Search is not available for this dataset
text
string | meta
dict |
---|---|
module Not-named-according-to-the-Haskell-lexical-syntax where
postulate
IO : Set -> Set
{-# BUILTIN IO IO #-}
{-# COMPILE GHC IO = type IO #-}
postulate
return : {A : Set} -> A -> IO A
{-# COMPILE GHC return = \ _ -> return :: a -> IO a #-}
data Unit : Set where
unit : Unit
{-# COMPILE GHC Unit = data () (()) #-}
| {
"alphanum_fraction": 0.5823170732,
"avg_line_length": 18.2222222222,
"ext": "agda",
"hexsha": "9c7d53760bd7088e8156eeec62edaab176123903",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 95,
"size": 328
} |
{-# OPTIONS --without-K --rewriting #-}
module NotNot where
open import Basics
open import lib.NType2
{-
The definitions here follow Penon's paper "Infinitesimaux et Intuitionisme".
-}
-- Since double negation is always proposition valued, we just define it that way
-- for convenience.
¬¬ : ∀ {i} (A : Type i) → PropT i
¬¬ A = ¬ (¬ A), ¬¬-is-a-prop
where
¬¬-is-a-prop : ∀ {i} {A : Type i} → (¬ (¬ A)) is-a-prop
¬¬-is-a-prop = mapping-into-prop-is-a-prop (λ _ → False holds-is-a-prop)
continue : ∀ {i j} {A : Type i} {B : A → Type j}
(a : A) → ((a : A) → B a) → B a
continue a f = f a
-- When trying to prove a negation from a double negation,
-- You may remove the double negation.
¬¬-elim : ∀ {i j} {A : Type i} (B : (¬¬ A) holds → Type j)
(f : (a : A) → ¬ (B (continue a)))
→ (nna : (¬¬ A) holds) → ¬ (B nna)
¬¬-elim {A = A} B f nna b =
nna (λ a → (f a) b')
where
b' : {a : A} → B (continue a)
b' {a} = transport B (prop-path (snd (¬¬ A)) nna (continue a)) b
¬¬-elim' : ∀ {i j} {A : Type i} {B : (¬¬ A) holds → Type j}
(f : (a : A) → ¬ (B (continue a)))
→ (nna : (¬¬ A) holds) → ¬ (B nna)
¬¬-elim' {B = B} f nna = ¬¬-elim B f nna
syntax ¬¬-elim B (λ a → t) nna = un¬¬ nna -as- a -in t in-family B
syntax ¬¬-elim' (λ a → t) nna = un¬¬ nna -as- a -in t
-- The "neighbor relation"
-- a is the neighbor of b (a ≈ b) if a is not distinct from b (¬¬ (a == b))
infix 30 _≈_
_≈_ : ∀ {i} {A : Type i} (a b : A) → PropT i
a ≈ b = ¬¬ (a == b)
refl≈ : ∀ {i} {A : Type i} {a : A} → a ≈ a holds
refl≈ = λ nnp → nnp refl
trans≈ : ∀ {i} {A : Type i} {a b c : A}
→ a ≈ b holds
→ b ≈ c holds
→ a ≈ c holds
trans≈ nnp nnq =
un¬¬ nnp -as- p -in
un¬¬ nnq -as- q -in
(λ npq → npq (p ∙ q))
-- The "neighborhood" of a point of a type is the subtype of all its neighbors.
nbhd-prop : ∀ {i} {A} (a : A) → SubtypeProp A i
nbhd-prop a = (λ b → a ≈ b holds) , (λ b → a ≈ b holds-is-a-prop)
nbhd : ∀ {i} {A : Type i} (a : A)
→ Type i
nbhd {i} {A} a = Subtype (nbhd-prop a)
-- The total space neighborhood bundle is the sum of all neighborhoods.
nbhd-space : ∀ {i} (A : Type i) → Type i
nbhd-space A = Σ A \(a : A) → nbhd a
private -- We give the neighborhood space a nickname
N = nbhd-space
germ : ∀ {i j} {A : Type i} {B : Type j} -- The germ of
→ (f : A → B) -- a function f
→ (a : A) -- at a point a
→ nbhd a → nbhd (f a) -- is a function of this type
germ f a (d , nnp) =
f d ,
(un¬¬ nnp -as- p -in
(λ ne → ne (ap f p))
in-family (λ _ → ¬ (f a == f d)))
chain-rule : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{f : A → B} {g : B → C} (a : A)
→ germ (g ∘ f) a == (germ g (f a)) ∘ (germ f a)
chain-rule {f = f} {g = g} a =
λ= $ λ {(d , p) →
Subtype=-out (nbhd-prop (g (f a))) -- It suffices to prove the first terms are equal,
refl -- which they are judgementally.
}
-- A map is etale if all its germs are equivalences.
_is-etale : ∀ {i j} {A : Type i} {B : Type j}
(f : A → B) → Type (lmax i j)
f is-etale = ∀ a → (germ f a) is-an-equiv
{- Some universe level error
∘-is-etale : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{f : A → B} {g : B → C}
(p : f is-etale) (q : g is-etale)
→ (g ∘ f) is-etale
∘-is-etale {i}{j}{k}{A}{B}{C} {f = f} {g = g} p q =
λ a → transport (λ (φ : nbhd a → nbhd (g (f (a)))) → φ is-an-equiv)
{x = (germ g (f a)) ∘ (germ f a)} {y = germ (g ∘ f) a}
(chain-rule a) (((q (f a)) ∘ise (p a)) )
-}
| {
"alphanum_fraction": 0.467141726,
"avg_line_length": 34.4454545455,
"ext": "agda",
"hexsha": "a9af7fb813f92e7ecc5e5370246a0329cc99283e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/NotNot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/NotNot.agda",
"max_line_length": 91,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/NotNot.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 1492,
"size": 3789
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples of pretty printing
------------------------------------------------------------------------
module README.Text.Pretty where
open import Size
open import Data.Bool.Base
open import Data.List.Base as List
open import Data.List.NonEmpty as List⁺
open import Data.Nat.Base
open import Data.Product
open import Data.String.Base hiding (parens; _<+>_)
open import Data.Vec.Base as Vec
open import Function.Base
-- We import the pretty printer and pass 80 to say that we do not want to
-- have lines longer than 80 characters
open import Text.Pretty 80
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- A small declarative programming language
------------------------------------------------------------------------
-- We define a small programming language where definitions are
-- introduced by providing a non-empty list of equations with:
-- * the same number of patterns on the LHS
-- * a term on the RHS of each equation
-- A pattern is either a variable or a constructor applied to a
-- list of subpatterns
data Pattern (i : Size) : Set where
var : String → Pattern i
con : ∀ {j : Size< i} → String → List (Pattern j) → Pattern i
-- A term is either a (bound) variable, the application of a
-- named definition / constructor to a list of arguments or a
-- lambda abstraction
data Term (i : Size) : Set where
var : String → Term i
app : ∀ {j : Size< i} → String → List (Term j) → Term i
lam : ∀ {j : Size< i} → String → Term j → Term i
-- As explained before, a definitions is given by a list of equations
infix 1 _by_
record Def : Set where
constructor _by_
field name : String
{arity} : ℕ
equations : List⁺ (Vec (Pattern _) arity × (Term _))
------------------------------------------------------------------------
-- A pretty printer for this language
------------------------------------------------------------------------
-- First we print patterns. We only wrap a pattern in parentheses if it
-- is compound: i.e. if it is a constructor applied to a non-empty list
-- of subpatterns
-- Lists of patterns are printed separated by a single space.
prettyPattern : ∀ {i} → Pattern i → Doc
prettyPatterns : ∀ {i} → List (Pattern i) → Doc
prettyPattern (var v) = text v
prettyPattern (con c []) = text c
prettyPattern (con c ps) = parens $ text c <+> prettyPatterns ps
prettyPatterns = hsep ∘ List.map prettyPattern
-- Next we print terms. The Bool argument tells us whether we are on
-- the RHS of an application (in which case it is sensible to wrap
-- complex subterms in parentheses).
prettyTerm : ∀ {i} → Bool → Term i → Doc
prettyTerm l (var v) = text v
prettyTerm l (app f []) = text f
prettyTerm l (app f es) = if l then parens else id
$ text f <+> sep (List.map (prettyTerm true) es)
prettyTerm l (lam x b) = if l then parens else id
$ text "λ" <+> text x <> text "." <+> prettyTerm false b
-- We now have all the pieces to print definitions.
-- We print the equations below each other by using vcat.
--
-- The LHS is printed as follows: the name of the function followed by
-- the space-separated list of patterns (if any) and then an equal sign.
--
-- The RHS is printed as a term which is *not* on the RHS of an application.
--
-- Finally we can layout the definition in two different manners:
-- * either LHS followed by RHS
-- * or LHS followed and the RHS as a relative block (indented by 2 spaces)
-- on the next line
prettyDef : Def → Doc
prettyDef (fun by eqs) =
vcat $ List⁺.toList $ flip List⁺.map eqs $ uncurry $ λ ps e →
let lhs = text fun <+> (case ps of λ where
[] → text "="
_ → prettyPatterns (Vec.toList ps) <+> text "=")
rhs = prettyTerm false e
in lhs <+> rhs <|> lhs $$ (spaces 2 <> rhs)
-- The pretty printer is obtained by using the renderer.
pretty : Def → String
pretty = render ∘ prettyDef
------------------------------------------------------------------------
-- Some examples
------------------------------------------------------------------------
-- Our first example is the identity function defined as a λ-abstraction
`id : Def
`id = "id" by ([] , lam "x" (var "x")) ∷ []
_ : pretty `id ≡ "id = λ x. x"
_ = refl
-- If we were to assume that this definition also takes a level (a) and
-- a Set at that level (A) as arguments, we can have a slightly more complex
-- definition like so.
`explicitid : Def
`explicitid = "id" by (var "a" ∷ var "A" ∷ [] , lam "x" (var "x")) ∷ []
_ : pretty `explicitid ≡ "id a A = λ x. x"
_ = refl
-- A more complex example: boolFilter, a function that takes a boolean
-- predicate and a list as arguments and returns a list containing only
-- the values that satisfy the predicate.
-- We use nil and con for [] and _∷_ as our little toy language does not
-- support infix notations.
`filter : Def
`filter = "boolFilter"
by ( var "P?" ∷ con "nil" [] ∷ []
, app "nil" []
)
∷ ( var "P?" ∷ con "con" (var "x" ∷ var "xs" ∷ []) ∷ []
, let rec = app "filter" (var "P?" ∷ var "xs" ∷ []) in
app "if" (app "P?" (var "x" ∷ [])
∷ app "con" (var "x" ∷ rec ∷ [])
∷ rec
∷ [])
)
∷ []
_ : pretty `filter ≡
"boolFilter P? nil = nil
\ \boolFilter P? (con x xs) = if (P? x) (con x (filter P? xs)) (filter P? xs)"
_ = refl
-- We can once more revisit this example with its more complex counterpart:
-- boolFilter taking its level and set arguments explicitly (idem for the
-- list constructors nil and con).
-- This time laying out the second equation on a single line would produce a
-- string larger than 80 characters long. So the pretty printer decides to
-- make the RHS a relative block indented by 2 spaces.
`explicitfilter : Def
`explicitfilter = "boolFilter"
by ( var "a" ∷ var "A" ∷ var "P?" ∷ con "nil" [] ∷ []
, app "nil" (var "a" ∷ var "A" ∷ [])
)
∷ ( var "a" ∷ var "A" ∷ var "P?" ∷ con "con" (var "x" ∷ var "xs" ∷ []) ∷ []
, let rec = app "filter" (var "a" ∷ var "A" ∷ var "P?" ∷ var "xs" ∷ []) in
app "if" (app "P?" (var "x" ∷ [])
∷ app "con" (var "a" ∷ var "A" ∷ var "x" ∷ rec ∷ [])
∷ rec
∷ [])
)
∷ []
_ : pretty `explicitfilter
≡ "boolFilter a A P? nil = nil a A
\ \boolFilter a A P? (con x xs) =
\ \ if (P? x) (con a A x (filter a A P? xs)) (filter a A P? xs)"
_ = refl
| {
"alphanum_fraction": 0.5806004619,
"avg_line_length": 34.1842105263,
"ext": "agda",
"hexsha": "64f46c8802fa7458833b6acdaebdefb1c3d1b156",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Text/Pretty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Text/Pretty.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Text/Pretty.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1779,
"size": 6495
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Automatic solvers for equations over naturals
------------------------------------------------------------------------
-- See README.Nat for examples of how to use this solver
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Tactic.RingSolver where
open import Agda.Builtin.Reflection
open import Data.Maybe.Base using (just; nothing)
open import Data.Nat.Base using (zero; suc)
open import Data.Nat.Properties
open import Level using (0ℓ)
open import Data.Unit using (⊤)
open import Relation.Binary.PropositionalEquality
import Tactic.RingSolver as Solver
import Tactic.RingSolver.Core.AlmostCommutativeRing as ACR
------------------------------------------------------------------------
-- A module for automatically solving propositional equivalences
-- containing _+_ and _*_
ring : ACR.AlmostCommutativeRing 0ℓ 0ℓ
ring = ACR.fromCommutativeSemiring *-+-commutativeSemiring
λ { zero → just refl; _ → nothing }
macro
solve-∀ : Term → TC ⊤
solve-∀ = Solver.solve-∀-macro (quote ring)
macro
solve : Term → Term → TC ⊤
solve n = Solver.solve-macro n (quote ring)
| {
"alphanum_fraction": 0.6135792121,
"avg_line_length": 29.825,
"ext": "agda",
"hexsha": "ab5a38a74fdd0fb91d80278d237f1f9ceacf4ae0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Tactic/RingSolver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Tactic/RingSolver.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Tactic/RingSolver.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 275,
"size": 1193
} |
module Data.List.Categorical where
import Lvl
open import Functional
open import Function.Equals
open import Data.List
open import Data.List.Functions
open import Data.List.Proofs
open import Data.List.Equiv.Id
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Setoid using (intro)
open import Structure.Function
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Type
open import Type.Category
private variable ℓ : Lvl.Level
instance
map-functor : Functor{ℓ}(List)
Functor.map ⦃ map-functor ⦄ = map
_⊜_.proof (Function.congruence (Functor.map-function ⦃ map-functor ⦄) {x = f} {y = g} (intro proof)) = map-function-raw proof
_⊜_.proof (Functor.op-preserving ⦃ map-functor ⦄) = map-preserves-[∘]
_⊜_.proof (Functor.id-preserving ⦃ map-functor ⦄) = map-preserves-id
instance
concatMap-monad : Monad{ℓ}(List)
Monad.η ⦃ concatMap-monad ⦄ _ = singleton
Monad.ext ⦃ concatMap-monad ⦄ = concatMap
_⊜_.proof (Function.congruence (Monad.ext-function ⦃ concatMap-monad ⦄) (intro proof)) {x} = concatMap-function-raw (proof) {x}
Monad.ext-inverse ⦃ concatMap-monad ⦄ = intro concatMap-singleton
Monad.ext-identity ⦃ concatMap-monad ⦄ = intro (identityᵣ(_++_)(∅))
Monad.ext-distribute ⦃ concatMap-monad ⦄ {f = f}{g = g} = intro (\{x} → concatMap-[∘] {f = f}{g = g}{x = x})
| {
"alphanum_fraction": 0.7341597796,
"avg_line_length": 37.2307692308,
"ext": "agda",
"hexsha": "76bc6ec0c41818de8351e7ccba5291bd766f505b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Categorical.agda",
"max_line_length": 129,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 466,
"size": 1452
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Util.Prelude
module LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-0 where
enabled : Bool
enabled = true
| {
"alphanum_fraction": 0.7669376694,
"avg_line_length": 28.3846153846,
"ext": "agda",
"hexsha": "9a277d5f3f42cfdbd15bcf2de6159d6a0e0eca9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-0.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-0.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-0.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 109,
"size": 369
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DiscriminationRules where
open import Data.Bool.Base
open import Data.List
open import Data.Nat
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
true≢false : true ≢ false
true≢false ()
0≠suc : ∀ {n} → 0 ≢ suc n
0≠suc ()
[]≢x∷xs : {A : Set}{x : A}{xs : List A} → [] ≢ x ∷ xs
[]≢x∷xs ()
| {
"alphanum_fraction": 0.5,
"avg_line_length": 23.9130434783,
"ext": "agda",
"hexsha": "557b5280df9977d3ccae851dd548683f7ab8064b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/discrimination-rules/DiscriminationRules.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/discrimination-rules/DiscriminationRules.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/discrimination-rules/DiscriminationRules.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 144,
"size": 550
} |
module Everything where
import Prelude
import Stack
import Syntax
import Semantics
import Convertibility
import Correctness
| {
"alphanum_fraction": 0.8582677165,
"avg_line_length": 11.5454545455,
"ext": "agda",
"hexsha": "ff415639752045a3f9a51f1b7b15fc3b070a213f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/nbe-correctness",
"max_forks_repo_path": "src/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/nbe-correctness",
"max_issues_repo_path": "src/Everything.agda",
"max_line_length": 23,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/nbe-correctness",
"max_stars_repo_path": "src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z",
"num_tokens": 25,
"size": 127
} |
-- Axiomatic embedding of guarded recursion in Agda
module guarded-recursion.embedding where
open import guarded-recursion.prelude
renaming (O to zero; S to suc)
open Coe
module M
(▹_ : ∀ {a} → Type_ a → Type_ a)
(▸ : ∀ {a} → ▹ (Type_ a) → Type_ a)
(next : ∀ {a} {A : Type_ a} → A → ▹ A)
(▸-rule : ∀ {a} {A : Type_ a} → ▸ (next A) ≡ ▹ A)
(fix : ∀ {a} {A : Type_ a} → (▹ A → A) → A)
(fix-rule : ∀ {a} {A : Type_ a} {f : ▹ A → A} → fix f ≡ f (next (fix f)))
(_⊛′_ : ∀ {a b} {A : Type_ a} {B : Type_ b} → ▹ (A → B) → ▹ A → ▹ B)
(_⊛_ : ∀ {a b} {A : Type_ a} {B : A → Type_ b}
→ ▹ ((x : A) → B x) → (x : ▹ A) → ▸ (next B ⊛′ x))
(fix-uniq : ∀ {a} {A : Type_ a} (u : A) f → u ≡ f (next u) → u ≡ fix f)
(next⊛next : ∀ {a b} {A : Type_ a} {B : Type_ b} (f : A → B) (x : A)
→ next f ⊛′ next x ≡ next (f x))
where
roll▸ : ∀ {a} {A : Type_ a} → ▹ A → ▸ (next A)
roll▸ = coe! ▸-rule
un▸ : ∀ {a} {A : Type_ a} → ▸ (next A) → ▹ A
un▸ = coe ▸-rule
▹Fix : ∀ {a} → Type_ a → Type_ a
▹Fix X = (▹ X → X) → X
▹Endo : ∀ {a} → Type_ a → Type_ a
▹Endo X = ▹ X → X
μ : ∀ {a} → Fix (Type_ a)
μ F = fix (F ∘ ▸)
un : ∀ {a f} → fix {A = Type_ a} f → f (next (fix f))
un = coe fix-rule
unμ : ∀ {a} f → μ {a} f → f (▹ μ f)
unμ {a} f x rewrite ! (▸-rule {A = μ f}) = un x
roll : ∀ {a f} → f (next (fix f)) → fix {A = Type_ a} f
roll = coe! fix-rule
μ-rule : ∀ {a} f → μ {a} f ≡ f (▹ μ f)
μ-rule f = fix-rule ∙ ap f (▸-rule {A = μ f})
rollμ : ∀ {a} f → f (▹ μ f) → μ {a} f
rollμ f = coe! (μ-rule f)
un₁ : ∀ {a b} {A : Type_ a} {f x} → fix {A = A → Type_ b} f x → f (next (fix f)) x
un₁ = coe₁ fix-rule
roll₁ : ∀ {a b} {A : Type_ a} {f x} → f (next (fix f)) x → fix {A = A → Type_ b} f x
roll₁ = coe₁! fix-rule
un₂ : ∀ {a b} {A : Type_ a} {B : Type_ b} {c f x y} → fix {A = A → B → Type_ c} f x y → f (next (fix f)) x y
un₂ = coe₂ fix-rule
roll₂ : ∀ {a b} {A : Type_ a} {B : Type_ b} {c f x y} → f (next (fix f)) x y → fix {A = A → B → Type_ c} f x y
roll₂ = coe₂! fix-rule
map▹ : ∀ {a b} {A : Type_ a} {B : Type_ b} → (A → B) → ▹ A → ▹ B
map▹ f ▹x = next f ⊛′ ▹x
{-
alternatively
_⊛′′_ : ∀ {a b} {A : Type_ a} {B : A → Type_ b} → ▹ ((x : A) → B x) → (x : A) → ▹ (B x)
▹f ⊛′′ x = map▹ (λ f → f x) ▹f
-}
{-
alternatively
_$_ : ∀ {a b} {A : Type_ a} (B : A → Type_ b) → ▹ A → ▹ (Type_ b)
f $ ▹x = map▹ f ▹x
-}
▹^ : ∀ {a} → ℕ → Type_ a → Type_ a
▹^ zero A = A
▹^ (suc n) A = ▹ ▹^ n A
next^ : ∀ {a} {A : Type_ a} n → A → ▹^ n A
next^ zero x = x
next^ (suc n) x = next (next^ n x)
map▹^ : ∀ {a b} {A : Type_ a} {B : Type_ b} n → (A → B) → ▹^ n A → ▹^ n B
map▹^ zero f = f
map▹^ (suc n) f = map▹ (map▹^ n f)
module SimpleStream where
F : Type → Type → Type
F A X = A × X
S : Type → Type
S A = μ (F A)
μ₁F' : ∀ {a} {A : Type_ a} → ((A → ▹ Type) → A → Type) → (▹(A → Type) → A → Type)
μ₁F' F self = F (λ x → (self ⊛′ next x))
μ₁F : ∀ {a} {A : Type_ a} → ((A → Type) → A → Type) → (▹(A → Type) → A → Type)
μ₁F F self = F (λ x → ▸ (self ⊛′ next x))
μ₁ : ∀ {a} {A : Type_ a} → ((A → Type) → A → Type) → A → Type
μ₁ F = fix (μ₁F F)
module μId where
μid : Type
μid = μ id
μid-rule : μid ≡ ▹ μid
μid-rule = fix-rule ∙ ▸-rule {A = μ id}
ω : μid
ω = fix (rollμ id)
module CoNat where
Coℕ : Type
Coℕ = μ Maybe
rollNat : Maybe (▹ Coℕ) → Coℕ
rollNat = rollμ Maybe
ze : Coℕ
ze = rollNat nothing
su : ▹ Coℕ → Coℕ
su x = rollNat (just x)
su′ : Coℕ → Coℕ
su′ = su ∘ next
ω : Coℕ
ω = fix su
module Neg where
{- data X : Type where
rollX : Fix X
: (X → X) → X
-}
X : Type
X = μ Endo
rollX : Endo (▹ X) → X
-- : (▹ X → ▹ X) → X
rollX = rollμ Endo
rollX′ : ▹(Endo X) → X
-- : ▹(X → X) → X
rollX′ = rollX ∘ _⊛′_
unX : X → Endo (▹ X)
unX = unμ Endo
-- δ = λ x → x x
δ : X → ▹ X
δ = λ x → (unX x) (next x)
module Neg' where
{- data X : Type where
c : Fix X
: ((X → X) → X) → X
-}
X : Type
X = μ Fix
rollX : Fix (▹ X) → X
rollX = rollμ Fix
unX : X → Fix (▹ X)
unX = unμ Fix
module μ₁Id where
-- μ₁id = ▹∘▹∘…∘▹
-- μ₁id A = ▹ (▹ … (▹ A))
μ₁id : Type → Type
μ₁id = μ₁ id
betterfix₁ : ∀ {a} {A : Type_ a} {x : A} (F : Endo (A → Type)) → (▹ μ₁ F x → μ₁F F (next (μ₁ F)) x) → μ₁ F x
betterfix₁ {a} {A} {x} F f = fix helper
where helper : _ → _
helper self = roll₁ (f self)
▹ω-inh' : ∀ {A : Type} {x : A} (F : Endo (A → Type)) → (▸ (next (μ₁ F) ⊛′ next x) → μ₁F F (next (μ₁ F)) x) → μ₁ F x
▹ω-inh' {A} {x} F f = fix helper
where helper : _ → _
helper self = roll₁ (f (coe! (ap ▸ (next⊛next (μ₁ F) x)) (roll▸ self)))
▹ω-inh : ∀ {A} → μ₁id A
-- ▹ω-inh {A} = fix λ self → roll₁ (coe! (ap ▸ (next⊛next μ₁id A)) (roll▸ self))
▹ω-inh {A} = betterfix₁ id (λ self → coe! (ap ▸ (next⊛next μ₁id A)) (roll▸ self))
-- ▹ω-inh {A} = fix λ self → {!!} -- (coe! (ap ▸ (next⊛next μ₁idω A)) (roll▸ self))
fix2 : ∀ {a} {A : Type_ a} → (▹ A → A) → A
fix2 f = fix (f ∘ next ∘ f)
fix≡fix2 : ∀ {a} {A : Type_ a} (f : ▹ A → A) → fix f ≡ fix2 f
fix≡fix2 f = fix-uniq (fix f) (f ∘ next ∘ f) (fix-rule ∙ ap (f ∘ next) fix-rule)
module Streams where
F : Type → Type → Type
F A X = A × X
-- S : Type → Type
-- S A = μ (F A)
F^ : ℕ → Type → Type → Type
F^ n A X = A × ▹^ n X
S^ : ℕ → Type → Type
S^ n A = μ (F^ n A)
S : Type → Type
S = S^ 0
S₂ = S^ 1
unS : ∀ {A} → S A → F A (▹ S A)
unS = unμ (F _)
rollS : ∀ {A} → F A (▹ S A) → S A
rollS = rollμ (F _)
unS^ : ∀ {A} n → S^ n A → F^ n A (▹ S^ n A)
unS^ n = unμ (F^ n _)
rollS^ : ∀ {A} n → F^ n A (▹ S^ n A) → S^ n A
rollS^ n = rollμ (F^ n _)
hd : ∀ {A} → S A → A
hd = fst ∘ unS
tl : ∀ {A} → S A → ▹ S A
tl = snd ∘ unS
cons : ∀ {A} n → A → ▹^ n (▹ (S^ n A)) → S^ n A
cons n x xs = rollS^ n (x , xs)
infixr 4 _∷_
_∷_ : ∀ {A} → A → ▹ (S A) → S A
_∷_ = cons 0
infixr 4 _∷₂_
_∷₂_ : ∀ {A} → A → ▹^ 2 (S₂ A) → S₂ A
x ∷₂ xs = roll (x , map▹ roll▸ xs)
repeatS : ∀ {A} → A → S A
repeatS x = fix λ x… → x ∷ x…
module MapS {A B : Type} (f : A → B) where
mapSf : ▹(S A → S B) → S A → S B
mapSf self s = f (hd s) ∷ self ⊛′ tl s
mapS : S A → S B
mapS = fix mapSf
mapS2f : ▹(S A → S B) → S A → S B
mapS2f self s = f (hd s) ∷ map▹ (λ s' → f (hd s') ∷ self ⊛′ tl s') (tl s)
mapS2f' : ▹(S A → S B) → S A → S B
mapS2f' self = mapSf (next (mapSf self))
mapS2f≡mapS2f' : mapS2f ≡ mapS2f'
mapS2f≡mapS2f' = idp
mapS2 : S A → S B
mapS2 = fix mapS2f
mapS2' : S A → S B
mapS2' = fix mapS2f'
mapS2≡mapS2' : mapS2 ≡ mapS2'
mapS2≡mapS2' = idp
mapS2'' : S A → S B
mapS2'' = fix2 mapSf
mapS2≡mapS2'' : mapS2 ≡ mapS2''
mapS2≡mapS2'' = idp
mapS≡mapS2 : mapS ≡ mapS2
mapS≡mapS2 = fix≡fix2 mapSf
open MapS
group2 : S ℕ → ▹ S₂ ℕ²
group2 = fix λ self s → map▹ (λ tls → (hd s , hd tls) ∷₂ self ⊛′ tl tls) (tl s)
‼ : ∀ {A} → (n : ℕ) → S A → ▹^ n A
‼ zero = hd
‼ (suc n) = map▹ (‼ n) ∘ tl
toFun : ∀ {A} → S A → (n : ℕ) → ▹^ n A
toFun s n = ‼ n s
fromFun : ∀ {A} → (ℕ → A) → S A
fromFun {A} = fix λ self (f : ℕ → A) → f 0 ∷ self ⊛′ next (f ∘ suc)
nats : S ℕ
nats = fix λ self → 0 ∷ map▹ (mapS suc) self
nats2 : S ℕ
nats2 = fix λ self → 0 ∷ map▹ (mapS2 suc) self
nats≡nats2 : nats ≡ nats2
nats≡nats2 rewrite mapS≡mapS2 suc = idp
arrow : ▹ ℕ
arrow = ‼ 1 nats
module Sim
{A : Type}
(ℛ : A → A → Type)
(ℛ-refl : Reflexive ℛ)
where
≈F : ▹(S A × S A → Type) → S A × S A → Type
≈F X (xs , ys) = ℛ (hd xs) (hd ys) × ▸ ((map▹ curry X ⊛′ (tl xs)) ⊛′ tl ys)
_≈_ : S A × S A → Type
_≈_ = fix ≈F
≈-tail : ∀ {xs ys : S A} → _≈_ (xs , ys) → ▸ ((map▹ curry (next _≈_) ⊛′ tl xs) ⊛′ tl ys)
≈-tail pf = snd (un₁ pf)
{- Does not work yet
≈-refl : Reflexive (curry _≈_)
≈-refl {x} = (fix λ pf x → roll₁ {f = ≈F} (ℛ-refl , helper pf x)) x
where helper' : _ → _ → _
helper' pf x = map▹ (λ f → f x) pf
helper : _ → _ → _
helper pf x = let r = helper' pf x in {!roll▸ r!}
-}
module DelayedStreams where
data F (A : Type) (X : Type) : Type where
done : F A X
skip : X → F A X
yield : A → X → F A X
mapF : ∀ {A B X Y} → (A → B) → (X → Y) → F A X → F B Y
mapF f g done = done
mapF f g (skip x) = skip (g x)
mapF f g (yield a x) = yield (f a) (g x)
S : Type → Type
S A = μ (F A)
unS : ∀ {A} → S A → F A (▹ S A)
unS = mapF id un▸ ∘ un
rollS : ∀ {A} → F A (▹ S A) → S A
rollS = roll ∘ mapF id roll▸
unfoldS : ∀ {A X} → (X → F A (▹ X)) → X → S A
unfoldS coalg = fix λ self x → rollS (mapF id (λ x′ → self ⊛′ x′) (coalg x))
repeatS : ∀ {A} → A → S A
repeatS x = fix λ self → rollS (yield x self)
neverS : ∀ {A} → S A
neverS = fix λ self → rollS (skip self)
-- Co-algebra style...
mapS : ∀ {A B} → (A → B) → S A → S B
mapS {A} {B} f = unfoldS (mapF f id ∘ unS)
filterF : ∀ {A X} → (A → 𝟚) → F A X → F A X
filterF f done = done
filterF f (skip xs) = skip xs
filterF f (yield x xs) = if f x then yield x xs
else skip xs
filterS : ∀ {A} → (A → 𝟚) → S A → S A
filterS f = unfoldS (filterF f ∘ unS)
module FuelBased where
fix : ∀ {a} {A : Type_ a} → ℕ → (A → A) → A
fix zero f = STUCK where postulate STUCK : _
fix (suc n) f = f (fix n f)
fix-rule : ∀ {a} {A : Type_ a} (n : ℕ) {f : A → A} → fix n f ≡ f (fix n f)
fix-rule zero = ThisIsUnsafeButPlease.trustMe
fix-rule (suc n) {f} = ap f (fix-rule n)
fix-uniq : ∀ {a} {A : Type_ a} (n : ℕ) (u : A) f → u ≡ f u → u ≡ fix n f
fix-uniq zero u f pf = ThisIsUnsafeButPlease.trustMe
fix-uniq (suc n) u f pf = pf ∙ ap f (fix-uniq n u f pf)
module I (n : ℕ) = M id id id idp (fix n) (fix-rule n) id id
(fix-uniq n) (λ _ _ → idp)
module HiddenFix {a} {A : Type_ a} (f : A → A) where
-- This definition is not intended to termination-check.
-- Use with care it's really easy to make the type-checker loop.
{-# TERMINATING #-}
fix : Hidden A
fix = hide f (reveal fix)
fix-rule : reveal fix ≡ f (reveal fix)
fix-rule = idp {a} {A} {reveal fix}
-- This definition is not intended to termination-check.
-- Use with care it's really easy to make the type-checker loop.
{-# TERMINATING #-}
fix-uniq : (u : A) → u ≡ f u → u ≡ reveal fix
fix-uniq u pf = pf ∙ ap f (fix-uniq u pf) ∙ ! fix-rule
module Test where
open HiddenFix
open M id id id idp (reveal ∘ fix) (λ {_} {_} {f} → fix-rule f) id id
(λ {_} {_} u f → fix-uniq f u) (λ _ _ → idp) public
open Streams
two : map▹ hd (tl nats) ≡ 1
two = idp
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.4074679304,
"avg_line_length": 28.4627906977,
"ext": "agda",
"hexsha": "032b45bdd2bd28a740e94c7aeee78fa902481476",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T16:21:54.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-19T12:37:53.000Z",
"max_forks_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "np/guarded-recursion",
"max_forks_repo_path": "guarded-recursion/embedding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "np/guarded-recursion",
"max_issues_repo_path": "guarded-recursion/embedding.agda",
"max_line_length": 123,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "np/guarded-recursion",
"max_stars_repo_path": "guarded-recursion/embedding.agda",
"max_stars_repo_stars_event_max_datetime": "2016-12-06T23:04:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-06T23:04:56.000Z",
"num_tokens": 5158,
"size": 12239
} |
module Issue644 where
postulate
A : Set
record R : Set₁ where
field P : A → Set
module M₁ (r : R) where
postulate
Foo₁ : ((x : A) → R.P r x) → Set
module M₂ (r : R) where
open R r
postulate
Foo₂ : ((x : A) → P x) → Set
postulate r : R
open R r
open M₁ r
open M₂ r
foo₂ : Set
foo₂ = Foo₂ r
-- Error message should speak about
--
-- (x : A) → P x
--
-- not mention
--
-- (x : A) → .Bug.M₂._.P r x
| {
"alphanum_fraction": 0.5488372093,
"avg_line_length": 11.3157894737,
"ext": "agda",
"hexsha": "8d9707cccdb77cd367efafc71d46ae37b8ebdceb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue644.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue644.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue644.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 171,
"size": 430
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Setoids.CCC where
open import Level
open import Data.Product using (Σ ; _,_)
open import Function.Equality as ⟶ using (Π; _⟶_)
open import Relation.Binary using (Setoid)
open import Categories.Category
open import Categories.Category.Monoidal.Instance.Setoids
open import Categories.Category.CartesianClosed
open import Categories.Category.CartesianClosed.Canonical renaming (CartesianClosed to CCartesianClosed)
open import Categories.Category.Instance.Setoids
open Π
module _ ℓ where
private
S = Setoids ℓ ℓ
module S = Category S
Setoids-Canonical : CCartesianClosed S
Setoids-Canonical = record
{ ⊤ = ⊤
; _×_ = _×_
; ! = !
; π₁ = π₁
; π₂ = π₂
; ⟨_,_⟩ = ⟨_,_⟩
; !-unique = !-unique
; π₁-comp = λ {_ _ f _ g} → project₁ {h = f} {g}
; π₂-comp = λ {_ _ f _ g} → project₂ {h = f} {g}
; ⟨,⟩-unique = λ {_ _ _ f g h} → unique {h = h} {f} {g}
; _^_ = λ X Y → Y ⟶.⇨ X
; eval = λ {X Y} → record
{ _⟨$⟩_ = λ { (f , x) → f ⟨$⟩ x }
; cong = λ { (eq₁ , eq₂) → eq₁ eq₂ }
}
; curry = λ {C A B} f → record
{ _⟨$⟩_ = λ c → record
{ _⟨$⟩_ = λ a → f ⟨$⟩ (c , a)
; cong = λ eq → cong f (Setoid.refl C , eq)
}
; cong = λ eq₁ eq₂ → cong f (eq₁ , eq₂)
}
; eval-comp = λ {_ _ _ f} → cong f
; curry-resp-≈ = λ eq₁ eq₂ eq → eq₁ (eq₂ , eq)
; curry-unique = λ eq₁ eq₂ eq → eq₁ (eq₂ , eq)
}
where open Setoids-Cartesian
Setoids-CCC : CartesianClosed S
Setoids-CCC = Equivalence.fromCanonical S Setoids-Canonical
| {
"alphanum_fraction": 0.5497685185,
"avg_line_length": 31.4181818182,
"ext": "agda",
"hexsha": "b56d2c9b5472ea9ad32092af498d9e97dcaecd31",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/CCC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/CCC.agda",
"max_line_length": 104,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/CCC.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 577,
"size": 1728
} |
module Lec8 where
open import CS410-Prelude
open import CS410-Functor
open import CS410-Monoid
open import CS410-Nat
data Maybe (X : Set) : Set where
yes : X -> Maybe X
no : Maybe X
maybeFunctor : Functor Maybe
maybeFunctor = record
{ map = \ { f (yes x) -> yes (f x)
; f no -> no
}
; mapid = \ { (yes x) -> refl ; no -> refl }
; mapcomp = \ { f g (yes x) -> refl ; f g no -> refl } }
open Functor maybeFunctor
data List (X : Set) : Set where -- X scopes over the whole declaration...
[] : List X -- ...so you can use it here...
_::_ : X -> List X -> List X -- ...and here.
infixr 3 _::_
data Hutton : Set where
val : Nat -> Hutton
_+H_ : Hutton -> Hutton -> Hutton
hif_then_else_ : Hutton -> Hutton -> Hutton -> Hutton
fail : Hutton
maybeApplicative : Applicative Maybe
maybeApplicative = record
{ pure = yes
; _<*>_ = \ { no mx -> no
; (yes f) no -> no
; (yes f) (yes x) -> yes (f x)
}
; identity = \ {(yes x) -> refl ; no -> refl}
; composition = \
{ (yes f) (yes g) (yes x) -> refl
; (yes f) (yes g) no -> refl
; (yes x) no mx -> refl
; no mg mx -> refl
}
; homomorphism = \ f x -> refl
; interchange = \ { (yes f) y -> refl ; no y → refl }
}
open Applicative maybeApplicative public
cond : Nat -> Nat -> Nat -> Nat
cond zero t e = e
cond (suc c) t e = t
_>>=_ : forall {X Y} -> Maybe X -> (X -> Maybe Y) -> Maybe Y
yes x >>= x2my = x2my x
no >>= x2my = no
eval : Hutton -> Maybe Nat
eval (val x) = pure x
eval (h +H h') = pure _+N_ <*> eval h <*> eval h'
eval (hif c then t else e)
-- = pure cond <*> eval c <*> eval t <*> eval e -- oops
= eval c >>= \ { zero -> eval e
; (suc _) -> eval t}
eval fail = no
foo : Hutton
foo = hif val 1 then (val 2 +H val 3) else (hif val 0 then val 4 else val 6)
goo : Hutton
goo = hif val 1 then (val 2 +H val 3) else (hif val 0 then fail else val 6)
ap : forall {X Y} -> Maybe (X -> Y) -> Maybe X -> Maybe Y
ap mf mx = mf >>= \ f -> mx >>= \ x -> yes (f x)
| {
"alphanum_fraction": 0.4629552114,
"avg_line_length": 30.6282051282,
"ext": "agda",
"hexsha": "5931adde7d83016d1b98ebba83cb4dbd1da6d7d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Lec8.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Lec8.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Lec8.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 722,
"size": 2389
} |
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.Inference.Separator(x : X) where
import OutsideIn.Constraints as C
open C(x)
open X(x)
open import Data.List hiding (map)
mutual
data SeparatedConstraint (n : Set) : Shape → Set where
SC : ∀ {s} → QConstraint n → Implications n s → SeparatedConstraint n s
data Implications (n : Set) : Shape → Set where
imp-ε : Implications n Nullary
imp : ∀ {s} → Implication (λ n → SeparatedConstraint n s) n → Implications n (Unary s)
_imp-∧_ : ∀ {s₁ s₂} → Implications n s₁ → Implications n s₂ → Implications n (Binary s₁ s₂)
mutual
data _simpl:_ {n : Set} : Constraint n Flat → QConstraint n → Set where
Simpl-QC : ∀ {c} → QC c simpl: c
Simpl-∧ : ∀ {a b}{a′ b′} → a simpl: a′ → b simpl: b′ → (a ∧′ b) simpl: (a′ ∧ b′)
Simpl-Imp : ∀ {i} → Imp i simpl: ε
data _separate:_,_ {n : Set} : Constraint n Flat → (r : Shape) → SeparatedConstraint n r → Set where
Separate : ∀ {C}{Q}{r}{I} → C simpl: Q → C implic: r , I → C separate: r , SC Q I
data _implic:_,_ {n : Set} : Constraint n Flat → (r : Shape) → Implications n r → Set where
Implic-Qc : ∀ {c} → QC c implic: Nullary , imp-ε
Implic-∧ : ∀{a b}{r₁ r₂}{a′}{b′} → a implic: r₁ , a′ → b implic: r₂ , b′ → (a ∧′ b) implic: Binary r₁ r₂ , (a′ imp-∧ b′)
Implic-I : ∀{n}{Q}{C}{s}{v} → C separate: s , v → Imp (∃ n · Q ⊃ C) implic: Unary s , imp (∃ n · Q ⊃ v)
simpl : ∀ {n} → (C : Constraint n Flat) → ∃ (λ Q → C simpl: Q)
simpl (QC c) = _ , Simpl-QC
simpl (a ∧′ b) with simpl a | simpl b
... | q₁ , p₁ | q₂ , p₂ = _ , Simpl-∧ p₁ p₂
simpl (Imp _) = _ , Simpl-Imp
separate : ∀ {n} → (C : Constraint n Flat) → ∃ (λ r → ∃ (λ S → C separate: r , S))
implic : ∀ {n} → (C : Constraint n Flat) → ∃ (λ r → ∃ (λ I → C implic: r , I ))
separate c with implic c | simpl c
... | s , v , p | q , p′ = _ , _ , Separate p′ p
implic (QC c) = _ , _ , Implic-Qc
implic (a ∧′ b) with implic a | implic b
... | s , v , p | s′ , v′ , p′ = _ , _ , Implic-∧ p p′
implic (Imp (∃ n · Q ⊃ C)) with separate C
... | s , v , p = _ , _ , Implic-I p
-- Substitution for separated constraints
substituteSep : ∀ {s}{a b} → (a → Type b) → SeparatedConstraint a s → SeparatedConstraint b s
substituteImp : ∀ {s}{a b} → (a → Type b) → Implications a s → Implications b s
substituteSep f (SC qc imps) = SC (qc-substitute f qc) (substituteImp f imps)
where open Monad (type-is-monad)
open Functor (type-is-functor)
substituteImp f (imp-ε) = imp-ε
substituteImp {Unary s} f (imp (∃ n · Q ⊃ C)) = imp (∃ n · constraint-types (join ∘ map f) Q
⊃ substituteSep f′ C)
where module PlusN-f = Functor (Monad.is-functor (PlusN-is-monad {n}))
open Monad (type-is-monad)
open Functor (type-is-functor)
f′ = sequence-PlusN {n = n} ⦃ type-is-monad ⦄ ∘ PlusN-f.map f
substituteImp f (a imp-∧ b) = substituteImp f a imp-∧ substituteImp f b
| {
"alphanum_fraction": 0.558496732,
"avg_line_length": 51,
"ext": "agda",
"hexsha": "2222cc8169baf9b81a23e491999280ae5ddd70af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Inference/Separator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Inference/Separator.agda",
"max_line_length": 127,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Inference/Separator.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 1102,
"size": 3060
} |
-- submitted by Nisse, 2011-06-21
module Issue423 where
------------------------------------------------------------------------
-- Prelude
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
-- Andreas: changed lhs variables to lambda-abstractions
-- This should be done automatically (internally).
curry : {A C : Set} {B : A → Set} →
(Σ A B → C) → ((x : A) → B x → C)
curry f = \ x y -> f (x , y)
uncurry : {A C : Set} {B : A → Set} →
((x : A) → (y : B x) → C) → (Σ A B → C)
uncurry f = \ p -> f (Σ.proj₁ p) (Σ.proj₂ p)
------------------------------------------------------------------------
-- Preliminaries
postulate
U : Set
El : U → Set
mutual
data Ctxt : Set where
_▻_ : (Γ : Ctxt) (σ : Type Γ) → Ctxt
Type : Ctxt → Set
Type Γ = Env Γ → U
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ)
postulate
Γ : Ctxt
σ : Type Γ
------------------------------------------------------------------------
-- Problem
-- The following equality holds definitionally.
equal : (τ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ) ≡ τ
equal τ = refl
-- Bug was:
-- However, the two sides behave differently.
works : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
τ₁ ≡ τ₂ → Set₁
works τ .τ refl = Set
works′ : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ₁) ≡ τ₂ → Set₁
works′ τ .τ refl = Set
fails : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
τ₁ ≡ curry (uncurry τ₂) → Set₁
fails τ .τ refl = Set
fails′ : (τ₁ τ₂ : (γ : Env Γ) → El (σ γ) → U) →
curry (uncurry τ₁) ≡ curry (uncurry τ₂) → Set₁
fails′ τ .τ refl = Set
-- Bug was:
-- I find it interesting that works′ works, whereas the symmetric
-- variant fails fails.
| {
"alphanum_fraction": 0.4703947368,
"avg_line_length": 22.8,
"ext": "agda",
"hexsha": "a4f6bfc3558072214e30521b5ebf3a1c06fe42b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue423.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue423.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue423.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 640,
"size": 1824
} |
module Oscar.Category.Category where
open import Oscar.Category.Setoid
open import Oscar.Category.Semigroupoid
open import Oscar.Level
module _
{𝔬 𝔪 𝔮}
(semigroupoid : Semigroupoid 𝔬 𝔪 𝔮)
where
open Semigroupoid semigroupoid
record IsCategory (ε : ∀ {x} → x ↦ x) : Set (𝔬 ⊔ 𝔪 ⊔ 𝔮) where
instance _ = IsSetoid↦
field
left-identity : ∀ {x y} (f : x ↦ y) → ε ∙ f ≋ f
right-identity : ∀ {x y} (f : x ↦ y) → f ∙ ε ≋ f
open IsCategory ⦃ … ⦄ public
record Category 𝔬 𝔪 𝔮 : Set (lsuc (𝔬 ⊔ 𝔪 ⊔ 𝔮)) where
constructor _,_
field
semigroupoid : Semigroupoid 𝔬 𝔪 𝔮
open Semigroupoid semigroupoid public
field
ε : ∀ {x} → x ↦ x
⦃ isCategory ⦄ : IsCategory semigroupoid ε
open IsCategory isCategory public
| {
"alphanum_fraction": 0.6448598131,
"avg_line_length": 23.40625,
"ext": "agda",
"hexsha": "b826af997fb5b534ac60280c8fc7a169e85ba296",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Category/Category.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Category/Category.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Category/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 297,
"size": 749
} |
module Diff where
open import Data.Nat using (ℕ; zero; suc)
open import Data.Float
open import Function using (_∘_)
postulate
post : ∀ {a} {A : Set a} → A
-- Need to generalize for bilinear forms
data _Is_DiffAt_ (f : Float → Float) : ℕ → Float → Set where
continuous : ∀ x → f Is zero DiffAt x
d : ∀ f' {n} x → f' Is n DiffAt x → f Is suc n DiffAt x
data D (A : Set) : ℕ → A → Set where
-- +-diff : ∀ {x} {n} → HasDeriv (x +_) n
-- +-diff {x} {zero} = d⁰
-- +-diff {x} {suc n} = d (x +_) (+-diff {x} {n})
instance
chain : ∀ {f g n x} → ⦃ f Is n DiffAt x ⦄ → ⦃ g Is n DiffAt g x ⦄ → (f ∘ g) Is n DiffAt x
chain = post
-‿diff : ∀ {n x} → -_ Is n DiffAt x
-‿diff {zero} {x} = continuous x
-‿diff {suc n} {x} = d -_ x -‿diff
exp-diff : ∀ {n x} → e^_ Is n DiffAt x
exp-diff {zero} {x} = continuous x
exp-diff {suc n} {x} = d e^_ x exp-diff
mutual
sin-diff : ∀ {n x} → sin Is n DiffAt x
sin-diff {zero} {x} = continuous x
sin-diff {suc n} {x} = d cos x cos-diff
cos-diff : ∀ {n x} → cos Is n DiffAt x
cos-diff {zero} {x} = continuous x
cos-diff {suc n} {x} = d (-_ ∘ sin) x (chain { -_} {sin}) -- (chain -_ sin)
∂ : ∀ f x → ⦃ f Is 1 DiffAt x ⦄ → Float
∂ f x ⦃ d f' x _ ⦄ = f' x
syntax ∂ (λ x → fx) y = ∂ fx /∂ x at y
test : Float → Float
test y = ∂ (cos (e^ x)) /∂ x at y
-- -- run : (∀ {n} → F₁) → F₁
-- -- run f x = f {zero} x
| {
"alphanum_fraction": 0.5215208034,
"avg_line_length": 23.2333333333,
"ext": "agda",
"hexsha": "ccd55c9da1a16c79519fdab3323a8084e7befe6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/diff",
"max_forks_repo_path": "src/Diff.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/diff",
"max_issues_repo_path": "src/Diff.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/diff",
"max_stars_repo_path": "src/Diff.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 611,
"size": 1394
} |
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual
-- blocks
-- Skipping an old-style mutual block: Before the `mutual` keyword.
{-# NO_POSITIVITY_CHECK #-}
mutual
data Cheat : Set where
cheat : Oops → Cheat
data Oops : Set where
oops : (Cheat → Cheat) → Oops
| {
"alphanum_fraction": 0.6989619377,
"avg_line_length": 24.0833333333,
"ext": "agda",
"hexsha": "a736a7f8c95d333e87fb9dd17b6171eebae7de75",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1614c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1614c.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1614c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 289
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on indexed containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --guardedness #-}
module Data.Container.Indexed.FreeMonad where
open import Level
open import Function hiding (const)
open import Category.Monad.Predicate
open import Data.Container.Indexed
open import Data.Container.Indexed.Combinator hiding (id; _∘_)
open import Data.Empty
open import Data.Sum using (inj₁; inj₂)
open import Data.Product
open import Data.W.Indexed
open import Relation.Unary
open import Relation.Unary.PredicateTransformer
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
infixl 9 _⋆C_
infix 9 _⋆_
_⋆C_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Pred O c → Container I O _ _
C ⋆C X = const X ⊎ C
_⋆_ : ∀ {ℓ} {O : Set ℓ} → Container O O ℓ ℓ → Pt O ℓ
C ⋆ X = μ (C ⋆C X)
pattern returnP x = (inj₁ x , _)
pattern doP c k = (inj₂ c , k)
inn : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X} →
⟦ C ⟧ (C ⋆ X) ⊆ C ⋆ X
inn (c , k) = sup (doP c k)
rawPMonad : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} →
RawPMonad {ℓ = ℓ} (_⋆_ C)
rawPMonad {C = C} = record
{ return? = return
; _=<?_ = _=<<_
}
where
return : ∀ {X} → X ⊆ C ⋆ X
return x = sup (inj₁ x , ⊥-elim ∘ lower)
_=<<_ : ∀ {X Y} → X ⊆ C ⋆ Y → C ⋆ X ⊆ C ⋆ Y
f =<< sup (returnP x) = f x
f =<< sup (doP c k) = inn (c , λ r → f =<< k r)
leaf : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X : Pred O ℓ} →
⟦ C ⟧ X ⊆ C ⋆ X
leaf (c , k) = inn (c , return? ∘ k)
where
open RawPMonad rawPMonad
generic : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {o}
(c : Command C o) →
o ∈ C ⋆ (⋃[ r ∶ Response C c ] { next C c r })
generic c = inn (c , λ r → return? (r , refl))
where
open RawPMonad rawPMonad
| {
"alphanum_fraction": 0.5157736605,
"avg_line_length": 28.9420289855,
"ext": "agda",
"hexsha": "7cf942c36ee00733c05c086819bddcea8d6c5cc2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Indexed/FreeMonad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 730,
"size": 1997
} |
module _ where
open import Agda.Builtin.Nat
postulate
T : Set
C₁ : Set
instance I₁ : C₁
C₂ : Nat → Set
instance I₂ : ∀ {n} → C₂ n
it : {A : Set} {{_ : A}} → A
it {{x}} = x
postulate
f₁ : {{_ : Nat → C₁}} → T
f₂ : {{_ : ∀ n → C₂ n}} → T
works₁ : T
works₁ = f₁ -- f₁ {{λ _ → I₁}}
fails₁ : T
fails₁ = f₁ {{it}} -- internal error
works₂ : T
works₂ = f₂ -- f₂ {{λ n → I₂ {n}}}
fails₂ : T
fails₂ = f₂ {{it}} -- internal error
| {
"alphanum_fraction": 0.4967602592,
"avg_line_length": 14.0303030303,
"ext": "agda",
"hexsha": "3357c25663b1f4817b1c9330e2f6b62525983202",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2034.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2034.agda",
"max_line_length": 42,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2034.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 196,
"size": 463
} |
module UniDB.Subst.Pair where
open import UniDB.Subst.Core
open import UniDB.Morph.Pair
instance
iLkPair :
{T : STX} {{apTT : Ap T T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} →
Lk T (Pair Ξ Ζ)
lk {{iLkPair {T}}} (ξ ⊗ ζ) i = ap {T} ζ (lk {T} ξ i)
iLkRenPair :
{T : STX} {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}}
{Ξ : MOR} {{lkIxΞ : Lk Ix Ξ}} {{lkTΞ : Lk T Ξ}} {{lkRenTΞ : LkRen T Ξ}}
{Ζ : MOR} {{lkIxΖ : Lk Ix Ζ}} {{lkTΖ : Lk T Ζ}} {{lkRenTΖ : LkRen T Ζ}} {{upΖ : Up Ζ}} →
LkRen T (Pair Ξ Ζ)
lk-ren {{iLkRenPair {T} {Ξ} {Ζ}}} (ξ ⊗ ζ) i = begin
ap {T} ζ (lk {T} ξ i) ≡⟨ cong (ap {T} ζ) (lk-ren {T} ξ i) ⟩
ap {T} ζ (vr (lk {Ix} ξ i)) ≡⟨ ap-vr {T} ζ (lk {Ix} ξ i) ⟩
lk {T} ζ (lk {Ix} ξ i) ≡⟨ lk-ren {T} ζ (lk {Ix} ξ i) ⟩
vr (lk {Ix} ζ (lk {Ix} ξ i)) ∎
iLkHCompPair :
{T : STX} {{vrT : Vr T}} {{apTT : Ap T T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} →
LkHCompAp T Ξ Ζ (Pair Ξ Ζ)
lk-⊡-ap {{iLkHCompPair}} ξ ζ i = refl
iLkUpPairRenaming :
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}}
(Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{{lkIxΞ : Lk Ix Ξ}} {{lkRenTΞ : LkRen T Ξ}} {{lkUpIxΞ : LkUp Ix Ξ}}
(Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} →
LkUp T (Pair Ξ Ζ)
lk-↑₁-zero {{iLkUpPairRenaming T Ξ Ζ}} (ξ ⊗ ζ) = begin
ap {T} (ζ ↑₁) (lk {T} (ξ ↑₁) zero) ≡⟨ cong (ap {T} (ζ ↑₁)) (lk-↑₁-zero ξ) ⟩
ap {T} (ζ ↑₁) (vr zero) ≡⟨ ap-vr {T} (ζ ↑₁) zero ⟩
lk (ζ ↑₁) zero ≡⟨ lk-↑₁-zero ζ ⟩
vr zero ∎
lk-↑₁-suc {{iLkUpPairRenaming T Ξ Ζ}} (ξ ⊗ ζ) i = begin
ap {T} (ζ ↑₁) (lk (ξ ↑₁) (suc i)) ≡⟨ cong (ap {T} (ζ ↑₁)) (lk-ren (ξ ↑₁) (suc i)) ⟩
ap {T} (ζ ↑₁) (vr (lk (ξ ↑₁) (suc i))) ≡⟨ ap-vr {T} (ζ ↑₁) (lk (ξ ↑₁) (suc i)) ⟩
lk (ζ ↑₁) (lk (ξ ↑₁) (suc i)) ≡⟨ cong (lk (_↑₁ ζ)) (lk-↑₁-suc ξ i) ⟩
lk (ζ ↑₁) (suc (lk ξ i)) ≡⟨ lk-↑₁-suc ζ (lk ξ i) ⟩
wk₁ (lk ζ (lk ξ i)) ≡⟨ cong wk₁ (sym (ap-vr {T} ζ (lk ξ i))) ⟩
wk₁ (ap {T} ζ (vr (lk ξ i))) ≡⟨ cong wk₁ (cong (ap {T} ζ) (sym (lk-ren ξ i))) ⟩
wk₁ (ap {T} ζ (lk ξ i)) ∎
iLkUpPairSubstitution :
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}}
(Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}}
(Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}}
(ap-wk₁-TΖ : {γ₁ γ₂ : Dom} (ζ : Ζ γ₁ γ₂) (t : T γ₁) →
ap {T} (ζ ↑₁) (wk₁ t) ≡ wk₁ (ap {T} ζ t)) →
LkUp T (Pair Ξ Ζ)
lk-↑₁-zero {{iLkUpPairSubstitution T Ξ Ζ ap-wk₁-TΖ}} (ξ ⊗ ζ) = begin
ap {T} (ζ ↑₁) (lk (ξ ↑₁) zero) ≡⟨ cong (ap {T} (ζ ↑₁)) (lk-↑₁-zero ξ) ⟩
ap {T} (ζ ↑₁) (vr zero) ≡⟨ ap-vr {T} (ζ ↑₁) zero ⟩
lk (ζ ↑₁) zero ≡⟨ lk-↑₁-zero ζ ⟩
vr zero ∎
lk-↑₁-suc {{iLkUpPairSubstitution T Ξ Ζ ap-wk₁-TΖ}} (ξ ⊗ ζ) i = begin
ap {T} (ζ ↑₁) (lk (ξ ↑₁) (suc i)) ≡⟨ cong (ap {T} (ζ ↑₁)) (lk-↑₁-suc ξ i) ⟩
ap {T} (ζ ↑₁) (wk₁ (lk ξ i)) ≡⟨ ap-wk₁-TΖ ζ (lk ξ i) ⟩
wk₁ (ap {T} ζ (lk ξ i)) ∎
instance
iLkUpPair :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}}
{{apVrT : ApVr T}} {{apWkTT : ApWk T T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} →
LkUp T (Pair Ξ Ζ)
iLkUpPair {T} {Ξ} {Ζ} = iLkUpPairSubstitution T Ξ Ζ (ap-wk₁ {T})
record ApPair (T : STX) {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} : Set₁ where
field
ap-pair :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}}
{γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃)
(x : X γ₁) →
ap {T} (ξ ⊗ ζ) x ≡ ap {T} ζ (ap {T} ξ x)
open ApPair {{...}} public
instance
iApPairIxIx : ApPair Ix Ix
ap-pair {{iApPairIxIx}} {Ξ} ξ ζ i = refl
| {
"alphanum_fraction": 0.4424800797,
"avg_line_length": 43.652173913,
"ext": "agda",
"hexsha": "0bbaae82dcf94a68e789fc714e7253495037fce7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Subst/Pair.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Subst/Pair.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Subst/Pair.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2246,
"size": 4016
} |
-- This file is the source Agda file
-- Edit this file not Common.hs
-- The warning below will be written to Common.hs
{- Description : Property based testing Name Utilities
This file contains various naming related utilities used for
generating Zerepoch Core types and terms.
-}
module ZerepochCore.Generators.NEAT.Common where
-- warning to be written to Haskell file:
{-# FOREIGN AGDA2HS
{-
!!! THIS FILE IS GENERATED FROM Common.agda
!!! DO NOT EDIT THIS FILE. EDIT Common.agda
!!! AND THEN RUN agda2hs ON IT.
-}
#-}
{-# FOREIGN AGDA2HS
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE EmptyDataDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Enumerable
import qualified Data.Stream as Stream
import qualified Data.Text as Text
import ZerepochCore.Name (Name, TyName (..))
import ZerepochCore.Quote (MonadQuote (..), freshName)
#-}
-- * Enumerating deBruijn indices
-- empty type
data Z : Set where
{-# COMPILE AGDA2HS Z deriving (Eq, Ord, Show) #-}
-- maybe type
data S (n : Set) : Set where
FZ : S n
FS : n → S n
{-# COMPILE AGDA2HS S deriving (Eq, Ord, Show, Functor) #-}
{-# FOREIGN AGDA2HS
instance Enumerable Z where
enumerate = datatype []
instance Enumerable n => Enumerable (S n) where
enumerate = share $ aconcat
[ c0 FZ
, c1 FS
]
-- |Absurd for the zero type.
fromZ :: Z -> a
fromZ i = case i of {}
-- * Namespaces
data NameState n = NameState { nameOf :: n -> Name, freshNameStrings :: Stream.Stream Text.Text }
newtype TyNameState n = TyNameState (NameState n)
tynameOf :: TyNameState n -> n -> TyName
tynameOf (TyNameState NameState{..}) i = TyName (nameOf i)
-- |Create an empty name state from a stream of text names.
emptyNameState :: Stream.Stream Text.Text -> NameState Z
emptyNameState strs = NameState { nameOf = fromZ, freshNameStrings = strs }
-- |Extend name state with a fresh name.
extNameState
:: (MonadQuote m)
=> NameState n
-> m (NameState (S n))
extNameState NameState{..} = liftQuote $ do
let str = Stream.head freshNameStrings
freshNameStrings' = Stream.tail freshNameStrings
name <- freshName str
let nameOf' FZ = name
nameOf' (FS i) = nameOf i
return NameState { nameOf = nameOf', freshNameStrings = freshNameStrings' }
-- |Create an empty name state from a stream of text names.
emptyTyNameState :: Stream.Stream Text.Text -> TyNameState Z
emptyTyNameState strs = TyNameState (emptyNameState strs)
-- |Extend type name state with a fresh type name.
extTyNameState
:: (MonadQuote m)
=> TyNameState n
-> m (TyNameState (S n))
extTyNameState (TyNameState nameState) =
TyNameState <$> extNameState nameState
-- |Create a stream of names |x0, x1, x2, ...| from a prefix |"x"|
mkTextNameStream :: Text.Text -> Stream.Stream Text.Text
mkTextNameStream prefix =
Stream.map
(\n -> prefix <> Text.pack (show n))
(Stream.iterate (+1) (0 :: Integer))
#-}
| {
"alphanum_fraction": 0.6816232267,
"avg_line_length": 27.3063063063,
"ext": "agda",
"hexsha": "6e79288fbb471478f7cdc81f9d1e6e43ec6981fb",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z",
"max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "Quantum-One-DLT/zerepoch",
"max_forks_repo_path": "zerepoch-core/generators/ZerepochCore/Generators/NEAT/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "Quantum-One-DLT/zerepoch",
"max_issues_repo_path": "zerepoch-core/generators/ZerepochCore/Generators/NEAT/Common.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "Quantum-One-DLT/zerepoch",
"max_stars_repo_path": "zerepoch-core/generators/ZerepochCore/Generators/NEAT/Common.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 833,
"size": 3031
} |
-- AIM XXXV, 2022-05-06, issue #5891:
-- SizeUniv : SizeUniv was causing non-termination and inhabitation of Size< 0.
-- This is inconsistent; proof by Jonathan Chan.
{-# OPTIONS --sized-types #-}
open import Agda.Primitive
open import Agda.Builtin.Size
data ⊥ : Set where
-- Original exploit:
-- data False : SizeUniv where
False : SizeUniv
False = (X : SizeUniv) → X
-- Should fail.
-- Expected error:
-- Setω != SizeUniv
-- when checking that the expression (X : SizeUniv) → X has type SizeUniv
-- Step 1: Hurken's Paradox with SizeUniv : SizeUniv.
℘ : SizeUniv → SizeUniv
℘ S = S → SizeUniv
U : SizeUniv
U = ∀ (X : SizeUniv) → (℘ (℘ X) → X) → ℘ (℘ X)
τ : ℘ (℘ U) → U
τ t = λ X f p → t (λ x → p (f (x X f)))
σ : U → ℘ (℘ U)
σ s = s U τ
Δ : ℘ U
Δ y = (∀ p → σ y p → p (τ (σ y))) → False
Ω : U
Ω = τ (λ p → (∀ x → σ x p → p x))
R : ∀ p → (∀ x → σ x p → p x) → p Ω
R _ 𝟙 = 𝟙 Ω (λ x → 𝟙 (τ (σ x)))
M : ∀ x → σ x Δ → Δ x
M _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ (σ y))))
L : (∀ p → (∀ x → σ x p → p x) → p Ω) → False
L 𝟘 = 𝟘 Δ M (λ p → 𝟘 (λ y → p (τ (σ y))))
-- Prevent unfolding, as this term has no whnf.
-- Stops Agda from looping.
abstract
false : False
false = L R
-- This gives us a predecessor on Size.
size-pred : ∀ i → Size< i
size-pred i = false (Size< i)
-- Step 2: Size predecessor is inconsistent.
-- Jonathan Chan:
-- I managed to do so using ∞ but only because it's the only closed
-- size expression, not using the ∞ < ∞ property, although the
-- principle is the same as for #3026:
data _>_ (s : Size) : Size → Set where
lt : (r : Size< s) → s > r
data Acc (s : Size) : Set where
acc : (∀ {r} → s > r → Acc r) → Acc s
wf : ∀ s → Acc s
wf s = acc λ{ (lt r) → wf r }
¬wf : ∀ s → Acc s → ⊥
¬wf s (acc p) = ¬wf (size-pred s) (p (lt (size-pred s)))
absurd : ⊥
absurd = (¬wf ∞) (wf ∞)
| {
"alphanum_fraction": 0.556407448,
"avg_line_length": 21.2325581395,
"ext": "agda",
"hexsha": "370dc712a9c8c14c45094a8eb263e146e68ab246",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5891.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5891.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5891.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 745,
"size": 1826
} |
{-# OPTIONS --cubical #-}
module Demos.Live where
| {
"alphanum_fraction": 0.6538461538,
"avg_line_length": 10.4,
"ext": "agda",
"hexsha": "f30a6134e0cd1f6ec962519d71f44b9639200ee5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Demos/Live.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Demos/Live.agda",
"max_line_length": 25,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Demos/Live.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 13,
"size": 52
} |
module Issue784.RefAPI where
open import Issue784.Values public hiding (seq)
open import Issue784.Context -- that should be private
open import Issue784.Transformer public
open import Data.List public using (List; []; _∷_; [_])
open import Data.Nat
open import Relation.Binary.PropositionalEquality.TrustMe
private
postulate
_seq_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → B
nativeRef : (A : Set) → Set
-- create new reference and initialize it with passed value
nativeNew-ℕ : ℕ → nativeRef ℕ
-- increment value in place
nativeInc-ℕ : nativeRef ℕ → Unit
nativeGet-ℕ : nativeRef ℕ → ℕ
nativeFree-ℕ : nativeRef ℕ → Unit
data Exact {ℓ} {A : Set ℓ} : A → Set ℓ where
exact : ∀ a → Exact a
getExact : ∀ {ℓ} {A : Set ℓ} {a : A} → Exact a → A
getExact (exact a) = a
≡-exact : ∀ {ℓ} {A : Set ℓ} {a : A} (e : Exact a) → getExact e ≡ a
≡-exact (exact a) = refl
Ref-ℕ : ℕ → Set
Ref-ℕ a = Σ[ native ∈ nativeRef ℕ ] nativeGet-ℕ native ≡ a
private
-- making these private to avoid further using
-- which may lead to inconsistency
proofNew-ℕ : ∀ a → Ref-ℕ a
proofNew-ℕ a = nativeNew-ℕ a , trustMe
proofInc-ℕ : ∀ {a} → Ref-ℕ a → Ref-ℕ (suc a)
proofInc-ℕ (r , _) = (nativeInc-ℕ r) seq (r , trustMe)
proofGet-ℕ : ∀ {a} → Ref-ℕ a → Exact a
proofGet-ℕ (r , p) = ≡-elim′ Exact p (exact $ nativeGet-ℕ r)
proofFree-ℕ : {a : ℕ} → Ref-ℕ a → Unit
proofFree-ℕ (r , _) = nativeFree-ℕ r
new-ℕ : ∀ a n → Transformer! [] [(n , Unique (Ref-ℕ a))]
new-ℕ a n ctx nr-v []⊆v nr-v∪n = context w , (≡⇒≋ $ ≡-trans p₁ p₂) where
v = Context.get ctx
w = v ∪ [(n , Unique (Ref-ℕ a) , unique (proofNew-ℕ a))]
p₁ : types (v ∪ [(n , Unique (Ref-ℕ a) , _)]) ≡ types v ∪ [(n , Unique (Ref-ℕ a))]
p₁ = t-x∪y v [(n , Unique (Ref-ℕ a) , _)]
p₂ : types v ∪ [(n , Unique (Ref-ℕ a))] ≡ types v ∖∖ [] ∪ [(n , Unique (Ref-ℕ a))]
p₂ = ≡-cong (λ x → x ∪ [(n , Unique (Ref-ℕ a))]) (≡-sym $ t∖[]≡t $ types v)
inc-ℕ : ∀ {a} n → Transformer! [(n , Unique (Ref-ℕ a))] [(n , Unique (Ref-ℕ (suc a)))]
inc-ℕ {a} n ctx nr-v n⊆v nr-v∪n = context w , (≡⇒≋ $ ≡-trans p₁ p₂) where
v = Context.get ctx
r = unique ∘ proofInc-ℕ ∘ Unique.get ∘ getBySignature ∘ n⊆v $ here refl
w = v ∖∖ [ n ] ∪ [(n , Unique (Ref-ℕ $ suc a) , r)]
p₁ : types (v ∖∖ [ n ] ∪ [(n , Unique (Ref-ℕ $ suc a) , r)]) ≡ types (v ∖∖ [ n ]) ∪ [(n , Unique (Ref-ℕ $ suc _))]
p₁ = t-x∪y (v ∖∖ [ n ]) _
p₂ : types (v ∖∖ [ n ]) ∪ [(n , Unique (Ref-ℕ $ suc a))] ≡ types v ∖∖ [ n ] ∪ [(n , Unique (Ref-ℕ $ suc _))]
p₂ = ≡-cong (λ x → x ∪ [(n , Unique (Ref-ℕ $ suc a))]) (t-x∖y v [ n ])
get-ℕ : (r n : String) {r≢!n : r s-≢! n} {a : ℕ} →
Transformer ([(r , Unique (Ref-ℕ a))] , nr-[a]) ((r , Unique (Ref-ℕ a)) ∷ [(n , Pure (Exact a))] , (x≢y⇒x∉l⇒x∉y∷l (s-≢!⇒≢? r≢!n) λ()) ∷ nr-[a])
get-ℕ r n {a = a} ctx nr-v h⊆v _ = context w , ≋-trans p₁ (≋-trans p₂ p₃) where
v = Context.get ctx
pr : Pure (Exact a)
pr = pure ∘ proofGet-ℕ ∘ Unique.get ∘ getBySignature ∘ h⊆v $ here refl
w = v ∪ [(n , Pure (Exact a) , pr)]
p₁ : types (v ∪ [(n , Pure (Exact a) , pr)]) ≋ types v ∪ [(n , Pure (Exact a))]
p₁ = ≡⇒≋ $ t-x∪y v [(n , Pure (Exact a) , pr)]
p₂ : types v ∪ [(n , Pure (Exact a))] ≋ (types v ∖∖ [ r ] ∪ [(r , Unique (Ref-ℕ _))]) ∪ [(n , Pure (Exact a))]
p₂ = x≋x̀⇒x∪y≋x̀∪y (≋-trans g₁ g₂) [(n , Pure (Exact a))] where
g₁ : types v ≋ [(r , Unique (Ref-ℕ _))] ∪ types v ∖∖ [ r ]
g₁ = t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ nr-[a] (nr-x⇒nr-t-x nr-v) h⊆v
g₂ : [(r , Unique (Ref-ℕ _))] ∪ types v ∖∖ [ r ] ≋ types v ∖∖ [ r ] ∪ [(r , Unique (Ref-ℕ _))]
g₂ = ∪-sym [(r , Unique (Ref-ℕ _))] (types v ∖∖ [ r ])
p₃ : (types v ∖∖ [ r ] ∪ [(r , Unique (Ref-ℕ a))]) ∪ [(n , Pure (Exact a))] ≋ types v ∖∖ [ r ] ∪ ((r , Unique (Ref-ℕ _)) ∷ [(n , Pure (Exact a))])
p₃ = ≡⇒≋ $ ∪-assoc (types v ∖∖ [ r ]) [(r , Unique (Ref-ℕ _))] [(n , Pure (Exact a))]
free-ℕ : (h : String) {a : ℕ} → Transformer! [(h , Unique (Ref-ℕ a))] []
free-ℕ h ctx nr-v h⊆v _ = u seq (context w , ≡⇒≋ p) where
v = Context.get ctx
u = proofFree-ℕ ∘ Unique.get ∘ getBySignature ∘ h⊆v $ here refl
w = v ∖∖ [ h ]
p : types (v ∖∖ [ h ]) ≡ types v ∖∖ [ h ] ∪ []
p = ≡-trans (t-x∖y v [ h ]) (≡-sym $ x∪[]≡x (types v ∖∖ [ h ]))
| {
"alphanum_fraction": 0.5122123062,
"avg_line_length": 45.2978723404,
"ext": "agda",
"hexsha": "98e90abe684ab87988e30940f390d6d1df4a2578",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/LibSucceed/Issue784/RefAPI.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/LibSucceed/Issue784/RefAPI.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/LibSucceed/Issue784/RefAPI.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1943,
"size": 4258
} |
------------------------------------------------------------------------------
-- Properties for the bisimilarity relation
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Relation.Binary.Bisimilarity.PropertiesI where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesI
open import FOTC.Base.PropertiesI
open import FOTC.Data.Stream.Type
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, the
-- bisimilarity relation _≈_ on unbounded lists is also a pre-fixed
-- point of the bisimulation functional (see
-- FOTC.Relation.Binary.Bisimulation).
