fraction": 0.7058823529, "avg_line_length": 22.6666666667, "ext": "agda", "hexsha": "4605bb31f86ff002af62d8ca0f8cd911d6454638", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Tools/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Tools/Bool.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Tools/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 35, "size": 136 }
module Text.Greek.Script where open import Data.Maybe open import Data.Vec open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≢_) data Case : Set where lower upper : Case data Letter : Set where α′ β′ γ′ δ′ ε′ ζ′ η′ θ′ ι′ κ′ λ′ μ′ ν′ ξ′ ο′ π′ ρ′ σ′ τ′ υ′ φ′ χ′ ψ′ ω′ : Letter vowels : Vec _ _ vowels = α′ ∷ ε′ ∷ η′ ∷ ι′ ∷ ο′ ∷ υ′ ∷ ω′ ∷ [] always-short-letters : Vec _ _ always-short-letters = ε′ ∷ ο′ ∷ [] diaeresis-letters : Vec _ _ diaeresis-letters = ι′ ∷ υ′ ∷ [] iota-subscript-letters : Vec _ _ iota-subscript-letters = α′ ∷ η′ ∷ ω′ ∷ [] data _vowel : Letter → Set where is-vowel : ∀ {v} → v ∈ vowels → v vowel data _always-short : Letter → Set where is-always-short : ∀ {v} → v vowel → v ∈ always-short-letters → v always-short data _diaeresis : Letter → Set where add-diaeresis : ∀ {v} → v vowel → v ∈ diaeresis-letters → v diaeresis data _⟦_⟧-final : Letter → Case → Set where make-final : σ′ ⟦ lower ⟧-final data _⟦_⟧-smooth : Letter → Case → Set where add-smooth-lower-vowel : ∀ {v} → v vowel → v ⟦ lower ⟧-smooth add-smooth-ρ : ρ′ ⟦ lower ⟧-smooth add-smooth-upper-vowel-not-Υ : ∀ {v} → v vowel → v ≢ υ′ → v ⟦ upper ⟧-smooth data _with-rough : Letter → Set where add-rough-vowel : ∀ {v} → v vowel → v with-rough add-rough-ρ : ρ′ with-rough data _iota-subscript : Letter → Set where add-iota-subscript : ∀ {v} → v vowel → v ∈ iota-subscript-letters → v iota-subscript data _⟦_⟧-breathing : Letter → Case → Set where smooth : ∀ {ℓ c} → ℓ ⟦ c ⟧-smooth → ℓ ⟦ c ⟧-breathing rough : ∀ {ℓ c} → ℓ with-rough → ℓ ⟦ c ⟧-breathing data _long-vowel : Letter → Set where make-long-vowel : ∀ {v} → v vowel → ¬ v always-short → v long-vowel data _accent : Letter → Set where acute : ∀ {ℓ} → ℓ vowel → ℓ accent grave : ∀ {ℓ} → ℓ vowel → ℓ accent circumflex : ∀ {ℓ} → ℓ long-vowel → ℓ accent data Token : Set where unmarked : (ℓ : Letter) → (c : Case) → Token with-accent : (ℓ : Letter) → (c : Case) → ℓ accent → Token with-breathing : (ℓ : Letter) → (c : Case) → ℓ ⟦ c ⟧-breathing → Token with-accent-breathing : (ℓ : Letter) → (c : Case) → ℓ accent → ℓ ⟦ c ⟧-breathing → Token with-accent-breathing-iota : (ℓ : Letter) → (c : Case) → ℓ accent → ℓ ⟦ c ⟧-breathing → ℓ iota-subscript → Token with-diaeresis : (ℓ : Letter) → (c : Case) → ℓ diaeresis → Token with-accent-diaeresis : (ℓ : Letter) → (c : Case) → ℓ accent → ℓ diaeresis → Token with-accent-iota : (ℓ : Letter) → (c : Case) → ℓ accent → ℓ iota-subscript → Token with-breathing-iota : (ℓ : Letter) → (c : Case) → ℓ ⟦ c ⟧-breathing → ℓ iota-subscript → Token with-iota : (ℓ : Letter) → (c : Case) → ℓ iota-subscript → Token final : (ℓ : Letter) → (c : Case) → ℓ ⟦ c ⟧-final → Token -- Constructions -- Α α α-vowel : α′ vowel α-vowel = is-vowel here ¬α-always-short : ¬ α′ always-short ¬α-always-short (is-always-short x (there (there ()))) α-long-vowel : α′ long-vowel α-long-vowel = make-long-vowel α-vowel ¬α-always-short α-smooth : α′ ⟦ lower ⟧-smooth α-smooth = add-smooth-lower-vowel (is-vowel here) Α-smooth : α′ ⟦ upper ⟧-smooth Α-smooth = add-smooth-upper-vowel-not-Υ (is-vowel here) (λ ()) α-rough : α′ with-rough α-rough = add-rough-vowel (is-vowel here) α-iota-subscript : α′ iota-subscript α-iota-subscript = add-iota-subscript (is-vowel here) here -- Ε ε ε-vowel : ε′ vowel ε-vowel = is-vowel (there here) ε-always-short : ε′ always-short ε-always-short = is-always-short (is-vowel (there here)) here ε-smooth : ε′ ⟦ lower ⟧-smooth ε-smooth = add-smooth-lower-vowel (is-vowel (there here)) Ε-smooth : ε′ ⟦ upper ⟧-smooth Ε-smooth = add-smooth-upper-vowel-not-Υ (is-vowel (there here)) (λ ()) ε-rough : ε′ with-rough ε-rough = add-rough-vowel (is-vowel (there here)) -- Η η η-vowel : η′ vowel η-vowel = is-vowel (there (there here)) ¬η-always-short : ¬ η′ always-short ¬η-always-short (is-always-short x (there (there ()))) η-long-vowel : η′ long-vowel η-long-vowel = make-long-vowel (is-vowel (there (there here))) ¬η-always-short η-smooth : η′ ⟦ lower ⟧-smooth η-smooth = add-smooth-lower-vowel (is-vowel (there (there here))) Η-smooth : η′ ⟦ upper ⟧-smooth Η-smooth = add-smooth-upper-vowel-not-Υ (is-vowel (there (there here))) (λ ()) η-rough : η′ with-rough η-rough = add-rough-vowel (is-vowel (there (there here))) η-iota-subscript : η′ iota-subscript η-iota-subscript = add-iota-subscript (is-vowel (there (there here))) (there here) -- Ι ι ι-vowel : ι′ vowel ι-vowel = is-vowel (there (there (there here))) ¬ι-always-short : ¬ ι′ always-short ¬ι-always-short (is-always-short x (there (there ()))) ι-long-vowel : ι′ long-vowel ι-long-vowel = make-long-vowel (is-vowel (there (there (there here)))) ¬ι-always-short ι-smooth : ι′ ⟦ lower ⟧-smooth ι-smooth = add-smooth-lower-vowel (is-vowel (there (there (there here)))) Ι-smooth : ι′ ⟦ upper ⟧-smooth Ι-smooth = add-smooth-upper-vowel-not-Υ (is-vowel (there (there (there here)))) (λ ()) ι-rough : ι′ with-rough ι-rough = add-rough-vowel (is-vowel (there (there (there here)))) ι-diaeresis : ι′ diaeresis ι-diaeresis = add-diaeresis (is-vowel (there (there (there here)))) here -- Ο ο ο-vowel : ο′ vowel ο-vowel = is-vowel (there (there (there (there here)))) ο-always-short : ο′ always-short ο-always-short = is-always-short (is-vowel (there (there (there (there here))))) (there here) ο-smooth : ο′ ⟦ lower ⟧-smooth ο-smooth = add-smooth-lower-vowel (is-vowel (there (there (there (there here))))) Ο-smooth : ο′ ⟦ upper ⟧-smooth Ο-smooth = add-smooth-upper-vowel-not-Υ (is-vowel (there (there (there (there here))))) (λ ()) ο-rough : ο′ with-rough ο-rough = add-rough-vowel (is-vowel (there (there (there (there here))))) -- Ρ ρ ρ-smooth : ρ′ ⟦ lower ⟧-smooth ρ-smooth = add-smooth-ρ ρ-rough : ρ′ with-rough ρ-rough = add-rough-ρ -- Σ σ σ-final : σ′ ⟦ lower ⟧-final σ-final = make-final -- Υ υ υ-vowel : υ′ vowel υ-vowel = is-vowel (there (there (there (there (there here))))) ¬υ-always-short : ¬ υ′ always-short ¬υ-always-short (is-always-short x (there (there ()))) υ-long-vowel : υ′ long-vowel υ-long-vowel = make-long-vowel υ-vowel ¬υ-always-short υ-smooth : υ′ ⟦ lower ⟧-smooth υ-smooth = add-smooth-lower-vowel (is-vowel (there (there (there (there (there here)))))) υ-rough : υ′ with-rough υ-rough = add-rough-vowel (is-vowel (there (there (there (there (there here)))))) υ-diaeresis : υ′ diaeresis υ-diaeresis = add-diaeresis (is-vowel (there (there (there (there (there here)))))) (there here) -- Ω ω ω-vowel : ω′ vowel ω-vowel = is-vowel (there (there (there (there (there (there here)))))) ¬ω-always-short : ¬ ω′ always-short ¬ω-always-short (is-always-short x (there (there ()))) ω-long-vowel : ω′ long-vowel ω-long-vowel = make-long-vowel ω-vowel ¬ω-always-short ω-smooth : ω′ ⟦ lower ⟧-smooth ω-smooth = add-smooth-lower-vowel (is-vowel (there (there (there (there (there (there here))))))) Ω-smooth : ω′ ⟦ upper ⟧-smooth Ω-smooth = add-smooth-upper-vowel-not-Υ (is-vowel (there (there (there (there (there (there here))))))) (λ ()) ω-rough : ω′ with-rough ω-rough = add-rough-vowel (is-vowel (there (there (there (there (there (there here))))))) ω-iota-subscript : ω′ iota-subscript ω-iota-subscript = add-iota-subscript (is-vowel (there (there (there (there (there (there here))))))) (there (there here)) -- Mapping get-letter : Token → Letter get-letter (unmarked ℓ _) = ℓ get-letter (with-accent ℓ _ _) = ℓ get-letter (with-breathing ℓ _ _) = ℓ get-letter (with-accent-breathing ℓ _ _ _) = ℓ get-letter (with-accent-breathing-iota ℓ _ _ _ _) = ℓ get-letter (with-diaeresis ℓ _ _) = ℓ get-letter (with-accent-diaeresis ℓ _ _ _) = ℓ get-letter (with-accent-iota ℓ _ _ _) = ℓ get-letter (with-breathing-iota ℓ _ _ _) = ℓ get-letter (with-iota ℓ _ _) = ℓ get-letter (final ℓ _ _) = ℓ get-case : Token → Case get-case (unmarked _ c) = c get-case (with-accent _ c _) = c get-case (with-breathing _ c _) = c get-case (with-accent-breathing _ c _ _) = c get-case (with-accent-breathing-iota _ c _ _ _) = c get-case (with-diaeresis _ c _) = c get-case (with-accent-diaeresis _ c _ _) = c get-case (with-accent-iota _ c _ _) = c get-case (with-breathing-iota _ c _ _) = c get-case (with-iota _ c _) = c get-case (final _ c _) = c data Accent : Set where acute-mark grave-mark circumflex-mark : Accent letter-to-accent : ∀ {v} → v accent → Accent letter-to-accent (acute x) = acute-mark letter-to-accent (grave x) = grave-mark letter-to-accent (circumflex x) = circumflex-mark get-accent : Token → Maybe Accent get-accent (with-accent _ _ a) = just (letter-to-accent a) get-accent (with-accent-breathing _ _ a _) = just (letter-to-accent a) get-accent (with-accent-breathing-iota _ _ a _ _) = just (letter-to-accent a) get-accent (with-accent-diaeresis _ _ a _) = just (letter-to-accent a) get-accent (with-accent-iota _ _ a _) = just (letter-to-accent a) get-accent _ = nothing data Breathing : Set where smooth-mark rough-mark : Breathing letter-to-breathing : ∀ {ℓ c} → ℓ ⟦ c ⟧-breathing → Breathing letter-to-breathing (smooth x) = smooth-mark letter-to-breathing (rough x) = rough-mark get-breathing : Token → Maybe Breathing get-breathing (with-breathing _ _ x) = just (letter-to-breathing x) get-breathing (with-accent-breathing _ _ _ x) = just (letter-to-breathing x) get-breathing (with-accent-breathing-iota _ _ _ x _) = just (letter-to-breathing x) get-breathing (with-breathing-iota _ _ x _) = just (letter-to-breathing x) get-breathing _ = nothing data IotaSubscript : Set where iota-subscript-mark : IotaSubscript get-iota-subscript : Token → Maybe IotaSubscript get-iota-subscript (with-accent-breathing-iota _ _ _ _ _) = just iota-subscript-mark get-iota-subscript (with-accent-iota _ _ _ _) = just iota-subscript-mark get-iota-subscript (with-breathing-iota _ _ _ _) = just iota-subscript-mark get-iota-subscript _ = nothing data Diaeresis : Set where diaeresis-mark : Diaeresis get-diaeresis : Token → Maybe Diaeresis get-diaeresis (with-diaeresis _ _ _) = just diaeresis-mark get-diaeresis (with-accent-diaeresis _ _ _ _) = just diaeresis-mark get-diaeresis _ = nothing data FinalForm : Set where final-form : FinalForm get-final-form : Token → Maybe FinalForm get-final-form (final _ _ _) = just final-form get-final-form _ = nothing
{ "alphanum_fraction": 0.653069005, "avg_line_length": 32.3827160494, "ext": "agda", "hexsha": "3b207a228f6c8e035621923c28792b27c38087ef", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/Script.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/Script.agda", "max_line_length": 114, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/Script.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 3705, "size": 10492 }
module Partiality where {- port from http://www.soimort.org/posts/programs-and-proofs/ -} open import Data.Bool using (Bool; false; true) open import Data.Maybe using (Maybe; just; nothing) open import Data.Char using (_==_) renaming (Char to Symbol) open import Coinduction using (∞; ♯_; ♭) -- open import Category.Monad.Partiality renaming (monad to PM) -- open import Category.Monad using (RawMonad; module RawMonad) data Expr : Set where var : Symbol → Expr lambda : Symbol → Expr → Expr app : Expr → Expr → Expr data Function : Set where def : Expr → Function mutual data Env : Set where ε : Env _↦_,_ : Symbol → Value → Env → Env data Value : Set where closure : Function → Env → Value exception : Value lookup : Symbol → Env → Maybe Value lookup sym ε = nothing lookup sym (sym′ ↦ val , env) with sym == sym′ ... | true = just val ... | false = lookup sym env -- partiality monad data _⊥ (A : Set) : Set where now : A → A ⊥ later : ∞ (A ⊥) → A ⊥ return : {a : Set} → a → a ⊥ return = now _>>=_ : {a b : Set} → a ⊥ → (a → b ⊥) → b ⊥ (now x) >>= f = f x (later x) >>= f = later (♯ (♭ x >>= f)) infixl 40 _>>=_ {-# TERMINATING #-} force : Value ⊥ → Value force (now x) = x force (later x) = force (♭ x) mutual {-# TERMINATING #-} -- TODO: ??? interp : Expr → Env → Value ⊥ interp (var x) env with lookup x env ... | just val = now val ... | nothing = now exception interp (lambda x e) env = now (closure (def (lambda x e)) env) interp (app e₁ e₂) env = later (♯ apply (interp e₁ env) (interp e₂ env)) apply : Value ⊥ → Value ⊥ → Value ⊥ apply (later f) a = later (♯ apply (♭ f) a) apply (now (closure (def (lambda x e)) env)) a = a >>= \a′ → interp e (x ↦ a′ , env) -- let open RawMonad PM in a >>= \a′ → interp e (x ↦ a′ , env) apply _ _ = now exception e0 = ε t1 = lambda 'a' (var 'a') t2 = app (lambda 'x' (var 'x')) (lambda 'a' (var 'a')) t3 = app (app (lambda 'f' (lambda 'x' (app (var 'f') (var 'x')))) (lambda 'a' (var 'a'))) (lambda 'b' (var 'b')) t4 = app (lambda 'x' (app (var 'x') (var 'x'))) (lambda 'x' (app (var 'x') (var 'x'))) r1 = force (interp t1 e0) r2 = force (interp t2 e0) r3 = force (interp t3 e0) r4 = force (interp t4 e0)
{ "alphanum_fraction": 0.5705548274, "avg_line_length": 27.25, "ext": "agda", "hexsha": "f4b92fd3172fd3bff220f0d5e7b6cb7b3d95afa8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2c364c4e2a34ead9d99b303bad50f11e5c1ff706", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "scturtle/fun.hs", "max_forks_repo_path": "Partiality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2c364c4e2a34ead9d99b303bad50f11e5c1ff706", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "scturtle/fun.hs", "max_issues_repo_path": "Partiality.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2c364c4e2a34ead9d99b303bad50f11e5c1ff706", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "scturtle/fun.hs", "max_stars_repo_path": "Partiality.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-08T06:49:40.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-29T04:30:12.000Z", "num_tokens": 788, "size": 2289 }
module Selective.Examples.Main-generated where import Selective.Examples.PingPong as PingPong import Selective.Examples.TestCall as Call import Selective.Examples.TestCall2 as Call2 import Selective.Examples.Fibonacci as Fib import Selective.Examples.Chat as Chat import Selective.Examples.Bookstore as Bookstore import Selective.Examples.TestAO as TestAO import Selective.Examples.TestSelectiveReceive as SelectiveReceive import Selective.Examples.TestSelectiveReceive-calc as SelectiveReceive-calc open import Selective.Runtime open import Selective.SimulationEnvironment open import Selective.ActorMonad import IO open ∞ActorM pingpongEntry = singleton-env (PingPong.spawner .force) callEntry = singleton-env (Call.calltestActor .force) call2Entry = singleton-env (Call2.calculator-test-actor .force) fibEntry = singleton-env (Fib.spawner .force) chatEntry = singleton-env (Chat.chat-supervisor .force) bookstoreEntry = singleton-env (Bookstore.bookstore-supervisor .force) testaoEntry = singleton-env (TestAO.calculator-test-actor .force) testsrcalcEntry = singleton-env (SelectiveReceive-calc.calculator-test-actor .force) testsrEntry = singleton-env (SelectiveReceive.receive-42-with-reference) main = IO.run (run-env testsrcalcEntry)
{ "alphanum_fraction": 0.8384244373, "avg_line_length": 42.8965517241, "ext": "agda", "hexsha": "fe012dd13beba21357d7ee2906eebd9820b2b491", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/Main-generated.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/Main-generated.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Examples/Main-generated.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 298, "size": 1244 }
open import Agda.Primitive record Functor {a b} (F : Set a → Set b) : Set (lsuc a ⊔ b) where field fmap : ∀ {A B} → (A → B) → F A → F B open Functor {{...}} public module _ {a b} (F : Set a → Set b) where record FunctorZero : Set (lsuc a ⊔ b) where field empty : ∀ {A} → F A overlap {{super}} : Functor F record Alternative : Set (lsuc a ⊔ b) where infixl 3 _<|>_ field _<|>_ : ∀ {A} → F A → F A → F A overlap {{super}} : FunctorZero open FunctorZero {{...}} public open Alternative {{...}} public record StateT {a} (S : Set a) (M : Set a → Set a) (A : Set a) : Set a where no-eta-equality constructor stateT field runStateT : S → M A open StateT public module _ {a} {S : Set a} {M : Set a → Set a} where instance FunctorStateT : {{_ : Functor M}} → Functor {a = a} (StateT S M) runStateT (fmap {{FunctorStateT}} f m) s = fmap f (runStateT m s) FunctorZeroStateT : {{_ : FunctorZero M}} → FunctorZero {a = a} (StateT S M) runStateT (empty {{FunctorZeroStateT}}) s = empty AlternativeStateT : {{_ : Alternative M}} → Alternative {a = a} (StateT S M) runStateT (_<|>_ {{AlternativeStateT}} x y) s = runStateT x s <|> runStateT y s --- Example with some module parameter instantiations open import Agda.Builtin.Nat open import Agda.Builtin.Unit data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) postulate C₁ : Set → Set record C₂ (A : Set) : Set where field f : A → A overlap {{super}} : C₁ A open C₂ {{...}} postulate T : (A : Set) → A → Set module M (A : Set) (n : Nat) (xs : Vec A n) where unpackT : Vec A n → Set unpackT (x ∷ xs) = C₂ (T A x) unpackT [] = ⊤ postulate instance C₁T : ∀ {x} {{C₁A : C₁ A}} → C₁ (T A x) C₂T : {{C₂A : C₂ A}} (ys : Vec A n) → unpackT ys C₂T [] = _ f {{C₂T (y ∷ ys)}} x = x
{ "alphanum_fraction": 0.5696808511, "avg_line_length": 24.1025641026, "ext": "agda", "hexsha": "416f8f55ead530629d8abcb8fc319a7e6c8e3bc8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2288b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2288b.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2288b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 701, "size": 1880 }
module Issue251 where record Foo : Set₁ where field A : Set B : Set foo : Set → Set → Foo foo = λ A B → record {A = A; B = B}
{ "alphanum_fraction": 0.5652173913, "avg_line_length": 13.8, "ext": "agda", "hexsha": "a71ded125d44493b8a2f7107ba756091eb3d2d7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue251.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue251.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue251.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 138 }
{-# OPTIONS --without-K #-} module PathLemmas where open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl) ------------------------------------------------------------------------------ -- These also follow from irrelevance, but this is nicer sym-sym : {A : Set} {x y : A} {p : x ≡ y} → sym (sym p) ≡ p sym-sym {_} {x} {.x} {refl} = refl ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4054054054, "avg_line_length": 29.6, "ext": "agda", "hexsha": "66ba03ee0820971dafcda1cce674b904de54ced2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PathLemmas.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PathLemmas.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PathLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 101, "size": 444 }
{-# OPTIONS --erased-cubical --safe #-} module Interval where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1) --open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Univalence using (ua) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv) open import Data.Bool using (Bool; true; false; _∨_; _∧_; not; if_then_else_) open import Data.Integer using (ℤ; +_; -[1+_]; _-_; ∣_∣; -_) open import Data.Integer.DivMod using (_modℕ_) open import Data.Fin using (Fin; toℕ; #_) open import Data.List using (List; []; _∷_; foldl; map; reverse; length; _++_; take; drop) open import Data.Nat using (ℕ; zero; suc; _⊓_; _∸_) renaming (_≡ᵇ_ to _==_) open import Data.Nat.DivMod using (_mod_) open import Data.Sign using (Sign) open import Data.String using (String; intersperse) renaming (_++_ to _++s_) open import Data.Product using (_×_; _,_; Σ; proj₁; proj₂) open import Data.Vec using (Vec; []; _∷_; lookup; replicate; _[_]%=_; toList; updateAt) renaming (map to vmap) open import Pitch open import Util using (allPairs; ◯pairs; firstPairs; _∘_) -- Maximum number of interval classes (0 to 6). ic7 : ℕ ic7 = 7 PitchPair : Type PitchPair = Pitch × Pitch PCPair : Type PCPair = PC × PC -- Unordered pitch interval -- Absolute distance in semitones between two pitches. Upi : Type Upi = ℕ -- Ordered pitch interval -- Relative distance in semitones between two pitches. Opi : Type Opi = ℤ -- Interval Class -- Also known as unodered pitch-class interval (upci). IC : Type IC = Fin ic7 -- (Ordered) pitch-class interval (also abbreviated opci) PCI : Type PCI = Fin s12 intervalWithinOctave : Upi → Upi intervalWithinOctave i = toℕ (i mod s12) absoluteInterval : Opi → Upi absoluteInterval i = ∣ i ∣ makeSigned : Sign → Upi → Opi makeSigned Sign.- zero = + 0 makeSigned Sign.- (suc i) = -[1+ i ] makeSigned Sign.+ i = + i -- Names for intervals per1 = 0 min2 = 1 maj2 = 2 min3 = 3 maj3 = 4 per4 = 5 aug4 = 6 per5 = 7 min6 = 8 maj6 = 9 min7 = 10 maj7 = 11 per8 = 12 min9 = 13 maj9 = 14 min10 = 15 maj10 = 16 per11 = 17 aug11 = 18 per12 = 19 isConsonant : Upi → Bool isConsonant iv = (i == per1) ∨ (i == min3) ∨ (i == maj3) ∨ (i == per5) ∨ (i == min6) ∨ (i == maj6) ∨ (i == per8) where i = intervalWithinOctave iv isDissonant : Upi → Bool isDissonant = not ∘ isConsonant isPerfect : Upi → Bool isPerfect iv = (i == per1) ∨ (i == per4) ∨ (i == per5) ∨ (i == per8) where i = intervalWithinOctave iv isUnison : Upi → Bool isUnison i = i == per1 isThird : Upi → Bool isThird i = (i == min3) ∨ (i == maj3) -- Half or whole step. isStep : Upi → Bool isStep i = (i == min2) ∨ (i == maj2) PitchInterval : Type PitchInterval = Pitch × Upi pitchIntervalToPitchPair : PitchInterval → PitchPair pitchIntervalToPitchPair (p , n) = (p , transposePitch (+ n) p) secondPitch : PitchInterval → Pitch secondPitch = proj₂ ∘ pitchIntervalToPitchPair pitchPairToOpi : PitchPair → Opi pitchPairToOpi (p , q) = (+ q) - (+ p) toIC : PCPair → IC toIC (p , q) = let x = toℕ (∣ (+ (toℕ q)) - (+ (toℕ p)) ∣ mod s12) in x ⊓ (s12 ∸ x) mod ic7 toPCI : PCPair → PCI toPCI (p , q) = (((+ (toℕ q)) - (+ (toℕ p))) modℕ s12) mod s12 -- Assumes p ≤ q toPitchInterval : PitchPair → PitchInterval toPitchInterval pq = proj₁ pq , absoluteInterval (pitchPairToOpi pq) -- DEPRECATED? Note that the first and last pitches are compared in normal order, not circular order. ◯pcIntervals : List PC → List PCI ◯pcIntervals = map toPCI ∘ ◯pairs -- Note that the first and last pitches are compared in normal order, not circular order. pcIntervals : List PC → List PCI pcIntervals = map toPCI ∘ reverse ∘ firstPairs stepUp : Pitch → Pitch → Bool stepUp p q with pitchPairToOpi (p , q) ... | +_ n = isStep n ... | -[1+_] n = false stepDown : Pitch → Pitch → Bool stepDown p q with pitchPairToOpi (p , q) ... | +_ n = false ... | -[1+_] n = isStep n -- Check if q is a passing tone between p and r -- The interval between end points need to be a 3rd isPassingTone : Pitch → Pitch → Pitch → Bool isPassingTone p q r = (stepUp p q ∧ stepUp q r) ∨ (stepDown p q ∧ stepDown q r) ∨ (isThird (absoluteInterval (pitchPairToOpi (p , r)))) moveUp : Pitch → Pitch → Bool moveUp p q with pitchPairToOpi (p , q) ... | +_ _ = true ... | -[1+_] _ = false moveDown : Pitch → Pitch → Bool moveDown p q = not (moveUp p q) -- Check if q is left by step in the opposite direction from its approach isOppositeStep : Pitch → Pitch → Pitch → Bool isOppositeStep p q r = (moveUp p q ∧ stepDown q r) ∨ (moveDown p q ∧ stepUp q r) transposePitchInterval : Opi → Pitch → Pitch transposePitchInterval z p = transposePitch z p -- transpose pitch class by pci Tpci : PCI → PC → PC Tpci n = Tp (toℕ n) ---------- -- Interval Class Vector ICV : Type ICV = Vec ℕ ic7 emptyICV : ICV emptyICV = 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ [] icVector : List PC → ICV icVector pcs = foldl (λ icv pc → updateAt (toIC pc) suc icv) (updateAt (# 0) (λ _ → length pcs) emptyICV) (allPairs pcs) ---------- --Construct matrix out of PC row matrix : List PC → List (List PC) matrix [] = [] matrix pcs@(pc ∷ _) = let r0 = map ((Tpci ∘ Ip) pc) pcs -- start first row at 0 in map (λ p → map ((Tpci ∘ Ip) p) r0) r0 showMatrix : List (List PC) → String showMatrix m = intersperse "\n" (map showPCs m) {- rr : List PC rr = # 10 ∷ # 9 ∷ # 7 ∷ # 0 ∷ [] rp = rr ++ map (Tp 4) rr ++ map (Tp 8) rr -- Belle's matrix aa = showMatrix (matrix rp) 0 b 9 2 4 3 1 6 8 7 5 a 1 0 a 3 5 4 2 7 9 8 6 b 3 2 0 5 7 6 4 9 b a 8 1 a 9 7 0 2 1 b 4 6 5 3 8 8 7 5 a 0 b 9 2 4 3 1 6 9 8 6 b 1 0 a 3 5 4 2 7 b a 8 1 3 2 0 5 7 6 4 9 6 5 3 8 a 9 7 0 2 1 b 4 4 3 1 6 8 7 5 a 0 b 9 2 5 4 2 7 9 8 6 b 1 0 a 3 7 6 4 9 b a 8 1 3 2 0 5 2 1 b 4 6 5 3 8 a 9 7 0 rd : List PC rd2 = reverse (map (Tp 4) rr) rd3' = reverse (map (Tp 8) rr) rd3 = reverse (take 2 rd3') ++ reverse (drop 2 rd3') rd = rr ++ rd2 ++ rd3 -- Dan's matrix ad = showMatrix (matrix rd) 0 b 9 2 6 1 3 4 5 a 8 7 1 0 a 3 7 2 4 5 6 b 9 8 3 2 0 5 9 4 6 7 8 1 b a a 9 7 0 4 b 1 2 3 8 6 5 6 5 3 8 0 7 9 a b 4 2 1 b a 8 1 5 0 2 3 4 9 7 6 9 8 6 b 3 a 0 1 2 7 5 4 8 7 5 a 2 9 b 0 1 6 4 3 7 6 4 9 1 8 a b 0 5 3 2 2 1 b 4 8 3 5 6 7 0 a 9 4 3 1 6 a 5 7 8 9 2 0 b 5 4 2 7 b 6 8 9 a 3 1 0 -}
{ "alphanum_fraction": 0.6307244601, "avg_line_length": 24.545112782, "ext": "agda", "hexsha": "2457a0484f27dfbb524dc01461c30763ae790ac3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Interval.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Interval.agda", "max_line_length": 117, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Interval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 2656, "size": 6529 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Identity.Pi open import HoTT.Identity.Product module HoTT.Product.Universal where ×-univ : ∀ {i j k} {X : 𝒰 i} (A : X → 𝒰 j) (B : X → 𝒰 k) → ((c : X) → A c × B c) ≃ Π X A × Π X B ×-univ {X = X} A B = let open Iso in iso→eqv λ where .f f → pr₁ ∘ f , pr₂ ∘ f .g f x → pr₁ f x , pr₂ f x .η f → funext (×-uniq ∘ f) .ε f → ×-pair⁼ (refl , refl)
{ "alphanum_fraction": 0.5582417582, "avg_line_length": 28.4375, "ext": "agda", "hexsha": "9a36a5f360b7c65aa6566ed4a77ec95b7313814f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Product/Universal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Product/Universal.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Product/Universal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 196, "size": 455 }
{-# OPTIONS --without-K #-} module Spaces.Spheres where open import Base open import Spaces.Suspension public -- [Sⁿ n] is the sphere of dimension n Sⁿ : ℕ → Set Sⁿ 0 = bool Sⁿ (S n) = suspension (Sⁿ n) ⋆Sⁿ : (n : ℕ) → Sⁿ n ⋆Sⁿ 0 = true ⋆Sⁿ (S n) = north (Sⁿ n)
{ "alphanum_fraction": 0.6301886792, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "608113cad22081fb51169db40eff492faa575ba9", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/Spheres.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/Spheres.agda", "max_line_length": 38, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Spaces/Spheres.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 116, "size": 265 }
-- Properties of natural number {-# OPTIONS --without-K --safe #-} -- agad-stdlib open import Relation.Binary.PropositionalEquality module TypeTheory.Nat.Properties {a} (N : Set a) (zero : N) (suc : N → N) (ind : ∀ {p} (P : N → Set p) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n) (ind-base : ∀ {p} (P : N → Set p) P-base P-step → ind P P-base P-step zero ≡ P-base) (ind-step : ∀ {p} (P : N → Set p) P-base P-step n → ind P P-base P-step (suc n) ≡ P-step n (ind P P-base P-step n)) where -- agda-stdlib open import Axiom.UniquenessOfIdentityProofs open import Level renaming (zero to lzero; suc to lsuc) open import Data.Bool using (Bool; true; false) open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Data.Product import Data.Product.Properties as Prodₚ open import Data.Sum as Sum open import Function.Base import Relation.Binary as B open import Relation.Nullary import Relation.Nullary.Decidable as NDec -- agda-misc open import TypeTheory.Nat.Operations N zero suc ind ind-base ind-step open ≡-Reasoning private variable A : Set a -- Properties of rec rec-base : ∀ {A : Set a} (z : A) s → rec z s zero ≡ z rec-base {A} z s = ind-base (λ _ → A) z λ k x → s x rec-step : ∀ {A : Set a} (z : A) s n → rec z s (suc n) ≡ s (rec z s n) rec-step {A} z s n = ind-step (λ _ → A) z (λ k x → s x) n ind2-zz : ∀ {p} (P : N → N → Set p) Pzz Pmn→Pms Pmn→Psn → ind2 P Pzz Pmn→Pms Pmn→Psn zero zero ≡ Pzz ind2-zz P Pzz Pmn→Pms Pmn→Psn = begin ind2 P Pzz Pmn→Pms Pmn→Psn zero zero ≡⟨⟩ ind (λ o → P o zero) (ind (λ p → P zero p) Pzz (λ k Pzk → Pmn→Pms zero k Pzk) zero) (λ k Pkn → ind (λ r → P (suc k) r) (( λ k → ind (λ x → P x zero) Pzz (λ k₂ Pk₂zero → Pmn→Psn k₂ zero Pk₂zero) k) (suc k)) (λ k₁ P[1+k,k₁] → Pmn→Pms (suc k) k₁ P[1+k,k₁]) zero) zero ≡⟨ ind-base _ _ _ ⟩ ind (λ p → P zero p) Pzz (Pmn→Pms zero) zero ≡⟨ ind-base _ _ _ ⟩ Pzz ∎ where open ≡-Reasoning --------------------------------------------------------------------------- -- Properties of pred pred-zero : pred zero ≡ zero pred-zero = ind-base (λ _ → N) zero (λ k x → k) pred-suc : ∀ n → pred (suc n) ≡ n pred-suc n = ind-step (λ _ → N) zero (λ k x → k) n -- Properties of suc suc-injective : ∀ {m n} → suc m ≡ suc n → m ≡ n suc-injective {m} {n} 1+m≡1+n = begin m ≡⟨ sym $ pred-suc m ⟩ pred (suc m) ≡⟨ cong pred 1+m≡1+n ⟩ pred (suc n) ≡⟨ pred-suc n ⟩ n ∎ -- Properties of caseNat caseNat-base : ∀ {l} {A : Set l} (z s : A) → caseNat z s zero ≡ z caseNat-base z s = ind-base (λ x → _) z λ k x → s caseNat-step : ∀ {l} {A : Set l} (z s : A) n → caseNat z s (suc n) ≡ s caseNat-step z s n = ind-step (λ x → _) z (λ k x → s) n NotZero : ∀ n → Set NotZero n = caseNat ⊥ ⊤ n NotZero[zero]≡⊥ : NotZero zero ≡ ⊥ NotZero[zero]≡⊥ = caseNat-base ⊥ ⊤ NotZero[suc[n]]≡⊤ : ∀ n → NotZero (suc n) ≡ ⊤ NotZero[suc[n]]≡⊤ n = caseNat-step ⊥ ⊤ n private transport : ∀ {a} {A B : Set a} → A ≡ B → A → B transport eq = subst id eq NotZero[suc[n]] : ∀ (n : N) → NotZero (suc n) NotZero[suc[n]] n = transport (sym $ NotZero[suc[n]]≡⊤ n) tt s≢z : ∀ (n : N) → suc n ≢ zero s≢z n eq = transport NotZero[zero]≡⊥ $ subst NotZero eq (NotZero[suc[n]] n) z≢s : ∀ (n : N) → zero ≢ suc n z≢s n eq = s≢z n (sym eq) 1+n≢n : ∀ n → suc n ≢ n 1+n≢n n = ind (λ x → suc x ≢ x) (s≢z zero) (λ k 1+k≢k 1+[1+k]≡1+k → 1+k≢k (suc-injective 1+[1+k]≡1+k)) n caseNat-extract-zero : ∀ {l} {A : Set l} (z s : A) n → z ≢ s → caseNat z s n ≡ z → n ≡ zero caseNat-extract-zero z s n z≢s = ind (λ k → caseNat z s k ≡ z → k ≡ zero) (λ x → refl) (λ k c[z,s,k]≡z→k≡zero c[z,s,suc[k]]≡z → ⊥-elim $ z≢s $ trans (sym c[z,s,suc[k]]≡z) (caseNat-step _ _ _) ) n -- Properties of _+_ +-identityˡ : ∀ n → zero + n ≡ n +-identityˡ n = rec-base n suc suc-+ : ∀ m n → suc m + n ≡ suc (m + n) suc-+ m n = rec-step n suc m +-identityʳ : ∀ n → n + zero ≡ n +-identityʳ n₀ = ind (λ n → n + zero ≡ n) (+-identityˡ zero) step n₀ where step : ∀ k → k + zero ≡ k → suc k + zero ≡ suc k step k k+zero≡k = begin suc k + zero ≡⟨ suc-+ k zero ⟩ suc (k + zero) ≡⟨ cong suc k+zero≡k ⟩ suc k ∎ +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc m₀ n o = ind (λ m → (m + n) + o ≡ m + (n + o)) base step m₀ where base : (zero + n) + o ≡ zero + (n + o) base = begin (zero + n) + o ≡⟨ cong (_+ o) $ +-identityˡ n ⟩ n + o ≡⟨ sym $ +-identityˡ (n + o) ⟩ zero + (n + o) ∎ step : ∀ k → (k + n) + o ≡ k + (n + o) → (suc k + n) + o ≡ suc k + (n + o) step k [k+n]+o≡k+[n+o] = begin (suc k + n) + o ≡⟨ cong (_+ o) $ suc-+ k n ⟩ suc (k + n) + o ≡⟨ suc-+ (k + n) o ⟩ suc ((k + n) + o) ≡⟨ cong suc [k+n]+o≡k+[n+o] ⟩ suc (k + (n + o)) ≡⟨ sym $ suc-+ k (n + o) ⟩ suc k + (n + o) ∎ suc≡one+ : ∀ n → suc n ≡ one + n suc≡one+ n = begin suc n ≡⟨ cong suc (sym $ +-identityˡ n) ⟩ suc (zero + n) ≡⟨ sym $ suc-+ zero n ⟩ suc zero + n ∎ +-suc : ∀ m n → m + suc n ≡ suc m + n +-suc m₀ n = ind (λ m → m + suc n ≡ suc m + n) (begin zero + suc n ≡⟨ +-identityˡ (suc n) ⟩ suc n ≡⟨ cong suc (sym $ +-identityˡ n) ⟩ suc (zero + n) ≡⟨ sym $ suc-+ zero n ⟩ suc zero + n ∎ ) (λ m m+[1+n]≡[1+m]+n → begin suc m + suc n ≡⟨ suc-+ m (suc n) ⟩ suc (m + suc n) ≡⟨ cong suc m+[1+n]≡[1+m]+n ⟩ suc (suc m + n) ≡⟨ sym $ suc-+ (suc m) n ⟩ suc (suc m) + n ∎ ) m₀ +-comm : ∀ m n → m + n ≡ n + m +-comm m₀ n = ind (λ m → m + n ≡ n + m) (begin zero + n ≡⟨ +-identityˡ n ⟩ n ≡⟨ sym $ +-identityʳ n ⟩ n + zero ∎ ) (λ m m+n≡n+m → begin suc m + n ≡⟨ suc-+ m n ⟩ suc (m + n) ≡⟨ cong suc m+n≡n+m ⟩ suc (n + m) ≡⟨ sym $ suc-+ n m ⟩ suc n + m ≡⟨ sym $ +-suc n m ⟩ n + suc m ∎ ) m₀ +-cancelˡ-≡ : ∀ m n o → (m + n) ≡ (m + o) → n ≡ o +-cancelˡ-≡ m n o = ind (λ k → k + n ≡ k + o → n ≡ o) (λ zero+n≡zero+o → begin n ≡⟨ sym $ +-identityˡ n ⟩ zero + n ≡⟨ zero+n≡zero+o ⟩ zero + o ≡⟨ +-identityˡ o ⟩ o ∎) (λ k k+n≡k+o→n≡o suck+n≡suck+o → begin n ≡⟨ k+n≡k+o→n≡o $ suc-injective $ (begin suc (k + n) ≡⟨ sym $ suc-+ k n ⟩ suc k + n ≡⟨ suck+n≡suck+o ⟩ suc k + o ≡⟨ suc-+ k o ⟩ suc (k + o) ∎ ) ⟩ o ∎) m +-cancelʳ-≡ : ∀ m n o → (m + n) ≡ (o + n) → m ≡ o +-cancelʳ-≡ m n o m+n≡o+n = +-cancelˡ-≡ n m o (begin n + m ≡⟨ +-comm n m ⟩ m + n ≡⟨ m+n≡o+n ⟩ o + n ≡⟨ +-comm o n ⟩ n + o ∎) +-conicalˡ : ∀ m n → m + n ≡ zero → m ≡ zero +-conicalˡ m n = ind (λ k → k + n ≡ zero → k ≡ zero) (λ _ → refl) (λ k k+n≡zero→k≡zero suck+n≡zero → ⊥-elim $ z≢s (k + n) $ trans (sym suck+n≡zero) (suc-+ k n)) m +-conicalʳ : ∀ m n → m + n ≡ zero → n ≡ zero +-conicalʳ m n m+n≡zero = +-conicalˡ n m (trans (+-comm n m) m+n≡zero) -- Order z≤n : ∀ {n} → zero ≤ n z≤n {n} = n , +-identityˡ n s≤s : ∀ {m n} → m ≤ n → suc m ≤ suc n s≤s {m} {n} (o , m+o≡n) = o , trans (suc-+ m o) (cong suc m+o≡n) ≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n ≤-pred {m} {n} (o , sucm+o≡sucn) = o , suc-injective (trans (sym $ suc-+ m o) sucm+o≡sucn) ≤-refl : ∀ {n} → n ≤ n ≤-refl {n} = ind (λ n → n ≤ n) z≤n (λ k → s≤s) n ≤-reflexive : ∀ {m n} → m ≡ n → m ≤ n ≤-reflexive {m} {n} m≡n = subst (m ≤_) m≡n (≤-refl {m}) ≤-step : ∀ {m n} → m ≤ n → m ≤ suc n ≤-step {m} {n} (o , m+o≡n) = suc o , (begin m + suc o ≡⟨ +-suc m o ⟩ suc m + o ≡⟨ suc-+ m o ⟩ suc (m + o) ≡⟨ cong suc m+o≡n ⟩ suc n ∎) ≤-back : ∀ {m n} → suc m ≤ n → m ≤ n ≤-back {m} {n} (o , suc[m]+o≡n) = suc o , (begin m + suc o ≡⟨ +-suc m o ⟩ suc m + o ≡⟨ suc[m]+o≡n ⟩ n ∎) ≤-steps : ∀ {m n} o → m ≤ n → m ≤ o + n ≤-steps {m} {n} o m≤n = ind (λ k → m ≤ k + n) (subst (m ≤_) (sym $ +-identityˡ n) m≤n) (λ k m≤k+n → subst (m ≤_) (sym $ suc-+ k n) (≤-step m≤k+n)) o ≤-antisym : ∀ {m n} → m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} {n} (o , m+o≡n) (p , n+p≡m) = begin m ≡⟨ sym n+p≡m ⟩ n + p ≡⟨ cong (n +_) $ p≡zero ⟩ n + zero ≡⟨ +-identityʳ n ⟩ n ∎ where m≡m+[o+p] : m ≡ m + (o + p) m≡m+[o+p] = begin m ≡⟨ sym n+p≡m ⟩ n + p ≡⟨ cong (_+ p) $ sym m+o≡n ⟩ (m + o) + p ≡⟨ +-assoc m o p ⟩ m + (o + p) ∎ zero≡o+p : zero ≡ o + p zero≡o+p = +-cancelˡ-≡ m zero (o + p) (begin m + zero ≡⟨ +-identityʳ m ⟩ m ≡⟨ m≡m+[o+p] ⟩ m + (o + p) ∎) p≡zero : p ≡ zero p≡zero = +-conicalʳ o p (sym zero≡o+p) ≤-trans : ∀ {m n o} → m ≤ n → n ≤ o → m ≤ o ≤-trans {m} {n} {o} (p , m+p≡n) (q , n+q≡o) = (p + q) , (begin m + (p + q) ≡⟨ sym $ +-assoc m p q ⟩ (m + p) + q ≡⟨ cong (_+ q) m+p≡n ⟩ n + q ≡⟨ n+q≡o ⟩ o ∎) n≤zero⇒n≡zero : ∀ {n} → n ≤ zero → n ≡ zero n≤zero⇒n≡zero {n} (o , n+o≡zero) = +-conicalˡ n o n+o≡zero -- +-mono-≤ zero<suc[n] : ∀ n → zero < suc n zero<suc[n] n = s≤s z≤n s<s : ∀ {m n} → m < n → suc m < suc n s<s = s≤s <-pred : ∀ {m n} → suc m < suc n → m < n <-pred = ≤-pred n≮zero : ∀ n → n ≮ zero n≮zero n (m , sucn+m≡zero) = s≢z (n + m) $ trans (sym $ suc-+ n m) sucn+m≡zero ≤⇒≯ : ∀ {m n} → m ≤ n → m ≯ n ≤⇒≯ {m} {n} (o , m+o≡n) (p , suc[n]+p≡m) = s≢z (p + o) $ +-cancelˡ-≡ n (suc (p + o)) zero $ begin n + suc (p + o) ≡⟨ +-suc n (p + o) ⟩ suc n + (p + o) ≡⟨ sym $ +-assoc (suc n) p o ⟩ suc n + p + o ≡⟨ cong (_+ o) $ suc[n]+p≡m ⟩ m + o ≡⟨ m+o≡n ⟩ n ≡⟨ sym $ +-identityʳ n ⟩ n + zero ∎ <⇒≱ : ∀ {m n} → m < n → m ≱ n <⇒≱ {m} {n} m<n n≤m = ≤⇒≯ n≤m m<n n≮n : ∀ n → n ≮ n n≮n n (m , sucn+m≡n) = z≢s m $ +-cancelˡ-≡ n zero (suc m) (begin n + zero ≡⟨ +-identityʳ n ⟩ n ≡⟨ sym sucn+m≡n ⟩ suc n + m ≡⟨ sym $ +-suc n m ⟩ n + suc m ∎) <⇒≢ : ∀ {m n} → m < n → m ≢ n <⇒≢ {m} {n} m<n m≡n = n≮n m (subst (m <_) (sym m≡n) m<n) >⇒≢ : ∀ {m n} → m > n → m ≢ n >⇒≢ {m} {n} m>n m≡n = <⇒≢ m>n (sym m≡n) ≤⇒<∨≡ : ∀ {m n} → m ≤ n → m < n ⊎ m ≡ n ≤⇒<∨≡ {m} {n} (o , m+o≡n) = ind (λ k → m + k ≡ n → m < n ⊎ m ≡ n) (λ m+zero≡n → inj₂ (trans (sym $ +-identityʳ m) m+zero≡n)) (λ k _ m+suc[k]≡n → inj₁ (k , (begin suc m + k ≡⟨ sym $ +-suc m k ⟩ m + suc k ≡⟨ m+suc[k]≡n ⟩ n ∎))) o m+o≡n <⇒≤ : ∀ {m n} → m < n → m ≤ n <⇒≤ = ≤-back n<suc[n] : ∀ n → n < suc n n<suc[n] n = ≤-refl <-step : ∀ {m} {n} → m < n → m < suc n <-step {m} {n} m<n = ≤-step m<n n∸zero≡n : ∀ n → n ∸ zero ≡ n n∸zero≡n n = rec-base _ _ <⇒≯ : ∀ {m n} → m < n → m ≯ n <⇒≯ {m} {n} m<n = ≤⇒≯ (<⇒≤ m<n) m∸suc[n]≡pred[m∸n] : ∀ m n → m ∸ suc n ≡ pred (m ∸ n) m∸suc[n]≡pred[m∸n] m n = rec-step _ _ _ zero∸n≡zero : ∀ n → zero ∸ n ≡ zero zero∸n≡zero = ind (λ n → zero ∸ n ≡ zero) (n∸zero≡n zero) λ k zero∸k≡zero → (begin zero ∸ suc k ≡⟨ m∸suc[n]≡pred[m∸n] zero k ⟩ pred (zero ∸ k) ≡⟨ cong pred zero∸k≡zero ⟩ pred zero ≡⟨ pred-zero ⟩ zero ∎) suc[m]∸suc[n]≡m∸n : ∀ m n → suc m ∸ suc n ≡ m ∸ n suc[m]∸suc[n]≡m∸n m = ind (λ n → suc m ∸ suc n ≡ m ∸ n) (begin suc m ∸ suc zero ≡⟨ m∸suc[n]≡pred[m∸n] (suc m) zero ⟩ pred (suc m ∸ zero) ≡⟨ cong pred (n∸zero≡n (suc m)) ⟩ pred (suc m) ≡⟨ pred-suc m ⟩ m ≡⟨ sym $ n∸zero≡n m ⟩ m ∸ zero ∎) λ k suc[m]∸suc[k]≡m∸k → begin suc m ∸ suc (suc k) ≡⟨ m∸suc[n]≡pred[m∸n] (suc m) (suc k) ⟩ pred (suc m ∸ suc k) ≡⟨ cong pred suc[m]∸suc[k]≡m∸k ⟩ pred (m ∸ k) ≡⟨ sym $ m∸suc[n]≡pred[m∸n] m k ⟩ m ∸ suc k ∎ m+n∸m≡n : ∀ m n → m + n ∸ m ≡ n m+n∸m≡n m n = ind (λ k → (k + n) ∸ k ≡ n) (begin (zero + n) ∸ zero ≡⟨ cong (_∸ zero) $ +-identityˡ n ⟩ n ∸ zero ≡⟨ n∸zero≡n n ⟩ n ∎) (λ k k+n∸k≡n → begin suc k + n ∸ suc k ≡⟨ cong (_∸ suc k) $ suc-+ k n ⟩ suc (k + n) ∸ suc k ≡⟨ suc[m]∸suc[n]≡m∸n (k + n) k ⟩ k + n ∸ k ≡⟨ k+n∸k≡n ⟩ n ∎ ) m m≤n⇒m+[n∸m]≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n m≤n⇒m+[n∸m]≡n {m} {n} (o , m+o≡n) = begin m + (n ∸ m) ≡⟨ cong (λ v → m + (v ∸ m)) (sym m+o≡n) ⟩ m + (m + o ∸ m) ≡⟨ cong (m +_) $ m+n∸m≡n m o ⟩ m + o ≡⟨ m+o≡n ⟩ n ∎ m∸[m+n]≡zero : ∀ m n → m ∸ (m + n) ≡ zero m∸[m+n]≡zero m n = ind (λ k → k ∸ (k + n) ≡ zero) (zero∸n≡zero (zero + n)) (λ k k∸[k+n]≡zero → begin suc k ∸ (suc k + n) ≡⟨ cong (suc k ∸_) $ suc-+ k n ⟩ suc k ∸ suc (k + n) ≡⟨ suc[m]∸suc[n]≡m∸n k (k + n) ⟩ k ∸ (k + n) ≡⟨ k∸[k+n]≡zero ⟩ zero ∎) m m≤n⇒m∸n≡zero : ∀ {m n} → m ≤ n → m ∸ n ≡ zero m≤n⇒m∸n≡zero {m} {n} (o , m+o≡n) = begin m ∸ n ≡⟨ cong (m ∸_) (sym m+o≡n) ⟩ m ∸ (m + o) ≡⟨ m∸[m+n]≡zero m o ⟩ zero ∎ pred[n]≡zero⇒n≡zero∨n≡one : ∀ n → pred n ≡ zero → n ≡ zero ⊎ n ≡ one pred[n]≡zero⇒n≡zero∨n≡one = ind (λ n → pred n ≡ zero → n ≡ zero ⊎ n ≡ suc zero) (λ _ → inj₁ refl) λ k pred[k]≡zero→k≡zero∨k≡one pred[suc[k]]≡zero → inj₂ (cong suc (trans (sym $ pred-suc k) pred[suc[k]]≡zero)) pred[m]≡suc[n]⇒m≡suc[suc[n]] : ∀ {m n} → pred m ≡ suc n → m ≡ suc (suc n) pred[m]≡suc[n]⇒m≡suc[suc[n]] {m} {n} = ind (λ k → pred k ≡ suc n → k ≡ suc (suc n)) (λ pred[zero]≡suc[n] → ⊥-elim $ z≢s n $ trans (sym pred-zero) pred[zero]≡suc[n] ) (λ k _ pred[suc[k]]≡suc[n] → cong suc (trans (sym $ pred-suc k) pred[suc[k]]≡suc[n])) m ≤⇒≤ᵇ : ∀ {m n} → m ≤ n → m ≤ᵇ n ≡ true ≤⇒≤ᵇ {m} {n} (o , m+o≡n) = begin caseNat true false (m ∸ n) ≡⟨ cong (λ v → caseNat true false (m ∸ v)) $ sym m+o≡n ⟩ caseNat true false (m ∸ (m + o)) ≡⟨ cong (caseNat true false) $ m∸[m+n]≡zero m o ⟩ caseNat true false zero ≡⟨ caseNat-base true false ⟩ true ∎ data Order (m n : N) : Set a where lt : (m<n : m < n) → Order m n eq : (m≡n : m ≡ n) → Order m n gt : (m>n : m > n) → Order m n private order?