Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --rewriting #-} open import lib.Base module lib.Relation {i} where Rel : ∀ (A : Type i) j → Type (lmax i (lsucc j)) Rel A j = A → A → Type j module _ {A : Type i} {j} (rel : Rel A j) where Decidable : Type (lmax i j) Decidable = ∀ a₁ a₂ → Dec (rel a₁ a₂) is-refl : Type (lmax i j) is-refl = ∀ a → rel a a is-sym : Type (lmax i j) is-sym = ∀ {a b} → rel a b → rel b a is-trans : Type (lmax i j) is-trans = ∀ {a b c} → rel a b → rel b c → rel a c -- as equivalence relation -- is-equational : Type (lmax i j)
{ "alphanum_fraction": 0.5625, "avg_line_length": 21.5384615385, "ext": "agda", "hexsha": "9c66729633825bcaeabb9057e5ba2d8a2d29a036", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/Relation.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 212, "size": 560 }
------------------------------------------------------------------------ -- Some defined operations (multiplication by natural number and -- exponentiation) ------------------------------------------------------------------------ open import Algebra module Algebra.Operations (s : Semiring) where open Semiring s hiding (zero) open import Data.Nat using (zero; suc; ℕ) open import Data.Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) import Relation.Binary.EqReasoning as EqR open EqR setoid ------------------------------------------------------------------------ -- Operations -- Multiplication by natural number. infixr 7 _×_ _×_ : ℕ → carrier → carrier zero × x = 0# suc n × x = x + n × x -- Exponentiation. infixr 8 _^_ _^_ : carrier → ℕ → carrier x ^ zero = 1# x ^ suc n = x * x ^ n ------------------------------------------------------------------------ -- Some properties ×-pres-≈ : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_ ×-pres-≈ {n} {n'} {x} {x'} n≡n' x≈x' = begin n × x ≈⟨ reflexive $ PropEq.cong (λ n → n × x) n≡n' ⟩ n' × x ≈⟨ ×-pres-≈ʳ n' x≈x' ⟩ n' × x' ∎ where ×-pres-≈ʳ : ∀ n → (_×_ n) Preserves _≈_ ⟶ _≈_ ×-pres-≈ʳ zero x≈x' = refl ×-pres-≈ʳ (suc n) x≈x' = x≈x' ⟨ +-pres-≈ ⟩ ×-pres-≈ʳ n x≈x' ^-pres-≈ : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_ ^-pres-≈ {x} {x'} {n} {n'} x≈x' n≡n' = begin x ^ n ≈⟨ reflexive $ PropEq.cong (_^_ x) n≡n' ⟩ x ^ n' ≈⟨ ^-pres-≈ˡ n' x≈x' ⟩ x' ^ n' ∎ where ^-pres-≈ˡ : ∀ n → (λ x → x ^ n) Preserves _≈_ ⟶ _≈_ ^-pres-≈ˡ zero x≈x' = refl ^-pres-≈ˡ (suc n) x≈x' = x≈x' ⟨ *-pres-≈ ⟩ ^-pres-≈ˡ n x≈x'
{ "alphanum_fraction": 0.4662203287, "avg_line_length": 27.8474576271, "ext": "agda", "hexsha": "8a9b418ac18ec3ca2bdec9c11ee8aff9ad349d41", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/Operations.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/Operations.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/Operations.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 657, "size": 1643 }
module WellFormed where data Nat : Set where zero : Nat succ : Nat -> Nat postulate Vec : Set -> Nat -> Set postulate _X_ : Set -> Set -> Set postulate zip : {A B : Set} -> (n : Nat) -> Vec A n -> Vec B n -> Vec (A X B) n
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 22.8, "ext": "agda", "hexsha": "dd6208cfc8ecd3fcfad05067168dafe4727114fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/WellFormed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/WellFormed.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/WellFormed.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 79, "size": 228 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Sequential.Comparable module Examples.Sorting.Sequential.InsertionSort (M : Comparable) where open Comparable M open import Examples.Sorting.Sequential.Core M open import Calf costMonoid open import Calf.Types.Bool open import Calf.Types.List open import Calf.Types.Eq open import Calf.Types.Bounded costMonoid open import Calf.Types.BigO costMonoid open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) open import Data.Product using (_×_; _,_; ∃) open import Data.Sum using (inj₁; inj₂) open import Function open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_) import Data.Nat.Properties as N open import Data.Nat.Square insert : cmp (Π A λ _ → Π (list A) λ _ → F (list A)) insert x [] = ret [ x ] insert x (y ∷ ys) = bind (F (list A)) (x ≤ᵇ y) λ { false → bind (F (list A)) (insert x ys) (ret ∘ (y ∷_)) ; true → ret (x ∷ (y ∷ ys)) } insert/correct : ∀ x l → Sorted l → ◯ (∃ λ l' → insert x l ≡ ret l' × SortedOf (x ∷ l) l') insert/correct x [] [] u = [ x ] , refl , refl , [] ∷ [] insert/correct x (y ∷ ys) (h ∷ hs) u with h-cost x y insert/correct x (y ∷ ys) (h ∷ hs) u | ⇓ b withCost q [ _ , h-eq ] rewrite eq/ref h-eq with ≤ᵇ-reflects-≤ u (Eq.trans (eq/ref h-eq) (step/ext (F bool) (ret b) q u)) | ≤-total x y insert/correct x (y ∷ ys) (h ∷ hs) u | ⇓ false withCost q [ _ , _ ] | ofⁿ ¬x≤y | inj₁ x≤y = contradiction x≤y ¬x≤y insert/correct x (y ∷ ys) (h ∷ hs) u | ⇓ false withCost q [ _ , _ ] | ofⁿ ¬x≤y | inj₂ x≤y = let (ys' , h-ys' , x∷ys↭ys' , sorted-ys') = insert/correct x ys hs u in y ∷ ys' , ( let open ≡-Reasoning in begin step (F (list A)) q (bind (F (list A)) (insert x ys) (ret ∘ (y ∷_))) ≡⟨ step/ext (F (list A)) (bind (F (list A)) (insert x ys) (ret ∘ (y ∷_))) q u ⟩ bind (F (list A)) (insert x ys) (ret ∘ (y ∷_)) ≡⟨ Eq.cong (λ e → bind (F (list A)) e (ret ∘ (y ∷_))) h-ys' ⟩ ret (y ∷ ys') ∎ ) , ( let open PermutationReasoning in begin x ∷ y ∷ ys <<⟨ refl ⟩ y ∷ (x ∷ ys) <⟨ x∷ys↭ys' ⟩ y ∷ ys' ∎ ) , All-resp-↭ x∷ys↭ys' (x≤y ∷ h) ∷ sorted-ys' insert/correct x (y ∷ ys) (h ∷ hs) u | ⇓ true withCost q [ _ , _ ] | ofʸ x≤y | _ = x ∷ (y ∷ ys) , step/ext (F (list A)) (ret _) q u , refl , (x≤y ∷ ≤-≤* x≤y h) ∷ (h ∷ hs) insert/cost : cmp (Π A λ _ → Π (list A) λ _ → cost) insert/cost x [] = zero insert/cost x (y ∷ ys) with h-cost x y ... | ⇓ false withCost q [ q≤1 , h-eq ] = q + (insert/cost x ys + zero) ... | ⇓ true withCost q [ q≤1 , h-eq ] = q + 0 insert/cost/closed : cmp (Π A λ _ → Π (list A) λ _ → cost) insert/cost/closed x l = length l insert/cost≤insert/cost/closed : ∀ x l → ◯ (insert/cost x l Nat.≤ insert/cost/closed x l) insert/cost≤insert/cost/closed x [] u = N.≤-refl insert/cost≤insert/cost/closed x (y ∷ ys) u with h-cost x y ... | ⇓ false withCost q [ q≤1 , h-eq ] = Eq.subst (λ n → (q + n) Nat.≤ (suc (length ys))) (Eq.sym (+-identityʳ (insert/cost x ys))) ( N.≤-trans (+-monoˡ-≤ _ (q≤1 u)) (s≤s (insert/cost≤insert/cost/closed x ys u)) ) ... | ⇓ true withCost q [ q≤1 , h-eq ] = Eq.subst (Nat._≤ (suc (length ys))) (Eq.sym (+-identityʳ q)) ( N.≤-trans (q≤1 u) (s≤s z≤n) ) insert≤insert/cost : ∀ x l → IsBounded (list A) (insert x l) (insert/cost x l) insert≤insert/cost x [] = bound/ret insert≤insert/cost x (y ∷ ys) with h-cost x y ... | ⇓ false withCost q [ q≤1 , h-eq ] rewrite eq/ref h-eq = bound/step q (insert/cost x ys + 0) (bound/bind/const (insert/cost x ys) 0 (insert≤insert/cost x ys) λ _ → bound/ret) ... | ⇓ true withCost q [ q≤1 , h-eq ] rewrite eq/ref h-eq = bound/step q 0 bound/ret insert≤insert/cost/closed : ∀ x l → IsBounded (list A) (insert x l) (insert/cost/closed x l) insert≤insert/cost/closed x l = bound/relax (insert/cost≤insert/cost/closed x l) (insert≤insert/cost x l) sort : cmp (Π (list A) λ _ → F (list A)) sort [] = ret [] sort (x ∷ xs) = bind (F (list A)) (sort xs) (insert x) sort/correct : IsSort sort sort/correct [] u = [] , refl , refl , [] sort/correct (x ∷ xs) u = let (xs' , h-xs' , xs↭xs' , sorted-xs' ) = sort/correct xs u in let (x∷xs' , h-x∷xs' , x∷xs↭x∷xs' , sorted-x∷xs') = insert/correct x xs' sorted-xs' u in x∷xs' , ( let open ≡-Reasoning in begin sort (x ∷ xs) ≡⟨⟩ bind (F (list A)) (sort xs) (insert x) ≡⟨ Eq.cong (λ e → bind (F (list A)) e (insert x)) h-xs' ⟩ bind (F (list A)) (ret {list A} xs') (insert x) ≡⟨⟩ insert x xs' ≡⟨ h-x∷xs' ⟩ ret x∷xs' ∎ ) , ( let open PermutationReasoning in begin x ∷ xs <⟨ xs↭xs' ⟩ x ∷ xs' ↭⟨ x∷xs↭x∷xs' ⟩ x∷xs' ∎ ) , sorted-x∷xs' sort/cost : cmp (Π (list A) λ _ → cost) sort/cost [] = 0 sort/cost (x ∷ xs) = bind cost (sort xs) (λ xs' → sort/cost xs + insert/cost/closed x xs') sort/cost/closed : cmp (Π (list A) λ _ → cost) sort/cost/closed l = length l ² sort/cost≤sort/cost/closed : ∀ l → ◯ (sort/cost l Nat.≤ sort/cost/closed l) sort/cost≤sort/cost/closed [] u = N.≤-refl sort/cost≤sort/cost/closed (x ∷ xs) u = let (xs' , ≡ , ↭ , sorted) = sort/correct xs u in begin sort/cost (x ∷ xs) ≡⟨⟩ bind cost (sort xs) (λ xs' → sort/cost xs + length xs') ≡⟨ Eq.cong (λ e → bind cost e λ xs' → sort/cost xs + length xs') (≡) ⟩ sort/cost xs + length xs' ≡˘⟨ Eq.cong (sort/cost xs +_) (↭-length ↭) ⟩ sort/cost xs + length xs ≤⟨ +-monoˡ-≤ (insert/cost/closed x xs) (sort/cost≤sort/cost/closed xs u) ⟩ sort/cost/closed xs + insert/cost/closed x xs ≡⟨⟩ length xs ² + length xs ≤⟨ lemma/arithmetic (length xs) ⟩ length (x ∷ xs) ² ≡⟨⟩ sort/cost/closed (x ∷ xs) ∎ where open ≤-Reasoning lemma/arithmetic : ∀ n → n ² + n Nat.≤ suc n ² lemma/arithmetic n = begin n ² + n ≡⟨ N.+-comm (n ²) n ⟩ n + n ² ≡⟨⟩ n + n * n ≤⟨ N.m≤n+m (n + n * n) (suc n) ⟩ suc n + (n + n * n) ≡⟨⟩ suc (n + (n + n * n)) ≡˘⟨ Eq.cong (λ m → suc (n + m)) (N.*-suc n n) ⟩ suc (n + n * suc n) ≡⟨⟩ suc n ² ∎ sort≤sort/cost : ∀ l → IsBounded (list A) (sort l) (sort/cost l) sort≤sort/cost [] = bound/ret sort≤sort/cost (x ∷ xs) = bound/bind (sort/cost xs) (insert/cost/closed x) (sort≤sort/cost xs) (insert≤insert/cost/closed x) sort≤sort/cost/closed : ∀ l → IsBounded (list A) (sort l) (sort/cost/closed l) sort≤sort/cost/closed l = bound/relax (sort/cost≤sort/cost/closed l) (sort≤sort/cost l) sort/asymptotic : given (list A) measured-via length , sort ∈𝓞(λ n → n ²) sort/asymptotic = 0 ≤n⇒f[n]≤g[n]via λ l _ → sort≤sort/cost/closed l
{ "alphanum_fraction": 0.5570322769, "avg_line_length": 36.0368421053, "ext": "agda", "hexsha": "5f3843faef1bdb9c3a6f7962735a2d5886c0f2c8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Sequential/InsertionSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Sequential/InsertionSort.agda", "max_line_length": 124, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Sequential/InsertionSort.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 2842, "size": 6847 }
postulate Name : Set {-# BUILTIN QNAME Name #-} data ⊤ : Set where tt : ⊤ data Term : Set where con : Name → Term → Term data X : ⊤ → Set where x : {t : ⊤} → X t data Y : Set where y : Y -- this type checks g : {t : ⊤} → Term → X t g {t} (con nm args) = x {t} -- this doesn't f : {t : ⊤} → Term → X t f {t} (con (quote Y.y) args) = x {t} -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -- offending line is above f t = x -- t != args of type ⊤ -- when checking that the expression x {t} has type X args
{ "alphanum_fraction": 0.5049115914, "avg_line_length": 16.4193548387, "ext": "agda", "hexsha": "6756204bcafdad40c93f9a94937c8d0f2332318e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1610.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1610.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1610.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 509 }
{-# OPTIONS --without-K #-} module well-typed-quoted-syntax-defs where open import common open import well-typed-syntax open import well-typed-syntax-helpers open import well-typed-syntax-context-helpers ‘ε’ : Term {Γ = ε} ‘Context’ ‘ε’ = ⌜ ε ⌝c ‘□’ : Typ (ε ▻ ‘Typ’ ‘’ ‘ε’) ‘□’ = ‘Term’ ‘’₁ ‘ε’
{ "alphanum_fraction": 0.6510067114, "avg_line_length": 22.9230769231, "ext": "agda", "hexsha": "de365ce771350b0c1156607d40a3cb9fd2012bdf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/well-typed-quoted-syntax-defs.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/well-typed-quoted-syntax-defs.agda", "max_line_length": 45, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/well-typed-quoted-syntax-defs.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 109, "size": 298 }
module Data.Fin.Map where open import Class.Monad open import Data.Nat open import Data.Fin open import Function DepFinMap : ∀ {a} (n : ℕ) (A : Fin n -> Set a) -> Set a DepFinMap n A = (k : Fin n) -> A k FinMap : ∀ {a} (n : ℕ) -> Set a -> Set a FinMap n A = DepFinMap n (λ _ -> A) sequenceDepFinMap : ∀ {a n A} {M : Set a -> Set a} {{_ : Monad M}} -> DepFinMap n (λ x -> M $ A x) -> M (DepFinMap n A) sequenceDepFinMap {n = zero} f = return λ () sequenceDepFinMap {n = suc n} f = do f' <- sequenceDepFinMap $ f ∘ suc fzero <- f zero return λ { zero → fzero ; (suc v) → f' v}
{ "alphanum_fraction": 0.581512605, "avg_line_length": 25.8695652174, "ext": "agda", "hexsha": "72012effd2db4c5852c6cb54dfeff9e59e39a773", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Fin/Map.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Fin/Map.agda", "max_line_length": 66, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Fin/Map.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 226, "size": 595 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Wedge where open import Cubical.HITs.Wedge.Base public
{ "alphanum_fraction": 0.7401574803, "avg_line_length": 25.4, "ext": "agda", "hexsha": "859627437afbad233d9b9f634ff5aaca52a901ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Wedge.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Wedge.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 36, "size": 127 }
postulate A : Set P : A → Set variable x : A y : P x data D₁ {x : A} : P x → Set where z : D₁ y s : D₁ y → D₁ y data D₂ : {x : A} → P x → Set where z : D₂ y s : D₂ y → D₂ y
{ "alphanum_fraction": 0.4611398964, "avg_line_length": 11.3529411765, "ext": "agda", "hexsha": "7c14a20154c85f0ce738953ff7016e1ede9beeb9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3362.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3362.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3362.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 96, "size": 193 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring where open import Cubical.Algebra.Ring.Base public open import Cubical.Algebra.Ring.Properties public
{ "alphanum_fraction": 0.7802197802, "avg_line_length": 30.3333333333, "ext": "agda", "hexsha": "6b199fffc24aab607eb4e939ec028d0ee04cfc6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 182 }
module _ where data Unit : Set where unit : Unit data D₁ : Set where c₁ : D₁ module M (_ : Set₁) where data D₂ : Set where c₂ : D₂ open M Set f : D₁ → D₂ f c₁ = c₂ record R (A : Set) : Set where field a : A open R ⦃ … ⦄ public instance r₁ : R D₁ r₁ = record { a = c₁ } r₂ : ⦃ r : R D₁ ⦄ → R D₂ r₂ ⦃ r ⦄ = record { a = f (R.a r) } postulate P : (A : Set) → A → Set g : (A : Set) (x : A) → P A x accepted : P D₂ a accepted = g D₂ a rejected : P D₂ a rejected = g _ a -- WAS: -- No instance of type (R D₂) was found in scope. -- when checking that the expression a has type D₂ -- SHOULD: succeed
{ "alphanum_fraction": 0.5581761006, "avg_line_length": 13.8260869565, "ext": "agda", "hexsha": "d84d9ea310acbcbdf176e25f910346d2123b5e5d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3434.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3434.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3434.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 261, "size": 636 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Properties relating Initial and Terminal Objects, -- Product / Coproduct, Zero objects, and Kernel / Cokernel via op module Categories.Object.Duality {o ℓ e} (C : Category o ℓ e) where open Category C open import Level open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Categories.Morphism C open import Categories.Object.Terminal op open import Categories.Object.Initial C open import Categories.Object.Product op open import Categories.Object.Coproduct C open import Categories.Object.Zero import Categories.Object.Kernel as Kernels import Categories.Object.Cokernel as Cokernels private variable A B X Z : Obj f g k : A ⇒ B IsInitial⇒coIsTerminal : IsInitial X → IsTerminal X IsInitial⇒coIsTerminal is⊥ = record { ! = ! ; !-unique = !-unique } where open IsInitial is⊥ ⊥⇒op⊤ : Initial → Terminal ⊥⇒op⊤ i = record { ⊤ = ⊥ ; ⊤-is-terminal = IsInitial⇒coIsTerminal ⊥-is-initial } where open Initial i coIsTerminal⇒IsInitial : IsTerminal X → IsInitial X coIsTerminal⇒IsInitial is⊤ = record { ! = ! ; !-unique = !-unique } where open IsTerminal is⊤ op⊤⇒⊥ : Terminal → Initial op⊤⇒⊥ t = record { ⊥ = ⊤ ; ⊥-is-initial = coIsTerminal⇒IsInitial ⊤-is-terminal } where open Terminal t Coproduct⇒coProduct : Coproduct A B → Product A B Coproduct⇒coProduct A+B = record { A×B = A+B.A+B ; π₁ = A+B.i₁ ; π₂ = A+B.i₂ ; ⟨_,_⟩ = A+B.[_,_] ; project₁ = A+B.inject₁ ; project₂ = A+B.inject₂ ; unique = A+B.unique } where module A+B = Coproduct A+B coProduct⇒Coproduct : ∀ {A B} → Product A B → Coproduct A B coProduct⇒Coproduct A×B = record { A+B = A×B.A×B ; i₁ = A×B.π₁ ; i₂ = A×B.π₂ ; [_,_] = A×B.⟨_,_⟩ ; inject₁ = A×B.project₁ ; inject₂ = A×B.project₂ ; unique = A×B.unique } where module A×B = Product A×B -- Zero objects are autodual IsZero⇒coIsZero : IsZero C Z → IsZero op Z IsZero⇒coIsZero is-zero = record { isInitial = record { ! = ! ; !-unique = !-unique } ; isTerminal = record { ! = ¡ ; !-unique = ¡-unique } } where open IsZero is-zero coIsZero⇒IsZero : IsZero op Z → IsZero C Z coIsZero⇒IsZero co-is-zero = record { isInitial = record { ! = ! ; !-unique = !-unique } ; isTerminal = record { ! = ¡ ; !-unique = ¡-unique } } where open IsZero co-is-zero coZero⇒Zero : Zero op → Zero C coZero⇒Zero zero = record { 𝟘 = 𝟘 ; isZero = coIsZero⇒IsZero isZero } where open Zero zero Zero⇒coZero : Zero C → Zero op Zero⇒coZero zero = record { 𝟘 = 𝟘 ; isZero = IsZero⇒coIsZero isZero } where open Zero zero -- Tests to ensure that dualities are involutive up to definitional equality. private coIsTerminal⟺IsInitial : (⊥ : IsInitial X) → coIsTerminal⇒IsInitial (IsInitial⇒coIsTerminal ⊥) ≡ ⊥ coIsTerminal⟺IsInitial _ = ≡.refl IsInitial⟺coIsTerminal : (⊤ : IsTerminal X) → IsInitial⇒coIsTerminal (coIsTerminal⇒IsInitial ⊤) ≡ ⊤ IsInitial⟺coIsTerminal _ = ≡.refl ⊥⟺op⊤ : (⊤ : Terminal) → ⊥⇒op⊤ (op⊤⇒⊥ ⊤) ≡ ⊤ ⊥⟺op⊤ _ = ≡.refl op⊤⟺⊥ : (⊥ : Initial) → op⊤⇒⊥ (⊥⇒op⊤ ⊥) ≡ ⊥ op⊤⟺⊥ _ = ≡.refl Coproduct⟺coProduct : (p : Product A B) → Coproduct⇒coProduct (coProduct⇒Coproduct p) ≡ p Coproduct⟺coProduct _ = ≡.refl coProduct⟺Coproduct : (p : Coproduct A B) → coProduct⇒Coproduct (Coproduct⇒coProduct p) ≡ p coProduct⟺Coproduct _ = ≡.refl coIsZero⟺IsZero : {zero : IsZero op Z} → IsZero⇒coIsZero (coIsZero⇒IsZero zero) ≡ zero coIsZero⟺IsZero = ≡.refl IsZero⟺coIsZero : ∀ {Z} {zero : IsZero C Z} → coIsZero⇒IsZero (IsZero⇒coIsZero zero) ≡ zero IsZero⟺coIsZero = ≡.refl coZero⟺Zero : ∀ {zero : Zero op} → Zero⇒coZero (coZero⇒Zero zero) ≡ zero coZero⟺Zero = ≡.refl Zero⟺coZero : ∀ {zero : Zero C} → coZero⇒Zero (Zero⇒coZero zero) ≡ zero Zero⟺coZero = ≡.refl module _ (𝟎 : Zero C) where open Kernels (Zero⇒coZero 𝟎) open Cokernels 𝟎 coIsKernel⇒IsCokernel : IsKernel k f → IsCokernel f k coIsKernel⇒IsCokernel isKernel = record { commute = commute ; universal = universal ; factors = factors ; unique = unique } where open IsKernel isKernel IsCokernel⇒coIsKernel : IsCokernel f k → IsKernel k f IsCokernel⇒coIsKernel isCokernel = record { commute = commute ; universal = universal ; factors = factors ; unique = unique } where open IsCokernel isCokernel coKernel⇒Cokernel : Kernel f → Cokernel f coKernel⇒Cokernel k = record { cokernel⇒ = kernel⇒ ; isCokernel = coIsKernel⇒IsCokernel isKernel } where open Kernel k Cokernel⇒coKernel : Cokernel f → Kernel f Cokernel⇒coKernel k = record { kernel⇒ = cokernel⇒ ; isKernel = IsCokernel⇒coIsKernel isCokernel } where open Cokernel k private coIsKernel⟺IsCokernel : ∀ {isKernel : IsKernel k f} → IsCokernel⇒coIsKernel (coIsKernel⇒IsCokernel isKernel) ≡ isKernel coIsKernel⟺IsCokernel = ≡.refl IsCokernel⟺coIsKernel : ∀ {isCokernel : IsCokernel f k} → coIsKernel⇒IsCokernel (IsCokernel⇒coIsKernel isCokernel) ≡ isCokernel IsCokernel⟺coIsKernel = ≡.refl coKernel⟺Cokernel : ∀ {kernel : Kernel f} → Cokernel⇒coKernel (coKernel⇒Cokernel kernel) ≡ kernel coKernel⟺Cokernel = ≡.refl Cokernel⟺coKernel : ∀ {cokernel : Cokernel f} → coKernel⇒Cokernel (Cokernel⇒coKernel cokernel) ≡ cokernel Cokernel⟺coKernel = ≡.refl
{ "alphanum_fraction": 0.6552544855, "avg_line_length": 27.31, "ext": "agda", "hexsha": "4cbf00fe7210e4912a4e94d691b41b9f2faa614b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Duality.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Duality.agda", "max_line_length": 131, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Duality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2197, "size": 5462 }
{-# OPTIONS --safe --without-K #-} open import Relation.Nullary.Decidable using (True; toWitness) open import Function using (_∘_) import Data.Product as Product import Data.Unit as Unit import Data.Fin as Fin import Data.Nat as Nat import Data.Vec as Vec import Data.Vec.Relation.Unary.All as All open Product using (Σ; Σ-syntax; _×_; _,_; proj₁) open Unit using (⊤; tt) open Nat using (ℕ; zero; suc) open Fin using (Fin; zero; suc) open Vec using (Vec; []; _∷_) open All using (All; []; _∷_) open import PiCalculus.Syntax open Scoped open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem (Ω : Algebras) where open Algebras Ω infixr 4 _;_⊢_▹_ infixr 4 _;_∋[_]_;_▹_ _∋[_]_▹_ _∋[_]_ infixr 10 ν _⦅⦆_ _⟨_⟩_ private variable name : Name idx idx' : Idx n : ℕ i j : Fin n data Type : Set where 𝟙 : Type B[_] : ℕ → Type C[_;_] : Type → (Usage idx) ² → Type -- P[_&_] : Type → Type → Type -- Context of types PreCtx : ℕ → Set PreCtx = Vec Type -- Context of usage indices Idxs : ℕ → Set Idxs = Vec Idx -- Indexed context of usages Ctx : ∀ {n} → Idxs n → Set Ctx = All λ idx → (Usage idx) ² private variable γ : PreCtx n idxs : Idxs n Γ Δ Ξ Θ : Ctx idxs b : ℕ t t' : Type x y z : Usage idx P Q : Scoped n -- γ ∋[ i ] t is a proof that variable i in Γ has type t data _∋[_]_ : PreCtx n → Fin n → Type → Set where zero : γ -, t ∋[ zero ] t suc : γ ∋[ i ] t → γ -, t' ∋[ suc i ] t -- Γ ∋[ i ] x ▹ Δ is a proof that subtracting x from variable in in Γ results in Δ data _∋[_]_▹_ : {idxs : Idxs n} → Ctx idxs → Fin n → (Usage idx) ² → Ctx idxs → Set where zero : {idxs : Idxs n} {Γ : Ctx idxs} {x y z : Usage idx ²} → x ≔ y ∙² z → Γ -, x ∋[ zero {n} ] y ▹ Γ -, z suc : {Γ Δ : Ctx idxs} {x : (Usage idx) ² } {x' : (Usage idx') ²} → Γ ∋[ i ] x ▹ Δ → Γ -, x' ∋[ suc i ] x ▹ Δ -, x' -- For convenience, merge together γ ∋[ i ] t and Γ ∋[ i ] x ▹ Δ _;_∋[_]_;_▹_ : {idxs : Idxs n} → PreCtx n → Ctx idxs → Fin n → Type → (Usage idx) ² → Ctx idxs → Set γ ; Γ ∋[ i ] t ; x ▹ Δ = (γ ∋[ i ] t) × (Γ ∋[ i ] x ▹ Δ) -- Constructor for (zero , zero xyz) that computes z from x and y here : {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs} {x y : Usage idx ²} ⦃ check : True (∙²-computeʳ x y) ⦄ → γ -, t ; Γ -, x ∋[ zero ] t ; y ▹ Γ -, proj₁ (toWitness check) here ⦃ check ⦄ = let _ , x≔y∙²z = toWitness check in zero , zero x≔y∙²z infixr 20 there_ there_ : {γ : PreCtx n} {idxs : Idxs n} {Γ Δ : Ctx idxs} {x : Usage idx ²} {x' : Usage idx' ²} → γ ; Γ ∋[ i ] t ; x ▹ Δ → γ -, t' ; Γ -, x' ∋[ suc i ] t ; x ▹ Δ -, x' there_ (i , j) = suc i , suc j -- Typing judgment γ ; Γ ⊢ P ▹ Δ where P is a well-typed process -- under typing context γ and input and output usage contexts Γ and Δ data _;_⊢_▹_ : {idxs : Idxs n} → PreCtx n → Ctx idxs → Scoped n → Ctx idxs → Set where 𝟘 : γ ; Γ ⊢ 𝟘 ▹ Γ -- Note (μ , μ): the created channel is balanced ν : ∀ (t : Type) {idx' : Idx} (m : Usage idx' ²) {idx : Idx} (μ : Usage idx) → γ -, C[ t ; m ] ; Γ -, (μ , μ) ⊢ P ▹ Δ -, ℓ∅ ----------------------------------------------------- → γ ; Γ ⊢ ν P ⦃ name ⦄ ▹ Δ _⦅⦆_ : ∀ {t : Type} {m : (Usage idx') ²} → γ ; Γ ∋[ i ] C[ t ; m ] ; ℓᵢ {idx} ▹ Ξ → γ -, t ; Ξ -, m ⊢ P ▹ Θ -, ℓ∅ ----------------------------------------------------------- → γ ; Γ ⊢ (i ⦅⦆ P) ⦃ name ⦄ ▹ Θ _⟨_⟩_ : {t : Type} {m : (Usage idx') ²} → γ ; Γ ∋[ i ] C[ t ; m ] ; ℓₒ {idx} ▹ Δ → γ ; Δ ∋[ j ] t ; m ▹ Ξ → γ ; Ξ ⊢ P ▹ Θ ----------------------------------------- → γ ; Γ ⊢ i ⟨ j ⟩ P ▹ Θ _∥_ : γ ; Γ ⊢ P ▹ Δ → γ ; Δ ⊢ Q ▹ Ξ ------------------- → γ ; Γ ⊢ P ∥ Q ▹ Ξ _;[_]_⊢_▹_ : PreCtx n → (idxs : Idxs n) → Ctx idxs → Scoped n → Ctx idxs → Set γ ;[ idxs ] Γ ⊢ P ▹ Δ = _;_⊢_▹_ {idxs = idxs} γ Γ P Δ
{ "alphanum_fraction": 0.4747425208, "avg_line_length": 31.6124031008, "ext": "agda", "hexsha": "798f46e2ac4dc0ca2c4e305350c820a0cc725070", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem.agda", "max_line_length": 107, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 1706, "size": 4078 }
------------------------------------------------------------------------ -- A delimited continuation monad ------------------------------------------------------------------------ module Category.Monad.Continuation where open import Category.Applicative open import Category.Applicative.Indexed open import Category.Monad open import Category.Monad.Indexed open import Category.Monad.Identity open import Data.Function ------------------------------------------------------------------------ -- Delimited continuation monads DContT : {I : Set} → (I → Set) → (Set → Set) → IFun I DContT K M r₂ r₁ a = (a → M (K r₁)) → M (K r₂) DCont : {I : Set} → (I → Set) → IFun I DCont K = DContT K Identity DContTIMonad : ∀ {I} (K : I → Set) {M} → RawMonad M → RawIMonad (DContT K M) DContTIMonad K Mon = record { return = λ a k → k a ; _>>=_ = λ c f k → c (flip f k) } where open RawMonad Mon DContIMonad : ∀ {I} (K : I → Set) → RawIMonad (DCont K) DContIMonad K = DContTIMonad K IdentityMonad ------------------------------------------------------------------------ -- Delimited continuation operations record RawIMonadDCont {I : Set} (K : I → Set) (M : I → I → Set → Set) : Set₁ where field monad : RawIMonad M reset : ∀ {r₁ r₂ r₃} → M r₁ r₂ (K r₂) → M r₃ r₃ (K r₁) shift : ∀ {a r₁ r₂ r₃ r₄} → ((a → M r₁ r₁ (K r₂)) → M r₃ r₄ (K r₄)) → M r₃ r₂ a open RawIMonad monad public DContTIMonadDCont : ∀ {I} (K : I → Set) {M} → RawMonad M → RawIMonadDCont K (DContT K M) DContTIMonadDCont K Mon = record { monad = DContTIMonad K Mon ; reset = λ e k → e return >>= k ; shift = λ e k → e (λ a k' → (k a) >>= k') return } where open RawIMonad Mon DContIMonadDCont : ∀ {I} (K : I → Set) → RawIMonadDCont K (DCont K) DContIMonadDCont K = DContTIMonadDCont K IdentityMonad
{ "alphanum_fraction": 0.5179432244, "avg_line_length": 31.1166666667, "ext": "agda", "hexsha": "880a5656f6c0354ccca934e906119c29a6c9f0b0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Category/Monad/Continuation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Category/Monad/Continuation.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Category/Monad/Continuation.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 606, "size": 1867 }
{-# OPTIONS --without-K --rewriting #-} open import Basics open import lib.Basics open import Flat module Axiom.C0 {@♭ i j : ULevel} (@♭ I : Type i) (@♭ R : I → Type j) where postulate C0 : {@♭ k : ULevel} (@♭ A : Type k) (p : (index : I) → (is-equiv (λ (a : A) → λ (r : R index) → a))) → A is-discrete
{ "alphanum_fraction": 0.4739726027, "avg_line_length": 30.4166666667, "ext": "agda", "hexsha": "c726d389ffe79c3930b236b6380a14ce84fc10a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Axiom/C0.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Axiom/C0.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Axiom/C0.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 119, "size": 365 }
module Common.Unit where data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} {-# COMPILED_DATA_UHC Unit __UNIT__ __UNIT__ #-}
{ "alphanum_fraction": 0.6827586207, "avg_line_length": 18.125, "ext": "agda", "hexsha": "bed0429e5d492fda883df5a17ba3316578f82131", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Common/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Common/Unit.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Common/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 145 }
module Classical where open import Data.Empty using (⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Negation using (¬_) -- 排中律 → 二重否定の除去 em-→-¬¬-elim : (∀ {A : Set} → A ⊎ ¬ A) ------------------------- → (∀ {A : Set} → ¬ ¬ A → A) em-→-¬¬-elim a⊎¬a ¬¬a with a⊎¬a ... | inj₁ a = a ... | inj₂ ¬a = ⊥-elim (¬¬a ¬a) -- 排中律 → パースの法則 em-→-peirce : (∀ {A : Set} → A ⊎ ¬ A) ----------------------------------- → (∀ {A B : Set} → ((A → B) → A) → A) em-→-peirce a⊎¬a [a→b]→a with a⊎¬a ... | inj₁ a = a ... | inj₂ ¬a = [a→b]→a (λ a → ⊥-elim (¬a a)) -- 排中律 → 直和としての含意 em-→-iad : (∀ {A : Set} → A ⊎ ¬ A) ------------------------------------- → (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) em-→-iad a⊎¬a a→b with a⊎¬a ... | inj₁ a = inj₂ (a→b a) ... | inj₂ ¬a = inj₁ ¬a -- 排中律 → ド・モルガンの法則 em-→-demorgan : (∀ {A : Set} → A ⊎ ¬ A) --------------------------------------- → (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) em-→-demorgan a⊎¬a {A} {B} ¬[¬a׬b] with a⊎¬a {A} | a⊎¬a {B} ... | inj₁ a | _ = inj₁ a ... | inj₂ ¬a | inj₁ b = inj₂ b ... | inj₂ ¬a | inj₂ ¬b = ⊥-elim (¬[¬a׬b] ⟨ ¬a , ¬b ⟩) -- 二重否定の除去 → 排中律 -- (¬¬ A → A) の A を (A ⊎ ¬ A) と見なす -- ¬¬ (A ⊎ ¬ A) → (A ⊎ ¬ A) ¬¬-elim-→-em : (∀ {A : Set} → ¬ ¬ A → A) ------------------------- → (∀ {A : Set} → A ⊎ ¬ A) ¬¬-elim-→-em ¬¬[a⊎¬a]→[a⊎¬a] = ¬¬[a⊎¬a]→[a⊎¬a] (λ ¬[a⊎¬a] → ¬[a⊎¬a] (inj₂ (λ a → ¬[a⊎¬a] (inj₁ a)))) -- 二重否定の除去 → パースの法則 ¬¬-elim-→-peirce : (∀ {A : Set} → ¬ ¬ A → A) ----------------------------------- → (∀ {A B : Set} → ((A → B) → A) → A) ¬¬-elim-→-peirce ¬¬a→a [a→b]→a = ¬¬a→a (λ ¬a → ¬a ([a→b]→a (λ a → ⊥-elim (¬a a)))) -- 二重否定の除去 → 直和としての含意 -- (¬¬ A → A) の A を (¬ A ⊎ B) と見なす -- ¬¬ (¬ A ⊎ B) → (¬ A ⊎ B) ¬¬-elim-→-iad : (∀ {A : Set} → ¬ ¬ A → A) ------------------------------------- → (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) ¬¬-elim-→-iad ¬¬[¬a⊎b]→[¬a⊎b] a→b = ¬¬[¬a⊎b]→[¬a⊎b] (λ ¬[¬a⊎b] → ¬[¬a⊎b] (inj₁ (λ a → ¬[¬a⊎b] (inj₂ (a→b a))))) -- 二重否定の除去 → ド・モルガンの法則 -- (¬¬ A → A) の A を (A ⊎ B) と見なす -- ¬¬ (A ⊎ B) → (A ⊎ B) ¬¬-elim-→-demorgan : (∀ {A : Set} → ¬ ¬ A → A) --------------------------------------- → (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) ¬¬-elim-→-demorgan ¬¬[a⊎b]→[a⊎b] ¬[¬a׬b] = ¬¬[a⊎b]→[a⊎b] (λ ¬[a⊎b] → ¬[¬a׬b] ⟨ (λ a → ¬[a⊎b] (inj₁ a)) , (λ b → ¬[a⊎b] (inj₂ b)) ⟩) -- パースの法則 → 排中律 -- ((A → B) → A) → A) の A を (A ⊎ ¬ A) と見なす -- ((((A ⊎ ¬ A) → B) → (A ⊎ ¬ A)) → (A ⊎ ¬ A)) peirce-→-em : (∀ {A B : Set} → ((A → B) → A) → A) ----------------------------------- → (∀ {A : Set} → A ⊎ ¬ A) peirce-→-em [[[a⊎¬a]→b]→[a⊎¬a]]→[a⊎¬a] = [[[a⊎¬a]→b]→[a⊎¬a]]→[a⊎¬a] (λ [a⊎¬a]→b → inj₂ (λ a → [a⊎¬a]→b (inj₁ a))) -- パースの法則 → 二重否定の除去 -- ((A → B) → A) → A) の A を (¬¬ A → A) と見なす -- (((¬¬ A → A) → B) → (¬¬ A → A)) → (¬¬ A → A)) peirce-→-¬¬-elim : (∀ {A B : Set} → ((A → B) → A) → A) ----------------------------------- → (∀ {A : Set} → ¬ ¬ A → A) peirce-→-¬¬-elim [[[¬¬a→a]→b]→[¬¬a→a]]→[¬¬a→a] = [[[¬¬a→a]→b]→[¬¬a→a]]→[¬¬a→a] (λ [¬¬a→a]→b → (λ ¬¬a → ⊥-elim (¬¬a (λ a → [¬¬a→a]→b (λ ¬¬a → a))))) -- パースの法則 → 直和としての含意 -- ((A → B) → A) → A の A を ¬ A ⊎ B, B を ⊥ と見なす -- (¬ (¬ A ⊎ B)) → (¬ A ⊎ B) → (¬ A ⊎ B) peirce-→-iad : (∀ {A B : Set} → ((A → B) → A) → A) ------------------------------------- → (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) peirce-→-iad [¬[¬a⊎b]→[¬a⊎b]]→[¬a⊎b] a→b = [¬[¬a⊎b]→[¬a⊎b]]→[¬a⊎b] (λ ¬[¬a⊎b] → inj₁ (λ a → ¬[¬a⊎b] (inj₂ (a→b a)))) -- パースの法則 → ド・モルガンの法則 -- ((A → B) → A) → A) の A を (A ⊎ B), B を ⊥ と見なす -- (¬ (A ⊎ B) → (A ⊎ B)) → (A ⊎ B) peirce-→-demorgan : (∀ {A B : Set} → ((A → B) → A) → A) --------------------------------------- → (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) peirce-→-demorgan ¬[a⊎b]→[a⊎b]→[a⊎b] ¬[¬a׬b] = ¬[a⊎b]→[a⊎b]→[a⊎b] (λ ¬[a⊎b] → ⊥-elim (¬[¬a׬b] ⟨ (λ a → ¬[a⊎b] (inj₁ a)) , (λ b → ¬[a⊎b] (inj₂ b)) ⟩)) -- 直和としての含意 → 排中律 -- (A → B) → ¬ A ⊎ B は B を A と見ることで排中律と同じように扱える -- (A → A) → ¬ A ⊎ A iad-→-em : (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) ----------------------------------- → (∀ {A : Set} → A ⊎ ¬ A) iad-→-em [a→b]→¬a⊎b with [a→b]→¬a⊎b (λ a → a) ... | inj₁ ¬a = inj₂ ¬a ... | inj₂ a = inj₁ a -- 直和としての含意 → 二重否定の除去 iad-→-¬¬-elim : (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) ----------------------------------- → (∀ {A : Set} → ¬ ¬ A → A) iad-→-¬¬-elim [a→b]→¬a⊎b with [a→b]→¬a⊎b (λ a → a) ... | inj₁ ¬a = λ ¬¬a → ⊥-elim (¬¬a ¬a) ... | inj₂ a = λ ¬¬a → a -- 直和としての含意 → パースの法則 iad-→-peirce : (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) ----------------------------------- → (∀ {A B : Set} → ((A → B) → A) → A) iad-→-peirce [a→b]→¬a⊎b [a→b]→a with [a→b]→¬a⊎b (λ a → a) ... | inj₁ ¬a = [a→b]→a (λ a → ⊥-elim (¬a a)) ... | inj₂ a = a -- 直和としての含意 → ド・モルガンの法則 iad-→-demorgan : (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) --------------------------------------- → (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) iad-→-demorgan [a→b]→¬a⊎b {A} {B} ¬[¬a׬b] with [a→b]→¬a⊎b {A} {A} (λ a → a) | [a→b]→¬a⊎b {B} {B} (λ b → b) ... | inj₁ ¬a | inj₁ ¬b = ⊥-elim (¬[¬a׬b] ⟨ ¬a , ¬b ⟩) ... | inj₂ a | _ = inj₁ a ... | inj₁ ¬a | inj₂ b = inj₂ b -- ド・モルガンの法則 → 排中律 demorgan-→-em : (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) --------------------------------------- → (∀ {A : Set} → A ⊎ ¬ A) demorgan-→-em ¬[¬a׬b]→a⊎b = ¬[¬a׬b]→a⊎b (λ{ (⟨ ¬a , ¬¬a ⟩) → ¬¬a ¬a }) -- ド・モルガンの法則 → 二重否定の除去 -- (¬ (¬ A × ¬ B) → A ⊎ B) の B を A と見なす -- ¬ (¬ A × ¬ A) → A ⊎ A demorgan-→-¬¬-elim : (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) --------------------------------------- → (∀ {A : Set} → ¬ ¬ A → A) demorgan-→-¬¬-elim ¬[¬a׬b]→a⊎b {A} ¬¬a with ¬[¬a׬b]→a⊎b {A} {A} λ{ (⟨ ¬a , ¬b ⟩) → ¬¬a ¬a } ... | inj₁ a = a ... | inj₂ a = a -- ド・モルガンの法則 → パースの法則 -- (¬ (¬ A × ¬ B) → A ⊎ B) の B を A と見なす -- ¬ (¬ A × ¬ A) → A ⊎ A demorgan-→-peirce : (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) --------------------------------------- → (∀ {A B : Set} → ((A → B) → A) → A) demorgan-→-peirce ¬[¬¬a׬b]→¬a⊎b {A} {B} [a→b]→a with ¬[¬¬a׬b]→¬a⊎b {A} {A} λ{ (⟨ ¬a , ¬b ⟩) → ¬a ([a→b]→a (λ a → ⊥-elim (¬a a))) } ... | inj₁ a = a ... | inj₂ a = a -- ド・モルガンの法則 → 直和としての含意 -- (¬ (¬ A × ¬ B) → A ⊎ B) の A を ¬A と見なす -- ¬ (¬¬ A × ¬ B) → ¬ A ⊎ B demorgan-→-iad : (∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B) --------------------------------------- → (∀ {A B : Set} → (A → B) → ¬ A ⊎ B) demorgan-→-iad ¬[¬¬a׬b]→¬a⊎b a→b = ¬[¬¬a׬b]→¬a⊎b (λ (⟨ ¬¬a , ¬b ⟩) → ¬¬a (λ a → ¬b (a→b a)))
{ "alphanum_fraction": 0.2616440164, "avg_line_length": 39.2694300518, "ext": "agda", "hexsha": "e6572f99fe7a8bc4b48957883587a8f0f02737e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/negation/Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/negation/Classical.agda", "max_line_length": 151, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/negation/Classical.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 3794, "size": 7579 }
module PLRTree.Equality {A : Set} where open import PLRTree {A} data _≃_ : PLRTree → PLRTree → Set where ≃lf : leaf ≃ leaf ≃nd : {l r l' r' : PLRTree} (x x' : A) → l ≃ r → l' ≃ r' → l ≃ l' → node perfect x l r ≃ node perfect x' l' r'
{ "alphanum_fraction": 0.3988269795, "avg_line_length": 26.2307692308, "ext": "agda", "hexsha": "bf8d2373a6c25ede3ec96c1e5b5067bf3229b447", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Equality.agda", "max_line_length": 64, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 116, "size": 341 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between ring-like structures ------------------------------------------------------------------------ -- See Data.Nat.Binary.Properties for examples of how this and similar -- modules can be used to easily translate properties between types. {-# OPTIONS --without-K --safe #-} open import Algebra.Bundles open import Algebra.Morphism.Structures open import Relation.Binary.Core module Algebra.Morphism.RingMonomorphism {a b ℓ₁ ℓ₂} {R₁ : RawRing a ℓ₁} {R₂ : RawRing b ℓ₂} {⟦_⟧} (isRingMonomorphism : IsRingMonomorphism R₁ R₂ ⟦_⟧) where open IsRingMonomorphism isRingMonomorphism open RawRing R₁ renaming (Carrier to A; _≈_ to _≈₁_) open RawRing R₂ renaming ( Carrier to B; _≈_ to _≈₂_; _+_ to _⊕_ ; _*_ to _⊛_; 1# to 1#₂; 0# to 0#₂; -_ to ⊝_) open import Algebra.Definitions open import Algebra.Structures open import Data.Product import Relation.Binary.Reasoning.Setoid as SetoidReasoning ------------------------------------------------------------------------ -- Re-export all properties of group and monoid monomorphisms open import Algebra.Morphism.GroupMonomorphism +-isGroupMonomorphism renaming ( assoc to +-assoc ; comm to +-comm ; cong to +-cong ; idem to +-idem ; identity to +-identity; identityˡ to +-identityˡ; identityʳ to +-identityʳ ; cancel to +-cancel; cancelˡ to +-cancelˡ; cancelʳ to +-cancelʳ ; zero to +-zero; zeroˡ to +-zeroˡ; zeroʳ to +-zeroʳ ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isSelectiveMagma to +-isSelectiveMagma ; isSemilattice to +-isSemilattice ; sel to +-sel ; isBand to +-isBand ; isCommutativeMonoid to +-isCommutativeMonoid ) public open import Algebra.Morphism.MonoidMonomorphism *-isMonoidMonomorphism renaming ( assoc to *-assoc ; comm to *-comm ; cong to *-cong ; idem to *-idem ; identity to *-identity; identityˡ to *-identityˡ; identityʳ to *-identityʳ ; cancel to *-cancel; cancelˡ to *-cancelˡ; cancelʳ to *-cancelʳ ; zero to *-zero; zeroˡ to *-zeroˡ; zeroʳ to *-zeroʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ; isMonoid to *-isMonoid ; isSelectiveMagma to *-isSelectiveMagma ; isSemilattice to *-isSemilattice ; sel to *-sel ; isBand to *-isBand ; isCommutativeMonoid to *-isCommutativeMonoid ) public ------------------------------------------------------------------------ -- Properties module _ (+-isGroup : IsGroup _≈₂_ _⊕_ 0#₂ ⊝_) (*-isMagma : IsMagma _≈₂_ _⊛_) where open IsGroup +-isGroup hiding (setoid; refl) open IsMagma *-isMagma renaming (∙-cong to ◦-cong) open SetoidReasoning setoid distribˡ : _DistributesOverˡ_ _≈₂_ _⊛_ _⊕_ → _DistributesOverˡ_ _≈₁_ _*_ _+_ distribˡ distribˡ x y z = injective (begin ⟦ x * (y + z) ⟧ ≈⟨ *-homo x (y + z) ⟩ ⟦ x ⟧ ⊛ ⟦ y + z ⟧ ≈⟨ ◦-cong refl (+-homo y z) ⟩ ⟦ x ⟧ ⊛ (⟦ y ⟧ ⊕ ⟦ z ⟧) ≈⟨ distribˡ ⟦ x ⟧ ⟦ y ⟧ ⟦ z ⟧ ⟩ ⟦ x ⟧ ⊛ ⟦ y ⟧ ⊕ ⟦ x ⟧ ⊛ ⟦ z ⟧ ≈˘⟨ ∙-cong (*-homo x y) (*-homo x z) ⟩ ⟦ x * y ⟧ ⊕ ⟦ x * z ⟧ ≈˘⟨ +-homo (x * y) (x * z) ⟩ ⟦ x * y + x * z ⟧ ∎) distribʳ : _DistributesOverʳ_ _≈₂_ _⊛_ _⊕_ → _DistributesOverʳ_ _≈₁_ _*_ _+_ distribʳ distribˡ x y z = injective (begin ⟦ (y + z) * x ⟧ ≈⟨ *-homo (y + z) x ⟩ ⟦ y + z ⟧ ⊛ ⟦ x ⟧ ≈⟨ ◦-cong (+-homo y z) refl ⟩ (⟦ y ⟧ ⊕ ⟦ z ⟧) ⊛ ⟦ x ⟧ ≈⟨ distribˡ ⟦ x ⟧ ⟦ y ⟧ ⟦ z ⟧ ⟩ ⟦ y ⟧ ⊛ ⟦ x ⟧ ⊕ ⟦ z ⟧ ⊛ ⟦ x ⟧ ≈˘⟨ ∙-cong (*-homo y x) (*-homo z x) ⟩ ⟦ y * x ⟧ ⊕ ⟦ z * x ⟧ ≈˘⟨ +-homo (y * x) (z * x) ⟩ ⟦ y * x + z * x ⟧ ∎) distrib : _DistributesOver_ _≈₂_ _⊛_ _⊕_ → _DistributesOver_ _≈₁_ _*_ _+_ distrib distrib = distribˡ (proj₁ distrib) , distribʳ (proj₂ distrib) zeroˡ : LeftZero _≈₂_ 0#₂ _⊛_ → LeftZero _≈₁_ 0# _*_ zeroˡ zeroˡ x = injective (begin ⟦ 0# * x ⟧ ≈⟨ *-homo 0# x ⟩ ⟦ 0# ⟧ ⊛ ⟦ x ⟧ ≈⟨ ◦-cong 0#-homo refl ⟩ 0#₂ ⊛ ⟦ x ⟧ ≈⟨ zeroˡ ⟦ x ⟧ ⟩ 0#₂ ≈˘⟨ 0#-homo ⟩ ⟦ 0# ⟧ ∎) zeroʳ : RightZero _≈₂_ 0#₂ _⊛_ → RightZero _≈₁_ 0# _*_ zeroʳ zeroʳ x = injective (begin ⟦ x * 0# ⟧ ≈⟨ *-homo x 0# ⟩ ⟦ x ⟧ ⊛ ⟦ 0# ⟧ ≈⟨ ◦-cong refl 0#-homo ⟩ ⟦ x ⟧ ⊛ 0#₂ ≈⟨ zeroʳ ⟦ x ⟧ ⟩ 0#₂ ≈˘⟨ 0#-homo ⟩ ⟦ 0# ⟧ ∎) zero : Zero _≈₂_ 0#₂ _⊛_ → Zero _≈₁_ 0# _*_ zero zero = zeroˡ (proj₁ zero) , zeroʳ (proj₂ zero) isRing : IsRing _≈₂_ _⊕_ _⊛_ ⊝_ 0#₂ 1#₂ → IsRing _≈₁_ _+_ _*_ -_ 0# 1# isRing isRing = record { +-isAbelianGroup = isAbelianGroup R.+-isAbelianGroup ; *-isMonoid = *-isMonoid R.*-isMonoid ; distrib = distrib R.+-isGroup R.*-isMagma R.distrib ; zero = zero R.+-isGroup R.*-isMagma R.zero } where module R = IsRing isRing
{ "alphanum_fraction": 0.5559701493, "avg_line_length": 37.1076923077, "ext": "agda", "hexsha": "2568794547094fcc8a03ebf0a12a4cf24dd90dfd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/RingMonomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/RingMonomorphism.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/RingMonomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2049, "size": 4824 }
module builtinInModule where module Int where postulate I : Set {-# BUILTIN INTEGER I #-} primitive primIntegerPlus : I -> I -> I
{ "alphanum_fraction": 0.6785714286, "avg_line_length": 14, "ext": "agda", "hexsha": "30906128a86c09a529accd02e6dd52831f25cd0f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/builtinInModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/builtinInModule.agda", "max_line_length": 41, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/builtinInModule.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 38, "size": 140 }
{- This file contains: - Definition of set coequalizers as performed in https://1lab.dev/Data.Set.Coequaliser.html -} {-# OPTIONS --safe #-} module Cubical.HITs.SetCoequalizer.Base where open import Cubical.Core.Primitives private variable ℓ ℓ' ℓ'' : Level A : Type ℓ B : Type ℓ' -- Set coequalizers as a higher inductive type data SetCoequalizer {A : Type ℓ} {B : Type ℓ'} (f g : A → B) : Type (ℓ-max ℓ ℓ') where inc : B → SetCoequalizer f g coeq : (a : A) → inc (f a) ≡ inc (g a) squash : (x y : SetCoequalizer f g) → (p q : x ≡ y) → p ≡ q
{ "alphanum_fraction": 0.6265270506, "avg_line_length": 23.875, "ext": "agda", "hexsha": "86315a36177e8dc065dc5661ce617f2e1a504c97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/SetCoequalizer/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/SetCoequalizer/Base.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/SetCoequalizer/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 210, "size": 573 }
{- NEW TRANSLATION: notation change to avoid exponential increase in term size during translation -} open import Preliminaries open import Source open import Pilot2 module Translation where mutual ⟨⟨_⟩⟩ : Tp → CTp ⟨⟨ unit ⟩⟩ = unit ⟨⟨ nat ⟩⟩ = nat ⟨⟨ susp A ⟩⟩ = || A || ⟨⟨ A ->s B ⟩⟩ = ⟨⟨ A ⟩⟩ ->c || B || ⟨⟨ A ×s B ⟩⟩ = ⟨⟨ A ⟩⟩ ×c ⟨⟨ B ⟩⟩ ⟨⟨ list A ⟩⟩ = list ⟨⟨ A ⟩⟩ ⟨⟨ bool ⟩⟩ = bool ||_|| : Tp → CTp || τ || = C ×c ⟨⟨ τ ⟩⟩ ⟨⟨_⟩⟩c : Source.Ctx → Pilot2.Ctx ⟨⟨ [] ⟩⟩c = [] ⟨⟨ x :: Γ ⟩⟩c = ⟨⟨ x ⟩⟩ :: ⟨⟨ Γ ⟩⟩c interp-Cost : ∀{Γ} → Cost → Γ Pilot2.|- C interp-Cost 0c = 0C interp-Cost 1c = 1C interp-Cost (m +c n) = plusC (interp-Cost m) (interp-Cost n) lookup : ∀{Γ τ} → τ Source.∈ Γ → ⟨⟨ τ ⟩⟩ Pilot2.∈ ⟨⟨ Γ ⟩⟩c lookup i0 = i0 lookup (iS x) = iS (lookup x) throw-s : ∀ {Γ Γ' τ} → Pilot2.sctx Γ (τ :: Γ') → Pilot2.sctx Γ Γ' throw-s Θ x = Θ (iS x) -- translation from source expressions to complexity expressions ||_||e : ∀{Γ τ} → Γ Source.|- τ → ⟨⟨ Γ ⟩⟩c Pilot2.|- || τ || || unit ||e = prod 0C unit || var x ||e = prod 0C (var (lookup x)) || z ||e = prod 0C z || suc e ||e = (letc (prod (l-proj (var i0)) (s (r-proj (var i0)))) || e ||e) || rec e e0 e1 ||e = letc (l-proj (var i0) +C rec (r-proj (var i0)) (Pilot2.wkn (1C +C || e0 ||e)) (Pilot2.subst (1C +C || e1 ||e) (Pilot2.s-extend (Pilot2.s-extend (throw-s Pilot2.ids))))) || e ||e || lam e ||e = prod 0C (lam || e ||e) || app e1 e2 ||e = letc (letc (prod (plusC (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (l-proj (app (r-proj (var (iS i0))) (r-proj (var i0))))) (r-proj (app (r-proj (var (iS i0))) (r-proj (var i0))))) (Pilot2.wkn || e2 ||e)) || e1 ||e || prod e1 e2 ||e = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (prod (r-proj (var (iS i0))) (r-proj (var i0)))) (Pilot2.wkn || e2 ||e)) || e1 ||e || delay e ||e = prod 0C || e ||e || force e ||e = letc (prod (plusC (l-proj (var i0)) (l-proj (r-proj (var i0)))) (r-proj (r-proj (var i0)))) || e ||e || split e0 e1 ||e = letc (prod (plusC (Pilot2.wkn (l-proj || e0 ||e)) (l-proj (var i0))) (r-proj (var i0))) E1 where E1 = letc (Pilot2.subst || e1 ||e (Pilot2.lem4 (l-proj (r-proj (var i0))) (r-proj (r-proj (var i0))) Pilot2.ss Pilot2.s-extend (Pilot2.s-extend (throw-s Pilot2.ids)))) || e0 ||e || nil ||e = prod 0C nil || e ::s e₁ ||e = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (r-proj (var (iS i0)) ::c r-proj (var i0))) (Pilot2.wkn || e₁ ||e)) || e ||e || listrec e e₁ e₂ ||e = letc (l-proj (var i0) +C listrec (r-proj (var i0)) (Pilot2.wkn (1C +C || e₁ ||e)) (Pilot2.subst (1C +C || e₂ ||e) (Pilot2.s-extend (Pilot2.s-extend (Pilot2.s-extend (throw-s Pilot2.ids)))))) || e ||e || true ||e = prod 0C true || false ||e = prod 0C false
{ "alphanum_fraction": 0.5113596645, "avg_line_length": 46.1451612903, "ext": "agda", "hexsha": "f6ea15e26c196242ed49420ea1cab4fee16c3e38", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/complexity-final/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/complexity-final/Translation.agda", "max_line_length": 187, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/complexity-final/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 1295, "size": 2861 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Orders.Archimedean open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Fields.Orders.Total.Archimedean module Fields.CauchyCompletion.Archimedean {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (arch : ArchimedeanField {F = F} (record { oRing = pRing })) where open import Fields.CauchyCompletion.Group order F open import Fields.CauchyCompletion.Ring order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.PartiallyOrderedRing order F CArchimedean : Archimedean (toGroup CRing CpOrderedRing) CArchimedean x y xPos yPos = {!!}
{ "alphanum_fraction": 0.7742424242, "avg_line_length": 45.5172413793, "ext": "agda", "hexsha": "d6611c91319abd0ea606ea6cf06aa2df4707d18f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Archimedean.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Archimedean.agda", "max_line_length": 360, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Archimedean.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 371, "size": 1320 }
module correct where open import cfg open import jarsec using (Parser ; parse ; run-parser ; partial-parse ; _>>=_ ; _>>_ ; _<*>_) open import Data.Bool open import Data.List hiding (lookup) open import Data.Fin hiding (_+_) open import Data.Char open import Agda.Builtin.Char renaming ( primCharEquality to charEq ) open import Data.Nat open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl) open import Relation.Unary open import Data.Maybe hiding (Any ; All) open import Data.Sum hiding (map) open import Data.String hiding (length ; _++_) renaming (primStringToList to 𝕊→𝕃 ; primStringFromList to 𝕃→𝕊) open import Data.Product hiding (map) open import Agda.Builtin.Unit open import Data.List.All open import Level postulate sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x head-from-≡ : ∀ {A : Set} {x y : A} {xs ys : List A} → (x List.∷ xs) ≡ (y ∷ ys) → x ≡ y tail-from-≡ : ∀ {A : Set} {x y : A} {xs ys : List A} → (x List.∷ xs) ≡ (y ∷ ys) → xs ≡ ys ++-runit : ∀ {A : Set} (m : List A) → m ++ [] ≡ m ++-assoc : ∀ {A : Set} (m n p : List A) → (m ++ n) ++ p ≡ m ++ (n ++ p) charEq-T : ∀ x c → (charEq x c) ≡ true → x ≡ c charEq-F : ∀ x c → (charEq x c) ≡ false → x ≢ c correct : ∀ (cfg : Cfg 0) (cs : List Char) → let rs = jarsec.parse (interp cfg) cs in All (λ r → ((proj₁ r) ∈[ cfg ]) × (proj₁ r) ++ (proj₂ r) ≡ cs) rs correct emp cs = [] correct eps cs = (eps , refl) ∷ [] correct (lit x) [] = [] correct (lit x) (c ∷ cs) with charEq x c | charEq-T x c | charEq-F x c ... | true | b | d rewrite b refl = (lit c , refl) ∷ [] ... | false | b | d = [] correct (var ()) cs correct (seq cfg₁ cfg₂) cs = {! correct-seq₁ (parse (interp cfg₁) cs) (correct cfg₁ cs) !} correct (seq cfg₁ cfg₂) cs with (parse (interp cfg₁) cs) | correct cfg₁ cs correct (seq cfg₁ cfg₂) cs | [] | [] = [] correct (seq cfg₁ cfg₂) cs | r₁ ∷ rs₁ | a₁ ∷ all₁ with parse (interp cfg₂) (proj₂ r₁) | correct cfg₂ (proj₂ r₁) correct (seq cfg₁ cfg₂) cs | r₁ ∷ rs₁ | a₁ ∷ all₁ | [] | [] = ? correct (seq cfg₁ cfg₂) cs | r₁ ∷ rs₁ | a₁ ∷ all₁ | r₂ ∷ rs₂ | a₂ ∷ all₂ = strengthen-to-seq r₁ a₁ r₂ a₂ ∷ correct-seq₁ cfg₁ cfg₂ cs r₁ rs₁ a₁ all₁ rs₂ all₂ where Result : Set Result = List Char × List Char strengthen-to-seq : ∀ (r₁ : Result) → (a₁ : proj₁ r₁ ∈[ cfg₁ ] × proj₁ r₁ ++ proj₂ r₁ ≡ cs) → (r₂ : Result) → (a₂ : proj₁ r₂ ∈[ cfg₂ ] × proj₁ r₂ ++ proj₂ r₂ ≡ proj₂ r₁) → (proj₁ r₁ ++ proj₁ r₂) ∈[ seq cfg₁ cfg₂ ] × (proj₁ r₁ ++ proj₁ r₂) ++ proj₂ r₂ ≡ cs strengthen-to-seq r₁ a₁ r₂ a₂ rewrite ++-assoc (proj₁ r₁) (proj₁ r₂) (proj₂ r₂) | proj₂ a₂ | proj₂ a₁ = (seq (proj₁ a₁) (proj₁ a₂)) , refl -- correct-seq₁ : -- ∀ (rs₁ : List Result) -- → (all₁ : All (λ r → (proj₁ r ∈[ cfg₁ ]) × proj₁ r ++ proj₂ r ≡ cs) rs₁) -- → All (λ r → (proj₁ r ∈[ seq cfg₁ cfg₂ ]) × proj₁ r ++ proj₂ r ≡ cs) -- (parse (interp cfg₁ >>= (λ x → interp cfg₂ >>= (λ y → -- Parser.mk-parser (λ str → (x ++ y , str) ∷ [])))) cs) -- correct-seq₁ [] [] = {! [] !} -- correct-seq₁ (r₁ ∷ rs₁) (a₁ ∷ all₁) = {! !} correct-seq₂ : ∀ (cfg₁ cfg₂ : Cfg 0) (cs : List Char) → (r₁ : Result) → (rs₁ : List Result) → (a₁ : Σ (proj₁ r₁ ∈[ cfg₁ ]) (λ x → proj₁ r₁ ++ proj₂ r₁ ≡ cs)) → (all₁ : All (λ r → Σ (proj₁ r ∈[ cfg₁ ]) (λ x → proj₁ r ++ proj₂ r ≡ cs)) rs₁) → All (λ r → (proj₁ r ∈[ seq cfg₁ cfg₂ ]) × proj₁ r ++ proj₂ r ≡ cs) (concatMap (λ x → concatMap (λ x₁ → (proj₁ x ++ proj₁ x₁ , proj₂ x₁) ∷ []) (parse (interp cfg₂) (proj₂ x))) rs₁) correct-seq₂ cfg₁ cfg₂ cs r₁ [] a₁ [] = [] correct-seq₂ cfg₁ cfg₂ cs r₁ (x ∷ rs₁) a₁ (px ∷ all₁) = ? correct-seq₁ : ∀ (cfg₁ cfg₂ : Cfg 0) (cs : List Char) → (r₁ : Result) → (rs₁ : List Result) → (a₁ : Σ (proj₁ r₁ ∈[ cfg₁ ]) (λ x → proj₁ r₁ ++ proj₂ r₁ ≡ cs)) → (all₁ : All (λ r → Σ (proj₁ r ∈[ cfg₁ ]) (λ x → proj₁ r ++ proj₂ r ≡ cs)) rs₁) → (rs₂ : List Result) → (all₂ : All (λ r → Σ (proj₁ r ∈[ cfg₂ ]) (λ x → proj₁ r ++ proj₂ r ≡ proj₂ r₁)) rs₂) → All (λ r → proj₁ r ∈[ seq cfg₁ cfg₂ ] × proj₁ r ++ proj₂ r ≡ cs) (foldr _++_ [] (Data.List.map (λ x → (proj₁ r₁ ++ proj₁ x , proj₂ x) ∷ []) rs₂) ++ (concatMap (λ x → (concatMap (λ x₁ → (proj₁ x ++ proj₁ x₁ , proj₂ x₁) ∷ []) (parse (interp cfg₂) (proj₂ x)))) rs₁)) correct-seq₁ cfg₁ cfg₂ cs r₁ rs₁ a₁ all₁ [] [] = correct-seq₂ cfg₁ cfg₂ cs r₁ rs₁ a₁ all₁ correct-seq₁ cfg₁ cfg₂ cs r₁ rs₁ a₁ all₁ (r₂ ∷ rs₂) (a₂ ∷ all₂) = ((seq (proj₁ a₁) (proj₁ a₂)) , fact) ∷ correct-seq₁ cfg₁ cfg₂ cs r₁ rs₁ a₁ all₁ rs₂ all₂ where fact : (proj₁ r₁ ++ proj₁ r₂) ++ proj₂ r₂ ≡ cs fact rewrite ++-assoc (proj₁ r₁) (proj₁ r₂) (proj₂ r₂) | proj₂ a₂ | proj₂ a₁ = refl correct (alt cfg₁ cfg₂) cs with (Parser.parse (interp (seq cfg₁ cfg₂)) cs) ... | rs = let all₁ = correct cfg₁ cs all₂ = correct cfg₂ cs weak-all₁ : All (λ r → proj₁ r ∈[ alt cfg₁ cfg₂ ] × proj₁ r ++ proj₂ r ≡ cs) (Parser.parse (interp cfg₁) cs) weak-all₁ = Data.List.All.map (λ r → ((weaken-to-alt {cfg₁ = cfg₁} {cfg₂ = cfg₂} (inj₁ (proj₁ r))) , (proj₂ r))) all₁ weak-all₂ : All (λ r → proj₁ r ∈[ alt cfg₁ cfg₂ ] × proj₁ r ++ proj₂ r ≡ cs) (Parser.parse (interp cfg₂) cs) weak-all₂ = Data.List.All.map (λ r → (weaken-to-alt {cfg₁ = cfg₁} {cfg₂ = cfg₂} (inj₂ (proj₁ r))) , (proj₂ r)) all₂ in all++ weak-all₁ weak-all₂ where all++ : ∀ {p} {A : Set} {P : Pred A p} {xs ys : List A} → All P xs → All P ys → All P (xs ++ ys) all++ [] [] = [] all++ [] (py ∷ all₂) = py ∷ (all++ [] all₂) all++ (px ∷ all₁) all₂ = px ∷ (all++ all₁ all₂) weaken-to-alt : ∀ {r} {cfg₁ cfg₂ : Cfg 0} → (r ∈[ cfg₁ ]) ⊎ (r ∈[ cfg₂ ]) → r ∈[ alt cfg₁ cfg₂ ] weaken-to-alt (inj₁ e) = alt₁ e weaken-to-alt (inj₂ e) = alt₂ e correct (many cfg) cs = ? correct (fix cfg) cs = ?