≈-in : ∀ {xs ys} →
∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys' →
xs ≈ ys
≈-in h = ≈-coind B h' h
where
B : D → D → Set
B xs ys = ∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys'
h' : ∀ {xs} {ys} → B xs ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys'
h' (x' , xs' , ys' , prf₁ , prf₂ , xs'≈ys') =
x' , xs' , ys' , prf₁ , prf₂ , ≈-out xs'≈ys'
≈-refl : ∀ {xs} → Stream xs → xs ≈ xs
≈-refl {xs} Sxs = ≈-coind B h₁ h₂
where
B : D → D → Set
B xs ys = Stream xs ∧ xs ≡ ys
h₁ : ∀ {xs ys} → B xs ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys'
h₁ (Sxs , refl) with Stream-out Sxs
... | x' , xs' , prf , Sxs' =
x' , xs' , xs' , prf , prf , (Sxs' , refl)
h₂ : B xs xs
h₂ = Sxs , refl
≈-sym : ∀ {xs ys} → xs ≈ ys → ys ≈ xs
≈-sym {xs} {ys} xs≈ys = ≈-coind B h₁ h₂
where
B : D → D → Set
B xs ys = ys ≈ xs
h₁ : ∀ {ys xs} → B ys xs →
∃[ y' ] ∃[ ys' ] ∃[ xs' ] ys ≡ y' ∷ ys' ∧ xs ≡ y' ∷ xs' ∧ B ys' xs'
h₁ Bxsys with ≈-out Bxsys
... | y' , ys' , xs' , prf₁ , prf₂ , ys'≈xs' =
y' , xs' , ys' , prf₂ , prf₁ , ys'≈xs'
h₂ : B ys xs
h₂ = xs≈ys
≈-trans : ∀ {xs ys zs} → xs ≈ ys → ys ≈ zs → xs ≈ zs
≈-trans {xs} {ys} {zs} xs≈ys ys≈zs = ≈-coind B h₁ h₂
where
B : D → D → Set
B xs zs = ∃[ ys ] xs ≈ ys ∧ ys ≈ zs
h₁ : ∀ {as} {cs} → B as cs →
∃[ a' ] ∃[ as' ] ∃[ cs' ] as ≡ a' ∷ as' ∧ cs ≡ a' ∷ cs' ∧ B as' cs'
h₁ {cs = cs} (bs , as≈bs , bs≈cs) with ≈-out as≈bs
... | a' , as' , bs' , prf₁ , prf₂ , as'≈bs' with ≈-out bs≈cs
... | b' , bs'' , cs' , prf₃ , prf₄ , bs''≈cs' =
a'
, as'
, cs'
, prf₁
, subst (λ t → cs ≡ t ∷ cs') b'≡a' prf₄
, (bs' , as'≈bs' , subst (λ t → t ≈ cs') bs''≡bs' bs''≈cs')
where
b'≡a' : b' ≡ a'
b'≡a' = ∧-proj₁ (∷-injective (trans (sym prf₃) prf₂))
bs''≡bs' : bs'' ≡ bs'
bs''≡bs' = ∧-proj₂ (∷-injective (trans (sym prf₃) prf₂))
h₂ : B xs zs
h₂ = ys , (xs≈ys , ys≈zs)
∷-injective≈ : ∀ {x xs ys} → x ∷ xs ≈ x ∷ ys → xs ≈ ys
∷-injective≈ {x} {xs} {ys} h with ≈-out h
... | x' , xs' , ys' , prf₁ , prf₂ , prf₃ = xs≈ys
where
xs≡xs' : xs ≡ xs'
xs≡xs' = ∧-proj₂ (∷-injective prf₁)
ys≡ys' : ys ≡ ys'
ys≡ys' = ∧-proj₂ (∷-injective prf₂)
xs≈ys : xs ≈ ys
xs≈ys = subst (λ t → t ≈ ys)
(sym xs≡xs')
(subst (_≈_ xs') (sym ys≡ys') prf₃)
∷-rightCong≈ : ∀ {x xs ys} → xs ≈ ys → x ∷ xs ≈ x ∷ ys
∷-rightCong≈ {x} {xs} {ys} h = ≈-in (x , xs , ys , refl , refl , h)
| {
"alphanum_fraction": 0.437642369,
"avg_line_length": 31.0796460177,
"ext": "agda",
"hexsha": "2c4d54c1b56764afee4cff0736e6a73bb5cb98ee",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1559,
"size": 3512
} |
open import Prelude
module Implicits.Substitutions.Type where
open import Implicits.Syntax.Type
open import Data.Fin.Substitution
open import Data.Star as Star hiding (map)
open import Data.Star.Properties
open import Data.Vec
module TypeApp {T} (l : Lift T Type) where
open Lift l hiding (var)
infixl 8 _/_
mutual
_simple/_ : ∀ {m n} → SimpleType m → Sub T m n → Type n
tc c simple/ σ = simpl (tc c)
tvar x simple/ σ = lift (lookup x σ)
(a →' b) simple/ σ = simpl ((a / σ) →' (b / σ))
_/_ : ∀ {m n} → Type m → Sub T m n → Type n
(simpl c) / σ = (c simple/ σ)
(a ⇒ b) / σ = (a / σ) ⇒ (b / σ)
(∀' a) / σ = ∀' (a / σ ↑)
open Application (record { _/_ = _/_ }) using (_/✶_)
→'-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) →
(simpl (a →' b)) /✶ ρs ↑✶ k ≡ simpl ((a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k))
→'-/✶-↑✶ k ε = refl
→'-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl
⇒-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) →
(a ⇒ b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) ⇒ (b /✶ ρs ↑✶ k)
⇒-/✶-↑✶ k ε = refl
⇒-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl
tc-/✶-↑✶ : ∀ k {c m n} (ρs : Subs T m n) →
(simpl (tc c)) /✶ ρs ↑✶ k ≡ simpl (tc c)
tc-/✶-↑✶ k ε = refl
tc-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tc-/✶-↑✶ k ρs) refl
∀'-/✶-↑✶ : ∀ k {m n a} (ρs : Subs T m n) →
(∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ ρs ↑✶ (suc k))
∀'-/✶-↑✶ k ε = refl
∀'-/✶-↑✶ k (x ◅ ρs) = cong₂ _/_ (∀'-/✶-↑✶ k ρs) refl
typeSubst : TermSubst Type
typeSubst = record { var = (λ n → simpl (tvar n)); app = TypeApp._/_ }
open TermSubst typeSubst public hiding (var)
open TypeApp termLift public using (_simple/_)
open TypeApp varLift public using () renaming (_simple/_ to _simple/Var_)
infix 8 _[/_]
-- Shorthand for single-variable type substitutions
_[/_] : ∀ {n} → Type (suc n) → Type n → Type n
a [/ b ] = a / sub b
-- shorthand for type application
infixl 8 _∙_
_∙_ : ∀ {ν} → (a : Type ν) → {is∀ : is-∀' a} → Type ν → Type ν
_∙_ (simpl (tvar n)) {is∀ = ()} _
_∙_ (simpl (tc c)) b = simpl (tc c)
_∙_ (simpl (_ →' _)) {is∀ = ()} _
_∙_ (∀' x) b = x [/ b ]
_∙_ (_ ⇒ _) {is∀ = ()} _
stp-weaken : ∀ {ν} → SimpleType ν → SimpleType (suc ν)
stp-weaken (tc x) = tc x
stp-weaken (tvar n) = tvar (suc n)
stp-weaken (a →' b) = weaken a →' weaken b
| {
"alphanum_fraction": 0.4903059026,
"avg_line_length": 30.5394736842,
"ext": "agda",
"hexsha": "592519970e2c4af0f76a520f418acf107d57354c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Substitutions/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Substitutions/Type.agda",
"max_line_length": 83,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Substitutions/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 1084,
"size": 2321
} |
module Thesis.SIRelBigStep.FundamentalProperty where
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Thesis.SIRelBigStep.IlcSILR
rfundamentalV3v : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → ∀ ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 n) → rrelV3 τ (⟦ x ⟧Var ρ1) (D.⟦ x ⟧Var dρ) (⟦ x ⟧Var ρ2) n
rfundamentalV3v x n ρ1 dρ ρ2 ρρ = ⟦ x ⟧RelVar3 ρρ
rfundamental3constV : ∀ {τ} k (c : Const τ) →
rrelV3 τ (eval-const c) (deval (derive-const c) ∅ ∅) (eval-const c) k
rfundamental3constV k (lit n) = refl
rfundamental3 : ∀ {τ Γ} k (t : Term Γ τ) → ∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) →
rrelT3 t (derive-dterm t) t ρ1 dρ ρ2 k
rfundamental3svv : ∀ {τ Γ} k (sv : SVal Γ τ) →
∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelV3 τ (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2) k
rfundamental3svv k (var x) ρ1 dρ ρ2 ρρ = rfundamentalV3v x k ρ1 dρ ρ2 ρρ
rfundamental3svv k (cons sv1 sv2) ρ1 dρ ρ2 ρρ = rfundamental3svv k sv1 ρ1 dρ ρ2 ρρ , rfundamental3svv k sv2 ρ1 dρ ρ2 ρρ
rfundamental3svv k (const c) ρ1 dρ ρ2 ρρ rewrite deval-derive-const-inv c ρ1 dρ = rfundamental3constV k c
rfundamental3svv k (abs t) ρ1 dρ ρ2 ρρ = (refl , refl) , refl , rrelρ3→⊕ ρ1 dρ ρ2 ρρ , refl , refl ,
λ j j<k v1 dv v2 vv →
-- If we replace abs t by rec t, here we would need to invoke (by
-- well-founded recursion) rfundamental3svv on (abs t) at a smaller j, as follows:
-- rfundamental3svv j (abs t) ρ1 dρ ρ2 (rrelρ3-mono j k (lt1 j<k) _ _ _ _ ρρ)
-- As you'd expect, Agda's termination checker does not accept that call directly.
rfundamental3 j t (v1 • ρ1) (dv • dρ) (v2 • ρ2) (vv , rrelρ3-mono j k (lt1 j<k) _ _ _ _ ρρ)
rfundamental3sv : ∀ {τ Γ} k (sv : SVal Γ τ) →
∀ ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3 (val sv) (dval (derive-dsval sv)) (val sv) ρ1 dρ ρ2 k
rfundamental3sv k sv ρ1 dρ ρ2 ρρ .(eval sv ρ1) .(eval sv ρ2) .0 j<k (val .sv) (val .sv) = deval (derive-dsval sv) ρ1 dρ , dval (derive-dsval sv) , rfundamental3svv k sv ρ1 dρ ρ2 ρρ
open import Theorem.Groups-Nehemiah
rfundamental3primv : ∀ {σ τ} k p →
∀ v1 dv v2 → (vv : rrelV3 σ v1 dv v2 k) →
rrelV3 τ (eval-primitive p v1) (deval-primitive p v1 dv) (eval-primitive p v2) k
rfundamental3primv k succ (natV n₁) (bang .(natV n)) (natV n) refl = refl
rfundamental3primv k succ (natV n) (dnatV dn) (natV .(dn + n)) refl = +-suc dn n
rfundamental3primv k add (pairV (natV a1) (natV b1))
(dpairV (dnatV da) (dnatV db))
(pairV (natV .(da + a1)) (natV .(db + b1)))
(refl , refl) = ℕ-mn·pq=mp·nq {da} {db} {a1} {b1}
rfundamental3primv k add (pairV a1 b1)
(dpairV (dnatV da) (bang b2))
(pairV a2 .b2) (aa , refl) rewrite rrelV3→⊕ a1 (dnatV da) a2 aa = refl
rfundamental3primv k add (pairV a1 b1)
(dpairV (bang a2) db)
(pairV .a2 b2) (refl , bb) rewrite rrelV3→⊕ b1 db b2 bb = refl
rfundamental3primv k add (pairV a1 b1) (bang p2) .p2 refl = refl
-- Warning: names like ρ1⊢t1↓[j]v1 are all broken, sorry for not fixing them.
rfundamental3 k (val sv) = rfundamental3sv k sv
rfundamental3 (suc k) (primapp p sv) ρ1 dρ ρ2 ρρ
.(eval-primitive p (eval sv ρ1)) .(eval-primitive p (eval sv ρ2)) .1 (s≤s j<k) (primapp .p .sv) (primapp .p .sv) =
deval-primitive p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) , dprimapp p sv (derive-dsval sv) ,
rfundamental3primv k p (eval sv ρ1) (deval (derive-dsval sv) ρ1 dρ) (eval sv ρ2)
(rfundamental3svv k sv ρ1 dρ ρ2 (rrelρ3-mono k (suc k) (≤-step ≤-refl) _ ρ1 dρ ρ2 ρρ))
rfundamental3 (suc (suc k)) (app vs vt) ρ1 dρ ρ2 ρρ v1 v2 .(suc j) (s≤s (s≤s j<k))
(app j vtv1 ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2 ρ1⊢t1↓[j]v3)
(app n₁ vtv2 ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3 ρ2⊢t2↓[n2]v4)
with rfundamental3sv (suc (suc k)) vs ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2
| rfundamental3sv (suc (suc k)) vt ρ1 dρ ρ2 ρρ _ _ zero (s≤s z≤n) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3
... | bang f2 , vs↓dsv , refl | dtv , vt↓dvv , dtvv
rewrite sym (rrelV3→⊕ vtv1 dtv vtv2 dtvv) =
bang v2 , bangapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ρ2⊢t2↓[n2]v4 , refl
... | dclosure dt ρ dρ₁ , vs↓dsv , (refl , refl) , refl , refl , refl , refl , dsvv | dtv , vt↓dvv , dtvv
with dsvv (suc k) ≤-refl vtv1 dtv vtv2
(rrelV3-mono (suc k) (suc (suc k)) (s≤s (≤-step ≤-refl)) _ vtv1 dtv vtv2 dtvv)
v1 v2 j (s≤s j<k) ρ1⊢t1↓[j]v3 ρ2⊢t2↓[n2]v4
... | dv , ↓dv , dvv =
dv , dapp vs↓dsv ρ1⊢t1↓[j]v2 vt↓dvv ↓dv , dvv
rfundamental3 (suc (suc k)) (lett s t) ρ1 dρ ρ2 ρρ v1 v2 .(suc (n1 + n2)) (s≤s (s≤s n1+n2≤k))
(lett n1 n2 vs1 .s .t ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2) (lett _ _ vs2 .s .t ρ2⊢t2↓[n2]v2 ρ2⊢t2↓[n2]v3)
with rfundamental3 (suc (suc k)) s ρ1 dρ ρ2 ρρ vs1 vs2 n1
(s≤s (≤-trans (≤-trans (m≤m+n n1 n2) n1+n2≤k) (≤-step ≤-refl)))
ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2
... | dsv , ↓dsv , vsv
with rfundamental3 (suc (suc k) ∸ n1) t (vs1 • ρ1) (dsv • dρ) (vs2 • ρ2) (vsv , rrelρ3-mono (suc (suc k) ∸ n1) (suc (suc k)) (m∸n≤m (suc (suc k)) n1) _ _ _ _ ρρ) v1 v2 n2 (sub∸ n1 (suc n2) (suc (suc k)) n1+[1+n2]≤2+k) ρ1⊢t1↓[j]v2 ρ2⊢t2↓[n2]v3
where
n1+[1+n2]≤2+k : n1 + suc n2 ≤ suc (suc k)
n1+[1+n2]≤2+k rewrite +-suc n1 n2 = ≤-step (s≤s n1+n2≤k)
... | dv , ↓dv , dvv = dv , dlett ρ1⊢t1↓[j]v1 ↓dsv ↓dv , rrelV3-mono (suc k ∸ (n1 + n2)) (suc (suc k) ∸ n1 ∸ n2) 1+k-[n1+n2]≤2+k-n1-n2 _ v1 dv v2 dvv
where
1+k-[n1+n2]≤2+k-n1-n2 : suc k ∸ (n1 + n2) ≤ suc (suc k) ∸ n1 ∸ n2
1+k-[n1+n2]≤2+k-n1-n2 rewrite ∸-+-assoc (suc (suc k)) n1 n2 = ∸-mono {suc k} {suc (suc k)} {n1 + n2} {n1 + n2} (≤-step ≤-refl) ≤-refl
| {
"alphanum_fraction": 0.6127915452,
"avg_line_length": 60.9777777778,
"ext": "agda",
"hexsha": "f8b7293a741a17ad6b70a12e46d71819c1bec132",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/FundamentalProperty.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/FundamentalProperty.agda",
"max_line_length": 248,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/FundamentalProperty.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2963,
"size": 5488
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by decidable total orders
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Properties.DecTotalOrder
{d₁ d₂ d₃} (DT : DecTotalOrder d₁ d₂ d₃) where
open Relation.Binary.DecTotalOrder DT hiding (trans)
import Relation.Binary.NonStrictToStrict as Conv
open Conv _≈_ _≤_
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = record
{ isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = trans isPartialOrder
; compare = trichotomous Eq.sym _≟_ antisym total
; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈
}
}
open StrictTotalOrder strictTotalOrder public
| {
"alphanum_fraction": 0.5888625592,
"avg_line_length": 31.2592592593,
"ext": "agda",
"hexsha": "13673c0bc6b9373c21d5ec83857c0e2c6be4350d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 193,
"size": 844
} |
open import IO
main = run (putStr "Hacktoberfest")
| {
"alphanum_fraction": 0.7307692308,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "8b76003155c6355617a2a047262424f9c30e1756",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2021-10-02T05:07:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-01T15:13:01.000Z",
"max_forks_repo_head_hexsha": "3227a8a458fc7fd3618106ad054f7f3be62d0513",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "5R33CH4/lango",
"max_forks_repo_path": "agda.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "3227a8a458fc7fd3618106ad054f7f3be62d0513",
"max_issues_repo_issues_event_max_datetime": "2021-10-02T05:38:00.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-02T01:30:09.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "5R33CH4/lango",
"max_issues_repo_path": "agda.agda",
"max_line_length": 35,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "3227a8a458fc7fd3618106ad054f7f3be62d0513",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "5R33CH4/lango",
"max_stars_repo_path": "agda.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-03T09:18:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-02T05:34:09.000Z",
"num_tokens": 15,
"size": 52
} |
{-# OPTIONS --show-implicit --show-irrelevant #-}
-- {-# OPTIONS -v tc.conv.irr:20 -v tc.constr.findInScope:20 -v tc.meta:20 -v tc.conv.type:50 -v tc.conv.term:30 -v tc.conv.atom:50 -v tc.inj.use:20 #-}
module Issue631 where
import Common.Level -- for debug messages
data Bool : Set where
false true : Bool
F : Bool → Set
F true = Bool
F false = Bool
postulate
BAD : ∀ {u} → F u
Goal : Set
score : .Goal → Set
buggy : Set
buggy = score _ -- {!!}
-- should remain unsolved
| {
"alphanum_fraction": 0.6395112016,
"avg_line_length": 22.3181818182,
"ext": "agda",
"hexsha": "526677ea2b52e1cba02866e0a10bce505207c3c4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue631.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue631.agda",
"max_line_length": 152,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue631.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 162,
"size": 491
} |
{-# OPTIONS --cubical --safe #-}
module Data.Vec where
open import Prelude
private
variable
n m : ℕ
infixr 5 _∷_
data Vec (A : Type a) : ℕ → Type a where
[] : Vec A zero
_∷_ : A → Vec A n → Vec A (suc n)
head : Vec A (suc n) → A
head (x ∷ _) = x
foldr : (A → B → B) → B → Vec A n → B
foldr f b [] = b
foldr f b (x ∷ xs) = f x (foldr f b xs)
| {
"alphanum_fraction": 0.5378151261,
"avg_line_length": 16.2272727273,
"ext": "agda",
"hexsha": "9b122c143bc9f7f7dbf38de1794d280dffb05b5f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Vec.agda",
"max_line_length": 40,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 148,
"size": 357
} |
module GUIgeneric.GUIFeaturesPart3 where
open import GUIgeneric.Prelude renaming (addButton to addButton')
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton')
open import GUIgeneric.GUIFeatures
open import GUIgeneric.GUIFeaturesPart2 hiding ( main )
open import GUIgeneric.GUIExample hiding (main )
open import Data.Product
open import Data.Fin
liftResultˢ : (S S' : Set) (s2GUI : (s : S') → Frame)
(ss' : S → S')
(s : S)
(m : methodsG (s2GUI (ss' s)))
(r : Resultˢ (handlerGUIInterfₛ S (s2GUI ∘ ss')) s m)
→ Resultˢ (handlerGUIInterfₛ S' s2GUI) (ss' s) m
liftResultˢ S S' s2GUI ss' s m noChange = noChange
liftResultˢ S S' s2GUI ss' s m (changedState snew) = changedState (ss' snew)
extendHandlerGuiInterfₛ : (i : Size)
(S S' : Set) (s2GUI : (s : S') → Frame)
(ss' : S → S')
(s : S)
(obj : handlerGUIObjectₛ i S (s2GUI ∘ ss') s)
→ handlerGUIObjectₛ i S' s2GUI (ss' s)
method (extendHandlerGuiInterfₛ i S S' s2GUI ss' s obj) m =
x >>= (λ r → return (liftResultˢ S S' s2GUI ss' s m r))
where
x : IO GuiLev1Interface ∞ (Resultˢ (handlerGUIInterfₛ S (s2GUI ∘ ss')) s m)
x = method obj m
lift⊎3 : {A B C : Set} → A ⊎ B → A ⊎ B ⊎ C
lift⊎3 (inj₁ x) = inj₁ x
lift⊎3 (inj₂ y) = inj₂ (inj₁ y)
mapReturnTypeₛ : {A B : Set}(f : A → B) (a : ReturnTypeₛ A) → ReturnTypeₛ B
mapReturnTypeₛ f noChange = noChange
mapReturnTypeₛ f (changedState snew) = changedState (f snew)
mapStateMachineHandl : {S S' : Set}(f : S → S')
(p : IO GuiLev1Interface ∞ (ReturnTypeₛ S))
→ IO GuiLev1Interface ∞ (ReturnTypeₛ S')
mapStateMachineHandl f p = mapIO (mapReturnTypeₛ f) p
mapSMachineState : {S S' : Set}(f : S → S')(s : S)(sm : SMachineState S s)
→ SMachineState S' (f s)
mapSMachineState f s sm .fSM = sm .fSM
mapSMachineState f s sm .propSM = sm .propSM
mapSMachineState f s sm .handlSM m = mapStateMachineHandl f (sm .handlSM m)
mapFMachineHandle : {A B C : Set}
(a : A ⊎ B)(sm : SMachineState (A ⊎ B) a)
→ SMachineState (A ⊎ B ⊎ C) (lift⊎3 a)
mapFMachineHandle a sm = mapSMachineState lift⊎3 a sm
mapIOFeatureM : {A B C : Set}
→ IO GuiLev1Interface ∞ (ReturnTypeₛ (A ⊎ B))
→ IO GuiLev1Interface ∞ (ReturnTypeₛ (A ⊎ B ⊎ C))
mapIOFeatureM p = mapIO (mapReturnTypeₛ lift⊎3) p
Cancel : FMachine StateV → FMachine StateV
Cancel vm .Features = vm .Features × FeatureCancel
Cancel vm .AddStateF = vm .AddStateF ⊎ ⊤
Cancel vm .GUIF (f , yesCancel) (inj₁ s1) =
addBtn2StateMachine (mapFMachineHandle (inj₁ s1) (vm .GUIF f (inj₁ s1)))
"Cancel" ((inj₂ (inj₂ _)))
Cancel vm .GUIF (f , _) (inj₁ s) = mapFMachineHandle (inj₁ s) (vm .GUIF f (inj₁ s))
Cancel vm .GUIF (f , _) (inj₂ (inj₁ x)) = mapFMachineHandle (inj₂ x) (vm .GUIF f (inj₂ x))
Cancel vm .GUIF (f , _) (inj₂ (inj₂ _)) = simpleSMState "Intermediate" (inj₁ s0)
Tea : FMachine StateV → FMachine StateV
Tea vm .Features = vm .Features × FeatureTea
Tea vm .AddStateF = vm .AddStateF ⊎ ⊤
Tea vm .GUIF (f , yeTea) (inj₁ s2) =
addBtn2StateMachine (mapFMachineHandle (inj₁ s2) (vm .GUIF f (inj₁ s2)))
"Tea" ((inj₂ (inj₂ _)))
Tea vm .GUIF (f , _) (inj₁ s) = mapFMachineHandle (inj₁ s) (vm .GUIF f (inj₁ s))
Tea vm .GUIF (f , _) (inj₂ (inj₁ x)) = mapFMachineHandle (inj₂ x) (vm .GUIF f (inj₂ x))
Tea vm .GUIF (f , _) (inj₂ (inj₂ _)) = simpleSMState "Get Your Tea" (inj₁ s0)
cancelBase : FMachine StateV
cancelBase = Cancel baseF
teaCancelBase : FMachine StateV
teaCancelBase = Tea cancelBase
main : NativeIO Unit
main = compileFeatureVM teaCancelBase ((_ , yesCancel) , yesTea) (inj₁ s0) --
| {
"alphanum_fraction": 0.6070467335,
"avg_line_length": 40.87,
"ext": "agda",
"hexsha": "bd69d5069bf69cc5b489b0ded0a6ed5adde2143c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIFeaturesPart3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIFeaturesPart3.agda",
"max_line_length": 98,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIFeaturesPart3.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 1411,
"size": 4087
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by strict partial orders
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.StrictTotalOrder
{s₁ s₂ s₃} (STO : StrictTotalOrder s₁ s₂ s₃)
where
open Relation.Binary.StrictTotalOrder STO
open import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_
import Relation.Binary.Properties.StrictPartialOrder as SPO
open import Relation.Binary.Consequences
------------------------------------------------------------------------
-- Strict total orders can be converted to decidable total orders
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ isDecTotalOrder = isDecTotalOrder isStrictTotalOrder
}
open DecTotalOrder decTotalOrder public
| {
"alphanum_fraction": 0.6006528836,
"avg_line_length": 31.6896551724,
"ext": "agda",
"hexsha": "7785c5ec6ad4051d3ff55cba0f83b04986be960c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictTotalOrder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 171,
"size": 919
} |
module parse-tree where
open import lib
record ParseTreeRec : Set lone where
field
ParseTreeT : Set
isParseTree : ParseTreeT → 𝕃 char → string → Set
ParseTreeToString : ParseTreeT → string
| {
"alphanum_fraction": 0.7268292683,
"avg_line_length": 20.5,
"ext": "agda",
"hexsha": "723c93f8242128a2f040d53b608c98cd92d7a0e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/parse-tree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/parse-tree.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/parse-tree.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 57,
"size": 205
} |
module List where
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y
boolElim : (P : Bool -> Set) -> P true -> P false -> (b : Bool) -> P b
boolElim P t f true = t
boolElim P t f false = f
data False : Set where
data True : Set where
tt : True
data Or (A B : Set) : Set where
inl : (a : A) -> Or A B
inr : (b : B) -> Or A B
orElim : {A B : Set}
-> (C : Or A B -> Set)
-> (cl : (a : A) -> C(inl a))
-> (cr : (b : B) -> C(inr b))
-> (ab : Or A B)
-> C ab
orElim {A} {B} C cl cr (inl a) = cl a
orElim {A} {B} C cl cr (inr b) = cr b
data Rel(A : Set) : Set1 where
rel : (A -> A -> Set) -> Rel A
_is_than_ : {A : Set} -> A -> Rel A -> A -> Set
x is rel f than y = f x y
data Acc {A : Set} (less : Rel A) (x : A) : Set where
acc : ((y : A) -> y is less than x -> Acc less y) -> Acc less x
data WO {A : Set} (less : Rel A) : Set where
wo : ((x : A) -> Acc less x) -> WO less
data Nat : Set where
Z : Nat
S : Nat -> Nat
eqNat : Nat -> Nat -> Set
eqNat Z Z = True
eqNat (S m) (S n) = eqNat m n
eqNat _ _ = False
substEqNat : (P : Nat -> Set) -> (a b : Nat) -> (e : eqNat a b) -> (P a) -> P b
substEqNat P Z Z e pa = pa
substEqNat P (S x) (S x') e pa = substEqNat (\n -> P(S n)) x x' e pa
ltNat : Nat -> Nat -> Set
ltNat Z Z = False
ltNat Z (S n) = True
ltNat (S m) (S n) = ltNat m n
ltNat (S m) Z = False
ltZ-elim : (n : Nat) -> ltNat n Z -> {whatever : Set} -> whatever
ltZ-elim Z ()
ltZ-elim (S _) ()
transNat : (x y z : Nat) -> ltNat x y -> ltNat y z -> ltNat x z
transNat x y Z x<y y<z = ltZ-elim y y<z
transNat x Z (S z) x<Z Z<Sz = ltZ-elim x x<Z
transNat Z (S y) (S z) tt y<z = tt
transNat (S x) (S y) (S z) x<y y<z = transNat x y z x<y y<z
ltNat-S-Lemma : (x : Nat) -> ltNat x (S x)
ltNat-S-Lemma Z = tt
ltNat-S-Lemma (S x) = ltNat-S-Lemma x
ltNat-S-Lemma2 : (y z : Nat) -> ltNat y (S z) -> Or (eqNat z y) (ltNat y z)
ltNat-S-Lemma2 Z Z h = inl tt
ltNat-S-Lemma2 Z (S x) h = inr tt
ltNat-S-Lemma2 (S x) (S x') h = ltNat-S-Lemma2 x x' h
ltNatRel : Rel Nat
ltNatRel = rel ltNat
less = ltNatRel
acc-Lemma1 : (x y : Nat) -> Acc less x -> eqNat x y -> Acc less y
acc-Lemma1 x y a e = substEqNat (Acc less ) x y e a
acc-Lemma2 : (x y : Nat) -> Acc less x -> ltNat y x -> Acc less y
acc-Lemma2 x y (acc h) l = h y l
-- postulate woltNat' : (n : Nat) -> Acc less n
woltNat' : (n : Nat) -> Acc less n
woltNat' Z = acc (\y y<Z -> ltZ-elim y y<Z)
woltNat' (S x) = acc (\y y<Sx -> orElim (\w -> Acc less y) (\e -> substEqNat (Acc less ) x y e (woltNat' x ) ) (acc-Lemma2 x y (woltNat' x)) (ltNat-S-Lemma2 y x y<Sx ))
woltNat : WO ltNatRel
woltNat = wo woltNat'
postulate le : Nat -> Nat -> Bool
postulate gt : Nat -> Nat -> Bool
data List (A : Set) : Set where
nil : List A
cons : (x : A) -> (xs : List A) -> List A
_++_ : {A : Set} -> List A -> List A -> List A
nil ++ ys = ys
(cons x xs) ++ ys = cons x (xs ++ ys)
length : {A : Set} -> List A -> Nat
length nil = Z
length (cons x xs) = S (length xs)
filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p nil = nil
filter p (cons x xs) = if p x then cons x rest else rest
where rest = filter p xs
filterLemma
: {A : Set} -> (p : A -> Bool) -> (xs : List A)
-> length (filter p xs) is less than S (length xs)
filterLemma p nil = tt
filterLemma p (cons x xs) =
boolElim (\px -> length (if px then cons x (filter p xs)
else (filter p xs))
is less than S (S (length xs)))
(filterLemma p xs)
(transNat (length (filter p xs)) (S (length xs)) (S (S (length xs)))
(filterLemma p xs) (ltNat-S-Lemma (length xs )))
(p x)
qs : List Nat -> List Nat
qs nil = nil
qs (cons x xs) = qs (filter (le x) xs)
++ cons x nil
++ qs (filter (gt x) xs)
data Measure : Set1 where
μ : {M : Set} -> {rel : Rel M} -> (ord : WO rel) -> Measure
down1-measure : Measure
down1-measure = μ woltNat
qs-2-1-hint = \(x : Nat) -> \(xs : List Nat) -> filterLemma (le x) xs
qs-2-2-hint = \(x : Nat) -> \(xs : List Nat) -> filterLemma (gt x) xs
| {
"alphanum_fraction": 0.5255781359,
"avg_line_length": 28.9256756757,
"ext": "agda",
"hexsha": "ccbe545b191eed0d457cbf80f0c6550f50ca6c4c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Termination/List.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Termination/List.agda",
"max_line_length": 171,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/Termination/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1659,
"size": 4281
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Inductive directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Permutation.Inductive where
open import Data.List.Relation.Binary.Permutation.Inductive public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Permutation.Inductive was deprecated in v1.0.
Use Data.List.Relation.Binary.Permutation.Inductive instead."
#-}
| {
"alphanum_fraction": 0.5892255892,
"avg_line_length": 33,
"ext": "agda",
"hexsha": "353c955e693cf343801e0234a6cb7f1e94ed9da0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 113,
"size": 594
} |
------------------------------------------------------------------------
-- A variant of the development in "Internalizing Representation
-- Independence with Univalence" (by Angiuli, Cavallo, Mörtberg and
-- Zeuner) with support for erasure
------------------------------------------------------------------------
-- This development follows parts of "Internalizing Representation
-- Independence with Univalence" (and sometimes the code supporting
-- that paper) fairly closely, but with explicit support for erasure,
-- and there are some other differences. Note that some things
-- discussed in the paper are not included, for instance tactics and
-- most examples.
-- This formalisation was started because an anonymous reviewer asked
-- whether something like this could be done, and when I had made some
-- initial experiments Andrea Vezzosi encouraged me to include more in
-- the formalisation.
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Structure-identity-principle.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as B using (_↔_)
open import Equality.Decidable-UIP equality-with-J
open import Equality.Path.Isomorphisms eq
import Equality.Path.Isomorphisms.Univalence eq as U
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Erased.Cubical eq as EEq
using (_≃ᴱ_; Is-equivalenceᴱ)
open import Equivalence.Erased.Contractible-preimages.Cubical eq as ECP
using (Contractibleᴱ)
open import Equivalence-relation equality-with-J
open import Erased.Cubical eq as Er hiding (map; map-id)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional.Erased eq as T
using (∥_∥ᴱ; ∣_∣)
import List equality-with-J as L
import Maybe equality-with-J as Maybe
import Monad equality-with-J as Monad
import Nat equality-with-J as Nat
open import Quotient.Erased eq as Q using (_/ᴱ_; [_])
open import Univalence-axiom equality-with-J
open import
Nat.Binary equality-with-J instance-of-[]-cong-axiomatisation
as Bin using (Bin)
private
variable
a b c d e r : Level
C : Type c
A A₁ A₂ B B₁ B₂ Ax F f G g M m N P R R₁ R₂ S
x x′ x₁ x₂ y y′ ys z z₁ z₂ : C
------------------------------------------------------------------------
-- The structure identity principle
-- Structures.
Structure : (a b : Level) → Type (lsuc (a ⊔ b))
Structure a b = Type a → Type b
-- Types with a given structure.
Type-with : Structure a b → Type (lsuc a ⊔ b)
Type-with {a = a} F = ∃ λ (A : Type a) → F A
-- Axioms.
--
-- Originally I made the argument of type Type-with F erased. After
-- feedback from Andrea Vezzosi I instead added a use of Erased in
-- _With-the-axioms_ below.
Axioms : Structure a b → (c : Level) → Type (lsuc a ⊔ b ⊔ lsuc c)
Axioms F c = Type-with F → Type c
-- One can add axioms to structures.
_With-the-axioms_ :
(F : Structure a b) → Axioms F c → Structure a (b ⊔ c)
(F With-the-axioms Ax) A = ∃ λ (x : F A) → Erased (Ax (A , x))
-- A type of predicates defining when a given equivalence (with erased
-- proofs) is structure-preserving.
Structure-preserving-equivalence-predicate :
Structure a b → (c : Level) → Type (lsuc a ⊔ b ⊔ lsuc c)
Structure-preserving-equivalence-predicate F c =
(A B : Type-with F) → proj₁ A ≃ᴱ proj₁ B → Type c
-- One can lift a "structure-preserving equivalence predicate" from F
-- to F With-the-axioms Ax.
Lift-With-the-axioms :
Structure-preserving-equivalence-predicate F c →
Structure-preserving-equivalence-predicate (F With-the-axioms Ax) c
Lift-With-the-axioms P (A , x , _) (B , y , _) = P (A , x) (B , y)
-- Structure-preserving equivalences (with erased proofs).
infix 4 _≃[_]ᴱ_
_≃[_]ᴱ_ :
{F : Structure a b} →
Type-with F → @0 Structure-preserving-equivalence-predicate F c →
Type-with F →
Type (a ⊔ c)
A ≃[ P ]ᴱ B = ∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → Erased (P A B eq)
-- Univalent pairs of structures and predicates.
record Univalent
(@0 F : Structure a b)
(@0 P : Structure-preserving-equivalence-predicate F c) :
Type (lsuc a ⊔ b ⊔ c) where
field
-- This field is erased because it uses univalence and EEq.≃ᴱ→≃.
@0 univalent :
{A B : Type-with F}
(eq : proj₁ A ≃ᴱ proj₁ B) →
P A B eq ≃
(subst F (≃⇒≡ U.abstract-univ (EEq.≃ᴱ→≃ eq)) (proj₂ A) ≡ proj₂ B)
-- If Ax is pointwise propositional, then the functions
-- _With-the-axioms Ax and Lift-With-the-axioms preserve
-- Univalent univ.
--
-- This is a variant of Lemma 3.3 from "Internalizing Representation
-- Independence with Univalence".
Univalent-With-the-axioms :
{@0 P : Structure-preserving-equivalence-predicate F c} →
@0 (∀ A → Is-proposition (Ax A)) →
Univalent F P →
Univalent (F With-the-axioms Ax) (Lift-With-the-axioms P)
Univalent-With-the-axioms
{F = F} {Ax = Ax} {P = P} prop u .Univalent.univalent
{A = A₁ , x₁ , ax₁} {B = A₂ , x₂ , ax₂} eq =
P (A₁ , x₁) (A₂ , x₂) eq ↝⟨ u .Univalent.univalent eq ⟩
subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ ≡ x₂ ↔⟨ ignore-propositional-component (H-level-Erased 1 (prop _)) ⟩
(subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ , _) ≡ (x₂ , ax₂) ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-pair _ _ ⟩□
subst (F With-the-axioms Ax) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (x₁ , ax₁) ≡
(x₂ , ax₂) □
where
univ = U.abstract-univ
-- The structure identity principle.
--
-- This is a variant of Theorem 3.1 from "Internalizing Representation
-- Independence with Univalence". Note that the principle is erased.
@0 sip :
Univalent F P →
(A ≃[ P ]ᴱ B) ≃ (A ≡ B)
sip {F = F} {P = P} {A = A} {B = B} u =
(A ≃[ P ]ᴱ B) ↔⟨⟩
(∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → Erased (P A B eq)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ (eq : proj₁ A ≃ᴱ proj₁ B) → P A B eq) ↝⟨ Σ-cong
(inverse $ EEq.≃≃≃ᴱ F.∘ ≡≃≃ U.abstract-univ)
(u .Univalent.univalent) ⟩
(∃ λ (eq : proj₁ A ≡ proj₁ B) → subst F eq (proj₂ A) ≡ proj₂ B) ↔⟨ B.Σ-≡,≡↔≡ ⟩□
(A ≡ B) □
-- If there is a structure-preserving equivalence (for a univalent
-- pair of a structure and a predicate) between two types with
-- structures, where one side satisfies some axioms, then the other
-- side also satisfies the axioms (in erased contexts), and the
-- resulting triple is equivalent (with erased proofs) to the other
-- one.
--
-- This is a variant of Corollary 3.4 from "Internalizing
-- Representation Independence with Univalence".
induced-structures :
{@0 P : Structure-preserving-equivalence-predicate F c} →
@0 Univalent F P →
(X@(A , x , _) : Type-with (F With-the-axioms Ax)) →
((B , y) : Type-with F) →
(A , x) ≃[ P ]ᴱ (B , y) →
∃ λ (ax : Erased (Ax (B , y))) →
X ≃[ Lift-With-the-axioms P ]ᴱ (B , y , ax)
induced-structures {Ax = Ax} u (A , x , ax) (B , y) eq =
Er.map (subst Ax (_≃_.to (sip u) eq)) ax
, eq
------------------------------------------------------------------------
-- Some binary relation combinators, along with some properties
-- The converse of a binary relation.
infix 10 _⁻¹
_⁻¹ : (A → B → Type c) → (B → A → Type c)
(R ⁻¹) x y = R y x
-- Propositionally truncated composition of two binary relations (the
-- definition uses ∥_∥ᴱ).
infixr 9 _;ᴱ_
_;ᴱ_ :
{B : Type b} →
(A → B → Type d) → (B → C → Type e) → A → C → Type (b ⊔ d ⊔ e)
(R ;ᴱ S) x z = ∥ (∃ λ y → R x y × S y z) ∥ᴱ
-- Two ways to compose a relation and its converse.
infix 10 _⟵ _⟶
_⟵ : {B : Type b} → (A → B → Type c) → A → A → Type (b ⊔ c)
R ⟵ = R ;ᴱ R ⁻¹
_⟶ : {A : Type a} → (A → B → Type c) → B → B → Type (a ⊔ c)
R ⟶ = R ⁻¹ ;ᴱ R
-- If R is a propositional equivalence relation targetting a certain
-- universe, then R ⟵ is pointwise logically equivalent (with erased
-- proofs) to R.
⟵≃ᴱ :
{A : Type a}
{R : A → A → Type a} →
@0 (∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
∀ {x y} → (R ⟵) x y ≃ᴱ R x y
⟵≃ᴱ prop equiv =
EEq.⇔→≃ᴱ
T.truncation-is-proposition
(prop _ _)
(T.rec λ where
.T.truncation-is-propositionʳ → prop _ _
.T.∣∣ʳ (_ , Rxy , Rzy) →
E.transitive Rxy (E.symmetric Rzy))
(λ Rxz → ∣ _ , Rxz , E.reflexive ∣)
where
module E = Is-equivalence-relation equiv
-- If R is a propositional equivalence relation targetting a certain
-- universe, then R ⟶ is pointwise logically equivalent (with erased
-- proofs) to R.
⟶≃ᴱ :
{A : Type a}
{R : A → A → Type a} →
@0 (∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
∀ {x y} → (R ⟶) x y ≃ᴱ R x y
⟶≃ᴱ prop equiv =
EEq.⇔→≃ᴱ
T.truncation-is-proposition
(prop _ _)
(T.rec λ where
.T.truncation-is-propositionʳ → prop _ _
.T.∣∣ʳ (_ , Ryx , Ryz) →
E.transitive (E.symmetric Ryx) Ryz)
(λ Rzx →
∣ _ , E.symmetric Rzx , E.reflexive ∣)
where
module E = Is-equivalence-relation equiv
-- If R is a propositional equivalence relation targetting a certain
-- universe, then R ⟵ is equal to R (in erased contexts).
@0 ⟵≡ :
{A : Type a}
{R : A → A → Type a} →
(∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
R ⟵ ≡ R
⟵≡ prop equiv =
⟨ext⟩ λ _ → ⟨ext⟩ λ _ →
≃⇒≡ U.univ $
EEq.≃ᴱ→≃ $
⟵≃ᴱ prop equiv
-- If R is a propositional equivalence relation targetting a certain
-- universe, then R ⟶ is equal to R (in erased contexts).
@0 ⟶≡ :
{A : Type a}
{R : A → A → Type a} →
(∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
R ⟶ ≡ R
⟶≡ prop equiv =
⟨ext⟩ λ _ → ⟨ext⟩ λ _ →
≃⇒≡ U.univ $
EEq.≃ᴱ→≃ $
⟶≃ᴱ prop equiv
-- The graph of a function.
Graph : {A : Type a} {B : Type b} → (A → B) → A → B → Type b
Graph f x y = f x ≡ y
-- If R is a propositional equivalence relation targetting a certain
-- universe, then Graph (Q.[_] {R = R}) ⟵ is equal to R (in erased
-- contexts).
@0 Graph-[]-⟵≡ :
{A : Type a}
{R : A → A → Type a} →
(∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
Graph (Q.[_] {R = R}) ⟵ ≡ R
Graph-[]-⟵≡ {R = R} prop equiv =
⟨ext⟩ λ x → ⟨ext⟩ λ y →
let
lemma =
Eq.⇔→≃
T.truncation-is-proposition
Q./ᴱ-is-set
(T.rec λ @0 where
.T.truncation-is-propositionʳ → Q./ᴱ-is-set
.T.∣∣ʳ (_ , [x]≡z , [y]≡z) → trans [x]≡z (sym [y]≡z))
(λ [x]≡[y] → ∣ _ , [x]≡[y] , refl _ ∣)
in
≃⇒≡ U.univ
((Graph [_] ⟵) x y ↝⟨ lemma ⟩
[ x ] ≡ [ y ] ↔⟨ inverse $ Q.related≃[equal] equiv (prop _ _) ⟩□
R x y □)
-- If R is a propositional equivalence relation, then
-- R ;ᴱ Graph ([_] {R = R}) is equal to Graph ([_] {R = R}) (in erased
-- contexts).
@0 ;ᴱ-Graph-[]≡Graph-[] :
{A : Type a}
{R : A → A → Type r} →
(∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
R ;ᴱ Graph ([_] {R = R}) ≡ Graph ([_] {R = R})
;ᴱ-Graph-[]≡Graph-[] {R = R} prop equiv =
⟨ext⟩ λ x → ⟨ext⟩ λ y →
≃⇒≡ U.univ $
flip
(Q.elim-prop
{P = λ y → (R ;ᴱ Graph ([_] {R = R})) x y ≃
Graph ([_] {R = R}) x y})
y
λ @0 where
.Q.is-propositionʳ _ →
Eq.left-closure ext 0 $
T.truncation-is-proposition
.Q.[]ʳ y →
Eq.⇔→≃
T.truncation-is-proposition
Q./ᴱ-is-set
(T.rec λ @0 where
.T.Rec.truncation-is-propositionʳ →
Q./ᴱ-is-set
.T.Rec.∣∣ʳ (z , Rxz , [z]≡[y]) →
[ x ] ≡⟨ Q.[]-respects-relation Rxz ⟩
[ z ] ≡⟨ [z]≡[y] ⟩∎
[ y ] ∎)
([ x ] ≡ [ y ] ↔⟨ inverse $ Q.related≃[equal] equiv (prop _ _) ⟩
R x y ↝⟨ (λ Rxy → ∣ _ , Rxy , refl _ ∣) ⟩
(R ;ᴱ Graph [_]) x [ y ] □)
------------------------------------------------------------------------
-- Quasi-equivalence relations
-- Quasi-PERs, or zigzag-complete relations (following Krishnaswami
-- and Dreyer, see "Internalizing Relational Parametricity in the
-- Extensional Calculus of Constructions").
--
-- Angiuli et al. only define what it means to be a quasi-PER for
-- propositional relations. The following definition applies to
-- arbitrary relations.
Is-QPER :
{A : Type a} {B : Type b} →
(A → B → Type c) → Type (a ⊔ b ⊔ c)
Is-QPER R =
∀ {x x′ y y′} →
R x y → R x′ y → R x′ y′ → R x y′
-- Quasi-equivalence relations (QERs), defined using ∥_∥ᴱ instead of
-- ∥_∥.
Is-QER :
{A : Type a} {B : Type b} →
(A → B → Type c) → Type (a ⊔ b ⊔ c)
Is-QER R =
Is-QPER R ×
(∀ x → ∥ ∃ (λ y → R x y) ∥ᴱ) ×
(∀ y → ∥ ∃ (λ x → R x y) ∥ᴱ)
-- Quasi-equivalence relations (QERs), defined using ∥_∥ᴱ instead of
-- ∥_∥, and with some parts erased.
Is-QERᴱ :
{A : Type a} {B : Type b} →
@0 (A → B → Type c) → Type (a ⊔ b ⊔ c)
Is-QERᴱ R =
Erased (Is-QPER R) ×
(∀ x → ∥ ∃ (λ y → Erased (R x y)) ∥ᴱ) ×
(∀ y → ∥ ∃ (λ x → Erased (R x y)) ∥ᴱ)
-- Is-QERᴱ can be expressed using Is-QER and Erased.
Is-QERᴱ≃Is-QER-Erased :
{@0 R : A → B → Type r} →
Is-QERᴱ R ≃ Is-QER (λ x y → Erased (R x y))
Is-QERᴱ≃Is-QER-Erased {A = A} {B = B} {R = R} = ×-cong₁ λ _ →
Erased (∀ {x x′ y y′} → R x y → R x′ y → R x′ y′ → R x y′) ↝⟨ Erased-cong lemma ⟩
Erased (∀ x x′ y y′ → R x y → R x′ y → R x′ y′ → R x y′) ↔⟨ (∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
Erased-Π↔Π) F.∘
Erased-Π↔Π) F.∘
Erased-Π↔Π) F.∘
Erased-Π↔Π ⟩
(∀ x x′ y y′ → Erased (R x y → R x′ y → R x′ y′ → R x y′)) ↔⟨ (∀-cong ext λ _ →
∀-cong ext λ _ →
∀-cong ext λ _ →
∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
Erased-Π↔Π-Erased) F.∘
Erased-Π↔Π-Erased) F.∘
Erased-Π↔Π-Erased) ⟩
(∀ x x′ y y′ →
Erased (R x y) → Erased (R x′ y) →
Erased (R x′ y′) → Erased (R x y′)) ↝⟨ inverse lemma ⟩□
(∀ {x x′ y y′} →
Erased (R x y) → Erased (R x′ y) →
Erased (R x′ y′) → Erased (R x y′)) □
where
lemma :
{P : A → A → B → B → Type r} →
(∀ {x x′ y y′} → P x x′ y y′) ≃
(∀ x x′ y y′ → P x x′ y y′)
lemma = Eq.↔⇒≃ $
(∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
B.implicit-Π↔Π) F.∘
B.implicit-Π↔Π) F.∘
B.implicit-Π↔Π) F.∘
B.implicit-Π↔Π
-- Is-QER R implies Is-QERᴱ R.
Is-QER→Is-QERᴱ : Is-QER R → Is-QERᴱ R
Is-QER→Is-QERᴱ =
[_]→
×-cong
(∀-cong _ λ x →
T.∥∥ᴱ-map $ ∃-cong λ _ → [_]→)
×-cong
(∀-cong _ λ x →
T.∥∥ᴱ-map $ ∃-cong λ _ → [_]→)
-- In erased contexts Is-QER R is equivalent to Is-QERᴱ R.
@0 Is-QER≃Is-QERᴱ : Is-QER R ≃ Is-QERᴱ R
Is-QER≃Is-QERᴱ = Eq.↔⇒≃ $ inverse $
Erased↔ .erased
×-cong
(∀-cong ext λ x →
T.∥∥ᴱ-cong $ ∃-cong λ _ → Erased↔ .erased)
×-cong
(∀-cong ext λ x →
T.∥∥ᴱ-cong $ ∃-cong λ _ → Erased↔ .erased)
-- The forward direction of Is-QER≃Is-QERᴱ {R = R} is definitionally
-- equal to Is-QER→Is-QERᴱ.
_ : _≃_.to (Is-QER≃Is-QERᴱ {R = R}) ≡ Is-QER→Is-QERᴱ
_ = refl _
-- If Is-QER R holds, then R ⟵ is an equivalence relation.
Is-QER→Is-equivalence-relation-⟵ :
Is-QER R →
Is-equivalence-relation (R ⟵)
Is-QER→Is-equivalence-relation-⟵ (qper , lr , rl) = λ where
.Is-equivalence-relation.reflexive {x = x} →
T.∥∥ᴱ-map (λ (y , Rxy) → y , Rxy , Rxy) (lr x)
.Is-equivalence-relation.symmetric →
T.∥∥ᴱ-map (Σ-map id swap)
.Is-equivalence-relation.transitive →
T.rec λ where
.T.truncation-is-propositionʳ →
Π-closure ext 1 λ _ →
T.truncation-is-proposition
.T.∣∣ʳ (_ , Rx₁y₁ , Rx₂y₁) → T.∥∥ᴱ-map
λ (_ , Rx₂y₂ , Rx₃y₂) →
_ , qper Rx₁y₁ Rx₂y₁ Rx₂y₂ , Rx₃y₂
-- If Is-QERᴱ R holds, then R ⟵ is an equivalence relation (in erased
-- contexts).
@0 Is-QERᴱ→Is-equivalence-relation-⟵ :
Is-QERᴱ R →
Is-equivalence-relation (R ⟵)
Is-QERᴱ→Is-equivalence-relation-⟵ {R = R} =
Is-QERᴱ R ↔⟨ inverse Is-QER≃Is-QERᴱ ⟩
Is-QER R ↝⟨ Is-QER→Is-equivalence-relation-⟵ ⟩□
Is-equivalence-relation (R ⟵) □
-- If Is-QER R holds, then R ⟶ is an equivalence relation.
Is-QER→Is-equivalence-relation-⟶ :
Is-QER R →
Is-equivalence-relation (R ⟶)
Is-QER→Is-equivalence-relation-⟶ (qper , lr , rl) = λ where
.Is-equivalence-relation.reflexive {x = y} →
T.∥∥ᴱ-map (λ (x , Rxy) → x , Rxy , Rxy) (rl y)
.Is-equivalence-relation.symmetric →
T.∥∥ᴱ-map (Σ-map id swap)
.Is-equivalence-relation.transitive →
T.rec λ where
.T.truncation-is-propositionʳ →
Π-closure ext 1 λ _ →
T.truncation-is-proposition
.T.∣∣ʳ (_ , Rx₁y₁ , Rx₁y₂) → T.∥∥ᴱ-map
λ (_ , Rx₂y₂ , Rx₂y₃) →
_ , qper Rx₂y₂ Rx₁y₂ Rx₁y₁ , Rx₂y₃
-- If Is-QERᴱ R holds, then R ⟶ is an equivalence relation (in erased
-- contexts).
@0 Is-QERᴱ→Is-equivalence-relation-⟶ :
Is-QERᴱ R →
Is-equivalence-relation (R ⟶)
Is-QERᴱ→Is-equivalence-relation-⟶ {R = R} =
Is-QERᴱ R ↔⟨ inverse Is-QER≃Is-QERᴱ ⟩
Is-QER R ↝⟨ Is-QER→Is-equivalence-relation-⟶ ⟩□
Is-equivalence-relation (R ⟶) □
-- A propositional QER R can be turned into an equivalence (with
-- erased proofs) satisfying a certain (partly erased) condition.
--
-- This is a variant of Lemma 5.4 from "Internalizing Representation
-- Independence with Univalence".
/ᴱ⟵≃ᴱ/ᴱ⟶ :
Is-QER R →
@0 (∀ x y → Is-proposition (R x y)) →
∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) →
∀ x y →
∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → R x y) →
Erased (Is-equivalence f)
/ᴱ⟵≃ᴱ/ᴱ⟶ {A = A} {B = B} {R = R} qer@(qper , lr , rl) prop =
EEq.↔→≃ᴱ to from to-from from-to
, (λ _ _ →
to″
, [ _≃_.is-equivalence $
Eq.⇔→≃ Q./ᴱ-is-set (prop _ _) to″ from″
])
where
to′ : ∥ ∃ (R x) ∥ᴱ → B /ᴱ R ⟶
to′ =
_≃_.to (Q.Σ→Erased-Constant≃∥∥ᴱ→ Q./ᴱ-is-set)
( [_] ∘ proj₁
, [ (λ (_ , r₁) (_ , r₂) →
Q.[]-respects-relation ∣ _ , r₁ , r₂ ∣)
]
)
@0 to′-lemma :
R x y → R x′ y →
(p : ∥ ∃ (R x) ∥ᴱ)
(p′ : ∥ ∃ (R x′) ∥ᴱ) →
to′ p ≡ to′ p′
to′-lemma Rxy Rx′y = T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
Π-closure ext 1 λ _ →
Q./ᴱ-is-set
.T.∣∣ʳ (y₁ , Rxy₁) → T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (y₂ , Rx′y₂) →
[ y₁ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rxy₁ , qper Rxy Rx′y Rx′y₂ ∣ ⟩∎
[ y₂ ] ∎
to : A /ᴱ R ⟵ → B /ᴱ R ⟶
to = Q.rec λ where
.Q.is-setʳ → Q./ᴱ-is-set
.Q.[]ʳ → to′ ∘ lr
.Q.[]-respects-relationʳ {x = x} {y = x′} → T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (_ , Rxy , Rx′y) →
to′ (lr x) ≡⟨ to′-lemma Rxy Rx′y (lr x) (lr x′) ⟩∎
to′ (lr x′) ∎
from′ : ∥ ∃ ((R ⁻¹) y) ∥ᴱ → A /ᴱ R ⟵
from′ =
_≃_.to (Q.Σ→Erased-Constant≃∥∥ᴱ→ Q./ᴱ-is-set)
( [_] ∘ proj₁
, [ (λ (_ , r₁) (_ , r₂) →
Q.[]-respects-relation ∣ _ , r₁ , r₂ ∣)
]
)
@0 from′-lemma :
R x y → R x y′ →
(p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ)
(p′ : ∥ ∃ ((R ⁻¹) y′) ∥ᴱ) →
from′ p ≡ from′ p′
from′-lemma Rxy Rxy′ = T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
Π-closure ext 1 λ _ →
Q./ᴱ-is-set
.T.∣∣ʳ (x₁ , Rx₁y) → T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (x₂ , Rx₂y′) →
[ x₁ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rx₁y , qper Rx₂y′ Rxy′ Rxy ∣ ⟩∎
[ x₂ ] ∎
from : B /ᴱ R ⟶ → A /ᴱ R ⟵
from = Q.rec λ where
.Q.is-setʳ → Q./ᴱ-is-set
.Q.[]ʳ → from′ ∘ rl
.Q.[]-respects-relationʳ {x = y} {y = y′} → T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (_ , Rxy , Rxy′) →
from′ (rl y) ≡⟨ from′-lemma Rxy Rxy′ (rl y) (rl y′) ⟩∎
from′ (rl y′) ∎
@0 to′≡[] :
R x y → (p : ∥ ∃ (R x) ∥ᴱ) →
to′ p ≡ [ y ]
to′≡[] {x = x} {y = y} Rxy = T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (y′ , Rxy′) →
[ y′ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rxy′ , Rxy ∣ ⟩∎
[ y ] ∎
@0 to-from′ :
∀ y (p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ) →
to (from′ p) ≡ [ y ]
to-from′ y = T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (x , Rxy) →
to′ (lr x) ≡⟨ to′≡[] Rxy (lr x) ⟩∎
[ y ] ∎
@0 to-from : ∀ y → to (from y) ≡ y
to-from = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ → Q./ᴱ-is-set
.Q.[]ʳ y →
to (from′ (rl y)) ≡⟨ to-from′ y (rl y) ⟩∎
[ y ] ∎
@0 from′≡[] :
R x y → (p : ∥ ∃ ((R ⁻¹) y) ∥ᴱ) →
from′ p ≡ [ x ]
from′≡[] {x = x} {y = y} Rxy = T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (x′ , Rx′y) →
[ x′ ] ≡⟨ Q.[]-respects-relation ∣ _ , Rx′y , Rxy ∣ ⟩∎
[ x ] ∎
@0 from-to′ :
∀ x (p : ∥ ∃ (R x) ∥ᴱ) →
from (to′ p) ≡ [ x ]
from-to′ x = T.elim λ @0 where
.T.truncation-is-propositionʳ _ → Q./ᴱ-is-set
.T.∣∣ʳ (y , Rxy) →
from′ (rl y) ≡⟨ from′≡[] Rxy (rl y) ⟩∎
[ x ] ∎
@0 from-to : ∀ x → from (to x) ≡ x
from-to = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ → Q./ᴱ-is-set
.Q.[]ʳ x →
from (to′ (lr x)) ≡⟨ from-to′ x (lr x) ⟩∎
[ x ] ∎
to″ : to [ x ] ≡ [ y ] → R x y
to″ {x = x} {y = y} =
to′ (lr x) ≡ [ y ] ↝⟨ flip (T.elim {P = λ p → to′ p ≡ [ y ] → R x y}) (lr x) (λ where
.T.truncation-is-propositionʳ _ →
Π-closure ext 1 λ _ →
prop _ _
.T.∣∣ʳ (y′ , Rxy′) →
[ y′ ] ≡ [ y ] ↝⟨ Q.effective
(Is-QER→Is-equivalence-relation-⟶ qer)
T.truncation-is-proposition
∣ _ , Rxy′ , Rxy′ ∣ ⟩
(R ⟶) y′ y ↝⟨ T.rec (λ where
.T.truncation-is-propositionʳ → prop _ _
.T.∣∣ʳ (_ , Rx′y′ , Rx′y) →
qper Rxy′ Rx′y′ Rx′y) ⟩□
R x y □) ⟩□
R x y □
@0 from″ : R x y → to [ x ] ≡ [ y ]
from″ {x = x} {y = y} Rxy =
to′ (lr x) ≡⟨ to′≡[] Rxy (lr x) ⟩∎
[ y ] ∎
-- A propositional QER R (with erased proofs) can be turned into an
-- equivalence (with erased proofs) satisfying a certain (erased)
-- condition.
--
-- This is another variant of Lemma 5.4 from "Internalizing
-- Representation Independence with Univalence".
/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ :
{@0 R : A → B → Type c} →
Is-QERᴱ R →
@0 (∀ x y → Is-proposition (R x y)) →
∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) →
Erased (∀ x y → (_≃ᴱ_.to eq [ x ] ≡ [ y ]) ≃ R x y)
/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ {A = A} {B = B} {R = R} qer prop = $⟨ [ prop ] ⟩
Erased (∀ x y → Is-proposition (R x y)) ↝⟨ (λ ([ hyp ]) x y → H-level-Erased 1 (hyp x y)) ⦂ (_ → _) ⟩
(∀ x y → Is-proposition (Rᴱ x y)) ↝⟨ (λ prop → /ᴱ⟵≃ᴱ/ᴱ⟶ (_≃_.to Is-QERᴱ≃Is-QER-Erased qer) prop) ⟩
(∃ λ (eq : A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶) →
∀ x y →
∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → Rᴱ x y) →
Erased (Is-equivalence f)) ↝⟨ (λ (eq , ok) → drop-ᴱ eq , [ drop-ᴱ-ok eq ok ]) ⟩□
(∃ λ (eq : A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶) →
Erased (∀ x y → (_≃ᴱ_.to eq [ x ] ≡ [ y ]) ≃ R x y)) □
where
Rᴱ = λ x y → Erased (R x y)
@0 lemma :
∀ x y →
((λ x y → Erased (R₁ x y)) ;ᴱ (λ x y → Erased (R₂ x y))) x y ⇔
(R₁ ;ᴱ R₂) x y
lemma {R₁ = R₁} {R₂ = R₂} x z =
∥ (∃ λ y → Erased (R₁ x y) × Erased (R₂ y z)) ∥ᴱ ↔⟨ (T.∥∥ᴱ-cong $ ∃-cong λ _ →
Erased↔ .erased
×-cong
Erased↔ .erased) ⟩□
∥ (∃ λ y → R₁ x y × R₂ y z) ∥ᴱ □
drop-ᴱ :
A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶ →
A /ᴱ R ⟵ ≃ᴱ B /ᴱ R ⟶
drop-ᴱ eq =
A /ᴱ R ⟵ ↔⟨ Eq.id Q./ᴱ-cong (λ x y → inverse (lemma {R₁ = R} {R₂ = R ⁻¹} x y)) ⟩
A /ᴱ Rᴱ ⟵ ↝⟨ eq ⟩
B /ᴱ Rᴱ ⟶ ↔⟨ Eq.id Q./ᴱ-cong lemma ⟩□
B /ᴱ R ⟶ □
@0 drop-ᴱ-ok :
(eq : A /ᴱ Rᴱ ⟵ ≃ᴱ B /ᴱ Rᴱ ⟶) →
(∀ x y →
∃ λ (f : _≃ᴱ_.to eq [ x ] ≡ [ y ] → Rᴱ x y) →
Erased (Is-equivalence f)) →
∀ x y → (_≃ᴱ_.to (drop-ᴱ eq) [ x ] ≡ [ y ]) ≃ R x y
drop-ᴱ-ok eq ok x y =
_≃ᴱ_.to (drop-ᴱ eq) [ x ] ≡ [ y ] ↔⟨⟩
_≃_.to (Eq.id Q./ᴱ-cong lemma) (_≃ᴱ_.to eq [ x ]) ≡ [ y ] ↝⟨ Eq.≃-≡ (Eq.id Q./ᴱ-cong lemma) ⟩
_≃ᴱ_.to eq [ x ] ≡ [ y ] ↝⟨ (let f , [ eq ] = ok x y in Eq.⟨ f , eq ⟩) ⟩
Rᴱ x y ↔⟨ Erased↔ .erased ⟩□
R x y □
------------------------------------------------------------------------
-- Relation transformers
-- Relation transformers for a given structure.
Relation-transformer-for :
Structure a b → Type (lsuc (a ⊔ b))
Relation-transformer-for {a = a} {b = b} F =
∀ {A B} → (A → B → Type a) → F A → F B → Type b
-- A notion of "suitable" relation transformers.
record Suitable
{F : Structure a b}
(@0 G : Relation-transformer-for F) :
Type (lsuc a ⊔ b) where
field
-- F preserves Is-set.
@0 preserves-is-set :
Is-set A → Is-set (F A)
-- G preserves a variant of Is-proposition.
@0 preserves-is-proposition :
(∀ x y → Is-proposition (R x y)) →
∀ x y → Is-proposition (G R x y)
-- G is "symmetric" for propositional relations.
@0 symmetric :
(∀ x y → Is-proposition (R x y)) →
G R x y → G (R ⁻¹) y x
-- G is "transitive" for propositional relations.
@0 transitive :
(∀ x y → Is-proposition (R x y)) →
(∀ x y → Is-proposition (S x y)) →
G R x y → G S y z → G (R ;ᴱ S) x z
-- Descent to quotients. Note that this is the only non-erased
-- field of this record type.
descent :
{@0 R : A → A → Type a} →
@0 (∀ x y → Is-proposition (R x y)) →
@0 Is-equivalence-relation R →
@0 G R x x →
Contractibleᴱ (∃ λ (y : F (A /ᴱ R)) → Erased (G (Graph [_]) x y))
-- A variant of transitive.
@0 transitive-;ᴱ :
(∀ x y → Is-proposition (R x y)) →
(∀ x y → Is-proposition (S x y)) →
∀ x z → (G R ;ᴱ G S) x z → G (R ;ᴱ S) x z
transitive-;ᴱ R-prop S-prop _ _ = T.rec λ @0 where
.T.truncation-is-propositionʳ →
preserves-is-proposition
(λ _ _ → T.truncation-is-proposition) _ _
.T.∣∣ʳ (_ , GRxy , GSyz) →
transitive R-prop S-prop GRxy GSyz
-- A variant of Univalent for relation transformers.
Univalentᴿ :
{F : Structure a b} →
@0 Relation-transformer-for F → Type (lsuc a ⊔ b)
Univalentᴿ {F = F} G =
Suitable G ×
Univalent F (λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y)
-- A notion of "acting on functions" for relation transformers.
record Acts-on-functions
{F : Structure a b}
(@0 G : Relation-transformer-for F) :
Type (lsuc a ⊔ b) where
field
-- A map function.
map : (A → B) → F A → F B
-- Mapping the identity function is the same thing as applying the
-- identity function.
@0 map-id : map {A = A} id ≡ id
-- G respects map in a certain way.
@0 map-map :
{R₁ : A₁ → B₁ → Type a} {R₂ : A₂ → B₂ → Type a} →
(∀ {x y} → R₁ x y → R₂ (f x) (g y)) →
G R₁ x y → G R₂ (map f x) (map g y)
-- Suitable respects equivalences.
Suitable-map :
{@0 G H : Relation-transformer-for F} →
@0 (∀ {A B} {R : A → B → _} {x y} → G R x y ≃ H R x y) →
Suitable G → Suitable H
Suitable-map {G = G} {H = H} G≃H s-G = λ where
.Suitable.preserves-is-set → S.preserves-is-set
.Suitable.preserves-is-proposition {R = R} →
(∀ x y → Is-proposition (R x y)) ↝⟨ S.preserves-is-proposition ⟩
(∀ x y → Is-proposition (G R x y)) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → H-level-cong _ 1 G≃H) ⟩□
(∀ x y → Is-proposition (H R x y)) □
.Suitable.symmetric {R = R} {x = x} {y = y} →
(∀ x y → Is-proposition (R x y)) ↝⟨ S.symmetric ⟩
(G R x y → G (R ⁻¹) y x) ↝⟨ →-cong-→ (_≃_.from G≃H) (_≃_.to G≃H) ⟩□
(H R x y → H (R ⁻¹) y x) □
.Suitable.transitive {R = R} {S = S} {x = x} {y = y} {z = z} → curry
((∀ x y → Is-proposition (R x y)) ×
(∀ x y → Is-proposition (S x y)) ↝⟨ uncurry S.transitive ⟩
(G R x y → G S y z → G (R ;ᴱ S) x z) ↝⟨ →-cong-→ (_≃_.from G≃H) (→-cong-→ (_≃_.from G≃H) (_≃_.to G≃H)) ⟩□
(H R x y → H S y z → H (R ;ᴱ S) x z) □)
.Suitable.descent {x = x} {R = R} prop equiv HRxx → $⟨ [ HRxx ] ⟩
Erased (H R x x) ↔⟨ Erased-cong (inverse G≃H) ⟩
Erased (G R x x) ↝⟨ (λ ([ hyp ]) → S.descent prop equiv hyp) ⦂ (_ → _) ⟩
Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y)) ↝⟨ ECP.Contractibleᴱ-cong _ (∃-cong λ _ → Erased-cong G≃H) ⟩□
Contractibleᴱ (∃ λ y → Erased (H (Graph [_]) x y)) □
where
module S = Suitable s-G
-- If R is a propositional QER (with erased proofs) between A and B, G
-- is a suitable relation transformer for F, and G R x y holds, then
-- there are structures in F (A /ᴱ R ⟵) and F (B /ᴱ R ⟶) that are
-- related in a certain way to x and y, respectively, and the two
-- structures are also related to each other by /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ in a certain
-- way.
--
-- This is a variant of Theorem 5.7 from "Internalizing Representation
-- Independence with Univalence". Note that quite a few inputs are
-- erased, and also parts of the result.
Suitable→/ᴱ⟵×/ᴱ⟶ :
{F : Structure a b}
((A , x) (B , y) : Type-with F) →
{@0 R : A → B → Type a}
{@0 G : Relation-transformer-for F} →
Suitable G →
(qer : Is-QERᴱ R)
(@0 prop : ∀ x y → Is-proposition (R x y)) →
@0 G R x y →
∃ λ (x′ : F (A /ᴱ R ⟵)) → ∃ λ (y′ : F (B /ᴱ R ⟶)) →
Erased
(G (Graph [_]) x x′ × G (Graph [_]) y y′ ×
G (Graph (_≃ᴱ_.to (/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁))) x′ y′)
Suitable→/ᴱ⟵×/ᴱ⟶ {F = F} (A , x) (B , y) {R = R} {G = G}
s qer@([ qper ] , _) prop g =
x″ , y″ , [ (Gxx″ , Gyy″ , g″) ]
where
module S = Suitable s
@0 x∼x : G (R ⟵) x x
x∼x = S.transitive prop (flip prop) g (S.symmetric prop g)
@0 y∼y : G (R ⟶) y y
y∼y = S.transitive (flip prop) prop (S.symmetric prop g) g
x-lemma :
Contractibleᴱ
(∃ λ (x′ : F (A /ᴱ R ⟵)) → Erased (G (Graph [_]) x x′))
x-lemma =
S.descent
(λ _ _ → T.truncation-is-proposition)
(Is-QERᴱ→Is-equivalence-relation-⟵ qer)
x∼x
y-lemma :
Contractibleᴱ
(∃ λ (y′ : F (B /ᴱ R ⟶)) → Erased (G (Graph [_]) y y′))
y-lemma =
S.descent
(λ _ _ → T.truncation-is-proposition)
(Is-QERᴱ→Is-equivalence-relation-⟶ qer)
y∼y
x″ = x-lemma .proj₁ .proj₁
y″ = y-lemma .proj₁ .proj₁
@0 Gxx″ : G (Graph [_]) x x″
Gxx″ = x-lemma .proj₁ .proj₂ .erased
@0 Gyy″ : G (Graph [_]) y y″
Gyy″ = y-lemma .proj₁ .proj₂ .erased
@0 g′ : G (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) x″ y″
g′ =
S.transitive
(λ _ _ → Q./ᴱ-is-set)
(λ _ _ → T.truncation-is-proposition)
(S.symmetric (λ _ _ → Q./ᴱ-is-set) Gxx″)
(S.transitive prop (λ _ _ → Q./ᴱ-is-set) g Gyy″)
equiv = /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁
@0 to :
∀ {x y} →
(Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ] → R x y
to {x = x} {y = y} =
T.rec λ @0 where
.T.truncation-is-propositionʳ →
prop _ _
.T.∣∣ʳ → uncurry λ x′ → uncurry λ [x′]≡[x] →
T.rec λ @0 where
.T.truncation-is-propositionʳ →
prop _ _
.T.∣∣ʳ (y′ , Rx′y′ , [y′]≡[y]) →
let R⟵x′x : (R ⟵) x′ x
R⟵x′x =
_≃_.from
(Q.related≃[equal]
(Is-QERᴱ→Is-equivalence-relation-⟵ qer)
T.truncation-is-proposition)
[x′]≡[x]
R⟶y′y : (R ⟶) y′ y
R⟶y′y =
_≃_.from
(Q.related≃[equal]
(Is-QERᴱ→Is-equivalence-relation-⟶ qer)
T.truncation-is-proposition)
[y′]≡[y]
in
flip T.rec R⟵x′x λ @0 where
.T.truncation-is-propositionʳ →
prop _ _
.T.∣∣ʳ (_ , Rx′x″ , Rxx″) →
flip T.rec R⟶y′y λ @0 where
.T.truncation-is-propositionʳ →
prop _ _
.T.∣∣ʳ (_ , Ry″y′ , Ry″y) →
qper Rxx″ Rx′x″ (qper Rx′y′ Ry″y′ Ry″y)
@0 from :
∀ {x y} →
R x y → (Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ]
from Rxy = ∣ _ , refl _ , ∣ _ , Rxy , refl _ ∣ ∣
@0 lemma :
∀ x y →
(Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) x y ≃
Graph (_≃ᴱ_.to equiv) x y
lemma = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Eq.left-closure ext 0 T.truncation-is-proposition
.Q.[]ʳ x → Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Eq.left-closure ext 0 T.truncation-is-proposition
.Q.[]ʳ y →
(Graph [_] ⁻¹ ;ᴱ R ;ᴱ Graph [_]) [ x ] [ y ] ↝⟨ Eq.⇔→≃ T.truncation-is-proposition (prop _ _) to from ⟩
R x y ↝⟨ inverse (/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₂ .erased _ _) ⟩□
Graph (_≃ᴱ_.to equiv) [ x ] [ y ] □
@0 g″ : G (Graph (_≃ᴱ_.to equiv)) x″ y″
g″ =
subst (λ R → G R x″ y″)
(⟨ext⟩ λ x → ⟨ext⟩ λ y →
≃⇒≡ U.univ (lemma x y))
g′
-- If R is a propositional QER (with erased proofs) between A and B, G
-- is a univalent relation transformer for F, and G R x y holds, then
-- there are structures x′ : F (A /ᴱ R ⟵) and y′ : F (B /ᴱ R ⟶) that
-- are related in a certain way to x and y, respectively, and
-- furthermore the two values A /ᴱ R ⟵ , x′ and B /ᴱ R ⟶ , y′ of type
-- Type-with F are equal (in erased contexts).