-zero : ∀ n → Order zero n order?-zero = ind (λ n → Order zero n) (eq refl) λ k _ → lt (zero<suc[n] k) order?-suc : ∀ n k → Order k n → Order (suc k) n order?-suc n k (lt k<n) with ≤⇒<∨≡ k<n ... | inj₁ suc[k]<n = lt suc[k]<n ... | inj₂ suc[k]≡n = eq suc[k]≡n order?-suc n k (eq k≡n) = gt (subst (_< suc k) k≡n $ n<suc[n] k) order?-suc n k (gt k>n) = gt (<-step k>n) order? : ∀ m n → Order m n order? m₀ n₀ = ind (λ k → Order k n₀) (order?-zero n₀) (λ k → order?-suc n₀ k) m₀ _≟_ : ∀ m n → Dec (m ≡ n) m ≟ n with order? m n ... | lt m<n = no (<⇒≢ m<n) ... | eq m≡n = yes m≡n ... | gt m>n = no (>⇒≢ m>n) ≡-irrelevant : ∀ {m n : N} (p q : m ≡ n) → p ≡ q ≡-irrelevant = M.≡-irrelevant where module M = Decidable⇒UIP _≟_ ≤-irrelevant : ∀ {m n : N} (p q : m ≤ n) → p ≡ q ≤-irrelevant {m} {n} (o , m+o≡n) (p , m+p≡n) with +-cancelˡ-≡ m o p (trans m+o≡n (sym m+p≡n)) ... | refl = cong (o ,_) (≡-irrelevant m+o≡n m+p≡n) ≤-proj₁-≡ : ∀ {m n : N} (p q : m ≤ n) → proj₁ p ≡ proj₁ q ≤-proj₁-≡ p q = Prodₚ.,-injectiveˡ (≤-irrelevant p q) ≰⇒> : ∀ {m n} → m ≰ n → m > n ≰⇒> {m} {n} m≰n with order? m n ... | lt m<n = ⊥-elim $ m≰n (<⇒≤ m<n) ... | eq m≡n = ⊥-elim $ m≰n (≤-reflexive m≡n) ... | gt m>n = m>n ≮⇒≥ : ∀ {m n} → m ≮ n → m ≥ n ≮⇒≥ {m} {n} m≮n with order? m n ... | lt m<n = ⊥-elim $ m≮n m<n ... | eq m≡n = ≤-reflexive (sym m≡n) ... | gt m>n = <⇒≤ m>n _≤?_ : ∀ m n → Dec (m ≤ n) m ≤? n with order? m n ... | lt m<n = yes (<⇒≤ m<n) ... | eq m≡n = yes (≤-reflexive m≡n) ... | gt m>n = no λ m≤n → ≤⇒≯ m≤n m>n _<?_ : ∀ m n → Dec (m < n) m <? n with order? m n ... | lt m<n = yes m<n ... | eq m≡n = no λ m<n → <⇒≢ m<n m≡n ... | gt m>n = no λ m<n → <⇒≯ m<n m>n ≤∧≢⇒< : ∀ {m n} → m ≤ n → m ≢ n → m < n ≤∧≢⇒< {m} {n} m≤n m≢n with order? m n ... | lt m<n = m<n ... | eq m≡n = ⊥-elim $ m≢n m≡n ... | gt m>n = ⊥-elim $ ≤⇒≯ m≤n m>n private subst-refl : ∀ {a b} {A : Set a} (B : A → Set b) {x : A} (y : B x) → subst B refl y ≡ y subst-refl _ _ = refl subst-app : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {x y} (x≡y : x ≡ y) → subst B x≡y (f x) ≡ f y subst-app f refl = refl subst-cong-app : ∀ {a b c} {A : Set a} {B : Set b} {C : B → Set c} (g : A → B) (f : (x : A) → C (g x)) {x y} (x≡y : x ≡ y) → subst C (cong g x≡y) (f x) ≡ f y subst-cong-app {C = C} g f {x} {y} x≡y = begin subst C (cong g x≡y) (f x) ≡⟨ sym $ subst-∘ x≡y ⟩ subst (C ∘ g) x≡y (f x) ≡⟨ subst-app f x≡y ⟩ f y ∎ subst-other : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {x y z} (x≡z : x ≡ z) (y≡z : y ≡ z) → subst B x≡z (f x) ≡ subst B y≡z (f y) subst-other _ refl refl = refl subst-other-g : ∀ {a b c} {A : Set a} {B : Set b} {C : B → Set c} → B.Irrelevant (_≡_ {A = B}) → ∀ (g : A → B) (f : (x : A) → C (g x)) {x y z} (x≡y : x ≡ y) (gx≡z : g x ≡ z) (gy≡z : g y ≡ z) → subst C gx≡z (f x) ≡ subst C gy≡z (f y) subst-other-g B-irrelevant g f refl refl gy≡z with B-irrelevant gy≡z refl subst-other-g B-irrelevant g f refl refl .refl | refl = refl -- stdlib -- variant of subst-application subst-lemma : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (f : A₁ → A₂) (g : ∀ x → B₁ x → B₂ (f x)) {x₁ x₂ : A₁} (x₁≡x₂ : x₁ ≡ x₂) {y : B₁ x₁} → subst B₂ (cong f x₁≡x₂) (g x₁ y) ≡ g x₂ (subst B₁ x₁≡x₂ y) subst-lemma _ _ refl = refl module _ {p} (P : N → N → Set p) where inddiag-< : (∀ n → P zero (suc n)) → (∀ m n → P m n → P (suc m) (suc n)) → ∀ m o → P m (suc m + o) inddiag-< Pzs Pss m o = ind (λ k → P k (suc k + o)) (subst (P zero) (suc≡one+ o) (Pzs o)) (λ k P[k,suc[k]+o] → subst (P (suc k)) (sym $ suc-+ (suc k) o) $ Pss k (suc k + o) P[k,suc[k]+o]) m inddiag-≡ : P zero zero → (∀ m n → P m n → P (suc m) (suc n)) → ∀ n → P n n inddiag-≡ Pzz Pss n = ind (λ k → P k k) Pzz (λ k Pkk → Pss k k Pkk) n inddiag-> : (∀ n → P (suc n) zero) → (∀ m n → P m n → P (suc m) (suc n)) → ∀ n o → P (suc n + o) n inddiag-> Psz Pss n o = ind (λ k → P (suc k + o) k) (subst (λ k → P k zero) (suc≡one+ o) (Psz o)) (λ k P[suc[k]+o,k] → subst (λ v → P v (suc k)) (sym $ suc-+ (suc k) o) (Pss (suc k + o) k P[suc[k]+o,k])) n -- diagonal induction inddiag : P zero zero → (∀ n → P zero (suc n)) → (∀ m → P (suc m) zero) → (∀ m n → P m n → P (suc m) (suc n)) → ∀ m n → P m n inddiag P-zz P-zs P-sz P-ss m n with order? m n ... | lt (o , sm+o≡n) = subst (P m) sm+o≡n (inddiag-< P-zs P-ss m o) ... | eq m≡n = subst (P m) m≡n (inddiag-≡ P-zz P-ss m) ... | gt (o , sn+o≡m) = subst (λ k → P k n) sn+o≡m (inddiag-> P-sz P-ss n o) inddiag-zz : ∀ Pzz Pzs Psz Pss → inddiag Pzz Pzs Psz Pss zero zero ≡ Pzz inddiag-zz Pzz Pzs Psz Pss with order? zero zero ... | lt m<n = ⊥-elim $ n≮n zero m<n ... | eq m≡n = begin subst (P zero) m≡n (ind (λ k → P k k) Pzz (λ k → Pss k k) zero) ≡⟨ cong (λ v → subst (P zero) v _ ) (≡-irrelevant m≡n refl) ⟩ subst (P zero) refl (ind (λ k → P k k) Pzz (λ k → Pss k k) zero) ≡⟨ subst-refl (P zero) (ind (λ k → P k k) Pzz (λ k → Pss k k) zero) ⟩ ind (λ k → P k k) Pzz (λ k → Pss k k) zero ≡⟨ ind-base _ _ _ ⟩ Pzz ∎ ... | gt m>n = ⊥-elim $ n≮n zero m>n inddiag-zs : ∀ Pzz Pzs Psz Pss n → inddiag Pzz Pzs Psz Pss zero (suc n) ≡ Pzs n inddiag-zs Pzz Pzs Psz Pss n with order? zero (suc n) ... | lt (o , one+o≡suc[n]) = begin subst (P zero) one+o≡suc[n] (inddiag-< Pzs Pss zero o) ≡⟨ cong (subst (P zero) one+o≡suc[n]) $ ind-base _ _ _ ⟩ subst (P zero) one+o≡suc[n] (subst (P zero) (suc≡one+ o) (Pzs o)) ≡⟨ subst-subst (suc≡one+ o) ⟩ -- suc o -> one + o -> suc n subst (P zero) so≡sn (Pzs o) ≡⟨ cong (λ v → subst (P zero) v (Pzs o)) $ ≡-irrelevant so≡sn (cong suc o≡n) ⟩ subst (P zero) (cong suc o≡n) (Pzs o) ≡⟨ subst-cong-app suc Pzs o≡n ⟩ Pzs n ∎ where so≡sn : suc o ≡ suc n so≡sn = trans (suc≡one+ o) one+o≡suc[n] o≡n : o ≡ n o≡n = suc-injective so≡sn ... | eq m≡n = ⊥-elim $ z≢s n m≡n ... | gt m>n = ⊥-elim $ n≮zero (suc n) m>n inddiag-sz : ∀ Pzz Pzs Psz Pss m → inddiag Pzz Pzs Psz Pss (suc m) zero ≡ Psz m inddiag-sz Pzz Pzs Psz Pss m with order? (suc m) zero ... | lt m<n = ⊥-elim $ n≮zero (suc m) m<n ... | eq m≡n = ⊥-elim $ s≢z m m≡n ... | gt (o , one+o≡suc[m]) = begin subst (λ k → P k zero) one+o≡suc[m] (inddiag-> Psz Pss zero o) ≡⟨ cong (subst (λ k → P k zero) one+o≡suc[m]) $ ind-base _ _ _ ⟩ subst (λ k → P k zero) one+o≡suc[m] (subst (λ k → P k zero) (suc≡one+ o) (Psz o)) ≡⟨ subst-subst (suc≡one+ o) ⟩ subst (λ k → P k zero) so≡sm (Psz o) ≡⟨ cong (λ v → subst (λ k → P k zero) v (Psz o)) $ ≡-irrelevant so≡sm (cong suc o≡m) ⟩ subst (λ k → P k zero) (cong suc o≡m) (Psz o) ≡⟨ subst-cong-app suc Psz o≡m ⟩ Psz m ∎ where so≡sm = trans (suc≡one+ o) one+o≡suc[m] o≡m = suc-injective so≡sm inddiag-ss : ∀ Pzz Pzs Psz Pss m n → inddiag Pzz Pzs Psz Pss (suc m) (suc n) ≡ Pss m n (inddiag Pzz Pzs Psz Pss m n) inddiag-ss Pzz Pzs Psz Pss m n with order? (suc m) (suc n) | order? m n ... | lt sm<sn@(o , ssm+o≡sn) | lt m<n@(p , sm+p≡n) = begin subst (P (suc m)) ssm+o≡sn (inddiag-< Pzs Pss (suc m) o) ≡⟨ cong (subst (P (suc m)) ssm+o≡sn) $ ind-step _ _ _ m ⟩ subst (P (suc m)) ssm+o≡sn (subst (P (suc m)) (sym $ suc-+ (suc m) o) $ Pss m (suc m + o) (inddiag-< Pzs Pss m o)) ≡⟨ subst-subst (sym $ suc-+ (suc m) o) ⟩ subst (P (suc m)) suc[sm+o]≡sn (Pss m (suc m + o) (inddiag-< Pzs Pss m o)) ≡⟨ cong (λ v → subst (P (suc m)) v (Pss m (suc m + o) (inddiag-< Pzs Pss m o))) $ ≡-irrelevant suc[sm+o]≡sn (cong suc sm+o≡n) ⟩ subst (P (suc m)) (cong suc sm+o≡n) (Pss m (suc m + o) (inddiag-< Pzs Pss m o)) ≡⟨ subst-lemma suc (Pss m) sm+o≡n ⟩ Pss m n (subst (P m) sm+o≡n (inddiag-< Pzs Pss m o)) ≡⟨ cong (Pss m n) $ subst-other-g ≡-irrelevant (suc m +_) (inddiag-< Pzs Pss m) o≡p sm+o≡n sm+p≡n ⟩ Pss m n (subst (P m) sm+p≡n (inddiag-< Pzs Pss m p)) ∎ where suc[sm+o]≡sn : suc (suc m + o) ≡ suc n suc[sm+o]≡sn = trans (sym $ suc-+ (suc m) o) ssm+o≡sn sm+o≡n : suc m + o ≡ n sm+o≡n = suc-injective suc[sm+o]≡sn o≡p : o ≡ p o≡p = ≤-proj₁-≡ (<-pred sm<sn) m<n ... | lt sm<sn | eq m≡n = ⊥-elim $ <⇒≢ (<-pred sm<sn) m≡n ... | lt sm<sn | gt m>n = ⊥-elim $ <⇒≯ (<-pred sm<sn) m>n ... | eq sm≡sn | lt m<n = ⊥-elim $ <⇒≢ m<n (suc-injective sm≡sn) ... | eq sm≡sn | eq m≡n = begin subst (P (suc m)) sm≡sn (i (suc m)) ≡⟨ cong (subst (P (suc m)) sm≡sn) $ ind-step _ _ _ m ⟩ subst (P (suc m)) sm≡sn (Pss m m (i m)) ≡⟨ cong (λ v → subst (P (suc m)) v (Pss m m (i m))) $ ≡-irrelevant sm≡sn (cong suc m≡n) ⟩ subst (P (suc m)) (cong suc m≡n) (Pss m m (i m)) ≡⟨ subst-lemma suc (Pss m) m≡n ⟩ Pss m n (subst (P m) m≡n (i m)) ∎ where i = ind (λ k → P k k) Pzz (λ k → Pss k k) ... | eq sm≡sn | gt m>n = ⊥-elim $ >⇒≢ m>n (suc-injective sm≡sn) ... | gt sm>sn | lt m<n = ⊥-elim $ <⇒≯ (<-pred sm>sn) m<n ... | gt sm>sn | eq m≡n = ⊥-elim $ >⇒≢ (<-pred sm>sn) m≡n ... | gt sm>sn@(o , ssn+o≡sm) | gt m>n@(p , sn+p≡m) = begin subst B₁ ssn+o≡sm (inddiag-> Psz Pss (suc n) o) ≡⟨ cong (subst B₁ ssn+o≡sm) $ ind-step _ _ _ n ⟩ subst B₁ ssn+o≡sm (subst B₁ (sym $ suc-+ (suc n) o) (Pss (suc n + o) n u)) ≡⟨ subst-subst (sym $ suc-+ (suc n) o) ⟩ subst B₁ suc[sn+o]≡sm (Pss (suc n + o) n u) ≡⟨ cong (λ v → subst B₁ v (Pss (suc n + o) n u)) $ ≡-irrelevant suc[sn+o]≡sm (cong suc sn+o≡m) ⟩ subst B₁ (cong suc sn+o≡m) (Pss (suc n + o) n u) ≡⟨ subst-lemma suc (λ k → Pss k n) sn+o≡m ⟩ Pss m n (subst B₂ sn+o≡m (inddiag-> Psz Pss n o)) ≡⟨ cong (Pss m n) $ subst-other-g ≡-irrelevant (suc n +_) (inddiag-> Psz Pss n) o≡p sn+o≡m sn+p≡m ⟩ Pss m n (subst B₂ sn+p≡m (inddiag-> Psz Pss n p)) ∎ where B₁ = λ k → P k (suc n) B₂ = λ k → P k n u = inddiag-> Psz Pss n o suc[sn+o]≡sm : suc (suc n + o) ≡ suc m suc[sn+o]≡sm = trans (sym $ suc-+ (suc n) o) ssn+o≡sm sn+o≡m = suc-injective suc[sn+o]≡sm o≡p : o ≡ p o≡p = ≤-proj₁-≡ (<-pred sm>sn) m>n
{ "alphanum_fraction": 0.4487116963, "avg_line_length": 34.2701949861, "ext": "agda", "hexsha": "85eb6a0e12c96a3f682362068a80270f706d1f35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/Nat/Properties.agda", "max_line_length": 127, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 12443, "size": 24606 }
-- Andreas, 2012-07-31 no eager introduction of hidden abstractions {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.conv.coerce:100 #-} -- {-# OPTIONS -v tc.with:100 #-} module Issue679 where data Unit : Set where unit : Unit -- works also now: test : {u : Unit} → Unit test = λ {u} → u T : Unit → Set T unit = {u : Unit} → Unit works : (u : Unit) → T u works unit = λ {u} → u fails : (u : Unit) → T u fails unit with unit ... | _ = λ {u} → u -- Error was: -- {u : _14 _} → _16 _ !=< Unit of type Set -- when checking that the expression λ {u} → u has type Unit
{ "alphanum_fraction": 0.5902777778, "avg_line_length": 20.5714285714, "ext": "agda", "hexsha": "cb04edf53b0fd2baf06b20321ebdbcb40b7a6e98", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue679.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue679.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue679.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 193, "size": 576 }
------------------------------------------------------------------------ -- The two definitions of substitutions are isomorphic (assuming -- extensionality) ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Isomorphic {i u e} {Uni : IndexedUniverse i u e} where import Axiom.Extensionality.Propositional as E import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Basics as D using (ε; _▻_; [_]) open import deBruijn.Substitution.Function.Basics as F using (ε⇨; _▻⇨_) renaming (_▻⇨[_]_ to _▻⇨[_]F_) open import Function using (_$_) open import Function.Inverse using (Inverse) open import Level using (_⊔_) import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning isomorphic : ∀ {t} {T : Term-like t} → E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t) → ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Inverse ([ Var ⟶ T ]-setoid ρ̂) (P.setoid $ D.Sub T ρ̂) isomorphic {T = T} ext = record { to = record { _⟨$⟩_ = to _ ; cong = λ ρ₁≅ρ₂ → D.≅-⇨-⇒-≡ $ to-cong ρ₁≅ρ₂ } ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to _ ; right-inverse-of = λ ρ → D.≅-⇨-⇒-≡ $ to∘from ρ } } where to : ∀ Γ {Δ} {ρ̂ : Γ ⇨̂ Δ} → F.Sub T ρ̂ → D.Sub T ρ̂ to ε ρ = ε to (Γ ▻ σ) {ρ̂ = ρ̂} ρ = P.subst (λ v → D.Sub T (t̂ail ρ̂ ▻̂ v)) (≅-Value-⇒-≡ $ P.sym $ F.head-lemma ρ) (to Γ (F.tail ρ) ▻ F.head ρ) from : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → D.Sub T ρ̂ → F.Sub T ρ̂ from ε = ε⇨ from (ρ ▻ t) = from ρ ▻⇨ t to-▻ : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : F.Sub T ρ̂) → D._≅-⇨_ (to (Γ ▻ σ) ρ) (to Γ (F.tail ρ) ▻ F.head ρ) to-▻ {ρ̂ = ρ̂} ρ = D.drop-subst-Sub (λ v → t̂ail ρ̂ ▻̂ v) (≅-Value-⇒-≡ $ P.sym $ F.head-lemma ρ) abstract to-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : F.Sub T ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : F.Sub T ρ̂₂} → F._≅-⇨_ ρ₁ ρ₂ → D._≅-⇨_ (to Γ₁ ρ₁) (to Γ₂ ρ₂) to-cong {Γ₁ = ε} {ρ₁ = _ , _} {ρ₂ = ._ , _} [ P.refl ] = P.refl to-cong {Γ₁ = Γ ▻ σ} {ρ₁ = ρ₁} {ρ₂ = ._ , corr₂} [ P.refl ] = let ρ₂ = [_⟶_].function ρ₁ , corr₂ in begin [ to (Γ ▻ σ) ρ₁ ] ≡⟨ to-▻ ρ₁ ⟩ [ to Γ (F.tail ρ₁) ▻ F.head ρ₁ ] ≡⟨ D.▻⇨-cong P.refl (to-cong [ P.refl ]) P.refl ⟩ [ to Γ (F.tail ρ₂) ▻ F.head ρ₂ ] ≡⟨ P.sym $ to-▻ ρ₂ ⟩ [ to (Γ ▻ σ) ρ₂ ] ∎ from-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : D.Sub T ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : D.Sub T ρ̂₂} → D._≅-⇨_ ρ₁ ρ₂ → F._≅-⇨_ (from ρ₁) (from ρ₂) from-cong P.refl = [ P.refl ] abstract from∘to : ∀ Γ {Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : F.Sub T ρ̂) → F._≅-⇨_ (from (to Γ ρ)) ρ from∘to ε ρ = ε⇨ ≅-⟶⟨ sym-⟶ $ F.ηε ext ρ ⟩ ρ ∎-⟶ from∘to (Γ ▻ σ) {ρ̂ = ρ̂} ρ = from (to (Γ ▻ σ) ρ) ≅-⟶⟨ from-cong $ to-▻ ρ ⟩ from (to Γ (F.tail ρ) ▻ F.head ρ) ≅-⟶⟨ _ ∎-⟶ ⟩ from (to Γ (F.tail ρ)) ▻⇨ F.head ρ ≅-⟶⟨ F.▻⇨-cong P.refl (from∘to Γ (F.tail ρ)) P.refl ⟩ F.tail ρ ▻⇨ F.head ρ ≅-⟶⟨ sym-⟶ $ F.η▻ ext ρ ⟩ ρ ∎-⟶ to∘from : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : D.Sub T ρ̂) → D._≅-⇨_ (to Γ (from ρ)) ρ to∘from ε = P.refl to∘from (_▻_ {σ = σ} ρ t) = begin [ to (_ ▻ _) (from ρ ▻⇨ t) ] ≡⟨ to-▻ (from ρ ▻⇨ t) ⟩ [ to _ (F.tail (from ρ ▻⇨[ σ ]F t)) ▻ F.head (from ρ ▻⇨[ σ ]F t) ] ≡⟨ D.▻⇨-cong P.refl (to-cong [ P.refl ]) P.refl ⟩ [ to _ (from ρ) ▻ t ] ≡⟨ D.▻⇨-cong P.refl (to∘from ρ) P.refl ⟩ [ ρ ▻ t ] ∎
{ "alphanum_fraction": 0.4183246073, "avg_line_length": 39.381443299, "ext": "agda", "hexsha": "5cb80c322a7a4b2a34426be87c87d66b9374084c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Isomorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Isomorphic.agda", "max_line_length": 96, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Isomorphic.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1859, "size": 3820 }
------------------------------------------------------------------------ -- Overloaded "equational" reasoning combinators ------------------------------------------------------------------------ {-# OPTIONS --safe #-} module Equational-reasoning where open import Equality.Propositional open import Prelude infix -1 _■ finally₁ finally₁∽ finally₁→ finally₁← finally₂ finally₂∽ finally₂→ finally₂← finally₁-≡∼ finally₁-≡∽ finally₁-≡→ finally₁-≡← finally₂-≡∼ finally₂-≡∽ finally₂-≡→ finally₂-≡← infixr -2 step-⟨⟩∼ step-≡∼ step-≡→ step-∼ step-∼→ step-∼′ step-∼→′ infixl -2 step-⟨⟩∽ step-≡∽ step-≡← step-∽ step-∼← step-∽′ step-∼←′ ------------------------------------------------------------------------ -- Reflexivity record Reflexive {a p} {A : Type a} (P : A → A → Type p) : Type (a ⊔ p) where constructor is-reflexive field reflexive : ∀ {x} → P x x open Reflexive ⦃ … ⦄ public _■ : ∀ {a p} {A : Type a} {P : A → A → Type p} ⦃ r : Reflexive P ⦄ (x : A) → P x x _ ■ = reflexive -- Transitivity-like combinators. These combinators can be used when -- two arguments are definitionally equal. (The Reflexive instance -- argument is used to make type inference easier.) step-⟨⟩∼ step-⟨⟩∽ : ∀ {a p} {A : Type a} {P : A → A → Type p} ⦃ p : Reflexive P ⦄ x {y} → P x y → P x y step-⟨⟩∼ _ p = p step-⟨⟩∽ = step-⟨⟩∼ syntax step-⟨⟩∼ x Pxy = x ∼⟨⟩ Pxy syntax step-⟨⟩∽ x Pxy = Pxy ∽⟨⟩ x -- Transitivity-like combinators. These combinators can be used when -- two arguments are propositionally equal. (The Reflexive instance -- argument is used to make type inference easier.) -- It can be easier for Agda to type-check typical "equational" -- reasoning chains if the transitivity proof gets the equality -- arguments in the opposite order, because then the y argument is -- (perhaps more) known once the proof of P x y is type-checked. -- -- This optimisation can be quite effective for some examples, but did -- not seem to have much effect when I applied it to the current code -- base. -- -- The idea behind this optimisation came up in discussions with Ulf -- Norell. step-≡∼ step-≡∽ step-≡→ step-≡← : ∀ {a p} {A : Type a} {P : A → A → Type p} ⦃ r : Reflexive P ⦄ x {y z} → P y z → x ≡ y → P x z step-≡∼ _ p refl = p step-≡∽ = step-≡∼ step-≡→ = step-≡∼ step-≡← = step-≡∼ syntax step-≡∼ x Pyz x≡y = x ∼≡⟨ x≡y ⟩ Pyz syntax step-≡∽ x Pyz x≡y = Pyz ∽≡⟨ x≡y ⟩ x syntax step-≡→ x Pyz x≡y = x →≡⟨ x≡y ⟩ Pyz syntax step-≡← x Pyz x≡y = Pyz ←≡⟨ x≡y ⟩ x finally₂-≡∼ finally₂-≡∽ finally₂-≡→ finally₂-≡← : ∀ {a p} {A : Type a} {P : A → A → Type p} ⦃ r : Reflexive P ⦄ x y → x ≡ y → P x y finally₂-≡∼ _ _ refl = reflexive finally₂-≡∽ = finally₂-≡∼ finally₂-≡→ = finally₂-≡∼ finally₂-≡← = finally₂-≡∼ syntax finally₂-≡∼ x y x≡y = x ∼≡⟨ x≡y ⟩■ y syntax finally₂-≡∽ x y x≡y = y ∽≡⟨ x≡y ⟩■ x syntax finally₂-≡→ x y x≡y = x →≡⟨ x≡y ⟩■ y syntax finally₂-≡← x y x≡y = y ←≡⟨ x≡y ⟩■ x finally₁-≡∼ finally₁-≡∽ finally₁-≡→ finally₁-≡← : ∀ {a p} {A : Type a} {P : A → A → Type p} ⦃ r : Reflexive P ⦄ x {y} → x ≡ y → P x y finally₁-≡∼ _ refl = reflexive finally₁-≡∽ = finally₁-≡∼ finally₁-≡→ = finally₁-≡∼ finally₁-≡← = finally₁-≡∼ syntax finally₁-≡∼ x x≡y = x ∼≡⟨ x≡y ⟩■ syntax finally₁-≡∽ x x≡y = ∽≡⟨ x≡y ⟩■ x syntax finally₁-≡→ x x≡y = x →≡⟨ x≡y ⟩■ syntax finally₁-≡← x x≡y = ←≡⟨ x≡y ⟩■ x ------------------------------------------------------------------------ -- Symmetry record Symmetric {a p} {A : Type a} (P : A → A → Type p) : Type (a ⊔ p) where constructor is-symmetric field symmetric : ∀ {x y} → P x y → P y x open Symmetric ⦃ … ⦄ public ------------------------------------------------------------------------ -- Transitivity -- One variant of transitivity. -- -- Note that the combinator can (depending on the available instances) -- be used to convert from one type to another, but only in its first -- argument (in order to make instance resolution easier). record Transitive {a b p q} {A : Type a} {B : Type b} (P : A → A → Type p) (Q : A → B → Type q) : Type (a ⊔ b ⊔ p ⊔ q) where constructor is-transitive field transitive : ∀ {x y z} → P x y → Q y z → Q x z open Transitive ⦃ … ⦄ public step-∼ step-∽ step-∼→ step-∼← : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → A → Type p} {Q : A → B → Type q} ⦃ t : Transitive P Q ⦄ x {y z} → Q y z → P x y → Q x z step-∼ _ = flip transitive step-∽ = step-∼ step-∼→ = step-∼ step-∼← = step-∼ syntax step-∼ x Qyz Pxy = x ∼⟨ Pxy ⟩ Qyz syntax step-∽ x Qyz Pxy = Qyz ∽⟨ Pxy ⟩ x syntax step-∼→ x Qyz Pxy = x →⟨ Pxy ⟩ Qyz syntax step-∼← x Qyz Pxy = Qyz ←⟨ Pxy ⟩ x -- Another variant of transitivity. -- -- Note that the combinator can (depending on the available instances) -- be used to convert from one type to another, but only in its second -- argument (in order to make instance resolution easier). record Transitive′ {a b p q} {A : Type a} {B : Type b} (P : A → B → Type p) (Q : B → B → Type q) : Type (a ⊔ b ⊔ p ⊔ q) where constructor is-transitive field transitive′ : ∀ {x y z} → P x y → Q y z → P x z open Transitive′ ⦃ … ⦄ public step-∼′ step-∽′ step-∼→′ step-∼←′ : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → B → Type p} {Q : B → B → Type q} ⦃ t : Transitive′ P Q ⦄ x {y z} → Q y z → P x y → P x z step-∼′ _ = flip transitive′ step-∽′ = step-∼′ step-∼→′ = step-∼′ step-∼←′ = step-∼′ syntax step-∼′ x Qyz Pxy = x ∼′⟨ Pxy ⟩ Qyz syntax step-∽′ x Qyz Pxy = Qyz ∽′⟨ Pxy ⟩ x syntax step-∼→′ x Qyz Pxy = x →′⟨ Pxy ⟩ Qyz syntax step-∼←′ x Qyz Pxy = Qyz ←′⟨ Pxy ⟩ x ------------------------------------------------------------------------ -- A finally combinator -- This combinator is intended to be used in the last step of an -- equational reasoning proof: -- -- x ∼⟨ ? ⟩■ -- y -- -- Note that the combinator can (depending on the available instances) -- be used to convert from one type to another. record Convertible {a b p q} {A : Type a} {B : Type b} (P : A → B → Type p) (Q : A → B → Type q) : Type (a ⊔ b ⊔ p ⊔ q) where constructor is-convertible field convert : ∀ {x y} → P x y → Q x y open Convertible ⦃ … ⦄ public finally₂ finally₂∽ finally₂→ finally₂← : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → B → Type p} {Q : A → B → Type q} ⦃ c : Convertible P Q ⦄ x y → P x y → Q x y finally₂ _ _ = convert finally₂∽ = finally₂ finally₂→ = finally₂ finally₂← = finally₂ syntax finally₂ x y x∼y = x ∼⟨ x∼y ⟩■ y syntax finally₂∽ x y x∼y = y ∽⟨ x∼y ⟩■ x syntax finally₂→ x y x→y = x →⟨ x→y ⟩■ y syntax finally₂← x y x→y = y ←⟨ x→y ⟩■ x finally₁ finally₁∽ finally₁→ finally₁← : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → B → Type p} {Q : A → B → Type q} ⦃ c : Convertible P Q ⦄ x {y} → P x y → Q x y finally₁ _ = convert finally₁∽ = finally₁ finally₁→ = finally₁ finally₁← = finally₁ syntax finally₁ x x∼y = x ∼⟨ x∼y ⟩■ syntax finally₁∽ x x∼y = ∽⟨ x∼y ⟩■ x syntax finally₁→ x x→y = x →⟨ x→y ⟩■ syntax finally₁← x x→y = ←⟨ x→y ⟩■ x
{ "alphanum_fraction": 0.5261563877, "avg_line_length": 30.9106382979, "ext": "agda", "hexsha": "f7422d6bf8a1b2759d24bd110acebaac1722ac83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Equational-reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Equational-reasoning.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Equational-reasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2900, "size": 7264 }
open import Prelude hiding (Bool) module Implicits.Oliveira.Improved.Deterministic (TC' : Set) (_tc≟'_ : (a b : TC') → Dec (a ≡ b)) where {- open import Data.Fin.Substitution open import Implicits.Oliveira.Types open import Implicits.Oliveira.Types.Unification open import Implicits.Oliveira.Terms open import Implicits.Oliveira.Contexts open import Implicits.Oliveira.Substitutions open import Implicits.Oliveira.Improved.Resolution open import Extensions.ListFirst -} -- This is more troublesome than I expected; the tricky thing is the rule r-simp. -- r-simp requires an instance of first, which has 2 constructors: -- (a) here: which relies on a proof that r can yield "a" (K ⊢ r ↓ a) -- (b) there: which relies on a proof that r can NOT yield "a" (¬ K ⊢ r ↓ a) -- Proving (b) deterministic is nonsensical. Check for example the example below: -- (we give two ways to derive (b) for a single K, r and a) -- Because (b) appears in _⊢ᵣ_, this makes _⊢ᵣ_ non-deterministic, which in turn makes -- the r-iabs case of (a) non-deterministic. -- The thing is that all non-determinism is situated in the "unhappy-path": (b). -- Because the exact instance for (b) does not influence rule instantiation, -- we should be able to give a weaker, -- but still powerful enough, version of "equivalence" on derivations. private data TC : Set where tc-int : TC tc-bool : TC _tc≟_ : (a b : TC) → Dec (a ≡ b) tc-int tc≟ tc-int = yes refl tc-int tc≟ tc-bool = no (λ ()) tc-bool tc≟ tc-int = no (λ ()) tc-bool tc≟ tc-bool = yes refl open import Data.Fin.Substitution open import Implicits.Oliveira.Types open import Implicits.Oliveira.Types.Unification open import Implicits.Oliveira.Terms open import Implicits.Oliveira.Contexts open import Implicits.Oliveira.Substitutions open import Implicits.Oliveira.Improved.Resolution open import Extensions.ListFirst Bool : Type 0 Bool = simpl $ tc tc-bool Int : ∀ {ν} → Type ν Int = simpl $ tc tc-int module Example₁ where K : Ktx 0 1 K = (Int ⇒ Bool) ∷K nil p₁ : ¬ (K ⊢ Int ⇒ Bool ↓ tc tc-int) p₁ (i-iabs (r-simp (here (i-iabs _ ()) .List.[])) _) p₁ (i-iabs (r-simp (there ._ _ ())) _) p₂ : ¬ (K ⊢ Int ⇒ Bool ↓ tc tc-int) p₂ (i-iabs x ())
{ "alphanum_fraction": 0.6935412027, "avg_line_length": 32.5362318841, "ext": "agda", "hexsha": "917d107f109fab0643e115852e9cd43bb2f8bf50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Undecidable/Deterministic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Undecidable/Deterministic.agda", "max_line_length": 103, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Undecidable/Deterministic.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 718, "size": 2245 }
{-# OPTIONS --rewriting #-} module DualLM where open import Data.Bool open import Data.Nat hiding (compare) open import Data.Nat.Properties open import Data.Fin hiding (_+_) open import Data.Product open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Agda.Builtin.Equality.Rewrite open import Extensionality open import Direction -- variables variable n m : ℕ ---------------------------------------------------------------------- -- auxiliaries for automatic rewriting n+1=suc-n : n + 1 ≡ suc n n+1=suc-n {zero} = refl n+1=suc-n {suc n} = cong suc (n+1=suc-n {n}) {-# REWRITE n+1=suc-n #-} n+0=n : n + 0 ≡ n n+0=n {zero} = refl n+0=n {suc n} = cong suc (n+0=n {n}) {-# REWRITE n+0=n #-} inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x inject+0-x=x {x = zero} = refl inject+0-x=x {x = suc x} = cong suc inject+0-x=x {-# REWRITE inject+0-x=x #-} n+sucm : n + suc m ≡ suc (n + m) n+sucm {0F} = refl n+sucm {suc n} = cong suc (n+sucm{n}) {-# REWRITE n+sucm #-} ---------------------------------------------------------------------- -- session type inductively with explicit rec module IND where data Polarity : Set where POS NEG : Polarity mutual data Type (n : ℕ) : Set where TUnit TInt : Type n TPair : (T₁ : Type n) (T₂ : Type n) → Type n TChan : (S : SType n) → Type n data SType (n : ℕ) : Set where gdd : (G : GType n) → SType n rec : (G : GType (suc n) ) → SType n var : (p : Polarity) → (x : Fin n) → SType n data GType (n : ℕ) : Set where transmit : (d : Dir) (T : Type n) (S : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n TType = Type -- weakening weakenS : (n : ℕ) → SType m → SType (m + n) weakenG : (n : ℕ) → GType m → GType (m + n) weakenT : (n : ℕ) → TType m → TType (m + n) weakenS n (gdd gst) = gdd (weakenG n gst) weakenS n (rec gst) = rec (weakenG n gst) weakenS n (var p x) = var p (inject+ n x) weakenG n (transmit d t s) = transmit d (weakenT n t) (weakenS n s) weakenG n (choice d m alt) = choice d m (weakenS n ∘ alt) weakenG n end = end weakenT n TUnit = TUnit weakenT n TInt = TInt weakenT n (TPair ty ty₁) = TPair (weakenT n ty) (weakenT n ty₁) weakenT n (TChan x) = TChan (weakenS n x) weaken1 : SType m → SType (suc m) weaken1{m} stm with weakenS 1 stm ... | r rewrite n+1=suc-n {m} = r module CheckWeaken where s0 : SType 0 s0 = rec (transmit SND TUnit (var POS zero)) s1 : SType 1 s1 = rec (transmit SND TUnit (var POS zero)) s2 : SType 2 s2 = rec (transmit SND TUnit (var POS zero)) check-weakenS1 : weakenS 1 s0 ≡ s1 check-weakenS1 = cong rec (cong (transmit SND TUnit) refl) check-weakenS2 : weakenS 2 s0 ≡ s2 check-weakenS2 = cong rec (cong (transmit SND TUnit) refl) weaken1'N : Fin (suc n) → Fin n → Fin (suc n) weaken1'N zero x = suc x weaken1'N (suc i) zero = zero weaken1'N (suc i) (suc x) = suc (weaken1'N i x) weaken1'S : Fin (suc n) → SType n → SType (suc n) weaken1'G : Fin (suc n) → GType n → GType (suc n) weaken1'T : Fin (suc n) → TType n → TType (suc n) weaken1'S i (gdd gst) = gdd (weaken1'G i gst) weaken1'S i (rec gst) = rec (weaken1'G (suc i) gst) weaken1'S i (var p x) = var p (weaken1'N i x) weaken1'G i (transmit d t s) = transmit d (weaken1'T i t) (weaken1'S i s) weaken1'G i (choice d m alt) = choice d m (weaken1'S i ∘ alt) weaken1'G i end = end weaken1'T i TUnit = TUnit weaken1'T i TInt = TInt weaken1'T i (TPair t₁ t₂) = TPair (weaken1'T i t₁) (weaken1'T i t₂) weaken1'T i (TChan x) = TChan (weaken1'S i x) weaken1S : SType n → SType (suc n) weaken1G : GType n → GType (suc n) weaken1T : Type n → Type (suc n) weaken1S = weaken1'S zero weaken1G = weaken1'G zero weaken1T = weaken1'T zero module CheckWeaken1' where sxy : ∀ n → Fin (suc n) → SType n sxy n x = rec (transmit SND TUnit (var POS x)) s00 : SType 0 s00 = sxy 0 0F s10 : SType 1 s10 = sxy 1 0F s11 : SType 1 s11 = sxy 1 1F s22 : SType 2 s22 = sxy 2 2F check-weaken-s01 : weaken1'S 0F s00 ≡ s10 check-weaken-s01 = refl check-weaken-s1-s2 : weaken1'S 0F s11 ≡ s22 check-weaken-s1-s2 = refl check-weaken-s21 : weaken1'S 1F (sxy 2 1F) ≡ sxy 3 1F check-weaken-s21 = refl ---------------------------------------------------------------------- dual-pol : Polarity → Polarity dual-pol POS = NEG dual-pol NEG = POS dual-pol-inv : ∀ p → dual-pol (dual-pol p) ≡ p dual-pol-inv POS = refl dual-pol-inv NEG = refl swap-polS : (i : Fin (suc n)) → SType (suc n) → SType (suc n) swap-polG : (i : Fin (suc n)) → GType (suc n) → GType (suc n) swap-polT : (i : Fin (suc n)) → Type (suc n) → Type (suc n) swap-polG i (transmit d t st) = transmit d (swap-polT i t) (swap-polS i st) swap-polG i (choice d m alt) = choice d m (swap-polS i ∘ alt) swap-polG i end = end swap-polS i (gdd gst) = gdd (swap-polG i gst) swap-polS i (rec st) = rec (swap-polG (suc i) st) swap-polS zero (var p zero) = var (dual-pol p) zero swap-polS (suc i) (var p zero) = var p zero swap-polS zero (var p (suc x)) = var p (suc x) swap-polS {suc n} (suc i) (var p (suc x)) = weaken1S (swap-polS i (var p x)) swap-polT i TUnit = TUnit swap-polT i TInt = TInt swap-polT i (TPair t₁ t₂) = TPair (swap-polT i t₁) (swap-polT i t₂) swap-polT i (TChan x) = TChan (swap-polS i x) ---------------------------------------------------------------------- weak-weakN : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (x : Fin n) → weaken1'N (suc i) (weaken1'N j x) ≡ weaken1'N (inject₁ j) (weaken1'N i x) weak-weakG : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (g : GType n) → weaken1'G (suc i) (weaken1'G j g) ≡ weaken1'G (inject₁ j) (weaken1'G i g) weak-weakS : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s : SType n) → weaken1'S (suc i) (weaken1'S j s) ≡ weaken1'S (inject₁ j) (weaken1'S i s) weak-weakT : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (t : Type n) → weaken1'T (suc i) (weaken1'T j t) ≡ weaken1'T (inject₁ j) (weaken1'T i t) weak-weakN 0F 0F le x = refl weak-weakN (suc i) 0F le x = refl weak-weakN (suc i) (suc j) (s≤s le) zero = refl weak-weakN{suc n} (suc i) (suc j) (s≤s le) (suc x) = cong suc (weak-weakN i j le x) weak-weakG i j le (transmit d t s) = cong₂ (transmit d) (weak-weakT i j le t) (weak-weakS i j le s) weak-weakG i j le (choice d m alt) = cong (choice d m) (ext (weak-weakS i j le ∘ alt)) weak-weakG i j le end = refl weak-weakS i j le (gdd gst) = cong gdd (weak-weakG i j le gst) weak-weakS i j le (rec gst) = cong rec (weak-weakG (suc i) (suc j) (s≤s le) gst) weak-weakS i j le (var p x) = cong (var p) (weak-weakN i j le x) weak-weakT i j le TUnit = refl weak-weakT i j le TInt = refl weak-weakT i j le (TPair t t₁) = cong₂ TPair (weak-weakT i j le t) (weak-weakT i j le t₁) weak-weakT i j le (TChan s) = cong TChan (weak-weakS i j le s) weaken1-weakenN : (m : ℕ) (j : Fin (suc n)) (x : Fin n) → inject+ m (weaken1'N j x) ≡ weaken1'N (inject+ m j) (inject+ m x) weaken1-weakenN m 0F 0F = refl weaken1-weakenN m 0F (suc x) = refl weaken1-weakenN m (suc j) 0F = refl weaken1-weakenN m (suc j) (suc x) = cong suc (weaken1-weakenN m j x) weaken1-weakenS : (m : ℕ) (j : Fin (suc n)) (s : SType n) → weakenS m (weaken1'S j s) ≡ weaken1'S (inject+ m j) (weakenS m s) weaken1-weakenG : (m : ℕ) (j : Fin (suc n)) (g : GType n) → weakenG m (weaken1'G j g) ≡ weaken1'G (inject+ m j) (weakenG m g) weaken1-weakenT : (m : ℕ) (j : Fin (suc n)) (t : Type n) → weakenT m (weaken1'T j t) ≡ weaken1'T (inject+ m j) (weakenT m t) weaken1-weakenS m j (gdd gst) = cong gdd (weaken1-weakenG m j gst) weaken1-weakenS m j (rec gst) = cong rec (weaken1-weakenG m (suc j) gst) weaken1-weakenS m 0F (var p 0F) = refl weaken1-weakenS m 0F (var p (suc x)) = refl weaken1-weakenS {suc n} m (suc j) (var p 0F) = refl weaken1-weakenS {suc n} m (suc j) (var p (suc x)) = cong (var p) (cong suc (weaken1-weakenN m j x)) weaken1-weakenG m j (transmit d t s) = cong₂ (transmit d) (weaken1-weakenT m j t) (weaken1-weakenS m j s) weaken1-weakenG m j (choice d m₁ alt) = cong (choice d m₁) (ext (weaken1-weakenS m j ∘ alt)) weaken1-weakenG m j end = refl weaken1-weakenT m j TUnit = refl weaken1-weakenT m j TInt = refl weaken1-weakenT m j (TPair t t₁) = cong₂ TPair (weaken1-weakenT m j t) (weaken1-weakenT m j t₁) weaken1-weakenT m j (TChan x) = cong TChan (weaken1-weakenS m j x) ---------------------------------------------------------------------- -- weakening of later index swap-weaken1'G : (i : Fin (suc (suc n))) (j : Fin′ i) (gst : GType (suc n)) → swap-polG (inject j) (weaken1'G i gst) ≡ weaken1'G i (swap-polG (inject! j) gst) swap-weaken1'S : (i : Fin (suc (suc n))) (j : Fin′ i) (sst : SType (suc n)) → swap-polS (inject j) (weaken1'S i sst) ≡ weaken1'S i (swap-polS (inject! j) sst) swap-weaken1'T : (i : Fin (suc (suc n))) (j : Fin′ i) (t : Type (suc n)) → swap-polT (inject j) (weaken1'T i t) ≡ weaken1'T i (swap-polT (inject! j) t) swap-weaken1'G i j (transmit d t s) = cong₂ (transmit d) (swap-weaken1'T i j t) (swap-weaken1'S i j s) swap-weaken1'G i j (choice d m alt) = cong (choice d m) (ext (swap-weaken1'S i j ∘ alt)) swap-weaken1'G i j end = refl swap-weaken1'S i j (gdd gst) = cong gdd (swap-weaken1'G i j gst) swap-weaken1'S i j (rec gst) = cong rec (swap-weaken1'G (suc i) (suc j) gst) swap-weaken1'S zero () (var p x) swap-weaken1'S (suc i) zero (var p zero) = refl swap-weaken1'S (suc i) zero (var p (suc x)) = refl swap-weaken1'S (suc i) (suc j) (var p zero) = refl swap-weaken1'S{suc n} (suc i) (suc j) (var p (suc x)) rewrite (weak-weakS i 0F z≤n (swap-polS (inject! j) (var p x))) = let sws = swap-weaken1'S{n} i j (var p x) in cong (weaken1'S 0F) sws swap-weaken1'T i j TUnit = refl swap-weaken1'T i j TInt = refl swap-weaken1'T i j (TPair t₁ t₂) = cong₂ TPair (swap-weaken1'T i j t₁) (swap-weaken1'T i j t₂) swap-weaken1'T i j (TChan s) = cong TChan (swap-weaken1'S i j s) ---------------------------------------------------------------------- -- weakening of earlier index swap-weaken1'S< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (s : SType (suc n)) → swap-polS (suc i) (weaken1'S (inject₁ j) s) ≡ weaken1'S (inject₁ j) (swap-polS i s) swap-weaken1'G< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (g : GType (suc n)) → swap-polG (suc i) (weaken1'G (inject₁ j) g) ≡ weaken1'G (inject₁ j) (swap-polG i g) swap-weaken1'T< : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) → (t : Type (suc n)) → swap-polT (suc i) (weaken1'T (inject₁ j) t) ≡ weaken1'T (inject₁ j) (swap-polT i t) swap-weaken1'S< i j le (gdd gst) = cong gdd (swap-weaken1'G< i j le gst) swap-weaken1'S< i j le (rec gst) = cong rec (swap-weaken1'G< (suc i) (suc j) (s≤s le) gst) swap-weaken1'S< 0F 0F le (var p x) = refl swap-weaken1'S< (suc i) 0F le (var p x) = refl swap-weaken1'S<{suc n} (suc i) (suc j) le (var p zero) = refl swap-weaken1'S<{suc n} (suc i) (suc j) (s≤s le) (var p (suc x)) rewrite (weak-weakS (inject₁ j) 0F z≤n (swap-polS i (var p x))) = let sws = swap-weaken1'S<{n} i j le (var p x) in cong (weaken1'S 0F) sws swap-weaken1'G< i j le (transmit d t s) = cong₂ (transmit d) (swap-weaken1'T< i j le t) (swap-weaken1'S< i j le s) swap-weaken1'G< i j le (choice d m alt) = cong (choice d m) (ext ((swap-weaken1'S< i j le) ∘ alt)) swap-weaken1'G< i j le end = refl swap-weaken1'T< i j le TUnit = refl swap-weaken1'T< i j le TInt = refl swap-weaken1'T< i j le (TPair t t₁) = cong₂ (TPair) (swap-weaken1'T< i j le t) (swap-weaken1'T< i j le t₁) swap-weaken1'T< i j le (TChan s) = cong (TChan) (swap-weaken1'S< i j le s) swap-weakenS : (i : Fin (suc n)) → (s : SType (suc n)) → swap-polS (suc i) (weaken1S s) ≡ weaken1S (swap-polS i s) swap-weakenG : (i : Fin (suc n)) → (g : GType (suc n)) → swap-polG (suc i) (weaken1G g) ≡ weaken1G (swap-polG i g) swap-weakenT : (i : Fin (suc n)) → (t : Type (suc n)) → swap-polT (suc i) (weaken1T t) ≡ weaken1T (swap-polT i t) swap-weakenS i s = swap-weaken1'S< i 0F z≤n s swap-weakenG i g = swap-weaken1'G< i 0F z≤n g swap-weakenT i t = swap-weaken1'T< i 0F z≤n t ---------------------------------------------------------------------- -- swapping of general weakening swap-weakenG' : (m : ℕ) (j : Fin (suc n)) (gst : GType (suc n)) → swap-polG (inject+ m j) (weakenG m gst) ≡ weakenG m (swap-polG j gst) swap-weakenS' : (m : ℕ) (j : Fin (suc n)) (s : SType (suc n)) → swap-polS (inject+ m j) (weakenS m s) ≡ weakenS m (swap-polS j s) swap-weakenT' : (m : ℕ) (j : Fin (suc n)) (t : Type (suc n)) → swap-polT (inject+ m j) (weakenT m t) ≡ weakenT m (swap-polT j t) swap-weakenG' m j (transmit d t s) = cong₂ (transmit d) (swap-weakenT' m j t) (swap-weakenS' m j s) swap-weakenG' m j (choice d m₁ alt) = cong (choice d m₁) (ext (swap-weakenS' m j ∘ alt)) swap-weakenG' m j end = refl swap-weakenS' m j (gdd gst) = cong gdd (swap-weakenG' m j gst) swap-weakenS' m j (rec gst) = cong rec (swap-weakenG' m (suc j) gst) swap-weakenS' m 0F (var p 0F) = refl swap-weakenS' m (suc j) (var p 0F) = refl swap-weakenS' m 0F (var p 1F) = refl swap-weakenS' m 0F (var p (suc (suc x))) = refl swap-weakenS' {suc n} m (suc j) (var p (suc x)) rewrite (weaken1-weakenS m 0F (swap-polS j (var p x))) = let rst = swap-weakenS'{n} m j (var p x) in cong weaken1S rst swap-weakenT' m j TUnit = refl swap-weakenT' m j TInt = refl swap-weakenT' m j (TPair t t₁) = cong₂ TPair (swap-weakenT' m j t) (swap-weakenT' m j t₁) swap-weakenT' m j (TChan x) = cong TChan (swap-weakenS' m j x) ---------------------------------------------------------------------- swap-pol-invS : (i : Fin (suc n)) → (st : SType (suc n)) → swap-polS i (swap-polS i st) ≡ st swap-pol-invG : (i : Fin (suc n)) → (st : GType (suc n)) → swap-polG i (swap-polG i st) ≡ st swap-pol-invT : (i : Fin (suc n)) → (ty : Type (suc n)) → swap-polT i (swap-polT i ty) ≡ ty swap-pol-invS i (gdd gst) = cong gdd (swap-pol-invG i gst) swap-pol-invS i (rec gst) = cong rec (swap-pol-invG (suc i) gst) swap-pol-invS zero (var p zero) rewrite dual-pol-inv p = refl swap-pol-invS (suc i) (var p zero) = refl swap-pol-invS zero (var p (suc x)) rewrite dual-pol-inv p = refl swap-pol-invS {suc n} (suc i) (var p (suc x)) rewrite swap-weakenS i (swap-polS i (var p x)) | swap-pol-invS i (var p x) = refl -- extensionality needed swap-pol-invG i (transmit d t s) = cong₂ (transmit d) (swap-pol-invT i t) (swap-pol-invS i s) swap-pol-invG i (choice d m alt) = cong (choice d m) (ext R) where R : ∀ x → swap-polS i (swap-polS i (alt x)) ≡ alt x R x rewrite swap-pol-invS i (alt x) = refl swap-pol-invG i end = refl swap-pol-invT i TUnit = refl swap-pol-invT i TInt = refl swap-pol-invT i (TPair ty ty₁) = cong₂ TPair (swap-pol-invT i ty) (swap-pol-invT i ty₁) swap-pol-invT i (TChan x) = cong TChan (swap-pol-invS i x) dualS : SType n → SType n dualG : GType n → GType n dualG (transmit d t st) = transmit (dual-dir d) t (dualS st) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end dualS (gdd gst) = gdd (dualG gst) dualS (rec gst) = rec (swap-polG zero (dualG gst)) dualS (var p x) = var (dual-pol p) x ---------------------------------------------------------------------- dual-weakenS : (i : Fin (suc n)) (s : SType n) → dualS (weaken1'S i s) ≡ weaken1'S i (dualS s) dual-weakenG : (i : Fin (suc n)) (g : GType n) → dualG (weaken1'G i g) ≡ weaken1'G i (dualG g) dual-weakenS i (gdd gst) = cong gdd (dual-weakenG i gst) dual-weakenS i (rec gst) rewrite (sym (swap-weaken1'G (suc i) 0F (dualG gst))) = cong rec (cong (swap-polG 0F) (dual-weakenG (suc i) gst)) dual-weakenS i (var p x) = refl dual-weakenG i (transmit d t s) = cong₂ (transmit (dual-dir d)) refl (dual-weakenS i s) dual-weakenG i (choice d m alt) = cong (choice (dual-dir d) m) (ext (dual-weakenS i ∘ alt)) dual-weakenG i end = refl dual-weakenS' : (m : ℕ) (s : SType n) → dualS (weakenS m s) ≡ weakenS m (dualS s) dual-weakenG' : (m : ℕ) (g : GType n) → dualG (weakenG m g) ≡ weakenG m (dualG g) dual-weakenS' n (gdd gst) = cong gdd (dual-weakenG' n gst) dual-weakenS' n (rec gst) rewrite (sym (swap-weakenG' n 0F (dualG gst))) = cong rec (cong (swap-polG 0F) (dual-weakenG' n gst)) dual-weakenS' n (var p x) = refl dual-weakenG' n (transmit d t s) = cong₂ (transmit (dual-dir d)) refl (dual-weakenS' n s) dual-weakenG' n (choice d m alt) = cong (choice (dual-dir d) m) (ext (dual-weakenS' n ∘ alt)) dual-weakenG' n end = refl ---------------------------------------------------------------------- aux : (i : Fin n) (x : Fin n) (p' : Polarity) → var p' (suc (suc x)) ≡ weaken1S (var p' (suc x)) aux i x p = refl var-suc : (i : Fin n) (x : Fin n) (p : Polarity) → ∃ λ p' → swap-polS (suc i) (var p (suc x)) ≡ var p' (suc x) var-suc zero zero p = dual-pol p , refl var-suc (suc i) zero p = p , refl var-suc zero (suc x) p = p , refl var-suc (suc i) (suc x) p with var-suc i x p ... | p' , snd rewrite sym (aux i x p') = p' , cong weaken1S snd ---------------------------------------------------------------------- swap-swapG : (gst : GType (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polG i (swap-polG (inject j) gst) ≡ swap-polG (inject j) (swap-polG i gst) swap-swapT : (t : Type (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polT i (swap-polT (inject j) t) ≡ swap-polT (inject j) (swap-polT i t) swap-swapS : (st : SType (suc n)) → (i : Fin (suc n)) (j : Fin′ i) → swap-polS i (swap-polS (inject j) st) ≡ swap-polS (inject j) (swap-polS i st) swap-swapG (transmit d t s) i j = cong₂ (transmit d) (swap-swapT t i j) (swap-swapS s i j) swap-swapG (choice d m alt) i j = cong (choice d m) (ext (λ x → swap-swapS (alt x) i j)) swap-swapG end i j = refl swap-swapT TUnit i j = refl swap-swapT TInt i j = refl swap-swapT (TPair t t₁) i j = cong₂ TPair (swap-swapT t i j) (swap-swapT t₁ i j) swap-swapT (TChan x) i j = cong TChan (swap-swapS x i j) swap-swapS (gdd gst) i j = cong gdd (swap-swapG gst i j) swap-swapS (rec gst) i j = cong rec (swap-swapG gst (suc i) (suc j)) swap-swapS (var p zero) zero () swap-swapS (var p zero) (suc i) zero = refl swap-swapS (var p zero) (suc i) (suc j) = refl swap-swapS (var p (suc x)) zero () swap-swapS (var p (suc x)) (suc i) zero with var-suc i x p ... | p' , snd rewrite snd = refl swap-swapS {suc n} (var p (suc x)) (suc i) (suc j) rewrite swap-weakenS i (swap-polS (inject j) (var p x)) with swap-swapS (var p x) i j ... | pxij rewrite swap-weakenS (inject j) (swap-polS i (var p x)) = cong weaken1S pxij swap-pol-dualG : (i : Fin (suc n)) (gst : GType (suc n)) → swap-polG i (dualG gst) ≡ dualG (swap-polG i gst) swap-pol-dualS : (i : Fin (suc n)) (st : SType (suc n)) → swap-polS i (dualS st) ≡ dualS (swap-polS i st) swap-pol-dualG i (transmit d t s) = cong (transmit _ (swap-polT i t)) (swap-pol-dualS i s) swap-pol-dualG i (choice d m alt) = cong (choice _ _) (ext (swap-pol-dualS i ∘ alt)) swap-pol-dualG i end = refl swap-pol-dualS i (gdd gst) = cong gdd (swap-pol-dualG i gst) swap-pol-dualS i (rec gst) rewrite sym (swap-pol-dualG (suc i) gst) = cong rec (swap-swapG (dualG gst) (suc i) zero) swap-pol-dualS zero (var p zero) = refl swap-pol-dualS (suc i) (var p zero) = refl swap-pol-dualS zero (var p (suc x)) = refl swap-pol-dualS {suc n} (suc i) (var p (suc x)) rewrite (dual-weakenS 0F (swap-polS i (var p x))) = cong weaken1S (swap-pol-dualS i (var p x)) ---------------------------------------------------------------------- dual-invS : (st : SType n) → st ≡ dualS (dualS st) dual-invG : (gst : GType n) → gst ≡ dualG (dualG gst) dual-invS (gdd gst) = cong gdd (dual-invG gst) dual-invS (rec gst) rewrite sym (swap-pol-dualG zero (dualG gst)) | swap-pol-invG zero (dualG (dualG gst)) = cong rec (dual-invG gst) dual-invS (var p x) rewrite dual-pol-inv p = refl dual-invG (transmit d t s) rewrite dual-dir-inv d = cong₂ (transmit d) refl (dual-invS s) dual-invG (choice d m alt) rewrite dual-dir-inv d = cong (choice d m) (ext R) where R : (x : Fin m) → alt x ≡ dualS (dualS (alt x)) R x rewrite sym (dual-invS (alt x)) = refl dual-invG end = refl dual-if : Polarity → SType n → SType n dual-if POS s = s dual-if NEG s = dualS s dual-if-dual : (p : Polarity) (ist : SType 0) → dual-if p ist ≡ dual-if (dual-pol p) (dualS ist) dual-if-dual POS ist = (dual-invS ist) dual-if-dual NEG ist = refl ---------------------------------------------------------------------- -- substitution st-substS : SType (suc n) → Fin (suc n) → SType 0 → SType n st-substG : GType (suc n) → Fin (suc n) → SType 0 → GType n st-substT : Type (suc n) → Fin (suc n) → SType 0 → Type n st-substS (gdd gst) i st0 = gdd (st-substG gst i st0) st-substS (rec gst) i st0 = rec (st-substG gst (suc i) st0) st-substS {n} (var p zero) zero st0 = weakenS n (dual-if p st0) st-substS {suc n} (var p zero) (suc i) st0 = var p zero st-substS {suc n} (var p (suc x)) zero st0 = var p x st-substS {suc n} (var p (suc x)) (suc i) st0 = weaken1S (st-substS (var p x) i st0) st-substG (transmit d t s) i st0 = transmit d (st-substT t i st0) (st-substS s i st0) st-substG (choice d m alt) i st0 = choice d m (λ j → st-substS (alt j) i st0) st-substG end i st0 = end st-substT TUnit i st0 = TUnit st-substT TInt i st0 = TInt st-substT (TPair ty ty₁) i st0 = TPair (st-substT ty i st0) (st-substT ty₁ i st0) st-substT (TChan st) i st0 = TChan (st-substS st i st0) ---------------------------------------------------------------------- trivial-subst-var : (p : Polarity) (x : Fin n) (ist₁ ist₂ : SType 0) → st-substS (var p (suc x)) 0F ist₁ ≡ st-substS (var p (suc x)) 0F ist₂ trivial-subst-var p 0F ist1 ist2 = refl trivial-subst-var p (suc x) ist1 ist2 = refl trivial-subst-var' : (p : Polarity) (i : Fin n) (ist₁ ist₂ : SType 0) → st-substS (var p 0F) (suc i) ist₁ ≡ st-substS (var p 0F) (suc i) ist₂ trivial-subst-var' p 0F ist1 ist2 = refl trivial-subst-var' p (suc x) ist1 ist2 = refl ---------------------------------------------------------------------- -- equivalence variable t t₁ t₂ t₁' t₂' : Type n s s₁ s₂ : SType n g g₁ g₂ : GType n unfold : SType 0 → GType 0 unfold (gdd gst) = gst unfold (rec gst) = st-substG gst 0F (rec gst) -- type equivalence data EquivT (R : SType n → SType n → Set) : Type n → Type n → Set where eq-unit : EquivT R TUnit TUnit eq-int : EquivT R TInt TInt eq-pair : EquivT R t₁ t₁' → EquivT R t₂ t₂' → EquivT R (TPair t₁ t₂) (TPair t₁' t₂') eq-chan : R s₁ s₂ → EquivT R (TChan s₁) (TChan s₂) -- session type equivalence data EquivG (R : SType n → SType n → Set) : GType n → GType n → Set where eq-transmit : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivG R (transmit d t₁ s₁) (transmit d t₂ s₂) eq-choice : ∀ {alt alt'} → (d : Dir) → ((i : Fin m) → R (alt i) (alt' i)) → EquivG R (choice d m alt) (choice d m alt') eq-end : EquivG R end end record Equiv (s₁ s₂ : SType 0) : Set where coinductive field force : EquivG Equiv (unfold s₁) (unfold s₂) open Equiv _≈_ = Equiv _≈'_ = EquivG Equiv _≈ᵗ_ = EquivT Equiv -- reflexive ≈-refl : s ≈ s ≈'-refl : g ≈' g ≈ᵗ-refl : t ≈ᵗ t force (≈-refl {s}) = ≈'-refl ≈'-refl {transmit d t s} = eq-transmit d ≈ᵗ-refl ≈-refl ≈'-refl {choice d m alt} = eq-choice d (λ i → ≈-refl) ≈'-refl {end} = eq-end ≈ᵗ-refl {TUnit} = eq-unit ≈ᵗ-refl {TInt} = eq-int ≈ᵗ-refl {TPair t t₁} = eq-pair ≈ᵗ-refl ≈ᵗ-refl ≈ᵗ-refl {TChan x} = eq-chan ≈-refl -- symmetric ≈-symm : s₁ ≈ s₂ → s₂ ≈ s₁ ≈'-symm : g₁ ≈' g₂ → g₂ ≈' g₁ ≈ᵗ-symm : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₁ force (≈-symm s₁≈s₂) = ≈'-symm (force s₁≈s₂) ≈'-symm (eq-transmit d x x₁) = eq-transmit d (≈ᵗ-symm x) (≈-symm x₁) ≈'-symm (eq-choice d x) = eq-choice d (≈-symm ∘ x) ≈'-symm eq-end = eq-end ≈ᵗ-symm eq-unit = eq-unit ≈ᵗ-symm eq-int = eq-int ≈ᵗ-symm (eq-pair t₁≈ᵗt₂ t₁≈ᵗt₃) = eq-pair (≈ᵗ-symm t₁≈ᵗt₂) (≈ᵗ-symm t₁≈ᵗt₃) ≈ᵗ-symm (eq-chan x) = eq-chan (≈-symm x) ---------------------------------------------------------------------- -- Proof of equivalence to coinductive definition open import DualCoinductive hiding (n) open COI open IND hiding (_≈_ ; _≈'_ ; ≈-refl ; ≈'-refl ; ≈ᵗ-refl) ind2coiT : IND.Type 0 → COI.Type ind2coiS : IND.SType 0 → COI.SType ind2coiG : IND.GType 0 → COI.STypeF COI.SType ind2coiT TUnit = TUnit ind2coiT TInt = TInt ind2coiT (TPair it it₁) = TPair (ind2coiT it) (ind2coiT it₁) ind2coiT (TChan st) = TChan (ind2coiS st) ind2coiG (transmit d t ist) = transmit d (ind2coiT t) (ind2coiS ist) ind2coiG (choice d m alt) = choice d m (ind2coiS ∘ alt) ind2coiG end = end SType.force (ind2coiS (gdd gst)) = ind2coiG gst SType.force (ind2coiS (rec gst)) = ind2coiG (st-substG gst zero (rec gst)) ---------------------------------------------------------------------- subst-weakenS : (s : IND.SType (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0) → st-substS (weaken1'S (inject₁ j) s) (suc i) s0 ≡ weaken1'S j (st-substS s i s0) subst-weakenG : (g : IND.GType (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0) → st-substG (weaken1'G (inject₁ j) g) (suc i) s0 ≡ weaken1'G j (st-substG g i s0) subst-weakenT : (t : IND.Type (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0) → st-substT (weaken1'T (inject₁ j) t) (suc i) s0 ≡ weaken1'T j (st-substT t i s0) subst-weakenS (gdd gst) i j le s0 = cong gdd (subst-weakenG gst i j le s0) subst-weakenS (rec gst) i j le s0 = cong rec (subst-weakenG gst (suc i) (suc j) (s≤s le) s0) subst-weakenS (var p x) 0F 0F le s0 = refl subst-weakenS {suc n} (var p x) (suc i) 0F le s0 = refl subst-weakenS {suc n} (var p 0F) (suc i) (suc j) le s0 = refl subst-weakenS {suc n} (var p (suc x)) (suc i) (suc j) (s≤s le) s0 rewrite (weak-weakS j 0F z≤n (st-substS (var p x) i s0)) = cong (weaken1'S 0F) (subst-weakenS (var p x) i j le s0) subst-weakenG (transmit d t s) i j le s0 = cong₂ (transmit d) (subst-weakenT t i j le s0) (subst-weakenS s i j le s0) subst-weakenG (choice d m alt) i j le s0 = cong (choice d m) (ext (λ m' → subst-weakenS (alt m') i j le s0 )) subst-weakenG end i j le s0 = refl subst-weakenT TUnit i j le s0 = refl subst-weakenT TInt i j le s0 = refl subst-weakenT (TPair t t₁) i j le s0 = cong₂ TPair (subst-weakenT t i j le s0) (subst-weakenT t₁ i j le s0) subst-weakenT (TChan s) i j le s0 = cong TChan (subst-weakenS s i j le s0) subst-swap-dualT : ∀ {ist} → (t : IND.Type (suc n)) (i : Fin (suc n)) → st-substT t i ist ≡ st-substT (swap-polT i t) i (IND.dualS ist) subst-swap-dualS : ∀ {ist} → (st : IND.SType (suc n)) (i : Fin (suc n)) → st-substS st i ist ≡ st-substS (swap-polS i st) i (IND.dualS ist) subst-swap-dualG : ∀ {ist} → (gst : IND.GType (suc n)) (i : Fin (suc n)) → st-substG gst i ist ≡ st-substG (swap-polG i gst) i (IND.dualS ist) subst-swap-dualT TUnit i = refl subst-swap-dualT TInt i = refl subst-swap-dualT (TPair ty ty₁) i = cong₂ TPair (subst-swap-dualT ty i) (subst-swap-dualT ty₁ i) subst-swap-dualT (TChan x) i = cong TChan (subst-swap-dualS x i) subst-swap-dualS (gdd gst) i = cong gdd (subst-swap-dualG gst i) subst-swap-dualS (rec gst) i = cong rec (subst-swap-dualG gst (suc i)) subst-swap-dualS {n} {ist} (var p zero) zero = cong (weakenS n) (dual-if-dual p ist) subst-swap-dualS {suc n} (var p zero) (suc i) = refl subst-swap-dualS {suc n} (var p (suc x)) zero = refl subst-swap-dualS {suc n}{ist} (var p (suc x)) (suc i) rewrite subst-weakenS (swap-polS i (var p x)) i 0F z≤n (dualS ist) = cong (weaken1'S 0F) (subst-swap-dualS ((var p x)) i) subst-swap-dualG (transmit d t s) i = cong₂ (transmit d) (subst-swap-dualT t i) (subst-swap-dualS s i) subst-swap-dualG (choice d m alt) i = cong (choice d m) (ext (λ x → subst-swap-dualS (alt x) i)) subst-swap-dualG end i = refl ---------------------------------------------------------------------- swap-i-weakenS : (i : Fin (suc n)) (s : IND.SType n) → swap-polS i (weaken1'S i s) ≡ weaken1'S i s swap-i-weakenG : (i : Fin (suc n)) (g : IND.GType n) → swap-polG i (weaken1'G i g) ≡ weaken1'G i g swap-i-weakenT : (i : Fin (suc n)) (t : IND.TType n) → swap-polT i (weaken1'T i t) ≡ weaken1'T i t swap-i-weakenS i (gdd gst) = cong gdd (swap-i-weakenG i gst) swap-i-weakenS i (rec gst) = cong rec (swap-i-weakenG (suc i) gst) swap-i-weakenS zero (var p zero) = refl swap-i-weakenS (suc i) (var p zero) = refl swap-i-weakenS zero (var p (suc x)) = refl swap-i-weakenS (suc i) (var p (suc x)) = cong weaken1S (swap-i-weakenS i (var p x)) swap-i-weakenG i (transmit d t s) = cong₂ (transmit d) (swap-i-weakenT i t) (swap-i-weakenS i s) swap-i-weakenG i (choice d m alt) = cong (choice d m) (ext (swap-i-weakenS i ∘ alt)) swap-i-weakenG i end = refl swap-i-weakenT i TUnit = refl swap-i-weakenT i TInt = refl swap-i-weakenT i (TPair t₁ t₂) = cong₂ TPair (swap-i-weakenT i t₁) (swap-i-weakenT i t₂) swap-i-weakenT i (TChan x) = cong TChan (swap-i-weakenS i x) subst-swapG : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (g : GType (suc (suc n))) → st-substG (swap-polG (inject j) g) i ist ≡ swap-polG (inject! j) (st-substG g i ist) subst-swapS : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (s : IND.SType (suc (suc n))) → st-substS (swap-polS (inject j) s) i ist ≡ swap-polS (inject! j) (st-substS s i ist) subst-swapT : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (g : IND.Type (suc (suc n))) → st-substT (swap-polT (inject j) g) i ist ≡ swap-polT (inject! j) (st-substT g i ist) subst-swapG ist i j (transmit d t s) = cong₂ (transmit d) (subst-swapT ist i j t) (subst-swapS ist i j s) subst-swapG ist i j (choice d m alt) = cong (choice d m) (ext (λ x → subst-swapS ist i j (alt x))) subst-swapG ist i j end = refl subst-swapS ist i j (gdd gst) = cong gdd (subst-swapG ist i j gst) subst-swapS ist i j (rec gst) = cong rec (subst-swapG ist (suc i) (suc j) gst) subst-swapS{zero} ist zero () (var p zero) subst-swapS {zero} ist (suc zero) zero (var p zero) = refl subst-swapS {zero} ist (suc zero) zero (var p (suc x)) rewrite swap-i-weakenS zero (st-substS (var p x) zero ist) = refl subst-swapS{suc n} ist (suc i) zero (var p zero) = refl subst-swapS{suc n} ist (suc i) (suc j) (var p zero) = refl subst-swapS{suc n} ist zero () (var p (suc x)) subst-swapS{suc n} ist (suc i) zero (var p (suc x)) rewrite swap-i-weakenS zero (st-substS (var p x) i ist) = refl subst-swapS{suc n} ist (suc i) (suc j) (var p (suc x)) rewrite subst-weakenS (swap-polS (inject j) (var p x)) i 0F z≤n ist | swap-weakenS (inject! j) (st-substS (var p x) i ist) = cong weaken1S (subst-swapS ist i j (var p x)) subst-swapT ist i j TUnit = refl subst-swapT ist i j TInt = refl subst-swapT ist i j (TPair t t₁) = cong₂ TPair (subst-swapT ist i j t) (subst-swapT ist i j t₁) subst-swapT ist i j (TChan x) = cong TChan (subst-swapS ist i j x) ---------------------------------------------------------------------- dual-recT' : (t : TType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0) → st-substT (swap-polT i t) i (dualS ist) ≡ st-substT t i ist dual-recG' : (g : GType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0) → st-substG (swap-polG i g) i (dualS ist) ≡ st-substG g i ist dual-recS' : (s : IND.SType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0) → st-substS (swap-polS i s) i (dualS ist) ≡ st-substS s i ist dual-recT' TUnit i ist = refl dual-recT' TInt i ist = refl dual-recT' (TPair t t₁) i ist = cong₂ TPair (dual-recT' t i ist) (dual-recT' t₁ i ist) dual-recT' (TChan s) i ist = cong TChan (dual-recS' s i ist) dual-recG' (transmit d t s) i ist = cong₂ (transmit d) (dual-recT' t i ist) (dual-recS' s i ist) dual-recG' (choice d m alt) i ist = cong (choice d m) (ext (λ m' → dual-recS' (alt m') i ist)) dual-recG' end i ist = refl dual-recS' (gdd gst) i ist = cong gdd (dual-recG' gst i ist) dual-recS' (rec gst) i ist = cong rec (dual-recG' gst (suc i) ist) dual-recS' (var p 0F) 0F ist rewrite (dual-if-dual p ist) = refl dual-recS' (var p (suc x)) 0F ist = trivial-subst-var p x (dualS ist) (ist) dual-recS' (var p 0F) (suc i) ist = trivial-subst-var' p i (dualS ist) (ist) dual-recS' (var p (suc x)) (suc i) ist rewrite (subst-swap-dualS{ist = ist} (var p (suc x)) (suc i)) = refl ---------------------------------------------------------------------- -- show that the dualS function is compatible with unfolding -- that is -- COI.dual ∘ ind2coi ≈ ind2coi ∘ IND.dual dual-lemmaS : (s : IND.SType (suc n)) (j : Fin (suc n)) (s0 : IND.SType 0) → st-substS (dualS s) j s0 ≡ dualS (st-substS s j s0) dual-lemmaG : (g : IND.GType (suc n)) (j : Fin (suc n)) (s0 : IND.SType 0) → st-substG (dualG g) j s0 ≡ dualG (st-substG g j s0) dual-lemmaS (gdd gst) j s0 = cong gdd (dual-lemmaG gst j s0) dual-lemmaS (rec gst) j s0 rewrite (subst-swapG s0 (suc j) 0F (dualG gst)) = let rst = dual-lemmaG gst (suc j) s0 in cong rec (cong (swap-polG 0F) rst) dual-lemmaS {n} (var POS 0F) 0F s0 = sym (dual-weakenS' n s0) dual-lemmaS {n} (var NEG 0F) 0F s0 rewrite (sym (dual-weakenS' n s0)) | (sym (dual-invS (weakenS n s0))) = refl dual-lemmaS {suc n} (var POS 0F) (suc j) s0 = refl dual-lemmaS {suc n} (var NEG 0F) (suc j) s0 = refl dual-lemmaS {suc n} (var POS (suc x)) 0F s0 = refl dual-lemmaS {suc n} (var NEG (suc x)) 0F s0 = refl dual-lemmaS {suc n} (var POS (suc x)) (suc j) s0 rewrite (dual-weakenS 0F (st-substS (var POS x) j s0)) = cong (weaken1'S 0F) (dual-lemmaS (var POS x) j s0) dual-lemmaS {suc n} (var NEG (suc x)) (suc j) s0 rewrite (dual-weakenS 0F (st-substS (var NEG x) j s0)) = cong (weaken1'S 0F) (dual-lemmaS (var NEG x) j s0) dual-lemmaG (transmit d t s) j s0 = cong₂ (transmit (dual-dir d)) refl (dual-lemmaS s j s0) dual-lemmaG (choice d m alt) j s0 = cong (choice (dual-dir d) m) (ext (λ m' → dual-lemmaS (alt m') j s0)) dual-lemmaG end j s0 = refl dual-compatibleS : (ist : IND.SType 0) → COI.dual (ind2coiS ist) ≈ ind2coiS (IND.dualS ist) dual-compatibleG : (gst : IND.GType 0) → COI.dualF (ind2coiG gst) ≈' ind2coiG (IND.dualG gst) Equiv.force (dual-compatibleS (gdd gst)) = dual-compatibleG gst Equiv.force (dual-compatibleS (rec gst)) rewrite (dual-recG' (dualG gst) 0F (rec gst)) | dual-lemmaG gst 0F (rec gst) = dual-compatibleG (st-substG gst zero (rec gst)) dual-compatibleG (transmit d t s) = eq-transmit (dual-dir d) ≈ᵗ-refl (dual-compatibleS s) dual-compatibleG (choice d m alt) = eq-choice (dual-dir d) (dual-compatibleS ∘ alt) dual-compatibleG end = eq-end
{ "alphanum_fraction": 0.5872701556, "avg_line_length": 44.2428035044, "ext": "agda", "hexsha": "662a5a1a15210da86b0008fab1b084dc1f3c9aa8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "kcaliban/dual-session", "max_forks_repo_path": "src/DualLM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "kcaliban/dual-session", "max_issues_repo_path": "src/DualLM.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "kcaliban/dual-session", "max_stars_repo_path": "src/DualLM.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14508, "size": 35350 }
------------------------------------------------------------------------------ -- Axiomatic PA properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Axiomatic.Standard.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import PA.Axiomatic.Standard.Base ------------------------------------------------------------------------------ -- Congruence properties succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong refl = refl +-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o +-leftCong refl = refl +-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o +-rightCong refl = refl ------------------------------------------------------------------------------ +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = PA₃ +-rightIdentity : ∀ n → n + zero ≡ n +-rightIdentity = ℕ-ind A A0 is where A : ℕ → Set A i = i + zero ≡ i A0 : A zero A0 = +-leftIdentity zero is : ∀ i → A i → A (succ i) is i ih = succ i + zero ≡⟨ PA₄ i zero ⟩ succ (i + zero) ≡⟨ succCong ih ⟩ succ i ∎ +-asocc : ∀ m n o → m + n + o ≡ m + (n + o) +-asocc m n o = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n + o ≡ i + (n + o) A0 : A zero A0 = zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩ n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩ zero + (n + o) ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + n + o ≡⟨ +-leftCong (PA₄ i n) ⟩ succ (i + n) + o ≡⟨ PA₄ (i + n) o ⟩ succ (i + n + o) ≡⟨ succCong ih ⟩ succ (i + (n + o)) ≡⟨ sym (PA₄ i (n + o)) ⟩ succ i + (n + o) ∎ x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) x+Sy≡S[x+y] m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + succ n ≡ succ (i + n) A0 : A zero A0 = zero + succ n ≡⟨ +-leftIdentity (succ n) ⟩ succ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩ succ (zero + n) ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + succ n ≡⟨ PA₄ i (succ n) ⟩ succ (i + succ n) ≡⟨ succCong ih ⟩ succ (succ (i + n)) ≡⟨ succCong (sym (PA₄ i n)) ⟩ succ (succ i + n) ∎ +-comm : ∀ m n → m + n ≡ n + m +-comm m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n ≡ n + i A0 : A zero A0 = zero + n ≡⟨ +-leftIdentity n ⟩ n ≡⟨ sym (+-rightIdentity n) ⟩ n + zero ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + n ≡⟨ PA₄ i n ⟩ succ (i + n) ≡⟨ succCong ih ⟩ succ (n + i) ≡⟨ sym (x+Sy≡S[x+y] n i) ⟩ n + succ i ∎
{ "alphanum_fraction": 0.4022570076, "avg_line_length": 28.0306122449, "ext": "agda", "hexsha": "f884f7fa85c7226fc6b40bcbb94bcac94459118a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Standard/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Standard/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Standard/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1004, "size": 2747 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness module cohomology.ExactPairIso where {- An exact sequence 0 → G → H → 0 implies that G == H -} module _ {i} {G H K L : Group i} {φ : H →ᴳ K} (ex : is-exact-seq (G ⟨ cst-hom ⟩→ H ⟨ φ ⟩→ K ⟨ cst-hom ⟩→ L ⊣|)) where private inj : (h₁ h₂ : Group.El H) → GroupHom.f φ h₁ == GroupHom.f φ h₂ → h₁ == h₂ inj = zero-kernel-injective φ (λ h p → Trunc-rec (Group.El-level H _ _) (λ s → ! (snd s)) (ktoi (exact-get ex 0) h p)) exact-pair-iso : H == K exact-pair-iso = surj-inj-= φ inj (λ k → ktoi (exact-get ex 1) k idp) module _ {i} {G H K J : Group i} {φ : G →ᴳ H} {ψ : H →ᴳ K} {χ : K →ᴳ J} (p : G == 0ᴳ) (q : J == 0ᴳ) (ex : is-exact-seq (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|)) where private ex₁ : is-exact-seq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|) ex₁ = transport (λ {(G' , φ') → is-exact-seq (G' ⟨ φ' ⟩→ H ⟨ ψ ⟩→ K ⟨ χ ⟩→ J ⊣|)}) (pair= p (prop-has-all-paths-↓ {B = λ L → L →ᴳ H} (raise-level -2 0ᴳ-hom-out-level))) ex ex₂ : is-exact-seq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ cst-hom ⟩→ 0ᴳ ⊣|) ex₂ = transport (λ {(J' , χ') → is-exact-seq (0ᴳ ⟨ cst-hom ⟩→ H ⟨ ψ ⟩→ K ⟨ χ' ⟩→ J' ⊣|)}) (pair= q (prop-has-all-paths-↓ {B = λ L → K →ᴳ L} (raise-level _ 0ᴳ-hom-in-level))) ex₁ exact-pair-path-iso : H == K exact-pair-path-iso = exact-pair-iso ex₂
{ "alphanum_fraction": 0.4899792674, "avg_line_length": 33.6511627907, "ext": "agda", "hexsha": "08af547e16523dfef03b68332395108b37c7ea02", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/ExactPairIso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/ExactPairIso.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/ExactPairIso.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 654, "size": 1447 }
{-# OPTIONS --copatterns --sized-types #-} {- | The purpose of this module is to demonstrate how observational type theory can be implemented for arbitrary types in Agda through the use of tests and a corresponding bisimulation proof method. To use the equivalence for a type A, the type has to be made _testable_ by creating an instance of Testable for it, see the accompanying module TestsInstances. Such an instance effectively encodes A as inductive or coinductive type, by giving an observation map to a coproduct of product of components of A. For now, we do not pose any restrictions on this encoding, hence it can be used to induce trivial equivalences. Using such an instance of Testable for A, we can define _tests_ and _observational equivalence_ for A. Moreover, we give a bisimulation proof method and prove its soundness. -} module Tests where open import Size open import Level open import Data.Product open import Data.Bool open import Function open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Relation.Binary open import Isomorphisms -- | Write dependent functions as Π-type to make duality between -- inductive and coinducitve types clearer. record Π {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where field app : (x : A) → B x open Π public -- | Generalised copairing for coproducts: -- Turn an I-indexed tuple of maps fᵢ : Bᵢ → C into a map Σ I B → C. cotuple : {I C : Set} → {B : I → Set} → ((i : I) → B i → C) → (Σ I B → C) cotuple f x = f (proj₁ x) (proj₂ x) -- | Distinguish inductive and coinductive types data Kind : Set where ind : Kind coind : Kind --- | Make a type observable. An inductive type shall be represented by --- a coproduct, whereas a coinductive type is represented by a product. ObsTy : (I : Set) (B : I → Set) → Kind → Set ObsTy I B ind = Σ I B ObsTy I B coind = Π I B -- | Make a type testable record Testable (A : Set) : Set₁ where coinductive field index : Set parts : index → Set kind : Kind obs : A → ObsTy index parts kind partsTestable : (i : index) → Testable (parts i) open Testable public record IsoTestable (A : Set) : Set₁ where field testable : Testable A obsIso : IsIso (obs testable) open IsoTestable public SubTests : {l : Size} → {A : Set} → Testable A → Kind → Set -- | Test formulae data Test {i : Size} {A : Set} (T : Testable A) : Set where ⊤ : Test T ⊥ : Test T nonTriv : {j : Size< i} → SubTests {j} T (kind T) → Test {i} {A} T SubTests {l} T ind = Π (index T) (λ i → Test {l} (partsTestable T i)) SubTests {l} T coind = Σ (index T) (λ i → Test {l} (partsTestable T i)) -- | Satisfaction of subtests. sat : {A : Set} {T : Testable A} {l : Size} → (k : Kind) → SubTests {l} T k → ObsTy (index T) (parts T) k → Bool -- | Test satisfaction _⊨_ : {A : Set} {T : Testable A} → A → Test T → Bool x ⊨ ⊤ = true x ⊨ ⊥ = false _⊨_ {A} {T} x (nonTriv nt) = sat (kind T) nt (obs T x) sat ind φs o = cotuple (λ i y → y ⊨ app φs i) o sat coind (i , φ) o = app o i ⊨ φ -- | Observational equivalence: terms are equal if they satisfy the same tests. record _≃⟨_⟩_ {A : Set} (x : A) (T : Testable A) (y : A) : Set₁ where field eqProof : (φ : Test T) → (x ⊨ φ ≡ y ⊨ φ) open _≃⟨_⟩_ public ≡→≃ : {A : Set} → {T : Testable A} → {a b : A} → a ≡ b → a ≃⟨ T ⟩ b ≡→≃ p = record { eqProof = λ φ → cong (λ x → x ⊨ φ) p } ≃-refl : {A : Set} → (T : Testable A) → {a : A} → a ≃⟨ T ⟩ a ≃-refl T = record { eqProof = λ φ → refl } ≃-sym : {A : Set} → (T : Testable A) → {a b : A} → a ≃⟨ T ⟩ b → b ≃⟨ T ⟩ a ≃-sym T p = record { eqProof = sym ∘ (eqProof p) } ≃-trans : {A : Set} → (T : Testable A) → {a b c : A} → a ≃⟨ T ⟩ b → b ≃⟨ T ⟩ c → a ≃⟨ T ⟩ c ≃-trans T p₁ p₂ = record { eqProof = λ φ → trans (eqProof p₁ φ) (eqProof p₂ φ) } ≃-setoid : {A : Set} → (T : Testable A) → Setoid _ _ ≃-setoid {A} T = record { Carrier = A ;_≈_ = λ x y → x ≃⟨ T ⟩ y ; isEquivalence = record { refl = ≃-refl T ; sym = ≃-sym T ; trans = ≃-trans T } } -- Most likely impossible to prove within Agda. -- Is it consistent with the system to postulate this for _IsoTestable_ ? -- ≃-cong : {A B : Set} → {T₁ : Testable A} → {T₂ : Testable B} → {a b : A} → -- (f : A → B) → a ≃⟨ T₁ ⟩ b → f a ≃⟨ T₂ ⟩ f b -- If A is testable and there is a map B → A, then B is also testable. comap-testable : {A B : Set} → (B → A) → Testable A → Testable B comap-testable {A} {B} f T = record { index = index T ; parts = parts T ; kind = kind T ; obs = (obs T) ∘ f ; partsTestable = partsTestable T } -- | If A is testable and A ≅ B, then B is iso-testable as well. iso-testable : {A B : Set} → Iso B A → IsoTestable A → IsoTestable B iso-testable {A} {B} I T = record { testable = comap-testable (Iso.iso I) (testable T) ; obsIso = iso-comp (Iso.indeedIso I) (obsIso T) } -- | Heterogeneous record _~⟨_∥_⟩_ {A B : Set} (x : A) (T : Testable A) (I : Iso B A) (y : B) : Set₁ where field eqProofH : (φ : Test T) → (x ⊨ φ ≡ (Iso.iso I y) ⊨ φ) open _~⟨_∥_⟩_ public -- | Helper to match on Kind in construction of ≈. ≈-Proof : {A : Set} → (k : Kind) → (T : Testable A) → (A → ObsTy (index T) (parts T) k) → A → A → Set -- | Bisimilarity induced from testable types. record _≈⟨_⟩_ {A : Set} (x : A) (T : Testable A) (y : A) : Set where coinductive field proof : ≈-Proof (kind T) T (obs T) x y open _≈⟨_⟩_ public -- | Helper to fiddle around with index in construction of IndProof. ResolveIdx : {A : Set} → (T : Testable A) → (i : index T) → (r s : ObsTy (index T) (parts T) ind) → proj₁ r ≡ i → proj₁ s ≡ i → Set ResolveIdx T i (.i , x') (.i , y') refl refl = x' ≈⟨ partsTestable T i ⟩ y' -- | Proofs of bisimilarity on inductive types. record IndProof {A : Set} (T : Testable A) (o : A → ObsTy (index T) (parts T) ind) (x y : A) : Set where coinductive field which : index T eqIndex₁ : proj₁ (o x) ≡ which eqIndex₂ : proj₁ (o y) ≡ which eqTrans : ResolveIdx T which (o x) (o y) eqIndex₁ eqIndex₂ open IndProof public -- | Proofs of bisimilarity on coinductive types. record CoindProof {A : Set} (T : Testable A) (o : A → ObsTy (index T) (parts T) coind) (x y : A) : Set where coinductive field eqStep : (i : index T) → app (o x) i ≈⟨ partsTestable T i ⟩ app (o y) i open CoindProof public ≈-Proof ind = IndProof ≈-Proof coind = CoindProof -- | Lemma for induction to prove soundness of bisimilarity lem-≈→≃-testInduct : {j : Size} {A : Set} → (T : Testable A) → (x y : A) → x ≈⟨ T ⟩ y → (φ : Test {j} T) → x ⊨ φ ≡ y ⊨ φ lem-≈→≃-testInduct _ _ _ _ ⊤ = refl lem-≈→≃-testInduct _ _ _ _ ⊥ = refl lem-≈→≃-testInduct {j} {A} T x y x≈y (nonTriv {l} nt) = matchKind (kind T) nt (obs T) (proof x≈y) where matchKind : (k : Kind) → (nt : SubTests {l} T k) → (o : A → ObsTy (index T) (parts T) k) → ≈-Proof k T o x y → sat k nt (o x) ≡ sat k nt (o y) matchKind ind nt o p = refine (which p) (o x) (o y) (eqIndex₁ p) (eqIndex₂ p) (eqTrans p) where --| Do pattern matching on IndProof refine : (i : index T) → (r s : ObsTy (index T) (parts T) ind) → (eqP₁ : proj₁ r ≡ i) → (eqP₂ : proj₁ s ≡ i) → ResolveIdx T i r s eqP₁ eqP₂ → (proj₂ r) ⊨ app nt (proj₁ r) ≡ (proj₂ s) ⊨ app nt (proj₁ s) refine i (.i , x') (.i , y') refl refl p' = lem-≈→≃-testInduct (partsTestable T i) x' y' p' (app nt i) matchKind coind nt o p = lem-≈→≃-testInduct (partsTestable T i) x' y' (eqStep p i) ψ where i : index T i = proj₁ nt ψ = proj₂ nt x' = app (o x) i y' = app (o y) i -- | Bisimulation proofs are sound for observational equivalence. ≈→≃ : {A : Set} → (T : Testable A) → (x y : A) → x ≈⟨ T ⟩ y → x ≃⟨ T ⟩ y ≈→≃ T x y x≈y = record { eqProof = lem-≈→≃-testInduct T x y x≈y } {- ≃→≈ : {A : Set} → (T : Testable A) → (x y : A) → x ≃⟨ T ⟩ y → x ≈⟨ T ⟩ y ≃→≈ {A} T x y x≃y = record { proof = matchKind (kind T) (obs T) } where matchKind : (k : Kind) → (o : A → ObsTy (index T) (parts T) k) → ≈-Proof k T o x y matchKind ind o = {!!} matchKind coind o = {!!} -}
{ "alphanum_fraction": 0.5700879069, "avg_line_length": 32.5019305019, "ext": "agda", "hexsha": "fd742115f00651c6698f9ffb0f5c695b867c1abb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "OTTTests/Tests.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "OTTTests/Tests.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "OTTTests/Tests.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3210, "size": 8418 }
{-# OPTIONS --safe #-} open import Generics.Prelude hiding (lookup) open import Generics.Telescope open import Generics.Desc open import Generics.All open import Generics.HasDesc import Generics.Helpers as Helpers module Generics.Constructions.Elim {P I ℓ} {A : Indexed P I ℓ} where module _ (H : HasDesc A) (open HasDesc H) {p c} (Pr : Pred′ I (λ i → A′ (p , i) → Set c)) where private variable V : ExTele P i : ⟦ I ⟧tel p v : ⟦ V ⟧tel p Pr′ : A′ (p , i) → Set c Pr′ {i} = unpred′ I _ Pr i -------------------------- -- Types of methods levelElimIndArg levelElimCon : ConDesc P V I → Level levelElimIndArg (var x) = c levelElimIndArg (π {ℓ} i S C) = ℓ ⊔ levelElimIndArg C levelElimIndArg (A ⊗ B) = levelElimIndArg A ⊔ levelElimIndArg B levelElimCon (var x) = c levelElimCon (π {ℓ′} i S C) = ℓ′ ⊔ levelElimCon C levelElimCon (A ⊗ B) = levelIndArg A ℓ ⊔ levelElimIndArg A ⊔ levelElimCon B MethodIndArg : (C : ConDesc P V I) → ⟦ C ⟧IndArg A′ (p , v) → Set (levelElimIndArg C) MethodIndArg (var x ) X = Pr′ X MethodIndArg (π ia S C) X = Π< ia > (S _) (MethodIndArg C ∘ app< ia > X) MethodIndArg (A ⊗ B) (mA , mB) = MethodIndArg A mA × MethodIndArg B mB MethodCon : (C : ConDesc P V I) → (∀ {i} → ⟦ C ⟧Con A′ (p , v , i) → Set c) → Set (levelElimCon C) MethodCon (var x) f = f refl MethodCon (π ia S C) f = Π< ia > (S _) (λ s → MethodCon C (f ∘ (s ,_))) MethodCon (A ⊗ B) f = {g : ⟦ A ⟧IndArg A′ (p , _)} (Pg : MethodIndArg A g) → MethodCon B (f ∘ (g ,_)) Methods : ∀ k → Set (levelElimCon (lookupCon D k)) Methods k = MethodCon (lookupCon D k) λ x → Pr′ (constr (k , x)) -------------------------- -- Eliminator module _ (methods : Els Methods) where elimData-wf : (x : ⟦ D ⟧Data A′ (p , i)) → AllDataω Acc D x → Pr′ (constr x) elim-wf : (x : A′ (p , i)) → Acc x → Pr′ x elim-wf x (acc a) = subst Pr′ (constr∘split x) (elimData-wf (split x) a) elimData-wf (k , x) a = elimCon (lookupCon D k) (methods k) x a where elimIndArg : (C : ConDesc P V I) → (x : ⟦ C ⟧IndArg A′ (p , v)) → AllIndArgω Acc C x → MethodIndArg C x elimIndArg (var _) x a = elim-wf x a elimIndArg (π ia S C) x a = fun< ia > (λ s → elimIndArg C (app< ia > x s) (a s)) elimIndArg (A ⊗ B) (xa , xb) (aa , ab) = elimIndArg A xa aa , elimIndArg B xb ab elimCon : (C : ConDesc P V I) {mk : ∀ {i} → ⟦ C ⟧Con A′ (p , v , i) → ⟦ D ⟧Data A′ (p , i)} (mot : MethodCon C (λ x → Pr′ (constr (mk x)))) (x : ⟦ C ⟧Con A′ (p , v , i)) → AllConω Acc C x → Pr′ (constr (mk x)) elimCon (var _) mot refl a = mot elimCon (π ia _ C) mot (s , x) a = elimCon C (app< ia > mot s) x a elimCon (A ⊗ B) mot (xa , xb) (aa , ab) = elimCon B (mot (elimIndArg A xa aa)) xb ab elim′ : (x : A′ (p , i)) → Pr′ x elim′ x = elim-wf x (wf x) deriveElim : Arrows Methods (Pred′ I λ i → (x : A′ (p , i)) → Pr′ x) deriveElim = curryₙ (λ m → pred′ I _ λ i → elim′ m) elim : ∀ ⦃ H : HasDesc A ⦄ (open HasDesc H) {p c} (Pr : Pred′ I (λ i → A′ (p , i) → Set c)) → Arrows (Methods H Pr) (Pred′ I λ i → (x : A′ (p , i)) → Pr′ H Pr x) elim ⦃ H ⦄ Pr = deriveElim H Pr
{ "alphanum_fraction": 0.4997147747, "avg_line_length": 32.462962963, "ext": "agda", "hexsha": "ffb28275b924e7139f21be340676e4528e2a3638", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Constructions/Elim.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Constructions/Elim.agda", "max_line_length": 91, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Constructions/Elim.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 1318, "size": 3506 }
open import Theory module Categories.Functor.Construction.Inclusion {ℓ₁ ℓ₂ ℓ₃} (Th : Theory ℓ₁ ℓ₂ ℓ₃) where open import Syntax open Theory.Theory Th open Signature Sg open Term Sg open import Categories.Category.Construction.Renaming Sg as Renaming using (Ren; ren; _≐_) open import Categories.Category.Construction.Classifying Th using (Cl; CC) open import Categories.Functor open import Categories.Category open import Categories.Morphism Cl using (_≅_; Iso) open import Categories.Category.CartesianClosed Cl open import Categories.Category.Cartesian Cl open import Categories.Category.BinaryProducts Cl open import Data.List using (List; []; _∷_; _++_) import Relation.Binary.Reasoning.Setoid as Reasoning module TermReasoning {Γ A} = Reasoning (TermSetoid {Γ} {A}) inclusion : Functor Ren Cl inclusion = record { F₀ = F₀ ; F₁ = F₁ ; identity = C.Equiv.refl ; homomorphism = λ {Γ₁} {Γ₂} {Γ₃} {f} {g} -> homomorphism f g ; F-resp-≈ = F-resp-≈ } where module C = Category Cl open CartesianClosed CC open Cartesian cartesian open BinaryProducts products open import Categories.Morphism.Reasoning Cl id⁂id : forall {A B} -> C.id ⁂ C.id C.≈ C.id {A = A * B} id⁂id = trans (⟨⟩-cong₂ C.identityˡ C.identityˡ) η F₀ : Context -> Type F₀ [] = Unit F₀ (A ∷ Γ) = F₀ Γ * A F₀/*⇒++ : forall {Γ Δ} -> F₀ Γ * F₀ Δ C.⇒ F₀ (Δ ++ Γ) F₀/*⇒++ {Γ} {[]} = fst var F₀/*⇒++ {Γ} {A ∷ Δ} = (F₀/*⇒++ ⁂ C.id) C.∘ assocʳ F₀/++⇒* : forall {Γ Δ} -> F₀ (Δ ++ Γ) C.⇒ F₀ Γ * F₀ Δ F₀/++⇒* {Γ} {[]} = pair var unit F₀/++⇒* {Γ} {A ∷ Δ} = assocˡ C.∘ (F₀/++⇒* ⁂ C.id) F₀/*≅++ : forall {Γ Δ} -> F₀ Γ * F₀ Δ ≅ F₀ (Δ ++ Γ) F₀/*≅++ = record { from = F₀/*⇒++ ; to = F₀/++⇒* ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where isoˡ : forall {Γ Δ} -> F₀/++⇒* C.∘ F₀/*⇒++ C.≈ C.id {A = F₀ Γ * F₀ Δ} isoˡ {Γ} {[]} = begin pair var unit [ ext ! (fst var) ] ≈⟨ trans comm/pair (cong/pair (var/ext _ _) (comm/unit _ _ _)) ⟩ pair (fst var) unit ≈⟨ cong/pair refl (eta/Unit _) ⟩ pair (fst var) (snd var) ≈⟨ eta/* _ ⟩ var ∎ where open TermReasoning isoˡ {Γ} {A ∷ Δ} = begin (assocˡ C.∘ (F₀/++⇒* ⁂ var)) C.∘ ((F₀/*⇒++ ⁂ var) C.∘ assocʳ) ≈⟨ C.assoc ⟩ assocˡ C.∘ (F₀/++⇒* ⁂ var) C.∘ (F₀/*⇒++ ⁂ var) C.∘ assocʳ ≈⟨ C.∘-resp-≈ʳ (pullˡ ⁂∘⁂) ⟩ assocˡ C.∘ (F₀/++⇒* C.∘ F₀/*⇒++ ⁂ var C.∘ var) C.∘ assocʳ ≈⟨ C.∘-resp-≈ʳ (C.∘-resp-≈ˡ (⁂-cong₂ isoˡ C.identity²)) ⟩ assocˡ C.∘ (var ⁂ var) C.∘ assocʳ ≈⟨ elim-center id⁂id ⟩ assocˡ C.∘ assocʳ ≈⟨ assocˡ∘assocʳ ⟩ var ∎ where open TermReasoning isoʳ : forall {Γ Δ} -> F₀/*⇒++ C.∘ F₀/++⇒* {Γ = Γ} C.≈ C.id {A = F₀ (Δ ++ Γ)} isoʳ {Γ} {[]} = trans comm/fst (trans (cong/fst (var/ext _ _)) (beta/*₁ _ _)) isoʳ {Γ} {A ∷ Δ} = begin ((F₀/*⇒++ ⁂ var) C.∘ assocʳ) C.∘ (assocˡ C.∘ (F₀/++⇒* ⁂ var)) ≈⟨ cancelInner assocʳ∘assocˡ ⟩ (F₀/*⇒++ ⁂ var) C.∘ (F₀/++⇒* ⁂ var) ≈⟨ ⁂∘⁂ ⟩ F₀/*⇒++ C.∘ F₀/++⇒* ⁂ var C.∘ var ≈⟨ ⁂-cong₂ isoʳ C.identity² ⟩ var ⁂ var ≈⟨ id⁂id ⟩ var ∎ where open TermReasoning F₁p : forall {Γ Δ} -> F₀ (Δ ++ Γ) ∷ [] ⊢ F₀ Γ F₁p = fst var C.∘ F₀/++⇒* F₁q : forall {Γ Δ} -> F₀ (Δ ++ Γ) ∷ [] ⊢ F₀ Δ F₁q = snd var C.∘ F₀/++⇒* F₁ : forall {Γ Δ : Context} -> ren Γ Δ -> F₀ Γ ∷ [] ⊢ F₀ Δ F₁ Renaming.id = C.id F₁ (r Renaming.∙ r₁) = F₁ r C.∘ F₁ r₁ F₁ Renaming.! = unit F₁ Renaming.⟪ r , r₁ ⟫ = F₀/*⇒++ C.∘ pair (F₁ r) (F₁ r₁) F₁ Renaming.p = F₁p F₁ Renaming.q = F₁q homomorphism : forall {Γ₁ Γ₂ Γ₃} (f : ren Γ₁ Γ₂) (g : ren Γ₂ Γ₃) -> F₀ Γ₁ ∷ [] ⊢ F₁ g [ ext ! (F₁ f) ] ≡ F₁ g [ ext ! (F₁ f) ] homomorphism f g = refl F-resp-≈ : forall {Γ Δ} {f g : ren Γ Δ} -> f ≐ g -> F₀ Γ ∷ [] ⊢ F₁ f ≡ F₁ g F-resp-≈ _≐_.refl = refl F-resp-≈ (_≐_.sym x) = sym (F-resp-≈ x) F-resp-≈ (_≐_.trans x x₁) = trans (F-resp-≈ x) (F-resp-≈ x₁) F-resp-≈ _≐_.identityˡ = var/ext _ _ F-resp-≈ _≐_.identityʳ = trans (cong/sub (trans (cong/ext !-unique refl) η-pair) refl) sub/id F-resp-≈ _≐_.assoc = C.assoc F-resp-≈ _≐_.!-unique = eta/Unit _ F-resp-≈ _≐_.β₁/⟪⟫ = trans (cancelInner (Iso.isoˡ (_≅_.iso F₀/*≅++))) project₁ F-resp-≈ _≐_.β₂/⟪⟫ = trans (cancelInner (Iso.isoˡ (_≅_.iso F₀/*≅++))) project₂ F-resp-≈ _≐_.η/⟪⟫ = trans (C.∘-resp-≈ʳ (trans (⟨⟩-cong₂ C.assoc C.assoc) g-η)) (cancelˡ (Iso.isoʳ (_≅_.iso F₀/*≅++))) F-resp-≈ (_≐_.cong/∙ x x₁) = cong/sub (cong/ext refl (F-resp-≈ x₁)) (F-resp-≈ x) F-resp-≈ (_≐_.cong/⟪⟫ x x₁) = cong/sub (cong/ext refl (cong/pair (F-resp-≈ x) (F-resp-≈ x₁))) refl
{ "alphanum_fraction": 0.5001009489, "avg_line_length": 36.1532846715, "ext": "agda", "hexsha": "06c383fde79daed4a15055a4fa9c8dc0c9daef5d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Categories/Functor/Construction/Inclusion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Categories/Functor/Construction/Inclusion.agda", "max_line_length": 121, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Categories/Functor/Construction/Inclusion.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 2275, "size": 4953 }