{ "alphanum_fraction": 0.5425745893, "avg_line_length": 40.0402684564, "ext": "agda", "hexsha": "476b2b5816a87c66f1e6536808e211f926ae460f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jaywunder/jarsec-verified", "max_forks_repo_path": "src/correct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jaywunder/jarsec-verified", "max_issues_repo_path": "src/correct.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jaywunder/jarsec-verified", "max_stars_repo_path": "src/correct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2369, "size": 5966 }
record R : Set where infix 0 _+_
{ "alphanum_fraction": 0.6571428571, "avg_line_length": 11.6666666667, "ext": "agda", "hexsha": "5fe34163fe2b4387f3fb578e32977720aa4230a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2728.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2728.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2728.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 35 }
-- Mergesort {-# OPTIONS --without-K --safe #-} module Algorithms.List.Sort.Merge where -- agda-stdlib open import Level open import Data.Bool using (true; false) open import Data.List import Data.List.Properties as Listₚ open import Data.Product as Prod import Data.Nat as ℕ open import Data.Nat.Induction as Ind open import Function.Base open import Relation.Binary as B open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Unary as U import Relation.Unary.Properties as Uₚ open import Induction.WellFounded private variable a p r : Level module Mergesort {A : Set a} {_≤_ : Rel A r} (_≤?_ : B.Decidable _≤_) where merge′ : A → A → List A → List A → List A merge′ x y xs ys with x ≤? y merge′ x y [] ys | true because _ = x ∷ y ∷ ys merge′ x y (x₁ ∷ xs) ys | true because _ = x ∷ merge′ x₁ y xs ys merge′ x y xs [] | false because _ = y ∷ x ∷ xs merge′ x y xs (y₁ ∷ ys) | false because _ = y ∷ merge′ x y₁ xs ys merge : List A → List A → List A merge [] ys = ys merge (x ∷ xs) [] = x ∷ xs merge (x ∷ xs) (y ∷ ys) = merge′ x y xs ys _L<_ : Rel (List A) _ _L<_ = ℕ._<_ on length L<-wf : WellFounded _L<_ L<-wf = InverseImage.wellFounded length Ind.<-wellFounded split : List A → (List A × List A) split [] = [] , [] split (x ∷ []) = [ x ] , [] split (x ∷ y ∷ xs) = Prod.map (x ∷_) (y ∷_) (split xs) {- sort : List A → List A sort [] = [] sort (x ∷ xs) = {! !} sort xs = split xs ys , zs = merge (sort ys) (sort zs) -}
{ "alphanum_fraction": 0.6001243781, "avg_line_length": 28.2105263158, "ext": "agda", "hexsha": "3b60821b91435941eaad14b4597738072994c246", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Algorithms/List/Sort/Merge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Algorithms/List/Sort/Merge.agda", "max_line_length": 75, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Algorithms/List/Sort/Merge.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 546, "size": 1608 }
module slots.test where open import slots.imports open import slots.defs using (config ; game) open import slots.bruteforce using (rtp) c : config c = record { n = 3 ; m = 4 } g : game c g = record { reels = reels ; winTable = winTable } where open config c reel : Reel reel = # 1 ∷ # 1 ∷ # 1 ∷ # 0 ∷ [] reel′ : Reel reel′ = # 1 ∷ # 1 ∷ # 2 ∷ # 0 ∷ [] reel″ : Reel reel″ = # 1 ∷ # 3 ∷ # 1 ∷ # 0 ∷ [] reels : Reels reels = reel ∷ reel′ ∷ reel″ ∷ [] winTable : WinTable winTable = (0 ∷ 0 ∷ 0 ∷ []) ∷ (0 ∷ 1 ∷ 2 ∷ []) ∷ (0 ∷ 0 ∷ 0 ∷ []) ∷ (0 ∷ 0 ∷ 0 ∷ []) ∷ [] % : ℕ × ℕ % = rtp g %-prf : % ≡ (36 , 64) %-prf = refl
{ "alphanum_fraction": 0.4602941176, "avg_line_length": 16.1904761905, "ext": "agda", "hexsha": "0de54236b8ba51446fac242ff8278f8c0d0efd68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/slots-agda", "max_forks_repo_path": "src/slots/test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/slots-agda", "max_issues_repo_path": "src/slots/test.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/slots-agda", "max_stars_repo_path": "src/slots/test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 312, "size": 680 }
{-# OPTIONS --without-K --safe #-} module Categories.FreeObjects.Free where open import Level open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) open import Relation.Binary using (IsEquivalence) open import Categories.Functor renaming (id to idF) open import Categories.Category open import Categories.Adjoint open import Categories.NaturalTransformation.Core import Categories.Morphism.Reasoning as MR private variable o ℓ e o' ℓ' e' : Level record FreeObject {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) (X : Category.Obj C) : Set (suc (e ⊔ e' ⊔ o ⊔ ℓ ⊔ o' ⊔ ℓ')) where private module C = Category C using (Obj; id; identityʳ; identityˡ; _⇒_; _∘_; equiv; module Equiv) module D = Category D using (Obj; _⇒_; _∘_; equiv) module U = Functor U using (₀; ₁) field FX : D.Obj η : C [ X , U.₀ FX ] _* : ∀ {A : D.Obj} → C [ X , U.₀ A ] → D [ FX , A ] *-lift : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) → C [ (U.₁ (f *) C.∘ η) ≈ f ] *-uniq : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ FX , A ]) → C [ (U.₁ g) C.∘ η ≈ f ] → D [ g ≈ f * ] *-cong : ∀ {A : D.Obj} {f g : C [ X , U.₀ A ]} → C [ f ≈ g ] → D [ f * ≈ g * ] *-cong {A} {f} {g} f≈g = *-uniq g (f *) (trans (*-lift f) f≈g) where open C.Equiv open FreeObject module _ {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) where private module C = Category C using (Obj; id; _⇒_; _∘_; identityʳ; identityˡ; assoc; equiv; module Equiv; module HomReasoning) module D = Category D using (Obj; id; _⇒_; _∘_; identityʳ; identityˡ; assoc; equiv; module Equiv; module HomReasoning) module U = Functor U using (₀; ₁; identity; homomorphism) -- free object construction is functorial FO⇒Functor : (F : ((X : C.Obj) → FreeObject U X)) → Functor C D FO⇒Functor F = record { F₀ = λ X → FX (F X) ; F₁ = λ {X} {Y} f → _* (F X) (η (F Y) C.∘ f) ; identity = λ {X} → sym (*-uniq (F X) (η (F X) C.∘ C.id) D.id (id-proof {X})) ; homomorphism = λ {X} {Y} {Z} {f} {g} → sym (*-uniq (F X) (η (F Z) C.∘ (g C.∘ f)) ((_* (F Y) (η (F Z) C.∘ g)) D.∘ (_* (F X) (η (F Y) C.∘ f))) (⟺ (hom-proof {X} {Y} {Z} {f} {g})) ) ; F-resp-≈ = λ {X} {Y} {f} {g} f≈g → sym (*-uniq (F X) (η (F Y) C.∘ f) (_* (F X) (η (F Y) C.∘ g)) (resp-proof f≈g)) } where open C.HomReasoning open D.Equiv id-proof : ∀ {X : C.Obj} → C [ U.₁ D.id C.∘ η (F X) ≈ η (F X) C.∘ C.id ] id-proof {X} = begin (U.₁ D.id) C.∘ FX.η ≈⟨ U.identity ⟩∘⟨refl ⟩ C.id C.∘ FX.η ≈⟨ id-comm-sym ⟩ FX.η C.∘ C.id ∎ where open MR C module FX = FreeObject (F X) using (η) hom-proof : ∀ {X : C.Obj} {Y : C.Obj} {Z : C.Obj} {f : C [ X , Y ]} {g : C [ Y , Z ]} → C [ (η (F Z) C.∘ (g C.∘ f)) ≈ (U.₁ (_* (F Y) (η (F Z) C.∘ g) D.∘ _* (F X) (η (F Y) C.∘ f) ) C.∘ η (F X)) ] hom-proof {X} {Y} {Z} {f} {g} = begin FZ.η C.∘ (g C.∘ f) ≈˘⟨ pushˡ (FY.*-lift (FZ.η C.∘ g)) ⟩ (U.₁((FZ.η C.∘ g) FY.*) C.∘ FY.η) C.∘ f ≈˘⟨ pushʳ (FX.*-lift (FY.η C.∘ f)) ⟩ U.₁((FZ.η C.∘ g) FY.*) C.∘ (U.₁((FY.η C.∘ f) FX.*) C.∘ FX.η) ≈˘⟨ pushˡ U.homomorphism ⟩ U.₁ ((FZ.η C.∘ g) FY.* D.∘ (FY.η C.∘ f) FX.*) C.∘ FX.η ∎ where open MR C open C.Equiv module FX = FreeObject (F X) using (η; _*; *-lift) module FY = FreeObject (F Y) using (η; _*; *-lift) module FZ = FreeObject (F Z) using (η) resp-proof :{X Y : C.Obj} {f g : C [ X , Y ]} → C [ f ≈ g ] → C [ U.₁ ((F X *) (η (F Y) C.∘ g)) C.∘ η (F X) ≈ η (F Y) C.∘ f ] resp-proof {X} {Y} {f} {g} f≈g = begin U.₁((FY.η C.∘ g) FX.*) C.∘ FX.η ≈⟨ FX.*-lift (FY.η C.∘ g) ⟩ (FY.η C.∘ g) ≈˘⟨ refl⟩∘⟨ f≈g ⟩ (FY.η C.∘ f) ∎ where module FX = FreeObject (F X) using (η; _*; *-lift) module FY = FreeObject (F Y) using (η; _*; *-lift) FO⇒unit : (F : ((X : C.Obj) → FreeObject U X)) → NaturalTransformation idF (U ∘F FO⇒Functor F) FO⇒unit F = ntHelper (record { η = λ X → η (F X) ; commute = λ {X} {Y} f → sym (*-lift (F X) (η (F Y) C.∘ f)) }) where open C.Equiv -- define a counit FO⇒counit : (F : ((X : C.Obj) → FreeObject U X)) → NaturalTransformation (FO⇒Functor F ∘F U) idF FO⇒counit F = ntHelper (record { η = λ X → _* (F (U.₀ X)) C.id ; commute = λ {X} {Y} f → counit-comm {X} {Y} f }) where open D.Equiv module F = Functor (FO⇒Functor F) using (₀; ₁; identity; homomorphism) counit-comm : {X Y : D.Obj} (f : D [ X , Y ]) → D [ (_* (F (U.₀ Y)) C.id D.∘ F.₁ (U.₁ f)) ≈ (f D.∘ _* (F (U.₀ X)) C.id) ] -- proof idea: id* ∘ FU f ≈ (U f)* ≈ f ∘ id* using *-uniq two times -- left identity counit-comm-left : {X Y : D.Obj} (f : D [ X , Y ]) → C [ U.₁ ((_* (F (U.₀ Y)) C.id) D.∘ (F.₁ (U.₁ f)) ) C.∘ η (F (U.₀ X)) ≈ U.₁ f ] counit-comm-left {X} {Y} f = begin U.₁(C.id FUY.* D.∘ F.₁(U.₁ f)) C.∘ FUX.η ≈⟨ U.homomorphism ⟩∘⟨refl ⟩ (U.₁ (C.id FUY.*) C.∘ U.₁ (F.₁(U.₁ f))) C.∘ FUX.η ≈⟨ C.assoc ⟩ U.₁ (C.id FUY.*) C.∘ (U.₁(F.₁(U.₁ f)) C.∘ FUX.η) ≈⟨ refl⟩∘⟨ FUX.*-lift (FUY.η C.∘ U.₁ f) ⟩ U.₁ (C.id FUY.*) C.∘ (FUY.η C.∘ U.₁ f) ≈˘⟨ C.assoc ⟩ (U.₁ (C.id FUY.*) C.∘ FUY.η) C.∘ U.₁ f ≈⟨ FUY.*-lift C.id ⟩∘⟨refl ⟩ C.id C.∘ U.₁ f ≈⟨ C.identityˡ ⟩ U.₁ f ∎ where open C.HomReasoning module FUX = FreeObject (F (U.₀ X)) using (η; *-lift) module FUY = FreeObject (F (U.₀ Y)) using (η; _*; *-lift) -- right identity counit-comm-right : {X Y : D.Obj} (f : D [ X , Y ]) → C [ U.₁ (f D.∘ (_* (F (U.₀ X)) C.id)) C.∘ η (F (U.₀ X)) ≈ U.₁ f ] counit-comm-right {X} {Y} f = begin U.₁ (f D.∘ (C.id FUX.*)) C.∘ FUX.η ≈⟨ U.homomorphism ⟩∘⟨refl ⟩ (U.₁ f C.∘ U.₁ (C.id FUX.*)) C.∘ FUX.η ≈⟨ C.assoc ⟩ U.₁ f C.∘ (U.₁ (C.id FUX.*) C.∘ FUX.η) ≈⟨ refl⟩∘⟨ FUX.*-lift C.id ⟩ U.₁ f C.∘ C.id ≈⟨ C.identityʳ ⟩ U.₁ f ∎ where open C.HomReasoning module FUX = FreeObject (F (U.₀ X)) using (η; _*; *-lift) counit-comm {X} {Y} f = begin C.id FUY.* D.∘ F.₁ (U.₁ f) ≈⟨ FUX.*-uniq (U.₁ f) (C.id FUY.* D.∘ F.₁ (U.₁ f)) (counit-comm-left {X} {Y} f) ⟩ (U.₁ f) FUX.* ≈˘⟨ FUX.*-uniq (U.₁ f) (f D.∘ C.id FUX.*) (counit-comm-right {X} {Y} f) ⟩ f D.∘ C.id FUX.* ∎ where open D.HomReasoning module FUX = FreeObject (F (U.₀ X)) using (η; _*; *-lift; *-uniq) module FUY = FreeObject (F (U.₀ Y)) using (η; _*; *-lift) -- Free object functor is left adjoint to the forgetful functor FO⇒LAdj : (F : ((X : C.Obj) → FreeObject U X)) → (FO⇒Functor F) ⊣ U FO⇒LAdj F = record { unit = FO⇒unit F ; counit = FO⇒counit F ; zig = zig ; zag = zag } where module F = Functor (FO⇒Functor F) using (₀; ₁; identity; homomorphism) zig-comm1 : {X : C.Obj} → C [ U.₁ D.id C.∘ η (F X) ≈ η (F X) ] zig-comm1 {X} = elimˡ (U.identity) where open MR C zig-helper1 : {X : C.Obj} → D [ _* (F X) (η (F X)) ≈ D.id ] zig-helper1 {X} = sym (FX.*-uniq FX.η D.id (zig-comm1 {X})) where open D.Equiv module FX = FreeObject (F X) using (η; *-uniq) zig-comm2 : {X : C.Obj} → C [ U.₁ (_* (F (U.₀ (F.₀ X))) C.id D.∘ F.₁ (η (F X)) ) C.∘ η (F X) ≈ η (F X) ] zig-comm2 {X} = begin U.₁(C.id FUFX.* D.∘ F.₁ FX.η) C.∘ FX.η ≈⟨ U.homomorphism ⟩∘⟨refl ⟩ (U.₁(C.id FUFX.*) C.∘ U.₁(F.₁ FX.η)) C.∘ FX.η ≈⟨ C.assoc ⟩ U.₁(C.id FUFX.*) C.∘ (U.₁(F.₁ FX.η) C.∘ FX.η) ≈˘⟨ refl⟩∘⟨ NaturalTransformation.commute (FO⇒unit F) FX.η ⟩ U.₁(C.id FUFX.*) C.∘ (FUFX.η C.∘ FX.η) ≈˘⟨ C.assoc ⟩ (U.₁(C.id FUFX.*) C.∘ FUFX.η) C.∘ FX.η ≈⟨ FUFX.*-lift C.id ⟩∘⟨refl ⟩ C.id C.∘ FX.η ≈⟨ C.identityˡ ⟩ FX.η ∎ where open C.HomReasoning module FX = FreeObject (F X) using (η) module FUFX = FreeObject (F (U.₀ (F.₀ X)) ) using (η; _*; *-lift) zig-helper2 : {X : C.Obj} → D [ _* (F (U.₀ (F.₀ X))) C.id D.∘ F.₁ (η (F X)) ≈ _* (F X) (η (F X)) ] zig-helper2 {X} = FX.*-uniq FX.η (C.id FUFX.* D.∘ F.₁ FX.η) (zig-comm2 {X}) where module FX = FreeObject (F X) using (η; *-uniq) module FUFX = FreeObject (F (U.₀ (F.₀ X))) using (η; _*) zig : {X : C.Obj} → D [ _* (F (U.₀ (F.₀ X))) C.id D.∘ F.₁ (η (F X)) ≈ D.id ] zig {X} = trans zig-helper2 zig-helper1 where open D.Equiv zag : {B : D.Obj} → C [ U.₁ (_* (F (U.₀ B)) C.id) C.∘ η (F (U.₀ B)) ≈ C.id ] zag {B} = FUB.*-lift C.id where module FUB = FreeObject (F (U.₀ B)) using (*-lift) -- left adjoints yield free objects LAdj⇒FO : (Free : Functor C D) → (Free ⊣ U) → (X : C.Obj) → FreeObject U X LAdj⇒FO Free Free⊣U X = record { FX = F.₀ X ; η = η₁ X ; _* =  λ {A : D.Obj} f → ε A D.∘ F.₁ f ; *-lift = *-lift' ; *-uniq = *-uniq' } where module F = Functor Free using (₀; ₁; identity; homomorphism; F-resp-≈) open Adjoint (Free⊣U) using (unit; counit; zig; zag) open NaturalTransformation unit renaming (η to η₁; sym-commute to η-sym-commute) open NaturalTransformation counit renaming (η to ε; commute to ε-commute) *-lift' : {A : D.Obj} (f : C [ X , U.₀ A ]) → C [ U.₁ (ε A D.∘ F.₁ f) C.∘ η₁ X ≈ f ] *-lift' {A} f = begin U.₁ (ε A D.∘ F.₁ f) C.∘ η₁ X ≈⟨ U.homomorphism ⟩∘⟨refl ⟩ (U.₁ (ε A) C.∘ U.₁ (F.₁ f)) C.∘ η₁ X ≈⟨ C.assoc ⟩ U.₁ (ε A) C.∘ (U.₁ (F.₁ f) C.∘ η₁ X) ≈⟨ refl⟩∘⟨ η-sym-commute f ⟩ U.₁ (ε A) C.∘ (η₁ (U.₀ A) C.∘ f) ≈˘⟨ C.assoc ⟩ (U.₁ (ε A) C.∘ η₁ (U.₀ A)) C.∘ f ≈⟨ zag ⟩∘⟨refl ⟩ C.id C.∘ f ≈⟨ C.identityˡ ⟩ f ∎ where open C.HomReasoning *-uniq-sym : {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ F.₀ X , A ]) → C [ U.₁ g C.∘ η₁ X ≈ f ] → D [ ε A D.∘ F.₁ f ≈ g ] *-uniq-sym {A} f g comm_proof = begin ε A D.∘ F.₁ f ≈˘⟨ refl⟩∘⟨ F.F-resp-≈ comm_proof ⟩ ε A D.∘ F.₁ (U.₁ g C.∘ η₁ X) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩ ε A D.∘ ( F.₁ (U.₁ g) D.∘ F.₁ (η₁ X) ) ≈˘⟨ D.assoc ⟩ (ε A D.∘ F.₁ (U.₁ g)) D.∘ F.₁ (η₁ X) ≈⟨ ε-commute g ⟩∘⟨refl ⟩ (g D.∘ ε (F.₀ X)) D.∘ F.₁ (η₁ X) ≈⟨ D.assoc ⟩ (g D.∘ (ε (F.₀ X) D.∘ F.₁ (η₁ X))) ≈⟨ refl⟩∘⟨ zig ⟩ g D.∘ D.id ≈⟨ D.identityʳ ⟩ g ∎ where open D.HomReasoning *-uniq' : {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ F.₀ X , A ]) → C [ U.₁ g C.∘ η₁ X ≈ f ] → D [ g ≈ ε A D.∘ F.₁ f ] *-uniq' {A} f g comm_proof = begin g ≈˘⟨ *-uniq-sym f g comm_proof ⟩ ε A D.∘ F.₁ f ∎ where open D.HomReasoning
{ "alphanum_fraction": 0.4192333445, "avg_line_length": 46.4902723735, "ext": "agda", "hexsha": "61837cbb0008978471c446eaef0a4714c5be9a70", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/FreeObjects/Free.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/FreeObjects/Free.agda", "max_line_length": 146, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/FreeObjects/Free.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 5125, "size": 11948 }
{- Jesper Cockx, 26-05-2014 Issue 1023 -} {-# OPTIONS --cubical-compatible #-} module TerminationAndUnivalence where data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x J : ∀ {a b} {A : Set a} {x : A} (P : (y : A) → x ≡ y → Set b) → (p : P x refl) {y : A} (e : x ≡ y) → P y e J P p refl = p data ⊥ : Set where data WOne : Set where wrap : (⊥ → WOne) → WOne FOne = ⊥ → WOne f : WOne → FOne f x () g : FOne → WOne g x = wrap (λ ()) postulate iso : WOne ≡ FOne noo : (X : Set) → (WOne ≡ X) → X → ⊥ noo .WOne refl (wrap x) = noo FOne iso x absurd : ⊥ absurd = noo FOne iso (λ ())
{ "alphanum_fraction": 0.5188216039, "avg_line_length": 16.9722222222, "ext": "agda", "hexsha": "ec62889cee805efc1e4a41e96d564c7eb385624c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/TerminationAndUnivalence.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/TerminationAndUnivalence.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/TerminationAndUnivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 275, "size": 611 }
{-# OPTIONS --without-K #-} module Functoriality {a} {A : Set a} where open import PathOperations open import Types ap⁻¹ : ∀ {b} {B : Set b} {x y : A} (f : A → B) (p : x ≡ y) → ap f (p ⁻¹) ≡ (ap f p) ⁻¹ ap⁻¹ f = J (λ _ _ p → ap f (p ⁻¹) ≡ ap f p ⁻¹) (λ _ → refl) _ _ ap· : ∀ {b} {B : Set b} {x y z : A} (f : A → B) (p : x ≡ y) (q : y ≡ z) → ap f (p · q) ≡ ap f p · ap f q ap· {z = z} f = J (λ _ y p → (q : y ≡ z) → ap f (p · q) ≡ ap f p · ap f q) (λ _ _ → refl) _ _ ap-id : {x y : A} (p : x ≡ y) → ap id p ≡ p ap-id = J (λ _ _ p → ap id p ≡ p) (λ _ → refl) _ _ ap-∘ : ∀ {b c} {B : Set b} {C : Set c} {x y : A} (f : B → C) (g : A → B) (p : x ≡ y) → ap (f ∘ g) p ≡ ap f (ap g p) ap-∘ f g = J (λ _ _ p → ap (f ∘ g) p ≡ ap f (ap g p)) (λ _ → refl) _ _
{ "alphanum_fraction": 0.4051612903, "avg_line_length": 26.724137931, "ext": "agda", "hexsha": "5f922e5a8fc489726008c5bf7140f40362261303", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Functoriality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Functoriality.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Functoriality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 410, "size": 775 }
-- Given p : A ⟷ B do action on X act : (A ⟷ B) ⟷ (X ⟷ X) act = ?