--
-- This is a corollary of Suitable→/ᴱ⟵×/ᴱ⟶, /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ and sip.
Univalentᴿ→/ᴱ⟵×/ᴱ⟶ :
{F : Structure a b}
((A , x) (B , y) : Type-with F) →
{@0 R : A → B → Type a}
{@0 G : Relation-transformer-for F} →
Univalentᴿ G →
(qer : Is-QERᴱ R)
(@0 prop : ∀ x y → Is-proposition (R x y)) →
@0 G R x y →
∃ λ (x′ : F (A /ᴱ R ⟵)) → ∃ λ (y′ : F (B /ᴱ R ⟶)) →
Erased (G (Graph [_]) x x′ × G (Graph [_]) y y′ ×
_≡_ {A = Type-with F}
(A /ᴱ R ⟵ , x′) (B /ᴱ R ⟶ , y′))
Univalentᴿ→/ᴱ⟵×/ᴱ⟶ (A , x) (B , y) {R = R} {G = G} (s , u) qer prop g =
let (x′ , y′ , [ x∼x′ , y∼y′ , x′∼y′ ]) =
Suitable→/ᴱ⟵×/ᴱ⟶ (A , x) (B , y) s qer prop g
in
x′
, y′
, [ ( x∼x′
, y∼y′
, ( $⟨ /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ qer prop .proj₁ , [ x′∼y′ ] ⟩
(A /ᴱ R ⟵ , x′)
≃[ (λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y) ]ᴱ
(B /ᴱ R ⟶ , y′) ↝⟨ sip u ⟩□
(A /ᴱ R ⟵ , x′) ≡ (B /ᴱ R ⟶ , y′) □)
)
]
-- If G is a suitable relation transformer (for F) that acts on
-- functions, and R is a propositional equivalence relation on A, then
-- there is a function from F A /ᴱ G R to F (A /ᴱ R).
--
-- This is a variant of Lemma 5.10 from "Internalizing Representation
-- Independence with Univalence". Note that quite a few inputs are
-- erased.
/ᴱ→/ᴱ :
{A : Type a}
{@0 R : A → A → Type a}
(@0 G : Relation-transformer-for F) →
Suitable G →
Acts-on-functions G →
@0 (∀ x y → Is-proposition (R x y)) →
@0 Is-equivalence-relation R →
F A /ᴱ G R → F (A /ᴱ R)
/ᴱ→/ᴱ {F = F} {R = R} G s acts prop equiv =
Q.rec λ where
.Q.[]ʳ → map [_]
.Q.is-setʳ → S.preserves-is-set Q./ᴱ-is-set
.Q.[]-respects-relationʳ {x = x} {y = y} GRxy →
let GRxx = $⟨ GRxy ⟩
G R x y ↝⟨ (λ GRxy → S.transitive prop (flip prop) GRxy (S.symmetric prop GRxy)) ⟩
G (R ⟵) x x ↝⟨ subst (λ R → G R _ _) (⟵≡ prop equiv) ⟩□
G R x x □
((z , _) , [ unique ]) = $⟨ GRxx ⟩
G R x x ↝⟨ (λ GRxx → S.descent prop equiv GRxx) ⦂ (_ → _) ⟩□
Contractibleᴱ (∃ λ z → Erased (G (Graph [_]) x z)) □
lemma₁ = $⟨ map-map Q.[]-respects-relation GRxx ⟩
G (Graph [_]) (map id x) (map [_] x) ↝⟨ subst (λ x′ → G (Graph [_]) x′ (map [_] x)) (cong (_$ x) map-id) ⟩□
G (Graph [_]) x (map [_] x) □
lemma₂ = $⟨ map-map Q.[]-respects-relation GRxy ⟩
G (Graph [_]) (map id x) (map [_] y) ↝⟨ subst (λ x → G (Graph [_]) x (map [_] y)) (cong (_$ x) map-id) ⟩□
G (Graph [_]) x (map [_] y) □
in
map [_] x ≡⟨ sym $ cong proj₁ (unique (_ , [ lemma₁ ])) ⟩
z ≡⟨ cong proj₁ (unique (_ , [ lemma₂ ])) ⟩∎
map [_] y ∎
where
module S = Suitable s
open Acts-on-functions acts
-- Positive relation transformers.
--
-- Angiuli et al. define this notion for suitable relation
-- transformers that act on functions. This definition works for
-- arbitrary relation transformers G, and instead inludes fields of
-- type Suitable G and Acts-on-functions G. (In their source code
-- Angiuli et al. take a third approach, with the property
-- corresponding to Suitable G as a parameter, and the property
-- corresponding to Acts-on-functions G as a field.)
record Positive
{F : Structure a b}
(@0 G : Relation-transformer-for F) :
Type (lsuc a ⊔ b) where
field
-- G is suitable.
suitable : Suitable G
-- G acts on functions.
acts-on-functions : Acts-on-functions G
-- G is reflexive for a certain relation.
@0 reflexive-∥≡∥ᴱ : G (λ x y → ∥ x ≡ y ∥ᴱ) x x
-- The function Suitable.transitive-;ᴱ suitable is an equivalence
-- (pointwise).
@0 transitive-;ᴱ⁻¹ :
{R : A → B → Type a} {S : B → C → Type a}
(R-prop : ∀ x y → Is-proposition (R x y))
(S-prop : ∀ x y → Is-proposition (S x y))
(x : F A) (z : F C) →
Is-equivalence
(Suitable.transitive-;ᴱ suitable R-prop S-prop x z)
-- The function /ᴱ→/ᴱ G suitable acts-on-functions is an
-- equivalence with erased proofs (pointwise).
commutes-with-/ᴱ :
{@0 R : A → A → Type a}
(@0 prop : ∀ x y → Is-proposition (R x y))
(@0 equiv : Is-equivalence-relation R) →
Is-equivalenceᴱ (/ᴱ→/ᴱ G suitable acts-on-functions prop equiv)
-- G R is reflexive for propositional equivalence relations R (in
-- erased contexts).
@0 reflexive :
(∀ x y → Is-proposition (R x y)) →
Is-equivalence-relation R →
∀ x → G R x x
reflexive {R = R} prop equiv x = $⟨ reflexive-∥≡∥ᴱ ⟩
G (λ x y → ∥ x ≡ y ∥ᴱ) x x ↝⟨ A.map-map
(T.rec λ @0 where
.T.truncation-is-propositionʳ →
prop _ _
.T.∣∣ʳ x≡y →
subst (R _) x≡y E.reflexive) ⟩
G R (A.map id x) (A.map id x) ↝⟨ subst (uncurry (G R)) (cong (λ f → f x , f x) A.map-id) ⟩□
G R x x □
where
module A = Acts-on-functions acts-on-functions
module E = Is-equivalence-relation equiv
------------------------------------------------------------------------
-- The Const and Constᴿ combinators, along with some properties
-- Constant structures.
Const : Type b → Structure a b
Const B = λ _ → B
-- Relation transformers for Const.
Constᴿ : (B : Type b) → Relation-transformer-for (Const {a = a} B)
Constᴿ _ _ = _≡_
-- When is an equivalence structure-preserving for Const?
Is-Const-equivalence :
{B : Type b} →
Structure-preserving-equivalence-predicate (Const {a = a} B) b
Is-Const-equivalence (_ , x) (_ , y) _ = x ≡ y
-- Const and Is-Const-equivalence are univalent.
Const-univalent : Univalent (Const {a = a} B) Is-Const-equivalence
Const-univalent {B = B}
.Univalent.univalent {A = _ , x} {B = _ , y} eq =
x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ subst-const _ ⟩□
subst (Const B) (≃⇒≡ U.abstract-univ (EEq.≃ᴱ→≃ eq)) x ≡ y □
-- Constᴿ is suitable for sets.
Constᴿ-suitable : @0 Is-set B → Suitable (Constᴿ {a = a} B)
Constᴿ-suitable set = λ where
.Suitable.preserves-is-set _ → set
.Suitable.preserves-is-proposition _ _ _ → set
.Suitable.symmetric _ → sym
.Suitable.transitive _ _ → trans
.Suitable.descent _ _ _ → Contractibleᴱ-Erased-other-singleton
-- Constᴿ is univalent for sets.
Constᴿ-univalent : @0 Is-set B → Univalentᴿ (Constᴿ {a = a} B)
Constᴿ-univalent set = Constᴿ-suitable set , Const-univalent
-- Constᴿ acts on functions.
Constᴿ-acts-on-functions : Acts-on-functions (Constᴿ {a = a} B)
Constᴿ-acts-on-functions = λ where
.Acts-on-functions.map _ → id
.Acts-on-functions.map-id → refl _
.Acts-on-functions.map-map _ → id
-- Constᴿ is positive for sets.
Constᴿ-positive : @0 Is-set B → Positive (Constᴿ {a = a} B)
Constᴿ-positive {B = B} set = λ where
.Positive.suitable → Constᴿ-suitable set
.Positive.acts-on-functions → Constᴿ-acts-on-functions
.Positive.reflexive-∥≡∥ᴱ → refl _
.Positive.transitive-;ᴱ⁻¹ {R = R} {S = S} _ _ x z →
_≃_.is-equivalence
((Constᴿ B R ;ᴱ Constᴿ B S) x z ↔⟨⟩
∥ (∃ λ y → x ≡ y × y ≡ z) ∥ᴱ ↝⟨ Eq.⇔→≃ T.truncation-is-proposition set _
(λ x≡z → ∣ _ , x≡z , refl _ ∣) ⟩
x ≡ z ↔⟨⟩
Constᴿ B (R ;ᴱ S) x z □)
.Positive.commutes-with-/ᴱ {A = C} {R = R} prop equiv →
_≃ᴱ_.is-equivalence $
EEq.with-other-function
(Const B C /ᴱ Constᴿ B R ↔⟨⟩
B /ᴱ _≡_ ↔⟨ Q./ᴱ≡↔ set ⟩
B ↔⟨⟩
Const B (C /ᴱ R) □)
(/ᴱ→/ᴱ (Constᴿ B) (Constᴿ-suitable set) Constᴿ-acts-on-functions
prop equiv)
(Q.elim-prop λ @0 where
.Q.is-propositionʳ _ → set
.Q.[]ʳ _ → refl _)
------------------------------------------------------------------------
-- The Id and Idᴿ combinators, along with some properties
-- Identity structures.
Id : Structure a a
Id A = A
-- Relation transformers for Id.
Idᴿ : Relation-transformer-for (Id {a = a})
Idᴿ R = R
-- When is an equivalence structure-preserving for Id?
Is-Id-equivalence : Structure-preserving-equivalence-predicate Id a
Is-Id-equivalence (_ , x) (_ , y) eq = _≃ᴱ_.to eq x ≡ y
-- Id and Is-Id-equivalence are univalent.
Id-univalent : Univalent (Id {a = a}) Is-Id-equivalence
Id-univalent .Univalent.univalent {A = _ , x} {B = _ , y} eq =
_≃ᴱ_.to eq x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ cong (λ eq → _≃_.to eq x) $ sym $
_≃_.right-inverse-of (≡≃≃ univ) _ ⟩
≡⇒→ (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $
subst-id-in-terms-of-≡⇒↝ equivalence ⟩□
subst Id (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y □
where
univ = U.abstract-univ
-- Idᴿ is suitable.
Idᴿ-suitable : Suitable (Idᴿ {a = a})
Idᴿ-suitable = λ where
.Suitable.preserves-is-set → id
.Suitable.preserves-is-proposition → id
.Suitable.symmetric _ → id
.Suitable.transitive _ _ Rxy Syz → ∣ _ , Rxy , Syz ∣
.Suitable.descent _ _ _ →
Contractibleᴱ-Erased-other-singleton
-- Idᴿ is univalent.
Idᴿ-univalent : Univalentᴿ (Idᴿ {a = a})
Idᴿ-univalent = Idᴿ-suitable , Id-univalent
-- Idᴿ acts on functions.
Idᴿ-acts-on-functions : Acts-on-functions (Idᴿ {a = a})
Idᴿ-acts-on-functions = λ where
.Acts-on-functions.map → id
.Acts-on-functions.map-id → refl _
.Acts-on-functions.map-map f → f
-- Idᴿ is positive.
Idᴿ-positive : Positive (Idᴿ {a = a})
Idᴿ-positive = λ where
.Positive.suitable → Idᴿ-suitable
.Positive.acts-on-functions → Idᴿ-acts-on-functions
.Positive.reflexive-∥≡∥ᴱ → ∣ refl _ ∣
.Positive.transitive-;ᴱ⁻¹ {R = R} {S = S} R-prop S-prop x z →
_≃_.is-equivalence $
Eq.with-other-function
((Idᴿ R ;ᴱ Idᴿ S) x z ↔⟨⟩
(R ;ᴱ S) x z ↔⟨⟩
Idᴿ (R ;ᴱ S) x z □)
(Suitable.transitive-;ᴱ Idᴿ-suitable R-prop S-prop x z)
(T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
H-level.⇒≡ 1 T.truncation-is-proposition
.T.∣∣ʳ _ →
refl _)
.Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv →
_≃ᴱ_.is-equivalence $
EEq.with-other-function
(Id A /ᴱ Idᴿ R ↔⟨⟩
A /ᴱ R ↔⟨⟩
Id (A /ᴱ R) □)
(/ᴱ→/ᴱ Idᴿ Idᴿ-suitable Idᴿ-acts-on-functions prop equiv)
(Q.elim-prop λ @0 where
.Q.is-propositionʳ _ → Q./ᴱ-is-set
.Q.[]ʳ _ → refl _)
------------------------------------------------------------------------
-- Combinators related to Cartesian products
-- Product structures.
Product : Structure a b → Structure a c → Structure a (b ⊔ c)
Product F G A = F A × G A
-- A combinator that, given relation transformers for F and G,
-- produces a relation transformer for Product F G.
Productᴿ :
Relation-transformer-for F →
Relation-transformer-for G →
Relation-transformer-for (Product F G)
Productᴿ S T R = S R ×ᴾ T R
-- When is an equivalence structure-preserving for Product F G?
Is-Product-equivalence :
Structure-preserving-equivalence-predicate F a →
Structure-preserving-equivalence-predicate G b →
Structure-preserving-equivalence-predicate (Product F G) (a ⊔ b)
Is-Product-equivalence Is-F-eq Is-G-eq (A , x₁ , x₂) (B , y₁ , y₂) eq =
Is-F-eq (A , x₁) (B , y₁) eq ×
Is-G-eq (A , x₂) (B , y₂) eq
-- If F and G are univalent, then Product F G is univalent.
Product-univalent :
{@0 F : Structure a b}
{@0 G : Structure a c}
{@0 Is-F-eq : Structure-preserving-equivalence-predicate F d}
{@0 Is-G-eq : Structure-preserving-equivalence-predicate G e} →
@0 Univalent F Is-F-eq →
@0 Univalent G Is-G-eq →
Univalent (Product F G) (Is-Product-equivalence Is-F-eq Is-G-eq)
Product-univalent
{F = F} {G = G} {Is-F-eq = Is-F-eq} {Is-G-eq = Is-G-eq}
u-F u-G .Univalent.univalent {A = A , x₁ , x₂} {B = B , y₁ , y₂} eq =
Is-F-eq (A , x₁) (B , y₁) eq × Is-G-eq (A , x₂) (B , y₂) eq ↝⟨ u-F .Univalent.univalent eq
×-cong
u-G .Univalent.univalent eq ⟩
subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁ ≡ y₁ ×
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₂ ≡ y₂ ↔⟨ ≡×≡↔≡ ⟩
( subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₁
, subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x₂
) ≡ (y₁ , y₂) ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $
push-subst-, _ _ ⟩□
subst (Product F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (x₁ , x₂) ≡ (y₁ , y₂) □
where
univ = U.abstract-univ
-- If S and T are suitable, then Productᴿ S T is suitable.
Productᴿ-suitable :
{@0 S : Relation-transformer-for F}
{@0 T : Relation-transformer-for G} →
Suitable S →
Suitable T →
Suitable (Productᴿ S T)
Productᴿ-suitable {S = S} {T = T} s-S s-T = λ where
.Suitable.preserves-is-set set →
×-closure 2
(s-S .Suitable.preserves-is-set set)
(s-T .Suitable.preserves-is-set set)
.Suitable.preserves-is-proposition prop _ _ →
×-closure 1
(s-S .Suitable.preserves-is-proposition prop _ _)
(s-T .Suitable.preserves-is-proposition prop _ _)
.Suitable.symmetric prop →
Σ-map
(s-S .Suitable.symmetric prop)
(s-T .Suitable.symmetric prop)
.Suitable.transitive prop₁ prop₂ →
Σ-zip
(s-S .Suitable.transitive prop₁ prop₂)
(s-T .Suitable.transitive prop₁ prop₂)
.Suitable.descent {x = x , y} {R = R} prop equiv (SRxx , Tryy) → $⟨ [ SRxx ] , [ Tryy ] ⟩
Erased (S R x x) × Erased (T R y y) ↝⟨ Σ-map (λ ([ SRxx ]) → s-S .Suitable.descent prop equiv SRxx)
(λ ([ TRyy ]) → s-T .Suitable.descent prop equiv TRyy) ⟩
Contractibleᴱ (∃ λ x′ → Erased (S (Graph [_]) x x′)) ×
Contractibleᴱ (∃ λ y′ → Erased (T (Graph [_]) y y′)) ↝⟨ uncurry ECP.Contractibleᴱ-× ⟩
Contractibleᴱ
((∃ λ x′ → Erased (S (Graph [_]) x x′)) ×
(∃ λ y′ → Erased (T (Graph [_]) y y′))) ↝⟨ ECP.Contractibleᴱ-cong _ $
Σ-assoc F.∘
(∃-cong λ _ → ∃-cong λ _ → inverse Erased-Σ↔Σ) F.∘
(∃-cong λ _ → ∃-comm) F.∘
inverse Σ-assoc ⟩□
Contractibleᴱ (∃ λ p → Erased (Productᴿ S T (Graph [_]) (x , y) p)) □
-- If S and T are univalent, then Productᴿ S T is univalent.
Productᴿ-univalent :
{@0 S : Relation-transformer-for F}
{@0 T : Relation-transformer-for G} →
Univalentᴿ S →
Univalentᴿ T →
Univalentᴿ (Productᴿ S T)
Productᴿ-univalent (s-S , u-S) (s-T , u-T) =
Productᴿ-suitable s-S s-T
, Product-univalent u-S u-T
-- If S and T act on functions, then Productᴿ S T acts on functions.
Productᴿ-acts-on-functions :
{@0 S : Relation-transformer-for F}
{@0 T : Relation-transformer-for G} →
Acts-on-functions S →
Acts-on-functions T →
Acts-on-functions (Productᴿ S T)
Productᴿ-acts-on-functions {S = S} {T = T} a-S a-T = λ where
.Acts-on-functions.map f →
Σ-map (a-S .Acts-on-functions.map f)
(a-T .Acts-on-functions.map f)
.Acts-on-functions.map-id →
Σ-map (a-S .Acts-on-functions.map id)
(a-T .Acts-on-functions.map id) ≡⟨ cong₂ (λ f g → Σ-map f g)
(a-S .Acts-on-functions.map-id)
(a-T .Acts-on-functions.map-id) ⟩
Σ-map id id ≡⟨⟩
id ∎
.Acts-on-functions.map-map {f = f} {g = g} {x = x₁ , x₂} {y = y₁ , y₂} {R₁ = R₁} {R₂ = R₂} R₁→R₂ →
S R₁ x₁ y₁ × T R₁ x₂ y₂ ↝⟨ a-S .Acts-on-functions.map-map R₁→R₂
×-cong
a-T .Acts-on-functions.map-map R₁→R₂ ⟩□
S R₂ (a-S .Acts-on-functions.map f x₁)
(a-S .Acts-on-functions.map g y₁) ×
T R₂ (a-T .Acts-on-functions.map f x₂)
(a-T .Acts-on-functions.map g y₂) □
-- If S and T are positive, then Productᴿ S T is positive.
Productᴿ-positive :
{@0 S : Relation-transformer-for F}
{@0 T : Relation-transformer-for G} →
Positive S →
Positive T →
Positive (Productᴿ S T)
Productᴿ-positive {F = F} {G = G} {S = S} {T = T} p-S p-T = λ where
.Positive.suitable → suitable
.Positive.acts-on-functions → acts-on-functions
.Positive.reflexive-∥≡∥ᴱ → SP.reflexive-∥≡∥ᴱ , TP.reflexive-∥≡∥ᴱ
.Positive.transitive-;ᴱ⁻¹
{R = R₁} {S = R₂} R₁-prop R₂-prop x@(x₁ , x₂) z@(z₁ , z₂) →
_≃_.is-equivalence $
Eq.with-other-function
((Productᴿ S T R₁ ;ᴱ Productᴿ S T R₂) x z ↝⟨ lemma ⟩
(S R₁ ;ᴱ S R₂) x₁ z₁ × (T R₁ ;ᴱ T R₂) x₂ z₂ ↝⟨ Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩
×-cong
Eq.⟨ _ , TP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩
S (R₁ ;ᴱ R₂) x₁ z₁ × T (R₁ ;ᴱ R₂) x₂ z₂ ↔⟨⟩
Productᴿ S T (R₁ ;ᴱ R₂) x z □)
_
(T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
H-level.mono₁ 1 $
×-closure 1
(SS.preserves-is-proposition
(λ _ _ → T.truncation-is-proposition) _ _)
(TS.preserves-is-proposition
(λ _ _ → T.truncation-is-proposition) _ _)
.T.∣∣ʳ _ →
refl _)
.Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv →
_≃ᴱ_.is-equivalence $
EEq.with-other-function
(Product F G A /ᴱ Productᴿ S T R ↔⟨⟩
(F A × G A) /ᴱ Productᴿ S T R ↔⟨ Q.×/ᴱ (SP.reflexive prop equiv _) (TP.reflexive prop equiv _) ⟩
F A /ᴱ S R × G A /ᴱ T R ↝⟨ EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩
×-cong
EEq.⟨ _ , TP.commutes-with-/ᴱ prop equiv ⟩ ⟩
F (A /ᴱ R) × G (A /ᴱ R) ↔⟨⟩
Product F G (A /ᴱ R) □)
_
(Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
×-closure 2
(SS.preserves-is-set Q./ᴱ-is-set)
(TS.preserves-is-set Q./ᴱ-is-set)
.Q.[]ʳ _ → refl _)
where
module SP = Positive p-S
module SS = Suitable SP.suitable
module TP = Positive p-T
module TS = Suitable TP.suitable
suitable =
Productᴿ-suitable
SP.suitable
TP.suitable
acts-on-functions =
Productᴿ-acts-on-functions
SP.acts-on-functions
TP.acts-on-functions
@0 lemma :
(Productᴿ S T R₁ ;ᴱ Productᴿ S T R₂) (x₁ , x₂) (z₁ , z₂) ≃
((S R₁ ;ᴱ S R₂) x₁ z₁ × (T R₁ ;ᴱ T R₂) x₂ z₂)
lemma = Eq.⇔→≃
T.truncation-is-proposition
(×-closure 1
T.truncation-is-proposition
T.truncation-is-proposition)
(T.rec λ @0 where
.T.truncation-is-propositionʳ →
×-closure 1
T.truncation-is-proposition
T.truncation-is-proposition
.T.∣∣ʳ (_ , (SR₁x₁y₁ , TR₁x₂y₂) , (SR₂y₁z₁ , TR₂y₂z₂)) →
∣ _ , SR₁x₁y₁ , SR₂y₁z₁ ∣
, ∣ _ , TR₁x₂y₂ , TR₂y₂z₂ ∣)
(uncurry $ T.rec λ @0 where
.T.truncation-is-propositionʳ →
Π-closure ext 1 λ _ →
T.truncation-is-proposition
.T.∣∣ʳ (_ , SR₁x₁y₁ , SR₂y₁z₁) →
T.∥∥ᴱ-map
λ (_ , TR₁x₂y₂ , TR₂y₂z₂) →
_ , (SR₁x₁y₁ , TR₁x₂y₂) , (SR₂y₁z₁ , TR₂y₂z₂))
------------------------------------------------------------------------
-- Combinators related to Maybe
-- A combinator that, given a relation transformer for F, produces a
-- relation transformer for Maybe ∘ F.
Maybeᴿ :
Relation-transformer-for F →
Relation-transformer-for (Maybe ∘ F)
Maybeᴿ = Maybeᴾ ∘_
-- When is an equivalence structure-preserving for Maybe ∘ F?
Is-Maybe-equivalence :
Structure-preserving-equivalence-predicate F a →
Structure-preserving-equivalence-predicate (Maybe ∘ F) a
Is-Maybe-equivalence Is-F-eq = λ where
(A , nothing) (B , nothing) eq → ↑ _ ⊤
(A , just x) (B , just y) eq → Is-F-eq (A , x) (B , y) eq
(A , _) (B , _) eq → ⊥
-- If F is univalent, then Maybe ∘ F is univalent.
Maybe-univalent :
{@0 F : Structure a b}
{@0 Is-F-eq : Structure-preserving-equivalence-predicate F c} →
@0 Univalent F Is-F-eq →
Univalent (Maybe ∘ F) (Is-Maybe-equivalence Is-F-eq)
Maybe-univalent
{F = F} {Is-F-eq = Is-F-eq} u-F .Univalent.univalent
{A = A , x} {B = B , y} =
lemma x y
where
univ = U.abstract-univ
lemma :
(x : Maybe (F A)) (y : Maybe (F B)) →
(eq : A ≃ᴱ B) →
Is-Maybe-equivalence Is-F-eq (A , x) (B , y) eq ≃
(subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y)
lemma nothing nothing eq =
↑ _ ⊤ ↔⟨ B.↑↔ ⟩
⊤ ↔⟨ inverse tt≡tt↔⊤ ⟩
tt ≡ tt ↔⟨ B.≡↔inj₁≡inj₁ ⟩
nothing ≡ nothing ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₁ _ _ ⟩□
subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) nothing ≡ nothing □
lemma nothing (just y) eq =
⊥ ↔⟨ ⊥↔⊥ ⟩
⊥ ↔⟨ inverse B.≡↔⊎ ⟩
nothing ≡ just y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₁ _ _ ⟩□
subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) nothing ≡ just y □
lemma (just x) nothing eq =
⊥ ↔⟨ ⊥↔⊥ ⟩
⊥ ↔⟨ inverse B.≡↔⊎ ⟩
just _ ≡ nothing ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₂ _ _ ⟩□
subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (just x) ≡ nothing □
lemma (just x) (just y) eq =
Is-F-eq (A , x) (B , y) eq ↝⟨ u-F .Univalent.univalent eq ⟩
subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y ↔⟨ B.≡↔inj₂≡inj₂ ⟩
just (subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x) ≡ just y ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym $ push-subst-inj₂ _ _ ⟩□
subst (Maybe ∘ F) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (just x) ≡ just y □
-- If G is suitable, then Maybeᴿ G is suitable.
Maybeᴿ-suitable :
{@0 G : Relation-transformer-for F} →
Suitable G →
Suitable (Maybeᴿ G)
Maybeᴿ-suitable {G = G} s-G = λ where
.Suitable.preserves-is-set set →
Maybe-closure 0 (S.preserves-is-set set)
.Suitable.preserves-is-proposition prop → λ @0 where
nothing nothing →
H-level.mono₁ 0 $
↑-closure 0 ⊤-contractible
nothing (just _) →
⊥-propositional
(just _) nothing →
⊥-propositional
(just x) (just y) →
S.preserves-is-proposition prop x y
.Suitable.symmetric {x = nothing} {y = nothing} → _
.Suitable.symmetric {x = just x} {y = just y} → S.symmetric
.Suitable.transitive {x = nothing} {y = nothing} {z = nothing} → _
.Suitable.transitive {x = just _} {y = just _} {z = just _} →
S.transitive
.Suitable.descent {x = nothing} {R = R} prop equiv _ →
(nothing , [ _ ])
, [ (λ @0 where
(nothing , _) → refl _)
]
.Suitable.descent {x = just x} {R = R} prop equiv SRxx →
$⟨ [ SRxx ] ⟩
Erased (G R x x) ↝⟨ (λ ([ SRxx ]) → S.descent prop equiv SRxx) ⟩
Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y)) ↝⟨ ECP.Contractibleᴱ-cong _
(Eq.↔→≃
(Σ-map just id)
(λ where
(nothing , ())
(just y , s) → y , s)
(λ where
(nothing , ())
(just _ , _) → refl _)
refl)
⦂ (_ → _) ⟩□
Contractibleᴱ (∃ λ y → Erased (Maybeᴿ G (Graph [_]) (just x) y)) □
where
module S = Suitable s-G
-- If G is univalent, then Maybeᴿ G is univalent.
Maybeᴿ-univalent :
{@0 G : Relation-transformer-for F} →
Univalentᴿ G →
Univalentᴿ (Maybeᴿ G)
Maybeᴿ-univalent {F = F} {G = G} (s-G , u-G) =
Maybeᴿ-suitable s-G
, ( $⟨ Maybe-univalent u-G ⟩
Univalent (Maybe ∘ F)
(Is-Maybe-equivalence λ (A , x) (B , y) eq →
G (Graph (_≃ᴱ_.to eq)) x y) ↝⟨ substᴱ (Univalent _)
(⟨ext⟩ λ p → ⟨ext⟩ λ q → lemma (p .proj₂) (q .proj₂)) ⟩□
Univalent (Maybe ∘ F)
(λ (A , x) (B , y) eq → Maybeᴿ G (Graph (_≃ᴱ_.to eq)) x y) □)
where
@0 lemma :
∀ x y →
Is-Maybe-equivalence
(λ (A , x) (B , y) eq → G (Graph (_≃ᴱ_.to eq)) x y)
(A , x) (B , y) ≡
(λ eq → Maybeᴿ G (Graph (_≃ᴱ_.to eq)) x y)
lemma nothing nothing = refl _
lemma nothing (just _) = refl _
lemma (just _) nothing = refl _
lemma (just _) (just _) = refl _
-- If G acts on functions, then Maybeᴿ G acts on functions.
Maybeᴿ-acts-on-functions :
{@0 G : Relation-transformer-for F} →
Acts-on-functions G →
Acts-on-functions (Maybeᴿ G)
Maybeᴿ-acts-on-functions {G = G} a-G = λ where
.Acts-on-functions.map f →
Monad.map (A.map f)
.Acts-on-functions.map-id →
Monad.map (A.map id) ≡⟨ cong Monad.map A.map-id ⟩
Monad.map id ≡⟨ ⟨ext⟩ Monad.map-id ⟩∎
id ∎
.Acts-on-functions.map-map {x = nothing} {y = nothing} → _
.Acts-on-functions.map-map {x = nothing} {y = just _} _ ()
.Acts-on-functions.map-map {x = just _} {y = nothing} _ ()
.Acts-on-functions.map-map {x = just _} {y = just _} →
A.map-map
where
module A = Acts-on-functions a-G
-- If G is positive, then Maybeᴿ G is positive.
Maybeᴿ-positive :
{@0 G : Relation-transformer-for F} →
Positive G →
Positive (Maybeᴿ G)
Maybeᴿ-positive {F = F} {G = G} p-G = λ where
.Positive.suitable → suitable
.Positive.acts-on-functions → acts-on-functions
.Positive.reflexive-∥≡∥ᴱ {x = nothing} → _
.Positive.reflexive-∥≡∥ᴱ {x = just _} → SP.reflexive-∥≡∥ᴱ
.Positive.transitive-;ᴱ⁻¹ R₁-prop R₂-prop x z →
_≃_.is-equivalence $
Eq.with-other-function
(lemma R₁-prop R₂-prop x z .proj₁)
_
(lemma R₁-prop R₂-prop x z .proj₂)
.Positive.commutes-with-/ᴱ {A = A} {R = R} prop equiv →
_≃ᴱ_.is-equivalence $
EEq.with-other-function
(Maybe (F A) /ᴱ Maybeᴿ G R ↔⟨ Q.Maybe/ᴱ ⟩
Maybe (F A /ᴱ G R) ↝⟨ F.id ⊎-cong EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩ ⟩□
Maybe (F (A /ᴱ R)) □)
(/ᴱ→/ᴱ (Maybeᴿ G) suitable acts-on-functions prop equiv)
(Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Maybe-closure 0 (SS.preserves-is-set Q./ᴱ-is-set)
.Q.[]ʳ nothing → refl _
.Q.[]ʳ (just _) → refl _)
where
module SP = Positive p-G
module SS = Suitable SP.suitable
suitable = Maybeᴿ-suitable SP.suitable
acts-on-functions = Maybeᴿ-acts-on-functions SP.acts-on-functions
@0 lemma :
(R₁-prop : ∀ x y → Is-proposition (R₁ x y)) →
(R₂-prop : ∀ x y → Is-proposition (R₂ x y)) →
∀ x z →
∃ λ (eq : (Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) x z ≃
Maybeᴿ G (R₁ ;ᴱ R₂) x z) →
∀ p →
_≃_.to eq p ≡
Suitable.transitive-;ᴱ suitable R₁-prop R₂-prop x z p
lemma {R₁ = R₁} {R₂ = R₂} R₁-prop R₂-prop = λ @0 where
nothing nothing →
((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) nothing nothing ↝⟨ Eq.⇔→≃
T.truncation-is-proposition
(H-level.mono₁ 0 $ ↑-closure 0 ⊤-contractible)
_
(λ _ → ∣ nothing , _ ∣) ⟩□
↑ _ ⊤ □)
, (λ _ → refl _)
nothing (just z) →
((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) nothing (just z) ↝⟨ Eq.⇔→≃
T.truncation-is-proposition
⊥-propositional
(T.rec λ @0 where
.T.truncation-is-propositionʳ →
⊥-propositional
.T.∣∣ʳ (nothing , _ , ())
.T.∣∣ʳ (just _ , () , _))
⊥-elim ⟩□
⊥ □)
, (T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
H-level.⇒≡ 1 $
⊥-propositional
.T.∣∣ʳ (nothing , _ , ())
.T.∣∣ʳ (just _ , () , _))
(just x) nothing →
((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) (just x) nothing ↝⟨ Eq.⇔→≃
T.truncation-is-proposition
⊥-propositional
(T.rec λ @0 where
.T.truncation-is-propositionʳ →
⊥-propositional
.T.∣∣ʳ (nothing , () , _)
.T.∣∣ʳ (just _ , _ , ()))
⊥-elim ⟩□
⊥ □)
, (T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
H-level.⇒≡ 1 $
⊥-propositional
.T.∣∣ʳ (nothing , () , _)
.T.∣∣ʳ (just _ , _ , ()))
(just x) (just z) →
((Maybeᴿ G R₁ ;ᴱ Maybeᴿ G R₂) (just x) (just z) ↝⟨ Eq.⇔→≃
T.truncation-is-proposition
T.truncation-is-proposition
(T.∥∥ᴱ-map λ where
(nothing , () , ())
(just _ , p) → _ , p)
(T.∥∥ᴱ-map (Σ-map just id)) ⟩
(G R₁ ;ᴱ G R₂) x z ↝⟨ Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩□
G (R₁ ;ᴱ R₂) x z □)
, (T.elim λ @0 where
.T.truncation-is-propositionʳ _ →
H-level.⇒≡ 1 $
SS.preserves-is-proposition
(λ _ _ → T.truncation-is-proposition) _ _
.T.∣∣ʳ (nothing , () , ())
.T.∣∣ʳ (just _ , _) → refl _)
------------------------------------------------------------------------
-- The Function and Functionᴿ combinators, along with some properties
-- Function structures.
Function : Structure a b → Structure a c → Structure a (b ⊔ c)
Function F G A = F A → G A
-- A combinator that, given relation transformers for F and G,
-- produces a relation transformer for Function F G.
Functionᴿ :
{F : Structure a b}
{G : Structure a c} →
Relation-transformer-for F →
Relation-transformer-for G →
Relation-transformer-for (Function F G)
Functionᴿ S T R f g = ∀ {x y} → S R x y → T R (f x) (g y)
-- A variant of Functionᴿ ∘ Constᴿ.
Function-Constᴿ :
{F : Structure b c}
(A : Type a) →
Relation-transformer-for F →
Relation-transformer-for (Function (Const A) F)
Function-Constᴿ A G R f g = (x : A) → G R (f x) (g x)
-- Function-Constᴿ is pointwise equivalent to Functionᴿ ∘ Constᴿ.
Function-Constᴿ≃Functionᴿ∘Constᴿ :
{f : A → F B} {g : A → F C}
(G : Relation-transformer-for F) →
Function-Constᴿ A G R f g ≃
(Functionᴿ ∘ Constᴿ) A G R f g
Function-Constᴿ≃Functionᴿ∘Constᴿ {R = R} {f = f} {g = g} G =
(∀ x → G R (f x) (g x)) ↝⟨ (∀-cong ext λ _ → ∀-intro _ ext) ⟩
(∀ x y → x ≡ y → G R (f x) (g y)) ↔⟨ inverse (∀-cong ext (λ _ → B.implicit-Π↔Π) F.∘ B.implicit-Π↔Π) ⟩□
(∀ {x y} → x ≡ y → G R (f x) (g y)) □
-- When is an equivalence structure-preserving for Function F G?
Is-Function-equivalence :
{F : Structure a b} →
Structure-preserving-equivalence-predicate F c →
Structure-preserving-equivalence-predicate G d →
Structure-preserving-equivalence-predicate (Function F G) (b ⊔ c ⊔ d)
Is-Function-equivalence Is-F-eq Is-G-eq (A , f) (B , g) eq =
∀ {x y} → Is-F-eq (A , x) (B , y) eq → Is-G-eq (A , f x) (B , g y) eq
-- A variant of Is-Function-equivalence.
Is-Function-equivalence′ :
{F : Structure a b} →
(∀ {A B} → A ≃ᴱ B → F A ≃ᴱ F B) →
Structure-preserving-equivalence-predicate G c →
Structure-preserving-equivalence-predicate (Function F G) (b ⊔ c)
Is-Function-equivalence′ F-cong Is-G-eq (A , f) (B , g) eq =
∀ x → Is-G-eq (A , f x) (B , g (_≃ᴱ_.to (F-cong eq) x)) eq
-- If F and G are univalent, then Function F G is univalent.
Function-univalent :
{@0 F : Structure a b}
{@0 G : Structure a c}
{@0 Is-F-eq : Structure-preserving-equivalence-predicate F d}
{@0 Is-G-eq : Structure-preserving-equivalence-predicate G e} →
@0 Univalent F Is-F-eq →
@0 Univalent G Is-G-eq →
Univalent (Function F G) (Is-Function-equivalence Is-F-eq Is-G-eq)
Function-univalent
{F = F} {G = G} {Is-F-eq = Is-F-eq} {Is-G-eq = Is-G-eq}
u-F u-G .Univalent.univalent
{A = A , f} {B = B , g} eq =
(∀ {x y} → Is-F-eq (A , x) (B , y) eq →
Is-G-eq (A , f x) (B , g y) eq) ↔⟨ B.implicit-Π↔Π F.∘
implicit-∀-cong ext B.implicit-Π↔Π ⟩
(∀ x y → Is-F-eq (A , x) (B , y) eq →
Is-G-eq (A , f x) (B , g y) eq) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
→-cong ext (u-F .Univalent.univalent eq) (u-G .Univalent.univalent eq)) ⟩
(∀ x y → subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $
≡⇒≃ (cong (_ ≡_) $ _≃_.left-inverse-of (Eq.subst-as-equivalence _ _) _) F.∘
inverse (Eq.≃-≡ $ inverse $ Eq.subst-as-equivalence _ _) F.∘
from-bijection ≡-comm) ⟩
(∀ x y → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↔⟨ Π-comm ⟩
(∀ y x → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g y) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ eq →
≡⇒≃ $ cong (_≡ _) $ cong (subst G _) $ cong f $ sym eq) ⟩
(∀ y x → subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y ≡ x →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))
(f (subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y)) ≡
g y) ↝⟨ (∀-cong ext λ _ → inverse $
∀-intro _ ext) ⟩
(∀ y →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))
(f (subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) y)) ≡
g y) ↝⟨ (∀-cong ext λ _ → ≡⇒≃ $ cong (_≡ _) $ sym $
subst-→) ⟩
(∀ y → subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f y ≡ g y) ↝⟨ Eq.extensionality-isomorphism ext ⟩□
subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f ≡ g □
where
univ = U.abstract-univ
-- A variant of Function-univalent that is stated using
-- Is-Function-equivalence′ instead of Is-Function-equivalence.
Function-univalent′ :
{@0 G : Structure a c}
{@0 Is-G-eq : Structure-preserving-equivalence-predicate G e}
(@0 F-cong : ∀ {A B} → A ≃ᴱ B → F A ≃ᴱ F B) →
@0 (∀ {A} (x : F A) → _≃ᴱ_.to (F-cong F.id) x ≡ x) →
@0 Univalent G Is-G-eq →
Univalent (Function F G) (Is-Function-equivalence′ F-cong Is-G-eq)
Function-univalent′
{F = F} {G = G} {Is-G-eq = Is-G-eq}
F-cong F-cong-id u-G .Univalent.univalent
{A = A , f} {B = B , g} eq =
(∀ x → Is-G-eq (A , f x) (B , g (_≃ᴱ_.to (F-cong eq) x)) eq) ↝⟨ (∀-cong ext λ _ → u-G .Univalent.univalent eq) ⟩
(∀ x →
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) (f x) ≡ g (_≃ᴱ_.to (F-cong eq) x)) ↝⟨ Eq.extensionality-isomorphism ext ⟩
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡ g ∘ _≃ᴱ_.to (F-cong eq) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡_) $
cong (g ∘_) $ cong _≃ᴱ_.to $ cong F-cong $ sym $
_≃_.right-inverse-of EEq.≃≃≃ᴱ _ ⟩
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡
g ∘ _≃ᴱ_.to (F-cong $ EEq.≃→≃ᴱ $ EEq.≃ᴱ→≃ eq) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡_) $
cong (g ∘_) $ ⟨ext⟩ $
transport-theorem
F (_≃ᴱ_.to ∘ F-cong ∘ EEq.≃→≃ᴱ) F-cong-id univ (EEq.≃ᴱ→≃ eq) ⟩
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ≡
g ∘ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ↝⟨ inverse $ Eq.≃-≡ $ →-cong₁ ext $ Eq.subst-as-equivalence _ _ ⟩
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘
subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡
g ∘ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘
subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ↝⟨ ≡⇒≃ $ cong (subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘
subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡_) $
cong (g ∘_) $ ⟨ext⟩ $
_≃_.right-inverse-of (Eq.subst-as-equivalence _ _) ⟩
subst G (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) ∘ f ∘
subst F (sym (≃⇒≡ univ (EEq.≃ᴱ→≃ eq))) ≡
g ↝⟨ (≡⇒≃ $ cong (_≡ _) $ sym $ ⟨ext⟩ λ _ →
subst-→) ⟩□
subst (Function F G) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) f ≡ g □
where
univ = U.abstract-univ
-- If S is positive and T is suitable, then Functionᴿ S T is suitable.
--
-- This is a variant of Theorem 5.12 from "Internalizing
-- Representation Independence with Univalence".
Functionᴿ-suitable :
{@0 S : Relation-transformer-for F} →
{@0 T : Relation-transformer-for G} →
Positive S →
Suitable T →
Suitable (Functionᴿ S T)
Functionᴿ-suitable {F = F} {G = G} {S = S} {T = T} p-S s-T = λ where
.Suitable.preserves-is-set set →
Π-closure ext 2 λ _ →
TS.preserves-is-set set
.Suitable.preserves-is-proposition prop _ _ →
implicit-Π-closure ext 1 λ _ →
implicit-Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
TS.preserves-is-proposition prop _ _
.Suitable.symmetric
{R = R} {x = f} {y = g} prop S→T {x = x} {y = y} →
S (R ⁻¹) x y ↝⟨ SS.symmetric (flip prop) ⟩
S R y x ↝⟨ S→T ⟩
T R (f y) (g x) ↝⟨ TS.symmetric prop ⟩□
T (R ⁻¹) (g x) (f y) □
.Suitable.transitive
{R = R₁} {S = R₂} {x = f} {y = g} {z = h}
R₁-prop R₂-prop S→T₁ S→T₂ {x = x} {y = y} →
S (R₁ ;ᴱ R₂) x y ↔⟨ inverse Eq.⟨ _ , SP.transitive-;ᴱ⁻¹ R₁-prop R₂-prop _ _ ⟩ ⟩
(S R₁ ;ᴱ S R₂) x y ↝⟨ T.∥∥ᴱ-map (Σ-map _ (Σ-map S→T₁ S→T₂)) ⟩
(T R₁ ;ᴱ T R₂) (f x) (h y) ↝⟨ TS.transitive-;ᴱ R₁-prop R₂-prop _ _ ⟩□
T (R₁ ;ᴱ R₂) (f x) (h y) □
.Suitable.descent {A = A} {x = f} {R = R} prop equiv S→T →
let
d :
(x : F A) →
Contractibleᴱ (∃ λ y → Erased (T (Graph [_]) (f x) y))
d x = TS.descent prop equiv (S→T (SP.reflexive prop equiv x))
g-[] : F A → G (A /ᴱ R)
g-[] x = d x .proj₁ .proj₁
S→T′ : Erased (S R x y → T (Graph [_]) (f x) (g-[] y))
S→T′ = λ {x = x} {y = y} →
[ S R x y ↝⟨ S→T ⟩
T R (f x) (f y) ↝⟨ flip (TS.transitive prop (λ _ _ → Q./ᴱ-is-set)) (d y .proj₁ .proj₂ .erased) ⟩
T (R ;ᴱ Graph [_]) (f x) (g-[] y) ↝⟨ subst (λ R → T R (f x) (g-[] y)) (;ᴱ-Graph-[]≡Graph-[] prop equiv) ⟩□
T (Graph [_]) (f x) (g-[] y) □
]
S-[]-map-[] : ∀ {x} → Erased (S (Graph [_]) x (SA.map [_] x))
S-[]-map-[] = λ {x = x} →
[ $⟨ SA.map-map Q.[]-respects-relation (SP.reflexive prop equiv x) ⟩
S (Graph [_]) (SA.map id x) (SA.map [_] x) ↝⟨ subst (λ f → S (Graph (Q.[_] {R = R})) (f x) (SA.map Q.[_] x)) SA.map-id ⟩□
S (Graph [_]) x (SA.map [_] x) □
]
g : F A /ᴱ S R → G (A /ᴱ R)
g = Q.rec λ where
.Q.is-setʳ → TS.preserves-is-set Q./ᴱ-is-set
.Q.[]ʳ → g-[]
.Q.[]-respects-relationʳ {x = x} {y = y} SRxy →
g-[] x ≡⟨ cong proj₁ $
d x .proj₂ .erased
(g-[] y , Er.map (_$ SRxy) S→T′) ⟩∎
g-[] y ∎
h : F A /ᴱ S R ≃ᴱ F (A /ᴱ R)
h = EEq.⟨ _ , SP.commutes-with-/ᴱ prop equiv ⟩
in
( (F (A /ᴱ R) ↝⟨ _≃ᴱ_.from h ⟩
F A /ᴱ S R ↝⟨ g ⟩□
G (A /ᴱ R) □)
, [ (λ {x = x} {y = y} →
let
lemma :
∀ y →
S (Graph [_]) x (_≃ᴱ_.to h y) →
T (Graph [_]) (f x) (g y)
lemma = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Π-closure ext 1 λ _ →
TS.preserves-is-proposition
(λ _ _ → Q./ᴱ-is-set) _ _
.Q.[]ʳ y →
let
s = $⟨ S-[]-map-[] .erased ⟩
S (Graph [_]) y (SA.map [_] y) ↝⟨ SS.symmetric (λ _ _ → Q./ᴱ-is-set) ⟩□
S (Graph [_] ⁻¹) (SA.map [_] y) y □
in
S (Graph [_]) x (SA.map [_] y) ↝⟨ flip (SS.transitive (λ _ _ → Q./ᴱ-is-set) λ _ _ → Q./ᴱ-is-set) s ⟩
S (Graph [_] ⟵) x y ↝⟨ subst (λ R → S R x y) (Graph-[]-⟵≡ prop equiv) ⟩
S R x y ↝⟨ S→T′ .erased ⟩□
T (Graph [_]) (f x) (g-[] y) □
in
S (Graph [_]) x y ↝⟨ subst (S (Graph [_]) x) (sym $ _≃ᴱ_.right-inverse-of h _) ⟩
S (Graph [_]) x (_≃ᴱ_.to h (_≃ᴱ_.from h y)) ↝⟨ lemma (_≃ᴱ_.from h y) ⟩□
T (Graph [_]) (f x) (g (_≃ᴱ_.from h y)) □)
]
)
, [ (λ (g′ , [ g′-hyp ]) →
let
lemma : ∀ y → g y ≡ g′ (_≃ᴱ_.to h y)
lemma = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
TS.preserves-is-set Q./ᴱ-is-set
.Q.[]ʳ y →
g-[] y ≡⟨ cong proj₁ $
d y .proj₂ .erased
( g′ (SA.map [_] y)
, [
$⟨ S-[]-map-[] .erased ⟩
S (Graph [_]) y (SA.map [_] y) ↝⟨ g′-hyp ⟩□
T (Graph [_]) (f y) (g′ (SA.map [_] y)) □
]
) ⟩∎
g′ (SA.map [_] y) ∎
in
Σ-≡,≡→≡
(⟨ext⟩ λ x →
g (_≃ᴱ_.from h x) ≡⟨ lemma (_≃ᴱ_.from h x) ⟩
g′ (_≃ᴱ_.to h (_≃ᴱ_.from h x)) ≡⟨ cong g′ $ _≃ᴱ_.right-inverse-of h _ ⟩∎
g′ x ∎)
(H-level-Erased 1
(implicit-Π-closure ext 1 λ _ →
implicit-Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
TS.preserves-is-proposition (λ _ _ → Q./ᴱ-is-set) _ _)
_ _))
]
where
module SP = Positive p-S
module SA = Acts-on-functions SP.acts-on-functions
module SS = Suitable SP.suitable
module TS = Suitable s-T
-- If A is a set and G is suitable, then Function-Constᴿ A G is
-- suitable.
Function-Constᴿ-suitable :
{@0 G : Relation-transformer-for F} →
@0 Is-set A →
Suitable G →
Suitable (Function-Constᴿ A G)
Function-Constᴿ-suitable {F = F} {A = A} {G = G} set =
Suitable G ↝⟨ Functionᴿ-suitable (Constᴿ-positive set) ⟩
Suitable (Functionᴿ (Constᴿ A) G) ↝⟨ Suitable-map (inverse $ Function-Constᴿ≃Functionᴿ∘Constᴿ G) ⟩□
Suitable (Function-Constᴿ A G) □
-- If S is positive and univalent, and T is univalent, then
-- Functionᴿ S T is univalent.
Functionᴿ-univalent :
{@0 S : Relation-transformer-for F}
{@0 T : Relation-transformer-for G} →
Positive S →
Univalentᴿ S →
Univalentᴿ T →
Univalentᴿ (Functionᴿ S T)
Functionᴿ-univalent p-S (_ , u-S) (s-T , u-T) =
Functionᴿ-suitable p-S s-T
, Function-univalent u-S u-T
-- If A is a set and G is univalent, then Function-Constᴿ A G is
-- univalent.
Function-Constᴿ-univalent :
{@0 G : Relation-transformer-for F} →
@0 Is-set A →
Univalentᴿ G →
Univalentᴿ (Function-Constᴿ A G)
Function-Constᴿ-univalent set (s-G , u-G) =
Function-Constᴿ-suitable set s-G
, Function-univalent′ (λ _ → F.id) refl u-G
------------------------------------------------------------------------
-- Combinators related to Erased
-- A combinator that, given a relation transformer for F, produces a
-- relation transformer for λ A → Erased (F A).
--
-- Note that I have not proved that Erasedᴿ G is positive if G is
-- positive.
Erasedᴿ :
{@0 F : Structure a b} →
@0 Relation-transformer-for F →
Relation-transformer-for (λ A → Erased (F A))
Erasedᴿ G R = Erasedᴾ (G R)
-- When is an equivalence structure-preserving for λ A → Erased (F A)?
Is-Erased-equivalence :
@0 Structure-preserving-equivalence-predicate F a →
Structure-preserving-equivalence-predicate (λ A → Erased (F A)) a
Is-Erased-equivalence Is-F-eq (_ , [ x ]) (_ , [ y ]) eq =
Erased (Is-F-eq (_ , x) (_ , y) eq)
-- If F is univalent, then λ A → Erased (F A) is univalent.
Erased-univalent :
{@0 F : Structure a b}
{@0 Is-F-eq : Structure-preserving-equivalence-predicate F c} →
@0 Univalent F Is-F-eq →
Univalent (λ A → Erased (F A)) (Is-Erased-equivalence Is-F-eq)
Erased-univalent
{F = F} {Is-F-eq = Is-F-eq} u-F .Univalent.univalent
{A = A , [ x ]} {B = B , [ y ]} eq =
Erased (Is-F-eq (A , x) (B , y) eq) ↝⟨ Erased-cong (u-F .Univalent.univalent eq) ⟩
Erased (subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ≡ y) ↔⟨ Erased-≡↔[]≡[] ⟩
[ subst F (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) x ] ≡ [ y ] ↝⟨ ≡⇒≃ $ cong (_≡ _) $ sym push-subst-[] ⟩□
subst (λ A → Erased (F A)) (≃⇒≡ univ (EEq.≃ᴱ→≃ eq)) [ x ] ≡ [ y ] □
where
univ = U.abstract-univ
-- If G is suitable, then Erasedᴿ G is suitable.
Erasedᴿ-suitable :
{@0 G : Relation-transformer-for F} →
@0 Suitable G →
Suitable (Erasedᴿ G)
Erasedᴿ-suitable {G = G} s-G = λ where
.Suitable.preserves-is-set set →
H-level-Erased 2 (s-G .Suitable.preserves-is-set set)
.Suitable.preserves-is-proposition prop _ _ →
H-level-Erased 1 (s-G .Suitable.preserves-is-proposition prop _ _)
.Suitable.symmetric prop →
Er.map (s-G .Suitable.symmetric prop)
.Suitable.transitive R-prop S-prop [ GRxy ] [ GSyz ] →
[ s-G .Suitable.transitive R-prop S-prop GRxy GSyz ]
.Suitable.descent {x = [ x ]} {R = R} prop equiv [GRxx] → $⟨ [ [GRxx] .erased ] ⟩
Erased (G R x x) ↝⟨ Er.map (λ GRxx → s-G .Suitable.descent prop equiv GRxx) ⟩
Erased (Contractibleᴱ (∃ λ y → Erased (G (Graph [_]) x y))) ↝⟨ ECP.Erased-Contractibleᴱ↔Contractibleᴱ-Erased _ ⟩
Contractibleᴱ (Erased (∃ λ y → Erased (G (Graph [_]) x y))) ↝⟨ ECP.Contractibleᴱ-cong _ Erased-Σ↔Σ ⟩
Contractibleᴱ (∃ λ ([ y ]) → Erased (Erased (G (Graph [_]) x y))) ↔⟨⟩
Contractibleᴱ (∃ λ y → Erased (Erasedᴿ G (Graph [_]) [ x ] y)) □
-- If G is univalent, then Erasedᴿ G is univalent.
Erasedᴿ-univalent :
{@0 G : Relation-transformer-for F} →
@0 Univalentᴿ G →
Univalentᴿ (Erasedᴿ G)
Erasedᴿ-univalent (s-G , u-G) =
Erasedᴿ-suitable s-G
, Erased-univalent u-G
-- If G acts on functions, then Erasedᴿ G acts on functions.
Erasedᴿ-acts-on-functions :
{@0 G : Relation-transformer-for F} →
@0 Acts-on-functions G →
Acts-on-functions (Erasedᴿ G)
Erasedᴿ-acts-on-functions {G = G} a-G = λ where
.Acts-on-functions.map f →
Er.map (a-G .Acts-on-functions.map f)
.Acts-on-functions.map-id →
Er.map (a-G .Acts-on-functions.map id) ≡⟨ cong (λ f → Er.map f) (a-G .Acts-on-functions.map-id) ⟩
Er.map id ≡⟨⟩
id ∎
.Acts-on-functions.map-map
{f = f} {g = g} {x = [ x ]} {y = [ y ]} {R₁ = R₁} {R₂ = R₂} R₁→R₂ →
Erased (G R₁ x y) ↝⟨ Er.map (a-G .Acts-on-functions.map-map R₁→R₂) ⟩□
Erased (G R₂ (a-G .Acts-on-functions.map f x)
(a-G .Acts-on-functions.map g y)) □
------------------------------------------------------------------------
-- An example: monoids
-- This is a variant of Examples 3.5 and 3.6 from "Internalizing
-- Representation Independence with Univalence".
module Example₁ where
-- Raw monoid structures.
Raw-monoid-structure : Structure a a
Raw-monoid-structure A = A × (A → A → A)
-- Raw-monoid-structure can be expressed using some combinators.
_ :
Raw-monoid-structure {a = a} ≡
Product Id (Function Id (Function Id Id))
_ = refl _
-- Raw monoids, i.e., monoids without the monoid laws.
Raw-monoid : (a : Level) → Type (lsuc a)
Raw-monoid _ = Type-with Raw-monoid-structure
-- Raw monoid equivalence predicates.
Is-raw-monoid-equivalence :
Structure-preserving-equivalence-predicate Raw-monoid-structure a
Is-raw-monoid-equivalence (_ , id₁ , _∘₁_) (_ , id₂ , _∘₂_) eq =
_≃ᴱ_.to eq id₁ ≡ id₂ ×
(∀ x y → _≃ᴱ_.to eq (x ∘₁ y) ≡ _≃ᴱ_.to eq x ∘₂ _≃ᴱ_.to eq y)
-- Is-raw-monoid-equivalence can be expressed using some
-- combinators.
_ :
Is-raw-monoid-equivalence {a = a} ≡
Is-Product-equivalence
Is-Id-equivalence
(Is-Function-equivalence′ id
(Is-Function-equivalence′ id
Is-Id-equivalence))
_ = refl _
-- Raw monoid equivalences (with erased proofs).
infix 4 _≃ᴿᴹᴱ_
_≃ᴿᴹᴱ_ : Raw-monoid a → Raw-monoid a → Type a
_≃ᴿᴹᴱ_ = _≃[ Is-raw-monoid-equivalence ]ᴱ_
-- The combination of Raw-monoid-structure and
-- Is-raw-monoid-equivalence is univalent (in erased settings).
Is-raw-monoid-equivalence-univalent :
Univalent (Raw-monoid-structure {a = a}) Is-raw-monoid-equivalence
Is-raw-monoid-equivalence-univalent =
Product-univalent
Id-univalent
(Function-univalent′ id refl
(Function-univalent′ id refl
Id-univalent))
-- The monoid laws.
Monoid-laws : Axioms Raw-monoid-structure a
Monoid-laws (A , id , _∘_) =
Is-set A ×
(∀ x → id ∘ x ≡ x) ×
(∀ x → x ∘ id ≡ x) ×
(∀ x y z → x ∘ (y ∘ z) ≡ (x ∘ y) ∘ z)
-- The monoid laws are propositional.
Monoid-laws-propositional :
(M : Raw-monoid a) → Is-proposition (Monoid-laws M)
Monoid-laws-propositional (A , id , _∘_) =
Σ-closure 1 (H-level-propositional ext 2) λ A-set →
×-closure 1 (Π-closure ext 1 λ _ → A-set) $
×-closure 1 (Π-closure ext 1 λ _ → A-set) $
Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ →
A-set
-- Monoid structures.
Monoid-structure : Structure a a
Monoid-structure =
Raw-monoid-structure With-the-axioms Monoid-laws
-- Monoids.
Monoid : (a : Level) → Type (lsuc a)
Monoid _ = Type-with Monoid-structure
-- Monoid equivalence predicates.
Is-monoid-equivalence :
Structure-preserving-equivalence-predicate Monoid-structure a
Is-monoid-equivalence = Lift-With-the-axioms Is-raw-monoid-equivalence
-- Monoid equivalences (with erased proofs).
infix 4 _≃ᴹᴱ_
_≃ᴹᴱ_ : Monoid a → Monoid a → Type a
_≃ᴹᴱ_ = _≃[ Is-monoid-equivalence ]ᴱ_
-- The combination of Monoid-structure and Is-monoid-equivalence is
-- univalent (in erased settings).
Is-monoid-equivalence-univalent :
Univalent (Monoid-structure {a = a}) Is-monoid-equivalence
Is-monoid-equivalence-univalent =
Univalent-With-the-axioms
Monoid-laws-propositional
Is-raw-monoid-equivalence-univalent
-- The structure identity principle for monoids.
@0 sip-for-monoids : (M ≃ᴹᴱ N) ≃ (M ≡ N)
sip-for-monoids = sip Is-monoid-equivalence-univalent
-- If a raw monoid M₂ is equivalent (with erased proofs) to the
-- underlying raw monoid of a monoid M₁, then the monoid laws hold
-- for M₂ (in erased contexts), and M₁ is equivalent (with erased
-- proofs) to the monoid constructed from M₂ and the laws.
induced-monoid :
(M₁@(A₁ , ops₁ , _) : Monoid a)
(M₂@(A₂ , ops₂) : Raw-monoid a) →
(A₁ , ops₁) ≃ᴿᴹᴱ M₂ →
∃ λ (l₂ : Erased (Monoid-laws M₂)) → M₁ ≃ᴹᴱ (A₂ , ops₂ , l₂)
induced-monoid =
induced-structures Is-raw-monoid-equivalence-univalent
-- The unary natural numbers form a monoid.
ℕ-monoid : Monoid lzero
ℕ-monoid =
ℕ
, (0 , _+_)
, [ ( ℕ-set
, refl
, (λ _ → Nat.+-right-identity)
, (λ m _ _ → Nat.+-assoc m)
)
]
-- One variant of binary natural numbers forms a raw monoid.
Bin-raw-monoid : Raw-monoid lzero
Bin-raw-monoid =
Bin
, Bin.Operations-for-Bin.zero
, Bin.Operations-for-Bin._+_
-- The raw monoid underlying ℕ-monoid is equivalent (with erased
-- proofs) to Bin-raw-monoid.
ℕ≃ᴿᴹᴱBin : (ℕ , (0 , _+_)) ≃ᴿᴹᴱ Bin-raw-monoid
ℕ≃ᴿᴹᴱBin =
(ℕ ↔⟨ inverse Bin.Bin↔ℕ ⟩□
Bin □)
, [ ( (_↔_.from Bin.Bin↔ℕ 0 ≡⟨ _↔_.to Bin.≡-for-indices↔≡ [ refl _ ] ⟩∎
Bin.Operations-for-Bin.zero ∎)
, (λ m n →
_↔_.from Bin.Bin↔ℕ (m + n) ≡⟨ _↔_.to Bin.≡-for-indices↔≡ [ refl _ ] ⟩∎
_↔_.from Bin.Bin↔ℕ m Bin.Operations-for-Bin.+
_↔_.from Bin.Bin↔ℕ n ∎)
)
]
-- The monoid laws hold for Bin-raw-monoid (in erased contexts).
@0 Bin-monoid-laws : Monoid-laws Bin-raw-monoid
Bin-monoid-laws =
induced-monoid ℕ-monoid Bin-raw-monoid ℕ≃ᴿᴹᴱBin .proj₁ .erased
-- One variant of binary natural numbers forms a monoid.
Bin-monoid : Monoid lzero
Bin-monoid =
Bin-raw-monoid .proj₁ , Bin-raw-monoid .proj₂ , [ Bin-monoid-laws ]
-- This monoid is equivalent, with erased proofs, to ℕ-monoid.
ℕ≃ᴹᴱBin : ℕ-monoid ≃ᴹᴱ Bin-monoid
ℕ≃ᴹᴱBin =
induced-monoid ℕ-monoid Bin-raw-monoid ℕ≃ᴿᴹᴱBin .proj₂
-- In erased contexts the monoid is equal to ℕ-monoid.
@0 ℕ≡Bin : ℕ-monoid ≡ Bin-monoid
ℕ≡Bin = _≃_.to sip-for-monoids ℕ≃ᴹᴱBin
------------------------------------------------------------------------
-- Another example: bags
-- This is a variant of Examples 5.5 and 5.13 from "Internalizing
-- Representation Independence with Univalence".
-- The type A is assumed to come with decidable equality.
module Example₂ {A : Type a} (_≟_ : Decidable-equality A) where
private
-- The type A is a set.
set : Is-set A
set = decidable⇒set _≟_
-- Raw bag structures.
Raw-bag-structure : Structure a a
Raw-bag-structure Bag =
-- An empty bag.
Bag ×
-- Insertion.
(A → Bag → Bag) ×
-- Union.
(Bag → Bag → Bag) ×
-- The number of occurrences of the given element in the given
-- bag.
(A → Bag → ℕ)
-- Raw-bag-structure can be expressed using some combinators.
_ :
Raw-bag-structure ≡
Product Id
(Product (Function (Const A) (Function Id Id))
(Product (Function Id (Function Id Id))
(Function (Const A) (Function Id (Const ℕ)))))
_ = refl _
-- Raw bag types.
Raw-bag-type : Type (lsuc a)
Raw-bag-type = Type-with Raw-bag-structure
-- Raw bag equivalence predicates.
Is-raw-bag-equivalence :
Structure-preserving-equivalence-predicate Raw-bag-structure a
Is-raw-bag-equivalence
(_ , empty₁ , insert₁ , union₁ , count₁)
(_ , empty₂ , insert₂ , union₂ , count₂)
eq =
_≃ᴱ_.to eq empty₁ ≡ empty₂ ×
(∀ x xs → _≃ᴱ_.to eq (insert₁ x xs) ≡ insert₂ x (_≃ᴱ_.to eq xs)) ×
(∀ xs ys →
_≃ᴱ_.to eq (union₁ xs ys) ≡
union₂ (_≃ᴱ_.to eq xs) (_≃ᴱ_.to eq ys)) ×
(∀ x xs → count₁ x xs ≡ count₂ x (_≃ᴱ_.to eq xs))
-- Is-raw-bag-equivalence can be expressed using some combinators.
_ :
Is-raw-bag-equivalence ≡
Is-Product-equivalence
Is-Id-equivalence
(Is-Product-equivalence
(Is-Function-equivalence′ (λ _ → EEq.id)
(Is-Function-equivalence′ id
Is-Id-equivalence))
(Is-Product-equivalence
(Is-Function-equivalence′ id
(Is-Function-equivalence′ id
Is-Id-equivalence))
(Is-Function-equivalence′ (λ _ → EEq.id)
(Is-Function-equivalence′ id
Is-Const-equivalence))))
_ = refl _
-- Raw bag equivalences (with erased proofs).
infix 4 _≃ᴮᴱ_
_≃ᴮᴱ_ : Raw-bag-type → Raw-bag-type → Type a
_≃ᴮᴱ_ = _≃[ Is-raw-bag-equivalence ]ᴱ_
-- Relation transformers for raw bag types.
Raw-bag-typeᴿ : Relation-transformer-for Raw-bag-structure
Raw-bag-typeᴿ =
Productᴿ Idᴿ
(Productᴿ (Function-Constᴿ A (Functionᴿ Idᴿ Idᴿ))
(Productᴿ (Functionᴿ Idᴿ (Functionᴿ Idᴿ Idᴿ))
(Function-Constᴿ A (Functionᴿ Idᴿ (Constᴿ ℕ)))))
-- Raw-bag-typeᴿ is univalent.
Raw-bag-typeᴿ-univalent : Univalentᴿ Raw-bag-typeᴿ
Raw-bag-typeᴿ-univalent =
Productᴿ-univalent Idᴿ-univalent
(Productᴿ-univalent
(Function-Constᴿ-univalent set
(Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent
Idᴿ-univalent))
(Productᴿ-univalent
(Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent
(Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent
Idᴿ-univalent))
(Function-Constᴿ-univalent set
(Functionᴿ-univalent Idᴿ-positive Idᴿ-univalent
(Constᴿ-univalent ℕ-set)))))
-- One implementation of bags.
List-bag : Type a
List-bag = List A
count₁′ : A → A → ℕ
count₁′ x y = if x ≟ y then 1 else 0
count₁ : A → List-bag → ℕ
count₁ x = L.foldr (λ y → count₁′ x y +_) 0
Raw-bag-structure-List-bag : Raw-bag-structure List-bag
Raw-bag-structure-List-bag =
[]
, _∷_
, L._++_
, count₁
Raw-bag-type-List-bag : Raw-bag-type
Raw-bag-type-List-bag = List-bag , Raw-bag-structure-List-bag
-- Another implementation of bags.
Assoc-list-bag : Type a
Assoc-list-bag = List (ℕ × A)
insert : ℕ → A → Assoc-list-bag → Assoc-list-bag
insert m x [] = (m , x) ∷ []
insert m x ((n , y) ∷ ys) =
if x ≟ y
then (m + n , y) ∷ ys
else (n , y) ∷ insert m x ys
union : Assoc-list-bag → Assoc-list-bag → Assoc-list-bag
union = flip (L.foldr (uncurry insert))
count₂′ : A → ℕ × A → ℕ
count₂′ x (n , y) = if x ≟ y then n else 0
count₂ : A → Assoc-list-bag → ℕ
count₂ x = L.foldr (λ y → count₂′ x y +_) 0
Raw-bag-structure-Assoc-list-bag : Raw-bag-structure Assoc-list-bag
Raw-bag-structure-Assoc-list-bag =
[]
, insert 1
, union
, count₂
Raw-bag-type-Assoc-list-bag : Raw-bag-type
Raw-bag-type-Assoc-list-bag =
Assoc-list-bag , Raw-bag-structure-Assoc-list-bag
-- Some properties of count₁.
count₁-++ :
∀ xs → count₁ z (xs L.++ ys) ≡ count₁ z xs + count₁ z ys
count₁-++ [] = refl _
count₁-++ {z = z} {ys = ys} (x ∷ xs) =
count₁′ z x + (count₁ z (xs L.++ ys)) ≡⟨ cong (count₁′ z x +_) $ count₁-++ xs ⟩
count₁′ z x + (count₁ z xs + count₁ z ys) ≡⟨ Nat.+-assoc (count₁′ z x) ⟩∎
(count₁′ z x + count₁ z xs) + count₁ z ys ∎
count₁-replicate :
∀ n → count₁ z (L.replicate n y) ≡ count₂′ z (n , y)
count₁-replicate {z = z} {y = y} zero with z ≟ y
… | yes _ = refl _
… | no _ = refl _
count₁-replicate {z = z} {y = y} (suc n) =
count₁′ z y + count₁ z (L.replicate n y) ≡⟨ cong (count₁′ z y +_) $ count₁-replicate n ⟩
count₁′ z y + count₂′ z (n , y) ≡⟨ lemma ⟩∎
count₂′ z (suc n , y) ∎
where
lemma : count₁′ z y + count₂′ z (n , y) ≡ count₂′ z (suc n , y)
lemma with z ≟ y
… | yes _ = refl _
… | no _ = refl _
-- Some properties of count₂.
count₂-insert-≡ :
z ≡ x → ∀ ys → count₂ z (insert m x ys) ≡ m + count₂ z ys
count₂-insert-≡ {z = z} {x = x} {m = m} z≡x = helper
where
helper : ∀ ys → count₂ z (insert m x ys) ≡ m + count₂ z ys
helper [] with z ≟ x
… | yes _ = m + 0 ∎
… | no z≢x = ⊥-elim $ z≢x z≡x
helper ((n , y) ∷ ys) with x ≟ y
helper ((n , y) ∷ ys) | no x≢y =
count₂′ z (n , y) + count₂ z (insert m x ys) ≡⟨ cong (count₂′ z (n , y) +_) $ helper ys ⟩
count₂′ z (n , y) + (m + count₂ z ys) ≡⟨ Nat.+-assoc (count₂′ z (n , y)) ⟩
(count₂′ z (n , y) + m) + count₂ z ys ≡⟨ cong (_+ count₂ z ys) $ sym $ Nat.+-comm m ⟩
(m + count₂′ z (n , y)) + count₂ z ys ≡⟨ sym $ Nat.+-assoc m ⟩∎
m + (count₂′ z (n , y) + count₂ z ys) ∎
helper ((n , y) ∷ ys) | yes x≡y =
count₂′ z (m + n , y) + count₂ z ys ≡⟨ cong (_+ _) lemma ⟩
(m + count₂′ z (n , y)) + count₂ z ys ≡⟨ sym $ Nat.+-assoc m ⟩∎
m + (count₂′ z (n , y) + count₂ z ys) ∎
where
lemma : count₂′ z (m + n , y) ≡ m + count₂′ z (n , y)
lemma with z ≟ y
… | yes _ = m + n ∎
… | no z≢y = ⊥-elim $ z≢y (trans z≡x x≡y)
count₂-insert-≢ :
z ≢ x → ∀ ys → count₂ z (insert m x ys) ≡ count₂ z ys
count₂-insert-≢ {z = z} {x = x} {m = m} z≢x = helper
where
helper : ∀ ys → count₂ z (insert m x ys) ≡ count₂ z ys
helper [] with z ≟ x
… | no _ = 0 ∎
… | yes z≡x = ⊥-elim $ z≢x z≡x
helper ((n , y) ∷ ys) with x ≟ y
… | no _ =
count₂′ z (n , y) + count₂ z (insert m x ys) ≡⟨ cong (count₂′ z (n , y) +_) $ helper ys ⟩∎
count₂′ z (n , y) + count₂ z ys ∎
… | yes x≡y =
count₂′ z (m + n , y) + count₂ z ys ≡⟨ cong (_+ _) lemma ⟩∎
count₂′ z ( n , y) + count₂ z ys ∎
where
lemma : count₂′ z (m + n , y) ≡ count₂′ z (n , y)
lemma with z ≟ y
… | no _ = 0 ∎
… | yes z≡y = ⊥-elim $ z≢x (trans z≡y (sym x≡y))
count₂-insert :
∀ ys → count₂ z (insert m x ys) ≡ count₂′ z (m , x) + count₂ z ys
count₂-insert {z = z} {m = m} {x = x} ys with z ≟ x
… | yes z≡x =
count₂ z (insert m x ys) ≡⟨ count₂-insert-≡ z≡x ys ⟩∎
m + count₂ z ys ∎
… | no z≢x =
count₂ z (insert m x ys) ≡⟨ count₂-insert-≢ z≢x ys ⟩∎
count₂ z ys ∎
count₂-union :
∀ xs → count₂ z (union xs ys) ≡ count₂ z xs + count₂ z ys
count₂-union {z = z} {ys = ys} [] =
count₂ z ys ∎
count₂-union {z = z} {ys = ys} ((m , x) ∷ xs) =
count₂ z (insert m x (union xs ys)) ≡⟨ count₂-insert (union xs ys) ⟩
count₂′ z (m , x) + count₂ z (union xs ys) ≡⟨ cong (count₂′ z (m , x) +_) $ count₂-union xs ⟩
count₂′ z (m , x) + (count₂ z xs + count₂ z ys) ≡⟨ Nat.+-assoc (count₂′ z (m , x)) ⟩∎
(count₂′ z (m , x) + count₂ z xs) + count₂ z ys ∎
-- A relation relating values of the two bag types.
infix 4 _∼_
_∼_ : List-bag → Assoc-list-bag → Type a
xs ∼ ys = ∀ z → count₁ z xs ≡ count₂ z ys
-- The relation _∼_ is propositional.