module Haskell.Prim.Double where open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Float public renaming (Float to Double) open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg instance iNumberDouble : Number Double iNumberDouble .Number.Constraint _ = ⊤ iNumberDouble .fromNat n = primNatToFloat n iNegativeDouble : Negative Double iNegativeDouble .Negative.Constraint _ = ⊤ iNegativeDouble .fromNeg n = primFloatMinus 0.0 (fromNat n)
{ "alphanum_fraction": 0.7931726908, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "e2898a67c1fbaf2c07d0cfb5306bd9a5b56de649", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Double.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Double.agda", "max_line_length": 64, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Double.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 135, "size": 498 }
module Structure.Numeral.Integer.Proofs where open import Data.Either as Either using (Left ; Right) import Data.Tuple as Tuple open import Functional open import Function.Proofs open import Logic.IntroInstances open import Logic.Predicate open import Logic.Propositional import Lvl open import Structure.Function.Domain open import Structure.Function open import Structure.Numeral.Integer open import Structure.Relator open import Structure.Relator.Proofs open import Structure.Relator.Properties open import Structure.Setoid open import Structure.Operator open import Structure.Operator.Properties open import Structure.Operator.Ring.Proofs open import Structure.Operator.Ring open import Structure.OrderedField open import Syntax.Implication open import Syntax.Transitivity open import Type private variable ℓₒ ℓₗ ℓₑ ℓₗ₁ ℓₗ₂ : Lvl.Level private variable Z : Type{ℓₒ} private variable _+_ _⋅_ : Z → Z → Z private variable _≤_ : Z → Z → Type{ℓₗ} module _ ⦃ equiv : Equiv{ℓₑ}(Z) ⦄ ⦃ int : Integer ⦃ equiv ⦄ (_+_)(_⋅_)(_≤_) ⦄ where open Integer(int) negative-induction : ∀{ℓ}{P : Z → Type{ℓ}} ⦃ rel-p : UnaryRelator(P) ⦄ → P(𝟎) → (∀{n} → (n ≤ 𝟎) → P(n) → P(𝐏(n))) → (∀{n} → (n ≤ 𝟎) → P(n)) negative-induction {P = P} pz ps {n} neg = substitute₁(P) (involution(−_)) (positive-induction {P = P ∘ (−_)} ⦃ [∘]-unaryRelator ⦄ (substitute₁ₗ(P) [−]-of-𝟎 pz) (\{n} pos pnn → substitute₁ₗ(P) [+]-negation-distribution (ps{− n} ([↔]-to-[→] [≤]-flip-positive pos) pnn)) {− n} ([↔]-to-[→] [≤]-flip-negative neg) ) induction : ∀{ℓ}{P : Z → Type{ℓ}} ⦃ rel-p : UnaryRelator(P) ⦄ → P(𝟎) → (∀{n} → (n ≤ 𝟎) → P(n) → P(𝐏(n))) → (∀{n} → (𝟎 ≤ n) → P(n) → P(𝐒(n))) → (∀{n} → P(n)) induction pz pp ps {n} with converseTotal(_≤_) {n}{𝟎} ... | Left neg = negative-induction pz pp neg ... | Right pos = positive-induction pz ps pos [⋅]-commutativity : Commutativity(_⋅_) [⋅]-commutativity = intro(induction{P = x ↦ ∀{y} → (x ⋅ y ≡ y ⋅ x)} ⦃ {!!} ⦄ base (const pred) (const succ)) where base : ∀{y} → (𝟎 ⋅ y ≡ y ⋅ 𝟎) base{y} = 𝟎 ⋅ y 🝖[ _≡_ ]-[ absorberₗ(_⋅_)(𝟎) ] 𝟎 🝖[ _≡_ ]-[ absorberᵣ(_⋅_)(𝟎) ]-sym y ⋅ 𝟎 🝖-end pred : ∀{x} → (∀{y} → (x ⋅ y ≡ y ⋅ x)) → (∀{y} → (𝐏(x) ⋅ y ≡ y ⋅ 𝐏(x))) pred {x} p {y} = 𝐏(x) ⋅ y 🝖[ _≡_ ]-[] (x − 𝟏) ⋅ y 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_−_) ⦃ [⋅][−]-distributivityᵣ ⦄ ] (x ⋅ y) − (𝟏 ⋅ y) 🝖[ _≡_ ]-[ congruence₂ᵣ(_−_) ⦃ [−]-binaryOperator ⦄ (_) (identityₗ(_⋅_)(𝟏)) ] (x ⋅ y) − y 🝖[ _≡_ ]-[ congruence₂ₗ(_−_) ⦃ [−]-binaryOperator ⦄ (_) p ] (y ⋅ x) − y 🝖[ _≡_ ]-[ congruence₂ᵣ(_−_) ⦃ [−]-binaryOperator ⦄ (_) (identityᵣ(_⋅_)(𝟏)) ]-sym (y ⋅ x) − (y ⋅ 𝟏) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_−_) ⦃ [⋅][−]-distributivityₗ ⦄ ]-sym y ⋅ (x − 𝟏) 🝖[ _≡_ ]-[] y ⋅ 𝐏(x) 🝖-end succ : ∀{x} → (∀{y} → (x ⋅ y ≡ y ⋅ x)) → (∀{y} → (𝐒(x) ⋅ y ≡ y ⋅ 𝐒(x))) succ {x} p {y} = 𝐒(x) ⋅ y 🝖[ _≡_ ]-[] (x + 𝟏) ⋅ y 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) ] (x ⋅ y) + (𝟏 ⋅ y) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (identityₗ(_⋅_)(𝟏)) ] (x ⋅ y) + y 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(_) p ] (y ⋅ x) + y 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (identityᵣ(_⋅_)(𝟏)) ]-sym (y ⋅ x) + (y ⋅ 𝟏) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_+_) ]-sym y ⋅ (x + 𝟏) 🝖[ _≡_ ]-[] y ⋅ 𝐒(x) 🝖-end [≤]-identities : (𝟎 ≤ 𝟏) [≤]-identities with converseTotal(_≤_) {𝟎}{− 𝟏} ... | Left omi = omi ⇒ (𝟎 ≤ (− 𝟏)) ⇒-[ swap apply₂ [≤][⋅]-zero ] (𝟎 ≤ ((− 𝟏) ⋅ (− 𝟏))) ⇒-[ _🝖 sub₂(_≡_)(_≤_) [⋅]-of-[−] ] (𝟎 ≤ (𝟏 ⋅ 𝟏)) ⇒-[ _🝖 sub₂(_≡_)(_≤_) (identityₗ(_⋅_)(𝟏)) ] (𝟎 ≤ 𝟏) ⇒-end ... | Right mio = [↔]-to-[←] [≤]-flip-positive mio [<]-identities : (𝟎 < 𝟏) [<]-identities = [≤][≢]-to-[<] [≤]-identities (NonZero.proof distinct-identities ∘ symmetry(_≡_)) 𝐒-of-𝟎 : 𝐒(𝟎) ≡ 𝟏 𝐒-of-𝟎 = 𝐒(𝟎) 🝖[ _≡_ ]-[] 𝟎 + 𝟏 🝖[ _≡_ ]-[ identityₗ(_+_)(𝟎) ] 𝟏 🝖-end instance postulate 𝐒-function : Function(𝐒) -- 𝐒-function = {!!} instance postulate [<]-relator : BinaryRelator(_<_) -- [<]-relator = {![¬]-binaryRelator!} [≤]-with-𝐒 : ∀{x y} → (x ≤ y) → (𝐒(x) ≤ 𝐒(y)) [≤]-with-𝐒 = [≤][+]ₗ-preserve [<]-with-𝐒 : ∀{x y} → (x < y) → (𝐒(x) < 𝐒(y)) [<]-with-𝐒 = [<][+]-preserveₗ [≤]-with-𝐏 : ∀{x y} → (x ≤ y) → (𝐏(x) ≤ 𝐏(y)) [≤]-with-𝐏 = [≤][−]ₗ-preserve [<]-with-𝐏 : ∀{x y} → (x < y) → (𝐏(x) < 𝐏(y)) [<]-with-𝐏 = [<][+]-preserveₗ 𝐒-𝐏-inverse : ∀{x} → (𝐒(𝐏(x)) ≡ x) 𝐒-𝐏-inverse = associativity(_+_) 🝖 congruence₂ᵣ(_+_)(_) (inverseFunctionₗ(_+_)(−_)) 🝖 identityᵣ(_+_)(𝟎) 𝐏-𝐒-inverse : ∀{x} → (𝐏(𝐒(x)) ≡ x) 𝐏-𝐒-inverse = associativity(_+_) 🝖 congruence₂ᵣ(_+_)(_) (inverseFunctionᵣ(_+_)(−_)) 🝖 identityᵣ(_+_)(𝟎) 𝐒-order : ∀{x} → (x < 𝐒(x)) 𝐒-order {x} = induction {P = x ↦ x < 𝐒(x)} ⦃ binary-unaryRelator ⦃ rel-P = [∘]-binaryRelator ⦄ ⦄ (subtransitivityᵣ(_<_)(_≡_) [<]-identities (symmetry(_≡_) 𝐒-of-𝟎)) (const (p ↦ subtransitivityᵣ(_<_)(_≡_) ([<]-with-𝐏 p) (𝐏-𝐒-inverse 🝖 symmetry(_≡_) 𝐒-𝐏-inverse))) (const [<]-with-𝐒) 𝐒-least-upper-bound : ∀{x m} → (x < m) → (𝐒(x) ≤ m) 𝐒-least-upper-bound {x}{m} xm with converseTotal(_≤_) {x}{m} | converseTotal(_≤_) {𝐒(x)}{m} ... | Left x₁ | Left x₂ = x₂ ... | Left x₁ | Right x₂ = {!!} -- x<m x≤m m≤𝐒x ... | Right x₁ | Left x₂ = x₂ ... | Right x₁ | Right x₂ with () ← xm x₁ {-... | Left 𝐒xm = {!!} ... | Right ¬m𝐒x = {!!} -} {-= 𝐒(x) 🝖[ _≤_ ]-[ {!!} ] m 🝖-end-} least-upper-bound-existence : ∃{Obj = Z → Z}(S ↦ (∀{x} → (x < S(x))) ∧ (∀{x m} → (x < m) → (S(x) ≤ m))) ∃.witness least-upper-bound-existence = 𝐒 Tuple.left (∃.proof least-upper-bound-existence) = 𝐒-order Tuple.right (∃.proof least-upper-bound-existence) = 𝐒-least-upper-bound {- TODO: Not here. Needs invertible mult record Exponentiation(_^_ : Z → Z → Z) : Type{ℓₑ Lvl.⊔ Lvl.of(Z) Lvl.⊔ Lvl.of(𝟎 ≤ 𝟎)} where field base : ∀{a} → (a ^ 𝟎 ≡ 𝟏) step : ∀{a b} → (𝟎 ≤ b) → (a ^ (b + 𝟏) ≡ a ⋅ (a ^ b)) neg : ∀{a b} → (𝟎 ≤ 𝟎) → (a ^ (− b) ≡ ⅟(a ^ b)) -}
{ "alphanum_fraction": 0.5004045962, "avg_line_length": 38.8616352201, "ext": "agda", "hexsha": "5ce38b3b54a3fdab53172e75048667dd86ade902", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Numeral/Integer/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Numeral/Integer/Proofs.agda", "max_line_length": 158, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Numeral/Integer/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3122, "size": 6179 }
{-# OPTIONS --without-K --safe #-} module Data.Sum where open import Level open import Data.Bool.Base using (Bool; true; false) open import Function using (const) data _⊎_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where inl : A → A ⊎ B inr : B → A ⊎ B either : ∀ {ℓ} {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A ⊎ B) → C x either f _ (inl x) = f x either _ g (inr y) = g y ⟦l_,r_⟧ = either either′ : (A → C) → (B → C) → (A ⊎ B) → C either′ = either _▿_ : (A → C) → (B → C) → A ⊎ B → C _▿_ = either is-l : A ⊎ B → Bool is-l = either′ (const true) (const false) map-⊎ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : Type b₁} {B₂ : Type b₂} → (A₁ → A₂) → (B₁ → B₂) → (A₁ ⊎ B₁) → (A₂ ⊎ B₂) map-⊎ f g (inl x) = inl (f x) map-⊎ f g (inr x) = inr (g x) mapˡ : (A → B) → A ⊎ C → B ⊎ C mapˡ f (inl x) = inl (f x) mapˡ f (inr x) = inr x mapʳ : (A → B) → C ⊎ A → C ⊎ B mapʳ f (inl x) = inl x mapʳ f (inr x) = inr (f x)
{ "alphanum_fraction": 0.4763819095, "avg_line_length": 22.6136363636, "ext": "agda", "hexsha": "c70ad26fc5e4368cdcbfb336b06d92ecb6f3ce77", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Sum.agda", "max_line_length": 85, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 497, "size": 995 }
-- Written by P. Hausmann module Vec where open import IO open import Data.Vec open import Data.Nat open import Data.Nat.Show open import Level using (0ℓ) Matrix : Set -> ℕ -> ℕ -> Set Matrix a n m = Vec (Vec a m) n madd : {n m : ℕ} -> Matrix ℕ m n -> Matrix ℕ m n -> Matrix ℕ m n madd a b = map (λ x → \y -> map _+_ x ⊛ y) a ⊛ b idMatrix : {n : ℕ} -> Matrix ℕ n n idMatrix {zero} = [] idMatrix {suc n} = (1 ∷ (replicate zero)) ∷ (map (λ x → zero ∷ x) idMatrix) transposeM : {n m : ℕ} {a : Set} -> Matrix a m n -> Matrix a n m transposeM {zero} {zero} a₁ = [] transposeM {zero} {suc m} {a} x = [] transposeM {suc n} {zero} a₁ = replicate [] transposeM {suc n} {suc m} {a} (_∷_ x₁ x₂) with map head (x₁ ∷ x₂) ... | vm = vm ∷ (map _∷_ (tail x₁) ⊛ transposeM (map tail x₂)) -- We use quite small numbers right now, as with big number the computation -- gets very slow (at least in MAlonzo) -- correct result : 109 compute : ℕ compute = sum (map sum g) where m : Matrix ℕ 3 3 m = (3 ∷ 5 ∷ 9 ∷ []) ∷ (12 ∷ 0 ∷ 7 ∷ []) ∷ (11 ∷ 2 ∷ 4 ∷ []) ∷ [] g : Matrix ℕ 3 3 g = madd (transposeM (transposeM m)) (transposeM (madd m idMatrix)) main = run {0ℓ} (putStrLn (show compute))
{ "alphanum_fraction": 0.5800330033, "avg_line_length": 31.0769230769, "ext": "agda", "hexsha": "ae8987dab2172f13b69c840394e9f31ba70221b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guilhermehas/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guilhermehas/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/Vec.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guilhermehas/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 461, "size": 1212 }
open import Oscar.Prelude open import Oscar.Class.IsCategory open import Oscar.Class.Reflexivity open import Oscar.Class.Transitivity module Oscar.Class.Category where record Category 𝔬 𝔯 ℓ : Ø ↑̂ (𝔬 ∙̂ 𝔯 ∙̂ ℓ) where constructor ∁ infix 4 _∼̇_ field {𝔒} : Ø 𝔬 _∼_ : 𝔒 → 𝔒 → Ø 𝔯 _∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ category-ε : Reflexivity.type _∼_ _↦_ : Transitivity.type _∼_ ⦃ `IsCategory ⦄ : IsCategory _∼_ _∼̇_ category-ε _↦_
{ "alphanum_fraction": 0.6349892009, "avg_line_length": 24.3684210526, "ext": "agda", "hexsha": "a06e703a482369f8742009f95337fe517209cb14", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Category.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Category.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 202, "size": 463 }
open import Common.Prelude open import Common.Reflection module TermSplicingLooping where mutual f : Set -> Set f = unquote (give (def (quote f) [])) -- Expected error: -- -- Termination checking failed for the following functions: -- f -- Problematic calls: -- f
{ "alphanum_fraction": 0.7018181818, "avg_line_length": 17.1875, "ext": "agda", "hexsha": "3b65e5f4fe590ca61506e6e2a28ef2ac0b708601", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/TermSplicingLooping.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/TermSplicingLooping.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/TermSplicingLooping.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 72, "size": 275 }
module _ where open import Common.Prelude renaming (_∸_ to _-_) -- work-around for #1855 _<_ : Nat → Nat → Bool a < b with b - a ... | zero = false ... | suc _ = true insert : Nat → List Nat → List Nat insert x [] = x ∷ [] insert x (y ∷ xs) = if x < y then x ∷ y ∷ xs else (y ∷ insert x xs) sort : List Nat → List Nat sort [] = [] sort (x ∷ xs) = insert x (sort xs) downFrom : Nat → List Nat downFrom zero = [] downFrom (suc n) = n ∷ downFrom n mapM! : {A : Set} → (A → IO Unit) → List A → IO Unit mapM! f [] = return unit mapM! f (x ∷ xs) = f x >>= λ _ → mapM! f xs main : IO Unit main = mapM! printNat (sort (downFrom 1200)) -- 1000 0.6s -- 2000 4.8s -- 4000 36.2s
{ "alphanum_fraction": 0.5680819912, "avg_line_length": 20.696969697, "ext": "agda", "hexsha": "3e78f03a129675265809bb5c038f3718017af2ae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Sort.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Sort.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Sort.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 269, "size": 683 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Definitions where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic open import Utils open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions open import MorePropAlgebra.Consequences open import MorePropAlgebra.Structures
{ "alphanum_fraction": 0.8098159509, "avg_line_length": 32.6, "ext": "agda", "hexsha": "90495f0e85f358ef356a2d88ab1f2e5747a0cb2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Definitions.agda", "max_line_length": 83, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 137, "size": 489 }
open import Agda.Primitive open import Empty open import Logic open import Boolean module Peano where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} pred : ℕ → ℕ pred zero = zero pred (succ x) = x _+_ : ℕ → ℕ → ℕ zero + m = m (succ n) + m = succ (n + m) {-# BUILTIN NATPLUS _+_ #-} _∘_ : ℕ → ℕ → ℕ zero ∘ _ = zero (succ n) ∘ m = (n ∘ m) + m {-# BUILTIN NATTIMES _∘_ #-} data _≡_ (x : ℕ) : ℕ → Set where refl : x ≡ x data _≢_ : ℕ → ℕ → Set where z≢s : ∀ {n} → zero ≢ succ n s≢z : ∀ {n} → succ n ≢ zero s≢s : ∀ {m n} → m ≢ n → succ m ≢ succ n data Equal? (m n : ℕ) : Set where yes : m ≡ n → Equal? m n no : m ≢ n → Equal? m n _≟_ : (m n : ℕ) → Equal? m n _≟_ zero zero = yes refl _≟_ zero (succ _) = no z≢s _≟_ (succ _) zero = no s≢z _≟_ (succ m) (succ n) with m ≟ n _≟_ (succ m) (succ .m) | yes refl = yes refl _≟_ (succ m) (succ n) | no p = no (s≢s p) equality-disjoint : (m n : ℕ) → m ≡ n → m ≢ n → ⊥ equality-disjoint zero zero refl () equality-disjoint zero (succ _) () z≢s equality-disjoint (succ _) zero () s≢z equality-disjoint (succ m) (succ .m) refl (s≢s e) = equality-disjoint m m refl e private -- to make the last `equality-disjoint` match clearer, verify that s≢s can be nested test-s≢s : (succ (succ (succ zero))) ≢ (succ (succ zero)) test-s≢s = s≢s (s≢s s≢z) data Ordering : Rel ℕ where less : ∀ m k → Ordering m (succ (m + k)) equal : ∀ m → Ordering m m greater : ∀ m k → Ordering (succ (m + k)) m compare : ∀ m n → Ordering m n compare zero zero = equal zero compare (succ m) zero = greater zero m compare zero (succ n) = less zero n compare (succ m) (succ n) with compare m n compare (succ .m) (succ .(succ m + k)) | less m k = less (succ m) k compare (succ .m) (succ .m) | equal m = equal (succ m) compare (succ .(succ m + k)) (succ .m) | greater m k = greater (succ m) k infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≮_ _≱_ _≯_ data _≤_ : Rel ℕ where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → succ m ≤ succ n _<_ : Rel ℕ m < n = succ m ≤ n _≥_ : Rel ℕ m ≥ n = n ≤ m _>_ : Rel ℕ m > n = n < m _≰_ : Rel ℕ a ≰ b = ¬ (a ≤ b) _≮_ : Rel ℕ a ≮ b = ¬ (a < b) _≱_ : Rel ℕ a ≱ b = ¬ (a ≥ b) _≯_ : Rel ℕ a ≯ b = ¬ (a > b) data _even : ℕ → Set where ZERO : zero even STEP : ∀ {x} → x even → succ (succ x) even private proof₁ : succ(succ(succ(succ(zero)))) even proof₁ = STEP (STEP ZERO) proof₂ : (A : Set) → A → A proof₂ _ ν = ν proof'₂ : ℕ → ℕ proof'₂ = proof₂ ℕ
{ "alphanum_fraction": 0.5209923664, "avg_line_length": 23.3928571429, "ext": "agda", "hexsha": "9a174ec33f5122919f13f19a20dbc1fb28b72659", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "cantsin/agda-experiments", "max_forks_repo_path": "Peano.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "cantsin/agda-experiments", "max_issues_repo_path": "Peano.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "cantsin/agda-experiments", "max_stars_repo_path": "Peano.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1100, "size": 2620 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW module cw.examples.Empty where cw-empty-skel : Skeleton {lzero} 0 cw-empty-skel = Empty , Empty-is-set CWEmpty = ⟦ cw-empty-skel ⟧ CWEmpty-equiv-Empty : CWEmpty ≃ Empty CWEmpty-equiv-Empty = ide _
{ "alphanum_fraction": 0.7111913357, "avg_line_length": 18.4666666667, "ext": "agda", "hexsha": "979c70fe24a0340852c9a55de721961a66bc6814", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/examples/Empty.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/examples/Empty.agda", "max_line_length": 39, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/examples/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 82, "size": 277 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Construction.Pullbacks {o ℓ e} (C : Category o ℓ e) where open import Level using (_⊔_) open import Function using (_$_) open import Data.Product using (_×_; _,_) open import Categories.Diagram.Pullback C open import Categories.Morphism.Reasoning C open Category C record PullbackObj W : Set (o ⊔ ℓ ⊔ e) where field {A} {B} : Obj arr₁ : A ⇒ W arr₂ : B ⇒ W pullback : Pullback arr₁ arr₂ module pullback = Pullback pullback open HomReasoning record Pullback⇒ W (X Y : PullbackObj W) : Set (o ⊔ ℓ ⊔ e) where module X = PullbackObj X module Y = PullbackObj Y field mor₁ : X.A ⇒ Y.A mor₂ : X.B ⇒ Y.B commute₁ : Y.arr₁ ∘ mor₁ ≈ X.arr₁ commute₂ : Y.arr₂ ∘ mor₂ ≈ X.arr₂ pbarr : X.pullback.P ⇒ Y.pullback.P pbarr = Y.pullback.universal $ begin Y.arr₁ ∘ mor₁ ∘ X.pullback.p₁ ≈⟨ pullˡ commute₁ ⟩ X.arr₁ ∘ X.pullback.p₁ ≈⟨ X.pullback.commute ⟩ X.arr₂ ∘ X.pullback.p₂ ≈˘⟨ pullˡ commute₂ ⟩ Y.arr₂ ∘ mor₂ ∘ X.pullback.p₂ ∎ open Pullback⇒ Pullbacks : Obj → Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) e Pullbacks W = record { Obj = PullbackObj W ; _⇒_ = Pullback⇒ W ; _≈_ = λ f g → mor₁ f ≈ mor₁ g × mor₂ f ≈ mor₂ g ; id = record { mor₁ = id ; mor₂ = id ; commute₁ = identityʳ ; commute₂ = identityʳ } ; _∘_ = λ f g → record { mor₁ = mor₁ f ∘ mor₁ g ; mor₂ = mor₂ f ∘ mor₂ g ; commute₁ = pullˡ (commute₁ f) ○ commute₁ g ; commute₂ = pullˡ (commute₂ f) ○ commute₂ g } ; assoc = assoc , assoc ; sym-assoc = sym-assoc , sym-assoc ; identityˡ = identityˡ , identityˡ ; identityʳ = identityʳ , identityʳ ; identity² = identity² , identity² ; equiv = record { refl = refl , refl ; sym = λ { (eq₁ , eq₂) → sym eq₁ , sym eq₂ } ; trans = λ { (eq₁ , eq₂) (eq₃ , eq₄) → trans eq₁ eq₃ , trans eq₂ eq₄ } } ; ∘-resp-≈ = λ { (eq₁ , eq₂) (eq₃ , eq₄) → ∘-resp-≈ eq₁ eq₃ , ∘-resp-≈ eq₂ eq₄ } }
{ "alphanum_fraction": 0.5789473684, "avg_line_length": 28.2432432432, "ext": "agda", "hexsha": "aa727264e4c62bca40909ca06589b4a6901d9cf0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Pullbacks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Pullbacks.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Pullbacks.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 816, "size": 2090 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.GradedRing.Instances.PolynomialsFun where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+n_) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.GradedRing.Base open import Cubical.Algebra.GradedRing.DirectSumFun private variable ℓ : Level module _ (ARing@(A , Astr) : Ring ℓ) (n : ℕ) where open RingStr Astr open RingTheory ARing PolyGradedRing : GradedRing ℓ-zero ℓ PolyGradedRing = ⊕Fun-GradedRing _+n_ (makeIsMonoid isSetℕ +-assoc +-zero λ _ → refl) (λ _ _ → refl) (λ _ → A) (λ _ → snd (Ring→AbGroup ARing)) 1r _·_ 0LeftAnnihilates 0RightAnnihilates (λ a b c → ΣPathP ((+-assoc _ _ _) , (·Assoc _ _ _))) (λ a → ΣPathP ((+-zero _) , (·IdR _))) (λ a → ΣPathP (refl , (·IdL _))) ·DistR+ ·DistL+
{ "alphanum_fraction": 0.6142001711, "avg_line_length": 30.7631578947, "ext": "agda", "hexsha": "8d79fe1b53b0a15df4a95a9c3527076e01a57375", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/GradedRing/Instances/PolynomialsFun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/GradedRing/Instances/PolynomialsFun.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/GradedRing/Instances/PolynomialsFun.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 349, "size": 1169 }
postulate List : Set List-like : Set → Set instance postulate List-is-list-like : List-like List postulate to-List : ∀ {F : Set} ⦃ list-like : ∀ {X : Set} → List-like F ⦄ → F → List F : Set f : ⦃ list-like : List-like F ⦄ → List f = to-List _
{ "alphanum_fraction": 0.5588235294, "avg_line_length": 17, "ext": "agda", "hexsha": "6063c25b2ec5dc6397db796bf14b36e6d2322207", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4071.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4071.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4071.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 272 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.Utility where open import Cubical.Foundations.Prelude open import Cubical.Data.Bool open import Cubical.Data.Empty using (⊥) renaming (rec to recEmpty) open import Cubical.Data.Sigma open import Cubical.Relation.Nullary.Base private variable ℓ ℓ' : Level byBoolAbsurdity : {Anything : Type ℓ} → false ≡ true → Anything byBoolAbsurdity p = recEmpty (false≢true p) byAbsurdity : {Anything : Type ℓ} → ⊥ → Anything byAbsurdity x = recEmpty x extractFromAnd : (P Q : Bool) → P and Q ≡ true → (P ≡ true) × (Q ≡ true) extractFromAnd false false eq = byBoolAbsurdity eq extractFromAnd false true eq = byBoolAbsurdity eq extractFromAnd true false eq = byBoolAbsurdity eq extractFromAnd true true eq = eq , eq extractFromAndLeft : {P Q : Bool} → P and Q ≡ true → P ≡ true extractFromAndLeft eq = fst (extractFromAnd _ _ eq) extractFromAndRight : {P Q : Bool} → P and Q ≡ true → Q ≡ true extractFromAndRight eq = snd (extractFromAnd _ _ eq)
{ "alphanum_fraction": 0.6804788214, "avg_line_length": 28.5789473684, "ext": "agda", "hexsha": "76878e38e26bf1686d9ad8ca96dab8495c405409", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRingSolver/Utility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRingSolver/Utility.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRingSolver/Utility.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 320, "size": 1086 }
{- This file contains: - Homotopy natural equivalences of pushout spans Written by: Loïc Pujet, September 2019 - 3×3 lemma for pushouts Written by: Loïc Pujet, April 2019 -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Pushout.Properties where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Data.Prod.Base open import Cubical.Data.Unit open import Cubical.HITs.Pushout.Base {- Definition of pushout diagrams -} record 3-span : Type₁ where field A0 A2 A4 : Type₀ f1 : A2 → A0 f3 : A2 → A4 spanPushout : (s : 3-span) → Type₀ spanPushout s = Pushout (3-span.f1 s) (3-span.f3 s) {- Definition of a homotopy natural diagram equivalence -} record 3-span-equiv (s1 : 3-span) (s2 : 3-span) : Type₀ where field e0 : 3-span.A0 s1 ≃ 3-span.A0 s2 e2 : 3-span.A2 s1 ≃ 3-span.A2 s2 e4 : 3-span.A4 s1 ≃ 3-span.A4 s2 H1 : ∀ x → 3-span.f1 s2 (e2 .fst x) ≡ e0 .fst (3-span.f1 s1 x) H3 : ∀ x → 3-span.f3 s2 (e2 .fst x) ≡ e4 .fst (3-span.f3 s1 x) {- Proof that homotopy equivalent spans are in fact equal -} spanEquivToPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → s1 ≡ s2 spanEquivToPath {s1} {s2} e = spanPath where open 3-span-equiv e open 3-span path0 : A0 s1 ≡ A0 s2 path0 = ua e0 path2 : A2 s1 ≡ A2 s2 path2 = ua e2 path4 : A4 s1 ≡ A4 s2 path4 = ua e4 spanPath1 : I → 3-span spanPath1 i = record { A0 = path0 i ; A2 = path2 i ; A4 = path4 i ; f1 = λ x → (transp (λ j → path0 (i ∧ j)) (~ i) (f1 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) ; f3 = λ x → (transp (λ j → path4 (i ∧ j)) (~ i) (f3 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) } spanPath2 : I → 3-span spanPath2 i = record { A0 = A0 s2 ; A2 = A2 s2 ; A4 = A4 s2 ; f1 = f1Path i ; f3 = f3Path i } where f1Path : I → A2 s2 → A0 s2 f1Path i x = ((uaβ e0 (f1 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H1 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f1 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f1 s2 (transportTransport⁻ path2 x j))) i f3Path : I → A2 s2 → A4 s2 f3Path i x = ((uaβ e4 (f3 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H3 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f3 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f3 s2 (transportTransport⁻ path2 x j))) i spanPath : s1 ≡ s2 spanPath = (λ i → spanPath1 i) ∙ (λ i → spanPath2 i) -- as a corollary, they have the same pushout spanEquivToPushoutPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → spanPushout s1 ≡ spanPushout s2 spanEquivToPushoutPath {s1} {s2} e = cong spanPushout (spanEquivToPath e) {- 3×3 lemma for pushouts Let Aᵢⱼ denote a type, fᵢⱼ a map and Hᵢⱼ a homotopy. Given a diagram of the following shape: A00 ←—f01—— A02 ——f03—→ A04 ↑ ↑ ↑ f10 H11 f12 H13 f14 | | | A20 ←—f21—— A22 ——f23—→ A24 | | | f30 H31 f32 H33 f34 ↓ ↓ ↓ A40 ←—f41—— A42 ——f43—→ A44 one can build its colimit from pushouts in two ways: - either build pushouts A□0, A□2, A□4 of the lines and then build the pushout A□○ of the resulting diagram A□0 ←—f□1—— A□2 ——f□3—→ A□4 ; - or build pushouts of the columns and build the pushout A○□ of the resulting diagram A0□ ← A2□ → A4□. Then the lemma states there is an equivalence A□○ ≃ A○□. -} record 3x3-span : Type₁ where field A00 A02 A04 A20 A22 A24 A40 A42 A44 : Type₀ f10 : A20 → A00 f12 : A22 → A02 f14 : A24 → A04 f30 : A20 → A40 f32 : A22 → A42 f34 : A24 → A44 f01 : A02 → A00 f21 : A22 → A20 f41 : A42 → A40 f03 : A02 → A04 f23 : A22 → A24 f43 : A42 → A44 H11 : ∀ x → f01 (f12 x) ≡ f10 (f21 x) H13 : ∀ x → f03 (f12 x) ≡ f14 (f23 x) H31 : ∀ x → f41 (f32 x) ≡ f30 (f21 x) H33 : ∀ x → f43 (f32 x) ≡ f34 (f23 x) -- pushouts of the lines A□0 : Type₀ A□0 = Pushout f10 f30 A□2 : Type₀ A□2 = Pushout f12 f32 A□4 : Type₀ A□4 = Pushout f14 f34 -- maps between pushouts f□1 : A□2 → A□0 f□1 (inl x) = inl (f01 x) f□1 (inr x) = inr (f41 x) f□1 (push a j) = ((λ i → inl (H11 a i)) ∙∙ push (f21 a) ∙∙ (λ i → inr (H31 a (~ i)))) j f□3 : A□2 → A□4 f□3 (inl x) = inl (f03 x) f□3 (inr x) = inr (f43 x) f□3 (push a j) = ((λ i → inl (H13 a i)) ∙∙ push (f23 a) ∙∙ (λ i → inr (H33 a (~ i)))) j -- total pushout A□○ : Type₀ A□○ = Pushout f□1 f□3 -- pushouts of the columns A0□ : Type₀ A0□ = Pushout f01 f03 A2□ : Type₀ A2□ = Pushout f21 f23 A4□ : Type₀ A4□ = Pushout f41 f43 -- maps between pushouts f1□ : A2□ → A0□ f1□ (inl x) = inl (f10 x) f1□ (inr x) = inr (f14 x) f1□ (push a j) = ((λ i → inl (H11 a (~ i))) ∙∙ push (f12 a) ∙∙ (λ i → inr (H13 a i))) j f3□ : A2□ → A4□ f3□ (inl x) = inl (f30 x) f3□ (inr x) = inr (f34 x) f3□ (push a j) = ((λ i → inl (H31 a (~ i))) ∙∙ push (f32 a) ∙∙ (λ i → inr (H33 a i))) j -- total pushout A○□ : Type₀ A○□ = Pushout f1□ f3□ -- the claimed result 3x3-lemma : A□○ ≡ A○□ 3x3-lemma = isoToPath (iso A□○→A○□ A○□→A□○ A○□→A□○→A○□ A□○→A○□→A□○) where -- forward map of the equivalence A□○ ≃ A○□ forward-l : A□0 → A○□ forward-l (inl x) = inl (inl x) forward-l (inr x) = inr (inl x) forward-l (push a i) = push (inl a) i forward-r : A□4 → A○□ forward-r (inl x) = inl (inr x) forward-r (inr x) = inr (inr x) forward-r (push a i) = push (inr a) i forward-filler : A22 → I → I → I → A○□ forward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) ; (j = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) }) (inS (push (push a j) i)) A□○→A○□ : A□○ → A○□ A□○→A○□ (inl x) = forward-l x A□○→A○□ (inr x) = forward-r x A□○→A○□ (push (inl x) i) = inl (push x i) A□○→A○□ (push (inr x) i) = inr (push x i) A□○→A○□ (push (push a i) j) = forward-filler a i j i1 -- backward map backward-l : A0□ → A□○ backward-l (inl x) = inl (inl x) backward-l (inr x) = inr (inl x) backward-l (push a i) = push (inl a) i backward-r : A4□ → A□○ backward-r (inl x) = inl (inr x) backward-r (inr x) = inr (inr x) backward-r (push a i) = push (inr a) i backward-filler : A22 → I → I → I → A□○ backward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) ; (j = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) }) (inS (push (push a j) i)) A○□→A□○ : A○□ → A□○ A○□→A□○ (inl x) = backward-l x A○□→A□○ (inr x) = backward-r x A○□→A□○ (push (inl x) i) = inl (push x i) A○□→A□○ (push (inr x) i) = inr (push x i) A○□→A□○ (push (push a i) j) = backward-filler a i j i1 -- first homotopy homotopy1-l : ∀ x → A□○→A○□ (backward-l x) ≡ inl x homotopy1-l (inl x) = refl homotopy1-l (inr x) = refl homotopy1-l (push a i) = refl homotopy1-r : ∀ x → A□○→A○□ (backward-r x) ≡ inr x homotopy1-r (inl x) = refl homotopy1-r (inr x) = refl homotopy1-r (push a i) = refl A○□→A□○→A○□ : ∀ x → A□○→A○□ (A○□→A□○ x) ≡ x A○□→A□○→A○□ (inl x) = homotopy1-l x A○□→A□○→A○□ (inr x) = homotopy1-r x A○□→A□○→A○□ (push (inl x) i) k = push (inl x) i A○□→A□○→A○□ (push (inr x) i) k = push (inr x) i A○□→A□○→A○□ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → homotopy1-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) k ; (j = i1) → homotopy1-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) k ; (k = i0) → A□○→A○□ (backward-filler a i j t) ; (k = i1) → forward-filler a j i (~ t) }) (forward-filler a j i i1) -- second homotopy homotopy2-l : ∀ x → A○□→A□○ (forward-l x) ≡ inl x homotopy2-l (inl x) = refl homotopy2-l (inr x) = refl homotopy2-l (push a i) = refl homotopy2-r : ∀ x → A○□→A□○ (forward-r x) ≡ inr x homotopy2-r (inl x) = refl homotopy2-r (inr x) = refl homotopy2-r (push a i) = refl A□○→A○□→A□○ : ∀ x → A○□→A□○ (A□○→A○□ x) ≡ x A□○→A○□→A□○ (inl x) = homotopy2-l x A□○→A○□→A□○ (inr x) = homotopy2-r x A□○→A○□→A□○ (push (inl x) i) k = push (inl x) i A□○→A○□→A□○ (push (inr x) i) k = push (inr x) i A□○→A○□→A□○ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → homotopy2-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) k ; (j = i1) → homotopy2-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) k ; (k = i0) → A○□→A□○ (forward-filler a i j t) ; (k = i1) → backward-filler a j i (~ t) }) (backward-filler a j i i1)
{ "alphanum_fraction": 0.4853759196, "avg_line_length": 35.4968152866, "ext": "agda", "hexsha": "57100c5b6fe2e605dbe0d2031df93155b97cc16c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4934, "size": 11146 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for "equational reasoning" using a strict partial -- order ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.StrictPartialOrderReasoning {p₁ p₂ p₃} (S : StrictPartialOrder p₁ p₂ p₃) where import Relation.Binary.PreorderReasoning as PreR import Relation.Binary.Properties.StrictPartialOrder as SPO open PreR (SPO.preorder S) public renaming (_∼⟨_⟩_ to _<⟨_⟩_)
{ "alphanum_fraction": 0.5761821366, "avg_line_length": 35.6875, "ext": "agda", "hexsha": "62a13eb6ebe14dfba782ae81cca9385b4b8902c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 119, "size": 571 }
{-# OPTIONS --rewriting #-} open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat open import Data.Nat.Properties open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) open import Data.Fin using (Fin; zero; suc; #_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import Function {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE +-identityʳ #-} test1-f : ℕ → ℕ test1-f x = 1 + x test₁ : kompile test1-f [] [] ≡ (ok $ "\n\n// Function Example-00.test1-f\n" ++ "int\n" ++ "Example_00_test1_f(int x_1) {\n" ++ "int __ret;\n" ++ "x = x_1;\n" ++ "__ret = (1 + x);\n" ++ "return __ret;\n" ++ "}\n\n") test₁ = refl test2-f : ℕ → ℕ test2-f x = 0 test₂ : kompile test2-f [] [] ≡ (ok $ "\n\n// Function Example-00.test2-f\n" ++ "int\n" ++ "Example_00_test2_f(int x_1) {\n" ++ "int __ret;\n" ++ "x = x_1;\n" ++ "__ret = 0;\n" ++ "return __ret;\n" ++ "}\n\n") test₂ = refl -- Rewriting test test3-f : ℕ → ℕ test3-f x = x + 0 test₃ : kompile test3-f [] [] ≡ (ok $ "\n\n// Function Example-00.test3-f\n" ++ "int\n" ++ "Example_00_test3_f(int x_1) {\n" ++ "int __ret;\n" ++ "x = x_1;\n" ++ "__ret = x;\n" ++ "return __ret;\n" ++ "}\n\n") test₃ = refl -- Make sure that we can deal with functions inside -- the type and properly collect them while extraction. test-4h : ℕ → ℕ test-4h x = 1 + x test-4f : Fin (test-4h 3) → Fin 4 test-4f a = zero test₄ : kompile test-4f (quote test-4h ∷ []) [] ≡ ok _ test₄ = refl -- Test if we can deal with multiple patterns. module _ where test-5f : ℕ → ℕ test-5f (suc (suc x)) = x test-5f _ = 0 test₅ : kompile test-5f [] [] ≡ ok _ test₅ = refl test-6f : Fin 5 → Fin 3 test-6f (suc (suc x)) = x test-6f _ = zero -- Make sure that we are compiling multi-argument function correctly test-7f : (a b c : ℕ) → ℕ test-7f a b c = c test₇ : kompile test-7f [] [] ≡ (ok $ "\n\n// Function Example-00.test-7f\nint\nExample_00_test_7f(int x_1, int x_2, int x_3) {\n" ++ "int __ret;\na = x_1;\nb = x_2;\nc = x_3;\n__ret = c;\nreturn __ret;\n}\n\n") test₇ = refl -- With-clauses test-8f : ℕ → ℕ test-8f x with x test-8f x | zero = 0 test-8f x | _ = 1 test₈ : kompile test-8f [] [] ≡ ok _ test₈ = refl -- Testing lists test-9f : List ℕ → List ℕ test-9f [] = [] test-9f (x ∷ xs) = 1 + x ∷ test-9f xs test₉ : kompile test-9f [] [] ≡ ok _ test₉ = refl -- Test constraints accumulated from the list type. module _ where test-10f : (n : ℕ) → List (Fin n) → ℕ test-10f n xs = 10 test₁₀ : kompile test-10f [] [] ≡ ok _ test₁₀ = refl -- Higher-order functions are not allowed: test-11f : ℕ → List (ℕ → ℕ) test-11f n = [] test₁₁ : _≡_ {A = Prog} (kompile test-11f [] []) $ error _ test₁₁ = refl -- Lists can bring per-element constraints, which we are currently -- generating with foreach macro. test-12f : (n : ℕ) → List (List $ Fin n) → ℕ test-12f n xs = 10 test₁₂ : _≡_ {A = Prog} (kompile test-12f [] []) $ error _ test₁₂ = refl
{ "alphanum_fraction": 0.4829485834, "avg_line_length": 27.6231884058, "ext": "agda", "hexsha": "a6ee02d121ce0fc5bdd2d5c747fcf6e3a1d3aa06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Example-00.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Example-00.agda", "max_line_length": 130, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Example-00.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 1197, "size": 3812 }
{-# OPTIONS --cubical --safe #-} module ScaleDegree where open import Data.Fin using (Fin; toℕ; #_) open import Data.Nat using (ℕ; suc; _+_) open import Data.Nat.DivMod using (_mod_; _div_) open import Data.Product using (_×_; _,_) open import Data.Vec using (lookup) open import Pitch ScaleDegree : ℕ → Set ScaleDegree = Fin ScaleDegreeOctave : ℕ → Set ScaleDegreeOctave n = ScaleDegree n × Octave transposeScaleDegree : {n : ℕ} → ℕ → ScaleDegreeOctave (suc n) → ScaleDegreeOctave (suc n) transposeScaleDegree {n} k (d , o) = let d' = (toℕ d) + k in d' mod (suc n) , o + (d' div (suc n)) scaleDegreeToPC : {n : ℕ} → Scale n → ScaleDegree n → PC scaleDegreeToPC scale d = lookup scale d
{ "alphanum_fraction": 0.6652835408, "avg_line_length": 26.7777777778, "ext": "agda", "hexsha": "9a26d03beabc45ce21303c3b7faaf7a36ca4726b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/ScaleDegree.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/ScaleDegree.agda", "max_line_length": 90, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/ScaleDegree.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 230, "size": 723 }
open import Data.Product using ( _,_ ; proj₁ ; proj₂ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _*_ ; ⌊_⌋ ; ind ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _**_ ; ≲-refl ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; _⊨b_ ; *-resp-⟨ABox⟩ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; fin ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _,_ ; BN ; impl ; apply ; apply✓ ; apply-init ) open import Web.Semantic.DL.Category.Wiring using ( identity ; wires-≈ ; wires-≈⁻¹ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ; ⊨a-intro-⟫ ; ⊨b-intro-⟫ ) open import Web.Semantic.DL.Integrity using ( med-≲ ; init-med ) open import Web.Semantic.DL.KB using ( _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; _,_ ) open import Web.Semantic.DL.TBox.Interp using ( _⊨_≈_ ) open import Web.Semantic.Util using ( id ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ) module Web.Semantic.DL.Category.Properties.Composition.Lemmas {Σ : Signature} {S T : TBox Σ} where identity-elim : ∀ (A : Object S T) I → (I ⊨a impl (identity A)) → ∀ x → (⌊ I ⌋ ⊨ ind I (inode x) ≈ ind I (enode x)) identity-elim (X , X∈Fin , A) I I⊨id x = wires-≈ id (proj₂ X∈Fin x) I⊨id identity-intro : ∀ (A : Object S T) I → (∀ x → (⌊ I ⌋ ⊨ ind I (inode x) ≈ ind I (enode x))) → (I ⊨a impl (identity A)) identity-intro (X , X∈Fin , A) I ∀x∙x₁≈x₂ = wires-≈⁻¹ id ∀x∙x₁≈x₂ (proj₁ X∈Fin) compose-left : ∀ {A B C : Object S T} (F : A ⇒ B) (G : B ⇒ C) I → (I ⊨a impl (F ∙ G)) → (left * I ⊨a impl F) compose-left {X , X∈Fin , A} {Y , Y∈Fin , B} {Z , Z∈Fin , C} (V , F , F✓) (W , G , G✓) I (I⊨F , I⊨G) = *-resp-⟨ABox⟩ left I F I⊨F compose-right : ∀ {A B C : Object S T} (F : A ⇒ B) (G : B ⇒ C) I → (I ⊨a impl (F ∙ G)) → (right * I ⊨a impl G) compose-right {X , X∈Fin , A} {Y , Y∈Fin , B} {Z , Z∈Fin , C} (V , F , F✓) (W , G , G✓) I (I⊨F , I⊨G) = *-resp-⟨ABox⟩ right I G I⊨G compose-mid : ∀ {A B C : Object S T} (F : A ⇒ B) (G : B ⇒ C) (I : Interp Σ (IN A ⊕ (BN F ⊕ IN B ⊕ BN G) ⊕ IN C)) → (inode * I ⊨ (S , T) , iface A) → (I ⊨a impl (F ∙ G)) → (bnode * bnode * I ⊨ (S , T) , iface B) compose-mid {A} {B} {C} F G I ((I⊨S , I⊨T) , I⊨A) I⊨F⟫G = ((I⊨S , I⊨T) , ⊨a-resp-≲ (enode ** J≲I) (iface B) J⊨B) where J : Interp Σ (IN A ⊕ BN F ⊕ IN B) J = apply F (inode * I) ((I⊨S , I⊨T) , I⊨A) J⊨B : enode * J ⊨a iface B J⊨B = proj₂ (apply✓ F (inode * I) ((I⊨S , I⊨T) , I⊨A)) J≲I : J ≲ left * I J≲I = med-≲ (init-med (apply-init F (inode * I) ((I⊨S , I⊨T) , I⊨A)) (left * I) (≲-refl (inode * I)) (I⊨S , compose-left F G I I⊨F⟫G)) compose-resp-⊨a : ∀ {A B C : Object S T} (F : A ⇒ B) (G : B ⇒ C) I → (left * I ⊨a impl F) → (right * I ⊨a impl G) → (I ⊨a impl (F ∙ G)) compose-resp-⊨a {X , X∈Fin , A} {Y , Y∈Fin , B} {Z , Z∈Fin , C} (V , F , F✓) (W , G , G✓) I I⊨F I⊨G = ⊨a-intro-⟫ I F G I⊨F I⊨G compose-resp-⊨b : ∀ {A B C : Object S T} {V W : Set} (F : A ⇒ B) (G : B ⇒ C) (I : Interp Σ (IN A ⊕ (V ⊕ IN B ⊕ W) ⊕ IN C)) → (left * I ⊨b impl F) → (right * I ⊨b impl G) → (I ⊨b impl (F ∙ G)) compose-resp-⊨b {X , X∈Fin , A} {Y , Y∈Fin , B} {Z , Z∈Fin , C} (V , F , F✓) (W , G , G✓) I I⊨F I⊨G = ⊨b-intro-⟫ I F G I⊨F I⊨G
{ "alphanum_fraction": 0.5295675199, "avg_line_length": 43.0253164557, "ext": "agda", "hexsha": "b25c0d413e6dcab4342936815d6f90d2529d2804", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Lemmas.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Lemmas.agda", "max_line_length": 79, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1688, "size": 3399 }
{-# OPTIONS --rewriting --confluence-check #-} module Issue4333.N0 where open import Issue4333.M {-# REWRITE p₀ #-} b₀' : B a₀' b₀' = b
{ "alphanum_fraction": 0.652173913, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "9af365e3f0f4a622791bcde32a027a264fd7c824", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4333/N0.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4333/N0.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4333/N0.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 138 }