{ "alphanum_fraction": 0.4202898551, "avg_line_length": 11.5, "ext": "agda", "hexsha": "9b8f18763ab59e2786506d9fef70327d08b7393b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "GA.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "GA.agda", "max_line_length": 33, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "GA.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 34, "size": 69 }
{-# OPTIONS --safe #-} module Cubical.Homotopy.Loopspace where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.SetTruncation open import Cubical.HITs.Truncation hiding (elim2) renaming (rec to trRec) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv open import Cubical.Functions.Morphism open import Cubical.Data.Sigma open Iso {- loop space of a pointed type -} Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ Ω (_ , a) = ((a ≡ a) , refl) {- n-fold loop space of a pointed type -} Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ (Ω^ 0) p = p (Ω^ (suc n)) p = Ω ((Ω^ n) p) {- loop space map -} Ω→ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → (A →∙ B) → (Ω A →∙ Ω B) fst (Ω→ {A = A} {B = B} (f , p)) q = sym p ∙∙ cong f q ∙∙ p snd (Ω→ {A = A} {B = B} (f , p)) = ∙∙lCancel p Ω^→ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) → (A →∙ B) → ((Ω^ n) A →∙ (Ω^ n) B) Ω^→ zero f = f Ω^→ (suc n) f = Ω→ (Ω^→ n f) {- loop space map functoriality (missing pointedness proof) -} Ω→∘ : ∀ {ℓ ℓ' ℓ''} {A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''} (g : B →∙ C) (f : A →∙ B) → ∀ p → Ω→ (g ∘∙ f) .fst p ≡ (Ω→ g ∘∙ Ω→ f) .fst p Ω→∘ g f p k i = hcomp (λ j → λ { (i = i0) → compPath-filler' (cong (g .fst) (f .snd)) (g .snd) (~ k) j ; (i = i1) → compPath-filler' (cong (g .fst) (f .snd)) (g .snd) (~ k) j }) (g .fst (doubleCompPath-filler (sym (f .snd)) (cong (f .fst) p) (f .snd) k i)) {- Ω→ is a homomorphism -} Ω→pres∙ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → (p q : typ (Ω A)) → fst (Ω→ f) (p ∙ q) ≡ fst (Ω→ f) p ∙ fst (Ω→ f) q Ω→pres∙ f p q i j = hcomp (λ k → λ { (i = i1) → (doubleCompPath-filler (sym (snd f)) (cong (fst f) p) (snd f) k ∙ doubleCompPath-filler (sym (snd f)) (cong (fst f) q) (snd f) k) j ; (j = i0) → snd f k ; (j = i1) → snd f k}) (cong-∙ (fst f) p q i j) isEquivΩ→ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → (f : (A →∙ B)) → isEquiv (fst f) → isEquiv (Ω→ f .fst) isEquivΩ→ {B = (B , b)} = uncurry λ f → J (λ b y → isEquiv f → isEquiv (λ q → (λ i → y (~ i)) ∙∙ (λ i → f (q i)) ∙∙ y)) λ eqf → subst isEquiv (funExt (rUnit ∘ cong f)) (isoToIsEquiv (congIso (equivToIso (f , eqf)))) ΩfunExtIso : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') → Iso (typ (Ω (A →∙ B ∙))) (A →∙ Ω B) fst (fun (ΩfunExtIso A B) p) x = funExt⁻ (cong fst p) x snd (fun (ΩfunExtIso A B) p) i j = snd (p j) i fst (inv (ΩfunExtIso A B) (f , p) i) x = f x i snd (inv (ΩfunExtIso A B) (f , p) i) j = p j i rightInv (ΩfunExtIso A B) _ = refl leftInv (ΩfunExtIso A B) _ = refl {- Commutativity of loop spaces -} isComm∙ : ∀ {ℓ} (A : Pointed ℓ) → Type ℓ isComm∙ A = (p q : typ (Ω A)) → p ∙ q ≡ q ∙ p private mainPath : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (α β : typ ((Ω^ (2 + n)) A)) → (λ i → α i ∙ refl) ∙ (λ i → refl ∙ β i) ≡ (λ i → refl ∙ β i) ∙ (λ i → α i ∙ refl) mainPath n α β i = (λ j → α (j ∧ ~ i) ∙ β (j ∧ i)) ∙ λ j → α (~ i ∨ j) ∙ β (i ∨ j) EH-filler : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ ((Ω^ (2 + n)) A) → typ ((Ω^ (2 + n)) A) → I → I → I → _ EH-filler {A = A} n α β i j z = hfill (λ k → λ { (i = i0) → ((cong (λ x → rUnit x (~ k)) α) ∙ cong (λ x → lUnit x (~ k)) β) j ; (i = i1) → ((cong (λ x → lUnit x (~ k)) β) ∙ cong (λ x → rUnit x (~ k)) α) j ; (j = i0) → rUnit refl (~ k) ; (j = i1) → rUnit refl (~ k)}) (inS (mainPath n α β i j)) z {- Eckmann-Hilton -} EH : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ ((Ω^ (suc n)) A) EH {A = A} n α β i j = EH-filler n α β i j i1 {- Lemmas for the syllepsis : EH α β ≡ (EH β α) ⁻¹ -} EH-refl-refl : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → EH {A = A} n refl refl ≡ refl EH-refl-refl {A = A} n k i j = hcomp (λ r → λ { (k = i1) → (refl ∙ (λ _ → basep)) j ; (j = i0) → rUnit basep (~ r ∧ ~ k) ; (j = i1) → rUnit basep (~ r ∧ ~ k) ; (i = i0) → (refl ∙ (λ _ → lUnit basep (~ r ∧ ~ k))) j ; (i = i1) → (refl ∙ (λ _ → lUnit basep (~ r ∧ ~ k))) j}) (((cong (λ x → rUnit x (~ k)) (λ _ → basep)) ∙ cong (λ x → lUnit x (~ k)) (λ _ → basep)) j) where basep = snd (Ω ((Ω^ n) A)) {- Generalisations of EH α β when α or β is refl -} EH-gen-l : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → {x y : typ ((Ω^ (suc n)) A)} (α : x ≡ y) → α ∙ refl ≡ refl ∙ α EH-gen-l {ℓ = ℓ} {A = A} n {x = x} {y = y} α i j z = hcomp (λ k → λ { (i = i0) → ((cong (λ x → rUnit x (~ k)) α) ∙ refl) j z ; (i = i1) → (refl ∙ cong (λ x → rUnit x (~ k)) α) j z ; (j = i0) → rUnit (refl {x = x z}) (~ k) z ; (j = i1) → rUnit (refl {x = y z}) (~ k) z ; (z = i0) → x i1 ; (z = i1) → y i1}) (((λ j → α (j ∧ ~ i) ∙ refl) ∙ λ j → α (~ i ∨ j) ∙ refl) j z) EH-gen-r : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → {x y : typ ((Ω^ (suc n)) A)} (β : x ≡ y) → refl ∙ β ≡ β ∙ refl EH-gen-r {A = A} n {x = x} {y = y} β i j z = hcomp (λ k → λ { (i = i0) → (refl ∙ cong (λ x → lUnit x (~ k)) β) j z ; (i = i1) → ((cong (λ x → lUnit x (~ k)) β) ∙ refl) j z ; (j = i0) → lUnit (λ k → x (k ∧ z)) (~ k) z ; (j = i1) → lUnit (λ k → y (k ∧ z)) (~ k) z ; (z = i0) → x i1 ; (z = i1) → y i1}) (((λ j → refl ∙ β (j ∧ i)) ∙ λ j → refl ∙ β (i ∨ j)) j z) {- characterisations of EH α β when α or β is refl -} EH-α-refl : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (α : typ ((Ω^ (2 + n)) A)) → EH n α refl ≡ sym (rUnit α) ∙ lUnit α EH-α-refl {A = A} n α i j k = hcomp (λ r → λ { (i = i0) → EH-gen-l n (λ i → α (i ∧ r)) j k ; (i = i1) → (sym (rUnit λ i → α (i ∧ r)) ∙ lUnit λ i → α (i ∧ r)) j k ; (j = i0) → ((λ i → α (i ∧ r)) ∙ refl) k ; (j = i1) → (refl ∙ (λ i → α (i ∧ r))) k ; (k = i0) → refl ; (k = i1) → α r}) ((EH-refl-refl n ∙ sym (lCancel (rUnit refl))) i j k) EH-refl-β : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (β : typ ((Ω^ (2 + n)) A)) → EH n refl β ≡ sym (lUnit β) ∙ rUnit β EH-refl-β {A = A} n β i j k = hcomp (λ r → λ { (i = i0) → EH-gen-r n (λ i → β (i ∧ r)) j k ; (i = i1) → (sym (lUnit λ i → β (i ∧ r)) ∙ rUnit λ i → β (i ∧ r)) j k ; (j = i0) → (refl ∙ (λ i → β (i ∧ r))) k ; (j = i1) → ((λ i → β (i ∧ r)) ∙ refl) k ; (k = i0) → refl ; (k = i1) → β r}) ((EH-refl-refl n ∙ sym (lCancel (rUnit refl))) i j k) syllepsis : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (α β : typ ((Ω^ 3) A)) → EH 0 α β ≡ sym (EH 0 β α) syllepsis {A = A} n α β k i j = hcomp (λ r → λ { (i = i0) → i=i0 r j k ; (i = i1) → i=i1 r j k ; (j = i0) → j-filler r j k ; (j = i1) → j-filler r j k ; (k = i0) → EH-filler 1 α β i j r ; (k = i1) → EH-filler 1 β α (~ i) j r}) (btm-filler (~ k) i j) where guy = snd (Ω (Ω A)) btm-filler : I → I → I → typ (Ω (Ω A)) btm-filler j i k = hcomp (λ r → λ {(j = i0) → mainPath 1 β α (~ i) k ; (j = i1) → mainPath 1 α β i k ; (i = i0) → (cong (λ x → EH-α-refl 0 x r (~ j)) α ∙ cong (λ x → EH-refl-β 0 x r (~ j)) β) k ; (i = i1) → (cong (λ x → EH-refl-β 0 x r (~ j)) β ∙ cong (λ x → EH-α-refl 0 x r (~ j)) α) k ; (k = i0) → EH-α-refl 0 guy r (~ j) ; (k = i1) → EH-α-refl 0 guy r (~ j)}) (((λ l → EH 0 (α (l ∧ ~ i)) (β (l ∧ i)) (~ j)) ∙ λ l → EH 0 (α (l ∨ ~ i)) (β (l ∨ i)) (~ j)) k) link : I → I → I → _ link z i j = hfill (λ k → λ { (i = i1) → refl ; (j = i0) → rUnit refl (~ i) ; (j = i1) → lUnit guy (~ i ∧ k)}) (inS (rUnit refl (~ i ∧ ~ j))) z i=i1 : I → I → I → typ (Ω (Ω A)) i=i1 r j k = hcomp (λ i → λ { (r = i0) → (cong (λ x → compPath-filler (sym (lUnit x)) (rUnit x) i k) β ∙ cong (λ x → compPath-filler (sym (rUnit x)) (lUnit x) i k) α) j ; (r = i1) → (β ∙ α) j ; (k = i0) → (cong (λ x → lUnit x (~ r)) β ∙ cong (λ x → rUnit x (~ r)) α) j ; (k = i1) → (cong (λ x → rUnit x (~ r ∧ i)) β ∙ cong (λ x → lUnit x (~ r ∧ i)) α) j ; (j = i0) → link i r k ; (j = i1) → link i r k}) (((cong (λ x → lUnit x (~ r ∧ ~ k)) β ∙ cong (λ x → rUnit x (~ r ∧ ~ k)) α)) j) i=i0 : I → I → I → typ (Ω (Ω A)) i=i0 r j k = hcomp (λ i → λ { (r = i0) → (cong (λ x → compPath-filler (sym (rUnit x)) (lUnit x) i k) α ∙ cong (λ x → compPath-filler (sym (lUnit x)) (rUnit x) i k) β) j ; (r = i1) → (α ∙ β) j ; (k = i0) → (cong (λ x → rUnit x (~ r)) α ∙ cong (λ x → lUnit x (~ r)) β) j ; (k = i1) → (cong (λ x → lUnit x (~ r ∧ i)) α ∙ cong (λ x → rUnit x (~ r ∧ i)) β) j ; (j = i0) → link i r k ; (j = i1) → link i r k}) ((cong (λ x → rUnit x (~ r ∧ ~ k)) α ∙ cong (λ x → lUnit x (~ r ∧ ~ k)) β) j) j-filler : I → I → I → typ (Ω (Ω A)) j-filler r i k = hcomp (λ j → λ { (i = i0) → link j r k ; (i = i1) → link j r k ; (r = i0) → compPath-filler (sym (rUnit guy)) (lUnit guy) j k ; (r = i1) → refl ; (k = i0) → rUnit guy (~ r) ; (k = i1) → rUnit guy (j ∧ ~ r)}) (rUnit guy (~ r ∧ ~ k)) ------ Ωⁿ⁺¹ A ≃ Ωⁿ(Ω A) ------ flipΩPath : {ℓ : Level} {A : Pointed ℓ} (n : ℕ) → ((Ω^ (suc n)) A) ≡ (Ω^ n) (Ω A) flipΩPath {A = A} zero = refl flipΩPath {A = A} (suc n) = cong Ω (flipΩPath {A = A} n) flipΩIso : {ℓ : Level} {A : Pointed ℓ} (n : ℕ) → Iso (fst ((Ω^ (suc n)) A)) (fst ((Ω^ n) (Ω A))) flipΩIso {A = A} n = pathToIso (cong fst (flipΩPath n)) flipΩIso⁻pres· : {ℓ : Level} {A : Pointed ℓ} (n : ℕ) → (f g : fst ((Ω^ (suc n)) (Ω A))) → inv (flipΩIso (suc n)) (f ∙ g) ≡ (inv (flipΩIso (suc n)) f) ∙ (inv (flipΩIso (suc n)) g) flipΩIso⁻pres· {A = A} n f g i = transp (λ j → flipΩPath {A = A} n (~ i ∧ ~ j) .snd ≡ flipΩPath n (~ i ∧ ~ j) .snd) i (transp (λ j → flipΩPath {A = A} n (~ i ∨ ~ j) .snd ≡ flipΩPath n (~ i ∨ ~ j) .snd) (~ i) f ∙ transp (λ j → flipΩPath {A = A} n (~ i ∨ ~ j) .snd ≡ flipΩPath n (~ i ∨ ~ j) .snd) (~ i) g) flipΩIsopres· : {ℓ : Level} {A : Pointed ℓ} (n : ℕ) → (f g : fst (Ω ((Ω^ (suc n)) A))) → fun (flipΩIso (suc n)) (f ∙ g) ≡ (fun (flipΩIso (suc n)) f) ∙ (fun (flipΩIso (suc n)) g) flipΩIsopres· n = morphLemmas.isMorphInv _∙_ _∙_ (inv (flipΩIso (suc n))) (flipΩIso⁻pres· n) (fun (flipΩIso (suc n))) (Iso.leftInv (flipΩIso (suc n))) (Iso.rightInv (flipΩIso (suc n))) flipΩrefl : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → fun (flipΩIso {A = A} (suc n)) refl ≡ refl flipΩrefl {A = A} n j = transp (λ i₁ → fst (Ω (flipΩPath {A = A} n ((i₁ ∨ j))))) j (snd (Ω (flipΩPath n j))) ---- Misc. ---- isCommA→isCommTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ A → isOfHLevel (suc n) (typ A) → isComm∙ (∥ typ A ∥ (suc n) , ∣ pt A ∣) isCommA→isCommTrunc {A = (A , a)} n comm hlev p q = ((λ i j → (leftInv (truncIdempotentIso (suc n) hlev) ((p ∙ q) j) (~ i))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (cong (trRec hlev (λ x → x)) (p ∙ q))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) p q i))) ∙ ((λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (comm (cong (trRec hlev (λ x → x)) p) (cong (trRec hlev (λ x → x)) q) i)) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) q p (~ i))) ∙∙ (λ i j → (leftInv (truncIdempotentIso (suc n) hlev) ((q ∙ p) j) i))) ptdIso→comm : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Type ℓ'} (e : Iso (typ A) B) → isComm∙ A → isComm∙ (B , fun e (pt A)) ptdIso→comm {A = (A , a)} {B = B} e comm p q = sym (rightInv (congIso e) (p ∙ q)) ∙∙ (cong (fun (congIso e)) ((invCongFunct e p q) ∙∙ (comm (inv (congIso e) p) (inv (congIso e) q)) ∙∙ (sym (invCongFunct e q p)))) ∙∙ rightInv (congIso e) (q ∙ p) {- Homotopy group version -} π-comp : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → ∥ typ ((Ω^ (suc n)) A) ∥₂ → ∥ typ ((Ω^ (suc n)) A) ∥₂ → ∥ typ ((Ω^ (suc n)) A) ∥₂ π-comp n = elim2 (λ _ _ → isSetSetTrunc) λ p q → ∣ p ∙ q ∣₂ EH-π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p q : ∥ typ ((Ω^ (2 + n)) A) ∥₂) → π-comp (1 + n) p q ≡ π-comp (1 + n) q p EH-π n = elim2 (λ x y → isOfHLevelPath 2 isSetSetTrunc _ _) λ p q → cong ∣_∣₂ (EH n p q)
{ "alphanum_fraction": 0.4040712107, "avg_line_length": 42.5951661631, "ext": "agda", "hexsha": "a68c264951f9e6b581b55c6f419be9b47d9f0c40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8dea02ee105b45898dbf1f77271ead38994f4d61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rnarkk/cubical", "max_forks_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8dea02ee105b45898dbf1f77271ead38994f4d61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rnarkk/cubical", "max_issues_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "8dea02ee105b45898dbf1f77271ead38994f4d61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rnarkk/cubical", "max_stars_repo_path": "Cubical/Homotopy/Loopspace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6080, "size": 14099 }
module Serializer.Vec where open import Data.Fin hiding (_+_) open import Data.Nat open import Data.Vec open import Function using (_∘_ ; _$_ ; _∋_ ; id ; const) open import Function.Bijection open import Function.Injection open import Function.Surjection open import Function.Equality using (_⟶_ ; _⟨$⟩_ ; Π ) open import Function.LeftInverse hiding (_∘_) open import Relation.Binary open import Relation.Binary.EqReasoning open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; setoid ) import Relation.Binary.Indexed as I open import Serializer open import Helper.Fin open Serializer.Serializer {{...}} ----------------------------------- -- Generic instance for Vec ----------------------------------- 2^ : ℕ -> ℕ 2^ zero = 1 2^ (suc b) = 2 * 2^ b -- inverted exponent _^_ : ℕ -> ℕ -> ℕ zero ^ a = 1 suc b ^ a = a * (b ^ a) fromVec : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Vec A n -> Fin (n ^ (size {A})) fromVec {zero} [] = zero fromVec {suc n} {a} (x ∷ v) = × (size {a}) (n ^ (size {a})) (from x) (fromVec v) toVec` : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Fin (n ^ (size {A})) -> Vec A n toVec` {zero} x = [] toVec` {suc n} {a} {{t}} x with Serializer.to t | toVec` {n} {a} {{t}} ... | to1 | to2 with Serializer.size t ... | s with ⨂ s (n ^ s) x toVec` {suc n} .(× s (n ^ s) i j) | to1 | to2 | s | is× i j = to1 i ∷ to2 j vec-from-cong : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Setoid._≈_ (setoid (Vec A n)) I.=[ fromVec ]⇒ Setoid._≈_ (setoid (Fin (n ^ (size {A})))) vec-from-cong refl = refl vec-from-preserves-eq : ∀ {n} {A : Set} -> {{t : Serializer A}} -> setoid (Vec A n) ⟶ setoid (Fin (n ^ (size {A}))) vec-from-preserves-eq = record { _⟨$⟩_ = fromVec ; cong = vec-from-cong } vec-from-injective : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Injective (vec-from-preserves-eq {n} {A} {{t}}) vec-from-injective {zero} {a} {{t}} {x = []} {[]} x₁ with fromVec {A = a} {{t}} [] ... | p1 = refl vec-from-injective {suc n} {a} {{t}} {x ∷ x₁} {y ∷ y₁} p with (⨂ (Serializer.size t) (n ^ (Serializer.size t)) (fromVec (x ∷ x₁))) | (⨂ (Serializer.size t) (n ^ (Serializer.size t)) (fromVec (y ∷ y₁))) ... | a1 | b2 with vec-from-injective {n} {_} {{t}} {x₁} {y₁} ... | c with c (×-equal₁ {x₁ = (Serializer.from t x)} {x₂ = (Serializer.from t y)} p) | (×-equal₂ {x₁ = (Serializer.from t x)} {x₂ = (Serializer.from t y)} p) ... | p1 | p2 with Serializer.from t ... | la = ? --(Injection.injective (Serializer.injection t)) {- vec-from-injective : ∀ {n} -> Injective (vec-from-preserves-eq {n}) vec-from-injective {zero} {[]} {[]} p with fromVec [] ... | p2 = refl vec-from-injective {suc n} {x ∷ x₁} {y ∷ y₁} p with (⨂ 2 (2^ n) (fromVec (x ∷ x₁))) | (⨂ 2 (2^ n) (fromVec (y ∷ y₁))) ... | a1 | b2 with vec-from-injective {n} {x₁} {y₁} ... | c with c (×-equal₁ {x₁ = (fromBool x)} {x₂ = (fromBool y)} p) | (×-equal₂ {x₁ = (fromBool x)} {x₂ = (fromBool y)} p) ... | p1 | p2 with from-bool-injective p2 vec-from-injective {suc n} {x ∷ x₁} {.x ∷ .x₁} p | a1 | b2 | c | refl | p2 | refl = refl -} vec-from-surjective : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Surjective (vec-from-preserves-eq {n} {A} {{t}}) vec-from-surjective {n} {a} {{t}} = record { from = preserves-eq-inv ; right-inverse-of = (inv {n} {a} {{t}}) } where cong-inverse : ∀ {n} {A : Set} -> {{t : Serializer A}} -> Setoid._≈_ (setoid (Fin (n ^ (size {A})))) I.=[ toVec` ]⇒ Setoid._≈_ (setoid (Vec A n)) cong-inverse refl = refl preserves-eq-inv : ∀ {n} {A : Set} -> {{t : Serializer A}} -> setoid (Fin (n ^ (size {A}))) ⟶ setoid (Vec A n) preserves-eq-inv = record { _⟨$⟩_ = toVec` ; cong = cong-inverse } inv : ∀ {n} {A : Set} -> {{t : Serializer A}} -> (preserves-eq-inv {n} {A} {{t}}) RightInverseOf (vec-from-preserves-eq {n} {A} {{t}}) inv {zero} zero = refl inv {zero} (suc ()) inv {suc n₁} {a} {{t}} x with ⨂ (Serializer.size t) (n₁ ^ (Serializer.size t)) x inv {suc n₁} {a} {{t}} ._ | is× i j with (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (Serializer.bijection t)))) i ... | ple = {!!} -- rewrite (inv {n₁} {a} {{t}} j) -- ... | ple = ? -- ... | moo with (inv {n₁} {a} {{t}} j) -- ... | moo1 = refl -- {!!} {- inv {suc n₁} ._ | is× i j with (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (Serializer.bijection t)))) ... | moo = {!!}-} -- rewrite (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (Serializer.bijection t)))) i | (inv {n₁} j) = refl {- vec-from-surjective : ∀ {n} -> Surjective (vec-from-preserves-eq {n}) vec-from-surjective {n} = record { from = preserves-eq-inv ; right-inverse-of = (inv {n}) } where cong-inverse : ∀ {n} -> Setoid._≈_ (setoid (Fin (2^ n))) I.=[ toVec` ]⇒ Setoid._≈_ (setoid (Vec Bool n)) cong-inverse refl = refl preserves-eq-inv : ∀ {n} -> setoid (Fin (2^ n)) ⟶ setoid (Vec Bool n) preserves-eq-inv = record { _⟨$⟩_ = toVec` ; cong = cong-inverse } inv : ∀ {n} -> (preserves-eq-inv {n}) RightInverseOf (vec-from-preserves-eq {n}) inv {zero} zero = refl inv {zero} (suc ()) inv {suc n₁} x with ⨂ 2 (2^ n₁) x inv {suc n₁} .(× 2 (2^ n₁) i j) | is× i j rewrite (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Bool})))) i | (inv {n₁} j) = refl -}
{ "alphanum_fraction": 0.561918929, "avg_line_length": 44.8166666667, "ext": "agda", "hexsha": "60dd1441feb38601522ca773c69719b3865d376d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "Serializer/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "Serializer/Vec.agda", "max_line_length": 202, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "Serializer/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 1991, "size": 5378 }
open import Data.List using ( [] ) open import Data.Product using ( proj₁ ; proj₂ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Properties.Composition.Assoc using ( compose-assoc ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv using ( compose-resp-≣ ) open import Web.Semantic.DL.Category.Properties.Equivalence using ( ≣-refl ; ≣-sym ; ≣-trans ) open import Web.Semantic.DL.Category.Properties.Tensor.Coherence using ( symm-unit ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.SymmNatural using ( symm-natural ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Category.Wiring using ( wires-≈ ; wires-≈⁻¹ ; identity ; unit₁ ; unit₂ ; symm ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ) open import Web.Semantic.Util using ( _∘_ ; False ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.UnitNatural {Σ : Signature} {S T : TBox Σ} where unit₁-natural : ∀ {A B : Object S T} (F : A ⇒ B) → ((identity I ⟨⊗⟩ F) ∙ unit₁ B ≣ unit₁ A ∙ F) unit₁-natural {A} {B} F = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : ((identity I ⟨⊗⟩ F) ∙ unit₁ B ⊑ unit₁ A ∙ F) LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where f : False ⊕ IN A ⊕ BN F → Δ ⌊ J ⌋ f (inode ()) f (bnode x) = ind J (inode (inj₂ x)) f (enode v) = ind J (bnode (inode (inj₂ v))) f✓ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (down x)) ≈ on-bnode f (ind J) (right x) f✓ (inode x) = ≈-refl ⌊ J ⌋ f✓ (bnode v) = ≈-refl ⌊ J ⌋ f✓ (enode y) = wires-≈ inj₂ (proj₂ (fin B) y) (compose-right (identity I ⟨⊗⟩ F) (unit₁ B) J J⊨LHS) J⊨RHS : bnodes J f ⊨a impl (unit₁ A ∙ F) J⊨RHS = compose-resp-⊨a (unit₁ A) F (bnodes J f) (wires-≈⁻¹ inj₂ (λ x → ≈-refl ⌊ J ⌋) (proj₁ (fin A))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , f✓) (impl F) (tensor-down (identity I) F (left * J) (compose-left (identity I ⟨⊗⟩ F) (unit₁ B) J J⊨LHS))) RHS⊑LHS : (unit₁ A ∙ F ⊑ (identity I ⟨⊗⟩ F) ∙ unit₁ B) RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where f : ((False ⊎ BN F) ⊕ (False ⊎ IN B) ⊕ False) → Δ ⌊ J ⌋ f (inode (inj₁ ())) f (inode (inj₂ v)) = ind J (bnode (enode v)) f (bnode (inj₁ ())) f (bnode (inj₂ y)) = ind J (enode y) f (enode ()) f✓ : ∀ x → ⌊ J ⌋ ⊨ ind J (right x) ≈ on-bnode f (ind J) (left (down x)) f✓ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ inj₂ (proj₂ (fin A) x) (compose-left (unit₁ A) F J J⊨RHS)) f✓ (bnode v) = ≈-refl ⌊ J ⌋ f✓ (enode y) = ≈-refl ⌊ J ⌋ J⊨LHS : bnodes J f ⊨a impl ((identity I ⟨⊗⟩ F) ∙ unit₁ B) J⊨LHS = compose-resp-⊨a (identity I ⟨⊗⟩ F) (unit₁ B) (bnodes J f) (tensor-resp-⊨a (identity I) F (left * bnodes J f) (wires-≈⁻¹ {I = up * left * bnodes J f} (λ ()) (λ ()) []) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , f✓) (impl F) (compose-right (unit₁ A) F J J⊨RHS))) (wires-≈⁻¹ inj₂ (λ x → ≈-refl ⌊ J ⌋) (proj₁ (fin B))) unit₂-natural : ∀ {A B : Object S T} (F : A ⇒ B) → ((F ⟨⊗⟩ identity I) ∙ unit₂ B ≣ unit₂ A ∙ F) unit₂-natural {A} {B} F = ≣-trans (compose-resp-≣ (≣-refl (F ⟨⊗⟩ identity I)) (≣-sym (symm-unit B))) (≣-trans (≣-sym (compose-assoc (F ⟨⊗⟩ identity I) (symm B I) (unit₁ B))) (≣-trans (compose-resp-≣ (symm-natural F (identity I)) (≣-refl (unit₁ B))) (≣-trans (compose-assoc (symm A I) (identity I ⟨⊗⟩ F) (unit₁ B)) (≣-trans (compose-resp-≣ (≣-refl (symm A I)) (unit₁-natural F)) (≣-trans (≣-sym (compose-assoc (symm A I) (unit₁ A) F)) (compose-resp-≣ (symm-unit A) (≣-refl F)))))))
{ "alphanum_fraction": 0.5968370884, "avg_line_length": 43.9619047619, "ext": "agda", "hexsha": "a397c787bd0a55cae930b18f6a36a7919c5f5704", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/UnitNatural.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/UnitNatural.agda", "max_line_length": 98, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/UnitNatural.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1966, "size": 4616 }
module PiFrac where open import Level open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product infixr 20 _◎_ data <_> {A : Set} : A → Set where singleton : (x : A) -> < x > mutual data B : Set₁ where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B SING : (b : B) → ⟦ b ⟧ → B RECIP : (b : B) → ⟦ b ⟧ → B DPAIR : (b : B) → (⟦ b ⟧ → B) → B ⟦_⟧ : B → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS b₁ b₂ ⟧ = ⟦ b₁ ⟧ ⊎ ⟦ b₂ ⟧ ⟦ TIMES b₁ b₂ ⟧ = ⟦ b₁ ⟧ × ⟦ b₂ ⟧ ⟦ SING b v ⟧ = <_> {⟦ b ⟧} v ⟦ RECIP b v ⟧ = <_> {⟦ b ⟧} v → ⊤ ⟦ DPAIR b c ⟧ = Σ ⟦ b ⟧ (λ v → ⟦ c v ⟧) data _⟷_ : B → B → Set₁ where unite₊ : {b : B} → PLUS ZERO b ⟷ b uniti₊ : {b : B} → b ⟷ PLUS ZERO b swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) id⟷ : {b : B } → b ⟷ b sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) η : {b : B} → ONE ⟷ DPAIR b (λ v → RECIP b v) ε : {b : B} → DPAIR b (λ v → RECIP b v) ⟷ ONE mutual eval : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ eval unite₊ (inj₁ ()) eval unite₊ (inj₂ v) = v eval uniti₊ v = inj₂ v eval swap₊ (inj₁ x) = inj₂ x eval swap₊ (inj₂ y) = inj₁ y eval assocl₊ (inj₁ x) = inj₁ (inj₁ x) eval assocl₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) eval assocl₊ (inj₂ (inj₂ x)) = inj₂ x eval assocr₊ (inj₁ (inj₁ x)) = inj₁ x eval assocr₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) eval assocr₊ (inj₂ y) = inj₂ (inj₂ y) eval unite⋆ (tt , x) = x eval uniti⋆ v = ( tt , v) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (x , (y , z)) = ((x , y), z) eval assocr⋆ ((x , y), z) = (x , (y , z)) eval id⟷ v = v eval (sym c) v = evalB c v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ x) = inj₁ (eval c₁ x) eval (c₁ ⊕ c₂) (inj₂ y) = inj₂ (eval c₂ y) eval (c₁ ⊗ c₂) (x , y) = (eval c₁ x , eval c₂ y) eval (η {b}) tt = {!!} eval (ε {b}) (w , c) = c (singleton w) evalB : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ evalB uniti₊ (inj₁ ()) evalB uniti₊ (inj₂ v) = v evalB unite₊ v = inj₂ v evalB swap₊ (inj₁ x) = inj₂ x evalB swap₊ (inj₂ y) = inj₁ y evalB assocr₊ (inj₁ x) = inj₁ (inj₁ x) evalB assocr₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) evalB assocr₊ (inj₂ (inj₂ x)) = inj₂ x evalB assocl₊ (inj₁ (inj₁ x)) = inj₁ x evalB assocl₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) evalB assocl₊ (inj₂ y) = inj₂ (inj₂ y) evalB uniti⋆ (tt , x) = x evalB unite⋆ v = ( tt , v) evalB swap⋆ (v₁ , v₂) = (v₂ , v₁) evalB assocr⋆ (x , (y , z)) = ((x , y), z) evalB assocl⋆ ((x , y), z) = (x , (y , z)) evalB id⟷ v = v evalB (sym c) v = eval c v evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v) evalB (c₁ ⊕ c₂) (inj₁ x) = inj₁ (evalB c₁ x) evalB (c₁ ⊕ c₂) (inj₂ y) = inj₂ (evalB c₂ y) evalB (c₁ ⊗ c₂) (x , y) = (evalB c₁ x , evalB c₂ y) evalB (η {b}) (w , c) = c (singleton w) evalB (ε {b}) tt = {!!} -- this is better in that one can't use inj₂ tt on the rhs -- the overly precise version doesn't type check, don't know why test : ⊤ test = eval (ε {PLUS ONE ONE}) (inj₁ tt , f) where f : < inj₁ {B = ⊤} tt > → ⊤ -- f (singleton (inj₁ {B = ⊤} tt)) = tt f x = tt {- mutual data B : Set where ONE : B PLUS : B → B → B TIMES : B → B → B MATCH : {b : B} → Singleton b → B DPAIR : {b : B} → (Σ (BV b) Singleton) → B mutual eval : {b₁ b₂ : B} → b₁ ⟷ b₂ → BV b₁ → BV b₂ eval swap₊ (LEFT v) = RIGHT v eval swap₊ (RIGHT v) = LEFT v eval (η {b₁} {v}) UNIT = NCPROD b₁ v eval assocl₊ (LEFT v) = LEFT (LEFT v) eval assocl₊ (RIGHT (LEFT v)) = LEFT (RIGHT v) eval assocl₊ (RIGHT (RIGHT v)) = RIGHT v eval assocr₊ (LEFT (LEFT v)) = LEFT v eval assocr₊ (LEFT (RIGHT v)) = RIGHT (LEFT v) eval assocr₊ (RIGHT v) = RIGHT (RIGHT v) eval unite⋆ (PAIR UNIT v) = v eval uniti⋆ v = PAIR UNIT v eval (ε {b₁} {v}) (NCPROD .b₁ .v) = UNIT eval id⟷ v = v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (LEFT v) = LEFT (eval c₁ v) eval (c₁ ⊕ c₂) (RIGHT v) = RIGHT (eval c₂ v) eval (c₁ ⊗ c₂) (PAIR v₁ v₂) = PAIR (eval c₁ v₁) (eval c₂ v₂) eval (lift {b₁} {b₂} {v} c) (NCPROD .b₁ .v) = NCPROD b₂ (eval c v) -- name : {b₁ b₂ : B} {v : BV b₁} → (b₁ ⟷ b₂) → (ONE ⟷ DPAIR (v , singleton v)) -- name {b₁} {b₂} {v} c = η {b₁} {v} ◎ (lift (id⟷ ⊗ c)) --} -------------------------------------------------------------------------------- -- Jacques's code {-- data Singleton {A : Set} : A → Set where singleton : (x : A) -> Singleton x mutual data B : Set where ONE : B PLUS : B → B → B TIMES : B → B → B MATCH : {b : B} → Singleton b → B DPAIR : {b : B} → (Σ (BV b) Singleton) → B data BV : B → Set where UNIT : BV ONE LEFT : {b₁ b₂ : B} → BV b₁ → BV (PLUS b₁ b₂) RIGHT : {b₁ b₂ : B} → BV b₂ → BV (PLUS b₁ b₂) PAIR : {b₁ b₂ : B} → BV b₁ → BV b₂ → BV (TIMES b₁ b₂) SINGLE : {b₁ : B} → BV b₁ → BV (MATCH {b₁} (singleton b₁)) NCPROD : (b₁ : B) → (v : BV b₁) → BV (DPAIR (v , (singleton v))) mutual data _⟷_ : B → B → Set where swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b η : {b₁ : B} {v : BV b₁} → ONE ⟷ DPAIR (v , (singleton v)) ε : {b₁ : B} {v : BV b₁} → DPAIR (v , (singleton v)) ⟷ ONE id⟷ : {b : B } → b ⟷ b -- closure combinators -- sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) -- refe⋆ : { b : BF } → RECIP (RECIP b) ⟺ b -- refi⋆ : { b : BF } → b ⟺ RECIP (RECIP b) -- rile⋆ : { b : BF } → TIMESF b (TIMESF b (RECIP b)) ⟺ b -- rili⋆ : { b : BF } → b ⟺ TIMESF b (TIMESF b (RECIP b)) lift : {b₁ b₂ : B} {v : BV b₁} → (c : b₁ ⟷ b₂) → DPAIR (v , (singleton v)) ⟷ DPAIR (eval c v , (singleton (eval c v))) eval : {b₁ b₂ : B} → b₁ ⟷ b₂ → BV b₁ → BV b₂ eval swap₊ (LEFT v) = RIGHT v eval swap₊ (RIGHT v) = LEFT v eval (η {b₁} {v}) UNIT = NCPROD b₁ v eval assocl₊ (LEFT v) = LEFT (LEFT v) eval assocl₊ (RIGHT (LEFT v)) = LEFT (RIGHT v) eval assocl₊ (RIGHT (RIGHT v)) = RIGHT v eval assocr₊ (LEFT (LEFT v)) = LEFT v eval assocr₊ (LEFT (RIGHT v)) = RIGHT (LEFT v) eval assocr₊ (RIGHT v) = RIGHT (RIGHT v) eval unite⋆ (PAIR UNIT v) = v eval uniti⋆ v = PAIR UNIT v eval (ε {b₁} {v}) (NCPROD .b₁ .v) = UNIT eval id⟷ v = v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (LEFT v) = LEFT (eval c₁ v) eval (c₁ ⊕ c₂) (RIGHT v) = RIGHT (eval c₂ v) eval (c₁ ⊗ c₂) (PAIR v₁ v₂) = PAIR (eval c₁ v₁) (eval c₂ v₂) eval (lift {b₁} {b₂} {v} c) (NCPROD .b₁ .v) = NCPROD b₂ (eval c v) -- name : {b₁ b₂ : B} {v : BV b₁} → (b₁ ⟷ b₂) → (ONE ⟷ DPAIR (v , singleton v)) -- name {b₁} {b₂} {v} c = η {b₁} {v} ◎ (lift (id⟷ ⊗ c)) --}
{ "alphanum_fraction": 0.4876670092, "avg_line_length": 34.5955555556, "ext": "agda", "hexsha": "853fc6de7a10812e91492d3cc6a4faaacdbad1fc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/PiFrac.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/PiFrac.agda", "max_line_length": 80, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/PiFrac.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3886, "size": 7784 }
T-to-≡ : ∀ {x} → T x → x ≡ true T-to-≡ {true} tx = refl ≡-to-T : ∀ {x} → x ≡ true → T x ≡-to-T {true} x≡true = tt ≤-to-→ : ∀ {x y} → x 𝔹.≤ y → T x → T y ≤-to-→ {true} {true} x≤y _ = tt →-to-≤ : ∀ {x y} → (T x → T y) → x 𝔹.≤ y →-to-≤ {false} {false} Tx→Ty = b≤b →-to-≤ {false} {true} Tx→Ty = f≤t →-to-≤ {true} {false} Tx→Ty = ⊥-elim (Tx→Ty tt) →-to-≤ {true} {true} Tx→Ty = b≤b toFun : (x : ℕ → Bool) → (∀ i → x (suc i) 𝔹.≤ x i) → ∀ i → T (x (suc i)) → T (x i) toFun x p i = ≤-to-→ (p i) fromFun : (x : ℕ → Bool) → (∀ i → T (x (suc i)) → T (x i)) → ∀ i → x (suc i) 𝔹.≤ x i fromFun _ f i = →-to-≤ (f i) Dec-T : ∀ b → Dec (T b) Dec-T false = no id Dec-T true = yes tt private _≈Decidable_ : ∀ {P Q : ℕ → Set} (P? : U.Decidable P) (Q? : U.Decidable Q) → Set P? ≈Decidable Q? = ∀ x → isYes (P? x) ≡ isYes (Q? x) make≈Decidable : {P Q : ℕ → Set} → (∀ x → P x → Q x) → (∀ x → Q x → P x) → (P? : U.Decidable P) (Q? : U.Decidable Q) → P? ≈Decidable Q? make≈Decidable P→Q Q→P P? Q? x with P? x | Q? x ... | yes p | yes q = refl ... | yes p | no ¬q = contradiction (P→Q _ p) ¬q ... | no ¬p | yes q = contradiction (Q→P _ q) ¬p ... | no ¬p | no ¬q = refl ℕ≤-all-dec′ : ∀ {P : ℕ → Set} → U.Decidable P → U.Decidable (λ n → ∀ i → i ≤ n → P i) ℕ≤-all-dec′ P? = DecU⇒decidable $ ℕ≤-all-dec (decidable⇒DecU P?) idem-map-Pred : (α : ℕ → Bool) → ℕ → Set idem-map-Pred α n = ∀ i → i ≤ n → T (α i) idem-map-Pred? : (α : ℕ → Bool) → U.Decidable (idem-map-Pred α) idem-map-Pred? α = ℕ≤-all-dec′ (λ i → Dec-T (α i)) idem-map : (ℕ → Bool) → (ℕ → Bool) idem-map α n = isYes (idem-map-Pred? α n) idem-map-idem : ∀ α → idem-map (idem-map α) ≈ idem-map α idem-map-idem α = make≈Decidable (λ n x i i≤n → {! !}) {! !} (idem-map-Pred? (λ n → isYes (idem-map-Pred? α n))) (idem-map-Pred? α) -- x : idem-map-Pred (λ n₁ → isYes (idem-map-Pred? α n₁)) n -- x : ∀ i → i ≤ n → T (isYes (idem-map-Pred? α i)) -- True toWitness -- hyp : idem-map-Pred α i -- hyp : ∀ i → -- Goal : ∀ i → i ≤ n → T (α i) -- idem-map α n -- isYes (ℕ-all-dec′ (λ i → Dec-⊤ (α i)) n) idem-map-image : ∀ α → let x = idem-map α in (∀ i → T (x (suc i)) → T (x i)) idem-map-image α n ppp with ℕ≤-all-dec′ (λ i → Dec-T (α i)) n ... | yes _ = {! !} ... | no _ = {! !}
{ "alphanum_fraction": 0.4670995671, "avg_line_length": 29.6153846154, "ext": "agda", "hexsha": "d778a6741481d52d23650fc8db27d4c4a392de40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Omniscience/Misc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Omniscience/Misc.agda", "max_line_length": 87, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Omniscience/Misc.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1121, "size": 2310 }
{-# OPTIONS --universe-polymorphism #-} module Issue354 where ------------------------------------------------------------------------ -- Preliminaries postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x _≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set (a ⊔ b) f ≗ g = ∀ x → f x ≡ g x ------------------------------------------------------------------------ -- Example postulate a : Level A : Set a P : A → Set x : A f : ∀ {a} {A : Set a} → A → A g : A → A lemma : f ≗ g p : f x ≡ g x p with f x | lemma x ... | .(g x) | refl = refl -- The code above fails to type check, even though lemma x has the -- type f x ≡ g x. However, if A is given the type Set zero, then the -- code checks. -- Excerpt from agda -vtc.with:100 --show-implicit Bug.agda: -- -- checkWithFunction -- delta1 = -- delta2 = -- gamma = -- as = [A, _≡_ {a} {A} (f {a ⊔ a} {A} x) (g x)] -- vs = [f {a} {A} x, lemma x] -- b = _≡_ {a} {A} (f {a} {A} x) (g x) -- qs = [] -- perm = -> -- -- Notice the occurrence of a ⊔ a.
{ "alphanum_fraction": 0.4317673378, "avg_line_length": 22.7288135593, "ext": "agda", "hexsha": "1d2eb63e9e1ce07c28ca1d74a0564dd3f0d1aa3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue354.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue354.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue354.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 475, "size": 1341 }
module Optics.Iso where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Function.Equality using (Π) open import Function.Inverse using (_↔_; inverse; Inverse; _InverseOf_) open import Relation.Binary.PropositionalEquality using (_≡_; →-to-⟶; refl) open import Category.Functor.Arr open import Category.Functor.Const open import Category.Profunctor open import Category.Profunctor.Star open import Category.Profunctor.Joker open import Optics Iso : ∀ {l} (S T A B : Set l) → Set (lsuc l) Iso = Optic ProfunctorImp module Iso {l} {S T A B : Set l} (iso : Iso S T A B) where get : S → A get = getOptic S T A B (starProfunctor constFunctor) iso put : B → T put = putOptic S T A B (jokerProfunctor arrFunctor) iso record LawfulIsoImp {l} {S A : Set l} (iso' : Iso S S A A) : Set (lsuc l) where open Iso iso' field putget : ∀ (s : S) → put (get s) ≡ s getput : ∀ (a : A) → get (put a) ≡ a module LawfulIso {l} {S A : Set l} {iso' : Iso S S A A} (isLawful : LawfulIsoImp iso') where open Iso iso' public iso : Iso S S A A iso = iso' open LawfulIsoImp isLawful public isoIso : ∀ {S A : Set} {iso : Iso S S A A} → (i : LawfulIsoImp iso) → S ↔ A isoIso {S} {A} i = inverse to from from∘to to∘from where open LawfulIso i to = get from = put from∘to : (s : S) → from (to s) ≡ s from∘to = putget to∘from : (a : A) → to (from a) ≡ a to∘from = getput invLawfulIso : ∀ {l} {S A : Set l} {get : S → A} {put : A → S} → (→-to-⟶ get) InverseOf (→-to-⟶ put) ↔ LawfulIsoImp (λ p → Profunctor.dimap p get put) invLawfulIso = inverse invertibleIsLawful lawfulIsInvertible (λ _ → refl) (λ _ → refl) where invertibleIsLawful : ∀ {l} {S A : Set l} {get : S → A} {put : A → S} → (→-to-⟶ get) InverseOf (→-to-⟶ put) → LawfulIsoImp (λ p → Profunctor.dimap p get put) invertibleIsLawful i = record { putget = right-inverse-of ; getput = left-inverse-of } where open _InverseOf_ i lawfulIsInvertible : ∀ {l} {S A : Set l} {get : S → A} {put : A → S} → LawfulIsoImp (λ p → Profunctor.dimap p get put) → (→-to-⟶ get) InverseOf (→-to-⟶ put) lawfulIsInvertible isLawful = record { left-inverse-of = getput ; right-inverse-of = putget } where open LawfulIso isLawful
{ "alphanum_fraction": 0.6297592998, "avg_line_length": 36.2698412698, "ext": "agda", "hexsha": "e766c0cff58da1575b38547697049d47a4f1ad59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Optics/Iso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Optics/Iso.agda", "max_line_length": 160, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Optics/Iso.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 851, "size": 2285 }
---------------------------------------------------------------- -- This file contains the definition of natural isomorphisms. -- ---------------------------------------------------------------- module Category.NatIsomorphism where open import Category.NatTrans public open import Category.Iso public record NatIso {l₁ l₂ : Level} {ℂ₁ : Cat {l₁}} {ℂ₂ : Cat {l₂}} (F G : Functor ℂ₁ ℂ₂) : Set (l₁ ⊔ l₂) where field -- The natural transformation. natt : NatTrans F G -- Each component of (η natt) is an iso. η-iso-ax : ∀{A : Obj ℂ₁} → Iso {l₂}{ℂ₂}{A = omap F A}{omap G A} (η natt A) open NatIso public
{ "alphanum_fraction": 0.4872944694, "avg_line_length": 31.8571428571, "ext": "agda", "hexsha": "9179e2536ee5406a42782420a3ea6900191eca90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/NatIsomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/NatIsomorphism.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/NatIsomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 183, "size": 669 }
{-# OPTIONS --cubical-compatible #-} module Common.Prelude where import Common.Level open import Agda.Builtin.Unit public open import Common.Bool public open import Common.Char public open import Common.Float public open import Common.IO public open import Common.List public open import Common.Maybe public open import Common.Nat public open import Common.String public open import Common.Unit public data ⊥ : Set where
{ "alphanum_fraction": 0.7725225225, "avg_line_length": 23.3684210526, "ext": "agda", "hexsha": "c713b5f13b23e7c4b28948231beff762a2d2524f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Prelude.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Prelude.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 98, "size": 444 }
module NonEmptyList where infixr 5 _∷_ open import Data.Nat data NList (A : Set) : Set where [_] : A → NList A _∷_ : A → NList A → NList A map : {A B : Set} → (f : A → B) → NList A → NList B map f [ x ] = [ f x ] map f (x ∷ l) = f x ∷ map f l length : ∀ {A} → NList A → ℕ length [ _ ] = 1 length (_ ∷ l) = suc (length l)
{ "alphanum_fraction": 0.5333333333, "avg_line_length": 18.3333333333, "ext": "agda", "hexsha": "69d286dae9267263e7bc72ffce33419efe828371", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/FibDataTypes/NonEmptyList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/FibDataTypes/NonEmptyList.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/FibDataTypes/NonEmptyList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 144, "size": 330 }
{-# OPTIONS --without-K --safe #-} -- Bundled version of Monoidal Category module Categories.Category.Monoidal.Bundle where open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Monoidal.Core using (Monoidal) open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Symmetric using (Symmetric) record MonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U open Category U public open Monoidal monoidal public record BraidedMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U braided : Braided monoidal monoidalCategory : MonoidalCategory o ℓ e monoidalCategory = record { U = U ; monoidal = monoidal } open Category U public open Braided braided public record SymmetricMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U symmetric : Symmetric monoidal open Category U public open Symmetric symmetric public braidedMonoidalCategory : BraidedMonoidalCategory o ℓ e braidedMonoidalCategory = record { U = U ; monoidal = monoidal ; braided = braided } open BraidedMonoidalCategory braidedMonoidalCategory public using (monoidalCategory)
{ "alphanum_fraction": 0.715, "avg_line_length": 27.4509803922, "ext": "agda", "hexsha": "4ed249bb467a7acc8a9f255fd53bf0938eb760f5", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Bundle.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Bundle.agda", "max_line_length": 68, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Bundle.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 384, "size": 1400 }
module Numeric.Nat.GCD where open import Prelude open import Control.WellFounded open import Numeric.Nat.Properties open import Numeric.Nat.DivMod open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Tactic.Nat --- GCD --- record IsGCD (d a b : Nat) : Set where no-eta-equality constructor is-gcd field d|a : d Divides a d|b : d Divides b g : ∀ k → k Divides a → k Divides b → k Divides d record GCD (a b : Nat) : Set where no-eta-equality constructor gcd-res field d : Nat isGCD : IsGCD d a b open GCD public using () renaming (d to get-gcd) -- Projections -- is-gcd-factor₁ : ∀ {a b d} → IsGCD d a b → Nat is-gcd-factor₁ g = get-factor (IsGCD.d|a g) is-gcd-factor₂ : ∀ {a b d} → IsGCD d a b → Nat is-gcd-factor₂ g = get-factor (IsGCD.d|b g) gcd-factor₁ : ∀ {a b} → GCD a b → Nat gcd-factor₁ g = is-gcd-factor₁ (GCD.isGCD g) gcd-factor₂ : ∀ {a b} → GCD a b → Nat gcd-factor₂ g = is-gcd-factor₂ (GCD.isGCD g) -- Euclid's algorithm -- isGCD-step : ∀ {d r₀ r₁ r₂} q → q * r₁ + r₂ ≡ r₀ → IsGCD d r₁ r₂ → IsGCD d r₀ r₁ isGCD-step q refl (is-gcd d|r₁ d|r₂ g) = is-gcd (divides-add (divides-mul-r q d|r₁) d|r₂) d|r₁ (λ k k|r₀ k|r₁ → g k k|r₁ (divides-sub-l k|r₀ (divides-mul-r q k|r₁))) private gcd-step : ∀ {a b} q {r} → q * suc b + r ≡ a → GCD (suc b) r → GCD a (suc b) gcd-step q eq (gcd-res d p) = gcd-res d (isGCD-step q eq p) gcd-cert-acc : ∀ a b → Acc _<_ b → GCD a b gcd-cert-acc a zero _ = gcd-res a (is-gcd (factor 1 auto) (factor! 0) (λ k k|a _ → k|a)) gcd-cert-acc a (suc b) (acc wf) = case a divmod suc b of λ { (qr q r lt eq) → gcd-step q eq (gcd-cert-acc (suc b) r (wf r lt)) } eraseIsGCD : ∀ {d a b} → IsGCD d a b → IsGCD d a b eraseIsGCD (is-gcd d|a d|b g) = is-gcd (fast-divides d|a) (fast-divides d|b) λ k k|a k|b → fast-divides (g k k|a k|b) eraseGCD : ∀ {a b} → GCD a b → GCD a b eraseGCD (gcd-res d p) = gcd-res d (eraseIsGCD p) gcd : ∀ a b → GCD a b gcd 0 b = gcd-res b (is-gcd (factor! 0) divides-refl (λ _ _ k|b → k|b)) gcd 1 b = gcd-res 1 (is-gcd divides-refl (factor b auto) (λ _ k|1 _ → k|1)) gcd a b = eraseGCD (gcd-cert-acc a b (wfNat b)) gcd! : Nat → Nat → Nat gcd! a b = get-gcd (gcd a b) Coprime : Nat → Nat → Set Coprime a b = gcd! a b ≡ 1
{ "alphanum_fraction": 0.6059947871, "avg_line_length": 29.5128205128, "ext": "agda", "hexsha": "d749bab4ef2352be2baa9575419135d09ef61461", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/GCD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/GCD.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 933, "size": 2302 }
primitive ID : Set → Set ID A = A
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 6, "ext": "agda", "hexsha": "2761693f28b0f78e26deff67fd9898de6b104184", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/emptyprimitive.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/emptyprimitive.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/emptyprimitive.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 36 }