∼-propositional : ∀ xs ys → Is-proposition (xs ∼ ys)
∼-propositional _ _ =
Π-closure ext 1 λ _ →
ℕ-set
-- The relation _∼_ is a QER.
∼-QER : Is-QER _∼_
∼-QER =
(λ {xs₁ xs₂ ys₁ ys₂} xs₁∼ys₁ xs₂∼ys₁ xs₂∼ys₂ z →
count₁ z xs₁ ≡⟨ xs₁∼ys₁ z ⟩
count₂ z ys₁ ≡⟨ sym $ xs₂∼ys₁ z ⟩
count₁ z xs₂ ≡⟨ xs₂∼ys₂ z ⟩∎
count₂ z ys₂ ∎)
, (λ xs → ∣ to xs , ∼to xs ∣)
, (λ ys → ∣ from ys , from∼ ys ∣)
where
to : List-bag → Assoc-list-bag
to = L.foldr (insert 1) []
from : Assoc-list-bag → List-bag
from = L.foldr (λ (n , x) → L.replicate n x L.++_) []
∼to : ∀ xs → xs ∼ to xs
∼to [] _ = refl _
∼to (x ∷ xs) z =
count₁′ z x + count₁ z xs ≡⟨ cong (count₁′ z x +_) $ ∼to xs z ⟩
count₁′ z x + count₂ z (to xs) ≡⟨⟩
count₂′ z (1 , x) + count₂ z (to xs) ≡⟨ sym $ count₂-insert (to xs) ⟩∎
count₂ z (insert 1 x (to xs)) ∎
from∼ : ∀ ys → from ys ∼ ys
from∼ [] _ = refl _
from∼ ((n , y) ∷ ys) z =
count₁ z (L.replicate n y L.++ from ys) ≡⟨ count₁-++ (L.replicate n y) ⟩
count₁ z (L.replicate n y) + count₁ z (from ys) ≡⟨ cong (count₁ z (L.replicate n y) +_) $ from∼ ys z ⟩
count₁ z (L.replicate n y) + count₂ z ys ≡⟨ cong (_+ count₂ z ys) $ count₁-replicate n ⟩
count₂′ z (n , y) + count₂ z ys ≡⟨⟩
count₂ z ((n , y) ∷ ys) ∎
-- Raw-bag-structure-List-bag and Raw-bag-structure-Assoc-list-bag
-- are related by Raw-bag-typeᴿ _∼_.
List-bag∼Assoc-list-bag :
Raw-bag-typeᴿ _∼_
Raw-bag-structure-List-bag Raw-bag-structure-Assoc-list-bag
List-bag∼Assoc-list-bag =
(λ z →
count₁ z [] ≡⟨⟩
count₂ z [] ∎)
, (λ x {x = xs} {y = ys} xs∼ys z →
count₁ z (x ∷ xs) ≡⟨⟩
count₁′ z x + count₁ z xs ≡⟨ cong (count₁′ z x +_) (xs∼ys z) ⟩
count₁′ z x + count₂ z ys ≡⟨⟩
count₂′ z (1 , x) + count₂ z ys ≡⟨ sym $ count₂-insert ys ⟩∎
count₂ z (insert 1 x ys) ∎)
, (λ {x = xs₁} {y = ys₁} xs₁∼ys₁ {x = xs₂} {y = ys₂} xs₂∼ys₂ z →
count₁ z (xs₁ L.++ xs₂) ≡⟨ count₁-++ xs₁ ⟩
count₁ z xs₁ + count₁ z xs₂ ≡⟨ cong₂ _+_ (xs₁∼ys₁ z) (xs₂∼ys₂ z) ⟩
count₂ z ys₁ + count₂ z ys₂ ≡⟨ sym $ count₂-union ys₁ ⟩∎
count₂ z (union ys₁ ys₂) ∎)
, (λ x {x = xs} {y = ys} xs∼ys →
count₁ x xs ≡⟨ xs∼ys x ⟩∎
count₂ x ys ∎)
-- There is an equivalence (with erased proofs) between List-bag
-- quotiented by _∼_ ⟵ and Assoc-list-bag quotiented by _∼_ ⟶
-- (where _/ᴱ_ is used for the quotients).
List-bag≃ᴱAssoc-list-bag :
List-bag /ᴱ _∼_ ⟵ ≃ᴱ Assoc-list-bag /ᴱ _∼_ ⟶
List-bag≃ᴱAssoc-list-bag =
/ᴱ⟵≃ᴱ/ᴱ⟶ᴱ (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional .proj₁
-- Lists that are related by List-bag≃ᴱAssoc-list-bag (in a
-- certain way) are also related by _∼_.
--
-- Note that this definition is not erased: it uses /ᴱ⟵≃ᴱ/ᴱ⟶
-- instead of /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ, and ∼-QER instead of
-- Is-QER→Is-QERᴱ ∼-QER.
→∼ :
∀ xs ys →
_≃ᴱ_.to List-bag≃ᴱAssoc-list-bag [ xs ] ≡ [ ys ] →
xs ∼ ys
→∼ xs ys = /ᴱ⟵≃ᴱ/ᴱ⟶ ∼-QER ∼-propositional .proj₂ xs ys .proj₁
-- The function →∼ is an equivalence (in erased contexts).
@0 →∼-equivalence : ∀ xs ys → Is-equivalence (→∼ xs ys)
→∼-equivalence xs ys =
/ᴱ⟵≃ᴱ/ᴱ⟶ ∼-QER ∼-propositional .proj₂ xs ys .proj₂ .erased
-- The relation _∼_ can be expressed using
-- List-bag≃ᴱAssoc-list-bag (in erased contexts).
@0 ≃∼ :
∀ xs ys →
(_≃ᴱ_.to List-bag≃ᴱAssoc-list-bag [ xs ] ≡ [ ys ]) ≃ (xs ∼ ys)
≃∼ = /ᴱ⟵≃ᴱ/ᴱ⟶ᴱ (Is-QER→Is-QERᴱ ∼-QER) ∼-propositional .proj₂ .erased
private
instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ =
Suitable→/ᴱ⟵×/ᴱ⟶
Raw-bag-type-List-bag
Raw-bag-type-Assoc-list-bag
(Raw-bag-typeᴿ-univalent .proj₁)
(Is-QER→Is-QERᴱ ∼-QER)
∼-propositional
List-bag∼Assoc-list-bag
-- There is a raw bag structure on List-bag /ᴱ _∼_ ⟵.
Raw-bag-structure-List-bag-/ᴱ :
Raw-bag-structure (List-bag /ᴱ _∼_ ⟵)
Raw-bag-structure-List-bag-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₁
Raw-bag-type-List-bag-/ᴱ : Raw-bag-type
Raw-bag-type-List-bag-/ᴱ =
List-bag /ᴱ _∼_ ⟵ , Raw-bag-structure-List-bag-/ᴱ
-- There is a raw bag structure on Assoc-list-bag /ᴱ _∼_ ⟶.
Raw-bag-structure-Assoc-list-bag-/ᴱ :
Raw-bag-structure (Assoc-list-bag /ᴱ _∼_ ⟶)
Raw-bag-structure-Assoc-list-bag-/ᴱ =
instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₁
Raw-bag-type-Assoc-list-bag-/ᴱ : Raw-bag-type
Raw-bag-type-Assoc-list-bag-/ᴱ =
Assoc-list-bag /ᴱ _∼_ ⟶ , Raw-bag-structure-Assoc-list-bag-/ᴱ
-- The two raw bag structures are related to the underlying raw
-- bag structures (in erased contexts).
@0 List∼List-/ᴱ :
Raw-bag-typeᴿ (Graph [_])
Raw-bag-structure-List-bag Raw-bag-structure-List-bag-/ᴱ
List∼List-/ᴱ = instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₁
@0 Assoc-list∼Assoc-list-/ᴱ :
Raw-bag-typeᴿ (Graph [_])
Raw-bag-structure-Assoc-list-bag
Raw-bag-structure-Assoc-list-bag-/ᴱ
Assoc-list∼Assoc-list-/ᴱ =
instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₂ .proj₁
-- They are also related to each other (in erased contexts).
@0 List-/ᴱ∼Assoc-list-/ᴱ :
Raw-bag-typeᴿ (Graph (_≃ᴱ_.to List-bag≃ᴱAssoc-list-bag))
Raw-bag-structure-List-bag-/ᴱ
Raw-bag-structure-Assoc-list-bag-/ᴱ
List-/ᴱ∼Assoc-list-/ᴱ =
instance-of-Suitable→/ᴱ⟵×/ᴱ⟶ .proj₂ .proj₂ .erased .proj₂ .proj₂
-- Raw-bag-type-List-bag-/ᴱ is equal to
-- Raw-bag-type-Assoc-list-bag-/ᴱ (in erased contexts).
@0 List-/ᴱ≡Assoc-list-/ᴱ :
Raw-bag-type-List-bag-/ᴱ ≡ Raw-bag-type-Assoc-list-bag-/ᴱ
List-/ᴱ≡Assoc-list-/ᴱ =
Univalentᴿ→/ᴱ⟵×/ᴱ⟶
Raw-bag-type-List-bag
Raw-bag-type-Assoc-list-bag
Raw-bag-typeᴿ-univalent
(Is-QER→Is-QERᴱ ∼-QER)
∼-propositional
List-bag∼Assoc-list-bag
.proj₂ .proj₂ .erased .proj₂ .proj₂
-- For List-bag /ᴱ _∼_ ⟵ equality of two lists can be expressed in
-- terms of the induced count function (in erased contexts).
@0 List-≡≃ :
let count = Raw-bag-structure-List-bag-/ᴱ .proj₂ .proj₂ .proj₂ in
(xs ys : List-bag /ᴱ _∼_ ⟵) →
(xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys)
List-≡≃ = Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Eq.left-closure ext 0 $
Q./ᴱ-is-set
.Q.[]ʳ xs → Q.elim-prop λ @0 where
.Q.is-propositionʳ _ →
Eq.left-closure ext 0 $
Q./ᴱ-is-set
.Q.[]ʳ ys →
([ xs ] ≡ [ ys ]) ↝⟨ inverse $
Q.related≃[equal]
(Is-QER→Is-equivalence-relation-⟵ ∼-QER)
T.truncation-is-proposition ⟩
(_∼_ ⟵) xs ys ↝⟨ Eq.⇔→≃
T.truncation-is-proposition
(Π-closure ext 1 λ _ → ℕ-set)
(T.rec λ @0 where
.T.truncation-is-propositionʳ →
Π-closure ext 1 λ _ → ℕ-set
.T.∣∣ʳ (zs , xs∼zs , ys∼zs) z →
count₁ z xs ≡⟨ xs∼zs z ⟩
count₂ z zs ≡⟨ sym $ ys∼zs z ⟩∎
count₁ z ys ∎)
(λ xs∼ys →
T.∥∥ᴱ-map
(λ (zs , xs∼zs) →
zs
, xs∼zs
, λ z →
count₁ z ys ≡⟨ sym $ xs∼ys z ⟩
count₁ z xs ≡⟨ xs∼zs z ⟩∎
count₂ z zs ∎)
(∼-QER .proj₂ .proj₁ xs)) ⟩□
(∀ z → count₁ z xs ≡ count₁ z ys) □
-- This property can easily be transported to
-- Assoc-list-bag /ᴱ _∼_ ⟶.
@0 Assoc-list-≡≃ :
let count = Raw-bag-structure-Assoc-list-bag-/ᴱ
.proj₂ .proj₂ .proj₂ in
(xs ys : Assoc-list-bag /ᴱ _∼_ ⟶) →
(xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys)
Assoc-list-≡≃ =
subst
(λ B → let count = B .proj₂ .proj₂ .proj₂ .proj₂ in
(xs ys : B .proj₁) →
(xs ≡ ys) ≃ (∀ z → count z xs ≡ count z ys))
List-/ᴱ≡Assoc-list-/ᴱ
List-≡≃
| {
"alphanum_fraction": 0.4792981888,
"avg_line_length": 36.6627101879,
"ext": "agda",
"hexsha": "57ef13a9b6c667e681b5d8a6e4fd17c8c8258ace",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Structure-identity-principle/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Structure-identity-principle/Erased.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Structure-identity-principle/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 41706,
"size": 111198
} |
{-# OPTIONS --without-K #-}
module Leftovers.Leftovers where
open import Function using (_$_)
open import Data.Bool
import Data.String as String
open import Leftovers.TraverseTerm
open import Leftovers.Utils
import Level as Level
open import Reflection
open import Reflection.Term
open import Reflection.TypeChecking.Monad.Instances
open import Reflection.Argument using (unArg)
open import Data.Fin using (toℕ ; Fin)
open import Data.Unit
open import Data.Nat as Nat hiding (_⊓_)
open import Data.Nat.Show as NShow
open import Data.Product
open import Data.List as List
import Data.Vec as Vec
open import Data.Vec using (Vec)
import Data.Vec.Categorical as VCat
import Data.List.Categorical
open Data.List.Categorical.TraversableM {m = Level.zero} tcMonad
open import Data.Maybe using (just ; nothing)
open import Function.Nary.NonDependent
open import Data.Product.Nary.NonDependent
open import Category.Monad.State
import Category.Monad as Monad
open import Level.Literals using (#_)
import Data.Fin.Reflection
import Leftovers.Monad as L
data Holes (n : ℕ) (levels : Levels n) (sets : Sets n levels ) : Set (⨆ n levels) where
makeHoles : Product n sets → Holes n levels sets
getHoles : ∀ {n ls sets} → Holes n ls sets → Product n sets
getHoles (makeHoles p) = p
{-# INLINE getHoles #-}
nthHole : ∀ n {ls} {as : Sets n ls } k → Holes n ls as → Projₙ as k
nthHole n k h = projₙ n k (getHoles h)
{-# INLINE nthHole #-}
infixr 10 _∥_
_∥_ : ∀ {n : ℕ} {levels : Levels n} {sets : Sets n levels}
{ℓ} {X : Set ℓ} →
Holes n levels sets → X →
Holes (suc n) (ℓ , levels) (X , sets)
_∥_ {n = zero} {sets = sets} {X = X} holes x = makeHoles x
_∥_ {n = suc n} {sets = sets} {X = X} holes x = makeHoles (x , getHoles holes)
-- fillHoles : ∀ {ℓ} {n} {ls} {types : Sets n ls} {T : Set ℓ} → (Holes n ls types → T) → Product n types → T
-- fillHoles f args = f (makeHoles args)
-- quoteSets {n = suc n} (x Vec.∷ v) = app (app (quoteTerm (_,_ {A = Set} {B = λ x₁ → Sets n (proj₂ nSet)} )) x) (quoteSets v)
-- record MetaInContext : Set where
-- constructor Cmeta
-- field
-- context : LCxt
-- unapplied : Term
-- applied : Term
--
--
open import Agda.Builtin.Nat using (_-_)
--Given a hole, infer its function type,
--taking anything in the hole's context that's not in the current context
-- as an argument
inferHoleType : L.Hole → TC Type
inferHoleType hole = do
currentContext ← getContext
let
numExtras = (List.length (L.Hole.context hole)) - (List.length currentContext)
extras = List.take numExtras (L.Hole.context hole)
holeType ← inContext (L.Hole.context hole) (inferType (L.Hole.hole hole))
addArrows extras holeType
where
open import Agda.Builtin.Nat
addArrows : List (Arg Type) → Term → TC Type
addArrows [] holeType = return holeType
addArrows (x ∷ extras) holeType = do
rec ← addArrows extras holeType
return (pi x (abs "ctx" rec))
data Dummy : Set where
dummy : Dummy
sep : Term → TC Term
sep t = do
debugPrint "" 2 (strErr "Finding sep for " ∷ strErr (showTerm t) ∷ [])
ty ← inferType t
debugPrint "" 2 (strErr "sep got type " ∷ strErr (showTerm ty) ∷ [])
let ret = (def (quote identity) [ vArg t ]) ⦂ ty
return ret
open import Reflection.DeBruijn using (weaken)
open import Leftovers.Everywhere tcMonad
-- Hack using case-lambda to convince Agda that a term is a definition
-- Helps with the termination checker
-- makeDef : Term → TC Term
-- makeDef t = do
-- ty ← inferType t
-- let ret = pat-lam [ clause [] [ vArg (con (quote dummy) []) ] t ] []
-- return (app (def (quote the) (vArg (pi (vArg (quoteTerm Dummy)) (abs "_" (weaken 1 ty))) ∷ vArg ret ∷ [])) (quoteTerm dummy))
getMetas : Term → TC (List L.Hole)
getMetas t = do
-- body <- newMeta goalType
debugPrint "Hello" 2 (strErr "Ran macro, body var is " ∷ termErr t ∷ [])
-- L.runLeftovers (theMacro body)
--Now we see what holes are left
let
handleMetas : _ → Meta → Data.Maybe.Maybe L.Hole
handleMetas ctx m = just (L.mkHole m (meta m (List.map (λ x → vArg (var x [])) (List.downFrom (length ctx )))) (List.map proj₂ ctx))
debugPrint "L" 2 (strErr "After ALLMETAS " ∷ [])
-- debugPrint "L" 2 (strErr "ALLMETAS NORM " ∷ List.map termErr normMetas)
let metaList = (collectFromSubterms
(record
{ onVar = λ _ _ → nothing
; onMeta = handleMetas
; onCon = λ _ _ → nothing
; onDef = λ _ _ → nothing }) t
)
return (List.deduplicate L.equivDec metaList)
-- Given the size of the starting context, a hole,
-- and the list of parameters to add to the start context,
-- Generate a new hole whose context has the new parameters
-- inserted into the middle.
-- We need this because a meta might occur in a deeper scope than
-- where we're inserting the new variables.
-- weakenMeta : ℕ → List (Arg Type) → L.Hole → L.Hole
-- weakenMeta startSize newParams hole =
-- L.mkHole (Reflection.DeBruijn.weakenFrom (numNew + 1) (length newParams) (L.Hole.hole hole)) fullCtx
-- where
-- numNew = List.length (L.Hole.context hole) - startSize
-- fullCtx : List (Arg Type)
-- fullCtx with (newCtx , startCtx) ← List.splitAt numNew (L.Hole.context hole)
-- = newCtx ++ newParams ++ startCtx
-- Given the length of the current context
-- and a meta in a possibly deeper context
-- return the type of the meta in the original context
-- e.g. a function type abstracting over any new variables
abstractMetaType : ℕ → (L.Hole × Type) → Type
abstractMetaType numStart (hole , ty) =
foldr (λ param ty → pi param (abs "arg" ty)) ty
(take (length (L.Hole.context hole) - numStart) (L.Hole.context hole))
-- Given the size of the current context and a list of new parameter types to add
-- freshen all metas to take new parameters and weaken DeBruijn variables accordingly
-- Also forgets any blocked constraints on those metas, since they're replaced by new ones
injectParameters : List Type → List Type → Term → TC Term
injectParameters currentCtx injectedCtx t = everywhere defaultActions freshenMeta (weaken (length injectedCtx) t)
where
freshenMeta : Cxt → Term → TC Term
freshenMeta innerVars (meta m xs) = do
mtype ← inferType (meta m xs)
newMeta mtype
freshenMeta innerVars t = return t
open import Data.Maybe using (Maybe ; just ; nothing)
record MacroResult : Set where
constructor macroResult
field
body : Term
numMetas : ℕ
holes : Vec L.Hole numMetas
types : Vec Type numMetas
indexFor : Meta → Maybe (Fin numMetas)
getMacroHoles : Type → List (Arg Type) → (Term → L.Leftovers ⊤) → TC MacroResult
getMacroHoles targetType ctx theMacro = runSpeculative $
do
(body , _) ← L.runLeftovers
((L.freshMeta targetType) L.>>=
λ hole → theMacro hole L.>> L.pure hole)
normBody ← normalise body
metas ← getMetas normBody
let metaVec = Vec.fromList metas
debugPrint "Leftovers" 2 (strErr "All holes " ∷ [])
-- debugPrint "Leftovers" 2 (strErr "All holes " ∷ List.map (λ m → termErr (L.Hole.hole m)) metas)
-- Now we know how many arguments we need to take
debugPrint "Leftovers" 2 (strErr "Unified num holes " ∷ [])
-- Get the type of each hole *in its context*
types <- VCat.TraversableM.forM {a = Level.zero} {n = length metas} tcMonad (metaVec)
λ hole → inContext (L.Hole.context hole ++ ctx) do
-- debugPrint "" 2 (strErr "Context : " ∷ strErr (String.intersperse ",, " (List.map (λ x → showTerm (unArg x)) (contextForHole hole))) ∷ [])
debugPrint "" 2 (strErr "Getting type of hole " ∷ termErr ( (L.Hole.hole hole) ) ∷ strErr " !" ∷ [])
ty ← inferType (L.Hole.hole hole)
debugPrint "" 2 [ strErr "got type" ]
return ty
let indexedHoles = Vec.toList (Vec.zip (Vec.allFin (length metas)) metaVec)
debugPrint "" 2 (strErr "Indexed holes: " ∷ List.map (λ x → termErr (meta (L.Hole.holeMeta (proj₂ x)) [])) indexedHoles)
let
indexForMeta m =
Data.Maybe.map proj₁ $
head (filter (λ y → m Meta.≟ L.Hole.holeMeta (proj₂ y)) indexedHoles)
debugPrint "Hello" 2 (strErr "normalised MacroBody " ∷ termErr normBody ∷ [])
return (macroResult normBody _ metaVec types indexForMeta , false) -- ((body , metas , types) , false)
where
open import Reflection.Meta as Meta
metaToArg : MacroResult → Cxt → Term → TC Term
metaToArg results cxt t@(meta m _) with (MacroResult.indexFor results m)
... | just i = do
let
ithHole = Vec.lookup (MacroResult.holes results) i
numNewInContext = length (L.Hole.context ithHole)
argNum = (numNewInContext + ((MacroResult.numMetas results - 1) - toℕ i))
debugPrint "" 2 (strErr "Replacing meta " ∷ strErr (showTerm (meta m [])) ∷ strErr " with arg " ∷ strErr (NShow.show argNum) ∷ [])
return (var argNum (List.map (λ x → vArg (var x [])) (List.upTo numNewInContext)))
... | nothing = typeError (strErr "Internal Error: unfound meta " ∷ termErr (meta m []) ∷ strErr " when finding Leftover holes" ∷ [])
metaToArg _ _ t = return t
findLeftovers : ∀ {ℓ} → Set ℓ → (Term → L.Leftovers ⊤) → Term → TC ⊤
findLeftovers targetSet theMacro goal =
do
startContext ← getContext
let startCtxLen = List.length startContext
targetType ← quoteTC targetSet
-- Unification variable for number of holes, we don't know how many yet
numHoles ← newMeta (quoteTerm ℕ)
-- Unification variables for the HVec of holes
let levelsType = (def (quote Levels) (vArg numHoles ∷ []))
levels ← newMeta levelsType -- def (quote nSet) [ hArg numHoles ]
let setsType = (def (quote Sets) (vArg numHoles ∷ vArg levels ∷ []))
sets ← newMeta setsType
let productType = def (quote Holes) (vArg numHoles ∷ vArg levels ∷ vArg sets ∷ [])
-- Make sure the type of the function we produce matches (unifies with)
-- (Holes -> Target Type)
let funType = pi (vArg productType) (abs "holes" targetType)
checkType goal funType
let extContext = vArg productType ∷ startContext
let
contextForHole : L.Hole → List (Arg Type)
contextForHole hole = (L.Hole.context hole) ++ extContext
debugPrint "Leftovers" 2 (strErr "Goal function type " ∷ termErr funType ∷ [])
-- The return type of the function we're producing
-- (argType , goalAbs) ← case funType of λ
-- { (pi (arg _ dom) cod) → return (dom , cod)
-- ; _ → typeError (strErr "Need to give as argument to applyPartial" ∷ [])}
-- unify productType argType
-- -- goalType ← extendContext (vArg productType) (newMeta (quoteTerm Set))
-- unify funType (pi (vArg productType) goalAbs)
-- Run the given macro on a fresh hole
-- in a context extended with the argument with the Holes
debugPrint "Leftovers" 2 (strErr "goalType before run theMacro" ∷ termErr targetType ∷ [])
result ← getMacroHoles targetType startContext theMacro
let numMetas = MacroResult.numMetas result
debugPrint "Leftovers" 2 (strErr "Got holes types " ∷ [])
-- debugPrint "Hello" 2 (strErr "Got hole types" ∷ List.map termErr (Vec.toList holeTypes))
let
abstractedTypes = (Vec.map (abstractMetaType startCtxLen)
(Vec.zip (MacroResult.holes result) (MacroResult.types result)))
setsFromTypes =
quoteSets abstractedTypes
debugPrint "Hello" 2 (strErr "Made sets " ∷ strErr (showTerm setsFromTypes) ∷ [])
levelsFromTypes ← quoteLevels abstractedTypes
debugPrint "Hello" 2 (strErr "Made levels " ∷ strErr (showTerm levelsFromTypes) ∷ [])
-- Now we know the types of our holes
unify sets setsFromTypes
unify levels levelsFromTypes
--This gives us enough information to make a function parameterized over the types of holes
--We traverse the result of the macro, replacing each meta with a parameter
--and wrap the hole thing in an n-ary lambda taking parameters of the hole types
funBody ← everywhere defaultActions (metaToArg result) (MacroResult.body result)
sepBody ← inContext (List.map vArg (List.reverse $ Vec.toList abstractedTypes) ++ startContext) $ sep funBody
-- let sepBody = funBody
-- Pair each meta with its index
-- let indexedMetas = (Vec.zip (Vec.allFin _) (Vec.fromList {!!}))
-- -- Replace the ith meta with the ith element of the HList
-- forM (Vec.toList indexedMetas) λ ( i , hole ) → inContext (contextForHole hole) do
-- -- TODO is this bad? why re-infer?
-- holeType ← inferType (L.Hole.hole hole)
-- let
-- holeCtx = L.Hole.context hole
-- numArgs = length holeCtx
-- rhs =
-- (def (quote nthHole)
-- (vArg (lit (nat (length {!!})))
-- -- ∷ hArg (quoteTerm nSet)
-- ∷ hArg (levels ⦂ levelsType)
-- ∷ hArg (sets ⦂ setsType)
-- ∷ vArg (Data.Fin.Reflection.toTerm i)
-- --TODO hidden args for context vars?
-- ∷ vArg (var numArgs [] ⦂ productType)
-- ∷ (List.map (λ n → vArg (var n [])) (List.upTo numArgs))))
-- debugPrint "Hello" 2 (strErr "Unify LHS " ∷ strErr (showTerm (L.Hole.hole hole)) ∷ [] )
-- debugPrint "Hello" 2 (strErr "Unify RHS " ∷ strErr (showTerm rhs) ∷ [] )
-- unify (L.Hole.hole hole) (rhs )
-- debugPrint "" 2 (strErr "done unify" ∷ [])
--Hack to help with termination
debugPrint "" 2 (strErr "got fun body " ∷ strErr (showTerm sepBody) ∷ [])
nflam ← normalise (naryLam numMetas sepBody ⦂ def (quote _⇉_) (vArg sets ∷ vArg targetType ∷ []))
debugPrint "" 2 (strErr "making fun fun " ∷ strErr (showTerm nflam) ∷ [])
--Produce the function that gives the result of the last macro
let finalResult = (lam visible (abs "holes"
(app (def (quote uncurryₙ) (vArg numHoles ∷ vArg (naryLam numMetas sepBody) ∷ []))
(def (quote getHoles) [ vArg (var 0 []) ])
)))
unify goal finalResult
debugPrint "Hello" 2 (strErr "Final Result" ∷ termErr finalResult ∷ [])
-- return tt
where
naryLam : ℕ → Term → Term
naryLam 0 x = x
naryLam (suc n) x = lam visible (abs ("hole" String.++ NShow.show (suc n)) (naryLam n x))
quoteLevels : ∀ {n} → Vec.Vec Term n → TC Term
quoteLevels Vec.[] = return (con (quote Level.lift) (vArg (quoteTerm tt) ∷ []))
quoteLevels {n = suc n} (x Vec.∷ v) = do
rec ← quoteLevels {n = n} v
typeOfType ← inferType x
let
theLevel = case typeOfType of λ
{ (sort (set l)) → l
; (sort (lit l)) → (def (quote #_) (vArg (lit (nat l)) ∷ [] ))
; _ → quoteTerm Level.zero }
return (con (quote _,_) (vArg theLevel ∷ vArg rec ∷ [] ))
quoteSets : ∀ {n} → Vec.Vec Term n → Term
quoteSets Vec.[] = con (quote Level.lift) (vArg (quoteTerm tt) ∷ [])
quoteSets {n = suc n} (x Vec.∷ v) = (con (quote _,_) (vArg x ∷ vArg (quoteSets v) ∷ [] ))
-- infixr 10 [_⇒_]
by : ∀ {ℓ} {A : Set ℓ} {n} {ls} {types : Sets n ls}
→ (theMacro : Term → L.Leftovers ⊤)
→ {@(tactic findLeftovers A theMacro) f : Holes n ls types → A}
→ Product n types → A
by {n = n} _ {f} x = f (makeHoles x)
by' : ∀ {ℓ} {A : Set ℓ} {n} {ls} {types : Sets n ls}
→ (theMacro : Term → L.Leftovers ⊤)
→ {@(tactic findLeftovers A theMacro) f : Holes n ls types → A}
→ ⊤ → Product n types → A
by' {n = n} _ {f} _ x = f (makeHoles x)
-- by {n = n} _ {f} = curryₙ n (λ x → f (makeHoles x))
open import Relation.Nullary
-- syntax withLeftovers tac x = ► tac ⇒ x ◄
macro
getNormal : ∀ {X : Set} → X → Term → TC ⊤
getNormal {X = X} x goal = do
t ← quoteTC x
ttype ← quoteTC X
checkType goal ttype
debugPrint "" 2 (strErr "get Normal term " ∷ termErr t ∷ [])
debugPrint "" 2 (strErr "get Normal term type " ∷ termErr ttype ∷ [])
goalType ← inferType goal
debugPrint "" 2 (strErr "get Normal goal type " ∷ termErr goalType ∷ [])
unify goalType ttype
nf ← normalise t
nfSimplified ← everywhere defaultActions action t
debugPrint "" 2 (strErr "get Normal term nf " ∷ termErr nf ∷ [])
unify goal nfSimplified
where
open import Reflection.Name as N
action : Cxt → Term → TC Term
action ctx t@(def gholes (arg _ arg1 ∷ []) ) = do
case (gholes N.≟ quote getHoles) of λ
{ (yes _) → do
nf1 ← normalise arg1
case nf1 of λ
{ (def mholes (arg _ tup ∷ [])) →
case (mholes N.≟ quote makeHoles) of λ
{(yes _) → normalise tup
; (no _) → return t}
; _ → return t}
; (no _) → return t }
action _ t = return t
-- applyNormal : ∀ {ℓ1 ℓ2} {X : Set ℓ1} {Y : Set ℓ2} → (X → Y) → X → Term → TC ⊤
-- applyNormal {X = X} {Y} f x goal = do
-- goalType ← inferType goal
-- tX ← quoteTC X
-- tY ← quoteTC Y
-- tf ← quoteTC f
-- tx ← quoteTC x
-- nf ← normalise (app tf tx)
-- unify goalType tY
-- unify nf goal
default : {A : Set} → A → Term → TC ⊤
default x hole = bindTC (quoteTC x) (unify hole)
| {
"alphanum_fraction": 0.6280709868,
"avg_line_length": 40.5128805621,
"ext": "agda",
"hexsha": "3b0624478a2fd92f0930fa50820814f9cff86f8b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_forks_repo_path": "src/Leftovers/Leftovers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_issues_repo_path": "src/Leftovers/Leftovers.agda",
"max_line_length": 154,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_stars_repo_path": "src/Leftovers/Leftovers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5272,
"size": 17299
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Pushout.Base where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Unit
open import Cubical.HITs.Susp
data Pushout {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
(f : A → B) (g : A → C) : Type (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) where
inl : B → Pushout f g
inr : C → Pushout f g
push : (a : A) → inl (f a) ≡ inr (g a)
-- Suspension defined as a pushout
PushoutSusp : ∀ {ℓ} (A : Type ℓ) → Type ℓ
PushoutSusp A = Pushout {A = A} {B = Unit} {C = Unit} (λ _ → tt) (λ _ → tt)
PushoutSusp→Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A → Susp A
PushoutSusp→Susp (inl _) = north
PushoutSusp→Susp (inr _) = south
PushoutSusp→Susp (push a i) = merid a i
Susp→PushoutSusp : ∀ {ℓ} {A : Type ℓ} → Susp A → PushoutSusp A
Susp→PushoutSusp north = inl tt
Susp→PushoutSusp south = inr tt
Susp→PushoutSusp (merid a i) = push a i
Susp→PushoutSusp→Susp : ∀ {ℓ} {A : Type ℓ} (x : Susp A) →
PushoutSusp→Susp (Susp→PushoutSusp x) ≡ x
Susp→PushoutSusp→Susp north = refl
Susp→PushoutSusp→Susp south = refl
Susp→PushoutSusp→Susp (merid _ _) = refl
PushoutSusp→Susp→PushoutSusp : ∀ {ℓ} {A : Type ℓ} (x : PushoutSusp A) →
Susp→PushoutSusp (PushoutSusp→Susp x) ≡ x
PushoutSusp→Susp→PushoutSusp (inl _) = refl
PushoutSusp→Susp→PushoutSusp (inr _) = refl
PushoutSusp→Susp→PushoutSusp (push _ _) = refl
PushoutSusp≃Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A ≃ Susp A
PushoutSusp≃Susp = isoToEquiv (iso PushoutSusp→Susp Susp→PushoutSusp Susp→PushoutSusp→Susp PushoutSusp→Susp→PushoutSusp)
PushoutSusp≡Susp : ∀ {ℓ} {A : Type ℓ} → PushoutSusp A ≡ Susp A
PushoutSusp≡Susp = isoToPath (iso PushoutSusp→Susp Susp→PushoutSusp Susp→PushoutSusp→Susp PushoutSusp→Susp→PushoutSusp)
| {
"alphanum_fraction": 0.6682464455,
"avg_line_length": 35.8301886792,
"ext": "agda",
"hexsha": "ed18bf81217a7c9d062e1f6f3744fbe596461200",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/Pushout/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/Pushout/Base.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/Pushout/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 706,
"size": 1899
} |
{-
Generic UARel, DUARel, and SubstRel: the path relation is always univalent
-}
{-# OPTIONS --safe #-}
module Cubical.Displayed.Generic where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Displayed.Base
open import Cubical.Displayed.Subst
private
variable
ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
-- UARel for an arbitrary type
𝒮-generic : (A : Type ℓA) → UARel A ℓA
UARel._≅_ (𝒮-generic A) = _≡_
UARel.ua (𝒮-generic A) a a' = idEquiv (a ≡ a')
-- DUARel for an arbitrary family
𝒮ᴰ-generic : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB) → DUARel 𝒮-A B ℓB
𝒮ᴰ-generic 𝒮-A B .DUARel._≅ᴰ⟨_⟩_ b p b' = PathP (λ i → B (UARel.≅→≡ 𝒮-A p i)) b b'
𝒮ᴰ-generic 𝒮-A B .DUARel.uaᴰ b p b' = idEquiv _
-- SubstRel for an arbitrary family
𝒮ˢ-generic : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB) → SubstRel 𝒮-A B
𝒮ˢ-generic 𝒮-A B .SubstRel.act p = substEquiv B (UARel.≅→≡ 𝒮-A p)
𝒮ˢ-generic 𝒮-A B .SubstRel.uaˢ p b = refl
| {
"alphanum_fraction": 0.6692233941,
"avg_line_length": 28.1891891892,
"ext": "agda",
"hexsha": "d28d705bcf1af92aa86f820ca14c5f47170266b6",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Displayed/Generic.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Displayed/Generic.agda",
"max_line_length": 82,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Displayed/Generic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 491,
"size": 1043
} |
{-# OPTIONS --copatterns #-}
mutual
data D : Set where
c : R → D
record R : Set where
coinductive
field
out : D
open R
mutual
d : D
d = c r
r : R
out r = d
f : D → {A : Set} → A
f (c x) = f (out x)
-- should not termination check
absurd : {A : Set} → A
absurd = f d
| {
"alphanum_fraction": 0.5165562914,
"avg_line_length": 11.6153846154,
"ext": "agda",
"hexsha": "f5ef5e3b4c8aab914b0cb047f9db007ec32682b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/TerminationNoCoinductiveProjectionFromVariable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/TerminationNoCoinductiveProjectionFromVariable.agda",
"max_line_length": 31,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/TerminationNoCoinductiveProjectionFromVariable.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 118,
"size": 302
} |
module _ (A : Set) where
record R : Set where
data D : Set where
open R (record {})
F : D → Set₃
F _ with Set₁
F _ | _ = Set₂
| {
"alphanum_fraction": 0.5909090909,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "bd3a4c13fef9139fbbef860d83cc65211b9c231a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2726.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2726.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2726.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 132
} |
open import SOAS.Metatheory.Syntax
-- Second-order equational logic library
module SOAS.Metatheory.SecondOrder.Equality {T : Set} (Syn : Syntax {T}) where
open import SOAS.Common
open import SOAS.Families.Core {T}
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Metatheory.FreeMonoid Syn
open import SOAS.Metatheory.SecondOrder.Metasubstitution Syn
open import SOAS.Metatheory.SecondOrder.Unit Syn
open import SOAS.ContextMaps.CategoryOfRenamings {T}
open import SOAS.Families.Build
open import SOAS.Metatheory Syn
open Syntax Syn
open Theory
private
variable
α β γ : T
Γ Δ Π : Ctx
𝔐 𝔑 : MCtx
-- Equational reasoning system extended from an axiom relation on terms
module EqLogic (_▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ 𝕋) α Γ → (𝔐 ▷ 𝕋) α Γ → Set) where
-- Equality between terms: smallest equivalence relation closed under the axioms
-- and parametrised metasubstitution
data _▹_⊢_≋_ : (𝔐 : MCtx){α : T}(Γ : Ctx) → (𝔐 ▷ 𝕋) α Γ → (𝔐 ▷ 𝕋) α Γ → Set₁ where
ax : {t s : (𝔐 ▷ 𝕋) α Γ} → 𝔐 ▹ Γ ⊢ t ≋ₐ s → 𝔐 ▹ Γ ⊢ t ≋ s
eq : {t s : (𝔐 ▷ 𝕋) α Γ} → t ≡ s → 𝔐 ▹ Γ ⊢ t ≋ s
sy : {t s : (𝔐 ▷ 𝕋) α Γ} → 𝔐 ▹ Γ ⊢ t ≋ s → 𝔐 ▹ Γ ⊢ s ≋ t
tr : {t s u : (𝔐 ▷ 𝕋) α Γ} → 𝔐 ▹ Γ ⊢ t ≋ s → 𝔐 ▹ Γ ⊢ s ≋ u → 𝔐 ▹ Γ ⊢ t ≋ u
□ms : {t s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ (ρ : Γ ↝ Δ)
→ (ζ ξ : MSub Δ 𝔐 𝔑)
→ (∀{τ Π}(𝔪 : Π ⊩ τ ∈ 𝔐) → 𝔑 ▹ (Π ∔ Δ) ⊢ (ix≀ ζ 𝔪) ≋ (ix≀ ξ 𝔪))
→ 𝔑 ▹ Δ ⊢ (□msub≀ t ρ ζ) ≋ (□msub≀ s ρ ξ)
-- Reflexivity of ≋ lifted from refl
rf : {t : (𝔐 ▷ 𝕋) α Γ} → 𝔐 ▹ Γ ⊢ t ≋ t
rf = eq refl
infix 1 _▹_⊢_≋_
-- Helpers for equational reasoning
module ≋-Reasoning where
_≋⟨_⟩_ : (t : (𝔐 ▷ 𝕋) α Γ) {s u : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ 𝔐 ▹ Γ ⊢ s ≋ u
→ 𝔐 ▹ Γ ⊢ t ≋ u
t ≋⟨ t≋s ⟩ s≋u = tr {t = t} t≋s s≋u
_≋⟨_⟩ₛ_ : (t : (𝔐 ▷ 𝕋) α Γ) {s u : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ s ≋ t
→ 𝔐 ▹ Γ ⊢ s ≋ u
→ 𝔐 ▹ Γ ⊢ t ≋ u
t ≋⟨ s≋t ⟩ₛ s≋u = tr {t = t} (sy s≋t) s≋u
_≡⟨_⟩_ : (t : (𝔐 ▷ 𝕋) α Γ){s : (𝔐 ▷ 𝕋) α Γ} {u : (𝔐 ▷ 𝕋) α Γ}
→ t ≡ s
→ 𝔐 ▹ Γ ⊢ s ≋ u
→ 𝔐 ▹ Γ ⊢ t ≋ u
t ≡⟨ t≡s ⟩ s≋u = t ≋⟨ eq t≡s ⟩ s≋u
_≡⟨⟩_ : (t : (𝔐 ▷ 𝕋) α Γ) {s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ 𝔐 ▹ Γ ⊢ t ≋ s
t ≡⟨⟩ t≋s = t ≡⟨ refl ⟩ t≋s
begin_ : {t s : (𝔐 ▷ 𝕋) α Γ} → 𝔐 ▹ Γ ⊢ t ≋ s → 𝔐 ▹ Γ ⊢ t ≋ s
begin t≋s = t≋s
_∎ : (t : (𝔐 ▷ 𝕋) α Γ) → 𝔐 ▹ Γ ⊢ t ≋ t
t ∎ = rf
infix 1 begin_
infixr 2 _≋⟨_⟩_
infixr 2 _≋⟨_⟩ₛ_
infixr 2 _≡⟨_⟩_
infixr 2 _≡⟨⟩_
infix 3 _∎
-- Rewrite two sides of ≋ with ≡
rw : {t t′ s s′ : (𝔐 ▷ 𝕋) α Γ}
→ t ≡ t′ → s ≡ s′ → 𝔐 ▹ Γ ⊢ t ≋ s → 𝔐 ▹ Γ ⊢ t′ ≋ s′
rw {t = t}{t′}{s}{s′} t≡t′ s≡s′ t≋s =
begin t′ ≡⟨ sym t≡t′ ⟩ t ≋⟨ t≋s ⟩ s ≡⟨ s≡s′ ⟩ s′ ∎
where open ≋-Reasoning
-- Closure under base metasubstitution
ms : {t s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ (ζ ξ : MSub Γ 𝔐 𝔑)
→ (∀{τ Π}(𝔪 : Π ⊩ τ ∈ 𝔐) → 𝔑 ▹ (Π ∔ Γ) ⊢ (ix≀ ζ 𝔪) ≋ (ix≀ ξ 𝔪))
→ 𝔑 ▹ Γ ⊢ msub≀ t ζ ≋ msub≀ s ξ
ms {t = t}{s} t≋s ζ ξ ζ≋ξ = rw (□msub-id t (ix≀ ζ)) (□msub-id s (ix≀ ξ)) (□ms t≋s id ζ ξ ζ≋ξ)
-- Metasubstitution of same mapping applied to two equivalent terms
ms-eq : {t s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ (ζ : MSub Γ 𝔐 𝔑)
→ 𝔑 ▹ Γ ⊢ msub≀ t ζ ≋ msub≀ s ζ
ms-eq {t = t}{s} t≋s ζ = ms t≋s ζ ζ (λ 𝔪 → rf)
-- Closure under renaming
ren≋ : {t s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ (ρ : Γ ↝ Δ)
→ 𝔐 ▹ Δ ⊢ 𝕣𝕖𝕟 ∥ 𝔐 ∥ t ρ ≋ 𝕣𝕖𝕟 ∥ 𝔐 ∥ s ρ
ren≋ {𝔐}{α}{Γ}{Δ}{t = t}{s} t≋s ρ =
begin
(𝕣𝕖𝕟 ∥ 𝔐 ∥ t ρ)
≡⟨ sym (□msub-runit t ρ) ⟩
□msub t ρ ms-unit
≡⟨ sym (cong (□msub t ρ) (iext (dext (id≀≈ms-unit Δ)))) ⟩
□msub≀ t ρ (id≀ Δ)
≋⟨ □ms t≋s ρ (id≀ Δ) (id≀ Δ) (λ 𝔪 → rf) ⟩
□msub≀ s ρ (id≀ Δ)
≡⟨ cong (□msub s ρ) (iext (dext (id≀≈ms-unit Δ))) ⟩
□msub s ρ ms-unit
≡⟨ □msub-runit s ρ ⟩
(𝕣𝕖𝕟 ∥ 𝔐 ∥ s ρ)
∎ where open ≋-Reasoning
-- Lemma to apply equality to terms attached to the end of a metasubstitution
▹-eq : {Π′ : Ctx}{s u : (𝔑 ▷ 𝕋) β (Π′ ∔ Γ)}
→ 𝔑 ▹ (Π′ ∔ Γ) ⊢ s ≋ u → (ζ ξ : MSub Γ 𝔐 𝔑)
→ (∀{τ Π}(𝔪 : Π ⊩ τ ∈ 𝔐) → 𝔑 ▹ (Π ∔ Γ) ⊢ (ix≀ ζ 𝔪) ≋ (ix≀ ξ 𝔪))
→ (𝔪 : Π ⊩ α ∈ (𝔐 ⁅ Π′ ⊩ₙ β ⁆))
→ 𝔑 ▹ Π ∔ Γ ⊢ ix≀ (ζ ▹ s) 𝔪 ≋ ix≀ (ξ ▹ u) 𝔪
▹-eq e ◦ ◦ ζ≋ξ ↓ = e
▹-eq e (x ◃ ζ) (y ◃ ξ) ζ≋ξ ↓ = ζ≋ξ ↓
▹-eq e (x ◃ ζ) (y ◃ ξ) ζ≋ξ (↑ 𝔪) = ▹-eq e ζ ξ (λ 𝔫 → ζ≋ξ (↑ 𝔫)) 𝔪
-- Congruence: metasubstitution of equivalent terms into a term extended with
-- a new metavariable
cong≋ : (t : (𝔐 ⁅ Π ⊩ₙ β ⁆ ▷ 𝕋) α Γ)
→ {s u : (𝔐 ▷ 𝕋) β (Π ∔ Γ)}
→ 𝔐 ▹ (Π ∔ Γ) ⊢ s ≋ u
→ 𝔐 ▹ Γ ⊢ instₑ t s ≋ instₑ t u
cong≋ t {s} {u} s≋u = ms rf (id≀ _ ▹ s) (id≀ _ ▹ u) (▹-eq s≋u (id≀ _) (id≀ _) λ _ → rf)
-- Double congruence
cong₂≋ : {Π₁ Π₂ : Ctx}{β₁ β₂ : T}
(t : ((𝔐 ⁅ Π₁ ⊩ₙ β₁ ⁆) ⁅ Π₂ ⊩ₙ β₂ ⁆ ▷ 𝕋) α Γ)
→ {s₁ u₁ : (𝔐 ▷ 𝕋) β₁ (Π₁ ∔ Γ)}
→ {s₂ u₂ : (𝔐 ▷ 𝕋) β₂ (Π₂ ∔ Γ)}
→ 𝔐 ▹ (Π₁ ∔ Γ) ⊢ s₁ ≋ u₁
→ 𝔐 ▹ (Π₂ ∔ Γ) ⊢ s₂ ≋ u₂
→ 𝔐 ▹ Γ ⊢ instₑ₂ t s₁ s₂ ≋ instₑ₂ t u₁ u₂
cong₂≋ t {s₁}{u₁}{s₂}{u₂} s≋u₁ s≋u₂ =
ms rf ((id≀ _ ▹ s₁) ▹ s₂) ((id≀ _ ▹ u₁) ▹ u₂)
(▹-eq s≋u₂ (id≀ _ ▹ s₁) (id≀ _ ▹ u₁) (▹-eq s≋u₁ (id≀ _) (id≀ _) (λ - → rf)))
-- Syntactic sugar
cong[_]inside_ : {s u : (𝔐 ▷ 𝕋) β (Π ∔ Γ)}
→ 𝔐 ▹ (Π ∔ Γ) ⊢ s ≋ u
→ (t : (𝔐 ⁅ Π ⊩ₙ β ⁆ ▷ 𝕋) α Γ)
→ 𝔐 ▹ Γ ⊢ instₑ t s ≋ instₑ t u
cong[ s≋u ]inside t = cong≋ t s≋u
infix 05 cong[_]inside_
cong₂[_][_]inside_ : {Π₁ Π₂ : Ctx}{β₁ β₂ : T}
→ {s₁ u₁ : (𝔐 ▷ 𝕋) β₁ (Π₁ ∔ Γ)}
→ {s₂ u₂ : (𝔐 ▷ 𝕋) β₂ (Π₂ ∔ Γ)}
→ 𝔐 ▹ (Π₁ ∔ Γ) ⊢ s₁ ≋ u₁
→ 𝔐 ▹ (Π₂ ∔ Γ) ⊢ s₂ ≋ u₂
→ (t : ((𝔐 ⁅ Π₁ ⊩ₙ β₁ ⁆) ⁅ Π₂ ⊩ₙ β₂ ⁆ ▷ 𝕋) α Γ)
→ 𝔐 ▹ Γ ⊢ instₑ₂ t s₁ s₂ ≋ instₑ₂ t u₁ u₂
cong₂[ s≋u₁ ][ s≋u₂ ]inside t = cong₂≋ t s≋u₁ s≋u₂
infix 05 cong₂[_][_]inside_
-- Linear metasubstitution
○ms : {t s : (𝔐 ▷ 𝕋) α Γ}
→ 𝔐 ▹ Γ ⊢ t ≋ s
→ (ζ ξ : MSub Δ 𝔐 𝔑)
→ (∀{τ Π}(𝔪 : Π ⊩ τ ∈ 𝔐) → 𝔑 ▹ (Π ∔ Δ) ⊢ (ix≀ ζ 𝔪) ≋ (ix≀ ξ 𝔪))
→ 𝔑 ▹ Γ ∔ Δ ⊢ ○msub≀ t ζ ≋ ○msub≀ s ξ
○ms {Γ = Γ}{𝔑 = 𝔑}{t = t}{s} t≋s ζ ξ ζ≋ξ = □ms t≋s (inl Γ) (inr≀ Γ ζ) (inr≀ Γ ξ) (λ {τ}{Π} 𝔪 → begin
ix≀ (inr≀ Γ ζ) 𝔪
≡⟨ ix-inr≀ ζ 𝔪 ⟩
(𝕣𝕖𝕟 ∥ 𝔑 ∥ (ix≀ ζ 𝔪) (Π ∔∣ inr Γ))
≋⟨ ren≋ (ζ≋ξ 𝔪) (Π ∔∣ inr Γ) ⟩
(𝕣𝕖𝕟 ∥ 𝔑 ∥ (ix≀ ξ 𝔪) (Π ∔∣ inr Γ))
≡⟨ sym (ix-inr≀ ξ 𝔪) ⟩
ix≀ (inr≀ Γ ξ) 𝔪
∎) where open ≋-Reasoning
-- Linear metasubstitution of same mapping applied to two equivalent terms
○ms-eq : {t s : (𝔐 ▷ 𝕋) α Π}
→ 𝔐 ▹ Π ⊢ t ≋ s
→ (ζ : MSub Γ 𝔐 𝔑)
→ 𝔑 ▹ Π ∔ Γ ⊢ ○msub≀ t ζ ≋ ○msub≀ s ζ
○ms-eq {t = t}{s} t≋s ζ = ○ms t≋s ζ ζ (λ 𝔪 → rf)
-- Application of an axiom as a rewrite rule, and syntactic sugar
ax≋ : {t s : (𝔐 ▷ 𝕋) α Π}
→ 𝔐 ▹ Π ⊢ t ≋ₐ s → (ζ : MSub Γ 𝔐 𝔑)
→ 𝔑 ▹ Π ∔ Γ ⊢ ○msub≀ t ζ ≋ ○msub≀ s ζ
ax≋ a ζ = ○ms-eq (ax a) ζ
ax_with《_ : {t s : (𝔐 ▷ 𝕋) α Π}
→ 𝔐 ▹ Π ⊢ t ≋ₐ s → (ζ : MSub Γ 𝔐 𝔑)
→ 𝔑 ▹ Π ∔ Γ ⊢ ○msub≀ t ζ ≋ ○msub≀ s ζ
ax_with《_ = ax≋
infix 15 ax_with《_
-- Application of an equivalence as a rewrite rule, and syntactic sugar
thm_with《_ : {t s : (𝔐 ▷ 𝕋) α Π}
→ 𝔐 ▹ Π ⊢ t ≋ s
→ (ζ : MSub Γ 𝔐 𝔑)
→ 𝔑 ▹ Π ∔ Γ ⊢ ○msub≀ t ζ ≋ ○msub≀ s ζ
thm_with《_ = ○ms-eq
infix 15 thm_with《_
-- Application of theorem with no metavariables
thm : {t s : (⁅⁆ ▷ 𝕋) α Π}
→ ⁅⁆ ▹ Π ⊢ t ≋ s
→ 𝔐 ▹ Π ∔ Γ ⊢ ○msub≀ t ◦ ≋ ○msub≀ s ◦
thm e = thm e with《 ◦
| {
"alphanum_fraction": 0.4311521477,
"avg_line_length": 32.6331877729,
"ext": "agda",
"hexsha": "a9e569d975c340ad71ab1bba32cc085fd02c1fb6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/SecondOrder/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/SecondOrder/Equality.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/SecondOrder/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4636,
"size": 7473
} |
open import Agda.Builtin.Reflection
open import Agda.Builtin.Equality
open import Agda.Builtin.Int
open import Agda.Builtin.String
open import Common.Prelude
getFixity = primQNameFixity
infixl -1729 _to_
_to_ : Set → Set → Set
A to B = A → B
data Check : Set₁ where
equal : {A : Set} (x y : A) → x ≡ y → Check
pattern _==_ x y = equal x y refl
check-cons = getFixity (quote _∷_) == fixity right-assoc (related (pos 5))
check-to = getFixity (quote _to_) == fixity left-assoc (related (negsuc 1728))
check-eq = getFixity (quote _≡_) == fixity non-assoc (related (pos 4))
check-list = getFixity (quote List) == fixity non-assoc unrelated
showAssoc : Associativity → String
showAssoc left-assoc = "infixl"
showAssoc right-assoc = "infixr"
showAssoc non-assoc = "infix"
showFixity : Fixity → String
showFixity (fixity a unrelated) = "(no fixity)"
showFixity (fixity a (related p)) = showAssoc a +S+ " " +S+ intToString p
showFix : Name → String
showFix x = showFixity (getFixity x)
main : IO Unit
main = putStrLn (showFix (quote _∷_)) >>= λ _ →
putStrLn (showFix (quote _to_)) >>= λ _ →
putStrLn (showFix (quote _≡_)) >>= λ _ →
putStrLn (showFix (quote List)) >>= λ _ →
return unit
| {
"alphanum_fraction": 0.6720647773,
"avg_line_length": 29.4047619048,
"ext": "agda",
"hexsha": "7b1ff72c42fbaa5973822b45530f861a4c0df4b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue1664.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue1664.agda",
"max_line_length": 81,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue1664.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 410,
"size": 1235
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Rational as ℝ using () renaming (ℚ to ℝ)
module monotonicity-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
f : ℝ → ℝ
f = evaluate record
{ projectFile = VEHICLE_PROJECT_FILE
; networkUUID = "TODO_networkUUID"
}
abstract
monotonic : ∀ (x1 : ℝ) → ∀ (x2 : ℝ) → x1 ℝ.≤ x2 → f x1 ℝ.≤ f x2
monotonic = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
} | {
"alphanum_fraction": 0.68,
"avg_line_length": 24.1379310345,
"ext": "agda",
"hexsha": "b95010e0e774f034e4139ce352dbb8448967ec64",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_line_length": 65,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "examples/network/monotonicity/monotonicity-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 213,
"size": 700
} |
-- Operations on natural number
{-# OPTIONS --without-K --safe #-}
-- agad-stdlib
open import Relation.Binary.PropositionalEquality
module TypeTheory.Nat.Operations
{a}
-- | Type of natural number
(N : Set a)
-- | Zero
(zero : N)
-- | Successor function
(suc : N → N)
-- | Induction principle
(ind : ∀ {p} (P : N → Set p) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n)
-- | Computation rule for `zero`
(ind-base : ∀ {p} (P : N → Set p) P-base P-step →
ind P P-base P-step zero ≡ P-base)
-- | Computation rule for `suc`
(ind-step : ∀ {p} (P : N → Set p) P-base P-step n →
ind P P-base P-step (suc n) ≡ P-step n (ind P P-base P-step n))
where
-- agda-stdlib
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.Empty
open import Data.Bool using (Bool; true; false)
open import Data.Product
open import Function.Base
private
variable
A : Set a
-- recursion
rec : ∀ {l} {A : Set l} → A → (A → A) → N → A
rec {l} {A} z s n = ind (λ _ → A) z (λ k x → s x) n
caseNat : ∀ {l} {A : Set l} (z s : A) → N → A
caseNat {A = A} z s n = ind (λ x → A) z (λ k x → s) n
-- predcessor
pred : N → N
pred n = ind (λ _ → N) zero (λ k x → k) n
-- Arithematic
infixl 6 _+_ _∸_
infixl 7 _*_
infix 4 _≤_ _≰_ _≥_ _≱_ _<_ _≮_ _>_ _≯_
infix 5 _≤ᵇ_
-- Addition
_+_ : N → N → N
m + n = rec n suc m
-- Multiplication
_*_ : N → N → N
m * n = rec zero (λ k → n + k) m
-- Monus
_∸_ : N → N → N
m ∸ n = rec m pred n
-- Order
_≤_ : N → N → Set a
m ≤ n = ∃ λ o → m + o ≡ n
_≰_ : N → N → Set a
m ≰ n = m ≤ n → ⊥
_≥_ : N → N → Set a
m ≥ n = n ≤ m
_≱_ : N → N → Set a
m ≱ n = m ≥ n → ⊥
_<_ : N → N → Set a
m < n = suc m ≤ n
_≮_ : N → N → Set a
m ≮ n = m < n → ⊥
_>_ : N → N → Set a
m > n = n < m
_≯_ : N → N → Set a
m ≯ n = m > n → ⊥
-- Order (Bool)
_≤ᵇ_ : N → N → Bool
m ≤ᵇ n = caseNat true false (m ∸ n)
-- induction
ind2 :
∀ {p} (P : N → N → Set p) →
P zero zero →
(∀ m n → P m n → P m (suc n)) →
(∀ m n → P m n → P (suc m) n) →
∀ m n → P m n
ind2 P Pzz Pmn→Pms Pmn→Psn m n = ind
(λ o → P o n)
(ind (λ p → P zero p) Pzz (λ k Pzk → Pmn→Pms zero k Pzk) n)
(λ k Pkn → ind (λ r → P (suc k) r) (P[k,0] (suc k))
(λ k₁ P[1+k,k₁] → Pmn→Pms (suc k) k₁ P[1+k,k₁]) n)
m
where
P[k,0] : ∀ k → P k zero
P[k,0] = λ k → ind (λ x → P x zero) Pzz (λ k₂ → Pmn→Psn k₂ zero) k
-- Constant
one : N
one = suc zero
| {
"alphanum_fraction": 0.5060745706,
"avg_line_length": 20.7565217391,
"ext": "agda",
"hexsha": "96d0583ca9de0ebda83ae97aae5c9054d258ef02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "TypeTheory/Nat/Operations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "TypeTheory/Nat/Operations.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "TypeTheory/Nat/Operations.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1072,
"size": 2387
} |
{-# OPTIONS --without-K --rewriting #-}
open import PathInduction
open import Pushout
module JamesSecondComposite {i} (A : Type i) (⋆A : A) where
open import JamesTwoMaps A ⋆A public
-- Second composite
to-ε∞ : to ε∞ == εJ
to-ε∞ = idp
to-α∞-in∞ : (a : A) (n : ℕ) (x : J n) → to (α∞ a (in∞ n x)) == αJ a (inJ n x)
to-α∞-in∞ a n x = inJS-α n a x
to-α∞-push∞ : (a : A) (n : ℕ) (x : J n) → Square (ap to (ap (α∞ a) (push∞ n x))) (inJS-α n a x) idp (ap (αJ a) (ap to (push∞ n x)))
to-α∞-push∞ = λ a n x → & coh (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ a} {push∞* = α∞-push∞ a} n x))
(to-push∞-S n (α n a x))
(ap-δJ (inJS-α n a x))
(∘-ap _ _ _)
(inJSS-γ n a x)
(ap-square (αJ a) (to-push∞ n x)) module Toα∞Push∞ where
coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {r : a == d}
{b : A} {s : b == d} {p : a == b} (p= : p == r ∙ ! s)
{r' : a == d} (y= : r == r') {g : A} {w : d == g}
{v : c == g} (sq : Square r' q w v) {e : A} {u : c == e}
{s' : b == d} (s= : s == s') {t : b == e} (u= : Square s' t w (! u ∙ v))
{x : c == b} (x= : Square x idp t u)
→ Square p q idp x)
coh = path-induction
to-α∞ : (a : A) (x : J∞A) → to (α∞ a x) == αJ a (to x)
to-α∞ a = J∞A-elim (to-α∞-in∞ a) (λ n x → ↓-='-from-square (ap-∘ to (α∞ a) (push∞ n x)) (ap-∘ (αJ a) to (push∞ n x)) (square-symmetry (to-α∞-push∞ a n x)))
to-δ∞-in∞ : (n : ℕ) (x : J n) → Square (ap to (δ∞ (in∞ n x))) idp (to-α∞ ⋆A (in∞ n x)) (δJ (to (in∞ n x)))
to-δ∞-in∞ = λ n x → & coh (∘-ap _ _ _) (ap-square to (δ∞-in∞-β n x)) (to-push∞ n x) (inJS-β n x) module Toδ∞In where
coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r r' : b == c} (r= : r == r')
{s : a == c} (sq1 : Square p idp r s) {d : A} {t : c == d}
{u : a == d} (sq2 : Square s idp t u)
{rt : b == d} (rt= : Square r' rt t idp)
→ Square p idp rt u)
coh = path-induction
module _ (n : ℕ) (x : J n) where
side1 : Square (ap to (push∞ (S n) (α n ⋆A x))) (inJS-α n ⋆A x) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (δJ (αJ ⋆A (inJ n x)))
side1 = to-push∞-S n (α n ⋆A x) |∙ idp |∙ ap-δJ (inJS-α n ⋆A x)
side2 : Square (ap to (ap (in∞ (S n)) (β n x))) (inJS-α n ⋆A x) (inJS-ι n x) idp
side2 = idp |∙ ∘-ap to (in∞ (S n)) (β n x) |∙ inJS-β n x
side3 : Square (ap to (ap (in∞ (S (S n))) (ap inr (β n x)))) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) idp)
side3 = idp |∙ (∘-ap to (in∞ (S (S n))) _ ∙ ap-inJSS-ι n (β n x)) |∙ ap-square (αJ ⋆A) (inJS-β n x)
side4 : Square (ap to (push∞ (S n) (ι n x))) (inJS-ι n x) (ap (λ z → αJ ⋆A z) (inJS-ι n x)) (δJ (αJ ⋆A (inJ n x)))
side4 = to-push∞-S n (ι n x) |∙ idp |∙ ap-δJ (inJS-ι n x)
side5 : Square (ap to (ap (in∞ (S (S n))) (γ n ⋆A x))) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (γJ ⋆A (inJ n x))
side5 = ∘-ap to (in∞ (S (S n))) (γ n ⋆A x) |∙ inJSS-γ n ⋆A x
side6 : Square (ap to (ap (in∞ (S (S n))) (β (S n) (ι n x)))) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (inJS-ι n x)) idp
side6 = ∘-ap to (in∞ (S (S n))) _ |∙ inJS-βS n (ι n x) |∙ vid-square
side7 : Square (ap to (ap (α∞ ⋆A) (push∞ n x))) (inJS-α n ⋆A x) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (δJ (inJ n x)))
side7 = adapt-square (to-α∞-push∞ ⋆A n x ∙□ ap-square (αJ ⋆A) (to-push∞ n x)) ∙idp idp∙
to-push∞-βn : Cube (ap-square to (natural-square (push∞ (S n)) (β n x) idp (ap-∘ (in∞ (S (S n))) inr (β n x))))
hid-square
side1
side2
side3
side4
to-push∞-βn = & (ap-square-natural-square to) (β n x) (push∞ (S n)) ∙idp idp
-∙³ & natural-square-homotopy (to-push∞-S n) (β n x)
|∙³ & (natural-square-∘ (β n x) (inJS n)) δJ idp idp
-∙³ & natural-square= δJ idp (coh1 to (in∞ (S n)) (β n x)) (coh2 to (in∞ (S (S n))) inr (β n x) (ap-∘ (αJ ⋆A) (inJS n) (β n x)))
|∙³ & natural-cube2 δJ (inJS-β n x) (ap-square-idf (inJS-β n x)) (hid-flatcube _) where
coh1 : {A B C : Type i} (g : B → C) (f : A → B) {x y : A} (p : x == y) → Square idp (∘-ap (λ z → z) (g ∘ f) p ∙ ap-∘ g f p) (ap-idf _) (∘-ap g f p)
coh1 g f idp = ids
coh2 : {A B C D : Type i} (h : C → D) (g : B → C) (f : A → B) {x y : A} (p : x == y) {z : h (g (f x)) == h (g (f y))} (q : ap (h ∘ g ∘ f) p == z)
→ Square idp (! q ∙ ap-∘ h (g ∘ f) p ∙ ap (ap h) (ap-∘ g f p)) idp (∘-ap h g (ap f p) ∙ ∘-ap (h ∘ g) f p ∙ q)
coh2 h g f idp idp = ids
to-in∞-η : Cube (ap-square to (ap-square (in∞ (S (S n))) (η n x)))
(horiz-degen-square (ηJ (inJ n x)))
side5
vid-square
side3
side6
to-in∞-η = adapt-cube-idp (∘-ap-square to (in∞ (S (S n))) (η n x)
|∙³ inJSS-η n x)
idp (& coh1) (& coh2) idp where
coh1 : Coh ({A : Type i} {a b : A} {p : a == b} → idp |∙ vid-square {p = p} == vid-square)
coh1 = path-induction
coh2 : Coh ({A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s}
{p' : a == b} {p= : p' == p} {p'' : a == b} {p=' : p'' == p'} → p=' |∙ p= |∙ sq == idp |∙ (p=' ∙ p=) |∙ sq)
coh2 = path-induction
coh-last-one : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} → p == q ∙ ! (! p ∙ q))
coh-last-one = path-induction
last-one : Cube (horiz-degen-square (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x)))
(horiz-degen-square (& coh-last-one))
side7
vid-square
vid-square
(vcomp! side1 side5)
last-one = & coh where
coh : Coh ({A : Type i} {a : A}
{c : A} {q : a == c} {d : A} {r : a == d} {b : A} {s : b == d}
{p : a == b} {p= : p == r ∙ ! s}
{r' : a == d} {y= : r == r'}
{g : A} {w : d == g} {v : c == g} {sq : Square r' q w v}
{e : A} {u : c == e} {s' : b == d} {s= : s == s'}
{t : b == e} {u= : Square s' t w (! u ∙ v)}
{x : c == b} {x= : Square x idp t u}
→ Cube (horiz-degen-square p=) (horiz-degen-square (& coh-last-one)) (adapt-square (& Toα∞Push∞.coh p= y= sq s= u= x= ∙□ x=) ∙idp idp∙) vid-square vid-square (vcomp! (y= |∙ idp |∙ sq) (s= |∙ u=)))
coh = path-induction
δ∞Push∞Coh-coh : Coh ({A : Type i} {a b : A} {p : a == b} {d : A} {s : d == b}
{c : A} {r : b == c} {f : A} {u : f == c} {e : A} {t : e == c}
{w : f == e} {eta : Square w idp t u}
{v : d == e} {nat : Square v s t r}
{vw : d == f} {vw-eq : vw == v ∙ ! w}
{a' : _} {a= : a == a'}
{b' : _} {b= : b == b'}
{p' : _} {p= : Square p a= b= p'}
{d' : _} {d= : d == d'}
{s' : _} {s= : Square s d= b= s'}
{c' : _} {c= : c == c'}
{r' : _} {r= : Square r b= c= r'}
{f' : _} {f= : f == f'}
{u' : _} {u= : Square u f= c= u'}
{e' : _} {e= : e == e'}
{t' : _} {t= : Square t e= c= t'}
{w' : _} {w= : Square w f= e= w'}
{eta' : _} (eta= : Cube eta eta' w= vid-square t= u=)
{v' : _} {v= : Square v d= e= v'}
{nat' : _} (nat= : Cube nat nat' v= s= t= r=)
{vw' : _} {vw= : Square vw d= f= vw'}
{vw-eq' : _} (vw-eq= : Cube (horiz-degen-square vw-eq) (horiz-degen-square vw-eq') vw= vid-square vid-square (vcomp! v= w=))
→ Cube (& δ∞Push∞.coh p eta nat vw-eq) (& δ∞Push∞.coh p' eta' nat' vw-eq') (vcomp! p= s=) p= vw= (vcomp! r= u=))
δ∞Push∞Coh-coh = path-induction
piece1 : FlatCube (ap-square to (& δ∞Push∞.coh (push∞ n x) (ap-square (in∞ (S (S n))) (η n x))
(natural-square (push∞ (S n)) (β n x) idp (ap-∘ _ _ _))
(push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x)))
(& δ∞Push∞.coh (ap to (push∞ n x))
(ap-square to (ap-square (in∞ (S (S n))) (η n x)))
(ap-square to
(natural-square (push∞ (S n)) (β n x) idp
(ap-∘ (in∞ (S (S n))) (ι (S n)) (β n x))))
(ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x)))
(ap-∙! _ _ _) idp idp (ap-∙! _ _ _)
piece1 = & (δ∞Push∞.ap-coh to) {b = in∞ (S n) (ι n x)} {d = in∞ (S n) (α n ⋆A x)}
piece2 : Cube (& δ∞Push∞.coh (ap to (push∞ n x))
(ap-square to (ap-square (in∞ (S (S n))) (η n x)))
(ap-square to (natural-square (push∞ (S n)) (β n x) idp (ap-∘ (in∞ (S (S n))) inr (β n x))))
(ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x)))
(& δ∞Push∞.coh (δJ (inJ n x)) (horiz-degen-square (ηJ (inJ n x))) hid-square (& coh-last-one))
(vcomp! (to-push∞ n x) side2)
(to-push∞ n x)
side7
(vcomp! side4 side6)
piece2 = & δ∞Push∞Coh-coh to-in∞-η to-push∞-βn last-one
piece3 : FlatCube (& δ∞Push∞.coh (δJ (inJ n x)) (horiz-degen-square (ηJ (inJ n x))) hid-square (& coh-last-one))
(ap-δJ (δJ (inJ n x)))
∙idp idp idp ∙idp
piece3 = & coh where
coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q q' : b == c} {sq : Square p p q q'}
→ FlatCube (& δ∞Push∞.coh p (horiz-degen-square (& (ηIfy.coh αJ δJ) sq)) hid-square (& coh-last-one)) sq ∙idp idp idp ∙idp)
coh = path-induction
piece4 : Cube (ap-δJ (ap to (push∞ n x)))
(ap-δJ (δJ (inJ n x)))
hid-square (to-push∞ n x) (ap-square (αJ ⋆A) (to-push∞ n x)) (ap-δJ (inJS-ι n x))
piece4 = & natural-cube2 δJ (to-push∞ n x) (ap-square-idf _) (hid-flatcube _)
to-δ∞-push∞ : Cube (ap-square to (natural-square δ∞ (push∞ n x) (ap-idf _) idp))
(ap-δJ (ap to (push∞ n x)))
(to-δ∞-in∞ n x)
hid-square
(to-α∞-push∞ ⋆A n x)
(to-δ∞-in∞ (S n) (ι n x))
to-δ∞-push∞ = adapt-cube (ap (ap-square to) (natural-square-β δ∞ (push∞ n x) (push∞-βd n x))
-∙³ piece1
|∙³ piece2
∙³x piece3
|∙³ !³ piece4)
idp ∙idp !-inv-r !-inv-r
(& coh1 (& (coh-flat to) {b = in∞ (S n) (α n ⋆A x)})) (& coh2) (& coh3) (& coh4 (& (coh-flat to) {a = in∞ (S n) (ι n x)})) where
flat : Coh ({A : Type i} {a c : A} {s : a == c} {b : A} {r : b == c} {p : a == b} (sq : Square p idp r s) → p == s ∙ ! r)
flat = path-induction
coh-flat : {A B : Type i} (f : A → B) → Coh ({a c : A} {s : a == c} {b : A} {r : b == c} → & flat (ap-square f (& δ∞Inβ.coh)) == ap-∙! f s r)
coh-flat f = path-induction
coh1 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r r' : b == c} {r= : r == r'}
{s : a == c} {sq1 : Square p idp r s} {d : A} {t : c == d}
{u : a == d} {sq2 : Square s idp t u}
{rt : b == d} {sq3 : Square r' rt t idp}
{p= : p == s ∙ ! r} (p== : & flat sq1 == p=)
→ adapt-square (p= |∙ vcomp! sq2 (idp |∙ r= |∙ sq3) ∙□ ∙idp |∙ !² hid-square) idp ∙idp == & Toδ∞In.coh r= sq1 sq2 sq3)
coh1 = path-induction
coh2 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r : b == c} {s : a == c} {sq : Square p idp r s}
→ adapt-square (idp |∙ sq ∙□ idp |∙ !² sq) idp !-inv-r == hid-square)
coh2 = path-induction
coh3 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} {s : c == b} {sq1 : Square p q idp s} {d : A} {t : b == d} {u : c == d} {sq2 : Square s idp t u}
→ adapt-square (idp |∙ adapt-square (sq1 ∙□ sq2) ∙idp idp∙ ∙□ idp |∙ !² sq2) ∙idp !-inv-r == sq1)
coh3 = path-induction
coh4 : Coh ({A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s}
{p' : a == b} {p=□ : Square p' idp idp p} {t : b == b} {t=□ : t == idp} {t' : b == b} {t=' : t' == t}
{pt' : a == b} {pt=2 : Square pt' idp t' p'} {pt= : pt' == p' ∙ ! t'} (pt== : & flat pt=2 == pt=)
→ adapt-square (pt= |∙ vcomp! (horiz-degen-path p=□ |∙ idp |∙ sq) (t=' |∙ t=□ |∙ vid-square) ∙□ ∙idp |∙ !² sq) !-inv-r !-inv-r
== & Toδ∞In.coh t=' pt=2 p=□ (horiz-degen-square t=□))
coh4 = path-induction
natural-square-idp-symm : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → natural-square (λ a → idp {a = f a}) p idp idp == square-symmetry hid-square
natural-square-idp-symm {p = idp} = idp
to-δ∞ : (x : J∞A) → Square (ap to (δ∞ x)) idp (to-α∞ ⋆A x) (δJ (to x))
to-δ∞ = J∞A-elim to-δ∞-in∞ (λ n x → cube-to-↓-path idp (ap-∘ _ _ _) idp (ap-∘ _ _ _)
(adapt-cube-idp (cube-rotate (to-δ∞-push∞ n x))
(& (ap-square-natural-square to) (push∞ n x) δ∞ coh ∙idp)
(! natural-square-idp-symm)
(! (natural-square-β (to-α∞ ⋆A) (push∞ n x) (push∞-βd n x)))
(! (& (natural-square-∘ (push∞ n x) to) δJ coh2 (!-inv-l))))) where
coh : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ap-∘ f (λ z → z) p ∙ ap (ap f) (ap-idf p) == idp
coh {p = idp} = idp
coh2 : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ∘-ap (λ z → z) f p ∙ idp == ap-idf (ap f p)
coh2 {p = idp} = idp
to-from : (x : JA) → to (from x) == x
to-from = JA-elim to-ε∞
(λ a x y → to-α∞ a (from x) ∙ ap (αJ a) y)
(λ x y → ↓-='-from-square (ap-∘ to from (δJ x) ∙ ap (ap to) (δJ-β x)) (ap-idf (δJ x))
(square-symmetry (adapt-square (to-δ∞ (from x) ∙□ ap-δJ y) idp∙ idp)))
| {
"alphanum_fraction": 0.4032945186,
"avg_line_length": 54.3783783784,
"ext": "agda",
"hexsha": "0bb1ccb7e6126acc97946fb3fb28fd9f0b2e715a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/JamesConstruction",
"max_forks_repo_path": "JamesSecondComposite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/JamesConstruction",
"max_issues_repo_path": "JamesSecondComposite.agda",
"max_line_length": 211,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/JamesConstruction",
"max_stars_repo_path": "JamesSecondComposite.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z",
"num_tokens": 6289,
"size": 14084
} |
module Relation.Ternary.Separation.Bigstar where
open import Level
open import Data.Bool
open import Data.Product
open import Relation.Unary
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Monad.Error
open import Relation.Ternary.Separation.Morphisms
open Monads
module _
{a p} {A : Set a} (P : Pred A p)
{{ r : RawSep A }} {u} {{ _ : IsUnitalSep r u }} where
data Bigstar : SPred (a ⊔ p) where
emp : ε[ Bigstar ]
cons : ∀[ P ✴ Bigstar ⇒ Bigstar ]
module _
{a} {A : Set a} {P : Pred A a}
{{ r : RawSep A }} {u} {{ _ : IsUnitalSep r u }} where
[_] : ∀[ P ⇒ Bigstar P ]
[ px ] = cons (px ×⟨ ⊎-idʳ ⟩ emp)
head : ∀[ Bigstar P ⇒ Error (P ✴ Bigstar P) ]
head emp = error err
head pool@(cons (px ×⟨ σ ⟩ pxs)) = do
th₂ ×⟨ σ ⟩ pool' ×⟨ σ₂ ⟩ th₁ ← mapM (head pxs &⟨ ⊎-comm σ ⟩ px) ✴-assocᵣ
return (th₂ ×⟨ σ ⟩ cons (th₁ ×⟨ ⊎-comm σ₂ ⟩ pool'))
find : (∀ {Φ} → P Φ → Bool) → ∀[ Bigstar P ⇒ Error (P ✴ Bigstar P) ]
find f emp = error err
find f (cons (px ×⟨ σ ⟩ pxs)) =
if f px
then return (px ×⟨ σ ⟩ pxs)
else do
px' ×⟨ σ₁ ⟩ pxs' ×⟨ σ₂ ⟩ px ← mapM (find f pxs &⟨ P ∥ ⊎-comm σ ⟩ px) ✴-assocᵣ
return (px' ×⟨ σ₁ ⟩ cons (px ×⟨ ⊎-comm σ₂ ⟩ pxs'))
append : ∀[ P ⇒ Bigstar P ─✴ Bigstar P ]
app (append px) emp σ rewrite ⊎-id⁻ʳ σ = [ px ]
app (append px) (cons (qx ×⟨ σ₁ ⟩ pxs)) σ =
let _ , σ₂ , σ₃ = ⊎-unassoc σ (⊎-comm σ₁)
qxs = app (append px) pxs σ₂
in cons (qx ×⟨ ⊎-comm σ₃ ⟩ qxs)
| {
"alphanum_fraction": 0.5668173015,
"avg_line_length": 31.612244898,
"ext": "agda",
"hexsha": "99f3fdede454e3ea764886954009e0bb36a9b200",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Bigstar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Bigstar.agda",
"max_line_length": 85,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Bigstar.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 643,
"size": 1549
} |
------------------------------------------------------------------------
-- A partial order
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Delay-monad.Partial-order {a} {A : Type a} where
open import Equality.Propositional as E
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Double-negation equality-with-J
open import Excluded-middle equality-with-J
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Monad equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity as B
hiding (reflexive; symmetric; laterˡ⁻¹; laterʳ⁻¹)
open import Delay-monad.Bisimilarity.Alternative
open import Delay-monad.Bisimilarity.Negative
import Delay-monad.Termination as T
-- An ordering relation.