module Relation.Relation where open import Level renaming (suc to lsuc) open import Data.Product -- Partial equivalence relations. record ParRel {l l' : Level}{A : Set l}(R : A → A → Set l') : Set (l ⊔ l') where field symPf : ∀{x y} → R x y → R y x transPf : ∀{x y z} → R x y → R y z → R x z -- (Total) equivalence relation. record EqRel {l l' : Level}{A : Set l}(R : A → A → Set l') : Set (l ⊔ l') where field parEqPf : ParRel R refPf : ∀{x} → R x x open ParRel public open EqRel public -- The product of two relations. ProductRel : {l l' : Level}{A : Set l}{B : Set l'} → (R : A → A → Set l) → (R' : B → B → Set l') → (A × B → A × B → Set (l ⊔ l')) ProductRel R R' a b = (R (proj₁ a) (proj₁ b)) × (R' (proj₂ a) (proj₂ b)) -- The product of two partial equivalence relations is also a partial -- equivalence relation. ProductRelIsParRel : {l l' : Level}{A : Set l}{B : Set l'} → (R : A → A → Set l) → (R' : B → B → Set l') → ParRel R → ParRel R' → ParRel (ProductRel R R') ProductRelIsParRel R R' erPF₁ erPF₂ = record { symPf = λ x₁ → symPf erPF₁ (proj₁ x₁) , symPf erPF₂ (proj₂ x₁); transPf = λ x₁ x₂ → (transPf erPF₁ (proj₁ x₁) (proj₁ x₂)) , (transPf erPF₂ (proj₂ x₁) (proj₂ x₂)) } -- The product of two (total) equivalence relations is also a (total) -- equivalence relation. ProductRelIsEqRel : {l l' : Level}{A : Set l}{B : Set l'} → (R : A → A → Set l) → (R' : B → B → Set l') → EqRel R → EqRel R' → EqRel (ProductRel R R') ProductRelIsEqRel R R' erPF₁ erPF₂ = record { parEqPf = ProductRelIsParRel R R' (parEqPf erPF₁) (parEqPf erPF₂); refPf = λ {x} → (refPf erPF₁ {proj₁ x}) , (refPf erPF₂ {proj₂ x}) } -- The restriction of a relation by a predicate. _↓_ : {l l' : Level} {A : Set l} → (R : A → A → Set l) → (P : A → Set l') → Set (l ⊔ l') _↓_ {A = A} R P = Σ[ f ∈ A ] (P f) -- The restriction of a paritial equivalence is also a partial -- equivalence. ↓ParRel : {l l' : Level} {A : Set l} → (R : A → A → Set l) → (P : A → Set l') → ParRel R → ParRel (λ (f g : R ↓ P) → R (proj₁ f) (proj₁ g)) ↓ParRel R P prPF = record { symPf = λ x₁ → symPf prPF x₁; transPf = λ x₁ x₂ → transPf prPF x₁ x₂ } -- The restriction of an equivalence relation is also an equivalence -- relation. ↓EqRel : {l l' : Level} {A : Set l} → (R : A → A → Set l) → (P : A → Set l') → EqRel R → EqRel (λ (f g : R ↓ P) → R (proj₁ f) (proj₁ g)) ↓EqRel R P eqrPF = record { parEqPf = ↓ParRel R P (parEqPf eqrPF); refPf = refPf eqrPF }
{ "alphanum_fraction": 0.550553224, "avg_line_length": 33.1772151899, "ext": "agda", "hexsha": "78fbd97ac608303b619e98dbaf6660cf030c7ac1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Relation/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Relation/Relation.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Relation/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1023, "size": 2621 }
open import Agda.Primitive public variable ℓ ℓ' : Level data _≡_ {X : Set ℓ} : X → X → Set ℓ where refl : {x : X} → x ≡ x ap : {X : Set ℓ} {Y : Set ℓ'} (f : X → Y) {x x' : X} → x ≡ x' → f x ≡ f x' ap f refl = refl _∙_ : {X : Set ℓ} {x y z : X} → x ≡ y → y ≡ z → x ≡ z p ∙ refl = p yoneda-elem-lc : {X : Set ℓ} {x : X} {A : X → Set ℓ'} (η θ : (y : X) → x ≡ y → A y) → η x refl ≡ θ x refl → ∀ y p → η y p ≡ θ y p yoneda-elem-lc η θ q y refl = ap (λ a → a) q ext-assoc : {X : Set ℓ} {z t : X} (r : z ≡ t) → (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → (p ∙ q) ∙ r) ≡ (λ (x y : X) (p : x ≡ y) (q : y ≡ z) → p ∙ (q ∙ r)) ext-assoc {ℓ} {X} {z} {t} = yoneda-elem-lc -- {A = λ - → (x y : X) (p : x ≡ y) (q : y ≡ z) → x ≡ - } (λ z r x y p q → (p ∙ q) ∙ r) (λ z r x y p q → p ∙ (q ∙ r)) refl t
{ "alphanum_fraction": 0.3291796469, "avg_line_length": 33.2068965517, "ext": "agda", "hexsha": "3efae377466dd1daadb7108b78e59b3a82ff061f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3960h.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3960h.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3960h.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 450, "size": 963 }
{-# OPTIONS --type-in-type #-} module Generic.Test.Experiment where open import Generic.Lib.Prelude data Desc (I : Set) : Set₁ where ret : I -> Desc I π : (A : Set) -> (A -> Desc I) -> Desc I _⊕_ : Desc I -> Desc I -> Desc I data RecDesc (I : Set) : Set₁ where rec : ((I -> Set) -> Desc I) -> RecDesc I ⟦_⟧ : ∀ {I} -> Desc I -> (I -> Set) -> I -> Set ⟦ ret i ⟧ B j = i ≡ j ⟦ π A D ⟧ B j = ∃ λ x -> ⟦ D x ⟧ B j ⟦ D ⊕ E ⟧ B j = ⟦ D ⟧ B j ⊎ ⟦ E ⟧ B j ⟦_⟧ʳ : ∀ {I} -> RecDesc I -> (I -> Set) -> I -> Set ⟦ rec K ⟧ʳ B j = ⟦ K B ⟧ B j {-# NO_POSITIVITY_CHECK #-} data μ {I} (D : RecDesc I) j : Set where node : ⟦ D ⟧ʳ (μ D) j -> μ D j DescEq : ∀ {I} -> Desc I -> Set DescEq (ret i) = ⊤ DescEq (π A D) = Eq A × ∀ x -> DescEq (D x) DescEq (D ⊕ E) = DescEq D × DescEq E RecDescEq : ∀ {I} -> RecDesc I -> Set₁ RecDescEq (rec K) = ∀ {B} {{eqB : ∀ {i} -> Eq (B i)}} -> DescEq (K B) instance {-# TERMINATING #-} DataEq : ∀ {I} {D : RecDesc I} {j} {{recDescEq : RecDescEq D}} -> Eq (μ D j) DataEq {D = D} {j} = record { _≟_ = eqMu } where node-inj : ∀ {I D j x y} -> node {I} {D} {j} x ≡ node y -> x ≡ y node-inj refl = refl eqSem : ∀ {j} D₀ D {{descEq : DescEq D}} -> IsSet (⟦ D ⟧ (μ D₀) j) eqSem D₀ (ret i) refl refl = yes refl eqSem D₀ (π A D) {{eqA , eqD}} p₁ p₂ = decProd (_≟_ {{eqA}}) (eqSem D₀ (D _) {{eqD _}}) p₁ p₂ eqSem D₀ (D ⊕ E) {{eqD , eqE}} s₁ s₂ = decSum (eqSem D₀ D {{eqD}}) (eqSem D₀ E {{eqE}}) s₁ s₂ eqMu : ∀ {D} {{recDescEq : RecDescEq D}} -> IsSet (μ D j) eqMu {D@(rec K)} {{recDescEq}} (node d₁) (node d₂) = dcong node node-inj (eqSem D _ {{recDescEq {{DataEq {D = D}}}}} d₁ d₂) module Example1 where open import Generic.Main using (deriveEqTo) instance ListEq : {A : Set} {{eqA : Eq A}} -> Eq (List A) unquoteDef ListEq = deriveEqTo ListEq (quote List) data Rose (A : Set) : Set where rose : A -> List (Rose A) -> Rose A Rose′ : Set -> Set Rose′ A = flip μ tt $ rec λ Rose′ -> π A λ _ -> π (List (Rose′ tt)) λ _ -> ret tt pattern rose′ x rs = node (x , rs , refl) {-# TERMINATING #-} Rose→Rose′ : ∀ {A} -> Rose A -> Rose′ A Rose→Rose′ (rose x rs) = rose′ x (map Rose→Rose′ rs) {-# TERMINATING #-} Rose′→Rose : ∀ {A} -> Rose′ A -> Rose A Rose′→Rose (rose′ x rs) = rose x (map Rose′→Rose rs) arose : Rose′ ℕ arose = rose′ 4 (rose′ 1 (rose′ 6 [] ∷ []) ∷ rose′ 2 [] ∷ []) find : {A : Set} {{x : A}} -> A find {{x}} = x -- -- Instance search cannot be used to find elements in an explicit function type -- test : _≟_ {{DataEq {{λ {_} -> find}}}} arose arose ≡ yes refl -- test = refl module Example2 where -- If `A` is a parameter, then this definition would be strictly positive, -- but I intentionally made it an index, because we can't make `A` a parameter -- in the described version of `D`. {-# NO_POSITIVITY_CHECK #-} data D : Set -> Set where ret : ∀ {A} -> A -> D A rec : ∀ {A} -> D (D A) -> D A D′ : Set -> Set D′ = μ $ rec λ D′ -> (π Set λ A -> π A λ _ -> ret A) ⊕ (π Set λ A -> π (D′ (D′ A)) λ _ -> ret A) pattern ret′ x = node (inj₁ (_ , x , refl)) pattern rec′ r = node (inj₂ (_ , r , refl)) Dⁿ : ℕ -> Set -> Set Dⁿ 0 A = A Dⁿ (suc n) A = D (Dⁿ n A) D′ⁿ : ℕ -> Set -> Set D′ⁿ 0 A = A D′ⁿ (suc n) A = D′ (D′ⁿ n A) ⟨D→D′⟩ⁿ : ∀ {A} n -> D (Dⁿ n A) -> D′ (D′ⁿ n A) ⟨D→D′⟩ⁿ 0 (ret x) = ret′ x ⟨D→D′⟩ⁿ (suc n) (ret r) = ret′ (⟨D→D′⟩ⁿ n r) ⟨D→D′⟩ⁿ n (rec r) = rec′ (⟨D→D′⟩ⁿ (suc n) r) ⟨D′→D⟩ⁿ : ∀ {A} n -> D′ (D′ⁿ n A) -> D (Dⁿ n A) ⟨D′→D⟩ⁿ 0 (ret′ x) = ret x ⟨D′→D⟩ⁿ (suc n) (ret′ r) = ret (⟨D′→D⟩ⁿ n r) ⟨D′→D⟩ⁿ n (rec′ r) = rec (⟨D′→D⟩ⁿ (suc n) r) D→D′ : ∀ {A} -> D A -> D′ A D→D′ = ⟨D→D′⟩ⁿ 0 D′→D : ∀ {A} -> D′ A -> D A D′→D = ⟨D′→D⟩ⁿ 0
{ "alphanum_fraction": 0.4770689213, "avg_line_length": 30.7322834646, "ext": "agda", "hexsha": "a7d444e7347795815c1baac5841f01b826827889", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Experiment.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Experiment.agda", "max_line_length": 84, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Experiment.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 1706, "size": 3903 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.Products open import Categories.Object.Terminal open import Level module Categories.Object.Terminal.Exponentiating {o ℓ e : Level} (C : Category o ℓ e) (P : Products C) where open Category C open Products P open Terminal terminal open import Categories.Object.Exponentiating import Categories.Object.Terminal.Exponentials open Categories.Object.Terminal.Exponentials C terminal ⊤-exponentiating : Exponentiating C binary ⊤ ⊤-exponentiating = record { exponential = λ {X : Obj} → [⊤↑ X ]-exponential }
{ "alphanum_fraction": 0.768115942, "avg_line_length": 24.84, "ext": "agda", "hexsha": "fd1f5994531d569cb4864695a4da9c4b184a6c7a", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Terminal/Exponentiating.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Terminal/Exponentiating.agda", "max_line_length": 64, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Terminal/Exponentiating.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 156, "size": 621 }
{-# OPTIONS --safe #-} module Cubical.Data.FinSet.Binary.Small where open import Cubical.Data.FinSet.Binary.Small.Base public open import Cubical.Data.FinSet.Binary.Small.Properties public
{ "alphanum_fraction": 0.7958115183, "avg_line_length": 27.2857142857, "ext": "agda", "hexsha": "72070faebd474a9e2a449f8ffbccc2cc7dff1d3d", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_line_length": 62, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 42, "size": 191 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.CSemigroup.Arith.Atomic where open import Fragment.Examples.CSemigroup.Arith.Base -- Fully dynamic associativity +-dyn-assoc₁ : ∀ {m n o} → (m + n) + o ≡ m + (n + o) +-dyn-assoc₁ = fragment CSemigroupFrex +-csemigroup +-dyn-assoc₂ : ∀ {m n o p} → ((m + n) + o) + p ≡ m + (n + (o + p)) +-dyn-assoc₂ = fragment CSemigroupFrex +-csemigroup +-dyn-assoc₃ : ∀ {m n o p q} → (m + n) + o + (p + q) ≡ m + (n + o + p) + q +-dyn-assoc₃ = fragment CSemigroupFrex +-csemigroup *-dyn-assoc₁ : ∀ {m n o} → (m * n) * o ≡ m * (n * o) *-dyn-assoc₁ = fragment CSemigroupFrex *-csemigroup *-dyn-assoc₂ : ∀ {m n o p} → ((m * n) * o) * p ≡ m * (n * (o * p)) *-dyn-assoc₂ = fragment CSemigroupFrex *-csemigroup *-dyn-assoc₃ : ∀ {m n o p q} → (m * n) * o * (p * q) ≡ m * (n * o * p) * q *-dyn-assoc₃ = fragment CSemigroupFrex *-csemigroup -- Fully dynamic commutativity +-dyn-comm₁ : ∀ {m n} → m + n ≡ n + m +-dyn-comm₁ = fragment CSemigroupFrex +-csemigroup +-dyn-comm₂ : ∀ {m n o} → m + (n + o) ≡ (o + n) + m +-dyn-comm₂ = fragment CSemigroupFrex +-csemigroup +-dyn-comm₃ : ∀ {m n o p} → (m + n) + (o + p) ≡ (p + o) + (n + m) +-dyn-comm₃ = fragment CSemigroupFrex +-csemigroup *-dyn-comm₁ : ∀ {m n} → m * n ≡ n * m *-dyn-comm₁ = fragment CSemigroupFrex *-csemigroup *-dyn-comm₂ : ∀ {m n o} → m * (n * o) ≡ (o * n) * m *-dyn-comm₂ = fragment CSemigroupFrex *-csemigroup *-dyn-comm₃ : ∀ {m n o p} → (m * n) * (o * p) ≡ (p * o) * (n * m) *-dyn-comm₃ = fragment CSemigroupFrex *-csemigroup -- Fully dynamic associavity and commutativity +-dyn-comm-assoc₁ : ∀ {m n o} → (m + n) + o ≡ n + (m + o) +-dyn-comm-assoc₁ = fragment CSemigroupFrex +-csemigroup +-dyn-comm-assoc₂ : ∀ {m n o p} → ((m + n) + o) + p ≡ p + (o + (n + m)) +-dyn-comm-assoc₂ = fragment CSemigroupFrex +-csemigroup +-dyn-comm-assoc₃ : ∀ {m n o p q} → (m + n) + o + (p + q) ≡ q + (p + o + n) + m +-dyn-comm-assoc₃ = fragment CSemigroupFrex +-csemigroup *-dyn-comm-assoc₁ : ∀ {m n o} → (m * n) * o ≡ n * (m * o) *-dyn-comm-assoc₁ = fragment CSemigroupFrex *-csemigroup *-dyn-comm-assoc₂ : ∀ {m n o p} → ((m * n) * o) * p ≡ p * (o * (n * m)) *-dyn-comm-assoc₂ = fragment CSemigroupFrex *-csemigroup *-dyn-comm-assoc₃ : ∀ {m n o p q} → (m * n) * o * (p * q) ≡ q * (p * o * n) * m *-dyn-comm-assoc₃ = fragment CSemigroupFrex *-csemigroup -- Partially static associativity +-sta-assoc₁ : ∀ {m n} → (m + 2) + (3 + n) ≡ m + (5 + n) +-sta-assoc₁ = fragment CSemigroupFrex +-csemigroup +-sta-assoc₂ : ∀ {m n o p} → (((m + n) + 5) + o) + p ≡ m + (n + (2 + (3 + (o + p)))) +-sta-assoc₂ = fragment CSemigroupFrex +-csemigroup +-sta-assoc₃ : ∀ {m n o p} → ((m + n) + 2) + (3 + (o + p)) ≡ m + ((n + 1) + (4 + o)) + p +-sta-assoc₃ = fragment CSemigroupFrex +-csemigroup *-sta-assoc₁ : ∀ {m n} → (m * 2) * (3 * n) ≡ m * (6 * n) *-sta-assoc₁ = fragment CSemigroupFrex *-csemigroup *-sta-assoc₂ : ∀ {m n o p} → (((m * n) * 6) * o) * p ≡ m * (n * (2 * (3 * (o * p)))) *-sta-assoc₂ = fragment CSemigroupFrex *-csemigroup *-sta-assoc₃ : ∀ {m n o p} → ((m * n) * 2) * (6 * (o * p)) ≡ m * ((n * 2) * (6 * o)) * p *-sta-assoc₃ = fragment CSemigroupFrex *-csemigroup -- Partially static commutativity +-sta-comm₁ : ∀ {m} → m + 1 ≡ 1 + m +-sta-comm₁ = fragment CSemigroupFrex +-csemigroup +-sta-comm₂ : ∀ {m n} → m + (2 + n) ≡ (n + 2) + m +-sta-comm₂ = fragment CSemigroupFrex +-csemigroup +-sta-comm₃ : ∀ {m n o p} → (1 + (m + n)) + ((o + p) + 2) ≡ ((p + o) + 2) + (1 + (n + m)) +-sta-comm₃ = fragment CSemigroupFrex +-csemigroup *-sta-comm₁ : ∀ {m} → m * 4 ≡ 4 * m *-sta-comm₁ = fragment CSemigroupFrex *-csemigroup *-sta-comm₂ : ∀ {m n} → m * (2 * n) ≡ (n * 2) * m *-sta-comm₂ = fragment CSemigroupFrex *-csemigroup *-sta-comm₃ : ∀ {m n o p} → (4 * (m * n)) * ((o * p) * 2) ≡ ((p * o) * 2) * (4 * (n * m)) *-sta-comm₃ = fragment CSemigroupFrex *-csemigroup -- Partially static associavity and commutativity +-sta-comm-assoc₁ : ∀ {m n o} → 1 + (m + n) + o + 4 ≡ 5 + n + (m + o) +-sta-comm-assoc₁ = fragment CSemigroupFrex +-csemigroup +-sta-comm-assoc₂ : ∀ {m n o p} → 5 + ((m + n) + o) + p ≡ p + ((o + 1) + (n + m)) + 4 +-sta-comm-assoc₂ = fragment CSemigroupFrex +-csemigroup +-sta-comm-assoc₃ : ∀ {m n o p q} → (m + n + 1) + o + (p + q + 4) ≡ (2 + q) + (p + o + n) + (m + 3) +-sta-comm-assoc₃ = fragment CSemigroupFrex +-csemigroup *-sta-comm-assoc₁ : ∀ {m n o} → 2 * (m * n) * o * 3 ≡ 6 * n * (m * o) *-sta-comm-assoc₁ = fragment CSemigroupFrex *-csemigroup *-sta-comm-assoc₂ : ∀ {m n o p} → 6 * ((m * n) * o) * p ≡ p * ((o * 2) * (n * m)) * 3 *-sta-comm-assoc₂ = fragment CSemigroupFrex *-csemigroup *-sta-comm-assoc₃ : ∀ {m n o p q} → (m * n * 3) * o * (p * q * 4) ≡ (2 * q) * (p * o * n) * (m * 6) *-sta-comm-assoc₃ = fragment CSemigroupFrex *-csemigroup
{ "alphanum_fraction": 0.5436101234, "avg_line_length": 37.9444444444, "ext": "agda", "hexsha": "6b64edfbd9378a71c7b1b9fb2000829b29274047", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Atomic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Atomic.agda", "max_line_length": 99, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Atomic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 2091, "size": 4781 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Inductive pointwise lifting of relations to vectors ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Binary.Pointwise.Inductive where open import Algebra.FunctionProperties open import Data.Fin using (Fin; zero; suc) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_×_; _,_) open import Data.Vec as Vec hiding ([_]; head; tail; map; lookup) open import Data.Vec.Relation.Unary.All using (All; []; _∷_) open import Level using (_⊔_) open import Function using (_∘_) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary ------------------------------------------------------------------------ -- Relation infixr 5 _∷_ data Pointwise {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) : ∀ {m n} (xs : Vec A m) (ys : Vec B n) → Set (a ⊔ b ⊔ ℓ) where [] : Pointwise _∼_ [] [] _∷_ : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} (x∼y : x ∼ y) (xs∼ys : Pointwise _∼_ xs ys) → Pointwise _∼_ (x ∷ xs) (y ∷ ys) length-equal : ∀ {a b m n ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {xs : Vec A m} {ys : Vec B n} → Pointwise _∼_ xs ys → m ≡ n length-equal [] = P.refl length-equal (_ ∷ xs∼ys) = P.cong suc (length-equal xs∼ys) ------------------------------------------------------------------------ -- Operations module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where head : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y head (x∼y ∷ xs∼ys) = x∼y tail : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → Pointwise _∼_ xs ys tail (x∼y ∷ xs∼ys) = xs∼ys lookup : ∀ {n} {xs : Vec A n} {ys : Vec B n} → Pointwise _∼_ xs ys → ∀ i → (Vec.lookup xs i) ∼ (Vec.lookup ys i) lookup (x∼y ∷ _) zero = x∼y lookup (_ ∷ xs∼ys) (suc i) = lookup xs∼ys i map : ∀ {ℓ₂} {_≈_ : REL A B ℓ₂} → _≈_ ⇒ _∼_ → ∀ {m n} → Pointwise _≈_ ⇒ Pointwise _∼_ {m} {n} map ∼₁⇒∼₂ [] = [] map ∼₁⇒∼₂ (x∼y ∷ xs∼ys) = ∼₁⇒∼₂ x∼y ∷ map ∼₁⇒∼₂ xs∼ys ------------------------------------------------------------------------ -- Relational properties refl : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → ∀ {n} → Reflexive _∼_ → Reflexive (Pointwise _∼_ {n}) refl ∼-refl {[]} = [] refl ∼-refl {x ∷ xs} = ∼-refl ∷ refl ∼-refl sym : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : REL A B ℓ} {Q : REL B A ℓ} {m n} → Sym P Q → Sym (Pointwise P) (Pointwise Q {m} {n}) sym sm [] = [] sym sm (x∼y ∷ xs∼ys) = sm x∼y ∷ sym sm xs∼ys trans : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} {P : REL A B ℓ} {Q : REL B C ℓ} {R : REL A C ℓ} {m n o} → Trans P Q R → Trans (Pointwise P {m}) (Pointwise Q {n} {o}) (Pointwise R) trans trns [] [] = [] trans trns (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) = trns x∼y y∼z ∷ trans trns xs∼ys ys∼zs decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} → Decidable _∼_ → ∀ {m n} → Decidable (Pointwise _∼_ {m} {n}) decidable dec [] [] = yes [] decidable dec [] (y ∷ ys) = no λ() decidable dec (x ∷ xs) [] = no λ() decidable dec (x ∷ xs) (y ∷ ys) with dec x y ... | no ¬x∼y = no (¬x∼y ∘ head) ... | yes x∼y with decidable dec xs ys ... | no ¬xs∼ys = no (¬xs∼ys ∘ tail) ... | yes xs∼ys = yes (x∼y ∷ xs∼ys) isEquivalence : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → IsEquivalence _∼_ → ∀ n → IsEquivalence (Pointwise _∼_ {n}) isEquivalence equiv n = record { refl = refl (IsEquivalence.refl equiv) ; sym = sym (IsEquivalence.sym equiv) ; trans = trans (IsEquivalence.trans equiv) } isDecEquivalence : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} → IsDecEquivalence _∼_ → ∀ n → IsDecEquivalence (Pointwise _∼_ {n}) isDecEquivalence decEquiv n = record { isEquivalence = isEquivalence (IsDecEquivalence.isEquivalence decEquiv) n ; _≟_ = decidable (IsDecEquivalence._≟_ decEquiv) } setoid : ∀ {a ℓ} → Setoid a ℓ → ℕ → Setoid a (a ⊔ ℓ) setoid S n = record { isEquivalence = isEquivalence (Setoid.isEquivalence S) n } decSetoid : ∀ {a ℓ} → DecSetoid a ℓ → ℕ → DecSetoid a (a ⊔ ℓ) decSetoid S n = record { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence S) n } ------------------------------------------------------------------------ -- map module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where map⁺ : ∀ {ℓ₁ ℓ₂} {_∼₁_ : REL A B ℓ₁} {_∼₂_ : REL C D ℓ₂} {f : A → C} {g : B → D} → (∀ {x y} → x ∼₁ y → f x ∼₂ g y) → ∀ {m n xs ys} → Pointwise _∼₁_ {m} {n} xs ys → Pointwise _∼₂_ (Vec.map f xs) (Vec.map g ys) map⁺ ∼₁⇒∼₂ [] = [] map⁺ ∼₁⇒∼₂ (x∼y ∷ xs∼ys) = ∼₁⇒∼₂ x∼y ∷ map⁺ ∼₁⇒∼₂ xs∼ys ------------------------------------------------------------------------ -- _++_ module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where ++⁺ : ∀ {m n p q} {ws : Vec A m} {xs : Vec B p} {ys : Vec A n} {zs : Vec B q} → Pointwise _∼_ ws xs → Pointwise _∼_ ys zs → Pointwise _∼_ (ws ++ ys) (xs ++ zs) ++⁺ [] ys∼zs = ys∼zs ++⁺ (w∼x ∷ ws∼xs) ys∼zs = w∼x ∷ (++⁺ ws∼xs ys∼zs) ++ˡ⁻ : ∀ {m n} (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} → Pointwise _∼_ (ws ++ ys) (xs ++ zs) → Pointwise _∼_ ws xs ++ˡ⁻ [] [] _ = [] ++ˡ⁻ (w ∷ ws) (x ∷ xs) (w∼x ∷ ps) = w∼x ∷ ++ˡ⁻ ws xs ps ++ʳ⁻ : ∀ {m n} (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} → Pointwise _∼_ (ws ++ ys) (xs ++ zs) → Pointwise _∼_ ys zs ++ʳ⁻ [] [] ys∼zs = ys∼zs ++ʳ⁻ (w ∷ ws) (x ∷ xs) (_ ∷ ps) = ++ʳ⁻ ws xs ps ++⁻ : ∀ {m n} (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} → Pointwise _∼_ (ws ++ ys) (xs ++ zs) → Pointwise _∼_ ws xs × Pointwise _∼_ ys zs ++⁻ ws xs ps = ++ˡ⁻ ws xs ps , ++ʳ⁻ ws xs ps ------------------------------------------------------------------------ -- concat module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where concat⁺ : ∀ {m n p q} {xss : Vec (Vec A m) n} {yss : Vec (Vec B p) q} → Pointwise (Pointwise _∼_) xss yss → Pointwise _∼_ (concat xss) (concat yss) concat⁺ [] = [] concat⁺ (xs∼ys ∷ ps) = ++⁺ xs∼ys (concat⁺ ps) concat⁻ : ∀ {m n} (xss : Vec (Vec A m) n) (yss : Vec (Vec B m) n) → Pointwise _∼_ (concat xss) (concat yss) → Pointwise (Pointwise _∼_) xss yss concat⁻ [] [] [] = [] concat⁻ (xs ∷ xss) (ys ∷ yss) ps = ++ˡ⁻ xs ys ps ∷ concat⁻ xss yss (++ʳ⁻ xs ys ps) ------------------------------------------------------------------------ -- tabulate module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → (∀ i → f i ∼ g i) → Pointwise _∼_ (tabulate f) (tabulate g) tabulate⁺ {zero} f∼g = [] tabulate⁺ {suc n} f∼g = f∼g zero ∷ tabulate⁺ (f∼g ∘ suc) tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → Pointwise _∼_ (tabulate f) (tabulate g) → (∀ i → f i ∼ g i) tabulate⁻ (f₀∼g₀ ∷ _) zero = f₀∼g₀ tabulate⁻ (_ ∷ f∼g) (suc i) = tabulate⁻ f∼g i ------------------------------------------------------------------------ -- Degenerate pointwise relations module _ {a b ℓ} {A : Set a} {B : Set b} {P : A → Set ℓ} where Pointwiseˡ⇒All : ∀ {m n} {xs : Vec A m} {ys : Vec B n} → Pointwise (λ x y → P x) xs ys → All P xs Pointwiseˡ⇒All [] = [] Pointwiseˡ⇒All (p ∷ ps) = p ∷ Pointwiseˡ⇒All ps Pointwiseʳ⇒All : ∀ {n} {xs : Vec B n} {ys : Vec A n} → Pointwise (λ x y → P y) xs ys → All P ys Pointwiseʳ⇒All [] = [] Pointwiseʳ⇒All (p ∷ ps) = p ∷ Pointwiseʳ⇒All ps All⇒Pointwiseˡ : ∀ {n} {xs : Vec A n} {ys : Vec B n} → All P xs → Pointwise (λ x y → P x) xs ys All⇒Pointwiseˡ {ys = []} [] = [] All⇒Pointwiseˡ {ys = _ ∷ _} (p ∷ ps) = p ∷ All⇒Pointwiseˡ ps All⇒Pointwiseʳ : ∀ {n} {xs : Vec B n} {ys : Vec A n} → All P ys → Pointwise (λ x y → P y) xs ys All⇒Pointwiseʳ {xs = []} [] = [] All⇒Pointwiseʳ {xs = _ ∷ _} (p ∷ ps) = p ∷ All⇒Pointwiseʳ ps ------------------------------------------------------------------------ -- Pointwise _≡_ is equivalent to _≡_ module _ {a} {A : Set a} where Pointwise-≡⇒≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys → xs ≡ ys Pointwise-≡⇒≡ [] = P.refl Pointwise-≡⇒≡ (P.refl ∷ xs∼ys) = P.cong (_ ∷_) (Pointwise-≡⇒≡ xs∼ys) ≡⇒Pointwise-≡ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → Pointwise _≡_ xs ys ≡⇒Pointwise-≡ P.refl = refl P.refl Pointwise-≡↔≡ : ∀ {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys ⇔ xs ≡ ys Pointwise-≡↔≡ = equivalence Pointwise-≡⇒≡ ≡⇒Pointwise-≡ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 Pointwise-≡ = Pointwise-≡↔≡ {-# WARNING_ON_USAGE Pointwise-≡ "Warning: Pointwise-≡ was deprecated in v0.15. Please use Pointwise-≡↔≡ instead." #-}
{ "alphanum_fraction": 0.4491184658, "avg_line_length": 37.1609195402, "ext": "agda", "hexsha": "754999393f68c90fdfcf6ee508e9c640334d56c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Inductive.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Pointwise/Inductive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3858, "size": 9699 }
module map-++-distribute where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import lists using (List; []; _∷_; _++_; map) -- リストの結合に関するmapの分配法則の証明 map-++-distribute : {A B : Set} → (f : A → B) → (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-distribute f [] ys = begin map f ([] ++ ys) ≡⟨⟩ map f ys ≡⟨⟩ map f [] ++ map f ys ∎ map-++-distribute f (x ∷ xs) ys = begin map f ((x ∷ xs) ++ ys) ≡⟨⟩ f x ∷ map f (xs ++ ys) ≡⟨ cong (f x ∷_) (map-++-distribute f xs ys) ⟩ f x ∷ map f xs ++ map f ys ≡⟨⟩ map f (x ∷ xs) ++ map f ys ∎
{ "alphanum_fraction": 0.5267175573, "avg_line_length": 22.5862068966, "ext": "agda", "hexsha": "fe56b00ced79c4a2a5fe6271f61e97095f15a3c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/map-++-distribute.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/map-++-distribute.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/map-++-distribute.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 292, "size": 655 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Floats ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Float where open import Data.String.Base using (String) ------------------------------------------------------------------------ -- Re-export built-ins publically open import Agda.Builtin.Float public using ( Float ; primFloatEquality ; primShowFloat ) ------------------------------------------------------------------------ -- Operations show : Float → String show = primShowFloat
{ "alphanum_fraction": 0.3811023622, "avg_line_length": 22.6785714286, "ext": "agda", "hexsha": "d52733a5b127f2fcf66cec5c5b8b578233cc49c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Float.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Float.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 95, "size": 635 }
{- This file contains: - Properties of set truncations -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetTruncation.Properties where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim) hiding (elim2 ; elim3 ; rec2 ; map) private variable ℓ ℓ' ℓ'' : Level A B C D : Type ℓ rec : isSet B → (A → B) → ∥ A ∥₂ → B rec Bset f ∣ x ∣₂ = f x rec Bset f (squash₂ x y p q i j) = Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j rec2 Cset f (squash₂ x y p q i j) z = Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j -- Old version: -- rec2 Cset f = rec (isSetΠ λ _ → Cset) λ x → rec Cset (f x) -- lemma 6.9.1 in HoTT book elim : {B : ∥ A ∥₂ → Type ℓ} (Bset : (x : ∥ A ∥₂) → isSet (B x)) (f : (a : A) → B (∣ a ∣₂)) (x : ∥ A ∥₂) → B x elim Bset f ∣ a ∣₂ = f a elim Bset f (squash₂ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset _ _ (cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ} (Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y))) (f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂) (x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _ (cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j elim2 Cset f (squash₂ x y p q i j) z = isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _ (cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j -- Old version: -- elim2 Cset f = elim (λ _ → isSetΠ (λ _ → Cset _ _)) -- (λ a → elim (λ _ → Cset _ _) (f a)) -- TODO: generalize elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ} (Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z))) (g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂) (x y z : ∥ A ∥₂) → B x y z elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _)) (λ a b → elim (λ _ → Bset _ _ _) (g a b)) -- the recursor for maps into groupoids following the "HIT proof" in: -- https://arxiv.org/abs/1507.01150 -- i.e. for any type A and groupoid B we can construct a map ∥ A ∥₂ → B -- from a map A → B satisfying the condition -- ∀ (a b : A) (p q : a ≡ b) → cong f p ≡ cong f q -- TODO: prove that this is an equivalence module rec→Gpd {A : Type ℓ} {B : Type ℓ'} (Bgpd : isGroupoid B) (f : A → B) (congFConst : ∀ (a b : A) (p q : a ≡ b) → cong f p ≡ cong f q) where data H : Type ℓ where η : A → H ε : ∀ (a b : A) → ∥ a ≡ b ∥ → η a ≡ η b -- prop. trunc. of a≡b δ : ∀ (a b : A) (p : a ≡ b) → ε a b ∣ p ∣ ≡ cong η p gtrunc : isGroupoid H -- write elimination principle for H module Helim {P : H → Type ℓ''} (Pgpd : ∀ h → isGroupoid (P h)) (η* : (a : A) → P (η a)) (ε* : ∀ (a b : A) (∣p∣ : ∥ a ≡ b ∥) → PathP (λ i → P (ε a b ∣p∣ i)) (η* a) (η* b)) (δ* : ∀ (a b : A) (p : a ≡ b) → PathP (λ i → PathP (λ j → P (δ a b p i j)) (η* a) (η* b)) (ε* a b ∣ p ∣) (cong η* p)) where fun : (h : H) → P h fun (η a) = η* a fun (ε a b ∣p∣ i) = ε* a b ∣p∣ i fun (δ a b p i j) = δ* a b p i j fun (gtrunc x y p q α β i j k) = isOfHLevel→isOfHLevelDep 3 Pgpd (fun x) (fun y) (cong fun p) (cong fun q) (cong (cong fun) α) (cong (cong fun) β) (gtrunc x y p q α β) i j k module Hrec {C : Type ℓ''} (Cgpd : isGroupoid C) (η* : A → C) (ε* : ∀ (a b : A) → ∥ a ≡ b ∥ → η* a ≡ η* b) (δ* : ∀ (a b : A) (p : a ≡ b) → ε* a b ∣ p ∣ ≡ cong η* p) where fun : H → C fun (η a) = η* a fun (ε a b ∣p∣ i) = ε* a b ∣p∣ i fun (δ a b p i j) = δ* a b p i j fun (gtrunc x y p q α β i j k) = Cgpd (fun x) (fun y) (cong fun p) (cong fun q) (cong (cong fun) α) (cong (cong fun) β) i j k module HelimProp {P : H → Type ℓ''} (Pprop : ∀ h → isProp (P h)) (η* : (a : A) → P (η a)) where fun : ∀ h → P h fun = Helim.fun (λ _ → isSet→isGroupoid (isProp→isSet (Pprop _))) η* (λ a b ∣p∣ → isOfHLevel→isOfHLevelDep 1 Pprop _ _ (ε a b ∣p∣)) λ a b p → isOfHLevel→isOfHLevelDep 1 {B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)} (λ _ → isOfHLevelPathP 1 (Pprop _) _ _) _ _ (δ a b p) -- The main trick: eliminating into hsets is easy -- i.e. H has the universal property of set truncation... module HelimSet {P : H → Type ℓ''} (Pset : ∀ h → isSet (P h)) (η* : ∀ a → P (η a)) where fun : (h : H) → P h fun = Helim.fun (λ _ → isSet→isGroupoid (Pset _)) η* ε* λ a b p → isOfHLevel→isOfHLevelDep 1 {B = λ p → PathP (λ i → P (p i)) (η* a) (η* b)} (λ _ → isOfHLevelPathP' 1 (Pset _) _ _) _ _ (δ a b p) where ε* : (a b : A) (∣p∣ : ∥ a ≡ b ∥) → PathP (λ i → P (ε a b ∣p∣ i)) (η* a) (η* b) ε* a b = pElim (λ _ → isOfHLevelPathP' 1 (Pset _) (η* a) (η* b)) λ p → subst (λ x → PathP (λ i → P (x i)) (η* a) (η* b)) (sym (δ a b p)) (cong η* p) -- Now we need to prove that H is a set. -- We start with a little lemma: localHedbergLemma : {X : Type ℓ''} (P : X → Type ℓ'') → (∀ x → isProp (P x)) → ((x : X) → P x → (y : X) → P y → x ≡ y) -------------------------------------------------- → (x : X) → P x → (y : X) → isProp (x ≡ y) localHedbergLemma {X = X} P Pprop P→≡ x px y = isPropRetract (λ p → subst P p px) (λ py → sym (P→≡ x px x px) ∙ P→≡ x px y py) isRetract (Pprop y) where isRetract : (p : x ≡ y) → (sym (P→≡ x px x px)) ∙ P→≡ x px y (subst P p px) ≡ p isRetract = J (λ y' p' → (sym (P→≡ x px x px)) ∙ P→≡ x px y' (subst P p' px) ≡ p') (subst (λ px' → sym (P→≡ x px x px) ∙ P→≡ x px x px' ≡ refl) (sym (substRefl {B = P} px)) (lCancel (P→≡ x px x px))) Hset : isSet H Hset = HelimProp.fun (λ _ → isPropΠ λ _ → isPropIsProp) baseCaseLeft where baseCaseLeft : (a₀ : A) (y : H) → isProp (η a₀ ≡ y) baseCaseLeft a₀ = localHedbergLemma (λ x → Q x .fst) (λ x → Q x .snd) Q→≡ _ ∣ refl ∣ where Q : H → hProp ℓ Q = HelimSet.fun (λ _ → isSetHProp) λ b → ∥ a₀ ≡ b ∥ , propTruncIsProp -- Q (η b) = ∥ a ≡ b ∥ Q→≡ : (x : H) → Q x .fst → (y : H) → Q y .fst → x ≡ y Q→≡ = HelimSet.fun (λ _ → isSetΠ3 λ _ _ _ → gtrunc _ _) λ a p → HelimSet.fun (λ _ → isSetΠ λ _ → gtrunc _ _) λ b q → sym (ε a₀ a p) ∙ ε a₀ b q -- our desired function will split through H, -- i.e. we get a function ∥ A ∥₂ → H → B fun : ∥ A ∥₂ → B fun = f₁ ∘ f₂ where f₁ : H → B f₁ = Hrec.fun Bgpd f εᶠ λ _ _ _ → refl where εᶠ : (a b : A) → ∥ a ≡ b ∥ → f a ≡ f b εᶠ a b = rec→Set (Bgpd _ _) (cong f) λ p q → congFConst a b p q -- this is the inductive step, -- we use that maps ∥ A ∥ → B for an hset B -- correspond to 2-Constant maps A → B (which cong f is by assumption) f₂ : ∥ A ∥₂ → H f₂ = rec Hset η map : (A → B) → ∥ A ∥₂ → ∥ B ∥₂ map f = rec squash₂ λ x → ∣ f x ∣₂ setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B) setTruncUniversal {B = B} Bset = isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv) where rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f rinv f i x = elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x))) (λ _ → refl) x i setTruncIsSet : isSet ∥ A ∥₂ setTruncIsSet a b p q = squash₂ a b p q setTruncIdempotentIso : isSet A → Iso ∥ A ∥₂ A Iso.fun (setTruncIdempotentIso hA) = rec hA (idfun _) Iso.inv (setTruncIdempotentIso hA) x = ∣ x ∣₂ Iso.rightInv (setTruncIdempotentIso hA) _ = refl Iso.leftInv (setTruncIdempotentIso hA) = elim (λ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ → refl) setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A setTruncIdempotent≃ {A = A} hA = isoToEquiv (setTruncIdempotentIso hA) setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A setTruncIdempotent hA = ua (setTruncIdempotent≃ hA) isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂) isContr→isContrSetTrunc contr = ∣ fst contr ∣₂ , elim (λ _ → isOfHLevelPath 2 (setTruncIsSet) _ _) λ a → cong ∣_∣₂ (snd contr a) setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂ Iso.fun (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.fun is x ∣₂) Iso.inv (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.inv is x ∣₂) Iso.rightInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.rightInv is a) Iso.leftInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.leftInv is a) setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ setSigmaIso {A = A} {B = B} = iso fun funinv sect retr where {- writing it out explicitly to avoid yellow highlighting -} fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ fun = rec setTruncIsSet λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂} funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂ funinv = rec setTruncIsSet (λ {(a , p) → rec setTruncIsSet (λ p → ∣ a , p ∣₂) p}) sect : section fun funinv sect = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂} (λ p → isOfHLevelPath 2 setTruncIsSet _ _) (λ _ → refl) p } retr : retract fun funinv retr = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { _ → refl } sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'} (Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x)) (g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b)) (x : Σ ∥ A ∥₂ B) → C x sigmaElim {B = B} {C = C} set g (x , y) = elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'} (Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x)) (g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c)) (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) = elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)} (λ _ → isSetΠ λ _ → isSetΠ λ _ → set _) (λ x → elim (λ _ → isSetΠ λ _ → set _) (g x)) x y c prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x)) → ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂)) → (x : ∥ A ∥₂ × ∥ B ∥₂) → C x prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C prodRec setC f (a , b) = rec2 setC f a b prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y)) → ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂)) → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y)) prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _) λ a b → prodElim (λ _ → isset _ _) λ c d → f a b c d setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂) Iso.fun setTruncOfProdIso = rec (isSet× setTruncIsSet setTruncIsSet) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ } Iso.inv setTruncOfProdIso = prodRec setTruncIsSet λ a b → ∣ a , b ∣₂ Iso.rightInv setTruncOfProdIso = prodElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl Iso.leftInv setTruncOfProdIso = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(a , b) → refl} IsoSetTruncateSndΣ : {A : Type ℓ} {B : A → Type ℓ'} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ Iso.fun IsoSetTruncateSndΣ = map λ a → (fst a) , ∣ snd a ∣₂ Iso.inv IsoSetTruncateSndΣ = rec setTruncIsSet (uncurry λ x → map λ b → x , b) Iso.rightInv IsoSetTruncateSndΣ = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry λ a → elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ _ → refl) Iso.leftInv IsoSetTruncateSndΣ = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ _ → refl PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥ Iso.fun (PathIdTrunc₀Iso {b = b}) p = transport (λ i → rec {B = TypeOfHLevel _ 1} (isOfHLevelTypeOfHLevel 1) (λ a → ∥ a ≡ b ∥ , squash) (p (~ i)) .fst) ∣ refl ∣ Iso.inv PathIdTrunc₀Iso = pRec (squash₂ _ _) (cong ∣_∣₂) Iso.rightInv PathIdTrunc₀Iso _ = squash _ _ Iso.leftInv PathIdTrunc₀Iso _ = squash₂ _ _ _ _
{ "alphanum_fraction": 0.4920115925, "avg_line_length": 42.053125, "ext": "agda", "hexsha": "b6478557d14a3bd39c666ba3fc7099f7d68daf13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/SetTruncation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5904, "size": 13457 }
{- Finite Structures over Finite Set In short, the type of structures should be finite set itself. This file contains: - Definition and properties of finite sets equipped with finite structures; - The type of finitely-structured finite sets is Rijke finite, so that we can count their number up to equivalence/isomorphism. -} {-# OPTIONS --safe #-} module Cubical.Data.FinType.FiniteStructure where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.FinSet open import Cubical.Data.FinSet.Induction open import Cubical.Data.FinSet.Cardinality open import Cubical.Data.FinType open import Cubical.Data.FinType.Sigma private variable ℓ ℓ' : Level n : ℕ S : FinSet ℓ → FinSet ℓ' -- type of finite sets with finite structure FinSetWithStr : (S : FinSet ℓ → FinSet ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') FinSetWithStr {ℓ = ℓ} S = Σ[ X ∈ FinSet ℓ ] S X .fst -- type of finite sets with a fixed cardinal FinSetOfCard : (ℓ : Level) (n : ℕ) → Type (ℓ-suc ℓ) FinSetOfCard ℓ n = Σ[ X ∈ FinSet ℓ ] (card X ≡ n) FinSetWithStrOfCard : (S : FinSet ℓ → FinSet ℓ') (n : ℕ) → Type (ℓ-max (ℓ-suc ℓ) ℓ') FinSetWithStrOfCard {ℓ = ℓ} S n = Σ[ X ∈ FinSetOfCard ℓ n ] S (X .fst) .fst FinSetOfCard≡ : (X Y : FinSetOfCard ℓ n) → (X .fst ≡ Y .fst) ≃ (X ≡ Y) FinSetOfCard≡ _ _ = Σ≡PropEquiv (λ _ → isSetℕ _ _) open Iso ∥FinSetOfCard∥₂≡ : (X Y : FinSetOfCard ℓ n) → ∥ X .fst ≡ Y .fst ∥ → ∣ X ∣₂ ≡ ∣ Y ∣₂ ∥FinSetOfCard∥₂≡ _ _ = Prop.rec (squash₂ _ _) (λ p → PathIdTrunc₀Iso .inv ∣ FinSetOfCard≡ _ _ .fst p ∣) isPathConnectedFinSetOfCard : isContr ∥ FinSetOfCard ℓ n ∥₂ isPathConnectedFinSetOfCard {n = n} .fst = ∣ 𝔽in n , card𝔽in n ∣₂ isPathConnectedFinSetOfCard {n = n} .snd = Set.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ (X , p) → sym (∥FinSetOfCard∥₂≡ _ _ (card≡n p))) isFinTypeFinSetOfCard : isFinType 1 (FinSetOfCard ℓ n) isFinTypeFinSetOfCard .fst = isPathConnected→isFinType0 isPathConnectedFinSetOfCard isFinTypeFinSetOfCard .snd X Y = isFinSet→isFinType 0 (EquivPresIsFinSet (FinSet≡ _ _ ⋆ FinSetOfCard≡ _ _) (isFinSetType≡Eff (X .fst) (Y .fst))) -- the type of finitely-structured finite sets is Rijke finite -- in particular, we can count their number up to equivalence isFinTypeFinSetWithStrOfCard : (S : FinSet ℓ → FinSet ℓ') (n : ℕ) → isFinType 0 (FinSetWithStrOfCard S n) isFinTypeFinSetWithStrOfCard S n = isFinTypeΣ {n = 0} (_ , isFinTypeFinSetOfCard) (λ X → _ , isFinSet→isFinType 0 (S (X .fst) .snd))
{ "alphanum_fraction": 0.7130242826, "avg_line_length": 34.8461538462, "ext": "agda", "hexsha": "b34df802cd7f01efccbc37786fdc6bc6a43647e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinType/FiniteStructure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinType/FiniteStructure.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinType/FiniteStructure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1014, "size": 2718 }