{-# OPTIONS --without-K #-} open import lib.Basics module lib.types.Unit where ⊤ = Unit tt = unit abstract -- Unit is contractible Unit-is-contr : is-contr Unit Unit-is-contr = (unit , λ y → idp) Unit-has-level : {n : ℕ₋₂} → has-level n Unit Unit-has-level = contr-has-level Unit-is-contr -- [Unit-has-level#instance] produces unsolved metas Unit-has-level-S#instance : {n : ℕ₋₂} → has-level (S n) Unit Unit-has-level-S#instance = contr-has-level Unit-is-contr Unit-is-prop : is-prop Unit Unit-is-prop = Unit-has-level Unit-is-set : is-set Unit Unit-is-set = Unit-has-level Unit-level = Unit-is-contr ⊤-is-contr = Unit-is-contr ⊤-level = Unit-is-contr ⊤-has-level = Unit-has-level ⊤-is-prop = Unit-is-prop ⊤-is-set = Unit-is-set
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 22.4117647059, "ext": "agda", "hexsha": "d0fa9c0d6a0fe41889b9ace1dba45baaa745a396", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "lib/types/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "lib/types/Unit.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "lib/types/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 762 }
{-# OPTIONS --without-K #-} -- Drop-in replacement for the module [Base]. module BaseOver where -- We hide [apd] and [Σ-eq] because their type is not correct, we want to use -- dependent paths instead open import Base public hiding (apd; Σ-eq) -- Notion of path over a path path-over : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j path-over B refl u v = (u == v) syntax path-over B p u v = u == v [ B ↓ p ] -- New apd apd : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → f x == f y [ B ↓ p ] apd f refl = refl -- Σ-types are used to simulate telescopes and to be able to only use the -- notion of path over a single path -- Intro for paths in a Σ Σ-eq : ∀ {i j} {A : Set i} {B : A → Set j} {x y : A} (p : x == y) {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → (x , u) == (y , v) Σ-eq refl refl = refl uncurryi : ∀ {i j k} {A : Set i} {B : A → Set j} {C : ∀ x → B x → Set k} → (∀ {x} y → C x y) → (∀ s → C (π₁ s) (π₂ s)) uncurryi f (x , y) = f y apdd : ∀ {i j k} {A : Set i} {B : A → Set j} {C : (a : A) → B a → Set k} (g : {a : A} → Π (B a) (C a)) {x y : A} (p : x == y) {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → g u == g v [ uncurry C ↓ Σ-eq p q ] apdd g p q = apd (uncurryi g) (Σ-eq p q) -- Dependent paths in a constant fibration module _ {i j} {A : Set i} {B : Set j} where ↓-cst-in : {x y : A} (p : x == y) {u v : B} → u == v → u == v [ (λ _ → B) ↓ p ] ↓-cst-in refl q = q ↓-cst-out : {x y : A} {p : x == y} {u v : B} → u == v [ (λ _ → B) ↓ p ] → u == v ↓-cst-out {p = refl} q = q ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v) → (↓-cst-out (↓-cst-in p q) == q) ↓-cst-β refl q = refl -- -- ap can be defined via apd, not sure whether it’s a good idea or not -- ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} (p : x == y) -- → f x == f y -- ap f p = ↓-cst-out (apd f p) -- Dependent paths in a Π-type module _ {i j k} {A : Set i} {B : A → Set j} {C : (a : A) → B a → Set k} where ↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ Σ-eq p q ]) → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) ↓-Π-in {p = refl} f = funext (λ x → f (refl {a = x})) ↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ Σ-eq p q ]) ↓-Π-out {p = refl} q refl = happly q _ ↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ Σ-eq p q ]) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-Π-out (↓-Π-in f) q == f q ↓-Π-β {p = refl} f refl = happly (happly-funext (λ x → f (refl {a = x}))) _ -- Dependent paths in a Π-type where the codomain is not dependent on anything module _ {i j k} {A : Set i} {B : A → Set j} {C : Set k} {x x' : A} {p : x == x'} {u : B x → C} {u' : B x' → C} where ↓-app→cst-in : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') → (u == u' [ (λ x → B x → C) ↓ p ]) ↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (Σ-eq p q) (f q)) ↓-app→cst-out : (u == u' [ (λ x → B x → C) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') ↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q) ↓-app→cst-β : (f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t')) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-app→cst-out (↓-app→cst-in f) q == f q ↓-app→cst-β f q = ↓-app→cst-out (↓-app→cst-in f) q ≡⟨ refl ⟩ ↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (Σ-eq p qq) (f qq))) q) ≡⟨ ↓-Π-β (λ qq → ↓-cst-in (Σ-eq p qq) (f qq)) q |in-ctx ↓-cst-out ⟩ ↓-cst-out (↓-cst-in (Σ-eq p q) (f q)) ≡⟨ ↓-cst-β (Σ-eq p q) (f q) ⟩ f q ∎ -- Dependent paths in a Π-type where the domain is constant module _ {i j k} {A : Set i} {B : Set j} {C : A → B → Set k} {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} where postulate ↓-cst→app-in : ({t t' : B} (q : t == t') → u t == u' t' [ uncurry C ↓ Σ-eq p (↓-cst-in p q) ]) → (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) -- ↓-cst→app-in f = ↓-Π-in (λ q → {!f (↓-cst-out q)!}) postulate ↓-cst→app-out : (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) → ({t t' : B} (q : t == t') → u t == u' t' [ uncurry C ↓ Σ-eq p (↓-cst-in p q) ]) split-ap2 : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Set k} (f : Σ A B → C) {x y : A} (p : x == y) {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ap f (Σ-eq p q) == ↓-app→cst-out (apd (curry f) p) q split-ap2 f refl refl = refl ↓-app='cst-in : ∀ {i j} {A : Set i} {B : Set j} {f : A → B} {b : B} {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → u == (ap f p ∘' v) → (u == v [ (λ x → f x == b) ↓ p ]) ↓-app='cst-in {p = refl} q = q ∘ refl-left-unit _ ↓-app='cst-out : ∀ {i j} {A : Set i} {B : Set j} {f : A → B} {b : B} {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → (u == v [ (λ x → f x == b) ↓ p ]) → u == (ap f p ∘' v) ↓-app='cst-out {p = refl} refl = ! (refl-left-unit _) ↓-cst='app-in : ∀ {i j} {A : Set i} {B : Set j} {f : A → B} {b : B} {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → (u ∘' ap f p) == v → (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst='app-in {p = refl} refl = refl ↓-cst='app-out : ∀ {i j} {A : Set i} {B : Set j} {f : A → B} {b : B} {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → (u == v [ (λ x → b == f x) ↓ p ]) → (u ∘' ap f p) == v ↓-cst='app-out {p = refl} refl = refl ↓-='-in : ∀ {i j} {A : Set i} {B : Set j} {f g : A → B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∘ ap g p) == (ap f p ∘' v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in {p = refl} q = ! (refl-right-unit _) ∘ (q ∘ refl-left-unit _) -- Dependent vs nondependent whiskering -- This definitional behaviour make [↓-=-in] slightly more complicated to prove -- but [↓-=-in] is often used in the case where [u] and [v] are [refl] _▹_ : ∀ {i j} {A : Set i} {B : A → Set j} {x y : A} {u : B x} {v w : B y} {p : x == y} → (u == v [ B ↓ p ]) → v == w → (u == w [ B ↓ p ]) _▹_ {p = refl} q refl = q refl▹ : ∀ {i j} {A : Set i} {B : A → Set j} {x : A} {v w : B x} (q : v == w) → _▹_ {B = B} {p = refl} refl q == q refl▹ refl = refl _◃_ : ∀ {i j} {A : Set i} {B : A → Set j} {x y : A} {u v : B x} {w : B y} {p : x == y} → (u == v → (v == w [ B ↓ p ]) → (u == w [ B ↓ p ])) _◃_ {p = refl} refl q = q ◃refl : ∀ {i j} {A : Set i} {B : A → Set j} {x : A} {v w : B x} (q : v == w) → _◃_ {B = B} {p = refl} q refl == q ◃refl refl = refl ↓-=-in : ∀ {i j} {A : Set i} {B : A → Set j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u ◃ apd f p) == (apd g p ▹ v) → (u == v [ (λ x → g x == f x) ↓ p ]) ↓-=-in {B = B} {p = refl} {u} {v} q = ! (◃refl {B = B} u) ∘ (q ∘ refl▹ {B = B} v) postulate ↓-=-out : ∀ {i j} {A : Set i} {B : A → Set j} {f g : Π A B} {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u == v [ (λ x → g x == f x) ↓ p ]) → (u ◃ apd f p) == (apd g p ▹ v) --↓-=-out {B = B} {p = refl} refl = {!!} {- Not used yet apdd-cst : ∀ {i j k} {A : Set i} {B : Set j} {C : A → B → Set k} (g : (a : A) → Π B (C a)) {x y : A} (p : x ≡ y) {u v : B} (q : u ≡ v) {r : u ≡[ (λ _ → B) ↓ p ] v} (α : ↓-cst-in p q ≡ r) → apdd (λ {a} b → g a b) p r ≡ apd (uncurry g) (Σ-eq p r) apdd-cst g refl refl refl = refl -} -- This one seems a bit weird ↓-apd-out : ∀ {i j k} {A : Set i} {B : A → Set j} (C : (a : A) → B a → Set k) (f : Π A B) {x y : A} (p : x == y) {u : C x (f x)} {v : C y (f y)} → u == v [ uncurry C ↓ Σ-eq p (apd f p) ] → u == v [ (λ z → C z (f z)) ↓ p ] ↓-apd-out C f refl refl = refl {- -- Dependent paths over [ap f p] module _ {i j k} {A : Set i} {B : Set j} (C : B → Set k) (f : A → B) where ↓-ap-in : {x y : A} {p : x ≡ y} {u : C (f x)} {v : C (f y)} → u ≡[ C ◯ f ↓ p ] v → u ≡[ C ↓ ap f p ] v ↓-ap-in {p = refl} refl = refl ↓-ap-out : {x y : A} (p : x ≡ y) {u : C (f x)} {v : C (f y)} → u ≡[ C ↓ ap f p ] v → u ≡[ C ◯ f ↓ p ] v ↓-ap-out refl refl = refl -- ↓-ap-β ap-, : ∀ {i j k} {A : Set i} {B : Set j} {C : B → Set k} (f : A → B) (g : (a : A) → C (f a)) {x y : A} (p : x ≡ y) → ap (λ x → _,_ {P = C} (f x) (g x)) p ≡ Σ-eq (ap f p) (↓-ap-in C f (apd g p)) ap-, f g refl = refl -} -- Special case of [ap-,] ap-cst,id : ∀ {i j} {A : Set i} (B : A → Set j) {a : A} {x y : B a} (p : x == y) → ap (λ x → _,_ {P = B} a x) p == Σ-eq refl p ap-cst,id B refl = refl -- apd-nd : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} -- → (p : x ≡ y) → apd f p ≡ ↓-cst-in p (ap f p) -- apd-nd f refl = refl apd-◯ : ∀ {i j k} {A : Set i} {B : A → Set j} {C : (a : A) → B a → Set k} (f : Π A B) (g : {a : A} → Π (B a) (C a)) {x y : A} (p : x == y) → apd (g ◯ f) p == ↓-apd-out C f p (apdd g p (apd f p)) apd-◯ f g refl = refl {- Not used yet -- apd-apd : ∀ {i j k} {A : Set i} {B : A → Set j} {C : (a : A) → B a → Set k} -- (g : (u : Σ A B) → C (π₁ u) (π₂ u)) (f : Π A B) {x y : A} (p : x ≡ y) -- → apd g (Σ-eq p (apd f p)) ≡ {!↓-ap-in!} -- apd-apd = {!!} apd-π₁-β : ∀ {i j} {A : Set i} {B : A → Set j} {x x' : A} (p : x ≡ x') {y : B x} {y' : B x'} (q : y ≡[ B ↓ p ] y') → ap π₁ (Σ-eq p q) ≡ p apd-π₁-β refl refl = refl apd-π₂-β : ∀ {i j} {A : Set i} {B : A → Set j} {x x' : A} (p : x ≡ x') {y : B x} {y' : B x'} (q : y ≡[ B ↓ p ] y') → apd π₂ (Σ-eq p q) ≡ ↓-ap-out B π₁ (Σ-eq p q) (transport (λ p → y ≡[ B ↓ p ] y') (! (apd-π₁-β p q)) q) apd-π₂-β refl refl = refl -} -- Dependent path in a type of the form [λ x → g (f x) ≡ x] module _ {i j} {A : Set i} {B : Set j} (f : A → B) (g : B → A) where ↓-◯=id-in : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → ((ap g (ap f p) ∘' v) == (u ∘ p)) → (u == v [ (λ x → g (f x) == x) ↓ p ]) ↓-◯=id-in {p = refl} q = ! (refl-right-unit _) ∘ (! q ∘ refl-left-unit _) -- WIP, derive it from more primitive principles -- ↓-◯≡id-in f g {p = p} {u} {v} q = -- ↓-≡-in (u ◃ apd (λ x → g (f x)) p ≡⟨ apd-◯ f g p |in-ctx (λ t → u ◃ t) ⟩ -- u ◃ ↓-apd-out _ f p (apdd g p (apd f p)) ≡⟨ apdd-cst (λ _ b → g b) p (ap f p) (! (apd-nd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (apd (λ t → g (π₂ t)) (Σ-eq p (apd f p))) ≡⟨ apd-◯ π₂ g (Σ-eq p (apd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (↓-apd-out _ π₂ (Σ-eq p (apd f p)) (apdd g (Σ-eq p (apd f p)) (apd π₂ (Σ-eq p (apd f p))))) ≡⟨ {!!} ⟩ -- apd (λ x → x) p ▹ v ∎) ua-in : ∀ {i} {A B : Set i} → A ≃ B → A == B ua-in = eq-to-path ua-out : ∀ {i} {A B : Set i} → A == B → A ≃ B ua-out = path-to-eq ua-β : ∀ {i} {A B : Set i} (e : A ≃ B) → ua-out (ua-in e) == e ua-β e = eq-to-path-right-inverse e -- These lemmas do not really look computational, but they are only used in the -- [↓-pp] lemmas which do look computational. to-transp-in : ∀ {i j} {A : Set i} (B : A → Set j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (π₁ (ua-out (ap B p)) u == v) → (u == v [ B ↓ p ]) to-transp-in B refl refl = refl to-transp-out : ∀ {i j} {A : Set i} {B : A → Set j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (π₁ (ua-out (ap B p)) u == v) to-transp-out {p = refl} refl = refl to-transp-β : ∀ {i j} {A : Set i} (B : A → Set j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : π₁ (ua-out (ap B p)) u == v) → to-transp-out (to-transp-in B p q) == q to-transp-β B refl refl = refl -- Stuff that do not belong here ap-∘' : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y z : A} (p : x == y) (q : y == z) → ap f (p ∘' q) == (ap f p ∘' ap f q) ap-∘' f refl refl = refl -- Dependent concatenation' _∘'dep_ : ∀ {i j} {A : Set i} {B : A → Set j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} → (u == v [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (p ∘' p') ]) _∘'dep_ {p' = refl} q refl = q -- Implementation of [_∘'_] on Σ Σ-∘' : ∀ {i j} {A : Set i} {B : A → Set j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → (Σ-eq p q ∘' Σ-eq p' r) == Σ-eq (p ∘' p') (q ∘'dep r) Σ-∘' {p' = refl} q refl = refl -- No idea what that is to-transp-weird : ∀ {i j} {A : Set i} {B : A → Set j} {u v : A} {d : B u} {d' d'' : B v} {p : u == v} (q : d == d' [ B ↓ p ]) (r : π₁ (ua-out (ap B p)) d == d'') → (to-transp-in B p r ∘'dep (! r ∘ to-transp-out q)) == q to-transp-weird {p = refl} refl refl = refl _∘'2_ : ∀ {i j} {A : Set i} {B : A → Set j} {a b c : Π A B} {x y : A} {p : x == y} {q : a x == b x} {q' : a y == b y} {r : b x == c x} {r' : b y == c y} → (q == q' [ (λ z → a z == b z) ↓ p ]) → (r == r' [ (λ z → b z == c z) ↓ p ]) → (q ∘' r == q' ∘' r' [ (λ z → a z == c z) ↓ p ]) _∘'2_ {p = refl} refl refl = refl stuff : ∀ {i j} {A : Set i} {B : Set j} {b : B} {c : A → B} {d : A → B} (q : (a : A) → b == c a) (r : (a : A) → c a == d a) {a a' : A} (p : a == a') → apd (λ a → q a ∘' r a) p == ((apd q p) ∘'2 (apd r p)) stuff q r refl = refl apd= : ∀ {i j} {A : Set i} {B : A → Set j} {f g : Π A B} (q : (x : A) → f x == g x) {x y : A} (p : x == y) -- → (q x == q y [ (λ z → f z == g z) ↓ p ]) → (apd f p ▹ q y) == (q x ◃ apd g p) apd= q p = ! (↓-=-out (apd q p)) --apd= q refl =
{ "alphanum_fraction": 0.3882026168, "avg_line_length": 35.6276041667, "ext": "agda", "hexsha": "7134c901e5f7bd56456a1a2cbbd9dc657b8377df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/BaseOver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/BaseOver.agda", "max_line_length": 145, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/BaseOver.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 6820, "size": 13681 }
module _ where module M (_ : Set₁) where record R₁ (A : Set) : Set₁ where no-eta-equality postulate x : A open R₁ ⦃ … ⦄ public record R₂ (A : Set) : Set₁ where field instance r₁ : R₁ A open R₂ ⦃ … ⦄ open module MSet = M Set postulate A : Set instance postulate m : R₁ A a : A a = x
{ "alphanum_fraction": 0.55, "avg_line_length": 10.9677419355, "ext": "agda", "hexsha": "f3678b5501676702131bc4a1f567ff9cef7030dd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2008a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2008a.agda", "max_line_length": 34, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2008a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 133, "size": 340 }
module Tactic.Reflection.Free where open import Prelude open import Builtin.Reflection open import Tactic.Reflection.DeBruijn VarSet = List Nat -- ordered private _∪_ : VarSet → VarSet → VarSet [] ∪ ys = ys xs ∪ [] = xs (x ∷ xs) ∪ (y ∷ ys) with compare x y ... | (less _) = x ∷ (xs ∪ (y ∷ ys)) ... | (equal _) = x ∷ (xs ∪ ys) ... | (greater _) = y ∷ ((x ∷ xs) ∪ ys) ∅ : VarSet ∅ = [] record FreeVars {a} (A : Set a) : Set a where field freeVars : A → VarSet open FreeVars {{...}} public -- Instances -- private freeTerm : Nat → Term → VarSet freeSort : Nat → Sort → VarSet freeArgTerm : Nat → Arg Term → VarSet freeArgs : Nat → List (Arg Term) → VarSet freeClauses : Nat → List Clause → VarSet freeClause : Nat → Clause → VarSet freeTerm n (var x args) = freeArgs n args ∪ (case compare (suc x) n of λ { (greater (diff k _)) → [ k ] ; _ → ∅ }) freeTerm n (con c args) = freeArgs n args freeTerm n (def f args) = freeArgs n args freeTerm n (meta x args) = freeArgs n args freeTerm n (lam _ (abs _ v)) = freeTerm (suc n) v freeTerm n (pat-lam cs args) = freeClauses n cs ∪ freeArgs n args freeTerm n (pi a (abs _ b)) = freeArgTerm n a ∪ freeTerm (suc n) b freeTerm n (agda-sort s) = freeSort n s freeTerm n (lit l) = ∅ freeTerm n unknown = ∅ freeSort n (set t) = freeTerm n t freeSort _ (lit n) = ∅ freeSort _ unknown = ∅ freeArgTerm n (arg i x) = freeTerm n x freeArgs n [] = ∅ freeArgs n (a ∷ as) = freeArgTerm n a ∪ freeArgs n as freeClauses n [] = ∅ freeClauses n (c ∷ cs) = freeClause n c ∪ freeClauses n cs freeClause n (clause ps b) = freeTerm (patternBindings ps + n) b freeClause n (absurd-clause _) = ∅ instance FreeTerm : FreeVars Term freeVars {{FreeTerm}} = freeTerm 0 FreeSort : FreeVars Sort freeVars {{FreeSort}} = freeSort 0 FreeArg : ∀ {A} {{_ : FreeVars A}} → FreeVars (Arg A) freeVars {{FreeArg}} (arg _ x) = freeVars x FreeList : ∀ {a} {A : Set a} {{_ : FreeVars A}} → FreeVars (List A) freeVars {{FreeList}} = foldr (λ x → freeVars x ∪_) ∅
{ "alphanum_fraction": 0.6019924099, "avg_line_length": 27.0256410256, "ext": "agda", "hexsha": "17dd010d42f86246c8cb92968276ae064d4c3a43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection/Free.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection/Free.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection/Free.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 772, "size": 2108 }
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} module _ where {- Rewriting relation -} postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} {- Identity type -} infixr 3 _==_ data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} → (p : x == y) → f x == f y ap f idp = idp postulate A : Set C : A → Set -- Definition of W postulate W : Set c : A → W module _ {l} {P : W → Set l} (c* : (a : A) → P (c a)) where postulate W-elim : (w : W) → P w W-c-β : (a : A) → W-elim (c a) ↦ c* a {-# REWRITE W-c-β #-} -- Definition of P P : W → Set P = W-elim C -- Definition of WT postulate WT : Set cT : (a : A) (x : C a) → WT -- Definition of TotP record TotP : Set where constructor _,_ field fst : W snd : P fst -- Function from TotP to WT from-curry : (x : W) (y : P x) → WT from-curry = W-elim cT from : TotP → WT from (x , y) = from-curry x y postulate a : A x y : C a foo : (c a , x) == (c a , y) bar : cT a x == cT a y rew1 : ap from foo ↦ bar {-# REWRITE rew1 #-} -- The following has exactly the same type as [rew1], so [idr] should work rew1' : ap from foo ↦ bar rew1' = idr
{ "alphanum_fraction": 0.5137614679, "avg_line_length": 16.35, "ext": "agda", "hexsha": "05f68eea7e3843a00691a40e103bc9c3d4564f8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1724.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1724.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1724.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 543, "size": 1308 }
{-# OPTIONS --without-K --exact-split --safe #-} module HoTT-UF-Agda where open import Universes public variable 𝓤 𝓥 𝓦 𝓣 : Universe data 𝟙 : 𝓤₀ ̇ where ⋆ : 𝟙 𝟙-induction : (A : 𝟙 → 𝓤 ̇ ) → A ⋆ → (x : 𝟙) → A x 𝟙-induction A a ⋆ = a 𝟙-recursion : (B : 𝓤 ̇ ) → B → (𝟙 → B) 𝟙-recursion B b x = 𝟙-induction (λ _ → B) b x !𝟙' : (X : 𝓤 ̇ ) → X → 𝟙 !𝟙' X x = ⋆ !𝟙 : {X : 𝓤 ̇ } → X → 𝟙 !𝟙 x = ⋆ data 𝟘 : 𝓤₀ ̇ where 𝟘-induction : (A : 𝟘 → 𝓤 ̇ ) → (x : 𝟘) → A x 𝟘-induction A () 𝟘-recursion : (A : 𝓤 ̇ ) → 𝟘 → A 𝟘-recursion A a = 𝟘-induction (λ _ → A) a !𝟘 : (A : 𝓤 ̇ ) → 𝟘 → A !𝟘 = 𝟘-recursion is-empty : 𝓤 ̇ → 𝓤 ̇ is-empty X = X → 𝟘 ¬ : 𝓤 ̇ → 𝓤 ̇ ¬ X = X → 𝟘 data ℕ : 𝓤₀ ̇ where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} ℕ-induction : (A : ℕ → 𝓤 ̇ ) → A 0 → ((n : ℕ) → A n → A (succ n)) → (n : ℕ) → A n ℕ-induction A a₀ f = h where h : (n : ℕ) → A n h 0 = a₀ h (succ n) = f n (h n) ℕ-recursion : (X : 𝓤 ̇ ) → X → (ℕ → X → X) → ℕ → X ℕ-recursion X = ℕ-induction (λ _ → X) ℕ-iteration : (X : 𝓤 ̇ ) → X → (X → X) → ℕ → X ℕ-iteration X x f = ℕ-recursion X x (λ _ x → f x) module Arithmetic where _+_ _×_ : ℕ → ℕ → ℕ x + 0 = x x + succ y = succ (x + y) x × 0 = 0 x × succ y = x + x × y infixl 20 _+_ infixl 21 _×_ module Arithmetic' where _+_ _×_ : ℕ → ℕ → ℕ x + y = h y where h : ℕ → ℕ h = ℕ-iteration ℕ x succ x × y = h y where h : ℕ → ℕ h = ℕ-iteration ℕ 0 (x +_) infixl 20 _+_ infixl 21 _×_ module ℕ-order where _≤_ _≥_ : ℕ → ℕ → 𝓤₀ ̇ 0 ≤ y = 𝟙 succ x ≤ 0 = 𝟘 succ x ≤ succ y = x ≤ y x ≥ y = y ≤ x infix 10 _≤_ infix 10 _≥_ data _+_ {𝓤 𝓥} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : 𝓤 ⊔ 𝓥 ̇ where inl : X → X + Y inr : Y → X + Y +-induction : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : X + Y → 𝓦 ̇ ) → ((x : X) → A (inl x)) → ((y : Y) → A (inr y)) → (z : X + Y) → A z +-induction A f g (inl x) = f x +-induction A f g (inr y) = g y +-recursion : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } → (X → A) → (Y → A) → X + Y → A +-recursion {𝓤} {𝓥} {𝓦} {X} {Y} {A} = +-induction (λ _ → A) 𝟚 : 𝓤₀ ̇ 𝟚 = 𝟙 + 𝟙 pattern ₀ = inl ⋆ pattern ₁ = inr ⋆ 𝟚-induction : (A : 𝟚 → 𝓤 ̇ ) → A ₀ → A ₁ → (n : 𝟚) → A n 𝟚-induction A a₀ a₁ ₀ = a₀ 𝟚-induction A a₀ a₁ ₁ = a₁ 𝟚-induction' : (A : 𝟚 → 𝓤 ̇ ) → A ₀ → A ₁ → (n : 𝟚) → A n 𝟚-induction' A a₀ a₁ = +-induction A (𝟙-induction (λ (x : 𝟙) → A (inl x)) a₀) (𝟙-induction (λ (y : 𝟙) → A (inr y)) a₁) record Σ {𝓤 𝓥} {X : 𝓤 ̇ } (Y : X → 𝓥 ̇ ) : 𝓤 ⊔ 𝓥 ̇ where constructor _,_ field x : X y : Y x pr₁ : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } → Σ Y → X pr₁ (x , y) = x pr₂ : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } → (z : Σ Y) → Y (pr₁ z) pr₂ (x , y) = y -Σ : {𝓤 𝓥 : Universe} (X : 𝓤 ̇ ) (Y : X → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ -Σ X Y = Σ Y syntax -Σ X (λ x → y) = Σ x ꞉ X , y Σ-induction : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {A : Σ Y → 𝓦 ̇ } → ((x : X) (y : Y x) → A (x , y)) → ((x , y) : Σ Y) → A (x , y) Σ-induction g (x , y) = g x y curry : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {A : Σ Y → 𝓦 ̇ } → (((x , y) : Σ Y) → A (x , y)) → ((x : X) (y : Y x) → A (x , y)) curry f x y = f (x , y) _×_ : 𝓤 ̇ → 𝓥 ̇ → 𝓤 ⊔ 𝓥 ̇ X × Y = Σ x ꞉ X , Y Π : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ Π {𝓤} {𝓥} {X} A = (x : X) → A x -Π : {𝓤 𝓥 : Universe} (X : 𝓤 ̇ ) (Y : X → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ -Π X Y = Π Y syntax -Π A (λ x → b) = Π x ꞉ A , b id : {X : 𝓤 ̇ } → X → X id x = x 𝑖𝑑 : (X : 𝓤 ̇ ) → X → X 𝑖𝑑 X = id _∘_ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : Y → 𝓦 ̇ } → ((y : Y) → Z y) → (f : X → Y) → (x : X) → Z (f x) g ∘ f = λ x → g (f x) domain : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → 𝓤 ̇ domain {𝓤} {𝓥} {X} {Y} f = X codomain : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → 𝓥 ̇ codomain {𝓤} {𝓥} {X} {Y} f = Y type-of : {X : 𝓤 ̇ } → X → 𝓤 ̇ type-of {𝓤} {X} x = X data Id {𝓤} (X : 𝓤 ̇ ) : X → X → 𝓤 ̇ where refl : (x : X) → Id X x x _≡_ : {X : 𝓤 ̇ } → X → X → 𝓤 ̇ x ≡ y = Id _ x y 𝕁 : (X : 𝓤 ̇ ) (A : (x y : X) → x ≡ y → 𝓥 ̇ ) → ((x : X) → A x x (refl x)) → (x y : X) (p : x ≡ y) → A x y p 𝕁 X A f x x (refl x) = f x ℍ : {X : 𝓤 ̇ } (x : X) (B : (y : X) → x ≡ y → 𝓥 ̇ ) → B x (refl x) → (y : X) (p : x ≡ y) → B y p ℍ x B b x (refl x) = b 𝕁' : (X : 𝓤 ̇ ) (A : (x y : X) → x ≡ y → 𝓥 ̇ ) → ((x : X) → A x x (refl x)) → (x y : X) (p : x ≡ y) → A x y p 𝕁' X A f x = ℍ x (A x) (f x) 𝕁s-agreement : (X : 𝓤 ̇ ) (A : (x y : X) → x ≡ y → 𝓥 ̇ ) (f : (x : X) → A x x (refl x)) (x y : X) (p : x ≡ y) → 𝕁 X A f x y p ≡ 𝕁' X A f x y p 𝕁s-agreement X A f x x (refl x) = refl (f x) transport : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) {x y : X} → x ≡ y → A x → A y transport A (refl x) = 𝑖𝑑 (A x) transport𝕁 : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) {x y : X} → x ≡ y → A x → A y transport𝕁 {𝓤} {𝓥} {X} A {x} {y} = 𝕁 X (λ x y _ → A x → A y) (λ x → 𝑖𝑑 (A x)) x y nondep-ℍ : {X : 𝓤 ̇ } (x : X) (A : X → 𝓥 ̇ ) → A x → (y : X) → x ≡ y → A y nondep-ℍ x A = ℍ x (λ y _ → A y) transportℍ : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) {x y : X} → x ≡ y → A x → A y transportℍ A {x} {y} p a = nondep-ℍ x A a y p transports-agreement : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) {x y : X} (p : x ≡ y) → (transportℍ A p ≡ transport A p) × (transport𝕁 A p ≡ transport A p) transports-agreement A (refl x) = refl (transport A (refl x)) , refl (transport A (refl x)) lhs : {X : 𝓤 ̇ } {x y : X} → x ≡ y → X lhs {𝓤} {X} {x} {y} p = x rhs : {X : 𝓤 ̇ } {x y : X} → x ≡ y → X rhs {𝓤} {X} {x} {y} p = y _∙_ : {X : 𝓤 ̇ } {x y z : X} → x ≡ y → y ≡ z → x ≡ z p ∙ q = transport (lhs p ≡_) q p _≡⟨_⟩_ : {X : 𝓤 ̇ } (x : X) {y z : X} → x ≡ y → y ≡ z → x ≡ z x ≡⟨ p ⟩ q = p ∙ q _∎ : {X : 𝓤 ̇ } (x : X) → x ≡ x x ∎ = refl x _⁻¹ : {X : 𝓤 ̇ } → {x y : X} → x ≡ y → y ≡ x p ⁻¹ = transport (_≡ lhs p) p (refl (lhs p)) _∙'_ : {X : 𝓤 ̇ } {x y z : X} → x ≡ y → y ≡ z → x ≡ z p ∙' q = transport (_≡ rhs q) (p ⁻¹) q ∙agreement : {X : 𝓤 ̇ } {x y z : X} (p : x ≡ y) (q : y ≡ z) → (p ∙' q) ≡ (p ∙ q) ∙agreement (refl x) (refl x) = refl (refl x) rdnel : {X : 𝓤 ̇ } {x y : X} (p : x ≡ y) → (p ∙ refl y) ≡ p rdnel p = refl p rdner : {X : 𝓤 ̇ } {y z : X} (q : y ≡ z) → (refl y ∙' q) ≡ q rdner q = refl q ap : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) {x x' : X} → x ≡ x' → f x ≡ f x' ap f {x} {x'} p = transport (λ - → f x ≡ f -) p (refl (f x)) _∼_ : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } → Π A → Π A → 𝓤 ⊔ 𝓥 ̇ f ∼ g = ∀ x → f x ≡ g x ¬¬ ¬¬¬ : 𝓤 ̇ → 𝓤 ̇ ¬¬ A = ¬(¬ A) ¬¬¬ A = ¬(¬¬ A) dni : (A : 𝓤 ̇ ) → A → ¬¬ A dni A a u = u a contrapositive : {A : 𝓤 ̇ } {B : 𝓥 ̇ } → (A → B) → (¬ B → ¬ A) contrapositive f v a = v (f a) tno : (A : 𝓤 ̇ ) → ¬¬¬ A → ¬ A tno A = contrapositive (dni A) _⇔_ : 𝓤 ̇ → 𝓥 ̇ → 𝓤 ⊔ 𝓥 ̇ X ⇔ Y = (X → Y) × (Y → X) lr-implication : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X ⇔ Y) → (X → Y) lr-implication = pr₁ rl-implication : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X ⇔ Y) → (Y → X) rl-implication = pr₂ absurdity³-is-absurdity : {A : 𝓤 ̇ } → ¬¬¬ A ⇔ ¬ A absurdity³-is-absurdity {𝓤} {A} = firstly , secondly where firstly : ¬¬¬ A → ¬ A firstly = contrapositive (dni A) secondly : ¬ A → ¬¬¬ A secondly = dni (¬ A) _≢_ : {X : 𝓤 ̇ } → X → X → 𝓤 ̇ x ≢ y = ¬(x ≡ y) ≢-sym : {X : 𝓤 ̇ } {x y : X} → x ≢ y → y ≢ x ≢-sym {𝓤} {X} {x} {y} u = λ (p : y ≡ x) → u (p ⁻¹) Id→Fun : {X Y : 𝓤 ̇ } → X ≡ Y → X → Y Id→Fun {𝓤} = transport (𝑖𝑑 (𝓤 ̇ )) Id→Fun' : {X Y : 𝓤 ̇ } → X ≡ Y → X → Y Id→Fun' (refl X) = 𝑖𝑑 X Id→Funs-agree : {X Y : 𝓤 ̇ } (p : X ≡ Y) → Id→Fun p ≡ Id→Fun' p Id→Funs-agree (refl X) = refl (𝑖𝑑 X) 𝟙-is-not-𝟘 : 𝟙 ≢ 𝟘 𝟙-is-not-𝟘 p = Id→Fun p ⋆ ₁-is-not-₀ : ₁ ≢ ₀ ₁-is-not-₀ p = 𝟙-is-not-𝟘 q where f : 𝟚 → 𝓤₀ ̇ f ₀ = 𝟘 f ₁ = 𝟙 q : 𝟙 ≡ 𝟘 q = ap f p ₁-is-not-₀[not-an-MLTT-proof] : ¬(₁ ≡ ₀) ₁-is-not-₀[not-an-MLTT-proof] () decidable : 𝓤 ̇ → 𝓤 ̇ decidable A = A + ¬ A has-decidable-equality : 𝓤 ̇ → 𝓤 ̇ has-decidable-equality X = (x y : X) → decidable (x ≡ y) 𝟚-has-decidable-equality : has-decidable-equality 𝟚 𝟚-has-decidable-equality ₀ ₀ = inl (refl ₀) 𝟚-has-decidable-equality ₀ ₁ = inr (≢-sym ₁-is-not-₀) 𝟚-has-decidable-equality ₁ ₀ = inr ₁-is-not-₀ 𝟚-has-decidable-equality ₁ ₁ = inl (refl ₁) not-zero-is-one : (n : 𝟚) → n ≢ ₀ → n ≡ ₁ not-zero-is-one ₀ f = !𝟘 (₀ ≡ ₁) (f (refl ₀)) not-zero-is-one ₁ f = refl ₁ inl-inr-disjoint-images : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {x : X} {y : Y} → inl x ≢ inr y inl-inr-disjoint-images {𝓤} {𝓥} {X} {Y} p = 𝟙-is-not-𝟘 q where f : X + Y → 𝓤₀ ̇ f (inl x) = 𝟙 f (inr y) = 𝟘 q : 𝟙 ≡ 𝟘 q = ap f p right-fails-gives-left-holds : {P : 𝓤 ̇ } {Q : 𝓥 ̇ } → P + Q → ¬ Q → P right-fails-gives-left-holds (inl p) u = p right-fails-gives-left-holds (inr q) u = !𝟘 _ (u q) module twin-primes where open Arithmetic renaming (_×_ to _*_ ; _+_ to _∔_) open ℕ-order is-prime : ℕ → 𝓤₀ ̇ is-prime n = (n ≥ 2) × ((x y : ℕ) → x * y ≡ n → (x ≡ 1) + (x ≡ n)) twin-prime-conjecture : 𝓤₀ ̇ twin-prime-conjecture = (n : ℕ) → -Σ ℕ (λ p → ((p ≥ n) × is-prime p) × is-prime (p ∔ 2)) positive-not-zero : (x : ℕ) → succ x ≢ 0 positive-not-zero x p = 𝟙-is-not-𝟘 q where f : ℕ → 𝓤₀ ̇ f zero = 𝟘 f (succ n) = 𝟙 q : 𝟙 ≡ 𝟘 q = ap f p pred : ℕ → ℕ pred 0 = 0 pred (succ n) = n succ-lc : {x y : ℕ} → succ x ≡ succ y → x ≡ y succ-lc = ap pred ℕ-has-decidable-equality : has-decidable-equality ℕ ℕ-has-decidable-equality 0 0 = inl (refl 0) ℕ-has-decidable-equality 0 (succ y) = inr (≢-sym (positive-not-zero y)) ℕ-has-decidable-equality (succ x) 0 = inr (positive-not-zero x) ℕ-has-decidable-equality (succ x) (succ y) = f (ℕ-has-decidable-equality x y) where f : decidable (x ≡ y) → decidable (succ x ≡ succ y) f (inl p) = inl (ap succ p) f (inr k) = inr (λ (s : succ x ≡ succ y) → k (succ-lc s)) module basic-arithmetic-and-order where open ℕ-order public open Arithmetic renaming (_+_ to _∔_) hiding (_×_) +-assoc : (x y z : ℕ) → ((x ∔ y) ∔ z) ≡ (x ∔ (y ∔ z)) +-assoc x y zero = ((x ∔ y) ∔ 0) ≡⟨ (refl _) ⟩ (x ∔ (y ∔ 0)) ∎ +-assoc x y (succ z) = ((x ∔ y) ∔ succ z) ≡⟨ (refl _) ⟩ (succ ((x ∔ y) ∔ z)) ≡⟨ ap succ IH ⟩ (succ (x ∔ (y ∔ z))) ≡⟨ refl _ ⟩ (x ∔ (y ∔ succ z)) ∎ where IH : ((x ∔ y) ∔ z) ≡ (x ∔ (y ∔ z)) IH = +-assoc x y z +-base-on-first : (x : ℕ) → 0 ∔ x ≡ x +-base-on-first 0 = refl 0 +-base-on-first (succ x) = 0 ∔ succ x ≡⟨ refl _ ⟩ succ (0 ∔ x) ≡⟨ ap succ IH ⟩ succ x ∎ where IH : 0 ∔ x ≡ x IH = +-base-on-first x +-step-on-first : (x y : ℕ) → succ x ∔ y ≡ succ (x ∔ y) +-step-on-first x zero = refl (succ x) +-step-on-first x (succ y) = succ x ∔ succ y ≡⟨ refl _ ⟩ succ (succ x ∔ y) ≡⟨ ap succ IH ⟩ succ (x ∔ succ y) ∎ where IH : succ x ∔ y ≡ succ (x ∔ y) IH = +-step-on-first x y +-comm : (x y : ℕ) → x ∔ y ≡ y ∔ x +-comm 0 y = 0 ∔ y ≡⟨ +-base-on-first y ⟩ y ≡⟨ refl _ ⟩ y ∔ 0 ∎ +-comm (succ x) y = succ x ∔ y ≡⟨ +-step-on-first x y ⟩ succ(x ∔ y) ≡⟨ ap succ IH ⟩ succ(y ∔ x) ≡⟨ refl _ ⟩ y ∔ succ x ∎ where IH : x ∔ y ≡ y ∔ x IH = +-comm x y +-lc : (x y z : ℕ) → x ∔ y ≡ x ∔ z → y ≡ z +-lc 0 y z p = y ≡⟨ (+-base-on-first y)⁻¹ ⟩ 0 ∔ y ≡⟨ p ⟩ 0 ∔ z ≡⟨ +-base-on-first z ⟩ z ∎ +-lc (succ x) y z p = IH where q = succ (x ∔ y) ≡⟨ (+-step-on-first x y)⁻¹ ⟩ succ x ∔ y ≡⟨ p ⟩ succ x ∔ z ≡⟨ +-step-on-first x z ⟩ succ (x ∔ z) ∎ IH : y ≡ z IH = +-lc x y z (succ-lc q) _≼_ : ℕ → ℕ → 𝓤₀ ̇ x ≼ y = Σ z ꞉ ℕ , x ∔ z ≡ y ≤-gives-≼ : (x y : ℕ) → x ≤ y → x ≼ y ≤-gives-≼ 0 0 l = 0 , refl 0 ≤-gives-≼ 0 (succ y) l = succ y , +-base-on-first (succ y) ≤-gives-≼ (succ x) 0 l = !𝟘 (succ x ≼ zero) l ≤-gives-≼ (succ x) (succ y) l = γ where IH : x ≼ y IH = ≤-gives-≼ x y l z : ℕ z = pr₁ IH p : x ∔ z ≡ y p = pr₂ IH γ : succ x ≼ succ y γ = z , (succ x ∔ z ≡⟨ +-step-on-first x z ⟩ succ (x ∔ z) ≡⟨ ap succ p ⟩ succ y ∎) ≼-gives-≤ : (x y : ℕ) → x ≼ y → x ≤ y ≼-gives-≤ 0 0 (z , p) = ⋆ ≼-gives-≤ 0 (succ y) (z , p) = ⋆ ≼-gives-≤ (succ x) 0 (z , p) = positive-not-zero (x ∔ z) q where q = succ (x ∔ z) ≡⟨ (+-step-on-first x z)⁻¹ ⟩ succ x ∔ z ≡⟨ p ⟩ zero ∎ ≼-gives-≤ (succ x) (succ y) (z , p) = IH where q = succ (x ∔ z) ≡⟨ (+-step-on-first x z)⁻¹ ⟩ succ x ∔ z ≡⟨ p ⟩ succ y ∎ IH : x ≤ y IH = ≼-gives-≤ x y (z , succ-lc q) ≤-refl : (n : ℕ) → n ≤ n ≤-refl zero = ⋆ ≤-refl (succ n) = ≤-refl n ≤-trans : (l m n : ℕ) → l ≤ m → m ≤ n → l ≤ n ≤-trans zero m n p q = ⋆ ≤-trans (succ l) zero n p q = !𝟘 (succ l ≤ n) p ≤-trans (succ l) (succ m) zero p q = q ≤-trans (succ l) (succ m) (succ n) p q = ≤-trans l m n p q ≤-anti : (m n : ℕ) → m ≤ n → n ≤ m → m ≡ n ≤-anti zero zero p q = refl zero ≤-anti zero (succ n) p q = !𝟘 (zero ≡ succ n) q ≤-anti (succ m) zero p q = !𝟘 (succ m ≡ zero) p ≤-anti (succ m) (succ n) p q = ap succ (≤-anti m n p q) ≤-succ : (n : ℕ) → n ≤ succ n ≤-succ zero = ⋆ ≤-succ (succ n) = ≤-succ n zero-minimal : (n : ℕ) → zero ≤ n zero-minimal n = ⋆ unique-minimal : (n : ℕ) → n ≤ zero → n ≡ zero unique-minimal zero p = refl zero unique-minimal (succ n) p = !𝟘 (succ n ≡ zero) p ≤-split : (m n : ℕ) → m ≤ succ n → (m ≤ n) + (m ≡ succ n) ≤-split zero n l = inl l ≤-split (succ m) zero l = inr (ap succ (unique-minimal m l)) ≤-split (succ m) (succ n) l = +-recursion inl (inr ∘ ap succ) (≤-split m n l) _<_ : ℕ → ℕ → 𝓤₀ ̇ x < y = succ x ≤ y infix 10 _<_ not-<-gives-≥ : (m n : ℕ) → ¬(n < m) → m ≤ n not-<-gives-≥ zero n u = zero-minimal n not-<-gives-≥ (succ m) zero u = dni (zero < succ m) (zero-minimal m) u not-<-gives-≥ (succ m) (succ n) u = not-<-gives-≥ m n u bounded-∀-next : (A : ℕ → 𝓤 ̇ ) (k : ℕ) → A k → ((n : ℕ) → n < k → A n) → (n : ℕ) → n < succ k → A n bounded-∀-next A k a φ n l = +-recursion f g s where s : (n < k) + (succ n ≡ succ k) s = ≤-split (succ n) k l f : n < k → A n f = φ n g : succ n ≡ succ k → A n g p = transport A ((succ-lc p)⁻¹) a root : (ℕ → ℕ) → 𝓤₀ ̇ root f = Σ n ꞉ ℕ , f n ≡ 0 _has-no-root<_ : (ℕ → ℕ) → ℕ → 𝓤₀ ̇ f has-no-root< k = (n : ℕ) → n < k → f n ≢ 0 is-minimal-root : (ℕ → ℕ) → ℕ → 𝓤₀ ̇ is-minimal-root f m = (f m ≡ 0) × (f has-no-root< m) at-most-one-minimal-root : (f : ℕ → ℕ) (m n : ℕ) → is-minimal-root f m → is-minimal-root f n → m ≡ n at-most-one-minimal-root f m n (p , φ) (q , ψ) = c m n a b where a : ¬(m < n) a u = ψ m u p b : ¬(n < m) b v = φ n v q c : (m n : ℕ) → ¬(m < n) → ¬(n < m) → m ≡ n c m n u v = ≤-anti m n (not-<-gives-≥ m n v) (not-<-gives-≥ n m u) minimal-root : (ℕ → ℕ) → 𝓤₀ ̇ minimal-root f = Σ m ꞉ ℕ , is-minimal-root f m minimal-root-is-root : ∀ f → minimal-root f → root f minimal-root-is-root f (m , p , _) = m , p bounded-ℕ-search : ∀ k f → (minimal-root f) + (f has-no-root< k) bounded-ℕ-search zero f = inr (λ n → !𝟘 (f n ≢ 0)) bounded-ℕ-search (succ k) f = +-recursion φ γ (bounded-ℕ-search k f) where A : ℕ → (ℕ → ℕ) → 𝓤₀ ̇ A k f = (minimal-root f) + (f has-no-root< k) φ : minimal-root f → A (succ k) f φ = inl γ : f has-no-root< k → A (succ k) f γ u = +-recursion γ₀ γ₁ (ℕ-has-decidable-equality (f k) 0) where γ₀ : f k ≡ 0 → A (succ k) f γ₀ p = inl (k , p , u) γ₁ : f k ≢ 0 → A (succ k) f γ₁ v = inr (bounded-∀-next (λ n → f n ≢ 0) k v u) root-gives-minimal-root : ∀ f → root f → minimal-root f root-gives-minimal-root f (n , p) = γ where g : ¬(f has-no-root< (succ n)) g φ = φ n (≤-refl n) p γ : minimal-root f γ = right-fails-gives-left-holds (bounded-ℕ-search (succ n) f) g is-singleton : 𝓤 ̇ → 𝓤 ̇ is-singleton X = Σ c ꞉ X , ((x : X) → c ≡ x) is-center : (X : 𝓤 ̇ ) → X → 𝓤 ̇ is-center X c = (x : X) → c ≡ x 𝟙-is-singleton : is-singleton 𝟙 𝟙-is-singleton = ⋆ , λ x → 𝟙-induction (λ y → ⋆ ≡ y) (refl ⋆) x center : (X : 𝓤 ̇ ) → is-singleton X → X center X (c , φ) = c centrality : (X : 𝓤 ̇ ) (i : is-singleton X) (x : X) → center X i ≡ x centrality X (c , φ) = φ is-subsingleton : 𝓤 ̇ → 𝓤 ̇ is-subsingleton X = (x y : X) → x ≡ y 𝟘-is-subsingleton : is-subsingleton 𝟘 𝟘-is-subsingleton x y = !𝟘 (x ≡ y) x singletons-are-subsingletons : (X : 𝓤 ̇ ) → is-singleton X → is-subsingleton X singletons-are-subsingletons X (c , φ) x y = x ≡⟨ (φ x)⁻¹ ⟩ c ≡⟨ φ y ⟩ y ∎ 𝟙-is-subsingleton : is-subsingleton 𝟙 𝟙-is-subsingleton = singletons-are-subsingletons 𝟙 𝟙-is-singleton pointed-subsingletons-are-singletons : (X : 𝓤 ̇ ) → X → is-subsingleton X → is-singleton X pointed-subsingletons-are-singletons X x s = (x , s x) singleton-iff-pointed-and-subsingleton : {X : 𝓤 ̇ } → is-singleton X ⇔ (X × is-subsingleton X) singleton-iff-pointed-and-subsingleton {𝓤} {X} = (a , b) where a : is-singleton X → X × is-subsingleton X a s = center X s , singletons-are-subsingletons X s b : X × is-subsingleton X → is-singleton X b (x , t) = pointed-subsingletons-are-singletons X x t is-prop is-truth-value : 𝓤 ̇ → 𝓤 ̇ is-prop = is-subsingleton is-truth-value = is-subsingleton is-set : 𝓤 ̇ → 𝓤 ̇ is-set X = (x y : X) → is-subsingleton (x ≡ y) EM EM' : ∀ 𝓤 → 𝓤 ⁺ ̇ EM 𝓤 = (X : 𝓤 ̇ ) → is-subsingleton X → X + ¬ X EM' 𝓤 = (X : 𝓤 ̇ ) → is-subsingleton X → is-singleton X + is-empty X EM-gives-EM' : EM 𝓤 → EM' 𝓤 EM-gives-EM' em X s = γ (em X s) where γ : X + ¬ X → is-singleton X + is-empty X γ (inl x) = inl (pointed-subsingletons-are-singletons X x s) γ (inr x) = inr x EM'-gives-EM : EM' 𝓤 → EM 𝓤 EM'-gives-EM em' X s = γ (em' X s) where γ : is-singleton X + is-empty X → X + ¬ X γ (inl i) = inl (center X i) γ (inr x) = inr x no-unicorns : ¬(Σ X ꞉ 𝓤 ̇ , is-subsingleton X × ¬(is-singleton X) × ¬(is-empty X)) no-unicorns (X , i , f , g) = c where e : is-empty X e x = f (pointed-subsingletons-are-singletons X x i) c : 𝟘 c = g e module magmas where Magma : (𝓤 : Universe) → 𝓤 ⁺ ̇ Magma 𝓤 = Σ X ꞉ 𝓤 ̇ , is-set X × (X → X → X) ⟨_⟩ : Magma 𝓤 → 𝓤 ̇ ⟨ X , i , _·_ ⟩ = X magma-is-set : (M : Magma 𝓤) → is-set ⟨ M ⟩ magma-is-set (X , i , _·_) = i magma-operation : (M : Magma 𝓤) → ⟨ M ⟩ → ⟨ M ⟩ → ⟨ M ⟩ magma-operation (X , i , _·_) = _·_ syntax magma-operation M x y = x ·⟨ M ⟩ y is-magma-hom : (M N : Magma 𝓤) → (⟨ M ⟩ → ⟨ N ⟩) → 𝓤 ̇ is-magma-hom M N f = (x y : ⟨ M ⟩) → f (x ·⟨ M ⟩ y) ≡ f x ·⟨ N ⟩ f y id-is-magma-hom : (M : Magma 𝓤) → is-magma-hom M M (𝑖𝑑 ⟨ M ⟩) id-is-magma-hom M = λ (x y : ⟨ M ⟩) → refl (x ·⟨ M ⟩ y) is-magma-iso : (M N : Magma 𝓤) → (⟨ M ⟩ → ⟨ N ⟩) → 𝓤 ̇ is-magma-iso M N f = is-magma-hom M N f × (Σ g ꞉ (⟨ N ⟩ → ⟨ M ⟩), is-magma-hom N M g × (g ∘ f ∼ 𝑖𝑑 ⟨ M ⟩) × (f ∘ g ∼ 𝑖𝑑 ⟨ N ⟩)) id-is-magma-iso : (M : Magma 𝓤) → is-magma-iso M M (𝑖𝑑 ⟨ M ⟩) id-is-magma-iso M = id-is-magma-hom M , 𝑖𝑑 ⟨ M ⟩ , id-is-magma-hom M , refl , refl Id→iso : {M N : Magma 𝓤} → M ≡ N → ⟨ M ⟩ → ⟨ N ⟩ Id→iso p = transport ⟨_⟩ p Id→iso-is-iso : {M N : Magma 𝓤} (p : M ≡ N) → is-magma-iso M N (Id→iso p) Id→iso-is-iso (refl M) = id-is-magma-iso M _≅ₘ_ : Magma 𝓤 → Magma 𝓤 → 𝓤 ̇ M ≅ₘ N = Σ f ꞉ (⟨ M ⟩ → ⟨ N ⟩), is-magma-iso M N f magma-Id→iso : {M N : Magma 𝓤} → M ≡ N → M ≅ₘ N magma-Id→iso p = Id→iso p , Id→iso-is-iso p ∞-Magma : (𝓤 : Universe) → 𝓤 ⁺ ̇ ∞-Magma 𝓤 = Σ X ꞉ 𝓤 ̇ , (X → X → X) module monoids where left-neutral : {X : 𝓤 ̇ } → X → (X → X → X) → 𝓤 ̇ left-neutral e _·_ = ∀ x → e · x ≡ x right-neutral : {X : 𝓤 ̇ } → X → (X → X → X) → 𝓤 ̇ right-neutral e _·_ = ∀ x → x · e ≡ x associative : {X : 𝓤 ̇ } → (X → X → X) → 𝓤 ̇ associative _·_ = ∀ x y z → (x · y) · z ≡ x · (y · z) Monoid : (𝓤 : Universe) → 𝓤 ⁺ ̇ Monoid 𝓤 = Σ X ꞉ 𝓤 ̇ , is-set X × (Σ · ꞉ (X → X → X) , (Σ e ꞉ X , (left-neutral e ·) × (right-neutral e ·) × (associative ·))) module groups where left-neutral : {X : 𝓤 ̇ } → X → (X → X → X) → 𝓤 ̇ left-neutral e _·_ = ∀ x → e · x ≡ x right-neutral : {X : 𝓤 ̇ } → X → (X → X → X) → 𝓤 ̇ right-neutral e _·_ = ∀ x → x · e ≡ x associative : {X : 𝓤 ̇ } → (X → X → X) → 𝓤 ̇ associative _·_ = ∀ x y z → (x · y) · z ≡ x · (y · z) inverse : {X : 𝓤 ̇ } → X → (X → X → X) → 𝓤 ̇ inverse e _·_ = ∀ x → Σ (λ x' → x · x' ≡ e) Monoid : (𝓤 : Universe) → 𝓤 ⁺ ̇ Monoid 𝓤 = Σ X ꞉ 𝓤 ̇ , is-set X × (Σ · ꞉ (X → X → X) , (Σ e ꞉ X , (left-neutral e ·) × (right-neutral e ·) × (associative ·) × (inverse e ·))) refl-left : {X : 𝓤 ̇ } {x y : X} {p : x ≡ y} → refl x ∙ p ≡ p refl-left {𝓤} {X} {x} {x} {refl x} = refl (refl x) refl-right : {X : 𝓤 ̇ } {x y : X} {p : x ≡ y} → p ∙ refl y ≡ p refl-right {𝓤} {X} {x} {y} {p} = refl p ∙assoc : {X : 𝓤 ̇ } {x y z t : X} (p : x ≡ y) (q : y ≡ z) (r : z ≡ t) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r) ∙assoc p q (refl z) = refl (p ∙ q) ⁻¹-left∙ : {X : 𝓤 ̇ } {x y : X} (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl y ⁻¹-left∙ (refl x) = refl (refl x) ⁻¹-right∙ : {X : 𝓤 ̇ } {x y : X} (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl x ⁻¹-right∙ (refl x) = refl (refl x) ⁻¹-involutive : {X : 𝓤 ̇ } {x y : X} (p : x ≡ y) → (p ⁻¹)⁻¹ ≡ p ⁻¹-involutive (refl x) = refl (refl x) ap-refl : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) (x : X) → ap f (refl x) ≡ refl (f x) ap-refl f x = refl (refl (f x)) ap-∙ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) {x y z : X} (p : x ≡ y) (q : y ≡ z) → ap f (p ∙ q) ≡ ap f p ∙ ap f q ap-∙ f p (refl y) = refl (ap f p) ap⁻¹ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) {x y : X} (p : x ≡ y) → (ap f p)⁻¹ ≡ ap f (p ⁻¹) ap⁻¹ f (refl x) = refl (refl (f x)) ap-id : {X : 𝓤 ̇ } {x y : X} (p : x ≡ y) → ap id p ≡ p ap-id (refl x) = refl (refl x) ap-∘ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } (f : X → Y) (g : Y → Z) {x y : X} (p : x ≡ y) → ap (g ∘ f) p ≡ (ap g ∘ ap f) p ap-∘ f g (refl x) = refl (refl (g (f x))) transport∙ : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) {x y z : X} (p : x ≡ y) (q : y ≡ z) → transport A (p ∙ q) ≡ transport A q ∘ transport A p transport∙ A p (refl y) = refl (transport A p) Nat : {X : 𝓤 ̇ } → (X → 𝓥 ̇ ) → (X → 𝓦 ̇ ) → 𝓤 ⊔ 𝓥 ⊔ 𝓦 ̇ Nat A B = (x : domain A) → A x → B x Nats-are-natural : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (τ : Nat A B) → {x y : X} (p : x ≡ y) → τ y ∘ transport A p ≡ transport B p ∘ τ x Nats-are-natural A B τ (refl x) = refl (τ x) NatΣ : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } {B : X → 𝓦 ̇ } → Nat A B → Σ A → Σ B NatΣ τ (x , a) = (x , τ x a) transport-ap : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (f : X → Y) {x x' : X} (p : x ≡ x') (a : A (f x)) → transport (A ∘ f) p a ≡ transport A (ap f p) a transport-ap A f (refl x) a = refl a data Color : 𝓤₀ ̇ where Black White : Color apd : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } (f : (x : X) → A x) {x y : X} (p : x ≡ y) → transport A p (f x) ≡ f y apd f (refl _) = refl (f _) module Exercise where ≤ : ℕ → ℕ → 𝓤₀ ̇ ≤ x = ℕ-induction (λ _ → ℕ → 𝓤₀ ̇) (λ _ → 𝟙) (λ _ f x₂ → ℕ-induction (λ _ → 𝓤₀ ̇) 𝟘 (λ n _ → f n) x₂) x ℍ' : {X : 𝓤 ̇ } (x : X) (B : (y : X) → x ≡ y → 𝓥 ̇ ) → B x (refl x) → (y : X) (p : x ≡ y) → B y p ℍ' {X} x B b y p = {!!} ℕ-has-decidable-equality' : has-decidable-equality ℕ ℕ-has-decidable-equality' = ℕ-induction (λ z → (x : ℕ) → Id ℕ z x + (z ≢ x)) (λ m → ℕ-induction (λ x → Id ℕ zero x + (zero ≢ x)) (inl (refl zero)) (λ n _ → inr (λ ())) m) λ n f → ℕ-induction (λ x → Id ℕ (succ n) x + (succ n ≢ x)) (inr (λ ())) λ n₁ x → g (f n₁) where g : {x y : ℕ} → decidable (x ≡ y) → decidable (succ x ≡ succ y) g (inl p) = inl (ap succ p) g {x} {y} (inr k) = inr (λ (s : succ x ≡ succ y) → k (succ-lc s)) Sub-EM Sub-EM' : ∀ 𝓤 → 𝓤 ⁺ ̇ Sub-EM 𝓤 = (X : 𝓤 ̇ ) → is-subsingleton X → ¬¬(is-singleton X + is-empty X) Sub-EM' 𝓤 = ¬¬((X : 𝓤 ̇ ) → is-subsingleton X → is-singleton X + is-empty X) Sub-EM-gives-Sub-EM' : Sub-EM 𝓤 → Sub-EM' 𝓤 Sub-EM-gives-Sub-EM' {𝓤} sub neg = {!!} Sub-EM'-gives-Sub-EM : Sub-EM' 𝓤 → Sub-EM 𝓤 Sub-EM'-gives-Sub-EM sub' X subsing neg = sub' λ z → neg (z X subsing) ∙assoc' : {X : 𝓤 ̇ } {x y z t : X} (p : x ≡ y) (q : y ≡ z) (r : z ≡ t) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r) ∙assoc' p q r = {!𝕁!} infix 0 _∼_ infixr 50 _,_ infixr 30 _×_ infixr 20 _+_ infixl 70 _∘_ infix 0 Id infix 0 _≡_ infix 10 _⇔_ infixl 30 _∙_ infixr 0 _≡⟨_⟩_ infix 1 _∎ infix 40 _⁻¹ infix 10 _◁_ infixr 0 _◁⟨_⟩_ infix 1 _◀ infix 10 _≃_ infixl 30 _●_ infixr 0 _≃⟨_⟩_ infix 1 _■ infix 40 _∈_ infix 30 _[_,_] infixr -1 -Σ infixr -1 -Π infixr -1 -∃!