--
-- Capretta defines a pointwise logically equivalent relation in
-- "General Recursion via Coinductive Types".
--
-- Benton, Kennedy and Varming define a relation that is perhaps
-- pointwise logically equivalent in "Some Domain Theory and
-- Denotational Semantics in Coq".
infix 4 [_]_⊑_ [_]_⊑′_ _⊑_ _⊑′_
mutual
data [_]_⊑_ (i : Size) : Delay A ∞ → Delay A ∞ → Type a where
now : ∀ {x} → [ i ] now x ⊑ now x
laterʳ : ∀ {x y} → [ i ] x ⊑ force y → [ i ] x ⊑ later y
laterˡ : ∀ {x y} → [ i ] force x ⊑′ y → [ i ] later x ⊑ y
record [_]_⊑′_ (i : Size) (x y : Delay A ∞) : Type a where
coinductive
field
force : {j : Size< i} → [ j ] x ⊑ y
open [_]_⊑′_ public
_⊑_ : Delay A ∞ → Delay A ∞ → Type a
_⊑_ = [ ∞ ]_⊑_
_⊑′_ : Delay A ∞ → Delay A ∞ → Type a
_⊑′_ = [ ∞ ]_⊑′_
-- A derived "constructor".
later-cong : ∀ {i x y} →
[ i ] force x ⊑′ force y → [ i ] later x ⊑ later y
later-cong p = laterʳ (laterˡ p)
-- Termination predicates.
Terminates : Size → Delay A ∞ → A → Type a
Terminates i x y = [ i ] now y ⊑ x
_⇓_ : Delay A ∞ → A → Type a
_⇓_ = Terminates ∞
-- If x terminates with the values y and z, then y is equal to z.
⇓→⇓→≡ : ∀ {i x y z} → Terminates i x y → Terminates i x z → y ≡ z
⇓→⇓→≡ now now = refl
⇓→⇓→≡ (laterʳ p) (laterʳ q) = ⇓→⇓→≡ p q
-- If x is smaller than or equal to now y, and x terminates, then
-- x terminates with the value y.
⊑now→⇓→⇓ : ∀ {i x} {y z : A} →
x ⊑ now y → Terminates i x z → Terminates i x y
⊑now→⇓→⇓ now now = now
⊑now→⇓→⇓ (laterˡ p) (laterʳ q) = laterʳ (⊑now→⇓→⇓ (force p) q)
-- The notion of termination defined here is pointwise isomorphic to
-- the one defined in Delay-monad.Termination.
⇓↔⇓ : ∀ {i x y} → Terminates i x y ↔ T.Terminates i x y
⇓↔⇓ = record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to∘from
}
; left-inverse-of = from∘to
}
where
to : ∀ {i x y} → Terminates i x y → T.Terminates i x y
to now = now
to (laterʳ p) = laterʳ (to p)
from : ∀ {i x y} → T.Terminates i x y → Terminates i x y
from now = now
from (laterʳ p) = laterʳ (from p)
from∘to : ∀ {i x y} (p : Terminates i x y) → from (to p) ≡ p
from∘to now = refl
from∘to (laterʳ p) = cong laterʳ (from∘to p)
to∘from : ∀ {i x y} (p : T.Terminates i x y) → to (from p) ≡ p
to∘from now = refl
to∘from (laterʳ p) = cong laterʳ (to∘from p)
-- Terminates i is pointwise isomorphic to Terminates ∞.
Terminates↔⇓ : ∀ {i x y} → Terminates i x y ↔ x ⇓ y
Terminates↔⇓ {i} {x} {y} =
Terminates i x y ↝⟨ ⇓↔⇓ ⟩
T.Terminates i x y ↝⟨ T.Terminates↔⇓ ⟩
x T.⇓ y ↝⟨ inverse ⇓↔⇓ ⟩□
x ⇓ y □
-- The computation never is smaller than or equal to all other
-- computations.
never⊑ : ∀ {i} x → [ i ] never ⊑ x
never⊑ (now x) = laterˡ λ { .force → never⊑ (now x) }
never⊑ (later x) = later-cong λ { .force → never⊑ (force x) }
-- The computation never does not terminate.
now⋢never : ∀ {i x} → ¬ Terminates i never x
now⋢never (laterʳ p) = now⋢never p
-- One can remove later constructors.
laterˡ⁻¹ : ∀ {i} {j : Size< i} {x y} →
[ i ] later x ⊑ y →
[ j ] force x ⊑ y
laterˡ⁻¹ (laterʳ p) = laterʳ (laterˡ⁻¹ p)
laterˡ⁻¹ (laterˡ p) = force p
laterʳ⁻¹ : ∀ {i x y} →
[ i ] x ⊑ later y →
[ i ] x ⊑ force y
laterʳ⁻¹ (laterʳ p) = p
laterʳ⁻¹ (laterˡ p) = laterˡ λ { .force → laterʳ⁻¹ (force p) }
later-cong⁻¹ : ∀ {i} {j : Size< i} {x y} →
[ i ] later x ⊑ later y →
[ j ] force x ⊑ force y
later-cong⁻¹ p = laterʳ⁻¹ (laterˡ⁻¹ p)
-- Weak bisimilarity is contained in the ordering relation.
≈→⊑ : ∀ {i x y} → [ i ] x ≈ y → [ i ] x ⊑ y
≈→⊑ now = now
≈→⊑ (later p) = later-cong λ { .force → ≈→⊑ (force p) }
≈→⊑ (laterˡ p) = laterˡ λ { .force → ≈→⊑ p }
≈→⊑ (laterʳ p) = laterʳ (≈→⊑ p)
-- The ordering relation is antisymmetric (with respect to weak
-- bisimilarity).
antisymmetric : ∀ {i x y} →
[ i ] x ⊑ y → [ i ] y ⊑ x → [ i ] x ≈ y
antisymmetric {x = now x} {y = now .x} now _ = now
antisymmetric {x = now x} {y = later y} (laterʳ p) q = laterʳ (_↔_.to ⇓↔⇓ p)
antisymmetric {x = later x} {y = now y} p (laterʳ q) = laterˡ (B.symmetric (_↔_.to ⇓↔⇓ q))
antisymmetric {x = later x} {y = later y} p q =
later λ { .force → antisymmetric (later-cong⁻¹ p) (later-cong⁻¹ q) }
-- An alternative characterisation of weak bisimilarity.
≈⇔⊑×⊒ : ∀ {i x y} → [ i ] x ≈ y ⇔ ([ i ] x ⊑ y × [ i ] y ⊑ x)
≈⇔⊑×⊒ = record
{ to = λ p → ≈→⊑ p , ≈→⊑ (B.symmetric p)
; from = uncurry antisymmetric
}
-- The ordering relation is reflexive.
reflexive : ∀ {i} x → [ i ] x ⊑ x
reflexive (now x) = now
reflexive (later x) = later-cong λ { .force → reflexive (force x) }
-- Certain instances of symmetry also hold.
symmetric : ∀ {i} {x : A} {y} →
Terminates i y x → [ i ] y ⊑ now x
symmetric now = now
symmetric (laterʳ p) = laterˡ λ { .force → symmetric p }
-- The ordering relation is transitive.
transitive : ∀ {i} {x y z : Delay A ∞} →
[ i ] x ⊑ y → y ⊑ z → [ i ] x ⊑ z
transitive p now = p
transitive p (laterʳ q) = laterʳ (transitive p q)
transitive (laterʳ p) (laterˡ q) = transitive p (force q)
transitive (laterˡ p) q = laterˡ λ { .force →
transitive (force p) q }
-- The termination relation respects weak bisimilarity.
⇓-respects-≈ : ∀ {i x y z} → Terminates i x z → x ≈ y → Terminates i y z
⇓-respects-≈ now q = ≈→⊑ q
⇓-respects-≈ (laterʳ p) q = ⇓-respects-≈ p (B.laterˡ⁻¹ q)
-- The ordering relation respects weak bisimilarity.
transitive-≈⊑ : ∀ {i x y z} → [ i ] x ≈ y → y ⊑ z → [ i ] x ⊑ z
transitive-≈⊑ p q = transitive (≈→⊑ p) q
transitive-⊑≈ : ∀ {i x y z} → [ i ] x ⊑ y → y ≈ z → [ i ] x ⊑ z
transitive-⊑≈ p now = p
transitive-⊑≈ (laterʳ p) (later q) = laterʳ (transitive-⊑≈ p (force q))
transitive-⊑≈ (laterˡ p) q = laterˡ λ { .force →
transitive-⊑≈ (force p) q }
transitive-⊑≈ (laterʳ p) (laterˡ q) = transitive-⊑≈ p q
transitive-⊑≈ p (laterʳ q) = laterʳ (transitive-⊑≈ p q)
-- There is a transitivity-like function that produces an ordering
-- proof from one weak bisimilarity proof and one ordering proof, in
-- such a way that the size of the ordering proof is preserved, iff A
-- is uninhabited.
Transitivity-≈⊑ʳ =
∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ⊑ z → [ i ] x ⊑ z
size-preserving-transitivity-≈⊑ʳ⇔uninhabited : Transitivity-≈⊑ʳ ⇔ ¬ A
size-preserving-transitivity-≈⊑ʳ⇔uninhabited = record
{ to = Transitivity-≈⊑ʳ ↝⟨ (λ trans {i x} →
[ i ] later (record { force = now x }) ∼ never ↝⟨ ≈→⊑ ∘ ∼→ ⟩
[ i ] later (record { force = now x }) ⊑ never ↝⟨ trans (laterʳ now) ⟩
[ i ] now x ⊑ never ↝⟨ _↔_.to ⇓↔⇓ ⟩□
[ i ] now x ≈ never □) ⟩
Laterˡ⁻¹-∼≈′ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩
(∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-≈⊑ʳ □
}
-- Transitivity can be made size-preserving in the second argument iff
-- A is uninhabited.
Transitivityʳ =
∀ {i} {x y z : Delay A ∞} → x ⊑ y → [ i ] y ⊑ z → [ i ] x ⊑ z
size-preserving-transitivityʳ⇔uninhabited : Transitivityʳ ⇔ ¬ A
size-preserving-transitivityʳ⇔uninhabited = record
{ to = Transitivityʳ ↝⟨ _∘ ≈→⊑ ⟩
Transitivity-≈⊑ʳ ↝⟨ _⇔_.to size-preserving-transitivity-≈⊑ʳ⇔uninhabited ⟩□
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩
(∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivityʳ □
}
-- There is a transitivity-like function that produces an ordering
-- proof from one ordering proof and one weak bisimilarity proof, in
-- such a way that the size of the weak bisimilarity proof is
-- preserved, iff A is uninhabited.
Transitivity-⊑≈ʳ =
∀ {i} {x y z : Delay A ∞} → x ⊑ y → [ i ] y ≈ z → [ i ] x ⊑ z
size-preserving-transitivity-⊑≈ʳ⇔uninhabited : Transitivity-⊑≈ʳ ⇔ ¬ A
size-preserving-transitivity-⊑≈ʳ⇔uninhabited = record
{ to = Transitivity-⊑≈ʳ ↝⟨ (λ trans {i x} →
[ i ] later (record { force = now x }) ∼ never ↝⟨ ∼→ ⟩
[ i ] later (record { force = now x }) ≈ never ↝⟨ trans (laterʳ now) ⟩
[ i ] now x ⊑ never ↝⟨ _↔_.to ⇓↔⇓ ⟩□
[ i ] now x ≈ never □) ⟩
Laterˡ⁻¹-∼≈′ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited ⟩
¬ A □
; from = ¬ A ↝⟨ uninhabited→trivial ⟩
(∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩
(∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□
Transitivity-⊑≈ʳ □
}
-- An alternative characterisation of the ordering relation.
--
-- Capretta proves a similar result in "General Recursion via
-- Coinductive Types".
--
-- One might wonder if the equivalence can be made size-preserving in
-- some way. However, note that x ⇓ y is in bijective correspondence
-- with Terminates i x y for any size i (see Terminates↔⇓).
⊑⇔⇓→⇓ : ∀ {x y} → x ⊑ y ⇔ (∀ z → x ⇓ z → y ⇓ z)
⊑⇔⇓→⇓ = record
{ to = to
; from = from _
}
where
to : ∀ {x y} → x ⊑ y → ∀ z → x ⇓ z → y ⇓ z
to p z now = p
to (laterʳ p) z q = laterʳ (to p z q)
to (laterˡ p) z (laterʳ q) = to (force p) z q
from : ∀ {i} x {y} → (∀ z → x ⇓ z → y ⇓ z) → [ i ] x ⊑ y
from (now x) p = p x now
from (later x) p = laterˡ λ { .force →
from (force x) (λ z q → p z (laterʳ q)) }
-- An alternative characterisation of weak bisimilarity.
--
-- Capretta proves a similar result in "General Recursion via
-- Coinductive Types".
≈⇔≈₂ : {x y : Delay A ∞} → x ≈ y ⇔ x ≈₂ y
≈⇔≈₂ {x} {y} =
x ≈ y ↝⟨ ≈⇔⊑×⊒ ⟩
x ⊑ y × y ⊑ x ↝⟨ ⊑⇔⇓→⇓ ×-cong ⊑⇔⇓→⇓ ⟩
(∀ z → x ⇓ z → y ⇓ z) × (∀ z → y ⇓ z → x ⇓ z) ↝⟨ ∀-cong _ (λ _ → →-cong _ (from-bijection ⇓↔⇓) (from-bijection ⇓↔⇓))
×-cong
∀-cong _ (λ _ → →-cong _ (from-bijection ⇓↔⇓) (from-bijection ⇓↔⇓)) ⟩
(∀ z → x T.⇓ z → y T.⇓ z) × (∀ z → y T.⇓ z → x T.⇓ z) ↝⟨ record { to = uncurry λ to from z → record { to = to z; from = from z }
; from = λ hyp → _⇔_.to ∘ hyp , _⇔_.from ∘ hyp
} ⟩□
(∀ z → x T.⇓ z ⇔ y T.⇓ z) □
-- If A is a set, then every computation is weakly bisimilar to either
-- never or now something (assuming excluded middle and
-- extensionality).
⇑⊎⇓ :
Excluded-middle a → E.Extensionality a a →
Is-set A → (x : Delay A ∞) → never ≈ x ⊎ ∃ λ y → x T.⇓ y
⇑⊎⇓ em ext A-set x =
⊎-map (_⇔_.from ≈⇔≈₂) id $
Excluded-middle→Double-negation-elimination em
(⊎-closure-propositional
(λ { x⇑ (y , x⇓y) →
now≉never (now y ≈⟨ x⇓y ⟩
x ≈⟨ B.symmetric (_⇔_.from ≈⇔≈₂ x⇑) ⟩∎
never ∎) })
(≈₂-propositional ext A-set)
(T.∃-Terminates-propositional A-set))
(⊎-map (_⇔_.to ≈⇔≈₂) id ⟨$⟩ T.¬¬[⇑⊎⇓] x)
| {
"alphanum_fraction": 0.5033634001,
"avg_line_length": 36.5418994413,
"ext": "agda",
"hexsha": "7a629cb9bdc874ecb76f96abf9df02d609084c12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Partial-order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Partial-order.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Partial-order.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5141,
"size": 13082
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Relation.Binary.Base
open import Cubical.Core.Everything
module Cubical.Relation.Binary.Structures
{a ℓ} {A : Type a} -- The underlying type
(_<>_ : Rel A ℓ) -- The relation
where
open import Cubical.Foundations.Prelude using (refl; sym; isSet)
open import Cubical.Foundations.Function using (_∘_; id)
open import Cubical.Foundations.Logic hiding (¬_)
open import Cubical.Relation.Nullary.Decidable
open import Cubical.Relation.Binary.Definitions
open import Cubical.Relation.Binary.Properties
open import Cubical.HITs.PropositionalTruncation
import Cubical.Relation.Binary.Raw.Structures [ _<>_ ] as Raw
private
variable
ℓ₂ : Level
------------------------------------------------------------------------
-- Preorders
------------------------------------------------------------------------
record IsPreorder : Type (ℓ-max a ℓ) where
constructor ispreorder
field
reflexive : Reflexive _<>_
transitive : Transitive _<>_
fromEq : FromEq _<>_
fromEq = reflx→fromeq _<>_ reflexive
raw : Raw.IsPreorder
raw = record
{ reflexive = reflexive
; transitive = transitive
}
------------------------------------------------------------------------
-- Equivalences
------------------------------------------------------------------------
record IsPartialEquivalence : Type (ℓ-max a ℓ) where
constructor ispartialeq
field
symmetric : Symmetric _<>_
transitive : Transitive _<>_
raw : Raw.IsPartialEquivalence
raw = record
{ symmetric = symmetric
; transitive = transitive
}
record IsEquivalence : Type (ℓ-max a ℓ) where
constructor isequivalence
field
reflexive : Reflexive _<>_
isPartialEquivalence : IsPartialEquivalence
open IsPartialEquivalence isPartialEquivalence public hiding (raw)
from-≡ : FromEq _<>_
from-≡ = reflx→fromeq _<>_ reflexive
isPreorder : IsPreorder
isPreorder = record
{ reflexive = reflexive
; transitive = transitive
}
raw : Raw.IsEquivalence
raw = record
{ reflexive = reflexive
; isPartialEquivalence = IsPartialEquivalence.raw isPartialEquivalence
}
record IsDecEquivalence : Type (ℓ-max a ℓ) where
constructor isdeceq
infix 4 _≟_
field
isEquivalence : IsEquivalence
_≟_ : Decidable _<>_
open IsEquivalence isEquivalence public hiding (raw)
raw : Raw.IsDecEquivalence
raw = record
{ isEquivalence = IsEquivalence.raw isEquivalence
; _≟_ = _≟_
}
------------------------------------------------------------------------
-- Partial orders
------------------------------------------------------------------------
record IsPartialOrder : Type (ℓ-max a ℓ) where
constructor ispartialorder
field
isPreorder : IsPreorder
antisym : Antisymmetric _<>_
open IsPreorder isPreorder public hiding (raw)
raw : isSet A → Raw.IsPartialOrder
raw isSetA = record
{ isPreorder = IsPreorder.raw isPreorder
; antisym = λ x y → rec (isSetA _ _) id (antisym x y)
}
record IsDecPartialOrder : Type (ℓ-max a ℓ) where
constructor isdecpartialorder
infix 4 _≤?_
field
isPartialOrder : IsPartialOrder
_≤?_ : Decidable _<>_
open IsPartialOrder isPartialOrder public hiding (raw)
private
lemma : ∀ {x y} → ¬ ⟨ x <> y ⟩ → ¬ x ≡ y
lemma x≰y x≡y = x≰y (fromEq ∣ x≡y ∣)
raw : isSet A → Raw.IsDecPartialOrder
raw isSetA = record
{ isPartialOrder = IsPartialOrder.raw isPartialOrder isSetA
; _≤?_ = _≤?_
}
record IsStrictPartialOrder : Type (ℓ-max a ℓ) where
constructor isstrictpartialorder
field
irrefl : Irreflexive _<>_
transitive : Transitive _<>_
asym : Asymmetric _<>_
asym {x} {y} = trans∧irr→asym _<>_ transitive irrefl
raw : Raw.IsStrictPartialOrder
raw = record
{ irrefl = irrefl
; transitive = transitive
}
record IsDecStrictPartialOrder : Type (ℓ-max a ℓ) where
constructor isdecstrictpartialorder
infix 4 _<?_
field
isStrictPartialOrder : IsStrictPartialOrder
_<?_ : Decidable _<>_
open IsStrictPartialOrder isStrictPartialOrder public hiding (raw)
raw : isSet A → Raw.IsDecStrictPartialOrder
raw isSetA = record
{ isStrictPartialOrder = IsStrictPartialOrder.raw isStrictPartialOrder
; _<?_ = _<?_
}
------------------------------------------------------------------------
-- Total orders
------------------------------------------------------------------------
record IsTotalOrder : Type (ℓ-max a ℓ) where
constructor istotalorder
field
isPartialOrder : IsPartialOrder
total : Total _<>_
open IsPartialOrder isPartialOrder public hiding (raw)
raw : isSet A → Raw.IsTotalOrder
raw isSetA = record
{ isPartialOrder = IsPartialOrder.raw isPartialOrder isSetA
; total = total
}
record IsDecTotalOrder : Type (ℓ-max a ℓ) where
constructor isdectotalorder
infix 4 _≤?_
field
isTotalOrder : IsTotalOrder
_≤?_ : Decidable _<>_
open IsTotalOrder isTotalOrder public hiding (raw)
isDecPartialOrder : IsDecPartialOrder
isDecPartialOrder = record
{ isPartialOrder = isPartialOrder
; _≤?_ = _≤?_
}
raw : isSet A → Raw.IsDecTotalOrder
raw isSetA = record
{ isTotalOrder = IsTotalOrder.raw isTotalOrder isSetA
; _≤?_ = _≤?_
}
-- Note that these orders are decidable. The current implementation
-- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable
-- definition capturing these three properties implies decidability
-- as `Trichotomous` necessarily separates out the equality case.
record IsStrictTotalOrder : Type (ℓ-max a ℓ) where
constructor isstricttotalorder
field
transitive : Transitive _<>_
compare : Trichotomous _<>_
infix 4 _<?_
_<?_ : Decidable _<>_
_<?_ = tri→dec< _<>_ compare
_≟_ : Discrete A
_≟_ = tri→dec≡ _<>_ compare
isStrictPartialOrder : IsStrictPartialOrder
isStrictPartialOrder = record
{ irrefl = tri→irr _<>_ compare
; transitive = transitive
}
isDecStrictPartialOrder : IsDecStrictPartialOrder
isDecStrictPartialOrder = record
{ isStrictPartialOrder = isStrictPartialOrder
; _<?_ = _<?_
}
open IsStrictPartialOrder isStrictPartialOrder public hiding (transitive; raw)
raw : isSet A → Raw.IsStrictTotalOrder
raw isSetA = record
{ transitive = transitive
; compare = triRaw compare
}
where
import Cubical.Relation.Binary.Raw.Definitions as RawDefinitions
triRaw : Trichotomous _<>_ → RawDefinitions.Trichotomous [ _<>_ ]
triRaw tri x y with tri x y
... | tri< a b c = RawDefinitions.tri< a b c
... | tri≡ a b c = RawDefinitions.tri≡ a b c
... | tri> a b c = RawDefinitions.tri> a b c
| {
"alphanum_fraction": 0.6302090949,
"avg_line_length": 25.2361623616,
"ext": "agda",
"hexsha": "6eff13f11208edd0cbf5393e68f52fefea21f2e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Structures.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1912,
"size": 6839
} |
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Unit.NonEta
open import Data.Empty
open import Data.Sum
open import Data.Product
open import Data.Product.Properties
open import Data.Fin hiding (_<_; _≤_)
open import Data.Fin.Properties using () renaming (_≟_ to _≟Fin_)
open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
open import Data.Nat.Properties
open import Data.List renaming (map to List-map)
open import Data.List.Properties using (∷-injective; length-map)
open import Data.List.Relation.Unary.Any renaming (map to Any-map)
open import Data.List.Relation.Unary.All renaming (lookup to All-lookup; map to All-map)
open import Data.List.Relation.Unary.All.Properties hiding (All-map)
open import Data.List.Relation.Unary.Any.Properties renaming (map⁺ to Any-map⁺)
open import Data.List.Relation.Binary.Pointwise using (decidable-≡)
open import Data.Bool hiding (_<_; _≤_)
open import Data.Maybe renaming (map to Maybe-map)
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Relation.Nullary
open import AAOSL.Lemmas
open import AAOSL.Abstract.Hash
open import AAOSL.Abstract.DepRel
-- This module defines the DepRel type, which represents the class of AAOSLs we
-- consider, and proves properties about any DepRel.
module AAOSL.Abstract.Advancement
-- A Hash function maps a bytestring into a hash.
(hash : ByteString → Hash)
-- And is collision resistant
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
-- Indexes can be encoded in an injective way
(encodeI : ℕ → ByteString)
(encodeI-inj : (m n : ℕ) → encodeI m ≡ encodeI n → m ≡ n)
(dep : DepRel)
where
-- Brings the DepRel names into scope instantiated
-- for the module parameters in question.
open DepRel dep
hop-prog : ∀{m}(h : HopFrom m) → hop-tgt h ≢ m
hop-prog = <⇒≢ ∘ hop-<
hop-≤ : ∀{m}(h : HopFrom m) → hop-tgt h ≤ m
hop-≤ = <⇒≤ ∘ hop-<
depsof : ℕ → List ℕ
depsof 0 = []
depsof (suc i) = List-map hop-tgt (nats (lvlof (suc i)))
depsof-ne : ∀ m → depsof m ≡ [] → m ≡ 0
depsof-ne 0 hyp = refl
depsof-ne (suc m) hyp =
let le0 = trans (sym (length-map hop-tgt (nats (lvlof (suc m)))) )
(cong length hyp)
le-nz = nats-length (lvlof-s m)
in ⊥-elim (1≤0-⊥ (subst (1 ≤_) le0 le-nz))
hopFromZ-⊥ : (h : HopFrom 0) → ⊥
hopFromZ-⊥ h = fin0-⊥ (subst Fin lvlof-z h)
where fin0-⊥ : Fin 0 → ⊥
fin0-⊥ ()
hop-tgt-is-dep : {m : ℕ}(h : HopFrom m)
→ hop-tgt h ∈ depsof m
hop-tgt-is-dep {0} h = ⊥-elim (hopFromZ-⊥ h)
hop-tgt-is-dep {suc m} h = Any-map⁺ (Any-map (cong hop-tgt) (nats-correct h))
-- Two simple but useful lemmas made to work over our abstract
-- index type.
≤-≢-mon : ∀{i j tgt} → tgt ≢ j → tgt ≤ j → i ≤ tgt → i ≢ j
≤-≢-mon tgt≢j tgt≤j i≤tgt i≡j
= tgt≢j (sym (≤-antisym (subst (_≤ _) i≡j i≤tgt) tgt≤j))
≟ℕ-refl : (s : ℕ) → (s ≟ℕ s) ≡ yes refl
≟ℕ-refl s with s ≟ℕ s
...| no abs = ⊥-elim (abs refl)
...| yes refl = refl
⊥-prop : (a b : ⊥) → a ≡ b
⊥-prop () ()
≟ℕ-neg : (m n : ℕ) → (p : m ≢ n) → (m ≟ℕ n) ≡ no p
≟ℕ-neg m n p with m ≟ℕ n
...| yes imp = ⊥-elim (p imp)
...| no r = cong no (fun-ext (λ x → ⊥-prop (r x) (p x)))
HopFrom≢0 : ∀{j}(h : HopFrom j) → j ≢ 0
HopFrom≢0 {j} h refl = hopFromZ-⊥ h
open WithCryptoHash hash hash-cr
-- This function is total, even though we won't always know a hash for every
-- index. That's ok, we only use the hashes of the relevant indexes.
View : Set
View = ℕ → Hash
-- An inhabitant of 'Agree s t ixs' is a proof that the views s and t
-- agree on the hash of every index i ∈ ixs.
Agree : View → View → List ℕ → Set
Agree v u = All (λ s → v s ≡ u s)
-- Returns the list of hashes that the authenticator
-- at the given index depends on.
deps-hash : ℕ → View → List Hash
deps-hash s tbl = List-map tbl (depsof s)
-- TODO-2: Make auth, auth-inj-1 and auth-inj-2 module parameters
-- TODO-1: Make sure the names are consistent with the paper
--------------------------
-- Defining authenticators
-- Authenticators will depend on all p-auths of the
-- dependencies of a node.
auth : (s : ℕ) → Hash → View → Hash
auth s h tbl = hash-concat (hash (encodeI s) ∷ h ∷ deps-hash s tbl)
-- We will be using two separate injectivity functions. One is
-- for the hash of the data in a node, which can't be the
-- initial node!
auth-inj-1 : {j : ℕ}{h₁ h₂ : Hash}{t₁ t₂ : View}
→ j ≢ 0
→ auth j h₁ t₁ ≡ auth j h₂ t₂
→ HashBroke ⊎ h₁ ≡ h₂
auth-inj-1 {j} {h₁} {h₂} {t₁} {t₂} j≢s₀ hip
with hash-concat-inj { hash (encodeI j) ∷ h₁ ∷ deps-hash j t₁ }
{ hash (encodeI j) ∷ h₂ ∷ deps-hash j t₂ } hip
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (proj₁ (∷-injective (proj₂ (∷-injective r))))
-- The second one does induction on the list of dependencies.
auth-inj-2 : {i : ℕ}{h : Hash}(t₁ t₂ : View)
→ auth i h t₁ ≡ auth i h t₂
→ HashBroke ⊎ Agree t₁ t₂ (depsof i)
auth-inj-2 {i} {h} t₁ t₂ hip
with hash-concat-inj { hash (encodeI i) ∷ h ∷ deps-hash i t₁ }
{ hash (encodeI i) ∷ h ∷ deps-hash i t₂ } hip
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (auth-inj-2-aux t₁ t₂ (depsof i) (proj₂ (∷-injective (proj₂ (∷-injective r)))))
where
auth-inj-2-aux : (t₁ t₂ : View)(l : List ℕ)
→ List-map t₁ l ≡ List-map t₂ l
→ Agree t₁ t₂ l
auth-inj-2-aux t1 t2 [] hyp = []
auth-inj-2-aux t1 t2 (x ∷ l) hyp = proj₁ (∷-injective hyp) ∷ auth-inj-2-aux t1 t2 l (proj₂ (∷-injective hyp))
------------------------
------------------------
-- Advancement Proofs --
------------------------
------------------------
-- Finally, advancement proofs in their simple variant
data AdvPath : ℕ → ℕ → Set where
AdvDone : ∀{i} → AdvPath i i
AdvThere : ∀{j i}
→ Hash -- datum digest
→ (h : HopFrom j)
→ AdvPath (hop-tgt h) i
→ AdvPath j i
-- Override a view with a hash for a specific index.
_∪₁_ : View → ℕ × Hash → View
_∪₁_ tbl (s , h) s'
with s ≟ℕ s'
...| yes _ = h
...| no _ = tbl s'
-- The rebuild function is, essentially, a transformer over
-- the current view of the skiplog. It is PARAMOUNT to return
-- a new 'view' of the world, as we can see in rebuild-⊕ lemma.
-- Otherwise, it becomes seriously intricate to express
-- that rebuilding the hash of index j "depends on" the rebuilt
-- hashes of j's dependencies.
rebuild : ∀{i j} → AdvPath j i → View → View
rebuild {i} AdvDone tbl = tbl
rebuild (AdvThere {j = j} x h prf) tbl
= let tbl' = rebuild prf tbl
in tbl' ∪₁ (j , auth j x tbl')
lemma1 : ∀{j i} → AdvPath j i → i ≤ j
lemma1 AdvDone = ≤-refl
lemma1 {j} (AdvThere x h a) = ≤-trans (lemma1 a) (hop-≤ h)
rebuild-tgt-lemma : ∀{j i}(a : AdvPath j i){t : View}
→ rebuild a t i ≡ t i
rebuild-tgt-lemma AdvDone = refl
rebuild-tgt-lemma {j} {i} (AdvThere x h a)
rewrite ≟ℕ-neg j i (<⇒≢ (≤-<-trans (lemma1 a) (hop-< h)) ∘ sym)
= rebuild-tgt-lemma a
lemma2 : ∀{i}(a : AdvPath i i) → a ≡ AdvDone
lemma2 AdvDone = refl
lemma2 (AdvThere x h a)
= ⊥-elim (hop-prog h (sym (≤-antisym (lemma1 a) (hop-≤ h))))
-- Lemma3 states that if a hop exists, then it is not from
-- s₀. This is necessary to eliminate some nasty cases.
lemma3 : ∀{j i} → (h : HopFrom j) → AdvPath (hop-tgt h) i → j ≢ 0
lemma3 h a = HopFrom≢0 h
----------------------
-- Proof Splitting --
----------------------
_⊕_ : ∀{j k i} → AdvPath j k → AdvPath k i → AdvPath j i
AdvDone ⊕ rest = rest
(AdvThere d h a) ⊕ rest = AdvThere d h (a ⊕ rest)
⊕-id-r : ∀{j i}(a : AdvPath j i) → a ⊕ AdvDone ≡ a
⊕-id-r AdvDone = refl
⊕-id-r (AdvThere x h a) = cong (AdvThere x h) (⊕-id-r a)
-- A value of type 'i ∈AP a' illustrates index i as a dependency
-- of 'a'.
data _∈AP_ (i₀ : ℕ) : {j i : ℕ} → AdvPath j i → Set where
hereTgtDone : i₀ ∈AP (AdvDone {i₀})
hereTgtThere : ∀{i}{d : Hash}{hop : HopFrom i₀}{a : AdvPath (hop-tgt hop) i}
→ i₀ ∈AP (AdvThere d hop a)
step : ∀{i j}{d : Hash}{hop : HopFrom j}{a : AdvPath (hop-tgt hop) i}
→ i₀ ≢ j
→ i₀ ∈AP a
→ i₀ ∈AP (AdvThere d hop a)
∈AP-src : ∀{j i}{a : AdvPath j i}
→ j ∈AP a
∈AP-src {a = AdvDone} = hereTgtDone
∈AP-src {a = AdvThere x h a} = hereTgtThere
∈AP-tgt : ∀{j i}{a : AdvPath j i}
→ i ∈AP a
∈AP-tgt {a = AdvDone} = hereTgtDone
∈AP-tgt {a = AdvThere x h a} = step (<⇒≢ (≤-<-trans (lemma1 a) (hop-< h))) ∈AP-tgt
∈AP-≤ : ∀{j i}{a : AdvPath j i}
→ {i0 : ℕ} → i0 ∈AP a
→ i0 ≤ j
∈AP-≤ hereTgtDone = ≤-refl
∈AP-≤ hereTgtThere = ≤-refl
∈AP-≤ (step _ hyp) = ≤-trans (∈AP-≤ hyp) (hop-≤ _)
∈AP-≥ : ∀{j i}{a : AdvPath j i}
→ {i0 : ℕ} → i0 ∈AP a
→ i ≤ i0
∈AP-≥ hereTgtDone = ≤-refl
∈AP-≥ {a = a} hereTgtThere = lemma1 a
∈AP-≥ (step _ hyp) = ∈AP-≥ hyp
rebuild-⊕' : ∀{j k i}
→ {t : View}
→ (a₁ : AdvPath j k)
→ (a₂ : AdvPath k i)
→ ∀{l} → l ∈AP a₂
→ rebuild (a₁ ⊕ a₂) t l ≡ rebuild a₂ t l
rebuild-⊕' AdvDone a₂ hyp = refl
rebuild-⊕' {j} (AdvThere x h a₁) a₂ {l} hyp
with j ≟ℕ l
...| yes nope = ⊥-elim (≤-≢-mon (hop-prog h) (hop-≤ h)
(≤-trans (∈AP-≤ hyp) (lemma1 a₁)) (sym nope))
...| no ok = rebuild-⊕' a₁ a₂ hyp
∈AP-cut : ∀{j k i}
→ (a : AdvPath j i)
→ k ∈AP a
→ Σ (AdvPath j k × AdvPath k i)
(λ { (x , y) → a ≡ x ⊕ y })
∈AP-cut AdvDone hereTgtDone
= (AdvDone , AdvDone) , refl
∈AP-cut (AdvThere d h a) hereTgtThere
= (AdvDone , AdvThere d h a) , refl
∈AP-cut (AdvThere d h a) (step x prf)
with ∈AP-cut a prf
...| xy , ind = (AdvThere d h (proj₁ xy) , proj₂ xy)
, cong (AdvThere d h) ind
∈AP-cut₁ : ∀{j k i}
→ (a : AdvPath j i)
→ k ∈AP a
→ AdvPath k i
∈AP-cut₁ a prf = proj₂ (proj₁ (∈AP-cut a prf))
∈AP-∈-cut
: ∀{j k i}
→ (a : AdvPath j i)
→ (prf : k ∈AP a)
→ ∀{m} → m ∈AP a → m ≤ k
→ m ∈AP (∈AP-cut₁ a prf)
∈AP-∈-cut AdvDone hereTgtDone m∈ap hyp = m∈ap
∈AP-∈-cut (AdvThere _ _ _) hereTgtThere m∈ap hyp = m∈ap
∈AP-∈-cut (AdvThere d h a) (step x prf) hereTgtThere hyp
= ⊥-elim (<⇒≱ (hop-< h) (≤-trans hyp (∈AP-≤ prf)))
∈AP-∈-cut (AdvThere d h a) (step x prf) (step x₁ m∈ap) hyp
= ∈AP-∈-cut a prf m∈ap hyp
∈AP-cut₁-rebuild
: ∀{j k i}
→ (a : AdvPath j i)
→ (prf : k ∈AP a)
→ {s : ℕ} → (s ∈AP (∈AP-cut₁ a prf))
→ ∀{t} → rebuild a t s ≡ rebuild (∈AP-cut₁ a prf) t s
∈AP-cut₁-rebuild a prf s∈cut {t}
with ∈AP-cut a prf
...| (x , y) , refl = rebuild-⊕' x y s∈cut
rebuild-⊕ : ∀{j k i}
→ {t : View}
→ (a₁ : AdvPath j k)
→ (a₂ : AdvPath k i)
→ rebuild (a₁ ⊕ a₂) t k ≡ rebuild a₂ t k
rebuild-⊕ {k = k} a₁ AdvDone = rebuild-⊕' a₁ AdvDone {k} hereTgtDone
rebuild-⊕ {k = k} {i = i} a₁ (AdvThere .{k} d h p) = rebuild-⊕' a₁ (AdvThere d h p) hereTgtThere
∈AP-⊕ : ∀{j i₁ k i₂ i}
→ {e : AdvPath j k}{a₁ : AdvPath k i₁}
→ {a₂ : AdvPath k i₂}
→ i ∈AP (e ⊕ a₁)
→ i ∈AP a₂
→ i ∈AP a₁
∈AP-⊕ {e = AdvDone} hyp1 hyp2 = hyp1
∈AP-⊕ {e = AdvThere x h e} hereTgtThere hyp2
with ≤-antisym (∈AP-≤ hyp2) (lemma1 (AdvThere x h e))
...| refl = ⊥-elim (hop-prog h (≤-antisym (hop-≤ h) (lemma1 e)))
∈AP-⊕ {e = AdvThere x h e} (step x₁ hyp1) hyp2 = ∈AP-⊕ hyp1 hyp2
∈AP-point' : ∀{j k i}
→ {a₁ : AdvPath j k}
→ {a₂ : AdvPath k i}
→ {m : ℕ} → m ∈AP a₁ → m ∈AP a₂
→ m ≡ k
∈AP-point' hereTgtDone h2 = refl
∈AP-point' {a₁ = AdvThere d h a₁} {a₂} hereTgtThere h2
= ⊥-elim (≤-≢-mon (≤-≢-mon (hop-prog h) (hop-≤ h) (lemma1 a₁) ∘ sym)
(∈AP-≤ h2)
(lemma1 (AdvThere d h a₁)) refl)
∈AP-point' (step x h1) h2 = ∈AP-point' h1 h2
∈AP-point'' : ∀{j₁ j₂ i₁ i₂}
→ {a₁ : AdvPath j₁ i₁}
→ {a₂ : AdvPath j₂ i₂}
→ j₂ < i₁
→ {i : ℕ} → i ∈AP a₁ → i ∈AP a₂
→ ⊥
∈AP-point'' j<i hereTgtDone h2
= (<⇒≢ j<i) (≤-antisym (<⇒≤ j<i) (∈AP-≤ h2))
∈AP-point'' {a₁ = a₁} j<i hereTgtThere h2
= (<⇒≢ j<i) (≤-antisym (<⇒≤ j<i) (≤-trans (lemma1 a₁) (∈AP-≤ h2)))
∈AP-point'' j<i (step x h1) h2 = ∈AP-point'' j<i h1 h2
∈AP-point : ∀{j₁ j₂ i₁ i₂}
→ {a₁ : AdvPath j₁ i₁}
→ {a₂ : AdvPath j₂ i₂}
→ j₂ ≤ i₁
→ {i : ℕ} → i ∈AP a₁ → i ∈AP a₂
→ j₂ ≡ i₁ × i ≡ j₂
∈AP-point {j₂ = j₂} {i₁ = i₁} j₂≤i₁ h1 h2
with j₂ ≟ℕ i₁
...| no abs = ⊥-elim (∈AP-point'' (≤∧≢⇒< j₂≤i₁ abs) h1 h2)
...| yes refl = refl , ∈AP-point' h1 h2
∈AP-AdvDone-≡ : ∀{i j}
→ i ∈AP (AdvDone {j})
→ i ≡ j
∈AP-AdvDone-≡ hereTgtDone = refl
-- It is important that we can split proofs. Here, we know that 'a'
-- and the guide are proofs that come from jump from the same source, j.
split-⊕ : ∀{J j i}
→ {H : HopFrom J}
→ {h : HopFrom j}
→ j ≤ J
→ hop-tgt H < hop-tgt h
→ i ≤ hop-tgt H
→ (a : AdvPath (hop-tgt h) i)
→ Σ (AdvPath (hop-tgt h) (hop-tgt H) × AdvPath (hop-tgt H) i)
(λ { (x , y) → a ≡ x ⊕ y })
split-⊕ j≤J H<h i≤H AdvDone
= ⊥-elim (≤-≢-mon (<⇒≢ H<h) (<⇒≤ H<h) i≤H refl)
split-⊕ {i = i} {H} {h} j≤J H<h i≤H (AdvThere d h' a)
with hop-tgt h' ≟ℕ hop-tgt H
...| yes sameHop = (AdvThere d h' (subst (AdvPath (hop-tgt h')) sameHop AdvDone)
, subst (λ P → AdvPath P i) sameHop a)
, aux sameHop a
where
aux : ∀{i j k}{h : HopFrom j} → (stop : hop-tgt h ≡ k)
→ (a : AdvPath (hop-tgt h) i)
→ AdvThere d h a
≡ (AdvThere d h (subst (AdvPath (hop-tgt h)) stop AdvDone)
⊕ subst (λ P → AdvPath P i) stop a)
aux refl a = refl
...| no diffHop
with ≤-total (hop-tgt h') (hop-tgt H)
...| inj₁ crossover with hops-nested-or-nonoverlapping (≤∧≢⇒< crossover diffHop)
H<h
...| abs = ⊥-elim (≤-≢-mon (mmm (hop-≤ h) (hop-prog h) j≤J) (≤-trans (hop-≤ h) j≤J) abs refl)
where mmm : ∀{h j J} → h ≤ j → h ≢ j → j ≤ J → h ≢ J
mmm h≤j h≢j j≤J refl = h≢j (≤-antisym h≤j j≤J)
split-⊕ {i = i} {H} {h} j≤J H<h i≤H (AdvThere d h' a)
| no diffHop
| inj₂ go
with split-⊕ {H = H} (≤-trans (hop-≤ h) j≤J) (≤∧≢⇒< go (diffHop ∘ sym)) i≤H a
...| ((x , y) , prf) = (AdvThere d h' x , y) , cong (AdvThere d h') prf
---------------------
-- Evolutionary CR --
---------------------
-- The type 'AgreeOnCommon t₁ t₂ a₁ a₂', or 'AOC' for short, is inhabited if
-- and only if the advancement proofs a₁ and a₂ agree on the hash they rebuild
-- for every index that is visited by both. Moreover, the views must also
-- agree on the dependencies of said indexes.
data AOC (t₁ t₂ : View)
: ∀{i₁ i₂ j} → AdvPath j i₁ → AdvPath j i₂ → Set where
PDoneDone : ∀{i} → t₁ i ≡ t₂ i → AOC t₁ t₂ {i} {i} AdvDone AdvDone
-- h
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- | |
-- | ⌜⁻⁻⁻ a₁ ⁻⁻⁻⁻|
-- | | |
-- i₂ ⋯ hop-tgt h ≤ i₁ j
PDoneL : ∀{j i₁ i₂}{d}{h : HopFrom j}
→ (a₁ : AdvPath j i₁)
→ (a₂ : AdvPath (hop-tgt h) i₂)
→ hop-tgt h ≤ i₁
→ rebuild a₁ t₁ j ≡ rebuild (AdvThere d h a₂) t₂ j
→ AOC t₁ t₂ a₁ (AdvThere d h a₂)
PDoneR : ∀{j i₁ i₂}{d}{h : HopFrom j}
→ (a₁ : AdvPath (hop-tgt h) i₁)
→ (a₂ : AdvPath j i₂)
→ hop-tgt h ≤ i₂
→ rebuild (AdvThere d h a₁) t₁ j ≡ rebuild a₂ t₂ j
→ AOC t₁ t₂ (AdvThere d h a₁) a₂
PCong : ∀{j i₁ i₂}{d}{h : HopFrom j}
→ i₁ ≤ i₂
→ (a₁ : AdvPath (hop-tgt h) i₁)
→ (a₂ : AdvPath (hop-tgt h) i₂)
→ Agree (rebuild a₁ t₁) (rebuild a₂ t₂) (depsof j)
→ AOC t₁ t₂ a₁ a₂
→ AOC t₁ t₂ (AdvThere d h a₁)
(AdvThere d h a₂)
PMeetR : ∀{j i₁ i₂ d}{h₁ h₂ : HopFrom j}
→ (e : AdvPath (hop-tgt h₁) (hop-tgt h₂))
→ (a₁ : AdvPath (hop-tgt h₂) i₁)
→ (a₂ : AdvPath (hop-tgt h₂) i₂)
→ hop-tgt h₂ < hop-tgt h₁
→ Agree (rebuild (e ⊕ a₁) t₁) (rebuild a₂ t₂) (depsof j)
→ AOC t₁ t₂ a₁ a₂
→ AOC t₁ t₂ (AdvThere d h₁ (e ⊕ a₁))
(AdvThere d h₂ a₂)
PMeetL : ∀{j i₁ i₂ d}{h₁ h₂ : HopFrom j}
→ (e : AdvPath (hop-tgt h₂) (hop-tgt h₁))
→ (a₁ : AdvPath (hop-tgt h₁) i₁)
→ (a₂ : AdvPath (hop-tgt h₁) i₂)
→ hop-tgt h₁ < hop-tgt h₂
→ Agree (rebuild a₁ t₁) (rebuild (e ⊕ a₂) t₂) (depsof j)
→ AOC t₁ t₂ a₁ a₂
→ AOC t₁ t₂ (AdvThere d h₁ a₁)
(AdvThere d h₂ (e ⊕ a₂))
-- We use the 'TERMINATING' pragma because we use a recursive call on
-- an argument that Agda can't infer being structurally smaller.
-- TODO-1: provide clear and detailed explanation of this, which argument, why smaller?
-- An interesting longer-term TODO-2 would be to use 'Sized Types' to inform
-- the typechecker of this fact, or perhaps a custom-made moral equivalent.
{-# TERMINATING #-}
aoc : ∀{i₁ i₂ j}
→ i₁ ≤ i₂ -- wlog
→ (t₁ t₂ : View)(a₁ : AdvPath j i₁)(a₂ : AdvPath j i₂)
→ rebuild a₁ t₁ j ≡ rebuild a₂ t₂ j
→ HashBroke ⊎ AOC t₁ t₂ a₁ a₂
aoc _ t1 t2 AdvDone AdvDone hip
= inj₂ (PDoneDone hip)
aoc _ t1 t2 AdvDone (AdvThere x h a2) hip
= inj₂ (PDoneL AdvDone a2 (hop-≤ h) hip)
aoc _ t1 t2 (AdvThere x h a1) AdvDone hip
= inj₂ (PDoneR a1 AdvDone (hop-≤ h) hip)
aoc {i₁} {i₂} {j} k t₁ t₂ (AdvThere d₁ h₁ a₁) (AdvThere d₂ h₂ a₂) hip
with ≤-total i₂ (hop-tgt h₁)
...| inj₂ h₁≤i₂ = inj₂ (PDoneR a₁ (AdvThere d₂ h₂ a₂) h₁≤i₂ hip)
...| inj₁ go
rewrite ≟ℕ-refl j
with auth-inj-1 {j} {d₁} {d₂} (lemma3 h₁ a₁) hip
...| inj₁ hb = inj₁ hb
...| inj₂ refl
with auth-inj-2 {j} {d₁} (rebuild a₁ t₁) (rebuild a₂ t₂) hip
...| inj₁ hb = inj₁ hb
...| inj₂ agree
with h₁ ≟Hop h₂
...| yes refl
with witness (hop-tgt-is-dep h₁) agree
...| wit rewrite (≟ℕ-refl (hop-tgt h₁))
with aoc k t₁ t₂ a₁ a₂ wit
...| inj₁ hb = inj₁ hb
...| inj₂ rec = inj₂ (PCong k a₁ a₂ agree rec)
aoc {i₁} {i₂} {j} k t₁ t₂ (AdvThere d₁ h₁ a₁) (AdvThere d₂ h₂ a₂) hip
| inj₁ go
| inj₂ refl
| inj₂ agree
| no diffHop
with ≤-total (hop-tgt h₁) (hop-tgt h₂)
...| inj₁ h₁<h₂ with split-⊕ ≤-refl (≤∧≢⇒< h₁<h₂ (diffHop ∘ hop-tgt-inj)) go a₂
...| ((x , y) , refl)
with aoc k t₁ t₂ a₁ y (trans (witness (hop-tgt-is-dep h₁) agree) (rebuild-⊕ x y))
...| inj₁ hb = inj₁ hb
...| inj₂ res = inj₂ (PMeetL x a₁ y (≤∧≢⇒< h₁<h₂ (diffHop ∘ hop-tgt-inj)) agree res)
aoc {j = j} k t₁ t₂ (AdvThere d₁ h₁ a₁) (AdvThere d₂ h₂ a₂) hip
| inj₁ go
| inj₂ refl
| inj₂ agree
| no diffHop
| inj₂ h₂<h₁ with split-⊕ ≤-refl (≤∧≢⇒< h₂<h₁ (diffHop ∘ hop-tgt-inj ∘ sym))
(≤-trans k (lemma1 a₂)) a₁
...| ((x , y) , refl)
with aoc k t₁ t₂ y a₂ (trans (sym (rebuild-⊕ x y))
(witness (hop-tgt-is-dep h₂) agree))
...| inj₁ hb = inj₁ hb
...| inj₂ res = inj₂ (PMeetR x y a₂ (≤∧≢⇒< h₂<h₁ (diffHop ∘ hop-tgt-inj ∘ sym)) agree res)
-- TODO: rename AGREEONCOMMON for consistency with paper, or comment to make connection
aoc-correct : ∀{j i₁ i₂}{a₁ : AdvPath j i₁}{a₂ : AdvPath j i₂}
→ {t₁ t₂ : View}
→ AOC t₁ t₂ a₁ a₂
→ {i : ℕ} → i ∈AP a₁ → i ∈AP a₂
→ HashBroke ⊎ rebuild a₁ t₁ i ≡ rebuild a₂ t₂ i
aoc-correct (PDoneDone x) hereTgtDone hereTgtDone = inj₂ x
aoc-correct (PDoneL a₁ a₂ x x₁) hyp1 hereTgtThere = inj₂ x₁
aoc-correct {j} {t₁ = t₁} {t₂} (PDoneL {d = d} {h} a₁ a₂ x x₁) {i} hyp1 (step x₂ hyp2)
with j ≟ℕ i
...| yes nope = ⊥-elim (x₂ (sym nope))
...| no ok
with a₁
...| AdvDone rewrite ∈AP-AdvDone-≡ hyp1 = ⊥-elim (x₂ refl)
...| AdvThere d₁ h₁ a₁'
with ∈AP-point x hyp1 hyp2
...| refl , refl
with j ≟ℕ hop-tgt h
...| yes nope = ⊥-elim (x₂ (sym nope))
...| no ok' rewrite ≟ℕ-refl j
with auth-inj-1 {h₁ = d₁} {d} (HopFrom≢0 h) x₁
...| inj₁ hb = inj₁ hb
...| inj₂ refl
with auth-inj-2 {j} {d₁} (rebuild a₁' t₁) (rebuild a₂ t₂) x₁
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (witness (hop-tgt-is-dep h) r)
aoc-correct (PDoneR a₁ a₂ x x₁) hereTgtThere hyp2 = inj₂ x₁
aoc-correct {j} {t₁ = t₁} {t₂} (PDoneR {d = d} {h} a₁ a₂ x x₁) {i} (step x₂ hyp1) hyp2
with j ≟ℕ i
...| yes nope = ⊥-elim (x₂ (sym nope))
...| no ok
with a₂
...| AdvDone rewrite ∈AP-AdvDone-≡ hyp2 = ⊥-elim (x₂ refl)
...| AdvThere d₂ h₂ a₂'
with ∈AP-point x hyp2 hyp1
...| refl , refl
with j ≟ℕ hop-tgt h
...| yes nope = ⊥-elim (x₂ (sym nope))
...| no ok' rewrite ≟ℕ-refl j
with auth-inj-1 {h₁ = d₂} {d} (HopFrom≢0 h) (sym x₁)
...| inj₁ hb = inj₁ hb
...| inj₂ refl
with auth-inj-2 {j} {d₂} (rebuild a₁ t₁) (rebuild a₂' t₂) x₁
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (witness (hop-tgt-is-dep h) r)
aoc-correct {j} {t₁ = t₁} {t₂} (PCong x a₁ a₂ x₁ aoc₁) hereTgtThere hereTgtThere
rewrite ≟ℕ-refl j
| List-map-≡-All (rebuild a₁ t₁) (rebuild a₂ t₂) (depsof j) x₁
= inj₂ refl
aoc-correct (PCong x a₁ a₂ x₁ aoc₁) hereTgtThere (step x₂ hyp2)
= ⊥-elim (x₂ refl)
aoc-correct (PCong x a₁ a₂ x₁ aoc₁) (step x₂ hyp1) hereTgtThere
= ⊥-elim (x₂ refl)
aoc-correct {j} (PCong x a₁ a₂ x₁ aoc₁) {i} (step x₂ hyp1) (step x₃ hyp2)
with j ≟ℕ i
...| yes nope = ⊥-elim (x₂ (sym nope))
...| no ok = aoc-correct aoc₁ hyp1 hyp2
aoc-correct {j} {t₁ = t₁} {t₂} (PMeetR e a₁ a₂ x₁ x₂ aoc₁) hereTgtThere hereTgtThere
rewrite ≟ℕ-refl j
| List-map-≡-All (rebuild (e ⊕ a₁) t₁) (rebuild a₂ t₂) (depsof j) x₂
= inj₂ refl
aoc-correct (PMeetR e a₁ a₂ x₁ x₂ aoc₁) hereTgtThere (step x₃ hyp2)
= ⊥-elim (x₃ refl)
aoc-correct (PMeetR e a₁ a₂ x₁ x₂ aoc₁) (step x₃ hyp1) hereTgtThere
= ⊥-elim (x₃ refl)
aoc-correct {j} (PMeetR e a₁ a₂ x₁ x₂ aoc₁) {i} (step x₃ hyp1) (step x₄ hyp2)
with j ≟ℕ i
...| yes nope = ⊥-elim (x₃ (sym nope))
...| no ok
with aoc-correct aoc₁ (∈AP-⊕ hyp1 hyp2) hyp2
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (trans (rebuild-⊕' e a₁ (∈AP-⊕ hyp1 hyp2)) r)
aoc-correct {j} {t₁ = t₁} {t₂} (PMeetL e a₁ a₂ x₁ x₂ aoc₁) hereTgtThere hereTgtThere
rewrite ≟ℕ-refl j
| List-map-≡-All (rebuild a₁ t₁) (rebuild (e ⊕ a₂) t₂) (depsof j) x₂
= inj₂ refl
aoc-correct (PMeetL e a₁ a₂ x₁ x₂ aoc₁) hereTgtThere (step x₃ hyp2)
= ⊥-elim (x₃ refl)
aoc-correct (PMeetL e a₁ a₂ x₁ x₂ aoc₁) (step x₃ hyp1) hereTgtThere
= ⊥-elim (x₃ refl)
aoc-correct {j} (PMeetL e a₁ a₂ x₁ x₂ aoc₁) {i} (step x₃ hyp1) (step x₄ hyp2)
with j ≟ℕ i
...| yes nope = ⊥-elim (x₃ (sym nope))
...| no ok
with aoc-correct aoc₁ hyp1 (∈AP-⊕ hyp2 hyp1)
...| inj₁ hb = inj₁ hb
...| inj₂ r = inj₂ (trans r (sym (rebuild-⊕' e a₂ (∈AP-⊕ hyp2 hyp1))))
AgreeOnCommon : ∀{j i₁ i₂}
→ {t₁ t₂ : View}
→ (a₁ : AdvPath j i₁)(a₂ : AdvPath j i₂)
→ rebuild a₁ t₁ j ≡ rebuild a₂ t₂ j
→ {i : ℕ} → i ∈AP a₁ → i ∈AP a₂
→ HashBroke ⊎ rebuild a₁ t₁ i ≡ rebuild a₂ t₂ i
AgreeOnCommon {i₁ = i₁} {i₂} {t₁} {t₂} a₁ a₂ rebuild-to-j i∈a₁ i∈a₂
with ≤-total i₁ i₂
...| inj₁ i₁≤i₂ with aoc i₁≤i₂ t₁ t₂ a₁ a₂ rebuild-to-j
...| inj₁ hb = inj₁ hb
...| inj₂ xx = aoc-correct xx i∈a₁ i∈a₂
AgreeOnCommon {i₁ = i₁} {i₂} {t₁} {t₂} a₁ a₂ rebuild-to-j i∈a₁ i∈a₂
| inj₂ i₂≤i₁ with aoc i₂≤i₁ t₂ t₁ a₂ a₁ (sym rebuild-to-j)
...| inj₁ hb = inj₁ hb
...| inj₂ xx with aoc-correct xx i∈a₂ i∈a₁
...| inj₁ hb = inj₁ hb
...| inj₂ xx1 = inj₂ (sym xx1)
AgreeOnCommon-∈ : ∀{j₁ j₂ i₁ i₂}
→ {t₁ t₂ : View}
→ (a₁ : AdvPath j₁ i₁)(a₂ : AdvPath j₂ i₂)
→ j₂ ∈AP a₁
→ rebuild a₁ t₁ j₂ ≡ rebuild a₂ t₂ j₂
→ {i : ℕ} → i ∈AP a₁ → i ∈AP a₂
→ HashBroke ⊎ rebuild a₁ t₁ i ≡ rebuild a₂ t₂ i
AgreeOnCommon-∈ a₁ a₂ j2∈a1 hyp ia1 ia2
with ∈AP-cut a₁ j2∈a1
...| ((a₁₁ , a₁₂) , refl)
with AgreeOnCommon a₁₂ a₂ (trans (sym (rebuild-⊕' a₁₁ a₁₂ ∈AP-src)) hyp) (∈AP-⊕ ia1 ia2) ia2
...| inj₁ hb = inj₁ hb
...| inj₂ res = inj₂ (trans (rebuild-⊕' a₁₁ a₁₂ (∈AP-⊕ ia1 ia2)) res)
-----------------------
-- Membership Proofs --
-----------------------
-- A membership proof for i is simply an advancement proof from j to i,
-- a digest of the data in i and the authenticators that i depends on (which
-- come in the view)
MembershipProof : ℕ → ℕ → Set
MembershipProof j i = AdvPath j i × Hash × i ≢ 0
mbr-datum : ∀{j i} → MembershipProof j i → Hash
mbr-datum (_ , d , _) = d
mbr-proof : ∀{j i} → MembershipProof j i → AdvPath j i
mbr-proof (p , _ , _) = p
mbr-not-init : ∀{j i} → MembershipProof j i → i ≢ 0
mbr-not-init (_ , _ , m) = m
-- Rebuilding it is the same as rebuilding an advancement proof, but we
-- explicitely compute the authenticator at i.
rebuildMP : ∀{j i} → MembershipProof j i → View → View
rebuildMP {j} {i} mbr t = rebuild (mbr-proof mbr)
(t ∪₁ (i , auth i (mbr-datum mbr) t))
semi-evo-cr : ∀{j i₁ i₂}{t₁ t₂ : View}
→ (a₁ : AdvPath j i₁)
→ (a₂ : AdvPath j i₂)
→ rebuild a₁ t₁ j ≡ rebuild a₂ t₂ j
→ ∀{s₁ s₂ tgt}{u₁ u₂ : View}
→ (m₁ : MembershipProof s₁ tgt)(m₂ : MembershipProof s₂ tgt)
→ s₁ ∈AP a₁ → s₂ ∈AP a₂
→ tgt ∈AP a₁ → tgt ∈AP a₂
→ tgt ≢ 0
→ rebuildMP m₁ u₁ s₁ ≡ rebuild a₁ t₁ s₁
→ rebuildMP m₂ u₂ s₂ ≡ rebuild a₂ t₂ s₂
→ HashBroke ⊎ (mbr-datum m₁ ≡ mbr-datum m₂)
semi-evo-cr {t₁ = t₁} {t₂} a₁ a₂ hyp {tgt = tgt} {u₁} {u₂} m₁ m₂ s₁∈a₁ s₂∈a₂ t∈a₁ t∈a₂ t≢0 c₁ c₂
with AgreeOnCommon (mbr-proof m₁) (∈AP-cut₁ a₁ s₁∈a₁)
(trans c₁ (∈AP-cut₁-rebuild a₁ s₁∈a₁ ∈AP-src {t₁}))
∈AP-tgt (∈AP-∈-cut a₁ s₁∈a₁ t∈a₁ (lemma1 (mbr-proof m₁)))
...| inj₁ hb = inj₁ hb
...| inj₂ hyp1
with AgreeOnCommon (mbr-proof m₂) (∈AP-cut₁ a₂ s₂∈a₂)
(trans c₂ (∈AP-cut₁-rebuild a₂ s₂∈a₂ ∈AP-src {t₂}))
∈AP-tgt (∈AP-∈-cut a₂ s₂∈a₂ t∈a₂ (lemma1 (mbr-proof m₂)))
...| inj₁ hb = inj₁ hb
...| inj₂ hyp2
with AgreeOnCommon a₁ a₂ hyp t∈a₁ t∈a₂
...| inj₁ hb = inj₁ hb
...| inj₂ hyp3
rewrite sym (∈AP-cut₁-rebuild a₁ s₁∈a₁
(∈AP-∈-cut a₁ s₁∈a₁ t∈a₁ (lemma1 (mbr-proof m₁))) {t₁})
| sym (∈AP-cut₁-rebuild a₂ s₂∈a₂
(∈AP-∈-cut a₂ s₂∈a₂ t∈a₂ (lemma1 (mbr-proof m₂))) {t₂})
with trans hyp1 (trans hyp3 (sym hyp2))
...| half with rebuild-tgt-lemma (mbr-proof m₁)
{u₁ ∪₁ (tgt , auth tgt (mbr-datum m₁) u₁) }
| rebuild-tgt-lemma (mbr-proof m₂)
{u₂ ∪₁ (tgt , auth tgt (mbr-datum m₂) u₂) }
...| l1 | l2
rewrite ≟ℕ-refl tgt = auth-inj-1 {tgt} {mbr-datum m₁} {mbr-datum m₂} t≢0 (trans (sym l1) (trans half l2))
| {
"alphanum_fraction": 0.5256268502,
"avg_line_length": 38.5653370014,
"ext": "agda",
"hexsha": "dd81d13e564aa8a9139d904c21c33badcb7e14df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8032dd49b4a3803870a3c238abf948c598913f4c",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "VictorCMiraldo/aaosl-agda",
"max_forks_repo_path": "AAOSL/Abstract/Advancement.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8032dd49b4a3803870a3c238abf948c598913f4c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "VictorCMiraldo/aaosl-agda",
"max_issues_repo_path": "AAOSL/Abstract/Advancement.agda",
"max_line_length": 115,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8032dd49b4a3803870a3c238abf948c598913f4c",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "VictorCMiraldo/aaosl-agda",
"max_stars_repo_path": "AAOSL/Abstract/Advancement.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-13T17:55:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-13T17:55:08.000Z",
"num_tokens": 11461,
"size": 28037
} |
import Oscar.Class.Transextensionality.Proposequality -- FIXME why not use the instance here?
open import Oscar.Class
open import Oscar.Class.IsPrecategory
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transitivity
open import Oscar.Data.Proposequality
open import Oscar.Prelude
open import Oscar.Property.Setoid.Proposequality
module Test.ConfusionAboutExtension where
module _
{a} {A : Ø a}
where
instance
𝓣ransextensionalityProposequality : Transextensionality.class Proposequality⟦ A ⟧ Proposequality transitivity
-- 𝓣ransextensionalityProposequality = Oscar.Class.Transextensionality.Proposequality.𝓣ransextensionalityProposequality -- using this instead avoids the below-mentioned errors
𝓣ransextensionalityProposequality .⋆ ∅ ∅ = !
module _
{a} {A : Ø a}
where
testme : Transextensionality.class Proposequality⟦ A ⟧ (Proposequality) (transitivity)
testme = ! -- errors
instance
IsPrecategoryExtension : IsPrecategory Proposequality⟦ A ⟧ Proposequality transitivity
IsPrecategoryExtension .IsPrecategory.`𝓣ransextensionality = {!!!} -- FIXME I'd like to use instance search to find this instance, but this errors b/c of
IsPrecategoryExtension .IsPrecategory.`𝓣ransassociativity = magic
| {
"alphanum_fraction": 0.7973079968,
"avg_line_length": 36.0857142857,
"ext": "agda",
"hexsha": "98a1e91ac33d11d9e8348ddcff6ccb5234df75df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ConfusionAboutExtension.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ConfusionAboutExtension.agda",
"max_line_length": 179,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ConfusionAboutExtension.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 344,
"size": 1263
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous N-ary Functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Nary.NonDependent where
------------------------------------------------------------------------
-- Concrete examples can be found in README.Nary. This file's comments
-- are more focused on the implementation details and the motivations
-- behind the design decisions.
------------------------------------------------------------------------
open import Level using (Level; 0ℓ; _⊔_; Lift)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Product using (_×_; _,_)
open import Data.Product.Nary.NonDependent
open import Function.Base using (_∘′_; _$′_; const; flip)
open import Relation.Unary using (IUniversal)
open import Relation.Binary.PropositionalEquality
private
variable
a b r : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Re-exporting the basic operations
open import Function.Nary.NonDependent.Base public
------------------------------------------------------------------------
-- Additional operations on Levels
ltabulate : ∀ n → (Fin n → Level) → Levels n
ltabulate zero f = _
ltabulate (suc n) f = f zero , ltabulate n (f ∘′ suc)
lreplicate : ∀ n → Level → Levels n
lreplicate n ℓ = ltabulate n (const ℓ)
0ℓs : ∀[ Levels ]
0ℓs = lreplicate _ 0ℓ
------------------------------------------------------------------------
-- Congruence
module _ n {ls} {as : Sets n ls} {R : Set r} (f : as ⇉ R) where
private
g : Product n as → R
g = uncurryₙ n f
-- Congruentₙ : ∀ n. ∀ a₁₁ a₁₂ ⋯ aₙ₁ aₙ₂ →
-- a₁₁ ≡ a₁₂ → ⋯ → aₙ₁ ≡ aₙ₂ →
-- f a₁₁ ⋯ aₙ₁ ≡ f a₁₂ ⋯ aₙ₂
Congruentₙ : Set (r Level.⊔ ⨆ n ls)
Congruentₙ = ∀ {l r} → Equalₙ n l r ⇉ (g l ≡ g r)
congₙ : Congruentₙ
congₙ = curryₙ n (cong g ∘′ fromEqualₙ n)
-- Congruence at a specific location
module _ m n {ls ls'} {as : Sets m ls} {bs : Sets n ls'}
(f : as ⇉ (A → bs ⇉ B)) where
private
g : Product m as → A → Product n bs → B
g vs a ws = uncurryₙ n (uncurryₙ m f vs a) ws
congAt : ∀ {vs ws a₁ a₂} → a₁ ≡ a₂ → g vs a₁ ws ≡ g vs a₂ ws
congAt {vs} {ws} = cong (λ a → g vs a ws)
------------------------------------------------------------------------
-- Injectivity
module _ n {ls} {as : Sets n ls} {R : Set r} (con : as ⇉ R) where
-- Injectiveₙ : ∀ n. ∀ a₁₁ a₁₂ ⋯ aₙ₁ aₙ₂ →
-- con a₁₁ ⋯ aₙ₁ ≡ con a₁₂ ⋯ aₙ₂ →
-- a₁₁ ≡ a₁₂ × ⋯ × aₙ₁ ≡ aₙ₂
private
c : Product n as → R
c = uncurryₙ n con
Injectiveₙ : Set (r Level.⊔ ⨆ n ls)
Injectiveₙ = ∀ {l r} → c l ≡ c r → Product n (Equalₙ n l r)
injectiveₙ : (∀ {l r} → c l ≡ c r → l ≡ r) → Injectiveₙ
injectiveₙ con-inj eq = toEqualₙ n (con-inj eq)
| {
"alphanum_fraction": 0.4883099532,
"avg_line_length": 30.2424242424,
"ext": "agda",
"hexsha": "3485aa2b780d2a9191cecbdd7399d2e22d385900",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Nary/NonDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Nary/NonDependent.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Nary/NonDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 945,
"size": 2994
} |
{-
Functions building UARels and DUARels on Σ-types
-}
{-# OPTIONS --safe #-}
module Cubical.Displayed.Sigma where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Subst
open import Cubical.Displayed.Morphism
open import Cubical.Displayed.Constant
private
variable
ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
-- UARel on a Σ-type
∫ˢ : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B)
→ UARel (Σ A B) (ℓ-max ℓ≅A ℓB)
∫ˢ 𝒮ˢ-B = ∫ (Subst→DUA 𝒮ˢ-B)
_×𝒮_ : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : Type ℓB} (𝒮-B : UARel B ℓ≅B)
→ UARel (A × B) (ℓ-max ℓ≅A ℓ≅B)
𝒮-A ×𝒮 𝒮-B = ∫ (𝒮ᴰ-const 𝒮-A 𝒮-B)
-- Projection UARel morphisms
𝒮-fst : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB} {𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B}
→ UARelHom (∫ 𝒮ᴰ-B) 𝒮-A
𝒮-fst .UARelHom.fun = fst
𝒮-fst .UARelHom.rel = fst
𝒮-fst .UARelHom.ua p = refl
𝒮-snd : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B}
→ UARelHom (𝒮-A ×𝒮 𝒮-B) 𝒮-B
𝒮-snd .UARelHom.fun = snd
𝒮-snd .UARelHom.rel = snd
𝒮-snd .UARelHom.ua p = refl
-- Lift a DUARel to live over a Σ-type
𝒮ᴰ-Lift : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : A → Type ℓC} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C)
→ DUARel (∫ 𝒮ᴰ-C) (λ (a , _) → B a) ℓ≅B
𝒮ᴰ-Lift _ 𝒮ᴰ-B _ = 𝒮ᴰ-reindex 𝒮-fst 𝒮ᴰ-B
-- DUARel on a Σ-type
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) C ℓ≅C)
where
open UARel 𝒮-A
private
module B = DUARel 𝒮ᴰ-B
module C = DUARel 𝒮ᴰ-C
𝒮ᴰ-Σ : DUARel 𝒮-A (λ a → Σ[ b ∈ B a ] C (a , b)) (ℓ-max ℓ≅B ℓ≅C)
DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-Σ (b , c) p (b' , c') =
Σ[ q ∈ b B.≅ᴰ⟨ p ⟩ b' ] (c C.≅ᴰ⟨ p , q ⟩ c')
DUARel.uaᴰ 𝒮ᴰ-Σ (b , c) p (b' , c') =
compEquiv
(Σ-cong-equiv (B.uaᴰ b p b') (λ q → C.uaᴰ c (p , q) c'))
ΣPath≃PathΣ
-- DUARel on a non-dependent Σ-type
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : A → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C)
where
_×𝒮ᴰ_ : DUARel 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C)
_×𝒮ᴰ_ = 𝒮ᴰ-Σ 𝒮ᴰ-B (𝒮ᴰ-Lift 𝒮-A 𝒮ᴰ-C 𝒮ᴰ-B)
-- SubstRel on a Σ-type
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B)
{C : Σ A B → Type ℓC} (𝒮ˢ-C : SubstRel (∫ˢ 𝒮ˢ-B) C)
where
open UARel 𝒮-A
open SubstRel
private
module B = SubstRel 𝒮ˢ-B
module C = SubstRel 𝒮ˢ-C
𝒮ˢ-Σ : SubstRel 𝒮-A (λ a → Σ[ b ∈ B a ] C (a , b))
𝒮ˢ-Σ .act p = Σ-cong-equiv (B.act p) (λ b → C.act (p , refl))
𝒮ˢ-Σ .uaˢ p _ =
fromPathP
(DUARel.uaᴰ (𝒮ᴰ-Σ (Subst→DUA 𝒮ˢ-B) (Subst→DUA 𝒮ˢ-C)) _ p _ .fst (refl , refl))
-- SubstRel on a non-dependent product
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} (𝒮ˢ-B : SubstRel 𝒮-A B)
{C : A → Type ℓC} (𝒮ˢ-C : SubstRel 𝒮-A C)
where
open UARel 𝒮-A
open SubstRel
private
module B = SubstRel 𝒮ˢ-B
module C = SubstRel 𝒮ˢ-C
_×𝒮ˢ_ : SubstRel 𝒮-A (λ a → B a × C a)
_×𝒮ˢ_ .act p = ≃-× (B.act p) (C.act p)
_×𝒮ˢ_ .uaˢ p (b , c) = ΣPathP (B.uaˢ p b , C.uaˢ p c)
| {
"alphanum_fraction": 0.5623659209,
"avg_line_length": 27.4201680672,
"ext": "agda",
"hexsha": "d62834baa122ed177a056a816d3684a3ec92e1ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Displayed/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Displayed/Sigma.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Displayed/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1969,
"size": 3263
} |
-- Martin-Löf identity type without the K axiom
-- (we do not assume uniqueness of identity proofs).