open import List open import Nat open import Prelude open import contexts open import core module statics-core where open core public -- zippered form of types data ztyp : Set where ▹_◃ : htyp → ztyp _==>₁_ : ztyp → htyp → ztyp _==>₂_ : htyp → ztyp → ztyp _⊕₁_ : ztyp → htyp → ztyp _⊕₂_ : htyp → ztyp → ztyp _⊠₁_ : ztyp → htyp → ztyp _⊠₂_ : htyp → ztyp → ztyp -- zippered form of expressions data zexp : Set where ▹_◃ : hexp → zexp _·:₁_ : zexp → htyp → zexp _·:₂_ : hexp → ztyp → zexp ·λ : Nat → zexp → zexp ·λ_·[_]₁_ : Nat → ztyp → hexp → zexp ·λ_·[_]₂_ : Nat → htyp → zexp → zexp _∘₁_ : zexp → hexp → zexp _∘₂_ : hexp → zexp → zexp _·+₁_ : zexp → hexp → zexp _·+₂_ : hexp → zexp → zexp ⦇⌜_⌟⦈[_] : zexp → Nat → zexp inl : zexp → zexp inr : zexp → zexp case₁ : zexp → Nat → hexp → Nat → hexp → zexp case₂ : hexp → Nat → zexp → Nat → hexp → zexp case₃ : hexp → Nat → hexp → Nat → zexp → zexp ⟨_,_⟩₁ : zexp → hexp → zexp ⟨_,_⟩₂ : hexp → zexp → zexp fst : zexp → zexp snd : zexp → zexp -- erasure of cursor for types and expressions, judgementally. see -- jugemental-erase.agda for an argument that this defines an isomorphic -- object to the direct metafunction provided in the text of the paper data erase-t : ztyp → htyp → Set where ETTop : ∀{t} → erase-t (▹ t ◃) t ETArrL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ==>₁ t2) (t1' ==> t2) ETArrR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ==>₂ t2) (t1 ==> t2') ETPlusL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ⊕₁ t2) (t1' ⊕ t2) ETPlusR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ⊕₂ t2) (t1 ⊕ t2') ETProdL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ⊠₁ t2) (t1' ⊠ t2) ETProdR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ⊠₂ t2) (t1 ⊠ t2') data erase-e : zexp → hexp → Set where EETop : ∀{x} → erase-e (▹ x ◃) x EEPlusL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ·+₁ e2) (e1' ·+ e2) EEPlusR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ·+₂ e2) (e1 ·+ e2') EEAscL : ∀{e e' t} → erase-e e e' → erase-e (e ·:₁ t) (e' ·: t) EEAscR : ∀{e t t'} → erase-t t t' → erase-e (e ·:₂ t) (e ·: t') EELam : ∀{x e e'} → erase-e e e' → erase-e (·λ x e) (·λ x e') EEHalfLamL : ∀{x e t t'} → erase-t t t' → erase-e (·λ x ·[ t ]₁ e) (·λ x ·[ t' ] e) EEHalfLamR : ∀{x e e' t} → erase-e e e' → erase-e (·λ x ·[ t ]₂ e) (·λ x ·[ t ] e') EEApL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ∘₁ e2) (e1' ∘ e2) EEApR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ∘₂ e2) (e1 ∘ e2') EEInl : ∀{e e'} → erase-e e e' → erase-e (inl e) (inl e') EEInr : ∀{e e'} → erase-e e e' → erase-e (inr e) (inr e') EECase1 : ∀{e e' x e1 y e2} → erase-e e e' → erase-e (case₁ e x e1 y e2) (case e' x e1 y e2) EECase2 : ∀{e x e1 e1' y e2} → erase-e e1 e1' → erase-e (case₂ e x e1 y e2) (case e x e1' y e2) EECase3 : ∀{e x e1 y e2 e2'} → erase-e e2 e2' → erase-e (case₃ e x e1 y e2) (case e x e1 y e2') EEPairL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e ⟨ e1 , e2 ⟩₁ ⟨ e1' , e2 ⟩ EEPairR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e ⟨ e1 , e2 ⟩₂ ⟨ e1 , e2' ⟩ EEFst : ∀{e e'} → erase-e e e' → erase-e (fst e) (fst e') EESnd : ∀{e e'} → erase-e e e' → erase-e (snd e) (snd e') EENEHole : ∀{e e' u} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈[ u ] ⦇⌜ e' ⌟⦈[ u ] -- the three grammars that define actions data direction : Set where child : Nat → direction parent : direction -- in contrast to the POPL 2017 hazelnut paper, we include named holes in static -- semantics since they are required by the dynamic semantics. a given action -- may introduce a different number of holes depending on the context it is -- applied in, so the action must always supply enough names for every location -- in the term where a hole could occur. moreover, care must be taken to have -- the same hole names always correspond to the same hole locations. for example, -- when we show that each derivation has an equivalently subsumption-minimal -- derivation, this is needed to guarentee the same action (which includes hole names) -- can be used in the minimal derivation. data shape : Set where arrow : shape num : shape asc : shape var : Nat → Nat → shape lam : Nat → Nat → Nat → shape ap : Nat → Nat → shape numlit : Nat → Nat → shape plus : Nat → Nat → shape nehole : Nat → shape sum : shape inl : Nat → Nat → shape inr : Nat → Nat → shape case : Nat → Nat → Nat → Nat → Nat → shape prod : shape pair : Nat → Nat → shape fst : Nat → shape snd : Nat → shape data action : Set where move : direction → action construct : shape → action del : Nat → action finish : action -- type actions data _+_+>_ : (t : ztyp) → (α : action) → (t' : ztyp) → Set where TMArrChild1 : {t1 t2 : htyp} → ▹ t1 ==> t2 ◃ + move (child 1) +> (▹ t1 ◃ ==>₁ t2) TMArrChild2 : {t1 t2 : htyp} → ▹ t1 ==> t2 ◃ + move (child 2) +> (t1 ==>₂ ▹ t2 ◃) TMArrParent1 : {t1 t2 : htyp} → (▹ t1 ◃ ==>₁ t2) + move parent +> ▹ t1 ==> t2 ◃ TMArrParent2 : {t1 t2 : htyp} → (t1 ==>₂ ▹ t2 ◃) + move parent +> ▹ t1 ==> t2 ◃ TMPlusChild1 : {t1 t2 : htyp} → ▹ t1 ⊕ t2 ◃ + move (child 1) +> (▹ t1 ◃ ⊕₁ t2) TMPlusChild2 : {t1 t2 : htyp} → ▹ t1 ⊕ t2 ◃ + move (child 2) +> (t1 ⊕₂ ▹ t2 ◃) TMPlusParent1 : {t1 t2 : htyp} → (▹ t1 ◃ ⊕₁ t2) + move parent +> ▹ t1 ⊕ t2 ◃ TMPlusParent2 : {t1 t2 : htyp} → (t1 ⊕₂ ▹ t2 ◃) + move parent +> ▹ t1 ⊕ t2 ◃ TMProdChild1 : {t1 t2 : htyp} → ▹ t1 ⊠ t2 ◃ + move (child 1) +> (▹ t1 ◃ ⊠₁ t2) TMProdChild2 : {t1 t2 : htyp} → ▹ t1 ⊠ t2 ◃ + move (child 2) +> (t1 ⊠₂ ▹ t2 ◃) TMProdParent1 : {t1 t2 : htyp} → (▹ t1 ◃ ⊠₁ t2) + move parent +> ▹ t1 ⊠ t2 ◃ TMProdParent2 : {t1 t2 : htyp} → (t1 ⊠₂ ▹ t2 ◃) + move parent +> ▹ t1 ⊠ t2 ◃ TMDel : {t : htyp} {u : Nat} → (▹ t ◃) + del u +> (▹ ⦇-⦈ ◃) TMConArrow : {t : htyp} → (▹ t ◃) + construct arrow +> (t ==>₂ ▹ ⦇-⦈ ◃) TMConPlus : {t : htyp} → (▹ t ◃) + construct sum +> (t ⊕₂ ▹ ⦇-⦈ ◃) TMConProd : {t : htyp} → (▹ t ◃) + construct prod +> (t ⊠₂ ▹ ⦇-⦈ ◃) TMConNum : (▹ ⦇-⦈ ◃) + construct num +> (▹ num ◃) TMArrZip1 : {t1 t1' : ztyp} {t2 : htyp} {α : action} → (t1 + α +> t1') → ((t1 ==>₁ t2) + α +> (t1' ==>₁ t2)) TMArrZip2 : {t2 t2' : ztyp} {t1 : htyp} {α : action} → (t2 + α +> t2') → ((t1 ==>₂ t2) + α +> (t1 ==>₂ t2')) TMPlusZip1 : {t1 t1' : ztyp} {t2 : htyp} {α : action} → (t1 + α +> t1') → ((t1 ⊕₁ t2) + α +> (t1' ⊕₁ t2)) TMPlusZip2 : {t2 t2' : ztyp} {t1 : htyp} {α : action} → (t2 + α +> t2') → ((t1 ⊕₂ t2) + α +> (t1 ⊕₂ t2')) TMProdZip1 : {t1 t1' : ztyp} {t2 : htyp} {α : action} → (t1 + α +> t1') → ((t1 ⊠₁ t2) + α +> (t1' ⊠₁ t2)) TMProdZip2 : {t2 t2' : ztyp} {t1 : htyp} {α : action} → (t2 + α +> t2') → ((t1 ⊠₂ t2) + α +> (t1 ⊠₂ t2')) -- expression movement data _+_+>e_ : (e : zexp) → (α : action) → (e' : zexp) → Set where EMPlusChild1 : {e1 e2 : hexp} → (▹ e1 ·+ e2 ◃) + move (child 1) +>e (▹ e1 ◃ ·+₁ e2) EMPlusChild2 : {e1 e2 : hexp} → (▹ e1 ·+ e2 ◃) + move (child 2) +>e (e1 ·+₂ ▹ e2 ◃) EMPlusParent1 : {e1 e2 : hexp} → (▹ e1 ◃ ·+₁ e2) + move parent +>e (▹ e1 ·+ e2 ◃) EMPlusParent2 : {e1 e2 : hexp} → (e1 ·+₂ ▹ e2 ◃) + move parent +>e (▹ e1 ·+ e2 ◃) EMAscChild1 : {e : hexp} {t : htyp} → (▹ e ·: t ◃) + move (child 1) +>e (▹ e ◃ ·:₁ t) EMAscChild2 : {e : hexp} {t : htyp} → (▹ e ·: t ◃) + move (child 2) +>e (e ·:₂ ▹ t ◃) EMAscParent1 : {e : hexp} {t : htyp} → (▹ e ◃ ·:₁ t) + move parent +>e (▹ e ·: t ◃) EMAscParent2 : {e : hexp} {t : htyp} → (e ·:₂ ▹ t ◃) + move parent +>e (▹ e ·: t ◃) EMLamChild1 : {e : hexp} {x : Nat} → ▹ (·λ x e) ◃ + move (child 1) +>e ·λ x (▹ e ◃) EMLamParent : {e : hexp} {x : Nat} → ·λ x (▹ e ◃) + move parent +>e ▹ (·λ x e) ◃ EMHalfLamChild1 : {e : hexp} {t : htyp} {x : Nat} → ▹ (·λ x ·[ t ] e) ◃ + move (child 1) +>e (·λ x ·[ ▹ t ◃ ]₁ e) EMHalfLamChild2 : {e : hexp} {t : htyp} {x : Nat} → ▹ (·λ x ·[ t ] e) ◃ + move (child 2) +>e (·λ x ·[ t ]₂ ▹ e ◃) EMHalfLamParent1 : {e : hexp} {t : htyp} {x : Nat} → (·λ x ·[ ▹ t ◃ ]₁ e) + move parent +>e ▹ (·λ x ·[ t ] e) ◃ EMHalfLamParent2 : {e : hexp} {t : htyp} {x : Nat} → (·λ x ·[ t ]₂ ▹ e ◃) + move parent +>e ▹ (·λ x ·[ t ] e) ◃ EMApChild1 : {e1 e2 : hexp} → (▹ e1 ∘ e2 ◃) + move (child 1)+>e (▹ e1 ◃ ∘₁ e2) EMApChild2 : {e1 e2 : hexp} → (▹ e1 ∘ e2 ◃) + move (child 2) +>e (e1 ∘₂ ▹ e2 ◃) EMApParent1 : {e1 e2 : hexp} → (▹ e1 ◃ ∘₁ e2) + move parent +>e (▹ e1 ∘ e2 ◃) EMApParent2 : {e1 e2 : hexp} → (e1 ∘₂ ▹ e2 ◃) + move parent +>e (▹ e1 ∘ e2 ◃) EMInlChild1 : {e : hexp} → ▹ inl e ◃ + move (child 1) +>e inl ▹ e ◃ EMInlParent : {e : hexp} → inl ▹ e ◃ + move parent +>e ▹ inl e ◃ EMInrChild1 : {e : hexp} → ▹ inr e ◃ + move (child 1) +>e inr ▹ e ◃ EMInrParent : {e : hexp} → inr ▹ e ◃ + move parent +>e ▹ inr e ◃ EMCaseParent1 : {e e1 e2 : hexp} {x y : Nat} → case₁ ▹ e ◃ x e1 y e2 + move parent +>e ▹ case e x e1 y e2 ◃ EMCaseParent2 : {e e1 e2 : hexp} {x y : Nat} → case₂ e x ▹ e1 ◃ y e2 + move parent +>e ▹ case e x e1 y e2 ◃ EMCaseParent3 : {e e1 e2 : hexp} {x y : Nat} → case₃ e x e1 y ▹ e2 ◃ + move parent +>e ▹ case e x e1 y e2 ◃ EMCaseChild1 : {e e1 e2 : hexp} {x y : Nat} → ▹ case e x e1 y e2 ◃ + move (child 1) +>e case₁ ▹ e ◃ x e1 y e2 EMCaseChild2 : {e e1 e2 : hexp} {x y : Nat} → ▹ case e x e1 y e2 ◃ + move (child 2) +>e case₂ e x ▹ e1 ◃ y e2 EMCaseChild3 : {e e1 e2 : hexp} {x y : Nat} → ▹ case e x e1 y e2 ◃ + move (child 3) +>e case₃ e x e1 y ▹ e2 ◃ EMPairChild1 : {e1 e2 : hexp} → (▹ ⟨ e1 , e2 ⟩ ◃) + move (child 1)+>e ⟨ ▹ e1 ◃ , e2 ⟩₁ EMPairChild2 : {e1 e2 : hexp} → (▹ ⟨ e1 , e2 ⟩ ◃) + move (child 2) +>e ⟨ e1 , ▹ e2 ◃ ⟩₂ EMPairParent1 : {e1 e2 : hexp} → ( ⟨ ▹ e1 ◃ , e2 ⟩₁ ) + move parent +>e (▹ ⟨ e1 , e2 ⟩ ◃) EMPairParent2 : {e1 e2 : hexp} → ( ⟨ e1 , ▹ e2 ◃ ⟩₂ ) + move parent +>e (▹ ⟨ e1 , e2 ⟩ ◃) EMFstChild1 : {e : hexp} → ▹ fst e ◃ + move (child 1) +>e fst ▹ e ◃ EMFstParent : {e : hexp} → fst ▹ e ◃ + move parent +>e ▹ fst e ◃ EMSndChild1 : {e : hexp} → ▹ snd e ◃ + move (child 1) +>e snd ▹ e ◃ EMSndParent : {e : hexp} → snd ▹ e ◃ + move parent +>e ▹ snd e ◃ EMNEHoleChild1 : {e : hexp} {u : Nat} → (▹ ⦇⌜ e ⌟⦈[ u ] ◃) + move (child 1) +>e ⦇⌜ ▹ e ◃ ⌟⦈[ u ] EMNEHoleParent : {e : hexp} {u : Nat} → ⦇⌜ ▹ e ◃ ⌟⦈[ u ] + move parent +>e (▹ ⦇⌜ e ⌟⦈[ u ] ◃) mutual -- synthetic action expressions. data _⊢_=>_~_~>_=>_ : (Γ : tctx) → (e1 : zexp) → (t1 : htyp) → (α : action) → (e2 : zexp) → (t2 : htyp) → Set where SAFinish : {Γ : tctx} {e : hexp} {t : htyp} {u : Nat} → Γ ⊢ e => t → Γ ⊢ ▹ ⦇⌜ e ⌟⦈[ u ] ◃ => ⦇-⦈ ~ finish ~> ▹ e ◃ => t SAMove : {δ : direction} {e e' : zexp} {Γ : tctx} {t : htyp} → e + move δ +>e e' → Γ ⊢ e => t ~ move δ ~> e' => t SADel : {Γ : tctx} {e : hexp} {t : htyp} {u : Nat} → Γ ⊢ ▹ e ◃ => t ~ del u ~> ▹ ⦇-⦈[ u ] ◃ => ⦇-⦈ SAConNumlit : {Γ : tctx} {n : Nat} {u u1 : Nat} → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => ⦇-⦈ ~ construct (numlit n u1) ~> ▹ N n ◃ => num SAConPlus1 : {Γ : tctx} {e : hexp} {t : htyp} {u1 u2 : Nat} → t ~ num → Γ ⊢ ▹ e ◃ => t ~ construct (plus u1 u2) ~> e ·+₂ ▹ ⦇-⦈[ u2 ] ◃ => num SAConPlus2 : {Γ : tctx} {e : hexp} {t : htyp} {u1 u2 : Nat} → t ~̸ num → Γ ⊢ ▹ e ◃ => t ~ construct (plus u1 u2) ~> ⦇⌜ e ⌟⦈[ u1 ] ·+₂ ▹ ⦇-⦈[ u2 ] ◃ => num SAConAsc : {Γ : tctx} {e : hexp} {t : htyp} → Γ ⊢ ▹ e ◃ => t ~ construct asc ~> (e ·:₂ ▹ t ◃ ) => t SAConVar : {Γ : tctx} {x : Nat} {t : htyp} {u u1 : Nat} → (x , t) ∈ Γ → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => ⦇-⦈ ~ construct (var x u1) ~> ▹ X x ◃ => t SAConLam : {Γ : tctx} {x : Nat} {u u1 u2 : Nat} → x # Γ → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => ⦇-⦈ ~ construct (lam x u1 u2) ~> (·λ x ·[ ▹ ⦇-⦈ ◃ ]₁ ⦇-⦈[ u2 ]) => (⦇-⦈ ==> ⦇-⦈) SAConApArr : {Γ : tctx} {t t1 t2 : htyp} {e : hexp} {u1 u2 : Nat} → t ▸arr (t1 ==> t2) → Γ ⊢ ▹ e ◃ => t ~ construct (ap u1 u2) ~> e ∘₂ ▹ ⦇-⦈[ u2 ] ◃ => t2 SAConApOtw : {Γ : tctx} {t : htyp} {e : hexp} {u1 u2 : Nat} → t ~̸ (⦇-⦈ ==> ⦇-⦈) → Γ ⊢ ▹ e ◃ => t ~ construct (ap u1 u2) ~> ⦇⌜ e ⌟⦈[ u1 ] ∘₂ ▹ ⦇-⦈[ u2 ] ◃ => ⦇-⦈ SAConInl : {Γ : tctx} {t : htyp} {u u1 u2 : Nat} → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => t ~ construct (inl u1 u2) ~> inl (⦇-⦈[ u2 ]) ·:₂ (▹ ⦇-⦈ ◃ ⊕₁ ⦇-⦈) => (⦇-⦈ ⊕ ⦇-⦈) SAConInr : {Γ : tctx} {t : htyp} {u u1 u2 : Nat} → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => t ~ construct (inr u1 u2) ~> inr (⦇-⦈[ u2 ]) ·:₂ (⦇-⦈ ⊕₂ ▹ ⦇-⦈ ◃) => (⦇-⦈ ⊕ ⦇-⦈) SAConCase1 : {Γ : tctx} {x y : Nat} {t t1 t2 : htyp} {e : hexp} {u1 u2 u3 : Nat} → x # Γ → y # Γ → t ▸sum (t1 ⊕ t2) → Γ ⊢ ▹ e ◃ => t ~ construct (case x y u1 u2 u3) ~> (case₂ e x (▹ ⦇-⦈[ u2 ] ◃) y ⦇-⦈[ u3 ]) ·:₁ ⦇-⦈ => ⦇-⦈ SAConCase2 : {Γ : tctx} {x y : Nat} {t : htyp} {e : hexp} → {u1 u2 u3 : Nat} → x # Γ → y # Γ → t ~̸ (⦇-⦈ ⊕ ⦇-⦈) → Γ ⊢ ▹ e ◃ => t ~ construct (case x y u1 u2 u3) ~> (case₁ (⦇⌜ ▹ e ◃ ⌟⦈[ u1 ]) x ⦇-⦈[ u2 ] y ⦇-⦈[ u3 ]) ·:₁ ⦇-⦈ => ⦇-⦈ SAConPair : {Γ : tctx} {t : htyp} {u u1 u2 : Nat} → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ => t ~ construct (pair u1 u2) ~> ⟨ ▹ ⦇-⦈[ u1 ] ◃ , ⦇-⦈[ u2 ] ⟩₁ => (⦇-⦈ ⊠ ⦇-⦈) SAConFst1 : {Γ : tctx} {t t1 t2 : htyp} {e : hexp} {u : Nat} → t ▸prod (t1 ⊠ t2) → Γ ⊢ ▹ e ◃ => t ~ construct (fst u) ~> ▹ fst e ◃ => t1 SAConFst2 : {Γ : tctx} {t : htyp} {e : hexp} {u : Nat} → t ~̸ (⦇-⦈ ⊠ ⦇-⦈) → Γ ⊢ ▹ e ◃ => t ~ construct (fst u) ~> fst ⦇⌜ ▹ e ◃ ⌟⦈[ u ] => ⦇-⦈ SAConSnd1 : {Γ : tctx} {t t1 t2 : htyp} {e : hexp} {u : Nat} → t ▸prod (t1 ⊠ t2) → Γ ⊢ ▹ e ◃ => t ~ construct (snd u) ~> ▹ snd e ◃ => t2 SAConSnd2 : {Γ : tctx} {t : htyp} {e : hexp} {u : Nat} → t ~̸ (⦇-⦈ ⊠ ⦇-⦈) → Γ ⊢ ▹ e ◃ => t ~ construct (snd u) ~> snd ⦇⌜ ▹ e ◃ ⌟⦈[ u ] => ⦇-⦈ SAConNEHole : {Γ : tctx} {e : hexp} {t : htyp} {u : Nat} → Γ ⊢ ▹ e ◃ => t ~ construct (nehole u) ~> ⦇⌜ ▹ e ◃ ⌟⦈[ u ] => ⦇-⦈ SAZipPlus1 : {Γ : tctx} {e : hexp} {eh eh' : zexp} {α : action} → Γ ⊢ eh ~ α ~> eh' ⇐ num → Γ ⊢ (eh ·+₁ e) => num ~ α ~> (eh' ·+₁ e) => num SAZipPlus2 : {Γ : tctx} {e : hexp} {eh eh' : zexp} {α : action} → Γ ⊢ eh ~ α ~> eh' ⇐ num → Γ ⊢ (e ·+₂ eh) => num ~ α ~> (e ·+₂ eh') => num SAZipAsc1 : {Γ : tctx} {e e' : zexp} {α : action} {t : htyp} → Γ ⊢ e ~ α ~> e' ⇐ t → Γ ⊢ (e ·:₁ t) => t ~ α ~> (e' ·:₁ t) => t SAZipAsc2 : {Γ : tctx} {e : hexp} {α : action} {t t' : ztyp} {t◆ t'◆ : htyp} → t + α +> t' → erase-t t' t'◆ → erase-t t t◆ → Γ ⊢ e <= t'◆ → Γ ⊢ (e ·:₂ t) => t◆ ~ α ~> (e ·:₂ t') => t'◆ SAZipLam1 : {Γ : tctx} {e : hexp} {t1 t1' : ztyp} {t1◆ t1'◆ t2 t2' : htyp} {x : Nat} {α : action} → x # Γ → erase-t t1 t1◆ → erase-t t1' t1'◆ → t1 + α +> t1' → (Γ ,, (x , t1◆)) ⊢ e => t2 → (Γ ,, (x , t1'◆)) ⊢ e => t2' → Γ ⊢ (·λ x ·[ t1 ]₁ e) => (t1◆ ==> t2) ~ α ~> (·λ x ·[ t1' ]₁ e) => (t1'◆ ==> t2') SAZipLam2 : {Γ : tctx} {e e' : zexp} {e◆ : hexp} {t1 t2 t2' : htyp} {x : Nat} {α : action }→ x # Γ → erase-e e e◆ → (Γ ,, (x , t1)) ⊢ e◆ => t2 → (Γ ,, (x , t1)) ⊢ e => t2 ~ α ~> e' => t2' → Γ ⊢ (·λ x ·[ t1 ]₂ e) => (t1 ==> t2) ~ α ~> (·λ x ·[ t1 ]₂ e') => (t1 ==> t2') SAZipApArr : {Γ : tctx} {t t1 t2 t3 t4 : htyp} {α : action} {eh eh' : zexp} {e eh◆ : hexp} → t ▸arr (t3 ==> t4) → erase-e eh eh◆ → Γ ⊢ (eh◆) => t2 → Γ ⊢ eh => t2 ~ α ~> eh' => t → Γ ⊢ e <= t3 → Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => t4 SAZipApAna : {Γ : tctx} {t' t2 t : htyp} {e : hexp} {eh eh' : zexp} {α : action} → t' ▸arr (t2 ==> t) → Γ ⊢ e => t' → Γ ⊢ eh ~ α ~> eh' ⇐ t2 → Γ ⊢ (e ∘₂ eh) => t ~ α ~> (e ∘₂ eh') => t SAZipPair1 : {Γ : tctx} {t1 t1' t2 : htyp} {α : action} {eh eh' : zexp} {e eh◆ : hexp} → erase-e eh eh◆ → Γ ⊢ (eh◆) => t1 → Γ ⊢ eh => t1 ~ α ~> eh' => t1' → Γ ⊢ e => t2 → Γ ⊢ ⟨ eh , e ⟩₁ => (t1 ⊠ t2) ~ α ~> ⟨ eh' , e ⟩₁ => (t1' ⊠ t2) SAZipPair2 : {Γ : tctx} {t1 t2 t2' : htyp} {α : action} {eh eh' : zexp} {e eh◆ : hexp} → Γ ⊢ e => t1 → erase-e eh eh◆ → Γ ⊢ (eh◆) => t2 → Γ ⊢ eh => t2 ~ α ~> eh' => t2' → Γ ⊢ ⟨ e , eh ⟩₂ => (t1 ⊠ t2) ~ α ~> ⟨ e , eh' ⟩₂ => (t1 ⊠ t2') SAZipFst : {Γ : tctx} {t× t×' t1 t1' t2 t2' : htyp} {α : action} {eh eh' : zexp} {eh◆ : hexp} → t× ▸prod (t1 ⊠ t2) → t×' ▸prod (t1' ⊠ t2') → erase-e eh eh◆ → Γ ⊢ (eh◆) => t× → Γ ⊢ eh => t× ~ α ~> eh' => t×' → Γ ⊢ fst eh => t1 ~ α ~> fst eh' => t1' SAZipSnd : {Γ : tctx} {t× t×' t1 t1' t2 t2' : htyp} {α : action} {eh eh' : zexp} {eh◆ : hexp} → t× ▸prod (t1 ⊠ t2) → t×' ▸prod (t1' ⊠ t2') → erase-e eh eh◆ → Γ ⊢ (eh◆) => t× → Γ ⊢ eh => t× ~ α ~> eh' => t×' → Γ ⊢ snd eh => t2 ~ α ~> snd eh' => t2' SAZipNEHole : {Γ : tctx} {e e' : zexp} {u : Nat} {t t' : htyp} {α : action} {e◆ : hexp} → erase-e e e◆ → Γ ⊢ e◆ => t → Γ ⊢ e => t ~ α ~> e' => t' → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] => ⦇-⦈ ~ α ~> ⦇⌜ e' ⌟⦈[ u ] => ⦇-⦈ -- analytic action expressions data _⊢_~_~>_⇐_ : (Γ : tctx) → (e : zexp) → (α : action) → (e' : zexp) → (t : htyp) → Set where AASubsume : {Γ : tctx} {e e' : zexp} {t t' t'' : htyp} {α : action} {e◆ : hexp} → erase-e e e◆ → Γ ⊢ e◆ => t' → Γ ⊢ e => t' ~ α ~> e' => t'' → t ~ t'' → Γ ⊢ e ~ α ~> e' ⇐ t AAFinish : {Γ : tctx} {e : hexp} {t : htyp} {u : Nat} → Γ ⊢ e <= t → Γ ⊢ ▹ ⦇⌜ e ⌟⦈[ u ] ◃ ~ finish ~> ▹ e ◃ ⇐ t AAMove : {e e' : zexp} {δ : direction} {Γ : tctx} {t : htyp} → e + move δ +>e e' → Γ ⊢ e ~ move δ ~> e' ⇐ t AADel : {e : hexp} {Γ : tctx} {t : htyp} {u : Nat} → Γ ⊢ ▹ e ◃ ~ del u ~> ▹ ⦇-⦈[ u ] ◃ ⇐ t AAConNumlit : {Γ : tctx} {t : htyp} {n u u1 : Nat} → t ~̸ num → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (numlit n u1) ~> ⦇⌜ ▹ (N n) ◃ ⌟⦈[ u1 ] ⇐ t AAConAsc : {Γ : tctx} {e : hexp} {t : htyp} → Γ ⊢ ▹ e ◃ ~ construct asc ~> (e ·:₂ ▹ t ◃) ⇐ t AAConVar : {Γ : tctx} {t t' : htyp} {x u u1 : Nat} → t ~̸ t' → (x , t') ∈ Γ → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (var x u1) ~> ⦇⌜ ▹ X x ◃ ⌟⦈[ u1 ] ⇐ t AAConLam1 : {Γ : tctx} {x : Nat} {t t1 t2 : htyp} {u u1 u2 : Nat} → x # Γ → t ▸arr (t1 ==> t2) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (lam x u1 u2) ~> ·λ x (▹ ⦇-⦈[ u2 ] ◃) ⇐ t AAConLam2 : {Γ : tctx} {x : Nat} {t : htyp} {u u1 u2 : Nat} → x # Γ → t ~̸ (⦇-⦈ ==> ⦇-⦈) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (lam x u1 u2) ~> ⦇⌜ ·λ x ⦇-⦈[ u2 ] ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈) ⌟⦈[ u1 ] ⇐ t AAConInl1 : {Γ : tctx} {t+ t1 t2 : htyp} {u u1 u2 : Nat} → t+ ▸sum (t1 ⊕ t2) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (inl u1 u2) ~> inl ▹ ⦇-⦈[ u2 ] ◃ ⇐ t+ AAConInl2 : {Γ : tctx} {t : htyp} {u u1 u2 : Nat} → t ~̸ (⦇-⦈ ⊕ ⦇-⦈) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (inl u1 u2) ~> ⦇⌜ inl ⦇-⦈[ u2 ] ·:₂ (▹ ⦇-⦈ ◃ ⊕₁ ⦇-⦈) ⌟⦈[ u1 ] ⇐ t AAConInr1 : {Γ : tctx} {t+ t1 t2 : htyp} {u u1 u2 : Nat} → t+ ▸sum (t1 ⊕ t2) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (inr u1 u2) ~> inr ▹ ⦇-⦈[ u2 ] ◃ ⇐ t+ AAConInr2 : {Γ : tctx} {t : htyp} {u u1 u2 : Nat} → t ~̸ (⦇-⦈ ⊕ ⦇-⦈) → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (inr u1 u2) ~> ⦇⌜ inr ⦇-⦈[ u2 ] ·:₂ (▹ ⦇-⦈ ◃ ⊕₁ ⦇-⦈) ⌟⦈[ u1 ] ⇐ t AAConCase : {Γ : tctx} {x y : Nat} {t : htyp} {u u1 u2 u3 : Nat} → x # Γ → y # Γ → Γ ⊢ ▹ ⦇-⦈[ u ] ◃ ~ construct (case x y u1 u2 u3) ~> case₁ ▹ ⦇-⦈[ u1 ] ◃ x ⦇-⦈[ u2 ] y ⦇-⦈[ u3 ] ⇐ t AAZipLam : {Γ : tctx} {x : Nat} {t t1 t2 : htyp} {e e' : zexp} {α : action} → x # Γ → t ▸arr (t1 ==> t2) → (Γ ,, (x , t1)) ⊢ e ~ α ~> e' ⇐ t2 → Γ ⊢ (·λ x e) ~ α ~> (·λ x e') ⇐ t AAZipInl : {Γ : tctx} {t+ t1 t2 : htyp} {e e' : zexp} {α : action} → t+ ▸sum (t1 ⊕ t2) → Γ ⊢ e ~ α ~> e' ⇐ t1 → Γ ⊢ inl e ~ α ~> inl e' ⇐ t+ AAZipInr : {Γ : tctx} {t+ t1 t2 : htyp} {e e' : zexp} {α : action} → t+ ▸sum (t1 ⊕ t2) → Γ ⊢ e ~ α ~> e' ⇐ t2 → Γ ⊢ inr e ~ α ~> inr e' ⇐ t+ AAZipCase1 : {Γ : tctx} {e e' : zexp} {e◆ e1 e2 : hexp} {x y : Nat} {t t0 t+ t1 t2 : htyp} {α : action} → x # Γ → y # Γ → erase-e e e◆ → Γ ⊢ e◆ => t0 → Γ ⊢ e => t0 ~ α ~> e' => t+ → t+ ▸sum (t1 ⊕ t2) → (Γ ,, (x , t1)) ⊢ e1 <= t → (Γ ,, (y , t2)) ⊢ e2 <= t → Γ ⊢ case₁ e x e1 y e2 ~ α ~> case₁ e' x e1 y e2 ⇐ t AAZipCase2 : {Γ : tctx} {e1 e1' : zexp} {e e2 : hexp} {x y : Nat} {t t+ t1 t2 : htyp} {α : action} → x # Γ → y # Γ → Γ ⊢ e => t+ → t+ ▸sum (t1 ⊕ t2) → (Γ ,, (x , t1)) ⊢ e1 ~ α ~> e1' ⇐ t → Γ ⊢ case₂ e x e1 y e2 ~ α ~> case₂ e x e1' y e2 ⇐ t AAZipCase3 : {Γ : tctx} {e2 e2' : zexp} {e e1 : hexp} {x y : Nat} {t t+ t1 t2 : htyp} {α : action} → x # Γ → y # Γ → Γ ⊢ e => t+ → t+ ▸sum (t1 ⊕ t2) → (Γ ,, (y , t2)) ⊢ e2 ~ α ~> e2' ⇐ t → Γ ⊢ case₃ e x e1 y e2 ~ α ~> case₃ e x e1 y e2' ⇐ t
{ "alphanum_fraction": 0.3343341117, "avg_line_length": 48.6985559567, "ext": "agda", "hexsha": "ac06752414a222ab2ca96bec5babc807b1c171db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "statics-core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "statics-core.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "statics-core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11714, "size": 26979 }
------------------------------------------------------------------------------ -- PA properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Axiomatic.Mendelson.PropertiesATP where open import PA.Axiomatic.Mendelson.Base ------------------------------------------------------------------------------ +-leftIdentity : ∀ n → zero + n ≈ n +-leftIdentity = S₅ -- See Issue https://github.com/asr/apia/issues/81 . +-rightIdentityA : ℕ → Set +-rightIdentityA i = i + zero ≈ i {-# ATP definition +-rightIdentityA #-} +-rightIdentity : ∀ n → n + zero ≈ n +-rightIdentity = S₉ +-rightIdentityA A0 is where A0 : +-rightIdentityA zero A0 = +-leftIdentity zero postulate is : ∀ i → +-rightIdentityA i → +-rightIdentityA (succ i) {-# ATP prove is #-} -- See Issue https://github.com/asr/apia/issues/81 . x+Sy≈S[x+y]A : ℕ → ℕ → Set x+Sy≈S[x+y]A n i = i + succ n ≈ succ (i + n) {-# ATP definition x+Sy≈S[x+y]A #-} x+Sy≈S[x+y] : ∀ m n → m + succ n ≈ succ (m + n) x+Sy≈S[x+y] m n = S₉ (x+Sy≈S[x+y]A n) A0 is m where postulate A0 : x+Sy≈S[x+y]A n zero {-# ATP prove A0 #-} postulate is : ∀ i → x+Sy≈S[x+y]A n i → x+Sy≈S[x+y]A n (succ i) {-# ATP prove is #-} -- See Issue https://github.com/asr/apia/issues/81 . +-leftCongA : ℕ → ℕ → ℕ → Set +-leftCongA m n i = m + i ≈ n + i {-# ATP definition +-leftCongA #-} +-leftCong : ∀ {m n o} → m ≈ n → m + o ≈ n + o +-leftCong {m} {n} {o} h = S₉ (+-leftCongA m n) A0 is o where postulate A0 : +-leftCongA m n zero {-# ATP prove A0 +-rightIdentity #-} postulate is : ∀ i → +-leftCongA m n i → +-leftCongA m n (succ i) {-# ATP prove is x+Sy≈S[x+y] #-} -- See Issue https://github.com/asr/apia/issues/81 . +-commA : ℕ → ℕ → Set +-commA n i = i + n ≈ n + i {-# ATP definition +-commA #-} +-comm : ∀ m n → m + n ≈ n + m +-comm m n = S₉ (+-commA n) A0 is m where postulate A0 : +-commA n zero {-# ATP prove A0 +-rightIdentity #-} postulate is : ∀ i → +-commA n i → +-commA n (succ i) {-# ATP prove is x+Sy≈S[x+y] #-} +-asocc : ∀ m n o → m + n + o ≈ m + (n + o) +-asocc m n o = S₉ A A0 is m where A : ℕ → Set A i = i + n + o ≈ i + (n + o) {-# ATP definition A #-} postulate A0 : A zero {-# ATP prove A0 +-leftCong #-} postulate is : ∀ i → A i → A (succ i) {-# ATP prove is +-leftCong #-}
{ "alphanum_fraction": 0.5024038462, "avg_line_length": 28.6896551724, "ext": "agda", "hexsha": "67b82a28591c8f51cb9f79cd487a5330b514723d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 860, "size": 2496 }
{-# OPTIONS --prop --without-K --rewriting #-} -- Definition of a cost monoid. open import Relation.Binary using (Rel; _Preserves_⟶_; _Preserves₂_⟶_⟶_) module Calf.CostMonoid where open import Level using (Level; 0ℓ; suc; _⊔_) open import Algebra.Core open import Relation.Binary.PropositionalEquality using (_≡_; resp₂) open import Data.Product module _ {ℂ : Set} where Relation = Rel ℂ 0ℓ _≈_ : Relation _≈_ = _≡_ open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ public open import Relation.Binary.Structures _≈_ record IsCancellative (_∙_ : Op₂ ℂ) : Set where field ∙-cancel-≡ : Cancellative _∙_ ∙-cancelˡ-≡ : LeftCancellative _∙_ ∙-cancelˡ-≡ = proj₁ ∙-cancel-≡ ∙-cancelʳ-≡ : RightCancellative _∙_ ∙-cancelʳ-≡ = proj₂ ∙-cancel-≡ record IsMonotone (_∙_ : Op₂ ℂ) (_≤_ : Relation) (isPreorder : IsPreorder _≤_) : Set where field ∙-mono-≤ : _∙_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ open IsPreorder isPreorder using () renaming (reflexive to ≤-reflexive; refl to ≤-refl; trans to ≤-trans) ∙-monoˡ-≤ : ∀ n → (_∙ n) Preserves _≤_ ⟶ _≤_ ∙-monoˡ-≤ n m≤o = ∙-mono-≤ m≤o (≤-refl {n}) ∙-monoʳ-≤ : ∀ n → (n ∙_) Preserves _≤_ ⟶ _≤_ ∙-monoʳ-≤ n m≤o = ∙-mono-≤ (≤-refl {n}) m≤o record IsCostMonoid (_+_ : Op₂ ℂ) (zero : ℂ) (_≤_ : Relation) : Set where field isMonoid : IsMonoid _+_ zero isCancellative : IsCancellative _+_ isPreorder : IsPreorder _≤_ isMonotone : IsMonotone _+_ _≤_ isPreorder open IsMonoid isMonoid public using () renaming ( identityˡ to +-identityˡ; identityʳ to +-identityʳ; assoc to +-assoc ) open IsCancellative isCancellative public renaming ( ∙-cancel-≡ to +-cancel-≡; ∙-cancelˡ-≡ to +-cancelˡ-≡; ∙-cancelʳ-≡ to +-cancelʳ-≡ ) open IsPreorder isPreorder public using () renaming (reflexive to ≤-reflexive; refl to ≤-refl; trans to ≤-trans) open IsMonotone isMonotone public renaming ( ∙-mono-≤ to +-mono-≤; ∙-monoˡ-≤ to +-monoˡ-≤; ∙-monoʳ-≤ to +-monoʳ-≤ ) record IsParCostMonoid (_⊕_ : Op₂ ℂ) (𝟘 : ℂ) (_⊗_ : Op₂ ℂ) (𝟙 : ℂ) (_≤_ : Relation) : Set where field isMonoid : IsMonoid _⊕_ 𝟘 isCommutativeMonoid : IsCommutativeMonoid _⊗_ 𝟙 isCancellative : IsCancellative _⊕_ isPreorder : IsPreorder _≤_ isMonotone-⊕ : IsMonotone _⊕_ _≤_ isPreorder isMonotone-⊗ : IsMonotone _⊗_ _≤_ isPreorder open IsMonoid isMonoid public using () renaming ( identityˡ to ⊕-identityˡ; identityʳ to ⊕-identityʳ; assoc to ⊕-assoc ) open IsCommutativeMonoid isCommutativeMonoid public using () renaming ( identityˡ to ⊗-identityˡ; identityʳ to ⊗-identityʳ; assoc to ⊗-assoc; comm to ⊗-comm ) open IsCancellative isCancellative public renaming ( ∙-cancel-≡ to ⊕-cancel-≡; ∙-cancelˡ-≡ to ⊕-cancelˡ-≡; ∙-cancelʳ-≡ to ⊕-cancelʳ-≡ ) open IsPreorder isPreorder public using () renaming (reflexive to ≤-reflexive; refl to ≤-refl; trans to ≤-trans) open IsMonotone isMonotone-⊕ public renaming ( ∙-mono-≤ to ⊕-mono-≤; ∙-monoˡ-≤ to ⊕-monoˡ-≤; ∙-monoʳ-≤ to ⊕-monoʳ-≤ ) open IsMonotone isMonotone-⊗ public renaming ( ∙-mono-≤ to ⊗-mono-≤; ∙-monoˡ-≤ to ⊗-monoˡ-≤; ∙-monoʳ-≤ to ⊗-monoʳ-≤ ) record CostMonoid : Set₁ where infixl 6 _+_ field ℂ : Set _+_ : Op₂ ℂ zero : ℂ _≤_ : Relation isCostMonoid : IsCostMonoid _+_ zero _≤_ open IsCostMonoid isCostMonoid public module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple isPreorder ≤-trans (resp₂ _≤_) (λ h → h) ≤-trans ≤-trans public hiding (step-≈; step-≈˘; step-<) record ParCostMonoid : Set₁ where infixl 7 _⊗_ infixl 6 _⊕_ field ℂ : Set _⊕_ : Op₂ ℂ 𝟘 : ℂ _⊗_ : Op₂ ℂ 𝟙 : ℂ _≤_ : Relation isParCostMonoid : IsParCostMonoid _⊕_ 𝟘 _⊗_ 𝟙 _≤_ open IsParCostMonoid isParCostMonoid public costMonoid : CostMonoid costMonoid = record { ℂ = ℂ ; _+_ = _⊕_ ; zero = 𝟘 ; _≤_ = _≤_ ; isCostMonoid = record { isMonoid = isMonoid ; isPreorder = isPreorder ; isCancellative = isCancellative ; isMonotone = isMonotone-⊕ } } module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple isPreorder ≤-trans (resp₂ _≤_) (λ h → h) ≤-trans ≤-trans public hiding (step-≈; step-≈˘; step-<)
{ "alphanum_fraction": 0.5642857143, "avg_line_length": 25.2577319588, "ext": "agda", "hexsha": "49587bb7ba7fe9c2bd9dd7973491abd724f056ff", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/CostMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/CostMonoid.agda", "max_line_length": 97, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/CostMonoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1928, "size": 4900 }
-- Minimal implicational logic, PHOAS approach, initial encoding module Pi.ArrMp where -- Types infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty -- Context and truth judgement Cx : Set1 Cx = Ty -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc a -- Terms module ArrMp where infixl 1 _$_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b) lam'' f = lam' \x -> f (var x) syntax lam'' (\a -> b) = lam a => b Thm : Ty -> Set1 Thm a = forall {tc} -> Tm tc a open ArrMp public -- Example theorems aI : forall {a} -> Thm (a => a) aI = lam x => x aK : forall {a b} -> Thm (a => b => a) aK = lam x => lam _ => x aS : forall {a b c} -> Thm ((a => b => c) => (a => b) => a => c) aS = lam f => lam g => lam x => f $ x $ (g $ x) tSKK : forall {a} -> Thm (a => a) tSKK {a = a} = aS {b = a => a} $ aK $ aK
{ "alphanum_fraction": 0.4765279008, "avg_line_length": 18.2096774194, "ext": "agda", "hexsha": "11c2f0f2753004a2ba0d4fff40915341c0997c04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Pi/ArrMp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Pi/ArrMp.agda", "max_line_length": 70, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Pi/ArrMp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 451, "size": 1129 }
{-# OPTIONS --without-K #-} module container.m where open import container.m.coalgebra public open import container.m.from-nat public -- open import container.m.core public -- open import container.m.extensionality public -- open import container.m.level public
{ "alphanum_fraction": 0.7765151515, "avg_line_length": 26.4, "ext": "agda", "hexsha": "cc9fc79b8341ff8119b41d88f4e4e84dedcc721e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/container/m.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/container/m.agda", "max_line_length": 48, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/container/m.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 54, "size": 264 }
{-# OPTIONS --guardedness-preserving-type-constructors #-} module TypeConstructorsWhichPreserveGuardedness2 where record ⊤ : Set where data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B -- This should not be allowed. ℕ : Set ℕ = ⊤ ⊎ ℕ
{ "alphanum_fraction": 0.6576923077, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "32c71645ae7956573068ca89c044870ed9ba1b74", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness2.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 91, "size": 260 }
{-# OPTIONS --without-K #-} open import BaseOver module Spaces.Flattening {i j k} (A : Set i) (B : Set j) (f g : B → A) (C : A → Set k) (D : (b : B) → C (f b) ≃ C (g b)) where open import Spaces.FlatteningTypes A B f g C D -- The family of paths used in the definition of [flatten] paths-flatten : (b : B) → (cct (f b) == cct (g b) [ (λ w → (P w → Wt)) ↓ pp b ]) paths-flatten b = ↓-app→cst-in (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) flatten-curried : (w : W) → (P w → Wt) flatten-curried = W-rec _ cct paths-flatten flatten : Σ W P → Wt flatten (w , x) = flatten-curried w x unflatten : Wt → Σ W P unflatten = Wt-rec-nondep _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) -- flatten-unflatten : (w : Wt) → flatten (unflatten w) ≡ w flatten-unflatten = Wt-rec _ (λ _ _ → refl) (λ b d → ↓-◯=id-in unflatten flatten (ap flatten (ap unflatten (ppt b d)) ≡⟨ Wt-rec-nondep-β _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) b d |in-ctx ap flatten ⟩ ap flatten (Σ-eq (pp b) (↓-pp-in refl)) ≡⟨ split-ap2 flatten (pp b) (↓-pp-in refl) ⟩ ↓-app→cst-out (apd flatten-curried (pp b)) (↓-pp-in refl) ≡⟨ W-rec-β _ cct paths-flatten b |in-ctx (λ u → ↓-app→cst-out u (↓-pp-in refl)) ⟩ ↓-app→cst-out (paths-flatten b) (↓-pp-in refl) ≡⟨ refl ⟩ ↓-app→cst-out (↓-app→cst-in (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q))) (↓-pp-in refl) ≡⟨ ↓-app→cst-β (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) (↓-pp-in refl) ⟩ ppt b d ∘' ap (cct (g b)) (↓-pp-out (↓-pp-in refl)) ≡⟨ ↓-pp-β refl |in-ctx (λ u → ppt b d ∘' ap (cct (g b)) u) ⟩ ppt b d ∎)) unflatten-flatten-curried : (w : W) (x : P w) → unflatten (flatten-curried w x) ≡ (w , x) unflatten-flatten-curried = W-rec _ (λ a x → refl) (λ b → ↓-Π-in (λ q → ↓-◯=id-in flatten unflatten (ap unflatten (ap flatten (Σ-eq (pp b) q)) ≡⟨ split-ap2 flatten (pp b) q |in-ctx ap unflatten ⟩ ap unflatten (↓-app→cst-out (apd flatten-curried (pp b)) q) ≡⟨ W-rec-β _ cct paths-flatten b |in-ctx (λ u → ap unflatten (↓-app→cst-out u q)) ⟩ ap unflatten (↓-app→cst-out (paths-flatten b) q) ≡⟨ refl ⟩ ap unflatten (↓-app→cst-out (↓-app→cst-in (λ qq → ppt b _ ∘' ap (cct (g b)) (↓-pp-out qq))) q) ≡⟨ ↓-app→cst-β (λ qq → ppt b _ ∘' ap (cct (g b)) (↓-pp-out qq)) q |in-ctx ap unflatten ⟩ ap unflatten (ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) ≡⟨ ap-∘' unflatten (ppt b _) (ap (cct (g b)) (↓-pp-out q)) ⟩ ap unflatten (ppt b _) ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q)) ≡⟨ Wt-rec-nondep-β _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) b _ |in-ctx (λ u → u ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q))) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q)) ≡⟨ compose-ap unflatten (cct (g b)) (↓-pp-out q) |in-ctx (λ u → (Σ-eq (pp b) (↓-pp-in refl) ∘' u)) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap (unflatten ◯ cct (g b)) (↓-pp-out q) ≡⟨ refl ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap (λ x → (cc (g b), x)) (↓-pp-out q) ≡⟨ ap-cst,id P (↓-pp-out q) |in-ctx (λ u → Σ-eq (pp b) (↓-pp-in refl) ∘' u) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' Σ-eq refl (↓-pp-out q) ≡⟨ Σ-∘' (↓-pp-in refl) (↓-pp-out q) ⟩ Σ-eq (pp b) (↓-pp-in refl ∘'dep ↓-pp-out q) ≡⟨ to-transp-weird q (pp-path _ _) |in-ctx Σ-eq (pp b) ⟩ Σ-eq (pp b) q ∎))) unflatten-flatten : (wx : Σ W P) → unflatten (flatten wx) ≡ wx unflatten-flatten (w , x) = unflatten-flatten-curried w x eqv : Σ W P ≃ Wt eqv = (flatten , iso-is-eq flatten unflatten flatten-unflatten unflatten-flatten)
{ "alphanum_fraction": 0.4886773031, "avg_line_length": 46.8192771084, "ext": "agda", "hexsha": "fdf8c689b57f4d8f0022bfe03508b7a220fcaae4", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/Flattening.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/Flattening.agda", "max_line_length": 165, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Spaces/Flattening.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1634, "size": 3886 }
{-# OPTIONS --cubical #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path postulate A : Set B : Set b : B f : (\ {a : A} (x : B) → b) ≡ (\ _ → b) f i x = b
{ "alphanum_fraction": 0.5631578947, "avg_line_length": 14.6153846154, "ext": "agda", "hexsha": "05b8f509f277dd94e45dcd3d929ee9077ae2279d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2722.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2722.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2722.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 75, "size": 190 }
module RandomAccessList.Zeroless where open import RandomAccessList.Zeroless.Core open import RandomAccessList.Zeroless.Core.Properties open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf; split) import BuildingBlock.BinaryLeafTree as BLT open import Data.Fin using (Fin; fromℕ; fromℕ≤; reduce≥; toℕ) import Data.Fin as Fin open import Data.Nat open import Data.Nat.DivMod -- open import Data.Nat.Properties.Simple open import Data.Nat.Etc open import Data.Product open import Function open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction; contraposition) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; trans; sym; inspect) open PropEq.≡-Reasoning -------------------------------------------------------------------------------- -- Operations -------------------------------------------------------------------------------- -- cons consₙ : ∀ {n A} → BinaryLeafTree A n → 1-2-RAL A n → 1-2-RAL A n consₙ a ( []) = a 1∷ [] consₙ a (x 1∷ xs) = a , x 2∷ xs consₙ a (x , y 2∷ xs) = a 1∷ consₙ (Node x y) xs cons : ∀ {A} → A → 1-2-RAL A 0 → 1-2-RAL A 0 cons a xs = consₙ (Leaf a) xs -- head headₙ : ∀ {n A} → (xs : 1-2-RAL A n) → ⟦ xs ⟧ ≢ 0 → BinaryLeafTree A n headₙ {n} {A} [] p = contradiction (⟦[]⟧≡0 ([] {A} {n}) refl) p headₙ (x 1∷ xs) p = x headₙ (x , y 2∷ xs) p = x head : ∀ {A} → (xs : 1-2-RAL A 0) → ⟦ xs ⟧ ≢ 0 → A head xs p = BLT.head (headₙ xs p) -- tail tailₙ : ∀ {n A} → (xs : 1-2-RAL A n) → ⟦ xs ⟧ ≢ 0 → 1-2-RAL A n tailₙ [] p = [] tailₙ (x 1∷ xs) p with ⟦ xs ⟧ ≟ 0 tailₙ (x 1∷ xs) p | yes q = [] tailₙ (x 1∷ xs) p | no ¬q = let y₀ = proj₁ (split (headₙ xs ¬q)) y₁ = proj₂ (split (headₙ xs ¬q)) in y₀ , y₁ 2∷ tailₙ xs ¬q tailₙ (x , y 2∷ xs) p = y 1∷ xs tail : ∀ {A} → (xs : 1-2-RAL A 0) → ⟦ xs ⟧ ≢ 0 → 1-2-RAL A 0 tail = tailₙ -------------------------------------------------------------------------------- -- Searching -------------------------------------------------------------------------------- {- data Occurrence : ℕ → Set where here : ∀ {n b} → ℕ → Fin (b * 2 ^ n) → Occurrence n there : ∀ {n} → Occurrence n transportFin : ∀ {a b} → a ≡ b → Fin a → Fin b transportFin refl i = i search : ∀ {n A} → (xs : 1-2-RAL A n) → ℕ → Occurrence n search [] i = there search {n} (x 1∷ xs) i with (1 * 2 ^ n) ≤? i search (x 1∷ xs) i | yes p = there search {n} (x 1∷ xs) i | no ¬p = here 0 (fromℕ≤ (m≰n⇒n<m (1 * 2 ^ n) i ¬p)) search {n} (x , y 2∷ xs) i with (2 * 2 ^ n) ≤? i search (x , y 2∷ xs) i | yes p = there search {n} (x , y 2∷ xs) i | no ¬p with i divMod (2 ^ n) search (x , y 2∷ xs) i | no ¬p | result zero remainder _ = here zero {! !} search (x , y 2∷ xs) i | no ¬p | result (suc quotient) remainder _ = {! !} elemAt : ∀ {n A} → (xs : 1-2-RAL A n) → Fin ⟦ xs ⟧ → A elemAt {n} {A} [] i = contradiction (transportFin (⟦[]⟧≡0 ([] {A} {n}) refl) i) (λ ()) elemAt (x 1∷ xs) i = {! !} elemAt (x , y 2∷ xs) i = {! !} splitIndex1∷ : ∀ {n A} → (x : BinaryLeafTree A n) → (xs : 1-2-RAL A (suc n)) → ⟦ x 1∷ xs ⟧ ≡ (2 ^ n) + ⟦ xs ⟧ splitIndex1∷ {n} x xs = begin ⟦ x 1∷ xs ⟧ ≡⟨ +-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ) ⟩ 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (_+_ (2 ^ n)) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + 2 ^ n * 2 * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ (2 ^ n) + ⟦ xs ⟧ ∎ n+n≡2*n : (n : ℕ) → n + n ≡ 2 * n n+n≡2*n n = cong (_+_ n) (sym (+-right-identity n)) splitIndex2∷ : ∀ {n A} → (x : BinaryLeafTree A n) → (y : BinaryLeafTree A n) → (xs : 1-2-RAL A (suc n)) → ⟦ x , y 2∷ xs ⟧ ≡ 2 * (2 ^ n) + ⟦ xs ⟧ splitIndex2∷ {n} x y xs = begin ⟦ x , y 2∷ xs ⟧ ≡⟨ +-*-suc (2 ^ n) (suc (2 * ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + 2 ^ n * suc (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (_+_ (2 ^ n)) (+-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + (2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ)) ≡⟨ sym (+-assoc (2 ^ n) (2 ^ n) (2 ^ n * (2 * ⟦ xs ⟧ₙ))) ⟩ 2 ^ n + 2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ) ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩ 2 ^ n + 2 ^ n + 2 ^ n * 2 * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → 2 ^ n + 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩ 2 ^ n + 2 ^ n + 2 * 2 ^ n * ⟦ xs ⟧ₙ ≡⟨ cong (λ w → w + 2 * 2 ^ n * ⟦ xs ⟧ₙ) (n+n≡2*n (2 ^ n)) ⟩ 2 * 2 ^ n + ⟦ xs ⟧ ∎ {- elemAt : ∀ {n A} → (xs : 1-2-RAL A n) → Fin ⟦ xs ⟧ → A elemAt ( []) () elemAt {n} (x 1∷ xs) i with (2 ^ n) ≤? toℕ i elemAt {n} (x 1∷ xs) i | yes p rewrite splitIndex1∷ x xs = elemAt xs (reduce≥ i p) elemAt (x 1∷ xs) i | no ¬p = BLT.elemAt x (fromℕ≤ (BLT.¬a≤b⇒b<a ¬p)) elemAt {n} (x , y 2∷ xs) i with (2 * (2 ^ n)) ≤? toℕ i elemAt (x , y 2∷ xs) i | yes p rewrite splitIndex2∷ x y xs = elemAt xs (reduce≥ i p) elemAt {n} (x , y 2∷ xs) i | no ¬p with (2 ^ n) ≤? toℕ i elemAt (x , y 2∷ xs) i | no ¬p | yes q rewrite splitIndex2∷ x y xs = BLT.elemAt y {! !} -- y elemAt (x , y 2∷ xs) i | no ¬p | no ¬q = BLT.elemAt x (fromℕ≤ (BLT.¬a≤b⇒b<a ¬q)) -- x -} -- reduce≥ : ∀ {m n} (i : Fin (m N+ n)) (i≥m : toℕ i N≥ m) → Fin n -- i : 2 * 2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ -- m : 2 ^ n -}
{ "alphanum_fraction": 0.4519924099, "avg_line_length": 38.1884057971, "ext": "agda", "hexsha": "9958a1574bb998fe1f8520326a427b8198e7284b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/Zeroless.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/Zeroless.agda", "max_line_length": 109, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/Zeroless.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2413, "size": 5270 }
open import Nat open import Prelude open import Hazelnut-core -- the obvious small step dynamics for complete expressions. module Hazelnut-complete-dynamics where value : (e : ė) (p : ecomplete e) (t : τ̇) (q : ∅ ⊢ e => t) → Set value ._ _ _ (SAsc _) = ⊥ value ._ _ _ (SVar x) with x ... | () value ._ _ _ (SAp _ _) = ⊥ value ._ _ .num SNum = ⊤ value ._ _ .num (SPlus _ _) = ⊥ value .<||> () .<||> SEHole value ._ () .<||> (SFHole _) value ._ _ .<||> (SApHole _ _) = ⊥ -- "substitute e1 for x in e2". note that this only works on well typed -- terms because of barendrecht's convention. that's a theorem we need to -- prove. on non well typed terms, this is not correct. [_/_]_ : ė → Nat → ė → ė [ e1 / x ] (e2 ·: y) = ([ e1 / x ] e2) ·: y [ e1 / x ] X y with natEQ x y ... | Inl p = e1 ... | Inr _ = X y [ e1 / x ] ·λ y e2 = ·λ y ([ e1 / x ] e2) [ e1 / x ] N n = N n [ e1 / x ] (e2 ·+ e3) = ([ e1 / x ] e2) ·+ ([ e1 / x ] e3) [ e1 / x ] <||> = <||> [ e1 / x ] <| e2 |> = <| [ e1 / x ] e2 |> [ e1 / x ] (e2 ∘ e3) = ([ e1 / x ] e2) ∘ ([ e1 / x ] e3)