{ "alphanum_fraction": 0.4114352745, "avg_line_length": 27.7594537815, "ext": "agda", "hexsha": "02fcc4b38d769001457c587ec732da1ad5513fdb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sym-cereal/proofs", "max_forks_repo_path": "HoTT-UT-Agda/HoTT-UF-Agda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sym-cereal/proofs", "max_issues_repo_path": "HoTT-UT-Agda/HoTT-UF-Agda.agda", "max_line_length": 100, "max_stars_count": 6, "max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnsoundWitch/proofs", "max_stars_repo_path": "HoTT-UT-Agda/HoTT-UF-Agda.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z", "num_tokens": 13197, "size": 26427 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.LowerBound {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open TotalOrder totalOrder renaming (refl to <-refl) import Data.Unit.UniversePolymorphic as Poly import Data.Empty.UniversePolymorphic as Poly data ⌊∙⌋ : Type e where ⌊⊥⌋ : ⌊∙⌋ ⌊_⌋ : E → ⌊∙⌋ ⌊_⌋≤_ : E → ⌊∙⌋ → Type _ ⌊ x ⌋≤ ⌊⊥⌋ = Poly.⊥ ⌊ x ⌋≤ ⌊ y ⌋ = x ≤ y _⌊≤⌋_ : ⌊∙⌋ → ⌊∙⌋ → Type _ ⌊⊥⌋ ⌊≤⌋ y = Poly.⊤ ⌊ x ⌋ ⌊≤⌋ y = ⌊ x ⌋≤ y _<⌊_⌋ : ⌊∙⌋ → E → Type _ ⌊⊥⌋ <⌊ y ⌋ = Poly.⊤ ⌊ x ⌋ <⌊ y ⌋ = x < y _⌊<⌋_ : ⌊∙⌋ → ⌊∙⌋ → Type _ _ ⌊<⌋ ⌊⊥⌋ = Poly.⊥ x ⌊<⌋ ⌊ y ⌋ = x <⌊ y ⌋ lb-pord : PartialOrder ⌊∙⌋ _ Preorder._≤_ (PartialOrder.preorder lb-pord) = _⌊≤⌋_ Preorder.refl (PartialOrder.preorder lb-pord) {⌊⊥⌋} = _ Preorder.refl (PartialOrder.preorder lb-pord) {⌊ x ⌋} = <-refl Preorder.trans (PartialOrder.preorder lb-pord) {⌊⊥⌋} {_} {_} p q = _ Preorder.trans (PartialOrder.preorder lb-pord) {⌊ x ⌋} {⌊ y ⌋} {⌊ z ⌋} p q = ≤-trans p q PartialOrder.antisym lb-pord {⌊⊥⌋} {⌊⊥⌋} p q = refl PartialOrder.antisym lb-pord {⌊ x ⌋} {⌊ x₁ ⌋} p q = cong ⌊_⌋ (antisym p q) lb-sord : StrictPartialOrder ⌊∙⌋ _ StrictPreorder._<_ (StrictPartialOrder.strictPreorder lb-sord) = _⌊<⌋_ StrictPreorder.trans (StrictPartialOrder.strictPreorder lb-sord) {⌊⊥⌋} {⌊⊥⌋} {⌊⊥⌋} p q = q StrictPreorder.trans (StrictPartialOrder.strictPreorder lb-sord) {⌊⊥⌋} {⌊⊥⌋} {⌊ x ⌋} p q = q StrictPreorder.trans (StrictPartialOrder.strictPreorder lb-sord) {⌊⊥⌋} {⌊ x ⌋} {⌊ x₁ ⌋} p q = p StrictPreorder.trans (StrictPartialOrder.strictPreorder lb-sord) {⌊ x ⌋} {⌊ x₁ ⌋} {⌊ x₂ ⌋} p q = <-trans p q StrictPreorder.irrefl (StrictPartialOrder.strictPreorder lb-sord) {⌊ x ⌋} = irrefl {x = x} StrictPartialOrder.conn lb-sord {⌊⊥⌋} {⌊⊥⌋} p q = refl StrictPartialOrder.conn lb-sord {⌊⊥⌋} {⌊ x ⌋} p q = ⊥-elim (p _) StrictPartialOrder.conn lb-sord {⌊ x ⌋} {⌊⊥⌋} p q = ⊥-elim (q _) StrictPartialOrder.conn lb-sord {⌊ x ⌋} {⌊ x₁ ⌋} p q = cong ⌊_⌋ (conn p q) lb-lt : ∀ x y → Dec (x ⌊<⌋ y) lb-lt x ⌊⊥⌋ = no (λ ()) lb-lt ⌊⊥⌋ ⌊ y ⌋ = yes Poly.tt lb-lt ⌊ x ⌋ ⌊ y ⌋ = x <? y lb-ord : TotalOrder ⌊∙⌋ _ _ TotalOrder.strictPartialOrder lb-ord = lb-sord TotalOrder.partialOrder lb-ord = lb-pord TotalOrder._<?_ lb-ord = lb-lt TotalOrder.≰⇒> lb-ord {⌊⊥⌋} {⌊⊥⌋} p = ⊥-elim (p _) TotalOrder.≰⇒> lb-ord {⌊⊥⌋} {⌊ x ⌋} p = ⊥-elim (p _ ) TotalOrder.≰⇒> lb-ord {⌊ x ⌋} {⌊⊥⌋} p = _ TotalOrder.≰⇒> lb-ord {⌊ x ⌋} {⌊ x₁ ⌋} p = ≰⇒> p TotalOrder.≮⇒≥ lb-ord {x} {⌊⊥⌋} p = _ TotalOrder.≮⇒≥ lb-ord {⌊⊥⌋} {⌊ y ⌋} p = ⊥-elim (p _) TotalOrder.≮⇒≥ lb-ord {⌊ x ⌋} {⌊ y ⌋} p = ≮⇒≥ p
{ "alphanum_fraction": 0.5723006486, "avg_line_length": 36.4027777778, "ext": "agda", "hexsha": "73203d355ef1b1608218a1825af640ea1cbfaf45", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Construct/LowerBound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Construct/LowerBound.agda", "max_line_length": 108, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Construct/LowerBound.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1561, "size": 2621 }
{-# OPTIONS --without-K --safe #-} {- Properties and definitions regarding Morphisms of a category: - Monomorphism - Epimorphism - Isomorphism - (object) equivalence ('spelled' _≅_ ). Exported as the module ≅ -} open import Categories.Category module Categories.Morphism {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Relation.Binary hiding (_⇒_) open import Categories.Morphism.Reasoning.Core 𝒞 open Category 𝒞 private variable A B C : Obj Mono : ∀ (f : A ⇒ B) → Set (o ⊔ ℓ ⊔ e) Mono {A = A} f = ∀ {C} → (g₁ g₂ : C ⇒ A) → f ∘ g₁ ≈ f ∘ g₂ → g₁ ≈ g₂ Epi : ∀ (f : A ⇒ B) → Set (o ⊔ ℓ ⊔ e) Epi {B = B} f = ∀ {C} → (g₁ g₂ : B ⇒ C) → g₁ ∘ f ≈ g₂ ∘ f → g₁ ≈ g₂ record Iso (from : A ⇒ B) (to : B ⇒ A) : Set e where field isoˡ : to ∘ from ≈ id isoʳ : from ∘ to ≈ id infix 4 _≅_ record _≅_ (A B : Obj) : Set (ℓ ⊔ e) where field from : A ⇒ B to : B ⇒ A iso : Iso from to open Iso iso public -- don't pollute the name space too much private ≅-refl : Reflexive _≅_ ≅-refl = record { from = id ; to = id ; iso = record { isoˡ = identityˡ ; isoʳ = identityʳ } } ≅-sym : Symmetric _≅_ ≅-sym A≅B = record { from = to ; to = from ; iso = record { isoˡ = isoʳ ; isoʳ = isoˡ } } where open _≅_ A≅B ≅-trans : Transitive _≅_ ≅-trans A≅B B≅C = record { from = from B≅C ∘ from A≅B ; to = to A≅B ∘ to B≅C ; iso = record { isoˡ = begin (to A≅B ∘ to B≅C) ∘ from B≅C ∘ from A≅B ≈⟨ cancelInner (isoˡ B≅C) ⟩ to A≅B ∘ from A≅B ≈⟨ isoˡ A≅B ⟩ id ∎ ; isoʳ = begin (from B≅C ∘ from A≅B) ∘ to A≅B ∘ to B≅C ≈⟨ cancelInner (isoʳ A≅B) ⟩ from B≅C ∘ to B≅C ≈⟨ isoʳ B≅C ⟩ id ∎ } } where open _≅_ open HomReasoning open Equiv ≅-isEquivalence : IsEquivalence _≅_ ≅-isEquivalence = record { refl = ≅-refl ; sym = ≅-sym ; trans = ≅-trans } -- But make accessing it easy: module ≅ = IsEquivalence ≅-isEquivalence ≅-setoid : Setoid _ _ ≅-setoid = record { Carrier = Obj ; _≈_ = _≅_ ; isEquivalence = ≅-isEquivalence }
{ "alphanum_fraction": 0.5002169197, "avg_line_length": 22.3786407767, "ext": "agda", "hexsha": "be2fc2c75a389c8acc24142fbf60a3ad993c98f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Morphism.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 943, "size": 2305 }
------------------------------------------------------------------------ -- Code related to the paper -- "Operational Semantics Using the Partiality Monad" -- -- Nils Anders Danielsson ------------------------------------------------------------------------ -- Several definitions and proofs in this code are closely related to -- definitions and proofs in the paper "Coinductive big-step -- operational semantics" by Leroy and Grall. See my paper for more -- detailed references to related work, and also for more explanations -- of how the code works. module Operational-semantics-using-the-partiality-monad where ------------------------------------------------------------------------ -- Section 2 -- Fin. import Data.Fin -- Vec, lookup. import Data.Vec -- The partiality monad. import Category.Monad.Partiality -- A variant of trivial, as well as proofs showing that the definition -- of weak bisimilarity in the paper coincides with Capretta's -- definition and a more standard definition based on weak -- bisimulations. import AdmissibleButNotPostulable ------------------------------------------------------------------------ -- Section 3 -- Tm, Env, Value. import Lambda.Syntax -- Big-step functional semantics, Ω. import Lambda.Closure.Functional -- The module above uses some workarounds in order to convince Agda -- that the code is productive. The following module contains (more or -- less) the same code without the workarounds, but is checked with -- the termination checker turned off. import Lambda.Closure.Functional.No-workarounds -- An alternative definition of the functional semantics. This -- definition uses continuation-passing style instead of bind. import Lambda.Closure.Functional.Alternative ------------------------------------------------------------------------ -- Section 4 -- Type system. import Lambda.Syntax -- Type soundness. import Lambda.Closure.Functional.Type-soundness -- The use of Lift in the paper is replaced by the use of two -- different predicate transformers: Any for Maybe and All for the -- partiality monad. import Data.Maybe import Category.Monad.Partiality.All -- An alternative definition of the functional semantics, using -- substitutions instead of environments and closures, plus a proof of -- type soundness. import Lambda.Substitution.Functional ------------------------------------------------------------------------ -- Section 5 -- The relational semantics. import Lambda.Closure.Relational -- Proofs of equivalence. import Lambda.Closure.Equivalence ------------------------------------------------------------------------ -- Section 6 -- The virtual machine. Two semantics are given, one relational and -- one functional, and they are proved to be equivalent. import Lambda.VirtualMachine ------------------------------------------------------------------------ -- Section 7 -- The compiler. import Lambda.VirtualMachine -- Compiler correctness for the functional semantics. import Lambda.Closure.Functional import Lambda.Closure.Functional.No-workarounds -- Compiler correctness for the relational semantics. import Lambda.Closure.Relational ------------------------------------------------------------------------ -- Section 8 -- The non-deterministic language along with a compiler and a compiler -- correctness proof, as well as a type soundness proof. import Lambda.Closure.Functional.Non-deterministic import Lambda.Closure.Functional.Non-deterministic.No-workarounds ------------------------------------------------------------------------ -- Section 9 -- A very brief treatment of different kinds of term equivalences, -- including contextual equivalence and applicative bisimilarity. import Lambda.Closure.Equivalences -- _⇓. import Category.Monad.Partiality
{ "alphanum_fraction": 0.631467793, "avg_line_length": 27.0571428571, "ext": "agda", "hexsha": "cb312041da770ba57b394cb6de036f232cbc4b7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Operational-semantics-using-the-partiality-monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Operational-semantics-using-the-partiality-monad.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Operational-semantics-using-the-partiality-monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 693, "size": 3788 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Data.Integer as ℤ using (ℤ) open import Data.Rational as ℚ using (ℚ) module simple-untypedDecls-temp-output where fin3 : ∀ {_x0 : Set} {{_x1 : HasNatLits _x0}} → _x0 fin3 = 3 intMinus3 : ∀ {_x4 : Set} {{_x5 : HasNatLits _x4}} {{_x6 : HasNeg _x4}} → _x4 intMinus3 = - 3 ratMinus3 : ∀ {_x10 : Set} {{_x11 : HasRatLits _x10}} {{_x12 : HasNeg _x10}} → _x10 ratMinus3 = - (ℤ.+ 3 ℚ./ 1)
{ "alphanum_fraction": 0.6521060842, "avg_line_length": 27.8695652174, "ext": "agda", "hexsha": "f0229d5ffe60bcfd2e4e8eda8ba0952e657259c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/simple-untypedDecls/simple-untypedDecls-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/simple-untypedDecls/simple-untypedDecls-output.agda", "max_line_length": 83, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/simple-untypedDecls/simple-untypedDecls-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 246, "size": 641 }
module ListTest where import AlonzoPrelude import PreludeList open AlonzoPrelude open PreludeList mynil : {A:Set} -> List A mynil = [] mycons : {A:Set} -> A -> List A -> List A mycons x xs = x :: xs head : (A:Set) -> List A -> A head A (x :: xs) = x
{ "alphanum_fraction": 0.6403162055, "avg_line_length": 16.8666666667, "ext": "agda", "hexsha": "e67bcd42bc08fd38afc53c3cbf843d01f455f4ee", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/ListTest.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/ListTest.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/ListTest.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 91, "size": 253 }
module Prelude.Word where import Agda.Builtin.Word as Word open import Prelude.Nat open import Prelude.Number open import Prelude.Semiring open import Prelude.Equality open import Prelude.Equality.Unsafe open import Prelude.Ord open import Prelude.Unit open import Prelude.Function open import Prelude.Decidable open Word public using (Word64) renaming (primWord64ToNat to word64ToNat; primWord64FromNat to word64FromNat) open Word private 2⁶⁴ : Nat 2⁶⁴ = 18446744073709551616 {-# INLINE 2⁶⁴ #-} inv-word64ToNat : ∀ {a} → word64FromNat (word64ToNat a) ≡ a inv-word64ToNat = unsafeEqual emb-word64FromNat : ∀ n → word64ToNat (word64FromNat n) ≡ n mod 2⁶⁴ emb-word64FromNat n = unsafeEqual inj-word64ToNat : ∀ {a b} → word64ToNat a ≡ word64ToNat b → a ≡ b inj-word64ToNat {a} {b} eq = eraseEquality ( a ≡⟨ inv-word64ToNat ⟩ʳ word64FromNat (word64ToNat a) ≡⟨ word64FromNat $≡ eq ⟩ word64FromNat (word64ToNat b) ≡⟨ inv-word64ToNat ⟩ b ∎) instance NumWord64 : Number Word64 Number.Constraint NumWord64 _ = ⊤ fromNat {{NumWord64}} n = word64FromNat n EqWord64 : Eq Word64 _==_ {{EqWord64}} a b = case word64ToNat a == word64ToNat b of λ where (yes _) → yes unsafeEqual (no _) → no unsafeNotEqual OrdWord64 : Ord Word64 OrdWord64 = OrdBy inj-word64ToNat OrdLawsWord64 : Ord/Laws Word64 OrdLawsWord64 = OrdLawsBy inj-word64ToNat -- Arithmetic -- private natOp : (Nat → Nat → Nat) → Word64 → Word64 → Word64 natOp f a b = fromNat (f (word64ToNat a) (word64ToNat b)) {-# INLINE natOp #-} add64 : Word64 → Word64 → Word64 add64 = natOp _+_ sub64 : Word64 → Word64 → Word64 sub64 = natOp λ a b → a + 2⁶⁴ - b mul64 : Word64 → Word64 → Word64 mul64 = natOp _*_ {-# INLINE add64 #-} {-# INLINE sub64 #-} {-# INLINE mul64 #-} NonZero64 : Word64 → Set NonZero64 a = NonZero (word64ToNat a) infixl 7 divWord64 modWord64 syntax divWord64 b a = a div64 b divWord64 : (b : Word64) {{nz : NonZero64 b}} → Word64 → Word64 divWord64 b a = fromNat (word64ToNat a div word64ToNat b) syntax modWord64 b a = a mod64 b modWord64 : (b : Word64) {{nz : NonZero64 b}} → Word64 → Word64 modWord64 b a = fromNat (word64ToNat a mod word64ToNat b) {-# INLINE divWord64 #-} {-# INLINE modWord64 #-} instance SemiringWord64 : Semiring Word64 Semiring.zro SemiringWord64 = 0 Semiring.one SemiringWord64 = 1 Semiring._+_ SemiringWord64 = add64 Semiring._*_ SemiringWord64 = mul64 NegWord64 : Negative Word64 Negative.Constraint NegWord64 _ = ⊤ fromNeg {{NegWord64}} n = sub64 0 (fromNat n) SubWord64 : Subtractive Word64 _-_ {{SubWord64}} = sub64 negate {{SubWord64}} = sub64 0
{ "alphanum_fraction": 0.6952487008, "avg_line_length": 25.4150943396, "ext": "agda", "hexsha": "4daa3027f8bae65377ab57aba428181b600f5116", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Word.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Word.agda", "max_line_length": 77, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Word.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 939, "size": 2694 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Maybe where open import Cubical.Data.Maybe.Base public open import Cubical.Data.Maybe.Properties public
{ "alphanum_fraction": 0.7727272727, "avg_line_length": 29.3333333333, "ext": "agda", "hexsha": "babc11325db33713927d7c19a906526f4f86b2d0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Maybe.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 39, "size": 176 }
-- 2011-09-09, submitted by [email protected] -- This bug report wins the first price in the false golfing tournament! -- {-# OPTIONS -v term:20 #-} module Issue444 where data ⊥ : Set where relevant : .⊥ → ⊥ relevant () false : ⊥ false = relevant false
{ "alphanum_fraction": 0.6718146718, "avg_line_length": 19.9230769231, "ext": "agda", "hexsha": "39e37311d24846dd264f6116a3a5e77d5800531f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue444.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue444.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue444.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 259 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Sequential.Comparable module Examples.Sorting.Sequential.Core (M : Comparable) where open import Calf.CostMonoid open CostMonoid costMonoid hiding (zero; _+_; _≤_; ≤-refl; ≤-trans) public open import Examples.Sorting.Core costMonoid fromℕ M public
{ "alphanum_fraction": 0.7672955975, "avg_line_length": 26.5, "ext": "agda", "hexsha": "9c2eb0830bb515451584898ad0df57b3ee0a8400", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Sequential/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Sequential/Core.agda", "max_line_length": 62, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Sequential/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 85, "size": 318 }
module E where t : Set -> Set t x = x
{ "alphanum_fraction": 0.55, "avg_line_length": 10, "ext": "agda", "hexsha": "5da13d9fa7d80ac3d577ab40e064b0fb67efb04c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/E.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/E.agda", "max_line_length": 15, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/E.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 15, "size": 40 }
module Term (Gnd : Set)(U : Set)(El : U -> Set) where open import Basics open import Pr open import Nom import Kind open module KindGUEl = Kind Gnd U El import Loc open module LocK = Loc Kind import Cxt open module CxtK = Cxt Kind data Jud : Set where Term : Kind -> Jud Args : Kind -> Gnd -> Jud Head : Jud data _[_]-_ : Loc -> Jud -> Kind -> Set where [_] : {C : Kind}{L : Loc}{Z : Gnd} -> L [ Args C Z ]- C -> L [ Term C ]- Ty Z fn : {C : Kind}{L : Loc}(A : U){K : El A -> Kind} -> ((x : El A) -> L [ Term C ]- K x) -> L [ Term C ]- Pi A K \\ : {C : Kind}{L : Loc}{S T : Kind} -> (L * S) [ Term C ]- T -> L [ Term C ]- (S |> T) _^_ : {C : Kind}{L : Loc}{Z : Gnd}{A : U}{K : El A -> Kind} -> (x : El A) -> L [ Args C Z ]- K x -> L [ Args C Z ]- Pi A K _&_ : {C : Kind}{L : Loc}{S T : Kind}{Z : Gnd} -> L [ Term C ]- S -> L [ Args C Z ]- T -> L [ Args C Z ]- (S |> T) nil : {C : Kind}{L : Loc}{Z : Gnd} -> L [ Args C Z ]- Ty Z _$_ : {C : Kind}{L : Loc}{T : Kind}{Z : Gnd} -> L [ Head ]- T -> L [ Args C Z ]- T -> L [ Term C ]- Ty Z ` : Nom -> {S : Kind}{L : Loc} -> L [ Head ]- S # : {L : Loc}{S : Kind} -> L ! S -> L [ Head ]- S infixr 90 _^_ _&_ infix 40 _[_]-_ Good : Cxt -> {L : Loc}{j : Jud}{T : Kind} -> L [ j ]- T -> Pr Good G [ c ] = Good G c Good G (fn A f) = all (El A) \a -> Good G (f a) Good G (\\ b) = Good G b Good G (a ^ ss) = Good G ss Good G (s & ss) = Good G s /\ Good G ss Good G nil = tt Good G (x $ ss) = Good G x /\ Good G ss Good G (` x {S}) = GooN G S x Good G (# v) = tt data _[_/_]-_ (G : Cxt)(L : Loc)(j : Jud)(T : Kind) : Set where _-!_ : (t : L [ j ]- T) -> [| Good G t |] -> G [ L / j ]- T gtm : {G : Cxt}{L : Loc}{j : Jud}{T : Kind} -> G [ L / j ]- T -> L [ j ]- T gtm (t -! _) = t good : {G : Cxt}{L : Loc}{j : Jud}{T : Kind} (t : G [ L / j ]- T) -> [| Good G (gtm t) |] good (t -! g) = g _[!_!]-_ : Cxt -> Kind -> Kind -> Set G [! C !]- T = G [ EL / Term C ]- T G[_] : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd} -> G [ L / Args C Z ]- C -> ---------------------------- G [ L / Term C ]- Ty Z G[ c -! cg ] = [ c ] -! cg Gfn : {G : Cxt}{C : Kind}{L : Loc}(A : U){K : El A -> Kind} -> ((x : El A) -> G [ L / Term C ]- K x) -> ------------------------------------------- G [ L / Term C ]- Pi A K Gfn A f = fn A (gtm o f) -! (good o f) G\\ : {G : Cxt}{C : Kind}{L : Loc}{S T : Kind} -> G [ L * S / Term C ]- T -> ------------------------------ G [ L / Term C ]- (S |> T) G\\ (b -! bg) = \\ b -! bg _G^_ : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{A : U}{K : El A -> Kind} -> (x : El A) -> G [ L / Args C Z ]- K x -> ------------------------------ G [ L / Args C Z ]- Pi A K a G^ (s -! sg) = (a ^ s) -! sg _G&_ : {G : Cxt}{C : Kind}{L : Loc}{S T : Kind}{Z : Gnd} -> G [ L / Term C ]- S -> G [ L / Args C Z ]- T -> ---------------------------------- G [ L / Args C Z ]- (S |> T) (r -! rg) G& (s -! sg) = (r & s) -! (rg , sg) Gnil : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd} -> ----------------------------- G [ L / Args C Z ]- Ty Z Gnil = nil -! _ _G$_ : {G : Cxt}{C : Kind}{L : Loc}{T : Kind}{Z : Gnd} -> G [ L / Head ]- T -> G [ L / Args C Z ]- T -> ----------------------------- G [ L / Term C ]- Ty Z (h -! hg) G$ (s -! sg) = (h $ s) -! (hg , sg) G` : {G : Cxt}{S : Kind}{L : Loc} -> Nom :- GooN G S -> ------------------------------------------------------ G [ L / Head ]- S G` [ x / xg ] = ` x -! xg G# : {G : Cxt}{L : Loc}{S : Kind} -> L ! S -> -------------------------- G [ L / Head ]- S G# v = # v -! _ infixr 90 _G^_ _G&_
{ "alphanum_fraction": 0.3577472237, "avg_line_length": 29.3178294574, "ext": "agda", "hexsha": "a682d0671f96d22382c02e1f4c4eeccdb30cb3c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "benchmark/Syntacticosmos/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "benchmark/Syntacticosmos/Term.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/Syntacticosmos/Term.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1526, "size": 3782 }
module Base.Prelude.Integer where open import Data.Nat using (ℕ; zero; suc) open import Data.Integer using (+_; -_) renaming (ℤ to ℤᵖ; _+_ to _+ᵖ_; _-_ to _-ᵖ_; _*_ to _*ᵖ_) open import Data.Integer.Properties using (_≤?_; _<?_) renaming (_≟_ to _≟ᵖ_) open import Relation.Nullary.Decidable using (⌊_⌋) -- Imports for literals. open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg open import Agda.Builtin.FromNat public open import Base.Free using (Free; pure; impure; _>>=_) open import Base.Partial using (Partial; error) open import Base.Prelude.Bool using (𝔹; not) open import Base.Prelude.Unit using (⊤ᵖ) ℤ : (Shape : Set) → (Shape → Set) → Set ℤ _ _ = ℤᵖ _+_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (ℤ S P) mx + my = mx >>= λ x → my >>= λ y → pure (x +ᵖ y) _-_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (ℤ S P) mx - my = mx >>= λ x → my >>= λ y → pure (x -ᵖ y) _*_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (ℤ S P) mx * my = mx >>= λ x → my >>= λ y → pure (x *ᵖ y) _≤_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx ≤ my = mx >>= λ x → my >>= λ y → pure ⌊ x ≤? y ⌋ _<_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx < my = mx >>= λ x → my >>= λ y → pure ⌊ x <? y ⌋ _>_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx > my = my ≤ mx _≥_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx ≥ my = my < mx _≟_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx ≟ my = mx >>= λ x → my >>= λ y → pure ⌊ x ≟ᵖ y ⌋ _≠_ : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (𝔹 S P) mx ≠ my = not (mx ≟ my) instance number : Number ℤᵖ number = record { Constraint = λ _ → ⊤ᵖ ; fromNat = λ n → + n } negative : Negative ℤᵖ negative = record { Constraint = λ _ → ⊤ᵖ ; fromNeg = λ n → - (+ n) } _^ᵖ_ : ℤᵖ → ℕ → ℤᵖ b ^ᵖ 0 = 1 b ^ᵖ suc e = b *ᵖ (b ^ᵖ e) -- If it encounters a negative exponent the Haskell implementation of @(^)@ raises an exception using @errorWithoutStackTrace@. _^_ : ∀ {S P} → ⦃ Partial S P ⦄ → Free S P (ℤ S P) → Free S P (ℤ S P) → Free S P (ℤ S P) mb ^ me = me >>= λ where (ℤᵖ.negsuc _) → error "Negative exponent" (+ 0) → pure 1 (+ (suc e)) → mb >>= λ b → pure (b ^ᵖ suc e) neg : ∀ {S P} → Free S P (ℤ S P) → Free S P (ℤ S P) neg x = pure -1 * x
{ "alphanum_fraction": 0.5125748503, "avg_line_length": 33.4, "ext": "agda", "hexsha": "56040a565b29ca879b6c33b5e9845a228d5782b3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Prelude/Integer.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Prelude/Integer.agda", "max_line_length": 127, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Prelude/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 1080, "size": 2505 }
------------------------------------------------------------------------ -- Partiality algebras ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-algebra where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (id; T) renaming (_∘_ to _⊚_) open import Bijection equality-with-J as Bijection using (_↔_) open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Univalence-axiom equality-with-J ------------------------------------------------------------------------ -- Partiality algebras -- Partiality algebras for certain universe levels and types, with a -- certain underlying type (T). record Partiality-algebra-with {a p} (T : Type p) q (A : Type a) : Type (a ⊔ p ⊔ lsuc q) where -- A binary relation on the type. infix 4 _⊑_ _⊒_ field _⊑_ : T → T → Type q _⊒_ : T → T → Type q _⊒_ x y = y ⊑ x -- Increasing sequences. Increasing-sequence : Type (p ⊔ q) Increasing-sequence = ∃ λ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n) -- Projection functions for Increasing-sequence. infix 30 _[_] _[_] : Increasing-sequence → ℕ → T _[_] s n = proj₁ s n increasing : (s : Increasing-sequence) → ∀ n → (s [ n ]) ⊑ (s [ suc n ]) increasing = proj₂ -- Upper bounds. Is-upper-bound : Increasing-sequence → T → Type q Is-upper-bound s x = ∀ n → (s [ n ]) ⊑ x field -- T "constructors". never : T now : A → T ⨆ : Increasing-sequence → T antisymmetry : ∀ {x y} → x ⊑ y → y ⊑ x → x ≡ y -- We have chosen to explicitly make the type set-truncated. -- However, this "constructor" is not used anywhere in the -- development (except when partiality algebras are modified, see -- for instance equality-characterisation-Partiality-algebra-with₁ -- or Partiality-algebra.Pi.Π-with). T-is-set-unused : Is-set T -- _⊑_ "constructors". ⊑-refl : ∀ x → x ⊑ x ⊑-trans : ∀ {x y z} → x ⊑ y → y ⊑ z → x ⊑ z never⊑ : ∀ x → never ⊑ x upper-bound : ∀ s → Is-upper-bound s (⨆ s) least-upper-bound : ∀ s ub → Is-upper-bound s ub → ⨆ s ⊑ ub ⊑-propositional : ∀ {x y} → Is-proposition (x ⊑ y) ---------------------------------------------------------------------- -- Some simple consequences private -- A lemma. T-is-set-and-equality-characterisation : Is-set T × _ T-is-set-and-equality-characterisation = Eq.propositional-identity≃≡ (λ x y → x ⊑ y × y ⊑ x) (λ _ _ → ×-closure 1 ⊑-propositional ⊑-propositional) (λ x → ⊑-refl x , ⊑-refl x) (λ x y → uncurry {B = λ _ → y ⊑ x} antisymmetry) -- T is a set. (This lemma is analogous to Theorem 11.3.9 in -- "Homotopy Type Theory: Univalent Foundations of Mathematics" -- (first edition).) T-is-set : Is-set T T-is-set = proj₁ T-is-set-and-equality-characterisation -- Equality characterisation lemma for T. equality-characterisation-T : ∀ {x y} → (x ⊑ y × y ⊑ x) ≃ (x ≡ y) equality-characterisation-T = proj₂ T-is-set-and-equality-characterisation ext -- Equality characterisation lemma for increasing sequences. equality-characterisation-increasing : ∀ {s₁ s₂} → (∀ n → s₁ [ n ] ≡ s₂ [ n ]) ↔ s₁ ≡ s₂ equality-characterisation-increasing {s₁} {s₂} = (∀ n → s₁ [ n ] ≡ s₂ [ n ]) ↔⟨ Eq.extensionality-isomorphism bad-ext ⟩ proj₁ s₁ ≡ proj₁ s₂ ↝⟨ ignore-propositional-component (Π-closure ext 1 λ _ → ⊑-propositional) ⟩□ s₁ ≡ s₂ □ -- Partiality algebras for certain universe levels and types. record Partiality-algebra {a} p q (A : Type a) : Type (a ⊔ lsuc (p ⊔ q)) where constructor ⟨_⟩ field -- A type. {T} : Type p -- A partiality-algebra with that type as the underlying type. partiality-algebra-with : Partiality-algebra-with T q A open Partiality-algebra-with partiality-algebra-with public ------------------------------------------------------------------------ -- Partiality algebra morphisms -- Morphisms from one partiality algebra to another. record Morphism {a p₁ p₂ q₁ q₂} {A : Type a} (P₁ : Partiality-algebra p₁ q₁ A) (P₂ : Partiality-algebra p₂ q₂ A) : Type (a ⊔ p₁ ⊔ p₂ ⊔ q₁ ⊔ q₂) where private module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ field function : P₁.T → P₂.T monotone : ∀ {x y} → x P₁.⊑ y → function x P₂.⊑ function y sequence-function : P₁.Increasing-sequence → P₂.Increasing-sequence sequence-function = Σ-map (function ⊚_) (monotone ⊚_) field strict : function P₁.never ≡ P₂.never now-to-now : ∀ x → function (P₁.now x) ≡ P₂.now x ω-continuous : ∀ s → function (P₁.⨆ s) ≡ P₂.⨆ (sequence-function s) -- An identity morphism. id : ∀ {a p q} {A : Type a} {P : Partiality-algebra p q A} → Morphism P P id = record { function = Prelude.id ; monotone = Prelude.id ; strict = refl ; now-to-now = λ _ → refl ; ω-continuous = λ _ → refl } -- Composition of morphisms. _∘_ : ∀ {a p₁ p₂ p₃ q₁ q₂ q₃} {A : Type a} {P₁ : Partiality-algebra p₁ q₁ A} {P₂ : Partiality-algebra p₂ q₂ A} {P₃ : Partiality-algebra p₃ q₃ A} → Morphism P₂ P₃ → Morphism P₁ P₂ → Morphism P₁ P₃ _∘_ {P₁ = P₁} {P₂} {P₃} m₁ m₂ = record { function = function m₁ ⊚ function m₂ ; monotone = monotone m₁ ⊚ monotone m₂ ; strict = function m₁ (function m₂ (never P₁)) ≡⟨ cong (function m₁) (strict m₂) ⟩ function m₁ (never P₂) ≡⟨ strict m₁ ⟩∎ never P₃ ∎ ; now-to-now = λ x → function m₁ (function m₂ (now P₁ x)) ≡⟨ cong (function m₁) (now-to-now m₂ x) ⟩ function m₁ (now P₂ x) ≡⟨ now-to-now m₁ x ⟩∎ now P₃ x ∎ ; ω-continuous = λ s → function m₁ (function m₂ (⨆ P₁ s)) ≡⟨ cong (function m₁) (ω-continuous m₂ s) ⟩ function m₁ (⨆ P₂ (sequence-function m₂ s)) ≡⟨ ω-continuous m₁ (sequence-function m₂ s) ⟩∎ ⨆ P₃ (sequence-function m₁ (sequence-function m₂ s)) ∎ } where open Morphism open Partiality-algebra -- Is-morphism-with P Q f holds if f is a morphism from P to Q. Is-morphism-with : ∀ {a p₁ p₂ q₁ q₂} {T₁ : Type p₁} {T₂ : Type p₂} {A : Type a} (P₁ : Partiality-algebra-with T₁ q₁ A) (P₂ : Partiality-algebra-with T₂ q₂ A) → (T₁ → T₂) → Type _ Is-morphism-with P₁ P₂ f = ∃ λ (m : ∀ {x y} → x P₁.⊑ y → f x P₂.⊑ f y) → f P₁.never ≡ P₂.never × (∀ x → f (P₁.now x) ≡ P₂.now x) × (∀ s → f (P₁.⨆ s) ≡ P₂.⨆ (Σ-map (f ⊚_) (m ⊚_) s)) where module P₁ = Partiality-algebra-with P₁ module P₂ = Partiality-algebra-with P₂ -- Is-morphism P Q f holds if f is a morphism from P to Q. Is-morphism : let open Partiality-algebra in ∀ {a p₁ p₂ q₁ q₂} {A : Type a} (P₁ : Partiality-algebra p₁ q₁ A) (P₂ : Partiality-algebra p₂ q₂ A) → (T P₁ → T P₂) → Type _ Is-morphism P₁ P₂ = Is-morphism-with P₁.partiality-algebra-with P₂.partiality-algebra-with where module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ -- An alternative definition of morphisms. Morphism-as-Σ : ∀ {a p₁ p₂ q₁ q₂} {A : Type a} → Partiality-algebra p₁ q₁ A → Partiality-algebra p₂ q₂ A → Type _ Morphism-as-Σ P₁ P₂ = ∃ λ (f : P₁.T → P₂.T) → Is-morphism P₁ P₂ f where module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ -- The two definitions are isomorphic. Morphism↔Morphism-as-Σ : ∀ {a p₁ p₂ q₁ q₂} {A : Type a} {P₁ : Partiality-algebra p₁ q₁ A} {P₂ : Partiality-algebra p₂ q₂ A} → Morphism P₁ P₂ ↔ Morphism-as-Σ P₁ P₂ Morphism↔Morphism-as-Σ = record { surjection = record { logical-equivalence = record { to = λ m → function m , monotone m , strict m , now-to-now m , ω-continuous m ; from = λ { (f , m , s , n , ω) → record { function = f ; monotone = m ; strict = s ; now-to-now = n ; ω-continuous = ω } } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } where open Morphism abstract -- Is-morphism-with is pointwise propositional. Is-morphism-with-propositional : let open Partiality-algebra in ∀ {a p₁ p₂ q₁ q₂} {T₁ : Type p₁} {T₂ : Type p₂} {A : Type a} (P₁ : Partiality-algebra-with T₁ q₁ A) (P₂ : Partiality-algebra-with T₂ q₂ A) {f : T₁ → T₂} → Is-proposition (Is-morphism-with P₁ P₂ f) Is-morphism-with-propositional _ P₂ = Σ-closure 1 (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.⊑-propositional) λ _ → ×-closure 1 P₂.T-is-set $ ×-closure 1 (Π-closure ext 1 λ _ → P₂.T-is-set) $ Π-closure ext 1 λ _ → P₂.T-is-set where module P₂ = Partiality-algebra-with P₂ -- Is-morphism is pointwise propositional. Is-morphism-propositional : let open Partiality-algebra in ∀ {a p₁ p₂ q₁ q₂} {A : Type a} (P₁ : Partiality-algebra p₁ q₁ A) (P₂ : Partiality-algebra p₂ q₂ A) {f : T P₁ → T P₂} → Is-proposition (Is-morphism P₁ P₂ f) Is-morphism-propositional P₁ P₂ = Is-morphism-with-propositional P₁.partiality-algebra-with P₂.partiality-algebra-with where module P₁ = Partiality-algebra P₁ module P₂ = Partiality-algebra P₂ -- An equality characterisation lemma for morphisms. equality-characterisation-Morphism : ∀ {a p₁ p₂ q₁ q₂} {A : Type a} {P₁ : Partiality-algebra p₁ q₁ A} {P₂ : Partiality-algebra p₂ q₂ A} → {m₁ m₂ : Morphism P₁ P₂} → Morphism.function m₁ ≡ Morphism.function m₂ ↔ m₁ ≡ m₂ equality-characterisation-Morphism {P₁ = P₁} {P₂} {m₁} {m₂} = function m₁ ≡ function m₂ ↝⟨ ignore-propositional-component (Is-morphism-propositional P₁ P₂) ⟩ _↔_.to Morphism↔Morphism-as-Σ m₁ ≡ _↔_.to Morphism↔Morphism-as-Σ m₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Morphism↔Morphism-as-Σ) ⟩□ m₁ ≡ m₂ □ where open Morphism -- The type of morphisms is a set. Morphism-set : ∀ {a p₁ p₂ q₁ q₂} {A : Type a} {P₁ : Partiality-algebra p₁ q₁ A} {P₂ : Partiality-algebra p₂ q₂ A} → Is-set (Morphism P₁ P₂) Morphism-set {P₂ = P₂} = H-level.respects-surjection (_↔_.surjection equality-characterisation-Morphism) 1 (Π-closure ext 2 λ _ → T-is-set P₂) where open Partiality-algebra
{ "alphanum_fraction": 0.5545373665, "avg_line_length": 31.9318181818, "ext": "agda", "hexsha": "354d18f10f2f45c5e02d90efde17b9395ee02018", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra.agda", "max_line_length": 142, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 3727, "size": 11240 }
------------------------------------------------------------------------------ -- Twice funcion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Twice where open import LTC-PCF.Base ------------------------------------------------------------------------------ twice : (D → D) → D → D twice f x = f (f x) twice-succ : ∀ n → twice succ₁ n ≡ succ₁ (succ₁ n) twice-succ n = refl
{ "alphanum_fraction": 0.3322203673, "avg_line_length": 28.5238095238, "ext": "agda", "hexsha": "11e312ff63cb6bede808733b4e56b820ff063975", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/LTC-PCF/Twice.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/LTC-PCF/Twice.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/LTC-PCF/Twice.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 112, "size": 599 }
{- This example test that the order in which unification constraints are generated doesn't matter. The pattern matching in foo generates the unification problem [x, zero] = [n + m, n] with n and m flexible. The first equation can only be solved after the second one has been solved. For completeness we check that the other way around also works. -} module PostponedUnification where data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) data T : Nat -> Nat -> Set where t : (x : Nat) -> T x zero foo : (n m : Nat) -> T (n + m) n -> Set foo ._ ._ (t x) = Nat data U : Nat -> Nat -> Set where u : (x : Nat) -> U zero x bar : (n m : Nat) -> U n (n + m) -> Set bar ._ ._ (u x) = Nat
{ "alphanum_fraction": 0.6002554278, "avg_line_length": 24.46875, "ext": "agda", "hexsha": "d062795f2d3ea2daa3579a5fcdf5a2df2022a61a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/PostponedUnification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/PostponedUnification.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/PostponedUnification.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 250, "size": 783 }
------------------------------------------------------------------------ -- Bijections ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Bijection {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Equality.Decision-procedures eq open import H-level eq open import Injection eq using (Injective; _↣_) open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id) renaming (_∘_ to _⊚_) open import Surjection eq as Surjection using (_↠_; module _↠_) ------------------------------------------------------------------------ -- Bijections infix 0 _↔_ record _↔_ {f t} (From : Type f) (To : Type t) : Type (f ⊔ t) where field surjection : From ↠ To open _↠_ surjection field left-inverse-of : ∀ x → from (to x) ≡ x injective : Injective to injective {x = x} {y = y} to-x≡to-y = x ≡⟨ sym (left-inverse-of x) ⟩ from (to x) ≡⟨ cong from to-x≡to-y ⟩ from (to y) ≡⟨ left-inverse-of y ⟩∎ y ∎ injection : From ↣ To injection = record { to = to ; injective = injective } -- A lemma. to-from : ∀ {x y} → to x ≡ y → from y ≡ x to-from {x} {y} to-x≡y = from y ≡⟨ cong from $ sym to-x≡y ⟩ from (to x) ≡⟨ left-inverse-of x ⟩∎ x ∎ -- Every right inverse of to is pointwise equal to from. right-inverse-unique : (f : To → From) → (∀ x → to (f x) ≡ x) → (∀ x → f x ≡ from x) right-inverse-unique _ right x = sym $ to-from (right x) -- Every left inverse of from is pointwise equal to to. left-inverse-of-from-unique : (f : From → To) → (∀ x → f (from x) ≡ x) → (∀ x → f x ≡ to x) left-inverse-of-from-unique f left x = f x ≡⟨ cong f $ sym $ left-inverse-of _ ⟩ f (from (to x)) ≡⟨ left _ ⟩∎ to x ∎ open _↠_ surjection public -- The type of quasi-inverses of a function (as defined in the HoTT -- book). Has-quasi-inverse : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Has-quasi-inverse {A = A} {B = B} to = ∃ λ (from : B → A) → (∀ x → to (from x) ≡ x) × (∀ x → from (to x) ≡ x) -- An alternative characterisation of bijections. ↔-as-Σ : ∀ {a b} {A : Type a} {B : Type b} → (A ↔ B) ↔ ∃ λ (f : A → B) → Has-quasi-inverse f ↔-as-Σ = record { surjection = record { logical-equivalence = record { to = λ A↔B → _↔_.to A↔B , _↔_.from A↔B , _↔_.right-inverse-of A↔B , _↔_.left-inverse-of A↔B ; from = λ (t , f , r , l) → record { surjection = record { logical-equivalence = record { to = t ; from = f } ; right-inverse-of = r } ; left-inverse-of = l } } ; right-inverse-of = refl } ; left-inverse-of = refl } ------------------------------------------------------------------------ -- Equivalence -- _↔_ is an equivalence relation. id : ∀ {a} {A : Type a} → A ↔ A id = record { surjection = Surjection.id ; left-inverse-of = refl } inverse : ∀ {a b} {A : Type a} {B : Type b} → A ↔ B → B ↔ A inverse A↔B = record { surjection = record { logical-equivalence = Logical-equivalence.inverse logical-equivalence ; right-inverse-of = left-inverse-of } ; left-inverse-of = right-inverse-of } where open _↔_ A↔B infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → B ↔ C → A ↔ B → A ↔ C f ∘ g = record { surjection = Surjection._∘_ (surjection f) (surjection g) ; left-inverse-of = from∘to } where open _↔_ from∘to : ∀ x → from g (from f (to f (to g x))) ≡ x from∘to = λ x → from g (from f (to f (to g x))) ≡⟨ cong (from g) (left-inverse-of f (to g x)) ⟩ from g (to g x) ≡⟨ left-inverse-of g x ⟩∎ x ∎ -- "Equational" reasoning combinators. infix -1 finally-↔ infixr -2 step-↔ -- For an explanation of why step-↔ is defined in this way, see -- Equality.step-≡. step-↔ : ∀ {a b c} (A : Type a) {B : Type b} {C : Type c} → B ↔ C → A ↔ B → A ↔ C step-↔ _ = _∘_ syntax step-↔ A B↔C A↔B = A ↔⟨ A↔B ⟩ B↔C finally-↔ : ∀ {a b} (A : Type a) (B : Type b) → A ↔ B → A ↔ B finally-↔ _ _ A↔B = A↔B syntax finally-↔ A B A↔B = A ↔⟨ A↔B ⟩□ B □ ------------------------------------------------------------------------ -- One can replace either of the functions with an extensionally equal -- function with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (f : A → B) → (∀ x → _↔_.to A↔B x ≡ f x) → A ↔ B with-other-function A↔B f ≡f = record { surjection = record { logical-equivalence = record { to = f ; from = _↔_.from A↔B } ; right-inverse-of = λ x → f (_↔_.from A↔B x) ≡⟨ sym $ ≡f _ ⟩ _↔_.to A↔B (_↔_.from A↔B x) ≡⟨ _↔_.right-inverse-of A↔B _ ⟩∎ x ∎ } ; left-inverse-of = λ x → _↔_.from A↔B (f x) ≡⟨ cong (_↔_.from A↔B) $ sym $ ≡f _ ⟩ _↔_.from A↔B (_↔_.to A↔B x) ≡⟨ _↔_.left-inverse-of A↔B _ ⟩∎ x ∎ } with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (f : B → A) → (∀ x → _↔_.from A↔B x ≡ f x) → A ↔ B with-other-inverse A↔B f ≡f = inverse $ with-other-function (inverse A↔B) f ≡f private -- The two functions above compute in the right way. to∘with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (f : A → B) (to≡f : ∀ x → _↔_.to A↔B x ≡ f x) → _↔_.to (with-other-function A↔B f to≡f) ≡ f to∘with-other-function _ _ _ = refl _ from∘with-other-function : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (f : A → B) (to≡f : ∀ x → _↔_.to A↔B x ≡ f x) → _↔_.from (with-other-function A↔B f to≡f) ≡ _↔_.from A↔B from∘with-other-function _ _ _ = refl _ to∘with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (g : B → A) (from≡g : ∀ x → _↔_.from A↔B x ≡ g x) → _↔_.to (with-other-inverse A↔B g from≡g) ≡ _↔_.to A↔B to∘with-other-inverse _ _ _ = refl _ from∘with-other-inverse : ∀ {a b} {A : Type a} {B : Type b} (A↔B : A ↔ B) (g : B → A) (from≡g : ∀ x → _↔_.from A↔B x ≡ g x) → _↔_.from (with-other-inverse A↔B g from≡g) ≡ g from∘with-other-inverse _ _ _ = refl _ ------------------------------------------------------------------------ -- More lemmas -- Uninhabited types are isomorphic to the empty type. ⊥↔uninhabited : ∀ {a ℓ} {A : Type a} → ¬ A → ⊥ {ℓ = ℓ} ↔ A ⊥↔uninhabited ¬A = record { surjection = record { logical-equivalence = record { to = ⊥-elim ; from = ⊥-elim ⊚ ¬A } ; right-inverse-of = ⊥-elim ⊚ ¬A } ; left-inverse-of = λ () } -- A lifted set is isomorphic to the underlying one. ↑↔ : ∀ {a b} {A : Type a} → ↑ b A ↔ A ↑↔ {b = b} {A} = record { surjection = record { logical-equivalence = record { to = lower ; from = lift } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Equality between pairs can be expressed as a pair of equalities. Σ-≡,≡↔≡ : ∀ {a b} {A : Type a} {B : A → Type b} {p₁ p₂ : Σ A B} → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) ↔ (p₁ ≡ p₂) Σ-≡,≡↔≡ {A = A} {B} {p₁} {p₂} = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where from-P = λ {p₁ p₂ : Σ A B} (_ : p₁ ≡ p₂) → ∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ from : {p₁ p₂ : Σ A B} → p₁ ≡ p₂ → ∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ from = Σ-≡,≡←≡ to : {p₁ p₂ : Σ A B} → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂ to = uncurry Σ-≡,≡→≡ abstract to∘from : ∀ eq → to (from {p₁ = p₁} {p₂ = p₂} eq) ≡ eq to∘from = elim (λ p≡q → to (from p≡q) ≡ p≡q) λ x → let lem = subst-refl B (proj₂ x) in to (from (refl x)) ≡⟨ cong to (elim-refl from-P _) ⟩ to (refl (proj₁ x) , lem) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩ cong (_,_ (proj₁ x)) (trans (sym lem) lem) ≡⟨ cong (cong (_,_ (proj₁ x))) $ trans-symˡ lem ⟩ cong (_,_ (proj₁ x)) (refl (proj₂ x)) ≡⟨ cong-refl (_,_ (proj₁ x)) ⟩∎ refl x ∎ from∘to : ∀ p → from (to {p₁ = p₁} {p₂ = p₂} p) ≡ p from∘to p = elim (λ {x₁ x₂} x₁≡x₂ → ∀ {y₁ y₂} (y₁′≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) → from (to (x₁≡x₂ , y₁′≡y₂)) ≡ (x₁≡x₂ , y₁′≡y₂)) (λ x {y₁} y₁′≡y₂ → elim (λ {y₁ y₂} (y₁≡y₂ : y₁ ≡ y₂) → (y₁′≡y₂ : subst B (refl x) y₁ ≡ y₂) → y₁≡y₂ ≡ trans (sym $ subst-refl B y₁) y₁′≡y₂ → from (to (refl x , y₁′≡y₂)) ≡ (refl x , y₁′≡y₂)) (λ y y′≡y eq → let lem = subst-refl B y in from (to (refl x , y′≡y)) ≡⟨ cong from $ Σ-≡,≡→≡-reflˡ _ ⟩ from (cong (_,_ x) (trans (sym lem) y′≡y)) ≡⟨ cong (from ⊚ cong (_,_ x)) $ sym eq ⟩ from (cong (_,_ x) (refl y)) ≡⟨ cong from $ cong-refl (_,_ x) ⟩ from (refl (x , y)) ≡⟨ elim-refl from-P _ ⟩ (refl x , lem) ≡⟨ cong (_,_ (refl x)) ( lem ≡⟨ sym $ trans-reflʳ _ ⟩ trans lem (refl _) ≡⟨ cong (trans lem) eq ⟩ trans lem (trans (sym lem) y′≡y) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans lem (sym lem)) y′≡y ≡⟨ cong (λ p → trans p y′≡y) $ trans-symʳ lem ⟩ trans (refl _) y′≡y ≡⟨ trans-reflˡ _ ⟩∎ y′≡y ∎) ⟩∎ (refl x , y′≡y) ∎) (trans (sym $ subst-refl B y₁) y₁′≡y₂) y₁′≡y₂ (refl _)) (proj₁ p) (proj₂ p) -- Equalities are closed, in a strong sense, under applications of -- certain injections (at least inj₁ and inj₂). ≡↔inj₁≡inj₁ : ∀ {a b} {A : Type a} {B : Type b} {x y : A} → (x ≡ y) ↔ _≡_ {A = A ⊎ B} (inj₁ x) (inj₁ y) ≡↔inj₁≡inj₁ {A = A} {B} {x} {y} = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : x ≡ y → _≡_ {A = A ⊎ B} (inj₁ x) (inj₁ y) to = cong inj₁ from = ⊎.cancel-inj₁ abstract to∘from : ∀ ix≡iy → to (from ix≡iy) ≡ ix≡iy to∘from ix≡iy = cong inj₁ (⊎.cancel-inj₁ ix≡iy) ≡⟨ cong-∘ inj₁ [ P.id , const x ] ix≡iy ⟩ cong f ix≡iy ≡⟨ cong-roughly-id f p ix≡iy _ _ f≡id ⟩ trans (refl _) (trans ix≡iy $ sym (refl _)) ≡⟨ trans-reflˡ _ ⟩ trans ix≡iy (sym $ refl _) ≡⟨ cong (trans ix≡iy) sym-refl ⟩ trans ix≡iy (refl _) ≡⟨ trans-reflʳ _ ⟩∎ ix≡iy ∎ where f : A ⊎ B → A ⊎ B f = inj₁ ⊚ [ P.id , const x ] p : A ⊎ B → Bool p = if_then true else false f≡id : ∀ z → T (p z) → f z ≡ z f≡id (inj₁ x) = const (refl (inj₁ x)) f≡id (inj₂ y) = ⊥-elim from∘to : ∀ x≡y → from (to x≡y) ≡ x≡y from∘to x≡y = cong [ P.id , const x ] (cong inj₁ x≡y) ≡⟨ cong-∘ [ P.id , const x ] inj₁ _ ⟩ cong P.id x≡y ≡⟨ sym $ cong-id _ ⟩∎ x≡y ∎ ≡↔inj₂≡inj₂ : ∀ {a b} {A : Type a} {B : Type b} {x y : B} → (x ≡ y) ↔ _≡_ {A = A ⊎ B} (inj₂ x) (inj₂ y) ≡↔inj₂≡inj₂ {A = A} {B} {x} {y} = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : x ≡ y → _≡_ {A = A ⊎ B} (inj₂ x) (inj₂ y) to = cong inj₂ from = ⊎.cancel-inj₂ abstract to∘from : ∀ ix≡iy → to (from ix≡iy) ≡ ix≡iy to∘from ix≡iy = cong inj₂ (⊎.cancel-inj₂ ix≡iy) ≡⟨ cong-∘ inj₂ [ const x , P.id ] ix≡iy ⟩ cong f ix≡iy ≡⟨ cong-roughly-id f p ix≡iy _ _ f≡id ⟩ trans (refl _) (trans ix≡iy $ sym (refl _)) ≡⟨ trans-reflˡ _ ⟩ trans ix≡iy (sym $ refl _) ≡⟨ cong (trans ix≡iy) sym-refl ⟩ trans ix≡iy (refl _) ≡⟨ trans-reflʳ _ ⟩∎ ix≡iy ∎ where f : A ⊎ B → A ⊎ B f = inj₂ ⊚ [ const x , P.id ] p : A ⊎ B → Bool p = if_then false else true f≡id : ∀ z → T (p z) → f z ≡ z f≡id (inj₁ x) = ⊥-elim f≡id (inj₂ y) = const (refl (inj₂ y)) from∘to : ∀ x≡y → from (to x≡y) ≡ x≡y from∘to x≡y = cong [ const x , P.id ] (cong inj₂ x≡y) ≡⟨ cong-∘ [ const x , P.id ] inj₂ _ ⟩ cong P.id x≡y ≡⟨ sym $ cong-id _ ⟩∎ x≡y ∎ -- An alternative characterisation of equality for binary sums. Equality-⊎ : ∀ {a b} {A : Type a} {B : Type b} → A ⊎ B → A ⊎ B → Type (a ⊔ b) Equality-⊎ {b = b} (inj₁ x) (inj₁ y) = ↑ b (x ≡ y) Equality-⊎ (inj₁ x) (inj₂ y) = ⊥ Equality-⊎ (inj₂ x) (inj₁ y) = ⊥ Equality-⊎ {a = a} (inj₂ x) (inj₂ y) = ↑ a (x ≡ y) ≡↔⊎ : ∀ {a b} {A : Type a} {B : Type b} {x y : A ⊎ B} → x ≡ y ↔ Equality-⊎ x y ≡↔⊎ {x = inj₁ x} {inj₁ y} = inj₁ x ≡ inj₁ y ↔⟨ inverse ≡↔inj₁≡inj₁ ⟩ x ≡ y ↔⟨ inverse ↑↔ ⟩□ ↑ _ (x ≡ y) □ ≡↔⊎ {x = inj₁ x} {inj₂ y} = inj₁ x ≡ inj₂ y ↔⟨ inverse (⊥↔uninhabited ⊎.inj₁≢inj₂) ⟩□ ⊥ □ ≡↔⊎ {x = inj₂ x} {inj₁ y} = inj₂ x ≡ inj₁ y ↔⟨ inverse (⊥↔uninhabited (⊎.inj₁≢inj₂ ⊚ sym)) ⟩□ ⊥ □ ≡↔⊎ {x = inj₂ x} {inj₂ y} = inj₂ x ≡ inj₂ y ↔⟨ inverse ≡↔inj₂≡inj₂ ⟩ x ≡ y ↔⟨ inverse ↑↔ ⟩□ ↑ _ (x ≡ y) □ -- Decidable equality respects bijections. decidable-equality-respects : ∀ {a b} {A : Type a} {B : Type b} → A ↔ B → Decidable-equality A → Decidable-equality B decidable-equality-respects A↔B _≟A_ x y = ⊎-map (_↔_.injective (inverse A↔B)) (λ from-x≢from-y → from-x≢from-y ⊚ cong from) (from x ≟A from y) where open _↔_ A↔B -- All contractible types are isomorphic. contractible-isomorphic : ∀ {a b} {A : Type a} {B : Type b} → Contractible A → Contractible B → A ↔ B contractible-isomorphic {A} {B} cA cB = record { surjection = record { logical-equivalence = record { to = const (proj₁ cB) ; from = const (proj₁ cA) } ; right-inverse-of = proj₂ cB } ; left-inverse-of = proj₂ cA } -- Implicit and explicit Π's are isomorphic. implicit-Π↔Π : ∀ {a b} {A : Type a} {B : A → Type b} → ({x : A} → B x) ↔ ((x : A) → B x) implicit-Π↔Π = record { surjection = record { logical-equivalence = record { to = λ f x → f {x} ; from = λ f {x} → f x } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Implicit and explicit Π's with erased domains are isomorphic. implicit-Πᴱ↔Πᴱ : ∀ {a b} {A : Type a} {B : A → Type b} → ({@0 x : A} → B x) ↔ ((@0 x : A) → B x) implicit-Πᴱ↔Πᴱ = record { surjection = record { logical-equivalence = record { to = λ f x → f {x} ; from = λ f {x} → f x } ; right-inverse-of = refl } ; left-inverse-of = refl } -- A variant of implicit-Πᴱ↔Πᴱ. implicit-Πᴱ↔Πᴱ′ : ∀ {a b} {@0 A : Type a} {B : @0 A → Type b} → ({@0 x : A} → B x) ↔ ((@0 x : A) → B x) implicit-Πᴱ↔Πᴱ′ {A = A} {B = B} = record { surjection = record { logical-equivalence = record { to = λ f x → f {x} ; from = λ f {x} → f x } ; right-inverse-of = refl {A = (@0 x : A) → B x} } ; left-inverse-of = refl {A = {@0 x : A} → B x} } -- Σ is associative. Σ-assoc : ∀ {a b c} {A : Type a} {B : A → Type b} {C : (x : A) → B x → Type c} → (Σ A λ x → Σ (B x) (C x)) ↔ Σ (Σ A B) (uncurry C) Σ-assoc = record { surjection = record { logical-equivalence = record { to = λ { (x , (y , z)) → (x , y) , z } ; from = λ { ((x , y) , z) → x , (y , z) } } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Π and Σ commute (in a certain sense). ΠΣ-comm : ∀ {a b c} {A : Type a} {B : A → Type b} {C : (x : A) → B x → Type c} → (∀ x → ∃ λ (y : B x) → C x y) ↔ (∃ λ (f : ∀ x → B x) → ∀ x → C x (f x)) ΠΣ-comm = record { surjection = record { logical-equivalence = record { to = λ f → proj₁ ⊚ f , proj₂ ⊚ f ; from = λ { (f , g) x → f x , g x } } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Equality is commutative. ≡-comm : ∀ {a} {A : Type a} {x y : A} → x ≡ y ↔ y ≡ x ≡-comm = record { surjection = record { logical-equivalence = record { to = sym } ; right-inverse-of = sym-sym } ; left-inverse-of = sym-sym } -- Families of functions that satisfy a kind of involution property -- can be turned into bijections. bijection-from-involutive-family : ∀ {a b} {A : Type a} {B : A → Type b} → (f : ∀ a₁ a₂ → B a₁ → B a₂) → (∀ a₁ a₂ (x : B a₁) → f _ _ (f _ a₂ x) ≡ x) → ∀ a₁ a₂ → B a₁ ↔ B a₂ bijection-from-involutive-family f f-involutive _ _ = record { surjection = record { logical-equivalence = record { to = f _ _ ; from = f _ _ } ; right-inverse-of = f-involutive _ _ } ; left-inverse-of = f-involutive _ _ } abstract -- An equality rearrangement lemma. trans-to-to≡to-trans : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} (iso : ∀ x y → f x ≡ f y ↔ x ≡ y) → (∀ x → _↔_.from (iso x x) (refl x) ≡ refl (f x)) → ∀ {x y z p q} → trans (_↔_.to (iso x y) p) (_↔_.to (iso y z) q) ≡ _↔_.to (iso x z) (trans p q) trans-to-to≡to-trans {f = f} iso iso-refl {x} {y} {z} {p} {q} = trans (_↔_.to (iso x y) p) (_↔_.to (iso y z) q) ≡⟨ elim₁ (λ {x} p → trans p (_↔_.to (iso y z) q) ≡ _↔_.to (iso x z) (trans (_↔_.from (iso x y) p) q)) ( trans (refl y) (_↔_.to (iso y z) q) ≡⟨ trans-reflˡ _ ⟩ _↔_.to (iso y z) q ≡⟨ cong (_↔_.to (iso y z)) $ sym $ trans-reflˡ _ ⟩ _↔_.to (iso y z) (trans (refl (f y)) q) ≡⟨ cong (_↔_.to (iso y z) ⊚ flip trans _) $ sym $ iso-refl y ⟩∎ _↔_.to (iso y z) (trans (_↔_.from (iso y y) (refl y)) q) ∎) (_↔_.to (iso x y) p) ⟩ _↔_.to (iso x z) (trans (_↔_.from (iso x y) (_↔_.to (iso x y) p)) q) ≡⟨ cong (_↔_.to (iso x z) ⊚ flip trans _) $ _↔_.left-inverse-of (iso _ _) _ ⟩∎ _↔_.to (iso x z) (trans p q) ∎
{ "alphanum_fraction": 0.4444557893, "avg_line_length": 31.5935483871, "ext": "agda", "hexsha": "c37578138b8ca6c05620418fcb9e3d402c7d409c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Bijection.agda", "max_line_length": 138, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Bijection.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 7768, "size": 19588 }
-- Andreas, 2018-08-14, re issue #1558 -- Termination checking functions over inductive-inductive types -- {-# OPTIONS -v term:40 #-} mutual data Cxt : Set where ε : Cxt _,_ : (Γ : Cxt) (A : Ty Γ) → Cxt data Ty : (Γ : Cxt) → Set where u : ∀ Γ → Ty Γ Π : ∀ Γ (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ mutual f : Cxt → Cxt f ε = ε f (Γ , T) = (f Γ , g Γ T) g : ∀ Γ → Ty Γ → Ty (f Γ) g Γ (u .Γ) = u (f Γ) g Γ (Π .Γ A B) = Π (f Γ) (g Γ A) (g (Γ , A) B) -- The type of g contains a call -- -- g Γ _ --> f Γ -- -- which is now recorded by the termination checker. -- Should pass termination.