{-# OPTIONS --without-K --safe #-}
module Tools.PropositionalEquality where
-- We reexport Agda's builtin equality type.
open import Agda.Builtin.Equality public using (_≡_; refl)
open import Tools.Empty
-- Inequality.
infix 4 _≢_
_≢_ : {A : Set} → A → A → Set
a ≢ b = a ≡ b → ⊥
-- Symmetry.
sym : {A : Set} {a b : A} → a ≡ b → b ≡ a
sym refl = refl
-- Transitivity.
trans : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
trans refl refl = refl
-- Non-dependent congruence rules.
cong : {A B : Set} {a b : A} (f : A → B) → a ≡ b → f a ≡ f b
cong f refl = refl
cong₂ : ∀ {A B C : Set} {a a′ b b′}
(f : A → B → C) → a ≡ a′ → b ≡ b′
→ f a b ≡ f a′ b′
cong₂ f refl refl = refl
cong₃ : ∀ {A B C D : Set} {a a′ b b′ c c′}
(f : A → B → C → D) → a ≡ a′ → b ≡ b′ → c ≡ c′
→ f a b c ≡ f a′ b′ c′
cong₃ f refl refl refl = refl
cong₄ : ∀ {A B C D E : Set} {a a′ b b′ c c′ d d′}
(f : A → B → C → D → E) → a ≡ a′ → b ≡ b′ → c ≡ c′ → d ≡ d′
→ f a b c d ≡ f a′ b′ c′ d′
cong₄ f refl refl refl refl = refl
-- Substitution (type-cast).
subst : {A : Set} {a b : A} {ℓ : Agda.Primitive.Level} (F : A → Set ℓ) → a ≡ b → F a → F b
subst F refl f = f
-- Two substitutions simultaneously.
subst₂ : ∀ {A B : Set} {a a′ b b′} {ℓ : Agda.Primitive.Level} (F : A → B → Set ℓ)
→ a ≡ a′ → b ≡ b′ → F a b → F a′ b′
subst₂ F refl refl f = f
-- Three substitutions simultaneously.
subst₃ : ∀ {A B C : Set} {a a′ b b′ c c′} (F : A → B → C → Set)
→ a ≡ a′ → b ≡ b′ → c ≡ c′ → F a b c → F a′ b′ c′
subst₃ F refl refl refl f = f
| {
"alphanum_fraction": 0.508687837,
"avg_line_length": 25.2878787879,
"ext": "agda",
"hexsha": "11cda996f6d611a5abb005758d62f2ae5e3a09d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Tools/PropositionalEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Tools/PropositionalEquality.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Tools/PropositionalEquality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 702,
"size": 1669
} |
{-# OPTIONS --safe #-}
open import Cubical.Foundations.Everything renaming (Iso to _≅_)
open import Cubical.Data.List
open import Cubical.Data.Unit
open import Cubical.Data.Prod hiding (map)
open import Cubical.Data.Nat
module Cubical.Data.List.Dependent where
open _≅_
data ListP {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) : (as : List A) → Type (ℓ-max ℓA ℓB) where
[] : ListP B []
_∷_ : {x : A} (y : B x) {xs : List A} (ys : ListP B xs) → ListP B (x ∷ xs)
-- Represent ListP via known operations in order to derive properties more easily.
RepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → Type (ℓ-max ℓA ℓB)
RepListP B [] = Lift Unit
RepListP B (a ∷ as) = B a × RepListP B as
isoRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≅ RepListP B as
fun (isoRepListP B []) bs = lift tt
inv (isoRepListP B []) u = []
rightInv (isoRepListP B []) u = refl
leftInv (isoRepListP B []) [] = refl
fun (isoRepListP B (a ∷ as)) (b ∷ bs) = b , fun (isoRepListP B as) bs
inv (isoRepListP B (a ∷ as)) (b , br) = b ∷ inv (isoRepListP B as) br
rightInv (isoRepListP B (a ∷ as)) (b , br) i = b , rightInv (isoRepListP B as) br i
leftInv (isoRepListP B (a ∷ as)) (b ∷ bs) i = b ∷ leftInv (isoRepListP B as) bs i
equivRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≃ RepListP B as
equivRepListP B as = isoToEquiv (isoRepListP B as)
pathRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≡ RepListP B as
pathRepListP B as = ua (equivRepListP B as)
private
isOfHLevelSucSuc-RepListP : ∀ {ℓA ℓB} (n : HLevel)
→ {A : Type ℓA}
→ {B : A → Type ℓB} → ((a : A) → isOfHLevel (suc (suc n)) (B a))
→ (as : List A)
→ isOfHLevel (suc (suc n)) (RepListP B as)
isOfHLevelSucSuc-RepListP n isHB [] = isOfHLevelLift (suc (suc n)) (isOfHLevelUnit (suc (suc n)))
isOfHLevelSucSuc-RepListP n isHB (a ∷ as) = isOfHLevelProd (suc (suc n)) (isHB a) (isOfHLevelSucSuc-RepListP n isHB as)
isOfHLevelSucSuc-ListP : ∀ {ℓA ℓB} (n : HLevel)
→ {A : Type ℓA}
→ {B : A → Type ℓB} → ((a : A) → isOfHLevel (suc (suc n)) (B a))
→ {as : List A}
→ isOfHLevel (suc (suc n)) (ListP B as)
isOfHLevelSucSuc-ListP n {A} {B} isHB {as} =
subst⁻ (isOfHLevel (suc (suc n))) (pathRepListP B as) (isOfHLevelSucSuc-RepListP n isHB as)
--------------------------
mapP : ∀ {ℓA ℓA' ℓB ℓB'} {A : Type ℓA} {A' : Type ℓA'} {B : A → Type ℓB} {B' : A' → Type ℓB'}
(f : A → A') (g : (a : A) → B a → B' (f a)) → ∀ as → ListP B as → ListP B' (map f as)
mapP f g [] [] = []
mapP f g (a ∷ as) (b ∷ bs) = g _ b ∷ mapP f g as bs
mapOverIdfun : ∀ {ℓA ℓB ℓB'} {A : Type ℓA} {B : A → Type ℓB} {B' : A → Type ℓB'}
(g : (a : A) → B a → B' a) → ∀ as → ListP B as → ListP B' as
mapOverIdfun g [] [] = []
mapOverIdfun g (a ∷ as) (b ∷ bs) = g a b ∷ mapOverIdfun g as bs
mapOverIdfun-idfun : ∀ {ℓA ℓB} {A : Type ℓA} {B : A → Type ℓB} as → mapOverIdfun (λ a → idfun _) as ≡ (idfun (ListP B as))
mapOverIdfun-idfun [] i [] = []
mapOverIdfun-idfun (a ∷ as) i (b ∷ bs) = b ∷ mapOverIdfun-idfun as i bs
mapOverIdfun-∘ : ∀ {ℓA ℓB ℓB' ℓB''} {A : Type ℓA} {B : A → Type ℓB} {B' : A → Type ℓB'} {B'' : A → Type ℓB''}
(h : (a : A) → B' a → B'' a) (g : (a : A) → B a → B' a) → ∀ as
→ mapOverIdfun (λ a → h a ∘ g a) as ≡ mapOverIdfun h as ∘ mapOverIdfun g as
mapOverIdfun-∘ h g [] i [] = []
mapOverIdfun-∘ h g (a ∷ as) i (b ∷ bs) = h a (g a b) ∷ mapOverIdfun-∘ h g as i bs
| {
"alphanum_fraction": 0.5781659389,
"avg_line_length": 44.6103896104,
"ext": "agda",
"hexsha": "1ee3b7c85d5ad571157aa99355376c0f43e357bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/List/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/List/Dependent.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/List/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1565,
"size": 3435
} |
{-# OPTIONS --safe --cubical #-}
module Data.Unit.UniversePolymorphic where
open import Level
record ⊤ {ℓ} : Type ℓ where constructor tt
| {
"alphanum_fraction": 0.7214285714,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "d968bf42552bcfc8d57aac2b3d5145cf66af7925",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Unit/UniversePolymorphic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Unit/UniversePolymorphic.agda",
"max_line_length": 42,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Unit/UniversePolymorphic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 38,
"size": 140
} |
{-# OPTIONS --without-K #-}
module Formalization where
open import Agda.Primitive using (lsuc)
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning
open import Level
-- Recall Lemma 1.12
ind₌ : ∀{a b}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set b) → ((x : A) → C x x refl) → {x y : A} → (p : x ≡ y) → C x y p
ind₌ C c {x}{y} p rewrite p = c y
-- Types are higher groupoids
-- --------------------------
-- This is the *central* idea of HoTT. A Type isn't just an atomic entity, it's a homotopic space.
-- An ∞-groupoid consists of
-- ∘ a collection of objects
-- ∘ a collection of morphisms between objects, and then morphisms between morphisms, and so on
-- ∘ equipped with some complex algebraic structure
--
-- a morphism at level k is called a k- morphism. Morphisms at each level have
-- ∘ identity
-- ∘ composition
-- ∘ inverse operations
--
-- which are weak in the sense that they satisfy the groupoid laws (associativity
-- of composition, identity is a unit for composition, inverses cancel) only up
-- to morphisms at the next level, and this weakness gives rise to further structure.
-- Example
--
-- Because associativity of composition of morphisms p (q r) = (p q) r is itself a higher-dimensional morphism
-- we need additional operators to talk about them. For example:
{- Mac Lane's Pentagon
---------------------
All the various ways to reassociate p (q (r s))
/- ((p q) r) s -\
/ \
(p (q r)) s (p q) (r s)
| |
| |
p ((q r) s) ----------------- p (q (r s))
-}
-- Moreover, all of this higher groupoid structure comes automagically from the induction principle
-- on Id.
-- "Informally, the induction principle for identity types says that if we
-- construct an object (or prove a statement) which depends on an inhabitant
-- p : x == y of an identity type,
data _==_ {i} {A : Set i} (a : A) : A → Set (lsuc i) where
idp : a == a -- then it suffices to perform the construction (or the proof) in
-- the special case when x and y are the same (judgmentally)
-- and p is the reflexivity element reflx : x = x (judgmentally)
-- Lemma 2.1.1 "Paths can be reversed"
-- first proof
_⁻¹ : ∀ {i} {A : Set i}{x y : A} → (x ≡ y) → (y ≡ x)
_⁻¹ {i} {A} = λ p → ind₌ D d p where
D : (x y : A) → x ≡ y → Set i
D = λ x y p → (y ≡ x)
d : (x : A) → D x x refl
d = λ x → refl
-- second proof
inv-sym : ∀ {i} {A : Set i}{x y : A} → (x ≡ y) → (y ≡ x)
inv-sym refl = refl
-- Lemma 2.1.2 & 2.1.3 "paths can be concatenated (strung together)"
-- First proof. We need the type family D : Π (x, y : A) Π (p : x ≡ y) → Type. From that we
-- produce an element d : D x x reflₓ (simply identity) then apply the induction
-- principle above to D and d.
composite : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite {i} {A} {_}{_}{z} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y _ = y ≡ z → x ≡ z
d : (x₁ : A) → D x₁ x₁ refl
d _ = λ x → x
-- Second proof. We need the type family D : Π (x, y : A) Π (p : x ≡ y) → Type again. From that
-- we produce an element d (x) : D x x reflₓ again, but rather than the identity we go a
-- step further and define E : Π (x z : A) Π (q : x ≡ z) → Type. We then produce an
-- element e (x) : E x x reflₓ. Induction on D d then unfolds to induction on D then E e.
composite' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite' {i} {A} {_}{_}{z} = ind₌ D d where
D : (x y : A) → (p : x ≡ y) → Set i
D x y _ = y ≡ z → x ≡ z
d : (x : A) → D x x refl
d x = ind₌ E e where
E : (x z : A) → (q : x ≡ z) → Set i
E x z _ = x ≡ z
e : (x : A) → E x x refl
e x = refl
-- Third proof. Everything is reflexivity you fool. The hell did you do all that work for before?
composite'' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite'' refl refl = refl
-- Equality | Homotopy | ∞-Groupoid
-- reflexivity | constant path | identity morphism
-- symmetry | inversion of paths | inverse morphism
-- transitivity | concatenation of paths | composition of morphisms
open import Function
-- Lemma 2.1.4
-- These are all propositional equalities living in the type of identity types.
-- Topologically they are paths of paths, and we can form a homotopy between them.
-- For my next trick, I will need composition of paths
-- Reflexivity right
lem-1-r : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → p ≡ (composite p refl)
lem-1-r {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = p ≡ composite p refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
-- Reflexivity left
lem-1-l : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → p ≡ (composite refl p)
lem-1-l {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = p ≡ composite refl p
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
lem-2-l : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → composite ((p)⁻¹) p ≡ refl
lem-2-l {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = composite ((p)⁻¹) p ≡ refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
lem-2-r : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → composite p ((p)⁻¹) ≡ refl
lem-2-r {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = composite p ((p)⁻¹) ≡ refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
-- Inversion of identity
lem-3 : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → ((p)⁻¹)⁻¹ ≡ p
lem-3 {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = ((p)⁻¹)⁻¹ ≡ p
d : (x₁ : A) → D x₁ x₁ refl
d = λ _ → refl
{-
-- Transitivity of identity
lem-4 : ∀ {i} {A : Set i}{x y z w : A}{p : x ≡ y}{q : y ≡ z}{r : z ≡ w} → composite p (composite q r) ≡ composite (composite p q) r
lem-4 {i} {A} {_}{_}{z} = ind₌ D₁ d₁ where
D₁ : (x y : A) → (x ≡ y) → Set i
D₁ x y p = (z w : A)(q : y ≡ z)(r : z ≡ w) → composite p (composite q r) ≡ composite (composite p q) r
d₁ : (x₁ : A) → D₁ x₁ x₁ refl
d₁ _ = ind₌ D₂ d₂ where
D₂ : (x z : A) → (q : x ≡ z) → Set i
D₂ x z q = (w : A)(r : z ≡ w) → composite refl (composite q r) ≡ composite (composite refl q) r
d₂ : (x₂ : A) → D₂ x₂ x₂ refl
d₂ _ = ind₌ D₃ d₃ where
D₃ : (x w : A) → (r : x ≡ w) → Set i
D₃ x w r = (composite refl (composite refl r)) ≡ (composite (composite refl refl) r)
d₃ : (x₃ : A) → D₃ x₃ x₃ refl
d₃ _ = composite refl (composite refl refl) ≡ composite (composite refl refl) refl
-}
-- Lemma 2.1.6
open import Data.Product using (Σ ; _,_ ; proj₁ ; proj₂)
open import Data.Nat using (ℕ ; suc)
-- We need pointed sets for this part
Set• : ∀ i → Set _
Set• i = Σ (Set i) λ X → X
-- The loop space of a type is
-- - A base point
-- - A loop (reflexivity) about that point
Ω₁ : ∀ {i} → Set• i → Set• i
Ω₁ (X , x) = ((x ≡ x) , refl)
-- Construct arbitrary n-dimensional loop spaces
Ωⁿ : ∀ {i} → ℕ → Set• i → Set• _
Ωⁿ 0 x = x
Ωⁿ (suc n) x = Ωⁿ n (Ω₁ x)
-- Projects the type from an n-dimensional loop space
Ω : ∀ {i} → ℕ → {X : Set i} → X → Set i
Ω n {X} x = proj₁ (Ωⁿ n (X , x))
-- Projects the loop from an n-dimensional loop space
loop : ∀ {i} n {X : Set i}(x : X) → Ω n x
loop n {X} x = proj₂ (Ωⁿ n (X , x))
-- Composition operation on n-dimensional loop spaces
_×_ : ∀ {i} n {A : Set i}{x : A} → Ω n x → Ω n x → Ω n x
_×_ n {A} {x} x₁ x₂ = loop n x
-- 2.2.1
-- We're type theorists, so we like functor-looking things.
-- Paths are functor looking things.
-- We like paths
-- They respect equality and are all continuous-like
ap : ∀ {i j} {A : Set i}{B : Set j}{x y : A}{f : A → B} → (x ≡ y) → (f x ≡ f y)
ap {i}{j} {A}{B} {x}{y}{f} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set j
D x y p = f x ≡ f y
d : (x : A) → D x x refl
d = λ x → refl
ap₂ : ∀ {i j k} {A : Set i}{B : Set j}{C : Set k}{x x′ : A}{y y′ : B}(f : A → B → C) → (x ≡ x′) → (y ≡ y′) → (f x y ≡ f x′ y′)
ap₂ f p q = composite (ap {f = λ _ → f _ _} p) (ap {f = f _} q)
ap' : ∀ {i j} {A : Set i}{B : Set j}{x y : A} → (f : A → B) → ((x ≡ y) → (f x ≡ f y))
ap' f refl = refl
-- 2.3
-- The dependently typed version of `ap` takes a type family and relates its instantiations with p
transport : ∀ {i} {A : Set i}{P : A → Set i}{x y : A} → (p : x ≡ y) → (P x → P y)
transport {i} {A}{P} {x}{y} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = P x → P y
d : (x : A) → D x x refl
d = λ x → id
-- Topologically, we can view transport as a "path lifting" operation
-- That is, we lift the path p to a path in the space ∑[ x ∈ A ] P(x) provided we have a
-- base point u in the lifted space.
--
-- Basically, P respects equality
path-lifting : ∀ {a p}{A : Set a}{x y : A}{P : A → Set p} → (u : P x) → (p : x ≡ y) → (x , u) ≡ (y , u)
path-lifting = λ {a} {p} {A} {x} {y} {P} u → cong (λ z → z , u)
-- Look, transport works in the "upper" space too!
apd : ∀ {i} {A : Set i}{P : A → Set i}{f : (x : A) → P x}{x y : A} → (p : x ≡ y) → (transport p (f x) ≡ f y)
apd {i} {A}{P} {f}{x}{y} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = transport p (f x) ≡ f y
d : (x : A) → D x x refl
d = λ x → refl
-- By induction, it suffices to assume p is refl. Because of course it does.
apd' : ∀ {i} {A : Set i}{P : A → Set i}{f : (x : A) → P x}{x y : A} → (p : x ≡ y) → (transport p (f x) ≡ f y)
apd' refl = refl
-- We can also fix B and make transport work like fmap with equalities.
transportconst : ∀ {i} {A : Set i}{B : Set i}{P : A → B}{x y : A} → (p : x ≡ y) → (b : B) → transport p b ≡ b
transportconst {i} {A}{B}{P} {x}{y} p b = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = transport p b ≡ b
d : (x : A) → D x x refl
d = λ x → refl
{-
lem-2-3-8 : ∀ {i} {A : Set i}{B : Set i}{f : A → B}{x y : A} → (p : x ≡ y) → apd p ≡ transportconst (ap p) (f x)
lem-2-3-8 {i} {A}{B}{f} {x}{y} p = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = apd p ≡ transportconst (f x) ∘ ap p
d : (x : A) → D x x refl
d = refl
-}
{-
lem-2-3-9 : ∀ {i} {A : Set i}{P : A → Set i}{x y z : A} → (p : x ≡ y) → (q : y ≡ z) → (u : P x) → transport q (transport p u) ≡ transport (p ∘ q) u
lem-2-3-9 = ?
-}
-- Homotopies
-- Under Propositions-as-Types two functions are the same if they give the same outputs on the
-- same inputs. Which looks like this: a type whose terms are proofs of that^
_∼_ : ∀ {a b} {A : Set a}{P : A → Set b} → (f g : (x : A) → P x) → Set (a ⊔ b)
_∼_ {a}{b} {A}{P} f g = (x : A) → f x ≡ g x
-- 2.4.2
lem-2-4-2 : ∀ {a} {A : Set a}{B : Set a} → (f : A → B) → f ∼ f
lem-2-4-2 f = λ _ → refl
lem-2-4-2' : ∀ {a} {A : Set a}{B : Set a} → (f g : A → B) → (f ∼ g) → (g ∼ f)
lem-2-4-2' f g x x₁ = sym (x x₁)
-- For any A and B, a quasi-inverse of f is a triple with
-- ∘ A way back (an inverse for the homomorphism)
-- ∘ Homotopies:
-- ⊚ α : f ∘ g ∼ id
-- ⊚ β : g ∘ f ∼ id
-- For now, because I am lazy, the presence of a quasi-inverse will count
-- as our definition of equivalence for now. Sorry.
record IsEquiv {i j}{A : Set i}{B : Set j}(to : A → B) : Set (i ⊔ j) where
field
from : B → A
iso₁ : (x : A) → from (to x) ≡ x
iso₂ : (y : B) → to (from y) ≡ y
-- Example 2.4.7: Identity is an equivalence.
id-is-equiv : ∀ {i} (A : Set i) → IsEquiv (id {i}{A})
id-is-equiv {i} A = record
{ from = id {i}{A}
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl
}
-- Type equivalence is also an equivalence, just on the Universe because:
-- ∘ id-is-equiv works for it, therefore A ≃ A
-- ∘ With A ≃ B, we can always make B ≃ A
-- ∘ With A ≃ B and B ≃ C we have A ≃ C
_≃_ : ∀ {i j} (A : Set i) (B : Set j) → Set (i ⊔ j)
A ≃ B = Σ (A → B) IsEquiv
open import Data.Product renaming (_×_ to _×p_)
split-path : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → x ≡ y → (proj₁ x ≡ proj₁ y) ×p (proj₂ x ≡ proj₂ y)
split-path p = ap {f = proj₁} p , ap {f = proj₂} p
pair₌ : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → (proj₁ x ≡ proj₁ y) ×p (proj₂ x ≡ proj₂ y) → x ≡ y
pair₌ (p , q) = ap₂ _,_ p q
instance
split-is-equiv : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → IsEquiv (pair₌ {x = x}{y = y})
split-is-equiv {x = x}{y = y} = record
{ from = split-path
; iso₁ = λ pq →
ind₌ (λ _ _ p → ∀ {b₁ b₂} (q : b₁ ≡ b₂) →
split-path (pair₌ (p , q)) ≡ (p , q))
(λ _ q → ind₌
(λ _ _ q →
split-path (pair₌ (refl , q)) ≡ (refl , q))
(λ _ → refl) q)
(proj₁ pq) (proj₂ pq)
; iso₂ = ind₌ (λ _ _ p → pair₌ (split-path p) ≡ p) (λ _ → refl)
}
{-
happly : ∀ {i}{A : Set i}{f g : A → Set i} → (f ≡ g) → ((x : A) → f x ≡ g x)
happly p x = ap' (λ u → u x)
-}
-- 2.10
-- This says, when you get down to it, id on universes is a
-- type family with a total space of pointed types. Turns out
-- Ω isn't just for horses.
idtoeqv : ∀ {i} {A : Set i}{B : Set i} → (A ≡ B) → (A ≃ B)
idtoeqv {_}{A} refl = (id , id-is-equiv A)
-- With idtoeqv in hand, we have to ask Agda nicely to make idtoeqv an equivalence.
postulate -- Just kidding
ua : ∀ {i} {A : Set i}{B : Set i} → (A ≃ B) ≃ (A ≡ B)
-- ^This says "equivalent types may be identified"
-- 2.12
{-
data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inl : (x : A) → A ⊎ B
inr : (y : B) → A ⊎ B
code : ∀ {a b}{{A : Set a}}{{B : Set b}} → A ⊎ B → Set (a ⊔ b)
code (inl a) = ?
code (inr b) = ⊥
code-lem : ∀ {a b}{{A : Set a}}{{B : Set b}} → (x : A ⊎ B) → (a₀ : A) → ((inl a₀ ≡ x) ≃ code x)
code-lem {{A}} {{B}} x a₀ = ? where
encode : (x : A ⊎ B) → (p : inl a₀ ≡ x) → code x
encode x p = transport p refl
decode : (x : A ⊎ B) → (c : code x) → inl a₀ ≡ x
decode x c = ?
-}
open import Data.Nat
open import Data.Unit
open import Data.Empty
code : ℕ → ℕ → Set
code ℕ.zero ℕ.zero = ⊤
code ℕ.zero (ℕ.suc m) = ⊥
code (ℕ.suc n) ℕ.zero = ⊥
code (ℕ.suc n) (ℕ.suc m) = code n m
-- 2.13
natcode-lem : ∀ {m n : ℕ} → (m ≡ n) → code m n
natcode-lem {x}{y} p = encode {x}{y} p where
encode : ∀ {m n : ℕ} → (m ≡ n) → code m n
encode {m}{n} p = transport p (r m) where
r : (n : ℕ) → code n n
r ℕ.zero = tt
r (ℕ.suc n) = r n
decode : ∀ {m n : ℕ} → code m n → (m ≡ n)
decode {ℕ.zero} {ℕ.zero} tt = refl
decode {ℕ.zero} {ℕ.suc _} ()
decode {ℕ.suc _} {ℕ.zero} ()
decode {ℕ.suc m} {ℕ.suc n} c = cong ℕ.suc (decode c)
enc-dec-quasi : ∀ {n : ℕ} → decode {n}{n} (encode {n}{n} refl) ≡ refl
enc-dec-quasi {ℕ.zero} = refl
enc-dec-quasi {ℕ.suc n₁} = {! !}
| {
"alphanum_fraction": 0.5139235385,
"avg_line_length": 34.0160550459,
"ext": "agda",
"hexsha": "3748ed6d4c6858ea4bbe42c3939f826bca8edf79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter2/Formalization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter2/Formalization.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter2/Formalization.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6057,
"size": 14831
} |
module UniDB.Morph.WeakenOne where
open import UniDB.Spec
--------------------------------------------------------------------------------
data Weaken₁ : MOR where
weaken₁ : {γ : Dom} → Weaken₁ γ (suc γ)
instance
iLkWeaken₁ : {T : STX} {{vrT : Vr T}} → Lk T Weaken₁
lk {{iLkWeaken₁ {T}}} weaken₁ i = vr {T} (suc i)
iLkRenWeaken₁ : {T : STX} {{vrT : Vr T}} → LkRen T Weaken₁
lk-ren {{iLkRenWeaken₁}} weaken₁ i = refl
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4338521401,
"avg_line_length": 27.0526315789,
"ext": "agda",
"hexsha": "94e666464e991873ccf6de5d6b89c370e3f40989",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/WeakenOne.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/WeakenOne.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/WeakenOne.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 155,
"size": 514
} |
------------------------------------------------------------------------
-- A type for values that should be erased at run-time
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
import Erased.Basics
import Erased.Level-1
module Erased
{c⁺}
(eq : ∀ {a p} → Equality-with-J a p c⁺)
(ax : ∀ {ℓ} → Erased.Level-1.[]-cong-axiomatisation eq ℓ)
where
-- Re-exported definitions.
private
module E₁ = Erased.Level-1 eq
open E₁ public
hiding (module Erased-cong;
module []-cong;
module []-cong₁;
module []-cong₂; module []-cong₂-⊔;
module Extensionality)
open E₁.[]-cong ax public
import Erased.Level-2 eq as E₂
open E₂.[]-cong ax public
open import Erased.Stability eq as ES public
hiding (module []-cong;
module []-cong₁; module []-cong₁-lsuc;
module []-cong₂; module []-cong₂-⊔₁; module []-cong₂-⊔₂;
module Extensionality)
open ES.[]-cong ax public
| {
"alphanum_fraction": 0.5415841584,
"avg_line_length": 28.0555555556,
"ext": "agda",
"hexsha": "935ff0410d6d2a6ad4e6dcff45cd835a67e385bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 293,
"size": 1010
} |
open import Common.Level
postulate
ℓ : Level
data D : Set (lsuc ℓ) where
c : (ℓ : Level) → Set ℓ → D
-- Bad error:
-- The type of the constructor does not fit in the sort of the
-- datatype, since Set (lsuc ℓ) is not less or equal than Set (lsuc ℓ)
-- when checking the constructor c in the declaration of D
-- Jesper, 2018-12-09: new, better error:
-- Set (lsuc ℓ₁) is not less or equal than Set (lsuc ℓ)
-- when checking that the type (ℓ₁ : Level) → Set ℓ₁ → D of the
-- constructor c fits in the sort Set (lsuc ℓ) of the datatype.
| {
"alphanum_fraction": 0.6789667897,
"avg_line_length": 30.1111111111,
"ext": "agda",
"hexsha": "c1163ee313a4e6748cfb422b034688148d97444a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue998e.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue998e.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue998e.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 542
} |
open import Data.Bool using ( Bool ; true ; false ; if_then_else_ )
open import Data.Product using ( _×_ ; _,_ )
open import Data.Sum using ( inj₁ ; inj₂ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.Concept using ( Concept ; ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 ; neg )
open import Web.Semantic.DL.Concept.Model using ( _⟦_⟧₁ ; ⟦⟧₁-resp-≈ )
open import Web.Semantic.DL.FOL using ( Formula ; true ; false ; _∧_ ; _∈₁_ ; _∈₂_ ; _∈₁_⇒_ ; _∼_ ; _∼_⇒_ ; ∀₁ )
open import Web.Semantic.DL.FOL.Model using ( _⊨f_ )
open import Web.Semantic.DL.Role.Skolemization using ( rskolem ; rskolem⇒ ; rskolem-sound ; rskolem⇒-sound )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.Util using ( True ; tt )
module Web.Semantic.DL.Concept.Skolemization {Σ : Signature} where
CSkolems : Set → Concept Σ → Set
CSkolems Δ ⟨ c ⟩ = True
CSkolems Δ ¬⟨ c ⟩ = True
CSkolems Δ ⊤ = True
CSkolems Δ ⊥ = True
CSkolems Δ (C ⊓ D) = (CSkolems Δ C) × (CSkolems Δ D)
CSkolems Δ (C ⊔ D) = (Δ → Bool) × (CSkolems Δ C) × (CSkolems Δ D)
CSkolems Δ (∀[ R ] C) = CSkolems Δ C
CSkolems Δ (∃⟨ R ⟩ C) = (Δ → Δ) × (CSkolems Δ C)
CSkolems Δ (≤1 R) = True
CSkolems Δ (>1 R) = (Δ → Δ) × (Δ → Δ)
cskolem : ∀ {Δ} C → (CSkolems Δ C) → Δ → Formula Σ Δ
cskolem ⟨ c ⟩ Φ x = x ∈₁ c
cskolem ¬⟨ c ⟩ Φ x = x ∈₁ c ⇒ false
cskolem ⊤ Φ x = true
cskolem ⊥ Φ x = false
cskolem (C ⊓ D) (Φ , Ψ) x = (cskolem C Φ x) ∧ (cskolem D Ψ x)
cskolem (C ⊔ D) (φ , Φ , Ψ) x = if (φ x) then (cskolem C Φ x) else (cskolem D Ψ x)
cskolem (∀[ R ] C) Φ x = ∀₁ λ y → rskolem⇒ R x y (cskolem C Φ y)
cskolem (∃⟨ R ⟩ C) (φ , Ψ) x = (rskolem R x (φ x)) ∧ (cskolem C Ψ (φ x))
cskolem (≤1 R) Φ x = ∀₁ λ y → ∀₁ λ z → rskolem⇒ R x y (rskolem⇒ R x z (y ∼ z))
cskolem (>1 R) (φ , ψ) x = (rskolem R x (φ x)) ∧ (rskolem R x (ψ x)) ∧ (φ x ∼ ψ x ⇒ false)
cskolem-sound : ∀ I C Φ x → (I ⊨f cskolem C Φ x) → (x ∈ I ⟦ C ⟧₁)
cskolem-sound I ⟨ c ⟩ Φ x x∈⟦c⟧ = x∈⟦c⟧
cskolem-sound I ¬⟨ c ⟩ Φ x x∉⟦c⟧ = x∉⟦c⟧
cskolem-sound I ⊤ Φ x _ = tt
cskolem-sound I ⊥ Φ x ()
cskolem-sound I (C ⊓ D) (Φ , Ψ) x (Fx , Gx) =
(cskolem-sound I C Φ x Fx , cskolem-sound I D Ψ x Gx)
cskolem-sound I (C ⊔ D) (φ , Φ , Ψ) x F∨Gx with φ x
cskolem-sound I (C ⊔ D) (φ , Φ , Ψ) x Fx | true = inj₁ (cskolem-sound I C Φ x Fx)
cskolem-sound I (C ⊔ D) (φ , Φ , Ψ) x Gx | false = inj₂ (cskolem-sound I D Ψ x Gx)
cskolem-sound I (∀[ R ] C) Φ x ∀RFx =
λ y xy∈R → cskolem-sound I C Φ y (rskolem⇒-sound I R x y (cskolem C Φ y) (∀RFx y) xy∈R)
cskolem-sound I (∃⟨ R ⟩ C) (φ , Ψ) x (xy∈R , Fy) =
( φ x , rskolem-sound I R x (φ x) xy∈R , cskolem-sound I C Ψ (φ x) Fy )
cskolem-sound I (≤1 R) Φ x ≤1Rx =
λ y z xy∈R xz∈R → rskolem⇒-sound I R x z (y ∼ z)
(rskolem⇒-sound I R x y (rskolem⇒ R x z (y ∼ z)) (≤1Rx y z) xy∈R) xz∈R
cskolem-sound I (>1 R) (φ , ψ) x (xy∈R , xz∈R , y≁z) =
(φ x , ψ x , rskolem-sound I R x (φ x) xy∈R , rskolem-sound I R x (ψ x) xz∈R , y≁z) | {
"alphanum_fraction": 0.5739665186,
"avg_line_length": 51.350877193,
"ext": "agda",
"hexsha": "95923342f8a779e57a853091cf90ee8557e23e09",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Concept/Skolemization.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Concept/Skolemization.agda",
"max_line_length": 118,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Concept/Skolemization.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1512,
"size": 2927
} |
{-# OPTIONS --allow-unsolved-metas #-}
module finiteSet where
open import Data.Nat hiding ( _≟_ )
open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_)
-- open import Data.Fin.Properties hiding ( ≤-refl )
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality
open import logic
open import nat
open import Data.Nat.Properties hiding ( _≟_ )
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
record FiniteSet ( Q : Set ) : Set where
field
finite : ℕ
Q←F : Fin finite → Q
F←Q : Q → Fin finite
finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q
finiso← : (f : Fin finite ) → F←Q ( Q←F f ) ≡ f
exists1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → Bool
exists1 zero _ _ = false
exists1 ( suc m ) m<n p = p (Q←F (fromℕ< {m} {finite} m<n)) \/ exists1 m (<to≤ m<n) p
exists : ( Q → Bool ) → Bool
exists p = exists1 finite ≤-refl p
open import Data.List
list1 : (m : ℕ ) → m Data.Nat.≤ finite → (Q → Bool) → List Q
list1 zero _ _ = []
list1 ( suc m ) m<n p with bool-≡-? (p (Q←F (fromℕ< {m} {finite} m<n))) true
... | yes _ = Q←F (fromℕ< {m} {finite} m<n) ∷ list1 m (<to≤ m<n) p
... | no _ = list1 m (<to≤ m<n) p
to-list : ( Q → Bool ) → List Q
to-list p = list1 finite ≤-refl p
equal? : Q → Q → Bool
equal? q0 q1 with F←Q q0 ≟ F←Q q1
... | yes p = true
... | no ¬p = false
| {
"alphanum_fraction": 0.5647291942,
"avg_line_length": 35.2093023256,
"ext": "agda",
"hexsha": "0d3fa289a73778f14a3a1bb7a3a7f21e341a7672",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/finiteSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/finiteSet.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/finiteSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 537,
"size": 1514
} |
import cedille-options
open import general-util
module spans (options : cedille-options.options) {mF : Set → Set} {{mFm : monad mF}} where
open import cedille-types
open import constants
open import conversion
open import ctxt
open import free-vars
open import syntax-util
open import type-util
open import to-string options
open import subst
open import datatype-util
open import json
--------------------------------------------------
-- span datatype
--------------------------------------------------
err-m : Set
err-m = maybe string
data span : Set where
mk-span : string → posinfo → posinfo → 𝕃 tagged-val {- extra information for the span -} → err-m → span
span-to-json : span → json
span-to-json (mk-span name s e tvs err?) =
json-array $ json-string name :: json-raw [[ s ]] :: json-raw [[ e ]] :: [ tagged-vals-to-json (maybe-else' err? tvs λ err → ("error" , [[ err ]] , []) :: tvs) ]
data error-span : Set where
mk-error-span : string → posinfo → posinfo → 𝕃 tagged-val → string → error-span
data spans : Set where
regular-spans : maybe error-span → 𝕃 span → spans
global-error : string {- error message -} → maybe span → spans
is-error-span : span → 𝔹
is-error-span (mk-span _ _ _ _ err) = isJust err
get-span-error : span → err-m
get-span-error (mk-span _ _ _ _ err) = err
get-spans-error : spans → maybe (string × 𝕃 tagged-val)
get-spans-error (global-error e _) = just $ e , []
get-spans-error (regular-spans e? _) = maybe-map (λ {(mk-error-span _ _ _ tvs e) → e , tvs}) e?
get-tagged-vals : span → 𝕃 tagged-val
get-tagged-vals (mk-span _ _ _ tvs _) = tvs
spans-have-error : spans → 𝔹
spans-have-error (regular-spans es ss) = isJust es
spans-have-error (global-error _ _) = tt
empty-spans : spans
empty-spans = regular-spans nothing []
spans-to-json' : spans → 𝕃 (string × json)
spans-to-json' (regular-spans _ ss) = [ "spans" , json-array (map span-to-json ss) ]
spans-to-json' (global-error e s) =
("error" , json-string e) :: maybe-else' s [] λ s → [ "global-error" , span-to-json s ]
spans-to-json : spans → json
spans-to-json = json-object ∘ spans-to-json'
print-file-id-table : ctxt → 𝕃 tagged-val
print-file-id-table Γ = h [] (ctxt.id-list Γ) where
h : ∀ {i} → 𝕃 tagged-val → 𝕍 string i → 𝕃 tagged-val
h ts [] = ts
h {i} ts (fn :: fns) = h (strRunTag "fileid" empty-ctxt (strAdd fn) :: ts) fns
add-span : span → spans → spans
add-span s@(mk-span dsc pi pi' tv nothing) (regular-spans es ss) =
regular-spans es (s :: ss)
add-span s@(mk-span dsc pi pi' tv (just err)) (regular-spans es ss) =
regular-spans (just (mk-error-span dsc pi pi' tv err)) (s :: ss)
add-span s (global-error e e') =
global-error e e'
--------------------------------------------------
-- spanM, a state monad for spans
--------------------------------------------------
spanM : Set → Set
spanM A = spans → mF (A × spans)
instance
spanM-monad : monad spanM
return ⦃ spanM-monad ⦄ = curry return
_>>=_ ⦃ spanM-monad ⦄ m₁ m₂ ss = m₁ ss >>= uncurry m₂
spanM-functor : functor spanM
fmap ⦃ spanM-functor ⦄ g m ss = m ss >>= uncurry λ a ss' → return (g a , ss')
spanM-applicative : applicative spanM
pure ⦃ spanM-applicative ⦄ = return
_<*>_ ⦃ spanM-applicative ⦄ mab ma ss =
mab ss >>= uncurry λ f ss₁ →
ma ss₁ >>= uncurry λ a →
return (f a)
spanMok : spanM ⊤
spanMok = return triv
get-error : ∀ {A : Set} → (maybe error-span → spanM A) → spanM A
get-error m ss@(global-error _ _) = m nothing ss
get-error m ss@(regular-spans nothing _) = m nothing ss
get-error m ss@(regular-spans (just es) _) = m (just es) ss
set-error : maybe (error-span) → spanM ⊤
set-error es ss@(global-error _ _) = return2 triv ss
set-error es (regular-spans _ ss) = return2 triv (regular-spans es ss)
spanM-push : ∀ {A} → mF A → spanM A
spanM-push mf ss = mf >>= λ a → return2 a ss
-- discard changes made by the first computation
_>>=spand_ : ∀{A B : Set} → spanM A → (A → spanM B) → spanM B
_>>=spand_{A} m m' ss = m ss >>= λ where (v , _) → m' v ss
spanM-add : span → spanM ⊤
spanM-add s ss = return (triv , add-span s ss)
infixr 2 [-_-]_
[-_-]_ : ∀ {X} → span → spanM X → spanM X
[- s -] m = spanM-add s >> m
debug-span : posinfo → posinfo → 𝕃 tagged-val → span
debug-span pi pi' tvs = mk-span "Debug" pi pi' tvs nothing
spanM-debug : posinfo → posinfo → 𝕃 tagged-val → spanM ⊤
--spanM-debug pi pi' tvs = spanM-add (debug-span pi pi' tvs)
spanM-debug pi pi' tvs = spanMok
check-ret : ∀ {Y : Set} → maybe Y → Set → Set
check-ret {Y} T t = if isJust T then t else (t × Y)
return-when : ∀ {X Y} {m : maybe Y} → X → Y → spanM (check-ret m X)
return-when {X} {Y} {nothing} x u = return2 x u
return-when {X} {Y} {just _} x u = return x
case-ret : ∀ {X Y} {m : maybe Y} → spanM (X × Y) → (Y → spanM X) → spanM (check-ret m X)
case-ret {X} {Y} {nothing} n j = n
case-ret {X} {Y} {just y} n j = j y
case-ret-body : ∀ {X Y} {m : maybe Y} → spanM (check-ret m X) → (X → Y → spanM (check-ret m X)) → spanM (check-ret m X)
case-ret-body {X} {Y} {nothing} m f = m >>= uncurry f
case-ret-body {X} {Y} {just y} m f = m >>= λ x → f x y
with-clear-error : ∀ {A} → spanM A → spanM A
with-clear-error m =
get-error λ es → set-error nothing >> m >>= λ a → set-error es >> return a
--------------------------------------------------
-- tagged-val constants
--------------------------------------------------
to-string-tag-tk : (tag : string) → ctxt → tpkd → tagged-val
to-string-tag-tk t Γ (Tkt T) = to-string-tag t Γ T
to-string-tag-tk t Γ (Tkk k) = to-string-tag t Γ k
location-data : location → tagged-val
location-data (file-name , pi) = strRunTag "location" empty-ctxt (strAdd file-name >>str strAdd " - " >>str strAdd pi)
var-location-data : ctxt → var → tagged-val
var-location-data Γ x =
location-data (maybe-else missing-location snd
(trie-lookup (ctxt.i Γ) x ||-maybe trie-lookup (ctxt.i Γ) (qualif-var Γ x)))
explain : string → tagged-val
explain = strRunTag "explanation" empty-ctxt ∘ strAdd
reason : string → tagged-val
reason = strRunTag "reason" empty-ctxt ∘ strAdd
expected-type : ctxt → type → tagged-val
expected-type = to-string-tag "expected-type"
expected-type-subterm : ctxt → type → tagged-val
expected-type-subterm = to-string-tag "expected-type of the subterm"
missing-expected-type : tagged-val
missing-expected-type = strRunTag "expected-type" empty-ctxt $ strAdd "[missing]"
expected-kind : ctxt → kind → tagged-val
expected-kind = to-string-tag "expected kind"
expected-kind-if : ctxt → maybe kind → 𝕃 tagged-val
expected-kind-if _ nothing = []
expected-kind-if Γ (just k) = [ expected-kind Γ k ]
expected-type-if : ctxt → maybe type → 𝕃 tagged-val
expected-type-if _ nothing = []
expected-type-if Γ (just tp) = [ expected-type Γ tp ]
type-data : ctxt → type → tagged-val
type-data = to-string-tag "type"
type-data-if : ctxt → maybe type → 𝕃 tagged-val
type-data-if Γ = maybe-else [] λ T → [ type-data Γ T ]
warning-data : string → tagged-val
warning-data = strRunTag "warning" empty-ctxt ∘ strAdd
check-for-type-mismatch : ctxt → string → type → type → err-m
check-for-type-mismatch Γ s tp tp' =
if conv-type Γ tp tp' then nothing else just ("The expected type does not match the " ^ s ^ " type")
check-for-type-mismatch-if : ctxt → string → maybe type → type → err-m
check-for-type-mismatch-if Γ s T? T = T? >>= check-for-type-mismatch Γ s T
check-for-kind-mismatch : ctxt → string → kind → kind → err-m
check-for-kind-mismatch Γ s kd kd' =
if conv-kind Γ kd kd' then nothing else just ("The expected kind does not match the " ^ s ^ " kind")
check-for-kind-mismatch-if : ctxt → string → maybe kind → kind → err-m
check-for-kind-mismatch-if Γ s k? k = k? >>= check-for-kind-mismatch Γ s k
check-for-tpkd-mismatch-if : ctxt → string → maybe tpkd → tpkd → err-m
check-for-tpkd-mismatch-if Γ check tk? tk =
tk? >>= either-else
(either-else' tk (check-for-type-mismatch Γ check)
λ kd tp → just "Expected a kind classifier, but got a type")
(either-else' tk (λ tp kd → just "Expected a type classifier, but got a kind")
(check-for-kind-mismatch Γ check))
summary-data : {ed : exprd} → (name : string) → ctxt → ⟦ ed ⟧ → tagged-val
summary-data name Γ t = strRunTag "summary" Γ (strVar name >>str strAdd " : " >>str to-stringe t)
head-kind : ctxt → kind → tagged-val
head-kind = to-string-tag "the kind of the head"
head-type : ctxt → type → tagged-val
head-type = to-string-tag "the type of the head"
arg-type : ctxt → type → tagged-val
arg-type = to-string-tag "computed arg type"
arg-exp-type : ctxt → type → tagged-val
arg-exp-type = to-string-tag "expected arg type"
type-app-head : ctxt → type → tagged-val
type-app-head = to-string-tag "the head"
term-app-head : ctxt → term → tagged-val
term-app-head = to-string-tag "the head"
term-argument : ctxt → term → tagged-val
term-argument = to-string-tag "the argument"
type-argument : ctxt → type → tagged-val
type-argument = to-string-tag "the argument"
contextual-type-argument : ctxt → type → tagged-val
contextual-type-argument = to-string-tag "contextual type arg"
arg-argument : ctxt → arg → tagged-val
arg-argument Γ = either-else (term-argument Γ) (type-argument Γ) ∘ arg-to-tmtp
kind-data : ctxt → kind → tagged-val
kind-data = to-string-tag "kind"
kind-data-if : ctxt → maybe kind → 𝕃 tagged-val
kind-data-if Γ (just k) = [ kind-data Γ k ]
kind-data-if _ nothing = []
super-kind-data : tagged-val
super-kind-data = strRunTag "superkind" empty-ctxt $ strAdd "□"
symbol-data : string → tagged-val
symbol-data = strRunTag "symbol" empty-ctxt ∘ strAdd
tk-data : ctxt → tpkd → tagged-val
tk-data Γ (Tkk k) = kind-data Γ k
tk-data Γ (Tkt t) = type-data Γ t
checking-to-string : checking-mode → string
checking-to-string checking = "checking"
checking-to-string synthesizing = "synthesizing"
checking-to-string untyped = "untyped"
checking-data : checking-mode → tagged-val
checking-data = strRunTag "checking-mode" empty-ctxt ∘' strAdd ∘' checking-to-string
checked-meta-var : var → tagged-val
checked-meta-var = strRunTag "checked meta-var" empty-ctxt ∘ strAdd
ll-data : exprd → tagged-val
ll-data = strRunTag "language-level" empty-ctxt ∘' strAdd ∘' exprd-name
ll-data-term = ll-data TERM
ll-data-type = ll-data TYPE
ll-data-kind = ll-data KIND
binder-data : ctxt → posinfo → var → (atk : tpkd) → erased? → maybe (if tk-is-type atk then term else type) → (from to : posinfo) → tagged-val
binder-data Γ pi x atk me val s e =
strRunTag "binder" Γ $
strAdd "symbol:" >>str
strAdd x >>str
atk-val atk val >>str
strAdd "§from:" >>str
strAdd s >>str
strAdd "§to:" >>str
strAdd e >>str
loc >>str
strErased?
where
loc : strM
loc = strAdd "§fn:" >>str strAdd (ctxt.fn Γ) >>str strAdd "§pos:" >>str strAdd pi
strErased? : strM
strErased? =
strAdd "§erased:" >>str
strAdd (if me then "true" else "false")
val? : ∀ {ed} → maybe ⟦ ed ⟧ → strM
val? = maybe-else strEmpty λ x →
strAdd "§value:" >>str
to-stringe x
atk-val : (atk : tpkd) → maybe (if tk-is-type atk then term else type) → strM
atk-val (Tkt T) t? =
strAdd "§type:" >>str
to-stringe T >>str
val? t?
atk-val (Tkk k) T? =
strAdd "§kind:" >>str
to-stringe k >>str
val? T?
punctuation-data : tagged-val
punctuation-data = strRunTag "punctuation" empty-ctxt $ strAdd "true"
not-for-navigation : tagged-val
not-for-navigation = strRunTag "not-for-navigation" empty-ctxt $ strAdd "true"
is-erased : type → 𝔹
is-erased (TpVar _) = tt
is-erased _ = ff
keywords = "keywords"
keyword-application = "application"
keyword-locale = "meta-var-locale"
keywords-data : 𝕃 string → tagged-val
keywords-data kws = keywords , h kws , [] where
h : 𝕃 string → rope
h [] = [[]]
h (k :: []) = [[ k ]]
h (k :: ks) = [[ k ]] ⊹⊹ [[ " " ]] ⊹⊹ h ks
keywords-app : (is-locale : 𝔹) → tagged-val
keywords-app l = keywords-data ([ keyword-application ] ++ (if l then [ keyword-locale ] else []))
keywords-app-if-typed : checking-mode → (is-locale : 𝔹) → 𝕃 tagged-val
keywords-app-if-typed untyped l = []
keywords-app-if-typed _ l = [ keywords-app l ]
error-if-not-eq : ctxt → type → 𝕃 tagged-val → 𝕃 tagged-val × err-m
error-if-not-eq Γ (TpEq t1 t2) tvs = expected-type Γ (TpEq t1 t2) :: tvs , nothing
error-if-not-eq Γ tp tvs = expected-type Γ tp :: tvs , just "This term is being checked against the following type, but an equality type was expected"
error-if-not-eq-maybe : ctxt → maybe type → 𝕃 tagged-val → 𝕃 tagged-val × err-m
error-if-not-eq-maybe Γ (just tp) = error-if-not-eq Γ tp
error-if-not-eq-maybe _ _ tvs = tvs , nothing
params-data : ctxt → params → 𝕃 tagged-val
params-data _ [] = []
params-data Γ ps = [ params-to-string-tag "parameters" Γ ps ]
--------------------------------------------------
-- span-creating functions
--------------------------------------------------
Star-name : string
Star-name = "Star"
parens-span : posinfo → posinfo → span
parens-span pi pi' = mk-span "parentheses" pi pi' [] nothing
data decl-class : Set where
decl-param : decl-class
decl-index : decl-class
decl-class-name : decl-class → string
decl-class-name decl-param = "parameter"
decl-class-name decl-index = "index"
Decl-span : ctxt → decl-class → posinfo → posinfo → var → tpkd → erased? → posinfo → posinfo → span
Decl-span Γ dc pi pi' v atk me pi'' pi''' = mk-span ((if tk-is-type atk then "Term " else "Type ") ^ (decl-class-name dc))
pi pi''' [ binder-data Γ pi' v atk me nothing pi'' pi''' ] nothing
TpVar-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span
TpVar-span Γ pi v check tvs =
mk-span name pi (posinfo-plus-str pi (unqual-local v))
(checking-data check :: ll-data-type :: var-location-data Γ v :: symbol-data (unqual-local v) :: tvs)
where
v' = unqual-local v
name = if stringset-contains (ctxt.μ̲ Γ) (qualif-var Γ v)
then "Datatype variable"
else "Type variable"
Var-span : ctxt → posinfo → string → checking-mode → 𝕃 tagged-val → err-m → span
Var-span Γ pi v check tvs =
mk-span name pi (posinfo-plus-str pi v')
(checking-data check :: ll-data-term :: var-location-data Γ v :: symbol-data v' :: tvs)
where
v' = unqual-local v
name : string
name with qual-lookup Γ v'
...| just (_ , _ , ctr-def _ _ _ _ _ , _) = "Constructor variable"
...| _ = "Term variable"
KdVar-span : ctxt → (posinfo × var) → (end-pi : posinfo) → params → checking-mode → 𝕃 tagged-val → err-m → span
KdVar-span Γ (pi , v) pi' ps check tvs =
mk-span "Kind variable" pi pi'
(checking-data check :: ll-data-kind :: var-location-data Γ v :: symbol-data (unqual-local v) :: super-kind-data :: (params-data Γ ps ++ tvs))
var-span-with-tags : erased? → ctxt → posinfo → string → checking-mode → tpkd → 𝕃 tagged-val → err-m → span
var-span-with-tags _ Γ pi x check (Tkk k) tags = TpVar-span Γ pi x check ({-keywords-data-var ff ::-} [ kind-data Γ k ] ++ tags)
var-span-with-tags e Γ pi x check (Tkt t) tags = Var-span Γ pi x check ({-keywords-data-var e ::-} [ type-data Γ t ] ++ tags)
var-span : erased? → ctxt → posinfo → string → checking-mode → tpkd → err-m → span
var-span e Γ pi x check tk = var-span-with-tags e Γ pi x check tk []
redefined-var-span : ctxt → posinfo → var → span
redefined-var-span Γ pi x = mk-span "Variable definition" pi (posinfo-plus-str pi x)
[ var-location-data Γ x ] (just "This symbol was defined already")
TpAppt-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
TpAppt-span pi pi' check tvs = mk-span "Application of a type to a term" pi pi' (checking-data check :: ll-data-type :: tvs)
TpApp-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
TpApp-span pi pi' check tvs = mk-span "Application of a type to a type" pi pi' (checking-data check :: ll-data-type :: tvs)
App-span : (is-locale : 𝔹) → posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
App-span l pi pi' check tvs = mk-span "Application of a term to a term" pi pi' (checking-data check :: ll-data-term :: keywords-app-if-typed check l ++ tvs)
AppTp-span : (is-locale : 𝔹) → posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
AppTp-span l pi pi' check tvs = mk-span "Application of a term to a type" pi pi' (checking-data check :: ll-data-term :: keywords-app-if-typed check l ++ tvs)
TpQuant-span : ctxt → erased? → posinfo → posinfo → var → tpkd → ex-tp → checking-mode → 𝕃 tagged-val → err-m → span
TpQuant-span Γ me pi pi' x atk body check tvs err =
let err-if-type-pi = ifMaybej ( ~ (tk-is-type atk || me))
"Π-types must bind a term, not a type (use ∀ instead)"
name = if me then "Implicit dependent function type" else "Dependent function type" in
mk-span name pi (type-end-pos body) (checking-data check :: ll-data-type :: binder-data Γ pi' x atk me nothing (type-start-pos body) (type-end-pos body) :: tvs) (if isJust err-if-type-pi then err-if-type-pi else err)
TpLambda-span : ctxt → posinfo → posinfo → var → tpkd → ex-tp → checking-mode → 𝕃 tagged-val → err-m → span
TpLambda-span Γ pi pi' x atk body check tvs =
mk-span "Type-level lambda abstraction" pi (type-end-pos body)
(checking-data check :: ll-data-type :: binder-data Γ pi' x atk NotErased nothing (type-start-pos body) (type-end-pos body) :: tvs)
Iota-span : ctxt → posinfo → posinfo → var → type → ex-tp → checking-mode → 𝕃 tagged-val → err-m → span
Iota-span Γ pi pi' x t1 t2 check tvs = mk-span "Iota-abstraction" pi (type-end-pos t2) (explain "A dependent intersection type" :: checking-data check :: binder-data Γ pi' x (Tkt t1) ff nothing (type-start-pos t2) (type-end-pos t2) :: ll-data-type :: tvs)
TpArrow-span : ex-tp → ex-tp → checking-mode → 𝕃 tagged-val → err-m → span
TpArrow-span t1 t2 check tvs = mk-span "Arrow type" (type-start-pos t1) (type-end-pos t2) (checking-data check :: ll-data-type :: tvs)
TpEq-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
TpEq-span pi pi' check tvs = mk-span "Equation" pi pi'
(explain "Equation between terms" :: checking-data check :: ll-data-type :: tvs)
Star-span : posinfo → checking-mode → err-m → span
Star-span pi check = mk-span Star-name pi (posinfo-plus pi 1) (checking-data check :: [ ll-data-kind ])
KdAbs-span : ctxt → posinfo → posinfo → var → tpkd → ex-kd → checking-mode → err-m → span
KdAbs-span Γ pi pi' x atk k check =
mk-span "Pi kind" pi (kind-end-pos k)
(checking-data check :: ll-data-kind :: binder-data Γ pi' x atk ff nothing (kind-start-pos k) (kind-end-pos k) :: [ super-kind-data ])
KdArrow-span : ex-tk → ex-kd → checking-mode → err-m → span
KdArrow-span k k' check = mk-span "Arrow kind" (tk-start-pos k) (kind-end-pos k') (checking-data check :: ll-data-kind :: [ super-kind-data ])
{- [[file:../cedille-mode.el::(defun%20cedille-mode-filter-out-special(data)][Frontend]] -}
special-tags : 𝕃 string
special-tags =
"symbol" :: "location" :: "language-level" :: "checking-mode" :: "summary"
:: "binder" :: "bound-value" :: "keywords" :: []
error-span-filter-special : error-span → error-span
error-span-filter-special (mk-error-span dsc pi pi' tvs msg) =
mk-error-span dsc pi pi' tvs' msg
where tvs' = (flip filter) tvs λ tag → list-any (_=string (fst tag)) special-tags
erasure : ctxt → term → tagged-val
erasure Γ t = to-string-tag "erasure" Γ (erase t)
erased-marg-span : ctxt → posinfo → posinfo → maybe type → span
erased-marg-span Γ pi pi' mtp = mk-span "Erased module parameter" pi pi'
(maybe-else [] (λ tp → [ type-data Γ tp ]) mtp)
(just "An implicit module parameter variable occurs free in the erasure of the term")
Lam-span-erased : erased? → string
Lam-span-erased Erased = "Erased lambda abstraction (term-level)"
Lam-span-erased NotErased = "Lambda abstraction (term-level)"
Lam-span : ctxt → checking-mode → posinfo → posinfo → erased? → var → tpkd → ex-tm → 𝕃 tagged-val → err-m → span
Lam-span Γ c pi pi' l x atk t tvs = mk-span (Lam-span-erased l) pi (term-end-pos t)
(ll-data-term :: binder-data Γ pi' x atk l nothing (term-start-pos t) (term-end-pos t) :: checking-data c :: tvs)
compileFail-in : ctxt → term → 𝕃 tagged-val × err-m
compileFail-in Γ t with is-free-in compileFail-qual | t
...| is-free | tₒ with erase tₒ | hnf Γ (record unfold-all { unfold-defs = ff }) tₒ
...| tₑ | tₙ with is-free tₒ
...| ff = [] , nothing
...| tt with is-free tₙ | is-free tₑ
...| tt | _ = [ to-string-tag "normalized term" Γ tₙ ] , just "compileFail occurs in the normalized term"
...| ff | ff = [ to-string-tag "the term" Γ tₒ ] , just "compileFail occurs in an erased position"
...| ff | tt = [] , nothing
DefTerm-span : ctxt → posinfo → var → (checked : checking-mode) → maybe type → term → posinfo → 𝕃 tagged-val → span
DefTerm-span Γ pi x checked tp t pi' tvs =
h ((h-summary tp) ++ ({-erasure Γ t ::-} tvs)) pi x checked tp pi'
where h : 𝕃 tagged-val → posinfo → var → (checked : checking-mode) → maybe type → posinfo → span
h tvs pi x checking _ pi' =
mk-span "Term-level definition (checking)" pi pi' tvs nothing
h tvs pi x _ (just tp) pi' =
mk-span "Term-level definition (synthesizing)" pi pi' (to-string-tag "synthesized type" Γ tp :: tvs) nothing
h tvs pi x _ nothing pi' =
mk-span "Term-level definition (synthesizing)" pi pi' ((strRunTag "synthesized type" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing
h-summary : maybe type → 𝕃 tagged-val
h-summary nothing = [(checking-data synthesizing)]
h-summary (just tp) = (checking-data checking :: [ summary-data x Γ tp ])
CheckTerm-span : ctxt → (checked : checking-mode) → maybe type → ex-tm → posinfo → 𝕃 tagged-val → span
CheckTerm-span Γ checked tp t pi' tvs =
h ({-erasure Γ t ::-} tvs) checked tp (term-start-pos t) pi'
where h : 𝕃 tagged-val → (checked : checking-mode) → maybe type → posinfo → posinfo → span
h tvs checking _ pi pi' =
mk-span "Checking a term" pi pi' (checking-data checking :: tvs) nothing
h tvs _ (just tp) pi pi' =
mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: to-string-tag "synthesized type" Γ tp :: tvs) nothing
h tvs _ nothing pi pi' =
mk-span "Synthesizing a type for a term" pi pi' (checking-data synthesizing :: (strRunTag "synthesized type" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing
normalized-type : ctxt → type → tagged-val
normalized-type = to-string-tag "normalized type"
DefType-span : ctxt → posinfo → var → (checked : checking-mode) → maybe kind → type → posinfo → 𝕃 tagged-val → span
DefType-span Γ pi x checked mk tp pi' tvs =
h ((h-summary mk) ++ tvs) checked mk
where h : 𝕃 tagged-val → checking-mode → maybe kind → span
h tvs checking _ = mk-span "Type-level definition (checking)" pi pi' tvs nothing
h tvs _ (just k) =
mk-span "Type-level definition (synthesizing)" pi pi' (to-string-tag "synthesized kind" Γ k :: tvs) nothing
h tvs _ nothing =
mk-span "Type-level definition (synthesizing)" pi pi' ( (strRunTag "synthesized kind" empty-ctxt $ strAdd "[nothing]") :: tvs) nothing
h-summary : maybe kind → 𝕃 tagged-val
h-summary nothing = [(checking-data synthesizing)]
h-summary (just k) = (checking-data checking :: [ summary-data x Γ k ])
DefKind-span : ctxt → posinfo → var → kind → posinfo → span
DefKind-span Γ pi x k pi' = mk-span "Kind-level definition" pi pi' (kind-data Γ k :: [ summary-data x Γ (Var "□") ]) nothing
DefDatatype-span : ctxt → posinfo → posinfo → var → params → (reg Mu bound : kind) → (mu : type) → (cast : type) → ctrs → ex-kd → posinfo → span
DefDatatype-span Γ pi pi' x ps k kₘᵤ kₓ Tₘᵤ Tₜₒ cs kₑₓ pi'' =
mk-span "Datatype definition" pi pi'' (binder-data Γ pi' x (Tkk kₓ) ff nothing (kind-end-pos kₑₓ) pi'' :: summary-data x Γ k :: summary-data (data-Is/ x) Γ kₘᵤ :: summary-data (data-is/ x) Γ Tₘᵤ :: summary-data (data-to/ x) Γ Tₜₒ :: to-string-tag (data-Is/ x) Γ kₘᵤ :: to-string-tag (data-is/ x) Γ Tₘᵤ :: to-string-tag (data-to/ x) Γ Tₜₒ :: []) nothing
{-unchecked-term-span : term → span
unchecked-term-span t = mk-span "Unchecked term" (term-start-pos t) (term-end-pos t)
(ll-data-term :: not-for-navigation :: [ explain "This term has not been type-checked"]) nothing-}
Beta-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
Beta-span pi pi' check tvs = mk-span "Beta axiom" pi pi'
(checking-data check :: ll-data-term :: explain "A term constant whose type states that β-equal terms are provably equal" :: tvs)
hole-span : ctxt → posinfo → maybe type → checking-mode → 𝕃 tagged-val → span
hole-span Γ pi tp check tvs =
mk-span "Hole" pi (posinfo-plus pi 1)
(checking-data check :: ll-data-term :: expected-type-if Γ tp ++ tvs)
(just "This hole remains to be filled in")
tp-hole-span : ctxt → posinfo → maybe kind → checking-mode → 𝕃 tagged-val → span
tp-hole-span Γ pi k check tvs =
mk-span "Hole" pi (posinfo-plus pi 1)
(checking-data check :: ll-data-type :: expected-kind-if Γ k ++ tvs)
(just "This hole remains to be filled in")
kd-hole-span : posinfo → checking-mode → span
kd-hole-span pi check =
mk-span "Hole" pi (posinfo-plus pi 1)
(checking-data check :: ll-data-kind :: [])
(just "This hole remains to be filled in")
expected-to-string : checking-mode → string
expected-to-string checking = "expected"
expected-to-string synthesizing = "synthesized"
expected-to-string untyped = "untyped"
Epsilon-span : posinfo → left-right → minus? → ex-tm → checking-mode → 𝕃 tagged-val → err-m → span
Epsilon-span pi lr m t check tvs = mk-span "Epsilon" pi (term-end-pos t)
(checking-data check :: ll-data-term :: tvs ++
[ explain ("Normalize " ^ side lr ^ " of the "
^ expected-to-string check ^ " equation, using " ^ maybeMinus-description m
^ " reduction" ) ])
where side : left-right → string
side EpsLeft = "the left-hand side"
side EpsRight = "the right-hand side"
side EpsBoth = "both sides"
maybeMinus-description : minus? → string
maybeMinus-description EpsHnf = "head"
maybeMinus-description EpsHanf = "head-applicative"
optGuide-spans : ctxt → maybe ex-guide → checking-mode → spanM ⊤
optGuide-spans Γ nothing _ = spanMok
optGuide-spans Γ (just (ExGuide pi x tp)) expected =
spanM-add (Var-span Γ pi x expected [] nothing)
Rho-span : posinfo → ex-tm → ex-tm → checking-mode → 𝔹 → ℕ ⊎ var → 𝕃 tagged-val → err-m → span
Rho-span pi t t' expected r (inj₂ x) tvs =
mk-span "Rho" pi (term-end-pos t')
(checking-data expected :: ll-data-term :: explain ("Rewrite all places where " ^ x ^ " occurs in the " ^ expected-to-string expected ^ " type, using an equation. ") :: tvs)
Rho-span pi t t' expected r (inj₁ numrewrites) tvs err =
mk-span "Rho" pi (term-end-pos t')
(checking-data expected :: ll-data-term :: tvs ++
(explain ("Rewrite terms in the "
^ expected-to-string expected ^ " type, using an equation. "
^ (if r then "" else "Do not ") ^ "Beta-reduce the type as we look for matches") :: fst h)) (snd h)
where h : 𝕃 tagged-val × err-m
h = if isJust err
then [] , err
else if numrewrites =ℕ 0
then [] , just "No rewrites could be performed"
else [ strRunTag "Number of rewrites" empty-ctxt (strAdd $ ℕ-to-string numrewrites) ] , err
Phi-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
Phi-span pi pi' expected tvs = mk-span "Phi" pi pi' (checking-data expected :: ll-data-term :: tvs)
Chi-span : ctxt → posinfo → maybe type → ex-tm → checking-mode → 𝕃 tagged-val → err-m → span
Chi-span Γ pi m t' check tvs = mk-span "Chi" pi (term-end-pos t') (ll-data-term :: checking-data check :: tvs ++ helper m)
where helper : maybe type → 𝕃 tagged-val
helper (just T) = explain ("Check a term against an asserted type") :: [ to-string-tag "the asserted type" Γ T ]
helper nothing = [ explain ("Change from checking mode (outside the term) to synthesizing (inside)") ]
VarSigma-span : posinfo → ex-tm → checking-mode → 𝕃 tagged-val → err-m → span
VarSigma-span pi t check tvs =
mk-span "VarSigma" pi (term-end-pos t)
(ll-data-term :: checking-data check :: explain "Swap the sides of the equation synthesized for the body of this term" :: tvs)
Delta-span : posinfo → ex-tm → checking-mode → 𝕃 tagged-val → err-m → span
Delta-span pi t check tvs =
mk-span "Delta" pi (term-end-pos t)
(ll-data-term :: explain "Prove anything you want from a contradiction" :: checking-data check :: tvs)
Opaque-span : posinfo → posinfo → span
Opaque-span p₁ p₂ =
mk-span "Opaque" p₁ p₂ [ explain "Mark a definition as opaque, for the purposes of conversion checking" ] nothing
Open-span : opacity → posinfo → var → ex-tm → checking-mode → 𝕃 tagged-val → err-m → span
Open-span o pi x t check tvs =
elim-pair (if o
then ("Open" , "Open an opaque definition")
else ("Close" , "Hide a definition")) λ name expl →
mk-span name pi (term-end-pos t)
(ll-data-term :: explain expl :: checking-data check :: tvs)
motive-label : string
motive-label = "the motive"
the-motive : ctxt → type → tagged-val
the-motive = to-string-tag motive-label
Theta-span : ctxt → posinfo → theta → ex-tm → 𝕃 lterm → checking-mode → 𝕃 tagged-val → err-m → span
Theta-span Γ pi u t ls check tvs = mk-span "Theta" pi (lterms-end-pos (term-end-pos t) ls) (ll-data-term :: checking-data check :: tvs ++ do-explain u)
where do-explain : theta → 𝕃 tagged-val
do-explain Abstract = [ explain ("Perform an elimination with the first term, after abstracting it from the expected type") ]
do-explain (AbstractVars vs) = [ strRunTag "explanation" Γ (strAdd "Perform an elimination with the first term, after abstracting the listed variables (" >>str vars-to-string vs >>str strAdd ") from the expected type") ]
do-explain AbstractEq = [ explain ("Perform an elimination with the first term, after abstracting it with an equation "
^ "from the expected type") ]
Mu-span : ctxt → posinfo → posinfo → (motive? : maybe type) → checking-mode → 𝕃 tagged-val → err-m → span
Mu-span Γ pi pi' motive? check tvs = mk-span "Mu" pi pi' (ll-data-term :: checking-data check :: explain ("Pattern match on a term" ^ (if isJust motive? then ", with a motive" else "")) :: tvs)
Sigma-span : ctxt → posinfo → posinfo → (motive? : maybe type) → checking-mode → 𝕃 tagged-val → err-m → span
Sigma-span Γ pi pi' motive? check tvs = mk-span "Sigma" pi pi' (ll-data-term :: checking-data check :: explain ("Pattern match on a term" ^ (if isJust motive? then ", with a motive" else "")) :: tvs)
pattern-span : posinfo → var → 𝕃 ex-case-arg → span
pattern-span pi x as = mk-span "Pattern" pi (snd $ foldr (λ a r → if fst r then r else (tt , (case a of λ {(ExCaseArg me pi x) → posinfo-plus-str pi x}))) (ff , posinfo-plus-str pi x) as) [] nothing
pattern-clause-span : posinfo → ex-tm → 𝕃 tagged-val → span
pattern-clause-span pi t tvs = mk-span "Pattern clause" pi (term-end-pos t) tvs nothing
pattern-ctr-span : ctxt → posinfo → var → case-args → 𝕃 tagged-val → err-m → span
pattern-ctr-span Γ pi x as tvs =
mk-span "Pattern constructor" pi (posinfo-plus-str pi x) (checking-data synthesizing :: var-location-data Γ x :: ll-data-term :: symbol-data x :: args-data ++ tvs)
where
args-data : 𝕃 tagged-val
args-data = if iszero (length as) then [] else [ params-to-string-tag "args" Γ (map (λ {(CaseArg me x tk?) → Param me x (maybe-else' tk? (Tkt (TpHole pi-gen)) id)}) as) ]
File-span : ctxt → posinfo → posinfo → string → span
File-span Γ pi pi' filename = mk-span ("Cedille source file (" ^ filename ^ ")") pi pi' (print-file-id-table Γ) nothing
Module-span : posinfo → posinfo → span
Module-span pi pi' = mk-span "Module declaration" pi pi' [ not-for-navigation ] nothing
Module-header-span : posinfo → posinfo → span
Module-header-span pi pi' = mk-span "Module header" pi pi' [ not-for-navigation ] nothing
DefDatatype-header-span : posinfo → span
DefDatatype-header-span pi = mk-span "Data" pi (posinfo-plus-str pi "data") [ not-for-navigation ] nothing
Import-span : posinfo → string → posinfo → 𝕃 tagged-val → err-m → span
Import-span pi file pi' tvs = mk-span ("Import of another source file") pi pi' (("Path" , [[ file ]] , []) :: location-data (file , first-position) :: tvs)
Import-module-span : ctxt → (posinfo × var) → params → 𝕃 tagged-val → err-m → span
Import-module-span Γ (pi , mn) ps tvs = mk-span "Imported module" pi (posinfo-plus-str pi mn) (params-data Γ ps ++ tvs)
punctuation-span : string → posinfo → posinfo → span
punctuation-span name pi pi' = mk-span name pi pi' ( punctuation-data :: not-for-navigation :: [] ) nothing
whitespace-span : posinfo → posinfo → span
whitespace-span pi pi' = mk-span "Whitespace" pi pi' [ not-for-navigation ] nothing
comment-span : posinfo → posinfo → span
comment-span pi pi' = mk-span "Comment" pi pi' [ not-for-navigation ] nothing
IotaPair-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
IotaPair-span pi pi' c tvs =
mk-span "Iota pair" pi pi' (explain "Inhabit a iota-type (dependent intersection type)" :: checking-data c :: ll-data-term :: tvs)
IotaProj-span : ex-tm → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
IotaProj-span t pi' c tvs = mk-span "Iota projection" (term-start-pos t) pi' (checking-data c :: ll-data-term :: tvs)
Let-span : erased? → posinfo → posinfo → checking-mode → 𝕃 tagged-val → err-m → span
Let-span me pi pi' c tvs =
mk-span (if me then "Erased Term Let" else "Term Let") pi pi' (ll-data-term :: checking-data c :: tvs)
TpLet-span : posinfo → posinfo → checking-mode → 𝕃 tagged-val → span
TpLet-span pi pi' c tvs =
mk-span "Type Let" pi pi' (ll-data-type :: checking-data c :: tvs) nothing
| {
"alphanum_fraction": 0.6444925924,
"avg_line_length": 46.4680272109,
"ext": "agda",
"hexsha": "7847477bae85775b8ab9578ec2416aab1e29c621",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/spans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/spans.agda",
"max_line_length": 354,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/spans.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10176,
"size": 34154
} |
{-# OPTIONS --rewriting --confluence-check #-}
-- Let us assume that extensionality of functions cannot be proved
-- inside "plain" Agda. In that case the code below shows that the
-- REWRITE functionality is not a conservative extension, even if we
-- only use propositional equality as the rewriting relation, and do
-- not use any postulates.