{ "alphanum_fraction": 0.4750656168, "avg_line_length": 35.71875, "ext": "agda", "hexsha": "3e4df99baeb71997d24e68e0f087e43d4a261dad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Hazelnut-complete-dynamics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Hazelnut-complete-dynamics.agda", "max_line_length": 75, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ivoysey/agda-tfp16", "max_stars_repo_path": "Hazelnut-complete-dynamics.agda", "max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z", "num_tokens": 485, "size": 1143 }
module Data.Fin where open import Data.Nat hiding (_==_; _<_) open import Data.Bool open import Logic.Identity open import Logic.Base data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (suc n) fsuc : {n : Nat} -> Fin n -> Fin (suc n) pred : {n : Nat} -> Fin (suc (suc n)) -> Fin (suc n) pred fzero = fzero pred (fsuc i) = i fzero≠fsuc : {n : Nat}{i : Fin n} -> fzero ≢ fsuc i fzero≠fsuc () fsuc-inj : {n : Nat}{i j : Fin n} -> fsuc i ≡ fsuc j -> i ≡ j fsuc-inj refl = refl _==_ : {n : Nat}(i j : Fin n) -> i ≡ j \/ i ≢ j fzero == fzero = \/-IL refl fzero == fsuc j = \/-IR fzero≠fsuc fsuc i == fzero = \/-IR (sym≢ fzero≠fsuc) fsuc i == fsuc j = aux i j (i == j) where aux : {n : Nat}(i j : Fin n) -> i ≡ j \/ i ≢ j -> fsuc i ≡ fsuc j \/ fsuc i ≢ fsuc j aux i .i (\/-IL refl) = \/-IL refl aux i j (\/-IR i≠j) = \/-IR \si=sj -> i≠j (fsuc-inj si=sj) _<_ : {n : Nat} -> Fin n -> Fin n -> Bool _ < fzero = false fzero < fsuc j = true fsuc i < fsuc j = i < j fromNat : (n : Nat) -> Fin (suc n) fromNat zero = fzero fromNat (suc n) = fsuc (fromNat n) liftSuc : {n : Nat} -> Fin n -> Fin (suc n) liftSuc fzero = fzero liftSuc (fsuc i) = fsuc (liftSuc i) lift+ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n) lift+ zero i = i lift+ (suc m) i = liftSuc (lift+ m i) thin : {n : Nat} -> Fin (suc n) -> Fin n -> Fin (suc n) thin fzero i = fsuc i thin (fsuc j) fzero = fzero thin (fsuc j) (fsuc i) = fsuc (thin j i) -- Two elements of Fin n are either the same or one is the thinning of -- something with respect to the other. data ThinView : {n : Nat}(i j : Fin n) -> Set where same : {n : Nat}{i : Fin n} -> ThinView i i diff : {n : Nat}{i : Fin (suc n)}(j : Fin n) -> ThinView i (thin i j) thinView : {n : Nat}(i j : Fin n) -> ThinView i j thinView fzero fzero = same thinView fzero (fsuc j) = diff j thinView {suc zero} (fsuc ()) fzero thinView {suc (suc n)} (fsuc i) fzero = diff fzero thinView (fsuc i) (fsuc j) = aux i j (thinView i j) where aux : {n : Nat}(i j : Fin n) -> ThinView i j -> ThinView (fsuc i) (fsuc j) aux i .i same = same aux i .(thin i j) (diff j) = diff (fsuc j) thin-ij≠i : {n : Nat}(i : Fin (suc n))(j : Fin n) -> thin i j ≢ i thin-ij≠i fzero j () thin-ij≠i (fsuc i) fzero () thin-ij≠i (fsuc i) (fsuc j) eq = thin-ij≠i i j (fsuc-inj eq) -- Thickening. -- thin i (thick i j) ≡ j ? -- thick i (thin i j) ≡ j thick : {n : Nat}(i j : Fin (suc n)) -> i ≢ j -> Fin n thick i j i≠j = thick' i j i≠j (thinView i j) where thick' : {n : Nat}(i j : Fin (suc n)) -> i ≢ j -> ThinView i j -> Fin n thick' i .i i≠i same = elim-False (i≠i refl) thick' i .(thin i j) _ (diff j) = j -- thin∘thick=id : {n : Nat}(i j : Fin (suc n))(p : i ≢ j) -> -- thin i (thick i j p) ≡ j -- thin∘thick=id i j p = ? -- -- thick∘thin=id : {n : Nat}(i : Fin (suc n))(j : Fin n) -> -- thick i (thin i j) (sym≢ (thin-ij≠i i j)) ≡ j -- thick∘thin=id i j = ? --
{ "alphanum_fraction": 0.5331325301, "avg_line_length": 31.7872340426, "ext": "agda", "hexsha": "eeb59d8ef2b32ce5eb51660468715368e5024696", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Fin.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1273, "size": 2988 }
-- Andreas, 2016-09-12 -- -- Underscores should also get meaningful names -- (not just metas from omitted hidden arguments) -- {-# OPTIONS -v tc.meta.name:100 #-} postulate F : (A : Set) → Set G : {B : Set} → Set test1 : Set test1 = F _ -- name of this meta should be _A_0 test2 : Set test2 = G -- creates meta _B_1 test3 : Set test3 = G {_} -- name of this meta should be _B_2
{ "alphanum_fraction": 0.6335877863, "avg_line_length": 17.0869565217, "ext": "agda", "hexsha": "21de6a27822a7905ee15413c8d4ec418ee106a60", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/MetaNameSuggestion.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/MetaNameSuggestion.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/MetaNameSuggestion.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 136, "size": 393 }
open import Agda.Primitive open import Agda.Primitive.Cubical record Wrap : Set (lsuc lzero) where field A : IUniv
{ "alphanum_fraction": 0.7459016393, "avg_line_length": 17.4285714286, "ext": "agda", "hexsha": "0b204ba88b7085415bd6fe6e277d901d76be033b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/IUnivNotFibrant.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/IUnivNotFibrant.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/IUnivNotFibrant.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 122 }
{- Basic theory about h-levels/n-types: - Basic properties of isContr, isProp and isSet (definitions are in Prelude) - Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.HLevels where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence using (ua ; univalence) open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-zero; +-comm) HLevel : Type₀ HLevel = ℕ private variable ℓ ℓ' ℓ'' ℓ''' : Level A : Type ℓ B : A → Type ℓ C : (x : A) → B x → Type ℓ D : (x : A) (y : B x) → C x y → Type ℓ E : (x : A) (y : B x) → (z : C x y) → D x y z → Type ℓ x y : A n : HLevel isOfHLevel : HLevel → Type ℓ → Type ℓ isOfHLevel 0 A = isContr A isOfHLevel 1 A = isProp A isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y) isOfHLevelFun : (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isOfHLevelFun n f = ∀ b → isOfHLevel n (fiber f b) TypeOfHLevel : ∀ ℓ → HLevel → Type (ℓ-suc ℓ) TypeOfHLevel ℓ n = TypeWithStr ℓ (isOfHLevel n) hProp hSet hGroupoid h2Groupoid : ∀ ℓ → Type (ℓ-suc ℓ) hProp ℓ = TypeOfHLevel ℓ 1 hSet ℓ = TypeOfHLevel ℓ 2 hGroupoid ℓ = TypeOfHLevel ℓ 3 h2Groupoid ℓ = TypeOfHLevel ℓ 4 -- lower h-levels imply higher h-levels isOfHLevelSuc : (n : HLevel) → isOfHLevel n A → isOfHLevel (suc n) A isOfHLevelSuc 0 = isContr→isProp isOfHLevelSuc 1 = isProp→isSet isOfHLevelSuc (suc (suc n)) h a b = isOfHLevelSuc (suc n) (h a b) isSet→isGroupoid : isSet A → isGroupoid A isSet→isGroupoid = isOfHLevelSuc 2 isGroupoid→is2Groupoid : isGroupoid A → is2Groupoid A isGroupoid→is2Groupoid = isOfHLevelSuc 3 isOfHLevelPlus : (m : HLevel) → isOfHLevel n A → isOfHLevel (m + n) A isOfHLevelPlus zero hA = hA isOfHLevelPlus (suc m) hA = isOfHLevelSuc _ (isOfHLevelPlus m hA) isContr→isOfHLevel : (n : HLevel) → isContr A → isOfHLevel n A isContr→isOfHLevel {A = A} n cA = subst (λ m → isOfHLevel m A) (+-zero n) (isOfHLevelPlus n cA) isProp→isOfHLevelSuc : (n : HLevel) → isProp A → isOfHLevel (suc n) A isProp→isOfHLevelSuc {A = A} n pA = subst (λ m → isOfHLevel m A) (+-comm n 1) (isOfHLevelPlus n pA) -- hlevel of path and dependent path types isProp→isContrPath : isProp A → (x y : A) → isContr (x ≡ y) isProp→isContrPath h x y = h x y , isProp→isSet h x y _ isContr→isContrPath : isContr A → (x y : A) → isContr (x ≡ y) isContr→isContrPath cA = isProp→isContrPath (isContr→isProp cA) isOfHLevelPath' : (n : HLevel) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath' 0 = isProp→isContrPath isOfHLevelPath' (suc n) h x y = h x y isOfHLevelPath'⁻ : (n : HLevel) → ((x y : A) → isOfHLevel n (x ≡ y)) → isOfHLevel (suc n) A isOfHLevelPath'⁻ zero h x y = h x y .fst isOfHLevelPath'⁻ (suc n) h = h isOfHLevelPath : (n : HLevel) → isOfHLevel n A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath 0 h x y = isContr→isContrPath h x y isOfHLevelPath (suc n) h x y = isOfHLevelSuc n (isOfHLevelPath' n h x y) isOfHLevelPathP' : {A : I → Type ℓ} (n : HLevel) → isOfHLevel (suc n) (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP' {A = A} n h x y = transport⁻ (λ i → isOfHLevel n (PathP≡Path A x y i)) (isOfHLevelPath' n h _ _) isOfHLevelPathP : {A : I → Type ℓ} (n : HLevel) → isOfHLevel n (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP {A = A} n h x y = transport⁻ (λ i → isOfHLevel n (PathP≡Path A x y i)) (isOfHLevelPath n h _ _) isProp→isContrPathP : {A : I → Type ℓ} → (∀ i → isProp (A i)) → (x : A i0) (y : A i1) → isContr (PathP A x y) isProp→isContrPathP h x y = isProp→PathP h x y , isOfHLevelPathP 1 (h i1) x y _ -- h-level of isOfHLevel isPropIsOfHLevel : (n : HLevel) → isProp (isOfHLevel n A) isPropIsOfHLevel 0 = isPropIsContr isPropIsOfHLevel 1 = isPropIsProp isPropIsOfHLevel (suc (suc n)) f g i a b = isPropIsOfHLevel (suc n) (f a b) (g a b) i isPropIsSet : isProp (isSet A) isPropIsSet = isPropIsOfHLevel 2 isPropIsGroupoid : isProp (isGroupoid A) isPropIsGroupoid = isPropIsOfHLevel 3 isPropIs2Groupoid : isProp (is2Groupoid A) isPropIs2Groupoid = isPropIsOfHLevel 4 -- Fillers for cubes from h-level isSet→isSet' : isSet A → isSet' A isSet→isSet' {A = A} Aset a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Aset _ _ _ _) isSet'→isSet : isSet' A → isSet A isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = transport⁻ (PathP≡Path (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋) (isGroupoid→isPropSquare _ _ _ _ _ _) where isGroupoid→isPropSquare : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → isProp (Square a₀₋ a₁₋ a₋₀ a₋₁) isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (cong isProp (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋)) (Agpd _ _ _ _) isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl -- hlevels are preserved by retracts (and consequently equivalences) isContrRetract : ∀ {B : Type ℓ} → (f : A → B) (g : B → A) → (h : retract f g) → (v : isContr B) → isContr A isContrRetract f g h (b , p) = (g b , λ x → (cong g (p (f x))) ∙ (h x)) isPropRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isProp B → isProp A isPropRetract f g h p x y i = hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (p (f x) (f y) i)) isOfHLevelRetract : (n : HLevel) {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isOfHLevel n B → isOfHLevel n A isOfHLevelRetract 0 = isContrRetract isOfHLevelRetract 1 = isPropRetract isOfHLevelRetract (suc (suc n)) f g h ofLevel x y = isOfHLevelRetract (suc n) (cong f) (λ q i → hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (q i))) (λ p k i → hcomp (λ j → λ { (i = i0) → h x (j ∨ k) ; (i = i1) → h y (j ∨ k) ; (k = i1) → p i}) (h (p i) k)) (ofLevel (f x) (f y)) isOfHLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : HLevel) → A ≃ B → isOfHLevel n A → isOfHLevel n B isOfHLevelRespectEquiv n eq = isOfHLevelRetract n (invEq eq) (eq .fst) (retEq eq) -- h-level of Σ-types isContrΣ : isContr A → ((x : A) → isContr (B x)) → isContr (Σ A B) isContrΣ {A = A} {B = B} (a , p) q = let h : (x : A) (y : B x) → (q x) .fst ≡ y h x y = (q x) .snd y in (( a , q a .fst) , ( λ x i → p (x .fst) i , h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i)) isContrΣ′ : (ca : isContr A) → isContr (B (fst ca)) → isContr (Σ A B) isContrΣ′ ca cb = isContrΣ ca (λ x → subst _ (snd ca x) cb) Σ≡Prop-equiv : (pB : (x : A) → isProp (B x)) {u v : Σ[ a ∈ A ] B a} → isEquiv (Σ≡Prop pB {u} {v}) Σ≡Prop-equiv {A = A} pB {u} {v} = isoToIsEquiv (iso (Σ≡Prop pB) (cong fst) sq (λ _ → refl)) where sq : (p : u ≡ v) → Σ≡Prop pB (cong fst p) ≡ p sq p j i = (p i .fst) , isProp→PathP (λ i → isOfHLevelPath 1 (pB (fst (p i))) (Σ≡Prop pB {u} {v} (cong fst p) i .snd) (p i .snd) ) refl refl i j isPropΣ : isProp A → ((x : A) → isProp (B x)) → isProp (Σ A B) isPropΣ pA pB t u = Σ≡Prop pB (pA (t .fst) (u .fst)) isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n (Σ A B) isOfHLevelΣ 0 = isContrΣ isOfHLevelΣ 1 = isPropΣ isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y = let h3 : isOfHLevel (suc n) (ΣPathTransport x y) h3 = isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ p → h2 (p i1) (subst B p (snd x)) (snd y) in transport (λ i → isOfHLevel (suc n) (ΣPathTransport≡PathΣ x y i)) h3 isSetΣ : isSet A → ((x : A) → isSet (B x)) → isSet (Σ A B) isSetΣ = isOfHLevelΣ 2 isGroupoidΣ : isGroupoid A → ((x : A) → isGroupoid (B x)) → isGroupoid (Σ A B) isGroupoidΣ = isOfHLevelΣ 3 is2GroupoidΣ : is2Groupoid A → ((x : A) → is2Groupoid (B x)) → is2Groupoid (Σ A B) is2GroupoidΣ = isOfHLevelΣ 4 -- h-level of × isProp× : {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → isProp (A × B) isProp× pA pB = isPropΣ pA (λ _ → pB) isProp×2 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → isProp A → isProp B → isProp C → isProp (A × B × C) isProp×2 pA pB pC = isProp× pA (isProp× pB pC) isProp×3 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → isProp A → isProp B → isProp C → isProp D → isProp (A × B × C × D) isProp×3 pA pB pC pD = isProp×2 pA pB (isProp× pC pD) isOfHLevel× : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B) isOfHLevel× n hA hB = isOfHLevelΣ n hA (λ _ → hB) isSet× : ∀ {A : Type ℓ} {B : Type ℓ'} → isSet A → isSet B → isSet (A × B) isSet× = isOfHLevel× 2 isGroupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → isGroupoid A → isGroupoid B → isGroupoid (A × B) isGroupoid× = isOfHLevel× 3 is2Groupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → is2Groupoid A → is2Groupoid B → is2Groupoid (A × B) is2Groupoid× = isOfHLevel× 4 -- h-level of Π-types isOfHLevelΠ : ∀ n → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n ((x : A) → B x) isOfHLevelΠ 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i isOfHLevelΠ 1 h f g i x = (h x) (f x) (g x) i isOfHLevelΠ (suc (suc n)) h f g = subst (isOfHLevel (suc n)) funExtPath (isOfHLevelΠ (suc n) λ x → h x (f x) (g x)) isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) isPropΠ = isOfHLevelΠ 1 isPropΠ2 : (h : (x : A) (y : B x) → isProp (C x y)) → isProp ((x : A) (y : B x) → C x y) isPropΠ2 h = isPropΠ λ x → isPropΠ λ y → h x y isPropΠ3 : (h : (x : A) (y : B x) (z : C x y) → isProp (D x y z)) → isProp ((x : A) (y : B x) (z : C x y) → D x y z) isPropΠ3 h = isPropΠ λ x → isPropΠ λ y → isPropΠ λ z → h x y z isPropΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isProp (E x y z w)) → isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isPropΠ4 h = isPropΠ λ _ → isPropΠ3 λ _ → h _ _ isPropImplicitΠ : (h : (x : A) → isProp (B x)) → isProp ({x : A} → B x) isPropImplicitΠ h f g i {x} = h x (f {x}) (g {x}) i isProp→ : {A : Type ℓ} {B : Type ℓ'} → isProp B → isProp (A → B) isProp→ pB = isPropΠ λ _ → pB isSetΠ : ((x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetΠ = isOfHLevelΠ 2 isSetΠ2 : (h : (x : A) (y : B x) → isSet (C x y)) → isSet ((x : A) (y : B x) → C x y) isSetΠ2 h = isSetΠ λ x → isSetΠ λ y → h x y isGroupoidΠ : ((x : A) → isGroupoid (B x)) → isGroupoid ((x : A) → B x) isGroupoidΠ = isOfHLevelΠ 3 isGroupoidΠ2 : (h : (x : A) (y : B x) → isGroupoid (C x y)) → isGroupoid ((x : A) (y : B x) → C x y) isGroupoidΠ2 h = isGroupoidΠ λ _ → isGroupoidΠ λ _ → h _ _ isGroupoidΠ3 : (h : (x : A) (y : B x) (z : C x y) → isGroupoid (D x y z)) → isGroupoid ((x : A) (y : B x) (z : C x y) → D x y z) isGroupoidΠ3 h = isGroupoidΠ λ _ → isGroupoidΠ2 λ _ → h _ _ isGroupoidΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isGroupoid (E x y z w)) → isGroupoid ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isGroupoidΠ4 h = isGroupoidΠ λ _ → isGroupoidΠ3 λ _ → h _ _ is2GroupoidΠ : ((x : A) → is2Groupoid (B x)) → is2Groupoid ((x : A) → B x) is2GroupoidΠ = isOfHLevelΠ 4 isOfHLevelΠ⁻ : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n (A → B) → (A → isOfHLevel n B) isOfHLevelΠ⁻ 0 h x = fst h x , λ y → funExt⁻ (snd h (const y)) x isOfHLevelΠ⁻ 1 h x y z = funExt⁻ (h (const y) (const z)) x isOfHLevelΠ⁻ (suc (suc n)) h x y z = isOfHLevelΠ⁻ (suc n) (subst (isOfHLevel (suc n)) (sym funExtPath) (h (const y) (const z))) x -- h-level of A ≃ B and A ≡ B isOfHLevel≃ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B) isOfHLevel≃ zero {A = A} {B = B} hA hB = A≃B , contr where A≃B : A ≃ B A≃B = isoToEquiv (iso (λ _ → fst hB) (λ _ → fst hA) (snd hB ) (snd hA)) contr : (y : A ≃ B) → A≃B ≡ y contr y = Σ≡Prop isPropIsEquiv (funExt (λ a → snd hB (fst y a))) isOfHLevel≃ (suc n) hA hB = isOfHLevelΣ (suc n) (isOfHLevelΠ (suc n) (λ _ → hB)) (λ a → subst (λ n → isOfHLevel n (isEquiv a)) (+-comm n 1) (isOfHLevelPlus n (isPropIsEquiv a))) isOfHLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≡ B) isOfHLevel≡ n hA hB = isOfHLevelRespectEquiv n (invEquiv univalence) (isOfHLevel≃ n hA hB) -- h-level of TypeOfHLevel isPropHContr : isProp (TypeOfHLevel ℓ 0) isPropHContr x y = Σ≡Prop (λ _ → isPropIsContr) (isOfHLevel≡ 0 (x .snd) (y .snd) .fst) isOfHLevelTypeOfHLevel : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel 0 = isPropHContr isOfHLevelTypeOfHLevel (suc n) x y = subst (isOfHLevel (suc n)) eq (isOfHLevel≡ (suc n) (snd x) (snd y)) where eq : ∀ {A B : Type ℓ} {hA : isOfHLevel (suc n) A} {hB : isOfHLevel (suc n) B} → (A ≡ B) ≡ ((A , hA) ≡ (B , hB)) eq = ua (_ , Σ≡Prop-equiv (λ _ → isPropIsOfHLevel (suc n))) isSetHProp : isSet (hProp ℓ) isSetHProp = isOfHLevelTypeOfHLevel 1 -- h-level of lifted type isOfHLevelLift : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A) isOfHLevelLift n = isOfHLevelRetract n lower lift λ _ → refl ---------------------------- -- More consequences of isProp and isContr inhProp→isContr : A → isProp A → isContr A inhProp→isContr x h = x , h x extend : isContr A → (∀ φ → (u : Partial φ A) → Sub A φ u) extend (x , p) φ u = inS (hcomp (λ { j (φ = i1) → p (u 1=1) j }) x) isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ} → (extend : ∀ φ → Partial φ A → A) → (∀ u → u ≡ (extend i1 λ { _ → u})) → isContr A isContrPartial→isContr {A = A} extend law = ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y) where ex = extend i0 empty module Aux (y : A) (i : I) where φ = ~ i ∨ i u : Partial φ A u = λ { (i = i0) → ex ; (i = i1) → y } v = extend φ u -- Dependent h-level over a type isOfHLevelDep : HLevel → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b') isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1 isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1) isOfHLevel→isOfHLevelDep : (n : HLevel) → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B isOfHLevel→isOfHLevelDep 0 h {a} = (h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b') isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1 isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 = isOfHLevel→isOfHLevelDep (suc n) (λ p → helper a1 p b1) where helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1) helper a1 p b1 = J (λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)) (λ _ → h _ _ _) p b1
{ "alphanum_fraction": 0.5590241504, "avg_line_length": 38.1995305164, "ext": "agda", "hexsha": "864b4c0e594333f22aecd852ec9d4499a938f4c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Foundations/HLevels.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Foundations/HLevels.agda", "max_line_length": 150, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Foundations/HLevels.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7235, "size": 16273 }
-- Andreas, 2017-03-10, issue #2493, reported by nad -- {-# OPTIONS -v tc.meta.assign:10 -v tc.size:90 -v tc:30 #-} A : Set A = {!!} P : A → Set P = {!λ _ → ?!} -- give -- Giving this made Agda loop as it solved ?0 := A. -- Solution: don't assign metas during CheckInternal!
{ "alphanum_fraction": 0.5949820789, "avg_line_length": 23.25, "ext": "agda", "hexsha": "0da323d33d71ec847e5750707987fbe88285df36", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2493.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2493.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2493.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 97, "size": 279 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Haskell.Modules.RWS.RustAnyHow import LibraBFT.Impl.Consensus.BlockStorage.BlockRetriever as BlockRetriever import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore import LibraBFT.Impl.Consensus.BlockStorage.BlockTree as BlockTree import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-1 as ECP-LBFT-OBM-Diff-1 import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.PersistentLivenessStorage as PersistentLivenessStorage open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Hash open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.BlockStorage.SyncManager where data NeedFetchResult : Set where QCRoundBeforeRoot QCAlreadyExist QCBlockExist NeedFetch : NeedFetchResult ------------------------------------------------------------------------------ fastForwardSyncM : QuorumCert → BlockRetriever → LBFT (Either ErrLog RecoveryData) fetchQuorumCertM : QuorumCert → BlockRetriever → LBFT (Either ErrLog Unit) insertQuorumCertM : QuorumCert → BlockRetriever → LBFT (Either ErrLog Unit) syncToHighestCommitCertM : QuorumCert → BlockRetriever → LBFT (Either ErrLog Unit) ------------------------------------------------------------------------------ needSyncForQuorumCert : QuorumCert → BlockStore → Either ErrLog Bool needSyncForQuorumCert qc bs = maybeS (bs ^∙ bsRoot) (Left fakeErr) {-bsRootErrL here-} $ λ btr → Right (not ( BlockStore.blockExists (qc ^∙ qcCommitInfo ∙ biId) bs ∨ ⌊ btr ^∙ ebRound ≥?ℕ qc ^∙ qcCommitInfo ∙ biRound ⌋ )) where here' : List String → List String here' t = "SyncManager" ∷ "needSyncForQuorumCert" ∷ t needFetchForQuorumCert : QuorumCert → BlockStore → Either ErrLog NeedFetchResult needFetchForQuorumCert qc bs = maybeS (bs ^∙ bsRoot) (Left fakeErr) {-bsRootErrL here-} $ λ btr → grd‖ qc ^∙ qcCertifiedBlock ∙ biRound <?ℕ btr ^∙ ebRound ≔ Right QCRoundBeforeRoot ‖ is-just (BlockStore.getQuorumCertForBlock (qc ^∙ qcCertifiedBlock ∙ biId) bs) ≔ Right QCAlreadyExist ‖ BlockStore.blockExists (qc ^∙ qcCertifiedBlock ∙ biId) bs ≔ Right QCBlockExist ‖ otherwise≔ Right NeedFetch where here' : List String → List String here' t = "SyncManager" ∷ "needFetchForQuorumCert" ∷ t ------------------------------------------------------------------------------ addCertsM : SyncInfo → BlockRetriever → LBFT (Either ErrLog Unit) addCertsM {-reason-} syncInfo retriever = syncToHighestCommitCertM (syncInfo ^∙ siHighestCommitCert) retriever ∙?∙ \_ -> insertQuorumCertM {-reason-} (syncInfo ^∙ siHighestCommitCert) retriever ∙?∙ \_ -> insertQuorumCertM {-reason-} (syncInfo ^∙ siHighestQuorumCert) retriever ∙?∙ \_ -> maybeSD (syncInfo ^∙ siHighestTimeoutCert) (ok unit) $ \tc -> BlockStore.insertTimeoutCertificateM tc ------------------------------------------------------------------------------ module insertQuorumCertM (qc : QuorumCert) (retriever : BlockRetriever) where step₀ : LBFT (Either ErrLog Unit) step₁ : BlockStore → LBFT (Either ErrLog Unit) step₁-else : LBFT (Either ErrLog Unit) step₂ : ExecutedBlock → LBFT (Either ErrLog Unit) step₃ : LedgerInfoWithSignatures → LBFT (Either ErrLog Unit) step₀ = do bs ← use lBlockStore _ ← case⊎D needFetchForQuorumCert qc bs of λ where (Left e) → bail e (Right NeedFetch) → fetchQuorumCertM qc retriever ∙^∙ withErrCtx ("" ∷ []) (Right QCBlockExist) → BlockStore.insertSingleQuorumCertM qc ∙^∙ withErrCtx ("" ∷ []) ∙?∙ λ _ → do use lBlockStore >>= const (logInfo fakeInfo) -- InfoBlockStoreShort (here [lsQC qc]) ok unit (Right _) → ok unit step₁ bs step₁ bs = do maybeSD (bs ^∙ bsRoot) (bail fakeErr) $ λ bsr → ifD (bsr ^∙ ebRound) <?ℕ (qc ^∙ qcCommitInfo ∙ biRound) then step₂ bsr else step₁-else step₂ bsr = do let finalityProof = qc ^∙ qcLedgerInfo BlockStore.commitM finalityProof ∙?∙ λ xx → step₃ finalityProof step₃ finalityProof = do ifD qc ^∙ qcEndsEpoch then ECP-LBFT-OBM-Diff-1.e_SyncManager_insertQuorumCertM_commit finalityProof else ok unit step₁-else = ok unit insertQuorumCertM = insertQuorumCertM.step₀ ------------------------------------------------------------------------------ loop1 : BlockRetriever → List Block → QuorumCert → LBFT (Either ErrLog (List Block)) loop2 : List Block → LBFT (Either ErrLog Unit) hereFQCM' : List String → List String fetchQuorumCertM qc retriever = loop1 retriever [] qc ∙?∙ loop2 -- TODO-1 PROVE IT TERMINATES {-# TERMINATING #-} loop1 retriever pending retrieveQC = do bs ← use lBlockStore ifD (BlockStore.blockExists (retrieveQC ^∙ qcCertifiedBlock ∙ biId) bs) then ok pending else BlockRetriever.retrieveBlockForQCM retriever retrieveQC 1 ∙^∙ withErrCtx (hereFQCM' ("loop1" ∷ [])) ∙?∙ λ where (block ∷ []) → loop1 retriever (block ∷ pending) (block ^∙ bQuorumCert) (_ ∷ _ ∷ _) → errorCase [] → errorCase where errorCase : LBFT (Either ErrLog (List Block)) errorCase = do -- let msg = here ["loop1", "retrieveBlockForQCM returned more than asked for"] -- logErrExit msg bail fakeErr -- (ErrL msg) loop2 = λ where [] -> ok unit (block ∷ bs) → BlockStore.insertSingleQuorumCertM (block ^∙ bQuorumCert) ∙^∙ withErrCtx (hereFQCM' ("loop2" ∷ [])) ∙?∙ \_ -> BlockStore.executeAndInsertBlockM block ∙?∙ \_ -> loop2 bs hereFQCM' t = "SyncManager" ∷ "fetchQuorumCertM" ∷ t ------------------------------------------------------------------------------ syncToHighestCommitCertM highestCommitCert retriever = do bs ← use lBlockStore eitherSD (needSyncForQuorumCert highestCommitCert bs) bail $ λ b → if not b then ok unit else fastForwardSyncM highestCommitCert retriever ∙?∙ \rd -> do logInfo fakeInfo -- (here ["fastForwardSyncM success", lsRD rd]) BlockStore.rebuildM (rd ^∙ rdRoot) (rd ^∙ rdRootMetadata) (rd ^∙ rdBlocks) (rd ^∙ rdQuorumCerts) ∙^∙ withErrCtx (here' []) ∙?∙ λ _ -> do whenD (highestCommitCert ^∙ qcEndsEpoch) $ do me ← use (lRoundManager ∙ rmObmMe) -- TODO-1 : Epoch Change Proof -- let ecp = EpochChangeProof ∙ new [highestCommitCert ^∙ qcLedgerInfo] False logInfo fakeInfo -- (here ["fastForwardSyncM detected an EpochChange"]) -- TODO-1 : uncomment this and remove pure unit when Epoch Change supported -- act (BroadcastEpochChangeProof lEC ecp (mkNodesInOrder1 me)) pure unit ok unit where here' : List String → List String here' t = "SyncManager" ∷ "syncToHighestCommitCertM" ∷ t ------------------------------------------------------------------------------ fastForwardSyncM highestCommitCert retriever = do logInfo fakeInfo -- (here' [ "start state sync with peer", lsA (retriever^.brPreferredPeer) -- , "to block", lsBI (highestCommitCert^.qcCommitInfo) ]) BlockRetriever.retrieveBlockForQCM retriever highestCommitCert 3 ∙?∙ λ where blocks@(_ ∷ _ ∷ i ∷ []) -> if highestCommitCert ^∙ qcCommitInfo ∙ biId /= i ^∙ bId then bail fakeErr -- (here' [ "should have a 3-chain" -- , lsHV (highestCommitCert^.qcCommitInfo.biId), lsHV (i^.bId) ])) else continue blocks x -> bail fakeErr -- (here' ["incorrect number of blocks returned", show (length x)])) where here' : List String → List String zipWithNatsFrom : {A : Set} → ℕ → List A → List (ℕ × A) zipWithNatsFrom n = λ where [] → [] (x ∷ xs) → (n , x) ∷ zipWithNatsFrom (n + 1) xs checkBlocksMatchQCs : List QuorumCert → List (ℕ × Block) → LBFT (Either ErrLog Unit) continue : List Block → LBFT (Either ErrLog RecoveryData) continue blocks = do logInfo fakeInfo -- (here' (["received blocks"] <> fmap (lsHV . (^.bId)) blocks)) let quorumCerts = highestCommitCert ∷ fmap (_^∙ bQuorumCert) blocks logInfo fakeInfo -- (here' (["quorumCerts"] <> fmap (lsHV . (^.qcCommitInfo.biId)) quorumCerts)) checkBlocksMatchQCs quorumCerts (zipWithNatsFrom 0 blocks) ∙?∙ λ _ → PersistentLivenessStorage.saveTreeM blocks quorumCerts ∙?∙ λ _ → do -- TODO-1 : requires adding bsStorage to BlockStore -- use (lBlockStore ∙ bsStorage) >>= λ x → logInfo fakeInfo -- (here' ["XXX", lsPLS x]) -- OBM NOT NEEDED: state_computer.sync_to -- This returns recovery data PersistentLivenessStorage.startM ∙^∙ withErrCtx (here' []) checkBlocksMatchQCs quorumCerts = λ where [] → ok unit ((i , block) ∷ xs) → maybeSD (quorumCerts !? i) (bail fakeErr) -- (here' ["checkBlocksMatchQCs", "!?"]) $ λ qc → ifD (block ^∙ bId /= qc ^∙ qcCertifiedBlock ∙ biId) then (do logInfo fakeInfo -- [lsHV (block^.bId), lsB block] logInfo fakeInfo -- [lsHV (quorumCerts Prelude.!! i ^.qcCertifiedBlock.biId) -- ,lsQC (quorumCerts Prelude.!! i)] bail fakeErr) -- (here' ("checkBlocksMatchQCs" ∷ "/=" ∷ [])) else checkBlocksMatchQCs quorumCerts xs here' t = "SyncManager" ∷ "fastForwardSyncM" ∷ t
{ "alphanum_fraction": 0.6030998627, "avg_line_length": 43.9396551724, "ext": "agda", "hexsha": "c4f1d4a855becbe50ee1f4eb9e422630791b29fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/SyncManager.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/SyncManager.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/SyncManager.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2942, "size": 10194 }
open import Prelude module Implicits.Oliveira.Deterministic.Decidable where open import Data.Fin.Substitution open import Implicits.Oliveira.Types open import Implicits.Oliveira.Terms open import Implicits.Oliveira.Contexts open import Implicits.Oliveira.Substitutions open import Implicits.Oliveira.Substitutions.Lemmas open import Implicits.Oliveira.Deterministic.Resolution open import Implicits.Oliveira.Types.Unification open import Data.Star hiding (map) MICtx : ℕ → ℕ → Set MICtx m ν = List (MetaType m ν) private module M = MetaTypeMetaSubst module T = MetaTypeTypeSubst {- {-# NO_TERMINATION_CHECK #-} _,_amatch_ : ∀ {m ν} → (MetaType m ν) → (ρs : MICtx m ν) → (τ : SimpleType ν) → Maybe (ICtx ν) (a ⇒ b) , ρs amatch τ = b , a List.∷ ρs amatch τ ∀' x , ρs amatch τ = open-meta x , (List.map meta-weaken ρs) amatch τ (simpl x) , ρs amatch τ with mgu (simpl x) τ (simpl x) , ρs amatch τ | just (u , proj₂) = just $ List.map (λ r → from-meta $ substitute (asub u) r) ρs (simpl x) , ρs amatch τ | nothing = nothing _match_ : ∀ {ν} → (Type ν) → (SimpleType ν) → Maybe (ICtx ν) r match a = (to-meta {zero} r) , List.[] amatch a {-# NO_TERMINATION_CHECK #-} lem-a6 : ∀ {m ν} {ρs ρs'} (a : MetaType m ν) (τ : SimpleType ν) → a , ρs amatch τ ≡ just ρs' → (∃ λ (u : AList ν m zero) → (from-meta $ substitute (asub u) a) ◁ τ) lem-a6 {ρs = ρs} (a ⇒ b) τ m with _,_amatch_ b (a List.∷ ρs) τ | inspect (_,_amatch_ b (a List.∷ ρs)) τ lem-a6 (a ⇒ b) τ refl | ._ | reveal[ eq ] with lem-a6 b τ eq lem-a6 (a ⇒ b) τ refl | ._ | reveal[ eq ] | u , b/u◁τ = u , (m-iabs b/u◁τ) lem-a6 {ρs = ρs} (∀' a) τ m with open-meta a , (List.map meta-weaken ρs) amatch τ | inspect (_,_amatch_ (open-meta a) (List.map meta-weaken ρs)) τ lem-a6 (∀' a) τ refl | ._ | reveal[ eq ] with lem-a6 (open-meta a) τ eq lem-a6 (∀' a) τ refl | ._ | reveal[ eq ] | (t' // x ◅ u , b/u◁τ) = {!!} -- {!u!} , (m-tabs {!!}) lem-a6 (simpl x) τ m with mgu (simpl x) τ | inspect (mgu (simpl x)) τ lem-a6 (simpl x) τ refl | just (u , proj₂) | reveal[ eq ] = u , subst (λ u → u ◁ τ) (sym $ mgu-unifies (simpl x) τ {!!}) m-simp lem-a6 (simpl x) τ () | nothing _match1st_ : ∀ {ν} (Δ : ICtx ν) → (a : SimpleType ν) → Maybe (Type ν × ICtx ν) List.[] match1st a = nothing (x List.∷ Δ) match1st a with x match a (x List.∷ Δ) match1st a | just z = just (x , z) (x List.∷ Δ) match1st a | nothing = Δ match1st a _⊢alg_ : ∀ {ν n} (K : Ktx ν n) → (a : Type ν) → Dec (K ⊢ᵣ a) (Γ , Δ) ⊢alg simpl x with Δ match1st x (Γ , Δ) ⊢alg simpl x | just (proj₁ , proj₂) = {!!} (Γ , Δ) ⊢alg simpl x | nothing = {!!} K ⊢alg (a ⇒ b) with (a ∷K K) ⊢alg b K ⊢alg (a ⇒ b) | yes p = yes $ r-iabs a p K ⊢alg (a ⇒ b) | no ¬p = no (λ{ (r-iabs .a x) → ¬p x }) K ⊢alg ∀' a with (ktx-weaken K) ⊢alg a K ⊢alg ∀' a | yes p = yes (r-tabs p) K ⊢alg ∀' a | no ¬p = no (λ{ (r-tabs p) → ¬p p }) -} module relational where data _⊢_amatch_↠_ {m ν} : (ρs : MICtx m ν) → MetaType m ν → SimpleType ν → (ICtx ν) → Set where mtc-tabs : ∀ {r ρs ρs' a} → (List.map meta-weaken ρs) ⊢ (open-meta r) amatch a ↠ ρs' → ρs ⊢ ∀' r amatch a ↠ ρs' mtc-iabs : ∀ {ρs ρs' a b c} → (a List.∷ ρs) ⊢ b amatch c ↠ ρs' → ρs ⊢ a ⇒ b amatch c ↠ ρs' mtc-simp : ∀ {ρs a b} → (u : Unifiable (simpl a) b) → ρs ⊢ (simpl a) amatch b ↠ (List.map (λ r → from-meta $ r M./ (asub (proj₁ u))) ρs) _⊢match_↠_ : ∀ {ν} → (Type ν) → (SimpleType ν) → ICtx ν → Set r ⊢match a ↠ ρs = List.[] ⊢ (to-meta {zero} r) amatch a ↠ ρs data _⊢match1st_↠_ {ν} : List (Type ν) → (a : SimpleType ν) → ICtx ν → Set where m1-head : ∀ {rs ρs} {r : Type ν} {a} → r ⊢match a ↠ ρs → (r List.∷ rs) ⊢match1st a ↠ ρs m1-tail : ∀ {rs ρs} {r : Type ν} {a} → ¬ r ⊢match a ↠ ρs → rs ⊢match1st a ↠ ρs → (r List.∷ rs) ⊢match1st a ↠ ρs {-} gather : ∀ {ν} {ρs ρs' : ICtx ν} {a} → ρs ⊢match1st a ↠ ρs' → List (Type ν) gather (m1-head x) = gather' x where gather' : ∀ {m ν} {ρs : MICtx m ν} {r a} → ρs ⊢ r amatch a ↠→ List (Type ν) gather' (mtc-tabs x) = gather' x gather' (mtc-iabs x) = gather' x gather' {ρs = ρs} (mtc-simp {a = a} {b = b} u) = (List.map (λ r → from-meta $ substitute (asub (proj₁ u)) r) ρs) gather (m1-tail ¬x xs) = gather xs -} {-# NO_TERMINATION_CHECK #-} amatch : ∀ {m ν} → (ρs : MICtx m ν) → (r : MetaType m ν) (a : SimpleType ν) → Dec (∃ λ ρs' → ρs ⊢ r amatch a ↠ ρs') amatch ρs (simpl x) a with mgu (simpl x) a | inspect (mgu (simpl x)) a amatch ρs (simpl x) a | just mgu | _ = yes (, mtc-simp mgu) amatch ρs (simpl x) a | nothing | reveal[ eq ] = no (λ{ (._ , mtc-simp p) → (mgu-sound (simpl x) a eq) p}) amatch ρs (b ⇒ c) a with amatch (b List.∷ ρs) c a amatch ρs (b ⇒ c) a | yes (_ , p) = yes $ , mtc-iabs p amatch ρs (b ⇒ c) a | no ¬p = no (λ{ (._ , mtc-iabs x) → ¬p (, x)}) amatch ρs (∀' r) a with amatch (List.map meta-weaken ρs) (open-meta r) a amatch ρs (∀' r) a | yes (_ , p) = yes $ , mtc-tabs p amatch ρs (∀' r) a | no ¬p = no (λ{ (._ , mtc-tabs x) → ¬p (, x) }) match : ∀ {ν} → (r : Type ν) → (a : SimpleType ν) → Dec (∃ λ ρs → r ⊢match a ↠ ρs) match r a = amatch List.[] (to-meta {zero} r) a _match1st_ : ∀ {ν} (Δ : ICtx ν) → (a : SimpleType ν) → Dec (∃ λ ρs → Δ ⊢match1st a ↠ ρs) List.[] match1st a = no (λ{ (_ , ()) }) (x List.∷ xs) match1st a with match x a (x List.∷ xs) match1st a | yes (ρs , p) = yes (ρs , m1-head p) (x List.∷ xs) match1st a | no ¬p with xs match1st a (x List.∷ xs) match1st a | no ¬p | yes p = yes ? -- (, m1-tail ¬p p) (x List.∷ xs) match1st a | no ¬p-head | no ¬p-tail = no (λ{ (_ , m1-head p-head) → ¬p-head (, p-head) ; (_ , m1-tail _ p-tail) → ¬p-tail (, p-tail) }) module Lemmas where lem-A3 : ∀ {ν n} (K : Ktx ν n) {a r} → proj₂ K ⟨ a ⟩= r → r List.∈ (proj₂ K) lem-A3 f = proj₁ ∘ FirstLemmas.first⟶∈ lem-A6-1 : ∀ {m ν} → AList ν (suc m) zero → ASub ν (suc m) m × AList ν m zero lem-A6-1 (t' // zero ◅ s) = t' // zero , s lem-A6-1 {zero} (t' // suc () ◅ xs) lem-A6-1 {suc m} (t' // x ◅ xs) with lem-A6-1 xs lem-A6-1 {suc m} (t' // zero ◅ xs) | e , u = t' // zero , xs -- same case as above lem-A6-1 {suc m} (t' // suc x ◅ xs) | e , u = asub-weaken e , t' // x ◅ u lem-A6 : ∀ {m ν} {ρs ρs'} {a : MetaType m ν} {τ : SimpleType ν} → ρs ⊢ a amatch τ ↠ ρs' → (∃ λ (u : AList ν m zero) → (from-meta $ a M./ (asub u)) ◁ τ) lem-A6 {a = ∀' a} {τ = τ} (mtc-tabs x) with lem-A6 x lem-A6 {a = ∀' a} {τ = τ} (mtc-tabs x) | u , p with lem-A6-1 u lem-A6 {a = ∀' a} {τ = τ} (mtc-tabs x) | u , p | b , bs = bs , m-tabs {!p!} where -- q : from-meta (substitute (asub u) a []) ◁ τ -- q = {!!} lem-A6 (mtc-iabs x) with lem-A6 x lem-A6 (mtc-iabs x) | u , p = u , (m-iabs p) lem-A6 {τ = τ} (mtc-simp {a = a} (u , eq)) = u , subst (flip _◁_ τ) (sym $ mgu-unifies (simpl a) τ (u , eq)) m-simp lem-A6' : ∀ {ν} {ρs ρs' } {r : Type ν} {a} → r ◁ a → ρs ⊢ (to-meta {zero} r) amatch a ↠ ρs' lem-A6' {a = a} m-simp = mtc-simp (mgu-id a) lem-A6' (m-tabs r◁a) = mtc-tabs {!!} lem-A6' (m-iabs r◁a) = mtc-iabs (lem-A6' r◁a) -- p'haps counterintuitively the following proposition is NOT a theorem: -- Δ⊢ᵣa⟶Δ≢Ø : ∀ {ν n} {K : Ktx ν n} {a} → K ⊢ᵣ a → ∃ λ b → b List.∈ (proj₂ K) -- since [] ⊢ᵣ Nat ⇒ Nat through the r-iabs rule, but also: -- [] ⊢ᵣ Nat ⇒ (Nat ⇒ Nat), etc; through recursion on r-iabs lem-A7a : ∀ {ν} (Δ : ICtx ν) {a ρs} → Δ ⊢match1st a ↠ ρs → ∃ λ r → Δ ⟨ a ⟩= r lem-A7a List.[] () lem-A7a (x List.∷ Δ) {a = a} (m1-head x₁) = , (l-head u Δ) where p = lem-A6 x₁ u = subst (λ u' → u' ◁ a) (alist-zero-vanishes (proj₁ p)) (proj₂ p) lem-A7a (r List.∷ Δ) (m1-tail ¬pr y) = , (l-tail (λ r◁a → ¬pr $ lem-A6' r◁a) (proj₂ $ lem-A7a Δ y)) open Lemmas _⊢alg_ : ∀ {ν n} (K : Ktx ν n) → (a : Type ν) → Dec (K ⊢ᵣ a) K ⊢alg simpl x with proj₂ K match1st x K ⊢alg simpl x | yes p = yes (r-simp (proj₂ $ lem-A7a (proj₂ K) p) {!!}) K ⊢alg simpl x | no ¬p = no (λ{ (r-simp x₁ x₂) → {!!} }) K ⊢alg (a ⇒ b) with (a ∷K K) ⊢alg b K ⊢alg (a ⇒ b) | yes p = yes $ r-iabs a p K ⊢alg (a ⇒ b) | no ¬p = no (λ{ (r-iabs .a x) → ¬p x }) K ⊢alg ∀' a with (ktx-weaken K) ⊢alg a K ⊢alg ∀' a | yes p = yes (r-tabs p) K ⊢alg ∀' a | no ¬p = no (λ{ (r-tabs x) → ¬p x })
{ "alphanum_fraction": 0.5279971285, "avg_line_length": 46.4333333333, "ext": "agda", "hexsha": "ec0eec7c1d718e7ee4ac664719c71e7a2bdd4ca6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Deterministic/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Deterministic/Decidable.agda", "max_line_length": 121, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Deterministic/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 3810, "size": 8358 }
-- Basic intuitionistic logic of proofs, without ∨, ⊥, or +. -- Common syntax. module BasicILP.Syntax.Common where open import Common.ContextPair public
{ "alphanum_fraction": 0.7548387097, "avg_line_length": 22.1428571429, "ext": "agda", "hexsha": "536e086d4654cd96dd21a854c5e80a68bea76156", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicILP/Syntax/Common.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicILP/Syntax/Common.agda", "max_line_length": 60, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicILP/Syntax/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 37, "size": 155 }
-- https://github.com/bitonic/tog/wiki/Implicit-Arguments -- aj s popisom checkingu od Andreasa Abela module ImplArg where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where vnil : Vec A zero vcons : {n : Nat} -> A -> Vec A n -> Vec A (suc n) Cons = {A : Set} (a : A) {n : Nat} -> Vec A n -> Vec A (suc n) cons : Cons cons a = vcons a
{ "alphanum_fraction": 0.6, "avg_line_length": 22.6470588235, "ext": "agda", "hexsha": "41968710a075acce19690e811738511e56cfb2e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/ImplArg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/ImplArg.agda", "max_line_length": 62, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/ImplArg.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 138, "size": 385 }
open import Relation.Binary.PropositionalEquality using (_≡_; refl) module Dipsy.Polarity where data Polarity : Set where pos : Polarity neg : Polarity open import Algebra.FunctionProperties {A = Polarity} _≡_ flip : Polarity → Polarity flip pos = neg flip neg = pos flip-inv : Involutive flip flip-inv pos = refl flip-inv neg = refl
{ "alphanum_fraction": 0.749271137, "avg_line_length": 19.0555555556, "ext": "agda", "hexsha": "febf0d7a1e13e239ba888591444ca7a9909d7699", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/dipsy", "max_forks_repo_path": "src/Dipsy/Polarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/dipsy", "max_issues_repo_path": "src/Dipsy/Polarity.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/Dipsy", "max_stars_repo_path": "src/Dipsy/Polarity.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-10T13:43:29.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-10T13:43:29.000Z", "num_tokens": 95, "size": 343 }
postulate A B C : Set module M where infixl 4 _+_ infixl 6 _*_ postulate _+_ _*_ : Set → Set → Set T : Set T = A + B * C open M renaming (_*_ to infix 2 _*_) test : T → A + B * C test x = x -- should use the updated fixity when printing the value of T !