{ "alphanum_fraction": 0.487654321, "avg_line_length": 20.9032258065, "ext": "agda", "hexsha": "d992abfe7adf318c87033cab46d10e9c1a4eb646", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/TerminationInductionInduction.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/TerminationInductionInduction.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/TerminationInductionInduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 276, "size": 648 }
-- Andreas, 2018-11-23, issue #3304, report and test case by Nisse open import Agda.Builtin.Equality open import Agda.Builtin.Sigma map : {A B : Set} {P : A → Set} {Q : B → Set} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g (x , y) = (f x , g y) postulate F : Set → Set → Set apply : {A B : Set} → F A B → A → B construct : {A B : Set} → (A → B) → F A B A : Set B : A → Set f : A → A g : ∀ {x} → B x → B (f x) mutual k : Σ A B → Σ A _ k = map f g h : F (Σ A B) (Σ A B) h = construct k P : ∀ {x y} → k x ≡ k y → Set₁ P refl = Set -- WAS: internal error in -- TypeChecking.Rules.Term.catchIlltypedPatternBlockedOnMeta -- -- EXPECTED: -- I'm not sure if there should be a case for the constructor refl, -- because I get stuck when trying to solve the following unification -- problems (inferred index ≟ expected index): -- k x ≟ k y -- when checking that the pattern refl has type k x ≡ k y
{ "alphanum_fraction": 0.5442655936, "avg_line_length": 24.85, "ext": "agda", "hexsha": "0c637c079fc9a43c083799c70d9d68360e06ad88", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3403.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3403.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3403.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 368, "size": 994 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.IntegralDomains.Definition module Rings.Associates.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Divisible.Definition R open import Rings.IntegralDomains.Lemmas intDom open import Rings.Associates.Definition intDom open import Rings.Ideals.Definition R open Setoid S open Ring R open Equivalence eq associatesEquiv : Equivalence Associates Equivalence.reflexive associatesEquiv {x} = 1R , ((1R , identIsIdent) ,, symmetric (transitive *Commutative identIsIdent)) Equivalence.symmetric associatesEquiv {x} {y} (a , ((invA , prInv) ,, x=ya)) = invA , ((a , transitive *Commutative prInv) ,, transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric prInv) reflexive) (transitive *Commutative (transitive *Associative (*WellDefined (symmetric x=ya) reflexive))))) Equivalence.transitive associatesEquiv {x} {y} {z} (a , ((invA , prInvA) ,, x=ya)) (b , ((invB , prInvB) ,, y=zb)) = (a * b) , (((invA * invB) , transitive *Associative (transitive (*WellDefined (transitive *Commutative *Associative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined (transitive *Commutative prInvA) prInvB) identIsIdent)))) ,, transitive x=ya (transitive (*WellDefined y=zb reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)))) associateImpliesMutualDivision : {a b : A} → Associates a b → a ∣ b associateImpliesMutualDivision {a} {b} (x , ((invX , prInvX) ,, a=bx)) = invX , transitive (transitive (*WellDefined a=bx reflexive) (transitive (transitive (symmetric *Associative) (*WellDefined reflexive prInvX)) *Commutative)) identIsIdent mutualDivisionImpliesAssociate : {a b : A} → (a ∣ b) → (b ∣ a) → ((a ∼ 0R) → False) → Associates a b mutualDivisionImpliesAssociate {a} {b} (r , ar=b) (s , bs=a) a!=0 = s , ((r , cancelIntDom {a = a} (transitive (transitive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined ar=b reflexive))) bs=a) (transitive (symmetric identIsIdent) *Commutative)) a!=0) ,, symmetric bs=a) mutualDivisionImpliesAssociate' : {a b : A} → (a ∣ b) → (b ∣ a) → (a ∼ 0R) → Associates a b mutualDivisionImpliesAssociate' {a} {b} (r , ar=b) (s , bs=a) a=0 = 1R , ((1R , identIsIdent) ,, transitive a=0 (symmetric (transitive (*WellDefined b=0 reflexive) (transitive *Commutative timesZero)))) where b=0 : b ∼ 0R b=0 = transitive (symmetric ar=b) (transitive (transitive *Commutative (*WellDefined reflexive a=0)) (timesZero {r})) associateImpliesGeneratedIdealsEqual : {a b : A} → Associates a b → {x : A} → generatedIdealPred a x → generatedIdealPred b x associateImpliesGeneratedIdealsEqual {a} {b} (r , ((s , rs=1) ,, a=br)) {x} (c , ac=x) = (r * c) , transitive *Associative (transitive (*WellDefined (symmetric a=br) reflexive) ac=x) associateImpliesGeneratedIdealsEqual' : {a b : A} → Associates a b → {x : A} → generatedIdealPred b x → generatedIdealPred a x associateImpliesGeneratedIdealsEqual' assoc = associateImpliesGeneratedIdealsEqual (Equivalence.symmetric associatesEquiv assoc)
{ "alphanum_fraction": 0.7228588661, "avg_line_length": 78.9523809524, "ext": "agda", "hexsha": "e9f02ea71b560a7ae2158dce45e0dc29c576b6ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Associates/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Associates/Lemmas.agda", "max_line_length": 504, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Associates/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1050, "size": 3316 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Products.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open import Level import Categories.Object.Terminal open Categories.Object.Terminal C import Categories.Object.BinaryProducts open Categories.Object.BinaryProducts C import Categories.Object.Products open Categories.Object.Products C import Categories.Morphisms open Categories.Morphisms C module Properties (P : Products) where open Products P open Terminal terminal open BinaryProducts binary open HomReasoning open Equiv unitˡ : ∀ {X} → (⊤ × X) ≅ X unitˡ {X} = record { f = π₂ ; g = ⟨ ! , id {X} ⟩ ; iso = record { isoˡ = begin ⟨ ! , id {X} ⟩ ∘ π₂ ↓⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ π₂ , id ∘ π₂ ⟩ ↓⟨ ⟨⟩-cong₂ (!-unique₂ (! ∘ π₂) π₁) (identityˡ) ⟩ ⟨ π₁ , π₂ ⟩ ↓⟨ η ⟩ id ∎ ; isoʳ = commute₂ } } .unitˡ-natural : ∀ {X Y} {f : X ⇒ Y} → ⟨ ! , id {Y} ⟩ ∘ f ≡ second f ∘ ⟨ ! , id {X} ⟩ unitˡ-natural {f = f} = begin ⟨ ! , id ⟩ ∘ f ↓⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ f , id ∘ f ⟩ ↑⟨ ⟨⟩-cong₂ (!-unique (! ∘ f)) (id-comm {f = f}) ⟩ ⟨ ! , f ∘ id ⟩ ↑⟨ second∘⟨⟩ ⟩ second f ∘ ⟨ ! , id ⟩ ∎ unitʳ : ∀ {X} → (X × ⊤) ≅ X unitʳ {X} = record { f = π₁ ; g = ⟨ id {X} , ! ⟩ ; iso = record { isoˡ = begin ⟨ id {X} , ! ⟩ ∘ π₁ ↓⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ↓⟨ ⟨⟩-cong₂ (identityˡ) (!-unique₂ (! ∘ π₁) π₂) ⟩ ⟨ π₁ , π₂ ⟩ ↓⟨ η ⟩ id ∎ ; isoʳ = commute₁ } } .unitʳ-natural : ∀ {X Y} {f : X ⇒ Y} → ⟨ id , ! ⟩ ∘ f ≡ first f ∘ ⟨ id , ! ⟩ unitʳ-natural {f = f} = begin ⟨ id , ! ⟩ ∘ f ↓⟨ ⟨⟩∘ ⟩ ⟨ id ∘ f , ! ∘ f ⟩ ↑⟨ ⟨⟩-cong₂ (id-comm {f = f}) (!-unique (! ∘ f)) ⟩ ⟨ f ∘ id , ! ⟩ ↑⟨ first∘⟨⟩ ⟩ first f ∘ ⟨ id , ! ⟩ ∎
{ "alphanum_fraction": 0.4414278532, "avg_line_length": 21.3870967742, "ext": "agda", "hexsha": "39715b7dc66fea0d5c2af1fc96e7b58c7e16ca2c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Products/Properties.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Products/Properties.agda", "max_line_length": 87, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Products/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 827, "size": 1989 }
module Check where open import Data.Fin using (Fin) open import Data.Nat using (ℕ; suc) open import Data.Vec hiding (head; tail) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (Dec; yes; no) open import Types open import Utils data Check {n} (Γ : Ctx n) : Syntax → Set where yes : (τ : Type) (t : Term Γ τ) → Check Γ (erase t) no : {e : Syntax} → Check Γ e check : ∀ {n} (Γ : Ctx n) (t : Syntax) → Check Γ t check Γ bitI = yes 𝔹 bitI check Γ bitO = yes 𝔹 bitO check Γ [] = yes (𝔹⁺ 0) [] check Γ (x ∷ xs) with check Γ x | check Γ xs check Γ (.(erase t) ∷ .(erase t₁)) | yes 𝔹 t | yes (𝔹⁺ n) t₁ = yes (𝔹⁺ (suc n)) (t ∷ t₁) check Γ (x ∷ xs) | _ | _ = no check Γ (x nand y) with check Γ x | check Γ y check Γ (._ nand ._) | yes 𝔹 x | yes 𝔹 y = yes 𝔹 (x nand y) check Γ (_ nand _) | _ | _ = no check Γ (reg xt ft) with check Γ xt | check Γ ft check Γ (reg ._ ._) | yes τ xt | yes (τ′ ⇒ (τ″ × σ)) ft with τ ≟T τ′ | τ ≟T τ″ check Γ (reg ._ ._) | yes τ xt | yes (.τ ⇒ (.τ × σ)) ft | yes refl | yes refl = yes _ (reg xt ft) check Γ (reg ._ ._) | yes τ xt | yes (τ′ ⇒ (τ″ × σ)) ft | _ | _ = no check Γ (reg _ _) | _ | _ = no check Γ (pair xt yt) with check Γ xt | check Γ yt check Γ (pair ._ ._) | yes σ t | yes τ t₁ with σ ≟T τ check Γ (pair ._ ._) | yes σ t | yes .σ t₁ | yes refl = yes (σ × σ) (pair t t₁) check Γ (pair ._ ._) | yes σ t | yes τ t₁ | no _ = no check Γ (pair xt yt) | _ | _ = no check Γ (latest t) with check Γ t check Γ (latest ._) | yes (ℂ τ) t′ = yes τ (latest t′) check Γ (latest t) | _ = no check Γ (head x) with check Γ x check Γ (head ._) | yes (𝔹⁺ (suc n)) t = yes 𝔹 (head t) check Γ (head _) | _ = no check Γ (tail xs) with check Γ xs check Γ (tail .(erase t)) | yes (𝔹⁺ (suc n)) t = yes (𝔹⁺ n) (tail t) check Γ (tail xs) | _ = no check {n} Γ (var i) with fromℕ n i check Γ (var ._) | yes m = yes (lookup m Γ) (var m refl) check Γ (var ._) | no m = no check Γ (x ∙ y) with check Γ x | check Γ y check Γ (._ ∙ ._) | yes (σ ⇒ τ) x | yes σ′ y with σ ≟T σ′ check Γ (._ ∙ ._) | yes (σ ⇒ τ) x | yes .σ y | yes refl = yes τ (x ∙ y) check Γ (._ ∙ ._) | yes (σ ⇒ τ) x | yes σ′ y | no ¬p = no check Γ (x ∙ y) | _ | _ = no check Γ (lam τ x) with check (τ ∷ Γ) x check Γ (lam τ ._) | yes τ₁ t = yes (τ ⇒ τ₁) (lam t) check Γ (lam τ x) | no = no
{ "alphanum_fraction": 0.5551265551, "avg_line_length": 34.7910447761, "ext": "agda", "hexsha": "d7a825485b6d3313e58304c2b52a5645897146ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bens/hwlc", "max_forks_repo_path": "Check.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bens/hwlc", "max_issues_repo_path": "Check.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bens/hwlc", "max_stars_repo_path": "Check.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 954, "size": 2331 }
data Bool : Set where true : Bool false : Bool if_then_else : ∀ {l} {A : Set l} -> Bool -> A -> A -> A if true then t else e = t if false then t else e = e if2_,_then_else1_else2_else_ : ∀ {l} {A : Set l} -> (b1 b2 : Bool) -> (t e1 e2 e : A) -> A if2 true , true then t else1 e1 else2 e2 else e = t if2 true , false then t else1 e1 else2 e2 else e = e1 if2 false , true then t else1 e1 else2 e2 else e = e2 if2 false , false then t else1 e1 else2 e2 else e = e example : Bool example = if2 true , false then true else1 false else2 true else false
{ "alphanum_fraction": 0.6462093863, "avg_line_length": 32.5882352941, "ext": "agda", "hexsha": "c2ebba458a6de33c40fe8da301be89ea82c500bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_forks_repo_licenses": [ "Info-ZIP" ], "max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_forks_repo_path": "Task/Extend-your-language/Agda/extend-your-language.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Info-ZIP" ], "max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_issues_repo_path": "Task/Extend-your-language/Agda/extend-your-language.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_stars_repo_licenses": [ "Info-ZIP" ], "max_stars_repo_name": "LaudateCorpus1/RosettaCodeData", "max_stars_repo_path": "Task/Extend-your-language/Agda/extend-your-language.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T13:42:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-05T13:42:20.000Z", "num_tokens": 206, "size": 554 }
{-# OPTIONS --without-K #-} module sets.vec.properties where open import equality.core open import function.core open import function.extensionality open import function.isomorphism open import sets.nat.core using (ℕ; zero; suc) open import sets.fin using (Fin; zero; suc) open import sets.vec.core tabulate-lookup : ∀ {i}{A : Set i}{n : ℕ} → (xs : Vec A n) → tabulate (lookup xs) ≡ xs tabulate-lookup [] = refl tabulate-lookup (x ∷ xs) = ap (_∷_ x) (tabulate-lookup xs) lookup-tabulate-funext : ∀ {i}{A : Set i}{n : ℕ} → (f : Fin n → A)(i : Fin n) → lookup (tabulate f) i ≡ f i lookup-tabulate-funext {n = zero} f () lookup-tabulate-funext {n = suc m} f zero = refl lookup-tabulate-funext {n = suc m} f (suc i) = lookup-tabulate-funext (f ∘ suc) i lookup-tabulate : ∀ {i}{A : Set i}{n : ℕ} → (f : Fin n → A) → lookup (tabulate f) ≡ f lookup-tabulate f = funext (lookup-tabulate-funext f) lookup-iso : ∀ {i}{A : Set i}{n : ℕ} → Vec A n ≅ (Fin n → A) lookup-iso = iso lookup tabulate tabulate-lookup lookup-tabulate
{ "alphanum_fraction": 0.5954265611, "avg_line_length": 33.4411764706, "ext": "agda", "hexsha": "aece6dc9dcfddfdf789128a9b6c5bac613e23c43", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "sets/vec/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/vec/properties.agda", "max_line_length": 64, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "sets/vec/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 354, "size": 1137 }
------------------------------------------------------------------------ -- The two definitions of context extensions are isomorphic ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Context.Extension.Isomorphic {i u e} (Uni : IndexedUniverse i u e) where import deBruijn.Context.Basics as Basics import deBruijn.Context.Extension.Left as Left import deBruijn.Context.Extension.Right as Right open import Function.Base open import Function.Inverse using (_↔_) import Relation.Binary.PropositionalEquality as P open Basics Uni open Left Uni open Right Uni open P.≡-Reasoning -- Ctxt₊-s can be turned into Ctxt⁺-s. ₊-to-⁺ : ∀ {Γ} → Ctxt₊ Γ → Ctxt⁺ Γ ₊-to-⁺ ε = ε ₊-to-⁺ (σ ◅ Γ₊) = ε ▻ σ ⁺++⁺ ₊-to-⁺ Γ₊ abstract -- The semantics is preserved. ++⁺-₊-to-⁺ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → Γ ++₊ Γ₊ ≅-Ctxt Γ ++⁺ ₊-to-⁺ Γ₊ ++⁺-₊-to-⁺ ε = P.refl ++⁺-₊-to-⁺ {Γ} (σ ◅ Γ₊) = begin Γ ▻ σ ++₊ Γ₊ ≡⟨ ++⁺-₊-to-⁺ Γ₊ ⟩ Γ ▻ σ ++⁺ ₊-to-⁺ Γ₊ ≡⟨ ++⁺-++⁺ (ε ▻ σ) (₊-to-⁺ Γ₊) ⟩ Γ ++⁺ (ε ▻ σ ⁺++⁺ ₊-to-⁺ Γ₊) ∎ mutual -- Ctxt⁺-s can be turned into Ctxt₊-s. ⁺-to-₊ : ∀ {Γ} → Ctxt⁺ Γ → Ctxt₊ Γ ⁺-to-₊ ε = ε ⁺-to-₊ (Γ⁺ ▻ σ) = ⁺-to-₊ Γ⁺ ₊++₊ P.subst Ctxt₊ (++₊-⁺-to-₊ Γ⁺) (σ ◅ ε) abstract -- The semantics is preserved. ++₊-⁺-to-₊ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → Γ ++⁺ Γ⁺ ≅-Ctxt Γ ++₊ ⁺-to-₊ Γ⁺ ++₊-⁺-to-₊ ε = P.refl ++₊-⁺-to-₊ {Γ} (Γ⁺ ▻ σ) = let σ◅ε = P.subst Ctxt₊ (++₊-⁺-to-₊ Γ⁺) (σ ◅ ε) in begin Γ ++⁺ Γ⁺ ▻ σ ≡⟨ P.refl ⟩ Γ ++⁺ Γ⁺ ++₊ (σ ◅ ε) ≡⟨ P.sym $ ++₊-cong $ drop-subst-Ctxt₊ id (++₊-⁺-to-₊ Γ⁺) ⟩ Γ ++₊ ⁺-to-₊ Γ⁺ ++₊ σ◅ε ≡⟨ ++₊-++₊ (⁺-to-₊ Γ⁺) σ◅ε ⟩ Γ ++₊ (⁺-to-₊ Γ⁺ ₊++₊ σ◅ε) ∎ -- Some congruence lemmas. ₊-to-⁺-cong : ∀ {Γ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂} {Γ₊₂ : Ctxt₊ Γ₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ₊-to-⁺ Γ₊₁ ≅-Ctxt⁺ ₊-to-⁺ Γ₊₂ ₊-to-⁺-cong P.refl = P.refl ⁺-to-₊-cong : ∀ {Γ₁} {Γ⁺₁ : Ctxt⁺ Γ₁} {Γ₂} {Γ⁺₂ : Ctxt⁺ Γ₂} → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ⁺-to-₊ Γ⁺₁ ≅-Ctxt₊ ⁺-to-₊ Γ⁺₂ ⁺-to-₊-cong P.refl = P.refl -- Ctxt⁺ and Ctxt₊ are isomorphic. Ctxt⁺↔Ctxt₊ : ∀ Γ → Ctxt⁺ Γ ↔ Ctxt₊ Γ Ctxt⁺↔Ctxt₊ Γ = record { to = P.→-to-⟶ ⁺-to-₊ ; from = P.→-to-⟶ ₊-to-⁺ ; inverse-of = record { left-inverse-of = λ Γ⁺ → ≅-Ctxt⁺-⇒-≡ $ ₊-to-⁺-⁺-to-₊ Γ⁺ ; right-inverse-of = λ Γ₊ → ≅-Ctxt₊-⇒-≡ $ ⁺-to-₊-₊-to-⁺ Γ₊ } } where abstract ₊-to-⁺-⁺-to-₊ : (Γ⁺ : Ctxt⁺ Γ) → ₊-to-⁺ (⁺-to-₊ Γ⁺) ≅-Ctxt⁺ Γ⁺ ₊-to-⁺-⁺-to-₊ Γ⁺ = cancel-++⁺-left _ _ (begin Γ ++⁺ ₊-to-⁺ (⁺-to-₊ Γ⁺) ≡⟨ P.sym $ ++⁺-₊-to-⁺ (⁺-to-₊ Γ⁺) ⟩ Γ ++₊ (⁺-to-₊ Γ⁺) ≡⟨ P.sym $ ++₊-⁺-to-₊ Γ⁺ ⟩ Γ ++⁺ Γ⁺ ∎) ⁺-to-₊-₊-to-⁺ : (Γ₊ : Ctxt₊ Γ) → ⁺-to-₊ (₊-to-⁺ Γ₊) ≅-Ctxt₊ Γ₊ ⁺-to-₊-₊-to-⁺ Γ₊ = cancel-++₊-left _ _ (begin Γ ++₊ ⁺-to-₊ (₊-to-⁺ Γ₊) ≡⟨ P.sym $ ++₊-⁺-to-₊ (₊-to-⁺ Γ₊) ⟩ Γ ++⁺ (₊-to-⁺ Γ₊) ≡⟨ P.sym $ ++⁺-₊-to-⁺ Γ₊ ⟩ Γ ++₊ Γ₊ ∎)
{ "alphanum_fraction": 0.388942774, "avg_line_length": 31.2424242424, "ext": "agda", "hexsha": "1a27eab9a6f7f53e2b7239e7f08d8cf14da28b0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Context/Extension/Isomorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Context/Extension/Isomorphic.agda", "max_line_length": 93, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Context/Extension/Isomorphic.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1764, "size": 3093 }
module UniDB.Morph.Sim where open import UniDB.Spec open import UniDB.Subst.Core open import UniDB.Morph.Depth import Level open import Relation.Binary.PropositionalEquality -------------------------------------------------------------------------------- record Sim (T : STX) (γ₁ γ₂ : Dom) : Set where constructor sim field lk-sim : (i : Ix γ₁) → T γ₂ open Sim public module _ {T : STX} where instance iLkSim : {{vrT : Vr T}} → Lk T (Sim T) lk {{iLkSim}} = lk-sim iWkSim : {{wkT : Wk T}} → {γ₁ : Dom} → Wk (Sim T γ₁) wk₁ {{iWkSim}} (sim f) = sim (wk₁ ∘ f) wk {{iWkSim}} δ (sim f) = sim (wk δ ∘ f) wk-zero {{iWkSim {{wkT}}}} (sim f) = cong sim (ext (wk-zero {T} ∘ f)) where postulate ext : Extensionality Level.zero Level.zero wk-suc {{iWkSim}} δ (sim f) = cong sim (ext (wk-suc {T} δ ∘ f)) where postulate ext : Extensionality Level.zero Level.zero iSnocSim : Snoc T (Sim T) snoc {{iSnocSim}} (sim f) t = sim λ { zero → t ; (suc i) → f i } iUpSim : {{vrT : Vr T}} {{wkT : Wk T}} → Up (Sim T) _↑₁ {{iUpSim}} ξ = snoc {T} {Sim T} (wk₁ ξ) (vr {T} zero) _↑_ {{iUpSim}} ξ 0 = ξ _↑_ {{iUpSim}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpSim}} ξ = refl ↑-suc {{iUpSim}} ξ δ⁺ = refl iIdmSim : {{vrT : Vr T}} → Idm (Sim T) idm {{iIdmSim}} γ = sim (vr {T}) iWkmSim : {{vrT : Vr T}} → Wkm (Sim T) wkm {{iWkmSim}} δ = sim (vr {T} ∘ wk δ) iBetaSim : {{vrT : Vr T}} → Beta T (Sim T) beta {{iBetaSim}} t = snoc {T} {Sim T} (idm {Sim T} _) t iCompSim : {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} → Comp (Sim T) lk-sim (_⊙_ {{iCompSim}} ξ ζ) i = ap {T} {T} {Sim T} ζ (lk {T} {Sim T} ξ i) iLkUpSim : {{vrT : Vr T}} {{wkT : Wk T}} → LkUp T (Sim T) lk-↑₁-zero {{iLkUpSim}} ξ = refl lk-↑₁-suc {{iLkUpSim}} ξ zero = refl lk-↑₁-suc {{iLkUpSim}} ξ (suc i) = refl iLkWkmSim : {{vrT : Vr T}} → LkWkm T (Sim T) lk-wkm {{iLkWkmSim}} δ i = refl iLkIdmSim : {{vrT : Vr T}} → LkIdm T (Sim T) lk-idm {{iLkIdmSim}} i = refl iLkCompSim : {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} → LkCompAp T (Sim T) lk-⊙-ap {{iLkCompSim}} ξ₁ ξ₂ i = refl -------------------------------------------------------------------------------- module SimIxInstances (T : STX) where instance iLkSimIx : {{vrT : Vr T}} → Lk T (Sim Ix) lk {{iLkSimIx}} ξ i = vr {T} (lk {Ix} {Sim Ix} ξ i) iLkUpSimIx : {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T (Sim Ix) lk-↑₁-zero {{iLkUpSimIx}} ξ = refl lk-↑₁-suc {{iLkUpSimIx}} ξ i = sym (wk₁-vr {T} (lk {Ix} {Sim Ix} ξ i)) iLkWkmSimIx : {{vrT : Vr T}} → LkWkm T (Sim Ix) lk-wkm {{iLkWkmSimIx}} δ i = refl iLkIdmSimIx : {{vrT : Vr T}} → LkIdm T (Sim Ix) lk-idm {{iLkIdmSimIx}} i = refl iLkCompSimIx : {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} → LkCompAp T (Sim Ix) lk-⊙-ap {{iLkCompSimIx}} ξ₁ ξ₂ i = sym (ap-vr {T} {Sim Ix} ξ₂ (lk {Ix} {Sim Ix} ξ₁ i)) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4784126984, "avg_line_length": 32.8125, "ext": "agda", "hexsha": "58a1d8de1f9af52f4f3c904e751ee47927936a53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Sim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Sim.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Sim.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1340, "size": 3150 }
open import Nat open import Prelude open import dynamics-core open import disjointness module elaboration-generality where mutual elaboration-generality-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Γ ⊢ e => τ elaboration-generality-synth ESNum = SNum elaboration-generality-synth (ESPlus dis apt x₁ x₂) = SPlus (elaboration-generality-ana x₁) (elaboration-generality-ana x₂) elaboration-generality-synth (ESAsc x) = SAsc (elaboration-generality-ana x) elaboration-generality-synth (ESVar x₁) = SVar x₁ elaboration-generality-synth (ESLam apt ex) with elaboration-generality-synth ex ... | ih = SLam apt ih elaboration-generality-synth (ESAp dis _ a x₁ x₂ x₃) = SAp a x₁ (elaboration-generality-ana x₃) elaboration-generality-synth (ESPair x x₁ x₂ x₃) = SPair (elaboration-generality-synth x₂) (elaboration-generality-synth x₃) elaboration-generality-synth ESEHole = SEHole elaboration-generality-synth (ESNEHole dis ex) = SNEHole (elaboration-generality-synth ex) elaboration-generality-synth (ESFst wt x₁ x₂) = SFst wt x₁ elaboration-generality-synth (ESSnd wt x₁ x₂) = SSnd wt x₁ elaboration-generality-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → Γ ⊢ e <= τ elaboration-generality-ana (EALam apt m ex) = ALam apt m (elaboration-generality-ana ex) elaboration-generality-ana (EASubsume x x₁ x₂ x₃) = ASubsume (elaboration-generality-synth x₂) x₃ elaboration-generality-ana EAEHole = ASubsume SEHole TCHole1 elaboration-generality-ana (EANEHole dis x) = ASubsume (SNEHole (elaboration-generality-synth x)) TCHole1 elaboration-generality-ana (EAInl x x₁) = AInl x (elaboration-generality-ana x₁) elaboration-generality-ana (EAInr x x₁) = AInr x (elaboration-generality-ana x₁) elaboration-generality-ana (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) = ACase x₆ x₇ x₉ (elaboration-generality-synth x₈) (elaboration-generality-ana x₁₀) (elaboration-generality-ana x₁₁)
{ "alphanum_fraction": 0.6532685512, "avg_line_length": 53.9047619048, "ext": "agda", "hexsha": "cfe603be1ad35007aa8ef357faa25d4b9f25905d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "elaboration-generality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "elaboration-generality.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "elaboration-generality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 802, "size": 2264 }
postulate A : Set record R : Set where field f : A record S : Set where field g : A test : R → A test record{g = a} = a
{ "alphanum_fraction": 0.5984251969, "avg_line_length": 11.5454545455, "ext": "agda", "hexsha": "a01e88b8e51d59dc94e3d6675506f82451fdcca7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RecordPattern2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RecordPattern2.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RecordPattern2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 127 }
open import Agda.Primitive using (lsuc; _⊔_) open import Data.Fin using (Fin) open import MultiSorted.AlgebraicTheory module MultiSorted.Substitution {ℓ} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓ Σ) where open Theory T -- an equality is preserved by the action of the identity eq-id-action : ∀ {Γ : Context} {A} {u v : Term Γ A} → (⊢ Γ ∥ (u [ id-s ]s) ≈ (v [ id-s ]s) ⦂ A) → (⊢ Γ ∥ u ≈ v ⦂ A) eq-id-action {u = u} {v = v} p = eq-tran (id-action {a = u}) (eq-tran p (eq-symm (id-action {a = v}))) -- equality of substitutions _≈s_ : ∀ {Γ Δ : Context} → Γ ⇒s Δ → Γ ⇒s Δ → Set (lsuc (ℓ ⊔ 𝓈 ⊔ ℴ)) _≈s_ {Γ} {Δ} σ ρ = ∀ x → ⊢ Γ ∥ σ x ≈ ρ x ⦂ sort-of Δ x infix 5 _≈s_ -- reflexivity of the equality of substitutions refl-subst : ∀ {γ δ : Context} {f : γ ⇒s δ} → f ≈s f refl-subst = λ x → eq-refl -- symmetry of the equality of substitutions symm-subst : ∀ {Γ Δ : Context} {f g : Γ ⇒s Δ} → f ≈s g → g ≈s f symm-subst {Γ} {Δ} {f} {g} p = λ x → eq-symm (p x) -- transitivity of the equality of substitutions trans-subst : ∀ {Γ Δ : Context} {f g h : Γ ⇒s Δ} → f ≈s g → g ≈s h → f ≈s h trans-subst {Γ} {Δ} {f} {g} {h} p q = λ x → eq-tran (p x) (q x) -- neutrality of tm-var tm-var-id : ∀ {Γ} {A} {t : Term Γ A} → ⊢ Γ ∥ t [ id-s ]s ≈ t ⦂ A tm-var-id {t = tm-var x} = eq-refl tm-var-id {t = tm-oper f ts} = eq-congr (λ i → tm-var-id) -- any two substitutions into the empty context are equal empty-ctx-subst-unique : ∀ {Γ : Context} {σ ρ : Γ ⇒s ctx-empty} → σ ≈s ρ empty-ctx-subst-unique () -- composition of substitutions is functorial subst-∘s : ∀ {Γ Δ Θ} {ρ : Δ ⇒s Γ} {σ : Θ ⇒s Δ} {A} (t : Term Γ A) → ⊢ Θ ∥ (t [ ρ ]s) [ σ ]s ≈ t [ ρ ∘s σ ]s ⦂ A subst-∘s (tm-var x) = eq-refl subst-∘s (tm-oper f ts) = eq-congr (λ i → subst-∘s (ts i)) -- substitution preserves equality eq-subst : ∀ {Γ Δ : Context} {σ : Γ ⇒s Δ} {A} {u v : Term Δ A} → ⊢ Δ ∥ u ≈ v ⦂ A → ⊢ Γ ∥ u [ σ ]s ≈ v [ σ ]s ⦂ A eq-subst eq-refl = eq-refl eq-subst (eq-symm ξ) = eq-symm (eq-subst ξ) eq-subst (eq-tran ζ ξ) = eq-tran (eq-subst ζ) (eq-subst ξ) eq-subst (eq-congr ξ) = eq-congr (λ i → eq-subst (ξ i)) eq-subst {σ = σ} (eq-axiom ε ρ) = eq-tran (subst-∘s (ax-lhs ε)) (eq-tran (eq-axiom ε (ρ ∘s σ)) (eq-symm (subst-∘s (ax-rhs ε)))) -- equivalent substitutions act the same on terms equiv-subst : ∀ {Γ Δ : Context} {σ τ : Γ ⇒s Δ} {A} (u : Term Δ A) → σ ≈s τ → ⊢ Γ ∥ u [ σ ]s ≈ u [ τ ]s ⦂ A equiv-subst (tm-var x) ξ = ξ x equiv-subst (tm-oper f ts) ξ = eq-congr (λ i → equiv-subst (ts i) ξ) -- equivalent substitution preserve equality equiv-eq-subst : ∀ {Γ Δ : Context} {σ τ : Γ ⇒s Δ} {A} {u v : Term Δ A} → σ ≈s τ → ⊢ Δ ∥ u ≈ v ⦂ A → ⊢ Γ ∥ u [ σ ]s ≈ v [ τ ]s ⦂ A equiv-eq-subst {u = u} p eq-refl = equiv-subst u p equiv-eq-subst p (eq-symm q) = eq-symm (equiv-eq-subst (symm-subst p) q) equiv-eq-subst p (eq-tran q r) = eq-tran (eq-subst q) (equiv-eq-subst p r) equiv-eq-subst p (eq-congr ξ) = eq-congr λ i → equiv-eq-subst p (ξ i) equiv-eq-subst {σ = σ} {τ = τ} p (eq-axiom ε θ) = eq-tran (eq-subst (eq-axiom ε θ)) (equiv-subst (ax-rhs ε [ θ ]s) p) -- the pairing of two substitutions ⟨_,_⟩s : ∀ {Γ Δ Θ} (σ : Γ ⇒s Δ) (ρ : Γ ⇒s Θ) → Γ ⇒s ctx-concat Δ Θ ⟨ σ , ρ ⟩s (var-inl x) = σ x ⟨ σ , ρ ⟩s (var-inr y) = ρ y -- composition of substitutions preserves equality ∘s-resp-≈s : ∀ {Γ Δ Θ} {σ₁ σ₂ : Γ ⇒s Δ} {τ₁ τ₂ : Δ ⇒s Θ} → τ₁ ≈s τ₂ → σ₁ ≈s σ₂ → τ₁ ∘s σ₁ ≈s τ₂ ∘s σ₂ ∘s-resp-≈s ξ ζ z = equiv-eq-subst ζ (ξ z) -- the action of a substitution on an equation open Equation _[_]s-eq : ∀ (ε : Equation Σ) {Γ : Context} ( σ : Γ ⇒s (eq-ctx ε)) → Equation Σ _[_]s-eq ε {Γ} σ = Γ ∥ ((eq-lhs ε) [ σ ]s) ≈ ((eq-rhs ε) [ σ ]s) ⦂ (eq-sort ε)
{ "alphanum_fraction": 0.5364308342, "avg_line_length": 44.5647058824, "ext": "agda", "hexsha": "ea02a930c3d4f6f5d851092143807a60c383bd55", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/MultiSorted/Substitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/MultiSorted/Substitution.agda", "max_line_length": 129, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/MultiSorted/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1716, "size": 3788 }
{-# OPTIONS --without-K --safe #-} ------------------------------------------------------------------------ -- Lists, based on the Kleene star and plus. -- -- These lists are exatcly equivalent to normal lists, except the "cons" -- case is split into its own data type. This lets us write all the same -- functions as before, but it has 2 advantages: -- -- * Some functions are easier to express on the non-empty type. For -- instance, head can be clearly expressed without the need for -- maybes. -- * It can make some proofs easier. By using the non-empty type where -- possible, we can avoid an extra pattern match, which can really -- simplify certain proofs. module Data.List.Kleene.Base where open import Data.Product as Product using (_×_; _,_; map₂; map₁; proj₁; proj₂) open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Algebra open import Function ------------------------------------------------------------------------ -- Definitions infixr 5 _&_ ∹_ mutual -- Non-Empty Lists record _⁺ {a} (A : Set a) : Set a where inductive constructor _&_ field head : A tail : A ⋆ -- Possibly Empty Lists data _⋆ {a} (A : Set a) : Set a where [] : A ⋆ ∹_ : A ⁺ → A ⋆ open _⁺ public ------------------------------------------------------------------------ -- FoldMap module _ {c ℓ a} (sgrp : Semigroup c ℓ) {A : Set a} where open Semigroup sgrp foldMap⁺ : (A → Carrier) → A ⁺ → Carrier foldMap⁺ f (x & []) = f x foldMap⁺ f (x & ∹ xs) = f x ∙ foldMap⁺ f xs module _ {c ℓ a} (mon : Monoid c ℓ) {A : Set a} where open Monoid mon foldMap⋆ : (A → Carrier) → A ⋆ → Carrier foldMap⋆ f [] = ε foldMap⋆ f (∹ xs) = foldMap⁺ semigroup f xs ------------------------------------------------------------------------ -- Folds module _ {a b} {A : Set a} {B : Set b} (f : A → B → B) (b : B) where foldr⁺ : A ⁺ → B foldr⋆ : A ⋆ → B foldr⁺ (x & xs) = f x (foldr⋆ xs) foldr⋆ [] = b foldr⋆ (∹ xs) = foldr⁺ xs module _ {a b} {A : Set a} {B : Set b} (f : B → A → B) where foldl⁺ : B → A ⁺ → B foldl⋆ : B → A ⋆ → B foldl⁺ b (x & xs) = foldl⋆ (f b x) xs foldl⋆ b [] = b foldl⋆ b (∹ xs) = foldl⁺ b xs ------------------------------------------------------------------------ -- Concatenation module _ {a} {A : Set a} where _⁺++⁺_ : A ⁺ → A ⁺ → A ⁺ _⁺++⋆_ : A ⁺ → A ⋆ → A ⁺ _⋆++⁺_ : A ⋆ → A ⁺ → A ⁺ _⋆++⋆_ : A ⋆ → A ⋆ → A ⋆ head (xs ⁺++⋆ ys) = head xs tail (xs ⁺++⋆ ys) = tail xs ⋆++⋆ ys xs ⋆++⋆ ys = foldr⋆ (λ x zs → ∹ x & zs) ys xs xs ⁺++⁺ ys = foldr⁺ (λ x zs → x & ∹ zs) ys xs [] ⋆++⁺ ys = ys (∹ xs) ⋆++⁺ ys = xs ⁺++⁺ ys ------------------------------------------------------------------------ -- Mapping module _ {a b} {A : Set a} {B : Set b} (f : A → B) where map⁺ : A ⁺ → B ⁺ map⋆ : A ⋆ → B ⋆ head (map⁺ xs) = f (head xs) tail (map⁺ xs) = map⋆ (tail xs) map⋆ [] = [] map⋆ (∹ xs) = ∹ map⁺ xs ------------------------------------------------------------------------ -- Applicative Operations module _ {a} {A : Set a} where pure⁺ : A → A ⁺ pure⋆ : A → A ⋆ head (pure⁺ x) = x tail (pure⁺ x) = [] pure⋆ x = ∹ pure⁺ x module _ {a b} {A : Set a} {B : Set b} where _⋆<*>⋆_ : (A → B) ⋆ → A ⋆ → B ⋆ _⁺<*>⋆_ : (A → B) ⁺ → A ⋆ → B ⋆ _⋆<*>⁺_ : (A → B) ⋆ → A ⁺ → B ⋆ _⁺<*>⁺_ : (A → B) ⁺ → A ⁺ → B ⁺ [] ⋆<*>⋆ xs = [] (∹ fs) ⋆<*>⋆ xs = fs ⁺<*>⋆ xs fs ⁺<*>⋆ xs = map⋆ (head fs) xs ⋆++⋆ (tail fs ⋆<*>⋆ xs) [] ⋆<*>⁺ xs = [] (∹ fs) ⋆<*>⁺ xs = ∹ fs ⁺<*>⁺ xs fs ⁺<*>⁺ xs = map⁺ (head fs) xs ⁺++⋆ (tail fs ⋆<*>⁺ xs) ------------------------------------------------------------------------ -- Monadic Operations module _ {a b} {A : Set a} {B : Set b} where _⁺>>=⁺_ : A ⁺ → (A → B ⁺) → B ⁺ _⁺>>=⋆_ : A ⁺ → (A → B ⋆) → B ⋆ _⋆>>=⁺_ : A ⋆ → (A → B ⁺) → B ⋆ _⋆>>=⋆_ : A ⋆ → (A → B ⋆) → B ⋆ (x & xs) ⁺>>=⁺ k = k x ⁺++⋆ (xs ⋆>>=⁺ k) (x & xs) ⁺>>=⋆ k = k x ⋆++⋆ (xs ⋆>>=⋆ k) [] ⋆>>=⋆ k = [] (∹ xs) ⋆>>=⋆ k = xs ⁺>>=⋆ k [] ⋆>>=⁺ k = [] (∹ xs) ⋆>>=⁺ k = ∹ xs ⁺>>=⁺ k ------------------------------------------------------------------------ -- Scans module Scanr {a b} {A : Set a} {B : Set b} (f : A → B → B) (b : B) where cons : A → B ⁺ → B ⁺ head (cons x xs) = f x (head xs) tail (cons x xs) = ∹ xs scanr⁺ : A ⁺ → B ⁺ scanr⋆ : A ⋆ → B ⁺ scanr⋆ = foldr⋆ cons (b & []) scanr⁺ = foldr⁺ cons (b & []) open Scanr public using (scanr⁺; scanr⋆) module _ {a b} {A : Set a} {B : Set b} (f : B → A → B) where scanl⁺ : B → A ⁺ → B ⁺ scanl⋆ : B → A ⋆ → B ⁺ head (scanl⁺ b xs) = b tail (scanl⁺ b xs) = ∹ scanl⋆ (f b (head xs)) (tail xs) head (scanl⋆ b xs) = b tail (scanl⋆ b []) = [] tail (scanl⋆ b (∹ xs)) = ∹ scanl⋆ (f b (head xs)) (tail xs) scanl₁ : B → A ⁺ → B ⁺ scanl₁ b xs = scanl⋆ (f b (head xs)) (tail xs) ------------------------------------------------------------------------ -- Accumulating maps module _ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : B → A → (B × C)) where mapAccumL⋆ : B → A ⋆ → (B × C ⋆) mapAccumL⁺ : B → A ⁺ → (B × C ⁺) mapAccumL⋆ b [] = b , [] mapAccumL⋆ b (∹ xs) = map₂ ∹_ (mapAccumL⁺ b xs) mapAccumL⁺ b (x & xs) = let y , ys = f b x z , zs = mapAccumL⋆ y xs in z , (ys & zs) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → (C × B)) (b : B) where mapAccumR⋆ : A ⋆ → (C ⋆ × B) mapAccumR⁺ : A ⁺ → (C ⁺ × B) mapAccumR⋆ [] = [] , b mapAccumR⋆ (∹ xs) = map₁ ∹_ (mapAccumR⁺ xs) mapAccumR⁺ (x & xs) = let ys , y = mapAccumR⋆ xs zs , z = f x y in (zs & ys) , z ------------------------------------------------------------------------ -- Non-Empty Folds module _ {a} {A : Set a} where last : A ⁺ → A last (x & []) = x last (_ & (∹ xs)) = last xs module _ {a} {A : Set a} (f : A → A → A) where foldr1 : A ⁺ → A foldr1 (x & []) = x foldr1 (x & (∹ xs)) = f x (foldr1 xs) foldl1 : A ⁺ → A foldl1 (x & xs) = foldl⋆ f x xs module _ {a b} {A : Set a} {B : Set b} (f : A → Maybe B → B) where foldrMay⋆ : A ⋆ → Maybe B foldrMay⁺ : A ⁺ → B foldrMay⋆ [] = nothing foldrMay⋆ (∹ xs) = just (foldrMay⁺ xs) foldrMay⁺ xs = f (head xs) (foldrMay⋆ (tail xs)) ------------------------------------------------------------------------ -- Indexing module _ {a} {A : Set a} where _[_]⋆ : A ⋆ → ℕ → Maybe A _[_]⁺ : A ⁺ → ℕ → Maybe A [] [ _ ]⋆ = nothing (∹ xs) [ i ]⋆ = xs [ i ]⁺ xs [ zero ]⁺ = just (head xs) xs [ suc i ]⁺ = tail xs [ i ]⋆ applyUpTo⋆ : (ℕ → A) → ℕ → A ⋆ applyUpTo⁺ : (ℕ → A) → ℕ → A ⁺ applyUpTo⋆ f zero = [] applyUpTo⋆ f (suc n) = ∹ applyUpTo⁺ f n head (applyUpTo⁺ f n) = f zero tail (applyUpTo⁺ f n) = applyUpTo⋆ (f ∘ suc) n upTo⋆ : ℕ → ℕ ⋆ upTo⋆ = applyUpTo⋆ id upTo⁺ : ℕ → ℕ ⁺ upTo⁺ = applyUpTo⁺ id ------------------------------------------------------------------------ -- Manipulation module _ {a} {A : Set a} (x : A) where intersperse⁺ : A ⁺ → A ⁺ intersperse⋆ : A ⋆ → A ⋆ head (intersperse⁺ xs) = head xs tail (intersperse⁺ xs) = prepend (tail xs) where prepend : A ⋆ → A ⋆ prepend [] = [] prepend (∹ xs) = ∹ x & ∹ intersperse⁺ xs intersperse⋆ [] = [] intersperse⋆ (∹ xs) = ∹ intersperse⁺ xs module _ {a} {A : Set a} where _⁺<|>⁺_ : A ⁺ → A ⁺ → A ⁺ _⁺<|>⋆_ : A ⁺ → A ⋆ → A ⁺ _⋆<|>⁺_ : A ⋆ → A ⁺ → A ⁺ _⋆<|>⋆_ : A ⋆ → A ⋆ → A ⋆ head (xs ⁺<|>⁺ ys) = head xs tail (xs ⁺<|>⁺ ys) = ∹ (ys ⁺<|>⋆ tail xs) head (xs ⁺<|>⋆ ys) = head xs tail (xs ⁺<|>⋆ ys) = ys ⋆<|>⋆ tail xs [] ⋆<|>⁺ ys = ys (∹ xs) ⋆<|>⁺ ys = xs ⁺<|>⁺ ys [] ⋆<|>⋆ ys = ys (∹ xs) ⋆<|>⋆ ys = ∹ (xs ⁺<|>⋆ ys) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) where ⁺zipWith⁺ : A ⁺ → B ⁺ → C ⁺ ⋆zipWith⁺ : A ⋆ → B ⁺ → C ⋆ ⁺zipWith⋆ : A ⁺ → B ⋆ → C ⋆ ⋆zipWith⋆ : A ⋆ → B ⋆ → C ⋆ head (⁺zipWith⁺ xs ys) = f (head xs) (head ys) tail (⁺zipWith⁺ xs ys) = ⋆zipWith⋆ (tail xs) (tail ys) ⋆zipWith⁺ [] ys = [] ⋆zipWith⁺ (∹ xs) ys = ∹ ⁺zipWith⁺ xs ys ⁺zipWith⋆ xs [] = [] ⁺zipWith⋆ xs (∹ ys) = ∹ ⁺zipWith⁺ xs ys ⋆zipWith⋆ [] ys = [] ⋆zipWith⋆ (∹ xs) ys = ⁺zipWith⋆ xs ys module Unzip {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B × C) where cons : B × C → B ⋆ × C ⋆ → B ⁺ × C ⁺ head (proj₁ (cons x xs)) = proj₁ x tail (proj₁ (cons x xs)) = proj₁ xs head (proj₂ (cons x xs)) = proj₂ x tail (proj₂ (cons x xs)) = proj₂ xs unzipWith⋆ : A ⋆ → B ⋆ × C ⋆ unzipWith⁺ : A ⁺ → B ⁺ × C ⁺ unzipWith⋆ = foldr⋆ (λ x xs → Product.map ∹_ ∹_ (cons (f x) xs)) ([] , []) unzipWith⁺ xs = cons (f (head xs)) (unzipWith⋆ (tail xs)) open Unzip using (unzipWith⁺; unzipWith⋆) public module Partition {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B ⊎ C) where cons : B ⊎ C → B ⋆ × C ⋆ → B ⋆ × C ⋆ proj₁ (cons (inj₁ x) xs) = ∹ x & proj₁ xs proj₂ (cons (inj₁ x) xs) = proj₂ xs proj₂ (cons (inj₂ x) xs) = ∹ x & proj₂ xs proj₁ (cons (inj₂ x) xs) = proj₁ xs partitionSumsWith⋆ : A ⋆ → B ⋆ × C ⋆ partitionSumsWith⁺ : A ⁺ → B ⋆ × C ⋆ partitionSumsWith⋆ = foldr⋆ (cons ∘ f) ([] , []) partitionSumsWith⁺ = foldr⁺ (cons ∘ f) ([] , []) open Partition using (partitionSumsWith⁺; partitionSumsWith⋆) public module _ {a} {A : Set a} where ⋆transpose⋆ : (A ⋆) ⋆ → (A ⋆) ⋆ ⋆transpose⁺ : (A ⋆) ⁺ → (A ⁺) ⋆ ⁺transpose⋆ : (A ⁺) ⋆ → (A ⋆) ⁺ ⁺transpose⁺ : (A ⁺) ⁺ → (A ⁺) ⁺ ⋆transpose⋆ [] = [] ⋆transpose⋆ (∹ xs) = map⋆ ∹_ (⋆transpose⁺ xs) ⋆transpose⁺ (x & []) = map⋆ pure⁺ x ⋆transpose⁺ (x & (∹ xs)) = ⋆zipWith⋆ (λ y z → y & ∹ z) x (⋆transpose⁺ xs) ⁺transpose⋆ [] = [] & [] ⁺transpose⋆ (∹ xs) = map⁺ ∹_ (⁺transpose⁺ xs) ⁺transpose⁺ (x & []) = map⁺ pure⁺ x ⁺transpose⁺ (x & (∹ xs)) = ⁺zipWith⁺ (λ y z → y & ∹ z) x (⁺transpose⁺ xs) module _ {a} {A : Set a} where tails⋆ : A ⋆ → (A ⁺) ⋆ tails⁺ : A ⁺ → (A ⁺) ⁺ head (tails⁺ xs) = xs tail (tails⁺ xs) = tails⋆ (tail xs) tails⋆ [] = [] tails⋆ (∹ xs) = ∹ tails⁺ xs module _ {a} {A : Set a} where reverse⋆ : A ⋆ → A ⋆ reverse⋆ = foldl⋆ (λ xs x → ∹ x & xs) [] reverse⁺ : A ⁺ → A ⁺ reverse⁺ (x & xs) = foldl⋆ (λ ys y → y & (∹ ys)) (x & []) xs
{ "alphanum_fraction": 0.429031943, "avg_line_length": 26.2487179487, "ext": "agda", "hexsha": "c5bac97156d193f3ffbd67716e8ed36a8a6be4a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-kleene-lists", "max_forks_repo_path": "Data/List/Kleene/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-kleene-lists", "max_issues_repo_path": "Data/List/Kleene/Base.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-kleene-lists", "max_stars_repo_path": "Data/List/Kleene/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4796, "size": 10237 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Unary.Raw where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude using (isProp) open import Cubical.Data.Empty hiding (rec) open import Cubical.Data.Unit.Base using (⊤) open import Cubical.Data.Sigma open import Cubical.Data.Sum.Base using (_⊎_; rec) open import Cubical.Foundations.Function open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.Decidable using (IsYes) open import Cubical.Relation.Unary using (RawPred) private variable a b c ℓ ℓ₁ ℓ₂ : Level A : Type a B : Type b C : Type c ------------------------------------------------------------------------ -- Special sets -- The empty set. ∅ : RawPred A _ ∅ = λ _ → ⊥ -- The singleton set. {_} : A → RawPred A _ { x } = _≡ x -- The universal set. U : RawPred A _ U = λ _ → ⊤ ------------------------------------------------------------------------ -- Membership infix 6 _∈_ _∉_ _∈_ : A → RawPred A ℓ → Type _ x ∈ P = P x _∉_ : A → RawPred A ℓ → Type _ x ∉ P = ¬ x ∈ P ------------------------------------------------------------------------ -- Subset relations infix 6 _⊆_ _⊇_ _⊈_ _⊉_ _⊂_ _⊃_ _⊄_ _⊅_ _⊆_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _⊇_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊇ Q = Q ⊆ P _⊈_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊈ Q = ¬ (P ⊆ Q) _⊉_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊉ Q = ¬ (P ⊇ Q) _⊂_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊂ Q = P ⊆ Q × Q ⊈ P _⊃_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊃ Q = Q ⊂ P _⊄_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊄ Q = ¬ (P ⊂ Q) _⊅_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⊅ Q = ¬ (P ⊃ Q) ------------------------------------------------------------------------ -- Properties of sets infix 10 Satisfiable Universal IUniversal -- Emptiness - no element satisfies P. Empty : RawPred A ℓ → Type _ Empty P = ∀ x → x ∉ P -- Satisfiable - at least one element satisfies P. Satisfiable : RawPred A ℓ → Type _ Satisfiable {A = A} P = ∃[ x ∈ A ] x ∈ P syntax Satisfiable P = ∃⟨ P ⟩ -- Universality - all elements satisfy P. Universal : RawPred A ℓ → Type _ Universal P = ∀ x → x ∈ P syntax Universal P = Π[ P ] -- Implicit universality - all elements satisfy P. IUniversal : RawPred A ℓ → Type _ IUniversal P = ∀ {x} → x ∈ P syntax IUniversal P = ∀[ P ] -- Decidability - it is possible to determine if an arbitrary element -- satisfies P. Decidable : RawPred A ℓ → Type _ Decidable P = ∀ x → Dec (P x) -- Disjointness - Any element satisfying both P and Q is contradictory. _⊃⊂_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ _⊃⊂_ P Q = ∀ {x} → x ∈ P → x ∈ Q → ⊥ -- Positive version of non-disjointness, dual to inclusion. _≬_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ _≬_ {A = A} P Q = ∃[ x ∈ A ] x ∈ P × x ∈ Q ------------------------------------------------------------------------ -- Operations on sets infix 10 ⋃ ⋂ infixr 9 _⊢_ infixr 8 _⇒_ infixr 7 _∩_ infixr 6 _∪_ infix 5 _≬_ -- Complement. ∁ : RawPred A ℓ → RawPred A ℓ ∁ P = λ x → x ∉ P -- Implication. _⇒_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _ P ⇒ Q = λ x → x ∈ P → x ∈ Q -- Union. _∪_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _ P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q -- Intersection. _∩_ : RawPred A ℓ₁ → RawPred A ℓ₂ → RawPred A _ P ∩ Q = λ x → x ∈ P × x ∈ Q -- Infinitary union. ⋃ : ∀ {i} (I : Type i) → (I → RawPred A ℓ) → RawPred A _ ⋃ I P = λ x → Σ[ i ∈ I ] P i x syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P -- Infinitary intersection. ⋂ : ∀ {i} (I : Type i) → (I → RawPred A ℓ) → RawPred A _ ⋂ I P = λ x → (i : I) → P i x syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P -- Preimage. _⊢_ : (A → B) → RawPred B ℓ → RawPred A ℓ f ⊢ P = λ x → P (f x) ------------------------------------------------------------------------ -- Preservation under operations _Preserves_⟶_ : (A → B) → RawPred A ℓ₁ → RawPred B ℓ₂ → Type _ f Preserves P ⟶ Q = P ⊆ f ⊢ Q _Preserves_ : (A → A) → RawPred A ℓ → Type _ f Preserves P = f Preserves P ⟶ P -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred C ℓ → Type _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y} → x ∈ P → y ∈ Q → x ∙ y ∈ R _Preserves₂_ : (A → A → A) → RawPred A ℓ → Type _ _∙_ Preserves₂ P = _∙_ Preserves₂ P ⟶ P ⟶ P ------------------------------------------------------------------------ -- Logical equivalence _⇔_ : RawPred A ℓ₁ → RawPred A ℓ₂ → Type _ P ⇔ Q = Π[ P ⇒ Q ∩ Q ⇒ P ] ------------------------------------------------------------------------ -- Predicate combinators -- These differ from the set operations above, as the carrier set of the -- resulting predicates are not the same as the carrier set of the -- component predicates. infixr 2 _⟨×⟩_ infixr 2 _⟨⊙⟩_ infixr 1 _⟨⊎⟩_ infixr 0 _⟨→⟩_ infixl 9 _⟨·⟩_ infix 10 _~ infixr 9 _⟨∘⟩_ infixr 2 _//_ _\\_ -- Product. _⟨×⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A × B) _ (P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q -- Sum over one element. _⟨⊎⟩_ : RawPred A ℓ → RawPred B ℓ → RawPred (A ⊎ B) _ P ⟨⊎⟩ Q = rec P Q -- Sum over two elements. _⟨⊙⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A × B) _ (P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q -- Implication. _⟨→⟩_ : RawPred A ℓ₁ → RawPred B ℓ₂ → RawPred (A → B) _ (P ⟨→⟩ Q) f = f Preserves P ⟶ Q -- Product. _⟨·⟩_ : (P : RawPred A ℓ₁) (Q : RawPred B ℓ₂) → (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_) (P ⟨·⟩ Q) (p , f) = f p -- Converse. _~ : RawPred (A × B) ℓ → RawPred (B × A) ℓ P ~ = P ∘ λ { (x , y) → y , x } -- Composition. _⟨∘⟩_ : RawPred (A × B) ℓ₁ → RawPred (B × C) ℓ₂ → RawPred (A × C) _ _⟨∘⟩_ {B = B} P Q (x , z) = ∃[ y ∈ B ] (x , y) ∈ P × (y , z) ∈ Q -- Post-division. _//_ : RawPred (A × C) ℓ₁ → RawPred (B × C) ℓ₂ → RawPred (A × B) _ (P // Q) (x , y) = Q ∘ (y ,_) ⊆ P ∘ (x ,_) -- Pre-division. _\\_ : RawPred (A × C) ℓ₁ → RawPred (A × B) ℓ₂ → RawPred (B × C) _ P \\ Q = (P ~ // Q ~) ~