-- Jesper, 2019-05-13: This example is not confluent!
module RewriteExt-confluence where
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
data Unit : Set where
unit : Unit
module _ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x}
(f≡g : ∀ x → f x ≡ g x) where
private
id : Unit → (x : A) → B x → B x
id unit _ x = x
f≡g′ : ∀ u x → id u x (f x) ≡ g x
f≡g′ unit = f≡g
{-# REWRITE f≡g′ #-}
ext′ : ∀ u → (λ x → id u x (f x)) ≡ g
ext′ u = refl
ext : f ≡ g
ext = ext′ unit
| {
"alphanum_fraction": 0.5959367946,
"avg_line_length": 22.7179487179,
"ext": "agda",
"hexsha": "bacca0d4cc1a0ce04ee3254b231d61a98259b4c2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/RewriteExt-confluence.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/RewriteExt-confluence.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/RewriteExt-confluence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 301,
"size": 886
} |
module #15 where
{-
Show that indiscernability of identicals follows from path induction
-}
open import Data.Product
open import Relation.Binary.PropositionalEquality
id : ∀{x}{A : Set x} → A → A
id x = x
ind₌ : ∀{a}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set) → ((x : A) → C x x refl) → (x y : A) → (p : x ≡ y) → C x y p
ind₌ C c x y p rewrite p = c y
based-ind₌ : ∀{x}{A : Set x} → (a : A) → (C : (x : A) → (a ≡ x) → Set) → C a refl → (x : A) → (p : a ≡ x) → C x p
based-ind₌ a C c b p rewrite p = c
indiscernability-of-identicals : {A : Set}{C : A → Set} → Σ[ f ∈ ((x y : A) → (x ≡ y) → C x → C y) ]((x : A) → f x x refl ≡ id {A = C x})
indiscernability-of-identicals {A} {C} = transport , (λ _ → refl)
where
transport : (x y : A) → (p : x ≡ y) → C x → C y
transport = ind₌ (λ x y _ → C x → C y) (λ x z → z)
| {
"alphanum_fraction": 0.5090252708,
"avg_line_length": 34.625,
"ext": "agda",
"hexsha": "a39cd85acb08bd0e7950a32303432b17c6e7e22a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/#15.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/#15.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/#15.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 360,
"size": 831
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.CommRings where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Categories.Category
open Category
open CommRingHoms
CommRingsCategory : ∀ {ℓ} → Category (ℓ-suc ℓ) ℓ
ob CommRingsCategory = CommRing _
Hom[_,_] CommRingsCategory = CommRingHom
id CommRingsCategory {R} = idCommRingHom R
_⋆_ CommRingsCategory {R} {S} {T} = compCommRingHom R S T
⋆IdL CommRingsCategory {R} {S} = compIdCommRingHom {R = R} {S}
⋆IdR CommRingsCategory {R} {S} = idCompCommRingHom {R = R} {S}
⋆Assoc CommRingsCategory {R} {S} {T} {U} = compAssocCommRingHom {R = R} {S} {T} {U}
isSetHom CommRingsCategory = isSetRingHom _ _
| {
"alphanum_fraction": 0.6765714286,
"avg_line_length": 36.4583333333,
"ext": "agda",
"hexsha": "085fc579cc1be4e5a67be59aaf4bd0de684f57f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mzeuner/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mzeuner/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mzeuner/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 875
} |
open import Data.Bool as Bool using (Bool; false; true; if_then_else_; not)
open import Data.String using (String)
open import Data.Nat using (ℕ; _+_; _≟_; suc; _>_; _<_; _∸_)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Data.List as l using (List; filter; map; take; foldl; length)
open import Data.List.Properties
open import Data.Maybe using (to-witness)
open import Data.Fin using (fromℕ; _-_; zero)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; Σ)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open Eq.≡-Reasoning
open import Level using (Level)
open import Data.Vec as v using (Vec; fromList; toList; last; length; []; _∷_; [_]; _∷ʳ_; _++_; lookup; head; initLast; filter; map)
open import Data.Vec.Bounded as vb using ([]; _∷_; fromVec; filter; Vec≤)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; _≗_; cong₂)
open import Data.Nat.Properties using (+-comm)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (does)
open import Data.Vec.Bounded.Base using (padRight; ≤-cast)
import Data.Nat.Properties as ℕₚ
open import Relation.Nullary.Decidable.Core using (dec-false)
-- essentially a List String
record Todo : Set where
field
text : String
AddTodo :
∀ {n : ℕ} →
(Vec Todo n) →
String →
(Vec Todo (1 + n))
AddTodo todos text =
todos ∷ʳ
record
{ text = text
}
AddTodoAddsNewListItem :
∀ {n : ℕ} →
(todos : Vec Todo n) (text : String) →
v.length (AddTodo todos text) ≡ v.length todos + 1
AddTodoAddsNewListItem [] text = refl
AddTodoAddsNewListItem todos text = +-comm 1 (v.length todos)
AddTodoLastAddedElementIsTodo :
∀ {n} (todos : Vec Todo n) (text : String) →
last (AddTodo todos text) ≡
record
{ text = text
}
AddTodoLastAddedElementIsTodo todos text = vecLast todos
where
vecLast : ∀ {a} {A : Set a} {l} {n : ℕ} (xs : Vec A n) → last (xs ∷ʳ l) ≡ l
vecLast [] = refl
vecLast (_ ∷ xs) = P.trans (prop (xs ∷ʳ _)) (vecLast xs)
where
prop : ∀ {a} {A : Set a} {n x} (xs : Vec A (suc n)) → last (x v.∷ xs) ≡ last xs
prop xs with initLast xs
... | _ , _ , refl = refl
AddTodoAddedTodoHasGivenText :
∀ {n} (todos : Vec Todo n) (text : String) →
Todo.text (last (AddTodo todos text)) ≡ text
AddTodoAddedTodoHasGivenText todos text
rewrite
(AddTodoLastAddedElementIsTodo todos text) =
refl | {
"alphanum_fraction": 0.6578419575,
"avg_line_length": 35.1126760563,
"ext": "agda",
"hexsha": "3d714f4877970224ac6f61abf6b5efa39c78f6c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_forks_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_forks_repo_name": "frankymacster/redux",
"max_forks_repo_path": "examples/todomvc/src/logic/base-todos.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_issues_repo_name": "frankymacster/redux",
"max_issues_repo_path": "examples/todomvc/src/logic/base-todos.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_stars_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_stars_repo_name": "frankymacster/redux",
"max_stars_repo_path": "examples/todomvc/src/logic/base-todos.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 793,
"size": 2493
} |
{-# OPTIONS --no-termination-check #-}
module optionsPragma where
-- Only goes through with the termination checker turned off.
Foo : Set
Foo = Foo
| {
"alphanum_fraction": 0.7333333333,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "9821c84ffafb5faa3d908a2cdaf20524c345f4d5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/optionsPragma.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/optionsPragma.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/optionsPragma.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 150
} |
data ⊥ : Set where
data Bool : Set where
false true : Bool
data _≡_ (x : Bool) : Bool → Set where
refl : x ≡ x
true≠false : false ≡ true → ⊥
true≠false ()
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
data Eq {A : Set} (_≈_ : A → A → Set) : Maybe A → Maybe A → Set where
just : ∀ {x y} (x≈y : x ≈ y) → Eq _≈_ (just x) (just y)
nothing : Eq _≈_ nothing nothing
drop-just : ∀ {A : Set} {_≈_ : A → A → Set} {x y : A} →
Eq _≈_ (just x) (just y) → x ≈ y
drop-just (just x≈y) = x≈y
| {
"alphanum_fraction": 0.5280898876,
"avg_line_length": 22.25,
"ext": "agda",
"hexsha": "40201d9001bfda75c1ca7191aa0018785a240376",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2235.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2235.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2235.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 225,
"size": 534
} |
module Control.Monad.Writer where
open import Prelude
open import Control.Monad.Zero
open import Control.Monad.Identity
open import Control.Monad.Transformer
record WriterT {a} (W : Set a) (M : Set a → Set a) (A : Set a) : Set a where
no-eta-equality
constructor writerT
field runWriterT : M (A × W)
open WriterT public
module _ {a} {W : Set a} {M : Set a → Set a} where
instance
FunctorWriterT : {{_ : Functor M}} → Functor {a = a} (WriterT W M)
runWriterT (fmap {{ FunctorWriterT }} f m) = first f <$> runWriterT m
FunctorZeroWriterT : {{_ : FunctorZero M}} → FunctorZero {a = a} (WriterT W M)
runWriterT (empty {{FunctorZeroWriterT}}) = empty
AlternativeWriterT : {{_ : Alternative M}} → Alternative {a = a} (WriterT W M)
runWriterT (_<|>_ {{AlternativeWriterT}} x y) = runWriterT x <|> runWriterT y
module _ {{_ : Monoid W}} {{_ : Monad M}} where
private
bindWriterT : ∀ {A B} → WriterT W M A → (A → WriterT W M B) → WriterT W M B
runWriterT (bindWriterT m f) = do
(x , w₁) ← runWriterT m
(y , w₂) ← (runWriterT (f x))
return (y , w₁ <> w₂)
instance
ApplicativeWriterT : Applicative {a = a} (WriterT W M)
runWriterT (pure {{ApplicativeWriterT}} x) = return (x , mempty)
_<*>_ {{ApplicativeWriterT}} = monadAp bindWriterT
MonadWriterT : Monad {a = a} (WriterT W M)
_>>=_ {{MonadWriterT}} = bindWriterT
liftWriterT : {A : Set a} → M A → WriterT W M A
runWriterT (liftWriterT m) = (_, mempty) <$> m
writer : {A : Set a} → A × W → WriterT W M A
runWriterT (writer (x , w)) = return (x , w)
tell : W → WriterT W M ⊤′
runWriterT (tell w) = return (tt , w)
listens : {A B : Set a} → (W → B) → WriterT W M A → WriterT W M (A × B)
runWriterT (listens f m) = do
(x , w) ← runWriterT m
return ((x , f w) , w)
listen : {A : Set a} → WriterT W M A → WriterT W M (A × W)
listen = listens id
pass : {A : Set a} → WriterT W M (A × (W → W)) → WriterT W M A
runWriterT (pass m) = do
((x , f) , w) ← runWriterT m
return (x , f w)
censor : {A : Set a} → (W → W) → WriterT W M A → WriterT W M A
censor f m = pass ((_, f) <$> m)
instance
TransformerWriterT : ∀ {a} {W : Set a} {{_ : Monoid W}} → Transformer (WriterT W)
lift {{TransformerWriterT}} = liftWriterT
Writer : ∀ {a} (W : Set a) (A : Set a) → Set a
Writer W = WriterT W Identity
runWriter : ∀ {a} {W : Set a} {A : Set a} → Writer W A → A × W
runWriter m = runIdentity (runWriterT m)
execWriter : ∀ {a} {W : Set a} {A : Set a} → Writer W A → W
execWriter = snd ∘ runWriter
| {
"alphanum_fraction": 0.5828897338,
"avg_line_length": 32.0731707317,
"ext": "agda",
"hexsha": "c1ffb9560cd7ee0db078e9171c3e3508757a0b82",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Control/Monad/Writer.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Control/Monad/Writer.agda",
"max_line_length": 83,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Control/Monad/Writer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 919,
"size": 2630
} |
------------------------------------------------------------------------------
-- A Peano arithmetic proof without using a where clause
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LogicalFramework.CommAddition where
open import Common.FOL.Relation.Binary.EqReasoning
open import PA.Axiomatic.Standard.Base
------------------------------------------------------------------------------
postulate
+-rightIdentity : ∀ n → n + zero ≡ n
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n)
succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity = PA₃
A : ℕ → Set
A m = ∀ n → m + n ≡ n + m
A0 : A zero
A0 n = zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity n) ⟩
n + zero ∎
is : ∀ m → A m → A (succ m)
is m ih n = succ m + n ≡⟨ PA₄ m n ⟩
succ (m + n) ≡⟨ succCong (ih n) ⟩
succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩
n + succ m ∎
+-comm : ∀ m n → m + n ≡ n + m
+-comm = ℕ-ind A A0 is
| {
"alphanum_fraction": 0.4078303426,
"avg_line_length": 29.1904761905,
"ext": "agda",
"hexsha": "3973eafe9462cda3ba36254bc14efdb966434003",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/LogicalFramework/CommAddition.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/LogicalFramework/CommAddition.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/LogicalFramework/CommAddition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 360,
"size": 1226
} |
module 747Decidable where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym) -- added sym
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using ()
renaming (contradiction to ¬¬-intro)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
-- Copied from 747Isomorphism.
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
-- Copied from 747Relations.
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- Recall that the constructors for _≤_ are z≤n and s≤s.
-- Here are a couple of examples to show how to prove inequalities
-- (or their negations).
2≤4 : 2 ≤ 4
2≤4 = {!!}
¬4≤2 : ¬ (4 ≤ 2)
¬4≤2 = {!!}
-- This should be familiar.
data Bool : Set where
true : Bool
false : Bool
-- We can define a Boolean comparison function.
infix 4 _≤ᵇ_
_≤ᵇ_ : ℕ → ℕ → Bool
m ≤ᵇ n = {!!}
-- PLFA steps through these computations using equational reasoning.
_ : (2 ≤ᵇ 4) ≡ true
_ = refl
_ : (4 ≤ᵇ 2) ≡ false
_ = refl
-- Relating evidence and computation.
T : Bool → Set
T true = ⊤
T false = ⊥
T→≡ : ∀ (b : Bool) → T b → b ≡ true
T→≡ b t = {!!}
≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T e = {!!}
≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n
≤ᵇ→≤ m n t = {!!}
≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n)
≤→≤ᵇ m≤n = {!!}
-- Getting the best of both worlds!
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
-- Helpers for defining _≤?_
-- If you don't use these, the examples below won't normalize.
¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero)
¬s≤z = {!!}
¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n)
¬s≤s = {!!}
-- Decidable ≤.
_≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n)
m ≤? n = {!!}
_ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n))
_ = refl
_ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z))
_ = refl
-- We can also evaluate the LHS of these using C-c C-n.
-- 747/PLFA exercise: DecLT (3 point)
-- Decidable strict equality.
-- You will need these helper functions as we did above.
¬z<z : ¬ (zero < zero)
¬z<z = {!!}
¬s<s : ∀ {m n : ℕ} → ¬ (m < n) → ¬ (suc m < suc n)
¬s<s = {!!}
¬s<z : ∀ {n : ℕ} → ¬ (suc n < zero)
¬s<z = {!!}
_<?_ : ∀ (m n : ℕ) → Dec (m < n)
m <? n = {!!}
-- Some tests.
_ : 2 <? 4 ≡ yes (s<s (s<s (z<s)))
_ = refl
_ : 4 <? 2 ≡ no (¬s<s (¬s<s ¬s<z))
_ = refl
_ : 3 <? 3 ≡ no (¬s<s (¬s<s (¬s<s ¬z<z)))
_ = refl
-- 747/PLFA exercise: DecNatEq (3 points)
-- Decidable equality for natural numbers.
_≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n) -- split m,n
m ≡ℕ? n = {!!}
-- Reusing ≤ᵇ and proofs of equivalence with ≤ to decide ≤.
_≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n)
m ≤?′ n = {!!}
-- Erasing Dec down to Bool (or "isYes").
⌊_⌋ : ∀ {A : Set} → Dec A → Bool
⌊ yes x ⌋ = true
⌊ no x ⌋ = false
_≤ᵇ′_ : ℕ → ℕ → Bool
m ≤ᵇ′ n = ⌊ m ≤? n ⌋
-- If D is Dec A, then T ⌊ D ⌋ is inhabited exactly when A is inhabited.
toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A
toWitness t = {!!}
fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋
fromWitness a = {!!}
-- Similar ideas when it is the "no" witnesses we want to handle.
isNo : ∀ {A : Set} → Dec A → Bool
isNo (yes _) = false
isNo (no _) = true
toWitnessFalse : ∀ {A : Set} {D : Dec A} → T (isNo D) → ¬ A
toWitnessFalse = {!!}
fromWitnessFalse : ∀ {A : Set} {D : Dec A} → ¬ A → T (isNo D)
fromWitnessFalse = {!!}
-- Agda standard library definitions for use of these.
True : ∀ {A : Set} → (D : Dec A) → Set
True Q = T ⌊ Q ⌋
False : ∀ {A : Set} → (D : Dec A) → Set
False Q = T (isNo Q)
-- A concrete example.
≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n
≤ᵇ′→≤ = toWitness
≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n)
≤→≤ᵇ′ = fromWitness
-- Conclusion: use Decidables instead of Booleans!
-- Logical connectives for Decidables.
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
true ∧ true = true
true ∧ false = false
false ∧ y = false
infixr 6 _×-dec_
_×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B)
da ×-dec db = {!!}
infixr 5 _∨_
_∨_ : Bool → Bool → Bool
true ∨ y = true
false ∨ y = y
infixr 5 _⊎-dec_
_⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
da ⊎-dec db = {!!}
not : Bool → Bool
not true = false
not false = true
¬? : ∀ {A : Set} → Dec A → Dec (¬ A)
¬? da = {!!}
-- A Boolean version of implication.
_⊃_ : Bool → Bool → Bool
true ⊃ true = true
true ⊃ false = false
false ⊃ y = true
_→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B)
da →-dec db = {!!}
-- 747/PLFA exercise: ErasBoolDec (3 points)
-- Erasure relates boolean and decidable operations.
∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋
∧-× da db = {!!}
∨-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋
∨-× da db = {!!}
not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋
not-¬ da = {!!}
-- 747/PLFA exercise: iff-erasure.
_iff_ : Bool → Bool → Bool
true iff true = true
true iff false = false
false iff true = false
false iff false = true
_⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B)
da ⇔-dec db = {!!}
iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋
iff-⇔ da db = {!!}
-- Proof by reflection.
-- Or, getting Agda to construct proofs at compile time.
-- A guarded version of monus.
minus : (m n : ℕ) (n≤m : n ≤ m) → ℕ
minus m zero _ = m
minus (suc m) (suc n) (s≤s m≤n) = minus m n m≤n
-- But we have to provide proofs.
_ : minus 5 3 (s≤s (s≤s (s≤s z≤n))) ≡ 2
_ = refl
-- Agda will fill in an implicit record type if it can fill in all fields.
-- Since ⊤ is defined as a record type with no fields...
-- We can get Agda to compute a value of type True (n ≤? m).
_-_ : (m n : ℕ) {n≤m : True (n ≤? m)} → ℕ
_-_ m n {n≤m} = minus m n (toWitness n≤m)
_ : 5 - 3 ≡ 2
_ = refl
-- We will later use this to get Agda to compute parts of proofs
-- that would be annoying for us to provide.
| {
"alphanum_fraction": 0.5299524044,
"avg_line_length": 20.31,
"ext": "agda",
"hexsha": "72e71509c12418dcbe76ac15850883d74d74da22",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda",
"max_line_length": 80,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2606,
"size": 6093
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.SuspProduct
open import homotopy.SuspSmash
open import homotopy.JoinSusp
open import cohomology.Theory
module cohomology.SphereProduct {i} (CT : CohomologyTheory i)
(n : ℤ) (m : ℕ) (X : Ptd i) where
open CohomologyTheory CT
open import cohomology.Wedge CT
private
space-eq : ⊙Susp (⊙Sphere m ⊙× X)
⊙≃ ⊙Sphere (S m) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X)
space-eq =
⊙∨-emap (⊙ide (⊙Sphere (S m)))
(⊙∨-emap (⊙ide (⊙Susp X))
(⊙*-Sphere-l m X ⊙∘e SuspSmash.⊙eq (⊙Sphere m) X))
⊙∘e SuspProduct.⊙eq (⊙Sphere m) X
C-Sphere× : C n (⊙Sphere m ⊙× X)
≃ᴳ C n (⊙Lift (⊙Sphere m)) ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X))
C-Sphere× =
C n (⊙Sphere m ⊙× X)
≃ᴳ⟨ C-Susp n (⊙Sphere m ⊙× X) ⁻¹ᴳ ⟩
C (succ n) (⊙Susp (⊙Sphere m ⊙× X))
≃ᴳ⟨ C-emap (succ n) (space-eq ⊙⁻¹) ⟩
C (succ n) (⊙Sphere (S m) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X))
≃ᴳ⟨ C-emap (succ n) (⊙∨-emap (⊙Susp-emap (⊙lower-equiv {X = ⊙Sphere m})) (⊙ide _)) ⟩
C (succ n) (⊙Susp (⊙Lift {j = i} (⊙Sphere m)) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X))
≃ᴳ⟨ C-Wedge (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) (⊙Susp X ⊙∨ ⊙Susp^ (S m) X) ⟩
C (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) ×ᴳ C (succ n) (⊙Susp X ⊙∨ ⊙Susp^ (S m) X)
≃ᴳ⟨ ×ᴳ-emap (C-Susp n (⊙Lift (⊙Sphere m)))
( ×ᴳ-emap (C-Susp n X) (C-Susp n (⊙Susp^ m X))
∘eᴳ C-Wedge (succ n) (⊙Susp X) (⊙Susp^ (S m) X)) ⟩
C n (⊙Lift (⊙Sphere m)) ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X))
≃ᴳ∎
| {
"alphanum_fraction": 0.5067524116,
"avg_line_length": 37.9268292683,
"ext": "agda",
"hexsha": "1ee81bd289a3cc52c5ff0e053ebfd403cba5feda",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SphereProduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SphereProduct.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SphereProduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 831,
"size": 1555
} |
module Examples.Parity where
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Empty
open import Data.Bool hiding (not)
open import Data.Nat
open import Data.Fin hiding (_+_)
open import Data.Product hiding (map)
open import Data.List hiding (and; or; sum; map; [_])
open import Data.Vec hiding (init)
import DTGP
data Word : Set where
not and or : Word
pre : Word → ℕ → ℕ
pre not n = 1 + n
pre and n = 2 + n
pre or n = 2 + n
post : Word → ℕ → ℕ
post not n = 1 + n
post and n = 1 + n
post or n = 1 + n
even : ℕ → Bool
even zero = true
even (suc zero) = false
even (suc (suc zero)) = true
even (suc n) = even n
trues : ∀ {n} → Vec Bool n → ℕ
trues [] = 0
trues (true ∷ xs) = suc (trues xs)
trues (false ∷ xs) = trues xs
evenParity : ∀ {n} → Vec Bool n → Bool
evenParity xs = even (trues xs)
open DTGP pre post Data.Nat._≟_
eval : ∀ {inp out} → Term inp out → Vec Bool inp → Vec Bool out
eval [] is = is
eval (not ∷ xs) is with eval xs is
... | o ∷ os = Data.Bool.not o ∷ os
eval (and ∷ xs) is with eval xs is
... | o₂ ∷ o₁ ∷ os = (o₁ ∧ o₂) ∷ os
eval (or ∷ xs) is with eval xs is
... | o₂ ∷ o₁ ∷ os = (o₁ ∨ o₂) ∷ os
bitEqual : ∀ {m n} → Vec Bool m → Vec Bool n → Bool
bitEqual [] [] = true
bitEqual (_ ∷ _) [] = false
bitEqual [] (_ ∷ _) = false
bitEqual (x ∷ xs) (y ∷ ys) = x ∧ y ∧ bitEqual xs ys
scores : ∀ {inp out n} → Vec (Vec Bool inp) n → Term inp out → ℕ
scores ass xs = sum (map (λ as →
if (bitEqual (eval xs as) [ evenParity as ])
then 1 else 0)
ass)
fitnessCases : Vec (Vec Bool _) _
fitnessCases =
(true ∷ true ∷ [])
∷ (true ∷ false ∷ [])
∷ (false ∷ true ∷ [])
∷ (false ∷ false ∷ [])
∷ []
_==_ : ℕ → ℕ → Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc m == suc n = m == n
score : Term _ _ → ℕ
score xs = scores fitnessCases xs
open Evolution score
match : (w : Word) (out : ℕ) → Dec (∃ λ n → out ≡ pre w n)
match not zero = no ¬p where
¬p : Σ ℕ (λ n → 0 ≡ suc n) → ⊥
¬p (_ , ())
match not (suc n) = yes (n , refl)
match and zero = no ¬p where
¬p : Σ ℕ (λ n → 0 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match and (suc zero) = no ¬p where
¬p : Σ ℕ (λ n → 1 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match and (suc (suc n)) = yes (n , refl)
match or zero = no ¬p where
¬p : Σ ℕ (λ n → 0 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match or (suc zero) = no ¬p where
¬p : Σ ℕ (λ n → 1 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match or (suc (suc n)) = yes (n , refl)
open Initialization match
choices : List Word
choices = not ∷ and ∷ or ∷ []
population : Population _ _ _
population = fromList (init 4 2 1 choices)
answer : Population _ _ _
answer = evolve 1337 1 population
| {
"alphanum_fraction": 0.5814911952,
"avg_line_length": 23.6194690265,
"ext": "agda",
"hexsha": "9315bd95adac3bcb9de0dd34d944e13b6ec3a998",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-04-17T02:02:58.000Z",
"max_forks_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/dtgp",
"max_forks_repo_path": "src/Examples/Parity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/dtgp",
"max_issues_repo_path": "src/Examples/Parity.agda",
"max_line_length": 64,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/dtgp",
"max_stars_repo_path": "src/Examples/Parity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T21:39:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-20T16:46:00.000Z",
"num_tokens": 1015,
"size": 2669
} |
-- Andreas, 2017-02-20, issue #2467
-- Proper error on missing BUILTIN REWRITE
{-# OPTIONS --rewriting #-}
postulate A : Set
{-# REWRITE A #-}
-- Should fail with error like
| {
"alphanum_fraction": 0.6629213483,
"avg_line_length": 16.1818181818,
"ext": "agda",
"hexsha": "64de029c613f0dba1a89980bf6c88fcebe415b33",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2467.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2467.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2467.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 50,
"size": 178
} |
-- Andreas, 2019-05-29, issue #3818, reported by Matthew Daggitt
-- An external module name, i.e., the object of `import`,
-- should not be considered clashing with an internal module name.
module _ where
module Issue3818 where
module M where -- Internal module Issue3818.M.
open import Issue3818.M -- Name unambiguous, since referring to file.
-- Should succeed instead of complaining about ambiguous Issue3818.M.
| {
"alphanum_fraction": 0.7424593968,
"avg_line_length": 30.7857142857,
"ext": "agda",
"hexsha": "db51ac100e7e098b1d8e7d2ec16901ec9cbcaa36",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3818.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3818.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3818.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 104,
"size": 431
} |
module rewriting where
open import cedille-types
open import constants
open import conversion
open import ctxt
open import general-util
open import free-vars
--open import lift
open import rename
open import subst
open import syntax-util
open import type-util
--open import erase
open import datatype-util
rewrite-mk-phi : var → (eq t t' : term) → term
rewrite-mk-phi x eq t t' =
Phi (Rho (VarSigma eq) x (TpEq t t') (Beta t id-term)) t t'
rewrite-t : Set → Set
rewrite-t T = ctxt → (is-plus : 𝔹) → (nums : maybe stringset) → (eq : maybe term) →
(left : term) → (right : var) → (total-matches : ℕ) →
T {- Returned value -} ×
ℕ {- Number of rewrites actually performed -} ×
ℕ {- Total number of matches, including skipped ones -}
instance
rewrite-functor : functor rewrite-t
rewrite-applicative : applicative rewrite-t
rewrite-monad : monad rewrite-t
fmap ⦃ rewrite-functor ⦄ g r Γ op on eq t₁ t₂ n with r Γ op on eq t₁ t₂ n
...| a , n' , sn = g a , n' , sn
pure ⦃ rewrite-applicative ⦄ a Γ p on eq t₁ t₂ n = a , 0 , n
_<*>_ ⦃ rewrite-applicative ⦄ f a Γ op on eq t₁ t₂ n with f Γ op on eq t₁ t₂ n
...| f' , n' , sn with a Γ op on eq t₁ t₂ sn
...| b , n'' , sn' = f' b , n' + n'' , sn'
return ⦃ rewrite-monad ⦄ a = pure a
_>>=_ ⦃ rewrite-monad ⦄ fa fab Γ op on eq t₁ t₂ n with fa Γ op on eq t₁ t₂ n
...| a' , n' , sn with fab a' Γ op on eq t₁ t₂ sn
...| b , n'' , sn' = b , n' + n'' , sn'
infixl 4 _≫rewrite_
_≫rewrite_ = _<*>_
{-# TERMINATING #-}
rewrite-term : term → rewrite-t term
rewrite-terma : term → rewrite-t term
rewrite-termh : term → rewrite-t term
rewrite-type : type → rewrite-t type
rewrite-typeh : type → rewrite-t type
rewrite-kind : kind → rewrite-t kind
rewrite-tpkd : tpkd → rewrite-t tpkd
rewrite-tmtp : tmtp → rewrite-t tmtp
rewrite-exprd : ∀ {ed} → ⟦ ed ⟧ → rewrite-t ⟦ ed ⟧
rewrite-case : maybe (var × var) → case → rewrite-t case
rewrite-exprd {TERM} = rewrite-term
rewrite-exprd {TYPE} = rewrite-type
rewrite-exprd {KIND} = rewrite-kind
rewrite-rename-var : ∀ {A} → var → (var → rewrite-t A) → rewrite-t A
rewrite-rename-var x r Γ op on eq t₁ t₂ n =
let x' = rename-var-if Γ (renamectxt-insert empty-renamectxt t₂ t₂) x t₁ in
r x' Γ op on eq t₁ t₂ n
rewrite-abs : ∀ {ed} → var → var → (⟦ ed ⟧ → rewrite-t ⟦ ed ⟧) → ⟦ ed ⟧ → rewrite-t ⟦ ed ⟧
rewrite-abs x x' g a Γ = let Γ = ctxt-var-decl x' Γ in g (rename-var Γ x x' a) Γ
rewrite-term t Γ op on eq t₁ t₂ sn =
case rewrite-terma (erase t) Γ op on eq t₁ t₂ sn of λ where
(t' , 0 , sn') → t , 0 , sn'
(t' , n , sn') → maybe-else' eq t' (λ eq → rewrite-mk-phi t₂ eq t t') , n , sn'
rewrite-terma t Γ op on eq t₁ t₂ sn =
case conv-term Γ t t₁ of λ where
tt → case on of λ where
(just ns) → case trie-contains ns (ℕ-to-string (suc sn)) of λ where
tt → Var t₂ , 1 , suc sn -- ρ nums contains n
ff → t , 0 , suc sn -- ρ nums does not contain n
nothing → Var t₂ , 1 , suc sn
ff → case op of λ where
tt → case rewrite-termh (hnf Γ unfold-head t) Γ op on eq t₁ t₂ sn of λ where
(t' , 0 , sn') → t , 0 , sn' -- if no rewrites were performed, return the pre-hnf t
(t' , n' , sn') → t' , n' , sn'
ff → rewrite-termh t Γ op on eq t₁ t₂ sn
rewrite-termh (App t t') =
pure App <*> rewrite-terma t <*> rewrite-terma t'
rewrite-termh (Lam NotErased y nothing t) =
rewrite-rename-var y λ y' → pure (Lam NotErased y' nothing) <*>
rewrite-abs y y' rewrite-terma t
rewrite-termh (Var x) = pure (Var x)
rewrite-termh (LetTm ff x nothing t t') Γ = rewrite-terma (subst Γ t x t') Γ
-- rewrite-rename-var x λ x' → pure (Let pi₁) <*>
-- (pure (DefTerm pi₂ x' NoType) <*> rewrite-terma t) <*>
-- rewrite-abs x x' rewrite-terma t'
-- ^^^ Need to DEFINE "x" as "hnf Γ unfold-head t tt", not just declare it!
-- We may instead simply rewrite t' after substituting t for x
rewrite-termh (Mu x t nothing t~ ms) =
rewrite-rename-var x λ x' →
pure (Mu x') <*>
rewrite-terma t <*>
pure nothing <*>
pure t~ <*>
foldr (λ c r → pure _::_ <*> rewrite-case (just $ x , x') c <*> r)
(pure []) ms
rewrite-termh (Sigma tᵢ t nothing t~ ms) =
pure (Sigma tᵢ) <*>
rewrite-terma t <*>
pure nothing <*>
pure t~ <*>
foldr (λ c r → pure _::_ <*> rewrite-case nothing c <*> r)
(pure []) ms
rewrite-termh = pure
rewrite-case xᵣ? (Case x cas t T) =
let f = maybe-else' xᵣ? id (uncurry rewrite-abs) rewrite-terma in
pure (uncurry $ Case x) <*>
foldr {B = rewrite-t case-args → (term → rewrite-t term) → rewrite-t (case-args × term)}
(λ {(CaseArg ff x nothing) r cas fₜ →
r (rewrite-rename-var x λ x' → pure _::_ <*> pure (CaseArg ff x' nothing) <*> cas) (λ t → rewrite-rename-var x λ x' → rewrite-abs x x' fₜ t); _ → id})
(λ cas fₜ → pure (_,_ ∘ reverse) <*> cas <*> fₜ t) cas (pure []) f <*> return T
rewrite-type T Γ tt on eq t₁ t₂ sn
with rewrite-typeh (hnf Γ unfold-head-elab T) Γ tt on eq t₁ t₂ sn
...| T' , 0 , sn' = T , 0 , sn'
...| T' , n , sn' = T' , n , sn'
rewrite-type = rewrite-typeh
rewrite-typeh (TpAbs me x atk T) =
rewrite-rename-var x λ x' →
pure (TpAbs me x') <*> rewrite-tpkd atk <*>
rewrite-abs x x' rewrite-type T
rewrite-typeh (TpIota x T T') =
rewrite-rename-var x λ x' →
pure (TpIota x') <*> rewrite-type T <*>
rewrite-abs x x' rewrite-type T'
rewrite-typeh (TpApp T tT) =
pure TpApp <*> rewrite-typeh T <*> rewrite-tmtp tT
rewrite-typeh (TpEq t₁ t₂) =
pure TpEq <*> (pure erase <*> rewrite-term t₁) <*>
(pure erase <*> rewrite-term t₂)
rewrite-typeh (TpLam x atk T) =
rewrite-rename-var x λ x' →
pure (TpLam x') <*> rewrite-tpkd atk <*>
rewrite-abs x x' rewrite-type T
rewrite-typeh (TpHole pi) = pure (TpHole pi)
rewrite-typeh (TpVar x) = pure (TpVar x)
-- If we ever implement kind-level rewriting, we will need to go through
-- all the types of kind pi binding a term or type-to-kind arrow
-- if the right-hand side variable is free in the types of the bound variable,
-- and substitute each occurence of the term variable (eta-expanding if necessary)
-- in the body of the type with itself surrounded by a rewrite back the original
-- expected type (unless we lifted a term, then it gets really tricky because
-- we may not want to rewrite back?).
rewrite-kind = pure
rewrite-liftingType = pure
rewrite-tpkd (Tkt T) = pure Tkt <*> rewrite-type T
rewrite-tpkd (Tkk k) = pure Tkk <*> rewrite-kind k
rewrite-tmtp (Ttm t) = pure Ttm <*> rewrite-term t
rewrite-tmtp (Ttp T) = pure Ttp <*> rewrite-type T
post-rewrite-binder-type : ∀ {ed} → ctxt → var → term → (var → tpkd → ctxt → ctxt) → var → ⟦ ed ⟧ → type → ⟦ ed ⟧
post-rewrite-binder-type Γ x eq tk-decl x' Tₓ Tₓ' with is-free-in x Tₓ'
...| ff = Tₓ
...| tt = subst (tk-decl x' (Tkt Tₓ') Γ) (Rho eq x Tₓ' (Var x')) x' Tₓ
post-rewrite-binder-kind : ∀ {ed} → ctxt → var → term → (var → tpkd → ctxt → ctxt) → var → ⟦ ed ⟧ → kind → ⟦ ed ⟧
post-rewrite-binder-kind Γ x eq tk-decl x' Tₓ kₓ' = Tₓ
post-rewrite-binder-tk : ∀ {ed} → ctxt → var → term → (var → tpkd → ctxt → ctxt) → var → ⟦ ed ⟧ → tpkd → ⟦ ed ⟧
post-rewrite-binder-tk Γ x eq tk-decl x' Tₓ (Tkt Tₓ') =
post-rewrite-binder-type Γ x eq tk-decl x' Tₓ Tₓ'
post-rewrite-binder-tk Γ x eq tk-decl x' Tₓ (Tkk kₓ') =
post-rewrite-binder-kind Γ x eq tk-decl x' Tₓ kₓ'
post-rewriteh : ctxt → var → term → (ctxt → var → term → tpkd → tpkd) → (var → tpkd → ctxt → ctxt) → type → type × kind
post-rewriteh Γ x eq prtk tk-decl (TpAbs me x' atk T) =
let atk = prtk Γ x eq atk
T = fst $ post-rewriteh (tk-decl x' atk Γ) x eq prtk tk-decl T
T = post-rewrite-binder-tk Γ x eq tk-decl x' T atk in
TpAbs me x' atk T , KdStar
post-rewriteh Γ x eq prtk tk-decl (TpIota x' T T') =
let T = fst $ post-rewriteh Γ x eq prtk tk-decl T
T' = fst $ post-rewriteh (tk-decl x' (Tkt T) Γ) x eq prtk tk-decl T'
T' = post-rewrite-binder-type Γ x eq tk-decl x' T' T in
TpIota x' T T' , KdStar
post-rewriteh Γ x eq prtk tk-decl (TpApp T (Ttp T')) =
elim-pair (post-rewriteh Γ x eq prtk tk-decl T') λ T' k' →
elim-pair (post-rewriteh Γ x eq prtk tk-decl T) λ where
T (KdAbs x' atk k) → TpApp T (Ttp T') , hnf Γ unfold-head-elab (subst Γ T' x' k)
T k → TpApp T (Ttp T') , k
post-rewriteh Γ x eq prtk tk-decl (TpApp T (Ttm t)) =
let t2 T' = if is-free-in x T' then Rho (VarSigma eq) x T' t else t in
elim-pair (post-rewriteh Γ x eq prtk tk-decl T) λ where
T (KdAbs x' (Tkt T') k) →
let t3 = t2 T' in TpApp T (Ttm t3) , hnf Γ unfold-head-elab (subst Γ t3 x' k)
T k → TpApp T (Ttm t) , k
post-rewriteh Γ x eq prtk tk-decl (TpLam x' atk T) =
let atk = prtk Γ x eq atk in
elim-pair (post-rewriteh (tk-decl x' atk Γ) x eq prtk tk-decl T) λ T k →
let T = post-rewrite-binder-tk Γ x eq tk-decl x' T atk
k = post-rewrite-binder-tk Γ x eq tk-decl x' k atk in
TpLam x' atk T , KdAbs x' atk k
post-rewriteh Γ x eq prtk tk-decl (TpVar x') with env-lookup Γ x'
...| just (type-decl k , _) = TpVar x' , hnf Γ unfold-head-elab k
...| just (type-def mps _ T k , _) = TpVar x' , (hnf Γ unfold-head-elab (maybe-else id abs-expand-kind mps k))
...| _ = TpVar x' , KdStar
post-rewriteh Γ x eq prtk tk-decl T = T , KdStar
{-# TERMINATING #-}
post-rewrite : ctxt → var → (eq t₂ : term) → type → type
post-rewrite Γ x eq t₂ T = subst Γ t₂ x (fst (post-rewriteh Γ x eq prtk tk-decl T)) where
prtk : ctxt → var → term → tpkd → tpkd
tk-decl : var → tpkd → ctxt → ctxt
prtk Γ x t (Tkt T) = Tkt (fst (post-rewriteh Γ x t prtk tk-decl T))
prtk Γ x t (Tkk k) = Tkk (hnf Γ unfold-head-elab k)
tk-decl x atk Γ =
record Γ { i = trie-insert (ctxt.i Γ) x (either-else' atk term-decl type-decl , "" , "") }
-- Functions for substituting the type T in ρ e @ x . T - t
rewrite-at-t : Set → Set
rewrite-at-t X = ctxt → var → maybe term → 𝔹 → X → X → X
{-# TERMINATING #-}
rewrite-at : rewrite-at-t type
rewrite-at' : ∀ {ed} → rewrite-at-t ⟦ ed ⟧ → rewrite-at-t ⟦ ed ⟧
rewrite-ath : rewrite-at-t type
rewrite-atₖ : rewrite-at-t kind
rewrite-athₖ : rewrite-at-t kind
rewrite-at-tk : rewrite-at-t tpkd
rewrite-at-tk Γ x eq b (Tkt T) (Tkt T') = Tkt (rewrite-at Γ x eq b T T')
rewrite-at-tk Γ x eq b (Tkk k) (Tkk k') = Tkk (rewrite-atₖ Γ x eq b k k')
rewrite-at-tk Γ x eq b atk1 atk2 = atk1
rewrite-at = rewrite-at' rewrite-ath
rewrite-atₖ = rewrite-at' rewrite-athₖ
rewrite-head-types-match : ∀ {ed} → ctxt → var → (complete partial : ⟦ ed ⟧) → 𝔹
rewrite-head-types-match{TYPE} Γ x (TpApp T _) (TpApp T' _) = conv-type Γ T ([ Γ - Hole pi-gen / x ] T')
rewrite-head-types-match Γ x T T' = tt
rewrite-at' ra Γ x eq b T T' =
if ~ is-free-in x T'
then T
else if b && ~ rewrite-head-types-match Γ x T T'
then ra Γ x eq ff (hnf Γ unfold-head-elab T) (hnf Γ unfold-head-elab T')
else ra Γ x eq b T T'
rewrite-athₖ Γ x eq b (KdAbs x1 atk1 k1) (KdAbs x2 atk2 k2) =
KdAbs x1 (rewrite-at-tk Γ x eq tt atk1 atk2) (rewrite-atₖ (ctxt-var-decl x1 Γ) x eq tt k1 $ rename-var Γ x2 x1 k2)
rewrite-athₖ Γ x eq b KdStar KdStar = KdStar
rewrite-athₖ Γ x eq tt k1 k2 = rewrite-atₖ Γ x eq ff (hnf Γ unfold-head-elab k1) (hnf Γ unfold-head-elab k2)
rewrite-athₖ Γ x eq ff k1 k2 = k1
rewrite-ath Γ x eq b (TpAbs me1 x1 atk1 T1) (TpAbs me2 x2 atk2 T2) =
TpAbs me1 x1 (rewrite-at-tk Γ x eq tt atk1 atk2) (rewrite-at (ctxt-var-decl x1 Γ) x eq tt T1 (rename-var Γ x2 x1 T2))
rewrite-ath Γ x eq b (TpIota x1 T1 T1') (TpIota x2 T2 T2') =
TpIota x1 (rewrite-at Γ x eq tt T1 T2) (rewrite-at (ctxt-var-decl x1 Γ) x eq tt T1' (rename-var Γ x2 x1 T2'))
rewrite-ath Γ x eq b (TpApp T1 (Ttp T1')) (TpApp T2 (Ttp T2')) =
TpApp (rewrite-at Γ x eq b T1 T2) (Ttp (rewrite-at Γ x eq tt T1' T2'))
rewrite-ath Γ x eq b (TpApp T1 (Ttm t1)) (TpApp T2 (Ttm t2)) =
TpApp (rewrite-at Γ x eq b T1 T2) (Ttm (maybe-else' (ifMaybe (is-free-in x t2) eq) t1 λ eq → rewrite-mk-phi x eq t1 t2))
rewrite-ath Γ x eq b (TpEq t1 t1') (TpEq t2 t2') =
TpEq t2 t2'
rewrite-ath Γ x eq b (TpLam x1 atk1 T1) (TpLam x2 atk2 T2) =
TpLam x1 (rewrite-at-tk Γ x eq tt atk1 atk2) (rewrite-at (ctxt-var-decl x1 Γ) x eq tt T1 (rename-var Γ x2 x1 T2))
rewrite-ath Γ x eq b (TpVar x1) (TpVar x2) = TpVar x1
rewrite-ath Γ x eq b (TpHole pi1) (TpHole pi2) = TpHole pi1
rewrite-ath Γ x eq tt T1 T2 = rewrite-at Γ x eq ff (hnf Γ unfold-head-elab T1) (hnf Γ unfold-head-elab T2)
rewrite-ath Γ x eq ff T1 T2 = T1
hnf-ctr : ctxt → var → type → type
hnf-ctr Γ x T = hnf Γ unfold-no-defs (rewrite-at Γ x nothing tt (hnf Γ (unfold tt ff ff) T) $ hnf Γ (record unfold-all {unfold-erase = ff}) T)
{-# TERMINATING #-}
refine-term : ctxt → tmtp → var → term → term
refine-type : ctxt → tmtp → var → type → type
refine-typeh : ctxt → tmtp → var → type → type
refine-kind : ctxt → tmtp → var → kind → kind
refine : ∀ {ed} → ctxt → tmtp → var → ⟦ ed ⟧ → ⟦ ed ⟧
refine {TERM} = refine-term
refine {TYPE} = refine-type
refine {KIND} = refine-kind
refine-term Γ (Ttp T) to t = t
refine-term Γ (Ttm t') to t with rewrite-term t Γ ff nothing nothing t' to 0
...| t'' , zero , _ = t
...| t'' , suc _ , _ = t''
refine-type Γ fm to T =
if either-else' fm (const ff) (conv-type Γ T)
then TpVar to
else refine-typeh Γ fm to T
refine-typeh Γ fm to (TpAbs me x atk T) =
let x' = fresh-var Γ x in
TpAbs me x' (refine Γ fm to -tk atk) (refine-type (ctxt-var-decl x' Γ) fm to (rename-var Γ x x' T))
refine-typeh Γ fm to (TpIota x T T') =
let x' = fresh-var Γ x in
TpIota x' (refine-type Γ fm to T) (refine-type (ctxt-var-decl x' Γ) fm to (rename-var Γ x x' T'))
refine-typeh Γ fm to (TpApp T tT) =
TpApp (refine-type Γ fm to T) (refine Γ fm to -tT tT)
refine-typeh Γ fm to (TpEq t₁ t₂) =
TpEq (refine-term Γ fm to t₁) (refine-term Γ fm to t₂)
refine-typeh Γ fm to (TpLam x atk T) =
let x' = fresh-var Γ x in
TpLam x' (refine Γ fm to -tk atk) (refine-type (ctxt-var-decl x' Γ) fm to (rename-var Γ x x' T))
refine-typeh Γ fm to (TpHole pi) = TpHole pi
refine-typeh Γ fm to (TpVar x) = TpVar x
refine-kind Γ fm to (KdAbs x atk k) =
let x' = fresh-var Γ x in
KdAbs x (refine Γ fm to -tk atk) (refine-kind (ctxt-var-decl x' Γ) fm to (rename-var Γ x x' k))
refine-kind Γ fm to (KdHole pi) = KdHole pi
refine-kind Γ fm to KdStar = KdStar
refine-motive : ctxt → indices → (asᵢ : 𝕃 tmtp) → (expected : type) → type
refine-motive Γ is as =
foldr
(λ where
(Index x atk , ty) f Γ T →
let body = f (ctxt-var-decl x Γ) $ refine-type (ctxt-var-decl x Γ) ty x T
x' = if is-free-in x body then x else ignored-var in
TpLam x' atk body)
(λ Γ T → T) (zip (rename-indices Γ is as) as) Γ
-- Given a context, the (qualified) scrutinee, the (qualified) datatype name,
-- the datatype's indices, the arguments for module parameter instantiation,
-- the arguments for the indices in the type of the scrutinee, and the expected type,
-- calculate a possibly ill-typed motive that is approximately abstracted over the
-- indices and the scrutinee itself.
{-
refine-motive : ctxt → (scrutinee : term) → (datatype-name : var) → indices → (mod-as : 𝕃 tty) → (idx-as : 𝕃 tty) → (expected : type) → type
refine-motive Γ t name is asₚ asᵢ =
let x = fresh-var (add-indices-to-ctxt is Γ) "x"
atkₓ = Tkt $ indices-to-tpapps is $ recompose-tpapps asₚ $ TpVar pi-gen name
as' = asᵢ ++ [ tterm t ]
is' = rename? Γ empty-renamectxt (is ++ [ Index x atkₓ ]) as'
as = zip is' as' in
foldr
(λ where
(Index x atk , ty) f Γ T →
TpLambda pi-gen pi-gen x atk $ f (ctxt-var-decl x Γ) $
refine-type (ctxt-var-decl x Γ) ty x T)
(λ Γ T → T) as Γ
where
get-var : var → tty → var
get-var x (tterm (Var _ x')) = maybe-else (unqual-local x') id $ var-suffix x'
get-var x (ttype (TpVar _ x')) = maybe-else (unqual-local x') id $ var-suffix x'
get-var x _ = x
rename? : ctxt → renamectxt → indices → 𝕃 tty → indices
rename? Γ ρ (Index x atk :: is) (ty :: tys) =
let x' = get-var x ty in
Index x' (subst-renamectxt Γ ρ atk) :: rename? (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') is tys
rename? _ _ _ _ = []
-}
| {
"alphanum_fraction": 0.6237264829,
"avg_line_length": 42.8927613941,
"ext": "agda",
"hexsha": "c873cac951682a0ea78e7c75279d83980b0fef91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/rewriting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/rewriting.agda",
"max_line_length": 156,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/rewriting.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5984,
"size": 15999
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.List
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
infix 0 case_of_
case_of_ : ∀ {a b}{A : Set a}{B : Set b} → A → (A → B) → B
case x of f = f x
map : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
reverse : ∀ {a}{A : Set a} → List A → List A
reverse {A = A} xs = reverseAcc xs []
where
reverseAcc : List A → List A → List A
reverseAcc [] a = a
reverseAcc (x ∷ xs) a = reverseAcc xs (x ∷ a)
data Maybe (X : Set) : Set where
nothing : Maybe X
just : X → Maybe X
data Fin : Nat → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
record RVec {a} (X : Set a) (n : Nat) : Set a where
constructor vec
field sel : Fin n → X
test-rvec : Nat → RVec Nat 5
test-rvec x = vec λ _ → x
get-len : Definition → TC Term
get-len (function (clause _ _ (con (quote vec)
(_ ∷ _ ∷ (arg _ a) ∷ _)) ∷ [])) = quoteTC a
get-len _ = quoteTC "ERROR"
macro
def-reg : Name → Term → TC ⊤
def-reg n hole = do
d ← getDefinition n
l ← get-len d
unify hole l
def-recons : Name → Term → TC ⊤
def-recons n hole = do
d ← withReconstructed (getDefinition n)
l ← get-len d
unify hole l
-- normaliseR perserves reconstructed expressions.
def-normR : Name → Term → TC ⊤
def-normR n hole = do
(function (clause tel ps t ∷ [])) ←
withReconstructed (getDefinition n)
where _ → quoteTC "ERROR" >>= unify hole
let ctx = map snd tel
t ← inContext (reverse ctx)
(withReconstructed (normalise t))
let d = function (clause tel ps t ∷ [])
get-len d >>= unify hole
-- normaliseR perserves reconstructed expressions.
def-redR : Name → Term → TC ⊤
def-redR n hole = do
(function (clause tel ps t ∷ [])) ←
withReconstructed (getDefinition n)
where _ → quoteTC "ERROR" >>= unify hole
let ctx = map snd tel
t ← inContext (reverse ctx) (withReconstructed (reduce t))
let d = function (clause tel ps t ∷ [])
get-len d >>= unify hole
test₁ : unknown ≡ def-reg test-rvec
test₁ = refl
test₂ : (lit (nat 5)) ≡ def-recons test-rvec
test₂ = refl
test₃ : (lit (nat 5)) ≡ def-normR test-rvec
test₃ = refl
test₄ : (lit (nat 5)) ≡ def-redR test-rvec
test₄ = refl
pictx : Term → List (Arg Type)
pictx (pi a (abs s x)) = a ∷ pictx x
pictx _ = []
macro
get-ctx : Name → Term → TC ⊤
get-ctx n hole = do
t ← getType n
let c = pictx t
c ← withReconstructed
(inContext (reverse c) getContext)
quoteTC c >>= unify hole
bar : (A : Set) (eq : [] {A = A} ≡ []) (x : Nat) → ⊤
bar _ _ _ = tt
-- if getContext were to work incorrectly, this function wouldn't typecheck
test₅ : List (Arg Type)
test₅ = get-ctx bar
data NotAVec (X : Set) (y : Nat) : Set where
mk : NotAVec X y
f : ∀ {n} → NotAVec Nat n → NotAVec Nat (suc n)
f mk = mk
macro
chk-type : Term → TC ⊤
chk-type hole = do
T ← quoteTC (NotAVec Nat 5)
t ← quoteTC (mk {X = Nat} {y = 5})
(con _ (_ ∷ arg _ t ∷ [])) ← withReconstructed (checkType t T)
where _ → quoteTC "ERROR" >>= unify hole
quoteTC t >>= unify hole
-- checkType would leave unknown's without the call to withReconstructed
test₆ : chk-type ≡ lit (nat 5)
test₆ = refl
q : [] {A = Nat} ≡ [] {A = Nat}
q = refl
macro
inf-type : Term → TC ⊤
inf-type hole = do
(function (clause _ _ b ∷ [])) ← withReconstructed (getDefinition (quote q))
where _ → quoteTC "ERROR" >>= unify hole
(def _ (l ∷ L ∷ e₁ ∷ e₂ ∷ [])) ← withReconstructed (inferType b)
where _ → quoteTC "ERROR" >>= unify hole
(arg _ (con _ (_ ∷ (arg _ N) ∷ []))) ← returnTC e₁
where _ → quoteTC "ERROR" >>= unify hole
quoteTC N >>= unify hole
-- inferType would not reconstruct the arguments within the type
-- without the call to withReconstructed
test₇ : inf-type ≡ def (quote Nat) []
test₇ = refl
| {
"alphanum_fraction": 0.5981701286,
"avg_line_length": 26.2597402597,
"ext": "agda",
"hexsha": "59237ceac539e1305e37ed6382bd30764d333bd5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/test-recons.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/test-recons.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/test-recons.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-26T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-26T09:35:17.000Z",
"num_tokens": 1379,
"size": 4044
} |
module Pi.Invariants where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Data.List as L hiding (_∷_)
open import Relation.Binary.PropositionalEquality
open import Pi.Syntax
open import Pi.Opsem
open import Pi.NoRepeat
-- Get the type of the deepest context
get𝕌 : ∀ {A B} → Context {A} {B} → 𝕌 × 𝕌
get𝕌 {A} {B} ☐ = A , B
get𝕌 (☐⨾ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⨾☐• κ) = get𝕌 κ
get𝕌 (☐⊕ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⊕☐• κ) = get𝕌 κ
get𝕌 (☐⊗[ c₂ , x ]• κ) = get𝕌 κ
get𝕌 ([ c₁ , x ]⊗☐• κ) = get𝕌 κ
get𝕌State : (st : State) → 𝕌 × 𝕌
get𝕌State ⟨ c ∣ v ∣ κ ⟩ = get𝕌 κ
get𝕌State [ c ∣ v ∣ κ ] = get𝕌 κ
-- Reconstruct the whole combinator from context
getℂκ : ∀ {A B} → A ↔ B → Context {A} {B} → ∃[ C ] ∃[ D ] (C ↔ D)
getℂκ c ☐ = _ , _ , c
getℂκ c (☐⨾ c₂ • κ) = getℂκ (c ⨾ c₂) κ
getℂκ c (c₁ ⨾☐• κ) = getℂκ (c₁ ⨾ c) κ
getℂκ c (☐⊕ c₂ • κ) = getℂκ (c ⊕ c₂) κ
getℂκ c (c₁ ⊕☐• κ) = getℂκ (c₁ ⊕ c) κ
getℂκ c (☐⊗[ c₂ , x ]• κ) = getℂκ (c ⊗ c₂) κ
getℂκ c ([ c₁ , x ]⊗☐• κ) = getℂκ (c₁ ⊗ c) κ
getℂ : State → ∃[ A ] ∃[ B ] (A ↔ B)
getℂ ⟨ c ∣ _ ∣ κ ⟩ = getℂκ c κ
getℂ [ c ∣ _ ∣ κ ] = getℂκ c κ
-- The reconstructed combinator stays the same
ℂInvariant : ∀ {st st'} → st ↦ st' → getℂ st ≡ getℂ st'
ℂInvariant ↦₁ = refl
ℂInvariant ↦₂ = refl
ℂInvariant ↦₃ = refl
ℂInvariant ↦₄ = refl
ℂInvariant ↦₅ = refl
ℂInvariant ↦₆ = refl
ℂInvariant ↦₇ = refl
ℂInvariant ↦₈ = refl
ℂInvariant ↦₉ = refl
ℂInvariant ↦₁₀ = refl
ℂInvariant ↦₁₁ = refl
ℂInvariant ↦₁₂ = refl
ℂInvariant* : ∀ {st st'} → st ↦* st' → getℂ st ≡ getℂ st'
ℂInvariant* ◾ = refl
ℂInvariant* (r ∷ rs) = trans (ℂInvariant r) (ℂInvariant* rs)
-- Append a context to another context
appendκ : ∀ {A B} → (ctx : Context {A} {B}) → let (C , D) = get𝕌 ctx
in Context {C} {D} → Context {A} {B}
appendκ ☐ ctx = ctx
appendκ (☐⨾ c₂ • κ) ctx = ☐⨾ c₂ • appendκ κ ctx
appendκ (c₁ ⨾☐• κ) ctx = c₁ ⨾☐• appendκ κ ctx
appendκ (☐⊕ c₂ • κ) ctx = ☐⊕ c₂ • appendκ κ ctx
appendκ (c₁ ⊕☐• κ) ctx = c₁ ⊕☐• appendκ κ ctx
appendκ (☐⊗[ c₂ , x ]• κ) ctx = ☐⊗[ c₂ , x ]• appendκ κ ctx
appendκ ([ c₁ , x ]⊗☐• κ) ctx = [ c₁ , x ]⊗☐• appendκ κ ctx
appendκState : ∀ st → let (A , B) = get𝕌State st
in Context {A} {B} → State
appendκState ⟨ c ∣ v ∣ κ ⟩ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩
appendκState [ c ∣ v ∣ κ ] ctx = [ c ∣ v ∣ appendκ κ ctx ]
-- The type of context does not change during execution
𝕌Invariant : ∀ {st st'} → st ↦ st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant ↦₁ = refl
𝕌Invariant ↦₂ = refl
𝕌Invariant ↦₃ = refl
𝕌Invariant ↦₄ = refl
𝕌Invariant ↦₅ = refl
𝕌Invariant ↦₆ = refl
𝕌Invariant ↦₇ = refl
𝕌Invariant ↦₈ = refl
𝕌Invariant ↦₉ = refl
𝕌Invariant ↦₁₀ = refl
𝕌Invariant ↦₁₁ = refl
𝕌Invariant ↦₁₂ = refl
𝕌Invariant* : ∀ {st st'} → st ↦* st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant* ◾ = refl
𝕌Invariant* (r ∷ rs) = trans (𝕌Invariant r) (𝕌Invariant* rs)
-- Appending context does not affect reductions
appendκ↦ : ∀ {st st'} → (r : st ↦ st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦ appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦ ↦₁ refl κ = ↦₁
appendκ↦ ↦₂ refl κ = ↦₂
appendκ↦ ↦₃ refl κ = ↦₃
appendκ↦ ↦₄ refl κ = ↦₄
appendκ↦ ↦₅ refl κ = ↦₅
appendκ↦ ↦₆ refl κ = ↦₆
appendκ↦ ↦₇ refl κ = ↦₇
appendκ↦ ↦₈ refl κ = ↦₈
appendκ↦ ↦₉ refl κ = ↦₉
appendκ↦ ↦₁₀ refl κ = ↦₁₀
appendκ↦ ↦₁₁ refl κ = ↦₁₁
appendκ↦ ↦₁₂ refl κ = ↦₁₂
appendκ↦* : ∀ {st st'} → (rs : st ↦* st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦* appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦* ◾ refl ctx = ◾
appendκ↦* (↦₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₃ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₃ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₄ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₄ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₅ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₅ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₁₀{κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₁₁{κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦₁₂{κ = κ} ∷ rs) eq ctx = appendκ↦ (↦₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
| {
"alphanum_fraction": 0.5694530444,
"avg_line_length": 38.1496062992,
"ext": "agda",
"hexsha": "4090184ee9b85f5b828c4c47798b9114f0257de1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/Invariants.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/Invariants.agda",
"max_line_length": 94,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/Invariants.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2393,
"size": 4845
} |
module Thesis.SIRelBigStep.ArithExtra where
open import Relation.Binary.PropositionalEquality
open import Data.Nat public
open import Data.Nat.Properties public
open import Relation.Binary hiding (_⇒_)
lt1 : ∀ {k n} → k < n → k ≤ n
lt1 (s≤s p) = ≤-step p
m∸n≤m : ∀ m n → m ∸ n ≤ m
m∸n≤m m zero = ≤-refl
m∸n≤m zero (suc n) = z≤n
m∸n≤m (suc m) (suc n) = ≤-step (m∸n≤m m n)
suc∸ : ∀ m n → n ≤ m → suc (m ∸ n) ≡ suc m ∸ n
suc∸ m zero z≤n = refl
suc∸ (suc m) (suc n) (s≤s n≤m) = suc∸ m n n≤m
sub∸ : ∀ m n o → m + n ≤ o → n ≤ o ∸ m
sub∸ m n o n+m≤o rewrite +-comm m n | cong (_≤ o ∸ m) (sym (m+n∸n≡m n m)) = ∸-mono n+m≤o (≤-refl {m})
| {
"alphanum_fraction": 0.5687203791,
"avg_line_length": 28.7727272727,
"ext": "agda",
"hexsha": "d6413a375976927831cee07cbf7383e103e4f813",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/ArithExtra.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/ArithExtra.agda",
"max_line_length": 101,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/ArithExtra.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 321,
"size": 633
} |
------------------------------------------------------------------------
-- An implementation of the Fibonacci sequence using tail
------------------------------------------------------------------------
module SingletonChunks where
open import Codata.Musical.Notation
open import Codata.Musical.Stream as S using (Stream; _≈_; _∷_)
open import Data.Bool
open import Data.Nat
open import Data.Vec as V using (Vec; []; _∷_)
import Relation.Binary.PropositionalEquality as P
------------------------------------------------------------------------
-- Stream programs
-- StreamP b A encodes programs generating streams in chunks of size
-- (at least) 1. The first chunk may be empty if b is false.
infixr 5 _∷_
data StreamP : Bool → Set → Set₁ where
[_] : ∀ {A} (xs : ∞ (StreamP true A)) → StreamP false A
_∷_ : ∀ {A} (x : A) (xs : StreamP false A) → StreamP true A
forget : ∀ {A} (xs : StreamP true A) → StreamP false A
tail : ∀ {A} (xs : StreamP true A) → StreamP false A
zipWith : ∀ {b A B C} (f : A → B → C)
(xs : StreamP b A) (ys : StreamP b B) → StreamP b C
data StreamW : Bool → Set → Set₁ where
[_] : ∀ {A} (xs : StreamP true A) → StreamW false A
_∷_ : ∀ {A} (x : A) (xs : StreamW false A) → StreamW true A
forgetW : ∀ {A} → StreamW true A → StreamW false A
forgetW (x ∷ [ xs ]) = [ x ∷ forget xs ]
tailW : ∀ {A} → StreamW true A → StreamW false A
tailW (x ∷ xs) = xs
zipWithW : ∀ {b A B C} → (A → B → C) →
StreamW b A → StreamW b B → StreamW b C
zipWithW f [ xs ] [ ys ] = [ zipWith f xs ys ]
zipWithW f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWithW f xs ys
whnf : ∀ {b A} → StreamP b A → StreamW b A
whnf [ xs ] = [ ♭ xs ]
whnf (x ∷ xs) = x ∷ whnf xs
whnf (forget xs) = forgetW (whnf xs)
whnf (tail xs) = tailW (whnf xs)
whnf (zipWith f xs ys) = zipWithW f (whnf xs) (whnf ys)
mutual
⟦_⟧W : ∀ {A} → StreamW true A → Stream A
⟦ x ∷ [ xs ] ⟧W = x ∷ ♯ ⟦ xs ⟧P
⟦_⟧P : ∀ {A} → StreamP true A → Stream A
⟦ xs ⟧P = ⟦ whnf xs ⟧W
------------------------------------------------------------------------
-- The Fibonacci sequence
fib : StreamP true ℕ
fib = 0 ∷ [ ♯ (1 ∷ zipWith _+_ (forget fib) (tail fib)) ]
------------------------------------------------------------------------
-- The definition of fib is correct
-- ⟦_⟧ is homomorphic with respect to zipWith/S.zipWith.
zipWith-hom : ∀ {A B C} (_∙_ : A → B → C) xs ys →
⟦ zipWith _∙_ xs ys ⟧P ≈ S.zipWith _∙_ ⟦ xs ⟧P ⟦ ys ⟧P
zipWith-hom _∙_ xs ys with whnf xs | whnf ys
zipWith-hom _∙_ xs ys | x ∷ [ xs′ ] | y ∷ [ ys′ ] =
P.refl ∷ ♯ zipWith-hom _∙_ xs′ ys′
-- forget is the identity on streams.
open import MapIterate as M using (_≈P_; _∷_; _≈⟨_⟩_; _∎)
open import Relation.Binary.PropositionalEquality as P using (_≡_; [_])
forget-lemma : ∀ {A} x (xs : StreamP true A) →
⟦ x ∷ forget xs ⟧P ≈P x ∷ ♯ ⟦ xs ⟧P
forget-lemma x xs with whnf xs | P.inspect whnf xs
... | y ∷ [ ys ] | [ eq ] = x ∷ ♯ helper eq
where
helper : whnf xs ≡ y ∷ [ ys ] →
⟦ y ∷ forget ys ⟧P ≈P ⟦ xs ⟧P
helper eq rewrite eq = _ ≈⟨ forget-lemma y ys ⟩ (y ∷ ♯ (_ ∎))
-- The stream ⟦ fib ⟧P satisfies its intended defining equation.
open import Relation.Binary
module SS {A : Set} = Setoid (S.setoid A)
fib-correct :
⟦ fib ⟧P ≈ 0 ∷ ♯ (1 ∷ ♯ S.zipWith _+_ ⟦ fib ⟧P (S.tail ⟦ fib ⟧P))
fib-correct =
P.refl ∷ ♯ (P.refl ∷ ♯ SS.trans
(zipWith-hom _+_ (0 ∷ forget fib′) fib′)
(S.zipWith-cong _+_ (SS.trans (M.soundP (forget-lemma 0 fib′))
(P.refl ∷ ♯ SS.refl)) SS.refl))
where fib′ = 1 ∷ zipWith _+_ (forget fib) (tail fib)
------------------------------------------------------------------------
-- An equality proof language
infix 4 _≈[_]P_ _≈[_]W_
infix 3 _∎
infixr 2 _≈⟨_⟩_
data _≈[_]P_ : {A : Set} → Stream A → Bool → Stream A → Set₁ where
[_] : ∀ {A} {xs ys : Stream A}
(xs≈ys : ∞ (xs ≈[ true ]P ys)) → xs ≈[ false ]P ys
_∷_ : ∀ {b A} (x : A) {xs ys : ∞ (Stream A)}
(xs≈ys : ♭ xs ≈[ b ]P ♭ ys) → x ∷ xs ≈[ true ]P x ∷ ys
forget : ∀ {A} {xs ys : Stream A}
(xs≈ys : xs ≈[ true ]P ys) → xs ≈[ false ]P ys
_≈⟨_⟩_ : ∀ {b A} (xs : Stream A) {ys zs}
(xs≈ys : xs ≈[ b ]P ys) (ys≈zs : ys ≈[ b ]P zs) →
xs ≈[ b ]P zs
_∎ : ∀ {A} (xs : Stream A) → xs ≈[ true ]P xs
tail : ∀ {A} {xs ys : Stream A} (xs≈ys : xs ≈[ true ]P ys) →
S.tail xs ≈[ false ]P S.tail ys
zipWith : ∀ {b A B C} (f : A → B → C) {xs xs′ ys ys′}
(xs≈xs′ : xs ≈[ b ]P xs′) (ys≈ys′ : ys ≈[ b ]P ys′) →
S.zipWith f xs ys ≈[ b ]P S.zipWith f xs′ ys′
-- Completeness.
completeP : ∀ {A : Set} {xs ys : Stream A} →
xs ≈ ys → xs ≈[ true ]P ys
completeP (P.refl ∷ xs≈ys) = _ ∷ [ ♯ completeP (♭ xs≈ys) ]
-- Weak head normal forms.
data _≈[_]W_ {A : Set} : Stream A → Bool → Stream A → Set₁ where
[_] : {xs ys : Stream A}
(xs≈ys : xs ≈[ true ]P ys) → xs ≈[ false ]W ys
_∷_ : ∀ (x : A) {xs ys}
(xs≈ys : ♭ xs ≈[ true ]P ♭ ys) → x ∷ xs ≈[ true ]W x ∷ ys
consW≈ : ∀ {A b} (x : A) {xs ys} →
♭ xs ≈[ b ]W ♭ ys → x ∷ xs ≈[ true ]W x ∷ ys
consW≈ x xs≈ys = x ∷ helper xs≈ys
where
helper : ∀ {A b} {xs ys : Stream A} →
xs ≈[ b ]W ys → xs ≈[ true ]P ys
helper [ xs≈ys ] = xs≈ys
helper (x ∷ xs≈ys) = x ∷ xs≈ys
forgetW≈ : ∀ {A} {xs ys : Stream A} →
xs ≈[ true ]W ys → xs ≈[ false ]W ys
forgetW≈ (x ∷ xs≈ys) = [ x ∷ forget xs≈ys ]
transW≈ : ∀ {A b} {xs ys zs : Stream A} →
xs ≈[ b ]W ys → ys ≈[ b ]W zs → xs ≈[ b ]W zs
transW≈ [ xs≈ys ] [ ys≈zs ] = [ _ ≈⟨ xs≈ys ⟩ ys≈zs ]
transW≈ (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ (_ ≈⟨ xs≈ys ⟩ ys≈zs)
reflW≈ : ∀ {A} (xs : Stream A) → xs ≈[ true ]W xs
reflW≈ (x ∷ xs) = x ∷ (♭ xs ∎)
tailW≈ : ∀ {A} {xs ys : Stream A} →
xs ≈[ true ]W ys → S.tail xs ≈[ false ]W S.tail ys
tailW≈ (x ∷ xs≈ys) = [ xs≈ys ]
zipWithW≈ : ∀ {A B C b} (_∙_ : A → B → C) {xs₁ ys₁ xs₂ ys₂} →
xs₁ ≈[ b ]W ys₁ → xs₂ ≈[ b ]W ys₂ →
S.zipWith _∙_ xs₁ xs₂ ≈[ b ]W S.zipWith _∙_ ys₁ ys₂
zipWithW≈ _∙_ [ xs₁≈ys₁ ] [ xs₂≈ys₂ ] = [ zipWith _∙_ xs₁≈ys₁ xs₂≈ys₂ ]
zipWithW≈ _∙_ (x₁ ∷ xs₁≈ys₁) (x₂ ∷ xs₂≈ys₂) =
(x₁ ∙ x₂) ∷ zipWith _∙_ xs₁≈ys₁ xs₂≈ys₂
whnf≈ : ∀ {A : Set} {xs ys : Stream A} {b} →
xs ≈[ b ]P ys → xs ≈[ b ]W ys
whnf≈ [ xs≈ys ] = [ ♭ xs≈ys ]
whnf≈ (x ∷ xs≈ys) = consW≈ x (whnf≈ xs≈ys)
whnf≈ (forget xs≈ys) = forgetW≈ (whnf≈ xs≈ys)
whnf≈ (xs ≈⟨ xs≈ys ⟩ ys≈zs) = transW≈ (whnf≈ xs≈ys) (whnf≈ ys≈zs)
whnf≈ (xs ∎) = reflW≈ xs
whnf≈ (tail xs≈ys) = tailW≈ (whnf≈ xs≈ys)
whnf≈ (zipWith f xs≈xs′ ys≈ys′) = zipWithW≈ f (whnf≈ xs≈xs′) (whnf≈ ys≈ys′)
-- Soundness.
mutual
soundW : {A : Set} {xs ys : Stream A} → xs ≈[ true ]W ys → xs ≈ ys
soundW (x ∷ xs≈ys) = P.refl ∷ ♯ soundP xs≈ys
soundP : {A : Set} {xs ys : Stream A} → xs ≈[ true ]P ys → xs ≈ ys
soundP xs≈ys = soundW (whnf≈ xs≈ys)
------------------------------------------------------------------------
-- The equation given for fib has a unique solution
fib-rhs : Stream ℕ → Stream ℕ
fib-rhs ns = 0 ∷ ♯ (1 ∷ ♯ S.zipWith _+_ ns (S.tail ns))
fib-unique :
∀ ms ns → ms ≈ fib-rhs ms → ns ≈ fib-rhs ns → ms ≈[ true ]P ns
fib-unique ms ns ms≈ ns≈ =
ms ≈⟨ completeP ms≈ ⟩
fib-rhs ms ≈⟨ 0 ∷ [ ♯ (1 ∷ zipWith _+_ (forget (fib-unique ms ns ms≈ ns≈))
(tail (fib-unique ms ns ms≈ ns≈))) ] ⟩
fib-rhs ns ≈⟨ completeP (SS.sym ns≈) ⟩
ns ∎
| {
"alphanum_fraction": 0.4771707575,
"avg_line_length": 36.2583732057,
"ext": "agda",
"hexsha": "ffe6884ca9994255c6e2303ea3b1122a083b0f2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "SingletonChunks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "SingletonChunks.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "SingletonChunks.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 3143,
"size": 7578
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Sn.Base where
open import Cubical.HITs.Susp
open import Cubical.Foundations.Pointed
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne
open import Cubical.Data.Empty
open import Cubical.Foundations.Prelude
S : ℕ₋₁ → Type₀
S neg1 = ⊥
S (ℕ→ℕ₋₁ n) = Susp (S (-1+ n))
S₊ : ℕ → Type₀
S₊ n = S (ℕ→ℕ₋₁ n)
-- Pointed version
S₊∙ : (n : ℕ) → Pointed₀
S₊∙ n = (S₊ n) , north
| {
"alphanum_fraction": 0.6791208791,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "ffaa31527cd29405a4e1c143a6a097a19d0206f2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/HITs/Sn/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 180,
"size": 455
} |
module Function.Domains.Functions where
import Lvl
open import Function.Domains
open import Function.Domains.Id
open import Structure.Relator.Properties
open import Structure.Setoid
open import Type
open import Type.Dependent
private variable ℓₒ₁ ℓₒ₂ ℓₑ₁ ℓₑ₂ : Lvl.Level
module _ {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where
module ⊶ where
private variable f : X → Y
-- The function which shrinks the given function's codomain to its image.
shrink : (f : X → Y) → (X → (⊶ f))
shrink f(x) = intro (f(x)) (intro x)
-- Applies an argument of type X to a function of type ((⊶ f) → Y) according to the bijection of {X,(⊶ f)} by f.
apply : X → ((⊶ f) → Y) → Y
apply{f} x imgfn = imgfn (shrink f(x))
fn : (⊶ f) → (X → Y)
fn{f} _ = f
arg : (⊶ f) → X
arg (intro _ (intro x)) = x
-- Could be interpreted as an identity function with an enlarged codomain.