{ "alphanum_fraction": 0.5827338129, "avg_line_length": 13.9, "ext": "agda", "hexsha": "637617ce49be5babf8552d3cc32c3a6bf5001425", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1346.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1346.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1346.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 278 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Definition open import Numbers.Naturals.Addition module Numbers.Naturals.Multiplication where infix 25 _*N_ _*N_ : ℕ → ℕ → ℕ zero *N y = zero (succ x) *N y = y +N (x *N y) {-# BUILTIN NATTIMES _*N_ #-} productZeroIsZeroLeft : (a : ℕ) → (zero *N a ≡ zero) productZeroIsZeroLeft a = refl productZeroIsZeroRight : (a : ℕ) → (a *N zero ≡ zero) productZeroIsZeroRight zero = refl productZeroIsZeroRight (succ a) = productZeroIsZeroRight a productWithOneLeft : (a : ℕ) → ((succ zero) *N a) ≡ a productWithOneLeft a = transitivity refl (transitivity (applyEquality (λ { m -> a +N m }) refl) (additionNIsCommutative a zero)) productWithOneRight : (a : ℕ) → a *N succ zero ≡ a productWithOneRight zero = refl productWithOneRight (succ a) = transitivity refl (addingPreservesEqualityLeft (succ zero) (productWithOneRight a)) productDistributes : (a b c : ℕ) → (a *N (b +N c)) ≡ a *N b +N a *N c productDistributes zero b c = refl productDistributes (succ a) b c = transitivity refl (transitivity (addingPreservesEqualityLeft (b +N c) (productDistributes a b c)) (transitivity (equalityCommutative (additionNIsAssociative (b +N c) (a *N b) (a *N c))) (transitivity (addingPreservesEqualityRight (a *N c) (additionNIsCommutative (b +N c) (a *N b))) (transitivity (addingPreservesEqualityRight (a *N c) (equalityCommutative (additionNIsAssociative (a *N b) b c))) (transitivity (addingPreservesEqualityRight (a *N c) (addingPreservesEqualityRight c (additionNIsCommutative (a *N b) b))) (transitivity (addingPreservesEqualityRight (a *N c) (addingPreservesEqualityRight {b +N a *N b} {(succ a) *N b} c (refl))) (transitivity (additionNIsAssociative ((succ a) *N b) c (a *N c)) (transitivity (addingPreservesEqualityLeft (succ a *N b) refl) refl) ) )))))) productPreservesEqualityLeft : (a : ℕ) → {b c : ℕ} → b ≡ c → a *N b ≡ a *N c productPreservesEqualityLeft a {b} {.b} refl = refl aSucB : (a b : ℕ) → a *N succ b ≡ a *N b +N a aSucB a b = transitivity {_} {ℕ} {a *N succ b} {a *N (b +N succ zero)} (productPreservesEqualityLeft a (succIsAddOne b)) (transitivity {_} {ℕ} {a *N (b +N succ zero)} {a *N b +N a *N succ zero} (productDistributes a b (succ zero)) (addingPreservesEqualityLeft (a *N b) (productWithOneRight a))) aSucBRight : (a b : ℕ) → (succ a) *N b ≡ a *N b +N b aSucBRight a b = additionNIsCommutative b (a *N b) multiplicationNIsCommutative : (a b : ℕ) → (a *N b) ≡ (b *N a) multiplicationNIsCommutative zero b = transitivity (productZeroIsZeroLeft b) (equalityCommutative (productZeroIsZeroRight b)) multiplicationNIsCommutative (succ a) zero = multiplicationNIsCommutative a zero multiplicationNIsCommutative (succ a) (succ b) = transitivity refl (transitivity (addingPreservesEqualityLeft (succ b) (aSucB a b)) (transitivity (additionNIsCommutative (succ b) (a *N b +N a)) (transitivity (additionNIsAssociative (a *N b) a (succ b)) (transitivity (addingPreservesEqualityLeft (a *N b) (succCanMove a b)) (transitivity (addingPreservesEqualityLeft (a *N b) (additionNIsCommutative (succ a) b)) (transitivity (equalityCommutative (additionNIsAssociative (a *N b) b (succ a))) (transitivity (addingPreservesEqualityRight (succ a) (equalityCommutative (aSucBRight a b))) (transitivity (addingPreservesEqualityRight (succ a) (multiplicationNIsCommutative (succ a) b)) (transitivity (additionNIsCommutative (b *N (succ a)) (succ a)) refl ))))))))) productDistributes' : (a b c : ℕ) → (a +N b) *N c ≡ a *N c +N b *N c productDistributes' a b c rewrite multiplicationNIsCommutative (a +N b) c | productDistributes c a b | multiplicationNIsCommutative c a | multiplicationNIsCommutative c b = refl flipProductsWithinSum : (a b c : ℕ) → (c *N a +N c *N b ≡ a *N c +N b *N c) flipProductsWithinSum a b c = transitivity (addingPreservesEqualityRight (c *N b) (multiplicationNIsCommutative c a)) ((addingPreservesEqualityLeft (a *N c) (multiplicationNIsCommutative c b))) productDistributesRight : (a b c : ℕ) → (a +N b) *N c ≡ a *N c +N b *N c productDistributesRight a b c = transitivity (multiplicationNIsCommutative (a +N b) c) (transitivity (productDistributes c a b) (flipProductsWithinSum a b c)) multiplicationNIsAssociative : (a b c : ℕ) → (a *N (b *N c)) ≡ ((a *N b) *N c) multiplicationNIsAssociative zero b c = refl multiplicationNIsAssociative (succ a) b c = transitivity refl (transitivity refl (transitivity (applyEquality ((λ x → b *N c +N x)) (multiplicationNIsAssociative a b c)) (transitivity (equalityCommutative (productDistributesRight b (a *N b) c)) refl))) productOne : {a b : ℕ} → a ≡ a *N b → (a ≡ 0) || (b ≡ 1) productOne {zero} {b} pr = inl refl productOne {succ a} {zero} pr rewrite multiplicationNIsCommutative a 0 = exFalso (naughtE (equalityCommutative pr)) productOne {succ a} {succ zero} pr = inr refl productOne {succ a} {succ (succ b)} pr rewrite multiplicationNIsCommutative a (succ (succ b)) | additionNIsCommutative (succ b) (a +N (a +N b *N a)) | additionNIsAssociative (succ a) (a +N b *N a) (succ b) | additionNIsCommutative (a +N b *N a) (succ b) = exFalso (bad pr) where bad' : {x : ℕ} → x ≡ succ x → False bad' () bad : {x y : ℕ} → x ≡ x +N succ y → False bad {succ x} {zero} pr rewrite additionNIsCommutative x 1 = bad' pr bad {succ x} {succ y} pr = bad (succInjective pr)
{ "alphanum_fraction": 0.6780687689, "avg_line_length": 58.46875, "ext": "agda", "hexsha": "6acf7cc9533d0e5da986687478029cfaa107afad", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/Multiplication.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/Multiplication.agda", "max_line_length": 294, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1881, "size": 5613 }
open import Nat open import Prelude open import List open import judgemental-erase open import moveerase open import sensibility open import statics-checks open import statics-core module reachability where -- algorithmically, we break reachability into two halves: first you -- produce a list of actions that are all "move parent" to pull the cursor -- to the very top of the expression in question. then, you go back down -- into the expression with a sequence of move firstChild and move -- nextSibs as appropriate. the append of these two lists will reach from -- one expression to the other. -- -- there may well be a shorter list of actions that does the same thing; -- the expression with top-level cursor may not be the Least Common -- Ancestor in the expression tree of the given pair. however, the work -- of this less minimal thing and corresponding size of the proof term is -- still bounded linearly by the size of the expression, and is far -- easier to maniupulate judgementally. reachup-type : {t : ztyp} {t' : htyp} → erase-t t t' → Σ[ L ∈ List action ] (runtype t L (▹ t' ◃) × movements L) reachup-type ETTop = [] , DoRefl , AM[] reachup-type (ETArrL er) with reachup-type er ... | (l , ih , m ) = l ++ [ move parent ] , runtype++ (ziplem-tmarr1 ih) (DoType TMArrParent1 DoRefl) , movements++ m (AM:: AM[]) reachup-type (ETArrR er) with reachup-type er ... | (l , ih , m ) = l ++ [ move parent ] , runtype++ (ziplem-tmarr2 ih) (DoType TMArrParent2 DoRefl) , movements++ m (AM:: AM[]) reachup-type (ETPlusL er) with reachup-type er ... | (l , ih , m ) = l ++ [ move parent ] , runtype++ (ziplem-tmplus1 ih) (DoType TMPlusParent1 DoRefl) , movements++ m (AM:: AM[]) reachup-type (ETPlusR er) with reachup-type er ... | (l , ih , m ) = l ++ [ move parent ] , runtype++ (ziplem-tmplus2 ih) (DoType TMPlusParent2 DoRefl) , movements++ m (AM:: AM[]) reachup-type (ETProdL er) with reachup-type er ... | (l , ih , m) = l ++ [ move parent ] , runtype++ (ziplem-tmprod1 ih) (DoType TMProdParent1 DoRefl) , movements++ m (AM:: AM[]) reachup-type (ETProdR er) with reachup-type er ... | (l , ih , m) = l ++ [ move parent ] , runtype++ (ziplem-tmprod2 ih) (DoType TMProdParent2 DoRefl) , movements++ m (AM:: AM[]) mutual reachup-synth : {Γ : tctx} {e : zexp} {t : htyp} {e' : hexp} → erase-e e e' → Γ ⊢ e' => t → Σ[ L ∈ List action ] (runsynth Γ e t L ▹ e' ◃ t × movements L) reachup-synth (EELam _) () reachup-synth (EEInl er) () reachup-synth (EEInr er) () reachup-synth (EECase1 er) () reachup-synth (EECase2 er) () reachup-synth (EECase3 er) () reachup-synth EETop _ = [] , DoRefl , AM[] reachup-synth (EEPlusL er) (SPlus x x₁) with reachup-ana er x ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-plus1 ih) (DoSynth (SAMove EMPlusParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEPlusR er) (SPlus x x₁) with reachup-ana er x₁ ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-plus2 ih) (DoSynth (SAMove EMPlusParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEAscL er) (SAsc x) with reachup-ana er x ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-asc1 ih) (DoSynth (SAMove EMAscParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEAscR er) (SAsc x₁) with reachup-type er ... | l , ih , m = l ++ [ move parent ] , runsynth++ {L1 = l} (ziplem-moves-asc2 m er x₁ ih) (DoSynth (SAMove EMAscParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEHalfLamL er) (SLam x wt) with reachup-type er ... | l , ih , m = l ++ [ move parent ] , runsynth++ {L1 = l} (ziplem-moves-halflam1 x er ETTop m ih wt wt) (DoSynth (SAMove EMHalfLamParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEHalfLamR er) (SLam x wt) with reachup-synth er wt ... | l , ih , m = l ++ [ move parent ] , runsynth++ {L1 = l} (ziplem-halflam2 x er wt ih) (DoSynth (SAMove EMHalfLamParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEApL er) (SAp wt x x₁) with reachup-synth er wt ... | l , ih , m = l ++ [ move parent ] , runsynth++ {L1 = l} (ziplem-moves-ap1 (lem-erase-synth er wt) x x₁ m ih) (DoSynth (SAMove EMApParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEApR er) (SAp wt x x₁) with reachup-ana er x₁ ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-ap2 wt x ih) (DoSynth (SAMove EMApParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EENEHole er) (SNEHole wt) with reachup-synth er wt ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-nehole-a (lem-erase-synth er wt) ih) (DoSynth (SAMove EMNEHoleParent) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEFst er) (SFst wt pr) with reachup-synth er wt ... | l , ih , m = (l ++ [ move parent ]) , runsynth++ (ziplem-moves-fst pr pr er wt m ih) (DoSynth (SAMove EMFstParent) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EESnd er) (SSnd wt pr) with reachup-synth er wt ... | l , ih , m = (l ++ [ move parent ]) , runsynth++ (ziplem-moves-snd pr pr er wt m ih) (DoSynth (SAMove EMSndParent) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEPairL er) (SPair wt wt₁) with reachup-synth er wt ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-pair1 er wt ih wt₁) (DoSynth (SAMove EMPairParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-synth (EEPairR er) (SPair wt wt₁) with reachup-synth er wt₁ ... | l , ih , m = l ++ [ move parent ] , runsynth++ (ziplem-pair2 wt er wt₁ ih) (DoSynth (SAMove EMPairParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-ana : {Γ : tctx} {e : zexp} {t : htyp} {e' : hexp} → erase-e e e' → Γ ⊢ e' <= t → Σ[ L ∈ List action ] (runana Γ e L ▹ e' ◃ t × movements L) reachup-ana EETop _ = [] , DoRefl , AM[] reachup-ana er (ASubsume x x₁) with reachup-synth er x ... | l , ih , m = l , synthana-moves (lem-erase-synth er x) m x₁ ih , m reachup-ana (EELam er) (ALam x₁ x₂ wt) with reachup-ana er wt ... | l , ih , m = l ++ [ move parent ] , runana++ (ziplem-lam x₁ x₂ ih) (DoAna (AAMove EMLamParent) DoRefl) , movements++ m (AM:: AM[]) reachup-ana (EEInl er) (AInl x wt) with reachup-ana er wt ... | l , ih , m = l ++ [ move parent ] , runana++ (ziplem-inl x ih) (DoAna (AAMove EMInlParent) DoRefl) , movements++ m (AM:: AM[]) reachup-ana (EEInr er) (AInr x wt) with reachup-ana er wt ... | l , ih , m = l ++ [ move parent ] , runana++ (ziplem-inr x ih) (DoAna (AAMove EMInrParent) DoRefl) , movements++ m (AM:: AM[]) reachup-ana (EECase1 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachup-synth er x₄ ... | l , ih , m = l ++ [ move parent ] , runana++ {L1 = l} (ziplem-case1a x₁ x₂ er x₄ ih x₃ wt wt₁ m) (DoAna (AAMove EMCaseParent1) DoRefl) , movements++ m (AM:: AM[]) reachup-ana (EECase2 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachup-ana er wt ... | l , ih , m = l ++ [ move parent ] , runana++ (ziplem-case2 x₁ x₂ x₄ wt₁ x₃ ih) (DoAna (AAMove EMCaseParent2) DoRefl) , movements++ m (AM:: AM[]) reachup-ana (EECase3 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachup-ana er wt₁ ... | l , ih , m = l ++ [ move parent ] , runana++ (ziplem-case3 x₁ x₂ x₄ wt x₃ ih) (DoAna (AAMove EMCaseParent3) DoRefl) , movements++ m (AM:: AM[]) reachdown-type : {t : htyp} {t' : ztyp} → (p : erase-t t' t) → Σ[ L ∈ List action ] (runtype (▹ t ◃) L t' × movements L) reachdown-type ETTop = [] , DoRefl , AM[] reachdown-type (ETArrL er) with reachdown-type er ... | (l , ih , m ) = move (child 1) :: l , DoType TMArrChild1 (ziplem-tmarr1 ih) , AM:: m reachdown-type (ETArrR er) with reachdown-type er ... | (l , ih , m ) = move (child 2) :: l , DoType TMArrChild2 (ziplem-tmarr2 ih) , AM:: m reachdown-type (ETPlusL er) with reachdown-type er ... | (l , ih , m ) = move (child 1) :: l , DoType TMPlusChild1 (ziplem-tmplus1 ih) , AM:: m reachdown-type (ETPlusR er) with reachdown-type er ... | (l , ih , m ) = move (child 2) :: l , DoType TMPlusChild2 (ziplem-tmplus2 ih) , AM:: m reachdown-type (ETProdL er) with reachdown-type er ... | (l , ih , m ) = move (child 1) :: l , DoType TMProdChild1 (ziplem-tmprod1 ih) , AM:: m reachdown-type (ETProdR er) with reachdown-type er ... | (l , ih , m ) = move (child 2) :: l , DoType TMProdChild2 (ziplem-tmprod2 ih) , AM:: m mutual reachdown-synth : {Γ : tctx} {e : zexp} {t : htyp} {e' : hexp} → (p : erase-e e e') → (wt : Γ ⊢ e' => t) → Σ[ L ∈ List action ] (runsynth Γ ▹ e' ◃ t L e t × movements L) reachdown-synth (EELam _) () reachdown-synth (EEInl er) () reachdown-synth (EEInr er) () reachdown-synth (EECase1 er) () reachdown-synth (EECase2 er) () reachdown-synth (EECase3 er) () reachdown-synth EETop _ = [] , DoRefl , AM[] reachdown-synth (EEAscL er) (SAsc x) with reachdown-ana er x ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMAscChild1) (ziplem-asc1 ih) , AM:: m reachdown-synth (EEAscR er) (SAsc x₁) with reachdown-type er ... | l , ih , m = move (child 2) :: l , DoSynth (SAMove EMAscChild2) (ziplem-moves-asc2 m ETTop x₁ ih) , AM:: m reachdown-synth (EEHalfLamL er) (SLam x wt) with reachdown-type er ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMHalfLamChild1) (ziplem-moves-halflam1 x ETTop er m ih wt wt) , AM:: m reachdown-synth (EEHalfLamR er) (SLam x wt) with reachdown-synth er wt ... | l , ih , m = move (child 2) :: l , DoSynth (SAMove EMHalfLamChild2) (ziplem-halflam2 x EETop wt ih) , AM:: m reachdown-synth (EEApL er) (SAp wt x x₁) with reachdown-synth er wt ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMApChild1) (ziplem-moves-ap1 wt x x₁ m ih) , AM:: m reachdown-synth (EEApR er) (SAp wt x x₁) with reachdown-ana er x₁ ... | l , ih , m = move (child 2) :: l , DoSynth (SAMove EMApChild2) (ziplem-ap2 wt x ih) , AM:: m reachdown-synth (EEPlusL er) (SPlus x x₁) with reachdown-ana er x ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMPlusChild1) (ziplem-plus1 ih) , AM:: m reachdown-synth (EEPlusR er) (SPlus x x₁) with reachdown-ana er x₁ ... | l , ih , m = move (child 2) :: l , DoSynth (SAMove EMPlusChild2) (ziplem-plus2 ih) , AM:: m reachdown-synth (EENEHole er) (SNEHole wt) with reachdown-synth er wt ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMNEHoleChild1) (ziplem-nehole-a wt ih) , AM:: m reachdown-synth (EEPairL er) (SPair wt wt₁) with reachdown-synth er wt ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMPairChild1) (ziplem-pair1 EETop wt ih wt₁) , AM:: m reachdown-synth (EEPairR er) (SPair wt wt₁) with reachdown-synth er wt₁ ... | l , ih , m = move (child 2) :: l , DoSynth (SAMove EMPairChild2) (ziplem-pair2 wt EETop wt₁ ih) , AM:: m reachdown-synth (EEFst er) (SFst wt pr) with reachdown-synth er wt ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMFstChild1) (ziplem-moves-fst pr pr EETop wt m ih) , AM:: m reachdown-synth (EESnd er) (SSnd wt pr) with reachdown-synth er wt ... | l , ih , m = move (child 1) :: l , DoSynth (SAMove EMSndChild1) (ziplem-moves-snd pr pr EETop wt m ih) , AM:: m reachdown-ana : {Γ : tctx} {e : zexp} {t : htyp} {e' : hexp} → (p : erase-e e e') → (wt : Γ ⊢ e' <= t) → Σ[ L ∈ List action ] (runana Γ ▹ e' ◃ L e t × movements L) reachdown-ana EETop _ = [] , DoRefl , AM[] reachdown-ana er (ASubsume x x₁) with reachdown-synth er x ... | l , ih , m = l , synthana-moves x m x₁ ih , m reachdown-ana (EELam er) (ALam x₁ x₂ wt) with reachdown-ana er wt ... | l , ih , m = move (child 1) :: l , DoAna (AAMove EMLamChild1) (ziplem-lam x₁ x₂ ih) , AM:: m reachdown-ana (EEInl er) (AInl x wt) with reachdown-ana er wt ... | l , ih , m = move (child 1) :: l , DoAna (AAMove EMInlChild1) (ziplem-inl x ih) , AM:: m reachdown-ana (EEInr er) (AInr x wt) with reachdown-ana er wt ... | l , ih , m = move (child 1) :: l , DoAna (AAMove EMInrChild1) (ziplem-inr x ih) , AM:: m reachdown-ana (EECase1 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachdown-synth er x₄ ... | l , ih , m = move (child 1) :: l , DoAna (AAMove EMCaseChild1) (ziplem-case1a x₁ x₂ EETop x₄ ih x₃ wt wt₁ m) , AM:: m reachdown-ana (EECase2 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachdown-ana er wt ... | l , ih , m = move (child 2) :: l , DoAna (AAMove EMCaseChild2) (ziplem-case2 x₁ x₂ x₄ wt₁ x₃ ih) , AM:: m reachdown-ana (EECase3 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) with reachdown-ana er wt₁ ... | l , ih , m = move (child 3) :: l , DoAna (AAMove EMCaseChild3) (ziplem-case3 x₁ x₂ x₄ wt x₃ ih) , AM:: m -- this is the final statement of the reachability triplet. the movement -- between judgemental and metafunctional erasure happens internally to -- theses statements to present a consistent interface with the text of -- the paper, while also allowing easy pattern matching in the proofs. -- -- the intuition for these statements is that the cursor cannot change -- the type of things because the typing judgement is defined on the -- cursor-erased terms and types. reachability-types : (t1 t2 : ztyp) → (t1 ◆t) == (t2 ◆t) → Σ[ L ∈ List action ] (runtype t1 L t2 × movements L) reachability-types t1 t2 eq with ◆erase-t t1 (t2 ◆t) eq | ◆erase-t t2 (t1 ◆t) (! eq) ... | er1 | er2 with reachup-type er1 | reachdown-type er2 ... | (lup , rup , mvup) | (ldwn , rdwn , mvdwn) = lup ++ ldwn , runtype++ rup (tr (λ x → runtype ▹ x ◃ ldwn t2) eq rdwn) , movements++ mvup mvdwn reachability-synth : (Γ : tctx) (t : htyp) (e1 e2 : zexp) → Γ ⊢ e1 ◆e => t → e1 ◆e == e2 ◆e → Σ[ L ∈ List action ] (runsynth Γ e1 t L e2 t × movements L) reachability-synth Γ t e1 e2 wt1 eq with ◆erase-e e1 (e2 ◆e) eq | ◆erase-e e2 (e1 ◆e) (! eq) ... | er1 | er2 with reachup-synth er1 (tr (λ x → Γ ⊢ x => t) eq wt1) | reachdown-synth er2 wt1 ... | (lup , rup , mvup) | (ldwn , rdwn , mvdwn) = (lup ++ ldwn) , runsynth++ rup (tr (λ x → runsynth Γ ▹ x ◃ t ldwn e2 t) eq rdwn) , movements++ mvup mvdwn reachability-ana : (Γ : tctx) (t : htyp) (e1 e2 : zexp) → Γ ⊢ e1 ◆e <= t → e1 ◆e == e2 ◆e → Σ[ L ∈ List action ] (runana Γ e1 L e2 t × movements L) reachability-ana Γ t e1 e2 wt1 eq with ◆erase-e e1 (e2 ◆e) eq | ◆erase-e e2 (e1 ◆e) (! eq) ... | er1 | er2 with reachup-ana er1 (tr (λ x → Γ ⊢ x <= t) eq wt1) | reachdown-ana er2 wt1 ... | (lup , rup , mvup) | (ldwn , rdwn , mvdwn) = lup ++ ldwn , (runana++ rup (tr (λ x → runana Γ ▹ x ◃ ldwn e2 t) eq rdwn)) , (movements++ mvup mvdwn)
{ "alphanum_fraction": 0.4927225792, "avg_line_length": 52.7739130435, "ext": "agda", "hexsha": "6eb02f28d1ce996eb483043869dfddb4c3a2aef9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "reachability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "reachability.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "reachability.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5766, "size": 18207 }
module UniDB.Morph.Star where open import UniDB.Spec infixl 4 _▻_ data Star (Ξ : MOR) : MOR where ε : {γ : Dom} → Star Ξ γ γ _▻_ : {γ₁ γ₂ γ₃ : Dom} (ξs : Star Ξ γ₁ γ₂) (ξ : Ξ γ₂ γ₃) → Star Ξ γ₁ γ₃ module _ {Ξ : MOR} where instance iIdmStar : Idm (Star Ξ) idm {{iIdmStar}} _ = ε iCompStar : Comp (Star Ξ) _⊙_ {{iCompStar}} ξs ε = ξs _⊙_ {{iCompStar}} ξs (ζs ▻ ζ) = (ξs ⊙ ζs) ▻ ζ module _ {Ξ : MOR} {{upΞ : Up Ξ}} where instance iUpStar : Up (Star Ξ) _↑₁ {{iUpStar}} ε = ε _↑₁ {{iUpStar}} (ξs ▻ ξ) = (ξs ↑₁) ▻ (ξ ↑₁) _↑_ {{iUpStar}} ξ 0 = ξ _↑_ {{iUpStar}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpStar}} ξ = refl ↑-suc {{iUpStar}} ξ δ⁺ = refl iUpIdmStar : UpIdm (Star Ξ) idm-↑₁ {{iUpIdmStar}} = refl iUpCompStar : UpComp (Star Ξ) ⊙-↑₁ {{iUpCompStar}} ξs ε = refl ⊙-↑₁ {{iUpCompStar}} ξs (ζs ▻ ζ) = cong₂ _▻_ (⊙-↑₁ {Star Ξ} ξs ζs ) (refl {x = ζ ↑₁})
{ "alphanum_fraction": 0.5089567966, "avg_line_length": 24.9736842105, "ext": "agda", "hexsha": "33556e85288fc45adcbbac19b6658684bf633f64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Star.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Star.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Star.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 498, "size": 949 }
module NoParseForLHS where data X : Set where _! : X -> X z : X right : X -> X right (x !) = x right z = z ! wrong : X -> X wrong (! x) = x wrong z = z !
{ "alphanum_fraction": 0.4912280702, "avg_line_length": 11.4, "ext": "agda", "hexsha": "5cdd71cc759061616647951c90242ba8d1e2398f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NoParseForLHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NoParseForLHS.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NoParseForLHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 171 }
module par-swap where open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Context open import sn-calculus data _∥R_ : Term -> Term -> Set where ∥Rstep : ∀ {C p q d} -> (d≐C⟦p∥q⟧c : d ≐ C ⟦ (p ∥ q) ⟧c) -> d ∥R (C ⟦ (q ∥ p) ⟧c) data _∥R*_ : Term -> Term -> Set where ∥R0 : ∀ {p} -> p ∥R* p ∥Rn : ∀ {p q r} -> (p∥Rq : p ∥R q) -> (q∥R*r : q ∥R* r) -> p ∥R* r ∥R*-concat : ∀ {p q r} -> p ∥R* q -> q ∥R* r -> p ∥R* r ∥R*-concat ∥R0 q∥R*r = q∥R*r ∥R*-concat (∥Rn p∥Rq p∥R*q) q∥R*r = ∥Rn p∥Rq (∥R*-concat p∥R*q q∥R*r) data _∥R*∪sn⟶*_ : Term -> Term -> Set where ∪∥R* : ∀ {p q r} -> (p∥R*q : p ∥R* q) -> (q∥R∪sn⟶*r : q ∥R*∪sn⟶* r) -> p ∥R*∪sn⟶* r ∪sn⟶* : ∀ {p q r} -> (psn⟶*q : p sn⟶* q) -> (q∥R∪sn⟶*r : q ∥R*∪sn⟶* r) -> p ∥R*∪sn⟶* r ∪refl : ∀ {p} -> p ∥R*∪sn⟶* p ∥R*∪sn⟶*-concat : ∀ {p q r} -> p ∥R*∪sn⟶* q -> q ∥R*∪sn⟶* r -> p ∥R*∪sn⟶* r ∥R*∪sn⟶*-concat (∪∥R* p∥R*q a) b = ∪∥R* p∥R*q (∥R*∪sn⟶*-concat a b) ∥R*∪sn⟶*-concat (∪sn⟶* psn⟶*q a) b = ∪sn⟶* psn⟶*q (∥R*∪sn⟶*-concat a b) ∥R*∪sn⟶*-concat ∪refl b = b data _∥R∪sn≡ₑ_ : Term → Term → Set where ∪stpsn : ∀{p q} → (psn⟶q : p sn⟶ q) → p ∥R∪sn≡ₑ q ∪stp∥ : ∀{p q} → (p∥Rq : p ∥R q) → p ∥R∪sn≡ₑ q ∪sym : ∀{p q BV FV} → (psn∪∥R≡ₑq : p ∥R∪sn≡ₑ q) → (CBp : CorrectBinding p BV FV) → q ∥R∪sn≡ₑ p ∪ref : ∀{p} → p ∥R∪sn≡ₑ p ∪trn : ∀{p r q} → (p∥R∪sn≡ₑr : p ∥R∪sn≡ₑ r) → (r∥R∪sn≡ₑq : r ∥R∪sn≡ₑ q) → p ∥R∪sn≡ₑ q
{ "alphanum_fraction": 0.421509686, "avg_line_length": 32.5434782609, "ext": "agda", "hexsha": "1637a63747f9eb5b51c82e2e865fc511d0199c11", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/par-swap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/par-swap.agda", "max_line_length": 96, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/par-swap.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 949, "size": 1497 }
-- DontCares shouldn't end up in the generated with functions. module Issue337 where data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x postulate _≤_ : ℕ → ℕ → Set p₁ : 0 ≤ 1 p₂ : 0 ≤ 1 data SList (bound : ℕ) : Set where [] : SList bound scons : (head : ℕ) → .(head ≤ bound) → (tail : SList head) → SList bound l₁ : SList 1 l₁ = scons 0 p₁ [] l₂ : SList 1 l₂ = scons 0 p₂ [] l₁≡l₂ : l₁ ≡ l₂ l₁≡l₂ with Set ... | _ = refl
{ "alphanum_fraction": 0.5194174757, "avg_line_length": 17.1666666667, "ext": "agda", "hexsha": "a7bcee5c8c95a1b628a28b0fd5ec840c60731a5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue337.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue337.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue337.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 251, "size": 618 }
open import Categories.Category module Categories.End {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {V : Category o′ ℓ′ e′} where private module C = Category C module V = Category V open import Categories.Bifunctor using (Bifunctor; Functor; module Functor) open import Categories.DinaturalTransformation open import Categories.Functor.Constant open import Level open import Categories.Morphisms V open import Categories.Square open import Data.Product record End-data (F : Bifunctor C.op C V) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field E : V.Obj π : DinaturalTransformation {C = C} (Constant E) F module π = DinaturalTransformation π open π using (α) π∘_ : ∀ {Q} → Q V.⇒ E → End-data F π∘_ {Q} g = record { π = record { α = λ c → α c ∘ g; commute = λ {c c′} f → begin F.F₁ (f , C.id) ∘ ((α c′ ∘ g) ∘ id) ↓⟨ ∘-resp-≡ʳ identityʳ ⟩ F.F₁ (f , C.id) ∘ (α c′ ∘ g) ↑⟨ assoc ⟩ (F.F₁ (f , C.id) ∘ α c′) ∘ g ↑⟨ ∘-resp-≡ʳ identityˡ ⟩ (F.F₁ (f , C.id) ∘ α c′) ∘ (id ∘ g) ↑⟨ assoc ⟩ ((F.F₁ (f , C.id) ∘ α c′) ∘ id) ∘ g ↓⟨ ∘-resp-≡ˡ assoc ⟩ (F.F₁ (f , C.id) ∘ (α c′ ∘ id)) ∘ g ↓⟨ ∘-resp-≡ˡ (π.commute f) ⟩ (F.F₁ (C.id , f) ∘ (α c ∘ id)) ∘ g ↓⟨ assoc ⟩ F.F₁ (C.id , f) ∘ (α c ∘ id) ∘ g ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ identityʳ) ⟩ F.F₁ (C.id , f) ∘ α c ∘ g ↑⟨ ∘-resp-≡ʳ identityʳ ⟩ F.F₁ (C.id , f) ∘ (α c ∘ g) ∘ id ∎ {- begin F.F₁ (f , C.id) ∘ (α c′ ∘ g) ∘ ID ↓⟨ Equiv.refl ⟩ (F.F₁ (f , C.id) ∙ α c′ ∙ ID) ∙ g ↓≡⟨ ∘-resp-≡ˡ (π.commute f) ⟩ (F.F₁ (C.id , f) ∙ α c ∙ ID) ∙ g ↓⟨ Equiv.refl ⟩ F.F₁ (C.id , f) ∙ (α c ∙ g) ∙ ID ∎ -} } } where -- open AUReasoning V open V.HomReasoning module F = Functor F open V .commute : ∀ {a b} (f : a C.⇒ b) -> Functor.F₁ F (f , C.id) V.∘ α b V.≡ Functor.F₁ F (C.id , f) V.∘ α a commute {c} {c′} f = begin F.F₁ (f , C.id) ∘ α c′ ↑⟨ ∘-resp-≡ʳ identityʳ ⟩ F.F₁ (f , C.id) ∘ α c′ ∘ id ↓⟨ π.commute f ⟩ F.F₁ (C.id , f) ∘ α c ∘ id ↓⟨ ∘-resp-≡ʳ identityʳ ⟩ F.F₁ (C.id , f) ∘ α c ∎ where open V.HomReasoning module F = Functor F open V open DinaturalTransformation using (α) record End (F : Bifunctor C.op C V) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field Data : End-data F open End-data Data IsUni : (Q : End-data F) → (u : End-data.E Q V.⇒ E) → Set _ IsUni Q u = ∀ c → α π c V.∘ u V.≡ α (End-data.π Q) c field universal : (Q : End-data F) → End-data.E Q V.⇒ E .π[c]∘universal≡δ[c] : {Q : End-data F} → IsUni Q (universal Q) .universal-unique : {Q : End-data F} → ∀ u → IsUni Q u → u V.≡ universal Q .eta-rule : universal Data V.≡ V.id eta-rule = begin universal Data ↑⟨ universal-unique {Data} V.id (λ c → V.identityʳ) ⟩ V.id ∎ where open V.HomReasoning .π-mono : ∀ {Q} (g₁ g₂ : Q V.⇒ E) → (∀ c → α π c V.∘ g₁ V.≡ α π c V.∘ g₂) → g₁ V.≡ g₂ π-mono {Q} g₁ g₂ π∘g₁≡π∘g₂ = begin g₁ ↓⟨ universal-unique {π∘ g₁} g₁ (λ c → V.Equiv.refl) ⟩ universal (π∘ g₁) ↑⟨ universal-unique {π∘ g₁} g₂ (λ c → V.Equiv.sym (π∘g₁≡π∘g₂ c)) ⟩ g₂ ∎ where open V.HomReasoning open End-data Data public open import Data.Product open import Categories.Product open import Categories.FunctorCategory import Categories.NaturalTransformation as NT open NT.NaturalTransformation using (η) endF : ∀ {o ℓ e} {A : Category o ℓ e}(F : Functor A (Functors (Product C.op C) V)) → (∀ a → End (Functor.F₀ F a)) → Functor A V endF {A = A} F mke = record { F₀ = λ a → End.E (mke a); F₁ = λ {a b} → F₁ {a} {b} ; identity = λ {a} → V.Equiv.sym (End.universal-unique (mke a) V.id (λ c → begin α (End.π (mke a)) c ∘ id ↓⟨ identityʳ ⟩ α (End.π (mke a)) c ↑⟨ identityˡ ⟩ id ∘ α (End.π (mke a)) c ↑⟨ ∘-resp-≡ˡ F.identity ⟩ η (F.F₁ A.id) (c , c) ∘ α (End.π (mke a)) c ∎ )) ; homomorphism = λ {X Y Z f g} → V.Equiv.sym (End.universal-unique (mke Z) _ (λ c → begin α (End.π (mke Z)) c ∘ F₁ g ∘ F₁ f ↑⟨ assoc ⟩ (α (End.π (mke Z)) c ∘ F₁ g) ∘ F₁ f ↓⟨ ∘-resp-≡ˡ (End.π[c]∘universal≡δ[c] (mke Z) {record {π = F.F₁ g <∘ End.π (mke Y)}} c) ⟩ (η (F.F₁ g) (c , c) ∘ α (End.π (mke Y)) c) ∘ F₁ f ↓⟨ assoc ⟩ η (F.F₁ g) (c , c) ∘ α (End.π (mke Y)) c ∘ F₁ f ↓⟨ ∘-resp-≡ʳ (End.π[c]∘universal≡δ[c] (mke Y) {record {π = F.F₁ f <∘ End.π (mke X)}} c) ⟩ η (F.F₁ g) (c , c) ∘ η (F.F₁ f) (c , c) ∘ α (End.π (mke X)) c ↑⟨ assoc ⟩ (η (F.F₁ g) (c , c) ∘ η (F.F₁ f) (c , c)) ∘ α (End.π (mke X)) c ↑⟨ ∘-resp-≡ˡ F.homomorphism ⟩ η (F.F₁ (A [ g ∘ f ])) (c , c) ∘ α (End.π (mke X)) c ∎ )); F-resp-≡ = λ {a b f g} f≡g → End.universal-unique (mke b) _ (λ c → begin α (End.π (mke b)) c ∘ F₁ f ↓⟨ End.π[c]∘universal≡δ[c] (mke b) c ⟩ η (F.F₁ f) (c , c) ∘ α (End.π (mke a)) c ↓⟨ ∘-resp-≡ˡ (F.F-resp-≡ f≡g) ⟩ η (F.F₁ g) (c , c) ∘ α (End.π (mke a)) c ∎ ) } where module A = Category A module F = Functor F open V open V.HomReasoning F₁ = λ {a b} f → End.universal (mke b) (record { E = _; π = (F.F₁ f) <∘ (End.π (mke a)) })
{ "alphanum_fraction": 0.4181494662, "avg_line_length": 43.2307692308, "ext": "agda", "hexsha": "05f7eb81842dc5de5dcf6d2f1696dffdcb2c1b90", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/End.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/End.agda", "max_line_length": 124, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/End.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2453, "size": 6182 }
module Lemmachine.Request where {-# IMPORT Hack #-} {-# IMPORT Lemmachine.FFI #-} open import Data.Product open import Data.List open import Data.Maybe open import Data.Bool open import Data.Nat open import Data.String data Method : Set where HEAD GET PUT DELETE POST : Method TRACE CONNECT OPTIONS : Method {-# COMPILED_DATA Method Hack.RequestMethod Hack.OPTIONS Hack.GET Hack.HEAD Hack.POST Hack.PUT Hack.DELETE Hack.TRACE Hack.CONNECT #-} eqMethod : Method → Method → Bool eqMethod HEAD HEAD = true eqMethod GET GET = true eqMethod PUT PUT = true eqMethod DELETE DELETE = true eqMethod POST POST = true eqMethod TRACE TRACE = true eqMethod CONNECT CONNECT = true eqMethod OPTIONS OPTIONS = true eqMethod _ _ = false Version = String IP = String LocalPath = String Path = String RawPath = String PathToken = String PathTokens = List PathToken data RequestHeader : Set where _,_ : String → String → RequestHeader {-# COMPILED_DATA RequestHeader Lemmachine.FFI.RequestHeader Lemmachine.FFI.RequestHeader #-} headerKey : RequestHeader → String headerKey (k , _) = k headerValue : RequestHeader → String headerValue (_ , v) = v RequestHeaders = List RequestHeader Body = Maybe String Cookie = String QueryString = String Port = String record Request : Set where field method : Method version : Version peer : IP dispPath : LocalPath path : Path rawPath : RawPath pathTokens : PathTokens headers : RequestHeaders reqBody : Body cookie : Cookie queryString : QueryString port : Port postulate isRedirect : Request → Bool
{ "alphanum_fraction": 0.734082397, "avg_line_length": 21.0789473684, "ext": "agda", "hexsha": "f26b338df483c5f40e228576626c1fc12664cca0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Request.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Request.agda", "max_line_length": 48, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Request.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 402, "size": 1602 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.IntegralDomains.Definition module Rings.Associates.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Units.Definition R open Setoid S open Ring R open Equivalence eq Associates : Rel A Associates x y = Sg A (λ z → Unit z && (x ∼ (y * z)))
{ "alphanum_fraction": 0.7152899824, "avg_line_length": 29.9473684211, "ext": "agda", "hexsha": "cd5429c8f08e51c27be6ac49f7aad0f631532cc4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Associates/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Associates/Definition.agda", "max_line_length": 156, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Associates/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 170, "size": 569 }