{ "alphanum_fraction": 0.5152181265, "avg_line_length": 22.4866920152, "ext": "agda", "hexsha": "85071890f3a4a0e53ce819c6f46b2277980d5468", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Unary/Raw.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Unary/Raw.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Unary/Raw.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2354, "size": 5914 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions of algebraic structures like monoids and rings -- (packed in records together with sets, operations, etc.) ------------------------------------------------------------------------ module Algebra where open import Relation.Binary open import Algebra.FunctionProperties open import Algebra.Structures open import Function open import Level ------------------------------------------------------------------------ -- Semigroups, (commutative) monoids and (abelian) groups record Semigroup c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isSemigroup : IsSemigroup _≈_ _∙_ open IsSemigroup isSemigroup public setoid : Setoid _ _ setoid = record { isEquivalence = isEquivalence } -- A raw monoid is a monoid without any laws. record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier record Monoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isMonoid : IsMonoid _≈_ _∙_ ε open IsMonoid isMonoid public semigroup : Semigroup _ _ semigroup = record { isSemigroup = isSemigroup } open Semigroup semigroup public using (setoid) rawMonoid : RawMonoid _ _ rawMonoid = record { _≈_ = _≈_ ; _∙_ = _∙_ ; ε = ε } record CommutativeMonoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε open IsCommutativeMonoid isCommutativeMonoid public monoid : Monoid _ _ monoid = record { isMonoid = isMonoid } open Monoid monoid public using (setoid; semigroup; rawMonoid) record Group c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isGroup : IsGroup _≈_ _∙_ ε _⁻¹ open IsGroup isGroup public monoid : Monoid _ _ monoid = record { isMonoid = isMonoid } open Monoid monoid public using (setoid; semigroup; rawMonoid) record AbelianGroup c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ open IsAbelianGroup isAbelianGroup public group : Group _ _ group = record { isGroup = isGroup } open Group group public using (setoid; semigroup; monoid; rawMonoid) commutativeMonoid : CommutativeMonoid _ _ commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid } ------------------------------------------------------------------------ -- Various kinds of semirings record NearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0# open IsNearSemiring isNearSemiring public +-monoid : Monoid _ _ +-monoid = record { isMonoid = +-isMonoid } open Monoid +-monoid public using (setoid) renaming ( semigroup to +-semigroup ; rawMonoid to +-rawMonoid) *-semigroup : Semigroup _ _ *-semigroup = record { isSemigroup = *-isSemigroup } record SemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0# open IsSemiringWithoutOne isSemiringWithoutOne public nearSemiring : NearSemiring _ _ nearSemiring = record { isNearSemiring = isNearSemiring } open NearSemiring nearSemiring public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid ; *-semigroup ) +-commutativeMonoid : CommutativeMonoid _ _ +-commutativeMonoid = record { isCommutativeMonoid = +-isCommutativeMonoid } record SemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public +-commutativeMonoid : CommutativeMonoid _ _ +-commutativeMonoid = record { isCommutativeMonoid = +-isCommutativeMonoid } open CommutativeMonoid +-commutativeMonoid public using (setoid) renaming ( semigroup to +-semigroup ; rawMonoid to +-rawMonoid ; monoid to +-monoid ) *-monoid : Monoid _ _ *-monoid = record { isMonoid = *-isMonoid } open Monoid *-monoid public using () renaming ( semigroup to *-semigroup ; rawMonoid to *-rawMonoid ) record Semiring c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# open IsSemiring isSemiring public semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero _ _ semiringWithoutAnnihilatingZero = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero } open SemiringWithoutAnnihilatingZero semiringWithoutAnnihilatingZero public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid ; +-commutativeMonoid ; *-semigroup; *-rawMonoid; *-monoid ) semiringWithoutOne : SemiringWithoutOne _ _ semiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne } open SemiringWithoutOne semiringWithoutOne public using (nearSemiring) record CommutativeSemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# open IsCommutativeSemiringWithoutOne isCommutativeSemiringWithoutOne public semiringWithoutOne : SemiringWithoutOne _ _ semiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne } open SemiringWithoutOne semiringWithoutOne public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid ; +-commutativeMonoid ; *-semigroup ; nearSemiring ) record CommutativeSemiring c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# open IsCommutativeSemiring isCommutativeSemiring public semiring : Semiring _ _ semiring = record { isSemiring = isSemiring } open Semiring semiring public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid ; +-commutativeMonoid ; *-semigroup; *-rawMonoid; *-monoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero ) *-commutativeMonoid : CommutativeMonoid _ _ *-commutativeMonoid = record { isCommutativeMonoid = *-isCommutativeMonoid } commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne _ _ commutativeSemiringWithoutOne = record { isCommutativeSemiringWithoutOne = isCommutativeSemiringWithoutOne } ------------------------------------------------------------------------ -- (Commutative) rings -- A raw ring is a ring without any laws. record RawRing c : Set (suc c) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ field Carrier : Set c _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier record Ring c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# open IsRing isRing public +-abelianGroup : AbelianGroup _ _ +-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } semiring : Semiring _ _ semiring = record { isSemiring = isSemiring } open Semiring semiring public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid ; +-commutativeMonoid ; *-semigroup; *-rawMonoid; *-monoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero ) open AbelianGroup +-abelianGroup public using () renaming (group to +-group) rawRing : RawRing _ rawRing = record { _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } record CommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsCommutativeRing isCommutativeRing public ring : Ring _ _ ring = record { isRing = isRing } commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open Ring ring public using (rawRing; +-group; +-abelianGroup) open CommutativeSemiring commutativeSemiring public using ( setoid ; +-semigroup; +-rawMonoid; +-monoid; +-commutativeMonoid ; *-semigroup; *-rawMonoid; *-monoid; *-commutativeMonoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero; semiring ; commutativeSemiringWithoutOne ) ------------------------------------------------------------------------ -- (Distributive) lattices and boolean algebras record Lattice c ℓ : Set (suc (c ⊔ ℓ)) where infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier isLattice : IsLattice _≈_ _∨_ _∧_ open IsLattice isLattice public setoid : Setoid _ _ setoid = record { isEquivalence = isEquivalence } record DistributiveLattice c ℓ : Set (suc (c ⊔ ℓ)) where infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier isDistributiveLattice : IsDistributiveLattice _≈_ _∨_ _∧_ open IsDistributiveLattice isDistributiveLattice public lattice : Lattice _ _ lattice = record { isLattice = isLattice } open Lattice lattice public using (setoid) record BooleanAlgebra c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 ¬_ infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier ¬_ : Op₁ Carrier ⊤ : Carrier ⊥ : Carrier isBooleanAlgebra : IsBooleanAlgebra _≈_ _∨_ _∧_ ¬_ ⊤ ⊥ open IsBooleanAlgebra isBooleanAlgebra public distributiveLattice : DistributiveLattice _ _ distributiveLattice = record { isDistributiveLattice = isDistributiveLattice } open DistributiveLattice distributiveLattice public using (setoid; lattice)
{ "alphanum_fraction": 0.5684838417, "avg_line_length": 27.94092827, "ext": "agda", "hexsha": "0607fbccabe946625153c973e40753384cf68c6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 4046, "size": 13244 }
-- Some extra properties of integers. {-# OPTIONS --without-K --safe #-} module Integer.Properties where -- imports from stdlib. open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality as PE using (_≡_ ; refl ; sym ; cong ; trans ; cong₂) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Product as P using (_×_ ; _,_ ; ∃ ; proj₁ ; proj₂) open import Data.Nat as Nat using (ℕ ; suc ; zero ; z≤n) import Data.Nat.Solver as NS open import Data.Integer as Int using (ℤ ; ∣_∣ ; +_ ; +[1+_] ; -[1+_] ; 1ℤ ; +<+ ; -<- ; -≤- ; -<+ ; -≤+ ; +≤+ ; 0ℤ ; NonNegative ; +0) import Data.Integer.Properties as IntP open import Function -- imports from local. open import Instances -- Triangle equality. tri-eq : ∀ (a b : ℤ) .{{_ : NonNegative a}} .{{_ : NonNegative b}} -> ∣ a + b ∣ ≡ ∣ a ∣ + ∣ b ∣ tri-eq (+_ a) (+_ b) = begin ∣ + a + + b ∣ ≡⟨ refl ⟩ ∣ + (a + b) ∣ ≡⟨ refl ⟩ a + b ≡⟨ refl ⟩ ∣ + a ∣ + ∣ + b ∣ ∎ where open PE.≡-Reasoning -- For all a, a * a is always non-negative. a*a=+b : ∀ a -> ∃ λ b → a * a ≡ + b a*a=+b (+_ a) = (a * a) , IntP.pos-distrib-* a a a*a=+b (-[1+_] a) = suc a * suc a , refl 0≤a*a : ∀ {a} → 0ℤ ≤ a * a 0≤a*a {a} rewrite proj₂ $ a*a=+b a = +≤+ Nat.z≤n -- For non-zero natrual number a, a * a is always positive. a*a-pos : ∀ (a : ℕ) .{{_ : Nat.NonZero a}} -> ∃ λ n → a * a ≡ suc n a*a-pos (suc b) = b * b + 2 * b , claim where claim : suc b * suc b ≡ suc (b * b + 2 * b) claim = begin suc b * suc b ≡⟨ refl ⟩ (1 + b) * (1 + b) ≡⟨ solve 1 (λ b → (con 1 :+ b) :* (con 1 :+ b) := con 1 :+ (b :* b :+ con 2 :* b)) refl b ⟩ 1 + (b * b + 2 * b) ≡⟨ refl ⟩ suc (b * b + 2 * b) ∎ where open NS.+-*-Solver open PE.≡-Reasoning a*a-pos' : ∀ (a : ℤ) .{{_ : NonZero a}} -> ∃ λ n → a * a ≡ + (suc n) a*a-pos' +[1+ n ] rewrite proj₂ $ a*a-pos (suc n) = (proj₁ $ a*a-pos (suc n)) , refl a*a-pos' -[1+ n ] rewrite proj₂ $ a*a-pos (suc n) = (proj₁ $ a*a-pos (suc n)) , refl -- For an non-zero integer a, ∣ a * a ∣ is always positive. ∣a*a∣-pos : ∀ (a : ℤ) .{{_ : NonZero a}} -> ∃ λ n → ∣ a * a ∣ ≡ suc n ∣a*a∣-pos (+ (suc b)) = b * b + 2 * b , claim where claim : suc b * suc b ≡ suc (b * b + 2 * b) claim = proj₂ $ a*a-pos (suc b) ∣a*a∣-pos (-[1+_] b) = b * b + 2 * b , claim where claim : suc b * suc b ≡ suc (b * b + 2 * b) claim = proj₂ $ a*a-pos (suc b) +∣a*a∣=a*a : ∀ (a : ℤ) -> + ∣ a * a ∣ ≡ a * a +∣a*a∣=a*a a = IntP.0≤i⇒+∣i∣≡i (0≤a*a {a}) pos : ∀ {a : ℤ} -> ¬ a ≡ 0ℤ -> 0ℤ < a * a pos {+_ zero} n0 with n0 refl ... | () pos {a@(+[1+ n ])} n0 rewrite proj₂ $ a*a-pos' a = +<+ (Nat.s≤s Nat.z≤n) pos {a@(-[1+ n ])} n0 rewrite proj₂ $ a*a-pos' a = +<+ (Nat.s≤s Nat.z≤n) pos' : ∀ {a} -> 0ℤ < a -> Nat.NonZero ∣ a ∣ pos' {(+_ zero)} (+<+ ()) pos' {+[1+ n ]} l = record { nonZero = _ } -- ∣ a * a + b * b ∣ is not zero if one of a and b is. ∣aa+bb∣-nonzero : ∀ a b -> ¬ a ≡ 0ℤ ⊎ ¬ b ≡ 0ℤ -> Nat.NonZero ∣ a * a + b * b ∣ ∣aa+bb∣-nonzero a b (inj₁ x) = pos' (IntP.+-mono-<-≤ (pos x) (0≤a*a {b})) ∣aa+bb∣-nonzero a b (inj₂ y) = pos' (IntP.+-mono-≤-< (0≤a*a {a}) (pos y)) -- ---------------------------------------------------------------------- -- Properties of aa + bb -- A special case of tri-eq. tri-eq' : ∀ a b -> ∣ a * a + b * b ∣ ≡ ∣ a * a ∣ + ∣ b * b ∣ tri-eq' a b = begin let (sa , sae) = (a*a=+b a) in let (sb , sbe) = a*a=+b b in ∣ a * a + b * b ∣ ≡⟨ cong (λ x → ∣ x ∣) (cong₂ _+_ sae sbe) ⟩ ∣ + sa + + sb ∣ ≡⟨ (tri-eq (+ sa) (+ sb)) ⟩ ∣ + sa ∣ + ∣ + sb ∣ ≡⟨ cong₂ _+_ (cong ∣_∣ (sym sae)) (cong ∣_∣ (sym sbe)) ⟩ ∣ a * a ∣ + ∣ b * b ∣ ∎ where open PE.≡-Reasoning -- A property of a pair of integers. a=0×b=0⇒aa+bb=0 : ∀ {a b : ℤ} -> a ≡ 0ℤ × b ≡ 0ℤ -> a * a + b * b ≡ 0ℤ a=0×b=0⇒aa+bb=0 {.0ℤ} {.0ℤ} (refl , refl) = refl aa+bb=0⇒a=0×b=0 : ∀ {a b : ℤ} -> a * a + b * b ≡ 0ℤ -> a ≡ 0ℤ × b ≡ 0ℤ aa+bb=0⇒a=0×b=0 {a} {b} eq = P.map x^2=0⇒x=0 x^2=0⇒x=0 $ z+z (0≤a*a {a}) (0≤a*a {b}) eq where z+z : ∀ {x y} -> 0ℤ ≤ x -> 0ℤ ≤ y -> x + y ≡ 0ℤ -> x ≡ 0ℤ × y ≡ 0ℤ z+z {.+0} {.(+ _)} (+≤+ {n = zero} z≤n) (+≤+ z≤n) x+y=0 = (refl , x+y=0) z+z {.(+[1+ n ])} {.+0} (+≤+ {n = ℕ.suc n} z≤n) (+≤+ {n = zero} m≤n) () z+z {.(+[1+ n ])} {.(+[1+ n₁ ])} (+≤+ {n = ℕ.suc n} z≤n) (+≤+ {n = ℕ.suc n₁} m≤n) () x^2=0⇒x=0 : ∀ {x} -> x * x ≡ 0ℤ -> x ≡ 0ℤ x^2=0⇒x=0 {+_ zero} eq = refl
{ "alphanum_fraction": 0.4423983831, "avg_line_length": 36.5, "ext": "agda", "hexsha": "115ce55a06e2e614ed2670dce7fc24ddbf032672", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "Integer/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "Integer/Properties.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "Integer/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2198, "size": 4453 }
module FRP.LTL.RSet where open import FRP.LTL.RSet.Core public using ( RSet ; ⟨_⟩ ; ⟦_⟧ ) -- Propositional logic open import FRP.LTL.RSet.Unit public using ( T ) open import FRP.LTL.RSet.Empty public using ( F ) open import FRP.LTL.RSet.Product public using ( _∧_ ; fst ; snd ; _&&&_ ) open import FRP.LTL.RSet.Sum public using ( _∨_ ) open import FRP.LTL.RSet.Stateless public using ( _⇒_ ) -- LTL open import FRP.LTL.RSet.Next public using ( ○ ) open import FRP.LTL.RSet.Future public using ( ◇ ) open import FRP.LTL.RSet.Globally public using ( □ ; [_] ) open import FRP.LTL.RSet.Until public using ( _U_ ) open import FRP.LTL.RSet.Causal public using ( _⊵_ ; arr ; identity ; _⋙_ ) open import FRP.LTL.RSet.Decoupled public using ( _▹_ )
{ "alphanum_fraction": 0.7054886212, "avg_line_length": 35.5714285714, "ext": "agda", "hexsha": "9df82a77d0f37a4d766b9a0f30a4bb1e07b919c7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/RSet.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/RSet.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/RSet.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 248, "size": 747 }
{-# OPTIONS --without-K #-} module A2 where open import Data.Nat open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product infix 4 _≡_ -- propositional equality infixr 10 _◎_ infixr 30 _⟷_ ------------------------------------------------------------------------------ -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) sym : ∀ {ℓ} {A : Set ℓ} {a b : A} → (a ≡ b) → (b ≡ a) sym {a = a} {b = .a} (refl .a) = refl a trans : ∀ {ℓ} {A : Set ℓ} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c) trans {a = a} {b = .a} {c = .a} (refl .a) (refl .a) = refl a ------------------------------------------------------------------------------ {-- Types are higher groupoids: - 0 is empty - 1 has one element and one path refl - sum type is disjoint union; paths are component wise - product type is cartesian product; paths are pairs of paths --} mutual data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U ID : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ → U ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t t' ⟧ = ⟦ t ⟧ ⊎ ⟦ t' ⟧ ⟦ TIMES t t' ⟧ = ⟦ t ⟧ × ⟦ t' ⟧ ⟦ ID {t₁} {t₂} c v₁ v₂ ⟧ = Paths {t₁} {t₂} c v₁ v₂ data _⟷_ : U → U → Set where -- semiring axioms unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ -- equivalence relation and 2 combinators id⟷ : {t : U} → t ⟷ t sym⟷ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) -- and one level up {- lid : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → ID (id⟷ ◎ c) v₁ v₂ ⟷ ID c v₁ v₂ rid : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → ID (c ◎ id⟷) v₁ v₂ ⟷ ID c v₁ v₂ linv : {t₁ t₂ : U} {v : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → ID ((sym⟷ c) ◎ c) v v ⟷ ID {t₂} {t₂} id⟷ v v rinv : {t₁ t₂ : U} {v : ⟦ t₁ ⟧} {c : t₁ ⟷ t₂} → ID (c ◎ (sym⟷ c)) v v ⟷ ID {t₁} {t₁} id⟷ v v invinv : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → ID (sym⟷ (sym⟷ c)) v₁ v₂ ⟷ ID {t₁} {t₂} c v₁ v₂ assoc : {t₁ t₂ t₃ t₄ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {v₃ : ⟦ t₃ ⟧} {v₄ : ⟦ t₄ ⟧} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ID (c₁ ◎ (c₂ ◎ c₃)) v₁ v₄ ⟷ ID ((c₁ ◎ c₂) ◎ c₃) v₁ v₄ -} -- add the other direction for lid, rid, linv, rinv, invinv, and assoc data Unite₊ {t : U} : ⊥ ⊎ ⟦ t ⟧ → ⟦ t ⟧ → Set where val_unite₊ : (v₁ : ⊥ ⊎ ⟦ t ⟧) → (v₂ : ⟦ t ⟧) → Unite₊ v₁ v₂ Paths : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ → Set Paths unite₊ (inj₁ ()) Paths {PLUS ZERO t} {.t} unite₊ (inj₂ v) v' = (v ≡ v') × Unite₊ {t} (inj₂ v) v' Paths uniti₊ v (inj₁ ()) Paths uniti₊ v (inj₂ v') = (v ≡ v') Paths swap₊ (inj₁ v) (inj₁ v') = ⊥ Paths swap₊ (inj₁ v) (inj₂ v') = (v ≡ v') Paths swap₊ (inj₂ v) (inj₁ v') = (v ≡ v') Paths swap₊ (inj₂ v) (inj₂ v') = ⊥ Paths assocl₊ (inj₁ v) (inj₁ (inj₁ v')) = (v ≡ v') Paths assocl₊ (inj₁ v) (inj₁ (inj₂ v')) = ⊥ Paths assocl₊ (inj₁ v) (inj₂ v') = ⊥ Paths assocl₊ (inj₂ (inj₁ v)) (inj₁ (inj₁ v')) = ⊥ Paths assocl₊ (inj₂ (inj₁ v)) (inj₁ (inj₂ v')) = (v ≡ v') Paths assocl₊ (inj₂ (inj₁ v)) (inj₂ v') = ⊥ Paths assocl₊ (inj₂ (inj₂ v)) (inj₁ v') = ⊥ Paths assocl₊ (inj₂ (inj₂ v)) (inj₂ v') = (v ≡ v') Paths assocr₊ (inj₁ (inj₁ v)) (inj₁ v') = (v ≡ v') Paths assocr₊ (inj₁ (inj₁ v)) (inj₂ v') = ⊥ Paths assocr₊ (inj₁ (inj₂ v)) (inj₁ v') = ⊥ Paths assocr₊ (inj₁ (inj₂ v)) (inj₂ (inj₁ v')) = (v ≡ v') Paths assocr₊ (inj₁ (inj₂ v)) (inj₂ (inj₂ v')) = ⊥ Paths assocr₊ (inj₂ v) (inj₁ v') = ⊥ Paths assocr₊ (inj₂ v) (inj₂ (inj₁ v')) = ⊥ Paths assocr₊ (inj₂ v) (inj₂ (inj₂ v')) = (v ≡ v') Paths unite⋆ (tt , v) v' = (v ≡ v') Paths uniti⋆ v (tt , v') = (v ≡ v') Paths swap⋆ (v₁ , v₂) (v₂' , v₁') = (v₁ ≡ v₁') × (v₂ ≡ v₂') Paths assocl⋆ (v₁ , (v₂ , v₃)) ((v₁' , v₂') , v₃') = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths assocr⋆ ((v₁ , v₂) , v₃) (v₁' , (v₂' , v₃')) = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths distz (() , v) Paths factorz () Paths dist (inj₁ v₁ , v₃) (inj₁ (v₁' , v₃')) = (v₁ ≡ v₁') × (v₃ ≡ v₃') Paths dist (inj₁ v₁ , v₃) (inj₂ (v₂' , v₃')) = ⊥ Paths dist (inj₂ v₂ , v₃) (inj₁ (v₁' , v₃')) = ⊥ Paths dist (inj₂ v₂ , v₃) (inj₂ (v₂' , v₃')) = (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths factor (inj₁ (v₁ , v₃)) (inj₁ v₁' , v₃') = (v₁ ≡ v₁') × (v₃ ≡ v₃') Paths factor (inj₁ (v₁ , v₃)) (inj₂ v₂' , v₃') = ⊥ Paths factor (inj₂ (v₂ , v₃)) (inj₁ v₁' , v₃') = ⊥ Paths factor (inj₂ (v₂ , v₃)) (inj₂ v₂' , v₃') = (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths {t} id⟷ v v' = (v ≡ v') Paths (sym⟷ c) v v' = PathsB c v v' Paths (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v v' = Σ[ u ∈ ⟦ t₂ ⟧ ] (Paths c₁ v u × Paths c₂ u v') Paths (c₁ ⊕ c₂) (inj₁ v) (inj₁ v') = Paths c₁ v v' Paths (c₁ ⊕ c₂) (inj₁ v) (inj₂ v') = ⊥ Paths (c₁ ⊕ c₂) (inj₂ v) (inj₁ v') = ⊥ Paths (c₁ ⊕ c₂) (inj₂ v) (inj₂ v') = Paths c₂ v v' Paths (c₁ ⊗ c₂) (v₁ , v₂) (v₁' , v₂') = Paths c₁ v₁ v₁' × Paths c₂ v₂ v₂' {- Paths lid (v , refl .v , p) q = (p ≡ q) Paths rid (v , p , refl .v) q = (p ≡ q) Paths (linv {t₁} {v = v} {c}) (w , proj₂ , proj₃) y = {!!} Paths rinv (proj₁ , proj₂ , proj₃) y = {!!} Paths (invinv {c = c}) x y = {!!} Paths assoc (v₂ , proj₂ , v₃ , proj₄ , proj₅) (w₃ , (w₂ , proj₈ , proj₉) , proj₁₀) = v₂ ≡ w₂ × v₃ ≡ w₃ -} PathsB : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₂ ⟧ → ⟦ t₁ ⟧ → Set PathsB unite₊ v (inj₁ ()) PathsB unite₊ v (inj₂ v') = (v ≡ v') PathsB uniti₊ (inj₁ ()) PathsB uniti₊ (inj₂ v) v' = (v ≡ v') PathsB swap₊ (inj₁ v) (inj₁ v') = ⊥ PathsB swap₊ (inj₁ v) (inj₂ v') = (v ≡ v') PathsB swap₊ (inj₂ v) (inj₁ v') = (v ≡ v') PathsB swap₊ (inj₂ v) (inj₂ v') = ⊥ PathsB assocl₊ (inj₁ (inj₁ v)) (inj₁ v') = (v ≡ v') PathsB assocl₊ (inj₁ (inj₁ v)) (inj₂ v') = ⊥ PathsB assocl₊ (inj₁ (inj₂ v)) (inj₁ v') = ⊥ PathsB assocl₊ (inj₁ (inj₂ v)) (inj₂ (inj₁ v')) = (v ≡ v') PathsB assocl₊ (inj₁ (inj₂ v)) (inj₂ (inj₂ v')) = ⊥ PathsB assocl₊ (inj₂ v) (inj₁ v') = ⊥ PathsB assocl₊ (inj₂ v) (inj₂ (inj₁ v')) = ⊥ PathsB assocl₊ (inj₂ v) (inj₂ (inj₂ v')) = (v ≡ v') PathsB assocr₊ (inj₁ v) (inj₁ (inj₁ v')) = (v ≡ v') PathsB assocr₊ (inj₁ v) (inj₁ (inj₂ v')) = ⊥ PathsB assocr₊ (inj₁ v) (inj₂ v') = ⊥ PathsB assocr₊ (inj₂ (inj₁ v)) (inj₁ (inj₁ v')) = ⊥ PathsB assocr₊ (inj₂ (inj₁ v)) (inj₁ (inj₂ v')) = (v ≡ v') PathsB assocr₊ (inj₂ (inj₁ v)) (inj₂ v') = ⊥ PathsB assocr₊ (inj₂ (inj₂ v)) (inj₁ v') = ⊥ PathsB assocr₊ (inj₂ (inj₂ v)) (inj₂ v') = (v ≡ v') PathsB unite⋆ v (tt , v') = (v ≡ v') PathsB uniti⋆ (tt , v) v' = (v ≡ v') PathsB swap⋆ (v₁ , v₂) (v₂' , v₁') = (v₁ ≡ v₁') × (v₂ ≡ v₂') PathsB assocl⋆ ((v₁ , v₂) , v₃) (v₁' , (v₂' , v₃')) = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB assocr⋆ (v₁ , (v₂ , v₃)) ((v₁' , v₂') , v₃') = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB distz () PathsB factorz (() , v) PathsB dist (inj₁ (v₁ , v₃)) (inj₁ v₁' , v₃') = (v₁ ≡ v₁') × (v₃ ≡ v₃') PathsB dist (inj₁ (v₁ , v₃)) (inj₂ v₂' , v₃') = ⊥ PathsB dist (inj₂ (v₂ , v₃)) (inj₁ v₁' , v₃') = ⊥ PathsB dist (inj₂ (v₂ , v₃)) (inj₂ v₂' , v₃') = (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB factor (inj₁ v₁ , v₃) (inj₁ (v₁' , v₃')) = (v₁ ≡ v₁') × (v₃ ≡ v₃') PathsB factor (inj₁ v₁ , v₃) (inj₂ (v₂' , v₃')) = ⊥ PathsB factor (inj₂ v₂ , v₃) (inj₁ (v₁' , v₃')) = ⊥ PathsB factor (inj₂ v₂ , v₃) (inj₂ (v₂' , v₃')) = (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB {t} id⟷ v v' = (v ≡ v') PathsB (sym⟷ c) v v' = Paths c v v' PathsB (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v v' = Σ[ u ∈ ⟦ t₂ ⟧ ] (PathsB c₂ v u × PathsB c₁ u v') PathsB (c₁ ⊕ c₂) (inj₁ v) (inj₁ v') = PathsB c₁ v v' PathsB (c₁ ⊕ c₂) (inj₁ v) (inj₂ v') = ⊥ PathsB (c₁ ⊕ c₂) (inj₂ v) (inj₁ v') = ⊥ PathsB (c₁ ⊕ c₂) (inj₂ v) (inj₂ v') = PathsB c₂ v v' PathsB (c₁ ⊗ c₂) (v₁ , v₂) (v₁' , v₂') = PathsB c₁ v₁ v₁' × PathsB c₂ v₂ v₂' {- PathsB rid q (a , p , refl .a) = q ≡ p PathsB lid x y = {!!} PathsB linv x y = {!!} PathsB rinv = {!!} PathsB invinv = {!!} PathsB assoc = {!!} -} ------------------------------------------------------------------------------ -- Examples... BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL FALSE : ⟦ BOOL ⟧ FALSE = inj₂ tt TRUE : ⟦ BOOL ⟧ TRUE = inj₁ tt e₁ : ⟦ ID {BOOL²} {BOOL²} id⟷ (FALSE , TRUE) (FALSE , TRUE) ⟧ e₁ = refl (FALSE , TRUE) e₂ : ⟦ ID {BOOL²} {BOOL²} (id⟷ ⊗ id⟷) (FALSE , TRUE) (FALSE , TRUE) ⟧ e₂ = (refl FALSE , refl TRUE) ---------------
{ "alphanum_fraction": 0.4626616604, "avg_line_length": 38.6612903226, "ext": "agda", "hexsha": "a56734e26347ce90de93f1291c358188bfc65a23", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/A2.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/A2.agda", "max_line_length": 105, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/A2.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 5110, "size": 9588 }
{- Agda Implementors' Meeting VI Göteborg May 24 - 3zero, 2zerozero7 Hello Agda! Ulf Norell -} -- Records are labeled sigma types. module R where {- A very simple record. -} data Nat : Set where zero : Nat succ : Nat record Point : Set where field x : Nat y : Nat -- A record can be seen as a one constructor datatype. In this case: data Point' : Set where mkPoint : (x : Nat)(y : Nat) -> Point' -- There are a few differences, though: -- To construct a record you use the syntax record { ..; x = e; .. } origin : Point origin = record { x = zero; y = zero } -- instead of origin' : Point' origin' = mkPoint zero zero -- What's more interesting is that you get projection functions -- for free when you declare a record. More precisely, you get a module -- parameterised over a record, containing functions corresponding to the -- fields. In the Point example you get: {- module Point (p : Point) where x : Nat y : Nat -} -- So Point.x : Point -> Nat is the projection function for the field x. getX : Point -> Nat getX = Point.x -- getX = x
{ "alphanum_fraction": 0.6232758621, "avg_line_length": 19.0163934426, "ext": "agda", "hexsha": "f8c46544d94fdcabbdd0b66e74896c3666dad60d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/beyond/R.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/beyond/R.agda", "max_line_length": 73, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/beyond/R.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 307, "size": 1160 }
open import Oscar.Prelude module Oscar.Class.Fmap where module _ where open import Oscar.Data.Proposequality open import Oscar.Class.IsFunctor open import Oscar.Class.Reflexivity import Oscar.Class.Reflexivity.Function open import Oscar.Class.Surjidentity record Fmap {𝔬₁ 𝔬₂} (𝓕 : Ø 𝔬₁ → Ø 𝔬₂) : Ø (↑̂ (↑̂ 𝔬₁ ∙̂ 𝔬₂)) where constructor ∁ field fmap : ∀ {𝔄 𝔅} → (𝔄 → 𝔅) → 𝓕 𝔄 → 𝓕 𝔅 -- level-polymorphic functors cannot be represented by `Functor` or any other type in universe < ω. ⦃ isFunctor ⦄ : IsFunctor Function⟦ 𝔬₁ ⟧ Proposextensequality ε (flip _∘′_) (MFunction 𝓕) Proposextensequality ε (flip _∘′_) fmap fmap-id-law : ∀ {𝔄} → fmap ¡[ 𝔄 ] ≡̇ ¡ fmap-id-law = surjidentity open Fmap ⦃ … ⦄ public using (fmap) -- level-polymorphic functor module _ (𝔉 : ∀ {𝔣} → Ø 𝔣 → Ø 𝔣) 𝔬₁ 𝔬₂ where 𝓯map = ∀ {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} (f : 𝔒₁ → 𝔒₂) → 𝔉 𝔒₁ → 𝔉 𝔒₂ record 𝓕map : Ø ↑̂ (𝔬₁ ∙̂ 𝔬₂) where field fmap′ : 𝓯map open 𝓕map ⦃ … ⦄ public
{ "alphanum_fraction": 0.5638489209, "avg_line_length": 30.8888888889, "ext": "agda", "hexsha": "951623c4b229cec15ea9a907d6dfa029828d954a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Fmap.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Fmap.agda", "max_line_length": 142, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Fmap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 455, "size": 1112 }
module SyntaxRaw where import Level open import Data.Empty open import Data.Unit as Unit open import Data.Nat open import Data.List as List renaming ([] to Ø; [_] to [_]L) open import Data.List.Properties using (++-monoid) open import NonEmptyList as NList open import Data.Vec as Vec hiding ([_]; _++_) open import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as PE hiding ([_]) open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid) open ≡-Reasoning open import Common.Context as Context open import Algebra open Monoid {{ ... }} hiding (refl) data Phantom {A : Set} (a : A) : Set where phantom : Phantom a record Univ (P : Phantom tt) : Set where field x : ⊤ U : Set U = Σ (Phantom tt) Univ ∗ : U ∗ = (phantom , record { x = tt }) length' : {A : Set} → List A → ℕ length' Ø = 0 length' (x ∷ xs) = suc (length' xs) length'-hom : {A : Set} → (l₁ l₂ : List A) → length' (l₁ ++ l₂) ≡ length' l₁ + length' l₂ length'-hom Ø l₂ = refl length'-hom (x ∷ l₁) l₂ = cong suc (length'-hom l₁ l₂) length'ᵣ-1 : {A : Set} (l : List A) (a : A) → (length' l) + 1 ≡ length' (l ++ a ∷ Ø) length'ᵣ-1 Ø a = refl length'ᵣ-1 (x ∷ l) a = cong suc (length'ᵣ-1 l a) length'-commute₁ : {A : Set} (l : List A) (a : A) → length' (a ∷ l) ≡ length' (l ++ a ∷ Ø) length'-commute₁ Ø a = refl length'-commute₁ (x ∷ l) a = cong suc (length'-commute₁ l a) mvVar : ∀ {A} (Γ₁ Γ₂ : List A) (x : A) → Γ₂ ++ x ∷ Γ₁ ≡ Γ₂ ↑ x ++ Γ₁ mvVar Γ₁ Ø x = refl mvVar Γ₁ (y ∷ Γ₂) x = cong (λ u → y ∷ u) (mvVar Γ₁ Γ₂ x) mvVar-length : ∀ {A} (Γ₁ Γ₂ : List A) (x : A) → length' (Γ₂ ++ x ∷ Γ₁) ≡ length' (Γ₂ ↑ x ++ Γ₁) mvVar-length Γ₁ Γ₂ x = cong length' (mvVar Γ₁ Γ₂ x) data FP : Set where μ : FP ν : FP RawCtx : Set RawCtx = Ctx U instance ctx-monoid : Monoid _ _ ctx-monoid = ++-monoid U RawVar : RawCtx → U → Set RawVar = Var TyCtx : Set TyCtx = Ctx RawCtx instance tyctx-monoid : Monoid _ _ tyctx-monoid = ++-monoid RawCtx TyVar : TyCtx → RawCtx → Set TyVar = Var CtxMor : (TyCtx → RawCtx → RawCtx → Set) → RawCtx → RawCtx → Set CtxMor R Γ₁ Γ₂ = Vec (R Ø Γ₁ Ø) (length' Γ₂) FpData : (TyCtx → RawCtx → RawCtx → Set) → TyCtx → RawCtx → Set FpData R Θ Γ = NList (Σ RawCtx (λ Γ' → CtxMor R Γ' Γ × R (Γ ∷ Θ) Γ' Ø)) -- | List of types, context morphisms and terms (Aₖ, fₖ, gₖ) such that -- Γₖ, x : Aₖ[C/X] ⊢ gₖ : C fₖ or -- Γₖ, x : C fₖ ⊢ gₖ : Aₖ[C/X], -- which are the premisses of the rule for recursion and corecursion, -- respectively. FpMapData : (TyCtx → RawCtx → RawCtx → Set) → RawCtx → Set FpMapData R Γ = NList (Σ RawCtx λ Γ' → R [ Γ ]L Γ' Ø × CtxMor R Γ' Γ × R Ø (∗ ∷ Γ') Ø) -- | Types and objects with their corresponding (untyped) type, object -- variable contexts and parameter contexts. -- Note that, if Θ | Γ₁ ⊢ M ⊸ Γ₂, i.e., M : Raw Θ Γ₁ Γ₂, -- then Γ₂ needs to be read in reverse. The reason is that Γ₂ signifies -- parameters that are instantiated in application-style. Also, variables -- can be moved for types like in -- Γ₁, x : A ⊢ B : Γ₂(∗) → Γ₁ ⊢ λx.B : (x : A) ⊸ Γ₂(∗). data Raw : TyCtx → RawCtx → RawCtx → Set where ----- Common constructors instRaw : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} {A : U} → Raw Θ Γ₁ (Γ₂ ↑ A) → Raw Ø Γ₁ Ø → Raw Θ Γ₁ Γ₂ ----- Object constructors unitRaw : (Γ : RawCtx) → Raw Ø Γ Ø objVarRaw : {Γ : RawCtx} {A : U} → RawVar Γ A → Raw Ø Γ Ø -- | initial/final dialgebra. dialgRaw ρ k is either αₖ or ξₖ, depending on ρ. dialgRaw : (Δ : RawCtx) (Γ : RawCtx) (A : U) → FP → ℕ → Raw Ø Δ (A ∷ Γ) recRaw : (Γ Δ : RawCtx) → FpMapData Raw Γ → FP → Raw Ø Δ (∗ ∷ Γ) ----- Type constructors ⊤-Raw : (Θ : TyCtx) (Γ : RawCtx) → Raw Θ Γ Ø tyVarRaw : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ : RawCtx} → TyVar Θ Γ₂ → Raw Θ Γ₁ Γ₂ paramAbstrRaw : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) {A : U} → Raw Θ (A ∷ Γ₁) Γ₂ → Raw Θ Γ₁ (Γ₂ ↑ A) -- | Constructor for fixed points. The first component is intended to be -- the context morphism, the second is the type. fpRaw : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) → FP → FpData Raw Θ Γ₂ → Raw Θ Γ₁ Γ₂ weakenObjVar : (Γ₁ : RawCtx) {Γ₂ : RawCtx} → (A : U) {B : U} → RawVar (Γ₁ ++ Γ₂) B → RawVar (Γ₁ ++ A ∷ Γ₂) B weakenObjVar Ø A x = succ _ x weakenObjVar (._ ∷ Γ₁) A zero = zero weakenObjVar (B ∷ Γ₁) A (succ ._ x) = succ _ (weakenObjVar Γ₁ A x) weaken : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ Γ₃ : RawCtx} → (A : U) → Raw Θ (Γ₁ ++ Γ₂) Γ₃ → Raw Θ (Γ₁ ++ A ∷ Γ₂) Γ₃ weaken Γ₁ {Γ₂} A (instRaw t s) = instRaw (weaken Γ₁ A t) (weaken Γ₁ A s) weaken Γ₁ {Γ₂} A (unitRaw .(Γ₁ ++ Γ₂)) = unitRaw _ weaken Γ₁ {Γ₂} A (objVarRaw x) = objVarRaw (weakenObjVar Γ₁ A x) weaken Γ₁ {Γ₂} A (dialgRaw .(Γ₁ ++ Γ₂) Γ B ρ k) = dialgRaw _ Γ B ρ k weaken Γ₁ {Γ₂} A (recRaw Γ .(Γ₁ ++ Γ₂) gs ρ) = recRaw Γ _ gs ρ weaken Γ₁ {Γ₂} A (⊤-Raw Θ .(Γ₁ ++ Γ₂)) = ⊤-Raw Θ _ weaken Γ₁ {Γ₂} A (tyVarRaw .(Γ₁ ++ Γ₂) X) = tyVarRaw _ X weaken Γ₁ {Γ₂} A (paramAbstrRaw .(Γ₁ ++ Γ₂) {B} C) = paramAbstrRaw (Γ₁ ++ A ∷ Γ₂) (weaken (B ∷ Γ₁) A C) weaken Γ₁ {Γ₂} A (fpRaw .(Γ₁ ++ Γ₂) ρ D) = fpRaw _ ρ D weaken₁ : ∀ {Θ Γ₁ Γ₂} → (A : U) → Raw Θ Γ₁ Γ₂ → Raw Θ (A ∷ Γ₁) Γ₂ weaken₁ = weaken Ø ctxid : (Γ : RawCtx) → CtxMor Raw Γ Γ ctxid Ø = [] ctxid (A ∷ Γ) = (objVarRaw {A ∷ Γ} {A} zero) ∷ Vec.map (weaken Ø A) (ctxid Γ) -- | Build the instantiation "t f" of a raw term t by a context morphism f instWCtxMor : {Θ : TyCtx} {Γ₁ Γ₂ Γ₃ : RawCtx} → Raw Θ Γ₁ (Γ₃ ++ Γ₂) → CtxMor Raw Γ₁ Γ₂ → Raw Θ Γ₁ Γ₃ instWCtxMor {Θ} {Γ₁} {Ø} {Γ₃} t [] = subst (Raw Θ Γ₁) (proj₂ identity Γ₃) t instWCtxMor {Θ} {Γ₁} {x ∷ Γ₂} {Γ₃} t (s ∷ f) = instRaw (instWCtxMor (subst (Raw Θ Γ₁) (mvVar _ Γ₃ x) t) f) s -- | Retrieve the term to be substituted for a variable from a context morphism get : {R : TyCtx → RawCtx → RawCtx → Set} {Γ₁ Γ₂ : RawCtx} {A : U} → CtxMor R Γ₂ Γ₁ → RawVar Γ₁ A → R Ø Γ₂ Ø get {R} {Ø} [] () get {R} {_ ∷ Γ₁} (M ∷ f) zero = M get {R} {_ ∷ Γ₁} (M ∷ f) (succ ._ x) = get {R} f x -- | Extends a context morphism to be the identity on a new variable extend : {Γ₁ Γ₂ : RawCtx} → (A : U) → CtxMor Raw Γ₂ Γ₁ → CtxMor Raw (A ∷ Γ₂) (A ∷ Γ₁) extend {Γ₁} {Γ₂} A f = (objVarRaw {A ∷ Γ₂} {A} zero) ∷ (Vec.map (weaken₁ A) f) -- | Substitution on raw terms substRaw : ∀ {Θ Γ₁ Γ Γ₂} → Raw Θ Γ₁ Γ → CtxMor Raw Γ₂ Γ₁ → Raw Θ Γ₂ Γ substRaw (instRaw M N) f = instRaw (substRaw M f) (substRaw N f) substRaw (unitRaw Γ) f = unitRaw _ substRaw (objVarRaw x) f = get {Raw} f x substRaw (dialgRaw Δ Γ A ρ k) f = dialgRaw _ Γ A ρ k substRaw (recRaw Γ Δ gs ρ) f = recRaw Γ _ gs ρ substRaw (⊤-Raw Θ Γ) f = ⊤-Raw Θ _ substRaw (tyVarRaw Γ₁ X) f = tyVarRaw _ X substRaw (paramAbstrRaw Γ₁ A) f = paramAbstrRaw _ (substRaw A (extend _ f)) substRaw (fpRaw Γ₁ ρ D) f = fpRaw _ ρ D -- | Context morphism that projects on arbitrary prefix of a context ctxProjRaw : (Γ₁ Γ₂ : RawCtx) → CtxMor Raw (Γ₂ ++ Γ₁) Γ₁ ctxProjRaw Γ₁ Ø = ctxid Γ₁ ctxProjRaw Γ₁ (A ∷ Γ₂) = Vec.map (weaken₁ A) (ctxProjRaw Γ₁ Γ₂) -- | Extend one step weakening to weakening by arbitrary contexts weaken' : ∀ {Θ Γ₁ Γ₃} → (Γ₂ : RawCtx) → Raw Θ Γ₁ Γ₃ → Raw Θ (Γ₂ ++ Γ₁) Γ₃ weaken' {Γ₁ = Γ₁} Γ₂ t = substRaw t (ctxProjRaw Γ₁ Γ₂) ----------------------------------------- --- Examples ----------------------------------------- _︵_ : {A : Set} → A → A → List A a ︵ b = a ∷ b ∷ Ø -- | Binary product type ProdRaw : (Γ : RawCtx) → Raw (Γ ︵ Γ) Ø Γ ProdRaw Γ = fpRaw Ø ν D where Δ = Γ ︵ Γ A : TyVar (Γ ∷ Δ) Γ A = succ Γ zero B : TyVar (Γ ∷ Δ) Γ B = succ Γ (succ Γ zero) D₁ = (Γ , ctxid Γ , instWCtxMor (tyVarRaw Γ A) (ctxid Γ)) D₂ = (Γ , ctxid Γ , instWCtxMor (tyVarRaw Γ B) (ctxid Γ)) D : FpData Raw Δ Γ D = D₁ ∷ [ D₂ ]
{ "alphanum_fraction": 0.5656363409, "avg_line_length": 35.6741071429, "ext": "agda", "hexsha": "be66034244fbc940ea1fca34b87dbc23bd26b013", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "StillerHarpo/CoindDepTypes", "max_forks_repo_path": "Syntax/SyntaxRaw.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_issues_repo_issues_event_max_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "StillerHarpo/CoindDepTypes", "max_issues_repo_path": "Syntax/SyntaxRaw.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "StillerHarpo/CoindDepTypes", "max_stars_repo_path": "Syntax/SyntaxRaw.agda", "max_stars_repo_stars_event_max_datetime": "2018-04-06T02:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-27T14:45:11.000Z", "num_tokens": 3331, "size": 7991 }
{-# OPTIONS --copatterns #-} module CS410-Indexed where open import CS410-Prelude open import CS410-Nat -- some notation for working with indexed sets _-:>_ _*:_ _+:_ : {I : Set}(S T : I -> Set) -> I -> Set (S -:> T) i = S i -> T i -- index-respecting functions (S *: T) i = S i * T i -- index-matching pairs (S +: T) i = S i + T i -- index-consistent choice infixr 3 _-:>_ infixr 5 _*:_ -- wrapping in the brackets means "works for all indices" [_] : {I : Set}(X : I -> Set) -> Set [ X ] = forall {i} -> X i -- each set I gives us a category, I -> Set, whose objects are -- indexed sets A : I -> Set, and whose arrows are -- things in [ A -:> B ] -- what is a functor between categories of indexed sets? record FunctorIx {I J : Set}(F : (I -> Set) -> (J -> Set)) : Set1 where field mapIx : {A B : I -> Set} -> [ A -:> B ] -> [ F A -:> F B ] -- what is a monad on indexed sets? -- it's the usual kit for monads, instantiated for the kinds of -- "arrows" that we use for indexed sets, the index-respecting functions record MonadIx {W : Set}(F : (W -> Set) -> (W -> Set)) : Set1 where field retIx : forall {P} -> [ P -:> F P ] extendIx : forall {P Q} -> [ P -:> F Q ] -> [ F P -:> F Q ] _?>=_ : forall {P Q w} -> F P w -> (forall {v} -> P v -> F Q v) -> F Q w fp ?>= k = extendIx k fp -- every MonadIx gives a FunctorIx monadFunctorIx : forall {W}{F} -> MonadIx {W} F -> FunctorIx {W}{W} F monadFunctorIx M = record { mapIx = \ f -> extendIx (retIx o f) } where open MonadIx M -- indexed containers, also known as interaction strutures, give us -- functors record _=>_ (I J : Set) : Set1 where constructor _<!_/_ field Shape : J -> Set Position : (j : J) -> Shape j -> Set index : (j : J)(s : Shape j) -> Position j s -> I IC : forall {I J} -> I => J -> (I -> Set) -> (J -> Set) IC {I}{J} C X j = Sg (Shape j) \ s -> (p : Position j s) -> X (index j s p) where open _=>_ C icFunctorIx : forall {I J}(C : I => J) -> FunctorIx (IC C) icFunctorIx C = record { mapIx = \ {f (s , k) -> s , \ p -> f (k p) } } where open _=>_ C -- iterating an indexed container whose input (child) and output (parent) index -- types are the same gives us "strategy trees" data FreeIx {I}(C : I => I)(X : I -> Set)(i : I) : Set where ret : (X -:> FreeIx C X) i do : (IC C (FreeIx C X) -:> FreeIx C X) i -- and they're monadic freeMonadIx : forall {I}(C : I => I) -> MonadIx (FreeIx C) freeMonadIx C = record { retIx = ret ; extendIx = graft } where graft : forall {P Q} -> [ P -:> FreeIx C Q ] -> [ FreeIx C P -:> FreeIx C Q ] graft k (ret p) = k p graft k (do (s , f)) = do (s , \ p -> graft k (f p)) -- potentially infinite strategies data Iterating {I}(C : I => I)(X : I -> Set)(i : I) : Set record IterIx {I}(C : I => I)(X : I -> Set)(i : I) : Set where coinductive constructor step field force : Iterating C X i open IterIx public data Iterating {i} C X i where ret : (X -:> Iterating C X) i do : (IC C (IterIx C X) -:> Iterating C X) i iterMonadIx : forall {I}(C : I => I) -> MonadIx (IterIx C) iterMonadIx C = record { retIx = retHelp ; extendIx = extHelp } where open _=>_ C retHelp : forall {P} -> [ P -:> IterIx C P ] force (retHelp p) = ret p extHelp : forall {P Q} -> [ P -:> IterIx C Q ] -> [ IterIx C P -:> IterIx C Q ] force (extHelp k t) with force t force (extHelp k t) | ret p = force (k p) force (extHelp k t) | do (s , f) = do (s , \ p -> extHelp k (f p))