-- The value of (⊶ f) interpreted as contained in the "set" Y.
value : (⊶ f) → Y
value (intro y _) = y
value-proof : ⦃ equiv-Y : Equiv{ℓₑ₂}(Y) ⦄ → ∀{x} → (value(intro (f(x)) (intro{f = f} x)) ≡ f(x))
value-proof = reflexivity(_≡_)
arg-proof : ⦃ equiv-X : Equiv{ℓₑ₁}(X) ⦄ → ∀{x} → (arg(intro (f(x)) (intro{f = f} x)) ≡ x)
arg-proof = reflexivity(_≡_)
-- TODO: Problem with levels
-- TODO: [⊶]-function-surjective : ∀{f : X → Y} → Surjective([⊶]-function(f))
-- .[⊶]-function-surjective : ∀{f : X → Y}{y : (⊶ f)} → ∃(x ↦ [⊶]-arg(([⊶]-fn f)(x)) ≡ [⊶]-arg(y))
-- [⊶]-function-surjective {f} {intro(y-value) ⦃ [∃]-intro (x) ⦃ proof ⦄ ⦄} =
-- Lang.Irrelevance.axiom(
-- ([∃]-intro (x)
-- ⦃ [≡]-with-specific {_}{_} {_}{_} {f(x)} {y-value}
-- (expr ↦ \ ⦃ [≡]-intro ⦄ → \ ⦃ [≡]-intro ⦄ →
-- (intro
-- (expr)
-- ⦃ [∃]-intro (x) ⦃ [≡]-intro :of: (f(x) ≡ y-value) ⦄ ⦄
-- )
-- )
-- (proof :of: (f(x) ≡ y-value))
-- ⦄
-- )
-- )
-- ∃(x: X). f(x) ≡ obj(y) //proof:
-- Take x: X
-- f(x) ≡ obj(y)
-- ⇒ intro(f(x)) ⦃ [∃]-intro(x) ⦃ e ⦄ ⦄ ≡ intro(obj(y)) ⦃ [∃]-intro(x) ⦃ e ⦄ ⦄
-- [⊶]-function-injective : ∀{X}{Y}{f : X → Y} → Injective(f) → Injective([⊶]-function(f))
-- [⊶]-function-injective{_}{_}{f} {x₁}{x₂} [≡]-intro = [≡]-intro
| {
"alphanum_fraction": 0.5045672031,
"avg_line_length": 34.8333333333,
"ext": "agda",
"hexsha": "40da83183826d6080a712e6cb95fcfcf9a5022e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/Domains/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/Domains/Functions.agda",
"max_line_length": 116,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/Domains/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 938,
"size": 2299
} |
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.meta:50 -v tc.conv:20 -v tc.conv.type:50 #-}
module Issue659 where
postulate
Level : Set
lzero : Level
lsuc : Level → Level
_⊔_ : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
record R (ℓ : Level) : Set ℓ where
postulate
r : ∀ ℓ → R ℓ
module M (r : ∀ ℓ → R ℓ) where
data D (ℓ : Level) : Set ℓ where
id : ∀ {a} {A : Set a} → A → A
id x = x
data K : Set where
k₁ k₂ : K
P : ∀ {ℓ} → K → Set ℓ → Set ℓ
P k₁ A = A → A
P k₂ A = D _
open M r
postulate
Foo : ∀ {k a} {A : Set a} → P k A → Set
Bar : Set
Bar = Foo M.id
-- Could this error message be improved?
-- Setω is not a valid type.
-- when checking that the expression M.id has type P M.k₁ _34
-- New error:
--
-- ((r₁ : (ℓ : Level) → R ℓ) {a : Level} {A : Set a} → A → A) !=<
-- (P {_33} _32 _34)
-- because this would result in an invalid use of Setω
-- when checking that the expression M.id has type (P {_33} _32 _34)
| {
"alphanum_fraction": 0.5640074212,
"avg_line_length": 19.962962963,
"ext": "agda",
"hexsha": "dedcd678c95826899562f6a3efe19783c330e42f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue659.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue659.agda",
"max_line_length": 68,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/fail/Issue659.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 403,
"size": 1078
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Proofs.Addition where
open import Relation.Binary.PropositionalEquality
open import Data.Binary.Operations.Unary
open import Data.Binary.Operations.Addition
open import Data.Binary.Proofs.Unary
open import Data.Binary.Proofs.Semantics
open import Data.Binary.Definitions
open import Data.Binary.Operations.Semantics
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Relation.Binary.PropositionalEquality.FasterReasoning
import Data.Nat.Properties as ℕ
open import Function
open import Data.Nat.Reasoning
mutual
add₀-homo : ∀ xs ys → ⟦ add O xs ys ⇓⟧⁺ ≡ ⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺
add₀-homo 1ᵇ 1ᵇ = refl
add₀-homo 1ᵇ (O ∷ ys) = refl
add₀-homo 1ᵇ (I ∷ ys) = cong 2* (inc⁺⁺-homo ys) ⟨ trans ⟩ ℕ.+-suc (suc ⟦ ys ⇓⟧⁺) _
add₀-homo (O ∷ xs) 1ᵇ = ℕ.+-comm 1 _
add₀-homo (O ∷ xs) (O ∷ ys) = cong 2* (add₀-homo xs ys) ⟨ trans ⟩ 2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺
add₀-homo (O ∷ xs) (I ∷ ys) = cong suc (cong 2* (add₀-homo xs ys) ⟨ trans ⟩ 2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺) ⟨ trans ⟩ sym (ℕ.+-suc (2* ⟦ xs ⇓⟧⁺) (2* ⟦ ys ⇓⟧⁺))
add₀-homo (I ∷ xs) 1ᵇ = inc⁺⁺-homo (I ∷ xs) ⟨ trans ⟩ cong suc (ℕ.+-comm 1 _)
add₀-homo (I ∷ xs) (O ∷ ys) = cong suc (cong 2* (add₀-homo xs ys) ⟨ trans ⟩ 2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺)
add₀-homo (I ∷ xs) (I ∷ ys) = cong 2* (add₁-homo xs ys) ⟨ trans ⟩ (ℕ.+-suc (suc (⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺)) _ ⟨ trans ⟩
cong suc (cong suc (2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺))) ⟨ trans ⟩
sym (cong suc (ℕ.+-suc (2* ⟦ xs ⇓⟧⁺) _))
add₁-homo : ∀ xs ys → ⟦ add I xs ys ⇓⟧⁺ ≡ suc (⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺)
add₁-homo 1ᵇ 1ᵇ = refl
add₁-homo 1ᵇ (O ∷ ys) = cong 2* (inc⁺⁺-homo ys) ⟨ trans ⟩ ℕ.+-suc (suc ⟦ ys ⇓⟧⁺) _
add₁-homo 1ᵇ (I ∷ ys) = cong suc (cong 2* (inc⁺⁺-homo ys) ⟨ trans ⟩ ℕ.+-suc (suc ⟦ ys ⇓⟧⁺) _)
add₁-homo (O ∷ xs) 1ᵇ = cong 2* (inc⁺⁺-homo xs) ⟨ trans ⟩ (ℕ.+-suc (suc ⟦ xs ⇓⟧⁺) _ ⟨ trans ⟩ cong suc (ℕ.+-comm 1 _))
add₁-homo (O ∷ xs) (O ∷ ys) = cong suc (cong 2* (add₀-homo xs ys) ⟨ trans ⟩ 2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺)
add₁-homo (O ∷ xs) (I ∷ ys) = cong 2* (add₁-homo xs ys) ⟨ trans ⟩ (ℕ.+-suc (suc (⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺)) _ ⟨ trans ⟩ (cong suc (cong suc ((2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺))) ⟨ trans ⟩ cong suc (sym (ℕ.+-suc (2* ⟦ xs ⇓⟧⁺) _)) ))
add₁-homo (I ∷ xs) 1ᵇ = cong suc (cong 2* (inc⁺⁺-homo xs) ⟨ trans ⟩ cong suc (ℕ.+-suc ⟦ xs ⇓⟧⁺ _ ⟨ trans ⟩ ℕ.+-comm 1 _))
add₁-homo (I ∷ xs) (O ∷ ys) = cong 2* (add₁-homo xs ys) ⟨ trans ⟩ (ℕ.+-suc (suc (⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺)) _ ⟨ trans ⟩ cong suc (cong suc (2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺)))
add₁-homo (I ∷ xs) (I ∷ ys) = cong suc (cong 2* (add₁-homo xs ys) ⟨ trans ⟩ (ℕ.+-suc (suc (⟦ xs ⇓⟧⁺ ℕ.+ ⟦ ys ⇓⟧⁺) ) _ ⟨ trans ⟩ cong suc (cong suc (2*-distrib ⟦ xs ⇓⟧⁺ ⟦ ys ⇓⟧⁺)) ⟨ trans ⟩ cong suc (sym (ℕ.+-suc (2* ⟦ xs ⇓⟧⁺) _)) ))
+-homo : ∀ xs ys → ⟦ xs + ys ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧
+-homo 0ᵇ ys = refl
+-homo (0< x) 0ᵇ = sym (ℕ.+-identityʳ _)
+-homo (0< xs) (0< ys) = add₀-homo xs ys
| {
"alphanum_fraction": 0.5376344086,
"avg_line_length": 63.3191489362,
"ext": "agda",
"hexsha": "ed6dcb0aaef838b8e36fa01dcfc37dc4be5b5638",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Proofs/Addition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Proofs/Addition.agda",
"max_line_length": 234,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Proofs/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 1550,
"size": 2976
} |
open import Relation.Binary.Core
module BBHeap.Equality.Properties {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import BBHeap.Equality _≤_
open import Bound.Lower A
refl≈ : {b : Bound}{h : BBHeap b} → h ≈ h
refl≈ {b} {leaf} = ≈leaf
refl≈ {b} {left b≤x l⋘r} = ≈left b≤x b≤x l⋘r l⋘r refl≈ refl≈
refl≈ {b} {right b≤x l⋙r} = ≈right b≤x b≤x l⋙r l⋙r refl≈ refl≈
sym≈ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≈ h' → h' ≈ h
sym≈ ≈leaf = ≈leaf
sym≈ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') = ≈left b'≤x' b≤x l'⋘r' l⋘r (sym≈ l≈l') (sym≈ r≈r')
sym≈ (≈right b≤x b'≤x' l⋙r l'⋙r' l≈l' r≈r') = ≈right b'≤x' b≤x l'⋙r' l⋙r (sym≈ l≈l') (sym≈ r≈r')
trans≈ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≈ h' → h' ≈ h'' → h ≈ h''
trans≈ ≈leaf ≈leaf = ≈leaf
trans≈ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') (≈left .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = ≈left b≤x b''≤x'' l⋘r l''⋘r'' (trans≈ l≈l' l'≈l'') (trans≈ r≈r' r'≈r'')
trans≈ (≈right b≤x b'≤x' l⋙r l'⋙r' l≈l' r≈r') (≈right .b'≤x' b''≤x'' .l'⋙r' l''⋙r'' l'≈l'' r'≈r'') = ≈right b≤x b''≤x'' l⋙r l''⋙r'' (trans≈ l≈l' l'≈l'') (trans≈ r≈r' r'≈r'')
mutual
lemma≈≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≈ h' → h' ≃ h'' → h ≃ h''
lemma≈≃ ≈leaf ≃lf = ≃lf
lemma≈≃ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≃r' l''≃r'' l'≃l'') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' (lemma≈≃ l≈l' (lemma≃≈ l'≃r' (sym≈ r≈r'))) l''≃r'' (lemma≈≃ l≈l' l'≃l'')
lemma≃≈ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ≈ h'' → h ≃ h''
lemma≃≈ ≃lf ≈leaf = ≃lf
lemma≃≈ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') (≈left .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r (lemma≈≃ (sym≈ l'≈l'') (lemma≃≈ l'≃r' r'≈r'')) (lemma≃≈ l≃l' l'≈l'')
lemma≈⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≈ h' → h' ⋗ h'' → h ⋗ h''
lemma≈⋗ (≈left b≤x .b'≤x' lf⋘ .lf⋘ ≈leaf ≈leaf) (⋗lf b'≤x') = ⋗lf b≤x
lemma≈⋗ (≈left b≤x .b'≤x' l⋘r .l'⋘r' l≈l' r≈r') (⋗nd b'≤x' b''≤x'' l'⋘r' l''⋘r'' l'≃r' l''≃r'' l'⋗l'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' (lemma≈≃ l≈l' (lemma≃≈ l'≃r' (sym≈ r≈r'))) l''≃r'' (lemma≈⋗ l≈l' l'⋗l'')
lemma⋗≈ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h' ≈ h'' → h ⋗ h''
lemma⋗≈ (⋗lf b≤x) ≈leaf = ⋗lf b≤x
lemma⋗≈ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') (≈left .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r (lemma≈≃ (sym≈ l'≈l'') (lemma≃≈ l'≃r' r'≈r'')) (lemma⋗≈ l⋗l' l'≈l'')
lemma≈⋘ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≈ h' → h' ⋘ h'' → h ⋘ h''
lemma≈⋘ ≈leaf lf⋘ = lf⋘
lemma≈⋘ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') (ll⋘ .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l''≃r'' r'≃l'') = ll⋘ b≤x b''≤x'' l⋘r l''⋘r'' l''≃r'' (lemma≈≃ r≈r' r'≃l'')
lemma≈⋘ (≈right b≤x b'≤x' l⋙r l'⋙r' l≈l' r≈r') (lr⋘ .b'≤x' b''≤x'' .l'⋙r' l''⋘r'' l''≃r'' l'⋗l'') = lr⋘ b≤x b''≤x'' l⋙r l''⋘r'' l''≃r'' (lemma≈⋗ l≈l' l'⋗l'')
lemma⋘≈ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋘ h' → h' ≈ h'' → h ⋘ h''
lemma⋘≈ lf⋘ ≈leaf = lf⋘
lemma⋘≈ (ll⋘ b≤x b'≤x' l⋘r l'⋘r' l'≃r' r≃l') (≈left .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = ll⋘ b≤x b''≤x'' l⋘r l''⋘r'' (lemma≈≃ (sym≈ l'≈l'') (lemma≃≈ l'≃r' r'≈r'')) (lemma≃≈ r≃l' l'≈l'')
lemma⋘≈ (lr⋘ b≤x b'≤x' l⋙r l'⋘r' l'≃r' l⋗l') (≈left .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = lr⋘ b≤x b''≤x'' l⋙r l''⋘r'' (lemma≈≃ (sym≈ l'≈l'') (lemma≃≈ l'≃r' r'≈r'')) (lemma⋗≈ l⋗l' l'≈l'')
lemma≈⋙ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≈ h' → h' ⋙ h'' → h ⋙ h''
lemma≈⋙ (≈left b≤x b'≤x' lf⋘ lf⋘ ≈leaf ≈leaf) (⋙lf .b'≤x') = ⋙lf b≤x
lemma≈⋙ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') (⋙rl .b'≤x' b'≤x'' .l'⋘r' l'≃r' l''⋘r'' l'⋗r'') = ⋙rl b≤x b'≤x'' l⋘r (lemma≈≃ l≈l' (lemma≃≈ l'≃r' (sym≈ r≈r'))) l''⋘r'' (lemma≈⋗ l≈l' l'⋗r'')
lemma≈⋙ (≈left b≤x b'≤x' l⋘r l'⋘r' l≈l' r≈r') (⋙rr .b'≤x' b''≤x'' .l'⋘r' l'≃r' l''⋙r'' l'≃l'') = ⋙rr b≤x b''≤x'' l⋘r (lemma≈≃ l≈l' (lemma≃≈ l'≃r' (sym≈ r≈r'))) l''⋙r'' (lemma≈≃ l≈l' l'≃l'')
lemma⋙≈ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋙ h' → h' ≈ h'' → h ⋙ h''
lemma⋙≈ (⋙lf b≤x) ≈leaf = ⋙lf b≤x
lemma⋙≈ (⋙rl b≤x b'≤x' l⋘r l≃r l'⋘r' l⋗r') (≈left .b'≤x' b'≤x'' .l'⋘r' l''⋘r'' l'≈l'' r'≈r'') = ⋙rl b≤x b'≤x'' l⋘r l≃r l''⋘r'' (lemma⋗≈ l⋗r' r'≈r'')
lemma⋙≈ (⋙rr b≤x b'≤x' l⋘r l≃r l'⋙r' l≃l') (≈right .b'≤x' b''≤x'' .l'⋙r' l'⋙r'' l'≈l'' r'≈r'') = ⋙rr b≤x b''≤x'' l⋘r l≃r l'⋙r'' (lemma≃≈ l≃l' l'≈l'')
| {
"alphanum_fraction": 0.4173106646,
"avg_line_length": 75.4833333333,
"ext": "agda",
"hexsha": "74d10e5b7f4cda336effda1878f140bb2aafc95a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Equality/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Equality/Properties.agda",
"max_line_length": 207,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Equality/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 3415,
"size": 4529
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Base.Types
import LibraBFT.Yasm.Base as LYB
import LibraBFT.Yasm.Types as LYT
-- This module defines a model of a distributed system, parameterized by
-- SystemParameters, which establishes various application-dependent types,
-- handlers, etc. The model supports a set of peers executing handlers in
-- response to messages received; these handlers can update the peer's
-- local state and/or send additional messages. The model also enables
-- "cheat" steps, which can send arbitrary messages, except that they are
-- constrained to prevent a cheat step from introducing a new signature for
-- an "honest" public key. The module also contains some structures for
-- proving properties of executions of the modeled system.
module LibraBFT.Yasm.System
(ℓ-PeerState : Level)
(ℓ-VSFP : Level)
(parms : LYB.SystemParameters ℓ-PeerState)
where
data InitStatus : Set where
uninitd : InitStatus
initd : InitStatus
open InitStatus
uninitd≢initd : uninitd ≢ initd
uninitd≢initd = λ ()
open import LibraBFT.Yasm.Base
open SystemParameters parms
open import Util.FunctionOverride PeerId _≟PeerId_
open import LibraBFT.Base.PKCS
SenderMsgPair : Set
SenderMsgPair = PeerId × Msg
actionToSMP : PeerId → LYT.Action Msg → Maybe SenderMsgPair
actionToSMP pid (LYT.send m) = just (pid , m)
SentMessages : Set
SentMessages = List SenderMsgPair
-- Convert the actions a peer `pid` took to a list of sent messages.
-- Non-message actions are discarded.
actionsToSentMessages : PeerId → List (LYT.Action Msg) → SentMessages
actionsToSentMessages pid = mapMaybe (actionToSMP pid)
-- If the sender-message pair `(pid₁ , m)` is associated with the messages that
-- were sent as a consequence of the actions `outs` of `pid₂`, then these two
-- PIDs are equal and this peer performed a `send` action for that message.
senderMsgPair∈⇒send∈ : ∀ {pid₁ pid₂ m} → (outs : List (LYT.Action Msg)) →
(pid₁ , m) ∈ (actionsToSentMessages pid₂ outs) →
(LYT.send m ∈ outs) × pid₁ ≡ pid₂
senderMsgPair∈⇒send∈ (LYT.send m ∷ outs) (here refl) = (here refl , refl)
senderMsgPair∈⇒send∈ (LYT.send m ∷ outs) (there pm∈)
with senderMsgPair∈⇒send∈ outs pm∈
...| m∈outs , refl = (there m∈outs) , refl
-- The model supports sending messages that contain some fields that are
-- /not/ covered by the message's signature. Therefore, given a message
-- with a verifiable signature, it is possible for a propositionally
-- different message that verifies against the same signature to have been
-- sent before, which is captured by the following definition.
record MsgWithSig∈ (pk : PK)(sig : Signature)(pool : SentMessages) : Set where
constructor mkMsgWithSig∈
field
msgWhole : Msg
msgPart : Part
msg⊆ : msgPart ⊂Msg msgWhole
msgSender : PeerId
msg∈pool : (msgSender , msgWhole) ∈ pool
msgSigned : WithVerSig pk msgPart
msgSameSig : ver-signature msgSigned ≡ sig
open MsgWithSig∈ public
postulate -- TODO-1: prove it
MsgWithSig∈? : ∀ {pk} {sig} {pool} → Dec (MsgWithSig∈ pk sig pool)
MsgWithSig∈-++ʳ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig pool → MsgWithSig∈ pk sig (ms ++ pool)
MsgWithSig∈-++ʳ {ms = pre} msig = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msg⊆ = msg⊆ msig
; msg∈pool = Any-++ʳ pre (msg∈pool msig)
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
MsgWithSig∈-++ˡ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig ms → MsgWithSig∈ pk sig (ms ++ pool)
MsgWithSig∈-++ˡ {ms = pre} msig = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msg⊆ = msg⊆ msig
; msg∈pool = Any-++ˡ (msg∈pool msig)
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
MsgWithSig∈-transp : ∀{pk sig pool pool'}
→ (mws : MsgWithSig∈ pk sig pool)
→ (msgSender mws , msgWhole mws) ∈ pool'
→ MsgWithSig∈ pk sig pool'
MsgWithSig∈-transp msig ∈pool' = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msg⊆ = msg⊆ msig
; msg∈pool = ∈pool'
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
-- * Forbidding the Forging of Signatures
--
-- Whenever our reasoning must involve digital signatures, it is standard
-- to talk about EUF-CMA resistant signature schemes. Informally, this captures
-- signatures schemes that cannot be compromised by certain adversaries.
-- Formally, it means that for any probabilistic-polynomial-time adversary 𝓐,
-- and some security parameter k:
--
-- Pr[ EUF-CMA(k) ] ≤ ε(k) for ε a negigible function.
--
-- EUF-CMA is defined as:
--
-- EUF-CMA(k): | O(m):
-- L ← ∅ | σ ← Sign(sk , m)
-- (pk, sk) ← Gen(k) | L ← L ∪ { m }
-- (m , σ) ← 𝓐ᴼ(pk) | return σ
-- return (Verify(pk, m, σ) ∧ m ∉ L) |
--
-- This says that 𝓐 cannot create a message that has /not yet been signed/ and
-- forge a signature for it. The list 'L' keeps track of the messages that 𝓐
-- asked to be signed by the oracle.
--
-- Because the probability of the adversary to win the EUF-CMA(k) game
-- approaches 0 as k increases; it is reasonable to assume that winning
-- the game is /impossible/ for realistic security parameters.
--
-- EUF-CMA security is incorporated into our model by constraining messages
-- sent by a cheat step to ensure that for every verifiably signed part of
-- such a message, if there is a signature on the part, then it is either for
-- a dishonest public key (in which cases it's secret key may have been leaked),
-- or a message has been sent with the same signature before (in which case the
-- signature is simply being "replayed" from a previous message).
--
-- Dishonest (or "cheat") messages are those that are not the result of
-- a /handle/ or /init/ call, but rather are the result of a /cheat/ step.
--
-- A part of a cheat message can contain a verifiable signature only if it
-- is for a dishonest public key, or a message with the same signature has
-- been sent before or can be derived from GenesisInfo (a cheater can
-- "reuse" an honest signature sent before; it just can't produce a new
-- one). Note that this constraint precludes a peer sending a message
-- that contains a new verifiable signature for an honest PK, even if the
-- PK is the peer's own PK for some epoch (implying that the peer
-- possesses the associated secret key). In other words, a peer that is
-- honest for a given epoch (by virtue of being a member of that epoch and
-- being assigned an honest PK for the epoch), cannot send a message for
-- that epoch using a cheat step.
CheatPartConstraint : SentMessages → Part → Set
CheatPartConstraint pool m = ∀{pk} → (ver : WithVerSig pk m)
→ ¬ ∈GenInfo (ver-signature ver)
→ Meta-Dishonest-PK pk
⊎ MsgWithSig∈ pk (ver-signature ver) pool
-- The only constraints on messages sent by cheat steps are that:
-- * the sender is not an honest member in the epoch of any part of the message
-- * the signature on any part of the message satisfies CheatCanSign, meaning
-- that it is not a new signature for an honest public key
CheatMsgConstraint : SentMessages → Msg → Set
CheatMsgConstraint pool m = ∀{part} → part ⊂Msg m → CheatPartConstraint pool part
-- * The System State
--
-- A system consists in a partial map from PeerId to PeerState, a pool
-- of sent messages and a number of available epochs.
record SystemState : Set (ℓ+1 ℓ-PeerState) where
field
peerStates : PeerId → PeerState
initialised : PeerId → InitStatus
msgPool : SentMessages -- All messages ever sent
open SystemState public
initialState : SystemState
initialState = record
{ peerStates = const initPS
; initialised = const uninitd
; msgPool = []
}
-- * Small Step Semantics
--
-- The small step semantics are divided into three datatypes:
--
-- i) StepPeerState executes a step through init or handle
-- ii) StepPeer executes a step through StepPeerState or cheat
-- iii) Step transitions the system state by a StepPeer or by
-- bringing a new epoch into existence
-- The pre and post states of Honest peers are related iff
data StepPeerState (pid : PeerId)(pool : SentMessages)
(peerInits : PeerId → InitStatus) (ps : PeerState) :
(PeerState × List (LYT.Action Msg)) → Set where
-- An uninitialized peer can be initialized
step-init : peerInits pid ≡ uninitd
→ StepPeerState pid pool peerInits ps (init pid genInfo)
-- The peer processes a message in the pool
step-msg : ∀{m}
→ m ∈ pool
→ peerInits pid ≡ initd
→ StepPeerState pid pool peerInits ps (handle pid (proj₂ m) ps)
-- The pre-state of the suplied PeerId is related to the post-state and list of output messages iff:
data StepPeer (pre : SystemState) : PeerId → PeerState → List (LYT.Action Msg) → Set ℓ-PeerState where
-- it can be obtained by a handle or init call.
step-honest : ∀{pid st outs}
→ StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (st , outs)
→ StepPeer pre pid st outs
-- or the peer decides to cheat. CheatMsgConstraint ensures it cannot
-- forge signatures by honest peers. Cheat steps do not modify peer
-- state: these are maintained exclusively by the implementation
-- handlers.
step-cheat : ∀{pid m}
→ CheatMsgConstraint (msgPool pre) m
→ StepPeer pre pid (peerStates pre pid) (LYT.send m ∷ [])
isCheat : ∀ {pre pid ms outs} → StepPeer pre pid ms outs → Set
isCheat (step-honest _) = ⊥
isCheat (step-cheat _) = Unit
initStatus : ∀ {pid pre ms outs}
→ StepPeer pre pid ms outs
→ InitStatus
→ InitStatus
initStatus {pid} (step-honest _) preinit = initd
initStatus {pid} (step-cheat _) preinit = preinit
-- Computes the post-sysstate for a given step-peer.
StepPeer-post : ∀{pid st' outs}{pre : SystemState }
→ StepPeer pre pid st' outs → SystemState
StepPeer-post {pid} {st'} {outs} {pre} sp = record pre
{ peerStates = ⟦ peerStates pre , pid ← st' ⟧
; initialised = ⟦ initialised pre , pid ← initStatus sp (initialised pre pid) ⟧
; msgPool = actionsToSentMessages pid outs ++ msgPool pre
}
StepPeer-post-lemma : ∀{pid st' outs}{pre : SystemState}
→ (pstep : StepPeer pre pid st' outs)
→ st' ≡ peerStates (StepPeer-post pstep) pid
StepPeer-post-lemma pstep = sym override-target-≡
StepPeer-post-lemma2 : ∀{pid}{pre : SystemState}{st outs}
→ (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (st , outs))
→ initialised (StepPeer-post {pid} {st} {outs} {pre} (step-honest sps)) pid ≡ initd
StepPeer-post-lemma2 {pre = pre} _ = override-target-≡
cheatStepDNMPeerStates : ∀{pid st' outs}{pre : SystemState}
→ (theStep : StepPeer pre pid st' outs)
→ isCheat theStep
→ peerStates (StepPeer-post theStep) ≡ peerStates pre
cheatStepDNMPeerStates {pid = pid} {pre = pre} (step-cheat _) _ = overrideSameVal-correct-ext {f = peerStates pre} {pid}
cheatStepDNMInitialised : ∀{pid st' outs}{pre : SystemState}
→ (theStep : StepPeer pre pid st' outs)
→ isCheat theStep
→ initialised (StepPeer-post theStep) ≡ initialised pre
cheatStepDNMInitialised {pid = pid} {pre = pre} (step-cheat _) _ = overrideSameVal-correct-ext
cheatStepDNMInitialised₁ : ∀{pid pid' st' outs}{pre : SystemState}
→ (theStep : StepPeer pre pid st' outs)
→ isCheat theStep
→ initialised (StepPeer-post theStep) pid' ≡ initialised pre pid'
cheatStepDNMInitialised₁ {pid} {pid'} {pre = pre} (step-cheat _) _ = overrideSameVal-correct pid pid'
cheatStepDNMPeerStates₁ : ∀{pid pid' st' outs}{pre : SystemState}
→ (theStep : StepPeer pre pid st' outs)
→ isCheat theStep
→ peerStates (StepPeer-post theStep) pid' ≡ peerStates pre pid'
cheatStepDNMPeerStates₁ {pid} {pid'} (step-cheat _) x = overrideSameVal-correct pid pid'
pids≢StepDNMPeerStates : ∀{pid pid' s' outs}{pre : SystemState}
→ (sps : StepPeerState pid' (msgPool pre) (initialised pre) (peerStates pre pid') (s' , outs))
→ pid ≢ pid'
→ peerStates pre pid ≡ peerStates (StepPeer-post {pid'} {s'} {outs} {pre} (step-honest sps)) pid
pids≢StepDNMPeerStates sps pids≢ = override-target-≢ pids≢
data Step : SystemState → SystemState → Set (ℓ+1 ℓ-PeerState) where
-- TO-NOT-DO: it is tempting to merge this and StepPeer, now that step-peer
-- is the only constructor here. I started to do so, but it propagates many
-- changes throughout the repo, and it's possible we will in future add steps
-- not performed by a specific peer (for example, if we model some notion of
-- time to prove liveness properties).
step-peer : ∀{pid st' outs}{pre : SystemState}
→ (pstep : StepPeer pre pid st' outs)
→ Step pre (StepPeer-post pstep)
msgs-stable : ∀ {pre : SystemState} {post : SystemState} {m}
→ (theStep : Step pre post)
→ m ∈ msgPool pre
→ m ∈ msgPool post
msgs-stable (step-peer {pid = pid} {outs = outs} _) m∈ = Any-++ʳ (actionsToSentMessages pid outs) m∈
peersRemainInitialized : ∀ {pid} {pre : SystemState} {post : SystemState}
→ Step pre post
→ initialised pre pid ≡ initd
→ initialised post pid ≡ initd
peersRemainInitialized {pid} (step-peer {pid'} step) isInitd
with pid' ≟PeerId pid
...| no neq = isInitd
...| yes refl
with step
... | step-honest {pidS} {st} {outs} stp = refl
... | step-cheat _ = isInitd
-- not used yet, but some proofs could probably be cleaned up using this,
-- e.g., prevVoteRnd≤-pred-step in Impl.VotesOnce
sendMessages-target : ∀ {m : SenderMsgPair} {sm : SentMessages} {ml : List SenderMsgPair}
→ ¬ (m ∈ sm)
→ m ∈ (ml ++ sm)
→ m ∈ ml
sendMessages-target {ml = ml} ¬m∈sm m∈++
with Any-++⁻ ml m∈++
...| inj₁ m∈ml = m∈ml
...| inj₂ m∈sm = ⊥-elim (¬m∈sm m∈sm)
-- * Reflexive-Transitive Closure
data Step* : SystemState → SystemState → Set (ℓ+1 ℓ-PeerState) where
step-0 : ∀{pre : SystemState}
→ Step* pre pre
step-s : ∀{fst : SystemState}{pre : SystemState}{post : SystemState}
→ Step* fst pre
→ Step pre post
→ Step* fst post
ReachableSystemState : SystemState → Set (ℓ+1 ℓ-PeerState)
ReachableSystemState = Step* initialState
peerStatePostSt : ∀ {pid s' s outs} {st : SystemState}
→ (r : ReachableSystemState st)
→ (stP : StepPeerState pid (msgPool st) (initialised st)
(peerStates st pid) (s' , outs))
→ peerStates (StepPeer-post {pre = st} (step-honest stP)) pid ≡ s
→ s ≡ s'
peerStatePostSt _ _ ps≡s = trans (sym ps≡s) override-target-≡
Step*-trans : ∀ {st st' st''}
→ Step* st st'
→ Step* st' st''
→ Step* st st''
Step*-trans r step-0 = r
Step*-trans r (step-s tr x) = step-s (Step*-trans r tr) x
Step*-initdStable : ∀{st st' pid}
→ Step* st st'
→ initialised st pid ≡ initd
→ initialised st' pid ≡ initd
Step*-initdStable step-0 ini = ini
Step*-initdStable {st} {pid = pid} (step-s {pre = pre} tr theStep) ini =
peersRemainInitialized theStep (Step*-initdStable tr ini)
MsgWithSig∈-Step* : ∀{sig pk}{st : SystemState}{st' : SystemState}
→ Step* st st'
→ MsgWithSig∈ pk sig (msgPool st)
→ MsgWithSig∈ pk sig (msgPool st')
MsgWithSig∈-Step* step-0 msig = msig
MsgWithSig∈-Step* (step-s tr (step-peer ps)) msig
= MsgWithSig∈-++ʳ (MsgWithSig∈-Step* tr msig)
MsgWithSig∈-Step*-part : ∀{sig pk}{st : SystemState}{st' : SystemState}
→ (tr : Step* st st')
→ (msig : MsgWithSig∈ pk sig (msgPool st))
→ msgPart msig ≡ msgPart (MsgWithSig∈-Step* tr msig)
MsgWithSig∈-Step*-part step-0 msig = refl
MsgWithSig∈-Step*-part (step-s tr (step-peer ps)) msig
= MsgWithSig∈-Step*-part tr msig
MsgWithSig∈-Step*-sender : ∀{sig pk}{st : SystemState}{st' : SystemState}
→ (tr : Step* st st')
→ (msig : MsgWithSig∈ pk sig (msgPool st))
→ msgSender msig ≡ msgSender (MsgWithSig∈-Step* tr msig)
MsgWithSig∈-Step*-sender step-0 msig = refl
MsgWithSig∈-Step*-sender (step-s tr (step-peer ps)) msig
= MsgWithSig∈-Step*-sender tr msig
------------------------------------------
-- Type synonym to express a relation over system states;
SystemStateRel : ∀ {ℓ} → (SystemState → SystemState → Set (ℓ+1 ℓ-PeerState)) → Set (ℓ+1 (ℓ ℓ⊔ ℓ-PeerState))
SystemStateRel {ℓ} P = ∀{st : SystemState}{st' : SystemState} → P st st' → Set (ℓ ℓ⊔ ℓ-PeerState)
-- Just like Data.List.Any maps a predicate over elements to a predicate over lists,
-- Any-step maps a relation over steps to a relation over steps in a trace.
data Any-Step {ℓ : Level} (P : SystemStateRel {ℓ} Step) : SystemStateRel {ℓ} Step* where
step-here : ∀{fst : SystemState}{pre : SystemState}{post : SystemState}
→ (cont : Step* fst pre)
→ {this : Step pre post}(prf : P this)
→ Any-Step P (step-s cont this)
step-there : ∀{fst : SystemState}{pre : SystemState}{post : SystemState}
→ {cont : Step* fst pre}
→ {this : Step pre post}
→ (prf : Any-Step {ℓ} P cont)
→ Any-Step P (step-s cont this)
Any-Step-map : ∀ {ℓ}{P P' : SystemStateRel {ℓ} Step}
→ (∀ {pre : SystemState}{post : SystemState} → (x : Step pre post) → P x → P' x)
→ ∀ {fst lst} {tr : Step* fst lst}
→ Any-Step {ℓ} P tr
→ Any-Step {ℓ} P' tr
Any-Step-map p⇒p' (step-here cont {this} prf) = step-here cont (p⇒p' this prf)
Any-Step-map p⇒p' (step-there anyStep) = step-there (Any-Step-map p⇒p' anyStep)
Any-Step-elim
: ∀{ℓ}{ℓ-Q}{st₀ : SystemState}{st₁ : SystemState}{P : SystemStateRel {ℓ} Step}{Q : Set ℓ-Q}
→ {r : Step* st₀ st₁}
→ (P⇒Q : ∀{s : SystemState}{s' : SystemState}{st : Step s s'}
→ P st → Step* s' st₁ → Q)
→ Any-Step {ℓ} P r → Q
Any-Step-elim P⇒Q (step-here cont prf)
= P⇒Q prf step-0
Any-Step-elim P⇒Q (step-there {this = this} f)
= Any-Step-elim (λ p s → P⇒Q p (step-s s this)) f
-- A predicate over peer states, parts and peerIds, representing which peers can send new
-- signatures for which PKs. The PeerState is needed to provide access to information the peer has
-- about who uses what keys for what parts (in our case, EpochConfigs either derived from genesis
-- information or agreed during epoch changes).
ValidSenderForPK-type : Set (ℓ+1 ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState)
ValidSenderForPK-type = SystemState → Part → PeerId → PK → Set ℓ-VSFP
ValidSenderForPK-stable-type : ValidSenderForPK-type → Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState)
ValidSenderForPK-stable-type vs4pk = ∀ {pre post part pid pk}
→ ReachableSystemState pre
→ Step pre post
→ vs4pk pre part pid pk
→ vs4pk post part pid pk
------------------------------------------
module _ (P : SystemState → Set) where
Step*-Step-fold : (∀{pid st' outs}{st : SystemState}
→ ReachableSystemState st
→ (pstep : StepPeer st pid st' outs)
→ P st
→ P (StepPeer-post pstep))
→ P initialState
→ ∀{st : SystemState}
→ (tr : ReachableSystemState st) → P st
Step*-Step-fold fs p₀ step-0 = p₀
Step*-Step-fold fs p₀ (step-s tr (step-peer p)) = fs tr p (Step*-Step-fold fs p₀ tr)
| {
"alphanum_fraction": 0.6163067263,
"avg_line_length": 45.2086021505,
"ext": "agda",
"hexsha": "79e1856565f222e40a0d6b2836ecf97784a31c89",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Yasm/System.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Yasm/System.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Yasm/System.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6009,
"size": 21022
} |
{-# OPTIONS --rewriting #-}
open import Array
open import Array.APL using (reduce-1d)
open import Data.Nat as N
open import Data.Nat.Properties
open import Data.Vec as V hiding (_>>=_; _++_)
open import Data.Fin using (Fin; zero; suc; raise; inject+; #_)
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Function
open import Relation.Nullary
open import Relation.Nullary.Decidable
sum-1d : ∀ {n} → Ar ℕ 1 (n ∷ []) → ℕ
sum-1d v = reduce-1d v _+_ 0
zipw : ∀ {a}{X : Set a}{d s} → (X → X → X) → Ar X d s → Ar X d s → Ar X d s
zipw _⊕_ (imap a) (imap b) = imap λ iv → a iv ⊕ b iv
hd : ∀ {n s : ℕ}{ss : Vec ℕ n} → Ix (suc n) (s ∷ ss) → Fin s
hd ix = ix-lookup ix zero
vec-mat-mul : ∀ {n m} → Ar ℕ 2 (m ∷ n ∷ []) → Ar ℕ 1 (n ∷ []) → Ar ℕ 1 (m ∷ [])
vec-mat-mul (imap a) b = imap λ iv → sum-1d (zipw _*_ (imap λ jv → a (iv ix++ jv)) b)
twice : ∀ {n} → (M : Ar ℕ 2 (n ∷ n ∷ [])) → (V : Ar ℕ 1 (n ∷ [])) → Ar ℕ 1 (n ∷ [])
twice m v = vec-mat-mul m (vec-mat-mul m v)
sum-2d : ∀ {m n} → Ar ℕ 2 (m ∷ n ∷ []) → ℕ
sum-2d (imap a) = sum-1d (imap λ i → sum-1d (imap λ j → a $ i ix++ j))
_+'_ : ∀ {m n} → Fin (1 + m) → Fin (1 + n) → Fin (1 + m + n)
_+'_ {m} {n} zero j = subst Fin (+-suc m n) (raise m j)
_+'_ {suc m} {n} (suc i) j = suc (i +' j)
_+''_ : ∀ {m n} → Fin m → Fin n → Fin (m + n ∸ 1)
_+''_ {suc m} {suc n} zero j = raise m j
_+''_ {suc (suc m)} {suc n} (suc i) j = suc (i +'' j)
_ix+2_ : ∀ {m n k p} → Ix 2 (m ∷ n ∷ []) → Ix 2 (k ∷ p ∷ []) → Ix 2 (m + k ∸ 1 ∷ n + p ∸ 1 ∷ [])
(x₁ ∷ x₂ ∷ []) ix+2 (y₁ ∷ y₂ ∷ []) = x₁ +'' y₁ ∷ (x₂ +'' y₂) ∷ []
conv-2 : ∀ {m n k p} → Ar ℕ 2 (m + k ∷ n + p ∷ []) → Ar ℕ 2 (k ∷ p ∷ []) → Ar ℕ 2 (1 + m ∷ 1 + n ∷ [])
conv-2 {k = k} {p} (imap a) (imap w) = imap (λ iv → sum-2d {m = k} {n = p} (imap λ ov → w ov * a (iv ix+2 ov)))
iterate-1 : ∀ {a}{X : Set a}{n} → (Fin n → X) → (X → X → X) → X → X
iterate-1 {n = zero} f _⊕_ neut = neut
iterate-1 {n = suc n} f _⊕_ neut = f zero ⊕ iterate-1 (f ∘ suc) _⊕_ neut
red-iter : ∀ {a}{X : Set a}{n} → (f : Ix 1 (n ∷ []) → X) → (op : X → X → X) → (neut : X)
→ reduce-1d (imap f) op neut ≡ iterate-1 (λ i → f (i ∷ [])) op neut
red-iter {n = zero} f op neut = refl
red-iter {n = suc n} f op neut = cong (λ x → op _ x) (red-iter (λ iv → f (suc (hd iv) ∷ [])) op neut)
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE red-iter #-}
thm : ∀ {n} → (m : Ar ℕ 2 (n ∷ n ∷ []))
→ (v : Ar _ _ (n ∷ []))
→ ∀ iv → unimap (twice m v) iv ≡ {!!}
thm (imap m) (imap v) (i ∷ []) = {!!}
{-
-- Reflection business
open import Reflection
open import Data.List hiding (_++_)
open import Data.Bool
open import Data.Maybe hiding (_>>=_)
open import Data.Unit
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (constructor′ d) as = con d as
defToTerm _ _ _ = unknown
derefImmediate : Term → TC Term
derefImmediate (def f args) = getDefinition f >>= λ f' → return (defToTerm f f' args)
derefImmediate x = return x
--reflectTerm : TC Term
--reflectTerm = (getType (quote f)) >>= λ ty → quoteTC f >>= derefImmediate >>= λ x → checkType x ty
macro
reflect : Term → Term → TC ⊤
reflect f a = derefImmediate f -- (quoteTerm f)
>>= quoteTC >>= unify a
reflect-ty : Name → Type → TC ⊤
reflect-ty f a = getType f >>= quoteTC >>= unify a
r : Term
r = reflect twice
open import Data.String
open import Data.Nat.Show as Ns
open import Data.List as L using (List)
data Prog : Set where
ok : String → Prog
error : String → Prog
record State : Set where
inductive
constructor st
field
vars : List String
defs : List $ String × String
cons : List (String × ((List $ Arg Term) → Prog))
var-lkup : State → ℕ → Prog
var-lkup s n = hlpr (State.vars s) n
where hlpr : _ → _ → _
hlpr [] n = error $ "Variable not found"
hlpr (x ∷ l) zero = ok x
hlpr (x ∷ l) (suc n) = hlpr l n
def-lkup : State → String → Prog
def-lkup ss s = hlpr (State.defs ss) s
where hlpr : _ → _ → _
hlpr [] s = error $ "Definition `" ++ s ++ "' not found"
hlpr ((k , v) ∷ dfs) s with k ≈? s
... | yes p = ok v
... | no ¬p = hlpr dfs s
cons-cont : State → String → List (Arg Term) → Prog
cons-cont ss s args = {!!} {-hlpr (State.cons ss) s args
where hlpr : _ → _ → _ → _
hlpr [] s _ = error $ "Constructor `" ++ s ++ "' not found"
hlpr ((k , f) ∷ cs) s args with k ≈? s
... | yes p = f args
... | no ¬p = hlpr cs s args
-}
infixl 5 _#_
_#_ : Prog → Prog → Prog
ok x # ok y = ok $ x ++ y
error x # _ = error x
_ # error y = error y
l→s : List String → String
l→s [] = ""
l→s (x ∷ l) = x ++ " " ++ l→s l
comp-arglist-mask : State → List (Arg Term) → List Bool → Prog
comp-arglist : State → List (Arg Term) → Prog
comp-clauses : State → List Clause → Prog
_at_ : ∀ {a}{X : Set a} → List X → ℕ → Maybe X
[] at idx = nothing
(x ∷ a) at zero = just x
(x ∷ a) at suc idx = a at idx
unmaybe : ∀ {a}{X : Set a} → List (Maybe X) → Maybe (List X)
unmaybe [] = just []
unmaybe (nothing ∷ xs) = nothing
unmaybe (just x ∷ xs) with unmaybe xs
unmaybe (just x ∷ xs) | nothing = nothing
unmaybe (just x ∷ xs) | just xs' = just $ x ∷ xs'
filter-idx : ∀ {a}{X : Set a} → List X → List ℕ → Maybe (List X)
filter-idx xs idxs = unmaybe $ L.map (xs at_) idxs
_!!_ : ∀ {a}{X : Set a} → (xs : List X) → Fin (L.length xs) → X
[] !! ()
(x ∷ xs) !! zero = x
(x ∷ xs) !! suc i = xs !! i
mk-mask : (n : ℕ) → List (Fin n) → List Bool
mk-mask n xs = V.toList $ go (V.replicate {n = n} false) xs
where go : _ → _ → _
go e [] = e
go e (x ∷ xs) = go (updateAt x (λ _ → true) e) xs
compile : State → Term → Prog
compile s (var x args) = ok "V(" # var-lkup s x # ok " " # comp-arglist s args # ok ")"
compile s (con c args) with (showName c)
compile s (con c args) | "Data.Vec.Base.Vec.[]" = ok "nil"
compile s (con c args) | "Array.Base.Ix.[]" = ok "nil"
compile s (con c args) | "Data.Vec.Base.Vec._∷_" =
ok "(cons " # comp-arglist-mask s args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) # ok ")"
compile s (con c args) | "Array.Base.Ix._∷_" =
ok "(cons " # comp-arglist-mask s args (mk-mask 5 $ # 3 ∷ # 4 ∷ []) # ok ")"
compile s (con c args) | _ = ok ("C(" ++ showName c ++ " ") # comp-arglist s args # ok ")"
compile s (def f args) with def-lkup s $ showName f
... | error _ = ok "D(" # ok (showName f) # ok " " # comp-arglist s args
... | d = ok "D(" # d # ok " "
# comp-arglist s args # ok ")"
compile s (lam v (abs w x)) = ok ("(\\ " ++ w ++ " -> ") # compile (record s {vars = (w ∷ State.vars s)}) x # ok ")"
compile s (pat-lam cs []) = ok "PAT-LAM (cl = " # comp-clauses s cs # ok ")" --(args = " # comp-arglist s args # ok ")"
compile s (pat-lam cs _) = error "PAT-LAM: I don't know what args to pat-lam are"
compile s (pi a b) = ok "PI TYPE"
compile s (sort _) = ok "SORT"
compile s (lit x) = ok $ showLiteral x
compile s (meta x x₁) = ok "META"
compile s unknown = ok "_" -- "UNKNOWN"
comp-arglist s [] = ok ""
comp-arglist s (arg i x ∷ l) = compile s x # ok " " # comp-arglist s l
comp-arglist-mask s [] [] = ok ""
comp-arglist-mask s [] (x ∷ mask) = error "Incorrect argument mask"
comp-arglist-mask s (x ∷ args) [] = error "Incorrect argument mask"
comp-arglist-mask s (x ∷ args) (false ∷ mask) = comp-arglist-mask s args mask
comp-arglist-mask s (arg i x ∷ args) (true ∷ mask) = compile s x # ok " " # comp-arglist-mask s args mask
comp-pats : List (Arg Pattern) → List String
comp-pats [] = []
comp-pats (vArg (var x) ∷ l) = x ∷ comp-pats l
comp-pats (vArg _ ∷ l) = "_" ∷ comp-pats l
comp-pats (_ ∷ l) = "_" ∷ comp-pats l
comp-clauses s [] = ok ""
comp-clauses s (clause ps t ∷ cs) = let
vars = comp-pats ps
in ok ("pats = " ++ l→s vars) # compile (record s {vars = (L.reverse vars L.++ State.vars s)}) t
comp-clauses s (absurd-clause ps ∷ cs) = error "absurd clause found"
test : ∀ {n} (m : Ix 2 (n ∷ n ∷ []) → ℕ) (v : Ix 1 (n ∷ []) → ℕ)
(i : Fin n) → ℕ
test m v i = iterate-1
(λ i₁ →
m (i ∷ i₁ ∷ []) *
iterate-1 (λ i₂ → m (i₁ ∷ i₂ ∷ []) * v (i₂ ∷ [])) _+_ 0)
_+_ 0
bltin-defs : List $ String × String
bltin-defs = ("Agda.Builtin.Nat.Nat" , "nat")
∷ ("Agda.Builtin.Nat._+_" , "plus")
∷ ("Agda.Builtin.Nat._*_" , "mult")
∷ ("Agda.Primitive.lzero" , "tt")
∷ ("BLAS.iterate-1" , "for-loop-acc")
∷ []
bltin-cons : List (String × (List (Arg Term) → Prog))
bltin-cons = ("Data.Vec.Base.Vec.[]" , λ _ → ok "nil")
∷ ("Array.Base.Ix.[]" , λ _ → ok "nil")
∷ ("Array.Base.Ix._∷_" , λ args → {!!})
∷ []
ct = compile (st [] bltin-defs []) (reflect test)
foo : ∀ {n : ℕ} (a b : ℕ) → ℕ
foo x = _+ x
cr = compile (st [] bltin-defs []) (reflect foo)
cconv = compile (st [] bltin-defs []) (reflect conv-2)
-}
--t : Term
--t = reflect-ty (thm)
-- PAT-LAM (cl = pats = _ m v i D(BLAS.iterate-1 D(Agda.Primitive.lzero ) D(Agda.Builtin.Nat.Nat ) V(i )
-- (\\ i₁ -> D(Agda.Builtin.Nat._*_
-- V(v C(Array.Base.Ix._∷_ 1 C(Data.Vec.Base.Vec._∷_ UNKNOWN UNKNOWN 0 V(i ) C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) )
-- V(i )
-- V(_ )
-- C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) V(i ) V(i₁ ) C(Array.Base.Ix.[] ) ) ) )
-- D(BLAS.iterate-1 D(Agda.Primitive.lzero ) D(Agda.Builtin.Nat.Nat ) V(i )
-- (\\ i₂ -> D(Agda.Builtin.Nat._*_
-- V(v C(Array.Base.Ix._∷_ 1 C(Data.Vec.Base.Vec._∷_ UNKNOWN UNKNOWN 0 V(i ) C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) )
-- V(i )
-- V(i₁ )
-- C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN )
-- V(i ) V(i₂ ) C(Array.Base.Ix.[] ) ) ) )
-- V(m C(Array.Base.Ix._∷_ 0 C(Data.Vec.Base.Vec.[] UNKNOWN UNKNOWN ) V(i ) V(i₂ ) C(Array.Base.Ix.[] ) ) ) ))
-- D(Agda.Builtin.Nat._+_ ) 0 ) ))
-- D(Agda.Builtin.Nat._+_ ) 0 )) (args = )
--compld _ m v i = D(for-loop-acc D(tt ) D(nat ) V(_ )
-- (\\ i₁ -> D(mult V(m (cons V(i ) (cons V(i₁ ) nil ) ) )
-- D(for-loop-acc D(tt ) D(nat ) V(_ )
-- (\\ i₂ -> D(mult V(m (cons V(i₁ ) (cons V(i₂ ) nil ) ) )
-- V(v (cons V(i₂ ) nil ) ) ))
-- D(plus ) 0 ) ))
-- D(plus ) 0 )
-- A * v = { i → Σ Aᵢ×v }
-- A * A * v = { i → Σ Aᵢ×v }
| {
"alphanum_fraction": 0.4885688569,
"avg_line_length": 35.608974359,
"ext": "agda",
"hexsha": "3963edfcfe73bf98c6e1f0906f68473485cbe9c5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "BLAS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "BLAS.agda",
"max_line_length": 155,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "BLAS.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 4015,
"size": 11110
} |
-- Compiled things must be a postulate
module CompiledMustBePostulate where
postulate
A : Set
foo : Set
foo = A
{-# COMPILED foo bar #-}
| {
"alphanum_fraction": 0.7062937063,
"avg_line_length": 11.9166666667,
"ext": "agda",
"hexsha": "0395961e6f765e0df4216a8eab2593bc096ebfc4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/CompiledMustBePostulate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/CompiledMustBePostulate.agda",
"max_line_length": 38,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/CompiledMustBePostulate.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 40,
"size": 143
} |
{-# OPTIONS --cubical --cumulativity #-}
module equalities where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Equality
module _ {a ℓ} {A : Set a} where
≣-Type = A → A → Set ℓ
record IsEquality (_≣_ : ≣-Type) : Set (ℓ-suc (ℓ-max a ℓ)) where
constructor eq
field
≣-≡-≡ : ∀ {x y} → let
ℓ₁ = ℓ-max a ℓ
x≡y : Type ℓ₁
x≡y = x ≡ y
x≣y : Type ℓ₁
x≣y = x ≣ y
in _≡_ {ℓ-suc ℓ₁} x≣y x≡y
record Equality : Set (ℓ-suc (ℓ-max a ℓ)) where
field
_≣_ : ≣-Type
isEquality : IsEquality _≣_
module _ {a} {A : Set a} where
instance
≡-IsEquality : IsEquality {A = A} _≡_
≡-IsEquality = eq refl
instance
≡p-IsEquality : IsEquality {A = A} _≡p_
≡p-IsEquality = eq (λ {x y} → sym λ i → p-c {x = x} {y = y} i)
module _ {ℓ} where
univalencePath' : {A B : Type ℓ} → (A ≡ B) ≡ (A ≃ B)
univalencePath' {A} {B} =
ua {ℓ-suc ℓ} {A ≡ B} {A ≃ B} (compEquiv (univalence {ℓ} {A} {B})
(isoToEquiv (iso {ℓ} {ℓ-suc ℓ} (λ x → x) (λ x → x) (λ b i → b) λ a i → a)))
instance
≃-IsEquality : IsEquality {A = Type ℓ} (λ A B → (A ≃ B))
≃-IsEquality = eq λ {A B} → sym λ i → univalencePath' {A = A} {B = B} i
| {
"alphanum_fraction": 0.5576208178,
"avg_line_length": 25.8653846154,
"ext": "agda",
"hexsha": "cdb20a7cedd2922d7ced6b5e2a9082e39d65ccb0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/Equality",
"max_forks_repo_path": "equalities.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/Equality",
"max_issues_repo_path": "equalities.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/Equality",
"max_stars_repo_path": "equalities.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-01T06:04:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-01T06:04:21.000Z",
"num_tokens": 572,
"size": 1345
} |
import Issue4267.M using ()
-- foo : {!Issue4267.M.R!} -- cannot give, but this is the solution
foo = record { f = Set}
| {
"alphanum_fraction": 0.6446280992,
"avg_line_length": 24.2,
"ext": "agda",
"hexsha": "9437f14b00f67b4120f9e9bc2b6027d7fe4db47f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4267a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4267a.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4267a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 36,
"size": 121
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.Int where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Int renaming (ℤ to ℤType ; _+_ to _+ℤ_ ; _-_ to _-ℤ_; -_ to -ℤ_ ; _·_ to _·ℤ_)
open import Cubical.Algebra.Group.Base
open GroupStr
ℤ : Group₀
fst ℤ = ℤType
1g (snd ℤ) = 0
_·_ (snd ℤ) = _+ℤ_
inv (snd ℤ) = _-ℤ_ 0
isGroup (snd ℤ) = isGroupℤ
where
abstract
isGroupℤ : IsGroup (pos 0) _+ℤ_ (_-ℤ_ (pos 0))
isGroupℤ = makeIsGroup isSetℤ +Assoc (λ _ → refl) (+Comm 0)
(λ x → +Comm x (pos 0 -ℤ x) ∙ minusPlus x 0)
(λ x → minusPlus x 0)
| {
"alphanum_fraction": 0.6009463722,
"avg_line_length": 28.8181818182,
"ext": "agda",
"hexsha": "03db1b2f073187f5d725615ee2c629ba930b67f0",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_line_length": 103,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 251,
"size": 634
} |
{- revised nomenclature -}
module Oscar.Data4 where
record ⊤ : Set where
constructor tt
Const_ : ∀ {a} {A : Set a} {b} {B : Set b} → B → A → B
Const_ x _ = x
infixr 20 _∷_
-- List
data ⟦_⟧ {a} (A : Set a) : Set a where
∅ : ⟦ A ⟧
_∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
-- Nat
⟦⟧ = ⟦ ⊤ ⟧
infix 21 ¡_
pattern ¡_ ⟦A⟧ = tt ∷ ⟦A⟧
--¡ : ⟦⟧ → ⟦⟧
--¡ ⟦A⟧ = tt ∷ ⟦A⟧
-- Fin (with a payload)
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ¡ n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ¡ n ]
⟦⟧[_] = ⟦ Const ⊤ ⟧[_]
-- Vec (with an (optional) index)
data ⟦_⟧[_₀] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ ∅ ₀]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ₀] → ⟦ A ⟧[ ¡ n ₀]
⟦⟧[_₀] = ⟦ Const ⊤ ⟧[_₀]
-- m ≤ n, counting down from n-1 to m
data ⟦_⟧[_≤_↓] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ≤ m ↓]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ m ≤ n ↓] → ⟦ A ⟧[ m ≤ ¡ n ↓]
⟦⟧[_≤_↓] = ⟦ Const ⊤ ⟧[_≤_↓]
-- m ≤ n, counting up from m to n-1
data ⟦_⟧[↑_≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[↑ m ≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧[↑ ¡ m ≤ n ] → ⟦ A ⟧[↑ m ≤ n ]
⟦⟧[↑_≤_] = ⟦ Const ⊤ ⟧[↑_≤_]
-- Inj (almost)
data ⟦_⟧[↓_≤_↓] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[↓ ∅ ≤ n ↓]
_∷_ : ∀ {m n} → A m n → ⟦ A ⟧[↓ m ≤ n ↓] → ⟦ A ⟧[↓ ¡ m ≤ ¡ n ↓]
⟦⟧[↓_≤_↓] = ⟦ Const Const ⊤ ⟧[↓_≤_↓]
infix 21 ‼_
pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for any later-defined constructors
testNat : ⟦⟧
testNat = ¡ ∅
testListNat : ⟦ ⟦⟧ ⟧
testListNat = ¡ ∅ ∷ ‼ ∅ ∷ ‼ ‼ ∅ ∷ ∅ ∷ ¡ ¡ ¡ ∅ ∷ ∅
testFin : ⟦⟧[ ¡ ¡ ∅ ]
testFin = ‼ ∅
test≤↓ : ⟦⟧[ ‼ ‼ ‼ ∅ ≤ ‼ ‼ ‼ ‼ ‼ ∅ ↓]
test≤↓ = ‼ ‼ ∅
⓪ ⑴ ⑵ : ⟦⟧
⓪ = ∅
⑴ = ‼ ∅
⑵ = ‼ ⑴
| {
"alphanum_fraction": 0.384351799,
"avg_line_length": 22.164556962,
"ext": "agda",
"hexsha": "0514a30e9876ac39af1f03d46ddb5a601a2c9293",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data4.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data4.agda",
"max_line_length": 158,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data4.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1050,
"size": 1751
} |
{-# OPTIONS --show-irrelevant --subtyping #-}
module Issue2170-unify-subtyping where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record Squash (A : Set) : Set where
constructor squash
field .unsquash : A
open Squash
record UnSquash (A : Set) (s : A → Squash A) : Set where
constructor inverse
field
inv : Squash A → A
prf : {a : A} → inv (s a) ≡ a
test : {A : Set} → Squash (UnSquash A squash)
test = squash (inverse (λ p@(squash x) → _) refl)
-- `refl` is checked at type `_15 A (squash a) ≡ a`
-- Before, Agda solved this as `_15 := λ A p → unsquash a`, which
-- makes use of the irrelevant projection `unsquash`.
-- However, this is not allowed unless `--irrelevant-projections`
-- is enabled.
| {
"alphanum_fraction": 0.6398362892,
"avg_line_length": 27.1481481481,
"ext": "agda",
"hexsha": "c9cd020cc17e2f2d69b47e264a3f68b4012bf235",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue2170-unify-subtyping.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2170-unify-subtyping.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2170-unify-subtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-14T11:08:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-14T11:08:59.000Z",
"num_tokens": 246,
"size": 733
} |
------------------------------------------------------------------------
-- Normal and neutral terms
------------------------------------------------------------------------
open import Level using (zero)
open import Data.Universe
module README.DependentlyTyped.NormalForm
(Uni₀ : Universe zero zero) where
open import Data.Product as Prod renaming (curry to c; uncurry to uc)
open import Function hiding (_∋_) renaming (const to k; _∘_ to _⊚_)
import README.DependentlyTyped.Term as Term; open Term Uni₀
import Relation.Binary.PropositionalEquality as P
-- Atomic types (types for which the normaliser does not do
-- η-expansion).
data _⊢_atomic-type (Γ : Ctxt) : Type Γ → Set where
⋆ : ∀ {σ} → Γ ⊢ ⋆ , σ atomic-type
el : ∀ {σ} → Γ ⊢ el , σ atomic-type
-- Two kinds: normal and neutral.
data Kind : Set where
no ne : Kind
mutual
-- Γ ⊢ σ ⟨ no ⟩ represents η-long, β-normal terms, Γ ⊢ σ ⟨ ne ⟩
-- represents neutral terms.
infixl 9 _·_
infix 3 _⊢_⟨_⟩
data _⊢_⟨_⟩ (Γ : Ctxt) : Type Γ → Kind → Set where
ne : ∀ {σ} (σ′ : Γ ⊢ σ atomic-type) (t : Γ ⊢ σ ⟨ ne ⟩) →
Γ ⊢ σ ⟨ no ⟩
var : ∀ {σ} (x : Γ ∋ σ) → Γ ⊢ σ ⟨ ne ⟩
ƛ : ∀ {σ τ} (t : Γ ▻ σ ⊢ τ ⟨ no ⟩) → Γ ⊢ Type-π σ τ ⟨ no ⟩
_·_ : ∀ {sp₁ sp₂ σ}
(t₁ : Γ ⊢ π sp₁ sp₂ , σ ⟨ ne ⟩) (t₂ : Γ ⊢ fst σ ⟨ no ⟩) →
Γ ⊢ snd σ /̂ ŝub ⟦ ⌊ t₂ ⌋ ⟧ ⟨ ne ⟩
-- Normal and neutral terms can be turned into ordinary terms.
⌊_⌋ : ∀ {Γ σ k} → Γ ⊢ σ ⟨ k ⟩ → Γ ⊢ σ
⌊ ne σ′ t ⌋ = ⌊ t ⌋
⌊ var x ⌋ = var x
⌊ ƛ t ⌋ = ƛ ⌊ t ⌋
⌊ t₁ · t₂ ⌋ = ⌊ t₁ ⌋ · ⌊ t₂ ⌋
-- Normal and neutral terms are "term-like".
Tm-n : Kind → Term-like _
Tm-n k = record { _⊢_ = λ Γ σ → Γ ⊢ σ ⟨ k ⟩; ⟦_⟧ = ⟦_⟧ ⊚ ⌊_⌋ }
private
open module T {k} = Term-like (Tm-n k) public
using ([_])
renaming ( ⟦_⟧ to ⟦_⟧n; _≅-⊢_ to _≅-⊢n_
; drop-subst-⊢ to drop-subst-⊢n; ⟦⟧-cong to ⟦⟧n-cong
)
-- As mentioned above normal and neutral terms can be turned into
-- ordinary terms.
forget-n : ∀ {k} → [ Tm-n k ⟶⁼ Tm ]
forget-n = record
{ function = λ _ → ⌊_⌋
; corresponds = λ _ _ → P.refl
}
-- Various congruences.
ne-cong : ∀ {Γ σ} {σ′ : Γ ⊢ σ atomic-type}
{t₁ t₂ : Γ ⊢ σ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → ne σ′ t₁ ≅-⊢n ne σ′ t₂
ne-cong P.refl = P.refl
var-n-cong : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
x₁ ≅-∋ x₂ → var x₁ ≅-⊢n var x₂
var-n-cong P.refl = P.refl
ƛn-cong : ∀ {Γ₁ σ₁ τ₁} {t₁ : Γ₁ ▻ σ₁ ⊢ τ₁ ⟨ no ⟩}
{Γ₂ σ₂ τ₂} {t₂ : Γ₂ ▻ σ₂ ⊢ τ₂ ⟨ no ⟩} →
t₁ ≅-⊢n t₂ → ƛ t₁ ≅-⊢n ƛ t₂
ƛn-cong P.refl = P.refl
·n-cong :
∀ {Γ₁ sp₁₁ sp₂₁ σ₁}
{t₁₁ : Γ₁ ⊢ π sp₁₁ sp₂₁ , σ₁ ⟨ ne ⟩} {t₂₁ : Γ₁ ⊢ fst σ₁ ⟨ no ⟩}
{Γ₂ sp₁₂ sp₂₂ σ₂}
{t₁₂ : Γ₂ ⊢ π sp₁₂ sp₂₂ , σ₂ ⟨ ne ⟩} {t₂₂ : Γ₂ ⊢ fst σ₂ ⟨ no ⟩} →
t₁₁ ≅-⊢n t₁₂ → t₂₁ ≅-⊢n t₂₂ → t₁₁ · t₂₁ ≅-⊢n t₁₂ · t₂₂
·n-cong P.refl P.refl = P.refl
| {
"alphanum_fraction": 0.4896049896,
"avg_line_length": 29.4489795918,
"ext": "agda",
"hexsha": "cf0a5fe1d57a1657d5c2d4d85aa36830d76a5663",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README/DependentlyTyped/NormalForm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README/DependentlyTyped/NormalForm.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README/DependentlyTyped/NormalForm.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 1331,
"size": 2886
} |
------------------------------------------------------------------------
-- Semantics of the parsers
------------------------------------------------------------------------
-- Currently it is only specified when a string is _accepted_ by a
-- parser; semantic actions are not included.
module RecursiveDescent.Inductive.Semantics where
open import RecursiveDescent.Index
open import RecursiveDescent.Inductive
open import RecursiveDescent.Inductive.SimpleLib
open import Data.List
open import Data.Product.Record
open import Data.Maybe
infix 3 _∈⟦_⟧_
mutual
_∈⟦_⟧_ : forall {tok nt i r} ->
List tok -> Parser tok nt i r -> Grammar tok nt -> Set1
s ∈⟦ p ⟧ g = Semantics g s p
data Semantics {tok : Set} {nt : ParserType₁} (g : Grammar tok nt)
: forall {i r} ->
List tok -> Parser tok nt i r -> Set1 where
!-sem : forall {e c r} s (x : nt (e , c) r) ->
s ∈⟦ g x ⟧ g -> s ∈⟦ ! x ⟧ g
symbol-sem : forall c -> [ c ] ∈⟦ symbol ⟧ g
return-sem : forall {r} (x : r) -> [] ∈⟦ return x ⟧ g
-- The following rule should really describe the intended
-- semantics of _>>=_, not _⊛_. _!>>=_ should also get a rule.
⊛-sem : forall {i₁ i₂ r₁ r₂ s₁ s₂}
{p₁ : Parser tok nt i₁ (r₁ -> r₂)}
{p₂ : Parser tok nt i₂ r₁} ->
s₁ ∈⟦ p₁ ⟧ g -> s₂ ∈⟦ p₂ ⟧ g -> s₁ ++ s₂ ∈⟦ p₁ ⊛ p₂ ⟧ g
∣ˡ-sem : forall {i₁ i₂ r s}
{p₁ : Parser tok nt i₁ r}
{p₂ : Parser tok nt i₂ r} ->
s ∈⟦ p₁ ⟧ g -> s ∈⟦ p₁ ∣ p₂ ⟧ g
∣ʳ-sem : forall {i₁ i₂ r s}
{p₁ : Parser tok nt i₁ r}
{p₂ : Parser tok nt i₂ r} ->
s ∈⟦ p₂ ⟧ g -> s ∈⟦ p₁ ∣ p₂ ⟧ g
------------------------------------------------------------------------
-- Soundness of recognition
data NonEmpty {a : Set} : List a -> Set where
nonEmpty : forall x xs -> NonEmpty (x ∷ xs)
postulate
sound : forall {tok nt i r}
(p : Parser tok nt i r) (g : Grammar tok nt) (s : List tok) ->
NonEmpty (parse-complete p g s) -> s ∈⟦ p ⟧ g
| {
"alphanum_fraction": 0.4652873563,
"avg_line_length": 37.5,
"ext": "agda",
"hexsha": "8af94cc7d5c087608e0776b47444fbad480dc22f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Inductive/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Inductive/Semantics.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Inductive/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 651,
"size": 2175
} |
{-# OPTIONS --without-K #-}
module algebra.group where
open import algebra.group.core public
open import algebra.group.morphism public
open import algebra.group.gset public
open import algebra.group.classifying public
| {
"alphanum_fraction": 0.8045454545,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "3c8c80372b51c18d414971b000d47a132539e633",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/group.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/group.agda",
"max_line_length": 44,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/group.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 43,
"size": 220
} |
-- ----------------------------------------------------------------------
-- The Agda σ-library
--
-- Substitutions
-- ----------------------------------------------------------------------
module Sigma.Subst.Core where
open import Sigma.Renaming.Base
open import Data.Nat using (ℕ; _+_)
open import Data.Fin using (Fin)
open import Function using (_∘_)
open import Data.Product using (_×_; proj₁; proj₂) renaming ( _,_ to ⟨_,_⟩ )
-- ----------------------------------------------------------------------
open import Sigma.Subst.Base public
splitAt : ∀ m { n } { T }
→ Sub T (m + n)
-- -------------
→ Sub T m × Sub T n
splitAt m σ = ⟨ σ ∘ (id✶ m) , σ ∘ (↑✶ m) ⟩
take : ∀ m { n } { T }
→ Sub T (m + n)
→ Sub T m
take m σ = proj₁ (splitAt m σ)
drop : ∀ m { n } { T }
→ Sub T (m + n)
→ Sub T n
drop m σ = proj₂ (splitAt m σ)
| {
"alphanum_fraction": 0.4169611307,
"avg_line_length": 22.9459459459,
"ext": "agda",
"hexsha": "a52eeca0215a767f91d6dce296f4ced26df407eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-sigma",
"max_forks_repo_path": "src/Sigma/Subst/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-sigma",
"max_issues_repo_path": "src/Sigma/Subst/Core.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-sigma",
"max_stars_repo_path": "src/Sigma/Subst/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 236,
"size": 849
} |
{-# OPTIONS --without-K --safe #-}
module Util.Relation.Binary.Closure.SymmetricTransitive where
open import Relation.Binary using (Rel)
open import Util.Prelude
data SymTrans {α ρ} {A : Set α} (R : Rel A ρ) : Rel A (α ⊔ℓ ρ) where
`base : ∀ {x y} → R x y → SymTrans R x y
`sym : ∀ {x y} → SymTrans R y x → SymTrans R x y
`trans : ∀ {x y z} → SymTrans R x y → SymTrans R y z → SymTrans R x z
| {
"alphanum_fraction": 0.6284289277,
"avg_line_length": 30.8461538462,
"ext": "agda",
"hexsha": "9a9cfcce6d1643c14a1ecbda2af2aaf7f07b222e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/Relation/Binary/Closure/SymmetricTransitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/Relation/Binary/Closure/SymmetricTransitive.agda",
"max_line_length": 71,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/Relation/Binary/Closure/SymmetricTransitive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 142,
"size": 401
} |
Subsets and Splits