{ "alphanum_fraction": 0.5642713999, "avg_line_length": 31.7545454545, "ext": "agda", "hexsha": "b56cebcb9b897e993f4d5f81932d204ba6459153", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "CS410-Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "CS410-Indexed.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "CS410-Indexed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1237, "size": 3493 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Reduction {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Tools.Product -- Weak head expansion of valid terms. redSubstTermᵛ : ∀ {A t u l Γ} → ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ t ⇒ u ∷ A / [Γ] → ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A] → (Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]) ×ω₃ (Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]) redSubstTermᵛ [Γ] t⇒u [A] [u] = (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ [σ]) [σt] , [σt≡σu] = redSubstTerm (t⇒u ⊢Δ [σ]) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ])) in [σt] , (λ [σ′] [σ≡σ′] → let [σ′A] = proj₁ ([A] ⊢Δ [σ′]) [σA≡σ′A] = proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′t] , [σ′t≡σ′u] = redSubstTerm (t⇒u ⊢Δ [σ′]) (proj₁ ([A] ⊢Δ [σ′])) (proj₁ ([u] ⊢Δ [σ′])) in transEqTerm [σA] [σt≡σu] (transEqTerm [σA] ((proj₂ ([u] ⊢Δ [σ])) [σ′] [σ≡σ′]) (convEqTerm₂ [σA] [σ′A] [σA≡σ′A] (symEqTerm [σ′A] [σ′t≡σ′u]))))) , (λ ⊢Δ [σ] → proj₂ (redSubstTerm (t⇒u ⊢Δ [σ]) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ]))))
{ "alphanum_fraction": 0.3586247777, "avg_line_length": 40.1666666667, "ext": "agda", "hexsha": "f3df8fd7797e8882a62d50f711d6b01057a7586d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 649, "size": 1687 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) import homotopy.WedgeExtension as WedgeExt module homotopy.Pi2HSusp {i} {X : Ptd i} {{_ : has-level 1 (de⊙ X)}} {{_ : is-connected 0 (de⊙ X)}} (H-X : HSS X) where {- TODO this belongs somewhere else, but where? -} private Type=-ext : ∀ {i} {A B : Type i} (p q : A == B) → (coe p ∼ coe q) → p == q Type=-ext p q α = ! (ua-η p) ∙ ap ua (Subtype=-out is-equiv-prop (λ= α)) ∙ ua-η q module μ = ConnectedHSpace H-X μ = μ.μ private A = de⊙ X e = pt X P : Susp A → Type i P x = Trunc 1 (north == x) module Codes = SuspRec A A (λ a → ua (μ.r-equiv a)) Codes : Susp A → Type i Codes = Codes.f Codes-level : (x : Susp A) → has-level 1 (Codes x) Codes-level = Susp-elim ⟨⟩ ⟨⟩ (λ _ → prop-has-all-paths-↓) encode'₀ : {x : Susp A} → (north == x) → Codes x encode'₀ α = transport Codes α e encode' : {x : Susp A} → P x → Codes x encode' {x} = Trunc-rec {{Codes-level x}} encode'₀ import homotopy.SuspAdjointLoop as SAL {- This should be [[_] ∘ η] where [η] is the functor in SuspAdjointLoop.agda -} decodeN' : A → P north decodeN' = [_] ∘ fst (SAL.η X) abstract transport-Codes-mer : (a a' : A) → transport Codes (merid a) a' == μ a a' transport-Codes-mer a a' = coe (ap Codes (merid a)) a' =⟨ Codes.merid-β a |in-ctx (λ w → coe w a') ⟩ coe (ua (μ.r-equiv a)) a' =⟨ coe-β (μ.r-equiv a) a' ⟩ μ a a' ∎ transport-Codes-mer-e-! : (a : A) → transport Codes (! (merid e)) a == a transport-Codes-mer-e-! a = coe (ap Codes (! (merid e))) a =⟨ ap-! Codes (merid e) |in-ctx (λ w → coe w a) ⟩ coe (! (ap Codes (merid e))) a =⟨ Codes.merid-β e |in-ctx (λ w → coe (! w) a) ⟩ coe (! (ua (μ.r-equiv e))) a =⟨ Type=-ext (ua (μ.r-equiv e)) idp (λ x → coe-β _ x ∙ μ.unit-l x) |in-ctx (λ w → coe (! w) a) ⟩ coe (! idp) a ∎ abstract encode'-decodeN' : (a : A) → encode' (decodeN' a) == a encode'-decodeN' a = transport Codes (merid a ∙ ! (merid e)) e =⟨ transp-∙ {B = Codes} (merid a) (! (merid e)) e ⟩ transport Codes (! (merid e)) (transport Codes (merid a) e) =⟨ transport-Codes-mer a e ∙ μ.unit-r a |in-ctx (λ w → transport Codes (! (merid e)) w) ⟩ transport Codes (! (merid e)) a =⟨ transport-Codes-mer-e-! a ⟩ a ∎ abstract homomorphism : (a a' : A) → Path {A = Trunc 1 (north == south)} [ merid (μ a a' ) ] [ merid a' ∙ ! (merid e) ∙ merid a ] homomorphism = WedgeExt.ext args where args : WedgeExt.args {a₀ = e} {b₀ = e} args = record {m = -1; n = -1; P = λ a a' → (_ , ⟨⟩); f = λ a → ap [_] $ merid (μ a e) =⟨ ap merid (μ.unit-r a) ⟩ merid a =⟨ ap (λ w → w ∙ merid a) (! (!-inv-r (merid e))) ∙ ∙-assoc (merid e) (! (merid e)) (merid a) ⟩ merid e ∙ ! (merid e) ∙ merid a ∎; g = λ a' → ap [_] $ merid (μ e a') =⟨ ap merid (μ.unit-l a') ⟩ merid a' =⟨ ! (∙-unit-r (merid a')) ∙ ap (λ w → merid a' ∙ w) (! (!-inv-l (merid e))) ⟩ merid a' ∙ ! (merid e) ∙ merid e ∎ ; p = ap (λ {(p₁ , p₂) → ap [_] $ merid (μ e e) =⟨ p₁ ⟩ merid e =⟨ p₂ ⟩ merid e ∙ ! (merid e) ∙ merid e ∎}) (pair×= (ap (λ x → ap merid x) (! μ.coh)) (coh (merid e)))} where coh : {B : Type i} {b b' : B} (p : b == b') → ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p == ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p)) coh idp = idp decode' : {x : Susp A} → Codes x → P x decode' {x} = Susp-elim {P = λ x → Codes x → P x} decodeN' (λ a → [ merid a ]) (λ a → ↓-→-from-transp (λ= $ STS a)) x where abstract STS : (a a' : A) → transport P (merid a) (decodeN' a') == [ merid (transport Codes (merid a) a') ] STS a a' = transport P (merid a) [ merid a' ∙ ! (merid e) ] =⟨ transport-Trunc (north ==_) (merid a) _ ⟩ [ transport (north ==_) (merid a) (merid a' ∙ ! (merid e)) ] =⟨ ap [_] (transp-cst=idf {A = Susp A} (merid a) _) ⟩ [ (merid a' ∙ ! (merid e)) ∙ merid a ] =⟨ ap [_] (∙-assoc (merid a') (! (merid e)) (merid a)) ⟩ [ merid a' ∙ ! (merid e) ∙ merid a ] =⟨ ! (homomorphism a a') ⟩ [ merid (μ a a') ] =⟨ ap ([_] ∘ merid) (! (transport-Codes-mer a a')) ⟩ [ merid (transport Codes (merid a) a') ] ∎ abstract decode'-encode' : {x : Susp A} (tα : P x) → decode' {x} (encode' {x} tα) == tα decode'-encode' {x} = Trunc-elim {P = λ tα → decode' {x} (encode' {x} tα) == tα} -- FIXME: Agda very slow (looping?) when omitting the next line {{λ _ → =-preserves-level Trunc-level}} (J (λ y p → decode' {y} (encode' {y} [ p ]) == [ p ]) (ap [_] (!-inv-r (merid e)))) eq' : Trunc 1 (Ω (⊙Susp X)) ≃ A eq' = equiv encode' decodeN' encode'-decodeN' decode'-encode' ⊙decodeN : ⊙Trunc 1 X ⊙→ ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙decodeN = ⊙Trunc-fmap (SAL.η X) decodeN : Trunc 1 A → Trunc 1 (Ω (⊙Susp X)) decodeN = fst ⊙decodeN encodeN : Trunc 1 (Ω (⊙Susp X)) → Trunc 1 A encodeN = [_] ∘ encode' {x = north} eq : Trunc 1 (Ω (⊙Susp X)) ≃ Trunc 1 A eq = encodeN , replace-inverse (snd ((unTrunc-equiv A)⁻¹ ∘e eq')) {decodeN} (Trunc-elim (λ _ → idp)) ⊙eq : ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙≃ ⊙Trunc 1 X ⊙eq = ≃-to-⊙≃ eq idp ⊙eq⁻¹ : ⊙Trunc 1 X ⊙≃ ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙eq⁻¹ = ⊙decodeN , snd (eq ⁻¹) iso : Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp X))) ≃ᴳ Ω^S-group 0 (⊙Trunc 1 X) iso = Ω^S-group-emap 0 ⊙eq abstract π₂-Susp : πS 1 (⊙Susp X) ≃ᴳ πS 0 X π₂-Susp = πS 1 (⊙Susp X) ≃ᴳ⟨ πS-Ω-split-iso 0 (⊙Susp X) ⟩ πS 0 (⊙Ω (⊙Susp X)) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 (⊙Ω (⊙Susp X)) ⁻¹ᴳ ⟩ Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp X))) ≃ᴳ⟨ iso ⟩ Ω^S-group 0 (⊙Trunc 1 X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 X ⟩ πS 0 X ≃ᴳ∎
{ "alphanum_fraction": 0.4630179828, "avg_line_length": 33.835978836, "ext": "agda", "hexsha": "b3668b0eb36ffe2bdaea76af5aeae7b6e7565eba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Pi2HSusp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Pi2HSusp.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Pi2HSusp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2679, "size": 6395 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Object.Terminal -- Various constructors of Product Objects module Categories.Object.Product.Construction {o ℓ e} (C : Category o ℓ e) (T : Terminal C) where open import Categories.Object.Exponential C hiding (repack) open import Categories.Object.Product C open Category C open Terminal T open HomReasoning -- we can get some products [⊤×⊤]-product : Product ⊤ ⊤ [⊤×⊤]-product = record { A×B = ⊤ ; π₁ = ! ; π₂ = ! ; ⟨_,_⟩ = λ _ _ → ! ; project₁ = !-unique₂ ; project₂ = !-unique₂ ; unique = λ _ _ → !-unique _ } [⊤×_]-product : (X : Obj) → Product ⊤ X [⊤×_]-product X = record { A×B = X ; π₁ = ! ; π₂ = id ; ⟨_,_⟩ = λ _ y → y ; project₁ = !-unique₂ ; project₂ = identityˡ ; unique = λ _ id∘h≈j → ⟺ id∘h≈j ○ identityˡ } [_×⊤]-product : (X : Obj) → Product X ⊤ [_×⊤]-product X = Reversible [⊤× X ]-product -- and some exponentials too [_↑⊤]-exponential : (B : Obj) → Exponential ⊤ B [ B ↑⊤]-exponential = record { B^A = B ; product = [ B ×⊤]-product ; eval = id ; λg = λ {X} X×⊤ X⇒B → X⇒B ∘ repack [ X ×⊤]-product X×⊤ ; β = λ p {g} → begin id ∘ (g ∘ [ p ]⟨ id , ! ⟩) ∘ [ p ]π₁ ≈⟨ identityˡ ○ assoc ⟩ g ∘ [ p ]⟨ id , ! ⟩ ∘ [ p ]π₁ ≈⟨ refl⟩∘⟨ [ p ]⟨⟩∘ ⟩ g ∘ [ p ]⟨ id ∘ [ p ]π₁ , ! ∘ [ p ]π₁ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ p identityˡ !-unique₂ ⟩ g ∘ [ p ]⟨ [ p ]π₁ , [ p ]π₂ ⟩ ≈⟨ refl⟩∘⟨ η p ○ identityʳ ⟩ g ∎ ; λ-unique = λ {X} p {g} {h} h-comm → begin h ≈˘⟨ identityʳ ⟩ h ∘ id ≈˘⟨ refl⟩∘⟨ project₁ p ⟩ h ∘ [ p ]π₁ ∘ [ p ]⟨ id , ! ⟩ ≈˘⟨ assoc ⟩ (h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩ ≈˘⟨ identityˡ ⟩∘⟨refl ⟩ (id ∘ h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩ ≈⟨ h-comm ⟩∘⟨refl ⟩ g ∘ repack [ X ×⊤]-product p ∎ } where open Product [⊤↑_]-exponential : (A : Obj) → Exponential A ⊤ [⊤↑ A ]-exponential = record { B^A = ⊤ ; product = [⊤× A ]-product ; eval = ! ; λg = λ _ _ → ! ; β = λ _ → !-unique₂ ; λ-unique = λ _ _ → !-unique₂ }
{ "alphanum_fraction": 0.4649042844, "avg_line_length": 29.6486486486, "ext": "agda", "hexsha": "61a855ecd2ce2dc7c15042a91c6380b6bb95d25f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Object/Product/Construction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Object/Product/Construction.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Object/Product/Construction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 979, "size": 2194 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Group where open import Cubical.Structures.Group.Base public open import Cubical.Structures.Group.Properties public open import Cubical.Structures.Group.Morphism public open import Cubical.Structures.Group.MorphismProperties public
{ "alphanum_fraction": 0.8258064516, "avg_line_length": 38.75, "ext": "agda", "hexsha": "1bac5a4e613bdd0a9ff18dfa6baada8d43789cfe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Group.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 65, "size": 310 }
module Haskell.Prim.Applicative where open import Haskell.Prim open import Haskell.Prim.Either open import Haskell.Prim.Foldable open import Haskell.Prim.Functor open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Monoid open import Haskell.Prim.Tuple -------------------------------------------------- -- Applicative record Applicative (f : Set → Set) : Set₁ where infixl 4 _<*>_ field pure : a → f a _<*>_ : f (a → b) → f a → f b overlap ⦃ super ⦄ : Functor f _<*_ : f a → f b → f a x <* y = const <$> x <*> y _*>_ : f a → f b → f b x *> y = const id <$> x <*> y open Applicative ⦃ ... ⦄ public instance iApplicativeList : Applicative List iApplicativeList .pure x = x ∷ [] iApplicativeList ._<*>_ fs xs = concatMap (λ f → map f xs) fs iApplicativeMaybe : Applicative Maybe iApplicativeMaybe .pure = Just iApplicativeMaybe ._<*>_ (Just f) (Just x) = Just (f x) iApplicativeMaybe ._<*>_ _ _ = Nothing iApplicativeEither : Applicative (Either a) iApplicativeEither .pure = Right iApplicativeEither ._<*>_ (Right f) (Right x) = Right (f x) iApplicativeEither ._<*>_ (Left e) _ = Left e iApplicativeEither ._<*>_ _ (Left e) = Left e iApplicativeFun : Applicative (λ b → a → b) iApplicativeFun .pure = const iApplicativeFun ._<*>_ f g x = f x (g x) iApplicativeTuple₂ : ⦃ Monoid a ⦄ → Applicative (a ×_) iApplicativeTuple₂ .pure x = mempty , x iApplicativeTuple₂ ._<*>_ (a , f) (b , x) = a <> b , f x iApplicativeTuple₃ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → Applicative (a × b ×_) iApplicativeTuple₃ .pure x = mempty , mempty , x iApplicativeTuple₃ ._<*>_ (a , b , f) (a₁ , b₁ , x) = a <> a₁ , b <> b₁ , f x iApplicativeTuple₄ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → ⦃ Monoid c ⦄ → Applicative (λ d → Tuple (a ∷ b ∷ c ∷ d ∷ [])) iApplicativeTuple₄ .pure x = mempty ∷ mempty ∷ mempty ∷ x ∷ [] iApplicativeTuple₄ ._<*>_ (a ∷ b ∷ c ∷ f ∷ []) (a₁ ∷ b₁ ∷ c₁ ∷ x ∷ []) = a <> a₁ ∷ b <> b₁ ∷ c <> c₁ ∷ f x ∷ []
{ "alphanum_fraction": 0.5673659674, "avg_line_length": 33, "ext": "agda", "hexsha": "ad19a78ee4ad7ac71d0007a566c462fd7ea198c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Applicative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Applicative.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Applicative.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 769, "size": 2145 }
module Data.FixedTree.Properties where import Lvl open import Data using (Unit ; <>) open import Data.Boolean open import Data.FixedTree open import Data.Tuple.Raise import Data.Tuple.Raiseᵣ.Functions as Raise open import Functional as Fn open import Logic.Propositional open import Numeral.Finite open import Numeral.Finite.Oper.Comparisons open import Numeral.Natural open import Type private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level private variable n : ℕ private variable N N₁ N₂ L T A B : Type{ℓ} -- A tree is full when every node has no or all children. data Full {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Full(Leaf l) single : ∀{a}{l} → Full(Node a (Raise.repeat(n) (Leaf l))) -- TODO: All the leaves should not be forced to all have the same data step : ∀{a : N}{ca : N ^ n}{cc : ((FixedTree(n) L N) ^ n) ^ n} → (∀{i : 𝕟(n)} → Full(Node (Raise.index i ca) (Raise.index i cc))) → Full(Node a (Raise.map₂{n} Node ca cc)) -- step : ∀{a : T}{ca : T ^ n}{cc : (FixedTree(n)(T) ^ n) ^ n} → Raise.reduceOrᵣ{n}(_⨯_) Unit (Raise.map₂(Full ∘₂ Node) ca cc) → Full(Node a (Raise.map₂{n} Node ca cc)) -- A tree is perfect at depth `n` when all leaves are at height `n`. -- In other words, a tree is perfect when all leaves are at the same height. data Perfect {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → ℕ → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Perfect(Leaf l)(𝟎) step : ∀{a}{c}{h} → (∀{i : 𝕟(n)} → Perfect(Raise.index i c)(h)) → Perfect(Node a c)(𝐒(h)) data Complete {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → ℕ → Bool → Type{ℓₗ Lvl.⊔ ℓₙ} where perfect-leaf : ∀{l} → Complete(Leaf l)(𝟎)(𝑇) imperfect-leaf : ∀{l} → Complete(Leaf l)(𝐒(𝟎))(𝐹) step : ∀{a}{c}{h}{t : 𝕟(n)} → (∀{i : 𝕟(n)} → Complete(Raise.index i c)(h)(i ≤? t)) → Complete(Node a c)(𝐒(h))(t ≤? maximum{n}) data DepthOrdered {L : Type{ℓₗ}}{N : Type{ℓₙ}} (_≤_ : N → N → Type{ℓₒ}) {n} : FixedTree(n) L N → Type{ℓₗ Lvl.⊔ ℓₙ Lvl.⊔ ℓₒ} where leaf : ∀{l} → DepthOrdered(_≤_)(Leaf l) step : ∀{p}{c : (FixedTree(n) L N) ^ n} → (∀{i : 𝕟(n)} → (\{(Leaf _) → Unit ; (Node a c) → (p ≤ a) ∧ DepthOrdered(_≤_)(Node a c)}) $ (Raise.index i c)) → DepthOrdered(_≤_)(Node p c) Heap : ∀{L : Type{ℓₗ}}{N : Type{ℓₙ}} → (N → N → Type{ℓₒ}) → ∀{n} → FixedTree(n) L N → ℕ → Bool → Type Heap(_≤_) tree height perfect = DepthOrdered(_≤_)(tree) ∧ Complete(tree)(height)(perfect)
{ "alphanum_fraction": 0.613918807, "avg_line_length": 54.8636363636, "ext": "agda", "hexsha": "1077065d9c430a8b22e67e5e8c48345f8b2a6239", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/FixedTree/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/FixedTree/Properties.agda", "max_line_length": 183, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/FixedTree/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 988, "size": 2414 }
{-# OPTIONS --without-K #-} open import Types open import Functions open import Paths open import HLevel open import Equivalences module Univalence {i} where postulate -- Univalence axiom univalence : (A B : Set i) → is-equiv (path-to-eq {i} {A} {B}) path-to-eq-equiv : {A B : Set i} → ((A ≡ B) ≃ (A ≃ B)) path-to-eq-equiv = (path-to-eq , univalence _ _) eq-to-path-equiv : {A B : Set i} → ((A ≃ B) ≃ (A ≡ B)) eq-to-path-equiv = path-to-eq-equiv ⁻¹ eq-to-path : {A B : Set i} → (A ≃ B → A ≡ B) eq-to-path {A} {B} = π₁ eq-to-path-equiv eq-to-path-right-inverse : {A B : Set i} (f : A ≃ B) → path-to-eq (eq-to-path f) ≡ f eq-to-path-right-inverse = inverse-right-inverse path-to-eq-equiv path-to-eq-right-inverse : {A B : Set i} (f : A ≡ B) → eq-to-path (path-to-eq f) ≡ f path-to-eq-right-inverse = inverse-left-inverse path-to-eq-equiv -- Transport in the structural fibration of a universe trans-id : {A B : Set i} (f : A ≡ B) (u : A) → transport (λ X → X) f u ≡ (path-to-eq f) ☆ u trans-id refl u = refl trans-id! : {A B : Set i} (f : A ≡ B) (u : B) → transport (λ X → X) (! f) u ≡ inverse (path-to-eq f) u trans-id! refl u = refl trans-id-eq-to-path : {A B : Set i} (f : A ≃ B) (u : A) → transport (λ X → X) (eq-to-path f) u ≡ f ☆ u trans-id-eq-to-path {A} {B} f u = trans-id (eq-to-path f) u ∘ ap (λ (t : A ≃ B) → t ☆ u) (eq-to-path-right-inverse f) trans-id-!eq-to-path : {A B : Set i} (f : A ≃ B) (u : B) → transport (λ X → X) (! (eq-to-path f)) u ≡ inverse f u trans-id-!eq-to-path {A} {B} f u = trans-id! (eq-to-path f) u ∘ ap (λ (t : A ≃ B) → inverse t u) (eq-to-path-right-inverse f) -- Not used -- -- trans-id→A : ∀ {i j} (A : Set j) {X Y : Set i} (e : X ≡ Y) (f : X → A) -- (a : Y) → transport (λ (X : Set i) → X → A) e f a -- ≡ f (inverse (path-to-eq e) a) -- trans-id→A A (refl _) f a = refl _ -- trans-id→A-eq-to-path : ∀ {i j} (A : Set j) {X Y : Set i} (e : X ≃ Y) -- (f : X → A) (a : Y) -- → transport (λ (X : Set i) → X → A) (eq-to-path e) f a ≡ f (inverse e a) -- trans-id→A-eq-to-path A e f a = -- trans-id→A A (eq-to-path e) f a -- ∘ ap (λ u → f (inverse u a)) (eq-to-path-right-inverse e) -- trans-cst→X : ∀ {i j} (A : Set j) {X Y : Set i} (e : X ≡ Y) (f : A → X) -- (a : A) → transport (λ (X : Set i) → A → X) e f a -- ≡ π₁ (path-to-eq e) (f a) -- trans-cst→X A (refl _) f a = refl _ -- trans-cst→X-eq-to-path : ∀ {i j} (A : Set j) {X Y : Set i} (e : X ≃ Y) -- (f : A → X) (a : A) -- → transport (λ (X : Set i) → A → X) (eq-to-path e) f a ≡ π₁ e (f a) -- trans-cst→X-eq-to-path A e f a = -- trans-cst→X A (eq-to-path e) f a -- ∘ ap (λ u → π₁ u (f a)) (eq-to-path-right-inverse e) -- Induction along equivalences equiv-induction : ∀ {j} (P : {A B : Set i} (f : A ≃ B) → Set j) (d : (A : Set i) → P (id-equiv A)) {A B : Set i} (f : A ≃ B) → P f equiv-induction P d f = transport P (eq-to-path-right-inverse f) (equiv-induction-int P d (eq-to-path f)) where equiv-induction-int : ∀ {j} (P : {A : Set i} {B : Set i} (f : A ≃ B) → Set j) (d : (A : Set i) → P (id-equiv A)) {A B : Set i} (p : A ≡ B) → P (path-to-eq p) equiv-induction-int P d refl = d _
{ "alphanum_fraction": 0.5268308081, "avg_line_length": 34.064516129, "ext": "agda", "hexsha": "ae2dc3e57b03f84f5aac827898b3e8e621acd73b", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Univalence.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Univalence.agda", "max_line_length": 77, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1310, "size": 3168 }
{-# OPTIONS --without-K --safe #-} module Fragment.Tactic.Utils where open import Reflection hiding (name; Type; _≟_) open import Reflection.Term using (_≟_) open import Data.Nat using (ℕ; zero; suc) open import Data.Fin using (Fin) open import Data.Nat.Show using (show) open import Data.String using (String) renaming (_++_ to _⟨S⟩_) open import Data.List using (List; []; _∷_; _++_; drop; take; reverse) open import Data.Vec using (Vec; []; _∷_; map; toList) open import Data.Bool using (Bool; true; false; if_then_else_) open import Data.Maybe using (Maybe; nothing; just) open import Data.Product using (_×_; _,_) open import Relation.Nullary using (yes; no; _because_) open import Relation.Binary.PropositionalEquality as PE using (_≡_) vra : ∀ {a} {A : Set a} → A → Arg A vra = arg (arg-info visible relevant) hra : ∀ {a} {A : Set a} → A → Arg A hra = arg (arg-info hidden relevant) infixr 5 λ⦅_⦆→_ λ⦃_⦄→_ λ⦅_⦆→_ : String → Term → Term λ⦅ x ⦆→ body = lam visible (abs x body) λ⦃_⦄→_ : String → Term → Term λ⦃ x ⦄→ body = lam hidden (abs x body) constructors : Definition → List Name constructors (data-type _ cs) = cs constructors _ = [] apply : Term → List (Arg Term) → Term apply (var x xs) args = var x (xs ++ args) apply (con x xs) args = con x (xs ++ args) apply (def x xs) args = def x (xs ++ args) apply (meta x xs) args = meta x (xs ++ args) apply (pat-lam cs xs) args = pat-lam cs (xs ++ args) apply x _ = x prod : ∀ {a} {A : Set a} → ℕ → List A → List A prod n xs = reverse (drop n (reverse xs)) ekat : ∀ {a} {A : Set a} → ℕ → List A → List A ekat n xs = reverse (take n (reverse xs)) find : ∀ {a} {A : Set a} → (A → TC Bool) → List A → TC (Maybe A) find p [] = return nothing find p (x ∷ xs) = do p? ← p x if p? then return (just x) else find p xs mapList : ∀ {a b} {A : Set a} {B : Set b} → List (A → B) → List A → List B mapList [] _ = [] mapList _ [] = [] mapList (f ∷ fs) (x ∷ xs) = f x ∷ mapList fs xs unapply : Term → ℕ → Term unapply (var x args) n = var x (prod n args) unapply (con x args) n = con x (prod n args) unapply (def x args) n = def x (prod n args) unapply (meta x args) n = meta x (prod n args) unapply (pat-lam cs args) n = pat-lam cs (prod n args) unapply x _ = x equalTypes : Term → Term → Bool equalTypes τ τ' with τ ≟ τ' ... | yes _ = true ... | _ = false flatten : ∀ {a} {A : Set a} → TC (TC A) → TC A flatten x = do x' ← x x' listTC : ∀ {a} {A : Set a} → List (TC A) → TC (List A) listTC [] = return [] listTC (x ∷ xs) = do x' ← x xs' ← listTC xs return (x' ∷ xs') n-ary : ∀ (n : ℕ) → Term → Term n-ary zero body = body n-ary (suc n) body = λ⦅ "x" ⟨S⟩ show n ⦆→ (n-ary n body) debrujin : ∀ (n : ℕ) → Vec Term n debrujin zero = [] debrujin (suc n) = (var n []) ∷ debrujin n η-convert : ∀ (n : ℕ) → Term → TC Term η-convert n t = runSpeculative inner where inner : TC (Term × Bool) inner = do t ← normalise (n-ary n (apply t (toList (map vra (debrujin n))))) return (t , false) prefix : ℕ → Term → Term → TC Bool prefix n x y = do y ← catchTC (η-convert n (unapply y n)) (return y) let (b because _) = x ≟ y return b extract-type-arg : Term → TC Term extract-type-arg (pi (arg _ x) _) = return x extract-type-arg x = typeError (termErr x ∷ strErr "isn't a pi type" ∷ []) extract-name : Term → TC Name extract-name (def x _) = return x extract-name x = typeError (termErr x ∷ strErr "isn't an application of a definition" ∷ []) extract-definition : Term → TC Definition extract-definition x = do x' ← normalise x η ← extract-name x' getDefinition η extract-constructors : Term → TC (List Name) extract-constructors x = do δ ← extract-definition x return (constructors δ) fin : ℕ → Term fin zero = con (quote Fin.zero) [] fin (suc n) = con (quote Fin.suc) (vra (fin n) ∷ []) vec : ∀ {n : ℕ} → Vec Term n → Term vec [] = con (quote Vec.[]) [] vec (x ∷ xs) = con (quote Vec._∷_) (vra x ∷ vra (vec xs) ∷ []) vec-len : Term → TC ℕ vec-len (def (quote Vec) (_ ∷ _ ∷ (arg _ n) ∷ [])) = unquoteTC n vec-len t = typeError (termErr t ∷ strErr "isn't a" ∷ nameErr (quote Vec) ∷ []) panic : ∀ {a} {A : Set a} → Term → TC A panic x = typeError (termErr x ∷ []) strip-telescope : Term → TC (Term × List (Arg String)) strip-telescope (pi (vArg _) (abs s x)) = do (τ , acc) ← strip-telescope x return (τ , vra s ∷ acc) strip-telescope (pi (hArg _) (abs s x)) = do (τ , acc) ← strip-telescope x return (τ , hra s ∷ acc) strip-telescope (pi _ _) = typeError (strErr "no support for irrelevant goals" ∷ []) strip-telescope t = return (t , []) restore-telescope : List (Arg String) → Term → TC Term restore-telescope [] t = return t restore-telescope (vArg x ∷ xs) t = do t ← restore-telescope xs t return (λ⦅ x ⦆→ t) restore-telescope (hArg x ∷ xs) t = do t ← restore-telescope xs t return (λ⦃ x ⦄→ t) restore-telescope (_ ∷ _) _ = typeError (strErr "no support for irrelevant goals" ∷ []) hasType : Term → Term → TC Bool hasType τ t = runSpeculative inner where inner = do τ' ← inferType t return (equalTypes τ τ' , false) insert : List Term → Term → List Term insert [] n = n ∷ [] insert (x ∷ xs) n with x ≟ n ... | yes _ = x ∷ xs ... | no _ = x ∷ insert xs n indexOf : List Term → Term → Maybe ℕ indexOf [] t = nothing indexOf (x ∷ xs) t with x ≟ t | indexOf xs t ... | yes _ | _ = just 0 ... | no _ | just n = just (suc n) ... | no _ | nothing = nothing
{ "alphanum_fraction": 0.5672746043, "avg_line_length": 31.4162162162, "ext": "agda", "hexsha": "37de7de28fa51d45edf516e8ee767baf9c966e29", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Tactic/Utils.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Tactic/Utils.agda", "max_line_length": 99, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Tactic/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 1955, "size": 5812 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Util.Prelude -- This module defines types used in the specification of a SystemModel. module Yasm.Types where -- Actions that can be performed by peers. -- -- For now, the SystemModel supports only one kind of action: to send a -- message. Later it might include things like logging, crashes, assertion -- failures, etc. For example, if an assertion fires, this -- could "kill the process" and make it not send any messages in the future. -- We could also then prove that the handlers do not crash, certain -- messages are logged under certain circumstances, etc. -- -- Alternatively, certain actions can be kept outside the system model by -- defining an application-specific PeerState type (see `Yasm.Base`). -- For example: -- -- > libraHandle : Msg → Status × Log × LState → Status × LState × List Action -- > libraHandle _ (Crashed , l , s) = Crashed , s , [] -- i.e., crashed peers never send messages -- > -- > handle = filter isSend ∘ libraHandle data Action (Msg : Set) : Set where send : (m : Msg) → Action Msg -- Injectivity of `send`. action-send-injective : ∀ {Msg}{m m' : Msg} → send m ≡ send m' → m ≡ m' action-send-injective refl = refl
{ "alphanum_fraction": 0.7162066525, "avg_line_length": 40.3714285714, "ext": "agda", "hexsha": "2e5cdb30e95f4d195ea3988f21e74ad8e29fb9f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Yasm/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Yasm/Types.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Yasm/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 361, "size": 1413 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Properties {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.LogicalRelation open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Irrelevance using (irrelevanceSubst′) open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties import Definition.LogicalRelation.Weakening as LR open import Tools.Unit open import Tools.Product import Tools.PropositionalEquality as PE -- Valid substitutions are well-formed wellformedSubst : ∀ {Γ Δ σ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ → Δ ⊢ˢ σ ∷ Γ wellformedSubst ε′ ⊢Δ [σ] = id wellformedSubst ([Γ] ∙′ [A]) ⊢Δ ([tailσ] , [headσ]) = wellformedSubst [Γ] ⊢Δ [tailσ] , escapeTerm (proj₁ ([A] ⊢Δ [tailσ])) [headσ] -- Valid substitution equality is well-formed wellformedSubstEq : ∀ {Γ Δ σ σ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] → Δ ⊢ˢ σ ≡ σ′ ∷ Γ wellformedSubstEq ε′ ⊢Δ [σ] [σ≡σ′] = id wellformedSubstEq ([Γ] ∙′ [A]) ⊢Δ ([tailσ] , [headσ]) ([tailσ≡σ′] , [headσ≡σ′]) = wellformedSubstEq [Γ] ⊢Δ [tailσ] [tailσ≡σ′] , ≅ₜ-eq (escapeTermEq (proj₁ ([A] ⊢Δ [tailσ])) [headσ≡σ′]) -- Extend a valid substitution with a term consSubstS : ∀ {l σ t A Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([t] : Δ ⊩⟨ l ⟩ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])) → Δ ⊩ˢ consSubst σ t ∷ Γ ∙ A / [Γ] ∙″ [A] / ⊢Δ consSubstS [Γ] ⊢Δ [σ] [A] [t] = [σ] , [t] -- Extend a valid substitution equality with a term consSubstSEq : ∀ {l σ σ′ t A Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([t] : Δ ⊩⟨ l ⟩ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])) → Δ ⊩ˢ consSubst σ t ≡ consSubst σ′ t ∷ Γ ∙ A / [Γ] ∙″ [A] / ⊢Δ / consSubstS {t = t} {A = A} [Γ] ⊢Δ [σ] [A] [t] consSubstSEq [Γ] ⊢Δ [σ] [σ≡σ′] [A] [t] = [σ≡σ′] , reflEqTerm (proj₁ ([A] ⊢Δ [σ])) [t] -- Weakening of valid substitutions wkSubstS : ∀ {ρ σ Γ Δ Δ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′) ([ρ] : ρ ∷ Δ′ ⊆ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ′ ⊩ˢ ρ •ₛ σ ∷ Γ / [Γ] / ⊢Δ′ wkSubstS ε′ ⊢Δ ⊢Δ′ ρ [σ] = tt wkSubstS {σ = σ} {Γ = Γ ∙ A} ([Γ] ∙′ x) ⊢Δ ⊢Δ′ ρ [σ] = let [tailσ] = wkSubstS [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ]) in [tailσ] , irrelevanceTerm′ (wk-subst A) (LR.wk ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ])))) (proj₁ (x ⊢Δ′ [tailσ])) (LR.wkTerm ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ])) -- Weakening of valid substitution equality wkSubstSEq : ∀ {ρ σ σ′ Γ Δ Δ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′) ([ρ] : ρ ∷ Δ′ ⊆ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) → Δ′ ⊩ˢ ρ •ₛ σ ≡ ρ •ₛ σ′ ∷ Γ / [Γ] / ⊢Δ′ / wkSubstS [Γ] ⊢Δ ⊢Δ′ [ρ] [σ] wkSubstSEq ε′ ⊢Δ ⊢Δ′ ρ [σ] [σ≡σ′] = tt wkSubstSEq {Γ = Γ ∙ A} ([Γ] ∙′ x) ⊢Δ ⊢Δ′ ρ [σ] [σ≡σ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ]) (proj₁ [σ≡σ′]) , irrelevanceEqTerm′ (wk-subst A) (LR.wk ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ])))) (proj₁ (x ⊢Δ′ (wkSubstS [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ])))) (LR.wkEqTerm ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ≡σ′])) -- Weaken a valid substitution by one type wk1SubstS : ∀ {F σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢F : Δ ⊢ F) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → (Δ ∙ F) ⊩ˢ wk1Subst σ ∷ Γ / [Γ] / (⊢Δ ∙ ⊢F) wk1SubstS {F} {σ} {Γ} {Δ} [Γ] ⊢Δ ⊢F [σ] = wkSubstS [Γ] ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ] -- Weaken a valid substitution equality by one type wk1SubstSEq : ∀ {F σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢F : Δ ⊢ F) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) → (Δ ∙ F) ⊩ˢ wk1Subst σ ≡ wk1Subst σ′ ∷ Γ / [Γ] / (⊢Δ ∙ ⊢F) / wk1SubstS [Γ] ⊢Δ ⊢F [σ] wk1SubstSEq {l} {F} {σ} {Γ} {Δ} [Γ] ⊢Δ ⊢F [σ] [σ≡σ′] = wkSubstSEq [Γ] ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ] [σ≡σ′] -- Lift a valid substitution liftSubstS : ∀ {l F σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → (Δ ∙ subst σ F) ⊩ˢ liftSubst σ ∷ Γ ∙ F / [Γ] ∙″ [F] / (⊢Δ ∙ escape (proj₁ ([F] ⊢Δ [σ]))) liftSubstS {F = F} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [F] [σ] = let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [tailσ] = wk1SubstS {F = subst σ F} [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ] var0 = var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here) in [tailσ] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [tailσ])) (var 0) var0 (~-var var0) -- Lift a valid substitution equality liftSubstSEq : ∀ {l F σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) → (Δ ∙ subst σ F) ⊩ˢ liftSubst σ ≡ liftSubst σ′ ∷ Γ ∙ F / [Γ] ∙″ [F] / (⊢Δ ∙ escape (proj₁ ([F] ⊢Δ [σ]))) / liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] liftSubstSEq {F = F} {σ = σ} {σ′ = σ′} {Δ = Δ} [Γ] ⊢Δ [F] [σ] [σ≡σ′] = let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [tailσ] = wk1SubstS {F = subst σ F} [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ] [tailσ≡σ′] = wk1SubstSEq [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ] [σ≡σ′] var0 = var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here) in [tailσ≡σ′] , neuEqTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [tailσ])) (var 0) (var 0) var0 var0 (~-var var0) mutual -- Valid contexts are well-formed soundContext : ∀ {Γ} → ⊩ᵛ Γ → ⊢ Γ soundContext ε′ = ε soundContext (x ∙′ x₁) = soundContext x ∙ escape (irrelevance′ (subst-id _) (proj₁ (x₁ (soundContext x) (idSubstS x)))) -- From a valid context we can constuct a valid identity substitution idSubstS : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ˢ idSubst ∷ Γ / [Γ] / soundContext [Γ] idSubstS ε′ = tt idSubstS {Γ = Γ ∙ A} ([Γ] ∙′ [A]) = let ⊢Γ = soundContext [Γ] ⊢Γ∙A = soundContext ([Γ] ∙″ [A]) ⊢Γ∙A′ = ⊢Γ ∙ escape (proj₁ ([A] ⊢Γ (idSubstS [Γ]))) [A]′ = wk1SubstS {F = subst idSubst A} [Γ] ⊢Γ (escape (proj₁ ([A] (soundContext [Γ]) (idSubstS [Γ])))) (idSubstS [Γ]) [tailσ] = irrelevanceSubst′ (PE.cong (_∙_ Γ) (subst-id A)) [Γ] [Γ] ⊢Γ∙A′ ⊢Γ∙A [A]′ var0 = var ⊢Γ∙A (PE.subst (λ x → 0 ∷ x ∈ (Γ ∙ A)) (wk-subst A) (PE.subst (λ x → 0 ∷ wk1 (subst idSubst A) ∈ (Γ ∙ x)) (subst-id A) here)) in [tailσ] , neuTerm (proj₁ ([A] ⊢Γ∙A [tailσ])) (var 0) var0 (~-var var0) -- Reflexivity valid substitutions reflSubst : ∀ {σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ ∷ Γ / [Γ] / ⊢Δ / [σ] reflSubst ε′ ⊢Δ [σ] = tt reflSubst ([Γ] ∙′ x) ⊢Δ [σ] = reflSubst [Γ] ⊢Δ (proj₁ [σ]) , reflEqTerm (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ]) -- Reflexivity of valid identity substitution reflIdSubst : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ˢ idSubst ≡ idSubst ∷ Γ / [Γ] / soundContext [Γ] / idSubstS [Γ] reflIdSubst [Γ] = reflSubst [Γ] (soundContext [Γ]) (idSubstS [Γ]) -- Symmetry of valid substitution symS : ∀ {σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] → Δ ⊩ˢ σ′ ≡ σ ∷ Γ / [Γ] / ⊢Δ / [σ′] symS ε′ ⊢Δ [σ] [σ′] [σ≡σ′] = tt symS ([Γ] ∙′ x) ⊢Δ [σ] [σ′] [σ≡σ′] = symS [Γ] ⊢Δ (proj₁ [σ]) (proj₁ [σ′]) (proj₁ [σ≡σ′]) , let [σA] = proj₁ (x ⊢Δ (proj₁ [σ])) [σ′A] = proj₁ (x ⊢Δ (proj₁ [σ′])) [σA≡σ′A] = (proj₂ (x ⊢Δ (proj₁ [σ]))) (proj₁ [σ′]) (proj₁ [σ≡σ′]) [headσ′≡headσ] = symEqTerm [σA] (proj₂ [σ≡σ′]) in convEqTerm₁ [σA] [σ′A] [σA≡σ′A] [headσ′≡headσ] -- Transitivity of valid substitution transS : ∀ {σ σ′ σ″ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) ([σ″] : Δ ⊩ˢ σ″ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] → Δ ⊩ˢ σ′ ≡ σ″ ∷ Γ / [Γ] / ⊢Δ / [σ′] → Δ ⊩ˢ σ ≡ σ″ ∷ Γ / [Γ] / ⊢Δ / [σ] transS ε′ ⊢Δ [σ] [σ′] [σ″] [σ≡σ′] [σ′≡σ″] = tt transS ([Γ] ∙′ x) ⊢Δ [σ] [σ′] [σ″] [σ≡σ′] [σ′≡σ″] = transS [Γ] ⊢Δ (proj₁ [σ]) (proj₁ [σ′]) (proj₁ [σ″]) (proj₁ [σ≡σ′]) (proj₁ [σ′≡σ″]) , let [σA] = proj₁ (x ⊢Δ (proj₁ [σ])) [σ′A] = proj₁ (x ⊢Δ (proj₁ [σ′])) [σ″A] = proj₁ (x ⊢Δ (proj₁ [σ″])) [σ′≡σ″]′ = convEqTerm₂ [σA] [σ′A] ((proj₂ (x ⊢Δ (proj₁ [σ]))) (proj₁ [σ′]) (proj₁ [σ≡σ′])) (proj₂ [σ′≡σ″]) in transEqTerm [σA] (proj₂ [σ≡σ′]) [σ′≡σ″]′
{ "alphanum_fraction": 0.4203410982, "avg_line_length": 43.9086757991, "ext": "agda", "hexsha": "741478719f59a4083824dd4613c2214be2ae5504", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Properties.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4784, "size": 9616 }
module Self where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) data B : Set where T : B F : B _&&_ : B -> B -> B infixl 20 _&&_ T && T = T T && F = F F && _ = F _||_ : B -> B -> B infixl 15 _||_ T || _ = T F || T = T F || F = F p||p≡p : ∀ (p : B) -> p || p ≡ p p||p≡p T = refl p||p≡p F = refl p&&p≡p : ∀ (p : B) -> p && p ≡ p p&&p≡p T = refl p&&p≡p F = refl -- 交换律 a&&b≡b&&a : ∀ (a b : B) -> a && b ≡ b && a a&&b≡b&&a T T = refl a&&b≡b&&a T F = refl a&&b≡b&&a F T = refl a&&b≡b&&a F F = refl a||b≡b||a : ∀ (a b : B) -> a || b ≡ b || a a||b≡b||a T T = refl a||b≡b||a T F = refl a||b≡b||a F T = refl a||b≡b||a F F = refl abc||abc : ∀ (a b c : B) -> (a || b) || c ≡ a || (b || c) abc||abc T b c = refl abc||abc F T c = refl abc||abc F F T = refl abc||abc F F F = refl abc&&abc : ∀ (a b c : B) -> a && b && c ≡ a && (b && c) abc&&abc T T T = refl abc&&abc T T F = refl abc&&abc T F c = refl abc&&abc F b c = refl -- 分配律 a&&b||c≡a&&b||a&&c : ∀ (a b c : B) -> a && (b || c) ≡ a && b || a && c a&&b||c≡a&&b||a&&c T T c = refl a&&b||c≡a&&b||a&&c T F T = refl a&&b||c≡a&&b||a&&c T F F = refl a&&b||c≡a&&b||a&&c F T c = refl a&&b||c≡a&&b||a&&c F F c = refl a||b&&c≡a||b&&a||c : ∀ (a b c : B) -> a || b && c ≡ (a || b) && (a || c) a||b&&c≡a||b&&a||c T b c = refl a||b&&c≡a||b&&a||c F T T = refl a||b&&c≡a||b&&a||c F T F = refl a||b&&c≡a||b&&a||c F F c = refl T&&p≡p : ∀ (p : B) -> T && p ≡ p T&&p≡p T = refl T&&p≡p F = refl F||p≡p : ∀ (p : B) -> F || p ≡ p F||p≡p T = refl F||p≡p F = refl ¬_ : B -> B infix 25 ¬_ ¬ F = T ¬ T = F -- 负负得正 ¬¬p≡p : ∀ (p : B) -> ¬ (¬ p) ≡ p ¬¬p≡p T = refl ¬¬p≡p F = refl -- 德·摩根律 ¬a&&b≡¬a||¬b : ∀ (a b : B) -> ¬ (a && b) ≡ ¬ a || ¬ b ¬a&&b≡¬a||¬b T T = refl ¬a&&b≡¬a||¬b T F = refl ¬a&&b≡¬a||¬b F T = refl ¬a&&b≡¬a||¬b F F = refl ¬a||b≡¬a&&¬b : ∀ (a b : B) -> ¬ (a || b) ≡ ¬ a && ¬ b ¬a||b≡¬a&&¬b T T = refl ¬a||b≡¬a&&¬b T F = refl ¬a||b≡¬a&&¬b F T = refl ¬a||b≡¬a&&¬b F F = refl -- 自反律 p&&¬p≡F : ∀ (p : B) -> p && ¬ p ≡ F p&&¬p≡F T = refl p&&¬p≡F F = refl -- 排中律 ¬p||p≡T : ∀ (p : B) -> ¬ p || p ≡ T ¬p||p≡T T = refl ¬p||p≡T F = refl -- 蕴含 如果 .. 就 _to_ : B -> B -> B infixl 10 _to_ T to F = F T to T = T F to _ = T -- 蕴含等值推演 ptoq≡¬p||q : ∀ (p q : B) -> p to q ≡ ¬ p || q ptoq≡¬p||q T T = refl ptoq≡¬p||q T F = refl ptoq≡¬p||q F q = refl Ttop≡p : ∀ (p : B) -> T to p ≡ p Ttop≡p T = refl Ttop≡p F = refl Ftop≡T : ∀ (p : B) -> F to p ≡ T Ftop≡T p = refl -- 等价 _<>_ : B -> B -> B infixl 10 _eq_ T <> T = T F <> T = F T <> F = F F <> F = T -- 等价等值式 p<>q≡ptoq&&qtop : ∀ (p q : B) -> p <> q ≡ (p to q) && (q to p) p<>q≡ptoq&&qtop T T = refl p<>q≡ptoq&&qtop T F = refl p<>q≡ptoq&&qtop F T = refl p<>q≡ptoq&&qtop F F = refl -- lemma 01 p||q&&¬q≡p : ∀ (p q : B) -> p || q && ¬ q ≡ p p||q&&¬q≡p T T = refl p||q&&¬q≡p T F = refl p||q&&¬q≡p F q rewrite p&&¬p≡F q = refl -- proof 01 p&&q||p&&¬q≡p : ∀ (p q : B) -> p && q || p && ¬ q ≡ p p&&q||p&&¬q≡p T T = refl p&&q||p&&¬q≡p T F = refl p&&q||p&&¬q≡p F q = refl -- proof 02 atob≡¬bto¬a : ∀ (a b : B) -> a to b ≡ ¬ b to ¬ a atob≡¬bto¬a a b rewrite ptoq≡¬p||q a b | ptoq≡¬p||q (¬ b) (¬ a) | a||b≡b||a (¬ a) b | ¬¬p≡p b = refl implies₁ : ∀ (p q r s : B) -> ((p to (q to r)) && (¬ s || p) && q) to (s to r) ≡ T implies₁ T T T T = refl implies₁ T T T F = refl implies₁ T T F s = refl implies₁ T F T T = refl implies₁ T F T F = refl implies₁ T F F T = refl implies₁ T F F F = refl implies₁ F T T T = refl implies₁ F T T F = refl implies₁ F T F T = refl implies₁ F T F F = refl implies₁ F F r T = refl implies₁ F F r F = refl
{ "alphanum_fraction": 0.4321678322, "avg_line_length": 18.9153439153, "ext": "agda", "hexsha": "2852390130abeeb86119492fb2ee970ed59edf64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kands-code/agda-exercise", "max_forks_repo_path": "Self.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kands-code/agda-exercise", "max_issues_repo_path": "Self.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kands-code/agda-exercise", "max_stars_repo_path": "Self.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2013, "size": 3575 }
module my-vector where open import nat open import bool open import eq data 𝕍 {ℓ}(A : Set ℓ) : ℕ → Set ℓ where [] : 𝕍 A 0 _::_ : {n : ℕ} (x : A) (xs : 𝕍 A n) → 𝕍 A (suc n) infixr 6 _::_ _++𝕍_ _++𝕍_ : ∀ {ℓ} {A : Set ℓ}{n m : ℕ} → 𝕍 A n → 𝕍 A m → 𝕍 A (n + m) [] ++𝕍 ys = ys (x :: xs) ++𝕍 ys = x :: (xs ++𝕍 ys) test-vector : 𝕍 𝔹 4 test-vector = ff :: tt :: ff :: ff :: [] test-vector-append : 𝕍 𝔹 8 test-vector-append = test-vector ++𝕍 test-vector head𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → 𝕍 A (suc n) → A head𝕍 (x :: _) = x tail𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → 𝕍 A n → 𝕍 A (pred n) tail𝕍 [] = [] tail𝕍 (_ :: xs) = xs map𝕍 : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{n : ℕ} → (A → B) → 𝕍 A n → 𝕍 B n map𝕍 f [] = [] map𝕍 f (x :: xs) = f x :: map𝕍 f xs concat𝕍 : ∀{ℓ}{A : Set ℓ}{n m : ℕ} → 𝕍 (𝕍 A n) m → 𝕍 A (m * n) concat𝕍 [] = [] concat𝕍 (xs :: xs₁) = xs ++𝕍 (concat𝕍 xs₁) nth𝕍 : ∀{ℓ}{A : Set ℓ}{m : ℕ} → (n : ℕ) → n < m ≡ tt → 𝕍 A m → A nth𝕍 zero () [] nth𝕍 zero _ (x :: _) = x nth𝕍 (suc _) () [] nth𝕍 (suc n₁) p (_ :: xs) = nth𝕍 n₁ p xs repeat𝕍 : ∀{ℓ}{A : Set ℓ} → (a : A)(n : ℕ) → 𝕍 A n repeat𝕍 a zero = [] repeat𝕍 a (suc n) = a :: (repeat𝕍 a n)
{ "alphanum_fraction": 0.4564102564, "avg_line_length": 22.9411764706, "ext": "agda", "hexsha": "5f94e896505d9932c95b5ea250f2cd466a11403b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "logicshan/IAL", "max_forks_repo_path": "my-vector.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "logicshan/IAL", "max_issues_repo_path": "my-vector.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "logicshan/IAL", "max_stars_repo_path": "my-vector.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 636, "size": 1170 }